-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathenhance_a_video_MultiGPU.py
215 lines (173 loc) · 7.3 KB
/
enhance_a_video_MultiGPU.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
from argparse import ArgumentParser, Namespace
import glob
from easydict import EasyDict
from huggingface_hub import hf_hub_download
import torch.cuda
import torch.distributed as dist
from inference_utils import *
from video_to_video.context_parallel import get_context_parallel_rank, initialize_context_parallel
from video_to_video.utils.seed import setup_seed
from video_to_video.video_to_video_model_parallel import VideoToVideoParallel
logger = get_logger()
class VEnhancer:
def __init__(
self,
result_dir="./results/",
version="v1",
model_path="",
solver_mode="fast",
steps=15,
guide_scale=7.5,
s_cond=8,
):
if not model_path:
self.download_model(version=version)
else:
self.model_path = model_path
assert os.path.exists(self.model_path), "Error: checkpoint Not Found!"
logger.info(f"checkpoint_path: {self.model_path}")
self.result_dir = result_dir
os.makedirs(self.result_dir, exist_ok=True)
model_cfg = EasyDict(__name__="model_cfg")
model_cfg.model_path = self.model_path
self.model = VideoToVideoParallel(model_cfg)
steps = 15 if solver_mode == "fast" else steps
self.solver_mode = solver_mode
self.steps = steps
self.guide_scale = guide_scale
self.s_cond = s_cond
def enhance_a_video(self, video_path, prompt, up_scale=4, target_fps=24, noise_aug=300):
save_name = os.path.splitext(os.path.basename(video_path))[0]
text = prompt
logger.info(f"text: {text}")
caption = text + self.model.positive_prompt
input_frames, input_fps = load_video(video_path)
in_f_num = len(input_frames)
logger.info(f"input frames length: {in_f_num}")
logger.info(f"input fps: {input_fps}")
interp_f_num = max(round(target_fps / input_fps) - 1, 0)
interp_f_num = min(interp_f_num, 8)
target_fps = input_fps * (interp_f_num + 1)
logger.info(f"target_fps: {target_fps}")
video_data = preprocess(input_frames)
_, _, h, w = video_data.shape
logger.info(f"input resolution: {(h, w)}")
target_h, target_w = adjust_resolution(h, w, up_scale)
logger.info(f"target resolution: {(target_h, target_w)}")
mask_cond = make_mask_cond(in_f_num, interp_f_num)
mask_cond = torch.Tensor(mask_cond).long()
noise_aug = min(max(noise_aug, 0), 300)
logger.info(f"noise augmentation: {noise_aug}")
logger.info(f"scale s is set to: {self.s_cond}")
pre_data = {"video_data": video_data, "y": caption}
pre_data["mask_cond"] = mask_cond
pre_data["s_cond"] = self.s_cond
pre_data["interp_f_num"] = interp_f_num
pre_data["target_res"] = (target_h, target_w)
pre_data["t_hint"] = noise_aug
total_noise_levels = 900
setup_seed(666)
with torch.no_grad():
data_tensor = collate_fn(pre_data, "cuda")
output = self.model.test(
data_tensor,
total_noise_levels,
steps=self.steps,
solver_mode=self.solver_mode,
guide_scale=self.guide_scale,
noise_aug=noise_aug,
)
output = tensor2vid(output)
if get_context_parallel_rank() == 0:
save_video(output, self.result_dir, f"{save_name}.mp4", fps=target_fps)
dist.barrier()
return os.path.join(self.result_dir, save_name)
def download_model(self, version):
REPO_ID = "jwhejwhe/VEnhancer"
filename = "venhancer_paper.pt"
if version == "v2":
filename = "venhancer_v2.pt"
ckpt_dir = "./ckpts/"
os.makedirs(ckpt_dir, exist_ok=True)
local_file = os.path.join(ckpt_dir, filename)
if not os.path.exists(local_file):
logger.info(f"Downloading the VEnhancer checkpoint...")
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir=ckpt_dir)
self.model_path = local_file
def parse_args() -> Namespace:
parser = ArgumentParser()
parser.add_argument("--input_path", required=True, type=str, help="input video path")
parser.add_argument("--save_dir", type=str, default="results", help="save directory")
parser.add_argument("--version", type=str, default="v1", choices=["v1", "v2"], help="model version")
parser.add_argument("--model_path", type=str, default="", help="model path")
parser.add_argument("--prompt", type=str, default="a good video", help="prompt")
parser.add_argument("--prompt_path", type=str, default="", help="prompt path")
parser.add_argument("--filename_as_prompt", action="store_true")
parser.add_argument("--cfg", type=float, default=7.5)
parser.add_argument("--solver_mode", type=str, default="fast", choices=["fast", "normal"], help="fast | normal")
parser.add_argument("--steps", type=int, default=15)
parser.add_argument("--noise_aug", type=int, default=200, help="noise augmentation")
parser.add_argument("--target_fps", type=int, default=24)
parser.add_argument("--up_scale", type=float, default=4)
parser.add_argument("--s_cond", type=float, default=8)
return parser.parse_args()
def main():
args = parse_args()
world_size = int(os.environ["WORLD_SIZE"])
rank = int(os.environ["RANK"])
gpu_id = int(os.environ["LOCAL_RANK"])
dist.init_process_group(
backend="nccl",
rank=rank,
world_size=world_size,
init_method="env://",
)
torch.cuda.set_device(gpu_id)
initialize_context_parallel(world_size)
input_path = args.input_path
prompt = args.prompt
prompt_path = args.prompt_path
filename_as_prompt = args.filename_as_prompt
model_path = args.model_path
version = args.version
save_dir = args.save_dir
noise_aug = args.noise_aug
up_scale = args.up_scale
target_fps = args.target_fps
s_cond = args.s_cond
steps = args.steps
solver_mode = args.solver_mode
guide_scale = args.cfg
venhancer = VEnhancer(
result_dir=save_dir,
version=version,
model_path=model_path,
solver_mode=solver_mode,
steps=steps,
guide_scale=guide_scale,
s_cond=s_cond,
)
if os.path.isdir(input_path):
file_path_list = sorted(glob.glob(os.path.join(input_path, "*.mp4")))
elif os.path.isfile(input_path):
file_path_list = [input_path]
else:
raise TypeError("input must be a directory or video file!")
prompt_list = None
if os.path.isfile(prompt_path):
prompt_list = load_prompt_list(prompt_path)
assert len(prompt_list) == len(file_path_list)
for ind, file_path in enumerate(file_path_list):
logger.info(f"processing video {ind}, file_path: {file_path}")
if filename_as_prompt:
prompt = os.path.splitext(os.path.basename(file_path))[0]
elif prompt_list is not None:
prompt = prompt_list[ind]
else:
prompt_path = os.path.splitext(file_path)[0] + ".txt"
if os.path.isfile(prompt_path):
logger.info(f"prompt_path: {prompt_path}")
prompt = load_prompt_list(prompt_path)[0]
venhancer.enhance_a_video(file_path, prompt, up_scale, target_fps, noise_aug)
if __name__ == "__main__":
main()