-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathlpm.py
329 lines (282 loc) · 13.9 KB
/
lpm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import torch
import torch.nn as nn
from .sko.GA import GA
from .sko.DE import DE
from ..utils import *
from ..attack import Attack
from types import MethodType, FunctionType
import warnings
import sys
import multiprocessing
# please refer to the official code for the installation of the package
# https://github.com/zhaoshiji123/LPM
import warnings
class LPM(Attack):
"""
LPM (Learnable Patch-wise Masks)
'Boosting Adversarial Transferability with Learnable Patch-wise Masks (IEEE MM 2023)'(https://ieeexplore.ieee.org/abstract/document/10251606)
Arguments:
model_name (str): the name of surrogate model for attack.
epsilon (float): the perturbation budget.
alpha (float): the step size.
epoch (int): the number of iterations.
decay (float): the decay factor for momentum calculation.
targeted (bool): targeted/untargeted attack.
random_start (bool): whether using random initialization for delta.
norm (str): the norm of perturbation, l2/linfty.
loss (str): the loss function.
device (torch.device): the device for data. If it is None, the device would be same as model
Official arguments:
epsilon=16/255, alpha=epsilon/epoch=1.6/255, epoch=10, decay=1
Example script:
python main.py --input_dir ./path/to/data --output_dir adv_data/lpm/resnet18 --attack lpm --model=resnet18 --batchsize 1
python main.py --input_dir ./path/to/data --output_dir adv_data/lpm/resnet18 --eval
"""
def __init__(self, model_name, epsilon=16/255, alpha=1.6/255, epoch=10, decay=1., targeted=False,
random_start=False, norm='linfty', loss='crossentropy', device=None, attack='lmp', **kwargs):
super().__init__(attack, model_name, epsilon, targeted, random_start, norm, loss, device)
self.alpha = alpha
self.epoch = epoch
self.decay = decay
self.HEIGHT = 224
self.WIDTH = 224
self.maxiter = 10
self.patch_size = 32
self.popsize = 40
self.b_s = 20
simulated_names = ['resnet50','vgg16','densenet161']
self.gray_models = self.load_models(simulated_names)
warnings.warn(" Please refer to the official code for the installation of the sko package: https://github.com/zhaoshiji123/LP")
def load_models(seld, model_names):
# load single model
def load_single_model(model_name):
if model_name in models.__dict__.keys():
print('=> Loading model {} from torchvision.models'.format(model_name))
model = models.__dict__[model_name](weights="DEFAULT")
elif model_name in timm.list_models():
print('=> Loading model {} from timm.models'.format(model_name))
model = timm.create_model(model_name, pretrained=True)
else:
raise ValueError('Model {} not supported'.format(model_name))
return wrap_model(model.eval().cuda())
models_list = []
for model_name in model_names:
models_list.append(load_single_model(model_name))
return models_list
def forward(self, data, label, **kwargs):
"""
The general attack procedure
Arguments:
data: (N, C, H, W) tensor for input images
labels: (N,) tensor for ground-truth labels if untargetd, otherwise targeted labels
"""
data = data.clone().detach().to(self.device)
label = label.clone().detach().to(self.device)
if(data.shape[0]>1):
raise ValueError("Please set the batch_size==1!")
