Go语言中类似if和switch的关键字有25个;关键字不能用于自定义名字,只能在特定语法结构中使用。
break default func interface select
case defer go map struct
chan else goto package switch
const fallthrough if range type
continue for import return var
此外,还有大约30多个预定义的名字,比如int和true等,主要对应内建的常量、类型和函数。
内建常量: true false iota nil
内建类型: int int8 int16 int32 int64
uint uint8 uint16 uint32 uint64 uintptr
float32 float64 complex128 complex64
bool byte rune string error
内建函数: make len cap new append copy close delete
complex real imag
panic recover
这些内部预先定义的名字并不是关键字,你可以在定义中重新使用它们。
如果一个名字是在函数内部定义,那么它就只在函数内部有效。如果是在函数外部定义,那么将在当前包的所有文件中都可以访问。名字的开头字母的大小写决定了名字在包外的可见性。如果一个名字是大写字母开头的,那么它将是导出的,也就是说可以被外部的包访问。
在习惯上,Go语言程序员推荐使用 驼峰式 命名,当名字由几个单词组成时优先使用大小写分隔,而不是优先用下划线分隔。
声明语句定义了程序的各种实体对象以及部分或全部的属性。Go语言主要有四种类型的声明语句:var、const、type和func,分别对应变量、常量、类型和函数实体对象的声明。
一个Go语言编写的程序对应一个或多个以.go为文件后缀名的源文件。每个源文件中以包的声明语句开始,说明该源文件是属于哪个包。包声明语句之后是import语句导入依赖的其它包,然后是包一级的类型、变量、常量、函数的声明语句,包一级的各种类型的声明语句的顺序无关紧要。
在包一级声明语句声明的名字可在整个包对应的每个源文件中访问,而不是仅仅在其声明语句所在的源文件中访问。
变量声明的一般语法如下:
var 变量名字 类型 = 表达式
其中“类型”或“= 表达式”两个部分可以省略其中的一个。如果省略的是类型信息,那么将根据初始化表达式来推导变量的类型信息。
如果初始化表达式被省略,那么将用零值初始化该变量。
- 数值类型变量对应的零值是0,
- 布尔类型变量对应的零值是false,
- 字符串类型对应的零值是空字符串,
- 接口或引用类型(包括slice、指针、map、chan和函数)变量对应的零值是nil。
- 数组或结构体等聚合类型对应的零值是每个元素或字段都是对应该类型的零值。
零值初始化机制可以确保每个声明的变量总是有一个良好定义的值,因此在Go语言中不存在未初始化的变量。
初始化表达式可以是字面量或任意的表达式。在包级别声明的变量会在main入口函数执行前完成初始化,局部变量将在声明语句被执行到的时候完成初始化。
简短变量声明以名字 := 表达式
形式声明变量,变量的类型根据表达式来自动推导。
freq := rand.Float64() * 3.0
t := 0.0
和var形式声明语句一样,简短变量声明语句也可以用来声明和初始化一组变量:
i, j := 0, 1
“:=”是一个变量声明语句,而“=”是一个变量赋值操作。
i, j = j, i // 交换 i 和 j 的值
有一个比较微妙的地方:简短变量声明左边的变量可能并不是全部都是刚刚声明的。如果有一些已经在相同的词法域声明过了,那么简短变量声明语句对这些已经声明过的变量就只有赋值行为了。
in, err := os.Open(infile)
out, err := os.Create(outfile)
简短变量声明语句中必须至少要声明一个新的变量
简短变量声明语句只有对已经在同级词法域声明过的变量才和赋值操作语句等价,如果变量是在外部词法域声明的,那么简短变量声明语句将会在当前词法域重新声明一个新的变量。
一个变量对应一个保存了变量对应类型值的内存空间。
一个指针的值是另一个变量的地址。一个指针对应变量在内存中的存储位置。并不是每一个值都会有一个内存地址,但是对于每一个变量必然有对应的内存地址。
如果用“var x int”声明语句声明一个x变量,那么&x表达式(取x变量的内存地址)将产生一个指向该整数变量的指针,指针对应的数据类型是*int
