-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathml_xu_interpretable.py
655 lines (564 loc) · 35.6 KB
/
ml_xu_interpretable.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
"""
Implementation of prior depression detection algorithm:
Xuhai Xu, Prerna Chikersal, Afsaneh Doryab, Daniella K. Villalba, Janine M. Dutcher, Michael J. Tumminia,
Tim Althoff, Sheldon Cohen, Kasey G. Creswell, J. David Creswell, Jennifer Mankoff, and Anind K. Dey. 2019.
Leveraging Routine Behavior and Contextually-Filtered Features for Depression Detection among College Students.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 3, 3 (Sept. 2019), 1–33.
https://doi.org/10.1145/3351274
"""
import os, sys
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
from utils.common_settings import *
from algorithm.ml_basic import DepressionDetectionAlgorithm_ML_basic
from data_loader.data_loader_ml import DatasetDict, DataRepo
from algorithm.base import DepressionDetectionClassifierBase
from pyspark.ml.fpm import FPGrowth
from pyspark.sql import SparkSession
import psutil
if ("pandarallel" in sys.modules):
sys.modules.pop("pandarallel")
if ("simplefilter" in sys.modules):
sys.modules.pop("simplefilter")
warnings.filterwarnings("ignore")
import signal
class DepressionDetectionClassifier_ML_xu_interpretable(DepressionDetectionClassifierBase):
"""Classifier for Xu et al. interpretable work. Train a simple adaboost model with decision tree as the base model. """
def __init__(self, model_params, selected_features):
self.model_params = model_params
self.selected_features = selected_features
self.clf = utils_ml.get_clf("adaboost", self.model_params, direct_param_flag = False)
def fit(self, X, y):
assert set(self.selected_features).issubset(set(X.columns))
set_random_seed(42)
return self.clf.fit(X[self.selected_features], y)
def predict(self, X, y=None):
return self.clf.predict(X[self.selected_features])
def predict_proba(self, X, y=None):
return self.clf.predict_proba(X[self.selected_features])
class DepressionDetectionAlgorithm_ML_xu_interpretable(DepressionDetectionAlgorithm_ML_basic):
"""Algirithm for Xu et al. interpretable work, extending the basic traditional ml algorithm """
def __init__(self, config_dict = None, config_name = "ml_xu_interpretable"):
super().__init__(config_dict, config_name)
self.feature_list = [
f"{f}:{epoch}" for f in self.feature_list_base \
for epoch in epochs_4
]
self.feature_list_norm = [
f"{f}_norm:{epoch}" for f in self.feature_list_base \
for epoch in epochs_4
]
self.NAFILL = - 10<<10
self.model_params = self.config["model_params"]
self.flag_small_data_size = False
self.thresholds_arm = self.set_arm_threshold(flag_th_memory_safe="normal")
self.top_k = self.model_params["num_top_rule"]
self.w1 = self.model_params["metric_w1"]
self.w2 = self.model_params["metric_w2"]
self.w3 = self.model_params["metric_w3"]
self.SYS_MEM_MAX_GB = int(psutil.virtual_memory().total / (1024.0**3))
def set_arm_threshold(self, flag_th_memory_safe:str = "normal"):
if (flag_th_memory_safe == "normal"):
key = "arm_thresholds"
elif (flag_th_memory_safe == "safe"):
key = "arm_thresholds_memory_safe"
elif (flag_th_memory_safe == "safer"):
key = "arm_thresholds_memory_safer"
elif (flag_th_memory_safe == "safest"):
key = "arm_thresholds_memory_safest"
else:
key = "arm_thresholds_memory_safer"
if self.verbose > 0:
print("set arm theshold: ", key)
thresholds_arm = {
"wkdy_morning": {"supp": self.model_params[key]["weekday"]["morning"]["supp"],
"conf": self.model_params[key]["weekday"]["morning"]["conf"]},
"wkdy_afternoon": {"supp": self.model_params[key]["weekday"]["afternoon"]["supp"],
"conf": self.model_params[key]["weekday"]["afternoon"]["conf"]},
