-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathbase.py
52 lines (40 loc) · 1.58 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import pandas
import numpy as np
from pandas import DataFrame
from sklearn.cross_validation import train_test_split
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
class MachineLearning():
def __init__(self):
questions = []
with open("deneme.txt", "r") as f:
for line in f:
questions.append(line)
status = []
for i in range(len(questions)):
status.append(i)
self.__data = {'text': questions, 'status': status}
def frame(self):
frame = pandas.DataFrame(self.__data)
self.frame_x=frame["text"]
self.frame_y=frame["status"]
def learning(self):
self.vect = TfidfVectorizer(min_df=1)
self.x_train, self.x_test, self.y_train, self.y_test = train_test_split(self.frame_x, self.frame_y, test_size=0.2, random_state=4)
self.x_trainvect = self.vect.fit_transform(self.x_train)
self.x_trainvect.toarray()
self.vect1 = TfidfVectorizer(min_df=1)
self.x_trainvect = self.vect1.fit_transform(self.x_train)
a = self.x_trainvect.toarray()
self.vect1.inverse_transform(a[0])
def bayes(self):
self.mnb = MultinomialNB()
self.y_train=self.y_train.astype('int')
self.mnb.fit(self.x_trainvect,self.y_train)
def find(self, sentence):
self.frame()
self.learning()
self.bayes()
x_testvect = self.vect1.transform([sentence])
pred = self.mnb.predict(x_testvect)
return self.frame_x[pred[0]]