-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsensitivity_analysis.R
320 lines (253 loc) · 20.7 KB
/
sensitivity_analysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
###################################
####### Sensitivity analysis ######
### Only admissions after wave ###
### Part 1. Logistic Regression ###
###################################
# Note: Need to run analyses.R first
## Tidy data ##
# Tidy data and add in updated outcomes
# load("S:/LLC_0009/data/Cleaned Cohorts/genscot_admissions_post_wave.RData") # Genscot data
load("S:/LLC_0009/data/Cleaned Cohorts/nhs_hes_post_wave.RData") # HES records
# names(hes)[names(hes) == "llc_0009_stud_id"] <- "LLC_0009_stud_id" # Rename (V001)
names(hes)[names(hes) == "llc_0009_stud_id"] <- "llc_0009_stud_id15" # Rename (V002)
# outcomes <- rbind(hes, genscot_tot) # Join together all outcome variables
# sensitivity_analyses <- all_data[,c(1:24, 31:69)] # Drop outcome variables (V001)
sensitivity_analyses <- all_data[,c(1:64)] # Drop outcome variables (V002)
# sensitivity_analyses <- merge(sensitivity_analyses, hes, by = "LLC_0009_stud_id", all.x = TRUE) # Join outcomes onto main dataset (V001)
sensitivity_analyses <- merge(sensitivity_analyses, hes, by = "llc_0009_stud_id15", all.x = TRUE) # Join outcomes onto main dataset (V002)
rm(hes) # Tidy
# Where missing data for outcomes, these should be 0s
sensitivity_analyses$`Ambulatory Care Sensitive Acute`[is.na(sensitivity_analyses$`Ambulatory Care Sensitive Acute`)] <- 0 # Fill in NAs with 0s for joined on outcome measures (since if no match then they did not have a hospital admission)
sensitivity_analyses$`Ambulatory Care Sensitive Chronic`[is.na(sensitivity_analyses$`Ambulatory Care Sensitive Chronic`)] <- 0
sensitivity_analyses$`Ambulatory Care Sensitive Vaccine-preventable`[is.na(sensitivity_analyses$`Ambulatory Care Sensitive Vaccine-preventable`)] <- 0
sensitivity_analyses$`Emergency Urgent Care Sensitive `[is.na(sensitivity_analyses$`Emergency Urgent Care Sensitive `)] <- 0
sensitivity_analyses$total_admissions[is.na(sensitivity_analyses$total_admissions)] <- 0
sensitivity_analyses$`Ambulatory Care Sensitive All` <- sensitivity_analyses$`Ambulatory Care Sensitive Acute` + sensitivity_analyses$`Ambulatory Care Sensitive Chronic` + sensitivity_analyses$`Ambulatory Care Sensitive Vaccine-preventable` # Create overall ambulatory care sensitive measure
# Convert outcome variables to binary variables
sensitivity_analyses$`Ambulatory Care Sensitive All`[sensitivity_analyses$`Ambulatory Care Sensitive All` > 1] <- 1
sensitivity_analyses$`Ambulatory Care Sensitive Acute`[sensitivity_analyses$`Ambulatory Care Sensitive Acute` > 1] <- 1
sensitivity_analyses$`Ambulatory Care Sensitive Chronic`[sensitivity_analyses$`Ambulatory Care Sensitive Chronic` > 1] <- 1
sensitivity_analyses$`Ambulatory Care Sensitive Vaccine-preventable`[sensitivity_analyses$`Ambulatory Care Sensitive Vaccine-preventable` > 1] <- 1
sensitivity_analyses$`Emergency Urgent Care Sensitive `[sensitivity_analyses$`Emergency Urgent Care Sensitive ` > 1] <- 1
sensitivity_analyses$total_admissions[sensitivity_analyses$total_admissions > 1] <- 1
## Re-run analyses under new data ##
## Part 1: Descriptive tables ##
# Unweighted tables #
# Population size of each cohort
table1 <- data.frame(table(sensitivity_analyses$cohort)) # Save table
table1$measure <- "Cohort" # Note measure
# Outcome variables
hold <- data.frame(table(sensitivity_analyses$`Ambulatory Care Sensitive All`)) # Save frequency table