"wkdy_evening": {"supp": self.model_params[key]["weekday"]["evening"]["supp"],
"conf": self.model_params[key]["weekday"]["evening"]["conf"]},
"wkdy_night": {"supp": self.model_params[key]["weekday"]["night"]["supp"],
"conf": self.model_params[key]["weekday"]["night"]["conf"]},
"wkend_morning": {"supp": self.model_params[key]["weekend"]["morning"]["supp"],
"conf": self.model_params[key]["weekend"]["morning"]["conf"]},
"wkend_afternoon": {"supp": self.model_params[key]["weekend"]["afternoon"]["supp"],
"conf": self.model_params[key]["weekend"]["afternoon"]["conf"]},
"wkend_evening": {"supp": self.model_params[key]["weekend"]["evening"]["supp"],
"conf": self.model_params[key]["weekend"]["evening"]["conf"]},
"wkend_night": {"supp": self.model_params[key]["weekend"]["night"]["supp"],
"conf": self.model_params[key]["weekend"]["night"]["conf"]},
}
return thresholds_arm
def pick_arm_threshold(self, dataset: DatasetDict, pids_all: list):
# save memory for small data size as there will be too many rules with low thresholds
if (hasattr(dataset,"eval_task") and dataset.eval_task == "two_overlap"):
self.thresholds_arm = self.set_arm_threshold(flag_th_memory_safe="safe")
if (len(pids_all) <= 30 and len(pids_all) > 15):
self.thresholds_arm = self.set_arm_threshold(flag_th_memory_safe="safe")
elif (len(pids_all) <= 15):
self.flag_small_data_size = True
if (len(dataset.datapoints) < 15):
self.thresholds_arm = self.set_arm_threshold(flag_th_memory_safe="safest")
else:
self.thresholds_arm = self.set_arm_threshold(flag_th_memory_safe="safer")
else:
self.flag_small_data_size = False
### Step 1: Feature Selection ###
def feature_selection(self, df_features: pd.DataFrame, df_labels:pd.Series or np.ndarray):
NAFILL_placeholder = self.NAFILL
@ray.remote
def feature_select_mutual_info(df_full, y, feats, slice_key):
signal.signal(signal.SIGTERM, lambda signalNumber, frame: False)
set_random_seed(42)
df = df_full[feats]
top_features = feats
num_repeat = 30
for _ in range(num_repeat):
ig = dict(zip(df.columns, mutual_info_classif(df.fillna(NAFILL_placeholder), y, discrete_features = False)))
ig = [(k, ig[k]) for k in sorted(ig, key=ig.get, reverse = True) if ig[k] > 0]
top_features_ig = [x[0] for x in ig[:int(len(feats) / 2)]]
top_features_ = list(set(top_features).intersection(set(top_features_ig)))
if (len(top_features_) >= 10):
top_features = top_features_
else:
break
return slice_key, top_features
df_features_id = ray.put(df_features)
df_labels_id = ray.put(df_labels)
pool_results = ray.get([feature_select_mutual_info.remote(
df_features_id, df_labels_id, feats, slice_key) for slice_key, feats in self.feature_dict.items()]
)
top_feature_dict_comp = {r[0]:r[1] for r in pool_results}
top_feature_dict = {slice_key:[] for slice_key in top_feature_dict_comp}
top_feature_dict_dis = {slice_key:[] for slice_key in top_feature_dict_comp}
count_large_featurenum_with_small_datasize = 0
for slice_key, featcomps in top_feature_dict_comp.items():
for featcomp in featcomps:
idx_split = featcomp.rfind(":")
feat = featcomp[:idx_split] + featcomp[idx_split:].split("_")[0]
feat_dis = featcomp[:idx_split] + "_dis" + featcomp[idx_split:].split("_")[0]
top_feature_dict[slice_key].append(feat)
top_feature_dict_dis[slice_key].append(feat_dis)
top_feature_dict[slice_key] = list(np.sort(list(set(top_feature_dict[slice_key]))))
top_feature_dict_dis[slice_key] = list(np.sort(list(set(top_feature_dict_dis[slice_key]))))
if (self.flag_small_data_size and len(featcomps) > 27):
count_large_featurenum_with_small_datasize += 1
if (count_large_featurenum_with_small_datasize > len(top_feature_dict_comp) // 2):
self.set_arm_threshold(flag_th_memory_safe="safest")
self.top_feature_dict = deepcopy(top_feature_dict)
self.top_feature_dict_dis = deepcopy(top_feature_dict_dis)