data = data[0]
label = label[0]
bounds = [(0,1)] * int(self.WIDTH/self.patch_size) * int(self.HEIGHT/self.patch_size)
def myfunc(x, img=data, label=label):
return self.predict_transfer_score(x, img, label, self.model, self.gray_models, self.b_s)
def callback_fn(x, convergence):
return True
lb = [0] * len(bounds)
ub = [elem[1] for elem in bounds]
# import pdb;pdb.set_trace()
de = MyDE(func=myfunc, n_dim=len(bounds), size_pop=self.popsize, max_iter=self.maxiter, prob_mut=0.001, lb=lb, ub=ub, precision=1, img=None, label=None)
masks, y = de.run()
mask = torch.from_numpy(masks)
mask = mask.reshape(-1, int(self.HEIGHT/self.patch_size), int(self.WIDTH/self.patch_size))
delta = self.batch_attack_final_multiple_mask_2(data, mask, label, self.model, M_num=12, pop_size=self.popsize) # TODO
return delta.detach()
def batch_attack_final_multiple_mask_2(self, img, mask, label, white_models, M_num=4, pop_size=20):
mask_final = torch.zeros([mask.shape[0], mask.shape[1]*self.patch_size, mask.shape[2]*self.patch_size], dtype=torch.int)
for i in range(mask.shape[0]):
for j in range(mask.shape[1]*self.patch_size):
for k in range(mask.shape[2]):
mask_final[i][j][k*self.patch_size:k*self.patch_size + self.patch_size] = mask[i][int(j/self.patch_size)][int(k)]
# mask_final = mask_final[:,:299,:299]
mask = mask_final[:,None,:,:]
mask = torch.cat((mask,mask,mask),1)
mask = mask.float()
mask = mask.cuda()
X_ori = torch.stack([img])
X = X_ori
labels = torch.stack([label])
X = X.cuda()
labels = labels.cuda()
delta = torch.zeros_like(X, requires_grad=True).cuda()
grad_momentum = 0
# M_num = int(mask.shape[0]/8)
cnt = 0
# M_num = 4
for t in range(10):
g_temp = []
for tt in range(M_num):
# if args.input_diversity: # use Input Diversity
X_adv = X + delta
X_adv[:,:,:224,:224] = X_adv[:,:,:224,:224] * mask[cnt%pop_size]
cnt += 1
ensemble_logits = self.get_logits(X_adv, white_models)
# Calculate the loss
loss = self.get_loss(ensemble_logits, labels)
# Calculate the gradients
grad = self.get_grad(loss, delta)
g_temp.append(grad)
# calculate the mean and cancel out the noise, retained the effective noise
g = 0.0
for j in range(M_num):
g += g_temp[j]
grad_momentum = self.get_momentum(g, grad_momentum)
# Update adversarial perturbation
delta = self.update_delta(delta, X, grad_momentum, self.alpha)
# X_adv = X_ori + delta
return delta.detach()
def get_logits(self, X_adv, model):
return model(X_adv)
def score_transferability(self, X_adv, label, gray_models):
labels = label
sum_score = np.zeros((len(gray_models), X_adv.shape[0]))
model_num = 0
with torch.no_grad():
for model in gray_models:
logits = self.get_logits(X_adv, model)
loss = -nn.CrossEntropyLoss(reduce=False)(logits, labels)
sum_score[model_num] += loss.detach().cpu().numpy()
model_num += 1
Var0 = sum_score.var(axis = 0)
Mean0 = sum_score.mean(axis = 0)
final_sumscore = Var0 + Mean0
return final_sumscore
def batch_attack(self, img, mask, labels, white_models):
mask_final = torch.zeros([mask.shape[0], mask.shape[1]*self.patch_size, mask.shape[2]*self.patch_size], dtype=torch.int)
for i in range(mask.shape[0]):
for j in range(mask.shape[1]*self.patch_size):
for k in range(mask.shape[2]):
mask_final[i][j][k*self.patch_size:k*self.patch_size + self.patch_size] = mask[i][int(j/self.patch_size)][int(k)]
mask = mask_final[:,None,:,:]
mask = torch.cat((mask,mask,mask),1)
# assert False
mask = mask.float()
mask = mask.cuda()
X_ori = torch.squeeze(img)
X = X_ori.clone().cuda()
labels = labels.cuda()
delta = torch.zeros_like(X, requires_grad=True).cuda()
grad_momentum = 0
for t in range(10):
X_adv = X + delta
X_adv[:,:,:224,:224] = X_adv[:,:,:224,:224] * mask
ensemble_logits = self.get_logits(X_adv, white_models)
# Calculate the loss
loss = self.get_loss(ensemble_logits, labels)
# Calculate the gradients
grad = self.get_grad(loss, delta)
# Ti
# grad = F.conv2d(grad, TI_kernel(kernel_size=5, nsig=3), bias=None, stride=1, padding=(2,2), groups=3)
# Mi
grad_momentum = self.get_momentum(grad, grad_momentum)
# Update adversarial perturbation
delta = self.update_delta(delta, X, grad_momentum, self.alpha)
X_adv = X_ori + delta.detach()
