-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathrap.py
148 lines (122 loc) · 5.99 KB
/
rap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import torch
from ..utils import *
from ..attack import Attack
class RAP(Attack):
"""
RAP Attack
'Boosting the Transferability of Adversarial Attacks with Reverse Adversarial Perturbation (NeurIPS 2022)'(https://arxiv.org/abs/2210.05968)
Arguments:
model_name (str): the name of surrogate model for attack.
epsilon (float): the perturbation budget.
alpha (float): the step size.
epoch (int): the number of iterations.
transpoint (int): the step start to use RAP attack.
- transpoint 400: baseline method
- transpoint 0: baseline + RAP
- transpoint 100: baselien +RAP-LS
epsilon_n (float): the perturbation budget for inner maximizaiton
alpha_n (float): the step size for inner maximization
adv_steps (int): the number of iterations for inner maximization
targeted (bool): targeted/untargeted attack
random_start (bool): whether using random initialization for delta and n_rap
norm (str): the norm of perturbation, l2/linfty.
loss (str): the loss function.
device (torch.device): the device for data. If it is None, the device would be same as model
Official arguments:
epsilon=16/255, alpha=2/255, epoch=400, transpoint=100, epsilon_n=16/255, alpha_n=2/255, adv_steps=8
Example script (Untargeted attack):
python main.py --input_dir ./path/to/data --output_dir adv_data/rap/resnet18 --attack rap --model=resnet18
python main.py --input_dir ./path/to/data --output_dir adv_data/rap/resnet18 --eval
Example script (Targeted attack):
python main.py --input_dir ./path/to/data --output_dir adv_data/rap/resnet18_targeted --attack rap --model=resnet18 --targeted
python main.py --input_dir ./path/to/data --output_dir adv_data/rap/resnet18_targeted --eval --targeted
"""
def __init__(self, model_name, epsilon=16/255, alpha=2/255, epoch=400, transpoint=100, epsilon_n=16/255, alpha_n=2/255, adv_steps=8,
targeted=False, random_start=False,
norm='linfty', loss='crossentropy', device=None, attack='RAP', **kwargs):
super().__init__(attack, model_name, epsilon, targeted, random_start, norm, loss, device)
self.alpha = alpha
self.epoch = epoch
self.decay = 1.
self.alpha_n = alpha_n
self.adv_steps = adv_steps
self.transpoint = transpoint
self.epsilon_n = epsilon_n
def get_logit_loss(self, logits, label):
"""
Logit loss for targeted attack. Please refer to the paper for more details.
"""
if not self.targeted:
real = logits.gather(1, label.unsqueeze(1)).squeeze(1)
logit_dists = -1 * real
loss = logit_dists.mean()
else:
real = logits.gather(1, label.unsqueeze(1)).squeeze(1)
loss = real.mean()
return loss
def init_n_rap(self, data, random_start, **kwargs):
delta = torch.zeros_like(data).to(self.device)
if random_start:
if self.norm == 'linfty':
delta.uniform_(-self.epsilon_n, self.epsilon_n)
else:
delta.normal_(-self.epsilon, self.epsilon)
d_flat = delta.view(delta.size(0), -1)
n = d_flat.norm(p=2, dim=10).view(delta.size(0), 1, 1, 1)
r = torch.zeros_like(data).uniform_(0,1).to(self.device)
delta *= r/n*self.epsilon
delta = clamp(delta, img_min-data, img_max-data)
delta.detach().requires_grad = True
return delta
def update_n_rap(self, delta, data, grad, alpha, **kwargs):
if self.norm == 'linfty':
delta = torch.clamp(delta + alpha * grad.sign(), -self.epsilon_n, self.epsilon_n)
else:
grad_norm = torch.norm(grad.view(grad.size(0), -1), dim=1).view(-1, 1, 1, 1)
scaled_grad = grad / (grad_norm + 1e-20)
delta = (delta + scaled_grad * alpha).view(delta.size(0), -1).renorm(p=2, dim=0, maxnorm=self.epsilon).view_as(delta)
delta = clamp(delta, img_min-data, img_max-data)
return delta.detach().requires_grad_(True)
def get_n_rap(self, data, label):
n_rap = self.init_n_rap(data, random_start=True)
for _ in range(self.adv_steps):
# Obtain the output
logits = self.get_logits(self.transform(data+n_rap))
# Calculate the loss
loss = -self.get_loss(logits, label)
# Calculate the gradients
grad = self.get_grad(loss, n_rap)
# Update the n_rap
n_rap = self.update_n_rap(n_rap, data, grad, self.alpha_n)
return n_rap.detach()
def forward(self, data, label, **kwargs):
"""
The RAP attack procedure
Arguments:
data: (N, C, H, W) tensor for input images
labels: (N,) tensor for ground-truth labels if untargetd, otherwise targeted labels
"""
if self.targeted:
assert len(label) == 2
label = label[1] # the second element is the targeted label tensor
data = data.clone().detach().to(self.device)
label = label.clone().detach().to(self.device)
# Initialize adversarial perturbation
delta = self.init_delta(data)
momentum = 0
n_rap = torch.zeros_like(data).to(self.device)
for iter in range(self.epoch):
# Late start
if iter >= self.transpoint:
n_rap = self.get_n_rap(data+delta, label)
# Obtain the output
logits = self.get_logits(self.transform(data+delta+n_rap, momentum=momentum))
# Calculate the loss
loss = self.get_loss(logits, label)
# Calculate the gradients
grad = self.get_grad(loss, delta)
# Calculate the momentum
momentum = self.get_momentum(grad, momentum)
# Update adversarial perturbation
delta = self.update_delta(delta, data, momentum, self.alpha)
return delta.detach()