self.assign_feat_int_dict(self.top_feature_dict, self.top_feature_dict_dis)
if (self.verbose > 0):
print("top features selected via mutual info", {k:len(v) for k, v in top_feature_dict.items()})
def assign_feat_int_dict(self, top_feature_dict, top_feature_dict_dis):
feat_to_int_dict = {}
int_to_feat_dict = {}
featdis_to_int_dict = {}
int_to_featdis_dict = {}
count = 1
for feat, featdis in zip(np.sort(list(set([i for l in top_feature_dict.values() for i in l]))),
np.sort(list(set([i for l in top_feature_dict_dis.values() for i in l])))):
feat_to_int_dict[feat] = {"l": count, "m": count + 1, "h": count + 2}
feat_to_int_dict[feat + "#l"] = count
feat_to_int_dict[feat + "#m"] = count + 1
feat_to_int_dict[feat + "#h"] = count + 2
int_to_feat_dict[count] = feat + "#l"
int_to_feat_dict[count + 1] = feat + "#m"
int_to_feat_dict[count + 2] = feat + "#h"
featdis_to_int_dict[featdis] = {"l": count, "m": count + 1, "h": count + 2}
featdis_to_int_dict[featdis + "#l"] = count
featdis_to_int_dict[featdis + "#m"] = count + 1
featdis_to_int_dict[featdis + "#h"] = count + 2
int_to_featdis_dict[count] = featdis + "#l"
int_to_featdis_dict[count + 1] = featdis + "#m"
int_to_featdis_dict[count + 2] = featdis + "#h"
count += 3
self.feat_to_int_dict = deepcopy(feat_to_int_dict)
self.int_to_feat_dict = deepcopy(int_to_feat_dict)
self.featdis_to_int_dict = deepcopy(featdis_to_int_dict)
self.int_to_featdis_dict = deepcopy(int_to_featdis_dict)
### Step 2: Assocaition Rule Mining ###
def arm_behavior_rules(self, df_grp:pd.DataFrame, slice_key:str, min_supp:float=0.5, min_conf:float=0.7):
def prep_arm(df, top_features):
# filter very empty rows (i.e., days)
df_tmp_ = df[["pid", "date"] + top_features]
df_tmp = df_tmp_[df_tmp_.isna().sum(axis = 1) <= df_tmp_.shape[1]/2].copy()
# obtain data points per row (i.e., per day per person)
if (df_tmp.empty):
if (self.verbose > 0):
print("empty")
df_tmp["dis_value"] = pd.NA
else:
df_tmp["dis_value"] = df_tmp.apply(
lambda row : [self.featdis_to_int_dict[i][row[i]] for i in top_features if not pd.isna(row[i])],
axis = 1).values
return df_tmp[["pid", "date", "dis_value"]]
# prep int list for arm
data_arm_int = df_grp["X_raw"].apply(lambda x : prep_arm(x, self.top_feature_dict_dis[slice_key]))
# drop duplicate person day
data_arm = list(pd.concat(data_arm_int.values, axis = 0).drop_duplicates(["pid", "date"])["dis_value"].values)
spark = SparkSession.builder.appName("FPGrowthExample")\
.config("spark.executor.memory", f"{int(self.SYS_MEM_MAX_GB // 3)}G") \
.config("spark.driver.memory", f"{int(self.SYS_MEM_MAX_GB // 3)}G") \
.config('spark.driver.maxResultSize', f"{int(self.SYS_MEM_MAX_GB // 5)}G") \
.getOrCreate()
df_arm_spark = spark.createDataFrame(
data=[(idx, arm_int_epoch) for idx, arm_int_epoch in enumerate(data_arm) if len(arm_int_epoch) > 1],
schema=["id", "items"])
fpGrowth = FPGrowth(itemsCol="items", minSupport=min_supp, minConfidence=min_conf)
model_arm = fpGrowth.fit(df_arm_spark)
df_arm_output = model_arm.associationRules.toPandas()
df_arm_output["X"] = df_arm_output["antecedent"].apply(lambda x : ";".join(map(str,np.sort(x))))
df_arm_output["Y"] = df_arm_output["consequent"].apply(lambda x : ";".join(map(str,np.sort(x))))
df_arm_output["idx"] = np.arange(1, df_arm_output.shape[0]+1)
spark.stop()
return df_arm_output[["X","Y","idx","support","confidence","lift"]]
def arm_grp_contrast_slice(self, df_twogrps: pd.DataFrame, slice_key: str):
df_grp1 = df_twogrps[df_twogrps["y_raw"]]
df_grp2 = df_twogrps[~df_twogrps["y_raw"]]
df_arm_grp1 = self.arm_behavior_rules(df_grp1, slice_key,
min_supp=self.thresholds_arm[slice_key]["supp"],
min_conf=self.thresholds_arm[slice_key]["conf"])
df_arm_grp2 = self.arm_behavior_rules(df_grp2, slice_key,
