-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
137 lines (116 loc) · 5.22 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import torch
import torch.nn as nn
import scipy.sparse as sp
import numpy as np
from utils import get_sparse_tensor, generate_daj_mat
from torch.nn.init import kaiming_uniform_, normal_, zeros_
import torch.nn.functional as F
import sys
import dgl
def get_model(config, dataset):
config = config.copy()
config['dataset'] = dataset
model = getattr(sys.modules['model'], config['name'])
model = model(config)
return model
def init_one_layer(in_features, out_features):
layer = nn.Linear(in_features, out_features)
kaiming_uniform_(layer.weight)
zeros_(layer.bias)
return layer
class BasicModel(nn.Module):
def __init__(self, model_config):
super(BasicModel, self).__init__()
print(model_config)
self.config = model_config
self.name = model_config['name']
self.device = model_config['device']
self.n_users = model_config['dataset'].n_users
self.n_items = model_config['dataset'].n_items
self.trainable = True
def predict(self, users):
raise NotImplementedError
def save(self, path):
torch.save(self.state_dict(), path)
def load(self, path):
self.load_state_dict(torch.load(path, map_location=self.device))
class MF(BasicModel):
def __init__(self, model_config):
super(MF, self).__init__(model_config)
self.embedding_size = model_config['embedding_size']
self.user_embedding = nn.Embedding(self.n_users, self.embedding_size)
self.item_embedding = nn.Embedding(self.n_items, self.embedding_size)
normal_(self.user_embedding.weight, std=0.1)
normal_(self.item_embedding.weight, std=0.1)
self.to(device=self.device)
def bpr_forward(self, users, pos_items, neg_items):
users_e = self.user_embedding(users)
pos_items_e, neg_items_e = self.item_embedding(pos_items), self.item_embedding(neg_items)
l2_norm_sq = torch.norm(users_e, p=2, dim=1) ** 2 + torch.norm(pos_items_e, p=2, dim=1) ** 2 \
+ torch.norm(neg_items_e, p=2, dim=1) ** 2
return users_e, pos_items_e, neg_items_e, l2_norm_sq
def predict(self, users):
user_e = self.user_embedding(users)
scores = torch.mm(user_e, self.item_embedding.weight.t())
return scores
def predict_interactions(self, users, items):
user_e = self.user_embedding(users)
item_e = self.item_embedding(items)
scores = (user_e * item_e).sum(1)
return scores
class LightGCN(BasicModel):
def __init__(self, model_config):
super(LightGCN, self).__init__(model_config)
self.embedding_size = model_config['embedding_size']
self.n_layers = model_config['n_layers']
self.embedding = nn.Embedding(self.n_users + self.n_items, self.embedding_size)
self.norm_adj = self.generate_graph(model_config['dataset'])
normal_(self.embedding.weight, std=0.1)
self.to(device=self.device)
self.has_rep = False
self.rep = None
def generate_graph(self, dataset):
adj_mat = generate_daj_mat(dataset)
degree = np.array(np.sum(adj_mat, axis=1)).squeeze()
degree = np.maximum(1., degree)
d_inv = np.power(degree, -0.5)
d_mat = sp.diags(d_inv, format='csr', dtype=np.float32)
norm_adj = d_mat.dot(adj_mat).dot(d_mat)
norm_adj = get_sparse_tensor(norm_adj, self.device)
return norm_adj
def get_rep(self):
representations = self.embedding.weight
all_layer_rep = [representations]
row, column = self.norm_adj.indices()
g = dgl.graph((column, row), num_nodes=self.norm_adj.shape[0], device=self.device)
for _ in range(self.n_layers):
representations = dgl.ops.gspmm(g, 'mul', 'sum', lhs_data=representations, rhs_data=self.norm_adj.values())
all_layer_rep.append(representations)
all_layer_rep = torch.stack(all_layer_rep, dim=0)
final_rep = all_layer_rep.mean(dim=0)
return final_rep
def bpr_forward(self, users, pos_items, neg_items):
if not self.has_rep:
rep = self.get_rep()
else:
rep = self.rep
users_e = self.embedding(users)
pos_items_e, neg_items_e = self.embedding(self.n_users + pos_items), self.embedding(self.n_users + neg_items)
l2_norm_sq = torch.norm(users_e, p=2, dim=1) ** 2 + torch.norm(pos_items_e, p=2, dim=1) ** 2 \
+ torch.norm(neg_items_e, p=2, dim=1) ** 2
users_r = rep[users, :]
pos_items_r, neg_items_r = rep[self.n_users + pos_items, :], rep[self.n_users + neg_items, :]
return users_r, pos_items_r, neg_items_r, l2_norm_sq
def predict(self, users):
rep = self.get_rep()
users_r = rep[users, :]
all_items_r = rep[self.n_users:, :]
scores = torch.mm(users_r, all_items_r.t())
return scores
def predict_interactions(self, users, items):
self.rep = self.get_rep()
self.has_rep = True
users_r = self.rep[users, :]
items_r = self.rep[items + self.n_users, :]
scores = (users_r * items_r).sum(1)
return scores