hold$measure <- "Ambulatory Care Sensitive All" # Note outcome measure
table1 <- rbind(table1, hold) # Join onto main table
hold <- data.frame(table(sensitivity_analyses$`Ambulatory Care Sensitive Acute`)) # Repeat for each outcome
hold$measure <- "Ambulatory Care Sensitive Acute"
table1 <- rbind(table1, hold) # Join onto main table
hold <- data.frame(table(sensitivity_analyses$`Ambulatory Care Sensitive Chronic`))
hold$measure <- "Ambulatory Care Sensitive Chronic"
table1 <- rbind(table1, hold) # Join onto main table
hold <- data.frame(table(sensitivity_analyses$`Ambulatory Care Sensitive Vaccine-preventable`))
hold$measure <- "Ambulatory Care Sensitive Vaccine-preventable"
table1 <- rbind(table1, hold) # Join onto main table
hold <- data.frame(table(sensitivity_analyses$`Emergency Urgent Care Sensitive `))
hold$measure <- "Emergency Urgent Care Sensitive"
table1 <- rbind(table1, hold) # Join onto main table
hold <- data.frame(table(sensitivity_analyses$total_admissions))
hold$measure <- "Total admissions"
table1 <- rbind(table1, hold) # Join onto main table
hold <- data.frame(table(sensitivity_analyses$vaccinated))
hold$measure <- "Vaccinated"
table1 <- rbind(table1, hold)
# Explanatory variables
hold <- data.frame(table(sensitivity_analyses$imp_disruption_any)) # Repeat same process for explanatory variables
hold$measure <- "Disruption any"
table1 <- rbind(table1, hold)
hold <- data.frame(table(sensitivity_analyses$imp_disruption_appointments))
hold$measure <- "Disruption appointments"
table1 <- rbind(table1, hold)
hold <- data.frame(table(sensitivity_analyses$imp_disruption_medications))
hold$measure <- "Disruption medications"
table1 <- rbind(table1, hold)
hold <- data.frame(table(sensitivity_analyses$imp_disruption_procedures))
hold$measure <- "Disruption procedures"
table1 <- rbind(table1, hold)
# Save
write.csv(table1, "../../outputs/summary_table_unweighted_sa.csv") # Save
rm(hold, table1) # Tidy
# Weighted tables #
# Define survey design
wgt2 <- svydesign(id = ~LLC_0009_stud_id, weights = ~weight, strata = ~strata, fpc = ~fpc, nest = TRUE, survey.lonely.psu = "adjust", data = sensitivity_analyses)
# Outcome variables
table1w <- data.frame(svymean(sensitivity_analyses$total_admissions, wgt2)) # Generate statistics (used mean here but is basically the proportion since binary)
table1w$measure <- "Total admissions" # Note outcome measure
hold <- data.frame(svymean(sensitivity_analyses$`Ambulatory Care Sensitive All`, wgt2)) # Repeat process
hold$measure <- "Ambulatory care sensitive any"
table1w <- rbind(table1w, hold) # Join onto main table
hold <- data.frame(svymean(sensitivity_analyses$`Ambulatory Care Sensitive Acute`, wgt2))
hold$measure <- "Ambulatory care sensitive acute"
table1w <- rbind(table1w, hold)
hold <- data.frame(svymean(sensitivity_analyses$`Ambulatory Care Sensitive Chronic`, wgt2))
hold$measure <- "Ambulatory care sensitive chronic"
table1w <- rbind(table1w, hold)
hold <- data.frame(svymean(sensitivity_analyses$`Ambulatory Care Sensitive Vaccine-preventable`, wgt2))
hold$measure <- "Ambulatory care sensitive vaccine preventable"
table1w <- rbind(table1w, hold)
hold <- data.frame(svymean(sensitivity_analyses$`Emergency Urgent Care Sensitive `, wgt2))
hold$measure <- "Emergency urgent care sensitive"
table1w <- rbind(table1w, hold)
hold <- data.frame(svymean(sensitivity_analyses$vaccinated, wgt2))
hold$measure <- "Vaccinated"
table1w <- rbind(table1w, hold)