min_supp=self.thresholds_arm[slice_key]["supp"],
min_conf=self.thresholds_arm[slice_key]["conf"])
df_arm_merge = df_arm_grp1.merge(df_arm_grp2,
left_on = ["X", "Y"],
right_on = ["X", "Y"],
how = "outer")
df_arm_merge.columns = ["X", "Y"] + [f"{j}_{i}" for i in ["grp1", "grp2"] for j in ["idx", "supp", "conf", "lift"]]
df_arm_merge = df_arm_merge.fillna(0)
for coef in ["supp", "conf", "lift"]:
df_arm_merge[f"{coef}_diff"] = df_arm_merge[f"{coef}_grp1"] - df_arm_merge[f"{coef}_grp2"]
df_arm_merge["X_sym"] = df_arm_merge["X"].apply(lambda x : [self.int_to_feat_dict[int(i)] for i in x.split(";")])
df_arm_merge["Y_sym"] = df_arm_merge["Y"].apply(lambda x : [self.int_to_feat_dict[int(i)] for i in x.split(";")])
df_arm_merge["X_sym_dis"] = df_arm_merge["X"].apply(lambda x : [self.int_to_featdis_dict[int(i)] for i in x.split(";")])
df_arm_merge["Y_sym_dis"] = df_arm_merge["Y"].apply(lambda x : [self.int_to_featdis_dict[int(i)] for i in x.split(";")])
df_arm_merge["slice"] = slice_key
self.df_arm_merge = deepcopy(df_arm_merge)
return df_arm_merge
def arm_grp_contrast(self, df_datapoints_wkdy: pd.DataFrame, df_datapoints_wkend: pd.DataFrame):
df_rule_twogrps = {}
for slice_key in self.feature_dict:
if (self.verbose > 0):
print(slice_key)
df_rule_twogrps[slice_key] = self.arm_grp_contrast_slice(
df_datapoints_wkdy if slice_key.startswith("wkdy") else df_datapoints_wkend,
slice_key)
if (self.verbose > 0):
print("Rule mining: ", {k:len(v) for k, v in df_rule_twogrps.items()})
self.df_rule_twogrps = deepcopy(df_rule_twogrps)
return df_rule_twogrps
### Step 3: Rule Selection ###
def behavior_rules_selection(self, df_rule_contrast: pd.DataFrame):
dfs_filtered_asso = {}
dfs_filtered_asso_straight = {}
dfs_filtered_asso_nostraight = {}
for slice_key, df_combined in df_rule_contrast.items():
th_delta = self.straight_paired(df_combined)[["supp_diff","conf_diff"]].abs().quantile(0.5)
df_filtered = self.rule_threshold_filter(df_combined,
self.thresholds_arm[slice_key]["supp"] + th_delta["supp_diff"],
self.thresholds_arm[slice_key]["conf"] + th_delta["conf_diff"]
)
dfs_filtered_asso[slice_key] = deepcopy(df_filtered)
dfs_filtered_asso_straight[slice_key] = deepcopy(self.straight_paired(df_filtered))
dfs_filtered_asso_nostraight[slice_key] = deepcopy(self.nostraight_paired(df_filtered))
rulesets_asso_straight = {}
for slice_key in dfs_filtered_asso_straight:
df_filtered = deepcopy(dfs_filtered_asso_straight[slice_key])
df_filtered["p_y1"] = df_filtered["conf_grp1"] / df_filtered["lift_grp1"]
df_filtered["p_y2"] = df_filtered["conf_grp2"] / df_filtered["lift_grp2"]
df_filtered["p_x1"] = df_filtered["supp_grp1"] / df_filtered["conf_grp1"]
df_filtered["p_x2"] = df_filtered["supp_grp2"] / df_filtered["conf_grp2"]
X_len = df_filtered["X"].apply(lambda x : x.count(";")+1)
df_filtered["delta_p_x"] = df_filtered["p_x1"] - df_filtered["p_x2"]
delta_supp_1 = 2 * df_filtered["supp_diff"] / (df_filtered["p_y1"] + df_filtered["p_y2"])
delta_supp_2 = (df_filtered["p_y2"] - df_filtered["p_y1"]) * (df_filtered["supp_grp1"] + df_filtered["supp_grp2"]) / (df_filtered["p_y1"] + df_filtered["p_y2"])
df_filtered["supp_delta"] = delta_supp_1 + delta_supp_2
df_filtered["new_three_weight"] = np.sign(df_filtered["delta_p_x"]) * np.sign(df_filtered["conf_diff"]) *\
np.power(X_len,self.w1) * \
np.power(np.abs(df_filtered["delta_p_x"]),self.w2) * \
np.power(np.abs(df_filtered["conf_diff"]),self.w3)
ruleset1 = deepcopy(df_filtered.sort_values(by = ["new_three_weight"], ascending=False).head(self.top_k*5))
ruleset_asso_straight = pd.concat([ruleset1])
ruleset_asso_straight_ = self.remove_close_rules(ruleset_asso_straight)
rulesets_asso_straight[slice_key] = deepcopy(ruleset_asso_straight_.head(self.top_k))
