diff --git a/.github/PULL_REQUEST_TEMPLATE/pull_request_template.md b/.github/PULL_REQUEST_TEMPLATE/pull_request_template.md new file mode 100644 index 0000000..e1304e6 --- /dev/null +++ b/.github/PULL_REQUEST_TEMPLATE/pull_request_template.md @@ -0,0 +1,24 @@ +## Summary + +Describe your changes here specifying if the change is a bug fix, enhancement, new feature, etc. + +## Test Plan + +Describe how you tested and verified your changes here (changes captured in existing tests, built and ran new tests, etc.). + +## Before Submitting +- [ ] Check mypy locally + - `pip3 install mypy==1.2.0` + - `mypy --ignore-missing-imports torchsig` + - Address any error messages +- [ ] Lint check locally + - `pip3 install flake8` + - `flake8 --select=E9,F63,F7,F82 torchsig` + - Address any error messages +- [ ] Run formatter if needed + - `pip3 install git+https://github.com/GooeeIOT/pyfmt.git` + - `pyfmt torchsig` +- [ ] Run test suite locally + - `pytest --ignore-glob=*_figures.py --ignore-glob=*_benchmark.py` + - Ensure tests are successful prior to submitting PR + diff --git a/.github/workflows/mypy.yml b/.github/workflows/mypy.yml new file mode 100644 index 0000000..6a90f37 --- /dev/null +++ b/.github/workflows/mypy.yml @@ -0,0 +1,30 @@ +name: mypy + +on: [push] + +jobs: + test: + runs-on: ubuntu-latest + strategy: + matrix: + python-version: ["3.8", "3.10"] + + steps: + - uses: actions/checkout@v3 + - name: Install Python ${{ matrix.python-version }} + uses: actions/setup-python@v4 + with: + python-version: ${{ matrix.python-version }} + - uses: actions/cache@v3 + with: + path: ${{ env.pythonLocation }} + key: ${{ env.pythonLocation }}-${{ hashFiles('pyproject.toml') }} + - name: Build package + run: | + python -m pip install --upgrade pip + python -m pip install . + - name: Static type check with mypy + run: | + pip install mypy==1.2.0 + mypy --ignore-missing-imports torchsig + diff --git a/.github/workflows/pip_build.yml b/.github/workflows/pip_build.yml index 3a1e713..736e113 100644 --- a/.github/workflows/pip_build.yml +++ b/.github/workflows/pip_build.yml @@ -7,7 +7,7 @@ jobs: runs-on: ubuntu-latest strategy: matrix: - python-version: ["3.7", "3.10"] + python-version: ["3.8", "3.10"] steps: - uses: actions/checkout@v3 @@ -21,4 +21,5 @@ jobs: key: ${{ env.pythonLocation }}-${{ hashFiles('pyproject.toml') }} - name: Build Package run: | + python -m pip install --upgrade pip python -m pip install . diff --git a/.github/workflows/pytest.yml b/.github/workflows/pytest.yml index 240f38b..58d197d 100644 --- a/.github/workflows/pytest.yml +++ b/.github/workflows/pytest.yml @@ -7,7 +7,7 @@ jobs: runs-on: ubuntu-latest strategy: matrix: - python-version: ["3.7", "3.10"] + python-version: ["3.8", "3.10"] steps: - uses: actions/checkout@v3 @@ -21,6 +21,7 @@ jobs: key: ${{ env.pythonLocation }}-${{ hashFiles('pyproject.toml') }} - name: Build package run: | + python -m pip install --upgrade pip python -m pip install . - name: Lint with flake8 run: | diff --git a/.gitignore b/.gitignore index 4e0f4eb..a39a61a 100644 --- a/.gitignore +++ b/.gitignore @@ -11,3 +11,4 @@ lightning_logs/ *.pt *.jpg *.benchmarks/ +dist/ diff --git a/Dockerfile b/Dockerfile index 46586ba..598e1ac 100644 --- a/Dockerfile +++ b/Dockerfile @@ -1,4 +1,4 @@ -FROM pytorch/pytorch:1.13.1-cuda11.6-cudnn8-runtime +FROM pytorch/pytorch:2.0.1-cuda11.7-cudnn8-runtime ENV DEBIAN_FRONTEND=noninteractive diff --git a/README.md b/README.md index 5ad4c45..fa4ad8a 100644 --- a/README.md +++ b/README.md @@ -43,6 +43,35 @@ cd torchsig pip install . ``` +## Generating the Datasets +If you'd like to generate the named datasets without messing with your current Python environment, you can build the development container and use it to generate data at the location of your choosing. + +``` +docker build -t torchsig -f Dockerfile . +docker run -u $(id -u ${USER}):$(id -g ${USER}) -v `pwd`:/workspace/code/torchsig torchsig python3 torchsig/scripts/generate_sig53.py --root=/workspace/code/torchsig/data --all=True +``` + +For the wideband dataset, you can do: + +``` +docker build -t torchsig -f Dockerfile . +docker run -u $(id -u ${USER}):$(id -g ${USER}) -v `pwd`:/workspace/code/torchsig torchsig python3 torchsig/scripts/generate_wideband_sig53.py --root=/workspace/code/torchsig/data --all=True +``` + +If you do not need to use Docker, you can also just generate using the regular command-line interface + +``` +python3 torchsig/scripts/generate_sig53.py --root=torchsig/data --all=True +``` + +or for the wideband dataset: + +``` +python3 torchsig/scripts/generate_wideband_sig53.py --root=torchsig/data --all=True +``` + +Then, be sure to point scripts looking for ```root``` to ```torchsig/data```. + ## Using the Dockerfile If you have Docker installed along with compatible GPUs and drivers, you can try: diff --git a/examples/00_example_sig53_dataset.py b/examples/00_example_sig53_dataset.py index a0e9dae..39f71d2 100644 --- a/examples/00_example_sig53_dataset.py +++ b/examples/00_example_sig53_dataset.py @@ -93,6 +93,7 @@ def __len__(self) -> int: data_loader = DataLoader(dataset=plot_dataset, batch_size=16, shuffle=True) + # Transform the plotting titles from the class index to the name def target_idx_to_name(tensor: np.ndarray) -> list: batch_size = tensor.shape[0] diff --git a/examples/01_example_modulations_dataset.py b/examples/01_example_modulations_dataset.py index 6e0d28b..1848d99 100644 --- a/examples/01_example_modulations_dataset.py +++ b/examples/01_example_modulations_dataset.py @@ -160,7 +160,7 @@ def __len__(self) -> int: # ### Save Data to LMDB # As a final exercise for this example notebook, the dataset can be saved to an LMDB static dataset for offline use. Note this is similar to how the static Sig53 dataset is generated and saved to serve as a static performance evaluation dataset. -env = lmdb.open("dataset", max_dbs=3 if include_snr else 2, map_size=int(1e12)) +env = lmdb.open("examples/dataset", max_dbs=3 if include_snr else 2, map_size=int(1e12)) iq_sample_db = env.open_db("iq_samples".encode()) modulations_db = env.open_db("modulations".encode()) diff --git a/examples/02_example_sig53_classifier.py b/examples/02_example_sig53_classifier.py index 158b2bf..a0f9051 100644 --- a/examples/02_example_sig53_classifier.py +++ b/examples/02_example_sig53_classifier.py @@ -5,17 +5,19 @@ # ### Import Libraries # First, import all the necessary public libraries as well as a few classes from the `torchsig` toolkit. An additional import from the `cm_plotter.py` helper script is also done here to retrieve a function to streamline plotting of confusion matrices. -from torchsig.transforms.target_transforms.target_transforms import DescToClassIndex +from torchsig.transforms.target_transforms import DescToClassIndex from torchsig.models.iq_models.efficientnet.efficientnet import efficientnet_b4 from torchsig.utils.writer import DatasetCreator -from torchsig.transforms.wireless_channel.wce import RandomPhaseShift -from torchsig.transforms.signal_processing.sp import Normalize -from torchsig.transforms.expert_feature.eft import ComplexTo2D -from torchsig.transforms.transforms import Compose +from torchsig.transforms.transforms import ( + RandomPhaseShift, + Normalize, + ComplexTo2D, + Compose, +) from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning import LightningModule, Trainer from sklearn.metrics import classification_report -from cm_plotter import plot_confusion_matrix +from torchsig.utils.cm_plotter import plot_confusion_matrix from torchsig.datasets.sig53 import Sig53 from torchsig.datasets.modulations import ModulationsDataset from torch.utils.data import DataLoader @@ -112,17 +114,17 @@ # ### Format Dataset for Training # Next, the datasets are then wrapped as `DataLoaders` to prepare for training. -# Create dataloaders +# Create dataloaders"data train_dataloader = DataLoader( dataset=sig53_clean_train, - batch_size=16, + batch_size=8, num_workers=8, shuffle=True, drop_last=True, ) val_dataloader = DataLoader( dataset=sig53_clean_val, - batch_size=16, + batch_size=8, num_workers=8, shuffle=False, drop_last=True, diff --git a/examples/03_example_widebandsig53_dataset.ipynb b/examples/03_example_widebandsig53_dataset.ipynb index 06f4dc0..b1f3ebb 100644 --- a/examples/03_example_widebandsig53_dataset.ipynb +++ b/examples/03_example_widebandsig53_dataset.ipynb @@ -1,6 +1,7 @@ { "cells": [ { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -11,6 +12,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -33,11 +35,13 @@ ], "source": [ "from torchsig.utils.visualize import MaskClassVisualizer, mask_class_to_outline, complex_spectrogram_to_magnitude\n", - "from torchsig.transforms.target_transforms.target_transforms import DescToMaskClass\n", - "from torchsig.transforms.expert_feature.eft import Spectrogram\n", - "from torchsig.transforms.signal_processing.sp import Normalize\n", + "from torchsig.transforms.target_transforms import DescToMaskClass, DescToListTuple\n", + "from torchsig.transforms import Spectrogram, Normalize\n", + "from torchsig.utils.writer import DatasetCreator, DatasetLoader\n", "from torchsig.datasets.wideband_sig53 import WidebandSig53\n", + "from torchsig.datasets.wideband import WidebandModulationsDataset\n", "from torchsig.transforms.transforms import Compose\n", + "from torchsig.datasets import conf\n", "from torch.utils.data import DataLoader\n", "from tqdm import tqdm\n", "import matplotlib.pyplot as plt\n", @@ -45,6 +49,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": { "tags": [] @@ -76,14 +81,96 @@ "cell_type": "code", "execution_count": 2, "metadata": {}, + "outputs": [], + "source": [ + "def collate_fn(batch):\n", + " return tuple(zip(*batch))" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "100%|██████████| 25/25 [00:15<00:00, 1.59it/s]\n" + "16it [00:37, 2.35s/it] \n" ] - }, + } + ], + "source": [ + "\n", + "cfg = conf.WidebandSig53ImpairedTrainQAConfig\n", + "# cfg = conf.WidebandSig53CleanTrainConfig\n", + "\n", + "wideband_ds = WidebandModulationsDataset(\n", + " level=cfg.level,\n", + " num_iq_samples=cfg.num_iq_samples,\n", + " num_samples=cfg.num_samples,\n", + " target_transform=DescToListTuple(),\n", + " seed=cfg.seed,\n", + ") \n", + "\n", + "dataset_loader = DatasetLoader(\n", + " wideband_ds,\n", + " seed=12345678,\n", + " collate_fn=collate_fn\n", + ")\n", + "creator = DatasetCreator(\n", + " wideband_ds,\n", + " seed=12345678,\n", + " path=\"wideband_sig53/wideband_sig53_impaired_train\",\n", + " loader=dataset_loader,\n", + ")\n", + "creator.create()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2it [00:20, 10.31s/it] \n" + ] + } + ], + "source": [ + "# cfg = conf.WidebandSig53CleanValQAConfig\n", + "cfg = conf.WidebandSig53ImpairedValQAConfig\n", + "\n", + "wideband_ds = WidebandModulationsDataset(\n", + " level=cfg.level,\n", + " num_iq_samples=cfg.num_iq_samples,\n", + " num_samples=cfg.num_samples,\n", + " target_transform=DescToListTuple(),\n", + " seed=cfg.seed,\n", + ")\n", + "\n", + "dataset_loader = DatasetLoader(\n", + " wideband_ds,\n", + " seed=12345678,\n", + " collate_fn=collate_fn\n", + ")\n", + "creator = DatasetCreator(\n", + " wideband_ds,\n", + " seed=12345678,\n", + " path=\"wideband_sig53/wideband_sig53_impaired_val\",\n", + " loader=dataset_loader,\n", + ")\n", + "creator.create()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ { "name": "stdout", "output_type": "stream", @@ -98,7 +185,7 @@ "# Specify WidebandSig53 Options\n", "root = 'wideband_sig53/'\n", "train = False\n", - "impaired = False\n", + "impaired = True\n", "fft_size = 512\n", "num_classes = 53\n", "\n", @@ -118,10 +205,7 @@ " impaired=impaired,\n", " transform=transform,\n", " target_transform=target_transform,\n", - " regenerate=False,\n", " use_signal_data=True,\n", - " gen_batch_size=1,\n", - " use_gpu=True,\n", ")\n", "\n", "# Retrieve a sample and print out information\n", @@ -133,6 +217,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -142,14 +227,14 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 6, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABPQAAAT6CAYAAADSsz0fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9fXxc91Xn//5mlBnPWGOPPfJMpESOFMlWolSuXIu4derUJiZeUhIohG2XbqHs9gfLwrL8lsddYOk+/HjYZXksLA9dKAUKhdCWhgbcdYgbt6YKci2sRo5sKVKsZJQZaywpI894xprc3x/nnK/Gip04qR3H7j2vl162Rnfu3Hvn3vM953M+53NcEASEFlpooYUWWmihhRZaaKGFFlpooYUWWmjXht1wtQ8gtNBCCy200EILLbTQQgsttNBCCy200EK7dAsBvdBCCy200EILLbTQQgsttNBCCy200EK7hiwE9EILLbTQQgsttNBCCy200EILLbTQQgvtGrIQ0AsttNBCCy200EILLbTQQgsttNBCCy20a8hCQC+00EILLbTQQgsttNBCCy200EILLbTQriELAb3QQgsttNBCCy200EILLbTQQgsttNBCu4YsBPRCCy200EILLbTQQgsttNBCCy200EIL7RqyENALLbTQQgsttNBCCy200EILLbTQQgsttGvIQkAvtNBCCy200EILLbTQQgsttNBCCy200K4hCwG9N5E55z7mnAv056uXaZ9Z59zDzrmi7vdHXmHbD+o2HZfjs69Xc84NN3xPf3O1jye00MyuhA/R/YZ+5E1k4fdx+c05N9/w7Hzkah9PaFferpS/vJz29XQ/6vexeLWP41ox59zU64lBnXM/0nDfB865litxfKG9Oe1a8HuhhXY57PWuKc65/hU+8qErcXyX00JA781ns8AHgJ+yF3TR/vDr3N+vAnuBX9D9/t3XeoCXw5xzPc65X3XOHXLOnb1YwumcSzvnftw594Rz7pQmXV92zr33IvuNOed+yTmXc85VnHODzrlvusi2O5xzX3TOlZ1zLzjnfsM517ximw8654IVb/1PyLWcfX1nH1poV9Re5kPg+vQjAM659znnvqJ+5JRz7v9cLEFxzv1r59wx3faEc+7fXWS7m51zf6H+5kXn3F87525bsU2H+q1dr/O4r7vvwzn37c65TzrnnlG/Ouac+1/OudRFtn+w4bs76Zz7L865plf5jN+/WDHFObfKOfcfnXOj+vnPO+f+0jl354rtPuycm1rx9u9DrmVoX192yf7SOdfqnPs959ykxhcTzrlfcc6l38DjfZldCV/0Zj1XPbYDzrmPvc73nvfsO+cSzrkfdM593jk345wrOeeOOOd+wDkXuVzHfDVN740PNrz0d8g9/+mrc0ShvQnskvyec67NOfcnupaXNCZ60jn3Pc45t+K9r2n9D+3K2UVinEt97y63Iid3l5izN2yfdM79D10/qhqLPeycS7yeY7rSdoE15Vnk+fj5q3NEr91eMXAO7arYmSAI/uQy7u8bgb8OguCXL+M+L4e9A/hhYBQ4BvS/wnb/H/Ao8N+BJeA7gD93zvUGQfBzK7b/GPAQ8GvACeCDwKPOud1BEHzRNnLO9QOP6Wf/B+AW4MeATcA3v9KBB0HwqO7jv1/CeYYW2httl9uHwJvUjzjnfgD4beRZtuf43wMDzrntQRCcbdj2+4HfAf4K+BVgJ/AbzrlEEAS/1LBdM/A4sBZZzM8B/y/wBedcfxAExTfk5F7Z3pTfB/B7QA74E+Ak0Af8EHC/c+5tQRBUbEPn3DcDnwEOAP9Ot/0ZIAP8wIV27pwbQHz62Qv9HfhT4EHg94GvAG3ADwL/4JzrC4Lg2YsdeBAEf6Gf8ceXdKahXS92Sf5S/cI/AKsRnzMNvBW5v3c757YFQfDSFT3SN8i+ns4VuA34TWQN+RXgRaRY8tvA24HvuXqHdmUsCIKngaedc93Ae6728YR2VexS48QWJK56GFnTbwS+Ccm1ehCCg9klr/+hXXN2qTk7zrm1wBeQ++b3gHFgAxJzx4DyFT7Wr9mCIJgD/kSLZP/plbd+c1gI6F3/lgHmr/ZBXMA+C6SCICg5536MizuHp4BNjYmYc+63gf3ATzrn/kcQBGf09buA9wE/bomuc+7jwFeB/wHsaNjvzwNzwK4gCF7UbaeA33fO3RcEwecv25mGFtq1b286P+KciyLP8RPANwVBEOjrh4BHgP8HSdRwzsWRwsDngiAw6vzvO+duAH7WOfd7uoAD/FsE2L8rCIJ/1Pf/LeJHfpQ3x+L+pvs+1B4KguBA4wvOucPAHwHvBz7a8KdfBo4C9wVBsKTbvgj8J+fcr2vS2bgfB/wG8HHg3pUf7Jy7Gfh24JeDIPjxhtcPAn+vf/vVr/UEQ/u6tQeBW4FvCYLgc/aic+408J8RwOvIVTq2y21fT+f6AtAXBMFTDa/9rnPuD4Dvdc79tyAIxq/SsYUW2lW1IAiOArtWvPwR59wjwA875342CIK6vv5a1v+vG9Oi8ZsexHoVu9ScHaRz5FbgbUEQTDa8/ksX2T60y2Bhy+01as6525y0Ep1WavOXnXPvbvi7tYo64AeVHhs0/P1O59zfayvFc865n+EC94PSr/9GKbhDuv2IotZGsR5RCu5h59zWSzn+IAhOB0FQuoTtJleyKjRx/wyC9De2wT0E1JGKgG17Fvg/wDucc+16zGuQCtOfGJin9nFgEfjnl3IOoYV2rds17kfeAqSATxqYBxAEwd8gz/H7GrbdDaQR1kWj/RbCQnl3w2sPAf9oYJ7u82mEwXFFfcM1/n2wMphXs7auOxo+vxfoBX7PwDy139Zzu5BeyQeQ7/ynL/LxSf03v+L1Gf03ZAeE9rXYGv33Ve8v59y3Ouc+50T6o+qkXfVn3YoWTufcJufcXzmR/Dirz+yfO2E4XNSccz/jnHvJXUQy4DLYazlX8yX3OdEXPuuk5f3bVxzzjc65n3MidXDWif7nF91FJFEa3tfvRErhgFshiXI5LAiC2RVgntnL/JYezxbn3Bcafaxz7nvdy1vUviYf65y7yTn3h/oZVSftwH/tXkUL1Ukr5JJz7n++9qsRWmiXbFNAAojaC5e6/gM451JO9M0WnLTx/pFb1i37YMN2W3S7Z/RZecE59wduReu/kxbTwDm32UmL8IL6jf/mxNr1+XlR9/Gjr+eknXPfrM9/Sff1j86572r4+wHn3Fedc9ucSEWV0bZN51zGiSRMXs/ln5xzL2MAO5GROdzwGSPOuX/f8PfX5Uu/FrvUnN1Je/X3IrHdpHMu6pyLXWTbjznnFp1zG9VXLjppzf1B/Xufk3j2jHPu2cbrrH9/U64pV8tCht41aM65LHAIcaa/ARSRtoDPOuceCoLg0whr5QPAHwP/FwGr7P03IS1lTcAvAmcQ/aCLJTzdwCeA30Wo1D8GPOKc+zeIo7Ik+T8Cf+Gc63kD2jFu0n8bdey2AsdXgHQAT+q//UjrSB9y7kONGwVBUHPODet+QgvturbrwI9YkHChz6sAW51zN+g+7JkeWrHdYcD+/idOGHtbgD+4wD6fBO5zziUvJbB5rXYdfB8Xs4v5ani5D845555jhQ92ziWR6u7PB0HwgjtfusdsAngO+FHn3BjCIGpD2NmTwJ+/jmMPLTSzJxBf8euaDD6H+IqfBj6zglH6QaSo8Cv67zcC/xUByn4cPMN4H+LHfhNhit0MfAtSqFi40EE4kfr4T8D3B0Hw+5fzBBvstZwrCKP5k4ikwR8hCd1fOuf+WRAE/1e3+TDiSz6K+NI1wADwNsSXvcycc9+AXKMh4Fvf4Ja9l/ktJyzgx4EAYaGcAT4EVC+yj6/Fx/4VcCdyb0whrOxvAjbq7y8z59z3Id/BzwdB8DOv6WxDC+0VzEmXw2qgGXgX8oz/wyU8kxd6jhzw18A7kfv1GNL6/UcXeP83IcSNP0R85J1IXHOnc+7tjcVctU/q/n4KKdT+DHAa+H6Eqf+TCFvwl51z/xgEwROvevLLx/1BJDZ8Cnn+55FY5Z8hz7lZGvhbJOb4EyCv1+8A4hM+gsQk3wl8zDmXCoLg1/Uzvgn4M6SA/JO6vzuAu4Ff198/zGv0pW+gvRNYBYw75x4Gvg24wTn3D8APBkEwvGL7CHKtngB+AvluPuKcO4N01fwp8Cng3wAfd879QwPr78NcW2vKlbUgCMKfN8kPokkwdQnb/SoSULyz4bVm4BnESdzQ8HoAfOQi77+r4bUNiHMKgI6G16f0tXc0vHafvlYGNja8/n36+q7XeN4/tvJzX2X79Ujl+IkVr38VeOwC2/fq/r9ff39If995gW3/Api5xOOYAv7mat834U/4Yz+X6kN022vajyDaLi8BH13xeo++PwDS+tpHgKWL7KcA/FnDPgPgZy+w3b/Vv/Vcoe/umv4+XuG8Popon25qeM18fvsFtn8SSRQaX/ufeh1iDcf/Mt8L3IXotQQNP0PATa/heF92bcOf6/OH1+Avdft/jUh1NN5fHwOaVmwXv8B7fwcBgOwe7tf3P/Qqn+nvR6RNvQ58zxtwbS71XM2XfHvDa2sQLa2vNLw2fKFn9gLfx6L+/24E1Pwbu2Zv4H0RRZL2ZxrPFym0vAT0N7y2Him+XDYfiwC6AfBjr3Kc3g8i+lYvAT/zGs7zw/o5LW/k9Q1/ru7Pa/V7+p6fWuEL9nOB9fsC77vQ+v+tuo8fb3gtgoA6AfDBhtcv5Evfx4ocruFe/t0V+5zW5+InG15P6TP4sddw/msRfc0vA6tW/M01/P8ADflmw+v/Xl9/f8NrNyJF3BKQ1Nd+Tf1e5BWOZZirmHvyCjk7ojcdIADuIPBdiCbyCwiw2rriPgyA/3iB7+Yl4L0Nr1tc/+HXch34GtcUpN38VdfpN8NP2HJ7bdr9wJNBw5CHIAgWkVbTDgTAerX3fzkIAmOuEQTBKQQJv5CNBkHwDw2/D+q/fx8EwckLvH7eNMjLacqg+VPkoV/ZbhLnwpXSsw1/b/z3YtvGL/B6aKFdb3ZN+5EgCGYRAP57nHM/6qRddSdSoT2nmzU+87WL7Oosl+4bGre53HZNfx8XMm2R+NfA/wqC4ETDny7ZBzvnNiPB8I8HQXAxJozZHBLk/SJSGf4x5Nr9pXNu1Ws9/tBCW2HPI4DzjyCMkl9BGAW/2LhRcP7wl6STqdsHEfbt7fonY+Dtda8++c855z6CPAf/MgiCCzFZLrdd0rmq5WiYmBpIl8THEZa0MXTmEVbNplf7YOfcboRF8RgCFL7ac3+57SOIv/2h4HxJgH+GFBuG7YUgCE5z+X1sBVmvdjnn1r3awTrnfgJh7/xkEAThsLbQroT9GcKW+y6W2WivGAu9wvp/PwLy/W97IRAdvt9cuY8VvnSV+tIv60tvu8DHep0+3ecQIuPxfxpenwfGeG0xzTchsh6/GDQMW9P9BSu2rSKMwka7HwG1/qzhfeeQIoGxHkH85Gr9vIvZPJfoS6+CWQtrANwbBMEngiD430g8tg4ZUrbSGr+zeeS7OYPE9/b6GHLejd/ZPNfOmnLFLQT0rk27FbnhV9qxhr+/2vtPXOD1C+0TZFqRtyAILBCdXrGdvb4OhKLtRAfE/7zKcV2K/SYSVH0oCIJ/WvG3CstteI22quHvjf9ebNvrh4IbWmgXt+vBj3w/MgH7l5GWyyeAEWQoBki7G8gzHeXC1vjMv5pvaNzmctv18H14U3D1/yBB1Erdu9fig38dOBQEwV9d5Dzs89YioMk/BEHwH4Mg+OsgCP4XMhX9nUiLUGihvS5zzt2NVPZ/OgiCXw+C4DNBEPwo8N+B/+BEF9K2vdM592nn3ALC6jiFtF6BMD0IpG3oV5CWzVnn3D7n3A+6C+vnfTeSCP27IAj+7AJ/v6z2Ws5VbfwCSe1x/bdD//3PSCH2uBNNqP/pnNtygY9fBXwOaZn/50EQXKwQc0XMOffjyEClnw2C4NEVf74VYQCvtIsNzXhdPlaTzZ8Evhlp13vCOfcTF/G170LkCH4pCIJQNy+0K2JBEDwbBMH+IAj+LAiC9yPs1f3aSvoye5X1/1akE2pxxesvi1Wcc+udc7/unMsjccEppGMB1JeusJMrfl8AzmoBeOXrrwqWN1iX/vvVS9j2+Qv4rVuBE8HLZUtWxne/jfjOv3Win/kHzrl/tuI9l+pLr4ZZ7PZI4/cbBMGXke9tx4rtz2rhudEWgOcusKas/M6uiTXljbIQ0AvtUqz+Gl83gaP3IiLKjT+v25xzP4e0vf1UEAR/fIFNZoDWC7xur+UatuMVts1d4PXQQgvta7PL7keCIFgIguBbkWDoXUgLwAeQ5/iUVvvQ90Scc5nzPkB0rNIsP/OnkerqpfiRa92umF93zr0VmYr2VaRVYWnFJpfkg51z34gUcH7dOddhP4hOYFx/NwH/7wCy+rnegiD4AgKq3H2R8wottEux7wfyQRCs1OH8LPJs7AAvCv4FZBLsfwYeQNgWpofk424FybYgempxhK3xlHPulhWf8SVEZuSHnHPrL98pXdQu6VxfiwWiVdUF/CvEL3wI+Ipz7kMrNq0iydd25Nl/w0w1sn4J+J3LxHR7vT6WIAh+DdiMaESdBf4bcMy9fEDRUwgQ8gHnXOfXdLShhXbp9jDQDtyz8g+XsP6/FvsLBGD/HWRS/X0s+4ULYRgXerZe9Xm7zPa6i75BEBQQOYYHkWu4GwH3/qhhm0v1pVfDLD5eOVAJRN5mJYj6tfjIN/2a8kZaCOhdm/Ys0k++0m5v+Purvf9CFNUL7fNrsX1IINv487rMydSbDwO/FgTBxUZfDwObGxI8s+0Nfwd58JcQ8czGz4gijnSY0EK7/u268SNBEJwMguCJIAie1YR6G6LxYjas/w6seOsAsg4O635eQhh+K7cD8SPPBFdgIIbadfF9OOe6gL9Dgrf7L1CFh4t8H865NuCWhr9v1H8/hVR37edmZNDAJBLMgYB5ILo5jft0+lo4BCy0r8WyrLi31G7Uf+3+2oUUCT6o7La/CYJgP9IO/jILgmAkCIL/HgTBPcBO5N7+Nys2G0cS2Tbg75wMibmSdqnnatatz1mjbdZ/p+yFQCYl/mEQBP8CAQOOInFdowVIa+9jSKv8rtd47K/LnHPfirR+fYoLt4WB+NjuC7x+ode+ZguCYCIIgv8VBMF9yITvKLByOucssAeRmXhMfWhooV1pM2beeSy5S1z/nwVa3csnjJ4Xq2i7+b1Im+vPBUHw6UCG7DxzOU7gNdqE/vuW1/n+Z4FNKhvVaC+L74IgqAVB8EgQBP8WAax+F/hu51x3wzaX4kuvhh3Wf2++wN/aEIblZbM385ryRlsI6F2b9ihwl3PuHfaCc241Iqw7BYxewvvf7py7q+H9G5Ab/rJZEAQzStH2P69nP8659yKV6z8F/sMrbPowEoR+X8N7Y0ir1WAQBNN6XAtIsv8vVwTGH0D6///y9RxnaKFdY3a9+pFfQBLOX2147e8R9t0PrNj2BxAB3s81vPYw8A3OOQ82Oed6EADpSvqGa/770JawzyOCxnsv0Eph+3gKeBr4PudcI3DwA0jw9bD+/veIftfKn1OINs57WG6vtha/9634uAcRTZojr+N0QwvN7DiQvUAy8C/0X7u/jFngAS4tFv7bxjc559Y451YCYyPIs/OyVvQgCI4iOkx3IJNSr6TW76Weq1kb8iwCcm5Im/BwEAQv6Gvpxjdooj/Ohc+1hrBx/hE517tWbnM5zTl3DzKR8glEtP5i07z3Ae9wzvU3vHc9l9nHOucS7uWanxOIeP6FrtdzCKgXB/7vymsdWmiv1zSGuJD9a2St/krDtpe0/iOxShMN8ZjGASt10V/mS9V+5FKO/TLb55Hn7z+ufDYvUMy4kD2KTPx9b8P7mpBzXkRY3Rfyky8hIBXos/9afOkbbap190/AtzrROwTAOXcfArhdtim8b+Y15WpYWLG+Nu0XkcDqb51zv4Ekqt8DdALf8QrBiNn/QMCrv3PO/ToiPvl9SIXgDenDV50Yc97WCvVDzrl5YD4Igo/odnch4spFBF1//wrfeSgIgmcAgiAYdM79JfAL2lo3jlyXDmTxabSfRqYLfcE593sIK+RHgc8HQfB3l/FUQwvtzWrXgx/5KaRiOoiwbr8NYbL8TBAE/2jbBUFQcc79LPBb6iP2IWyYf4noRJ1u2O1vIy0en3PO/TLCfPgPSAvB/3qV4+lAWGN/FATBB1/j6Vzz3wdSmb9Nj+Wdzrl3Nvwtr9V1sx9HWko+75z7c+R7/CFkavExEOYlL9fEwTn3a7q/zzS8/AjSfvafnXO3IsLZ3brPGRpEsUML7XXYR5Di4CPOud9Enqt3Ic/s/w2CwAYbHELYeH+kz3GAPJcrk75vBD6i/ug4Eo9/AEliL6gXGQTBl5VJ9ijwsHPu2wIRVn+ZfY2+6FLP1ew48H+cc9+A+Ml/hbD8GnUrR51zBxAGx2mEnfuQftaFzrXinPsWBNT/W+fcu4IguKh+le77XUEQvKY2OvUVn2W5kPCdK2LMowqmgvi1f4mAZr+J+NgPIT5qve7jcthmhG33F0ghZwkBTLMI8PgyC4JgXJPmA8A+59w3BjKcJLTQvhb7aSeamn/H8n3+HcA3AL8ZBEGjfuSlrv+PIDICv6h+ahQBW85j+wVB8KJz7gngJ5xzNyKDeu5DYqI31PRY/l+ExfuPzrlPIH7+rciwo+95lV38HiJl8DHn3DakSPsQkv/+SEPnx0e1SPD3wHOInMy/Q7oWTG/vNflSM+fch4GfA3YHQXDgEk678b2XlLOr/b8IcPdF59zvIt/rf0DWif/N5bMruqZccxa8CUbthj/yw2sYJY44zb9EHEoFSWjffYHtAuAjF3i9D1n4K4jT+BkkCDtvFDXidF42FvpC+0WAswD4sUs4ftv2Qj9TDdt98BW2C2gYb67brwL+J5LAnUWmtO29yDG8E1lUKgg9/CPo6PBL/A4ueG3Cn/Dnav28Fh+i21/rfuTdeswvIsnVPwDf+Qrb/z8IM6yKAP4/ArgLbHeLXpcFpCr7CNB9CcfzFj32X3id39+1/n28kq8+cIHtvw1h+5xFhOL/G3DjJXzOxY5/HTJoYEz3eQqZKtf5Gr6DC17b8Of6+3kd/rJHn8+TyBTSKSTeSKzYbof6ojKShP4SkogGwC7dphMBmcf1eS0iica9K/Z1oWfyQaTQ8OfADRc51q/VF13quU4hAzTuQ5gZZ5HE86EV2/20+rM5vS7HgP/U+Lzr97G44n1pBKif4RV8MMLYnXkd57nrVfzWh1ds348w+cxn/RSS6AZAduV1ucDnvaqP1XP+iF6jRWSa45dZsbZd6DOAu5D18AtA/FXO/cP6uS1X+1kMf964H15brvlNSPzzvPqBF4EvIrmZW7HtJa//CDD4cSTGmtf/97Mir0NaNz+lfmMe0dRrXflsXuxevpBP0dcPAF99HdfuASRvLOuxDwLvu5T9AhngD5C4pIow7z64YpvvQArOed3mWUQ/8KaGbV7Vl17k838ZYU/e/jrO23zUK+bsDdvvQdZAW9s+3ngOr+e7YYW/u5TrcKHP4BLXFN12l57jQ6+03Zvhx+kBh/YmMOfcx5Cq7duApWBZ0D20N5GpRlcTQjU/GgTBt1zdIwotNLHQh1xdc879W6Q63RUEwYVEgUN7k5pWxW9Agu3fCoLgh67yIYV2he169pdvlC9yzk0hyddVi4NUOuU0wnT5ravw+b+GsG+agyC4mJj7m8a0ZbAZ+AmEKb0hePkU0NCuU3uz+r0GVvH3BkHwsat7NNefOeeeBJ4NguA7r/axvNlNW8DXIWzEzyDFlIdf8U1X2UINvTeftSMJxRev9oGEdlE7gHxH7Vf5OEIL7UIW+pCrZ7uB3wjBvGvSnuEyCzaHdk3Y9eovv5580T0Ig+j3r/QHrdQuVB2nDwBfvBbAPLV/g9zzP361DyS0q2bXq98L7QKmuqZvRSavh/bq1oc8H5+5ysdxyRYy9N5E5pzrRcSFQSiiX76axxPahc05tx2wYRqngiD4p6t5PKGFZhb6kNBCe33mnHsXy1M8pwMRdw7tOrbQX37t9mZg6L2R5pwbRoq6xxBNu3+N3EP3BkHwxNU7sks351w7508U/UJwES3G0K4/e7P6vavF0NPBHxea6m1WC87XWQ7tOjcnE5jf3vDS0SAIClfreC7FQkAvtNBCCy200EILLbTQQntN9nUI6P08Irx+C8tTPv9L8OrT10MLLbRXsKsI6E0hwycuZl8IgmDXG3M0oYX2+iwE9EILLbTQQgsttNBCCy200EILLbSvG9MpvvFX2GQuCILDb9TxhBba67EQ0AsttNBCCy200EILLbTQQgsttNBCCy20a8jCoRihhRZaaKGFFlpooYUWWmihhRZaaKGFdg1Z0+XcmXPOIUKbpcu539BCC+26tSSQC65DqnDoD0MLLbTXaNelPwx9YWihhfYa7br0hRD6w9BCC+0126v6w8sK6CEO6rnLvM/QQgvt+rZbgOev9kFcAQv9YWihhfZa7Xr0h6EvDC200F6rXY++EEJ/GFpoob12e0V/eLkBvRLA8HQC1jTzPO3cztOUWM0sGW6kRp0ICSrMs5Y0p2mhQFO9zpHIVlp5gY1npqmtamIscjvrOc2NVKkT4XnaqWuH8Nb6EZ6K3MkYPfQzzDmi9NSfZigyQJRz1LiRTp5hiAEABhjiHDGepocCG9jNF5hnLc9zMxs4RTMlMsyywFoWWMsqytzM8zzJdirE6WSSCEvEOMfTOum9k2f4Art5N4/wd9xPL0+RoEKR9ZRo5m0M03Uqx+kNMSa5DYAoVRKc5QTd3MxzrGWBBdYC8D/4KX6CX6SZRQBOk+YWnucZOtnEODWiRKlxmvU8x81EOccMWbYzSBMvAbDAWjZwitOsp8qNnCZNhlMARKhzU32GT0W+nXdxgFHeomc7RxMvEaFOnQhF0tS5gWYWSbLIek7zLBtZT5FbFgqcWruOAhvYVD1BIbaBCHUmuY1OniFzpsjTqzczxu28gy9xlgTPspEaMf/7EjeQrp7mZOxWVlFmlgxfYSubOME3nvoyZxOw6kU41toh2zLHEjdQJ8I5YqxlgQIt3Fo/yQuRVsrE6Z85zvHWdsrEaeUFyqxinE1s4BQbeZaT3Mpp1rNIM5sYZy0LVIhTopkYNapEWWAtCSqUidPMIusp8hJN1Ijqd1djhlbSFFlFmSRnAKgT4TTrAVjLAkvcwGnSrGWeWTL6UDSzvTpIIbaBBVJM0sl91c9zIraJRZJM0kk3J7iNSSLUOcg72ckXqRPhCP308DSnSVMhQS9fpaleZygyQCsvUCXKKTZwKyep69T1IQaIUOdGqtzGJC8RoZNJva/W8xS93MLztFBggZS/RgkqPEMnt3KSImm21P+JYmQ9Z0mwlgUi1FmkGYA4FRZp5gneyTlivL/+J1QiCRZp5jlu5nbGKNBCK3lmyLLAOhZYS40buYkXSLHAmrlpejvq3m9ch1YC+L7pH+PmNS+S5jRF1tPKC9zGM3yFrWzhKKfYwAytVIjTTIlW8kzSSZUoEeo0U+IsCVZR5lZOchMzfJF72MhJTtBNhlPcSJUzNBPlHHHKPMNttPICNW4kzlmiVCmyngEOM8Q2YpxjPac5zXo6mWQtc4yziZt4gT/gX5GgwrfwCIs0++++wAY2Mc4/sIMSzdzJKAusZZDtxCnzrfy1f9ZupMotPO/P+SZeoEKcv+FbqBFlLQtsYpxevspp0pygm+dpJ0qVnXyRGbKc5FbqRNjCUQBqRJmhlZeIcCNVzpLgaXpYywLrOc0AQ4ywhTJx7mSUKFVOkWGBtWzkpP9S1rLA3/Bu4pxlEycos4qzJKgS5U6eYoEUT9HLVo7wKb6DHRyil6cY5U7mWcstPE+ZOAkqek1O6DV6iUVWU6eJp+hlC0d5jpsZYoCtuk4B+p2Kbx1igEHuYvMvfB/Zw6dFlvk5IAZUgQyQQJbxw8CLwCqgDrwdKADNwAxSvzsCpICbgWeRFT4JnEEENlLAaiAP1IAosE4/B+C4/v0UcA6IAFn93DW6nzhQ0f29pMcZleMsbFtH5uQcnNZjqwMO2KDbrwamdD83A0v6WT3AmH7GUsMx3qvndFpf26CfXQfSwKJen0W9LmNAS8M5NzXsb5VudzMwp8c3B2wG1uu5nNRzvUV/r+hT/A3AENANPAN06N+XgLJeywW9Di16fAv6+jq9tuf0mKr6e6d+HwlgGqoV+NUngOvTH5YA/r/ph1i15kbOkmAjz7JAigXWcoJNNFOimUWi1IhRo5kSq1lklgwtFDhDs6xLHOUUGWa4ya/Za5lngRRpiqxlgRox6kSIUOev+HY2cYJNnGA9pykg6/BtPMMSEfK0UqKZDRQ4TZpOnmGWDDcxwwu0AhCnzE28QI0on+I76GSSW5liiQhN1KmQYJ61dHOCGDUivMQknZSJ8wKtEj81xHzzpNjCUaKc42k2AxDjHHVuIMJLFFlPhThxKpxmPZsYZxVlAM6S4Cl6uZWTrOc0JVYT4xwAa5mnmUU+xbdzO2NEqFMlSisv8CwbOcEmMhSIU9GY4Qae4TYf85wiw3YGOcoWakSpkOBmplkgRSsvMMNNrGWeVvKsp8hT9DLG7XQzToIKAGXiJFlkkO1s5SsskmQtCzxFLzViRFjiPj5PjRinWc8CaynRzC08TzMllohwlgR1buAIb6OPfyLNaQpkqGiMF6fMAinq3MDT3M4387ec5FaKrGecbnbyRWpEKRNnnG7qNPEOvsQYt/MCN9HMIrfwPN2coEKcRZI8y0ZuYoZzxPz69RR3spFn/f1g169KjJeI0MyixvPPs4WjHGQn6ylyO8c5zTp/D87QymnWs57TnNPjupWTVFjFEhE9lwi387Q/lqTmAht5liO8jTo3sIlxAH9/pFggTpkIL/E0PWzgFCnm2chJnqGTNKepkKDGjdzJKM9wG8/QSYQ6f8c38738Ic2UqGisXidCD08zS4aNnKSZEguspU6EQbaznUEKZEhQocqNAIwhudoCa/W6PseXuJt7OMgqyn4dj1IjxTzdTHCKFiok/DPcQoERtnAbz7BIkqYXT/OT7Z/2fuM6tBLAn04PMLvmNm7iBR9j1GmizCrSnGY9p4mwxAu0cgvPs6heMskiZeJ6TReYZy3NlFgkyWnSbOIEJZo5xQZuY9LnBLs4wFP0EqfCKTYQ4SWaKRHhJU7RwhIRJrmN7Qz657lEM3EqxKmwwFpOs55beJ4qMercwFoWWCRJmiIFNrCRZ3mBVnp4mifZzgKp8+K8rQyzniILpDjNejZQ4AVa2cApTrGBOGdZZDVbGOFLvIOXaKKHp4lRY4gBnqKXe3mMU2To4584RYYIdW7heT7PfXTyDLdyknnWUqeJEfpYz2k2UCBCXe/dGHHKjNDHN/N3DHIXJ7mVXp6iRtSf60bNq5Is8hw3E6Huc/FbeJ4TdAOSrwPcy2OcYBOLrCZOhbUs8A/sYC0L3Mxz+v2s5yZmOKXP2AxZnucW9vJ5nqaHCglOs57tDDLDTdzJKCfoZhPj3MAS54hR0IBtkdV+ndjAKV4iwnPczAZmmSHLWRLczHMUWU+MGpsY5zlu5nlu5jluIcUC7+QgJ+gmySI38QLniPIUvXQzQYQlbmOSk2xknrVEqRGlxnPcTCt5nmYzJ7mVe3mMKDVOcisDDHGCbv8d1DS/XsuCxyNO0M0GTvECN7GTL2puGGWJG1jwARPcztMc4h1s5CQLrKXABjp03buBJQCe5O308DQLrGWRJJ/nPr6FR4hSA/Df11oWOEf0PN/4FL10MsmdC8cZWvtWbmKGBGdZYC0R6jzN7USpUiHOeuZoZYYCG7iZ5zhJBzGqlGimk2c4TZpFmllPkZN0UGYVb2OYE3RTI8omxjnKFuKU2chJElQ4wSZq3EiFBOsp+utfJaa5W4VJbuPWF49yf/uE9xsXs8sN6AGwdk2dDbFZjsfuosIcRbLcRJ4hBqgToZ1pbgDilDjLTcQpcyfTVEjwlTXvokyCKFXWk2eaW8lS4EbivKQBxhRbWA28iyPM0KbJ5iZuZpESSc6RZISdbCRPP8OM0sshdrCbx2njDEus5wwZKtzEi6xiPVPAGuLcyCQdtDPN07wdRxJI0EqZKTqIMk8Hp+lmgjF6uJ0cRbq4jVnWUadCihobaKHEJG9lac16xumikynKJIgzzxFNfpuZ4Th3kWKeEkl+iI8zSzdfYjPv5lEm6WeJNAER5tlIjCoJitQJmCUGxNjIi3yGD9LLKDs5yDxrKWiwuKQA2AsND8cNNNNKmRhxslQokWaQu2glR4waHUxxG7OM0sutTFMiySjb6eE4Y7yFmTV1SiTZxhD/xD3MkaKH4ziSTPFWkmtGaCZCOwu8pVDk/2buYA0QocI5NjDOZno4TowYAWuBG4kRpZkbOE0nS2uG+SpboRXayDHEVpo5ygxtZCiwnjlKZLmFeabYQp0mKsSZWzPHU7yDdqaZoJW7GKSAo0wrT9NKFxOkWeJzDJDlLKu4kSVivKhOsZdR4pps38lxpmmnTpoSSYqkqRIlQYUOJimxng2cpUgnGfJEgA2cpUCWqj6YSySYJ0UT0M5JpkgywVaSlIgSJ805FtjIEmneyhg38yItFMmxkQh1oqwiQZOCq+uo0MqLZElS4mneTj/DrMHxIreQYp4aLdzAaWbJ0EyJzbxAmiJF0qwFykQ5zG7uYpA5bqWNM6wBf//9Bfexg0MERMlylhNso0Kc1UToZZQicWAN07RRI0qKec4QIUaNOFFamWOG26nq8/ksPdxEhSUSRCiRp4cU87xAljRFAlKcI8IYNwFfvhIu6E1lt62Z5dyaNM3ME6VMMw5HkpO8hWZuoEKCF0mxSJLbOMww99DONFBjlF6SlEhQZjURhrmHFoqcJcUUKd7GUeo0MUEXR+mjjRnayHGCAc6Qo59hKqyhBjzB/bRSZlz98F72cYab+Ac2kaTEOuZ5kRspcQtdDLPARrqY4GG+gwEOs0CaIW5lFXXOkqBCloAorZxhgCFeoIcM87Rykk/yPlI8ToFNZMkzy2o9lxvo4SmmaSfDWZZo4TnuYIh76GOEKTo5y3EKbGYDJVLM08YiBbLEqPMou+jnCK3MsUiEY6TYwZfIUmCErRynnwEOk6CJQe6mk0kWaWWYDrYzSIkk/8QWOjhNnSY+zg+xk4MATNHBTZRJMU+Ws4xxF29nlJsp8QxbWUOVRRKc4SayFNjPfWTJk2CKl1in+E+KMnEWaOcwLcyTIkqUOFFeJMMiSU0I48ywgQHGmKGHl1YlWOVO83O3I+BSGtgEtAMfRUCx9fragL7+NHAr0A/8sd5stwD3IQDdNAKK3aH/X488bu9BQKksAmCdAd6CgGZJeOHX1nLTP1+Q/Z5BwLAY8FXdbxsCbm3S/58BjgHvArbOwaf0mCaBx4C7EcARBLBbr/t7EDgBjCAg2jY91qruv1mP8S7Oj1SO62fN6Ofu0mMHARvvRsC6Bf13tf7/Q/o5q/Uz08AXdF8Duq9JYJ8eI7rt/fr7kl6nlO7vLXoeto+ndfu36PVeBHLAB/R83g6sBb6o5/UpYIe89l9+Qd97nVvnmtMsrmkjTztTpGgjxxIR7uIYOdpYp0F4kqo+SWcpkGKGtBapIixyM2up8jwpTpOlSJpbOcQsLbxIglsoAecosYppbmM9dXbzFTLkOcg9JCnxAj2co4VeRtnIPAWiLJFmFTHWETBBOy+wmS4m2M4gn+Y9tFKmRpLbmCVCghuJcyszlEhSp8wJtrFIG7s5QI42nqWPDo0t13GKtUCd9SyRIiDJDD20McMSaZqos0SdWdL0cJyAOjVqHKWfJCVuYDUJzlEgSzvTHGU9q3meFC+Rp41ehiiRZJLbyVKglTLrWCJHGxuZZol1vMQ69vJl8mT5Qz7IgzzCNoa4hX9ilF4gxQIbqTDFKqI0U6cEVMmymiXW8hIZpqgSpc46zgFREgxyH3v4R6ZpZzNjTNBNnCpdnCIgRRNRAiBFwDyr6GWUBQWPmqkR17UtqiDGMG+hjRwdTHEDSVLUmOCt9DHCfvZwIwl6GaXABh5nNz2M8RLrCFjLGdp4B09RZQN5MrSRI80SJVZRYwNrcFQIGOBp6kRoY5EKLzHCbTSxmiQRIlQ5Qj8pYAM1hnkXSRZ5lj4iLLEGiFFjnhQ3USaJI89mbmCSG0kwTidREqSYByKM0sM8KQYYYpY0jiZeIsmn2c0e9jNHinlSJFkkxUtEeInbKBKnQoIydVZxMyW9v28B4G0c5QC7WSTBOWqUSZBiibXADXpvzdFGnCglknQyhSNJK4vM4iiT5Jv5IlFWUWMVARFuZpEpOkhwIxuokqCJVcR4iRuocwPbeZp5bmWMPlLMK4CToY8JAG5nhgRlqsToYpb1nGOGW3kL00zSwTRd3MaTnCPNPLeSIc8SNQY1N+vmFBP0088wLyjR4Xq36TVv4bY1s6Q5xzy3ssjNPMxD/DC/QYQm4kSZJ8MC7dzJc6ylRI4kScDRRIpFYtzADdSpkuIMWbYySpRz3AC8wDqOcjN3MMEEXUywldO0kaZIO/OkmONJttPONNt5mik6uJkR5mhjgSY6mOQ0LaxmnihwExVeIqBAF91MUCbBLF20M02V9bzEOgrEWEuJU2xiDY41LJCmTpUmNpOnmQglbmFc84JZ1tDJNBECXiTGjTiynGWaO4kRJ0GZk/TRwxitnOFFXuRmFnGsIQXEWQAgzo3cRJlFbuYci6zS/HATedo1nx2jl16OEWOJBPAORpnmTtp5kQQ57uQ5crSRYp4iTUR18O2L3MJGvV4VEjzBTk4wQBcT9DDGFI4cbZS4mQVuoZ1p1jFPmQQ3U6KDZ5mikzZyxDhDOws8x52c5SzrCFhDjhuJ08dJ5klR4gydzPISKQLWEmMVVTZQUuD0BpqJUGc7x6iQIEcba4EYZV7Squsit5CkxGqaeIZbyVCgmRtYTRNvZYoTbKOFGuNsY6viJHOsoptxzpEnxRJLRIA1bGQeR5IENV2H54gQIU2dDCc4S5bTJEhTIsoqFtjIGc5xhhRdjJNiiiItlMiQYo4kN3CWLAluZIS7AUhQJkmJl/TZb6JOkU6SerbP00aWEuuo8zTfwF72MUMbfTxLhheZpJ82cnwbf083M+oT55mgC2jiRZKUSHIzJdZT5wU2keBGnucOWteUuY0iZdaSo4MR+khSokSSdqaJEOcmnud5bifFPAU2c4Y0N1DiZookiAJLzNGi5SHIMsfz3M4EW+hgkmd4KxESFLmJbk5xhhT3MMw+9tJMjTU44kTJ00GSEhVSvESNDGfZoHHRq9kVGYqRp5VDsR1EqHNEgYwSSXoYY5p2ItRJUqJMgjoRD8rN0kKEOhnyWqONsY55pmnXbZtoZ5q6RvcFsuTJspkxAMokaGeaFPMkKVEnwiM8wDTtdDDJPCkP0MSosY3DdDDlE+ZxuolSY4weWsmRoUBUy+ldjJOgrOzCFFN00MEUNaKkKZKkxPb6IN2MM8AQXYwToc46PZZ5UkzQxYgm3QWyPM4uItTpYYwU85SJs4URqsSoEiVHG3EqlEjSTIlBtvNxPkCzgrRH6KeXUUCS0RxtVImxmTE6mSLFPD2M0c40h9ihjiKpSXKOdqbZyUF6GSXFPBGW/PmO0ssMbbQzzSi99HCcJSJsZozH2MMsLYywhRFd3BNUmKKTkj40X8ncofus8yj3UyJJkkXF92PMkuY4PcSoMYBMAx9hi4JYEX9Na8T8tSmQBWCRJDFqpJhTRpuAAfZ5U1qB3Mde8mT9OckxdlAhQZpZ2pghS4EJrbLMk6KqwN4Ym8nRSh8j1IgpEi+fm6ONfexV0K7OBN1UiTFNe8M1P0mJZnK0AXCcHqboJEqNJuoMsl2flSwztGmQHCFLnm4mGGIbk3RQIEuZBAnK9DJKhgI52pgnxQh9ZBoWqzlSTNHJFB3UiVAlyjwpAH98ebL+3oxQJ02RB3mEEfook6BEMxGWiFOhRpT93EuUKnkFFNMUyZCnThMp5hngMFsZ9s90Uu9NqYSVOUYvHUzpcxvx99aTbPe/X+8Wp0wHU+RoYz97mKCbIbaxmwMcZkC/3wp9jJCj1fuKIml6GaWPEZKU6GGMJCX2s4clInQwyRSd/ppn1SMKwP+E94d2f7yHz9BCkW7GmSfFOF0McJgejlMjRgdTHGErOzlIH0fpYoICGbYwQpSq31cX40Sp8QQ7aaJOC7OkKdLBFINs5zg9pJgjroySEkkOIetBN+OkmKdKlN/l+znOZpqo08U4SUr0c4S6AsntTJOkxEHuYT97yJLnu/m4v8+6mOB+PqeMmLr6/CYiLJElzzD9fJQP+esj4Jp4124maCPHXvaRZpa97GMP+2miziM8SIEMPYzRRo4iaX2ujzPAYe7hID2M8R4+rc9CRIPlLobpp04T7+cTjLGZPexnD4/p2tNClBrtTPtrU6SFKTrIkxXG1wkELGpFwK9HEeDJAK42BCS6AwHlnkGAoTbgNgQUakMAriICui0hwN0xBGha0G2+qJ93DPg8An7l4Ka/XxBQ8C36WpplZtkZvalX6esn9LMmgT8DPqv//5i+94cQwAvgrH7uWn3fpxCg7gwCft2hv38RYQa2sQwm5vS1NbrfaT33Nv28Ed3PbcDfs8xcvEM/r46AaMP62VXdZ0avR7teryUEjFwEvl+v34Ie10kEtGvX/Z8BNiJgYE7P8Rm9lossMwS/pP/G9Hs8gYCGVT3uEQSINBDxOrbnuJkqMf9s2bpiz7r4hhhlEozSS12TSoAkJaoKUMzQxl720cEk/QxTIkmEJfo5orFGycedHUwxTbtfc6booEvjtCJpCmToYoIEFc9E6mSSjPrTEklamPXPrMVOFo8kKFMmzmbGyFIAIMISGfIk1PfPK3iZpkiEOpsZo04TB9hFC0XilNnHXoq0MMZmOvTz6zSRoMI0G5mhjYQeQ5f6USv45MlyVJOQLHnSzBKjRoUEcSrEqNHJJG3kaCPHHh7Tc5HEJ0mJHG30MqrxTo1xuulllCx5Zmijibr/XirEmWcdNaJ8iI+SYp4OpiiQJUGZeVL06bqxVb+fmK4hSUqM0KfJ6SxdTJCkxBwpRthCnYjvromwRI5WItR9cjVBFwfZSY42HuSzbGNI15clBhgiS4EycfXxAjLFqFEj5tdHYRHK2jLIdnoZZTeP+9whqeSAEfpIUKGTSfo4Sg/Hff6R07xlHfMA/AY/TIkk3YzTwxjzpDjITgBSzPtzAmE99TLqY1y7Z+dZxzwpNnPcf9dyb9fJ0UqCMlnyzLOOfoZZpzFvOydpI0eGPD16H8r5FtjNAZaIMEIfgL4/RUJzCykeCpMlo9/1KL0UyDCmYOQ07f44GvMFKZbPKvAY8etwjSjH6eGTvBfgvDjfYl87t15GydHmn6soVf+sXe+2lgVlPVmeOcEH+Li/30fo07hFQNtp2n0+OcQ2pmknTplp2pX9WtcsNQFAD8dJU6REs8+rlv1XRgurBTqYYpwu5vSzQO4Hi1lA4qc0s/5+AZigy4PvLRSJsESVKKP0MsQ2BYTwfrudacpKeLBYqESSg+xkik79/msktLAaYcnnP0YG6uMos6RJU+QIW/lDPsh+7uWzPODXEDt+I+iUSNLFOO1ME6NKgSwFMuoN2yiS9vlxGzkSVMiTYZReSiT936bZSJwyWxkmxTxTdPAo9zNNO2mKntXcpPmVHXuFBC3M6jVN0840HUr0EXBVvo8SScrEydFKgax+73HSzPrPm6DL+x7L78xv5RSsnaKDfj3GJCV2cEgJJTUyFIiwxHv5JCBdZvOkdC09Qp4ss7RQJUaCChGWmKJDGXQR0sz6ZzxPhg4mqRLza66dU5QqGfJ0Vyf0GOfI0UqdJtLM6jpV9DnBCH1UiTGvJKQMBQ/y5ZQpb+trjRiHGeAJ9a8VJYFJoWGWMgnayDFMP+N008UELRTp1DxMcuh1mrm0+HW0iTpZ8qSY9/m4xe6j9DJKL/PKprbcPkGZYfo9tjVPyh9HRY/DCkD9DPMAn2WWNElKzOq9YIUQ68oap9vvJ0GZ57j5kvzJFQH0CmygqkDXDr4EiBM3p52g7B33JB26eGT9w2uAjD2ccqGWmCelf++gTpO/GJYU1YmQJ0M7J8mS9whttyaLebK6VMutVyCj6Gtdj3fW/16khRytdDNBTZ3RKL3kaGWUXroYp06EVnKM0itgViSp4FPCL/oZCv6hAkhTJEueKDXew2eoKZBjC6x8/hJbGWYnT3jnHaNGkhIP8ggAc6R4P5+gjRxRqkzRAcjDWaSFuAZVB9lJgjIP8Fl/g+Roo70qTvkP+V7mWUdWQZo6TR7Eatbrn2KevLLZYtQ0eZ/04GVBr6sE5idJUyTNLBHqpJjnIR4GoIVZxunW+2DGbwcCerQpiLqZMUo0+2Qa0NYaCTyXiNBTl6CljxEFcef8dSySJkqVuxj0ge0cKX/dJUDZqBWbHkokiVKli3Em6CZPhiwFWpTl1s8RpCW5ibI66y7GmaadEfr8gpCg4gMgAzDNDNTKadvuCH16j8Y5qsFtlBpLRDxglqDCNobI0eYTkRytlEgCkuBM0ckMbRxnM1kKFJXJMMh2ZpRRB+JMmzQYE1B3jjwZv1A2UadEM03UaWeaCnF1aAUOcbdf/MskOE4PE3SRJ+NBeVu05knRw5i2uyRYIkKOVg0WC3os8/psL1wB7/PmsxlaOcw2YlTpYoIpOmhSnxPX628BhSVEmxW8G6afw2xjlhbG6NEA/XE6NXkCNAhIeEDZfsraVp5XZuSUVp6qxOhjhG4mKJImRytdjPvARfzGPR5omkPYgynmmaSDGjHvG1PMqw9OM007IOBxNxMUyDJBl7JUoJ1p8mSZosMXOtIUaabEPRykm3H6GGGcbg6ykxhVsuSpEaWHMcokmCNFJ1M0IRIBLRQ5yE4OspMyCd7Pn9JCkWna+QAf5wP8MVsYIc2sJtgVvSdlMRY/uY4pOmim5MGGbRxmjB4fJEiQ1UaEJWZJ8zkN4mIa7EoAI22CJZIsEWGedUzS4RPsveyjRJIaUfUh0tLQyyjrOS3gVR8CFmWR3w1wuhe4XX83MOl+BLTKIaBaruFnGAGzNiKA1jH9/4MIwPaXenP262fejYBQCwio1QR8GgHRPocw29DP/gICSg3rayeAb0cAvn0IMNav730MAdxs33Z8MX19SfezCgG4bJ/v1POdBgZ1u4Lud5Vuc5tejyU9xwwC+HXq719u+Iy36HEV9TOKeg0LLINsLyLgXBUBAIf1750IO9FAvRwCJJ7UnxE9pjX6/k16bFX9PabbfwEBaPv0vN6i/1+NtOO+wHVvo9xJjjaSlIhQ94XWKTpJUKGNnC88SQLVTqcWXQ1UbyNHkhLTtPuAWQLwJr/mjdHjCxolmpVJ0uL308aMj4fMB4u/lFigmRIxqozR42OfGdp8UmoJ5zwp/3fzM/OkfDHaYlTzfTGqvoicpESGwnlF6CJpH59GWKKPoz6JLZH0Bd4ejgP4gmWUKlkKlEiyj70kKTGpMaHFIzkFakok2coRBReXqBGlgylfFJXCtSVSbYzQRy+jjNNNhbgCkBWk9a9EGzkG2e7fs6TlQgGgJCaKUWVJE/JlgKqNCbqZooMMeZKU6GVUAYJJhtimCZYkdmP00M04cS1uGrCUpEQ34z4nmCdFhYRfzxKUyZCnqjFJRX/kXphjSNdXEJDuKH0UyPh9WWLeRJ02ctSIekChokBuinl2cIgU80QRGRdbj02yR7opBLyzWD9KjW7G6WbCF9pyGs8VNUK2Aq5959O0M6UsDltPptmoCX8nT7DzPFDb1mXAF+Etz7D1N6ugjoG2s6TZx14PQFQVdrLjS1CmSAtl4rQxo3dglCEGyNFKO9NsZozv4hP+/rMcLcUcR+gHJC6tESWhXVBLRJimnQ2aF1zvtp6ixscxFkmSo5UYNfJkPejVSs4Xv63zJkKdAQ57sCBNkZz6viJpn9fUiNJGjm4m6GOEImkfK9p928EkZQUArTgvQI7c742AojyzXVRI+Ph1mnZ/n4rUQRNxyjRRp5sJxun2YPo07RxmG/OsI8WcPqtx/zxXSBBhyecmBoSlKbJEhP3sAaCFIhN0+dxlgMPUafJrRo2Yz6nHFQAraMkbRP7KwMYWBcu6mKBE0hfTp+j0PtTaLks0UyLJEWWDpZj3hKIkJcaUdThJB2P0ePAuo+c+S4svaMt3V/W+0XLTIi30cNznVnZvTNHhgbbNWjCwYvkIfUzRQZwyNaKcVOA3Qp24+uU0s+SVIVekxa+fOzjEvMb4NWKUiZMlTwuzxKhynB7ayNFKjgoJptlIgjKzpGmhSJ0m7+vamfYgdIwax+hlLNbjgUfDU4wYVdROuBhV+hlWctMcnUxRJK3XpeqLE0XSjNLLLh4nSo0WigjLs4WtDJMnQxN1AMbp9mt1mTizpJlVPMGIN70co48RLSIJicaKMv0MUyXm1yN7jsx6GMOINEtESDFPjCppZqkpwGlFGynozej6IecSYYmixiSWZySUlW2dcPYdXqpdEUBPTlYWH6sU9DJKhDon1ZGALEwJKt6xNCmrx6pXeTLqDKK0UGSAIc8QKdHMVoZ9wCH6dGWlaUryawtaXJfxLsbpZZRmSspgEtbSBF0K8EkQ2cdRH1jmaPPBZR8jVPQhM+BjmnZfjTNg0ALDDibPe1gtmCyTYIIuTAPBaLRpBbykZSJHgSx1ZeJUiZLVoKeH42xl2DukHo7Tq5pRU3Swj71Ms9Gj+LOkOcQODrLTB8NHYv0Avlq6nz0UyKgj6/AOflHBIwP7ALYxxCJJDYITZMj779PQ9aK2m42x2QeOj7Pbf74EqyPMs86DbtO0++s+zFY+wXeRYl7DHble1j49HRHNPKssSEIgQPE8Kb1fDlMhQZ4MSUq0KvgJKBNunBhV2sjRWZ/C9HjsPG1xmKJTGDQIGj9JB23McIi7maXFg7vD9FMgw5w62sbrZ8FlHyNUifJdfIJZWqjTxFaG/fHb5/UySo+2r1SIM0sLebJ0MkVdnVycCjlayTQAm9sZZAeHiFHVhEnOS65D1ldICmTZzQEPPuziAFnVhmmi7nV2rBqTUf2JHsboZ9hXhyfoYpDtDDFAiST9DPvFP0mJTqZoY4bH2U2MKgMMsZkxotS48RJpxNe6rec0aYpM0kGRNB1MUSXGcXqYZx3jdJOmyBAD51UYt3GYJSJs47AHYkskfYA3Qh8TdDHGZiLU/aI6Qh8H2E0bM9SIkWbW+zKrRG1nkDIJ9rGXAlkOco8H0cSXLfkkt0CWVqUgrdMk1qq0tkCO08U+9nKczeclkJsZ42EeoocxXwyxRPoBHiHFPB/lQ5RI8jAPUVDAz8DtEkl2ctAnzwWtHg4q2yZNkVZy3t9/mvfwBDs1ea55QPsg9zDMVqbo8AGoVGNnfGJkrQsGAlgwI/T3BBXifIL3M8IWPY60r8gZkN+iVdopOnkvf+7ZDu1Me+ZGlSjjdCsIupFZ0uJDcwjw9hbk/4/qv29hGcj7LASfQhhwkwhoVkWYYTmEBfdVloGyIYQh1s8yQwwEXFut712v+8oioNVa/T2GAFN1pHU3r+85g4BX1spqwB0ImPV2BEx7mmUW3Eb9+20IuJXV19r02I7pth9EQMcz+rcm3f8S0tY6qMcxou8ZQIA4YwsOIiDbav2J6PFMA7+l+13S7dfqtj+KAJwR4HdYZiHasf+Z/v4Bfe+0HrMxH9+t/9/EsmbfWd3/V1kGYG/T953UbaosA5VJUHnS69o2cYIIS0zSwRQdDLOVksYSVt3v4yi9jGobKIzQ5xn7ber75kixTpOpKFVytNHCLLO0cFL9YIKyrl+LFMgQo+or4BGWPHgXo8YhdlDTQkeWgk9irbAs7UhS7JjV4sVyka3NFwqSLHrWYVWZbgL8i199nN3qf1r8Psbo4TADpCmyjSHfgWFglvkwSxDsWtWVLdGiDA+5jk1s07gnpgwYA4RsbUkxz5zGZoskmSXtC5O2TszSwm4eJ0GZCHVG6fXxqiWnNWJe67WLcY6w1YOZojUVo0iaGFUPiElRvM0XcC2RMTahrR09HKedaS2MpPx9MMh2dnPA3wtLRFTDteL99CxpXyyJKii7TsHgPkZ8/nGErQouL1IhjnUtWCF1I9OegGDfpySHCQ8iWvxuyZwx6q2zZAeH2MxxYtTYrgXmHsbYwSHSFM9jZoDEicfopUqMJSLM0uIZTTlaG/4veU8HU/5atjFDH0e5m0MkKNPFuN8vSAeTMVYlsY4xRQfH6GWKDqxjw0CivexjM2PkaPOgkTHqpOtgkhYFNW393M6gvx8tHmlVTowV+Hs47kH8UT1Xu7/XKTB/SgHW693iVOhmgnamSVPUe6Ton3XL+ayomKDsAXMzA35imttYESHFnI/FrehrMXySkvcPBq7M0ObBd8vXBYSOkmKONnI8yXafUxfI+vzG8mjzQ02ae+RoI6v5oQE+GQoYM9WeVSHrxH3+IQXvGHvZRxXRjJuhja0cIUEF68aKKhCUZpbtDPrYtOh9gBGD5tSHJTxAYl2DJvFVULBLAPkY3YyrREqepKoXAsqUrjCn+VyRFlrJUSbOAEO+a8rWoBTzXjbKCi0j9PnOD4trAdLMemazkX0SlIlTIUOBFmapE+Eg95CgzATdDLLdFxKa9HzfxyfJ0aqdI90cpY86TdSIMaGx5zrmfS5iwH9j55hIg4nfG2Q7RVr8fWY+QVi5S74YYYDrTg7q91OjoCCbSVjJPRtX7KDAON3MktbvP+oBujRFT2QycLmDKWJUfeFuubAn+5tRhqJ0YVZpJUcXEz7OaFHg285ByFrNtDNNC0UFmud9wWMHX/L3elqvfZ0mMuTJUNCijqxt0uEX8+vBCFs8bmB4kAGvdS3457RIaPnFKL2esWmgepIStzZogL+SXTFAb4IujDIuraDyRW1nkFF6yZNlgm7KxClqgpbWmtRWhn0QlaTEZo6TUcbdFB0saoVrjB7frio9/DHyZD2zYlarETGlNNuiXFDGit0oZRIcYocPlKz6YI4jp+0GkYYfS3CNApol75NEoac3+1bMYbZqCBmhTR/8NMXzbgJryYiwxJgKY8IyVfkAuz2wuI+9/iYQEE2CoAEOs5d97GUfU3T4CsI65nkvn2QbhzFRT2F3dbCH/T7JHKPH00atFdoow1ltH9nHXg6xgzgVWsmRZtY/rElKDHKXBwJMABdksbb2FQFfKxTIUCbONBuJUuVR7qdI2qPbdzGomjJjWumcUifSRIQ6MWrMkvYtdynmtRVxyj9Ixgqz63WcHg8UAEo172Y6Imw7q1AYbdeAOGkBPOnPZUqZN1l13hYwW9VAgtc7/OJh52CAndF2B7kLsLadhAbEUV/liShwbC2/s7Swj73EtLIr4FxGgqaqgKVDDLCNw6QpMqv3ZCs5dnCINmaIsOSBFXPMIG3bwsYUOrolEtKyUvWVsylNxmQhlPdWVGvCWoGtRWRJK7JZ8jRTUrahVNLONQSb17OJ6LckWxbkGCW+j6PsZZ8HpwF2cIiifs+7OeD3YzT14/RwUlslminRQpFh+tnDfg8KdzDl2/GNwWzBywRdHKGfCbp8MeUw20gx731qggpPsJN97AUkYLPnHvD3sIDaadqYoYNJjKoeVXZdD8exNro6Tb6VNqOAepQq380fM0YP2xmkToR+jtDOSQ5yD6P0Mky/smtlET7ALkokGWKA/dzLNO3s516m6OAhHvaDMQy8H2LAB1dJShjb1yQQ5kmRIe8TdQm4tgAia5BRZu8sLTzEw75wYO29tuiO65o3Trevvt3FoPdNebK+NeUBPssRLQDs4BBnWSUsu2MI+HMWYdgVEGAshgBBaXAf0RuiynI76GkEfOrTv21HgLq1LLP1XmRZg28BAZvsX2ttXQB+CQHHViFMttX6/tV6DHc0HOMX9P+bEABsE8strQbI/XMElDQQ0Y5rCQECs3rM61lmsS3p/r6MAH/v0uM0EM+YbycRMPMEy6256P9jLGvoFXU7WNb9W40wAf9S92s6fGf0x/bVpOda1Nc69f8LCNhZ1M+HZTbkpP69qMdgtl7fv173Oa3Hc4xlFuR1bMYGmmhoKelgygMv1lZVopltDHnQxtbFQ+zwjCNjTxxX5paxmns4rs+fsCwqxMlQ8K25BiZYKyFAP8O0aTwjvu5uD8IbiFEgSxs5SprkzWnMVle921F6SVCmj6OeFVEk7VuLrFtkSgs71nZlwEyWPDFqPv61oonFMlWNTapEGabfs04+y4MqmRGnm3Em6PKxRl1jzgx5WskxS5oUc8So0cso07SzjvnzmASj9DJBl782FkcKQz/Ocf2ewAYVyZpu8b75O2FxSGxv7Z6WNBtDu001CK1DwYrhI/QxTTstFH2cYUVL68TYzx6fXA/T75NF2Z8kaYsal2YUpLV7rosJrGshpoxMwCdy0uVS0YJo2V/HSV1Hi7SoNFCUEbaQoMzj7NZCVqsHqQGKpGkj518vE/f3gG2XaEjYjdHZzYQHdDIUaGOGFk34LXcx4HSMzeznXo1fJY6skOAwA54dEmGJdk76FnRjX52knSii12v5UJKSMkkXaSPnGYdW4O3lGC0UOUK/FiqFOSR6VSjAXlT2YDuj9J63BouOWdWzHo2taGzUOGevnBN6E5mBMWNsxoYvGJvTnv8pOhXcaVJQREDeEfrIa+dMB5O+AFFTgFgAipR/rs33GYhgQAVI3L6Tgz6G28+97OZxX6Q/xA5f7IxT0bb2BF2a303TTquSMUSyp+xznyg1RuhjnC7fgWLApT3/YDlanCEGyFCgQMYXly0fWiKCsXvNJ0epYu3//Qz7gkOEJXoYI0aNIi0+RzcsoqaEnqgCRK3KnjJZAukwPIS1ndrwo1F6PbmorswsY4qZ319U8EpkxETCqJ1psuTZokxowLOiTWILlrupOpjybfpGTmpVUEuekQpZ8jzAZ0lSooVZH6dO0kELRbqY8ISWmIKEBtbZ8RTIkCHPXQzqawXf1v8k27UwIkWvWVp8QcZY3UVafBeOMdlKJOmpjnlmuuEwBhBWSCi20upzmhg1Ps9ejtFLiWaffx5X1mNUc+AlIv74myl53CinevnLDNKYL5xN084WRrDuAAMX45T5JO8jqgQYwDOwp+hkgm7vK0HA8gIZ6jT56xmnTJSav3cWWe50ks49AXWNoGUkgApx3ZfgTtb5CPjiUZG0snUvTVP0igF6BqykmPftnDWiZFUXxB7iPkZ824Wh0UvKdpqmXfvKm5mi01PNDWWPqOivvLfJP/iCYgsaLRdHACxbvK2F1FoPjR0Iy1/mPvaqc5sjxRwgeh4W+BgybKy8KDVPnK8hvecScGU0QS5jbab2sM+Rop8jvppWpwnR7jhf7wDwlY/e6qgPuvazx2sfWHBbIsk4XfRo5VrAOtN3m/NV2KIyy4zx2MsoXYx7wGGAIeJ6Q1kloYMpTxmtqGSvtaFa1SehlVJz3I+ziwm6fKuBtBNIy6bQg2NY69oDPEJG+9elJbVAj2qJWNtgB1Ps5nH/vYoOT8Y7/24m9Byk576FWXXmBe+grRIsibf0zE8qam5teVkKSp8t0s8RysQ9ym+tutae/Rh7aCXnKytVvYfs72lmVWR5zgfJBhRbUL2ZMaz9OErNA5sG9JVJUCRNhTgP8FkAZQpKwjNDG4diO1jSZ2iadh8MWqJgz9NxejxleSdPKCyZ8SC3hMMlMurU7Vm1fczqophHJuJlyLNZtToOaruH2TzrOMTdniU7TD8xquTJ+Mrs9W5rWWCMzZ51mSXvgVFbWBZJ+gTPAHVz6BXimmBtZFyLBJZcmp/pZZQ0RQC2M0iKOf9MmCboEhH2sJ9mSjzKuz0Q1cMYHUwpw6SklSepeO7mALt4nBg13260jSGf4AnLtYa1jfQxAuBbd8bYTDsnfcCRYk5bmUQraJEkeTIM068M2uVJeN2MY222JmMQoc79PArI8z9FJ1kKPMgjxCkzyHbew6cxFqqd43YGmSPFZsbYziBRqgpLT5JWH2Gsj5pWZ+/nUXo55tnGlgwaoG1aRfNIO79c93l28CUOM+C/HwP8bT2w1pReRtnBIXo4zo0syUTUPgQkqiIA0yoERPot0HwVfh1ptz2DgF9rWQap7ga+Uf+/VvdTQECpEQRkOgHnZhDAq4gAgU0IeGYgWFFfy+m+voyAX1UEiLIhEDS8f5JlUHKBZVbgMT3mVfLZfAlp443pMX5B92HTX40F2Kz7aEPaf4v+gZLjslbkvXpMWxGw7AwC/jXr8Xxe9/luBEi7T8/xGYRpeAz4ad13VY8xo+99VD/HdAbfpd/RJj2f21me6/MlBDxdzTIzL6PncFaP+WkEQHy7ftaXke81Cg2ki+vWIrxEt8YdrZrIJzQOMJmGGWVNtVAkT8YzbY3hPksLTdQ5zACPsccz5w5xN8aUn6KTk7R7doOx8SfoVnaIJAtFTVCmFdQ4xN20kfN6R9a2JUPNyr6VLUGFe5SFYPGhJczWImVgvxVBAJ+QzSkjxbT2jHFiQE0TdQ/IWYJocZWtp42FkSk6G65x3RcpMtqG20LRa70ZiJKlwJzGkhHqTNDFAEPsYb9nx52knS4m2MYQ7+OTnjVpn2OtlSWafexucXiVmEYWBc9aML08K4ib9mhV2y4NbEhQ9kmyAWHdOuF1iYgvtgL0cdQX2TMU2KJyEqYDuI0hrzf2OLs4xA4FXytkyGuniDAW7XOjVGlRbTgrnFUVVDFGj7EN2zlJnDL38zlMd0y6bmYVPBbGucSUNX/tLJE3AC/Ckk65z2HdL5bPbNUY1K6PFMvGfMdLTJ8gA16smGug9ZRqiVmHh2lM9TPMFm3FlONa8sygadp5lPvJUGAd8+fFGyIDIuu4gbnTtDPEgAdTOpiilRxJFrmfR/3fLcK0LiCTGzGih7A/vz6KvabVFlMmnWk71oj6Z826bZKU+CwPeJBgG0NYN1FMYTy7n2OIFrzpflkHmBBfooypdrFde+vuss4De/5NyqmJOnkynvkqGuTyDEv2lfe5lwDPRV9QtXuhTpMyMqU9u5dRD5ZbLNhMyftqyWW71RtGGOAwWQr+mB5nlyeHyPRr8dtb6iNs4zBTyh42EokxZo1ZaOtNGzNEqWlDZJu/L02KwBh0RzRGbSQGmRySYRCAJwyJT1/C2o1LJH0eW6eJZsUQJrV93gDuOk20Kihmz8Egd2FtrNI9UlMfL43ESURb255d0ziPUaWTKd99ZWuRrWnWLfUYezyBytagZTbyIh1MspODHpAHPBZj2I11qHQxIW3VsZS/7nkymF48CDA2xmavAWp5j/nxOk2Y1p1dm4qSizoVPDSilWm2GgjerHG8kUyMqW/fCeCB1wJZ3sufew0+Y+5N0O0ZdcJIriimUaGLCeoIe7qZEkVaKChoavnKMP0Yuz1OxctDWC5gmEwrOZoR/VjAzz5IUOYQO7xPWLzE9o0rAuht5Fm28ySH2ebR3F5G2cdeDrLTVwwy5Jmgmybq9DHigQtrD0xS4kvsOE+ryYQSQUARA9gOs41httLNOF1KYU4x70ESE5gUUc44IgI/SY42olR5gEfoY8TTHY1lZdT5KDUm6MZaFqboVKBrjiSL/sY1seJ97MU0ATPkffV2mnbfYreOeY9UF8h652qL/gRdHGbAa8i0kWM2lvYVBAsg7QGzpLFTk3MRU5bFMabMsSQlL2x5kHt8e54xaYwNY2CLXUdrU4tq60CVmFYQtmGaNWP0+AfHqkvWFhOn7IUgzRFY24A5EdMLqBPRtgVxxhawJ+pyh8wh7c3H6eFR3k1R21FztJGsioBmo56JXSsTLrX26AhLHGIHR+inRoxxurVFNOfFjPs5Qo0YA2e+og+saMgYY3E/ezAtglnSdDOhbbLiCKe0PXc7g+qQKjptOUc343QyRZQaU3TyJNu9w87RRgeT9DBGmiJ9jLCNIQ2SCxjjyxbmcboZoc9rx1jVs40Zn7AA3MGon2psLCMD1G0BsUEqFRK0c5JxrfhLi0hFgecSSRaZpt1r82U1mOjjKBUVpS6QoULcB6zm0B7kEWY8Nef6tlNsYA+PMcZmHmcXYzrd0IY/WDJpZmw9q9hFqXndpQhLmLaTVTqt4igVW3kOrL3AmA7GJEkxz3v4DDs4pCyBFp/0zNDGt/FpHuEB5llHO9OejXBEp88lKakfnPPg3YVA6rgGAzLopuU89oSxZqy1q5MpdvG4L/pIIp/1bVSmXWX8aBNUrxFjuzLgjPE8rqw7q5yZJpO1+gyzlUYtDLuf7disJcoCOVtYhfWbYYIu+hn2LIcuxj3gOM1G0hSZoNuzIU1kf551TNPOl3SRzpOhQoIxesjRyjk9BhZYBroMYLsdYcWlwRMXjiGA1B3gc/kM0nL6lywDbF9E2HpfRECkk0A/3HgfAih9VT/HJs1uAr5TtxtimaXXzDJbb5W+r1P/b62/36nb3KHHsg8BsYoIC+9dDb+DAGYndduteu42fKMJ+AuWdQRzCFOvST8bfc/PIyw/YwauZplphx7Xgl67Jf3bbyFtu3W9znfr9TE9PgM17bv4qh5TTN/zX/XarNZzb9T/W9DPOKs/VQSwnNRzLSKAoDH6jN0XA40/r3uzImyNGC3Mktfi3wM8QoS6148yDSUrxDVTokCGFmSQgrAxCppsZjEBa0loRVMuxbxvp5ymnft51OvfZjTJsnjSBN4NSJkn5dsFe7RNM0pNE8s8R+j3rbrWZmasLGMkGDNrXHWZjJEDImNiQFxMi69WBMmT9e1PFltaUaGXUd9atYfHPFhmSZuwaMo+jrRi69wKcLJOhAd5xLNh4vo3gM3KbLGCqxXHtzDiuyas4CnHsuiZKsZYNKZ2jSh9jPgiqLVjzpFikO3nrX0bdc0BY9pJ+22Mqtc3OqBMuAGG6GBK45RpL2hu+YUl29YKagPHAF9Ua2QWCrgiMYkl99aabEP6rMBtLYN2zhNagprUwXCSlMn+ZrVVzYA2Y8BYkX+adg6wi+PaGmwARgnRxzLQtYfjfn1vJefvJyv+G8vN2F41YuzkIHHKjNDHcXr8sxWj6tk2kxqP7+CQv8dNC1ZYWs2enQXLWrif4T2+S6VL2YR72QfAwzzEJ3kvJZK+sGjfSxGZ5GxEgT5GPMA5Thej9PIMt10+h/Mmtg2copMp75MkNkr4jgFRLqxpVtvFQzxMHyNKtmjxclHLnTzCcpVW/s30MEYfR7F2XIkFZ+jhuAcMjZlURjrTmvS7sHgrRxvbdHgaiIzWBN3++e5m3DPtIixRUKmsQ+zAtD3tu7eOMSvgGDHAwJYEFaqIfrtp2gFeJsuK3daRZoM4pLUzyzjdjEe6fa6xSNIXXo2VaD6+iwnfeSSF3SJl4urTo7QqWcSubS/HyFLgDkYxqSbz2zYQw4YSTtPufYTJNNi1MX1AA/5F9mWRDAVfJDD/ZYBbL8f892H6nybjYL62n2HPyNvBIUwL1oBDGS4k+cM07VSJcpgBsuS19NTkSQZTdDQAplLksKJNlajvIDSG4jwy8MGY9FFqqqta8WSkFHOeKZ2lQLe2RFs3jUlGGegn+FDXefenAV8yrKXqCSaCK3Tqep/wgwMHuYs2pDvNJAAa2a4CUC76fZqsAMj6c68OyjNJApvTYOt8Y2eeEIokp8+obJpplzfK/Nh7rKVYiiUzRKh7WaZ5UtgchHamWe+D5le2KwLonSPmA4QIdR7l3R6QEnbdkkdHDSSywRWD3MVmxujnCIB3BAbCdDCpNNU5z6qIUmWzAlJ5sgyxDZt0aGw0A6UMCDGhxWP0YvoOVtmcoc1Tbk2Dwj5/iG2+wmEU5zZyijQvqYOpe/DOACSrillFOqstELZvC6QM5c0hk1RbWaa7Nwa486S8DpbRZI0xmCertNWkp5taK6ZV2SqK/PYyyr3aqhejxi4O6HnJuVj1YJDtHvAxQV4TpW+mpNoGUmnP0cYhdpAny/08itHEDX3u0koOwC6dLFZSpo5VonoZZQ4Z6nGcHqGUnz3nUX4ZYiHB2Si97OAQHUwxFetQoeVOCmSIsKQJtbTHNE4ntqpjo9C2HYcx7kwPZmL1bb5dsJ1p9rCfNEXu4QkPKlhrgSx0wiqQRUlGjJtw5mwD69G0f+w+t0ouLOtPWjvPOuY9w0eC/DkK2sY3wBA7OehZVklfUY5oRSDqK1vSHtitVdK4F0PNafoyQh9N1Bmjh0/wfmrEtIq/5BcQeaaklfYORikgwuCmAWnXw1p997EXm/JrE5DS52Xe16/dykmsTdMWsSQlZmnxdPI6EQ+yHdYqtrXgJigzxDbPqoiz3LIgLI4mbICMsGGjCqFJe857+XPPyrDqr4mt14l4AHczY3yS93r/coi7PZBmbfUpZLJikRb6OYLpWtRpooVZSojWqOjonPStCTnaGGJA2/jjHGErJhcwSYevOFr7mN23ZeI6gbLMo9zviwHWCtXDmGdu5Mn6+9YkHaZp9y17BTJkyatvkvtVAqdWXWPWnUfRN3H5NLOqwVXjcXYjui1HGKWXw6p7aPopVuUESaTFbzZ7to2tE4cZOK/YUKRFAKWzLDPE+hGgZ1B/jyDgURMCJg3q39H3LSEMtAGWW2LvZ7k1FASoatd9vEv3swkBtiL62Y8h4N9Cw3tPssw6M923NMt6f4+wPPzBJtTaNNom/Ywv6GubWB7Y8TQCjh1hGdhqB80dBBD7Ez3/Npa1+Np0O1jW+tvO8qCLLyOAY5ser03MHdLfJ3Xbz+rxv6jnAsvagNaW24mw+tYCeSgvsAzUNbEMYHbq+6ydGP19PcsDPfr07zZcZCvL7c6XJpNyTVuBDbSR81Otzb8sdw6kfVV6TivZOVrZzx4WWR4KYa1YVu22QmtGW/ONqQ74Vtw5UhxmGwD3sv88Bryt2UNso0jay0bY0IYxemih6JMoYyJZXGtrrukaW3umtXZJG3CdAjIYo0W7L6zQAsLeG6afJmSolQ1xmEEGNRjQKK2vCd9mKgVJSf1tIqytCZZMLGkiWCei57fFX3eLOVPMMUKflzEx1mBjAdaK6FWN86xLxgo0liTZd2HgRFolyUWbtYk2ZuhllF08ToQlX7SxRMiu4xFlOkSp0aksjl08jrX+Cce6gzSz5GjjYR7icXb7NcJkJ0bpZZzu88gAh9jBp/k2mjUZrGlcb0ycuMbblmBai5YV9A1gAHx8aexOA1A6mKSTSZKI3IhMXZS2VBsgkSfrmVMmUQL4e8sm0JsUCwjgmCdLjShzmkSDaJXbVPV+jvhY2p43Y8NkKHhZpBaKWrhLe6KDMUrG6GGKTnZwSEFqo1EvD3qzOMS0CXO08SE+6tvxdnDIg6sGPg3Tz73sxzqd4pRpUdZXgezXTbH3BpVYKpClhzGOsxmTaVokyXE2++dKgJN1qr8mQxs3qzC/MaCiVCnSwn72eBKM6dEtKqBVb/CN5ksLZH3cZu2DjRNuTR5pkLs88DdGDyNawhdWtEiVWPzYw/GXSVWZnzYfO4NpFgt7zdiniyR9fmo5iskF2PRWyxstjl0+l4z3f+ZLDDw04oJM8456nzqD6M1nkSFFcw3xYIyqz3fzZKgRY46Uz++rxIhS9Z1OVWKe4GIEBusKs8nlxrKMnvc8TbKZMdo56WW6Wij6tswU857cUiLpWW3GurOBKJYnJqj4tmtjlZvmoTH3DEw3X2MYTYY8vRzz301Eiza2thjDzbCbdqY9+Gbs88aBF3J8MVLM0cGk953GLk6y6H3YvezXfEZaeY3oJR1mwpQ0/dcOplinxJ06EQ6wi7jmBcYUteK/4TDGKM8okGlzDgBkau+UX7dF57HFdycaRmQ6fNbynWaWDqY4olN1TdbCBnLYvV8iyR1K4jAiwiQdyuZb8r5QOpokh7Ouz0vzJ1fAmpW5Yw56L/sYp4ttHNakVZDUXTxOkpKOuB7wlZthtnqkuk4TVUxkV5DhJ9jp22cNoJNkV6pz3UywSJKqtjVZe20X4x6AswmmreSwyT3SryxDDYz2bn3zNukEZDEd4LCvqhgQZTUHW9x6OUZEI/ttHNbjtYlraQ4zoAtmBy3Mej0rozLv4gDW/9/LqNeYMUaPUURBAhTTKSmSPq+iISwQaaOdJc1AfYgkJbYyzDjdtFTlpq8S9eyWedZ5sNBQ9HEVPW1sBbbzFnaLAKAFMl6TZpIOT5U1x2sPhY2ettHfUt2NMKsAVo2YCp4W6WaCqdW36vc44VtaLJiuq9M2Afp2TmqgmfDUV5t0Zswno2JP0eFB4yEG6GWUdfrwRVjCWknaTp/2lY1mRDPLHI6BNf0c8W0nFqSYJswBdlPR1l2p/PZ40NU0c4yBlCXvg/g+RpBhMbJ4FUlTIEuNGPey31dU5klh01NlmqhUi7arNkKJJJ/g/b4lYlhFrM1MLDVDgUk66GKcfo7Qz5GG+67qW3OLKlw8Qbevtts9YechVOYa93DQBx5GCV//dQLoVbkRaZluYRePcw9PYJqeQsGXCaz72eMB+T6dmGiixlsY8c8JCFhkbUR9HGU/e7iX/WxnkGb1qcZGs2TJwFqbMGdaIwnKdDPBFkZ4iL/iQT5LjCrtnKSLCUbp5dO8h2UB+LIGZS1+kbJW3XamGaWXQbbzx3w3NtXWGAR3Megn2lribm0hdg/bFNph+lmH0M+NObGLx32iEtFAVfR55hoEySUwMF9jbEjTBxqjhxnavAbIbg5gellW8Qah5Q8xQI0YccoMMEQfIxSUPZNmlkG2M0Un6zT5maCLDHkiCoCawDjgfamBsofYQRfjJKj44SK8iIBFQwjgc5hl7bpV+q+xwc7q9iOc3x5rLbYnENBtFQJ+nUHYY0/ojdnPMmsOBAjcCGzWf+/Vz7DBG6v1PV9AwKuTLA+ZAAHnntbPKCDg1aLu/4SekwGWxxB22gMIwLcJAdQGdZ9ZBAx8huWptV/U39cjIJ9pAK7Wv32VZRBuNcsDKqb186osM/k6OX9i8Ek9dgMNY3r+q/XcVun2ZyBxv75vI8uTe9tYHrJxAhnssUm3e6dew48izMDH9Bw26nGN6DFc+jCza9ZENLyA6eQa8NaOTMcTJu2YZypJy+BGXb9lMtx2Bn1wb0wxWx9tGISx5YQhlPUJjbXOrNPiby+jPh4w8MOKnGCDvlJSLFRwzArDU3R67TUr7mYpkCejicIy88za3QAVUE/4wpwx0oTxO+FZxUkWsSFKgPdrFud2MUGaosa4WU3WRVPXWBNZ8kxpDDZGD4CuBa1M0smgitybpIEx+w6xAxA9p0PsIEbVg57m7w0kNLaBFbFtMvCTbPeMQWv7tSFBIiWR8O1gFpfLZ86zVfUOu5lQVuSQBwKsHblI2p//Y7p2DjDki6MGylpb6wBDvrUur9foIR6mSAvWAt5Gju08yVZlm0iMWPNFonnWUSXKVo5g3T6TyDR4kxeapJMlhH1fIUEzMv3S2mRtGm+UKlt1sqMxHY8jk+xNx9AAUtN6te4Vez1DniZNDC0OFq1j4QF+nO9mnnUkFAi3ddOGHEhXTVGjvH5lh6zz25kkTY42T74okmYnT/h7zIrYx+nBJDkqJLChgBZb7+Qgptv1IT7KCFs8kDlPynei9DPMbZprXe+WYsEDY9YVZTqEJuifJc8eHiOOTAK2GGcv+zwA9STbz/vudnLQA+AG+BowaDmcdd1YW78VSKyry3I5I8okWaSXY/RzhB6OI5rOBa9pJmC3FPkHGPKdGyC+a6veZcY6tGfO2nNrRImwRJWYHxxhxItZWjwT1nIya2mf0UKDAXWmSb/MyBJdSRngkvDgWIS61+GzQokxoE03z7pdTGblER5kgi5/T1vx1iRUrOizm8c9cGW+2WScTKfQBgXJOtXs165RerEhl/Ycmn5cggpRah6YNRmbRs3CDAWvhw94XCJHq2r61T2jDPD3VJcO+SmQoZMp2jmJDf+0c41TpptxjtNDlSgTdJ035XVW/fNWhv37bIK4sNRbGKXXD5RrJef9+jjdnoVt5/5ZHsCm7ho2Itqico6H2ME43YwqMcs6elqVPdmhHXCNbNTlLqGEX3t6OO7vH+smAmEFfoLv8tcqQl1l4qYYpZcuJvx+jBRl3Uv2nh6OM8CQL44lkSE3ht0YfgL4e3SWtGqlLpIn47GdV7MrAug9TQ9xKoyr8LFR1O0BMSR5hjYPfnQw6dlgFuBtZ5A97McYfYa2W+vYHCkOscMzXJKU2Mdev0hlyVMjxgCHKRP3k2VMGFNosjFaKPpJgz0cp4UiU3R6jTVjUj3GHrpVA6RGlOOaGNrkFNMAibDEFkYQemsNax3Ik6WNGQDvRGzU9BwpzyozarJNNGsUXLbpUn0cRVQTYp79YYttnLIXOjZgxioySUrkI1kdvi3tr/OxFB1nnlVEuOjBMZtwae0j5gSFASnJtFF0jZFlD7HZPvZyhH5KJHlC262NSWQtmj2M8R087MEtc0QyMWvWVzKsNce0FQ5xNyDBcpE0Qwz41kSbVrNEhHvZT4wqB7nHC/UaqGjtfjadJkEZm6RZRkSFx+kSYDkmbTLGUJJR6REfqG/WqoBVn5OUOMJWD74Zndc+w3r/J+lkgi7fKp4nS1XbCW2qXxs5jtDPLC2YjoFVN2pa2bUKVxszfnCAAUQtFP3+AIy1J/pnklh8G5/mLgY9Ay+LCDHXiNGq7LCE6hEZFdsmbtk04XamqSng2c8wNlTFFqAsBf+MWLXoerekjs18L5/0C+RGZeqaALclRnkyHGSnp6AbeAZoq3xRF+ia/y5t4nSL0rKP04OxhA3ML2uAbfeItBqJELdNZR5ku08aNzPmh/ZYQNE4LRHwxQtjbxbI0MEk1trwXXzCJwO2uNaIeZ0fW1xNb2+cbq9xGaPKXvZxUqugBng3UWeRpNdiOcQOrA3d7skdHGIrR+higihV30qXpOSDTQtohunHdFZMGLiLcUzrdIAhfU7X+aChnWkOsNszH0yg2NiJNhXbWp0NzLQq+hg9LGrQcpwerSS/IDdLDAF9rHAbY3lAxGoEJFuvr9n0WdPQO4HovB3T1xuHO5xGWG/bEJAtj7SOLiCA10kEJOzXfX8WAcn2IsDU+xCArKj7mmQZsLJjMnDLjjWn70nrebwFYdJNsgwQwrIen7Xj2uu3s8w2NDByre6zU49xQbdZ1fCZ1rK8CWkVfov+5PVv9+n+v8TyRN9Cw/EWWNa3q+u1/ZTu/zYE2LNW5wICyJ1lmX14VveJbmcMyDQwBOcm9XNsCAnAOWAD171ViLOPvT4eMTF904PNKwM9rgmVTJ3N+7gQZDKkxRodTGmbkXRm5GhjP3uIUqOVnGd32WS5ihYmZVDOHHmybOUIaS28mUyJDY1KU9TYrIN72d8wDC3PHvZjE+8sRrXOj1F6vRxCD2N8hvcwQh82iKCbcYosD/Qy/eVuxr2AejsnPeMeloXRGydhVpTFsjx5sEqc5cFIdzBKlBpPsJOy9nRntBVZtK1lgJkVrNdpUraLx8nRxjrm2cUBnzR9mm9jnnUMsc13cFhL4Bwpf62bqHMXg5imnLGljWEixdWYL9ZbbHSAXUzo1MMuHUhSIONbkSLIpFxjthhQGNfy0FGN8e1+ke9d1joDZXdwSLssHvNyNgCmFzzGZkwvr42cxtpRz2Y05sgsac+C2cs+2pnmEDsoqd7RmK7D1j5uuYSx7tYhOoMGhH5Ju1pMcw/wAGo70x6wq+j3ZVpTm1Wj+yA7tTWz28fLE3RxkJ1EqPtpogUyvhhnMYYVsa2Vt0LC5wAWHxqgOEsL86zz4JvFCKZ5BWjeIhpTNkjEnt/PcT+TqulnwE6SReY1B+pmnFNfD84QuIXnaWGWOc2T72BUoaMpirQwxmZAADHzFWP00MUEJrIf0+/apqga6znFPBOauxgQ0c2E7zqzltk8WZaIcJgB7zMN9LAiigBmou2ePXPKk2/M34HofxkwYhqX43R76omA1N2MsdnnjQa21WnyRRDL/3dzgLjmGBXiHvh9lHd7AMRkF4z1aoPJzLdZXG33HuDJGI1kEJN+AumIMaabMVNNpmAP+9nGYRqn3haU0COgbNQDoBY/2+fYumbswqy2VRs+YGCP5WTzrDuv28T8gOEaBn4lqPj1StieGY9ZWC4+Sq9+P2Nee9NaOpv1M01GzEBEGwAirOoIOVopkGVSu9zmWadrj7Q7m99fHu4x76+7tV0b6NjNhM8z60S8FqwAXXIsHUyymwNkKTCrrFPpbEp7hqNJPVkuXUIGQFZIqMTE8mDWlUMuZWhGuuGYZI7BFB3ktZtHmKbLzOM2cgyzFSMT2X1pfjFDHpNRsML+ENsYo0fvoYqf0Bun4tdtAxFH6WVJ82SR8opzDwc92P9qdsWGYmTJe4qiUe8rJOhllHG6vdNqUoaXCAtmvbOpESNGDRtSMEovB7nHI6DTyHSuPka885JBHBJJj9Ple6uNqm4acitZG8YEFMBqiS4V5exmnN6qIOXD9HtaprVPpiliU1TTzGKTHNcxz372YGLqAvrN6s0jQaq1b8qCvw7TYbER0tYiacg3GEVfHhZp2ZKQaIJupYpOYm2vxhyTqYwVHWQQ47hWg6wq2cW4PCCr1zNCHzZMwk8lrg/6RDZBRQOcEWzIxg4O0cW41/QClDUmkGGn8sSqRNnDY8h0zyPYuGxjK5ou2zhdZCnQy6gGV1JVNsdi7THmJK1aD/gAbrm1WoKKYbYCwpCZ1Yq3VdSHGMB0VExrS5xhKyIyKyAWQHH1eh/0WhXL7olD7OBJtvtKjlB812Fjxi2Qi1Lz1Pgy0j793XzcM6FsIto+9jLNRl+pGmLAa9U1U1Ki+whJSn6BMVZgH0f5EB9lGplMOkEX+9jLkE4828qwdzolhMpumgbGnGjThd1aeGx8eA9jfrHKsKxXY9oww/T7RWmgPuR1gUyTzVhLBbKcZt2Vcj9vKjvFBrLkAblPHme3FyK3SlaSEn0cpY0Z9rKPIi1s1YldNkm5kynSqjmVo5Uki2xnkCUivgVsjpSnnLczzeNKQR9gSIsbQ17b0IS/LSAbp5scbfwO3+8DCGNdbudJUsz7gNEkE6y69l/5z+xnD6b/06g9agHOGJspkVQxZ2Hm1GnCJlR1MEmNqE8eq8S4h4M8wgMYC+QORhXkm9UW/jm/GBpjZhcHfKHIprFZJbCDKU4q0FYmzlFt+zA/ug7RojJdoihVv8bEqWDSCTLg5Lhft1qY9QWYPBnvn0x/pU6EAlkqxKkR5S4G6VYgwgc+FQQ8+vcIANTHsm5cGvgzBHRbQoCl2xGGXh0Bk+5gub20rv//GMssNCPEtiEA2ADCmtuEgHo5lltC18K5p1luQzUGYBsC3kV0/6Y5Z8zACNKuq/vLf5Vlzbytug/TA7TpuJMIGPk0AqQZY7Cgx29Tak0/8CTL02LfjgzMiLGsa9ek18cGZxQR5p8Bd8MsA4ptUB7W/+9juV04o5+11HDtHmWZ9Tikr6/Xzzqt/29D2IUbWR688SkEKF0j1+Dckp5DG8ttuIDmJNe1xal45pEVDrsbhnIZ+8ralGztNKaZgGV3sJODRKn5YmaWPPcoA2gnT/jn2eIFa/nrZ9g/pzZpdUxlDwpkMLF3AxusnUiKn1LVN8ZXB1OYHpElWDOaOFhHhWlCGQtfWNJb9FqUfRHTpAukbfQ7fAHD2olMD/BxdvsY8Q/5II+zG5MxscKbDa+yZNviMhF/r+raIbGWgWaiq1ajn2GyyqAUvaQY7ZykhojYb2XYJzoZ8p5JZ/s3XT0QIf24Fq1287j/fvPaDlbRIjsI0GvXzRLxRn07axu0pM9E00ESrQd5BBAdPGHOJTzr2Zh0dSJsYwgQVoS1CZtNqfSDDO8SSQiL70QbWwbkDTDEGD10MuUBaNOWEvmTwzKkTFmOWQpsY8iDxlZkFZZmq3+/3R9GerDBFYBn1ZRIcpQ+ljS2tcEtxi5pou4T3yx5dnGAASQOK2in0qQmrDZYRe7NRe0EqficyLoKrFNpiQhH6CfCEmNsJkerZ0GmmPNxwSJJJhUcsDjYWIwGmiwirXim8WuDH0o0c5Q+tqg+7/Vuq5WoYjG36Qhbt1iTAtiAjyNqypwDYfVOKsMqScmz+wzgMOBfZFEintk8Qp8vavZx1BfXLde2+yfCUgMrriL+Y/VNvhAgrD1hpkkuFfF5RjfjFMgwq+21kvtkVGMs38CgE/ae6YhlyPuuEtPktNyhsRvLGNiGBdSIMsxWogqIWb6XRwgs5g+WNc9bFKyuMUmn9/22NhlZQcDVtL93jXRj7NJlzeq4B7TsWO9i0Gu0p5llSteIqpJKlvOq46qXV8XkJGwdsum8pk9ncjMJKsyTYoIuZmjzYKZIRXTRzThLRKgSZYvmixHqNCOtssbINtKV+RJrqbbWW9N/NqafyeOYVqsVzWwdsU4Yu/9sOIXl1QawGova5MaMyQdC5qnTxHYGsQGClnvEqBHX4RR2/a1DKEMBm3Ar4J/oTLYwS45WrJXXBlIZtmLxvoCLBc/gN0a0AaOW90/TzlFl1ZpkRp2IB1YN7xpjs2pOynNpbHq7j43Z3sg0tcKg6OhPAVxdDb0F1vokRSYYbtW+YgHM7udzzJPyyYwJjGfIU0D0JOwLnKLTI+42fcsGOBhbyW4MYxWZ4CTIYn+ErTpyWR7oIQYoE/eOZh97aSPnp6YZeyRCnXxMHKe1DUap+ulO5nirROmuTmAaIXEq9DOMTdS1tjlz3C2KMZdI0s8R32Ih00irvr1M8Ouin3hTJ+IrivbwVIn5hXiAw75qYA+6CG6WFNCc1eBvnGH6eYKdpJj3SHxUgxlhVVVYxzyPR3aTYg7R3pj0ugBpBQIyClRY/3eMGu0LL5Bk0Yvz3sGoByNEX+9uXz0Y5Y6G4DFKGzPMKyhhbLYIoiljU9qs0pykxM2507yHz/jWDgvAZDvhhi0HS62e4my6OI+zC9MxyZD3VHObOlWi2S8mS0R4jD2+fUIEPtf5BTPKcs+8oe4ZpaTnyXgBY2P0mVaYMYTayPE57mecLrZyRBfErH92jP1ougAWHFqVziolRVp867BVCXoY862Pg0rPf4iHiVD3+7PWcWNC2kKVUHadAYC2jTBKs77nP0PeOyCAUiSJtWtb1cjEZ2X899dHFXaetRokt/IldpBm1vsHe342M+YBqu0Mer82qlqYJqy9SFJBoZgP9JIs8sP8hp9uZkWT/exhO0/SQhGbOt7o2w5yD63KGMmT8ZU7mS49Ris5bQeSibd2zzW2eEeos5d9/Bt+F9HcEQ2ibsYxTaI6EQYYYhGZVNhEXUHokgcrjRVtz/y97Md0Vv7i+fcyyHbKxDmsADzggza5xuLvDrCbsg5hqdPEMP3kyXCMXg6y0/s2Y7L2MoqxPtqZZpDt/vkoIdp2j3I/7UyfV9E1/ZKdPEGZhGeX25CcKTo82GnV4nam+S4+4Vk6u3gcm0ZufttPeB1hWVPu7QjQ1Mmyjl4MAeTW6GvrEZDqPgT4OokAW/2IttwmlsHBL+En3J57Wrf/F8AHEFZeHviXOjhjEAEHH2W5bfUOBMQaRMCtBaTFtB8Bp9p1H0uQ3a7brNZjvF+Ptx0B1nJ6bBF9vzHZMrrfjSyz7YwZaADgJnl/+QTLLcjv1M9ZA/wxAqpNsqzv9yDL03b1GBN362eg52SgncVQJ1lm0+X1WG0oybS+bgMwrAXZAL8zus1hvY5FSKzV148hbcLWivx10GVmwJBpDy1pZbtGjCk6mdNEEEQSwNZ60/C15FHkV+LaBlj18eTj7PIARx3RB+1i3DNlrbhrBVnraJhBBhZYTNXYamRt/zXt6jDmfZk4NljDdMRytLFV9Z9rRD0Lu0u1U03LrFFrtoNJTe6qvsArMh1bMO0gO79EQ1w0wGGspSymhYdHeBAbcDBNOyP0+XYvOSYp3pikyAhbfAwj/i7tC6N2TDbcwQqwllR1aqIrk8ynKdHsW/msw8FabC3RGqMHa0U2xoOxwq0t2TpBGtkldi4gwFs34z6mGqeLT/MeD0R0MOUHJxnD0QBBEKa7gW11jReNgScTh6VQ3ccIbczQyZRvFwZh3tWIkqGA6U4Nsp1P8j5PYjApC2sfm6KTYbYirKSoByqtndtY3N2MY5NKZY3e6bcTaYl53s2j2IRNAxkAryn9Hj7t9ar3sJ84FYqkPUAhBayaZ4CYNp7JGpWJY0OgtjNIKzmv85ZkkYPc4wtfdu2aEG0+iw9M5sW+QwNcagoumNxMlCptzCDa6sIK6mZieT28zm2BtSSo+IGMAoC1eJKCFQ7MD1h8bc+Zgdt9HKVMHJm+mjkPWKkjk79hWUIgpxzPFu34qBLjKH2MsZmMdlU0ShEUFIQwP9Gsz5TlUVagzdHGA3yWNnKM06367BWvkd/NBGUS2DAg6+axzqxh+j2QbnmGTAKXCdFpiuxhvycJWN5ket39HCFHq+8esSGLVmA2SQG7nqbut1t1OQ2YsnvRmMBSzG2iigx8EKJQjEd5t0q3HGWAwz7HTyBddxUS7OaAZ/zZZ1gMa8AXQLZa8N01IkWQ90w6i93jlDlCPzZB3LCFLpXMsQ4aY3I2UaebCd8taTr8BTIcYgef4P2kmPcSXZbHmaZgp2Iz9r3b/SC62K1M0ckhdlAhzjYOq5xGVDsPKx4gNBac+f4MBTqUMWhrmNwPos06rkU/W39lUN0kcaRbTzQCl0FNa1u2dUvyk3XYhOV+hklQ8YBoinma9JisYy+vJAeRMhDfFqWq3ZyzmPyAMUtFF3fJA3PSFbUMiMt6XeF+HqWdaf8MWnFmjM08yv1+OvsSEd+1s5Vh0koGWiJChlOX5E+uGEOvTNyzn2w8tbRadjNDG2P0UCHuk0DrZ+9inCEGsDaEHK2M0cMg2337mIBkVU9ZtYpcP0fIaGOTXIwm/QKaKdLihWTv53MAfoCF9c8bGlukxdMuJ+jG6OX2hVlbISw7u3JMHswmTdxtshrAIzzAGD1eaNY+z8A0u6GMPSZgqAj+zpJmmnZsgpRRbKXXWyjZlmRWifIk2z37y3rMbdLvnCLmgAcHkpT0Rqr59gJLVqUNRCjbUa14F0lznB4qiAaM6bBZ62qEOgfWvpMseVp00TlGr+pLdWtFuBnrkd/BIQ8wmFmQbLThImnu4SBj9FAk7VsLAb7Y9jbyZHxfvgUZBuK1UGScbpaI+Krffvb4wOP9fELB0CESVHyF2/QWSyTZz73eaXQx4Zl2g9zlwc4YIpRvlOGcVmGm6FCsvuKPqY2c10mw79sqcnvZx24O+OufpMRe9vnJmwYoV4kyyHaG2IYN8RCGp7yeo9VXr+a1ttzFOEazt+pWljybGcMmCudoxRgNxo5MMe/1ZUzrwioJVqGYpp0Z2rzDs/txig6yFPzEKtFmlCTt62UoxiLNjNLLY+xhhD4SyvSy6XUWvEkSIAuCgaRN6hdEqzPrKftpZvlDPsh+9vi2K2vZrZBgK0c8MJikxCHu1laeqq/UT9DlGSdP6uAY8w9H6fOAWGNbbQ9j3M+jHkwzrVNLZExzFFCgueYT2M2M+aTX6p8WRPQzzD084e/3GdroYpwqMX7g5t/2QKMkCieVuVLlk7zP+1ILOG3ojwWCjZT1Qe7SBFwWy3s4qEm1+DyrjgGeGWT7N2aysO0yPMID+jl1DjNAWofb7OYARxRINP0la1OIUvWM2uMaCEuFtAXmEbDtCwjQdRYBfSIIgHYCAfGGkdbaEwgb7DTLbLSqvm6svmEETCsgANUZBCyblv/feA8CcJk+3Zf09z/TfY7ofptYHixxBzAE+S/oZ72ItL+e0P0Py3Ges2m0EZZBuMfwrbPBSeDPEQDsXXqM6/U9VT3XEwigNogAmmvghOnX5eS9iQHdRxb4HMtTeK2NNqOfuVqP7V9AsIS049pU2pher9sRYLFxMu6L+v875LjO/Yp+/l49N2P1KUvxxWP6/7v1HExK6CzL4GYaAT8H9G8bgOWuoOvW5lnLON2UVXXJfIyxAxYVtLP16Tg9RKlyP49qoaILE8C2SrexBWQCbtG3rVgHhLX1GqixSJKNChyZRIethTbxrp1pHuV+H2g3ghU27fS4FjeN0dutsYEVFZeIMEkHi1oAMX9oCY9NOxRwrRkZGDXLPTzhiyElkl6LCfBMws9xvyY0Zc/2rqjWUJk4LarvCQKmmDSApOki+9Kms1zNFxsLxOIeixsMhAVpS+pgivt5FNETjpGg4v3umEoICFNnG3MaG1ox0LSuhtjmwVET2I9R8yxx6RaRdWUzYxxRkfhZbePsYIof5jf5bj7OPOs8cw8kSR5gCJsybLGUaQlW9MoJG0i+O2OxW3uuscWWW6kK7OCQ1yXLk2Ufe7HOHksoDZTYxmFdU5awqe7CaBKgyopCLcrQMOaIaa62kfMyLAZwCig96+/tPo564MEAT0sWRRIniklvAH4Qy04OKuu8iVn9zFnSTNFxXmtXC0UyGsdnyWND4PoYYT97FECKapItbFbTdLZ4XFiLk/6ZEBBPjs+Gr6W0EduYPB1MnVeYv55tktuUsCLam6KddVSHfYl+ZAeT2NAzgLs0rrNYBPCMVusyMvAd5JrHKfvfuxhngCFEDzLmCwASL1aoEfNFRxtqAzIwwPRJbThBljwFMnyJHRylT6SUzpzSeOmo1y9t1dzBnlEQhrLp3dk9nVbg3PQZzWc2sg2ts8mAE2Od2RCDGDVPUjC8wMAoOzcDGKXNW1rcF9W/p5Vws5kxZjT/TFBmgi7fCmqApw3XaMyRDagyKS55RqQoYpJfOVqpEvXHP0+KfCzjmWVxyp4xZsBTHyNe4svyTitmSdxa86zLHRzCNBIBUswxSwuPs8u3O0ep6vHHfMw+qW2zVrgxQNjkxwxrsetpxRop2MR9V5vJAFhnjQ362aZ5tlyDNu+fTG/T7tfj9CDT4bsBwVlMX9AwGAPYNjNGhDozynReZlo2qyZp3t8HVsSoIC3U1sVp360dr8UUtr6DDLrKUGAXBwCUgFXDGI7GoIwp/iJs9VlPZBJMYYkBhigT94U5IxtZ8SjFPEMM+PZ1keyKXpI/uSKA3npOk6ONfp18avRNS2AtobPBDiBTVyokPLMuxbx/6BKKUAOeLWQIt+hQRD3iag6gU9shhLY+ww4OYWOpa9oCYYuitUsZem4PhyWJsCxIbA9YmcR5rD/pw9+imgGyKFpQZDoTAojJqGp5kJe848qT8TRjqzDLfpu8gLuNQBYQtMfTl22il7UQd6t2lN2QAvg1YZN2Wihyl7bq1Yh51l+ZBAWyZMn74FDEO+O+OhKlxqd5jz9+a9UwYCfFHGWtbBirrBGhl8nEi7Qxo06y2zt5C44WFYgapt9XbEHaFa2f3bQTjdIP+KqGOQoTPh5gyFeKo9TYpuL2NqnWBmOY2QJ2nM3EtJpirRFWpRfXKYuHLVjHNIiRakDZVyeMMmxBWYkkWxn2iYT05FtrXpOy//IK/aa8RoO1Jh/TgSHC/GmiThOHGUD0UCr0cZTtPEmEJbYyzDYNbicUILQR7qaPaMLNFRIMaCAaR/QJdnCIqp6rbStMvEn/3NpE6QwF8rrQ23c9RQf72MthnR5oE6hsEtPXg23glA8SbKiJCEk3+efTpsjWiXA/j9JCUauTohln01l3K2jexgzv45M+YbHW7IPcgzH62pnmCP1YSw/ANBt9G3+cMuN0080ENgl2gi6vixGjSis5ZbHJ5AOZCNhBlrxvxbeW2h0copdR+hn22xrTwe5NWfxlIYyw5AMLYwhYC0ArOQ5xN0lKXosKZJKtTDmf96mZBXq9jLKNIWpEmaTDJyKigRlRtsai+reEb1exdqxP8210MMUeHkPYK32eyZOjlX3sbRCgr3hmHuCff2M17uCQn1RmSbu1hAzTr2CBCKhXSBDgBOjJIEBPJwLibURaSoehPIkw5Wwq6io8ywybKvslBNjKIADeSZbbPTciwJmBTGsR4MwAqBO6j4z+fy0CpA1zHpBnE2Cz34if/Fr8MssTXvXnxjX62ej70iwDWifBvYvlibPD+rlLup8vIkDbGj3X7XqOTbCpX/9m+nZn9JodY3lQRQzYBOesrfcYy9NnvwDu7VA8op8dYblV96t6bU6yPNF3Qf/V/d+4HgEec3otJ/VY3iLbrRlAgEEDPLMN+2vXY47pNu0sa/5dsfLqm8dSLHg21A4OeeacrfOtyuzIkPc6wElKPpmt06Sss4pva7XBads4TD/DvJtH6WTKMxKMBRbXFUyANmkJNFDFkgIrgJnGrIGOpstsFf6MMottcEWejI+hbE1OUqKTKX+sVjyuEqOfIx7MMcF3a9+15GMPj/kYR2Kpk5i0y0ZNfqsK/M2SZoweHuARmhAh/N0coEpUQZsZ7/NNa0kkTOJ63HGWiGg7lrD9jOGRRybz2hovQxcyjNPtAQWLvQ0gtG4LO2/TAtvKEQYY8kV+EODIunKsxTRNUdutsl5/CZYLtWP0cJhtWkCt+uTX9muMditcmZyDaNwtD5SwdS3FPP0Me83mCnGs1Uz8toB0g2wnwhKmPWfx7Qh9ngljCWJeYx1LEvfwGCB5gU2EbUyODaxrI8cIfT5+N/DXJphaoi4ggsTlNjxO2v2EqXKQeziu172qTCVLkKfoYFjbZ6uIzqHkHc0+D8mT5biSKQSMneMofSQQLbEU86xrYLoMst3HlFZEtBZck/2Ja8Jtxew0RT7B+5mgi80cR4bUtDLOpivohd48VmCDz+WMAFGkhSUiXnfQBi/KQIMlOpn6/8n7/9jG7zS/E3w5lEWTJdmSySFHmlaFMmVpSteqlSLBasiR2xUXpoBq2GhPPOeZyU2QBuauF5MFDsEecMAuLgcE2Px1QXAHTJABGphg9nayTjzjho0uoAblVHUp1o0MaaUr9alGsmhpSj3SkENaKlNFmbTYvj+e5/2QlQWSPlycdNwECi6rRPLLL7/fz+d53s/7R/hVWoDYUHy/6lmNyVyNe0zAkYgpkkpasEzn9yQLr5Kl6JLNDghWcqDWghV0vCnO+HXe4td5y4aeF74W/97rdaTIKzUyAfaZjYClgSq1V2ynQQexBe6L6awQSbMCsnt3k6mw02rRSy9NlEZtljK9wfSSlNFAwSryxhOppuMfWAhQR0QGsH5HPfIAx0hmqVRZPdfUWwN+bs+o0xdECCXrCsDPUOWAkRgQVZ34dIPrj+EBAxwHANtDO1izki1LmZLijGUWgvUo64c2CWbYYIhD/1xHSMYtRrOFndQcQGsihZwBaOd+f6ecFNLTRVI6DpZalioV8mwxSdnZonXMK9t6V6vldV63mYi1Vp7h5sU6GixEqRZHfbAmBehI23pm/cx8UkcdxzlFNgZSP2qtlbLHjjGPksZrniQgMFiYhMnBO6ExhiXZtWNKgnQMhi65r58xbvNBfujnNIaCJwzSpgf5IwrkVFiW7gWt1x/z3E+1nnwpJaQmdroZTukn63T6RZZi6iOPjyRmYLzKXIBdatSGOXIW03GAKUK59ykEyNAmwW2uxAnTlGifAtKhW3NlfmjDHLHKHP2cRqCAplPdktZxthHbaJmFmEZNcS/APzGabJM7pkyOVQdYNHWd8pRKgMKjPydDlR6MEXLPWTtaBOp+vibYjiho0ZotvKEPGbXrQgeb0sx7qEHFfz7CQaRPdTO88lQCDBT7Ju+SSRllqmFXooyKt3lW6KXFPB/G7+vfwIqjfUaDLmxTR1scJtgOP5w+/54F0hpz7RJgEoNeZ8ppWjLNBgeM0CDNdW6QpBnnSOfmmIG42fs5ZYV5qpjZrDwWlaYLcIPrQfEWAKkpPPAYMFny6bEtaK3HTJu1iJwwyCFDpGl4xqwBXxNsc42bAWKruJ9rrlJgLzYPbShtemiQChB1g+nwG+mjHsdkzdEQom2fMOBSnvOgN8sY1iLg0+xSRD4JmiAJIG2QCiBVGybgBXzRgZ/BoK3blMQAwrf524iteU4iaPBalNskYnJjic4P+Xl4POCvx3lWel4T845S0ymZhSZ/lq7aGxP3XBdDV+uTioc2ljAHxMQOCOPpQ4ZdPnTo8v4j5ljlDf4oGGjDHDHNRtznE2yzR4FBjCU7xxrLLMQmJMalgDZ5BMq/Dyyco04/N7kWm+QBI8H0vcG3GOCENeZoetOqdftD5p3lbJR287QwJq5A5QxVXuY21/lBFJbyvgAD/6y5OEXBMALZNYwpMRbNrozTS57mPc06dcyIeIYNZlh3A+EmlmR1jyQtRngQ03QVHEfOLpFspYwlDlpDbh5ca+45Ix8XEhg49ad0ElB7MNDnHNJfxwCyaTp+eH0YUPQnGDA0iwFYGTphDJLN3vT/HwVkHdW096it+utc8NcW8PYIvpB3nRJlddte8mO7CJkZ//kOHTafwMhVaDzCWHwf00l0VciGfz4+gM/Xum4cyXGf8uP8E0yyq6CJsr02I/5ar/l75jA/vgvw5N/z15n383pABH9kXsMATqUI6zh+6J/FX7f2sZ8PBVn8Gh2Q8F/78XwT+BS++IiOJDnnz5n315V/331//Q8wALEJDEDXcvuVfZzSxyyr3GcyJupiXzRIMegAjbzntpgMGeldXop6qE5fDIr7qTtbylgekvIKlC+TI0fZ5aUDMQi45/up1iTtUcMcIguPmq/LAnGucRP5SdUx+4MipWgq9KjTh0zs1aRYAJKxPRQosctYMP5/wHX2GY31+8yZdlKvTHI/jqdJEvNAtaZaCgkw6WWaM4rsBlBoA7UsSm+cZMvDlGyodMIgO0z4ADEfnsgZatHYSy0huwfZ5Iyxyx6FaKIV+JCmEQzta9wMNYaUE20S3OJqgETnJLjJtWAEaggKcIXbTLJF1d9frPYNpsl5bd8N/MrGZp4P6XXAQNIymakD4bOYpcYmU0E4eIfXUZKuas4E59GTNFyBI6+rv8fvs8AyV7gdDV6SVuyL+1ioh4zzTxhgzc3SBTLIXkMMQDXqUkeICaom3kzqc1EHVMhxlVsMc+QdUpVtJjxdMkOVbPQnDdKMYCFTSuicZY1hjhhnmxtc5ya/wh4F5JUsv1gxzyXdlEfkgO/RYqUomVifwwIvSmwwwxKLUfdvMsUuY+4iZkqeX+bP/pOsR/+5H885+65CnmUWAhwFIkBGliRZ7xmXWeCU/qipkt4fSGXTRz1Sc7uZaeotzBJkNGqbmnvJmVm/WTjNuNpIPUaTZAw1ztzGSJLeCbap088xZgugmkbMJfmKiSgDBLtQIXlGSOkJBZBC9NRrSQkn1ZrUZQ1SiFVcZJcXWGHUX8vUSPZ+U2yy26UO7FalGGBzGGytfUZ5mducOdiuXu0VbsWwepItxihFmIaYhhoUiHWowXGeSvg4J2k6M/Uk1jMwcL/kHvJi1ikNVuug0I1lFqLvln3FMEdMNLcDJ9EaaWnE5S722SAN0uwwHqQdsZXTWKJ2d6K7yFW2J/cG+KZwTvnVLrPgxBOzQpNnqkI8DhgJpt+27zUCGpWgrYGE2XJU/1dM3bKDqVIgriSMhS5puuywlIQMIBuNcx/q6/o7YpgJdjhkmAq5qNcbDjxbrXHOHbfx0P6nxHeResSMFft9kJPYL+1+SQcBqkI+mPPmPdj0YdI68vVO0wivWdUCwq3+Q48vBdB7ikZcyKL5XvIUpQm2mQlj4h7WmaaXFveZDCRfvkpCyQUSZKi5GaudqBc8EEH0yxa9KEJd1G7RGU8Y8FSqhk+kMj6N6ENx0poC2nQqxwmDLLMQiPIUmySbLf9Ce5hjle5kWHncXeFOGCne4WV2PEJ6XHrxp56kRTI27UFHuAWoiXqsJEdNU1eZw/xNRmOCKcS47Bv7CvNhetvtm6abpdtXIEeFLFWUWJOjHBu/qNJipYkJ1E+dq9xig2nMM6UaiyIYeDTCg5gCi3EJhJ+JpkjS6as4lGxFTBpJCtqYd12dPqbZCJBMC06O8mPmzvLzk7/OIMb6M1mONftK4zRsvuLA8R4V8tz3wiqFJZiJvTnMYSSkSUrb9qm2fFHsc1hxn6HGGKUwPBXFW/48uxTZTRYDgBRbSXTdeU+Ja5NgnhUPwrgX7zvSPHDAuYcpNqPINOqvfcdVMsF4yFBjinvUyNJLkwl27Jpt2wYoM9cmvSGR0WYjFpkaCi2cyyzE536JJRQ/XiMbzIsclSjuVJBk2zWe4+MvY/n5mXv8ovtYzrCB5CYC5g64yLHfw7OsIW+KBZYZ7/Jo2GKSXYq8xZvc4ioVcs4w3gyqPdig4oARprgXoFK3fCtPmbd4kzJ5JtgONirYxjeM+eUoQfw2V1hmwdkTR+FJp2st754ZSiI78m1NoTcqFow9bIyQJr3sMfoYmKW0J0nhtEGL7i6mtUm55miRZJPLcU9tME0bk7jlKbPES1TIxbqSdRq+pCTyH8pQ5T1eJUUDS//LILNfS7waZQRLnj4nwX332rOJWjam4gX2g1lxk2s0ScZ79FNnjlVGOOBt3qCHTmrwNOskaPNjfinCGBo/wphdIxgAduj/fxEDgO5jINQmMIRJOYcxoOlTOqESzi774n1/fhP4Hh1Q6SkMRHweMr+BAVEXMKCs5u/3NDzxq/56SqBVGMRDDMh63o6bnL//ZxjQtocBiHlIj9BJv32RDgj3CgZseWrsk8/667zir3PJX+OB//fP7Pf4CPg/+7/P+Wt/7MdUgR8f0gmlaGIA4iP7bJ//Y389+Qpm7Bjp8T+fYoDcjL3nedt/HzoS2T0/zlF/73ftnD6R8XN6iIGHOQzUrNDx6Zvz9/mGf4dJf71HfOUfksX+Jn+ImZEXYi/MU4lhlTxXBzjxAWIzmi6xApK0mGGdA0YY69r/bT2Yoei1xJkzIsSWVSOqREXbO62ZUtMhGdWY21TomMSkACvI5U2U9aZJthUDnLDLWDBKJKWUH5ae16I3ardu1r724hwVthlHvpzaN8yTZyYkvfJTNVbLkCscZhxayQaoAh0fvXFPPDzDwhem2aDEGHsUou4AU8HIP2qLSQcPksywzhaTrDIX0iPZ5ygZUgPvJV7iLoscMsw5CXYdmBV7GYx9cY2bAQzqmAUoKKUzT5k1ZgFCqlt15o/Og1hL7/Eq5vVk567DbEyGd3Sdfu56sryYFi9zmysOkAIBdOYdwJTszWTGZnujRModB0M1TBvghEW3djCPszySuwIRQDXKfniMTXi9aFY4xqSRl5WxnI6DlWRD3HIA4Op/oGN7YUM7s3rZ5HKAmjkq1MjwLq+6x6zJXifZ4k3eokWSU2dsTbAdYVAZqtGoHjDCNW56InXFpb1GxKg4UUIsH8n85DndJuEs/nsBYBXZZYyPvrQ16Gfp8SyfILuoAYyRLKC+RpZ1ZjgjzTmJsFtRvyugFQgwAwjgxur33gBMDAQZDzBG34eUMn3UeZdXAau3FJBnqi9bBw+w4DVZhahX3vIBjQB1hSKKZVpy2yMxoLUWasCh1wPc8zGLPDXzlLnn/pkC/lRbimG2xCInDLLBDPeYIum6IpEnVniBCjnOSTDDery/GNo6tu/x28HCE/tVfa8+n6wUyuS5xk1f0+Xnaj70SnzttrgSkJajQoqGg/DWjwqXSGG5AwIGBc4bgGSgrNZxgZ3WizYY4Jh6sj/2Oe11wgt0rex4LyC2piTMGoqozxUTWIoXY0AmKbDnw4UexBKWRFg4QJUsPbS5xFYM+TtBFZmw/1GfrLUgTYMxSsjf0dSQqVg/xKwzFp/lDShvwYhiZi926kDsFJsU2A92pCy49L66hmRZJZ9svZfWrwYpFExV7FJAmm+kefCrBxtpHwQpDQxs1Hnpp+7gaCM+q2ySjukEY+gYjbE8zC/x459qPfmSQjEGQ4JpSG0pNNpqEt/izaCptkkwxCHj7HDmrKSUnwx5QYhSLPmpABU1jGrYLnuD2yAd5sS6KSRj6/HXvO+yNy2mQmUHMONZPT8VnkxttpMTrDMTF2aCNhmq0aAJ4c1TJkWD69zgBVaQ1LJCjq3EJJLX7VNgnB1aJBlpHgQgtUuRcdfhD3MYEhKBYQ33H5xmPTbVEQ6YZZVR9mPSpuMz3XgqiidJxQT0iZZ8wAhZ94KaZZVpTzGbYJukT0+km1fDK/BRU28BRmVyToFuBZNSEmN54Mi/SmajksUo5EHAnII/BDRZ3MVZsNlkjinvBJmbDnMUk3ggznvdJ1x9UUAPoRh4hVsoaQxAxtHy8BO4rIm0FiXArwdLdFKysaZLZXKsM80K86GR17V1n0nWvGNUw6G0Ni0SZ6TDUyf96Cc+Ye2NSZ2AMzP7PnPzYkuKnmnrfjhkgp2gad9LTJGlyjbjrDEXhfOgN0H3mWTy4UcssBznXhvQAsuANQfymbHJvF0rFfeNkPmr/H7OEwlOosP9aj+e5ROULCZJ0QQ7AdDrocJcPk5nWIrYba5QI8sV7jDLKovcjQm5PBNFLZcPjVgtulbPSLPKHLsUWeQuW0yyzEKw5GREr/VrjBIvscQ06/w6b7FHAfOkKzu43s/rvMOJT2Ur5KmSjY1Ia0aFHGPsYomUF5EXhhpIFScyib3HFCcMsOeTWBOf50NadoIFIK37RHqfUZQwaczfUc5J8BrvRhP8z/gdAOSNscI8v8M/I+vnZZsJNphhik3KTpE/I83v8V2SNFnxSe6ON2xKo96lSJNkpFurUR/3IJFJtoLxccJAsEx6aQVwKWnEU3wWfm7paQyEWsEAsIsY+PQZJuv04IXPD4AjAgwLUOsRBr65RPWJZzCQSYwxMeQE/Ok5Yukd+HN/gAFbj/x9pzEQ8E/9udf9d3/ox/kNOmmzTSgf0gH+BLy16YQ/rNtxNjb8PYb9dxTa0fTjEbNQXnSPMLnqn/rPBYBKIvsIfulZ//s4HaCyG1Rr+nHc9N/7yI/z63Skygr20Dn/xI9Nab+f+uvo+WIbfuLnoObvl/Q/03SAuyYdT71LwE/871/xxyc8i/y+DhjhQ5cwSqKjJlH1njmPdSfxJVllNsCNEQ6CxX+D6y6JbPvQaZx+TkP6MsE2q8yRdYmTABwl06doxICq4YPJPm9wamTZY5Sc13W2/yWjkbMm7Qz5LMsI3kLTkgFsac03RsAR55hVyz4FipSiYanTT3dStzzu0jRY5C6bTIXlxixrzviaY5MplnmRDFVKFOnx2lhegQLgVpljmKMAE+VpvE8hBppqchTGICDwOjcCPDtzppcSOqUKMAbLLhY0UfGkQRsXm4+gtdwCd1aZC1aleXR1hisf+EBJQ+ItJrnkwU+6Rnpou6fwXLBZgGjQMs6IlLwxSTO+lxEOOCMdEu8mSe5whXtMcZ0b4TFsYXrp2CPE0jxkmJJLo5I0eYEVlEQJ1szvugQ3STOCUWZYZ4p7YWExy2rUSAOccJfF8AnT2D/j4EObHvbc804Mf4X0GShd5Ap3GGcbmek3SEXdBwR7fIjDSIiWN7YYPQqwkRxc+7oG8wLXBTKq8V5mIUB59VS6/hoOIOv15OM15qEeB4zwQ678J1iN/vM/xNqteI0jdYHkmrqHgBh6qic+8/pOoJuUbPuMkvWeT0wo1SBg/bAGpdAJeRHTSDJsDUbMQqnlQ9Y9JtjxAIqNAIky1MI77RALXRGIoVpV7ONDhgOI2WIyetExdp0V1xcA2DILFCmRpRZrmNiDWe/pX2CFaTaC0bvDBFKeaV0QgCdg0dbb3SCqiJ14jZuhlFNoYcMH1eUA385inQOC2Sdml2TFJqcsIr+0Fr3sMM4tXgkgVEQk83ZLO6Gpwq6v3Su8gEJqdH2cOwg+RikGBxq23OJq3JdTbMa9fourrDJHiSKX2GKKe0Gw0R/5potBBsQaPEYprjPzKrRQKgG0xnbbdtZoX5wP+e13ehuz4ZllFQVn6jUamPWTnfvLMcATMUEA4BCHsbYIHCuTD4JQL60IJxlpWp2toEudFz2UdwAEAc2+83T0rFrHZUMgUo7OVz+nyJrhhAGqCatTLOQ15/iVBQdtMhXDKvmjAsHwvOTrrawlNMgc4i9/qvXkSwH0/j8ofbEeNEUVaUoSzTkFtYPCG91T0guTYfWyxiw9Psl7h9djYxDbbYLtAAmKlJwV9IA8ZYY4jIJMtNxVZkNOMctaINFiM4nqK288vUcvLTaZ8gvJItr3GXV6qjWVuuBk+Aj4TZ51CcFoLI6bTMW0VqjyfrIQjBlR4UW3F6Iull0P5sdmMjHrkOTRBt2LY39MRcUkyXkhqDSgM1JeNA+GZ5QmjTKWF/BliL8197YgnVNklxJFqmQC9Onn1D0LrHRbYhHzZrDFbtaBpwJ7nJGKzTzfJTtWId6Hmf0Xu4yPm/Q6tbaNDGNV8IxRiqm65HB6bZ1fK4RXA2U34+xexBBtkmTeGaDv8G0ktxBrUou2CkLd0JJYyB9MkyRRhMXO03c6zCHDbTORPvbNrkEqpqm9NBmjRD3RSb1Tsf/g2V9A3gEmC2rHRmHASl9cP2kaNBLm76OIe2Np7QQgOc+Hcc4FfPTSYpyduJYXucsiS/EdaTJtG/hxbG59vklkHJCWFFQS9E0u84tuzv1VfzzkmfietphkkaWYhhXYj6YrT9mTapsssxDegzJFBlzKfsQf8pukOKOf02Cb6vp/mTv8Nt+L9zNj6n3q9JGlFsCaAHxFxzedLTLjQwJNQ/swyZQ8Hoc5JEvNAbd8FBVLznJQs661Std0kiZbTGKpYJu0sZCZGZe2GgOvJ9YG+VPmKbPjoJvu0cts8jK3kYR1gWWqZLnOjWgapth0AHSJIQ5DaiTZ3AEjrDDPq7yLpCgNUpTJBctQRawxug0QVGqW1pljBmJ9m2KTrLOnBzjhdd6Je3+LyWDhDHDCdW50DbT+Es4w4OdXgEfwY4Frz9MJupDctQJPfp1OGMZHGPg2jQFRexjQlgMuwKcfYCDU1zEA7DP/3WsY6PQJfK5wiGcxcKkPA6UOMTnrN8AdEfjxAfB7wB9jIN+q/54HQ7AB+VH/N4FhI/7ZEv77T9mf9DeJgItI6/2Ejvx4jg5Yd9+PUaCYB3eUD+mAjz3whPz4zv0z/Nf++b8BT76IMQt/6OfgAnyx6a/93/jPHtEB3zJ0ALmyfw9l/9k5HRbhsB+Ts+7KB13f2yP/ffzv36XDTFR68JN85R8tl4HJILxJMqSpxiTJhgXILkVG2WeNOZSyuMAyp/SHwmGXMW7wLQ69oZC6Y5Itlllgm/G476fZQJYaM6xjiXo2XVcq5zwrEYh1wiAfMu9WAwlG2QswCqzGUoOg9UNyHDGd9Ll2HdQoUWSVOXq9ubB94Rh5qwKxr8rvrUQx6kkbCucDjBRr0CwHzJ8swTmn9EfDkHNZm/x8Txhggm2WWIwhheqHV7jFIktUyURTnqOCBcs9jjiLeTDGbjRC+kyPN0cpfov/0b2m8lHDgTX7lpQ7wSn9cZ5OMB/VJr3eTJuNzRT3WGCZi85SMrZQD+POHvtN/icfxlryryxC5FUriwj5ZllzdYx8mraZYIxdb05NjaAatBu8EvvlJtdiuJ+l6r1ET8jC1JQZYzzvjDjzqzM7miOvb/NRg0qG/qIPR80bdxFJr9v0IJaTmmQ95xVuAcZ23KfgrXfTWUOjJDhnnG0apCmyyzbj8b5g4MTFLiaMFDTdjDq7ps3D/C6LVMj5IG7wMabVsfdcCyzHEH+DGfcnNMBKzKCmM8kUdPPz8vgrcqGyyFNhhfkAySW3lSRU154BMKcBhEhyXqLIkddaQDDLlNh5wsBjtY/YwAX2uccUCc5dCt8Tg3gAWSSZzZXSaZNR88gbTAwuMccEjICCDvtQiugJA+EPpoHFONucY7ZYUimNUaJE8TEVHBA2RQLCwOxmAF7hlvcnfXGdqa/v9mqVP6hYhxMORqr31L2Y92EN4MqLobheJVWuua+g1HXy/GuSjKG6LIpG2X9MhrnLGCOY2qoWwHzWv7PB+L28C96VCt1LCwVrgHmRdoP1uxRZZ9pB2G0GOHZlVQUpTO76dwgwxT1ylENC3XSiiNZysXzL5OijHsCoSFXykd1nNHoC2QfoPJedxCUJ7ij74ZMrm6hzTJGma2PIwf81H4YpUVvfx1CokCYoOjFBTPKt5GT04hYgmX/s+xvmyMHuwQAyBeQJmxKImeCcKe7F9ZSi4Rz3cUoe1tUgxQ4TDpInA1jUsQoTU0+UdgKTydhNESh7jzPSmBVbOdbn/9DjSwrFsPCGZRaQZFTst1P6UTS8kN9txh+7+QHHMAcD3Zd2GohpneRbeToBAka/PHX50+XHQjNUsNUc9d13aYGMPo3lNehy0n7uMUWFPBtMI1ac2C5lciHFVGLiAJaEqAmW9OO68bNU3V8j5ZtqigxVjv24NU3RRdQx1OwPgDFPmTI59ny6Uac/ZKEbboCvCHL7t6pPbKwBX2IxvAPkyaEb1VIsDbzRsfb4ZPiU/ripLZraLs5NZ9R0e+kp/EAbSoN0eJp0fBKSMXFSRL0WQTXSeg1d6GJk5qmETEF0bXmCCCXX1LPlyLekqPInUApym56YuAvk0tSz16c6c6yhMBMVrDIlFlAzzTpDHFJklw1mYtIs7whNg6bZCGBWMttqIuOTzx0SWGqZEspaJCP5WRJBLW73nf0jg+5txmMR7qfOleYd5LMoTb9YeRtMx+Som/Yex4QZhsuL4OCZX6Tw8McOrEz7uT8L9lTDFx8lBQ96Ud4gFWE4OsYaWTaY5rOu+/2r/BjlYwq+cS2wHI2ECl9Jw85J8M/5Lje5FoCSJGMNZ9jpeupOsFUD/IKvbRtMB+C6zrTLjIwZsYcZCmva9l3+OfsUWGWW+84MkMRWacjyWuqnTp4y3+b79FNniZdoeUGxR8GDZt4PgHuA45iejlHiOjcwxkyVG1wPVoiAvwapkIR3e77oWpRMaBgzzpcnXssHNPLSlESvlxaX2UShLgdcjKJQwxibFFpDJNZxD202PMFNXkuSvmltN1Nm80F5yVMDbU97gFKJDxlmhXnMzLiXdabjPtijwBkpCuwxyRZP8BMAvriPAU1fh6cVlrBKh133qQNvoxj4JeZZDgPXxjGgLEeHqTcNT09D4wMMOHKQj5t0Umefd6Drgv85xKSxFzDw73cJWSnPwddyBoJ98dCeyyMMoLpIBGE0lFo7jQFfG36MK36MkuaO2DGV3/H3/br//DUMTDvgcX+5d+GLH/pnq9m/5X8NfOuy9xyG2kd+vB8A/wj47zDm3bPAn3jSrbMLn3jRz/U/8mObx8C2T+jIlRW+8QBjRspT8CP/Pjw5mL8J7EFeoR/PYMzEDTqS3RU79tq/svf74qF9t1/1xy9yRI4yhwwBMMdqDHFTNEKiWCEf7CqFXxgDuAjgoRJVGqRY4AMm2Mb83krsuOzzTd4KFrwGaHOsAmb/ISAO8LowyxCHPqC1AvodXifnUhuZtGeoUg3W+WAM+ha5G83JASMOhOxFg2S2CqueFLsXsqxus3YNWsrkmWONLSYpOjtiiMMYBFV8kPIyd5hzJUWeCmdea8lLWOwqMDDwNd5znzVjpli65APOSHOLV0Kl8BJL8dwJH56DJWQqZCjjdafqwgFOQvanpFsxZlRfyNdLDBsBY2LGWOJvP+vMAFAh70FD1iad+nMVrCf7E1l8qEkf4IRLbDHqtWSdPgAPy7OkzlUnDShgbNutcdQrXPXEVn32On1xTdqxGeNOtekx5puVpRrqkzaJSEBXr2KKCdvbdlyuq0HsGCWm2KTqYLeBPU0WWPbh6bgDY9P0OmApk/0C++wwQc4H3YDLGrOxnx8yHOySCnlO6Web8QADDPRMRs0mybOpLFKRFnzACCnMp1qJuQKb5EUu4FHXRJNernKLog/YNRCXmqtOP9e4yQAnHPGL/7GXnp/JR4I2uy7132Y8fJXPMfsmqYUqfj2JDCJ7FJn/W+1kCoNBH/CrH03SjDpGPojqHUWkgU5whtaLbv/rsoPaYhcLSJQ3uqSvvZg/nBiwun4srG+TYV//51kJybcUUocMR38uGxexWYHYG8SUM3azeVJWyMWwVAF+YOq6D5knT4WqA9cmnTeQs05fgEwiGyhUZpCTCAnq2E6dc0Y6hs0KXjTSRiqGvlrn8g7GaIhrLMoTbnMl1hWBriMcRE8sbOEKtx24r4RaRWvmiQ8z5IV5wAhFSlTJsMI8wxwxz4dxnZn9kYGzK8wjeyilsR45s1LKtzMs9O0ui2EroPMr380RDthkKlRdFg60G/WvcBGp3ZRCb/vpOfIm7aVJngrLLLDGHFIgymqn6OnqvU4K0FBB4KfWVr2nPnPNB1OTvhes8AKjLrPudaWQyXL3mPNAPZGUemiHUtTioGzYoKDMI4YZZc/3rjKy1egm1pyRdnXW5WAViknb7bF7jDEYVfsoq0H36MOfUs32pQB6z7GHaJ+alkqPDvgEq8If8UZsYje5FkhqRzLZFxd4lmpQ/XWxadprRowZZ6MkkZTyBAt3UGGhhUHodp1+bnGV+0yGHFKMtAl2qJGlwH4UWkoAFSVX6PM+o+FlIkp0vyPYKny2GecckwwfMcwyCxy5tGufUe45S2aHiTBy7k5V7Q5M0IS45MWtzFRTnEU61mAXK2yYQ+T7lKNCLy1KFEnTYIcJl0me+bm0ybhANlG5VUCl/BiUhqQFY4Fl5lhzMCrpi3UZyYoHOInzAVZc7lFgn9HwGBRLUH4nJiM1rboV+0MhoxNiLaBKKWwWfLEf09YGlkAm82EBVPJDkMkwEFMpSQtVPBlz6l5cn0u8xCFDDq52nnuHK5Ekq6nGXHuVGtmYyKgY0pTKgIuzAAkGOOZl7iATZ7GsZL482t5nkBNPn00ywTY3uYZSqMYoBZBWT/Z7sIDJeY2tYNerikhd73sO6mh6b14p5s+ngqL0zF/ngBGqzkC1xFpLfd6nEMluJwywyhxK8NH93oexGa9zgwWW+TN++ctYfn7mHmk+czZKr1Owk9H4yftNzC6ga1BQC/BYkq3XeYcE58yyhvlpFuL3N5gJ01etmVqz7F5d4UPmyVILY2CxKNv08Crv0cLSIqtkSdJilVkk5VUx1k+dFJZ0JxmE0gVb9DLNOpNsIZ+Nbh8XrcFpGlx2SUCbBHOsYqEd94P10k+dy+7LY/JWCxUBaxhXmA95hQD3G1yPiek24y6PzcY0u596hHbI4Fisw7xPkY8ZIOfAfx3zgXmPV+nnlBwV5CdYYC/A7XlW2GeUm1zD0nUrXqiVnZF7xBv8URTNyyyw6+lWJvM7g0M4a/pFswH9nnr7xUeYp9wzGPD2axgb7SlgBGr3ofZDOkERw8AhND4BfsufV3EfO/m7PcIAJEldP6PjgdcG/h7GNBPjrlvKO2p/nrjgct5VjAH3PJ3E3RfhyR4M4JP/XA/mVXeRjiR41D4rGWf06Zj8HHDBf/eS//wBfH5k742CKj4lpLZ85D9/BjLf8ffOwOcbmJedmIzP+muAgXUKCRn25zxlvxOft+b//8jPn/wA8X/7iJA4f/HHdPz1chhoeA78KsbSOyU8AZ/15N0nngG+4Cv/yDnoJKaEJuaDzsgVgCTwTI2LvHqTtEIFcO4TdiD2crGyNHBq0cugM1vqPpTUcFSsh0XuYj5CVUbdb0cF+svcJkuVW1wN9oaMsDsM9XFGnTFSJUvDa7oBzDN2z4E7k+sMxueQcX2n1jqnnzrf5ffYZCrWKbMfaTrDq/zY0NcCMjpDba0pNbJ8n28HcKpBp4agNoBrMM+HjFFimg3msEQafU4pUZZZYIMZjhmg5kK3Dabd27kdCYli48lTF4h9rEqGaffOFmCW8uOQB6EkmPoepTAZZZ8lFklh0tIqmWie7rv9gb5/yXt1XPLekqRznG2kPrjKrRgKGQB3juRZA5ivsbz+xFq6wfVQIVTJRh9hg9GsD86NXVNxbzHA/Yp7uMH1qEtlAaTa0CxsCvGd2XfR+f60zxc9hGTHWY2S80mOe8QwSiru3nMvOuurF/OeTNFgnRlmPGwu4SNuyWHB6vTf5nvIU032GYcMBxOn6udfUjYNGoc5ZJVZ0jTiHhBo+u/2NPJj1rDxYmwaX+3HMzzEkqAtvVZ9o+4PSVJ3GQsVEICSnQXsATEMEGBq57ka690kW9F76NqQHFusKV378oNfbC5hUu3tkK2C9YWDdNi/eV8v5V16wMhjLFUBzBpGSO12wAhXuE2eCptMRUiNat4sNfqoI897sX6TtNx+aD9sn5TGLamsyCk5B8POXHKeccLRnjNYjeRRRV6CSSyETtiBvJLF/tIQ+i3eRAnp+g4OGOE2LwdpSAMBAUWq54ed9KBeWnZiYPLlJRY5YMQZxmY3IaBUPqkKf5ASTAnZHe/DcyctJYPAogA4Mcnr9CG7LoXFSRYtzKP7WHW8SvAW4UrkkAEHQfWQFZeUbwX2XRGUigC5EwaDkSj7DDEEK+TcfiHLNOuByahf1rkRsw9s/1IoExBhq33UI5RQoU+29ufinJnE9sxZmQ02mHGQ28A/hRtuM07DsQ4LxjsI6w4g8BaRD8YcmJYnoSS5wopEtpDE2QKkzgNc/2kBvZ6fbtn5/+3xkGcYZY9+LLJcjKkcFQrsIf+SSbaCgt/rqKfked0msB8yH4wVLUKSd6Y58/j1tsuuMow0D1hNzjHGboBdL7BCy+WPwxz5Blh1qqyllhXYY405al4wmG9bg1lWOWDEJgCPTum/YDdLj0/gLNFpP4rTOn0BsJ2TiC9ziUUm2InCKkGbdabD12KG9QDbdhmLYI0xSsF0nGcFMf7m+ZA2CZZZCLRZJqJ2HP28zO2YlBXYQ15z+75J1Miw0F6mmTAmm1KWJtkKTfo243HBqkjVax45u2aEA84d3CmwR9VlBQIcBJwNcMImC1GcnPniLbNpMWhkki0mU4U8o+xH0SeJihpvTX/B0PTXeJddxthkiiIl5H2nFE9NcCTBKbJL0kHnbcY5I02eCk0vlLTAyfNFwREqlrSh3OYK3+H32WDaJskJk7pUyHHsi4Umk2IGbjHZ9R6nsUhpYdxghjlnEjUS6QBYlVysiYAVBto4T5EvoaZ+xgLc9vM7xgQ7JGm5MbZNXyV3NJaWSTSmuMeBT3QkEzlghHVmeJ13YiE0eaJt9iWfJoq23+sNyTwrJNtN0okGz/iE6qv++Cuy7jdyCs5S1dBigu2Y8pXJB2A1zQarzLLGHKO+7i2xyBSbyPx6hAdMsMM248HYUDMsUF7A7QYz1Lypson+cQDp5hvUG0yJW1zlOj+gTJ7v8C8A2GacaTb40Gnpvc5yMLbEUEzhFZaipmfHBxkDtKMYk9+QvP/WmeY7/AsmuR+ApxmOm0GwWMhi24ipqvWoSCkKil6a7DJGxn1AD725+aftf0AhsRdTRrFObnOFER6QxXxb5eu3T4FzEsEUMTb5LpJRNEihlHLJ+OUVtM40q8y5dLmJmSGb5LjoEpJ+TqmR8bUyw7O0bTf+HAO8DuGJYQzs+TUMTNoAlGFykWDmZf4mBsgdYKyxF4FRSFcIMOmLh/DERUxGegkD4aYxNpzSZP8Ek6J+jLHxFBJxTqTh8on//aIfxyVMFnuOAVw9WPLrN+HJ5/19xPj7xP9+ioFqFUzyu+rPk7T1eTosuAd00mVdQvvk3/Lf+df2GX58CF8DC7GQfdYzGCD5G8AH8OSsPz8DjX8C6V/B2HaSu55jIN45HWlsxc7jFx/AE9/01/zA3/tjP1dgYN4F4N/Y+Xyi7K/10I89559j3Y/vW0TQyRPTfv4eD3P7yj5MoWFsBA2qNrnMVW4FM14exIAPkLLMsMEmU8yxSp3+8EcCYzhLzZGiwZkrDuTdmnAgQXIuY5NUvDmwmkjMcTHzFfIgxrkkPWkawZZq0ctbvMl1boRqQWtAgb3wt7rFVb7NO35saVIOcEyyFVLLBOeMUWKVOQY45ho3AWMOVrC0bvkqKXnWLANeYIKdqEXNHsbsLTSwaLo8WaCJBoWqpwXcJWlGIIWYi5K1dTMPE7R9OGegSz913uYNipTCakB1nAY2FfJRB0rGKe+jMU/RPfaBy7HXEmASUIVJmUok5QBgzRk8JRa5y5GzoedZIUWDFV7wAI1KeK+KPdRLK2Skkp7K4yhDjU0us8hd7nAlQAElridpMUbJ5eB7bDPBIcMsscg1bkbtBkYcmGKTm1zjhAFmWEchUJKX1sgwzjYlxqKRHXcg94TBsLEQuJmh5mz1s/gsVkOIEdgTtfkNrgegorA7BQCmfEj79/ldwIC7VeaYYxV5oI25p6NA9SIlVniBSbbIuuwsT4UtJikxFp7SOtYWvUyw44BfNgbXGapsMIN8s86cjaOG3ACHTpjeV/nxkGf41OsbwL2AK0h6uU+BRZaCDKDhoRjAbRK8w7fJOkC6yBL7FDj2e8TAYvNhvsqt6OMK7Ae4cECRadbdq+woAMADRjhOWu9l7L9cgHgmq23GOtHGEqu7Ay46jK7eAOk12C2Tp0oGpYwCEaoipdcWk4y5f16djk3VNBuMtXe5nbgS94MALCMV5B8DOZUQrRpZQQZmdWP3nHqdbh/HKTbD/+3YyRfzfMgyCyRp8h1+n6Yz9yrOjCyT5zXeQ2xKgeTae3pcoaf1TQMpwD1T7V7rlgUD7DJGErNZEJFH3oM1Msy5/6alTNu+o3VujlUHO1vxXQhcErtSKj0gmIPqH+adfah9yADKZFyPIxxwxHDcvwLnpLYToKvhh3p6yyE+Z4QHgcckGIx1QvuU1kULKO0Ab216AqS2gYP5QJrHfA8bTLNHgRdZ5kPmyVFhnhX2KETIi/YEXcdSC+jemmadO1yJYUWJMRa5G/ercJc2CScNGYYwwHGwamtYkNcQ5sUrNaHOU5oGBfaj577KrVgvNTyRP/9/6PGlMPS+xl8g00il/Y2z4yexx7eczhe8S5E5VgN9lpZZyOV1bsQmWKTELmPM86EDPscUKSGfvCOGaSbtok3R4BTzCLjvkzKh5idYcu60J96ATfHklwJEwaLNs0GarQuXYuq7ylzIJhJ+cdo0OBvH3yLpjKahACsbDhZZ+stOyEGOGaBEkW1nzY3wgKR/oQBKUWuSpOhpX2KeSYo5zJHLudJdUos+n/4aNXuVuQB25llhJTHPEouYTrzNKebXdo8pthmPhW+B5dCEm4R6LIDWHJWgIbfpIetTB03wRJ8V+KeFUL8jNL2PDv3YJNXJoNjeZZFzEuEBIoDAmD025RIlWobCCdohQdS5skK9ETexTbcHkXFsxSWqYA2IeeOYd86xswUk5TAwzUxcJZ8T0KD0XoF7bXrIUKXAXrCiUj7NlIxFi6vFv9uVpcACpQMJzFtlLhaeTabcEPocSRDl1dKkNwILtph0udE9Cuwhk38g7oUKeUY4YI5VJthhx5shpQKlaTDHGkaVH47N27yBmgFGtkkw6/f1DhMxjdlKTIZU9+fh8ecUWGKRQ4aQR5QmXUMcssRL3iidxzm1CWeFRZZiEnSNm9TIsMZsbHgWDWNsC02DRNkf5jAmqjKYFZA9RokE7Vh/2vSwxixtLAXsJtf4Hr/t1Pkhzkhzg+sAKJRIbA+tdya/SsX0VrKPNj1xnTa9SO2lxdu8ETLkDaYjfesWr1ByMF6G4wWfqZoJrQHdaoxl5VBkNwYmJwwywXZID/5u4g/4+/yzmETqepZXRx3zpjphgLd4k3F2KDHGFPd8j7F78MiZj7rmr3ODTS7zA64z5OvQGCXq9MVGbAb2tqZpKj3mfqDy1QPgJ/AXzkLjGxgo9AADjL6HgXbPYcCSvPQydLzw7vvvvAv8G6h97IETz8ATz2Ey0h4MTJrHmGX3MSDvTzAgMEknGGMKA6pe8Z81/d+H6QRb4Mf5Q/+3Uf9vj//dWXO1j/w4P8FYek/7az/AAK+PMaDvE0wGvGbH90UFAx1X/HebdIA199L72m/48ZX9dRN+fBeAG/76l/y4n4b0s/7vZX/Nf+vn+5t+XuWD9wxwBE9cwwDMDzAPwOf9c3/g380HdnyNh3QCTJ72z77pn+2Cf4aKvccXN/015NF3Bj8PPeyP+SXO3GOpSMmbn/NYDxukWWGeB12SHQ3/Rjjg2BlG8n3Vvm8SFrPyUPGrOkVSP6WFJmlGqI72WAF468zEGmF/UmSp8Srv8RrvRs2iZk3S3+7BnupHDV6/zTtI8m8T+dMweRdzIUuNuywCcIcrZNxX+Yhh1t3yZcY9AHtpMuhN1ST3SXhtKr/etJs0aGBaovgY82KEA6qYrG3A69U6faQ4wwLPygHqNf18it1ow/YHXOMm5j9kjKo3eSua1FbXvr7OTIB4Zu0wxy2uhj2ChrItkkywEx5zKSxML4mFiyVphi3OmodTiBmk60Uhdv3UGfVBZ7fHlsBcebfJP0+1kvZGBQvo8yhRXmF6VoeNkqAdPmLzrMRgR02oZGILLFOkRJFSMC/M5zXFNBvUnOmnBliqnUOGKLLLqO/hCr4oUWSM3QCaBZqYV+4ei9wNZqRYhmpU5addYix8rW5xlXWmo6Evu/JCPZXAwhJFB+iyrDLHhocDimnXIhksoyWvv7Nu9aGEeTAfYA3qBjhm1llAV3nfgYJR1vkb/1HXnZ/VxxkpFHDSSysA8W4lT52+kCkusIxslSRLrDg4tsMEhwwhdppYpFavryK/caW/lslR9btB/o5JmsgPrs/7125w7txBevP9SnPIEAplMV/6VQ903PG1o4mSlE8Y4CbX4nMOOnNNdarYplKBmZ9YO3oMDZ37qXOQMEDTkmIVPmgD5ivcpp+6yyR1nZlvu/zEBdRrICs/VPlJyyuw6sxfgE1n+yZcawbE+ik5cLcH6zTrwZAsee8lJq4ROs44ZIhbvBISXyXCqm42yxm771Oc0etSZgUQpTmjY+1yQskl8TpPskWSd6HWtFnWmGE9zr0YoQJ5dT/vMBH1tYgj+twAShG2UIdBCuyjhOE0Z1GDS0VnYVCH8fxJtpBPoL4P+4y9seckaSImofY6DaDE4lQug3AE2XWJgLPIEmPu9T/MEfJslFog6X2rQoWG6fi3ijwk8PKEwWDXSbUocs91bjgwaYz8Ov3RAytNvvtaNU9CG7ZNuCOfZO8CPu2e/um4d18KoPcMD2PDNPS7EDeBoqMVEy1fDCGcJYrUyD4GvMlwVl/6FW5z5oyMbLsjSxMrREBTi2RMLMRGe5k7ZKnSJMktrgalUg8ZqN/iKhaP3RsTj5oDc2DNZJJmTEFXmaVOP9NsMOHmnpILm0dHJRB/TRMkq3yXV5lmI5Bio6gek+YsilYg5BaWatrHHgWnF/cEGCdphtHppzlimLf4dSxJ1cCeKe75hpAO2UO3Oe00G1TIuX9e1hcVm9qIedik132jTrxwtEQlm0Kn2KOAJAAT7IQBqrxbamR5n6sA7o/Tef0WvU4/NxaLPAPyVMKvRFJusXIKzf04D/3UyVNhhnUK7PEKt8KEX8VT2UGriht5CvVv0ot8RsTOU4iFvP/U+AsgEQtojBJXuRX+CHrdcZ+gprEUPQtSKcQiccJA+OiAbRz6LlUMa1MQODrCAROevibZ7zCHHDHMFJuPTc8PGWaDaQcnbNG/wbc48oaplyYppwevME+TXg9EsYI1Q42X2ksxfX2H14MJCtbE7FEIuneGGqf0x/9rk85gSbrrTFOiGGDKz8NDxfEhw6wxywDHtOnhjDSv8i4mn7Um4Q4v0yBFP3UWuYtCMWZZRV5vCc6RZLtBOgKAslgyWoU873M1GM05bxrzlBlljyK7blRsgPUmUyywTC8t1pkhSYvv8Pu+aZ7G2lN1QHKKzWDWzrHKNW765muDlxwVDhgJ/40amWhYp9ikRJF/yD9igBPG3ENwj9EYcqwzHY35tIdmAMibY5kXGeQkJAQdc+JMMBX3KPA677DAB4x7sFGC8zDA32SKO7zsDUZHBmJNlRlLK8lRzBr5Tp3RSeSa4h5iQg5zxCRbzLEWQ4sJ90vdc9afpAtVl1FMssVf4yfQC89/HZOQChjLY4BPBmoKnsgRMtpIZ1X4Av6cHGRmoC7A6JvAn9EBpD7BQK0fYYAZ/hp7GPCmdNrX7Gdf1Lre4xwD35oYu0zA3CfAJnz+qT9X6bjfhIwYhaf+uS76v9/39+7xz/TLwIyFXNQedIVbDGOgXJMOo++3MNBRAF3bP88Ffw+x5HQsNT8XeT8He3RkwEruVbBFhk5Qx6k/P4GBcs7046H/91l7vfQwnWRbncun/Bgv+Xl1ue0TzwH/LQbEPuu/96XoJX62Hs/yCSnOUBqePHLSPnzdp0CbBBcdVNtjNBqqcbbZZzQAccnOxO6XH43tcUVMqlsLH+UKOWTYnqRF0xl15iWUiBpI+65kUD/gerAMcs4+lrF2jazLbA0saZAiR4VRF+Bo4KuGaorN+IwN0pFiaTLDAxKcs8iSq1jsGOX31PSmRaqIJr2PDfu6/T2HvHEtey04xypFSgEAgflLiUEh028gWA5JZ9i36I2mBzryUTEmTHmzzwzrmB9SK2pJBcoNcMIK88iCZZxtH0zvssUlFJ53yFCwG8VUafkAO0mTGdZRYADgPcMYgw6i6edSt5R9PV9gmRtcj9pOPk8C8/TdSl61zXgMZoccBFEYlCStB4wwzQYKTFthnnMSMSAFeI9X2aUYAMMuRZK0GGebvDOdrJa+xzwfRiNYYC8GPQq0y1INcPWSg9w6Nnkminygh9hJYvXNsRrkBIOrzZf2RZYBYxXa/ZKMIbjshSy4wXzT5lhFrKy3eNPPg4WU1Onnd/jd6I0EIiiwJk2Da9zEZPSD8T0usxC17Cgf/8dZcH7GH7/AXwXQ0iBFi2T4lQGhOpLXufoOgVJ1+nmTt3iN9x5jVokprCCEYSyA0jzNjoMhBTDHWqydUpQ1fdghybYxT7NRozZIBXAodYYAdCngRO4A65d1vycwJuwUm1G3irUnZZkIOeqPwEIfBN6Zh3I1PFGbJDl1HMDe7wz5y5kXfSOGPX3UQ3UGBk4JJFOI44SDPWADbDGsjIBiIFqZvHuxNbHggmSQFCTnVP8s+ynV6AJqhzlijjXmWA3JrN5PgNYID9zH9fgxaxsjB6Xi9UVwkU+nwhXLLlmVhYVq/jJ5TBk25HLeVgBUYvfJ2sKst/YosMeS1/Eacst+S32E/PG0t8pHUYCYyAdDzmyU36J9XiMo6FrTdXDCYByfvOhyVIJsIoBv2FmNCtZQgIiAW2E9lutg6/66e97rfKc5C4CuTJ4iu0yzET1sm0R4ycu7UNeSpNFrzCFPPCn/qnSCOwvsBZY0wkGAnsITtJdtM06SFg2e+qnWky8F0GvypJczFlMtKrrRbM2baccXgQw1LrFFnxdM68wEc0FggCYDdmHZ5pnijAo5VhLzfnLM00ESRE0y1RhK9tr219HEyCQeKVaYDxp+lk5Mu6QcE+zEZmo+Uqe8wAry3VABUiMT3i7SuhtzphjMG4Fhkg9c4U74fliDuMkmlwMI3aXIjqemqLCUnOMqt2IhB2Iio6ayTn9QbiVpPXK0XGbNecooxVHFkhU4VgikfMPZoxBgpJposdR0Aw1yEpPVM1LMsIF86SwZ14AtgUi6weZZ8YmSXfS3uUKdPm+G03ETd28muunaJKgmM1EcdUt3tDgA0XTbZOuYPOWuib813/eZZJ4V3zTPQt66RyHk2GLvyctQ9N8tJllllgU+oEYm6Lctki7tkRHyRNBu034OBOgOcMwiSwG+qZhTUSbZyhaTYSqre0IyzgNGeN/p74uP/i3mi7bKCYMMdAGHkr4r7e8MeSgMBhCvoJFywgotk1mUkVHzMIeYnLAV04ZtxhlnmyFnnvZTD5m2WLfd0eFf9cfzfBTTsjYJT+Ea5IxUANn3mMJkXePMshYSKhnXpjG5lvwgrvK+y4mMdXrkU0xtXvsUuMtL3GWRPGU2ueymxDaseJ+rYbo+xOFjoNkE25H+fexsVjHMFN5zyDCbTCFfCVszzgNsNj9IS6MdZR8zSO6sX5J2rTt7VqySD5kPcHOOVRRUpMJujF3MY+IDxtlhhvUYeuTctw5ARulmYTDmG3af+/iMR7GqJL4BjimwzzEDzLEakrjLnkCXooHSys4w2cEmU6wzQ8XZtDsuNwYz+3/Jh0liWN/hCoMO9C+wHIwbgMR524CoTzDQpzv04VngFchcwoCoH9EBkoboyFifxoCjWQxMetrDInIY+66MyVSV/uqSXvJ0EmS/7q+9h4F0G3YNPzHtrz/q7zGDAVBivjUxMO434MkcBn4pLMMDNj7fw4A8gYkV///P6PjRteHTPzZvuYxCNSv+OZUkm6EjY1U67bP+OqN00mlH/Tk/8s8hAFEegvLw+4wOK4+u86NQkkcYy+4bfhwQScCNf+mf83kHPRVS8k/s73sb/n6rdgyNAz/2aT+WP7XPTAMLB/mKP7QGyi/JVBmdpL+cs5KBmFqr2dOwM8E568wgOa1ZZpS4xdVoLhV4keCcPurBQNlgJjyO5IFb9b36hAFnUBmbTOngg5y4FYAxU+r0OztlmIJTVRWeJoBCDZH+bDATDAMV9Rpyi9mVcqlRgT0UICUZY53+qGOm2eAeU7EeWciCWamUHDCSzFONqeo2gYzDHFEhxxqz0USYf5qBq216UHJwjkqw/7LUKFGkRS/LLNAgzTt8G/mmqV5QSq68CRUmUWA/9gwNm2S1U6efQWemVH3Ymacc7DLVXZLUDXPIHKvMuTmF1B47DkJNssU8K8yzwij7zDpLSevxPhYsJ69kIwIYUHtGOtjpAnz33BdRA175S8t37xo34xwssejAXytkfCXGuMMVwJo4NcwvsuwSyktIPaL6f9DfT8NxNcYlxthghiVeYp8CCiQ7ZCiGUGka9GESV8n0BBKLmWgsH2uj5a2lxlu1ssJH5lnhnAQ/4DrjbHOdG8FM0jkCgi2W4Jw9RjFrif1ojg0gGmSHCWeupJC/tcm/+/jLn5NQDJDyxhhhqrlVF2SphrpFjB31mr0OrNacZWcqiJ4gEZwwEKwgefAJMBUBREPmMXYRK87A6yMGOH6MmCP5qoJk5A0ngEYsqm45Z/dDgWBj7Maa3h2conAVeXn2OMio19fxijGoa7RK1o8rGfeHQGeBigJDy+Qeq5WrZD01vZc1Zh8D+VR7iwhjATITDGAhiPKZ1PehwYjYvgbkVBnzUCNZjGn92WGCO7wMKA29hwPPmBYZxEhQec4c7N1wBrkNbM4Y5CTUOIcMU6REL604J+oNDAC0Ac0tXnEPuFSAfXvOCD31tcXW3aqHqhgB5m3e4IARrnIrBljyFs1SZcJ3rBXmOfVeVJ+hTn8wggVSK6m+SpZ+6rH2y3JjhRcoupIl72Cc1kIwf9Gqk780eDl20kGSliemHwM4WDyMFGaqD0wBVIzgKQGq6lMn2A5ZttjHIv1Ms8GQs47FRjWmfG9c7yWKNEg7O/M09jANJg8YodviTWxr7Y1jlCiwz1B47fz7H18KoPeZNzzdWu0Flimwh+SJGWrMseppgpVgj+iGV1rsMIesMUeWmgMqWWctnZPiDMW4i56sFDSx2uSXpGJRJpEJ2sEw6+eUCbaj2AArmiwZUobEOV9czHD4H/F/wcIFTvk9vusswhoySWz5lz7CAWXyKC32hIGg3po0yxrVIiXK5OJC040gIECNqnxcOhLOWrBWlF56ToIlXorYam3Q5j1oRaGYbdpImo6i7zOKaKKGMB8zyIlPz0dpkkTprZp+DHAcEtScG4yOYxHg20zEBmUsxXuMcBBx1cZys8jmbo8bpRULoABi0RQVWZuGihmZ8IN8dSyJSRILyW+zfs42mQqJrCSMIxwEQDrAsSeODsWN3iQZlGHJT/JUkOzXJHm2Kc44SGI026xP5Evxs1Vm/X1s8+ijzhlpxtq75Kkgfb8m1XbzZwOQS/mkRoCPSZaM2VWkZGDJhWcoOmNLRXMP7aB19zhAak4mDb7D73OGJQ7q/pFJtqYnTXqDgq3XmHUPhzp94aGy4f5jDdLhnynftT0KlLvMn7/Kj2d9A5IsRgw13ROSG6VoMMp+FOK61sWqKLsPkZoMICaG4+yQpcbL3EbSjN/me8H61eSzSZI3eYsEZhre8uZFHnJirFrBk0I+kqK6WyNejIZ4D0sz3/MmUfe8vO00ectQjcZVflUa+oi6Lh/MQ4ZZ5C7mY3KP/1v7/8QE21TIc8wAb/MGJwwiOb8kfHqYD6YBnZtMIVlwjSw5KlxmExnQpzkDiEme2HoqWM28vBr/rwbdzL0vxhRug2kUL2/m3rb5D3ASG/VNrnHMgE+DbW8UE+KznqfgJxho9hwGNj3yPweYLFQBEaP+QfVfpdd+4n96gGc9KCOJgUb/GOijA2Q9hYFVF+n43H0Dk7uOEj5+XMCAwGf8tZ/xP5LM+vuVK/76bYwN2PR/b/px/Bk8OYr5+X2MgWfP++dp02G8PQ1PfwOe/GU/hufs37/4wN93CPj7fsySAf/Ij/3A/4gd90MPFLlER14sUHQYA9ZegYbARew4GaEjTX7aP+NT/j76/Gt2LtPPEum2T+SADdj7AEsF7oHCs3Q8+S44i++bfgwP7fd5GqvE/l985R8a9k6zwawPGk3+f84BI2SxlMHjrpqo14eDqjnSnIVcaMf90UY44Do/oEkvd3g52PVi1FuyvBmJK71v1xsXhQLooSEH8JgHUMlVHvLONBb6EUmalB0wnGQrCnJJfs4xL55FlpDvbYve2At3mOAHXI+hmpghss54h2+zzXgMXsUik9eUAn2URClPKNlsJGi7muNy/F7DGcgC4GTnonC4EwZI0mScHSbZQuFaJwxwia3wyxNgKIsTMTXEKjTQcI4DRsJ7cISDaEyzDhjsUmSFeeTRNMwRdfqCDbnPaFjbKGQPOtKvHcbDqqdIyeE+C0fapcj/wH/vvYhJmQWQiCUvFk+WWryPvBnlhaSm2XxiK1GHWdp7MgbGQJATlG6rBr3jXZZ0tlsr2OUV8pTJcYPr0d+Ms0OLJEoqPWYgwI1el2XtMsYAx0j1c5srNL3HsX7JauJbvBKqEAHAVsdavyLgTtcEmDWHkjBvci0GUhXy7FPgKreYZwV5wSrYoRezbtEAXKElRwwzxCGHDNGHSUKNoZVljBI9tDkjzdf4iy9nAfoZe/x1HsSQ3tI6TbYsWaE84uSDnaNCGwtRG/Rr34ICR7EU4yEqXr+IubRPIa77Nonwiqw5kNiiN6yERLCo0xffsa7dNglWmQ1lDxA9k9hKqm2Vumu2UQa1ZakGO7SXltu29EVPUyHniqMcfd53iKAhkkYfJlUVkUQgdImig/FJdh1EEYCk3q5NglP6nZV6H8nX5ZNspAhjjcsvXKCkiEBA3EMzrFMm7+q/LBVyKBRBclA9ehyMkq+rvlcRIlaZAzrMvtUuL39ZN+1SpE5//O4JA5E8rKG09lHVtj0+dNC/gwVYgvmsa5B+5rX9EIcscjdAWyBsey5y4ACnGVUoEX2fQhyHhkiX3HNVrEABaTqH8iY0u42+YBrqHFhwia358pi3PakVlgC6JgVoCrxWWOMYpceY52J6dsJGbdBUpESFHEVKDHDCGrNx7YgxvcUkKZeZ56mEV61IXyM8iDVVKrcTr/Ul5ZWqSgxL7TPaNzTg6xA5zItyg+nox/9Djy8F0KuQY5OpSFzdZtypl0lG2WeVOZTKVGA/2HFN31QUJy/vBiXpyHPjkOFoxOShNMkW446m6otWAEEbC464w8vxb5I9tEk4lb3JAMdIQy0/sZQ3jeckvEi0Re813osL+Bo3w3eseyohLydJzwTeychRnmkmpyw+duwFT007YZAtJr0R7CXrvlvm9ZZjmQXyWBR1ngo5n9bKR0TAmcDFm1yjSZKXuUOaM/YpIMnnoRNh+6lz8ZO/iotVi5aZG+diEiG/BSH8kqtoMpSjHEElZ6QD7VbS3BaTyMsQDDxS9LQFnjQcMDT0fYQDCo/+nDr9IY+rOjCwxST5tsJA+pCX1yaXXaZr7Lhv8w5gTIGig2vm6Zd05tAZOS/yaz7lkLlsgnZ4XiiZUs8H8x4Z4YBxl8KmMIPYBumY5GeoRmS7TS1yMeWKBScxHP5hx3QMYgvsxUafohHU4iTNMMw+YTAAGEWEA0H51mIrgOaEgQBx9bo5Koz54qbzogZAMtoqWSxUJhPFm5h4/dTZ5LIDSL2IHXXCYCz0dn/8dMk9/6U/VpmL79uYYdlY24DHmBWSV58wwPf4bSrkSPlGqEn3JFtsuK+S1jBJ3o9cCpCgzQzrsW69zvf9u+uN5kTXyQkDvMPrrDFHwddnK+qTDvolUXrhd/k9vsvvxfVTp59FllDgjQo90eVtInjVi8AeB5aPggkjc3SBgRmqXOMmeSrcZZE15vgHiX8aa/gf8UYURmrCt5gMoLHhm3oaS7JeZIk6/SGh0r0kHyYxkleZpUIufADl97JPITxaVaxpkidWs4J3RjiIlGsgihBJt/4h/4gjTF6ndG4B+X/FL3Skl8MYiJTBAKtDDDSqAHP+8/uY/PMZOmy1JAZcOUCXEShYwRhz1zEJ7TsYcPcQe0/55l3E5L7/2t6zJjbbjB/HqP//vyUCOfDk3HwOYwne92N53o/tgjPtHmCst4vwRMZluc9gYF4CY/c1MXlq2T9vwt/PE3V5DQMNfxcaFT+GXwZ+zZ/zoh/P1/2zXoK/+AQ+/wADBvV4ANz08/enkO6WDMtD7xv+3grK8MRhMRc/rdEJC/nM33/Ofjb6qn8PFzyI5DkMxMv4Z1r1c7gCNcP6+bzOl1SN/Ww9Tul4hEqOpObjFlcR818Fv7yAJZPVfV90D1DJOcVsMV/kDdr0+IT+JKSWSqPLUQ6vzQFOUEqnQK0RDhjkxAeECf/XmsMtlQCDNKywQaQZrQu4kETz2BklGnZp8CwZk3z2VBNqQHvqtUGaM65xk1FXCqw6OKYkUu0Xqp3B1qdr3CRNw+VMvchvVZIyrVM6uhzm6SzGWRqTyBkjexwgapk2PQGa7lNgllUus0nKByf91KP+0mcsYwmSCoCaZyUAC4UnSKGR4Jx3+LarEO57zZiK71l1x75bNPTSYo/RYGwC3j/k6HUg6iq3mPHrIkeZXlrh99RhdIx5DXSGJMbzrET9I5mUzoN+R3JJs4sx4OEqt0LemuYsjk0BZPqeJJPT8OuAkah1FcShPfWEwaifZSujmnmS+wEOWi3RpEUvW0yi5GcFEBwwEmm9YjXuMuaAojG45AM4wkEM+HQ9pzljlzGGfLAtNouBf5aOahLPGjnKKD1V+6F8hM2f6kGAm2K4SO3z8/D4K34hhurm+3Uedd0LrDzGfBU7edyVVWI9yZ5nn1Gy1AJEUT9pg/9k+NbfY4oxdgOsl51Knf4AuSoOYsizb9tZggLkdO/KpqjaNWgYcAJIHbPEWmH+MQWRErdzlLFAA0ufbZJ0wLInwjRLjMX6ee4gjtakYQ7jXrY+qBX3Yy/NUEsMcBJkGWNf2yR0z73m5C8t4Ekgi+pL+eBrSNFLC4UiHDASMmDd4/LNEyikvkqvVyPDNuMhkxVRJcF53NvqKY2J2WLIYX8RaEqMhbpK71NijB7aLHLXh9gZxB5O0GbHra3kvQcg2T0Y0Nfj5+d9rgaAqL1xgeVQzEl9lsa8Ts/8Z0lM/q/vVQOYBO3YxaXkMQm/KX8k/xYrNE2DN3mLA0bi/phnhX0smThHmQrmDXjs14aCPzK+RsqnfYcJJFfueP+1Yq1Wby7gTdeZavxDhgLX2GWMZRY4ZiBUBuaLfTGYpHnvn+VJ2YuF4WWpOamg7PeleSIOeS82zBEF9jgnwT3HznT/DoRp9r//8aWUkEfkKbAf6YNCgjVhKLJLH3U2mEaa7wYmjcxSi2QvNatJmky0twM518+7N3UhtTK23afATa7xIfMRXS+/OJlE1ulnlzGaJGMh3MIM+8Wo0s2VpMUml9lkyhtEJZrY5EMX7TYT8Ts6TnkNiK0x4kh3gX3ylJljLb44eVDYtKYz2RNNeI9CFMFDHCK5pQUYbDMYBVoZGSVL5gp2w5hR5Qs0SEWC7ypz5Ch7IZnnwbO/QIF9NAHWVAjMo0E3hxZbM/G1yZKAwlH2IzFW0xYVlJI0DHMUTe/7XI0iQgxHsR2VZHN44ReRnA86QSE7jHM3sUje/WtU/GmKLaloyxl28rXSIt2ZXDYCIVeAxiZTnnJkHjZv8SZKEjphMBa+furhcaPvUZRabRZnzlYTM1XFjbxiVGTJf0vnWb4yZ6S4z2QsyJK1THIfo8abrDDvm7QYCWpm+psGNsibr5cW17jJAMdsMBOmqjKHVdOjRQoIP8JT+tmjgNJIjxmgwL5D+fdiQ1WjdeZFr4o+Fd9f9cc2vxzMLCUNaqgABOhadlD0RZZpYSEYYiLIokCJSSkayDi5G/i1YYcxleUpauzVcgxOxKQYo8QWk5F8uM40NTLMsB73T3dQjK1bCb8eLSHwjDS3eAVJvVeZ5TYvI8uCgvPw1Lj00mKKe8FU6afOMgskOOdlNzOWR5aYriMcUGCfV3mP3+GfoQTbt3iTHoxJAUZ7X2GeVeaYZoNxtlEq7YwzgsTM1rqs4uIllnzqe86osyjkbVN2g101T69wi0WWIm2uyC5T3ENmuYsshfRcUsE/4o3HimCFNZUoGiPhJz+23fgSxl67gIFTnu76xWcYyCTfOgFxKxjQlMdknMLIP8HAsQM60tMbwA/8ea9gwRjD8IW84/6VP3cU+HoXIHjux7SHgVLDGFsNDAS8BPw2HZmuQjv+NQbsXaIjRf1T+7cnn/bXfBpju604SNdjr9946M+57q8rX7okcB/S8/56FSzQQ1JWsRuT9ueXnoWehH+GX/Vjvo4BdWV/bg+Whvuw632G/HWgA4o645AeeFoeh7+FAXlNOgEXGT//OeB1DBiUdHrKz51/poyHnDyZAt/SvtIPSenkzaR15oARZlmlwH7s9WByNLHM2iSokqXILmVyrLpPjXm6mWRyiMNYHy67rclv8T8CxH4jZpwYV2vMxRoi9YOGyNrbBdwpIKGXVrCl5Wv1LW6gtHswZvoo5u0rplevNyPyGjW/0XJ4aaqBA8hTYZOpGNztUWCA46gJde4q/n4Vb+zk0ZOgHV5t+qOhodbiMnlWmGeTqQAb2/Qgj+FtT0K/1OVXLDYDGNthng+9Vj6Nc1NiLNg7U2xywAh7fqzdbDeBnGJ2DHNIiTFM+nsWe1o3w00yPWMtDUads8Sig22pqMeGOQoDfPm0adhksjPzMcxQC2aK+hKFooDVWWekAwDRz44Z4Aq3mefD6DMEOkgFIXZGyVmIatTsu7H6Ne9Nntj6AjAE2hqIfBwMD/POtuGUsXguhX/VuBur92HWDuNsM89KBCO8zjvMeuAZPM5cEUum7vuTpNHqhcToGWUvQJs9H1hpvxQobdd3T/Qxxv40afo8K4/ZrhiocYrsPX5ehr0/YpJdxpBCSZ7IYmVpoK7k504YQiPAlpzL0rtl7fLW1hokmxP1yd29zgmDKKhSjCQxSatkou7rp+7s3N0AuROYh9gk96mScUaqMbsOGWI7MRHvJYauwguUwKseUENjAdjyPMtQxVK2T2Pdlo/dEcMOendk+x1G6lXq9FMhF7JJMeLq9HkKthEdFKwg9dKUd/tpGqE4MSZkgTVmOWTYQ0N6w5JKNeMJg8HcLrl3/B2uPDYsKDEWYW/XueHs66wTHwbiXjG2czmG65bUa/W8CEsaJhTZ9Z5tMHAM6yd72PbAOdWoWk9lsaRaf48CDVK8wApXed+/r7IDckm23bZLMtgmyfDUS/twRYnoYuj2drEVba2rBIlJLGIdK5iSyfb8c859n9Kav8tYeMVe4yaXPRm55gYUlhJdxoI+HjDISYSEKjk6wXkAnivMB5lJPYwk27uMefL6aWAtSZoU2eUym8y5zYNksvU4qwZGK6sgzRklryN074j9aXLvJP2cxgBzmCOu8r6zRM9okeTPufhTrSdfCqA3hBmnSo6UdyR+21N4zJPEkkSl9damMsAJE+1txACRt145kY9Gsk4/W0z6JMIS0nKUgz4syUCaBuNsI8+uPBUk71JhkaQZDfU+o0F/Fpou+WCZPAt84Bh0xyTYuEd2sS6xSIE9pthkmwlPHbXicYHlYB2C+VRJFjCAJfBoQ6/Tz7u8Spse5KMnjzWLnW95SEcW8+o7p+jG8tKZm0Qv18Wi6tBDRbvW4tjnjaqM3nUzalqk5B1p9898wxH6bp5WyzGFrfmNqcXCJKC7lBgj3WzEhFtSkSEOaZB2AMNkBKLmShqTpBXmyfKTG8GSeebbK071HiNDNSj8KmSGOGSwfQIQ4KBunm3GafqiLE+BNf/e5JX1srMZFYSiqbYxCVKxqYjJtOsmzRvMBPAnuc6uT5yAuD80RQEDy0SVX2E+ptZAALRKODYZbDqmRNtMxIRMEk27xzI+2a7RTPaGF4AFM9gdIXq1pl6zrMZUXACq3k/FhE0yTllnmu6ocVHCJd+QFHucbXYZY883j/nmz8cUdpSPnapd9nXIptGaBE14aMocqzTpZZsJ1plGzE7JWJTqusll5CunSRIYI+wm19hikvd4LXxIlYatyZoxCuy6eZV3KbjMN08l0iX/3aZaBuvd16+KtCvcCem6GfyuMeQMkj/gtxhjlzlW47NLBpCk6eCv+XQs8RJtenyimvcAmGNWmY11UGv1IcNc5VawGjaYZoZ1ptjkOj9ggm3GXHZ/lVtMs4GYegI6AecXW0K45PYfsMAK84yzHWulNYATXiDmw/tEsoIzByw3ItXxHPljqtHZpYh8n0wa1xclwNlfewoO4PMbdNhyGxizaxSeuI4BUJ9BTcyx5zCgqgdjfvVgoF4OPn2fTpDDJf97EgOaPsLAtD+z97r/ib/fr9JhoSnNNmnv+cUjOhLZQ4wZ93rX637kP//IL/o2BtY5w46v++/N2H/LB378f9PfswKppP/+85B+0d9/Axr3/XMKmPsVHpcO46/xCQYovoMBnXvGkHviGT83Yi8+8t9/io7noPzvEn6c72Eg6aYff85/J4mxG8W4+5f+Oo/8+0oCN6BW9p/9iZ8TMf32/LUeYoDttB//ID8XDL1neMg8K8yyFuBQwlkFYunOsRaF9RglJtgGbP+b4p6HqPUwyl4AHWLIfsg8a64A0R7f7/eahlMCmrTnGqMvEeNXAzAMyLnIwWPghBgxUlfI0mDQaxYDypoO3ryAEhTH2GXeGTcaKnbbWmitLjvT+dwH3XOsMslW1H7f4gYyEc9QY53pUH+o8ZFf2jwr8fnF2BJQpWG0aTqMNVdxRoOG6PsUwgXQ7F3MD8osCXpRWFKdPnY9eRUIn1OBWinfW2bYiCFhm4T7f2WjXjG2uPn8XuE2k2xFDdtDO+rlm1xD7DboDCe/zTtsu9e0Bp5npMKEfolF5ryu0b4pP7wGKfbdI6/ofmKqXrR+9zoDTqCWDZ5KwTqSL2uVjCt7ssEg7faOKpNnnWmvaScZ9+v7kCGU2iy/RFmbgAG2t7hKgzS7FNmnwBT3vPG/yC5jDHPIKf3c4qqpVhx8XHPv3XlWgskiT2sbKB872SGHWPslir5fGuvSvKOGom8TS2WCHVaYj5phg+mwBhIZQQQFDf01QJR1RsKH0OMuZZMM8qv+kM+aQi7K5DhkmGEOo5Y366dWgK3d51BhDv2YtZUGu/LQlAJsh/Go0Vskw4tZQGC3v143ueHUQUP16Kd+DG0SocKxNdVCHL/P69TIMO4WKZJL7jsRRT6JCmUD68lErjBvvVwXASIVYJwF9CR96NGM8yA7FK3Tqu0sUG4/elRZuiRp0eOgitLKxdKTJVaZXISYyYpKwUYpGmwzHhJjAWsDHMewvEEKeTvX6fdgxFwE21znBsYWLHCfSW5yDSPPHCEfNrFzy1gIo/px9cwKqJHlmPpfMf7seM+Y4h4vseQWY8dUfMhsAFOJGhlSodYbZJR9FE454H2sfOvlf6jQKZGHTjAvRrObsKpa5/WEQd7mDdr0MMG2532PhS2WwNyWcywTWHhqhTzmEz7ODa77sKpKlSwl94RUaI/YcbpWwNbLZRbocZC6TcJT142lLd9QU4HatTjEIb/ulkTag/RaPRgb/kPmkY/rJFvB1BfmYue+FR6QSnreYpIezOpoi0knAmw63pLjLd7ElKxWuyyxSILzYJb+NI8vpYT8K2e3bTHJv+A7WHLqeiDp0lsb622KPQpMsx7JSSuJ+biZxVYSxVaFlIqUNeZCslmnPyR9KvAMLT+MjVkgxYgXajkqlJzNIgNeMY5a9IYfXXf6jpgfZfLBnBPlc5gj+qkzxi7TrLPNOMbcG2fUvRCWeCmYWxn3jJHBpMwr51mh5c29io4+R8vN18kS2SRXS9NgjblA9/cZ9VjwJGVyEfjRT51tJpwhORMXmaQk8qcDAhWX6aTYdlUykSImmnHFzTVF36+SDQaiJgJbTLKZnAqADzpT8wxVLGny8mPx4JpGQSe5TCweSW+rCZNh23k6wrwNTZJwyDDvc5VGwpJAcw7qaqIyyj5bTFIj66b2FYZ80pXx8kwSciXaTbGJknsEKCgUA8w/QRKdrC+wMgO+yi0k8ZVJqaY6OcpuYJoMrxJ9PwKWHwfTLB1KDCYVkze5xm2uBBhxRpp7PoHXhjPNBkmfpphPzXDcQzWynDDIEWb63c8pLXojpa5OfzADRItXc6Nm6MiLb4EtN7lGyyU8c6xZ4Zns/zKWn5+5x3N8HOe3l6aDWS1OGERpWfvOZdtghhXmSTpLY5L7KMX2jHSwMGZYZ5sJdhnjHV7n1BuQoqf3vc470Zy8y2vUyLjsaJ0xdrnFK0yzziAn/jpFiuxGI9Tr0gUFQ8g7UowJsSH0R0wBpY7teLLaPB+idFhJt4BghJw5AG6yDJMTyC/EvDGOmGGDMvmYdk6wwzILboyfYptxrnETmbhvMRkyfJ3jZRbYYMavwVH6fJKd8gnsH/B3+QP+LhXyDHpDucnlmNwpwcyAOZOrWdJvlRJj3ORaNIZ3WUQenWJ/TLPBmHs7nWPeGDe5xrk32E9yDjn3mZsGD6k2MEgecxXgEDJzwN/CQKUL/uebRPACn8KnTfhCTL8mxjw7pOPnVsEAsQpMjmBg4QcuT92EmoDFCvAUPPGiH8sqxqhbA/6v/poVHmfmPcSAMf1cIRUZ4H8HXIT8NCbP/R6RQPvERTqA4ied405fx8C/p/z9JM09xFhv+Pus+3sn/fMo1GIYA89+BGWxCL/pzxvxzyWvvUf+XmU7DziDjgvwxYa/93P+3s9gIJ3+m/Tz/Yyn+srLD38t+RI+j7Et79s5599ggN7PQQ/bz2lINVX0SwY0zCHLLABwhduAsTQ6MplmNJFrzLLNBM1oAkypMOSwz7k3b0raVE0jk3cNHbvrL2twq8hDU954TXpZZRbJLsWubpCKfVT2AQ1SUVsssBzsmG62vhoLeYJKkmk1zAMs1Ow+CYyZ9wEL7tOUiaZb9Vi3D6s1NKYYOaWft3nDB0BTPvSukKHGKrMxtFbKsD7XHGvc5uUABuo+4hULQwPXBG1G2WOMEhUHiGwIlaLqIF3VGRMAiyyF9Ne+82yAAXro/G0yxS5F0jTY8ATCHBXWmWaVWWZYp4l51okVkvTmVTVxgxTyJNPz1UAqMMJ8+qyxPSMd16QGO9e4GTWSQhskBVRtI7uH7uC9fk4Bgg0ilvYCy+Qos0sxgBEgvIY1qO5xVpKG7iWK0QcZcaHAFe6Ez6OIBWI3vcAKb/IWM2xwl0X2GY3BrkABe14rwMo8lWheFSwj5pFSTyXpXWMuBoCSmkt51OtDugWWww7mZe5QIxP7aoE99hllgh2muBd1jGyZTunnr8cG+NV/yP7Hhn9nTLHJOtNsMB0EBAOEe/2emA5lhobyUm4I0BBBRCBRH3Vfs9IBOnQDhLLQAXjB5fB1+rnNFbfDStKHsUrVb5+RokaGOdZIu5+9GKx6bTHMdhnjFlfZ5DIlZ1wL8NAaoDVJsl6pGNTTipRywEjsF/KkFiMRCMKOQPGqW0KJcSvmbIW8A/kFV53d7yIYDSJ7HEngZbGk4YQUKR2fV9XpNgxaZZZdinFexyg5yec8yC+SsM6yimS2Wpsus8k0G/RjiriXWMKSVmsBaNlgp+ohm2mnG5l03VSGKQdS2wGS6p5P0mSMXb9n74X/q3z2BZL2Y1ZKsrA4JxEM9jp9AWhq3Wx7fSuCh45fn69Iyb/34zgmBTwJ0DYSVc6HEpUgugDBRNbefMIAt7iKvAc1lBOgbfY+5/4dWMjGnziAKksoMKs4gGMGItxD7Ok6/YExSHJ+yHAoAoRRyOaq4p9DfvNg+MWeW4OcMMgNvuX9Xy7W702m2GaCMjle5T2UovvTpn5/KYCeJpi9NB9DOGfYIE85zDxNZtjLGnMB9HXHvvdhRuICOQQSKuGql1aYwCtRt0Y2GFjyudANabHTPXzIPCkalHzKZWbw+bgQclQeY6jkKTPKPne4EtMr0fZXmA86p+jpQmSVNJvgPCYCVbIuee34CqwwHyi45KxjlJhkCwUJnDCAfBBEz1fqrqazCywjiViSZhiL6ueHDHGF22SohWZd9NwKuUgtPfNFro55oBXYZ53pYAppWiPN+QEj4RunKaGYJzKJ1Pem4kYGlm0S/FeVj2Jx11RAZsUqhBsOZqho66ce/l4l9/dr0hs3sm4SAaS6cWXyuudyXIGj5seXCaRdMqAKeVJd76kULk3jRzjgVd6j17Xy3ZuzrucmZswtrXzJi1VJWPocobe5bzq+2wFOYgLcJOnTgN4o9kSN1z02zQb7jDpF+pyr3GKFeXpp8QZvBwvTQGHzXNty+a7MjZVEpWnxe7xGP/VIHdY9Nc1GSCm6FzzzUjTjVJOF9MQEohNpbs2PJCpf9cfHPBcNwA4T3OblmMTI7+R13kHmtZNsRcNZIRebs0x00zSCpXCNm1znB7GRyl/CBhNG71/kLim/3jSJHcDM2PcoMMYuV3k/WKQTbIfPiAy4FU0vc+ZJtsJD52XuoKTKPQohA3mFWyzwAQeM8D/w34eUSBK6PuqebvmAbca9iW5xi1cC1F7xadgG0yFJO2Ak/Dz6qfN3+ENmWXM/lSaDnMR9JGZOL00yVIONKEl9khZFdllgme/w+6wyF8nXU9xz6UmVQ4Y4Ypjf47vInHnX5bL91ANUV+EnqZkKHyUCC8g8YZAkrQAiP+Vp241HMVBoEwOiLmJA0bsEC+2LjzCJ6dPAI6j9c4yV5mw+noWvDcMTPZgn3mbX636DYPHxNPDQ2XcH0FiFJ0eAOUuZ5ZFfwOf+dzEAJfd9hIFjkpBewEC7H2EgZI8//5cx9t8zGHj1CAPPpl1KLGnvPOZtB5CA2h9joNdn/