-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeeplearning.py
110 lines (97 loc) · 3.74 KB
/
deeplearning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
from runx.logx import logx
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
def train_target_model(args, model, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(args.device), target.to(args.device)
optimizer.zero_grad()
output = model(data)
loss = F.cross_entropy(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
logx.msg('TargetModel Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch,
batch_idx * len(data),
len(train_loader.dataset),
100. * batch_idx / len(train_loader),
loss.item()))
def test_target_model(args, model, test_loader, epoch, save=True):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(args.device), target.to(args.device)
output = model(data)
test_loss += F.cross_entropy(output, target).item()
pred = output.max(1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
accuracy = 100. * correct / len(test_loader.dataset)
logx.msg('\nTargetModel Test: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset), accuracy))
# save model
if save:
save_dict = {
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'accuracy': accuracy}
logx.save_model(
save_dict,
metric=accuracy,
epoch='',
higher_better=True)
return accuracy/100.
def train_shadow_model(args, targetmodel, shadowmodel, train_loader, optimizer, epoch):
targetmodel.eval()
shadowmodel.train()
for batch_idx, (data, _) in enumerate(train_loader):
data = data.to(args.device)
output = targetmodel(data)
_, target = output.max(1)
optimizer.zero_grad()
output = shadowmodel(data)
loss = F.cross_entropy(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
logx.msg('ShadowModel Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch,
batch_idx * len(data),
len(train_loader.dataset),
100. * batch_idx / len(train_loader),
loss.item()))
def test_shadow_model(args, targetmodel, shadowmodel, test_loader, epoch, save=True):
targetmodel.eval()
shadowmodel.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for batch_idx, (data, _) in enumerate(test_loader):
data = data.to(args.device)
output = targetmodel(data)
_, target = output.max(1)
output = shadowmodel(data)
test_loss += F.cross_entropy(output, target).item()
pred = output.max(1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
accuracy = 100. * correct / len(test_loader.dataset)
logx.msg('\nShadowModel Test: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset), accuracy))
# save model
if save:
save_dict = {
'epoch': epoch + 1,
'state_dict': shadowmodel.state_dict(),
'accuracy': accuracy}
logx.save_model(
save_dict,
metric=accuracy,
epoch='',
higher_better=True)
return accuracy/100.