rulesets_asso_nostraight = {}
for slice_key in dfs_filtered_asso_straight:
df_filtered = deepcopy(dfs_filtered_asso_nostraight[slice_key])
df_filtered[["p_x1", "p_x2", "p_y1", "p_y2"]] = 0
flag_grp1 = df_filtered["idx_grp1"] == 0
df_filtered.loc[flag_grp1, "p_y1"] = 0
df_filtered.loc[flag_grp1, "p_y2"] = df_filtered[flag_grp1]["conf_grp2"] / df_filtered[flag_grp1]["lift_grp2"]
df_filtered.loc[flag_grp1, "p_x1"] = 0
df_filtered.loc[flag_grp1, "p_x2"] = df_filtered[flag_grp1]["supp_grp2"] / df_filtered[flag_grp1]["conf_grp2"]
flag_grp2 = df_filtered["idx_grp2"] == 0
df_filtered.loc[flag_grp2, "p_y1"] = df_filtered[flag_grp2]["conf_grp1"] / df_filtered[flag_grp2]["lift_grp1"]
df_filtered.loc[flag_grp2, "p_y2"] = 0
df_filtered.loc[flag_grp2, "p_x1"] = df_filtered[flag_grp2]["supp_grp1"] / df_filtered[flag_grp2]["conf_grp1"]
df_filtered.loc[flag_grp2, "p_x2"] = 0
X_len = df_filtered["X"].apply(lambda x : x.count(";")+1)
df_filtered["delta_p_x"] = df_filtered["p_x1"] - df_filtered["p_x2"]
delta_supp_1 = 2 * df_filtered["supp_diff"] / (df_filtered["p_y1"] + df_filtered["p_y2"])
delta_supp_2 = (df_filtered["p_y2"] - df_filtered["p_y1"]) * (df_filtered["supp_grp1"] + df_filtered["supp_grp2"]) / (df_filtered["p_y1"] + df_filtered["p_y2"])
df_filtered["supp_delta"] = delta_supp_1 + delta_supp_2
df_filtered["new_three_weight"] = np.sign(df_filtered["delta_p_x"]) * np.sign(df_filtered["conf_diff"]) *\
np.power(X_len,self.w1) * \
np.power(np.abs(df_filtered["delta_p_x"]),self.w2) * \
np.power(np.abs(df_filtered["conf_diff"]),self.w3)
ruleset1 = deepcopy(df_filtered.sort_values(by = ["new_three_weight"], ascending=False).head(self.top_k*5))
ruleset_asso_nostraight = pd.concat([ruleset1])
ruleset_asso_nostraight_ = self.remove_close_rules(ruleset_asso_nostraight)
rulesets_asso_nostraight[slice_key] = deepcopy(ruleset_asso_nostraight_.head(self.top_k))
rulesets_final = {}
for slice_key in rulesets_asso_straight:
ruleset = pd.concat([rulesets_asso_straight[slice_key], rulesets_asso_nostraight[slice_key]]).reset_index(drop = True)
ruleset["X"] = ruleset["X"].apply(lambda x : [int(i) for i in x.split(";")])
ruleset["Y"] = ruleset["Y"].apply(lambda x : [int(i) for i in x.split(";")])
rulesets_final[slice_key] = ruleset
self.rulesets_final = deepcopy(rulesets_final)
if (self.verbose > 0):
print("Straight rule selection results: ", {slice_key: rulesets.shape[0] for slice_key, rulesets in rulesets_asso_straight.items()})
print("Non-straight rule selection results: ", {slice_key: rulesets.shape[0] for slice_key, rulesets in rulesets_asso_nostraight.items()})
print("Final rule selection results: ", {slice_key: rulesets.shape[0] for slice_key, rulesets in rulesets_final.items()})
return rulesets_final
### Step 4: Feature Extraction ###
def feature_extraction(self, df_datapoints_wkdy: pd.DataFrame, df_datapoints_wkend: pd.DataFrame, rulesets: pd.DataFrame, flag_train:bool):
@ray.remote
def extract_feature_arm(df, ruleset, slice_key, int_to_feat_dict, int_to_featdis_dict, flag_train):
signal.signal(signal.SIGTERM, lambda signalNumber, frame: False)
def extract_feature_arm_slice(df_data, ruleset, slice_key, int_to_feat_dict, int_to_featdis_dict, flag_train):
df_arm_features = pd.Series([],dtype='float64')
for rule_idx, rule in ruleset.iterrows():
index_flag = True
for x in rule["X"]:
dis_label_col = int_to_featdis_dict[x][:-2]
dis_label = int_to_featdis_dict[x][-1]
index_flag = index_flag & (df_data[dis_label_col] == dis_label)
if (sum(index_flag) == 0 and flag_train): # Testing data does not skip rules to ensure compatibility
continue
feature_columns = [int_to_feat_dict[y][:-2] for y in rule["Y"]]
feature_columns_name = [y + "#" + slice_key + "#rule" + str(rule_idx) for y in feature_columns]
