Skip to content

Files

Latest commit

 

History

History
executable file
·
169 lines (131 loc) · 6.03 KB

README.md

File metadata and controls

executable file
·
169 lines (131 loc) · 6.03 KB

mruby-gsl

Build Status

This is a (very) partial wrapper to GSL functions. Its main target is to provide the basic functionalities for working with Matrices and Vectors.

Installing

To include in your custom mruby, add the following to build_config.rb:

conf.gem :github => 'UniTN-Mechatronics/mruby-gsl', :branch => 'master'

To simply test it into a minimal mruby:

$ make
$ tmp/mruby/bin/mirb

Error messages

By default, GSL error messages are printed to stdout. This happens in addition to standard Ruby errors. If you want to disable GSL error messages, use the Kernel method gsl_info_off, and use gsl_info_on to re-enable.

Default behavior can be reversed (i.e. no printout) by disabling the compiler switch GSL_ERROR_MSG_PRINTOUT in mrbgem.rake.

Vectors and Matrix Arithmetic Operators

There are two types of operators for Vectors and Matrices: destructive and non destructuve. For example, Vector#add! sums a scalar or another vector (element-wise) to the original vector itself (so it is desctructive), and so do Vector#sub!, Vector#mul!, and Vector#div!.

Conversely, the corresponding methods Vector#+, Vector#-, Vector#*, and Vector#/ return a new vector (non-destructive). The operator Vector#^ returns the scalar product (a Float).

Similarly, for Matrices, Matrix#add!, Matrix#sub!, Matrix#mul!, and Matrix#div! operates on the matrix performing element-wise operations with a scalar or another equally-sized Matrix. The corresponding, non-destrctive operations are Matrix#+, Matrix#-, Matrix#*, and Matrix#/.

The Matrix multiplication is obtained by Matrix#^, which expects another Matrix with compatible sizes, or a Vector (implicitly converted to a column-matrix).

Vector class

The Vector class implements a fixed-length numeric vector (using double values for internal storage).

v1 = Vector[1,2,3] #=> V[1,2,3]
v2 = Vector[6,5,4] #=> V[6,5,4]
puts v1[1]         #=> 2
v1.to_a            #=> [1, 2, 3]
v1.add! v2         #=> v1 = V[7, 7, 7], changes v1! also Vector#sub, Vector#mul, Vector#div
v1.sum             #=> 21, summation over all elements, also Vector#norm
v2.max_index       #=> 0, also Vector#max, Vector#min, Vector#min_index
v1 = Vector[1,2,3]
v1^v2              #=> 28
v2.reverse!        #=> V[4,5,6]
v2.swap!(0,2)      #=> V[6,5,4]

The Vector class includes the Enumerable module and supports iteration via #each.

Also available methods:

  • Vector#size
  • Vector#rnd_fill
  • Vector#all
  • Vector#zero
  • Vector#basis
  • Vector#===, same vectors
  • Vector#==, same sizes
  • Vector#[]
  • Vector#[]=
  • Vector#mean, optional Float argument for passing a given value of mean
  • Vector#variance, optional Float argument for passing a given value of mean
  • Vector#sd, optional Float argument for passing a given value of mean
  • Vector#absdev, optional Float argument for passing a given value of mean
  • Vector#median
  • Vector#quantile

The Vector class includes the Enumerable module and supports iteration via #each.

Matrix class

The Matrix class implements a fixed-size numeric matrix (using double values for internal storage).

m1 = Matrix[[1,2],[-3,1]]   #=> M[[1, 2], [-3, 1]]
m2 = Matrix[[7,-5],[-2,37]] #=> M[[7, -5], [-2, 37]]
puts m1                     #=> fancy output
m1 ^ m2                     #=> M[[3, 69], [-23, 52]]
m1.mul! 2                   #=> M[[2, 4], [-6, 2]], element-wise operators
m1.t                        #=> M[[2, -6], [4, 2]], transpose, also Matrix#t!
v1.to_mat                   #=> M[[1], [2], [3]]
m1*Vector[3,4]              #=> V[22, -10]

Element getters have two alternative syntaxes:

  1. m[i,j] gives the i,j-th element (also for writing)
  2. m[i] returns the i-th row, as a Vector
  3. m[] returns an Array of Vectors representing rows of m
  4. m[i][j] as for 1., but not for writing!

Also available methods:

  • Matrix#nrows
  • Matrix#ncols
  • Matrix#size, returns an array of [nrows, ncols]
  • Matrix#rnd_fill
  • Matrix#===, same matrices
  • Matrix#==, same sizes
  • Matrix#[]
  • Matrix#[]=
  • Matrix#row
  • Matrix#col
  • Matrix#set_row
  • Matrix#set_col
  • Matrix#all
  • Matrix#zero
  • Matrix#identity
  • Matrix#max
  • Matrix#max_index
  • Matrix#min
  • Matrix#min_index
  • Matrix#swap_rows
  • Matrix#swap_cols
  • Matrix#each_col
  • Matrix#each_row
  • Matrix#lu
  • Matrix#det
  • Matrix#inv

The Matrix class includes the Enumerable module and supports iteration via #each. Notably, there is the #each_with_indexes method (whose block takes three arguments), and the #map! method.

LUDecomp

LU Decomposition, for inverting matrices and solving linear systems. See GSL page.

m1 = Matrix[[1,2],[-3,1]] 
lu = LUDecomp.new(m1)  #=> also: lu = m1.lu
lu.inv                 #=> M[[0.14285714285714, -0.28571428571429], [0.42857142857143, 0.14285714285714]]
lu.solve Vector[3,-7]  #=> V[2.4285714285714, 0.28571428571429]
lu.det                 #=> 7
lu.matrix              #=> M[[-3, 1], [-0.33333333333333, 2.3333333333333]]
lu.permutation         #=> [1, 0]
lu.sign                #=> -1

QRDecomp

QR Decomposition, see GSL page.

m1 = Matrix[[1,2],[-3,1]] 
qr = m1.qr
qr.solve Vector[3,-7]  #=> V[2.4285714285714, 0.28571428571429]
qr.matrix              #=> M[[-3.1622776601684, 0.31622776601684], [-0.72075922005613, 2.2135943621179]]
qr.tau                 #=> V[1.3162277660168, 0]
m2 = Matrix[[1,2],[3,1],[5,9]]
qr = m2.qr
b  = Vector[7,-3, 8]
qr.lssolve b           #=> V[-1.7294117647059, 1.9705882352941]
qr.residuals           #=> V[4.7882352941176, 0.21764705882353, -1.0882352941176]

To Do list

The following features are expected to be implemented, in order of precedence:

  • SV decomposition
  • Eigensystems
  • Interpolation
  • FFT