-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhparams.py
178 lines (151 loc) · 5.67 KB
/
hparams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import tensorflow as tf
from text import symbols
def create_hparams(hparams_string=None, verbose=False):
"""Create model hyperparameters. Parse nondefault from given string."""
hparams = tf.contrib.training.HParams(
################################
# Experiment Parameters #
################################
epochs=500,
iters_per_checkpoint=1000,
seed=1234,
dynamic_loss_scaling=True,
fp16_run=False,
distributed_run=False,
dist_backend="nccl",
dist_url="tcp://localhost:54321",
cudnn_enabled=True,
cudnn_benchmark=False,
ignore_layers=['embedding.weight'],
################################
# Data Parameters #
################################
load_mel_from_disk=False,
training_files='filelists/ljs_audio_text_train_filelist.txt',
validation_files='filelists/ljs_audio_text_val_filelist.txt',
text_cleaners=['english_cleaners'],
################################
# Audio Parameters #
################################
max_wav_value=32768.0,
sampling_rate=22050,
filter_length=1024,
hop_length=256,
win_length=1024,
n_mel_channels=80,
mel_fmin=0.0,
mel_fmax=8000.0,
################################
# Model Parameters #
################################
n_symbols=len(symbols),
symbols_embedding_dim=512,
# Encoder parameters
encoder_kernel_size=5,
encoder_n_convolutions=3,
encoder_embedding_dim=512,
# Decoder parameters
n_frames_per_step=3, # currently only 1 is supported
decoder_rnn_dim=1024,
prenet_dim=256,
max_decoder_steps=1000,
gate_threshold=0.5,
p_attention_dropout=0.1,
p_decoder_dropout=0.1,
# Attention parameters
attention_rnn_dim=1024,
attention_dim=128,
# Location Layer parameters
attention_location_n_filters=32,
attention_location_kernel_size=31,
# Mel-post processing network parameters
postnet_embedding_dim=512,
postnet_kernel_size=5,
postnet_n_convolutions=5,
################################
# Optimization Hyperparameters #
################################
use_saved_learning_rate=False,
learning_rate=1e-3,
weight_decay=1e-6,
grad_clip_thresh=1.0,
batch_size=64,
mask_padding=True # set model's padded outputs to padded values
)
if hparams_string:
tf.logging.info('Parsing command line hparams: %s', hparams_string)
hparams.parse(hparams_string)
if verbose:
tf.logging.info('Final parsed hparams: %s', hparams.values())
return hparams
class Hparams():
def __init__(self, hparams_string=None, verbose=False):
super(Hparams, self).__init__()
################################
# Experiment Parameters #
################################
self.epochs = 500,
self.iters_per_checkpoint = 1000,
self.seed = 1234,
self.dynamic_loss_scaling = True,
self.fp16_run = False,
self.distributed_run = False,
self.dist_backend = "nccl",
self.dist_url = "tcp://localhost:54321",
self.cudnn_enabled = True,
self.cudnn_benchmark = False,
self.ignore_layers = ['embedding.weight'],
################################
# Data Parameters #
################################
self.load_mel_from_disk = False,
self.training_files = 'filelists/ljs_audio_text_train_filelist.txt',
self.validation_files = 'filelists/ljs_audio_text_val_filelist.txt',
self.text_cleaners = ['english_cleaners'],
################################
# Audio Parameters #
################################
self.max_wav_value = 32768.0,
self.sampling_rate = 22050,
self.filter_length = 1024,
self.hop_length = 256,
self.win_length = 1024,
self.n_mel_channels = 80,
self.mel_fmin = 0.0,
self.mel_fmax = 8000.0,
################################
# Model Parameters #
################################
self.n_symbols = len(symbols),
self.symbols_embedding_dim = 512,
# Encoder parameters
self.encoder_kernel_size = 5,
self.encoder_n_convolutions = 3,
self.encoder_embedding_dim = 512,
# Decoder parameters
self.n_frames_per_step = 3, # currently only 1 is supported
self.decoder_rnn_dim = 1024,
self.prenet_dim = 256,
self.max_decoder_steps = 1000,
self.gate_threshold = 0.5,
self.p_attention_dropout = 0.1,
self.p_decoder_dropout = 0.1,
# Attention parameters
self.attention_rnn_dim = 1024,
self.attention_dim = 128,
# Location Layer parameters
self.attention_location_n_filters = 32,
self.attention_location_kernel_size = 31,
# Mel-post processing network parameters
self.postnet_embedding_dim = 512,
self.postnet_kernel_size = 5,
self.postnet_n_convolutions = 5,
################################
# Optimization Hyperparameters #
################################
self.use_saved_learning_rate = False,
self.learning_rate = 1e-3,
self.weight_decay = 1e-6,
self.grad_clip_thresh = 1.0,
self.batch_size = 64,
self.mask_padding = True # set model's padded outputs to padded values