df_multimodal = df_data[index_flag][feature_columns]
df_multimodal_mean = df_multimodal.mean()
df_multimodal_mean.index = ["mean_" + y for y in feature_columns_name]
df_multimodal_std = df_multimodal.std()
df_multimodal_std.index = ["std_" + y for y in feature_columns_name]
df_multimodal_mean_std = pd.concat([df_multimodal_mean,df_multimodal_std])
df_arm_features = pd.concat([df_arm_features, df_multimodal_mean_std])
return df_arm_features
return df["X_raw"].apply(lambda x : extract_feature_arm_slice(x, ruleset, slice_key,
int_to_feat_dict, int_to_featdis_dict, flag_train))
df_datapoints_wkdy_id = ray.put(df_datapoints_wkdy)
df_datapoints_wkend_id = ray.put(df_datapoints_wkend)
int_to_feat_dict_id = ray.put(deepcopy(self.int_to_feat_dict))
int_to_featdis_dict_id = ray.put(deepcopy(self.int_to_featdis_dict))
results_pool = ray.get([
extract_feature_arm.remote(
df_datapoints_wkdy_id if slice_key.startswith("wkdy_") else df_datapoints_wkend_id,
rulesets[slice_key], slice_key, int_to_feat_dict_id, int_to_featdis_dict_id, flag_train)\
for slice_key in rulesets])
return results_pool
def prep_data_repo(self, dataset:DatasetDict, flag_train:bool = True) -> DataRepo:
set_random_seed(42)
df_datapoints = deepcopy(dataset.datapoints)
pids_all = df_datapoints["pid"].unique()
pids_arm = np.random.choice(pids_all, int(0.35 * len(pids_all)), replace = False)
pids_traintest = [i for i in pids_all if i not in pids_arm]
self.pick_arm_threshold(dataset, pids_all)
idx_flag = df_datapoints["pid"].apply(lambda x :x in pids_arm)
df_datapoints_arm = df_datapoints[idx_flag]
df_datapoints_traintest = df_datapoints[~idx_flag]
df_datapoints_arm_wkdy = deepcopy(df_datapoints_arm)
df_datapoints_arm_wkdy["X_raw"] = df_datapoints_arm["X_raw"].apply(lambda x : self.get_wks(x, "wkdy"))
df_datapoints_arm_wkend = deepcopy(df_datapoints_arm)
df_datapoints_arm_wkend["X_raw"] = df_datapoints_arm["X_raw"].apply(lambda x : self.get_wks(x, "wkend"))
df_datapoints_traintest_wkdy = deepcopy(df_datapoints_traintest)
df_datapoints_traintest_wkdy["X_raw"] = df_datapoints_traintest["X_raw"].apply(lambda x : self.get_wks(x, "wkdy"))
df_datapoints_traintest_wkend = deepcopy(df_datapoints_traintest)
df_datapoints_traintest_wkend["X_raw"] = df_datapoints_traintest["X_raw"].apply(lambda x : self.get_wks(x, "wkend"))
df_epoch_features_wkdy = df_datapoints_arm_wkdy["X_raw"].apply(lambda x : self.get_epoch_features(x, "wkdy"))
df_epoch_features_wkend = df_datapoints_arm_wkend["X_raw"].apply(lambda x : self.get_epoch_features(x, "wkend"))
df_epoch_features = pd.concat([df_epoch_features_wkdy, df_epoch_features_wkend], axis = 1)
shape1 = df_epoch_features.shape
if (flag_train): # Testing dataset does not delete features to ensure compatibility
df_epoch_features = df_epoch_features[df_epoch_features.columns[(df_epoch_features.isna().sum(axis = 0) < df_epoch_features.shape[0]/1.1)]] # filter very empty features
shape2 = df_epoch_features.shape
del_cols = shape1[1] - shape2[1]
if (self.verbose > 0):
print("Delete rows for initial feature extraction:", del_cols)
self.feature_dict = {}
for feat in df_epoch_features.columns:
slice_str = feat.split(":")[-1]
epoch, wk, comp = slice_str.split("_")
slice_key = f"{wk}_{epoch}"
if (slice_key) in self.feature_dict:
self.feature_dict[slice_key] += [feat]
else:
self.feature_dict[slice_key] = [feat]
if (flag_train):
Path(self.results_save_folder).mkdir(parents=True, exist_ok=True)
self.save_file_path = os.path.join(self.results_save_folder, dataset.key + "--" + dataset.prediction_target + ".pkl")
if (self.config["training_params"]["save_and_reload"] and os.path.exists(self.save_file_path)):
with open(self.save_file_path, "rb") as f:
data_repo = pickle.load(f)
