-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathlogit.py
136 lines (113 loc) · 5.55 KB
/
logit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import torch
import torch.nn.functional as F
from ..utils import *
from ..attack import Attack
import scipy.stats as st
class LOGIT(Attack):
"""
Logit Attack
'On Success and Simplicity: A Second Look at Transferable Targeted Attacks (NeurIPS 2021)'(https://arxiv.org/abs/2012.11207)
Arguments:
model_name (str): the name of surrogate model for attack.
epsilon (float): the perturbation budget.
alpha (float): the step size.
epoch (int): the number of iterations.
targeted (bool): targeted/untargeted attack
random_start (bool): whether using random initialization for delta.
norm (str): the norm of perturbation, l2/linfty.
loss (str): the loss function.
device (torch.device): the device for data. If it is None, the device would be same as model
Official arguments:
epsilon=16/255, alpha=2.0/255, epoch=300, decay=1.0
Example script:
python main.py --input_dir ./path/to/data --output_dir adv_data/logit/resnet18_targeted --attack logit --model=resnet18 --targeted
python main.py --input_dir ./path/to/data --output_dir adv_data/logit/resnet18_targeted --eval --targeted
"""
def __init__(self, model_name, epsilon=16/255, alpha=2/255, epoch=300, decay=1.0, resize_rate=1.1, kernel_size=5, targeted=True,
random_start=False, norm='linfty', loss='crossentropy', attack='Logit', device=None, **kwargs):
super().__init__(attack, model_name, epsilon, targeted, random_start, norm, loss, device, **kwargs)
self.alpha = alpha
self.epoch = epoch
self.decay = decay
self.resize_rate = resize_rate
self.kernel = self.generate_kernel('gaussian', kernel_size)
def generate_kernel(self, kernel_type, kernel_size, nsig=3):
"""
Generate the gaussian/uniform/linear kernel
Arguments:
kernel_type (str): the method for initilizing the kernel
kernel_size (int): the size of kernel
"""
if kernel_type.lower() == 'gaussian':
x = np.linspace(-nsig, nsig, kernel_size)
kern1d = st.norm.pdf(x)
kernel_raw = np.outer(kern1d, kern1d)
kernel = kernel_raw / kernel_raw.sum()
elif kernel_type.lower() == 'uniform':
kernel = np.ones((kernel_size, kernel_size)) / (kernel_size ** 2)
elif kernel_type.lower() == 'linear':
kern1d = 1 - np.abs(np.linspace((-kernel_size+1)//2, (kernel_size-1)//2, kernel_size)/(kernel_size**2))
kernel_raw = np.outer(kern1d, kern1d)
kernel = kernel_raw / kernel_raw.sum()
else:
raise Exception("Unspported kernel type {}".format(kernel_type))
stack_kernel = np.stack([kernel, kernel, kernel])
stack_kernel = np.expand_dims(stack_kernel, 1)
return torch.from_numpy(stack_kernel.astype(np.float32)).to(self.device)
def transform(self, x, **kwargs):
"""
Random transform the input images
"""
img_size = x.shape[-1]
img_resize = int(img_size * self.resize_rate)
# resize the input image to random size
rnd = torch.randint(low=min(img_size, img_resize), high=max(img_size, img_resize), size=(1,), dtype=torch.int32)
rescaled = F.interpolate(x, size=[rnd, rnd], mode='bilinear', align_corners=False)
# randomly add padding
h_rem = img_resize - rnd
w_rem = img_resize - rnd
pad_top = torch.randint(low=0, high=h_rem.item(), size=(1,), dtype=torch.int32)
pad_bottom = h_rem - pad_top
pad_left = torch.randint(low=0, high=w_rem.item(), size=(1,), dtype=torch.int32)
pad_right = w_rem - pad_left
padded = F.pad(rescaled, [pad_left.item(), pad_right.item(), pad_top.item(), pad_bottom.item()], value=0)
# resize the image back to img_size
return F.interpolate(padded, size=[img_size, img_size], mode='bilinear', align_corners=False)
def get_grad(self, loss, delta, **kwargs):
"""
Overridden for TIM attack.
"""
grad = torch.autograd.grad(loss, delta, retain_graph=False, create_graph=False)[0]
grad = F.conv2d(grad, self.kernel, stride=1, padding='same', groups=3)
return grad
def get_loss(self, logits, data, label):
loss = 0
for batch_i in range(data.shape[0]):
loss += logits[batch_i][label[batch_i]]
return loss
def forward(self, data, label, **kwargs):
"""
The general attack procedure
Arguments:
data: (N, C, H, W) tensor for input images
labels: (N,) tensor for ground-truth labels if untargetd, otherwise targeted labels
"""
if self.targeted:
assert len(label) == 2
label = label[1] # the second element is the targeted label tensor
data = data.clone().detach().to(self.device)
label = label.clone().detach().to(self.device)
momentum = 0.
delta = self.init_delta(data).to(self.device)
for _ in range(self.epoch):
# Obtain the output
logits = self.get_logits(self.transform(data+delta, momentum=momentum))
# Calculate the loss
loss = self.get_loss(logits, data, label)
# Calculate the gradients
grad = self.get_grad(loss, delta)
# Calculate the momentum
momentum = self.get_momentum(grad, momentum)
# Update adversarial perturbation
delta = self.update_delta(delta, data, momentum, self.alpha)
return delta.detach()