-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathheader.py
49 lines (38 loc) · 1.44 KB
/
header.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import time
import torch
from torch import nn, optim
import numpy as np
import sys
import os
import torch.nn.functional as F
from torchsummary import summary
def Conv3x3ReLU(in_channels,out_channels):
return nn.Sequential(
nn.Conv2d(in_channels=in_channels,out_channels=out_channels,kernel_size=3,stride=1,padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU()
)
class Header(nn.Module):
def __init__(self):
super(Header, self).__init__()
self.cls_layer=nn.Sequential(
Conv3x3ReLU(in_channels=128, out_channels=128),
Conv3x3ReLU(in_channels=128, out_channels=128),
Conv3x3ReLU(in_channels=128, out_channels=128),
Conv3x3ReLU(in_channels=128, out_channels=128),
nn.Conv2d(in_channels=128, out_channels=1, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(1),
nn.Sigmoid()
)
self.reg_layer=nn.Sequential(
Conv3x3ReLU(in_channels=128, out_channels=128),
Conv3x3ReLU(in_channels=128, out_channels=128),
Conv3x3ReLU(in_channels=128, out_channels=128),
Conv3x3ReLU(in_channels=128, out_channels=128),
nn.Conv2d(in_channels=128, out_channels=6, kernel_size=3, stride=1, padding=1)
)
def forward(self,x):
confs=self.cls_layer(x)
locs=self.reg_layer(x)
out=(confs,locs)
return out