-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
201 lines (147 loc) · 7.89 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
import sys
import copy
import yaml
import torch
import argparse
import numpy as np
from utils import *
from dg_utils import aggregate
from datasets.utils.common_configs import *
from evaluation.evaluate_utils import save_model_predictions, eval_all_results
def local_train(task, train_dl, loss_ft, lr, model, args):
local_optimizer = torch.optim.Adam(
filter(lambda p: p.requires_grad, model.parameters()),
lr=lr , weight_decay=0.0001, amsgrad=True)
for epoch in range(args.local_epochs):
model.train()
epoch_loss_collector = []
for batch_idx, batch in enumerate(train_dl):
x = batch['image'].cuda(non_blocking=True)
target = batch[task].cuda(non_blocking=True)
if torch.min(target) == 255 and 'human' in task:
continue
local_optimizer.zero_grad()
out = model(x)
loss = loss_ft(out[task], target)
epoch_loss_collector.append(loss.item())
loss.backward()
local_optimizer.step()
print('Epoch: %d Avg Loss: %.4f'%(epoch, sum(epoch_loss_collector)/len(epoch_loss_collector)))
return model
def evaluation(mtl_configs, database, test_dl, model, save_dir_root, client_idx, task, dataidx=None):
save_model_predictions(mtl_configs, test_dl, model, save_dir_root, client_idx, tasks=[task])
curr_result = eval_all_results(save_dir_root, database, client_idx, tasks=[task], dataidx=dataidx)
return curr_result
def main(all_nets, test_dls, train_losses, data_tools, args, mtl_configs):
if args.aggregation in ['model-soup','rws', 'stable-rws']:
schedule_weight = get_schedule_weight(args)
save_ckpt = {}
for model_idx in all_nets:
save_ckpt[model_idx] = copy.deepcopy(all_nets[model_idx]['model'].state_dict())
results = {}
for cr in range(args.comm_round):
eval_bool = True if args.eval and (cr+1)%args.eval_freq==0 else False
if eval_bool:
results[cr] = {}
for model_idx in all_nets:
task, train_dl, model, dataname = \
all_nets[model_idx]['task'], all_nets[model_idx]['train_dl'], all_nets[model_idx]['model'], all_nets[model_idx]['dataname']
lr = data_tools[dataname]['lr'] * (args.lr_decay_cr ** cr)
print('CR %d [lr %.5f] (NET %2d) DATASET: %s on %s [training images: %d]'%(cr, lr, model_idx, dataname, task, len(train_dl.dataset)))
model = local_train(task=task,
train_dl=train_dl, loss_ft=train_losses[task], lr=lr,
model=model.cuda(), args=args)
if task != 'edge' and eval_bool:
results[cr][model_idx] = evaluation(mtl_configs, database=dataname, test_dl=test_dls[dataname][task]['dl'], model=model,
save_dir_root=args.root_dir, client_idx=model_idx, task=task, dataidx=test_dls[dataname][task]['dataidx'])
if args.save_all_ckpts:
save_ckpt_temp = {}
for model_idx in all_nets:
save_ckpt_temp[model_idx] = copy.deepcopy(all_nets[model_idx]['model'].state_dict())
torch.save({
'result': results,
'ckpts': save_ckpt_temp
}, os.path.join(args.root_dir, 'checkpoint_%d.pth.tar'%cr))
del save_ckpt_temp
all_nets = aggregate(all_nets, save_ckpt, args.aggregation, root_dir=args.root_dir,
weight=schedule_weight[cr] if args.aggregation in ['model-soup','rws', 'stable-rws'] else None, cluster_num=args.cluster_num, th=args.th)
save_ckpt = {}
for model_idx in all_nets:
save_ckpt[model_idx] = copy.deepcopy(all_nets[model_idx]['model'].state_dict())
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='MTL-FL')
parser.add_argument('--mtl_configs', default='configs/config_example.yml')
parser.add_argument('--optimizer', default='adam')
parser.add_argument('--eval_freq', type=int, default=5)
parser.add_argument('--eval_num', type=int, default=None)
parser.add_argument('--eval', action='store_true')
parser.add_argument('--lr-decay-cr', type=float, default=0.99)
parser.add_argument('--backbone', default='resnet18')
parser.add_argument('--backbone_pretrain', action='store_true')
parser.add_argument('--backbone_dilated', action='store_false')
parser.add_argument('--head', default='deeplab')
parser.add_argument('--local_epochs', type=int, default=5)
parser.add_argument('--comm_round', type=int, default=10,
help='how many round of communications we shoud use')
parser.add_argument('--partition', default='homo')
parser.add_argument('--seed', type=int, default=42, help='random seed. for reproducibility.')
parser.add_argument('--root_dir', type=str, required=True, help='root dir of results')
parser.add_argument('--aggregation', required=True)
parser.add_argument('--aggregate_decoder', action='store_true')
parser.add_argument('--cluster_num', type=int, default=2)
parser.add_argument('--max_weight', type=float)
parser.add_argument('--th', type=float)
parser.add_argument('--save_all_ckpts', action='store_true')
args = parser.parse_args()
os.makedirs(args.root_dir, exist_ok=True)
with open(args.mtl_configs, 'r') as stream:
configs = yaml.safe_load(stream)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
data_tools, default_mtl_configs = partition_data(configs['Dataset'], args)
all_n_nets = sum([data_tools[dataname]['n_nets'] for dataname in data_tools])
all_nets = {idx: {} for idx in range(all_n_nets)}
net_idx = 0
for data_idx, dataname in enumerate(data_tools):
net_task_dataidx_map, n_nets = data_tools[dataname]['net_task_dataidx_map'], data_tools[dataname]['n_nets']
nets = init_models(net_task_dataidx_map, n_nets, args, dataname)
for worker_index in range(n_nets):
task = net_task_dataidx_map[worker_index]['task']
dataidxs = net_task_dataidx_map[worker_index]['dataidx']
train_ds_local = get_train_dataset(dataname=dataname, tasks=[task],
transform=data_tools[dataname]['train_transforms'], dataidxs=dataidxs, overfit=False)
train_dl_local = get_train_dataloader(configs=data_tools[dataname], ds=train_ds_local)
all_nets[net_idx]['task'] = task
all_nets[net_idx]['dataidxs'] = dataidxs
all_nets[net_idx]['dataname'] = dataname
all_nets[net_idx]['model'] = nets[worker_index]
all_nets[net_idx]['train_dl'] = train_dl_local
net_idx += 1
test_dls = {}
for dataname in data_tools:
test_dls[dataname] = {}
for task in set(data_tools[dataname]['task_list']):
if args.eval_num is not None:
print(f"Use {args.eval_num} data for evaluation....")
dataidx = np.random.choice(NUM_TEST_IMAGES[dataname.lower()], args.eval_num, replace=False)
else:
print("Use the whole testset for evaluation....")
dataidx = None
test_ds_local = get_val_dataset(dataname=dataname, tasks=[task],
transform=data_tools[dataname]['val_transforms'],
dataidxs=dataidx, overfit=False)
test_dl_local = get_val_dataloader(configs=data_tools[dataname], ds=test_ds_local)
test_dls[dataname][task] = {'dl':test_dl_local, 'dataidx':dataidx}
train_losses = {}
for task in set([all_nets[net_idx]['task'] for net_idx in all_nets]):
train_losses[task] = get_loss(default_mtl_configs, task)
main(
all_nets=all_nets,
test_dls=test_dls,
train_losses=train_losses,
data_tools=data_tools,
args=args,
mtl_configs=default_mtl_configs
)