# Explanatory variables
hold <- data.frame(svymean(sensitivity_analyses$imp_disruption_any, wgt2))
hold$measure <- "Disruption any"
table1w <- rbind(table1w, hold)
hold <- data.frame(svymean(sensitivity_analyses$imp_disruption_appointments, wgt2))
hold$measure <- "Disruption appointments"
table1w <- rbind(table1w, hold)
hold <- data.frame(svymean(sensitivity_analyses$imp_disruption_medications, wgt2))
hold$measure <- "Disruption medications"
table1w <- rbind(table1w, hold)
hold <- data.frame(svymean(sensitivity_analyses$imp_disruption_procedures, wgt2))
hold$measure <- "Disruption procedures"
table1w <- rbind(table1w, hold)
# Save
write.csv(table1w, "../../outputs/summary_table_weighted_sa.csv") # Save
rm(hold, table1w) # Tidy
# Part 2: Any type of disruption #
# Model a: Any ambulatory care sensitive conditions
model_sa_any_a_u <- svyglm(`Ambulatory Care Sensitive All` ~ imp_disruption_any, data = sensitivity_analyses, family = "binomial", design = wgt2) # Unadjusted
table2 <- tidy(model_sa_any_a_u, conf.int = TRUE) # Save key results
table2 <- table2[2,] # Extract only healthcare disruption variable
table2$model <- "All ACS - unadj" # Note model name
model_sa_any_a_a <- svyglm(`Ambulatory Care Sensitive All` ~ imp_disruption_any + factor(imp_sex) + imp_age + imp_age2 + factor(imp_not_white) + factor(imp_own_home) + factor(imp_general_health) + factor(imp_imd2019_income_q5) + factor(cohort) + imp_quan_cci, data = sensitivity_analyses, family = "binomial", design = wgt2) # Adjusted
hold <- tidy(model_sa_any_a_a, conf.int = TRUE) # Save key results
hold <- hold[2,] # Extract only healthcare disruption variable
hold$model <- "All ACS - adj" # Note model name
table2 <- rbind(table2, hold) # Join to main table
# Model b: Any ambulatory care sensitive acute conditions
model_sa_any_b_u <- svyglm(`Ambulatory Care Sensitive Acute` ~ imp_disruption_any, data = sensitivity_analyses, family = "binomial", design = wgt2) # Unadjusted
hold <- tidy(model_sa_any_b_u, conf.int = TRUE) # Save key results
hold <- hold[2,] # Extract only healthcare disruption variable
hold$model <- "Acute ACS - unadj" # Note model name
table2 <- rbind(table2, hold) # Join to main table
model_sa_any_b_a <- svyglm(`Ambulatory Care Sensitive Acute` ~ imp_disruption_any + factor(imp_sex) + imp_age + imp_age2 + factor(imp_not_white) + factor(imp_own_home) + factor(imp_general_health) + factor(imp_imd2019_income_q5) + factor(cohort) + imp_quan_cci, data = sensitivity_analyses, family = "binomial", design = wgt2) # Adjusted
hold <- tidy(model_sa_any_b_a, conf.int = TRUE) # Save key results
hold <- hold[2,] # Extract only healthcare disruption variable
hold$model <- "Acute ACS - adj" # Note model name
table2 <- rbind(table2, hold) # Join to main table
# Model c: Any ambulatory care sensitive chronic conditions
model_sa_any_c_u <- svyglm(`Ambulatory Care Sensitive Chronic` ~ imp_disruption_any, data = sensitivity_analyses, family = "binomial", design = wgt2) # Unadjusted
hold <- tidy(model_sa_any_c_u, conf.int = TRUE) # Save key results
hold <- hold[2,] # Extract only healthcare disruption variable
hold$model <- "Chronic ACS - unadj" # Note model name
table2 <- rbind(table2, hold) # Join to main table
model_sa_any_c_a <- svyglm(`Ambulatory Care Sensitive Chronic` ~ imp_disruption_any + factor(imp_sex) + imp_age + imp_age2 + factor(imp_not_white) + factor(imp_own_home) + factor(imp_general_health) + factor(imp_imd2019_income_q5) + factor(cohort) + imp_quan_cci, data = sensitivity_analyses, family = "binomial", design = wgt2) # Adjusted
