-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheucl.py
31 lines (26 loc) · 914 Bytes
/
eucl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from scipy.spatial import distance
def euclidean_distance(pt1, pt2):
distance = 0
for i in range(len(pt1)):
distance += (pt1[i] - pt2[i]) ** 2
return distance ** 0.5
print(euclidean_distance([1, 2], [4, 0]))
print(euclidean_distance([5, 4, 3], [1, 7, 9]))
def manhattan_distance(pt1, pt2):
distance = 0
for i in range(len(pt1)):
distance += abs(pt1[i] - pt2[i])
return distance
print(manhattan_distance([1, 2], [4, 0]))
print(manhattan_distance([5, 4, 3], [1, 7, 9]))
def hamming_distance(pt1,pt2):
distance = 0
for i in range(len(pt1)):
if pt1[i] != pt2[i]:
distance += 1
return distance
print(hamming_distance([1, 2], [1, 100]))
print(hamming_distance([5, 4, 9], [1, 7, 9]))
print(distance.euclidean([1, 2], [4, 0]))
print(distance.cityblock([1, 2], [4, 0]))
print(distance.hamming([5, 4, 9], [1, 7, 9]))