return X_adv
def predict_transfer_score(self, x, img, label, white_models, gray_models, batch_size=4):
# 每个个体的得分,通过每个mask单独作用到图像进行对抗攻击产生对抗样本在一组黑盒模型上的效果得分获得
mask = torch.from_numpy(x)
mask = mask.reshape(-1, int(self.HEIGHT/self.patch_size), int(self.WIDTH/self.patch_size))
numsum = x.shape[0]
scorelist = []
bn = int(np.ceil(numsum/batch_size))
for i in range(bn):
bs = i*batch_size
be = min((i+1)*batch_size, numsum)
bn = be-bs
X_adv = self.batch_attack(torch.stack([img]*bn), mask[bs:be], torch.stack([label]*bn), white_models)
scorelist = np.append(scorelist, self.score_transferability(X_adv, torch.stack([label]*bn), gray_models))
return scorelist
class MyDE(GA):
# 可自定义排序,杂交,变异,选择
def ranking(self):
# import pdb;pdb.set_trace()
self.Chrom = self.Chrom[np.argsort(self.Y),:]
self.Y = self.Y[(np.argsort(self.Y))]
def crossover(self):
Chrom, size_pop, len_chrom = self.Chrom, self.size_pop, self.len_chrom
generation_best_index = self.Y.argmin()
best_chrom = self.Chrom[generation_best_index]
best_chrom_Y = self.Y[generation_best_index]
scale_inbreeding = 0.3
cross_chrom_size = int(scale_inbreeding * self.size_pop)
# print(cross_chrom_size)
superior_size = int(0.3 * self.size_pop)
generation_superior = self.Chrom[:superior_size,:]
# half_size_pop = int(size_pop / 2)
# Chrom1, Chrom2 = self.Chrom[:size_pop,:][:half_size_pop], self.Chrom[:size_pop,:][half_size_pop:]
self.crossover_Chrom = np.zeros(shape=(cross_chrom_size, len_chrom), dtype=int)
# print(self.crossover_Chrom.shape)
for i in range(cross_chrom_size):
n1 = np.random.randint(0, superior_size, 2)
# print(n1.shape)
while n1[0] == n1[1]:
n1 = np.random.randint(0, superior_size, 2)
# 让 0 跟多一些
check_1 = 1
check_2 = 0
for j in range(self.len_chrom):
if generation_superior[n1[0]][j] == 1 and generation_superior[n1[1]][j] == 1:
self.crossover_Chrom[i][j] = 1
elif generation_superior[n1[0]][j] == 0 and generation_superior[n1[1]][j] == 0:
self.crossover_Chrom[i][j] = 0
elif generation_superior[n1[0]][j] == 1 and generation_superior[n1[1]][j] == 0:
self.crossover_Chrom[i][j] = generation_superior[n1[check_1]][j]
check_1 = 1 - check_1
elif generation_superior[n1[0]][j] == 0 and generation_superior[n1[1]][j] == 1:
self.crossover_Chrom[i][j] = generation_superior[n1[check_2]][j]
check_2 = 1 - check_2
return self.crossover_Chrom
def mutation(self):
scale_inbreeding = 0.3 #+ self.iter/self.max_iter*(0.8-0.2)
rate = 0.1
middle_1 = np.zeros((int(self.size_pop*(1-scale_inbreeding)), int(rate * self.len_chrom)))
middle_2 = np.ones((int(self.size_pop*(1-scale_inbreeding)),self.len_chrom - int(rate * self.len_chrom)))
self.mutation_Chrom = np.concatenate((middle_1,middle_2), axis=1)
for i in range(self.mutation_Chrom.shape[0]):
self.mutation_Chrom[i] = np.random.permutation(self.mutation_Chrom[i])
return self.mutation_Chrom
def selection(self, tourn_size=3):
'''
greedy selection
'''
# 上一代个体Chrom,得分self.Y
# 得到这一代个体以及分数
offspring_Chrom = np.vstack((self.crossover_Chrom,self.mutation_Chrom))
f_offspring = self.func(offspring_Chrom)
# f_chrom = self.Y.copy()
# print("this generate score:")
# print(f_offspring)
num_inbreeding = int(0.3 * self.size_pop)
selection_chrom = np.vstack((offspring_Chrom, self.Chrom))
selection_chrom_Y = np.hstack((f_offspring, self.Y))
# print(selection_chrom_Y)
generation_best_index = selection_chrom_Y.argmin()
# print(selection_chrom[generation_best_index])
a, indices = np.unique(selection_chrom_Y, return_index=True)
# print(a)
# print(indices)
selection_chrom_1 = np.zeros_like(selection_chrom[0:len(a)])
selection_chrom_1 = selection_chrom[indices]
# selection_chrom = selection_chrom[np.argsort(selection_chrom_Y),:]
# selection_chrom_Y = selection_chrom_Y[(np.argsort(selection_chrom_Y))]
# print("selection_chrom_1")
# print(selection_chrom_1)
if len(a) >= self.size_pop:
self.Chrom = selection_chrom_1[:self.size_pop,:]
self.Y = a[:self.size_pop]
else:
self.Chrom[0: len(a)] = selection_chrom_1[:len(a),:]
self.Y[0: len(a)] = a[:len(a)]
self.Chrom[len(a):self.size_pop] = selection_chrom_1[len(a)-1]
self.Y[len(a):self.size_pop] = a[len(a)-1]
# print(self.Chrom[0])
# assert False