hold <- tidy(model_sa_any_c_a, conf.int = TRUE) # Save key results
hold <- hold[2,] # Extract only healthcare disruption variable
hold$model <- "Chronic ACS - adj" # Note model name
table2 <- rbind(table2, hold) # Join to main table
# Model d: Any vaccine preventable ambulatory care sensitive conditions
model_sa_any_d_u <- svyglm(`Ambulatory Care Sensitive Vaccine-preventable` ~ imp_disruption_any, data = sensitivity_analyses, family = "binomial", design = wgt2) # Unadjusted
hold <- tidy(model_sa_any_d_u, conf.int = TRUE) # Save key results
hold <- hold[2,] # Extract only healthcare disruption variable
hold$model <- "Vaccine preventable ACS - unadj" # Note model name
table2 <- rbind(table2, hold) # Join to main table
model_sa_any_d_a <- svyglm(`Ambulatory Care Sensitive Vaccine-preventable` ~ imp_disruption_any + factor(imp_sex) + imp_age + imp_age2 + factor(imp_not_white) + factor(imp_own_home) + factor(imp_general_health) + factor(imp_imd2019_income_q5) + factor(cohort) + imp_quan_cci, data = sensitivity_analyses, family = "binomial", design = wgt2) # Adjusted
hold <- tidy(model_sa_any_d_a, conf.int = TRUE) # Save key results
hold <- hold[2,] # Extract only healthcare disruption variable
hold$model <- "Vaccine preventable ACS - adj" # Note model name
table2 <- rbind(table2, hold) # Join to main table
# Model e: Emergency Urgent Sensitive conditions
model_sa_any_e_u <- svyglm(`Emergency Urgent Care Sensitive ` ~ imp_disruption_any, data = sensitivity_analyses, family = "binomial", design = wgt2) # Unadjusted
hold <- tidy(model_sa_any_e_u, conf.int = TRUE) # Save key results
hold <- hold[2,] # Extract only healthcare disruption variable
hold$model <- "EUCS - unadj" # Note model name
table2 <- rbind(table2, hold) # Join to main table
model_sa_any_e_a <- svyglm(`Emergency Urgent Care Sensitive ` ~ imp_disruption_any + factor(imp_sex) + imp_age + imp_age2 + factor(imp_not_white) + factor(imp_own_home) + factor(imp_general_health) + factor(imp_imd2019_income_q5) + factor(cohort) + imp_quan_cci, data = sensitivity_analyses, family = "binomial", design = wgt2) # Adjusted
hold <- tidy(model_sa_any_e_a, conf.int = TRUE) # Save key results
hold <- hold[2,] # Extract only healthcare disruption variable
hold$model <- "EUCS - adj" # Note model name
table2 <- rbind(table2, hold) # Join to main table
# Model f: Any hospital admission
model_sa_any_f_u <- svyglm(total_admissions ~ imp_disruption_any, data = sensitivity_analyses, family = "binomial", design = wgt2) # Unadjusted
hold <- tidy(model_sa_any_f_u, conf.int = TRUE) # Save key results
hold <- hold[2,] # Extract only healthcare disruption variable
hold$model <- "Any adm - unadj" # Note model name
table2 <- rbind(table2, hold) # Join to main table
model_sa_any_f_a <- svyglm(total_admissions ~ imp_disruption_any + factor(imp_sex) + imp_age + imp_age2 + factor(imp_not_white) + factor(imp_own_home) + factor(imp_general_health) + factor(imp_imd2019_income_q5) + factor(cohort) + imp_quan_cci, data = sensitivity_analyses, family = "binomial", design = wgt2) # Adjusted
hold <- tidy(model_sa_any_f_a, conf.int = TRUE) # Save key results
hold <- hold[2,] # Extract only healthcare disruption variable
hold$model <- "Any adm - adj" # Note model name
table2 <- rbind(table2, hold) # Join to main table
write.csv(table2, "../../outputs/regression_model1_sa.csv") # Save
rm(table2) # Tidy