rP3/XlK0RU7UY/fwAC3POwd+DGN0gnp+A3I/7Kfk3P4Qim+z2My3BHgmv9/HgMQa/55LsATc/CpQNI2fHETvjj343vKnzMO/Hf++jX/TM8A/zUdD70f+vv2uLT460ALnDD2lX+kOXtMOdBDO8K7LHxqLwZUN7mGJCwCEATKqREUQ1lNhBrbBqkAQ8T+2HBbAa1/qp8kHxPYoYahRoZ5VlxC1UIKB9mN1MiwznTUhQdcDM+fTS5zjnnwyXNIKooCe3HcQKytstBQI1Ujy30mo9YwsMrq0stsRi2stbBKlm0m+ICFYPcplVyyqyvc8Rq9J/b6I4ajzpFFhkIlzHuriSWzpwPMlEQp4c2eWP6HDLHCPHOsIQ/pJJa2qNpRaaoafkpWB5YQrsbphIFIGTaB3VH4JmugKWBNDW6KRng2q0/Q9/qAkfDdWmU26rBbXMVYf+aRbOnL7bBtAaiRjSTbfupMe0q5gE/Jw6TiEGM7S5WLmFerybR6kD0PEM22mIG6Hsrkuc0VlAhfp58ZNtzSIccgJyRp8QALjzLrlBM3rM+RocYgnYRkDes0+LXGMR+D/gGO3bz/Qdxzg34fAHFvvcq7yF9K7FHV+pLPyZPNBujGMlG/IraZSB3dSqt9Ctxj6uemNhziLx8jnOgeH2WfY7/uWiRDli9WsViuM16H24AghxQB/ZwiH3atJZL5vcRSsLtUy0lOvUuRGtnwMLzGTabZQGEb6lHSNHiBlWAZ11wFZOSOvPuWnURNe50feO9ZjV4q5/xgsQYV6mO11F7UzOrJBHxPsxFKIrGiBHbW6Q9/OWN9WY8iJuQgJ6ScZac6d5El90g/j3OSpIk8pw3kf4AYjSKjCJwBs/jao8AMG6T8PjN2+Q49tBmjFKzKTtCh+cWJeKFgyz6MrAQWIFdgjwFOXEln9aT5U1Ywz8Mxt4boCzBNrDdZSplq51XWXD0lAFT39gmDpBxMVtq2ybf3ugY4+84MHvUBioUIWRJ6OYBDIGphMSvnWEUBQQ1SYU1VIRfPOyMV9XSKBnOsBchow5JTFIpq4GXTz3fDe5wz5Ecvxjd0SENiTk+wHUP1LLXYC5XBIIuhKTY5wyzaRCLr55TX3Yd/12sLIIhCIm4YBpGPPXGLSygUY4055PU4wAlH/n2Oe0qwJMoaTB4wwsOf0oLgSwH0fom/CBbXJFvkg/2VCIaZFu8MNa5xkxEeuGyp5zEgCwgU95AhhlyqcI55uw04w0SeLBmqyCtEBVqbREyzzrD0nTFKLLJEkV3mWIuLVmBknkqg271eZJ0wwDQbtEhSYI80DWZZZYhDShR5g7dR8tW+Axsq0roR6hxlD92wifOZT03qdAIWJJErMca6M+m0oMjXZItLLLIUcgpJj9OchW58insBhJUYc9CqzwtNQ5Zf5k4UJr2uHZdHwgQ7ZKgyioWXjLTNLH+ZBbaYZIV5JE89x4zrlTRcp59JtkhzxrfaN/wmO0c+hmWnxP4vuUve2FtTXGQXebwYQ6YZBbAkHNuMR0EvNt0ca7EJiFWY8QXnfa4GRdpisSsBQuUo00edma5pvozwxSLStEHyQDBjzRJFVpmNFCOdQ6U+DXPEFPdok+A9XqNbtmMpO0dxXHbdlWOKpsmUAXu7bnDcCoZf2bdEhcjsU+BN/ueY2FdddnzmrIE992U4Ix0brvx65P1jptjHcQ2NsYvMeNNu4rlLETEgJ9jmZe6EH42S+cAmbnrvv83bXYuinctf5OjLWH5+5h6nPuUZZ5u7LCLKt6ZlE+55AzZdbNLL3+bt8Pyp0+fAdDPWKLFPthlngxnuMYX84bSJAjHR7KGNzOVrZIKOfsiwF102wdJ1MMYub/NGNFnamJRCq8mYxcEPxRTqgIvsUWCHiVjPRzjgH/BPY40CwldpH6UvVrwsKSEPTlk0aF1L0YgiS3uJNXiZGBJo+ivmYDdbd4QD1pydYhv3YAxKBFTmKXMRMySXx0qJMVrOqFWYxw4T3OQaVTK8zjsU/fkWJmOp33X6uck1EpzTS4sV5nmV90jSigZ8n9EoxKljrK4KBrxVMEbcJQxw+hRjsv0WBmb9EHhkoROfKsDigA7wphTcZzBg7ALmnTeFAYUrQBPO2/a76Uv+8ww8cYlOCu6B/zfhxzCKgV6j8OkGHW+7CxjYN40FVTz0Y3kHY6J9048ZDJR75GEXF7qOR/Lfi5B5xZ7zxQfwxZ/683ROKn4ODh04E+POJcKFZ/1nL9r7cIixAYex8I4mPOEJumSA9+CLf42Ba+f+BzqJuA/tmJ92ViO/AU9MwxO/6q/9dQzc/GMMAOxxxqFAxfcxsHIKPv8z//znnpJ7HSgC/wtf+Uef12Ni26oAVuCFwHbVj/OsRHMmdptS3xSMZcFoY8HwEBjSpif2Upldy8qlTC5qwhJjzLDBPCvOFqiyzAJJmqQ481rC/MvEVNOU/ZyOfUmeCnOe9q4wsgp5VngByULPSLPugUZi3w9wEv5mauy/z7epO0NFARdTbIYsLEuVIiX6OaXILuvMuNzUWMRzrJGjQpZaDOtkcWJNb9FVBxleYokE7djrs5h31ipzrDAfn02yTDX/kjwBzLBBBjOKH+aIeVYoUYwh4h4FZyNa+FfO2WhiU5sqwNiKdo30BAtJ7LpDhgBi6JugzZDLnqbYZIZ15llhlH1mXe1zwoCzLnMB8E14GID6h15afIffj/Mf6zEwy1r4GMkiRTY5QLDidfzyIDulnz6vcyRPlZRKrCqBXhquisGZo8IgJ2wyxQzrtOkJRqe8n8ViUr0v6XeDFOcknFl1iQRtsj6QsnrMwGCry40ls0+BXYpscpmc73dqctWr6fNK8bHNRJAvbnMlAqlMHtr07ylJhRw7XsdoeFkmzzwrAYwI7B3gJBg5z/yUJvD/pT/2uYiFne0FWCcm0Cj7VMkE8F+kFL5rGqZvMRnsnj4HpK1X7ANwdcQ5/ZxSIc8uRa/fksHuUvigBo0CcXR/AOGXKMZrlWwwczUo0JBF91SaRqxrJwzGfS3QzUDds1jzZC8jaxPzt7exqwDvjgdeP0euvFDy6LjbQkk+qR6m4pYCGt6YJUMn2M/qMwuY0ICi4cBl03t9+czJn7VKJjwoB72OVy0qEFUPDdOTzvJN0WCeD6NOn2IzvjsBabuMRdCH7AVEWjGLJFtLNpnyAMmzYBAKHFSwktQkL3OHXt/TFEanNdWGEMc+0N+J3nvH95SmqxXFBO+lRdWVmE16eZ+rocARk2/AwdOms0wVxqH1QLhOP/XwmMs57qIeskyOlNtdydJBNg/dHpFjLh0ed/sinfcUZ96r2DBKieuj7EcPJrWnfF6lstTxrfBCWKSJKKV++ICLoRCQhYOAZUmBBzhhlH0UajTONgssBzuyz+9jA65PmXHW/xaTyA9yg7/xU60nXwqg9wtUOGEQgF3G/MAslFfJoYssxQZgbCuTN2kCK4BIRZ02WLHjNCHLO0qtFM/B9kkAX0LcNU2VPjtHOZqxA0YeQ/sVRqDN26ZqNjG0VNS+mDL1UWeCnaB15ikz8vAv2eRyNJXadIVIywegjiXfXOE2TXoDSVeTm/YbAYiG/9AFJS16WWfa5Q65WHyMaZePc6TCYwCLYtY0HIipiBUEduGrkBhzc80jnxhY8MOY3cSJTEwpzknEdG+XMUbZ51XepUI+2FiaVDYSaRR/DTbR0Tle4YX4vC2nqIppl/RjVuErqekca8y655g2D03O51mJwtN88Yyaq+sL8CLVYMU2Pcw4tdmKKivOusE+LcpiFo6yH0wh+VQA8fo2OcqTbprcUAlyZ278qhteFFtN8rUBgdF3R3yy+y6vRrLpPqPOPOgJoHmEAxaay3HstjHZonPuwIaupSoZB4uLPk1/gQTnnJFiki0v6MwTMOU+YBPsMM16UL01YdD1KlBEDE8lQwMB/pjM2Jqzfup85sXlV/0xx2oUZaPO+JLcR555yyzwNm/QIkmNLGekg11a8uCeEmPIDuAl7pKkyQQ7FNnlfa5SYM+ZL1ne4XUGOA5WyV1eClZpgX2ucis2GhUzMi3Whp2lyju8zhKLyJMjj3lCKbZeQKAmZhNsR1CFPHckrVll7rF7dYIdX9vOA6ys08ckW7zB2168mFfWPB/65LUVa86HzPswI8kO4zQdTFaqlwpBDSfkcyXGRp2+OB4BAXpoiPN4I3YSnli9tHiRZcacjWvMBLtvzYR4wqVMttecOaNlzf0AT7AAmTI5CuxzgUfG0roAn69gQFQOk9ZKJjoENQF+8mN7BhiF1FMY2Pa0/+5nGCvtIR2m3UUslEKJuM/b+z2p9NoRl9w+xECsF+13Pt3EgDgl0jpgRQ76L0D5IzrJvPr7A38/HeMp8D9iYN9DP44KBi5+5MeiGviB/3kI/Et4Igf1Rxgoqc9ywZ/TA7uf+DFtEBLjJ4bpSIQ/wAA3gXF9fv4+8/PgnoH3JfP9gE4IRg8dj0D8NT7z133OP8cn/rvn/u/rfu4EaD6L+RWeAx/Dk8/6z/v8NW8AJXClzlf6IWuAfuq8wi1G2Q/PWE3qNZC1/b8VCdnHDMQ+qgm67DGsBukkhYs5biDfRbZ9wLDFJFUyMWwQuC5fuE2meMAIA1i4gNIggXhv1XaTbKGQK4CiF+iqB8RCG+CEm1yL/XuCHW7wrVijthkPMExrkDw/AW9mLYRikvv0U4/B5ZL755nJ+y4F9mNYIGlewc/xCYM0nGE3xSYFZwGJ3SbpnerOv8/v8jrvBHOk5TLXm1xDflVqlnOUYwiv7/eYgWAHSoWzzkywpPU5p1mn1xkxktlWyHGTayxyN9QiV3zwPME2u+7hJC84eTprIA2E99sJA66AscZ/hXnkxSxVhzyRNLipkglfuDvOqK+6hHfC1Sh5yoxwgBLeZe/TjwXWKehkhAfMsUaDNDe4Tpuex3yRBAgIcFEgmZiEbScv2H6RDw9a1fCyqSiTY4V5stS4zg8Agh2q4IFVt+WRhPOAi5xjrEylKUtdYem55im+415VZtRu+2XeJdxXuE3V7XbOSKPwBXnjVcmGfNcIF+VgFm0zQYozptlAEvM0DYb4yy99LfpZeZz7+d1gJgb520wwxCELLAPWF4rhJL9fXWtg/YyZ/idj3RAzM+nEg12KYeTfJsEU90KiO8mWQ3wdT7YMtZBza90QID3PShAYFHqoQYmk5iksuELWWWL3ChQX6Kg67ZT+8A49pd/7CRv6i01lLEN73WP/mWrrGll2GfP+0eqxEQ7cDitH0u9rXd/91Bn0wcABF+O82v2XisGB+vYJ9wWUd70pDK1HeoGVYF+VKEafLT9CrSUVzKZriUWStMK7zowjWkywE2Cb1lELVDJLq4qrVToYQTLYkWI+WjDhvRggSemmPlH3sewtJtiJGtb233IoWqwjb4XyRH3zPgXvE2yPG+IwSCljlGLvk6rQGO850jS41r7pNgat6PmHOPQBVT3AN7Nds/52xwlOwxwywwbDHLkHa8Z99ovOGjZ8SeFzSZpkqTHAMfKdrfuwJc0ZZUdnZKVlastM9OYa/otwlKEWAYVSACawdHOpEcfZ5m/zNsMcMu5sQFNF2VBQTNtdxkLFJrm9qRyLbDMRvdEAJ1zkz3+qteRLAfQ+8UnrfZfvnTDAEIcR9WzpWjkm2eKAEQeGjPEmZomauR2fXIFNh/YZZYPpLrBpIIC9Ngl6P/s80F0gWG4fMh/AQpoz93ezRFTFelfIoSh4JXIBAfxpktSil6KnMEpOq/TZ2jPPYBLRjnb9iGHWmGWdmSi0Rjgg4c+7yvtc5wdkqQX7q42liOoinndfAxliTnKfA0bCPFYyEiH886wEQFV2Oe1rvBcS3CxmVKpFNk+ZCjnWmfHp6R4ymdbxpGkEEj/BDt/iBjOsx1SuSoZlFhA1X036Eoso2rzk/lNi4ikV1YIbRtmjQJUsl5wZJHmnCvwjhvk+r9uN1q6hqPIc5fieBObJQ6tOH6PsR4FbohhSDbCNb92n/gKYl1nw6zEb3wl0qLTaYPcoxOJ95JsagOjK+8kCpw4EioGYo4I8HLqlyWIYyKOrn3qwCvo5jSJwgGNeYAWZy8pvqJFMIw8TyXUrvpFpITFQxt5fwHmPM456adHfrEe4hgAJMfROGAxfoAFOgokpZqE2IKVPLbAcEz5NqJK0Alz8f/+cyCp+zC85PT7JLKvBlltl1n0sbZJuktA9rnETC8TYD9B0gONYM/8Of0gfdd7ltSis3+QtWiRZ4iWGuwpBY3U2vUC4iHwxqmRdKtt2NrIFxEh+ITBR16zSqyUvVXPb49NX0dh7afJtbwJ7aLPBDJtMIc+TPOWQ6/RTZ5ElZGKu4kmBIVnMVNgAtfnDuwABAABJREFU6UJMosXaUMiKwpMW+MALl0HfZI2q3/IGVY15wwHnGln+Gb/DIcOMO3tDsrhVZp3V0BNMiynuMcFONHliyYpJ2yLp5va9MfEe4YBf5y1yVBjhAb20wterRS9n2D17wgD8AnAAT34dA4l6MNbaJuZZNweZGeBjDGD6BAOJLrlU9iEGon2CgVQjzl57FgPjHmBglUCxB1jAxJz//zcc3Ptv6aTHrsLTvwLk4PNHGDgnhuAnBrTlf8Pf9wHwGh1GWxIDthL+/sMYoDcNPAeNQzrhFu9jHnLDdAIuniI88p7WMX4daELjHX/uD+HZhP/9G8D/FgNBxTbUOXLwknMor2IA5jcwFl/Zfj45aq/HCCEz/uJdOinBT/nxjWLg4qb/POGfVzLj5+lIlIcw4G7anl/7yI/jkf3380/9c1XBlTpf6ccK81GjtEjGXiMwx2qa6ZDu7bmKQ95FAqWm2GSOVefY2pS9TQ9KiReYoH1HrI0EbS77PqpBboYahwzxLq+xyWUAlPouQEVyxavcCsDMfs+S5fU7AvDSnCHfzTPSLLDMCQPsuTWM0uvlG6ZmTOmvYokosEcMeNUfDW88iuxyRjqkR/KUk9/ULmOe2toTdanqA/nOifEDJpeVEkBAnbEOO2DVNBsMcEKREt/m+2SoknWLh20m2GY8mH79mF9y09diMdLBQtOs3jql5cxvMPZYym1ALnsSqpja8iSdcQCo1xthGwzPs+P+Q+bhO8Q7vB61TMWleZtMBWiyz2gMmHKUw8LHwNoUecpMO/vwkKEAAlQDWh005nSF86gpk94Iix0veeobvM0kW2SwVE0xQcSkH/Yjn2A7FCfzrDDNOhMe0tStPLLrxjz7lBiqoa+SHxWykPEB8XmAK6OM+fWzw0TYW2So8iZvAdb7DHASwzKxVsRUn/YgKn1nTZKsMRegpLyj8y69FbBxyDCzrDpbZs8HyL3hl3vkadhf9cdP6ImAAIG6NkC3NWbHAfFhjoKJViYfQJxknGm/95X8PcVmXNti2i2wzAbTUZOXPK5HdkTyThNzTAEE+y4tlfrjhEF6aSJ5voI1VN/LxkgppgUfGovBVPD+QazsNubvaD6hWWR3YNfbOYvcBWxgIiXUCAdh3SXVyCqzgAUblF2in+YMKTFWmaVOP6vMYZ71HXuvJRZpkGKRJbeesoAm+3k6GLQa6Chsxtb3VID6UnE1SUY+QA9tZliP+0c9nVWgdo5PGECWLPuMIoZsjjIKJRQbDqwvrtPPHKuxX0j2KsazCDAavuhe1/6zwDKSv6uO3WKSt3mDI4YDBBRAKXa13itBm0EnBYz6kE1WAre5EmCUXkcstHrCmMRgsuRtJhijRIZq1OqyJDLLCPOKlX+rLB80EFFastboAU7iOleSexILLjJf3FyEU/Q4kLbEIkcM8yrv+b1gdiAKodTrac23/rnq905f9O5S+tTIYmEhgygss1vtqZBEIO6dmoPNshYRI9JAw5/8VOvJlwLonWKmnJY2mgnktr9tSL/kmrZB2+RxB0uFTXEWE7UlFqOIkL/Aq7wbBYVQWyAmF/sX/rpf0CYrK/ukr5dWJEZpg2t4CSSpVY4KSyxyyLCneeUYZR/JCE8Y4JJLZzUNVFEh+vwmU/55LeBCnidC0svkmWbDfdvyjxmDVsn4QnQYQNdrvGvIetOMazVdFuND08KO/8x+IPHydNMiWyXDLa6yzAIDzZMoKifZ4pBh7nmxUsNMqqeam37TN5E3g2KYRR0uk6fi3gcLLDPPh49tTgDjbCP/MC1EA5zwPleDkScG0CgWpCFQsIlSjTrTFWN21jhMmIPMOjMhizthgDMPPkn4QqqFzTzskgw5A0kpRksshj+g2AGa2gtIaNMTk1r55kywE0Vsjy/QOSxiXNMGSRbsGh+PYixLlXlWHvPdkuHsVW5Fkaq0oS0mI71OOn+BKb20okgVM7PAXmxwun8StJERsqZxw877VBrvVtK8DnU9LbHIba7wPlf5Pt8OcD738BO/xloBXMsvMEUjQHYxdEWtv83LAVb+vMgqnucjn3zaJNb8B5MBeF7hjjelp8gQVveAJdCdACZl+gHXadLLDhNxj7RJuDF30wNeMs4KPKITwNKMNWqEA2ZYxwIpiiyzQJ4yV7jDPgV+wHXussgidwPA26cQ198AJ0EtV6KxvBzb9LgM/5wPfJ3X9z3NOmXy3OUlwGwJJpx+XmDvMcZCzb2gsm6hUHYPxnlWvLnri5Ack+MfkaUWwS2bLkFO0eAWV2MDlawHzBv1Dd72YxlF6bcGXJ5ywEVWeCFMwN/naly/Q5gXlLxdxdKRrDxLjSUW2WKSIQ55m78d65M8MnpphaS5nzr8JQaCSbqpwIffxoCx7wGfwUcrGCj0G5hcVAy3JB1PuFeAPg+zaNIJw3geA/CeoiNzfYQBThX/nT/2//+m/7dtv/PkvL/XqL/eqANtp3RCNi5grLXv0QnKEEg3jAFlq/Y50s9i4ORDf80/pcPCk9Q1A+U/85+1MSbeNDzZ458rAZkpf5954J/QYer90F9PDLke+KJirEIeAv+Wjq/g81B7gIF7TeDv2es9cR0DU5v++mL0gYGFh13fAf6ZD/xnX/ff/WPYu2GfPfMd/7cL9vk+EfD5LD8XKbevcAuly4lBIZYywALL9NB2VcZ5+A3NsxKNiaUOFkhxRpWsNz4Vkj6sUhjDTa7F+4rtPsN63HdKL9S+L4az6iKTHxZjYCXmrTxIgZCkNkixxGJM9mXVIRaYwiLkTSVAUMPnXlpsu6ep1i/Vmde4yUssuazRTN01+E7SCqWCmAM1MlGPiEGQpRoN3QTbSMWiod0caygcYY61YD3o2LQvSMEimZKGEkA0WcZ+7g8wcJR92vRwjikoVpkLhUadfnZcqmUe0+ZzCCC/V1l5qJZeZS4+wwovsM509Adi4amRnWKTlDeiexRYZoHXeYdeb6DylDmmk7J4k2vUyHDEcACf9uc4BnFVskglU6fP1/xOEMYhwwFayxtulTky1Gg6eKuaST5KIxzwJm9hMm+rs8Vks2FvD4/b0LQoeuJwhVzIX9M02KMQYXwN/76VKi9/KTFtBNBpCC5/5hMGqJKJekK9S5UM73PV6/sc7/GasyMtvbROH2K3Wi9hzD0FbnUzaM23rE2Ks5Dx6jo6DfryV/vx1zwgQQ1/DgvSO2aAJV4Kdqok2gowEPit8JcXWOmy/yghaaQsqkQQEcCxTyHAKPmV65qVSk6Bj2XvjpV2K/BinZkY4sqqZZ1pzNMuyRSb1MiEhDbl6pIlFtlxma6GELJEaZPoug4M+DhywErsQ50rMbttmNrLGKVYj85IB3ijHhAIRra8RZUwrQG4/Ph03GKpyg5G7DRjfKdIYv7mAvILrtzS+t7yTuvY7ycdpzAKSXrFpJ1gmyxVhjlkinvxGnbPHiPrG/mxy19whAPOSIePdZtEAHYCLxWokaf8vxri6PyoTxx3pY0s0nYZC2l+lUzYCOnftt3CSViKwvESnDPOtjP6bNiwzQT9nJJ3Es4iS8GoM7DTGNc2HJrgCPNmlxVPL63wlZWfLkDJPa23mcC8CXtIcB7vI6KW9gkwCxCA7/J77DJGyeXCxvw8QiFC02xQoujJs+3AbySTtUFIzUNMTpEKTQDlDBuBP8kWQcM+ra2y60p7/6zev5dWeFX+h9eTL+Fx5LTU+y5vaJAycVViIhYmbSq6aQsu19REL00jGHxKUhWrIusG7boI2iQY5CSM+nXhDnNIxZH+eVaokg1/tjK5uAnXmGOZhfDOOGEAAHmkqEBRRDjYdMNQ3yQbTMfEapeiM/3K8VybYt3jKrfiHK16kyj0P9lsIb8pyT0NhMuyxSTryWnkZSd0HPAb9SyQdEvVsaReA86OUTT3h8xznRtkqXGQHInfAyssbZ5Xjc/fSKbDID7hgj1LiTl2KnU6kPckLT/XD2IxS9FgnwJZp6mqeM9jMdcpzhhyWmoPxmTUjbzDBDJQzVF2U/kjp42vOpA37dHkeyis4Sq3PIXYDI1H2gdMsBPU7Txlp6bbNLDEGNOss8VkyGkn2YqQj3lWorC3lLKKG2vu0OugmLT/KrKN3TMcDAEznh4OILpGhmMGgnmlSesR8rbojaJPkhWl+Oma0WRFRZh5d1lhaN41tkGue0qcTEDNQns4QF/JLWzqnEOyZS3Oq8xRYC/k1VtMcsQwZ31Pcp9JFDQgc9BDhuJ9TCZz20vR82ggNJ16Ljrjr/ZDLNpuWdUU9xijxByrDGAeSpIabDMexYoKfoBF7pL0qX8G80bSZi45++u8wzVukqPiUi5jzy6wTMX9NG7zcmwQMuvdpchbvEmCNi+xRNbn+2qehzlkljX+Od/162eQlK/RCc45ZBgl8MrYNkmL7/J7bDMRDFwNOVQ0NEnG9VZzrkcfnQQ2yYTnWGOeFW65F2bJp7m6luv0USXDDOvU6edlbjPCgV97bXY9ibZFkiy1kAvpoYJomQVOGGCKe/RT53W+T44yt7lCkyQXOaCPOmOUAjS05PTjKAS1HksmB3g4UjvA+w7zwYqyQ4YN9BrFwLZfxYChUQx0u0Cwzp5/HgOFNjH55yUMxBqmA55JoiqgSQm08xh49NCfk8QAubz/91l/np77vr/eb2OMs3PgH2JAlfvAcYSBV3PA/9Ofm8GAso/87zU/3j/x4+nxY5rzf2tioOAj/2+SAPdSSfcIHOJx2W0SfBs0qfF/4/+2h4F5513n80/td57IQPpFP595DJDrsb9nLhEptfwbDDw8hNq6v8chBpSO2vcQgRsXgBkPuMC/Ex3HRf9+9B28jzH6nrbPnX/eP+8nfjxf8ccvOLBkfjTGzDOv2cOofc4d0FJyqpgBYCmrMt2vkfFasI/v8+2QISqFUcwU1XRSRID5VJl1x6o3UwayX2aTQU6CEaPnyzZGbHqBEpL5aL9r08MAJ/wuv8M2E6RpMMMGFfIs8AHdxuvmkWfewEqg7OeUTaYosssKLwAEqFVgP4afYhYCwR7UEFHAi/ns7SILhSKlkPLKCkUKGQF7Yi626Yl19g/5Tf+sRyGp7Ujs8gFq3nfwR6zyIyzBXQFDqvu3mOQdXo9rQrWJArQEYKiumHF22jYTLLEYcq0JtklzxhglFF4kpqexxndCQphwSGyMEnX6qfhgXU2tzsdV3o/mTHYMxqQ7jb14jVkHrMykXQDrAsukOCNPGbPIKHLCIDlnXGwwzSFDmLwtE6oa6PhOQUfKJYBnj0IwFMFq/ptcY5Mp5L0thZIlfnZ8jAc4ZotJ1phFieoC7PYcmKjTzzTrcS2rJ9likkE/L5JJq89K0YiUdwMMepxNYoDDoNeiCdrho63vVfugjPzv8PJjfs3XuBlgxlf98TlJFJxQYJ8Z7xF6MJae6qMaGRSOBga8HDLMMi8GiCUbIDBgWYMFsZ2VyDns8sYxSjEI6aiqWtETChjSMEPJ1E16/V7aje9c17P6erGkBWpLnSfvx4yrLwTwqk5VbTjFJmKvihShgY7SsBWaINslSW8XWGbRfUEF7ts5O0N2UeaFbkE/+4yi0J8kLVcytcLCQH2cempJTTXUNmDOaj8Dr0sBdknxct/90Lp9UCVBl2zYrMMqruIq+741GGsAEMw6k8AbmUN71CHDEaipsI1emhTdQuv7vM4AFq4hZrTYngrTm2aDN3g7ZLo9cf82fG2rMMFOYDcmFzZ5roBphZa0SIavtfb2lH+/IzwgRSPUbRtM86Gzd1skmWclvqvf5A8f63ta9DLODuZFfx49gIJIKy6jlS+fPCnPSTDJ/WCGiiHXT92BvGPfa1PIQqjmDFWRmn6LP6DlA8g6/c79PI59T9dAklbUAspVMPDxOOqEYY6Ql+UUm8yyFgBsiSIpGrHPrYaM5t//+FIAPZ38aTYYxGRUnahia161ectAFQyJzlBlgxle8C9U9Fz51mmxWWHepZ8W+3zswN4wR49JZZuYDn6kaaCFJYpU/UvNBiL/CreokmWXItJ2y0es7D4hCc5R8lqHQtl0Q/TBmAhqKiImVfdjjF32ffMCoog6TJqUt00PShuT5rxDvUyyylz4xyxy1xvRjrxXJqUy1Hzf07vG2rs0fWojD5gyOfqox7kD4jOIdi1TzjMseS1HJb4LeR/ouSkvpJTeI2bgACdRbI91NbmWtNRy342zKOYyVAP8AviQeZf9mQ9WkVIU12Yqb+h2jQy5h59QYiyK4cPEcMjgVOjPsRqegAIfh529J0YZEIulprVNesPfbphDNpgJCq6KfBXcWapUXL4girOaf03xdxlD0de/XPnz2HiWWaCPuk/200yzzsUuYEdyGrEmRRGWZ4CAs25ZULek1+TFVmAZa2gQecpo85T86Tv8PubXccSrvBtpZSuJeY4ZiAJQDEyAv9P+Q2pkWGU27j8xpORnoEL55+EhmrWu2Tp9vMdrAAFmaWK0yBIKNVHDamBfJe4DTY40zRE7U8nHmtrnqcS1nKUWKXh5KpQYY5U5WvSyyF0usxkFxoqngO9hNsUKr1HDo4LN7nWTTujYZSyfpIVCW65yC5PBnqNEQ03vNYgAolga5gjJVuv0RzEjgEzTfxnRHnCRJV6Kxm2LSTa5jJi5MoQXeKZJ8m1eBkyGp6nqNW7G0CnBOZLSXXEpFuBG9/PRPGoNU7rutvv5VdzTSMCsmCdKUtxmPGT3JwwYYPQJBpS9T4Q5NN7FQJ+LdFJfm1B73392joFKhxg4pv8mMZ+3h3T84PL2Wo0f+usooXbE3+/PMInoQ3/dOf+dJsGa2zuAzw/85xm/yPcwtt0jOt59G/4ar2DA23N02HeHXc+7hkl1n/XP/gwdqWwOnr4ET0/5OcjYvz/5Kh0w7xDzD8z55xBb8Vf8dcQAzGCsRrEVP8b86274uVCIyAPwpRh+5AzApzFmoQDMVX+db3TOVUrBIBX/2Yj//9+D0b9vv9OoYEDtnv951s/PGT8XKbcPuBgNHIgRkYymCUzhkfLB1Wu8F/XDMIcMchJ76RKLARyJ+aTXq7knjmQ6ar40hExwzjkJ5Eks354TBlhnBqXbyiOogflEpWmQo8ytLhNwgXKv8i51zMx9nhVmWUWWKQX2g0EsNlSdft7jtWhc6vSxwAcBxoi9q0CDDFUamLf0DBvId1iATpIm99z7TJJPJZCaZNdswsXYMAsUS7U8YIQV5qNGz1LlAxYCaJz20BCBoGIOKRhtg+nwShvkhCH/zBpMStpkA8NjJC3eYpKsA6oJzkO6ZqydcjB/MtSCJSPwwAYq5wG0dawjJrwZ3wu7hixVttwCSGmyqmsr5Bl1xsqZe2eZLG+ID1gIRqHCzMadHWgWCsYCMpnoMPsU4rkKAZG0Vl61Yr9JigiEFyuYF5gxJM2XWnt42feKMnnkP3aZTYo+lFNghuo1+UcmfKil89QkGYDkCA/IUw7FlJRHWapc4Q5Vsm5PZL8jtqO+S91XYCSFNgl2XWppct8hZ02akb1sNwReSyouUKLp9WhPLO5f7Ye8uRX4JT7oLa7SJhFgm4AQq83PYq3UAFOAsGoXsxsa8HWgyZhf8/KRz/paoj5WllGSQqpWKbIbElf1jvIiPveeK+NUm3GXiZsyKRWARJueULOZcqccvYlAwJoPcs99fWi4n7dJToeZYJsiu/RhNlIi4aiH05qp+k59d4YqRwyHXFZEIfVhZg1QJc0ZU9yL9TTBeazf8lfuxYIKppoGNh47iGReq6XHeklJb4tu+TLuw4UUjeiZTpzUoZC5PQqsuarKAosMvJWtxD6jsf5LiWbhEDnu8HL0fAISq1Gc2R5i99lxgKtZ7011bf27oLvOYZtEEHGk3hJjsErGWX8VZzAb+Uee/lrTBjihRS9rzJGlGrZLtgcbCUR7ZMdCIxE2USLs6LWTNFlh3pV5JqUtUQzWMoACfszrNR+sTQHK8uLdx8IiZfsjvEkgsSyHNPQ/YCTWZGEu2pe2mKRJL2Vy7FPwP6PBwJtgh2vcjN7GGNx9nJEKBqTubdlcNEjzHB//VOvJlwLo/QVfQ8koolSLldT2KdEU96iRiWZXjemfcC2o3NqstbkDMW00yYQVcWPt3dgorShapkTRacdHseH0Uw/fp4xPLwe9EFC6br6LaWXpu8bwMrP2+wxzGHH1aqTlISVKsk0GrclN0OYOVwA4xujL95hyGZwlxSRpYobEGbYZR8azilTulkwGLbrdCEYbEBeyTVruh+RCTXr/w8/5Tf4nhjF/gXMsae4OV6KQ7Y5tTjg4oAWn1xF8TT9VqGgqoqJNEyLJaFTQqYAXhXeAk3iuZLVa8JX6WyGPJR5bYqSAP8lutIiPcBByldozzyCJnwreJE3WfYPSBiqPCtFeJZkD4vuXrOPQCzVthv2cRiGrG1XFkIJINLHvwUyBrag6j4CDOdZQAlyLJJ9dMDN9IDwO0+4jk3YmYy9N9ijEuRKDr0aWzS4/Omn7BfiJni/d/zVuckYq/Ils0t1g+uGPYqGRTBzwCe1eUIy75bsCUiW5nmGDp8ufR/OlxWmXMW5zJRbpQ4b5K37h/9+l5r+IhzxDRzhgnB02mGGeFdrebCyxGPeShhyijUva2e2pt0+BG3yLI4ZjcrPNBOvMkHVWq66NFsmYxItSLi++HGXe5TUk7572dKVp1rnBt7zZqoa0+gbXUfS6CnOt0XnKbLjFuYqZLDVy3mRpjdtgmve56tPlhSi0dG01vEgRCNYNOMvXUgxA882w67mfOqvMIkb0DuOUKMZUtx8zQFbRNcFO+GVpOmwgf9OZNWcMc4QS2Mx3KBWfp8Be/L3q07miN2XmX5ThZe5wlVucesGtZPE2PbE+yH7hOT42ltsIlnraxMCeOUgPQ+0mBlRdxECiB55O+zEGLE1hYNWeh2pI7noJyisYY+15jDH3wMGnOTqecO9g4NfX/fUydEIqRuHzf4yBWM/A155xrz15113AwLvn/DmXMPCw4p/j33b9XsL/Tcf3mX/Oj+DzNTohHvK4m7Lnfbrpz9f74v/9rr9fjU5i7a/5sRzAF/f9M1703/lX/nt9/jtfd29AAaZ5Py7NGZ/BZMeX7PX4HnAKn+/579z386pUXMl5xSJ8hAGGDnSm/xYdT79hjOHn0uEAOb/Cjz/jl5FBupqWeVbYp8AWk2E+vc8oSgY36d8lLN1+wpvIGocMs80Exui4Rx1LMFTog0FayZi4V93Xxpj1lri3wTRv8WawQbaZiKZFbPYSxWiWNJWXlFIMGDHaJBu7xk3AmDJiGZ8wEIxoTetlfH3CAFe4E2udkkuhwx7TurfJZTaZ4pBhamSjNlb4QcpBxwapx8DSNj2cMEi3rC2FMcd2fa3cZsLDsoZj/dMwW96r20wEO2uSLeZZIcVZSMUy1KIRG+GAFV6IYaWaGu1lgw4w5akEI3KeFfZcUm0plO1oDg8ZigbbLGJM6rrNeABRagBVg5udTTYA3JqDVPIsWmTJh1vJYMjofcR2Ux1uA6gxBjkJmxdT1jygTJ4C+xEuJeakrqUaWSy0o0iFPEV2OfV/q9Mftb1SbAUYq0fJu1LFfI3Pot7UsLaXFh8yzwrz3OFlNpgO8ESM+QNGkMeT0ti1/6oOGeSE7jCOBum4ppT2K7arknHr9PESdyNpVCQL28N7g8V37kCynZc+xOBL0grGYYki9/iv/lMsR//ZHwomkKJGLMpp1slRie+hn1M2mOaMVBArJDeUbFQ/F8llik2U5KlhaCv6IRta6LvWgFRD0F5aDCK/5Uz46Gk966EdA9QPmQ+wHEDedcbOKj7Wf+u+tVCAYgwFBBKNUSLr64d6GjGaK+SR771Af4Xz6d7pvq/b3uPKJkrrZLLZCnabiAu6F1QL63xCh80txttB0gBFPXQPa1DTLYcWS6vi5BmF3Y2xS8pr2SK77DNKm54AYk8YZIUXUOil+gLV9qZsM0/oOv0xQCp1AbumsLH6eZL7jzFoZVMhHKVGJpJnRRaRLYw86ARQSUljgNORE5ESAfbXnMnZ6zW/vP1EsFIQlLHfRlHYSYdxLnXhifX0ZB2UyznwaqQSrUNiindwBOFGtn8YsNxEnnotev27SfjxdLy2u4f56kF07TZIs84MGWq8wdvhaarrp8N87wkSjQZ6LXpD+n7EsMvIz5lgBwWiNpwUoJBMfd9a23+ax5cC6EnbLFlBnb6g/+pnFWdJyORwj0JQPn/FG7QWSUaaBzFhAjz62mSYRXYNJEtYQpWBPT0ssUjOwy2EtL6dfIMlFqliqTPf439PiySXvLEVUDHPCptMBYCUbltQwj6jAbQ13AQTjFW4wguxoFmi12ywq7TZis6bpBn+MOZ/kPGi69ynXgbq9PiCZODTTpxXebCUE/lYtLS4pTFPOxnUK4XrlH7+H8/+H+LGaJFkn1EWucuUmw4r0WWYwzCu1bRIqUVjDhoqmEPpsZqEa4JxwMVI5NQkt0WSW1yNIkeGobseUDGAhSzIb0Ng0S5F5NtSJs8dXo7FU3KHDNXHgj4aGP1cfn1KBgPic6k4LHk8+B1e5j1e5cwnnGZXmiFFg11H/nOUXQ48jrwHi860bJCK4jPNWWzEAsU0iQViQikQsUSRgwtfI03DpSmDQeHuTEks63eTy3RCLcxE9BavoCSruyxSI4tSSHUPyEtN11eBfeZYC/lTk15Wnvkb7sE3RNll49bQjAXbUh4p06wjw91hDrnMJuckuMsiHw1/LSZYWtyzVJlgOzxt+qnzv3EGwlf9ceoA1RaTbDAd3jySJ1jycDZAfQ1A5GdjjDeb1O5T4DYvM8dqAPiSWiU4p+rgrsDCCbaZYcOHJ02GOOQiB6wyRw9maq37QdMrgL/LH3RJZ61ommQrmtYUDW5yjfd4jRMswVjsFDFBxNBYY5ZlFkJWooL/0NnSZt5uTXOWmqdaJqLJHuAY+d8lHCAvk2eLS8jP84AR7nsxdBEzalaj2L35K6FRwxdtlN1ptmLSav1UczjEoUv/D4MRowRHsSJNym8azQTnUVD/Hf6QF1kmT4VDhrw4Tzuzxb4bfowBWBsYMPYUIbfNXALexVhofcCzkJ8GPoXa9zBJadMYYE+O0pG0/hDy7kVHzp7Hj+CJpwiwTNJSPsKAp29ioFgbA5824MnnHRy7AE8m7fca/waT8Oo5H/jrnGMA1QgGoiml133jeIgBWt+kIw1etfTXLzRXmfN/SwCvwNO/4a/9AAPfDv34VuhIYOU/+AEGwD0NT1zz912x4/h0j47Xn7/Hk9P+vFU/xxt+/g79HP6p/z0JX3xk7/vki/45JQ1+CE88799Z3j/3p/78ir/G1/2zndPxNfyRv+9P4Cd/xVf+YbLEBkOOXkqmIs9a+cdICltyFvsZFspTZDfqtZe5HXJUIIZYStfecymVzNMn2I46rJcWt7jKNBtMssUcqzEAVPMKxBqkGmOAE97ltWC+SV4ExjYQA6RFklP62WPU660CxwyEN56a9AFvmsUOEJNrmMMwTz/yBlHyO/MEstpHdVE3IKQaSyyqbSZCNpWnzF0WKVEM6wFJn8Z9sKc0wBEecMn9owQoVdxLSw2Lyfd2na2RRQmUd1nEmDktrnCHfk5ZZiFksxtMM8E2iyyFTEkJrPo+z0gFu0aswkFOAsy97N7cgJvwm+pCEjYxF8ecZfQa77HvbG9JteR/qEGmBrMT7HCV9+l48xmzcZcxhjkMT6n3eJWCW4fIjsaGSD2hsNEAVMx0HZ+SjtUUqumXubyxBpPB6FAq4roDdWqaleasAI8xdn1gVwkWuYAGpdKrr+j+zGXyrDIXbFcBCTOsBzkiQZshDgPIlv/2BjPOSLRB2IYH25z6dan+r0WSQe/5xGqSpFSy6Ay18Lb6qj9+ib8g4T563YGQCivMUA2ASQNhkVxkv2NgUw9K6pbSQesMEECChvUabFodNhTr6wYzjHDAFPeiP0nSij5R37sAetU3Ym02nY1q0lzzF+7F7JhkyTLISQBLqgcl673FVa+HOuqpIWcGitghMkiKs0i0lsJqgm1SNBhj15NTjanbJhED5HZPwj3orWcV0C+7I2OjVYLZrSHFBtMo+MyIDGbdpLX4BAtH64Cgo1Tc2kspz+ckQuV25t9iiTEqHkox6zJisSLFENzkMkqS7rARjaUrokmJMY4ZwJwTh6OPH2MXqVnEht1mnBMGgvwBuDKvL8AkYTjyVJR3rNaUNWbdi9F86QXYi8QhnEOqtVGXlDfcezDBOQX2gkkudqiRwEzKLBVcZz03EkHL8RWtbWB79S5FptiMHkggpgDjjprNwrVEQiqTf8xeTZJ344QX454SEW2fgg/oa3F9a+8yxl06mH56fWERqllkZwAmb++nzgusuI9i7bEB5k+rZvtSAL0xPkIabQNpzhhnJ2iWopxPsIM8JSrkaXnB0u46sQdJozfK804eRwqrAEN0q14UaoIwwDHTbDDDOkrSkRRMdFGh0hPsBDILZtw8RokTBjhO2EROWvgjhgPY0kLbPU3QzW80y1wUZTKizFFxucRZTO6MLmoA2CJ3eePRH2Fx7o34wrsNnreYZJXZmJjKT0ZosKKQ5adn1GDzrbvHFPIXzDcrQQM2TwEzX5xmI4xDlQqmxcfkGxOUGAtgNueLcT91Z7X10fAFM+GggUBZNdO9NMPTRIXhPB+GEbOmOppcCVhYZIlJtph17zHzErkcTf0qc4gV2iTJHa6QpBl0bkWjW9jFKQX2mWCHDDVmWeWcREyzTjFp8Sj77Lsp5xu8zSvcokaGK9wOdqNCCiTRUWgJ4Ndalrd5I9gFRhO31EtbsKcoY96Ta8xiUu+8Tx9yDqh2/AvlW9hPPYJIdC1qmiBgXQm10PEKE7Vci688g8bY5VvcAIiNTmmA8nRI0SD96DP6qHsYQ8sp1UkH/uyz7zARycIqLuTdVqefvxa0lq/2Q7IDrS8temMSqqmqJEibXOYm18KYXc3NCAfcZRFjxiZjKitDYGNddiaEH7DAd/j92FTkSWKR6cmY2kuurqZi282KNYhQE6PrpNsrUknWyyyggJU85QAhNaw5xrwYNRGdZMvXlFSYtM/zIfsUgg286+wHIFgnul77MQ+Qf8o/iFSwNhZ6o4JJAKUkFSoQ/+/8H7nCbdokIvZem66laQ+GkftNrnljYwwfvY+Avj0KcT8eMhQ+hpIoL7PgmYXWjHan9c6zgpjKWWp8wV8z2eUwxqZrY4DP0xiLTSmyYqoJoHsaMs9hANkqpH8FA9LkSfcsBop9hoFakoU+768HBpyN+uvVMICqiQF8FQyUOoUncnQ85xTYcQOTtibca+4CHWDwoT/3IzogGv73NgaeSQr8t4A5eGLOjzeJgWA9GMNP4RPym+vxz/QRHRnyOcbqc5Dwiw/8M0pe/AievgiI7bjjr/m8H+dzdBJtE0QqLp/4+WjDE8/4Z9/0Y/qXfkwX6MieFQByH2NQzmGy4m7L0M/8d5+F/y95/x8c933md4IvukE00QRIgA11Gy2DBgSQEDECDRiI4INMmhwx5hVnpbMmnnXOyeQydb6aqkt26u6ylav7a2r26vb2j93ayuyP29R6y7lMxoljZTQrrZmiixpKpIUIWiDAEBpQAAECJuSm0EKDAAF2s0G0dH88z/v5gtm6Hf+xqpqVu4oFsNH97W9/f3w+z+f9vH/wLNQewhda+dw/mjBlgeSRi/QwzRCL9NLr/sbznERsKMl0BEY0+KLfvHp3nMFe4QZnkYeuaqtuP+Aq1K3gbnKGVzOX+AldrNDjvmo9LEWdJ18kJefOMETJWdZnuE7WGfSt3GeT1pj/xOIYZpK7dJJij1kGaGY7JPkrdEWjYtETBCVRVPPTmrRV5uhHQQhmCF4LSREYe2SVTmbca9CaDB1Yul6yCGhhhwln0pznLXpYipr5LDeYYNTnhsZY/NnYbLWRFlDy4SvSEcwOsasFlpl0sC3YJlqIDTLt9jStAWQK9DK28nRYs0h6pXpfi0qT8i7T4wwXqSy0aLJAJvsexihrDMaMZFZi2WmRL8BU38FqaWtKGet6L+pbS3O1uvx5Jvi7/AALVtnxc9gec7mSjt9hLJgbaqgKSK5jvneDTFPDUuo3vV5vdAIAmGd3C+adKCBO/pNAyG4VQiiJrRjqqjHylAKA1T2h9cm3eTUWrGIkqamr+6/X2URa1JZcSVOgyIIvPiVX10J7nXY/9svhSaY14CwD3OAs67Qjr2+Ao762+rw/nubDYAuLESaPsgJFD5RJ0c46OWdbGjCQ3DcCn/rcO1xqJLMIyrNCd8ig96/BdA0pLENN5F1vhJbIhQ+mWFuyTGmgHl72OUoMMu2Msnyw8tSokaRSDK8elpxY0YY8O0W+aGEbWcoohVQMuNf4Vuy3eTYbJrBEb1z7ar7+hEvco+BwjgUHCShbTPXuswsyNuwK3WHV0kDdw2DakdJLtadwgma2Y62vBrdA96pbQ40yEWC5WIQi6gww6+832atq46qzqjV26/gIMFQydz9zQSKSF7PG8LwDhkUKnOEGYKDfoAczKDRJ86zIGnbO2ulmxX07zWJCmIzAV60N5ujnO/wI84Xdje8ictQSve7LX44mkamEejnJPG/wMhmqlNwmI40FXxojcgcFWShsaZ2sy43bECtRFgFikQvAG3Kv2BwWYqJwKjW9pCyT0sdA7FlvkBj7dZ4+bvn8q7pBPoz71yMAsjLIsh7Hv9HJW7q+pX6UV73SmU1FuEsXy5EnobWZ3cdpWn/JAMnPBNDb9YFEi8YultmmmV4WaWSXc1yjn7kYsHShCIVV3LZ8PXb3nYgVuhlnDJMtrD8BLM0w6MmIZSxMoylomGKxVchwlQuMMY7i2xWLrIWsmW6aLGLB01vqpMLTRBea6L0dFONvVWeeCGHX5DzLAHP0B4NME6G6ACYLyBqafNh08Zbia+lp+xfIQrsLFBlhMmQQ8mAAhRO0xfNiDyqgoIVtrqYvsEwXfSxQIePTbXdo5ZfoCcPhHpaiuNgvf865bFSxy2YuvcNZbqDk1ioZeuuLvMzrzHMyClKZrO75otmKjB2fgHq9mK0xy+lgAWkg08AIBAAsM1LJDjNUgn7eySoKkpC0ZJNWRpikRI4eFmlhJ2QJYgMJddeAp2JwmEmWvRtjA5YV/3YNNzuQ0kyaGlUyvMU5LnKFdWcGCZgpkeOkH/+q+zpIDqmOOBBgq0ydR5gMcMw6wAaOqXunYzLATdopx6SqhwIPJBluebhDk99zAiLbSLwBN7Hk37QDsTcOfx2L5jYzZi1IdM/XSfEiV+O+/kN+L469jEYlefy8P36NvwiwO+deNN/neyg10TrXjcEaMzZlYwCvSq4Sw03nNuNAvEC7aw5e51jjAm9GMaCuo0DiFswEtgXzQ9qmJYD8Mu2UHEhWN9jYr+sBLt5kgBmGSFF3mVgr4+41pGtSBVKONUaZ4P/Kf84AN3mJN7jrAG8PSyzSG9eO2NPAEx6jK06736Yl0imHmKHAPW+eGKNGjRLJ8acZinFDY8U4Y8667SVHKTrLksjZnGH3xbCH77Q7X3eUiWDpFCiGH+glLnuBlIwp3+I1tjFvGkkPdn38giR52pISW3jMQQON/gQDyOTpliUBhw7B8gcYUFbAgKtDGBi2QRJ20YzJRB9hYNMA5tN2FAuleM63V8IAw0ESttmLGNB0y5976K/ZwACvEX//Yci8jIFXW8DbDiwOYIm8v4mBkGK5dZMEdxz27WZ9XzcwYK7o++I+f0AS8LGBAW9gSbTHSYIpNny/ftuPwVF72YFT/rzCRrqhfMeP2duEHx+dJMEdpzDJ8zPw6V0SWbKDq59uYaDhoX3vP44BjJ4GHJ6FOj46Rp62O7e67/vVgAeQ7oFfBQcCLc7UoFT3XYCMakAx6cGK5R4WkafQNi3MuL1ACkvie4nXg4GiRcoy3c4eafMaxpj/WnRIBSBZomStrWxGjSE5bI1GspSRdFVS/KqDXHrNugNcAoA2sZCP46yy7mDPVS4wyTCznEayUNkMGLMpsV6R3EvWNGrYFekA8H7/Gk0O/s27WboBJu0MMhO1QS+LrNLpc4E19K67D+EoEzE3AMFIE2CptFM1rjudBd3qjDkBWZJOjzAZizF5zOmYfpcfco63IkxD5/Q8bzlbrkwPS9z00KFBT6k0xYt5Hdrx3YlF2n3MP1gyJSAWwGD1cIsvwsVyafL6EEwBYeuUlmCjl8iTpsYK3VRpCjbILKfjOpD9jNgym1jKo7HakmZ4yl3HFCKxRE/YycxzkkQa3hRzkRjgAj61rpA1R5ECzZi/WskBni5vPvd5RmSNNM3eDNf8LVBISbgl9wi3wIR7ca+mqHOVCyzSSxfLwUSXp6WM61u8WS7JnCTK+9Urkj+q9s5SDrDaAkXeibk+xR5b+2rVz/PjK16/Se6q8UDqLtV+ljTdHeOb6iR5G0qRoZpQ3tWbtNLJXbpZce+4TKwPcq60MlLDfJy/1/hWEGAkUWxhO1ik5vNecUagNV1tLZMPYEPWSmD31n1a6dgH3Bk79zqt3GeZrhiT8m4VsEkbHQ6MN2Hppt0+hqvRs0hvNKpLfn8U6SDLOqO8B9j8Mu1sUZEj5MUuaaYAba0bdT9V3E9T36Ofubhn7XulnMDRzAxDVB2T0LnJss4wk4hlnaGKEoNlg7BDC/uDIlULS4YrL0LJQiVJX+U4vSxhlmDzdLPCBa6GnF0MToBpBh0U24vxpJXNYL9rrSzQbpVOBwbX3A+0EEDmOmav1Mpm2AFpfBIoprlDc4mtD/cCwxlk2tfri0wxTLPXwppnwIgKBe4xzCRnufHEPCECguZsAWVl2pG11x7mpyuwWg0kAXgp6lznLE2u8JHc1tY+Nl4pSEj+rKYabURZB1rrWhJtDXMcX4njqfXbALNs0soEo7He0L2kZtEoE1TJMMEo+8NZV+l0r8Ojv9R48pkAek/zizCDfJk3fMBpoEbaTWfTIWmUzEI0UoFeOglZ1jnpsjF1y2Rq2VtbIss68/Qhzy+xuXRDF+lA5oYyqVUkt+1TYxw4oa7neSsW2EL+c6yhEIkZhlB89yAzdDsVOIWlKaapBStL6U/z9AWNtTGGr5rfpPlgrsj36Sw3aKLqaTatsZCUhFjFkAZyJQNrgVunwQeaQWY57VrtNXpYCr+MJXq4R4EyWQaZdt82K1oW3TRfD9F490cu79LIDi3hAzHNYHRXQN4vDbbPjx5TIROL4P2MpToNvMV53uQCedaCDjzs0dfydJG3WJ1ULP4vcZkBZlnyDr8mIU1Y6jJooSCqs7q+AMNMRfEuKa0KKHWW1shF4qyKKUl3JAc0uvXxAE4soEQeP7M0UGeU94Lh1FlbZZHe8CkTc0rMrf76nAM4NoHOcprR+kQAQxbwUsZMbstP0J2vcS72AYhCcJNWrnDR02tXwmB84vDzzrYs0UiNEaaiq2symbMx4K/7/aBjo65DExVPkbYutJgSPSzxXX7ISebD9/F5JgI4/Lw/tjgaLC+lRm3SGqyKGQaZZiiCg5QKpgWmFijya7vIFUrkg6EgA+Xf4Qd0UKTd5QE/5LsBnqtweIOXACvWzeS6ShcrLNHrvhbZmGxLvhC7yoss0kuZrE8w5ScWS/P0hdS/DfN00YJcDYsyWZScZf4R9Uj/fpVvI5a2SUKaorkyyUgsIuWzClaoXeAquzRiCYdl76qdRIyQkjOk97MM1KW9wFWqTvHfpJUdX0y3+PiuBYgW0/u7dGLOqmM+ywD3acVShctc43ywj08zS9Hv0xxrLNJLgxdzCo26xnk2OAZNGDj1AQYCCQwDA5VGoesYBh6J7fYC8Ib9jfeh/DYGHJ2ybT245du4hYFSg8AQ0A0P3gSmSMIgSsCPMVBuD9aW7WfswygJ++yU79+qv+aZZB+55a+rwQOx0PQ6vecFf77bnzuMAWr/3N8PBhz+x1B53/9fxAC2OgbIDZL41b3jz+mRIwkMqflrXobsCeBZ31bBf/7U96WIgY5+rA6csP369K7vcx0OHLZtPxYr7+i+bdzGwM/n/By965/7pv+9Zvt/4iiJN9/bJCm/a3zuHxscC5abwhssGW+afubYI0U3KzHWaX5tpxz32R6pSH4r0sEUI6RdOlXHEnLFshM7XGwTgVJVMkwyQoWmaOCu0kmPNzDFkJKHslh0c/RzgzOI9SS1g9gX6qoveOCNhUEZG7GPecxf9KZL3JJaq50yYtW/yNU4BhYwto789sR+GGIGef5VHDDSfsx4k0DjVYF7tLNOM9tc4nLUE5YufI8Wthl2tjLYvN3CDoPMMOMJ7YvOghFIKWa3JEZgQNF1zrA/RM4W3+lgBkqxsksjo0yEHKqJCnP008tSgG+SJE0xQpb1WHSC1aOScVa9rrQG5iyyiinTHkoEeVetkeMd92ItcI9Fell3K5pOVuliOWq8AsUIZBLIPEd/MFHk5ScgRiwmKUXkXzjM5D4/q1bAGHWak7qdkVElE4D3Dc7SyiYKh5EsT9f1fj+mJXoDMBXIqmCAdg8FWHPmlB62v8eRR1YGCzORD22RAmvkGGCWEjmqZJhmMBaru/sWqkUKtDlhIvFjq7PrDBSB5FozWWLxyZDZiSG7TQtjjFMl8yvD0CuRCxBcgIOxfNaili9wL0CVTu4GaFH0OsrWewZE7TnAYaqibhQQZGvTHvKsMcEoklOOMxafY4w9A3SlvFG4QpYyVWdK7TqjKOt+lWpSSrEhiyoBHqNMhA+kroMcJRZc6WXqHVsz7JHiBmdJsRf+cts0s4558IOFoiklN+OVtdb+ibffXpAyLCgzh2wOyrQHY0q2BDm3MZBtkpoUwiPELgW8CVRiglFvZNxzKNHYjq1scpOBUB1WvUkhUE3qG0lVR5lw/KEataZJ162W13bkeSd2mWynxGoFY3eKhGIN6Q76WIhrSHJ2HZu3OB8gva0fm7nplmOS5GocMqLPPWYZYJ4++lhwgso9yrSz4M8J1FKAR5PTVfb77e9ivoaL9AYQnKIezQwx5W3dkqZIRzAm66RodlBbgR4C+CYYDSBR7NFtmin5WGZzl4X1ifkocoEFfTaSoRpNBxFf9BDOpIyGmgOBSq0V+C48S9YLPSxG803pyWDM+V4WyVJm3c+p5hWRQBSK+ss8PhNA79naB5TIR1DBFCPIa0sglCSDuzSG4a0KGHWthKbKb0/PpfymvZq+EBOq9ehsUklSYDKMMEUr9wP00EHSgKBEV1FZhXD3YKmwGlh1wdZpQCadmsyAKMbM7NI8TFLsMcg0kj5OMEqamrOgalHo3eAMjewyy2kavYOsbuklLgcAsF9Wqwu+q7bCRa5E90Wgi8kvEoPPdL3mF4Z1W5oxvbb2fYahSEoy1sxedODMV6Y7LlzzwOiO4qzLKbp5Z7zsvwm1IF46/AzyyTC2nEn0lF6n5yVBA1igjwX6+Bav0cmqB2Y0eYGeZ5Bpejc+BIgBqZFd3uJcAF49Dpiqk2odghle4vU4Xts008guQ7UZcr6qMs+QIme44QDAm1h0taXsyBdHoIUKY/MxzCHPLgHM6uyYH6FNwvPpPkaYjIlK7Cx99l4qFb4YNgBWmEslMpYuVqIQqNHIPQoB6mmAnHaPLgVUjDMW38kSOK0Yr7qfo4oDMNaASTzmGWGSaQbj84yWvM5rvAIYwNLHQhTOkvr2M4fSWqtkuMkAl1zS++XQ/H2+Hyk+oY8FajTyOi+zh5mmmyfDLP/dL77HADepk+J1XiLvrEclzFoXKB3sgBa2vVfYH2OUmF73KISvyUk3bb1FP8t08wLjYWauwkFS9TXydLLKi1ylhvk/5Sj5QnKBUSa4zhne4lwAZhnM42GMcc5zDQDJSGUyq66yGCSrdHpz4j5VMizQF0xahQ2JeTfLAL0s8i1e88WCMYRlBSBvHkmk3uKcM7Nt8THgYNoVLjLBKFe4GIwLXeNqrMg0X4EVkAT77GePS5Z1lRep00Dei6zTzNLCjo9le1zlQiy4ZStgx8e6l8OeFGnNm+s0sGcAkdhct+HBTzF56EPC0+3ACMGIo0h47LEB/BZk/z7my+ay0iPHbVschco7/vu/BLL+t8NAHR5fBwrwQEyyLcj/Q4wtdxs+LAH/xD9PIJlu30NYIIf781HHQjaAIy/4foqR9w0S2e6g7deDu/5d8c9rwECu27Bcgr0933YWk7p2Y+CkgM0UCcNved/nlTEwbQv4uv1eWcVAuzKJ5HcPAwTFrDu+7+a9DQeyJDLlbwB/BI/3/PWQBJUMY4DjjJ/HrB8LpQi/D9yBg53+ni0iKffTEklq7+f4cZyfuw5ghTWfw0d5zxctjWEJUKPRX5N7QhnRyxLdrHDTA8lMqrKCJSEuILklEDWAEh4t2KsUPkUtbHODs1zjfIBZllI6HIbuS+4JKoZKJ6vknHMm+ZckZvq7MfWMHddBMca9efowqdB7T3wnAXUTnmK+TQtZyowyQRrz5zGQzaw09ifvyvJg1BtkUipYo7ebeU4yxTDTDMXY1s463S59XKKH+5jqoMcZH2KdpJGRuH2eGIiqly9zCbNqOB6Lvt/gctScqxx3nz5bxCgwTg81YFrYZoG+CLbIuIes/NpkB2E+b9Y4TPuiqZ0yy85MUlOnk1Wm3I9vlPewsLk+rnEeqUcEYo0yQTfL0SzvxUgCNo+a85eUKRYaZ5LELGVGmKTTB0FdH2lq4S9WpSmYfjrXc/SjEDLZNUgV0cguz7tML+3S6qqf40bMw1Veh0qvVf2s5mqRDpQ+2sguTVQDQBC734ICGl09YmwUXZstbEfDSpLIM9yg7kC7gtQkb85S5u/wT6POBULeuUYOha6t+Ps0d+t4Srau2n+NvDfLH39mY9BfpUfaz618L1d8vTzJCJ2shlJB9z5gjX2XNLdgDE0xfwTeztFPkQ72+xWrkSrWkWrKNVcB2frjLmOMs44lX4spVXUihwDgRLmQAB5aZ4gcIRbwGrmom4AYH6REKmx9HMo1eTQn9lsNDDHjfpZVpjy8Roy1OinS3vTRNSSQX56kYDYoPf76LpZZ84a4FHYZqtFwkapORA0gQHOteRt9HS9LoRR1Z+hZ41YWQ2Kh6txlqLJCNxM8H8dnihGmGYoxRE0TNaqbsGBDMWkThcgiYtrKS1DXimEUbYjdLka6/LDFCtR+KoFbjZFFeslS5jSzpF0lJ0n4EDP+nFl7aT/URJAizoLybN6xlHU7Jzt+5QqLKVCMVOX9tfYUw9xkgB/xHTZp8yDBBl+3N0SzSOv4FPXwC5eMXerLDoqkndi1TBddrNDKZsi6lXq8SZt7Jdr6woJLbWYRcSXFXjRUdnxtY+y+HO2+7i36/GHnsi3UBQq9kcpRITcKCJPEWcx33atSPv1lj88E0Psg/WzQa3do4SJX4mYW8itGk/5vxVkNJWsZs60xAJAlesn7BNvPHFnW97E+mqNwMIpwmkan3ldoosA9xKDTZ6kQku9XO+uMMEkDdSYZ9qEqGzePPPAEOGqAFfVX0cfq2FZJYo5F6R1kJiTALWwzzhidrDLMZDDGRFUXONlZS8yZTbZlg2cFi4VeSXc5XbWNJXrYxGKozdcuFR2xq6kLTDFCC9tICrxLmnU39hRL0ib2ZtLenbGuaAMjTh3WIKT9EOBzmtlgwqmroUQ1C1nIx6AjIEDdzP0dhjn6nQtYpIclChQp++Qif8SrXGCePqpkuH/sUEgV7fpqJkcJGYWKEbjkRYbMXeU9suhJv0v0sJ7Oco8C1ziHjDkl89umGRn/q1O/SStnuI5ot3b+1yP4YZdG+urzyHD4DV4K9N1k4jn3IclHl0g+FzLbF0ChjkeFTMg0wYxH+5iP49bHwhMsKknfK34dal/N+yYXCynr6ExRIcNbnEcJTVUyEQ8vEK9OQ6SZakBWEa7Xih0wRz9dvngTUGJ04/wTDNDP8+PnHI8OeJUmZjmNzGRb2Ob/+PT3434bYSoWdqt00sUyg8ygRMF21t3n0STif8RvUyPN3+RHYSwP1r3tdRaA0fubmWSEVjZZoI9uZyK858a5opvPcpoFTjLJiAfFvEwdo69/m1dDYq0iUSC2Qj0W6eEGZ1mmixe5SgvbvOfAcY00sy6jkiVB4q3Rww3OYBR0Y0ucYi68Aq9zhk3amGWAHKXo6l3istsyWAer3WVx7ZSDFSspQCubTHpzab90QIb057lGhgrnuRb3l+RUV7kAWGGopo+kLme4gdIi1WwyMO9kNCsyVIKx08omJR8rvsWf0skqh3loAM8W4YF3RKmrz/iFVAL+HonM8wSwgwFckxiQdRljidVJmG+dwAxklJILxiIbsb99+idw8Iht58gpjE0mv7ot4BB8adQ/d5JENnsKSEHl+5hU+B9gctS079sdf60SexUCASYH/gC4DUdycES+epdIwLsG6B6EIy6X5QUPtTjq+3XFXsNF/7sYgGpmyv/vFAG+ZQTYfc2fz2HS2EuYTPhrJH588tI74dvfwoDTIcg8h4GGy34O9Hkj/vp3/Hvk/Pg/Ax8qxfah72OdkB8faAFf032uH7c5Ecyqiqs1ZhikixWaXJI0wfO0U3ZWcDv3aWWaoWDXAiE12qQ1ut9aXFmyfDaM+rV4MzbvMvIN1iJA25XvjVjGkCQdAlHziAUiEEXecmJTqeue9qatgLEulr2pfT8ah5ZXO+vNzeWoGeX7rFpT5uVadEwzyATP08kql7hMCztMMuyM6LuYBcF0eNGZvHIPBZoVKdDFCns+1hoIs4dkYGks4EyG4DbOV8PfS9JYMJaRFlGN7NLLErs0OniTdtmv1d5iUyzSGzWcmBYjTDHOCxTpiKCgVToZZirOu+TUYtCJXSJVxg3OUKORM9zwpqfJoASimb3Kku9DT6xLjNl5Oix7ihS4yosUKXDfG6hl2jnJgpMKbFGnOt3A4jXu0+rs7EWGmQqmuo7haWajSS4pLhhLvM+Z7ca2qsY1qdpAQReWomgeeGUHCS3NsRrpmwo0AANOW7BALV2jlsy7GlJZXQvG0ipGM3aKYWQZoYC33+cPQsEij1wxvgzkbWCK4SBQCAiR13kLOyhgS8wb1al9zHOOa78y6o0veH0i9YDYPVpXiLEjf8w5+kNVI7WXkj9tnCgzxylqpN1n3sYs1fjWUJiI+0cMM60PJhj19ObGGA8Eluse1HimJsVVLgSr9KazowV6y4pIY44BO02UHOTLUGXl6Je8WWNkmAFu0sVySF8V0qB6UWOyeU4PcI1zTDAaQYsiCKlJI1BPck5553WzEqCU1mWS88sHWo0gO1ZZ3uI8K3TRxiYXuIpJmk2BIvsiyfHtsyzQQNs3a6nNUODoHhnjnWD+CgcAfI7pjvMoFrnWiSn2UDiHgWnGh5PvoZjEUwxTJstVLrBEb4CPAj2lHEphgUACkpfpYpgp2ln3LRu4qDX6Ns3cpxXZdMmHW02KQaa90WEpuSJeSXKsuUDNfM19akzt+ppB38/sCRpj3DQ8426A3wMezihG/I6THLReT1H3ZPUkaFNWGntYKOgwU0gWbvjJQjRERDaSHYY9tx7Yidi21oxpQspCMCBbDY39wWAiVIjxKmWq2IKzDHAnZDR/2XjyGTy6uRNUerGFzEDcyhHrXk7H5CIzTwEOo0zwXf6YLpcd1Gikh0WyfuBUtAnhN625GSxLy60bqE4DkmqpmMmRGLfr4nnHffmsJ7vEvHvnrZNl0aOvJSfUZCPArxUzwNykldaHWwFcKBm30aWi6nqqS6mOmVDdUSZo5X54d6Sos57OxmCbZT2KI/lrrNMexeolLocUEuAMN1BqrdFP3fuuXmSEKQe59kI6B8YgkWHwsoOU+zsdi/TEglZSinWXtjRRZZ1sJMJe4idsY4kxou+XyUa6sZJ9hPBf2wckiX0mhlKKOq/ybYAAf+fpY4qRKNDKtAcAa45c61EU61hbh7IHsebEkpKfVqJzr0T3SvIUdYQFOGggEKNylgHkXyO/s1rK/Ls2MQ8JHceaU6gVQJKhEnKLLpadIWXHUAOgeUCal4tkezoevSyRocoSPUFJT7EXtPkKGbpYdvChGh2jPT/PAkR1XFrYDjBTrK4M5uE3ygQyMR1kOmRRi06fn2HQk412gl26633mBp9o18jxFz7Bft4fYqelqPM9vh8d82SSzwQbLMs6Q0yzTQuv8Fp0bksOiIqd0E6Z81zj27zKWa6jhOlRJpCZepksnaw6G/BeLGKU7KVwjoLT/oHoUmpi6WOeRmqRiCh5lrFiOhhlIuj4SSKX/EK7o1HQwg5D7p2xX+Y2wqSzt+/x2/xTZjkdC60+FijT7uNRQySX3eBM+IrovpbHldjJKi5MPp/HAmhqLNITRZw6uwAyp9V9oI6rwl0s1bnKAidDWiC5SokcS16UyJ9kkGle4U9DxqBzfI63KFDkOmeiWI7FUgsGMh0lAYbWSIIf5Be3RyKhfYABRC+An0JjiO1hYNJhDFxy+ShXSGSrDvAdEED3ZyRSUSXJjpBIar8J5bsYI2/St/+iB3HMAP8xBm5dsv37VH5yDb6vhzCwTF54Zfh0liQA5Fn/+xYJGPcKPL7n+1Zyxt8pYBA+nPDPfYQBcXUSUO0FPy7yBHwXA0clZX7oPzcwtqNksguYvHbKj/FDDJTM+d9nbFsPZvwzLvl3KcLahB/rmr/+fX/P+34M8e+0R+Ij+IzvfwO/Eo+jPra84zYda+SDsVOkg1ZneLR680NsDdljiAnQ7QCgmr3ygspS5qQ3mS5yhREvzhuo08x2dMrB/Kc09wpw2SXNnrOYAG5whgL3AvAAArwAa2jKr0j+fJ2sBlsh44V7IzVmGKKCBQHJg7SJaoBGbV6Pmh9fOtgXk4xQ9fm60dUhZkpfDnZBmhqjvOdN0uPM0xfm80BItxQ61kiNFbr4DS5HkzdPKca8/WBnm88R8pQqUnDJ7x6NzkhrpOaitC5mGETG7it0hVWJxkqbExJ2vgmyMr7g2mOcF9glTQMWwiUzcgMO2+PYixWhJNxNB5Z2/bNzrDHOGC1sx7Uhr+JtWoIN0ux1nkAOSfj6HLwbYYoeZ+7NMkCNRl9Ep+O8pKnRzQoZqqw7CK2GnNX1m17n172BXg1WjrGl7B7oYyGY8apBVX9L/TDBqFeZm/uaalVGmEQBdUA0bctkWaKHJioBICzREzIz1XqbtEZtkqFKO+th+dLILhe54mypq6H46GSVOfqZYTDmUPlr6XhWyAQjt+SA/SZtrJFnjHEuciWYoa/ybapk+JCn/xccdf7qPuS9Ja9vBYNpzaP1sQAH8//aC5CjwD1GmHS1RqNfxzsBzphyyjw2RfJoYQcFOIjVVqSDJQ/oAWI8OMc1JJUWmUYSaaUui8F8kSsoYEHEmQL3yFDxcIFaMOCasTCbq7wImCWM1v9VJ6sINHmPUU8mbY11sQKGGtllhKloFHQ780pyYjFRDeBr91WI+bwv08V1ziL/tBT1sItZd7VSC9u0sx6fP8xkAJt7vrYUiUbH3Lzt7kYYjAg9m7R6UEcNBUXUaOQ+rSgwR/fBGrkAsTQOJCq2+z5HmHLLWOOlqKMFCCk0p0TecY9S1KhgHn9SnFnD3DzsWtnkDDdYpCfOhQBdEVpEWALLDbAZsAn5WctfT9JsSVVlR6Xk4WZvjojRK6awMI8z3OB7fD8YagXuuedeNdbFYumJnCTwcBtLmV+kF0mr7XuX6XW//X7mghWZ1ACNDDIT96jAQNnsdLPCKO+R8TWIahiFNmnNJk9t89lfj3kLjGUrvELndZsWFpzodI9CzLsl8nzFiUh/2eMzAfTuO0VREsKsFx46yEK6z9feIs8aplc3kEiJJjKeFUMMCA+UCUa5zhkvpqreQTAq/C36medkFGRiA7awTc2LhHbKKFVGwIZopBWaGK1PxMlq85tDJ0byCkkeG/22NH+4RcqHj0VnRfIMAXTyk8qy7r4vtZAzbNLGMl0s0McaOe9g2vfIOTtQF8C4p2bpNhLabh1VxXjfCzBVg1g3KxY24bJNJbwOMOvdhQbK7icC8B6jFOlgnDHm6GebFu8m26Cx5sVUlQw5SlRp4j1Gkcm0Chob0ErOwLGLd4RJnmeCPGss0xVdckmawQYcMzHNxM13tm4gZY4S5ulnA4mAP00M47wAEF1EfadJRoKZIzNLTarWFVikn1teBJnfldLKdF7rJLHeeUrIzHuMcZQk1uS9EjEaDRxZCDCti2VW6QzvBl2f8o7Ybyq64F0J3Qui2YuKK+rwGrmg+doksPOE74W6v53cxeTgM1TJRNehlftIEiiGESSR9/IUVJcJzANAE4Q8izq8iNP9ZSyKJfKUuMgVJPt4kTc/i+Hnr9yj2RObphlkmS7mORnebgPM8hKvI6/JDNXwUDTvnB6KdCCWnAqWJu+aijo+wyBnuBFF3bd5NRaS8tKR5ElSsX7mUKqsurs6tzLZ7WGJy/wGJ5kPJgnYNaFkWnlmaPtjjEegihV8mWBqgo1NC/RxgzN+3csQuRTjuDxYKzQxxjgD3GSTVi7wZniEHvfO6Ld5FYXlrJFzj8kS1zjHMl3Ik++0j11mubAe/hkv83qAqJOMcN1ZHioSK2SY5TRL9IRnZxnzMhQQKwmEfJ7ec4/TPKXw/zJQtsPPfQmZ8o8zZveaVEa3Sfzgvo6BRscxwOouBnid8tcNkwBgaxhYNgIVSVBvYyEbtzHQ6BDGKktjzDGxApV0+ywwAI8vYyy5F/y1ZXtd9hSU/18YaDXpP4sYIHYX+D4GhB2GvToGZqX2bR/7GzO2H3t1EkbeBgbcFXyfC/a9D4qhd8X33UG2Lwm4e5skdfawf5/L/vvb/lOpvQLUUiRA41FMTvwTjO235ccyjwGmk37c/Ph8ugVHsr69K/7zGOS7SRJ+gbXbGMDpx+9LIxjA+DUSn8CSbzsHXop8rh93+bKz7S2Jzhje1myQ7PJv8Co1GmOxqcXMLmlucIZdGrnCRSwR0IIHTGpmPklVMqxyPLr28gIFgg2j8RWIe9bsQRKZ6SAzYQ+hGq3k44tkkDJ7mWaQaQYZZJoFZ6Esu91ANyv0skQf85Rp5zpnYoF3mUuMMxbm3ZIlqRnT7TWmFlsW8LEctYaBZPmYbzWud3IX8ydbjDo1x1qwUNpD/pimhR36WIiat+iMBqszqiEzk7JE7BpbDB1336Y2jrNKI7uccRNzfZc0tahvxLBJs0uRjmhq6Tyb19ZaMF4GuBnMNTFhXuelWER3sUKNdABHAlTFpuhmJdh+amzO00cL2+FBrNRlJRs3UA9/VUndTE3RjSxlxLzWcdnP6G5nHbO7ue9khu6Ys026nA4igYzTxZ6yhWWzg8K5aAYv0RP7LraVfLcFNmq9Ms9JxOBLUWeddgaYJU8p/MAucZlW7jNPX9hWCFSQ77QkvVUssE7rlQwWKiXgQODiGOO8wp+6sqca94cscHSfnWaWLk+gloemal2BMarXP+8PrW21tlBoS8aBfgPFiizSQx8Lrq5pJ08pju8aecqYukhjXoZKXGMr3rAXsC2AsOq1ntkw7cR+7A9ek6JA+6IaX5ZJY4xjwRJ7QTao0chJ5j3ksTFqTMkgtc68wdkgSPSwhFKTxYad5XTc41LsdTh7NOfXspQXYjdrTO9jnjHGnQVaCBaV/OhGauZreZEr0WzVugQgTynmHzCprJLNe1gMUMmUMtvBLJOHYAs7tDvjSvd3O+VY/6nprMaFkZ+amaM/vDTlwSlGl2zDFpyAI8su+Vpu08INziDFosA3ID5DbG8DLLsZ54XwqBdIXCbLIj1hu9Pu5BhJtvez5A2wE7GlLTz6FYrXSI17TlKRRHqWAXa8GVAlQ9u+hoZCSqTsU5NGYPJQfRqFj6gxYeFNBkrLa9LW9Ct8m1cZY5yse8i2sB3z4H2/no3deTqaSmK+muTbiA+dWNikEnb31yTaX61hZFEF1ujJUUJBGPL4ExFsD8tAUDiGnm9kl2YfE3tYojlkIP/zj88E0Ps5x7nuxsG6UM5wwxl3trjKs8bV9AUqZILpUMP83YRkarIEGGHKc6JMQpp25kSCYlf3Te734oTWSYU8MEPFjZATWuf+gApR0VdTnS7jKIXsI0OFPKVgvtQcDNqmxRlR6+SwaGR1KeU518UKZ7jBJpYSU6eBQWboYiWi3gXkdLFC3tF2+Y9ZqMbJGLwGmabDizljp6QDoAEDWWYYZNG7cuq2yO9lvwdblvVglbRyn0v8hDPcQBHyq3TSyyLXOB/nQ5/b7qi9OqunmOMcb1EhE13TZ0of0comS/TE8WrwzlML2yzTxQxDlMlynmu0ssnw1p+ToeJJvubfoImmlkoHPVeDk7TxdiPv+gDbFGwfsIJcqZfyYNCgLNm1ZN1K9FQRZvJFYxGqmGpmmzxrIUlRmts1zjHJMEv0skJ3dC3f4hz5+hpVmhhnDKXcKJ15kV5ucCaKTCts2mKSFjNzkOnowi7R84Rct8A9fsR3njBylfmsLRLaWSPHJm10sxKFrVicMiq1ZGGjzoudqqK7iQpKQta9ueuwtiVX3Qgm1zYtZFmngyKTDAcjrIMiPSzyxX2Jap/nxygT/E1+RJ2GMNLNU6LLKf87tISPiYFv5RgX7bo4i6jwq3Sy6Dzi/5T/0E3I8zExTDAaMisF8oBJcJq922iTUzVAwTVyXOcMkwyzSVuc92GmHGBr5L/g9/gh30XeOvL5Eat12U2QJR0bYDYWk/KX2h/kc45rUTQqdWqCURqoR/KuCkkBmWA+L4PMMM9J/pi/FYvENswrZIiZJ5oPWkwDNHkR1USVBizBb5pBrnOGmwwwxQh9zDPKe1R9fBLLvN072uYtsu7d8u3wOJqjPzre8l2d4HkAL4dMQifZhzwIxUjv4Q4cxACohxhrq+w/b8ODWQxY+icYQJTCEmKnMDBsBPgdKF8BipDxdNXHNXAswwCyBpJE25+SBDv8pn/uB/bzYPe+1zRgAFQBA/UuYmDgYX/NAAa01TDAatVee7CTAOXAP/d9+z6feljHxhZUln1bg7bPbEA0SN/2UAoxDrMYsPaAhKkICdBXJknNlTRXwRbT/nf59H0TA9RKvk8lEr+7QxhIeWTfMZuxzzgw4PsrpqOO7wl/j0uVjylM5Khv7++SJP0+8L+t+Xc4RRJ08jl+DDEdXneq9RQ6pvpmgT52aInFm/zG5CvTzxzD7j3bxwKNKL3+OHXMc6ZAkSIdLPuiT/JcSSUVNqYuvgy80+xSph2FEZkPZwcKNRPopjRtjeXyupMVQK8HHKk4398I6WUpml5mCVOMQl6glFjKMhTXgtiAld2Ye/c3RLS4q9LkTPgnPUGNkVxyZsoZphlEPsBW06ZZoZsUezzPBGJcp9llhEn3E8wEmztPiW5nWuj8KDXWPIT3/LyYZHCKYRR4p/OkRq4WnmOMh0JA6Y0rru6Zo58BZunnVgBxGSr8Lf6YRmooOXMTC1OS3LPAPa/xat7MrMdiqtEXXFqUVckwy0CAhwmDL+8spbUIqNPD6pwy67SHhMtC6hIvbSUj6hwt00U76wGwSjqbd/WQBWi0cZMBl6lardvDIoPMxHolSxlL9m1ghW4kr1VT2BpTe9GkBfOmbqRGiXzYwxizv+K+kT3eaDZWkphhWcrMMMQAs5zhOt0sI6adJOzyolIafSO7jDHuYGEqmnpiyNRoZIE+5NNdoYl12uPYfd4fAriMIbYX48AKXUi2voqlUKfYY4UuZhmIpsQKXSzRQ4ePIVqTJVY9DazTHs1iIMaOU8w9Qb6QpFUMYalKZF+Voo78GrWfYlRbw2IBqeIE1GjNNMJkEB/k4y7ywCwDZFnnPq3BajP2YREFV6apeZL1LqeZpZX7sT62NaqNqbYeM1/w+7TG/Wbef7nwl55MjwTpxtRHdmyskTONPDxFKBFoVibLgvvty2NvG/MHFOBnnmlZxyoWwv7Imh3XEStLlg2t3sSQbdh9WslR8vCEZfdgtkaOgqI0d+addXmNc2xi3n9izOmcNVJDvvUp9ny9fI9eFsMnf8jxiBe5GixFeXEqB0He7zr/8lMVK2+UiWgwaAxf8pRmjSMAF7hKM9uxbhUgqFBO88oztmWeNfbnLNxMDQTmsOhr7zopsqxzmtnALTS3m7f7PLuk4zyIhXeDs7GOEdCnxkLG2f+q83X9TDEcxJh1Bz4tF+H4E766FTJc4OoT/no97v8rj/y0cxYHmaGBOn3MY+GXA7zFOXZ8/9PU+PkTxs7//x+fCaCnLgzwBOtDX0AsByHgkj3IO6/oTLw6KTooMrb1Hpl6JW66ky4LU1dsjPGgzapb0OALRN20Mkg3n6lcTODdrGDmsJkY6DRYSpoJRCLaIDM+SFlM94JTRNswltQCfXSxwjBTKLFSk7VYODc4wwyDztRaCXBKg6Um3pL7NalTqwsjQzXSdMyYdj28zizVqxmFFIjRdY1zcezWyEfHTPJaG7CqKIlL3Zfv8CPMbHKaLpb9Qjea7iAzvMhVp9e2hSdIC9tOom3g3dxXnIlWCiR+vzzVorxzJuOrGX154uhXucZ5ZhmglfvUSEchrQFFHjwZqrTUtoP22sUySs7K++AmXwNNXjMMUiVD/uHHAcRJFiID1zHGvQhNfOzKvjA3CKIlGKeWMHePDNXo7IgJp3PTxQqLKQNJBrhJJ6usu/xHA8EgMzRR5QoXozDTxJqpV4K1173xUQxCCkfoZoU5TnGG6yjFSd4rkq4rsUjJUO0ejnCfVk9EKngh2047ZZTepEdtH4tKHXKjp7fHhGUdQwOnJJVRV7uJasiHjLJ/gl+Fxy/4kne07/OCMyvUUZPvDhBA0DSDpNjjEj9hhEl6owtobEu9rw9L/5a57SwDEb6hzr7GmQLFkClc5wxZN0av0sQIU5Rpp48FznPN5bAGPN+jwCUuM+wemjK4/iHfpZVN7mIemCNMRhF2j4J3Z00ql6PEJX7iTZG1WDB1sspVLkQXVymxNxngLc6zSSujTFCOHmE71zhHF8u8wDjf4V/EIj1LmeOs7uuGrofcVumJtqBqinunSIHL/AbjvMAqneHd0+oc83mX2hYocoWL0TRQSvs2LazTHrKlPuYD/P5d/nE0UcwDJc00Qxwn8YJapJdpl97lKMFjuLkMjzeAAZd1NgA77qc3QgIO5YE0fPoIA/dGgZ9BdggDhr4JbMDBsxhIqFtNgQyrJCEQL2CSVGyb5Pxz3vZ/YpG9gQFqp/a9931/7wl/bw0DzSb9uQYSz7/X/f+PLGji8W3I5yBzybc7SSKhlUT1XU+bfYhJio9gstY9DDxs9n2rYYEVRzGQrEYC9hXhwCmgYKDdmvwGn+MJWe2BrO9jybe/59/hyL7/1/znC77tV/z4i/lY98//ugOa7/t7UliCr+S+h327eftstv27fM4fO7QgXyEtbJTmt0gPI+7jmqOEUgb3S80qNIW/mORHr3hoVq+3Ooy5bAuhXvcbUhqfFpoDzEaY2CV+Eg0qLUQucoVhJulhkVHeY4RJBpjFAp/WHUQxQEjgfCvm0alaROO8WACyahGLpN3nY0vVLfmC/j7DTHGWG2Eno9AAzcVKN1+k14GTdCwyMlS4j0najNXVFMyCefrCN/osNwCr1eXlLNaIJZZWoybVgvglXmeNHMt0h8Rome5gie9nlBho1xALxjXynGSeQaaD8SCG+DYt9LJII7tMMOoLtHLUwWCgmHlnW1jIfmuEdxhjnBdiwWjAkfkVanFkTLkuxAArYwb+eohJfpUL8T3kWyYrE9lVvMYrvnBrDg+5Mtk412qajjOGAjGUlrviEsg6DeEdJYmvsXnScZ2oWax55If8rajnrVncEf5hCsQwpZDdA2e4Qbcre9bIMUc/k4w49NoWTSZjzK14TW4Mxxlvfkv2KOBExAstmEU02M8A0utkJt/loKx8gddpZ4Uu9jDf3mGmQn3V4o3yY2x8RiPQX63HBKPhE7fiFHZrMlgjopFa1FIL+wK6BHAAXrOY+quJSlgg6b4Uo0qAreo6sYaM+bUe5I8WLFRBYFaJPPLyXPPfzS7LJPj3naiitWudVLBhxWLVPS6Gap41TjNLhQxNPj7Z+mktGEy9LAZ5RwQQNR4EuDSyS2nffto8sMR9J27oePawGM2aFbpIU6OHRVLsRdJuxskK+69fsdx0zOukfNuN5CiFTZL5SK4HwKfQTwOeegNkUnNDnswK0WhkFwtSWAuw08J+qg7UrjPDEEv0BkEJbPxrosoo77HohBSQt9yq35M70bDSfa31mxr2Wltv0xKqu25vxovt10TFj5mxHqUMXPXZWGQn2djkHLCXVZVwAUlLrWa25l4Pi2HnpWtCrxUrcI5+brkUe5bT1Gmgx5v125gVh3CgIWaQ1578vmcZiNcCYYXQgVl0NVAPolSKvbgXFEwhi4GTzDuQtxvkC3n6ae5foYtmv4/Ekjbl0BqL9DDjAZNg85U8RtNOj+nCgr+ucDHm0l/m8ZkAer/gaU7G4sYCFsy88rwfmGa/KDpQIqbJDndYc48N+XZp4l5L5VHKoRgijexy040wdSBlEmkU0FYkmVIijWiS6hSK0ttEBaU+6mbIUfIuQgddLDPL6Rgg99Pkx91/T51LS9XdC6aadPG7NHLL9eg9LDHDIPIgsTCOkUDrpTvXhXyFiw7WJSwxIG6mRTcyFQIsbb/p7dt4mTdi3ysuJ6iQYYzxCFaQx9aae62Yz4p1r0+yEGBOohE/GUW3ztMmbZgRpPlTST+u8yxz34J3U+qkIsGokjbZsiQN21iMuui1kggI2JJsYzo9yBynuMFZVugO1mMnltq57L4U1nHJx0S3cvjLMXhf5hJrWEqNdPyK+QYbIOWlJy8vyUt6nS6e9uJeycnqsmqSu8JFVuiK7rk6TPLnA0u9kZRa1/AY49xMDVDHpJjrx5oZZywoxDUHC5T8ZnLo/BNSYzs31uESyNFEFaUuA1GQyQRXoLrOnYJiZHirySlDJbrLk4x4slEq2LM2oS7FgqmR3ZAf/yo8phmM4l5yb0mXBfRL1t7DYnj3qPNfw3wn1BUz+4JuJAO3ca6BLGWUbCY2wfPe7ZphkJsOpA0xExOR/m4MDPnLpdxLx+63Rmo0eFGjQkJsZF1zGSpMMxRjkRYymuzUOMg5M1HsgAqZkMOZV9Uybb7QXycbDFYrIJrIY4E36j5f5UV2aIkCCaxwnWQkJkzdE5Knqfu4SyPf4V8wxjsMMcMqxwPs1zGYYiT8VNU4Mi/JxWjAmMfrUnQwaw5kqrvWxTJZ1rnIlVhUV8iEzOAqFzjIY9iD08/Ciktgj3RjMtYZTJbaSRL+4Cy3A1+DwNzrJOyyKQyYOkmSnDtLAsAVMSBJrxPbroABagqW2MNkuCMYUHcKk6bKY++u75OkwGV4/AAD6MQ4c2bf7Q8wsMvlqwdfwACzQUIS/Pih/1/JvnXwOiyRzk5C5bJ/ppJlBbgVfN8G/XnJfPeAVajWIP9N3+Z1EmagS2WXbzuQmvPPPuqvnSAJ9ChhoOKE/77q+yt/vsN+DI+TpPq+7689AtyB8s9IALyin5sjfO4fH7i3m4IYtHiz+cNkVPLhNE+ebjZpA+w+3iXND/kuMi836ZnJKX9765/TwjaDTLvv2SLntn7GINPIg/MMN/he/fsMu9/YINN0s8KLW2/TxwJ7pDjDdeQZ1M0KQ/VpeljkQv0q53gLWXAoFXuRXtZp92zKSWReryakahYxlJTmK9+8bZrZpDXsPao00cgu95xZp3kZrMlbpt2BtOWQU6rBfZ9WqmSiiShfJmOTGKsl7+wrWbi0sO0psBYG1uwLZzvejcEyEOO7lfvkKbFED3nWkBG46o1NWlngZIy5xko0xto9ChEWUaeBc7wFGCihmgfMq1nHTU0TG78tZVC+z5LpWqN2iAY1R7Da+Aw3XIlhYIXmsRqJV2KRjlh4in1XoMg8fdRIU6GJU8wFq+w818i69M3qpSo3XbYKxoArkQsDdMnqBLqKWNDFMiVyLNDHADc5zSzjjCGLFJO7ZpzJlmaUCeY5ySatsaCWl5XkeLK5KFJgnDGucBGwIIBudzm0RbQWoOZjfcM9XTso8iJXsfCY3fANX3dVUier3KNAAxbKcJpZ2r0+P8k8LexEPTDCFGbUUoyau8floFqk9rDIEj2hQhFguR/M/Tw/6nwB839sQ/ZUmz4urJGPMaBIIQJszAPM5IuyxpFkd8rr70ZfG8mrTGxZKQJS1JlhMMDtPVKxrhZQVqchPNUUQjlHPyVyrNLJPQoRfgkE8KVmg+7nxn1rDBEKphmilU234GnAQnVsfb9ETwAtQDCxgGB2mde6sac6nI2tYEoApeRWaIr7SHJxXV91zHddx7eJCkNMA0Z8kQRdXuSN1Gh2bEBqi5sMUKQjCDXGhKxELSiVW9VNmGYZYNz9Y6UQ1PymNa1CYgDkDar1/n6gTsqwVu7HuDvJsDfDDEzX2hnMQivrI7/AywxVOrDAD6lUgLjOOnysPMMNxCbdz5ZvZ51hJhHjWvspBV+GKm0YS32F7kjYtnC5dmSrM+NrhzLtzHMyjn34/lOMJo/UZ1nWmeOUX1MGTgsjkfpofwqz5oVb7t+932pjhW5uMsAt98uT9ZnsKIwIYN7jc/QHmxBsfpaNyP7GhxR6Ui0JyCzTHiC3zqkl8vaRoeI+qmv0shTEt2OOQ/xlj88E0BPtfpvmQNJVaMkAV55COkF9zJNnjbc4H/RtMRvmjp6gTNYpmNatkpHoKO8FPd4mP5P7neNaAEctbDNSn6TDpYW6wOVJIvBFYQNGY7euR5KCW45BA/AkMCskR5kw2mltlSan3Go/Re8XyDjgE6BYNSkSjzZ1rVtrm+7zZ9sHXLpWjUJE3eEBZsOjT4t/ILqrMhEW1XiF7tDoa5CvYUm9AmNK5BCbUMbUNljmgsEnGq9FPFt38RrnKJGLAmnS47ilrVc4SMHV7lnKcUOl2OMNXmLNQQ+BSCn2wo9rid7o4Kl4WqWTHVoY5T0GmI3FehMV1sg7lXUhuugCLo0RZClrYFRr8ziouFynEIOJZIJ5SnRgpskyWJXPiTxf7tMaXgOAF58nmaOfPuaZp4912plhEKP5luI4jDMWlHN5DRQpeAe2m0Z23Si6NdLWNBGOeZ96hW56WdzXnUnSkfMOwkjqMcMga+SRGXaKPV7l29FNEgBq93JLgNQChQUiFSiGXDrPGiPYvaaFhu43HWcwb4Gn+PizGH7+yj30PRvZZZVORphEUgVjUC5znrcYYNZlM+YjV6chmGHyjSz79aGJXCbUZbLIcF0yBQD5Mtz1ybLFS4GEXVJiglH+mO8yzhg5SpzjrWC0KUBIYULznMQ8K+5HcVahiWZMEnSdM/QzFx1cNQXUCS6TDcB8mkEGuIkxXC2YY5VOrnE+gL11ssHufZ4JX2CkorGhSVbXJhAMAIGiAk4lPZpkhBW66WGJBuoB/BnDrpGrXIhunAqqHGuskcPSDEsxIYtpovFIKZYVMvSwGPKhfuYYYpp+5sIH8SJXaMdSsR9xyEChZjjxTQzoKmCsrwGS1NpJDBi6Awee8d+/Dvwj7P23/bmXHBz7E5KQDKW2vmzvZxnCm/6Bf8Yj+7zKO/Dhsv//EAbwSRZa8P2rYcBdzd+vfQYD/wTguYfeiU57/YNbJABXAfixv74GD3Z8f3O+nUGSRNgG4Bh8WoZfPCQJrJCs9w6s/RQeu+SXbgzU+wYGNh6DjFJ3t0hkxA4EVrYgm4YjlwhmJMsQfsQpDDA9CuU7JACofPkeYqy/AiEtpuzbUrLthr8eP7beb6l/RCLD/Rw/OvgoxqCqg11a+MhzWaB53pm97awDNtdPMBqFdJksffV5+h7eZpsWDj60575c+pgv/nSLZy5/xMEJOLb8iO9s/St6Ht4B4MjPHnN64zbdGx+RefiIp0sbHJyC0doEIw//LflaiS/e3iJd2+XpmQ2O3HpM38PbHLn7mK++f4uvrt7id7f+O97iXPh2yr9JHnSA17BdZFlnhS4k4zrpHlZq9rawQ91rlgwV5h0Quu9KCfOoa40xRwxjW/xlY4G4SA/3KDDITLCyJcnazw4U0CaWoRIcFc4mHynAm2/zzHOSTlbDBxDwxPE18phRuGoOm3/SUZeLTTRPH5OMsMDJaOhv0soQ08ijS4xuyRDNP2ktarI9UlzmN0j74rpGOlIWrXFuwKAkYrKYeZVvxwJK3sZiIbZTjiZaij02aWWZLsYYR4wzpaYv04WCTJq9ySt2ZhNVBpmJ1HPVtta4N6P2YSb9HeapJZ8kLQrLmBl/zj2jXuKNAEOshlwIVqiYhJLXgTVtZb9RoSkY41lXY+wHhvenFqvRdpYb7GCswHNcY4gZB6qnOM0sY4zTQZFT3piXwmiYKXprS9H0G2SG/tocp5ijj3l6WYzvbAEQidRc932VJvqZ43Ve5gZf/4xGoL9ajzP8jIqvh8WK0/nYpsXDHEvBPBOrqsc5o8ZEvRe1vgB7yVUTYGI7mif3vQnZiYUXKBEVbN04xTBSHIiokWaXJqpY+mx1H4nE2HLtJD74WhOdctl1NysMMMtAbdbvb5PjC/QLOyUnCjS5Nx0Y0Nbt1lBSkEmmvU0LUwyHJ2gioS2z5FZLaXaRlVcLOyH5Bp4AjavePNL4ZWv4NYaYDsuWblZow9bmlnzdzBAzDDHDIDMs0Rt16AqWr10myxjjnGSBFboZYiZCmySRBgIQ62ERs2mooVA5AbcZKgwyTRcrUddOueJpl0YGmGWIGQoUWac9ADLd8/Ju1jnQmNtAnVEmuOCe5gI8BRqWyWJ+9U3xnIhPRQf3U9TDGksp9qboWiNHKbANsfUEQhqrzvADAchGOLA5X2CnMR4T30ZhAmL5K6B0ltMse1NQDQqNxQr5OcdbZCmHnNbWWqZQFNt12D3wBJQu0Ruft9/mo5HdUNzNMsAAs0FykA9rK5sRCqQ5XcQIMdvFmpTC1K7B1rgPBEr+ZY/PJFttgyxFUhS4F8DFMJNO/Tba6QA36WERmReLqj/INCXyQU/tZ85Rb5PuyVdE7CFjrXT4oqo9NORFCux4d3CdLGspu3B6fGLpZy4SgOSVsUgPbWwGBVjyQU16F3gzwJtlutkjxUWusEuak8wznk5SdfaDKfIjU+dDXb8UdZciVtydyU7edHowpGsapCVNmGXAWW7TtJKnlyVnkq3zQ/5W6LAVl5yY5g8Fyixze3midLHMDc4yxjiTDNPPHGmn/yt6XIWcbuYxxrlHwQ0fDQgdYiZovwXu0cIOF7li53vrFktHe6iRjgJUg5RRpq2TkqKOmcVX2Z+EJl26ClBNQFOMsEkb3+FfxGJA9GsZuqoAVlHbwxITjHKeawGkglFwpW8Hk1mDFUmSE44wxWWPNlQXB8yPooG6a+BPexdqMGTPSntV4aXvbjdvKoCvXhbjuKeoc4br/JSLzsO8S5n2YCg2UI/EqTS7zDAUXTG7hlsB6GUxrh/R5oeYCXBbRsujTERHzbof/cjT4AZnAiyWaTaoq2THVx6XRlXvCqr2PH2M7EuHmuckbWxy0gfNz/vD/C2nSbukaIgZaqRDIlPDPEa06FHnU8xNTegL3omVH8ai+zT+iL/JENOM8h4FiuGFJ7mOTGM1Hposoz0WK3nW4j5V4hPgXjqlWAg1UEey1XbKvMmFkEDJM1PFz1luBHCXgNdr3MMMihXJLpnENc7RzQrLDsQpDUtGxpJsaV7oY959/ia9kKozwGykoynkBkB+VwZ8j8eiOct6jHdiEu6X6em6BvP8kVfVHP3MMsArvAYksfNgfnm/wWXkRwUW9FTCkjm3MTPeLlZoZpu7mCy9QoYj2zsG8AxgYM8HmJS2AJ++CwfAwKRbkH0FY4Ydxhhfb0P2ayYnzXtQxMFuDARMk7D48hiQNeDPXbLXMoIBUO4BV31kWNyxVcgc50kGmiSu8rW7gzHlmu3/B3MkqbV5DIRMAf++vf/IMgkr7pb/DjAD2Rf9vScwFtxRe92nd+DAJWDCfPdOjPh3/6m//+8CV6DlMNzegv53/fn3MXZj3n9+DT79Izhw3L7ngzIcGQEaIPPrvh9Z/77L/h2zwPcwyawz9rLH/Fz8l5D9nu1H5bYDhnngtzCgcse28bgGBw/t+56n/DOywCykcvD4Pp/7x7bzyoFo6pXJ0kExGrySB+1ntUkSqzT1Hr8fj/zsMY8H4dmJn0MRfqv7f7BrdI+kur0FBx9C6beOWaPj4RYHfgYMwKGH9ndycHjyEwOGi5/AFhw++oldAzk49I5vqwwM2faePzrBcRIjdkvfXY7QHJMHW5DVOa5FDVuhiV6WUIDVNEOM8Y57iVlxL2WAGoXyOx7AFsV3ne0lQCVDhbPcIEWdErmoI5qosOwMOslsxezWQmyTVgaYjQVLnYZQSKjWEPtNjLv9rwWQtG5/DVYnFQ2nGuYHZrYw6fg8sbavciGkx5MMk2aXc1x7YqzX8T3DdZRSvuIL/nUHJLXgVKqtyVlPk/KmuiSgkjgBznjrAIg5RLYj25i307qfz7Q35cTAM/ZgjTavMxfpZYhpb5DWWeU4zzMRtdgSvYz6/9W0TsLVcpxknrzLr0vkOOXrGs2zdk80uE1Le1hYaJtSA73JBc7xFvKMEgtPc6hkiAp6UR0vQASgc+sjDj6EZ/k5bMBHzx1ljRwjTBlrv17nSPExf9H5DO0bOxy4A73PfMgBsZT3IFX4mC8vf+wBRHd4fAzqDVA+fIzc1gYH38fGwCOwWuhk2ckdaWfTfN4fFQ4xywDf4jVfxCfBdnVSnGQhgOH9QT5ArFmlphDQ3sguXSyjdM4C9+K6lXpolPccUG8LFqbAI7sm10OJJpWWSAGN1JzocT1AoX7mYu29SVuwplrZNL/xhx9TPnwsyAX3KPj9kw12sYICu1lhkzYHqW6Gn7GUD+tkA/gTMGlpt5PxmpMskHbCi8gbsh/IUg4meJdbbq3TTpMDOvLLzDpwpxpUjRClRRccDJUXqJoD+k7bmHLkFV6LprtIKrs+No8zhoLqxArOOpjVznoAawJjFaTW4g30XdIs0ssIk0E2mmSYdtZdlWbryx4WybLOAn0xJ5S8a2opyJXwFDX5qvlWiwG9TFckxhcphLWYgaVG0JBXehuboRDUWnbeGdtFOshQRaFCUwyzh/nKVmhigJshV63SxH1a6SYJcslRCkWj7KHKZMN7TiEU5gW+QxLAVIi5zsZ0yw5QA0h2bVobCFTLs8Y0Q3SySg9LtPn1nPGmUCtWtGntb0SGTNj9LNPFBM8jy5ALvIkY1sKH5M076PiJ7u0CRcYZw3xel36p8eQzYegdZwWlF0kfLm2wzP/uOShQ9dcAQavPYQaRMkcHQyjXyEfht42FUQhxt27vyVi0lv0G1d+u8qInJ5pkYJkuhtx5W/4AojhWyQQaPMQMWfcXkEHzHibH2r+AzFD1IsVMYkvu09fLImvko4tnVMyuoABf5QJL9CIvM1HphS6veEJWi1/gYm7tkqZQLyKfggxVLnKFLlbCV0u0YvnK9bEQHUIBYmLFNFKjTJYLvEmNRvb8fQKL5Fso37pVOplm0M9q4xMDocCqTu4mN/LRp6JDmHLGT5kszWxHbLddAzXMy+1uJB2DGHTrgVhrYrvIlZA6JwWSzlc92IBG57cCU14zRpNtZJmuACIko16klzHG6XG2W441Q/Rr2w7kJXRtmWQ3shtyPTEqJcMdZjL8C4eZCj8YFdXmpbMcg44WM+OMOdC55+ClpVrNMsC6U3eVcDbAbHSdlFKnhKScXw+6XgSeS/pscs0CQ558K7mvAKVGdoNhpHRQ8z4zw/Cb7h9prNh7FLgXg6gA7l0vDuQrsRx6uM/341kWkM+aFkryE1W0fNGHcBUSklAI/DLWa5pzXENyGXnsqCOnhocSwYCYeHpZ9MLPioIbnKFIh4O35ZB7pdhzgCoXXaisMwnEMMxTCgPcFHW+z/f4Y74bidxz9HOdM8jzSkWXmgliaY8xznXOBAPCkqp3YjwWALxOln7mkORLDDlJyBUiI1ae0sNUUGrsXfaOJ9gC1GLhLZhFKX/DDjzLD2uZLga9A9uCeWu9yt+IRlGZLJu0RUGb9nFc944YOP8Vf4/v8z1qNLp5b43/B/9JeIs84AipHHw4gQESRzEfvA/s34GvYQhbDrLfwBZBJzCG3QdwsAE4bJ50dJOw1wahIjsipanexlhwdzGWnAC0F5LPPnYUhp+FzFESRpv83wQU4v8/4dt81vdry7dV8H3e8s9e8Pf8rn+/ThLGWt737RvY4q8IH77j+3kKDhwFRoydByRg4jFM+vofAe/DxkPof863Ifkwvn9Z4LJv65Ht95ECSeLvQ/jwDf9M9wp8fA8Dcf7Mj4PCP/aAWdio++trkBkx4JUtjBm5gwFEaTj4nJ0fMRFp8GPUjXkBfolfiZTbX+MvWKXTQyZ2o7AvYZYq8lcTs0C+bgJEOihGXdjHQiKDLmNScgFvI9i1/ZA4d0+/v8EzEx/ZORST9W2S/79PwsYsY+dVSdHLJNJ0P/diKEnmuEmryzRNLmmBDt2uyCj5WNEac+sIk8izU4tgkBqjEuOvFf4dWCrhGMbMt7l/jn5e56UIuCqT5S4GjJhMrt3n7IUAEzU3COhRE09qAClsJO1T4ISCj8Qk6WKFcca4SyfXOBeMO4F95hdXQuqGPub5Nq8yygSSyhkrvYvf5p86+2Ge3+EHvMJr4XFnNhUW2PY8E24S38oZbsRYPcQM8tNqYTvSNy3pdpnjPhaLnaeACmOSpEO2K5sEqQtUF8kzW2BJzSV9YqrvBdvElCk5SlGr9noKrc3T5gFmcu1UyAsl0QK8yW2fJUBOTFDz9KsguV6H3z9ANKcF0Ap01Ot7nHVvNYaBBrKWENiwSSsnVj/kxOUPOXgPm39uA5PwxctbfGXiNl/88RbHVh9xpPwYHsKvvX+HAw/t/jgwCTTA7e4vAXDodb+P1mw7Bz+AQ8vw9PIGB9/2bc/6/eUPO65bv+yQ8r/qx5Zb8nSySl9tPtasavyLaZQkD1vAiqUud1F2tU+VDGvknqi1un1sAmI9BJBlHYUjtHLfG7WpWFMNMs0mbcj6QNZNYi8pgVcBgvJEVVNf2xZInmaX+cMnEMu4yVV7FTIsONAGOIjZgOSQ27REqILWlutkg1lrHDgD5yvOlVXDt5X7zNGPUtB3aaSPhajZBKQrHXubZlq5H+tNrbfF3lp0pq+Ck8Rwk9pL9kON3gSWjc0ZrgdjbZBpkvDLZa9V7yG2m9KKt7EEcdnzgI0JXSyz7FZhm7QGyJhnjQqZCFoSW7yFbbpZiXr7HoVY66o27mWRLGXHPHajuVzgXgDIAtBmGaBQKwazzkApC8s5xRxL9JJml1O+tlVzaZsW38+SB5psxt8MDL1FC9uMMEUDiaJRQJ9A1ASDqcZ4aeCt+SwOMsPzTDgOsoyStNVMqpCJICipa2TpoHtOajwjFRiuYUrG5rhHtAY34tOuMwzFysvQxzxieysBvp11elmKtVWX2x/I/1Gp5ApI1fVf92Mv8PUve3xGoRiKPq/G4lU3YsovDNPiW0dWAFoLFiW/SzqYGpb2Y8EAMjoWDX+W0yidB2zi3CNF/8YdinQEkNDKJq/wp9FdsHTcdCDaSqgp+gWfos4ivUGNbGWTtrr9nKcvmIP3/IKu0cgSPUgrL3nca3zLGWtrgcxf5cVYsDdQ5xKX6WIlKKdC1qdcFiYqvvZljHG6sITSSsrAI31PyXOFjGuwAeIC2++plqVMpl7hHoVgwWzT/ETAh+jQZde760bfJU3VqcXqKKbY88GlKdhto7yH6LX7vRh2SQcLSRfyPCd98up4IsFYrL112iPtMss6L3IVSXBLDnKJxWh+XPbaAkX+kN8LEE/7IpBC2xT7UEW0JhrzoDFZ6tX0BUrkg0Ys00uTFJpkVd3XXhbD9F6AzkWu+LEy74txxrjhoEaa3QBDJYtV92kHM8qt0cgQ096FaA1gURLpJTduFti4jfmGLbmBthlx3/eUvzaucJFhl4BqwJJM43fqP2AdSznSMdMgk2eNQWa4wJv0MY+Si+XjIiCznznGGI9rbptmLvAmLWxzyMGVz/vjLseRMauAOsmLtPjZbyCsxoe6ZYktgLHa3uBlTNK55F3TtZCUS9otoHCVzqCdS7KUoh60/QbqXgimnfl6nE1aUaLgCJPewWrAfEeTBOROVhngJjK1t9dP7WtAmOzrPG9F00a2AwYG7oXMvYelYMZu0soFrpKhwhUu8gLjrJFzRt0IZbIoeU0g5v4JsZNVFMxS9UWbiiUtfFvYZp32mGgXnVKvlGeNA/KwsKCh42zTQjcr9HhRJJBT4TdGvT+Nwnt0Tn6PP+QMN6LL+F/z96IDbh3RPByFL72CgQgzJMw5edoVSAIxasBl93s7Akc8lOJxDVuEZQngLnOUhAX3AiadzdnPytsY6CSg6X1gzUGvr9v7KpL5Ap/OEn53/O8J4LAs0GPLtl35Z74tZzhxl0Sy+32MFZXHAK0J4E2MNfim7/sMfGlw33sPA6+bzDhbwAC4Cd/GEQzYOwxH5P131P/VoPy6vz5HIok9RAI8ygNv2d+fw8C4Lff5+00MrBTzK00EYJx4zt7/6SPgjrEHuevfJbvv+xwjATa1jzN+HMu+3V8BD71JRuhklS6Wo4kho2j5SOVZ81pvMZqSAu2HPOG+lfsGPBXh4P8TY4HmsPN4C3gNu/72sOP7R/5PUvMNf90jEubpGkkQzDJJcvK7+/4+gzEv9+Atzkdoh75ThSTd8Tpnw/5CTDTNkQBXuMiSq0K2aQ6lRoEi0wwxT1+wJpa8HjUG9ggD3ESe0TsOyKnW6GaFtzhPiTxZ1pEvGcAK3VzlAko5ly3Mkqd3y4R/lU6XjVmDqIlK1JkpzCpCYNpxBxBUWzWzHXWr6u9fX/43/LXi+/z68r+hixW+WrzFt7f+ewq1Iv3M8ZWZ2/zt0r8iyzrPLH/Er03c4df+7A4v197gdH2Wf+/2n/H1mX/LV5Zv01+zxtRTqzv0sMRvTvxr/vo7P+PbD/8V/6fiP+N/t/xTvnr7Fin2+OvLP+N5b/iuuGpAwJUar3VSERQhGdUujVzjHAokUSNI3nJqSgKh6JEXmdje8t8yH6V7UWtKWqv5Pk0tbIekEMpiITHylCqTZYcWJhnhdV6KenKKEeSLpYW9WO8dFOl1v0rVbC2YTDi/T9Ys2508a5zcumP3xC1sHJvFxi01MWb85w+A/8rvux/7PXPIX/82nPjxhzaurmIscwUNFYErfk81YGPhlv1NrFxIrFl+FR5Sw0ymR+jkboB1AnAl65aHqIA1A0b2QnmUoRqMJakjWtkMkL1Go9/bx5lixMkNDW68X6OV+8h305hUuk5STqJpDtaXeQbbZ4tIYD6lSxHoIx9PeQSCgvIqvMTrAbyL+KAxbj+7d47+8OQuUgjQu8lBbxFOZFHVxXIoQcBqyR4Wybm1jDAHkTmAGP+W6A0P8wLFAArBGFgC84RJQGLHJJ9sW8OXo9ktv/H952jN1WMaBxRQUyYbipNd0uxgslpZx8xymjLtwfw2lYvV9Uv0hCKtk9UgsgCx5mhmO0BNEW9kBSCQUEC/fBIVXimbgMV0T9TY8ouTn6IAzV3SzDIQjXRhO3ZO03SxHMCrxkp5NYpVuj8t9hrnuedMUFvL9gRwnGPNWYo9KNBJuI7sclSfm3y4PQgD44z5NW+1iAI/1GDU/NXr6bRqegGxPpeXa4lcrN9b2I4QpF0aOcN1wEgDEzwfoSN1Uu7Fb/LqNXIUvMml93axQj9zHP0lGxyfCaB3lE1K5Nil0b3a6lzhIpMMc9IloUqLrWMR7jcZoIkKZ7iBNMeizhcpcJJ5ZjlNhSbkISAwRQVLj6forB9r5hKXw0tCXblZBkKOK/mCkOx5D1KQseQ8Jw3UqxepkmEiNcpPuYiomZJCiC0jA+ROVumvWbHThlFMxfrapJWXeSNuJoFunQ8/BAjmoBV/a2F8qptmvz+ejJQVzpGhEotYFSw5l9s1+NS9TYtHbptx+yqdTKRGyVHygdRYfIAnLFlU8ywD3ODMPrS6JYCa/4bfjYKznXL4XSlZTRIbm1zuB4ChRb0e27RQxeSH7Y7uS9Kq5DPRyE3mucsSvQGGqNNcxaLQW7lPkQ5fqLdF93WEqaBl66Yyn641nzgagoVWpyG080p10/nXvt/0DpbMjcXqU7FsZr/TbNMSUuN2ytE9qJAJU1F53qjzLUPTdtbZw9LIGhxs7mUxtismg0JIlDRU8a6LOhJL9HCFi7FfWjxo0jbGn/mZpdmlkspQpt2l1WtMM8ibXOB1XmaNPCNMIiq82F/qQKR8AhTbUEbUab+mymT5yDt4n/fHQQefdK40wcoPU5Neu3dOL/Mb3r+x4IsJnkdeeEU6Qp4rwEmJdkrxU7q3xpgG78ye4y1P5eqgQpMH7aSDrSvJdw+LLpk3FoCdtxpKvMq5f88kI8h8uIelYM60cp9elgJYlgRhnj6ucJEZBj3Kvo1hJmOB1OoL21EmAlSWDL+FbUrk4z5WJ9cKhBUW6GORHuQdJYl7gaKbdZuHK+DyrHUHBndZpIfzXAtAUInd5kdTYp6TTDHCy7zOHP08zwSd3A0wUYwPjc+d3H1CUiZ/JxndznGKQWaQWXMvi0/6SaYw4KFGwoqTV50SYI/B4xIcycGDZYKRFnLXu/66U/7z6yQLsi2CIZb5LX/+bX/PIwz8O4qBbVuQ6SakvweOk7Djbvm+/tQYfbxDMPYyBf972bb7eNX/v+bb7/T9OOqfe8L/vgH8bN9+K9n3oR+LlO0Ht+0YsObP14GLlgb84LYfx9dIvPgOY4vKEgZgjvq/QUx2nAN+C468iC1KJ/w4ln37JYw9mCPx/vt1//2Ep+h+A7KXSII5lHqbg8fXSbzzsn78bwOX/bzehl9SVfG/6kcHH1F16aIabDc4G0DHGnmavBG8n6mxSatDUNZlB/dAcgCZBhJAYYbkWlNoS47Ek/I57JgLMzhBEmYyQ8LKu+u/H/f338OuT78mxhgPdkOZLH0sMMsAi25lsk1zLITMq3btCWsFLaiU4muMkrQvKWzuVN2mGkQpiDYXWIPoe3yfAveCLSa/UjVexFIGGOBmMH0UEDHGuKdUtsXif5IRmrxGqtDEggdU3MfkdSt0x+LrPhbcJYmqgL1hJhNgpoQxJX8MT/2THXgfDv5jOPzjT3j28s8NfP3P4JnJjwwkcl/Lw3/yCUfefmznc8bO7+F3P+FvT/4ruAVffeeW3UN/BId+H5Pgv23n/yt/dhse4gyPKit0sY551AkQ3S9jNDneehwr2enIzkGN7f3e1vI0BsIfVTK1Vj+iYPvwMq97I0gBfKZWSlGPRfYeKapkmGQ4FpFLLjEHszsR00M2FmIsadEs6V7V62IxSlbpdFWUsbmKdGCMqUqAswd/TAJ4b5E0hsSiu42NjQ3YGP663w+6X/Cfk9gclsbO7aS//10/P6skc9uG/a2fOQeHLSjwV+HxNKth87FLI6scB4xE0M0Kz+9LdBZIINBqxWuoESbDW+8tzvETLkUTRInYZdoZZcJZq+vB4quTYoxxZ7UlXsyymdL9kNifGONqv1zdNFq1WCuaL353NHFNcWchj/3MBUgE+BqlxknmGauNI+ZdozOfOlnlFV6Lxs4Ik8FuUx2t+yftCqkMVZrZDgaVkrrzrh6ZYTDUUAYUdgRrOGHemr+dLGsEILayySm/983XswN5QHaxQr6+9kSTXjVnnjXytRKZeiVwCnm1DdWnOVu/gbz7+5j3pnKdTdpC1WPKk0ZkByBVWRcrYSMABJFKnvsiDpgipcgUI7SwHco2s+ZZi88ZYJZhJoPlrOPWSuL7re8lpWLFwVtJZ6Vw2U8gEklmlgHEfh5j3D0Sy8hqosNr9rzjEmO8g2wJRL5SuvsspwGbixUwqntHoRxa02vtrntp0MMBu1nhEpdj7tL5PMl8XOdN/lMKJ/0u9nMrmz4Wm/RXwHMHhh+pyfW9rf9vHK89LDhkihEqnlWw5wSdZozBLnLY077ff9njM/HQWycXX6DH6eajvBdGlfco0McCBYqhze5z08hVOulhkQ7Xh695t2KcMb7DjyhS8ICKggMhDUjaZ/rwqosus0j7/h6jnHSZoCS9QsWzrLNDSxRfGaox2FVpYi2VZ52sL2536aBIt2vHhQ5XsXShAkV6WGI9nXWGjVFY5UfwFue922eAnm7QpcPPBJjSwo6zcdKBGus4SEo3wWjo12UUuklrGNHLnBQMmBtnLACYRWdqNVFxbwSTPFfIYMm6lrDW7uCVgFB1+TZppYtlFumhmxX+Q/5TZhgKj5tWLJ3phpvjn2SedsyA8p4Dsw1RutSj7FFUszoaWrhnqKIU4jLtTDNIFysUKPITLnEc07br+91kIBYHfSwwwyBL9NDHPM8zQYk8g0yzQnd8nzylSPec5yTyJjCaswHK8/QF2AGETFWMuhbMDPQCV1mnPWSUPSyy4ol08uFSp2HIQW2Z5C/TFWnFJ91XQdKLKpmQpygWvOSAciM1luly0KDEMJPccuaAQJFJRpD3obwDJHkBuM4Z8qxxmd/wNM6TAHHelTqkgS1NjeuccXDVJp8ulpliJMCn/YsvnU/Jfb/Fayw7i/Dz/lijgwM+aa6RZ4xxKjSx48wsFelgSa+WGreDvN96WYqu2Bz9MbaoWG9hmwmex0x3p8lQ4SYDfJtXAfOZnGKEUSb4CZc4zSynHXCS70eami8+LUlWQLYM3eVv9BbnyFNijn4GmfbFxmLIDgSotWCmytMMIg9P3SfTDHKRKyxwkiV6+S4/DPALjEkxzFRIpCyoaDeCLZKgoGVW6CbFnhuVd1DgXjQfBpkOMFK2BAZ6W9GsxZQZ6i7Fokd+eGI1qyFwjfOMMsGiNy/WXCbYwo6DelYwmPys4MbjFX7A7/A7/CBYgbMM8Hv8IZOMoJTpp/mzBNjJYSDDAwy0uoUthCR/9TCHg2eBDTjiYRHcxmS6A9ii6m0MADsB/BgqJci8izHOahgA123+e02HIPOb9n9m/D1iPO2RJNbuYQDHT23bjx/AwU44oJCMErHYK7/tbLpn4GANW8S9iLHf8iQJvs/5514mAcNmfN8n7W8PinDkBf+MNIlste77s+fbe9ZAzpDansCkXQ/2PfczDMR7gLEFFaqhReYz+/bt3wem/di/iYFGD/y4fABzJeg/5cerjPkITpFIm58FvgYHN2wfK7chI0nwcyRhGW3wq5ARZPdI0pirkImgKqUvVmniPUZpY5ObDNBOmXO8xbyngRobqp1/+AdHGVz60ACDg9g1cRw7/l/Aju0S8Al2vN8HmrBjXcYk4J9iQNPH2LV2FPgQmPffG4Bt3/5D/xItwF3o/wcmY8s6kFUmG7KqbZojHW+RnlgM7k+E72KZXcyQZt4br/LzkTm6eZoZa0JJwFnK7HgDtOpNjXlOBmOlhW3Oc42bHg+dYo+sN2KqZKLB20QVpX03UCfPmitNjKX9p7zCOa5xjwJNWBqi2CLznOS4L/bEFlNTXd68276oufIH/yObUyT34B4mL0/77zWgDxvXrvn5AVgHx8oMWCr5eZA/4hf83NaA+35ub/m2PvJznIcPe37B13+/N4A71c7yqJav1jx94TVtYNouS878UANtiR66WAlJq1QLQ0yz5yCKMScTv6ZzvMUSPZFk388cJXLMcYpX+FOW6ULBBvp7HwsU6WDbVRlSjwxwkwbqodJp97ALBRGo3rNztcMCJ0OKW6AYTXmtG8TSS1Hnv/2DElfe9GO+AYz7cRaTbhKo+jloBtqBvwCe8vsnjxm9bgJfBm76udKccMR//8TPz2E/hx/Zubv38z2e+X1jyX/Ml/8nY8fn8dHCQ77y/s/gMNS65/ly8WMeZr/A4dIn/KLzGLMM8L8tvm3Hr/ZzY+GnoeXodijO2jYemeT50Uf8Byf+ECmCUtT594p/xu3Cl0JB8PTqBg8Kmxy58xjq8LgDNo82k2KPYx884ufPPsWzpZ/zca6Zp0o7sAztI2UaHz3m0JtQetlC9L5Y2oIa1Dut1s/UKjxz6yP+fPAEAGNb73FwFatLGoC7H/PuyFfoYTHIBl0sc2z5ERyGO7kvcrj0Cc9u/dwOTAN0dXxIvQEOvQ+No7v8eunf8FHuKMduP2LjxCGeLf6clsI2T69u8OlhOFCGX5w4xtMfbFDoLnK49AkAD3NfoDW9ybHSIy40/Ixa2rxT/23uFNmHG4wcnqKltk29IcViyoIXn57c4On8hjWFjsKjAhQPf5F8rcTh2U/4Mh/zFyPPhET0a8U/59NDUEvDr23dgQ149ph5T3Z2/mub/4FfdLfSVt/ky2sfJ0FnnfZ9v7p3i0dHoemwKWI0B2QePuI3N/41rMGJ/Id83NnMU8UdaIBPG+x41dJwaAY+euEoKfY48/BnbB9uBuCp4g5P1/4NH3c3k67XaElZo/6Z5Y9gD1pObPP0+xtkuzfYPXSQI3cfQ7d5aJaOHqORXf7vW/8Z9QZI1/yzivCtE69xrPiIjwpHzUOwts3hu5/w8LjxxLbTLXxj9T0Abnd+iT1SfL30b/kod5SW2jZfXb7Fo05I7cHI0Ume/mCDjWen3f++Tp+vTVvY4a9NvA8pKIwUebq4ATX4zcP/Gvbg0VHbH4DHuY+s1rwNHN2gr/BzKoe/QOOjT/j10r/hwTMH2U4ZoaX14RZrh5/i6dIG7G3wF4VnGNi6RenoMVLU6aytUkwXGNl4n1oaumsfceCuXQ+Pj0H56FFaseC+r93+c35xwjwiL9Uuc3jrEz51dG352Bdpq29yfOtjDtyFZws/59Fh9+/dgM7u77OS7uLLkx/TPvAWh29/kjTM8/Dxs81k6/LN+Z9/fCaA3iZHPcnEtNIKT+hhKTzBWrmPUfdvYbLBbExGMg8GS5PtclPEKpamKMZPvlZiPZ31iaoWzCPRIje9cyhNuSUyZlyiaJ2wBfpCUil/ACWeCvhLs+sL2rVghgDMcpoLXGWFruh+iE6rrleWdW7RH2aU27QwxQiD7t8nBl4XK8wywAiTyFx3gJv01pYYT48xy2lauc8qx3mZ16mRjpS0AkVe4xXGGA8UW2COUnfOcD1osTLzFAW/SoaRfQEF8m6zbvCOdyeXg4Un75Yy7RS4F2zFDGa2KbaWpHcTPM8QMxEYMcQ0bRuPWDrWi0ygDSxbCsYL2I1cJhud/C6W6WTVfcJS/AaXAaKTtEcqvFDkByYQTICDOqry99JD7B91kETNHmWCEjn377Pugwq155lgnDFOM8saObvW6qu0pjaj2yCzWTF+BHA1sksTFUaYIsWeF9ZymhTTZxV5K+h8gnW8xE7sZ45VjiNvhjopfspFelii0ydOLTb2F51dLHv3IhXAkIBWIExfmzBJtqXvWjpzI7vRZZHUVuDQftmkTG4NyMj69x8CrNP8DiMkJkif30cz2zxwsLvRvUV2aHGjXhtLzvNWMCoGmaFIRzQu+j1Rbt6tAnbB5a6zrJGn5otCSaJqpHmBcTZpe+J+v8Z5qt4ZUldJhrL3aaWdsodWmAF3I7uM8wLt3qUV61cMgDoNDDLNlDP1yr6sG2eMl3idPhboZoWbDLDiHbE0NfpYiAXlGOMut+jxjtQ91pxWb5KFRubpCy9LY5cYCFengSGmacbo852sctobGJIvabEERLe5iQp/xN8hz1qwjXW9LtDHIDMBaO+SZoCbtLDNW5yPTrZYM+ouKtRHnUwwxoeCO+57w0VjmawB5Ed5j7othg5hTIZBDCR6GwMWStgk/wBjTtzFipa6//0QVhiWMGnhcUxO6qAd70NTGqLXk8IWvFPwoO6goAAysMXWhG3z9htwohkDwQ5j4OI37efBQxhId8c+gxQGiN2C7AkMXHyOxCOpA5MEv22f/2kRDpT8PQWMkfcmPF6Gg88SKbZHvuavueI/R03Wm/mHwBt+bLrtc+V19ngZDp6AI0dJZF8Ff23d9zWLLV6PYyyUr/nz38QkZT8jAT+P+uuL/vd3oP9ZPxcv+X4IxDtMwgSTZPpFyJT3nc/L/rpubKEsqe/n+DHMJB85U/f/zH/NMt3IH2qMcTZpje65PF3ltTzEtI9Tpq5YYBtWMIDgC0AjsOg/H2LAUCMGKmz766q+I59g50Dn4gsYULHh7/2Cvz+NfYYYsing5/a8ghh6WQzJvjx/0uwyTx/7/f+UeneG68zR76y6zZBf2lyfC9sKKRvMVmWXvNsSTDNItzc1NS80UA+2lpj9YspYwmhTNH47KIap+S5pXudlwBiPw0yySVv4Epk8uBxjXsaZbi1eh8vWxEIasizRG3OLaoMjbNux2/bj9xgbL/LALsni5RDGgqySAPf6Xf6TkIBKWXiiJ1jz50t+HdTsPG71HA3WiEDkG5xhgNkgAMjyYdPnQZtRa6Es0Ji9Rp5BZmIuVDiYAXlmi9HtYNsaOdrYZL+/mL0uzRkPKNnFPFWvc4Zult32xmwZSuS5yBVmGWCZLtLUfD1SY5rBYNQkHswrDu72eYPdkNEMlSBYKIBQ15epiu66vc8MPLpn4/hRPzeHgB4MMH1IMkfsguPMNh/VCfCDT/xvj/w+2vNzdsDPYyMGvm6Bl7TwGOSZJjbNr8Kj/d8+tOO1A19+aB2dwxOfwF14+msbPH30bZtflJaONceOdT+CrUd2D4ixvgapE3W+/PbHNkdlgbtw4oQ3PTofQQO0HH4c99vBO/DUqZ1oon1562OYgae6d+x8p6Bp5zEH3wAewl9/+2d23+4Aq3Bi9sMk8f4QfOWD2wbczpCw2XP2t6+V/hwewkY3PP32hn2fZdv/Zw5/ZPPgXd9WDg5uwcE9YAtOvPMh5OCLW1umCLj1CI5CU8EIBgfeBPYgW9iAPQ84An7+wlN8+acfc7j7EdThwDE4NGv79dWRW/AufPHwltUU5U/46qFbiT2ImqhF2D7RzDN/9pFdv7eBR/Brt+/wa/k7dn0/ggMP4NAgPDzxBQ6/84mNX3ks+MUbF0+/u2G1xmH/95CkkVuDQ3fh0NceQRGeatgxQPShn/+jwCQ8tbdjx7cMB7wxeGjVvtMXb21BAR6/AE+9v8OjbmxOexeeGtmBHBzZ+DkfPXfUjv9DODFp18ehW3DoxGPYgKdmdnj86/D0zIbdp1te6zXA7jcOcqj+mGMzj+Ad+OKLWzauvw0MwOGHFir1jaPv2X4ehxPvfgjfMDD6i6UtO7bAoWnbh6dPbEAdjr37iGOnfg6HHdh9CGdPvGfX8xYG5jVjx9b9mg+t+vHJwUHVmQ7wHWiAwydsf+iGI7cfc2TWv9Nx+PKpj+P4/trkHcjD04UNHua+wOG3P+HE3oewAYdkueKNpYNb8MX0FqmX6zy1bIzzpw9tUOwscPjKJ9BMgH/PdH5k94HGyRIckoJ2Aw7f+oSeb96BZTj8wSd2H5QIpcBTj3Z48MsR9D4bQM8YPQdi0jAmmyWCFCiSr6+xnsqGfEBdokRnXkGeUZ2s0sx2aNiVkFKkwFy6n5R3FtUpFWMq5x57XyndZjXXyQTP0+bssRFfYMlfQJO3eQXkgsYreqYALE3M6nKlqTHJMAPMxkJPk+sNzpClzA3OxqJtmxba2IzFctHTeVfoCs+qrtoKc+l+2j219kz6enRqO1lljPEA4baxxMS077/JW5sxnwwDtFboDkZQk1Pz5VGg7y4ATeBNijovcjWKQVF5JRtboTuANSWXXeInzDBEozN9wApYk3Can10nqyzTxX1aObBn8eZimyn59yTz3MLOazvrVGkKSnCaXdowz4L7LvUQW1IeXybnbOclXg8/icQ0vzsorC3sUPJOVn9tjlTawCyxc5T2dY1zjPIeGSrMMBggb44SNzhLC9vcdCl3nQY2U62M1cZZSxt77g1e4hKXuckAvSyFXCVDhXRtl8a0SVKMaVQParVYRXb97YUE3fwfzMtrkR43b76PwgpktCm2ZF99ntWUFaPrtDPHKcYYdwBzh3n66OQuGarkKNFBMdJNZxmgiSqt3A8AL8UeQ8wEUNrKZtCKl+liBwtRmGSYAvfcVNvYVVmm2KWRbaxz9CwffBbDz1+5h2j8ks7nWAuWnTw45jmJfAqVSJxml2kGUQKSpD7yxVsnGwuKPuZR8p3AJS28cpSiqXGDMzRQZ512Trs/3CQj7gs5F8W+2HG6/8z76i5K2DXZXI05+qOBUibLGOPMMkCZdiZ8gavFo8aMrKd3mc/pLov0ButEEvPLXIqxTvdcCzshQVonG551bWwywhSzDNDjfnhmUWCLqzn6uU8rp5llkhFGmOS3+aexqF6mKxoBYv+KtbDkZshiv0wywiUuIwmxbBYMuDY/1Vm/1zswb0EDFYvhnXWRKyzSwyUus4kZ6X/Cm7bQ2cIKvS0i1KGyAZlRjEE2iBUzz2CTvmROYg95eiuHMUZFEQPcjsMBeckNYgvqEWACurtJGGh2Ig2I27Pne49hhWWZKMCjOJH/2IS/1xcRZOHBu24L902sqLwD/Bk8fgcOXrLvcWDD92cLK6LLwEVntEn29Q+Av0/CEizbscic8P1Z8+fk0+SLgIYUtvAY9NcJ8Nwg8a7DP9eLVvbg0z+B7YfOCMS/34i/bw/WZiB/DJPgXvZjtez714wV6A/9//rsYxhgOIQVvkf87y/6Z2zu25/P8eMuX2aNzpCkyye5i2UHKe7FmDHNEF0sI9/eZiwcQNKvNH+eAHfb2P3zif9+n8Sfq4KdlzWMTaTkYklqa8AXsfPxiT/XhrH00r7dHd9mO1ZwZ8yfE1cf9LLIsjdS5+jnIleiWatGoCRekuemsSAyWWSYj5L5BK+Rp0KTzwsN4UOkMX2ZLqYYYYDZUHGocddAPZoz8uC9hyWdTzMYPqdAqDP6mHffIzO83yUd4OQa+ZjHW7nPLo3cZABZ3UjSJ8af6j9JiA8wZfebGLJ72NixTcLg2vBjfZAEyDtKwrDc8r8JAJJtwMd+fo5iIMVH2L0m0OihebMppEtp4xe5gszIS+RC5TPPyZh31FhVba+GsoVWmJa/lftPEBBuMsAQM3Ge5E8HuAdWFiX/5lnjKhc4zzXOcuPf8eSzYAtZEgGxj5u0cpJ5dt2yQ2FzCvkok6WXRTZpZZ12ulimzdcm++XcfR7S1u2+aTWKNsfIiGnPf85i880GNt6LWZn2c3AcA2I3/fjLk/Wwn69tEubeF/xeu4+Bfp8AXwGmjRF/ypNPv8xf8CvxuAX8Nf+pVPt3MIDkCnZdi+0NBrA+9H87JOdkCzgBX/7xx3bcZT9wiKQe8N8PzJA0A3UfHfbtyargGDYOnsCYdg+xZtzb9hwnSHwQ5ZNbw8bGn/hnHfbvlCapL16EY//kkQGMR7AG5STWfHzov2exWkGs3G4S9v8jbNx2gObYP35kjTMwUEpsUp9/v/zOx/ae2/6vsO/4/dS3re8xQ9I8SO/bzm14amPHXp8msSSZwOqCPX/dXTt2h+98EmAZ+HfCX7svVR38+Gz5Zxf8HCisrEziv7vsv8s2hX3fp+jblGXEKQffyp7Oru38lKhHvljcSqTy3oDlGRI5fM6UF6z6/kHc70d+8tjO2y0/Xt8nsUxxMPHgZRIP2zf9+E7CwYvYdanQtrv+GYf894IdQz7w34950M5zvq9iZ9/181bw773h25FS47i//jnfL9V3augWfT/kHV3zz83b6w9vfZKcoyJ2Dalm0D1VhqceGouVNNAJf634vv3/kL/HQXGkUOn257f8/8fs/4f+I+AiZmGwRhLotoVdZ7f4pR6fCaAHsOjx7CpSSuQCWNlN2QQnYK6dcizAJEmYZpCz3AivkQyVmBjVbcxSRkaMkljul9TmWeN27kus0skY47Sx6cwzky1MMAoQPk0KxhCTb5VOJhnhAlejeyfavZmC1kMLLiN5GZ3vTxyVDnuFLio0hVmoGQkfR8a4edZofPQJmXSFRXoYZQJ5xVnk+E0K3KNELoqNMu1kqDDArMs5LYZeqS7trIesQ6+T9FGmmSucpJntSAzKUUIBH5u00llfZTtlnWLJomWKv4uFNKQdnMi7v9YVLvK7/Dc0UOcNXkYG+Org/iJ3jE3aXD6wzA3OIgNTk9Cax4dSdMzAcjMKKwEke6RYoI8a6QgDkHmpwI5TzsARuyfFXnjCdLLKWjrngLMxaKzALhno5iCzAGdJU+y6WeaWf0aeEle4SC+LDKRnKdJBA/XoxI4wxRq58HDsYpnttAVWzDkHq0AxZIAdDipMMUIrmyzSg4WP1EP+K6B3xzvnkkj3M+eJyR1spyyiu495ellEAQfyl6zSxJIn+t7gDGe4wQ4tLHCSJqoBQA4yTYaqg31rLNBHIzLsrfJD/lak9ompIM8Wuz7MY0OpgK1s8siP7ef98SV+QTsWnW6Gr+2c5xrrtGOBMdbQmGaQCb7Dd/mhjZMuqZexqwWfpBlkJsBkW05ZPLuMsV/n5ZCEdlCMrv4kI/T4Iq1Cxs3oe6mTookKM76ArvkirpX79DPHTQZikbPk4NswU77t1gg9mWQ4fFDFTpOHSYEiEzwffnn3fAHSiiUbLtKLEtyKFCJAokaaEjnWyDPPSXqdSSHwDgjALrm2zEvqLc5T4J43MBqYZihYp5Cl26VTf8x3OcsN//4KKErFOJmnxCQjDDJNmfZgG44xHr5MMwx6g6JEP7fo5C71fdOrLBQ0btn+nfOo+h6OcBCyVdiD8ruQPYUVBQ2Q6SQJU5jF/PCOYMWKPOjSmHQwRQISDWFFw+sY+LQHa29A/ihW+D2A8jRk/y8khY3CBSaxougoHPhNEgBQzzuQ+Ph9OKgAisNYMuw/Mi+/I4O2/6xixVUaaIaDHSRgyzF/7x5WtDwkSSrt9vf9GGMHLmMMuke274AViwWC0fP4Nhw8AuThQA4rhtQJv4OBbyp+j2KFoH+XByU4UoMDL8IRLSwk781hBeojaDlMdIwRGHrb/78DDJP4TKnovu3HbQtj8NX8mKvoK/K5Z+cBbHAMIJjc7axHY6DdGe3yke3ATK5rpJ1JZVYWr/JtLnLFaqDDQA5+/9dIiu472ALjGyRAKwRgG9fALtBFsuA5gZ2zO9g5eQE7jwIvfDH9Bx5iYlLHPF0sU6eBEnnOcCMSA/dIBfAilrox6MpUaeK+s+LlMmxs+lpsUwyvTlZZdxsZNQU2aUOG87JeqdAUSYcKJQNrnCp46FW+TYWmeL2Cx1S7LnpIR6P7a6mx2uTqi6oz3UaYouxWNECYoKsRLulqJ6t8ygFIw+9/FbvunXXLFT/mWrzJ5zKH3eeSagq8GPJzmPa/fQ34lxhI+zX/20M/T4PwB+8Cn8AjDnlQmgVF1bCQvR4WGecFBrhJO2Ve5yW+w49Y8TRfNVsKFLnJAHnM11pN301ameU0XSzTx0LYY8haQimNMvuXT1WGCit0McQ0edYiFT1DJfzQFNrXymY0rkQCOB1RzDVkWWPrqPWo7xUW2OXgcBOVYA42UgvShBJKs5Qpk6WtfYffb/B7R2N2zc+Tzo/YMWr86Lj/b2K3DJD9P/g2HmJz1oL//gAbM48DvwV/8J8AjSBD+hW6aXPm5+f+cRmTmR/DAJX3seNcxI6RQJgG7B6ZJQFCivxPAaoCdq5msAYW/vwoCbigcyKA6G1sbv/A36MmB/73f441vdL+3AcE6MM9Elb8bd/+IEnzT2Ca9vV1kvF0EvgN/6k5WT6nqgOyvo0GbK4WY01WIAP+OoHM2ncxogQmvujP38UsGVIYeCPQU00eZx7SSWI9Ik9ISO4BzROP/P0CVWvYOFX0bb7r30fnUixWzS+v+Ws2sLpgxI/XKRL23gf++af82L5Dco00+Od8zf+v7zvt++kgG5Aktaf87w9J7t06dh0IyDwB/GMSAF/2EzpPdawG3SO5Zrfs/B5UPaRGjYPNpDH1iMZ/1UTvk4CUg378BUKLsfm2f758pSd9H5r99ZDYl4jN/chfV/N9eNH/LwCzmeQ6eYDVcik/HydIANxD/vqv+f/f9vfu7DuXJX+99sHZlEACQjrbk1v7/i+w/Cg2H6b9eNT9ezzwY/Msv9TjMwnFqNIUoItYOk1Uo3NXpBAUcIUwKBVXUoElemMBpM6ixWs3BCCgJBbzHqnGIniXdBSMu+5nIdmgJjGFFSjtseymtDkvJsWoS7EX/mrqcAHB6Mu4d5PAygoZlIAjU3altuh47E8AAzOWlHRu9egXvXDKhJy2BUtyrdPAjDN2xCYznw1jbg0xQyv36aBIs7NNcpS8S7cCEBIOJSYZiLYURaPYY1OMuC9VgcVUb7Be9J3EnAHiva1sMlAzxtgZrrNEL3uk+Dv8U1rYYZwxBpgN0FZFSp2G8CkRCDTOWIBnMuoskyXtM42uk01aXeJ7H5mX9rEQnnvygJOHzS6NNNTrwVhaoYtZTgc4oDhq625mo7ArUnCpw5B3z01mKrZjhSYHVa0QS7NLD0v0sEiWdcYZC0+gfuZoc3aoIs0vcZl+5ujCYsYvc4k3uUDOpeAyWy5hkdcCnBecJTTOGPKna6LKCFPIKNvyh1Ms0suam9pairJJkZWWp45ws7O6BLAUKAZ7qoel8J6RlHGbFs5zLa5nmTN3ssoQ0w4ATYasXeftrnuZfd4fuxxkkhHm6WOUCV+s5aljZuhXeZGrXKCFbTfitsS5a5xH8tIJRlF0+hynXIZVo8A9FM4guWevm+5mqDDOCxTp4B3GQpKbo+QS+WpIcrUAKJEnTY0Jnkd+ng3U2aGFG5xlkhGmGI7Xiim6SidDzLBJW7A9xHxoclDSxtwZTjJPszcEelnkOmdRcvY2LYzxTvjyTTEcXnUK91AIRx/z5B2UVFrvDINs0hbXa5EO6qQ4y3VS7EVTSD5EMpZfposeZzWMMxZjap2UMxhzXOFisL8VhFOj0ZMGyzFntbDNG7yMwkZ2XQZl0uecm+KafUSKOiNMGcPjPlCEbB4rvqQ6ymMF0AZWSMz675eBLZOtMkICXCihUwXFMaxAPQr5Qaxw/YY9nz0F/AlWjGg73yRp9c3453zgrzmKFUobwHNwcNB+0omBbkU4+Ou2759qQfgz/y4OvvCM7TclrIB7RALsHd33umX4dMu/77u+z2WS7q6KtFP++Wk42O3HqxP4Gnzqi4fHNSyVVz5p6vJ7F5iXzUeQR/7vOf9cGfSLaQBkcvBpyf+mjrukHi/bc596tz5kRHv+/05CKsLQvnN2BAMmPuePg85Ku+9j1v7GZCO77uOb8bljJmwnluhBKd3f5lVqpNniSNI1Fyh3myR8ZGvfvyJ2jlYxgLgBu/4eYtePvN0E+nZjYN4dksW1WCvOLEsksQ0BXmW8oaF51nzKUmHpkWWdeU5ykwF2XLa/4El5K3SFOf4mbfSy5HJ+Z/87iHffmxaaRwUi5SkFeCirkhucYYoRqmSYZcDn+AZvXNoxL5OlSCFqWzWKspTZpZH73lDqY4EcpaiXK2RYp5112sNmpUKGJXroZZGLXAlAVmzfJxbz72NjyzE/R1rIa4GmxZKABDEmxKiQTFf30DdIUqz1/scgI5N2yjSzHbX7FS5iab7dTDISjPUBbnKFi1zlAjnWwsfV6iezg5BVzAA3KdMeEuQyWZbp4gw33Be8K5qwAvqWsZCyaYbCU7rqlkCL9Ibtj+xS5Ivcyn2GfOVrdUE7PSxRpIMf8t2o2Z5UvVidmKHKFS4y7fPjHimucyYaXLs0UuWQ3UMaT0exRawznjnqx/YF8I+Au/Dpu36e3idhhYONny4lZNLf+yIJc+sh8M8wpt4ecXxMCfQrYCgKdv3KU1V+uZo7bpE08U6QjGUeIhJMo1vY8dWxft/fo0baYQxIe4eE7bOMAQjvk4SVpLH5fsZfM+u/3yYknrHNd/3nm779t7E5Xsz9Zf+bGF5i0alpJzDKrTfAt/dn/ruabao13vb9eZ+EubeMgY0CE7N+HMokDUOBoP/Sj6sYfGLzi5H4GgbQOCOPkv+bIAlVetH3Z8a/m3x393xf9J1mSYCy0r7f75D472oe0r2iGqNOwn5U7aExUODoAkn9suXH7Ad+jATSTpCEhQkQfITVYjMkjcZmEtBOcyS+r3dIzv07JPWOvP8mSAD+NFY7loB/tO88Ffx5sRA1xmu+3fG/Tfp5+DEG+uHPTZJ4GEuRsrrvuK+RgKdrvn2B0cf3Hd8GbK65TFI/qy4Q4FcmqUuX9/39zr7j/RwJG3ODJERLoLOu5eMkzdplkntF9977fsxSJPY5AoR1rHQtH+KX9lf+zBh6krMq2rqXxVjgXOUCnawyxQj3KIacFAhvt4tcYYJRBpn2tJN7TDDKOd4iTyk+J8caOUoxcXWxwg/5LsNMkabGfcxsfZ1sAFyNzpYpUKTs3mBL9IY0oSGI6fUIdLjCRZqo0M8cHc4CU2KVjGxF4d/vzSYvNaUBZVlHUcQCDE3esMgUI+yRCuBDrLA+5qNDKO8lsXEA5F3WyC7dDghZ+m2Tfy+7wvWt5PmkEAclu1h8+G6AdkreVLEnxqH5h6x5YdceAM4mrSyme5jlNDJilsxYTJ5VOulnjitcxNKNFkixF7K1HhaZo58VukmzSxNVJhkmQ5UBZpGPi9h11zjHALO0uzeJ4sozzi7TdpUGvEIXjandADysW1kN0G6Qadrqm6RS9UjX7XDAQylNQLAkBbpOMkLGC6M18gHkinWoYA+dL0lphpnkjKcSCZyVrHGaIQaZCRBhid5gXHWx7H43ZiIsD8QhZtyrxQJOFpzh2kA9pNVVmlyiWUK+PUo+m2UAJT/LI6yFbRbp8YK9iUlGQhJSpMAY78Txk5Rnz4FBMQctrj0XiwYDLp/+X3jU+av5KJELYHmO/ii8y7SzRA83OMsg0xS4Z0E8DpS1sx5Am3nqrcfY10CdaYZ4mdf5CZdQIMoiPay79HWdLNc4H540KeqxSBBreJIRWrlPHwsoharJmakTPM8uaXpYYo+Uj7Q5bnCGYaZi4bdLmhmGwg9PY+xFrjDNEEU6eIU/DWaCZOW9LHGFi3FPLdLLDc6EJHmUiVhsygdQyYQmBcuRoUKRjid8rATW9zFPjXR4IB1nlSY3AweC0TrGuC94T1OkAwvisSS1VsxfUIb9NSxlbJdtFunlAldDLvVf8B8AiVw/jyVDDzFDijrLdLFLmjbMj6qbFTJUmOckjzlohcQXSaROYMWW5K57/lPd21NA1r06IPFZOYyBcv+MpKitYUBFClus3fZtS5rwW/76Igm4liORjp6Ax5fh4HP+uSUSecqW7QcPSRYlXzP/ksc/dnntHgYInvDPTHnQxQZJkqweNfv8StETdotw8wM4ncfAum6sGLpDUsy/gC3oV7GizRmHB56xfTz4DDAD5buQ9ecoYcXmIdvGwRO23/wAAx0HSADEIyQF+gBmQn7Xt7Pn+yrgYQMO/BZWBH8Aa7ch3wnl25B90fYj2H9Z3+c2zFtMBfXn9PERHcEsn2Qk5JzyfVMqqHmQ5YMxb++5yw3O0uVz0kEeJ4yfAgHqRrGun2LaHcEKabErTpEs3gTwaXFR9O2pcy+wW8yQw6rt1plgFPmtTTMY6Xr9zDFHP30sxJjVySr9zFElQyO7zDDoIWVW31zjXLCaVe+ITVakwBI90YgRY9+sRvLRhLD07hqtbNJEhTY2yVFyxncFeU6bv/Fo+KJmKXOSBZbowdIUs6w7I7mRGp2sUqadK1xE1iUFiqzQFbW3BQaZn/ESvaS80cLDv7BxQQuoo36utDgEWwAN+bkRu8f9qTiE3U97+16bw8azDd/GoP99yrexDp7DR5l2V/CY92rW63r51Gao0OHrgSV6omEtj1X5743zQjATFXqXos4kw8FsVLCJ/JD3MxlTTkowa40OACZ4Ppjk8qqt0BR1veS9WiMp1EwWQQ3U+TavsksjcwxGnTpHPxkqyFe8Rpo8JdLUwqu8lU0mGKWPeWvItmBj9Aa2uH6ZhNG6hY2PMyTSz+Nw4Dk/pzMkVhCS40Iyl9RJZHBr2Ng3jUmpq3Dwk8eskaOP+SdT3z/Pjy+QyEzfxo5VGWO+NZMAqVew46uG1R3s2te9c4iE1aNmUZoE+FMT7REJUP6ARAb4PklqO9j5FmAldpaAuD3sfGvOF/NPwJVAqEckoJKYnmK2H8Xu1xnfvxl/TqwnNdb2W2+oEafti/G+5p+h/RLYr9d/4MdMDRwBYbMkrK9VEjCl+985F/+EJKxLoIuaju+QAN1rfl7UYLhCksAudnidBPQ54Z8lluVt7H5wP0AKmJxVnyUmZAN2vk/68ZJ0VmxCgZaPSIC6Pawm1Pwndtgj/65qhA34PtZJpPNHSWxEZHMiefAeT14jYm4eJfFJzWE12aA/J5m21CAvkoz5L/o+iiUvVtsESWK9zrWOG76tAT9+ajZkMWbwz3iyeSwPww3svrhNUucJEL3l27vjn/cAA1mL/l5XhMS92+nH8bDv69v+vkd+nA6RKFKOm63LgWex6/5FrDYWKNhJck/s+XtkNfGXPD4Thl4jjwPMuOdgUM0Xhn3MM8g0NzjDKBPhuaGJf9cTncwc3mR+JjezeG1NePJhWqKXV/kbTyz0OlnlDV5inj7KtDPMZDABBZYAnppowM1VLpBijyKFWPTKSPc0s+FTcY8CO/s6r1nKT7ABBXCJQdbhBY8JSXt5kwv2/WrbKOl13tN55SOVxGknx67XJb51P17trLNMF+aTZwWX+XOkXfpaCp+9EnkWOOnMlsXYP5no7pHiNV4Jin4TFYaZpOaMGaUVSx4nPzqFfkh6DOYr0+ddR8k7m6gwyLQf26YIEQGTaqjjq1CSdsr8Dj8IILKfuejeycetl0X6a3N8m1ejwBnbei9YfrMMhHRux7volma2zhu8xCwD5FijjwV6WIzP36SV6dQQFTLkWeMk89E1FENul0bWaUfJoAI6DbAtB4NOjE+lE+96QSVDf4E6SiZuYSdA8DXycYxUvO1iyWxpByGVWGdJxSXGGUOJuHMexCKfoh6WsPj4Mvdp5XmPaS/UiiiaXUBygWKwVCUzV+KngjssFe4k8mkUYCumpUyx5RFkbCsDAicZ9mK38bMYfv7KPXbcMxAsLn2GQapkSLFHnRS/xx/ybV5lk1b+Bd9hhS5kuj3GOEpMHGYqJKFr5Nml0eVaO1znDG9xjjoNMV7JsL3RF5sVmrjEZVLseTDRZtyrYtWJZSc/Pi12ulkhT4mXeIPv8kOU6irWicYUMT4GmWaePs5yHUv4PheM0HEs5OdHfIc+5qMBMccp97AzFvM8fbGQanI5V7vbLIidukgvr/CnrJHnEj9xUNTYs00OzIHdQzm/9youe1+mi6x7Tcm/Nc0u/5+3/2+UaadKhitcZIeWYKFs0kaKPWYYjP0YZ4x2N5cYYBZ5DOYo0e5NjTopRjy59y6dtHKfefpYpZNelmzBdwyb0E9gIQvvEIbSKsQ+VWErz7g7JKmsKrIFcgk8u40VpSqC5MsCSWEtv5MR39Y3gb/r2/AO8cFOErlPDite7pAUHip2fpuQ1h28RFJ0HicBUZY9jVayDC34TlgSLO9D5hg8XrX9PZ3DCrUj9vlzv+/7JlBu0LZJg/9fRZbAQu+KZ/MGvnGYRBIrRkQaeNPZdyMkMh39y2GL0VP+d4Gndfc4dHYek37O/DjnL9nvB8VIOIUBqGUI9dx9ksCGz/FDc0eNxrCA6KBIHwt0seyNgzxr5KOuEat3kzYGmWaAmz52NliRnCIBRvezQNdIuui3sQXQN0jCZcokkqXDJPdEDjtHdew+LPjvEyTSrir0skgD9fCX2/PW2TSD4bdc8IZ1v/uTWk0nRcIe6+6pZmmkNh9qLLrOGSywYZEC9xjjHYoUXFVgDd52ZzT2M8cIk8jeIE+JGo3kKWEBCznWsfCNDBUu8xs0UrPgNRZJscdVLgAwzSA9LFGjMZQsJrFtd7BwlyzlUBcMM0kWS0q3c2Ogleq3NLvQSyKzLGL38TcwVq/GtAfY/SBZ2GFCxg8kid0lLH3apVIPxIgRw8iZMvVt4LE1UM9wHQWaqYZrpxwBa52sUiXDPCfDvkFNpxJ5dpyp3sd8WI2MMEmZbDRTVQsqwGz/2kBSaPOXzUYgXZ0U3ax4sv02V7ngVihmRzHDIFnKzHiY2Bz9rHKcOfppouLWGSVvXlnTWuFPuzTSxQpZ1ilQZIhpr7p2g8kvZvpdt5cICaZkZwJhU/DpfiZYDhv7O3kSqHuIzR0C9J7bdx7fJMlAE1tTUryjsPWFo9RpoEjhiZrpc/2okIxRYlU9g/nVCax+H2NhNZCAYwJ1GngyKAsS0GsZO5d3sPP4NgkgVSJhskry+gaJPPIZEm8wATsCYMAkgAJcJOuUN60+5yh27x7z73CbBBw57t/3kP2/8lMSSegVDIQ7gc2zAsWKJGxsMaePk7C43ve/vYPNBQ3+3CARMMAkSQNSEt/9TK8t/z5qnj6DgUhiGB8lGWt+TGIHsF/auUXSMJR0VPJJSIDPQRK2mUCzOglwVoAHuv/8vFXeJ2FluoUJI36MZ0iYgFsYKDyINbT2/Lg8IpHrHvH9u4eBVwImf0bCDiz587MkaoRHJB6HDSSBY1t+rmb9PGkc+SMSW5iCf/aGb+8Df71qNIGZkt3qHOyQMHvvkvgS63V7vp0J26/H1/01AnSzJPfX6yRBI8V9n72HXSMP/F8RAyRfIJlb/jkJcL6x79yqCegNXuok8vVVknHUa/YDA/5+nXfJnHVOxQY8TFLX/hKPz4Sh9zHtnHYviBW6PZ2xkSmG+S4/RElSQEhbBXhc4zzf5tVYyElutUuaRXro5xZNVLjlXctd0kwyTJn2YKyZ35yxh9ZclnueazRRoUYhDNU14c5xiu/wI7Zp4Vu8xi33NDMZphVX85zkLDeCjaUiqkgHipBfpZNFernIFdpdWlFwMEwJiGLZzaf7gqavhb0M7K/yIkPMUKMxFu8lclhKZi1klCoy5GE1zWCAMPIzUSqpiphxXoi/CRw19tvNkLWom9jFMpe5xArd9DPHIj1UyFAiF6+R794OLQwyg9Joxd6RrPCp4g6rBQO3lughSzlk2GXa3UNnnUZqrJNltD5Ba2qTeU7SQJ0BZnmNV6K7nKdEY9o8CLdpNuDq6LYv/q07rGO6Tjsp9pB/mdiUu949FYtSJv2SM7ayGX6MVS/WzNuuIQo7JfClMR9H+eFYDz3DuoN3swwARALxCFNUyKDkMjGxajQyw1DIgxfp4Sw3KFLwIIR2wOQJk4wEkJJlnUGmQ16h0IUelqIIr9JElnIwhNbIsZs2zzKxHrpYYYLnKdJBlQzDTLJAHyNMuQk4EYJhvmij4QmpfdZ5Vwqb7o+TnjzayxIVMnREK+Xz/XiGO8zxvEW7s0N63z190j0TV+hmha5oYMzT5wupxJdQoSxilBqol2aUCfqY5xrnmGGQDoo0UWWb5mhEyCNviBnfD5Pxl8myQhfXOEcfC1zlQshYwbyuFIgivyX577SyGaE8o0xQoYk0u87ky3PSwf/TzDJPH9c5S5oaQ8xQJxXMPJPKDiEPTi1IfsDvxDgywGx4iWYp8wqvOZu0iSIFD2nppo/5kC6ZXcLp+L7yRBplgixlXuNbVLnhYIFkZfP87W/8t4BJloaZZJVO5PO1RA8vchWlPs7RH4v5HhbDQ/Q7/AhZAKzSGWmFSWJlCRnOr5PlIf8jbMPjX0DDHTggMO4utngFOAIH1AX8u1jx82N/3SCJ7ONZEtp+GfN02wBuwaevw4G/jxU5v4sVeUdIGC4qxIvA72PFiZgALoPlGCHlqaxio4K6m3ZCbbE+678/8J9f9/3Z8c8cgMrbzsLLwqfvwIEiZE4l+7G2Cl8qk3SGj9v3OnHUn2Pfd1XnWT4qyyS+OINEEZy5DY+n4OAwPLgMR7TocCDhQIMf2+f2HQ/JfNXJXjbgMdPt2+/GClex/2Z50vNoEI4cgw//DL4kULREsuCZJZGKfI4fOT4mz1pYbticl456Is0uKQfJ8qyhsKcdn1PaWcd8g6t8wgELqRBDS745L2OFt65HLerukBhRi1nyiGQhdotE3i5p2BS2YBFr5DngBnAclFqq5kaGasjv5+jnJgMeynOKTlaZo5/nmWCW0zFvX+RKsK3lkXyVFznLjfBBve9NOfnvgX32Nc5zkStYUFlXNDvl3zxHP5Ir6/j2sOi+1HvM0R/sZIARJlngpDMIm4IJCATDO0eJLpYDaLRGcnvUqfJnk5Q66+5/3AU+xMYTsbu0KNLC8BhJwyBLwkoexO5vLcRPkCzMD8ORYQysfZOEsXEYUk3AF+ExB8NyRY1n2Uw0ecie+b0aa/EFxqOpv01LBFyotjvt6fKyEFqkh16WvPnZ7MetymUuUSfFALO8xygp6mF9Yw2mNapkmGCUUSa4TysXuRLg62lmI7iiTJYSefKUaMMCmdLs0s8cNzgb6og0Nd7kAr/DD8Jj0ZRIppqS1ceug3+SRB9nlTtsmrRLDJoXSVhe3XBA42CNxKS+gSREwI34mcTG/D/BmjsCfV7w8+eNkMc/dXuGh8AX8HneJMwfOXvx8/74f9+DQ1/Axib5bt38d1607T8/8p+3/Ocn/lw7dty/APxrLEhG908Tdp7W/fUfAHPYeb4Dn67D3h4c7MLmMcksa9jSd9e3t40xKY+ShNRswOMVOHjc97mPhMmpuTLt+9jg7zvq27rt//8EuxZ24ZOfQVrs0CV/zwQJc2kbGw/mSMIPfuavbyEBzA74/n/o/y8BT/t+SD6uBt2U74NYf4f37WOJpEkkEGkLq0HegccfwsE24G2obEOm1/d1nmDJ1Wcgter71EiiYhgF/nPfxy4M+Po5No498POzQSIPrgKt/v8v+Pd9lQQUgiTQ6SCJtPX7/rlf9GOK718RS2/XWPwIayo+5d99nQTw+rlv+6G//oDvzyeYsqABHv8FHGwhksX5AomNwif+///Bj3Ojv67J7GIOfEKSXJ7z85Tat2917NpUE67Ft/Pf7zvWOf8OLcCb8LgCB9dIArKKfky37ZzWJyGlY9no75V/4yPfZ92T9zGQ8EPzhuZPSca7qv/9Acm9csyf+xgLAtK1+4V9x7KdBFT9CabOWAG+hF2TuhYfAs/Ao5/xSz0+E4beU26iKxP9LpadIVRixiUJOUr8C77DEr3OtOihh0XaWQ9/ENuGSQsaqTlLzYCZDgcLajTSwg79zFEjzRo5cpQYZYJRJuhmhZd4PXxIqmToZYkXPejC2Cv3fME8RIMXLfLEq7mE8jSzvjcZZ7tknEnTFvT4Jiq8wmuM1AzMLHAPS3ktBsNLgRJpL3x2SVN1ufAiPdRJuUTCfJqW6GWWAa5ywX0uMvSxEGwq6wqblK/BpZX/P/L+PrbtO8/zBF8KKdKknkUVWWJZLtJ6inWRRyoJUZ3SduJOLr5zIUFlJr29XX3dmAYamMbOLGYPe3/d/DHo+2OB238Wh9sb9AAFTKN7ump7Jt0pJCgfnHXaTlz2RoE00lgeObKkUGW5qCZL1LNIkyKj++Pz8JPngO06YHM36yIgWKbI38P39/T5vj/vBwvqSFGglzyj3KePDWdfiXTCZCwbOoGu+DaGaFAkhYSZiCRmiwQWlGGBIBbwYOsU2Wjau7MCTAyxyCjb6TPKvttiiGUahBhmmWH9vY0DXucmh8oo3Aol9DOPGGJZQyGkd2/FvUhUW1lgHPPoS1CijQOVsZQZqK4xyn12VXrdr11JwNk6SYqMVJdoEGaURYaUNWTncJ5ekhTcF8f8aTboc5mFSYDDCs4AepwFILR1ZdSIX9ikrcwz9kwnf5hHjDHvMokGYQqkvOttqb3zyhAaVjCiSIoGYZeLm/8fiHypSNLNlwHmmHTmkXnxWGiLyQITlDz0w2TrB7RRIU4vYvJsvn8RqoSou5wyQo0dlT9mjn7uAH2etH62QU7H6Xl/RTgGcFPsCWZdlilBF20u6R5l0X/iVPiUSz5uljBtE4w0ee5wiTX63UC9ShQLclljQCeb4r/0Fh9gYQ9LjLjvpbA6xA8xhHgFTTKrctBhduikQNJ9Hm0f2jhgQANsDKgyoC9EgztcZkvZmRllIYywJGneCiCLzKjCb/OXTDHDJe7wOVNskeAtPiCqbIgCScbUU8tk29K86KJCjDkmSLBFiQSrDLiEWXz8ep19va7Xfh8bnnRorOBx5v06tFdNGc9JisqIbrCg3keXuMMoiz45HGeBm7xBhpxKmSUAY5dOrnPNfZFMQh+mQVabH4/pgzPiAbdtPh5f6kaYv8YXCGBk3WEz132Id3mPiwQd/RBBV1nlEOvbiKT0KcLau4sUTN0EnjXGqDtEJm4p7QyfIZiUfRcYExbdSZEg1cvYGvO67Q0gKcCcd17DeNpYvAPKKr9Y30aAMQPg/hjO9iHpX1ZIfya/V57qPuZ0mR/rNqf1MyaLMEnLGAGLIa1ee0D739fPnEGK7FEdi+/yrHl7mqDAEkIO8Q7Z15OiLuN1AraYgUI6TiZxOfsigTytm8A/5Qz8OpBSOthjmWG3IQFYo59ZJjTcKkKFGPOMMa/spBQFHiswEdM6ZY1+uc+1IQXyIoFU8BNkjK1Tbq88gcwZAr8wm+BVCQCJBwSMPWO8LBDIc8L4s90axyEavMZtMuR4mRlvZudJs8hFV0uANIgLJBGf210AZ99Pc486Ia02pf59xLCDoMKGEzBnjX4WGKeK+HQC3mgwq4w6IbeLCauCYZI5D2yYZZIoNfrY8Npvx+uBOCUS3OI1D+4yWXSKoisOrOaxNN2CNqDtszzhGTDHDefNH8qkbhAAQPbZuwjbwVg65rl3BrnOzEdvXJcxocc1iYMh5nk8yiIJSs8AnmL58liVKXNs0ePnpjUkO5FAPbMNSrCF2OjU3NLCmJHWKDOGonmGj7FAgi09D5KU6HGyg9mhmLdqmIZ7FxZJ0qo1QEF/79dwjk3SyohfYJhlhljmt/lLByqv8VOWGOGH/CEW8hSnzKdcBmCIR6TJs6NKDJfHTp46981KIEogszMp5wcEfm3WlLB7JQTsr6peO+ZHlYLmV5Dr9UTOA7Ok6GSXbrb5tXiVgSo0qsh5HCHwh90B6tDYQ+5zLyCggclGVxBA4QABDorAL3QZe/pvSr/XossoI0BDGxCWxmHzRQRgOEbupQa+GYhzgIB1Ed1GYx0dQXOLblMMAWKqCChkEk2TBHcT3JNjOJDHt2Ufms9C1J7ZNQJ5MMg9fAfKxqh+qvudk2UdHul37JxT0LFxoOupnRqruK7jKcF9vRM5t79CAJUNBDT8j4FUO0a6fc0dcKgS5Xirft+eNy/Itoa+qZ/f122PIWDZjPz/uEIg94Tg2G7o91IEHnUv6Pd/CfwcGj/XY5IlANEquq4dqJaQ62sHuf/uyM/Jii7bQLea7msF+PfI9WjS7RYEdDLQsKbb34acc1vyXnNE969ZPn9S1LFu12UboHWi/x7KeDW9oMeih6A+bNP9qug2rCLHuqTvR3ScjUkZ0/Gxeq0BlWPkeVPQ8+AABx9phlBSx1YbEo0qHK/pMdT1n9j6vyKQSVcI6oIaHBvwqgCceTYT1++265j06HI69ecYb3ZXV/TYnOiyGvr3IlT/Vo+JgdV/x+trYeid50uKpLDQgzASSjGpbIctEsQo8z2uk1Dae54049UFeqIl9X6osMQIb3AT8ZITU1sDxSzd1aR9gIM8xhZpEOJlZhwAMvmhFS1tHNBZ3eUNbjIbnWSYZWY1LECYMGU62dE+pbBPrPgyplWJBBVixKi4f91GtI+88pmjVJ8J1biAAEfm62QyT5ug58i4t1maTYZYJkKNN7j5jIeUeaSA0PAvcYdFRrGENAPsDNSxZRqY0s+aF4jS/S2rDLXoE+ZFTbeMqe/KVW5wh8skKPlx7NHiSJIf572jW1QfOZPJfs4UZeIqH8lTJIWl14nJs6R5mR/iba64f5wFpkxr53S8Mc9qSDqqB7TxBjepKoPzKjdUuh0lzSbVqAAaWTeT3mWKzwlRJ6rywBIJNqJ9zkYyoNjAq3EWeJ93HMzYpcuLjwYNN/23kBA7Luadtswwl7hDgxAZ1h2A6aHECA9pEHL25fni3/JF8ts0aDDEMocEgS2nO7xhJNijQIpV+rnCbYok6SVPjSiPGCLDuneIjS0Xocoh4sP4GrcdtLEU6TxpLAU1paDyJe5QJuYpxRYAcIlP/Rgb6BTT5QjzsJMaURItJQc3I9Q0HTTLt7yF9ny/9uigQowPeAtJbd7ygn+Nfk1wTJBUf5t+VpHUxKRP6gzMj1Omn1Wu8z0HT29xhX5WAWFuRqj6uWf3lbtMk2WdHBnCKgv6WIM4TNLd0EnkJLOEaDDGAnNMMM09zH/PPPBMjmX+jGXijDGvLLYBZ9o9YpgkRczb7oA2ehU0s3OtSsQBZ2Pk1pXxssqAgnhhZeu1sqFMZ5u0jLLoDLxHDDtLuaQhSAmizDClKZoSYGNpjOaZdJUbLOu2rpPxVN8lRkiwxY/4AW9w059jdr4b42GMeeaY5F3e80CjfpUULqv0XfyLau6HaXYLB7QxwPtSbE9CQuUA+wvQ/kfIJMjYYncJGEZf6O+vIgXrU2U8mAQhrD8W6HANmn+ITKTN3yOkPnev6P/fJJCPJHAvkJhJDh4iE7lR2YbjfU2VNfDQwDSTnObhpKTJsMg2eFiHdijjIVlf9iUEADMZ6gentsHkW0ngMbQ3kILoDIFUeZQARMtDeVYZdOa1YkDbBQJD6hzuEcg2AQj0b/T9f0IgkTEW4wpB0MiGyieMrTKIB4wc56A5qtu5AqUvNYSkoNtQ1ZTgd3Q7mnnuX60cUCXwmu0l741FC8axWmqWSSSTXhQAS4w4Y7YVSRF9ZgJscqM+BJzdRs7jEMHxKSHHziQ6V5Frwzri1xAwz6SdJrnNEaQqPgZWxb95U9shFqgjYXA7rJNVuwTx/DVP4hAND/NpIEnzNSLe2CwT5zJ3XEVigQWWiGt2MXbvtQARC8IokvL1diIKBws3srpT2HSinRtgzZt1ZnHQzxoVYoRpcIdLjDHvLH1brjWCrJFpvrvW3Ja6pUe9eU8Y7Vr2a9fTDSHweEojgHYrgQ+iSZ1/hrB7TXJlYBIEkqmX9LhtyudOzNvqKZzQ5FYmIHWZeeiZj/UjZW6XSLBGP/06Lp3sOKPyMnfYpZNWfS5YCMouXayTIUWBPGkmmGWeMSCQT3exyyKj/jyOUfYQq17y6u8dZ4ExD1WRhqvU2GZlIWD2gM6HxN96ihlGuc+SNl/NosjWfUAbV7nhjMQaEfp47M3pCDW62BUf1yPk3pQnkKy/SiAFPdLryzwp7b4+JmPNeQKfw7QeZ2PQvqi/7xOktC/grKQXWSbE32OZIdr5Bb8Wrxz88wk4aYEmA716EEbVNvAdZMy39b08QUCPsseON2FlD0bSyLieQY7RFwgAEwH+HnIffIAAbsYUMwnpAXJN1QSMaepAgJcslD6DxFkEOEkj4IM1RuoELLF2Av+2FQLv0fPIuXGi7+W0bvgmArK8gFznVTjellrk5DNoyvCsHDGPNBSN+fcAco8gm9X/jxJ4pZns11QFHbquqvrdTvKs119cP1vRZfURSJOR906OoGkMOX9Vrrt/AO2TcLIg49JkUl7032Gk3ukhkCWfJQCnMvrZOvC/199XCOq3bt2erG7PN+W4njyFpiRyX+xGAEiTyNu90fb1nOznk20pMVJJpPn4CQJejen3/ne6XTPAN+DEpKEGZnVA+aE2Mg8Inrv9BHYhL+mYRYJjcrwJ+4eQsGN4BCdhaDpHUDN9qefBN5D7T0GXP6tjNkpwP1LvwSf/T1U76PmzX4L2KHKev6TLPis/JyvQVCGwWknL/njis8m6bcztvUHkelrUfU3pMkxc9jJBIzCsx2eYIAyjipxbBlqeR+55VnPm4bgVtrchNYWnvpfWIXFVPvvHh6Cwyt/5+loYemcoOxDVyS6tHBBTc3zA2WImJetkl0lmmYlOsagpoMZ6EMJ+j3uQiIlvgTX6vYuWU68VY5oVSLoU6nOmyJNmhimXBdzhEqv0s8QIN6JX2YomKJLEjNQvcccDFcwDLkWRGGZYG+cCS6TZpECSu0z79227CiQpE3MpliXsmqegFXcmT7TizOQPILKA22pqv6qyCfMxsYd2lQgWVmC+LEXlst3iNYaPVqgRdfDL2DvGghSTZWGM1PX4/Bm/58VdjLKDoJ3sOtPMQEibjFv3OcO6s8iMJZZgy+UKsv091LVYytOLpRIf0KbFlIATUar8Gb+vvjvi1bdBHwehNt2HXU+C26WTcwoYmP8IoKBSRJc9QI4MfTwmSo2q+vmY3M6AtTR5RlgiRYEcGe4x7e9byIMBsSkKSHpmlB5KKskVcGSIZTLVdWXeLdPPKutk2NL0XRBPoRmmWGKEBmG+SH5bi08BwatEHTjoY4MUBczbMamMxSvc9m2KIkmBLzNDHxsONoYQ2fIwj3QMNghRZ1WPf5yys/siVF2maIyo88W/9WOeYIspZnjEsAPEyb1tB3lMNiomzAWdqIl8GGCdLA1C/NKfPM/3a5tuWjnQyV8vhwpixanwMjMMsOrHY5RFFhjnJ3zfmQSfcokxleDbNZSiwCU+pa6AbZfKaUY1qe80+DvLpAPvXToZO1RWoAHuVXXXSbDFPGPcY5phlnlZwyAKJFlmyK0GjFVo1gQhGswxqQDaFqua+DrEMj1s0SDkMiVjI0apkqLAgLK3L7LINPd4nZuMK5vhCrfcH6pIkknmuMZ1vVfGFGiWAJg1+hlVOdQ9XqFNJ/2n2cSjLCqLNuOs3XtMM8+4MygldTzJOhl/DokXUYl+1lw+PM8YA6zSyS6LXOQWV1hGrBSEOTlAjLImG0uzR+6hIps3T60pZuRZZrK+QURuWkUAvAdIwZtCZC4fIsVGH86GOL5LMNE1T7kkQQKXTnzPpvEicH9Bltc8SADI3QXqsP8ZUpC9LstqSksRmTNZbxJYUTahMWUSBMyZPVwW1zQJ8VcIkr+MUWisO/WL4RyB14hN6k1uo+uzCeexSSY7CIqsPYIUvzDErYB+CPwJQWrdQwS4sSL5tFzY2CgGev741HoXEJlSSdd7hsAT0Px7bDlVBUkJ9q37NFsyKvvU3K3fecqvBUOvlUMHjSyYAVAW26g3r5Y1zGmSWWpEGWKZGGX3Ht0kTStHMhHYQY7FQwIAwfxyTDJ9Sr7CBjLmVojbq46cs8a4VFkZ28h18X8lMAk/AwuMk2GdYZaV/SRIRokeCiTdAsZCxmJIAI6l3hsQZ+FhFmhhdbLYnxw6022VAXbU8sAaxjZ+q/RTJcIUM5iFzSKj3rSMK5BTI8IUn2P+cG0cMMWMKldW1SN5hwg1D/Ea5hHf530y5BBv0rKyplPubWrNmR/xu9zgqlokyDZl+HngPZjXxOk+AjN2CP7+lAB4/wAB8+x6SSMTemOL7CHyamP6lQiSA8Elgk2cIIFMWcrE2aGTm7xBhThXuEWWdaaYYUtra5t/tHFAjaiDrhFlMVpjZk1Tb0H8k6UhVKBIiik+Z5hHmH9dlaj7SJ+2tOlkh7COnwWtmXx7iEeI2qXm8wXzY2wQZodOf77d4TJFUpj/rTALc4iPopAT7JkrgRxyvFq1njN1Ey+cOiZndDwfE6Q8PkXueWM65qMEMrVNAiClpN83xl8LAQBkgJ/dw4tAJ3zFC+zSyR0us+J+Cs/5qxXKC/KM5Iw0gcjJ7ySR+1gabwqVixKyxBHStKhDYQ8udBOADy3qIWbM4zHkPnnaF82AuDwcfyHSx+M5AfPWtwVYO1E7gvZWJM3Y2JbwbIiQPTPVDoMv5HsnC7J/FjxUtuf6m9DcizfJjr+A4xUgpJLGI7W9KOn7ylo7Vk+6k4dAQ+4jZ+3ersqA8iwigV2RAKzjLwj8UesylvEpoF2ASvci3COQ8RqYlgSyWmvUBaw7WSBgrjXUruNIANAmYwVrM8+Z+AbwGQvvsYBc9t5JKXj/5GM8gOTkMZRndH1zcDyD+w03mU3BUwIP46ge67CoHvYf63K1GXz2JUilIVeUbSwVYMXOt3PIvXZD93cPDqzJtSfnh1+3Wdgv4oDwkw91315C6kU7Jzpk25qTkEjr+XMmGK/yLB7ccVIksL74ksBnMS3rKRuw16Hb8T6cHdRtbTm1bcaivAYn1hgOaziaHteynkelG7K+pTyUrfn3lOC5bzVCXrelA7mvlWT79nNyLu4vEjy/OpDzfxxXbBzr9byfk3WWrfm4Ise+OakEvDN6LAsyXnyJNNiNffkrvL4WQG+WSeaYZJFRxlR706OgjkmcHjJCnt5naOQb9JFTQ1ib/BzSRpSqA3Mg7K9L3KGPDVYVQBNPr03iWvQZ66xKVB3xlgChypvxunlgfMwb1BHZZ+bo58rm63JmhRVbJnmsEXFgbENbjfawt8muBYJIYXDok3Yxx425jFKSXsVryjqlu9qNNX+3JUZUUingYJUoh7Rxiyvs0uUJaJKuukm/rqtBmOWWQfVp6tEO8rqz6MwL6xZXWGOAHsTY+B1+wgGtmDzvEcN0NXZZYwDx40hoMXrofi1WkN/mNQc+18lSIMV1rin7ruDAmYyddOTtHDGw1EBNYTDuYHK+GhHGmWdVpYSS3BXx82KCOSQYQDqvso/iO2OMmYpKry21baS6RJKiBpMIu8wAAPMfs+6uyedEPihsn17yZFnnCrcI0eBiYxEL3yjRw3o04/IOk2xIEf05Ce28GviYJ+1MJgFRUgyzDIhcc54x7+paF3yDPpLaGd4iweopH0RLaBtjXq2xBaSYY5JRFqkoOJOgRCsH6nxW8GRbW26EGivJs/yQPwRwtpR5Be3SyVrHtwGZ5CwxQh0xmt7S0A8DJEPU1ctvi1/yjf/F7z3/Kb462KNEDy8rCGqMFGHYbbr0FSwFL0SSIgWSCp5+zlVusEsXVfWxA2FpSjqrMHOvcgMLLkkrsDzDFCDeSRZeAYH/E4jkrUe9FdcYwFIWRUobVh+eTW5w1ZnBp1NhzXDbwmiMPWry8xmmfJ8NJF5gjCpRZwTf5jV+yjVAGMezTPIv+SNnfuRJs8qAsxCCcKAS7/MO95hmmWGuc40ZXvZ7p0zKIkiK45YzLMyT733ecSawJDP2O0umX32RepBU8OtcwxKz7R5j53UnO3Syo4B7nD/kh+RJc4OrvM87zsiR4Jqq37NMztXBXiCBUCbKt0zu8BQptnSi1TyIGFifQcCJWQgry427iHdRDly1NEkgAQUHk9pV9sqEn6hSpI1C+9v6ngFsCSnwsga+rQBjkDpt3Lsn71EQfyTeJkikfROXuy7lCABEAxgNnLNJyQMC37qQbuc1PPG3OatFmMnAjnT5U8CrCnCGCCSw1q1vIZAwFxFg4bcITKXRiYcWhazgZtqlRch9ocW0XESAFJUnJm+xjn5Jx/2f4MbNTVcJ2IJW/L2qn3+BQNrzHL9qRB3Ut5cxWZMUPVU1SUHZ9imv77KsUyDFx7zBmPpwcoRIf7LIuXMBYYkeIeCPguMelhHVz/QhRbrJbrPI5DOlG1UkCC75GDleOtk0jx+T2x7Qxtt8SJpN1sk6EytBict8qg2CFOaduUEfIyy5XYqMS8SbARv0+T0UcNDoMp96s0yai4GXqdSLPc54lsCEGAe08S7v0ceGPwvMN3mXThYZ5S7T3sAW3+UiEh4nbGK5f26yQR/rZIhSY5O0y4EtNMuC65ZVOj3BHA3CEnBgE6QUNI/pGBtb9ogglMeu4xU9FgqAl/8tAUhr7Adj73YQSJW6gX29RlX2ZOMkyhxRRpjXqaUDW60PsKUsvTJxIlR5jVtc5YYrF8wL26xT7BkxzT0nK0SVYCDsOrEjsbmEAGs12jgkTAMLzpBAv8ceqnJAKzUihKiToMQsE04IGGGJYR7RpU13Uznt0slFFhljgRI9LrOtEqWPDRYZRWS3knAbp+IA8LctVcGaKRCYvp/RMW/oMXgVuW+jvyvQQB+BlC2LWC/k5Xrx41slCEexJkcezvCUEJJuP+LpGc/5q00bTw+BdpncnzwmSLYHCWo6ArIQT+qzXgG5420BNprCBKyhDm0UDRI814wpN3gKUAA4Jwz7phZY35O3sllZR72BgGzt8v72Hl4LkIQnK+Kh6yE2CwSNtSo0nQEeCzP9JC/2HCwA/xYKX+DnQuWpBm6NIs/MdjyYqPIU9vWab44Ci1BRkMW/Z354JQmeerIgioJKQ8BO0OYlBMnaC5AYFxaas7HOyEdOjhTg1G1sTgqjkKfCKjsuKgB1iDcaTvaEbX/8AMpHOv6HMlalFZ6tQS5A84s4CNfUIX8vP4DVbfnc8bZakCB1Ti4v+3Kck++UvtR1z8j+75sEW8cqnhawMZ6V91cMxG3XGk6P77daCEBBbSg3jwEvaWhZSMarScHmuIKD7Vk51uU8pKzBUpRjSwN5lua0LkrKmFaULb+v51+8AwfMmi4QqBa+0P34azyYIt4i40of8EDA5uOiAsDK8G4fFJCSbuC6nn/ouBRwPWo8K9uVuKASWeS6oo5cI/Z6qN99iF+Lpcfw5AEU8hA7I0B8u1lJQODrHEJq9oZeP0X5XHNYzs19UwogY9EdQp57g7g65ngTqT0iiG/hr/D6WgC9pyoViFDlEcOsk2WWSfdjs4ehJY+mKHrH0uSMS4wwySxDCmiYBLBBiJwaALcqu+RtPnSvCZOl1oi6BKKuE1uTg+3S6Z2quHqLWLJivuWbyiVrdfDqISPuxZRhnXUyLDPMOhmucIsr3HYvs6quV1gvUUr0cJ1r9LFBD1sUSSFW0H0eLrFO1lMSs9rxtSTG17iFeX8c0EYXu4xynwsKUhrg80hlk+LX1uNA1OdMYT4hOU1He493FdgKcZUb3tWNUfbQhTAN2jggyzojLLEVEt+4IR65T50ZVFsi6xCP6GeNRwxTIsEVbjmrLUSDNJtMMqt72kNNGVySHCmy6RGWiFBjjAWXAoR0W2KUaeWAPh5TV7kKSGG9oEWQeV0VSTpT0hiQXQoqrJPhJ7zDJmlWo/3cY5p3eJ+wFrPmjydm+DVe4zZZ1p3JF69KgXiJO6yT9YJpl07eD71DgRRrCj6YF4757PWrD+QCY6zRzxwT5OlljAUv+JYZZoEx74ibgXGJHpVvh10yYsCpTXpAgkos8MOCPgywu8VrTKjmzaSdnexod7eTW1xhVa+ROSa1sy1spu/zE4ZYZo1+PuUSo0cPMBNzk/TItsac4WgTFmNghpFgEYD/rYa5PO+vbrYxv7k/4F854G/AOuDgK0i4zSj3FTQOYynBNsmy8JsD2qgTcgbqAmMOZM8zTogGCSQVdo0BNvX82yLhDYn7jJKg5BMbA8HEby5LnLJLWN/gY7/eLU3RfPNETr/GNPdUUi2T8pu8zgFtrNKvIRYC2JtEzSRaQ5q2u6kT5BIJ3uU93uNdB/gsQfkmrztTxa7tHkpkWNek5U2XnZllgIxDxcfQWMTX+CmWRj3CQ25xhRB1vf/2+n3YGgOWajvAKlk1HTd7hApxttQKYplhMuSeAfJtIg7ilSTsxFX6WeUpZ0QSYrKEXmW1DSLFUYLAv+gpMokyJlFeC/oW9aP7DYLktgRwnaBbnyWYME8SGEPP6fsbBBMBY2Lk5fPtSeAdAj+6zwjkWBCk2jW00DYG3gIy8f5EtmXQfOmS+pmf6TI+1m0wgM4ALy30fDK/L+/FTaKbQyYB53S/NtQj73UC2cx3CaQ75oc2qT/6nZOn8nt8ULdNu9DlBeBNSJyHlBXAKzjDoXlQpTinl9sgAIKMJdkHPNQJSo7gdVnXd8hz/zqk1Rte1nQCXB1QI0JdG3jC4E9702uXTgZY5YLeJw9pCXyFVnBGgMuQHhDIs8wr7y5SoBtb5WfIOWcStG5EGqggAwnkPDgC/lvdiQpQxe+V9mwvkWCYZSzZfp2MAz6d7AABmCZhVT3EToFNxvA7zaq3GtYSVK3JWtaAK/GwFY/qURbZUoroAuNcZNFrOwPdjFldUEuGUf2MNX0NpDR/OAuwWmSUGaYokHIPRPNC3lURboEUKQr8gB8RpaZ+2LsSXtKJMA4GCdI4jT3TRwCWGmP2twhYxmmIm4eeMfGMnWz3kJVT/76oyy8CW/g+9/GYVQb03ix1rTEZAWesRakRo+LBIAA/5ZqrDCz8TlJkc378zDN1iREkPE6COGpEuajM8KvcoJMdH9MYFVevxCjTIKzqkaifH4CHYLzHu8wySZ5et+mwoDdLSa4j1kMRqmRVMWP+1sYGNQl4gi0OaSNCjW/wS/HEsomzeZh9QsAWsfG+gSSxGiBS1WM5duo9Y2K/gtzHN6DwgED2ZkzMZeArCy8R1cZXX48b1H96r01lUnUgz4SXlE2UFxBkRf/9xTYeTpJI63cL0PwS8FTBDvO3OxJAyFNln+q/i0BR7TPels+xKGBVYUPBHQS0ODBQSo/T8QNlmNtxrsLZV1W6quDsyWMoqIVFeU/ZU4OSLN90gUDSCCS78YTZdv33+C6BH+Oe/LQnBQg5LgoQtF9U/9wWaFe58EkJbyY298JZZbCdnZTfaRGwhyPYN1ZwGDjUusmaiy/KOBW35f3KUygsyLoL1mgNKwAaRp4zek9qapGap3lCQ73OBSy8QoMALLJ1FwlYx7oN8Q4Y6Jbj1Twl/YjmsIBNqRbZn+ZeGZ/2Vh33boTxZ83FDT03QniK8cmKHNvCFwQef1+I9DY+KO/fL8rnCg+U2WaNyaKAV4TgiaovToyxpss/riswdkaYkYU8FGahVBIQ71iByngL5GZg386htHzmxCTG+qxe2cMTnssbkPtEts+2GwRYbW7Bm9Ann8k5kFBg1C0bfoOAXQcenLa9J39vGlSpelX/ZjYu1vDr1mtrD5a0x3BWAe/mXl2HNUDCwF3IrcD+/x1vapRNJhyVc70pGTTM69qESrwtoPDJJzjzsTmr2/ACAQv273h9LYDeACtuhmtAjVHS/4zfZ0snhad9hlIUSbDF7/Nn9OjECaCNQ7ZIqGxVHmBdKhErqgWtycsi1LjKDZcSiP+IhE5c5QYlLVisq3lAK5K2WuY2r5Gnl3u8whr9VFRWKtKQmrO81skQo+IdTStqYpQpkWCGlzHvJUs+NYlEXaUkPbqsVu3imsQEYJRFqkRYJ0OCEiV6XF5ZIMl9LT5K9DhI8jFvKLss6iyQAklGWSRCzbuqIk/doo8NkhR4jdtsaRfP2HN9PMb8s8y8vkqUGlEH0TLkfH/EI6bsfiKd7DKkyVwmGZxk1iVsveQ1cCPhBZSwKsUM2HzfQHwKL6jUeplhLNREiuceeskzefTvCNHgt/lLZpjigLbAy5A+Z3tWdaJg7LbXuYmli24gnodDe18qS7KHTi9TRWZsHc4D2tiI9gXgnoJ/VmhbId7GAcMKUliQShe7LjGWcA4BAy+qB5jJZkcQ1mAPJfKkucCSyz5MAmvjB8JkTGiHWNKgRerXq3LBkHaBLXBlgDXypKkRxeRLccoMsMqAyp0B5fQVn2GFWaJtlnXWWs778ZeCdseZqUVSrDLAMMvOJniobD6Q4tkK6ef9FaLOJLMktZFhbI0GIT7kLXbpcqDnDpcA9NjIJE8YBq3aVEjTo0X5EMtskub7/ISEBk6k1K/OzssRljzMIa/d/RRFD7VIs4mE6lzwwJYEJTLk/Ljt0qmyc2HLnr4+LSn8gDaXmM0z7n6SZpFwSBvv8L4y/1JYiM6f8gfaYKl5GM0kc74PU8xQI0IPWwyzTJ5eT7udZZI6IS7xqQTgqD+nSH77nd0j4xnhBlcpE2eeMQrqoZplnSQF5phkgz6X+99T1soks4ywxA2uMsIS7/A+f8CfssSIy81u8gZ5evk9/hxLj7RwmXd5D0s13lWJlDRfKm5Wv0maZo6DRC8zB+5AmHgmmZ1EHvaDSMGRRQqvc/JzXFSQa4zA+yipEjeVnZQ+Q0CNM7qeBBCCn+WhpCwBwggYogDcEwO2jLVhMg3rJv4O7D9EivFtXArER/rvOd2fqPzenMWLHwuLoF2LwhwC2NmEcIEA3NNC7cQkDucJpF3GmjPz5G79/RqB705el5mQwpO7yERAwb6mBPgtyeRhk9pJnlE/miSBTOdL/enVY7MNpXn9vjEs/hkyEf7PdD+z0D4qxRvXdR3XkUosw3P/2qabnD5BuhBv3QpxfzbW9f5kz28L/CqQok5IGxhRbvI6R7QGvkcdPGvgP4MU50Vk3H9GIAWyyUEYOfYJAtakEYNeJDDy79Pl28RPMAci1PR+NUuZGJZODhK4taxBFiD38wIpRliiTMzBwHWy1LTeS5NnjAXS5J0tDxI0YXWbKQuKpMjTyzxj3nwdZtkbNde47o0zCSXK8Rq3lYFXoAcJfZtlkkfKTrM6dZkhqkRcjWLSaKt5a/o3aWCYWkOY0PcZJUqVJAWt24bk3hYm8MPqQLwLW5BrMgz8X/Rv1oT4SI/XJHIdDSL3lT1E2pUgkNe+hNwLuxF2mDKROAC6hPklPquHatswywFtDLNMVf0J+9hgnHm3wwhRd4VGWNU5ZeKEaahUdtd9DQWgi/k8BmCBMbcJGmZZFSAVrbPWlHW3RYoCbRywyCgLjOvzq6TWNjF26XLvxKvccAVJiiLT3POG6yyTmJfxIheJU0HShwVsTlHgGj/1RpewKKPuW73IKC/wlfg8WRPEZJMGwJkU1+7FHxFYGkzosbxLwP5KK9jyEGkYKVvKQb8FAh+vF+QZbQz+Dp0/PvevZgGs9lf4/7jfFLcFiKk3FJjqhv27AvA9+YLAA0yZSGVraiSVFXROPM8IC7hWygN5lVKuyPI4I+BEd4c825ouCADXPopcVxd0M1sE/DAAq6DPzpNFWWZ5G+5uqz9biyTnHtf1c8j69vPwJCfLaNKGyX5etpeEAojWPGkBHsDKBtzXplmbgniJ3xDwMFcUgK/J2KD7wKBKSluQ53K3gsjn4MkGlIzNV1XmnFl97AEfwZM8pJQ83j4IKQXRulsEoDteCeqg8o+Re1NO3jveQAAnlY02RyE3qw1MrRdyOeS8jxIwVPegNCsgaFOLLj8n8tjmbqQG6UZAtS/kc81jiERXm6mVhgCxlafK3mvA/sfCJqs3hLGXekVly0fKEFMvuVgUMlEB34xicPxA/nayAqlBOT5ZA6+A8l0Zw3hS1llvyN/iSVlPalIYbLGonF+DCk61hyAWEuC3/BAS59RLryrHKpeDkawel6x8P47cZmL2bNfz5PgIaYIaE+8cFIpQUGXHsTLzTr6E3AMBxy0YLaGguXvj2rIbyoLcQOrubb1eEjDyEiRG5ZxNGKBpUm0FKKnLOLWP6TlZ1wZxCHhFpexFXEHTPKXHMC/XRKUq53HZGo5H8rO7xa/0+loAPZPPSkmSdHZKGweMMU+IOgOsUiLBx7wB4J0uYylNMosFQAhrquIBASCA1nu862CDpYYd0IqZ80cVzLJId3uAGztEHDO2sGSlcRa4xKf0kveE3TaVZwHORhpnnjy9Lhk1X6QkRfd0u8oNtpQpZw9MM2y/xB1fnvk4ZVhniRFWVf6WpEiNCPeYpqb7mGWdOBWXFJtR7hgLWqDtsMQISQosMupAm71sAt/PqrNgHum4mbfdDa46WDTLhEtKjJ5vhdxbfOgsP5PzmQ+IMMi2vJO8xAgb9HGda6wxwAhLmCedFe1jLNClHU4DeoQh2eMFqQGfJjvYpZNSS/czYNgAq5gPnHmDGABh+2EMQwsPSJNnhinudQgYO96Y16I5SQkJcBGfLpFgmAxwgllneW7Q52CIgQ0mhSySZIYpJphzKSvAFDMkKTgDwZKVO4/2GFBpdZ40h7SRpMgQy8pcrNJLHvM27FGnyRwZLKRlkzS7dDlwtEsXG/Q5CGvXmxV0MQUYhljG0vEMpDxUaWGGHEkKnpwHAkDf4RLLDAEC4FuIgoVqRKlRJ+TrsQnJN/gV71L/K3+ZV6CdDzZRC4IZEuo92eNdejun1xhQO4BD7us1bRLRLOsuUUlRVM6usNkiVD2V0NiSy5omPqD3vwJJnxBMMufXUJwyd7hMiAbzjLvU1RgI1qTpZ40BlfsDzn6rEVFmQA+/z59rA6HIjjKjy8S4zRUWGeUa1+lnjQzrXETk6taltyTcKlF2FJiLIgFB/zl/6RJ6kxZ9ymXuM8orGmhxhVsM8wgQGe8Aq0Sock4noAWS2oiRBlONiD9rhNEiY14lwjV+yjJDWKqh+RiZ794G5whR55w2S8xHq41D3uSGM/HGWWCJERYZpUaUz5X1UicsBYT5wfyR/F7IIz45C4if2/f0pDLZjDFVQtqxPEIKxjRS6LyqsgTtQCb+mf5tEKmSFpFiGu38G1POOpZjmsw6qGDWB7r8PWTi/CbQoWmxaf1ug8D03uRxJtv6EvdNIanL0gJue0/+dvIUmbzbvpwjYLodKYMBpJgzqZ524F3SmkImByaZndLtaoEnd7XImkCYWp8ghXkLMvksIlKxsP5N2QRxYzX8QxnX8rauZx8pAOvSIWZR9zl8aj/s2G4CBd2HbmRSnMDT4p73VyuHvMI9Blj1Z84GfcwzzmXueNMxhSR6j7D0DFvewtBSFOlhS+S2NeAIyn+DnC9PCUzjzXNnG2G6jiLnyD9BJnwGXoQJgOQHCDBhchtjFZnHzRHwDZjmHlGVz4sPaIF1MmRZdwZzP2seJGSew3EqlNWJrkCSHFkSlNxmxeolYwcDbq1gQFyBlKtfVhnQZ0vSJbt5ennEsCtJFhllSWfndUIOmJqHqjW6owremZ1HQX3ZysS9hk9SYIwFVhkAcKZ5J7tc5g6WvmrM5jYO5fp6CTnfj/C0avdQ++TUcRhEgL0jAiYv+t3XkRAFu6cYKzNHkAi5iIC7ncCBKDgsdCSiToJW893hsjdUzQJlly4PLQrRYIQlVxZ1qi2FNS8taM389Cwcypjw9mrjgAoxzBolzSbDPKJAijltTPXrnMgY4imKTDFDlajPQ6b43D21lxihSgQL8DPmuTE9QZq95qVb01rYlEeS/i6sT2s0EiNIER7UifpV4L8mSCNWb1QeI/fuBAFDsqrHQq+/JnvOaEMp9ZvIM6Iony/n9TsdAvbbeXnw62AoChIU0S5MtCc2hmoL0d0hwFhzLy4rL1Sh6buqiM4h10Zdmk7xMeTe94l6nCFA0PGGMMzalenfZs+5IwFcmzoEAHySUyAnScBCf0iQQK0NkeMVCU0lLE2wY5V4ZsADhkpVAVZSfcCYsOvaRyW0oJBXYEtBP2fdJrV5+BQBNY4g0wEX08gz0zwZH4unb7ZP9qVQFM/A/c8kDOdsh4AyJwoul5Flns0K2FJekXV1mxXDA1zafzaLn4/uQZwS0Cqs8uO4MoPjY8i9KnRKCo0wtHIb0qDMmKyyIEBOBZGFFr6AuQ2kHopK7dWs7MW6qjD2SwIela/LcaMFzvYJ0+14QfataVQatrGQgHrt53S/joQNdvZVCaQ4UeDxiYLq7edwmXR7Uo5Dc1gAt4MjZcltayiG3g/2SwLkNSV0DHICUCXO677r/fzkoWxr/E0FbtH3v5R11BtyXmwfyf7tP1SZeVizNYytXZTjnBoUXLnpnIzd8Yacc83WaHgJHqrdyTF6bexp3XtX2K2pFmE/HlcF2D0pqZpFpbwnBsw91e+1aIO7Q21lHsuC9x8qMzQsnpPe7FBg1sNhkO0pP9B9U+/AylMB6guzatUyq2N0Xs87ZLybjc2al/Oo00DLv+P1NQF6h17AiCRQQDXxz4rzuXp5VImQI8sHvI2lohoTqp9VwojnhZm47ij7aYseiiTdTPwOl5zlIuESMZeCGbgjCU9l3uBjzE5dislzLp+0ZMQRlhhngVad9NkD0nzNJN22xyfdFkO/ToY4kghbJMW7vMcunZ6alaDkCbyWnigFwAIAo9wny7obyQdsLZGl2nhaopml5FrhAXhxaSCkscjuMe2Fokgjoy7lFSZeTtPXij7ZNQllkSQLjBGnzGvc9uVaGIltlwA+RfdcMa+5pHIpL3GHWSawZLZ+Vp0daCCidaqLykZMsMUAq87EDFGnVwsSsQqOYF6JEapUiTr7qKLFQYGkd7Gliz70DLszwRZRqliCXOTpsfxLzSXENtZRas5ENLagySKk6BWGTx8bfJ+f0M+qgzgZckwyx6YW6SkKDPMI85aTc6xO7UwzZeI8UgPtGBWGWfaU0xpR1hhwdlxSQQgLF7DwkIp66MwwRU19v6b4nD42qChrcYhlMuQw7zUzzzZmk7A2NxjlPmZY3KPwryQSC7NygDX3botQY1iBQcAT+4okyZBz9u3pwvN5fr3IF8wyqRMFuRdYY2GYZfeyAym6p5jxa8pAV0DlOrteiOfIKMsjo4zkik7hltmliwFWKWtaoYGHc0yyo82MiywSQcJyLDE5Tpm/5LedjZynF4DXuMWh3k/XNNzEAOUD2uhn1ZmoVTUQn2KGae75ubSJ+OBtkmaEJWUQVxXcijDPuE9kr3FdC3th/klaYsoZIXnSdCkIXiZGkRSX+ZRHDDPPuAPZB7Qxx6QH0RiDVdiKYZ+sZsmRUEZsiDopCi7bj1PhIosU1ctKUsZrzpiUMKYyf8W77Kj0PUSD21xxlmSGdSrEPUF3lEUs4bBAUlgsELCHfgYkpNPJ70HqH4mpLlYcJKD8CUHCYwNhFY0iRaJ5H1mnL4oUZjcQQKOIMCUSsszvdKhPjBWz5hnWSuCVlND1XEMm2j9GqqdTBbknpmX1cy08a2T/Xf2Z0f+XdJvPaQra6KmkuDf1sy/p9hrg+JQgjXZSl/3Xp95PIoBASL/XIv8er8jvZ1889b1z8j0r/vdV/lEymZkBk4+RiegF3ecf6/t1AkPmV3RbrZPdovtW1TH5GYGpfBIBINSThiN+5SSz/zW/zlBmlkkNuIg54G4NyoxaWywySoacp4dOMuuBW0MsM8UMMSoy9l1AKOjMAwJCmDxQpWS0IOBPCQGmjTWaxT2YPDxDr8Njk9IcIefeIMIoKuDNhgXGnPF+h0vkyJBhnRQFv7danRSmwSwTrJMF4BwbpMkzzLLfS03dUSJBigKfanPFmnGnQ6vy9GLhaKYq6VKZp7GQzde5qLYKZj2yzLAzw61BJ/e1lDc9Lfn8DW6ySj8h6mqXIh5v9ow35YM9y1a1cWs1HccE8mf1dSKvcvZuAkDPQPML+n9rLszosX2JoCmQIzD439Nl5AgYYipla+aYZbWkGWEJC3YzRliSIrNMuoehsbzNg3aHTrGdUZsGaTQd8kjZmPZ8k/lDwtUzi1zkgFZpFjONBeBZ08vGrI8NLmq9fpdp14ZYUzWkbotmfbJBH5PMkdCGaJc2x01RZI102yZj1dt5Yo27CnFX82zQxxme4sS4JPBQJZ2z+pPWY6UeT4wTBA4YY8Wk0WmC5tQgMslNIBNX9d9iSj2+osAZaOIrJWcMk3ATv+f81UUwXiCBFh8CgyLhrFRFdniiLNXBV4GHMNpNwDY2hloeOCN+acd1AQ1oEbDl7DW1wXgaPF9P9rSJps/17hZl9vUpa6ghy3ySg/1ZYbQ9ycnyJhRks+CFJyvi5YfKTbODGtqu7Oe2FgkPaE8ImJNVBlbiu0BdGYd7+p2qeMaBbvOYLJN2/No+3pDPNSkbrKDyXPNNa27R/Tyjy9wIlnGgDbam78oyCnnIKeMwZ1YYfbKuubwAhYlRZU9pU/B4Awnh+BsB5/bzuu5BARSzSVlPcVvlutvy/ZGXhAEJMJGV5ZVsX3vl/+0dgedc+wW1G3gqbFljBzZ340EgxrCMhWQsi9t6PkzK2CVG9Tij426NkLCAdLkNAQMf7sF+Q47RiIKWuU9gaUaeg8a4c4mz+e1NCii1vyAS2iZ77j6Qc6ypRVUiCNCbsiYAuo9JAfkKC5AKqQS3ijMnn6woCF2XsWtu1/1P47XkyKB89mxSxzUqn+dV+Fa3gqQIoNndImP0CwXy4i/pNkfhvjZmSWszQ2vKE2Xwt38XZx7/uz0o/GsZRwNmn6wIcHv8hZx7lafwybbIyQvv6/mfhnWEwVm029y8HIu4gqfhEFKPpKEpBnyLX+n1tQB6XxFmQr3SetTDqUHIgYx+1rw4iVJlnHkk4avH5UkV4sTUey3VKHjxYJ5iEWrPJDragzNKTSdc0jmdYoY7XHbpmIEgjxj2jmO/SrUAlhmiRA+rDHjRVaLH2S/GcrOulz3EdxQcKxN3pmFNPS2seL3ONe3bpp22H6XqkgszoC/RQ5WoJyta0paBpEuMOIB3WpY3d8pnKkyDpLJHDmhjVNkv9oAPJM0HiE9XD2Xi/p00YgBQJu4eWxLkUXc5xghLHCrgUCHOGgPk6WWVAdbUayRP2ru+YlTfxSwT6i31iq8f8E6kedJZOIMxJkPU6WQXS9MVBuc5L3rGWVA5iPgA5pFQkk3Sbixt55l1y9NIqMUFLZDLxCm0fANLLL7J6y5nXqOfCJKOu0VCpYx15ph0JmRVubvGKGwQYpJZdulkgXFW6SdHhg3OUVaATjwAx5WdlCIXko66TQasa2/hGga4mQl2mRgZciwzzCj3aRBySbcV5HbelYlhgQEpilSIM8fkM2b9IRoMsEYnu6SUQViix+VBafKs0s8ML2NG34AXiqdDScwjSM75dQXp5Vj8Ld/8X/ze85/i6wteJE6ZUe4TocYSF9iliztcZksnR/8d/yfAzk9hhZpvniW6bpLmFlcoktLAhi5nTO7SyTR36WSXS9xhklmXt5t3ziSzXOIOZqxucjCxFNgiRF2TGIdd2i2smUCGbU2XVpVYmR/PBn3c5jVucJVdupxFYnL/HrYoqNTefCXlGgnTyS7zjDPHhDdWFhmljw3MQ9RCOj7kbXbpZIsElpL+OVNMMMsOncpwlETdPGlPWnybD9xz0u7L09xlnHku8ykJSs7I3aWLDOsOpkrad4U2Dhz4N7brGv08YpgEW4yyyABrCh6KdYGt6y/4gQMA5o1VVo+mTdK0cMhJDtTeUgr1P0QmsDnE9DcJ+x8gDJRXtdAzuUgfUqi9ikyaFnDmyn4eKXzMM88kuFHgdxCG3ovy451Kk70UECBqkCDg4hxSZHcDP8S7lyhgdmKy3hUC1pwBcia7Mv+R8wg49l0CDzxjB+iEhD8nAOtewSXG3hUFL7Q5ImBbndf9DSOTU2WYnBgLQFkohKXoZEq9dqzoLurP4Knl7CHpe0c6/iUCKeGsrv8MMrE5gwCoTwmAwdcJ0gFNXmigRJzn/rVNwq/jCDVmmXDwS4D7GGk2ucQdsqyzo9d+GgkTi+nd8IA2zlARRlEMOH+KfXEXuUa04+6AdgE5h8eQ81VlVjwkYBE9RoDgqnyv+TcJPNke6zLywFdSK+7SyZgmchsTGXCfObPrKKr3nNwDe7QJc0idkLPx7zEN4A0LY+cNsKrWBpvMM0Ybh1qHRbnMHeKUnXVstiLm42ySzoo2UaMq2Q1RJ0uOEgltOBaxxPp+1jyR3kIeDIgyFYmoFA692dmnwCTgTaU8aSaZpYmvgpmGgfR67cWNwXWE3J+uE7CHlUXkwDvI/cbuAzppxKRU6j8FBKyJffg53/ZGvIGmZv9yjesKLC+7lFi8EB+xzDAjLGHe2CV6WNNn7RIjXOIOUWr+jEioO7SN4wJjRBWkjpyi35qi4w6XXAVkTajL+nweZhnz77MgJmsMy/NN2uTWrOpkl1EW3eYlzabXsxbeVlelhm2DpdubCmebLrmWGggL8kjP+TByn1shCJCxZ44x8h4SPFfsPm/3WGNBGbtvg8DvrQWh5ezhftnT3KX71wXQ21Em0LawrwpfKKimvp6pQQGGms4gx0AleIDIRvW94wfyf0tMratX2n5O/ffqup4jYUUeb58KDcgL8ymeRKSaH+n7ewLgxULwsAqLDfm9SRUBhKUmaW7XYAQ77nlZx9ksfg41pSEcVqAuhQdpHT8QoLCAjEHqD4Wll2pRcEPBFU+iT+KM3f09KF0HniqzS0GfZvv7Y1hakVvJ/mPgochmk926rIfS5EslIaENz0RUGFv7d2UsMiH1+LOeu9YQ63si7Y13KJh2RqTBfCnA3P6egjdZOJsGOpT59kCWUUb3KSQgGmEJ3CIq+1+pSg/EgxMuyHGMJ+V3S/7eLwVgXXeHAm/WNPkEuZ8qA3C/hNtGHK+IRHe/KkzHs33ChMyO6XeNZQbaGpDjXG8ICLVSJLjete5rn1QWqNVddQVBw3JMmjqkxCk9htyCnDNtLXgwCgQsRbqBgoCNBdSrsa7b1aFJte2yfysr8nNscupzKrOOAh/p+YqMXyIq45NKwuCg1n0GcHbABWNmdivweEaOS70hTFAKci40jcJASIC3lRXd5rwcs6aEBtdFBUwdQAD20/3aKT0nAH6WkzFoP+Xz15Qg8P2NAF/xK72+FkAvphDPRWUh2MO+nzVAmDlLjNCjXcDpxj2SSDqgsN8EvrV0qo1QnzLUDp3dYJ3BHr3SLBVMumyHgDCg7CFYIMUoi5RIYEbqMtmsekfLQDJjNAH6QM7pA/O+T3wz5DREwra14pJOA9AsRdekrDZJbhAmyzpFpejPMsktXqOkIJGBNMsMEaLOTd7wjmyCkhYXCQe4jI1oRcMML2Npqf2s0qsdR2OxiSl1ySUdws6KqATP5GYH/tAXY2r53iZpZwyZ1E3kbpf8mJi0YYkRT+W1429SNZPHSjJcxsM4TBJggSj3mHaPnbhDh7JdNaLMMcEWPfwpf+CFiUmhTbInTM06bRzSIOTFd4OwM5dK9DDDFIuMckgQDmBglQUQ9LDlW1FT8M72L03ezymTJ9eIsqWyYevQW0hJhKqDDzbedUKEafhx69JCbZRFDW8Rfx3bJ2PjNQjTw5YzsLZIkKLoTCAx/Q9ASwMTTXLxiGFqRF0auMQIH/IWoyxiSdQpXcaOdolFurvugKOZbxvgucoAlgJtcpZVBuhXWXSHz8af79chrVgSoQVOmORql06GWeYKtxhhiSlm6GeNBmHS5P26NNNy86+8zWvOXg7rJCVOhRmmWNOk4zkmARxMNybdMkNICE6FHkq8wU0H35cY4Y/556TJ8xq36SXv61hlgAg1LvMp5quXIedM6Zgyn9s44J4yDbZI8CmXdJokCeNXuE2EGj064bVGyff5CetkqBNilkllqogHkBnlv8UH3Fe5qiUsm0xHUsU3PWxCApKiTDKn126JflaZ5h4jLHGPV9zP9TrX2KJHfaiCFNokRSoa3GHyNGsOSNtCPFbXGHAp/a56K9X0OrjHtBvP22S6TIxHDPt9pUGYprN6wryp//5TRJqWR7z0UtB+DWF9/bn831lIYWSi9G+QyYAWVDxVE2IDnmwycAMBPn5MYJrdon40CaTYMBYdp34f1O1R3xsAFtSrp4HIJM4TpI0ae60FAUYeEyRYbiAFUrtuD+pfYmDdeYKU2gbBpLCIADZ7+vcppAg9o++Zj96g/pgUYuzU/nyh22AMxt/RsRnU9bYTSJMN3OxDQIczwlzZz+lyswQTWpvImnziNEusQ/czrF6GrbrsbNABft5f0nysuO/a7/PnWGJ1XhsW1rzMkeGhNh226FGvV3n+l4nzC87CNxHGnLLn4q/i7ANaFLxNEbBK88ixquijQXoAAQAASURBVOMG7e6tV5VlOFsGgpRcY42ZnPAAZfhKk9jCfMY07dvYvZ0qzAQ4oNVZzJKa2soaA/wr/oAaEXqVZRWlyjxjDrYlFeiMUmWYR4SoY7YMveTJqa8zSB1sUtoBVtnRLRDbBqkfd5DAqyVG3AbBmnzWHE2z6Sy9PGnmGSOpktMBlRGbh6qFaFkwiIVqmE3DWX4RMGpNZmYsr99Brt9XZLiPc8gkdJJnmHxMIM0NELD+E4JUbJMnGevVGMZl+VfSZrcIa30vku0Cm/4cDixsympBYlY3KbVPMG/bGGX6WaWHLcwfz+oyaxTbMTB1hgGrBq7dZ5QM6xpKJszIAVYxObPVrAm2PPjNanzzmJ5jklUGFEJM+PWzSr+fR20cOFnC6nSr//rYoEqEQ9oYZ4EMOTrYD8J62k9dHysELLKcHo8xgkaEgjOUEEsBlV36cbDJqz2nSvrdfeRZ1oyys445oI0eSmw7kvGcv0Lqx/VU2FcFkOdYA6gK46e7A0+iLz8k8Ps6J8yqubyAOsdH4oE3mBbAIhwSoKld2eKJlHiXHRypv1te/m7bcKKyShAAo1QSAK/egNEWASZiKh30WiIl29usx/z4C/Fw+8WRst2sOVIUgO4AlRsWBfRqvixgk5U+XJd1/sIaY8Z+snNNn9EG2iUuiHQyDHI+teB1wb+rChiViQqYuFIMEn0NAG3WGqF9UsDU9nMQ/4ey7MKsAkxV2c/47yiQdASDSQ3ImpBtaR6Ei1k5JuwLOFMqwFIuSGQNhxQcSytrUH/PZmU/sy8CrwrTMRZV38SiPsO29TgOity2oGzn9kEZv6YLkrhqwJixz0tfQkFrt/aE1hmHz7L6npg1RVQbYlVdZ1okuKkWOb7H+wJMpcZg8CX16lMwz+qc5gk5XiezOr5h3IeROqSmBMDMdAuLMn4BeEXk2KmkHKemM7LfuS+E7Tgh0xhOdCwKDzT1dkb8BAe6YfBFPZZW80LgR41Ks4H1KixuI8/wrDIezyD3oaSeV0k4/hvc5iWblG1tU9uNfW0It7fKvgwmdTkNBYafwtwsLH0k43k2KceziFyruTx+j0z1KWZ7uh7RxvSTj3BfPoVW/s7X1wLo3WcUS71aZJRV9YGyDtYckw6GtHHA/dCoTsakw2dsJ2Pafcol1smwxAWPky8Tp+/oiT+oLDUX8IewMeCMNWcAmsknJ/b+vada7dJFjDLT3POksj6N45KEQ0moNcnwI/VyE1P1ok9qO9l1donIdcWD4xrXne5vYGBSp+pjzDOp/mpTfO5+e+tkaRBmklkNBRH/mAEFe6ygjFFmiGUqxBhjgTYOKZDic6ZYY8BBujHmtYiJu+m9hYuIp92m8v1CLuVYZogoVdJsEqdMjIqP5xr9jLGgiZMV9495jVsMsMoISxRJMcp9DmijRoQRlvhH/AkLjLHKAGVipMkjaaxVLmjKrXm3pNmkQIolRhwUMy87k7Rs0Md/xX/nk24rsgyU/T7vaxd1hwhVakSZZ8yZbEFSZd4L2Aw5LnGHJAXMaDqlclZLYTZ2kskV88/MBAToW6Xfj4t1uwdYo48Nhnnk0o88afoaG75/BtDYywy3+9hg5Ogh/aySosgY83697OjkwhI31+hXtmMES90DSFJgmnvPSDOucV1lHgM0CHOJO566ekArwzyijQP+B36bNQYY1dQ281RLUcBS1mx7DZg/VLZeTeXRJjWJmMzwOX+ViWGBKuIzKQEJU3xOGwe0csAOncwwRZ5eOtkhRYEdOt2w266Tt/lQE6WX6WSXBU2zPQ2MGQBrgTvm0bhFgjtcpkQP/aw9489jkjGTZZVIMMcEJXr8vDBpqUwCa7zMDDWizDJJnAqj3Ocyd5wBIXLZoqfBFvU6NvmTMZmtCVIiwSyTnGODK9xyyZP5Cq7Szyvco4eSSpW3HKROs+kNlBgVZxPbekBkYeOanm0TNmNI97PGAW1u6zDMsu5X2Z9nfWywSr9vbx8bJNiikx2XYVX1HrdDJxPMkWUdS2+38/6ANk+PLBNjis+JU5ZqbxAB2s4RJHWpTwslfc8AoxACTnyEFLHq/UFYvz8qP2ezSDWR159DZEIWRqqJFl3WeQT4MBmpyaQSeEeebUQGtwilnyGT7qxKGqLIRLuXYBJYRSboBYIkMPBCa98mkHl5r9m68keIj91HCAhot9YiAcsQBJgz3x+Tudr2f0Lg1WeTyqr6wiR1nRf0/TRS2G2DOmAETDrzw1NPE2MOtSf0e3Y8XtH/bxC8bLu1wD0pyjYlxhEgY0G2v6kbFPd5rl8SEhVzJYHZopiSwBQXJRIuSR9i2e871gCz5HcayPGxicwCcr2oD1NTkiBU5gg5H1oRcMgk0pM4I88ZRyHkHNHuOSDnSQsy+wzL/WSSWWoarLDAGF3sMswjTbNvYF6cAFN87gBLhKo3eMymootdl2ZOMsfLzLiEM0+ae0zTIMShgj3mQd3Ggct+jdFtqbg1olp7RZln3K0KBFBaI06FJEVGWHqmCWnN4rrWgCbjHWfB7RWkqSrSUZOHrjLgda9ZvHjgz1MCxrGBPQvIMWzIeDf/YwK/TBtvkGsxh9y3phAm8lM91ld1uUcI8GHNiwjwgjT9LcCohy1alck4wRxRal5zGaBpwWZl4swwRVznBX1skKLIMI/8GWC1qdhMyLPEAM44FRoKpBpZwFJpbT4SOtUoM2sSU3ZYuFuDsDf6ba4zzT2mmCGrKp4FxtTyp/KMbY6l2Fuwh8l023TeY6BtiR6OaZYxtaYLCGBjzQ0FZlAppjdNovi9lUMC/9UsgcehTbY1iIESAeO1IsfeGsL3NVH51+FVO1AGfVUDBFCwJiQT/1SHhkjN4QDJyZHKRhE54URawIZmlYmWtRZInBMgoqTHbb8kDKJUUthM2TFZ3r7KdpteCbaruUX+tt0Q4OfgSAClWBRW7PrtAHple2eKwvoKhyTVtR0BrUp6Hq0UJUk3pesHYfcZcJl6Sb3MngpIGQZpyOTh/t9IWAV7GuqgNUO7PrPjL4nEd78EXFBPvX34TlTAqJIywDIdur7zKm/tk3EmKuEdKWWe7v9QvmPMu5W8hl19EAQzlI8UjPpCGY8GbHXIcSsUxU/3bFQanM1JGc+zb8k6zl4jAMit/jiPyFRLkgq7UpS/NXVI+EjsDJ5ou48AkCd5OX7HykhrT2oDNwSkFPBE7VTS+jysapJvEhKvynEt54Q5VzgS0LiuzdnEqMriFV+PKWBVzikbbw+3gTnJ4zVe03k5ls3t8vljPf5sCEjXlCaoPc03tUOXHxVm6DZ67is7+Bfb6of3EnBOFBLNYW1CIx59ZZViD2aBuibUFmUML7RIif2tkJyXSx8pcDxL4J2s6hBL9KVdt7Ndw9GUeUlRvAnPKnvcfBVLVZHtfqcbRl4NGIeVKrzcLe9nx2T/yntyTEZekmu6VCAI+EBZr/r8K23xK72+FkDPOl0RqlziDm9UbzrwkSHHD/iRM9gMALMUQPN0MFaTTcYCzyXxMItS5U7LbzhgZpIpS66NUKVAkl5lTnWy498zkOMvO/4Bf8W73OI11uj3Dp495CxN0YAaY4TkFBiRqPioewSal4b4Z4yyS5cXqAbSCNAkHmjrZJlj0oEiY8aViSmguEEPW878GG/Mkybv0kVjCooUQIoCk3i2cUCODFvaeb3NFR4x7OCL7Svg2zfKfYYbywywRpSae7MNscwunfyUawyz7GBlJ7tEFOwrE6OfNWIqJ1hW9kmVCH/KH3jhLkVTmLf40BMkI9Tc58ukCCJxFmi/j8ckKFFR8ClJgSIpkspAqxDjkDYPATCpX5UoEpQi59Ack1xsiCzBfE5sv8ybx4op63bWiCIJsnexMIM2DlRuUWWRi4ywpIbHvZ6g9i/4L7z7OsaCg7nG6JSc2IzLnKNU+bPQ7/vYSQCLmCObn5AUjlGWWwZVViFdYQP+akTdz8+Oqb2/SyetCvNbuMwWCa7zPZdAVtUvUdiqdS9azSvGgjhM1iGhHb1kWCdGhV26FJjpoUFY/dlasWASA5gMqN9UptPz/tqjA0tqFoaqsMXMc3ONAb+eTS5u0rI0eWV7ySRrhikHZm1SXCWiIFYSS2a2z9s5YOm4RZIMqHdligJzTGAG6yK7rjHHBH/B7/I+71AiwS2u0MMWUZWbzzGJpdGaDUKZGOtk9Z6+o5O+GIuM0s8a5hP1Lu8hSdIJNyhPUWCNfv9Mr7JQjVVq+5pmk1tcIUmBPGkeaYrkCEssM8QYcn9cUCrW50xxg6vulWRSKGssGBPVPJJSFBhX+VyCEiMsufTd/m0QdlZ3lQg1lWKVlcVnIT+2vE52ffuN7Wz3upTexyrExL/IZLAlXHJAGmGj6YSXFci9j0xsrUueJGCIWRHwpX7vEwSQO4dMrDqATZXV5JFiqkEgAc0TJO0ZWNUBTMLJjVP/n1HmgBYs7SbHTePsKPoIAisSuGn68QNcbtJ+AZHgtRAAmEXdhlb57smK7odNHksI8Gjg3kMEBA0DryvLZ1SXsUHAKJhE2I82PlM6LmcIjPdPs+nGCLwIH6vZ80P9zhTwjxFQaJ9A4pc/td9PEcCxlYBpBDLRfUv/H9XPGwvxOX/9nIynrN/gKguMebMOcMWAASBZ1t0r1xqPBiI1cyzHaw85xi8hYxkl6M4nkHF+gEyevgv85wjj1EA8CKRNLQSsPGOFGPvrHPBbCABRxZtZSYpYmn2EmjfuLCEWYJ4x8vRiXsPmfRzTBldU7yYvM+OhO13aABhhiRhlWjlgS9lYh7S5+iVKjUvcoY0D7jJ9qtEgQXCA+xAKM0uex1IL1zEbBbuHJdjyZ/6hsg9Ph4vF1QpngTG2FJwK03BLg9MKjBIJAYradLzv6piq9xYFXMZOHblnJQlYOUk9psaqsIbHnB7XnyEgUh65jjdOHfsj4CtOKWUS7jtrY2JMUGsQBTVqyK0mkhRZVQsZ86ATKxxpCFWJ0kOJQwWkLZzOjp35rBZIsswQGXKuCLLzHeAii4g6J67rHCCjzTALYBI/7U61rBGJ9ij3eZkZYso8TLDFDFOEaXjgh22XeUhbGE0nu6yTCerkGM82QCYIPEDzetyeAq+r7+iP9fp4FfhNguRxY0uaPBcCtvSeMp3G9Fi1ATH4ihfIkKNLn5m/Dq9wWFhDJAXkaEafqw25zTS/iJz32uhqnlA2Xl0SVJuSBJYAdTHgX1VG+cke8CpkXwWK6oGmjbnmCUSq+lTAhhVtwBWqAg4+yQtgNmhMv6h8v65g3ZOVIDG1jFh8NQ9q4EFIWFxn0/CLBhAVFlWqT8I0VooKmIwisteqeNfGLwg7K9Wh7LcjCTv4VkgZbdsKxIV13RDI84+UQVXS8IoWGaPKUwFdEoMCLp08lc/QCk9m8KTTNn3ml49kPH5hxyck227ATNMZYRZuH8n4z6wEnyvnxCttG5XLdqiMslvGq1DVayat61UgFZP0rggo1dQh6/xWiwR4HW8Lq7A5KfsaT0MqKufJ6rawCpu7EXbsqwLyejMyDdlJURSU5oHzsrxkt/oWbqjNCALeZZMClIVD+LVu4RDhkCbS7ivLMyvjdT8n294U1tpLa6gmY5qekW1PDcJSXkE6CMIvHutPS/B+MzCR1PHRBu3ZSfVpDMt2kVbAuqSNUuS48FTvLwgIlyvKeRJ/CQb7BGhNnJPzdLBPry0F/srbMi4Z86i0hu8Z2b7jbQXeOgR4BoI6Ts+1bhQQLcn5elxV2XyHhgSh18aRfLeck7FKnNd9LWqSsd07q8/gfP+zr68F0FthkBleJkVRJEpRSVFdYFz/HXPwy5Jh5SEX92IoTy+jLJKiSJpNL14SbBFRHxADwEzCZnLONfrZ1ImTTZBNuhWiwSKj/BXvEqXKa9ymjw3qhBScy/oDP0nBgbZ7TDuwltYMrx06nRkTpJxuMcYCM0x58qd16YwBYiBhkaQXCj1sYf54Izx0Gj9IV3udLLlQRn1Yku7VssQIJRLc4ZJPXEFApzf4mKyaTI8xT5UIY8xzj2nvKELAICrRw0xoSuW8DQd2GoTJ08s4C9zkDdbJcJk7KteUv8XVY6pBWLu+BQfaTCaQV3agsXe2SLBO1oMCDmhjgXFApDnmTWKAVY4MC4w501LYR1UmmKNKlGnuuXxO/n8X88EyWcVyaJj7jLJOxpmjU3zOkJpSD7Hs0vBJ5kiTp0GI88W/9a63pQwb0BkALJtYqph5Fq6Tdd8780c0kNVkEVZYmaS5R8/xYCxkndf4KQe08TlTvi0mvbXQC2NUDSuroUbEfRGzrBOl5jJKm0hElRG5yEXaOKBGlDAN3yYJE4jwOVPe/RV5+Y52fkMc0Orsg9OTLmHOhjDvvl4FqD5nil69np7313m+5DavOSNrmntMc8+PIQibM8s6U8yQZpNHDNPJDiV6SFAiSYGs+naKdUAPP+UaPSofrxDz++0Aq8qGrDiwZEEWrUh4hjFdLM1ZEvSEZSx+TSILMwmWsMxEShrTxsgGfSQokdJty5BTT6BDiqQ4xwbDLGsCecpl9cYCMX/IMnEucQdLdTaw3UI4rnBbz+0Et3mNGlGWGfbJsLEeBXzf0hTtHV5mhqvcIKPp4DWi3NLjYKw+uTaEfSwMk35SSCp5mZj79Nm9OEQdMSWf5XNlb0jwUIVlhqggIUeP1EOrSoQ7XNbE8F6XC+ZJM8oib3DTGcnOgLPu9ygymXqAFDwqi8i+cur/GwSJsy/p91UuwSQQkiKRAgJmaYHdntXPmAffviTFuU+SyeOqiCzuI/VDMclVVv1H9iT5jHOntlMLQLVhlVcWjrWAbu4jYHQYg059fo4fELA72uUzTWf0cybr3UYAmRaku6osQeqyrOZBBBj4TQLmFrptBqpVEYBTJwH8twgw8JRALqYd55PHMpZNb+v3zBvoTwnAS2Wg7Oc0UKNbx3FQl5+Q41Pc1m3+G92Pl/T3FlB16XP9avACZqthTT5j9I6wRB+PaePQFRF1rRvMgkDYx8Js2qNdKv8QAQP1PFL92iRpTN/LEaR0fkRgmr1PAAa9ShDAckTgq2eMzxKBtLAmtdenXCJKlX5l3VsY2RIjlNUqZJkhZ+m2coDZpBhLygLaxG9YbCmsITvMMutk+JC3Mb9aaZQKs9pq1DR5f7baM9iYZglKLDPMTd5waa2FbAzzyOuTRwwTU09Pa3YCXlMaAGX/N79TCEI1olQZ5T4pChq4JfWnA9cg18KbOo4X9F8D3q1B8R8zOKJ6PP41cm0eElynxo5pIfDT08ngyYFIOTc4x6oGiRlDzhQKFiAizZySan42vDm6SycXWXQ10DLDfMhbHNBGKwd+HrdqcyvNJle5QZwy5skHAoRaCIz5hYOERZllhSWgr9Hv3x1hict8Sie7HNLmhAlrjG3QR5pNzrHhoUxtHHCLKw5Q3meUIpI+LIFRYZ9vGJO+QUjG3cY5hNzTzY7gJT12WcQX7QKBDD0q19LxXQLG3icEz6cccu9WNk78jwjuoy1ABVo4IkqNHTr5hqdDPd+v/ZrgnlSBtOCpze1AHUYM8HiAjNF5YENYc4m0sNJOivL3uAIdv9gWfJSqhj48FnbXSUlkk81hAVXYlp92ZUUN9sHJJ7L+SlVuqyd7ApaYH1+zAT0IMBgO4Yyrs/q8bu7VcKuigGcpZB+axoAzMDEmQFUFXK7d/KKm3QJMiD8dAHsaIpEOfOGON/U7CvjxGX6PbkrrGJ4BVIqaGFSwa1vCJ5paNN00JL5xpAWQio/J+MXTgQyyWS1IDo6k8VjSpsOTKpwdE9DnWwho1BSWsX24Bxc7FICsC1PvZFb+PziptcyCBEA8Mdb4Ct48agqfAqPGhD3X3K6Szm5lnEXluDW/KON4UpIxKGtjc31bPeT+o2ZVcxj2P5bft/cUHDuS/T44kjqnfAQ0dDtfAloVYD6jx1Cbzqks4uOchYtqc3FSl3Nszq75PjyQbGlFfAxTev6QVZ/CkH62LgmyTS1yTqVeku06+VL23fYbxH+vnIOVvxHgq7tD9rnpApx9Uz5zYM+SQWXRFTW0w5rY2SD1mVa8eRQflDFvMkbyXflbeUUkxs0tKpHfE+B0fQ9XshS+kP1PdWiNW9Vlo/55Wq+XFmX9g4PCrmw+BVou5dSbMQn3F2QZjRrEAvHb/+zrawH0vsM8b/AxDULaxaphSbMb9PlDyAx7xXtMYNuLLDLMI7Ksc0Ar17mGpb0ajd2SO61wmWLGjYRN3llVqMJAP/O7KxNnhCXe4kOfpE5zTz3aJHjBJAr2XYDL3KGLXcrEiVL1AsbAOgNUFhjnJm88Y2oLApp1sutgnvn4xalwh0v+MG8QoqJslwJJLwzLxJwyv6buTV3sug/Ta9xmgjl/QBuzC3B5xyZp7vGKswVrRN0jzpIyzezdQKQ4FZ/wG8BjYJDJ0ESGIIXnPaZp44BDpc+LhLbqYOwjhvgRP8BCTsTsWkC+TnZ9gh+mQYQaB7R6QVQjyhDLjLJIjQh9bLhMxLqWi4w6OAFitBuh5tI8YYalfV0QBINs6sQh1SjQxa53Ylfp5z8kz/uxtCLpEcPuhQLQyY6bUo+xwH1GmVSXeyvSh1mmi10P2IhTJsu6f+d1neDv0qUBBmUSbLm3ngEzccp0Hu25H+ABbQyxzACrzqyzydJpQPR0Its6WT+PEwooG8vTzv0qUTrZJafeZiY5lpCFOT1Gso4INRYZJU+vMwxK9JBURugunW7inKRI4+u5/fwn97rONZYYYZ2MA3QFJNV7mWEkTGTHZUFr9PMe79IgTD+r9LFBF7tY4IpZGVS0ky/eeOJrVCPCEiNEdMJ42jtHvHyKLukFaagEUtUyZWLuUVolQlIbKkMsY4nUKYps0cM9ph0Yj1HhEcMkKTLHBCEazDDFPOO0ccB7vMsAq1gqs9wHex0Ut3vvNa47UwLwSXyDEJe442nho9xnhCU3aTfwzJ4vZgpuwLZNbA2MXmKEIkkHFk3SVqJH78tlotS4wi0uK9goE19JyT0dSpRhnRB1v8eYv+Q6GR4xzDV+SpjGMyA5wC2uOKvlDBUB3czE/wOk2MlJR5g3kQlQGGEZpfXvgwiYZl3GFYQ9doQnyDadQwCwjxA5bBX4nn7HmDEtUoyf7BGEO5j33J9IsechHGPAH6gfy0OVIhwRBA5watuSup5t7Tgq6Obec68TBFlU1eDZAJqcLJ8pZFIZVWlLlCDJ95VTYzKjnw8RtDRzBJP9hwTJptYl/+91zKyrnSBgY/2O7EPTOQR0u0CQyKnFIh8gwOAi8IUwLhKTBEV6Wj9bl5S6lEoDTxZ1WQ2k8M3zLAD6nL56+VsyrJOkwGU+xeSnFjZV0bpF7EZCzgA+oJURlpTVLkz9FziBLSCDTD6MnXqNAFBNIECusURHCVJrW5Bz64FuXAI5h/ScPSkh59FTXBrNAlI1pyVUx+pWkBqqSJIPeYtOdlT2KDYtKYqkKFBTIA4k/V382EoO6lSJuIQ/ToU6YpnwDu+rjcKW+9Zag1lknv3eVF5gzFly1rjtY0N9+9o8ObhGlBmmaBAiiYRfbdDnTP6EBhlZg05qs5j/u6qWHp3seK1YJeoNQgPO4pSDZkWY4HxPIddICrlm83p8fgO5BzUIfLGiehxVsu6MWJu4besyDDTskOPW1A/t7HFAq1atEsoWVYlrlnWmuefswwoxzL/OJOBiJyL+01FqWq+LD/UunQyw6jVQmTjLDLmM2tQhlmwLsEuX11iANvakUXSJO+pOuO7yaSMMAP68sMRe8YUOM8cEQwoW1pUhfpUbJCkQp4wFV73MDBnWiVJlihmvFz346oCAYac2CM5StbE/j9xLOfV3ZQQ1TyD34jwBS7sFee4MIgxXk8Ebm2cb2IAetqgqKeFF3Zfn/dUa1pAGbXCdVfkdSeCCpKmWSspSj8J9k0I3EKBMGWPGQo+F1JNtD7lXrQShCZ40D8wsCHBQKGoi7oaAIGffElZbqk+M+RNpSTJt7xAW3cGRPMMSKXkulr5UfzU9hlQVdIsKezAcUjBmQ++nJQHnEshnyzkozUra7f1ZUQ7soxYeyWB72y/I55t7keRdZUWVHsPSggRJWEBDvFv+pSHbYgBZs6oR4qYsOA8kFABNCoOt9CVwBgZNBtst/noUNSgrqgmwYWFcGTB5UhdwJ4ay0bQuSXYHklCrffb35P1Uh7K99vRYaK0STws4dfwgADoPjiA3I6yucg6pnXS/fqH31eawHIdEVMHWtK5XwcBKVY5jOKTS7VKwnO4OAW7j2pg8PkLUBXn53smiLicn65jLAf9Wl78ibMWibsdEWsC5kxW8jsy0nDoGHZIOXKni7N3SrEpZzwhIV3ggUud6A9aP9Ht5kTfHbTkII68pLMEerqBIy/6USpJQ/GRPQLT2DgUnk8HY7RvzuBv32G1XaS17yh7NaxgJSL0wJseqqQW6Q3Je8qVcM4RFiouyXo9X5Bhmk8JeXMnredQChAR8bm6X9ZzswciLCkAm4GISnixAKArVGr/S62uZUb+g7K7TTKw4FTKsM6zeT2bQa4a9neyyxAXNxxoiQQmQLmDqlMSqTIwwIl8zdpRILLNqKHtIhnUGWCVKlU52HHSSoqPsk906IdbJsKZMrTJxndCJ3HBTvahOp0QZawPMm6PCGPNYCuyCerPVCbnEwXyiJJAj7J3cDfqYYka9z1oZUlDsNOBmkroeSiwx4h4bMWV61LUY6+MxKQoOLtnYW5qwmPSuMcCqmxsX1C8rzSZVIiwzzGvc8qLPJNGn/V3ilJllgmWGEeP9CTLkMD+sFAUvCrdIcJsr7pdoshTzXzMzf5PxmkTB2Joh6lp49VAiwRgLDrQa8GSSZmN2FkhRJkaBpMtGlhlyhuemMmNM0mwTfJGaytjuhDqJUONTLjHHhIMpxsaR4le68ra/qww4o9BSfcVzS2Tbw8r8M5DEABIppovaZc1j5sclEqzRzxY9FEkhElbxQrvAkoDaLS/ziGHWGPBJ0BDLpLRrb+tYo98nET/lGkVS/JRrAIyzgCX/XuJTlWzItVdFUkxNIjqg+9sgjAU62HLtWhxlkS7E+wjgNq8RRRKpJ5hlQmXWAqJau+b5fr3Ox7zLe+p7WKBIUsG9hDMopSifdFbvGAvOCrPzzpgtNSIkKCmrtM6hHiOTdd5nFPOOG2KZKlFu8gYg7LhFLvKYPr0v7TCsIHlUpe/G6O2h5CEbRVLuz2lJr9Pc82vvJq9TJs5tXsNMwA20HGeBa/xUmyo9znJ4pD/mvdil106FOEWSzDPODFMuwRcQvMoa/fyI33XmrbDvRJJXJIWZ0pss/CZvuKn5RRY98MWCYSrElIEtXlK3ec1tIAqkeJkZQtSZYFZl7glW6WeURb3uMgAUkRCOZYa4yg2X1WVZZ4wFYpRZYoSM8K3pYYtDnfB2fbULCekiEiYAxrJaYHyBFA5vI4BSESlIB3EPEzf7f4gUtAZOvKnLM0DuKZ4WRod2c5UV05RGQLI8QQDG46D77Uy4FQ2/yBIkwJq0Ff29oNvwN0jBFAZGlcH2EJm0/zXSBVV2VFuLfMZSLU9ssvhY9re5jyCltANKPybwR3uRQFppTBOVy1IiCEvYBt4B/j4C2o0BF6D8QLaBEBJeYaDPP5Xfj/8b3bfHBKwJlbWYJCN+QcdjUPexION1vKHJZd/FmRTOEHwAx3lQq7Xn+hVTa4c1BjSdc4euU8/mVQaeeZaHaTDJLA3CbJHgDW46yPdtfi4AxDqBzDKKeDZWkbH9a+S4tyPH5YZ+Jot4QRqb1OSexuhcUQbSY2SiaiyxC8G+RFVea89BYxibrUaIBlMKoJg9gqTOBynjjxh2Of8480SxRHmp3+S5u6pMa5mFWN1oaogINT5niooyfw1UWmbIfZgTbLnVRURZUDaOFrIgdXav31cbhN1WRgKZ1p1BeJFF1sliqbm275LYG6GfVcaY16Z+s4SX1JF7kIFxdv2sICCesWL39DNvyXeOP0SYDsZk2CC4xkxWXcLvQft2HwT4SmTDZg9hFhbmt5wnzTJDGgXWrx6qdR/7GhFyCrHVVHZsftM1ImRZZ5lhl66WidNDyWtuEK/FZW12bdDHAmPOBKwRYZhlLNTMlm9hT0WSRKm6f/Yoi+6bbOqcgiIf62S8MV3wGqPHA9JilF2me49pb0YllAvYxgF0EYQtpZD72ilpokvcrxKkiYf1urAfY/IV9VhtA/+Zfm5Wr82P9DOD2kRqgaecQQIUNzl0/d3z/frqK2VDqcSx8AA+35bnBXVhBHV3qLT2SOSngy8i8r8jAYRKZr2xd4rtQ/BvvSE/ZQUrRtLyOM50izS0OQypF1V6uSCstrIB5HZvTMuzORxGzgl9nifkVkdzUpZvoVsGoiVU6ohKDsvbKqtVwDjerYynnFqVdYhFaaUqnmzHphKw67pV2G1n+2RZsTMCou0DJEQeeryPs7maswLGlEqqSmgXMPD4gYJUC8KeO/4bAVoSCeCpgpQryoAMAy8GgSG0y7aTlvFbKcr4Dg4qwGPPkCOtkTqUoVVUSSriV+jS0w4Jn2hrIfBBTgoQlNBrpIykuGc6FLDckDH+VkjYkcc5qY2aT1025QUCn0oC4LipRbz2KmZ/oudJYU/2y44dIWFzFo7kOysLctybk+IFR1SPTZ8EepRRX7i6LL/pvOxLOS8pte0duo9PAy9CzgDnlQWalu/GoiLNHhwUADcVEpDseFv2PZUU0HlwUAInykd6Xtk9Sxt0DxuyjxX0HHtFJa8dcm41R/V8fhG5R83KsX5SVL8/BAxs12dVdweUP9LADCSBN5GS5e0XccVJIiHAcHdI2KF1bZjvH4pU2uuUsIaYhDUFWK+t5qSqat6Gsy8CJxDr4Vd6fS2A3lenuk8yERvA0mFjlBlgzbtOVkwYC6yNA9bJssyQ08JXNSreTFOrSBqnePKJnHOZIfWm6/dJpkjRxOy2puCEPSzF4F1ARuv42uTWTH4N8AnRoEiKFEWfxJr0rIctpvicFAV6VG5bQCTGQyxT1o6fATI9bJFSH4wZprxwAKHkj7HgSYsZ7R5ukiam8skYZSaYfeY7JqHYVbp9hnUmmCWFMM3Mo8/S5ERml2KJC8wywS6d9FDiDpfoaQSFhoRh5JlhytNJd+h8RtoGcIOrLj/oJa9Sgx6GeUREO4EZ1n38TZYSoeaS5eHGsoNgA6yRUBhvVyXK5oXYxgGLjGJhJwaARNQPZhjxADSgqZc8KS2kjGW2SyeXueNdyxQFXlZGnzCpss7e21HAuageIwZuVYhzj2nM7N/SYI3lZudvj3bU7fw1OUSYBhViZKrrXvit0s8SIwqaSWe+QoyqdsfNI00Atbh2ZZexMAFhx0lBb2w4W+8GfcwxSQ8lxBy6RCc7JPT/IKl9lthrL5MDd7LLLJPetd7U9o/5CEmKsYDJfWzwkBE3nm5TcHeNAbnO9g4Z5T5Zj1R7vl/iQ/mIlPriHNDGsrI7zVvU5FO7dAEi7TQz659qAquxV00KtMYAS4yQU+868x0VC4N1L/AbhHiH91ml39kd4woYGiNXPmuTFTn+ZkwdocY8Y7QRJDEHqYlbDqbNMOWT8QQlfsBf8A7vA6iM9SLv8Q+YZNZDecyY/XQSH+CMEvGWCiaNA6yRpMCo+g1d4RYZciTVD2mWSWeGGDtE2C4yZpYQ/of80C0YllUeWybm43GfUb3Wt/xct4laGwfPeBPZJH1LmStFUuTUV9UYyAWS3OGyS6lyZOljg8d6/Xz1wgsQ1uLhHCKXtY66yTZnkaCIKYJwibtIIfEUKUqiSFHzqkpFswTebGlkcnYBAQgBHkg3+eShLucCz7Iy8rotLbpdn+nytNvOOIHHmDEBGjj75klRtuH4Q91G/czJZ1oEJU5997x2iNUHhZe0AMsS+DElZJvNvDiR0vdm9d86AmAeIQCNdjtpIABeH1Lg3kUAnQdIUfkKxN9BJq0L+vkbur8/ljFvfkk+WzC2wYKu5zcR8GGPgP23L8bHfAR8V4vlKC5/Ofs7wNuw/4Hsf3MapQo8368iSZf6Ad6E6mGLWSYZZ96bYsaSMi/cirKVpvicDOt8hVwzJ8fIMQgTBJpAwDAyBlcWOY91ksQZZCaYJAB8Dbho4J6VDharPLu6AhwIUzpFwf1LR7nPLp1MMscIS5hE1ZJULenUGowWTGW+edZI61eP0ww57muonIVuSKBcxFnLZrXSx4ZK95NMMktUm38i663SxiEh6q48eMSw379EeiosbWM9m9forgJcWXLMq1VOhpyzBpNaY05zlzy9VImywDhzTPJQU25bKMtYmx9RCwKiz+oYtyNgtjHuTEb3ifzbbPJcm2jaxO0h0tRInzp2VWh/lUDeeSRSzghVkhRYJ+O2N+JTLP60ElTV5bXdLp3MMsm82p60ccCU+tSlydOj4RIWorTIKBbmYvVWioKmqCe9aW11XZwyt7jCXQXYCiTZURDPgNYN+hhhiV6tEcRyZpxFRqkRIU2eN7hJjag/w83P21QaRZKuajKm6LBKofOk/TsFknSz/SwYVELuV4/1eL2ix+Uz5N5p9zNrXlijSSe8FAgsFW4g4PopOaWxrJs6gBAcKotygz72VEnyvL8iPbgssZAT0KANneirlLmpBXk2P5a/H28iz4yoPP+ySQliyBUVtNJz/6QOnJPnezikzDRlBh2jEsUXNZxCJb9cQBJds3D/CwEYS59JLbG9J+miPNYAhDzSEFQm+sGRrHNfG1OFLzSkYEPWWcgFQM5JHXhVwTe1EjmblnphH2UIdgig8qQoz9v2c0BJWe4KFB4cCdA1Mig1BcC/2xPmnjH9j7dVBnxOxq6gn6k3gG4BB5tblC3XogzJqIzv6jZyrqZO2ZQkFNx7DCNZkSs3t8t3E6OSGvvkLnINFYAjYZAdH8ky20eBOQEoE1pbJc5p7ZPXpNkZPV7dwL6yLlvkOJ4cyXbEswoyFXX927L/7QmRk8btuJ4X775KVYCm8rZ+f1J9+VTC/K1uAT4PjoIU4ZGxYN2DVqdNyTlZyKmX4TkZn2xSwVt0vQrwxrWm3N/TpmZDGppluwgeK7utRY5bvSEsP7NbaA4rsw6VzHZI8EfpS2G2xVs0rOULXBnS/Ar8Rp+sI2O2DXeFCUhdxqJ8pOfzEVIXdst1tY5cH6WS3g6T8p2mDhnz5qTcGttDUFAm8n6VZxpViQt6fh3peZuWa7X9Fb1ezgj43K4NjWNjmD4lYJnr+Vw+hPouv9LrawH0zJvDEsoMADjUB12JhPvNmYG4Ra2bnMq6imKsL+mQFp4gDJIFB1hKJBwkLJBisjrrUoEtxOK8StRj4s0A1sC6cRaekSma99RpiZpM2iRt0bpnNaJ8yiWXg8jEUKSLxni5w2VMkguBwW5MKfNGhw/T8NCNDfq887vAmHtnyCQ9iyX4lokzpcVgGwfcZ5S6jkcbB/Sz5qzCMRZYVsaagUrDPGKANWeSvMFNcqGMM81MzjbJLJIYWWGcBb7P+z52ltpqQFqXyorN6HeYRw5AFEgRoYqZ+NeIaKBCmcjTY59ML2khaNs1wCpd7GrQSKcXyiUSDj5akqpN9I3ZJym/ZTfCt656njSzTGIJtkVSnqD8iCEOaNNC9Z4DMcY4snPHQOsYZcT754AeBQaiauVtfn1byriz45qgxMvMsBwddtangToHtNFL3lmbYZULbioAYYW4pQgf0ObSCTvXzGdogjmGNLXZxtP8/7KnwOwx5rXIleOzyCgb9DHOPLt0qldPnQhVLFnZGI0lEvSzRk+jxBjzDO19SSsHWKiDjZP512x0fJPTZtDP++scP8fSVBcZZQfxOAzRcElWTVkrccrK/CxiwSUfq4TfJl0Cez1mmnuEkVAgY8hGqTLMMpZya4nbJv+ZZcKB1xtcRdKPxedxi4QDa4Dfi9/mAyxJWeRaRW8kzDFJnZCzBmKUff2WqH2PadLkmWSW73HdQfFWh90OuMMlDmhTr70E95hmlgm9LqRClEnWBG0ccoVbzkIVcDyOJWOaROo+o84yLmj4RIOQs2RNqi4M8rID/w3CjLNAhhwXWGJL76f2HDIZ3CoDbClz2J4bxmpZJ4vZCuzSSRe7JNgiqXJlMViP0qXPnSoRqSSmCOSk5kXy+FTX9BzBhLiOTIaNJfc2UsyrnLTeQACJnyFFi3ZAWcGTWhkEulWWY+wYK+5tQnZe12tFh4Ei/5BnOsAOgvTJek7ygU/LcR0BBl+FxNvSvW1XtpqbIhdw3z+KBMb3DwiM802WPAn7Jls1ebAxSFZkPXxXt8vkO39CAO6t6GdDCPD3L3HJ8pMNHRdjfanUxLrnqax2g0O6vE+QWcir+rkHMm6eUpZUv54OHXeT7h4pK2IUqSC9wn1+XxXiHs4FONNMvDJvkVBOkTRLS0SoUSTJCEsOdpjFRiuH0KPH4i6BVPBLZJztPLXzHOTc/pn+axMUO/fPIcfCCuoZ5Jh1IwwyfUU7gBjugRZVG4+Lmj46zT0N8NjxUIqisqjE7zZKRv1QY+rtafJKwBlkBjrVNHzHmtFmzdIgxDWuY0mr9jkLn+pilxB1rYV3HNjJqMXHfUYJUSepIA/gjWez8jCf5FkmtdFaQtJZJUF8gDVyZCiS4iKL3mTfIqE1gNgdsIncs/IIkHdd2SoryDXzNwRhOHsEZvcmfTNPpimCe8EZgkRcm7QZU9isC8Jii1Mhjnlfjyvqa8xwCw+x+7s13a5wCws1KhP3Js0BbTymzxu65lMrdhIFl5Tb8U6dsrWwmqlM3G157Dg3CGsK/BAWmhShhnm8LmhKcRuHtHLAqjZI0+S90dXJLjHKXqOBgIXWtDK2oEmxrU40X2pr4pTMVkAlbBwRPB86lP2jrG7+mCC1NkzAvFSgxlmVdQIJ9UsEz4tvyu8ii+5imGVe+DWpDWnGk+xTSZFtHqDgUVbeJyyT/vK2PNObs0Ae5ooi4WNQQJc6CmrUgZA+/09JM/04XlAvsyjCfG1RyexD9cMtyHcGWuSRlDgv8trYGQXiktD0Kh6cFYvKd2NR8e3bb2hir4KIpYIAMam0MNNyeb1nL2jdMaXbVxfJ8GCfglZ1AevO9unn9Xl6vAHHc0BVGF+5vAAixW0BTdqQbXiyIT5++4fIveKx/D7xotzSK09FRny8L/uSmAReUiloiwA+g79JcD6fERnpk7vK7LJaCOCcAnFReZQXEOBmv6jbUBS2Vs6ORd+pZWgjYmVBxmld951ryPXyVH4/LgZJr+bL25QWiW4pj+yUAmHNSfn7yZ4wEZvSAvAlrkH8mqoRrOGVRdhrf1+O9f7p8zOq26gg8fE+8qz9rjI2Q1D6a9nG4yocfyFjQVhBzyjegI6dURZnSHzqzlrD+kjYbuVZSd1ttiZPVADl9qyAac4+rMsYJ85poxTZvwK6fm1EHO/L5VWvy9jNFQUcXLkrTL94Uj0OV/T4bch5/0q3MP8Sae2bX0BqYGsoJ8Xf0r0dc3LePsmLv5+pWFLKBuTpqXOlof6DD5VNq9vfnFSmcgr4QuXLR7LeeArCvyJh+WsB9D7iKnNMeGESofqMD4Qx8cI0PDmzQpw7XKao7LYEW+zSySFtXOUGA6zSo95KC4zxPt8nRJ02DrjAknfEDmjjXnSaMjG2SGAJketkSLNJnRBv8DFR7ZKZ9LZEj0tDlxmiSEpLs2kqKoEtE3f5ojHAbFLYyoGnLL7Nh/Tx2NlWBkIZ6yvLOiV63BDd5KtiCr1BgRSrDDhjxKjy95h2icQio/SwRT+r7NLFX/GugltRzWjs8UJmly5SFJhiBkvKahAiQ07LwiANM05FDNqB7/M+ZlBvSbZ23OwYgRRG9xUAilDzjmIBSUwNNxrcY5oMOZfaGng33FgmzSallm6qRNzfrksBPWO9WZAHiHfNKIseqmF+iQbu2QS+kx06VS4boaamzyK5zpMmQ44JZsmTduBjgFValWVX19GxbnWUKqsMeLE0zT0/D/6c38e85iQhWECFiyy6T44V7cYQrSEpsUVSZMhRJMVAdc2LSGEodjHBLOZX2MdjZxv1kncfGwmXWWX4aMUlIm0c8Jf8NjWFF435KSEsJSxZsKL+jJPMskUP68oeahBmR9d7OtjFTJSjVOlFQkOKJNkISWG629FKiqKzkYx5Jj5mst8ir7JZ1vP9WmGAm7xBiAY/4C8YYM2TqAFnYFiqqsmtBODv4l3ec2DKZFo9KpEJztE6ZWLMMskNriqLJec+dwWSRKm5LLVKhDJxvbYlObuGJB3+kD+kRA8pCixykXtMO/ibVPNsC0uJU3a/zE522KWTPGlqRHmPd705Mc8Yt7hCghK95B2gjlKlQYgJPffkHisydWPjdrJDlSgZcozwkA2VCy8zTIkeZ8OYFcIQy6TJs0laffIiJNhimWHucIkr3HZWy03eIMs6lgI5zT1AJl4VHZ8aURa56PdwM7S3FFtr1sj10erA+iOG3cDcAHgD9I3hYY2CfToCUGoDeB9PVF3aOCXlnNW//xBhf60QsOTmESnpZ7j0hYb+fBcpxKwbaey7pKwzcU672nmkAKkiRfDf13WuIMVfAwGyjOWW0yKvhBSgR3jx15TQz17Qwscm2i3g1mMm/TX2TreuNwFMaKF6hIBmrXix6P4wf4QABa8SsBM3dD8W9TN7+nuJZz32NpDqtUP/pt33s28ibBT10+ExDhQeL2jhpXJlnmrX90sZj/IeLOm4NI/pfuX1339M0Lkuwslf42m/tAMnPPevQVaYVXlnigIlEs7as2AICyezxFiTAxqzyIKg6oQhQmDUD3KeG2BrkxZwhouzwEz2kkXOqX0ChuU5ff8lgiANlcZQRACILbnPLDLKEiP0Ikmxxog3O4k8aU+rvc8o5ilbJMkGfQyw6oBLEEYWd9uVURbdamOIZZdqmnLAmnsRagyxzJTaA+TIcIsr2liQRvq6KhQAv0eBeQiHVD2zSh+PvUEq6ehb3mgUALDgUlOTor7POwBkyBFVz2ZjkB/TLOP/r/VY7Ms105xEAFRj1BYRAOMCAUi/gNwvfosg8KRK4E/ZQuB/ZOWESXaVsbzJN/3ZafLSPjZcUmu+0HZPnmKGEj2eiJvS5s85ZdIPs8wC41pll7SWXtc6KKV1Tw+95DnHBhGqlEiwwJj6d3+A+SXaMyRClXtMu7ehA6HgqqM4ZW+ur5P1+nuVfiz5vUCSAdZ0GRX6Va2SJs89polS9foxSo0MOSdV2Pp4Uyb+dqwY1HGu6jh3QPw3T11T/4wg6bFEkA6+p8fAgNfXkYbNICLZndLlhYAmsdwwksOgefo9768XkGdpDgiLpDKJhCsV7gJ5AdvqDWETNev5vp8XKeG3WpRdH4bBrDxGOAelFQlo4BMorCh77ksNdsgLk4w8crz2BWzaL4q8km2Rkca7NRyjJGDV9pGkzhbsvloE9pSBhLKUHgsI13QBCg0B8xIJYcjtlxDmGbi3aepN5H7dIoDLdkO2v1IVADOnYJedJ7kH4tNoQE68WxJxj+sCGK7k4WxUkn2PEfCr2UD+ff19W9hmlSrcriobErknla7/R15727qvD2Xci8qCi51udKb1GCCfzw5CRlmQ7R3ynXa1+6iDh22B7NuJgmrtCKAWs3PjE03lLSLS4F5hMR5D4B2q98BEWr31UNBMbVXqKjs1pqIxzuNpgqZHEamP9uRvqagyxkblvdJD+ff4SM6pJznZtoMjWXbsjFjFNCfV41AbumGr04oydg/3lMGn0ls7hiTE98+CSSzBdn9BZML7em2c6HHKmbCrQ4C0QlGA2e+0aABKVc6zwp6MVVuLBIhcUMn4YFKP2zmVs78CfCbHdL+kzNCi1LXZtIw9IeAB3P9E6ruCSmzbr8FcXo6bpzPvCxN0ZUWvnW2CVHdtbN9/IOdEKS8S9OOiXqPapE71yfLLn0C5ABUbq7/jFf67P/L//WuQFapEyamnVoW4J2vaRDLBFjt0cp3vcZUbCrjJRK9KhDAim10nyzpZLD00QpXXuakTvkNn/SQosUY/BVIq05LJXS95LOnWwLiodiAj1AhR53NtEYwxzzpZxAuu6IBSmbizWkokHAgx4GWBcfWvWwNgS+ntIk9YZ4dOIlQZY4EUBepIWMgyw8QVGFpUiZf47Al9/hrXSVFE0mkXWFBjJQOoYsqSMVmZTaxDNFiln6x2soUVksC8/Tbo82NiAEtNiwszp+8lzxoDZMhR1b/v0kXulJeIpG3KOsI62ZXJfMT9VRqEKYSkC2hsOAG9pLu9FUp4AWpBGMZcMk+WnAZm2MvAVZDueIwK62QcmDQz6jSbNBCJrSVJdrLLQGOVtpAFmYT92C0qo8ekviaX3qWTl5lhk7SDlVFqbtxtXVoDYnYpcI9XGGCVKWZo5cBl0yHqzrS0lLUBXXeUGvNROcaHul5AJYl1tpSRKAzEqso/Nv28TLBFueWMB8hEqHKFW8TVt+hQmX8C3MQx77xRFvmUS5SJMccEr3OTNHlu8xpmjC1g7iGS1LbswN4wj9gkrdBpJ1v0UNHU5CRFlhlSALXXx2yU+yRJUf91oKQA/xOv8G12WCdDkgL3mOYtPiBPr0v7zyngM8skywwzzT3W6OcSd5jX694k2IsqwzJmrrFt0+T5Ce8wyiJFks7erCJhMhbAUyXKh7ztTDqblExzjzhlD28wWewP+UOqRFUOt+PedLt0coOr/Jf8P1jiAlk18jZfPLMfMMsBadYIc8NSyaPUuMFVOtkVCbrKkAvKApljGEminkGSbCOUianv6o7LkI3NnaJAlJrbGeTIMs48OTIsMkqVqE6+JZhplEVyKk02a4B/yT/CwpYMXEyTZ41+cmR4h5/4NfWKJmuv0c8IS+5xGqLuPoizTLLECDHKWOKzJWKnybPIKBEi8A344y2gk4Bh9O9lTtW+ioAXR6d+OpHJ0iyeFMYDpGiLisSh/X9EZggfIBPfEGJQvQxNbbqcAzj8ObT2wckaNPUANXmf/x4B0q4AH+IdRIaRSchTWZcHBsR0mf8BqjsQTSBg1zeBW8AvgZ/r5/aQiusFAslcG2KgYpPFbyKTjizCYMwBF4H74h2U+FcEIGNKPwsiCavpcmyC3w3sEICZB8Cq/tsGfK7b+lS+f7IFTV/pOO8BfwvY/5eQCvwMHL8AzXeQiey3obQEiV/q+vO6zhbgv0FCHLIIGPqCrvsDXb9X8s/vq8wZ3uID5pjUpto6M7ysgErJwaUgJT7DNPdcBmpMYZD0Up4iM8QicqGsEMjDWwgYQl8SgEL/N+Q8ss8s4smdnNNlgAAPi/reJ7j0xvz5TC5scsbT3mkZ1rnBVWpEmWSWftZoJQjfMoaW1cQg9eRN3lDQRsAVq8tqRNz+IqtyyUcMaxum6s1bCQnr4aICgVGq7CABXtY8z9Or9/yw1o45X/YWPapC6aJOSC0UJG3dWIOWCtvPKhXiVIlyiU9p1cbrae/nEZb4D2oqdfIlNKm0KfFdgiCdBRSJkPdOfqiMnPPIdT2rx3EFSEuaY1xligwGx8NDGPYQgP8I+CV8pcnKolxIav0vwJ4F5ZWVJS8WCbFnaqNdOiko6NyldagpGozZCGLXYjY05oG9ozVcUut+CGxKNkkzwZx/f4FxJxmAsOFNZWQ+3AYa9uj8KUKNd/kr1higRtQBMRAbGrODMIWKsMurmH9ggi2vRQ/YEAOzOnIv3SRIF99DJvhJnFHkHnqv6O8r+pnruByTCwQS6j18co/6pvERck99IbDgkX0+B78OwRglAQ4qTwUQO5uU21mbyfi2BaQ43kbGTVlN7YMw+EBAp5OnkFsRyWNqEmhXieIekIVwSQCvprD64+UECJvZgNEWAerOJmWd7Wn5zqB6xJ59UdYXPxLAYeRN/Hw43hYgYv1IQy4QYAVkOSMKCh/fVS88BFBMpfGmXOEjBS/OCUA58aLsY7xbPpM9zUzqEOkq29Ct8sSTIwFifrEND49gIqnjpABIqkMba3r+VfLQVofFbTnFv2PLPiMAZDNSN53Vt5tLSH0xIevdl+GlaZKg0deQsY2r5UdJwZtjZB9SadlXojCoct6VFRjoluNfqUJ8T8ahoONXKEJSt/NiEvZn9fzIivfhSV2l2HY9XYD6X+MedCdH0NQQie/+oQC1B8BFlaZ2h4TNWMhDagyvv/ZLAnqt78HgrLyfOA+8CM0rEN4Tdh1piO0Jy20lJ/ua+jLwVFwpCjhNGrc+6dbxQAHqswpGnjxUBYc9WxPCwGx/HfgS2k+hVJWG7PKoSmXbW2FlDxJVSF2Q8dgvCVh2jAJyABsyLpWq/l+9Jpuv4Y2+plE4viG/f6tbG9L2jCoKYzOlX09NSojLxaImGisTNPGqbHtzFjI5BeKTIj9P9clyTh7CBW1eF4pAQa7X9jfh+FNoVkn0/qKApV+dBE4If9fra2HofYsnLgGMUnNgYp0MWdbJ7D3RCZzIG4skaeWAflY19VE8wjZVlpen1+nitkxjCAHOwuhjQz2V1j0pdp0sNSLeyZSEySS7dLkMwsBGA+EAZYbsOpNGJJ49mBeddd1MwimssKQ/cK1za9tlrAyT0FnBUyVKioJ6qGzpZDdOkgIFku5Ht3qqSyfpq1vOQLMwiWWG6WeNNHn3eBpl0VkmFj4inTkBAMWENk9STXNXGaBBmIc6AbVus4RnSLvbmHplYtzgqneVh3hEUbvNA6wyxgKd7JAn7QDTkNrhD7FMjaga+/YoZCgF6IJ6tZjvIYisNcO6+tmlkBCATQ+mEBCry49VP6tkyDHcWGaLBDO8zFt8QJICW6EAlC2SJKnyxoSy1mzdwuKskGCLsBbYUWoc0kaEKpONWe/EJ1QeZP83KXVV2Wg5NSi2bbd1ZNXFxGSFNQVKqgq6RamSJ435Hi4zTJGUymokYKVEwgEbWa54ja0xQETZgtZxryFpbUWSRE75FNl+TTDHLl3OdLRUPivsTaJr0sVFRj3RtkaUKFU9t+V3SxsVD7QIFWJ8yNsUSfIf1EfpeX+9xm0PRficKSwheU0N4M1b0EIahhE/yZimE5sv4wFtjLDEJT4lrRYFBiQvMkqYBq9zk052mVcGwQ/4CzrZYZ0sZWIuaQNLzOviBld9IlIgRZIiUwpgt3HA62pEXyVKG4d+P7NQndu8xhIjJClSJMWOAvxXuUGXsm1HWOL76qcHIiv7Eb9LmThjLPiE5QBJ7JXUv3N+3q8xQAwxBb/ONdYYcCm6BWk0CDPKIlWdmNl2R6gxyZxLa7sQm4AYZa5wS30lxRlwlX6muUcC8RS9zjViyoywpO8IVWaZ5BHDWKLt6WTCIZZ9nJYYUVvykvtfTfE5Ub0GDZCNUZHJUhtSHb8AfBv4JrR/B5ncthEwil4B/h7wMjJ5+ooAqHpZPtP+IrLMGAKCDSCV6llouogUuTVZZuuIfLbpIlIJhYEegknclwiIZ54/vwRGCJJmX0GKt2/INpOFqEkO/lb3x7ytmnUdaX3vW0il1KPvfaXr+raufxRq/4cm+f23cKZfIomYuGcRj7Nm3Z4hZCI5irCszujfzgH9Or69OiZtwP9Gx2xUx6dHPtM0rPtyFklS/bZ+rwcB9b6JeO1kkGq1Lvuf+JbuxygCOPTo9vQTJPcNImyySV32d3QcnvPXL5FkaatLiiRJUeQVveZilMkrc1ek8SJdFCVCp98nQjT4Jd+QCcC3kGP8JTJ5aAf+jwRBGA+Q83mDAFwwEGiRgM26jQCEr+jfrIruIGCGGcPoK/z5bWFfkv8tYT550gzziClm6CXPLV7Te0UredJYmJax76SJKf53IoVMssA4WySoE3LJa1GnFP2sEqNMioI3GW9w1RlYVo9afdirKgtpxkoC7oBa0FjYmjSEWxXeKrOmaoQZptwORmq9mANjgexz0y1cpAmYdL++bbqhql5pe8i1cE6PzYIeG5X+81RYQM6MSSDXUlqPw754P/GqHiMDAi8QJEu/SuCJ2AEtlL2Za36tZvNgChRLql1ihAHWGOU+EZ1fpFRhYKnDVpOuMaANbgFbW/U+bs9qYZJ3PWMbkadXl1X2pliIOn1s8C7vYUFMu3TSzxp9bPAOP3GFjdVzZvEg4SoXXHFSJkZOG8vGxAeU4b7OnNrMWP1rgVpJinybx0Hi+JcECbUGqigjixX9W4ggXTqJgH+zeo38U4JwJZO3FwnY3ybftWsshtecq/TzBYokPeev3bJM/tsUPHtSVEuHsIA3hIAj9UgbRMbwQcDGOnkqctjsFDLu7fL37T31l20oQy4lgMR+ToC58raUBcbC29/TNHe1ndg3RpDK2MvbKhXcRoKtVjRJFQnZSCUFoGlrERDC2F4UBXDZPhKvvl+YjUVdJPeppIBP5QX4jaR8p/yJ+usamFIlYOwqkFd5KvvWNCY/zWg/TM/V8ooAhIU94CEUrsv7qUFlrSH7c7ZPgxpW5FbTjkhBm9WGpLAB9/PAnDCzvtWi4RJmBzAoLMSyNlmPtxWcaRWA9eSpHkNrfEaF4T+YFLDueFPYcvvaiGprEW82kPtlCpyx2K7fbzonfztZlIRf8sBnat+RFEZgU4eoCY6r6rOYhlH1yGtHmZB1PaYLSIPxCzlGsajKbo/E52//MZATSWoqpGm0UR23sACT1ossleT8a0cZ2HYcq5LgXPpMgKrmrCbpnhP7lWZ9Ppd+JmM1syeeiMebQTBKU1IA2iTiZceenFsH6PaGZazbs7J9iagcm1xelBO/2BYWYPkI+FIDQZRpuvIAmIX1huxzU1j325rkYblW9gnA8mPkuylk+7oVwFzfk2U82ZPfjQkIevzCyrStir9f4jc0gGtGr3NkjCpVATpfaIKWCL/S62th6BnLyqSuM0x5V/Y93uWtjg8ZOXrIYsso/wX/QieLEfUZmqOkRYx4q0ji7D2m1Vz2kftQJHQiNqSdKSuW7IH6Grf5S36bAVadwn4LSd00xpelQwIucxX5rVDxL7CkVPgiYRrMM0aYBtPco0CSrAYeGOPJwKQCKaaYcZlimk2VccboZw0LdTDpqTAMB1hm2D2gDAAaUR+nLmUMpsl7klqNKKsMEKXKJe4QVer+NPeIUqVVZWtysMVrap0MF1hSf5qUA4W3ucIY825YbV56UlwIQ9E8REyyaZR+ELlFHElytLQ3A4RGWFJ7/gYNGrRywByTWBqnmQVbF3KDPhKUnLVkzB3rbsq+R1hmiDANT3e14I0GIW5zhWtP/1+MtIjR8x0uA6ix9oyzzAqkGGfegchA1tPQTmvEi1kIgjLCoYZLghuEuMFV3uU9EmyRooh5msUpk1Xfmlu8pv5cwjYVSV7MpToiY6yQIYeFoFjxdXp77DxZJ0NMWVVSWJ6jkx1CNBhjnl26aOhl3s+aywO36CGrXjcm5zXZjQHqBhLbJMoAlw362CJBlnVucYUGIfpZZYLZU8CxALkLjCnzs0KWdapEvbv9jV8Thh4IO3iANQd8hVVWcrCtqvdKm9zdY5oBVrnDJSb0nhilyqdcVlNy8TI0a4CXmaFAigRbLCoL0uT+dq0uMM4Y84SQ5EizGpjmHpbSt6Vs5lX1k/wTZatd4TZLjNDHBrd5TSW6EYaUoRCmwQwvM8wjDtWCYJdOTQeXpOUJZn1iscbAM/5S4q8pDESzazDvrN/jz6icOh/f5a9YYAyzX8ipr1+EqicOTjKngT9dzn421rXJYC0VUtjLYgawxoBbEoB4nsZ1QmiBIxXiyqK8S6s2EMwrcowFPmeKZYb9XjrOPIuMkqBEHZErJyi5HLmTXcb+eQfD/+citTPNzIYm/X74IW/xA37kk52qtj2EMXLoTa06ITaV8WT3BrOcSFKkQsx9LX/ED7jKDcZYcN9Qa2icbt4kKHkiY02Z9RJ4Ig2O+4wywJobsb/Le4gHVb/7Otqzdp2MM0Q+Z4oINd9/YWTKs/Q+o7xd/ZA70Ut6n+lRVnIrA6xxg6v8gB9xQBuXtz/nfvcgFeLMM8YUn2NycPMotHApu78OsezH3cJWDCRZYMyPt73s2ZQnzRvcZIdOGoQpKThsrPw8aWZ4mbf5kIYCMAGDKUJF64PXuIUkgmd5n+/zj/kXSDDLEPX9MnR89v+Du9H/f1+rqpQY5hEFBR1u8gZTzLgiQp5tWQX2+7jMHWen5+kNFlYD7iOgq4E+YYKkZyl9KC9AvI544W0TJKYaGLFNULwb0LCif58lmO2tIJOAbrmHLzNMjgwJSuovWvCab5x5b26I7HHT/dFMTrzIKBY2ZFYUSTW9EosMSb1d01TtpAKBaVWeBDLFioNz1lw8xwZ1QkSpsUhW/ZJ3XOFgoJIoQ9q8vrFz1bxDxWZll6TKQQEHDE3RYaoSufbO+X22qjYOlHUsqwTAWwsCvBkrUpleIyZtzusxVVsAqrqMKQS0+68R8P4TJLjG/DcXddnqndXCkddo5m8M0oRdZohp7mmjZQaztElRpEGYCjFKJOhhy4HSJUYIa31lrwIp4lRYo989VcViJUaZGCmKHNLGJmkSlLyWjZ56jpvMOjj2VW3oJ9zP0FQgJreW4MBDBlhjGfFjDiMhZQuMefPtKje4xRUAZ7navMEsZUI0ZGae1utgHAHAX0Im5e0468vDmF4C/g3ScBpD2NsLelxTiJz0t/T/xqTeQADBpB7PZaALBUNFD9Stc4pfi1dJATgFLEgT2GHsib9YqgXiMwggVFcPMGXnHecEgDpRdldxW/27+ggk00WIR4VNNdAtYMHFJFBVUEdZc4UF+f9+VVJe9xsCFsbfBj6T95ofQ2JctjH+Nuz/WBh5ZZXphs1aIw9PViSwAhAp4QbOnC7sicdu0x7EzyuDtxua95WhlwAWBNxr78ZlswWzUTAbhBUBTFJJ5B5yXXzTRl6U/dvPK/iEhlkBU4PIebwHTYi8MzWF+3GWVgS4+3wbppLK+kKsT1ZmpTfa9LaMa+K87Gd8EJqVIVapShjJ9meQMG9PXXZ9GypHAgjd3ROmWzfCRIunIVbS5ONoAB6lrgkoGd6A+KuyrLvKMmRfAzdUmpxKB/vc9Dpy72yBpseynqY0pLaRJqiOXyGnTMJBaCrCRBiWigpwvgr7n0Ghqqy7blnm9p6AxfWGyIxPSipJ3tPtrkPuEwHW2luA85AwH82oAH4rP5bU5vZzwlpsR47Zt1DmYrds+0lRgdsEZB/Le8dVGOkTSxqQMTl5CvV92bZYVIDV5qdyrdQVSI6/hLAt85B4LIzKAjAY1eOQFtDVAMsneTjbApwRIDgcEmZqs53Tg7LPxW1I5SV998mKMCmb9Lwr7IkUfOUBDKbl2nwyI8xYnWqQK8q1VpoVwDUVlW0OvQAnZiXzd7y+FkBvmwQt+vC0tFkrmjNIqudGS5/7a9kkAgQs6aHEjj7kTJI2zCOWGHFJ4AxTWDBEGwcUtRsJEsl+lRtuHnyLK0wxwxjzDlKFtYg2Cj2IKWtW2VIh6qwxwBgLyj4SUOd7XGeVAczs/B7T/oC09duEaJhl7jHtIJP5m6zp94dY9oe5BSWMsIQZHv+Ua/wR/5IQDcarC8xHJSAjRpkuHTNJVUwKwESDCWa5wi3fnntMe7LwLJNUiTLBnANWBlRFqdKJBFqYvCJNHkvCMqBhkVGGeURdJR6X+JSihkU80sn0lCbGJiixSj8R7WDmSWuXscohbSS1+C3RQ5kY09V7zEYnNXnYpGsNl+YYsGRMJwuSmFRJjo2hmQ63ccBsy3cQWa0wOsdY8CL1tDmxSS626CFGxcfDXm0c0NfYIB9Ks8wkIeqk2VRgVyQQ7/C+n2MiBU84K9KK6BEeOhi7TlaLyagWfQU/r+z49TRKVEJSYNvxMSDSAhACz51WB8HNp086wp1auNUp04n5wJg82oCgHkrKBFh9hpmZ8uMk210lyuXGHXKhDAOs+v4YgyKhkmXzqYxQdXDXEnYB/geuEUSiPb+vLzlPk4I9ZWLc5A0ucYcQdUoKWAh7QPwd3+MfYMEtJkMxCb4xIuR8FrDkZWa4yOIz11icsqfUBowXSae25oAF2FgKrE1ELcTIztcKMTp14pinlwzrFNQDapwFtlQms0q/f18muVssMO6NGDtvTepjk1DzmDMPqQ94mzHm1X4hSoW4y+FLJFhk9Bmvuy52WWCMSzrp/3N+j2nuscqAGtQnVe7ecGn6JmkK2iwxqdw6GfpZdTmsPVM+4C2+x3VGWKKkUl1JhzxHVIGpmDJahln2e5EwZVepEiWpAMUC4/w2f0kZSSMP0iS7uNnym8R1UnNIm95j8swxQY4sFZWCRahxhVvc5HXGWcDsByAAS8wqYINz9GhQ0wFt7CiwZf6G9l1LZs+QY4A13ucdGoTYIsFl7nCday4PM5Z4hnVmmaBCnAg13ucd8qSpEHN2pzGERP6c4VBZMEkKrOn5EqXKGgOsMcB7vMthVJ5NdW22FUkyyyRxKpjsD+Avuv8BbRywwBgxyiwzxAZ9CtWKJLqHkhrND6tf1AgRaiwwxiyTGnokwPeqNtSChOiQAx92Lv6I3yVPr9c0IyxxlRvKKu/iJm/4RF4Y0rJvZuswxySfcknv810sM4ylUZ4/BRA8r68KMeKE/ZyQIKktT3u2ZGljI6/RT5Uo95imlzwh6lSIk6RIiLow50IIKGTSb2OHtCKAwZsQn9XPPELAIAPrQCazHwNZOPlEJpXSisc9bzzQJIyAiCf4PcySYlPKnBpnnjJxfso1xrXeMH/jHkoODN3gqjdBcwqGWYPTADsLUZrmHge0Mswj8vR6fSMsry4HfXJkAGlEtHJAjajLaS0Zt0CKUe6zSj89bDHDFP2sPdOYqBPie1x3gDXNpqsLzAd4gz6vYU2lYYx9k4Qe0iZpxG0IS3cPDwHgIQI6dCAzuQ+A3yPwwzNfPZN3qkSLKgIaXdDlFXTSb4yePQQMOAGapC4RGxZhFUqz9zV6yet4pr1mEtD/kT9nhlnGLICsyTzMMvOMUSH+/ybv/2PjvtM8P/AlF8USi6RIqugqs9qUSZMiLY6poUaM2aFbammstBDN2WnverazPZnBDjDALBLcAsku7nL3xw0SHA4bZJEAe0iQBSbou5nryTbiiXvbaCXak0dqacwdeqkmR+yhTIo02aK76CqzREokq1QllnV/PM/7KXrvsNMHxLMTdwGCJP6o+v78fJ/n/bx/MMwSVZKh9lEom57fOtcJzC981IdrqjurmLexDaK2APhv+Q/5O3yHOk2c4yZVlzjLg6/s1z80JNlgCcXXOU+OPLOMBQu2hTKznGaHdl73gYMUE3q1s8MeraRXHxk7+qgdV5w1hfuiBlOqCQPwponk7kgwli8Xfo5yGCguFuVdGmAemJXCQzjCY2778L5i/Jcv/aszY+ENRw0n58m+AWZPHhl4AQYcpFq94T9hDB+Fjxx6aGDMYQEY/dAum4k9YyalTpqvWsoemxzKQeWusdwON5kE9dC+bcfzDmYca3Wmlrze3oP/uQj/bi/hK/ukCodnnBGVhp1VkxceehEDV0oGWJTzLuu97PJOBzmef9n8+LLOej7UasEIYGDL0UcGnjyq+r3tsuOWkkuD/Vp7+tDkjkeBw+63dlT+d856O9RkstUnzghNOxOq/BM7Lu2t/vMOQh92ZKQPty45CUcdDGzBpbB5wjvy+V4CsDvaD5UPYfV9Y+nRhAHaLjc9fAwO78GZpJ/no8aAfHTP5K6pfsKvWIyte1cMAHyyB6m8bdMJfLtbTVq7sAojSSDjAGjR/9w3aWf2VQMvOYLdkxqStNqtnk1gzz0ftowI6MW266jkqkec+Tdq6ceHe4A2ePCRg4LHXDaagf3VA156jx2YS9tnLKwau7O8btd3XwccPmH73v/3sWTsIvAi/PhDeP5PHDyrA+t2bEp5C6i4V7TzcChhgPLHQN++3VeH++34t7fa75Uf2vlNp4lE2lfz9r79rho59JDwbz0sAHnPljr5KJ562faRDBTehazbPAg0/tkDD/64Z/fVo9IBQHTPZL0fF+Ho+55MnGiA8oPH4McO2CaPwWOpCP6S1xcC6H1KN6dZwRIU+wADJzSV6mWdrAN5nWxTotsn7AYE6WfSlMhQCFaZGpptuqIB1JRN8tI6TYwxSzPVaIIXGeI0c8Eu6/VJ5C7trDDIZa6Q9MnQwYetpaxVA5SRNFcyyE62OcMMFZdbiPFSIu0FWHs0BynKIVMr+9S+2T3YNFGt0UwztWjofoM/CoZdc7IaQFuJNH2sscBIeMvI60NJiyoSM84UK/sxHGYxvD+U9NrHKgMsM8ICc4zFxFL7mPaG14IRduPYATTV65QTJhHeIEfVmSTGtjOT/CEWKdH9uQJCvjM58qSosMgQi8lhBznSYfQ8wzhKRhaomqEYZtEAM5wJFtIYsy5pKQag1s1myF9LpBljlg1ycRwGHv6U9Y7nOM8NdmjnFmcj1KIP47bf4iyFhAFfYnRayqzJrNu8aJ/nFJJkS57RX18jn8gF+DnHGGeYcS++Km/zFme5xQDL7oVix2mIRXYS7fRV19hOGlg2xix1mphiMibqVZrp5b4DN7Vgb91mnAwFcmxQIs0Kg5RJMcqdAHOtATZ2wFUuMcyiX+cp5M9YIEsbO0xWp7iSNGOMrURnhIyMczuuXTVlmhiLwVJxAEMMSwHKvwivF1hji75oLF7nBySpYX49Bv5qsq8BwUXes3vCk7MlR1MysECIg5LNfWdYqikU8NFMlVHmWWSYmgNkxx1E3KaLd3md13mXHvJMMxEG6GKR2RqdDvCkjzVOM4dSjAX8trMba1OSGlO8StY9A40pMBj3jkKAqs6E7mONKSbdp8+kURVSDLIczIIFRoIFKBnYN3nHm5Mk3+NbzDHGeW6g4IyKBwtt0ckgKywzSB9rVF3OL1BBgGSzy8S36WSVPk57mnqGorMtbK3vZZ3TzPID3gBgkBXMv6ohfy972MwM44wyH36gtzjLAiOMMYc8QG2I08Q8o/SxFs3kCAvcYZRz3GSW05xmlqtcYp5RTjGP/Pp2fWg0xSTnuRHM4U62wjez6oBCliI7tNPiQNUKAw6BtbgvaFOwHy97KrGeN7/Lf4c8aZXYKebgkoNTkjmXHejTsAQk6TafwzHmKJFmltMh++5jjfv0xrWh42FehGf4Ft+LzxebxtjCOzFE0Lpm+3CaTraDJbzIMMMs0kI5ZJwl0jRT4yw3wyfVfA2rzDPKb/Mdppngn/C7DLPoYF6G3+QPgs2eI+/eVLusMECGYtg2AEwzEezJbkrBopxmgl53TP5ZOPd8eV8JPgPMuuL7fJPLXAnbjkFWAtyfYjIYnWVaGOUO00yQpcgQi2yQawBFCfjPliEeJ2q09rDGqIb5T85h3bGbhAfraAXzOdzCGo861uGUaTArPgN3QDBZeRIH9G1IqOGJDdFydEclWGLJn4Pt7LDMADVy/AG/xTgzDDt4JDar6p6DQ2IxoRVUJN9Q+QwGuwqCja+BpfyDD7JvZZEBJpWVt5vumzX6eJ13yVCMwUY3m6zSHwCV0lFVB+7QRrfb4miAuEZ/rPd85v6gFWCKRnLihxjDst/Px+/T8Cp8gIGyBUxa700b84Tvml9Odn4/83P4rF0T7Nt71Tgcg4sdzC5lxBUqYtyBWQLZs6tKxv2kNaxVkJrqlv4DPsgKO9qiM3yxcy6DnmeUK1zmdd6lyese2fUMsBI/qz5gjjG+yTv0s8YsYzHAVRiJsR6bKZIJxcUyA9FHSQlh6otu2tgJdrnUMwpgK5CNYe0qfbRyE3bgP3vPj/Unfp6e+HH/C6zhP4wBpjt+vMF8UT+l4Vma8+9VaIDs8tD7DAP4BOg9BFKwRyuf0U6BDEcCEfySv544GOR+eanL8PH/aJf+qRIGFmXce64VSh8Ze+fECZOV7u83GFRHO4Cvmt/do6IHD+xB/0PzuTtZtARZXBL6wGW1h17EvNf8Vr37wNhEO/sOcIwZa+jfzTlwLhDjJ9Cy6x5rRQfrMphkV6DbHqS+ASmBS+5l9+iebV8Zkxce9YCG/X37eurrmLdZ0fb/yToc9uNUcMn2UWcwHnoV0tMGjjxfwFh689jaMQaV/8EYgEd3/Zg/wtaeBwZaPtkwtlg5bwy7tYdwYszAqqwfex6b/PbJuvvFAff+ubOtsG0XaEYG2tchk8TAmyZsfdswFiN7Dq42mUT3cBr2ix4usWvg1pMPDaTjmO1HX0djG8nY8Sp86O+VMfDwKHBn1fzZDk/QYJpn4Jhk7l/F5PSy/nDw6Rh+bptsf4/te5LxjEmiDze5PHofOOogXtFYgl9rsmvqUd1tUI7B07wx/bJJ+93VPzH/w0Ov2XY8moETHSaH7e8FclCZg49nDLTmD2kMfoAz/RbGIY/BrF/HaQckv+Ksz6cPTVJ+shWW92z/0h3uKXjSjlfLY/uZpoQB2RxxifID36+f2PkG28cmPUswRikJAyZXfwL9zi5vbyUC4Co/Mbl8YdXf86h9fqkKz3tAUHm9ARof7YCFvDFK73wIp9xH8sSc/Q77sP9zitm+EA+95/gk/EIyFJhkKvzYXuddUpTDcHfYfdcucCOaRJn6K81JktBe1jnDDGVa6GKbO4ySoO6N3gRTTNLtcqBd2hlmMYpspYhNMkUfa7RQ5iy3GGaRIhmqJJmoT4cESOCTHqgHY+Wt2d10qUETaUoMsPw5VsIyA85N7I3p3AIjPiWsBjA36lF8CvIwqW/F2W2DXOEy8soYZJkyLSwzGKy1TdLh87dNJ/85/xdW/LONEbXPGLPc4DznuR6yleucJ0uBUe7Q5cWAPezXSLDvflk7pNkM8KmTbUa5Qzs7bDlI+N3Et2ObT7LAICvIH26NfgZYDjkomGz0xr9C/RcD8DZnHAC0qecAywyzyDCLwSCywBIzGLaGsjlMolVsFr2AERMTzJS4TEsYRAMsMmwpoB3PR5OYpcB5rnsoy32UFibAtEaSHHmyFLjFWTfUT3CLc5FqbFIUA1b7WWMzkaZMi8ujB8K/MM1mMKTkw2IpxEXWOc5txrnGReaTo6zS51P53QCK5X9Xoht5vBTIRKE5yjwjngC9zEBIMiy1c/TAdVz/nKRuhUE2nS0lOdAa/ST2P2OSKbrZjCZ/mCXW6UVhND/gdQZcWiqmyjrHQzasz0tRMc+WX4DXV/gZ57mBQm/a2WWbTm5yLtgNGQrc4Dxg5thrLiMdx0aWdRJMMck4t6OBAHzQkXI/tl36fW0TuGqMvQ/IYGl6Ayxznuvs0M4maWcuz1GjmRUGQ+qfphRsNAGPA6xE0IPYsjc5xyynfahwhzPMxPomCwTZL/SyHuzmdizZXKnWYA3llgMsYh0oTVZ/v8G7AEwyxRhzEcQxyDKXuIp8LNvZYYJpOtlmjDmXm21zmR8yyxjm43UHwOFSA7yLZJnmFeokmOADCmT5Na4EM0jm6u3scJNz7NDOt/geQIQyZSkG87iPVSaZ4jSzTDOBEnLf4m1PuDTmulhaYmJI9r/IMBVSLDOI0n7t+WL36B1GWWKYt3mLTdLeVA65pYM5m6QciRhhgQH3zepkyy0ehgBjlpzz56GeC/vO5tGwYpDlYIXagMoYaS2UQ6Yn5oiFFBlMWSDDfV8jrvFaMIXAvFFrNPM7/H6wtWTPINC3j1WUlD3FZHgPCtwQe0aAgtIex5kJTzIB3Wrg1zkeMrccebrZ5CqXuE8vSwyjZPcRFrhPL2PMhVz9NmfCF6tEN9e4yA7tNDmDfZ8EKwyw7Q1+nlwwd5RQr8GQQNFR5n8hBhwvuL+x1UwrNFNjlPlg/Q44O1wM3IoDMWv00+VD4TpN7JPgKDuNJM2HGHAnH8XPMBluBwb6yXQbrImpYYDEJgYYNWFu9AKJWjF6RjfWALZhoFE7wT6S122envCMLpKly0GtfUwC28k2855wK4aqQKUd2llmkFPMx7WaJxeyTtmvzHOKdnbCzkT1owX9NKPgBq29ILm4DXezFBhmkQR1+lhlk25ucY6is9ZUMxTcn1fAXp4c+yR8jTcjHNUOUg3UaSIZAH41hi2qHwFjhSQx78kmYJuGN5tYYPJl2/E/hw+cE3UqVf9e3c/HizS8KdsxX8tWP68V+9kWHqPkXSMCmApDLFHzvc5wllvImqdOE83UYo2WmsFsXdrYJM0IC9R8BN9CmeNe8TdT8wCUBIMs8xrXkHXQGn0M+nU/xaTXZKnPHe9tulinN/oN8+JOBrjb5VqINfqiP9kgF6F/LVS8/t2iThPXOU+NZg+f2gpigYWTNewlnnLIjmEeoyHt+zHs9f8fwTp/b57FSOKw/3ngXxeDbMf/Fvj6jJ8nMX/K/vspsI+2Z7YBkqv8Irx2tgwoosnBEi+Jj2Hgz8cfEgAcGKvoxAngsUsIcd8x7Oee/gDzz3UgpP8lYA9Gxs30n5x9//BRA0UOiz3m7D2SBrQcHW0Ad7xvYRr8qrOtssC4sY5aPKGTVvh4DmPmPfTPd3/F0g8sCKB8l2BvNjUZcJgC1qrYfZ318I5W99GTl9/LllKqFPKvtPp21AlfTU66BLINY57JD/XPjKHIUQPuaPJ/7xmQeCjngI3v/5N9Bz2TDgCdtGNU+NCIpQWgv99lyTqJCfv5lqRZO/DAWHaHjts+lVfh6ft2bFLOfKTDzsP+vgGHH1ftnKSzdr4O9/r14CXBg4fG/Er1E76ULTi7Eegfh+fH7N/yZ6NqScmFn9jxe5QnQFLmTD59b9XPH3YuS/cteALsZwR2HXZG7aEmwlOuVLBk2dtFO+YVCAuFQ6P2eU/2DSA9mjAGKPfsGLUcseP+fAf8qXvkNTVB/6t+He/7+SthB/64Mdoyxxr7/GSdYBDu7zv7b9RZjjlbyiRZFquOXjh0yRhxwXQt2r0mX0Ydoye+nh1uItKMSdh1dKjJE23v2fFLuTyXf+7pyFXbv6YE8KLJhfu/AYe/YduZ6nAZbj/wdZeHH3FgVSzTE3atlXeg+nOmYnwhDD1jDnRFM2IPp0RI8RYZpkCGc9xihQFOshAgjIIQlBIluZfkflbkGPtKDKkm6j7RNxbCqodvyFdIhc9ZbtFMI7a9TIrXuEZTvc7VxCVSCUlrmuOhKgmStk2MAzGg0pQY5Q4KZFBKVoluLnItPJ20Twe9iZQ6psKwRjMzjDPBdHir2JR3k3lOseEyUDFzRvd+Qq7Vmmsxa8QMFJswT45dzGi+yYHFTdLs0BbyJLGqtJ3b9FJwkLVIlhbKfJ83Oc+NKFr1GmYJ+amANY895GkkwB5nhAWUGjbvgFiZVKQ+5hzsbGOHdnYDDNpwyaGkCS0O6qqAFStlOXyvmnwavhwMpQLZkCDLC3GdTLBbxEaSbx8QfnBznCbjTaM8ciRvlYxvgg9I1qvhe1Ug60yDlvAn2aaLBUa8IdlgiklKpLnE1WCMKKxFcrFOtqh4EmiBbFwnxrZsCVZdgjrm2Wf7kfLEXwGwloRnzMw2LKXNGH3GgtCUf5oJRljgh1xmhAU/r1sopXSIRdZaX6CZahTzOg8mRdlEyaUKGinTQsVBSHn0zXHa770Wnv0FmcL+jK/w0Ju7DAXueODOFS7zD/hH4b214p42F7lG1VkXklkDAeybrDEV50EAh5lyl9kgR5uvRRNMU3FgxwYCKdbpJO9sWkmDxIIFAw/X3BfqW3wPhW/MMxogrc6jPH7y5LjOed7gXW5yjt/gu/yX/AO6sGAh3V+WLJ1wkKorgoLU/OXYoEKKm5wNT7ZtLGV611mD5iHazWV+CJi0f9OHI83O0BpgJRjHVQfglPg4zyhZivQ58+IU81znAuPMMMQiU7wK2DpQJOP3fr8z0ZLBNr/CZS5xFXkeah1V0z3KHU/8tbX92/wR00xQJen7vIt8rKAhjZZ8FOAuI1zmCtNMMMF0sEhy5NlyRnaCfZqpcYtzvMXbrNMbKeVdbLPI0OfYlAnqvOfSUANSsjFgMzZiIYCJTrbIsUGWYgzO5P8qWZfOyybd4ft0cE1NsO/rbi/Dnlw46hJxC4FZCv+xXta5xkVGmSdJjRYsFKrorEiAVT8Xeu07I1iMbQW8NPv62++MzKtc4jzXyZOjn1UmmA7QWoM4Gd/bwCgRn9nLOv81/zFnuRmNdZ4e9yo0AHyGM8jX6iZnmeCDqDV6Wedt3nIm2nKwzPqdtbzACD/iNBwIjvkyvjboiRrGnncDAeQ3LE92AmwZYOVz9WOZVDCq3vq9If531z9uAELHsGZzHivKT2FMovvYpH8GA4BaseL8Lg3G0En/GUltvo51bBn/+SOYXPCkf+0Y/F/JM8AyNZJRJzU7xCP/ym06Q1Kp9fUNfsB9elmln3PcDLVEOzskqLPEEN/k+wABwM1zigKZeOYmfOCol2wtFC42zQRLDPEtvhcgzxxjjHKHIlkqtHCaWaaY5Cy3GGQ5hjLyVS6RDoad7Ak0HOhkiyS1GKwqIClHntPMBht1my6++nsT/N5XPjCvOwVjfEiDlfeyn5usn5fTfg7HMSm0m6cz5sd+nYa/Hv77x7H04g4aQRoJO6c//vtHKLEdA8tBZ+ZayFcq1j0NqpQ0nCPPHUbjuQt2H7ezywIjTDKFJMjzjHKZK/E+JR+2iA3ZQoUKLYwyHwMHhaMUyATzu5PtUCcZm3yVAQfobnOGUeY5zw3W6CNDIWxuqq6oGWOOPD00UyPHBu/yOl1sM8p8qCWKZLCk400y7ivbxg6DvzfJ37j+PxtS4D5T5LCm+mvA/+TnIOf3Ri8NKa1YsVXg3/F/X6CRkqtggw6IvIv3/Xf77X3+l997lWW3fzG28r/ky/6qY+yeJ3suN8RYQOW8gRKFe2bOf/SkgypzmKzvsUtJnfFTKpkH2Ykx4DgU/gdnzGEAwdFWGqysP8U6/6SDdg5qVFxWXXgIR+ed8Qcs/MSkkcwZs+zJPWj6yJh9lQIcboPSvMkbS3chfckCDQ41YYnWCd+GDHZdHIdUCfBQjGOSct6D9HHbn1QGVledIfihfbv80IAQeQcCtjZ/ZH9nX6IxtGkyBlW21cGWcZdeJqEwbVhy/xiszjlDrBVS/4Edh/I/t+CdJ39ijK2jGXiSh/NpA5qePLBzcSJp560pYaBXU5Ntt8J96LB9TOm47/t5lh/gcQPyqNpj6PkiHH3DtlHefvQTqeuHjtv/n/yJsfeOJrFnWxPwq/Zzp05g9+dHtq1B7HJPvfKcAVQPHnq4BwYePt9vARtH8YTXUfO/e77DmZHY/jwt2b6WVx3kfQAte3ZtjRz3BPI583U8etyu42OPIe1rdWne/Rdb7RgdzsFX3vGvu8T8yT1nJx6x80ETUDDwVYzD0qyD3H58jo769+43AjP6XzJAXHJ2knDvXfPsKxXsWnuybkBepepy3n5PXj4BD+4RfoALP/KE52MGNB9LONDX6ufTr18SBFh77M/cZ/C+n9MscNeTdj0khAc01AIP7N4vfeTv9Q37O3EfWp8DfsZf+vpCGHrQkNbIl0LsIMlZsxRZZJhmaqwwyCxjzDNKhiJ3GeE9LrLIcDxswfyBbnKWG5xn02WZ+yQCaBpk2RlFlfidAtkA/7JY2ueWF5AyXr6euMAM4xTI+mS9KyS+NZLsONvvDDMMOmtMvnjrPtEvBTvCUnqHsXRVJWWlqDDACi0OoJnxc5F5RiMpS8WQEnIzFA7I3rZQ0u9Frhl9vvVkeEPlyNPFNsMsRrN00IdunBnkq9TLOv2skXZ/oSwFmqmi5DXz8ruLGVYng0HwLq+j4IQcGwEoWLHajfzb5O2nVNNpXmGZAdJsRmGRc8Bxk25W6aNKMibwAn+0/T1eVCaddSSwV/6May5nTDrYJFae/PwkPb7ADYZZDEaHpXl+ELJCM0MuhJ9T34HmYo0+L5LysW3gMpVEb0xp854np7ATmRgPshIgF8BZbiFfMknsLMUu4/LofvadlbVDGwuMsMQwSlG2hOTm2A4xoQQ29Lsvmjxf0i4BElM27b5aeXpIUGeAZZJUGfRkNbtWuqhhgTMmo6uGpMeCBppCMpKkhtJ11VgL3BU7c9oTXiukqJGkQ9nyX/KXJH2LzgxdYpgktfB3y1IM77O0y7TArq08OTIUAqSYYJpxZqKA72M1ElYFfOTJxT0geVYfq6zSxx/wm8ibT9JLSdKH3PNTsh4DqC0Nec45Src4S4pKsLQS1PlN/iAA5kWGGeVOpAWKTbzqQJRA6YTfg3cYpUiWbkrus9fGEIsM+gBC6bk6FjOM0+ZMrnd5g+/xLRYZYpsuCmSY5H3AGGIl0n50+qnSHCCRwhMGWaFEmrd5y9mLK9ziHL3cp5MtLF18MOwhJFk6yy3kFXmGmQh80HnrYzVA8RbK9LMawPswiwx6wFA3m95kbpGnhykmqfo9dJcRzD5iLkABMUXkNShvrm26eIu36WSbRYaZZYzbjHOVS58D/XZoZ5bTZCkgawmTv1YjpVrebjnynPT7Xp6uYPYGm3QzzQT9zizWoG6QZdKUyFLgLDepkyBJlXlOxXBskil2aecmZ+MZqiGepLqyDMi63UaCejD55Nc6y+mQUu9gwUY3OM8sp2MgJG9D89jN+iDtNApraWcnBjRVkj4g2uIW51hy6Vwv6wyw4h6NNxlkhTMeKLPCIDu0M80rrNPLcdYZY5ZOtpjgg/BUU50wzgx9rFIlyW3GWWSY61zgCpeZYZx/21lpX+ZXnYRZSdAektRV+rjADSaZYp9EpHQmnKE2wkKALRYutOz1XNEK+q9jzaqn3JHGwjDGsOJaIN4oVlifwECKqv/ecRpAU9r//wgDHvb9awpjaMU+M22Afzcl2tkJa4s+Vr2OmwuFgJjZkrsOsMIwS7SzwzQTFNy2Y4Zx2tkJ2afWB7GksxTp97Xe6sUNVuljmy6Svp7Ls3aUOwywwnUuMMtpbjvYrJCgFio+VLW/e8g74yzp7Px9tpzJZUBqSwxFajTH2lZzDz/ZcwyziLytNXhsZ8eOs7wITwD/Bz+O/4GfB5n4H/cL5bJ/7UUM9MF/dw9rWHv9Z0oYSLDvvyuZ2cv+u1ViCAZEXZwnxxSvUiLNIsPhg6k6cNOBflNn3Ak2rXkMtoXyYZwZtjGPQ6l6MhToY81DsJoC9FxghFX6Yj3S+qK1pkDGa9r7UVeJjVf2MD0NwXVcy6TCw3iGcaaYRGEea/Rxhplg6xfJoHClERbcW3SIWU6zi3nb0osBEl89cC6aMIBi3M/VOg2groNGgMlJ/xn8PJ3xn6v6vejACav+Hif9HD6we3OfRBAQWhpQxJf61dllyZuHxXx0aXLlsf39fIfL+XIYM6oDu28wgOOJg6RH2zxp1EN8sgI/HsNR9/biniWjKpzm0aqzppzl/PybBsA8wZhV5T2T9R4FW1fHjF10uNVBiV1LBT18xsDAo8cbTMJDHZb0yar9ztGv2/49lQfjPoxMAEr8zAFJZ5E5My4FAeB8nLdj8uie/X+/DhwzcI4shoxmCU87chZKkDphUlzy2FqRgezL9t5P71tgA1V4chPzg/yJM6xWXX75wLY5LaAMA/DKedunBw89vfukA4dix6X9mCcIIPuJewIiAHPVfOpGXobzGk4k/eedtSaiavZlIrTp0a793FFnW67m4d7/iwhrImGefIea7PpJ4ZLTN0x6/WjXQcgTzvZ86PLihHknHsrZfvQdaxzzJ+vGsjx03L6Xyrnkt8kYnfJBrRwIaeEYpCYg/du2PYV1B40f+7F8YPvZn3NwrAm478mwzkR8+tjk2zFsayNAtsMv01j7XTqMmHJp4EUDzY72O1PPgVFyfj73DeQ9etLPy579nu6d7ISBnmsP/R5wuXPafSwPH7P748kDPq8AcJBuv+6My7Rt09N5+4yWJNyVJyQY7bPqrMQ939Zj8ORd+8xkO/y8y+EXAuhN8wp5cvyxT6QBb4qaSFJliMWY/JXdF+846yEVkAH1ODNsORttiEUucwXFwFsmYd0b2J7wbpPUUilTYiH0OKujhQpdXmit0keCfUZYiFTYaSZYp9cnno1wCBUBPeTpY40sxSg0JZlTUSP5ZIluKs7mE2NL/x5lHhnaq4gDuOOeQb/Nd9imC4UVzHMK87MzyeIsp6nRjEz1lTZZIMMVLjtNvzlAqTy5YDvMc4otOt1j8Ie0UA7D47TLKRc4GUWFju0kU+4xlaeTLYZZpI/VYDcIvF2jP/w8LDl2hX7WKPoU17YzyzyjzHnzmaeHjDMvdU3Y/qWZ51QAYypyMhRoY4d9EpxxWeIygyT8vGad/SV/KXk56jgIyCiRjoZrk7QDuxn3TOlBia8Gylkj3s5OACwFMmzSzSbd7hmzQZJqsC9sijrEDu1c4zW26fRwlHoAiX17P3WGXtaTKA04kMRP4RJnuE0zltr4ARM0UaebTWd4NjuvZN8A2QcfBSAqGeIyA+TJcZcRPnBG56AzICRDucg1up1BKlBZBeMO7RFO0OyuXA1pjUk0zQ/NjL7LtIQEVIC1kuSavTH4RXjt0h4+nwuM8Hf4TshLZG6+znGmmETm3QppkGXAOr0h47Oggd14fwurMHDPwFkr/AX2SpojydGus1dN2mr3ickgm/htvsMwi+TYQJ5LStLepJsyKa5yCYUT6PtjntwsZmyGImPMcpabjDHrvmGWKCimhNgLwywyzQQKzABrlmXwbpYCtr+X+SFZisFu6Gct1myxwDIUGHOJa5ZiPIPkhXqWm5xhhpucpU4iTNwXGUJJ0Rd5j2UGGOVO+HjWSfAGP2CFgQD/BXhJgtXJNt2Ugr0BxrJJYUE+84yySZqUN9ICz5cY5lt8z4G7DH2sscQQCpUQ0+0gm8SsBnqCbX2Jq5hU2J4po8x7aEYLRR9sqaF9jWsMsMwcp2mhHB55BwFDBUStMBAWErvIS3UnWMAznlYueb6SPZcZRAniChCQBFHXnZpcycPBBjdaV5cZdHCvGMMKhfq0sxODnW42WWYwWEtzjMXnbTqYYvYEaeYYC7mx9lf3USfbfIvvUXDGlSV7GitK3nfj3MZSMBPhB6jwAoGUaroVdqR7UGugGPG9rPOKh9g8//OMYP83/nqWT9mlHQUAaQBbIMOuD+PW6Pd1RTYdVinLl1Y+ZXlyBtw8xAr5NFZ0v0xIy0jQkHZ2YMX+DGHSHUDTPgb47WHgwxkaXkv62nFikk6SqKuk6FAwgq4L81i+HfYlkqAvMsQObcEknuM017jIafd+Vn2yTyIksUDIM8HWxwT7DLo3nzz6xMyqkWSSKRLsM80rseZKdi5Lgzw91Gj2sLgt93uuMMgKp5hnkim26eQ3+COKZON5b89vS9vWEBZMQm9KjzZy5IOlxyjWqH8dC75Q47Xqx/bEgXPYC7zm/z/h56cfS0t1jypO0ABrT/i5+zvA3/LffRUDYDtsHxcYCdDs4D0vlrCePRUP8qvTFMPvKV71ofkGVZI0UWeJYbowr2ixEZPUUOCSPDjB/FXf4yJt7HiAUJUBH370et+ToB4BHVojB1nmGhfZppNT7sEqpYbtg1k6yPbkW3wvfMjF+m6izgWux1qnWrHJ64TjmBd5i1iIX/Nj2eH30Zt+r4z7eToJvO7nLuvnSFLKg+Bqhoan5TG/Z77m79fqP9uKMTHdo0ze6vskOP4LYsfCYZdpgh1H9w075sDd4aSBB6WrBmqxBwhQw8GwPfu55wXG5rD167jLTPPEcOLQceweyxgA97yzx576uUuddFYcBs6k+uH5l/x3HrjX2J6DVx3GUiPvbCM8xMHZc0dHbVsP6Ro54kDcYxr3by8wAYUf2XYfdWCPx56+exwoWfpvWsKwxw62tRrQ9fQj328H7GgyptghZzwGQwvgNpYamzHg6qiY2dDw7lT6axvmiSYArsP25cFD9/jTq7VxXiQLphXuvY89Q477NmcsEOLpY2O40UNjLbvsMuV1C2Zi387/n/7EZdcP7M+9ew6a1rH7M2Oec9mkgWZPPoTSjwxwo8m89LK9vg8lA+3SJyzQglY/71WTpB5tg9Sv+rZhx6/lCBx91bf9RRqgfsalr2MOhj20bUqPOqOvyfZFHrQ/27Off37c9/muJcE+/Qj423D0NT+WX/XgCN+G/bpfEx/a/okJvF+nwZzP+rX0hgO+RUtr5q5t79Oih6E0+XsrFOQI9qzYs31/skdcu088UOXQSTjxDftaeRXK79BIXm81L77Dfi/oTyFv+3X4qIGt5bv2GYeO2PV06EUH3/sJtcAj9/5bzTugmrPj+KgIT6s4oviXv74Qye1x7rNHD5NMsU5v/K0i1lI9zbtGk3uxr5L+sPtP+YfskwimiPzpjPZvXD/JnyS/ucJlXvEH2gInI1ZeBukCIeRbJL8yPdxNPjvPGn3k2GT3QACC0uja2aEJS+CTiTFAf32N7URX0O1XnTVmshFrnCx6fj+YUiW6yVXztCd3YztNCrYa7z3PKWTALsmbQJMZxhlnhjy5YHZlKDDKPNNMhExUgNu6F2NqvIy9sMsiQ7RQZp1e+r04UQLlHGPRpCwy7GbCVbopkaBIql5mJ2EN5ggL3OKsH0vzThFQmabEea4HqyvBPvOMkiNPhgLj3EbhHXY+Tdqsn5XcbIQF2tiJBLVFhhljll3a6WOVu242L8P0bboYYCUSENUYKv1Qxa2aZJ1nMzY33z1dey2UmfO0sFHmKZJlgxwnWWCS96m4HEj+jG0+id2kOwzxm6LKIaRtC60nWWGAM9xm15kLYiZs0k2dBGPMUqKbKV6lQgsZigF2gzXBYqF0ss3ysedJ+TltpkoPefZJBAPzJAvO+FO6atXffzIAQP1+3eFzpVtmvcnV5Nd8hOw4iNG6Rn9IjnWP3PX0T4UM/JhR4M//V159/vq9dmmlQlswZ4tkucVZxpij2eWLk7wfXpG6zuWd8y6vc5FrIb9Os4mlMG9RJIv8w8Ss2qYzmEy6Vm9wgQGWI5W26iCcJFft7MS9K0aWwh1M0mnszB3a3eNt1WWa95H5eoL9AHBXGCDtg4gcGwCc41awSpWgXaOZngP/VnjR9/gW57ketgUaWmgd3STNMEukKPMDXo91bYYzn2N1S15VJMsa/cEgVDjEAiNc5Bq3OEubN8Zr9PEO32SDnEtWhxlnhh9ymXPcYpNuT9w0OX2Cun/dZL/LDHrYgSVb3uQsXS5rWqOPi1yjgCWb3+IsPeQ54+tfgn2WPGlVcrsayWj+jG2YpIUKSwyxRr+zAzfpdHB0ltP0ch+TJqfjOtS1k6JMNyVmGWOc21gCsoWTyAJggZEAHLdoJPbKUH2A5VgnJP+VND/jz9U3+AE3OUeBLH2sUqaFHPnwirIEYPNuHPA04JrLwBvs8n0WGeIU824tUAxQw/Ypw1u8zf+D32bQ/VrnfR8URCVg7yy36GaTHr9HNGi4xNWQHNtal3CQ0O6pFsoOFq7HtS4g9yqXGGOOFGVucIEEdX6LP/ABzkUGWKFKc7DSjMlsa6f5/NnxX2SYaV7hy576/YRmMs6ePM0sywy6Z3IXYOmsAsPF/Jxh3EEJYzhL2r5Or4EP79Ng4+0R/kFhuv8NTO4JjWCFKnAJK/qhId+Uifm6v2fBv7eHgUT3iSJc1iNNWIDMt/mjqGkGWKHoQ0sbItyiToLrXAh2l4FIPZRp4RJXHcQz+fc8o/Q4rx5gjFkWGAmPPKlQ7P4ZAHCHu6YACwUSVXwYvcBIAMoCDU8xzzyjvMI0G+TCy1A2MNe46HVIOli9NjgwwKufNW5yllPMk6XAXQ9pK9GNBZ6Vo4YOaS3w4PIRju09tkbwq9jfYmLc8+Otpl/MyyP+Z8J+5qe/+iwvtH5qP+MMsievwuE5gm3BZeimRMVZuMdZZ5bTjDEbHs/GMuzEgm0MZL7KpUii173exxpXuYQC1pRAr2A69Sr7fu1qvehkm9e4xhr9MeA3r+4NFhlmHwtV2yQda6G8pDvZdoZfPUIwbICcRuqVLh+QiNAAhDRbXo0KQZF6woZbFpik532dhF3zY36PXLFjygTWYLf6v4sYEFOnwXhtxaSRGRoAu0Dbk34uxEJ7A5NSj/n14KwfsH4hTw8PIjr3S/46DP/lMaj7LZJYxGg2rVgoSQ3qFcN3ksfs51nDEQEaoTAtUP0YkqtYyM9XgAdQfgSph8B92H0Ebd32/vW7kEhD+VPYewqdh+HwOrCL3U/PYWDUJ749j2l4KyYx38oiPPkMDlcwP8tPbPuqP4JkFgtJAbtOHmOeii2Yf+Y9eLoJh5LAx/ajR/8MkilsrW7DQAwNVQ7D0y3YqcLRTwzkOPQCsAdPduDwT/zYfAbVPX+fn9r3lXz95BM43OzboLAjeTzuAz/2fVvw9xJo9JzvWwV7buSAP4WtR9DlnpPlv4BUj+/nLT+G3RizquafUfBj2eXf/ymNsJgmqN+DxJ5vX7Od5y0glYBkzX53C0jtQvKQHcN4zj0PuyvQlsHWyrJvy5p/3mcYmNnu5yGPvdln8HQHDsn+4AE8/QwOOcDKIdvO6pozxe779t3zvz+lkZi7ap/96JGl7O4+gLaH9rVdoO2+f/6nvj3dUC5B6g/92B4GrsLTJ3DokP9M2j9nBwvb2IRDLVDdheSWH0P8uP73UK4ZI7EEpCt2Lup7kMjZ9Vrfh8/+33C4A+o7kPiuX0OPPVX6Xxz4/wKN++yYJT43HYLUT/zzNLg4aufus8/sfTmK0VxboZ6ERBKefOzX3p9CvQqJ54BFv95WadQqHX4sFv3a67Lk3gMl77/29YUAemYea5JaMcT+1TSpNfqikZQn3TynuMg18uQ80MJkfHrNMO6eE1mKZJhkyiVHnSFn2KbTgzT2WWHQvSaKUYjLh0V+FECAOQLslCZ1llssM0i3N0EK6TAfPGugmqlyi3OQMAmVCjixA+c4TTs7XOSagys1ZhmjmxLXuMjryR8wwgKLDNGG+WBt0xUg4woDKGl1lHlWGOA654NZZYDmVkxxKw7qvc4PYnoqCYt8jZQKWaKbRSwZrZf7bNPFqvutaUJsrEBLkFUgxiZpas5KaE8YW0Jm8eYJ1RygpRkuW+hFD3m6qyVuJc/STC08rtRMpajQ7KwvpYDpWii4T5gSI3cx+bBF3Jtsqs1ZKWoS+zwswxg4pfjacHWRmeQ4Z5gJWdYaffRg/oYGdlYCHMmT4wwz1Eii9LNFhiiQ5SLXAjjUhD5FhW0647oVc8YA3XrIaKzw7gr2oBrQMqkApgXACSy0626LCimS1EK6pN9bZJiz3Az/KF1HOfJUSDHMUkzkr3OBy/yQmjfSakbkVZgjH/KcPlbZcSmEAAX5HFVd/mP3/BAjFFlhMIyhlSicoUgv9yMJeNA9Xb7sr9PMscULwaAskHWfyT6GWKSTLeY5FWvbGHNI1i3zeCXQSop6h9EAtAYcGO5ki4y/x6LLs8XwsjCEJrZJ0UTdWXj5aCr7sbRG3Q9KAs2xwTyj5Mnxa1wJP8cUFd7mLf5zfg8lxg6ywlluUaOZ7/JtLK33WhwH86PsDml8w2utiU5n3Yr9dYmrmNeQjV3ko2qg+1D8X9fyBB9QdUBwm04+YCIAbzFKU5SpuK/jsjdV6/SyyDCrbla+wkAASgMepCHp5KvOVrG10polya9aKLPNICZh32fATfJtKJCi4pI1DSMA5G01wQfs0BZAj0JlhllEYUxpD3vS2iPWrwJSSqTjaynKTPEq57jJGv0R4mDMsE6W/bkoyZ8aO7HuxEZXQrExk6u0scMwS3yHv0OWOu/yeoRWyINTCfRiVMu8X0O8dnYZwhLkp5lA1gsVUpzjJncYZZsu+n29KZBxKXa7A8EGDq/TyzSvkGODFBXavMYAXJ62zJIPoKzR7QFssNTODosMUySL0it1PIxdnqabTe4wGv5TY8wyxCL7JCKAK+Msp0neD4aP/PFmGA/QPUWFGkk2sPT1HvIhTQRoc2ZV1RmdX+ZXkWd5yQGeNCXMk7iFFJUYthbchiBPD0lqDvwmo76TX26KsjUWSYz5JQmLe/oIR2IPq3Rf9Z+bwxqhBAZMSFIr2a17LpEA/rZ/7REGWLT511+0t5a32iRTzDMaQ68/8vVP/9d2D7IcTCl5C49zmwGWY4BT8aHmOr1USEVITJZCrA32Hr3xGd/l25zjVihXjMHYwxLDUWfPuBLCAPY1sr42yX9TA5kbXGCE/4ZFhqNeWfJ/j3In7EUEgClRVWm7UsVI5p+gzv/S/3UDtd+wEK91ehn/9ZnwW86RJ1UvU0hkSZ/YDEDy7okRTrJAV32blt0nVE4cZjORZn38OAn22Z2w4WDRGb2DLJMZe0Cx4xjpvQestz5PIgbwVWdHtke9vMRwDGcKvh4sOwNbsv8+VsPuZIJppFSokwgmnGS0YIDzwWvD0uXNTCDjPqE26LJk7BnOMMEHTPBBsO1U2zfYnfusMMAAK1RoYYLpYLbuk2CSKa5xkX5W4/myzACXuMoKg8703yFLkVucRf7KFVIR+Abw+GU48r7fN/1YA6+ZkDwk8fvoT2hIZmf8XvmIBlNWDKuP/PfeA47A3q8/Q2vpswZDxZtZhXtJMvwL8erEmGt5SOZogBif+L9TQMW/J0BMaQyf+f+fA4qQfJ4GU+wRUDPJKXWgGdrEfluDhDPZUm2QOowNRnYPfO6e/y0A7DAGUjRhQMaWvf9nn/nPfYqtpZuQ7MLWSV+P6zsGHj7dgkNd/n41//dh279nW+FJDQPBXHoINEJXalCrwdGjtg2H6nbc2DH21eF2DGSpQfJF24/6loEp7Nj7NAntEKh4CHsO6DMk1axga/5hGuzumv97i0hC78LAGWqw/xR7LgggxH7uyV04fN+/JrCmhgFbBSjfh9SgfT/RRCN0acf+dHXDk4f+Oy9Cl6ey0o3dm581tq3tBf/cJtv++h4kdA0JaD9sx7ZehUTFjtmh5IH3AQ6105CP1m2fk8/58T2CAYWH/fz22vtu7TW29Wi7XSttx/x4lqBNA4CH/j4ViBa5ncaQrcOTZ6v+9Yr/3WRfO9Ri/0/qezXsGn3O3jt10o5fUu9bg2ee8XPeC4mfwTP7tp2HNQhyPz9qvt9J273dT6DtqAPEXbbZAdr6ffF0Ew49Y/dT4jOofgLJ4358qv7ZrS4p/sy2OaF76Hnf/zXfhqf+M5JdP/B9/AqNNPG/5PWFAHoZPqXKs5HiJbZUIzbd2AdKC6ySJEuRKZfEpNl0/7VUMLjuMhISH5lQy0dP6VpbdFKnKeQEaoolUxNgIomR/NjEclpmEHmF5MnFhHGHdsaYY55RFBMPNqGVx9IyA2Qphq+KgVLdpNnkAyZ4jWucYYYpJoMJMM4MG+SiEJhgmmtc5DzXQ24ywTSWjJgPQCVLkYtcQwlo8qsCoiFXwZJ24LDTG5NFhphikn0SDLMUgRlmyF5z36uBKHQULiIqPxAA0ggLwcywwmSctBvNi/FlspJlNknTQ56dZLsXTtWYGp7jFgWyVFzipGCINJvh4WXJv5sBEoF55G1jqZh9rAWLKI0Zk6ugVHOVosw8o2wnO5GE9iqX2KaLHdqClSGAAmzSqa/bhLolpH2dfpdVnUFTpiXkFzJJTrn0sUyKUe5EmEGdREyH3+GbXMBSUJMu01DYxEE/RDELC2SZ5bQDPtbot7FDlWaaqbLCIDny7GLFZcYBiSEW/V4o+zWzHMEiNZqZZCr8tTrZZri+SEvCEiyV2ivWnYCXNJtUSGG+Y9uMUqW9ukN7cidSH1uohCxU99U6vXQ5e/PL/jKz9IKzn5biGIrpk6AeoL6YZiXS4dUmaeGuy9DkWSiPnBWXmivIZ55TQEPCAgLt19mhjSxFrnAZhQHoehbjSj5KOWcT6ecKLstPUWaOMd7gXVqosEY/23QGi2SHNk4xH9I4eTR+wEQckzomnbvCZS5yDaVdmo+qNT3NzlzaoY0VBlCKquTwV7nEKPNhW7DCAKPMx1rTyXYw5c5yM/zYbGhTjmeFnlMaRkwxySRTn9vnBPv0scZ1LtDv7MRTzCP/qmkm+If8H7nE1UjinWEcpahnKFJzn1CdHwXfSNq/yDAXuI5CRsQclm+pGErn/Lp4hWnMH6qH/5r/mLf4YwadOfcGP0Ay1kmmyFBEybO3ORMBUescZ5L3WWGQDMXYX7BnxwTTvM+kM+v6GWQlfMPU3Jo7Z3c0qQZOJiNIZZM0F7kWabBJqlxhkEF/Lkh2Nuvs5242GWIp7BA0DBxhAUuJtgbXpK92fVdIxbDn3+d7tDloN8wiKwyS8qFEiW4GHFQpkuG0J9cWnOk6xxjnucE8o5Gevk0nF7iBEqVlsyEftw0sCfQi11ijj3lOkWaTP+YtJpligBXKpNiiM1hSYnwXnanZzg7PBQL15X1V3Ef5oC3DOr3xfJAcvZkq3+NbvMk7oTgA4hlvKoq8AQt5rNF4CGTgwcQRjr3/2BhBJ/z7v4o1ubsYuFDECvM0jXCGgn3v019t49npXQMigCeXnb2yB09/HQ7twaPcYRRkIRsPJdQquGeZgfCk1b2r8z7owV2q8+Y4TZ4ckiL3s8omac4ww3seEiOG1qKnMJvGwlivAoIExney7VYFZuEgQKnL6+BlBlAaa5pSMKrLtHCZK7FWXuA6lrI7Gh6kU0wywgL7JIBmRlhwuxNLbJZnbBJz+tW23macKskA+239sUCYHvLkEgbW3+A8+yRQQNoWnaQSFeodCR/s7lIkE56vTZhPpa13PfR3rNlxaM3F/msQoHuv7EDWPKNRKx+0y+li25nLtj9VlxebjcwQ57lOM7W4n82X2GwllGR+MGgjTy6UOoPuIS3vUMmmzSM0E+xThfsNsBLg6x/wm1ziqoOiLcGUtOCx+/Rg/qJv8AN6WY9jo7rVjnstmH+yNpIa5kgRA+HuAq/BXscztBY/48nLcFgS2+Pwpyd+ha89+DGfZDqoZxJ8JfGAn504xld2HzQCSZrg3onnyfXnaX34GVyGT3NmD/Er43fhHjy6dJij957wNANXuRTP5w0fwHzpXxtA2hllzVij34IdvxrQAYmDYNMT/7oz2/Q7AhaC6XMYWxOfoQHKVWgMN2S2pcCDEgYmPPX3BgNVJKUexUC7Vv97x94jmaWRXvzQP6fFf7cb2HTwsAMOOcuMHWztfRYDNdbsfQ9v+ff3fD+7/DhUbNuSHY335DABHrcc8Z/N+LY+A7RDYp8GELntQNUBgA98/w4fOF7PYV6FAotSBNBF0bf5McaAa4PqDqSeh6NPMMDKP1usv8OvYIzJz2gAU2LrtUFKjLnDNBjm+N8ttk+HP/H9K9MAdAXOZbH7TYEMe74fTQZmPq16OMkn9jlPPzPZdOK5A/ve6tue9n17hoYHYK9vr64FyVLTvh3r9jNd/n6Hn7X94pMD18K+syNP+Pv4+aQFUs/68dW1Kl/bsm/TIew6f8b/eJgLFajedWBPHnMCC5OQPIwBhp+45PsBxpxLGCh42GXRDv2YbPaJv5ffb22d9ncybdvVpvPa7cfhGTh02Ldny85fsp3GYHDPQetWv24+Bl7wc7nq/2/3oJS6b69+97Edkyc1OPwz4Od0p/pCAL3DDolYE9PMqvty9PiDTzR2NYpqJN/gBxFgoCmaCvi8ywG26WScmQCMNMGU15r5UrWQxJLGTJ5WQ8bj3ZT8YV2LCZumxALILNq9K4qOCpZiBbBFJyW66cKMf3doY5DlYIOYFLUeRdwwi2zR6Q2TmXwLNFOTdZab3OBCsOPueuKriipR963prIT0rpPteAiK9SXQaNcZdmv08RZvc4XLbNPJOW45c3I1WGVWDDXYhzu08wrTAbgVyLJGH0o6S3rhOsRiNI197r1XwdJrBfqJ5XGKeTa80JR0WqDgEIvMM8oQSzF5twJohSxFPmCCSaZin82zqjvA3BUGQqIlj0JjuxAAiRLoJAEpkOU6F8hSDJm0zNUP+vvUaOYuIwHwpTxxbIAVdmhnmQF2aadIJuQLo9zBfGTsWpcszeS3xlbRtjZRj4JOhbqm0/p6t4PXYJKJHHne4AcuuzAZpDzJ5hzo2yeBEozvMkKSGhksBMaagI1gDCq1Mu0+VGK1ND9+QqU1FYW+fg4sMdikZhUqDsGG3DbZH6bSfayFubeAAoE8n/IsDc3Tl/f1CT08S5VBll3yacxggbUmZ7dghybqFMhwm3Fe4xryP9MEXSblkuV0U6Lo92WCOgucDEav+ViWucZFFMgAxDYocEN+enaPZVDCbZmWAOrE8JUf2A7tXOJqSPWtQTTRpFjZAvbX6SXpTKgqzTFEAPgH/KNgl6pBnucUIyzQzxpXfVvFZpR/n9g7Jbo5zSxll6GbdGqDdWevHEzwlgzZvKmyFMgyzSsUsFTHNJvUSAZjSmyhbbp4jWvIFL7FZchTTHKG2yiQ5u/xf2eRIZYZcOGm3fuXuMoqljw9xiwbLl1bYAQZoYMNb9bp/ZwU9iqX6GMNyavEdm/BPPmMIZvkd/h96jQxwEqES93iLEqNTfj2yG9LQ7AsBZq8iRKLWICypQEXkCG/QEc1XdsOUAmUy9PDIMuYV5wlywqUVhCLeXnaEEzsHqVEqvFUE61hW5kUY8w6i6geEr5lX/cFoGjotsAIQywGKJsnh2wA6iRcFrhPm4PpM1hCuVjlKwxE3SJvWT1ze1mnQJZxZkhRiWOsz5CU/Awz/E3eRunCa/RxjlsxRJSHarMzMEdY4M+dqf1lfo1zmxLPsROZ9u1RB9rAyoZQFVL8Dr/PNfceS1EOkCdPTwxCPnz5BV5q/Snch8evwk5rG8l6FTrgcT8GUAAPxo9wbOYxtMKTl0yitTf+jAEN97CmyKfznQ93rTn6KlA0MG/vxDO0rn7GIQf5ZnrHw07E1o5SDGt1HeyTCKa8WMkLjDDGLBkfnIllu8BIeF+KWT/JFBvkIhSsRnPI41U7AM4yHmKCD4DG89UAwgpN1LnJOYZZZIxZkq4SOeh9fJ4bzLlyRDWQhoudbIUMOk8umM0KLhC4l6XIDGcYZIVN0qzRzyh3ArjddAmx5P1LAUymWGGQIllGmXd29HIwy+w6qToTuZthlphnFPnaFV0irKHJMoPOjDWWogJ8lFCbY4ODfr8K+mqh7Cy/lbB4WWSIfveGXWGQcWZ4iz9mhQF2aIuaSP6Ygx6go7VMTO55RjnDDAPug7eGBcGJYZlgn1nG2KaLYR+8jjLPEIus0R91+inm3YfPUAaBjKpPK6TCp1bHTqCmXUPJqA/Ejl6jjxZnOX/S32FD4ZcGY6Bc6zUQ+eL4NcqJFJ17D1limPGXf0yqXmYr0cnjnMl4PxnvMHJDrsjgg49JUWYt2cd+xgbARbK2nyc66T2xziJD5F7aYLhqVg07tPs9JJrTl/v1f3oBjqrpP4aBJL+EAQt7/rVxjA35GAMmurBBha9XT98HWuCQvEA99IL7/m+9RxPwZ/73A2yNk1yy6O/5GAO05Cc3jlkavIABDmkajOYkBj6sYiCw5PIHQYmc//8BBtp8HVjCgExn2/GsH4w0BnS9gbGoX/b3PuE/dw/4G8BVf58fQfknkDrr2z+MtRNfx+TiVX+Pom+DmF+PMYBynoYv6n1ssCM5ub7+mMbzoYmG/UKOSC3lBCE3JUODKS5w9XnfVwFLzqCj07dD2zROI9TnEQ2W3LO+TUcI/znc443LBHjESzRSYeVlWcWk7cUDX2v1z5319x/3fXzNj8OhA5/zyxhwKnn9PRpDsvPYeTzINnsVu17c4zAA2QR23VYx0FTI07P+uVewYVufH9uHNKwy1rFreM//jBPJxqRpeBjuYmBbFXgLA3e1XQ+wa+sVGud4w89R3j9XIK/Y/RkMnOzF7ok97Dy2+fcfYtLzKviM3j7nuO/DXT+ee9i1kjlwbvr9s+8CvwJP78Ghr/r3P8KAxhH//x48KsM//DlYel9IKMaPuADgDz2TBK55Gtege4sUyFAliXzwerB80F0sIbXLJQdVBwmU1qqCeM3zvvZJUKaFWcaYYDoe0EaLP+Vg3jaWPLsUgATgjKGe8MXo9KlcjSRJqiwzQJEsZVJusm3sOMll9H1JJQTiLTJMb3U9mEiajP0n/Ff0uceU6OXGxDqOErIEMIolA5ZUKYCm2QsbJbv2sRYyTBkeqwkaZCVkLWe47QDUYEgBLPxiJBgiaTYDJGryY22eajL3XaZOgjvefCnlz96riTPMRPMHBMNB5sFKz0xQjwnxSRZIVmuMMRcFazPVkJzkMH8pYxQuRoOpl0nGTHYscCFLMYpeK1aMsSgWgBg3kggLLBGYKRnkFJOs0xv+VvpsMTrTbNLFNkouVmEO0Mt9EuyTOiBN3aGdD5gIaQoQZs25ej7Az4Meh0tuhG1A8T4mGzd/QpPB7EcBvYN5CubpIevekJ1+7BWykWA/JsiS1IoZYGyjakyI51p/OZr3GklmOY0lL1tacd0blj7WuMNo7KfxEStUaWaRIcqkuMXZYIFuui+QitIv++unHA8Wgt2PVUqkuc4FellnhnG26cLk7N3I02eNfk4xzwDLAVhoDZTketmDMgpkIoxow//s0B6AkII1xHYbYDl8+UZYIEPRG+adkNrPcdoZd7aWLjIUpuiTTLHMYFxLJttOBoC2TSfLDISETBLgOk1MMsUkUwEcy6vte3wLMBaPhUDUA/jrYy0aWLEoLA13mX0SznTOxPpWo5kFRsLU/S4jNFOLxsyCfrZ4iz+mQIYFTsZwSEC+AOiGOb+xXJW+KsarmObyEa2Q4hoXqdNEgSxv81ZI5uUV1ss648ygxG1JmQFOMR/37hBLnOc6Y8zF9xf8rGUoOru9EEEC8r2cYywYfhqCyUvq23yXTra4wQXqmH+TZN5aY6skA3DW81cNspjvar76WWOQZcY9AKCZGtt08i5vBIO6l3UmeZ9mqowzgxKBC2Qp08KQ2zYcZ51R7sSA4WC4iIYzNZpZoz9sARRiJHb4lrObdawmmOYC17nNGSS/a8Ik1AKpr/Eaq24NIYA2F/drjRnGmWOM/6T6XyGfv17Wwy9LoKK8uJLUOMetYGotM4g8HmcY5wqXkfG9WIZ/wS99sQvRX4OXvNss8MmqeqWBNlEP8BeMpZ6izIoH8oh1P8JdGincWf68/wSkYb31eTof7lJIZPnxyydZaX2RT/vbePTVw6T2HsNxeHoC8h3P8rNXj9H68DP+PHOCj159jgdjR3j6Nfjk1Q62O9r4aPw5Punv4MOJF/jo5ecoJA0Q+XD8BZ6cwAesbbHmyvbFasQCzVQ5xXzcO1KFaJBy20HkERYQ212KkDw9bGNp8Pb1Da/z7J7ZdZaV6gL5OhfJkGAf8yltCc/MTbrp9lR71c1ZB79mOMM2nVzlUlgPjLCAkp9l9wGWbK/rW/WLBpwKhkl6jWdgoQ3GC2RdMlxEdg1KVS94fZ12uE/D6RrmyzvCXcq0hO3LGLMxCBYjz2T/NjjUwHeBkRisNNaJLHOMhd+0AFUN882HbisUJQuM0O2exHqPFioscJICWRRIp2A9eXVbQFpf+NsmMRsFgbDywlZwXYl0+DGDPWfGmOMyV9ilPRQoskIx/+0000xQIYV5GieZ51SwfSXnL5ANBVTRnzFi7snOqEoy6uBbnOU24ywwQjNVCmRYZJjv8Nv8MGFhe4utJ+hkm1utX+OdxJu8x0WmWv9t3uWNuHfX6eUPjv0tppjkB7zh6gGrg5qwYJg/4tvIcmY6OYFsd2YYp4XKX8Fq9NfgdZJGyvNpDFQoYIBLv38vTwN86/B/gwEbRTPuPzRGA0hwmSP9NEIyZjCgJW2/E8DfEQyoueyf84DPB9QIvGrFgBVZEhzDwB0BGP0YKCVwTK9W/zx5lN4Hhmh4LGp/jvrn/i0aIOQDIoGXDhogCf7ZDy3EgSQN1nUTDb9UbfPxA/s7gQFcezQkoB5AEuAQvi+P/X1P0AAxBYrhv9tPQzo+6u+pEI2T/rM9GKCz51876vtymgboJ3bhXRpgl+TAx3w/ZrHzqGMmgO0eweji5IHjmvbPedW39VexIRUHzofAppM0PPnkdanzquPS7+81SuM60/E6hgXe9PofAZgCcV+kYY2hzxVb9L7v/2n/mV0aKdpp7Jy5z2BYYRzcBwX4nPD/v+af/RP/Xqtvk0BZHXNJpOVDKMB23/9u8+1aJQJIWKfh8arroIqd9zoNP9gTNO7Xl2l488oORJYffq8d0jkXc/ANf79+/9rP6aH3hQB6x3jgFHVjJG2Sxvy9TFIm8MoKc0uaLdHNLu2c5wZJL1YKTj8HGGCFYRap+NRLE7k6Tcxx2ieLGZT2eNAPT2bjCfYD4NDktIttbxqa6K1agS7WRNJBKKX+fY9vRTPTQplz3Aq/EBXliwwBMJ+0NFABIJ1s8xv8EZ1ss4sZ1et3VxhghLvcZYRuT7HNk2Oc2yGXtNCQ/dj3BHV+yOVIpFximLSzDwdc5gF4C2RN/AxnWKPPP9Oa2lHmucU5VhiIhqmTLZYZDKZHiW6anfH4Nm8FgCBzc5koJ53VojRFMRHSIUG2r8s/LUWZDXJMJydIUKfZ5RzznPocs0L7of8XyDLJ+8HSS1NijtOsMMhJB9UkaR5wzzGb6O4HaGLm8s1uSD9Dxs3WUw7+FcmGl6L2pc2ZfmJLlugOgCNNiQ2X2xTJkqQWHo5iioptqWtsmy7kwVJOpEIGLoCtRjKAkGUGgvVXc18VY6DshgcfwAWuc5H3KNMSxa0aI4HrAt7EeJSUW55edi6rbrKdiHvJZFKVKGTBWGDyyeus2lRajEGFAvyA1xlgxT3U0lgS7ybPOvD7ZX8Nco80JW5wIQrnLb+PjbHZzDCLATDLEL5OIoJU7BofizVAaYIyw05SY4nhODebLne3c2Dgla2FXcH8mPak5DQlH63U4roWCJShGECwGH8ZP28CzeQXVSaFko9nGOdd3kBJ28Ms8hrXGGSZAllucD4a4YOhGno21P0ekX/dAMtc5wIXuUYfa1ziKqecwWDMv2R4cSrpWd5ykj1WaAl2WDcl5NUzzm1ybCDWeJZiADanmeM811mjH4t6yHKTs8FKszTDhsRKoKPkzpLItbPDLu3c4iyrzhTbJ8Hv8k9IUwrAv4p5zenakD+qWIa2zm9Sp4kiGd7gB+TIM8dYMKcFDAgw/xbfI+XNoADNEe5yhpm4ThYZYobxAP+1/7rGBLCe41YAfdpnJdEqQVbAIBCDu2UGuMGFeH51O2NUa3ov6/SQDw/ZP+Q3kW9eM9VozItkXH48RJEsM5wBiPfpZItBVqiQ4nt8iwT1GEA1+zNUjJZNuqMBnWQqgPRhFuP5b43zK4BZPLyefDeeB3l6eJWpON4XucaQM/K1rpZJxX1j59WGJmm3dlhkOOSJvwgpt/d5IZ6FYIoH+Xut08u+rwU2EBiM60iASonuCIGY5bSDKF38xUsv2nrS0cYUk8H6/SO+zTuJN5lp/RV+lHmFHx77VXYxD7SfZY5RJBsp2cvHnmeaCd7ldW5xjkWGucol5jnFGv38y5depkCW/6Lj79Owj9gIH8nTzH4OTJlhnHlOuSxzg206I6lcz9xlBig4c3iR4VCA6Hrd8jV8x4Gdfa8/dY82UyPjvoybdFMkG894DdSTPgTW0CCByTDlaaoB4oiHWpUcou5kixnOoOA6KTJm3RdaA5yyDzCucTHWjyUPF7vNGSTzbKbKWW4xzCJKd9cQ3fZ5ywGwarDnBIiJsau1GYh1fJqJAOpN8j4aoFXaDQH6WGPcB85ifFpgkg1YxDyukGKN/uhFVOumKDPBNN2u+FG4iFjyVh+tfW7dPBgcZBY5RRdJl6OeSjsjUnYBtqa2Mc5MPCM0tJjnFPJVVMqwgL5mqpzjJvIXn2YihjxiCe47AK6vg4WpiSWo9QoIewEFu0wyxRynWaOPDWfaq5ZXrS5Wt+reEum45tboY4GTyN5AwzMghjRN1CnTwih3+ITn/moWpH/TryQGnCSxBv/lA9+TzLGIASPHMUDlRQwgyNBI326lIZXt959J+/faiBTQAOdO+nv202CaCRg7TiPEZPTANgkcPOnv34EBEp74SZP/zHHfFwGG2rYz/rWPMABKYEvaP+cYBn71+/+/7p+VoSFF5V/5nazv3zH/WTGfxvxrAgsFvOX9+0exVGyBOy/6fh73zztCwwsyS4Nt+CoNv9U3MIBJoNt9/7sfY5cV/Pis+3t/1b//N/z/+xjQdNm/t8fnAajHNK6BBA15rYCykzQYa8dpBJdkfBt+x7f3Pd/Hdf+eQL0XaTD87tIAJk8cOH4CmnL+3mP+OV+jcd0KBLuPgcYC66AR+lHCACpnuDOGnd8Tvs+v0kgXfnTg78f++7oeM9j9kPVjMHZgG3XuSxjo9nXfV31f942Ser/mn99P4zru96+L0SmWZp2GP6WCRwRAj/kfAYxJDHh9eGD70tg18TJ23b6EnT+FBv26/1v3Y6u/3yMM6Bzi53p9IZLbcWbY4SuUSAcl3RhwWxTIUiPJBB84G6vGNl1YitRqTGyaqcVEL4GZ/Epic7BosoZv36n8xtyT4btMe9XYWpEzGGwDsfIU6FBO2sMs5dOhMqkoWFTkLzLMJFNMMUnW/ZxEbVdK7DSveCpfKSQPZTd5VeNmwFLaJUY2bR5iCUmj+lh1pl0LYsplKLDhMoqDslU1jtqGHmdeyezWjNrrHHcAsZf7rDhjQH51O7QHiJVjI1hfG950S45mRV8z23SxiXmlFMnQhZnUK31WrBux0cyjxfzeelxmoXQ/NcZKHVaR0OLSEYG68pWT14lYNAJnNRnupuQT5uYohkz61UWfn592dmmizgqDzHGab/Nd91oqByilpr0XA6pssjjMNp30kEe+TJKarNPLMItMMxHnZ8C9cpRcqZemwTWakSn7aHWeXDLvcsKq3wOFYKICzvIYjyJ8yBueIhmSDj4a6NiE5JwqMHXvACSpMsdYMKDqNMUxrWGpjJIR6RykqHCFyzT8owrBJDzLLepNidhXJaQqaGGYRSSDlMQjzcMvYvn5a/dK8oR2NiPMIU2Vc9wKhq/WoTPMUCHFLKfDyLxEmkWGaaHCIsNkKDLNRPh1SY5ZIBMFsvz5RljgMle47aCH2GS6r9U0VlzmaEV4N6PcAWxyf5szjDHHEsOcYYY2LA33PNed3ZsLtoTui6tcopkal7gKEEyUFswjU4wbFfJay4dZool6sLabnCVlwF8XaTaZZoIyLVzgBvJhnWCaeU7xx7zFN/k+O1h643UuINm3PIPOcROTJhvoqKZsnJnwNNMaPc8o57lBnp5gJG+SDonqNl3BUH2bv4klgNtrgmkUmnSRa/FZV7nECAuxj2rGDrK+G6bqxxnlToCeSwwHY7iX+59jBglkW6WPX+MK7ezEUGaEBc5wO/zL/jF/jwmmGWMWCyOocZthVhggTw9bDhgXyQTAsEM748w4+DfMBNNxzS0yzDu8yZu8EzYbCvMp0c0Ys+TYiIAorQ3y/7rFWeRnOMM4Cfb5B/wj6lgAhRiS2pd9EpGGrPXVfJdycc9I7ihQYJkB3uLtGERJnqtawJKEN4Pl3hgcTQV4Ocgy9x1gUHCSwrXECmpnhy62ucbFAKNMSroZNY7SmpPUmON0DHIqHPmrWI7+jb5+ynF+ifdRgFS/s7svcIMU5ZCmJ7Fk9qLbfYiFLz9k2Vns0EaeHtboY51eFLimmkGedhvkWKWPOk20s8s0E+HxucgwG+RY9BAVBaqYtYexoxogV6NeHGYp5L91mlCKvFjOenZLflkiTZuz6SQvrJDiLiO85uFaSwwzxhyLDEXAhcI2VhgIKblsEgTYCHAZYYEUZcA83cTY0hBmjT4mmQLMNgMI5pfVUbISmKGd3QC+p5hE6g8NlGStYvf6ZoD6srtRGNnB51gT9aiXBfp1sk2OPEue+Kq/U1SYZ5Q0m/SxFue45AQB+TObAqMaPoUacMkrzphmDQa0ZPSAHysbThXJuGYnH0FeWufXOc4E0ygQpOjsRx2PDEVGWGCaV+hki25KrPqgNUOROcZYpzeY7ZJlgz0fk1Tj+bxNF4s+tBVLc4AVlhjmNa4xx2lq/rweZyaYgF2+r/ex1PsBlgGcZd8fLEIpScq0BDCo61LXi6lpzH6oj7WoFQUkF12WfZIF7jLCff/8FGU2/RqQN62pRnL0H1iLJ5iOZ+lBgkYX29ziHKf40y9yGfrr80pivnViO+VoMMp2/W89FvYx9pHYa01Y89+BgRyt/jN6L7F9xEpSsnAaY2vN+e8d9Z8d9d9/7F/L0gCS7hGMwAB3/iP/+iMMzBFjqZ8GgCMZagcNCfCL/llH/f36aYA92i98O5r8j0BDaIBaLjkmQ4NNdhdjZuWwFPOPfPt6sJTXXd//Jgx8EpCz5+8x7cdbEk99jhiFYnE99n2U9Hjd9wn/3YeEl11IhiVjLfl7j/nP/Jl/xgn//z4NIEoA27r/LfbhuH/OY/99sfKaaDALncXIcQykunvgPcXg7Pd9Fvswf+CYvHZgf8Q2lJwb7BoSWNeBgYP/nMa1qM+o02CsSc4Ndv7v+8+KiSovxpP+d97f55G/x30awJy2dY+GNFssupf9dzI0AEexSTtoXC+SVysc44hv/xifl2jrWhujcS4FBt6lwVwt+XskMJAyj11v477t2t5X/fyM+f+VAP+h/4xAaHx/fk6k7gsB9Ip0k/cpqortg0WNwI6iT+9Fmz/IiirTwjBLkUol9pSkt0pBTXtBUSTDa56Qa55UBipUnFqvZlfmuWrWbJu6gwKvom2e0aDJmyeFAXIJLG1Mhr3dbJKlSJMzq7YPNEADrNCMpUdaclaTs2ysUa2RpJuSs+/q4TVWoju2Vz4WAqo0XVSxtk8iWCJqstf84a0p8DadAdAIQFKyYDsmt0q6zLWFMu9xkTPcRh5szc5YG2WeGc6E7FRSs26XdWhq+X3e5BWmMU+nZdbop4815F0isKmPVUZdlmIeKyYNOckCGy5LMUP3ArcxzxrJocoueVtiOKQDOg92nrcCWDPpW4aKg3zybbJr1bxJrEhqjmvGJqglimTifOyToESaO4wGs07BGGAgmbZx3xvFD3x6LIbLspvBm7GzyU2y7mM2lFxEKbs6LmoU5e9kiaBbSM6n1N0RFtgkzWnmuO5MsIY0uBRgmv1u4v+rWVGS803OhumypHJ2zjdIsI88b3LkmeFMMJ12aGchYXKK13mXwgGAcZwZ+vZ+ynTrBFWXy+XI08QmuIzoy/xKYB5Gv8F3AaIJq7uwvQdLbh1hgTvevJnBeQunmSNFmT/kNxnyoYK8jDbpDrZGH2tM8j43uMAZZvgt/iA8OtUA675rGJoTg5I+Vlmjnzd5B3k9CaDLUuAyV1hghNPMUSAbAQir9HGaOYDwTRxiiX5Wg51QoBEeJBsCsbgE/oABjrJYULr1qoOMiwwzxSR/j3/MIkPxDJhhnEGW6WOV3+Wf8DZvBfNM64oAMQXu1GhmnwRjzEZTLLm9GlHJvLStnZhHnIXDmJdXjWZuMw7gUt1d5JemVxJLS1cTKlZaFTOolz9njiUkyZJXnwGq484yMVbTSW/KyrQwyAp3GKXonm7vu4eXngvy5Jvx95Ak8DI/pIvt8F80NskKQyzS5U37koPIdRKc5SZLPsi4yqWQ/skzc5DlAEYUhCE5cs6bY4VR9LMW0ueD/qKyTDjLTW5xLsDqGs3MMhYMp2km6PP1W437f1H/T5lMTEVIhe4PeVWeYp5ZTsc5UUMr1qNZezQjew6TLJ8mS4Ek1Ugwvcm5SG0eYDl8dRPUmWAa+fyal9p9mqkGIHWaWffqM0VBJ9sUyPIm7zDNBDOMc87DVL7Mr6/wMyxVey0AtRSV8MFdYMSHHYNc4Lo/s5Pc4Dwn3S+sQgvDLDJKLVizJjNt+HAKyNF76toQ41KsUSV3r9MbALeYZ6oB5acoy5YEdbbojOd8leao4wSqiREFVsMNOriia3eRoWAcitU/5EOvGc6gAKpV+niVKTbpZpR5OtlmiknOcouiS80V5Kahbol0BG9UScazW0NWMYYbzD+zwMi6OkGDJSVW13wdGmWejMvTxbpS6m6WIqddtr8fNXp3qFMWOEk7O58LrlNSu5Q78sjOutdkhZYA3DScVDCZgMQUFdbpDeDzNa7Fc0NezBo8CnyVfFcSXx2zPtaQ9ch9H84LXNZwaJBl3meSc9wCYJPu8KSzZ0UT8vWr08QSQ4xzm1Ef8GtgL6sWJd+qVpPMX2FCOWdevsK0DyFOUaM5BvZa19vZDYbhOLdZZIiaS2m72I4BdJ0mFLokhqJJtevxR88bESDSlGIgpGM3zGIwMYFI3VVPsEO7D1Vqfm0VWGaQb/E9bnPGSQenAqRv1NMW5lJBurov+asPA8xWD3xN3nECg8SamwV+gIE9ef++pLhgwMGLGBggttkcBn7s0wAI+jFwQ3Jf+d0JrHpIAwQ5iYEwkjOWMDDjPgY0iIn1Kubzd4lGSucxf38BYGLn6esCho77+16mIfs8QQMkAQM+xK4Tc+ogM/Al39eDQCYYuJL34/LA37sHY/XdpyEBlRfgy769RRqJzkXfLvkK6jOKfsyrB46t3qvq23TP3/NlP45ieo1h4E0Pn/frO+E/d8/fU6BU2j9TXnqeLstpGqAaNMItOLCtAph0DDM02JZVDGzS+c/6785h11kBO6cCNMEksEUaYKy+rvM2RoMpJxm02HXyERSI96r/ruTifwr8pm+vrs1V7FyN02AxHrw2+v37x2mAmwJt5S8olqMA2q/T8LfDP1vy8/v+e3UajNNjNMA3AZXan34arNR1f3/9jliEL2IM1f/RvydxmoA9MWYlLb534Dj30PBl/EteXwig98CvqISzLQ76vK1znG42PaHwDp1sRQpdlgJKY9RUvkaSOU5zmSt0shV0cRnKqngXUKcHfJEMtzhHL+tRbKuhmWWMEe6SYJ8mbwxNytjsjUhXPHyNZWApVyqgxCrboY0BVgIEFDNOgOU0E5FaKGq7HqYCfrIU6PTJFti0TsWfJB23nZEl7xN9plJSJcFMYibjW94Y9rFKhdQBs+9BFhjhP+S/4Qq/FgCCjORHucMUk0hO1M6ub2dPSDG6Xcomf7shTxGUXDBFhUtcDZaJPP+yFEIaYRO6DyJAI+tSzGEW6a2vs5roi/fXJLbqE1SdcwHDSkOWKbtJ/1qCxabCT8cTcOamTYlHWOC6e0nZJPU0vaxHcb1KH4OssMgQk0yRpsSvcQXJVjRlT3k0xG3OsMhQABYtfl2v0cfk3r+gt9Um4fKA0nTyFaYpkqWPVW5wgZPOfElRpoc83SHLSzLJFEsMk6TKBjm3FzeGiqRJZnhvxvgDrDiIaGxXXb9dbPtEuDOA937WoslXgW2gXSLuSUks2tmN+0PnQ8E3SWfGdrJN395PWWw9wTCLXrzusk0nP+N5GhzsL+9rg+eiOVvzJ78lqibpZxWFO1hxbcC5mI9iq2r4UCQTrLzL/JAb7sO3TSdLHsJjzaCl4MqT0aSTBSaZYoERhlkiRZkZxp2tvOFlfJo5TxsV+1TSRDWAp5kl49InMa6+x7dYYphX3Ew8Rz6K9Dw9nGYujNglq113/qsGEZNMschwhB41U2WKSdKUeIMfOJPQmDHTvIL5Bo2GrBdMXqpm0ZiDNjbuZZ0Ncsg36hbn+C3+gKRL1qoub5e8VABPlgKznA4Wl7Gp9gP0GWXeWQZd1Hw4ZY1/SzTOdRIRmqRk2l7WnZ1l519S5BEWmGE8GGXaxxb3TxUYcJtxzrgv3hhzjHKHNm/A1KxWHPSSZ6M8RsGYUQWyDLPIGn3MMcZZbvnQJxlAhiRa8qJTsM4sY3T5GtHNJlt0UiTLqgNxxqxLBmima0VDCjGoZa+wznFuuXF/L+tkKDLPKDu0M8wSCfadnfpK+CIOsEyKCm8l3o7ESt0vdSyFWM3+ODPBXtZL62HZm+BZxrjAjZC0neVWMILEMgWTEddojrqkSCYGNmv0+fAuQT9rrkaYDoDhoPdokSz7JOhjzT27vvweei/xISmawnJArMUm6sHyUcjIAiOs08tFrlEgw5I/tzQYEyBm389GzSFPXEv+XEcJ4vI57iHPe1zkHDfJUIwBpdjSa/SFUkAKCGMkVaJekz+lfI7XsEAzgUPnuRHJsWKaajApr2gNdMzD1OSva85QfI1rSILcyTb36Q3powYVBz2lt+niDLdjSL5JN2/yDrc4G7Wlaqd5RrnEVZRQP81EMOjNp24OC7SwQfI4M0jmaufjvWCoqoZdZoAcebYw7z/VxAb6t30OaE9TYtNlxZ0+WBBTVgywBPtsYR7RqiFrJFlghC5n9B0cTFVJkjkwWJd3K5gnq6TLGj7a+TZpqhKEe1nnBucBWx+lLGmmFqzIg88IWz/2A8Azbp8djz7WqJLkLLeYZoJJ3o/vHWedFlfZFMnE0Eb7YSCs+RRqPVujn062w3tTNYCO2yh32MX8nzW8W2QYCwO0uncfU1DYMeqhQksAzFLx2DDvJHOcZpIpFNihQZM8T22olArv6wJZullkkSEGPTAOTBave0bAuc5F1oFMMRPF1s+T4zG/GP7KDGEgyMsYY+xVrHnPYKCNAgEU5CDZZcG/LzacGFD3MbP/IzSkjGKfic1W5PPAyEv+mfcxEEU+YGI1QQMUhIbP3psYq+iRf/0bNFiGAlO+7l+7ggEUAhN3aUhZT9JgeeUxSeqPfFsluV3FAJ0cDfBKHmx5P3ZiXikkQV5wrRio0uv7d+/AcU5iDDXJLiWv/PUD291LAwwSQJak4VX4gAZoKRAV/9kXffvwz3jJj9dHvl9fP/D9g4y+qu/z1/04jtNgL4o5pvcX2Fjyn1un4X2X9H3Yx66fNA0gqujbrGtCLD/9/yUaIKDAQbHT5CmIv2+JBhCapAF4iV0o6bik0r0YACzGoHznSjTYd9q/tH9PYKek6QJTj9IAPsWE66dxvcpX8BgN4LyfhiRWkl75NZ70fRPA24qx8F707Tvp2zDn26R7rEhDpq7raN/3X9fMuL/v/oFjK09CAdYv0ZAP6x59EfgOf+nrCwH0MnzKMy5bzVAg9/BT1jue84dsC/skwvi8nd2Q5ADBwiu5nHOeUSaYpkILCfbdQ6fCZX7ILc7Fg71KM/IDqdHMeW4wzSsUydDOTkTAn3TmWjebKHV0lHmWGaAXMzuXJ44o/PJxGmIxTMwzFF1O3BL7/R4XY8K0hfmQaVIl0CRDIcDAUeZDkqy0SQE3dxilmxJnmGHFGwQ9FFVkiHUi9keBLO/wTYZZ4jSz1LzIMV+/NGlKTDBNU71OX2KVEmlybERq2G3GkRHybcZ53RkDav4EcKnZVfMnYAw4wIpLOMiaCtlTOzuMMs8iwwFISoKRI0+GIvsJS8pV2pnJUpMhbznpv1MmxdoBfzEDhgcCmB1mMcADTcCh4W1VIAtsBuCmSbO8ZkruR3OaOTIUwnBYBtcb5LwxM6DWwkNqwejcpT2KHzVyc62/zA7tMQEtk6IHS8OThMI8qaw4NubVKnWyZJ1tlaDOEsMh2bMmteLXUDGagj7WwlOymRoXuM4OJknPUgjQeIGTjDIfja2KSPO9qTqwY8CeWKFgTVOBDJ1sMVJfIJEw6cQafREiUifBAMuUW4+EGbKOv8lNHvGL8DrOT3nOZU0VUjHlnmCaWWfrTDAd572dHYZZdEDIJuUy8u9jLcBqma/3sk2aTWdBrWDy0AHaMaN1XQuSEeocyMtMTD41s1a4289/wASvMB1rneRYApSbqcVARs2Z5JACq1Mu9lRT9xZ/zA3Ok6DOsA8E5hlll/YA9Zqx4IFxZpzFnXMwpMkHP5Z0naLMGHPeCN4P5tWGD03a2eE6550Ft4H8mn6b7wRbpUZzWDdIbiuJMcCbvONrXz9XuUQ3m3yT79PvTRuYd+o2nQyyHIOfEmlGucP3eZMd2k2W7ixJMduGWIpGEUD2BinKzHGaMWYZYhELajKvvkHKlDyN0dgvxizXPSo2yzUuMsE0YOboMpRXwqYkdnMednOFywGMKuFStg1KjJV8Sn5hkmv/Glf4fX4nGuEUFU45ILBJN1kKKBH3FPNxfQ+yzAzjweQVQ1NejRYS00yGbYZZDKDb1qQuRriL0pVnOEOKMgOssMIAd/yaGmCFNfr4p3yLf5/vxTBQYSQCGsxCoxrPKiVRKiBAbNIJptmhnTFmKZLhfSZDsquk8V/jSgyjVJ/USLLCAFWSnGaWOglnQnX6sf7zv8JV6d/Ma4c2Ujxml/YYwu56jZTF/DrlgddMNQBYqxNqUYdtO4Cs+qtEOoAyecZKxmjpyyuufkiTPvDsNPDLnsjyOZTXovxum6kxzCLN1ELxoCGCtq+ZWqxRWkPkrVl1RnATZlVhSofxWOcPsgi/yfcB2KYL+WGKpaxtHmaRDXIho7V13tQPb/MWb/G2s686GWCFqoPPsnZoZ4dZxhh0CaW8+trZYYLpkKqqRte9fpCx2On34y3OUiLNODOhQhn2sIszzASDWc8WSXt3aPMQC/N2nWGcDEXkr1inKRQiU0zya1wJ1UMzNVbd4y1NiUFWeJu3GGU+6mZJR2W3IJ/nbh/Ub2MJ3aPM+zPVBrFW1266t61ZzEwxSc5Z9OPcRom9YiEucJImZ8ed9jW2hQrdbFIl6YyzFOPMILsHPcO2fG1VovYwi1znQvys/IavcNk9bQvMMxqg6sEAnzYf6kodpMC7dnbZ8v6jRpIxZrHgvQajs+6DBXnZ9bHGdc4H806McdWl6j9ucZZJpj5HmACTcUvJofPfxxpLDAWoqsHWwRCcRbem2eDndIH/3/jr6WmgGQMmvk6Y8X/6UhvPFncNXPsJ1uQDjzvgyD3g79JI7nR55uNjcOQIBh4IXHFm3V/0v8gvffiRgQrytktgJbgCEDyw4VH2MEfnnxjo0OYbKoYdti2PT8IRBSqMAx/CkzNQ7DjGV4oP+Omrz/LCvU+hCR70H+HYNx7DHjz49SPs0M4LM582GGJKyz0Oj756mKP3n9h7dsDTDFSTcOQEfJR5jhc//MQ+86F99uNeqB05zNHZJ41tUqqtmFku8bw3/jy5ap7W1s+g7mnnj4DXabAQ9wjw7kkrHJa89zIGxAj0UrBInQZzT2DZCRrMtAINOXMJ9k4+Q2vxswarq+Q/NwZPXVpdbn2G1nufQRM8HYX8sWM0U+PZR7sGijbBkyQc3qDBvNu3rz/NwaFWeHT6MDuJdqo08+I3PmkEP7xMw5dPMmil5zrr8cH4EdofPrZj4yy2p1+HQ4/9/D8iwNOnrXBojwYYdwZ+Ov4suYef2u8/JoCwJ/1weBU+GevguQ8fmmS3SiMZuBWe/l04JHBPacz+/6cn7RqtJuHIA/9snYdv2HF+Og5bx47Q9eAxhx77/aKEX/kTHvHtGrPfeXTJrrlHxw9z9IdPYNSv2Q8f87gXklXYGjvCsXuPefwy7LS28eyHu7aNArdzsPfVZ2hd/axxThVKM+331q6fo9fg0I/4nAx3r+MZWk9+9jmJ/KMXD9P+8Anl1mf4F9VR+Dnqwy8E0Numg+cc9KjSTKqj4sbqJlUQhbtMi1PAu2lnl0622CfhIQImdzRWQJEbnGeAlWAyGTCyGew5JZjOMRYT/OyB6avCE+TPp6aqz8EqY8VUWKOPG5znFW+EAG5yll/jCjk2WGGAFiqUfDIrSrnkRT3kkdGuWF5K2Mq6nBgM6FximAFWWKUvmqRNLPFqhAVWPLFRzAYVcPInaoRlNBLOTjOHDKGBYMNYImYvwyxxPXEh3sdo+5ZaepszwSABvIEbcsmGAT4XeY8VBniPi2E2f4YZl6nsI7/DRQ/pUFgINFJk9b7DLEbD1Ms6yXqVa4mLjLBArp7neuICeXrCU0WmyJqcC4yTx4wSES3B1hptsRfVoJVpIU/OgGYsfOU1rnmDvRKAVhs78bNKMJT3ivxyjClqYIAk28bBWoukLk0rm6mFuboA0BUGSFKlywtOMYGAYEPhe1Ei7eDuoMuD5sjWC3QmDORVUygD7BrNpD2SpuKJd7Y/loA7j4W29LNGyoMwBGR3sk2VZAStZOsF/rvE75JjI8BQSQcXGKGYyDLGHEUypCkxzStkKXqBmHSpih1bsQAGWOYhKX4RQL3HpPjEi9Ye8tEoiLVTJYkkuGaSnYl1wxLBzV3yHLfifu5kywEtK7a7KdHkE/YazUwzEZ+vkBWx7HQfKkxCQN8gy2zRSY0kb/AukscrpbuFfeo0BTNLTZXAkYwDjGv0haxRkl+xJfLkOInltP6ANzjNrJuHV/mAiWCyKMn1Iu8xy2mGWXTmiJpCazpPM0uZFKPcQQm684zSQx55Cyrdr0aSZqq8xdsMsBz3c5lU+PkobMJY0xVm3ePMAM42JnmfBUZCdqZ1WmFEKwwEU2aAZVYYZJR5CmQdpDP5qM5fxtkeGhqBgRfyD92mi3c9VGaHtri35QGVYJ/bnOE8NwIo1jmYYBqlFVoKZtZXL/MblcfsODMHJNjGHJnGUgfHmGWe0RgSTDAdflqbztgW07LsDbbAyh5v5hTs00KZEX8eVP1c5MgHqLdJGsmWv8Nv8zo/CIalLBoEioOlru/QxjynyFLgVaaCJf82b/Em78TzsI2dSOFNu0Jg15//YlFZg3rO7y8DmyQ90xAw4/eCAOI8PXRTiiGXPaMKDnQPcJ0LoVAo0e31QWd4xckXcZzb/AXPf3GL0F+T12c0USRLD3mmmeAU86zSF/K7cW4jOX2GAk1Y2MEWncEmnWc0PGkFAN53cG6HNqZ4lQmmIyThYFqzrs8Edf4p32KEhQhFa9irNLxm7d60umuQZWdoFQIgKZBhgxyvMM2GD8+AuD+rNLuvXYWiD0nkXVdwCbHuz3lOkQqw2p7HTQ6OazgjoB2snlKYUJpNzF9zJlhtqoWUhFrwoeZZboUVAcAk7/MeF8lxm30S5OmLYY98r4EY0lmwgW270rHtWB2PbRr0wasxwFpYo49pJrjEVR9qHA9wLunHTMx+fYYYe92U3D+2EEP+g/W6ajsd5z7WQkaqcL1BVlC4htU3zWEpoHpXQ2PVgvL3k8elBioznGGCD1yRUv4cONXODncYDWuBVfpJsB/XkPyZpXZQ+E6T151mg7JKgSz9zulfYASAZQbpZJsL3AhG23muc5cRZNOxwEgoeOYYY5R5Bt1nsIk6/5i/BxCM5rQPtTPOolNfM8od+liNtU0kBg29r3OeUebZJ8FVLgXYPMmUf1YnFRIB/krhYeqXJRRupNDEHBsosV3kjV+E158fG+KFo1sNuXJ9h3LGx1aZFjbIkfjV+ufIBu1jOzRTZTvTSedLZjuRqpdZTfTR/tIOvATZapH6yQRbic7oER+8dITU3mPqTc9QTqasPsplAuRfox/ZOd0bs0To89yg9pJt19H7T/hZ/zFWffi709pOMmP3bmduO4Ywn2baWKOf0onuYDJPnRjg0sM/QX6PlfEULxV/yie5DtIPH7LzjSPUaTJ/5v7rVPrt7tKz9lrra6Z6ewkucRXZ1px6cI98a5qWE5+w3vo8+dYcqUw51o++vZ9y5IGBnc1UmUmOkxyrRl+z1pGlRjMtOeu7ZM+1Qztd9W3qX3/CWusL5Op5qjlT6fWQJ5mrUU6mqNEcRI6+hx9T7Dhmg5TWj5hp/RW6XyoFWafSa8GHi705yr1mKdZ+bJfC2LOfC7pJUGfn5fZgUJdJUSTDyZcWnKlrNk9NHaYS2ydBV32b9odPmD72y7QcszXpVH2e1cQo6yeOx/WTJ+c6nBLP/eQhT78K9489G32tPO8rHTtUO5rZ7u0KwkqdhA1AWj/mcAJ+2vssJbrJHbM1n17ora7zHhdp6SjT37EWCpH2XrMoYww69x7y6MRhqglXcOw9JJGB+Y6TlGlh8JiRa5YZZDCzTPUlBeXZ9lVJ8isP77J67DmSx2rkHhiNdPHYC6EKqxzbief9fH8fo5mfUG96hvzLOU7kP+ZxB3yv9W9xmSvWU/TbcH/4DRsWbpKm66Vt2tgh2Wr3z0cnniNbNduOhZdGGHxpmfTeA2pHDDzdoZ32l3aiLk5QZy3TR8+JfJDNFIrIm2bXMNp7h4pf57mT+bhfy7SYncExw5F2q23/6tLx//P1hQB6dZpYYAR50uTpYZ5TdLMZtP8U5ZCfqkkR/VoTthYqMXWSBKGdHW5wIW4SeabpgZHxwmWBk3Q7N1cMAT2sernPbcadbZak228cPVRX6Q8K/hJD/F3+CYsMM80ryORbBaAKggFWvIls8gnaNTfrrTlgeIe3eYtXmaKPNeQLuMIAC4wwzu2gykvOmabEkqfgiQ4vU3ulXh6Umy0wEmyVgwlSShAGkORJXm11Eqx50aHAEoEDNp2dC+BBYJdYQFpsZXos4CtB3aUbs+F5JJPrJt830fCvu2QQYDXRFwyTzUQ6fL2MBWesknV6aaYa0lgx8YBoZo3N1h+m5GlnY2rirum+0tCG/D0E9gLh9aIQB4FYKgLb2WWJIU66tHqSKWYYD1ZSkYwDA1txjFQkSgK5QzszjDPCAoOsUCRLM+ZlKLmegjHmGY2ACmP6JNhMmMx1yr2zyqSigFLRWqcpWHoqHgdY5jbjASpXSTLIMvIlnON0AMbNVFlODJLFzO6nmIzkNZNEtyCfv5qDBOe4xawnoh0MphGQ3skWJbrZ+wUp2gBntJm0ViEuN7hAJ9tc5FqwA7ZdjrLCYAA8aTYZY5YkliCYcvm8jm2LNzYGuF/jjsv+R5nnKpdiOq7hxhad3OIsCeqc5zo1l2iBwlq2g9XQ7UOTIRajsRLQnKVIHjObl0wYiOtRBb7uKYX43OIco9zxwqyNCqnwJNJ6rnuhRJqLXPPfO4vStuW5qjVJzIYLXEchG3lyJKmSocBF3mOe0XgmbZBD6ZJq9us0Mc0rDLuf3VUuUSLNIMuxpqoxnGaCLEWKzkS56wCkMQ4H/BlXibVNYTlqgAUwmpeqFSyr9JGkxqyvbd1skqfHwb19hlmihnmFnXEGh9IC1UhbMdqGvP4ucTWab4XZaA0qYMbuSwzHM0opoqeZZZbTfiV0xVpfxUJI5PWapUiBDMMsBYNODHIlYOscQSMV+ybnosCxJrASQEDB1+YRFsJHNeuSRHlAKslYLBKAP+Q3w/f2NLPIV03rkBr3QffyM2P27gAkdZ4MPFyLkIseVwHI6ytJFSkBBAqf9pCNJYY5fyDg4TI/DN9Ze7bvRyBVJ9uR0lwi/QuR7LhNBxmqzHMKIICScWYCzFpiCNkICNyTyb6exweTRI3xVIy1SgmhSiOVNHac2yHR72SbSaYiEdnqqNXwRRSzSmCKmJt1EsHKlRxca53qVgUAyB9ym042fPhlQHCeUeap0sygM+jMe82GEHr260+V5qi/dF3t0E4P+bh2xNgz0NquewVFyDdOPpXGSDZ5aj9rtPg6JVZb1RUOaqgVMqYArTSbLHCOUeYZYQF5hi5wkn7XNG26xF/+fgJgDci3msYAPbMfaSStG5dV0tsUZQrOeJaHq9VObbSzS4YCU0xGOJhUMcsecGbvUWGZgQDpte4DIWVVDStrBh2LGc7483ggBsaDrNDNJvskQoqrutlsNIwkkPSBRSeWKLxBjnd5g7Pc/BxDOEuBtB/jg9LmVfrDC1Y+e8ZcLCPbIfkw63rUYEbP9nYsHEmBGJc9MEkAcSMUJIl8YxM+/NkkHb7Tna4CyJHnCpdDUTXs4JyAz3lGUZCVepZ9EhHWZBY1Lb7WG3O6RDfDLMVzO8E+G8jM68v9+hnPU6aHMgb2TCdMAi7VVZYC17jIGV+LbKDbE+C3zuN2ojOsf/LkWEiOBElGyq4yKZKt1Qhr6WWdD5iI55AUClqPerw2WWaQ9sQO9DeY+xVS1GliinGGWEReyeP1GQqJLLf9vimSYZ8ERbIsdbwYcutN0vxPmRE62SbXkQ/mc8IHG1NMctGDgvpY5VWm2HKSzntcpB0L+lk99hwluql0pMKnWVYaAAutJ0m2WihOJwY69rFKjWZmE6cDkFvgJCPcpU4ifCHbEztUWw10Wk/0Ms0Er2Mp9/WkeVGqTsiRZ77jJLc4awOVVqt5867kkhdsnUTUR1N0M9k6FWGMBpRuIJsJqRRVd8z7oEDHU3VcgjrNiSrZYzY0KJLlCpdpStjwdo3+OG8FVyyu08v6y73+bDEwWcE0aV/bdmhH4VVAEDLWO3rp67DeXHXdAiP2fEmW45kroonsBCqYinC4dTEUlQnq7LS2h/oBCDKO1VNDPqCqxXMb4Me5k0E22jlmWJANcFoimE9rXo48C60n/dndTG/HxxRan8VscYb8+WPEl2UGuMtIqPoyFOLvFBW6m0peW1S5wmWGWpcwH9AulhjiDLejFlDq96orCdWTd/vgXSqcZqoWJJpIkXDSxG3O0IZZhi0xzPP89OdaT575/3sF+jlePWzEdL/FGT+SVCZdtrBPwj1w7IGiB7KaB0mWhlligJVId92miwGWqdNEP2v0kA/kWU1ZJ1sxCdCNLbnoMoMxKZdJ8h1GmWYimG0XuB4P/DHmYlInNptCM+S1lKFIinIUhmk2mWWMF4qfAgaqVUjxa1yh6oylgvvBKfFPD33zVKqiBFXJRNQMazvGnJkivzTLdlsDLGXYzkM+EP8MRTdutia5QkvcHEsMRRCEpMEtblRtBXAShS/8Pr+DUgLVSBb8pi+7nHraHxKaOhx8CKh4UkFjU8DNmAKLyaFFp5f18H+z42Oo/2WuMM4MeXJM1qciHKROk7NJrLC0Qvx4lMfWUDYhiYFJB4yFpNALnS+xZpQWdnBqvE0nJ30iXCbFHGMxJe3EkP02b9olX9VDq4UySuQVIKYHqQp+ScsS7FOlOQJgGgEHBsTuk+AMM5jkpycKZjX7AtgkP2xnh+/zZoDbZ5hhjjGmmeAWZ1nnOGMusUmzyYo/JOWj00I5iq9OtkPyXDkA7F3jonv3Lcf9t0maHdroZIscGzRT5UPpCL7kr3vO0pJ/1inmKZIh44X8osMhLd686Nx0suWDj27mORXyQDWD8kQzf7QKVZq5xkV2/UyDXf/mDzcUzCsBCroPzQ9sLK7vOgmucJksRcwdsXHdFcgEEGTNeJUJpqNxsSAcYx2vOpumky0Hp6vId0jm9gc9OVNUqJKMJMc3eDe2SewHrQVK2BWof8dZWW/zVsinKu4zdc4ZKWqK1+jjHd7kKpcAY56s0c8cY7zJ9ym5nKqPVS5x1Ztgu49nGQtWl5qvOU5HUSfGiA1sWlhhEIA2diKkQswRMRg1ZKhhRv0CHfZJ8AETzow1QF1pjQYK3KHHwVpJnCu00M5uPO/k1TbFJAuMhMfrNl2UaeE9LgYzScxw+Spd5oeAMYHkTaqQKSvgzO9ogxxFMh4GUPvcM1/N/hCLkWSaphQMED1nS6S5xFWaqXGWm7zOu1GcN5jKBrhp6r/CgDcwPbHujrDAea4zyVQMpd7hzfAiy5Pjjg9yDqYAj3InbAl0Twg8F4MIbNCj8zbDuDNKi8x6CqQYfM3UyLERDGj5hnb70KvdB5VFsvwmfxABHl/212ckSLMJEOERAyyHn69kiALGdO/rfqnSTI/XknUSdFOKIYSSsxuDPLtHE9QDsFL9kaTKICsBdh0ErsUU0lCyRJpdzAZF22EVxH5I+MXASrDPEkPByDXf5G6vd1d4nXdDlWABDynmORXA2AIjSHJ/kEUnGxqzFGiKAYikwZ8H20Zi7dNQbp5RKqRiPSp4o32TcywxFLXkNp10eS1ao/lzYSXG8ssE61g/L0ahhjcWylUJdn6RLAorMfOFFjIU2KSb2z4EzZFnmcFgjNdojrp32G0JTvlnNsC4Pq8xa6Tc4qcxsN6MmqpEI5nc6hcD0dfoj0AlsX53/fyXSXGH0RgwbWF2IgL6VDcuM+BhNzbYF7tjikluchZL8t4I4FDbeIMLNGEMYA2BFY5m12fNB0jLJKlynHVnfezHc0+2Kc1UkY/4KebdzqWFLEX6vSeQD54NTDJBoNjy614yZ4F2Yodv0xnMdV1f5ou+Gu/d7MC5/EP1bFbQHphCaJFhFhnmGhcpHBheX+A6Kx6iuE0nu7TT5kP6L/tLqquM6zBUdwuY3aSby1yJa62d3QjgsT44wZ0DQ4iCEwmGWYq+a5d25t0rXYnWYL32GHNhBdLktZYGy1mKVH3QofVIgJzqKLN+KUadtpMwtuq+16mdbDPNBEMskqEY/ajY7Oq3imQd4NmP47Doyqwm6h7caIOAFsqh8FOPaUzfajD/rfYaiP5eIEyC/ehdzOe5mTw94RepOhZgnlPMMYZYcOe5zg4NptQQi5S9j+5x9rRJ+FdZYYAuHyCkKaHUczG21U8dtOLKUoy6XCo8gC6MhVkhxcDeRzGsFe4x7zYDCmnKUGCIRWZ92/uc6TvCQoSeaRgmNtjBOmuFQbrq9pnar0GWMdWK9Sg6froORrnzOSa8PLYVGiXwLkc+wEJoDGB0DcsuAwhvU60vem8FPqqPETkKiGMqULGX9WDTyxKl0Pps+PF2+6BrneOu1GjiLLfC771OUwBuNZrZShhGlKbEZa4wyLJjU+VQfwgYBzjpQ0jZ9+jrAywzxhwFMq7IsTp2ikny9GDqo7nYp4PWbv+61xcC6D3jksdpJmJx0MWQoB4PLO1cDvM+Kfq0SnRa7YgKGyHG/e71UMV8hYR8N6ZOFZ/iyzS4zT93FyDYExNMRzEpQ+MyLZgptz1cNaXUw7yXdS/m6gFaAVznfDRVKwzSRJ1H6cOAefCpAZIcJ+tIuBgWeXooOkNOjIYiWSaZYpIprnEx2A6a+F7kGtNM+GKYJs0mYt8VyFIhxTUusk5vTGtlHrxPguucJ0eeFiosMswkUwAuS2mjDWNxlEizxHAshDu0c4XLmOfFUCDqkm6uMBBMkG26HMCyQu06F+I4lbHADgEVFVLButymCyWtqjBXQafrRMfpauJSLICaSN1mHHnhmVSqEMDZQVnr4AGwTmwLFc5i2s1zKvxkVHBNeIqv+dpZgpxS4CxooBJyhawv1pIEVkhRJEsLZZ+Ql6Pg7XewAGx6rEmMFWiFQP31gCi57LKTrWAkKMlWAGKBLHmfAsqvUQ3vDu0xZZZfVu/DT/yes6a/2QUe8n9UCqi8wqo+5drBvFva2eHb/BEjD+99jr0gaX2KMqfq87z4CxCIAdDBw2D+iEHcTC2ae3kdXeAG57jFFJMsM4DCSQBWGIgmV943MnFPUY5J2jaWGDfgHkpJTKKkRu41rnGRa4wxRwtlrnKJVW82tO6a/HuM6+5z18k2SwzzT/jdGDQoBdSkO6diumrypmVKdHuJZaE97/J6NLZ1mpjhDGW/38XmUAOsbdWQ5w6jFMjG/8GYfJNMkWA/PCgnmMbMwpu4xbkAz5TSfYbbMXHOYMm9BbK00bBkUNEwxxiybABrmmxgoyY1g1JaxdCWrFneXNt0sUmaFQbZpb1R9NLGHGMxeElRYZ+EN9UbAWwlMTN2FaKN9Mi0r2MVZ1akokFTaEbZJ+jbdAXTbNCfddt0MscYStbU74tRseMNgPZXfk8b5JhhnDKpsLVQQS7WudkI1OJ3lE5/EGQGGOc249wmTYkMRcaYZZ1e3uV1Xy9MCvZt/ohBllH4jtg3Jhs2VolCXBrb1E2VpFvU53mLt8mxwQWuM8n7KPzlKpcw1ksiwkQEFiu9Umuf1lcAMZm1XZryFtwiRGxvgUJghesICxTIUvVn/DKDPuhoR7YZX/bXce4jWbKe9UsMs0YfF3mPRYYCeLYGKOlMoRbEUDIPrrZYs+QBVnFvs0262aaTd3k96heFBOhY67pUI/BNvs8E0/SyTh+rATaaIqAW91CaTd7kHT//KywyTIEMCqnIUgyQXY2LDT4tdCzBfrCIpaKQumSIRQZY8SZjG1kwqCYEXFZqDc17XOQ24+Hjp+l+F9uc9PcukiHr95eASqtn+72x26KPtWBziUmvl9YEBVCorpM1h6TqaUrx+xoy279tuH+JqzGQ7fJnmhJddc8JaNihjfPcMHWAs53HmWGAlQgMEtshTYl+VoOlK5uXbh9Eyb+1x+tGSdiM8dx4nkiloeOoECTAn2A1xpgjQzHOW5FMDKQ0HFZteYHrdPvnmwVMc4SaaAja5o21hvGmcNlwxUw9zvNBsHrDIU2pi8zLcIkx5gIgU8+S8EZxgmm6/HqT5QI07HgEgOp8qXkcZNnhoSI7tFEkGynOpuxoxoI1jHig82wWK8txj9lxMDZm3a+hMWYj7K/PWaLbdHKD85RJ8ekvwFoI8Az1AC+vc4Gqs77tuKwGuKNgmRJpl8Vb8Iu8L6s+lL3FOVoos8hQWBYcDF/cpotOtul3EF6sY4XQNFNjmQHkKaz+fZoJzN6lxntcDJWYLGIAZhmL4DOpkeRxaX1bJmqGbTrjWbnMIMP1xag1d2jnAtejv8mTo+AD8E266WeNZN2YvbM+TJWUPk8P7/JGkEFa/Pprx6Tw61iYWcH7KqmwFI7ZTDXIJWJM6xlRw2yIlhj2zzSf9RRl1uhHVg3tGJlD/r9imMuXc5NulhmMWquPVe/9m0lSRf7Wa1g4pNiu+yQotR5DqrwqzUy64g9AoaIKDj3NHPL5NIsls5CS37N826V0GWU+mHrrCWPLTTFJgazX7XYsLEzRnstlLFhHvbFYdqYSsWdEyZ/HGrbsYsQaHeuDbHTZBWkwJwn+CgPIf7UQ98daDIxVx+k8DbEYgK3swLbpYp1e7vqzPOm9q9anFOUgDGz5YEGkgzZ/tq3RHxkAVR+wy4JtmMXAtZYPDCj0NQ2BbGCcJPvgIZNMBTZmeMQKNa9djVhlzM1/xr/3c60nX4jkdpc2ao5ECygZYNknrhWmeDXQbBUqIJ+cNa5xMab3mnoNHFgg7jhrzBaprQMHrhoH2hBo02KLHn6FywBeqBNNj3yeNKUV7Vdgz6IbwNsE1zx75EUlTbS83dKUGGGBTra5mrj0uVTDKuYhMcsYFQcOdSnn6QFsURxmKUzS5c2jmzhPT0wj9X5KgxSQeZAB18m2U5y7GWWePD1s0+nBGXMhPzAT8kI0aFkHPW3/beI8zgxv8XZIXuTZ1O839D6J8JKywA173+/zJq+4TGuQZWYZ4xy32KYzmAl5ckwxGR5Y9rDYRB52fdU15pOjHJSLmdTBmCynmPcFtGFOrkWot77OYkLSZUPP1+nlLLeQJECBE9r2MeaimF9hIK6/LAU2/YFkrMyWmJYAURTKUy+JmacD3OIsb/JO/NwyA4xzO0CB08xGwyf21hp98UCSN5iCUwQ2GPuoEo1KJ03IkF3mxfJDWWEgUogNdMgEC9WkzGe5eOQaKV+kdmjnGq8BcIp5Tvk9K4nnNp1c5ocUsbAWSQiHWGSn4wgy9rbishyNxHJi8HONw5f51eENTMoBtAwFTrsf3BhzKBV5ztlfIyygoBM1irouNc0So82mRZthhj3JVJi8iwk0wkJMck0GkUVej2CBCWrqVhiM63mJYeRpJob1Dc7zm97A6KFlCbXvk6eHLrbdJ3UzGj4gzMeLzg5YZ4AhfwD+t/xHlGnht/jDYIOVSAfLOk+OJi84qn5/1bGE5ll/+Kco8ybvIDa1/ObU7Ev+0e6Flk3w7Gfe5m+S9UZNstUMBWfN9Md1qklqwifGtxmnmRpjzNLlhajYGwISxNgSUCjm7BSTfu6HOcstVhhgjT4H80ySeJrZzzVvgz5RlRxaCdZAyP41TewhzwqDvM3fdB8lA9rF6tSzWYwfyb90vuSJpMZSzXeaTZLUuMF5lhnk23w3go0E0A6yzDq9Ib1u9qHbAiOUSQV4C8bMUzEzzym+yTtskKPHr10gtlNFkWw7dmhngmmWGGaIRRYYYYlh3uLtGF6Y3Ljsz7SCWwMkfQC0GVPllnj+dYe8Y9zDfcR0EDNBE3OxvWy4k4jtHWSZTS/iZxkLv0w15wKABp3B/Ef8Br2sc45bXP0iF6K/Bq+P+Qpp9uM+t4Tf7gDS0mwywQfIzkTeX/JvlSePyddnUdiVJupArH1aT1e8Qe2lkaw5yxjdlGih7HLQVbqrJcrJFvp9m7IUmWSKNfqDXWugtJ3Hbkqf8zhTWm+zs/aAGAJLMlkhFZIpC/4y5rB875Q6e5abUZNKpi5WaQ/5YPstMsQE0/F5anI02FbQgdULGw6Ul5lmgiaMvSzmhCRSWW+cBV7Jo1pA9VlueQO9xZgHIGnQp6HVXW94m7HwNLH41HiJVaxnVNWbLr1HhRTDLCHZWZ0EnWwFu0V1kAAxhUB1ss1IdYGFpA1kz3MdBYWNsEAPeTaczSbGjIJpNEytOVCYpsQwi2ySZp1eLjz4Fywce5FOtplljFeYpkYymPeyNhHYmKAeQOMlrnKTsyEz3SSNQnhKdLtFgKWkK2BE4No3eYcVBqMu1fUicoQG6DbQbwp2iqyNBLSmKDPkKeImP7YmV36rksfJ29xYJ7YOpuplFhK2Bo8xyw5t9LMWPcw0E2ED8W2+G8+8CinOcyP6uEEffGlIL4CyRJpv8U9JUuU+vXyD7/MP/4rXpn8Tr4d00OTEBgF4evau+X3fjHksJh3cy1BAtg8K5lqjn0tcDZWSGOZKkNbA3QavZvsg0H3Zry0xlSukWKWPQVZi7VFgle43sLUNoB0DfpI+pN6h3e8bg9XV+wtMV33aAMKrwewz+6sGCJkjHwyrMi3IV3kzkaabzUg7l8S+5ttoAFp31HzXucC3+KfcZjxIGPJUrpCKNUESSD17AFfN2PqaYJ9R5rnCZUa5EwMMY872+BDbgHINpTZJu1VA/XMDPr2fKf7MQ1a+1PIfbvZBoAYrywzS7aE9Fa/9+1iN2nONvqitEtRj7bfauyEh1XvLFmzWswfk3SzQTPe3+fs1xzVwjYsMs4isx1R3a2BxjYvk2EDMXp1HqV9E4DkIeGqo0ELFmcDNYTOl2nWbTnqcDSzgU3VnJ2al04ax93pZj5AdAacfMBHsV3l1y+9ukWEsVG05wGvVdWVSfMBIHK8E9QAem6hzk3O8wQ+wtPulGIhLSSBbEA3929khf+wYNZIRumQhqQ0C3A7t7GKD+5cODJ/+da8vBNB7TIqTPsU5u/enlFrTIc1RyqLACJ00FQ7LHhSgm1/eb2JkGQtvg9ucYZIpSqTjYtyhPSb3KgDWOQ40UpZ2aEPG50r+E+XUmjKbOMwxxjCL9Dio2McqgyyH79oKA9RoDnmo0PJdf5BK5nqXkQAzlFrY78XMQcbCKebJUAxQxEIlrFHXxE0+WwKWvlb8MX+W+WUHfHZj8RLQp5tAJsLGbCv6sW1hkJVgIWqRPsg0aVD7V7jKJc5yM7Z3/0CxICB2m85gjqkRVyOoxSRDgUFvQiVRnWMM+WAppVAGoSUMUKwlm8mTY9gbN024DbSqxjQQ5L9VY4B1M0hPvBUTTCCKa5M2l2MaYjRv0+Wv0hcTMUlJtE+acgsU0yvNZtCRJQnXzapGVMw/HbMSaQpkkeG6eaa0Ie2/psiLDLPlRafYiLm9T3in9d8LtqAkQrqe1SwUyLBLe9Ctr3CZ89zwh1Ylpl/DLAGwnBwgTw9J3+bbjEfhrgZFxYB8aVSUS24tdlmZFv6Yt/jf848Bk5HqwdPhcoMv+yvJk/C105Rdk2xx2FYYpIz5gFziKmVakJTL0jwX4rqfZ5Tf4fdJUeEG532adYP/G/9nAG/07P4So8sehl2c8qRYXb96UI9yJwYvKwwyyAqnmEeyt2UGouEuul1AkQyLDDtIl6ROk3v2bXi8xXRMn8yvcYjv8huc5SbnucEKAyHfus0ZqjSz6FR40eX7WEWyhU62uc75kLeJrWiM1CYKPuXcJxFTYWM3pGPt6GMtpPBga4to+kocH2CZVZe/KXlQAxv560GjWZ/jNOPM8EMuB+Nak/R+334VsZpM/zbfCRnbEkOxpttEMx0eVuv0RqPZyTYtmH/iAMt0sR3riQArNd8tVKKIKJJlgulInJRfVZWkA1IfxJqjNWqYRdp8bdc9Li/MQVbcz8YAFEmSBazex7xXLbnZvCB1TnVdb9MZUjV5v9o01qbhJbpDJqfgKtUNKvLEbDJgbZcayTi/q/SxznFGucNtxtmkO7z/NOzKscF3+DtMMoU8GTWdlwy6ToLrXIiGR+ycKs3c5Gzc0zrfq57iKM/ENfoZYYEJPuBt/iYXuEGXs2ja2SFPLhItZ3nxr2Q9+jf5OkaJHHtcevAjdjoOs5lI82b1HbaTVpjnyJOtFqkmzcfp2bypKh53QKn1GF/JP4AivJj+ZzxthWxrkVHmaX34GY/ShzlaesKLfALAhaZ/QeFYh8mFqtuAPdteyj8g0/onHH4En/a2BcsdzBMsWy+QSRSNgVUt8cLDT9nreIZ8Msc5bpF78ID9BNSbLHGyr/9j1jqeZ/DBx2wdO+Lndpde7rPOcbrZ5JdmPoI0fNj/AgMPf0qlzZL1Pup/jixFnlt9aGmIVWjur/LivU/49EQbL374CS8e+8SS/B5B4qVF+9lWSGTq/Fb1D6k3JXgx/wk/7X2WZ/O7XM5dIUGdX1m9y7/sf5k0Jc48/PPYxkN5ePHxP+Mvxl+MZm2fBL+Sv8tO7vt8vfgB/zLzsjU2e48pt5qZ/k5rGyP1BWYTxtJ68d4n3DvxPIMs00yNZz/cZfulTrqrJV5JTsfAppkayXqVE/c/jvTAn770LGPMktp7zJGHsJd+hta8JTsee3yPD0+8wJmHf87he5aoCbDYeoIUZSYe/LmlG76EJWk+gGczf24JgQCrMDy+yL+V/wkk4IX6p2z3djK29+cceQAvJD61xMrjsJd5hkIyw0h9gUIiS9/Djzn8ANiDS/3/nCM/gacnfsrX9n4MD2Eo8RGH96AzfYPWmc/49NU2kvUqif06I3sfsZ+AUkcHqXqZpkSdf6v4E554ifi39/4ZT4/AWOInAKx3PGeg38Mf01S39Mbe1nWeXd8Ng/nW+5/xOAdZPiXpeSj6jM69h6y0vsgo83zl3gNOPPjYfwDogHsvW8jOLxU/4sPMCxYQ4EmWvQ8/Id/xLCN7d6m1NvOVmQd8Jf2AvdwzfO3hj6EKP+p9hX/nJ3/Kk14zrDepe4IX1z/ht4/9Pxv3I7CZSzPx8MeWbJmAe7kmLu79CaXWY7Tv7dLbus6vrN619NAkHH4Az/GQX96/x70Tz5Mjzy8X7zGSvMd8x0kGHtz9X3fh+Wv6qpOg1QeAqnnUw4kJ28dqkE2kChP4pqF/0ZURPeT5gInwcxcIUnfSQjNV3uOi+941HRjOt0QvdDDocRsLlFJwm4JWTJJvffY8o2GFtEofp5iPbe/2ACrtmxQnDSuAUzHYUniLEr5VH5/hNl1e+4hNVaeJPtaCySTgqEpzYAb2fO1hi04uci1qlDHmGOUOCpj4/5D3v7Fx5/l9J/iaKU6VSJGtoopTNSwvZbJJkS2mqZAh05xjRz2SJYwO8vbAnUxuYnttxECAzR5wweXuwT5Y4BYH3O4hD+6ym8PiNoCBeO1k4oknbqP7RoBm1ZZacjPDXnLJU3WoJpts0qJTnKphiaUmRapqWO178Pm8P7+SD7DnQXrj7S6AkFis+v35/r6/7+/7fX/ef3Y4hxLJW6SiCAsmiV5jlENMRirf6EvcR1ZZOwwEAURzSQFrw2xSpp9tBt3ztN/lsf1BShLABuZLLZabKRANdDugx0PADPiUjY7mZO0MtRPM09fW8P1RzFXYnkl7D59j6u5S5D/jv+ef86vMMxdAsMDFmisWstS5z2vBuJXkVeDdQ2daq2CQZZ8+9lz23EEfew4ud4eSUIVaMCmq1J0q4m8xyChr0VdULBURRhhMgYqDfUPsMOB2ZkfBrjeyT40NhmOeKdBS66QeLKPhOreCyFWhQIqT8MfLsk8aC7McZY0afQw5qGp9phJz4SJlx3R2ydBwwM/W9BZKaHZaCq4UACtcpUGaXuqM8eHPNJ58JoCefMEG2aZ56itsMIL8FNRwQnVTnDDEdtAYx1lllHWWmI4bFggmX3uQQQljbFmFp4+5p/+G26d/IYA90513xuRZLKoWKfpdaqrAiDq9yLesxEUmWWGAR+FvIkluihYrTLLhDJMhtllgNiSFqlYpnVeLuTFnWelcdCNKHjLGWnQoMACyPYzBvAOOmWcu0gtz+VpsZ4w1pliOdgXinOycO5DuXYsqVYvtmE4CWO3hIMDBVS5wg5tYKuIuB3QHyNmFpWNJv79Hjgm/XgJ4WqSYZJl55hj0thIDcZiNMN0dY500jTCGNxl2Ohgz7elyc8xTbJWppAqhQZe8+ojOMCVOPClqSGYtU1FVpIuUgz0hU1Jj1jWQn9j0k/8vS2f+KgVn7aiqoxtQVQtbCJtxvW5WAyGucIMfRLKYKgftckotpFeYZJgN2lOAwcBCJaQJJNk5/R8xwxI1+gIU3WSECnn+/uP/ga6zRy5fziKvtlHvx3owyKy9l3rQl5suMpGv23VukaPGXS5zgBmMS8rS28bC0iBmlbNh+qiZ7wObrDPmbJ9jlEp8/DP6Avyv/bXAKwy7p495s22HfG/ZJSwmnVkLllTG5TsaIzVhk1yvRh8XuYOk+rO8z3/OP0IycVkR1MhZWhQbZNk3eYMHSBiQVwp2k0IvrMbY4AETXOEuR3QG8w5sorHIDAUqvM5btOiIIIgeDpjjPZ+A2ERig+GQ7EtupueDSTmO+BW+i2S7khvbOFQIFocFVJjsaoBHAYyraCDQRSw4VdZMum4SWTGDayT0/zHWeZvXucFNZNKuCc2wS4fEflhjlE1vQ1X+BtgJ3ygJD8AmxLIy0ARXcqZ2BoXkVCeYYXLDl8F1H+usctnLm7zBd/jd6D+6hsNsUnCp/5ibW1sQ1QTX+SEHdFOnF/mXdNBiy5myBfc6WWeUcVbZc0bMPmaQbFNY65M3uOnMgUGUvKnKtbxYOjkK02qBJEAw59t9Y2ZZ4Pt8O4pbYoeo7dolqzbRtmq3mI0qggx44UZjo9jqYGPSNIu06IhjUIFlnFWuc4tVLjjr/hF97EXBRvOGBplIcpcX0SXux3WW5YBsQ3LUmGeOHDWuc4sRNllnlF2K4dkndrs8dC2x8i7/7Wc8Fv2Hfs2ywMuLNdiBF2Z/ygvlH/PsAg4MPA4w4vTjZ/b/KlCDU0X4udxjHr90irPVZ/ARfKkIpz/+FM4BJTj65S5eePwE1oFT8KUMfO3ME3gCPn3krxY/gj+Crxi2zVcrh/xCx7+BR8CLcL7jT6AMDPyUr7YOeTr0ZfgITj/6lG9d/yFf+ti29ZVHcPC3T3Hq5Bn1M930cMD+2VOc/eEzmt/c4WvVJ1CGF09+DAXgQ+AlGDvzx3zpFnzl1E/hDLxY+zGcgU9e/AovvPNTAF58+mOowlc7DuGZNQtPgAp87QUH/qrwDd639jn5FMrw8+WfwMdw/sU/4d/OvggnP+Gv73zAvxs4y1cW4PzQn8BT+NNz8KUajD/+2M4Hb58afKPjfViEvz7xATz0tp96BsCpzCGchm88fR8awCK0zqf4uQ8f2/Hl4aWVP4YOOJ15xtkPfmwg25B9lqdw9hvP4NCP1duED+B05lPYAV62a/fSzh/Dsn3n1FP40wlons7w9XcduNuCnz80MI+zwEdYW70IPIIXyj+FAew4i8aezDQMwP3qewYSU4HTqU95sfVj+BheuPAn1ufKQAecWrBz+lIZWAHOw1e2bF+nn35q/efkkKdf/zKn3/kUTsNXzkGh9YQvPYH/7el34SZ85QR++rfhp6fhK1X4ykfABXhx68dwytqYD+DUC3DqbxxCBV76+I/t2E/gVId/pgVk7Ptfm3kCDRjPf8ze2W777C3gun3mT4twvvwn1qYpeOmhmar/6YSxr7/yIfz8mZ9AGYZ/YdPa8SM4XfwUina+33j6Pnxs+/tr+YfW74rAMpyqws+df2z7PQ//8c0/tPvwkbX5+dk/gQ/g504/hgycOndoffUJfKVo15Wndg3Ol/+E4tfL8CP4Sjf8teJDPnn0F48ln4eX+YPV2GKQeea4wp02AC+LJIu23joKdqMp2a4yzsPnCmaJVVUXBQemjNXcjDXsCJvkqfC++8YrNVYggj0nbU28xihTrETxSQU+FTXF2JNsV4CX1tgNMsHSL1DhHpdCxVXiIkr+Nnl3hU1G6HSwqM4AsywgnzUV2aTQKlKOeZ5YiSMeiqX5RIe3TdrBlEVmuMZtDjBPtJv8YgBVYhNXHfi6ym1AEk4jO5hc33zVV5iKAusBPcFONNXGCitMAkl4XJNMsLvGWaXERXYY4BUWYs6gbaiwq1R2zTWUPyBAV6Qa/bvIDDkvTDdJ00ErQKc+aiHH3WCYX+W7wQKW3+E6Y8Hy7XawTimssseQHFZrPAFmKVohNRZhqx0403pXxJIauWDZZdkPZYYxCzP0+TYU4GTYRVdcB8BVmB3R55s+dx5lzRmYzWBJWgjGWKhCRF5aZIZL3Iu+Zb7j6QCaBRzavNDm0qa4NGasiAOdWI5CjT6G3XOwSiHmqybPNQlti46434zBX+V3+DW+w/eCKNR+n4mM9Be9PhMPvS6O2eEci0zzIDVBhgZ7DlYNsxE3mAz7Lz99l4L7a4gBIuRXKS2iCmsRpSQcMbWKlDk43c19XmOTES5x3+m9fYFMm1zWJuRNMsEI66fMMZ0B1Jg84xFdHHNAD7/Dr7k0KRWU+l/lu3GMqoDc5TIyNOx0YKNBmoueAGlSoQ6WmWSFyUCQxRgYZY0JSmwziHTzqthcYJVBtrjBDxCFXpRPGUqKKpsEhKRCwmLMRJMFlLgYbA5tq0qBXl8MtSP+U6ywwlQY8ipZSSzHTUawYJAKdXppkWKotR2MuUG2OaaLKVYCsMzQ4BL3g4Upb0Pd6JITSH4oIFiVmDpZyqliSKbkC6e2PKCHO1zmLfdjkpGwsTbrkTgjsOHQ+1mdXiwBzgaABWbZYSCqkzJc3WTEqbxb5KlyTCclJhhjHfny5KmwwCxKmZPhsEINxLhaYhqwAW+dUYY9gfFX+S4tUrzN66wwSZ3eGNRUwZMEqEKeUdaZYZEx1qjTS+XsGXpaBg7vkWOFybhGS8ww0tpAnohKlhM4Os8ca4wxQSl89qrkGWQ7WFcyRRYTaMN9z1K02Md8JAXQXOM2kqHoGu2TRemen/fXJMshL1H1ap45OjniNlfDCgCMMVZzwY+CgYaw++nEHywCgu5xyRl8WW5zFcnT7/FaAIEAEzxAXkUZGi5/ML+pFC1jpVD1308CXC6yS4U8dXoB66OvcT+KBO0PHQGNBarM82o84JV2Psc8o6yFV9EaYyFtUpVTHnm6PwW8mzQoGyC5PR9MCjzMZkyy8lQDWDdZ1JR79XXyOm/HeC7fMnk6GQhpCYZ1eiMgaZkphlxa3MNhTIgl7dMYvMYog2zxLd5CnnZzzDPMZjybFplhj1zICTtJ0l0zNKxI4UDTiEtUNI7vYr4nJSbiWWgVx3SwAdUvrAC0zjZDvMEfMMAjrruQ056VtgCQ9UKRMuuMckKK7/Ntn6w8iqRHjVf7ZJFc5g5X2GaQNUaDZW1Mwd64jmOsUyEflfgNRniHa4CxoNqvgTHYzL9MRQAzCj5Cps8qVsh+QpXMbQZjMaGUyhp9mCl+tycV98WkTBN3zQUMLLcKuTzRjCk7HFXf9nTV9opwL2YbX3OvHPWlAhWXn9n9V6bI9/l2PMtVhDRfrYtISnOf1z7roeg/+OvcuwbmkTGAg6oDJ+9goNAKPD3zZQMGakAJOI8BByU4u/MMfujv/5G//45972u/+YTIFtnyv1WBBWx7j4AfYGXsRQy4WfLPPgY+xsDAFAaelOD0yqfx2S89BM5gQMQTOPvPn0EOep4e8rXyE86uPIMSfO33ntgxvgd84Ps6Dz89D196BwOkXsYAs6fAu/BC7aeQ93MuAxXgpp3XswH/7Ce+var/vuXn9J5/ZwADiJ7AX3nrY3vvIfzcB8Zq5Id+Hr9n739pxbZP1b8/4dt/4r9XMTDyj4BDf3+L2C4peOm/+2M7ho/82B/Z+XDK/1/26+DXmj/0z/6en+OC//5D6xM8Al7w7+V8O972f/2jD+zadXu7vef7/IRgN/KM5Hg+8vPJwIu/92O+tAhffffQzqOGAYqP267DTT/2R37NTrxPvOtti7eBADZvt9M3P7V2OW3t+aW3fBvqg0/hK38IX1Hb7vj29bteW76vJX+/5O/9yPdZBt7yNlu0Y4hzehe7T/7IzutL73obl/3ntG3zSx/B2UXrpzy097+66MDxjrfJv/TP/wjr7+p/HwK/5Z+TU5KD6ex4Wz3xc3+bBMz9wM/jxLej/v2RX+MdOP3Rp9bXPrZz++kFvhCvYzoD9LrGbcZZdZDqMNbC8p0Tm11yzVneBwjpqoFytpbSc0j+mypQ6Xlc4/kAoXaV0qBLqQHe4A8YZJthNphlgb/Hb5KnEnJUzefly6eitYCoTfe7FKAzxQoXWKXp8zj5B4rln6LFLkV6nXzSIsUefT5ftL/f4xJ1ss+t5aWWk01SngoWvlP1eXRfrAEX3cFXwFp7qmoPnp7LUMzBcuyhFNZjOkPObOdn655FX8cJxMuxxyjrFKhgNkj1WMdqnZVln2E2IwhJBf0i5QC6xJhcc8/KdcbYdYm6JKryP94jF+tDBaiZL57ZGchyyqwnqhHAoJANye4neMCG+z5LlaU5+zaDrkRL/L3b1ZNiHYpUtOVWVgKwlMqtv0sZmFhU9EYbap5sIFuScivlhhEfGlG4t+1Y8nCBavRnqVnMTs0kzt0OgppvaTmAtX7KDLHNLsUgMOxjMt8cNWZ5nzneizWREW1M4WhA9YZjKvZ3AYhVt37ppR4AsIBFS/rOxdpIHv4KXAF4TO5nGk8+E4bev2Wcl30BW6MvJsSrLj+122SXJmm2GGT59BQZGuGbk6MWyCoYW60ci+H9kE+JKmnBBeYvdol7tOhAQRryHjmgh4uUgikkppQGL92gI2xyn0vBOBhnNS6gqLUZGsE0kG/GPlkuc5emUyQt/rkWA5Ykp4q3N3bJOeR3sUcuwJN+lxVJc73GWCD5PRyw4jIm+ZWJKWfSkSPK9LPCFLMsuFPWYLBY1hhlggdUKLDGGENsMcImWeo+UB+zwwDdJNHfQv/bWTOWeGaGoOuM0Y2ZuNboI5uqA/jgWAk2j25isS7k2SIfIzu2UiyEBJoJCNFxrPk1BEL6Wac3PqvQEYEde77Q0wCph06ZojMSD6OiIOZEF8dMeH8BqzQM8CjYOQoa0IMy71UYsQIN0LRgjAwNquRjwanYeID3mIs0G7EP0zSDxj7NIhOUOPRFnyS5M87SkX9jmgZ9no6V4oQSE0ynFlHaIljIxhTLFmqR6oqHlCpOMyyh5L1L3Iv0nQbpAGjFKlEUep8vnI2anA/QepYFypifgSo46hNHLkvMtbb+vY89fxlfz+hizWXS8vvRPSAASC8ZsN7lCrMsIDblGGssMsMaY8yyECw0Y7puRpUTCL8nyenf4M3w5tQ1b5Dhoq9+1xglxQmHXhlUpUvWB5INAA6cGeCtB2bKJydiANsE4DAo42AR9jMsIr9ShYQYQ2qcdUaxtKwSYlX1cMh9LtHwSiNYRc6kXA2/Dxa5z6WoEs8zR82BSclBvsXbrDIeKaYaJ8UyAzOb/z7fJo/5sso7bovBYIDd51Kw7WRjcEBPgPNjrHOdW8wzR5K6lo5nV4oT1pypdZXbmP9HZ0wcu5yBLS89TTDlJTrOKre4HscwziqPMG8iA/b6sNTMCW7wA9YZY55Xg+Et5p6AM6WNyr/qH/KPmWeOJWZi8qlK8JB7hUnmOslKtFOBKkd0BrNXxv06XgOR+wPUlh3BFoPI81SLDWMsWuHnmC5nd7/KINvc4jolJhh1XytVmg0os4VMxp8HNfrIYqmPWy4pGmaTQ3pYpyckG9sMBUAroC3v0mcVxYbZYJshFt3EfZJlsljwwO/w66SxxNQFZp1d0GTJ2ZKjrFPFEkX7vcLcIMMmwy6DnqZImdtc5RVnBHyeX//3/wZOpbFS8u/6vzUMULgNfArc/NRAgVPAVzAQoxdIA2+SMPcyGGiQA46BP/btHGBAxGPgCAMKmv5e2t/7ctvv/44EoDjt22j5505hYE8WAy3WfP+9wE/8mB8Df4qBGZ/6dvJ+TF/DwIyU7+vE93EOA6Le8c//f/zzT/x8Mr7dPPAHQBewAYz7uTzx43qGsdz6oP7vusg+OoI/8e8fY4BSj+//BQwEOwB2sdn/ie+vF/gX/p192x6P/fg7gP/Jt/Wpt1evHwfAv/H3f+ht0gOtP4FU3ff1r4FO/9vP+3YF8n3q7fopBgz91Lf9xP/+ZQz8GfBj3fd9PvVzEsD6V31fG76tF4H7WN/6kX/mxK8Bvv1jjHH2Zf/bEz/Op95+/yMGHv47vz7PvC1O+bm8CNzxYzrj/8ePQ+eX8veyWH/q9WPsxkBS/dvv/77j2/o5DFz+srfzl4Gvth3jmv+/D+sbj7B7RZ9pYvfIkLdpzo+z6W3g/f/k56Fj049Z532AAYb26LY2/FPgS95mP/X31b4FOPk56HjXv7vv53kf64unsX5U9TZ4x8+7AowC28B/48fuFJNn/5IvxEuqIrGMFpkJ1n2TDMNsBiGh31VFKp4CUdwyz8tKqNIG2KEbC5xoV9BUHFD5s7YeR3SGnZOCIcEAi/eZtTUDXQHkmW2Osb20htb6rl2FINa9efTmXXrYBA7CGuWIJCRQpAcBYKuMk6bJDIvsO0EAcPWSSUU3GKaDFq842eCYTk9nbQaoKADqEvdDBSWgUetWAVOaW4ldJsALoNvPW+tRAW/3eC3mHF0ccZcrQdTR2lJF1zpZfsANL6RbeJhkwvq+ZL3y75SljY5ZAKgKjE3Swe4Ta07ee/Le7uGAKVZI02SbQd7kDf4L/iv2yTLJSliffJ9vA8ZqlupmlDWOnSAl9WOFfPhopmnGHE8gnPaZ8gI92Dy7QiFYlxsMRz8RE1HkLfUh+T2qIKrzSdMIZY5A8VXGYz4r6zMVTDs5puC2Zl0cscxkEI00X1dw3wibbDDMXa74fPaYIzrZZigIDaaiMRJQD8ZMLNPvWMEODxlnk2EucS8YmyIdtCs+LTQ0zZDbxRjJYg3ZHaVo8dOfcTz5TBh6f8UNWjUoSDomnzVV1Q0QOkapfIpmBkN9Zaad98VIyZloPRwERbRKPgCCPmoo+lnR6RpE1ODDTsm1RWqRNcZi0NtkJPZhna4Z768xChiAtMgMDR9EzXXH0oRkLA4mYV1hkt5W/TlQSAvIKw7+VXwLvdSDdl2jjzHWnXqZ9gqJDfCSSnZiclDJRQ+dRZWixX1eiwTFBWZJ0/SBaNAHIpP43OAHIT1KtdFphZpPUIr0RSAGF6OvdjHIVjAuexx6AJP3qlJQ9ZtXunINjO0PDgGvdXrdoLg36LjG7Mo4IGkLUHlBmHHnIab17wxAYpAtCs7YO3J2YJHdqHYIkd9kGJOxdlMhzyrjUS0ZdnBEfU9sMz1gzFcgFyxB3dTGAGk4S2g/Uog0oA17AuieV9xmWYikmxmWHGgddfbQFvLMkBRTgGTF+70k16uMuwQ4wzXeCS8CsEWuQmb26GORGRaZRr5+AmEEMMhk2ypL5k8mU2NjqgzF/av7pJPjAA4neMB4azVScxXzXaBKJ0fxsD5OJUDW5/n1oQPTRcp+5WvBdFRhQmzLOeZZZwwLoajEPaVqYooTFpmmRo7RRIseAAEAAElEQVRplmJSoTRisSh1rUyC2XJJYjdlikxQYoy1qNjZ2HWOQbY5dIB6gB3kW1Ylzx/wRtxD64wxxLbL1vNeRe4Nk9seDqJQIU8Q3T/7fvVbzr7TxOg7fI9R1r2wUI37U6AWGNg+wA4zLAXdXemIJivfi/uplzo5arzBH8Qk8L/g/xZJg4kXiQGc97jkVcZDstSRib7Yi0d0YqmKe6wxygyL8XxTOvkmw+Fpp+TrA3p4kzeCdd5HjavcjopxD4cusR9jjTHSNLjNNRoOmqX8uSJGn3w1a16xU5iHfBEVgFKjj06OmOABC8yyyAx1svRSj/EbLITpiE5PLcxE0qbZHIySpuH2EZUokonNqElbihabntiqPtvpgKkSLa1Suom8eFTwEKPOGHfd0fc6aLHMFED0nRvcRIzFds8zjd3y2kuYx01kxwHm3ykbjEmXEel5qICZS9wjQ9PHQKuUyjR/zK/SPK9Gn77GbcZYZ5pFil7drZKnE5NSr3KB7/NtClSDYXCXy3H/qw9d4x3+HT/3WQ9F/+FfYlGdYGDAkb+fxhb4pzDAQMDSpxggcODf+wkGeKR8GwC9BkzwKQngcEICwKT8+/i2fkoCRp343zr9c08x4EtAzFP/95gErDj27zcwkKPedqxf8fP6KQnodogBhCfYjPtT4Me+z099f876ixl5tx9/07df8391vAIuD/xYm9Dz7MiOSQDQT327+pyYZV8hAXB0Xj/x8znyfXSQgJNf9mNb9889afven5KAlBX//ylItfzvzba2afn30779n/q/h21tf4YEYPvJn7kGGT/2Z/7T8J/Hvp8DDNzqaLtGHb5NgcCiMHzatp0e//1TP6YD/7dFAio2245D1/60b09t/CkJMFhra2Nt56mf00+9nf/Ut/VTEhBZ577r+zrt7fVp20/BP6+++MTb7xgDgNW35XjQDgCf+DYc1K6nzyT3yjP/25f955Tvo+7bOeXnqz5yQgCrHY/9+uj7n7Z95hnW3z9t2+4zYI/kHv6krQ1TJNf+c/5q+vMQ8PmSBdJYcKOlbJe4GKDTMBvx/JQ38haDHNAdoVOSPYqFJ2nmnis/xPCThFWp0PIIP6DHk+O7mWcO82sbo8QEuxQ5dKAGFCyZime0WenY3EKgjJh58rBT4OMV7ob9jll5DHmQQCVAoPYgQ0tXTXtoka1FNxih4M90rV/yVKMAZwy/XEh3s5jcV3JHzQ/E4Jc6ZobFsMYoUHHCw6LPKfrZ9EC4E1I0yNDnIXBSwpg1UzP8m4WBaI2oMMQDekKZAURbtq/ndl2tp1CQBpkg/6iwDwnLsdgqM8c88kQUkFsn6yot+9csZhLMRaniYJiNVFYD7DjBKZG7yoJmz0FMret3nQUpFqjWhCrQSjoq0paYeyZzzYQqp8MLxYeOG7XocDLWSbSF5nndjj2ob8v//YiuICKoEA3Q7+3dw6FvqyuYpuOs8lrLgFQ7zr0ApY/bPqeQQLH8lB2g66D53y/xJnWyrnTKxrXdYDhYtwYYJ0GWkyzTxREZGqFkasWE5M9/fSYMvTM8ocQrUQHQzd6O2Fbc06hImV90bx6x5AT6WUJVLm6CAXYoNKqUM4k5v+SNSsJSmtWBs0JMfmSsEMkpZ1gM6nJiyr0cLAGBfkJ4LaijGSEH7b4+Sq4aYCc6o5Jujuiikcogyq2xv/qRN49pxdOU6UdeZoNsM8Yab/IGBSqc0MkuRS6wSpZ9avRxmTu06PC/p2IxpyTMv8dv0uPVGXWypoNi6ryPGGCaJQ8jSXPkpoySL3XQ4g6XkSeUEmyV4CjAroeDeAhoId/EzO1N/pmNz2lgymHGphZ6YX6KNugvB9JfoBp0XUsDXY7KQI4am4zQwwELvBJy2C2/9puMxM0mA/wuXxAr+XCDYa5wlyoF6vSSockGI66rPybLvseb5wOIeoil2a0wGWCzHi5dXl0ygOBcAAwC+KS7N5GW/a3m4FuFPOuMMc0iWepsM0QHiVwRiLYF4iGkSpiBhaJg9yI52hhrbDPIVW5T4iI59gK0Fdi26Eb5xm7sodsH1zKjjPjgdezgbZUCJSa4xXVmWaCfMotMc9EBogEeIVk0KTsusQtP/OG1xqtc4zYlJnjEC5jO5fP9GsKYiEXK8aAWrV7BLkozlRek7hfde7e4zi/xJte5FddewSpKOZY0MaHqN5jyFF35cqiSqgduhgbdHNDnYPnv8h3GWWXIQWhNrr7N95lnLsb0PQc7VJ1TdVbndYfL9FKnTBH5rIihqqCHE0xSXqQcFgUJ67lBy90xh7Dk82kWqZIPDwqB5PpXUkuBTSZNN1BbvpSzLLDGaLSFCgcCtfX8+QE33G5gkk6OmHJwrYdDxOTq5JgJHjDJioNJeVIOdL/DNW5xncvc5dt8HyXL6VjBgHYZIGtM6PN7WIw/FZhapDxxcxB5c2qiLs9FyUIFklo77DLHfCwMVKRSEUrpyGLgCZAtU6RKgfu8FtXzPmrkWQ0fGLEKNTHdIxcT1UNvRwFnKVohZRbj0HwUt5hkGXlG7tEXjEz1K0tTM5n5dW6xwTBiAev5ouumiruxBwdikWES4t6YkJnZ9mL4eCqgpL26rIRQ+Y/OMc/3+E6MnUqr7HLzCD0DJSO/xyUO6Qk7BJMDNYLReYn7dGK+in3sMRLo1uf49SX4L18jkZ1WSaSZ1zEJ6C8Dv++f+QgDAM76968CvwlIkncGA1e2/P8XSAApgWQpjP2T9/cu+nfPYSDUDCb1O9X2mbwfSx6TCZ4DZoExEtllGZj0YzrxYy37Z85gAM2Q/5zC2GAVjC31MvboG/Lz/4e+nxVM+vqExLNsiAhxoOg/jwgvOfK+vTMY262CASR5DDiR3PU0cNn3cc7b4ImfQ96PcaXtGHPeNo+AV30b+HGq3Wv+vRRwg0Sq+hvAvwK+7t9/gklF8yTgVtHf7/HPXPV9vOzvn/M2HfPvFduuRcn3f9avxXnf77t+7kU/r5If+2k/Fkj61VkScOyEkIJLtswQCQDWfv661s8wxuRfx0DFIRK/RrX9Y/98Hpj2fS/4vw3/To3wrYvjO+e/pzB2W97fW/RtvkICKA5gfemc7//rhBclX/ftX/W2kDxZ3oO//MQYsJICp/w8r2J96zUMXCz59h76eynsXiv7vmb82HIYQNvh7f/Y2+E8Jr19SHLvFv34VoD/jb9Xhf/r/+yf/5/43L+2GKKXkyiWzjHvRVQRSlpkaNBBi4fORpc/muaRKvoXXKnRJB3zvE2Gg/XTR433mQ2iyPvMegBhk/aU9yz7ZJBHmz3f81jQ4TKTsb8WqfA31zNe8lDNF8U8OiEVz/E+9niHa/wK30VM+FHWAqSS97O86/NUOPQZneSNWtPLkkkKAQtnSMXzfJEZJlmOAugKk8jLV1JdyWrlJ99yEov5Lw/GXHGbQccGekMdqOLtDW6Gp5zAFwV3mtquQs1VLZOs0CTdpmY5oNCqUE9lEWttkhUO6KbIbqSKA6Fg2WHAvfRszrzMFBUKpGmwlTIfeuEie14wzVNllXG2GfL1XJ5FpplhiQN6guijdeIg25F8W2KCTle0LDEdGEgOS01PLLHM1kvXy4gfefqo0U+ZKgUWeCXmxGZFJTsgS3NuQjBJG6RdETYYSk39/5iuUH9lqVOmn2EP3ATzNhbgKdKSpOjCTTR3FSlphwGyqbprTZq8xn326AuveHkxiuVoSpaTAKuHnAwlAob2IdILwBXuBGBtdkXpOIbk2hTYYjCK3TZw/8Wvz4Sht8vXovI8yHZ4LQ2wwyQrXOIeRXZRWqGkaEp7E6gm+d8q4/RSZ6i1zUbGWBvWMRN2WokJ5CFli4JMLOqGPR3GGEq5YDbpM4NsI38ldZgWKcZaayE7U6ctsst3+F3kRTDOw5BM6XwWmeEuV8hS5y6Xg/VVJ8s7XEMpsJb+WOWiS051M534QmeQbaZYYY8+1hkLinOVAjVy7lQ0xibDdHIUHU2LrQyN8IET2y2LMQFnWWCTYdI0uMV1gKgU1emlk6OQuQ2yxTxzVCiwyHRIqgy5NoDMFs9pZy4q3MQG4xw1bnEd+Q92cUSxVY6H0TRLmO+gdXgNnkLZB9jhkB7WPKRhjvcAAlDo4piaS5bneZV55jigmzXGOHTw4j6XQoY4wE4kJMvXTbTuQbZYYzT6kqVn5iPtJ8deyPISGW8vWwxyiNGDm6S5xD0uUmKR6fBo2vBkZIAiu6b1b1XCF6sPSwNOcRIMED3EtMjU/5NFbC+9XvERHbvERDC+auS4z2uxcNWCdZORqMLplaVOH2Ykq8TbPh9sFQOep8p/zj9imE06aMXDepFpdjgX12IXS1hqknGg2GoHGRqIZjzIF8P5WA+VAXYoUwxPQT0UB9jhOrcQg1WsrMQzr4MGaZ9EdXCXy8gCQG2sCZWYWPe4FCEHAK9xP0CdEhdDzqj7R3LZIrtkqbPALDVyrDPmkyADxZPiiLG5BOyLEdsiFSFB9qDdR2w8Jb2KQV1z89xhNkMqL4lpHzUA/hbfp4Gll0pi/j6zDLDDLa4HCKNxxSadUyFPb/r9LfbuPfdYrZPlvnuxdHLMGmMhm7ek2IdeXDCJqBjRADMsxbUdct+0NI1Iox1kiw1GuMptjBXZH+e6yjiH9LDok6Ipr8YJYO3kiO/wu2R8wqB7XeNsztvlhFQArlnq3OYa8kdR4qra2WTwqWDa5aiFzPQVFhhjnQF2mGKZCUou67F2G2ONYTZ4jfvkqHGTX4yxNPG4ycWzqujFlWWmototoEupXzZCvxeT6U1G4rxM5tERbFYVNCrkQ2Y7x3ww3MS676PGJCssM+nXtzcWEGBpdVMsM8g2E5RC4vGeS7QnWWa/bQGzS5FNhjkhxQqTHNHFLa5zj0tsMxg+eWAyEj1T5WmzwwAzLPH3+E1G2IiF0DZDPge67xXlJjMssU+WHI8/03HoL8XraxiY8xEGBKxgoEo3BqqdxYABASsKhJCJ/iIJm+u0b+MFDISaJGENeUgDL5HIM2skPnBPMTBiBwtfeOj7LJOwvzLANzGQYhEDNk77dssY6CDJ62kMqGhg4MaptvM7458T0PEeBsA8JvEZO+2/5/xYn2CAR83brez/DpD4uXWQgEhv+nkJVJklkSQXMZDmsW9nxrdx3s9lC/O2+1HbdnXMf+Tb/wAD3QTEPfU207GLeSnG3L/yY/l93/eHbdes5fsQGNmBgVEPsesv+fO7/l2BkjO+jZr/20HClHvHz0Fg6cf+3aK3w8v+7y+Q+A16yAQNrB8IbGwH+ATuvuffkUef