-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
111 lines (101 loc) · 4.16 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# define CNN model, script based on U-Net implementaion on https://github.com/aladdinpersson/Machine-Learning-Collection
# import packages
import torch
import torch.nn as nn
import torchvision.transforms.functional as TF
# define double convolution
class DoubleConv(nn.Module):
def __init__(self, in_channels, out_channels, batchnorm=True):
super(DoubleConv, self).__init__()
# define convolutions if batchnorm is used
if batchnorm:
self.conv = nn.Sequential(
# first convolution
nn.Conv2d(in_channels, out_channels, 3, 1, 1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
# second convolution
nn.Conv2d(out_channels, out_channels, 3, 1, 1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
)
# define convolutions if batchnorm is not used
else:
self.conv = nn.Sequential(
# first convolution
nn.Conv2d(in_channels, out_channels, 3, 1, 1, bias=False),
nn.ReLU(inplace=True),
# second convolution
nn.Conv2d(out_channels, out_channels, 3, 1, 1, bias=False),
nn.ReLU(inplace=True),
)
def forward(self, x):
return self.conv(x)
# define UNET
class UNET(nn.Module):
# define parameters (standard values that can be adjusted (e.g., in_channels=10 in final model))
# features represents number of channels at end of each double conv within different depths of the network
def __init__(
self, in_channels=4, out_channels=1, features=[64, 128, 256, 512],
batchnorm=True, p_dropout=0.,
):
super(UNET, self).__init__()
self.ups = nn.ModuleList()
self.downs = nn.ModuleList()
# define max pooling
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
# Down part of UNET
for feature in features[:-1]:
self.downs.append(DoubleConv(in_channels, feature, batchnorm))
in_channels = feature
# Up part of UNET
for feature in reversed(features):
self.ups.append(
nn.ConvTranspose2d(
feature*2, feature, kernel_size=2, stride=2,
)
)
self.ups.append(DoubleConv(feature*2, feature, batchnorm))
# Bottleneck of UNET
self.prebottleneck = DoubleConv(features[-2], features[-1], batchnorm)
self.bottleneck = DoubleConv(features[-1], features[-1]*2, batchnorm)
self.final_conv = nn.Conv2d(features[0], out_channels, kernel_size=1)
self.sigmoid = nn.Sigmoid()
self.dropout = nn.Dropout(p_dropout)
# apply forward pass
def forward(self, x):
skip_connections = []
# down 0,1,2
for down in self.downs:
x = down(x)
skip_connections.append(x)
x = self.pool(x)
# down 3
x = self.prebottleneck(x)
skip_connections.append(x)
x = self.dropout(x)
x = self.pool(x)
# down 4
x = self.bottleneck(x)
x = self.dropout(x)
skip_connections = skip_connections[::-1]
# up 3,2,1,0
for idx in range(0, len(self.ups), 2):
x = self.ups[idx](x)
skip_connection = skip_connections[idx//2]
if x.shape != skip_connection.shape:
x = TF.resize(x, size=skip_connection.shape[2:])
concat_skip = torch.cat((skip_connection, x), dim=1)
x = self.ups[idx+1](concat_skip)
# final conv
x = self.final_conv(x)
return x
def test():
x = torch.randn((1, 3, 160, 160))
model = UNET(in_channels=3, out_channels=1)
preds = model(x)
# print(preds.shape)
# print(x.shape)
# assert preds.shape == x.shape
if __name__ == "__main__":
test()