# Part 3: Type of disruption #
# Model a: Any ambulatory care sensitive conditions
model_sa_type_a_u <- svyglm(`Ambulatory Care Sensitive All` ~ imp_disruption_appointments + imp_disruption_medications + imp_disruption_procedures, data = sensitivity_analyses, family = "binomial", design = wgt2) # Unadjusted
table3 <- tidy(model_sa_type_a_u, conf.int = TRUE) # Save key results
table3 <- table3[2:4,] # Extract only healthcare disruption variable
table3$model <- "All ACS - unadj" # Note model name
model_sa_type_a_a <- svyglm(`Ambulatory Care Sensitive All` ~ imp_disruption_appointments + imp_disruption_medications + imp_disruption_procedures + factor(imp_sex) + imp_age + imp_age2 + factor(imp_not_white) + factor(imp_own_home) + factor(imp_general_health) + factor(imp_imd2019_income_q5) + factor(cohort) + imp_quan_cci, data = sensitivity_analyses, family = "binomial", design = wgt2) # Adjusted
hold <- tidy(model_sa_type_a_a, conf.int = TRUE) # Save key results
hold <- hold[2:4,] # Extract only healthcare disruption variable
hold$model <- "All ACS - adj" # Note model name
table3 <- rbind(table3, hold) # Join to main table
# Model b: Acute ambulatory care sensitive acute conditions
model_sa_type_b_u <- svyglm(`Ambulatory Care Sensitive Acute` ~ imp_disruption_appointments + imp_disruption_medications + imp_disruption_procedures, data = sensitivity_analyses, family = "binomial", design = wgt2) # Unadjusted
hold <- tidy(model_sa_type_b_u, conf.int = TRUE) # Save key results
hold <- hold[2:4,] # Extract only healthcare disruption variable
hold$model <- "Acute ACS - unadj" # Note model name
table3 <- rbind(table3, hold) # Join to main table
model_sa_type_b_a <- svyglm(`Ambulatory Care Sensitive Acute` ~ imp_disruption_appointments + imp_disruption_medications + imp_disruption_procedures + factor(imp_sex) + imp_age + imp_age2 + factor(imp_not_white) + factor(imp_own_home) + factor(imp_general_health) + factor(imp_imd2019_income_q5) + factor(cohort) + imp_quan_cci, data = sensitivity_analyses, family = "binomial", design = wgt2) # Adjusted
hold <- tidy(model_sa_type_b_a, conf.int = TRUE) # Save key results
hold <- hold[2:4,] # Extract only healthcare disruption variable
hold$model <- "Acute ACS - adj" # Note model name
table3 <- rbind(table3, hold) # Join to main table
# Model c: Chronic ambulatory care sensitive chronic conditions
model_sa_type_c_u <- svyglm(`Ambulatory Care Sensitive Chronic` ~ imp_disruption_appointments + imp_disruption_medications + imp_disruption_procedures, data = sensitivity_analyses, family = "binomial", design = wgt2) # Unadjusted
hold <- tidy(model_sa_type_c_u, conf.int = TRUE) # Save key results
hold <- hold[2:4,] # Extract only healthcare disruption variable
hold$model <- "Chronic ACS - unadj" # Note model name
table3 <- rbind(table3, hold) # Join to main table
model_sa_type_c_a <- svyglm(`Ambulatory Care Sensitive Chronic` ~ imp_disruption_appointments + imp_disruption_medications + imp_disruption_procedures + factor(imp_sex) + imp_age + imp_age2 + factor(imp_not_white) + factor(imp_own_home) + factor(imp_general_health) + factor(imp_imd2019_income_q5) + factor(cohort) + imp_quan_cci, data = sensitivity_analyses, family = "binomial", design = wgt2) # Adjusted
hold <- tidy(model_sa_type_c_a, conf.int = TRUE) # Save key results
hold <- hold[2:4,] # Extract only healthcare disruption variable
hold$model <- "Chronic ACS - adj" # Note model name
table3 <- rbind(table3, hold) # Join to main table
