Skip to content

Latest commit

 

History

History

toy_example_depth2flow

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

Toy example of Depth2Flow module in the paper

Brief Introduction

Here we provide a direct example of the Depth2Flow module in the paper. The following figure shows the basic intuition of Depth2Flow module.

Generally, we assume the object is static and the camera is moving in a multi-view stereo system. Considering the relative motion between camera and object, the stereo correspondence decided by the homography warping function can further be viewed as a special case of moving object represented by optical flow.

Inherited from the homography warping function: (More details are discussed in the paper)

Given the definition of optical flow:

We can easily transform the implicit stereo correspondence modeled in depth map to the 2D correspondence represented by optical flow:

It is noted that the whole process is differentiable.

Code

The aforementioned formula is further transformed into the following code:

import torch

def depth_pose2flow(depth, ref_in, ref_ex, src_in, src_ex):
    """
    :param depth:    B x H x W
    :param ref_in:   B x 3 x 3
    :param ref_ex:   B x 4 x 4
    :param src_in:   B x 3 x 3
    :param src_ex:   B x 4 x 4
    :return:         B x 2 x H x W
    """
    batch = depth.shape[0]
    height, width = depth.shape[1], depth.shape[2]

    src_proj = torch.matmul(src_in, src_ex[:, 0:3, :])  # B x 3 x 4
    ref_proj = torch.matmul(ref_in, ref_ex[:, 0:3, :])  # B x 3 x 4
    last = torch.tensor([[[0, 0, 0, 1.0]]]).repeat(len(src_in), 1, 1).cuda()
    src_proj = torch.cat((src_proj, last), 1)  # B x 4 x 4
    ref_proj = torch.cat((ref_proj, last), 1)  # B x 4 x 4
    proj = torch.matmul(src_proj, torch.inverse(ref_proj))
    rot = proj[:, :3, :3]  # [B,3,3]
    trans = proj[:, :3, 3:4]  # [B,3,1]

    y, x = torch.meshgrid([torch.arange(0, height, dtype=torch.float32, device=depth.device),
                           torch.arange(0, width, dtype=torch.float32, device=depth.device)])
    y, x = y.contiguous(), x.contiguous()
    y, x = y.view(height * width), x.view(height * width)
    grid = torch.stack((x, y))  # [2, H*W]
    xyz = torch.stack((x, y, torch.ones_like(x)))  # [3, H*W]
    xyz = torch.unsqueeze(xyz, 0).repeat(batch, 1, 1)  # [B, 3, H*W]
    rot_xyz = torch.matmul(rot, xyz)  # [B, 3, H*W]
    d = depth.reshape(batch, height * width).unsqueeze(1)  # [B, 1, H*W]
    rot_depth_xyz = rot_xyz * d  # [B, 3, H*W]
    proj_xyz = rot_depth_xyz + trans  # [B, 3, H*W]
    proj_xy = proj_xyz[:, :2, :] / proj_xyz[:, 2:3, :].clamp(min=1e-3)  # [B, 2, H*W]
    flow = proj_xy - grid.unsqueeze(0)  # [B, 2, H*W]
    return flow.reshape(batch, 2, height, width)

Toy experiment

Here we provide a jupyter notebook to evaluate and visualize the results. You can modify the data path of the utilized DTU dataset with your own ones.

Results

Template flow field:

Scan1 of DTU:

Scan9 of DTU:

Scan11 of DTU: