-
Notifications
You must be signed in to change notification settings - Fork 1
/
params.py
29 lines (22 loc) · 1.33 KB
/
params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import numpy as np
import os
def get_params():
params = {}
params['main_dir'] = r"C:\Users\burak\Desktop"
params['experiment_log'] = r"upp_r50" # experiment ID.
params['data_dir'] = os.path.join(params['main_dir'], 'map_data', 'Dataset') # dataset path.
params['log_path'] = os.path.join(params['main_dir'], 'map_exp', '5cls_2') # path to save logs.
params['inference_ims_input'] = os.path.join(params['main_dir'], 'map_data', 'all_dataset_ims') # images for geo-injection.
params['inference_save_dir'] = os.path.join(params['main_dir'], 'map_data', 'save_geo') # path to save the geo-inject outputs
params['ENCODER'] = 'resnext50_32x4d' # backbone architecture, encoder.
params['ENCODER_WEIGHTS'] = 'imagenet' # pre-trained weights.
params['CLASSES'] = np.arange(0,6,1) # used for encoding-decoding the mask.
params['ACTIVATION'] = 'softmax2d' # activation function.
params['DEVICE'] = 'cuda' # GPU or CPU.
params['batch_size'] = 18 # batch size.
params['mul_factor'] = 5 # sampling parameter.
params['lr'] = 0.0001 # learning rate.
params['n_epoch'] = 50 # number of epochs.
params['ig_ch'] = [0] # channel-s to ignore during evaluation.
params['n_workers'] = 0 #number of workers for data loader, multi-process scheme.
return params