。
变量有时候被称为可寻址的值。即使变量由表达式临时生成,那么表达式也必须能接受&
取地址操作。
任何类型的指针的零值都是nil。指针之间也是可以进行相等测试的,只有当它们指向同一个变量或全部是nil时才相等。
在Go语言中,返回函数中局部变量的地址也是安全的。例如下面的代码,调用f函数时创建局部变量v,在局部变量地址被返回之后依然有效,因为指针p依然引用这个变量。
var p = f()
func f() *int {
v := 1
return &v
}
每次调用f函数都将返回不同的结果:
fmt.Println(f() == f()) // "false"
go语言编译器会自动决定把一个变量放在栈还是放在堆,编译器会做逃逸分析(escape analysis),当发现变量的作用域没有跑出函数范围,就可以在栈上,反之则必须分配在堆。所以不用担心会不会导致memory leak,因为GO语言有强大的垃圾回收机制。
另一个创建变量的方法是调用内建的new函数。表达式new(T)将创建一个T类型的匿名变量,初始化为T类型的零值,然后返回变量地址,返回的指针类型为*T
。
p := new(int) // p, *int 类型, 指向匿名的 int 变量
*p = 2 // 设置 int 匿名变量的值为 2
下面的两个newInt函数有着相同的行为:
func newInt() *int {
return new(int)
}
func newInt() *int {
var dummy int
return &dummy
}
由于new只是一个预定义的函数,它并不是一个关键字,因此我们可以将new名字重新定义为别的类型。
对于在包一级声明的变量来说,它们的生命周期和整个程序的运行周期是一致的。
局部变量的生命周期则是动态的:每次从创建一个新变量的声明语句开始,直到该变量不再被引用为止,然后变量的存储空间可能被回收。函数的参数变量和返回值变量都是局部变量。它们在函数每次被调用的时候创建。
Go语言的自动垃圾收集器是如何知道一个变量是何时可以被回收的呢?基本的实现思路是,从每个包级的变量和每个当前运行函数的每一个局部变量开始,通过指针或引用的访问路径遍历,是否可以找到该变量。如果不存在这样的访问路径,那么说明该变量是不可达的,也就是说它是否存在并不会影响程序后续的计算结果。
因为一个变量的有效周期只取决于是否可达,因此一个循环迭代内部的局部变量的生命周期可能超出其局部作用域。同时,局部变量可能在函数返回之后依然存在。
编译器会自动选择在栈上还是在堆上分配局部变量的存储空间,这个选择并不是由用var还是new声明变量的方式决定的。
数值变量也支持++
递增和--
递减语句(译注:自增和自减是语句,而不是表达式,因此x = i++
之类的表达式是错误的)。
元组赋值是另一种形式的赋值语句,它允许同时更新多个变量的值。在赋值之前,赋值语句右边的所有表达式将会先进行求值,然后再统一更新左边对应变量的值。
这对于处理有些同时出现在元组赋值语句左右两边的变量很有帮助,例如我们可以这样交换两个变量的值:
x, y = y, x
a[i], a[j] = a[j], a[i]
赋值语句是显式的赋值形式,但是程序中还有很多地方会发生隐式的赋值行为:函数调用会隐式地将调用参数的值赋值给函数的参数变量,一个返回语句会隐式地将返回操作的值赋值给结果变量,一个复合类型的字面量也会产生赋值行为。
medals := []string{"gold", "silver", "bronze"}
隐式地对slice的每个元素进行赋值操作。
不管是隐式还是显式地赋值,在赋值语句左边的变量和右边最终的求到的值必须有相同的数据类型。更直白地说,只有右边的值对于左边的变量是可赋值的,赋值语句才是允许的。
一个类型声明语句创建了一个新的类型名称,和现有类型具有相同的底层结构。新命名的类型提供了一个方法,用来分隔不同概念的类型,这样即使它们底层类型相同也是不兼容的。
type 类型名字 底层类型
类型声明语句一般出现在包一级,因此如果新创建的类型名字的首字符大写,则在包外部也可以使用。
对于每一个类型T,都有一个对应的类型转换操作T(x),用于将x转为T类型(译注:如果T是指针类型,可能会需要用小括弧包装T,比如(*int)(0)
)。只有当两个类型的底层基础类型相同时,才允许这种转型操作,或者是两者都是指向相同底层结构的指针类型,这些转换只改变类型而不会影响值本身。
数值类型之间的转型也是允许的,并且在字符串和一些特定类型的slice之间也是可以转换的,这类转换可能改变值的表现。