# Model d: Vaccinhe preventable ambulatory care sensitive conditions
model_sa_type_d_u <- svyglm(`Ambulatory Care Sensitive Vaccine-preventable` ~ imp_disruption_appointments + imp_disruption_medications + imp_disruption_procedures, data = sensitivity_analyses, family = "binomial", design = wgt2) # Unadjusted
hold <- tidy(model_sa_type_d_u, conf.int = TRUE) # Save key results
hold <- hold[2:4,] # Extract only healthcare disruption variable
hold$model <- "Vaccine preventable ACS - unadj" # Note model name
table3 <- rbind(table3, hold) # Join to main table
model_sa_type_d_a <- svyglm(`Ambulatory Care Sensitive Vaccine-preventable` ~ imp_disruption_appointments + imp_disruption_medications + imp_disruption_procedures + factor(imp_sex) + imp_age + imp_age2 + factor(imp_not_white) + factor(imp_own_home) + factor(imp_general_health) + factor(imp_imd2019_income_q5) + factor(cohort) + imp_quan_cci, data = sensitivity_analyses, family = "binomial", design = wgt2) # Adjusted
hold <- tidy(model_sa_type_d_a, conf.int = TRUE) # Save key results
hold <- hold[2:4,] # Extract only healthcare disruption variable
hold$model <- "Vaccine preventable ACS - adj" # Note model name
table3 <- rbind(table3, hold) # Join to main table
# Model e: Emergency Urgent Sensitive conditions
model_sa_type_e_u <- svyglm(`Emergency Urgent Care Sensitive ` ~ imp_disruption_appointments + imp_disruption_medications + imp_disruption_procedures, data = sensitivity_analyses, family = "binomial", design = wgt2) # Unadjusted
hold <- tidy(model_sa_type_e_u, conf.int = TRUE) # Save key results
hold <- hold[2:4,] # Extract only healthcare disruption variable
hold$model <- "EUCS - unadj" # Note model name
table3 <- rbind(table3, hold) # Join to main table
model_sa_type_e_a <- svyglm(`Emergency Urgent Care Sensitive ` ~ imp_disruption_appointments + imp_disruption_medications + imp_disruption_procedures + factor(imp_sex) + imp_age + imp_age2 + factor(imp_not_white) + factor(imp_own_home) + factor(imp_general_health) + factor(imp_imd2019_income_q5) + factor(cohort) + imp_quan_cci, data = sensitivity_analyses, family = "binomial", design = wgt2) # Adjusted
hold <- tidy(model_sa_type_e_a, conf.int = TRUE) # Save key results
# If unhappy, then can do manually with confint(model_sa_type_e_a, parm = "disruption_appointments")
hold <- hold[2:4,] # Extract only healthcare disruption variable
hold$model <- "EUCS - adj" # Note model name
table3 <- rbind(table3, hold) # Join to main table
# Model f: Any hospital admission
model_sa_type_f_u <- svyglm(total_admissions ~ imp_disruption_appointments + imp_disruption_medications + imp_disruption_procedures, data = sensitivity_analyses, family = "binomial", design = wgt2) # Unadjusted
hold <- tidy(model_sa_type_f_u, conf.int = TRUE) # Save key results
hold <- hold[2:4,] # Extract only healthcare disruption variable
hold$model <- "Any adm - unadj" # Note model name
table3 <- rbind(table3, hold) # Join to main table
model_sa_type_f_a <- svyglm(total_admissions ~ imp_disruption_appointments + imp_disruption_medications + imp_disruption_procedures + factor(imp_sex) + imp_age + imp_age2 + factor(imp_not_white) + factor(imp_own_home) + factor(imp_general_health) + factor(imp_imd2019_income_q5) + factor(cohort) + imp_quan_cci, data = sensitivity_analyses, family = "binomial", design = wgt2) # Adjusted
hold <- tidy(model_sa_type_f_a, conf.int = TRUE) # Save key results
hold <- hold[2:4,] # Extract only healthcare disruption variable
hold$model <- "Any adm - adj" # Note model name
table3 <- rbind(table3, hold) # Join to main table
write.csv(table3, file = "S:/LLC_0009/outputs/regression_model2_sa.csv") # Save
gc()