diff --git a/aif360/sklearn/detectors/__init__.py b/aif360/sklearn/detectors/__init__.py index aad7520c..9f94a25c 100644 --- a/aif360/sklearn/detectors/__init__.py +++ b/aif360/sklearn/detectors/__init__.py @@ -1,11 +1,14 @@ """ Methods for detecting subsets for which a model or dataset is biased. """ -from aif360.sklearn.detectors.detectors import bias_scan +from aif360.sklearn.detectors.detectors import MDSS_bias_scan from aif360.sklearn.detectors.facts import FACTS, FACTS_bias_scan + +bias_scan = MDSS_bias_scan # backwards compatibility + __all__ = [ - 'bias_scan', + 'MDSS_bias_scan', 'FACTS', 'FACTS_bias_scan', ] diff --git a/aif360/sklearn/detectors/detectors.py b/aif360/sklearn/detectors/detectors.py index 35617c4f..7f8dda5c 100644 --- a/aif360/sklearn/detectors/detectors.py +++ b/aif360/sklearn/detectors/detectors.py @@ -6,7 +6,7 @@ import pandas as pd -def bias_scan( +def MDSS_bias_scan( X: pd.DataFrame, y_true: pd.Series, y_pred: Union[pd.Series, pd.DataFrame] = None, diff --git a/aif360/sklearn/detectors/facts/__init__.py b/aif360/sklearn/detectors/facts/__init__.py index e01a7cd5..ecbf0577 100644 --- a/aif360/sklearn/detectors/facts/__init__.py +++ b/aif360/sklearn/detectors/facts/__init__.py @@ -5,17 +5,23 @@ from pandas import DataFrame from sklearn.base import BaseEstimator -from .parameters import ParameterProxy, feature_change_builder -from .misc import ( - valid_ifthens, - calc_costs, - rules2rulesbyif, - select_rules_subset, - select_rules_subset_KStest, - cum_corr_costs_all -) -from .formatting import print_recourse_report, print_recourse_report_KStest_cumulative -from .rule_filters import delete_fair_rules +try: + from .parameters import ParameterProxy, feature_change_builder + from .misc import ( + valid_ifthens, + calc_costs, + rules2rulesbyif, + select_rules_subset, + select_rules_subset_KStest, + cum_corr_costs_all + ) + from .formatting import print_recourse_report, print_recourse_report_KStest_cumulative + from .rule_filters import delete_fair_rules +except ImportError as error: + from logging import warning + warning("{}: FACTS will be unavailable. To install, run:\n" + "pip install 'aif360[FACTS]'".format(error)) + print_recourse_report = None __all__ = ["FACTS", "print_recourse_report", "FACTS_bias_scan"] @@ -40,7 +46,9 @@ def FACTS_bias_scan( show_action_costs: bool = False, is_correctness_metric: bool = False, ): - """FACTS is an efficient, model-agnostic, highly parameterizable, and + """Identify the subgroups with the most difficulty achieving recourse. + + FACTS is an efficient, model-agnostic, highly parameterizable, and explainable framework for evaluating subgroup fairness through counterfactual explanations [#FACTS23]_. @@ -76,29 +84,29 @@ def FACTS_bias_scan( protected attribute. metric (str, optional): one of the following choices - + - "equal-effectiveness" - "equal-choice-for-recourse" - "equal-effectiveness-within-budget" - "equal-cost-of-effectiveness" - "equal-mean-recourse" - "fair-tradeoff" - + Defaults to "equal-effectiveness". For explanation of each of those metrics, refer either to the paper [#FACTS23]_ or the demo_FACTS notebook. - + categorical_features (list(str), optional): the list of categorical features. The default is to choose (dynamically, inside `fit`) the columns of the dataset with types "object" or "category". - + freq_itemset_min_supp (float, optional): minimum support for all the runs of the frequent itemset mining algorithm (specifically, `FP Growth `_). We mine frequent itemsets to generate candidate subpopulation groups and candidate actions. For more information, see paper [#FACTS23]_. Defaults to 10%. - + feature_weights (dict(str, float), optional): the weights for each feature. Used in the calculation of the cost of a suggested change. Specifically, the term corresponding to each feature is multiplied by this weight. @@ -117,17 +125,17 @@ def FACTS_bias_scan( *Note*: providing both `feats_allowed_to_change` and `feats_not_allowed_to_change` is currently treated as an error. - viewpoint (str, optional): "macro" or "micro". Refers to the + viewpoint (str, optional): "macro" or "micro". Refers to the notions of "macro viewpoint" and "micro viewpoint" defined in section 2.2 of the paper [#FACTS23]_. - + As a short explanation, consider a set of actions A and a subgroup (cohort / set of individuals) G. Metrics with the macro viewpoint interpretation are constrained to always apply one action from A to the entire G, while metrics with the micro interpretation are allowed to give each individual in G the min-cost action from A which changes the individual's class. - + Note that not all combinations of `metric` and `viewpoint` are valid, e.g. "Equal Choice for Recourse" only has a macro interpretation. @@ -135,7 +143,7 @@ def FACTS_bias_scan( Defaults to "macro". sort_strategy (str, optional): one of the following choices - + - `"max-cost-diff-decr"`: simply rank the groups in descending \ order according to the unfairness metric. - `"max-cost-diff-decr-ignore-forall-subgroups-empty"`: ignore \ @@ -174,7 +182,7 @@ def FACTS_bias_scan( show_subgroup_costs (bool, optional): Whether to show the costs assigned to each protected subgroup. Defaults to False. - + show_action_costs (bool, optional): Whether to show the costs assigned to each specific action. Defaults to False. @@ -217,18 +225,20 @@ def FACTS_bias_scan( show_action_costs=show_action_costs, correctness_metric=is_correctness_metric, ) - + if detector.subgroup_costs is None: assert detector.unfairness is not None scores = detector.unfairness else: scores = {sg: max(costs.values()) - min(costs.values()) for sg, costs in detector.subgroup_costs.items()} - + most_biased_subgroups = [(sg.to_dict(), score) for sg, score in scores.items() if sg in detector.top_rules.keys()] return most_biased_subgroups class FACTS(BaseEstimator): - """FACTS is an efficient, model-agnostic, highly parameterizable, and + """Fairness aware counterfactuals for subgroups (FACTS) detector. + + FACTS is an efficient, model-agnostic, highly parameterizable, and explainable framework for evaluating subgroup fairness through counterfactual explanations [#FACTS23]_. @@ -336,7 +346,7 @@ def fit(self, X: DataFrame, verbose: bool = True): num_normalization=False, ) params = ParameterProxy(featureChanges=comparators) - + ifthens_coverage_correctness = valid_ifthens( X=X, model=self.clf, @@ -363,7 +373,7 @@ def fit(self, X: DataFrame, verbose: bool = True): self.dataset = X.copy(deep=True) return self - + def bias_scan( self, metric: str = "equal-effectiveness", @@ -383,30 +393,30 @@ def bias_scan( Args: metric (str, optional): one of the following choices - + - "equal-effectiveness" - "equal-choice-for-recourse" - "equal-effectiveness-within-budget" - "equal-cost-of-effectiveness" - "equal-mean-recourse" - "fair-tradeoff" - + Defaults to "equal-effectiveness". For explanation of each of those metrics, refer either to the paper [#FACTS23]_ or the demo_FACTS notebook. - viewpoint (str, optional): "macro" or "micro". Refers to the + viewpoint (str, optional): "macro" or "micro". Refers to the notions of "macro viewpoint" and "micro viewpoint" defined in section 2.2 of the paper [#FACTS23]_. - + As a short explanation, consider a set of actions A and a subgroup (cohort / set of individuals) G. Metrics with the macro viewpoint interpretation are constrained to always apply one action from A to the entire G, while metrics with the micro interpretation are allowed to give each individual in G the min-cost action from A which changes the individual's class. - + Note that not all combinations of `metric` and `viewpoint` are valid, e.g. "Equal Choice for Recourse" only has a macro interpretation. @@ -414,7 +424,7 @@ def bias_scan( Defaults to "macro". sort_strategy (str, optional): one of the following choices - + - `"max-cost-diff-decr"`: simply rank the groups in descending \ order according to the unfairness metric. - `"max-cost-diff-decr-ignore-forall-subgroups-empty"`: ignore \ @@ -442,14 +452,14 @@ def bias_scan( - `"remove-above-thr-cost"`: does not show action that cost more \ than the given cost budget. Refer also to the documentation \ of parameter `c` below. - - `"keep-rules-until-thr-corr-reached"`: + - `"keep-rules-until-thr-corr-reached"`: - `"remove-fair-rules"`: do not show groups which do not exhibit \ bias. - `"keep-only-min-change"`: for each group shown, show only the \ suggested actions that have minimum cost, ignore the others. - + Defaults to []. - + phi (float, optional): effectiveness threshold. Real number in [0, 1]. Applicable for "equal-choice-for-recourse" and "equal-cost-of-effectiveness" metrics. For these two metrics, an @@ -495,7 +505,7 @@ def bias_scan( cost_threshold=c ) self.unfairness = None - + def print_recourse_report( self, population_sizes=None, @@ -579,5 +589,3 @@ def print_recourse_report( ) else: raise RuntimeError("Something went wrong. Either subgroup_costs or unfairness should exist. Did you call `bias_scan`?") - - diff --git a/docs/source/modules/sklearn.rst b/docs/source/modules/sklearn.rst index 8387a113..ea26fb93 100644 --- a/docs/source/modules/sklearn.rst +++ b/docs/source/modules/sklearn.rst @@ -150,11 +150,8 @@ Bias scan :toctree: generated/ :template: base.rst - detectors.bias_scan - -Fairness Aware Subgroup Counterfactuals ---------------------------------------- -.. currentmodule:: aif360.sklearn + detectors.MDSS_bias_scan + detectors.FACTS_bias_scan .. autosummary:: :toctree: generated/ @@ -162,9 +159,6 @@ Fairness Aware Subgroup Counterfactuals detectors.FACTS - :template: base.rst - detectors.FACTS_bias_scan - :mod:`aif360.sklearn.preprocessing`: Pre-processing algorithms ==============================================================