results_pool = self.results_pool = data_repo["results_pool"]
rulesets_final = self.rulesets_final = data_repo["rulesets_final"]
self.top_feature_dict = data_repo["top_feature_dict"]
self.top_feature_dict_dis = data_repo["top_feature_dict_dis"]
self.assign_feat_int_dict(self.top_feature_dict, self.top_feature_dict_dis)
else:
### Step 1: Feature Selection ###
self.feature_selection(df_features=df_epoch_features, df_labels=df_datapoints_arm["y_raw"])
### Step 2: Assocaition Rule Mining ###
df_rule_twogrps = self.arm_grp_contrast(df_datapoints_wkdy=df_datapoints_arm_wkdy, df_datapoints_wkend=df_datapoints_arm_wkend)
### Step 3: Rule Selection ###
rulesets_final = self.behavior_rules_selection(df_rule_twogrps)
### Step 4: Feature Extraction ###
results_pool = self.feature_extraction(df_datapoints_traintest_wkdy, df_datapoints_traintest_wkend, rulesets_final, flag_train)
if (self.config["training_params"]["save_and_reload"]):
data_repo = {
"results_pool": results_pool,
"rulesets_final": rulesets_final,
"top_feature_dict": self.top_feature_dict,
"top_feature_dict_dis": self.top_feature_dict_dis,
}
with open(self.save_file_path, "wb") as f:
pickle.dump(data_repo, f)
else:
assert hasattr(self, "rulesets_final")
rulesets_final = self.rulesets_final
results_pool = self.feature_extraction(df_datapoints_traintest_wkdy, df_datapoints_traintest_wkend, rulesets_final, flag_train)
X_tmp = pd.concat(results_pool, axis = 1, ignore_index = False)
shape1 = X_tmp.shape
if (flag_train): # Testing dataset does not delete features to ensure compatibility
X_tmp = X_tmp[X_tmp.columns[(X_tmp.isna().sum(axis = 0) < \
(X_tmp.shape[0] * self.config["feature_definition"]["empty_feature_filtering_th"]))]] # filter very empty features
shape2 = X_tmp.shape
del_cols = shape1[1] - shape2[1]
X_tmp = X_tmp[X_tmp.isna().sum(axis = 1) < X_tmp.shape[1] / 1.1] # filter very empty person-days
shape3 = X_tmp.shape
del_rows = shape2[0] - shape3[0]
X = deepcopy(X_tmp)
scl = RobustScaler(quantile_range = (5,95), unit_variance = True).fit(X)
X[X.columns] = scl.transform(X)
if (self.verbose > 0):
print(f"Final rule-based feature: filter {del_cols} cols and {del_rows} rows")
print(f"NA rate: {100* X.isna().sum().sum() / X.shape[0] / X.shape[1]}%" )
X = X.fillna(self.NAFILL)
y = df_datapoints_traintest["y_raw"][X.index]
pids = df_datapoints_traintest["pid"][X.index]
self.data_repo = DataRepo(X=X, y=y, pids=pids)
return self.data_repo
def get_wks(self, df: pd.DataFrame, wk: str):
if (wk == "wkdy"):
return df[df["date"].dt.dayofweek < 5]
elif (wk == 'wkend'):
return df[df["date"].dt.dayofweek >= 5]
else:
raise ValueError("Invalid wk argument")
def get_epoch_features(self, df: pd.DataFrame, wk: str):
if (self.flag_use_norm_features):
df_mean = df[self.feature_list_norm].mean(axis = 0)
else:
df_mean = df[self.feature_list].mean(axis = 0)
df_mean.index = [f + f"_{wk}_mean" for f in self.feature_list]
if (self.flag_use_norm_features):
df_std = df[self.feature_list_norm].std(axis = 0)
else:
df_std = df[self.feature_list].std(axis = 0)
df_std.index = [f + f"_{wk}_std" for f in self.feature_list]
return pd.concat([df_mean, df_std])
def rule_threshold_filter(self, df: pd.DataFrame, minsupp: float, minconf: float):
df_filtered = deepcopy(df)
df_filtered = df_filtered[
(
(
(df_filtered["supp" + '_grp1'] >= minsupp) &
(df_filtered["conf" + '_grp1'] >= minconf)
)
|
(
(df_filtered["supp" + '_grp2'] >= minsupp) &
(df_filtered["conf" + '_grp2'] >= minconf)
)
)]
return df_filtered
def remove_close_rules(self, ruleset):
Xs = ruleset["X"].apply(lambda x : x.split(";"))
Ys = ruleset["Y"].apply(lambda x : x.split(";"))
idx_to_remove = []
idx_parent = []
for idx, X, Y in zip(range(ruleset.shape[0]), Xs, Ys):