在任何情况下,运行时不会发生转换失败的错误(译注: 错误只会发生在编译阶段)。
底层数据类型决定了内部结构和表达方式,也决定是否可以像底层类型一样对内置运算符的支持。
许多类型都会定义一个String方法,因为当使用fmt包的打印方法时,将会优先使用该类型对应的String方法返回的结果打印。
一个包的源代码保存在一个或多个以.go为文件后缀名的源文件中,通常一个包所在目录路径的后缀是包的导入路径;例如包gopl.io/ch1/helloworld对应的目录路径是$GOPATH/src/gopl.io/ch1/helloworld。
每个包都对应一个独立的名字空间。
包还可以让我们通过控制哪些名字是外部可见的来隐藏内部实现信息。在Go语言中,一个简单的规则是:如果一个名字是大写字母开头的,那么该名字是导出的(译注:因为汉字不区分大小写,因此汉字开头的名字是没有导出的)。
在每个源文件的包声明前紧跟着的注释是包注释(§10.7.4)。通常,包注释的第一句应该先是包的功能概要说明。一个包通常只有一个源文件有包注释(译注:如果有多个包注释,目前的文档工具会根据源文件名的先后顺序将它们链接为一个包注释)。如果包注释很大,通常会放到一个独立的doc.go文件中。
在Go语言程序中,每个包都有一个全局唯一的导入路径。导入语句中类似"gopl.io/ch2/tempconv"的字符串对应包的导入路径。Go语言的规范并没有定义这些字符串的具体含义或包来自哪里,它们是由构建工具来解释的。当使用Go语言自带的go工具箱时(第十章),一个导入路径代表一个目录中的一个或多个Go源文件。
除了包的导入路径,每个包还有一个包名,包名一般是短小的名字(并不要求包名是唯一的),包名在包的声明处指定。按照惯例,一个包的名字和包的导入路径的最后一个字段相同。
如果导入了一个包,但是又没有使用该包将被当作一个编译错误处理。
golang.org/x/tools/cmd/goimports导入工具,它可以根据需要自动添加或删除导入的包;许多编辑器都可以集成goimports工具,然后在保存文件的时候自动运行。类似的还有gofmt工具,可以用来格式化Go源文件。
包的初始化首先是解决包级变量的依赖顺序,然后按照包级变量声明出现的顺序依次初始化。
如果包中含有多个.go源文件,它们将按照发给编译器的顺序进行初始化,Go语言的构建工具首先会将.go文件根据文件名排序,然后依次调用编译器编译。
对于在包级别声明的变量,如果有初始化表达式则用表达式初始化,还有一些没有初始化表达式的,例如某些表格数据初始化并不是一个简单的赋值过程。在这种情况下,我们可以用一个特殊的init初始化函数来简化初始化工作。每个文件都可以包含多个init初始化函数
func init() { /* ... */ }
这样的init初始化函数除了不能被调用或引用外,其他行为和普通函数类似。在每个文件中的init初始化函数,在程序开始执行时按照它们声明的顺序被自动调用。
每个包在解决依赖的前提下,以导入声明的顺序初始化,每个包只会被初始化一次。因此,如果一个p包导入了q包,那么在p包初始化的时候可以认为q包必然已经初始化过了。初始化工作是自下而上进行的,main包最后被初始化。以这种方式,可以确保在main函数执行之前,所有依赖的包都已经完成初始化工作了。
声明语句的作用域是指源代码中可以有效使用这个名字的范围。
不要将作用域和生命周期混为一谈。声明语句的作用域对应的是一个源代码的文本区域;它是一个编译时的属性。一个变量的生命周期是指程序运行时变量存在的有效时间段,在此时间区域内它可以被程序的其他部分引用;是一个运行时的概念。
句法块内部声明的名字是无法被外部块访问的。这个块决定了内部声明的名字的作用域范围。我们可以把块(block)的概念推广到包括其他声明的群组,这些声明在代码中并未显式地使用花括号包裹起来,我们称之为词法块。对全局的源代码来说,存在一个整体的词法块,称为全局词法块;对于每个包;每个for、if和switch语句,也都有对应词法块;每个switch或select的分支也有独立的词法块;当然也包括显式书写的词法块。
一个程序可能包含多个同名的声明,只要它们在不同的词法域就没有关系。
当编译器遇到一个名字引用时,它会对其定义进行查找,查找过程从最内层的词法域向全局的作用域进行。如果查找失败,则报告“未声明的名字”这样的错误。如果该名字在内部和外部的块分别声明过,则内部块的声明首先被找到。在这种情况下,内部声明屏蔽了外部同名的声明,让外部的声明的名字无法被访问。