-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathssm.py
209 lines (161 loc) · 7.13 KB
/
ssm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import torch
import torch.nn.functional as F
from ..gradient.mifgsm import MIFGSM
from ..utils import *
class SSM(MIFGSM):
"""
SSM (Spectrum Simulation Attack)
'Frequency Domain Model Augmentation for Adversarial Attack. (ECCV 2022)'(https://arxiv.org/abs/2207.05382)
Arguments:
model_name (str): the name of surrogate model for attack.
epsilon (float): the perturbation budget.
alpha (float): the step size.
epoch (int): the number of iterations.
decay (float): the decay factor for momentum calculation.
num_spectrum (int): the number of spectrum.
rho (float): the tuning factor for Uniform distribution.
targeted (bool): targeted/untargeted attack.
random_start (bool): whether using random initialization for delta.
norm (str): the norm of perturbation, l2/linfty.
loss (str): the loss function.
device (torch.device): the device for data. If it is None, the device would be same as model
Official arguments:
epsilon=16/255, alpha=epsilon/epoch=1.6/255, epoch=10, decay=1, num_spectrum=20, rho=0.5
Example script:
python main.py --input_dir ./path/to/data --output_dir adv_data/ssm/resnet18 --attack ssm --model=resnet18
python main.py --input_dir ./path/to/data --output_dir adv_data/ssm/resnet18 --eval
"""
def __init__(self, model_name, epsilon=16/255, alpha=1.6/255, epoch=10, decay=1., num_spectrum=20, rho=0.5, targeted=False, random_start=False, norm='linfty', loss='crossentropy', device=None, **kwargs):
super().__init__(model_name, epsilon, alpha, epoch, decay, targeted, random_start, norm, loss, device)
self.num_spectrum = num_spectrum
self.epsilon = epsilon
self.rho = rho
def transform(self, x, **kwargs):
"""
Use DCT to transform the input image from spatial domain to frequency domain,
Use IDCT to transform the input image from frequency domain to spatial domain.
Arguments:
x: (N, C, H, W) tensor for input images
"""
gauss = torch.randn(x.size()[0], 3, 224, 224) * self.epsilon
gauss = gauss.cuda()
x_dct = self.dct_2d(x + gauss).cuda()
mask = (torch.rand_like(x) * 2 * self.rho + 1 - self.rho).cuda()
x_idct = self.idct_2d(x_dct * mask)
return x_idct
def forward(self, data, label, **kwargs):
"""
The general attack procedure
Arguments:
data: (N, C, H, W) tensor for input images
labels: (N,) tensor for ground-truth labels if untargetd, otherwise targeted labels
"""
if self.targeted:
assert len(label) == 2
label = label[1] # the second element is the targeted label tensor
data = data.clone().detach().to(self.device)
label = label.clone().detach().to(self.device)
# Initialize adversarial perturbation
delta = self.init_delta(data)
momentum = 0
for _ in range(self.epoch):
grads = 0
for _ in range(self.num_spectrum):
# Obtain the data after DCT and IDCT
x_idct = self.transform(data + delta)
# Obtain the output
logits = self.get_logits(x_idct)
# Calculate the loss
loss = self.get_loss(logits, label)
# Calculate the gradients on x_idct
grad = self.get_grad(loss, x_idct)
grads += grad
grads /= self.num_spectrum
# Calculate the momentum
momentum = self.get_momentum(grads, momentum)
# Update adversarial perturbation
delta = self.update_delta(delta, data, momentum, self.alpha)
return delta.detach()
def dct(self, x, norm=None):
"""
Discrete Cosine Transform, Type II (a.k.a. the DCT)
(This code is copied from https://github.com/yuyang-long/SSA/blob/master/dct.py)
Arguments:
x: the input signal
norm: the normalization, None or 'ortho'
Return:
the DCT-II of the signal over the last dimension
"""
x_shape = x.shape
N = x_shape[-1]
x = x.contiguous().view(-1, N)
v = torch.cat([x[:, ::2], x[:, 1::2].flip([1])], dim=1)
Vc = torch.fft.fft(v)
k = - torch.arange(N, dtype=x.dtype, device=x.device)[None, :] * np.pi / (2 * N)
W_r = torch.cos(k)
W_i = torch.sin(k)
# V = Vc[:, :, 0] * W_r - Vc[:, :, 1] * W_i
V = Vc.real * W_r - Vc.imag * W_i
if norm == 'ortho':
V[:, 0] /= np.sqrt(N) * 2
V[:, 1:] /= np.sqrt(N / 2) * 2
V = 2 * V.view(*x_shape)
return V
def idct(self, X, norm=None):
"""
The inverse to DCT-II, which is a scaled Discrete Cosine Transform, Type III
Our definition of idct is that idct(dct(x)) == x
(This code is copied from https://github.com/yuyang-long/SSA/blob/master/dct.py)
Arguments:
X: the input signal
norm: the normalization, None or 'ortho'
Return:
the inverse DCT-II of the signal over the last dimension
"""
x_shape = X.shape
N = x_shape[-1]
X_v = X.contiguous().view(-1, x_shape[-1]) / 2
if norm == 'ortho':
X_v[:, 0] *= np.sqrt(N) * 2
X_v[:, 1:] *= np.sqrt(N / 2) * 2
k = torch.arange(x_shape[-1], dtype=X.dtype, device=X.device)[None, :] * np.pi / (2 * N)
W_r = torch.cos(k)
W_i = torch.sin(k)
V_t_r = X_v
V_t_i = torch.cat([X_v[:, :1] * 0, -X_v.flip([1])[:, :-1]], dim=1)
V_r = V_t_r * W_r - V_t_i * W_i
V_i = V_t_r * W_i + V_t_i * W_r
V = torch.cat([V_r.unsqueeze(2), V_i.unsqueeze(2)], dim=2)
tmp = torch.complex(real=V[:, :, 0], imag=V[:, :, 1])
v = torch.fft.ifft(tmp)
x = v.new_zeros(v.shape)
x[:, ::2] += v[:, :N - (N // 2)]
x[:, 1::2] += v.flip([1])[:, :N // 2]
return x.view(*x_shape).real
def dct_2d(self, x, norm=None):
"""
2-dimentional Discrete Cosine Transform, Type II (a.k.a. the DCT)
(This code is copied from https://github.com/yuyang-long/SSA/blob/master/dct.py)
Arguments:
x: the input signal
norm: the normalization, None or 'ortho'
Return:
the DCT-II of the signal over the last 2 dimensions
"""
X1 = self.dct(x, norm=norm)
X2 = self.dct(X1.transpose(-1, -2), norm=norm)
return X2.transpose(-1, -2)
def idct_2d(self, X, norm=None):
"""
The inverse to 2D DCT-II, which is a scaled Discrete Cosine Transform, Type III
Our definition of idct is that idct_2d(dct_2d(x)) == x
(This code is copied from https://github.com/yuyang-long/SSA/blob/master/dct.py)
Arguments:
X: the input signal
norm: the normalization, None or 'ortho'
Return:
the DCT-II of the signal over the last 2 dimensions
"""
x1 = self.idct(X, norm=norm)
x2 = self.idct(x1.transpose(-1, -2), norm=norm)
return x2.transpose(-1, -2)