for idxx, X_, Y_ in zip(range(ruleset.shape[0]), Xs, Ys):
if ((set(X) < set(X_) and set(Y) <= set(Y_))
or
(set(X) <= set(X_) and set(Y) < set(Y_))):
idx_to_remove.append(idx)
idx_parent.append(idxx)
break
return ruleset.drop(ruleset.index[idx_to_remove])
def nostraight_pair_rulenum(self, df: pd.DataFrame):
return sum((df["idx_grp1"] == 0) | (df["idx_grp2"] == 0))
def nostraight_paired(self, df: pd.DataFrame):
return df[(df["idx_grp1"] == 0) | (df["idx_grp2"] == 0)]
def straight_paired(self, df: pd.DataFrame):
return df[(df["idx_grp1"] != 0) & (df["idx_grp2"] != 0)]
def prep_model(self, data_train: DataRepo, criteria: str = "balanced_acc") -> sklearn.base.ClassifierMixin:
super().prep_model()
set_random_seed(42)
data_train = deepcopy(data_train)
@ray.remote
def train_small_cv(data_repo: DataRepo, model_parameters: dict):
signal.signal(signal.SIGTERM, lambda signalNumber, frame: False)
X = deepcopy(data_repo.X)
y = data_repo.y
pids = data_repo.pids
pidnum_min = get_min_count_class(labels=y, groups=pids)
clf = utils_ml.get_clf("adaboost", model_parameters, direct_param_flag = False)
# select stable features
selected_features_list = []
cv_tmp = StratifiedGroupKFold(n_splits=min(20,pidnum_min), shuffle=True, random_state=4200)
for train_idx, test_idx in cv_tmp.split(X=X, y=y, groups=pids):
X_tmp = deepcopy(X.iloc[train_idx])
y_tmp = deepcopy(y.iloc[train_idx])
corr = {}
for col in X_tmp:
corr[col] = X_tmp[col].corr(y_tmp)
df_corr = pd.Series(corr)
selected_features = df_corr[df_corr.abs() > 0.05].index
for _ in range(3):
clf = utils_ml.get_clf("rf", model_parameters, direct_param_flag = False)
clf.fit(X_tmp[selected_features], y_tmp)
selected_features = selected_features[np.where(clf.feature_importances_)[0]]
selected_features_list.append(deepcopy(selected_features))
selected_features_final = [k for k, v in collections.Counter([j for i in selected_features_list for j in i]).items() if v > 10]
clf = utils_ml.get_clf("adaboost", model_parameters, direct_param_flag = False)
if (len(selected_features_final) == 0):
selected_features_final = X.columns # if 0, disregard selection
cv = StratifiedGroupKFold(n_splits=min(20,pidnum_min), shuffle=True, random_state=42)
r = cross_validate(clf, X=X[selected_features_final], y=y, groups= pids, cv = cv,
scoring = utils_ml.results_report_sklearn, return_train_score=False)
r = {k:np.mean(v) for k,v in r.items()}
r.update({"parameters":model_parameters, "selected_features": selected_features_final})
return r
n_estimators_list = [5,7,10,13,15,20,25,30,50]
learning_rate_list = [10**i for i in range(-2,2)]
max_leaf_nodes_list = [i for i in range(4,30)]
max_depth_list = [2,3,4,5]
parameters_list = []
for n_estimators, max_leaf_nodes, learning_rate in itertools.product(n_estimators_list, max_leaf_nodes_list, learning_rate_list):
parameters_tmp = {"n_estimators":n_estimators, "max_leaf_nodes": max_leaf_nodes,"learning_rate":learning_rate, "random_state":42}
parameters_list.append(parameters_tmp)
for n_estimators, max_depth, learning_rate in itertools.product(n_estimators_list, max_depth_list, learning_rate_list):
parameters_tmp = {"n_estimators":n_estimators, "max_depth": max_depth,"learning_rate":learning_rate, "random_state":42}
parameters_list.append(parameters_tmp)
data_train_id = ray.put(data_train)
results_list = ray.get([train_small_cv.remote(data_train_id,i) for i in parameters_list])
results_list = pd.DataFrame(results_list)
best_row = results_list.iloc[results_list[f"test_{criteria}"].argmax()]
best_params = best_row['parameters']
best_features = best_row['selected_features']
if (self.verbose > 0):
print(best_row)
print(best_params)
return DepressionDetectionClassifier_ML_xu_interpretable(model_params=best_params, selected_features=best_features)