+lLD91n1/+PbFDt0EevratcyyTU99O0XML+7xyRAacn3C9aX5J8oZmtH23UqYCCwvPae+u8Tvr8zGGgnEK/ox1cF/pEff8PPq8O/t+ifUb/Q/SJQesc/rz7835KwLRv+/4+wvvyY5Jqe8fZ54j/aT4d/RkPgF8ONhXP8MfLbqpNlk2GWmXLAIeVrQVNoveIWLFo3SvGmMEazftgI+5G8Axdi7aew1FABSQZqpcObt8guKSdNyO5Hxf9e6lzmDuM8jHmsVBhWPDMV07HbVJWYiIJcNweMufpCgJzSP6VEEkvM5nkNlplkjTHKFHmf2ZDbCqhsV1EoWNOUAsMc0RUKCs1v5UE9zKZ/1tiDnRyTY49DB1SEP4ABe2LtVdw2Y5tBplhmhE12GAhCiOaJDTIMtCwwQf7OWeqsMcYl7jPGGk3SMbfsdsZiJVWI+ZYKjj0cUifrXr+tKFgrHFFrtSVmyNCIYiyYmk7kkTL9wTITY67glmAC8YQ/bDFInSxXuR0hjktu9VOmnzL95F0FeYCFQWl9K/KQ7KpmWQCkxusKWfEAO/S1aqGyEHYj9qHYp6ZGWWedMVfNmUpRtiYJ+9DsrDR3031k8/G9WDPrWq4yHn7FdSwURt6Kdq1Ggz2n4Etj+xU5xixtBMgaMacPBbAICBbzVVZUBqjvBcY0yhoV8rGe6nO/TClCwcDby9xhnywHEeH+578+E0Avz09QVHMrFvsWQX1EJ/JcWmXcRSyjzgoqBltigEd00ArW3R59lFNF+qgFeGHeOAlKKxmnFhKWEqtAjB5PX7FKiFIfxWZZYxTRk7UIKaeK3HPfJFVGsuxzjMmDFeU843KbGjn6WkbR1WKi4r5zLTpI0+Aqt2m4dFbeRwIH73GJY+/4I15tWWaSQbaYZeE5Waf8BgScasFYdQmcqKjXucUUyyHNVQqsUGv5BoKZ98uzQQBWF8esM0aVgoOiu04oterFItPxMOn1yo0YitL+g8mNJaNbZZzV1HjIfeX1BQRAINaeEH4NtPJlLFIOBFyG5JOshLSth8MAoEQR3yNHE/NdEMuk6lUNLZoPsPRFpcPOsMiIV7FKXIykoBYdlJjwB81JVJd0zBYWkgkZ7QHd7DDg9Pged1capZIqcOwpQ0dOSbawCYtmf5NfisADAae6r7RQ/wE3OKKTJWao+qJfA9uweztVKDDS2IzFu8nOlsNYN0MTyanlz3hEF8sO5thCP0+WfSrkSTswN+llZZmhih6cp8oKUySpmMY+sZj5bqoU6Hbfq8/764kzIa2C1nS27l70bcBZOjWG2Qxpn5iht7nqwL7JDHSPjrMaIL+AC/koTrHCMV1x3woYGmCHETbYYYB5Xo0ChtjJV7jDGOtxD24wwiQr7DDANIu8wgKDbRHtYl4qgl5hH4NYYErNiyuLTEfimKSWa4yyRx/bDNLpBRWwUAyFJVQpoHRl2ShozLcE2JqDg7moEs6ywDirAPFcAHjVJauTrMRE2San/ZiZ7hby6RzgES1SNEizyDQtOthghHVGydDghFQExSwyHSzUMv3MsMQsC1ykFADpTW4gz1HJTbPUqWCpqEoXN4ZthkmWsfTvtQCQxMTeZIQOLAlLcuFBtulwNppYkOYd+iiq3QKqAJc/NGMiJ1aepAmH9EShRc/hTYY5ptMnwTXe5lvIb1F2D3rOZ9l3T5Ei97nEEZ1c4zaDbKNwCmNRH8fE+V/wq6z7xFFFKaUgS44jS4kKedYYo0oeBUhl2WeWBaZZxNLITFpiyemNsMOQLLpKISZPfdSi+NPtRb6cy5D26GOCBxzRxa/zO3RyxHvMUaUQz04B1nmq/MBDbra9LGfJ0c2oyqqdHzmDcJFphtjmq0EB+py/pjFg4gMMYChj4EULAwM8STber2Dgg/zSAJ9WGBAg1lqG5+WDK/698/7dDuAbJIBICgOJvgVe0zRw4hP/fhEz989gYN0Lvj0BFaexAIP3/D2FJ+T8sxkM7BOwU8WAKzHEMm3H4oEVPPX9V30b+Gfzfm4tDGSpkQA+Ov9n/rvCGFZIACIBcWUM/FoiYU4NYEDXUxKAUNvF3xPD78TfF8vqRX9vAGOeaXt4254juWZniJALJtu2L5B0x/ez6G0gQPSpn9MyiaboKUnfeZcEDNP5ibH3GAMTxWZ7jyRIRICcPttBAiCrHynQQQEqO237+sS/I5DsY38v58c4QQJ+foIBYx+RAJpTvi+FT7xAAgxrG0/9+BRukfO2+4YfY8Xb5WMSoLyKAXin/djEdhTQrYCKC349xPQ8Q3IfPcHAbA/O4AZ2Pb+OXfNnJCDfU+C/atu37pcnft7yElS/KpN4JAokfJkkvOPL8AWZGtIgzXVuIZsfzb0zTjiR71qVfKyltM5tDzro4YAOWmw4oWCPvng+CTiRV1iOvSBr5Hy1bPLNk1gHKTzRCsUnnPh6Q8GIQByvFVp76eHgOR/8AXbo9flDjRwlJmzNQ4FR1pGaxwAbOwZ5er/BH3BEJwUvQGr9LGDmgB4P3xumTq8DQbYuVbGxkyPkpzzm9Be1X5VCzH0Pff6qOdkl7lN1FVeeCsNsBmNLhBAVYeX5Lr+5Mv3spRLFlryItS6UxFPF2i6OqfgcRnNppRCLhLPITCg5thniYZuSUWsw7UMSXTu/fi+m7/r1N2mx8BERfcCArS0G6XXi1br79o+yzjir5H3+2UcNC+E48cLrbqybzR7L1n96L00DZQFo3pOhyU7KfBsFaAm0NKVDN4OufBNe1KKDFSZZY5QRJ3utMk4XR8GKE4FFgKm86FWQNX+/Yy/o7sX8vUWKTp83i1jT72Qj9bl2Dz8Rj4xEcMwg28FalOWX5o7qq1LTyXpJQDAQ96JIAwIgZdE2x/xzJII/7/WZAHpVvsqUy5AsvWU9TtBS6oxRMsIGBSpBnUySekwmKVlXjhrHjkoLIFOjHNCDkmw0UE2yHOyEXofsxL4C80X7uerjoKUOsMMEpajeD7NJkTLbDAbKPeTyGwNWbL+DbPE+syFB2yPHXioXMrR22aUNZmMxuEqOeEA3DSxIY4oV+il78EFPSOnEVpF2u+EsrxIXGWXNk3rs2KzSbxKhOtkAZur0UvEFzBaDbDDCCanYNhD+g/J12GYoBvkb3ESafBmZi3k05IvJCoUYlN7hGitMMc8cYGizkowls9U1tW2doBTBOr284gCmAby7UZkS+q2Bvz1dsE6WV1hgghJVn+2qwiSfOoANRlCAg0nCDsmyz4j72wlo3mQY+ealOAkG0jirgb4vMcMIm1GN0Q0/wA5Tjx8y+ORPKDowaveGKjHrDm71IKr6b/NrLDFD7unj6CN/n38aDxJVD0DVvBEucY8x1kOeqcrZMBt0+QNNIS4HmR6UpjTBA+Qt1e5PaYy6vIM8ndE3ZLp6TBebjLDOGGma3OcSSt9dYDZo62uMOghuPoka6LQwr5HjT74InlHAi3zMMBtsMswc77HNIAsufWiSCZ8ugSl6yOWoIU9EeV1YIMEyZpJr0kn5SmRosE+WDE1e562YXKlyZPHz5rUyQYkplilTfM7PIe+gbJ1sMG3TNGKy1aIjGMfjrLrXhRn7jrn/mvxYNt3wVpPAHLU492Um4z6STGSMNfbJMsg2fViAj+QHI2wwzEYUAaZY5gY/8AKGgWLGgM04gJ134Nz8Wiwy3u7LAhXO+aRMgTkTlFhhKoyVq85GHmKba7yDPN5OSNHZNibrgd+NMcVVLTff0GoAdTmfCGkcS9i3nRHCZOlcFfJUeJtvcdE9TG9wkzyVsJPYYJgtB/mGsESvPvbcey/TVpE8FyCqBS9Yyqwq0INsMcVKgLnqdze4GbLSETa4wxVWGecel5hmKfxjJOUtUqbbweIWKV9UZMLfdppFavQ5S22fTo65yxXK9GO2CbMc0M23+X7IiW9yIybvex5ikqfKAT3MM+c+ekcu8RkN1rsKYro+LToYZzVkLq0Yn8ai0NDpz5Vplhhxuw0BxEXnGisp7jq3uEjJF1yJbMYS3jv8PlhHCcpdHFOkjPmo7iP/IvNPtMmaPG4ehBb0c/w6IJE2CtApkiRpSqYoSWkNAxDOYGBBjQSw2iFhdJ323wVeFIA3MBBCkkzJZ4cwwEBgkIIvtM+/48e0QwJSDLXt55x/R8mmWySsuG/4OUn+KC+8KT+HFd/2eRJmW5VE3ou3Rc3fE+hRI0mXFQsR//+W/73l+3oBY9ZlMDBLYNxT35/kvB9hIFwRYww2SJJXM95uBQyUGcIYigJwJK39ff9917f3o7Z2EVg0iQE6z0gkmvqMJKlP/VopWTbl3x/ydjlLwqKrkgSHnCMBa1/y/58jAdqUUrvb1s4d/v0axoR76sf4MQmz7yMSgPAFv15PSPrRN9qO6w9J2HYV/9H1GQL+pp/reT+nb/qxL/pnzvsxv+jX4iOS633Kj3+WJHn2MQbiVX0/O/6Tw/rOIQkI+AnPX/MPsT7UDlyu+HeUMvzQ22MHA/DO+zH8yP/2kb/f8rZZIQEJBSouYn0n5b9/4u0JiaS54fs558ejkBf5KH4BXkvMMM8cLTpiDaoACUlbFYooltgJKTriaWNzKwFcIpEc0M0Gw7EOFVBg/uHnWGYKyTvFdNp1VZcln1rQQoM02wxRc5WYKSnMKmSJGfrYY48cWU+rWWEKyRgFrIAFb1UoOPh0gpRBAlukYAOTcSp9NUudTYaRJZfORZYhG4xg3rvmAyzmXoMM88yxxSC7DpY1SZNx4ozYWl0chUzTvAMn2WS47dm961QSa1etscx333zP+hwMHGPNpZkdwajTORmZqcsLuHvIV93mWBY6JwWKLJVEQBlhA9l4yHdaPvciSshHWCm/5nl40dlv/WRokKERHtI2a7Y50xpjxprDAvkENAm46+bAC5InARz2cOhz5slo1y0GUdCcebx3OvHJfATbvR+tTZoxZxxmI5R3KvIW2Q1cQUXpjPdKEXrkySz1obAZAajyrJYMe51RWph9mL6rl0DODUYocTEK1GCqRfkhysqn4bDhAI8CPDygh76WWauVmCBPlTHWUdiGqT2PKVOkjz0ucR8FqxbZRQGyYjWKPNbzM1Y4PjMPvXnm+Hbr+9xJXUFeQUokHGAnwAz5QEkWq5tHncM62l7cRAKvUrSCnrvnXlBKG+1r1ainevk1fptdp0nmnQmmiOCOfCvkSGX6A0gcZIsOWuEtdo3bIWHaYSBurCYWIa2o7A2G6eKYDj8uW3waOr3CZCw+rPPtx75FdT5y5kOGJlXyyBheCwyh3yZvq7LGKDIgVerRhtNMdR7ml3ZIgzRzvIcoyxXyXOM2VQrI30pSISWsCFnuoxZSJ0nb5G9VYiKYORqUxcoTmq2UFoFWhnY3Y38H9ITczh4AjRiY5R+mc1c7aAGWosUJqUiElQ/AEtNBC5ZvkXlu7bPug1cnR+aj17jLRsYWqHtewRjEYqtVXbFBp4M1xrjCnQD4Em+qiVgo6kYFWDz7MpIVd3HkQRl1Kk6tNeZfw6sfKWZY4jZXGT1tiUJ91AKgFRjWxREnzoCT/wQYU0oG9huMMOpx9P3OHEnR8oH7ETuci/vMwPFdMjTCc1Hg4QA7sZheccmYGExpGhx7UEC/L3gVad4kE+ckICftD5MiZbYY5AKrfPoFKcOewhI/1/0hO+jJ0kd0ouRoVXckK99ghDWnmre8j0vOKEC7iyOU6CR/xV2KEdF+7PRv+TOY315XVKv0AFI/VGLUEV2Mso4kkqKPH9PloHeO7/F3mOABU6ywwUhULAXuKXgmRYtz/oASYCTwXVLzSZZjDBnysXOHAV7jPpBI8CsuR7/E/WCbaZIjgKyHA65whwoFLlJijz6OsSRZeaYqSa4H8xnN+LmrncVmlIzDJPDDfq0OsRS6DXo4pMRF5PNaYiK8T3Y4x4bL1PVca5AhTTPYgRYpY6CfSU+Hg5mm8SxNkxo9cR/VyXKREvJvSdNkkmXuciXuOaXAF6hSYiKKYAUq7JON46jT6/2hE4XsLDAbDExJiDvdU1QJy1Yk6oxCyw4D4e8nXxf5nYyxxm2ucYOb1OllyJ81K0xymbsUqHCZO+xwjm2GABhhgwzNSG/W1GmNUYqUeZ23fDHTCskQ2ERQLIQplgFiwSMwUxKYFily1LjE/ZhkCnAU+7FIOfqDinoA93gt2miMdVYZJ08lWIo9HPA9/g5v8CY59oLFnmKAPi+E6XirDjxXKfCRMwg/16/2oAMBTP0YkCTmlsIOIGHlncbAlgkSBtDH/j151Ele+BgDEjIkkt63MLBEcsKyb+Mcxugqk7CUftP/P+Tfkdql7Nt7AQMzzmLgzKIfy3UMvNBxNkj85iRHfUYCXv4fMUDsIxLg6jEGpEz4++f8e0Xfp3zkdL5f989LVosfuxhSYoDJw08svRoG3rxIAq61/P1REj81sfI+wlhUH2Dg34lfq3b2na6DwMAP/VzlLahjEhurQOKNt+LfERPzsX++0nb9zmLg0iTwL0lYmt/EmJQf+t8f+vbPkTDdaiQSZElVl33f/8rb+3zb9wQ+FTHw7jGJ9PQxds0nSUCxih+vpKUf+ecEWj/CAMsZP8cTEkZaB3YPrPjxisnW8PZ54sdzGmOTPiGRMJ/wvE/jC74PbUcWxQJCz/qxXSDxNuzA+gG+vYL/fOzbUXuO+j4H/G8Nf3+IxBuv5e36Df/5EOtLP/Dvn/d2mfTvCmycIQGLH5OkEX/OXwrpM8ClGWuntP8uUEFeybMssM1QEFYAejhEKbQtOijTH0wrKY32sUAsA1ka/Ab/DLMbMfa7LISkYtNaWtLcGn3BBtthgDwWpGGJ7SNxvAJIxjyJXjZaDdLx/zoWrNZP2ckOR/GclYSxyC4K/ZDHWruVi8KvRIqR7FGgUw8HXOOdUNtJISZvMyk45IUmqSoQYE2LFFn22WSECUrhFajirKSxUtgp1EF2YJOskKHBDIshsZ3gQbRXkTIbDFOgGvNEsdjE0BpgJ2xR1hgNoFdkpm4OmGExJLayxZEVjQJDgLjeAtYmKMX+AORtL7LIHjl6OHSMohwKMpFQpA58m9f5u/wz9kn88sWUbHrPHmQLKVCmWeLIgeoDukPSrdAwI+50YuEjIxG8aVY4pipUIvES06GmAJhhMUgtm04GsKCUSvSLeeYYdbZm2Ykwe5j9lghH7ZZIgGMVSeib+nHd1+dFyrFW2EiNBMCe8X7RwwF3uMw5Zwlm2ff7yHAeFbI1Hui+05pnhRnsIfjnvz4zye04q2ylBgMtFeWy2xlMx3Qh77wKBXY4x/vMBjIp826xMiYoMc5qSFtETTbfmyNnVY1SJU8jZYtcAR4y+E6q9imPMTaGhvT7WiSqqjDIFpZsWKNGH1sMxsXd8xRQxY2DMaokMxJbQ7JHDTYmhezlNe7T0ziIhe8SM6xyIcBDixVfD2NLeWhlHAk2ue92DDw26B2y4RIiAWfGCmjGAl8L6nZqrBbj6qTyGNQgWqXQhmqnadHBJsPhY2Qea8PUsEjrcVa5xP0ACYAAgLSoFjB0RBcbjDDChvkJtmyQUb8RE0mLtk1G2GbIB9KTqEjonC15tobkxbqJZVouD6leHxS3M2awL6NTVX/04EpxwnjDBv9ZFlCqk8A+80rYoBuT9iW0dmMj3eQG3+fb7jO1xRGdwZrRIANWaRlnlWu8E14DoqQLTFHy1aGDI2JICsyp0ReVFz0QmmR4jfscuxR9nld5m9ej0pD2dgSMLk5fsMcEvAqQ0LVSwrQCB4rskqbhbJNDvw5Jkm+TNJuMBJAic35R9z/vrw3OR7DAdW6RoRkBQBozDujxClTDAZ0tn+hc5J/wf4hxYsyB2jH3r5Pc/xjzCFljjD36kLzbGKxbUTU7dhmDZLYzLGLJV71x/1uAw3DIJMZZjWsuf7Ub/CBYhAM8igpfmmbIKXT/6D65zbVIcrVq9FZMDCUhGWTbmb2vItno9/l2FBgEDG4zyD0uUaYYVUYgWHmyJpAXoVLH1J/FJE5xwj5ZhtmgQiGKMVnqvOL3u5isAiqzDphKDpOnwqh7n2jMqrlcQJXFDYadsdjNEjPhTaeJ+SbDVCh4aEo+2MA73rry29P+9bA3cGwqZDryYRHd/zq3sOS8XJgazzNHnSxLTAO2IKi2gUlK3ZIXyRqjMak9oIdJlp05MBpjjRjhSjXeYCT60zirHNPJGGvxfJK3nKQ8eoYA7JMNP7oUrTCVVmrtRUrIH2eWBWZ5n16fY0yzGMWJDUbiGZyh4aFLDerOAh1jLaqsmlBJhm6p0Y3oU2LybTNIH3t0ccwuRVaYDEapmJGyJlA/uegSjzVGY8IqVoSeG+Os8i3+4H+R8eg/6EueZJCwcf6QxD9uhcRbTXLUARLQQYDDWQzA0HfO+89LGLhSJmGnpfxzZ3xbkgVKgljGQCYFLAho/MS/e9aPSb5/8mlr+fc/wkCLkh+zwgtyGPDxEQZ4vEySgqpADnnBCdzA3xdYVfVjFtjxMQbsiN1X83OW/1uBxGct498Xk+wF31bKv/siiXRW2/oAA5dqJKETCm3Y8c+eI5Fw6ro98s8rjGHBv6dQkwsk171AAij9S2ydUvNz+zoGjMrPsEiShHrG2/U9EmaXJMUpEoBMIFWF59mG75IwIsWO+8C3k/djGsXYcGLavez7WyTxLPwFkmvfgfW/UyQy8ackfexjkvRfsD4Jice5+qw85AT86hrnSAJannl7qr8omEJgZL9vY7Ht/MQuLZIwE8UeVT/8mAR0FgCKf14ejBMkUvbHJNLiJyQg7Dd8XwrUeJfEs1F9BG8PyZYlE/8RCTj4s9lFfS5e5/hj5Nsrz7giZS/KZsPzTuuDKgUKVIJVJXUSwKZ7dOv3Hg7IO+N/lgUaZFDwYg8HwQbKsk+BagAv5vU6COAhBZmwr1LYhEA/KbhmeZ8sdeaYD4BlxFVLB/Rwn9fagKVe+klCIOU/p9AEKUYapHnoskqlzMouSHOxFCfxjJcNEZgvm1RaKo7mHTiTpZGFj+SR77uCI7Rm1jom52oRqTFSnASoJwsdzSu1/lW7KuxOz/iEmHPo13oX2UCpfRQKovluiw62GQxllKxBpL5RGq6FZprth6laNr1wPhgsPYGHLV8rFCmHN6AUKwbw1gMMFnHH5qQdTLMY6zoV2IEgJ+yRo+pzWBX5j10lKBKPCCUFqgGGNZzQs8YYBaqY9cwKUtaBAbCH9PDAmYeykjE580mA3ALaCq1KHFu7MgaM7CLvR83xNS/LUmeEDYrsYknGaVeKdsWx5B0nkMee+laKE3oxbacAuRx73u+O6XOrtElWYi5q55uOdZNesngbCSPWP//1mQB6H/MiZn9ec686Y1HknLkkM8VEX75PF0eMur/XAT00SEeynowN62RZZvI5AG2EzWCZzbBEgwxLTMdNbnLchrtSjQXyKsNtmburgx/R5ZP0LQpUgxUlE8R23wKxUZSYOsd7FL3qYAzCLeRRpMVbJ6YRT9OknkkoqPLp+21+HaWyik6r5FaxWMyTL8URnbzPbCxcxZzowYwqbcAyj7gFXglWXJcDqu3plrsUaZBmk2HKFEMTnqYR7XtAT1RSBthhg2He5nW6OGKSlZAXy99P0kp7CFQxT7apAFkFxM2wyJEDVnupHDe4ySTLAfzp+z0chj9Wtw9mY84k0k2/R84lTlv+MLJSn2nrLQVphwHuOKOlnYqtRMMcNRqknQ2aYTUzHtdDLDuBMgaWHDLCZsgTW6QoPH6C4qxnWAy5tV0Pk9DuOg3ZaMTNqPqo+gQEO0VU6wJV+ikz7W0mYCJDM9h1SqvSA2GB2UiP7OKIX+G7Adz2tiwIwxKzdp0dWglwUl58mgQIaOijxgQP6OGQJaaRtGwTC61RzPe+syq7OOIS9wJwbKc6f95faZrhCdcixR0uI/mqXet9rxmaR5y88cQmmmIlfBAN+BgJBtR9LkUVDOAydyLk5hiTEarSl8UCaMR2bvfPsIfhBR4xwBjrfIfvMezp3SUmuO9hAHe5zCYj7qWR8e/3ssCsA4udHNCNWLnn2GGZSfra/EQySDa7Qpf7sTXJRACHHs73uOThLZPkqJGhwTmXPGhytMp4VHp1XGASBMlS5VGhSqwYYJLCF9kNA90+D+QYw1iyVlU+YZhN8lSRNYA8Uns4oJc6h/SEt6EqmQJ5DujhoqeTyduzTJEOTL5gwJL55s0xz4hbPlzmLjMs0qKD69ximSlWGWfLrQksXSsd95JVfEdiDBPQZkEs74TfnI5fE8/XuBdBDZKDlJhggVn6KcfYLTn4LkU6OYoqcac/pzSxFQNuiWlucy3AYI1pKiCkseT4XV/EqNK5S5G3eJ07XGaYjZBMiEkuwLBMP+3eOUXKDLkvomwdVMmV/6QCpW5zNaQ3Couxot8e8uxRKFPNe4ZYmHq2jzpwWvCiW4sUD5igSYY3+AOXfZu0aIdzXKREg7Qfe5EaOQ6dnWdM58pnPBL9JXj1Y4DFKQxQSmEL/WUSz7gaBqRcIAlEOMHAJQUdCBgUwCVJ7qRv/xyJZFHebgpikAfcjH/vBP70NzBAYsuP61WS8IKHJCEbk77vMxgQI8muGHIdJHLJFAlDS0y4ln/+EfBbJIEfApWG/HfJTSX9FCgjyarktwIqP/H9Hvq23vP3z5J4sq1gAFbL20NgXYdvU7JQ/FgfkYB4tbZ2qPnnBQw9BP6Gf06yyRfa2ljhCUr+fehtJSbaGf8Zxa7nQ3+/TAJOKRG3hYGSSlj9iISReOLn/XUS6e0F7Lqm/N8zJABniwSAPOPXY53EG0/gn66RrseK/97y7836eb7sx/0NjEl3gUQSmyMBc9/B+s7Lfuy/hfVRydDz3mYCBAXwzfj25WModptAxA/82kgyXMOup0DRAZ4H6MSElb+i2vDQ9ysJruTNkrl/E7vGmbY2+IiE6Sp/vBlv92U/DjE0Bfx28HzycJ4EDBXQ9zl/nWeDHHuMsAFA1b1hdxiIIEY93xM5oxXfFpmJ4qYKtEqIl4y00KiG9+yI2/AI1JC3q+ZHmwyz64X+YT8e+YopME37lz/aMV1RXG45MNTHXoAc8v4eYy3AHWP57wYTCWzusMQMslQxFlY15gx1epmgBBDBESKFNL0YJzBGz2ix4kRg6eII8/9uUqXAPS7xgAkHe47pd6bksc/Z8lTC4shUTCZllf1GO2HI1Gx7UVgeZiMAriaZ8HK7z2sMubLwmE7Mk7zgLP18gK/DbKKQt2Of3wy6YsTmjMYw63RsAoj13ioXYu2sAnCLDk4cM1Cby89P2zqiK1R7w2zQ6dLXIzpZYzRISQLL2pl/AhlVGD2iK4I1xdZbZzTmS2BAq7z5NB9+n9kg5ph0u5tthmKtIVaicgakxLMWOibvAKFsye6lLnmg6GCsr0z50Y0UoMI4mphnpfafsGdNDiuvPc3d1hmLfm6ezCaJr9NLjlqEaB7TFYDtIFt0O1Cs9pMVzInPmTcZZsOL2wIoPyX1M40nnwmg1+QrrDEaFEYtJo1ZZTfTGmMhVRJqfUznc0mgYF43uxRdOpRHSbIH9HCXy1GpUDVfgNs2g2HmPcsCY6wh8+w0TfbJRmMlgQ9lClSQLr5CnhE2WGOMBpnnGEWH3rFU6QAbPKWBl5GjpGImkbMBWZLZVcZZYZK6swxH2GTE6aXTLGGpPSOsMv4cTdj+vkjBvQNVkRHQInN4SYlbdAQDQwwU86qzxdcyk4iWLMAlSz3YMxq8S0wwwiaW9GqD7TVuByNGngLmT9BHP2UeMEEXR9znEqLjrvj+ms6OAIJRppuvD5M2nzhjThUPGYpWHdxsOvArz68uH/76WmILGaNJgNk2gwywwxXuUKBKiw52GHCpmXwS+8OTrkE6wAwDwToDcJbPAsA8cwGkpGlQOXuGpj9c5bUkPz8NOJI0KxJejKE0jWAL6fxVhenhgBmW6MA80yz9dzSYSJJhC3jLOCOlz5OcJLHTPXmU6vIKzF6wJBW93i6xlQmr5I8WzNFBF0fsk41jEPAxwiaDbAfVXQ9WBdhYYvIMX4RXQs/uZZFpZnmfK9zhiE5WmKRGHzMsctPN9OeZY5vBAM87OQqAWQ+cBWZpkGGfLBUKIYmeY96DLdZI0+RtXo97vZc6SmneYYAfcIPbXHNm1zFdHDPEdniVyNfkNtf8Ib9JItsvxARRfpJK++6j5iDvUYw/+2SDDSrvDRVWlFI1xzz9zja9SIlDnyxNs4QCbmR5sE+Wc+xwifsxrs6yEPdNgWoka4PdkzsMhK+gACYLkXgUIP2JM1H1fGg4yK5JowpFks3nqXCba3Ry7JwwA/WmWHHJg3kSTrPEJe4z4kbSMkjW9ZxlgRE2kQn0AT28zessMhPsdqVkQcLezVMNpnSaJrKQKNMf97r2I0/E7/C9aCcrzIw42JUP5qGAMDHxxAbIU3nOZ0UGygIJ5dN6kxvRV+QnWPJnwRDbNMiwwmQwrLcZZMZpJZ1uXTHFCjX6YqIlmbnJobeQTF0g3hFdYX/Q3n8bpFGq2zSLwQpUuJGelTaJTQppZYrMMc8EpZBEnTgzYIUp+jA58lt8i9tcjXEv7cUhBaKoyKgq7ibDzLDoi7ZjJl0efDcM2D7HrywGZpxgQM2HGHjW7iF2HgMnTmNAUQcJoCC5aMO/d54k+fQZ8M9JTP3FtDpNwviS19djzGfOJa5f+q8xUGXI/y6fNoUUtKfTCuBRSEGeBIwTyCR552MSfzKFC5QxIORVP98bwP+ZJBTksZ+LABGlj+ZJfN3E+JJ33kskDD8xqwSiKVRDYRxPwNfG9v9nwN/zz7+AAVoCL4cw8OcxiWdd1Y9JslSxr0Qs+ND/ViORVz7BmHjyWdN2z2PA1jkMKNoiAUZnfds69yKJZHTLj7vW9ruAXZ3XaW/jJ237mSaR3ArsUlCJ9idg8xxJIEbGz0Ug3wkJACVZuFKC37Pfn/1tkmspJidt+1ObngFeJzFAak9q/ht+Dgo5yfn1eZVERvsOiSz9MUmAiiTeApL19xnf73kS4PXEf/8Gibz7qf+ewVi0KRJPPIHLr/6Zc1If2fKfx23t9k2MfTlJIlV+y/fzoZ+b0m0TIszn/iXmuYpa8iMTcaOfcjDm9h2MSdMI1niaRhS0Onx9q3nlWmYsWPx79LHITIAFsnqRZZMpwUwR1YuUXBmff5rVyzAbtEihNFtbJ1aRZ/E4q8hLfYeB8D3THETrPvnXHdDDZe5g3rpHoUopUkZ2RPv+LBfIqRC0RWbc/qgV60AFbPRg4YEqJooRpzV/ngqHToRQUVXEBinxdhiItZC82o/o4g6Xg9Elr7T3mWWVcYbZYJvBAFEH2AnJqK3PrWCqBGCFKep3hT+kadCP+ZLbPGc/2lxsxAZpbnGdN3kjQD7NfaWOU6FfBKV2peE4q+TYo4sjZ0wmwXpdHCOP4ylWHFRLU6XAOmOscoE0Dd7hGsNsoOBEzde0Dt1hwNUOzZh/bThp6IBuVzLmXCVhYaGa/5pU9TBktEtMozAO3QNLTHuw3lCo+PbJxhp4yFersm8RQKnrmgR+diPPd5GONhkOoFzArbyTFZohbMfC2JZ4n9n4XosO5Mm/5XZUHU5o0P0nUkCFQigop1lyf0Bj26Zp0hd+Gn/+6zMB9NL8lDq9IZuaZ44SE9zkRrAQZNQtEMqCFuxCGkeiLwaVO1wJI3jRU9tNKk0w00BGipYwUwsT7ZrLY42y+4gZN+meoESaBsNsUKYfgGWmAnlfYiborzJTNJbJCQ0yHHoHEYtwJzMQlQIBFwoG0YJk3SVnA+yQo8YWgwyyHbHc0yxFKqDkOWKgzTNHtc38Ugw6sJTMm9wgR40VZzGq/bLUGWUN6dZFJ+7hMBY38m7SgrFBhgLVGAQf+sCZo0bX02fMM4d8jnSsonuve6DEJiNxQ6laM8CO07K3YnEtFkm/s9AmKMVi+pguhj0iXLHdA+wE27JCgfeZDcYTGEBbSRU4opNDeuLvt7mGPO/EmtKgLz+8UWfmiJnUS52r3I4Hki0yc8iTb41Rtp1SPclKVJcE6uapMsMSo6wF6GyLuhE3dFVc+olLJDP0UXNwIk8vdRb8+MvOjOlqJWb+StyRP8GeS7bLFNlz/YQlBpkpZ5W8S7cNXFlhMhhOR3RRoMIr7pMl/y15AAyzERTtbg5YZDrYgGLjjbDBJe6xwXAwZzbc1HbTpdUCVz/0atbn/XVMJ6uMe+VSbbmJwhy2GYzwmFHWmHEAy+QI/Zjsuop8JAfYYYvBAC6M/XifJWbYZig82mQcO8AO88yxwCzf5VdD0q1Cih7k3+M7wR5rkI7k1mvcjknSHPOY4a/1LRVU+h2klq/EJCvRt0Rdn3IZwBGdIQ82/73jqPhlaMakTf0yQ4P7XELS8jL9/Gu+HfR0+ZjkqFElzxLTUShYYtoBlRlmWeAh4zxgIkByyVj+Bb8SE9yK3yPyoFE1bcQns0azt0nwod+/snG4wxW6OEaBJwLM1hjFfEZrwXRVUSBPlSM6WWQmQPkdBlhmKsD3GjkueMBGjb4AKAW+6llhMmkLVzDQsSPA+KG2yV6FPPPMuSm1VW01CbfvFrjEfe5wxbfRzW2u0fTngsIcipQZZS3G8YIzUa96n5GlxgKvsMaYS4oLrDFKv485B1jYVZlibKOfcjw7VfxQYU7M5yYZ1hilTjbkI4/8+G9wM5jP8kLs4ohDn0TPsOQ+sibLmaDkzMhdvzf2XRbfHc+LOtmYNMvP8hbfZIQNvsXbZGgg/xUwJuK6j3EyO99khNd5mw1G2CdLmX6qFHiHa5x3VsTn+rWJJbpeJQEhwBb3JRLWVgkDMDIYuNcg8QoTS0xsOrF6zpHITB+RSHkFwAnoE1NLEscZCHJk3rebwQCqxyRhHC9ggJLCCZSeWsXAQb0kFZXcdYJEhvt7JCEdZZIkXwFtYsrtYMwtMQ0XeZ6RJybXB/6+GF4CVtSGas8aBgTJd00AEX6OW36++ruAOyXxgoFLJRK/vd/3Y5kkYdENkQRuCBT62ySptgqm+EPf5nWSIAV5GL5AApKdJWGyNbwtCyQsxsm2dpfMtkQiyZZU+h4Gxq6QBHYI/PsB1l/EknxIAiLPkrABq9h1G8L6kLwBT5HIp08T8thT/zUJECkg9i2SPiX25nns+r1KwrZTv76JAYRnSUBcSaovYNdMfV7+hFMkKdIKa5n2/dZIUoFPsGuq/vwv/W8zGAh9CuuHunc+wRh1kgILzFY7fEKS7CsgWtJ2hbxICn6KxGMygzF3X/bz+JQEHP6cv47d2kFFQgOmjoNgUSNHgSqDbAdIYOwrS9cEY+6N+fpO7D2xjKrkoyB1QDcFJ2nIm1khTQoFzLIf8wkgWOQZGkyyHGCSWG6yp9hkxBmCGQf8usI+JDnXLpaZZIFZD2soenH5HFUKLlE0VrsIMHV6KbLLNkMeajDGtBf+5Jks26chn2sAoSoCojCeoeEF11YQICZZCQWfAJ8+l5e2+39vtclWVVg3RuAhKWdEGvBig6W9Zz768uA1f+FaAJJpmlQoxLXp5CiKn1rPzrJAixTzzDHMZvjY75GLYJTXees5kLRImSVmWGCWGrkonCZ/tzmOAC3N2w/oiTYr00+RXSSFFTuyE/NwFxA5yUqsu8XkPKKT7rbrMsWKqxgamB1NH7Iek0++pNxSuYj4ItWZcAlbH++5V3VPsOhkRXRAN5tu66J5pY5NoTMihUkyu+F2YSJyiTkqVqQV4U/IOANRKj8RirStdoJaO8mshwP6qLHNUBCwNH/v5MjpMVuxHkhxwq7jLsIhfoo8OP7812cC6J1xLXfSADZx/w7fwxJF69FgWpDIp+aKG2XPMc/ok4+9k23R6+yTfixRT15nMsQE4oZs+EJKscZpn2gPNMzcU0kzq4wH3XiMdR8wU8EkMo+zE15hgU6OqVCgRYdLN+04XmEhUiplKK7IaslgTepq0qA8VTYZccP6Tl5lniJl+qgFq2CQbdYZY545ZEApc/A8VRSg0Mcec8wjnyaL126E18+Jn4sWIsa06g46qmin7RLfJmkH/cz8MkudG/wgbvYeDlg9fQElBqc4YYYlzFi94JWVhMmgRbYxSOw65N0PqUUHnT4ASVY80NoJ5qBM3wUmKTCj5SCDZGfDzopQEu0wGywyHQu9dgPPX+LNAAKUyKQFWJfLyEQpVniGgcwWFiDfv4wfi8xoc04zl/+UtU0rGHKrjAdDpUI+Un2WmQx5dBfHsXhVoETWH3LtSb73UpcocdHltt2M8zBYilVH+oFgpbRIsckwY6yHEaqMbgfY4Zgu5nk1ANKa+0BKsqZzKVANCa0ewNsMMcc80yzSi0kgl5gJv8cUJ/RRY5zVYI0NssUEJYb4+LMYfv7SvcScUnCJHrRAVBb7/R4wmV+nSwPsHrzEPS5xPyj8i8zQi6V5TbHCJMvUyHmFLBcVoDHWmGWBLQbJUg8ph1HtOxlyhqkBKaP8Ct8FoECFETaDLaexuQczBJ5imXFW+QE3wptOXqKSgA+ww9/ln1Fk15OkD6IiJS8QVSLlh1IhH4BSmSJdHMfEb5mpSCYdwtLI9+hjjVEHjfKRmLbnVTGB60d0cofLHNDDHa5wn9cYZjOAVHlfyNND/89S5y2+xX0uscFwsJY1USgxEcly8ioBouo5x7wDVt30UeMW14Ptamxgm/ya92sBpX6rrX+Vf4FSkCX1UDX5fWaDybnMFCUmQkoxxhoXKVHwglZ7OreKETMsBQhX4iIzLJKhyRzvkWWf/z3/HfLHkUfjFMvc5horTLLKBU5IhWRl0tEBXWcLQumOyVgPB9zgBwF+2qSuw6vge8yy8NxkB2wStuv9QM9kwCfT5seiCfQB3WSpU6AaVfvXeYu0M0fbJ4aS6bZ7/rzGfcSQ1mJG9h+6TwV4LjDLba6R4oRf53fi+Xzk465sFRTaopRxSbHb779eLx7quf65f32FREooGaDkiwp9mMCAhvMYIPMUAwNWsAX/YxK5pGStAjWUWNrt2x4gAbMUNPEjEsDulG/nFIksV7LVHT9OMfFG/e8Cq4ZIwC4x+KokYFG7r5zOVyymd0h8zj4iYW/JP/AlDAibIWEvZvxvAnsEWD3z/UpCrPALhSdItgsJ+3CWBLRTSmy3//6yb1OMMTHaFPYh2aa299DbTuf6t/1z8h+sehsKJJOs96l/V9sU2LNDkrYq6eszf6+GgWcCjHb8u2Jifh0D2yZ9HwPeXmX//bH/+wKJl2A3loK7QAKIdnj75Xxbf5OEEahr+zIJYCp2pQDND0iSjCVNVgiL2KYvkICrap8bbcct1md7IrKObcf3n8f6pbwbFWBxyrdx4ue14tdC5/cU6ztvkTBjz7UdT7e3qQJkzpDIZZWqLN/HsySsT30+h90PDT/+R/77grfN6yTA90N/713s3jvyny/Ay9QbvchsX8/rX+Smg2VdAaJJfqmXCn/ydAec4b8XhX55uu8wwJAXojYY4R2uIYmmCk+SCwrg0fNI8xUl3VYouC9bMVhlkuhqvSorrWM/fq0Lgfi/zQU6KFJm2JNci+wif9wUJ5Tpj6J1jholJiIp1OYmBjp1Y2zCHHvIW/3IC+kmAe2MfdbI0UctyBk9HFIjF/O3PXIsuJ9/mga7PthJ9mmAaC3mK1p3quAsPKPEBNsMsemhcQrnEpNPgZH9mPVLlnowM9v7ggrLR3TSdKak1siaoyv0UFZWUmo0SMd6WwSaGjkGfY7bT/k5Vp22qzbR/wE23OpH61KBX3/Wu3GFKXdS74lCqHwDxTrr5IgZFuPcRfiREkJhHcKJsuwz6hjGgstytc4VAWHYrXSkQhI5Qf1Hn5Vy531mqZCPoDap93LsRWG9STpwH+EpYvMpTVm4hCxqUrTCyqvd83qCUuBRUj5uMxS+hZtuxSKmnq0POsjQ4Ek8wP/812cC6M3zapyIMZls8am0TKtGGHAixHeMNTqdYZDzCsLqmfMu2TG/shx7vM9sLHIU9avFikIzJOU0+aQZbqZpspOxxeySgz3a/wpT1MgxzCYyM7eK/nEsKiZ44IueZHKeoclxG8hjdOTE3FNeP00yXGvdZoISKU7IO0iiSHLRmTV4zzHPGmOMsYYSdESLlVmm2nDXKdNDre3wKOvimAlKPvAdxWJmkG3GWeUuVzjxSoRkTBdYDVmUqKtimQkQswSiXHRELXbAFjGqEg2yhYI0xJyZ4AEKgkiMPNPBYpGEbTU1HkDvMV3cdb+xDGaGOc0iEw3zIjJmiUm/dAM0SJOhySwLQY+V78Ac865lPwnWW9oBlDrZSIdVP9h3gEzMjdd5K3zFLFClDyXeSsIqEFl9Uq8BdnzbGwF29bVqETSSJBQN0SAdi1Jdp0G2qHlVxtq+myoFhpz5Ybp9G8jE4BTQqFCWihvAjrFGv1PaBQSKXj3GWizAr3I7HhhJRa8ZoOqw+wbqwSkGqKpj6jd5r4ior7XocHDoMV+E14t8HACL/NF+wA2G2eAGN2MSo8JHnV76sCAeLfqNaZYOL68LrNKJhQDIiFcJtcNsUCcbxY8iu5Qpcol7wZC8xjtIQg4G/jZJM89cgGxi8ko2cIvrAQg2SDPENm/ySzHxq9HHNd5BdPUx1tlhgAp56mS5yQ2MUr8X/aoDCz0wgOwiq4yTwZJbVdxokeI6twADjEZZc2bxoxijxXwUg3ePvvBXHWKbOeb5J/yDGAcE6AywwyIzLps9igkAEJNCk9xmAhBqkWKEDSb8mjbIYAlmpRgLNhiJcxZLWUUQeUimafA9vsMSM2HSrMnMArP8Lt9BiV9iYNuY1YjxRtdHFWZJaW9xPRlTvZigFDKbaCYTxymW2WAknkslLrLpBhDa1wkplplyqXhXMM/q9DLGWkxeDLDf5hEDzLCEfP62GYqJsSwaJGMWO1NsUrDnyQSlYAsLBEvTZNlT482TxOS7Q37OmpT1cOBM/o5goSod/Fu8FRMqMUhXGY/jEdimQplV8ZshiU7RYpJlFIqiPlohj+TT6ltir9pz/b0AqVt0BEtP3rxfiFcnBjxJWrmAgU4CNySJXSYBYeQfJ7bbyxgo8UOMwVQj8TB7RMJcEgsIzBtNaZpPSfzN9F6NBOSYIQlT+EV/P4WxiCbazkUsskOSsAz5s71DAsLtkEgea36MYsFJoisGmMCyx23nI0nvKRKftDMY4PIxSbrtO8AtDBg5jzG1BAQpMEISzxdJpJlnMYahPAz/kMTHTj5nYitWSOS7F/xnkiSwQuETH/kx5P13nbMYeEPeppIua70iUFDHXMWAohxJgu0FEslnpu06yXPxXaxv3PLtiMUmkFdhHjtYwIXYofITfOznd9338ZsksucPSCTMD3lexjxE4tH3jIRZ+o4fm8DaJ97m3SSAobwXl0gYj5+Q+PuJ7fmIBGTe8TZJkbAsPyQJVVEYha7XhzwP1ArA+wjr13mScJQnJAxOgZFia2qokrel2IeSRyv8QoAxGCO3iN0rYiRO+v9bJIm8p4ADEqD0c/7K+omKZNAgQ4V8gC/tyimTSNai6KX1r0IUFz3kqotjDuhm2v1/TSq7SZkiJ6SYYhkFKhpDrBlg3rHPizqdeFCh4Ax7Wy9JRaVQCNlVKLxC6gOpLXo4IO9KrwIVLlIiT5UJHmCe5BeQokmEhQLVIDpIgaFCplR3Zr/UGeuWTUa8wDkUAKMsrBSc0R62KHmn9nviBdxtBpFXoGykzJdtN9a7JxizcZNhRlrmjX+HK+HBv+esOJMf5wOrsGtz5GSV3kh57XJ6D9gceptBB9lsPlKmyAUvTgsw1by3TjaAIM1N5LuepR6yYm3fVGOVmNOpqKrwyhITcfwCOI3ZaLJhkWBkk2ISVqMD7XDOba/MQT3nFjFb3qYCozXPBFh38tCYK9jUfzQPFwPUjv0k1vMq/B/RiUmiMzEnVjsKlM5SjzmaFILyYtZaNU8l5q8iJHR7v9B6OuNFWoVoCq+R13KRcqydm2To5DiwJPWdEhMuWTbcIMs+JVcMTVCKeaoIUWpfKUn+otdnAugd0xk6cZkG7rl2u5OjqGRr0bjEjDfEYbBILFlniE2GyVELg1Cwiyg5jy7MLa6zwTDS+QOBNmuyLJaGfNVKTHCAhQYY8JbmMnfJOMKthZ0qCfLoMS+/Cg1fAAv0skV4jrtcYcxlSJLDHaR66OKYFabCKFKDhoIpWhiVVbTNbQZRHPgGwyFHkzmjfKBapCinilhE9UkAN1nqATjaom+UJpbK2ucMtE2G2WIwKM2jDiIaI6tClXzIyiQLhET/fZcr9HDgEssEiBPIWSVPykEosdDk0SRkXYON2JUZGlzmDhuMxAJPgOf7zLKRGY4UmYKzKI9JjOjN1ryPrH9GXlmzLJCixRCWcHiJe17RaQXyLup7OzVX/lA7nGMHk1XLc9HCKKqxcNNAJPBT5q0CXY7pCnniRmokmHcyT1fbGjjayUPGo19Ikq7Bdc2ranO8xwQPqNEXaZR6mFu/7WSCEjMsRTVknTFP0rIHyyzvI3l8lTxKdl5hioy3awVLoLrMHU5IcZurpDjhoVODDYyXR0QjHjyDbLHnAKnSPpeZfC4x6PP8qnE2Ag0k+T70yqZAgPfdE69KPoANSXMBByLepkmagj98VB3VeKq+p3ZdYoa3+ZY/LB6QpR4TpCMfo19lnk4fo5RuXPNoiG0fF+5wJVjJkvxbau8xNfooMcEED1hkGnlg5J0ppTFUMlxNZnp93BLrbZULZJyGLinAKuNMUGKUNTYZZoFXInX7nINsAqBV4Z1x/wlJWaZZjIf8r/PbXOM2c7wXjEJR/GdYpIdD5njPQX4DwzWJTmGp6kV2YxyRP96IS9GVxKp7RlJ80eYPfTImWagmR3PMs85YjO11LBl2hqVIjtZ4Y9LfTWfa9ntVskGOvZicCsyv0ReV40lWnpNayNflAJNVbzPILa6zyjhTLq2ZYx7JeUz6Uo5JzCssIHPoDUbYI0c/ZQ7opkk6xt2LYdZFsDcB5P+zwGxMHPVc0PNxgVd4yHg8t2W1Mc8c/4R/EFXSLPvBJFRVWGnxWtBYwnaGMv1sMRgs2U1G6PRAn32yz/nqpWlylyuYMbMdo0y7z7HDO1zDvECnA4gXuKuCjHwI62SZYQkpDq5xm2/xFl3O/M9S52OGPrMx6C/N6xgDXBSekMGAK4EXkkw2SBJYJUU9QwJ4fUzCEmph4MnvYQCCpJEC90ZJZJpKEX2BRBpYI/Fzk5RRrLWUv7+DgS0vkEgS/4iEvfYNDKQZIvGwk0yySJLKqmAOpcSex9hyZzHQUaCVpJvyIFP4goINnpGAhDn/fhH4DW8vedqJ7fcRzzMG3yMBehrePkourfnvkhPfJPFNO9V2HvIzXCQBKAWKKpzhQ//96yQhFY/9WOSX9gQDSxdJQB5JWBXa8JIfTzcJ4HmOhFn5DOsTU37sM/63mh+D/A0XvK0e+U+Z/7+AFE77tt4iYTwKGFb7N3he/jzj1+MjDLw65Z9XAvGPsL6UIQk1EcvwRyRJt5Jgf0ISotGeJCvPvgv+PQVuzHg7fJMkmALfByTS5w6SIBmtq9cx+bSucdU/K2n6Gewe/WX//jdIWH5KaZ4E/hOSpGgxYM/6PiQJll9fO6guRuVVkuTgL8irzhmfR2Tiea2ieQPz8xZAtsFIABrGktp3G5AO0jSYYiWkjkoV7XMAsEmaBWZZd8VSnkqwwnLU3I6jQifHZBzUUALprBfVdhigg1aAUqb6sDWlPNXFVFfxrZMjRtiIYqZsVBR4McY6skbaIxdzQqXoFtlFfrtSzxnp5CI1+ujhECmxrnPLj80S5t/i9WD0HdATSjEDSftj7ZniJLwHr3KbxLO9ziBb3navRHHv2AGsLQbZSxmLTWQiIDx9dzjHMV0+jzqKNb+AGs1dlSxco49BtoKJqPYcZY0un2vXybpy0IK+xlh3C7GEdbflypMiuwEk7jvwZKy/4wACpcLq8+BR/T1LnQlKoUwwYs5egHk9HNDvbE8x2QxA60D2JmAg3C7FKOL3YSQWkXoAFP6nNb6SYTWfHWeVDlrc5QrbDIXn8Crjz9mpNH3uVeIiB/SER7v6pEIFRU6aZilYl+rjOm554x/TxTir3oe3XTl0FMSvcVaxYI9U4Ah1sqFQNa//Tsdr9jmgx4G+rsAO5pin5aA82LpN6k4pg77mc/e/6PWZAHov8jE9HFB1o8xVxtlmkHH3AFIVvV2WWSfLAq8YOEU/GwzHDQzGIKmTjSRcAT0y1qzTy/+LfxALPnXkAhU2GQlQr8QEQ2zTR41L3A9QbZxV5pkLTx6FHxSoBnti2C+qbmggOl0GCzK4x6VgiIyxxnf5lbjJqr54180h020x4cZZZdHBzSJmbX5MV4BzMj0VkKkABTGkNjyl6JgubvKLgWJLrnvo6LEGL6HTFkCxHwPSCBuMsRYMEKMzp6NKYayEraj8LDLDOA/p4YAJHjDOqie81MI7aIFZB6X2uMAqo+6F1MNBSAIVACHvNyHqkh4qdEEVpE6OoxKhlBvza7zoN7D5R8iHyTibjdivUm7mmWOVcUbcONP09J3+PUP+Nfi3MJnrGOsxAAmA2GaICR4AREXoAROBuNfoQ0mLSrg1Lf25GJjkadEgEwPrBVbDM88Sllu8wzUHXAtROWinTPe26vEgkyxNYNAEJU4cPJWhZ4FKsHYk2bYKnQGy6m8CaMQ222SEhk9Gujlgm6Hw6ZA/10PG6eGQXurhYWFgQgJifp5fz5wyvsZYUOqnXTKvEIJJVrjrwIX8FDcZjntSYMU1biN6+g4DYdqq/iGJv5iiAjPq9DrL2fqCVYMt1XmJGaouA5dcVH1NzKsjushT4Y4D+EXKXOcWl7gXD3LJStcYDcn+XS4zz1yMBe3+oVe5HePpr/JdRlmL6p0ATUn6NblRmqjYsWobMW/TXjn9Dt9jgdmo8um7OWrsUuR3+LUoHilc6JhOavRxn0vBOrSJVC7G7WM6WWA2HvyqzI6zyjJTyFZAPpbXucUWg3RxFMBkiw62vFij59gc8zF5O6LLx8c9l9qmQy6v8bETs6eQDLdAlWvcjuftsHtZmk+sSd8P6OYEYw6vMs4iM16jtQn+Nd5BBtaWot3JNoO8yRsxGZZcf4RNvsP3qJOlxAQdtHiIpYjNM+cLhT23tzCGsUl65zGz62qk256Q4hbXkfTUZPvT7HCOI7r8edXgOrfYI8e3+ddM8CCYA2WK3OO18OwZZMufBl1sM8QV7gbjU3IRtaNJjieQR6uUAPJZlC/ODW7GcznLPkA8e3q9YDTFcoDmTedQKG33gB6+x3fYZpAdzpGnEkbUl7jnz+AvAC1F4QIZjCV2igQYEvjQnlL7DAMsXvbvvYsBXjv+/V/GWFZPSFh5Jf+7WEXTJABfy7e9iwEYDQxAeIYBJGIJljHA4z2SMIZDDBx62d8rkLDd4PnggxYJQAaJZ9rL/vMNPw5JNeXp95F/R0mlRSwx9ZH/vuOfb5GwnVJ+3o/93MXmE+B0ikS6+p/4+8sYi+0TDMx5gcRjsOi/38BAy1JbG53x9vnY35N/oYI0JEUVCFrx38XKlL+dgjF+gefBMQGU57x9JTHWdTtNEnghKapYjvJEfMn3I/aiGJ06/ifeVvIxVGLyaQxYEuCU8WP9FokkVqxGXWcx0iTHBWPknfPrsoOBmWL34eeTw8BFJdAWvX2ekARQSGZc8t//bBiKUmM/9p8nfn4TGIhdJmHCCmSdJAGvxbBrD6L52M9xkQQUFPvvA5Lr3fJ2LWPXMY958P3Z8BSBkgIrH2L3UBG7t5TSK7l8BluVHvOFeKmAp/VNjhplZ7IbkLAZMr4uf6pJBbPuEkuRYQbYCVab1qQC7PoxWesoa+x5IcuUVMb8UfHpgO5QVKiI1SLFBCUHqQaQjcj3+A4XKcVaedvXuGuM0sMBl7hHhzMM5e0sS6NFV5zYcTZj7ioLEtlWmUrtBIUtbjIca+UZFik4mKIipBEkDgOI2XBvP3nf1cmywiSHjhnIeihFiyr5AM3EkNxmKMg6AmvACtS91FlnLGy71I5i5wMBIFYoUHWiiLyrdR5Su4k4pIKrgCLJbwU42fGeMMR2sCQVTKKUY7HQxlhjlDWkVBDeUSPn2MteWImoMD7IFkVnYmpuqT6Ro8YIG7H2FANz0EkyArNkX9XDodvbGKFHkuAjLLSiv43VNkEpwGDZRYntloTZ7dPl6/5xVoOZKNsgAZQZGkE6sjV9LixtZPsjSbU89LLUQyZtHoKJZZjCL+Rdrvml9YVe5JVYo89Bu6PwTDx29t42Q97O3Q6eH3m79gb7VVJsEWiG2Pb3frYB8TMB9M7xKJDFoiPyb/AmGZpsMxQN3STDBiMxuZ5ixW/sXR4yHqCW2G4lLkbnNuPNzogGfoM3+SXejDSTHQbCH6eLI3YpBitN1GZ1ljnmqZJ3BkohkFZV2ev0RoKpEF4tAkSn1MJLgwQQDJP7XAr/MfO622CXIkon0g0sTyl1zIx32hWmohOnaTLMRjAx7nKFOr3O6Bvy1DwLZ9CxDbPJBiNcYDVYkmrbIuVYRLdLoPp98BA4JM8iGXpm2m5KsQw3GWaVcf4x/5A6WQZ4FIDsLAuRprvJCA8Z55hOjumiEIu7XRqkIyRFC09JxDSobzMUg4kAB6vSjDLKGlXyKPzBqj4dUU0ycGEv+ogW9MNssucLdyAqQAd08yZv+DWwRfyu04CP6GKEjaClizIs6alYfmKgbjDMHn0xUFgajg0ee250L3ZWiYmg6/ZwwH1eiwenGFUCts0nwYYdS5rMU07ZwClG1TqjnnA1gmjemw6aC+QZZNsN7g+jCjjGeixSTZ63wgpTKAY8S50ZFpHv1RTLiEm7R44htuN+FTBYpMzFVom/5pWWz/ur4GmXQ16lbJEKzzDRzVXxmmQlfMPyVJlnjjd5I4CSfX9gaUxoxKiQCQq8ZPqAP0gGGeARY6zHg0SJV2kaTHoiq014ellkhgVeoUyRbh9nNHH4Fm9hoRxDrDNKHzWG2eR7fIciZa5xm17qAQZe5i5K7pLBsiYURls39qjdj+d4jfsoJU2TqDJFctR4lXnK9POACTIO8IiivuWG0Yc+8VGRRvdSkd0IOQALQdD3xWLbo4/bXGPOWYtTrjkSqC+ZyyIzbDHIPtmYiApcFGNxyGn8Gu/WXKLaIO2yjjJT7i1oAGWOm/wit7iOmVkXYlKu8V5gfRfHFNll2u87GR4rKU/eOiUuco9LPtk4JEMz0rxlQjzk4FeBKlXydPp3rcA268zeRa5ymzJFl71UQqIqb0zJWBTUscwkK54WNsYaClgSK06pZpoYqljyXX6FNcb4Jrfoc6615DHG5htihA2u8Y7LxxvelstYEvTDmJxa8STvz6KdYCdvM8QiMyF/V1queVIu08Vx+H4CLqXpjAS7EhcZZpPr3EIyjR0GItBjxpN073IFSZ71XO3kiDHWOKSHu1whRcvB6BZf8SLk5/qlBf4MtsgfIGG1iRWXw4CFdzFQp+L/voQBLAUSmaeYXwLMXvLfn2FAiIIFXiLxdStjYJgYWQ/9czmSAI2nGGNIANYZ//tTDLySh9wFP6YdDOSRXLRIkmIrqeKiH2c3Bo4INPzA9yFwrkwSviE5qHwG5RUHCasRDLQUUCVm3Y+8HQTavOBtocADyYO/jrEBtzAWoNKF/x8kDLSnvp8BjE0nVqCYkwor+RskPocC3trlqfK5u+6f+dC384FvR358pzDASGw2hWY8xfrFih/PWRJwroaxNN8jYXkptEGgoSSeRRKWWTsL7qbvrx08xLcnILLbjw3fp/qv2qCb5xNnV3x/7QCcAkseYwCfWKh5b+MzJMDtJM+HuwhAE9u0m8SbL+XbeYb1twaJv+RHwJvefmLJSn4sZmAVAxQftZ2HzvtlkgCTF0jYdWJiKozmjJ/zGQwUliQXeM5lRWBtiuQePIOBeV/jC/HK8Rj5rF7mDve5FEVICwGshZxQ6w+xoY5ILJWq5J9jdeUdEMmxxwqT4RXc4eAUmEJAjPs9Zxw1nUigQqEYcyK5SFHUxTH9voacYSnYRUomFUjxwD0KauR83SRPvd3wBhajXaEB7ewtKarSNEK6ekRnAIsKGpNUUj7MInhMUKKHg1CHaE0rdv8AO0y6BHmUNbYZRL7j97mELE9UUFdbya6jXeHQckVAmiZbDAagagBQ53P/l2xa3vnyeRPpooMWJSeDKJRMKjhZL4F5JBpoZNdOYQoHdKPAsostawNhGGuMsUcuCD+amykQZJORUEKkaPn2ekJCLZD0n/KfepHUQkn3nJUmOx2zv7I2sD7QFwVvFTtt/VuM/Ruu0+VMVVvD9HAQpIAeDmmRigKzFIVSz0ipIxszrQUE7L3trE29t8PAc+QchYLsUqRKAVlvWTtVeI37fk3MckrXrkZfKBgPsOA15SRIlTTIFgPsxLpG4OGxs1nlFT3NUoDbYCzBW3zzZxpPPhNA79BZQZ0O9shfq8RE+KylaQRivOcLvYbLc7PUIzVGLCNLVW2QZT/8bR4w4VKwXdI0GHKPuBw1FplmkZmoMhxhMdJKWDym06VnXcH8u+A+fFY16eUN3kRynkG2YhBR7LeAIlUnDJRcDlmbALNR1oL6K5BNYJLMRUtcpJsD3uEaJS4Gi0XmjHWyzDOHtNwKUrCAjMVY2HRxxEjLUHZJd6vkGXPaLsD7zALmU1RiIsJBUrRCxnbslOI8FSopo8COssYEJYbZpOKeefYd82IQWDrJivvzneMtXvcKi/nd7VJkk+EACsRO3HAWZYmLpGkGw2ieOWcv1AO4szSmeoBqSgE1Vs8hStVNO4Bsg/NrHGL+CX2tWvgIGFBqgRrXeAd5FwgQHWPdqdbLAZQMss0KU8FEFMXbDEJHkOZfg4hF0TcDUJYU+wY3vRqySx97PHQnSDFSZKpeo49L3KPpkkxVXgSQWv+ZiDYYwAJhyvTHQ0g0Y8CZL53hXSkQKPFcMAmf+r2AjPu8RsOllzqHCvlIThYzVffxlD9Ec744VljKINscpHr4oryecAb5eBYpM81SjEsTlFhjjDyVCHHo5iB81rocaNODYZ45GmSYZSEKCHvk/IHaF3T4IaeHKxzAwoj2GWAnGEUTlKjTyxTLLvU/pM8l6AZqWCqvJkxiyIp23skxWwyS4oRxVqNyLB+YcVZDHmwMz1ZMSGQwC/bg3/PppwyXu1wGKZmkhflkmOX92JfG9DpZvsXbmCdFnfeYY89DF2xya5JjVdDAfDzK9PuIb2CcpOySOPw2v84Kk1EZ7OGQbQa9AFSg6edpYKBNiCdZ5oJXgttloAJ2ujjmEvfivrTzzzDCJoNshSfmBsP8Fr8RkwOxY1UFP6CbXurMsESeCle5HYzmSZaZYQl5p3Y4s1ChHEbnt7CSC6xGUen7fJslZuJY55ljkC02PDXMpLvLDoxZKm8HLSxkwqqVMyyFvPcS96IqrqT7PXLMssAeOQbZIu9j1iAWdGJM6gbn/FmiCvUQ2zFe3eMSsmuQn+4r7lunZ7eY3zl/dqhyaiErJlWWlGKAR9TJMs0SSgIHs1pY4BW6OOKYLqokid8KJNlgOAp4E5TiOaiwqwuscpm7wYKWpcMiMzGJ1X3zEh/+LzIe/Qd9aUEvptMpEomsQLIKCatHTDAwQEcyWTHyVkg8ux5jIJe80ARqiTlXxSSZ+OeGMEBB4Ik88s768Uh++ZIf5xM/tj/CQI9nGCtJ6aZ5DOCY9n0oxEGsxEd+vJI6KjACkuTeFzEgUIw7BQ6cafu7QJM8BiR2kyTzStooQPATEnadZKoTGOtMwOCr/m/Kt3ve203hFTmSMI2bGHgj0GvGt/2QhLWWJ0mqFetOLET8WAVMPvQfpfh2e/s+IgHUpkmCOk78PL7p56t033YfPkl1J0nSWLdIANJXMeDy623tKOBL1/IdEubYDAkw1UGSIHuORK5d9uN6ivUjgWv6vNiWOsYOEnbfExJvxEnf/4u+TzHZxFQVq7Plv5/2tpacWjJ1Hesz/4yuQ4ZEtq4gjKt+3DMkXnrqRx9jffEjv0avkvjrLfr3xOzL+XVROIiAWgHKZ0hSi8WGrWD9Kef/P4+BeV8MNxZOSIXlwqEXv4bdwkOECanWdhjgNlejiAmEDdMRXc7GbwTpRcBgYs3UEcoMC6hroJTOh24Hk3cbEQUnpmiFz7asMCquvJNNDxCAGVgoVx97Ia3cYDj8a7XuUNie5oZS1EkRZr68mVBnFahynVtc5xYFqmRoUKDCfS5RIU+NHJZEattZYoY1RsOrr93eJU3DvaWN+bjCVKyV0piH8V2uIG93MKmw5kl6aW3YxXHYfJnk9ATZudTIxfxS813NyVSkTdNgmM0AIhtkUGiawi00/yiQeKRLVWJe6JaMDDDMJgqgOKCHvZRZIWl9OMYaHbS4xH3AVIbCahp+7TUPbpIOT3z1U5F4bnAzCFpin60xFsy1KgXyPudREX+TEX6bX2ebIYdcO6MgLHxm1D3ewebGIo/IxsaueSH6+BGd4UV8GOSREy5xn2Ev2prqZIlv832mWYz1cIEqYi1asXaiDV+w81AqtJSDYtzVyYZNjhiUYicCnlDcEXPuGn1BHGqQYZORwKDMfs7Uek3SPGCCeeaCzPBX+Lc/03jymQB6SuSQpnmWhUCyBS5Y4s6u33DHASYNu4llk3RIVEX3BFyT3OVR3M0YkP4x/5ATLM1zk2FndtggOMg2kywHbdhojCbd1E1Vpp9eH5CEeOepMM+ryKjTEkxTMUAOsMMED2iS5hUPYQBikJM89ritiiA0d9htx8XK0s0+zSJv8CZmjP5KAHcFZ3t0ccQWSYLtJe5TbJUjGaVGjgepiaAKN0izyEx0KlFkJa+01MqVQJ3FPDQwdCh8DIUeSwb3Nq/HjTrqXgBHdDHD0nNVHVvUVylQZYw1Br3tZRppBpj9gNGT+zylSD6BN7jJK+5ZNclyMFJ0MyukQ+enh5HkbGLQTPCAlFORK6kCHbRYZJoce7HozrQawS4zsLE/btZ55thg2BlJGxzRGeBah1cIlFRlVOX9OH9dW5mfN8iE/FIx3HmqdLrEtkGG15yBJyBH5yYfPtHytxnkGIvPlqeeQMoqBfr9uLoxanuOvXjYNslwQipAdHsomjfDKuPRptq37pUGGYbZZJolMjQdGDLvthE2OKCH3+HXGGYjmKuLTPtgd8wGw9zhCj+r0ef/2l8vshUSVGN+5kLuZ0zcBjf5RdbdJPfQ7yXJJQfY4S5XvLJ3SJmihyxsO9jf69LrRmxbbFPJZ6vk+R5/JyYCAPI9lCR+ielIS9tkmDd5g3nm4mFXpzfug/Y+cUwXY6xFqquCTxaYZYFZn0hVuc3Vtnh5e/CqEtZLnUmWUbq4Er03GKZANarKI2xYGnYb4KNKb4mLvMkbvMq83w+jHNLDCJt00GKEjWAavu9+Mte5FVT7BWbJ0OCYrqhKikVphaVuf35shYfpRb9G2wyFd8oQ2zxgwiuSTWZYDMBc52MSiIyz4yoc0cUb/AEAv8bvxITQ2IBDjLDJArMhT91mKNJtJXeWXUPVJ151slzjHQbY4QETKKhHbLQaOdYZY51RbnGdYTbDH7NKgb/PP/VjTbHETIxDt7nKNkPB8r7CnZhYZbywNMBO+JMsMuOp3vNIUtIuIZC/qZ7l3+Jt0jR9Et3JjMeBisknb9MujtlmkFneZ50xLnqKmCrgBarIt0bFL32/Ti8LzLLlwHqnV4Q1B1hlnEcMxPU9ceBNxZsWqefMnTUBLVKmQYZlL/jIkFr3xnVueciWVc0FSvdwwO/zt/69jjt/KV8/RwK0FHmevSRw6zTwf/H3X8SAiQoJK+sTErbSMonx/6sksl2BcWIvrZAwozIYoPBDEu83ySPlqzbg2zlLAkRM+I9YcBcwsE+y3U8wnz2BlmIdiQ3WIvENk/ef/MYUVtAOTFX8PaW0CnQSwPYqSfJtBmMuTns7Sg4rj74CCZgjNlaDJCn3jLeDZJ8Tfqz6ntpzkkSKetPfE/h4hiQ5FpIAiAU/FoFOOq/Tbf/Kh66d/ad23PK2bGFA5Bv+viTZAlvFJDvjbZPDmGgVkjCJGkmIhdhuH5Gw1cTWe0gipy757w3/VwDru35Mt0hCVMTMExuzTAIMLmN9bMu3JTbdE297SNhu+GcV5vJ1ksTbj0mCVPB9Tnhb/JZvX20hMPMZJk9/lQTYVAKt+tRT37ZAwJf8ughcFbCnvl8kCaz5Oon3X8bfa3lbiB34jKTvq39Kav0qJhNuYME5e3whXhucJ8VJkDekTNAzQXZBTTJMsuLM/yolLgYIIoDBmH5N5N+lQMgKhVA6dXLMKuM8YCL2owJriw7MbqjLg/gsyOt9ZunkCFl32Fr4KOb8aQfXctSiaKXnmlI7rbi/HywvIJ7JmpOVmIj1MRAAjQhAa4yxzSCDPs9aZIYx1lCIhdaBg2xFYBnYXFNAlUgl2wxRcX+ztM/vpMgqMRE+dTX6uMkv0qKDEhMhodTcd8tbSaQewy7MgqhMP6OsMc5qYA6y79rzxOA9+kKGrLWcecmnHQzrDbJNjlr4yksxMslKYCN1slziPilOmGeOJWZ4yDj3eQ2zx9qIYz1xpqDW0Ic+17WQulej7wBxzaQQmWQlCDPyvbe1e41JVoLlNs0i87wajFLNl27wAyZ4QJFyhGcIe2hn82m+2XAVpUg2e/QxwyLyYpS/sxh3KmxL0VamGIxPw2B6Q0KrebJ8ByV5F7vVpLxjfn2GgrhlNkM2LxaYLNm6yGgGgO6HEkV+jWb5tueYxgp5KsyyEH3JCDvrUeAW+/VneX0mgN6ug27yBBDAYoh7k+/xHUpMhHQzxx5Z6k7ZbNLr6GjevY0yNGMB28kRa4wy+PSPGfO0wyz7zPI+YIhujhqvcZ8+l452csRQa9sZL8cxeBiSfRCsqS0GqfjC+AKrlLgIECy0MkXyVBygMwaTmZkf08UxOWpBAdaxANzjEvJhSpJRGkxQYsjPSb48U6y4dGiVKU/XazcXlVxOzMcGae6krtAgzQ4DWFxyJhYvm4w4g68ZunIxJ47oYoVJzB/u2NNoyvEg0Y0m8EwVAA3I8suS74BYM2OscYvr3OUyY6yHLnyBWVaYjG3ouI7pCoYaGAI+wA6i0hae/iRYFjIY1wLZbsB+juiiScZ9qkbazFv3A7AaZ5Vzj38SD7CEXtxBF8fsp0wmPMwmZlq6Hvvp4pghth3gOAxa+CYjvMW3qJGj8PQnlJhg1+nyJ6QoNsrB7kzR4rf4jRgMVpgK1qeZ478XrCZp6rXwrdHHskvYplkMYECeWcYU7Ta6csN8JeUP0Q40m0TXpHECiZukWWEyQCA92Pf9mh/Sw1xrPvrDCBuU6SfLvvd5M/0sU2SDEWr0hecB8Bzwl2U/wKdu//vn/bXGS5jUbzCCIpTOLX+SA7rDX0PGxhkaMU4Oss1FSgGISYZusRVb8RDKu38hEA9DsFCNKZYj6VQFD6vKGbC0j/kkyttCxQUxfSX7eIdrJLLxEXLOPK2QD1BGQQKaQGTZ5xrvUKEQQLaF/jRpN1k2g98+HjDBTW7EeN1w5nC7d+A2g+Spui/jCVe44yEa6562dRwTY50nENU60fLlF2j+ha2wFRhnlevcQoa6JukosEcfvQ6AC5icZYEeLG3NjKStev1/4v8ZYSMqqMiDTyCvQG+1Qw8HjHiCtHmR5JF3XQctJhy4qpELaX6nVwWXmA7PWjunbjZ8PJxkBaUBD7LNe8xxhytkqTPNIt/hd7nohbIjulhkhlXGw9/vLpdZZ4xNZ+ypGquUPSCekTVyEVJlTMVdJrz/5h0krNGHeTduBnj6GvdRgtoY60gmq4T2e7xGEUumrZP1550VM1K0GGWNmtdUc14c0kJAz4GCs2FVRAQDCzcYYYOReFb0+oIpx14wy6sUPAna7AgUVCN5hSTHWfbZYIS3eJ1lf8YW3Emnk2NSnARrL8ce8jL93L9aGMDwEQk4UsUW+wIhnmJg2wsYMJLBwAQBCUqVfYox7t4jYY+JYdbAwIQh/84pEibeVQyA+AZJgiwkEkYBEJJqKqFVmSX6zo9IPNAyGHAmVt5LGJgoAOcZiby4SCJdlXeazvvEfyYxMKlBAhaJVXWeJPn0vH9PXoRfJwlJkCyz6m0pcBQSdlWGJNH2xLcneed7JAm1T0lCLSCRpP6e76Pi32/5ftsBWjHRBERqfXKWBIDNkwRpgAFD0yRSWclqz/p7b3pbKHX4gu/ngretzkn7l4xX576AgVdPMTBJjLZJ3+43vD3FxlQbKpH1mf973o/h623nLOBtx3+f9N+/TnK9vuG/z5CAe+dJgMlD34d8GiHpCwX/vLwMP/T3Fczysp+LQkrEkPwvMWBb7a+gkN/HrssjTAotkE3AsO6pAf9MkSTV9zHW19VHBkiYnaf9ON/w45okkdrPYPfPBRIQtD38Rqzbz/nrq1SRbK+HwwiHML/aflaYcve1ChsMh+R1ggcxn2wPFRDZYYMRlHIvi4osdTZdXaY1QYN0hERW/fN59yQTu0ysdElBK+QZYIcMDS/EZZCJv+xDLMHVPNkEimg+Jums1tcCPgbYobNtXqPz6eHgOfaizruHAyeHpOnkKBiEBaoMshVgpwqdq4yzwiTDbNLnaxlbK3c8ZzEl7ziBb5qHmdx0mDRNRlmPtpa//KjPV2z+tkGdXt73uZ7mnlprSu67w0Aw4Tr9u2BrYP1frwyNAKu0LcBl0mYbU6Hg7Wxmm3tuAVOlEGqKlhdsMw7gWR9Yp4n5+g2xFRYxsujSdSsxER6H5v9734/B5v3CARS0mWXfcRwjmCgHQAGoKU5YZ4w0TV5hgUOfrSvERaobBXoMsMMUywGqaX5sLMuirzGNjVqn19blWOhHln0WeIVjOllxdZv6SYsOLnE/QEutwbcZ5Ap3IvDUCAu2Jj+ii0vcp9vXzFKD9DlJyGxtqmTZZ5lJyhTpoBVteo3bAYTuk6XqqsduJ03ZNd11/OUMP8vrMwH0zrOBBSdsk2OPDpTKUw866gnmG3eHK/Q6MFNzuR4Q/kNaTCrZRBe31fFlrj55F/N2y0Qnr2FJOSfO8Mo4YFROmcpalYwctdC9JxeiFpLgQ3qYZNk5CP0BulVdEgYEY0qeRYD7plUCjNphgBHXWou9kKbhvmt5R29Nw77OGPInqJFjvLXKIFsMssUmI+Td96r9pYXwkA/0GeeoaRFr6azGpjGpcVfIaXUtJDO9zi1eYSEiysdYJ0+FBplg7kniOsc8E55gqHYsUg767AA75jHUKNP19BkAv9H4ZyFDbmfUiTKuxb5Ymfd5zfrMSRIKoIePwiVE/ZYMdYkZJlmmQYY9cpS4GA9MgL2z3dFOdr22UPT1rivxNXirsjDAIwYdNNGCzQAUq57NsmCsu9Png2U3xhpVCuxkBig+/XEAqN/he0hOrXhxsaQEiKk6YxLtkwBTDUSrs8M5ejgM9p7o7vLc2MsYMD7OKk3S0V/lxyifhxy1YKQI+DCZ5kkMvAYDZ3iQmmCMdWrkXNZpnlxapCp6fZYFcuw5U9MSdrXY10MV8Grjx//expy/7C8xYmddGmhTtCRwRH6fLToiyl3eYctMhbx9hwGG2EJSbjA2kQyCezikEzNVPfHJ3DZDAYIPYUlYmuyIcVtxDxZJpzXRWWUcJX1N8IBOjmJSucMA0yzG/aJj2WCE7/PtKG4IoKp53avpQFq3Fw6Ukir2tY5TVeANhllhMs5hlDV+iTddflFBPpjtQSDmn/IgPOHKFGOSoHtpiC3SNL0aa0m3Kj5d51bIHe67xLPPK9CqcKrQYs8Qq7gNOjuvxATjrPKf8t8H2FYnG9XSLPUAqYCQXKjKqBQte05uRhFCk/0GaS5zh3FWeZ9ZdikyyXJUbzURVTVZxZ/f5tdY9BCUMda5xu2o+Je4GEW4a9yO+1aT51/iTQCfOObp4iiY3Fe5zUVKIUXo4sgT7GyxYQuPTu9jVi83yX6BNUZ5k1/iiM4YY7WgUVtI0iCAWMU3LQLEOGzRwQgbWDKe6SvHWGORmZB/Kzk6g/m+FKjSIMMCr1Ahz2/y95A/kRioR1g6+ShrzLLABA84otN9UXNx3XS/SOKuyZ/kuquMM8CjmOuoeDfGWigbPtevnydhCYldJnltw39XgIBYPDLob5CY/EsuKB86gQGnSBhzYkw9JJH4nvXfJU+FJBhBTK0LJIEdShf9xLdbIwl96CaR/MoHT+BHi4QJJ7ZXte2cxdibJPHNO0cCkjwikeRu+Xsv+OcFpjwk8T+TpHSRJD1VjLOHfvwvYCBKjURqWiKR04rxdtXbIoOBNfKRe+rn+02eD8kQsKb2kYxWwJLYcCmS676CsRl1vTIkgR81rI/skoBIAvzeJEnw5c9sT9Jb9RslsH5AAgaKiSjw+Fxbe38DA7PExiuS+Dxm/D2BjJKVCoQUSH0GAwtPkSS8FrHwDx3TEAkLTtJgMGBuhUSerOFAMuMVTAp8iIGBaoNnJAEffxPru6cxwHjIz19g8iPf31n//I9IWJKSEDfAAyLt1UHCbPx62/lWMcCz2Pb7u34eH2HXP+fHrWRk9YV329pd7E2dZwn4MV+IVyfHzLCE/F7zPpfWSyQReXJtuE+5wuXK9D/nnSybjy6OGPICcZY6x3TS597hWiOC+afV6AsrJVNHGMlGrL1ZFpAn3haDwezrJvGz13pddi1W0Brm2EEPKXdSnKDQKz3LFbI1zip91BhlLQgCsrRadsDG7Lg2XB1XQvYkY6z7+ZikdpORUEeNsME8c4yxHsyrfsooYHCARxw7AQnwQrv5MVfIk2MviudSFSqZVgGbAo0E8BkRZB/5uSm11UI9TvzZb/ZFGV+LKQAP8NW7PPv6Yl6sQqT827VWVtvb+swSj2dZCIWaAu20FpaMOk2TESewaP4qNpzUPQBmNbWF0mTXGEPWTre4HoQCYTwGrnbS4cektYbNmY/J0HCF0TENBySbZNgn6+1u8uKMswAl/bY5Wx91emN9pGsmj0GFoAigPXEQ1OaQ5md+jdvR1pK7bjIc9mUKejSigjEoR92eaoIS/V5UztDw/mvqH4G0Gx5ouO33ywA7bDDMGmOYp/gUCsQxgk9HENZEXBLZwXrKz+av/JkAej922EaeYiWX+xQph+FhF8fOWjph32mf97nETW6wxph/1sCAsdZagDeaXG9nBimduRBUR8mhwCQ+AhC1IFSlPfv0iSPqSrExtH/XFxK6Kbo5oK9Ro8huABszblYo/X0nRxFmIPBHTDsBQkpzlYRUTEWxLTQYizYtKuwOA8yn5vjXfDuYVV2+cOnhwL87xLobccvDzcI1pjB51whK01tglhIX6eQo0HMxJqW1z2A+WZ1+cylmWaboRXapkeM2VwMUtYSXZizsj+iM9s1TZSMzzP3Tf4MjuljL2CAw+PSP49p0ugH5gQOoWcxQv48aEzygTpaVMy8HuCskHAyEmuBBDMQGThj6P8VyDLS6IcSEybsUS16I8ujriWH0IPrSPHOsMBULcSCqUeapNUQXRywxHddCIOgGw3YTnz7vXKwTBxknorrUx14sMGee/s9k2ecdrtH0wcqAm704dz0UZ1lgzBOfD+gOEFHVLfkI5qgx4Qttk0V3hn+DHgJ6KCgdWKEYKVrMsEiGBv+ab5PiJKRlAk5uciNAx7wzR0VPtwToQ4Bg7UiGXiPHT74gklulyQp4VeqVwLUeDqJQsMMAe+QYZpOMjyuDbFEhzxaDAShJQr7khk2dHLPBCAqDAcLsVTL2Hg48Wcno5pJi9HDoD3VLwrrEfff27EepoypydHHMHPNh+tvDAb/Nr7PITPwtQ4Mr3OUydwKEFAhm3nYpFBhjXnTpNiaqgUgPmIgAGSAYgRka3m4dyChZFWEBZ/e55Ay+oRjPhtmMB6ZYY90cIAnmOKvskw0punmp9LPJiIN7jxCLXMe0xmiw1UzCkWebQUbYjDTXAlVmWEKehRkaIcGV16S8Ld/i9fBW22AEk5QORVV2iO1I4pZ0pJuDkGZbCFAf8qddY5QNRkjT5AY3eZV5xnlIn0/WS0wEMHeFOxQps8UQJSZ8bLWEcE26s9QD1HqN+2Spx6SmRl+w/Vp0hFG0jQcpr3YOxQRMcptBB6f17LFKrgHdquiKAbjMFL/Ob9PDAQ8dvJVHyVt8i0cBhHaFt2GBaiyW5D8pUFHFtB0G6PMihJLPp1hmnbFg/Ms6YxdLtV9njCK7IRlfY4w55hlgh2O6PIDp1WAiHvl7YJX1DWf7rTDFJiPsk6UvEKbP8es9EhbbFAZEKHBAARRDGOjQ8PdzGPggI36Z7cvXqx28e4KBFOskLLLTJEmtpzEm3UOM3STD/vMYoDNAYtJf9ePc8b8rSEMebc9IvMFSJCDRh77tFEmCqgIZTvm5FUiAzJy3xUv+fokk0Tbj53KCsRb/OQnL7u+T+LWd+LH/kISZVYQIkj/r2xRb7RkGmk15m4g5pYCGWf9Xx3qORLL8kZ+bQLycH4PaE9/vjJ/vCkmoiGTGp0nSb5VCe8GPC6yP9JOwuZRSrBTiHAZUCWyUD51AQwU0iC33pG3/ki+XMYBMMuGa/4x624ht+Bj4u358uyQsuxwGcMlbUYBxuW1/SkbWOZ/167LgxygGqgBbgX3qG2KVChwu+na/hYG0n/h2Bfr+DglgK+mywOOzfh0FBAv4vkpyD37k7TZD4jupsI8df6+G3SuP/Xg+8N+L2PWWF+FNrL/oOPQ+JPe4WJvnsXta1/8FvhAvSTdlfyT/LSMWGNNK4QB5KmFNYnPKvQBsVAg7crKGQBDz3zN7nk634pGH2haDyD5CayUrYhbJ0OShKxVECjiii17qMZeXvYRUdFqLixxRZJcTzM9MjL0DerjCXdI0mWUh1ozyRVMgV5Hd8BoT4GKFyEIQUsQok5+6iEKa38meaYcBplgJooIRZkwdcESnF9l2Ig32MncY8XAFhYSckEKBatsM8Qe8gaypRLiQz1uTDLe4TrsUVEVsa7s+b7F0EJbMD74z5qQCVqWEyrLPBCVStChQCb83K1RnopCq+bMkpnWy4WlsPvpHoUpR2xpOM4z8Ch+4+kfBdVUK7FJkhiXkK9fu6aycAVmlKcdAkmfJc/fJssArASS2W3hpnSAbqBQnTFAKpcWR6yANgN0JctQBPcwx74jTrs8lk+tuOIyxI9cdhDTMI0Ovz1UlG+7GVDwCI4ddEVlyGripDTeD4ah5+kO3/FEhW2SJPBUvWBuIV3TKkD4j8FH2XhOUUNhJnWzYVAGcdVzpL3p9JoDeGWdoaQIreuqaUyuljR5jnRE2w//tdd6mh0Ny1ChxEYVHmBRyJ05UC6CM0zhvcT1YJYZ37gdjSZr8TYY5pIed0/8R73CNMkWWmSRNE6WPSNZ0RBfrjLGYmYmBtsQE97mEDMV7OIztihlVd9qknfuYa8w7WOWCdfBGld5WHYAFD6YQcpyk8BwH3XfLZVOH9HCL6zFYrzDpTIo9B2MKfhOY5l+eQ5J0ZZyFMuZyJEmMRQPtdZx4D0siukgpKLS66Q7pCbr2gVcuJDWbYpkafXRyhMzi8y4lUgKvjF2bzmRbYJY6WdYZRZ5ekoOJUQM4czPnEjI7nwVmKVIOdottN023A3HHHpZhbJtmAFgFKuSfPGaTYZToK9qy5FsW/JDmNte4xyW+zfej6lAnG4ty0aQvcY8TUrzCQgzwtnDtdgabVcCKDVtc6lgE0NoDsWHGrqfPBhC9zGR4lZkENscMiwH+LDDri0VjmMhn0uSN9RhcipTZYCQkjmK0iFWlSthF95fUQ0vSTj0wr3KbY68UdjUsUn6fLK/zNjucw3wojIGzwiQT3odk4lunN/bfhUmCf8JXP4vh5y/dS6CdJjQa1BtkeJM3wk7AmKMNvsXb4QN6nVtRWepzjpuu2Zibxy4yw30uUSWPEkwTBql5VXbQioesigIKs7nNVeTl1nSmkth6Q2zR5wWJAXa4xD0G2KFObxjxql+qUjvtbMEpVmIyusg0SlIFY8aKHd3pjOQ0DfLuNSGQbYeBkOCbf99IgCNLzJCmwUVK3OI6Hd5Xx7yIIoC0RQe/w6+xzSAFLP1N46JAOAFDNtEx34oeDrjMHQcBe7nPJWebN+Lafpvv04+Z4doDfpi8M8GGnKEORPX5KrdDclmlwH/29P8doOZr3Ocatzlyo+ADerBE40kWmEUhUmJ1WiWy6TKLI04w2T4YI0xj3hzvYXKREYbY8nSu3pDQyIBbnp8tUtzlMkqENd/MNA+98KUKqoIxBNh2eb80aUhHgHfLHiyiibM8OjU2i22gsbGfcozPWepc4S6pP9Puf4vve1FjLYoxD916APDpcjPkuDm/d/Q804T3iM6ooouFOs5qAMoZGp72dhLgomYYTZIQLz37slhwTQctrnMLseTVFlp4nfM5giRKfdSouJfs5/r1AgZCnMIW9WIjfYKBCBewxf2Q/1QxEOIMBiC87O+LfTaAAQJ/EwMHFOwgFh8YEHKOJABAhv9iBCqQYwJLadV3npAkrApIgsTrTsEZki7K2B8Sj8AnJL55Ld/WD337YheKmPEeBooJDBrCQBABlk8wgCjjf5PEVftXKEWGBHg8TeKPptvnlzFwpkiS0Kvk1PMkUssWCWAECcjUjQF/5/1v3/Bty2+vG2OyvcfzgJu8BBW6IIBHLMg88L/z/crPT/LmCZLU4Rv+PYFjCkvJkYB28nwrYn1GPnsCjDIYoHSORMosf7dXed4HT/2zhIGr7YER8v9r+Xb/rrdlCevrSlaWhFRMwBrGUkthgFjJ21RAnXwdBbaqn10nYdZBAhY/IgENqxhQWSVJqlWby7fyrLeFGKQCVRWconOv+GcF1KX8OL/px7RCwkqVDF4vBaWon4il98jb+CrWn3UddK9/maTPfc5fnTxDKZ9iWik5NEWLXuqUKcZzpp8yLTq4yxXkbVbBwgfkO29pn5uxPmiSZh/ziS+yCxDPXj2XBLgp2dMY6sdILqt1sJhLKiqKZWcspl6AUCC1SEUwhkA5hUBMUGKQbfqdoTbIdqxfejiki6NQD6mYqzAtHYOIQO1ElJqHoe2R4z6vuSWXgZD3eS3mEQK6BKgd0BPzj01GkC2S1is9HGI2UCfc5mooOQbZ4gTzvFO4xBFdTLJCErTRiDkbJGGJaosjOpGvskAqsLW3vORk6ZGixT5ZBtlmjTE2GaZCng2GUULvJiMxtwcjX6wxGiQmSai7OGKbwWDbKXTjkJ4gpYjpJjWeWcSMosCLLo4YcWbnptuVNMkEUcTwnn3kNy/GXclVLGuMIsWSwmDs+h8jFU+WOr2OT7RIBQ7R9PW95NbHdJLiJDIG5LsoWxtd57tcpkx/9NE9coywgaU7pwNctICMzfCgT8DXrpibNknzTZ/nrTEWBfQNRtyy5ST6vtQvsnRRXoSICGaf0xXnZXLdOkV26ff79i96fSaA3tf4MTK6NO31hTBK1KLJqLlHsbg3ic4aSmdVheGAHh765L9GLibOears+RK3Qp4MTTelbDHOQx80HjibpRQLiDVGqWCprUpSVIVjkhXucplpFun0zi4aZZ4qJ6TCZ67v8SHDbHCZOygJp0CFQbbZI8ekp922DxiNTJqF1CwKVBAjwfzUJp0ZYZpyS5tdD/nrHPPIi8hkYlWvOrSiKtBupmkMkAxNZySYOWqem9wIObFJ2E54wAQyXu33wVN+AGK2qaNe4j5TrNDFcTxE9nzQqdMb3g1iD4peXGKCIruknFm46fTYaZbiphbgIY+oTU++HXY6tvrFOKuxuJU5rII26mS5wCplZ04oWEWS3tqZM/Hg0CCpVJ8MzfDwmmWB3+C36HRQrItjLjjdeZBtRDXv8IWoVc5WQsLbxJJIldyzkxkI2q6YmtrGIT1mVt+whWHeB3dbkFdRYo9VxNKIrVimyL4zUHs4jMFP3hMVX9RLZi4pdJ1elICq6kWn33/yudP9qYVwxgcpgNNPPqVJhgxNNp1aPM5qMB9FH2+R4hw7LLvMd5ol0jR5kzeoUOCr/OSzGH7+0r0+5CWXDXazwwBv8kaweRsOOIx5v5hkxeX4hQDjLvrDNEudCnl6OOSiV6+6OOYN3kTpuWJ/mg9Fhhx7VF3af0AP5m028v8j7++D47rT+17wA3YDjcYL8dJgQ4QEChBAQoQFGjQRYUKZkjhihhvOSjtyNFHsJI4nNSlnN8713RtXfG+y69mbfcm9m0ruJnt9K66dWs/ascey5WgieejihDI54ogWFNCACQ0ogIAAERKgbqKJ9250oxvcP57n+zvNVF3f2aqrja/UVSi8nT7nd37nnD7P+T7fF/qYZ5Sx4KepFGvdPJ/lqoPyEbMwTwOXOO8M3TUKJAOrT9dvAwVuMMKad+/smBc9ECEW2F5KchbgcZMh5uknSyd1FEPXUh3gVf+cF0NRkuIEFp5wmuu8wsvh81aUfqPYr3GGawHMEZAlOvxrvMg8faHRpPmDKL5eVgxFEizQyw1GOMEUFWK8yTmSmNy8n/mQTpV3RleGdADk4l7YmW9Ikb/S+CrTDDLuGiexxsToVeKXCui3OIPStMTyi1Hmm3w9XMv2+ZwPVP9X+GtIFpx0JqSkp+oyjrv3XoJiOPciP8Rm5ulngpOMMcqcp3OJbQpRsEUzW35civR5Wlg/88E/7xgzWJhVInTl6yhyhrfoYZEljgTZwrD7yV7jDBVMevwWT1fJQAyQ/X1e4hyXw0NBjhSTDLtdxaI3yvKhtrAQlWN0sEoDBWY4RsKLvxuMIG/UTjIMM8kMx8IxafPmlL1vIAQ1NbPFP+FXAPgKr3lidVP4DO5miSMs0cEqdYFtkGaC4SAN/jA443+GX5JeljHQ4CCRR9xFDAQYw4CCSSJZqLzOJjHGk4AUSSx/3X+u92UfwwCXIlEq623M8+0LROy9DR6UC75ZNU6FcjyOgR8CICWbVCqrEkz1HoFpS76Nt31/wcCNF4iCEIZ9eQF/RzCAJkckR8T3UTJjgYsCm94nAqYa/T27REy96vAEgF/1uXzPxy7POUkgFToRI5Iq54jYVLu+3DgG+CgcQ2zGbQy0FPgq/z9Jm+VtGCfy9iv78fpN365As00f4w98OzvA60ShGXd8Ozu+3WoJ9rbPk8CteiIfvaLvv7aj4Ic0FnKxS+SxmKuav2NEYRFDROEU8gL8Vd+mkm8nieS7+PfvY+eBpMvy7JsC/jkR+Kbwl7d925O+7wqjEMhb7aUo77znqpYRaCqw7xlfd4sfrxafC/w9s0RsviPY+SV/RwWDaEwCqyd9zjSmIgaOj2DniY6VgjguAr/r237H56qLyPtQQPDn5JXyoDo9U0g9BqBgJwtYKgQFjuqpfuboJOvmUMvIe3mVFClyHGfabR1maSAfrEm0XTWSZflhns7NFEiGEC0F+lUDTvJ2rvjJL98vyWLlCwcE0MJAk0R4BhOLTQCXGFvWHI5CLeQ1u0JXICqsYCnxUmCVSAQfQJMFl+nwBvgS3YwwHrZrQOUxVwwWwnzpucXmJhesbgokyTpAZiFw9nwsZYmayRqD6nAFcYABnZLM1jmouEIX67QxzSAxyiGQTfWxrI9Ue6uGUb2l9VY3s3tY5BgzWNjKalBvJMlzjJkwd8uu8DCSRyGQkp5kLCS7TjAcPTs7sWaAWWdXFvx5NRPAZTDAcoZj4TzpdcJCFyuMMoaSb4XvJChxkyEmOfmA+k4suiW6STsZRhjEs1wNrEn5OC94Y36EGw7EFsK6hB0kKHLG8xV0/SjHoMc7diIzCK9o82fqRVcllZwdK+mywu903tj5txqewdSEN1lxVFN3+Hz3M88As0iubWS0VADKr3GGm8Es9s9+fSqAnibSNPxrAd0FyDgS20mGBXp4izOB1bBEN2bIbQwFUTN7WES0TJkjikmUJssRZ1UcY4ZlDmOG4+bzdczXkyZLiToU3byCpe9OM8gbHmqgbQhJHmGcNFnGGKWHBfqZ5xxv2gNfSy3bNNO18wlt/jC7Sgc9Gx+5bryDy5wDzKegi+UgISqRCBf2Ir0u3U0hCeuyy3rqKPI1fj2wJyJGWzGALkL/Y5QxXf08XTufhJNKD1wFT3wZZDqw485ylQFm6XBqsXz/5uhjmcNMMeQ/dyG5Zs7Hacm72cCOkD9RhRiL9DLJcDCFLNDAINMM7tzi0MI2FWI8y1VS5BjjyXBiS/ufJR38GbRddY8UoFIhzjJdDDJNnEroVGzRzA1GnMrdwJOMoVTfQaapo8gCPaSdXi4AoHVnI/ghNfjxaCjmA/tEEdRiiJrx6iKrdLgHWAd9zNHPPAotMSngMXpZDN0S64JkmXffsDQZ9+GKs5SwaOsululgNZwj+gDXSym7Rp+fdclyU0hIUljGModZ8P3WtWTyr2QoEhbp8dCSgp8nRqm2j3NjoEqKrnjwf5f+Uuh8KNBjndZwDnSzxCXOE6MSzGZVpCzTRb9HvMvH4/PwKvvNw1JV1wJ75wRTxCgzzgjvMsqrvMQWTaGzKh8xMS57WaRAMjDVxFoyiXUy+GbIX2Ob5gDO2DnZEdZlnh79rDhtHwQadgbpoBJnz3AN+VYKUHyLpymQ9HTe5vC5cZlzdLHCGq0B9JM8W+lcOhdK1DFHH5KYjzIWOsA6b3tZCOzWNVqZ9+tU53nB2YV/k9/kugc9VPt5qBC76R2wNBmOua/aHP28xKsB3I4CGmxexWido88lD+VgcSDgz8S95gdiEtYC45ziVV6i6I0ZdX4vc84LFPM7fIrrntS2HFKudLyX6eIISyzSS5E6JDeeYihITprZYp02lOQucDBJIezv07xFHSUmORkK2gqxwE4z49+r9DHHAj0BpJcfrM4x25Z5lcr2QdIUFWdXOMsivVzhbHhQEPtUDHZJWCWlfYW/xnVO+/3ftnWKG3yHr7DiDAFjHq+FAtsK0sPEqQSmqNiVabKkybJCF0VnUf9NfjNIKfI0MMUJzIOoi06y4bjnaQjfh5giS5qnuUaOVGDey/NFTSOxEc1ryPxQjEl/Mnx+igWbp4F3GSXvrNOzXOUMb9HKOi2fh6fYPgzAacHAkBsYEFDmQYaYAJYN/96NASEKZfgdDHT4aQzEiBMFSowQAUhiRh0nYrb9JlHAg1hLAreyRAEMT/g4q5lLAubELJwlSov9AGNqPV61vSeIADGFMHzPx9ZOJBv9wL9u+fglM63HwLeif/85DIxZwMIM5NsWw8AZMRAlM8bHARHAUyYCOOWdN+njUAKsgM1LRKmsCoAQO/AOBmhq/44SMSRbiPwFBW7pWCh8RKEbb/o2ljDQsMnn8AsYOKdxjvj6j/vfRonCQFL+fwWo6PgKzEwQsRu7iFiMTxD5D6YxEGrTxxLz/9UD3yaST49h59uU77cYfinfljz3KlXbkAxXx26YiH0HERjX+R+NVyCx/PwE0L5BlDwsIK29ar0bRL57Cm2Rz5+SbSE6T44Sed1pfrVPYnrqujqCnRfysHyKKGRF6+zy43OEKJyl2iNzA5MvKx1ZYLsYemJSfg5eZj8RDyqrCU4y5x5w8kqTj1vJ6wAx0wU66D6mxqs9x7ZRpM6BjFJo0ANOvLAABbHv0l5PAQxxk2EmMZfXYlCbqSkKuJ/vWngulLXEPH0kKAUroWkGA2tOzy1WD/WRoEjSbS56WHR1hAEkMcps0eQkiALrtDHIdCAoKKxB3rWyXpLUVpJfWWbJE3eBHlKsOmHEnp27WXKWvJFzBDAqeVU+dh3k+Jv8JkPcRCqXhLPEZFGihqN8DyVFXafVodVBOsjxpNfqMcoMMEMvi4wxGrZnDXl7Nhap5AYjrNPGgkug5WWv5wsj16w51rASGtfDTDqT8QiL9HhtmKTDVQtg9d2aYx99zIfxi61otmW5oIaTvY9sglQ7FTFLsQFmAnlL5KElupnkZHjO7nVyjJ4/X+HlAIzJgmvF8QcFoORIBaWPjvGsM/CkBpQ/v8DhPuaC77VqNwu4yAeyQ8Eb9trPanlyCfPk16uBggPAFm6oZ+0eFsI5oGayWJu6nsVqlcRYrDwFmRSpQ0nOnWQ8ubjCj/L6VAC9HO0UMS30Vc4C1gkYZNrT4vp9uQ5kqF+ggWVH3BsoILNySbOq9ck9LNJRyblEzOiJi/RykQvh4m4u2gnXzzxKQtEH5vO8ThnzFuhimTNc40nGQupoiQQZX16vJbpRskuMCgeX9yzVtbEeM+i8aSBkSxNK3n2R10JHRD5+MlGXF9kQN8nRES4syeG2aPYH7brQMcmQDkmFncXow1dx1yb5PMV4408AhJNC5p9drPAcl7nARWTK3UCeCTecn+FYkFi9wQvhwV7zJ5N8PXRKx1/tGyhQT5RSMO+H05XrjDU+yf0Wwo2ph4WQ0DrADAX/QFA3J2Lz9YcPHbEtDHQtBmp6KxZqItZnjArDTNCe3WWJboaYCheSgkHs5rTNdU6z2PhoAHvFgFtKdPsDWywAG4b0xwPSnsUSn6Y5zjbGSJV/k0xTzRNwNXwgzNPnnbV551CWHmBW1flNTlTyrp1PwgfAPP0UMKmdsYfSzDAQbnQmhWvwkIQsMsA15uPNcI2IAp0mQ5ZOphgK29CHsrErE0GSfsKj4IeZCDc0Ub+XOPJA504+XppT3cwSFDnMMieZCCDSZ/3VzDZtrPMm58iSRv6WCi+ovsnKZ9RkjolwPYjBl6SAEleBIIvIkeJdRoMvinw+JWcvVnUvFUYgECXvn73qsukzKEaFdxl19lwf8tswA9r+0NFqZT3IWbN08hKvBslqngayDnI9zxsh2bsaABFLr5slrnCWAWbo8IJLkkkFSazQxWmu0+D7reJp1TtafcxxlishYVXMqnVa/fzNOLO0P0ghpxhCPqhgck2FZ4ixKOBf65OX6jJdoeC1OYqHY2jXhxkJK/hAxXeBBmY5xgwDPMdlJF0QKG7XVDdNbPGz/EZgwFbLhcvEvMPbynkusUKXJ2yngqRB0lUx4Ndp5RpnKFIXGm6SJKzQRS+LPMvV8FkkuWoPi1ziPDLpnmYwSHD6mKOOIpc47+bRC6GBZQnKydCUEWhXIMkINwKbt4uVULgu0ksPCwwxxVucCYXQOm2kWOUqzwbQs0giMPHn6PMwHvNg6WOeaQb5P/Mr3OAU44zQ7DlqCjkaZDoU8ZbYVxfuebp/9jEfEsDrKDHNIBMMhwK1lXWOsBQS3yThPs8lvsJr4aGjWvrRw4JLryuBBf/Qjyir+F/0q4AxcuTtJUN/scqWMbDhOBGopyRQySZlvXqPiJ1WneCq7/h7FBhQxMCYasmnpIxp/66EzdsYAKLEXPmcpf1/AueOY+DF45gfXQwDN+74um4QJbF2+fsPErHVln25EV9/NSjyPpHc9KCP+fd8WzsY+CTwSCw3yZQFOB70caWJ/N/0bLCBgU3yyFMa8LeI0nKzRPJMBUGIKad5fs/HKvBTnmkC8A7671p+E2OJjRIxyuRtiM/hG0SSZwFHceBrGGglufGuj7kbA+GafLu7/n8FX2SJwMtZojTZLBFQ9z3fNwFQAl23fVwCKeUTKLYhVWO449tbqpq7ZSIfvYQvs+Tju4eBuHGfWx3PDSI2oUDDo0SBMmKf1vOgzHgcA+gULiGgtdo/8RIRQP2Ez9k7vj4B1vJvlJ9fl/9PATPHfHvP+TafqPr9uC8zThRwoiRehdccIwoNUciL0nGPEyVKf8Zfc1VEhHXagnWOLHVk3SSrpCIJjrvVUIwKA8wwwTBjPOnAUQJZuqghKvsiPcMqZd7YdGssuOxShJYidcHTXTWXEke1rlVXhzSzFZ7d5QcvAopYaENMheW0PimEDARqCqoihT4ucxiFA6x7Y9hSSke9YWuetzEqnONNznCNZbo4xY1ABNmiiSydKD1WNXMDBX6flwKjf9695sEAIoV/gNXXIhiZdNV82G8wEmpCWZPIKkoSzjonH20780qhXVLHVYiTJM+7rnpQPSKPwmWv7ZIU/FnKFDOap2kGybiJTjPbPMdlEhSDrYyey6uZnrK56XXFZBfLTDDsjfdYkGFnSZMiF5hn8jw+yQSHWXZCitlsGdstHpQj2q4UQRk6Q5hbMxZScp5LDyjd8iRZp5UeFkItbo1sA7xEcJhmkOucdrKAAXJiH8puCwhsPu1/lk63FlurepbuY5yR8Fxj50gTdRTpYNX9xtOBrKPwEjHo4g4Gr9PK01zjf89/F85jIDS/V+gKwGKdP/9GatJpUqxiPs6mhLOQNsNH9Bz+n9RDTw9GHeR4ntddk24RwtI2S951muuc4S1uMhQeAicZ5hpnAAI6a94CuYAWJ7f3wuQAAS1epNfSaROmZ7/MOcoOoOnBcyV0M9YC+KYiWye94qWzpElQpMNPbrATZCd9gGbMz0yeVZc4D+AH1XzFVjHvM0nJIr+AtkALnXSPIXVPFDAxzCTSrPewGGi1OVJcS5wJJ84QU3yXC7SyHiSg6qsoMMFSiJrCfEoSbamZi3SxHLzz5Bdg+9rLMl2OEluEtOjUusEUnA4sttezXEFGqZKfLsR6aCDPXPsj9DFP0i/EUd4lTwOrpFglFfZJ1GUxNtb8Ya+tYp4SknsJBO5jnmucYZ1W+pini2W2aead9I+jBEo9SEu++jovMMkwXaygZCIwKdfAzm26KsvBswF4AJBbpQNFe4/xJIPc8tthLFCA27CEnSW6KRNjkpMUnYYurf4iPaySYogp1jFfpq6NuxRIhg/0ycYf5y3OUHSquuYo7cySHhZYp41VOhBlXWOr+HbHOUWWTk5znRIJTnnAi3wnh5gKRUScClnSlEiEG4te827mLhDJOhELDHGTKYZ4jRepEGOEGwGgnWIIGZmCmZNOcPLzkeoIPMYHocNk/KAClzjPEt2B7aPkrjwNjDPCdU6Ha0fJtTbvhwOgLYbrdU6zRTPP8wZZOhlnhG3Ma9K6gavuVzHAMl30eZPjOS7TzRLPcoXTvB380/Q5lGKVDJ1cdcbbMJOMM0KGNCXqGGCWBSfUzzDAFEO8xZnQ3VQXC4zGLnuFCU4yzWAoCtRZVmdOxVfOr711WsnQGUDQMUa5zmne4HnmHGhUapTYUgUvAiRTVgKWPAZXSTkbMMU6rVznqeBJAvAU10m41NeaGL18h68g6Wof87zLqBcEkbEu4J9Bc5zjMtXeGmmyQR69SgdjjAZmusCsasZzv3dJBabr8/cM1+hhkQQlJjjJ1/kmGdKMM8Jhl9KaTMXmddxlpAbE9gWW3hijAURU6IcSYxvI8xpfYZxTgX33PK8zzERoSOg8EHu8myVGGeMGI1jokDXutjHpgawgXuUlJjgZWHsXucCy+8cddnaybDZkpaGHlDgVnmSM57iMpa2Zn0s/c8zTH5LKznKVEnXBCqEJ86MU4Cgp0STDlEgwTx9TDJF0G46v8etBnq5UwQoxellwhsRsaGBlSQffv2qrA3kPbdHMCbeRGOImrayzTbMX3xkkB/lcvJJELLt6DGTY9N+bMBBBTDrJSO9VvX/Xv7aJQjIuYACCJIxKaO0ikoeW/T3dGLA1SwRiyI8v5e8b8m13Y6DDc/63apCogoFeYmEtYUBJPQauCZgbrtqX6lRPMQrvYACdwBaBfvKf261aXiDQe0SsuHEisEUsK82ZQDCBSmX/Xd5sEIWMdBMBn5r3r2LBG4/53+4Q+bIt+dw97u8T60vsq9tEACFE3oRlIjnlvar/L/uXQNVun4Nqv8Jtf79CITYwgEnS2oNE0uiTRJ5vjVVzAeZD9zXfx2EitloXkRedgh6+hoGtmq9G32dJUquDJJaJwNsY0XEVkPgOkd/fLWACO4ZpIpZayuel09+bIQKwG4kCPlp87I9j5/3jRGnGy0QJumKVpoCfJ2J9ysOxBZNYq8QT2CeWXSORZ+U9n5MykVRekmQB2z/gQaZrEfgXRB6YAnkz2HWVI0rlTVSt7/NRGnKIVbYdaOpg1ZNYV0MztsMlsboXTTGEAiKL1HGFZ+lnnhNO+hA7SYoePePJvxYIwIJ85hWAuI2pofQq+v1M8JgIJnknRCgwK0WOQaYDQCNVkdlGzQSSgymNClVAj4VSiEkv6W0CCztTbSFf+gYKznpaC4SUTjJMM8gW5k2thq1qFvmULWPev5qbn+fXgtLgOqdR2KKercz73GxyZhkIfuZggRMi6YjlZT5/q4GxL9ZVhVgAn8oOHCUocYWzmB+c1YUFt34SxqGaIEOaZQ67eZRJkLU/eobPOdttkd5AVIpRDgzEU9wItYnqDXtGXglKLZ0r8kRWvXiGt8Lz6hz9jtN0BJal5QnY+SHCjKSmJiOuBLbkNs0cZ9qVGR0BQDaQb55mtniaa0EtqHHJXsbILqWAhRSdNWfEpALbNLPmtW2f+zInXKILBIVRjEqoRZf93MvRERSikjib4i3u52Eblp5sx3yMUVd/tgXigt4LBA/LCYYpE6PXnzsmORmC1eR7aHNR8We/U0iOq6DEEgkmQxT6n/2K/08v8v/7q0CSI2ToLi4RK+/T07jIMoex9NHJ0K1WhHUDeWY9JS5ZRQu2D40chx2ciTt1sYtlSvUHyNERCmt54wipLZFgnFNc8w6/WF4DzLBEN8eZZtsf/EDRxUbzNY5X0k/oa+HDSN31IlFgRIZOkuS5wQgjjJN3CdoFLiKfN7FKrnM6SFVF5z3NdY555HYDeZorW6zG7EF2nj5OMc4kJwPTD3DfoVJApzvI8TTXKJIgQ6dLlCsPeCVI729m3okHANJqFs8CPYzyLi/zit9E+pzRk/ZjUGGSYV7mFcyYPcnNQEtOUUcJyVK1v7qIlJQIBtT2MY+8EcEuOIUALNFNH/PhQ1by0uux05gnQDI8SKZccgo43bzMJMPI+0FhDhVidBeXWEp0O0XdEmkLNHDYb6xr/mA603iUBCXanD0Yr1QoxBq4wQhnuMYWTZi0uxjAKiVv9rBIlk4GmaaJLX9gb/MP/hXMANRSTCXv1XnYxxyLLY8ABgyc5jozHKON9SCRk09ewmFbsI7WIr2MMhbkYpIbpslwmtVASx5kGkmqxbK7xhl6WGCOfp7ndQdR0oFV20mWOfoZct8wsRGViJmjIwAJ1tkpBsNbFQZ5GqoSogvsfk4kt52sMMuTKNFTn3+SWhiDdJGSg3tbNBGjEtKf5afQxxzvMkqKHCeZYIohVujied4IzZBVUvSyGD4LjHk7EG4gS1hi9jgjdPg1qpuumhaW/mXNEYFM1zlNH3NsYSEYC/S43PYYx/wzeIRxXuPFwMpTc0SfC0ny4TNRncwphhjlXRr8c1sFScbtCZJujpt1/zzJC2wfTrFOWygum9ny89hYsWIyxn3/+plHZrcpcqHIHWOUGY7x3/BfARbigHegwUCmAWa5zulgIAyEzwr5r4lJri6g2GCdZML11kmG1/gKX+NbIfQjQSkwg9W5m2CYfuZZoIfLnOM8l0LheZIJgMCAViF/jsuskvIC0MJJxhjlKs9yjFkqPreDTAfmrpjjSxwJ9+EyMd5lFCWjdbCKjIzN184KrhuMcIpxbjBCilw490YZ4wpn6WDVO+vroeBTwIk60knyXOAiSmlTQaj9qvOuqFiH+jyf4gTd3OE018PxlZ1EzD/rdV8zSVCHM5jTDoi3cYMRXt94npdbXgm2IK/zQmCFmhzIAE4dlyIJxhnhHJeJEeMy5x5oOFpTy7wJm9niFf4aF/gu0x4ocoyZcNzU8Cg7SLz96ZRjf75eeQx0WfHvx7GHe7GSmjAw44+IQKoNDLAYIXrYF+i0g4EIAqYk6VOq5lGMlfc1IrAmh4EUx/1nASTyRhMraYfII20YA0wSGJNMIORRLI31AwyYiFWN8SBREIBASsl5y75uBX4cwcC440SgXNznadN/7iZiyd2q2o481KZ8vS9iTLOUb+Oejx8iNtoCD0pxj2IMtccx0LCMyUyfImK5ieX4RNUxwfdZYF6jb0vgXzuRVDOGMRYbq+b1CR+fjoH2KeHbGvH9OkLE2BvDQjfaMQBtx5cTaCcmZw4DXeVT10LEDO32sSvRVUmy+LYFco373MgPscuPx+NV8yu2X6fvi6SzCm2RBLixahuSse74GOVzh69LQSdH/Occ0Tmn9GBdO0UfRz2RhFdhKamquVP4hsDpJ4j8JQXiyc8RX79YnDeIALiyLy9ZbJOvW/sKEZhZDbBvVx0Hjane11/NaPzR1GWfiVcTWzRRCV5zyxx2JtBqeDbLkEbhAlGzNP+ALYgBSCYr3cY84hboIU6FPuZRmqtYaZ1kw/sVFiXQQKEEYstl/PlNnmFAICBUiD9Q14qdJ+WUghPm6Ucevnqm62eOVTrI0EmTA4AK1DBfM5PizrjfsICWOifYSJ2gUK9mtrjIBaSEa6DAIr10Onij8Ug6bOqDVYaZfKBukz+wQFSAKB3Xall52ue8ZheAN8BM8MSWdLYNs7EZ5V0W6WGIKU4yEdRkGotIT1bL3MJ8C+1528JDLclXdicL9ARSRY4Ua7TSxnp4jjDiTSKcL5J0iriSJc0xZmhmmx4WQj2i45gnieTESfKMMO41dVPwvRcZaYxRJK9V0KRUPj0sBOWIkQbizlY0gLPswGUHOeboD3LaOkoMMh2k3yZ5jnygxQgV5nCa64EVqUa9PLeb2SLpys+cP28v0MMJplikl1bWeJNzHGY5hLBVK4AKPhcWLGjkqIIfc71WnbXXQQ6zMzKyQSvrrPm1LMKEQNskBVcproVjmWI11LF9zGEBsu//SJ8nn0oF2cIGSfJMJwZpTmwF4EOTNMNAVWR1AzMM8CxXnWnUinTlNxhhiClW6KKHRSYZ5nTlOv869vN8LfEtQ0UrRZZi3YzyrgcnbAcArJMs/zXfQKESfczRuXOXhcYebjjVUkjuLQYpE+M8l8jRwUkmWa1ChpU+2l+ZYyJ2kpnEQADkurmDfPnkj5cmwywDIawhQzp8QEqOJWpvK2tMccIkqLFBlJ4DUO2pd8y7Hee4zATDAQySTxoQHgatY2LeU0pQ6maJefeCWqAnGOzLyHSJ7vBwbSBaiZNuiD/NIKe4wSTDKPxgjn4GmCVPkjjml/Y9znOa64G5lybDBMOc5jpAYBiJSaYTW2CrvBNGGA8X3zFmw7KSaEmCZ8TqLd5llC9xiUV6ydLJKcaZZYAmLCmob+NDuluWqMRjweBzkOkwxpyz2+JUmHWZGc6AKRNjPdZGhRgv80r48D7FOFOc8P0yCrnGptSlZrZow9Kp7GZdDP5nZnq6QsEZipLRnahMURcrBjBMsnTR6y3S+6Z3D4zBBZYcmiEd6NS6UceosI3JB9XJMpm7dZaWOUyfd0hEk0+7VFZ+HJama8lHT997l0vtz2C+Y9ZVSrGK0cknucGpAOS2Ofuv02n+SvRKk2GFh4A//TQ+gv5cvTZocRmi0fkF/AvIAYI0UgzZs1wNv5exmHQxPQXW11EKALaCZOoo0c8cGTppZQ2Z517ifGDgdXiKms7PVtaQh5sKqhgVLBRgghW6mOBkAKsVEjRPXwBom9nylKYk1zgT2GmyDvjr/HYAagTOXOC7QVYuttM6rYwyRtEp9wKyzvAWWTodaClxmXO8zCsMMMu8s85k6mxF4LHQOa0Q4zTXQ9d72EMjJDM/zyWGmGKZLi7zHF2sMMRNbvjTkewBrvJsoMBn6aSDHKd5m6uc5Su8xhu8YHYQ5FB6bM47iAPetJnhGHEqXOe0j38mjD1GhTIxmtniNNfpZZGbDJEhzTSDnGDK0+qMlXyNp106aul1Jv0fxHxzLAmvi2UucJFmLN1MRbwSkg0kNImqpK3z9HGcafcJXQgeftaJTAYGwRJHWKELk+QuMMaTjPKumxPHWKWDwywHDxFL7jLZiNjMK3RR5xLnc1xmhS6GmGKKIfoc0Ozyp2BZKYgxbABob2hwrNMafFJMAp7xB6F1znKFDJ2cZJIxRp05UOaftVxzBr5dE2d4yx8EIu/RZRJBzjvINBe4GO6ZfcwxxQl+i5/hn/EPOcU4FeJI/iT5rT5zm9kKXjlJ8pRIhHtOP3/y/9fPpf8krxiR/DBFBPS8TQSy7BCZ+ctTr54ovbOXSL43jAEErxOx2RoxgCFBBIIIPBFbahQDvT4gYlWNVf0ukOwDoiADAR/PEDHHBG7JQ0+BGAKPshgIIpZdO5HsEP//JBHL7vWq/VZq6KiPrd6/i32V9f3PVm0rjslVM0QMKzAAsOh/byQKQ0gQeeiJ+Sj5pyS+CulQmumur0OS1w0MwNJ63ydK9NWxGiMCVA8TSZ4Fdn6BiFV43Mdb7+t4z8c3hJ0nvX48ThIBoArVqBD51U0SMb2O+va7MKbcRSKQUsy3HHY83/Pv38eYhRmMTXeMCARd9uXiVfMhkFXrlPeizskpovRdsTPFqnyi6jgJSL5HJAsXUPgBEdAmGbSuhfqqOYTIS1H+igIux329k0TXRSfGWhUQWO/LdfuxO+Lbe83HfIrIIzFNlNarc/J7RCxCJT/r2qvHzmmB57ex6zrl68zwuWHoNbHNkocuWbN9jRXMCkpppNUSPiOr1HGcabJ00stiUDLouUoST9lYbGF+2r0sBhLBADMBEGplnYtc4FmuMMsADeTJYf7e5tEX+RA3sx282cUMi/n9C8y2YoZjAF7jd3GYZYY8xE3gUo5U8A7uYYE4lSDLFCAnj7o+5sI99RpP088cSVd7aI5SrDLJSeq8ptbYpO7Q/VrPvJIcK8nUEoKtZhYxaJ0231YhsOEs/dfCJcwyLBPqMWtYJ0KD3OZrK9R0XSy7x/Ep2vyZupV15NcmC5NOZ+ypUXuMGaoVIFJqNLMVAibkcQjWwOxhAeUN6HkrRwe9Xr8LzMvRQcrJHhaCtxrqduEXQLBPkariJJPBkkxKkVOME3f8wcLoLJxOykx5/ssbTu/XM+I8/YFdJzsoUzGZ0iLlQFmSAmWicExlGEjl0O8g2Dx9yPN/mAmvb5OBoTjEFOZNXQrkFVleiR2oZ95rnAmEpGpAfIaB4JUXhcNEc6Bn6XVaOcsVJhybUoCpHecm5DWdYhWFGSYo0etsxBke+pE+Tz4VyW3cHzhbWWeC4RA2IFDAiv9R0mTDzs1yLFCD5+kzHzwsJUasjSQFirGEBVPsbCOtdtyBBWOh5QOaCwRKpUC5+cbH6Gcek9guAjDvBqEy7geCPFbG4woFWI510cqaa70NsS2RYHDjdpD/6sFVcrEulun1g3Wd00Giqy6CEm4aXCufwDwTFGAgD7KsM/Pk6xSjwkkmXRu+7qBQkX73DiqRoHVnI1A4t2gOLD8gAHzLdPEaLwavKvkFKSVQJ7gARAFHMxwLNxn5OYEFABhD5AYX+TINFOgoGipdIsFlziHfLrFaBB6ZlLMjdAjALirrGiTDcU2RI0Mna7Sy7Qi86NSWKFMg6azELZopNNXae2KdwRPumCcCqSuzTJcbuFoaTldlmfNcQgnC1bLoLZq5zmlucIo8Dc6MS4YH12PMBCCuTIzv8GL4UDLJ3lwAEeVnpYe9WLnCG7wAEOjNGdKBXSUgL0eKcU4hKSvgV4B5VSj0oEADNxkKwEm1TFnXRRfLzNPnTMZ4AI/klSgT3RJ1rLXXe2ctHbpeOTpYpgtFc0tKLDlhNZ3bOjMrtDhb87P+ilOhl8XQ1crTwEkmmfDgmHFOhWOiwkcprzcZ4jsuY+51sEj/l2FqAwX/rD3p16+dMw0UvBiyrtA4IxT9+jvmnnVf4TUXNtYF2jsQGEei3/ewEBoSqy5FUPHxBs8HsK+BAue5hMksjC38pDO2LnGeNzlHD4uMME4DBVKshmtWrMUsnRRo4CQTjDEagj5aWecqz5IhTQ8LtLHOPH2+vhv0sMgpbjDCOAVnqUrqK+mqzHmnGWSQaZ7lKtc5Ta93mVfoIk8yNJM6ydDHfGDQxijT78ziHhbDnGTpJE8Sk9NaoIyYlUscYYxREhTJ0snP82uc5QodrAZm5QI9LqNIhM6k5n+Ud5liiKKDP5ZCa8nhAg/HeJJxTjHMJCPcIOHAvK5PpRqPMsZ5LlEmxg1GSDjAeQTzSCmQZJhJFGQSpxIeFFSYbNNMFyuMMB7OlSW6edqZywVvAnT6A4HA6IqDeFd5lgrxAB4LwBSQLDDP2KA3SGJ+QAv0MOaBEvJKUYOilXVGGQvjVQHfSYY21nmLM0EaPsJ4sGVYpIciCa8TEkHGq/vLKGMBjBPwmicZmK0W/JQJqdOy4DBvzO7gyzfALEqj12diyQFWY6t2UE/+P/7o+Oy99jCQYBJ7mB8nSgmtxwClDAZePOPLSTK6TCR7fR8DL972dQiAeJOIEdTi6/sixuK7gwEu7RiYIG8ygTRKx5WR/yX/+2M+DgVoSOqZxQCOGxhwoSCMRt+HBaJACQVFpPxvYuaNEAUZ3PK/aWwC1hR+ILaUkoIl08xijMZ01fi6iKSMuzzI6KsnClLY8fE8gwE1C0Spp5JXfuDzoO2953MpH7cdIqZjNZiV9v8ViSSVZZ9LpaqWiYCnDPBXicIbpvznOAb4Sfp6lEgCfJsoMTmOhYYIDBVd4SkiienrRAClmKECNjv9GEoeKk+5lM/lHaJzZYnIX0+prgKr/mMwSmDhkm+jGwMnBfjpGG4TJeLewxiez2Dne7vvg9KEIQqMKfryOifweT/lPwtcfhyTKh/HZOoCZSWT3qn6v7z8BBDmMGDvIFFycz0Geuo6ShOdn5LV3/bvSlyWTFmswrf9/4/5+xNAA58S1eTP30uMdWscHQ6NvS2aaSDPdU6HZ+QUqwChLp+jj6Q3cY1vXxeAJCDUVgb+bJMmy4IzzZfpQoFSZWIMMAOYH3IdRSKv3mKwelLzUEoLBTEoxEK2VlaPjNLgDLsSiSD1zJNE3ux6ls26yq2feTr85DabrtbQKF6nNQCdNxniKmfpIMcZ3gpj0DO6nnMUVGFpr+b9a0EPSSYZRt7r8pwukuAqZ1mnLayjjhLLHPZn6FWGmOKEg08VYjRVgWrmhXssPCe+ykvkPRROFkUNzqBMUghKHQUJWi1wOBxjefQCroQqB9YlEJ5tI2/AfGiOSkKao4NhJoI3nrCGJAXiRDZUAiF1rObpC/5uGQfzzIsuHbaj2rdCjJ/lN0i4IkLKli2anFiwToNbmTSzHfAd7b8kuvJ6l3Jum+YQFiK1HeDzWKCCSXfl0QcGoOo8VDNZQZ1Z0rQ57iMl5onKVDgPgBAGMssAYnVW+1CrUW25Ap0BlJ5kODTvZzgWFB+nuU4/cw8EY8obXbZrg9yilXV/RjC2obz3BXJX5zn8Wa9PBdBrcg82hSyYf0yBcUZoZT3QCvXh1ecGkit+cvV5jK/Aiw4sVbWfORIVS3hdb2wxgGt3jya/eK/4w57iuRfpCQ8jWdIs0uP0zs5A5bWTIpq0jkouHKxJhrnOacAe5Ao0uLH2Fm33jG+u4n6rpZ512pC3XPv7u0HiU3b0vhnz8bnAxQA6SRLW5hTfLrcMFaCmsAyh0wau9FWBhvbBamaoKxzGtPyB+VNf69I1Y0me4gYZOgPYlCaDUhsVMlIiEdYpSaW6E09zjU6ydJBz6aaBeOoGHHcZmZgVp3nbQMNEV/BKOMsVStSxjdHHlXhoF3hTAGUX6UXJOSPcYJFeZOivTo8owRovSKplkd8yXL0ZGwpeCzLRbGaL1p0NY6IUF+l2g4+yd0PKsVhA9PVdN159EOnCnWGABgqBjqtjL/NMAYczDIRwCT3gmgmm0eVXSTGTGAgfHmJZKqJclHvR39WlETNJJv2iHQNc4jzf4cVwvoxWxqj4zfjMzg8Q5TvmXTLFncuDYc1ZU+eKlxmtjJEolhhlLBjQdxRzfj7nA2jVyjonmApdJVGTBczc4FToKH3WX1nSnn/czzKHg4ebDIw7yAW/uzn6eIlXKVHHPP3O0qxOXy0FxpOug3VamWSYSYYxg+WmMM/ysehnjlHGAmAXx1LQ5CuyRisyQ5ZEd4CZcONVCMUsx4J5a68nOolBaP5ubzHKWOg2bdHMSSY5zXXOc4lTHik/yhh1DnAocMbAzA5S5BhljBQ5JCuf4gTTDHKMmdCZztDJMWaYc1AvT5IG8oy7BDTFKnUUmeAk8r3QZ+cpZwAnKDLCOJYvu8DX+SYDzHKa62zRzCu8HApLc+ireMKu0Q5k+mzy9W1K1BHHzG7f4oxfZ02cZCLIdZuxNLHLnGOcEWJUOMJSCBJSEb5Ij4Nk5o/Yw0KQ6nezFOQK1kF8Gsn6B5hhmMkAWsn/7RLnaWWdV3mJS5xni2bm6CdHKtxDk1hCr4JtLnGei1ygixUGmeYcb5ImGzwgdSxVQDez7Z/F9oAxzfEgu5G/jjUbDrNOK/3MMcJ4eGBR6JQY3ArJeoWXaWabLixQp4ktPw/tc36Ecdacta0ur+7d6jhf4jx5lwDP0/fA/U/A4nkuPZA8PM2gd/EtNfoiF2igwLNcQd6NUwzxFb6D0tRGGGedVhbpQbYcOVIksXS1sj8ImNmzPQxd4LufD09RgVNgoM4uBpiItQQRCNWNgRFKZO3GGFMHMQDhNgbkiLUlFtwwEfuqE2Nj3YDQ91oi8mWrlhq+yINy3CEMUBn390nSu0MU4qHEWLHkHiMCuRSuIMbhMgaA3PIxCaTc8fVIRrnr45YvmvZPQQGSlaYxcEwegBWikIcNDCBaIkoSTfnYclg6sIIMLvh67hEBjkUMwPqyz/kwD4aIPEYUfjFExLZsJwpj0Dx+nyh9eJgIoCoSJdvKl/B1f/8OkcxVXm0/qDpeCpcQo+84dsxv+fGSVPWIz5+SbDV/qar3il0mWaoAPgGF/5Io1EPA2zDG/pSktZsIHBZ4KInupG/37xFJrbd9XuWdqACWhM+TAMkdIvmqEnzFAJUUux27JsDYhx9gYOVjPgcax5IfiyngLaLrIedfJ/19OncF8jVi54pSb4d9u5IjK9jjp3mQfVjth6f9TGPn9jIGtApgbqzaXgmo5XPxKlDvDBxTHphvVyzUdcNMhIaW7vmdWIK7wr3qKAYlmMgQAlcUgNHKGq/yEg1YENPrPO8pncsoYTfurLt12siTZJ5+FG6pMRlx4giznjxviaGHGWSaWQa4hnm7W3ij1fxSK0kWrCDLVtYCU84SRusc3KljkGnkoad7uhREqsFEWjHrpwZvjm5jnvFZmtkKz1fWTE2jdFPJHrtZYpJhLNDisDdEx8PzmZ5Du1gm7b77kpHmSAUrLwGhYM84DQ4mGvGmjPwBpxkMaa16dlMzUUCY1Hw3GAnNbFmyjHCDm64skX2Xtilg+IQHQMq73BKGOwImsEhv2OcOVgPApHkGOMM1U6ZhUuQOVpGEOE2GqzwbGpTyfzMGZCd9Xis1s41su/Tc+h2+gmyeVPurPgM4z6WQipzHUmcPsxy2oURi5R9IllzyJ4V1WpllgCKmlJS9mVilGTq5zLngYbwUM1DR1EUNgQkpS7Mk8itfDQzKG5zyutvO1wxp0mScyWnHUWQsPfOveXN9iJvBDkdScflSJigGC5cUOQpOLLB1PM6P8vpUAL0xnsQSRxqcFmlUzed5nQydJCgFCeZFLjhKOR30+TlnmimwIk2G1g0zhj+Y22OJIzRU7AFhvbElAEOG2sarQJgGrnGGbJWvXEfVQ+II42zRHFDcDnJMxyy9b4YB7vgDyywDFGgIjL4pTlCzY7HKjy1/QowKiWKJHhZIkyVJnvtpAwHlQXaJ8/Q7UFlHMYBorawFeavpv5uCbGqRXmYY4BVeDh8AmleT2yUd5CqED5NeFlmkF/kwrMZSAbHv2/mAIW5SHaMt34UBZjjux6raT1AX3Gmuk6AYPoCEuneS4RaDga21gnk0dZDzkIq2IAdco5VFejnOdGDHKVVpiW6e5UoAMIzptRpYgtMMBoBKunRReAUqCniUOb7FnjcHNs8yh33OesIH3WLjozQXt6jb3adr55NAXd6imbZ7u0jq3OHsEd1QjlV1DsQIWeYwZiYaD2BVHaUAbioEQ8dO10Ar65ysTASGqNHQbW7ilUpgDorx1u9eZpaa2skYo4FiHaMSQhIkI9SHv0CerZj5NjWQpxI/4B/ma+GDuIsVcnQwwTDDTITU0lh5n+mYfBzTjDFKHSXmEn0BhOhmicuco4hFm48wHrpxkt2DFRp/MbRnP9uvR/g43LwHmKWfOZQiNhiC7KedDdkbPgvUuRtlDPlazNOH2LJmqmshDklMXioz2ncZ5QanwjkBdt1Ivm+MMAOmB5n2Yq6D73KBGOUAFnaSZYgprnGGk0zwLFcDfR6MQTrKu4AVbr0setcv6QWn+UgoBEZWAnbzjAeQTB0y0eXFZCyS8OK1GAqOVtZ5lquc4S1kRCtpu5K75R26Thsy31XXVcFBYAC59sdCMDoC8KQiVtYQfczxpINXMh42UMeKo4J7XGa8cyfZtOZEfxczO0XOPTKtOB7nFFOcCKbBMwxwifP0uhWF/P9UDKlA26KZC1zkJBNUsGQ8mSmLoS4GKER+IGp2WQJyZ0jNnmUgJIOlyNHkjQzraiYZ4ib9zCH5iYosyXUkJS+RcJ+RRGg0qQkhkFFGz5FkuyGwsHXOA/4ZvBqaDwYIl5CEf44+ellkkOngHSsGgZjs/zv+B0a4QR4zqJ7x+/qYx2uqu9/DIkNMkWKVPA0BKCxSx3kuOShrsp1zXPbzsokkBZemmHznSWf3NbMVivAphrjBSGBVVj/QfC5e1eEPXRiIs4ABD3ewh/0vYL5ck0TARosvGyPyMBslYrcd8fcpOXPS//Z9IhDmOAZiqNkt0KEeAzm+h4EsF4kYeO9h4EMaA1ok5az37RV93W/6fiiZt5EHgbFJInDkKSIZrtJXwUCTHxAx4zRPw778Lf+7QEIxtMpV61bIgoC5DSKpaczfGycK7ihXfYklp+8VDET6Ig8yyRREIYBMfoVjvl2Ba5JvPocBTWMYuKbjlap6/zJ2TLNEAJ4AwnY/Jpu+XSUbZ7HzYrxqDnf82Cz478eJPP06/eddolRfiI6xvPDKPj9i5Qls3PZ52CSSTWd9WxexYy02Jz7Pk77cEHYuVqcDK0VXqbUCaad83qqvFTHx9H0KO/+7iUJIlv3YnPd9lRwaX+8t/1nybh0/zUWaKMlZILgA57eAf0skCxdQp5CYe8CvEjFLJenVq+zL67jouDVi58akH4dGYJ8IbPyMv6Se6GCVRXo47HdtgVTdLNGGhVVNcYI6ihSdNCJgRGmbw0wEpnuSfPCYk15A96IcKV7iVfq9SawgvLqqWjFHR3g+VWiHlGMl6kiTDaF/JSzJXu9Pkw0MqBgVsw+pLNLpzTN51lnwpDURZT8hQEWsOTHJ+pljzVlwg0wzwg2vtdKhDpJtUMrtM4AQDihsYZVUAPQsubYQ2HKdZEMtLh9wscQMsDJFoNV6DSSdkDPrDXDVZKZO6gheuVIOxpzYYcqF5XDsVFMJrDWcYMbZXgOs0BUwEgGbALKqkjWPaqfDLtcGQriIZLqDTIdntTwNQQnZynpQ/8w5SNxBzlU724wxyjqtfs7GPVugM5ynraxRoo6E6xya2QqyWtnPWFpvgqTjBilWKdAQGsMW/FZx8LIpMPK0zLiTQBrI8ybnKNDAQGUmzIMUH0oJXnGcoofFwHQ0DGjVLYRMKqx5VyN5mcPEqHDKG7MKAjEyUDLgQB3kghxc44pRYYZj5DA/6azb5SikT+eigHtZJ5m0ejY8o6uuFTFBWMH/1OtTAfQOeaqiWCVZ0ky55G+MJ1klxayz4wY9nCLFagCDJFcRK6R5Y5etlnqW6Gan5QBdLHNwec9YUZWIUiy/KAFkYJTHyCTb/MuWHN4QMKSkknIAiqxVLMBGB8FAkptGT/Zu8l6joeONuX0D0iqGWtdkYZKTgJmqC0nvrGSYd6NNmXOLjWfeAh1Ip23R3ONB2iQ2o9gv+pBuZf2BE0bpONd5yjsWazSzxbVGixrL0cF1TpMhHWRdot4OMo3M5K9yNjDv1mn1gIcjmL9DXRiPzOGBIEMTO0jH8hLnGWCWIW4CBKBBNPICDcwy4OmDa8H0NEdHoLPKI+o6pzHfAGOQSHKsD4EYFRqK+UBnrxCnb+cD1mmjgxxPBrZbk6XkJOoo1R+g/h7hw62TDNPtjzmTqTVQotX5AgPrJNkqE+MFDycoUReYeQIQxHDsJMMMx4IBqc7But090mQokeChrFVhqY0NZmIDyNC2QANtrPsHbil4Xim52MwzZ4J8d53W4DMg/zB1Q7L6ME40+AdXG/P004DFtBsj1rp+j93+hCW6yTQeCuCpAKmKs7MU514iwWneZhuTL4pmLPNSMbEayLMX9Cuf7dcWTaRYDRJRMR6T5LnGGcY9UOdn3GdO1gTqOirSvZktznAtUN173DhYbF95RViBZfL101z3W0LKb3tNwa9xnTbWHCgyP0wrcHTdKIAoRpnTXEfGw+u0conzZLC0YxUn67Tyj/m/8AbP8zanA/ikMZYwP0hJHy3IxSB7saXFpFNXWp8XOo+eqvLiBAI4b3YAHeG+IqDwJBMc8c72qn+GiDVlx6Y5JFCNMxIYY5Lkf4XvMMEwY4zS64XBOm2huJDZrbwy5hxwnaOPGQawBO8OKsQ4yxWOMRs+Q8QOV6hGG+t0c4dtPweGmOJZrnCFs1znNHFMjmrpaslQYPWyQK8H2gC8wsvk6CBOhTn6eJNzxCijZNxhJjnFODfdPEwA8WHvQj/PG2GeRhnjy1wM5xXg0pIBlKQ2xQlvKpUYd9/BHhZDV/sS57nOUyhRb5rB8Lmv82mBHtZpC80HNWXEPhWLWUWxLdtET/isa2PCk4517xlgluqQLbGS7ZxdQaxL+cea9YZ1W1/hZcDMv2XRAcbIFAtB4Lgx977MOpawfoKp0B1W8apif5QxDvu5eJLJIDNeoIc/5qn/uT96/vy98kQG+gqikCl+yv8uaWMjBqJliVhHb2PAxD0MhDjqy01i4MVxDNzIEMlKwfzP5NdVzc4CA0eUNKrfjxKFT4iVN+ljjxGxkGTyL2BNYz3v2xDjSn5hAjZS/nOXb6uTKPX3bf+fgi3GiBJuFa4gebCkjjH/+Sd9e5LGis31JX9/0b8m/HcxvsRwbMSAoiNEctLXiGS8YoYVfT4WMIAt68euOtRCDMS0z7XmSOCkJKJiNMb9bxpXOw8GKMxiIOodf7983RJESbNitL3ocyGvOzEqbxMBrgJ8dZ6liUDCHZ+jLwB/gygA4hn/qpYaP+7vuUPkFydWHEQ+fy1EwJ2CH+4ReR9KUqtzs93Hfhv4BaLkZoHXaQwUq5ZY63rJYTLsDSL/vZR/17YFKMpfUABxwtf1RSJgVeeyQEDJtsWsayECyhXMofO74vMs4P4D/58k6To//h4RaDnA5+L1MB8BUbBFBzn6i/MMe3hkls6ggNB9RBZDelZSgFnO6wxLqS9w2BvCnWSDdG+d1pAwL5miGqiyFTKJoqnbRF5IOwElTzI08VQ7NpDnKme9cVp2BrzVIkksUHEu1s8xZihilhYl6ljmcHhusMZrJTx/TzHkz55NLps1KyABNObh243krB1O/qgQCwox+cKBhTAOM8kJppCHm0lM6+hnLngciwjUwaozAQ2YkzS4ixX6mGOBHqSEEWutgTy93gwEmGWABWfp6/mvGmhsdaB2nn6uctZBRRtvmgz9zKMwTAFjaj4qJVjEFtkhyZpLvujaniSqWt6ILoshAXeRnlDfd7MUVGUZLF9X3tkKn+xhkQFmUBJwAQs8lK93HUUUtCf2otmBzYVxNLPNAj38Fn89nMc6fyQ9NRKOAcNdrNDPHDMMeK2aYS7WT4Iig0xzy0k/Obe7sWegw6ExC0aykpzZCA2m4BOOIpWJ/q66TddEzPEAZSoUHBLuYcEbuWnOc8kBYVtmwMlLUkDN0x/WJXBWz0cRK3XNbbsstbkSPlz/7Nenonn7g396i8b6Ci1sMI8hmXvM0cIGdfyAmzSxRjv17NLGBwGZX+cdpsjSUtpkvK7DYaVlft8Pxiol+rf2KSU/pm4V3nnoGqXVPT7pWOKh7DYL6UW6SxvcrbvDQ4VV/jT5Q+ZKH7Bat06ZWsrEibMJfEi6nGUp3s1DfMQMMdLcpY4Se9TSzj0+YJIYFd5lg3sUuEqRfZ/cPA08/BGsP/IxtdSRZYlrW7De/B5/yH12WOLiKpQP/iHv1NWxxEHquclbbNCwX2HrwDSrdPAIH7FHLRt8zFWSNHCXj7nNwyyzzwHWaOUYmxzY/23eOdDJHgsssM06cfJs0MQ2KXKhq7EG9O7eY63ePgA/4mEmqJBnkjfZZZMK3+IwB5mhiT/hh9SyzwGa9rdZONBLLfdpZod6LjJOjF1uc8NPtBg7NLLDJ9ylFmikTD1T7FHLh8xzhCw1ZGja32btQCuHdjf4uP5b/A+fbLP20Bs0l7Z5v66O+t0S2foOHircA+6RT2a5Tw37ji0n9otsH2hilxUauc1/oMwWTSw5c6yWH7JHLe/QTCcFavl/8epOkanGAdr5iM5Slrt1O1zb2OeTlnU6C7tsJD+kdQs+av42r+QyUA+lRA078W1qeJ/v7e5y/wDECzDbcptD3AWgsbzDVryZA+xTyx671LNFM/ssEKNCPQUKbLFBi5tnJtlhnkZ2OMA+eRrY4BBH+CEH2WSFLR7mY3ZoJFXYYD3ZRGN5h/sHaqjZr2Evfo/71FC7f4C1AzNcywJJM5t5p7mG9f0J9g7UehdggC5u08A73KOdPyLNIRZo5x6bHCTOHge4Tx13Wec3+IQy79LMEe5wgH2K/DveoYm3C9vs18DH9VZQPMoOtaUNKvEc8dItbtQfJPUJkPwDrrc0MMUaU7l9VlO6ydptvIVN3qSBD5ihn3l2Pe6slr1wM9rn4zCPDxV+wBs1dXweXnsuw5Rx8RGWQhJW0rtlv8XPMMq7IT1r3EN70m6WLCBCXZ0LfJd12uhhIRQleZLBrLVCjCuc9TTOSmBbjTLGGKPIt7SbpcAGBWsyiCFrsnFLm1U6qvwQxfjsYZHLPBco8wPMBpNYsZAlx672UzS5RZxRxoIvyAwD7lNyk2/xNZ7lKvP0M8wEk5z0IINKkDQqtELF8AzHeIE3KFLHHS9SRV+XLwUQpAF67wAzAeyUgbLS0BvIc9KpBpc5h6ViJznHmyhYR0C69qPgBbbmxDzYjOU36WFGeV/HDU4xR3+wHRDreY3WwCK0ppR1vE3qGaeTTEh/F2NboP3f5DdYopvf56XA0n2ZV1ighwmGOcebjPEkA8w6CDXHCl0kaUMJ3GA+pZGR80hoIm15Y2DSAbQ8DTSQxwys50OzpYFCKChHGA+pcupCvsJfC4zGasbkMoe5yrN0sxQ6zQo4kX/eEFO8yksBRNyiiRd4IzTqMnTyAq+zRDfXOe2GxMMh8EgGySeZZJyR4NU4wKx71RYDoCjQUSln8sbNuWRplVS4bsUKL5JgkmGOMcM6beEBIkmed70oP8M11mnlGDNc5SxNHm70mX7VEKWAbmJg0BeJJI1LGDAg9thTRCCG2E8CGRqr3iNA4wMi0EZS2DQGNo1j4KEkjuNEQN8mkW+ZZKJHiXzoxOCK+XsE3gm0gcjzbwcDnI4SsfAkYawQeeEp6KORKDG1l8gfUN5k1b50CubowsCjIV+f3q/QCoE8YuZJNixQZtLH0o2BKAKH5J+X9v+n/X2TPi+XiLzljvj3C8C/9nXtEElmNd4vEPnFlbHk3lNEoN0CkSy5iIGP8hxUwEO1ZDhFxO6TfFqsM7G8YkQS0iyRXFkAZpEoBVnHByLgKoado2LvSULcjTE5dTw0fwIrl3z+j1a9T8vdJjqvFVShfRZDVfsrOXrRv3/T/y5QWOw/SZMFlA35uhWWIU9GMTZz2DldzQC9TZSWLABO7FUFabxNBGyLMSvwb4fo+pVUeQk77vJvHMKu5RhR8m0vkTx618eloBSF2XzGXwn2kPWUhQnWUYnHAhtcaoA6ipxiHHlbz9HPEDc9PTbHOKeIUaaDXPDb2vZmpQF128SpkCLHBb7LNZ6uYiR1hQZbN0tc5zRpskHRADgDLWLeCzSMUUYJ8kln58sSRJ74IiR82cOkLGRsMTTdRDiQJYXsO1KsBmVDNRBkwX2mvJAXnmxMeljkOqermGvmO9zk9+Y6ShS8GWqBCxZAoP20hPtjDDBLk4NbCshIOYNNoWPydTOfPGsWyroIqAKRKqGGMMlydwBMFRgyzaA/0y0Hea7qqiedpFRypeMivcirXDYzYnpKmTLCjVDDC1BUrSaiRytrdJLhLc6EJuspv1EojBMMlNXxPM31wHabYogmtugkG5iaYhDG/dlQdew6rZxiPDAxl+kKFl8KeGwgzw1GuMkQvSyyQA8DzCLVpWxbRB54l1GeZCzUppLdSp2mRjtEXssCjU8wRYocswyQI8UpbjipwPiuInO9xZkwB1JZrZIK69U5tODhZ2IdSv6s/AGTpxcC0ULJv5IqN/i5L5KOlC0lP4/uhhvUn/36VAC9BgrscpCHf5jlx//0Fjs/U8ddDtF2aRv2ofHkPQoPNdC7+JEVTmfzTB0Z4BE+pu31baiBrueXaWSH1BX/ZP8xiKc/gTehLn8fTkHyoTzMwkOX7kECWl9aJ74Kh1dWYQke+cpHxLfgofF7sAprf72JCjE6/nQDPoK+p++w3ZzgCEt0/NYGHIX3n+zj4VyWH7s1C/uw8nQHD/EJqTc3IQ+lv1xDJt4Jf5Kl9Q/ycB5qe/dgGVpv5eHHYOvoAchBfBbin5QY+MvzLCYfoW1qG9ag7i9ssJDsoWm1CG8VafvxbWb7ejm0f5dHfisDA5B78qBRp18tQxJav7xOLXsk3ypz8ECB4ukDZA50kpwow5+UaTpfpPaRPWLz0JHbgCOw1bPJwZ0CB39QgC1IvGRgZOp3No3W/peLFNriJN7Z5/GZefjLsPjQw6Q/WYPrQHKb2b/cy7GdBeuObkHu6T3WaKV3/CNYhskXHuMgW3Rc2YAt2HmhjvscIPbH8HhuHuKw95Va4h9D/OMS3Ib0T6+yk0zQ9EaRxp0SnINCR5zkH5ZhBxIjm3zcU0/rQh7+CBp/8h4MQEfpHvFXgcdg5Qv7NOznSXxnH3LQ8nc2OcA+8StwmFU4Dp+0HOahuXu0buShDYo/lrBC4d9CXf99Pj7bypHdj4i9CRSh+JUDBjKP23HiMdjtq+fhP83CJDQdKbJ+tpWDbJL+7TVogLWvlKhnl8NXV+FhmDo6QD0FHrp9DzYhd+oga7RxeHyV/tyH0AXrQ7WUEgdo++421MHHf+kQHazS+GrJiqYeKB+ptQItCxyF2uN7JFb3SbxfhEZoP3WPLZpJf2eNpuYVSs8Z3fngdwscrCsw95ceJU6Z9I01Wpfz7DxfRw33aZwowSoke8pwFGp2IPYWHGlf4ZNn26nbLRN7E+KVfXgONjlIanYT3ofW/1Weo0dm4RPouLkBPbDa28JDuXtwHZJNm+ycNe+Jw2+swhZUfgp26pMcnCpYsToCH6UaqZmGxqUSn4dXLaXQDcySpoktGpzmr6TlAWZpZosO92rYopnLnGOUMffFa+aIAxwyg7WbfpIGCqxhlgO6KWldkhwMMEMf82RIB5m6Oki6US7RHZKlOslwmXOBgi6Z6hJHOM3bvMELyDNM3h/LdHGB7yKTW3mD5EhxhmuB4m9eEhY4oZuYpbI+S4k6hpkMXcZqWYDeW0cxJIWKUdxAPhSMkotOOQPtsANB1qAZ5XneCNJNAaSStwisvM5pmrxbPcVQAAXllZEixyTDPMdlFulljn5OMsEVzpKgGEA4WSXI03PBA2Y6yTDJMK2s8yKvhaZMM1vMO7vPEtvuMMg0lznnxtLboYurLrjS1oteaOu86uDXws8L9DDFCZdEWHDSIj30MUcHFuyUc0l/hs5QhOhhQnYKOTpCB7oV8309zXWXAhkQPMRU6J7Li7HofjqSV+fo4ByX6WOOmLcFKsR5lb8SgFCxBuSHY4zOXoaZYIoh5A20SC+dWJr6Ir2Bpb/skiMZZ99gxEHoBbKkQ1BUv/sW9rhEQql0Mxx7gO0MVvBL+qui2wJvBmhlLbADJc9pc/ZfA3k3e84G1nuaDEXnLbeyzhHe41uf/sfRf9rXT2AMsG8TPcArgCDtX3eAr2Hgg0CqZSI20hFf14b/TSy1dzDgooWIvfcmVuUKdBEQAhEYpwAISWyPE7HIlCgquWDMf38GA4sEhvwkkcS12/dJSbEC2DSmt31/niGSqn4RA8YuVi0rkG0YA6KOYpJcgSQJjAm469uWP5tko48Tpb5qruVZBg96CEo2KaBxHANzxO4qY2Bemig44xlMfvm7/rOOSdzHL+nqv/XxNvmcax6WfS6O+j42+fvf9G3LQ07MLvy4FDFA8BYRcFnttXfcx58jAu2+6uu5RRSkccf39Qmfsxt+TH+KKG12lijMQX6Mkvc+RxQY0kvkJfcFIiDtHaIQiyNE/ngj4KIWG8dxonTd932MTxAlMC8TMevEkvs+kf+cwM4pIqD0GYylt0vEplNS8Qe+TjEkR7D04QUiNmE9EeCXqPr5p3wZze/jVeMQSxKicyXtyyj4RT6PRey6EVtPEuNV4GM+F6+PeJgav9+lybBFM2/FzrBFM23OiNP954Y3eRUmpvAGAUWyMFEDtUhduJd3uJ+x7ktqQM5wzP2Cm1h2aeezXA0MJzWnYpTdj6wNhflJyqjG5jSDJJxnJHmoWQwVGeXdABLKhmuCYVemFciQ5iZDlDDvswFmAzhUcCuMPuZR6qnuzaovLW10AQVWlkjQ78snybPoHyACy5S8ChZotkUzw0wwzggKp1Djca4qoGO0OMZyogulkFqTPU6ODubop0CSmAOnfW6tc5VneY7LQY03yTAQWUS1sU6Hh09I4bVGK22uCpDCq4sVurmD5KxiQkpJk/dGp/wX5WEIFsRgTE6r+SzwM+H+gCtBfXGVs0Eea01Mk95mPIPAUoIN/LSGe58DV6VQO1f/biDkamA4qsEOprrJ+7NPhjQnKlPkYyaHNr8+U6+okZslTZ1bcjVj4Re9lUWWYhb+ISmzFIYRMJoMzw+6xkQCeJIxbjFImiwKA5EvtkL/BIZ2sUKFOG2ss+DKIAClNEt+XM14lRe2FGoz7kEulm2ZGL/Nz/Az/DYKIB3nVKihRxkjR4qHWPmRPk8+FcntLgnauQd/AqxAouSUwR1gBthyCdUeFO8Ad2CXeto2tu3/m8YOuE8NzAGLNtIa7ptkYw+og4NsGfByF1hzRHwHmAayFm7AAewmsgz17HKXQ5FMIGfIbccnG6E4i1PmTuqwFVkfmUwnQdFuZJuwG6+3TnoCKmvAEsYuW7Nt8qc+CW1AAViATLLdUPubwE3Yq60xSbC6i2vQzj0SP9xnbR7YNZ+jxlyJostLdqlng4P2nj+BWHnftnMP7q/aOnapt/2/aXN6l0NUYrafpGzOY5QhC9uzwAbUlsowD9sf2jzVsmdgXwmI++8qFHdsX2NU4CMgA8f3b9lxyUDlh9D4Q/tAJ0NIlStRB0mfn1XYrG9ij1oD15aAbU8G3ifMo7a7uQR8YB2DSvyAjXvZxvHDA4Oh0DnIhu3/jM/7mnWVyPl8lM0jqXIYKqs29jpKVOI1bP8HW2died/GukWQLcQowx7sfWS/b9JMemeN4jwwDzs02v4uAz+Ex1jgAPdtfv4YUmsOSOsBYQZq2CdR2Id5+z1BkZUDh23f34dKGsrEbQxrwL5dD8SAD20OD7Af7d+dqovPPW6695fsPL0NfAyNy8Y+peBjuYt9iOdtP5iGWsrEKn79fAA7jUaU5iPY82ssTsW28UNgCj6my0Dbm9E4NmiBAmzOQmzP5p0ZKL7r1xD1lmT2o7GI/xf/GmfE2Um54FdnXh850u5Rt0hPuJHnSDmrLo189Y6wRBNb4QYnDwoBJJOcJEMaSfXrKPHL/Lec51IwuJXsV2nLBqjM08c8w0xQ5zf5LJYapaCVE0z5+3N0kqFCPAB/5qFnEvZ+5lBKtfwvwK7t1/hKkH2Yh4kVMONu+ip/xVbWg1S3Qpx+5sLNUoXMLAO8ykuMMubBIcUQjHOJ8yTJM+fegls0hzlKscoc/Ux6unDaQSBZMHSS9Q50nd+IeznsrDeTDuepEA9g0su8wi3vQPc6a1dSmCnvMqqgWHe4R4liYECcAYT5kHZcbQI9yzFkdyB/vAJJ5ugLYUVKf7e09bog5VD61wwDgfknewBto0yMbZpDEWshPIuhM9tAnotcYJKTDxQp8ugcZYzTXKebJRKU6CTDEFMkKIYiSF3hfjeClq+d/jdPP6OMMc0gr/Ay53iTIW5ykgnAPvcKJMm5RFWG0XP0Bw+bAWawAJUSQ9wMx958DitBon5x5wITDIfue4UY45wK0vEG8jSx5Ql28ZCwm6EzdKnHGSFPAyOMU3LvVwGOzWyT9YI3R0eQqaibf9i75d0shXFt+Tv7mWPb5Syf6dcMds8XQPUEUdLtpH+9j90b7hH5jgnwO0Ik/Vzw9wk4Ogo8TSRBfYcIjMphgNEokRTwMV/uiP9dibIy5xfwsOzr6caAjxaiJF4tN+FjFOtJXnUHifzWysDv+XaaMLDlFnbf/DaRx1k7D8pX0z5PUzzoLycmmqS6CSLGV8X/towxoyQFfcbfJ4Zkly//PSIAMUGUQCyAR0xFiMIN5LenbU35eJ/y7cpfUDLnp4gkn5PYsb3t79N3BW5sEnn2tRMl2k4SSaNTROy3NJHvmhhwAmgbgW/5HI8TgXlL/r3sY1IgBD5+BUt0ETEIW4jAxXEima7OrUaiYBP5GUqCLA/H2xiQKTl4kegcU1rtQf99AgNxY8DzRCzHW77ebqLAEs2JUnfvVY1ZXnj4fkl6Lf+9HPbMs4wdM8mOX/f3vEDEDpQvY6+/R6zT6uvmi77swartXyRinirlWQzHn/b3HceeFfJ8Ll7bNNHsdV2BBiwNdIUEJa5zOoSBgT3frslmo2K2S2K2ycZmkuHAEpNNhHmhqynWxTx9oRGlekeWVWKYm+RzzkG9JhbpdVBj2RUkp5inL9wD5atu3nhRYf8kY8hTreRMPIEzapaVqGOWAZboZoTxIP1U4EUTW8F2ZJEeJjmJghvlQdvNEr0sMk8/8rtdJUWfezKLESUwr4ktRnkX+cmZYuVBBYG2L1/7FKssJnrYclWEwBs1xAWgae7l6bxAD0q3F+sxRY5VUmzTzBqtHqhQ58/oFQaYRV6Iq6SC/FZSVPkF6nio5hPD0QLqrqEwzU4y9HiNquePCYbD8eokE/5+GAuTLPnY1RjN0Blq2nVameFYkNgmXJGhsDMLVbNotE73W1wlFcDpaQbJkkbBEQUaWIu1BhWSNYLNMqWOYmi0FkgG+7ZBpsnEOun38DfNvZ5/1HCW77aO6Tz9xKnQzR1W6CJNlimGSDqDTgEuIhIojCbvdahAWJ0fK3ShxF5JbcUUzPk+p8iRJc0gtzzAL7qWDew1ALZCPKhEqkH1Rx94yP8ff30qDL3OSoZ/9veh5t8DD8H9fwBz7fsc7cASo87Bn/xcnp/4NYwJdgi+/40Ez7wG/CHwDLz/jcMM3PuQmj/Abmb/BZAtmTlrFhiCu/9gnUMrGADzGHzyjSIP/RvgCvAUfPKNCg8tAP8WFpag9+UyHzy+zWNz2M3pF2H36Cr1k9jNKAHvfwP6Nlao/QPsxvayV0KvYjewv1Pgw64mHs1jYOEX4P7fX6HmIwx4TMHH36jh4deBH8LeAYj//Xustjdx6F346CI88r+5zw9HivzYP8bAk58BRjbs5jgDPAcf/KMaHpuEvd+A2p8A/soaO0cP0LgIfA92/xFMN7byE7UrBoT9ddh8YZuDv4zdVH8SPvhGlsf+JdZ5awf+9sd2Y53BuqAvYEXI97F1vAi8YGw0/hD4adj55WUab8Pe/xtqvwh/+o0EXSxx6DuQX4fkL+7zG+1f4G/t3wmd2p2vb9s4bwEVuP/3M9TkgPu2nZ3/Mk/j2/vwO1ix9HfhP4w+zF/YWgvd2Y+/UcPD34Qf/Bb85FHg78zDEoz9ExjtgPt/P0tNNsvmP4WDz8GH32ikQIzH/5DQPf7wFws8WgP5/wAN9bDzX96mcQp4xc6XP/1GCz/+fpbNfwYHD2CF0Vc/NID4AtANOz+1TuP/DfauQW0X8L99DyZh81/BwSTc/cYOh5a27fzoBn62xE5XmcYbGKh7AT78Up5H1zDgbATe/0Yzj799D74DNMK9bxTZoo5Hf8cvoK/A3uMfU/s79n/a4e43Njj0byDz/4TOvwj8bAbuwM3/E5z4Imz+H5Zp3tij5g8hvwoNP73P5tE8B/+9nw9/EfjSxwbE4fP+t9fg+5D7/0DqCeDZTbsO/r1v92+XIDFv11MPcB42v57nYBNWqNXD7i/don7Jr7kN4G+vcL8Raq7AXgvU/kP4o/QAX/zoj7n5Hpw4B5/8jXV+7S/5+fA5eD3GB3yRG+FG1s0SaTIs0hu8Ky5XznEqNs4NT9G2xOEOitQxwAzHmGWa4yzTxWHvQpl3XOGBYkoR9ZL0KoSlQpwbjFCkjpNM8n/lHyOjXSB0bgXAHGGJIywF30V1f9NkyJJmlDGu8TTjnApSVpMX2k35WJCxNgfj2Oqu1TptAAG4EStLDDvJKp7mLSYY5jTXaaDAJMOBQdXFinur1QXWk3UW24J3xx3MH9CA0JUgIU2SJ+0A3jJdpMk4GGouHDMcQ/KIIaZoZY0RbgRG2jx9yMC3jhJz9PE7vMzTXEOmzm9zmjbMK2SSYZfLZoPn5inGmac/BEJJ0pGkQJ8H38hkWWbZYpnJX1HMr3n6SJNlnFMoDb3O/SplOtzHHJNuAiwjYHnynWQiyCqe5i2SLpeNUQlpaWViDDFFniTf4cVQfFeIcYobwYdkjn66WGaSk6TJMMg08r4z7xTr8MoMeJpB5p21OMyEBxh1BRacOq5pMnyZi6zTymmuBzlPK+tc53Q4908yyRijQfKi5f/zxv+OazxNniRZOrnCWV7gde44y2CRHo55um2aLDlSodBTkSzfUMlW1rxUNKZhOSQZL9MVpNy6DuWFawm7eT+OyXDNvcGX4LPO0RO7Sf5jAsHAgAX5iI0RGfpLppglSjLt9f8/RgQG7mAAjhh/z2Cg3nMYmNOFMZ5e8793VW3vjzBASb5rU0QMvseIwBCxqCq+nfMYUNGC1Q+Tvs4hIjCwBQOPnqkadxr4OQzgE/CWxZhTFQxIk09gkYid+JiPI+7jU1iFZJUbPq+jVfP2Jgb6vUjkkybwUEBQOxGAKYZjPVY7Sp7Z6MsI1GkiYvRN+PdU1fxLYTBUtd4jRNJNzadA1ywGmHb7379AxHb8TR6UEP+Rr+eof71G5Ff4OhEgtYwxC79AJM3NEj35FH1b+Dgnq8YmWSm+v7ew4639177Ko09BIAp5EPh7xI/RLpFn4jvYMT3Pg2nA+Lo6ieSx8sH7JtFxFlAZ9/VnMBbcPf+9nSjcQn5+6rGJxScPw7SvM0vE2Hvc96GXSMLeWfX+RNXyOd/XRqIQmPf9vZJ1O4EiMA5jPh9L/v/vE527Sfg89DYAitTRzCcoTdUkhQsMMBP85fRQP8J48Ohdi7Vyyw31l7yBJb8v+XyNMhbADzV/CwGwSJJilX5XbaS9UVshHhpynQ4CipU1R18ARqp9i89wjRgV5unjScaCJNRUBwZySYGQcE66WFYV4qFhmibjrLUmLBDLwJ4G8pzlSmC/DzHFGE8CkGIVCwZ8koTLGw+zTJsva4GZbfQzT4oci/QEZp72T3MhX3PZ48x4um0DhWDB0sw2HQ6kGoCz6sdwy/djwS1XerwB28DLvIKFTKwGieUqKX9vgjVa6cDCx05xI4xpkZ6ghhAQNs6Ig5BrbNHMPP0o8E2yaQPBSiSdpSl5rsLhVFMlKIU6c93lymLHWVhYfwBEu1niJBOYD3wWKS/m6Ed2MJLdVjPsBBhG3nTN3vRPhfpOoO+KA49ihEoloWTmcUYemI8K8SBX1zOQQmOWOcwQNz28Ix0YiHoesfk3eXoGC5rMkg7WMJZvYGe7Gvm6Fk8xzjSDNFHkGLMs0uNsyb6g5FHg6jgjDDJNFxYKZyGmZh8jCybVumr0K7xEz0t2PVf7T/yPvz4VQK/2TajZx25ct6DmF+DowY/gHuxlofb34Cdu37IuVQswAc98410Yh/wSNCzD42MfRqlT7wG/QhRz74XboV/atn2st3196NsbdjM5CvmL8NAvbQTPhgaA78JjmU8iH5Jfhfov+frdM+LxX/oQcnD/A6ipB37dlr35HpxoAcbg0fJd+D4sjEFvGmp+0cfmZKyHf/leKB5qu4B/AofYhpiRC/mX8GNHPoi8Q/4FdgOt6nI99pqNs7ALtXds/xtT+8FkuP4i/ETqFnwbNm/Dwdfh4Dt7Vih45+2xX/4kSpWaBP4uVowU4X4Zar6JFXvq1v1r2z/wOX0bGr+2b0y+hM39j//nt+1G3A4NXcDvwd/q/V0b95dtu43/ZB/uwP3bUHMBav5bOz6bvwcHj0Ljr+xHXUSAcfgLu+9ZoeBF7cNfuwdl+MluH9Mv+dz62GresXUm/dg/+m/u2rmiDuEYPPpLd+ES3NuBhneg8ZdNnnt/A8pvw4//0m3I+TriWOEnw+W4jaOxZR9iUPuEH5tftu8HfwH4XTj0y9u2HyqGfwUa2bcxp4H/Hh79zbvcvwhz9+ySePz1D03esWPrav+1Xdp3d9lbgcwGPPJNqN2x/3+0BI/cg0PFbchCMgH516ChYsfyuHveHPz6XvBWKZeBfw4H2/eiwvNXseJuhyit7x/Ze9vlT/NNIslMApPKqHC8A7wDB3v37EAs2TlQ/wtYEZb1c/hXzCaJZahttHV+8ak/hg0Msvk2PDS5AZ8QSVE+469WNphmkGe5wox3Is0Mtw/zpzvMfxb7V+TowIJm5hnjSUYZ867tErMcY4gpFHhhfiBF5hnmsINUT3GdFbqCB8U3+TpdDgSVSHCGt5hmkGW6AvihBKzrPEWJOuooMcAMq3SwSA8/w29TcP8KGbYqln2dVuboo0CDM8QSdJCjmW3m3RdO3dsSCaYYYpEefp5fQ556kuWWqHNZbpLzXOIKZznNdZIU+DIXKRNDvh4CMpUq1cwW1zkdOnsxykHeat2x1eA9080Sr/IS5p1nARWrpOhhkX7meJvTmLdIlgbyQUqpIk37JJbZqhvwSmKqYilLmpd5BclOMnQyxQmU9vsKL/M1fj2AP0piv0N3SFQ/zyVPC3+aHhaZo49TjLNNc+gMVwNklzgfOtbDTGDhRGtY8EaJfub5Di+GIuEy5xjiZmBblom5rCYWvFWOOBB4muvBh3GePp7nDeacXadU4QLJ4M9o0p0rbGMpcNs0c4xZtl0KoWPTzRJXOBt8/CwQpIOMS2JlzKwOuvwPVdwLkB5mgg5yvMpLfI1fZ5Dp0FluIM+r/BW+zjeZp59pBolTwQyTc9xkCHnqmAwkCRgjIu3nQd6zifUws+aFXh0lcqQ4xgwr3l2W2XiFGDfd3FvHWQ8UAqer//6f8a8++7nfaexzP0bksXYee6DPYaDXFHa/kYzQm63cxgCBHJFnmsAmseDk/RWv2sYtQogZ38YAjw+I/LoEZkEUyCHgRODOCNbE+h4GUtwiAtB6ieSCd7Caa9SXPe7v78TumRr7pC8bI0ocFdj2GA/60N3C2G2TROzAio/7iG9HtZTkwS1V769mdW0S1QQfEMmKs0SS56mq+Wvy7Yz7fsaI2H76Lsbljq8zhQF9ko2KCSfWnNc2dPn7un0cj2FstAoRyDtGBOSVfX2S8QpsE8h41Of3OBGDTHObwmS3kmjjy3zB/6a52sVqaI3rbazxHSNKP9ZYBYaews7jGBF79Kivc9jnMktUJx7xn712Df6KjUTXR/XxvIOB0vh6BYLt+BxrX6oZi0eIgkq07bh/VcuU38OOr9iV1edMkQfDRI5i50OCSB6dIAotUf0+DvxN3/fb2LVdJvKr1HHXeVjv297Azs/6qv3/jL9a2QhNPN3LCzSw7awiAX3ycqsOjSoTo8/ZZMZyqgQZ4DJdvMWZAJoYIJSkme3AHppmkJPuFb9CF0oIVTpu1u+7Dc4eK2JBd2BhUat0UCCJgtMAFukN9hQxBxBl+A8EdlmeJCfcO05+zEqrlw/gPH30eSCVGGICOTrI0eDNWyCEtpkFiwkoFaDRRORDaEm8ZuMBph7L0UEdxVBfAH63z7uqoY5+9xUu+dytYqGHlkjcRh1bbNHkY2p18CdJn1ubJCiFbWZJc5LJUMuAqeeGuMkivfSwwLuM0sMi45ziaa6FWmaQaSYZJuvqFs1dniSTnKSHBTrJBtaj5iDn6pgeFoLa5UF/xERgSwrYVCjKPP0ByGx1rUnOyQYCGgUiq/Fq/n4NVPsQF0hykyE6nHlooS0VEpS8cZqnn3kUtpbCUnYtAKSTC97MHeIm5mloHotTDDHINIv0MMAM8w5Wmg9dnbPy+jjMMjH3ptvCmKsiIyjcb84Znhk6GWQ6NPovcT4kzZoncjaAwAmK4dnCCBpJ5ugnT5LTXPdrpy7MhRrfGfdq1jPKOm3OAjRFSYpVD3bJMhcSuv7s16ciuWUYS4bSzeOvAX8V3AsaLhhrj2ewm8lzWPfwgoMRRSIj5FsYUHAcA6Qex27UKV9vF+EmvvsC4SZSGwe+jlG5j0Ln4/Z9d8Tec1O08Kfs948ELl4AnoCaoz62vwv8Igy1E266f/pVqzZ6j2KF3j+2v2+qmHjB/54BTsG9/0e9jeM2PKJt/CKwC7mMz4Pmo8u2s/slG8fBlO/rL/u+3MNMg3sJdPWDKf/bV33OD2OFwi/YOrgDmQUMsLsAuR/A1o6P4+eIPEy+7Met17+GgP+6ar3t/v+/68fRC5Yffukx2IG9b2I39K8Dj0GNOtX/APhJG+fmbexm/1ftvZvLth97w76fw/ZeXvSfsbnl6/a3R14EyrD7DHz49UMGGnXbfu48d8Dkn/ewwugf2jofedyPxws2lpoRqB32fX8GatuxYuy8f2Uh/02gHv7DhSds+zkfxy/6WL7r433B/pbf8Xn8uh+rLqxYPA98DWqeg6Mub9lz75xNeZA8ATwHtafs8HLUj00L1GLnED8NjMJeGRqOYmDcV+GeirOf82XicHAYk2ec93no9d//ia9bXfF/bHNaU48VXi/YccqMQ+77Nla+TuRz1AL3vlQfSWHivs6/S5Qa91WfI+3Hc/D+M49CF/Q+YfO/93/05df4XLxWeAgZnaZYdXlEIXSrphmkSII6ivSwQDNbZJ16r3QxUeV1E53kZGDDTXGCk0yGNNmnuM4pxuljnme5Sq8nUk1xAiWlqmO5Sge9fsMfZYxeFlzuGuMM1/gOX+G7XGCQ6VDEAGE/RrgR/FIEbC1zmHFOBcBOXiMDzPAsV4lRIUkhJJQq0TdBMRjrqrOnNNsVuiiQZJgJTri8RECImGoCdxoocAyLs7/K2fA3BYZc4CJneAslv6rbLBNhIDDS5PehQtTS2awbuODGxvJY+Xn+NT0sMsg0p7gRgB3tp3xnmtliiCm6WA6Ak7qaI850qwYC8y6zVdd5gpPUUXK2XEPojvawgDxvOl3KDTLurSNDmnNcDl1zedJ1scI0gwFQLpHgLc4E1mMvi2zTzEUuhK57F8v0e/rbqks9xhkh7b6I6tbKmFheIjddKpxwn50KMYa4GaQjyy6LaaAQHk5aWWPYHzxWnTUnT0ow6bI8T8QyzJAOoLfSfSc5yYu8Rj/zFEnwEr9PhjTdLHGeS4FZOcAsZWLUUQwsOyVUb9FMjDIFL1bz/kDzLqNMM8gxDwWy86tCB5Y83cdc6MJ2etCNHlZMDp7jnp8vn+lXtVzyHg8maB7H7rNqsEniBwbySMpYxECzChZ80Ot/l7deu3/PEoFyqjVbfNmUvz+L3ffkb/YF/67lJSOUV5qAkJSP7R3/v1hGcazOFbuw3r/UvGryn9sxVpnW6ffXkDi7jNU/AuiqvcdUV6ewJuRBosRSza3bnYSaagcLo7jt+3LH91n7rTluImLV1RN5orUTyUJ/EQMoJzFwSUDRB0QgENjxavLti6UmGSlEoOEkEUB0zP/XSATsZrBa4iexZ4UpIqZfOwQUvN3HI/BJzV2dXyI4iB3a4us/79t7nwh8m8DOsazP8fd4kBH3vI9brLUUkYVO3Nf9BJG3oc4lAcdd2HGWRDpLlKwsYE51Z8qXy2GA9DKRtPsZIoD0tm/je9i5OOHjayd6XrhDJIFNEbHz7hDJbd0GiQu+3iGic7HR90kMwOGq8YiQ8ASRhLdIJEPWtVQkko8LcD3q69U+RKrNz/TrET5mzQEDSUPF/G9mKzQul+hmkpPhnrhOG0pqB7Pt+Y9DDMTyEctO4ZOSQEqiKbabyWj7WXVZYc4ZVjm/LwkUSpM1myGsTppkODCzcm7VIqCimyWybuivsIwMaWYZYI5+FCahBmmBBpRMK4sKNS7HOUWKVXKkAjgmZlwXyw949SrMIE/yAa871Vp5kmRIB4sbBR4IxLOgsSJpMnSxEqSlYoQpldd+t2TWTsw/PEdH8MnOkg6Aa5Y0DeSDVYglnZa9GWkMygTFIBu2JvM88o0GmOFYqFO6WA5sym1XAhhD05h4b3EmWLPI084YYoUw5+u0YTY4Sa5xhgV6Qu0txt4FLgbmXJ4k8/QzxihXORvmbpEeulhhgJngx2xzb97KBl6VWKcN+dGpxpNFitJc1RhNUAyKGXk/S/kxyzFWsHRjXRNKhhYQPsYo44wwzikOsxxsYVSjz9OP2f2UHDAvoKTmGOXAbszSyWmuBwJDBE63seZgZsnnxhRVs34+zobzSue/GISrpLjBKW+6r4fnKl2jdh3FSTs4+1hgZv3Zr08H0KvFPrS/T+TVsQt8z5lOQM1t7MNcHRlntB18Cru5iZIur5QW7CZyDLsBqOgRQ28K6tVpO+ggjSjgw/7+Faj3wunEsG17rxEYhUeO+jJeQO697+tdAG45AIZt78ffvx2ZwOomloNmdZyxdeXHgN+B9vd2bZl6A23YxG6YXUTyxXv+tWHbrHe5wKa81zawm23a51XLd/kyor+X4f7bRMa/RQPzOkexG3wKUp3OSpPvyLaP+xTBCDf3ps1pYO/h29Ocg4Gry/Bj4x/AONQ+TiRH2PX9LPsxOQzE4KAKO5dYxOPA21D7R7bK3CWbS+JYQRDHCoQuomILqF+AR9++a8e20+ao8dI+tPuxV9e9HSsWJA2QX8+dqu2o4JC3zlPQMGK//4XJ9wzgW6patgibC0T+H1lokJeK5qgdKwQTPr+7fpxjUHujat87fX4mbb9OpH0caeCnobPX59q7pikZLuuBASKw0TvW+ffsONOOFeu3iaQbZSIZUMz+vudMQaWNJRN2joQCDJ+XO9A+vmvvPUXktVOs2o5kOb0ET5rH3/8wYo5uO/uw4PPxOXj9GNMkKDLBcEgdi1HmGDMumczSypoDVYUg6xziJglKvMUZMnQyxmjwgzvLFQCe540AXOhmtkYrk5wMNyYr6CzWftW9LQAvBpqYYSAYAicpMM2gU/GbqHNm1yopOskG34d12siQDqw4FZYxKgwyTT/z9DNHgWSQIR5mOaSBqiMnn40BZkiTDZ1Y+V5k6QzAYHTjjHzo5E9RJsYEJylRFzqLJRKkyQTfEStOOxwCK1CggSmGaKBA0en0FSetj3OKb/E11mkNDEQl1dpYM/R62laK1QB69TNHilXOc4l12lCUvclOy+RJkibDBb4bANuksx+3aA5BGfPuk9fBKieYopsl7jjgaJ3Jw+4nM8wcfSQoMc0gw0yQYpVLnA8dvmPMIBPkvHco8yR5mmuMMsYWTZQxPzmFpGg7musxRjnMMtc57R52VoRt0cx1ThOjTIY013iaInWhQKmjGHxJ5F2obrPYapJPS3pjHfhVRhkLXWsgnBfDTHKY5QDGignQSYY+5vgNfjbIhwaZZpxTAXQ2RmhdkHgb09SKc/NYsWLNQPBZlGCc8fPwMs8xy4B3XGOh6Bpmkue47MEx3UEK3+PC+lkGyPt5BPDb/AzTDAapTIpVbgda0mf4JbBONYLYW2XsniEJoIANgQ0Cto5j9xqxydzWg01/zxGCLy9jRP6yakLpZ4EcTxAlwOq+Oo7dx1O+PdWgYrfl/Ouob3uYKBDhNhFo0U3EEsz6ex73ZW4TMQRbMFBRvmiS0B4lqjlUrz1FdG/H/y9gRvOb8/VBxKrbJfLee8zfP+q/TxEx4rp9ndrHWz6nO0SstBtEgMvz/reDGLh61OcU32YGayBq7oeJfOg2/HfVLpNETDuIwhLu+e9iPWp8LRgIp3m8TeR9JwWI13Mc8fU+5WOv+N+eIQL/niA63vre7dvWc4ZYoL/q25jAzkf5Fwrwba8a07/xdcjT7k0iNp9AU32pDpNqQsfE6+MgWdUykil/gQi8POrveaxqO2IEDvuyjxExEo9jdeiGf/+Cj/sOka9l2rfT6+t724/Bgv9dQLwkxgLndd4M+5cA+hafi3Ffv55fDhJJxT8HLwOjVoInq+6NkiVmSaMwCwFrk5zkMs8xwzFe5SXyJEl6Q7PJm8HV6ezNbHGCKYaY4jqngydfgqL/f5tW1j0ZtBhYc8fcx62P+QCaiaF/3ZUMGTpJkw31JRAYf2rmJb3BWufAWgc5hphimcOBFTbJsPtC51inLYA91jC1RtpJJlmnDXkui0lv6oCGwHZLUOI8lwJQYn61KbZoIkMnsxxjG/Ntu+GeuBbgtY2ZkXQhv7V+5sM4UqwSo4JCKOxYtfEuoyzRHXyIFTQmth/gzWnVsHXBQ22Jbm4wwiodwfdNYJ7YiDqGxz0sRH9Tsu2W69Ora/AidYwyRoUY/czRzR2i8LFYaEZ3sIoFSmRJkQtMTUlHVRcJnJWXYowyfcyTJE8PC+H8TXsNNsMAWTope1NeFiOjjLlHn9ViC/Qw6wFwalDruWCGARRu0YSFWkhynqTAKh0k3XLGLFHWUCCMfBD7mAu+f1uubNmiiVn3mdScGWmizACzNFBwUDEeZO05OijQEIgQAjEbKIRnIGPfrdBJJsjUpb6R5LffvQ+rm/sxyh74V8b8/+xZcZnDSM7c/iPK2T4VyS0zGJgRIwKgnHnGMNZlyhGBKt/HPtwniXwu5KEi4GKKyABZN5os1nUUMPVHvr57Lin974F6yP1zSMln4tft/ZlJ6LwEtctECVA7BPp9baMv/337PSka+DhRN6vdx9kI3IaaFgMCa98ENqHhGR/b60TykPcfXMdeGWrVYXyb6CbunbiDKi7kgyL/mIu+/YzJWINsoAtq1JH8pq2jU8XTDULREf/A36P9Bis83FPv4wqkljHvknuQ34CGJ3x/BcT28gDwen8Kal7w/c36tm5h8ghJecHODe8EN4za+nnHvtrVNVXBUPaff9PHqaL239rx2HsbasWmhCjufpLoweF9IsnKJHzknimPfNuW2VtyJtx7vvySr+MW5nHzHjQ0+li+beM4+AUimW4jVgyqmyv2QRw7JwUoSjL+JnDbQcBM1bGVfEJg/O8RAapvEiS6pLDCdhc6u2FvE2q/RyiCkgk/Binfvrq3d6JjxQcYQ6AMtU/53y9i55wK+GUi+c22v+81gpSeHZ+PLORfh4YW355A3B3MV7HT3psbh9TvVB2bJJ+LVwvrbJlYPCSzdpCjkywyCVY6VI4UfU7vF2tKctdW1phmkMMss0oHA8wwzWDwHItTIUOaq5x13z37v3xSBpgNcog8STrJUnCfsRFuBBljgmIAtsDkFW/wPBm/MOoosuIU9SWOBCaaGFJapkiCZ7nKOKc4ySRXeJYKcX6G32KQ6QCCjTPCGa4xw7EgqR1mIoB7HV5IqVNZIRYCQObo42t8i1kGgu+bPCk0FktAWwzyBHnTNLPFqie2zTLAs1wFjA04xYlQUMnIWJLLCrEgkVVXeY5+0mRJk6WLFXKkQtEHJglZJRXAqTbWmWGA01xnhgEsSCEViu1ulniZVxhmMpgRS46zxBHaWKfOO4uS1bzAG0wzGADK3+cljjHjbojd9Li8YIgpzKtnkUV6QrHTzzxKu7Ok4TSnuc4bPE+RBEPcZIoTdJJxk+MOjjMdgl7O8WYoNC3pdT0AelOcYIEeOsj5w8A6SfJc57Qz1dZoIM84p0h4Macud8w71yeZ4HVeYJQxsnQywAwJ7zbJiLufec5xmX73frGubNaB41LwO+lnzgHQSb7DVwK785t8na/x68GDUim7kvc2sUUf81ziPKOMuTTJ0te2aeYKZznDW8jgW756kqSYZ16c81zy4/820wzSSZYbPPU/10fOn99XHv5r1UMb2D2mGWvwNGNevvo9idWSzRib+5b/vIy1ohNAHfAuZuGQwTxN9rFQr2bfxiLRvUYsOt1zC1idWiCqvSQ5/ASrRWcwn+ZVrFAoYPf6Bd/GVazuOODLLvr/S5hPrOSiy/7/e1i98sdEibT9/r77RGm5H9p88QQWtlbrY0hh6aszPt5NX67f56De3wvmF9zl7/tdzHvmgK/rQ9/OAawGPuRzvIvdu+/6XP2Wz98f+/cSkRT6/+7HYQt4yPetgNVpHxBJdjeAdZ+XA5h3dA1WC3zic1CL1RsPY16/RaJwjnYs3OwTInb/DA821md8uVXMnzjl2zqA1Uv7Pv57/v0jn9eCb2vfly373xr9bzqfPvDjs4bVpvvY+bbk6+ryY/iu70uFSIp7hehp6yOipvZDvp73fT7e823t+/J7mPdywrc9SVTPNfq6b/uxyvsxzfpY7/m66ny7caJrLIPJm/d9TnW+f+TLlzBFT73P0TgREIq/b4cIoFzA6sKMj+ddrF485GN519+zioGNhapjuezr3/KvpL/vc/AyaeSx0KASAAXWwBp2OmuRBF0sE8dM/4eZwKxGnqJC3C0kjBk/6w3UolugmMy0wjSDXOAi8/RxkyFnSVnwFRjAlyZLL4u84fdZ+QrrfjZHf0hSXaGLDJ30MRfUA6YGSAQZrlQPSmNd5jBJt0oRcNZBLjTZKsSY4RgDzAYprCSS3SyhsIUFl7GqxlDYWolECF9Y8fWbjY1ZejzpNjby0dM6FdI1ylhoMqsejoWT3pQpQGANggVYSqJcoIHDXtPL5zpGOUhapxgiR4oiCc5zKfgEmpeg1TJm72FsL0mcm9miycEf1XEKvJA/YtkbjG9yjlOMU3Im3xbNTDBMM1uMcIM3eJ4vcYklulmjlQSlwGxsZZ3OSoZSrC7URGVixJxJqZpIFiyt5MP5maeBSU7Sx1xYFxBUI9c5Hdaphuo6ba5CWuMaZwITzogHRVpZo0gdJ5gKaib5AUpOWybGFc5ykolQU8edWCBbk1VSrPizRZ4G+pgPx1xNW7PmORJICcscDmC6fKSlVMrRwRBTzHtju89DS+QLrWtLPtzmLd3nEuIO5JucIxXA0zRZKsTpIBeID1r24+Cd8Ge/Ph1ATyDESaJOphhW3ycyUO3EgJZ6TKonmn0jRvfeJupWDhGlLm1WrVdygyHsBuldohoI8o5yxaSdB9Uhe9+Bo+NYh+4Hvs0EJgd909crOv021KaJotyL/nMFuzltEhKqaht9neMmQa19gqjrLAaYus+vuzQ4TUSNH/N9d8lDJuvsui/4+H6dSJqhMTT5XCR8P36OyGB6wbeXJfK8GIaaXqJu9/tYIfEMwdj4xFHfps/hxztwNA38Pd+2A0piBW6+AwePYwXHU0QduAqRLEDdcpcf813YfNsBJJdY13zg79E8yitGbMuij/ertv7abxGZTNeb9yFAzZDPY9GYkg3HfZl34JE0UfrXDmxuQ0pgWTeRN8rRqmONj7Gzaj/eI/JDafJ9f46ogNf5mcbOKf1N7LifxgAxvwo3swbwpjJEZt0Jf18LEcitjrwz82o7o3WwATXqyLq05P4G1Gh/9bDShbEFbnhQywU/bgIl1fWWrGUTk3UvY6DdbUL4CAuQ+VXoHSYy3n7Tt9UU7Ufqp4hkK3dhTcDpZ/x1iLtss84Ew95ltM7XFs1c5hz9bqhvibZmzK/XADPIcFjAS4lEoISv08phllmiO4A+z3KFBgpc5MuMMB6Av2uccQPjMt0s8S6jnGKcYSbI0skivQwy7aCQGe8quANMtqqbTJEESfKc43K4OXexghnqmpfai3yHLGniXkxWiHugRD85UgwwwzJd9DHHDU4FVl4Xy4HKP8RNAGYZCGOwbS2H+ZFnW6vPsaTJ8KDB7JLTLbZopoNVZhgIfn2HWWaRHuSpJv+WohcN6oBrvrdp5qZ7d8wwEPwJh7hJlnQoPDpY5R84VAABAABJREFU5SZDTDHkniBzXOYcF7jowSg9QT5qss+6QPE3mYQxKNWNVUjJNMfZopljzHCd05znEst0McQUlzgfQLEnGaODHFs0c4nzvMhrTDFEH3NB8moFjgVmjDEaTI9nOMY8fQE0XKaLk0ywRqun/hZC0fxb/PXgpyePn2kGQ0EknxcZLOdIMcg0I9xAKXFZLLFM2/l9Xgogq5k4FxlljB4WmGWADJ0h4OQKZ4N/jJZXoq5A2FHGwkOESUjqSFBkmEmUwPcv+C+CNHiUMb7LhQC4G5MywQzHOMuVIH1pZZ23OMMJphhghkFuue9LmrgD6DEsqCbhMh51Y+VHuUUzj/P+p/QJ9OfotUXk0VqPARqrRACcmDpbRNLYXSIA78ew+14BA01q/X1lDPwQINPo65CUdZ8okRWiWqlIBHrsYkFWO758nkiN8IiPJePrPejfm30bBzAwRN+biNh3uapx7RPZyfyQB9l7Df7eGt+vLR/PJtCKAWJ5H08dBvBsEbENO4nSgdeIagI1eBt9PItVx2MP6PCv/aq/7/pcdfrPYnBJutroY9C8N/qcrGKATL9vv+Tra8OOWZuPOUZ0nMv+fcDHve1j6fC/q+G8QQSuQdQULGChXbtYbbbv87vvc3uXCKArEgG9Jd+GzsdV7DhpvWrirvpYN7Fjo3O31sdxl4jthq9jj4gdJ1CwFjuOOjaauzx2/HZ8TPXY+fYBkdopQcT2TBCdn3HsPNB1I1BSap8B7Jzqwc4xzX0TUQ0s0kSzf18jYnw+7O/bIGqQN/o2BO7GMdnyLFGKcZ0v9xERQCcmrtaVxBRXs0QqEwHvTXwuXt/8p+ts1/8xAE1s8xGPUGSLIyyRJ8sfs8YOJQrUc4i7WGjFIgfLm9QV7vNx8zW2aOYhPiFHmW0aeZR/x7/nMPepoZkttmmiiV3y3Hbm2T3WuE0TO2zSTIlvcpkcFWLEKdPOFB/zPrMkaOB9/oB64lzjBjuUWWePWtLcZJOD1PI+l6mnkR2KTAAT3KeGj9jhCo1UyFEkQS2fUMseG7QwxTb1fEyMP+EPaKaWPXb5hLe4T54KtdylhU122aWRHTbZpIb7vpxJRw9xlwby7NBImTgPcY/bpKjQyaN8iNl2vI8CFjp5i2W6eIc9FryJ20mWWhaoEOMaDdS7X+4n/CmX2AOW2WCHZrYoUkeLs0X2qPUm6hq17BGjwiYHaeQWJepY5FGOM8l9aqjhPgWSFEmQYoZtmqnhPnvU8h671JBnhyItbLBHLStUOMg89exiIW8Z6ilQIU6GTrpYpsQSu9ST5jZrtNPKOvdoD2zHPO9wlQoV3qeVdb5LIxvM0UCe36KDJv4986xRZIcdmrhPDXWU2CFLPbtcpYkMtVSI08491miljRx5CuGcAtilxA4NNJIA8jRylyyHSLFJI9e5QzcH2aJIlinKNDHHVZLsUs8e71NLmRY22KCFTjLc5RDvskMNW5R8LLXsoeC1A9xmlTX6Pcgj6cxM2KHI7/EObcB1xtkKAO8eC36erLNNhia2KROnnl3kN73Bm/yQbQokqfHztJ5d9qilQJJZdljn+xRJ8DoJljnIPns8QoU8HxGnTJz7xNmhiS0s3/gAh4hTz8eskaeJLQ5wmz/25z6AHbI0skMDeTLs8Y6fX7XsUSTBAfY5wCb7HKC8+6NRlj8dya18IRKwN0ZEydeHvXxNwMCZHewG1Oj/28RuOuq+QXQzaHGJ6QJRJ/EeUQrYLJGniTONOn/RmW7yIIkZcBI8I9Tha8Ruogs+fmfAUSEyh9XNqNHBoy7fN4FSRwly2No0kWxxAfZW4KNxoi5oHGoPExVeYpr1+r4KWFogYkwVMTClOxrzR+NETKwyVnxliYossfBU0DqTjyNExW8jkTlvGXIfVL0H6G/335d8/GJU7tg6C0UiY2iAKZep/oCo2IgTmSf7eXDwC0Td3owv8zcIcoX7U0T0+zLcf4eI0anjHLN1kTM/uJou25c9L5Ia5Bmic04FmQOHqeNEhbWYZbtEZtqSYgj0c++XBclrykS+LQJb4xjgJ7lyC+YBI1+gCvCmgW3qRG8WqwI65JkiWU/Z97XT5+mO//0nsXNG14KOmUDQuHvkCeB7DPOOFBsBeKSbyJ9I14GDgSz4fJ+C8Lz5gZ3LYVsbkEpUbWPDJeuaa3WRJUvx872tns/F63t8iVbWOcebweQfYJQx8i5JrRAPaWHm31HiBiOMuTdXN0uc4zJdrLDkwQnXOR2kj4NM08c8TX6zTbHKy7zygMeZgC/zo7NOosWjdzDFEKe5ziQnWcHMiac4EbqTMlYWaHeJ88isOEeKWQ/7uMqz5GlgxFN9jdk1Fajwxrqzp4UZB+lW3DfNwikWuM5pylgy1qyz11SsgIU/2JhPBJnCmjPDRnk3AKKSLUwxxBbN5GlgnVYSFAMDy1Jsb3KWq6GbOsg0TzJGM1skKIXxag6AAA4qHCRBiQ5yxKmE2Hsloz6NFd1jjFJHiQtcBKCjikb/HJeZYYCcywiK1DFPnwNQa4AxNl/lJSzBa8q7ggWGmHKZxCoJly+bZHuKOJXg8XeWK6GzLOBLqa0CW8/xZpD8apljDiqf4RpgoKr2347jMXpYIEOaBXq4wlliVEiR4xgzDDLNlAdPvMh3kCFwghLz9GGJdhYEIrkvECSwYqYu0IuSwookULqsAiYW6Q3zDgQpreQukm+0so6CKWRmbGm//SgwRHLqp9wIuZpBe5JJyg4Qan1Pc40UuWBAnSPlQLBtI0eKTjJekCdYp80T+FoZcN+9Ew5ef6ZfMSKAYw178G/HgL27WE1ygIgBdND/V4fd+8axRlQbBkA0A8ch9+WDtpwAgQYiRlKayFu417eX9HWoBjriv0PUfE75eNux+1YNke+rmrsCJFf99w4fd6uvN0lUy4l9GAM+9m3WYaDLFhEw1EwEiNVj9WS9L5OqWl8eA1QetveUW4n81tIYGJTH7uv3ff7WMBBFNRgY2LXuv9f6/Lf4zzGfN4GbBSIAdN/npgdr3q/5tiX1bPPlNvzn6vk8ROTLXPLx7vt740Tg0cO+v61+XNp9DAJHtVzat9XlXw9XHcND/v8t/7mZKIyhwef/sB87MeZ0LvyYv7fG56COiOU4VDWeff97i893DquHYr69x4mC8wQGSsJbwc6TFqLzOu9jPOLjOlD1v1P+frEdyz6OA1g9KAZmwfeh2fd9z/fD61dS8MmPtdv/E/4ezZfmaNPXo7np83UKWKwQJS8L9G705fGx3ScC7I74XLf5fNT6svd8XW3+u5rmn/FXiVq6WGaXerZopoUNjjnw9hCfsEs9SQreFG6mQJJ9DvBx/GFKyRpkT7Ht792lnvscoJMMSQq+3ib2OUAte2zRzC2O08w2eRpoJE8TO9RRIk6ZWvYcnNqhlj0sKOMuj/Ihu9QTdx7YLvXUcJ8sh9ighT1qaSBPgiIH2QwMtX0O0M492rnnTEHxyPbYpZ4D7FMhRhv3qGWPBCUOcZd6djnAPjs0kqTAgapuQyPbAfRIOsi0yiFydNDNUtjXfQ6QoBjea8moMQ5wnwYK1LJHLXvIx+8A+9Syh7xuH+ZjUuQ4wD4tbFLPLgoAA/zdtcjrrZEd6tklToX71IRaZNMBnDK1AcxrIM8+ByiR4B5trNLhwFaWOGU2aGGbRuQrXaKOTrKUHUw8WOW5VMse2/6gvketj2U7pAbnaaCGfdJkqGWPOkp8wkMUaOA+NTSywx61HKwCLA9wnxY2aGSH+xygRB1xytSzGxifSQoc5hPKxIlTZhULX6tnNwCgms8an/MD7LNLPfdop5U1zF95jTwN/r4Eu1VS6j1q2eQge9Q6MGz7ukWzXxt5NmjhPjXEqNDFsqslmgJwtkctSQq0cy/M/QH22aaRGBV2aGSPWofWksSo0LK/4fNsc7LPAe7Rxj4HSJLnCEvUsscjfESZOFs0Uc8uBRpoYpt27nGAfWKUKRNnjfaw77XssUNjYDCu8BAKIWlmi1r2aKo6xw+wT/xH9CD4dBh69YTEr8Iu1F6AT0ZaeOi1DfLjlmILWFGRwW4MF4k6RQI5HHzjDnYTewz4pgEfBwWciEXlUlvimGxUxcIoBnbFo/XfF3NxB5Nz3ob8AjR8HwOsNKYlQof4/q4DIzH/Ogg1j9m2d38F6n/VxkY7BoDchvwyNHRjQEwL1I7DIw7kBflwFxFYJxnjOwTmV6f8Kd725Yd92QqBQfXIiP9dMhB1UlWwLTlLSwXRLCGp9v4RqMlYkETtJEEamjpKAB2p931fBv4loQi5vwM1ZVumU/JiMQe7oEHHUPLZO368JomA2l3/Wrb17K1A7UXf/wrUHPf98GNbc5QI6L1HlPi1YcvlN1zKehTWW5o4lNi2ubnjywlEkgxkBwOzbvlxFWA67HMpIE8g6AYhRa63mwjAug21vRj4VwR6IX8bGgTOlf286PX92bXjVdOCgcoVB9aKRN5Bz2CgoHxJKkQ+ffeI5Mg7WHEpQE7AIn5MbmPnlJh9H2AF+CZRKt072LVSxq6zL2PXgcDYe0TeQ8ehVoXbe3Zc4rrubtmytYd9vE9gDxLHYe8N+yxAbNcIz/hMvzZoQd4Z8tiQFOBprnGTIZY5TAIz8M/TEAoH8wUzyewS3e4F1hTYdCsutb3OUwxx02nxsyhR6Xled3q4/U9MuOucZphJ+tx0t+zUcwEUU5xgmcO8yHcCAClAbYsmfpbfYJtm5ukMkk8BXzEqXOI8g0wz5Elmkni2ss4oY/w2P0M3S0w4Jb7Pgwq2sVh5gZhlYsGPJU8Dq3QwyDQN5BniZvB9EwjU5WzFNtbJkuYO3VzlLEnywYBW3i6SG8x4CuuTjPGb/CzPcgXF1JtfSRtxKizSwyluUMIsek1q2xfYa6ukgsdgBEaZ4bASrWQsLbCzwyUcgMuizdh5kpOc5QpxKlSIB0BplDEWPSG2gxzyh+liOaTaiXHXxTJJ90m5yRBf5iJJCizSgxKNdR5aSm+MFKs+M2th3ufpd6+cTPDBUaLXEFMs0c1LvEqJBNMMsuj+PzJ1tr8Z83SZw+Q93GSVVDjG2arzSAl+Ygau0sEoY8zRxw1G2KKZC1zkOqfJ0kkf87zEq6x5cThPH2kygYE4wjjjjIS5rxBjkmFS5NimORSoHZ6GvOaSD4G+c1VG4YdZDinGl2kNvoRK5ZV0XGbG0wzyHJe5Rlt4X4ZOvsavUyHGFZ6lkyx9zPEhR+AznnP7X70EB/VsNkzkM5Yj8u46it2PxApbxu6baex+7DVbUD50AdlNY/U0+Xva/X2bRImgKQwgVJPtCHbP/CKRmiWN3etiWG1x0H8f9nF9n8ib7Y7//SmieyFEdekupoCQlUeCyP8u5fugRtwLPgeTvs56ogaxpI76H0SN5hyRD1yLb0s2GXFfTjVmr4+9uhba8Dk97HN3m6hhvOzj38CAoqmqOTjCg/fvLuB/jR23XqLaJY3VBHEMjD1K5IHX6d/7fRtf9Dk/SpQGjI+nl8jTWvsvlc8Gph5owWSi97C6o963+SIPNunLvp1dn0/VY0tEdWE9kUqinQc9iNN+LNRs9fotAMdaTmoErwcpEwWZdPn8HsHOvVEf4zJRSvB41VylfJlJ7Fj+hG+304/VRR5Mud3xeXvK52OEyF+wifDssfnCFgd/l6hZn/DxDPu2R3wcGSLPPp3HaYJF0ub5Wg5+dy8KEkn7Ot72n49U7V8v0TPQF7HzaYjIyxDY7IT/5qt8Ll671NPBKvvOyalxIKta0pkiR4lSYA9ViLEXr0VWJNsO2rU5MwlMQltPIYABYh0NcZNP3L8uRoV9DgQW2UN8wg6N1DvdtGl/m8KBenapp0KMDQ7SSYZdkhRI0sZ6AOYa2eEuhyiSoEw83M/buUeRBI1ss8lBkg6I1XA/SBSBALDVYt7PP2SQx/ggWM4oLbSFTfaoRd5lq6Q4xF0OskE9u+z6Q5724R7tAUjZoIWDbFCkjhwpGtlBXmoxKtSVS+zG66mjxD3aqWUvNKJr2eMe7YFNJysYsQRl/5EkT5w9DnEXS329ywoPkaAYtnWAfWrYp0RdAEhbfPyrpEhxL4B+dznEIe4GQHafA9RR5AD3aWWdfQ7QxA55JwLs0OjH5H4AHFsp0FTKU1v3CZ/wUJgLY2XuUSBJA3lq2CfGPgoPucsh6tmlTJwWNshyiCR5GtkJzwMtbIRjJ9ArRweP8iHmQZ0MjVXZp6S5683vAts004Sl4Layzoc8SicZtmlkm+ZwHIskeJQP+YhHAmAGFppWoIGDbKFQvXbu0cQ2dzkUQOOkMzr3ORCOQS17PMQnfMTDHOYTYlQMDD5wIOy7zu9HuRN+ztHOwywHf0OBwjXc5/DOKpuNJguXhF7g+h61bNNIC5u0sOHei3ukWaTsxyIG7NBIE1skyfMJh6mhwI+SIvnpAHoPYTfRb7ucElikh4fa/5StHfdN+0ki+Wi7L38HY3T9NNwfgZoNouSoI3D/Gah5Ch4pYnLKEayAWMBu6D/l7/+XQCPsPeUg1fexm8ozWILtB9ZM4xlCodgwid2knsdumn/k//sqsAuF1xyce4Eo6ekGsAGvNP5V/lbv79qN7iiWrvp9aLiFFQIu/eS1qnFInrpDSDnlICarPA/3L0DNReym3QT8PMZY+00H5k5hRcEsbE7BwS/6HI7Zcjzn+5Kzv9WkfH9GgH9BYOWttdfTPrJLrYqKnyTyqyv6/n/PghNqN/z3LNz/Rw7yfZWoWJvCEk/T9p6FP3IZ5nNE0tKi738R8+zL2PG2ohwKt6G23vdl0t/3hM/7OwRAbfNkLWsjrTz6D+7avrxgY2741wSJQI4Uh0a2bR1f8HG4JJuYH5dlDIjdwBJdjxKZW4/4MpPYa8O3s4H5232BSPqbs/HvPgNLjY9wtP0jGsZ8Tp+rmsMnMFn3t4nSxk76sX8HFt5zoPC4/X7/FtT8Amz+VC0Hv7kXdaOfx66Nd7Dr5+s+/69jIN2Iz+m3fOxPYUXVBpHHyt/DCrs/worAZ3w838euxZ/2+cj6dp7y9Y75nLzg+3YLGtqxAl5d5+M+h98kGJXXJog8F2uwzwmXSH+WXx/zCFnS4QN6mx6ydDLEFHP0A7DEEZbpopdFUqwGj7ZmtgJTq8E94rpZoosVZ2QZONVAnl4Wg2x3i2amGKLTu3QlEvSyGPzu5uin5IENA8xQoIEOVoPnQzNbfJmJIGkd4iZ1lLjJEG1ukit/OCtasnSSxWLXUwwzEdhrA8xwhbMBSJxiiDL/X/L+P7bNK83zBT8yKVEiJZEmZdJmTFnUD8tSSQlVVkXuOIkrcU08657KTGo63Z29VTNVQBbd2B6gcNEX04seoAbTQPeiB9PYrsVtoAdduFUzVTuZqvStTKdu+Y5z88vl2G2l5FiJHNmyflp0KJMSaeoHKVIirf3jec45yuxipoC9tXcmRcCwJJLve95zzvue53yf7/P9euhRsw0B2oRKL65QokO3oxowWWJUabKMNiMoO8Wwdb/NKeA0Tw83GOF5XucBIXqZt6wo0WNpsuCi2M9nyROhlzmu8gTjjOGhTheLHGGNIiF6maOKz7rcGlORKFmrvTfDcQuyvcmXGGPcChavEGeeHjue4m5Wt+xJ41p8h358aoCxieix+SlTVar2ETK2xDWv30vTSQdr6po1CgibbEeZkZd5iibVkXMGFBl7LAGHu+hnxpbQPiDEb/FDjNuwlIjXuM4oKSZpYsdmE5uoEiNnS2aNEYRpt4TgVU6q88A8vfQzwxXVUzGg6hriqHeS6/wr/geGmSLBMgOquXKBX6efGcYZs9qFpvTCsC79aujSpGxJw9QzuoQ9zDNPjwUljeZJE1WrWWLK20EYlMYUZAsRVB7jfTIcoYO8CktvM0cPY7yv93GCOl4mOEknaY4zQ54Oe6/1MM8RMlaj5ypP2BLnpn3g7mf29SROo7YbWWuNHImCG3sDKpniReK5FA6UMiBUEgcq3NJjDiExmClfNEyxCRxzLYNLdplEokku9mk7hmEvCg1vIWveT5C1rBNZ72rIWjeEc5Gtyve4pMfJ6Llv4sA983cDOFaQdTID918IcvjmulynWTtNeeKLSOx4EgdiGkmYErJWz8Le17TfDIhj+jWGAD4rCHDXh4s5TMJwA4kzj+jfu5G12QCcyzgd4BSOUWWYWgb0TOGcb6f0mM/hjO3A6R2b7xqgyLAeh/TYpionibAKTbVJBOeS2o6w3xZxoHAOiSsj0he7KWg0VQ6del3d+pnjeh5TDWNkRjZwoGWfHKvw1WbClyrSB1Ec8BVB5ukpPXYAZ47xlp63ouc04xFAxnkYmScXcNUgBb0ekyAf0D5I46pIUggYVtVjpXDmg1FcUtgA3j6czEodCya3v7Urxy/sGwOzJyvh5oBJ7sOnZYc0Yd3+Z7sS65rKDwMufg2n23xk33jmcPPAgHlV5P5px7kdf8ZfDznAb/7zPjpYsxqzRl9umI+Y5jhpEpzjIvP0cJIJ/KUK+UALTTThYYMiIdJE8NFKG5ssMmQlSHY0OTzOmIKCsiL3Mk+ZACEecIdOouSIsMYtRqyMRLyeIe3pYo5euzaKXIuHJR7BQ40cfRQJqYnGDGliVhYF4DqPklKAqIUDXOUxRrhBT2mBbOAQSyTJEdV4TKRoTKXE15V9P8EpuxZL3OFhjl5N7IqacIQ2pgkzSDtT6hyTIE0XS+TYo0wXcTJcJUmUHHlN0JVpsSYdVTrY4RFb9ZJkiRaNc6bow0MNHztEOcC89ol5f4U4RzSpfIEznOenGG08Oa8YPIwxbuVgBpkmTYQl1aMuE6eXMm8yTIob+NihTIQyXrxEVS9PYkqT7DQVNH4KatJQZoZ+mqhiXJCXNJ5PlXJkAmHqPKRMK2kS3FHZGalYEI3fnJb2RvGQ0WoCMZ9r4A4R4lQ5QpkVImSIc5wZikTxsUOaQ3RRYokoY/VFpj2HaaHMFI/avUQVH10skqaHO/SrhnKTls+KUUiKAmXabQwncVmCHja4wxES1CyYZszSXMmxnzHWqNFEkQbyJCgSYpBpqjRwhxGrMdjGLlkiLHGYOA8RA5AaZQ5TxkecApc56QBfqnSo5l2IkE36ik5yjSRL9JQgH2jhh3zRanfXaaWHea5zkjQJBpimlzJX6cMYmIhxhlQSCRmgGQ91/uW/2GLtF9Qg+OWU3K7hgAaAC3DqlQ9hHGImk7iAPNTNIruIW/RfhYZrCDiRx2rvNVwCSsKWI4AEcibztqjHrIsWGRFo/Pc4DbmEnsuLLKyLOMdTE3SVsKYK5Vv6npYdbpa0vYYF59Xj3oJ//L0fucDUi1t4B5CgY1yOVZ5AFtZ1/VfABZR5/V4UWFYwzzDxwJqAfFJAFuYNbXcdslU9lgk00Pdm+XTG8Jb2qclSXoDwDyrOsMIESlFt5xSilZcX9tme0XqpQIMJgk3WbUrH8RoSxFRUYsQE3Pszlib4Moy4dblmvNAe18/fxBl9jOv7BWxJa/t3djn2vVUHPBqwzwBXk3DiO3clUBpFgmHDDDWfVWZkeRbKhu2XxrH/THbUlAP7kDl2TdtjGKQl7Dxs/g70vXJPxKJN0Dcp3/V6cNopJliv7mtLSUtXc1j3voa4tKH9R7ty7jRu7nhxOo/LuKA7qN/XDO+sYfWZ711CgrIL0rZdwz58FcmomhLvWR1XcGDfOq5s+IKeYxGZOxn9fUGOm9dx3Hsd2BKjmr11LefeRkSRfwVehh0XI2cBmRBFJkmRUzckAOOQKRp1TfQwp65R8/rAbyJKjkGmyRG1JXsmcAG4wQhz9CizqIeZfY6cIsx/kEW6KNNChjhv8iU81DnODDVE96yLRRU1rpNVkAYkADFlpCbwMs6vxlYehJ3Wy7y6lolTapyMZdaZ0lhxcZPFeFsNJ1q0bMM4ZhlDgREmER2y41Z77su8zj/gNVrZpKqZOfMywcombQqS5hnjfVJMEiHPNIN0qBtsEzsc5w69zFvGXYgib/ElcsQwZh8zHCdLjCmGrRbbcS3b3UGEoLPEyBLFuNvO00sLZU5y3Wasa3gsU0w07Fqo4yHFJH7K5JW51s8MX+PfWq1BwBp7PMFVm8E3pcGDTBNnxeoDznCcIiH+mn9oQUMpj12y4Jk5hgH7Ukxa4DRHjDpeqx33lJYOi8hxExHyXGfUlt/6KX9Kp3CeHgskd5AnzgotlFkkSZIlBaiFeWnYb/P08DLfIckiaTrJ6QPObEouco40CWbox4hC79Ckws01dZNtIaqUq9d5fp8zc8j24TkuqumGMDdvkLJAa6v2p8u8tvKAEJu02bERQFHA4qe5bLPV/5avKQPSx0cMs0TSMmtPqhNcP3fIEdMyeXFFvsg57nPkf7dnzn+tr8WeqIBJzcja6kM29GdgI94Ip6EcOMDeALImGQANSfLeTwQlyZZC4iuvfJcUzL54lL0ncaAY+44xpP9eQmKqUf3M8wgQo0m03dOIDm1F/r4ab5WYYghKKQ2XtQKh8HwzVGAhftjJlgxB6fQB9s4jumJjSGxpqk9Mu27C6sut0Af3XwwSWV+Xdd8AIj4ovXRAvl/SawxKwpAgTpvWMKHOarWEB9iAwnPN4IU9A2oeQYC1YWyp6CejYbm2AQQc8ug1RWD3BDJOGdj9bZzzsGHF9QHtsPrVVunLM7Bnyl1PInHNS/rzOpKY7oRPXg7LNT4nxyw9f0CONYpzbN0vGaLxbiUBt+PHXBlrUMe1W/siiANO0THVMa574f6zQUpnDrDR1yhzzwMch/snguyOabtP6b8YAnxVkM8qOy88UXFaeVp1QBQqQ9pX69q3p7X/orhqhFG9JtOPIzpuW7hxPwV7T8LuC/KZyvPSZ4ziDOGel75bePGw1Wi8nwwKUL6lx9Rk7t6LuLLdTlzJa0L6qqLkhI9T3XIfDsh3N363UfrwDFZWZe8ryH33sv7dVJ2UYPVMq7wX1Gs7jauS8si59vr29ZkBPFPIPsYHs8mjEr+e0OPf5VfiVSRIgmWmGSTOCiDruTEPiLNCr0prGIf0uveAABilLbz1Oon1+5oQ2qGVTbyITtfBepF4VUoQh5nCR5U4Gba1FNRIkfQwjzG5yBDHOLaCsKJ8mnyKkWUbPz4tnY2Rs3EgiPvujn7eR5X+qkh/lPFTxUdGgasaHuYD3bTp+iumWcOkSVgGm3x2BWPWFSFv5TiiZOli0a7PWWJ4qFntZVMFA+CrV20lQnS9oEDnAxvDDnLLSook60ufAsKi6p7axhZxMgwzZatXAHqYI0aORwuzHGfGxnfn+amVK8lwBKPVNsoEeSJ4qdsYyxgyNFG188AkS435gxkHSS7WGGaK/tIsPk0sv88YHYUt1e0VIsAIk/TW52x/mDjPgK0d5K3Jg4c6k4xYgMxDnTU6tGJnRcf/AXfUXM7EU1V81PEgxg1eQhSp0kSsLk63nlrdJrnNuP2Mp+zcr+OVa1FCQRM7do735e6JaWDpPh31vNXvNvsEk2gFIe6AyAwdIcNXFv9XQtUiK8QRB98sCdJEyOPTc5gEvzEVMXuwTdr4GU+RVYoCoKYdUmljks/7z2/Obe6HzUArLZQ5QsbO2Rbd93ioM8wU2yr/c5IJ/KqRaJLToo/uo4q4XrewbUt//0uvXw5Dr4xkA3OwsQzt+89iyge0fHAvp+BQEnmgm5KKILJgVPVvNay+XUNQ/ucEsrAsI2CC0u7bTdBkMmMFdWDVAIWT6sppsnJxBKQxJanrqrsGtvQhbEp8a/o3k3kzmaU0rjxzVo5hSxK8QAD8L+JMDTSDm19WQwb4dBa3c19/mSBlHR4xJQEZbFkz4EokhvT/CgKKZbTc1izmVeCWOqMaSntAtOkaDFXeZP0MILkufdCgizvNwB8gTMhl7TfDzDIlo3E4ahiBCuRtzEK7yTCaa45q3z2HzJlboEaQEIf8dyByHifoXNfrUCC0XNISbpOpNkBZHhc8m1JRLZ/GiyuryQvz8t5t8Bvgc3Zf25q1PUFc5tlkJmexwNreOjScwc2PAGzcgnZznc1aPmyOH0PAUtz79Om9YrK77erAW0ACn6heh7mfjC6JARX3g/g5bAa8xVxLXK5hMQNJA4qvK3NOS55Z1nNMIEHZhvwtfw0i38BlZ8Hp/BkNFwP26dyM6DkbbgLdsJ0Wt2DrGP3LSSf8V/fyULcAww1GeFoFesv47Wb/UaZ4h2cwenGm1A8EzJhgVIOorBbj+u33QWjnHzHME1zhKqeZo5f/G39KgjRRsupIVdQyhS2e5rIEORocvclZYgoWmnJdo8mWJkGGOP3csf8bVuADZbCJK1ScGfr5Em/xJmc5zgwX+HVGuIG4nbbYslufnURY4HCUCdIkeI2nGWaKDvKMMmEX4zk1aDCW8wYMHGSaEW7goc4Eo4xwg5/xNC/wGuIs6lfWmoAuO7pQAjzFZUI8wEeVbVosyNJBnjHGeUCICUY1yDyCT0tENmklTwddLNp2ZIkR4gEjTPKoIuHm/DEFJ/8t/4hneMdmFoVtmWFOTU+MI5ZxviqqmNMcPdZQxbD8NmnDQ40McaLkWMM5645wg3HGSDFp+y9KliRL3CBFmk6Mu9kwU4hzb5QUN4gQ5w79FAnZUuZNqizRZd1rvdSZ4lHr+mU2A3EyxLQ0N8WkbWMTO2zTQq+6i5l52UGeGfrZpJUpHuU8P8WrLLkQDxhnjDY2GWOcH/Jb1jlWwNMoZfxWa9Gw7Ea5bst2zcbIzOE0CaLkSJC2brsmyH5AiElSRMnajK8xczlIkWd4lxn6iSMu010scpCi3awMM8U3+J4aoKzRizjMpbjBv+O/4zw/pY6XQab5Pl/T+1b0DPfrVX6WX8scYzNxlHgiQxtb5IiSqKdJexIs0sV0dJB/xPe54ethzPMB04k+4qkVNmmljpdYPctuFLwRqS4w914qepMIa9Q8cHno14iRZTC6wFz4KEa3qbOwynS4m8EXF3gQbsZfqlAMBLnKE5xMTpDXTYxnrEY/d9ikjf7qDIWhZrwDdaY9g0SG8rIZTApD4ODwfep4uRs9JPdTQpwJaz4PT9Y+oDRwgIwvTuL5e2QCh8nTQfz5DIt08WTmA2bjR/FTprEAhWeb8dblPKdKHzLtG+QLnTfZ8ypY167s/8A9OAE/jw+5Ted6helgH73BeYq+kHR2uEImHBZm6ZMfciM8wOdv3wIfbAw3coMU5b479lnfEdOAdQDeCp6hJzhPPJkh44vTlKrqxnSbd/gi57hI2FvBQ41Cspk8HfTN3qM0cIDA+kM+iYYpEqIWFxfw4YEpApmHVGlibwBuhAdoi8ta5x9YJxsO4q+X8dTqBDIP2Yg1Uo76ORxZ5/4JkazYpI1Lzz4usgR9TXbtDKcr3D8RtGVV4ckKC6nDxKo5AjykOQ2eE3XSvgT9hbsSI5cQqZjCOj8NP8tISnQxY6VVmrUbKqPQfAt2+6AxAYV4M77qDnOjoi96OLMugC/A2Ba+KtQ8MB88Rhub3CDF2Evv46FGOFfh59EhaWO8jJe6BRoAfKeqZD2ygcwTYWzgQ2YCfTyWmqUSgHr8AJ7aQ5oXgZiAJ/7kVcq0EKtqvfhLuAR+UOL1jVONlD3ipvg5FlzslpTKonOnL5IlxueiCxAXcPBwZp29J+Fi+Axnn7tEJnjIOkR6qHO4ts7G1xrZ9EhyqqOa59LQ45xJvy9xZl3A+ZpHHFcHY9Nsetp4JFEABCTvKGxRDhwgkH/IQvwwk6ToS92DqgDk9dYy/IKb2P+WXz52bTUGyDp1hAzHcqvseaHmuc8Pg/8QEC3bTdoIZ1Y5Ub0r+5+Eh22dgiY5ZVTq2t/bpXTqgJZ1SpwwxriVWYnp+rtJmzWtkqqRHjzUac/uEomvMcNxRBN3jToeDqfX8STu4K+Wyfqi+Nmmtz7HnKfXyrYUCbHmE6DFQ403OcsY79PDnBqwxTm+vkAimLYxhrikphhk2urGhXig1SaP0sucddU1r4jGD8nCfe6E+2lVYHNb4+NNT5uVE+kr3WMtGOEJZhhcnyUdPGwBrk3a2PS0Mbg+y3jw8/jZpshBeS4WtvAHpql7PSx5kmzTwjAf4WebMi08CDfTnblPId7MdUYZ5E3C6QrVRJo6XiLkrfNtD/M2zjN62eJwmrXXYEzcwukKmYQzozMgapEQx3KreJJ1IqUCPYF5GjJQC3sY0L55JFOgEoSWQFlLcas0l6AaaLKJzTpeZWaK/vIM/YwhJnI/4cuc5U2bwFwjQg9zbOPHSx1vvU7Es4aHmp0/hxfX6U/eoT2zSzbhJZB7iCdRt+93FlYZDE/bUukQD0jWl2jZ2iUfdAy4I2RgHdqCm+w0N+Kp1dn0tCIOx1WbOA5RVMCrbBOwVzlNPLli50eRkMQC1WmqviYS1TQen5T/GhdggBSTtJW2mAn08ULpb8gGDpEjhr9a5lHvFGWPkBLSyvbr0GSy0aDuIE+imqbu9VD1+AhnKuzEBdp+JFdgM9rG4dw6m9EljHN0hDz+aplh30d01PNkPHGW6OJLvMk2fgGYK7O8uQMPrVbYf/71SwH0ph/vZfZ3KvT96B7tQah8E14L/H1eeu1vyP8YIs/BRmcj7dldKREA/s3p3+Qfd/5IAKBRuHb6MU55P5Ty0Arwm7BxppH26q4VRr798jFOfPuugDpD8MHLGrD8MbAOhd9rJpyuwF8qCPiyZHgP/+66lM+egtmvH6XvL+5ZHbK/efE5zpXeoPn7wBBce+ExPNT5wp/cJD8FgZcgEzhM9x/dl8XrSVj4ncN0L98XkG8UZr96lL4L94Tx1Af3fydIW3WTwHceStv/Ehaih+l+/b41ZFh4/jDdufsCkr0In/xemEcuFYRNdQo+eHGAkcItYSkqePlvUr/JP/6TH9GXkrZ//EI3n/sfFmzJye5XofEHkCtALChZvRBFwt+qiLNrCgpnmglnKsKI9MGlrz/Omcn3pXT2FPzH3zvD3528JNeSgk9eCpMlxuf/L7fEXORluBp8nDM/eV/YXGfg2rOPceqffWg1Nj784z4eC8zS9mMgDIXfkcC1/bu7Aga9AAvnD9N94b4AUV+D+88FOfy9ddHy64YfPP8P+a0z/zOFP4BYADZeaeSBJ8Sxv1xlIwO1l5uZp5cvLN4UsPd5+N/OP8nfyb8n7RqGt7/+azz7r/+WvbyUc5e+coDA8EOYhdgK8GXJUIcnKgIsDsB7L3yeJzMfwD+X+fDxi92U8fOFP7kJp+Ha1x+TBfiPV+EW7H0H3gn/Gs9e+FvyVWg/Cx8/283nbi3Y8tKNbzTSPrtL/o8h8jWcCcgfqAbg16AShubvqWvys/Dhy3089kezVsvv7tcPcWxxVeZcFX7+whAe6nz+x7egAIU/lMXl77z6HkdTwEvw8+QQX8jcJBaQPi09f4AADym/Cv5FOQ914AJsrEP7sJYCBdaJLAJ/CLeTxzjx3l3ytyDyT+DnLw/Rwxx736wQOSdzlzxwCco35VoYBV4Bf1LmkD+OMEW3/n96zPw387r+f3+HueYqh1hllfv8hCJ5PsFDnQJXeY0KPnbw828UJNtgg3aWabQiwe/TyDHucp0D+Nhjk484wgoBfs5VFaOt0sRNvPi4wnVCbDLLBQ5zjHvc53/jCo1UuUiQDQqqg3GTzzG9U+Hdpo/oYUGzqU208G+4h4BtB9TU4v/JJsv8hFkqZFUFpM7fMss9/iMH8DPFHSpsc580P1ONsjl+zCGSLPK3tPKQefZUJ+YYy9xVPbkD7PE2O1T4hFbusAi8ww4VrqkwbwNZfoaXXZY5xjBTfEA7ezzgztp98h0/4z6HSbPDIkvA3/IG6xQJ8ZADBFmnjJ9tmvHyFl38hJ9rNnmDNt7iITs84BD/Pa+zxxoRHuFdVjhMBz/lI0WfV/BSoZkm3mWVXW7pwv6fumcVN5fZavNR4C3qeGhgj7ss0czfcAEfb7PNQdL0rt/lQbCVIktUaEacuRp5g2YesskcS1ziGEN8n3U2mKNHxYKX2KWRgxRZI0KOeTa5zW1WmeE4h1hjgTrdLFJQULCOh2Msk6XCLte5xZ4F7Q7wkDU6+IA6n3Cfbhb4mB2r83GYcW6xSwtXWaKZ9/GxzgT3+JgV0hzgoc0Yv80B1ogQZJ2DFFknSCO77NLI3/JrnOAWvcxRo5EQJeYp0s5bzNPNKp+wwmF2+TmdpMlxiCAbrLBJiT+nhSpzxLir2jZNvMNbtFDgDncpsscir1Mgsb3Chy2fw8cya3RwhDcpqBbMazSoyPL/QpwVFkjSxA7tbFKhmR0aqbHIz3kIXMDPNld0nhzgQ25zgAqfsMZtckRppsIdytxSEe17ehyjv3KHNIu8wv+LB5RY4z12ucNl8nxMhevcooE6/xOVysr/t8fHZ+4lhj6n2aFJSsQ8XXZjNcb7tnzlcvDX8FBX1sI2Y4zzuud5xoOPWxObKk1c5QmqwSbRdQwmMY7WPws/RYgiCdIcpMiVsDBpCQu7oBhwjIQphmljiwhr3FGToh2a8PtkQ5TxHLEZ9E3aLAj+1+G/B2A1SJ/hXUBKy5eiSVui/27gi4QoskgXcVboYpFL8cctG6WaVHaGZ5ssUTxDYiL0cbSbRD3NuGfMJmTm4z1EyZElap2rrwclQVT0HWSaAYaZYjHeRS/z1PBwJSyb1A9ODLCjffYUlzWxIGyEtKdTtC8TSxwhwwzHyfsiNinhR9z67tDPJCP8X0/8BVMMW/mI2T41DopuMsFJxBG6n2d4hxu+FCRlE5kPd5AnwryyoathMbhp82xyvvK/sppsZZIUVZrwndjRRMUKRmvLmCmBsFOmE4McZ8YyetpSIitw2fcURxIZ6rrNeZOzjIUFYKvjpYM165R4kXPCVgrM0ZbassmfnlEBIBaDXZIc8InZzh36IQ5rROhlnmggy07AR4Q1phnUkqwil3lKklBRYRLNcNzKIfQzwzw9/DW/wXnPBdrYZE5ZzeWwsJamo4OMMMkM/YR8RXaGhBk9yDSXeUpAHl8bJLDsEV90R8vWbiiruAM/ZW4njmGMgX7GU8rYF6Of/9h3BoAWtpmIt+JnW4y5go/ZJKORx8jHJeEhurYtTPmGKXKQtxMyPj3MkSbBJCP0M0PWE6NIiJl4PzGyZIhTD0vpXX9cyvAyxPkw2mc36hs0IJpGn+3XIXKEeEiimuYd3xd5nHEO1ovs+sBbh+3WRrpYpJd5QqV1lgLHHIkjAG3tFRo3oD86w5KvCx9VLaf1wzgESg8JRAvcHw1izBxCPOBwbp1INE9bfROPp05kfZ2d5gPUvR5CniLHbq7CFYh9dZWtQBtxVjiWWYX4NCyDJyHMMcP4a9naxROssYMARoN1AXET9TRlj59+7pBgGS91vpC5yf14msYVICjPzh18OmcnCa1vkQimaatv8kh+l9moFw810iSIkOfY4irFpMzbROke/YEZGhbgeHiGKR4lToYulshwhEdyBeLev+VBuBkKMBKfBKCxBL7gjtW+9VDjkVwBZqF+2mtBp238NGQgUHsIkYecqb1PPJmhb/yelrKvC2EoCuFMha74EgcLFXgPOs+tcifcz6FLW6TPbDNPL10skiDNPD30Fu4xGU4xVvhQyDIZeCp1maxPy+yyQAJ77Ut08eTiB5TiB2AWDnuF9t3bPAd5qaDpqOYp+/ywAc11qAe8AkrW82xEGlkhjinpNhqAhya3OJd8m/Hg5+kt3GMufJQBpolVczRVHrLTfIBFX5dlfqZKH9JcgHSijd7qPFO+YQ7WizAB9aQHJqApUYVr0NN+l3RQDDgaJqDtOdn0+UsVQoEiLVu7NG5Aa3DTMkcBS/hpv7ELBYidyZEs3Wc5fIj4+iqhYFGrmOZpK20xHRggsX4ff7BMaH2LdPCwMhzrDBYWaKjAUjxOT22BjE/K2cOZCrPxoxwbX7WVjaFkkbr3ALHSKp3VVRoW4OPRLrLEbKJ6nDEeZYqUanH1Fu4xHn6ME7N3KQw1cWhxCyZh+IUpYViWZF3kljAP7w9t0lbdZMo3zKn8h/jiOzRVdokFsiRY5pErBR7pK1AKHqB5HLwFeBgySNl//vVLAfQGJ+foexVhL/VB87fhpb6/AZTp9qfQ/pVd51a6CP/4Bz+CrJTlNZTg1A8+tBOaCFJ2+Mqu00tZhxP/+i5cUTZdH3z+O7csO6g8DuF/WZGbzrC6fgyHk+sC+GjJat8P7jkR4wn4+68rbSog5zn1vQ+tpkQ4CA3fge7AfVsaSx66v3MffowtD+373j0nCJyGw3+yLtc5q8y4v4Tu7vtOXHkWur99X5hbOfn9kVcLcowKcA0+/71bApQ0YwWS//Hij+QcE8Ar8LnKgrRJtfsa/718LpaEcg66//l9q6cRGZZzhV+puHKQN+BM8n3490jbrsDffeUS3IbsTTnOI39R4BFvQQCZUTGwOFMV/aD8LYi8DqcyHwrjUbVXHvveLFyTsuX2CIS/V5F2VtUE4w0EzKzCdA4G/wQO59ed9sYl+Oqr/zNoG3Ynof1/3KXdKzdiexT4swphbsIlbevb8HdK78kcywGvw7PRv4UpYStu5KD926rOnYPGdqQEOVcRPZpZKfF+svaBzBctlf7cDxZc+fAEnPqLD53jLtDwfT3PLUg+C7wHn5tdkP7S0tT27+xCdh/rc1yO9VEGHo0DfwbNqq1DCngNHmuelflRkn49Nrkqx1S24xf+4qa0ST8T/qMKf2f0PcfkfAO+MHQTfgA1bX/g4kO4KcY1LT4t8y7JXG9X/ZjDb687XZNvw4mhu9AK23UZly+8ehNmYbEOEcPWi8i1Nnpx5zflMzGZm2zzK8PQG568TXMXUIGDu1sQhejCA2iC45FFcTw0ekjKMG33bXO0mpXn1i3oHH3dmf8cQFzoloEjcKS4Js+FZaSfH9MTfwwdh9bl2dm2KE53ceT/mhznibYJyMOX/D+z8gb1R8HziZ6niDgMail6R/M6NEPPsXma1vfknK1Q7PMTulcm2XIP7kE08kAA7K5PnBOf6lft9DfQtLgHDyBy8Ka8v4Fc3yEcI9mU5QEchqP5LHsn4LGf31KHyU/EGXIPIksbRIIbDB69Q4Ppoztw5JE1oajO4JwFDyJOejNI/z7UvusGbiBlU5l5iEAyf08+75P+5An9Xpu28wBE/Q+cy+CSHm8RWo9Wad1Zke8fgq57n0iy5Z70MweBVTjIFgdjW3KtO/r9XayB0JfD/5Gd4QaaCntEpm9If7Tq9TyA48cWYRWibQ8gC184+CHV4QN0LX8Ce9BV+8RpQy1AtPpA+uSA9kcReAR6a3dhHQ7vFOAhPOl/Hx7A8OEZGbuH2u4d7bdNmbPRQw9cCVaTtInIvBXlP/owax0NPxe5I8fa0fn+ODy2fgv2IFm7B6tw9GDWOrIfXcnKcQ5AtPwADkJy8560v0nbsS3nYVPuBzaAAqTCH4vbZcucjF0bUj0Qwjl1tkFk4UPpixadaw/1Go7ocXX8yOq4VJDqgE+g3XsXHsJRf1a+/xAiqxtyvFY9H3CkuuacK4GB0pz8HnNzbzPOZ/41Sy9tePgZT/MEV1iji21lLnSwxjYtPCBkNSKLhBTE3rYZ8hg5JhglQxwfVQ5S5F2eoZ8Zy0YwpTniKBziKk8wynVbNm30mup4aGWTgyqBYMCFL/MTrnPSmrPk6WCGfka4QQtlLnKOKFlbljRPD2tEuMxTRMhrGb3XlumISc0KVXzkiFrAx+gxvslZy/gdZJrX+TJPc5k1Ikx7BqniI6vGMSDgVB0vc/TwR3yLKFl6maeJqjqDb3GZp+jXcjJh/a5pAVkbHsTkx+g5Ge3QNAne4YuM8b4FvAyAtkkbf81v8BSXqePhFoOMM0aMHJd5iig5luiyDBpjKmTGr46HKFkyHKFIiLf4Eue5QIY4WaI8yhSTgccseyVOxrLWc8RIMclVnrDMWCM6biQbckTVMd6jzOEOjHt6B3nu0G/HUkr4H6eDPBOMWibvDj7midHEDpu0qni+AJDGJMiw5DdpszqYZlxEEF9E0C9yzsoCiOGQuKAnFcgTqYYmHc8vMcINVojzEcP0cweA64zyLs/YUrRBplmiSwHkTiYY5RneseZRa6pHW+SgZUqV8bNEFy2UOUiRLFFWlNkikhw+WigzzSDbymYv4yfCGjtaVmcYklmijDCJMV+aZpAYWfuZSVIqGxKxEh4GpLtBiphqtd2hnxbKXOUJhjVhOM0g8/Tip0wBD78KgN6WltUEMg95uvMyGU+cYxOrtpItPZbAS53DmXWowon8XdHT1BL/xhyQhsDWQ1p+v2yfe21syp5UK5IOZ9YZfn6KFsrU8MBN3Q+sQ3twXYgB5x/SOPuQ2uiakCDeAt+LEAoUGanfgAnIPR/j2LVVwhEpP+/23WfXB40rwqh6Ql3h2/O7tPgKNL4NqWdvQhDa2BKwIwPFeIjDC+uUT7Ro1YNUn3St36PxJmyebqNr6x4UYDPaxjO8yxJdch+U5D6NkKc5DZ/zLMAVSHbfxxfeYY5eDt3cYmcoDzVoWIZwviKxT6IgFU8TEHq+SJt3k5rHQ7xQkMrADOROR0XHuZohsPxQ9rIlrKFhV/ie7L28WK33Bt3jpAI3aVhGJMKC8MTZq7J/OgPnuMjhK+sQh67kEg2T0PTsDg1GL/UmBHjI9pif7lnBA+qjXsswH2Mc/gICX38Ib0DltJhxtr28C29D98B9WIfArS1p75PO2bd9YhcS0Bbf5HNvL/Dhs330lBZoLgEXoHEUOp7L0zAJfb57dA3dE3PKDDSefUg8laGjnudnnqeE0PTKfRLfSOMvPaTNt0l7dhfGIfpiFl6FY6lVeAUaU5Cs36fmAa5A23ObQrqqwTHfqpWX8r8sCb3weAXf2A68AYGc7s8nIBB4KN+Jr7IbhVC1SFPlIY0bQB7aUps05uCJ4FUaFyHZeZ9y4ABFX4iGS1B5Dj73Fwvgg+GXPyJ8uwI3IP6VjOjZf13GoDO4CkDDd5H4Ow3lUb9qL1d58sIHzJ+XhFqidI9s4BANywIm45V5ybUK3IT6CwIKMyHjzRvALPhfKRO49JCe5+bhCjxyqkAlDD3rd9lpPmCl5LJfjdL93n3YhmCz06X8z71+OSW3eUSMP4VzPVqW/wvrELmN3BA3kbLIRaxeV0MAq8FFO2xMQlsAGp5FAmSjfzGJEzOOIxuG21iHKv8ZrLvnvVloX4Z2UxYIUk64gLCEqshmLo88LNcR0GwCJzC7AQ0pZFDi2mZTGvmGAlN9eoxZnL6fV69f9csaw9rONPKw3UBAq0lko2PKdnM4l9ENdy3ZtyGWwuqysYxoVgSR9a+iZcy/Lv3JgoB5/gAO7DOahd9HxGdv4NzPvqfXbbRSJmWcYme03cexTLO9a6o1U5c2R0b1mia1z2IIIDuLE8LOIGw/1YprVBYfWq7aFdDrflvbX9f3r0jbyzk1J0lrO0xJ6zjWSSxmSqjBaQsm9bxRGZPd2r4+1pJoxrEutw2d+8YkgXNdntLrMTogU8i8rOo1mTJaU7Z8E+dE65X2MSF93RCBjdd1XrZCb2Cf+cgUwmy7hRMQLsgxyxPgv6DH7oTsqxC7qGPjVXZdCevIV76g438L9hb26RTekmtp9ELD6L52R3BzchGnWVPRa1nW0u+ziI5eUFiTtlw+DwyruUkGpw85hhOKBnGm+VVg6c3o/xlk038HAQjmEWDBi4B6AWSTX8K55s0iQMUEojkYQubBYdyc9etnPMh4rSGA1QdAFwLGGsCjjNPlXEJAjWPAzxEA4z54drRtRk6guK9dVTlO09yeAB33gBqEFspyTvOsMteyrde8iy2Tb9rZk7ZsI/ewH+fa2IEAL1Vtl0oTGHe+hr/RzxsQ3ZR9b0s/Nsxp325qv2s1EpvaZ1U91p62fVvbeg/n5ryg593UPg/g3Cg/3jeOAe2nKA5gq+GcGBXA5BbuPmjbd9yS/m7ArQc4YPYgAgotyO9Nm/v6rEmvY0f71fy9Wds5C757D50w/jbQgzxT2pB7roiTudjT380cadO+2sQ+c+w5zHNgDQFTCziJh10dP0048QjOQVLBS5b1WEb2YFvfb9M29PNpbc1V7etN4Khe95p+3gN8iLtXMno8BVQ5g9MA/Vj7rUXHyFxfXMewqm0P77vuoo5ZEJkf6/v63QCcVT2WV9uXR+67Jtw98DlkDkRw9wHaloz+bV02RZ/1V5B11jnGGONcZ5SzvMkUj3KRc3yJN9mhiSPK+igS4gYp+rmDj6qCR1mKhBhlgmkGMULY7/BFq3sUZ4VxHmebBE3s2JJqEcw2Ojgd9GsJmymf8etmN06GKYYtICTlVyGG+QhjUONXXcle5lVzascyYwzQA9gSeTEIOog4/EnZ1BJdAGQQp/KQljtd5TQhHrBGhB18LGm5o5T6rFnNziaqJFkiS4xJFbPv5w5VfEySooc5utQoaZIUv8UP8bPNQYq8wzNc5im+zE8sONPBGoNMqyt5K9u0WHH9PBHm6GWMcSskL2V7AtCkSbBNCzGyXOQcp7lKC9vq7N1BnaLVg5pmkCRLnOQ6+x0m1+ggQ5waHgu4+ikTQhzLt2mhSx+uxpDGMIyb2LGldeZYRhZiGz836CRLjDQJyz4TUfRNnud1dRisq0bWsAX+jAt6jKw1LTD6Xfs1W42Gq4DOnVY3V1zp5XPGzKkJcbss06Jg9hxeXZSN1q5xP88pdaSOhxmOE+KBLTM3TL0McXqYZwV4gqtc4Dy9zFFUuYi6zukL/Dr/iH9rDakMU1E0a0UndopHMW7ndbw0UbX3mSn9a6LKVZ4gSpYRbvAmX6KfGatNZq63nztMcBIxmVqygHNdHVBFiF+AVQNgGr0vv83qfbZfuzRy4vZd+Etof3GXdu4647oAfC6xwP14UOKDm1iZIJsgn8AmWxPr9/HWpfpoN4zEAxv62SvwSHOB3TEIlyoSA9zEyVKNQ2McpxV5G8sErOGhfWoXbkP0+aysYxN6Ae1QPwuNU9Bduy/rmUoVNWo1WeMYRINZDuW2bDx2YvIuXADf+R0eeaMAA/BxopvGt+X7ZVponJV27ZxoUumOOrF6FhBmYFt9U2JplbBquAaPBArEh9+Xfe+QH8YLssaPAyeEmUceqELgykN2Tz5ku1X3sQvSlyeZEJa210Ohr4nwGzoXZ+V7jaeRPcyLyH6vgjWUaTTxkBdYVFDqNnSxKGSRS0BKAZ6aXIeNDaekPz/nU2LOJAw+fwuAbOAQx3KrEsuXgCw0vyLnWgu3cmh2S+bDj3D7+wDUE6LTzISM9ZF4Bi7BY+FZ9jp1DhXkOk4M3JU+WIfi6VYO1bdkHw7E++7TXIJ61CuVGBeg5cVdGl6Fz51esDFuHa/Tl9ckfkMJGq9I/9bxiBP5C8h+8TX5zKE3tqic3oKs9skF7dMTOE15nZ+N69DY/FD6rCD9FkmtCQDa55H9uxfoQxJWy4hUwVs6N1/W+fseBEYeyrGvAGPSlwCHSluCp8xC5PfWOMubxEv34Ttw5HwGP9t4aghrtQrhyQqfpMIyJ29Le+t4uMoT9AV/xKHbWxYTaF8WYtqh8JY1P2pWObPG9EO5zpsix2L9DVb5hV6/HEDPZOtvIg+nF5DO9EBkBGnwaXl/75o6sPYhIEynOnu2A93KvgognftlYEHZUyXE1TaHbEQncW5gE3Ico8V2dEj026jqFZeQm/N5bW8BZxjQLe+VbylwlMICMKTkGhiD/HehZR38UWBASiMXJ9ShdB2ZOPrgMG5j5XUpDbasJZAJa4BJw8AB95Co4TTczCuPFXHmNf2bYTN2wyc/gaPLiFYI6ui7of2uN97GMrQPad/dgHweKf8FB1iW9JpnkY2O0Rz0yrk3r0G7AqHlCS2pNIDQlAKLZ7WdHmgP4nTgmhW8Mg+ogFyrP6hjAG4z2Kl96nNsTAsElfb979XrTOh4veCOS0mPpSBrxOjpKciAT9rEgPZR3773fhN5cDfr9RVg+iYMVrVtek27K7oo5gU4a/Dp8fLAKCx+D5JaDmy09Lar0N4s4+CPCmDZGEEWqrR+zoO4hf2ljmcCd49NQkzpwuY628x80o2uP4plGDYEtJ8iMu70KfhnHuw17btOnED3TT1WDJlnI7B5Bdr14U9Ey2ivAf8MudeXYXcWGl/Wc1/ACYeDbIbNfPqsvw7CP38c6e9u3PxK4kx71nEOgQqY04nce/8Iy1QlgszlE8gzrwfL2iSMzFkDMpxHQGGTVPHxKaFxepAxO6V/3wB+A5kfTcj98S8QkF/ZxiSQsTyg3/kclq3KsF7Ln+nxh7H3LQXg1/S6orjky1FkLTiHuIObZ3FA++PrCBAfwbKcyQCP67Hyeq6a9tcryL1igEAD0hWBXpxruAHjlSFODwI4G9DmSR2nUT3HMrLeKDButVC3cALuKWQB/jwCJuVw2p4Z4BkdswEE4DKsuVmsUDmLCCBpgMq/p/24rMf+P+HMhAyoeQW5P0Pa3pt67r+Lu5ebEaHxF7XfTIn9BW1HBqdd6sUJuK8g9/xhZPzj+t4tPedpLKvXrnXryLOipm3r1/O9iMyxMPI8fUKv5bpe14R+Fh2bgL5vEgXf0Ot5Ta8zg7tHwtqnmrBhWfs0isyBdf13DMfaT/0n4xLGPeOuI2tjUj/v1fOYpF1d//4ecg+Ye/Y0TktW132OaxsCOP1cZeKa/v4Xs3rez/irRCsfMcyjTNHDPD52EBfqJsu486gYdRub9Cpzr4xkyVNM0sWSZc7dYIRe5niGd22p7SQjeKiTZJEqPsRxucmCJQacy9OhrI81xJ15kR18eKlTw8MdjnOOi6rlVGQLcaAzZj0GQDTOyMeZoYtF/GwzzpjVQrrOKCeZkNJNuniUKaLkGGeMXuboYR4Q7TTDZOsgT4wcMxzXPqmRIM0DQhwhw7Jqp2aI8yXetAyzEA+s8LsxA8oT4SxvcoMUSZYw7tM9zFOmhRn62aaFMi08w7tWEN9L3YqYhyiyTQsRZbRliNPLPD7E9e86o1bYPMmSMuM6ANmgiUlQzJrhxMlY1pmY2AhQmyZhgTGjmZQjygMF+HYUrDSOkgZYG2dM2ZPbtpT7Tc5ynVG+xr8lySIJli2DaZzHGUF088oKHrdQtnpPxi1bNGaX2FETIMNWfJMvkSCND+fgLW7twoADrP7rRc5Z9qhhGzZRparzSsa5nxuMWMCshockS7SyyRJJhvkID3XydBAlS5QsBxU0Nu6lm7Rxh+OkuIGXuoKeZVt2foMRssTwUeUjhomTsQxH05eityYi+caVs5M0LTovi4RsaZyXutU0q+JjiSSTpCyL0U+ZR5mipmCkKZv2q8xGCzWMARVgzRWmGSRPI25z89l9hViHi8haoQwx627sA4JwmHW3PmeQdcfEjIbdNQSNN7EkgsZRRJccZO2qAG+oXnYdWdfXkfW1GRcDmH1UHIhAw+vw6NenZD3LiZTAsYFVWQNfAU4pWJKRn8kg8f+wHrsdSMOxwqqs6c3I2q0En+h6wcZ0PS8uWOAmRk7i3bdh7KUP2Qw2EvGs0X5jl8qAfK9xElmn+6SfDPjREJS2N1GVdTkv5yKh1x7Uvv1LaPwqNJ7alRhRr707fZ/thJ/22V0I70r/RnHu0Jf0s88Dv48QG25qX29hdff5vspeDYk2Ynh51lbgHbogLLrh0k1nEFrFGXxqMninuZH2/K70XwXZP0zq+ddRGQOPi+1v6/VpjNJVukuzIdEktALtmny2oU/nRTvwA+Bp6W/ycOilLWee+W1EgqsAf5832Ig0ChlnHAEQa3q9cTh0c8uZEz2JrQ4zBo1fuH3T7v9Zxup98go0vy6fb2JH/v46EqOZ48/um6cm0arkKW+9Dus6n96S8Q3wkN6heYkRc9hEqr9UkZ83kH32aSQOTmATQgbDwCesu3g9Q7OOcS/zXOQcny/cssAp34FH/rAgx/TIOB0hI2t7UM99Wt/L4bwK0PHuBP5U/66krnC6Yk2uftH8xi+l6G331+CTi2Hn5vk8lF49IBuiBPAi/PylIXgOGqLACfjkq2G5IJ/ckJ98K8zPvzrkzBBehrsvHYICfFAATkHln2LL+0jA6out8LIwlMgD34SFHx+GAWh/Hvgr+PgPu615Bi/Axp81yqZxGXgOfv6vhtj9KfjDco673zwE34TdKnLT/ku4/3KQyJMKYiTh43/VDb8DyShwFhb+x8NyA0S0HS9B5U/BnxIwkr+CvT/FOXt9Az7+SzkGCnrN/v5R2RiX5G+3/+kx+DbERpGb5Ctw7fxjzs7+SVj41mEIq7usF+5+65BsLJsRR7I/bqX0ygFohvY+4A/h7u8fgmY1KngOOec3tR3n4NKfPy43ljLd7v+rILt/Je1qD0Lhr5r5+Mfd+Md08M9C6VsH4CU1gZiC0h8egD/CuoLxZ8DvCR23nJZ2FJ5rhmG4lwFScPuvjsEfajtOwN3vHoI/E1CUNOz+Kaz+uNU6y/FX8PEfd7v58m34m99/Th4EyjT64PUB2cSW5G97fwQbbzS6DfkfwsI/Pew21t+C2z86Jtc1AJyE239+DL4Lg0kgDKt/1UrpmwfYy0HjSeCP4e6PD9GQEiMJXoDVt1ohCEeD0tb3vv55VBOdWB/8/M+H2PsGZBe1HPbrwF9g2aacg2vPPSZze1bmS+H3m9n7jrarE159/e8x++dHIapM0q9A4V81y2JTAv4IVr/bKuCkgnu7PwbOi8svp2X8S986IPM2AAv/4jAb32p0C0xN56kB5UrwyVthGduatOWDrw7I70H4YF30I9/7+ufl3h+X89z+0THZuP+CWYf/5l8lJGgrIAuSYW+aYGwSx7abQoKtFf3dMCUNCAey8V9BFkxzLAMYgGOJmYUkh4B7ET3ngh4jgAPPQUBCEygY9vAkbvExTOhRHBBm2NIp/f8KMscMMGlA9igS8EWRgEhBbkAW/Ff051HcAt6JBCJpnDu4YTeZBXoYB7Cc0XNMIc/zPj2Wae+yHiuLY8BWkXusGXm+B3FujuexLueWtTq7r7+WtZ8CONf0PBLoXUGCBMMi7ta2mWSJF+fyadpvAg+TPCkh4OOy9lE7DtRc1Lbf1GM9h3PMTuBczVv1mBX9exib6DH3qQXAzBwxc2Bc/x7BsZjb9fcqMva+fcfo0/akcc7fAZyr6Ir2h2aLQfukD7dJeQ8BvnPyb/c6joU+gQuG7uBcJMHNRbM+nt03JlntnwFsQoYwzsjnDdy9M6XfyyIgswEIJ3AAXKf25x29NjPGs8hcL+GATZMy9eIY1/F9fezDgYG/AqSUKj4Gmaaq7CiPMuea2OEpfmadtFsUiFiiiwfKtGphmwlOMsWw6IwpsBAnY0se63gVEFuz7K8I4uhnNPAMa8s4Nl9nlA7W1NXZQ5NKshuHRgMwrdGhZbpedcaeYYkkdTycZIJHmSJHjBxRRrgBCJNvjHELYvVzx7bL6JKBc0PMErVlslmixFmxjD4DqGzSxkGK9jhFQgqYZNjvQBklx+t82YrkZ9S4pkwLnWpwME8vxiFzhEkF0GLk6bAO53k6VP9pias8QY6olBYhYFKVJmtykyDNcWZ4oMzEHXx0sUSOGHFEGL6fGbLEmGaQNzkLCFCwSRsz9Fsd10W6MC7bg0wzwSh+yqSYtM6fm7RZZ0jjCmm04Q5S5BwXiZHjASE7bh5q+Nix4NQEoyzSxSQjvMMzhChykgnLsgtRZIZ+JkkxzEcUOcgcPczRQ5EQUzzKihruzNNDnAwJ0jSpUHsPc7SxSZoExuF8v7N7Vp3ufWo8NMY4xvF0iSQealxnlHEeJ8KaGilJ+ba4K2ZZ0xJXgIN6/Dpeqvg4yQR1PIwywWWeUobrdQvApklY50optRUWYj8zRFhjjl69L6qWWbdJGxniVvMvwhp5IrSwbYG5NSK0UGaJJG1sMcNxW+L9Jmct+zNCXlmgHfjZpoM8n1OA+rP+aqEsYEofEj+ZpFEQB67dBH6CxBQpXAzZiksQ3dbPjeOSjiahtKyffw4n42SIFSbZldAGNet3h5A19xq0sikxilmfruHW7wzWHLCQaJbPGPLJeWSty+Kq7q7h5Id8SMmkkiDygbB8zyOJCrOmN0xC2/qugFEZaJ6Exqoe7wbwHW2HMgp3tfLAz7bEh+Aq30zyG9h7S/vLkFdyWKbcYGFBSpYntb+btc/atX/O7RuDZv2eSc4GsQAoyJh1kJe+z2t/f0fe9xiyidkLmCoujanap3blexP6GQ/SLhOzzipwmdTjnNx3nbfE1Geh77CcsxUXv5rEeB1HeskhgOQics4SNvnZnNF230SAzj4EODOx5ZD2zQISH6X1829re1/S4/0UZ2ppQGrTB5Nybl+9KnNPQULLTq1qv5i+MEnaDWi/tisMyTd0TGflc/562VWFnZXj7TQ3Wpd2rsDeP9FxKQmgV8fjKjOTcCJ9l5YtBXaHpXw9TsZW87GubarjwN6T0FlYFWYeOADSVK314RL6XmkHr+LITejPEVwi+hd4/VIAvYJHjBNsRhq46DsnP6SBUUWVv4K9uYqE5II3gE5BaeNkXECckMWNEpzUrPl44HEBZnTTmuGI6H+dQjZVQUjT6TafJcQ5siCf3xuGGU+/Y+et7xPcrQMZcZPaGGmkcQzwifjlNIPOfj4q6Dt1ZJBuQY6Y2LTfwm64M4HDMCSlnAt9h8mEw5Y1UxlC+isuxyMlD7SNzkaZAFNCHf1kKCysgdtyzDJ+mWRZYEjEesmA1yPvX+Zpt1lLi6ZJIP9Qbr4IbIw0Stsr4H8WOA2Xko+7B3IYeplzN3wcJjjJUvAoBCCbg7b1imRLm6VPScG4b8xuyOhGXNcMw6YT3ot+Xq4zK7p6q6dbxSLaB0dPSzvGGQMflCeBYfgPvABBZeiti5PYDk1yjhVxzmpiRx54t2Ts/ZRdmWBF5wfYxWgufFTGX+cDPjEB2E+ZXiMi/Tchx2ljk4XkYaun8CZnSfsSbOtG8cNon8zTboickn4e53HRGxyStq8Qdywbj2Qm18KthIPg9UpbStED7BaE6UdKSkwYV/bdAvyE55kLH5VryUsGvUjIseCSep4MXL8ibSsSkvMOy1xdCh4Vdt2Qjo251zRTlyzcJ+OJQ7s441JFsu55bcdZuMoTVBLYh3iGI/wviWehW6o9qzRJti0sY8C63vtN/Mpo6LGBc0vOY8vLOYMEaAAj+n43jpXrwTHjJnAgwAoyJw3YsojL3hngKYwskCawW0DAihwS3AzoZ1/AlXO/hGO1pbVd47jsmClLiCDjncW5RQ/ptWWQhdIw40ygeFq/ewEHGr2HzDsDrDRrm39dr8mw4Azo2Y1j0PXpdV3EMZsvaH8G9ToL+v2fImBKUtvxpB7HBKVmAQVX4p7APQeSCPBkAmCz6BqWZSdurYvvO4YmEgjgsoCGvW1YWuj3TT9s6Tm9uHJd83wyDFp9/lvmZWBfm0zg8xzuuW2C3RqSKPiJ/tyNK6Ed1uPd0Lbc1P8NO80k5/r2tdWs1ybj/ioyDwzL2fTRizhWXwFZK6v6t2W95rz20SjCklOGYGNKfy/gJCPMuU0w9TKuhHcKmROd+/rkNi5gNvfV+r7vm4DazHmTjTdB5y059565ppyeP4ZUDbyEzI8Eck98EyeV0anXN4XMYdPfQe3bbtymx89n/rVOkBUFlebpYV4dFXdoYktZXVkFlDZp4wgZLevM08amZdgZYEA02gRw2KSN/8A/IEPcgnfGvTFNghn6SZPgI4ZZI0JZGWebtLFI0jpHG429JnZsuWGWmMRCSBlkgmWWSDLGOB7q+NihhW0LSIlDtbgXtqBGF9S5zkmMY/YoE/jZ5gLn6SBv9deMUcX7jGHclg1wmKaTOl5llokrZZQcjzJFhDxrRIiRs23ws41PQRuAH/JbvM8YXSxZgC3EA3Uh91uGnHHfFhByxoJSAOe5QIQ1rvIEeTVKMMfPEbXnNKDQFMOcZIIuliwIJrpqD5hmkJy6fdfxEiPLKBPEWaFTAR8BacWkZE6BPymdLVu3QBCm33VGKdOCuHLm6WGOupbTRljDODz2MEeKSVooM8Wwus5WSZDGOKBP8Sh5OrjMU/QwpxqBYnQyyC1GmKSVTcq0UFWAWW0jyKneoSlLnmaQLhaZV05mgjQ9zOPXMQ9RpJVNTuqcAAG/80S4zNPEyfAoUyRIs6XXDwKECrN1By8idl/Fxxy9qotYs7p8WXVTreFhnh5lwkVsubjR6RKG4xZxMiyRpKzszRW9r+6o7l5Er3OTNqtVKe6RTWqI1UaRg5at52ebbfys0cETXLVz3UeVOGLCMk8PdTxWW+6z/trGL+uZglo25juBS6JdQ2KlCWQtM+uaYWWBrI0mEWiqi5pxMQOwO4Zj+A3p8W9jk/GmOo039BwD8v1jr65a5mAPc9KOFZxcljKZwmkt1TWJvBzCoDOJ4Qlt6wWcLt2CXvMFBTfjwE3oZ0aOMQLcggaTUJvErsc2ZlzHgZZA4225zkOLWy7hGtZry7vvNgxoGydx6/yi/Guo4BLU6/u+m9bvGLbks0i8a2KdVhzr7UWERejVvbpJuqfdNTTexlUzmOSuibEqCPD3fQQUM4ncADI/tEorvFhxwI9JUvu0fYu6p+3Tvs8h+468Xl8S+e4pJAb8Ck6qZFzb8jLsKY5DHrffU4KGBacWkXlh+noWAW9XkGvvxCU8F/TzJoGfwjI825d3ZW49i9snX8KxUk3F2KKOv9kfmLEJ68/LCBBnyABJ4DnFfMDGlQ2KW4DMwcM3113cHgMmdJy88rndgLji2j4O7uvTH2MrRxpKuHl+U35efa7VAb6mIsOn7e/TPjLJ+BvYGP7hI/xCr1/KltoEE3aDktcJfUt+LySaZZJd0y8EFWgLYBFsoy8CyEUW9G+mLCgM27RAHzQMA8OyuNkNUw5uR4+RYFk6bwuoan12GEH+pxRcOIVFiuNkpM4+CgQEBCt7/PIQOAWZcFi+Y5D2/awZRdZDFGm4hUW4fx4dkrpzzQJ0p+9LNm0IuA3NVyBLlN0UDlwE1jwR+2A1ASoRKVUtBQ8QYU0mgT54PdSgDrW6accDV5LqE5CwYiZTHmoeD1u0uQ17VcFJL+SVXTNH76do2HfoJ0+E3UkxUsgED8l3ElK2y6wCaWbjO6RAUg02LgHLSq3XrEdsDNWricCibJr2TklwRkkMG5jShSSDfXBu0sYjswULLPjqVfJEJHPilesdZNqVxKUhyZI8cJUZGaLIF9I3YRnKi7DxpLiKWtafyWbU9BhebBZ0b1KuxYhlN3plHEzm15QN7sVFDNbo1QFiUW+AN31QdhS2aHwa/KNABdZ8ERp9qm0XlawrJWW0xqQP+zL32JuQYwwzJQF3HLgOuz4F39bh82HYPaJjuy79SU3HJQuz48AkbIw2Elh8KA2qQEPNLbLJpPRpXMHbbc2QdbGEr4pdkEyGlVsQexebmSaOACkRBa9bkLLbX5XXEC4I03sNL66M0TDBEri5YcqezyDzz1CzwS3+FT4VzODDlUoaCr8BuKK4EtwMDmB7Tb/3R8j9YQIU9HOXkIU1hQMVA3osTUAQ0Z/jOEDsFLLwmpIHZcbajFxBjz+Je16cwAU1F3AAjhdX5jCg111DFlzD5jOlC2/rZwygZp6BT2IZv7Dv7wmc7h+4MpQCTp/Uo/0wiStNqWt/GeDHAHqXkGBkAFd+uZ+tZjLXXqz+KJNIgDSgbTHHMiy+MI4BB7bMBrDlMTyvn5tA5lVMz2E+t5/FaYCtS/vGxCSgDEMyjcuClxDwt4CMy20cEBXm06y+BRyT8pqe4zYuo9qHA5wvaDu/hzOSWkZKWVLI3Ddg5Doyp9Lab6adP8bNPS+ubDaHDcLsfAAZMxOAmuSVuU8M0/Dr2vfmHgxAQxzH5jPMhh/otfr0OIZpwb72dSLZ4WdxDM0FPecCMtfAzcfP8OsI9xlmCh87RMlxhAx+xEn2BiNs0qoAQRNNiGOjAWGW6MJDnSe4ykE1edhvRrBDE09wlTHGLWMpT4RJRlTvbs6CgnFW8LMtMQMSOxm9syg51tSgol8FUNMkWKSLHXXWS5CmQ00mfFRZI8K7fJFhPmKJLn7G02zSpmCNlMEaDbU4GdWQm6BJwYwqTWzjp6rASD93iJKzrpGG9ZRkkRAPeFTFIcX5cY0jZPCpXl2REMZ4YppBWzabJsFxZf/N0aM6bGtWC7CoZiQxNfsIUaSXebLElPco/0DWedNfm7TRxRJtbJFikghrpLjBD/ltqjRRxk9O2X5iFOKMS36bH9qyZcAyNI2jrYCZXQCqe9dElqgyDf1a8isl00UO0s+MBTANWGYAwCWSnOMiHeRJssQEJ/GzzX/P/4Me5omRsyzJ64zioWbBYEBZnFHiZBhlgihZtvHjY4de5oiRlWQ/EtNe5BwzHKeNTY6QoZd5jCvoPL16LTELVo8waVmH8zo+LZTtHE+QJqZz09wPhqFoyqSNKYgc7wZ+tnlAyLaxlzn8bHNES54nGKVXQc85ZWsK9NbCETIYfccMcaLkLOgpoN2a6kNGWKKLRS1fL+OnjocWtskRZYphLWWrWRajYczW8bJIF0VCrCBakS2UeYR7/3s/ev6rfDXwEL4CpVHdikeQ9U33gLYqwazL+/bIlm3+FSSBl8Kx/Es4vT1dvxrfxq2jJoZZxjLJCmPNsl4Hccz7lP7/r4EY4mZqEsYm2arr365J5Op1FFLNwmK/hYvf4jhJpBoCWGnCcopHLYveQ10ARsM8M/HFhp7XAJvnkRihjqtgWEbikB+DEl1tqSvfxsVbLyFr8qx+R1mD1JB9sonDDUO/oO8P82kGfjMuCfm0tq8PkQgJyvE81OT9AWT/ZcBEE8eZGOAtXPxQRWLzSf1ngMsBnIleBCfT9R6OcWfGYQKOpVelvSYhn8TF3iZGelbfH0CkZ9I4TGMIMZrT35vN3AKZe4vIGOf1+CZp6dNrXde++TKuMsKAb2Y+nkbmmmE5+nDjbIBrs3ct4SRe+vQ9kyCP46p24qppeBt3T3Qq+3MCYTMmEYwgJu32VXdcBVNJr+MV7duAHvMmtJW2nKxKEKnIjGu/msqo7yBxbV6/X0K0DhNYIpIFuX3IfASJTw0I2Cf9sPcLInW/FEBvi1YBdSLIZGlVdlRAdNXCVyqySJnMRLcywTSDvrsI/fUZ3uEZuTCdsF0syQ+jwHm1Ar6EdEZWgaQ6zrgAHTyv6JsR1geFYQiYB0cA68i7QxOlyAH5W7OAPk1U5TqUChwhL9+XGEQW2Lg7Roa4gEQluZaySb1PIA+djNKB09jr87NNo8lmtMMdjpOnw9Kvd/AJLb4qen2B9YcipDuLLT/bpA3CytC7htVV2VO67DSDFANByIgjbXhC2XWdsKFsjw7WIKygYEb6gzD2IRwlxyZtNPYJS2tLF2XOqS4dyiYzAENA+qcUPyDOqVVhl70d/TWbOTJlBNREzLJhCik5WFenVC8OFFIQLEpWqMRInxsnOMPI2xuA13hBNvGKoq/RITewZnvqeKgo26PFJxbZTVTlRlPGZgd5l9VYF/alfSVFhDhEkUbNmBh3MLPozoWPCvB8VkvBI9hg1Tz0mqhSDhxwrJJhHLCIXM8DQnAEZjWjZub6BwVph9FtIQPZDFwNPi5jlxGNyrpXx9KwiWoqGKrYGgPSh6snWslOAotQ0fFlA/uw3KEJUsrqUzC7wdCJgwK8XuUJuf4/kf4yQOLGj6Xvm6jKw/lXhaEXQxaZOtKXhmn0fWQu9iGZQJNp6sQFQGYhTSN9fA1ZiM7gSgVMYLWg59ASe7vY3EDuRwMWGRDB/C2J3Ccm22Uyc8/qe1UcUKbJAsBp111HnsFncKUL69ruM8h8+zYum1VAnikpJGh7HpfZMgxFw6aq4bRLpnDJGZOhS+nfEjgGn2GshXHZvwqSLZzFacxd0vdMUJAC/liPfREB/kyZhEmEDGm/juCCkRpSQm+ygGeRIKIdxyS8pX3mwwGeKSSAS+LYm1EkoFIWOgPah536L4+wtA377si+7yoT14gmk9XrNpnjOo5B+Kr2lwfHBhzCZWwH9p3DZA439BrP48DSmPbrBm5emGzzAgLAXcOVX0exGiO23CCOy3gr85ebOAad+Vs3rpT6JK5c2jAaDUg4hCvnSOCSbss4oxCzSaghm6Gw9uELOI2WTj2GD4k5zuJ0+Sa1fWPar7e0fYu4RNCYtt2A3uPI3M3htAhBxtdksD/jr9v0kyVGjCy9zFnH1WE+IsQDLXYVHa+DFKnjoUrTpxO8SIy1Qpw4GQXVdmhixzpmxllhGz9ZLfWsKhCXJcYSXapdJkBSC2Vi5GjdV74b4oGWCm5ajbw4K1p+eZxpBomSI0SRMn528FHDY0EtA0qJ9pgXP9uWwbVGB3P0Ms0gB5XLt4NPQakQiyTJcETLfCP4KRNXcGWcMS5yTmIssCYDaRK2fNcAWRnitLFJP3eIk+G3+SGjXKeHOVtqazToTDmvjyo3GCFPxB7TMOOMWYLRHcwSY40Oq/Hno8pP+DLXGWWFOMN8RIcyIA0YlydiNdOaFNQ1QNoOTVTxsaYAUZOCUGtE2KRV+7OMjx3KtKiGYU4NFwSU6mGeqFIfmtixAGmKSXZ0Hom7r49JRniTs2QUSPIpWOVFHHY7SZNTVtsOPsQNdtvOoTQJ5uhVt+K4ltlW2VStRePcKiXbK1RpsgCd+RxgS8dNv1zmKWvqUSTEU/yMJnZ4QIgJZXh2sKYGJbK3MED0M7zDDP14qHGEjDWBMezNaQbxUOcyT5PiBue5gIc6VZoYY9y2YZEkOWL0M0OCNJ2krcaj0RZcIc4g0zzFZY4rkGpAYqOLCaIlJWzDDi3R9pEmQRUfFzlnGak9zNNCmTgrfMznfklPoP+6Xs1UxJl0/aGLxQwDzSSdTNJ3WL9kALkKsp4kkfXJgIDtfDoJWsNpupsEomGmdWLX2fBERdbUThzzzcT5W0AANj1tLjG2jqyNGps25vTcyDUcLFREP3YRVxFQ1f+bkfdM5clZGCu9L+fywaH01qdLQUcRcMsAQnmcdIeJJZ+U41i5kku4aolbOPDRVG2dxWnxmrjgrPzcfBPH7AvgKmK6cQZpZj+6wKcrnJQAs9HXaMeke/a+A51MxYYSYGw1hElyL+vYKChlx69P+83EDQUcgJvDVqLhwcr77H0HiWWTuBjWXJeJg0x1z6SeL6XHM7GVqbhoxSW6TWWGKSMt4eR7FI+wlUCmmsIk1ws4wM/sJ7q1TaeR+aLttwStszhQ7ghOxsW0D5wZnYkH4zhNx2U3Xs/U33FVFiUs6EoEApmHsp95G1faO6vtM/uXRSn7NvHq7hGcXnQSpw9ovjuBY9sa5upFbNWf3Q89hyNapHAxYQd4fsFk7y9lSx0jK+CKmRQBBUbiaoAxqywdM2CGMZGGjSviFjvhGWWUCXYLUB6Xz3WxKJsJpa3W8LiJGVBwzmwAsxLsbNEGWTFfmI0ftUj5Xg2oCEupEG1mTzdtDwhR9TXZenoT6NAM5ddgjh5yRC0LjBI8wRXHQJhVdpmCMY0BbGkDrci/gH7GbOw6JROJB5msGRhgWgQzPcBFNJBKyiatDwrRZgkIOrHlblu0QVCBtVFlhnmkrJUUpLjB4dw6JCASl7as6G6n/bT0Y4Y4lATgQhlalQD2QTBqIOWoMBYeqKYLl1RncF1p5AHIZ7GblLrXw8ay/Gy0csoKIj52aZbOwqo8wDQjU8cjhg3DQBye5rKIcSrLyc+29McRYcsN1qclm+4DTkJDRs5DHyzelH72U3abSK9kM7OBQ5BTV9tOEdfcW8C6AS/R5YQ9owKCdS/eF4ZaHVsSYzbKpnTEoPl9s/dkrvu0j70CeO726TwdkTEo+kLyEMgKg7VMy6d0sep4YRj6lI5dw8P9RJBHFUh7l2ekHcoUMW51xGWeN+f0/jBgy0s6TlkxWSSPllBEZew7JRMTIS+LdEzm3QNCEBf3aTJY9gQ5YEHK4p/ispiejMs4JkjLWOrGvY1NR2f+VXg1Ig9pk2U6jctAncAFJc8jwZEHp6ViFqUazt0sggQ3XmyZu2USGap+DCl1NH8Hx+56HldOuo4EimOIhmcYeZ6YQM0sRCkkqIvvu5bCvmObRdiHA/Oreh0lbYthspmF1LDWbmkbDJsshtynG3xan8SLMxoyANGk/q0Z6whLH84pbhkXxHr2HSOp17SOsMRexGmgncZm82wWdh2nAWqCuuC+v6ewi/2nWHyt2oYkAhbFEXMbA5KmsE7iJolkygVs4Gn6LK9/i2FLQ6xZgwlYaziWmgl6cnr+PmTsR3FlEZ1IwDOgn4/ouaZwJbdo32qW0bqFZXEA4Jh+LolznQ0iYN8ZHHBqgrIF/fyQXuuLer5x/f11XKAKsk5WcM7kaZwxkHmN4BjuBgA3pTSGrWqYdHkce3IUx+7bwAkvT+A0CkHGx2TWS3pd3doew+I0m5eo/vw6srH4vvap2TgE9PhmXMFl6T/Drx/zD60eXoY4a3QoaLXNVU5bNpRhl83Qz0GK1PAIG5yqZXM1saN/XyRB2pZUmhLBBGm6WLRr1CQpjJHFJq1MM0iIomVA7eBTFpq4f85wnBuMWNdTA1D4FHasKwMQsA6zm7RSJMQY4zzFZctQMucGkanYpE0kURAzDAE1p9TAQAIlw/ATLTkBNo8zY0GXJEv0c4ciIWLkFDBZo6bAV1ldYUWzsImPGGaHJuKsMMyUlheLLmCIojqw7mi/iTuuYdQJ2NZkWWN1vSmkHHeeJZK0UCZKjiwxPNQZYZKPGCbBMkZsvIkdq4GYIc48PUwxbBmBBjQaZJomqszRy0GK5BQENkxHAwJOM0CeiOrn1S0LMMQDCxKmmLQ6iKakOEfUustK+emALXGNkOe46vyZkmMwDqwPLNPRgMJFQlLJghiJtFC2pdod5ImwxiatpEnQxqYFv5boootFO/4zHFfdxAwdrJElaueAGatt/CzRRQvbRMlZs415BVyj5LSMdYc6Xla0cDrEA/q5QwtlckQZZJoRJm0ZuZmHMxwXuRt9GdDUaF72MqduxjmMoUiGuDWiMeXRr/GClpbH1TE4wlWeYIKTJFjW8T/CINNWYy9LlCIHLWv0V+HVfLvuQJvzuITmOLKu3ELWolEkVlxGgDCzvm0ga3gQByLcxsUmBoAxrDEDPBnQ8FmcnrNJ5EZx5YQGJPwDadcjswVpbxDriGr3+YagonuWhjzCdK/hzM7yuD37c7gY67SYa2zEG+X3HyHrfRpJSF/D7sGo77tmr17bWVylwW0kHjHA0S392wayZvuAIVg90cr9vqB8NoEwpE7jYoYCLi4z1REGBDOJPgNAJZE47m1s8rY9syvsrjcQtpYBhp7X9pokpIkDYrhqigwSO34ZYcH14YAfL05Cpx2JL2ZxGtd17D6gwcTnA7gqEtN/4Mp4K/LzbjuW0WljXBOX5vVvhnVnmHE+bZtJ/puE5mnt768Cw7A3iiMpKA4C8h4VnM5wBRef5bXPUsg8W0Tm/zKu7Ng8rn6qbTPxnqlwMXHusFxP+8Ku0142jxkDhl7T85pEeDOuJHYZSx5jHVu50mjASsNuNYnjMeT+WsSZpRkShtlXgdUC3zVx4RUdLwMmH4RflLD8SwH0vNQFkDF0Ro8wmYhjswsxsq7UakOBA49qiB2RxTNez9CY0LLLihyXV7C12Tv45CaYBIaxGS8j3pkjxjBT7obUtlGTMt29J4X1F05XxBmnKsFaeLEi4FNOgLU2tthbELbYC6W/EXAuoZo6ZvNqNrte1bLLqevrcwLeJUr3JOCvSRmm1TNTZH2HJijB3hW5vjY2aV5HHmgjcop+ZuyGwVsX4V+WkRt6XdhztjwrCZu0QqcCKc0CNhWizW4z71PBU/MQmFTQxzzEFXGvew/YjbmIAGuqKKhuRMj5G8NyTMO+3KgDV4T11/7TXTaq8h2rgRIARmE3BcvhQ06765ZYh9sH5xB8xDBNlV25thw28GcWGrqh6hHnNgJYJ0U/2zAL7R6cpt6ilCxzUmjQO/jk4ZoU/bsZTz8NcWFWclrnVBx5IJySElsCaoiiIHOOqLBPZ6X0d54e5/i0riXGl7BZnSIh8sGgHNeDFUlG9RTCsxUuck4ehkqVHuGGY7Dchn7uANrnGelzk6EPByG0viX3XB6rceCh7haECZ2DdTVRuSL90VNaEMMUfWi3VTcdCNin90+73qd56Z+9CI5thYDPZKExIcB9kZAsdD4z132yEK3yq/EyQJyyfI22JCDPL5NFfFXf/11cWYLJOhn2ZgFHvy/x6ZJQA/aZrGwKV54RRvo8gQMUTbluHglWDEhkWIMBPW5Y2zuMc2M1mb6A/s1Q+CPIs/AruEXPgGCGPWi+X0IWwQEkkDmv5z6Be66+gJTRp3DaMJ18molWwAGHJojz6jV1699HkOeCD8dWa97Xv0n9/z0c+PMGTlNwEQe0GhAvgct2vo4rVdbnILfByHbakg+T8Z7S434Ny261Wnk15DloGGZv4TRHSrgMeQQrjMw5/fwAEkSYoPkazmxlAfguMv5fwWWF0ffM55dx4NU/1fdNEDiAm2OGsWfOW8OZa8RwGXbTVnO+SWScm/UYGaR0NY0LaL363S1cFtiU2dRx5RXLOKe0WzhWp5mbJhN/C5lDozjnXxOEgtNyqSAAbw4HmIM8v826WUN0+5K4EuIITjS7FaeLaNphWA8V3LyJ46oFunAafp/h1zf4n7TEUhwu44hG3g5N9DJHVrXHphhmUUtsAdX4qvGAkGUlXeYp5unl3/HfcZUnmOJR6+iZJmHZXFV8tiw0omWyVzlNC2U6WKOfO3SxaItKixwkxAPrUjvItAW4omTtWltWBqApc5zhuCSuQYGjVmp6zAh5MsQZY5xRJgjxgC/xJh7qfJmf2GvepoWkMsKMOcgkIxa0q+O1ANc0gxaUNCCfX4HSDvIcpMhBivioUiQkazeyzmeJYlxkZzhu2YGm3NmU0nr0BnY6fk7Prp8Z6ngQ44wIRQ7SoeysFspMMEo/dySxjMQC/cxYgNGnD/lBpkmTYIphmqgqBNYBwDw9HCGjWoh+q9lmmJUZRB/OxP6btDJJinl6WVOgLE/Eah02scMiXazRQQd5WhVga2MLv7rcRliz+m5mLPeXG4t+4Gm2VVoowhqDTNsyZh879DPDGONEyFPHSwd50nTSxpb+26SFbdrYIkGaKYat9uARZZ3W8dLLPK0KjPmo2pLYDEcwBiDbtODXvjBjJXPiAcZwwpQ8+9m2fyvjt2CxmRte6patGCVLHQ+TpIiRtf1uDFuM0Ym5jw3YOsWwTSivEcHHDj3M8TLfYZBp4qzY8mHDVswTYQdxpL7OqOxlfhVeaaxkxepzrRLz9+HAuYy+/ywSy0wgQEFNvmPXdZ9+zzCCDAPdsLnW9f9ZpBpiAmf+ZeKbizhDrQJOa8+s8WY9NJUJJnZKIevr6/vOo4nI20PHnIOvSYQN49ZN3ZuYJFr7wq587gISfy3oZyaQWFAJHdSQOEb3ugzhKjJMotQw302Ct4KTvkGeLZH1dZfMPCuVXST1GO1IPBRG4rSSHsew8cGBfwacWcbGNquJVnlvXZlyJn5T0grduGThAFJ1YCrKDFDViYB6BnB6EolVruh5dd9upVkquLFdRPR897f1EhLHKhPSGsQhbWqc1M+l9JrOw2qy1cly/Ws9n/muibUu4TSlPTjTjmHpVzxQM+ft1u9v4CRbDNlB22GBP6/0Q8WMm5nTeVzyvBuZLyYWNqy+RZzR3Zie0yRYvTiQr45jzk3itBtfRPYip3CyM2aPYfZfs8BPYHWo1TFpM/uOM4wrezdsxKAe0wCzP5IxaKziDFvNsWeRErpfMNn7SwH0HnLA6qYBbMQaZcE1m4egAjIGHf2ymlHExQmWtIAcb3q+xF4GIp1ATAGJdSxSmjIgRw5xpmHabWpHBSSs4bEU0L7FewJgKUDRsKyAzTXsBIqTEZZZFUihbmitNKSg8XeEtdTFEnih4SwQVuONGJaVMcqEQ3ffkGvJB8LSrhxUfQ6M3C3IeRfpgmZoUJBrRUuFN5YBD3ZRNJuk9syuLRcuF4BWJEAKIhPnLe1bZSXsvSUag23rFYjB4qL8/SBFJ74Y1z5OqOmBRxhXgdxDy9boYZ6v812YhY0J6EvfkyyfyRDk5DOUIBmXv0W0bPVon1zr6cIHwj5UKm7jJMTXV6W/PECnaPVZvYjbbm7lLwC3sMHM7gpQkd+vM+rKpdCxrShjMaDgpQca9WFnqP5sARPCFBwt3IRmyCrbMsWkGKjoQy9HlGvRx+xi6GNHjntbGItVj0+YcQHYvQ173Q6sNdReA8aZhbBKk5SJ9AHtUImr3t8PsNmMKj7nYrklIPHh3Lpl0KSYtGCjeUVYk/c35Pcmqo5uf1NKITgBR5NAVFiAzbdwVOYAZH1RefB5gB8rs7ZVGZwDUmLbUIM9LZnclgJecS9eR/P6VeuEhUcB3yXYKfOr8XoC6fctHBhRwQECx5GxP63//wFOrNgEbga0SOjvUWSuv4bT5ZtAACSzqLyCzIdTOP29Am5BMiUZaaQk9ibyjBrW82f1uIZCfgvnuGsCv8C+8ylgzwgSHKLnfR5ZSA1ACBLAjOrPZhGu4Bh/A3rcM7hE0H5W53M4ZuJz2r4MErClcAwzU35yEseG/DFO980wGG/imHCGYfWcjg16zLdxYKnJRJsgN6+fiet7JsBewWXgN/SzBuwPI89p0+7kvuPUEFbXIs5AwWRKTfvBAYivYs2ATPKBs9pf7ThnvE5knmRw49aMc+gyYKY59rdxxifgAhITiJrrvYBkuAeQYNOAX518Oug1gF03MocMwO1DxmwDp7E3jCtPvYArQTEBmylzMCzC5X1jcUrP+TxOp8SUX5g2V3DOe5f0O4bxrmuVBcxP4QC6cT3e63qNK7jyiRiutMewMIM4cPZJnD4iOF0bDygm85l+HeE+4ibr/RRgcpFztFDmaX7GGh2EKPI0l/FTZpGklZQQt9YjRMmq7lmWQaZtSWVVzTXirHCdUep4eIIrdJImS5Q0CQ5SpJ8ZkizRwjZ+yuTpoKqlvgYoS9PJGON0saTspyw7+FikizgZSeSBgit1BpmmSMgm6MYZs+6naRL4qFojhyIHbflpnogyyzxkiVGz52rCp2XENTzEyNLFImX8rBEhSpYyLVzmKZbookwLm7TxNJct+JQgzSJd3KHfVlOsECenLLoO8vw6F+hnRsuLa7RQJqIuwXfop4sljpChi0XiZPBQ4wYpQuq0m9N+fZcvMsEoGeJMM0iHSqlsqsGBGe8uloiRY5gpHhBijQhxMgwzZQ0hDAhZxUeSJcYZo0oTfsoYA5Q0Cbbx25LiEA9oY0sZmG3kiOGnzBoR5uixJciGuVnHw7Yagcxw3AJdSyRZ1LLsKj5ukLJahcZ8wugxhijipY6PKiNMKmgsBicgoIHRlzMGIdc5aa8lTwSj2xeiSA9zxFmxAJ4ZIxkXAeMMq26SEfzqBl3FRx0xu7jMU7SxyQpxQhSZp4cqTczTQxubTJKy7MU2NqniY5kEGeLM0C+yO2BNMIzUkdFebGJHmYd5q6nnp2z/T3HDgoWjXLfsQuPmmyfCD/ktC0J2aL/3M8MM/bSxSdDu7j/jr7vIWtAsMf1C4rD8fX/Sc1T0va0hgKlkmEXWlgHVfDPrrEnSmnjArHdenIu7KXOMIGvTN3GuuVX9/hgURpshBxVTmvoqEivkcG68zyLr8xVc0jcP/AS6SnddPHUCx/w6hZg+pnDVE3+ArK0ZHKPMJORmkbXcgC8mflmR33cNozCo/dqMAICmLw0po1s/E5FqtMZL2CqRT4bC3AgPSH8sI3FsN65iJIErW81LH6yOtv5/alQjx7PVSwHVPtc9Jc3antN6LFM9YZJ/kzhmmE/HoE/7OAn3TwdlLEdwBnRB/d6Gjm8MV2FRwbE1DdhW0rGO4YA3g53UcJIvPnWd1f3F3hQOMGzG6UMbltopnDRKAFepsQiNpiInpWP1HjKf1wUjskDx93CA4KK0YzPQKt/7up5nBFe9YhLov4uAcGeR2P2WHmsIGIDZ5FG5znH5TiHZLO27g0vW30LiwSguTnsBiW0jfDquM0zIDBy6tOWkcwyAXMAlldGxWkcqdHzIftAQHNLy+bujhxxAPal9twe/qEfQLwXQK+EXgMIrDZr2DApjbwJbV13HIx2vDwkfVe7GD1mUvb8+Q4S83Aj6mmZQHBCHgZSCXiewzLg2Nt0Aj2MzU0ZA9G7ykABF/ynoYx4CymLaTQrLScw6evCx41wGMwqU3MRqEvQy50rVkO/spoATUF6HY7lVjHvqXkVtkwGOwMYWCB6Yg3bYKwGnFBSrQfsZ+egSXYQzFblhqnA3cYjjzEBdmYCGCTEhfUNa2WQeYEMYiYPVaXLBMNxQ1lpB+7QbKwrfxiZMKlX3lBhrVMJ8qnZ/B5+UkMYlC1HGL30xgDr6tMiY9AEVKXWxdOi66MpdDjzpNnMReDf4pHO1RIHFASyYkCDNZqBVSoW92GDN6xFDizpeAQ7HpX9IKzPuNtZ8IE+HYxaty3fSJNj9GfYBkg0HwQcxpRr/Nb8BcfikAPxIWJDD1SnLejIOacadcoku/gGvwVvQ+Kw43azR4dgrcQH4DqfXLUunyEER46zIWDUXkLHNY8VJTabclNPdYpDVaKt8ZkjeT5CGHDSehsngkMxtw0qqKYhuFrQUzhAlJcedYpiF0cNybSlpyw4+YdyUZHxzRJ0e2LpkdPe8on2IFxXy9gkwH5AxGBHqpxzTAPMt0LQPfPxMv+7hbM3B6V34cEKvzThwpYo8/IexZjyWIh9BgLZOJOs0hl30+Bry4DfA2utIkDWLy7CmEECoG1e+kNVjm2zZAM6NdxgBOwwoFdfvXcfpVASRuWsYUwvahggStNzi0+CZATDM+OdwjlUT2u739Fg/wAVqBsTJIovdW9o3GtTaPurEBRIj+t7+7FkE5zSc1c8asMsEi7eQDHEWp6GyhQtizdglcWD1rLapGwk0M3o9hsG6oMdtxwXZBqg0AKuSn0G/ZxhoV3D6eSazbVjhJpl0GwFSNSvMgl6nAYwNYy6Hc3QzjMbkvn72IcDT7L4+MSCl2SRU+HSJ6QBOuNuAqmbDEdP3buGCpJeRZ9MpZM518mng9jSu1LqKYxCa8TLj6EXmcEW/cxbHogviwDzzMuW0KRzbcFbfq+nnTTs2cJujJG5+JZF7dgRXPmvYhydwGdZTuBImjYWYxQXsZk6bADHEZ/5VpdFqfF3kHB5lBP1D/hofO4QoKjhTJE1CNfFqtLFFHa9ldZmyygh5nuAqZVqIkmWKR/Eo4CIcpRDb+PmIYQsk9jAPYEG0JnZU886rIFqVNrYI8cCW/ppzGgfcfu5wnBliZHmB/4CfMivELUAoZYYdVPGJvAgtttxUwJ8btLDNDk2sEaGXOQaZRvT6pMy0jN8aWhiQSdx3q/w6F+hlnoPKSDRlj9c5yThj5ImwTIIoOXXQ3SbJEjP0M0M/J5mwRlprCih6qONn2/aFYV35KZNWwCfCGn62VVpEgKgaHr7IuxxnhhQ36GWOOBma2AFE7F7YYQJybe8zmkiyhNGlNsczLLBe5q0T7jBT9jpCFKViAUmGGgBVQMoacVZ4gqt8kXeIkGcHSbIaBplxWzWlyUYLzgCUIR6Qp8PqNsrc8zBPL1GytLKJcU1uosoDnSOG0TjFMHfoZ4kuUkxat2Ejz1LTYxkH3hn6WSLJBCfxscMkKcYYp41NioS4QYpRrjPGODHlxtXx4qFm9SCttAlCbIiQF3kUffnZtgCwsOOyVtfOmLQYkwsBT328xgt8l28ww3FrzJIjxgzHEZ3KjALfooc3SYoyfqvJ6FPdxElS1nCljpdpBjnHRZrYsXHtm3xJx+ABc/SyYKnTn/HXAbifkg1oR1VYnEZTzkgpMQCeWl1igBKu4mwKOC/72maT3DV7tStIzGOqHzzIWteKrPkv6vlLwBmYHTrqJEg82KTV+4xBCZEmMmChYSo9h6xxo/q9k8gaeRpZ7y6Bp4as/2NIVYCp/kpB2/quY7XHcOCgSf6ZdVOJMJatN4nEZp1InOiFRmW3304ds3sxqw+o1VamqMtUSkXIw21l5a3DGhGR9cpo/7UjQGcNPkgNOI3DF6E0INBJmoRzJvVqn5wBru0zwggA/wRrork3Cj9PDlE6f8BpKhvW3hCuHFSBIG+9Lsd8Hq4lH8NfL8t5flvH9zn9/6a2eUyv92s4yRVwCXPDrPQhIGEntjS11HdA2qGg6kL8sJiCauK54XdxetkJHCDbh2MIGqakYvKl6AEX62ZwmtJeHcsStP901yVEDcsvjoCIuq+mCqvnW53BxnPy2d0ocB7u/06Q+88HHYP1Ju5eissx7o8FXWms6eMYEkNewN0jZp6sSwWhLfvNaNsm9BoMSGri1ryez4DJhhUaxe2PTiP3TUF//mdYILiNTajBrkl8K/6jah//xdcvBdAzwYMZrFO3PxS02gS+PnVPnUAuXumEsdKqDMIopD0J+pkRBlYV8CgDzzAxCgoMmGA8Am31TSe0eBre5Yt2kQMBgdaIWIbBblKBxbw6tEbgHb4IaCnjrLCpIqUClGD3VTn3PL0OGfeouYAZsDBc5mkaV4Cb4B+Aj6PdzNEjGoJ90J7flfPOallqSYDF0vABclpKVqaFPYOkF4RN9Uk8bEvLdvAJIGMesAHtD7Pxqum1mQXgDKR9CULVItQhooh8hrhMJt2o+qi6+u5JCbialW3FJDYTbHQW/NUyl3kKzkL+u9KvMXLOljknem97w27sy7TwVOk9qKrOnk9dbM1mM7eP1eaRdj1anxIb8jhwAsYZo46HhgFhixnBZkrq0Av8kN9yrKB1fcAaVlGzsDFfyvwNu+bhU1KA04v8rabfySjAZ/oHyI7LfDHizXs5Gfs2NoX1GMc6/8TIOpHPjJZGa4aHm5LF9dQeSqPXpT987Mg81gfFDj7ZLOrm22TgqcsxrMaPfscIOZt6/0pU758wtmSvhW3JjEwAUXHKjVVzcAXyr8u55uhxumgZLZ2fUNOUpGjqNVRUkzIj/VXHIw+/grhiNRmH53XYPaF9HEMyD78KryIOZOvDsc82cJmyOzgX0NNI/+SRxfYNHJiU0O+b7+l8MQGUdewaQhahuB7n0r7jx5B5sYjT/zqD0wWbQoClm9p+kzAw9HGQe6qiPxuAJIHLYBlWZ2nfuSdwpZxebKaWZxHQOI9jbef0u7ewpeu2dNgEKAawWdB/BgDbT/+/hisXiGifHMEldUwZxASyXo3istkGYM1onz2Jy87+BY5tdwZnzmEYfUP7xiaAY/KZzPNNnD6Lsl1tefwAzjBKs/dEcfptGf2nzFuW9fzP4oCji/oZcJnBAZxeSR0XTJtym7M4B64pHPBn+i6m7argnqNm/THAoz4XLDPgBR2PIBIomXGdxIH8A0gQZoJC85kr+p07OIbpfoagT3/O6hjkcIzH0r73zfEMo9KwLE2W9ByuvOgWTp+oHed+bLLrU7iS24xe28S+tplrDWMDeL6n49CM6MkkcFotMVw5/TE+8686XsYYZ4mk1fsy+sBNVK2TrClzLNPyKadbD3WMk7zR3Wpjk2kGuUO/AmVlPNQ5zozo02q56XFmlC0UYYKTALZctI6HfmZoYVu/XyNGjjItFAnRQtmy60aUDbiNnxn6tURUSnDTJMgSsyWpUlK4wyDTtpQ1S4x3eIYcUWHeI2wOD3ViZC2brIxfy30X6WUOo923g886kkbJUSREHQ/DTNlzlfHzDO/iocYmbcTIskYEY4Ih2nk1mtihyEHe4YvkEPdYr5apGvMuMSVJ0kGeIiF2aMLPNkVCJFliG78tVzXAkTGK2FGzBVMu2kSVNTroZU5Lfnc4SJEphllTwMdcu0cLfEUzT8o/jUGI0fEb5TozHLdzxrDKDIBkQFvnKhtVo7sd/GzjRbQLAS17LdvS0hBFOlhTKHWJNjbJESNBmuPMaB9JUriLJQXWvBIfI1U3aRLW9TVNgryOQYK0ndPGkVbU7jIW+HxcUZUlkhYsFLfeLnKqN1fDY8fV3DMgMaXReRRjlBmKHCTOijWpMNqOHu1jY5RinIZHmWCQab0P/MrOrNtycFOabMxGDAhf5CAxsjzBVYaZsiCs0bcELIuyyEGaqDLMR7Zs2keVo78iLrd8XmP5W0glFMhae17/AYRh09cm69AYziwrgLDWgNm+o8JeehE4CXuX5Ht753EJ4VtIjNCOc1LVpF2idM8BXilgGXYDQoqhT/fmpkrDh8Sow8CoVBTxdeBboku324esxy8jBJKv6u+jclzDSpsOd1M5K+9tjDbC7yHxQwpnAjKESxh26+f6kNghCpSgcLqZSlKuybg9WzdUAxqZmDuKrNcJ3dtVoEH3ejliQvrolH7cO6fnuwkzHHfusJ2Q8cWl30hLX2gstjHSKOMWUY3yU7hqibhcazYcpEoTTZWH0p8JHcs6lDoPCGlpCJvoq3p8VFKw8M3DNLEj0lOnoXTuAIW+ZokrUjgH3hTsBaW/VxOtEjv14aoFjugcKCEx5wlYTbVCDZZ8XTJOnfL9HDG5ZxeR+Pc8jj1nYk0Ta/chQLCJVRF5sabKQ0eISsH9aNAZoZmYMSY/b8Qbhak5jK1a2gw2yjNxCMEATkPhTDMLycPQJ4aPdEKotC7PkGGcPvkLOlcjgjFkiMO3pH3hxQpUZE9qiRGG9ACWJJUOHpZ47iIObDUVHgs4cxDDxutDkr0nkPvrjP5tWPrt9svHZKw6pT9nx44KOOlTkto5yAQPwQDsGfzC7LX+C69fCqBn7NitW2NNmXAmMEZBjggysTyCljebh8WklOAezq1LeeRpoBlBpr2wtwwkFIwydMY8rHkiMtFuwe4baCbLA91S2vqF2ZsCNEZgbx0alcVHFVr0e1/iLRoNUh4X8KEcaIbnFOSJKEPPTOqMtmMFYUhMwJd4U27U57AATj93nF7AsmQDOAcRBbkirBG49ZCYyaYAM+Fjlq5sSkLy76HlkR4BRsyNVdtXUnkFOKPtMhvnCckmVH1NbhOFPpBq2AnTxI5jskyoQ6+htBbkvMnCfVvWlfVFhU22DoW6tH2G41BT59zzAoA2vA73bkP2jX1OsWchoowxHztQE0ajLcsydN68uCstJA+ze1v6fYxxy5RraAajf0NCwaaslmQbwMKjZbzdWA0yUwra6BVH4v2vRgU1O8hDEApKWW5iB3/poRhJIMBZnIyUSjc7MW9rK15Q1N1sQjvV3EWZieVZCdzKgWZXY59BQOQwdtEq43cPDb2HOgpbVm9jhbgAhVvSb4dmt2T8h2WclgLH5GFRwmpzeKjRPrFrjWuMDk8+74DmXubhFcjm5Hs1BYk3tmR+HNT7p0EB3hBFKR/3ynHa1ndFczEmJcig88MDtV/wIfXf/OsBMnY/Re41BXotMOJB5qUBNBJY8xsLWJjExU0cALCMzKlWHGspgyyUaT3+KA5QMgy3LZwxAvqdKWT+GUbfJT4t4Hobl9kzzL6cfi6q58sggV0nTjhWExCktF1v4dyj0tqen+ixx5G5qCxua85R4dOGE/vZbSUc2GMCGgOeF5A15iIOxMnjQB2TFdZnIc8idHhl0loBZwWzLVOristE/rF+t1P7bks/ZxJPel8ATvPO0Ox1PQG9hoy29RUcoKjPf7xIxrWAc1TP4lh1hm02oOfW54jVy9nABrI2uDWBZBzZGExi58/eK7gseQqZLyZILuDKNtZxLm0K6vMaNplndSPzSAbfgKt39Niv8WnNkEUcEGZYoUGcWLUZcwM2GuB6Egccm/Fs1vO2I8GVFxljzfza7L9hFLyBgHsZZG7qM90yS6/o94YRkWtzrpS28yJOHLmwrz+COHDXZI2bcRUK64hOij4fP8svoxkmAJYwjKYZZIQbxMjhZ5uPGKaHeS7zFNMMWnMAk0wzoIUpiy2rSP/X+S49zLODmBuIblmCJnZIMUmcFVti2Iasj4ZpVsVn9fue5rIFL0DiBC91ZRTJ3z5imDUikuACqwfWwZqWxgrA08sc4vq5QquCJXkiJEjb9zdpY00dQBfpIkbOOrwOMs1Biiyq6YRx3W1jU6tHqsI0AQUTo7JZpMoSXWxr6eMNUuzgo4c5omTJEmWJpGVI9TLPMFP0MmdLO5foUlDORy9zNFHF6J8Zg5BN2qyGXwd5O2YgiVtzjP0adGL+EKOJHfJE7DFM2WyeCJd5ijIt9DDPcWYQJ1YfIYqsEeEyT6vuWhNTDPMzntby2BGdZ5u2xBZEBmeRJPP0MsNxNfyQ0t0phtlS7cAJRmUjjiuZe0CIJbqIkiVCnnl6FbjMqYnFijXH+Hf8n4mzwpf5Cc/wLnEydoy7WLRmJEZ7MEOcLDEtyRZGYxdLtFC25+9nhjgZihxkcR9zrUwLO/gYYZL9GnZdLNnycVNCvkiXNafYoo0MR5gkRatq3k0zaHUi17SgNkqOFDdoUj29C5xXsLXFgm+mHPwpLquL8xr9zLBMQsfQTz8zangRsoYnRmvST1kIEno/CzO2yKwViv2Mv45LyX7ltJjh+SmDRwEZBWfolGfe3kvA16Q0tDSgwE9Q5IpCFPnwdB+7WlXRcA44J9rklTCQhI3nGwVc+BrOgCEqGmnzgW55bwg5RifsNAs88OFYH1OBIWnPMLYcczZ5VIC5wAB8BW7Hj0kZfGsjq2Ot7P62Mth0Dd2IN8r3O6EQbyZNgunAAPdHgzzwhGQtrSDljSmkPS8i6+azcG3oMR54QqyeboVRRLv7nOwv5wPdENc97xlp38+TQ/JzUkGbs1rmGxEQso4XziFmi3HZ2zVRhVOw+3twJfx5pj2DEFAyxDC2uqKOh8JQszzrTmET1WueCJU+af8mbTAKt184xt0ThwQMa5f1JEeMzWCzNYKoKDA27RuUcTmF1fsr00I+EGZHy+ovB56Ebij6QrKXNknjlABoRjPvbvKQMNviUBo+IOd/DhmPURl7XpR279AEX5F95v1okL1RKUltoSzEkDEEmDUVFgGZC6XoAYuVlDoVTjLxO1AOHBBtuDhwGipnxHyHl3BEIhM7BqFla5fdk7gS528KuesBIQqpZgrJZioDApZOMwhnkL2zVvvs0MQHiQGXPD8lBqKl6AHy+lybffGoaPIhfVb36mdfxGmM97l/k4y4OLlP+/fUvvvojLTd6FhvjDay+myrgNVgXZ1Xh1phTLCuUvAAfBk+TnXjocauT8arjJ9S3wHp8z6pZuQh/8dq6DWjxgDLkJ+SC6nic0LkQQUPDAUzrWj5LNJBXjhXvSgTaxm70ah5PLCMGFhsCKhjgZKUsLYIittqow8SLAsjLSFliIW+ZgGfamKkQFBZbM+pJtiCTIhdg7RW9GbSUk3/KOz1KfKex7b/Mk87Bx8DjHiQ4L1PhHp99aqzT87IQkhOgcS4mg3kkEmVkzLMrtJdm7Ew7diui3addWcLw24OiCpQZpgCGWygZ0qFBpkmPFuRyavML+s4qmi9cSQ1/Zolyt3oIXY3pB1pEmwGG2XcrkFHXQIcCtB3Qq5324BPSD+GKArDEdmDhihKTXwJSEIloBqCnVBQum+aBHsKZhHAarM0ajwzzJQ4w+pNJo5pvVCCWFLm0RZtMp8i8q+LJZljUWGUHSxUIC5ArV/ZKn7KUIPGI8CK9kcWAVpHZX4shg9zNIW9xiaqtjRYBL+FKblXAhJwg5RsZsfkeicZseKe/rBQ7f2linONmoViIOg2tt0KgGcQJmBOxq2hArtX5DutbMpDeRQ4Ae/1fV6uZULadWLiroCCN7HuUXFB9WzJepkW/KWHREagS4GMOh5YhFhCrtcsIJFzci9nibnMhD4kO8jDgLBAy4EDYuYSkHuy8bqCgHXwmhK2z/rLr/+3Ive/ob0P4MwjFnCluKO4MlFT9ljFubjmcFoYhgJuAKKoHnsBAQgM0yqAgAzm+LeQBUgzebY0cB1Z+BP6u2HZ1XCgn2HaJXEgmwElZ5Gs2JM4PTED/OS1zQpmW3BsCwFBUrgSRHPcHE6P4jlt82mcvl4fzo1sUc9nyjNNGWkECRre0j5dRxbkKM7l1bDG9oNVNQR0qeAcSt/S7z+pbTiFAEFmDL24gOeU9kEclxH/vvbRaRx4G8OVshrANqDnNgBdFAEbx3C6Kwa0C+BKUTtxa4CysFnBsqP55zhmYAmXaTTj4JV+bOjUvr+Nm3sGcNvCacuBKzsFV0qd0PNd0usIIBqEl7Q/RnQsruHA0D8D/hwHChowWtcE8yxkEhn7AZzZRR+f0s+1czyNczzz4YBT0+cTSKnFHW1LBZft1kQQF3GO9BGcW9kyLsus2XSr6WgA1rP6/ms4ELGAA2nHcFITZX4lXld5QhlXXruhL+PnMk8pmyxHiAcMKJg1zSB5IgwiTvZ+ysp2a8XooMXJWLaUcTIVZp2YRMgmKkoXixZ462JRNfq6LIPMlA0CWi44wiZtatBR4wLnaaFML/NsW3OCOv59YNsEo9ZcoozfgkV+tpmjl5qypoqEEK20HXxUmWKYTtKklK3loc4Uj/IRwwrqrJAmoceVeLBF+8KUUSZZYoW4LfGco5dO0mzRJhIliNafKR8GMS0LUbQxltFX62GeEEUmSZEhrqYOmyzSRVZNFjZp4yQT1PFYllaRg0wyQowcxjk2TYJpBikSsqXVpkx6v6nCJCNimKa6hkUtmQYsaLZJmwX7mtihnzuMMkGREOe4SExjsBhZ5U7mMQ6tXSzRy7wdN9Gtm2eNDo6Q+RSTUZyC/SRZwkOdJZKIC6+w+ObpYYU4X+JNssSYYpgv8xOM4YsxiDCmKV7qlPHTQZ5N2rhDv2WMPs44c/TyDs9QJGTNP4zOojGOMCYVjzNOB3l6VMsvQp4YWTLEWVJQ2OgzmvLvHdVqNmN0kgl28NHPjEgkIVrMIR5YRqBhMW6rm60pdW5jkx18TDBqS7zreCyrFUQ2KE+EKYbp0NJ4c1/K3BHn3xBFVnTemZL225z4//dj6f+Q16ZfdurlQLN1KiYmrKQPkgMCQg03Mk8Py+FDbAw0kiHOZd9TcFIAlaXgUctIzQXDsva8DJyRyp43A89CTCrDSCFxyWkgBZXTUmWUJkElKGDefPAYvAjjvjHELOeg7GnOI6DOgIA9OzRRCh6Q50hU9j5+yrTndykSYj54jEW6WE20cj8ZZNPTBudh4cRhtvFzhIydK0VC3B8K8mFfH0SEgbV7EonFurHGkEskGedxOAeL4cMwJnvUJnZgQErL984Bo5r4OQs8L6DNQvSwAIdfF4JDkRDvjX1eiEDnZO/3Bud4O/FrzAeP2SRO4asCPn4yFIYgLCQOW4OeEA8oJJrhWcEGDChvSSmd0i9pEjAsWnGG5btJG6XfPcDqGQFUK0MCdq2ebuXu0CHLdEuTYEJrMiWx0UQh0awao01O2uOMsB5Lpw9wIzzAPL2yx3tOwL/V060Qhd0x1WTUeVBJaV+dwZbvr4VbyRGjyEE5x0vwSSrM2yd+DZ6H+8kgROW4u8rOq/qa4HmcSWIc1nwRPoz2QUL6vxgI4qHO6out7H0FmVMpKI0eYO952Aw2czX4OJXTAnLu6R5xBzG2eosvkQkcJk2CHDFKnQdkT3oGLgeetFq1JN0838bPmi9ClSabkMgEDnM7eYxP4mEygcMSOz4n7dkdku8tRA9zfzRInohUso3Itd3/naAkwE/Jdxb6DrOaauXnJ4bsPPVQE9+EJ6GUOiCALvBJPMy7fJFx35joUiLtywXDdnz9pYeydx+TPXk9AA9NfP1feP1SAL2OrSJPcRmWob1VRBXreATUUDZYlSZYhuxPgKSCPiZ4b5fy0MOL62wqKEJeM2ZBKOfkPGX8UIPFCeC2ougL0HgSCEOycJ9A/iFcEuAjvFhhiaRzS1xQMOa2aoDVBQTz1rHMkjgrxKsZK1a+Fm6VkweQDcGTCor5YEM3j0VCrn4/C92T92l/fddtfIIK4N0SJ9BKVJlxeWRjsw5nMu/TPIkwC8ZhjPf5Qvomu0D7aRnoFrahIEAJG3oMQ5uOKjh1C2tT/sjNgvx8AzZ0Y1rG70qqgtIflSiWveNnm4P1opQg52Scqh6fbELOCnr+FD+DGuRn5TMnmYCaGmu8BV/kHUjA0SB0+eALuZscmt2SjWFB7MoTpIVZCbAo7sIN17AORClu8OTtD8hPAcsy8Wt4rCOQcf8ygumVITV98Mh1ktOx9sh8axjWfloUMHdXWT1Rsq40K6ufMTTwW/BdviFzNQdMidadr6oP8Rx0T9yXeTghm+JCX7OAt0HY/fcyvhHWYBn2JhAjktpD0ZqoY0HiKk0WKNs7r+Ky4wpmByBV+lC0I8LYLN0mbdLut2GkKgLNViQ/rX1sNDba9dqapf9YhmOZVRoUfKkp2zIqNdN2I5ogLYxBLS0r0+Jo+F6Z1xHyAnwEILD+UBaLMexGv4slWEKYa78Kr4c4nYkNBDQwjFAfzgE1gzOuMCyyUSQT1IeUc57Sz55CNDQMc+n2f3I8Qx03wIs5nwFHcjgm1zrW0p0AzqTC0OFv6XfP4sCKWzjh3QFt8zU99hs4sMeAW1HkGWMSIVE9P8A39P8w8vxb1u8Y5l1Mf38DJ3VgGIoGzDyBA6hMP/chIEoOAbFyuGza6zhzEUNrVwatAbiJaXt0bbBOcxH93r57h1kc9f4C7vkR1b45iwQvQ/qZcT3X9/Z9zpQhJHEsvj6cI60pVzEstwzOVa2KgGU+HEuziiSIzuPKog3AOqFtMGy3dZwj8CgCyia1v5dxwNik9ktBx8wAyXVcifLivn9V5FkQQdYm89x5D+c2a8p1J/f1nT6zrRZiWts0pd+fxAGvtxBWYxqZX99BjJ60bMQ66kZw5bFhnHNdTv8fwbFHvXo8Xe4tEG/YlqaEwoDTZl4Fcc/xCW3bKW1HBKcxOanHeRunm/g0n/nXBKPEyFrmTpOWBY4zxk85zwzHLVN8hEk81FkhTj8zvM7zZIlR1s3gM7xLgrSy66JMM6Dle1MkSNPEDjGydLBGng7WlLWXJ8IRRKcvQt5q15nSScOc8lBXt9L3LVB4Tt1+DFBimHll/DSxQ5UmjAbgETLWPAKwQJmo7LUwRy8Z4lS1FNeUBAkgV7altFd5gmkGWVLX32GmMG6k2/jtJixCnh7mbRmucSltYoenuEyCNC2qHzfCDbpY4g79hBAnXFPqaQBRowV4kuukmCTJIsZJVdh6GXqYY4s21rRPu1iigzVljzVRx0MXS2raFbGluhnEsGEHH8aMIkSRFDdIMUkL27a8dD8omCWKn21GmCTDEZboIsIaUTVHCfGALDErySLaygLqiWZjzY4dYMthDfvzODNWN7BXtRZvqMuwKXmNaOnxU1y2Rihz9JAlZgGpv+Y3yCCailGytqzXmKZI34mpy5d40wK1HmrWnXeFOEfICIDD02QVCGhRncMZ+pniUcrqtpslRh2PnW8zHMe40Mr3yhZEjJElTadl2nmpW1AWZB+0pcxJMydSCuaNMMkM/UwwSo4oY4zb0l4x4eglRo44GaYYtkzIEEWG+Yg1LYU2bN24akOkmCRCngRpDlldjc/2q4xfGGYK5h0hA0PC9ArxAIZhztNr53PZ41cmZJ7S8AFhdIEtE6/S5BKFulbFWWEvIFpklSBUEnB36BB344fIBg6RJkErm0wGHmO7VQDDvT5JaJj7uYtFAVnOwifRMFd5Ag91ir4QaRIsRA9bE6L70aAt1xdNxse5yDmp1DmBZfB2kFfTyTYrX+Clzv2hoMDhwWb2AlI2WjjRbAHqOl4+GBvAzza7SZGFKhKi1HeAMi18FO6jkFS2Yxjupg5RDjSzgw8fO2xEGu09ECNHmk5Kpw+QJUoP85a1bZ6r4sD9KCCAzjZ+LXkPsYOPeXrZGGmk5pH7ZDLwGARl/7l6opU6XrZoo5KEB56QlR4AKXE1+qqbgVYi5PHVq+TpYCF+mNLoAa4zioeafU53kMdbr+t9f5APEgMCsMUgUU8L0QV5RldpYjXZipGvKPQ18x+Cf4//N3n/Hhz3ed55oh+wG93oxh0NdgstAULjQogwIYMmIjCkKOoWMcOMNZGPlUQZuzap8tZkK6manM3UpHanTrLrqlVtXOU56zp2Hees98TnOCeeWC4rkY45oVY3iiItaEATImiAIAACYksNdhMN4trobnQT+8fzPO8LZqri1NZRnazcVSwCje7f5X3f3/v7Pd/3e0kHOlk5XsftZxvYqG9glRZh9yF2aNFSwVkcTDHI7f4GN8/sHBF5K3FRbGWa97N1UhhwKw8plSwmzE+zQCgmBZTLkJQFk61NkToPCWA9Ex5gpu1BphgkQZZyXS3lulrm2h5wzPiyDugqQSSNPE82LIz0reZ9HGCGBja4whCzww9wu7OB26kGJBCojzSdmO/nIil3391WVmLxpIScpJvv41r8QfK0M0cvB5kCYL2/litt/YxzhPX+Wj7ubHMgsoV03n6ogVBxh22iEoz0EFSDwpU2ZrPZD6zWN7uFsQW6neVDJSBEmfXDtYQps1SXYEX79Oe9gv/7pqGf8/oJ3PfVNYhBbQJqv7/Df5H6gRSdOeAb8M+/8iaUIBgAXoK2q0Uva4rDQy9+KICgPSC/Bj3pW7ClbKpz8LnxafFxAyjCZ1+clW0oE7DmjxGgTaVitefgc/lpeZhuA9bhs9dmRZb0PDAB/S9+5Ffch+DktfeliFB2wv5zm+yv/wDSAuA1jcMfPPm/wE0IqvT1V77xLozDwqwmvX4dedC/hhSPL8P911acP0/dS/Bk7ie+SHsNL2+bBVZg/0ubkhSrRXfPH9+iJ3YLsspInIbPvTbtU5CAXxq7KgVFViTGNV+VtmUWsiVoOgP/Yug1L7V6BR5M3pYith54F578Nz+Bm3quJfiVF9+VtqnC7LfgM/Eb0t5bCgK9AT3Tt+BVZUFm4ME/uA03oTYOtfXaHnZuVeAMPPjGbaiqbD0Ij772Uyl2poFJePAPb8OWMhqrsP9rm7C1yW4GanLw0Gsf8lD9h1K43YC6L8Nnu2Z9sZqEz35tVvpyCQH1/ls5jJovw853oPZr0NN0y4MZGfiVsXelABsHYvDXL/6OgHFFOf4HX7wt7dGGgAL/Hh5q+5CdCRnbbf9lkUf7fwrv6lg/A59lVgC/YeAw1P0pDjDOnoHEBDz47267xMmaF6FO+8M8yeq+gZfklaD2W/BQ6UPy34PYSaj/6l364x951l8n/FLnVe8BMA49X73lC/U48CI+4Sgn43T/a5t8lIa2eoi+Bw/9wYdwFTa2IHoD/vnEm5CGhWuQ2oL7v7oiqR4XkOL9j+G++jXPPDoHv7L2Lhf3wcYvCqC3Hxkfer0DHrAKI8a7f46M3SIyH3Uh/ft5vB/Y5xGwYhMfamDy0PfwQNdJPAg7hperZvb8fQu5Fgw0+j4C0tjC+DVkTswggAR4MOMq3ksuiWemBfHR8ZN4oNBAnpsIQDKkf7uGLPIoC9eZIRujzc4bvL+dMfdMLnwNH9AQx3tT3ERAu2fwCbrgJc8xnJckQzhzZfJ4wC6FD/vRxQoHTiZ1+7+D95w7qtswhjN6nN9AJAYVhNm3pcdrfVfCg6Z27knk+vkLPKOrBw9oxfCSUgNL1/SYxxEZs7VdRf+dwwNwx3U/dj4L+l1jMj6LZwgbQJjCs3En9X+TluoKMdN4k+XOPcd3CLmvGWPS2vAriGdKPzLuD+LZn83IPeDzyHxyDc9sy2obHsTLK6a1na/qcfXj0/hs0aFHjymrbZBCwD9jZh7SY+zU3002W+Je7716vHej9dsLe9q4GRlzOWQMNOMB6IP4AI5D+PtvB5/6Vz+zKrcsOe88A986SWu+7JQz2zfgRNgcwtSap5cNGjnMZQpElA21SZkQORIMMakP0NG/503XxyLdzNFHiBJP8DbbKls0YCNLnDJhWrV47FBQopFNWllljl76mOdtRugkTYxlMiTpY54NGpjkYQ0PiBMjr0m6BRZJkaZTYcG08ySzEAGTrJZZJESJcUbIE2OYCUKUlPU27FhzxvqomD8LOE86Y4cBDkwpEWKMUQ1iCDpPQPE1i5IlQYIsC6ToU2DRGCDbClaaJ94X+aF68FVZpVWZkkFXCBeIiPc0y5QJ8zK/zu/yXdfHr/M03SxwkWM8xnnn6zdPrwOQJhniGBfFnkRfJiHNE3OgaZ4YJcIOJM1rQnKMZSwJt5EN3meUI4yrrLtARZmdUQr3FHbmg2csvbh6GgaoMMEww0wwxSAtrLpi1wIiukgLIIOwCSVkQ7wYQQp8S2neJioKIj3fJEuE9xSuIUqk6dW/ZcjTTkJ95yYY5jQ/5jQ/5jyPsaqS4AgF18YGjkTY5hH1rGwnL+oQUGbjjPN0FI+9FndeL3PY+RzeUVZlmi6GuOIk2N/i93mOl1U6Ps8YowSo0MsckzzMKc7Sy7wDBsYYZYhJBfIF0DDGp4F8MoZLPMTMJzH9/JN73aadECUyJEmS4ToDlONh5unlADNspfa5dOIo20iq8E0BJMIiqx5j1PVVIxvMxoOU4yG3WNLCHQVGSrRWV0kHvKza2Jk5ErKgEBA283JbAyHK5IgTJ8cUg4Tryw4YMja0WQdM8rBLTd6gkQxJull0jDXzH92pFwAuTadj55p36gDXCVF2229cu81M24PEyHOdAWLknd1AgAozDJBszpCmkwjbLIdjrl1tzrsVb3bOo8lqhqnAIKNrH5Bvi9HNIlnihClRCoec56TNI2VCVJCwmad5ndjWCnfa6hyZRGTxrfQxJ0BrswAxYUp82L+faQZp0Lk4wjbj9Z+jj3m3YGLHWXHs3QhZ4hQCUfLEGGKDqfCgWziao5cBrnOFIWKBvLbxAkGqApw/NEWJkPOYBWEMjvEIg0yRposoBZdaXdaFMJvnNpqFCdpJmnS4091fNmkkR5xl2ikQ5e3mRxlmgvn6OBEKXGKE4fAEr/MUI1wi2lYg3pZjnl7HCM7W7ydEiQJRomyLTJYihXidA1etTZylRmBQWZ/bDvSPKbt5hgGe4C1nqzAX7uU6A86Xd+/9y1K0zTrDgqXEfmGAUcYkKKp+nCWSzm5imAnm6CXFIlcCQyzpviY4zFBgkk0auT+wQrRaYCHQ7SwmAvXiKxqiTGP/NIFKlbcDTzDKmPOGldCoElMMcoJ39H6Qlnm8ucCrfJ4vBn6ozwe17CMAeq/4h16fDKDXgTzUWsE3DMUU1F0VeWityYKSwuAjjqy+T+A9mUwGNqbbeQZ5+D2HLyBU0hMJ6+ePIiv8xyH7IiS+Ip9p6oedNE5LXn/zLoUFiG7CTgfUjiBgxnNIUZJBComAoLJNN3ZgBAovQzSBMyxvzO855y6IduINS9+QJNn1PDSN4LyydnJQ26/n8i5SGOQQFsWPYPdHyh57BgG78kAaiqeFyVYbRoqPgzj2VW1J2/MQ3icqISy1un7gZQnj4CRSZCTUz6wLKWjakGJjRFZuHhy/LYXPCmJU+poAl7trUHMUWIPdb0K/SZC2EB/CMFKwPyr7dKmK9TjGye57iN+cFe4r+v1moFOshFwRPS5szGgzTg7oEn0fkn1WqlB7VMbYVvM+6tvuepZJUtp2dgH6lUZLEnZeVWDxGe2770t4CYfwReCEnNvW8D7qz91lZwlqD+p3JqBmBe9dVZRt0Ikw0Yag9gxOUsyT0tc1dkzDci68Abt/ocBiJ/ANSFgxmMSBr84ktogUq3F9rxnPPjku7dHUgE9Lqkf6cU0/k8CDOiU91xKsfw+avrCnP24q+Ngm51cLRNVvw0CLRgU4rTBPGWPpWd3+K9qOz+B9LpXttDW0D2rvmufop/9ljM8OfDiCyUhN7tiEj6Y/hGcOXcAncY4hbbyOD4vo0W3E8dLWETxDy+ZPpcVTRPomjswvKrGkGem7BWSemMCDMw8h425a/5VAPeW5ZyE9pcdZQYDiz+v2RvX/ETyY14aXGt5AxtUNvPTV2GoxBHAx9tO0nsdV5JrZ1PYo4UN1dAxbejNd2k5ZPKD0bxFg/xXk2jHGYBifSI0et4GqJlsGuQ9ltL/+/lyQwodflPBMyZfwQQjmiVHSzx3CGw5/X4/jHbzp8MKez3ch48XmXjueQ3hvNpOJVvABHdYHGT3mQ8j8cRWfkm5Acg7vJdekbWwsRvBpePUImPxHCMi3gDcVNpZkPTIO63X7OTxQOIFnDRoo2Yyw517BWwIYcNyD9Ju1+QjeTy+lxzKCgH9reM/RHHJ/VwsCknpM1k+n8HP4F/DgchAPFI9pmxm4i7aPzdPTeMl4hnuZn8rm5yzS/5N6/MbGDeLBwU/xq4ubvM8BSoRJkCOvbKQqAf4lf0VEZaHXGWCQKbIk3APvMjHC6odXJuSSS3MKSCzQrUVDRKWdJQ19aHFSv2NcpESYRboZ54hjEhlYNM4RBpkirsd2nsc4xkViLGthIywpeyg3eaSlw5qP2RWGeIzzbr/G9rOQDGH0lZzc8joDnOG0sPvx3nRpOglSJUCFI1wiScb5340wzrIywioK3J3gvANDfSJqwLG9NmiklVVRqoALmygQ5TKHnVy0m0UHILYruy1DkiOMM6cJrRc5RgurJMgxyphjFBqweJZT9DHPs7zKPL3OL88AwyQZB0gaw+xx3iLJEttEmaeXGMuO0Wf9Bz6huESIw0y4c5hikKd5nT7mibHsiucGJLm3SoArDLn+ipN1gG6WBC2sskg3SQQoCFDlYSZZIOXABDuHcUboZuGefoopGLdKC+0sM8MBNmgkpeDGHJ2uCLWE3ywJ134GihQUXAxRJskSIP6Ti3TzNK9znQEOaGaxtaUBL1kSe8ZmnDP8Gqu08ARvqR+ejO1xjvCb/DWbNLJINw3a74t0M8I43SwyT69joGR1NdjYYF/hO2wTcUWyAfQBKjzBW+SJkSVOl4I+Ixo5bucZYZtxRhhlzDE37foI/oLINxrZ5K3//ifkiLNJA3dZ5QG2uMEmg2q8epsr7FLDqzwg1jtUKJLm77hLuDzNYqjAjwkC19nHXVrYYocyUQrUcJePeYA6iuwjTItKOG6xjxC3SJBljU2qLHGXfTSwSZEiAepYYoMdahngQ5bZzxrNrNHCw0xS5GM2aQCCBJlimXblQOep4S5F0jouCgSpUKSOOop0b8Fq/S0q5BWIX6WBKnf42Z5xv8UOd4nSQJEtdmgkyiKbNFDlGmFKVAgSZJ277AOuc5d9RKlQZIl6ttjHXbI00UgYKLOPWuoIU+RjXiLCbRbYx11qyFImRJJd1rjOMjFC7HKXPLXscB+3qBLgLvvYooMdailQRweXKFJHXqUcCbLsY5cyH1CkjlZKbDDHLe6jmzxblGhjhSJ17JBnH7cpEaaONXaoJSjRkWwxzzqNxPmQ82xQZZ0N7hClQJE6GoEZPuIcRXaYpIk1NmmkwgJRdhVq3GWDj6lnk22i3GWOXcJsskWJEHFuUyBKLW0kuckazdQS0X1MUMMu6zSxwh2C7FBhmTfYRz1p9vGhsuNqCbBMmBJrvM/fUE+Uv+McjQTYpY5G7lCmiSD72eUumwrU5tkmQowgIUIskSCgqq4cjdTr8bTRQJEcZcI0UVLb4SJVbhBhmzu8zs/YIEyONZrZx10yLNHPLDsEKROmlh3uso8wJQqUuavJJVXu0MgGtVxnjgxTrNLOB1xgl3VuUUeR23xMKwG2yVHPLndZJMg8mzRQ5CP+L0QIUKKNCFvUkyNIM1n2c5sccWrYpZ1l/qYI63VRFpjkf6WGRnJAjgAVgoRZ5m1mWGaZdlq4wx12aaXKIm+wQJl67nA/RZZo/UfNJ5+I5LZ4KEDxWfwDfF5IO1xWMMvYKhn1KgPHLlnP49MdR/SzJo06qH8zgOB5eb/RpLr9SPGYg3gbog9/QbZd+5xsqxoMSMGjr3LdPh+zbMwAK5iuIWCeFsvRZ/DFTr8GJeSQIqYedH6TguawBD6sl/AAzWkF5A5pVDaQ/xEQFsCTLgW7OiVhx3lUdULdmnzehTf04xMZ80hhix5PGHgP0vUPOLbA7iw+STCuwFkR7/mUlO9VCbBjhU8YdtqkLbILCjT2y2drYrBu534WCtPQ1IUzB9+9CVlj+o37ftzYknblL4GrsLOAAJsKTD1wWn++LOcQjeML7CDkp/EAYFKBuVn5Vz95F3rkWFy0eyckFGgsDstx7Ci4ylEZUx+9iQBPBiQb4Pj7EvrBCNQ2yfE5CdY4Pka9R99bx5uNxvA+Cut4n4MK3HhOvB/ogprjePNbY0IdwsWBFxb0WI1tk9L/jeFi4EW9nFvtb2mfVPHF803Y+VdiuktOg0eGkeugGbatAP0Kck1VpX95FDip11dJPv/hl/ZDSrz/KOr3mvBFrzFYTDJ6VLbBCk5CtxpugWVojfKL8foIaZNT+PF1EM+A0rHtGJdr+ntKf34GFw5DEQEmkniw9qr+b2CRgTRxZOwcwoNVBnCZ/M+AsmHdXxyRgdpxtQGXkL5c0n3aHHkTz1o6qMeoVgUOxAvr9ke5V9K7hIBcObx00aStxoDqwqfHpvYcz009TgORTXZr87GBQ834QB8DZ6bx16UBOzcRObPJmq/ipcIP6TY39XyK+v1OXPKaY7lV9LtpvF/qOeQ6G9fvX8IzgHO6/VH93ATwTT3OWcTXzSTHBiSCAJOvIeDVe/reQTzjzBa8DGiaxbPvisj1uon3dAMvxT6o713Xn+0+8xDes29C++lZbd8hfJiKMS0NbDSA16TAzXu+Y+PcFryatf1mkbk1rG03q/2RwAOE/ThmuJOIL+nnX8UHp9g59SMAYRXvX2j2A3E95i3tuxz3hnDY/GULU1v6u97LHesxiQfNlcHNim77N/DPNQaud+HTreuB23zqX2VqiZPjMJeZYFhlonP0MoellC7TziBTxMgzxBVWaWGGAVqVeTXBMN0sOrna3sRMS7s1MMZW6zN0MMQkUxykkQ2GmXDsLQMY5unlad5wAIV47nTQzjJhypQIs0zMMbuqKrQZ5rL+VKGPOQJUHAsvRp5uFrHwhQgFB3SYN9wlRigRZoFuZhhQppRIRw2s26TRSXY3adQiJUqCHAt7WI5jjDqpq7HFzAuukQ3CyrQLUGGQKQdUhSlxgnc4xkXe4YR4YAPbKgd7nLf5Ij9kkCnClNgmSpiyAxtNbmn/GzNN/O5EfjTMBGOM0kmabhbpZZ4lklT0WIeYZEn7apl24uQ4yymibLNE0qWvxpVlN8UgVYK8xRNkSdDNgmM9Gjtwm6hjoQijMk9CwyxM1mpegCDPv4/zlgNms+pll2JBgV7xYRHws8o8fWwTpZVVNmjkLR53TI4pBhlkygG75rv1sErC7T1jEhaIOAangaoJBRwGuA7Aac5o6EVY217GeIWAkwV7OXhWAUFhM0qycsKxMh9mkjJh7tDiAM9tIs63b4xRSoSZ4YAwpth0+wg7T8pFx97M006YkmM4ztHHKi1c5rBjpizQ7c5bEpgbaNG2s6CQNJ3c2BP+8Wl+bSiHq44idRRp4w5b1FPLDlUCrNOkLNIwYUrsUMsKbTSyIaBVKK4gQx217FDPFlEK1LJDiDK77HMScvtuDXcJUaaWHdZodgzKdpYVpGojQ5J97PIAH1MlSJAKSTI0s84KbexQSzvL7FJDHUUe5EMibLNFvc5VQbIkqGGXXWoAqGObzXq5JovUOWB4U//foZZ93FXGcBwLOhTu7TYNbLKf2056CiILvss+itQRUtuAXWrc4oJZCVj7hChTJkQtO9zReX+DRlZoo5YdOrhFLTsOTM8T4y773PisZ5NaKqzRzDLtNLNOikWCVB3gLeDpXefLuo9dohS4yz4a2eAu+wiyQxsr6msq2wPYpIEwZWrY1RFRxy41VAlo38S4j1sKLEbZooEadlmjSdugTJE62lihjiIFotSzyV320c4yB5glRNn9zcloEan1XfY5ANPAzCA71LLDPu6SYz8x8tzVNl6hjQAVd33XUXRsuFZWXT/vUEsdRQfkF6lz95YSYd1PhR1qqWWHOoqEKHGXfVjKfIkwJcJsUU+QityH70r7VQlQR5Et6onq9kWqK217l33UsU0Ld6jV8ylSRw8L1FFkV/s4QJUNGomwTZkwO9QCIvO1a9DY7wLkSVL9Pu7qNRaklh3ClFihjY06rxIQ39EQReq4QQ8f8iA7ul3ZXgNlRGb7IB9SR9E9ZzTpPn/e6xNh6NVdr1K3gDy0jwNfQx52zyEPui8hoM4NfCrci8AmNMX0vR/hZFkLGUjZqrjJgwwYygggEf0OvsBcg5ok8A2os+II4GVo+ssdCaMIA5eg/ht35e/9SKHyNeRBP4MUEN/Fr7gH8eyJDCxWITYLfEuO3RXPL+KK8wdOIiyOIrAECzlIfUuPrw4+rkLsAtRtIUWgyuNqXkSkshkFV/5UthdthsIERL+NFE31eLP57+p59su++r/xkfMsrBkB/oO0Tf5HSsg4o204jUuy7HnplrRHWFh8tb8rbdpYL8fDN3GskKYkArwtKHNuTfv0qvw9GADGBISMIt9rUibMzgJk1+ABkzjViS9b1JiXLwoIWdOvx/EqkIJtK+JewoEJhQxEv65tMKl9O6bnNaHsM6Du68A6RA0I+7a8/4AV9Qv6vQviqVf7EvQM35JC0Nr563hQuaTjYa+v1Tfks7vKtqgJ6riyohro+dYtL7MCGf/KxvxoFh5YwRWD2S1I/TnO4N+SYmu/iwcvAohkEzl/2hBpZlz7rAdqL0BbV1GSao3J9F0ZA+tA5D1oeoV7WWOvSJ9GDfBegwdfuS1tFJO25BvynZ00Eljy7/V42hDQ4xWcd9rOlkjD7y+tyD4exEsNP82vCI6RyTDS9sM4BilFPADyHB5AmkDAnm8j4+8CAgJMI/PEM7rNdf1+BunvHNJ/YQSgMLntAjI3nNPPD+NTX+uReexZPKjYsGebQ3jwrx4vxT2DB5uz+GthAgFSbDHGGGIZBHS5oOcYRuYMHSMY2zqDXJNZ3Wd8z3HXIwlvAbyUd1b/thcsGude7z4DUjPIgoItchzUdhrW8zCg2voGPHhehw/tMEDGwMdp/fxhPacMMhem8MliBraZbPQaXoY5jgf/jb1ojM0n8QtHaJsYeDqEsD+NnWjAGXocbQjwOLSnj8y/Lr+nj7b080l8Au97CHMwj/efMzbjBTxAl8FLc439pwtL1CEApLHBk3jW8Lt7+sTYeV14VuuCHscmcq/J4wHZLVxqvAuwSCN9auDv2t9rj1lk4eIqPg13Sff3JB44DeLZlRnts+E97dAGFtZOUt+3c7Dv27nOIvNgM162HEeAwguwM6HvfzJ6iX9SrzWaSSpTzDzE4uSYUK85A9hEItTpmDsXOcYX+SGrtHBAWUkWTlAlSDt5ohQY5X1yCtYsE6OPeaIUWCZGhg46HXOkxfm2WZJumDIbNBCh4KS7UbZ5hWedNK1V/W8a2WCZdkYYV5lVmQgFIhSY5AmSZIhScMy/AWaYo48cCeboY5ApNpCwOEuMHeESGzQSoqRFa5k5+jjBec5yyv0tRt4BQSLNukKVIAEqtOo5tbDKNlHn8XadAfIqmWpkwzHKzL9whHG2tSgzbzMDZTrIEKZEhg6CCgYZgHiAGebp4y0eJ8kSLdwhTpa3ecLJisOUWKadRbo5zRliLDsQcYpBBzwak7JdHQ+7WWSMR6giKapJMszRS5AqDWw4v7UMHawiXl4WmuK9/sr0Ma8yuhjtLBOlQKtKS6MUSNPJprLoYuQdaBpXsNT6UMDYdrpZYEklhWc4TYmQG1MG1HWz6Mb5MiIFtKRc67uEhghIYIocU0YlX2k6HYA5o1Iyk0hmSRCg4gCzbhaQZOd2502ZJ0bD3ysCE2TJE2OCYU5xlhBlF4gQ10CVrDJmTLqdJMPDhIiRx/wYE2SZUS++DEnGOcITvM3ekBWRKt508uEYy+RIsE1UgzfEn+wwEypp31CG5B3aybOjAOun/bWPu8rGFdbQLjUUqRN/MBI06w2llh0HytWzRWx7jWykjRVaqRXncffapJ4iEe5SQ5EIu9QQocAdWthVUMmAsgBVBxoWqWOTBhrYcp+pEmAfdx24VM8Wm9Q78Ga/sr02aXDS0m0iLCsbt5k1ZZZtUibMGkFucR9BdmhCgmekHXYBAdQjFGhQhkqFIGs0E2GbCgGWSdLGCiXCbttF6lgm5s5Bkqh7eFj9SYqITLaosogadqllh4j7dtH1gwGFV/kMD3LT+b2u0cQu+4iRZ51mbrOf/dx216+AdZvsUEuIMlkSbn4xUMisAgRQqiisVEuQHbetDRrZz20CVLlLDVs0OKB2g0buso993GWLegVsa7jLPur1OAwQq2WHTQWG97HLPu6yTDtBJLDkLjVuPtihlioBatmhQJRdarjNfl3qyFDUlhIWptx79nGXOorsUEuedjZodP1Sz5aCd2EibFMlQMPdTbb3Sfv78dimzEoBO9tYIU0nzcpaDFOmiTWKRBTsEvZykB3KCqJ9uO9B1mhig0YFnwPsUOtAt00a2d4z/orKqAMB5OLkHKDWwAYf84DrN/PF3aHW9YuB0wYa12mB0MYdQpSoUIvI0mVRqaJt28w6YUqUCbFLDW3cwUI67Nmlni12qXHWIja+d6jVvfx8UO+TeYSMS7T2/akVeaB/HilmAsiD/e8iD93fgd0JZX79a3yBk8SzUl7SxM0e5KH6JVx4RnEU6qqSjBo9CPwJMA4f/TY88CQiA2rGS4G+LsfGV2BxBVLDwlyqfRGfsvhHSJroN6BmFta/V0vT9I4UayqN3XlSZJ7dAUSOdVrOxZmNvwjcgN03oKao28zqZ0B8l/Rc2gBOwu4LGnjwbYQd8AXgDai5gBSJ/4NsO/892UT0tG7jAp418yxSkFyWv+38DtReRQr1oB7rGsTegO0FJLL7hVqafk/P7zmYHX6A/r/8CNag9kng9xCfwt+VbXz8Z21EKND2S0WXyOqKLwO5hqFmC2I35Thq39HzVvnR1AUhiWyj/VOB/FlYr0JqBJEl9fuxVLsC2VlIxCFhErQ/QoqocxA9DrvfgZo1PV4rwP6V9oUxzH4XmFaZaz/87Js9xMmx/7VNAQu+CSvP1tH25SLTfwkPN8O1kw/y0MKHFL4jKccf/M/94rv4lG7z2T3jFT0uoOac/v2kfuabeDna83hPpZj09frBWpoO7RAJ6LaSwFWojCPXzm/JeAmOQ81JPc+bCHCypvutINfAGvCvYfekAMO7fyES4Q9O9/PZrlnxeuyH2X/7AP3xj+i/iRS3J5GCuCopwDUpvNG/MZBMVriGAHYKXgdP6/v/Wvv5a8j18oLEwjed2WF9E2JJHEtt6xK/GK9tpD/rkPY1ttIXkOvd/LY6EWB3CJmPVBLNQYTZFdbPZPFpmwnuDdiwazGI2AYkkTnJwIu9DLYtBNg4gmd+TuNBiABeWpjBs+MqyDi+hgd0DCwDD/jEkbn3TT0/Aw/P6Wcn8TLLdfzCCnjAZxYfMNSl7yfwY3AWHxQyrMd7Ax9YYayyLgQUyuABpTVt71k8oGYyzgt4EHSvPUBKP2MMx6fwEmZr0yIiGf0u3jphUo/hOHIfeAofVDGO9LkBUm8g7NhhPDAU1PYzSXtGPzPNf+7NaIC9yvCd918zfpHNJMrWNjonuBRsAxW7EFDxSW1TO44lbd+U7ucSHqgawbP/juq+Rvcci8mXwY/dIe23Lu5NVjZW4R8ic56BfXn8HBpE/Ovew4+pODI3Gms8gA+reEW3eW7PfuzeZUxYY7zaGDPpbRC5Bof2fG9W++gpPYaS7vsQntFpIHwd3mZC9197BNFK7MdLqz+lr2bWWOSzDiAoEOU6BxhnRNNCxcNODN7lQbuwx+vMXgUiDDGJGV6XCansT3xQRMYb5HWedoyjbhaJsk2OOHdooYu0Y+eFlY3RzSLbmqBqUs8Yy1jAQidp7tBClSAFlQFLmEGV8zzGCOPENDV2QdNGC+rTJ7LFBJ1aKG5oEWyFtXkiRTUQwopqCdKIAGIobwWAsaQsDfcx3tGfhxhmAjPhnlH/KUkCFomrFc5JMswwAOBCQYa4QlAB0W4W2KCRJSSN10JNullkgBkS5MiRoJENznNCwvCAXubIqYQ1hKT4ShJnjDwxIlq8ZkhyiRG6WSSm4SXGyGhkgxEuOelnhqTz0hLPtQ5GGHfMQ/MgClB1flOTDBEjTx9zrNLKHVq4pImRXu7bSow8JUJOztzHnALEY8zTi/k6SX+E3efj5BwoXCLMqkKqh7lMiTBxslxihDn6eJrXnSG6gbgx8gwzQUnHPAhrK6aSxAoBsiR4lc8zrGEUKRbIapuDJVMGKRGipOzMMUYpEGWISSertj7P006JMBEKzDDAKc461lyZEMvEmGKQ05xhhgOUCSsTT8z6Jdn2EY5xkZf5dUa4RJ4YliZsDEAJVZnT8bHprsuAMmrsei0Rppc55umjXcfp2/zaJzH9/JN7feG/6WWw6WPirPM+j7g+Nb/FSZ4E5Hpqpcb5N8YUxBAGcV4ZxTLHpNQjzaTgjWxQIskYj/Asr5KlX9v/IbpZZIYDzudRfDT7CFLlDpIw/RSvk9dxZdcTQLeycCc44DzzOklzhtOEdKnCJNRVXYAZYpJXOEwLq6RYpKTSeWNSW5DKEcTPDFB7hlY2aFSZfrtaB8j94QqHuMQIpzirDNoES9RQ4TBJltwYTpDlIFNMM0icnJ7LMuJfWeIspxhikhBlYIvr/DINbNDKKnFypLmfRpoYY5RjXOQiX3ChLgEkPTxHnAWV2XeSRkIzejnGRcYYJUmGBjZcMrstjsjiTJf2YavO/RLoI3LcEOP6kG7Xu3krDqrk2ViJwgjvJEOHJnTXuwWOAn1sKljerQsYOdrpVeA4w/1sE+EKQzzNG+4elFGWc4kOglQd+3iSIUIq7+5kG5HPChQ3zghDXEE8XaNMMkSWuPjsUcccSfqUmW8BVRf32B206AJHO8vOdzfFIsvEnPduIxvM00uIMsNkmeCXXMiVzWXiTdpGjGXO8Gsc5jJDLAMlfshvaep7wPX1Mkk6uUmGBAlyTHKEDRrV4kKksZ2k+S5fIE6OEcZJk3JelBEKhCkTJcgMA+5aiJFnjEec72SSDJfopYMuNmmkgww5Ehxghk0aibCPNF2EKXFpvZ//1//4w587n3wygN4C3P/Kil8Zfw9UOnxvsbilEtMsUtia5CyHAAVrkL8JsSHkITwJ+UkFBc5CnTJDHjA2wFVgHQFFgvgiqkuOiRu67x5oOodIFCfwqXqzeqw31ZvtJjSd25FtW6H2hoRr0AAxYym9hgdWqkjBFlR2Vj3CYkKOL9Wp55qUY4oEgHMI7nsTKQZeQwpKK3aMPZNX0CuFl3ZlobCizLZm4Mewm4OaOglKAHzR8iquCEuoFKjp7I5nV1yA/q2P5PNV/c5Lst+dFahthvvHViQdd1qYboUVZecl8Uy/C3iz92vK1MtICm4sAQfb4OMV6N9TvMf6oaJswfUcNAWhxoCMYYir3LD2Ie3HC9reB4EVZTSGpU0XVyB1Wdv9DL44/R4eoIjDZ752Q9iCOdguQtNr0LZVhISk8TIND+U+FLm1gi2f/fosLEA+C7E2vERuXY7TWKj5mzpODRgwKZeBBFkoXNB++xE0Ne9AEiJpbXOVOvcf0vP9D8B1ZXZO67lVgJOw8xLUfg+fcKo+ejWT8t7KGsRegc9OzMKEMhgvQP9XP3JegSSRa0wlcjUmYfwB0KXeh9p0Th75R7DTBLXjygC9ivfiatM2+BY0hXcgq9fLXyIAz9InpPf/p/gysMTkgQcRIMQk7ya5O4m04WX9+5sICH8NL0/dywbVhQ3HmDuIzKV5ZH7txPdJPX4+NCluHkHWkwhQNIYHyIydtoWXszYgYyWHjPMhPT8DZ1Q2zyQCWut8TEn3+cd4b7dpPa5ZvHzczmNL/yV1W0nkGvgjZG4t6rGaHUNG2y6w5xw7kfl0RfdzY8/xbuE9KI1R9go+zMBkrCd1Xz16LjbG1/R7w3jPtpt6XsYEMwl6CQ/gnMQDnRN6TDZ3Nuln13S79XhQ9xUELDqILB79Cd5D9jlkPjEmWhHvz5fUNjK/uQlkHJmX3hYCCqLtZuyxTrxfYf2e8zcGmgF05ou3hGMCu7CHLTzgCV5e3oxPOTZ58CyecXhUv/t9vC9sBs9wLuEltxP4sTOu+xnCS6xtvk3hnzkMHB3Cj7U1bQeTB39Bt53Sc4zj7o8cx8vjTdZrDMf38GnEw3hgMIlcOzdw4UeUtH1H9biv4vvtU/y6xkOskOQAMw68EZnmHST1NKTASIsD/KIUOMiUk2sae+gixzigxv7ipyaSGCs4jQV1mMsEqDLDAPP0skA3QaokWcLSVpdpd9s1oG2Rbsf2eoK3FSBr0NX3DNtEnYm2mNWLzHYEWaka5wiNbLjzPKIsOOPQmdRwmRgJcnRykxSLjDNCL3MADDFJgSh31OQ8qQ/9naSdaXmVAAOaziqFT1kDCK44WRXgir1lJEjCJ5L6NNwqAVpZZZwRJhniBOdpJ09OC6ohrjhGkbDCYpQI0ULVAW/HuKjMsUXH3Bth3DG/zKOuhVUe5y3ClB3QZXK6ZdqZZAgLjSgQdaw8SdhdokrAAXfizxQgTo7znED8ucTrcFs9FXPEaWfZgSYGOLTvGS8GsF7kGI/ztspCRYoVZZsWVrnIMWfIbttpZZXzPMYpzrqxvDeUw8agec0Zy82Kyb2G8EFlSQaosEiKJBmVBjaQUWDV2Dwt3CFNpzIOBQgOUeYYF9mgkXFGHOvoModJaBpwhg5yxJ1nozH1WlhlkCkHdlcJMsI4Jmm39OIo27STZ4RLTmq4Sgu9zLmCH+DL/L+5zgDXOUCBKCVCLNLtQAwDJBZJYZ6Id2ihT8f/p/1lybR7E4UDVN21KUzeRucpCgLECOv2ACHKzie0WwN4DGCu6PUhQNgSo7xPSVlOxiadYtCFo0wxqLOFsKo6SROmzOaecXyAGQeOmW/nFQ2waWWVSYYcyBVR9qtZC1jqd5UgrcrGjuj+8sQw79MCUYI6VwCaBNrhxrQBl8u0k6aTKgFOc8YtWJhHprXnw0zyH/hNyoSwVHRjO19ngCjbWGqqfUdSwnMu6EcScbOurRvZYIAZJ6Wco9cF+KzSSjvLXGeAp3SRKk0nx7jogH+7txmwPUevA8aFzSyLCjbv5pW3PKBhMe0KnueVRR2g4uYW823tY96xwApENe095gAl6z87b0k1FvbxY5xnhgM8zOQ98yLgmLsLmohdUP+9KQbpZlHZ67LQlaedbaJIGFCSFvXGHGfEjcMOMlxixN0TDOCd4QCDTLv5a44+ZehJgMjea8XGkYQ+BXRhI+gsJhJkHWO9AbFD2OtV2qJjN0iVDRpI0+X8Qy253toVJNnWtjXOCINMsURSJd1hcmrVYF6pV9RuI0HOMeDztLvFqG1dgATI0+7G8baOkf3O1Psffn0iNXV5uEaKjwnkwflRvNwoiDwUP4sUJ+hnnpXPrBsT5CnglABA1Ot3Tqrpf4/+3VhRK0AePnxuP/RD7DfwRTQ4PzgeheJzQBJiykqYPfkAHIKddaAO3n3+c/CseqYlYev4PvmuSWkOIsXqKN5r7QXdn8nRnkEK8eP4Qv0kPsjiWTk3ShB7ChiGnS/J/44VcFr/9eu5fl62m0rq54aRYu6ghkaMwPqXa6FZJboBhAl4VNvzKPAYDtysrZdz2D2KN3Hfgp8ePwj1ImOlDvgS8AdQOyptXDwEO6PCiitkdN85vIm8gRMK5n40CzVdsLOkwGyngI07QP4GvujuEVlvYQKajuq2biKFbl7YiztLULgKJOBnX+qRPjBp2+eRAI9OSFgR+ry200180MZpDfZA+2dYpKI7Co4xgk+SBFbidVKQWRH3lHwm1qXH/WVtWwNGhmU7saN7+vAZPPgQhFujzXAYao3tMYwDG6JJOa6VP6qTAnNI2/O07qei7z2vx9+mffMCnqkUh53Pw46Op1iPHsOT8vmaIDIGX8AzTeqR6/So+jTGkLH3G9r+ddp+IzhvQmYhWMUDEE3w4fH93B5tgHN6rfYjBfJJWF/T738JuB8iBn582l+1CAB2BhljSQSsO4dnNZmk/ybes85YPMYWMhnqsP7rRMYdePCjB7luY4j088t4IMQkvuDZUl3IAsK3dD9hBFDcM17d50z226l/M7l0BlkAeAovmTyjx/oMnvl0AwH4DHjKIddlPzJfFXHekQT3nIdJkl9Gxk9szzn069/P6rFV9e8L2q71yFiPIUzE6p5zyek5K/Dt0ngn8IBrPV5KO4v3vivpMRhwhZ57GLnfvLHn3Aw0WsPNdQ6MNabrNTxYdRUBh17DS2PtGv0zPMBlDEvrH2N07pHI04NnvG1pG4bxICJ4BuJNvGWCLa4d17boxM8/Wby/oTEuE3j/1jG8T9xNnKWCA7GMDfcMPqRkQj/zDF52bWDrUd3OUT2XCrJAktT/wYfEGAszqNsxlmI9MpeV8CDqUd2+seya8L61WW0Hu3fc1PYzmXERsQW5ib/n2b3sqG6/S9vlIHJ/MuD7DJ71fFD3twnc5VP/KitryR5mTdYiq/EdLCgLwQrdKAVC6lsTpkyKRcpapJQIc50BkmQcmCdcACkkDWjo0EKhTIgDzNDHPI8wBkCYEt0scowLTgJpEiJLYYxSYJIhJjjsmHlpulwBvUg3raxyjIuYh1kVSVEVRtkycbLugd18wubpY5T3OcyEKxREAhRiiSRLJJnhgGNkSJppynnyFYjSx7zzhVqmnXl6CVOijzm2iZIj7tiNVpAskXQFkbEZNpAkwwgF5uijm0W+yA9xyX1I+mqVIANcd6CSB0dFntXLPObRZ6ElLdxxPkJW0AHumMz7CnAeci3cYUO5HQYSGAhhRXZMszoBcqp/D1DhBOcdm2KUMSeBM+B2jj7HELU0WxDA07bTyzySKHtYWUwDro9GGGeBbhbpZogrZEgyzASn+TEmAY+Rd2NNQMiyAwf/nN/jioKV4p0ngEe3hmRENLPXfPhiLAMwycMqw+4lTk5BBjGOBym0O0mzTcQxpoyBaQzNISZpVLN8GzfGQLTrbZsoC6RYpJtuFtwxpukkxSItrPI0rztm0gDX6WWOFla5xAgRthlh3BW5FiJjMnAQX0eTMtt+RhnTcbVN7B7T2E/vq5k1gkiUQYmQJqe2uL60a8Pk1xUsdKbE47xNjGXGeMTNo6u0MMUgkpLcSR/zpNSL0YBq8ZcMOXl2jGViLDPEJBUFUwJUaSdPVj3C0nrlLZJy8ugyEi7UTp5WHcuWRGthQQbWyzUb5Lqmk3YoC6us4Jb41bUrS3jBpfCadcGQAkshyg6gjyrD2EAkW+BIOfZwFhCG38NMOt9UuxfYtSnBPlkHJpoPqHh9LmBJ5gt0uznAmMYCRIo35iRDXOawAmOLHGGcMmEs1EYWHLIUiDggv0TYgUozDDDOiAPr03QyRy9Luug0zGUAJ2e2xSvxn6sywjhTDCrTfMEB8rYwZfNQRLRx7losEeIix2isbjBPH5aintL7TIUAaTqVmS5XbS/z9DHPQab0epX5xcadMdIszdoWH3IqRR7mMt0ssEA37zNKgCqWal/RdjJgOaKLagmyhCnTyzytuvDTrn0jdgMR5zUKuPu9gXELdBOg4sBz6e8Ikwwxr06+Au1Jcrv187YuRICwI2WhpZsMSd3WHSzwaW8Ali34zNGHhTCNMuaA2hxxYsqujahkukSIAhEFjK+78W0M/Z/3+kQAvVJNmNv9DRJi8AMgBTtHEMCgCEzAThjPDHoGfvrcQbb+ZB/ZEnAVPv79Nlb+bR27RdidBo7CypfqBLwAkQyefEBAqSLQANMMOmCBWfjZSI8EIcRwnkXp+ge8OXVFOowS1LaBMvE906IT5sK9rB+upTDr3799XDrbvKN+lPpn/uG8Dc6dfsSbdweBJ+Fn/6rHS3aG5Xxpwz3Y/9+a/6t7JGs/+50eKUSV0XFu5BF2H8UXokOwY+yETuA0zAX6oF+Bsnq4kbzPe0DdgNvPNrD7vN8HB2Ch7T6fCjsKkwzdw7J68+Qvy/aDQBVm6vu53tzj/PxAjwE9tkPS37sVKMwqAzGvLL1hHKAbC0OkToDUj7QQjCaVPfaQ9A09+GCHoGwj2i/HlSHJrZFmKaDaZDz8XfIkJCCqx/GzkR7Z56wc4/qztbL/Cf3XDytfqYN6ZY8ltU1LCvAdFBmKk5bF4dZws4SGaFH8s2d6pG+rwDTceqaZ2ycb5Lgv4D29grCrksM5etk6vk/G3FUZ25baS0DaMU+7nPdlabcfPfnPpG1L0te3n2mQc7sqTf/xoTZWnqlzRWOmeT9Tzf0ONNj9Arx5+pcFUFIw91r/g1LwAkzC+kgtJLX9tM1udN4nbfacDqPT9/nrdham2np82EBSVi7C1RLrC1CrLJz/9NAhSeAdke18cLIfBlFjxV+AVwQPCuu16a5jkzfGEFYSeLbWcQToQX9/Du9bN4kAKWk868lAuiTe+64e7zdnDLV+ZDwbKHcczySyBRRjHcXxibtryDidRYC5Ff25yL1+cSbnbEaugYeQ62FMP2vSTwOhpvEsMvDAR37PcbYhfnUGghk7KowPjUjjWWTGvjKbh2mEJVXBA2EntS3X8BLahxDZuJ3jAT3GOjz4FtefjXler+dzCAE1DdA8gPctDOrPD+E96aw/LuBB8eP4gItm/D2hXr9vcv0F3fcb+rfn9Rh1YYYEwuoFL7E2CfKX9f1ZfMpsGplvE3j24mF9z9iHl/GhKmE9D7tXvIuAUpe0r67iQyKGta3BA6o3dN8r2o4V/d4F3AKdhU85j75ZXCgTeTzA14z3NzQw19juKXy6sTLn2dJ9b+3ZPsi1FtPPHtD3hve03w2k3+2eWq/7nND3n8JLnu2eaaDwCn5hb0WPyQDCNX4h/PMAquwjQY4ZDlAgov5fIa4zoJK7ZZWjNmKeTBs0uof+EGUNxIgQoIIYZQtPZYpBNmh0nnDGApnkYQdqWBFj4JAVdI1s0su8kzKe5wQ5EpSU1SHFqgAro4wxwjiSZJp35zavZQ4IIDnMhBZuQee99zLPOfbKMJdZpcUVQQBjPEKUbe5oYWBA3ml+7Hx5LGnVWBlpOrnCENc5wAIpJ6c03yzzy1ugmwJRKkjqbbsWgyb57WaRKkFXCFt72ktAxIhjQBiYF9LizSfmCqBkBfc23u9vnj5iLFMiRI4EVYL0Ma8gqPgAVhQMBQGpRCpdoJFNx+oQg/EwEsjQQZpOphhkkocBlKkkoOAgU4QoOTbNKc465uMA15202oJJDCxs0XRJAUbmKBFikiFWaaGVVQXetl2RmyDHEFeIUmCcI46JGaLEADPkSLBIt2tf84Rq4Q4DzLh02W0t6C4xwhO85caDsJNCLuTACsgBZrhDC1nijplUIMIMBxwwJNeLAC3m3VglwAIpJxt+llc5oF6PYUos0M22gg0xlp3cfJIh5wU4yJQ7n17m6CDjrktjUxljBzyAvEjKfa+RDReMYGyjvJuUP90vY1WKFUBCnvuBefpYpJtVWullnjjZeywIqgQJUSJBjsNM6NwWcQwz81SMk3Ugm8lLLzHCFIMs6ljP006CHC3cUXlp1s1RFqLSzYILaDF5rIQHFFwaeYmwW0C4o8CijEXh/c1wgA4yzrLgIFP3MMrK6tVYVgDRbAhsDpIFjW4VMHqWnYEoFnJjY89YXot0M8gUJUIaQbLhgMJe5ihouxnD2GwJFunmbZ4gT7vOLUNurkiS4SBTDkCPkXeLHAYuWjslyLp+AWjVNjGQ3+bxSxxx13aZEBc4RpIlDWgIsa1z9waSSm0Am7HwSoQ5xVldBtlQAD3iGGiWzr1IN1kSnOG0A9GiFEgHOh2odJ0Bd4wJcoQosaQLUXENOzL2uYGTtlAlgG+cRcfgi5KhgzJhZ2URpuzAQ7l/LBMnRyMbbiFMxnfW3YftVSZEC6tkSTDDAEcYdwtCMqfJvCVein0KYhYoE6adPBH15e0gw69xhhIhx2q2cKF2vWbM19eATQkEKutyziIAQcQqwea6sgLzh7l8DxtaFhnlmPPE6CBDScFfYzBO8rADlu0+ukg3+/XZ4+e9PpHHyMbXiuzfJ1uPHZb3aq/iH+BvQu038MyOBfjcK9NwCdpULnv/H+sKzTBSHLwCbeeKfrX/DPQXP4IFSU5tWoNfffGcZ7gU4TNfvSHb2NQD+xb0xz+Sh2iAl+Bo7gP5XYvtR7/+U8+WWILPfm1WABFjNbwB+6c3pTjdkuP6Qvg/egbGNTj5nfd9AVIF/h18JnlDiq8k8OfwudemvV9OGP7rrf87jKm0dRY+83s3fCFxDk5+931vGl4CfgC1xnhYAb4JnwvKNpsagAboefOWl+4uwP5/t+nZCp3AV6Gn6ZYUR8pC+C/e/AFMahDCLDx54SdyHso2+eyfznpvrVG8tLkZKQrH5G81zQK+1Y7B7pYyvM5JWm68TYJMEi/Idh9Y0O+hAScva5BGM74AC4o8e2dBzuVXvvquZ2H0A/8GfjV+zsueLsBn0jfg25DPQ2wNmn5/R9oqru3+dZXYGjvvz6D2MJASwJFp+OzLs/AGfPQqPPD7cN8frvl+iMFnLugYC8hx3PfimpeRrSGMmAty7jUKjhwuTVD/o7vs6BCvfRHPcqyT4+p/9SOfwnkBvpD4j5CR9kt8H/Zf3RQp9AUBo+//qm7sJPAaPPiHt3mw/7YDQ2tehCcP/USABoCvwUOdH3q21DVoenbHJ+oqqNdTd0vGjLLLer5+Swpb5O8x8jCtcupHYf+/2YQAFGxmeQl+6cxVYS3lgRfhs4dm+ZsP8IXxp/1lstOjyHVnDNYRpLB/CR9EMI2M55P4kILnkX58D7nGDDy4iQ+qQD9Twcsx9VohjIAoW3hPOWNLGqDQhh+Dxtg6jAcOD+05xr3gYRgPXJjEEDxwVq/HnMIHZdhCx3HdNngWmW3LALlOvCeZnZ8u8Lh9myxzDQk8WNN2S+BBmOOIh+ppnK2CAw6fwjMXJ/R4D+n/Jju1ut0WLyYRQO4gPjTpObzdwBrSt+eQvozrd97V720hc1G/frde/z6JzAH9CLBrktGXtC3SeC/L43gp6JYeY3LP9jrxrMeibvMSwmas4EFUYzjbwtePkTH7AnLdriHjKKjf03s6N4Gr6hV7UtuwB2FCTug27B6XwoN0tm+7LurxPono+SfwbNF39XNFBJw1QHoSL80+pN81hqLN0eN4v0kDGV9BxoFtow7vYTmOZ8rn8ddqXPtt77btn0nlT+rfjE1ox7Wgx/n7iOVAJz7luoq/Lm/zqX918SF5Ba8AlkgSoUAv8yzSTYw8Uwy6QItVguRpd0WJyW+6SN+TzGlgX0jhPRAAKkPSMQIDVDjFWQDHZjGgybx2QAo5Y089zltM8rBjIC2RxNI9jU1gQOA7nNBjbnHMPkucBVk8PsZFVyS1sMp1Bmhkg8cVuJFEVWGE9TKnRW2HyhvHXYEb1mLHfPfKhKgQcMwAkzxuq0eTBY0MMkVUpT8mJbUAkgxJBwDZMW8ToUNBOWNAmkR0isE9jMkOLnIcCzUwH68IBWX6JOhlnjIh0nS6AmubiGP25IlxllM8x99gwR/iT9TJBo1sq+R5ikHnY2dAaIw8g0wxrxJD82I09k4rqwwx6dgqAh6IBG2KQQ4ww9/wHI/zNnFyBKlynQEiFNw23uEE5vWUJANAhg43zkyGWCasKZ1BVwwaE3CAGd7hMQAHsAWokiXBOCMOfLNzMsbQYSZUjBt0DFVJ9pVxmGKRNJ0OfD7PCX6dl8kS5zATmBeV+dYd44J+/iav8xSPcZ4xRlU6fpMo22RI8jpPc4J3WFSJXJQCB1T2Z+Mlqn0ZY5lWVsnTzgwH6NP+zpBUGbFIE4e5zDx9WDiIyT5nGHDAfFWL5E/7a4MGld/F3BxYJUCWOEmW3HVhixabNBJ046birp2ojlNj7tr1XiVIL3NMcJhGNhllzMlUbU4178YlkjToeBUwR/ZqQSyLdHNCE5uN1QroYsmyY9SZnNqCKgaZYopBB9oagytDh7LlBAjpIEOBiANTyspWsmTpISa5xIgy+kpuccGkrnsDYyxlV9hjyyyrjFHA0wJHdC5dJKVS1HZd4JHAHrvuIsoQ39u+gLvWbB6yhSDzUVulhbd5AsB5uQHuOpjhAEGqdJJ2ctOIwjjLtFMixGEmaGeZObVFWKXF+e8JU1GOsY95BxINMUlOg21MvmpeoQaEzdHLcS5ymjOu7/PEiKs3qoGpLaySI848vY7lHqTKPL1kSTiJ8yotWBq4AXu9zJFkyc1lUbbZVpZviwZCXOQYv87LXGeAbha4pPNfhiQjjHMHMy9ocYw6YX9XHdPSpLXWHn/Fb/MIYwSpKts+5gAyud782DUfwAQ5t6hl3naAGwcHdDEmrJYU1v+WQHuRYy7kqpsFB8rbdST3a3m2sLY0L9ZWXXwJUKFFWf5hSs6Wwu7N/9jXJ2Nj9TBSJD2JpO/FYeV4HQzDrK2yn8KnKG4hK+LD6jvWhrDTTgLNKtU7hBQYx5GH7zjCNMhrcmozXvJVDx+l9ftPIUVGUH8fwjMsnkEevE2aa4XUSaSYCOMYZzV1eqzPI4WbSaDictzU4Qvck/iQiHqcTNP5ID2JyBCNEfisBFiQVCnskB5XFz4pb0T/rSHFb4+2hRW9VT2ufmUbPq+syJTu46bu+5Ae0zU9V5P/5vTvL8jfCyt4Bk3/nm2YLBWclG59ARbGIJsRj8O9SY61cQH3dpWpkEgKAJsYwUvXcnqeKYg+K/uNPo9nlSRxbIjaNqg9pMfwLN6c/xk9/xFtizhSpJ5UeexRPc9n8UWu9YkVrE/h2TNWxI0CzRrGUUHkos/j0mB3DunYPooU78/oNgKQz2ibPoNnegDVYABi4gdY26Z9ckiAT8f2eUb7uCTtsPN52V/C2E7Hta/DepyP6r8tbevjeA+wTkRubeOPv9f3DXoMozjp+86C7P9noyJt3l3T/b6g361If2SJQ1HYlk5u/gWI/r5u7xCeaZrQ4zol7aPz3qf/1YL3RovhJXcZ/DVmjKff0L99BwEbnkLCFb6HZxz1I2y1CvdKQ0GuIwMxDPCqQ8beZQRUGEJ8z+L6eWP5qVybEs6Pk3N4D70beDCpgvTvMHIdzeJBsoN42WQQuX5Nwm2Muy1kgaOCT3w224IV3W4Wz/aLI+PYZKR55JqdxDPnTO6a0XO8rMfQgwBzWwiY9Sae6Xda93FD923z6ZK2jbHaMnjJqAHRX9LPTuKBtQV8CMkWnmWsVges44HOTryUM4dnDir7lbo92yzimWt1ekzn8LLYZn3/jT3nb/M0+t0x3e8acs0bO83mYGOINiBg4nt6LGN4WXEC388T0j411m8GusV0HybJruj2fxfvI2iAljHbTca6gmfr5bS9jBXYjMw/cW3Xg8icZ7LuWeS6iGm7Gave5vNOJCipH88YfVb7z5iGdo8cgfUJPBOwAT/2gnipr91fu/Csv5N42W5J2oh3kVCPTQQQNanxsG7jDpoS9el+xVjhADOkWMRSXNN0qYxnjoTKXJcULLAHdzPAtmCFDEnnLwPy8G2SvQwdjuFmfnplQg4ou8KQY5+ZRG2JJFn1WBtmgj7mGGDGMeRMbmpMlCwJzG+uSsCFC5j3HeCKP2PFWdEjLJOQ89kJUdb0wIhjt4CAccZiWiZGQKWtIUpEnAG5+NsNMckg0w5ADFIlTzsW3iCg1KYDIU1KmyfGHX3PZLPz9KocLuSYNiHKTgJbQkJEEuQ4wIz7m/mzxfcwUubpY5wR5lXOZO+3ap+aHNPSXEe45EAuK+6EldLATTqdb5sFAhh7aJApwpToUEBhgOt0K9gIYP6G1udnOE2OhAZ/LLpiShgYJSc7jLJNiBLLxJzMy9hAkuSaxryrAM5yyjFQrACdo0+9s0Ri/Bjv0KrAYDeLzmNrkCllBW67bRvjJE6WIa4wwjjibVZigwZMxvsOJ9y5hSlxmjOOmbmsEk1jSgmQ2Mo8fSrHzLl2WCTFNlHm6OVx3nL7s/ARC74whp21qzCVotqfFQc62bUpabgjzNPHGzztwEwDPK9oQEFM5ZvGtPy0v4wtZCncdg1WCSL+nR2OLSxA7EUOMOMYVwboWvu2sEo7y/QxR5a4ygn7JGynVLgHRM6Q1HlFQkokBbXqwLscCefbZ8DNOEcY4xFiLDvW1iote6SaOcfMO8wEr/O0hm4IWHRA51STdts4yWrogoVoGIAmjGGRlV9nAPNXS5CjXSWkJk+1MJc0ncxwwAHF8/SRI45Ja/eCYS3cIcI2GTpYpJtNBWG2NVAoR4KznHLf7WaBY1wkojJTAx4N/DNLBvOpG2YCwIE3xnKNsu0sG3qZR1K/y7qwVGKQaccONpA0pF6dg0zRzYK7drLEaeGOWgvE75EAWzATSAhQhg5OcdbdPxJknYeihQWZ1N/8Zi2gyIBKSXWXhbW4Ao2AW2CI6iIO4Jjpdm8wEPR9Rp0NxeO8BYjNgSSav6MWGmUuMUIICTyKsM0Qk5QJ0UFGWeE5nZcEiH2EMUa2fkqMPHNqJWDsPbOWeIsnCFOiVcHkXubc4kSSDAPMuAUYm0OzasXQwirnOUGeGJMMkSGp8/Yq5otnCgPp9xDHuEhc7RFsjNvYGWPUPet0s8A2EcYYxcKCTEUQd4yDf/j1iQB6P7lvhPee/CyMwe4FoCRoKGFIqK/NudFH4DkBgQjDuYce8WmJJfj4eBvXTj8IK9DUDAzrZxZgVxkI78U/Kz5taeA0/O3oMwIW5AWA2Tq6TyS3ByX4gH74T186BMfVq+/X4H998lF5qO8EkvDus5+TAqEO8Ts73czO87Ceh52SHMeHI/sBAbKIqwxxBMfCebf/c/CUgiIBKH4Jn9r7HjACf/vQM/Igr8zyHzb/CykQA/Lex7/Txu3/ocGlyF479CC3jjfL5w/CrS818/HpNikIVoDH4P858oIUH88AW/Bq8z/jw6/sh4RIW4vPIQCBSdWegZ+ePii/10kb/vFD/x08BdFhaY+/i5/k2vEHpZjphxtP3if90owz329KQSoOiU4Fz7pwEsyCglo1CrTSqR55GVh/A29QX1JpdRZfTAYQcM6KX2PwnITZ0w9w49B9UngHYOuFfVw7+aBPpTwOfzdyUo4lCXwZfvZcD7RBIQ3Mwsrzdd5jaQ14Hj4c3S9FZAp4Fj5M7hefPR0f64drWTld51hPE82HRB6iTJRrIw/ywUg/9CjI9Qx8/GwbHNRxWg8zgQH5sIIft77SDEfV+7BT+uhvn3nGe0T2w183/5+89A89ly/rmHwBZp98gPWTtTAr4PMHz/dL+3QBaTmGc52PCJh8HDgCHxzvl+JYGVG3/qRZxktOgMZrTz4oqzt14oPI5+FHyX/mC9q4Fi11GhryhkiQ/9PoIRm3Y7DzvF7ryljZ/TK8OfrLIj30aqVP9+su0mbjCFDXg4DPxkSLI21xAQEXTN5qwPQ4HoBC/16H9IEx3OrwHl4g88Ql3a5JakcQwCeg263Dp0CbXN7k1go+u+Tv03hGlzEKTfJrstM65DqoINfQK7qvrB5HCZ+o2qHbi0l4Cuu6jXE8kGYsRQPDvoBLxaaKA5WZ0GM+rG1qQKexvg4hANdX8MxAAwqNXfcUHiwzaexLeG+4BB7YTCOLSf8e75OW189P4hN8jfloPmzDyCKDya6r+EWFc3ocygymC89m3NR9ZPAS7CJ+rltDwNeitqONBWPjdu05lor2XQoPoAbwDMgs3lM1qf1h3wGZn17Q47UFq+P6maLuZwIBwOr3fG8BGd/GeruBB6cPIUBcDz5p9xzeekHvu1TxDMqzur04LjDKLWwE8GxSew6qQwA1Wyib2NN2zfj7TFLbeBKakrrvC/hgrFf0cykce56MfN4xDZtxnr2cQfrzsP5ucuGM/ssjzx8boM+dn+qX+fcYmDHEFVLqU5Qk41bPH2EM8w0y76g0nXSQYYpBsiQoEHX+bvYQbcUUCKOjnWUOq/TVzNTbydPCHfedECWVEj7MWzzBDAM0KKCTptP5TwFEKTjmg4EZxiwKU2aRFAf2mKWbJK2dPIe57OQ4ray6Y1+lhR/yReftY35VMww4lkmUbQfAhVWq9RaPO0aPSXCFqVhy7VAgQpAqVQKEKTGucruznHLA5CIp8rS7YJAQZccKWKXVGaMb6JcjQZwsJzivbm8RDWWQNrrECIt0u0LbCn0DPs3A39JuzaMtrpI+MfJvIErBMe1AAkEMPBPgsY/znHBt+TpPO+mSyJ97eYsnGFO5tslOBRybpJd5EuRYpJt5+hhiUqW0BUKUKSmjZZVWwpRVTiohGwJwtNLIJhEKLClzREz3Q4QoOb6oBQ1kSDp5sjBp4pQQ43hLYm4njyUdlxEz9gQ5lwBrffsOj9HHPPMqUX2Ct7FQEwNsqwQd2zBPO73MOQmYMUAWVI6YUE++Ia4gqaIeMLH/qwQcENRJ2gWyxFhmnCOONZgjwWnOcILzjjVr59tJ2iXvmt+lJCZfd2ypFlYZNcnOp/xVJciySl7ld7mWh7nsAGjz2TLPtW2izqZAvNGWVcoswFxEJdrt5BllDEvZHg+PKBNwzgGC1xlw4HSCrAtRMeAhTImLHHOLCeYDGkbM/+PksDCDKOL/Z/N4iRC9zNHHPB1kkLTrsgt2MG9Lk/2WFcDYoEHTmMULboJhznKKLJIgmtX5x4AkWwAyyb4x39rVu3SEcY5xkRbuUCHggkaMYdzNAkmWGFC5uaWWG0N2lVbm6OV1nnZWAuaVGqbkZLAWfmRsK7MosGtHgJksA1xnhgOYB6h5URrgZOPA2MB2zRljzMC/LAk2tQ8nOMwGDa4NjO1ukm7vVxh086ldzxUCLt03RMlJRyUkapM+5smR4DLD7j7cgPjfCvRZoI85jnHBAV8ZxP/1isqUKwS4zGFMXmyy1kWVxxqoZYteOQUmbYHMWJxmNSDjL+TYbQakplhkrP4RxjmCMJrlehhljBxx5uglQdZJv+0+FyfLHL2O3WgMP7NtkIT6OGOMOiDWArWMcWfg9DucwNjZlxkmQY6HmWSMUff8AzgPvRh5LHTIWPO2sCQhRyXWnAzrH359IoBeDzeEJntIVu/XD9aK2WwaglpEbNAAFUio59I2ETgIl64BARw1nFkE2GgWtJMVSaAF0SyTgAeGgTeEcotKt2qHYTXcQrgEnFNWV0VWSwkiXn1rYkS7cwTHzFgiCRXYvQEkBYhcbH6AYFDZc0Fc7HOTSiijbEshpHKcRjYgqyBQPWzUN0i4wpYk0K731AoV1RhqcZnYd7uUpXUQfQipMKsF3AaNXOSYfGdC0OY5+nyyYBeOVsoEjlHx4OxtCMuxB1Qut5uB/LT8HKUgRUURuCEPTY7pmME92BrDxkxMHcPAinxl8a1nZN9ZBRui/ThQ0j6//p6kxDY140zod3ICRO1OIAXVCJ6tcRMvIytKXwOk6ZICMweT4SE5zib1EEzLaikp+OgCcBlZ+T4IFZUDBqtVVuJ1wj5LAlehvZSHJgWiv6tmy0E99mtQCoRpSxdd4T/BMAt0szsp2ygQ5Qy/Bm0QVWnvOCOwoCy/MAyWpige99fLBo2e9TYrQSx9zEkhWQ88JObdjmkVhosc44POfmH4pUUmtByIQREKa7K6nyHpgFXzSeCqtus1BdmDOOG90YCNQRQn66Q75KQ/e5nzIIiN/S75SEFBzRIh8c+8AdWgbJckZL8PNeM65oo4D8pP/auCl3qazNYK+qt4IMFYRvUImGVy15P4MI0YPqHWvM0MoG9GgIajeEabsYWMZbaCN1p4Fzd3OIuAk8h8u4KAOnXIGHoTH9hgwE0/bm6mR8/NGGthPCsRvPT3PTwwr8BI7BQ+3KJTfzbgyhhcFeS6t4WBIgLQhPFp6lk8KGjtGNc2MzazsRKNpZbRc7ip+5jUn8/p97bwLOUKsmD0kO4jhQBL/dI3H83iU4APa7ueRDz5jK2oEniOartOIqBPkXvtEMbxScUH8Mmz9dqmPbrto3j2nJ2fyUTRfnwWz/TuwrMGDbB7VNtY72e04RNXbW5c120OI0y+mO7XANJrut2j2i5mxxDEB4+M4+eOF7QtctpXs3jQ7BDeB9AWh97Fezs24QOA9jLrYnoOBoTb2OnX9ntD29qulzVkXB/Ee+4ZMLmix/g7CPgc1HYp4oHHFD5dOY5PYzagdVyPLYGXYSe4N2zmmv5fxnsqfopfV5R5M8Ug5zlBWAGkBDne5glKhB07SXyOtkmQdcVpI5uc4LyT+9jnzDR9g0a6SLNIigmGyZJwK/XtLDvwSAIShLnUTp4uLXuGuezYI41sUCXAHVp4hWepKsvOmBMg990wJWdmb6EaYm4dZV6T+QpEOcIlRhlzkh4DLY39UlKppjE5zAvtDKedPK5CgEW6meAwlh7rWTRBTRcMu2OxZEoLhehmgT7mGWQak/blVRoH8jwjhcayMn86VI7bQSMb3KHFJRTP0+sAywjbLNPOkjLqrMgxuaqxD6v6NwMqggrGgsjRphh0TC8DNEy2tUorVxhikRQlZT6c5gwLKqONk1XWRAdnOaW+SBeIUnDFp4CGYfW8EtneEJOYp1Y3i64wa2SDeXodu6dKkE7SdJBR1s4dNw6MgRlU9pt5PImvngBYXaQVUBMeVoRtlkgyxCQRCszTq9LY/H9W4L/F465v21nmOV4mScYBt3vlb/P0IeElM05yZlKwAFX6mHfS3DJhLjPsZJpBqi5QwCR0Y4ySJ8YjWhQvkqJAhLd5gmViJFnCAg0KRNwYtWL7PI85D8usgpgGxqTppJ1lB0aZfHn1H1nA/h/9FVMo3di+EgiQc6wskwMagFAg4lKqLb3UDPcfZtIxNC28pKBgSUEl83P0uhouTIkjjJOn3YF2BlAZqP8OJ+gg45i8srixjQUOBagQJ8c4R7ijYHsnaSY0zVaSkaOUCfM2jzNHL3li6iV2ABDWUy9zrNLCdQawYJk4Oa4z4BYmhrjimFCvcUp9JcUV76AydA1oBjjIlPPirOwB4Mc5ovYE17HAj2Eu06AMLZsrJTBpgdP8mMNMOJa4gVDmuSlBDXMK2JdoZJMQJccwbGeZE5wHUOBJZMXXdcFmkiEKRDjBO8zT5+5LJcLKlIyrtFRmhRAlZhigQIQI27p0MUeKRSTJO6/y4AYHTpo8WebCCGFKjFbH3PiwBFoDLM0fLkCFOXppYZXjXGSVVgaYwfwC7ZxAknc3aMCCW8zD1vz8jH0/zojrIzCPPVmEySszzj4vc0uMRbrpY47hrQ84wIyTaKdYZIkkkkzbybhKsg0cjpEnQwczHCBLgnZdTLHjNv/Kab3vdJBhWcenLMptOtsIuxYbkWT0x3mbAhHytFMhwDgjdLPoPAUlpKrPgbMCfN9x9xdZOMk6tYEFYNk4M/BW2vb/jwy9BjZJlHLyUNwFGwG5MTCs3mwTCmKkcemLBWU5HUkCB3GJXYziCtEAVejQBFqTDgZw8tg5euW9irx//8IKNfbwngeCChyWlCl4Q0DC2ldh5xqwJQ+aRbuXPCQPOCFKAs48iQcFzZfKpG4JnOSoSlDOrV6Ou0yI6JbotGr6YTkgN0E6cX5uJh1ZWZPvlQjRdrVIvxa6eWLy4KYeU7YS4Aquc2I4S1alQjkF58xHq16CEmhTthywcrpOzqUHdmflc4NMeZYF8pAVY1mKp6tyXBUCfKS+QIUMPvkxCE3D4n+XUEBh96a0/0cKGGRnBdSNJbTdkkC/hlAcEpZaNuOPmX6VroI31I+LFr2FOxJgsSI3hXl6oVkDLtaQSbRN6nxb8FtJ1cm+isKUc9R+ZUpOhoegJH59VDQUw9hRKZjhAOvJWinyAvAUr1MlKP54eRjcmnYP7FZYt7AKKVjfxDGf6iaQwjMsfbnThGPsBSp3aWBDzndLxpXzrNACNsI2n03PCrsJWe2a5GEJpjgu4SZpOp2c8zO5G9LXFSgoq6SVVQEntP+SKyv0rXwkfbYCbbmirBwqWElQAc7Tygy066RNfo52yvVzuDQBC8JQHK//nBx7BRLDeMbOBlR+ATyjAOf56bwbr+q/R/Htb6yep/CS12akvYp4cOSGbq8OAYmM8WNA1RDSX6/g2X153bZJKyd0myMIWHIDD2Apo5owPgFZ50rHfDOmVEa3f0731a/fMWl1vZ53TveXRK5rA9QM7A8g83yP/v2q/n4Y74M2jNxPpnFzE+/psfbosVcRVmKPftb+2Xz2IzyQOgz8Fp5RldE2jSPg1TUEhG3S443rZzvxElBb0MjI+T4wyr1ATgnxTLuqv0/g5Z4GaOfwSde2D/T9qm47gA9OGEH6N6t9Mqtt/gX84sqanosxwN/TbS7gvf0y+v9RfW8Wx/52jEuTKR/FpwCbLPsgnvG3gLAIm3VfEwh4ZmCrsUb7pZ0cyNePjM209lkcJ+NlWM/vCD5UxO61K3gWZwb47/GpvLMI+GfS2GY8OLyOD0x5T/dt4GA/nnnXg2fdjet5h5Fx/Wt6XAa+Wx+axLgLn7y+tx1t3K3hQUiTy5/Vz2X51L9ClJlikBHGHQi3SPeeB/877udXeNYVsLaKPaErBOb1JtKaPiYZcqw7A8LM+N8Yage47vbRrtLBMGUkRGLbgR9W1F3kGBaAMMSkK0Yl+CHq/HUiFFy6XpQCc/SqHKqBAWb4a36TMUbJ0MEykpo3xSDvM8oljjjWlvlMlQg78MMKkEmGqBKgj3nMHD9JhmXaXeKq+VWJQboUgANcJ0eCbhbuaQtzJwJ5rhZfq5JjHwgoGWaA6674LRMmpYCXSVnnVU4qSakVGtjgMc4zxaACp3ecRK5EmDl6Eemy+BA2KPtSitYwDfgAhQ0aSbKkbIltulngMBPkiWFptCaLNpbTgCbLHuMieWKk6UJSKju0SMyRJe5YIqu0EtA2WVaGzWUOkydGikVKhPXZaog8MS4zzCIplYfnHPDXyCbmx5cjzhJJLPxjkW56mQfkWa+gKZ2AY7xM8rCT70pBKl5yNgYPM4EEHcQcO/Uix1R23IqFtpQIkyTjvArNdN6Sm6VNJAHa5M5LJNkmQpaEO55lLaK7WSRECfM6G2RKFpsRBuz7jDLGIyTIOnApqeyXJcSjLKdSdktuDFN2gQgSaiPbHVApqcnkfxFexuCKKPMXpEa1FPBe5oiwzQDXucgxLDU2SYYRxh3gO8Ugc+pLaOPDgPQ5DeoxBugP+aKyYGXknucEi6SIqvzTUqt7mecxznORY873zkJdTOppoTC/xhkeZtIx0w5wnRO84/z07DoRBpkE8MiYFn85CVvIOgBjgwYHALWwyhO87ZhZGTqIsE0rkppszDhjL4ZVUmvXuLGQbfz3Me/YvsYONEAa0Jm94KTlxg4Tb7OUk7+a36l58SXIqv9cRS0dGgAhlhiTWv4PumvPAKxGNp3E2UAmY7Mt0y7ECWS+kEUPAQW3daFk73xiLC9bFBHp8XVt10YGuM4yMS4HDrtFKmP0+tThEm/zONtEWSTl2jesDGFbMNpQVvleC4I87WRJkKaTPO2a0hrlMsOk6dSFhnZ3DxXPPUkc7mVek+Hv9UcFwYTy9W1YGJJ4cvYxxqj2r3jYtags2Zj1VYIEqapUuuBY4sYGNmZ7jDybNGqghkjKN2hgmyhJMsRYpkPZp+KVGHe2H2XCnOC8AznlervjVARme2HeoXliWNK0LZ6FKbtAmnn6yOt9EGBTx9LPe30igF6oWuat8OP+gR3RRxNAiqARYXrRj5ObDTDjH9hvQjcLdJCBOsifA9bEB4PDuKTPMiFhaaSBRxHwQVfBC2Pws1QPs50PQA6y1xC2HI2QUqZgTHTfNEGtMjge523CJQXWDsIRLsnF1A8swO1kAz/ki/ckVY5zRFgFFd03ESlezWcHyNbvd15QjWwK6NOMAE0L8nBWs6VsFQNOrD2qAuBEKDiz+TFGpQ0nkcIipom9yl50QJJJWpO4SSF/UwA1Q9bZhJoeoFlu0s64vFlYkNGtohRQeVgkRZIlHhiRfVQq8NE1YafsrAgwGO3EyUVr6rS/kO0ljkP0EDIWgnhmDLA7Lv0cDOCCONZf8cEqsyrzpMsAvD6IQ+3zAjTGyMOwJOzSrxPBChyJ+zZtWzADLBjausrJa+/LMY5xT8rmR2kZp73MSV/mpB2nGSRQqfpURRQk3pIxlq9vk3hxY6/ElZHWr2ElQWGOAg5E3KCRsebPybnNQt05ZYFaoXhVwWwD+Ppl5WSnSYHRlPT9DAdkzG3J6lQf8y505la8mQwd4m+nIGqcnLAjV4DnoaYIhfp9Xh59VYFEY3uZJ9emgpOb8oB6O97ggMoCUdLhTuiA6JPCFMw6JEuOLU4W7sK+T2T2+Sf4ug+ZP2IIAGCMM/S9aYTpU0Kui1k8MAPeOD+jn1E2rJNFBvEpr8ZAasYnOqfx4QTo+/143zy1F+ApBGSw/Zg80hYnehCAw9hmBqKAB2jW8D5qJuV/AQFDUvhQDZtjbL7qxwMiKRwjlEl9vw4vx3xWt2kgVwDPmKrHg3BNyHV4Yc95ryPMvKPAnyMgSg4feNCFl6H/SN+v4kGxc/iE3TwenPuWto9dJzeQOfC4fjeG3CMMqB1D5mVjQVobGEiljHGX3PoUsqD0A7wHn53rC9pfTYikN4UAxTYOzJfvGd3H+p5939DjewbvTRjcs/0v4+XCYbz3agY//ozFaJLlvB7zLD7p1ticNoet4CWqh/Ay3yO6jSFk3FXxwRLn8PPqln7nqralyYrt2slqP2T0uPeyvSt6rjo3Mo2Xcqe5N/SiDn8tVfBpwzaGq/jAmS0973U93028x56B6j/CA8fgA2LsGv6UvyJs00XaJdOZpGacEQ6o35EUEK2kWHA+N2Vl9ZhJvDGqTA6zQLeTO1pIQE59mTrIMMMAf8VvM08f5qMzxiiA82CzVFlh1vWq9G2CRjYYZEolZuLBFKDCZYa1cGzFfKxu0sk2USZ52LHkDawwgOMOLS64I05OGRzvOCNw84ezJEfzZ7PEO0tFrSoT4od8kQ0amWGAKQbpJE0f865wmGGA9xnlh3xR1ALIff28hniE9AFN0oOjpOlCfJjimLS0rNJRA3sKWshY+uBlhtnrs/QEb2sAx7YrkKMU2Px7rK9tolxixPWj+WUtISETFniSJ8arPMswE052Z/LlER1LBgQbeNDNojzzIMDjq3weCa/IYUEbnaTJEmeGAT2PwyTIOnDkMJcxY/4QJbdYK30szJolkpQVuOvWAr9CQEG+dpWhxpX5JCwi84vqY54oBY5xwTFOKwoYG8vH/BMNhAkpDCZMriVmOOA8lux9k8MaQ2eOXvpUapnRVdUDzFAmxLCmpIpnVBcWmnKHFiYYJk87kwyxSDczDDjQr485jnAJECDhMJddnwKu+DVGTEwLaJBn8Xn66GOOsnoLXmGIOS1ke+55YPn0vqb4jGP5LCjYY8EUkqOZcsX/07zuxrmxX8Mq7bafz6uXYoxlsnotDilzz3435lOFAJs0EifLKGNIOEucBjbcWO+spjnMBObt98nDQpcAAQAASURBVAhjDkwxuaodS4AqORIqDzXGZQM54gSocoAZxz4yz7cQZVLKarLACAPkjH0aJ+tAmDwxOkmTI+5kvAEqDlg0QNEkjAaUvs5TnOcE2T1zWoEIWeIEqJChg7Cely0emZVDVRmLJcJIEEOYFu4QVhadAYOWdA1SW5v/6ud5lZCCNb3MEVYJugUzWUiJWQMkWdIFnCAxJIn8EkccqNpO3jGgAbWumFTZdI4QZSxVNaTyabt/2nca2XRzq6SRLzkAzMgj3SwSI++8PANUHMDayAYXOcbrPOXmWFkk23SA7bL6ydl9wtjXVQJ6P5V7hzHAqwScfDughUWGDiwUxpiKxh60++4Qk/SptNveCyjb28Jh5N4WYYrBe0C3bhbZm6LboOcHaKZ6o2PEyrGLpUOOhHveMHa0AXD2N7MOsLRdu+ds0Egv80SQNPSo+jHavcWebVpY1bCTdm5qYvDPe30iJXXtjpeuAtyfWyFHXB6EM7CbVIAijpdSgoQMqNSmSoBpBuEcrFeBNQEPHJPgNbkh8Qouka5EyD2Yr2xJwlaMZUhBRBkGHWRgGqJalLaw6qU/CPhSc0OPZ1okFYDzHSoT4jRn5Di0KAlShXGYvSrnk6bTP8grZtZaXXXJk/tnN+VNO/eTChztkZceYZxbqWaRccVxSLE9/FtSF1UoqPfRMjG4oWBlPySrGaioV10TtKzJfo0dF66WZBBOwM4scBp5uFOWIJ0CFAVMlje0hwk3iuvfB5LwQFxYdjVdsLOEN3Nv0jHQhvcMMjnVIZwfW7RNEm4LWxqMEgQaoMnkgCXoNgBiBbcKzTTs/ggGtmaFoRmEGpUmVgnAewrwTcrFu9us3nZdULfmj29Hi+SIXuz3twEjCgAbM2lFQMJqMOBYoHnaRRcfFFZiQVeISOA90pDjr+2Q89+g0RfCOj4eXfipFIfKvoqRhy5Y1/EeoeClkn8JL+T+ltpZ/f17AsQ+zRus34TChIzJNJ2OvSoPgWW2hvdJcZ7R66lZGa8LcC35IBthPTZlG1UJeKbWll6317SPmiUUI1wtOa+rKAX+mt90KdHmbwG4JEqTMe/7xy06/B//tY0AUybpAw8e9yM+kGN4/zpjCvUjIIaC6ZgEU8FuXXST3y8gY7mCW1hw40tZsi41eQ0BHkzynkUAxTcQMCKAgBFX8WmfDfh0YwPvYngA5AIyh8YRWepN/TmAgFphPPhoDLqE7vsSEvyRAa2xfQCIyWUze9rmB/jAhU1ENlnEs7aucq/Mv4IAkcaIPoQH8h5F/OdmcaA9eQTws/lmGpfOTj/es8/6M4eAUcN6bgG8lNTO9wf684Juv1nb6Rk84y2OT02t6H4m8X1qjD1jrFW1v97Fs8a2tE8uaHtP4H3k0J9TSF+/pp81/8K9IG2bno+BaNY27+IXqt7E+y0aI9Due3YsATxoOav7fB5hpb2G9LfJf6/qOSWRQJNx/Zz5Mtq/Jrx0/CE8yNeDD5DawoN3usDj/BuNzWps4WnuBbyHEWDRgE0bK8b0P6Sf+X2c9647B5ON1yNjy2Tfxug8hWf1xfGg/RYYCfvT/OpgiRJhphjUoiSo8rKb7sF7mMskyTjmHOC8lsSXThY39xrwD3DdAWhxcg4YMaBir7Q1yRLmE1UixDSDrhgc5jJ9mi5rhvMtrLJNhD7mnKwtyjYWODDFQcYYRXykRNYZVlaTSScnGWKDRpVf5vZIC81kXIrbQaYoEEFM8JeJqtRukiGiFLjCEGm6yJDEghQOK2U5T4x5+v6z4qhMiF7mXcKtgF6txJVVlWKRXuZ5i8fJ0EEnN+ljjl7m1VS/lxkGuEmnY9lYcmCVIBaQMU8f5p9lUt4sccxbTSS/iw4MsDAI60vzBmtkg9d5mlVaiGjyb4gyT/AWEhyw5Nhc4icogFVJn3KMXRmmxCnO0kna7deAtwRZLdzFd0pYhFkSyhIyuemCskc3aaQReX4OUHFyqCjbjmUyxCRVAjzN6+RpxxJw+5hjjj4a2eS6AocGeBiLLk87Uwy6Qt4YM2LSLjf6TRpZoNuBP+ZJZ+mLfcyrzE+ukwPMUCKsoQQC0BlwaSEDB1ReO8MAGZLkFazNEue4mrmbF+Sqgs02fscY1eto08nE4+pPFVb/LQELMo45ZPLRAlEGmHHga552qgQV6Cn9wkhum5VlNk+vY2Vt75HalZWoMMYoFWWRhpXRO8MAcbJOulcizBCTHOayswxIkHOBMVMcJE0nJzjPADPOS65vz9xwnsc0yTtBljiVQAALudk7NoNUHVPL2FhpOpVYIbLb6wywRNKN1UY2lV0nrKkccTcP2zVuSa+W5i1BDknHQLOU0sd5m1RVQMwgkk56llOYF6WAa1kmOMxf8dtY4EELqy4QyUC/diRYaE7TW+fppUTYAekWZmNMqjSdXGdAWXrCwt5rwbCEeExGEW85k56/wdPuHmULT8t6vIC7du0cDZAz7zzz/TOQzVhxZUK0surUdFEKNOg1lVKwr2HPwpaEVixTUZCuV0H1CAUnQd5EAlcmNazGfPtKe1jCcXI8y6skWVIGX4gW7jiQ9xgXXR8ukeR/5L+hm0U6yBDX+fcwl3mOl4myreztgOvnyB4GYJIltxgxwwEH+Bmr3lKH21mmQEQ9YkNYQnJaF9qe4G2X5CvgbwMZkhzjIo1suEAgu3fbguKqctrNm9DA6D7m3QKMBZJY3xlr2hjgASrEWHb9G6TKw0zyNo87vviS3ivvaHu2a3q04RI/7/WJAHo7tVr4TwBhWInXCUMvI4BNzTic5sfwfZXuVZUp16Ved0W54RxkinwWUlrAhChJmMICMKlgw5pskxWVECYQYCaAruyGIaN+bU2yUud8ofLKnjqKPMCvyT6KBzXcISNA2/70pmMI3H9tRWKyh9Vnr0dQXdLQ/5AcuyW87BZhZwJaSqs0ru1AnYJ+aWXxKauJafWDQ73trFhFgDIQdl2ymhGJqzJ0siTkHJqBHHLjX1GPuByEijuwpV5/YxCsInJiLTKaxncEjd9SyetVBWKtuNsSVmTtFtKXbTgaNC/rNoYQ5kibMu86ofYxXCG9m0OktCclWGQ3hxToz+DlfJ3A74rnXNZYJUdgfVIboQkYgVor9jMCFLWyCvVQE4dyXa0clxVmeVkRpNmzD1u4Q01Rwdww/CzZwwfJfvEYPAQfHOonVV2EOvVpHNcxZUDkpABtkc2dewzqV2nxgAUq/TawLYZbETUp5SRDPtnypsict5L7ZB8q/YpWC5BT8LFOGXsl6Zf1SaQw/DdIQZtGH8QiROogWg+D1SlB/NfkXINV8Uap//pdsi/ZoS17WVgeN4mZD1fxkALeFbjyqmxnikHPrlS/yFBxR4rpsDAOYuQhDPnLuBsPPThgoUJA+rjML8brDuKD1o8H3sJ44KeCm4+oIu2fQ8aygUIr+rtZCKTxxv97mT3GvgsggMYIHlBIIONhDQFqLuAZW4fwvnw9CICX123n9JiNvWZSwQouBZp6/e4awviaRQCNdeAbCFhjgQJBBCQp4lN+zcPsNT3OCp6pZr5rRfn+rrH3uvRvR7RtXsUDlWt4eW8bXsZsoNopBDhrwkvqk8i8FkTktkf3nGfnnn4ypqHJkA/qtt/FMymNrXiDe+Z5Ny+AlyMHtS8MTDOJaAlJPc7saTNjGc7qtk1KHdfjXdBjziH3uWHdVlrf29TvVJB5W20kSOt+DiNA2gU8Y88k09NIn8a1vzrwfoZte/rKGGhfwbMbDRTM4VOG63U/b+DveUm8nUVQz3NB29y8GofwIHEXPlnYZK4v4Bc/TuKB0Pd0OwaiBfC+fSYHn0bG1pbuexIvEc7o34f2fMZA0C38dWtgehEffGJsVxuXOT3mA3oMG/q9T/lrTSWtZcJM8jBhJJAiQ5I3eFo9tfLKWpEVb1tUHVamiIUGzDCAeeJZkZEg50CJZ3mVMCXe5gnHdjLQRdgKwXsKU/POu8IQo4xxgvNYkIIFZVgCrYEU20R5jPOMMqYSo5hLIjSpm4GXZrhuoR3mDdWojBhhwW07r7VWVpUlNsEoY1QIkGKRTm6qJEhuoBLwMOdALvG0KzgvrKeU2WPy0TFGaWTDpcVKam3JFU5RBdFaWOUI4zzO2wBODmzFW5IMg0zdk+x7kWPMMCCL3KB8iVVO8A5pOjnCOMvE+HVeppFNltVKRorLqmPBjDLGlAKtJiM2by3zy5ujj4scY4pBglp8WeF0UENQkiyRI8EAMwwzQZaEsnqqTtpmUmVjq6zSwqgykfIKoIwzomyRdhZJkVWfwTAlBphxhdyqsi+FeSYhLGaPs0EDQ0w6BtsGjcypx1KJEBG2GWaCixyjlVXnrRalgPidXXL+d2HKPKJjLkTJMSeNyeT9oQpOZn2dAZXGRrCAhfM8xgLdjn1jPocZklzgGG8osJpkiV7mHQCXJONYoTmlGxvDzCRpBvp2kOEYF4myzaSa5APOS9GCYTZo4CLHyNPOx9z/yUxA/8Re+7mtQNa2MtDaHdsnS0J9E0NuccFSjU3GKnE54jEpck+57kyWW3JRByKfP8ZF59u2SitDTKp0sZfLHOY3+Wu3AFImzEWOsU2UCAUOakrpIFNuq5M87ObTcUZ4n1GqBN1cYYsctjAj16iAeVll81mKapQC8/Q52fgi3VjK6P+Z/yuAY0pd4ggzAZmTsySYYJhe5oiRdwsYBaIMMclX+A6jvO/8M+NkHavMfDALRB3waXOSgZoGmAuTalmZuQJNJ1miQJQRxomR54Amxhobq6AzjAV12MuYakMqU7Zr1YBID8IOYpJQm9tlYSLs5i+Qe8zrPM0Yo4SQBFdJQy9gsmI7D1v42EYk8sbIXtJFor3BDb3MkaedTtIsY36ci3vmupKTri6S0qCWbcxWQPpVEnXtvrxE0llJGLhvidkhym4eMWDUJP8Ggm0qICa9k0OCjnIu1fc6AwxxxQG1i3SzSgtxsizSzSRDpFjEAkrE6qCVRbqxtNtWBQ8bdC5LkiGoi3wt3HEsOluMMOa1pSPP0UuYMkmWMJ9J8eDb1rEfd+nyQ0w6gNICcJIsuXF5gBna/pHyjU8E0Lsd2C+0SC2gzO+CLmHOERSAAaC2HxgWUGQ9VuukPjMM8ODCbQE0kkBcWFigDLSUB8FAfo9QcCyUmEouo1UB7HYrcCvZLAa8xtSIq/yviBScxyHJEnU5pDC5pGEV6qdmUrl5+iAhgR+kFNAxGdyQMAXXh2qpUfZTKRziTlsddEJ/EnaHhdnlDMjXEF+KCsSewjEW70uvOdbJDAcoBKIilwzDMS7KBJFUdhkKoo5C01NybuW6Wi8dOglzbQ+wWP+gDyPoVMCmR8C0nSMKPpln1JYARTtWhMdxq3QEkMLkf4IPvtcvhSdIEfdtpNBPQM1RuPajB+EUrJegZgg+/PZ+kc3lkECKP4Kd/1raN9UPfAFuvdJM0/dkbHASbv2gWbarQ8nMIzks780FJAWMNpw8apvoPTLA9mpeCteAnJus+ged11QjG2QDsgMLQNmgEYIKIsQFRK5dgsKK9EOJEENcgS5JNe5e+0gYeqNIMdem28jjUpAPMCMFnbKlQpQ4Hz4hBfll2c9coA/qNVglrqBxVr6zXoLCLOJJ+Ka8Zzfw2hSsr0HT5I60T1pSfZsyO9JwW9Co51YmDJ2a+gtuEqYLuCYhKqu0wAoc1AXTQaak3/tRb79N6oy91CUA+Wl+DOsQG8FJcxwz01gxd0FZzp/+1yoe5ArigY29vmAmU8zrv7/Qv53iXg88kwPG9fMH8XOPyS6b8QELcbxEUlmlJsGniA9RyOHBsNSe79lLwWfX9zonk8OznxbwnnIxHBOULQT8MVAJBPQZ088ZsNekf/8RHqzs1N8P4rz5anrwgPhJBOQ5iICST+o51ul27ZjNesDa+xvI9fR9ZA4x+aed6zTOdsDJI7uQazqIzF/9CLhjIKmC2s63b0HPL4UApCU8W7KIAHJfw3sQNuAlyPX696Ke2175KngAb2+fZPW46/X4NnG+rg7EO6XHZMAb2ob92v55PLBkc1YM7xdrwG0z4tuXQQBGAwQn8d5zJmO16/6Mtt2hPeeTxCckm2S6on/vxMt6jcFqYGWzHpeNWWvTLPCH2v4l5Lor4lnnF/Z856qep/kBnkYWmsxz0SS3p/Qc7FqbxgO3GT2fm3vey+OZj7Zf82o8o+c3rL9v6udagQf41L/uY8kx8Wwle5voPR4/8lArcimTVo0w7qRmVvwYAHWZYQJUGeKKk8jMcABL43uct5y00Z5fLEjCis7LmqQoxUUOkY/KhW+spkVStLLq2GejjDlZYYAK3SwwzIRj0giTK8KzvIKliJqPkwFIfQqSmBn6OEdUUBlyxYXJhsz3b56+ezx2rNibUcDGQgqWSHJdjeet0DWz/W4WHLCSpkvzFtuRBMeqS6FNqZTPCgvzJprgsPO+2gskZEkQI09FASPxVRNGDuCKyDztbBNhlVY3Noa57LwVIxQYYlIlcVUnbxvniLZ/O2Ly38dbPE4v89xRqZVJ5wD+hl93HosXOYZJew1EyJDkMsNOzmwFnMm5TU71OG85dk2VAKO8T1h9tISh18EqLRzhEt0sUCCKhbrM0ee8qBbpJqJMqEGmSGk/mGTQZH7GmDPwZpl2yoScPNqkiebBZZ55VhiGKbm2NdZkC6vOxN9YIi0qUttGgmIe5216maedPINMcYRLrpjOEWeISQdkGBhUIswdWpzXmICu2w44FNAn6MaWFNrShxZQA5BSX7UQJd7g6f8fzzz/NF8L9DhQWCwFljVcQiR44uMYIqsMN1BVjDK3ltUb0UD6KAXGGMXSQs2zzoC4EuE98k0BSuJkCSLpzS3cAQQcnOEAq7RSUul/gpxjDxtLz1jNcr1eUYBFLBD6mCOiDM0ccQfwGug9yJSCWV20K5CRIEs3CypZ33Bg/yriydjNApakKsEeZcfuS7LkgBWQ2kXOQbZr84IRfVpZ1ZRo8QQ9z2N0s4glX3eSppVVx9ALK1B2jItOIpxQGa0xicOUXWiDecaZRYAEMbU7hl5JF3DKymoMqT/isjKyOhREMqau2R6It1uj8xqtIJLnU5xV9rmwx1oR+bHI7iu6GLao0FJcQc8IZcRvNUSZUcZoV4sHO3+7bgXUn3P3RbvWbVHFQpvClJy1hUmgl4lxRVnmxqIWv1H5X8DCVi5yjE7SZOigRJi3eYJGNjXsKOksLxZJqZxaxqul4q7SyqACz+JDK7CfAY7GSDagdYYDzsJjVRl47Xr/MjDagG2QTAUJRAkxyRASTtPhroUAVeeXavctG9sGrlsfCLCdUPsIYYQaM9zuzRKak+c2+/9R88knAuhZxLWl1bXoQxDNUAtwCNKBTr/SvyYXZ+PajluRt0k+mkQKtCQU6uskWEMLgSoBWFGG2oQCh3H5mXVo3NoUIGNWQg7uW1iTFdaMfJ86BX2uyj55FKKlAoQVJLsplOeZtgc9Y+QCPLnwE7ip7MI8jHBJHuJVrrZEkqYf71DIiRfbNlGh5CooUlP0IRg714CSAidWLJUENLzV2SxFSUkuLgekbcm5DHNZmGsdKBOsQ44hDxQlkZWkpI/uvqGgTzUjBU2bsPXSdMq5JaF2aU8IRAZI6ypac53s95oANCHKvkCJKzj5ngZrrMBs8gHph2H5VyUAAdgByCqQ1Cxpu9sl2H0Krjf3SGFZL9/JE5Of38NJbGdTD0iR1yTb7Kympbg6jXuw4TUdhFUx4HY+UgclBMPJ+Fbg2NZPGFqbljZex03sHMKxqCIUIAs1I0CPgnNFqA1Km4kfS5cHqtDzrcL6TdnuEFd8SmZY28tAgmZoXSny1No5L8s0INGkbPXqZafS8/vbND04oFLyAK4AoB+a+uHD4f3il3NcP6PXJUGIjkr/V+WLEviSxvlfMIEwLdf9uKytlzFh7FSQNt0m4hlEwzI+phh0Ba6knUW9LPGyStRzwC6/GC/zyBrHB7sM4wGSk3iWVT0C7PwG3pKgQf/vxLP2UnhZozJYCeq20/qZHmTMmRzRtv0KPmH3AnJtv4HMGxn9+w1ckrMDqWzevKDbX9f3bewfwSfcBqBoctItBDRbQ4ATk0L2I9faUf2cjnXHsBrX97rw4R4VPPNrGC/57McnnNprRP8Z6KZerEzgQb8VPON0Qts4pfuz6/GwHsMbut2jeKByFu8bmELmKwNfA/q5l/AAlQGRj+o2N/ELTAZImdwV/d5LejwriJeeAY2H9P9phPXWj1xjBm4m8PfDEs5f08lup7k3ibaqn9P7CTl8gutx/FjIIH04rsdojNCqfudZ/Jgw6bXNf8P63mn82DRweVLPZwlvR5FErg+zZzDAb1rb2phzs3jALbynPU16XNrTBi/gx6Xd64y1fw7PIjWgeRbvVXgUGU9dyPVzU/ulHx+SoXMlGe4dd29wL0hp1+Ww/n6LT/3rQ7pYpNuBS+ADvp7idVq4Q54YGzQ4eSvgjNkLRNlUZpAVKv+Sv6JAxD1nmTF6mk5WaXHBV7YIaPu19FQBaYKc0DAH8wqzB+0RxmlhlSGu0KCMA/EpSjDJw8oU7NIyseQYWIPqY7tBIyOMO980A2rClJwkuBFJzhtRAMXCGmYY4C2eIEPSeRoZc6dEyIUmzNNHiBIdWvjJqn/VHaeluZq33BijlAixTcQBQfaM2a7MszhZ3uEEJSRZ1VgMIcrqBVV2x2rPXyd4hwkFR8ta9GRJOGDR2GveLyrjwL4gVbIksPAEk0sZyJsgS5+a9pv/Uh9zChDGNK2xg07SLuVTWI0L6i+VdX2f18J6iCuMcMkBdyb9tX4ZY5Rl2tlURlSCrLLNTPJdVSA1pzK3GG/zBOc5oWEuy26/fcxxmcNsE6WPOZaJkSGpElUBV/LEuMgxCkSpECBCwYXGmMQ4T4y/5jfv8S20sZpkiSoBGthwYRwm0RtEVBshygwxiSTqLjvwR1JvpbhPqmx2gBnMO9E8ABvZdOybOXopEFFmVcjVbTMc4DoDDgicZIgkGRJkHUtynCPkkUTPKiKPF0Ahz4i7uXy6X2s0EyOPeYMNMuXmPZOIulqYAq2sMsr7WBhGhg56dbHCvDZFmtjh5tW4LiRYCvExLvIIYywTY5IhJnkYS/UMUuV1nlbG6SYJssxrkI3ARBJiYl5iwD0MNJEItjufN5M29jKv12rBJYkb8GIAhjG1pxiknbwG0bQ7UKyXeSfLb2DDjWvzYWxkg+sMsEy7Y2U1soklnZvFggErgEvXLRB1QHyjXscGNkfZdv1g8mZjE19Wj0nAjeMo23SS5jgXMb++RjZcUKH42bWSIIeFAYn3XMWBgnnasfAHm2eqBPgxp93CgLCpC66NSno/DFHCbA7MQzZMmTn6GGBGAcNtx/A8wIxbFLJwIBtbwD3M3Xby2p9zjDKm9+pGBzhaYu6Agpq2oGP38QBVTvCOjqKSW1hJKBBsoSFy/5N70hQHnXR1G598vqj+LrLwI8CdLZSF1Z8wxrJrx2Euk6edFlY5w2kXpGShG+ZzGKHA2zyBhZgEkECNAlF6mcO8DyvKnhYvvbAu2nRznhOY36PZMYjMWcarAX/2LCIgp7SdYGUJ9npFSqpy5B81n3wigN5d9gkQojKmECWRDIYh0QnkFFyI4VbN4+TYaK4VxlZQBtHHqTYA1rWAnORh76N0TbeRRx7Op2W1FYAwFNZgtb5ZHv6z8p31rloBrFZwMisLySAJ3ICx8CgEoValZXZD3Z2FnTTwZ0gxYtKp78J9v7YmhUNKtvsUr8OChENEAjgkHUR2yoqCKQehtk2O7TKH2a3Dea9ZygrDss1GNulb+UiKaPXzWSQlhY4yQtrJS1H9e0Cz3FTZEvCnpgfaVzZpurHjWGyBigd5yAFtyh7L4MDHS4xIkISCl2VCLm6cUdiJq2zZmC9dKstE+oS4AmsHIaFMhUY2oEkYjtE2KIXVM84KoLgCi/Wwsy7tKjf8ZSkih/aw6dYQBg/a/wfhowkUSL7jpY31Kt2xIjwO6foHCJrEsR7MD8UxWNIKLJvscFyDWOIa3KHnHqDixkM1qCv6RfX/u6FhLRnpM17RNjcGTh1UArDdUOv2u56slZAYcJK3baIyvo6LTyFhSf81But1fajkPdmmsRkIazDJzT3SYGVSbZiMV0EhW7k3T6lim/Zpp1xP+iws46UETGhQjQEX5+QBu5FNbMjbKhsZRJIY0/FwF/Ywuz/dr314sM6AIGOzGXPqOPcCNcN4Zt0oHkR4Hi9tzSCMzirovddL/cyrzySwxT2/D+k+inhJpQFjB/GA2lkEyOhBxmpVPzONzENF3AKDm4eOIp54Maj7DjJOhvDASRcyjvcCH226j9P68zgCKvbgU1Wf0e+8hgAkBrwN6zGc1WP6AY4ZywpeVtyvbT6pbWBegXE9xgW8R96K/juIB5quImBoHBnHa3hvv9P6vTTeAy6sxz+BAJDHgT/BJ/y+gpf5riBy4bj+fAZ/fzml33kKGRsXtG/e0GM+qPvfwgO0xkSz6/VZPDvTxo6BTxPalhO4hSCb3qnXfeYRj0OTK9dpm+lczBqelWiy0iT3jvMh7Ssbtw3IuLO2LOkxvYLcr+18x5Hx26ztcE3749va1mf1vNiz7fo927RxZv+bn+K69slRPdY2/dnm+nrgDxDA9bK+Z237Ct5iweTgSTy4t9fzL6fvmb9gEh88k8ezC+/gGZOf4tdt4iyohNYM2HuZd1415heXQbyXxGdnAktAtMIghEh1BayKurTBbhYcO2uvL5sVFQZaNbBBlzI5ohRcUqvJfgygMvBMZI8ice1jzjEaWrjjgDFjqRlDJEdC022TvMUTDrSRJN47mHm5eMUVXJLqFINYWq8ku15Wv7uICzcYZYxjXGSvgbtJ3YwFY0bf5iln0mSTV87T58z003RyllOc5wQZksqmkEJ2m4gDCo1xb8CjeQMaU8uYEQNcJ0vCyZYt5KGRDWYU6MmqFDZPjCDiBzWgxWWBCG/zBNcZYIYDJMk4INQkswGqLnDkCOPOi3CSIV7naTZooIVV5uhzBVgVSYk0duMEh7Ek5Yj6IibJ8DK/Tp4YT/M63SwQokwHGcYYde1YUsacgV7X1Z9qiEmGNZXWQC1LnHya1+kk7bzw4mQdIJChw4GyxiQysM58+6wgtLA+A+hsDNizeZmwpir2Mkcv44xg3l/mpQZSd2WJu4TGjBbkqwphhJCQjQIRomw7YNOK1CRLtLLKCOMskuKv+G0nOze5nyRfSuFfUv6QgU8dyowxufoUgzSywShjn9gc9E/p9RRvYN5dxuC9zGHMB9MkpyZlljkvzhSDJMmoLD/CAWacl2YLq/f4Li6RZIMGLHXUmL9DTDo/MXuVlGUJOAadgdsVAm6xpU/lrQEqLBMjpAsoMfJEKehn291x2JixVGUL/dgb4FFWtrQwnmU+WKSb9zXF1NipAH3MO1nrBo0cU/DMPN5lMUNSSg38tAUd8Ze8TkzBqQBVhrmsixMSHFEiTFTloOLLd8fJ2a0PwpRURlmgk5vOt1xIDBHnF2es2SwJkmQ4wiV3H2thlQmGsUCgbhbZoJF5TVQfYtJ5ZQprup0NGoiRd0zGCYbpJE1QgawqQV14KSlomHB9YB557SyTIalp1inH4BMP+JL7nLHNBIQv8df8JnP0OYDQPBllLFT5PK+yTMwx1I2NOMIllxa7qQs0looNcj9PscgRxpGQFQnEirFMikVnY7GsgJxAzwHH9n2a1wlSZXBr2slW88pvM2Ds4eokIHhM3AHVATfmEspUXdJxat6R5rNn4F0Ld8iRIKhjzKTQJUIc4LpjeRqRbYYBN3b2JtSXdQHEzgdw92azKOggQwcZHjI84Oe8PhFAr2N9mQdzt50BeNt4UZKOZnHm2A+NfSgP1irlPJl5n6bvqCywDT53YZr7z62wm1eJ7Rk4+dL7UngoQ+Bk5n15YB4BmuFk+n0pao7KZu57c83LY/qh6d0d/u25b3o5zRo89MqH8qBeAb4PT177CXwPKRJK8HB1kl+9do6aGMyuyXZ2lhDW0ihwEArnkIdyLSJ7xm85CVusCz77yiyffXMW1qDpoLTJES7BiAZajAiLq+YMUrxvwT8/9yZt3yjKsS7Aydn3qfkR5LOyXa7BQGkGvgX5PJCCX3nzXSl2v4EU5eCBpDbxLjSQjRLU/jk8+dJP5NyLwJ/Ao6/8VAryMHBcpL28p2zEm/Crr53jhVf+1knKat+Eo2MfwJomA0/Cv5h4DepgR/0C+699BLOwrXKp+95cg7/UsIqSFP73za7JsYeB9ySllTVlhk3AL41dpe3Piy6Z8DMXbtD/2kfk35Nt/MqFd/nc+DT0Iwm8l6HnzVsyvpRpdKp6VtpEC63+hY+oeVf6lCLsf3mTX8pdFV9GBTkevHpbvqPn9vyb/194WRifrMH9Yys8Ov5TJ4+tG4N/fe3/IftVX6n7XluTAvyoHOvo1vtyrupdVnsOmv5ix8nQmn68w31ja7AF6wpyBqhKMfie9umCBFN8tCbnYwanPCq/t00U+cKF/yhAwe9I3x198wNv7p6FX8m9C+PqQRmE+8+s8ODLtyEowRp134ZfnTgHrykLthl6crcEVMnKOP7MuRsCZPQDPXD/+Aonr70v46kfjo5/INe+sbzeg89NTEMZ7t7lF+O1i0/zNAm4SWsv4NlDOXzgxDfxzDNjnRpwchQvZ+xBgIklvA/ZXiDGGGbTyPjJIoBCFwIGPYpIJ5W1Csj8YFLJryBz0lEE3DNG1V6Z7w28v1gGz8JqRoDGYf3/uJ6DSW/X9PyvIdfHBAJONSMgVCeeyXQUAZqC+n4JSZZ9RY8jgU+izSHzhHrukcWDpgZmtuHls/VIOix6LIfwTF7z/ovrfnVO4yDer66k/dCm75/Ey2RTCOg0Afw7fHhCRfc7Ajyn7WOgHvik4e/gwbIKfgHr97S9c3u28xRe5vy87seYgfX4VNcJPFMvo227iQcyjXFnfoxdf+99Y9Q9pW1jQOjzeL/HCj6ExfwGTSpbxYNZQW3PQ/ik2mG8x5xdDykcC9h56RmYbCDqlp7LcdyCgvPQ+xM8wPaGtt0IXiUwgTAhTQIcREBDk+jaNbdXTh3Hpxwv4FOOt/ASdL2Pokx8uvDXyUF86rPJ3j/lrxbWGGLSycGsCHqZ5zA5Xgur/BZ/TZIlYuQZZoLDTLgispd5UvrQ3EmaGQ44lpFJY6IU6GbRyXsA58VmBa0BbyFK9DGnIExIeV6ycv4v+f+QI8GyhhbkaXfskL/it5nkYcd+Mn/hEGXa1Zx8hHECVN3+zOjbwMEQYnBv27GCupM0ZUIMMo35WV1nAElllWIiiHi+iYdbRBlTwtTLEqedPCYRldAKASwneZhFUo6t1q2cj6d5nSPqBVUmzCLdPKzpicZ2NGmSsV2kT+9QIuxSbTtJM6CJlgPMYN5N5vtlvnAFIrzDCbo1lMMnCMadfLNXGXlv8TgllZWm6cR8ByuK5lcJkkVSECMqS6sSZIDrZEjyMJPu2EZ5nySZexiCVlAVlF0ZZdulIJunYJTte8DiPO06RpeVZRV2gIH5NXaziKXOmsT3HU5wnQHM5N1UDO3kSZBzstNFutVj6YpLOzXj+D7mHFBhzDsrNE3K3sccYqyedxL1GHl3zSXUU6qssjFjpeaJcYFjDqzNE6NdgeM7tBBWYMW8zh5hzIGNR5TNGqLsCtJl2tkbjGFg8mEmSClI0cu888PKkGT/L8JkCO66MGmigS2HmXAMsRh5BVlC9DHPWU65EAsJRQg7/9EDzCChIi2O4TrDABYqYGPVWMwG5AjQLwsSknhbIUCFMUaxpNIgVSe9PcspzNPMxtcQk+SJ6fGWHbPUQlqM2WTjRhiEAqCYh6kBJBmSvM0Tyoqad8CmsZnt2jzPCcyWwMIjYuQZ4oqTQQrjuOw+N6/ephb+YNf2trLJzCc1TSdZtXwAISdYcmpEFztEDp1AUnOjDDPh/PdsrOdIOKmlJAHHkVCeZSxh2Lxf5+l1dhDmO2eMwQgFTnGWVVrdYlWediHh6OdNCioQ0nUs5dz8SIVlnOMix6jq2LH7QoYkloZrYJMB+7bw1Kkz8DhHlAGXd+PN5goJdamoicMymzqu42QZ5wjL6jknixkxulngfUYdsGwp2xGdr4WpvE2imsXSlm3xYYFuLOH7GBeZqe93CwN7ffs6yHA5cFgX/DZJsuTG5Dy9iBdpmbgCcQm9dux/sTsoO/CtRRcsbA5eVCsDA+JLhJSxmqeFO4wyhniOHnBtZSxKY+tbMq8sQvWSJc4Eh7nOALV7wOx/6BX8+R/53/G6goBi78HuFtScgfvXV+TBGXmfLeSBvQ1ZcX8RWNCE0jRiTh6AmpiCCZPATWG4NcWRh+CX8R5OcfxD+zUJV0j9BfIwXoeAJ3+u+8vA7Cz05/EFkHnq/JkcYvYaJPqh6b/dccECgyn5XO1xfCriQQ1ZACkKuvS4pvFF2Bmkpa8hhcybsD+3CQuwsQXRl+CzT876NMUVPdabsLOiMuVvyfZiI9p2b0D9+F12rkJbM1L01yOFTx44B4/W/VSAI5PzTeALVZOVjcu57axDbQb4S3yRuAAP/emHcFOAo1QY8ZwqCVuxdljPDTmmWBdS4F2Q/deaZLYi+48lkILne7L9moP63TM4MGJ9AZrG4ME/vQ2zEixSM4EAHFU5Vma1jbMSXrGzALXf135+Bc8W+p+0zZWJ0/QXO76IH0WAT2MczeLTQ99TGeq4tsMkXnL9Tf1+Qj//bZxnH0mEIVSS8+cZbYsxBCR9UrZf920EgElqX/ylnPtODmpTwH/AyTGb+uU4fum7V2V8rgsQ+vGKBKY80Czn+MKZv5UxbPLXb2t7mI/WJXzRXtXPfRWf+LylbboFH2XggZQe1wROgl775/q9GziGHl/Hs1BAxqExzeqBb8F94TVYkOOuGdNzT8O+Nn4hZGYkEDDsOh7EUJsAmpA56FUEVMogY6YO6W8DOYxpXERAr5fwnmxBfPiCMZh13JBEglMmdVuZPf/iyPVyGgEXRvBsrON63OfwrLoJPS4DdS7r8fTo3y/o94zxe1W3aRJfk0Mu7PnMGj5o4gU9L/A+flt4Hz27p+l8TAnvF/ddPMPNmHfN2mZ23r+HjNeres7GqkY/s4X3cbuAS4jmNHLNVPT81xBm2TpearmGZ1sZQGPy4kvIfDOOzE1pPc4S96YRp/D9+31tO2MT2nykzGlKe84vqX8P4+f17+j3zWPvJh6oMklqUrf/bYQxZ9tdQ/r0Jt7b0RigzXv+N8l4VX9/CZ8Ea21pslYD5/LaPwa4tWl/GFO1HhlzDXg/x/o9576FHwf1eK/GTbxHpQHaxsgrIuPDgMEL+v0J3W9wT/vasQX0b3V6jE8ifXUWuVbyyDU1q/sawd9n9wLzajsC+r9JzatIP7+p39vAS+o/xa9f5iLtlLhMpzP4f4rXWSLJHH0cYZzDpQnqb96l0h8gVV0kVNyhoz5DeynPVHiQXubYVhZaQX3YJjjMMS46aYz5ek0xyBBXKCDG7mc5xXO87Jh9e0EmAdeWWSTlWHtmQg64gjBNp3toP8YF5un738j799g4z/zOE/3IVWKRRVK8FF1lVZs0S7xJjKimWoypSJbli8aaKGlPnE1vtgfpOT3YXiSLWWwH04sO4ADdcHA6QILJYAboAMlB4yQ7ya4n6Uw7x972jLyWbVmWYjpUky0qlHhT0aK76CqzKF6LLKrKOn/8Lg81B2fS5+zx2Rm7AEFkseq9PM/zPu/7+z7fC0Nc9cJ1kn5ypJmlizNccM+eFZrZoJFe9csyOZoVWwYITdHrYM46DazQTDMr7CfnQNBtZcOYBUqVqBdUwtxadAlTOwvM08l+BVUsYdXYOVUt3xtZp1tlwe0saEErYKil740yxBZ1mHdQH9MkWGKBdsYZpI0lIlS8MHlTpUtinl50edZLPKeeTzktLIVFaRIn8USc8FTBPCnmyXgKsLA1W7wwm6dTrG8QKfXjXKJMjHEGSZOjji2XVm1R50DnCs20sUSWDDvUUCDpqbuNrLNEYpe0uNmPyQpdK7gLpNwfyhiIIIVgURkhJmm7QT+nuESECi2seD+s0EyeJFWi9DPJBo2a3lxHn5rtm6fTrCYK36GZrIKzUaoMMeoyPUmmFS+rx3lb/Q2FGVemhin6GGKUs5xXIGQJSw02kDrOFoukPRBjgiOc4XVndZqM04CEf8z/wlWGSJNz5pCcV8oBHQiFsgB/Ja4ogHiW86zT+FNLzP5Lf43wKKcZI6btAHiSqfkwWqiFMTltIcI8w0CYjnlSzuIyEM4YbDYPWACBgFDNCvAtkSepDC8JD6rT622SfgdBTEppUlvz+xK2bZIkeRpY930aa9QAdpvHzJPT/OIWSVMhwlHGqaPEKzxLJ/P8T/wLcqSxROqsngOE8ZMk796Z4qMnTN4FOpzNeoUTmFdqVFneBpwauGjXa5kaWhDJ+gLt9DGNBDS1eapzG0XOc5YneMuZ2ZP06yKSJLz2MsV7yubNkfb5ZJ5O8iSVGb3j/Zcu51iPNTroVyZGgSRLtHGOHzoAu0Gjg602rxvz2K4tY9oZoxMEpK1TlvksXRxikt0eoNP0UYcE6NiiUoUIXcxSUoBujm71oCvoebQwwDVnVlq71qhLoY0xAWp3iFIVYI683nckLV3sI2KY/5xsWxYWbKFnhWZykbTfrw3oXtEFht3pswBv8iTn+CGNrHONAbG9Ape1ijRZvEZ7mXJVYRWxORCm6RZ3aHYrCJMpr9NIJ1kyzOuzhsi9ExR1wSVKI/jihCU528JeMxJ2ZezLMjEPx7AQli3qOMo4SySYpo/3OE5gL/y/f30ygN4DyAPrIdiTA56GzaEHqP/Lj4NU5TjycJslGFyDFKZF4NeQouc6QQoG7PsqAjzYw347cp5p/YwWU5kMbH5PCIj1r37M3XHYe1o/V4Ae87I5iRTTWd3ekPycShJkcsvi97bHvICscFtGCvKDyIO9Ms4sMMBX4fXc7s4oYHMQKSDHIXUQKR4WZJv3fgB7BvX8y7D367q955Di4je0nZRBs3eQ4E1lErU0Qb5qYMAC8AewXQ+1/1rf/ypSDP+x+vAd199vA/+dHOO952HPi/DwS7rdr8vfl1+EVFSP0wqVVUJxZIVVkVBYthMM5ZMI+LOJFGTK/NlnYOI+aZc91s9fJgCN47gsMWUgxkk9vh/quT6n+7VzjRFAW2NGHZft3bshwDEH9ThOh/5wiZRK9O59TySye/v184eRsW6Aio3jw7ovk1mZJM8YPVZgz+j5lxVQNbaLghl3x2GvyTC1n/fUwsNatO61tofAmoohrCyQIvW89tsgYsKf1GM+rtsc1WM6J2388AXdprFmvq8SdGNoDSAgrDGSmqD0kgLvHXocf76rb7UQ/8kyPHxS2/d/1/b4LLwM1O8gyExX9W8Jgj+eyXELSF+8jIAbhwkhBg0EkNzAqH36d5vPxgl+dMsIuGOMUZMlHifILW8g4PNFQmAAu47LpIRphIU1ioztAwRAyubfDgKLdAL4CkFqeVzfM2CvVvf5tP69gFxHEMbyGDI3D+IBQc502kbG8e8j16Id7xAh1CKKzDMbCDPrIgH4NgDQWFoQ5OT2/SbkWrKFgut6LEU95xT3B0Do/QX0cxfxexcJZBzUAv+NnsMf6b4PaX8os5XHCPe2FOE1pG1ofblG8D48T/BKjOm+Td6ZIvjZGZvMmG7KJCZHCJ24seuzxsoEWZxIE8C1Qe4ft79HADtNsm8A4TuIhPhFwvwHgYWZQOYEm2+f0fb+vn42pZ8zJupZBNC0BYWC/jM2qTKZnX3aivStnYudry3IPaZtdhaZlzsQL8sfIIssMYJNyEmC/BkCY69AALzR7dg+I3ocxp5d1b+/w/2hLJ/i17//76eprQHK7zPdhFgvrAKJW1B/Cz6GC0XkGtmZgRrYeihK7dZH7NmGYsttEsVt2NyG+mV+lIjzpW9PMk2v+uw0U1VG1XsM08s0lrI3wREvPESyJMEPSySoEqWTebEtAU/Yu8IJRhlikDEiVElQZINGsmR4lleI6kP7FL1EtSAxcMQYUObrM0m/sAjow8IpTNb5Q8757zF23OzewJEJBhjUB/wUBWe5dTPLHZo5ypibqY8z6HK4QcYAvOC4xOPOTLMwi7gWMBassUMN+wl+Z8aYsfRcK1yNZQdtZJgHBKCRgi+DedSZfNSKpj6meI6XXIK2TqPLSk0+ukMN42okKum0wmqpU4uTeTqd1WRSvjaWaGCdlDJ1jEXYRtHliwLStTnoZQwgk3OXiDNLt/t7mSRKmCd1WozVMU+nSqtECn4HSSacotfljCaNbOc2RdqIUKWBdbJ08kv8NRZYMKsMEWHUtNHFLFGqHOMqOfY7E3WHGrJ0UlbwM0+SPqZdYmfeVnLELQ6SmmTYvNjOcp7XOUOGeS+AX+dpupljij5+hb/iL/hV+ph2P6gTXGGdRs5y3oHtbmadDdPNHIOMUSDlY6mTeZePWxpvkYR/1xg0CYoc4ypXOUYNZdKsK7T16X89yJKyfAQIa1GgwhJe7To36WiJOpIUqGGHHGmXjlsS8ixdCrRPkSoX6IzNO4s1yPsEACpRxwRHvH+6mXM2roE65/gh5g0qfmYCNib0mgKUibbhDOYuZukkq8CsXIcv8RxneB0LeDFWWFSBuEFlmU4wABgjquws4h1qsJRQAd/SvvBgzEGTiSb1fNLkeJkvYkm0AHVs8TSvu9+qhY8k3CM0wxCjCqYuYoEzNqcb0/EUl2hknUuc8sAm8ZrswHw8jcWV0BTYIm00su6LGJYu3s4Cs7EuD4Qwf8FuZplggChVBhn3+dAYrgb6mleoLfaI3+sEFtbQp4CVeLAuua3APBkHAs3DskrE7Z6WSHCes8rqHqCdBa4yhFgqTJEmR5ICU/SypQBVDgli6mfS5/EVmullGrM9sAUQY56LZ+qU97MxvyXNu+zA9CxdZDztWZahDLQ0L85m7hChyhle10ATSXcukKKLWRb1uttS1t41BuhmjiJtJFhSS4s56iiRIu8LU3aeIDJ2UwCYPYH5vA7zHhbaZRL6S5yiQQE9k+na4s8SbfQxxQjD7htq53eFE241MsogPw2g94lIbksn9vLON7/gEpefnGxlKtYX0g874OLwo1LsZYCvwMwLDwvooMXa+4MPcvGpR+XB/xn5t/zdWhiRFE+An5xrDcmD9fCTf9Uq21yV7U7EBmS/PSKHXH6hlnd+/QtSQJaB34K/+/IBKUpq5ff/+z/7shRbKktb/lYtvKDJigPAczDzzYfl4X0fcBze+dYX5DjKQAV+9NVDIlVLAO/Ch99p4o3v/Bx7z8nfGYIfD/dARdNTD8G7z30eemB+GYjCu+c+z/JztW7s/uen/ys2Bx8IMrKz8OELTXIM7cDTcPObjwgTpB44Dbeee0iALeS95WSt+AoOyt95Fn7c0yO/KyPi1uGHgrysAj9sfYp7X9Y04lb40eAhbj37EKlngNvwzukvcPPcI4GJ8RW4+d1HJCBBmY/f/7Vf5KPnGzxo4/3nHuT9kw/K54eBb8GH322CjHq19cDMNx6Wwiopxzlz7mEYFMCTDPyHr57m7hdxL8QPv9zE+6cfhATkR4FBuPjMo3BS5KOk4daXHoLD6su3Cmt/tJd739K+rQcOwIfnFM1YBX4ZfvzrPTJe1DdsqvURCk2tDqK8/40H+e43/1sZP0V4/zsP8qPvHIKqSo6fhnd/7/OBbdMDF59/VM7bCrqvIuPltjAUGYS1394LtyC/Kn31o28cghcIsruogMzGUPnxuR5uJh9xlsfNX3+EW7/+UGAMnYaZoYfldy3s//bXDgtAY2DEMMISs2vq95BzMebnY0g/biPb6YCbv/cI/K6CebfhJ7/WyofDTQ7wfvgnTfKZGDzcI+P2bwcPw8/w2fHQM0nyYe4HkU4iIMNVgq9nk773lwg4YEwqCMyg6/q5NGHhAORa3ySwjXoJ4AcIGDOzaz/1yNg21pz5mjUR/NlGdh3bYf3+RcJih8lZX9TtHEQkvCZ/nCAwqc/rsee1PcaQcW/AucmCywQg8SgyVxmolCIwzgw8sQWVA8j1YAtFOQLoGdXjts8YgJXTNr1JWHjI72of+96MbqdJj/MmIejjECExGALYaqAnBCaXLXJYuyYIQJQBRuP6nSqBoViv7Xle3/sewauurNs8pMdqXmz1BEmqAf9Zgk9hlsAYtP1DYNLZ+Rrghf68vOszBsrHENA0p+c6ht/rSO/a9ru6/90sOlvsyRFALwPqCoTAF2P+HdBz7CEsuJgs+zcI18Eycm+LEYBHY85HkbG5oPs/rMf/1K7jKutnrD9u6zYK+vNBAhM0oud7kMD6vk1g1m4gzw82rpPAvyT04QO6r0/760MkHesO0g7zSMLvov58Q/92B+nvRaibq7BnUz6fWFoLfQAuUzvLeYq0uTRxgGsc4yp9TJEnyZaCMCZVPM9ZcsoMsRRBM//fIUadFlVJCi4RNm8kC1hYUjDiSd6knQWWaMMS9aIKKhkQ2MYSjzLC7uABkzBm6cSSdeOUGGaEAa45+2tJJYmWLGkyIvOQArimBvKNbLjnXzsLpCjQzZyCdb0u5TQwxaRc9jKpkgGA4sOU5xyvco5X1bNLgkkaWadFwa4BJthPjkn63d+rm1nm6OYSj7unU0K9m/IqQzMmT5EEBTWvt4TZGnY0sTPJPBnGOEpMmR7GDrLEYJM2v6cJnyY/20GSdl/nDFP00cWcSwzfVrmeeUUZWGngmR3HBANUiZBXFp6FZhiY0sg6GfWrMwaGJXkamJkjzXnOskA7w7yHeRnWUNaidoM+TRHeIq7CSDFGN08tCwzoY9qlZ8L8kNTePqZU5iahElPq6ddG0Zl0FgnQyxQJiiouTxNTdmqMMjvUcIbXiVChmRV+ScFXCYvp9QTpEYaZpZsdBVKsrc3vz/ylm5Ek1DaKnOU8g4w5M8ikvyXqaECk5kny/B0/84lPRf85vPo1at2SnwG9TsSTzEDrPnWTTFHwgJkScY4pmJQmxxR9VIk6K3IiNkCCJQfh4kgAgQQ5JDQQYEkZnJewdHFbTDDAro6Shxfk9SHHxr75Ys7RhSUbLypDzpitZWI+h5q80BirxtAECT6qY4uznKeTeZ+XO8kyS7fvJ6rAuFkDZDU52oD+CQYY4iqWDGzg5QjDzNNJQZnGWTqxNNVxjt63CFMk4UxcWfCJOHPKmOEGcoGkrNaww+s8zQ4xNhSAku/EmaPbZdM2P9l9pkTcfexsgcLuDwYMQggHsrRzCwIx6bOl8QpQVsNVhpzJJqw9Ca8Rj84Nvw/0qUw7Rd5l3AK6z7lXnN3TROpb53YHVzlGkTbPGjCme479WCBHgx6jzPNtzug1ia2le9ewwyT9ZJhnQ9vBZM+W7HuNAV+sMilzjB2OcVX7OkqJOmcW2sKZLEK00KCs60YkhErk5cIG72eSo4wzRR9bxJWVV9I+qtNs+Tn2k+NNnmSKXiJU2U9OfV0rPt/VUWKWbnLsp5N57y8Jdyr4eDW26iBjSMpuhin6fKHFgMYvuXTpP/36RAC9e+wRZH1Nfv9cYVnQzQTyMJ8U8z82kWL2XQ0bMFlTK6Q2P+LE6nusWQEZ1XTUbdinK/orNEOTJtImhC7rD8szslq4Q42zHqpEJVygXkGevAYD1MM99YFqZiVIkSrygPN++kF5IL8h+xlnUIrfNeC6putGEZBnG85zlpsHH3G5kt1MaUeKeELS6R5lxCzQDmsaHNEjk/UWcU/0G+Aa9cWPyd7URq5XX7UhPY7j2h6rSDuO6rklcLntOo1y7Jty3FT1M6vCHqQIC3SEwn5TUPI9q7A2IftJsMSBhQ89GTDOVgj9iBLM95OwrCBfkgJtyxtSjOcFHa8SkYJsRN4rkoAmiCvja4caac9VYFnHS5Ow0+5dEI+99aZaSMLkAqSWV2XlpgKpp4CyTLIOduQkzY6Yss2aYF/xLnuKhDGzqsEZ1zWhNin9spbe66BWDWU+V1iWgjInk9EgY9JPCRkLVzkmqcFJ4BBO5zamzBxdEIX8uLy9nK711M26WuBZGIschSZltCX1uBR0KRlTEVymFmdLPDMKwKD0a4GUs1/uJsNNmCrwz+Df8JVggH8IB2XvzojslpldabszchxT9N4XgDJFnxzDPiANWU0INMaYFx1NIilmn7Qh8/ChjZVP+2tH/1cpuifd9iDj6DQB6GtFrtkDOEuVLAIUbOC+pM6KS+76+TKBgRdB2G6ndd8ZAvstSQCyDPioIPNTDwHwu0WQjW4jY2CBABTVE1Jo7b1XCMDcLT2PHoK32Fd1f68hrFuThBu4NqjHbGBMjhBoUUBkyyapLRMkiocInnsXCT5m1xGwph6Z1yIE6bmxddcICyMGnKGfMWassXfN+61H3xvV7RlLzI53Wfc/REh31WuIk7qdd7RdjbFZIIAVST3Xxwhpw8bus/6GEHZhrEAD7I0J1qF/P6fnmSEEaaQJAHBMj/UcYSyarNdYjra/nG43pds4qvv/mm7vHLIYY+CeyXwfI7ARlWHOJjLGCrqtX9a/G7v0ECG0paLbuUVgnhvbMoYsxMUQRp8BwI8RmPu7x6oB1ycJib83YfN3HgiMyxlkjBhj+gBhnBpIbdLiXgIIaNdxTL+b0u3Y9bdMkOEbq/MBPhOhGLSB40ebyNz4E/15DgHyCsAHhDbJAx8R5OtLhLRlRDZTww5iRJ4lSyeLpDnBFWbpIqXeXIOMkaTg7JN5OomzxQDX6NSVf0mslULDPIWsqJZ9ibwVcKBGfMV2lFV21KWqZWqYJ8NbPMGYeuEYCGhSKJNSWWhHlk7GGORVfsE9/yzpboNGHtUCxAq+JRLOchCT8CUJxwLNlexiggEkpTDKDfr5Ff6KASY4wRXS5GhT6VIj6zzJmw60mETV/NHMxD5Dlhwhkc8kREVNl8yTdLmdGY4vKTvFWJIW5gDyDJUjTZocfUwToUon89RQpos55jSd0QIzjClorDoDUaX42nJgdIVmznKeIUZJkVefqP1YaqYxjhZoZ5JDxNnysWH+i6/ztD/DWFhLHSXMg2+Wbk/yFXlkjBhl3uIJRhimqrK1FZo96MGSPYu0OZBmxvnGmLEwjR1dCbHzilJlnEFMflsgqYyQ8BweocoIw550nEdSjqtEmaaPUY4xxFUGmCDNIu0sMMAEzaxwgisO6looRpE2Z410qNB2nUb3CzvFJfqY4goniFBhgiOs0Mx+cprHOU+aRR8TMfWN3KLOGVjWLjvEuMTj/wcnmf9yXne1fyfpd2moMXwAzPPOGEizdGFhOo2sY16cBv4Afl3WsMM0ffQziYWSiLw/qnJsSTktKXiRY797fw5wzb06W1hxb9N+btDObQetC6QceFmgnaOMI2mkdc5esrRU87iTwJpGZ7La8VmGrjE5q0SUvdpBJ1mKJDjGKEsKWxtzzs5/i7hLWfPaPgawG5jcx5TPP0/yFsO8R5wSYwzyGmepYYcG1l0SafNcSWXvJeJM0u/z/Q41/Ft+FfHAXHI2dpZOtlSOaWEcS8pktjTdvDJ4jaknEtgGB/DK1HBH2V82H5scPqkLSjYPGQjVxSxzdDFFH0llWFu4h90XVmhhggFnD77OGZXDhkWgpN8zxcuxQIo7yv8TJl+UNIssaeiE+Yyu0Kyenot+TiZb7iTrCxHGdOxnEgv4aOaOg29JChrnM0eaRd3ejm/XamqbU8wCYYpedoipj19V50k5/3EGibHj9hFVIlxliBEexQJjLPTJxu0C7WwRpwUJgDKZ+xled+Z0CB1pcWA2zpZ7SJpc2Z4hFmhnTgNFDHyfJ+PAZ4IlvzZO8TY7Kkf+aV6fCKBXv7ZDZvlDecBNwvvJB6UDNnET+AkGAsOjQ0z9iSCr2MuQq3+IQlMrjfV4alyZGjgKH2SBCLzNKWFcqS/NOEflwVsZLLbKh3qGxapiuMk2xBWUqKMEPeLFxnXR5HuRm8M7i01NuS3rsY4ixdiGHlcFPngDqIVTvC3b6ZDjaGZFEohGkNV+k9uBPMynFZzbB/FB+Y55AbCAA40fppvobEUKiIjGSs+ILJN3xUeBNO7vV6TNC5O7m/IA2s6CS1pnDj4soOG4gk+PwToNLB+spaiSqAIpbmUeEt/CmKatFgmphIgpr7MaEjDGICQhpYXvOg3suQGlG5LMerDwvhxbWo7r7mloMNBLQdE7NIc0xZgAVh9mhJG454CAl7HyDlyG/nMig12nUb7zT6VN6yiFwvcxBU1rlTloXlgQWCIJBd9WFVjbhDSL7Ju4K+Mqo6CgFc9RSV5OkxNZ9g38QqRHtxsRQJNzkC8A+3W8ZFRufVja9G/ThynegjUFOJq5gzKsoUnH5Q3ZXrxJjt+ZhaMCeG4R92RISUmWm30+C3tvKuB7Vq4lLsM/4c8ENDgkY2ztgACXaxvw8LAcR1yvDytcF2iHhIKKCNBMGfc3FNPVvHtpmayJHmEb3q3X6zQRSDuf+lcjIbHWPMpmELbSBMEHz6SM6GfXCGmsxwnMIJOzZwngQwSZW0369xsEj7NBglfdOULAwaYej7HYxvX/NEEafogAZphX3yKB0VUk+IIVkfncwJcZPb+DevwGFn1d93MZAalMRm8S2k0E7CoQvFJb9TMGQBuY2YHcM2qRYt8krj24d6ctojjQpaxeDup392k7v6Ttbu1gbZRGQNYZxC6gg8BWrCfI26MIy/U2ITH2IjKHRxH2ly2WmK9fE+FCSOIJ5A62GngJ0o/GBKxFruUogT3Yg4ByJgktEiTGEwhg+Roe8OOerwWEcVjQ9jfbhlY95h8SWJy2KAeojU0A58aRMX0TGScmgzUw7R0CWGwy4qK2ybJ+x7ZhQE4R6R+zLDAQzxYZVgng8k3kesghzwAGlE4QmHD1BE/CZ5CxYkzJ21D/3Y9DyIvtywC9QW3fbaT/LyPjYYHgBWgsvVpkXCwQAN+C/t6h55Qi+DK2gIa/frpfs/DtQfj2Xvj2Pvh2N3y7A77dBN+ug2//Q/j2Ef1MRd/LwLd/Eb79X8O32+DbSaQt5yHJR4Dcp1pUGtpG0R/YW1jxB/oqUZW0igmjsEAizJNxBpQVU41skCepaa8lnuQt2llwdov5wpkUTNglJS0g73gRZ2Bjjv3M0q2slACSgKT9CjAnrAph1c3SxSwDTNDLFANMkCVDnC2OMUoXszSzwgjDCuZFXX5lBYn51oGAcn1McYhJLUjLLp3L0nlf8SpA3yKWjLmjbApLnoQAStVQdoP6CBWS5J1taKwPY23F2XKZXFVZjo2sM8oxB82MtTdFH0cZ9wKwRpkMxtLoYIEyNco0bHOJ3FHGSLCEmfgbiGAF0ZyGhgBkmOcEVzDfwwkGSJF3toSMg3W6mWWJBIOMkyKvDlGyb5NOrSPJyVUiZOlUL7EGzHjeAgmsCLTU4CUSdDNHH9O68B+SbOsoOZhgbJxTXHJWjxn4H2WceTqJUnV2piXwmrx6noyDQAJwV5R1VPZ2t7FiEmuTOI4z6CCLmMh3K3BRUWllA3VsuX9bjDJ5UrSwwjUGlLFXR54UeZKeuDvCMLe1361AFyDyGst+k/l0v96ngw0anYn2Fk84g8ckiQZ450g7SwpwxpeBfsa4tM/sKBusmzkSFN3bsZk7ZJjH0msFeJFE1LxKE40NZyxZGyMg11BS5YQm/7bUbUkJF/aWmPt3O/DczyQxldEaSGEgiaXKyn5i7gtnQRVxtsiT0mCg235u5rVo3o8WmlQgRZE2unWetDTZrLLvDNSzffYxfV8YhrEJLTQHhCDUzyQDTDDABM9wnkNM8gu86vOxsKHvkGaRQcaxNNYSdbSx5CCqMWejOi/ZccsCjwBWBVJsIJJNS9VdoZlZujUxdtE9US28o0XloYAvBthrhGFlRt5hhxqGGSHGDoOMYX50EarM0eXA6joNvsBxlHESFO9jJVrqa4k6PYdZnZcrZHUByM4Z5J67RZwc+1mnkVGGuMIJZXFnMMsDYx+XqFPW4R1nmTawTpE2bde4M81jlNXTNdz/LWXX6uEES+xXtmJF2YQiya5zdqQF+ExwxNnSllK7pcCkjSFjF8o4u+OLLpZyXCXqCxgWBAOC79h1KoFFd0iTo59JjjDhn1uhxff707w+EUAvt+9BKhG8+Hhk/CPx2LAH6goSZx2FD/QBd56MAAoq57OO2FOLM1r+Hb8CKPEvCk/yFlyGeCtwQxNZwcEUe3gwv6F9M3cF0TeZ0GVh7RHTBNZ6ASTuJTSBNRqQf4Zg71PymaOMB987A4HqYZ+akjeyTuvotjzwF4WR1FxecXBpc+AB6TD9O1ndxlE5d54R0Gdo+Tol9Vh7Tx+a9pxDgME18Xnx16oCJcbuiMr5W1G/t0ceeusoSWF/HbqXP5AH2CE86TXOFq0z22xVZRuC8G+5N1yOtEgm2+XzfeUp5gXpkqL9FhxhAmpF5kxaTVyj0k+JIZhJPkwXs7Ahn9m7qEChyZa/rOe0rcBRAeJV9WuJAgcFaJyM9XvRtdWwVxsXkaW1KtAYhXi7/P4kb8GMgrkKjHzU0yCpria90v3erci5zNEVwINxPc5WWLsh22xngbZqESLiEWcr5264nlbg1cBDY0Wat+JFeXtw9TqtTRpwcgt5uIqqbLdJdPsk4J4V2+abpZI682NZe1nG4BZxznMWUpAawtmW7NPE4pxMKu5jNgiVSITldC2JZxGgo0e/E8NZr1Gq0KNMSmXw3d0vY4xVOe4ERZf6xqpisksBHh6Uvm5nATbQx4PPwKsWMb8HAc8GCEDEUYJsUK9LZpA5ax/Ba+77+j0D2A7r976s76UJUs9VZI7o+I/2Y6AgBKDKQL/reMiPe6oNInNDL8F/7Kx+P0YAKbKE5PAoIelVF2e4TPBlu4GASk36HQMKTW4aI8hEDcBMIlYKTxP8xmq1Db6o5ziNyDwzhPCctO7vRYJPZ5KQgBvV8zIwsqLHM4rMbxk9hqJu7zAhKKOHkMr9A22nHAIqVvW4O3S/es9jZNdx2aLCpm7LWGkHgH+u+10j+Pld13Y2Npwxi7+q2+sgJMsaKLeMM39Z1vYziSh6jrcQwKldt3lD2yVPYE6uIQm9gwT2Y4UgVzXWXULb4QKBXXdYP/t9QhqtsRKTBGZbUs9vU7exiQB95hNoLNFx/WxS+wkCA89kwjHCuH6V/1enYDveET3WKEFi/gYhhde2Ucb9VoloO6YI4SkGXhtwbOB8niBtNlDWzntNv9dB8H/8gE//62OkrXpxlrvbAICMKVVckEb6W589nMwTBaaAu7Cmq94mn80wTxez1FBmkn5CsEGZCBU34AZZaBTpWR4z2jZvI2PpmY/VJP0Kik1jBtcmyRUp445/BnCmUgMihxOA7zZRlVpZMWlgkjEK+pnkFb6oDJgWZ19ZcWmSM0vq7VNvoioR9+Ax1pOxaOyzEuIgjIoyMSYYwJIL45QokGSWLgokmWCAeTIcYYIGZbnM0qXnVnWvOwngyN3n72TBCykKjHGUAa7RxzQ71DDEqLMBzYOuj2nO8LoWcHEvZqboY5gRD+boZpaq9rElS4I8K0/TyxZ1ZOnkLZ4kQpXb2ndyvGXaWKKLWdq0uLIFzzQ5hnnPZYFF2hTArHCECQcSTY5m8jFhkuQpkKSZO1p6rRBniyNMYAmNcUocZYwt4goI1jibyPrdAlJKeg5J8oxz1CW2AJc5gQWXtLFEibib/NsxWfBIG0VaFJw21kyCIq9zxoGiN3mCdRo9dMDYQpKmKv5dRRL0MuVhKRZ+YqEki6S5wBly7GeIUS2ei+6hlaLgCay7w2UE/C1QpE3BlUXaKFKijjhbHPi0pwPp60E+cmBYzPbn3UPRQCJjGon8Tlw/d0sxxTvtDiB1QoWIq3EsaKaqwI8BCVllDxkTzYIlhK3azwId9Cv4b+C8hZVIsMWOBm/IQoIlwZrks6iyXfPa7GKOK5xAEkullsuRpku9FAsk/TpLsES3JtvWUaKq4OCAXosgtZ359DWyAch1XCThbLY4JV7mWSz91xJajcErcuAaJWFIKq55CYo3ZsUXAhZJM8EAU/RRJOEhIuabGmeLCQYwKefu/pEAjgCW28JPnYJT5sE2p/PrEm0un7W5F8BCPyyQJkKFRdIUFLRtQ0IhOvXaqaHMlgLpjaw7gCcgVRs7xLCgJrGliHtbi5rvqFs8JHS+MVak1bkGulpYB0jt+R7DmGegWQcYm1pAM2HamWWCSJBrdC4Vxvdf85wvfMl4agBw/72IAmfWPhZaMU2ve/fl2I+F+VjQVZpFznJeLQLqfLEpT5I0OX8+OKp2GQbKfpFX6GLOmY4WZGTeriYnzpFmiziTHCLBEn1MsUONt4HMszHypHzMNLKhYmph8Jtv67zeC6bo+6nmk08E0ItQJVpFCjr1K6thJzwkbyrz57aCcwoM7Lt91xPz2pReSgSIwtpjeznGVchJnUtSgZECUgAsQGJ1NUjVDkkSjssuo3AvGcCVtVX5zgrNUIV8WY4trbaJew7IPnabNFKGtfReOS4rPg8rcJRVVteA0KfZlERekY/GWI81SrG0CfWFj+XhqAlny0SoBibDspxbOQbxw7JNn6RHEVZARRl5q8rqQiWVJnG6rWyqAhRnhB1XpkbAJ30w3rOqbRhB+mZUwZYZSVAlKSh8vFpyICCvFH9L6luJiZ8Aq7JPamVCclmU7uNvhw/LeEjLNlpz2y6ju3nwEQEax6SN79YrcNSrwNEm5CJpOfYycDMAvmsFIC9/d9bndZGYOpsQ4DWkzY3hCPwko6uA9VDR4soeHre2d/VLQbZJNICTN1Ra1UmWkcgw5JSRiJiJsirnQllWtBiF1K8BOVkZRj2BqJd+mW96mD1fElCQhKyoM6PMyYgyGG9BQZmjazmCH9e2FBALtAsQeQiXuhCTvqdetzEDe/dJu0/RF1JxqxAr7xCtVmWcTki711AOUrCEjrld8sg0i+y1wj8l7dO4uRGKMHQcalG9fLBW5MMJqG/gs/GqQeakZ5G2VMDdwZ56pHj9KkHub6xHkOtzGwGOIPiyjSMAyyoyPg3oNR++Gd2GsZ+MSWXMunqkr01undTPLCPAnckGDYwC6efTBBloQr9nUlwFwqnV88sQAJsobrFgEm2a9GcDH/8MAZdM8mgg5ncJ3nYdBAbba7ifo4MuN/S83yUAhsuE6yWm2/kqQbb7DM58dhnuq4TgCAMZbyIg6rf19ywhfGifbmNQ28r+NkgAcr6s2xxE2Hz2WQM0c7pd256BXBWCx5qd60v6Xo7AAjtOuI9EtI039JxOImCUAU4mmzW2YILg09ij7Z3YtW9jzY0QvOhyu95/lxDuYH0UJQCEtmB8E/G5ayKMORtXBwlBStu6HZOh21iwNk3otsd0u/X69zX9fpNu7ysEwGhI95Mn+JG26v6NFGIgdROB5Qn3eyluEBiWxrLUZwqXT1/Vzw4QQEW7lmPI9TtIAAojfPpfm0hbbBDSoJsI/qI2vkZB7aVCCv0o97OUd+ABPqZXDbXn6Pb7twUhLNHGJP3yTIIwOUrqlmbJsLtN3m0lXkytCzzOJX/2ssTSiBbbr/As5jXUpobpBgwac2H36ryFMIjEphOQ+/STvOUP7TUq5DJZrUlHrWC35Lwt4owy5IClpRK+zSkvcOJsMavm6WVq1NNJ2GlXOIFJjHe0uLDvGLtBvNm2vFDZUrmReXYZ66yTeQ8WmaObqwx5wXeCy2zQyBS93FHw0KTCEibSR155faMMUaLOC+zqrgvCADArhEGezfuYokPb9U2eRDzAEpSpYVFZTVLAb3GISQ2RiLiU2Zh2VgCKHKqLMjH3jhLJaE4LZOELmZ1PG0VOcIUCKZUtpskrONGthf46jYwwTI60F8M17HCJUypKk0LWwAmR88XoJEsbS4wzyAQD7itl4LX5H3YxxzFGXSIt8vM4FSIkWOJlvohIb5M8wZse5GHBKCbLM1ajpTcaAFIlygLtKtHN0augtl0LvUwT1fFq7bObUSP+VusaGLLh+zHT+Dd5knkN+zCm4k0O/v9kuvnP/SUSfkm4PsEVBhmjSoTXOeMFvgSj5LFEWmOe2jUrQH836zS4dYCZ6VvKrI3VK5xggXbmVfxpAHKGeWKUhWiB1BMGyooMuAPAZYGAy6YLJB2wMvAFcFZpkjydZGlngQzzRKlygiu8yjnGOUqO/USoqgVCiYL6NRqY1sg6VznGbl9LAZOiiI9eqNFtXxEq5EhzhtepEmGObp/zBxnH/ACvMuRz9n5lhU0wQLNyo4xFvF+vFZsjpunjdc74XGlJ2gauG1i1QDuDKkNe0mCcIm3kSCszvNstF/qZ9Ov6AmeoocwiaZ7gTU6VL7FCs7OSBxnnSHWCGh0/NZRVYpt0NlwjG4jceIkyNeRIM8IwE5r6KtdcjEHGyTDvC0DWvvaz3TuNpS3syCRv8iST9HMHCbuwoBED22wBwO6tW4hXYIKi34f6FGi1+0mSAs3cYZ0GjjFKMysMM0JKFzhEwN/pCyzGvrTrwOS6Jh8+woTKaRMuO5ZQo4wzXuNs0c2sMlSTviAm4KgsOhmrz2wFbP6zBZ6ihlt0M+eLZyBK1IouKkmwSlHB0ToFArd8gcPuC1P0YepSk5A/qItkf9/rEwH0SsQZaf28F/7Lp2sFfbbV7pMKnNRDfzuQVImhFWNFeXBJbX7kCbg123eloVuhTqW5ncb6U5bDXNMjcgBlIA1lYkKjVYnVHvPsaoJ9ykprZD1Ih9qFxrxnG9gvx1WjiLabqNvLipOqgj5F2Psl2c8C7TAD+waAVpkcS0aZVCDwSd6CZ9T/z4C0G1A8D7wr24iZH09OgJP26gJFk3k1CauRNCROSxuc4ArUqx/ecZVpFmFfA8Qz8rBWs33Xj//DTJMAq1aUHYdXOSdF0SFpxxp22Je7K55qx/GBzIgcu5nhui/RJrSxJNtTWWuUKj9buO7MoW7m5Bi00E9Xc96WpRuwNytg03a7nktF9rPv9l1v97OclzSaWmlT8Y8pOtNwb1ZBsSgOYlSJQq2y3JrE27F5dQN6YF8S7u5XD8UDkNAivpkVB2KpyA1rs+kBBhS8mDbkPAp7j4m81piid7Pyfj+TctwpObZO5gMw0SMPqzWUYUZBwVaRzDKBm8QbQy/ZCpyDqLGaqnL+b/GkTBgJFLzslpWa2xBPw92DKsGO4r5m7SzIcazKtlZizezL3RVQ9SYK6KbkGDbl2HeIBVlZKzKuZ5T1V4TE5jIL9Q97Wui+W3flAfywsBq3iAuQmAA+K4Dejv4/g/SZgSEGtJWRIvVFQnoqSOFvUs8ZAvgxhFxb9rmLhKCBGYI00aSBTQRQ+jaB+WLAzgXuDy5QoJkygTFojKjdMtAh/WfAnxXnm7u2b0xA+/+gfrcHATM2CF516kPJMnAM8WS7pftLEBJGo4RgiosIq0rHMOP6mWHEP+0pQiLpBEHyaoDLDAHASeg5HyCAWhME/7wb2ga/p+d8khCwUECu7xltT2NSRgm+psZM2yaAkQbEZrQNWoE/0XNY0GOIarsOIAzF2wQp6AjBIkJZwyQJklc73yiBKWn3svOEJHYDpXLcn6j8KgGsMgmqMTtX9bhtvBzQdjSp7G65awoBEyt6Dtf1M3+k+6snsE43EeDTpJW1BJB39z/7uzwbin/jZQI4lCPIcGPaNjaXRRHw07wUrR8r+n1jupqs/QeEhPsb+v9pbR8DmMoIqNlBuFYzBI/M48j1kiV4JZb1eB4kPId8ml8bSF+YJNraFKS9qgQA2a4rvfdwG8iKtQV7gbs4U8yCHITJtujFlxWRVkCY5HCIUS1g51inUX1/cpzgMo1ssNt/yRh1zaw40yPGDkNacCzQrgyXCgNcY4eYPxfkSRKnRI40ExzxQsfMvQEHrsxzqp9JL1LWkQRY8+sTVmDe5VGNrDuzwtgWJQVVjG0hKYVHaGeBXqa8MDMwaZJ+Rhh29lWeJMOMuLRUJJ8COJjE1FI4ReomTDbzqbNCzBgkFpwAMMoQr3OGBTqYYABJslx0ALBFWZJXNYknpze5BEX+il/BfMAkSXPe2RTtLNDHFHFKnOTKfabq4wySJudSrzuIR50VWWZCH6fEIOPcoZmCgox5Uq7SsUTOAa45OCsyNpHRSviAyGqNySOegin1R5NC+I5KqAyMmKQf80Azz0ZrDylyRbbcoKxGkyUbs22OLubJOChnDCRj+FkypKWQrtDsPnwm0ww/p13AmaWTJRJMMOCASZAhhlTMlE5c5n04xCgTHMGYrRMMYLJGY/GYvFGSJA85eDNFr4YaGP360/16X4Ey89OaJ8MKLQyq78cUfUS1XTd0HNqYNCDhji4QGGOqjSLT9DHBgI4XEdUmKDLKEANMUCWiYEWBAinMu28FSWve0vH2LC/rfHQH83UXb9BOlybaIsUKzYwxiIW9zNNJTCXaNm7GGPQ5+yznHci2OcPYw73qmbmjcnYDTuQYWygru8zmySiSIt6islcL7zFZpsloTZ5qDOgqEUYZcjuqbmYZZoTznGWWbiwAw8IlBhlzQNt8J/MkMR+84J8q85K1RZGEsxXtZYCZhWQIePWeL/5kmGc/Yr2Vi6WdEWmLTuVIjARLdDHHtI4TszWwOaCiPEObjy30p0oU8VjsdQBTUtK3HKA0FvUA15yJbczDKlEGuMYZXgcEizA/VUt2N6bZOo1ijwbqg1rhbU5Rw46zB20RpEQdRdookCLNIn1MOcC4QDujGvRxlWMs0UaaRfIk6WLO58UIFWfRNej93pKXm1mhQMoBt16mkKCYo+xQ46xm658YZfYrq9VY++YbmaTAli6cmBdrmRpfeLIFIZB7vAHSaV1qukMzbSypSUXKweFpenmFL6oNyH7ypLj5fyZD7yMeFEZeK9AK0ao8PDgL47aGHpiXzoysVDAKHxSAEQEKRuoflQfudqgdUaAsKQAVTcq2iyIPha3wOmdC0VQvTDlbOSABt9IPSYcVgQzc+1IIxegZBKLqd1bGfYRsYNtDfyUiq3v06MmuKgML5EH/okgNnHlyHacgM4gUh+ZNNq5MsAll9bVCQn33VmjmTmuthDNk5FyXIgmRZE4QgjRycPeqbDNJHhLK6korwNcDe/cDx+WGm69/EMoiMbXJjnEoviOnMEvXfT5/Z3id7VaVE49JP32RVwDYWy/7HGRM2kzPr0QcvW9DVB7GuICwYA5KwMNaaq88rNdD4+pdAaxmlJF4W2PYyzCzCiTVD88K138u42OFZvYeBLL4KjujOFBRQxk64J4WsMYKLSzL3zebHhCpbhJnoTWyLmNIwYUUeenLjGw3SyfxzY/ZG5X3lhBfEdLAQmDK0QR7M0BMHmJJ6PhoCA/wfEX+W6CdtnLRGXnvpx+UCacMH6i3VZICdMAeLRTXN6GUVRZoUiamNDkP79iiTiTYtRLwsVP7gICEPXiqY56knPsh2UeEqoMNe1vhnvVdFu6qH1aanPT1mlwjC7SHkIxaeLX+5+X8FHS4l9BrOweN9dBYXZfxMkUAuj7trweR8WXXxHECK25Q31tFxlmZULz+FqF/ntb/O5D08osEdh7ItdSqf59BgAYDK5IIGGRA4Awynk2mmyKEVmzv2sZ1ZMwaGLKqnxslAIb7CSwsK8yHCKw8AyVXCVLMNKGgN9mdAWKD+p03EJnmmp5nPUF+Z4xGY5emCYEUdhzjBLCvniBdrhDAyjECOGQMrk2CZDit7TZOCJto1e3EEGBGmdxkCKEcxiYzma69lgksrywBNCrr+b+BgHjLBJalgWUmXzXm6zYhKXtIz8uuywECuLqtx3QYue+9q/vP7freKEEybF6PBsj16PY69Ni/pn30ywSQyuTX1icJAhCXIzAMb2h72T2sg8DgbNLz/9d6Ht/V47yNyKmryPh5V493HE9i92cAu76M+dWh52XHVtH2MZCoQmDEmgTb2J7GujSw1WTplwk+gElk/Nt2jIWXRu51z2q/2YLQLQRgLCL9X6/nc1Hb6bOwwPEAAkJnkHb7UwRYHkW8OWf0XpMCbuiCp3kxppBgrDRsvA9sh0IuwRJiEC7331Oa2phjPyVdRJqjmzI1mAzzMicYZ9DBDgt2yJB1doEkeXZ5YWKsGZOizdPpQEk3c+wo2GXJtWaOvYgUZFP0OkBnct5ZuinSxuO87bIzOe46920CmOSQg3aNrNPObZftihF9nEcZQfy45smRJqN+P4CCZVEFKUWmeoIr9DHFANfoZ5IyMVr0XA3cMWBvSQGqHPtZIsEVTnjRfkfb0M7NUhyzZBBvqVk3zDdGhpn6288GEIiUeMqlzyLHE0aDFZO75avm5WVeRw2IjPkJ3qSZFY4xygLtzNKl/VDQc60JSgakFohRdtuQEYZVQrWfpPqLJVhihRbm6GKQMcrUeChGP5OY9+KWejKd4pIDhbaPNpW3psm5jNCKVguwiCBhBOZZaPLVggKCGfV/hBC6ViamYzFI3FZoQTzLxOvRQBMJRWjx99dVdmfvJyhyVEMvBphgmj4H+Gy8WcG/u9A3z0QQMLZG+VMG1Nr4M2P/J3iTZ3nFvaPEGywXPLU/5a+/42ccyN8hRpEEKzQ7+CCM1C0sFdbAdAEGQoKnJGkXfZxayjLIc32MMnN08av8BTnSzpTdzaSqYcf9Fe3aFJDmjoNf0oNVHlUpvIWe2DV4VH3jDDAxsHyRNN/jazSy4YCLeXqCLPSHY6o4gGaM3Cd5y9li6zQQo+wgVYm41GWUWKKNcQaVDVdRIDmwwIzNmCfFOIPsJ6fy9ToHbUz2u06jewDKQpAA1zL3LvgiQIoCC7ST1VTcBEsUSdDFLENK069hhyJtmN+mXbtDjPIkbwJSS5qkuZ0FP39jvzYok8tALrv3WNpujjRxStSwo0xFYUOu08gVTmDBicay26GGXqb9eu1j2sfdlC545EhT1DYtKfFkkn4/b1vYMT9NG4s17DDMCOYj20bR/T23iPviWyfzTNHnaekTHPF04d1p8JP0c45XscCIY1ylmTukyHv7GCM4xo5fR1FlJm8hdhm7r51OssQUXAYB/yzox+anMjFNbW5370MLBkkptzym9+jdLEWTofcz6c8oS7RRIcJbPMECHY5NzdPJLF2Y3YeEhMy73y3swgz+ntcnAuiZzttW9es27srFYCyKgt6Eirh/zzqNcEBTPTuEkXZ64T1KtnK+qgBNWb3Z6pVxtIr7rRRJBNnXa/Bs9WUBgvSBUOKVt+SBvRb2vKMspbKyqS7uSt9NAzMIslue98JhRVFVbuKFapxSALSiEorBMrAsAR6tuW2hMlshZ1LXqLL4esQfhBQC8iTwB5d9TcCC+NLlSLPHCot9yh5bg2hE2uMSjwcJUVr9ADu0U94VULCRde4pCJBeXnbAKqGAk7H82AYOCXuuGn2AfQnggABrzZursArFPLRVi/w1zwl4OSp9F6cUiiFtMzqQYiglxx2pVJ2Ns6eoMt20ficFxxhlzwT0n0TTZKNsW2E1I2zDFZplG0VbyU5KmuoCfJRskPGRVwDvQAAaU1p8vxz7IuVIDF6D4i3YO6Mprjn17ttWqXhGzkuUo1X23FawrirjxyZ682DcIRZkXKvK0EvjCbT/C/9Y/jaKBmCssBRLOIMvvfqRXMhpeHiIIMXaQArJi9Lne6Ow78uy3Rg7pKp6HKtwoiosQW6JFLwckwQ+KhoqU1bWXxPOPH0ouxrCTephz21NdB7SMZbQcduh46NWpdFpbY/9sp08KS/YplofkXE6IwnF+27fFdbfPtha5rPxWkCufWPjtBJYUSmCP10ZAZJuImDIiwgYUEHGzmUCwGbMyjVCOERB3ztJMNxf1X2qNNtlhSndnnmgGRhmksJdIO19bJo/1ffqEaDnOkEma5+zMWQyTTuGHAJgZAmedcZW3HVv4Doh6CCpx7qqxz6q/5YJbDST4hkz6hwBqBtFwM2TBP+253RfiwSZ8gUEJJrRYzKwJber7yAkrq4hrK2Deh5P62duIWO/VdvKGG5pQrrrIUTuawsFtxDw0hiXPdpuA4QwE5sDjMm4ivTfsu5X74G8S0ipNRn1OQJz8xndlt4DyXJ/QEqOAH62EgIiCsi96ZC24XXtl+8jvn4G3hqD0qTLdo0boy9KSF7e3vW/gVq1ejwJbZ9Duo0Z5P6qrGZnx5W1PX6ZcN/q4f5xZfLicYL0Oa3fryAszvSu/fYgwKPJ468SfPWsbW8Qkpc3tS8yCLMwi/T9hP7dxkSWwK6sAN/Y1Q+NfCZelbw8a919BdaycG9bFtw+eANmRoGIWkJUoFiEa7oAbCzO7Ays2Ry1Bq0suzeQGHoLG2SOLsxM3cC+E1yhRZkIRRIcYUKBPwMD5eG/hh16mSZJnmFGvKg0A+4l9YdqQLyl+phyP6cuZjHTd/O2u8YAxxjFTN3L6iU3SxdJLQYlTCFDM3foY4oFOu7zLZukn8e5pMVagQEmXCZlXlAV/ewVTrg8uI4tzJvPwDQrSLuYc3mmFfQmY6pRjyyQ5+46ttghxn7EJL6fSYY1cbeZFQfrIlQwg3KTLzVzx5MjLbHX2sbCQAxAjFJ1Von1SYIicyodLlHHAu2MMcgVTjhTyTybOsmqXHXei3gDI6pEuaP7TSg0aywmENZYDTvOurGidXewiDHc6lT6188kU/SSY797zi1iyZgSBmI+YOZvN0u3gxfNrDDEKL/KX5AizwDXgv8x8twbZ4szvK6yPgl/maSfHGle52kHJbYUCKxhh0bW6WKWIgn+Sr3Hd4OmIKook8eZSb95o1nSqhXzJsGzYBlh0iS4xCkHt03WZ2b5FhqzRZw7CnQEabEEuZgkz8ClU1zCTPc/C6+DTJFUYHqHGmfnmmzVrp84Ww689DJFlk6XFRrwWqaGOV186GWaGGVMOn9IE7ONKWcsIpMitukcaL6MEaq8zhlluUoROavBQcauFGmrBQKscIN+B/23iHObdpf02pwSo6wS/yQmm80o01YkpcKGXlQgUEI3tnwelERcaRtbTGhngQ2VKBrIZSw1k6nulmYKaNeg/pcpByRzpBlVCW6ftl+CJZq54zJWS9e1erNGgUVZyMlwikvOgLYAHvHVLBGh4jJkuwfYYpP400kYiB1LMytEkQRbA3zMW22UYzrP7pAjzX5yTmoRllefz1NxtshoangjG27pYMmv3ZrCbUmvIHXsANcA8ZE3SXRBFzUszKhChDNc4HG9bufo9rApA0fNauFZXtF76xTDvIeF8piNl/nM2v3WWKNVIpzgCuJXJyn1BgobIzJNjgkGWKAds1mwJPRh3iNJwefMBgUd5+hGJNCy4DVNn99f2ijq2Mj6fbOOElP0qQ1FghGGRfWo89w0fVzhhF+DIN6LxlwukGSRNI8ywjS9ugglfom2iLJDjKQy3aNUSbNIijzP8NpPNZ98IoDew9sKLGiRsN5Ui3uRpYEmZQNdh7u6KuuyxArQI4jkvXqoi+EsDE9tUfnTJP3yoPwqcBlZBdOV3NIo3IkouHIY8jkJHmhjCXJwT/2odqiBmIRGcGBXUu4acFqopEuxhIRkbEOqXGCWbgGw1GNohWZ4HikKDwrYRAT3Vfso3eByx3ujsp0snQH0ScE1BuRB/1XgXRTBbpDPnBcgbWjzR1JYHBafuQXaISMr1ibtdcnUOKzQwp4f4AbcK7QQK++wJwnxIUmGbWYlsBB6VA5rErEivB45Q/3tj8lrod7CCqX6WkhKMnDNtgaNHML9lvKkpCiaAQ5pqquxEiJKNY41ktcHeGfH5HHJtYO1ZZz5ULscjjNelYvVCsgIFWFf7hN22YPXN4RJ2aQAXquCpnac4yLbrRKBVk05XlNAs6DBGWvKYjNZXlm8DO9mcDn5Kzwrx6HsEI+Xvo0Ua1VF1yM4y+ks56UtLkh7DZQn5DsKtO4t4BOCFYAmVUAlxonHFGR7VY6ti1mykU5p9zQsRRIeCrJ3EKeuc11lvSprvmvMrKfgbzOHw/WljJ8lEjAKW2WCh5dJ8IrS1+8nH5R2jQoQmyIv/TYk554n6Wmi95r0Oi1DnSrkP/WvBgTwMUD6zwmgTBFP/qYVkSOeJoA/FQKT7xwh2KEdYWgdJgALCUICq1nQDBKYf0O6jQGkL+v1PWOoGrCzjyD3PqjbWyNI8Yt4+jZZAssJ3Z6dlzGZbu/6+bieQwMCmtg2OwiyfTsuk/GqJ6rLe5cJSbaHdn2uA2GQjRO8M4u6rwWCRHMGZ48zrdsxr7aY9tMCAhIZQGRgbBFhXu3btb0DBGBUWUQUuN+XDf38JgEgtDYb0DbZR/AOVCbhPZvPRwkAns4r6LxPhSBLTmrfFfVcjOl4eVeb7JYUVwiJrsP6nZM4I5kq7pdJEgGZqwhwqItxnois7HI2CEFCBu5m8TRtD6XIIuPK5MMZJFH3OYL82p4JDLS254F6xD7hB/rey3qMWW3jAgH4btXzP677bycwBI0taiByQv9/RttqApF/Z7SfntHv9xAA6DW4exkZd8YAVbsFmpDxZ/eDVoIXoB13BXgEXxD5NL+ijbIgm18V3+L1Tbm33AVmkefBYg6y46LEOHYQSspuXHsXtoBiGRqSElxWyzYTHKGGMlk6hf2trxxp5uhyAMF8aWJaPtdRoptZBR92vOh7lXPOqhP50aIacd8B5DlCvK6iLJLmMicoqFzGPKdMjlUizi/wqgcxDDDhwRpnuMAcXRxlzFlsIM+1BZKs0OyAIuBFrxUtlznBJP0OtJjHXQ07XiDN0eUpicaqCh5YkroYp+Tg2AATnuQ7ST/tLNCmbIQp+mijiKQkxliiTXyLkWeJOCU2VLppbMYpesmo7M+YEFbQrtDMJR7njh7DMCMO6u0QE2Y/uJTXAIAYZYZ5D5EN1zCgARTmcfcq56ihTIEUk/RjKb3GDgnBJcLIscJTpLK9zNNJN3PuJ2bMlzaWMPsck1DPk+Eo4wxxlWOMEqfksuZG1qWeAO+zjAIp1hYm1x5hmCyd3q7/lD+hji1PXwYBFGPssJ+cs0ROcIUt4iQpuIH+OIPejp3M80u8RJIClkhsxvBpFjFZsrWJ+KpJG1nyqAG3cbY4yhh5UizQ4bKzKfocTDZA2Nra/MoEEGyhizk6yaqfVqePdzHMF2bZFU44gPJpf92mg7iC7gbiiP/gkrOMhCmXJEWeNpZYJHh/AS5HtLlH2l4k3QYOtFRXnJllQIkFBph8vKqQvIG3AsbWsaUs1Tm6deY0JmibM8dm6XJ5o8lm+5lkizj93KBMDAnXEPZUi0ozzc/RLBHEP03A3XQ1pwCUpDWH5N8aB6XGVOIigKGkancxp9fslnrSCedWmIcbomRDvMwNCAKpXUxCukMNXcyx4fNYH+YZakCRhcKsIzYHzdyhTI0DoksKFC3QzhIJvw/Z+N8NZAPO6BtgwplgwY915b79DXHVmXjjDGLJqhMMMEk/s3SxQLuycu/wKCNMMMA0vViKrgH5+xXgtXAkEOXdCMOYt6Cwj9f1WhWf0jYFoMxLc5o+l6Uao13mU/Grm6WbHGnGOer3HfMqrVNgrJs56XsNzdg9Pt22DCGjmA1AiTre5El1mEwoCLtCG0X33DMP3C5m/Zj7mGKOLjqZd9bePBksBEbCNMQuIEne7zNXOUYn8/Qz6QQes13oZxLxyltyye2Sjr06lUDP0c0hJl3KnmbRw6JA7o9xXUBsZ0FDvX46OdsnAuhRUolkLdAkZvvrNIYH7bL+3Zg9PXKzutuKFAt5Me0daf28MNKU6ZcmF4qgXAijMDlUnJKzWLa20YmyIqDOEOzdVO+GIdijD+4LtPPhs01uSl1DWWSsKlur6oSwZwAYhNHYkOwnijz871M55EvIg3tOQSBlxu1tF+ZgT+4DyOl+o5qUa15XEU01nUBALpXxpjc/5J5Kl3KkWah/WCQoBUl1PcGVAHqlFEi0YmdD/ACpRwq0TXkwilQ+lrTUCUkczdIpwRrjwLjKdk0KtqztAaSGgVu4QSYIoBQrIw/RViR2KIBVhpmcnFsLK/L3g8BNGF7+MQ8trJJK4t5DKfLys46ZJHnYhHu3gKT8/Z5Jz8bhfOSstLOyf1Zo8YcSMnC3Xc/fZHa3BYxjSLZ5LwethW0ZlwuaLptWz7hNTTne0BM1maCCt5NNPVJg1uOSCgaFeWCTubHtWBVjTGc13dC+z8hx0wG5mJhcZ2eAA/B+z4Mytk3iV9DxkZb2ZL9se08UT0m0RCJjGaXKBZHLpoF2/GbOIQ1RicgNbO+aHtdLMMqx+2WXFR1TtyGuhXmViBTFT8t1WyAp71Vwxl4dJYjBzJ/KdT7BgAMEewoKgKdAn0c+/S97NjUAaAhpZ5PFniSwvFIExhz6uwFJZd3GRUS2Zh5TzxNYYCaJHSeABseAXyOw7SoIMGHgWJTgX2aMqmUovYQALrUI2GQefXZsBtrUI3OfjekX9bgXCCm1TQQwsge5biME1pQxyAzMuUUAWUCAjz8npIveIPiUHdLzflnfN6bXbYI1wm2Cn9tVAmOuqsd2juABN4Jfd94mSeBLwB8g80IDco0cQMCtEQLod16PxUCoBv2OseGMyWe+eDMImLZJ8Mibkfba8zSonZS070EC804l/T5v3iJIdh/jfinxOWScGQNxEWEYbhK8EQ2cNRDPgNKins/L2n4zBKDqy9oGHQSwroEg2X4KAUDtvDcIklxrV2N13gB+H7mXGhvOwOxt3aZJg1+U49tjEuGTeLq9A8NpbRNruzQClj9GSJm9oe+1ExiZ7yBA6GGCh+EEgXGnYKJLzXv0OcZ8D2/gHryeztur++jQ/eT1HIw5+j6fjZTbCJJ4npEppbFegq8y7fAF4PVVyFfFIg/gXkFtSXLwQRkejsl0WvoI9tTjXmVVorQoU8JSOxPKxYspK8C9h1TKU0CCGMyEvZtZZ55d4QR3aNZCrIEyNaRZdLBjjm4svdF87bqYdcBsil5fuQcpuk1CZEEMIItbFpqRQJJJTfaTJ8UUfSpdLKvHVqdKccsc0ZCCEnEm6aefSY4qoGmSrV6meII3MX80A2+S5B0IKBHnBFcokuB1zjDEVfKk6GWKNoru2WXyXuHZCKPol3gJS2TMkXYJ1X7Ec/BxLrFOIxMMEKHCIOMklQGWoMiTvEmGeXqZViZgiTwp/7mNJabo4zxnybHfj7eIBF+0UfTgjyNMMMg453hVpYNVLHH3GKMkySsjsU6lrnX0qYeSFettFDWQIMEWca5wwhmQxtQo0kaUKn1MOcNJGDNtXtjuJ+fsnEXS/BIvIV6GA/cBElUibKgs0BIl5+hCQjVmGWCCNpaoYYduZjWFOEVJpakms5yi14tkGyfGnCuQ0uK4xSVqIMybGsq8yjn3NjNj/DaWXL5n/oSNrJNTxskZXne25yBjxJQVaImsUsz3uVSsj2mXCRrjK0+SeTJMaSrlOg1YkM01BVk+7a/P8QF9TNHPJF3MKiNJFgoMCLUAhTs0M0u3g7eW4nmFEyQoehryAu3OcJ2jW3z3IikH6lLkMU9JY3MagN/FLEskSKqcsIs5khQweXWvyj3lOkg4KA4obCZgyn8sIxXZ+ZgzQs3430JelpDk2Dm6Keh8sxRJ0K0AzALtpFmkmTscUiDF/pkkXgIP4i6rtGvBwJQibbzO07Sw4kzudRr5Iq8QpaogUYwxjirAut8B/34mmaWLafqIs+ULEiDXkc0hYv9QxLzS3mPYpe5pFh1MNWa2+ao1cwexX+hikn5frCgRp0sDGyz1N6/3K/mX4Yu8Qp4UVxkiwRKzdNFGkVGOkVhdZY5u5snQzw3qNKRHAiLyDDLOCi36Xp0GE8W9P+0cd6dXt7HkvpwGUu5m0onX3TFypOljmud4ydvJZMo2/8co86guWtncI2zyis9HZoVgLMMt6uhizuecNt2OMJAX9XhjDrz2M0mfBmd1M8e4znUJilxTVl+ZGu7Q7AuANneKPDtJkTYFpwWI21E28rzaEIAo79ZpZJBx5uhmlm7KxHiPYVZoIc4Ww4w4O1bOa8fHqgGJZr1gALvN1z/N65MB9JbgwEsfeoFZf+FjTmz+DRQ1nXMGHsv9yH3quCkPIHvLSBHRA88t/3uO3/wxRZUtUoSDufflQbog/54a/RuXeZKEf7DwjhuAJw7Ag9/f4MDFDwMDIQtHy+NSRKps6B8uXOShFxUlHNW/X1TZxzb8g9w7fGH8hjyAL8Dp6xJvzwVkuyMwsHpDCodjwBp8fmEGirqyvAwHx98XA/SISDvZhIOF9wM4eVP2Q06AR2rhf1z+v1H7MuxRr57Hbv6InpsfiNy4CfKRFCdW3wvpkhsKcBZwmdDP5G5J4XIbOAAHZ96n9rK0w55DwJ/AY5d/BPUaEpKGjuWPQoFVhF+8/EYoElfh8eX3aB3dhhwkjgvL70h1Av5IPN24AP9g9B1IwufqgQT0L9+SImcZyMOeCaS9zuHecgffeB+ikB+X31uqK/elqx4svM+ecaSoegOe4C1+ceYNSpfFZ+cLMzf42dHrUmClYO8r8KWZ/w0uwgd6/I/MfAQvSRG4vCr93/P9D6Bdi4ZVnPW3R322UhSk4KsAgwJwdZfnpMg8LStKnxtZhqviVfi5N5Y5PfIerCq7pghfWX1RvKEUwP3czHIwap+BnuwH9C2/T0bZdY/kPqJleTsUylH43PhyAEkgMF/kXko/k/xM9hZk5Bqrn/iY0zff8758MLvBr1T/SgBv5Nwem/mRFOnKpP3vc/+zhyZ88JpcD//o5msBiFmG49kfy2eUgXWCKxzIfei+ap+7vswjox/BMvQk4cD1D/na6v8ME/DBdeAH8I/GX4MV2LXg8ul+FQg+YMPI2Clyv69ZE8KkKhKsCJoIabDLSBurnJ5zeFqz+8TdAP4YGSMHCAy61/TfnxFktwMIwNKO9KdJQ5/CpYbxVuBxBEQy4MtADpPI9ujf2glzzxACfg0SpJM9u/6d1s9dJni8Nen2lglpqz0EcLlDv2eeckN6zBnkPmL3hbR+ZpwQfJAhsK5rCX6BBq5a+7dr29j5/QC3N3BAydqzQkhy7SEw/yaQhGC1jqCAgBhZgp9gDyKrzuo/CMy9BEFqbGDQQYI/4WsED7qCvneQEHZjoPE0AXDNEvz7jiLA8X5COMPu89DFM5ecbiPS0Oiu982/L6LHPIb71tq9yMfKVf1MBE8x93aqR8axtd0qAqYVta+yus8Fgh+fyWeHCN5+xxEQ0Fh6N/T4TBZu9x5luzOqbWZg6Lj+PYb0tY1nnXvJ6naMmT2q+7qg7z2DjE0DxU1ibhL2KAKo29xdS0hdtvbeRGhqn/LX1JIsll3NQgl4b1kWT4s5YdKbgr21Hm6sil1Gqy4GdNbDvuOi2ti6Jx9sYlVX1jtZog1LJRTZzYav7qcokCFLH1OkKJAjzSkukSLPec56kTlPhid4C0BZd1F2iDFHNyMMexFq8kJboW/WInFR33tWfYYNuMnSyaw+5FtK6joNWBqjbStLhkuccllkijxHGWOcoy59irPFkV0MQEviG+OoF0UGWlaJ0qYFJggDy2RfR5hwo/aYSm8bWSehYE6VKGX9rPkIWtrrBEc4xigrtHCBM3SSZZgRJM2w7j5plnlBjXPUWXbm2yZMl2ZP34w5h0jC6J7mdY4xSpUI3czRxxTDjJAkT4Z5ZbXVuMRrggGX9M7R5V5Icu4ZB1wlgbKDdhYoqOTLEonP8So17CiYIeBHSkGNqEoM7ZxOIemTGWV5mNl/m/KCLKzAWCEmPTbDdfP9MpaapZ2WqGNMfavkiBuwdGOT01aJqOyw7Im+FSTswApWMaGvMqYJkSaz3qLOk4kHGeNxLmFSbAPqZGxlvWg3MAaCDO8tnsCSWp1ZRY4iCf9OL1Mur5unk2buUCHiDKlf4FWXwJWI8yRv8jQX/v83Kf2f+PoZBadm6eYSj2OBEUsKlhnwsk6DL1YUSRBny/21upjDUnA7ySoILHR8u64MhDNPO5NvDnBNQuoAS2CV/oxiKeBv8QTNrNBJ1rdnlgJlauhmzkFvCxwQ6adsI0GRCFUKhDRlEedHfNHDWKMixZa5b3KXhNeAtUXllgqjNq/M5jm9JiVxO0netx9nixQFDRNJOnvQrlUZ5yJVN/9JkdoWyTBPl55bkryEUCJzqPmYVoh4irBI/CWkwV69TGPJv+3cZope0iw6IGQyzqsMkSNNyy5G3gaNPq9FqDDEKCbTN0/FNpaclT7IOOs0coEzCsJPM950mFm6VIwrwRwJimKlhJCgbP6b22UF0EZR/TSbaWTDr1VjfCYoYj6CYwxS3sX8lPCNLQa4hsmejeFm9+fguyhSZUuWtTExxFVn5FWR9HkDbY2JbMFQIACeMYOrRH3hKY2EithC3CVOcY5XfQymWfSFmhQFkhQokiBKlSQSjWTeisaY3K+2BREqzmCXxaFpkhTo1sCmFHmucszv9dIWLVzlmIPWEww4u7WRdQ++MTWAeMnGuK7X+t/3iv5/Nw39Pa9bwPeQB3WVmtQqu2JfGpHVnCcYmW/Dg7+/EYylx2HP14AkJM4hRcC/Bd5GCgHz9vljghl8Wfc5RmCq2Er/SaTo/QOof/pjeRBvQh7Ki0jREZHP1P+B/r2MrKr/rn62KgysvS/DQ+dXg2SsCHt/W8/FZGjfRYonkKfT30Ye3nsgkUK2/xLBr+od/byqKrkBe75B8BxaBX4HKZRUftLzvQ9CaibAa/DQzKr8viBtyp/rvgpI0fG7SNFxklBM/hZS4K3K73useGtFitlvSb9lZyDTA3uex9kJd6/D3t+Fvat3KU7oub2q22qA+LDse8+/1n7LSTvyGkFydRtJOlSmRbIVGIF9x+/CBYQZ+SIh7KKq4+U3N6AJ4u36/m8RCtKCtueL8vvDPdrPf4AXt61N2k9afO3rAP4Mem4oTUIZJz03P7ivf/4vub8MPkpvwOdvz0ACPhgVKeveP8JZHFtliF+GvX+q/WZSrd+V/RZzkGiSNt6zqmPkNvCHsMfYMnkCeDwBdwuw16R2xlYpwkO/sSqAXxnuVrTvjb35kvTZvta7ci7oNje1L6wQ/00ZT6Xr8PAgIXzB/J9yCDBpAEEt/Mzv3goeR+MIKJXX44sCz8Pe48BleDit42OUYA7/WXjZvHYemTNuIGPhGQTU6kDasIK0tYLpJJB+WiWkpq4hjCdjVmUJyaOjyPVtstt3Cf57Jv+rIiDK9/Vv1wlso5uEFNscgT1m84yBLsqi5aKezyrS94MESaiBk/t0H1/W718m3BeM1XQLAZqKuJTdwQ4DcJK6jw5kHryNMK1M6gkC4ryIADwg47BA8O0bQBAD82szBpfJhNH92LVo/VYmpLee0/cMWDRG62H93A3kGjOp54Ju39iV5wlsXWPPbRNYjMvaR1Wkz2cIMt4Y0vcxbSuT5v65vv+ytvNzyL1wXNv4EIGJZsy3MQL4lyGEpST1s2f12Hr1fL+EsBDrkftFrbazjc3vE5iDdvwFAgvdPv9n+vMQwW/vOeBfatvaPSKvn6kSgEkInpLWNjZ3PYP0PYQxaC+77pYJbFcICxUGqhlzM4fMi19Dxk5a/zcG5gCBHZojsPYuEvwebftf1f75bUJ67yhyD07qfrJ6TAf41L/agB8ty1pOIgbxsrDyfj4DZKBzFeaX4Ueb0pSpNDKH1CrReVtYfc3Axgo8yEfUIYmeQ4ySoIh5fMV1hd6YVEkK1LFFirx7EN1W9oX4/3RRJsY4g54EKUXwfn6Fv3KjcBCgbZYuUuRZUl+1Kfp4kjddfgrCQjJPo2FGdh2XAHndzDmX0BIOu5UlYyBJL1Oc4IqnB5o5vbEIxhl0vobJZgXUEnDFCtt2FpzJBXhRZgV/P5O8yRNcZQjzryvShgSQtdDOghYeG1zlmMuFlkgwTR9P8JazO0wabO1f0QJKgIQ7NLLOBEe0DUUOOkc3SyTo1uRhk0elWeQf879iKZltFF3OZAWjgW817LhU6gne0qJ9gxVaMJP8buYoU8MwI4AUgyIRFs/BTrKaNipAnRVe5oWXUOaKhXYYeDDBAANMaBEsx2VSNgkWEEZLBwvM0u3sKEleTDqjsErUi+wIVQaYcJbIPJ0OvL3OGSwo4Zia79sxdzN7H3Nzli76FFAzaaKlzkryZ4o6SgqGyP5f52me5RUHXe2cjKFism4DR8S7TIrpawwwzAhFEspY2qKOkrIui864srEvbNdZFuhQnzUzWP30v8rEXIaZIu/jao4u79e4+nalyWGJuFc55m3fzm12iHnoi7GGupj1OWuKXmUP92E+hQVSDHDNWcomFTdJeJUI+xVsiVLln/BnzqxMkVe/zph7eopvpOyvn0nEM7KLo4xTowB2nfoBmk+8gcw2P5kHpoRrtDDABGVquMJJTb6toY4tv2YMAJT00f3E9W91Kvu2tNUqEd7mFEcZ5xCT7j9nSdCAg3ElHa2dZMmR5gb9zn42kAdglm66mSVJwVl+zaz4vCZzeAMp8pi3m3m22eLJ7oUGa3PzLTWGcpsCpCCKPwHGNlihmXkyjDPIWc6zRIJ/zP9KUoGzJdq8ry2M5wRXaGaFCQY83MTsHoS5nnRgNULV7RZ2S16vMUAbRZ7gTebJcIUTzjI3Zl+BFDXsUCDpNgEgasMdZR8O6mJVTO0SbPFMrosaZ1rL/UHuz93M8hZP0KnjTRKb5foZY5DH1cewm1kHyMuIp2wXcy7dHmPQLQIWSTt4u0C7e/ZZQr1dEyUkGGOObve7LFPDeww7yy6vwHUXc76gCKKAM1mu9Yn5rV7icY4ypsm9OTLMY0ErMcqs/pQWBJ8MQ68VYXpEkIfhQYS9to+wyj8E9EDe5DsxpLgycG5Av2v+UIMIqyCjP1eRAsUYGsZ4eUzfv4E8ND9DYEGo3JWY7iOjx3KY+32CjqrkcpVQdK6qrCaKgHkV3eegnout3rfqNn8Z4lakDRGKpzQB3LH9JfRYW3edxxBStECQFD2mf/sFggxUGXxeCG3qcZ8mMBASSOGQ1N/tnL6MFFGrhKS/wwTPrcNIoXgQMoP6d2uvHkm5NTZNYojgF/W0/nxU+wH93qB+12Bk89U6G76zx5gp5heV1G0Na5vN6Pd6CObuGW2vNFI0JvWzp/U8bUwdwBkwe4wBdFT/Zm21SmBmmPzKWBYDBM+/bTH05pDs9+F2TRMelr669y7ETeZlbVchFNkDCoCe1X41bzLzGzMPtALui8eAeA+Rln2YEf8HNwmSZpMYthJ82GIESWY9bFUJCYzmo7UZzmV9k8BAOkQwh2/XYzf/r9sExtFh/UxS+2ATAV56cbntPfMjexr4GGjhs/EqETzBbhHGcYLgk3eIYLZvzCtj+TytvzcR0mJfQ8bUoG7T+tfmmXf1byndTztBymqL3xnCHGrMthwC7Knkmld0OxXuZ3DV6//ThHnF2E63EBClgJvZcwMZk+8SQgKMydRBkDZmkLHNrnM6j8wH13VbR/W7h3Uf+V2fNTAooueeBv5rQmBCYdf+DCw0EMaO19rarolxZJ48hIA+xpJM6GcbCHP67jnQ5npj2RnT+TbBGmFCzyenn90k9OPJXZ9RVjoVAiPzSwQfvZcJCe/jhPTZTcIcbEy6N3b1l90LDhKSaZ8mgKu3Ccm4w4Rk4CJhQeaibiOC2wzcx/izsTKq753EpZcUuZ/9Zr53xjbM4b6h1CKgorEn7bVMYIoOEsC1i7q9Ae2bG//RMRUJzxbHkfFkTL0IMu5sjF4nMFKNedmg7f8y7qVnzGUHFCvIc48uXPJDAovQro1W7gd4P8WvRBt0RqBfAdq7wM/34DLsPQMqv62HnnbgGMzcxD1Ci6PC2ovUQ0MaWrZXscTEO7qCLgBbiwMmYire7YymSfppYQVLZC0TY44uEhR5nLddTmreTmkWqWHHWQTmiRRTSVA7C2SYZ5iRXZIhAZwyzJMn5WCTgVBF2rjCifvYAes0kNbCx5gYVhgZm6NEnAoRRhnyxFErVnPsJ0YZS/Y1dpWxwXao4QgT9Gt6nvnyNrLhLEcDA5ZoI0+SnAIEZgx/Q/39xCQ9Q5EEZ7hAM+KJZaEilhoMwrTpZs4LsBZWWKCDfiZ5krfcq85kzcbsi6kX4DiDzlTZIYaZ+1twRBJJfx3nqDNA6tRIP0WeaXqV5dSIGewXaVP2moR4nOW8p0juZoyY/NeCTm7T7gzAK5wgRcGl0v1MkqBIloyDCCa/XqGFSfqdxdanrLVZuhRIK/jnjfnRyxQDKqtuUTbmOV51yZaBu3nlkkj65BZXOEFW+6JKxANVOpn3Nq4QUeDziIM3W8Qxv7EG1uljmlFlDgnjxRIYs35eSQos0YalWloBnGaRLS22JxhglGP0MU0f054ceolTvl8DRAa4RpI8q05J/3S/FtnPnMqorR/mdK6yFFcwjzgJfTDmlLFEjQ03ST9lYlzhhEt2M9rnBZLE2KGPaZeLdmoYhc2RwqSrMEUfr/BFOskq73OROFuMMOwBBubx9igjLrk3n7gp+jw4QlJZJUlVEkdT4mMPWPqyBVgA7tcpDLb9NHOHPElWaOEElx0gt+AV86HLqvcj4G0XU5/UGGXMj9CYp7uTeOMqQwVRCp7gCgVSLCoj1tKmZQ7ewqS6+5Vbbewq66c4W6RZdDbcVYZUah+jQMrnbJmb+kirPcE8GWdwW3hJiTh9TJGu5lSeu0UXs0harYyNLer4Gt/zRPJ1GhnnqANLAnCmPJzEFqo6mff09Rpl2YZxV/XfbRGhj2lnfgqDTUDKOboYZkTtEOooE3OP2kkOeZCJsaftHmf7j6stky2ECaC5g3lLmr+pjZkkeQUyO3fN9dKfZ7jAFfWWrdOFszwpirQxS7dbRFnAkV1DlsYbp8QQo0zRyyjHmKWLbrXSSJNjil7GGHQWqAHgp7hEUgFuGx/2nGDehP3coJs5/g3/hBJxX+CIscMA1/RchYkt6dJy/68QoVYXCP++1ycH6P0C8sBqRcIhQpJjEnl4BlIGQBwnsATM46lHZYsFpOBQwMFlpibheky/nybI2DYJ6aSr6onXo9v9MgHwOUlgudnqe0YSOV0+ZQ/nBnb1EIIBTPKjXngMIMCjMQfse4PIQ/0t5OF1SPdngEsGKRDswf6wvFfKEcA1e/A1doltw4rZZwkyPPvMaULy5Un9/gghvdCKYvM1MnZLASnYzMOpqNsaJAARGW3Hs8Cy9pUdVwXufg/p66cIRX+OAAwlVWK7T4/NfLbQ37+EFPLG7hiANWNXDBM8wq4TjPXfRQrHNEEKZcXrYd23FWYmx9vUdj+sn88hoEATMraM8fkUYQwmVJb7VQL41oRL2vZY35js7xAhSXKAAICZ/MsK0g7d12PaR7tldWnC6zgOCD98Uo8tAWyLmTgpbaMCkmpsQHiTft7YNE8RQlG0D5Kt2peHdBsGvqzJuRGBe0U939PIuF3mfmmlASPDeiyHYXaZAFTHCIzUT/trgwC8JJAxYt5rKaQ9RpG2qiWAfxeQfje22jYyx0T1f5OJ1hNko2UCA8kAOrvu65ExZpJEZXe6vBNCEIYtDAwhAJ8tgBg7z2SeCeQasGvDAC2bN20evK1/P4eMQ2Mr2aLFX+o2bPHF5s43CIy6Hj1fk8y+qD8bi6uqx1VLCIEwAL6DMN+i5zVKAKTG9ecCIR03g1yDtniTRADMBQIAH9XjaiL4wnUQ/PJO6/5uatv8GkECbMzAW8gctq3tc1iP9c/0u7YP6xNbfPi+7vMx5Lq0GmiTABIZO88AqCFkvh3Y9Xn0eDMEn0HzJbR9DSJMX2OpGUNU53pPmYWQ0pskaCiXdZv/lDAPGuj38q7zM+DPmKq3kLn4ZQLAaAzHvO5vFBkLNrecI4y5Ed3mDEEOu0ZIl00g/WmLc9ZuvYRFoMyu9rVnCFv8adDzLGp77WaXHtNt23eqerzGfr+hn0sgKbdrfPpf2/CTqiyY7huEhw/CzAxcGyUwdxMQN1D/uoB+kznIjsJaVYPS6oCH5CPGLouz5QWDMSFMkjhHFys0U0PZPeokJCMYhMcoa4hCzFf+DTz6K37FV/lNIpZQplGBJEsK0BnTyV5mcN3PpANA5gH3HH/NBAPUsIOlOU7RRyPrnOSKM/RGGHbASsCuDUrU0UaRMY46c3CHGD/kHIukVfbYpkyLKFk61RdL9i8BBC38Nc85G2OQcTrJkmGeCBWOMk6femalWeRtTjHGUe7QzCkuMcA1lTDnvQg0VoqZhgcfK2F6pMg7IGVJvFZQ9TOpbbbBOo2MMUhe2SLmJ5VgyT0SjX04RxdLtGGJh8YCNC+iLBkm6Xe/IgNLLY0zofIyY8BYoWaStipR6tQ3a0sZSGViDHGVTubVi24H8yke4BqT9FOjDKCUyrjMnH2CASR0osZ9H81Da4UWirTxEs/dl66bJ6VsOmHLXeaEAmc5LByhjykHCFtY4QgTXhCv04j5CZrX1BCj7FBDTIMKLAwF0ICVZl7naUrUYSFt5luWoOgy9jaWkICFFhpZ5wSXnW1iwGpUj9tAGvHvGnPg08DCOFvE2GGvP0B+ul9N3MECXRZo502eBPBryPp2iFEAHfeLnqRpMsc8SZfE9zFFL9PuU2egsyRtJz3Axdil4n2Z9fkmQgVLWC2rCN5AqCJtdDNHgiINCnLYMRprzTzVjFHYzB2KJLDgCutzA6xMyphjvwNrNezQryuRVaLsTpq9xoBKXSXBPE/K/xZnizEGsYTXKFWWaGOMoyypnNhedZSUH7pESUFlWwhK6LVngTUrtNDMCtP0UtS5pqCgywQD5NivgQwCELWxREwB2EbWOcQkFu5h862ELRScASwLDQlnwkaoUEUkvVORPhq0XS0QxeZQ81M0pnOMsnt1jjBMiTqX0ddQ9sWaCQbca86OrZN5D+WoEGGQMcrEPOF4nUYKpOhizhcATnCFRtbpZYoWVlingXYWFKxcpIF1YpQ5xSVlY5Y5xCTrNPA2p+hlii7mGND5yoBsYUfuxwIijDFXIEWdnn9MrxtrpxhlZ1zPk2GHmACiukBjHqcxFQlvUafPBTssafiJhfJUiWKefDZGxPZh2hPmBbiTgKA+phlmhDS5XUDoBuY12cwd5unkn/BvlOfeSFSBU7t/trNAN7NuwTFNn7I+V/lpXp+M5PZ9pBjJiY9cfBwPrihtQvwi8rBsDJOnkeJ1FNZmYN+X9Pdl2dzdTdj7b5EH63FCcfsy8vCcIxh6lxH2iknQVGq2twcpDqwIAnnINxlOk27zPCFxcoFQSLQiRVlKfz+HsFcuEoqMKFJYH9R9L+sxW1HRpMc5queQk1S3vcY8yREYe5fl9+VNiEf0d2NvjOu/G5C9CJk0Ujz8ACkaInp+44RCHT2OJqQQ6iEUekWCvOwysAHFPCT26fln4e6aHmeUwBapJ3gkrWpIQz0iq7RicVX7I0eQgN7UfxFNoDU23rj+PaHnMkoojrSobzS2x6vynbtvS6ot72ofZPX7xuR7V/8f3rX9WgIL0ADV6q7vNGm/3SawNBKIxNsAQGNpfJ8gZ9zUzzfJsd5bhT3W1zfg3gzs+WVtdyvmNpFxZAVhUdvU2riHYEKfg4eT0j9c1DabQIrO1/RcFiX0ImFsHJsHTOpoxfh1QlFdRMbzuLTfHpsVTBKOmJPv2af9EoU9g3oOf6ltd1KPZZz7faFMpheFnkF9bwxYR4CFRT79r22Cf9YmwTbAxumrCABmoLmxH7+O9LPJDGsR8Canv58jgNe2yGGySQN1K4ik/aTu42VCeEICGQf2KiNzRz1h8WU/Ml8M6HchyCo7CKy3AtL3Q8g1OEaYK3OE62lBzy+JXE8nCZ6mJh++TZhT0eM2xiHIuD+n319DgMF3kOvwFkG6Wo+MewP1leXKuH7GpMp6bVHW47f5+uyuzy4gc8hl3a7NTeVd52c1iLG5DHy7TmA4LuuxbCNjIEkA6ozB9wyyODNB8N5bQ66XUQTMv40Af7bwZOBpDgfyKROktSkCQ+/WrvbIEoBe8zAcINwXjBX6r/VnA/pe1H2P63db9e8J7SsI/blKAJ5nCIt6SYKM2/b5tG7zXQIIa/cdu//17OqvLOF54JB+1hiQZ7W9tvX3or5n828WWTRa1e/ZYpkt/phsvKzbPkwAnG0f7cj8a6zVBWQsGLtVLUdYQO7RPXp+aW3r49p/68A9Pv2vFBzpRtqtAShCjy1E5BBg2OTNHXDvhmQn/QR49jTkL8K+pP69ApEq6lGU4BoDWLKnSV4rRFzOaj5lp3jbPeqsMDKGxX5lYlWJICl6ItcxYMu8i8R3qcIk/S6ztGAMk6ONqkm5FbN9TPmxHmOULeIurTX5Y4yygydWhIwy5PLQFlZ2pc2uqG9TzqWNKQoepPA2j9/nKZhmkasco0KEZ3Uy72XKi04p2BO8xZP8Kn9BnJIz7SxptoMF7tBMN3PKfBSJ5SjHNHkxFK3WB+Z1lCJPL1MskiZG2eV5VaLMk6GZO3QzS0HBiUZE3jZNHzXs0EmWq2rabswce0WoYH5J3eovt0A7ncwzxKjLqxuBTuYZZ5A2Taw0kM3AuhR5GlgnzpYCbcJ+Osq4p0cacHyJU16kLiKhI6e4xARHiFFmgGu8xZO0s8AAE9RRUlm1MDXaWOIUl1Ty3X0f+2iJBCu00McUr/M0KQq8xRMua7Pit05ZOOYxZl5rxlJJsMQS4gt1ROXYBqbsTtSMqW+g9buB3ZKymnLWzlWGqKPkcrk0OS/gq3q9dTPnhW0F8T/cocal2a/wRU9BTVBEfCXL7ChjbDco/ml+/YSHiVLvDFALxkgqMC5AwRTxaonmiBT9OY1DT6gMME2Oafro1KAC629jS5aoY4irTCvAJ0COgNMnuMIoQ+xQ40yxBEUuccoXF6zfTSJqAEgj62wRd4mm/c2+I/YFR90TDUTSaunhWU25NZ+8dSQcpk7H31HGtZV2SLOon2nwZGdLIJXrbMKlquYv2kbRQ406ybrXqbGVm3fNTzn2Ky9ZwOk+ph2Itjm/kXWS5CnS5qBRkjw7xIizRY40CZYYVy/TPCkGGSNJ3iWdA0xgHqwGjNlCh4F7ssBRoUgbeVIOqlrScYQq4wzeJxEd5yiDjLlfYJmYL94YkzzBkoP7cbY0kGmJHQXszMPwTcQXczdLfIF2WljxxRhLQTZ/O/NrrWibGeNd5vOUt1ecEnldLImxw+NcYmsXm3xL/Qxr2GGCIw7m1bBDrwbrNCsbGkS+awE+U/RSIMUwI7SzwAjDai9QIE/SF5iWaKOTeR27Kb7Iy2wRJ0b5PtbdUcbI6iJMpwZyQAgKrSD2CzvKgLVFIrt/iLT2NvNkXG6eI81ZzjOrsuJ2vZ/aPi1U0iS+/UwyyhAPeFrhf/r1yTD0fhbxnzkkYQP3nod3vvMFOK0yxGdh+YVaKU5VgrX5jQfgt9TL7AD83bcOMPOvHpbwAoCnYO139gbJ6yD86DuHQlHco78PCxjFbVj77b3wFeThOSbH9HffPAARWLsMHNXvfB15QDwL73zrC7KfCtAON59/hHu/A6UF5IHzIMy88DAsQ3FM9vsfvnE6FHSn5dh5WoBIisDXYflf1UrRoqyuu9+Uc9i7DzgHb3zr56SQU4bgrecfkt8BEvDh8018+J2mIL/6b+Cj7zSQMUnqAfjx8z2BcVWB7edlH0SAN+T37X9GSCF8Fn7yQqsU1UVgCP73bz4GT0NiQM7to+cb4NfVl60DXnz+H/Hhv2ryAmb5X9Sy+VsPhMTFDlj+Ti1swt6kHNePvnNIzsUktP9cx8eyttk34P3vPOgP6fwafPitpvs8mj58vgm+okDSAGz+1gPcfUFShElIG3/4QpOwGmfkM3/39QNSIGzKOd/7DWlrZ538GpIQal505+Cdr39B2m9G3n/j6z8nRWlEPv+j7xySY78o7/3k+VZ+8s3WwED9Brz7/Ofhl2FPWvr6B9/8eehQmW8R1n5rb/BBS8L2C8B35JjuFZAi82uEovck/Pg7PfJzWs7lb58/zMy/eNjb7CfPtzLzrYdluKSB34K1b+2FQ5qs/BV45/kvBHCjXdvrywhYUID/8M3T8B0oGlvlOW2jnPgacUDa3eWJgzDzrYe593UcgP7JN1v5wXd+3mWka7+3V8bYkHhQchp+8o1WYVd8VmxSHiQEHRggYYwuA1W2EWBvHBmLC8AfEsC8qn7mHQIAex3pixQyhm3ON0B1BgEUBvVv7xLkotsEsKRAADGGCGznNAK8G1hoMsgbBClpEwJ83NDPjRKkjSYlXtVznEGuvYu6LQPEhgkgzSrBpiCDjEEDa7J6PDb+TiIglS1aFAmsK5Nuot/bp8d8Qdvg+wS7AZOOml1ChTAHTBNAo8sIOGN917OrLY21fJhg6WBtNYNcd9e538/PXk/v2m4Twkq8QbCiqEcAEGPBFpDxYItJo7rvqG5njZA63qD/bum+0gT22iaBvXlY/7fFoFsEUNTufcaKNjCzXY/nKcSzL42MT2NSmjS/Y9fPJrk2+f1uRts2YdEpS5D9J5F5aptgj1BPAGR32wLYGJ5A5tEMwYbAmHh2LM8hCzAGsN8gLM4UCf6KhxBQu54gte4h+Prl9Vgv4onq3EQW9owle1v7YREZD4f1fGKExOTPwuseoe9sPrSXLRCAXK9RuYc+DHwO+VurXSP1QB2s1Quc0cg6Q1xFjLPzzvoSA/IYVzkGwFHG/GHZCkhhh6SxtNyiymSs8ExRIK5+TJZkKivvbfQyRZwSnWQZ4qqHYpgU0rznYpTdc8cAOzP5NkaZySr3k2OdRt7mcbqYI8ESEapcY4BrDHjRDWLQHqHCAu1M0o+lOhrjUEBJfJ/iybPDEgmydDowaB5yloxrhZqlBe8nx+MKPB1lnCoR2liiX5knaRaZpYtxDV8QPzgBnV7mi4AUQCYrM5P+JHkKJNkdLmIedbuL0RhlLN3VGAzCVmtxZkiONEcZY4IBlmgjwRKWfmg+YBbOIIBZm5rlp7yQBpz9MUk/0/SRYz/zdFIlwhku0M4CT/M6jazzuhrQF2mjQsTl22lyjDBMUT2RIlQZZJyjjLssrpMs5oW4RZwp+hjTVauEMnzGGSRPyt+zoj9NjhNcVk+nLU+KPcYow4xg3otF2hzsMymfmfkbOGAsHUvHNRN5kfXecHmZgWztLLBDTL3OJFRFkiJjWGgLoNK/QTZ2yRkfVR/JfiZZoo07Knu0oBVjyJic8NP+EpaZMH1l3AtDs40lZummiKS/Tkb6AZz1k2bR5xmQYAyTEi6SVmBgywENY371MUUNZTb0+jMfTmEJ7niqdq+mGkv6cdmZrwb0yDWRIacTeJyS+07O0aVMzBDwYOCbsKKFJScJoillHEu4T440lghrIKLYDiSRoB9JALZ5LU7J50tLpjZfMwu6aVPmp4BmeTVUkGvrTZ4gQpUM8wqb7VAghaWTl4kRY4dFP8+t++aKRdIcY1SZiiUmOIIlldrxGMBmIJiAZC2Yb6uEXBSU/SZzYVQXRQTAuuOMctuuWSkIG7DoDLwkeb/PGDu6jhKzdAG4jYGxe2W8JdxD8AonAGGCWmr7MCM+90zSz35yPscmlS1tHqniuRr3vpmlW5l/WT8fe9k8VCLOVYa4wBm3JZBgkiUHt2Jqe2AAplgjdPqYBxhgghNcUZDSUrOjzl40abnZSxgjMVUukNd7S04lyEkK3NF+MCBSWM5FdlTSaQEw5tNnUuYERb++zAMySpWKsjJHGSJOyS1CbGxJX8ncmdJ+tH7YzSz9T70+GUDvAbiVeQgy8gB2rbVHDvoQUtgMwzhHhf2hzKaVWHOQcOYN/VwicRT2xoBDkIukndlGVJKWXC64Cq/wRdiEinrp5CMpPmxvgnpZ6V0eqvUJqK4WOCjoPGsqIawIbbhm+y5rWUBXf2+3Pigyj3ZCITaqvnEdsESbpJoq49AG2F0txH/S3ir7mcCLgrmmR4KfU72YcLrcaFVuhhyHughwGI+y5qac79rRvZJyZMVQURNZR5DPLMNC/cOhwN0Hpfpadmr3yvGrPDlLZ2DCrGrKqxUXR8VIlVqINwHTcJRxFmj3FMJp+rgSO+EhCazqpGCAwD7uu4gpwl2V4d27oeBrTL8ziBRWHXLj4hkFl4qCxJOEe+NAD0zF+nir6THZbwW2m3Q/mxBXSXSSQpDK5eHt1kcD0JCDi4OPcjcm28/nZBxmmA8JmE+HB2FjJPq5qNzLHkCM2becrJWHx4s4Gy5PMshMgZrtuyEFMwoj9Y96ofqTZemX7d3MoQ64yhAMwb3bcrwrNNOz8IEzjMzjAQWIN9MPMBvpdmnv9rDIKOiA0g05lwXaoaJ9sAoNrLNdr9eGju030j8HQ5AZkutlNtYV/NWOi9FnvrWJvDKHxhiUm0cK7o1COSI3MrKaJJwWrxwaCeDBZ+FlYNVB/XkGmU/G9f81ZIxsEGShJv+rJTCcmhDg4TVCIucNAnhknmHDSPvatW0WBAYAntZj2I9cIwa6jCNgivmrQQCNVvX9QwSG6PKuzxm7z1iuwwRfzkFkXrquP79DYDJlEVDD5naT9hrwUiZ47NkCzwUCszaLgDWbBI80k7gnCIzEAsGD7Ut6LFmCtN1kpAPanhP6fQOyDGzsIbDFT+/qgxjB6qCdIMk08DSn5zVI8Idr0PM5TADIioSFmwGC92u79tkowWrihh7bALJ4hf79on7noO4/pZ8xoNOAPeu7BMFr1BjIENiFgwjgDAEAXtb3vo8nvnMaDwziKT2/G7jFhmsCRgjA5RuEvjOgqx4ZL8ZgvKDb/poeo9k3GMsxo/vNEgImvkeQ+qpVAK/p/n+DMLbMR/FZbSMDnx/Tv51EZPK1uu2/JACwdg2ME3wAC4QAm7ME9t5twjVpoGCtfk/IYJ/+VyPSDsbMrBAW8mx+OkmQ758WW5ZjQ/L1ve27ttMID/AxnWSVWVdDhMp9Pkcm5yqrrFHkSS1UiTozyaQ8S1pIG6vPissdaqhhx5ka5r1kwQCT9HshUtGH+jq2WKGZLTUSz5JxEKWGMuMcVWaIgCc7xNwH6gJnmKXb5UTCgBviCBPuSwbyrHaHZq5wkhNcoZtZJunnAmdcohpniyUFBXa0IDZmjR13iToSFLnCCXLsZ0sLGwPWYupnVCLOmzzJPJ2UidGgoFcj63QzSwcLnrJpEQhXOOHFpqVcdpL1Ij/GjjL+ZgEcBLQiyTznGrSAHmYESwW2RMYdPZZBxogg6YRv8QTzZCgTY4o+98IaZciZbWbMPsA1+plkv0q1d9SAv6B+gFGqnOISOdJMMECEKlvEGWGYs5wnQsWLa5G17Ti7AlBAr+JFoQUFWLjB7oCTDcSby4zljzHq3njm/2dJtBaSYaEmC8qhbGSdASY85TFOiQzzDlJYqqZ5oZk/lnkyFknQxhIrtJAi75/bUpmwscDkc0UsWCCu7EMDkocY1ZCReWdkvcewp4fO0eXjUI75mjM3/46f+WTmn//MXh+yn0Yk9XOBdraoo4YyWQXqJTAl5RYAfUwxySGXPScoqpy8TI60s2JlVrtDN3MAOn9JQmgbRQ+isDnQwNrOXePE0qE3FNCoYcfZUiIYFCbefnLuUdrJPL1ME1VupoG9gM6HwsTsYtYXH7qZ9eMWP8AI7dympCD3KEPcodkDJwaVuTekQFqKAoOMOTicI02BlIIrS1gIg4F1do0nFeQxBrEtbFiSaZwSf8V/5cCkAZlmD7BCs4I2zdrGZdZp8Dk6odeG+dblSVJSZqGxiLuYY4IBCiSJU6JXAdcrnGBUw4ns2japbh1bvuhic6X5sloSbx9TDtxFqZJm0WWcBgabLNqChORv4ploc5otBhhIn1fA0RaM4mzRt2tBxQJRGnRsWADUBEeQVNkc5hNqLPk5uigRdwAL0MThNj/vOp07DahdoYVOlb1a8Ms8GUaRBwX7f7eM3MBUQBdUhNE6GhuiRJ17jtrCx4bO1Sny1O0axyYvtmO2VGQLNcqT5IecU9ZjjhJ1VIgoS3OWlF5XO7oA0sWcBoNIgIiFb9izhXn4/jSvTwzQi1B1OZcYOc4FqUtCwQTzGbNVWmMzFGCFFlqWt8WLTWWYYwwGuWxZJh+XfLXCMUYhCql2IAudqx+IJ8RtuLEMrblt+Uwt7H1GthGhCgc1TXVVOqv2Mqwpc2Q/OebJsOc4nsw3R5cUFAeAbeRhpENSTZlRSmYSKhX5e5kaDtz8UB7ilWVRQzkUFK3Qx7Scl8owt4jz42QPCfX6SSgV+F5R9lGOxCiQDH5ltdC8uRo8n1CQ0IqzJmid2aZm+674Ca4Ca3K+vIt7VPUxxb0eWNMiLMYOHx5ukmLyKnStvk87CyIfiuIUXPd9KitwZMyEGTHtdECrFi40neYn7a3sOQCJ43Icz5ZfCdvYhP7qJGSVKajg0xuZn2PPAdmm0c5pF+bXlfqfkzFVVV++go4xlfWQgmbuhGIwKb/vXQCqmq4bhcbqunz+WflMkYSEt4wAl2WC2OzRy2ZGxk+FiBQfq9C4ui1eElYcF8UThlackVesbw0G8KtwYvU9+bkg4RoUYLT+C8F7qqI314T69kXlBv1Re4Mb99/QhyIzjs/HktL/Kk2r3dTrZhviKvesEoFDsDcKvCY37lz9Q5IcrH5iEapyXW7IscyTkeJe5XDtLJBYXSWlbIt2Fvin/Kn7uD2Y2xDAO6ZSKX2fTT4bnlFwPwPnJsGDc4QAAF1E5rIhAqjyVWSOMaDoOvCSgtoGpKwSQJAKAkwUELnfAQJz1KSBvQioMELwBUvodgxAzCGSyox+1piy7xJArkECONOk2x1CABcDdax/EwSvNQORygQ5sV4Xzvp7kZDKOkPwWmslFP66eOBtaXPHPoIfmjGkTfaZ0W3uAtdJEthdHcj8OabfT+vnD+zazgYh4XQZAfa3Cf57xgK7TJDepvR8zukxHCZ4lEYIjMOqnuMzCBCkADhRBOToJXghVvRY/wf9/Jju4xbO0KZJ93lW2yVNYDHqYgIvEdhlFwiAGPqdHv3sV7Qdbus2T+p5tO5qRwhszsPgihn0uA0869H2XUVAs1YC6BklgGtDCDiZIIxTsyqI6DZMdltPYCzOEPz1THZt9gFDemzX9d8QwcvQGIvGRj2o7XmbwMI7RGCAnsbvExwnyG0NDF9FmIUdhGAkVRMwQQB+b+j2PwsqswS8kIAXgBfG4YUR/TkJL2zCC8vwwpvwwr+DFwrwQhZeiMALMXihDl6ogRcewBeCP+YBFklzhZPOeJui1x+Id6jxwi7NohfNkvI55cVdH1NsUafFX4wqUY4xSpkabiM+eSMMuwzuEqfIkyJFgSQFipp0G1dfpwXaeZK3GGQcCcfIEmOHaww4y08Mu5P3Me4kwVGAkTIxLLWxRB1jHHUWizEQYuxwhtcdRLLiY4IjlKijSoQtxJDeQLA8KSzhtoYdirQ5kHKFkw46GUvAihLAvX4AirQ54CMyshjm22dS2ioRjqgk2T5nstkkeUrEaaPIFH0uR95d5BsTx6SYVoAeZcz9iqRPRT66QDsp8s7Ia+YOgEqiJTzFkl4FQK2jSpSrDKmUWgCmFHmXtFlxaMBonqQbzO8GvqyQtxANCxyoYec+IFbA1zlnrq3Q7BJJwCXGlgJqRX2JOi24xVTewEUDao9x1dl5Vjj3M0kj6y7xAtzz0MzrayjTzB2GGXH/MCt845Sc1WOm+8Lky1CjUtwkeU5xyRk4Nj6qRMiQdSZNCkmZXlBI0hg3w4ywSNqDHAaYoGe338un+NWkYE+ZGgc02pQFZBJwA952qGGKPpd/xtUzzLwkDVCxcVwl6kxZe20gARKAgxc50gR/yQYHpldocT9Rk5NWiTgIbEw1AVeynOAKJepcfniJxykRZ0PZS5Y6DlIjGoMsSychnOC2Atey8CCLDUvOYDV2WooCs3SToMgcXczR7YBXiToPTlihhTglBlSGuxtQn6NL/UKljUyWmdc7SYUIv8K/AwJTL/YfgV8GSpkMU5iqNc7Gm6XLLRtsDjag1EIQTHIemG1byjps4E2eYIeYp3vf0YUDY/le4YQD7DbHWrCGLOrUaZDIbZcKG/vNAn9KKnM1hp+AX/KAPE+np2nbwkCBFCe44qy8HGkOMckA17DUWBtfVSI+d+9OPi/SxrTO+QZ62vYsCGKKXtooktR7zA41LoE24Mvmfmv/grLiAQ2kSroNhF0HxjwURn6ELeow707zGY1QcRCtQoSC3uvN13CejEu3S8SRYKu8e7Wax948nZ7aW8MOOzrnjqpiYJxBStTxHC9RR4ljjHo7WSBKG0s0/JSJaZ8IoLcSr6dIG/RIYqbp611OllUw4SbyUFuAtzklP6eAJvgLfpVrrT1QgL1fBDaUgZZRRlFR2VKruHSrjaI8IEdh7Tbs3VT23Az0n5Z9F0iFh/5NWKchGKgfghGG2Tz9AA9rYe205lu49GqJNmEfvIuDOi4VWVVWV73Kh6v6u7JX7m4Ke2qHmJyvsg0XaBcGWg44jce7EwMuSBte4QR7jIGCMtCaxJeQjAJFTbI9ygLGufl9FTY7HqC2oKvcUbiX1M8k5NxJyurdnoKyC1cFkS9TI8VrK6w31RKvlqQAjdlx5GEZSgoulIhDk7IeU3qcNh6bBASsEAlFXFIYdyzjTJFSJB4kTgMCTg5VR+W9cTnudhZkfOwXIDLBEmyoLGdTgdecyqVbte8nwnF0l+ekmNyHAIWbCKvNmAMvK2ichA+Q/i9RRzUakeNI4JRkFoCDUGhqlch4kxIekPh2VmFtXHadIx08oZJQbGoKXo4APUJHdwllVg1nx3BZ3BZ1NK9uSH+/I8BzjLL7RjqTsAnII8w7SsEMviA3Kd/nYdQ/ZUv68iXp3zglSEFRn686ycq1kwVG5eGz2NQkY/AH0qYl6kRi3LHrGsvKWFgerBVmaQufjQIWRGZ2i8BAyyJ9a4BNAgEAEgjAchthzhnQdohwXUc0CbqV4Ft3HZlLTxMYcgY8xXQ/VxHgYkO/Z157C/p/PQGcqCAg0bh+1qS1pxEGkx33BiHBVhmu/C6BMThGYERNEKSSy3pex3V7Bv5DSKaNICDHpgKYBuqZXNnYq7YosowAlDcJTL6itk2Pnhu6/5cIst6zCIgTRQCts/q+MfpssWNcP/Mbuo9N0HtyYAcaW7GXwGK19ksSgksuImMgtmvbJjmtR4DQ87ptA8wqenzG4vtT/WwBuX+N6/Yru7YTQ9hvo9qu48iYeo4Ahs7oP+u/p3R/m8iYieL3IHIElqEtwv0WQQIJ0s+bBE+8NNI/5wlAXI6QvJtEQL1NZHy9qsdjzPNNQrDG9wky8QYCY9Ckm8ZmXUbA0Zx+N0tIzlW2PzNIX23r9kyefZngCdmEjKlapI+3tR0O6d8vEhijJqn/MvAHes639fMGyh7SY3hn1/ZHCCDhXT79r2Uk4fwuIeG3hLRPI7CDPJXWE0KAjiFt+DngCAGwBrapxQynI1Q8OdX855IUFMzLObi1pIl3ICmmd1Te2aVsFktttFCCDPMkKdChLI0YZX/esKRGY2k0s8KGgi/m81amxpUh3QoSdTOLJB1Kguwkh6gSJUmeDPP0MUW3slhAFnwtLQ9EWSFMiqozExtZ5yznOcMFBzINuOlizo/dkmPNsN5YOv3K2RtgggRLjDDsDJm3eJI5ujydtYqEUUzR5z5ZFjwyxqCz+6zQMsNvA7VS5F0qavJOY7IYCBahquCGtO9uT6fASAtS0ks87iyzM1zgFG+7RA1w2aEkvLbQzyQZ5h0kNAahASYRKuTYTz+TtLHEMCOY1M4YngbM1rFFkgJlLTrT5LjKMXKkGeUYaXJkVc46wYB77yUoquehsKYaWBfSAbi3mBWZxuLc7SN1ircpE3PAJ6btbeBAjjRT9AFwW4vpJZUBJ1jCPAInOOKJk+s0Mkk/C7R7GIiNQ5NCC9uoDvPOsvYpKrPVGJ3NrNCg/SnjPe+yTmOilIgzSzdT9JEnRTezHnLwaX+t0swUfcyT8bYvK5MogF91zqALnoZJDY1JkSbnAJmlc+8omGPSZQP/khQ01GLJrzebK4VluqHyQelT+1uMsjN3zZfPmLdtLDlDyxhdlnosAFYAciN6bUSoMsqQM8pAQBQJM+jE/MYa2aCPaQaY4AyvKxiU8Pl2gXYPADHAuEgb7Sw4Y1GSmAW8MflonC2X3tr8Zyw0wD0nLXXUwLkIVUrUMcoxrjGgydoF5skQpcpRXcAx5p4xbe2aFWZeVBnjAjD2MeXHaj6mjWxQJUof0+RJ0s2cMxyNdWthKu0saFBGSUFhkZw2ssEWcUrU8dc8p/troE6BOQPrY8o+r1FbgxZWmKPLGb6DjNHMii5opFhCwk66mWOBdi5xikUF5Yz1FlPWYDMrzNJFgiWXoxprT+5HOyJ7VZDTpMUtrKivrEj4d9QWYJ1GuhXCbVMZsM3nZqVQIKlejALSbe1a3DO/QYkOqWGJhI9NsRYQIDmlEmgLFZJ7hDDrhQGapJN5rqmUfPd43P0sYZLjRtb9GWSER1WaLInA0/RRQvz8tog7OG3PDPb/T/P6RAC9j/Vmr/du4lWJIqYDl2F2Mh+Ak7Qy1JqQQnYc/q/8tjxQfRl5oFaWGkBCCzuTyxpLKUunPBzXCxtoM/GAU/mtEDH23N0ssC03SWK4Z9IAEyzFEvJAOSFo+QATAmjMAE3CQnL5W49KKqsQr8dluoAXGjvEWO6phVWVHQLpau4+z6t2FmBRfdZeldXPz+WWveBvq6oJ8GMIk2xzQ27eQxBXKbPtd60o7VqmJsjB8lCf+zgUuwnYs01YvVGpVyPrMK1JqaMCkj6S+8gLrgXaRTKak22kllepEoVWiCtL5gRXIKkecu3y8EYW8pfh7jh0br4vAKYWu5s9DwjbMKn+d2XtJ2XrsQpnuMC+G3cdLLAHKwCWhVnXXZ6DDgmFYFsAKlohr9K7MjVBNliA+ObHUngt4HIoG2OMyHiZpxOuw7GMtGEf09Rt3HWPLFvd4DaU3oDE5jJpFt1/aXlYNY8zsC9DYGfaudn4Md8tZcG0sxASjJOySsAi7gdoK9DkoTgKfZszsqIQk77vLs8JAK7MolorPLcVaDW567j+HxNGa7xagqSmDCYVrM4hTNEsZKrzIUW6IqbaidVVkTlHYT0myT0mu/yop0EAbe2T1ty23DgrBJbUp/01h/SrAT4mf40iLKgL+jljXxlb7QYhBAeCX5h5jO1mN5tM16R9vQQW2FH92zsIsJNFCulbuq+LyNj7I8KcZBJGXRxwEA+EQTeKzM03CJJgAydNsljl/rTvAwjodBKZxw7q+dcj4PcmAuIl9PPKytrTgwAtLxGkr0UEcCoSAKKo/m5MqAQhEMFAxoi21QgBVFJ/SAcXd4M0xvCNwr3z2kb7tB2jelztCGC4T/+3sW3nbvLKZf18GQG+apH7lzHCstoXJqnN6v7SerzPIX3Zof03RADYjHVngL0tdL2qx4e2rYGvx/UY9xGANusvY7ydBh7Xn1/W/jmux2f7fVnPa0bP+7Qe2wYB9LX2NAC6lpDQXNTPzCDgozHWVgkp9AVCYMwMAvDkENabsS2vI/1rjLqDBFb0Qd2/MTy/TwC017RdIgSW7D4CwGlEkQwhtOSC7sPAy5i2Q0bP4TzhehnVfhsg3GeqSP9eJng3HuezYUGwF+gjLCI0InNBPSI7Ng/DDmTRp0oAqCv6XgzxYO3GgQGQZ6ZLnGJCfVF2+wiZh04vUzRzhwXaFaw65iyUlLI6NhB/sxpdNLTtD+hqoCxQF+lmzgvUs5ynRB0jPMpt2h2IkrxJ8aKbpctBlzIxznOWGGVGGGaBDhIsqT9UzJkLxjgzIKysRdYRNYGPU+I2knx4h2bKxCgpABBVuKVN5ZEWEmGFfUjpE+acmH9nSZMjo2ESwlQo3wem2XcNcLAEzjs0ezJnlQizdKkxfZu2p7AAT3DF+838kIylkqWTRdK8zhlAgKk7NNPFrBd0p3gb84Ay4M2AAGPynOess0AiVD3UQVh601zilD8vdzHn/TBLt0udolQdKCkTY5J+XuUXADjHDwFZzJ7giIOGBVLM0u2Mq5KyPwCXZZtkrVMTduKUNDWyjgzzCiYvcYIr9DHFHN0uU25BkkIN8FxETOFNWmiAxxVOUKPMunUaGeAaLQqoHVVpcoEU0/TRzB1y7CdLxiV1U/RxgiuYD5WBTiZzG+IqbRQd8DHQ0FiXJgVeoF0WfbUgtjFr8rdm7pAm5158fUwRocpHPPh/bJ75L+S1Ra2z7Qw4aGRDWZPiHTlFn9ehBgDvEPNxWiHiIJJJd5doo0qUHWVkmSzarJsm6WdeWaY2r5mk0KSlC7RL7UvC5woDgou0Aah8ds4ZwhIuUfRwA0AXFu4wRR9zdDmzr48pLGV5izqKtGE+mpbQG0dCa+bpVEbekssfCyTpYpZm7jDIGBLYcgxLQgW07WQuLCEhRMYsNmCwpKCXzbmAy3urRN2/z4Iv2pDwoWHeu2+RJbDMorSzgHlTCotbrosIVSYY0EULCYG5QzMxyrzJE0zT50EelnhqrLQkBQ0xOeageEoli8a2Nalompx6GQoo2suUM7qNpWhMwV5lD4IAmaMMeViO3N9EghulygATnqYL+AKMWR/YeZm3nEl87R5rfZpmkQEmnN1m4F8dJWeDS4BGkhz7fX+AL0RY8rfNM7J4V+QEV4RUg8xHAqRFnZUuHrMVFklzlHHMLsGCjGQRpNcBvUXS5Elxg37ESzAwwG2c2ILHUU2Kf7L6JlWieh1UnKVXIcIAE3Qyf9/8ae1iicVpcgwz4iDpR3q9/X2v6N//kf/PX61vrvGl3//fICuppHu+fpd90Q9D+t0fw1PX/wYuCBiROAdf+M0bgZ3QBK3/wzZUtuUhGyACn2+YCf49ZfjlP/73MKbJuIfgy9/+f4SDGIL67MfUTy/DJnwwAw9/Dw5EP4QfaBLoK/DLN/893IDSZYiX4Wf/p+vywFiUffS8+EEo+JLAKJwuvCfHpRKrXyy84fukCJ//45nAHMnDQ7+vFU2rSHkf/tbHkPhYColzwEXomfkg+B6twlO//zdBxrUJ+37nLt9MfteTJmtfhONDP5aH3DzwIvzMhVtQhn26gv35P5yRtNUK7GnF2TJ314S9yL+EB7c3QvH3Nvxs9HoAEC7D8d/8cfAqug6fH5mR41IWzZ4XoSf6QWAhvAo9uQ/gJbi7AHuz8Lk/XIbLkFLAb+/L8FjHj2SfKaj/7sf8Qy5CBSY2YfhPofXdbRkLM0AMHvzNjWAiHoPj3/+xFMrPA9+DfV8N9IZECsjBF/7ghuy3Xvrt8a9dcvbF2gTs+55+YVvTl/8UHrn8ESRg7QLsa4V/UHknmOHfhJ7f/MD944jAY7/zIznvigCHmW9Dbf2GS6tbR7Zpbb8RwI4cfP5PZ+RayAAX4PMvzwhYZ7LBV+CpV/8GeuDuZdj7Gvzi5htwC+4WYG8FPv+S9O1aARIJ4Lehp/KBM7Tqv/ExPU0fhJTZfwmP8SOoqGx3Bk7/wXtwPTBJ947D3tTdwNJ6Cb6QuREYM+/Cvnfuyjg/APf+TM/fPNdy8NAfrkofzQDt0m8P8iNKb0D8tIzBp6J/w6XrfDYKWIA4MnaHCT5ch5B2O4mARhEEIPgNBBAw9q75cZURYOI6AWxbJYQP3ND3jhG86Qzsuo303x8SJJ+DyFxydtd2xglz36p+z9hwtQg4UdDvVvTzAwiIchxPyGaIMLfZ+CsTZLfjyPX0qr63RmAQlglSz3+px3WW4MNmANo5QkDEaYJ09yQC/BlokiIAlgYUPgf8OQJI/smu7XwFAWtWCQD7Ks503DOo3zcwy8DPBQKgmsVtJRz47tB2SBPAxjQhjAg9p1u7vndU2yRG8NxTViybSNjPLf3egrbBbcK4iBBAxze0bZW57Cm+39DPn0ekuy8T0piN6bdICB0xRp+x5E4ifXhY/2ZsQRuvmwSgcZkAcPXo9q7q/zf1/7S23bYexziBmXoImTMPEQIsmnYdzzDS7/WEcdagf/+ytskIwatvAk9a55Dua5PA8jPg085thjD2DaCM6rE+pn+rRcbude0X286renx236zXNjEw7w1gFiof8al//Y8/3MNDkXvsKeDzy92DUI1C7TgOnpOGuxnYq4DrvQOw5yKBDRqTz714WFyiXuFZhhglSYEJBhRgizvQI0brOWWkLHKOH7q0zPyQ/pB/xq/zR5SIqzJDHo/zpGhmhSuccGbdbsDKDLH7mGaeDAVSLCJpdpZeu0ILko4qPnAm88mScZZMnC2VrYmJuiUZAi4PNi+tPCmKypSI6Zk0ss48nVzhBAktFqTYanBmIMCghloIWLXlKYCWtDlJP2c5zwQDftxP8qafZ4Ek+5VlYwugC3TwJG+xQw0p8pSpIcO8F2xF2rxYNsneMQUMxd9JAIRhRjDvJQtVaGSdEYaJqy+hFU+WvlmkjQGuISEa4t/2OG97kSiy3iXu0EyEClP0Ygb/xqiwz6VV6pYkTx1b5EnRyTyXOAXad4OMuWm9JSIfY5QqUb7Iyx6GEaHKEFdVHt2oCZR1mMm9sEZiDgZa+5ipvcBdYuhuDBx7f0eB2xxpjjBBWSWalkxqTMAuZh1k3Y8k207RR5d6eIEUk0/yFhYO08gGU/QxRS8tu1iTT/Kmg8wmPTN5WJwSWTrVqy/mTDvz/FtSP6w6SqzQ4ixIkwRbmEEvU7zKL7DOx5/I/POf2+shPqSdj5ypaqnLBhJEqHCCK+RJOnBiANIv8KqPGWtPk24b02s3sGbkDRv7dv2AjL23edw/F9dADTsWA9yrRGhBjPwNSF8kTR1bpMkxzqAnzoKQOUYYpp9JfomXmCeDBBUIuNXFHBbiU6Ps4RNccWnxKMcYYIIyksJrAEo/k0zST4sCjSZn3a/gjc11Eao+Txd3ydoNyDQfuphKzycY4ARXWKAdS6m9xONYGIYBMGYFYHMMiHLPWL3CfI3QzSwjDPMEb5JjP/9P8v4+Nq4rv/MGP3IVWWTxVSy6yqw2aZZIihKjUlMRx/RIlmXZHmmiGXviTjqJB93z9AC9yCwyi8xiFpndGTwJJsAGSPDMbLKYAAk2QLLT/Ty9Pc62E/dEGzl2y7IsjdlNRWyVQooiKdKku+gqsSi+k0VVWfvH7+VQATbpB1jvZuwCBKrIqnvPPffcc+/ve74vVQV0DNQ3n02ZexYdlDegu0qEJEVlZe5HknhFlm3XkyS89mNebu0sua/e81xS5vR+Z0jHlcVovrC7xFiinVbuY56zFpYjUnlZ6KrfA5Su0Mo4A/QzSQWR1cYR4tYuMQ1bus8W9S7nnqbX5xgDZeMK4FlIxYbOkxXEX3AJCRYZ5vtsUU+Oo9Qrs1CuhYiyJAselmRsSwubmlQGnC0YTNJPP5OUKHk/yflLeChFhjnus0KUKhKqUWCWbqJUFeQVqwFZ6DlMP3ecFb1AJ9GIpFGf4gq1lPV7ct0Zu7ugfo4HmWSCAXappYM857mAhSodZ9Tl3z/O69Px0FO1H1H1pmtACskk8pAcwR/UE88gBVuGYGjejDzwHtB/CaQ46dDvGbCj8qNoFCkUjiAP8rafZtx36AEEVkCLgiARAlMGQnKfGTX3IQ/gbfr7eYKvVBUpnpWpRA4psGLaTpONmZwuDczCF9r0mMyvKrfn+Fpg6rJur43gNZVEiqekADr+qiCFhhVPKaSwOEJI05yHfXUEls0LUDOo/98hMGrG9HiG5Hc15lM1RPDhMumY/e0WgWU0jxRzR3CWpMl2rS0P8/pdY5Kc1feNeLH5dNue899MACwU+FgrIiCCSdoMBE3pfiEYvzfKd+MNQAmaCw8gDQ/vQrN5KaXls3EbfwpmNfeFvmBY2/ICIZzgsh6/FWdl6La2JwnSuhjcSzfKOTfWRxKXwD1Y1PYfx8M6APdpqhnWNup5qDEJnjK5mr+MeK31ab9s6nGdJpj5g4zFQwQmk4EbCR1TWpA+TBJedhwV/Y5dDwtybPuMWTRI8P5q0+3sIEW8MgzjGShcIAAkrXx+GHq22GzAURmZr54hAAx2Tt7Uv6f0p83jqwSPsDWkn7+EnN95QnBBHUF2+3XC+a8g8sEvI2PgNjKHjRHYYFHCtWiSR2WuEiNIS+1a2ySEzuSQ8XUY96z0lN0Jgr/cK7rti/p+iiDDXEXm0DIyl8SQ8XWX4GE3SAizMBmw+QfeQbwDowTQE8IcbiCdLhJ4v9v1dQNP6maBkDZcJrAjn9V+qxAShPuQ+amOwH6z9h4mMMoqCBAZJbAUh/T9gvbjaf3OhH6mj5CMW9J+XONR2eaY9kFJ2z9MCI3QxQafEw3QnUfG04b+zkBcm+OT+v6i7sfkqiU9z0f0+4cI922bv4r6/oBu75d1H8aK6yIk6t4i2FUkCUnDeR4F+AwwyyPAnd2PRpE5d4rgD9jAI3YWLvuGAAaZLL2KMPYyhCTjDCG1fRQBAncIQOAyQXb7PQJo20BIizY2ns2ntwlBSLqg4uNOnxOinwNSylSsj/fanmb5UB1rL9bw4fDjlFpauNbw93lwBKZeeZJ75xu5O/gE6y11fNj5OB8OPc5I2xdZfrWOB8dhbaiGHw22sdkn/nnrNPESb3OTrEtNAfUWi/Aep1T6I+wrSWLsdcnfHN3cJMtLvO3MAQOgYpTJclO9cHooE6NdJU0LdFFWpswNjpFgiVd545FCrZ9JBpjAggwMPAQpds9xURM/E+yqNNfkV4fVv26OjKfSXuC8+x4lKXgIh7FJbN9mbL9FPbvEyJF15pqxbQQMS3iRWiSlfmdRxBNwvxeWVtzt9Xnay7QzydQNjlEg5YwMkS8VXN5lIQq1lJkjQzslLnDeZXIlEhQVvDAz9DIxP6YUBWe4WFHcyQLXGeI6xzEvLku+NK82K/QFxOuihxmSFBTkqyoDR4pO2Zcdbz2T9DPAOEkKdDPHdTXpL5DiIufcw86AKfPPWlK/L+ujE1xz8CBPmptkfb8GthjD5T1OKTuzSIwyB1WWB3iQSZxtjjHGkvZZt8rottQjsol1LHhjSxlQJmc0Rs5BJtWzr0yBpDL6GslyEwihcBaSAmJLFNovD3FLJLjOEJPKiIwpwyyp7KQMsyrhW3TQoEqEGwzyJi9jJvUbiCz8Y/PI/oy/VpWd9RxX6GaWDHMKntU7o9MYZzZ3TdOD+O7FlKsZU9ZmmXc5g6XmWjCDLWrY3GOefSbPNdl9lpseKGSgcQfic5gjyyjHNYG4qqEMURbopBHxI7M5x+YVA3xLJJikn0VlARtYZhJ4m4dnFPARi4IOBZj2E2PXGdazdO9hfuUpkKJeAUxjicWUUQzCIOxlxudfEPBMvOZ6PJClni029Bq1NPMiSWeXGvgEAhLKZxL0M8k0vVzjBN/QVLI42wp4ir/6AOOUaHfZrC1WGEvVgKZepp0t1q7zmAG8srgi9y1hscUfYU1XlaVZUshvnSZ6mHHGt4CvjSqJ72CGHu5wkBi7lJQRKOnKIWFcPF5TznYzb7oVWrnOEP1M+kKCzf/Wn/Z5m6vNmsDCSUq0c54LDlYaAGwLUQagWgr7Cq0uz45SZYxBUhToZIFzXPT7e5lapuklTV6snQgLSEn1l02wxCzddKvdwpL+k30KM9ISbo0hVyCFJd6KT+ouEBZfqkScKWiMPpt/Z+hllm4adQGjnSWX1duCVA8zdDP3SPDQCa55eNZ19XH9216fDqC3TkgNNJmPrXCnkYLEZDWrBBP0twieQRHkAX0CHtxCHqSn9O8J/bwyRupj+jsrIG/p+z9CEunykDEpzwRBYluWv1HQbUzp3xeQougu8jCv/l+ktI1XCUyLTf28FcS39N87eHKpvxpUUpvTz6wRCqFDwEn4gjEE8rL9B8ZI3AEyCrShf7+gffAKnlrLDsH7akw++mATHizr+/8gx1WyItvAQ2NH6nkq5QhFdhtBBvM6UjSXdJ9JAqAW0b5QeVtNlCAdnFLvrzXtq/cJiY3zeAG97wBBKngVxkfkuJmXfTYbg+WinovvIcXVc0hxrZJTlrX9xjBaRRg/b6kU2Fg2MQLQVocwY4zhYQynKW3fdT1vRQTca9Hj0cJtnzLwyCPjZwIYgcdHN+AybBmYsyl9VSpBNKLby+s5eJEAglSEOeog2Kva3nkE+Hldv/cWIXmzb8+5Unn7Q/OisvOZ1n3eBj6AmmY9dxdh328SUn7H5By4n5GNSxsvKeT6XiYAJbel7T9aJgA1eTmu+hgCAlzQfcj98bP/WiL41VUIklsr9i8jY82AuE0ExDG5a2LP94qE+auCzJ1lQpptiUfBklUE8M0Q5mGbTyYIydunkTG9gVxPyzwql60jeJWNIdengfqN2rbLBIZUCbk2DDADmRMvENhaBv4bIDSq2+0iBCdMEECzKf1poKEBWMbGgyCB7EIWVgysShKYpn0Ia+syAoKbXLQOAZOsH+sIIQm2EDGh+zfZqLEsf39PG2/w6LyZIDCYjYl4APiO7ssAtyiBlWbfN/lssx5bleD5Z3OrLTAZ0GpA+wbwSwSZ8mnd3hSBWXkVARZtESu6p50mVW4ghC2ZVNKOx9ihVW3PKwRGXkT/b7LnI7pfY0DaOatDxvUoYdEtRvDQsz40FqQ9I6SRRQQIgRs2xw3q5yuEUAwDaN8kgMXWjlXtJ1u86EIYm4eROW5Wj2eNwA5t1n1f1u+blNeA7yiyWNlFuJ5jeqzzBFl4o+63ls/86x6PUyLBn/Aqk5F+vs3P8wY/zTgD/FHLV1yqVyRFjqMUSfEuZxhhmDGOcaflACORYbaIcy12gm7m6GbWgSzzmtoirklzvTSx4UBHPSHZ1gqERvXMSbDE27zo349r4dROiXq2nNkmHmIpYohvnK2oW3BAN7NYwuE0PV5EWWrlAONc4gyz2voESy7flbS8Cksk3E+oyYVUG3Qzp6wBKXTNpL1A0hk9c3TTyQKD3ACEgSUBHgUN1ejADN2PM6rMNmHsnOOiF0jGeDBpnMn2AJXuiW+fydpMRjdHt4NDBZJM0+uFbGDBNTHJQQqkvLAW4duWM/Ss2I9RZr/K2TrIO0hkYGY3sxxkkuNcxzzGDBxYUoZR8MUTX6xuZmliwwvnEu0kKKkJeYkUBbaod4ZjhCoZ9YcqKEsly02Xgm1TzyQHqRBRNomk6m6rlC/OFjmyLNBJghLdzOnf4250L0yoJcY4hnipCai4RDvjDFBWCbeAdRsOflgQiRWfu8Qc/KsSZYYeLFwjQtXZMRXE3N2M5UWeXHHpoxXBBhYVSJKgxKu8wVFypFnUfc6ySJosOZIKJFo4h3mtGZtTkjG39Ny0Y35tYsZfdU+qx9nLXPjsvqbo5T6WONquDC2RN5o3nQFYTWy4B1uHSirNC80Yt+e54GPSACwDuS3Yop4tnuOKt2EbCajp544DyjZfGkvZgPMkRQf1LRxAPOFqWdJxaKw+A1BEYihztAVdGAvMwHCTv1aJcI0TOrPFXM5fq6B2LzNIeMaCg8nXOOGAljGGrQ1xZdka2NPogtN1BwltcaCTBWeXSlL5lgPx3cy5D1+ECoOMkaCk0v4EnSy496W1ZZda5shgMvhadilT66w6S/S1+WSJBMOMuM2DXdvrNPk53KWWbeKMclz3IddplhwD1XFq2XUJ/l7g3O4Z4m26nxd5m0bWKZBihGG1fRCPQ2ODG4hp7Dy7v20R521ecqauJbUbqCrnS4DCIa673YGltRqwJ8EWjRRI6lzUjXnW7VLr8nCzg1inkVbuU0YCQWzRJk2e57mki0/C9p5Wv9cS7QoayjUxR4ZOFujnjh9vu0pxDWg1b9t1mjSJvewg3qze2yy5V/a/yDpN7kHbwwx50n5d7Q26qVUWpfgC1vr461FruCoR2in5mEiTp54tDrmM5W9+fTqAXj/yoG1Mq2eRB31jQBljzYATe/A1pgjIg/+ggiD2/jzBkLwsf+fLsM9YCPqe80gBcpLAHjqMgCWnCWDHoL5/TUGeQ9rOI0hh1ahtPK3bMzbCi0jBsowUTS2EYsjaodKgtTHYOa/bqRIKwFe0L6ryvc1nHgtMMSuKj0GNyTATsGPFr7XjHKHg7tJ+HSQwQw4BBwQ0+mgVAYQOSFtrogjoNKR9VpZtPVTmTVsLwiwx5olJwwZ1Py04G2TnPCFsoqLfKSsTEJxduLWg/WX9U6fAYlKPx1gTh4GXpY/qQQqxc/q9BqRgepGQsjhKYIrViaSYJAJQGEhixd8vECSJSelXZ2ga86So58VYhFYQl/S8DRJAia8R0kLb5Jzxqm5vk1BEJxGfuU54+KLst61Fx66C3GtvEXzTzsrv4ifl/Y8G2wS8rGpbziLj3ACaQf0HApxkdLws6j66gJ9D2DJWLOv18dCAImNOVrVvBrX9FQQssCL4pO6nGbm2bcxWtf9ehSfPapDGIMIkmxf5PUMEAPrzJLm1ec0YlBMIKG1eeMbkNcZvhTAWTLpZJbC/7LysEqSA5hlmkkj725h+Hv3/IHIeupB5dZaQumsgTRG55lpA7y0BnGvWbdicaL5gdm1e1eNpJlx/R/T/g8j4OUlYEDFw6rTuzxZvkvr7MTwxmt8kgMkjhORdA94P6Xe+g3tlska495wlSDFzBB80A6o7tR3PaJtjeh6u6v7nQZ/bwnkzxpfNZVXtO2PlXUbmEAP5mwkhE7ZgYbJSCOEWBoYbY3GVwBJOEOa1w9oGWzwzmWyU4MGX1O0am9HAqcN6PKMExrYx1weBf46MkdPInDeGjK3L2rYSIdnX2N7z2t+3CJ51en+hAb8/eCCPyV5P8kiok48VA3Xt/rpJWNgzANKOK08IxejDU8L5HmHBK4/M0/MEhuSy9mtW3w8D30DGiZ27qra3WfurDhlvSYKsHe2LkwRm4e/pZ9TGgwgBzH9dt1HlczEf/hU/4cl/4wyQZtG9ZNZp4iLnvOSaUSaKAUYgPsllNbe+xBkFzNqRRLg7HGNM2QBVTnCNVu5zjosug9xWHyXx76knT4cDfCanAUlH7WHavZUMrLK2mYxtnSZGeBqA7zPMu5xBTOHLJDX4wcy/76gsapJ+XuJt98gRMEkSJH+fX6SdEubDZMDiJAfZVoDJwMRRhhxgWmE/ESpsE6de5XLXGWKRNFUi7it4jRMs0KUg23712avQyYKfgzwdXOOEg4pWeNazRZICS7RTIMm3+QVi7LoB+TgDLhXMMEctZTLMOZjQw4yzOhZJY+ERz3GFM1wiQtXZYvayVMBWVmin5DLZGXoRX6QlxMC/xADjjHLcZaaSsjrHCMNMMMD/lf+de8otkmaMQczk3ozm42wxqgy8dkr0c4cURfcnMwDR/Mle4h2m6eUNXuUO/Q54GpvNkm7r2WaIUXqY8RCTU1whSYH9yqzJcpN25YxI6mJZpYE3ffyI8f+Wn6Nv8/N7ZM+dDhie4sojTFEBjBLOjLTUThBvSAtXMCaTgC0xVtjPImm6WFBZY4dLQ9tZ4gqnMGP7VpWoTdLPfVoVGNpWOeMuUapIiMGksisrmEekhSmYN9sGjZ/eJPR36HWUmzSxTpkYVzi1J4yhSRl4wq6qV9DuJlnEW0+kgjfJMqtAiAHAUapYEvOKMgC79Tq01zS9dOgihJ23v/5/CwWyIAP7viWMCgNwSZOeW328SpurXOE5VthPPVsemrFFnG3ijHOYaXoAAcY7WfD00ShVupkjwZLLfLeJP5IK3ci6gvLrCnbH6GcSEFbpTbIkKXCFU87UFrad3CtMwtih132UqnvQGWtunSYGueFsRrsuiurdtq3BR8YU7ucOObIOvplnm4VijHOYE1xzIBFwv7lG1p2FGWeLJWUFGrhn9yFjT9r572Ea803NR4TdXVBvTAMCbaHEQjSEBZ1SRrcsyvTqvGTssDwd4oUPzuYdYpT9Or+f46IHEA1yw+9DZvMgnoc9j4C4xjY1T9EFOlWOu+1hTHttAMxb0sDfqC6qtHKfBCWucQJAbQC6aGKDY9UbusC26PcA8/OLKZh4R/0+d6n1ubNIivIeBvE4A1SJeMhHN3NM08Mw3ydF0fshRYF2lrjE8+TpwPxv91oJ7PVOHWeAN/hpRhhWprUEDJksGQQ8L5Bkjm4Hz9tcbvQ3vz4VQG8p3crHZ1vkTQV4Fe6efSIAdl3w4FWkaKoDXoapV5+E4wrgReHDs48z9dqTxFskxZSz8OErj4eCrQEenAYymvIahR+dbxPAQeVOH55+nIfmb1MEhuHua08IAHMXGIK7J5+QgmcZOAgPTsq+HuaBJKydrmFnkMDiOo08+GeQoqIRNjOPCRNKPWGWz9c5A7C+DgoNj4uUsUETevtg6oUng2wthgRxZHFGyN3zTwigpsX2gyMQM0+nESALHw4/Dqvw4HXp5++kfyqwQYblMxyXtNFMJ+y8iLNdogqifvjq41KkqeSq0NYCr6pMNw13B5+A88ryKiLn9Yi2awGoyvFRhS0FuaaGnhR58Jiey9OPS3iHSlw3+x6TNuYUODxJKOYb5f3HQy3Qov53afjzI6eD4Xwbck5MkqYF3mbisSBZ/SrcPv2UFEmdQAp+dLZNit0x7Zs22DwpQOpWEUjAclKoTg+Uvbg59Jj79tGn4/TLOh5y8GHmcXYMBETG+l8NHQjeZzF40EkADaIw3nYA0pIA7cBZg4wVSjIuP36lRdqtTKkt4kGaloLbrzwlxaiChQ+j8HGyxYvZBzFNPW6GWR37U4eelGPX4vXBq8CXYHkVAXfOy9inAy+oP3zh8cCUKcNaukZAdZXE3R1+Ap6Bhx9I2z/+cgt3h+RaT2Th4T/XsT4KxWXgRfjhC32yv88LQ6+HIE030O480gcxAvvLZINdBHAnj5yzCWQ8FPT3bxCAM/tdmbBAMrTnfRk5ZyalTBHAQAMATf5qbOGzBI+7F/T9DQJwM4HMtQ14UjTVPd+PICwvA1nGkHE+igBL1wkLOye1LXbPeka3e5jAgjOm7XlC8MUwAijbsZ/WNp0nSDNNOmng0TcREC+JgDpJAkB9FQF+5gkLJLaYkCZ4rPXp8ZlE9S1kocAsGV7RNi4SfPGMAQ4hvdhA3DRB3rqh+1H2ubPYDLhL6naHCInBymQ3307mCaw4k36O4oE6QGDyGXP+RWRONJbvLEHSO6X9bPdJ64OY9s0h/Yyxf431nUZAPVvIMYZkhQD02vkdIsicx/TnZQI7/i4erONyWgOETfKa1OOoEIIU2pBx0oDcN/t0e0f0828iY9faqvM6I8i4aNM2GJuvgIwhUyDYPlp0P79HAHcXeZTRmdW2tej/swRp9n0+F69GlROVnJ0jD/DmpzTMCFUirNNELbu8xymuc5xpesmT5honEZP+gypfEQCkn0nGGMTCElIUiLHLO7xEiQT1SAJgmRgbut8oVXo12b1MLebBZt5hYxzDZKxVol6QVImQp4N6tjjOqLO8khS9TSXa2VDgz5hRVnQXSLpkx+RwJql5lTdYIsEMPcyRcbaT+QrVUnYPplO8R4cea1wZFE2sM8Qou8ScxZagxHFGKVPLEKMc4wa9TNPOEjfJaqkUcfB0m5A6a5K5eWVxDTDOkB7zGS7RwzQ9zLhs13y5pBCPugzMJFcWiAB4sZSgRD3bvMvzDvy0suJgj/2/TC1v8CoS8pCjlfsuERtngBVaOaqm7VvUc4VTzjiJUOV/z/+FLDksARPEYN28pcYZ4AbHtG9KErIHLl81OXA7JbqZZZJ+l0b1M0mtJir+IV9jjm56lE1kbB0DWABlNskYbNTPvMsZlkhwgmvusbTXD6pH00m3lTXaygrPccXP3pwm4ObpoEiSMQa9X1pZ4b7u20AGOzfGyLrKCSx98RTvYWmZlkKbUEDV0iLzpN3zUY6pWyWZFQ1dyDBDDxc4T4wys3SzpKC6GONLUiYIo6qdJWdyfYEffboT0d+hl8k3EwpK58iS1IJihVbaq2L0bwES4qwojNU42/QywxwZLMF6izhneJc5MpjH4ZKyhEU+e5QRnmZDAZ8lZY/F2XLPPUthjVF2+bgtvJhMcoFO+rlDhYh7iBmAY8D5LrUskvbgB7ue0ywywDgWOiAMqW0HiWzc9zKNhdrY9VAgyS4xrjOEheyYZ52xBYe4zrucUSafzDe22GDzj9kAGFPLAg4jVKgQIUXRJaStrPh8bmC9MRK7mdPwiwIDTFAkqX56VZ+XO1RGarJjW7gyP7WcApCyXWH8iXQz6axhCY+Z83FjUug5DRIydqcxsnepJUeWaXqJUqWTecY45gw8Y0Xago0BkbXs+n1xr7w3SYEsOfKkncVWJepzWVEZvEkKDDBOjF2uc9y9WK9znDd5WfsnwU2yDnaBzAGWPHtQU+QBZ3xDSO8eYtSZmp0ssE09RZLMRrqdtWhApoG0xt7u1uCh44wSpeptsCTctMrMJYW52xdlXuIdD6hqZJ07yjDPk9aFqw1SFPw8NiKS6W5mOcE1BVPbibHLc7znwF2VqEvZbeHlKDn1kbzPNnEWf0wLgujf/pH/9a/291d44reQB+QY8AcaRlFBHmI/gJq7hCL1m9A38hFMKOiTh6f+3T1Yha1ViA8Cb8FTF+5JYargSs1/lG3FjwAt8IXfWA4Mgk146v9wT8COVWUp/REcaPlYCoEU8Doc+ODjsGr+vm5zXj+/Cs3/9kEIjcjLsQDyQJ8CbkDDr34CLeop1gBtv7YjRdRhqCnCU792z1k3iTTwXei7/BHcEK+xfd+Fp6L3gnTuIhz4nY/hlv49qu0qwdplAX5q/gieit2DNNQsA1PwpV/7f4UicIxQ7Cm7p+7X8UI5ngf+AzzVdy+wC34PniiuyvH1AQtw4Lekv/YpM+eJ31iFssh4axqA34GnGu7BSYirVLTvdz6CEZUHr8JTv34PNuHhlICLDf/mE2d77ZuSc+tF2Ia2Y2QV3leZ5ij8w393ObB58lD3G4TCCeA/QkPbJzy4pTLW34ZDLR9Kkd4i3/nCv1uWY00gRdjvQ8PqJxTGINUHXIC2KUHNatqkTxt+45MAsmSh79c+gh1JSa5J6ji1AnUV+F34icjdAKT8BtR0EuRkE/ATv34XFhTAKwO/JePPGY3fgidyq1CF0g1IHIG+X/9ICkuVAh/69Q9dusuOSGWfqFv1sVrza/CF9DIsQCYtx9p39SMBLAZlvzW/I32YMObnN+ScO+PrdXjqjXvC5EkB70g4i3tF5nWcTikAHIMn/o3q6N9CZMi/I2EdDzchdV62+cV3pviTH/K5YKQAsAKcQaTqJ5EC/yoyF44SmKdFBFiIIWDDVYKXpvm1vbVnu7qA4LLRDMHg3wCjhO7zHWQ+GETmMQPJ2ggyygbkXD+j22gjSLONjWZA22UEhBnTfZ8n+KFlEeCoiwAIFQjeprZvm6eMPXdS3xvQlEfuDzsIyLJGYJG+r331un7mrH7nCAJE9iEAo7HTRgiWACZvNWZWVdsc0XM0rH17Y89xG3Bk7S4SLB5aCCy0KYTVdgP4CnJ+cwjYWNxzLGmC76uxNIf0d18iBEjFdP939pzbOuRaNSZllcCQhCAf3tS+yWvfGYt8ExkfR/Q8ntXt2vsYQTJr/ozfIVgDTOm5mtX2dhFYfxvaBgOL27S/+hALjDIC5tp56dPj2iEwSjMEjzyT2S7r/jLIXGSsTGOEjxF8bSeQ+3RUP59AxvCwbqdPtz+r27BxWtH/39HP5vVcXCB43h0jsPKTes5GCNfMr/61Y3uT4PubJqQejxKA3vPA/4zQ0e/ymX5Ncojn+UuXQaY0/a+TBS5yjl6mKSF+ce0qTfl5vo0lH6bJUyJBiqKDHoBL+wwgNODkFFc8+dFYKtc4wUEmvVDpZu6RAAeTeprRNqASmnqX3Wb2bKuTBfZrwWBtMlDSAgisMDNT+Zwybcz/zgqOLeIkWHKfqW5mte2zjHFMi5FGatnlXc5wgmsuyxlh2KVPJgHeVr8oAQqOckxluBEFzRpVbhpAODFyN7+uFEUm6ecYY4wzwIay20xSZ6weY7DM0c0wI9xg0P2SjG0RY1dla1F6mMG8s2KUHSgY5IYW9PudcSOMyAri23eVFfZ7CuEwI86wNF+tSfrJkeU411UK26/+YFtEqHiyofnZWaprD9PKKNomTwdzZJwB2EGebeI0su5Aq/kDrtNEL9POpHmVPwFglOP0MsObvMw/4gJlEvQy7Ubsxu65Q78Xy1IwRl1OKybztc4I3SbuEsx2zeyUQI96TNY6wrCPxyoR5unkOa5oIMeKjzsD7DrIY6b5JrE2iacZ4hvAZGzPHpWIm2yskwVyZD2swJhFKZWcGUu1lftM00sn8+yqZNIAIGO01FKm0ZOHPtuvCJ+or1eJMrUUSdHDjEsdV2glH0mrNL9EhCpjHFPWUsXHiWyrqmw/4SNZmnGEqsuuZWzdZ45uKoSE0jGOIXLsbWrZ9X2Zf9qGMgYNbDOgd5wBeplmhh6SOiebpNbmE0DHxgQFUgq0bNPNLN9n2FlkJQV5XuIdWlnhCqcYZMw96nqZZos4PWoFYOM7RZFrnKRXGX4G1u+qP2WEKikKzNGNpfCmKPg8bSCWMCMbyTDHEu2McvyRAIoO8rzLGYYY5Q4HSVJUVluMXRLs1wUQS0C1QIUVJDk9S45xBqhnm3NcdMbdKEOkKPhCShEJYTrO9T3S4S2WaMcStw2EX2E/7SzRqMzGdj1vxta29tl27H4yTS9ZckjydFRbeZ876hdqTF4DP82/L8ESWW6yqPPENL2MMEyWmyr1F2uJGLu+cFBRlpywLpuoZ5soVY6Sc2ZiiXZn1FmfR6l63/Qw8wgjT5iAG4wxSCPrLNFOL9Me0LJNPUkFHHf3XB9VXRSzxPm99968stltrrWQHrsXCpB5/xFWpjEqBxinl2nKeh8skvK04b0sPcDTfY3ZuE2cfvVI7WHGmZlxthjjGAWSRF0i+Te/Ph3J7U8gLIUXCRLVLwOr8PAi8pD9ZWTV+zZQgAe/iEgVh5AH3VeBr0O8BXn4PSTvPYTA5FMmqzkMD34JeRCPKWvvZXm/rwselsI22UEKjSHES8kKoRb9zJdhbRUpCL6MeOkktL3D+h0DVxJIAWfMlwOIDNMe8Hf2HNczyEP9adj8l9L1P1pGCpLzhAKgD9b+ZQ28rEBaRfd5XhJsazqkXff+z42hWIrqZ4zVBYH11qL7fZGQGGksixcJCayvaJ914qELvEKQ92W1/w4F1iTP6X5L2oYv6bEMIgXRWVySui9JYNacVAZfRPvrvLahDmGDnJb9VarIeHmVIClNImmgX9fPZ7TdZwWI25fU8/DP5TsPTQr3S7rdk8iY+rK0pa2FkJT4ZUIQxwFcPrt1FSn0tK01Hdpv1j99CIhxHhkvdQTZ88/J/x8q+47XtA9tDH6F4Plk/aNsxOZG/dvXpX8eLGs/fUl+P3Vbz+8vw8NfJjC7jmi7TFr+i7rf00iBmiGM62Xd78/p8UaRAva0fg8C+P4VApsHbf+gALyc1nadhrV5BAw4Ldvc94xu8zk9ljRUtvl8vH6EgA0dBLlzERn7FQS8MYbnEC63dr+tFHIORwhsJJOMG1usDQHUjCVnzKGzhEWIVYKcFQKwM0FgrTUA/0k/Y/LHKQTQyRACD0wa+462+Q39/TOE8ASbf+aR6+mC/jQg6k3d37C25XWEDZgjhGgkCSwtY7NFkIRWA/BWdf+b+nNQ221MvS4Cm/U13a6C675YE9H2ZrSfzf8vquenRf9m/YhuF22TgfNZJDnXmOEGol1FrrMsAUBKE7znNgng3PsEj8WEHkOCMEZsHhkmML46dbtjhDFictIuHrV5MPDYgE+TyprsPkGQthqAaWy0Zj2mPyAAajaen9U+Nzbj3oWOC8h4tO9cJMjBDdi1OWOZwKjMEu7XMQRQM/BvQvvdpLDo9icIixKbemw7+tPuawWC714Dcj+wvmlEFj5mCcFPDQRw2cbSmH4ug4yRI/pZO7eXCdYYXcjYXiWkPCf15x8Bn8DnoYY9So79Cjit08gCnVzhFGYwbsW/SS13qXXzapN1mTRwgU73EoqxS5q8P5SPMEwT65ziirPqxMsuTTezrLAf8zqaUQlw8PZKONhUyy5LtJOi4Nsys/Ml9RozSeEuteoXVPFt9TNJUQ21rVB4mhFn3BgguE4T95U1JYy/DQfBysTIcRSTKRbVcHuIUa5wSgGiDTLKPLjIOZZI8B6nKBNjmO/TygpnuEQ920zSj0lotxVQAwFWhKkSx1JZrUC5wSArtDKvbJaLnGOF/aywnw1lN4wzwNu8hBnqm1G49YMVNBa0YYw3Y7oJIBvFghnMWLyeLWboRbyXRF5mclhjuJicrEwt6zSSYIk0eWdCztDLHfqZI0MJ8YEyiWpe/d9MPmxgrDFnADeX3yVGioIy1paceXSfVkYYpku32sqKyrhqnV1pUkIrcreod1P/GLvKJ4kzQw8i8b7DTbIeQgEoo0aYK1sKfplsW8zzjzpb1CR5A4yTV5aUeYltUc+3+XmSykJqZ4kBxulnkjhbjGvq4pyyFAcYJ6U+d+YRlSbPJc6wRT1LyjArE/OCdZgRZ/0IUC3jupN5chxF5MQ5EpQ4yCTzCprM0Pv/s/no/9+vQ9zmIudoYl2BJJFaVpEwBfNuA3xOMvmeiFdFwijhOd0OnhuDz1hix7nuMsAS7QxygxGGWaGVCWWhmezeGKmWLB1n2+dJS/w0E38LpgAwn7FdYiR0PAlIP8YxxrDwDQOodlWaa8zgJRJ06bxu85MsuAjDqVHZcJYMbYEExlC20KN+BWFqdV42UNOuk+A3KT44xmK8wTEWSTPKEBEqZFRiL958srhkYzupnqu2YNHNHOb/JgskUcrEnHEo50KsDQC97kVWvzcwyfw17R6XV5beJc64N5wBpmDWEMJy3QugWkhPrd4XTd6fYY4eZjzEwgBH8y5MUGKcAWbo1eu63eX0c3QzxjEAZVVvORhm8lMDs5ZIuJ8mCMvZjgngsLLlTR5uALH1oc1XNobEc3BJj1kWovJ0+HgbYpRaJGzIWJHXOc429b54FGfLPy8LGiUF0aaVLTztTHO7p1jKe5UI/Uy6NNZA0CFGFQDdZZwBchzlCs/5PcbA912VMtdSZqA87vfGFEU69LnFgp9sTk5SdPuJVV2g/Ntenwqg9+H+NN859FPyoLsGHFHpplljPAOXh54Ovk+n4XrLF0UeOw+UYDP7GH85eFj+/iIsv1bH65l/HHyVDsD3Tv79sBqeg5mWpyANa7MQb4MfnD4ics+kBBbsDMF3On8qpOidhdf7/nEAxJ6Bvxh8lg/PP07zSdnunw+d5gcnj0gRdUM/c+TZEAwQg7849KyAI53y/k8zZx0Ue7gJPxzsk4LqDu67Mx4Tr42USnX+6+ALLH+lTvokC6ORIWmnypj+4tCzfHy+xX2NfjjcR7y8FVgrGbh86Gk5lveBWZU6DuFAwodnH2dtqAaAj24Br6lk0pg3X4PbQ09JYTsm3/nRobbAimiAP0+e5juv/ZQUPfMie/7eob8PXfCRyl1v9z0lQBbAbfjmyZ+RQj8L9MG91xohq4BWFR406H4P4754t194Cr4CNTE5vr8YepZ7X2v0kJFvdv6MnAdlk3x4+nH+fOg0DMn5pwU+OPRFOK/S1gl4Pf2PQxIsuMl/TQMuNfthsk/Gxnk5n5cHn4Y0bO/IuftO5qeYOv2k9McOTA1LKp8Xo53wQeaLwafvH8H/eOj/BKcVnEzC+30/CV+Ftbycq50+WPu5GgEe88DPwZ8OnoUh7aME/N/SX4FOZR8egteP/GPWfq6GPi0u/zJ9mJG2LwqYnYed1+CD4S+GMIQU/GXmsAB2SaAMP8z0BbB2Ex42wMenW9gaAxZg+Wwd30z/jHwmCrwCH/R9UfpuVs7L+yd/kp3XoOYFef9Xwwe4fP5pmrvkOx++8DivD/1jiAigefeVJ/hO8qegCtFWPh+vOoLE0MCkvUy6LgTEiiDX7+sI4PAiAYwZIgSe9CHzXpYQTgEy59i8ZNJCk92u6u9USu+/rxIAmfO6nVlkjBiYYowkkyQWCSyuPoI3mIG2Jh3+AAntSOp3jN13mrBocF4/M6jvbxNCU2K6T5Wue8roAvAbus8xbXOawLgaQ+a0C8jYf13bYsc5iMyRJncEAdy+hQDWJcJCSQsioxzUvprSbVmfFPW7FT2ueW3fGCFNVxnCRAiBPwbKbejfNrRvBrXt30OAxTcJoTjNBNAtSmD9NhDYaH3690ECS1Nl+R4WVNZ9ZgjsTwPbzHvvNCH0xKS0atPgUt+87v+Qbn8UYTgWkXuXLSh06fFmCb6KSQLYaADdKuLxaff4tJ6bLuQ+l9XzZtfMST3eTkIK9+U920/ouSjod21+3SsN3iSEq5h8fYcwHu/otnaQsWlj6AhyfW4Q5MzGoi0RAi9MXr2DhDJtartzun07F+vwY9qk/Hf9epwiEarUUqafO6zQqsyoVmc9RagyzIj7GM3Q4/KmDiTMQZJSd933rl4ZDAY6WKFYJOlyzRxZrnGCbeIuW1uniRscY4EuatklR5YS7SzQyST9jHKccQaYpF+3I0WoeX0ZyLeljIA4W87wEM85MddOUPLAjxl6iVHmFFc4wTWXHts2TeZlHlIGfJWpZYZeZe7NcYJrLlEe4WlyZJ3RlSfNMca0Dxsx6bCFcJiPnIGXIEVMN7Pq/1dkbo8HVz93XKplUrk8HazTxJIGSmTJcYJrFJRhIvKsDiJUPRjjXc44OGkswr1eQdc44QBCVc/zu5zhu7xMkZTLloxZM8YgFSIkVWIdU9lrlSgmF77DQSQZOICXVrjNKghSS9nHzRiDxNkmSYGf5f/JAOMU1N9KfBcFFN4m7qb3izpZ5UlzhVNeAM7Q66xDCwRJsOQ+aQmWKKk8r6iSQmOUFkkyxHWXgJlPVZQqszqWJI241QvQfiY5wTVWaHUAcpu4mrvvuoTL5Oa2DQM7JIQjgXlFAl5gXuIMtZTpZpZhRtzsPkVRAdZJIlToZ9L71zwFY5Qd0Ngl5oxGgBl6SLPorNdXeYOaPT6Kn+WXMcwucs6ZOeadaeb7JkEvkSCmknsD3ySRtN5l/AZyxSgTVQalAT1FlS2K712JLt2P+UN2M+vScEBDBQRgPMgk9co+tkWXKhH3/drbnlZWPOQGUGe2wNTNkXV2UxPrHFQQ2dpRIkE3c8TY5QLnuUO/gifXdRxVGeSGg+ImJRd2dBKTzxrAaZLdMG+JPHWBLqpI0E4nC2S5ySBjSNp2uwIqu87qKpEgzhaD3HjkvLQr0GT9YHOusbAHGWOBTmcAWlBOK/cdgOzQxYc0ed/fOo1IEEaMYUboZYZ2JIgjioTbNLFBgSSLpN1L0BZ+EpQ8EVkApC6fgzrIs0stWXLM0e1MNZPellXebfNluwKNxiC0dsn9tsKGgppRqiQpKOgq99ENnUtuMOgLBFFlky6RIM2ijkgZa3YuAWWtJpVNGaWebWfER/U821is6n0gQpUOJJndgjPWaaSsnnlbOm9bMMc4A9wkyxZxvw7sOgFh1DUiAUEmsTVGtM2ztvBjqfH1ev+whFxjibZT4lrsBHN0u4delBD8saWsym7maGeJNIscJUefszD+5tenAug1sy4TehHWcgLYLNAFJdh3HoiJESYZCY1gSHTj+3bg4VWgCg2lTxjYnJAH3nnYv7zD04zIQ/CG/K6WsjwEzwNp2QZD0Pwi0ECQYESBCNRtCrrrxVheVp6IKvMpg14k6y6z2tI1EGc9lGWQOatvr8wpL8eWoiDtSsK+QaHJ/1XygHjqlIBlWQ3loMoxy9DEBm23d5wZM0c3a4drJODhQIgCZwz4A7nALsTOSyFyQ/a/Sy3cgrWivN+SSAkvxPdXV2jOP4A2eDIJf5F5Vh4iS4jUZ0qlKgu4H9USiWAMv4yvttIMLMB6S52ch5xsk7SsPjCrLMkGfDXAZMBb1D9SpK60NDLCsPTfbSAh54EueKhFaA/TxMtbbM3K3/uZZLg6Iue2JObJ0/TCPAImlSRph+vQrEyjMjHZ5y2gES4nn5YwEpMCpmRlg2WkMHxF+p0+SCTk2NZpIl3OS4FWBktrQ+V999KNsh/zw1sVVgLzUFAGxgy9cAE+Uon1XMNT1G88YF9WfQinkEnF5JYlZBVmVWXdVTjOKM2lB3IecjKR9DADUxKsMtfwFKMMBekvOuZa8GtmnaZgSJ+AfFubULkzcr3YQyVppGge1D4EtpTlOUMvKw0tUuR+Q1ZuOpn3Yry9LKuvBjoduPyxjJ8IfLLG5+O1g4BA5wjhAhDCeVr0/yZpXCUwvkCAplGCd5yBMLMEg/0+BLS4pduaJYARLQgAv0pIVDXW2V39XpIQ/HCSwISbQsb2WQKIeBm5TisEL7cGQjrzCME+wCSXnXosJQK7sAUB3Vbh3n9qDEEBLYRwHwOqWgjBIjndhjHmjI1ojLXEnv2eJjCfEnq81r8mK7U5vIwAUra9Id3v7+pxfYNw/dzSdphsskQIMDmk52keOacbehzJPW1O456a5sXKOzwa+nCIENYxSkg8VhsCXiF489URrBN2EAZcFAGoCsjcO0aQlXYR7p3GpjMWorVrQ7eXxYONbE5z1ppJSA8g46JAWCBSewQfnzvI+b5FYHqarNuAyQXkPA8C/4oQOHGHAN4a4JzQ9lwlpJsfROazw4QxoXMqGW3DEULCfAYBolf1M1cJrMhVBBTPE4JjrM9GdPsHtM1RZLwk9/RzUn+3SkgxXyX4UNo4tjm6mc/8a5daLnLOQZ1WVniJdzBDd2OxmRzJpFvmJTdHhhxHeZfnMTP5ovrQmITGAizqlbUh7LttylqADDKmTIVpSQdkXJ5HgaR6PCUpcJ4/Y44MKQoc44aDa8bsa+U+ESpYwMAf8zNYeuFefyQJHUh6wuI0PUzTS4GkMw+smEqp/1CVCGkWATjIJAeZdMZOnC2uc5xRhlyuZiAY4EVXRZlmIR0zosyZCWdvlGjnzzjv4IqZ0gdp0X71z1pysKFMLS/xtgOwrdx3qfIxbjhTw7ymthVwMHnfXibg87zLz/Nt2lXKZaCCsdtGGCZJga/yDXmOAJfebVHv5vYr7Afk2fwmWdo1ZOQ+rTzPu+wSc2DOADwzwzdgcYt6LnKOBCWOcYP9ykoa4WkHzUwWF2OXS5zB/KoSlDjHRcyPqqSgmI1nELDvBoPs1+J5BUlaNpBvUANdTCJm8mmRjslxdrLAJP0McZ2yyl3HGaBAykGTKzznnlOA97XIHbep6PitpcwYg96fgALPGaJUHQCJUWaObh/3c2QoklSgV6TrxlyNKUsmqVJk87oy0CVHlv+Ff+ohD7vUKgOzhzR597+yAITP+utDuuhkgWPcYJJ+donRwzQWKDJHhiUSlInRreyqdpaIUOUSzzPCMFFdYLDQCZMH1mv4gIGB9xX8M+m7zFONKrFd8nNn4T0FXUSwxNEoVbYVKNsbVhCj7D6QJv9up+QeYEVl8G3QRIUIBzVhFKSumyPj4JQlTSdYYo5un+PNH7BRFzpMrm3jxV4CaN4nwxznuEiWm26dkCPrUnNjfN+n1RdSbA6MUGWU46zTqNBX2hnHBvoPMM4s3YzwNAlKDv6YFFMSyUVSbIyuWbo9fVskwBJOI2BOuwZJCMvQFicM2LLraYs4r/BdOshznSGaWOf7DDuYb+CW3TvbKZGkyDQ9xCg7G3FCJaAxdvcsKkWxJGRLpLV7iIH8ho/Y+StTy3Nc8fnDZNni+Sn+qgYyFnWOilF2Jp0wdqXte/1zl/ScRKkqE77WWagyLmPqNSts3hGGHdg0S460WgmID6T0c5EU29SrO2Ccg9xhW9tuvoIjDLuHIhiOFGWEYUzmvkGTy7bb1cPXwoJAMI/onrncgk8Apumhni2OkiNCxdmjs3pdGQhrSfIJSjS6l83f/PpUAD1L+GJeQIuaTQWKGoG8MOUW6IQiNCtbqJ0SDxpgu4yEHrQgQIH6Se3Ly4SA+R/VyXdoC/vdz4oUJ1PAMRlsrawEY/KKAjR18GAEWFWAogVqzgJ9so+m1R0KrwMlwg25ASk6NiHOdkgWbFEA6zIuT9siHsy0uwJF1FkJDfqdTtkeGQVbPsBX9NPkaS48kH3vgJmdUpbAhi8Ul8XXIhq+082cyDSHgCP6kLOjTLAWWIokmOp8UorxNvm8IeYPVeLWQZ610zXOIFhhPw8PaLDCO6i0YdclgfHNnQAUqdz5DgclHESZcE2sh8IlCenVey43e1iEx6fEq4MczI7K8ZZohwnY96L0z3WGWIm1EldZVC1ltiJxLypT1QKD3IA6YaiRxFHzB2U5/iFGpRBWaWuKArU7n4TzUlJQNIYnhTaxLl6OJk8EGuY/8QLUJlxUPimmpI2yHwVu1mmCJHxBx2oP05CBgU5pZ5laataANHJ8zXr8b8HDMdlunC3x1FOmj01CpORakNX7HgHJp+R9vwJpW6uw1lcjgPAFAlMHgs/iqjIDVnfk2FNyrs9xUcal+o0t0Amrem4n0JXapBvUWwFhr3wsLavXr8I+BUPypKERHvt0BP9/9167BJYeCKDQR2DEgQALrxHAmQohSOBF/cwYch5eR87RIHL+Zwly3B0EfJonSBENkK0Q2MgN2o7DhGRW8wkz5pSBLCcR0OUwgVlmvnffIYQ4lPWYhgkhH3UEwGeR4NraSADqGuHx39qQOTSJAFUGFCobmyKB1WeSzjH9vEq4eQYBHjsJzG07nighMbW45zhSyPg2GfOQtk/nA/oIwNVp/bux7gygG9JtfkAIjpjd06ZjCDj3rwhssAndT2XP+TF5qLERdQHJGZnvEBhh6H6iCBBUQcZASduSQMZC457t2usQQUp9gDCOYsg4MJBM5fTkkfPYp99/UfviFWRMGLjaosfaicyVBuqaz+At/f5Z7ZdnkHNe0d+ntF/aCEEws4SEZ/NnTCPn0kDtQYJk2ADrhB7DmLb1t7WtCwhou6HbSRMksBECwG4sxDZCuq4Bpsq0ds9LYz3fRiTfJwmWBK8j56tKOI+zBDDQwFFA8ZvP9Guep8iScxBhhVZyZJnkoEp9xNtmUpPo7JVgSY3dRVJrzAIrpNZp5D1OORsOpNh7mxexZFIDxMy3z0IXhA24reyJ8HBvIFCSgjNOWllxIC7GrsuHE5R4he/6d+Wz913WCfJMZxLMSQ7yLmfIk2aF/co4LHufmL+ZgXPGoopQIUeWChGm6SFH1j3ZatXwu5MFD9IokXCpXATxWBLGY4JpejjFe7zCd51VY+l7FzknzwvIc3ajgnExBY3WaWKbOBEqVIkqw63CNL3M0o2Z6fcywxLttFOiQIosOZdeWfFmEjiQxc+kFmNVopzjIkfJeX+vsJ9WVrjGCapEFWQQxqXJhM/wrsupjPVlsrzBPcCJyXnt1cSGA1NlYqzT5Iwnk51JoqScoyw3nYkm3xHwQwr8Eub9F1M5VoqChwcs0EmOo4Asmi+SdvbRfS26TXpcJKmskm5fUG9i3QMphNFVr0zHerqZpYsFIlS4xgnS5DVBV0CSbW1/Exs8z7u+bZOFpSg4i8lk53u9pkrK8apl14tw+4wldG7Q5EWzPIve8eCGs1x0UHWJBHG2maV7CsWnAAEAAElEQVQbMfWX4zcw6rP+2kXCJxboxJKWF0lj6dgWIhGj7F6c0yo/H+b7DDGKeTd2M4slmDYpqUbYZgkqRPzavcGgg1d2ToV/248lJE/Tywy9xNl2wKxDmaImi8yRZZ0mephhmzjTOs/0c8clmJYoGle28rayBY2JZmPRglJauU8920wwQJYcL/E2rdzX+U1APUvfNUapeXoagDPCMLXsqv9ZlzLXat2jzQBmC9EAHHCSZFbx2Zyh1xchEixhabK7xLCk1ipRpulx8bMtcmwrqHmKKyQo0cs05itneICBnybJBCFyJFXSP0m/+lu2cp0hLIxir99qng4GGcOk7cbqA3zb6zSyXyXYZWqZpodu5jioDExx2ZP5Wljcgb1mXrU5smxRzx2VRts9bZs4ZWIkKHGB8xRJMkfGWaFp8gxyg0HGOM8FzEOzh2kSlJQ5XMa8Ge08r9OoDDy5xwgTNc4ox5kjwx/zsz42DcMwINAWjEzea3PkFZ7zcWwSaZuvJTCr1iXSFlTTzhLXGaKkv7fxUiZGhYjfF8yPMc2i92NEWZRD5VEPSKoSYZjvC1al48dYebvEuEmWNIss0Onp0BLq9ePNh59KSf2AGmLsQhQGjgBlZcalgTWoW8ZR8QdrQEmo9jXLwi5iFkYanpZBM4iv9k/SL0WIMg/ypMPfy4EZ9qAIzMtkOUOvPEwr6yBJIcisuoQKziie9vcGr1Kzqb5qXZCnw1laJq2KUJWH+zGgKiuGzqYxkOcAfDQqn5mkn/3VFQEWN6Udu9RK0dECa8/WCOCpbESKwi570KCS0zoZQLWUvfhZS9QI1deMw/vgDX5aQJ8PpJ8BYSyqfHQbMVw2pkHf9z4SVpd9NiLnofnNBy7Tm6GHcgwyfUBMLpoZemQbyi5bYb+cg1vS/nq2IQlPHgLu6rk3MGMC7rQcYLPlMQGmytJn1o4K0icLdAaQIS9//8LsshSOg4Lcp5ZXpej7KoxEhuU7aR1D6HnYUEltRViPLnFahXQ1T435KJkMF+mbUoHAWERluw1y3h4Yoy8mk0WKIlu38DHQTin4PrUIZZcWTZO1/RzQsW/XBtImvgwfDj0uAGeDMvLQ/jmuARa3kBXPMlLkR2CI63I91EmCcaY6J0zSCNREoRKJyPWxqeDkDnKNJuV4qQiAt91YI4nGeQkIqWcrsKPe0j6dgCeVvSQPgsJ8fLgJ3asfSSGgDMY4WwJmG0BkC8cR0Hrhs/96kuD1Nkpg6Zhk0lhKY4QAllVExm/sLxCPsiyB7VNCxtNXCCCh+bK9iPTxO4S+b0EAlmcI6coGjB0hSBxHtT2j+vmrCFh1lwBs7RCYXmUCo29BvxNBrlXz7XuBIF2MIUyuw/pzg8Bg7CMEPvRpu0qEJN9lgm+a+b29gcw9H+j+zY8vR5BgWpuzCFDVhQBhkT3tBZlPWvTn7T3nyTzWDOzPI4BMVtt0jgBMjfIoM8382t7hUQAtQrgXTRCYbTZHbSKenTa3GJhU3LNd+5yBs3aNzev3zhJknyb3tfuMgZbGeCsi5/gZQirsVW3bBQK4OkXwP/xAf5/TfdzQNthcFyPIktsIc+2E7quPkASbJoRHmGdfAwJ0txEW0aaQcBgD3oxNd1q3lUVAS2Ok3gX+gx7jae3/Kf1ZJKTU2jxnLESTAqf1e88iY6eCgHabyPia1zbsEMDwHIGVafNcTLdvIJ55JwLUwl/DsD6Tr8e55yDIdY6zRDuXeN5N/K3QNAaWKSRKtHOF54hQ8ULVjPqbWKeXGf4Z32CFVsYYxIysh/m+sw8Al1yVEBPzvZIkY0AYmFQgyV7fHik0mkiziHngjDPAND2YT1+BFOMMUEuZov7fAA1hgy3SyzQpig4umkxxhf2kKNCohYN5AhmQuZ8VtonTwwytrNClBcsutUiqb9kBTWPuneIKFW0XyHOlme/H2VZfuW4H2qxIOsaYg1qWWFrQgte8uwBnm23rb4skSbPIJP38GecpU+ssFwNQ9yavtrPENU6o59EQ92klTweW0jhJvzPP7J+BFTmVSXWywB362SLOJP2+CG9AkzAithlhmBxHXYo2rQW7FZJ7R9yWBqCAsH5M/j3JQcbUzNl86+z3M/Q+ItHrYUYl4REf13bswrIb5QTXfCzYsewiPnTmIWbhH6e4Qowy0/QqS3PIgQBAJcbtXGeI3+MXHSgWoEGYMCe4hkmZ21nCQhRErlb0PrDF/nEGXAIOks67ThPtLGGJjyaftOvHWIB50nybn6edkga21DNPJ7vEyKgX2raeMxvvBqRPumfPZ/vVqACpvQy4MABhiYRfewbsmEelsYMFsC4iCcVxZ1JZWusc3S6JjVJlmO/Ty4yzPg2ISiir1ZiTe8EnY40dZ9RBDAOk7BowhtcIw5QV1FhSSTgIWLVEwtmjedLM0u3y6wJJ7tDvSbsmK+9kwYGaKFVyZF0+KYzhmDOctqkn4yzmIZ817tDv8/62jlHxnxQ/z0kOYvLx/aw4IcJ8/gwMjbNNnjQ5ssRV/nmHfq+L7TrvZMHnEktKNcB7r21AOyUHgIxBJtdFvd8nk+o/t0stlhj+J7yK+S6Kb5+AbHnSyvmKkuMoQ4wSY9cZsjEF3sXDtJ1rnOBdzuh4ERlsng4F/+TYCwrsdbLA81zShY3gr7mXaduoAJu0tZ2CLkbZ/TjONrvUsk6TL8gt6eeWaGdSQznibHODQQXAxItzhh63mXiVNzjBNQdqt4hznSGXyxqbWHxXZY48xXu+eAKyCDiqY0QY/sL6jFLF/ECt38wbEaBIkhxZZ21aMIal7TYiYVkFknyXVxiPDfi4u69XjijZFvy+bdd+TNmyCSQU5BonqGWXezz+Y80nnwqgZ/RLW5m/l2mUTi2IBJcbCgzMarhAEY5zXb6zCURQJLcHbsOD7wIVZTqVYXYMkXRSH4riFt1mTNNCyzDJQQE1krBVhHvJRvF0iElCKQ0SPU0EN+5OUoBNeKAr8rvEGOQGD97DZT0Rq9yqso0mAyxU8lPPFuSgPgIP5+H86luUI7Hg21PCwSfaoPnPHviDozEeIlRZb6kT8OUGala7LQmmzRCpyCoJeZgaITCuGiCRAtLwNi9KsSrPvYwyJIO2T1hrO8Mqhz0C+7LS90fJyYdfk20ukWCs4YsOBqzTJNIHLTDNUJO8ypbRbRr7Y1WA1rVnarzPGlkXZpwWs5uJx2QbSehWFtcCnVKwqh/SAp3S/2VghLCCr5IoechblAJxlVAoW1FZ0jF2Fk/YnY10s5aokTEk1zKDmz+UNOJnCCyaKKTScvydLLBbp5fNAXm/QCfxPWyrPGk5j8vS/ks8H1gYy8oknYe1vSzaiox7vicMxvu0Sh+qNK5KJJjUx/ACZWtTztV3eZnjjMIsxBugHJEbCH0CCrfN7sg2SvJ3Duv1YiBFg8gtmicehBCZWUiVi3JuVZbXyoqMqYL0cy27ZDdvQZ14BG436nlukTFYy65MoFOSDExF9kMtn1Ykz9+9l7I9Md+6MYLfFwSwyVi+N/T3s4R00DX9vwEVawio0Iykhr5OYJ814Oxg6hBA401COEAemXtuERhm8wi7zmSuBt5FCH5maf3dBQIjKknw7Tug7c4QGHidCMj2Tf1cmpASayyuFoKfoEq5uYtIjcf0OFO6HfTzJd2++coZuHUXAXvyez6fJIBth8GmOAf/OrU/q4QkbWXxuj9aHp97SOp2JnRb84RUXttGDAHGfk/3M6V9FkWAwgy+iMSm9hfaP/PaF1cRENCAoaz+LavHb0yxPoL82gDPFgKgO6TbOKLHauDbLyDA7yiBfWbn3o7Jfj+o33ufIAcuaxsMJDQQ7wLBW9EAK2Ncdun3S4RFnilEIlwg+D72Ief/7p6+g8AENdbhvL4/TEgwzyMehHnk2lrU713Qfj+t52QvWNep23iBIJFN63npIICfU4RQkAIBpDOpt4G3fQQ5PLrNd3jUP/AkITimBn7MZ7b/rl+PUXEmTicLnOESGeYchJrV4kcYVdv0Mk27pr5aiqEx8AzcS2p4g1mMGLNKGGlLjxQUrQriTWoRtkCXSxdt1dyYEOs0ORPsIJO072FdJSm6HFLkvLWPsKcM6AJdfFRWoIE7VgSViTFHRos58cECYfPl6aCTeY6S4xg3uE8rsypDi7FLB3k3/L6pcrJ2DYOwfVsxY151xqqxpL4KEQbVa2+AcWKUmVc1yK6y/s0/zgpWA9wMOJuj203tl2h3RtkrfBcJK1l8hJFlhWqZWixR086bFHwxZ6FYEZvUFZ24Sr6Oc9394q5xgiw52pXVCFAgSQ8z7FLrjJ5Bxuhm1iW2cny9JNUDThJ+Jb31Dv1+7CX1CExR4BwXOc8FBwENlO1lxoHdJRJc4TkHwt7jFPtZYYBxtqj38WbStb3y8jwdHkqwSJpt4u6vNkMPb/CqA7dmOr9Ok/uPRahynFFe4h0iVHiZNxlT7yoD3IxtWSDFFU4pAL2LyS/zpBljkFZtczezmEG/GefXK7DxNi95eq6M37IDL7XsMsQoCUr8IV/jGiecNbpFXFkxksZ6TH0GzQdywOncn+3XBk3UsusMHpPlJbXQlyCVIEM3lrHNAcaYszrMPES3iTv7N0kRSW/eUgllIxamYmEVNg+NM0BFGdAm1d2giWG+T5403+UVvf6TXnNZvW/pxp0sEEXCOOxaN8apgZHGSLb2N7FOOyVnetrnEpRcRrmIJNt26PX7fQ2LGWHYAVB7OUmCYJtl9g2Asr5Epn+NE1jQhiXAbhOngvjJxZQ5HaFCiQSdzDtrspUVhhmhXoFw2/cWce7Qz02y/CH/3PsMcK9MY2FF9FoxD0Dz87zBoB7zhrff7gsWcAI4Wy9BiZNc08WVere6svAFA9hksUrmb7tnWZBJL9MM832XCu9lv63TxB362aCJXmZUwh33eaxXmZpZcjSxToGkg13iNVfr47NIiqRaM4CAvcZGjbONeD6mHEy1NtjfwFKMt5VLnOdn+WMkXEjus1vUO8vPQpJi7Lqfa5EUZ7jEJAddzQdSn5ZIMEe3z/3mC2rJ7bbAl2CJDvIcV2sBYVvGFNyLO1PPwmNSFMU+TO8Tl3heZehiq5Elp36Es7SyQoeCzT+uBcGnUlJ7OlQLUBZEc4VWGITmDLCsbLqkSj2nlCmnwAJ1MkhfK/4phVEJJPj4SIsAEBVIxIC0gjzmcTOvYJyxX5LCjNrPioM7e1ezGJa2bVMvK+8Krg1xHaLCanJ2FVCTQR7Cy3JBsgxrJfneOAPyoN8nbUmzCEVI9AnD6kLL2bAKo8DYAOOP+CnF2Q7G4OqH1za1Q7xTvmMPgSZjqt35RB6o1iAVk+N/jivBnD0m+9gxH7YoPM8lAQE3BUxaaWgRn7UE7iV0k6wUXCrfOsO7IuVVRlCetFxg2ta9E2dNB9Cl59YKmoSc2+YPHjg7IkqVqIKh8QaYjInpKTENn5jA5bNEpX+2qOdH6TbvL4DJtqekXTncW4K7uBH7QSZhEwpaDJZICIBXJ/3TygrNUw/YmpL3zMNuXY2DZgwGyS0RObdlYjSUPnGPxAU6BYwdlPMWrcrNyVMqYwIKswqJ88CO9k8LJJ4FfkHO/VpXjfhHrkLNsrLnjJXTogBmHgms6FNT5xjE++Rc1bMt41JZWvGy+DbwhiQ2b6YfE8DPmENlAVZ39Brltoy5zb7Hgoy9AuVYrVwrSFvWaQrj9rS8r1M2S02nAInpah6S8GBKgEiXtXfA5jOPcZ3jAZT6PLwakXFpckAQ0MnkrxcQYETnF0DO0X8h+JqdRACBMYLf1oj+3+Sj9jIPsT4e9bkzNp4BicYWrBDCLPoITL6ovm8msPqm9PNHCEER5hVX0t8biHFVj72k//LIOb9KCK9Q4JeTBKbVJgK4HNbtXMetF2hAQJMjevyvEKSSCW13M4G5/Yq29y0EeLmhfWbX57M4Q9X95wqEtFhr27O6z5MI8Lmqn5/S/j2u7yuEFGhjvkX0WJr1GJuRc64WDhwmpKgaOIXuz5iEdQRmV7N+/hCBXW79rUA7yT39uIPIQkcJKa6zCKD7Hfw+TVTbbSCrSadNUp3CF7Hcf1E9PEloe6d4hK3tiyXGgHsfGQPH9Du3CYBmVts+pOenTAgYadHP2/UxqPtr0O0fQdiCLxAYrHofcCDZjuMb2ne6SOH7sOPuQ8Bpk8aan+W38OvsofVHhcBcNNnxB8h4MzWBgegJgjdkTM9XGUlWrwee4DP/muSQyz+TFLGgCWMNZdSUOk+aN/hpLJwC0FRGKcK2iLOfFZVhtpLjKHfoxwIZDGw5yKRKJmd11f6+s1MKpERdgdyT5+l0WYyFW4gX1EEvwtpZYoxjmJdOkSStrHCdISyd7yLnvCAzxt+0OgoZ481ANVvt/zY/r+ysWmcrAg4aNiJeaZZC2cqKMw1AFhYt4GGdJooqzbtPK10K9lixXaLdGQUpiip57vfibG8S5Ff5z3Qzyxb1JCghiX9RLFF4Xp9/EiwRZ5vneE8lTbNsEWecAY5xg3Wa6OcOMXZdniQswS0HT63g62bOQSLzyLP+rxLhEmecdTTKcUCe/QcZI02edg2dMM8sAxUMKDNG0xLtzvi7SdbZQ1lyHFRPJGPVWKFvDAqTN4vk2Qzzg49hgiUyzHKfVlIUXQIsTEBhB+VJI5LFaS7xvMq6t7nIOUZVYhehygmuMclBBRcFNJ2lm2OMOZtLmJvCdNrPCr1Ms0uMNIt0M8cQo6zQyijH2aCJMQYpkKRKhJ/lj1mnyY3qY+wyyBjmxXaNE84StLCaVu47iNDIOhZO0E5Jx/4xB9BXaOX/yG8yxHWXuEngjEjZjL0pcrpu3uMUD/xB6bP9WiTFuq7mGRAqrDdhA9mC+BZx/jP/jAU6sXARS+a2ucQtppA6zfzFTJa4SJpeZffeoZ+kSquvcYIcWfJ0OEhSS0hfXVI2mckzZ+jVNtUr2CXX6inecxC+TIxRhpzJa3N0lhwp9YMDnMFqMnezL+hRYH0FkV9bsEWZmAciGBNKwJu4eqEKEGnsUQPdzPvUthljlxQFxjjGEgksadyO23zwZugBpDY6So4O8hRJITJ2Cf25T6uD7zHEm9NYVr3MKPt5EZNRV4hgnqOWkH6d4w7EmmQ1zSL1bLsfaEIBT7tn5kl7GrX5dZo73EHueL+c54LykafZpZYYZSwkxRYBBsrj6vUqIL+BUK3a1+ZruTc5OIDGrX6+TGJv7YxRxgKT0izuYYrLg1xJg6xMwitMdVksOcgku9SyQKey5UWiu6QLAhauZeAaCBhnALFdQyKtjencLeBcN3PKVo9xgmuYj+1e+bt52a7QSgd5Pz5rn5FqANqrJZfsmsdiPVtkuamSWWF92/jLK1AbQ1J3o1Q9PCRJkRi71LNFu/ZdF/M/1nzyqQB6nyjVHYAK9GzeFfT6sAJ4SWUcNcA+ZRPkyLKZeIyHeWG1RaiylqjhARJq8ER+VWSHfdCs8pxt4iLXUuaLAxpRYEImsnq2oA/ir8IXRpd5dfNPg9QlouCKrcgvC3J/OfM0NcN4oMMiaXmwV4ZeiQQ0qFy0JClQzmjYUJmmsSIOiHdbZ3lBZJbqkZQnLcUUcG+oke/ysuxjFchK/2x2PeYFla0aP9B2r7Qo2zATZKsrtAaGzrys/tRN4Uyxp0bv0Xf7I9gUwNIQZl5AigtjrqgUmLKch8TqqhSKWqgvkRAGl4JiCZakP8vwsEuYkXv9s7yPL2s/A/uUjbO1CT85O4EFjXxUlu22UwpMnFkBuCo6ZsjjtFVjSDRtbgQ/FC2sd4lBBZJtwDExo7RQEJaR87ohEt0Hi3KuFiKdwZx9QoM1jFkSkwkHcCbgFvUCxo4BJwXQ6mQhpEkuq0Tb/KwaCStJO0BVbhbNdx+wvqnMuLKyXM2/K61g9B5Z8Bb1fJxskfM9ha5BCeBNUbzr9r4aXv9E2jmIe7SVaKeuiBTlJUhsLgtYqQDBzmm8aIiqJDEiFDt5zcr5X0vVeL+PM8DNSBYOCzPwieKqeBe+KfttWP1EruMmhJXyeXjlkXMZQ8CMCjIGjdEzhgANZ5FznEUAEWN7JZHr4CsEgG4WAfhuEdhB5j9WQYCTMWR8LOjf1QfRzfmf0b9f4FHp4tCedqXwgCD30TMW3zvIWFlDwKgMgRlnHmUV5Dow5pUuxjigtqPH0oKAMiY7reDXHO/r31XGzXkEEGoGfo0AoEUJ3oEGdKrMde0DPfYEwUPSFn86CT6FdcDPEUCrOu1XYwfvZfoZu7WCgI7m9WcMw/cJ96MN3fcwMg8cJoBSH+g28/rvKgHAs3P4PsGL7oD+XCCkdo/q9k1ejf5tmBC2YnJeO+bLCKBmcusjBJnpYe0TXdhw/8EhbdtftynIEMZKUrdV3NOWHJ62zTsEL9PX9DvNBBlvjsB8bCMA03+4p+1jyDk8jYy/KMLEM2mvAbzGIn2FAFweAP4RwedxQz/3HQQkHtE2FvVfjkfBwdPq7dpG8L1bJbAFowSv3xghhTqPAH16XyBCYJRua9s/4696thlliCoRZuhxpt6S3lQsQVZSB3PORjGQ5Rg3HNixZyKTwiYo0c0sCUrKMrnpxtaWkLpAJ7WIibttx8AfA17ibDmLyEzKy9SSpEiSIr2aymv7t+MQdmEt57nAFnEF0mY9RfcM7zJDD3nSDDBOmryzB17lDcQjaMiDPFIU3VC+RDu7xLijklJLss3T4Qm8iwoAFXQBPcMsVaK0suKshjm6vfi5wikvmLY1LbCbOS9kAAfwbOHSWIzit7VElaiDqlsqN6oSdVZkhCoVIh7K0cO0F4pWRIMxknadKWEF/C4xLyCtGDbTfEvEHWCcbeIuOTN52xCjnlA8Qw/jDGBBJSkKPMd7nOAac3SzQZMDFes0ejGYouDyxXeREIIZ9TCrEuE4o6SQNEwDbtspsV+ZRzmOMsyIArMFUhQdyLOiepcYxxgjQkX7WdiAA4y71HadJga5wXGuk6KA+SxZH9cj3mvtLCGhFEWaWGeGHgcBL3GG/axwiTNkybFLjINMMsYxzONskoMuzT3IJDHKpFkkTwcz9JBUpukMvVjqqgWFmE+isYMMFLBxZKbxMqYEbOlRQN2KV2O4tHiS1Wf79SQ/ookNB2/NPsC88gxM3UWCaAYZYxtJwB1nwIFZGy9mVVBLmRQFhV9q6WGaepXKb9CkiyhyXUd1Dj7GmAJi931x4gaDDDD+CItUgmqKRKlq8MWKMzOvccKlrQOMs0Anlg5qcnJjhR0lxyhDzuJqZ8nn5BVaHVir6vxhsvib6iFqLGgb58Y8M6ZwKyvc4JgzTyU06b4ziyNU6WeSl3gHs0yIKRDVryFEgiFss0KrM7vMauESZ+hlxuWoHQpGipw0Q4Il+quT9DPJiDLe7GVzsLDABNROUPL0WQud2Vag3IBSkbuX/BozxqFZN5hvqUm3jW1bop0yMY4rY9YWm0TuHmE91kRRF1p6dPmpTIwxBrFAFksV7mGaCFVNIpZ7alEXB1Zo5V3OAEKGMmBvTn1V86TJkmObOO16rzVPUwPEzIvRwjre4xSS0l7hFFeUKd/oizPCpsvoGG0kRplJ+jFrgwgVCqQ8ZbdMLWMM0s0s7Zr4ntHFmW1dpKgoGGr+gjbPymKOgb4VB+NGI0MUSWHJwCb5bafEOANc4Tky2l85jrq9QA8zJFiiQIp6tknsuQbWaWKaXkq0uyz3b3t9KoBe48P1wIZrgELD44LAbsK+KDw4qaw2ZV/RIgENDfOfALAvIaylpUjCk1NZU6CoDvf7+SrfkIfjYeCAssVmoZQL8s8mNuRBegSoQq7hiBQbs8D3lAm2gxS3LRICcbr4fTfjNlqqm7tngkdcSplK6zTKg7vKdHJkQ9EMtJZXmIz1wxTUKDOgmzn5Y5eAMweZlIJBmTSdLLASa/WVfVuJqTkp+7AJz4HbqoJPSdzDqYcZkQ9fBabgoUnikgKSxjd3mGBA5HC6315m5Fg25FjXaWKlpdElf3G98e4bkn2MclwefpRVsu8uEqRghekqvgpugHbZxkYZ4uq3lNq8B1UYSAMpOb6dYaTfd/YwA1ukbT3M0L68Aavw0awkGF9nSPp8WdpeEJqmgMY7ypw0mVseBqrj0ucvQs0LsNn3mFDeE7gsN0VBCkAFGfKkuZ1+isJlYEKYcrWUXSJnq210IgXfXfin/M8yniYI6czGRMqrRLss3nfbZflMN7PSh0V5f5xRWNPQjE1ldAIPd3DfRmdLpvHJnQZozgKndVy+iIMtCZaCTO2wMDaX03VQhn1dEFNAlxHY94ycvyY2QiBDXvpnPaKsvaJI5dspwTuSUPwwKkCqS+EmVCr/pJyTz8XrAcHDLIaAKLf1b3u9wpLg1jFRAkPqAALcvYf04xQhHACE4VMipLlGEdDLZNwlXHZPhAC+zBPko436vVltw7PaJmPzGTvspP6068wYaGPIHAtBBmsAVB/Bc89YTwcJkk0IXmN63TlYtImMWWMX7hCCFjYROeTEnn5MI9eeSSZb5O/NgwQZcYUgoY3psVcQELNEAHAqui0D5RSAZ5nA9DNwu6TbN3nvYUIww7Luw5iMzfqd2wTmWEz300bw81slhCsZSDmsx3Re/2bn7yTB183kqDbH5LQNC4RQhmME+WkRARXf0P55hgCeJglJrcpiZkq3mSdIhY31+CrB57GL4DE4q+ftiH7Gxu7EnvNkLMkowSfwAI8GlaDbeUeP36To6LYrhPTkUf2cAdWvIPOWnWOzVLiq3/tl5FoypcBXdN95BGwcJAB31o/HdX+jhJAMAyGN1T+k3zUmqI1tXdziHf1pffkZfq3SQicLLtkS1kTFwwss9KKVFTLM+Wp5hApHyXGTLLvUUiDJJc64XGidRgVqiirt2s8MvYwzQJGkA0Ir7NdCYptu5phXUMQkP9sq271PqzORzvAuaRaJUWaU41QUBOxn0os7858zcGOAcS9gJR21njxpZVv1O7MqRxZLpLXjjrPFu5xhTM3rr3McM3OvV4+7VlY4qDYsZZWOmtechTdUiHghYj8jVNnPCkskeJnvUosYtZv3Vp60gzEixd3mFO8xxHWqRBlkjIL251FynqwIwrYBlHkizB3zYZPipIccR521ZdIoAwYTlLhPqzOGxhhUD6iyB0KkyWtCatTB3nq21OevmwIp8X1WhldZx4oZpefp8LFocr8/5mf9d2XE8H6EYSbpJ0eWFVpJs8hBJjFPQ5DnuLgW+7vUeriKsZoMuChrIS5ApzCF2ik5YDGtIO8K+73AjVDVBFBJPnyF7/q46lFwtIl1TVesd+B3gHH1dxL2loFoeTpIsESFCKd4j7JKDI2FZexMY4mO8DQpipziio/tJdp5V6+5AhK8kFAQb4EuB/CWFJA3aXCOLMcZZZgR0ixyhksO9Brjtp2St+EMl3jcH1g+268Ey8rulHTsJU07NSni81ziOKMkKTq4IL6P+x3stnTakvrVpSiSJecM1AoR4mw7MLGgTOSE+iB2KOvXJPi7CvbN0c0YxxB/RWHApigyxCgS/tekqdsyJxVJOdMprzf4WnZdfhuhwpYuHKzQSi279DPp0k2T0ponHOCsJhtvttCQJccgYwxygwRLdDPn39kbBAIwQy9zdHtyqoFg5je3QitLtGPpz3k6KBNjRsMjtqlH/OQqDiCCzHMGnAIK+vUwRzcmFR2NDDkrzPpLAK4MJSS9uBZJi87TweIeYM+A/xTFPSBPo7MDyyrtrCiByhYWLPTEwncsGT1HlkW9vz7HFczmK0uOt3kJQBPNxb+tnSUGGPfFmKhiIe3lki/KZMm5HYJJUXuYJk+aDZp8jBnbWuwY6mlSxnk9WypjLTu7XNrRzhwZDdCaQZLmxxzEi+o9zWwwBrlBkiK7et8zGbLZBgA+Du9o2EiKonvaGUPQGPUxdrnDQcyX0q4ZW8AytjdYEGTwYq0gCbUTmj5uC2p7w5RszMQoY2nGlhYvoVXtHhQjUvy9/lz/n1+fDkNv32NyMWWAzWBQyLx4t+3WPcbzXJKH3w6gBWc1VaoSatG+vCH+XYeR4qJZHxgqyIN4QXdm/ksNCpQkJTigJiM+Y3k6YFW2+bBPmYFpRGZ5SFl9h5EH/DY4xg0pWJQpZxOPFRgfph/3VScrQjtZgCisFYGUyiGNybEDC7FOeqvTst0qKsvNSzFyQcCsKNVQ9BSgQoQv3FqWdmQkTdQ88x6OmXlqPVQhdQQHAd3vqUXBqHkN1qiqRFUZXMSg7pZ+pyT7cF+1BaS4WBVgKF7e8rQ/8zvhlrR1SFcMKeKSwShV6FLfNVTGawBzLMSD0yDnlU0oNbTBjiSysiEXVt0bep6zeKrdw3dwJuVs2xNQB092wl8lDwiAaRI+K5ba8HTMThZgJ4C99RsP+EHyiAeLzMW6ZTzsWRxcIiEAmBaKEar0L38orL8GkQFNMODHZjcfNqWdtCCBKElcPtnKihT7aTkXTas7sCry47iyW55auCfb1GJ0ht4gXcvLzaipvC4AYAWm6ZW2KghhD+ccxo+nRCKYsVeU4RrF2TtW9NAl53LfqAJ6bTpmIsoUjCDMlKwA81vEhaHUINfcJZ6HZZGb71tVtqV5cTXo+znCNfJZf9Ug1/1hpG8PEZhQJsVrQcAzA8kGCcAVBPaUsdsMIGtDgKEh3X4KuWbeIjDzDDA6pNs1MMUYS3nknJpc8w+Q+fBFApBzFQEtDEAZQsClCDKGFJgngczHaYLXokmCYwjodZkAgBzCrQq4TAhMiBCkpRA84wwYNgknhPCcMW2DAYsGPLZp3+QRgKmFkM56C3hOv2/svTyBVTWhx2zHbkDXbQLIeVW3d44Q1ID2X4kQWmHsvQOEoJNbhKTyNQIoaQzvFAJEHdHjKOvPNwmpri0E+XpU+3xIf2/zcqf+M1+6CYLk18DgCDJuSoTgC2PHlbVPzMvOXhMIOJjTzy8gAJWdn3kCMHpY23KYwDI1YG1Bt1fRf7bYl9HtntR+eEbbauDwKDI/G0hmY+QQYW47jYwJu5bs/No+ynoMI4TzNY+Agv9F/26BF3a9GJv9Oo/6S5odwRTBO9HYkc2E82jg7jP6u22glc/8a4hRUhSYI8M0veRJOxBkcpcytb5yXqaWevVVW1FJXxkx009R4AbHhAnBHeq1KBYWRgULN7ACTtIjt1zCa353s2Qo0c4oQ64sMYDxBNew9M8/4zy9zHBMwxLK1HKQSQW5JAADpAgd5bgGOpTJkqOiwGUnC/SrDFjUDSW3hjEGihlmn+IKVSKuPEiTR7yJRH4KPMIs7GX6EYDR9mWME1ucrmWXDHPk6WCcAQe2jL0oRaQ8YNuzWp60yj6TnOOiL9IaUGYSOANRE5TYJUYP08ooSnnCZZEkZWIUSLKkzMMRholQYb+CYAY0gTxjJFVCt0vM5bfGZojqc4swScTvTTyK2klRpIkNCiqTa2IDC/uwBMlzXKRDJVYv8baDmsaASVFknSaOKnvJCjkztN9C/LYsoGCLOBlmXcJnDAvpX2FmpHXfWXJk1NS9VcvL53iPPGk32w+MpwmXY9ZS5iZZRhlyMKxMzIFEM5nfop4V9jsTyxJBs9ykkwWucZJayqTJO+A9S8aP2QJmepimn0kGuUGBJLvUUiGiMvhWIuqNadduFZEVClswAB4mocxy0+eESfodfDGWkyu8PuOvFlYdaC9qv0rwTt6v50XSdLLAAOM+ztdpdKYqSF17hVMODhlb057pW7mPWR106LmeoReT7g9Ux90ntECKSQ5SS5kTXMM8JS3swMIbLBxiL1PUEqlNCmmhB93MMbEnYKV7z2LNhspFF0k7qAf4wowFYwQ2mqTlGlvNZOU2Di3IokQ7x7hBghJf5T+7xNXYTnN0k1EgMM4WzykTtp87xNmiTIz+6qQD8ykFjGzeTrDEtgLmwiQUZnI9257wbPOqpajafAJieRShQhMbWAKwyC3Lj1ghLNCJ+amJ72unAngFn6fteAx0ksziSU7xHmZ9YBYUTaw7GGj3hxQFEhqSY/fRaXoZYJwl2inred+giUJMxukYg4wzgPnMbasEu587pMn7wpcxrGfopYcZ5shggSsh8VyAsgGN4elnkuscZ0UX1kAwgTFlFh5UgNR8CONsOzN1A/PQrWDekxa00s0cg4xpuyUYq50SN8kyzAgRKs7iE7ZwrbNmDYi0uRLknmwLMLawdEeDnA7r9WpzvXkoGgAYo0yZGNc4wST9xNU26yB39twvykxykI/4wo81n3wqgF4BMe+0guJA/mMx9duEmjZo+M4nAmiVkLCJeQVOGsRnKxqBfFubsNoKuFysQEr+rwXwt/l5efhOAaMKethqvxZVC3SKf1cnrLfUyMrdd6GiMrVJ+oOR+B5W49oqkEMTxjrkQf0DeOrWPd8my0BbSHFtfgWYUOmrbbNOgMbmqQfO3tg5qewx9SqrG8PTVKxg3EV8x8YXgMv4BPJwXhhnBU0TM89B+vRY56GgDLQbHIM6AVFpVmZcG1K0KDullRUpOG4BhxXAyePphFWiEmChUjhLHnuogERqeVX61CRbJbkp06ahD5saArEDOk8DsJypExBUC8Q8aTgA8SPAswq8midRUoDG46s/9NTXoj4gMg90yT5jlINsLa0+dAfgoRZVW9SLFLQBOCkBDk2se2jBT0zdlQv1fbxATFFk7R/VOEBnN4N9WgwvkpaVnyjQCHfol89M4Yyg8ciAFPHKRolaH2tBm295XApnZd/8KN3GX3YeDkVki54nK3SHVAoTjRAflN/JKkpUitIpmTSy5GAHSnfl+uhmDj6A2QX5TpUIjAnDkZIAfunVe3LNRWQsJlgKiaopBUVH9f28bCNVLQh42yLjwwoeGmCtq8avbZBrbomEFLDGVPo8vGIExlQLwoBTv0NAQIcEcg0ZEymPzBk3CPPTEMHDrYgAG3cRECWBnLcDBK+1D5BxdZKQDHtZf28MSQNsyrpNm2ON+XYLAUjS2pa7+lmT1Rvz8Cxy7Zg3mAHrWQKAdBgBn4wpaABVn27HvmcgXUr3XwRe1vYaGKKsUO7q9ib02Pu0H+1zUQKr8U3tA5NBmwwVwr3EANARnCHsDD3057D+v4EQ8PEBbt3Aef37KwTWmclUv0FINy79tX8Leq7GCOm0BcICxbz2b5f+f5nANLN+tAUqk3Qam+ygHtdp/awx9hLazlcICxGDBI/At/TYisg5Nobll3R7NwhS6rsEWbfNxZsE7z1jHR/X9q0RpNfLBJbbMwTvw9U9nzNfw4z+s+fZTf2cgcDP6nH2EWTu6p3q0uxBwtiJ7Tn2TYKXZJVwfbyvfV1BxtJp4Ov6+Wf0Mx9oX89q+2zuHCQspui9lGUEPG9BPPTMC/Ez/JqijyQFupn1e6kVd7vUkuWmFwG1KveLUXYDfTPSLiNJoCL1idLJAr3MsE4j1xnygi/Otspn6xlgnCQFzOzbCoWMBiVI4mjBPcqMiXUfSc4V4KQeSyRcJM2ugjgmGSsTY5wBjqoxeDuSqGrA0gqtJJUNc5FzzripKHA3zgDmOyQpgCWKpLAkUpHDNerfMwxygzm6ucNBKkQYYpQS7UzTQ1FZLSYHnuQg7/I8W9R7ATHE6B6Wy6yK8uLc4Bh3OKigzjGOcYOoFvYX+EdUiTi7xQrEGLsO/AhTqEBJkwt7mcZ85O7Tygw9xBTcMpaLmfwXSHkhZN5YBuha4qMtqjexzhLtJCkwzmGXbwvTR1ibViTa59dp9ELb5NLCQJOnbAPajPlhDI5WVlxiB3iYxAqt3KEfS6sEeV63AtBAvhIJT0C2cSXFbITMnpWSThYYZoQ8aSxZ2FhNJrfsZMFlkMbWE5ZU0sHdLDfJqBJonAGGGeEcF0lRZIOmRyTsJRJc5BySolmhVhmW3cw5cCoMvEUsnMFUIllyWowmnSEDeCHfTkmAAJWJtnJf2TLiD2ZJnOe46KDflPq/fdZfP1SfRxDAIqmMuXEGmKVbGbgxZaweQ7zxesioBxjgjLi9bMsyMSzYpkrU2U+WeNzKfQeDOlngZiTLAl2s00Qv0wqs3/GgHLMiMEbvCq10M6dsJmGqGgurVoGZFVrZr2xcYW7JYkgtuw4KW/tNJlkl6kCY+b0VSXqydAd5LFjGfFCFOXcfS0MvkCTOFkWS1Ov1b35nZQWijaFo9xNhlkqtH2cL84abjAg4s0TCQZ4FOikpk22WbmVHy0KIzAEVl/iu00ieDqbpYZeY33daue/zs92PbDHKktMN/DeW8Ar7nRVroGce8e67wiksUdyuX7Fe2O+Sa5s/bMHjDv1YEEgtu+65aEnc3eoBKnJ7AX9vkmWEYW5wzBm1AtDO0oiEuhgova3jWRLAe5yZbcFMJk0W79dGvS/uZ4xjvtizosscObLkyIqSEan/W1mhni1Nyj7IflackbqkYJ2wXhM6jwV/vSGus0KrSrIFAJSFnKIvfiTUAsDuW+2U/F5tQHmBFDHKyryOOgFMFhRl4cIW/eJsM0s3UapM0+ty54NMuq+kLZDYNSDPDPtp/TEtCD4VQK+ebebISPF5BB40qBw0DxyG5dfqBMBZgI9WgTJMMMCHRx6HKuxLyoW3S608hE8Bs/DzfDvInw6oXNbkNAZ6mNwoKr5qz1WvSHGTgeb5B/IQtwHNp4FN/EbPBpBXKXALznzqZUaAoU14mAfmlV1Xho+mcC8yZ9ggtH2Xm90N8kiSso9q9DH5jhUOef1MB87qMpbfwBHcHy9KlX3qxXWm/K6AUWmkIDmu3mxlUfh5MmoMapQd0luekRCErIJ8mxokUtZ23NVtDCNFowI0NcYs0YKjkwX2fRUYhH0lXcU1HyeU+bUGbS1A8x55sTJb4mwLKy0G9QoIdLIAd2DrFpAjHNsqcAvGGJQEVfVcTFCis7rAw1X5TJWo9HtVPBhZUynrXdiXBtl8vxRkGWlrc+kBh25/GLy16lTqmoC1PFCQCbN59IEUv4NyQ9lXgZLKrp7nXWdGbk3IeEpQegQkGKiOh7TKW3ihQKe0xRgKbAI7uO/AwymY0j5foDMwThIBWKRL2mmm15yX7aQo0sp9AJobYfnVOjlPUcgkZRw3sg5RRNZelP7abqyRbSp75PsMCyi8LOfSZO0FBSN7mKFp9YGkRivrKE9aju0A3I/IuCWJpzumWYRdPj+hGAaaGPtokAAYdCH9Zl5sVxGQwVhUZYQtawBQDvH6miUwjoydhn7fvM4OE7zCinv2AYGdZiwlk/0a086YSuZtZwCe1R1Jgq2AyvVZ1v2a7HUvQHYLmVf6CImtX9Vj0PnaGYLGXkW3E9FjuaX7GkOAmyEEhDqGM0TZ0P5NEPzl7Lhtm8baTeh2X9fP6HxuLFjS2nerCHizSrA0qNPvdupxGavb2FtFQuJpp+7zZQJYa8epU4EzAjsRILGifTOEzz2eWjy15zt23l4meO3ZPTCNAFu2zx09H2nkXH2NR30PRwmpr3tk9Zh89qT2U0J/ThAWrqp7PmsSWGVGc5KQhGzj6i1tiwGBLyJern2E++ICIXDCGHF2jg4g46BO2xDDrTjI6fcMCC/o9iMIs7JIAGkXCaw7A8kzejwmFbfrwP7VIdfnB9rfr/IoIL2jfWjy2ijC9osRfBiT2i9Jgh/gAz7zL5MorrCfg8oiuMTz5Em7RAbwh2tbAZ+knwJJtvcAI2MM0kFe/ZMiXjRZyIbJT5MKpgHuF2UP92kWVcgmxdooQ86QENlNv7d9nAGiVLnIOQBf8S+QxDz8mpB00oLyJ4YZcamPyW5NqpqghKXlzqhXTicL3FemiWx/1n3HpJDrAuS5zJgClnA6Qy9lYpziPWWHSSEao8wuMdop8VW+wUu8ozLXiANQkvLYroBXE+2a3rdXJtfDjPtiGZNmhGGXmU3Twx2VqZqJu3lptbJCjqwzOrqZc4ZklKqnErdqCWdKEAMLhxilkwXGGXAm2BjHHmHyZZjDEjQLpIiqrFPSaoOp+jVOsk4T7/CSg8KSxLifJdpJsORglvwuQSv3KSAhHpd4nhRFzP9xgHGOM8o6TUxy0AEyY3HYezOyN3AuStWZloAzUmfppoqkD3+Xl10ebgWsMZSe4woDjNNBHkuSrGeLSQ46m8lYML/At2lknVn17DJQwFiy88ribGLd2aLma7XCfsYZYIRhxhjcw1CU5EiTzXeQV/+r/VhqrvlJ1WsN1MmC79c8rrZUWlYk6cXuUz+mCfx/769pvVlWibh9gIBg+ynR7kxj8xq0MIVrnFBJu1DCTY69oawlG1ezdNPLtAb5VPcsYggr9M84jyXcFpVBZN6gRZJMcpBRhrAgGGNeDjKmnnQrgBAuYpQ9pCHGrsteY5QxWfre+aaDPBayME0vFuYToUIP0xzUObKWXWWNLTFHhl1i7hdaVGLLAl2+mJAjS1JlnkWV4APqw7dBlagyrRadMbhFXOehCQ4yiclrAziYcsDG2FiT9GMJ3jmOsk29zicpl8LG2aafOwxxnTR5upljml4yGkYRVXamBTPE2Sap3qmt3Nffl/wasfOfYEmtByKadj6NBVjE2eY6Q5hfqLEHbS41fzgLA5EFk1pdWAgequafavhFmjwv8Y4vQgyrFOY4o86atoWWOFsMMsYYx9hQkK2gIRyWglslQq2OjUVdIDMWu7Ay5/0e3c0cYscRxQKFDFcw/9B1mlQOW3TpcicL3KGfsgKtZj1g6bTGSDQJbysrDDKm7O4CPcw4k1TShyUd+RonHNitZ9sX4uy+tkhawdttSsqaBhz0tvpd5LhRDisOdYr33PvSrEYGGKfkSZV/8yv6t3/kf/0ruXKfU6v/TQqEZaj5f8D/kPwvUpDloe23dnh2+C9hFDJ9wDz8b37/m7AhoQD7uuDA73zMgeTHIscsQWIeWg9thKQ+4Nnf/8tgWJ6Gvzd7C65K+mxzH9R9E+oiD4Inz1vw9xpuBd+m34EXXvhvIS0yBl9e+K8CiByRth+6rIDPlLSLP4J/cOt9aIMnTwIj8JOHJyAHHxXhyR34JxfeEnBvB0jAE7dXpdBs0c/8xieyX2NWjME/OfxWKGRi8IXXl+XvyiY49OaHwYvoMDR86xP6Mh9BQRho+67q8d+FJ4/Ivv6Hy/8lyMIaoOGPPpGCqqIg3+twYOJjKSouyLZbn1kRWVYFWIV/8Ob7ASQ4DM/87g+lzeoHx7fgdNf3pSCKSh8fKn4IOQFF41U4dPVDTyKmE/qufuTMmZpO4DI8Mb8KZU0X/iY80/JD9z3kffj68jfZ9zrMTkHmEJz+D98XQKgOyMDjr2/weGUCYgIIU4KTy38p28jIufwHv/W+AGsZeDgB+97Q49xBwNRRYZPSAE0NwAL85NSE9FlajvmpkXtwFxJaUP7kmxMu0YpnIP77y9C5DEV4sAY1b0DzrQewKn53+wrwxT+YEr+qPDAEX/g3y1KgHpBz8PjVDf5J6S1IQEoliC9c/m8wKzLmmjH48oX/6jJY0nDo1oce9EIS+t74SK6LyyI/b/vdHV545b8FxlIVnnrjXiiUN+Gp378XgI8i8AfwD4cuw44A75miMDIBUgpS/eS3JgIjJwPPvPlDiP5QGDzvSBDLU+nLoWD+T/CTQxN8twjrnxcPPRAgom3P/0cJ17sxjm4hAM6bhKTaeQSkfRMBUkYIEl27ptYIoJyBL8YIzOh3lE3sTK/zCJBQQthFFwh+cebD1kbwKTNvPfP5GiMw6S4SEkoNrDDpbAoZk0O6nbcIaa/fISwUZPWzKrk35q1LKScQkOSwft7kpFPa/lHkOv4qwZJhkQCcfnnPdmYJQSMTug0D+/YCmw3IvPAt3Y7JiRPIddOHAERRAsPrtLZd73UcJ4SHZHWfxtC6TJAs3yWwzGaBX9LzZoDXZQSUukoYMzs4g5kRQnCJsR6nCKy3JMHDzcDKiwgYmiV4CjZrW4q6P2NZGjA1qucgQphvWrSdowSw1O5VZwk+jB8QFiXQ709pX/Tp5+oI4xbd3ncQNqBJqE0mbEBbUf9/CBljxjxsIPjdfUAYCzEE6FxFfPJGCAEnBiIawLuGAG+6KOjjpoyc4x3tvyICgI4hY+1N5Npo035oQMbKMDJev7Vn/1eRkKB2gvT4M/qqoUyVOFluEmPXQbJ6tpSVtc4GqOSp1hkNVS1/LIzhHBeZUfPsJEVdABZ23BkueaFmcilLGG1F/OOy3ES8zJbI0+GMgeAvJZIjkAXaHmYwf7E4W8yqp1uOrBfHJs+xwtgkchUFF5MUFSCLKwBo3nFBNmcARyv3XWo2Qy/dzDHKEJ3ME6Xq7K5t4uwSY5gRLFWwSJINmoiz5eEMVrQaKDZHhhQFRhnyIszSBvN0YF5z+1lhnAEGGGecAVIUnXm3wn7Mk6+fO1znuDJmxEtNmCEzdDNLiXaXUhmoZaFs5v9mPl7mGzXOgMrMBBiy5E7blrFiSiRcSmpplFZ4R6l6UWZFaxPrpCgg/nopjitbY4Bx3uZF8nQwwDjdzGJJsXZ+rGi07eyVRv0xP8sgNygiabTmH9au4OR9WnmO93zBVvox4eAboIBFLea79Dzvel9VibC9R8ZXyy69TFMgxShDnOAavcxwh37+mJ91SZ35YjWxzrucYZgRH4NWWBZJ0qXMqyXaeZoRdokpk1OuPwMUzDtwSwHqcQY4wTUA3uV5FkmT5SYLHGOObkCAKGPC2L7HGGSYEVIUPA3Y5OQf7/E6/Cy/WlnF0mNNwnyCa7TrnJBU6XNJWai1lBlkjIucI842g9xw5vCSgsaW8GqMLDPzN8n7NvXuJydBGDfdx9PYQSb9n6ObfiapZZc5msjToWSBFZdDGvPPwn4sgAiESWXqsxLtpJV9aCnMKYoeeGHenMJa2/Z5YZAbxJU7DHCRc6SQgKIt4urLFvcAib3f3VIZa0lhHAHgGlUGPOvsRWPIWQK3yJxHfPEoScEDAs1nc0LBviQF7tBPJwsuL68ioR021m2ukiTqRkzWP8Iwxxl1ywKRM0tyujFcW7nvC2GtrOjijbC+l1TummGOSfqRcI0ll9ZWiXKNE1i4z66y+NIsOuPOzo3MieL5agneC3SS0cUEYaZF9PoWCyxbyLL763WGHHQ0INUScNdppJ0lBxktKEjAx6r7NwIM833MN7CdJabp5RwXyZElrcDwJAeJs+1zv0m5DXS24KsOvb8VSZElxwKdHu5k96a958iCZOy+VyVCjiyDjKmNQIczuI2hOMyIy2oNOE2T9zAUY6EXSJEjywATdDPnwN2GzsUm392i3vtd2vfjGSx/Kgw9VgV0oI5QROpDd2EWKR6/R5B2NiCF1VUJxHBvnzFYm1eQZxVqFpFiwqRK5nukElOQ35VsldwkSRAkSneRh/MppPBQUGTNihZlZvl+DIhoI7CM7HcQGCML8KTJe1S+tjWLPMBb21YVbAMpIorIw36JYFy+ihRGWrg8nCewY4xlUyKkV0a1z27p91M8WuyuETx87hJYJAocsrDnPHwADVOfBMBgSrdrDBorpIwRtKb/5vX8JfecD2MCGeiwiBQ4UdkPd3VbywTAtYiEfvTpPg3wScC+D+Q8ZaxomyIU+1Z0GrCkxdY+O6fXCQCIFsz7kgQmh7IVXRaakfAWO2fcggdTOBhKC2zlYc36QYv6h3tZHqsqOb6LM1f2KZBGXrcVJTBGprRf7FrQorR5UNsxK+eoxqSPt/Q79m+eIMcz9pYBxiZdLsjvLCnZxyV67vZeGzb2p4BGeFL9yvaVkALWWFkLuk1jbin47YDVmv6uqknCVTwNsunz8cwGPyKACXeRPkgh/XIbOWdjCCBRREChLoIs9QNCaIDNlzavGWttD4PWWVcGVuUJcsw1AlBmfpM7BBbcBI+OTwNgOglstaq+n9/zPbveowigYXLVBv2ZJyzGVPU4b+Hg1trXa6R9WTx8iIi239iuY9oX5iVnINoNQoDIHyGg4TkETGpGrocRBDAyD9ZlwtzTQAiysHnWWG5jhCCTIwgYY31RIACPdg6sHSZLBwFPDxAWV/K4L6zLcSGkBx9GAKG89lEfAaTtxFPcQdvQqH+LIaBSUo/jAAGcyuj+jZ1njEqTkaYJCbpF3fZ39DM2Zl7W47dzYuBXZc85e0WPfZ4AEi4jAL+xVA20NOA0odssIdfCGsFfcVmP/462tQE5/waWRbR/N5Bz3KDnyV52/LO6rTv6PRvnNm67CLJgYxaCjCE7j6sEsLBlz8+M9jva5j8gMF9TPHJfcQbfIW2Xgc41YET+z/LLHlxLtGtaYoEkRTIq37ICzD5rXmfG3Oplml5mVJAb4x1e8pRSC4ZaoJPnucQ6Tfwv/FP3iTMwq0Q7cbaZppdGZWo0se4sFlt571SWkDHdt6l3wG+I6zSxziQHsSCPLDmmVZpkvmdLeyScrdwnw5xLdYyBszfIYpgROllw2fElnmeIURUe3aeJDWXKBLaIsbpaVXIk0mQxUjd5WVI5g8ZsNO83K1gkxEKkek1skKLo0kmTHu1nhWl6yJIjwRJZbnKGS86S7GaOE1xjmBFq2RUFAKIuECHvljNnIlRcsrxAp0uc3+MUFo5iTA2TjYJ4SfcyjYWkJFhyQEl8+UTG1kHe5XVmJP+f+WfUssswI35se5kSrdznJNdEQcIGC3RyieddOler0iopypvYop5xBrB03X4NKQEBYrqZpYO872uYEWUcCStFAjbandHYxLqzQUwqbiBGjqNsUU+ViAeE2Dam6fHU5FGGXK5lrMchrtPKCnNkHBi29koS4xLHue7t3KbewYt2FSIbC9JAaGMiGqvWfCY7WaCHGWWpiuTRmDQ2XgVYv+/jxGRou9SqZLSeC/zD/y/PPH83X8+qX+Iu4gsKuAeljTGQQMgNmtwvsls9Gu2aBDCz/hsc82vf/Pnu0O/MSpN2GqNogS5nZhpoXaZWJalFlf0neYm36WVGmUpVHxMmGzVGai27XGeIRtYpU0s/d9gmzku87SByvYb5FEhyX4Gqvdf5KMep10UdS7A2oO8Vvss5LjLC07640s0c9Zp4PcgNB74EfN5SaeSuXkNRZQzGnDlrKdUGXjey7gDoli6amArqGDdYp4kTXKOHaWaUXbi0J9l7hVZm6SZH1vt/bzDTFnEGGeNlvkuMXWfljXPYZcK7vqAlcmYDB9dpeoQVZr+zQCVjWhvQO0DwR7yvx22LFlEkvEMWMOYoklT2Z0iubmSdXqaJ6z4je67VBEu+UFLW35k/noWBGDN0mzj3FfQyoN+YdGnybBN30FLGUdnBMRmrsy5NTVFwkHOEYQ8sKqltQkEBXWPk27wcZ5trnHBGqNyLkyoTn8DSuM2r1sKxLHRFUokF/Mxy060yhLW57Ys/Fix1gquYd6MEpcizzxzdfm2bT+o0vc7EtcTmgkLXruL7W16fCqD30VMpbp9+ylkid//9E/zFLz4LZyF1CPgl+PDfPy6r05vy/u5vPyESIF35/6t/ewD+tYBzzV3AYfjWoX8SCrIj8MP/qQ/S6neXhD/NnIWzCvqUYe3Xa1j71zXSqDzwy/CDXz0iD+8Z4Kvwwb/9IpyWhFEScHn4ae6+8oQDaj96rS1IkFaBL8Ff/vZhWIXxq0AM7n7tCTgs7EKG4Juv/gwMQjwNTMEPXjgiRZdJ6M7DD37lCJyHUgH4V3D7tafgNGyNAX3w518/DV9S6W8aPv7XLUz9ypNSqCaAL8MPvnJE2nREvvODXzwizI4ScAg++PoXpdhJA1G4+5tP8MPf7AvSpH8JP/j3e6qfV+BPj5wNheW/gB/82yPwy+rD1gY//NU+2YeyKtZ+s4bbv/pUYOu06bkbkpAHkvD+az8JvyDteHALOYYvAcsagvF1OTfOKmmAy7/ydPChOg//8fz/lrtff0L2UYJ7v9fIf/2fXpBiaATu/XIjU7/0JEwpaNwMPzhyJMgbO+HebzfCbwKz4t13+z89xb1faQxg32H44XAfNMJUEXgV/mLoWRjC04WnTj7JzmmIn4Tmr8G9X21k51ek7fsa5Lz+1dcOQJ/Kib8Kf/XvD0gQiwKQt3/1Kfi6Ar4lWP7DOh78j6FPeRZ++Et9AowsSLv+9Gtng/QRWP6VOtZ+XeWxffBX5w/woy+3QR/cLMLtX36K9//1T8p5GQNOw/996OcEFMzIPr73S39f+rhBzv2PfrMNfpXgN/Ul2Pz6Y5CRFGAS8Od9p4P/1RD81a8ckHOJjKkPv/Y4H/9yiw+pzZOPcfnI0zAs/ph8BX74r/ugH/RZ9bP/WicArAeR/jYApgMBEP4IuSZLeDIrF5Dzf4sAtjYgzKkYfu6J7Nnmi7qdq8g1XIcARxWCNHEeGRMtCPgypt97Uz/fpZ81X7dOgvG/SRqNkXuLAOicJfjTtREAQrT9BkbuIEDUIQRky0Lzbz4IYM0UAqD9dUlwJwLM3NI2v6Hbuk1YDDHQvaLfSeChN5bEzTO6/2Ftw1mCJ5sBNJt6LEPI/P+C7jtPkEAv79lPl7bz9p5jtkUfWxwx30KTs+p9jZP6/jxhLjIm2QsEGbDd062/DYSK6HkZItgHdCGBDkcIwTjK5mWYwBZt0L9vEBZJTHa7gIyvl5Fz/rvIeMloG04i1771y5cIgSk53c5hbctF/YwB+qvI+DYm6KB+z2S5xu5UWwJSuq0vExKIDVS8SAD4DCC9rfsdxFnc3NVjPK19i76f2NO+DDI+IMh6DcR+hnD+7ZjPI0DidwjXnYH3OYLEPkZY7Lqq/18mMD0/IQCHn+FXkntUiDibA3DQwkzNTQpqBZqlN7ZT4iB39JFdfMJe5rukydNISLWz0APzYjP5mMkgE8oSaGLdgcAURfqZdMaUpeBJyt+Mg3pJCmRVMmusPUvxswLc2Hq17PL7/AuXKM2R8YK2l2ksZXRR2Q2dzHtfGPuqnztU9LslZZUYk6BdC6EuZfGZ9515NAl7JeWMkptk+WN+lnq26GEG864yhsWcSj0tddCSKtPkWSRNoxZ4kph41H3tTKrUzZx7I67Q6oBskRRbxNVXKuaAVYISk8psEV+u/TSx4b6EIueMsqQ+fNP00MM0Pcy4tDamAJ0VjwkNUzEPxf2skOMoTVqUdjOLJcruV5BXWIGNtLKiRvUC6l5nCPP5W2E/c2Tcc2uLODP0cpOse/SZ/DRBiXaWdGyIdPuggmfCOokyzAjic1bPi7ztx/Sz/LGCb930MOM+WnvZVj3MYIEvtezSpSDYFvXOEuplmr1pkib7tbAZK1zNj7JKhOsMYcmVJts0CaV5JVoqrTFHTRY+rWEo5rllIJUVuGnyDGpKZYQqFuQSwm9izGqRKzZHnwP/AaRwN08zA+o6WWCaHl98iFAhivhgztJNcY/1QPBhjDr4ZCGUaRb9XJp0s4cZJJgm+LdZ+EsFEfoPME474t1phv42Rgwo2daxZwm1s3STJef2Ahb0YywmG//GotrWZOYV9vsij1kf9DBDLzPsRzwrzTNTlgRkfi2QJMMc9WyRYY45upmhh0XSHuhSIuG+cObXd7Sa8wAIk5UCPmclKLmXqSW/CrtZvFNBmLZzdFPRa8bsAARwEpsIS3A2zzcDVk1un6eDUY77OBDZbhZLya4Qcb9XY4ztDcGwUCCQ+2eetN8XWlnhDv2s0IolqBoD01iDK+ynSpSnGWGQG+qZKYBygpIDhQeZ9ACrOFu8xNvO9jabChs7UQXr3+OUH1eZGHc4iMmUJxigSIpGxNrB5o84W7zHKWcCx/4amGe+kuata/f4BToZZEzBWkmo7VB2eEmTi+XKqFAgxRiDWOKzMV9B5icBLbd88a+fSWd4J3RhwxZTlmh3oHaEYdb1OSJChSQF956cI+P3V7tHZsnRzRwbCuTl6cDCovayDeNscZ3jKk3/8ebDTwXQa2JNVg1GkVCM2Y+pEnGfMqKSzgW4TOgi59h5EflMUh5oppJPkrFV8KR61X2APFwvqHdbAzR/CSirD5uthq/CpcgZfi/yiy4H+zjZIt/pw1lISQrQAvEW4Lysxh4ofuzF5BIJPs60CAhWhxSASDsH1C9qjoykt24CH6gv3yryEH8L3uRlpg49KeDjPLCj/narkDgNbKg3WVRTTvs0WjsC8SHgGZhWnxgmgLsSNlAiIUXNmLQjSUEKiCpwWJJPnaVzS/qvShTW4KGy5JpYhwYo5aWP0+ShGR7elcOspczm0GMiMV2WVaB7fY3SH80wG+kWrzor8tCgkWd4lH1SlG3WKPthJwkPK7Ctxfbt5FOB5dKnnnFWhM7KeMgsiwSb83CNE7Ldimx7nUZBvNNIAu0BPbYYUnimdFKPCohaXwdXOCW/u4snMrayAiXoU4+tVlYe8R6boYf1hkaXlBVJSkIvcp6qWqyQVmapeuLxjEhySaqHXgsUlN2yTZxqlJD8uKNJsMa4OqzefsbYvCt+gM25B56waRMrm/CFiIwf92nchAfNmnr8DKxN7BmDxrx8B79hrdl+m2E91hSK3lX13SvrGDui12AaapplvBeVUkybjPVqNCJMB5NhbmqytAFan4dXByHhtISASbcQwOEAInv8Go8GOBzRv31AkGnWIePjW0hfZhAQI6V/SyBjHf2+ySuNhWryxi8RpIM6DfMBITzBWFcHCKBgGQHfOnS/xuJsQMbtBgLQrCLzke27heCdZ3Jck4zeJjBD7dhPExZQTEJ8WY9tgeCh1kwA1YwFbYy9KHJdfIMATi8TQkYMXPldgkz1Gf1p7PB5Qrrv6T3H0qJ90ExIot0hsCzRdrYB/wJhoo/pflOE1xoB+OnTfX6AjA2T2bb8tf4EeE23var9kyTIiQ0Q3SH4NiYRUKyORyW/8wSPtzZts7G/lR3v3n+zyPk/TAiaSBF868y2wBjdti8Dr14gLM4kkbljWNt7XD9vbMAhgrfgBwQWsEl8L2tbDGy17bURmIsT2qYxPc42go9kHc4GJ0G4jo4RWMfvEIJOjPlqnoYxBPg24N1YjibR7iPMqXb9XCUA7s08eo1nEUBwDXRh+jP9+pAuBW1ENiPJgPK4bOmz4edBlkj4Q75Jo8wzb0kBuh5mXOYV039FUvQyzXku0MmCJjf2q3QxyjQ9WgTtaoHTynFGGWSMM1zC/L2MlWfedhaeYNKoo+SciWa+f4PccHnTIDcwnyWTxVnhNMiYFx0mD52lG/OtMzP0bWXSZcnRTsl9s4xlUFApkRVBrQpipZXZeI0T5MhSop2f59tEqWJm6Dc45sWuMezS5Jmhlw2auK8SWAt+MDadSJUSDpqZiXyOoyrP6waE4WXswAJJRhlyllkT65RIuOTXACgQJpgUjPddjneSa1gIhMllRxh2NpNIDaNY6mYvM1zlBBEqXOA8g4xR1KLOQjokPKOJXWJs0KRsm0a6mXWGmzFMzPxfwDBhywHOwqwo4LFLraf32nFGqbJBk8upW1nhBFfpZcbZeAZ2ieQqjiRgCpg3zAizdHv/3Vdg0IDINItapEdIUaSbOWeDGqgiTJ07vMTbtGvQhUklAffEspTLBTo5x0X3C6sScYZnFJFVCwjervst0KWeXCCgQz+TDhwa4GkhASMMUybGUXJsK3NqjGO0ssKXef3Tm4T+Dr1yHHUgKaJsqRIJYuzyPO8yyA1nsRZJkaJIlhwWzGNj3cDda5xQwKOWosr/5HqJKQjb4yA84CCdWRqk1BbA7AaMAWpMuDhbzh7eot7BkibWGdiccEaTpW0buGbsOJOSm0SzSNLnTwMPDRSxOcXaaj6RZkcwSze7xKhn260D7tPK28raNgAlR5YEJRm/kQFnI0p68wwxyiQpulR0mzhDXOdl3nSPUwOrFuhkQu0crnEC8xwtkQCkTs+RZZG0L0jElNG4TiNVovQyrYzUmEvnjUUsYKcwAs0P1thudt+Y03uEBX3Y/LhNnH4m6WaWpMrXLWTIFj9s/tmmnhIJNnTBxViLNu806sxRJco29SRYYpJ+XxwQJmOURQUSzfvPzqtJau38WnvtXmWLPcZW7mSBdkq+DXs2aGdJpbP7MTuGJjYwCarM/Y3OZh5lCEs5nqHHmZ136PdFOZOQW71rDP28sgUt+NMCegxYt/FrsmXAmY+yTXnuMHazPSeYbN3Y/KMcV2haJPNRqmpykVffxS2XSJuNwhf46MeaTz4VQK9MHU1swKqa6c9Lx5OGqTEgqSmuCwLqcEE00zErOneM2h2RNFUtPNLkIQEPVNK5QZP7hDk4YDKxND5IaBY21BOXV+WBYRN58C7j7QTZjgEppYJsp0S7+IZpwbPTou1YRYqRKr7NQhlY1fddsslCEfq5Iw9NfcI23BnS/jCJz6Ym4xoDZ1HByTJSSG4Q9Pl9wDMCpHWyEPybYgp4XkeKnwU8Gv7BpvzzFQmTqqYEsKMLEinZl6H+OZVOtrLCXKzbmSg5smxRz9oYcEv6a5G0pMhOybntZi7IrVo05bYB9g2KLPV25ikKDY+zr04CG4hpgrGdu1JoHy3yvpUV5tsel+JsTACudkpS0A3CgeLHjHEM+pTVmFdQcBApwCq6jxgkzkHNy/DT/AmWFGUytCbWPUmWC+E8rF0GnhVA6/HZDZf9jTLk23j4DmTLOTlPDQpeHoBUtRDkrWUNDTmtTNIDAvhVo3opluD24FMifxjT78T0O5tQqQKnpej5eLDF/aoqRJjkICzLuSySlEmnLMzAaBUx3tzRcVonBQVJ5Fha4IniKh+mH6fZWEJ1GnBRVLnsEbjCcwEkuirt+NGhNi9izSicVQHaK5EIMXalqNXx3s0c3OdzITEDRE7XQJCvX0eK+fPINW8AQongpXdbv1uHzD1XkT7PIX39jG5LJaueqmxeagkE1DlLYChNIXJUY9jNAr+IXGMHCQy2kn7XADJjJ2f1symCDNQ82gy4N5DSZKAZPZaU7t9YWWn9/Endtv0zxt8h/W4nwUvQgPchPNmbpPaPSXlbtA0GgBn4YzLdwzgQ9sCk7gbUGBg2Rlj0ySCs3vKeNiprlpJue5bAeBvTbawSACnrxyQhFOEyMi816Dk5oL9bIyTM6jVIRT+D/u4AHlpEAwIaDhGAIwNgDahL63HM46FC7j/6on72rG6/jwD4Lev5KOkx5JBx+wECmo1qH/Vpm0/q9wyUPEkA3BoITMsjyHg5hABp7+tnkgQwMkYA1fJ6HMuEoCRbELA+uEVIfTYw+EXkOlnWbb+ixxklyNez2n7bprEfjfnapm00lmMRASiNkWnPDhX9rLE2X9PPnSWAymN7jvMwwUJjAgH6knzmX/VsewG4S60zPfYa8bdyn3d53t+X1c/GpJv1ymJLs8gc3e5h1k7JJTviWVdwtpV5rq2wnyJJZ8uZz4+Bg2e4RA8zRKl6uIABTgbK5TjqbJhJ+rXUWHFm4Tu8RIxdytTSTslX4KtEnX2WpIiFCQjbrZYkRdopqdRLJlQLQjDm3g0GHbyK6CQ3TQ9jDHoxMM4A3czyNi+5NC5LTkEs8+YSVqH5bbV6/9dyjRPqlbbLUXJ+/PacE0OSXZdoV1lcTP2oIp5GaB5GtVqa1msxbjLUaXrVE3DBJU7GxhGgrx0L6ligkyGu08g6f8KrlKlFPKDue0F4hVNeWG8RZ5pel+sBnrppwG2BFAt0urwtQpVRhjCD+kUFe83zbYmEMzWiVOllhiRF4mwzQ6+b0We56WCI+egtkWCWbqbpxVJHy9Ryh376mfQieYs44xxmjm71mrLM4S0KJJ1tZAy3FVpdGp2i4EyicQa4wilGGHZ2z02yvMcpB3SOq0l/iQQZZolQ9TFpHoFJCjSyTlEBAfPXqtfC2UJgUkjysEnPzFPtBNewNFMbm0skiLNNFwus08hFzjFLN/eVAWhy9XvKnPmsvxpZdzBPpJRbzrIrkeAO/YxynOd5l4MKjpqFQIoC+xXMNem8AewG6tp5NDCjgzwJSmTJUSDlAK0l6Ro408p9T32NIrL+/axQ1nnKXhUitOv2cg1HiLFLgRQ9THsQAuAgD0hNVY8k5tqiRoeCeSA1xwQDFJRVJuBUUsH8KHNkGOI6vcxwnFHibHGMG4wzwAZNtHKfg5q0Pc5hB7wSlBhnwMeneLvJHGo+fCYJ72Wa3vIMM/T4wsUc3erXKmCDeL9uU8su3cwRY9dTfM0nFGQO36bepa4dCtyZZ6lIazNsESelDGADwIVpG39kbgthFVt0kHeQzO59Yh1Rcd9NY5wZsN7EhgYeCTBroTomtU6zyB363c+yg7zDi2aRUb+HRTdHhnd53hcO7GVstzjbChYXeJU3HNC1pN0V9nOJMw4s2xxm5+qOLiZYwI95iY5zmBhl+rnjLPEsOWcqmvR3kn5nqdu4M9kwCDvTpNLmcWsgu4CpS97WWnZJUHJ5uoUjGRte7tcCMF9nSJ9vpJ+GuO7PAXN0Y76wBp7aubHxeY0Tvpg2zk/8WPPJpwLotT6UAUyXyvu6lHFmzJ+kAloG3CjYsW9MAb5joq3eIs6+f4MXA2ny4re0IZ8/zHiQSiWUgaTeQKUPZBIZVFQk/gKQUsaVSZjmlSloRV5EAJqHhyGRAEqyza2Gxzy5792G0xKhvQAPdRFpjEHIQK+yBFZolWKlC1LDgggnKcJbIsutsyJgFSnuDexRkJE34e/9q1vwHxAmw3V46p/eo+2rO1LYtQmQViYGfQq2jKofyKBuq6A/NyUAo0aLhWFGYFXkoeTx1bmtVeC2Mq4W4LAWShs0yQpKAgQfG2ODJgHNGuThoqJMr7jKbo0WvFaSc32Rc+4ftS8hzLht4pCGaAR20rKS6/5CCQXSMipLPSkU7xi74lMHDKxOyRhSZs5DAxQSynI0AHgWT0GeoUeKuRywABEqPF7cgKp44gGB1QZwXFOPla3IB/y/yfv74LjO+84X/FDdRAMNgADRULfQFmg08SYihNw0EUNDiqIkKmKGiZWRJ86MZuxcz5am4i2n1rnrW54qp8pbN1vJVm7l3rneSraSXW9NJnbFM1HKmsgJZ6jRG0WRIRTQgAUaIN4ICJAb6jYaBIjXbnaL+8fv5WnerUqyW1d7s1JXsQigu895znOe85zz+z7fF+bp4Y55MKUFAC0q427fIViPySoC48p024ZcJC1t0ONrZlMKv0EZg/HSDpHKB1KQp6F/7V0BwUyiuKasBTu3BdT7oc7BjCkGpAjYEDC6SR+OOA3xo+InOEO/nJ+YnPt1WqEg8mPWhMFaJhYkbbMwuDEFB2B/TMbHAJMhcTWnqb7baugWldWjdVrdw62tsCftXJNQEBp1jCWAu3w8XisEZtjTSCrmNgJugYAxZ5Ci/2WCNHJJv/csMp9UECBhFmE0Gespg7DGcuAsfvMwu17z81H9N0pgrL2g2x0mhBykCXLGQwjYMEiQ6utiB+cRZmERAStKiHSxTT9jrDedO5111qLtSiPzX0K/P65tu4zI8O3vbfrZZ7QfenWfTxIAwQkCUPI0ATA0gOmLBMnwdenD/R0EAOw1AmD3CMGz7jBhXk7UfMb6p0Lw/jtM8D00oC+i7xubziSYyiymxL1+l8Z6XCZ4vBkjMYKMJV3QsnsFE9pnBhQu6T5sQeg1gny5QggQMabfxZptGjvR2Iq2nyPafy8j4OyQvn+e4LdpoKmxxrdrtvey9oMBY6N6vDo3+7nJ6edf033/OkGGnCcAokuEcBP7N0vw2TNQ0O61swSZeqPuy66LbeDr2j/GULV92jm3z1YIKc4VZPx/ruZcmHT53+nnfwe5fq2NpiBYIjBizwBxPqSIsn9YrwZ2fTXfHo7tGcKYHa2s06dylzm6aad4j2F7zB30Sg5KxNn1gjFHmj/nl51FZPLEXWUnlBDvpFZuqRl/XllCUiz/W/5blpSVZ6v5Iww7S82CCKQgKrkPmsmHzMtoFzGX72cGwNlWVmgmKGrhLTI7SeFLq09RhQYNHthVgMoYIsOMKGOs7KCOMFCibr7dybIXKoAzwGbo12KsTIQKaXKUiDn7wuR5xiowQ3uTXC3WsHREDiay0UUyrJJwNowUwBnEL0/YFg9rApcERQhDzKS98/S4pMzYjQZijjCsTJuH+Rf8qfo+ifdIO5KCeY7zmBcRBADP+sW8kozVU6aOfqaJUWaaPpeRlanzwsyKaAuMaGWdV1WGZ20zpumqstQmeFi99HYUzJSE4Rn6kaTEsp+7Osq8ySmXnRZJEFVgTbwdpXhtZpN+ZdZ1KhAmpvjynD3BwzTouZnXcXKKS9RR5h0GqaPMLnFP1jTvM5PRSv93M00frQraGOvvGkOYUbyxJQGGdAI3iZ8A54d4k1N0sswQo57MW0JST1dpV5aZAIWDTHCWC2zSTD8zyqhaoJ1V3uPBD2kG+of1OsFf084qESrOAO1iwRPALSDGgG4z1jfmp407kyMOMKlS7rh7g8kc2a5z2EHGySrrKFEDwjaRJ0mVKDs0YD6SK6R5h0F2EX/NcY4hidurpFlx/7gVFcYaazVHWn1RVxwcrE2c3dIxlUMCVAzU3qSZLZod/BagpUKMMmZXYNL1kl6rdhzdzANC0tlS5jLggJa8J0nP0/QTo8SugvXCDOtwUBRgMSbefGblYAEIJ7hCkYR66i1RIEmJOiYY9LnLfCdjlMir7UGEKhll4BmAK/NvnWIEeQflJhikQkTvkUGWXqfHL2Nlxz0VF8k4C12SkXedHZlW8A7AQjbWOcgynSzS5d6xaXIcVAaaePyNYTJ+UOKJAol277HFmH/Kn7OrDOsY5ZrAqnyNrYEwvufowZLmZVFkx20LLBComznMIxSEvW0LCxbQIb600l4DKC3EJEeaBbr8WcHG5Rs8wX/inwACRidYVal/XI082jFPQGOvjnOM13mCPqbZpYEIFY4wqUzAigOHJep4ncdZpIsLnOUEVzjBFb+XjDBMM5s8xptup3CNIWdCZqqLQAhfGuKaPw88oNYFf9frQwH0ouW78iCghf9eUsGmiNQlXNffT8LcGlAvCDlHNUn2qgJ+yM+UYM+AgBgkzgFReJvhwFDLEICENlisQuf2e8JSGgeuwexDD8qJtYK1KgCEM0YOSbv2FSRZl9Oilx+LZblzGSjg3iM8pGEUB/ABv6lsjDS5kNjYIoykCBU5vnpgW4+lTb5PStljVixsILK6EZyxyFVgVAMNcpDYXpM+XIL9bUBCGWk35WeOKKurU9pAVlZl49UdGIb3lqXPbCU4rnKtRTKSPqsFiD38WRGbJykrgkdluzb5ObviACQ31mAPYXq9BWd4xWVcd4sCxCYoOoumfha6SotSsCoLo0wdbGi7bkgfF0mwr0XOw3LLAyK7bQQWYKntfrKMSdHXC/ocGwrTXjkWZ28cgLbZPe7E5LNxk78BRODOa8BlbUejhlOsyYPcZEuvSJTHhH25SbMzCZfpDMxBuNdHS4v1TpY9XOTuhoCA9Vpw3h6HfRPIecqpL2NO5bCnFSDfkHHYzKYzicyrgQi0tUi7epgXtukoUIE/55eFyVmS468SkfOknmG2mubM2gxca/lUMHZvVDCygMsyI1SpX8PlgTZ5EQVOwu3EfgFJY7BvUMDbFHkowqYC8x/5VxIBnhJIAW/sniIy3seB3yewjNUigBbCYoMx3hL6mQ2CP9wawvy5jYAzBjgp65ak7vd5AhBjIJXaF7CAgCwmrTWZrF1HxlwzFm2BMLcUdB8mz13Tdl8ggDRFff+otruNMN8ZG+soIRHVGIobBJZbguDblwB+oPsxCaixuazPnyMELowTwKQ9/Uwt686OrYrMIW8h8tJR7Z8x4K90GzGCl9yXuJcxlkOAxwQB2KsS5vUoQWJr4Br6+y/o50bw1GgPiTim245o+3sJicYpPRfH9Jgruq+knh8D74zRaF51JwnJtBVk3F3Xz5/Uf40ET9XD3OuBqPYAXNd//4Fwfr9BWEyZIrA+rd/P6nZPapuTNd9Viw0S2qfW/kH9OUvwCjSG/hrBD/AM4foxEHUBGVMvEKSx24iP7yzix4i2cYvgdztKkClHCdff5whjf0rbZJJqu65sYShHGCNH9fen9Tw8hNyzK9wryf4Iv6bpc8nPBIPs0sA6B5XFJIXAIhmVzfQoc6Hg8it78F5FPKTsWXGdVhrYJUWe5/m2p9wlyWPebWlWsPRQkSjNUEL87hoUUJTghXkHIQzwEZVEwf1xrKDapcHBlwyLPM7rmMePLawZA2aZTlZpV088kb0+xatefO4Qp0G3O8xIWLjV47P+M0mQAYmWumfsnRiSpJom50biSQp0M+8G6P3MKEBa8sKtk2VWlTFTqgG3UuRZJeEMnx3ljsXZ0XCLOnqY55v8FoO8wyoJIlQwI3GTtZWJsUqCE1xhgkHK2k9W7C3QhUiie5QVJsXuLg3k6GARsXiRxOEYSQ36MHmeBWlYsQ44swRwXy9jp5QUNDDJliQAdzHJADs0sEAXJWIu2RMGSNll4eJNJgyOEnX0aCG6Q9yTMw1EM4WMtTWGyL8vcNbDI1bVcN1SaUEK6VGOOzsnRplRhlxOmGHBpcMmd82TJEaJDIvOPtmkWWGifnJ0KBCZwIJTjERhMjNj4HQzx3EtLg3UsLbs0ODjLkaJYUb8/XGyyphadykfCBvW0iwNxEqwqlD3ul4DHw/5RkH9IWfod4YkoPObgHUJVhU42dKxW3E5XxcLmL2Ogc/imZYkzYqzy65wgnll8jYh/lzGCDJPy2OMI15uD1MkQYo8J7jCENccIDfW1a5yNQGfi2RRQsbZNYaoKCgyzjFWdMx3kHNWogBNFWboF3UV+PwDMMgEJoG1uaBEjILyxMwnU/xGZV7rIOdzrLGi1ml14KuhZs62a1i23+EsaxBA0nzSulgAcElzgaSzFGfop6LssQEmWSRDH9OkyGOp563cIkXetzNGlnm6nY2ZYZEERYrKeB5liCIJTAa7zkGKJDjBZQBnhBkLUP41OcPVktMjVFikyxdHTCp6TeXJZ7mASYZt4UeYusK4LRPzeWiSAQCFxywEQ9jznSyzpdswZvQtWh0AtPtAlQj9zGCeiOIFGRhsPRoIYbLVViQF1xa+DJS0+/E6rfQx7eBpQu0d2inSxQIZFv0eDTjb7jjXMF/KGGUyLNLDnANpTWy6DUZgzglQaQEbYleR9TnR2H52LxSfPblGd4krK1Dmv5ICgQVlndoC00JErCxqk8Frx+Tf5/WhAHr37aocdg9YgGr0Prk5zUIqDWThdZ6APujNAL2SCrWWrJeH5ha5oDpZ9oKwfirIdgGXYTKKFBNTKgk4CUThYQVnhnkbhoS1ZL4rTCHbTStjzVbeURliBPGMy8lxpChIKEJM9jnCcCiUSwKucEgBrEcU5LLickoexHaJwyFhKe2lZVA6MIKsoDqjIiPHwAG4OysstbzK6/a3yfHW59Qj7xFN6N2T1W+iGjyxFh4A8+fhzsvQufE+zRt3AFEBbqfv85XOO8qsiFAR5ot6S1WJktjYcEDOUH/zw0pVJbKbUbyIKdffJ0wSlWFu0uxyvn2HRG5dIAkxBXSjMB3rD2bs2+oHaKyKCbkIbtEqn0nK+Hic1z0dMW4JM2k88TZCVbwXp2Sb7RRDuuOInIeRlk974feT4Ta5MD8HixsEH0Lz5epEb2q75Kt40ugkA1JYl4JEhm04cES2W6IumK0fggW6ePfk/QJyHdbvK2B2QD2YdiJx7iyrfHgPnuB1KUbV12mASZo39jxZc5lDAl6nYV9aPAXT5KAAiUNwVyXgbEBXG1AvK98OBnXKZLRJs7A6Owi+lAaSoIDeHi5LLpLg3c77pegt4QUEWdlXJaK0ewVlYipTph6a6/l4vAzIM3DqJf1/EAFihggpqEcRgMMAGQNvigRp4EMIaLFE8BfrJCxUmCz1KCGFNYtcKy8RgBpjaGUR2W+W4L12ncBMrdd/EQJIcUj3fZ7APivqP50XuaG/XyUk3hrj6bRuw5hVvbpPa5uxuY391EiQJN/UYzMm27Bu7zqBOfUaAtJc1eOKaF8ktG/0OnJAMYfMx58n+B3qPcKPuV63F6353h/gKecOIt0gAPmHtN12TAnt6wwhMMKurwhhgWoCGR9D+t4BAti3VPOvTdt0nuA1aICrXtcOPBX0GP5M92ufP0JgDf4aAh4/osdlkt+LNcd+iJDmfkbbt6FtTCBJsgawbevnDVjME8biId2HAWIGDJ/T/snrftOEZF4DyirIODhN8PJLap+N6vYua99e1baZFPglAnv1j5Br0wA8Y03a+UP7ws5NVo/rPMGnL0sAqbe1P/cIYz5NABDTCJh3EQGNTfbc/r/Y50f4FVOJUpocxxmlpDLbfmYYYNKlNcaGsJLlcd6gk2X3wmtmixhlytSpbExYRFnGfZE1T4pd4nSxyC2VfBojpQFJNIyzS1klkMbymNZUSCtkzEPJzLXNGP0IkzSokXk/04wy5AXFAJNYcmFMy9E6yrSz6sWdPE9+xn8eYFKenZHngjQ5jjFGFwsqdkrxBk+QZZwIVR7nDdpZdUmdefwZM8LAKwv8sGNZpIscHV4QPqxSJTO/LxMjSpUERbcVEXbBJWcmBmZh1cG9BiQw4xjjpFlhjm5nxeToUJafgLWf5SWXOqfIK/vnEBc4SzObLv8zOdgv8+es0+recDvE3Rup9nwmyWuKphRKZ7lAuxaFIiUusUiXM/qKtDuDxrwKs4yTYZGyykwNiDPGxASDtHKLvPqaiYG5yFCP6ypNiRiXOEWBJBGqvMkplz1HqDr78QyvyPOcFo8AL/IsY2RpQMJbolQZJ4vJnxNIOIkFwqwoO2pBj8uABWMnDaoYupMlBRgKXmMdZJ0OcpzhFWW5tDvrzkDFZjZ5mAmqiLF+HSUSrNLPjMoZVznOqEulq0ToU4Znjy4+W4CJpVlKQmsPQ4yySMb9rkAUOR+H109J+nUv3md5phjADPYtnMeub7sm0qz4QoYBr4NM0M28y8in6aNOgW2rS4xpJuykIp0sOdBcCx4I+y+htgUVvcYbfC4GAV5kv+/oeKk4m7NEHSuk3cvOvlMlyhs8wTKdTNPvwQCW2itzxxgnuOKAxioJ9xozzzlLhrXE3Rd51oGUghITLCwCcPC5E/F4FLltlTwpFpTtWCWq807Z+8HCjBrYURC8gvnDAX4Nb9FMhYgDO13Khp3UEAhjqE0ygAUCGQAvwSINWJBMkYQvIJhcuplN0tvvs0yn38PsnKXIM8zbiPecsK6N0QiwSjtzCiBa2q4ldtu5qWV5btLMBc66xHdXpcDWjweRUIhB3uEg6xQRSwEL0zAvRrOUMCluLRg7yhAlYqzSTpoV8jpH2rVg99QtZRhaWnGKvIZUrft4mKObXb0XmDzcFgaW6aRCxBcqLBBjl7goPJH77jsMOlv/IOse/mQAeoJVJ7xEqLKCeBLG2fV7QooC5zhPHzMcYwzA9yt+llvueyss16KD9cKWzLBFM0u6ODNPNzk6lM135+81n3w4Io8t+Nfj3/WiqfEPP+BnDt2UB9rjwEvwq1/9k2BkvgGffmkKluGOSqEGtqeoX0CKoSxwHT59e0oKmg3gEPzc+FvBK2gBetbek4f5I8Iw278NsdIWbEsIwkP/p3ch8y7c0P28BT8zdlNkXwVCEVnA0wh/PndR2j0rbKn7v7vFVzv/77AN743Agyeh98X3cFuBIjz02rtwUdhXuyXo/YP3vKDbNwT1o/Bcy18EP6rvwefy/1mKUODODZU4PgK7L0hwREMM6BUpcSIB5OCXtl+GUQUSF+D0H78NG+rdtgfHuQYLGhIB7PsuLptL9QK/8wGPtP0ICsrI24BfHH9NgKOHpL29f/yefLlR3u/9o/foPfCeFFajcOD7d/jfbX8P6uFuAfa9AI3VD6QgPQDchkdf+yGMipdbHHjyhb+Wvq6H3jRwGY6lpzzBlfPwqcisFMZVoAKneJO263vOyHv0ez+UPj8sfX7/8pYUXbfl/HMVHtp+F8YhcQQYh0eyP4JZAS/3x6D+2/Bo/Q+lLVH4xOgaO0NxeFWZpAvw6+f/n2HMLcC/vvhdyKmi+evQe/k9eqN/JqwO4KHfejf4Om0Ar8KnFmYD62ZP++MqzsT6uRffCtfOmnzngakN7kZgbQPil+ET310L/mjL0Ps9PS97cOeP4PQzb3M687YDPIe//b4UiyDM0O/BHw39BjwH+16Ua/C/OfJnLgPfdxl+/nsXpT9jyLmYgE8U1wJDagN+tnAdovqdKfi5F96S/lMw6aHX3g3Jny9D2/f2+MUjOrArsO/34ZfOvcx4EWggsKU+yq91gtQuQ2AMVZDzdZYgDS0hbL0k0u/GmlMAlXruBcCM1ZrRbeYRptdb+rPODc7GqiLz7iwy/kxma6BZC0GWexq5nsYJct9vIECJMYfbtF0GlOtCCHnCOAABaaYIHnMG8hQJnn+2EGUMszZCgMIo9wDL7lX2qv6eI8hMjfU2RADxLhPYVeb7VyL4zZk0dJaQdDuinzemW5EAKCX08+jPN7XNRwj3tTwhTMPkuUV8ziKNgF8mI03r8dQj94VR3deXkfNp7Qd4lOCxZ21cJpzDJQKQZ0xQG1O6aMZRfB5nVP+eq9lOLwI8Del2sgTQ7TSedG1zo48tkPltiTC+Esj9rZMAmB0iyG8buRfYHCIwWb9DAKwnCOd0Qdtn4GCM4MdXQJiSb2l/P4rc14ypWIW747AvQvDVy+PWGwxpO23MVhALjN8meDIm9L0cwTNWF7rY0n2v6fEdJvjmjWob1vTcLAGr6E3no/1qo8gHtPEn/CqP8aYn0nWq1NKkVyalibPjQFSXrrjXUeI8v8AAkw7KnOEVLLmvk2VGOY4ZrFsxFWeXdVoZYJIrnCAkOEqJaAmQCfUvs+Ior5LLJAWmle2SYJURhukgx6ImTzazqSl6Oyq9inmRPE0/A0wS1aJlmU5u0Upei2JLquxhDjP8bmeVVdppZ5XdGu+kYUboZJlxsuqLtESVKANMKsdOgkdWleVzlgvOfDRgs1ULsU0kEbYBSUKMa7KwGK8L8DfIBDs0kFKWS4m6e0ziTfp0i1beVnmssTiGeVtZmHF1cxOZtRjt79YwZ3a9iI5QcenrcUadxWd+hu8os6+faQfaDiLG8eYhVSVCj/p4GctyiGsuQZunB/NAEhZkHXFtQ14DVdpZZZgRJhlwGS3AMcaclWNJv1UidChLMzA5dhgjyxw9NLDj0nEp1noQb8BRkhS4wkmqRJy1VCDJOgcdTLyl5w4EpB5ilAW66GfGmYDGXDQJZJSq+6gZ+7CbObZo5hWeop1VqkTpIMclHlMW0aJfVxYMs4OY7UsogoDfSQqskNZkzh0fvyFp2gCdDMcYx/wELREzSYEYJc3mlVRmYZcKePEjHv7//eT0v8GrhQ3uU3aqgemP84bLTQ2YSLDqgKf5JVaJsEKaDnLs0EBewUFjzhmosomk5xo4XUfZAV2beyYZYIRhZ8UlKbj0tp0ilzhFF4seImFgdlwhHwk3EkahgV1mq9DFgrPsEiq1N6afzceWvDrMCGPK1rPggSgi2W9A0nPj7DBOlm7msVAdm4sAX5QBMA9Kk79HqToD0Ob3sI8ITUjYRZcm5w4zogzjsrKm3yZFnjGySGCEBFgs08njvO6AmHm4WaCSMVZtf+YZaedxnVbaWWWU4yrlFQuGa8rWG2SC5cYH6WSZKFUKpOhS9q34Gub9mFtZZ5TjbNKMhZaYR63N1XWUfLGqg5z7eUra70EsUKlEjDmdK42VGFGGY/CM29HFFGHjmYzWvPLeZpgs46zS7vdhA9YsXdiUgpaGa96uFn5pYOBnGGGTZgXcQpjQAl2+UHWca3692P3diEu2qDbBIN3MuaLMGOMlYi5Dt9yCeXqI6fw6xjEs5CRNzsFK8/+zc9rJEhc469dsUq01zOfUGMoCTt7y62aOHg7poo55pQqA+PeTb3woDD1u48buxSn9+SpSKCwDU/CJl9fgIizcQB7KL8vf9z8p36837yeT8xUJoRHDBC+kUbyA2fcSIekuKvvcd1N+j7fpNi4CbcpAukxIwlPPsMTGRijMzAtoQQzU9yV029eBR9XTfwOXw9Irx2yr7/vSmnR6lXsZOiZRggD8vCzbvluE/Y3KmHtZfOluV6FZGSMJkyRd17bNEoqf60AO7izL8d8/vgWjInWsVAlG5rofLhISGE2Wd1nbY8WZsh8Bdgp6Dl6GhVnto3E8zXjTvIdmdRsm1XwLuKmJto1I0Wr9rsybfRO6vzGCOf5Nfb8EbZf3RMK3oUnBF+Uz+YsEACCq37mq2zKGkQKg5tO137yMrut2zM/qNvTm3oMopDoJfl7mLbWNp1Y2NwJ/rMfyqmzntrV7XP8WJfg62f8lhN0xXtOmVwnslzZ8DO1rVDDWgJ0KwQOwIJ+7O66szcvAd9ULMKq/TxBAkqge62/o71asV2ScelsvEKRqGzXHb0ydKfn7vqj0FyME3yljw0wAy1Bc0u+PwG1jpa3hErnyx4SRQhPSp08joMQsgQV2FOkvG78GwqQI4QF7yFi+QQCRjIlaT5CMmtR2guDxZoy4V3V/DxHkuBUEKDFWmAFRIADcGUJ4gEnGX0Lm0Qhy3o21FNW/3SQALm2ggYwyfpe0LYf1b1cJgRppAlipLFyOENjUgwTGnLGwCoSggqJu04AxXcQgq/1Yqvn9+wjAeVrb10gAH0vIfJpFmMpphDEZ0/bZexDOGcj11KSfN2Amqn+rlb+mCcy1ceQ8qN8qLyOMRGOh23EYQ3CcwPwC+CzOjCVF8EG0z29zb5JxI3IOjA16u+b4h2r+2T4NnOrELQJ84cvuu8p+Zgi/h9Kn7TEW4zH9bEw/n0fGyp8Rzu917a9xhN1dJIzbI3rMJk21Y8lwb4pzH2Hs2Geq+vtVBGRbwq+zfUOw/a375Pt7+tnTBLZlRn9/SI/vawRZrC3aGAh/SI8ppvtoIngG3sYXjSgR2IbDuq01JCRok4/8a4MWEhQZZsSLOPM02iXuMpgqERrYZY4ezHz/RZ51ZkIPc0SoMMwIKfIUaXdp5yQDLrNZJEMSSYZcppN/y3/rPnBpcnQz76mxtYm2IIXRIBNkWGRJGR7HGFcWiLAuTL5kUrM6yvwJvwoEf7Vu5p3hYCbmrazTzwzP8JIDOJJzl2adgzSx6Wbllp76BG9wlgv0Kbh0nFGXLBZIUiBJD3MurWrlFu2s8jqPU1CHugRF5ulxuVlKi+5jjHsRa1LdOsoO/JkP3SoJrjHkwI0Z+EvASVwd/8SmpUSMH/BZmtlkjh7e4HG6WEDM3qXorqNMkrzLlhfpYoZ+l+Stc5Ad4tSpLHiHOP+Rf8YVTjibwxIxhcFR0GTVBpd2ivF8TEGyVtp9/AnwYVJs8/QzyawxXGoBx1Zls8XZZYtmJhh02VqtJ50V2mVizsasKNgnvoPC3FiikxwdxJTxaH0n/nO3vGhcUckhiGrCAIVNmp2pJQVuu49da1MDu87UK+gEdowx92hsZpMneB1LeNwhzijHnaEnpv1dhETqdgfSzYAexE/a2msG9D3MuRzYrk2TghpAvavzQDMSwLFJMxl/eP9ov7ZocobdJpLgbKwzS7LN0cE6B0kpyDZNv7Onmtl0FVkUSfaMs8uChwWVdVxuMckAFQWNLTEVZFz2Ma1ArqQmWxhGhColYpzgijM+jenVo4DIBIO8whlnAwM+zizpVXzkJCTIPNCa2XSAK0+SLhZ0dMk/ENWQza2Ay8f7mHGGmQHwtam/kwzUyD4jHppjnnwGKNZRclZdmTpf9Ghmky4WncVaos4ZeNP0c4IrxJEUUvMsLSioI/6AMQfoQZRM5rVZR5l5ely6eYlTtLLOca4xwBRxdrjEKap6BnaI8yandOEo5ceUUs89S1E3AFCu2y0sjdhSX6+pTL9OgU1jBQP+v/Wz+di2s4r5jY7wGWdzGjOxhIQ8SRDSEjHKjPAZLHRonh5lmYo/qoGD0/SRJ+X3WpHw1jl4WkeJChE6WXb/1goi3zYvPVvkATyYpUKEAknJRkBAMQuiMi+/VtbJMq73FrkHGIvVfADT5Hwfln67TqsvTFgKOAhD1uZTuJcZaotWESouxzX7kKQuYlqCroSpdDhQbgzNZjbZq7le/7bXhwPoNSBFT1JTTB/CJZf5ceTBeRy4Cpk08rBcRR7at5GHZJP1JZGH9Cb9vREpbE2CVRFZKvVw9xkkMXVctnPjmU9ydehTwbfoCCKpeo6QJvg5QiG9B/tfIzCyDKRYkGAJTup3WoAZ6D2px5vEJVs7UwTZ2nM1fVKUhFe2gafh5hcekL9NEMy6M7DvCIHVEoHiTchkhelXvMA9qaQOxBmA9pAcy/42Odab2Qfk/QjsN/+kRiAF+6xfDRjYqDnmDaR4OqD/VPYZfw5Pt8x0IoVILGznQIsex+e1r+2e/Kh8LzGIM/PM7+iuFaTKuLmzon38DMFMv0Ao/tfgwK8Dvwk8D6lsCAUxgGF2meA/NkUAQfb02CqEYrUXKXjT+rmL2h+DBLnUhsqaVRZLVYHatPyMeiYtlpAx8jQhaMMkbQYqlJBC3Jg8nYiky4BQAyQOST/ts3Nm8ksDHjLyuX0JgjdWiwaCVAjeYklkPE/VfPd0zft2/gxASRCM/g/p31qQ4tPAk5ywLTmAjLlszT4/h4z7cUg8ggNSzbXFdT1wH9z34cw+//BeP0HGlZ3jEjLHpZC+G0Lmt7NIH38J6U9jdaaBX0HG+DhyzgxUAwHwtpFzpl6Gfl6PEthbCvRzVL9/XdvzCEFKaPPACiE5tEQA8AzMyRLSZ8cJqastCGBkY6iEePfN6vdLuEze/fi+rP2xRPCnm9BtQgA/7Xod1v/TyHUQQ65XuyZHCYw0W6Swa8aY1Ne1rSZj39PjMTBuXD+T1J+NAQbh/Nm5yRNSz+sJwN1JZA6sEkA9Y9kZMBVBgKhXkXM4hcwJvQS23avIuRvX4zKZrfX3ccKigy56cI7g22hy++t6nAY8NQLf1n02ar+9qt/Z0navIQsQj+j3Va4PyPgsEBZEDunPe4RzeYYAXCd1e8Y0LRGAPgiBJ68SgEMDYg2kPKxtsXvfM8hY7NX92nNBGzK/Grhtcu/6mr9vQ+MLHwRw9yHdj93b0Par/YSnQBcI48ru1716jkDOU5EAzhqDz4BS2/4CIYW4GdjHR/61gfm+VZyRtaLMjS4WqSibzUAiKzQSFBlg0iWcwD1yz0X135vWVEgrYq9xnCuccLZAFJFZzdHDO+ppB/gqu7FVzHtnkS4W1NNmC/EgE/P+RQelxG9JStEBJkmR5xKPecjEJU4BUuSOMMwynSzQ5T5OVjya7534+USZ4GGakcTXdla5wgniyvQyqbAVZTvEeUeLGPP8OcEVulSeGqGqTMUmIlTpYY5byiyzfkyRp6L9ZCwbAyXN5Dyu4FA4byHUZJUEg7zDGMeUF9PAU7xCniRDjJJl3BltIitbVY+9DAsaoFFHmX/Gf+QUlzDvwCIJLYZiXmBbgWWBC+ZZKDKlNMsccgDE2HrBvFx8/IylVFG5maQo73KO85g33DqtnOWCS8d2aKBIO3WUaEKSOxMUfTws0uXF6yQDHh7RyTIZFlklwTT9DPKOy8nj7LqH4jT9HkhSJqbG+CUk9VJSnXcVWB7luAJvIgmzZFQJPBEgZpQhJhjkAmfZoYEIVToUyH6MN9mi+R4Q0K6FZ/iBA5tWAA8xygmuaIhHE4NMUFZ/QQMTjREl4JSsdllhaib8IiMT9iTgQJYlGgtTaut/xVnnH+6rg/cdzNvV8zPOMWXVLZLUwB7zxoshIQkVIs6i7WTZQwQMULMxADh4JgDQQRbpcraQgdxlJHBhnh5ydLgM3RjHIMF7AsQecqalzRUiqRYwfFUZZSZPNRZVPzNEqLpHqXmnSZhG1FlwBumZRHFVvy+ebqsKGFtisrTNwDsLOjAm2wSDNLHp7LlVlYQLOCfzS5+yTztZdrbyJs3OYO5mjikGiNVs3+aGOkruX2ogLOCgogH3loRr18fjvO7nJEFRLQCa1E+2lW7maNb5xST3BgDlSdKhwHkf01hqew/z/BNexDz7jAUL+DwlCx8CPFmwk7Enzb+1lVt0sswlHvNxKMzmFT+Odl1EaGeVZQ75AgII62yebrc8yLCoSbMCmIoDbtHtNYokXF5r4VcSviHzogWHtFMky5iytoV1d4IrysyP8DqPk6Lg87gtsNi8b4sSKV0AEh/Tsl835pELkhyfJ+k2VAWSfo2IrFjGfjurNLDDLcQB1CS1BrKDKAu2dLzYfTFNjhUkDGqU48TZdWanBNsEFvQ4Wdr8gfRvf304JbVKVEkrkHQDeaBthNRpAtvOAIaXCJKlBaS4vUxgLb1KYDmNE1bqZ4GqJrZ2wr6Lsu9UFk8LzW7/KPgUWbGa01TXKf23BzuzBMZfXtuB7uMivHdZj2tEtzUCd6eQB3Pr6whUKgR/o5eUlaZFzz4rCl+GzNr7EIWf2Pe3kQK/IEDQfgX5KloMxtUTsGjFV07bfgYpVDsJrA+VQx0eeV+KmIJ+pooAmVa47OGgqLNcDBw0ZsGCHssZAtiVJxiSz+LJhO8ZY2YJKbZSBBZFgcDyKYTv7BvU7V2VftifJYBPh+U4KCCyaJMpWmGkksL9to9xafcnDJgYAeoVjNvCgYSdAtw14DIi+7t7U8/9Ne2Hm7gHJBtwxwpwPbe7BjjbeajAw7XFWyPEh/Q7VgAmddsGjBibZpzgv/UIIZ3RAEP0c4cJPlEj2t4IAagoEor8m0ixuKZsT5PALenPF2v2acXmGnJdpgiSPz1PlGrOG5povKB/m0DGigFMxiaM4cyvfcZg0euPbYgai+qj/rqLgA4vEcIUhpC+uYacp1GCZ+RLyPk5pJ8zLzqTTBq4Yey9Y8j1b4CwAWc299h3c8j4WiaAdGoF4NensXMjhPOvCwVmoXB3lsCkMybvHnIdHCVIZVsQsMTmjQoBfDJW4KtIAFCJsODwKDKe3iKM6VFkTBoI0ogAnyr19jReBdcdQI8h4zqCjNMZZG6rELz4zKfP2IMVBFytEAJEMvr/93U7ffodW7wxBuGSfm6JcM2Dp1U72GVtRtt2Tn+eRcDU2v61Ra9OZBwZQPhHhAUAlQvffpkQLmHS+e9wLyhrc+VV/ZwtIBl7PILcg28SPPhsriwQvBe3CL6nxva08WmLcMbCtoUck4abz2MnARQ0Nj4Exl5nzXkwcPMiIYBllDDWjcn3HO7f6mPqsLYpq8dc0uMwkHxNz8EogVVp8/Rh7VNjnxoj1mS2J/XvJiceQsbAd/R7tmCSI/gpHiAkG88gi6C3+Vi8GlSm1UGOCQZ5nDeIKhulk2Xm6XbfmwEmvUgytkMzW+7FJXKWPANMurTpEMuIGXUDv8G/dZ+aVm7xWX6Amfdb6u0g7yjTQeS1BwmpiIB76tyiVUWjdc7KsOLvEJJomCLPL/PnDDNyj6dSN/P+EJ8iTz8zJFVOs85Bpul3MGNBmYbGxBLPwDIAEwxqsZHygtOKpBhlZ6pZ0Rahquw78bu7wklydCCed7uYn+ArPOUSzjg7zNHDf+SfYebrVvDs0ECSPCXqPI0XhCFRC0hOMsA1hmhCknWtKDevpGn1O6qjTD/TDDGqstRV6igxwme82CshqZFWPPcz4/36A55x2XKOtBdWcXa4wFn3+YpQZYxjzgxrZkt7SWSF/Uw7wDbJEWe1rNJOiTqKykpbJMMc3SovjGpRessZOBY8YXJeKQZTFGknT+oetogwE+MOwJokNss4llRqnnSSlniLOWVXxtnhl/lzeph3pl6elId6CDCUdcmuMUYsMXSZTkaVzfM6jzPGMSwB+j/yz1glQZ4Up3jTi3VjBlnoismX4+wwTR8xZetZYW/jr0SMFSRkoI9pB2fMS0/8CNcVtBRO2uGPCUPvPT5BE5u0U+QIk4j/WYkSddqnZQfIK5inmsxHn+UlB44K6uuZoMjA9hTdzNHDHIt00U6RSQZ4nDfoYY4GBTsWNd1zF0n4NEkuSKqohckIeCbMMvP2G2SCGfrdE22QCSzUo6iBFFsKhJiEUeTsSb+eTYJugHWcHSYYpIc5nuB12llliFEsrXxTAZ9Wbuk8M88cPVjSdxcL9DCvfpkyP6fIE6XKloLGJnk0z0bzLouz62yvSzwGCMAtacDtJNV/822GGecY5zmn4Luke5vsN02OPqYdHDQWs/WbgVrG4AXcuzSqYLvN5dP0YX56fUxTJarHEfWFFUu1tpRYA9LNcy5PSmWmJV8ks2t0nCyrJBxwj1DxxTI7X+YDaLYV42SZpo8SdQ5epcgTo0yRdgfRWll3qXOSvFoW7DLMCMasFyZomjkNvhL26ApjZD2YqI4S3cwhacnrOlbbXU67qECsMLpX2EHSmM0CQBKHBYCdo9t/7mHO2XldLGDBKXF2WOegMorLft+WayLulgbmQzhHj1o8iNVHP9MOuBp4u0OcDnLO/DRfSPv5BFeUlVvxkC6zcbD7xI6vov/trw8H0DPGVBF50N5DHnSLyAOuPZwnkGLRGElW4DcSCjcIkhqVKt01H6B6/U4KefC+LN+5PQV3zsO+/xHq/xCYgNtmfH0ZeAHWtglgFQrQtOBssfcMBNPXJ0yya2BRm/ibOYNlGzgCB4y1p+yGA8bQOkRgpFyFfb8L5OBBY8qZHKlFk12PyH6SbfrdXkgMQeJRQkFnBaQV8RtIMXGdkHhpcjVj9GzJ3+7cJiRTFjTV17zSmqTtHCAEdOSUTVfV9wsavjGIF49rEJIbDegz8DYHO6O6D2NiHCIUulX9W0S/dx5POHY2hhWoryLF0nmV3FrBqKBcXD2SzJ+t2ZguKqmKp2Hf8wSj8oSmD1thWA3nk4h816XOSLsPnNHzlaz5V9G2ryDjvJcgyysSQI0FPZYKMsaNDXOaAH4kESaSgWRIn+/YmDWZ4Lb2lQGJJks0FuQQ7P+KbrtJjvHurG5voeZzjTXHvoQketr2TDZuzNUSUrwam69FzmnxIvCHwJvSR3euEQAJA3J1jNMIH5NF2OAhdgS5Pm0eMGaYgbcgc1mVAFCZ7M9APGNdvkwAhor6fTv3aYKvWAvC7juCAGBXCb5m5kF2geDpeE6/s01g6a4R2H1rEuTiY+Ar+tkzCDCWIsj2jZFsTL9HkHnJrg0DnW5qm419NavbfkF/3yPIR22xCIRdVkAAlZi2b4nAPp3RYzEAEf3/DGGhY1n7wdjAf4bMX98hBBRFCAB4rx5jUfv31Zp919e01dpS0u8YGG/zjIGKOdxugYh+xu6dBf1blhAuMUQIlhhGwN5Z3KPvwNMEluJ3kesuq8dh0m/rB2ujne9tAgP9JgHE30DGYKKmHxtrjuUH+t0XCfJZm8dsfjKZcYLA3rMFk15C8EaFIPXO6jHb4stlZbnn5GeWEAsEBTOduW7PCna/tsW/YcI934DQKW2T2XUYWzuDjNO3dP8tyHk3lmgngRFozwDGRvw8ARi3sWz3KGP7GbvRWKy3QQkyH+nXQ0zTruBMTCWdImkSidIKaZqUsVIkwQjDDurs0EA7RQekJCWwgRhl3mGQASbpZ9oZWCMMs0ucg6wzRtZ934yxAnCFkyySYYe4FmYrrCr4YqCeta1IOwt0+Yp+HSUOsq4ST/m+ScJMGmx+QHF2aNLCyxhvUlw1cY3jGiwgsqF2JIjC/K8sSKFfC0Vj+k0wyAjDrJJgnm5nQe0Qp6weZubPZH5DQ4zSruw2Y9QYCAh4iuwmzTzDSy7rMrAqzq5LJMXXSGRmEwxSR4keNZsfYFIC54BznPeC7CDrDgqJFLbOC+k4u/xT/tzlYjFKTDBIVItKSwZOk7vH0y5Gyf9+kHW6mSPOjnvq1TLPRhjG/LbMk2mSAcrUcYUTFEmwzkFnbnay5D5/EwySIs8xxgEJSMuTxEIkpulztpIk+tY5u9MkcSktnKV43HUgz6TAZWK8zuPOQMmTpI6Sy7+e4HX6meYyJ5RNlUbSIqUPW1lnjGNayBa9PVbgSoJwt3sjlqjjWf4T7azSzBY92ncGdpscTFhbCeboUeBx3o/LkjWtj23smtTY5I8xSpSJOfBs58YSgBfpchZVgfs/lPnnH9qrjTVWCEErEoQiMj2Tm4vH6LLPX+ZVFwASSSvuYV6YRPX7WSRDQhlNderpaC8JkWl2gM0AZZC5LkWBFAUquo9aSbUFUhRJqHdfnDQr1AZWZBlDUo0FEJ/gYQdUxINRgMMFuvTnXVoViu9jhjGybNLsss4cafIk6WbOAe4SdSqpr3NvSRC2nYyhhMuDjRlVJcI83YDMGZbkateZgWddLDijS8J6sliQjYGaUap0M+fXv7HsTAY8TZ+zE00mvaJMRJtH5T5YxsKWJAgj6uDgLnFu0co0faxzUM9B0eftknrMGvPP0lFtPpDjbqBKlCkFx8yjU0Cldg24Kfsce40hPz+P8zqWUr5DnBNc5gRX/ByYR+kYWSYYdADKxkttYrYtDBkTb5V25un2eSJHB7t6jsxyY0cNHAxo62KRBbqYYJAzvKJ2GV2agJ6mn2nEzmEOS2ke04TlEYYxmwRJQU74gotJ2xf0OM1X1pizEarqH7rjjPgqEdop+gKOMV1tTiso+/E4o6TUh88W4aK6OCYMVzluWVSSULATXOEEV3whM0qVB/nJ32s++XAAvdsE1leGsBo+hBQvBiQcwUMPKCIP11bg2cO4rd6rnCefU0beLF6M3J4gmKrn4HZJfdIOIQVPQf7GDeRh/Vl40EBEfahua0EevNXXK2UMgjVpz+Y2wTB7So4xcZgg7bHCdQ0pjjuQB35jBSwQGDMmvyrUbFNBL7bgWgFnluwzSZLJck0+avJYK26t0FEQy/v/ovanATMl+f/2FsFYvgSJFCF18iYUxxBgKofImtZqfPgywHFNgj2qn4lCV21ha4WMFWPbGuxhMjWTpVlhnNfxcJ0AAtVKZY8gRauxIJQJkTqpTMlZ2Xbxgp6TmkJuXwIpxqzIekj386r2Qad+Jw/3AOEmCTPp9zghidBYKBva/ioCLCwg536NkODYSWBIGjNpG94zYO8GAm5V4M4awUx+HCnCMzibNG5FKAQZmY1dY4mYxFZl5O/9DoHZOqTnsVbep4xTZ4ihMmZjX7VA0ZibNl7D84HLg3etgO0AeiEaQYroKULxf1v3fQD+nrYA////qkOu7yrB/7MR6bcEgUmUJwB2GQSs2Ab+HWER5DQhQbQeAREMJDT2ly2MGANXFzWcbWnMry8RzPmPEOawMf3MEQSIMnl/EZHPZvRnm08NMPs+96bl5pD5p5MgIc0RAhSKSIDHYUKwhDHThhAg6IgeY5EQDmLbMam+zYsGmOg+7l5Gxp4dR5owHxmD1CSijQQfSfNJSwH/k/aJST9bCEEGdt4SyJyf1+N6mSBBzyLn+6aeryIB4DGQHcLc0KL926LbPMS9aa1ThEWVWsbZFsLUPEwAX+3+addtEhkbswRLA7sPlgjgfJTggZjU/dnihQHQSWS+O05I5e1FxtQ/1/dsccnY8MZwi+q+qtonhwgs9wUEVI0hQPN5QjhIC+z7dcTb0ICwiB6DyVttkWZb+9GeM24SwL8ogUWKnjeQxGIbGzZf1d7zYwhYN0i4N2xoO1XCyxpyvS3oObF5uIaB78nFQwRZdT9BevwRfs0qo2KRjBccEwy6NKhChH5mnCUnxVaKRTJs0szrPMFB1pXZ8zBlYiTJkybnbCxjZZzikjOXepj3YsMkhscZ5QSXvYDqZJmyhjns0sAVTlCmjqKylcwzyorTKlEk4KGHkhbdkpyYZJMml0km1TPH/I+MRdDADssc4gRXyKhnmiWp/oDPMk7WDbKNMTbGMWUgLNHFonsDvsJTfgzG+DAZqvloZRknSd6ZVuJR2M0iGcQgf8uZFP3qlxWh6vI8k652M88xxjAvrlUSLmc2lmSn8l/KxDSRt4L5D1kxmldjd5PeGksoR4cDagmKrCqAIQzKlMvDjHUmXohz/nsr65gHX6eyNUcZclZbWpmhFq5hbD8bLwCP8zqSIFlwL6ezXCCrHoqneJOUMkNNYvoUr5Ik70yWBfWDyjLu/Wrg1zT9XgDaMUww6Eb1q7RT0aIxqsBAlKoHX+xq4Wleauu0Msg7HmohsrMdYpRIUCTDAiKBrFAl6iBIrX/TDH3sEOcUl1wCLP5ZM7RT9AI3SZ5rHPdkaRDmX50CdSal2yVOnhQnuEJMGaYGKpgfo5nfz6lUOsEq83QzydEPZwL6B/baoMWBn0kGmKeHRbqoIB5p7axyikukybkc0QBpYbvFMCP+afrZpJkXI88CKChc9jlslOOskmCGfmbop5NljjGOJa4aS2hdYYl5etihwZOWV0g7K9iARZlTm1w+bYsHsghRpF0XIpqVhSjbFYaxBf3YNkvq/dnPjPtf1ql0eJ2DTDDo8k9jRPUxDYBZChgD1lKA2ynSpMw5YzfGdA6uo0y3tvMJ3vB5WmTwAt4Avh1jsDWwgwQ/7HriqgUsrZKgQMrB8jplrll6LoQEdWMIxijTw7xbR0hfBCZvhkVS5N2CooQEApnfZJ4UVzjhbOAFuhjjGNP0k2GRXRroY8YZ5SZFPsFl6iiTRwKdLFhI2l3yRNzP8gO6NPHbWIh1lLjCCcY55otkAujKfdz6JMs4RdqZpp92Vh3cS5F30NfYhZakbPM24GEaeVIermRswVRVZMW2cJEjzTzddJBzkO4EV2hgly4WSStLzth8Iv+X+5bNyxaUIl6D4mlnwK8Awj0q27b7fcUXjxY1LXkL8fZL6AKNzekWJrRKwkG8dr3zycJaB5aku0kzI3yGEjFt8/+WkttPIEyP5wmsAmNYDSOAyleQh9kJRCLzPEE+lUYenM/JZ+6sIYXCGZXTHtF/zxFYcXtIkZKW5Fkyuq/PEh6Un4S7X0YetiPc4+23L6FtPQdkVSo8q+36IuQNRDqHFA9J2R5fRAqYo7rPDW3Ho1DMKdjYhviqGeh4DJF0PaPtGtSfn5dfj5vMKEIoWlukr3YK2q5zevzGhDmp23xUEnzdaypNALf0XNy5rODLs4jR90Nw14raZ4DDkDCWgvYHB2D/sB7HsLSh9yGCrO6Qeuh16rlKIAVTCvgt6S9nwdmYWJJEX47jybR3K9KXd75AkLU9qvt8msCWOIoXRPuGpO/ufFVYjA40fFGO4bYxQp4lAJ3bBFN8kzw/g485QApJ82sy+d5z0l+3r+rnTuo/k289o9vt1G08SkgBNVnZUTmWB03O9lnd7yFNKLZtpHUMnNE+teM3tlcvAUD9Ff2eFbnncNP1Bw1Q/Jy8t9+uxS9oG+14B0Nb9zfq9v85kFPA10CoQX3vuO7zqPTpgxlt4+eQoBMDbc9qu+06OIqAXHf4eLxuE0C8GwiYWUDGywYByDqCgAsmN9zm3vCHDf3dGGmNCPiW079/ETkfy8iYaSLI1wsI0JRGQLajup8Ucl0MaTtsvy9p219FxvIRQhjFhn5vAplLjXVl1+ZVggw7rZ+1sT6MjJ0iATiDwGJM6s8GyryKgNHHCNLFJDKmjDWtcn3OEMI5xnX8HdHPHNd+skWELM449FAhY1qZZPwA9/oT3tBjNxC1hknN0wRg3Zh4dj1FCKERBqJN6XnI6Ll8mhA+YlLcNYJk2sD7NMEH7zr3Mmu3cJaysz6jyBxWK0s9Q2A8nkQAwy39zmxNu6y/kgTZ81lC2IQxL3MIkLinbW9CxsUMMs5iBEb2kLanHre7oJPAvjYm6iFkfNhiwNP4YhO3+X+75xFDJMhXCcD1OGHhzKTPNn4MiH5E2z5U0z/23qi+N0jwQTXgeg+Zo3XBwwNHjhMWe1YIIK3NhZ/X9nyFADTGgP2gCpCP9KuJTbqZxzzJCqQwTyiRKkZVmhRTuVAZS4Gb0SAHM2I3hskM/S6ZmqYfM3kXA3/xajOfuRglTvEmFqCwSTNjZDFDdWODWPG1QMZ/NtNrM4dfpMuLrJT63Rj7zEBDSYRcd5mTmbK3s0qBlEuFc4hH3KIyAJ/n2y5j62QZ86EC2KTJWQuy1S1OccklXs1sOVCSYJVdGhhhmCoRolQZ5B3eYZAcHWRY5Bx/5QWjSD0bHCzYpNkLF2NOCmhYdq84K1Y7yDFHN+2skqPD5W2vcIZFMs5qNG+8LGOA+E2ZH9eL/BM3zh/jmIO6w4xgPoplZef8LxkRY2RZotMLXQP2LABlQRlgY2Spo+SMkAaVRYkMTpgnMyqbLVHnRWQzm85oNNaHhaNYIIQxJO/1WOzApNEyfm+xTiujHHeZbB/THNG0T2PuiRRQ0mnN79HGUZI85ptngCLAEKP0MMccPYAAHWbwvs5B+pmhlXXe4HEkiGMRC7sAPDDGxrQBNTnSvMkpBXajdDPvbFJhiz7MPN0u7TOGUowS49rfq7SzS5w5ehhilDi7rJLgFZ7CUotN3vgwP/qQZqB/WC8LwbBk0xJ1OsblGpmjhwkGneE1r+e1i0Xm6WGebhoQbz1jnZkpv4Gm5vVmMmm7XlcVRJR0YVlAGWCKTpadJTRDP5MM0FOdw+TTBuCUVXZvDFNJB99xCWSMEhbCYddjXOW3Nv8DLNBFkXb1Lt2ljhIFDQYwee8ynVzhpM+3kn7ejkm0LXSo1nd1mj7EV7PHmYUDTDqzW+TN0ifms2rfNcsHCasYVaakeKiVdY60JNhFupimDxA7iLzOCbZYYNu0RYkuFp3xXCRBH9NYEqsECHWTIu/3mwY9n81surzXpKzGHLNtmt1CK7foYsGZjp0ssUucgoZVCOs86nLWbuY5zjUPpZhkwGWhMSSQ6AonHOg/xjgDTJJljBQFfoHzSGDGIQfTcqQ96KSVW74w08myA5fipyosTgtBsgUi8YGssEkTOTqcKWj3us1IszPQze6iiU3WOegeeMbEjrPj/Ryhwg4Nbm1hrEtjENs2jSFoadMGOtt1af6GtiBorHMJPwopwiUVPVswUFkX22RhyxLcG3ibYd7gCVb0/jLIhM/LN2vlon/L68MB9Prg5ukHpDhIwO2v7ef951qCb84R+HHmMGRgZw2Iwn85fRq+iTMH/v1zv8JfPv0koODaTbj69KekIMwCT8MLz/5iMKM+C/+Xk7/B7NcflAfkBXg3ez97Z4AWaIgAX4aRtk/Jd85KO979yv3ysxZaN579pLQhB0zBXww/zexXHqQ3ixcd737hfnmgH5e2/OUzT0qRsARk4LWv/iMBYIADafjeM7/EDz9/xOVYd/6PcPHoZ0IB/Qz86Ple6Z96bUsOKZoOIEX+uB5HDOiEvzz3JH9z8mgwvx+C//LsaehU/72j8L3P/5IUHY/Id+98Ft7/SgvRCDw4DO8/18J/7X1UUksTwGm4kf2kFB1Dst3vPfNL3D6y3wGpq1/9FD8cOuLm72+d/DQ//VJTYJUcge8n/7EAX1tAI9xIfhKeE3YlGfjp0028/2yLs922P3cfP/lGm/gM9sq+R1o+DU/C7SLwEPwo28vtf7NfEny34d0v3c9fZJ+WYisDP/1Sk3zH/ImehP968lE4DQcGgUPwX86dFvAC2eYPv3ZEznVE3uc0zD75YGCpnIbXnvxHUni1AefghXO/yNrz9SLjBb733C/x7sn7HYx+6+uf5t8P/YqzN9Z+r176NKEpuBmYfeZBtr94n5yXkwgANoQwPVSOd+PcJ6XQrpdx9aNneqFRvR/PwV88+zRrX62XcdIB/4/OL/A3zx8Vv7/bsP3l+/h+9h8HidyvaxCLsSMT8BfPPR1YQr3w7q/dz7tfuj/IFL+PyB5b5P27ViS/gDO+ZrMP8pPTbdI/vTD71Qe5mXlA5MEFeP9ki1xTJtU9B1c//yl4kHvlxB/l130IOJNHrqN6ArNzjxAus0RgkFqhb+CAAYImfz6MgB2HCUyuDYL8uqL7PowAHrbgXSCEOKD/LyPgzELNd2yhwPZ9k8BUMnCxF5EkmoT2cwSQ64x+vlPbVE+QuBpQNVXTVmN/XdR/LyFj7AwBALxa0+5XCdepMaUMeDNg8DQBjDLJqi3uGHOskxBicJLAlBzUfvt8zT4MmLI29Gpbk8g1kdBjMybgBeBbBCZYBknGvqH91KbHeETb0EfwCTVWpLHrTCJqFhPLhBCL24SFCbOhgMA6tkUlY9yOEqTXBqpZn9lcVytJjeqx/ooe0zgyxypwSj0hYfclRK5sAFYCmedMhnyZkOptlgEZPSZjVpvNgoGByrwnqm03G4/LhACVV/W7UwTpuTEAGwkhR+cI11mW4Pm6rX9bIIz7Ft3u9/W7Iwj7bk2Pa4oAtJptgc6lQGBmj+t7Nwls1nHEO1JtEJhFvDY/Bi9JUV0BoJs5zAzdipCD+mAs0qBbQJD2pcj7qrVIxbZYVfZJu0ZTGPBhUk5hyYnvWwO7mGH8n/IvKKrsyGRU/UzzBG/QzZwbhD/FK5Spo0CSY4w7u9AkpYO8QyfLPM4bLkVsZpMhrhGhSoGkF4sGQJaIuQ/QNP0uFzKJpHnWxWrkluu0MsAkaVa8D+oo0a6g3SbNXOKUF8v9TLvh+TqtjJFljh5ilHmMS864OMi6s1fEt6mdKFUHGwDm6fFCUIInOhwIM/AShKFjycGv8wQFUhximWMqwzNQK6NAUivrRBFjdmNmLKgHHBirQfywJhikoGCrAXQGLuRIM8Q136YZ/scouQTU2CoZDSA5ziiryr8xUMzA1VXlThhI2880qwo6bNLkvobT9KucL8oVTlAgxRCjClzWKehZ4DznqKPEOyohrhLhBFfoZJkuFohRJsMij/EmPWqIP8QoXSzSzTxP8aqziywlc52DDDDJAhkFfdsxT6qneIU0OQ9SMZmySb13VM5nbMhVEjQp0GOg4RhZylpwJlh1X6faoI8GdhjlOI/xJjvEWSHNHN28rVJ5uYbWVard4ADBokrnFslwiks+fvIkMU/Cj8PrJzzIOMcYZIIe5nlYwSt7iddX3ME0A+QEmKg6883mOvNeTClTtKABQCkKtLLujDLzeDTmkkieM8o2WsX8Kzdppp0iY5Fj2o4Kc3RzhRPKqV11NpV5wBmDapNmLITIgHBJXd5hi2YHQoSdVSGuCdnmZ2oWCLYA8gwvMcCkzyEi9X/YGdQW2mBMYsCBMLNpMNCwnxkmGGSCQcwXdIc4lzhFhkVnbRlwaHOqpeAaEGhSz06W+YzeD+xYhhlx9nCaHANMuh1AO6tkGSNBkQIplViLt147RfcTTVHwEKQ8KZerFzSwQTw0BShMID6vA0y6ZFt8BAsUkGT1ChFl29X5sbVyC/HWLDmLu58ZLGzIzm0381iokslTbQGjRIxBJpwt2sotnalifp/u0eAWG7vG8LZ71ihDSDJ70e95USSl9iDrmgEfAOsFunwRpYEdl4u3cosBJnVh6BZ5tYWYUj/EGGW2aPZr7QongBAKlCOt+9mlW8NbLKBG2Mri7Xiec6zUMJLtvhNnlyQFD9/oYR6znDCWrY1zC9jIsMgR3U6d9pwsdkpfvMcn/l7zyYcD6EW1c9aA70MlIuaKbOOG1g3swBLkVSJVIsZeCwICjQgFfYhr8sCdBVqgg5wUQy8DCd3HVcjPAhdkdSrBqhQ725JKVmyU6qZShb2krAa4HLIgD5csIQXdI/L7D48ekeIOmVDTpZw8hK8AMaGpk4bb48BL8rDDWaQg+Jykct1IfpKGeml7Sk+uMb3235aVMPczuqnbfAiXsr13gyCvO4yzVvZpsTjM29Knv4F7XNVRhg14pwBcRyjDabzo2n8bHljYkICCw0J/T5K/J4XRbybj8rcYZSqRiOwjikdImzfc8MYP2aQJtpUJNyVSFrZg4YZsc5NmOASpz0sf3V/YkrZvCCOtceoDuSEZ06FFYqRJwIGsnGtD5EGOf5GMyHQm5Njb17bkxtICdwtyvM1sBqBjCpIUuHtYvs815JyotJk2eLf3fhlTJkvMhvHMNrAgYzBarUofNsp5m6FfPAYr4gPTxSJE4b1ZaLuxJ0h9IzIeomI4W7f3gTOv1jL1QUbcBj9++jAJirChKciI5IZBiGelT4skaJvd4z2VHrpPRkKkro3FD+hnWkIxbst+NmmW49iSbUSoyLEv4aygGGVohIWCBrBchvyofGZfCzALdwxcGpJjaa5ueqiCeTZwBOIZfMWWLC7BbmYTfsrHgpECyCybJUjcxxGQY4sAltjL/MoMlBglhAgsEDwntxGwCwQUMLBvjSAPz+OhJCwjIMg5wiJIGw7EOqurgoAzRwjS3qi+Z+CIyTdrwStjIRloM65tKyDgjzKMySJgji7sOGttBVkEqOp2s/reBUJCMAiIsqDft32ad5qxFYv62SUCQGaM1gUEALupbV/Gw5Wc8Wa+feMEL9GL2qYlBLxL17x/Wc+ZgViNBLY2CGvLzmNEt5HQ/jxM8GXtJYRGnMaZrx528rRubw85r226nSL3egQa2FvVnxcQMOomwcvVgLYR/blXP/skATA0QM6At2HdlgGHjdpnHfrZ69qmo8i97DCBGVklyMFtzJ9FALM/Injmfb6mb/9Y939YP2cgrYFtEAKHrhN8IWN6DBFkTCwhoPIwgV1YJAQLnas5RgN82wiLEAZgHyIAntsEGXaewIQcJUirBwns+qO6jZe1P4xF30mwOvhwnsb+Qb1i3GGebk903NVi1Vb0C6RYVYAozYrKaHroZJlhRlziaMwr87KxgsUKgHl66GLRAxTMTFuMukss00kHOQ8QEOlou7MyjK1XIMUODS79XKfVC9i8MsFWlNVnckErVu3BHfBi9mEmOMUlYpQ4zqgX6AaWWWIs4JKsHGmSFGjSYmmQdwAYYZgZ+rnCCSxldoBJdokzRhZL07VUXmPxrKr0dYc4owyxSruDAlZci5RpVeWe7ZzgCikKjPAZcqSd1WMFljHJ2lV69BSvaFpfTFmPKWW4HXSGiYQjCLhkUiQDc0Xe2UQdZRbJkCfFOFlnSkwyQBRJ5t1SxtqOJkTKuREz/gVty3FGlf3SQwM7zg4EMUU3kHCcLFXlENUpoydCVT2YdniC16kSZYc4Pcwx4Ky6HZcz76j/0gCTUrMgTLmDCmzZ+b2mBWwP84R0101n13Wx6OPNghLs+bzWQ9AYdYt01Xj/LbNOK6e45N5mRRJUlHX4OK9jKY8WmCIeewI8H2OMDIsaCiDg2gCTJMnfw8oyXzA7n8baS1JQ360rtLLOuHrDJSiyQIYKEYYZoUhC2bJ5Z/+VibHmq1If7dcAP6aTZTfsr6OsXmoy/kzubUE8Nh6FTTfpMmdjrcaVfWaBBq2sc4yxe6TOFhog47XkoEyZOuboJkLV/djMh26GPg8PaGaTYd4mrmDtQZ137ee8+okZGGTAhQUyrOhcD/giBpjPZJVmtqijTDtFJlQWb8dsDCmThTazyQJdjGuxZrLXEnVMMUCKvF/rcXboZt5Tx8170KSPM/SRZZw6yszRQ4GkB9yYb2Eny1zjOM1sOlBnwSJmF2CscwvxsKRUwOW3lg5uIJ4tIthrhbQzml/nCV/g2KSZC5xlmn4sAda8F40JuEgXq3qvs3tQHWVK1DlwaCzNET6DBYOMMsQ83czQ71JrYcelnelmix5lYs7qLKj/oCw4lHxxrJt5Z+CZJL+VdaYYcI9aW9goE3OWY5I8g0jha4zABbpIKVvdvmugbx/TrHPQx6OMwoOYRUCCVd1uwfschHHfzbyDvQZCm2LA7s0ZFulhjmHe1kUKYU4OM+Jgpl2DZrkxTtZB9kUFHrtYoEqUMbK+OAJSIy9oAu8gE1SJUCDJDnEsdOZnVP79d70+lEfIhQMPCohRBFoE1NihQR6AR+RvM/TDMchoYbdOK/WzcPcFIItLJjiDPJDXK8hzAJcLTTAoPmpHgTVZ7W17bc9lW3Lz6IKMhEtUo3q4xhzJCABDDnn4BvX1WHDmSIkYy7FOOZbPymfWaYWqMr9K4r3BhAJaS7hOO67Ft1PiE0Ab3Dkgn6Gk7bghn7ljsqRG9fCbJfjLGdil0rD7l7ekHRPKnNpToOQ6DLYBF2VSsMLy7gT8pLMtFI95aHtxj/7tWYgoe6ykQKtJ+k5KO9tG9ry4KVMnk3EFGIL5lk/67wcy0o8xyjAOmSSwIAPWTM3Jw3bLfX7DIAl3D8EbPC7Fz23ggIKTSxrgUJTfm6ubIhfNwjhZeVgal/f37el52VDgaU8nA/PV2hZT131XQ1JwibrAnlmAg9V1+VmBNa7LmPIx95CAxPlIytlTp3hT+iwH+5ICaLXrBPKg+oa1sh4K0EZZ7dj/Ip4yukjmHhZOV2lRrpcWTYeNSkFATv0CC3Kubx/eL/tYksllkgGICej7k3Sb7LdNZbzbOh5MthcTerh7OGk7bEU+k4aEys9SNi6TwISmCt8GqtKOSKXKbWVbFXVlm6Jcs9GqGOO6PNgWXreh+BM+Hq9PIH1nYEoMAVxmCayoLAHoOEfwantU5fB7CCiwTZAMnkTGzFGCTPCA/t0YdiMEL8pDBPCqgiyOlBCmUCcCkg0h4Ela22JzgbEKSwhwYfNIlcB8iyHAl4GIxghrJHjgXURAmVnuTebOIeEKJuNuQuaDkn63DWEAosdojL0kMne3IWNymAD0GdN0RPdrwGiG4EFni+FLNecihvitbRE89WKEAI1GQmiIMe1M5jmrnzEp8rOENOgoIT23s2afunjkbDhjQh4jhM+kCUCQMcKM3Wb2GsZqe4gg1zf2XUW/e5UQqvMqIb13SvtuTb+TJdgEGHD3hwSW4EXkvHcQkoGT2q857b+Kfi+HnFfztDOAzBjqRQJTdIHgNWvXTEX7wthtBjRbW3QxwZNqTyNyX+s3A5pXtJ9s3OX0+y8Rrj0D8sZrztMhgmfoIWT8V7QfDXhPaP8eILzeIvgBFwj3GhDgsg0B+DprjuEj/mpjjTrKNLCLSWvrKPmKuhR4txhkQlkEu3SyTCvr/BXnHPiwlxmeJyiqjFRW109wxVNYF+jiTU4Ro+TSNWNMDDKBpXQaswTkXtjMJl0surTLjNslPXTXCwUzOZdgCEnGM3BuTuVeXSy6VNfM1S1Nr59pElpQSkCDyHEmGGSJTnJ0EKHiEq55elzSKAX3LibzlRRIAb2E5SGeSPYMat5VAmRW1D+ryWW98/TQzwxmZj7CMK/wlAOSxggRtpswNCYZwEz7N2lmVE0iLRH4z/llB4baWVW5VZMXLcbWsJCUDIus6oNCmToHWMVPKUhtLXzkFq2esmtm6OZ/ZSzEdi2gu1jwpMiDBGm0+Uh1M8cq7c7wmWSAMS3OJhjkFq2Yz5KFh1jAgPCLGpyZEqXKivbbEKMuU5ynR8e9jAGQZ9EOHZMGxkUQz7yqyv+k2CyyoybwwvgU9lOeFCVizNHtEjnzETTgZpQhLIwiRcGZpgVSzNODSLSLDvCYAbyMzX7m6XF/KPPmA/hV/sQBAgMELcjmPL+ABSj0M63Xyg4TPAxIfSEATJCeFUncA7h+lF8faH+Zj+UODfcAtYtk7mH4rpLgEqcwawIDZ8wPD3A23o4yIo3RaXL+TZqckfc2w3Sx6J5hlghbUsDGQCDzULN/Bp5baEbw5dxBUlh3HOBIkfd5yRigO8RZoItbtDLFgMsaZVFg1RmGIOQFY6jF2aWPaQ7qPNHPND3MM8wI42TdmsBYUua/Z0FD83TTjciHE6zyFK+SIk+SPH3MADhrr0LEvTnzJB2IP841zPfM0mTNP9UCRubVK1bk8WLtYDJTwL3SjKVtYKFdU7KQ0UWUqrKyc0hae4MSl4oO0FoAk81zlqZq17OBp7vEnYkotgALzt4zq4hu5muAwQzmTZdQ1qAxBK1OBKlvhxkhr2FNFSLM0UMrt7zOt/FaJUIfMxxjzO/dNrZPcAXA54gBJrnEKRIUeYpX3TpjV5kgYjYhLFQLCkmRx/xYl+lkSxmmJnftV9ntKu0M8o6Ps2scr7n+BLAzqwRjdtozggGC3cz7nNbJEh2I9Nu8fOVaFOn0jjLoN2n2BRwDssXvdFfDPTqYpt/tJYTRLD6Yf5/XhwLoxdSfgiT+4FwmBhsqoSxKAgoVDV9oU4BrTX3WsvDJ3E/p27jpoCAtyE2+CWZn5TOnuCQFgAJjEzwsD9daTMWrOwxt//CetvUw72wrNgSA4RDy4L2FUziZRQoVFCgzMDIhE4z7jmUUWLSH8WX5/P2jW/L7hrKnSsshNANJz/JtxGS1YP+4JMe+N6uBAhHgAMzeUK85k6r1Ciho7dqnzLc0OWFSKYugQxAWiEoibwM7vJ9skeL0NpBGGIyHNI13XMAmRpXlJsx6fjLc5kbmFjtPCrgI3RvvyrldwFMU5+iGI5BXfyUDGnlI2rITizO0dh3SkoS6bxtB5BtxWXOBJDwC+7LArFwYB3J3BHCYleS0FAX3sNprge/wq3AGigoAD/KOsOjyBPB2G/ZHpV1Vomxn7hMvvwU4MHVHzqXVCwcUbEO3WUVvKjtyPjZwI2hjMMbZFSDRZG5TslpKRs9pDp/UTYIYZ4fbif0eWtL4/Q8EfBvSbZR0GzkNZ0HMQg/k78h4P4OvEFCSMWqaffdf6xV2pYcypLSP9+S8MoV7LjgDa0M/uwcsKSNV2X4ckPGxSIbGjQ84kJQ+tgdjDx9AJkbf1pb4KBGFhPlafdRfOhV4uvPThOTrbYRFdB0536NIEMMR/f0bAhSTAL6MzDPPIIsLUYIfpLHizC7gGUQyagypiv7b0G0bC81YT8cIqbsmC25EQisgpOfeRIAM8/m7SWBImezR5JsnEYClST87pPv4om5zlrBI0anfWSaAJc8g498YWyaVLBDCOpaQ67W+pr+XEEDKwL497QM7dlscOUKQFxuAZEy1ZwmBTHYP6iX4W24DXyV44hkAaz8buGegZIYgXz6t3xvUz4wQZM3jBPZXTo/DvPXsnlQhgFqHCACeAvUOHNv4Upk+z+h2ztS0p5ahu4wkBxtYm0XmeQO7zF8uqefLmMtTNe2pEIJ8jBmXJMxDSzXtv0Hw5LRFlJsE0O8IIe07r79fJshvzTvwIf1MRrd3EZEv6zzHTT0WA5XVToHTOJvfj9HGX6KmbcaG3CMkLZvVBcjYN4myMfoghNbECIm2+vwDyHWT1X1UgQ/4yL/WaPNV/WsaVBB8faQANA+fPCn3RtqlgS29b44wTEzVBVZYxNmhRxkBSfWPs1cP854CKu5NEZfnVImwpBJgC80waavcy5O+zWHexjyQBphkkgFGGeIdXQ0u0o75ItlDf5ocr3DG2VDWVvOByrDgQQ+Tyigxmd0AkxxknWOM08M8CVaZU+BFyopbxNlhmBGXZdkxGMBWK6EcZoQYJQfC4uwyxChlYgoI1TlAsE6rS+jOcsH9sixdOEmBZTq98ACwwAvzSHqTx2hmk8d5HZMMJikwzAjNbLlEybwQDdzrUrDQmJCWHit+VRmyjNGjhaeZylvx3MWiF961hZABrDnSVFSS18o6g0x4wWsF9wkuO7CVUwaa+YHtqrzWgl2seBzjGOb79DpPIBLnY5i8sUFZQDaWhhhlkHe8EF0hzSUeY5lOLnGKOkpMcsQL9TpKLtW1vrG+slAYkyzXUWaXOC/xWWeRtlNkiFGpEZC6Z5AJBw5LulBvoAzIc+oAk85i7VaQ0yRv5g/ZwI488yPPdg3scJxRepinnVVn19i5yJPkGGMkyfs4W6aT2rCPbU+L+mi/CiQdcDcmV/DpEtaeMYBkMSOqSaMJ9Q4VxrEBQVZbSHL1roNOaXLcQmwCBFyRmVACBCrOoqtNKV0lQTtFB+OMkWU1sqmCjN1nALVJq43YkiflvmEGSoskfIUCKY7oXLtMJ5ICXfV06FqwrECSHGkHla1fBOgSVqz5aRpjLOE3W5yVuKuAdFT7wCTzxmoURtWK3zNEsr7CJR5jnYMUSJJCEsWLtDPGMdZppZ1VysToZg4LejFAFnDwyoJz3mbYr1thmQX29zzdJCh6KrfIRqNElU1eJcIAkyQouqx2kgFK1Pn9wdJvDVyyBQhRP46yTKeHgtjcX9b/V5BEWrvv2GKPBT6Vibk9hrH/Wrnl4FeWMXaJe/iOeQpaf27SzJucol3vaWIJIP6e5iVbJcJZLrBJk38/QZFu5h2wM2b1NP3uNWhs8VXaWdD6Xfwk26W+h3vG8DHGtQ/zzoqfp0dTx+ucGWos9ioRtV5o9vvgCMNc4YT75nVrv03Tz66ChPP0+LXRxzQVInyGEfqZoY4St3TBrJ9pHyNNushkIOPf9fpQAL2opsFQQh5kH5KVNioqoTwntEoWNHxhVkBA9+XZhu3Efey/TTDdzimosQS9w8B5AcG4isucqkRgS33GWmA1kiBSAaoCFMa3P5AHrV581X6KAdnvAnBDbjaZ6qIw1sb0Yl5bC6v6UZWyFvHEvx0a5NgU1BthGK5BsebhPVL5QPabhf0lZbG1CKBFBfqr01CA3T1h5+2zomobugwsPKr9E4Nii/7RGCYVXPr4nhb3y3RKcRWBA00yqHOk3Qdq76gy4RJIHzytIOAGLKqMN84On5hd8/OypTRUtI+LLS1ybodxYChKFRKQekj+ViYm21dgIUcH+bYWuA37s9KWChEpfKKyjVUSwiwcB0pCuf1x52EvzIWeXvI0zjcaT/NZfgBpWFMJcZUoxCCRQGW6XRDTxOM2Obb4tlRR+4/KGHJgsQQM6bhcgMQx6fcyks4WjQAJofFGqboU0h7kqYeiAqLLdIo/YD2QgeG1H0mBreyUEnUcmL0jY31CxnMf08EHyl4mByvg8essab8CR5iEDCxchM6N9+XBwEAzZSiyAPnr8qcuFh20pSTAa3rjpyEJ0tgxUcibv1qnBrM0EeSzJptck+IpT8rTQ/ORFP3MwKwwSe8eVpC0jo+FxAwIINQswtopEdJCD+OsZV5A+m0MOS+jCMByGgE0LiDMniJBImuy1ZsEmexh5BxO6P7N983kpRmEWVULDHUi4+gaMjY39PvfRsZBFgE1BglhFgf0+68SWFcVAnhTQMAVBdR5FgGVXtXvlvS4IwRA0KSJ2wTftyQBhDuHzFffx8c93yWkrK5pfzXWbNuO31hkFUJytDJ+qZXCThAAwg3t6y8RgH4Du9cILLPrhAAOA5+OEFJ7a/usnpDSbv2VJYBMQwjDbFS3q6xtotpuYzzO6v6NWWYLPqP63nlCuJLaPZgnJ1M1+8wgY8sYa8v6/kvajggBnGzTY2khJPiat6DdqycI0nBdcOGyHsdJAqPyOCEQI0ZggBb1c8ayvI0Azt9HADI7j+YXmCawH8dr2mQLZgVCQrn1kfnWGbAZ4d7xC8HLcAG/LzGifXKY4O+oiyy8oO3OImzSCgGMPYoA+c8QZL+HtB1H9XM/5SP/MvCrATGpNlN/C38wA2kpDhpcpmMvA6be5BTiITbFE7zO47xOmTplQcUYZYgydR5ekCbHIBNIIMATzvwyaZewG8QPytgl68r8KlHHJR5jnKzGQIjE6KACUs/wA2U3zPn3xJ9IzL0NfCpRh0kjbaXfiudWbmGpjWJYLoyUVdpdalkmRoq8+yT1MK8yRnGCMxZNrQ9fjBKPccnN4O1lxuBFEiTJM0+3F3sWjAByP5+mzw3Nu1igXeXOUviIKX9t8Eg7qy6LyjJOM1vE2dHQg4SGazTxEs9gaayAy5RzpPV7m5g3nvlO9TPtgSDd6gdmMmUDYkVuteWgrrCRupRJF3WAU5Iqd5xRYYUv4CCLec9ZSAQIwChF8y0iVNXrbsG/Y6nAlurbxSLLdPJXnKOBXSzl1oBUA10N8BJ2aszZg1UiHFTgzFg8xjIa4TPuIxavYUdZCECBJBM87MyYZrZ03G7pccYU3o36tRjVv5hs2xKcY5TVZ0/k4gaSiqH9ijNiJOBixlmzBgiPMkSeJDEFgg6y7hJSk8IlVXrrz9Ef8dcWTcTZVSalJKduKeOznaIrXkIqcYI6SjSwwy1a6SDnLDkbw8borFPAdYZ+VknQz4wDHmZ30MM84qO2DsBgaYIJBplR+aME/8QcxDBWsEgfkx6+AyjbM+kM4Wn6mNAwlxxpFukipeCzhEI0YR6ctigQPACFZXiGV5z5ZXJym8d2aGCRLi7xGGCJ2Am3L7BjMFDU5J/rtDJHD6tIcrSExnQ4wH2WC8SUNR5nt4adPEe7yjENYJqmj06WPX3cpLYGUBdIun2BzXObNLOrAGQzm9xSlmwr68zTzaLaJCTJOzi4SwMFZQkac8uuEfMyND9DWywyYCtHGvHIkznBGGoCfLa7tYJ91+6LZeqYpp8YZQaZ8PEkC0Xi7XqLVmboY5EMK6TJMqYLD1Ff2LCFKpN7W+hUlCrT9PuinSVw2z3AktqBe4A6A15tEc7m/RgSFFIrU29nlQhVjjPq84sxwQukdPGk7ItAIvmv8zl0mn4/H5YiHSw5Ovy6A2HGGpA9yQC7xMkyRomYs0w7lNlt3rUrem62aHaw1mTwOTooE+MKJ6ivuXf/ba/o3/2R/89fydwtHrl+S35RqdLPbN/0guKOgQwd+v8oPHLxR1KItABXoXH2A3mwbsNlTp+88VPZxtPALHx6fCr4UkXgc9f/s8hX1ZPq8AvvuzTydhEOnIefe+gtKZJuAjn416PflSL2qPz+3OW/gIuwEwVSAhruNN5HY+ED2dZb8DMtNwNL4GX43/f+e/l9WPb73xT+DPagrQV4BD790pRLSW9/Hw78D/CJo2tQgP0dwBpEKlVYUBlvTr5HDLisoSBbcOc1AfwOJOCBb23wwNCGSHaiiAT4O3dCMRKFXxx/TQrqlARlfPLbP+WT6Z96WmP9H0P9OaUP1QPfg09u/BSuq1wWeOjiu8EPawN+/sWLIWUxBw/80QY/33sR1iA/Dqm0AkVLwvLbBzw0/q60S9kxn3ptNvhA5eRc9BydDwVQPeKfuAf7onKuHz3/w+AD1gZtF/ekKJqVpv385YtSnL0KvUNyXnor78F1kRMfAH728nUY19TXBfjEC2uyvwQOQNxf2ZL+1HP7SOFHwUD/MnzpS99l/3WcpXL/97akHafhzgvw5B/9tadjJpT19OTyX8sYy8j39k0ghWFWxv6nvjsbwg+2gevQdmhPCuObMr4/fXkKCnBgSI93+aKAZBuwbxmefPmvvaDOJGUbn0rPyjU1CLwEz038BXxbzhFLCEuygDPyrjHEcNMI++vvsDMlASz7huScpLb1/DUiUnJlQf3s+etyXlSC+7MvXIde2LkO8U7o/eP3nPGzrxH4Npweeps3PiAEN3zUX7eReaweAVBeJjDrDum/q8h4qCLj4HMIwPU0AsyAXIevEYBdAzxMMrmN9PVF3UY9gU10Epk7s/pZavaVJySU2rwWIbCgDGBD/2ZM2ggBNGskyA+NubREALeyyLVqc7otxFwk+PgZC+0RbeMNAkOtiABdC4T5qIIAfOZp16Z/e43gfzlCYEgZQ84YVC3axwmEzVhCQCwFo4GQ7Pui/j5OkMHu6XGbZ9oUci20IOetkSDF/RLwO9quPeS+tUFgShrgdbOm/2J6vCf1/149HjvPJULi668j42qUEAZix1nVv2eReUjnB/emyyKMNrUicLZ5tOazSQIQVdHjLBFSbS8TGILmqWiAbaP+W0DGwyMEFuEawXvQAMsSIXBkGwEQK3qcCW3bBmGsVvU7f0YACCcQgG9Bz09a+3kL8Qk0UB09thVCYExKt1NCAO1/TpDrGlu0T79vsvkh7YMXENCuoG29pp+5gSTb5mr6wcDeA0jK7cdggeMB3sc8ykQGWXBpZqc+9JvZv8hKK+5BY35kO8RJs8I1jiMBGyJHuqUsOPNImqPb5WgRW2QGTfaM8Hv8dySUVWEP3h3knElgbL00OV/I26SZk1xhk2ayOhHF2XF/N2N8dbHgD/7GsDBG0wJdynTZdHlNkXaXYVky5HGu+ar/JR5zA/s0ObZodsYfCNPHPH1Anp+m6cM83UAWY02eZXK+KlGXC5mPj3ldpcmRZYw8SXaJ8zhvUCbGKgln6hhYZf6EBiSaf9siXR6YUFKYyYoXY+OYfM38h6tEnLkGspD/Bo+T1IJpmn6a2cTCMsRUvepSLWNFgPgk5UnpOMpgPm0GMlgggACAURJsugRNpHJNxBBfM/OQMraReUktkFF5WA+W1mr+VgWSKtRudcZUhgVn3hiQYqxPGzM9zKl8e44pBlhQ+V07Rabpw/wIB5hknh5Pym1nVdl2HQ4C2ausQLmByJs0eVjJr/InLNKlIRdDWABHnhT9TGPSyRGG2SHOPD1kGVcvzAoFkphPlhW983QzxDUswbSLRVLkyZOiQoS4SsWNofM6T9DFol4jh//XmnL+Qb96mEWCb6QYLpJgmBGXPRuw1Mky83QzyYAvDsTZxYzzbWzaAoh5w42TpUQdGRadASug3C3KSDBPUgGVHeJciZ0gyzjrtDJPj+Z8SuBAj8rR12m9h6lqUtNb+vMEg36txsi5zNsWAdLkVBovZIgGvS4shKdKxOW6BV0YmKbPbRrsbwbKR6joeByjVT0YcxqhkGXcQVED6LuZY54e7ad22lklzi5v8DgW9NLKOqMMEaFCN3MUSHGcUS7xmDOvRBo+rmooYZSu6MNbN/NUifp8BjIXmR/lDnH6mVagM0OZmLZtnnm6fW5pZoscHZziEpI0/RRD6r0qCbN5H0tbChRa2q2xGFPknd07ypCzAEHssMoKohq7tqCrzzYudpWVPcAUltprY6xAiiYFEEEAsVVlR9q1bvfCF3mWBKscY9zZ3XYf3aSZCR5mmBFGGPZ7q90LjFmXUla+hbbIMRhDsKpA6RYjDDtz3SwxikgYk8mQLcXcnkUqhMTwbuaJUAG66CDHuLKtzV6hm3ndZvAONM9EueZibNLk87kt7kgCbtkXUOr0e93MM8pxl9fbvWAXsXr4KUmkOPjbXx8KoMcssppegds5OHCR4F20APsvwqOP/FAKhRJSHLwIFMXfLBFFfJ1MUlZBCpIo8iD8AlKEfFu+44XPd3Cp2N0J2Hde95uHOxWEhXAV6ZdHkAfw6/q/FcnfA3ICRnAAUtU8jcUP2CmIVHP/a4TCpkXb9cdI0XYDKTC/AyRg30mCj5X6CR1IEArdWaSwKYrMkqvajk4EYCzB3fMKqpyE/QsQ/Q6BDXFZJLp3KhA3xmAMPtGm2z1PKBzbao5TWX4u75oiJOu+pu0zL6nzhDRN9LwCd1Zg/7Aew4TsO5UEXoYHihvCSEvods8T/J+y+rv5JCk754GmDSmAtuVvP7twPfhvVbTtRUIheF7HTgfcvQz7XtU2XlaQK4nLSQ+k9fvosRzR/Zi/mEkRX9D2lvDEYs7Le9dm4fhR2P9dAmg6QjBGHxewdf9LBGbRhu5vnCAlM9C6gBTTUYS1VUAKO2MEGahr/WZSMWMrfVvavS8Kd2/qWIcg+3qVkJo8QQAPGnU/S7DvAuH6isDPFd5iu+U+SEJlCQrbkJqCYg52q/CgehNi/29rW63Ir+ixjuj1A1KUG/jQSEhJzQHdoDZEH+1XFDkPFwmm/hAAgQ4CsBchnJMzyLg14GQI6d8JBIDKIuMgqe+PIUDgBnLtHkb6uU/3MYuAPhGCxHEPATCM7RclpHL+j8Dva7tNArxAuK8kCCwmY3P26vbGkOvHgMyXcIYy5/XYxgkhEgv62Ue1Tc8j19eW9odK7Z3ttK2fO6ufyyFzXScBQJoiAIhZHPznKDJnFwl+eiZLbkSAl3GCJDhLCJOxBaZeBExLIZJPY7fpAgRTCBhogPk4wS+wot87ou2xBQQ7Fwn9zm1tq/WTeSEaoJZBruW3kHuOAcQmCT5MSGg1ALmGTWvBRkC4R1h7TIZqMtlzhJThR/Rzs7q9k4R7VxQ5t0eQBS4bbybPNjD4c/r7hPbd04SwF5PzrhE8AveAf4Xcn2M172f1MwlknM4SQL/v1/RXhjDG08Dv6nfHCSB1Rfvc+qeEnNtZQtJxox5XDAHrstr+iwT59YT2vUntDfhtIYCjVQIrsBEB82rZ2B/R12FuMsenySgQZAbwFnBh1hFW4GZYZIKHnWmQZoUydRRJ8BlG2EJMwp/gdQVa6sTSARhgylfrjcNgQMQ83Vjqo4ArWxQUuDLWhH3PVt3XVbJ2hRPKSivSoXKfObp5jEt0M8ciXZ5cGalhIYgEqIs4u74aX2sIL45AmwpYCniZIk+cHZVZLjmgJG5tu4j0uMAM/V5c11FSNkxBpawNDs6Yv5IwC1/CkgrLxHiCN9zTaU4L3ks8Royyf0cK76iCpVsu42rWYtBSYs1bSIzLpWg2loWBDgYUlamjSpQiCRKs0qT7aWWdp3iFEjG6mWecLMcZdQaSpSVb8WNSajNLz6g32DhZupkXJQWwpLKqAkm+yHfoIEdMWRHm55cnySEtqi2ROa8sGjNzN/9AK/5MGrhAlxf2Vjwbk3CcLAlW9TiiTNOHBbzUKYjZpXHzeZIKMOxyCwkZuMIJBplwsCfOLhGqzsA0ryobxyIzLPgYM3mk/X6QdWeLCnOymS4WPJijn2llcgpb0CSQlkJt0m2ADlaRFEkBqCwAZYJBTvGm96NJpU3SLmO+wUMGALY/Nqu9wlo21mIzW9xCPBEN2DNvOYCneMUBmzwpV+okKVBRYDqmRYmNZ/OPNHbkqt8gBTAR1lqFZTpdZn+NIdZp5V/wp1i6rTGLbPHC5LYm57VxYPOvhA01eHBMjJIDIA26oFAixirtpMi7vNHYfGe5gHnd9TDvDGdpd5QdGmhVllM3c+wSp4JIWsvEOMUlTxC3edxYupKKWqfgZIPLgQ20Kev5EIAl6qxZW+CxRGkLKpJUWJmLc3Q407mPacx30KSwQA2omVf23i5l6uipzrETaSBPigEmeYUzYhOG2UrMeb9GqZKu5ngnMujnraAM8ozeryzkSGTPEqxiwYW2uDHBIANMUiDFGzzh/pXml2d+rJMcYYApv0fZHG3Xs4FXlio/Tb8nYudJ8RSvYP5967TSzZwvrJSp8/FhfrUSbtHqQJgtGJmU10KAEqwSo+zzVIo87Qrj2kJIgqLfI8R3sMItBaYhhEpWiSrL9BaTDJBg1VWJtngBMi+aRNqAvCQFHx/mcRhnh2d5kTl6iFAhSpXXeZxh3vaAL2uPpM0XsHTpOLvUUbpnzv67Xh/OmnAeecDNKYBlK+EmM/ofgN8ksDR6ET+iKCRMjjOKFIUJuGvFmxVqIIVLr7zPbULRclP+35clsD5Qttxh/d4aAVjYJpisq68e9bjHz4E/vCPHAhLIgBwXJmPqxcHAu+axc41QXEBgcRzSfQ0jxZ6xErYJ7BUrSBZkG/sU8LP395mHUk6OYf8BiLfpd1Kyn331eg6ssLf+OkkoREtIIWggZ4xQ5Mf0+2n9njEkwD2Zbm9pG2IEw/UWpBhbk393iwR2yDihqCoSUgXr9Vy8SigQDZB6Qff5NYT18AwB7Mrp99ekT/a+pts/CnNW2GcIQEkRL9rujhIAtJOEYm2ppg3GglFg8+EWpIg+j4xLZcqR0H8tcOCIbu8swfvJCv0SMjbNY2kJdtYIjBYDRozBMUFg1VhbVG7MS9oGBYT3Gdhq28noe6OEQrKXwEwxZldJP2/ywm9D41c/gKjIx1NpSchtqIcHk8iYP0wYU71IMumvEeRqBobWqw/jcwg4Y6BWApGNJgmSyY/6aw+ZD0wqawyoIQSwuY6MxwsEaeC3kevCJHlH9GeTk8aQc2wA00l97ypBonmVIK80j8siIcHZmH2dBOAiRwibuEBYuJglzHmnCSw0Y7y9pfsYRcaugWE2Hg4T5LlbBF+yrB7fEIGx9xqB2QYB9DNGr0mAlc3tgOK2LICA7kv/5tLiQ3ouRgkedhB8AW0f17UNZ7kX2Krdr8la2wgLE2sI8JXV4x3TY4vqcSUJKbTPEwB/k/4auNNIAAYv63sGghWRsWDgf732XaP203Pa5iwhjKGCXHe2EFFFxouxLivIfF9P8NgzFu7zhMUe64sCQfqaRkC2IQI7sRcZA9cICc5v1ez7PAIWl/SYbHFpWPtzlgC0Gag3pPsfIsh4ddGLqLZ1mxB80oTct0x+bgs3o4QFwBvapgXtzzQhGATk/B3R4zWG54Sej9r7RAlnX5NDxlUnAk7bQibAvyGM5bcIzydNwP2E56SP8OtBfsLD6gVQUQAPhLEwR497MUmCqgAAxs47x3nS5Fx2ZF5Q3eo5VyXCw0xwkHX6mGZc0+TK1DFG1osqY0yYXGeIUQWTis4wKmgBJObycX9on1OJqRUxzWySJufMCGOBlajjDR4nT9IL6xNc5gRX6GfaPXuk2G0gwSoDTDqYlSPNDH1c4CwTDCrTI+ryYDEr76BEjO/wRfXGijCh4MAmzYwwTIoC1xhyNoMALa00KFtmhwbMu7COkoMq1kYzEV/noIN9O8p+m6eb8/yCMx1Mymo+bubHVlaJVxcLdKuE11gwc/R4IS3gbpQUYiJv8jZjDIoUroxJiQ+yTm0a6EHWXWK1q0WjeeYVSThDyeR85zjv529H5VE9zBGjxDWGeIlneInPcp5zWBJiSn3fEqy6R15aWZ0WtGKeTEkKvM4TlIgRo0SGBQfyQEC+doeaizoeDxKjzEs841LKafocVE1SYIEuzLTfJGELdDHJAG/wuJ//BKsUSPr7BsIZM0bAHUndHGGYLZq5xGOc4AoWPmOAUIk6ZwbWUSJFnpka36od5XJZwEurymnt/Ahzs0JtmMYiXTQjqc1pVnRsb1GknV716/uov7bUH0xkjiU6WXKgIFIDRFgarAUJiDS1gSadCxbp8mATm692aCBFXuXRcg3XUSZFwd/rY5oIFY4xTgoJkTB/S+FNl4hQYYW0M1dNWm7XhMlmq0SwJNKIF4wCGm7SxCoJHucNH3uy0FDyuamLRbc8sDGaI801hkiSJ0UBS4mNUKGdovug7Wo7RHK+60zEebqpo8QgE+5JN8Eg5hNnYTVxn48EIF0lgSS9CtA2yQCLdHGKSwwy4ayqMjHa9RwZKGjXbReLzoa1+45JlitEPC1VEtgTcg1HBvzzBZL0M+PfraNMlnEsqCJPioVIF0XauUUrVzjhnnAVIr5Ytkucebod2Dcwz97vVj/RKhFOcQnxDBX2twFOAtTL327R6nOSAZIl6lzya36QcXZYJUEDO+wq+Jpg1VmPMT1vJkf9DCM06IgymwALQZJ5sujn1dLR12nlbYaZo1stDJJc4YQvwNk9S87vLcxyQfzs4r44I/NkhggVjjPKBc66DHq1RvYuNhdip2HeoykFkOXaa+AEV3yOs5TeVm4RpUqSAie4wjR9Hhhi7bml7TVmnnn5neCKj5W/6/XhAHoJxPPG2BQpxC/H/GZMYpWCnVnk4fxVAlBg8j59GN9nwF0SYQcc1c+dRAqoo4QC9TDyAN1CKHLrNSiiU/dtRUGi5rMthKKtUVNfIzgTqWJy0JjuywDEBC4z22fMCpNOmhTIirQlBExb1u0cQQqMiu63De4YqPaIHM9dKzTVJ+muSjBJEwod8zN6Vv8/QPBAM9DEQEUDdjK6jyH9d50gnTOJ0pRu2wqVJC7PShwjMBsOy+fvFgnFzR4U1giG5Id0uysEVoyxuoy5cxQppmZr+i6BsDymtI0JgvG7ghl3b0L9H+j3bkMqhow/fe0YMKbHts+Yasp8dEaISQNjNedMQYz9vQjLyRhW49ofB2r+hyBNs89YkWxANMj1kFFpuAG9aQJLyc5rox57LwE8tvM5qJ/LIwEJaUJaohX9ygC6s0zwa0oSgGu7Drd1e48Q2EFp6Zv9/xziVoSeRsaYFemjCDvqD/R70Zr25zRteFT/tRHM4Ed0/x8DiZm/HiJ4nS0hY2KEAMbNEuSBJpM10OI8Mj+CXAdncMDf51Nj/9zQfZms0dhsxmYykCGKAOSHtB03kLFlIP4oAVhO6n5f0zbkkHNZrfn8th5fk372UYIsM4owyIyRbAsmKYJnXgyZG2N44AoFQrroCEESmSewCAvImFRW86YBeBFte5Ywv5/WbaUQ4OsMgQV8iCBRNeZ3npB02qbHaNeA9fsa9zKdp7TvDUy7QWBilggAvs37BuRn9fhtcQdknjaPO2PlHkKuNQPxbbs39Fz8sf7tezXbGdT2jBPGlC1mJbU/jGFpLEIbg+PIPfamtsFYmVOEsdqin4vo5x4iSFyv63uHCazlI3psl5Ex9mUCK86AXQO7Y8i5t3lkiRDuYcD4Vf3/aT2epH5uGE9jJ6ptH9e2H9LPn9Y2232pheDRlyMsIG1wL8PPAPWjhIXFHMHT9jVkfNi8OKTbj+n37d47rOeqlXuDXT6ir02aHOxZIU2GBQcP8iTpIOdssGY2PZnTAg5qmWybNBGhSoZFZ0ZJQbpJmRhP8Qo9zOuD/0EvkHdoUKBilVYF/3KkmWDQmTBWDCQo8gpPAbjM9ZhKhJbpZEW9fk5wBTNub1LGxiATpMkxzIjKSg8C4gGVJ8VlTmiZ0k6KgrPElulUR6R2TnCFYUYYYpQ4O+5rZomzFoQwypCb3oOwoIYYdQaFAafm12UyqxhllxTP0O/HbNvIq8+SMTsWlX3WTpEs4w78WbBJhCpFEu43NK9eVct0skkz3+Z5Rhhmnh5lBtbpPqSoM98tEOaSGLHL+znED1FSFgW0WqSLObqZp4dRhrjMCcTsfZ4OcoxynE2aWaBL01TrvOi07RpQASIzi1Dl/8D/lWFGOMsFTnGJMjEyLLCgstQUBfqZ5hSXEN+8RabpZ5IBfo//ziV1/Uxzgst0qeTRQMdlDjlwk2aFBKusKHQNkhwrbUuSokCdOkpNIGycKFWXxg0ywS5xDrHMKS4586hMjFu0Mkc3f8q/pErEx/UEg8TZIUYJS0+NUKWHOVZIM8g77ms2Rw9F2tklrrBKSr2epMDfpcHHrIEwW3p9jJFFwlt2/RxZYEOaHD3MM8HD7lNlgOH6xyHyG5lTDEzZJc6f88vsEsd8PGtDLgz4K5BUtpXIWoskyGu4hgF1lk5rwRGWtrxIF9P0UdAgHhtLdSorFzliB+c4z1kusM5BirTTx7QGaFQZYMptD8RbMu8gv/iWFTEvxzQrzkp+Qz3VVkkou7DHQxZtxjeATjwXjzPJEUrUKVdrXf39+lnnoG/DvgtwrDpGglVn3g0yQYGUe7FZnxqobxYPJt83b8mDiPegjUvzHTR2eBcLmC+oXU/CrGry+4sxHs0X1uZVS8GuDW4ycNvStJfppEH3aYxNkyXv0qDs4Tp+wDNY2rpJQNdp5RpDtHKLUY5TIeLSX7GlKLm9gzFsLfimrGNIGJRdmCejLPbMs0kT8/QQc6OMMiMM005Rz0WTs2w7WWaCh1nnIBW9v1dVEm2LUn0aAAFQIMU6B50xPa33I1tYK1Pn7RphGPMJNHuAEnW+4GP3pYOsO6PZvFctpKSBHWcn233L2JTtLsuN+iLEKENY+IoBbGa/YExG8ZZMuQTZ7r1pVlSmK/tsxhLVE84KP6hM3KQC7RY+VOvt+ne9PpSSev1MI3/xe08HpsFJeG3oHwmDYgP4A/ivX38UnoX4MNAJs88/KEVWL9AIP/6fD/Pj//lwWNF+BN5/ugWm4K4y5t4duv+eB/bvf+MfS6GwAIzAzdMPcOPJT8r3Z2UbN57/ZGC1PA0//MYRSV3MAZ+Dt37709z5PQ1OOAzvfu1+3n++RVI8t4Ffhx99o1fYGxXgANz85gPwCNwpAFV4//daQpESgR99tZf3v94ihVcEeB5++NUjUlAOAY/C+19qgWdgv4I5L/zaL8K/UYbeIPzlV5/kzm/r7wuw/c37ZL/mldULf3nyySD7ycJbX/m0FC17wBT89AtNbJ+9L7DpvgZ/87tH5TtHgS9quz6PFC698F++cJrbv7VfPr8Nf/nNJ5n9vQdDSMiX4OrXPwWHFcDJwE/OtUG9pro+Cle/+Sn4Auych50pePeb93sq4d2cfOZHn+8NUsQ0rP1avTDzFPCb/dKD8AWctbP9zftY+9166IRKFW5/bT//9UuPwmehWcGnG1/7JBwXLziG5DzwHMIwnIIfnjvCj4cOCwih7JYff+FwSDdMw9rX6uGbuNT1ta//o8CuScJPv9nE7a/tl/FUkfH1o2d7ZYwl5Vz/6Ple+c4jwBr89NeapCjVwvDGb3+S23+wPwCZX1TGYRLeK8hnfvylw4EV+Az8xW8/LeeuXsb2za8/wA+/eURShEdg7Rv1/OQbbXAU9p+U8/Q3zx6Vc3tS2vLjZw7L2M8Cl2FvWNrLtv77PNKuTrizBpyBn3y1LUgzH4HZLzwoBX9Ejv9H3+jl3d+930H3va/qNZfGgYuf/loTHOTj46EXIzDCjP1jjOMpBFA5jc99ZAmssA2cAcoWModcJsieDyFgiYGwGQQYAunfYwQG5UvAYwQJ6BRyPW3pvo1VZ+xhA74XCECvgYNHEECxpO1NI3PoAYR1VcuoPq3bNLCtQgCe04TE35v6sy0WnCEkv+b02KoIeJXR47bj2JBtHTDW8yPINRbRfRhLuKqf/572Rwsylxuob6y7GAGQu6h9sIAwy2wRwqTjxnQzxhj6vzHhjCVsUtE9/V6B4Ac4pX2VJ6TMJgks7oIeg30uRgCfzIcNZI68TEijNgDfpLUtBCmyWhJwk3vltxX9+bf092XknBvYegQBS826wZjMxv6+TJBAm+Te2O3GBK/Xn8/p72sII3uBcD7R/ksi5/qk/u17BP+8kwQ59pp+9mLNsRtD2STLBqTb+dtAwLwY4Txv6zEfJjDojc35ZWTcFLTt1wgLfbV9nNb92OJKlJAQbIzB72pfGbvzU3zkX5P8DGWVxWYZdzaeSDBnWCSDGWnvKFAQoeIPt5c45Q/g5gu0TiuDTHBMvZ9EnljHLZX1AAypKXaWMU/rM+aQsblAjLlNtmVsOfOtM7DRCiZjlthqvRnCW5HdoFJZ81iy0IB5ZSK21zCVRhhmkgHKxDwhtIc5Z3oJCypOPzN0M8cmzc7+M/nYJAPM0eM+ZxFEYmrJgAKgzFEixhzd6kck5uTm07XOQWfMiXdewz0SuQb1PSsRY4JBEqx6gd7PDJZIaGb5/Uyr11fSmSEXOEuOtHsJmi+SAUI7xJmmn4LKzrKaiGopvlYMWvqmeXn1M83DCqKmyLOiQIYVWie54m0oqWG6jZ00OSYZYFxXgpvYxAzuW7lFN3PcQnzFCuqlaAyRdcQYvplN/px/Sh/TDtJI0MdBdoiTJO9jvazeTQaKGfiWosAYWeZUGm7+VOscpEFTiRvYcR/BQd5xb0VhDIU0Yhm7Kxxj3JlIEzzsYLnJHcc4RpoVbWOBEYapEuWKgqPmjyespDkv/ndo8HNkBvUgQXKTDDDJgAeyGBu0iwVilHidx7nMCS2SG9RvSxKljcnycXhVuY8YZRrY0fCeFRIUHRAXIKmC+b/VUeYEVwAB+QzUjbPrskmQMBtjntnLpLgDTGEBEu8w6N5udj1s0ewA+64G50wyQIGUL3gs0uWfEQCmTEJl9QJSVBALBQGo6yhxlgss0uXzrS1yDDJBv14zJqvsYtGZb8YcvMZxTnCFOso+JgeZIEXer4GdSJxrDDl72dJMZ+hjkgFOcekepuM0/Vi6sjB6O4izyyrtPp4TrNKli0bLdLpEWsIlEh6UJL6ZKwoUNnnIhjHejEUuQTglBwnXafU+FP+0KRKs+ry2S9ztCkCCQ/qYwXw8hWW8ouNDnEoHmFTWZNQlo8agLCGhNQW9f8hcn/LFDPMYzSsQaom1rdwiU8OizNHBNH3OGjfA7h0GnUk3wmeUnbxISiWpwijNMMEgu8RZQaTLeZW6Wiq4MZ7N17BBmX8g/rjGVO1jmjplbHeyzFkuADiQaR6yq7Qzp1YbFv7zGV1ss6RwYxXaZ2x812FelksK+Ula/CjHeYPHMY9GS+yuZUDKtdqh/dVPK+sM87bbIlg4VoIiZ7mg/pQRl/y2cuvvPZ98KIBe69a2rBTW45KvJxf+Wjy/GoExDU4YwVkWvTfek+JmHGHEaUe6B9EMPHB9Q8z164EcfPLiT4N33gZ8rvCfA3MqLUmfD82+G/yfKtC/9i5swJ1ZadenC1PyHX3/5NoP2T8CD2pxHaXKA5c3RPYbAyZgYGNWiiCVIB3OvQ976ik3DA8sb0iBoUXJp0Zmpe3HkeJ9Ao6tTUlhogVWvLoj28vIfv/Jxl+GfVyEY4xL6m8MdrahsfiBTN5RnPXxWPWSfD4BlODR5R+G32/D/YUtGpc+CMyWRknzIoEwKUa0P6LyMynxZjhQvOPF7i/mXpNzBQIWbmsi656mn0Y1bTerCcYP6fsLwp7ZH9Vk1Ji0a58yYz6VmxVWgzIi227swasCvHERemffg1FlTuriXXx7Dx6F/U9Cw9Ydnlp7C/6DMvCmoHvjXRgRwI/LGumu56ShHj59cYqfyd2U4nRJ+rGDnBSJ+jzRdmNPiq4NoApPjv+1FJMKoty/vMWBiTvO3Hho4V05lm0EDJjQi8Ik3R1w/8JWKOwS0Fla5sDYnSA/r0C9el49mAXWoG/jpmzzUdnWU6VX+NmL151Fc3jkfT59Y0r65Vl0ZaTVPQmpiMTDr7leObcuyVyC+ut6nDeVbZmE5o07UFVw9rqmIvfizL7e6+8FqWYSPnV9VsJrUvJ+/XU5Pr+O01IAEQPu8PF49SLzSwQJR5glSJfrkT7PEKSExqjMIXOTsbpeRsaRMawaEfDpSaR/l5Cxa8yqIUJy61EEIHuNIOMdR8CzFPeykir63nnkWntSt5tBxmiFEBTThvifPkLwBssgAIixqP6KwEg2eewUAmJc12M7T2B/FbVfTAbZosdyEQFRDMw7r8e9oPt9miDrN8m6vT9MYNzt1fxvEmOrH9b0519AgMhO7Z8YwjxLIAsAR/AwHDqRc3wEAcwN4OsksOJqmc9mF2Heh+g56az5/RDwA8K1ZdLNPQI70QCiLyHntkRgf58jjDFjePfq91cIoJ0BhuMEGT7695cJEum2mmO4iMxtxlA35mmB4B+6hpzHhwiy1TYCyPqHup9ZguTZgDkDjxuR8fqsttuOcViPbxs5d+bhOUuwTwAB284QQmd0kcLHsd1L9gjS8Ub9zJ7+vkdIrq1HPCWNSWefN5DU5LpXtT1XCQzFmnsIZ/F5ng09bgMFP+KvQ7yLpL6J15YBSwbYiMSwX9lXGffYGmUI86YxHyJh24lUt6oSozo1nDY/p3UOuu9XHSWucNKZE/YgPUcPg0x48SASpR5SSDqhMQgOss4Fzrrh9nGu0ceMs7M2aeYdBp3xZSvxGU2ftZV2K14FCMmRZZyYAloG3pSVkzVHt7P2rPhKUXBPJwHOBEk24GSdVk3kTTJPtxfyY2TdU1BYWe0eHrFMpwc1GLhSJkaFCO2aYFvVnw0k7WKRIu3OkjEmhaUV2z5aWecEV8jRwRCjfIX/GwBpVhTwE+83Sc/dVRAzzzAj5EhTpN2BDpPFFkhyTRkTESqkFWy1AnmObqbpJ0mBIa4hnltxBaskkKGkxwfCQstoiMQmzUwxQCfLHGKZEYZZJON+S0/xioNpIww7KJJljH/Jn/IYlzDz9GFGWKSLGCW2lL1mAKP5ii3TyRVOADgjyAJZqkQdTga8GBxkgmY2+VP+pTNpREq961JXGwt1lGhi09OJq0RoQnzrWrmFJRSbJFYSHfsYYJIydfQx7YzELZrVG7LCIWWj7BB3NqwdnyVKr5JwsCTDIjGVR2dUQl6bqrtJM3/Kv3AQ8ePyakXcwgzMWqbTA00kSOKQyw3n6fY+TpOjj2l2iDPIBHF2Oc6os1czLNLNHD3ME6HqYLyB7QcRW4M4O8xp4IaFA5m/p7H2UhQcUE+RrwGrIn6tlImxSJczmSWQoaDjSOYyW5gwGXGODl+IqCKujNc4rozDGANMOlgmIJZIO/t0ocB8HE1SP8pxvZeIF9oIw9Qpa8uSqC08qHa+NC9QgFGOA/iiUgEJ1bGFpIOsc5xRMix6GIdZKRggbYnYkt6+RJqcM8ol6KGsstkkqyRcPiznuUJGk1Jtn2XqeIWnsKRxC1wweWaP2k6Yl58xcc2TcIJBZSYKcFVUIHKYEcrUOdPbQiiCFUHw2zPbCfHU26VIO2Vift9Ns0KMEg8zoT6GdXyT/zN1lJ2Fb2MvRgnz4jSA9Qon1fmunU2aPPCjQoQLnPVFlFXaeZgJZ0gay9XGbYk6FjXgyawgLNHdzrF520qozKp72gqLNUMr6xpsEvG5SxiBu/7MkCLvIRvDjHifL9LlfS72CHG3E9ilQdmht+5JWTYZeJUIr/M4l3jMmfQy/j74e80l0b/7I/9fvP4GHvjNjeDd8yoCJKwhD9L/E/S++J488CvAxe8TfJqykKkucuClO9wpqNzxRdn0nRXxb0vkEalfDG4X4MAI4lHTiK+K7/9NQtBCDvhDTU0dVybcOMK4GMdZSft+h+B7tg2f+PYaLAsYdWANeFlCPdyHbk33azKyl5GiyqSH12W/pJEiKAL8APa9Rkib3IID374j/VQCvgX7tVjdyYnk8RPn1xyciz8LvAaPHPiR9FlG+vDAb92RAmFBt/st3YfJhf8Al3jdvgwHxuFkyw+DfGwGYWVsaz+Owqf/aEoKrjzklyH1Zd32gvbT70BbbA9eg3hSvnPg5h1Y0PMCtP3RHkxAahiIQtu39+S8GBPmO4hf17b0BVMIK26JwIz8LemPAwo6NP7OB0G6lof9f4wUtxGkDy7A/lel//dnZEw8Ov5Db3c0ov1j40Mlsm3FvcDieVnPWZ7A3FDvp7sTCk7/rp4zYzf9DsEHCuAafGptFr6tqb8RRDqXRcCA69D4rQ9C6u8EwUdvNvxt/2/q+HpS/t74ux8E78g17cM1bWsMThfe5k6MIAmchc70e1JgXwRegPu3t6Tf6+W8uOF8FvYVpL/3vST9uU8ZLff/5pb077j2928Rwgze0vNmcruoHGujTkZ3ZyWI46HZd6WAvp8ApHyUX/3ItZdFCnsbHybpBwEdlpHzeROZFx9Fxvc2Anh8DZkjBpF+e4RwLgxYeBlhWX4bAe1MPmugg8llzxBAHpPXDtdsy1hrlwnS+m1CGEqGwHIy5t0yAn78obY9r/tNIWBbDPgPBNm4gVN5AohTT5CmGkBjwOUxAjB4U7fxHMETbwEBsYwhBQK+GUj6BUJi8CAhuOIo4Xo1ppqBPEP6f1X/GRinjECuapubCCy6NkLARgshbOIQgWlpzD6T3EJgctn4aKvpQ5NJDxK8NSF42D1CCMAxpmFM+34Jmbd+ixC8YLLgemQOMAuDPAIQfgvxkGvRdjXVHFuGAECaRNeYl8u67Q79+RwyJrd0vwuEsb6NjGcDxm4ic8pDhAWxI/pZYwVm9T0DRHMEr8kmAptvCrmfGWPvCwQPvjYE7KsnWG/YPa+NICEvEEBXs7owwHmIEAjUxr3j1kDUjB6z+Qouca/XaLbmGC8R5OUf4dcKHXQpiDDBw8TZoYlNYsrUa2aTp3iFafoRE3BJCzzFm8SUeTBPt/rQiMRxiFGm6WOZQ/QwRw9z5EkpUFDBTL1NynacUSytdYBJDrLujDYz2u5nmgUybNLs4N80/ZzgivtRTdOHJTLGKFHSh+92ioxxjGFGJDle/e2ErdVKRYuEMbI8rAwT82ZrUDYbwDR9mi77OmaoXdCgBJMmmp/RL3Ae8/CzlLwRhnmMSyTJU6SdZ/lPDhRlWKSioE9cHajypNyoXPzQrrCqCaWWZJlHEiYXlV23STP9TNPNnCeZXmOQbubIkXaWi3k72T5qZX7vMEiaFWckmm+SAafCXBRgaZ2DDqDmSFOijqd4lRglxjim328no8mKwsBZcjndCS5jCbTm8bdIF5a0a55SJkOzcQSSXJkn5dI4k40ak0oAaAkeMYm0Sf1EktpOJ0ssknFGSQ4x9DeQcYBJKkSYoV+96sRkv1MldiYLzzLuDEhL5J2nmw5ytGuBOcYxUuQZ45gzTyzhMc6uMvW2aGYG8dtL1TCnWkmS96ANSZVs50We9WCVIUa9TQb4mofbca5hYQ4m7zbppQFDtp86yqzTyjHGMa+4G34D/2i/PsFPaKCOC5ylm3nM19NktBkWaWKTaxyngV0/32YdAOIx2sUCb/AERRIu/+8gxyIZuligNtHZvLsiVJmhz8FeCQZK6blZZZEMnSwrcHSrhkmV8nO9TCcdOq+VqKOPGeVIrzuAbV6cklpeZZo+Z3kJWBVTSX2HLwjYvGtA9Qpp9/uzhRELGrLAAEurjlLlBFeYZEAZruKD10xIsDafP0tgLdLukk1bjLCFC2NB23xRR9kZi4NMqMRY2MJmiRBnhyQFBS1Fgm6M7KRKohMUmafbZcmWhG7Xk7HERFja4EC/yWQNHKujzBw9xCgpkBXx0IguFkmwyn/iWU8yX+egLyoZy/thlSbbvTJG2cNF5unmuCbrShK4AGCneJMi7ZjHogT6LALiCzhHj7OGDVgE3IPWPPmW1afkMd4EZFGjoosOGRbJkyJFgRUFg5vZpAPxra2jTBObHET8WG0xwPwMzRs1zi7XGGKASb8H2n15Rhd+QNiPNpfZc8QFzvIYlygRo0FZktbXO8Qx70ADpU9whQkGGWaECQbd/sH6xxZgLOglQpU+Zvz5wPp4k2Zvz090Qefven14LlbmmVVBioqk/lzlXinROMFjzGReJTjw+3fgKuzvQB6ca5hZ+63IU8+zA1ZcHqr5e0k/HyPIm6zQyyJFrzFGbMXeJEUHCAXXBhCRJNn3CvIzcK+Uxwy7lwi+RBCAxBjBn8ikS/aZWULR2UQw2z4kn9k16dosUgxF9FhywDXYuYgUAvWEQtAKhwz3Fn4mpSypNO1V2PfvkMJtGymY6wleZ3u6rZyEI6SyBIZJPfcEQpgklSICNLVIsAI/IIRYHNY+rz0fynKkRY/NCkiTEtp4SREk3MZUMXDBCjLbpsnRbJvGpnlRjzVd43dY0e1FpT+4iABTjQST9qhux5hBh2C3RPDfaiRI9hq170r6swED9erjGNX3TD5n0j5r+yHtQ5Uj3p0ljOs9PYZCzb5MfmdsHeunb8H+bwGzAsTyAtT/IQKsG/tEAeUdA3o6CQm8IGC0Mu84TDD4rycUqWn9PUmQ3Zms7SjB0yoH+wYJIQm7fCxM4IEg9VtA5rtHCT5jRwhhGTN4oIiHJBxBQKsscj6iCOPNgIY1pE9tvjO5ZgYZy2OE+cDmoy8T2FWzyFw4S/BIM1DFpJrXCYxSA38NNOrVthlAcZF7/RxtXt8gSDFPE5JS92o+U9BtDhPCYwZ1u8vaJlsIsbH/fULgwcuEOe+ytnWv5v3z+v9h5Bp/Wtswrp+tJ3hTml9bCWGVGXgV03bNIqBVvX4+o5+/rv02pOfGgMfLBFDnsrbjEYInqEr2/WdbICjodoxl9xZhnjxM8F1sJIBmRwghQ0N6nL+De73e/Ybu2+bWRwhsRQMIjyBzSYkQIHSUECw1RABh0X6zOekqwRvSjquEgMhFPX9PEqTapwnWGvW6/SVCCvBD+r+Nx3F9zwC2KMHHNMG9XrDb2o4WPTcvEAKaDPxUGwdatE/2tM/PIOe6s+Zc2Fg9S7i/5HRbdv1Y3yQIrGub64xtaxJwm78hyIw/wq8PFHxop0gnSw4eLdKlbATxYdilgWaVG3axwAQPewEyyAR5XVkf5B2XjdY+gJf1QXmcY9RR5m2GAVyeVKestQkeBnC2lDE3sowjaXkiQ+tmni5NTW1mixR5ZxY1KZthkS6GNIXV2A7dzHOLEELRxSJRqowwTD8zgHjFgUjorEgQ3kmUJHkkuVIAT2PkzNHj/lf9zDDKEBMMcowxzvCKG3gb09Hkyjs0MMpxZyKAeB11M88g79DMFn/Cr3pKbVmlqWP6IHmCK4jXXb8zO8zkfoJBWlknSd7ZbJbuahLMIgnGOeasM0tajVBhkgFnqj3MBJ0sI8mdm8pOkqL1CifYoYHn+TbP8AOVBAtQtEsDnSy5HPcx3iTDIrvEXfY7TR9l9ZkrKJwqycpp5uhhRoFiY3sYI03M+le5pay3N3jcpZBJ8ojnkoC1Juk2OamkBt8iRll9nFJeOI4wTAO7LNPJNP2AsE9XdHtlYg6qJlTeZuPbQmLmXUom/ZAn5aDmMcZcgtzPNF0skqODK5x05l+VqPqr9TNPN31Ms6tQbzurzlA5xSVn7xiwY+bwFmSwSBcTKrszENgSeQPzMJzXQd5xmfwQ14iz68zRj/orJLMW6GHOWXomBbW5zXxH0+S4wgksWdrCUoq0OxN5jCwFkmxpXwvjqZkkeRIU/VqR8xZzGW0rtzCPyRXSzkq7wgnGOYaEwojXZxObfm0aEyrOLq3cYpxj7BL3Nto1EUUCITIsOhi5S4MCkovqzljgiDKlB5kgRplBJpwZtkKaCR5mV5ladh2YjFzYhj0+N6VZcQnkJANuTRChwnl+Qcf1rs9DIt1doUCSdoo+PxRIOfs7T5IV0vdI581bs58ZmtlUyWvCmZBdLFIi5hL7LWXw9ilAe1CZk3V6vMYsM/ahHZulewuL2hYXGvzatfkjzo56HlZYJOPWB+bjCnLPm9FxZkCV2BUUfNEFRGEnfoIZX/ASn7hddmhwuegAk6TIe7uHGWFepbGTDLBJsy7KCCdVFjPmGWBSwdqwvwyLzkof5TgDTNKhklgLiDIP1HaKbpEg9gwFjun/Bjob0N3NHAmKdLHoHoCAepXmEUc8YSha+JABzGlyrJB2WbMFClmARYJV6pThnGVcRbY5l8Zv0uyLWBGqzNFNlCqvcMal9XZuJxkgR5pdGhhliH5PcPvbXx8KoLf3RER8lHJ4MuP2V+8Lxf3XYO2366WQMEDl1xE/LwPRPqe/J5AH/8/B3W+KvLK5EeiD9//7FrgNO1bsfQF5qL6s2/kiUswcxaU021+7TwqVbwEn4c5XCCyMs0ix+6/w4njvy/L3xGF48Ki8f9dYSY1ABPaeRx7KjwJ7sPcVPBiALPAbcswc0OM9g/jSnSFI5p5D2Ay9wPOw99vyt4QWA3e/qNtNAWtw59fg9jf3S7CCFpprX62X4iMpx/ruV+4PYRBLwNd1Xwb+PAN3/xXB0+go3Pi9TwrjcAl4BPa+Afwu7G/T9n0T7vw2ocD/EuJlN6wn/3Pw7n9/v/xsvlGf1T41cOg5PS8Gej2r57/Ga+j/xd6bh8d1nff9n8MBZzCDbYABBwRIgAABEhQk0KCFiA5larEUK5EdJ3bktNkaO0kTN2njNs3WJE2ctc3SLXHTtL80cZY6Sx3b8aJErmRRksWYMmnChAQRJECABAkQywADApjBDDG8vz/e95w7hCiJUkRz0fk+zzzA3LnLueeec+55v+f7vu/s71RfFhB+/ncqRf31ALAdVn5lgxxTK+cIPgQrH9ogx6zIvfFD0vYc8fBdhMZjnT6TD8izDwb1fj+kZbJt8f1632+Xsh//5W3wDo3LtwMu/MZGuU4bUvc/rdtapW3wMKz+tJb7jN7PjxEqaqr0+8OExnO/lh0lwe6G1V/UttSqdfoBPW677Df7c9Wc/q+bpH5n5F4vfljqualFrh98kDCulH0OD0DCErLvISRarCvfd2m5BoGStDmXhOEkrPzmBnl+j8l1z/9mnbRtW87vgvO/XhcSIe+Biz+tx9t4crc6ppH6bEDaqyVuxwgTMlgSPaV/rZLOGvlvQ/ruewlVaJOEmZQfRep4lVC1u4OQSLHP+L2EyW6siuwvCbOeWmLKugiWE+dN+r9dwJjXslhixbp6rhCSjwNIPygh7fJeQvVSBSHBBiEx9ijSR3cSZqd+kVC11aHXyBBmdE0Rqtms0itWdl93EyYQug1ZvDhCuEBQhbTxe8rub5HLswJb5ZVdYLJEf5vWy73IePEsYXxC66L8AGGWVUtarRAmi9L+5Ii/dxImNionE28jTB7yZb3POwkJpwG9jwcIlYzHCWPsrYL5M0TBeVKPscTZPGHmcduWWgjfdX2EiSKmCdXg1rX2u5AxpErLcRghFu1ix4A+p15koUffUy6TLXpOu6DwFJcTczZ8wcOEiYSakPfuDKFCrqDX26vney+h6n4VaW+Deh5LoMYIib3jhEq740jbHSAcW3+TMElIkx5fIFRcVml9VOixVpVo+9wi4XvIKt03EBKytzCqWaaosYcS5GnXFfgzSEIFa/D3MUCOhItbtoejABpnr925zRaRWG5PasB1S9REKbKXQ0R1JV0yxeVIM63KOoktZBV81t1rhrRz+7UTd0vM2FhSYaDwIktUa5w8cQ9Lq4uZDZYOOBcsG1dNFEyi4DrEXjI0EifnyCzrGmSN4BnSzvUtQ6NzEzvEXo6yBwnaPUdcjTib5dGqPACnFLEknj2/BO1u1iQJYuiXxyCKUqSVCd6lGWGXqFEXMUkoYrNcWgJihjQ9DLksg1YRlCHFOO3YOH6WTLOuYDFVmRSIYYP520zG1iVLMmxK3Kg9DBCloKqagot/lCNBh8bfamWCBSRW1lElEdsZcwagTbLRxYiL5fggj2OzhMYo0M8RpkkTU0OshUmX8CFJljElrzI00s2wU5vVsMyoGmyTtGCzGEtcpIyShCX3fCyZ08S0IyfsM2pn3BGXNgNoD0POXbeJGUbo4lEedm3OujvPIclErPLJth2ARuaQzKEpRwjatlJPlmZVdNnA7NZdzarrxO14kH0cpEMzelp1qI2DmUWC8C9oW2tlgjs54uJRdjPMo7xLXfIqGKDPKcjeDDjHFqckBniMh7DxIA+xV0kCaZv9HNbELpI12WbstG5+tk7tOGRdAXOaHGKKFuf6mCPBtPZV64JqMyxbhVeCPFEKNDKn8dEizu3SLiTYMa1C1c0H2UefjtU2kYfNZN3MJEkWaNcQBDkSEuIIsBm2rTtqliSD9DJCFwfZpy6WeZdYYEzHFNvv00wzTrsr7xwpze08Rg1LuugyxYM84YjQrjIFniX0QbJ327bbzriLWShJE6JOIW1Vc5JoQspsCSDrHjutRI4lv0fpdHEOrTrRLgbYhDI2Vp51j+9klA7GSTPtxk6AE+x0/9v6jrBGgZg7dwWSEVzIpIJL5lFAknvYRYAj9HOIvW68GKXLuUaP0uXUgdZ9dIkaBuijlQlshuMhetx71JJbcfKqYssQpUCGRudefJg76WKEODnqdeyx9TCHJKioZom9PAfgxo8kC6qqnsPG/7MLH1bdGNeFQFGC5kkzrQRhm1NrNmlMU/turdYFBhtzr0kXHjsYdwpNWy47VhdUHWoTnlhFa40qQwfYg41tOKMLR5KUJu3ec92cYIROMjTSq5NcSaIx4pTZV4trQuhdoJaTHVud2mH+HZUMx7rFUIkBreKf7tyIUvC11h3y+wCwAhdrYfaO6tBFpQ9GGraKO2ALUIuw0WtKSKzAqR2bw1X/M3B81zZJnKFKqHP9DUzH0qGLZRs8U/eNoUrmXvj79L2henAvHKi6l9N7NzmVyXxfJZ9peGdITpVgvGpbGHtoBwxX7QgN83k4uWsrp9KbZZ9+4G4YjgiTTi/wEHyy9VskwYAa+weq7hUjvhpogqGG7bKtTspRqoDPRN4DaVVYtckqm1McliBDY1gOjTO0+gBijPTDxb3wZMM3hurElMRZccZMBzxT9XY5Vo3Jv2+5l/G6rU7deLEVCVRp1TAtyKSxTG1wvr9OjK5pYAa+suMOjndsc4qfC9+5kZOtW6U+M0ADMrnt0+dwSjLgkEYMsTWYi6W4sGOjXCAt9TMdS8s5VbX05x3fIcbVpNzLV3bdERrrEfhy31s4f29dGGy9X59dL2Is98P5HXVShow8i0F6Wb1XFX5rcDjSz/wdlS4e2Jdb3sLByD4xbCsgeBs8VvVOITX75Hl/ruMdBPfi3Mu/3PEW5h+uhHdq7LoVmE1Xh4ROJXyi6jvEEH0e2A6fa3mHlFkVirJK0+GIj3N3NPBE3b1SZ3ulz401bL4sdtTXOnZIW1EFzErbBubfUSnPUt0/ZzuqhQxoA+6AQ5G9YVy+fvjD2A+F6s81iT/xmch7pH0ch/N31Ek/3aPX3QVDdTtgM2G8sFsd1lB/kTDTtLZz+pA2qapW52li1aDlJM2zhOPMAELIWOVzRH+7jZAkVDUuT+l1rNrvAmHm2jGk31pC3qoJ7bjxNoR0GSDM9GpdXPvKyjGmx9mYfS/qvRR0n1OEbc+6Wu4gjPNm79uq4moRwuVtSFvsJxyHLJlpXSgr9R4rEPKoQJjRdIWQ2HxeP19ClIuHEZXdvB5nlXe3ab336rk/gxA3FYTJGB4mTEhxUs9vF6ismu5uwiynGURB+LDWvVVsWWWxXXTaq3X1PCGRuIcwI69VJ1t18d1aL4f19zu0/HcTknwNWr4dhFnDd+k9n9GyPUQY63GNUCVqlaUVWk8aNoGnCBNStQHH4eI7CQnf92p9VCBq3VZCNd0ZpE09jxCL6Lkt2XqSkLQe1O8Zwlh580iIjsmyOrAu3Wi9vQNp51YxPkAY2+8kIcFsFaUvEibSOEmYtXhX2TN6Xq/xKKL0K+j56xCCrkHrd1HvGd2mykhHllqFtVWTH0EUy9Y1+xZGhgYkK6Ao4+wE3QaItnG5rOFZ1IcaJ0+WJKN0OhWQdTvtYYj9PE0zEmPvW/ksNuvmMjUaB2/GxTXq5wjtmrH0CP3qijhHnoSbkFvYjIU2+L8l22zQ7iz1zJEiR5whepwROky3U1BZYqRAlMP0O3XgMN30Mkg7Y2Ro5E6OOLVHvcaYOsg+p7rIEadIVNUs05oFcY0FVeGAKH5SzDFKpxKSBY2DJO6ZezlEBRI/qIsRNeAr1D1rjBIRHuZRmlWNUJ6V0mZztGSPJYdsdk0huDrc+a1xFqFEHwNOnWEN15SSbmlmGKGTDsac8sRmtbWZb0GMpgH6LiO7iupaVSSKTXJiYyta9YYoBxewGS17GSSj6ooHeZwUGZ5hvzunNdYWSDKjZJ5kek3RwThzNHKA+0mrSnM/z3CA+zSm0hidjCoJ0uTaUZYkz3APvQwiQfbHnCrGtvkCUXW5Dl3fQBK1SFZRCRJvlRw2DqN1VbZumCE50OxI205GXdbMBDkXL/Awd2ITGVi1ypoSESCxBZ/kfo7R65R2Q/SQ1zZlz1cg5gxeG6fNGs4RJX8sEZ5kgQpKLglGN8OO7LSql9t54Y0deG5QVLPMGhF2M8iCtj2rcm1ixo2DKeYY0wzT1j3fqtwsaR1T1ZB1ZbTufBWUnFLK9h2JXTqjMfFmlKyrdoQwSDKIJmbUvVuic2UIM1ZbEsyGTejjKL0MMsAejirZ06zuwFahDLjjhTST/LU2DppVU6WZ4U4OE2GNLkYBnOuvDcWQZppD7HULQVGKzq21SIxnuIcZdYGvVzVdkShrusjwNPcwRA8xCsTJ0ckoE7ReFk9VklNE3HhuE22kmVGVYMop3I7Q7xRwNr6d7RPjqvYC3EKLTZ4UxqUs0epWFXFEvK2zEhUMabzCw/RzG0PY7Lc2m3oXo9iYqZb8b2WCdo1fmVCCzZJS3QzTxLRbhKphGZsUCYRotcq5boZp1IWjvGbCzdDonoFdVLILSpKQSJIk2Uy0VvkcYc25v9p4t+XZXDM0uneyjQlolao2Lq51TZ8hTYZGOhlRLaWEmHiRHmzG5Cz1pMhgM9bacgyzE5vMxS4E2nLYd9WazkOe5D6nsLZ1bmOhloiQoZGD7HPkt1VWWmVpkixRijQx41SxEdZoZYIhejjMnU7Fb3WhL3zx5wABAABJREFUEb3nM1e5yHFNCL2NmuGG23CT7CVqwlX0GZnIORVPlTTYCy0bHZk0UHeHrFpUIZPkjAwwXMC5Y9awJMaDusRkaAzVR224hst22Wb9k4kAdwgZNU06dCX7jDKtLyKT6wsS1DJB3mWUbJhc5cHC46HR2CE+3y7DX4USWlU4I8rKJ6kDDsPFBr1uB3ASgirxq99x8qxc55Bc93xrnezTCk9yP3dyRAzRKpiu2iRBI/skxh6tkCjk5D4OAadEQu0M0BgElRCx7k9jsFRXKXVqXSkzsgJ+cQdijB3CTSqoBh7FMfV8CVgRciZHQo5Xd89WzoTxufolI41TawL988/LykJayjkdEfcZR2g8LIMRERz5miQrhr0qA7Mk+UTkETnhIclKNkFbqDKphSWq4RBcVAKhuzQsZVQyVoJoxuGIZuhdFGacM9JGWYOawlJIVKQlFsx41TYySlAsUSPk4y7gAamvY/Q6smUtIp2WCZyhuEQNuaoNBM9K2deIUD+/Cl/WuHzbJbW5c6HcpRmqrGHeIuTtuXSDGLxqCPYw5NzS3crNvH6a1L2oCkfoJMmKYfu8tOPDsX4hZ3fhXMQ3TS6HpNIT0k7pwLle3seToSvaCrpqt+CIBBvE1WZrvdC0UdpPJ5TZTbc2NiLtZydhDK82QpJokNBV1rpxW5J9rWz/MUIyqIKQzLLqucOEatwvEKrUDhNm3LSqwAHCeKMFwvimJUSd2qr7PoW4uXYgpI9VImUI3TQLeq0+pM9b1VeDfh4gTDpglV8PEMalbNFtlsS0LvLWRbaW0AX5+whJs36tX6vCiiEJH6wqz5KPdxAmyrAK1Ye0vNWEySTs+b5EqPSLEIYxsGShdRu1953Ra3+JkIhL6T3cweXhGNA6eb6s/qwLcZ+W43nCsAoryELIMtIGKnS/EjJGzxCSedb91iqfLek3SejaX6FlWEEIy+2E7vyWNF7U61UTkn4nCbPj6hjliGE9fuNPEpJfM3o++6ybCJWAlVoHOwiVi5ZIO0wYuuG9eq9rWp97CVWS1uU4jaj90Dq5QEicWWWjdcHNIMTfMiFhZ1XTvYRx8WydzROSpd+HkIQ79DuEWaatwtJ6EzxLqDK0ffAkYWxF9BwP6/O4A6iBN4OXWZpZJLHFgjMoYmpq2eysNquoXdluZ9y54OVI0M44fRzFxgIboI8uRnmOvY5YssqCZnUJPaKTZWsIZ2ikg3F+nN9liRr+C/+GEbpcORs1hk2mLB7bmE6qxc0mToo5+jmsMZQq3LFWKWHj4JSo4BB7XdyoQXYzShf7edqpsSZpYQ9HaWech3iMnJKL+zhIkiyTNJOhUV2dxK2smxNUUHIkniXPllURIlmAK6hXQ0KSkaRcjLcw8P2ccwUOXZQakWD404DMzyVuXK7MHXjGGWRWgdjEtGY5XFP1ZVoD+Tc7N7mj7HHGksSOy1EkRlzjuolBP01OcxtahUSRqCN+xmmnSMwZizYuYUFJhiWtWWuYDmh8PQk0HnXP0yqcrDE9TZPLqCjZR/Mcpp8EOafYtMqOGpYZoQsb6F/I2iIR1jRLbblSqd4pperJcoJuTihJIETEHDENHm/rZZwO1+asAiZCCZtY4lO8lzkaWSBJFyP0c5gWprBJN5qYwWbdnKDVxfqK6vFpfWb2uAPcRwuTDLCHEhEOsg+bMRhkDloghnWjLnentu7qNSzTyShjdNDJqKv/YXYyp2TQqNaZVYNN0MoB7nduZ9aN+M2AXr5GDUscYi9TtDj1V0Lj5VlD/0V6GKWLBZL0MESSLC+qG2OMIpLAQEjsYbrJE2eAPQyzk0laiCoRYQmghGa2tSSTVeQJOZ/gKH2Makwwm6HWJpfo0lh/lujJ6ogLuHLb2HcZGpmihSIxDnA/JSqIUsDGKMuroi1KkVG6HGkWo6CkU965CltXdUu62DhvNp5dhpS6tmfd2JUh5dptXMfNZR0n7+Fp1pSUtokfZPlFVpft2D1An4tXZxefIqw5NbStg7S6I9u+YZVeNgarjf9px2KbjANwizDPKMkIEiNwkF4e4yEgzKYuCvajzCjBbuMC2th/k7S4RSCrrrVKaat0nlSH5KPsKSPZSkj8wwW3/wHuB2TxySbZkIU0SYKRIcU/4S+xMQRtqAU7ptq2KTEgZQzPEaeRjBvviupeXP6+scmh2hlnjhTdGmrCvi+tivpZ9jlVoe0P1j19hC4amXPXsOQq4OpKyO4uuhlmihaXrfww/W7cHKeDjHoUAO7aNvGMTYYSYY09DLhFIRur1ZL09tk1MU0no9g4f+O0a/zQKWy23AlaGaHTzVfqrjLT7TUh9C5qp2UQOC6ZQluYdG4vqztw/tnWLSpJlqVIjQv4bjuDyyiX0qymZ3AxkSKsySRZDZMSkdCNq0EaRYaUi1fXzCSjdDq1xsYvIKsZ2xFjoUqJNiVFqJV0wxHWwtX7ecjGkmGcokXpNNyBGA4pJUpScl+8Q+T0VlJKDDZOyQqCdaMqxOAI/WJATOHcoxKlnNThi+gELH6Ze5KVedpYW3OxVGhUt0iGN+fa1gHPNryVibrNzvWn4fCqTERPatkllAv56o1iyN8tK77O7U3jJTUx7dzzmpgRkucwLvZblvpQlbJD67ICF8tooaFSXgAVOCXfILtDlca8EokTiNFUCQP0sXoHrn04Nl/r2X1Xcmv1NiXnqjQBxh4hDpnGESKtnJFnVSv1FexQZaAlVCpgMtYiv79N6ihBjpbSJCmNI5hiTmLhXACmYff8SXFZWZN7Ga/bKjJaS5ysSduvGruEeT/wHiGACzHEeFSl0hI1oWv0Ba2PFC7GY5GobFPy4CD7JB5KnWRBntMJuY1jF6RxL29a5blM0cL83kr3jHo5RjVLUu91Ut7zLXVhnKeCtts6nBtpkRh0SMIP2uAZ9kvfVjIitTLP3/CIi08ZWZOArpwB28VvedhnC/I8/y+h6+iLhH32NsJg/xOEBJglUloRsuCkHrOKkF47EHLgAYRguIDrN458mUTGqz8jJNG2E7qhZvRcVoVXQAgMS/ZPEsYJSxMq56wrpyUAL5SdQ9WjwGXjp4udaZWK84Sx4lRNTaueZ5IweUA/opx9ljA2mXVrnUcIqElRxTr1VpuW05Jjad1vBRnzVwmJVEtqjum1rfv5e/Q4q75KEcZwO6nHTBEqAnfhFM6uHBWEyRNa9De7wHWBkGjfQZicwY65fYiKyxJfe/Qa7yckGN+n+9mYfYt6bC9hjFHrcmpdlk/hYrG652XJp0cJVYM79ZwtCCFmidplwoRAE4Ru2PZZNukxGaSdDBCShdsJ4+xaN17bhs8gz/qLCBG9omWxzyZDGP9RF2KY0Trp09+f0DK9X+v+XkLluQ0FsYKEUrAE3knCmIZvI3SRndaPLoSBnuNhQjLvRaRt/lnZ84sRqjwLuMUY56nwBOEC5CUoW6C+ZbFEtcZlk+D8NovtgzzuAr7vVtJjmG5iFIlRIM0Mc2rQWIWRdSNqZeIyRZhNKiFZ/WaooORcfGxWVuuCOEY7TczQpa5ck7TwCR7RhAISS8i6nVr1V5Eo0zSpgSoESTtj9HOYHobYw1GKxJwxA+LGaIO8g8Siswa0zT46p8Z4C1O68h9Xw7Xg3GHtyr+th05GeZDHXdDwETo5Rq+SiqLMkdhm1XQx4gwiCRYv82OJjxVnQd0kD3Afh9jrlFuN6mpqg+03MePULlYFNk2acdrpY8BlCN7DUcY1scgULY6c6mbYGbI2O3CvZi20cbcSmpHTunc1quoOcPHZBlU1ZgPR28QX1mgdpFfd8IpiByDz+z/kh7BB0S2x2MkIEquwQJZ6jb1YYIlqR1BMqYtujgQP8RgJcjzEY7QzRicjSDbOtFPpTNCKTXqxj2fpYvSy2HJi9MfVRSzv2m5En3SKOU7QTZ6EM8CtgR7TNmeJQKsatclbbFu2RO+MxvSzrnI2kYdNQmFVkO1qoJa7XEYpMk4HvQzSz2GSLBCl6GJVZknyGA9h479JYPhn3XOw8admaMK6T1siU8iNKPfxpFMgjtHOnDXabnGcYytTtLh7b2ccmwm1lQney6epYZk5VSAJIVZkmiZu0yzEWZJOYWTrP80MNtahECvi/riXQ3QywoM8rv2i0REQgCNguzlBigxzpMjQyBHuJEdc3SZTHKXPqdiamVSVnyxqWEWTjTE3R6MjBSUuacaNg9VKDom7uozlANM0OUIDxLa3bTtKQd3nxbXeKuFS6spp1YMLqriSsayZUbrUDXfcqaWsstkuwIgqas25fVpXZuti3kjGKdNKVJAlyYv0ME6Hc/m3hHovx0iSda6cNilJhDUypDjEXiVuxCVZ3gniDtvEDHM00s64q2f77GpY4jn2UlC1dloXGGRBI8ZOhikSZYx2yl1wbTuxsRit4tHGCo3q2FejqlGruo2w5oi2oxofEcQ93JZtkhbnSitK8phrwxlSVOt7x6qaLcFVvpAXUSHYMjW6WFTNQfa5Z2XjH1qFe4wi93OAmIbEsJm1bYy/vRxiTBMeJcnSzhgzqjS3CYlyJPgEjzCJJHypRuJX2oUmq0YUV9y4UzlbAt0mcLLJj+xfe5yNvzdCFzYkiEUT0y4e5hI19DBEnBzDdJMlST1Zl2F8gLde1XhyTQi9Zar5NO+VyfkqXNixkWfYLxPZCag8qZlNrEF0SB5OenFe9ulFpZRNzk0zaIFMVYP8r8ZZgnxo4K6KPNwp414sUyktAi1wgm6pcOu2VIGsotkV/UohW87tbXATcGHo98gEXtVuLfPzYfyqKh0EDyPGwKQqpaoQpcVfSBHGaA+NxJgq0FRpUvmovEhZQwyP7UIkTkRa4efleMs6WxVbhcqMWUTOe0ZJrZOIMVRQlZd1fytJfc3QJPev7mIR1pwxd3rXJnLEqT1zUX4/I37+FJDnsFJWp+qOFaHEozwMP6IPvxIOcVdokKpb5Wqf/h4R99kcCedy3VLQVcC9uKQJjWScGzAt+pKo3OiMuXE6ZFK4KsckVpQ0Lsk1lqqqRfVXoe6xMa0Pq+6YkQl/noQjKp2azsZ2qxKyNtiOcyss2ZXDHdKGZPW7IAkNxoSsbCTjEkdYqTEgRrcqRV3W0L+G/TxNtkrdkuelrEfpC1VJp1TROq3tdEAMgopSybW5ers6MiOKTfsy53m5D7OmrtFlLotxcjSMrYqReUFI5SlaQiM8o8RigTAGlNaLVc1O68TL3Ab0yQQ9zYy040qoXNT+oK6UVWOXRNGqqtE3BbKEsTxbkPp7ChlDziBj2ABi/FvCwMYvexvS1u5AyA3rErpI6L7apsfXcrnb4WP6208Txu2z5H0tQoJYt8QJLWMVocshSHtr1jJYVVk/Qu4tIkSWdRvUcda5yltX0rTeWxNhso5ThMo763LbRpiV1MaUmyR0lYwQkotW3WgVYkdx8d7MH5eV/3mt3yokJuSinucMYZKSHYTj1XZC11NLRvYh5FKF3r89vqRl7tDr36v7XCBUWpartyzBCu4d5UIkDOj3p/RerUr6PYSJhJ7Xet6FEG5/oeVp0uunEOXhLj3/s4QknR1v0vqxCy0nCdvMryOLLvcSKv6eR4grW2ZLntnxoAohzexz/zGty1Yktl+H7mvVjHcQuoPb8lnloVWEWiL2uwjVqc/qxxK4g4TJTiAkxHXhwbVVqyx8VuunAKsf1mNSZfvbPmbdqNOEZOxOQnfvtF5nF2ECDnvvvfr/ewjDazyLEH3v4HI1rB1L0XMvwFUmMrupUcMyk7Q4xdcQPcTJuYQK9mPJCJtR067YW3ezBZIuPs6Cut6k9TcQhV0PQ4zTzhyNrBHhQZ5wSgtr2LUw5UgSG8z6PXzGZQG05EPoPrjmCJM0kkH0MR5yCjUbFNvG+4lQopE5lyG1miVXhlE6sdl2bQyrXo5hA9gnyNPHgFNSFYiSZtqVZ4Qu8sQdKfatfJYmZpxapaCLfqKCanOETkFJgDkaOUMr7YzRxAwn6FbDZ1yJADFsp5WIaWJalRJxt5i8hwF1xco4d9AHeRyb0OJBHmcnw/Qy6BIrWMPdEkrW2LQZPi0518E4I3RpfL+cxmQSN7IIJdoZ14QPokSzcftsRs8ehgCZ093JER7nQU7QzQ/xhzzGQ04ZJLG4ppzrXcKpAV+kEYn9lCLDGB3O1QrERpHn2OXiLY3TwQSttDDpSFHr6m3d80boVGO24Ihlm4CgnHx8kR4Xj66bYWZI8yT3MUkLQ/TQwhQjdDFED2Oa3RJgL4ecQZuhkUd52KlBmpimnXEXlH+CNmzSgLi6klmy1ZI8HYwxQB8Foo5kt4SozfppjXrrIv0YD6nCtkhU1VZh4PiiEo3VTNLCbgadWyXIInGjkzjf2phlEykyLJB06jmrYBNlncQ96+UYrUwQo6DjhiShsGqpYXa6+J5xci72VpGYUzTlVXtqVXIgdrglSoTokYQQkxrS37rdlysmbRw1IU7SjGu/sMlm6nX8s0q5dsYoEnOZyW3mzoIuetgyWKJIwgqMUcMyCVXK2sUAm4zos3wrR7jThUuwCRBsnEhRR03RpONlD0OkVK1l1WOWYLHZb2doUrfMonNx7eOoa9tpjVUZQdzF88RVSZxwKjMbww9Q5ZuQWzZGYkFVh5Y4t+3ehnSwY5Y8X1ng6GLEEYXjqny1mV2t+7F1dZVjYxoPtoks9RSJMu6IrQV9F4ndZuMwWiW3tLtmisTYw1FsjD2bLApwiw3tjLl3OOCILetanVaXUVEQS7b6bk44grddjR2bDEqSq8RcAqHyxZ1x2lmmhnbGWFZVm1X32sQUtg1bwtKOX9ZlepDd2Ky/d3EIGw/xIR5ziyQ27q59z+bVI8Am07IZk6dpcgsjNvmIJXjzJBhgD9M0abuZdmSuzcprFcs2s7l992Wpd/Vn39flGa1fDdeE0Ktklfs44GL9HI2IxN4pBVrKdtbJ9DRpStb9rA/HRFsjarKhgUF6YS+Ye4Hb5IXK8wjRMSCroM4F7YK4B86Rci61UV3tdUHUOwgJnWkghk6skk7lZ+NqUAAqYHZXtcSds2TVvKoJSzhicZidBNaFrkrIqL08FxqjBdnmlCEFQgXjX0sdLFEjg9iLwNvlnE5xV0AHFiWfHiJ09bWueouiSGRZ6pMV3ATZGZkrorCzxt22p2blu3WrqpI6PrdXZW8RiWXzJPeLsRWTFfd+jgjZUAmcUYLTqmZiQtZmqhpcEHYbnNqqE6omL0kdW+XSSW0blvBdlXLmIkJYkRaCK0/CqY9iBb3u3WH7OkG3GGkaq8jFxqkA3oZmcio55dzGeVX1WdeokqxC5Ko2OGVOO+NE1kqO1LIvYSqkvlx7OQWM2dh27aEaaRJuY0gI4ALQJAPwEjWO5Jrt0FgWVilXUmLNugtP6ir1WkmM5jVcEFwi8rxdEONBXJyz+zgQZm5U11+XVXmX9LkJWuUcD8k+UQphXLa0SJWduqxOiVdVgBKD7+b/uAkvabhYBX0MSH9rg/ldldJflkDfP7c+VDnmEkd8H2FMtBIhEaZjkMvQPIEjWwEhWtoIlVsr+veUHmeVaFVIX7wNaXMDSL+YQUgHSwTa5xhD+vNxPceAltUqZPsJg/hbUsfGvqvV/zsQQkYXD5zL/TxhEolJQnXaBa2DnyFMpGDJvz4tg7roO/daq75uQca1U1q3X0aUVhE9rlrPsR3pH3ahQFW3l6ntbOwzVY870msGIcm2EyZjWCTMTGuVeG16f/1aBkuqdhC62S/qvVn31acIiUjrqZcibB8dhGrdZ5EETnsJY6w9RUiqpbQcFxDSSBW9NBDGz7PPG0IiaY2QjLXnOUSYwbaX0GX1y4TushNavru1jNZ1tbXs/JYM+5juf6qs3q06cxGnCKeZ0MX5buTZfVk/Vl1aoWX7PsLsuvbeICQIn0Da/G2ELrPbkYRZe6UMlX+u9/8BLd+M1vWEnqug2/ZqGS3p3EaozLSE6dvLrmdDd1hycIYwacvzhERgWuvwfbrvUT2fjbV5C+MsWwBc3DmJS9co8wHkHT1IL4/yMDYO2LBmHZ0hzWH6nUrMGqUSBH7aEXxx8rr6LsRTK2fo5oSq2iWw+gxNLnbNDGkKakCViFCtKhfrsjlJszPwrNFp3b4syZfRlfos9ToJl6DgQ/QwQpczNK0xF6XoMntatRTglHg2WYQYIuJ2ZQmiaY0LlWTBJXuYoJWYGzDlXR5TZZUkrDjDIL3kVO01RA9Fos4tVwjAmFOHWWWIXYycoJVHedgZOTbpwRjtjvBbQDJi2oy7g+xmnHaeYy/TarDahA79HCFJVhUJO3mcBznMnUQoMUejuulKvLA0MzJvRebrvQxSIqJByWNujvUoD2uSkZR7dja2WIIc47Rj3XNt/MBYGQG7RoRGMq5+x9Ult0jMkSg2kL5Vx4AYjHYBtZthxml3ipUehniUhynq1Q6x16lTLSnyDPtdnVp1XIYUd3FIFThiGAsZPION2WTj09l4aNbtyz6bJ7mPJFn284wzntO6X5y8S0ggas88z7GXKAW6GCVHnMd4CJshtYYlBtjjVEg2zpuN6fYk92NjWnZzgoTGmJQMjqGrms2sa1U6tt4tkW/HgGYdD251NHMem1RCyHZZXbN1fIR+ZtR9vkL7pbR5yazZzCR7OMo+DtLLIFkke3WOOGlmmKTFkVlWXNCEZKEW178RWpjikPbRGAWamVTysEhaPbDs2GqTOKS171nCUBYuJLlAlKJzr7Rj5DRpTVQxTjtjRChhMyxbZZht01GKnNAs2pY8O0E3T7Pfqd1sllFbphgF+hhwRKJk3652RHd5Hdqs1lEKEsYKGc+FJJ/EuvFHWOMxHnJlaWHSKQutWlvGi7QjtgbYw9Psd4IkmyzEupefUNLT2uI5Ek6Zbt1/rXqshUliqkaUBEh9dDHCED0untycKiynVLFo3ai7GEWyvPdRIOZUiTGKDNDnYvHFlFhbohobH7BRCSSrrLV1Kgr5NaKqGG9hChvGzGaFtXHjbPbzHHFHyFl1miXiGkuidt/PM25/UUlK/Dj7rp2k2SWDyZNgTJXga0hc2AIx+hhwz90qo4/RS4kKxE18xN1ThkaXhdnG4bOu6ZO0CJ+BvPN26ngsC0lzrs3azPBTtLj4eGHcxYxL0AI4tap1G88joeCy1LOXQ9jQI3YO0csgO3VB0WaA73dxXl4Z14TQKxDj9/lRp0zoLxzmPg4Q/BAymS3gXoakgRUhBiotmbNWRr7MA7fhGHLninZGSTEbd6lK1WTWoG0gnICVgEHphM1MitGnpNccjaERrcRaz/wpMRqOyIrAnbYy75A4dUmyYky8E6gVl1r6kA9CrOWqNkg5moRYmqTZTfBXOjYIcdKHGAAdqtpSdSIPC7vfzxGnltnNoEzYVM2RZEEIThuzalEVaDbY+m1lbr1jwA5oLMhqI8/jXEJLRMJMfM9qnMJpXNKLTkaFgHlI7sX61/PnUl9Duq7glC8TUla+iEvqEKXAlpPzztArEhMX5JM4ciLNdKgkSemztOoXpJwFos4Ak1XXwy4L53RDndRpBqiAmpXlkDTUWE1D9DDbX+3cgW0qdBeTq0JJYqu0WBT3kOjqJZfgpUSEiVirIytl8r3bKYyshJtKqeNtz89KO7XExgQh4aUuyTtmztI1f1YMwh3QOL8sxGqf9I/ZH6lmmRo5ZkaewxI14vr9KXkOEpukUwiHk9C+eJZJWkKiIK0ut1/GlS9BPiRPVE3Yw1BoqKfL7keN2mVqpAwTco4CMVbqNohhOxmu+Nh2OVG3WVaD+oFTULO4SjfDUM+bwoAFJD7WGtLHSkiShRdxmaWpQ9pxNaHL7SRhEphmpH1+F0IYWZfICmQMUvd3dhDG5LJklapRbb+gVa9zAelvlig5jJBfliR5J2EyiTqE7NlBmG30MGEMN3X5J0IY0/QoYSbSFcLFjBcJ46GtILH+/pBQaa1KadcnW/RaVq2H/r4d6ZPvIFSQ7cCNwZzRe2kCPkxIjimJTowww+hJQlLrMaQ/2FAFGYRAq8WFMnBE1xFCJWVar9mm1z2p+7URknM6lrkFpbcTKtAadNt3EWb+tgtNlhjdjiiB5wmTRbUQxuobIHQXVmWzI6yqCN2KLxBmbX0n8twX9V6exyUEcm64VkEHQphZN9cMEjewQp/RLkQ1aMnT7yNUa67quZ4idIlt1jppQdqPVdjN49R0gEviww648KGN0nbehzz3Utk+lnhs0ntq1fMd1XqwLtRPEca++wCh6vIdWh8tuk+lHj9JqIQfwCUMAkIS9ilCF+LnCVV4rVrOk4Tv2XJlbAk3B6CaWx4J8gzTTRMztDHBDE08w34S5BmihwySgOEuDpEgT4eqxTqVSHmIxximm0d5GJvMwU78xagZw2Y/PKFuuNYlsTzpgTXAEuTYx0FKVDiiZJDdfIJHGGYnNkOtdT8qEEMSN6Sd624LU0zQ6tyEbObRT/NeJbZ6eZwHZG6FvKvzalyUqHBKvhxxbJZdq9qaoNXdeysTLkatzaDaz2FHMtl4SK1MuHh4XYzQxLS6m0lMuxhF595n425ZA9ISm4Bzl5U4PgmiFDlMP2uqHrIkpzVEpmhxyQ7mSDnF20M8RiNzHKafDCnyWs82VlU3J9jHs6pkKbGHo87FysZ4K88Wad0K15R+tEZUL4Ps5ZBTJFm1oVVsvJdPUSLi3H8tUWVdkz/O9zBCFzb+l80U3MkInYyquiPj3JTHaXduz1Z5ZF3zrEJzmjR3cti5fR3gPqdDnVYFzVGNWbefZ7BZcq0hbQljUeqMurhqQrD1sY9n2aNEhlVNtjPOELdJKBjCcDT2utY1FkR9Z+vqW/ksNvD+Z3kP+3mGFHMUiNHLIIfYS5pp5+ZpFZ1xcvQw5MhTuZenmaRFiQUhAWz8QutOnyDPYzzkVIKAI5oG3WrPrY2CKnTT6saeVxds6zZq3UltVmarbGrSGJNTSvDHKDJKJ9M0EWFN3ZsXHLltPykyru2Vq9QsGWiRpZ5ORpghzTI1l7lLi5KrgiWqNUTApCPXw8WFIjYu25SqVOU8ksDAhioqEGUKSR1k3TBF0xnDxvNrJEMno9zNQUf8PMInaGKaFHPYzKSHuItD3IXN3mrVb+XuxNbdPU7OxaAL45J2Mk2aZibpZJRuTtDBuAu3MEAfKeYc4WdRooJ9WjbrtmvJsDHa2ckwnUqwWRfjGX1OdhHJErniljrjlMtWGXk/T9LNCfd8rWu2DS+xoGS+jcf4KA+TYg5xrV1wAqlWJigQdXVjMxZbgquAxJrL0IiNj2kVebZ92AWSPHEOsVefV9S9Q6dU8Z4gJ6Ia4BB7GdGYjP0cJkGesYiMwY2qsLTjscSXizql+BA9LOtva0TIqzNsQsMUJMgxqqpnG0fVKtoyqn63yUFsez9Kn1tQAFx2WZuEK0u9tgtZjHiOvRyh36mi7bvBLrZkaGSSFmZIUyTqFk7sWGvDI9hFtX0cdJniF3RctmPgpL5HLZkL0OFi6bwyrgmhV8cFfplfkkntGag6eYkiUcxf4Nz9DnOnuLLo9wglLlplyUpZjL0W2ce+2KjFBbiut8QaQIW4WTj1SpsQGDsZdmqWHWNnZV/rdomSYDYuX61cx9hYRRrbL2NJvwsSpy5GQYyGv5TzDNETGnQf0OCxsahzr9vHQZl0qhKuauySpMKewBkETimmKq738FlJyABwkjBL0AzQikunzBlcwPRpmkJ1ToRwf4DDkFi5JHEIlXj7cvot4trZihhQdarya8O5ylq/dmvA2JVtqwCJURT22LplNisZ24EY3HVKCq0gzzuFdqg9YWyxeY27VynnJKLKMGs0VdlnFUPHN7fiaY3V5MqiEGVHpE4rF3X/FsTQHJNVmE1jy84wb2GKHZNnpewPwGxrtevgto1EKLFRy8SX0bgMBae2STPNPp6V69yLTopjoavZosZpnMZl03TE84o879l0tRDAM/LszZq6gqflmE1jy3KMjYO1Ajb+iM2iOE67EN7qtj1Rt1mOsTEFW2CULvecOSnt9Hy6Tso5g1vN4BROJekSzwBsF4LXqWyr5H6jq5fEsK8SQrhEREifO2SC5pLV9MHGMSVvJ4FNvDlQifT1CkSBa1Vg7yBU4dm4XgVCEnYFGWcseXUU6S8PEKrlLPmRIkwsMEBIMtlYYTbuniUZVvUa7yRU6RUI45V9ipDMsYTQIEI03Vt2XqsabND/rar2NqQdreDU0Pw0zhWdNcJEFVX6u11oQO/5p/U8fQhBU0GozrJEi1W62nq+jZDYtGX+FGE8uA7COHP9WkcVeoxVHt5GGOvsAf3bREiGo+exij7rvvoXuHAHNBEuctjYbU9rGfS9yCLhmD+GqNOs2msA+GPCJFDpsvK16r5WSWZRSaguXNRy2QUvq1q09fAi4ioLsjjzTsJEHPNI+0jp7xGtM10E4rB+bL1Z99t5wtAU81w2TrgkHO8nVHQeKSt/jJD8Q6/1ImE7PSX3VPufLoaJNyaAHyIkWG8jbKvPl11XFdrOTb2PMBPti3rcFGEyjwxuPHf73kaoRLbqP3u+OqQtlBCXYxBFoIaD4AiXu1rbNvEiQk4+DFyCS1YFeQtDvBWEdHmae4gquWTfu2fU/aqbE2RIESfHGO0M0cM+DtLOGAl1KZPkA51KRk3RySg2dlw1S/QySCNzzJHCZvLrYsQZDtZNd5omF9jaJrSIk+OzvIdD7HWGjFUeWFexKEWSLNDBGBO0MszOy1b9v51P0ckICXWH6mWQcY1rlGbGZRZ8ggedy09B1WDiXjzjlGStTFCigiJRp5qzaphORp2bnl3tr1ZSa5IWztCqyUcK2CQJVhHTrcbmfp7BxuqzxoWQq2n3Tu9ihBNKcvZyjE5GKRHhTg7TxwBx8hSI0coEjWTcor2NkdTENDYxSZakZtUNk4kIERd37r1FJQiySLZZ0ddEaGecMdqpYZk7OayKMDHqrKoixRwS82pOn5Oo9Y5pDLsHeYKoGvPdDLOPg3w3/8fFQbQkxdOqnisSVcJECNcmdbU7Ri8xCs71K0bBtWX73G3mzS5G2Mmwc0NNqsvcPp7FBnxPqnlnMytbgmSJaqIU1MX2Npd10ya6sMasJal7eBGbaRZw2SJtRlAb7F2y6qaJUXAqkRE6nWLOxhVsZ5y9HKKopKVVWwLuGdrA8+LCLnNWIa8lWUY/h12SF0sWdDNMhDWmSROl4NzPXWibWxzV2u+tK2Qvg/rcmykQcwSTtYfFnV4W2e14USLCtMZetEkyxmnnMR7iafa7zNRW/Sxu0wUK6rM2TRO9HGM/TxOlSJ6EyyZu24HNqJ1mmjFVW7UyQQ9DzClpKPEoqy8j62X8EBf5OU3qYxViNhaZdau08cbs+BmjiM1ePUOaBSSrtc28GifnFKI2YUaWemxyCuuGaoUb9npLGtHNxgi0Cy0SyzSv2WqTrq/nSNCsyj1JJiJxWC1JaolqG/9vglb6OIqN4WrHD+vSnCCn/VTIIpvUpkQFNqtxjgTjtGMTJdhEQoP0UsOyvg8kbmCBGD0MueRHNs7fqC5OgNi6BR0LWpgixRzTpGkk45JuyEJGvS5MzGGz5MqCTb2OyzMuuU2EEp2MYJOAWIVyhBJPcr/bx76TehiSGPUIgWZJXxmL2mlkziWgsAsqY7RTQcm946wazoZImKaJKAWO0cswO939tzCl4RIkPuOjPKy2aEpDVci7cY6U2LQI1yHutGk3LhWJMkivU8xZEtbGsc0gYRRamCRPnGYmWSBJXhNv2dh5JSqIk9OUK/Kx78dlVeaGCzJjpHUR0bqir+qi5avBBEHwOoeiK5zMmFpg8Sd+xlBlAiLPI4qC2wjj4NQihkcbMIIYf92I8bAAvABs1WM2EBpRexClyxndL6XHfQ0xIOqAdmTy/wLi0ncfMnkeBC7q/k3AuF7bujGdRIzl2/Xa5xGDZRtifKDnXNNzVAJn9Txv0euOazm2Qqa/ltTCBVm1zwH36DEH9bhHIJ+uIP7cmtzf3bDWCxUTwAHgbbB8e4zqMwW57gKsPQJno1to/7tzcv/vgpm6etKfXAhdwTYDX8UpvUr9yDOwsYbuQ4JvDyLH7AOiiGEzKfd/YV+c2i/lxXipgfztFcTH1qRcbVofOWAYcZl8K1AETiPGZFyf2yJisNyudTavdbwZgm+A1XgF8c+sybl6EcXWsH526bZx/Z7Qc6xq/c3p/cYRwzdT9qyP6bPfDXO9dTQ+sShkWj2c/5YGNq/Mi3pwRZ/dqj7rHfocN+DcfNkL2cYEybGc3H8jYhBfQp7bJUIjdFLL9i1wNt3E1v83HbqZ1Widn9ZzfANwDjQkQaiM+prW2z167ozWwTfpczqjZYtrfeQJM3LepcfO6f23armKeq81uu0U0qbSWscLhIbp23XfLyH9azustULFIGIgb9PzXNBrJPVZ5YDntO6sa+RhxDh+GPJbK4g/sRbGxqoAjsPqBviPXwGgLggC61h6y8COhz/7nVBp62wDYVyzKKhtJs90J+HzWEMUTFN6jCUCmgnJsCVCNd9WpF7H9RxdSLtYQMa8ZUL33Qk9Z43+XUP6WAZpU6v6vVb3X0P6xgUte6uebw0ZD8aR9oocs9IZpeprRSnj7UibzOn9Qhj8v0K3rxAuLXXpPe/S/Zb1np/X4+uAWcJkSWu6varsvOXhDm6HigGtuzzyHtiox2xH+lyE0BU1oee3hNxm3fe47n8R1rZAxXO6fxTJ2HwGae93Iu+W8wj5Y8/XixA72/W3S3r/BhdGgE26fQF5ppXIc83oddaQ9lJZVt9rWlar8FwlfK5Lei5bRzVlx72IjCEaWoBLWi8XtT4Sek95whAZOf19FRmv6/U6lcj4Xqn3cEbvy5Z5UY9r1Ofxop53I9I2NmtdbIJSLURsyIU55PnbGIQWVr2a1+tfQvpPtf5/Sv9u17Je1PKU9B7qtG5Seo5c2bnzSFtfLdtm5xsWGqKBWT2Xrdcl/W0r8kyXtUybCZOv1BMSs7avKXm/ugb/8QBwC46Hdiz8w8WHKdZuIqNxdKzba54EaXW1kaDu0xzgfmcw1pNlhC7u50lNWDGNTaohxNgJDrIPmyEOcISTXU235IZVjlhMk6ZDFQ9RCi4Q9wySpa6XQWpYYoROwMYBbHYGVIKcy4rXwqQursm9WIPGxqF6hnvo57BzV4yTZ5ROCsToUuPo43w3j/AJl6E3r+q4UTqxsdl6GHLGSpwcv8HPs5dD2GDnI3SRIaXG9BrlmTCjSGbEIY3RViLCToadCueX+GUe4ROq4Iu7kCC9DLq4cbb+pmmiixGnHopRZJBe9nGQaZqccTpDmod4zLm7WUPRultWqBEIEgPOZiRsYYoj3OlIgQhrdDDOYfppZ+wyEiBPggVVt7UywUHuZg9HVTnU7BQd+zjo4tQdpc+pQMdod8bwAHvoZtjF87NB+C0haV1TD7HXEbVWjWFdJy1x3M4Y9WSZpolBemln3KkqLWFg26A9XgLyd9DHUU5okHSbBfIMkrF2TpWoE7S5OFvD7HT30KHlbWecQXrpYYhD7HVEQC+DDNLrXMMkC7Gom2x/mCZNE5JgQVzGc1QjyQEG6XV90rZP64qeIUUzkghDnqVki7ZtukSFU+J1Msoz7KeFSUbooosRzl+I89t1/xluwbEQwvFwcDFFrDbu+mqSLIe4C8nwmmOORpo0dJTEMou75Do5Eq7ObNKINNN0MM7T7HcusDEKSNKUHDUss0Q1Weqde/gDPM4SNYzqmBEn5/rkHCmnWhJV2JqOpTGnbLMEcQ1LjNPOfRxQMnChzG1S4itaBWqJiFNFjdDJHgawYRImaCVJlilauEsT1wywh4d4jBIRjQtaQYQ1TtDtss0Oa4bSjCYQseW2Cj2b5duew7pC2kWEoqqvbb8dooc0M+T1dzt2WvdWSRAiz8eOGfb+bVIaeT6dmhm35MbUE3S7EGB9DDBBq1OxPsGDZXHnIpeVxaopLdHTwiRzNNLKGRdXU+pbXENtQiEb8qGHIZ7kfpqYdoq3mbIQA1ZxPEkLrZzhCP2Iy3STe1fY8daSht26SGEJrwlaGWQ3XZpQyroxWyW0TeQxTgetTDBD2rmPdzDOgqpArevsMN30cxibSGicdmyMVuteniUpAid9zv0c5ih9jNPhFvHi5BwxblVx9t0u7XfZzR8sETpCJx3qrvx5HtakVwMaZmKBGZrYqe8J+4ztPMPOO2zWZhAhjoRFqMdmkF5WcllCjLSwj2cZYI+q5fO0M8bchRgP1j0PrzIeVrzcD/8YBNMBF2vhYgtCcti4Sw3IxDdAJrtRhBSoRSa3CWQyfQkxXDboPhv0mAW4eDtsXNLflwhdxmb0OINM4FOIwXAJMVzOAE1QikEkQ5gIo4RMyJPIxDpP6GpzSa8d0XJcRAyWJf3NGhBZ/bsJiQmXvcDqkh6XlvvKJTaSiF+UCf0qmPNrrGakTFTDpTyslfQcWSiuXmJ1Ta9fD6UCBJcKrM5pWXNgYnlWk1q/U7q9WeuiCJyCiwktb50+iw2IAX4bYjDZY87L/Ucn86xaMrgEudUNmDpCw21R/48TKoDyWu+qDAR9plu1Tpf0+dVLG8iZjSSyF1mNEZIIVjWp9TFfVUtD6YI8w1p9Tqta19b4L+h5W+Q62S1VJE+uyPlSEFtZZHUVd47CKqye1XJY8sQasxcQo7RKf78g9Vd5MSfPMqntxJIyG5C2F2g5VrUOirBhNc+qdScNdPslrZvtWp5NiKGXQtqVPW+1PjtLKDQCp2F1V4TKDaq4q0X6jyVJovosN5SVw/aDPGF7rdd7Tur5V/T+l/R+bR/aiFOJLV2qpObiqhxboc89pteeJSRpSnp/lqCK6GcDmLk1edYXCLM91kPhzREmhcIsjiCniDzDcmLnAvJMyofpamAF5vtrabhwIYwXt4j09Z16niLyvOr1fyWFir2G6EQg1y1BqR0is0h/TBK691lCqIIwg6sl8hqQPllE2kaHlPlrzbexnTFqvrQq7SyB9P0ELFbHqZvJs1qD/Dat5xsHthASKjHknrYjBM2Sbksg7Sajf+uRdmzd8QM93yW95jmk324mJH5O4DKbMwlrto2mCPtZAzKW6HjDWUKSsA2KmwzRmUC2R5Gx7JLej4G17cg7BSnrym1RqrYV5f42a521wkoiStXpoiw02LG5kXAcbkPahX0nlve/ojw7ioTKxEu6X72WJUE4xlxE+laSsD+2wGo6QuXpkvT9Wii1QmRKj9+lbWBZ7/Gs1secbu/SejmPvJvzSDvZpfvG4GIaNp7Xur2o97OxrDy2XhP6PCxh2KBlDLQuNsozuWjHlSbdpu9Q5ghjDK5qPZ9H6jwNiy1x6s7k5ZgYYb84JfdNTs+zwOXtKSnlIqHXteNlQp9Ts5bzkt7zbqR/FHX/81pWO48p6bVvQ8bIKrkvVnR7pZbFumtPyrkKlmy9hXHpQo5lLnGJJeo5Tx3nuItJnmE/KU5RzSKH6SfPRZo4wVkdNM9SQwPjDNLGJFW0MM9tnCFBG1EWOUIXO/kKL3A7d/JFTrGdSywxxO3sYYDjtFHDMnUsEtOAkqfoIMki7XyN8zQjrlsp+vkiJ9lBF2dZppo1VniRFp7hG+jmOAkqqGaGUzSTZFGn7ZfYyBqnSHGOOubYSJ4iJSrYxmkW2cBxumlgjKNs5z7OUGSVKMt08lXOsZUosxzgft7BpzlJmqNsp4F5bmeIw/RTZCMXaCFHkTPUEaVImg1M08BbeBpDnjjnKQAxpjlJD118lUXqiLHIi7SwjdOMsZUMSRoYY17JnQwbiTLLFEn28zkW2MBO5qgjx1H2kOY0X9WMuVs4wzwpZnUy/KK6NaeZIEclOS7yVTqpYZmN5KkiSz05LrFMnIBFNjNDJXFm+Wu+l30cZDuniDOtZYkwwB66GGERwxIBteRo4hxZ6jhJEydpIuACIzRRYgPn2Mr7+WvSRDnGbs6QJMICa+SIcoELNNPOSZJEGaGRVRJ0MEYbL3CaLZRYIcF5XmQbSbJsJMMFLrGDw+JNAmQxzBOhgiz1zJJhI3VMcIC30s1xZmlgmB1s5jxbOUUVlawRYYoEZ6mlgQwbmaNIjlUKnGMr1SxRZJVOjrJMNVM0MUOaBHm6+CqzVFLPOC2sUkeWY+xmmYAeRtjKCyxTTSNF8lzUJOlHOMpb2UKOCWoYUYOihePMUEmGjVSzRCvPc5ZavkYHd3GIYXYxRRO7GSTOMnGmmaeBOaIYYswQI81pDtNPB6c4Qz0limxihBmNk1FBhhoWiZNnlmYqiFHBPBJRrY48Rb6qbuoFYtRRYIRNujZ5iWaGWQTGaKDywuz1GJ6+7jhxoZk6YIpNVHOWUzRSoMB2jvMCPTQwTi0ZTrCZKHNUs8A8DWxgDbjACiUiLLBMHUlO08B55qmgggxbGCLJIqfYzjIbeJR38s/4E7LUsokRLrFMC0OcpoEiUQZo5wGe4AzbMGQpAVk20aDxuc+TIk8le0tjLEbSXCBglQizuoJaxznqMBqa+WuskiDCBlao4SzdbOEcOWJEmGcTC5yhjjxxltnASdKIfnuR7apUamCcjSyyhfNk2MgsMRapI6Jj3zbOsJE5FojwHH1s4wwFoIExKpllgc2UiHARIVL+jgfo5zDVrBBhjTXiVHGeCbqZYit7OMpp0pqk6Q7maSDggp5DVicvEGWKBAENbOY8K6xxmnqaWWUDCyzSzlE62M4YFWSoLp2jPhLhLG/hFDtZ4hINzBOwqNFsZimQp4IMBaIcZwtwgQpKzFDJFs6yQA3NmgU4QowLwAt06fXTDLOLERpJsshROkgzS5ECcVb1XjoYVXeoWmopsSxlY4Z/4G4ayDBLlIALXGKVjcyySopFNtDIKIvUEec8R9jBJmaoZok2zvI8PVQwzzgNbOEsK1RzmH62c4q7eVTj99VTywTjNNBAhjrOMMomYsywmRPk2cCEjg1LwClSpJnlFJtYZCObGCHPRWqZYIwUEeqIsMZxTdxRzQJRVlimlqfoYxfHiVDieVpZArYzwEYKbKTAEgnqWGaROs5QzxbO8hzdxLhIJTkybGQrOaqY5ITe6y6e4xxbWCDFN/E3DLKbGWKskeMiq8SY4SC9SFiBInHyXGSNPHFSZIkxz3nagDglIjQwzyU1oLPUcVqvb8gCOXbxHH/H2+lgjCk6iDLHGZKcu1CLqBpeGW+0Qm8LMuX18PDwuFpsDYLg3PUuxBsNPx56eHi8Dtxy46EfCz08PF4HbrmxEPx46OHh8brwiuPhG03oGWTNeenV9vXw8PBA9DyTwRs5EN0g8OOhh4fHa8QtOR76sdDDw+M14pYcC8GPhx4eHq8ZrzoevqGEnoeHh4eHh4eHh4eHh4eHh4eHh8e1xTXJcuvh4eHh4eHh4eHh4eHh4eHh4eFxbeAJPQ8PDw8PDw8PDw8PDw8PDw8Pj5sIntDz8PDw8PDw8PDw8PDw8PDw8PC4ieAJPQ8PDw8PDw8PDw8PDw8PDw8Pj5sIntDz8PDw8PDw8PDw8PDw8PDw8PC4ieAJPQ8PDw8PDw8PDw8PDw8PDw8Pj5sIntDz8PDw8PDw8PDw8PDw8PDw8PC4ieAJPQ8PDw8PDw8PDw8PDw8PDw8Pj5sIntDz8PDw8PDw8PDw8PDw8PDw8PC4ieAJPQ8PDw8PDw8PDw8PDw8PDw8Pj5sIntDz8PDw8PDw8PDw8PDw8PDw8PC4ieAJPQ8PDw8PDw8PDw8PDw8PDw8Pj5sIntDz8PDw8PDw8PDw8PDw8PDw8PC4ieAJPQ8PDw8PDw8PDw8PDw8PDw8Pj5sIntDz8PDw8PDw8PDw8PDw8PDw8PC4ieAJPQ8PDw8PDw8PDw8PDw8PDw8Pj5sIntDz8PDw8PDw8PDw8PDw8PDw8PC4ieAJPQ8PDw8PDw8PDw8PDw8PDw8Pj5sIntDz8PDw8PDw8PDw8PDw8PDw8PC4ieAJPQ8PDw8PDw8PDw8PDw8PDw8Pj5sIntDz8PDw8PDw8PDw8PDw8PDw8PC4ieAJPQ8PDw8PDw8PDw8PDw8PDw8Pj5sIntDz8PDw8PDw8PDw8PDw8PDw8PC4ieAJPQ8PDw8PDw8PDw8PDw8PDw8Pj5sIntDz8PDw8PDw8PDw8PDw8PDw8PC4ieAJPQ8PDw8PDw8PDw8PDw8PDw8Pj5sIntDz8PDw8PDw8PDw8PDw8PDw8PC4ieAJPQ8PDw8PDw8PDw8PDw8PDw8Pj5sItzyhZ4z5mDEm0M/zr7LvB3S//q9X+fS6HzPGLH89r3m98Ga61xsBxpi+svYfGGMeud5l8rh18VrG2xsdxpj7fJ/5+sEYk1w3Vv3k9S6Th4eHh4eHx82JW2lOer3h7ckbG7c8oaeYA74P+NnyjcaYcWPMR65LiV4HjDEHjDEfe53HfsQYM/4KvyeNMTM3Sid9o+/VGPNzxpgvG2NmjTGrxpiTxpj/aozZtG6/XcaY3zLGDBhjlowxU8aYz3+9Sd7XiyvU22mk7f/G9SmRx5sQVzXeGmNajDF/bowZ1r6WNcY8Z4z5fmOMWXfs+4wxf2WMOWWMyekx/8kYk/x63NArwS4Evc5j23XMve8Kvz1ojPmiMWZR6+eIMeafvMK5OnVs+7ovSr0e6ET7QNmmFaTd/JvrUyKPmxG3ksGmc5fAGNN4vcvyRsAY833GmOPGmIvGmOxVHmPHxBuW0DfG7DDGfEHH5sAY8+2vsO9HXu/74UaEN+o9bkK8ZE56hfnoVdt+ZeP0+s/qlS5ujGkyxvxPY8w5naONG2P+9zW4zzcU3p68ufBmIfRWgiD48yAIPne9C3ID41eAxPUuxDXEncAA8OvAjwF/C3wQOGiMqSrb74eAfw4cBv4t8J+BbuDLxpgHv54FfiMQBMFCEAR/Dvy/610WjzcNrna8bQS2Ap8AfhL4BWAK+BjST8vxv4DbgD8Hfhz4e+BfAv9gjIm/cUW/MWCM+SDwBeAi8HPATwFPA62vcNh/AdaufemuDYIguKhj1aevd1k8bjq8pkVbJb8/rouYeV3gWz/mlO+/0RgzdKMQTVcgw1/LsS9ZgDDG3GWM+X1dNLj4agTU1RioxphdyFg+isypfvj1lPcVymAV1O2v8/jAGPOB13n5PwF6gZ9H2t3h13meNxzGmA3GmH+hxETeGJPRhaG3vMIx36P18RLvGW/Ue9wCuJo56eux/f4F0hfs54PrdzDGtAJfAb4F+APgR4E/BDat3/dGh7cnb2xUXO8CeFx/GGPuQAamX9HPLYcgCL5j/TZjzD8gZMK3An+pm/8C+EgQBMtl+/0R8CLwEeDxa15YD483AYIgOAbct27zR40xnwV+3Bjz74MgKOn2R4IgOFC+ozHmCGJYfQ8yQboloAbqfwd+LwiCD1/lMQ8BDwG/hRCjHh5vJqyoofGqMMb0AQeAc8B/AjJAG69Mlv8r3edWxcOIQXsMOAXsfLkd1UB9Vr/+AVKPLcBd63a9DxENfDgIgpE3uLzXDbqA9I3ArwdB8NHrXZ4r4I+Qd+KfAh8FqoA9QPpKOxtjqpH3xsrVnDwIggXgz1VV/nP/+OJ6eNwQeD223yeCIJh7lfP+T2Sh9RuCIMi8QWX18HgJ3iwKvdeKhK4+ZowxF4wxf2qMqS/fQVckP2eMeaeuhK3qCu771u230RjzS7oCvKrn/JIx5pteqQAqa5/V1bHqa3GTZfhvwKeAZ16mLNt09Xa4bMXv/65fGb1J7rUc4/o3aTcEQXCkfEDXbRmkbm4r367lfd4Yc6cx5qDWzZgx5kPr9osaY35FV78XjTErxphnjDH3r9vPuZoYY37MhO6FXzDGtBrBvzfGnNVr/a0xpuENrA8PjxsB44haOGo3rCfzFJ/Sv+v75U9qf8xoPzliruAWZIz5Jh2fssaYZR3fXlF1YIyJ6bi/aIzZ91pv7CrxISAC/KJes9qYy12Q15VpIzKG/zdEDXOlfT6m97jdGPOYjkGTxphfXH/u11B/gTHmo8aY9+u7L2+M+QdjTK/+/iPGmBF9FxxY/77w8Ph6wxizAfgz4DjQHwTBbwZB8IdBEPxiEAQvUVfoMWmkL/7m17GoX2/8D6AuCIJ+Xl19YQ3UPUEQ/GoQBH8UBMGvBUHwnnX7WQIp+8YW9brDKmuy17MQV4Ix5juB7we+MwiCH9S2/d+CIPhAEAQv91x/AVjCK6M93sR4LbZfGYwxpvbl5mdGVMrfAvx2EAQZY0ylztde7mQ/bIwZ1bnUc8aY/Tp3OlC2j7cnPa4IT+hdGR9FOvBHkFWu7wE+fYVOuwP4K+DvgH+HTHL+r7mcwPoI8EvAk4iL2K8DZ4C3vtzFjTHfAHwROAp8y/pB5o2EMeb9wD7gp19ht2/Qff4ScXf7A+AB4IAxptxN9yPc2PdqjDGNxpjNxpj9wO8CJWS1/tWwGXHrWY964FHgCFKHZ4H/YYz5gbJ9apHV7wPAzyD1tAl4zIhaYD2+B5Fl/x6iILgX+Gvg14BvRgyL/4UoC3/nKsru4XHDwhgT137Zboz5fsRt4R+CIMi/yqGb9e/6fvlhZDz5RURBYMfld5Vd83bgc0BM9/u3wGeAu1+pnMBnkbHwwSAIDl7lLb5WPIgQDg8bY84ixlbGGPOrSkisx79GxqFfe5XzRhBX5WlkrDoC/LJ+yvGq9VeG/cgY9SfIuHYb8DljzI8h74rfB34bUbT80auUz8PjWuOdwB3ALwdBkDfGJIwxkVc55j8Cw4i7/0tgjGkwxvyOMWZQSfMLxpi/M1dwcTTG/CtjzAtqWC0YYw4bY777lS5uZEF1xMjiYdNV3udrQhAE01cx3l61gWokhrEdV2bVsPyI/taviwpzJlwEfcWxQedu/8sYUzTrFs3fSBhj9uizu6DP8gljzNvKfv8I4nIK8Nt6X+Nlv7/dGPMVXcQYNcb8yMtc51othvwE8FwQBJ8y4npb9Uo7G2N2IDFLf4KbOFyDh8c1xMvZfiBq5kVgyUg86PXjs3XVnTbGPAHkgbyOMe3lOxpjfhBZLDmPzM+eReak65Xj3p70uDKCILilP0gMj/Gr3PcDQID40G8s2/5Tuv09ZdvGddv7yrbVApPAV8u2DQCfu4oyLuv/dyMDxOeA2DWumzgyOfkN/X6f3tMj6/e7wrFv032/72a4V73eZi2z/UwgK5mvdtx+4BLwK+u2H9Dz/ETZtihiDE/bNoQY0tF1xyaRgft/l21r1/PNIKvldvtv6PYBoKJs+8eBwtXU3cs9W//xnzfy81rG27JjfnZdv3wcaL2K4/4QMUJ2rNseX/d9IzAIPFG27V/rtRpf4fyuzwDV2t9ngb5rXIeLwDywioRA+A7g/2hZ/sO6fTcDF4Af1u8f0P36r/BcAuB3y7YZHXsL5fVwNfWn2wMtY3vZth/W7VNATdl2O4a1X8X923HwJ693e/afG//zSmMOMk/7SNn339G29Q5knhdo+/9LoOEKx9+FLPp948u1S6AfGAH+g7b/f48s7GWBlrL9/rke/391vx/XMey/le3zkfJxCehE5mhH1/XRjwEHXmd9fQAIXuH3j77c78hCbQC8D3hC/19DFrXby/b7duCT+vuHgO8FdiOqvXmEIP1JxDD9NWCo7NjL6hmZP/2JjjXvKtvvvqsdU17mXgLgA2XfbweWkTn8LyDG8im97l7dZzfhu+Pjel/frr/1Ajl9Xj+r5zgPfG19ferxX0MWvH9GP1k99seAFxCS7VeR9vnFq7ifWmSe+lFkvF3S65ziZea5wOeBvy9rU8tX2OcA8LErbLf17+eU/nPDfngdc9KyY1/O9vswQpB9NzI/+69IvOMTQG3Zfv9N+8icjpHfqePeEvLOSOh+GxGb8ShltiLhO+NA2TZvT/rPlZ/L9S7ANb/B10fo/fC67dXaWf+gbNs4EjvErNv3P+o5Nuv3A8AY64zOK5RxGbhf/35yfYe9RnXzy8jkpVq/v2on1YEnhQS0XwD+S9lvN+y96rWjyIrJu5FJ91HgB17lmDRC/I3aelp3vxeBqnXbP6T1+LYrnG8D0KD19zngaNlvdgD+7+uO+TaubEh8WLdvv4p79wOw/1zzz2sZb8uO2ab98rsQ4upxYOerHPPd2p5/81X2q9e+9vvAQtl2O9b/ILDhZY69r2yfg8iE6favQx2W9Lo/s2773yEGYzlR9ifIxGzDuvt6OUJv57rt36zb/+lrqT/9LQA+v27bW3T7R9dtt2PYO67i/u046Ak9/3nVz2sZc5BkWNbA+nPEGPsVfY8/S9l8DiG8DwEf1+9XbJeIynfDum3tCBH078u2fRp4/lXK9xG9RiOwC5ljPgfUfx3r85UIvasyUNffS9m2b7/S+HSFugv0vBUI2ZoD3nmN7/tTiEG7vWxbM7Jg8tSVyneF4/NAW9m22xDCM1i3b8AbvBiCxMmzz+Y8Ehf7u7UNXwK+ed3+79J231PWj15C6L3C9e7Dzyn95wb/8DoJPV7B9nuZ/e2c9GfLtv1v3fZ8+TsC+Ke6/Yf0+zfq9x9Zd86NCNF/4GWu6e1J/3Ef73J7ZZws/xKIG+gU0kHKMRJo6y7DCf1r9/1FhD0/oS4Zv22M2X2Fa1Yiq2VHkdW04usu/VVA5b4/Bfx88CpuruoS9yvGmAlkwjOHKFWSQF3ZrjfkvVoEQVAMguDxIAg+FwTBryIrof/bGPPuK+2v7gqfA2qAb3uZepoMgmB9MOH1bQBjzPcbY44hk7gMUn/v4vL6sziz7vui/p14me31eHjcpAiC4LT2y78IguB7EEXB4+Zlstequ/z/Bh5Dsgyu//3dxpgvG2NWETXILGLclPe1v0IM+D9E3CH+0hjznS/j0vpfkbADDwZB8MLrvtGrh3V9+4t12/8CUVXvAVBXsO8D/k0QBJeu4ryXkLotx5XGqqupPws/VnncTLAxer8SBMH3BkHwN0EQ/CKywLcPCSVi8QFEdfUzr3TCIAgKtv8ZYyLGmBSyWDnM5eFGssBWDTPyargDeApZOH4wkEQENwJs/Z1H1HJ/HQTB7yBKkk7EqH0lZPXvu6/kqrsOUUTN+G7g4SAIvvD6ivzqULfrdwKfDoLAjZFBEEwhypW3G2NqX+X4h/T4M2XHv4i8p66EJ4IgGC/7fkj//k0QBEtX2L79VW7DPpsUMl/9H0EQfBxp0xnKkiUZY6JIVvQ/CIJg6FXO6+HxpsJV2n6XQfvaeUI3Wwjncn+9bo72fxGi38Zh3qZ/13MPF3npnM3bkx5XhCf0rjGCIHgamej8AMLS/xDwVWPMD63btYCQXHsR1cS1xq8gq78HNHZVO2FMqk26zbaP30MM579GVmTfCXwTMpC4NnQD3+sVEUgMrCkkxsBl0AnPJxEXi28LguD513sdY8z3IqtEo4ja55uR+vsiV+6DpStse6XtLxsw38PjJsQnkLgh96z/QeNSfQYZXx4JgmBt3e/79fdVJG7Iw0hf+zhl/SSQeFH3IJOvP0P6+V8B/+8KMbX+Vo/92Zch/N5oTOrf6XXbZ/SvnXD9FhKweaxsDG/U35qNMa85K+fV1l8Z/FjlcTPh5cjyj+vffQBK3vwHJFbcesPnMmissn9jjDnJ5Queu7ncwPpNhOh7zkjisP9ujHm5mJ2fRVRvDwVBcOHqbu3rgqs1UF8OTwF/g8RanjMSiP2DxpjYFfb9d4ii7yUZzq8BNiGJmIav8NuLyDztlbIgb0IWW05e4bcrnRNep6FtJEnS5rKPTdJhn81YEASWBLSChM8CdxljKnTzv0HeFb/0Cvfk4fGmwz/S9ptAFHMWV5zLBUFQQuzn10yeeXvS4+XgCb0rY0f5FyOZV5sJs6JadBnzkkQZO/Wv2zcIgvkgCP44CILvQiYFxxB3hHIECLH0BBKA/L7XXfqrQxvQhbD/Y/qxk9zf1+92RfIR4E+CIPi3QRB8IpBsWV+iLDusxQ16r6+EStataqjR/qfIyuZ3B0Hw1Csc33KFwMPr28AjSD2/LwiCPwuC4LEgCB7Xa3t4eFwOq8xb3y87kaQOM4hi40qrpt+BkFEPBZJ98e+0r70EQRBcCoLgiSAIfiIIgh5k0eIdSDiAcnwaWaT4buC/v857ei04on+3rNveon9n9W8bQkqOlX1+W3/7DDL2lmMDL1V5rB+rrrr+PDxuQlwtWf6TiELsr8rI8q12H91ms3D/HPCfgaeRmGoPIQbWC1y+4Pki0I24W30J6WtfMsasT0oDQnp1coXFxuuMf5SBGggeQVzMPoqMcX8EHNF5djkeA1aAnzbG3IpzpddraP8kshBtP1/R7S/XtkHa90agyhhTh6j1/j+gtqx9VyP5R9qNZHb28HhT4TXafuuPNYinw2zZ5ivO5fTd0Vi2r020s5572Ah0rLuUtyc9rghP6F0ZP7zOHeBfILE8/m7dfi3Ae+0XXdX9Z8BAEATndVuq/AA1QkeQuCus+62IBBv+CvBZY8xd//hbeVn8AlL28s+/199+S79bV9ISL2Xt/xUSnNPhRr1XY0yVuTwbr93+HcgE9PC6n34P+CfAjwZB8MlXOX0F4DKZ6UD9I8hAbQdzO0EzZfvtRSa1Hh5vSpQpC9bjBxHS/6tl+24GvoC4jT4UBMHsyxxr489Fyo5tR5Qe5ddu4KUY0L9XGq/+FAli/yFjzG++zLXfKPyV/v1Bu0Enmh9EXGDtuPLDvHQM/z397Se5MhnwL8vOafT7RWRxBa6y/jw8blK8FrK8HiHlLFn+jP72c/q9R78/AjwZBMEPBkHwl0EQfEENrOT6iwdBsBIEwV8FQfBBvcbngZ+/AmH1U0hYgd83r5IF9+uMqzVQXxFBEHw5CIKfD4KgHxmnbkeIznJ8GRl39iELvxVcO8wicfq6r/DbLuS980pKzVlEIbfjCr9d6Zz/GPwpQhjbz/cABEEwibj8rW/bIO17FVF91iPk3U9z+WLQdyAqxTEk66WHx5sNV2X7vczc9V8gSt2/L9t2ACHTv2fdGP8BZI71//T7YWQM+VDZQpHdL7nuOt6e9LgiruUL8mZGFHjCGPPXyMv4R5EV1c+s2+8EEoPtG5BVsR8AmhDDy2LIGHMAmQjNIxnRHkFWJ1+CIAjyGtPti8DfGWPufSXJr5773iAIXpNMNgiCL13hXFn99ytBEHy67KfPAd9njFkEhpCB40FkRbYcN+S9IpOsx40xfwUcRyZn/chq+jgS6Nle418jz/sfgJzKm8vxqXUx8yaBn1Gj9wTyMuhDEqtc1H0+h5CXnzLGfB5ZcfkQUpfrV6U9PN4s+Hl1Oft7xP2oATEqvgH4vSAIRsr2/XtEXfZbSDyjt5f9Nq2qYRAD+SeAvzfGfBwJbPxjyMJCeTzPXzTG3KP7n9b9fhTJTvmSsREgCIKP6qLNrxtjFoMg+I2XuzFjzAeAPwY+GATBx16tItbhbxGC7d8ZYxqRbIjfDrwdCZpc0PK8JKaUMSap/z4VBMH6hYpV4JuNMX+CxGX6FiTuym+UEaRXW38eHjcj/hZ533/QGPOxMrdRGxbEjiO/iyhzy5EG/ifi7vS3CPEBV1jwNMa8HyFWRsq2pYIgcHOmIAiKxpghpB9uRPqn+xkh7GuAPzHGLAdBsH7+eT1wgNBA/Y0gCGyZP8DlBuoVYYypB7JBcFns6QH9e6WFlMeNMf8Ucen9M2PM9wRXFy/0NSEIgpIx5gvAtxlj2m1sO2NME6LM/tIruT7r8Y8B326MabNx9IwxtyGKzTeyrKe4QlwtxV8BHzbGfJN9J+o75NuQTLmXjDEzlAkRyvDjyNz+uxDln4fHmwav0fY7rfbkIDJuvx1ZkBhA3hGAxFc1xvwUkrzsaWPMnyELOR9GFog+qftdNMb8gh77RT13B8IlrO/r3p70uCI8oXdl/Etk1etXkInWXwA/vm4SAhIv418hbk7dyATvnwRBUB4E93eB9yBx52KI8fgLhK5RL0EQBBeMMQ8hLhz/zxizf51xW45qZFXuWuLDyKT1exBZ77MIobc+2O+Neq9nEReWdwDfjzzT0wjR+Ovlk2yEjAOZ2FxpxaODULkIkun3+5GVnX+OELv/MgiC/69sn48h8Ql/BJncDSFk4vuRbEEeHm9GfJ4w5uYmZGJ0DJnE/Mm6fd+if3/6Cud5CjUkgyD4ojHmB4GfRZJZjCFB7du5nJD6jG77AURZMqfn+aUgCBZ5GQRB8BvqsmRJvZdzwbUTq9dsGAVBEBhjvh34NWSB4ANIHKbvDYLg/7zW85WhhMRb+R/ImLyEZDr/lbJrX239eXjcdAiC4Lwx5teRNv/3xphPI2PLPwf+IgiCr+h+X6VMIQxOqQrwwhUWPH/RGPPHSDbsXmSutN4Q+4Ix5jwyf5pGMqD+SyRT9NK6fVHy5XsRYvGvjTEPB0HwxZe7N2PMx5C5SEdwebKFV4UxZhuSYAdksRM1MAFOB0HwZ1qmqzJQXwHfD/yoMeZTSAyoGqTuLwCPXumAIAg+bYz5IKJMu0CZR8QV7uM+4Engl4Mg+MirlGU9fgFRvH3JGPP7SEzAH0Hmsld676zHLyHj6zN6fAViH7zA12/s/A9InOu/Mcb8ZyT+3oeQOe/PAQRBkOOlZDX6zrlrXdv28HizoE//Xo3t938Q5fB3IDbxaWSx+de1fzkEQfCnxpgiMqf6bSQx0P8Efk5DFdj9/peR+M0/pfsNIvb0r64rx8fw9qTHlRDcAKl2r+UHafxnEKMt+Qaedxz43HW+txrEXerHrnc9vxnvFVmtfv56l+NVyhjRtm9Tlfs04/5zzT7Xary92T5IAqHnrnc51j2X5etdjlcpo9F2s0fHqp+83mXynxv/o217/DXsb13Nh4Gijle/Cmx8lePar9QuEcLndxC1fg5R+L5N5wcHyvb7YWTRYA5ZvBhBjMDasn0+otdoLNsW13MtAXtfoXyf0OsnX0cd3qfXvdLnwBX2t2qUVWSR9feAmnX7XOle9iAJSE7rsdNIwoY7r6Ke/4Vu/+1XuI936z4/8jrb0h5EDb6EGO9fBL7xatqB/nYP4j5XQAjLH7H1sG6/APjoVbYv+2yuau6GKNk/iZB5OUTt/Q1X2Y+u+h3xWsvlP/5zPT7c5HPS9e+R61wWb0/ewB+jD+mWRdmqJcjK6h1v0HnHETLn3W/E+V5nGd6FBGnfGUhMulsWN+K9qgtw4xvVpq4FjDF9wNGyTe8PguAT16k4Hrc4rtV4ezNBY9NNI4q6l7jFXg/oc3kkCIIb1iVD3YUXyjb9VBAEv3OdiuNxk0Db9juAtwJrQRBkr2uBrhOMMdPAnwZB8FPXuyzXC8aY30JcRrsCDU3g8cZCVUT1wN2I0s/PKT1uWNzsc1K1MwmC4L7rWxJvT97oeDO43P4W8Of6/5WyIt60CILg84jb2i2PN9O9vsEYQdxILNZnvvTweCNxy463V4tAVsl8lsDXjmUuH6tOXK+CeNx0aEWCir8A3FQG2xsBY8ztiJLvWifsudFxP/Crnsy7pujlcqPew+NGxpt+TvoGwtuTNzBueYXetcKNoNDzuL64GRR6Hh4eHjeDQs/D4/XAGNNDmKV2OQiCL1/P8nh43MowxlQjLuUWx4IgmLle5fHwuJVxIyn0PG5seELPw8PDw8PDw8PDw8PDw8PDw8PjJsKG610ADw8PDw8PDw8PDw8PDw8PDw8Pj6uHJ/Q8PDw8PDw8PDw8PDw8PDw8PDxuIryhSTE0u18LkvLdw8PD49VQA0wGt6Dvvx8PPTw8XiNuyfHQj4UeHh6vEbfkWAh+PPTw8HjNeNXx8I3OctsCnH2Dz+nh4XFrYytw7noX4hrAj4ceHh6vFbfieOjHQg8Pj9eKW3EsBD8eenh4vHa84nj4RhN6SwD/eeLdFGsbOcsWzrGVfg7TzXGKxDhDG3FyAMRZ5Sh97GaQGTZRJApAHYvkiVMiwiJ1NDAPQDPnWaKKEhXEKBBnlRfooY5F6sgS4yI54kRYo4YVGshwjN2UiLCNM0SRTPbL1HCMXu7iEIvU0cw0UzQBcIi3sYOT5ElQzRI7OElByzXEHaTI0MQU0zRTIMoYHXQxwjwNRCmynTGKbGSNCKskOMsW7uQwY2yngQzzpGggw6qeP84qRaKcpo04eVfWODmOs4u/51v4Rg4S5SKbmWKWTeznGc6xlWP0urqpYZktnOUFbmeeBvo5Qp5KTrGd7ZyiimWGuIM4Oc6xlR2cZBOzVLNMiQ0skmSKzcyyiQd4giWqmaaZHHHqWOQ8zZTYwDI1fCPPskqCEhuYolmfzRRTNHOeZto4ze284O51hB2cpo1tnKGN00S4xDwNzLCJGEUqyXGRGHUsspEC0zRzli1s5jxJspymHYBqlohQIs0sZ9lCM+cpsYFTbKdIlK2cI0KJODnyJMhSx2H6eZAnqGaZAhvZxhnmSREnxxTNJMgTpchp2qhhmVN0ANDAPLOk2c3XyJNgC2cpESFDA+dopchG+jnMInXEWeVJ7uUevsQidWygBECCPBFKvEAPW7UPFojSzHmy2mqbOU+GBnZxnHlSrr2fpo00M2RJUkGJTcxymja2co5qlpiimVk2sZ0xzrKFRerYwUkiXHLlX6aaF+ihmfN6P5t4mv3czwFyxNnFMPM0cJIumjnPadrYwwDVLDNLI2tEWCTJVs5RJEqUIgfZx9t5mqS2Cel5dWzjDDni1LDMJmaYJc1JdlBiAyfpYg8DNJABYJEkzZxn+cIlfqr1b924cQtiCeC3J76NDbUJ5klRIkKSRU7Txp0c5h+4my2cJUGeODkKxBijg22coUCUWTbRx1HmSHOKDvo54vppNcskWaSDUxxlDyUi7GCE4+xiiibu5h9c/6hmmSJRkiyykSIR1kgzyym2k2aWCCXyVBLlIk/zdu7mH4hSZIkqaljhFB1s5RwFNrJKQm+umiSLnKKDzZzXdrOJEhVsYYJVEjQxxUViHKOXLk4yS5oaljlNG7sZ5CxbWKaa/TzDEzzAPg5qm0oyyya2co44OZapoUCUBHmy1FHDMlnqSDHvvj/BA3RznF0cJ8IlMjQwTwO3M8QWzjFFE2fYxhm2sYvjlIhQxyJRilSzTIQ1zrOZAjES5JlhE2ntdyV9VW5jnC2c4xxbaGCeEhGt2xhH6eMFevhWPs8Um0mRoYplhtnFVs5SIMYy1aTIkCdBRt8Zs2yigXmameIFbqdEBd0cJ80MeRIcp5siURqY5wxtbOY8KeYpECVGkQwNRCixiRkSrFLNEnkSzNPAadrYyyEAztNMIzOcYyvbOM1R9nCOrbRxhmWquJ0XOE07UQpsYoYSFTSQYZpmTtNGhBINzJMnQYQ1djDCKTpoYJ7tnOIA91Ekyh4GOMkOdnCSJaoZoYsSFWznFGfZQlHH+mqWqCPLEHfQxmmSZMmTIEfcjTl2/wd4gjO0sUQ1zUwRJ88ptvM53s0DPMEWzpJiXsfnrW6uYLeVqKCGZTo4xUH2kSBPIzM0M02JDYzRQRXLzJNimF2UiNDPYXffXZxkkN2kmeU43bRxhgYyVFDiNO1sYYIU80S5SB2LzFOvY+sOOjhFDSsco5e9HGKKZi4SZROzrl9NsZnZC5X8r9bfcePGLYYlgL0Tf8pttZNEKLGFsyxTA0CRjWxilnNsIUKJEhFKVBAnRwPzDHE7GygxTwN7OcQ5tjJDI0Pc4frKGhFmSeu7r4rdDHKeZqIUOM4uohRpZooG5plhEynmOcoeUsxTR5ZFklSSZ45NbKTIbo5RooIxOqhmiU3MkaeSDCkuEqWDMZap0mvIGLKFs+RJUGQjRaLMk2IDJS4RIUclOxhhmRqdN54kTl7fv9P08DzD7CKi84dZ0uSoJMU8ES6xSB3H6aaaZbo4yQo1rLGBCi7pWLSBCJfcPDdOnjh5lql285rdDLq5NUCJCBFK7t0i8zIZo+27p0iUWdJEKTBLmik2E6NIFycpUcFJutjHQUbYwUYKXCRGichldVEgRooM1ToednCKGZ2/zNPAZs5zTvv6WbZwOy/QwDxPcZ+OT9VsZorzNJOlDoBdHOccW2lgnjE66GPA1dEuhimykToWWaaGzUxxjF4quERUyz7CDrr1HAU2skgdaeaoZsndcx2LRCixXd+xWeq4RIRGZtnKORapo0SEBuaJUmCROjdfzhEnSZYiMTYzxWH62cFJ9jDAFJs5xF1UcIkOTgHwArfTwDwR1kgxT5Eoh9jLZs67uVOCVWfvHKebReqoZoVmptz7Kk4egDxxvsR+tnCOLHXczgsAHGM3s2ziTg5TQYk2zlDDMktUk1ebxdbvInVEuMRxdhLjIj28wDPs53ZeYBOzzLKJc2zlHFuoY5E1IvRzhOPspEQFOzjJGbbRxmmiXGSELnp4gaPsYTfHiJMnQZ4/4oM8wBNEKXKcXZy7UMPzrd/hxo1bEEsAvz7xCI/Vvp84eTfebGaKS0S011wE4BTbiZNjlk3EybNIkigFdjMIwDF62aI2RokI8zTQzHnWiPAU97GFs/Qy6OYE2xmjgQyzpNnDUbVP53mGt7OFc27c2MwUCVaJkyPKRQ7yjW7OU80yOxghwhrH2UWMIktUuzmK7LPEMjXcrs88zYybP+VJMMVmbmeIDaxxkZibLwBEKFHNsrMtrD01TwMdjDGmc48iG8mT4BQd7OMgJ9lBlCKHuIttnKGDMWpYBmBRxw65hyVnX60RIUaRKTYT4RJ5KsnrPHeROvZyiBIRcsQ5RQc1LNPNcSoocZIdxMlTJMoWznGRqL6LNlHHIkWiLFNNNctap+dJM8sUmxnTuXN52SL69pshTT+H3dzqHFuJUKKORe7jSY6zizwJtnPKjY0HuI8SER7gCQ7TT4kNvI9PcooORtjBNs7QwDxLVDHIW+jla9Swwiyb3HykgXliFJiimSSLFIiSZtbV21m2cIrt7OAks2xiC+fYoRzIInWOc8iQYpkqGph354mprb2L485GLxJjN1+jSIw8lZxlK7fzAkViRClwlD3sYITTtAGwlbOcpp3tnOIFeridIU7Txu28wCm2c4i9bOM0UYpEKLGPg4CMh0fZwyJJ5mngn/EnHKafOHmaOc9B9rGZKddBbVurY1HbYCWzpCnpPOPdfJa/42Fnv52ig03MumdyiLvUvrjIFiYoUcEneR8/wB9TIsIUmznDNgDezWc5TD9JFpkhzXF28j4+yRM8wAM8wekLKX619c/cuPFyeKMJPQBmajtpq82yl+NkOc8ErcxToECMS9RwgRQJckxSQxezXGALq9TTwRhzNBJQxw4mKBIjA6xpQ1ijnjVqKBIjoMAG8rTpC7dEkhUitDDFAH36sqriEkkMMMw30MkIrUyQo4oCm0iwkQpKlKgHkqSZIUqctzHEFC2M0UGRLEWidHOCRZZIkiNKnDxp2pjgFEkaKFHNIpO0EJDhDF10M8wacXo5TZFNXKKe/RxgmjRZ6smSIEKcagpMsJndnGaGNHGWWKCNKDPM08E7+TItnNcJWJxaDPN0EBBnD6eYpIVORomwRp5NVJAgxRpLbCFFhnv4GhlSxIhTC6xRQzMrbKJAioskyTNAH0mybKLINk7yD3wzKTJEKVBFBWkKRMmSIKd1sokNwFH6iVBiP8/QxDTVRDjL7TRwiuf4JroZZpwtVFIiwUZqgRl2ECdHnCKbKCoBGyFOgTm2E6XAZjJ08DXG6eAcLXQxxgB7qGeCBDmiVDJPB1tYIk6RvbxIliQJ8mRIEWeNBpZYpplv4SBplsgTZwMRijSSo4lJkiTJMkczORI0Mc0a1aRZ1QE+wZ2coEQNi7RQRYQMKXIk2MUIY3TotL7ABG1EiROhio3EWaKGNNNMsgOA9/AUI3SyRA3bmKGGi6SZZpRqolRSB2ToYIYmWpkAqqiigjVSvJVhstQT4xKTJLjAFi6AkoxZzrGLWpb4Gm+hiVVqWGKSFho4SjNLTHORKiLk2MwuJqjkEGtUs40ME/SQJ0Ebi8QJ6OY8USr1BR5liRoqidGshEWCHPt4HkMdVaxQzQY2sMYlDFEqiRIQZwNT7GKaNIYEjWTp4DmyJOllgGmaqGGJJBfJqTF3q6NUW09DbYEkGeZIUUPAHk6Rp5k0q6zQwjmS3McBMsRJcZFaAjoYZposk+ykm2E2UQCq2KYmTZIsI3RSwTR3M0iGRibYQS1wmjTVbCBDin5OAjBBKznSPMVevpXPMsEdrJDkML30McAqcdYo0UKONRqIs0QvExylj00UWWAbrUwQIQtAFkhQYJUVUhSZZiu3MwrAMN00MsclGhijixhR5uiigjWWqSXBRuoIaOYEWZIc4NtIUCBCNQFJTtFHD0MUSXGJJJuYI0KOSVqopcQSLSySohbDJWowGJrI08oFApJUk+WCtu1mlrlEHfUELFNiEycpEucs7VxihnbG6WKGj/PdTNDKj/L7FIlSR0CSBUZ4Kz0MMUIXq6QpUmCVNOO00soEB3gH9/AMhlqayVPHJRaIUU2EKHEMtQQkiVPiEPvYzzPM08IWJkmR4SKNtJElRoQR3sr9HCBKnBybyVJPgo3084JOGJcYYA9T7OI9fIYx2mljkQPcRxUDrFEgzSiNLDLE21iikSKnaGWCYVrZTI46oIUVplmmi6NEWNP20U0jSyTJkqGFJqbJsJ08NfRzkjkayVFDPUVSZGhnHqglQolltlDDBpaopI5LdJAhQhXtLNDMMQAG6KOVDJM0k6GdCmbYToZmljlDL6vM0MgcdUCUStaIs4MZohSZp501ksSBPJspUiJJwD0MsEoT9UzwJd5FDUu0M06OepIUiVBNH+OM0kmOTRxnE1VEOMGdnGeJDJNkqaeFSQwRkgT0KrkIG2hjkSxJ6gnoZooKSsxT4Gvcw8N8ng7G2UicCiK0s8AgvWSAJWpoZI4KqmgmxyBvIUaUUd7KGhFmaKKKIebpwFDLHo7yWe75+gxI1xFrtSlStaeZpIXzVKnxskaJClbYCNRRAl24m6OCEpN0E1BHkgw9DJIiz2kaaOAS38gLJMiRpECBKO2cYIA+JZ+6yFFDNdPczlmyJNnGAmAoAkU2sYsp4uRYooZNukg8QRN7OEgjRSZoYpU059lJnEEKRBmnhzQzjFJHIxnqWQM2cIy7ieu7LkKJdsbo5DjjdJDVcS3BRvJU0USeTmYpEqNEhibmmaSHcXrZyTB5ErydYxxiL1t1Dt/MCg2sUcMSCyQpESVLkpO08yBP0MQ0S9QwxyYyNNLENFki1LDEJookyLOJIkN0USCmY/lFZmjiLZxmli4maCVGgSQXiJDjb/ln3M+TpCgyyVY2s8BmRkmoAbtAkjYWqSChZcsxTpoNwHN8E3dxiAl20soEMSrJU8UmChhqaSfLRRopkuIiF+lklgR5JtlFljYybOchDjJOB5NsZRsLXGArlRRpZwyo5XbO8AUe4k6OECNGjs28iy8xQ5ooOYZ4C+2MsUgbzeSZpolV4HnSNDHNebrJUaPjew1pVilRSRNZSjQQZSOwkYuk2EicizQSo0CKNRJEaGKKCVopkqKCPEe4j2YmaWWCu/gqMzRR44zFPEU2UWATlURZo5HbGCSOIU+CtzGk9R8Q01lzH6fIk2CanexmkDirjNNNkTkm6aGLEZaoI8YCSSBLGxVK/uWpoY5LzNNOijmKbKKZSTqYp4sZ8qRIkuE83dQyTAMlcpS4xAqtTDBNE4Pc6dpSMxOs0EKHjv1LJGnlAhEWMFQTo0gvg+RIsJEEd3CCHLUs00yRHBmdS19ikm1kOcvtNDHNV+niYZ5lgc1kidFAiTEav+5j0/VAtraNt9W+SA1LLFFLnhriZEiQo0SEZu3Tz9JNjY4DLczSwTwtTFJQEixKJVt17r9CDRCnilmG6WYPo5SIMEcnTUyzzBq3M0GGRuopsUgbz7OPboaJE2UHMxSIsoEapummm2EyutB5P19lnHbSzBCjwCRdpJmmkigQZTsZVmjhEvWsUEsdkzRQYpQ9VBLjAq1sJM4K9RSJ0shFFmhTMrCGdsYpcIEkWZao4QD3cYlBkmQJKNDBOBEKTNDDJWLEWaKaEqOkaeUCS2zlEvVUskADl+jlNFlSFIjzOA+yl0O0MEmcHEVixMmxQJJFGmlmhAbOMkYHjVwgywYilLiNs8zQSSsTVFJiG0c5QytzdNHFCB3Mqw0pi7ZztNLENLfxNUboohJDLStKmhughnaGibORC7RSi6FAlH5O8iz7KBKjm2FglWZyTLGLHs7SxCoFopygmwzbaaBEinFKbGRKFyG3scAInWxjnvMsEqOIoZY0RdK8wBHu5CQ1pMiwRgMRaogAy7TQRpbN5IkQpYszVBNhhC5qWCKglgnayBNnmibamWCVJjqZpkSCJ3gv7YzTzTDLtHCRFIYaWsmSoEgNa8AaOznBJZKco4d2xlgmQT1LTKut3ME4FzBk2M4SNRSIYYhTR0CeJrLU00iRuxnkIPtoIct5dnCRGqCOO5igDhihi3Fa+Wf8KVDLEjWM0U6MGH2c4hCbOMvt1FOig0lG6GKaHUSppEXH7yRZhogRUft2gSa2sESMAjuYYZE2tfkTVFEkRzNVLLBKDefZwQMcJkecIXpYIEIFJd7Fl1ijnhIVbCPLNrJkSWKoZbuO2xcpUU0FR3iAdrLUE7CqizSvhmuWFKOCEk1M62QrywJJNeqP0ckIUYrUsESnTg4maGWubBCPUWSSFuLkGKWLOVKUqGCCViKUGKeDQ+x1q5lRnbCUiJAiwzI1OqnO0M0JWph0xyfJ8hCPUU+WGpaYoJXHeZAJWunnMEViVLNEI3PUsMSoTnRqWGKELvLE6WKUBZJ0McI0aZqZdNfoY4AUGWIUyZOgghITtDJBKzM0MUOaadIsUcMMTdSTJa8PvkiMCr2nGAXGaadIlJyuFkQpMK0rqFGKdDJKkgXG6SBKkd0MqsZBjN8sSXIkiFGgl0F2M0gLkyTJUiBKiQhL1JAjQYsamHepokNUDbJaGaHEEjW0coYYRWpYZogeOhlhlE4KRJmmiV6OkSBHN8NUs0SCPI/xEABZkqokqqCVCYpEGWQ3EUokyFMgqqy8PMsuRrQN5elmmIROvAtEaWWCPAk3wGWpJ0qBHAmmaWKYnTSSYY5Gre8mDnK3kh6tTNJCkiwtiFogSpFuTlBPVg38UboYJUecboY5yD5yJBxh1soZRlV5AnA3B4lSJEeCCCVier4uRrWeK1TZUmJcFYedjDJNExFKTNDGToYZpps0024FfYkasiSJkyNFhkYyJMiTJEuOBB2M08E4ezlEliQjdLpVpyIxehnU9Z4I06QBnNFrV6CamSRBnmG6maCVJWpoZpJmJulihEF2kyPBgpLedmIRpUAFJTKkWCDJGhFXtzUs0c2wa1tJstrWqikQo4Ylt/p4q+MFesiSBKCeLJO0sKb9rpthHRkmGGYnBaI0MaOjiXyKRCkQ5UnuJ0eCcdqZpIUIJY7QzzjtDLCHCCW6GaaHIR7gcZqYZpIWlqhWwjtHD0P0MUBSx74ehuhk1D3THoZoZ5wkWeLkOEofB9lHgRgtTJIjzjjtNDLnJp1L1BCjQJEYIMZ4E9PuuWdJ0s64rpTKC7GHIZqYJkWGQXppYpp9HGSUTuZIsZdDbp8ccQrE3D23M8Yz7Gdax9EsSZIssJ+nWaKGo/RRUkNW2toyg+zmMP0cpp9ROkmRYTeDavRKv7mTI9zJEXLEGaGLBDmy1NPHAAViSnQ1un6/pO+YfRwkTo4JWtnJMAPsce+9JAvu/xYm3dgapcASNWRIsY+DZGgkR4J9HCRHgiVqyJOgnTHu4WmWqGaYbgbZTQ9DlIiQJUkNS+SI8xCPEaFElnrXPgrEaGKaEbqoZokWJhmhkxwJ5kgRU8O4ghJ5Eq7tJFQnN0cjGRqZosW9D9uYoIVJHVul34/QxRI12lqnGKeDnC5sFIhRJMokzXQywgxpMjQqqZ9lglb3ru5gDMAtJo3SRZwcMQquHRzmTtaIMEw3x+iljQliFJigVReKcqpEzTJHiiPcyTRpohSZI0WSrC7qyVhcT5ZG5liihhqWSDNDghwJcgzRQ4kI7YwToeTeJ1GK9DCkhnYTeRJEKarGNlQ/naGVOznCED0kWQDQcbCCFiaJ6vvdXt+q7W9lbOEcS9Q4FVmOOCf0vQMydhSUqEqQZ5BeCjr/yJBihC4G6aWFSfeOKei4M6pzs15d3FjTMaBIjD0cpYlpTtBNgjy9HCNKgSRZEuRpZYIoRVqYYi+HiJOjniwzNJEgR68alV2McidHEKW1jOUgavx9HHTvz0bmKFHhzp1VRU2GFFEKdDJCgjzjtDNFC0vUMEivqvLriVDiEHt1jKlmiNsAKBDTOWhC3+lNSpYV3DvGqlztPLlIjBamdJyTPpXQfgUwSQslIkpUzWmf7iRKgUf4BDkSFIlyD0/TSIYhepiglWG6KSoxCNDNsL43xOvhLg6RpZ59OjdaIEkNy8yR4hi95InrAmyOKVo4QTfTpN3cOUOKGZpIMcc+Drr5aYYUU7SQoZEiMfbzDDnixCjQwiRZklSzRCsTbjyrUe+OIXpIMefGHjtORCixh6M67qXcmFEiQhcjrBHhEHt5mM+7+huk183VT9DNOO08zKM0qbp5iB7GaOcw/eRIsIejzJHiMHcyRQvNWtYX6SFOjixJxulwczhZ+GgkTo57eIZORt1717YLO48Yose19RE6OcRexmmnmxM0MU2RmM4zW9nHs3QwroTuGms6Xh2jl4yOkTIHz3E/B+hihBG6iFBioWxuWUGJGAVmaOKILu5P0Ip4sjS6djKqpMAErdov5HpFoqTIOPImQyPjSj7ad8GtjmqWmaSFCVrJkGKIHg5zp1OQ2fl/C5N0M0wNS8zQRFqJPiGTY8QoAjKvSDHHbgZJM81eDpEiQzOTzsaOUSSrs5OD7CNCiR6GGKSXB3mcJFkqKNHOOFEKRCgxRyMR1nRROMES1RxlD1EKDKkwwNolfQw4G0f2jwO4+dIEbRRVxTZIL+N0MEeKYbopEaGTETce9TAEQIKcm89Ze9Ge/yD7SDNNKxOkmKOXY1on0jZjFJgjRa+qGe2Y/wz7WVJRQRcjFIg5G2+GtM4311RJltTSL5EjgXhRDDOtnn3WLoxRcONhliQlIrQwSTvjWDX0EjU8zoM6rxehhLXFHuQJ9vO0kmMndHElq++SHF2M8iCPU1JbCyBOjiamSZIlzTR7GOAA96tdnNR7aXZ9vZNRuhihnTGSZBmjnRPsZFLV7Hb+O0IXQ9zmeItWztDOOD0MOV4B0PdGhhwJJmglr3M/+zzWiHCMXha0LD0MuT7fxoQbQ+2zsFxJHwPOjrBjme0Dw3TrfFfGo4d4jGG6WaLG2R8lIozRzpPc7/ZLkGOYbnqVJykS0/F/jU5GqGGJNSUyh+hxNnOOhNa/cFfl9lNJxT4JcmRI0c64juXtJMhzgm7amCDNNC1MElMhU6eKH1JkGKedar221FuGJqZpZI4JWp1q+tVwTQi97YxxjF5yOtG1nTGhRg9AhhRrSjR0M0wXI2pAJSlRwSC9dDFCBSVX0RlS1LBMjjjtjLGPZ2nRgapIlGnSHGKvG0CG2amdaI0ehoiwphOFRpqYcYPTMDt1ctbsypYl6RqufcHbic2T3M8ErQyy2xlGVg4M6Cp9CsAZNXawnqCVBZLEKDJKl2uEfQyQZoY5nbRO0sKdHKGdcQAmaXYdWzpY2hlKg+ymSNTVbRPT1LDsXpw5NVHsc0iS5Sh7mKFJJ27yjA7TT4EoU0rIgAyk7Yw7YmaCNkaU4Pwgf+zUDQe5WwmKEySVFAPc/xHtTHl1iS6oBiXJAl2MMEQPjWToZEQHYiHhorpyk1alhiX7LINeJMajPEwLkzzHXlLMuefXzjgtTNLDECnmuIenyZDiPp7kW/mMK9sejjJKp04mMq4uP8O3UqF0WEonIkmyDNNNjZqhdtKVUnbdDnKykt/ONGkOcD/ijipKwYK6pIzT7kjVEhFG6WI/T7tJZ1yflxiJFW7yaV3TrWIQoIVJ7uNJalimhyGamXREi5RHjJ7D9JOlnk/x7fQwRC+D5EkwSK+b0D7Kw5ygmxma2KmEU5YkGRo5wH0M0cPT3IO40LfSyyAxiozTQUYHRwsZvBcYp13J1SaKRBmm+w0bb2503M4QNSy5SZolUEpElKqTSYAY+lO0KMH6CR4hR5ydDLt6sxOGfg7TxDT38aQjSO34IosPy0zrxG+CNiX2ZNLczTAlIhSVGO9VBVUFJcZod2P1MjXsZpB71GAao50lapxBMU0TY3Q4UlwIrxSjdBKhRI4Ex+h143ecvCMep2ly57IvwChF7RsVbtLVzCR3c5AerUM7hj3Mo/wT/ooiMX1RThGjSCtnuJ8DbixuZI4j3OkWRiyBmlCC3E46siSJUVBDbTct2n/sYoY9PkmWFHNEWKNLx6oYRWZool9dmESZM6JkZj07GdZ+IaSQHZf3cZASET7Ft7txr58j9HLMEa2NZFgg6Qgnq/5tZ1yJ2GUS5F1fb+UMaWbIkaCLEboZViKhkRRzLOt+dnJToRNMO0mapJkaltjJsCOdehhiVN9JcV18i+piVQtTbnxNIKE0xLguMkw3o3Qq8XLCkZb7edpNemUSOuMm252MMkKnW4wAGbusu8ZeDpEk6yZLcfKkyHCIvWT/f/L+97etNMvzBD9OyqRJS7ZkKsgUM+UUQ7IUVqW8UlkI5TrKkfZEYIyNQiY6u7O3dqq7BlvYWvQMZrFv9s2+msXsYv+AGeyvXtSiaqt6sianEpW1mVuBdcKRdoQrNKmA3FJb0XJIlkJKK4oKMkhLtmTSpMXwvjjne0j3Al0JbMdMdiQBw7ZEXt773Hufe57v+f6gn0FqHJFgkBp5Koyz5gvQJAVKAcBMsMYI26R9sT/GRsylOSpxHDkHfNcYJ+mLpk1GAaLoEwDbJMUFVshSi8KtRTIAzCvcJBngZIZBavwBf06CNhuM8QprX+xE9GvwMuld01lr/QBx/jW/DfqzdIdhB1gb5CgzRIl+9gIIB1vMaNHRzz5DlNh22XifgzoAS8y4rqJMP3sO1DVYZdLBwkH2/T4bcrBwjYmY26z+SccCVd+fpcYmYzEPgF3TvV4bSKal+cgWJ0V/nmYdaB6MhUOKJg1vmvQ5CD/BOv+vO/8Rd7jICFvRSAGYZokxNtlgjDoZFphjmJ2ow3T/H9Drx3LEPgM0SQaQcECfj1nnns5TocAudW+a9rPv8/0IY2yS98WJAe+jMcYACY6iaZzgiCrZGLt+9iiyHQDVFCsMUos6WOdAYKua0mtMsMAceZ/7clSiGbPEdMwtuhcP/XwVKFEmFw2VGZY4pI88ZZqkQjHQJkGJAmVvsHeTA+pkqJDnGtddQmwgZpFtZM9QJRs1rc6NgK81xplklSqDvM5thtnhOtfIU0E2Gz3+/FxlMq7rYXbYZJQ2PbHoPKCPtM/bGRoU2WaEbUa8WWZA92FXfWzPL2tWlGnTEw1Fqy8PHVguMuAwT51MnNMa2WjsliiQpxJNONWUI2xzkUV2GA7waZolb9qnmGOBJC2Wn0xTddCuTiYAzRmWotZN0GbXAebfhJfZCNlK+DK3ucQ8rzEf18Q2xWiWlcnHmlrrEtWQBUqArTd7aGP2Hn2+RrD1sK4D1YFW+62QpMUgVbLUuMsUJQoOWiViLu7jgG2KLDJLgRJS7PR4UyxN3RuvSfo4YMibvwnaUZvZ/VSNa3HQ6y8BiLrGNhkjS420N6AnWWWLEWoMRjNHBI885QDwtI8rXIg5a4TtWMtaQzrjYFSaSVZZYyLm7RIFqj6vC+Qssh3XapYaWxSjGSLQyuTITcZZY4/+AMQfOPmoD5P2DrPj41wlR5kkLd7kRuxblUEGqTLGpte/dbYYiUbhgc9bgK/VU6wwFfPjNiMU2CVLjRxl3uJtRtnggD7a9IQCTLW2HZtdGxe54/VuymfWnI9vhUlWyXlToEkyrrdhB+NEADAW6GCQAaqOeVhdvoORdlJRZw+zE/OZrjORHHp9Tla9r2eXrQEagYeMssEomxz5egZgw9cf+g41/UZ9XLXm2XOSgxpDAonzXv81ScYYmeS7TtkbTGXy0TDMObVA66p+9uPZcJvL5KiwyGwQEgD2naHaJPn/M6dbQ37IrxRrjBzS+yvNJ18IoKcFRIUcB74jbXpigdIgwzhrzPGBL/Tq5CgHeJGnTJVsFBsqyupkWOV8PHCB6K7lqDDAPnXSDPiD8R3edFQ4z12m2HRtfsvBli2Ksbj5Dj9hgnUAtnwS3WDMJ7taXHBGjV1ELLTXuR0FgRYGQvFVCCY4okY2qL4NMl7stLnKTZK0WOQik6xygRWucR11+ksMkabOHB/4jZmIRZgALWPIGRPCCgsDjDYYjQ7jDsPcZYr3eD3QejAmpFG3k9QxRwtNCGIV9PlDp0kyClm9rE9onfJBqrR8Qtc5T9FkmqUo8KZZBqBCngK7DFJjgzFG2HrhAbLnBa8K3wRH5P2mMebRUEy+v88PouOfclDggL4A6VaZxBh8regibjJGgqMo6Hq9w6Kirp99rnIrkHLr6q8wwhbXuB4gnFguku0acGwLd6H4AvvsoZcJYLtNIro/JQoB+u47JXeYHVaZZJkZthlhh2EK7Dq4aV1+FaYFSjTIRGdz1xeuKqAyPmmK2VN0kLVGlipZJlmNIm+UDcrOTPiAOUoMxQNsktUADwQ0ipmoCa/7HO7TT4MMOSqI7SJgRg+TL/vrq+wGGL1LIZgG6pwDvrA8Yplpb1zYYtQeZrsx8V/nmj9AKj7mNg+quAEb921GWGOCHtoOYj0IH5A2CRa5CMA2I8GMEABVJhfziFjT6iDqulSR+Q5vxHyR8cWJAbxNf8D1BMO5nz0mWCNL1QHMBD/hO+zTzxAlbnM5WMla2LXpiftHDZ9VJoMhpa7ptoON5k2XDeBGrIKcswGbJOO6vM1lfsT3+YA5CuxG10/XZd25GOpGSpqnokcs31UmA9BRwbDu21IHvUkqQIcSBYpsB9t8gH3WfUGrbvcaEz4X9EcH04rfPW8l9Mbvy+Q48mWBCucyOZeeGot3n37uMEuOip9XmztvcjU8axqYB6b2Wwx3dUitudIbIJdYBRVfXi8wF8/BDQfy9ulnixHylKPbn3dvwH722Kc/nhl7vk0xo+uknYmTdbbiNj1eIM+xwKwvIncYJks1CnMr+AosM02GRnSlTdJj9g26prSILJOP8VRhOMMykiDmqTDPJfrZo0CJORbi/lxjIjrOe/75GlmyzrwTy2CdiVgQC4zY9wXAAb20OP7vfvL5NXu1SbDKZDCpjDl0FNeTAKQ8ZXYYduC9CqhW2Q2GVZ4yK1xgmB0WnSHUIEPJ2V7D7MQzfZ9+Nt32YtMZpaqhuq8hIBgvC8wFuGuLKQMeDSheD9aGgOcNRplgjRRNpG6w63CGMTaCNZL1rvuaMyjylF2aeRDXkMZK88+3L/5/nOXRE1I7+Y/pebFPfyzgBKBpTMR+ENOjQp5tXyTnfXEpyZtAzDppTG6+Hw0aUx7YAmnLQfUcZV8UJWPOFkg64E3oAfaD8ahFSsuZmKtMBlCv87DtjSLts8ZLrOM85WguCBhQbZrgKOqm21x2Rq4tiMdZ51UW4vmwynny7lUMNh8sMeMNq1w0KcSU32Ik5j/7+ZADjRXkAbrGBFn34hthmzd5xxlVvSwyG+yTOmkq5ONZB/A6770AHF7hFoNU2WTM2XdjFNhllE0KlDhywNiAwwmvcY3AoAaZjtW2Yc3qdSa4zeuscp4SQ1T8eSGmYPerj8NgqIp5ohqu6kC45kLAGfI9TLLKsDO6V5ji8snb9LMXwIWeh01SrDIZC/Ben99/E14pnpHyCgGIOnyfft7jspMzDkg6q04g+d/wFgvMBXDVzz6LzHKWHfa8AfXA7xkjElitdIeLzg6u000QqWNqgBQtb6SUEQN4mxHG2HC2q0CNWqxhs5iXrAGxPX6vpJhklQnWqJCL+sEaBSV2OOtA9DYlhgIItrkzQYVcPM9v8GbM12LSqY7LUmOfgZgnNQ+q0dv2ukhrH61/RKyZZikAuCnuer2TJksNsXV1nxpYsxdqpBIFthmhQj5qmtu8HhZWY2xSI0uZPDWy/DF/1MWu7onnPxAS5lUmQylVJev1eD4ah3/Gf8wGYwyzg1QJYJhLiQILvAp0aqBhdqJBJYBODVGDcK2+T3BEy3GDBG02GQuyiQH1A1TJkqfCmDPLSgyFMnGFKcB8tee5FOq0CdZjnaK6usogOcp8wJxvx4CuFaYok2fP14wGdDWYZjnmR7AmwwTrwRy0ZnyLHOUgBhlU1ornqshOG9GoMFKXmvViUk6yStlZhANey5stW48fXx93HJyTSqfT7DYmfx8HlMmH4uUS7yN1T4dFeMSKg+eqb1V/CgSvMRh1UvJXVLN9IYBejTNI1qJu4BrjrDHOkU8S+/THAVmHs0WaOjMs08Zoh3qvuglGb7Ri4QZvuMTCpEKbjFKiwO/yNkOU6OWA7/DTF9Bhse3GHUntDFaLFql4WAm0sBOTC8AODL3V5KKCA2zhmKTFKpNx7BnqIYe7wi3S1ONiyFJllsV4mKtDrEVjhgZlcoHWH9AbBa66aAf0McoGOSrOzCgjVsk8l5jxG8GkuRsMulwhT4XXmA8kXQtSdRrFdFCBZVp1u8CSjq7XSfPAQSmwC90m1/5gA2ly3eEsU6ywyGxMKlWy/kBKscBcsHH0kFBhrgl4myI7DLPEdLB4BJ7VyfABczExT7oHohZbG4yxxjg3uUK3bHeBOdYYZ4E5Ug72ifWmcdZifoQt75iOBcgo+neDDMtMR4c67xOLjFzrpOlxkC9HmVE2WGEqQJtx1nid9+L61s8la9BDfZCqL55zbFOMcVRn5Mj/BniPyyww55O+yZlzVPgD/iw6aAvMBYAouXPLWSYyEtUCHF6UYya8+6x9m2GJUTbjmtZ9V3Umbj97scDRg/iZL5y/7K9f8o0AM45IODMgx6gzHS4xzwRrzs5aQf5GSZrsOjBxgRUuc5shSrF4qjgIp+6qroOWb18gidhiK0xF0fy6d4NNFNpPgd0XinLNl5LJG3hcIcERd93nKUOdf8SPMPv6NmtMMMkqTZL0ckCSJoNUmWaJORaiWSD/Jc05fRxwgRUO6GOKlWB8iqFQosAa4wAckcDk4ePRzdNCWL+XPYIaFYPOmGqR5Cq36KHNOOtkqXGFW1zhVgAvCnWoOfNazBndDyqM1JzpZ5/L3EaS5mmWA8BreAGzwpRLTbNc51rMu+rQXeZ2sMzEClMXWMCbGOqz3Im5v+XAR96NHFTc6BmmbrlAqmF2Qoog+egEa1zjOgCvskCesoPKg4hVPMoG46w5ADeAWS4ccIn5FwB6FYoTrAfQf43rDFKLa2TEGw7TLJOiRZYq486WS9EKYCxPJRp5w+xEk6rKIG16ojsqAFhSyVUmuc412iT8ubjjHlwFJlmNfQdQgNYI24j1pMIsScuBt4qHeihEoIfL3Pbj3WOKFd9uM7arz4pZYwuUfFdN1B9zoNhR3YDEl/1lUmWTVvZxEJJrMXVXuMAe/SQ4CvBgjM2Q4PfQDgaAGH2XeY8ZljBvx+1QbtTIcpWbwZRoOeguKZIxcXsDQFzlPPNc4iZX4jmu5pbuu2WmGfSmhDGgjjz0Z5NVJhmiFJ16Ne7SNKKuLLLNLHeYYI0J1qLDr/pJz2f5F8nCQuOTpsFVboaqRQD8MDtcYIVFLgbLQmzaeS4F2CPgT/J/LWi0rWF2WGaadQcD5AkHBEAKBnze5rLXo+lgwPazF/eLwIYmKcZZp0qWdZ+7Jf0XcNnHQSyeVEeWybHGON/jx8yxEPNMwdma5vtVj6YQEDWaGrUZGmwyRpm8n48e5N1oTPZcsMuyVLnMexgDezMWuFOskPB9q/gCW3K7fvbIUY75K0kzgFDVedsUXZZoUu5RNviAuZAC9rPPLgWStELxUSfj7dYaE6xRosCYhxCUGGLcn32q1QWITLBOkyQNJ0foete5KLJNkhazLDowXmGaZT83E87CaTlYmPGmUT6YUWrMShYJxkYsUHJdjQGkC8xRoBTXj45RC+wWJnFcYzz2SU1yNSq/7K9dvsokq+zRz4/4Pg1fK+g5qPtghamwzwHzGpviLmNsBlgni5tBB9gG2GeWRQrset1Up9dXr1KsjbGB7At2HVhp+VpALwHYalaqOSIFXMvZvkM+ly5yEdmVdJjEyxTZiuadSDUtksyxEOs4MVPXmAgVR5sEr3PbFU9mp9TyNeAOw4ywxSBVpKDTulzPfTWh9TJZaMZrI2NKiZywxHRIyUUSGaQW+zjQdQ03SMezRo1LwGXEps5K0vL1fo2cs90kcTcps+ER+/QHEUXgkyzBBGCZnLgDrF/mvZhzDeS3Zo6eS0CoA1aZ5K6z+WZY4oC+qBd1vagBqSa5ZPrmpZxFjfMF5kLdsskYN7nKKBtkqcZcssIUUk5qe5LUrzFOjUGGvCHRx0HYF6geSFNnmekXrjOxsEfZRCol3R9v85Y/OxKxFhhhO1RK1sTKYbkMpnJTAy/tdbtk4m16+BH/KJ5zSa/odT3qeSyS1iSrzLHAIDXK5LnN5aiJ+zhgntcw1ZXtA8AYmywxwzyXWGEKkX+W3P83T5lrXKfkz4QGJ36l+eQLCcX4jBxZqoHw9rPHBVYCue9nz7ut2zFIoh1L1tLPPnedXmsSHgOMrnKTKtkAq7R4azoib5+3EIsG6Siu+zggT5ktZzrpO0oMMcdCTDD97MeA72MeA7Pc4cgf7Pv0M81yUD4lgcpSZZPRAK3Ehkk6cmwXkoEtFhZRjEWgJknrWA5Q8cW4mIrW7bjHujMBJL1cZTIW5ZJAGNBTfqGoNWZXiV0KzLpRozqwWvirizOAyXEz1INmrK6JKMNVnyTkp3Loi5JJVllihinuksBSevboZ5gHUShKsqqCWOdPk5SowyqY3uLt6Orr5heYqo6CbjItKJskeYMb5KgwzRKDXig3faHdzx7D7HCb12Ps85TZw1gso37u5UOS80XEbS6zj/mzgLHg3uBGPDDe4zJKgxUQ1ibh9NtkPHBaTv8VCGpy1UHfu2b4XYg9okJfDJx+9h3sziHvu6LL3C/4hC+2lEBN65wNoeQgLTBLzhgzuq8BdTruUTZJ0mTA74kD+uJ7K+S5zO2YHAUkWECLFSRif7bpocZgTLjqzvb6dr/srx6fNwap8Xv8MMBpeXBMPLlP/mQlFmZgY32VW0yyygJzDFEKxtUdLsYCsJ89agxSohDAlDp9F1lknwG/bw1Im2MhwKB+zEv0CAsTqnuBIqa0Gg1jTmuXH98uBWaay2RSBsZd5A53uMj3+DFXHv0t26e/Ht3QTkOij14OuMhisDcEYoilLclckyS/236bo0SCSWefSZL8KgtsMsYI2z7njjHKBmAFnHk93Y7CcJXJkKdMPfmQds9X6E+ZFOka1xllwwF689a8yB1aJBlhO0BHKxhrzLIYHbUsNSStrHlRNskqY81N+lN7UWjNORtELK19zFdlihX6mgfMp2yhbezlJdr0MMJWgE9bjCC/uh7aTLZX2UkMh9eeMVU6nVfAZXlG3U+4J1zO2Zv/F/4z3uQGvZh/bYtkzDdiPWoh2ePPY4EdVbK83gU+zrUXWE1MMsVdKuR5gxvIw+9/zX9FmTyTrMaYTrPMJKsscpECu4ywFQxlNewKzRK3U5d9sXpIgV3E+pMsa5sRfpe3KZPnooPgJQp858n/G05agVZws3ogAMsCJdaYYJolZrmD5GRa/Atw0fYkKZR8TIsazc021tskOKLINkckwk+vTpoPmOOf8AM2GGUQkxB9wByXmGebEZcO2mKpyDb/rXvNfplfh/Qyx0J4VMqrUOoGLRD1nLvN6wEINP0esIVfI1h4JtsuOzvSFqIC2Xs54CZXkXyyTM4BmrsBXmRoOGCdD5mtyQvt+Thfu8QfZf+YBmlKDEUdMeGet6qbDDw2TzxJhbMunNmnnxG2mGCNBW8+CvSruUypTpo09XhW6jkp9QIYS9maslbrVrsakAlvqhTZppcDBth3+5ahaFJYYNwd9hkgT8XnrnXMk9gs5vfp56J7SYuFMskqq5wnSzVYBhb8Zs0BqV/kyWm1TZUlpgMYa2B+iePuDbXBaNQv7/E6syw62/KiS39LDGAeT91M6TUmuMx7LzStoekNyWQsntokGGCfG7zhrN9MgEkGqe8hH8xJ7tEgzT4DlBjiNq/zJjeivr/FlahhrTlqIOKkz7s9XjcJ0NIYiHkoG5UMjQCKezmgyHYA+UeYfHKZaUx1VGaXAuOskfTmkpgpWrTqWhPwKFBBNaaaPmKPV/z6F9PKEnVrfm+aj+N5Z9YtMOd2C6O+Ntoj7aCQPKUlaf4+P+IWVxEJwkI4UrE/ahBlqYW00rxjsxzSF961Yud/Qi/w//jvZ1L6H/B1mkf0YzYqrzEfzxAwhrgULtMsoaTWGtkgb9Rcrq/nv+TSnTouE8Cz7qEGGaoM0nBSxix32GaENA0SHNHr51CKAHmZCjBS7TqMBafUyYRlgq3RbwXQosYnGIBVJk/TyTMC3nY4S9qvx6L7usn6SA0ISYBLFKhgwZJg86GA4X36GXfbijvMOgiTC+WK1nkjbId6xUKXCtHYEatUMsxlZqJZUSEXktIdhtnFLEgEiMr3/Qq34jrWPCTWrO1zI0BEzUebjEadLIDQBJfVaKT2cRDKEJuvM650s30bYJ8LrPA2b0UDaIUpLrLIDEtBkOlm/ElpICKLZPdae+7THwq6PJVoPkphs80IN3iTUTY4yw5i2gmcN5/9zWiCJ2my7s9YAdaSzppyyUC2G7zBm7wTa00Bk2IMaswFrlkDO+V4TxXzq7e6bJdCjIXAYsmx5Yf4Y/4Bs9yJba0zHveOwqZ0bPLU72ef7/OjWOva+bAnwAjbbDmOoflumxGucItVJqNplKHBiOMDQ5T4Cd9lljtR/6RoMscCPb+iv/Kx58+f//89KcXGjh07BTz6Tx/95/Sd+gpJLJVGdGBp3cVcStLkA+ZI02DQTyR0TPqFZsqItdtcv+1Ml1UmmWEJIAAMAzMsLOES83EylpkOqrrYWALdBGwJdDygjwVepcg2F734v8Q8S0zHhZujzDIz9HEQFNKL3InOcNbpuy1SYay7w9m4see5RJsEv88PAs2ukqXo1Hdp1msMMsUKd7iI+e2MekFmElT5GghQK7LFESbNFfh2QB8Kiph2FmSLJKtMhkm+9lk3rW7IcdY4pM99Wswf6SKL7DqIptAHUWrVaZV8RhK0EZeZ1bwrqcLCZBa1uFlVOIEtmFY5j6XbVGnS8SRRcbPKJPIlsrRaY0QI/FSXvE6GYXYCbTc/h0NSNF1cZwEeetBoApxgLR4Yw+ywwRhFtuJ622aEKVZCaqDgEMmrzVelBwWfaMEIRpVWN8SkkLP0ccBlbrPAq4H6v8XfROdZD/2JrkLPjLRtAtM5OCLBHd/eG9wIcLdCnjkWENVek7/5UOZjotHipk2CeS4xx0LIgfJUMC+hwSgUezGmlWjDkuRo0ZajHNK5RS5y4fFt/jen/wLg9PPnzx//O5uIfk1emg//j4/+F3x+qp9LzPMfLP93PD0HOye/zrnSJzw7Ce0eOPEhPD8H1TO99D05ZPPky0w+/JjqmV7kg/PV5UdwBJ/N9to5evI0Prd25hsx3zTIMNzc4eTK5/x89n9MlioXHt7n4PRxTq08gydAAXgAj3/nOKcWn0EKeAjPLsLxHfjsm71kmnVO3vscnsDz81A/+RUOUn189aNHPB2GE/fsMxzB02/bMZ94Ak9PwokdePjKCc589JTH545zkOijv7lPM2Uenb+18zFeZ0Vb6ZfTL1mXrn3AqfIznp6Gg5O9DD485NjH/t4T8MtvvsQuBb5V+Vd8mjtNkyRnH34GQOnMGfraBySfPrP9A8jDvxw+z29/eI9nw3D8ITw/Dcdq/vs2UAPOAVvwd3Nn+NrOQ0jAR4Vv8MrOL/lo+BuMPPklJ3bg2RBsn/46hWaJk7XP+bjwVV7e+ZTPhnt56eeHUIRnZ+D4Ezu2X+ZeigXeK/d/yZOzX+Hk9c8hj437I3jyra9wsvY5j/PHOVXzc3QEz3JwcPoEZxaeQtH2jxzQBBLw8bmvAjDYrpE+fMbxJlCCZ0Vo9B6nnsjw1cojqGB/zvh4axtHfuwF+/1n03ZtnSk95WHhBKlmi+TTz+0avQ9Pz9l5/2y2l5d2DuGRb++M7dvj2eNUE1lernzK3+XO8LWPHsIh0AvPc3DsKTw9DSdKwGl4cvorrKUmyFPma1sPbd+/6ce8/JS/mz7D1z58CKeBJ/DpK6fZYZipJx9y4r7t98e5r/IOb/K//OhfQMLO5/McNFNw++TvcJFFu1cqdqxPpr5C5snnHCXg+GP4bLiX/keHHL8P786+yrcXPrDxeAqcxM7JyjP72ZPO2HPazt3zLBx7YJfSsyK0TnyFxNHntE6YhPbUx89sjE7Cp7nTfHX5EU/PwerJ80w+uUf9pI3zu80Zfvf0HfgSzoeaC7/76P/OsVO98dyQh6axLA1Y3qOfa1xn00E/NciAYOwJJNViweq1uViAigHVHeKkmkYLwwz1eA6rxul1popJFc1TWQbokuh2L7qkmshRIUuVii+eVffo8wmOol6SdEmNNQFbYuYnaYZsSfWWfHw3GXPunbHm57kUdck+/Uw509nq4yQD3kAdYTue4WKK1sj6Qn0zQH81Swaphr+g7BgO6YtzIQ/SljftwWRj8iFWo6bpTBF5Okut8B6XucbPaNDxZtVCWp8d8qZtjWyABwLDJ1mNWnGELa5zLRpWRhLoReE8RbbDww6IOjdDnQXmEJu744ddD2mv5LGqnbTInWSVW1whSy2UIj/mH/B7/JCKL+iMaVzu8mk0KwgZuO9gjRnZmdgYWvN4iRmb59zfdpdCAGg6J3N8ENLlBeb4Dj+JACPZGon90aYnFpY6PmPAFoPRI7WQpJALvIq8AleZDLB5ihXWGGfb/cTMP8ok6ItcjDWfxkrHZd5oVnNXyDHOGutMMMpmqAfU1Bx5/K/4v57+38OXcC6Eznz4x4/eYv3UqwGISd2kxbwAZdmJyE9OSh55YopIIKBE85zWIPNc4gq3UKCfNX5bocjqboCJfd8NyskewBiARsYQm+vIgXMgyA4mrTdJ5wxLlH2eu8AKW86olydkyrUKy8xwmfcCVG/TEw1RMaS1vpfXs9h2Slg1z7nMC/Yj8m0z6w+bp7XG3qXAA4bDVmCYHW5yBakELjFPiSF2OBvr4hG2ULCHWPY1skyzhHzHMzScqdiI582My3slqdb4D1JjnkuMskmFHJe5HV6BsmhJOKFEJAo9DxaYC6swXQ8KGRWgu8NwsJu3GKHINu9xmX0GgqkpwHDM7ZYAbwjb/ajmhp61BnblKLAbP2+TiHlZc/cKU9EwEHin6wYIZrld83uhAlxmhmtcJ0UzfGGlcJTFRdKtLYAga51lJwDjJsnYH9USdTLMshg5BnqGZ53ln6LFClMxH6vBq0Z8iYKrDS+yyZj7eFvjf88bw/Ipr5JFFhTyplZwlvZ7jXGuciuwFiMVLDLAvnvvXSRFi+OPa/xvT/8p/D3z4RfC0LMdeh5Az02uIPNVA+CWkR+HWA47DEdHv0WKdSaCWbfPAEW22MOovpZIuhbePBsOdFzmPa5zje/yU8bYZJOxuMG7PXPU8Zdsssogkn/NsEyGOjd4k7d4O6RfMvJv08NdpniTdwJZVld4yDuDQNyM8tHTCR/mAfK3A4IdmAgOoMmJhP7LIFkJQ+rqpZ1NIaqyGXaOxANf3hZ5yi90BwTOXHLj1V4fBzHnpl220m0IDcZm1HlSQuqRF40KxkjRdBmuFQ9rTASYpfHuNjvWtiULXmaaORbCD0cypkFq0YXRRKsbb4Rtplki5bISTa5zLFBl0L1EmhzS8abp5YC7rvnvMNT6Oe+eDxpHSdTuMuUAViYeaJLNqQAyyYp1XiSXPvDtKKlxjfFg22Wox3mwJLdaTEAC18yfz5gfm54yple3Z1Pe/SPVLZNMQ4sV+QAY5bnILIsorr1FCgV+yCvrMredwWUyWYG+kiWC0dC3vbD4Ib/HH/In0dGY8EJS3Z4D+vgeP45urQU8pHj4GyIxG+M+21xggjVYhhM/g3MnP4FvwvE2HD8DXIdjCXjp6BAW4bf4GJrwUuLQgJ8V4CRwAl76yIGUM0Abjh3BK0e/dHDtEKaxf9fgP/jwv7P3ZjHgLocBEfeBCpy6/syAnvP2/uMP4XkBXnr/0J4OT+29x57Ayfc/5+TcI+iBE0/tuzkCHsGJv8TAqSk4UbOfnSk/hY/g1INnnHr6EE7AyXNPOVP62N5bAnaBU0DeOpcv3T+0nxfgxF/Aid85NMBpCzzZnm/UPuMbJz6DFHz1F48g68d0BF/784fwbTtemv73ffjto3t2fDngXTgmcOuE77eAmo/ha6WH9l098Mr9X0ITXknZ37wLxx/Bubc+sXF7Ci9vfQqn4aWVQztHR3B8F/hbG6NvfPszeAA8fcjTN+DkTz43cO4h8QQ+ufw5PIBTU8/gnh0/wPH7kHqjZefwx8CQn7uPgW/Dyzuf2neWfXsAb8DxJhz/8BmnHj2yY1wEvgm842NS8ONv+rEbPsDg2UMDpx7Amd6nneO5B7xsoB4fwkvNQ9sPv254B5iFvkfPOPX0U1iG3GsP7XtL9t3H1u08nTjt5/M1OPngc3774T27jh7Yvh1/H868/BQewNeOHsIdv0aewFefPuKrPY94NgwsAEV4+ehTXj79L2zcztn7jp004DH7mklfT3zo12oTTpY+N8D1Qzv3L6UO7fgfwtyTDwysKwPLds+dOu/+JVu+jzk/phPAHBxb8XvhERxfhuPnPoeTcOLhM7t/CjZm5OCrpUd2bZfgt0/bNXmCp/Ay/E7lDl/212ksVOYOs1zj+gvgj6RIE6xHUrQ8bmtkXRKepkSBC6xw18EKW3gO0SDNJqPOTO6PQjxFM0y2E7RdTGVSoComY5cPzhgb8YyWF6zYBpJ3StJdJx2LkVtc4ff4YbCqgFi0iR0IoDAoAX+XuR0L8BFna5mUvBUNOi2gPnCpk1giYg+MsMU+AwE+qRZWSrTJ25tc5j1WuBALMLNi2XRm/QayfVHgmtgOYv1ZWNFeKEVU246wxSFK9k3EQnaZaeSvKpWEFrF5KgxSZYmZAIOsxtxl3eukJslYmG4wxhR3g50mCbFCUiqu5jBrCwMKLjHPT/kOVQfStLhXbS65q2TJg9QC1Ci7tYnqlzppkjTDk7ZFMsBTAVfm09WDEsxTNLnONUbYpkKOJine4m3kXy2roFE2g32sWlBBgcZSvRyN/BG245oTwzXBEf+Mf848l7BQFQEfjZCv7jAcCdGX3G5Hx2CqkSSjbIYUXuz6eS4hO5yGM7EO6AtfV7GaF3gVGeiLES/msxRU3QF/FhiUCsDd1h/jsTYUSPxlf23xchfwn3A2pYHgYhGpWTHLHe4yFQ0CU3FVXlDbyDOvQo40DZT8/Pv8AJPLDyGrjx2GmXFPczVKtDYWwUQeuQDyotR507yYps4WRcZ8DtEaXfYavRzwwIEbHZd88mSLcUAvs84Khg470e7NplunVGMNN8B+gEby0xSIJ3XCPv1MsM4trmBejrtUyHGby/wBf0bbJada0+ul0JsWqVDtdVhgyZCq6hyI7bvD2VCO7VJgwOcOrRMV2iPQPkE7lIDCQeqkwwtzlE02GWWeS8HiEripgI+Op3krWI9qdm0wGvJ3O2/JINpsUww/+gRtZ7s/QOE7+wzEHKN7WXPnFkUapF3qv8csi7zHZSSBliKliiV0az4GC30yW5a18PGWN7b5ZRuL+S3+hhStUN6JmGMqTmuEiWgjbEIAmvwIc85AlyotTSPWyGI4ZqizwViM4yZ5Z0q3gjktNZMaS0majLHJOhPO5C/H8XWTnAwPSHHg1/Ql5kPVKOs2EdzkTWuBQxcCw5Dt1rYWP3/P6wsB9B6SpYEllu15NwsMjRUwYuygNPLnyrnXQ4KjuIEkIQJLlMtTpujUSTOrNnmuJsB5XovwCHUjf8jv8arLzJS8o26wTpr8BRIcBQprxVsjfCg2GSVPmRRNprgbYFmGhpuNl4PVJCRYvgdi/51lhxG2WWI6OhptEmEmrptenkGKLe+WZaiQM3PuXfo44Co3WWGKXi8E15jgBm/wh/xpsKgqWGKsxqrhN7iKmGpXZ9QKtj2kqd+l4DeCFbAaJ7HHTD60hckw1qmR5SZXTULl8hUxBsfY5M/4A17nNjsMh3RFXkYLzDHHggONZiJpPEUrcPPUoxhT8s0A+1RdwmcUbIsDB3tQLTLLqAeDXGKeQ/qYcVaieeVU2OFs+IS0SCEJYr/TmPWglKdVFvOFUgEn83QV57phe7zDkacSPmFZv6nPY8md0vmrc3GHi0yx4mPd5ixmFDxIjZtcpZ+9kPOqIFJHp02CQ/qi6E47W1WFsSQXenDKk0igs67DBEcBBBqoWuUGb7r/ZE90cQap8iY3gsqcoskKU+F1pqLfUohSSFY/yyJ03d9f9lcPbX7Cd/hPH/w/4Q0MEHjff1nEAKmfYiDLPQx0+S4G5J329wOcxYCJp/7zHQxY6cGAmVPAv8BAhxwGVPwEA15O+XvPEGAIYGDR3wKPbdvH2higIbx1BwMsTmEAkPbnZQwMawIfYUDIDgaqDAPv+ntWMPDjtG/vge9X0/fhsX3upbKDeU+AWf/5sh/HkR/73/rvz/p+6/dF30dt/x0fk/N+zCv+fwFZv/D9Peu/e+I/r/h2C34epn17P/P33/fvW/bjfEAApjz03+f92HPAdYyhlsXAm5f93x9hYNdrfmzOQOMXdFhz52ybJ//ycxuXR/7n277Py/7/b/m4rwBvAW9j4N19395/4ttz0A5n8fHAt/Vu5xiO/ZWPo86rWJQlOtfgtB/bO77/97Dr8R4cK/l+tLGIh0fAK/73QwzYavpYP/HPnvb/f+h/54Gf+z7k/Ly97Pv5pzYuxwu+PwLXHvl2z/tYnAZ+DL9dcZqmAOiajftxMRRf8XN7BBThxH9J537cAS7678GuiZqPW9N/dho7v20fX4HPb/n4P/L9+wgDY3v9mJvYNf6QDmN2iy/965A+TvOYS55crcCK86xS8WL730xvVwdd4Ik8DsfYREl0q0yyRZFBr1lMMdATzPqcS9L0nNQzT+wGgTxaAMtTTl13pU1KUqlntWoyNT8VfqTm7IE/8+reAO1nnwbpANLEtlCNLDa2zN7H3OoAcFMa24b89XIuqa+Q98T6dLAJpcyouxRIPqAZGrzNW0jmXmIogiWUhL3GRNjGyD+qQCnkfFmvG6UuMJ9eSd8G6OOQXl8E6xxL9tlDm0vMB2NO7A4DJJeiLrLFesXDbepe7xuIYGyhXgZd2inGhzyq3+JtpJyZ5B4LvMrr3I76rUmSe0zyBjeoYb5+UlxYKEvF67sECv2pk+EqNzmgjyWm6eOQaZZjLBV2A1Z3dprXxvTUorockt/9AJzFptHa6KInpre91W9gWx6FkakBr/RvMV0EimkRL6Bnvn2Jf5b451TIocC9HYa54sejxbvVwsM0SPMqCyG51bpFEmfVvxp3eQgCsaiXNHrDfckEChqrpzcsY0QoeJN3kBz6NI++0Hno1+X1iNOcoxKhArL3MFCm6oSJ/gDDlJ7+b7Lw1IxXQ7/PnUnrpN26ahcwQssUK8hL3Swj2vyI7/NH/DEFSvwxf8RFFrnHZKSfSok0ygbLjHkqvAVQ7tEfHnaSlhvTdtCtil53yb4lOAvAz1J1UGSIOT6g4dd+x9/SgMUjElzlVoDtamBobbLnd9Ogs26HKLHKJCMu3z3PKsvMMMIWCgWToklKtUlWkV1IN1tX86AYfgoJE+BsHmmXuMxtwO5xgTtgzSAxdQ8wz/tDn5MFVgmkb5FkhSmucT2eT0feDNLatcBuKBBlZ4CvDZO0WGOcTcYYpBaAmK4Zeffv08+c+yVLlWgs5LPMsPSCJYTCQvo4YDzsImzEzUpogHkusUsh5oQpVthgjH4sGOSAPgbYD6akWH81Bl8gQOl5pRBP2YrJ63Offpfm7vpYZ6L5oBA2JeDqJaBZ11KWKvJGXGTWgV4DQcXQn2CdFaaCEdiRhpsffZ0Mg+79LPuyLDVuczmA1j4OWWY6rpFJVlnhgoPmPUiGbczJBre5zBVn6qkGMIzDvM0/d1D973t9IaEYjziNmUQWw1sCCDqw/BiEpItCbIy8Qz9BYyhldYq7AfI1SXKJ+aDMD3rh089+mFOrQGqS4rwjr6KX1xw1VrKfCpW8ywGVvHSTq4DJCKpkSfpDc5HZoF+uMUGLpDOwWshPTKk2+swgtSgCdSFvYemSG4yFBOBNbmAmtntYoEbRO6xLXGLe5ZX56OAe0Msy06EJn2A9uoNzfBCF6zyXuMhijOcIW5QocJE7jji3YgJVZHgPbU/cGY+xLrIdbLleB7fkR9fwSU4afckL1KXL0HBvoxJzfBDF3RwLrDERVNqkT6LyHauTjkJYLLU1JiI5c5Mxfsz3WGUyjv0S886Uq4cZ9QTrLm8wVqi8Gse69P1aOMiLT+bHMm4GM6N9jXk2GI3FgkyM09SjmDFZihW5onOnqTPuqU92zVXo5cClHWdp00PLO5lNp3NvMspdpniHN1nzLsoMyyHVlXG4OmsKXlhgDkmDMjT8HksEwNzt1SawvOMj1UuFPD20uxIqW1zmNhWXs2hsH3hRr+0pnlum9mVytElwm9cxY1Mby1E2aX8x/YRfu9cWL6OYeM5iC/pFbLH/hA5DSoDRWQzEeBsDFT7CALE8Bs6BgULvYgyqDzFwZQUDCRO+vXfpAFmLwF/6+0oYWHTk+/IQAyReoQNKidR9z/czgYGA931bzk7jHX+Pnjdn/Oc7GHjxPh0gZdk/v+z7/AADMQS43fc/W76Pr/n/3/Ex+YWPhcClB/5dD/173vXv/TnG/LtPB3DTeLzbNZ4/98/jY7vl+4Vvv+mfE9BUwUCmc/73fd/eYx9bHc/Hvt0HwJT/fsvH4a98LMoY6Fbx3/2867h1Pn7u+/4xBpCKxSbygoDUd3xsXvZxEIjUQ+c6aQJ/4eNz5Md0HzunOuZ7dGS5j/z/P/f3yVP6sf9Z7NrHt3083/HjfuL7+XMM8PrIvwf/7o99ew98LHQsD3y/VzCQ7IgXQTGXwHKPYHHyCz8XFf/eH/vP/tK/p+LbFTiMb2fL31fy/X/XP/ML//d9//4Tvt2/pXPPvIGBmrpu38bOq/Zf+7Xi/1/EzlkPnWv3kY/XI9/Oz4BP+dK/zvLL8GZU2ukQJTYZi0CxeS6F15EWCbmuxpP5vRr8McwOWy6F+h4/5jK3gxU3xkawgvr8OdvHAYtcjOamGliSTnaDOvKhU/0oKxFJflRjyLd328WKCuyRsbo8mFK0kJ+ZUmjnuRRWHHqO65kpX2f5F2vxoW3r2S/TdQXfdMLoUi80x63ZbFY3o2xEwIGay2JupGkwxQqrTKIQjIr7oqWx9EQZiKvpWCPLPJfYZDTqm0FXeogNqNRcW1R3zPEFhNbIcourkfgthoTSA3/M9zigj9tcdnnhLnv0R432Y/4B+/Rzo/YmZXKUKEQdmaERTJYEFmR2iXlWuIDYkQI481QoUYjzU3UzdhEMNnzBfEAvt7jCSnOKNcbp48BlYAaWHSKD+cNgQklaLAmzAMaf8F2UdK+msiRYVhcmvcleQ/Y2Yh3p/GaoM9ZlKdTjC80MdYYTxoLSdSSm0C4FKuS5yRWqfg772WONCSrkGWUTs7mZCPKFzp2xKM27/LCrGTzFSjAO2/SQouVepQPIZF8N5R2G2WKEZabj+thkLOrzL/vrJT7jBm+GlLHh19mwN/EltVZImdiX8pkzmyEDBKdZZpZFimxTZAvJneXdLiBYQLxUSJbEfCNA2GF2OOvrQjEstY6TX7hktgJnFGIk1qC8hffp5yo3WWM8fNgE4BfYZcjXQQ0HRjQnaP2hxs9NrgS72Z4DvUgCDMaqEzFlhQuYDVCeCjkP3WzSxyF5yiFjl72AAt80f2r8jUFnwGWTVJBqZllklA2X45qfnZhgmuNH2AoCRZ5KeDqbDYApvSRprpOmTppFZtmlEOq3EkNsUwxfv3WX6S8xTcPPe9PlnlXHHhTgIWZhqksRBwQrTSF9SgyWFdWGs7oNQ1jAUttbMXc2XFlZYDcIWCNsR6BlmTySjuuZoXWpLL52GI7nzxAWpFN1XZnGZJVJFF5kHqLNmLcV+KFmi8hFYvXvM+BWV+YJmfbrTTiFzsMa48iTtiNV7wm/1DY94c8tz0+x0A143ERpwkBgB5OsMkgVBWCat75ZHOw7+N3HAbd5nSTm82gWZPY8n2aZa1znAisMuo/iWX75K80nXwig95AzQQdN0oqiCHBWXtk7m3uMssGYpz1uMkqNbKDRAtgGvfNVZZAMDe4yhdLx5lhglkVSNJllkU4SWB0FXkywziqTgbSK5qgHuRIawbqgNqhLHNDrF42BaOqSbFMMVFgyQvmxGI0yGbINFQEyPJY58gzLXGI+OiYyjJWvxAZjvM1bWGBCMWip5ne25aywsyhpNefFqhDlWRYpeyiFGUQPsE0xknPU7VWaoqTFuvnSTheVv4E6ORsuTdFkKqqoxsFunAfImLjq51NjrwJmirvRAR5jgyHM2FOSXlGtDzE5hW5IjXUOM4PX9gCWmUHpXJJDm6w6SYkhagyy4amZ0qx3G18qRUqAp8BTFYXGiCsHSKeJZZ/+SIZ8i7/xrstW7K86E5LiqJuW4Agl94gVcECff+9hSD4GqYWsN0WLRWbjASb2pNJkTcJkUuMs1aBoK8m4m5UgVkCSJj/i+wFS93FIlaz3pSsxvgmOUCouEA97echowaTFkzpyKnRBiZV2PpQC+mV/Wce/zHlWbaF/HwMJwACCRUICyxMMYHmKgQBPgD/x3y1ioIBANYESSxiIIMaPZJTNrvcm/P/nMAmjGF5iV/2tf68ABoF9Yh09xICTBxjwcc//XqAjRfzQ/7wP/J8wYOSe78tDOiCNQKmT/qeGAWonMaDnSdd2PvbPLvr21v339/3nj/1zAlMWfVxTvm8/82MSA+5dH7Mnvg8/J6SVwcx76Nv6hW/3F74dAZfXMTCm5sdzvetYUj4uAi7F+HtCB8z5CwxwrPg23X+NFf/3Cgbclnxs36cD+j4B/hs6oNEpH6u2/0zn+23fxy06jLWT2PUjaWqPf48YhwL5lv172v4ZMeEqdK6bd/3c3CNYb5z2Y9/y9x76+0pdf9pd2/uFn7+K76u+s/va1bit+HGcp8O6rPn7F3yMh338T2KAm873+74vYs899u8G+GP/zBF23k/7NnP+HT8hfPn4K//Msv/8UdexCigtYvfjov9f563p+3mPzn1X8t+d9O/qBAt+aV9isE2wRo1sSF3Mk63KBqNMs+wNn05inUBAPctKFFhihnUmaJEKaxItTroDhtIO5ogRIXBnmyIWknHkTScLvTILl4FgHVxghQp5FIZRI8tl3nsBTKyQd4+xbEjTbIF66I3SUWRlYimIRQvG8fpPAWgH9PGD2j8hSTMAE8lPU7TYc2aaEhPNOzjtz3tTTGSos8kot7gSDEA9l5UwaL4+hWgAqibRggXoYmId8V8/+n3fQm+wshoOwCjRUfWe/J0KDgfKEqfALmuMs+4plSWGkD+XQuYmWPNapycYFTMsI688oEtKlYxaZo4PeJ3bDLPD72V/GCCEGJZzLJClFpLkLUaC5Zh2WZkZ1duCd5ZFZlmMZqXYlPrMECVmWCZLjd9P/YBZ7rDGOPO8RpJmkA7Erqk7M01SV1nr5J0woHPZpicW2WVX1Zh/VMMXrdNRr28z4qyReihh1PDWOuoWV1DokjFG7Yo0aXU+/LwyNGKx3Mchf8ifAFbbivEpJkuBXWpk4567zetxHampf0gfl7kd4JNxUo5okgxmoXy7JGO2QKEmF1n8jWHoDfEp17ge6zqdD8m3R9hGyfQj7vumpoNUVgf0scjFCCOQnc4YGwywzxQrKGhLa+k9+p1Rdx6lte/TH/LuJC23v0o6+GaEB1s/rIVlgO2HhSkomVgquyw1LnKHVSb5gDmUhCyg3hr8pqzacCKJUpHtWBv0s888rwXQpnTQlD9HRMSRh/oy00GKaTrZZpZFstRo+JpfDSEwQFlBE1o7mtWSAXxaSxYo8SY3onkgC4FJt2kSY1LsPSVPp91DL0MjSBZgawKFDu5SCJbxP+CvkYJKzRg1r4YoseKSazHvtEaXx2fZ5dfyi1VDTDL9NHXuMkURC4RouNxTFgYmsc4HO1Dr97Q3rsSc1/pf52XAx2iYB+5P13SJv1k8LDHNda6xRz/f5SekaMU62nxoTekIhhFc4ZZfl3dD4tyHJTkLxNTcvU8/73GZUTbct91sJhIcMUjNn8DG7rc02yIjbEUIhjEoK05YyUUw56bPdWIr1sl4/dLErNqyoS5skWSGpQgx3MNSztv08E/4AUmabPqzQ9jQm9xAlg4AK1xglE3HEtTMagTB6Vd5fSEUmdM8IkGGA3pZYzwuJnV5htlhD9NMdwcxCKGVREFBGUtMM8E617nGBGsMsB9efLoBFUmvi8xAsAaWVpNk1sMqDHHP+ACaTFUPFJsom9SxFKBdLPJaRYeZ1K5EV3TQCy3RLOX5J8BphC12XW4qGj/gHngNbnGFnE/WVjBaAIZQf9F42yTYclmrJJzq3AhMkS+Zurg5yiwwFwBeiaG4GTJeHGwyilKHJF+VtKWBJfCIhSbPNGMHNmNsL7DiyZQpMtS5yRUK7Ea3W8bCZafwqEMgk0qBUMPs8Cf8IUmaAZTpJpRXg66LNSaYZZFeOj4hktSmaEYnRR19gaqSPssbQp3jsgtpzDemSfnf6CyI0m5FmZWpkt/Kd6LXJxvrLJpsRYCVTYQWBPMObyLJsMw7r3IziqEmyUjL0fjJi1Ly3O5rQmwESwwbpIdyLI7U8ZP8VV4USi3WImnEH9ZiLahTrPsp5WBcgV22Xacpfwala6n4nGQ1OlBKszaeQgr57hTZZpFZknz2RUw/v3avb/BLhviM/+q/OOTUDUyLmAQ+h8A0d+iw3MRCEtDQAP6GkG3yrzHm0HFgEwMcbgM3MZBhHQMQDuhIJ+sYWHETeObbmcbYU/8aAyxWMQDiqxhYc4Q9IU4D/zUd9tVX/HtShEyXHt+fbaDq+7zlx/cZpq7uA+76/vydH/9f+3EJzBBgOd91jC9hgE4FGPR9/cS3V8PAyM/pgHYtH99H/vs1jHX2GGPG7dIB4H6JMaM2/fuPfFv4+9/1fz/x9+3TAZMWfCxqPv7uaUgDO5cHPmbu60bGzwMYcJfsOg5Jpov+u+f+fbpG/kv/3AAGRr3k29/z8U7SYSweYOf4jL//X/vYfIaBSYN0AC3oXGtf8f2Z98996p8T4KfraM23f8q/e4CO7LtbPiz59BGd66APu+Y+7fq+Cexc9fn29vz9R35cSd+Hf+3fU8eun1P+3Qdd2yr52Lzrx7Tmn/+XQL//u0EHnD7Azr32/QgDl/8ldl4H/Gd7/t1p//wpYAw773s+jh7+wSM/D3nsekti98Ln/l7VZtr/kp2Tp9f5jXglaVIjG95iYN1thWMoXEFAGIgVVQ1gYYfhMLy+zHsA3Ob18JLVglJ2E7Msssko51l1tUMzvF5VJwyzQ87rFXkHJWi797H56S4yS4N0LK4FHCmpt0QhmOwJ2qxyHksc3SDBEWNsINuSCdYxT6IRWqSY5B4H9PL97I+iVjRWQhr57hYocZOrDHYFcCitFqxxrLFVuqT5zPV6XWyNRC34OtLWctQkQ5SCUS/Wxz85/QMGvLk4RIlDX/CJca+FnWqbdTfRV6CcyYJzDlQkQppnC6reYM5p0alz2yIVPnRmFG6SVoUoAL5IqkaNJLuVffqRzYfVfofBHulOvBZZQHLvrLPvGmTChH6GpQCUV5gKNg/AHS4GwCcWSYK2AxAbNEhjwWX9UbdpvAxESwUD9QZvsk8/b/E2w+yE3FVMmyrZ8IHKe61ntXQj7qsEJm8tsEuTVIyVQveStKhg6fFqjP8hfxIN2HXGQx0jqaxshsRGUk064amiP+T3HDiyZrytSXJxLvfpZ8ETvqtkGWMzmvYV8mHd8wf8GX/MH9GiAfz5FzcJ/Zq8jKF6nA3G4r60WroZLC4xfQUq6z15yvHe7/LTaDCYHU8PG4yFlHEAC6ask2GGJXoxGwFrrGdijhtmh2WmkVx8memo6RW8I4+0JWYiIKNEwVl67QBbgFi3XfIEXwUHHtAbaz01dORLJ2DwDhfpdSKN1ovyLu3jIBoFQFgiJTBV0QVWQtqdph6NCUmS9xlAPuNagxUoscjFkNtL+bbrxzbg7KuGMyZTNKmQC9D9Bm8ySJUVpphlkQP6mGUxng1g99YgVbYpssMwFzwgUfOB1slSMg45c0zSYrNvKlNkixWmnHRRDlWZpNpaV2vNK389MWa7z5HStXWuTEFlicaS/RfY5RZXSPkaEuy5Iy97MLJGy4H6YR4EO36HYSZYpwdj2x3QxwNMWi+PffMobYV/vDCR7nwFe14YO/hs1z0w5O8ZdJWcWKxrjHOBFaoMBlFLz4+6s1R1bgRWDlGiO1xG13yCdnj2y2oMiOeuwqLS1FljHLNmWwl8wPxnzVtvnktMs4QFRjac7d3HMA/iutQYXeVWAMu/yusLYej184hBatzianRDzYwxHSwgo1aP+uCarFIJnZqE1F0D2GQ0uq6iY68xwa7fkJ0JoR0FhPTiGnxRhdVFusgdBjHT3iVmaJEM080iW4y7Ma1Qel3sohI3uzqE8l+TXLYP07WboeQA+wywwSg1BsOg+aLTo3M+gay7B5mOWYaVOcqY2egYooJ2+7aI6pz0i8ge2Hn+2iUKZfKh/dc2BGZpny059h6rTFLzTrEQ/G2KKBJaZslioa0yyTIzJDhyD7VWdMj36Q8G3T4DdKfK6IJt0xNo/xVu8jq3mWaZtMsHrHOX9u7jUXR+m85QM6Cs7lRn+SP0s8CrLDHjxe0WbXrooR37J/++A/o46w8kyRm2KbqEuIdlpoMi3A1caQIRxXaWO1jQSxMFeOi6McC6iGju3RIJycntvtkPerZ8F6pkueMybxU96jAX2WbD487Vxah7MSl5d5IWPbT5PX4Y/iUCtOUdWSYXiUKiC/d4QVYnjRKqFIcuOTgQD4tNRlFSWoeif0iZPPsMMMXdKAr6OGCGJR5y5ouYfn7tXkvMcIdZ6qQNRErSYb3tYwDBVzBw4XMMBDnuH877zwWQHdAB6k7TYSnV/D1JDBSRN9cTDCj5lI709FP//UPfFv79Z6C9R0cyu4+BJCeBUQyQ+go8r/q2XsIAKAVcJO1z9W0MBElhoJwku0/pAG2f+XcrWKMEjPi/j2OA1me+X/2+D9/AwEYlq37mx9r2Y/wqBrgM+rZO0mEYVjGgb9M/L/Am5ds/8vdqPE74/u75e85iDLgPfHsCRTfogLLPfdsnMbZYn4//AR2Z89cxEKeAnes+DCir+vdVMSAx7eOg85ykwwAUqHrk5+lzH4sKMI4BSyk6Mtk0Bog+8+/Tdzax6+ssBkRJXrpPB9iU36GYZL9Fh+33uX+27vuH/93jY73nvzvu79/3fTpFBzT9im+vz8elRSesQ9fysO/niI+v5OFiuX5CByT/Stf2n/s4fO4/f04HaGz4937df9/qek8du0dO0mG2QoeRedL3pe7jftqPuYGBxQf+maf+s5Z/j8D5etd2H/nPBviNeK3xCrsUuMsUddLBeNpklJtcoUmKt3krwI9x1iPRUH/nqEQHfsITBXtoh9dbt0dYixRjbLikcBB5dokZrw652BA7DHu9ZovLbUbooR0A2QhbvMXbjLBNxhkkepZLBZL0BbjAskn3cJKPEBDfW/bntiSmy8wEa1GNVXnNmWzV2PzXueb11WDUBJK9ggGB8v1T43WLEa9TLZmwSTI8BcWUapHkA+bIU45ntYAc7fuf8ocMUaKPw2ALVciTcX8hgZECDXNUYkEidqXsYGRBI2/Am1wNxowanNMuV1XDXPJYAV4GKvYEY02e01ZfrZCi6d56Q5Rd7aFmrMAMgbha2Oq8lihEM3KHYd7mLcZZD3mVEo5nWGaE7fACv841bnM5wOVBajGWPV7Dq4bSOZMKaIoVlpmmQo5hdhhlo0vpshtAphQm+/RziytkaLi1jtWDAn8kJTYPyQusM04vB1zlFmNs0scBS0xTosAVbgWjteEL3AEHHhNePwt8FAunTJ6LWKCPrluRAVRrb7mUzEDRRoCCqlEFoK9wgTd5hyd0fMi+zK9fcpaqr1FaLutsOJCqdeuRAwJ5yvRywCKzDg6kAqQRO7dCngXmgkTQDVaUyTHGBgogkMccGANaa9cr3GSTsWB4GYstxzTLjLERzDdjXKaC5bTtHqYG5g84o6kZbDupgyZZZY4PYi3W3RBIYdL8G7zhs7SB61rn3PUGjCmF+oO9lnZyyAjbHPq8uskom4xhycx3KbrKrE0PFXKxjr/Me8GsU4hEhVwomMou/91zUHrP51r9f9sl4xOsMen+n1qDJWgz6gGRmlPlNd5Dm7vOqjQG1ygt5x4mOCJJKxhuFrjZ4E1u0CQVAGyddMhtO2E/g4G3pHz9J4uEMrkgEek5uc8AbXpijtA92i3vlupQCb76ncbQbKJSbp91kTvMht2CXr2YP781guyZJquyfQbCK++AvnguCSTTs0jBqhuMcYCFQsovft9n7TQWaioMqUIuWHp6JhqYVmeUDcZZ85CXJhYyk/MWgzVM9LyS6q1JkjrpaKhZ8+6IRWZZZ4ICuy6ZLrDCFKbUtEyCDA1G2KaffeqkWWbat5fpslhIBCFplUnK5Pn8V+TefSGA3ld8MpJhoRhsNQaju6SbeZw1CuwGBVPA2Q3eCDqmaOhXuRnhAboQ9PAQkqtJRg9OnTRJA1SEGDo/hOixY2wEe6hJ0hHkfRcEjzHCFhOsMcyOA04N2vSwxjhKGJNvx5EXk0J/JT0wECnJLgUWmIvx0H6ICdaNCtcdUNOFbpOcdTZ10WxTRCw9K0j7SdLiGtcD4JGRsE2ce85uqweINMYmNbKhvTcNu02QMsbVxJl39p/Yi0rWAqLLqUJdD6Z+9oLFKNC15VJUsd8kLRXgVyNLmoabTxrrq9tfY9NvalFWJSvRpK0JtOXXg9iMJQrkqHj300BJo87aOGW8q6j0pAHMn9DYgs24znWMlq7U9A7oIItcxFJu+7jDRcbcL0BFvzrj2m8h+Aba5YI+DVYUv8XbFFySrP20+PUar3ObEbY9GckWEUqKHvSulB7aooVvMMoRifBwaZDhkD7kl6MutyS38qIZZSMmNHkHgXXCJZEaZZN+9nmfS/HAVfJvjWx0c+wh9uyLmH5+7V67XSat1OgwqI5hQMTndMC8JgYONLGFvoIIejBg5jkGXOz57/HtfAUDClp0QAzogExiBPZggMRX/G8wAKhu3/X55/4+ATYZ35ct/85HcExg46cYI09+e0/tuzMZ348nvt22H++RH2eaDiD1lA7Db5OO5PLzrvdU/XPyctN4nfDjOsDAIoFRf4cBbQIzT/i2PqcT9NH0fXzYtf2v+Pfrd2JSPfH3VDEgTsxJgVFPoLlHhx2452MjsFUAmGTBDf/9M9/mER2AR0zFPTqg657/qdBheB34d5307fRg18GGb+shnae7WHOf05F/Nugwz7bpsAl1/sU0zPg+9fjx/BK7nvZ8O9v+PgFTApHb/v0NPydV327K/+3nuKlt6e/Pu8bkoOtY/o6ONPkpxrzT952gw0h9hF2PB76Nxz5Oj/xv3Uc9/n2f+Hae+WcO6bz2fftPefG+fOT7oumrRkcm3EfnutUf6ISLCCjV+dPxPIKu2vdL+/oFr3JEghmWOaQvrDguMR/gwyXmGWE77CKKbDPhdaIaXWJmrDDFClNsMcIqk6wySSoajp1aYpY7TLKKDPi7ZV+SKGrhJla8gqfkSbvORDRp6+F7V6REgTd4h1E2GWaHQ0zCU3bLjEVmETOr7ui/ahdjwaWC0SGWX8vBDjFPxL6SD5Yx2Rrhr5SmwQZjnrRboZ893uRGLFSVAGmLy/FYiN1sX0UpsKo9R9hmmuUAUa2hN+bMnZaDZC2vH/d8cZLB0kubUYN15Jx19/21hatsNxSwJT8qA0v/BjGKzN9o0Be3tt15LrHGeIBtI2xz3utT1Tm6NsCa4kDsM3SM7LNUWWKaQZf6mQfZHWdDFWNbaqYmaPMdfsoBvci0fI2JSI2tOTNR9ZFSKuVZputRVi6DVEOdsk8/S8wg/y4tpGWqL29xgTATrDHBWrDhxOIDkzwCwdDMUo3a9nXew8I7DHTdcFKFAB4xD6U2KVCKxrTq/wYZX+6an7LJpfeC+WdkBwN61pmgToYi25QYYt2vvboDAhOsI6n2VW6GeuZX9Yz69/0lS6p9BoIVpAW/iCkNX+yvMeHvtUDGioMzloZpypsEbd7kBrMsooATnXuZ/VexNGvJJI98PSLgR9eaPOInWY3AnSYp2vTQIMMYm3HNSWXXJMWoyx0mWQ15d4GSr6GO4tqX2mqHYbchGAnQWPfhKBtkaPj/W0F20Xo+RzmaBSlarHIe6KT2jrDta6e8g9ZD/Dl/wAF9TLtEsoJZFm1hgRgiTDSdvKL1muTKNQaRJ/a4r8cSXiymaXSxLI29VmMwEquH2YlmgJpIRbbC222S1QDMBSRlsHCGbrB8nQkHFgeDcXeXqQCq5IVoNhZjwfqaYTnWwUo173jfG5vPyBdppIjTmk7glubERWapMhjecuaSn+FVFlzaOsIaE978srlIa0rZjmmOEni3xjiStuZ8jZuhgQUyGYtVvvfWfOkJco5wgQ88ZPQOs77GNYbeZW5jHv4WcpKmHs2VVSZ5m99lmWmU4CxWX5sEexiBa50Jfsp3u5jf1nyqdDFm5Vu/xgSS6rZIceiYRopmSNSn3M5DYPIsi0yzxDyXgu23ySiywfj7Xl+I5Na8wbJBz+5nn2mWuMOsAwymb1fXT2w6oa99mLHmkYOB24zQi/lW9NDmAyxafZrlmFB0o8xziTYJrnCTfQYCDVahYvHSw3HjikllxUsxblzzSEs5Ml0NcNBAtSo1l30aQDTEDEtxY9cYZJ5LXGI+2HBV7yJKNqlJ4kd8H5mTDrDPbV7nMu9RwJJ6uv1CRtgOOWQPln4qWeYGYyE/VjegSRJ5Fep3YB6ASt05wJLb6mS4zWWyWMKSfDnUYRtnDXkCirlnzLkhrnGdGoPIP3CD0Sj45Dkj7wVNfK+ygMIklDZTosAMSw7vNRwoTNPHIQu8yvf4awbYZ4mZF96nbqTYjALTqmSRmawekhsOzsqcdNfBvZrLTTJYcIUVV3sh+77FFaY8pXbNNfj2vYMksQQk+Q7MsBzHNOLyUk2Ok6yiiHXp4jVJLjLrTLmOxFheeSpM5ZGgom2YnZBKqOve9GLdqOAPArTT2Dd8kj6gF5lXH/kDXBOs7mMVeJpw+9mjQp4xNqP7oE7UEQmWmY7rRgsvgfAq8JskGWCfC/yrL2L6+bV7DXkqU4sUPIP/3RgGxIhhlMPAASVvPvV/Z4FH8PwBHDvr703R8bNrYEyh+1haqZJHR/z3W8BpePYhHJ/DwIRxDIwQqDGIgVQfYkyo3/J9yPkfeYTl/P0vwbP7cHyKDhBRAP4jTBb8W0ANnn0Ex3swQEWprDksuOFe1/aUTvo/8n1exEC6NMbKqtEBFtW076MjKW1h0uFlDOz7CsbUS/lxn8Qknacxb7Nv+LgVfFunMHDlD/04FdrQgwFLr8DzZTj2qZ+v/wxLEc5gXm4leL4Cx2a7zt9934+sH0MTSzhVL0CSXAGrKTqMuqx/zyM6KcTLWBDDAz+OXtsv7mDBGu/4uL6C+cVJJi2w7xjw234uC36M/8DPw306YSgV//6i7/dp7JqoYPLSkn/mDB22X5oO2HUaA65OYtfGWV70ijxn3//8vo/Xgn+PGKTJrnMr9umIn59BH6s5/77FrvEZ8PEa9ffhx/RzDDDvwa6Rx9j5/pofdxLqfwcZhV0c+dieBP4A89c7jZ3nBT9nwxiA+AC7Lmf9vNWAC3TkyW0fp2N0mHqfAy9BvQSZ037sRWAC/osF3/cvuXXUEJ8Ga0LeNCOYV5xYTA0sMEJWLa+ygBQYakyaDMVkOstM8yoLzLGAJGEtkoyxEcCNJTRucoB5e4kVpNRDyYik0OiWgK5xlVE2kGH9BqMMsM8MS6R9AbXgrLY0DRruaXeby6G+yFCP5nTF61ogatB9+plmib/me1E3dzP4JEEV837cwRzJo7Ypcpn3aNPDHS5GfSXfX1NZJJH/mWry/oQ1K5UMaPIrUyAYeDMc506L6HHWkY+RNSUPYsGuczTKBitcoOHqm6bX0UW2qZJl2GtpW9BuezN/r2uMLbROsl9L0q3HNdLr7JBFLtLnKHwB85iS/CxNPWrtKVaCEZamzuvcDtP9NSYYY8NtdKo0MLsfk0Yt0/aGrRQ/WogD7k9txyyGitntbDNIFVm6GCjbijVPi6R7YlnyYYsUC7zK7/FDKuQjLEBeTnr9c/4TLvMeDTJR0xoJ4ghT1YwF2AgTWHBCmjybXt81YlwFDJsUOUWGBj/k9wJUF7i8TTF8woAAdXXcug60oO3jgAVepY9DzO/batMe2sE2FetG93l3OKJ9V5LfhNenDPGUPKNsRK2vGllrIgP10gHuC2zVtSfW0Q7DvM57DnRv+Xqgs01du7qWdxh2ex9LyG75elGMvgnWovlfZRDZFe3TH3JUnU+TVa6hBFaxfdM0SNIKmesmYyHn7Paav8pNShQCYE7R4qd8lxQtLjFPnTSH3sQQKcB88TJ+XWWZYD0Uc+ZfZ2sZeYgqFOEid5D0vuEkk7rP+0lnoG4wxiyL0eSQDF+BSICvkXfDn9w87ZIxvx75Gk7A3DYjATAaM9nk/U1SlMkz4kEmNv8Phj1DZx2/H0SPcdaC6KO5SCSpDHWUDaDA0DqZmOP0/3wXGKp13DIzvMkN7jARrDXAfVLzcc8bOzAT806NrDOG02R821OsMMFaMKevcR2FDYEFKB7QF2tsecorZdg8B3s9iDOJkoGVgSCyzrjbsDVJsckYQ5RiDW0A6wNfox6Rx9K4N1zCrRT2A3pR6NA0S1Rc1ajgkG1GItjoIosMsI8CrjQPq5GU9WeINSgfYOEeJqdfYgZ56W4zwiXmOcCChPQ8T9Hy1OFhxthknksc0PsrzSdfCKCX4SkFSox6XHC3p4SKFQEAm4wyyWqgsAYIWeRxwyGbHJW4aBeYw1JKDewxE9cOrRjgLd4O1H+SVcoMhFQUIIX5ERz5w0gUfIvyLgdwpm5YlhpbmG/eGJtsU8SMPEfjQSWARF3dKVYcqc8F+KKoZ0lFmiRj0hDCrpt6h7PBemp5N3ObYpgry8tPN+ptLjPHAtJsW4fskDkWwgNgh7MUKDHCVqD6YoflKVNiiEwXS3DN08aSNMlRZoULASypC2O+Bj1xk6pLqrCJBG2ucAvJDfQy+WfJgacm0t9XHQhWwluOMlsUucqtLjlLK8ZERauxLqu0SFEhH3RpdbpGfTJLOarfzx5v8TYZ6my4T4l8VpTYNcyO3/yjSIK8Tz/XuB6A7CIXQwbRHf6itDIxNLdcuqNrFAgWnDztRthGfhKi1OvhYNtsO6PSzsEqk1xkEfMeMMr+HQcSBT6qmwbWMTOfhbFYTNl+HCLPRHkMAEEpFmW437sK3carq0zGw6aHdsiFlaybp8IuZtYsSvgyMwyzw+kwn/pyv3J8Rp93lBjEFvo7dIAcpaceYQv6HB2mUw8cK9jfJKD8c8j/Y9/GzyDIf3+LAQQPuz7vktLjQ8CHUCtDNuu/n7WfBeOoiIFDW3RABYUIpIA5eP4XcGzKtyePsMe2XyxBPHOycHyajhfgx/Yzdvw4HtBho72MgR/vAufgeQWO9WAA1ik/xofAP8ZAmHu+f6f8GB/zAgjy/Ckcc8DwuAISHHis7ziQ4qBWeRny37HvZZkOOPcGBkadtP079gR4y8frT/13p/y4P3ZwaplOgMS079MJ/64yHY+8JxhIpDF/5McnGXDNx0pgatHPdcHH+AHwPyXCKJ7/xMDe+iJkhukArGf93wqLKPnxzmLXzBId4FZAnzMsKdIJMHkXu1Z+4e89TSdQw8Mtam9D9tv+/5fpJATXfD8SGCA2TCdptvs69UCP2iJkX+46Z6exe6PoPyvQSQEu+Piu+P49oZOY7OEUz2twbJoXJbNipfo+ZGb9M9ix13d8HO/R8Q/cgcc1OPVP/efTdvzP3objRdunx4/gVM737WzXvvT4frzs26pBRs1WBXWU+I0IxABcGvQAGXDnvOljYQuHlBii5VIyAVHbjCCPGoFncyxwhKkrwBYzWrRKJnaXqfAXkuRmhC3mucQy00yx8oKHsXyE9cxcZTIam1J8qBtvqhIzx5bPrJq7Pb6AvMxt5Nv8b6aEGlhoE+ZVbrLENHv0M8dCyBGzfmzdC7kBf86KrSL2u2rnije7tynG8fRhYWlWOxir5j0uAwRzHoy5ds+byGrGKTBCxyr5lRQFh/RFo1i+ux0LkT1kTG4exSkHCtZpkwjZVpUsK1xgmB0GqbLoFiNXuYml6g7F+3NUokYF8/XVYkpJiAJDxUSrk3ZFScKrx1QEstUYjKAJMVyASEi24I7dkD1KRiZvODtus5cRo0pyX3kwFdhFyY1AABo3uRqL9gx1rnKLhteYdj4OA3RTaEc3O1VqCl0j2xQdrKkxwbqzbI4CiK2RZZpl+tnjNq9HIznn1j6qafsxL68MDfo44Co32WAM8zwzTz6xCAVYyu+th3Y02xXkIommjmW0Sw0kGflF7tDGFEcAG5z7dznt/Nq+zlDjt/gkSBCyldK600ICt4IBd0QiFFNrTISkfJlpRtlkgzHylBlgnw+YwyTbtlaTl+QOlgZbIcfv84OQL8qj05iXtu6z8zoQ7GY1+LutrdokmGEp1j4ZGnFu09SZ5xJzLAThoOHr3bRrs8QGFDhVc/BwmqXwNNV8vcZErKtWmWQPS0WWp6r8MAUY2nW9H88a+cwD0fwZZSO88GT/MMXdYIEJaJTfnRF6BoN0Ib80Xbs6bhE26qSdEbjsa+wGCdohXx1jgxu8gSmjkiHb19pVkkywOVp4QZYqZ73pJYBeyi+NT5MUFXIM+XmVJZLmglQc35gzhQdeYBLKckJBVrKVOiLBO7wJmJdeLwfcZYpLzAOE8lBBRiNss8RMPA+VkqxGnUgf24ywyEUuMU+RLXr92TXKJle5ifnkG2N9zK9rjYmORUCfLCUmWKPH166Hvo6fZokag+SoBMvOjqXMbV53Bl+DoodbqiEHsoQ79G8wFuYis8yxEAy9XQoMUYpmiGzKZBsi0FVp4xlvcAiIls2aGpHPfsUGxxciuT3No7iRze8sSZlcUIplPiwWnm6Ym1yNA5dccsqjexMcuVdbO05ik1Skq97kqie1NKNAUYEnycEtrrDGOJaOajpzpdW0SPEmN4Ka2u9gg7p60pkvMBdgpKKjhXJrEkzSZJ5L1DCfDkk1ZliOycZSxYrsebej7GWURdSnXqBQJ2mhJJ8pVthklAN6Hbnfo0w+fF3UWZEvxwF9LDAHEMe0zoTf7MnoFhq9frdLO96Iyd1i0S+8MMGpw1N2/bidrweRtqZJxvxLLgYwqSjr7gCUItvs0x9jOs9rzLtk08CfB0Fdnec16u6ppwnTihQraASMzbLIIDVk2nyb11lgjjSWANfHYSS6iWUnAEsdJS0CxtiMTq3Mfg+w9N2im3hqAtTDUBJme3hmyVMJluMelioms2olyhqteJRe74wKgJOU9SKLJDhCaXgJ2szzGmNsMOggt7p6Kv5kBCvmopmlVkPycOTnRUzVbvAv5yzPEbaoMRiFhsDspne5bFyOEDtVYF+KFvKgUUGvxZoWYr8Jr3/FBUoUOM1jYxs5IPTsQ2zhr/TRHeAplN+nw5ZqAq9hoFAF8q/QCWQoYEDGKd/GIfAdDHh60vn+8kf2d1Ysv9Pw7McYiDBMx09tgQ7IU+q8l4f2u2MCQ34HA1POABf9u7d8vz7298zRAXQe+f4LYJvy7UKAbc9dmngsS4e5d9/ffw4DlIbp+PVh73mmxNtpG49jZ7v2/4x//0Pbl8xp4B/adur3IV/wfXmCAUNn4Nhp/66Sn4/7vq8/t38/+9CPpU0nFRXfR3z8zmJAYwoe/xWdBNMj4FsYcJqC+p/S8fE77Z/Tq+3vO8Kug7/y75MMeLnru3sgU4BnPwUPCrPfHcHjZfv8s48g/0068lD54uk7Tvr3nPCfP+46X5LpPqQTGnGWSM/Naox17XSHqRz5Pp/vjOfBEwwYAx4/8H06Aad6ieCV2j1jpkaicRN4APWf+7k5TSdZd9l/puvA2YkV7ZN8B08DH8PzX2D3TgK7pk5i99AbzioV+Kp05Br06P5cxhJuy87+nLXvPKXr6D52/XyTAA+PnYXnH9MBOnV+9ZkTdMD8L/nrDd4hR5lBqi4TtNJbCfDbFAOYUZ0iT50dhhmiFLUAWOMw60yoDcbo5YAKOdYZZ90TZRUS0B2isNo0cEVsjylW2KOfvDfYTOrYG0EME6wHq08MeZOfJVhjnFfdvy9Fy5vI1szsDs7IUQ7GQ4ESY2wywjYmc1rhOteQzBZscSHFihYBFlCwEjWXGCtqkusZrSCCfQai5laAgSW5NoIlAoRdi0BTMVpu83rI8iQl00KvY6JuNatAvm1GWGKaCnkaZFAQl2SzpsYxUE4eYHnKrDNOkhYzLPkxth1s63gvgxmRW+CCLYaNXbHPOhNk/brS98gvcYyNYPSMsM1NrgSzxJrGZqSvZM89Z4GaP5k1ig/ojYAAef8lOCJFMxbKxv5sBtMGCOaFycfqyPhcskOF7M2yGAw32RWJkbrCFHv0h3RYNbNJj4eoMchl3kOs0jYJLrASaxyBsctMs8IF5J8lCyDVb6qlexywkXn/KucjXEPKk6Tfu7LeUQjHXaYCaJTaKkUrfCj13ZIT2/5nHUTdokyeSf71FzsR/Zq8vsEDslTJU+GAPt7kBpe5HYt8C5OxBvoQJYpuryN5vyT8aowAVD1YccgLJSXAZqhzwRv9KZqMsxbMYgF9YGveCjmUoKoUcDG75CMvgkOVLGnqbDCG/MUE9B46sFb3YB+FGRgzqxbrCwNl0g4eNV0OvItkodovgYYCAGUjYACe+ZXOsBQMaMAZWH2ubjOV0QhbId1PubxzzLcD1iAqk+cOs0iOfNcVSZLVa5xzvs5ScI3UdrIe6PbWBwKgLDovFWCMTcQk7PEGgfzb7X7fwjzeOg0oG5NUnJsRtlhmmjtcBAzAVUBGy4G9KVZiPyqOwpiCbYtlZshTZpuRmKsKlLjLFAf0uV+mfcYY3stBLNpkjAnWGaRGilb4AWo9qX3XM6jbB1GkLzXC1CjpeAFm4hil8lJK79u8xTyXQq697wDvClNx36iBZvvRiiYH2PM/RZM5FphiBVmGVRmknz0PbzXilwJoBjG7NnnkKXRL1/kCc0EeG2ErnrM1BimyTZtEYDJ10sEqTXDEFiPuc2o2INa0rLIfxf6//fWFAHotjiMDwwP64mTJCLBMPvTEonWLuVaiEAeiok3BEjaRbQRTyeitdsNPewqVQjIO6OMS89FJG2PTKaBGy1V0dzf41B060MDkmAKFdKNLfjjmlpsCJ0QN7eOQCvmQl6acGl2ghPllPCDvXcZBD3gYpBr+Bkp4ERXXPFP2kJy3jwPvcBk1dYB9lMwq5P0uU4yxwRgbSO9fYNckfwiwshtP3nYLvPoCy05ouc7PMtPx4Ck4pVWmkStccFpqkTJ5xthgirtMsxyGw6tM8h6ve1DFIHeYDaaYvk+FToIjplnmCrd4kxsMsxPdEzOsrESXSDe7dUYNQNt2P51y16RnTjt3SfmxqztTJcs0Sy5vLqNo8zY90VHQoqKf/WCZ1TDfmbQj7dqewFB12Poxg+I6abqjyHVfWJjFAPKfES1chd64+zbKa6ftpNpFZuMaapJinktxj5lP3hii46e806ZgDnlnqPgTI1MMgiMH6ARY93EY14Lu2TY9tOlhmiWUoitvl7tMBTMAjK6tgJcWyTBg/k15dVPXmyWo/zE8uwPHBSY8MvYUZ4BvQT4Hz8TaAigZc6h2D+iB+oK/Xywg6Ph7/YwOg8q9xfJFDOjIESDgcbHJHtIByEoYoKIEWAdDnjWBQ7i/gwExi3TYe49tG49LdMCeCsbseoQBfI/pyDIrGMssBc8em/ySpw7EfYsOiPQUPvk5Earx7CMMVHuMgSwCj/BjqmAg6RYGTE37+x749sSWewDP34XyE2Pz8cc+vlt2bI+7wEKeYkw2sdyG4dkRbAlUqvgxPaQDauo7h+zvRtPPx33//VMfm4cOMMp/MOVjJTmn5MwK0+iB+hP/nv8WtpzVdSwHypZpPLVj44Rv8yGkT9h2P3EG4PNHdADfM5hE94SfU8lOBWY9xhh3PT5WAv7etW0+k2/cSQNIg3EoWa/kp4v+c9//UwJ0vwmnzvs2nkBPggACs99ycPebBPvu+ROXx5617dcrdIJeUr4/EOBovogxPaf850e2b8fO+/ec9e/+tu/zL+D49whQsvYAu+ZOQ2au6/w8sfsXCBYtp2xfnj/1n3dfR2f8OhBjshcDE7e6ftZHx/fyS/xSaqoANhXLku9Ms0Qfh6wxTpYacywwzA7f4ScoHfAf8aPwVrKGrVmZaLGQpMWrLJCk5QEGVfo4RL6924zwZuoGGeqYF635wra9Cl3sYrlLTmPNzVwsYo3Fl/aGVg/y7UvSpMogK0yxxji7FMLKQosIAV/60/SFzxwLZKnxFn8TNYCALVv4btNwMEkm7UqJVGc/7Y1YWa4A7js3ETXBGuO8yY1oiCpdUH7JdTJUvYE3wpaDC8bW0sJFnnuqyVokuc41V1FoMbMddY7VMD3eGO0J4FALbS2EBfSIuTHpzoiXue1NwmbUULKN0WL1gD6KDuZBx6ewn31yVBik6sEpR8x6iMM+/Z42vEuvg4C67qQEkaWL2bRYCJsYcGIT3eRqSMIkhZM3ocIMJllliBLrjAeTUvUkEGb5S0xHPQnE2FzwxbjqYZPath0Y3oqmsdIV9+gPBooWxJJvgvnn5akwhHmMWbhc08WvtmCWxNLYk7VQ0AjEVFKw7hPVqatMBhNJDD6x/tT8tmVzlQK77NPPXaYYwCShvymvT/ga87wWYJPAYrFXR9lg1IMopISqOrtRTXMwQEhrpe4k0jUm2GIkzn2Cdii5UpjnYd3X5wqvMG84k8/Li09rZJEw1GDIUWbMPdZsbjDGsvzzlpghTZ2/5nsug2+ECk6+6fueCLXPAAnaTLIatlG69oYc+O+eDwV6DlLjKjdpYmmg8imXSk7ebmAAs4DKKVaCfd1tZ6DrWCopSSC7E10VOiGfVIFNQICdW25zAITSS/5xUsBVyHOEBWRuY2nn3RZL8h3VS2ztNuaBrvu8HwvemWaZaZajgVOiwBwL/nxoIBZsGvPDU9NJ9gNiZYrwM8J2NLmEdYyywW4Xqacaa0J7lpufe4tpluL4W6RCRmvP5bW4jmR51sRsFYpsc5ad8OAbYyNku5LSCpgbohSBQQf0+TO0GgCfngWAN5Esk0BMRDUHq2S5zevRyJplkQnWA5SV0lJWXWKbZqlGI0YsUasrxCydicbOGuMBCmapebPuEHkepuiAgFUGGWeN3+Vt0tT5qts2/X2vLwTQq3GG7gQbpWMJee+YDKbiBAkUkJ4aOh1K0SinuBvFmzzbZDZpWvv3mWaZLBZyAXgHqAMeiIpaJcsA+yHr1ANGXTFNIvKYE1qtG13A0Yqj18bgMwmxpJS6uJsk2XLKuwCZqoOWABe5wz4WVT/KZqDuRmm28A1NHqL8q5ABK1x2MW26JklNwJIOd5ujSqpRJUuPgzr2AK6zyCxlzNg2TYM6aa5zje/zo0hVVbEhqcMdLsYNBZ2OiLq/6vpd4n1mWQyPQBWjVbJYQu/d6OL2cRCTq8IzFrkY3jEKVyl6d0cPK5PVbAcFV51OK0AGWGIaeX6Y/84MDTLeBR6IbSQ44jLvBYg1SJVlpiPVSwlOki0kaAeIawVXM7pnWWqscAFFkle8Q9XHAeO+CFHams6b/IM0jmXkE3hEH4fBxBOwrXQzHX8fByGNfcCwJ/FYitgOw7RIcpOrcR3bMRz5gmWAXZeI6H64wi12OMt7XEas1+7urIGIo769YrAb5auh/QQoukmq7oUv+6vIx8hqACCdck+70xhAkHI/fPmnnYbjb9HxXnsCmSJkCxgQVIT8HHASyjsY26eIgRL6+4yDLN/FgIsSwb565qzArS1/3xOgBjWFOEhueNKAtMeH9v9zrwDn/POn4fE7sPUXsLUMp875ZwREbdn31h8S7DkBKjiIczwHxxx0fHwPA4py9h20IX/axoantg9lgZdN/64dl/YWiaRcSSAFAj370I6Naf/5lrHwiq90MQ719wkD7Mhi4I2YZU/88xXInIRstyy14p914O3xPQww85/n5blWwNhci8BjPzcpY2598r6d12BqeRLr82Xflx54VnEWnrPl8gJcz9rveWrg2LEsxiB0puTxizZO2RQ83jLWWq1GRzrb9PMpZt5puyYC0HTPvGM6v2fNA44dB+AWbd8zw76/KTr+iycNDC5X/ByIsZcyGSof+s/+Q9vXY5LgHtr3PHNPw1rNGW5g4JtfAweSMP9j4I/h+Blg2TweWaQDDv/CxjyAuJN0wMn7GLjW9mP+lgHm7EL2nP/uPJ2UX2w7xxXQvWRj9OyObSOAaQF95+070pLXP8EA2x4MJG7TkWB/ky/9S2bSki+qTko4nKa6QNJD1WRaVPWzR4sUt7gaXfd+9qKAV5hBgV3G2GCdcX+O9oYPlICQNTfs32cgmOViyw1SDda7Gl1jbLLDsMvjmrE4nWPBF2e5aKCNsI2SdCXzbJEK9oW8muw5PoR8yeSbq+eFNY83ok4WK6vKIJuMBWA0ySq7mHfWIhdZYyLksAJRBM7IVNzGbp8GaUbYChZb3f2R+9lnjg/YdWmnmnrGTbCGYJJWAHJ6zk9xl9e5HUBPnQw3XJ5VoESJIaZZRr5Tb/E3TLESflvdkk4AeYCNshHKATVMFeSVo8Iom+xhSg81XRO0yfqaosog8mo0SXfF2ZS5AKAMxNxGqYtaFIoZWWA3UncVoLLILL/Pfx0S5zYJhjCfrJ/wHW5z2QEUW5hf4RZVBmMxrZCSn/CdqB+zHnyXdHZiztU5WpTLXF02KbpWxazrfk07Y6nEEKNORHiTd8InTw1e1bFqDE+wxiib9HIQflLWfDbVhYBc+WUrgFDA8BgbQX4QwWOYnQjKyNCg16+rJsnwgkvS4uv83Rc4C/36vBqkmeIuE6wFi1XXnBryBjz0MMVdxL5tugJHgSdJmrE2AwPHjHSyEY0KBVBYQrUBFdMsh6RXDN9usPyBrxU2GA1gsE6GXixYRuF82xQdehyNdalCAWacyTXCtqvL+kICbnL7qViTAKHwWfLkWDWBtM6QR1+KTkiGQn92GCbnPLIkzbifu4EdSTElcU74fSx/O5FpAGZZRJ53k6wyzTJHJJz8kQlGmggOCjSUR501GA5pkqTINoATX3L+LBljhQtxjwvgkt/mMA9QeOauS2NH2GaIEovMkqfMWV9vaq1aJ8Oir8kF/BtYmAwwsMePu+LKQDVm2vQwzA4zLkkVOJV0tdUN3mTT/U0r5MPfc4WpwEnmWKBAiRqDtEgFKWjFlUpSW46w7evmdbbcIkJsNZGO9KzseN31cZE7ngKed9DtMEgy+rvbK1TPzlUmoyFm5LGhaA7JKqBJ0ps5TR+vs5QYwiS2rcAlbA3bQHLldcY5IkHR574tRoKNJ+KQwmZWmaTIVqgt57kUz7UMDRSSVXG95CZjPKVj1fVve30hgJ55lHXQT3WVFFWsQRc9/yKLjLHJKpNsUWQfkyTKQ0wvdR+EBisNxcIP6mwyFhOcEPmGUyilWRfSm/HioU0imGkrXECGsgL8AOb4AFH4u/dlktXoho6xEcititI6ZvA7gCVyqTBZ8ejtFimXsxqV3TqavXHTqatrANsABXbDjFY3sL5DwJA8BTUxySctRTMoxmJJ6cacYYn/mD9n1EFQ+QNMssoE68F+lPzDUPtygLXqbIrGvMEo8lr7Lj9FGnQV6d2gk0A9jbUmRMk0tP/d3nNLTIeUVrRnMTJz/pDr4+AFU1TJWFK0QsJtzMi1YNLpgaHJX4lBWnRI/6/rT+dfoLE6U5uM+mQ3FoWXFaiHLDEdHQndCzITvuN6uT364zo3w+oCJYZCjqGiUd4ndr2lwr9OXWyBk4NOn55gjTkWGHLCsFKbNXEqunzQ7yEzxR3zB2qVCrkAsA/oQ+m+AkrV8TeZvT0QTZ5txWY/lviX9U7vR35OvuwvK7IHeenzz+jpgWPfAipQXwYOofYuFIcxcKFGJxkzh4Ee3wJOOzh2hg6wcBry5zDgRaEGjzHW1SMHEa7TYQE9NWZX4ykwC8VvA20DqZ4/gjOnDQzZ+ggDcu4ZYJb9NtQ/xMAJgZEfGvurWLR8CAFL5QXfn6K9J3OOjndZFpO2rti+P/bU0mdNOOXg3bM7GOjxsYOaT4DfsX3In4P6IyzwYNlBoUfwyY8dIFMQgeS6bxgT8XnF/r9VcrllFgOzzpn3GU+cLZdzDzdJdQWuncS885o2BqfewgC88xgIc0gnDAMHvCp+3tr+3g/t98927XuPjuCTLWOLff2cf+cRwXhzcrEBo9cdQDrp4Cru/Sb/tTNd75+D2n3/+RzhknvqrLHE8v8MsgrweN9As+Mu2a67FPb5Ih1pqJiH8s+rOJA27F6HXRLSo7Yfp2S6HxlAekbXrkC0JjwUs06M0FPAYwcb87b/n/h5zOZt28d6/Np5zY49L1nr+8BfOKOu4GP1CAOz9T0JeHzfr/0n8Ph9u96o2X6GRP1vXXb71Fix8gp8tmPX5mMH454/ohNsk3VfyYR9f0iEC/79PS7lljekgMZlOnLr51ji7pf89QofRcMQDIwTeCC1RJ1MLK5kiSIwqbtppWewaklbRGSj3uzjgIvcCYaJWOJqrJXJRX0h7x81JcX00GuDUfowX6cZlmmSCpDJjLbNV+gt/iYYC5eYZ9TtMFQD3WWKCjmmWQqgo99ZSXkqzgpJRgNWCzvZxEyxguxLxF4xZmCLUTaZ5Q5zfECSJuOsYx57dUbYYtzH2Dx9DTzR58WskRG3aqIxNtij34992SWpKRdeWd37fX4EmFm4FtbWwB5kklUH36zmKpNjhmUO6EVhbC0fSykOLjHPKpPRUFeDt8AuZfKYSUwrasWOaiDBB8wFcPQGN7jG9WBNbDIabIkmKRIckaPCBOsu873LBTcnlz3NFW4GA0eAnNm6bIVBfptE+DkV/boVm+i7/JS3eJt9BmiSilRXA2mN4HCVW1x0RoixQ+7EGqpOmipZZOSutcyW8+gGqbohfDKa+qrnpHqqMUiaeiRJT7Dm8rd1ErRZdI8qGwtbR8iyZ9NZRZLZql7dYdiloZVg4C0wF81agc7GvEkGm0VsRDWnB9h3r3VrUu/TSXD9TXi9whp9mI+kGh1KDNa6YsDvw03GYm4xcsUY+wwEoNvt0X2DN15Yk2hdqvHX++weOhtAQ4KjAOJKFDjrSqgMDRquhiq7HFfnSyBdixQzno49SJXL3EZp5SJAdHzyTPWm++WAvpCDqhFi/peZWMdYqvgIyx4soH3+E/4QqYhqDLLKJBZM+VpIRJM0KbDLJqNsU4xmkGSgR35cAhbNL87YuApL1LrHWHRnw79cazn5typFVcERB/Sy6exoPXMUeHNArye1X2CA/VCVAQ6yDwTTOe2KxzkWKLLNFCtsuTy25utgkYQAb/qMsutNjw1GHd8YDGVZmjpJWjxwkkyeMje5GvjGngNqwj6mWQrg33ISNslTYY6FmAPH2IiMAAHFWuvLd/02lxEbvgOwFRC5C+AOF5FXo8ZXZJt+H6sV98ltOiv4Bm+y66zEzvj3BeM86crCCvlgWZawjAFdE7a/h6wyGSrQlAPmWv92B3TYWtyUbAqQ2fVzoZwGzcU2PptsUURJ85Kb/5TvssAcb/MWN7kSZJodhl84r/+21xcC6A2xy7aj+TpJ1r9Je3cnGQWERQMXA6CZZDVMPJeZBuyB2a171qTUIsk0S7TpCeZUD202GeVHfD8ADgGIYCdLRrSilg96V1I37TbF8PjKuab8bd7CUlk7oJ5iuqVDT9KMIrBNIjzaZJQog2H5T8iDRBToGlnvZGwFmDPhCS5iRMno0zpudpNKbivfAN0UAlM1zq8x70Bhgxmn5eoG17mZZDVAOyX2iPFnHZyzMZ4lCkxxl9eYp4c2u/7wUby3ujBlNxxVoIn0/1ksseyCd28WmEOeL/JDsHCNnB9XJy5dXQDJdnYYxsyTe/yBkCZDgwVeDUqrwOMSBd7md6MbVWIo2HRHfhNZ6thcJB8r9nqJaTYYZZRNFpgL9mfKZc96eBnDsR7eEpY61UuB3ShQhzDzTAG617ge51DXOBA+PKKLywemyHbIjNskXMKbi8Jv0IFN+ROC0Y6LbAf4XcTS2AQ4S9uvpNphHiCvyilWKLLNIhfJ+mdMqlumwC5Dfo3LtFYPcMluyuSZZgklDX3KV/8dzDa//q9P+LotCJ58TqIPatfpeLr1GGBB1kIrwr/rHToSyJ8AjyDzj7H0TYEPNQzcOgfP7zmQVMYAnpc9TEOsq/+5yVuL55xNJy+1IpAzdtSxl22zxTnbJm9hgNVjA3HqP8PAiie2r8eLQNOBw+5UVjDAQs+gJgYwlX27Z4EHcOofAqd8Ozn3DgS4B1uS9/b455p2rJkzfkyvOIB0BGdO+ljSNTZtqP8Ek6W6hLhYhG2XMn/yU2DHJZ85OkmvKUKqjAOGPLLzw1Pb70iSdQZZ+SOMfXfevNbKYme92zUW5+08HPeAilM5+LrYlCdtf8nSkQj/Yz8f+v03bXwft+ETMd6avq/LzmDLAYt+PeUxIO4BxgQ7DflpOkm6nux6/IyzPM8Y+PqJGIeSZ8vP8CN7P6dMEs6ujdXzpwRwdXzI37PoP3vFmHvH5yAj6WzOxvFx28HZRz5OTQ9tmbJ94b5t6rmHuxw/aT6Lz+4Af+HbOesA6RN49pd+PZz06+usjQvv+Dl9BKcKLn1N+Xn37T9foQM2PvHjaEIm55+dNTbp8W/654ftfih76AVlH1OFmTy18/Hs/a79UUiNwlL82lE4SLsGB2Ihfolfg1QiyfQS88gCQyEZksLo+SO2kyS6t7hK3dljSSzcrMg20yx7Pbgc7LY9BwfamAG3FrZj7kc7yT2mWGGWRZT43iRFnnKwBdUMM4+ibWa58wJ7zhbZgwxReqFJ2w1IHGCG80cO/MjsfoPRWDRb3ZDmgN6Q2815uq8Y9GJfaBFpKYnVYMdJOrbKpNvFVLnIYrDFBh2kM3lWNZQEU6y88KwWOLZPP1uMMObhbN21ifbRGIiWNNimh0MHDuQzOIwlpu56raBzL7m0gE75MwMBMtYY5Ao3g7EiG4+0A39ig0yxQp4yl3mP7/DTAIfFwDnE/I9kzD/NMkW2GGA/2ECjbL6gnACCuSE1gb5XbBvVZbJc0TrgCjfJUw7WZz/7Afpqu5I1m6dcJjyyR9nArG3Kwbyc5J43Xx8EkHGN68zxgdt5GENoj35Pxy0zzXLs3yyLbFMMEKHqay1d11LcVNxjWedlmuUI5tMazIgNtRck3QIiJ1mNtYm81GTFYxZBu7RJhI2MJLlirYqBprr5N+H1ERP8kP8ZCuU5oJdlZqiRZZy1YIfJd00vyRvViD9yckXKWWmz3HE54B2kYAKCEKL1kLzNugHrBOZvNsUK8rgXc1Lg4SqT9HbdJ5d4nwnWArDboz/YdZLmt0gFi1DyfyW4ak6tk3HfU5s75NXZxFLLdX3pvRe5wz/j/0aGuoNPBtypOaHwRa3nZZklXzVJPQuUIjioQMnBHFsDikkndpnWYrpPNtzTfo4Fll0BBtYEkmel/P8EAE2yyqssMME6k6wiGb2Y4Tq3ksHbnPog1tVi8opdZwzNMS64jNhk0Hsh7Zxjge/yUwCfbxtx3vvZo+iSeXl5KlFZ3raH9FFki13HcwSuae0pezDzTszzI77PGJvcdkWX1t5T3A3vWAu22GCZaXb9Glt0z0LzNq0EflElG9eKshk6a9SdsP/qwyzJJJ1dYI6mN7X0nAR7JoutbYznwWjEiEG6gyWiZ92HsE0Pl7kdCsMCJaZZQp6CRfeaN6byJhkavMZ8MJXFwrRgmDTjfr8ckWCdCSZZpUGaa1yPBs42I7zF23ztV+z2fiGA3gO+EYOiaGqTJg5g1PMWCn0osMugFyXqkhYo+ZSeiQfILhYxbb4UQyRphlRV9P8M9WAxZamy7p576uJVAnhrORPrMFB3058vMcYGcywAsMWIQ2oTXOZ2dHOl7S5RoEwuGFaKwBY6bzesdbxEy9VkoAQ1adXryDetSIFd6mTYZDQYeJpAFGeuh2OHenxInY5sU9rstCe7GIBTw9JkeqPDauBcLzUGw4+vk7JqXil66Nv/h+KGNllry2/mDNMsc5E74V04zRJbjIQvhpKAVLzJ507dbslVZlhGwQ1AdFy1v0makTrcz350kGWwbd34CjsMxzhN+MNRktMp7nKAJaH10I7kpTY9AZTaeXwQDEljv7W8KN1jxqOlu2Xl6iKlqTPG5gsSoxYpJrwjJ2p6lhqvuseBpCkFdmO7KZpIXi66b7cZ7R794d+ywhRNUkHbT9PgBm9EwQcm9Tapk3k0qChTQZalGpPdEjMe1JKgwC4yFxfjVF5ACuGoYMEXCqbJu29NnrLT9fccPM+Qph4x4F/2l0m7p3neg4EJvQ5UnMKAFfezO9VLx7z/mxggMUUHUHoErLjfWw8dhlDb0jwzwxhwdGTvK3/ovnvu13XsrH1/AGzTdFJjXYJ5fA444ezBnwJ/CRyaH1nmpPnePfvQ5YingSKc+i4RIpFO2b4+ft/2i5rv66yDL7v2/1oNkyvKr23WZMfHU7YfxWGXgiYcfIOOBHbL/j4+DLzmLMBuPz0FIeDjOO3/L0DxP7Tvewad8IYTGOgy7O9VuEcbA17EtCr493SBebSh76SNNzkDHL+uJF1PJq4vw7Nl+GTRzkm95L8HA7OKdFiNkuau0El7xcaWh1CcdkafwkK+aft2bMp+/8yBNk4SKbLPl+kEpyz6Of8J5o/3bWe6fWS///qsgZ7PHxDy2GcPXf4KBuhqvM856Ohg7rNdvyamfCxPEJJhtqD2sf372Y6N0UOlFJdszLNngX9KMALzOodnoFwylltPwsdn2d5zfNi+/+EjByzLdsw0/Tjl89hr/oj5c4QkHRzIPkHHT/JDPw6XDNP2c+RAcf6bNganptyjL+Xj6LJ13vXPA+VHRIp0/QnGzvuYDlDv3n7P34HEaehzQP3L/HpKhlE2qZNmGAtHM09eJdQ9iA682N3yck3T4BLzXHCWGhCWLGJbKWxB/sVHvhjMuWxWNhwNMvEstvrqMMy4V5iiymBIN5skY5GtYl3/NkDHjM0VegWQpuE8MnXw5YnUZJQNGpjkMEuV61xjipXwmgNbVIvVlKZBH4fBmlN9aXXZQCxSuiXIZgae8vq6Fuw2gaEjbGPWLj0oTMuayGvBFoKOPYY1V9NIniYvazBzdatL0gEkyU9aYJYS/2zBtREAovYl6TWsfHZbJEMSCsbOUC0ldY0ASDV1TcqZjiZwt4dSka1I6rTmr03Am4wGA0T1M1jzuJeDAJ/EELXvayCbnxG2nWnTx+u8x0UHfPs4YMzZm6qxxLraoz9ksGb3YkCKGtxiXHbWJlX/1yEtkoyySZFt9zcrI1WJ2E5bjATTSSFk3cEd8tXWtatGcq/X0FokS5Gj/xddmVMnjVIpSwyh8JFJVgMsNJ/wBvLkA1s3lcnRIMMsi13AfCtC7ESwkA/jl/11ztlMStGsMRjMnYoDBWLq/gF/zoAD3RuM0SBNzSWr8puU4maYHQ4xtc4qk35P5LnJlQg4zFFmkzE2GKVNIq6rPGXe4Eb4UkrxZMzMs8xzKRR3YkC1nNiSdPBp3Vl+ug8EcmkemmWRKVa444nWYqEJPAZjcR6RCHBJnvVXuMmIy1dH2Arm4ATrIQMVwWWaZdYYBwwE7V5Li2llzZJBLKSpSZl8bF/vrZHlEvPMOEu5nz3kfW4qwMHYx6qPywoXAg8QNjDKRjARRdQB4vnXHbCp7QjQFeniJlfY9ns87WQVsXOFh2jtq/ATBaNo/awsgxqD9LPPEtPx7BQeoaDSPg54j9ep+ryhsVliBgVcmv3YBQAHrqx5ICJTjopbFFToWAYYQHyZ2y+AcGJgq4FkSfQ9FNlmgjVnMCdQirdIYvIEBNUFQ06k6fNjzkRDTPYIYPPuFHdjfS0LALHRrd3S8BTbHO/wZjz/1z11WQCkMaSrwcAGY4MbTDvIul/LaRqhkOxcN9moe7T+rzLo6+dfrTj8QgC9r/FJUC3V/ZtgLUCJJC0ucocdhqmQI0cF+btt+uSiAIFuOWPVJbtAADXdJpbyy3jAMMPs+MOlh1FHim9zGbCiygoEQ261jyoYBBBWyDPkKPABfQHCqBs6wnakBpXJhTdBFjOnPKTPAwKMMmweKyMAAR7JLLgjP+0NPb/Sb5sur6h6l0uT0ojTbqWR32Ykur0ybB5jI7rWHbPVQ/YZoE6Gu0yxTdFBthbbFBlnjU1Guc415E2X987MBOueZpSKTqOSxey4euM8W9rNWLAnR12uKv+MKe5i8mdLb5thiTT1kKmI4qoCb5QNhjBtviV1ZaLQ63RxLcWoQ4sdIo3JTSWRlQmoWAH97LuTQDm6mxXyQSeWFl5GrJ3iMdPVEdnw4tSkLcb8K2CJTr3UyAZYaoB2KjpnojBvMhr7BHCXKdYcuV/hQnSn+9mPFCHr+FtBJRmtyXLbNEiH+TNYZ0Zd+nkuxTX4ADM2rZNmkBrjrEU4iIpTPSwkv7COr5k9K0VXEp4D+sL09AZvksRS2eR3s08/q0zyUKvqL/nrM15ilA2eHT8WIQjHPBn08dsdGd8zBQmAvc+BpPpDZxE9AX7uLLUaBiqJ+XaCCKjgNDwvQf7bDhJW/LPnMBAhQQRW1BYt7OL5fXh+vfPztEIGirbdegWYhuOv2B8lx6L0VqWbYj5yfScJUK28iAUOnMP80p4Ym+qTj/wYzwHvmi/cs6bv7xTcfwTsGLZ1/33f75PuyfbAgCHuE+ERdaWIHgFnHeC8T8efzpNSOWtsPeT3VrP9o0IERjx/QidFuGk+gc+XiQAGnvr2EgZ0Mk2k8oaP3yt0AiqAr3/H5KdAx2MN8P4RvOtA2n3gfXj8Cz9fM4SvHpLLCoRd9n0t2748dIkn8rfrcYaiQFyBklk64C5+nqeBU+4vqH3bsW0eH7LPijHHx3TYkA4qg2+/BPTC878iAC3OOnPwnDHdjp8yZmXsi87b/xkD22pw6jW/T7pex9zbkTbwAO5/aMeYf8X2o/yRnxv3a6w/8eu4ZtdkvQTlfwF8BOWf+vl5jQ7IPOyg4TmT6HIG6vfopCvrmAUMtg2s5QmQh/tbJuttNCGdcD8/sTaPbFyAjmw+5+eshaPMX+7Xae+SD7Dv9ZcBX+OshQH3BOvkKLvVh6RLFg42wlZ02ntoRyKkLDtUK6pGEltcCoME7UgBNH+3NNuMUHEAaJCqy2+O2PWGYQML7FBNseP1pbzk8lTIU4lFoSTEw+wwxoYX6Gcd3Kow457C2jfVuaNscoEVb8q1gjVhAN2DaPCNssm41zPDPOA9r2uvcpMxNthnIGRMWsSOsOXePdtkg63yAMmB5EmXpBnMtlE2o7l3ROKF+knNSTUP5cOWpco+AwE4qBa5xDwyURfINsMySleVBUp34EPLZaTzXGKCtTh+1ZeTrIaFiEnSDNiUCqFNggo5Rj0QT/WJkm31PbKQMdCi4vW3sVFkI3KN6/RxiMI1jLlh7A7Vl6ZESJPH8iMFBsp/boI19yrc9GRZG+OROM+W7Cn1kPlH9kTjeZidkPOp9hVBQKCxLH726eenfCcWiRdZZJQNtzfaQJY8ShDepx+Z/g9RYoSt8HXLUKeXg1D9mJfkWTI0UDJlh4lY4cgX7DUs/XTAr7+MN7nF4pEdkvlR1oOtadfiw/8+p6X/wV4nvCkgzy9Z/Ehe2c9e3MsWdpFimiX62ecyt7nGdUbY8mvsyNc/dv63PKRQc4C8+Gy9U/Zk0jUmWI/36d5sOPCRoYEsmGRbpFTXEbbi3Amw26YYAFy3MkiSX82zspMaZZM1JjigN+bnJC0q5LnrHS+tJXX/rjJJkmas00zmaNfbMDvhsz7mbNeCBwoIMBQRpUWSH/D78cyYYI09JyisMkmWasj1BZKJMCRgRqB7wlmmFbeTsDm9l1UmOSIRDPN1D4zQGFTJcp1rPusmg3SkJolYs9pnAetiYws0V5CQ1lh9HLDMdJBJtlw+Y8xywxDAyFM9tJnljnuh2vV2QF8wjCVzlSRbjSwFQOrcSkFYJs9Vbkaegay2xKCcZJVxv+Y6TPiqA5/pIKcInBapRMSfffrp9bm6xzEfwybWmGEJ2VVlaLBLgUNf5w5SRSEmevZ2wDMreGW/JrBarO6Kf07AqsBD+f+btHwoyFZqCOr6Nf/SDb+eGqEWEBah5wRYY07PjgIl9uj/lT1FvxBA71OGEEtOrDMBWZLglhiKhb+QTKH7ApC6kzIvMR9AhxVWaZT2JQRek4pAhwushFxzj37Ou5mo0q+kKQfzuepGwDXpyfj2KjeDnilKqGj28jnRdgUWKujDDJmzpP1EqgthcfVDgKHEKkhEbze5bxGZjAqAlL/KGhOsMEWdNKMuI+7lgCvcjAdCkpZTYS35qOoPUIFIZ/2G7QRQJAM8mmKFqo+5eQzkka+dKPspmmxTDNbkDmeDrmxeI9tRTDWw1CzzQZh2qcxSFM1HWBz3bV6Pro8m2Ru8ySqTpBxdN0+JUb+Ztmj5hCgwWAzQS8yTp8KGn5sWScbc6FddkS2XtJTJUyXLJqPhCyM/RhVOFfLk3EpURYy6/0rPEUNSshDFs2doMOTUWz1YdhhmnQkWmGMYC34x3wYzbr3ONWevmh5R15O8Ixe5SIHdkIxosgW8s9+hxeuBKcmLpOYy7E75NteZ4H0uxWfK3vUSMC3vlkVmYxLSokDf1SLFda6R65Ka6P5pYia3H/+KXYd/319iZ7Z7EiFDrd8HCnCq6BLYhCdpeuorhxjL6QlkpuHYLMYiOwOPHaB71sSAE/1foM+JDiBzvGi/C++6JQxAOWHfddSGNMbKariEs/7QwhUCuEu591gFA5ScHfhsx/z/UDBHDU59C05l4dgfYoBTD+TO+HacOUgO8rPw9Zzvb8m2lznjfm4A5+HcafikBP+TApwr+hxRng4AAQAASURBVHcsO8vqiQMvHxISy8xpH7+UjScnfF+PMLYW/n8PbXi8RaSRPt6y99Xvw9aHcOwPgGmTeVJyABBPH84asFVb8eM6j4Fnp/3fPfZZdv24isY8fPwzB8bwfXIPuOdPsRTXIwesntgxnMr5deDswGcV/x4xNO/ZOdl+6GNzwlljp+27cF9AMEl2sMhc+lp/nw7j08FBXvZjmMMA4mFnvs3Y2B6TJPyJ+SWWF+0YeODsSvk8Hrrk+y0/1mH/I5/Bh+4DqCCXJgZeyn8P/5l73qVTwD/0c/sOBpaeNuLh86d+/k52fPWePzCQ+qEktOcNOMuc9wCahIOA0z6emAyY+w6Abnka7xO/L8X6VMLyfToA7rTvdxnO+T2dOWfbPO4+fcVX7DqSVBhs7HkK2e8CL9EBC7/Er7Sz7bUITHDksr6e6JIbENUTBbvYdmCN3CYpRtn0Jp75kMkjxwrjajxje7CgDKWl5ilzifmoa/JUUDKraiLJ1MCe/0ckmOMDt0yxroUYBWB1mcCIlsuC+jBfLKWbprxh3PQape0NSKX/9XFAgzQb3rVP0WSP/gjtqri/kdUj6Wg2D1KLMI2qswSucpMsNZRMK5BHYyCgbYzNqCu2KcbCXyw2yZAHqYYkqsMC3HcQwEKxxt2cXN85zAMWmMM83ExKrUVTjy8yV5nEVA/NqB3K5F7wdkrQ5k3eicW8WJhaRyjkwwLStgPEVWNYcGHT1RCqiRuu/pBXs16Sjeq6k/pETU0REuSJlHMmmt6nfe7jkB7a4XElyyBTtqRJe+18m8vI91t1+SZjyJKoTSJsYhqkkTLG5NkdkDrd1SiW75XYrAawDTprqoccFRaYC+BbNWGCNt/hp7TpCaBui2LIzSS3U9Pcxi9FzcNG7H4qe72b8qayBShoP0yeZiE2anwb+DMQ91+CNi/FQ+DL/XrEaZdQHlGg9IJPoV3fFtS3TdH9wodCBmksqjG3wTH/7TK5YDYd0BsWOgKc1hmn6OslfZeYTm/zVjTumySD/acgxhWmaHjT3+aLHrLUGPCGhFKLBfAuMUMP5tHYz16sgTPUA9AeZicSt8WgSnDEHAtc5RY9Pv8uMc0iF5E3pCUpnw8mmtYWIh0o9G/XFWFSth2R8HXWSswnwhmU9isZqNKaFV5UJvdC2GaNbKxbExyxyGyAmQISLzEfQQ+yMNAcBRYSNeoprgqeuMsUaWcBmzebMWkTjlHovhfLLOfHm6HuRIqjYAMayL/nSi8D9xd4le6k9SVmUHCDxlbvHWGLGtmQ8KrhZMGf5QCiLNV3hPc8AEg4yBrjKGn3rLM615zVJv/8JaYZ8gaDPbfqLygixQKtkKNKNrYt7zswXEnJvfJrNFxkk8vcRn5/CrYyLOYeYtTLa1G1ifxeDzAPyrQHJu3696SdFa51c9vnSJGrDHA9S6+fa62xAW5zmTXGXZIuGUoHA9pklEP6uMkVfsDvs8lYyNv/vtcXAujtc5o6aW7zOkrLEbKtB3eFPNMsx8UgKnuTVABWShXJeDdMncxlZljhAmLtmXyhg6InOMKCFTrG/DMsM8cC+S42oBKhVCCooyBqu4IdxBJM+w2j1JWmM8f0oO9zkEhUyXleo4+DmPyGMRf4NSYYcfqosc2mvEtsFNiqU+VTDsZ104QVb14hR4omVQZp08MA+34xjLHAHEqnsSJgwDuWPU6vNfmIQCX5HBzQG54ZOSqOateiU9rdCZCcQf/fZ4B1Juhnz495BCCK1wq5eLj0+nWgcAiBfJJkz7JIH2amK7nouF/881zCZDCpQP/VfVJUOBDXWoqWo/J7UTirUyifEBUq81yKgkgLC006E6yhWHB5MEInoOOAPtYYp0WSs17cK5HMeg7GRDj0jrdS3rYo0ssBb/E3pKkzy50Apl/3iShLlRQt1nx8BXSq26+QDyDuBzv+PcQ6SNBmhSlk/JqlGgX1GBuMsBUA9p4/FAUqjrCFEo9F7QcLU6mSJU+ZqpvRgi2S1LVRt0Jyb7EDShR+5Sjuf99fk3wYcwxtk+Idd7P9xw4mcBYDxlzGye/wQsBA7R3gb4EncGoWyDvI9oqDQDh44Amez5pQfhcDRE67DPCE/bv8PiEdTafg669AsWCA2LNlY7Y9q2BAkodCZF+2z/I2EXLx+NADFg7tWOjBEJY54BfONjttQOEnFTohH0dEGMLqjm+3YEzBunuKgTH6vj5N+ASSwECVM8BHnugKxhZzP7eygyyRZOosKo6caXXWf/Yt/2zN2IenChb8kTnj4N27dEDAN+wzx846y/A1++5snkgtre/4GDiI9uxnsOUMOZ3f9Ak73xmxu1xaeuxE55gBA7jkg/fQj8+BRx7ZX8/9u+qPLJTkmQImzto4nTrtn3WG51Hbwcn/lX1262cWzAEOhK7YWDz+c8wjUOEc8hKsuQQaQlZbx1N8E75tB7XYwsDMio1j/UPs2i5hoOEj+87nDmhxD0uq9TCRZzt27I8X7dyVd+z8yGsPHZunxx476aD4Ux+Xtt0Tx14zlhxt23bWGa8HmHS8vmPfV79nYHhRcu2Xob5o55Ws73sBu3+eEgzCkHL7daTE6pqz8rLX7HPPH/k+CHCXTyN+Xy5DfaNrW1/iV9tBOHXJzfM2G4sjLTxrZFF66QRrKAFOdQuYd1eNQY/V6AdAiY2qEWTl0u0PJXmnmrPnWXWGUtN/bwEVb3CDDjMvHTLZEbaQh5VYMCUKjLDtjd1RB4oMhFTjb4UpBhw4GWYn6p6iMwU7LK0SOcrIR1iqD6kywKwzBqm5fO0OBUocesNSbC7VJTVfSI+xgczDxfAy2a9JjiTDTNOIRUiSVjANDAwyv1wFUawxHoviBEchBZNEKeWLVKufTD4sWa2ARluc7sa4mPR3HfkUlRiKJEzJwrQAlypm1MM7LPXwIBaVWuhLJaFGuliBWuTnPJBE7L9eB2RbLntWo1T7LWBT/n/97AVgLImcxkwgg+pV81lqRE0kqbXJT5sBjmj9I18mIBb4fRzG4t6qLANI9D4gjgWMiTPtjEjVs5LfCdCz5m4ygDU7D2shk5MMtk0ifLLl99fPHgVKLDGDhdpsoXTMArsBbM96AOIcC2Fz0yFwtEOarvH9sr9W+Wbc4+9zKRhE8uXSWkuWQQK4+jhgk1EGnfWapepsp92YX+XB3s8+a4zTJsF5B6yl+nrga9cBn3v2MF+4dSa4wi1kdbQXrLM+bnI1ZL5tEj4H5khhwYnyyBPoPMkq+wzwf3jyn4dvn4AbAYh7DjZaYyMToI3mqTwVzrLDA7+vFpl1kDMbLDaxyczOyuYwBXcI2BNpJ+nr9BmWvEmU5Ed8nylWqJOJwBvhFXv0M+AMLYH0gMNABupbKrStpQ59XaW1e4YGdTLMcieebQJz9unnOteYc4uu17kdLDNjkJtVgcB0s7ZajKaNnof97KMwxn36fe1uHpZp6siOybzlXkXsQslXi1jqrNZ3m4zGPNYkyQTrwSQVuaXEUARg6JoTe7BEgSLb5ChTJoeFd2TJOqaguanmclSBkmb5cOSAWZJlplll0hnvltys5zAQGJLYzCUKpJx9PcMSQIDmUnM2SLPKeQf5NhhjEyk8Tf3Zg6wVhC3Jk9CeKZZoLHa1XdPWSBRxaNDvScmgNV9PseKswUT4vS4wxzYjSG4s0Nns5zLsIibAv/31hQB6X+fvaDk1WC/RgHXA5rNQDqT1lqd6GGUzxyKzyGtLk1fNJbRTrHgCqxUJiqy3BLBOF3CRi0FJVXKYXejGHNTEuMZESITb9DDGBovMBvB3gzejgNtnIAAwpfMI7FFke9lJ95JTFihFTDF0JL9p91DRBaOobXXxplliljskaTLkCLOKS0WImy9ZNejzTaft6mGe9iJY6S6H9CHtvQqoORYYYTt8YmROrLQlUfntpkmE18AWRWTCPOjeawV2Y/uScJRd9qBiWjdegwx3mOUA8xUZpMq0+6oZ0LRJhjoVcuGvoahrdYLS1N30OMct9xaQB4A9GHNxc6rrqcLniARZqgxRihu9SZJ77u13h1kvnKuUyXuRnYzrt0Uy9Pw7DIfUQgls24xw5Ci+UdS3XeZh3c2aF4zGZjQWVz/74SOQo+KpuWPRMVtmJoo+ySbUWRK1V8W/QFjT649GZ1kBIDoH0veLfZjxh6Ee8of0McOSPxwMeM1RiYet0cGbcT/LELlMjnkuIRnFIX1e8DdI0uQCd7+I6efX7vUZFlTyVT6Fz82n7PgrwBlj8zCFAT+vAH8EDLtcMYuBIo88LOAxBlI5C63vJJ0wigcOqoAZ+885q+mEveexmF5PnDHnYRl9kv69Yts5PgyhdmliLLIOgaEDkj1ykO8JBj4OO3vtIyJx95iDaplhVxpLwuvy18clOC/VdcVYeJmTDjj+lQNwDnzW34f6zwnJ4vOnsHofwif6kYE4+Vn//i0CwOSpbSfzmo/B3wKLfuwnHNDSOPTY8W0t2zgfy2EglZhtAi8TmFTT/dCOlIjb9PEvwilJm12e3HjqrDsHvwR4Mmzjckxy2EXfZ2cuKk33+BmCxXWsYNvMFIypeDxlY/h8xY8jZeDm84oxPI+/5X53P7FAh2IRTr3R2R552/dG08MnFmwcyssGfrFlwRDPj4DvAQ8gm8KA0Ye+7dP23sdimeaAUy4RVyrsrIFu9Uf+mW5vOYGffj5Pnbe/8//Uz7P72tW3bN84ayEkSMZ82sHtlP9ZdtBV//eU5guvmOw3c86OI3PSjo0jDKzLuYxagSAKJTnycXqZCLRYXaATZOLg95nTdMJBBMQ6CzNe54j76pMt+Pw5L8izv8yvPg7974NgFSgNtY+DLgmoNaokSwFiwZGiSYVcAA5SFMjLTYmpQCwe1JQ98BpIP1NiY6/vjxrKknrNscBgl4JC+56iFR6xYmWoXkrRikaegIqLLIa9TB/mzzbt8ls9v/NeY0gZohA2AZRqRAsg0iJCDUyzTTGvMtlobDCGDL5V96iGbWEJpKYu6A+pmiRJKZqMeW096HJaY5UZ2+11brs9h3kcjTv4qloNCL89NbHT1MPvS5YdWmztMwCAAlHEvBv1MBGdzw4YMBCNW3lS7dEfNZ9qu+4UVQGkkq7lHZA0gDkR51bXlbEozcvIWCBDAVrKhkXXZ9rN5iXdFkhszECTZhkjtBnfpTWOJI7TLCEFkSTBAtRG2Aop1jRL0Xge8n2XJ7SM8HWt5vwa7eMwGtJijUoNpcWjZO0aD4XrCUTNUqPq8kZJpC3FNxnXTYU8aT9HKRcUir2ZoR7gt45fIQV2jx/xd3zti5yCfm1ep3nEMDuRzFkhHyCKxkrryDrpABAE1lfdT68HU9Io4VXggcZ4jgUsdKGG1E/63h7abDDGZW6jVPFpT6Lux5i9PbR5kxso9O4ii8iPHojgHJERgAAq+xzM/Wcn/3kY/gvsFTu3W4WmfRfQlHLSyBZFMjTYoz/AMjBygAAzNUX62WOUDeSnakSWaVY8ZVyAk7F107G/pkjKhboQCIBMaaM1BhF7V4mtm4yGxdc+A8Gw2/TgIzUi5PemAB0BPH/An1EjG+tk3TdtekKBJsmyklc7Cqoca0y4V1055P/y+ZcCD6BbQaZ1qObFnM9vwjTMBms5Gj0tkqwxzqZbYY06W9FCcirhszrm1lpmkWFEInn8iZnXJMVNrvq1sxHnHSxvoEI+GnLarq41PeOXmaHIdoyVQGsL40lGM0lr1BUuRHq3rCYavl2Fr9QYjDR0eT9qm5uMIf/YjvqvHM9IjZEsCu4yRZWsP4czTLIa0nZdO90Ao0BbBYEMUuMytz009fBXmk++EEDvkN6QGIryDnbiRJnsx8z/yuRpkeRVn3BKFOJBaimmhghLbw/4AG6Q9oGT95z8GArsksZ8NGSCPMsdbnEVSSj0/VnXXtedSDnofnDdaa8yVjzrrCywLpUS2vrZDy86dUuaPmGq0EpgaVui++tECj0H8y1QIEKeCuZzl44OisxJZ1hGhpJzfBAJPE0vBMEmRnUYdTPLM0RpY7qJmv9f8v42NtIrTdPELmYEI8jgN4OKUEaJLDJJJpXspJbZSVSWU61SqUooAWpUo6tn2u0e7CxmjAFmDCz81zZsuNELAx7/2B9jrOFZoLE73plxT2/3Tg2qtmWoLJVKUilXWWZOckRNppgkkyxSFVSEGPxmBCMYkfSP57nPiWzD3T2ABfdKASSSZES8H+ec97zvc5/7gzS3uYPkzhrUQxwwx0cs80JYMZpkjQMGw8OV/AIuO138mF7aY7Ql7RQabauiW0iSomhn9ZlCH3JBXpIJfXFMb2DGNUkEmTGYFPW7vBUMp4FwM1AU+TibbPjqrMmVX+AeC46K1/m+pwCJiq5V3roDco+YwYylMyxyE0lmjd68HlZVFaphchIzEZU/o8A0pTSB3bgFykqKroc4PbwZNXs9rHCabL2AdPtAuD5s5b0aVp61ajvoXIYRX9mZY5l5D/YQxbpGN2Vy3PdVEdG89TDZnn6cZbdNupIOhYoeggvsBM8MraIJHM5/RSQVAJKRpBsNGCQyqfbAlRImYX0P+GeYZHYAY0UppTaHgRqSvBYdENkmJGh2ZN1H7rptu/+7GFsuaYzAqktzO8YwYM3ZTRfy4hOzbdpSRUlj4KE88krE0Akd0zUMjOmBzpt+LP3+Xp7gGzY74Ywr/P0B8wzsUAqofOjmHWgb89AEASu4J16/7b8jB7OjBODuoujbuY4BbXsY6FYmgGwk7dxo2XY7HLyrenhBs4mBqKcWykHat5n3/xVQUfY2E+B4rQ2oG7X2uNiC7De9nZx51d3l23Kfu44Xvd2/68c7gYFFLSJQ2+P7EYvvlu8ja9Lr8zJks5jXm8tvzz+x/eZHnZn3EJNaD0PlQ5NEIwAyy1PswL4eYwzePYTzNyzRtvN54Dt2LLU65nN36ue86t/3EI3OHgep1d7ybnT5NVvW7pnrwE04WsIYgWKj3nKZuPslMub7KMRtZBzgxCW0YTz+Z7H/5JtYPbQgEg7hYtHbdM4/L+BNMmy9Dr1PbhJ9Fj9sAxIlPT+B2ev+voJQsGt3dYkg0e3IehukHcSdJgDH557SnO4ksC+/zK9jeoP6oUniKTBDbH+xuLSwVXGGd3wmNDlm1otPFQry75Vnmf7pWcwKYfNhbr/3lhwYVFE4wyPkdZugxZQvpMouBQjFhQCjhhcQdozm7zzkzJise8PlKT8F8MgaRNtrOgNDfmLXeECZPGD37hlWWGEmAB8Vl0iZ11rCn2d3AyNEYRhAOD7gKWmq2jXLbugXFcZ6xnv6+KINjrYhINSe5dOYvDYRFuQzLleyhd21wDJK0AzS1W1GeZ+XkNJAXlRaDEzQJO/sLUnrtLCror3uGpIhZ5uZwiIdvtMkwRzLAegSIJWg5d8x4Ep+dAJo66TIu7ysfXwZKaEcbEe0H5NO1RjigGvO2hPoqHbT86CNtVpgxoGRETLUPFQtFWoYW+wfQuEDAoH1PCWAo52tJO8tpTVLZTPIQei3Y/rC4m3Bx3NkyJbC9WLP0BtBeSFA0qTa+yi8Tm1grMtmkMY3XHEjhqUW/VXTyJOrjxOGvyIeegMO1E96gJ7msnavMAHBDdIue82E5235fksSKtm2/A9FEKkwEqwIVH8LJDHpfyqQSt7jW4FxJxKMruUKIyywGNK+ARZYpEEqSL21YNLAZOgrzIQ66S63SFHnLrfc43HEQeTNYKMglpwWb0w+b9dCZGkZs+oGS0i9JjBEKqJZHobz16JJhZFgRdQOWMsmq0iBESfHaK4uUuAFlv3uchxqctWxVhevo0RdgCXmw8KQ9vEGrwcgVvWQvN0FgLfXtyKeiIRiTOT1cJ1nfHHhZ7wSwNk3eY0ihUA2KlD0tPQaI+y6iiwdQD/dSwrsOLHqlbAYM9J2f5Xqa4ztcH+okWGdKRadlGPkKbu+xdhbZg5ZOShspEqGMjle4j3E+jzG/OTUJlkqQd6sDACRaOThKdab6lOwOnSCTYawMCsABfW0SDjBx5479n1cCw/IePvXnfhTIs8yc2HRr0WCXowxveHEoV2ybHn9LIUp2Bw+4Qtaj/yeLT/SNaZC/wjwu80dDrCU8tvcQRYOIqKVeeavNZ8k/+qP/Ie/6qQY9pUqrSqKfqu4esBXjXBzS7uBC/kXBVufvUyRD7gdQhlMkmmrS5LzKjl1n0HG/EYtxLmPY17ifWQKmXEJoVhnBwwx5ZrzAyxmWfLTF1jmAbMhkKHqE6omCq2KCIgUgq+HA7XJD/lBWB00D7Kb4aFVF4k9GOVQgq4Qf61+FCkw6SuoSi2TZEVgpSVIZUJ6miaZTcYDw01GxwIZ57lPkwRrTAX55S4jwR+uyGUWMElziyTrTHLVH4IXuent0o0SegVIrTDDBBtIVj3BBvsMBoR6lG3+DT/g27wTwNwWieBHKDNk0Vr1gCbDzqSv/O6S5Q63QwjEga/S1jE0/i1e9VXm6LWQpeIPa2UUG6+gEhsn1m5v8lpg1xnF+FG4ICUvvkwxFABFLnODJWfVjYQxsMQ8ChGxc7UbsVKTY/jKVPiOTEb7OPYV2/0wyawwwzz3ww1ehsuaOMsuBTI/ohJL3OA13gxgtoyf9cAoyXkWC8aoMMIm4yywGKQ0WvWTlOIBs2H1VoClVs23GaUXM2eV8fTlMIYSrDENvPdFTEF/o16X+YwjkpRTGQYPqmZ+fw0DAD4geNJ1ThBlqQD9LmttY/+wbPLAzh6MTfQxBhwIpAGTNe5h4I+DdP1jRGBOAJ6SPn+XyEbaACYMCNksQj4B2RsGCnV0+XYlxcwSJaBLzhp7EQN3csA9jPnnLKz+LSj9BPLbfky9RAZd0b5X2nYfuBw89z3f16qDeS1C6MLRBvS/DKs/gXGln45C9U+NkYbAOQVYnNp2EFB3aGyz4w/hqA6dZWN7XTx2MLU92VasRLHZHltbHK26FHTAwLW+Huh4w/bbPILODSIgVIRPD+E595DrlG9dAUucfQ0D3ZZiv5DDAjOGgZIFmGSvEMIs+p2lFs4PY83VzqDTwbpOHzulTyBfd6l3u3ehQMuH1u9NZx++OGxMvk6Bih/bfjIv+vdXvX0fYyBlzsdAEjiCo4ptv/97BB9GtuxcLprQ4aBm/zwRTNN23aMvAIJZzDfvN+3YGLPfqx9D5mViQMi/xhiU8gH80BiMGW+vvUPICiw9JXr1zfv/w0RW7IT3uwJlWg74bkHlPmQTfl7f9bbzcJjzbZPUjwvAVECKrwXuHUL2XQMHM2IJXofzf/kFra7+DXvJAFpFTspZCGI/Saq5zByFw89pdF1iJT2D/JXrpLiMJXnqXmThVaXAGlNRtMl4WBVvOuggJYEKJvmtmV9RiWXmSFP3orKbfKtEKWH+debVJCWCnqNSgdkgPzmwRZxB9gNjS0W0/I4AsuyGv9missGZYpZJcpujRNn9fQVwrTDj3sS9pGnQi8sjTz/nas9KKD4KFENAh+7TSukNcrGWh0kkamwyjhKIBZza+ZhUUwBWZOd3h0W8KfesA1tglRdQH8e8yluUyDHLA4bLZxzkTO5rfWpMjG/zM17hZ6Gt5lgO3lLGMiuTqVdppRPBb1meXHr+7eOEyxSDMgIIzE8DrHYCaJKjHJ7DAMbrmxTTVhzmTz/npKcvALQ3WvfZTwwGNlS77LbbGWcqIAv1Iql0nbIDb3nKQeYr+6Bj+rzGWKPCCGnqbvReCjYmknSZv7OBoS2SDm6Wg0R9lG2GHKCztn47ME8mWWNs73N2hyvhOVqMyKHWAclEK8gIxTIRe7FOird5lRl+FsAlnd94eiOAoGJiqq3t//3AbhmhQqFVpJFIOzenHqTGJmvbp0yeydPH3O35BhWyfK1tm1/mlxQ/JXIM+TgFscWaDHEQpPRazDhgkFvcZZ3Jp7wmxSqVl3jVAZcCRT5iLrC6qlhY3hLzYZxJVVQh62BgI9RJVbrDAryAcZn8j1AJoIqYrap7VdvIw01zl+a829xB/tySxy4z99SCwQFD7rmZCPNMH+ZneZdb3GSRAkXe5LUAhBgzbirUi6ptbnOHnC+qKExjykNpxtlknUnucTMkVa+5dcI896mSYchBrBkeUaQQmIs2LxpTS2DaKNu8wesssBjmxL/Dv2SbMaS+amelSYb5vvfXThuxCUB2RyN+z7CgyRwTznQV20tehFr4ESAkMLREniy7/O/4PzDvNmSzPAhJuXMss8Q8ChW9xwLyn5PaUASRcTZdrDrppKlFcpR4n5fCYomsKNR/simb86T6BBYMJLumdSaRqjJB0z3/G2FeESP1Lb7LP+CPWOYFX6wztqGNtUYAobV4BlAiHywetACyxI1ActKY0z1ebLptRpl0n1Zj0du1sONAn7AmyWy1nV1GnvKWr/v9XJYXCn+xGrwRjmHNU5pnecAiN32u/+v5sXRcXFz8B01Af+nGOjr6gcP//eH/gmf6ZWJc5A63w2rgMX2sMxkiqO9wO1xM3b5SJUknECiu5s8w72wt87gTSCTm3zZjzLDiK66PXHqQD5OAJbQY408Ao1a5PmKO29yh5owwDQhRN+VtYCEVNrnKLPYBs2ECVjqQVgt0oz9g6ClfOQ3iOT4KhsNi9G0wTp5yAEuaJBhjmw1PFm2n6e9QQGaitnpoTK9FbrJDATN5tIdKgZUZagFoS9Hwh0Nj4k2xFmip3+ZnLDEfwNNRtigTvRC1YiNd/Cbj3GSRE0xCW3OK8QKLoS/BVkbf51s0sGjo9/gWr/BO6CsZQk/5JCKwy5Ke7MZTx9KGJ1ljwpl3kqYWKAZfEkm6NbHopqKVknbPnE3GecAsr/EmkjgYYDoSVnQWfYKTqfYU67zB67zKWyj5Zo1JvsX7yAC4wE6gKD9gNiTy6SFVq2C3uMtdboUHLt0gFSJxn3ny/hCqFV3Jz+9yKzywKYWuQhZ5QP4WP+Ij5pjlQRjDNiFP0scJCZqBvtwkmstmMHmMbvpqFwXUaIzroUSeDlUswawPS0dL+sQthmKLJIdHHfynA38GMHBxcXH0/7OJ6G/IS/PhHx2+TqP/GYr/2/8byX8Cf/AyBkA8xgr9fgJgd1H2on8a2IONMtSA59Jm0l996L5h/j4T9v+DRZj9DgYiCGxRkAX2940iTPy+7+9joGgy2c40BkycYCDcd/x7HhTBdaKE1RN5HxTb2EktgideYEc5oHbx2BmBki1+4O9N+3EmiSEBi34cP7fQiQ4FJmTh4kcuf81625WByybDzTirUGm5NKFShOxv+PHWgVFjg/UXiF5lC9b+n77rXn0FO4ZPy/CcWGWHxnrMiM3lAGRp2/3jxuxv1Xf9OAqEkAiSBLAW94zr0HYEsAq4OrT2qf7UQjT0HVa9j17EwD7JQo8wsFQyzpz1z8Wyt3cTKg8h+12CvJphqP7EQC7ODIQ8qls4yUXT2/uwrS1/SACkzo/cP1D9+DYR4KwDv+9t72Dpudtjdk74/j0U4qLswPAoke2GA8avW39cLPtnHIg7qrhH3usEPzzexcC972IJxfLV+4tgKBhgt+TfV9rsovfhd4A8VH/k/Tfs4+Jd4H8K/Dkm85avoth4ko57MAkTzgAEOuba+hZvr1VjTioB9wiY9mAPTuEP9+GsCv/Ynku/dPOh5sL/9X8KyX5I1oAn9u8km6b3szqtQUiUsevhEgGovRiAjoZ9ttkDyW1woh0nA2l6j+uhvWvPJek+bNLo6eAgafLK7tOm2Q4Uuuk5q3HWlSLdaLCbGubZ3T3ohotL0PEZHE1008k53cdNGt0dpHYvoBt2Bkbo4ozBmklfOlzGz7GfRxcxPbyP4NtJD7aA8wToBFKw2zPAyOkhfAqtr0OjK0lXrWnnCNT7LpGqP6GjAgz5d+vQ6oVL/rh+2J1hoGaF1Vl3ku5yk/rIJdK/fEJjtIPzZCc9uw04g93nTJM+cmwGko1cB5VklsuVXTu2M9tPsxueXOogdXxh13QnoPLgCVz0QUfTj+cS7Pf1sscwPZzw7Kd7gfF60QUdVTjKdtPVPCPRvOC4K0OmWSO1fmHfL/h2Tr29nvh+jr1d+7wtU9Dqt/5J+lzRGoFEC2o9SbqPmzYuuiF54Mf4OTSfheQRlvh0ZtuhCadDBrpd0EHvRp3GaAepPT+mMx93vu+T8TSpZoNU7cL68gnsZgfI1g6tb/psv+eppI2xCmZoeuzbaNr2LvqgQ9vHz+8cDkYyDH5atTFbbNIcgeRnNmZOsml6D+uQhJMeY2vkTvehBrWRJN2fNW1+bEGzH5Kn2INCGpp9fkzHTdgnJpBj718MWf/gyeIXz8BxdzdP6GCwUg1/b+Wg0jVErrwPVWuPDi7o2WrQykHixMf8JagNGDekq9bkvLODVO2C074UPZ82OH0uRc9qIyyK1UcukWxYhzdTl0h/+sT66xgaAx2kTi84q8E//qfAl3AuhKefDU/6n0OKJZPoNymww7qrfGQ5oFpS1jxLzFOgyBajnNDnsuukJ10PBoamPPQ2mWCOZUwSnQusZflrK4RxhhXk1y7Vj2pnU3d1s8sIg+zziJlAZhD4ITZpEgOLZbcl4sUMj1hiPqj4BCqKMGOMU1ugkbzSwghqjLJFgzQrzDgpY5cp1lFIjtV/OwFjaFe4jTq7TOzHaluNqEUTILB85XUv704pyFTLtEiwyAI/4IeBpCCSzUgbiCimnthoqj/ljwgxBfgBs8yzxKInsQNBbpujxI6z0ZaZ4xZ3aZEI/W8+oPuBcdseBGkhjlvOmnsh4BMaW6rt2gkmr/IWa0xRIcst7vKeA3VJWp7aWwv+//eZ5z/hnzPPEn/EP8ASkA3c3XX8purWDLJmylHmmF4OGAr9VSYX/Da3GWWIA5daV8O5dDvbUMzSO9wOdmazPGCXrC/zGHlmmzFqdLutVyUs8Eyyxvt8i3E22GQiLDRKMrvjIHUCszAQ7iEcRT6TJrceoUwuEKjU58IvRGYRkUwyd/X5jNtvAA74dQeGdp00a0fP8E8G/jH8FfPhF8LQ6+WEKgMMYYkf8irRYBZwd+zsMGO42QqbVi2LXGaTCRZYRH4TltCVCUENMo40FqCdisAZIdrtQJbkgSYBGGOZOfKUgn/LEAfsUOAdXgkXolb6BIRpYJkm/wZ3uM0Ua4FBN8g+E2xyl1thkr7HQqDwx3OyVccTB5UkRb7JImVHkoVwC7UWoq2wCFsBbCCpMuCrJwU3RH3EIjcDbXudKWdXmWS5hKWijrDLHW4H9to8S22ryBUUhy7AT5Ogtcc2VbqDl4sNzkdhIpIWX2lHogYL7b/PDV7nz8NKRN0HsF4mP91gmzFe5a0AxAlQ1YVrgSLZsLKdo4yZgDYCndvkPmkUCGHm1kkkrS06ALrGVADi1NdarZbh7DJzfJ8f0yDFbe6EtpLnRQ5LqVLSU95vGH0c84BZXuJ9VpihTjrcjASEKZ5enzUacOopCfc6k+TcR0c3y0VuctWp1CkHRZWWtcsIMzwKKwErXOWAQRa4R4MUD5gNgKTAZgHhChu5xV0apLjPDeQXICaevH10A0/QZI5lTNLdxwyPkA/BDCvUyHDy11x1+B/7K0mLMdbZeQKtJiFkgLIx4brPHKCrmwQ124WBCC1olmHcE2ApGiBwfGost+ohZLxIyCcwcCdrJvwd0/b7RhnGh+H40E3/XR5Z+gDyL7t32Ckmp93GAA39P2AAYsYTRBnDiojr8Nw/wwquOaxQ+dj3PwaVx8bqI9dW+FaAnwKjsPFTmLjmjZPFmIT/wn9vAl2wV3Qp6aodT60OmSMDimpnHvqQaPPFc/aUQkQ6dWdLE8II+h2EOXoI/a8TAMWvuW8aBQO2vjZs26ZifZIZtW1cnNnfOsQIbPm5LVv/fLoNzwmwA/gt34eDtx2FOCYuHkLHvP8i770lO7eMe/vh3m//9hDm3oWMM9kCKHZKlPRKTl0gAITDA94mOs6Kg4UFa/f+x3B0F7gGHVsmTc2P+jYXgB9jbLcNY4rWFuG5HwB/CqtlmBLDU6EaDqocbXlCrMb5i/4/DnYVfawoHbjuzD4/7g5PJr44MxC3fxobj+8aKNZ5mQjKbhHktUrvZcvYe51JT6A99O8rNdfTj/Mv+s8f2qY2yjDxA9tOpQjZnxOlwvLC07gqYqjcdey62IpAKqsY4OfszqM/NSC5030a+6ehb8OPu5cQXtKo8eV/bUGyGwNazoEk9O7V4RIkauCEMOvfHgzkOyAAsckGBnKtARnoTdYNtNgHnkD3UBM2IfXMBbm+fQNqivb9/loNEtBTacA5PDu+B78C8tDhCyr9yzUbE92Q+syBnBpcLu8aSPMpNjdkiCDQGDa2nmDX2gG2OCL59+f+/iU7r5HsoR1vFyQ2oPtJMwaunEL62Sf2/jk2lvpsn4kpYMWOc3Cgap85g+7LBialP38CXZA6vCC127Dj6YGRzUM7jmNvuxxcLu7atTPkx7kPyUPg0wtr+4z3hTNp6cNALAheqEMbJwylT+zzutafQId/rL9Ys/Z7Bgab1ejFuk9YLAHCnB+urc/93x7wrAfDp2MbJpbseLovGZjHmAPEnxuYRxOS59j1mfLjHbK/93zWgGe9j55A6tMLez/l+9/348pC72d1GiMd1m+f2aGNbBzGwKUSJLOQ7PLjOMTatA8DQ2s2DjoEXH7N29TBy8HPqxZMtW7fTz4GxoFd6C3X7XPPQu/9Or1ZA/c4ge6dpvXlZTvHZMXb58KPKQPJAQOx2ffjeQZLMbrk/XjJx8OZtVl/l4/7fT+3bkgcQ65n3/p1EHo36ta555D4FdHSogDdnzaDfUHqzFDgnoxdzD33GnZddNt+0//uic17TUjwBLohuQzkvT8cwP4qvLb4Ok8cfDMgZo2PmGObMWSRk6LONmOB9GG1i3npRe93q9Le4DeRP72k1wlaHrC3wybj1OgOdgcKG7rDbRS+Aca0vM2dQCiRCki1hLzTZVUgsKVOmhI58pSp0Ec3NRSGt8LV4FtpktWDYLskhuEMKxQpBBASTI2V86C9A4YCmLXJOG/xaiA9SPI5wm5Q/A16TX+LX6AQIoGHQCBGSIaZp+ws7YZ7pTWeUr9JrScP+Vd4ByWXKyzTrJbM57xOmqussMQNzEevO9RU8tWTT6qkwhmqzPAIWWU9YiYQkPo4Zpm5UIcqSCHpNaoSqlVDa7wUKLLOVGCLiWXXIE1fm1XUfeaZ4VH4nNrHCCe/CCCqWJJiUsvaSXjPBJuBtbnr6j2RnRZZCPZbCg0yr1BbnU47ViGilZLclVwcCSR5plgLTM8p1gKeVCMTZNAKhTxu8/2TRdkgB9zhRQbZZ4o1ZMMmZWjdZe4LLNLrwPBHzJGhxpqnz064eg/MmuAut6g7Wemqg+O7DlSbnLsegjfFwJY6T9JvBcMoAf3XPKjkr3p9ISqPB/waaRrsMoJMgmd5wE0WWWOSGU+KFVV1ijWu+kSihBUx6eziMYqqkHEwoEfpZtFIs5cKI6Soh8EjrxRNOutMAcaSM7S3Gi5EUVVbJHjEVR4wG1ZDrrKC4oiP6WWFGQ+T2AgBHUUuI19AHeMjZgIVX6sRH7msI0EzfH6UbZSCpXCNKt3c4q5LK6KRs4U79GKmpPWA9CvIQGzELLu8yB0WuPeUH4L0+pZ6lgryhRylQKuXlFRSk3bjZZ2bksfMRyP5lO7+Jd7nb/Nn/C3+jNvcCd4lGapcpsj/kv8zcyzzW/yIKdaZYJPv82MWuMcrvMPf5s/4Nu/w2/yQWR76xWoJPX+f/5o5lnmhbZvzLJGlwqu8zW3usMBi6Jfb3GGQffKUWWEGIMhv09SDrt4mUutHjc0dZ8NptaNFkjUmkbH0LhYiUiJPgma4kB8wyxaj4YJc83GnlTaZfSoQRfJ0raLof6UdazJQ4tllioywyybjwbD5FX7GAUMh1v413gTgJosB2FPUeYGdsHImPw7zD1rhmF62GQ03EFvl22eFqyEpWIEpMt/eYIJ2D71j+lhkAZlXV+mm7HRvgYerTH8R08/fuNdjrnDAIIldSPQBZWOLHRXhoUAYedb9AwyUaAITMJ1zdlgWKiXIjsUgi8zLBiLR5eCNAyLlPYIMMIMBR/3TGEvqsX2mAgZGzPv+6gbEcejf3Yaj5b8Q9iDwD+h/EXyaCx5k576y392FBSecYaEJzmo68hCIfA8GFGUxppY8/a4D3wOG7Tw5JXgMZnrgXhEeHrYFIUgOOwClu3487sXXP4+BlH7c1T3/zu87GLhB8KrrcBCQRQPKOnLAEWy4/Jhrts2OrPfVvIONOQyses323Ym3n7dnkElLGrtHYL/V6tZvTPvn5u0Y+3u9bQrAkoF3t0ZNRnxxCPR7/4pB+DLwO9ZGD8q+/5dtm2t7dh6cGlMy9GEdAxxaDl427Tt98lBc8Pbpx8Zj2sIl8gN2zNVT6/KOHPxqz89NbLRp305/298cCPj0EztPEt6mYmb+gKeCLXCwt2MayFrysnznzpu+HXnfyYNQUmoHBzqTzmqcIL76/f8J95N0OTfXIfM9H5ct68uspLfX2vpRrMmcH7vLZWli4K0f01EFAxAdYC7Vvc2n3Y/wdcj8o9he9MDFE7j0VdDcjmDggsDoHDhp2wr5FAZ61IB9SOz6z5ewMZshyrBTbd97xn8/9p8FnOxh4ySBgTiHGLDyDHbBOngcFh0yGPij/eHf7cPms07gKlEOPkhgRgVWWxoba+dEcGzIzz3l2xLo0ySwv2j4v8+J82OfH0cS+PfEsJlLbf+2/Dhd7g4YePOZv5/07Tpontq+gE0igNbpxyrA7oLILOzDQKbniCBcEwM2h327u2190UUEDp2hhpKyZfmQ92Pu9jZ0IDC0d8a31+Nt8DkRSHWgN4CBh75/MT6P/bhPfD/PEpigXMIAK4GvI36cDW+vTgxoesY/U4PU0oWx1k/9Mw5KkSGOmc/9f43JlLdDj2/rku9nkKfnEgHbJ/7/Ff9f4GISm4Oyfq77/p7YjAIs8e3r2JreLrqujr29T/1c/T5NigjYZvz8tW2Nm2M/lye+vX3fV8Lff9a38blvz59VGG7bVgsbRyVjBzZ/zb/7xLa1P95r+6j5vob4SviJQkwM1gK5gC2zBzAzpVG2g22RbKREFgEDEbo99G+OZSZZo9fVPUUKLDMXiAKSmucps8QN90fPOcBmNej4U6DbNhlq5Ch7OIMFI6g2OKYvAEbzLHnN9Ygsu1TI8oirIfl0lgdc9vpDJIkhDvgFtwACUUW+psf0sYP5go64x6fCIiXdfY03gy/3NqMBGJEPa5VuihTYZJwiBS5TpJtaqMMkTZXH5Z/we+ScBFQjE+wYZIF0nxvc5F5gvNUdfKmTDgo8eW+aEu0l7rEQlGLyyxRZJ02dZV4IhCeFKUqhGFlfOwH4S1HnW7xPlQz7DrAJ+BXwt8wcWXaZ5QE3uE+aeki2llec2IEWQGFMNxsZuQBQAe7zNvJUrS+//wRNSuSRN+c2o7zCO55U22KDCQoU2WQCeQeWvWY0ENnCeGQRJSabLNRu8QtuusIPCO3Snr4MhO/JN3+OZcrkuNxmrdBNNeA/Isu0sKTjkcAGNd7iD/ltgMCSXWSBBmk2GEehnnlKPHT5rEJbX+I9b+cTamTcIqEVpNIKIx3igCnWuMs3mPTwjSKXaZEI8ml5zNZJ8RFzf6355Ath6K3/H/87Ml1r7PAsZ3QxxAE9nHJMH+f8V7ztGuknXKJKhgEOOWSAKt084jEHDPEZz9LDz6mS4TFnfEiDM37FMHvsM0iDbUaoMMQe24zSyS+o0u02/VUu8YQTermggyKfGwr6BzOsMMNNFkMSi8IATuhj2wEym9h2WWQhXMgnvjpiqac469C80pTi9QLLYbVBAKFSYQW+SXaqaOUDhoLuWjJh6fct7SVHHUtpy1Ni071jFBbRIM2Jv28TYj2sDggh73Yw01YMbCVjiRsssPhUqlGGmg/CRPAiEC3ZoqnTdKPEpUzQev8mb7DBOGXyPPrDP+UST3jEvrHazpok6nA00EH/4c9ppaHcNcLlw10aPRukDi6itGqkm/STB6TLTyLLpe+MRs8uF5cWuX+pjy7O6C3WOSrscIkndoM7tQ9fXPoFP25g7I4MPOmAhD+8bQ5d8O0/eJEMVd7nW4Giq0S0nHvG7DIS2J4y9x1n05lyWyFV2VigGfd9eCFMqpIbD3EQ/ILqpEMqk8xl15lE+n5JZWUcLfpvnnKQCdecKi42p/T2G4zTIMWG30x001UgxzF9XOXYU5ubrDHp0ekjvM9LvMT7YVxYspWtgm0yjnwaG6SCJ8Vt7jBChRVmUIiKrhFRziUF13iZYYVNJkJasL6X/ooEYyRo8RFzJHv+ey5OgV9zT7si/HrFAh06BrAH7f+Lyx+dYbdahuEEZJuQLUDFi7fMMBy97dLQMwN58i5HzQ1jzLlVq0Gqd435NVyEjr9r+80nMHZUCysoxlzmKwls2lJaqx/bNsV8Uxps5V0H3SYIfmSd/fb9ZhP4576ddwlS3P4CsAelU5hYJsqBN7CU3nIE1ypb7he3CPQaiHTT93UusKxIkN/mXyQAeBeLLlv+JuDtm8lhRcIf2bYy04S02vNt6HSA6eJfu6wsBxP91oZi+ChFuOMQSmXIJzHp6XZbZw8QvelcfsoW0bNwFQM99Z7OYdGksJXHkF3FAIGXoWMJfv4x/Pqen8OR96973vEmIR11VlLdN+3/KTEPz6BD/VTECkcHMjb3YCJp/VQ7g0wdY6y9Zn3Ff2FtWvK+yh86W/TU+uu5AgYSC5hcNQZp/xGRyZK1fnjuOia5xo/fFqA5/1fGeOxoxv7q6HI2Xs5Zdu4rmenxQA2NnStw8aYDrXU/L2etHr0N/QttfSOwY6NtPCzY+Va2oNaCTNPaqFQ2BmvwqNSYE+hR9r8l/Pd/HffdLymxg7jjzia9WHamadHlvgWM2XgKHZfgiQrgL/PrCfzBP8SuA7HbBBSdYtfIBta2PXD6+iV6lp9Ez0OfF5kmSrmP4Pyybb6VhK6PgVE4zfp3JX8VGHXD9nV+GTo/IcqwNwhjEvzzCvYRw7Pix+z2A599b4C++jE9Hz6JIIyuNV3fSbhYcGZUF/xqdJivre7Z3CgWsmTuTeI1MuH7FbDjEmRyRFCo7t9fILBYwwLCG94+WBtx6OfXIgJL+Peu+fuLvr8sgbnKNT+PaWIIzsfYwoHG/7a1R+jLF4l2Ag+JwPi0f/+P29pJ7NcrRM/JK769MhEsa7cySPvnWr6vNCax1zbr2BwqJvgb/rPa8ZafwwJh3jr/n/l4OCSmmstzc554D7zedr6n3qYCmT8kMtllA7BMTMb+dWLidtnb4qH1z9E/6KT/3fN4z8j6+fg9I7SJQM0dzB5jD7v3rQL/sK09df9tenu4NUBYCNrC+lttm8AAzXe9n0aJTLkzYnq8rBlGicncp4Swq6dYzHv+3ReBTwjBQSwTbCDYPrFAI7dO+MP/irhY+CV/PcevaDKMjP2VIrvBeEhtXuJG8JQvkeME81/coRACWtLU2WaUl3ifO9x26ymz/AEjYOwyEoJ9NhmnQpZxNnnklkYK97HsbEtc3WUkeL3XsIRjkW6k4hlnI1gKjbIdACEBhAr5q7lqTqQEKah6vXaVV57qVtlf6fglkZSksUaG7/IWJ5h11m3uYAE7JrE0u6kqm0ywwgxTrHkQ4s1AAJG/2zJzXGUlKOQy1FBgZB0LYhhlm7d4lUH2WeKGM9VOnvIRP6aPitfosnOaZJ2Y9my1udiTd7gdQLZj+rjPPAV2mOOj4O0pKy359+9QYJcsmw6WFSkES645PuJP+D1e400n/vShZGqpzRTE0J4Em6LBD/ghRQrsMhL6zGpXkxcbk24/9J+sl2pYqvwDZkk5sCe/1RlWPFyxGWTNWSoMOUHFxtCJMxzrASvJuef7HMshk0CBm/KrM2uoIdKOq2wyEeS0dVJcdSVYlQzz3HewdIJNJsiyG3z0pJAruZ5zigQL3CNLBQvfXGeRm0F6PcdHPGAWy3y45wrFCt/wlOq73EKJ8hWyzDmrU37BurbBGJJL3AhBnONsBHBX3rtl8gz8NVc4vpA14SnWeaa2z1VWmeQxVxob9HHMAIfMVVaYrGwxxD5jn+3w/GfrXN7a5fn9da6yykCtyvjWr/jm4T3mTle4xic8x694/rN1rj15yNjxDs/xK55hl7GzTxk8rXKtscLzW+v8evFjChQZO93huf0SBYpcK64xUjykgwtk3KtXgha9HLPCVUrkSdIKiVUm2zTa8prHGPdxHMIabOANsUuWHQrc5Rb7Tp2URHXNQRuwVZRfcMuBjQp3uB2ou+301ioZHjDLNmNkqAZqpthxdT+uOT5CRqMrzPCA2RDukHJGowyaRRkeZzN4BuYpBdRaElYZJcvnUMemJBcz/myglOAWSRa458d44ky/ZzhkgDR1Tunh0oX5a/Sc1Wj0dJA4h8uHu/aQe6nDwIR9oBv6d2tGx9fqXRPYhdTqBelfPmFk45DeT+twDP2f1kg1G3R/1uTiEjTSHXS49OYiAx2fusfHqm3rkH6y7DLHMgss0iLBXW4FQG2JG2FcyGduhRnWmAxjJU85MPPG2aDk0F6aOiNU2GSCDSZCirEk2fKH1OQho8wcpRC2IcNkMzpuokQemSXvknXz5Y0AFrZIhpWqAjsMcUCZPFfd1LZEjpd4nxoZB4MnaJH0m6l56OV8GrvBkntjWFL0Le7yCu+wziRrTAUD3BZJuqmyyM0g2S6RJ0+ZLUYZZQul9dzgfjBa1aqZwkS2GeWE3i9i+vkb90rTYIgD8xYSWyRn/zq6PAVTD+04A8tleEmg1DIQioIxuIadndY/QfAiO8J/HnZw8DGQhokJA2CyY86m2rLPZF+27Z+vEtky13y/YuIJCJvAioFVk4qe/yvYaxGlVvLPc7ZRv1hRfg5i8KmImHieWEAcAj+3c+hoW17Kim03Z/vPiMF4zZlXDlZV3vbk0CahSOroaZPcuoyZLFRWbRuZCax4cAnrp4dYobJqx/CpwJpe+8zFoR1LR8/TslkSWEFz01hZuWFiyEQSC7tYJaThVjcIgQ/BZ00MoWFrv24VSEfW/hzCbxQg0+b/1tFe0EMM7ygYOCnfvj1JTZN+PgX3tlsC7rr02IEmTiE755/bI4IKG3ZOwwMOmjaB12Fi3seZpMdzvp8BY4NWHzoLTkWlH8PFYyJT8RS44v2JbycXm7fzsu2v8nNsPH8T+HtEiaMX0x0ChfoJ/oSd3/M0X2fJXZSJrBIvcD+969t90cbbcwUfF2kPZnkeuz/VCWEeob3F0Fv19hywcXjhErTgN3kKnd+3vzXdy6q0bUA7/f65AjAIqUG+Gq8iNmcIWDqEvRe7Irgn0GoAEk1HOcUuhQignGDXSclCbZYGrtO16NvehszpE84EVEEEsit2DJ0CY8TuzGHjOEsEKnzMvLvwjfj3Pfj8+V4Yhmc/OaTn8Elk5ibsfYrYOPP5VCEwnMLXPtgLYz94Pm5hIIeAaknfs0QwxufXwHztIiZrr2LXbMs/4+2H2KEJ35fP4/RjoFbBj/WPfZvt7OcFDLzCv7uMzbFiIIpg7xLcwLgu+N8kg4ewyHEhVrXapuDtMEa8jziwj5iuA/5exftHzL0rfl6nflzDGPAmUF/nIduDHiy5+hAD5NL+Xsne67zn5/iht9l3MVmrGMt1/84e8SVWpACo3/A26yIy7WWL4BYOlP3v8t/cs/PoXz6P53mNCDL7fK57N1k/r1EMlNSikvpSx6WFJfyz1/1YrsNp7lIEFCF6fjoLPLCZ00TgUmNw2P/dIC5w9PjvEAOXdP4Cc8Gu2YL/TW03gD0DCLjuABdWfelf/55ZL9ztWbjhVjsiDKjWLLpN0QgV5ziVggxVLKkcJeRR/Rav0nCih9hhliJcRYGA8ywFoEUpxpKOvuAMJ+3zAbNBTjvFOlOsc4MlxtkI+2iRDLJbgVbyjVNqcpl8IMBYEm6KFkm2GXUWVExSnmSNFWaoYl7sBgy1mGM5AGy/4BZbzhzLshsYcAKw5JFWIctdbvGAa8yzhMIslWg96cmpGWrBK0++bxNeJync85GTGR4xQ4MUN7hPvq0NRXKQrHWb0QBMCqwU4UaBMvJKVMjFMi+Evh1k30G3OkUu0+tYgPzaChR5h1c81GOBAjsoHKNGN3WXGou9p6CimmMNRuzZdYlnJfj0L3ITecenqLuirBYAwmXm6HYxraywDhgM9l3KGihQDGNmniVe4v3AwJNPu16qfWXJdUwvS8xTo5tNJkhRZ5Nx99GrMMEG8mhf5KYr1syL0tinkWCyxI3QL6a+NNu2OT5iylWRecpBApvwGrtFgm/xPmA4ziNmQtKyjdWd8NlNxrnFXW7xC2TD9kN+m3XHEY7pZZk5mlhgqFSEOq51plCwStOvxQQtnuNXf6355AsB9AY4pONT6K40Gfn0kGTNAJjLxV2TPdSgZ71h/iWH2CS+C91ndTp0MyhjwM1nNbLFIziEdNEe7rKnR4wf/orEZ8BnkFzHbiwN+zxl4FP/2an4J/TQxzHf4C4nvlohFFnJJ02/uLcZJeeDOuMDR8y6ee4HUKJKN0MO3FTIut5+BCAkekVfQJMoivU0ywMmnSVYb5N0jrAbfNgUOS/KsgFzzQDoyH8tR4kFFgPCv8hNilymgYVvg10oNzzJNkWdb3CXnAN03W3a9xbJ4KUmSeaJt5OSd+NNx1YQTBZqoFavMzF7Tw2p7ziG7tMmiRP3pNm1fuUY0p89iaupFWLxJAmDVs4b2I3/wEdsAziHVP0CGsbsSO1e2HZrvhJ+5ts7s331ENOOjfpsKypDTlV+ifdoj4GXHDlJi03GQypPxqncNTLBDyJHmZT7PwgU66bKa7zJZYosM4cllZlhaglLn33EDBWymB+hAWPjbPICywE8XWOKMnlmeIQSouWXuM5kAKC1KnbAIG/wmw5er5OiHlaifo8/QcEeoufrxqGE2yQtNjyRrYkl5dmqWz6sIiRp8Spvs80o97kRaOK2clMLwLdWuJQceJdvBB/FY/o4DDq7L/drh2dJ0OKg2wHMj4mFZT/20Dzhf5t3MOEMGDbAZdYll+SMsdShB9+Cb6sM0wvAngFcMtrnu1hYga+aPzeBPfj/2BJJabmv18tEgKgfS5F9Fx5sQ8mBLrEWOrqgcxSmJZV176MLsSlUcFxx8EYF4TTwoW8P22Z1m8jg2rD9l37s73+HCEZ94OcgwOehJcyyZ8BiR9LYXOy5z90VB3PkBVew9sxew5gCSeAaXLxr0ucMdn5VZ/Y/p6LlxL7f8TveRpJGY+yqShEDhLpMBhx84DYsyCL4QvXY5/ZODRysCujs8vZOYpJNHEA9839Zf6/f2vZIoIGK7lVCwiyHcP6xsewqAuhueH/vQWnR2q0myV7TWKLZa9DxIoEtcVTBPOh+BBUVa9PQeZPISisTWSYCcpdtDJyvGsOuKfBr2MdA3Y6xI+fAWCUeN2fQcYXAaOoYI4KlSWdaDmDXiGTQ0+YhicZQDguxEPPIWXp02Xc6slD5YyIQOA3PPW9twzZW6A97e36IBWgUiay/j415yIC372MMqLxGYCV1XDHQ7tMPHIQUoLpo++nMuf/lgst7s36co3Dy13te+x//6wjr+y6sHw+BLAx/fGbAiiTczqjrkjTepdSAAe3DRMaS93mOkvV9y97fGn6G9Z4rtp8eOJ24ZD6ZY8TkZrcsuJiL+7yYhs+/0xsDeAou9Xls+zp6uZNMvRoZWW9j10TLj/HEt3+PKA8VWALxmeeEOK7xbYiBJrBKbLHrRDm95sXHxPvABJG5Jbl4wvcz4f/fwOaZBe+HnxKBnB7s2nrox1IiyvMfE60DSn6OV4i+q2VvB53HBDEkRCxhByI7fo4xtW54P28QJfhZbK4/gqCymicukIgtttDWNnPE8KcFov9r0//2NtbPA0Sm2vf8+6/7Oc0Rwdhc2/50r9KzabPtcyX/XfPpCTYPiil3SgQBv+vn8Tpxvrzr2y62ta1+vuL94HNmYCh+0/92jci4bPp3rxNl2rq20v4dt2DgGmHO7Xn3Sex3gZRaXLjm/dMiAukCTCV7FrO/CxsfW8Rxfs3btIsICG4TLQs0Tvu9Xfrb2vV7/rvY1F/y1wKLFCkwxbpbUdVDEV93pc09bgajfNUwJunrDqGAADUyVBgJQJ4li564pK832N+YUf/VoAKzf+ZTv8tIAB8kZ5xjORBBlrzWFVghaWHOgRCxnbLOKBtk3z27DZjr45g3eY1d30adNK/wDjM8Yo5l9t1PbYNxl7LauUhWO+JS3mXmHGDMUyPDB9zmTV6jSvdTqeVGVBlx4oSp717hHQ/d2HWwayKQDBI0ucdCkEcam6viLZRmhAr7rpSScmuNKbo97GCNqadSXgVoqj5L0eA+N8K5md+6+fa1SHKVFQbZR57qGZdSi/Qz4rZcJ21AbntCaruf4iD7KANAwFbGATjz2V/hJd6jiQVrpGiwxDzy6pdqTDLTFWbC+JO6zHzZ66wwQxpLFZbn3goz3OF2wFJM3twMnnZAIJco1VVyYcmABzlgniV2PZhSoOMKV0PwxBjb5CjxGm+iMEezumqSoUqeEmtMBbBVfSMG3omTTcQSlHWUMVg3Qtv9Cb8XgFgByztu9TbKNgqK3GAi1NMG8P2Cb/MzHjDrDNOdgCNYknI67LdFgld4ByU0FzHpgVRwf9XrC5HcntMJ1RZ/8D/HJns9YIBN5JIMtbAboij+zxMBPq0QvovdVF4mrJ6LbcA0xoKg7fdD7IEBIAd/+KdAFzTpdES2waZ7jslrbp8cijoWcmzJvKYRb5Dmfb7FClf5+/yzYJgowEQBBuNsIJ81gHsskKVCmkYAwZQqVCcdtPSW0DvKS7xHmXy4mBruKbDCVRK0WGGGbqp8xBx5yiGVpQ/CCs4MjzimLwSAiOpswGKFXbIMccBDZummxoHrvGd5wH1uOOfMQkQ2HOQTpVtyzP+Sf8j/in/MfeZRaIaFHmR4QgdXeAw1+M9v1OAl7MZ/jViYX8ceaK5j7IZrRAp+FnuY0wqrPq+H+QHsIU0Fl1YONd71IOCF8h/+N/aZMs9gya/msagLTimsosLKDFUX9W/zQ+7wIvJc3GUksNDEoJT0dpI1bnKPFuZJeOxU8G9wlwRN3uQ1MlTJUgnsySy7VMkEerytYK0HxD5NnTUmrVgB+jgJY6TbVzZkjiq/jabfDA4YDEnHBwyyxSgjVJhhJcjB7/INbvELKmSDYeggB4yxTYWRkAqk1bQyOZokGGeDPCVkQiqvAbBVDMW1J2mFCbCPE47p5Zg+j2n/KmjMYIxfssY8PZzZuHyGWEh9138umrw1I/bPFlB3TzWBQpIsqdhR8dvjyaA9zt6TdHaZUBxXHhtrrR+MDXcZu1YeAz/B5uQ2+Vt/DmazxCJIc6uuQ0nYnHHR8U0/vg+wuboMHdeIBdZPDIDJq4j6sM2fz1lVFCA/DdUPLIhj4wOY8AL2aDXKlMlBv7Mrpq/b9zud0dbxu/Z3EkT24B6RKaBCyIG5/peh+6793jwkSrZUzElipIUm9727WHKgqWz/MipUXgf+uScHDxNTWTEPuo4x7+PrflxlrIj5wPfzMja/DfgYmCeAWP3wlPT56CF0H/m+BhzMq8OEF9AXjw1g6kxDft6O53wrfj/IFnd8f584Q7AF//YUXhw2kK4j6cd7ZH52nZd9TKhtHIjpGDOmFD1tgKpka6cENkhHkhD6Ul11CW17MSvpnorNJsZ8WfS+3bB2zqiP6z7OXicy4/ZsG9Wig2jX3RePtuPK+7G7fPl8GzolbRPTJYs1/Il7N067pZXYT+/yFMulc9RSgzdW/XMP45hhFfI54BZkngeWjLVZewjpTmh9Icurf8NeDTj9nUv0FJ9ECakD3iEhW2Cs2EpdRIDIP3P64iV6tp5EKeI2jHV9zvk0dH4APISvd33Oaa4SpJ89xScczXVSSuSZPvw0zLtUPKBG8x/wzCcnNvY2gAWYbT0Issr+5fMICLo0mDE4G3W5r4N+/eVz25jGG/GzVHzbO0TwWuNeCzp1P7dDIivsbeLChhYMPsHGl2TnkrEmsfF9ij1bLwIvwtkt6FrCriXt09mDwVNVYKUWD8CulzT2zPYinE37+bZfp0d+XAKbkhg4dN/PYcHPTYDWPDFIRuCVxkTe21gy5y3ia+8v7PNNbO68TgTwxFRUlaOFsC1v458QGYcCzdQG+HmqFultOyeITMFV/32nre2zfp7LxDkW/26aKH3Fj3XC39tpOzbJYn9CHD8V3+fbfl5iOvu8xCf+mQI2Hx76MQnA3vJ/AlJHCfNkYHQKeHbbBo4wJucSEbATS72IzY26n55hfb/kf295W1zDxp6ObYPoCyl1wJ7/7LLbr4qHXi8nFJ2JJ+/1KdaCL7osoXI+iFR7goE3DdIoyfaAQdIOWikRFwh1p9JCb7LIMi9Q9Vq06h5wCii0bZrn9Rjb3GeeeZYC0eGAQd7jJZJtoMwyc7zGmyRocsAQQxx4Wu4QZXIkaJLCQizTNELtXHX6isAaSYcleT2mjzWmgnfaZYqsMRWsiNqDGdaYDMDjKNs0SLHNGAWKdGPhj0UK7DPIGlO0SHCbO/yMb1Mi7wEXJgNueY3zGm8GRtc890MtlaBFjhIrzDjgZ7LcOile4j1OsMDPKdbZZJw66SChfJ0/55HX8sIKZlhxyLDBBuOujDOcYoYVdslywBAKLdx3gsgxfSywyAKLAcidYs1r+0EsWTYRJL1JBwZFSrpMkROv2xI0uUyRXUZI0AxA7ywPQiKr5RVcZpYHAX+QH6ASgY3RZ0q+fQZDIIgBlUkPgzTsQ0GKGcr8jFdIOTEIYMiVZ0pzTlHnZ7wSmIkK7BhnkzvcZpI1cpSoMMIJCi6dRz71aeruoWjejQLnDhjkBZZJObg9wWbwndSYbZLgb/NngYy1yM0gd+52LqQ8HLWvDDW+zc84pjcwL3/M96mQRUGiCu3YZcTr5GZgGOpav8Nt8uSBP/sr55Mv5BHyhF6jPbR7KHyHuApTx26IaeyBZd4/s0h88KnztBfR29hNQ8XZx1gRpJW7DXvv3y1M2029gt1YTqHVS+iURRZCmgpAi2Sg98pss8IIBww53XSHKt0OYJQdZX3JsfZUmNQWuckBQ9TIsMk460wxz1JImZH+WhNTgiZm/mlS3wJF7rFA3ddohJIXKbBDgSrdfJt3GGM7rMhU6aZAkausUKAYAJ0EzQCuVMhynxscMMgS82wyEZhTAAoEEcC4zShXWSFLxQMh0txn3i/yVgilSNJihkduVppmnUlucJ9LLm1mE3sY0EqjJFzD/vu8/y7ZRrtEYIJopq+xUPHx8XN/f5EoJxGbr7ftO/qer7B3co6Zb25QYYRdRhjzFRQLm8hSJh9ujKJv71CgTC54LtboDuBsigZ5ysjbYt1vEqIfZ50en6RFhRHS1JnnPguOyFTIckIfszyg7CawdmPrDdT5OZZ5hZ+FxCMlP+lir5Jhifk2cPeYBe7RJBFi56+yghlzWpy8GIKKZ7fvyE9xCPMUjCtuWiGrkvGVkhP6OAlMQaVx3WQxnPtVZxRqHALc4D63+EVYgRzjl3wVXpJGV8ji99MopXmb8PCaeRkDJQ6d4TUAncMu+SxiD+xLznDKOStulCjDrPv/LqmqvIs9IPuc2u8Fa/UhNn+W4PyIkPAaHtg3nEWmB3CIjCrJoI6wwmQJKxDKHl4w7J/ZIrDuKMODorMMD9v2g+/Hi2rehvO7zoQqWzovZ3Z+ySSclwmS1eq2h0BI3pXzfb7r55Ylys/075RYwOr1sQNiWQezXIb0aZlYEJ8QmSn+2Q6XTJMAHjuzLY3Nd9PWJp/eJRYuXc6OU1F2is1h/RhTZgArAMXeHCDeP0f958dw8aEzH0uenJozJt1Fxfp3QgyTQ5PcJhPYfDlqfZb9roWrgLftobdJkyjTbcJv5KDjdfv9fNXbteTb+337bFUA8xGB1XJx5uEq6bZzV7EOoZCtPgQ+9DExhz0fHFqbnG8TFmrOP8GeER4RQLajZT+eLmNYBunxf+79VIjjItNjjLgQ9rGF3YuKbX2atHZWCi0J/8xdImDwGy7Vfujbchn16gZBGi0pXbUIEwvY+GtZ37BIZPh4e1wUzUux2YLaOVHm9mV+NaHn4ZOwYBFkjwPYGMphYISzh84WiNLJXji/Dpz5NiCy+XosqbbzCD57fSCA8D3vPolzDrCdGGVq79PIkhNDGAKQUE9j/SXA8QyqiUwEZPbi9jR3XixAum7sPtLQ//NzG+vzfi5pApPs/DLRM0/S2heJnnmnhDAbVolg5iiR1QsRdD4ken3qWUgsqG8SZagJYBm6PvDPTWDXhFh8kgUniWBQgjjHim3YBN6Frrfb9i/JaYG4YKB59l0ic0sMwATwvHkQhvYXkCUQKkFgU3OdwAQOEn78PJ/3z9wjLsRoLpf0dYs47wrYa8JntwbsHqb73ZgBlWHBTQs1t3z/V3ybi3Cme4AYcpKkisG3DXvzXXER5iHh/vVUarwWzfqJnnliTEryexb/vvf3uiLbrgcbF9vYfKv6SItZZ23nLqB2w89H95l22TdEdqIYkQNtvwv4k4oq758vYM8nj9vO58zPT6CyFv1yRJCzQmTg9hCDOAScfslfv+JrWDDGbvi3wXjwrpbFkil2jIgwy4PwnK3wuhWuUqQQlF4mcx3xWuWEISxoL+8KtDwlXmCZKt1UPKBAssYq3WwzxhLzbDDBOlMsecGmAL1X+FlYqJ9knZd4DzDCgUIvIwBUCFJGCwqsOEEgzQoz3OVWqHsk8a06CWWK9QAqSWa7wCIlcnRTZYFFFOA4xTol8txjgXUm+Yi54GWvfdWd1DHjNVGZnCusLLVW3mVKcX2flwCTxP6MVwLoaixFWR7tc5dbIXBRdaRCMlM0ApGn4sCcedEPUSLnfVwmS8VtjGqBYbnNKHXSQeY7z/3AjjRyiI2XAwa5ykrYniyzKoy4VdMmQEgmli/dJhMhXLTsbL809eDfaGnItUA8kvVUlW4GOWCZOTYYD7jFJGvBJkzqR8sPaDjJpTdgHpv+MJijzCD7DoQ1AIIV2M/4dmAryjNQScHmJz/CHW6TdRAwTzngKkNuC6bU5HmWAqA8ybrTeAy/2WAiBKeIzNRwiG+E3WAddYu7QY34M14J7MN1D3sdYZef8e3gWd9wlqFCLeZYDuGhYukpOEQhGNuMhlq+TprXeSMoRP+q1xcC6I20diNTSsexjd30sv63JnbzmiB6l/iDNTmi6e0OcRWpHezTA840MYnwbfiP/njVPjuNpedVIXEAT7hEi6SnotawBNxuSuTCxLfJBG/wm0G7XSbHA65RcXmuzBjlp9eLhQ0Msk+ahsdJNwKYIwqm4sAnWadKhm1nShkTzy6nBRa5ySIHDLlquxXCKLqpMeXGmkqfERCl5F4Dl0pP6b+HsBCGV3iHQQ5QYIeilWWAWqWbTV8V2GaUR8ywzWiIh5aWH2CJ+fB3u7gyYeCtMRVo4uE1THwgHPO+28Ju5Ho4LHn/fdO/oz5t+XcrPhYK2AOEGJ9i1HRhDxOL2EPB8xi4VwG64aLLWKN1UoGOm3cKdx1LrllhBov9jjRnS3AdYZRt9r2nsljyVAvzVlR7P2CWEjnWmAygoMaQ/B1Ei663Gc+KTWeehzvM8gAzCU2GfhYzcol5xtj28AxbnRll29N9Mm50aqtrOz4xVciG1JyUw7bydMj4RH3sq0l2Llso8MXG8S5rTKK0HjPH7Q4A9SI3+RmveGqyxqitsummXHca9n1uUCYXDGJrIYbty/06ZIA+jnm2UYJL8OmSAxpNB9S2sflyFfghUIHOHxC8ujoKLjH1ebFjDqg78CWfHT1YtzA/ryXfeRfGKukl+OnUzghsjpozQc69GDrftu9nVJAtEc3X8X24l8+RfHLexTypLmMFTw+RedE0cDKvwlAyzgHz2vuVCqwcbPhDfv5F4D926aW3QeZl6PwOocjK5GDWWU7a3sUhlD6xYwush1bsh6rmh3ngmnsVpj1kQ8VxHfgEnvseMO2ec2IO9xALxBYG+vjxd3dhc46DQhePPfVW3+ux9NcjAYViOpwSZFoXZW+feT8WFbrOpLk4dR+/LoL30NGWhTk0XWbIddvXxamFinTkDPSq/tSBwO+aX9zGhgO+8lhqAgkP6wAr+LZNttuZI8hmO5KYwfyY9927WCHqc3pHj3vxtRXPVQEjh1jRnXNGo6S7HxKZn3plDRjrzMGnf+zfcyCl/xqBhZSUdP2krf8EEl/3MA+x+JbseFaLcL4BRxsE6e65F/gXZft+VeNywPtHbKVDImjQA9Mv8nQSbt2Zp03sPpTzvpGCQKDhqnsQAvnnIdnRdg5f5leDMCfRA+fz2LNckaeL+CbQC13qP3+OPB7osjlG8m8t4OXcF+whPPvBYQR8rvOUZPPq4WM6HhKBlDSRRYrtq9TzTHzWKNn36qTsbwLmBDouANPQUYaOott9CFTzcXi64I/ZbayjC80BG0TgS2CJrkEx37SwouciKRMKbd/Too+YaQKRJv7CZ8UK3vHv3CWG9wjQK2JzjsC57dg2QADlj36zMx7rIpHFLCalAOwc9mwn1mDR2pQjePYnh9E7UM//YmhqGwLhV4kgaKHtHD8hzt+Sf/b7dh77NrXoP0ycx+vwbPnwaSl0GbresGMLXnx1388HBLYuw5hf4wfE4KdbbW23CtyE4aWzCK6JAaj7ahIbm7pHZIn+eIW2dmxnZWZh+I0z++6cH5fGj99HAzOuQGC+h/E97G0oRrT6RHPWMDafLRCZfwIDJbU9wwBoga6jRL+8FtEfb5oISmsRSfeFVtt7Ahp1zV5q+/lL/vqU58Izvgz/dyiwzagH9iUCC09KoAfMsswcOUqU3OcuQw2w9M8Nxtn0fw+Ydce9fKjLlnmBAwYDE6hKhhlWQh1aYIc0db7Pj5liLbCxgACu1Enxd/i/U6WbJebZ8Qlm2wG7JeZZYyqAK3VS3OIXzPKAbUbDe+NsMMMKAAcM+fHNPcW0E4PQ5KBJcu75LfBn18FNMMWTGGLyP6uScYbYAXN8hPzJ5cU25f7gZXIh4MA4V8acfJPXGOSAcTYZZYuqq98OGGSKNcruX/gS7wUWXTdVXnDv8GNHC+TXp/OziE6TrEoC3CJBgWJg1A1yQJlckIxKRZh2kFCqM4UgSrk3yXoAEsfYpkSOO9wO0mAFTwi4zFDjDrefYkva2LHU24zXdwcMokASyValDJQaq0WSqrvriRBSpZtl5pyeVAzYh4AqSZrBQGONS2EWCrvYJRvCLHKUmOVBYFQ2SAeAW4rEvPsjCnw20HsyWIyJdKXtVOlmn8FQi5fchEshoHlKlMgHwE1tLjxk3xmDksjWSVEmT4GdEHg6zoaPsW5mefBU+MkG44w4sLvv48sYtn89yvIXAujtJ+zCpER44AlSGa3AtbMr9PM8UYqk1UAxQ8r+fVHm54j+Odf8s9/0/WhF8JCQUmXgQjP8L/qnUl0bpJhhhRvcd+qyTRbyW1PijnT58h07cM2/jEEfMBs6QewpmT7KZDTtNE5NDFc9QTbtqxo5yiiRtEp38A3QSkaKBg2nU0fZ5X6QUaZ9baebGutMojhpGVxmqPIK7yDTVYEzgxwEee84mz7hVymww45fmEL6leR74DedBE2KFOjizAazmHbq61HiSqEeJMSUOAWW4HT+UnxIc5kZaR9DXcTiV4WoHsbTxBVuPTDg/1+CDl95rDitVamuTZelLvMCBV9PEY1adPW008Lt5pAMk+5bvNrmKzEfKLXtk02aRvBbaJBmniUslKIWJkEFZcg3oUnCbVkN7NIEO8VaAIu7qVLkcrgZyBdjxIHGJC3mHemou+nsJuNsM8Yyc8xzP6zu3OZOADKBACTqhmFeAiPI1HadSR4wS829APs45lXeYop17jPPN7jrqyKXUdz7KFuMs8mUx3Nr8vwkRPB9uV+X+YwkLTqeAAmTXnY6WNApFpoAaxVIb2PzmrOI+r+LFQw9cPQhUHYQadt944DzU0Ix1NHlwRdgxvxiwp5BdoFQANXqJg8sHRqI0XnTgJRQ9AwDh56uW8YYhFn7W/+AM6SGCQwwKnD+HrGYOITzpodcrGLXshfu5zswrYKzbAEenZobHHSprFpqbZD8SAY34WAb2P2lYuecf56n/ark/5R0NpgYVYsOXnkfHFWg83kDdz4tEpktYPPNhh3P+Spw1wCgo0NC8dU5QZQfnULHb0H+FmEuutjy9Ndpk5mGpM49B3U1Z+HtJGBABZgYMHli4XVq0mhw0E0LG4fWr7Is6C/YuXYksdTafph4PQZwKHCFLPT/A0wGLoaFA31iYVyIubIMX+txnz2BvdpOe8E97+2uv920Yzqq8LRc7Ef+fs7HahEyC9bfz037518msmucmVI6NfCyuk0cr97fF5Kmp+2zRxU7nyTW5/1+f8lct3G3UfaAmg3ftxipV4hAg+SEYxjjRkBI3t6/OLQ+5swB07ID3ZKlOZNWRXSHj5/MOHwlHAgyWB85q7E8MBwYrGJNhfTbNJwWLkUAYBiGt32CEwDhi717uS56Np4Ef7mjuc74rCmgowKdkkhese8FKeUyAXT4+urnT8nyqcBIvWLznliEmmt1LZ8Qmce9beeR9GAPLZAkLUl1f7grMhNPiaxnXV/6/CHRX+6hHQtanBFDS20x7e0o+ajaWc9EN4jPS5fbzr1dKjpMZFlrwabpx+L3Gyls+n90HufaBPFa0Nx/lchIKwPPw9kPiB5v2sc8kaElpqYYnKtEqe4CMT1arw3iXC+ZpxaOXYod5nHNzwKIJ4jecaNEv0CxGxNEsE3n9VP/f8f3NU9cVBaDHGKYyV1sTh4gAshiWj4iAparxJAKAVx7RMad+kCA4CpxrCwSmaMC2B77PlaJzMAiEZDLExdUBI4P+PE+bDvWInbvlbJGjOUBY6UGWfIicbFPbahjnyOm/Iq9+KK300DbdzR+nvDVYCsDV9gI3l7yFRNhYJtRZlgJi+4q/DcYDwvwLZKkqIf6oUSOUV/0T2HBeECQN+4ywiAHwavObJ3Mt2+cTVaYCYv5Uv3MuAJMYRfv8a1gKTTEASXyIRhBJIISeQoUuc8NChTJUyZNnQfMBkXSXW6RpkGW3QB2ZKnQTY3b3GGe+0yyFpRj3wg6fQM/lpnjmL7gE7/CDDUyXPaH2+j11htkyZIfbzLhTLVsSCy9ygonXtcD7DLCJGtkXdM1yjaZNq81nY8UeI+YYcQzZEXKkXza2Hh5J9l0u8XSQehvIKjnKmTZZ9BTe21MzHM/eNiBAatink2xxl1uscYUCuYwJlyOCtlgtXSDJQbZp0E6pM8CDkqVQsLyoPfpLA8C1qH2bJJgnvuBFZqh6nZb5u845mNG35Eaq8IIL/F+8FNP+UPjCBWKXA7MU+ErQAAs/4TfCx6SFUa4y61AxKrRjfwfHzDLCjMu5e4OOAaApUQ3g2NkgSK7ZCly2eXdl5FcfZtRJ9yM+DnUqZAlSYv7Lh+WH6LkzN/nx1TJMELFLbLKTLHuas9BilymRYL7zHPAUGB4rjATLL6mWKdBmqZfcxqHK8ww0aYq/cteXwigl6IR/YPkb9OPTejyShG1Xz8/JCY+fRO7Ca5iNzY9gEimIAq6bhpbxJuwioQsduN5DkhBL6co/UUX4CD73OIuTRJcpmhSUQx5lxHjT3iNBC03qzygRiaw5GQ42iBNlgoLLDLllFP5AdhAzNBNzemr1eCZNuUx3zsOGooltswcGWoMcRCSfcDopPeZx9Joy20XTZ1HzIS1AIF660ySpRLYdwcMOXJuIFGDFHlKNEhzmSJLzLPAvZCGdIJFXk+wEfz7TNq7Gyb7bqrBmDNDlVN6bILqIq4cVogMIq1KewEZwL0c9Cw9iT5hziBijwjkQniwf4qVd0pk/JV9e5KynNt+L3HB+7wU2syotBXS1FlgMaxWnXi/2flYn8mMNU+JGhmUEqU48qKvqFUYYYo1SuScEdfwm9o8JfJufJoIk59CV8BWzTTxqa+aDpSCGX7PsRwu/IzfQN/iVSbcT0I3cFvhMH+/CiOUyQV9fo4yFUacXTjEio8brWoIhNPqzgFDZNkl52Mi5755Kx51X2AnfEdekfKKWGeKy5gpra4rYwZWKZPjc575q6aSL8WrxSXqpPlV1+Xwt85poGxJoNVtIOEMsmtEOc4WUHA23yLhob/fH/o7nWXSUQD6obOfEABx4cyCquQ709iDtWQvABMmoWxivl8ZZxhlcsaqO1omFKfDYqm9aZ8RY6D/ZWIBVYDKom3z/F8QGB3tQQxiKZSWXN6ZI5iYHxUdlHS50cNDAwLf2nOQrceOuVTEgigSWGHg0tRzzR2S4jeJkkoBh2IDVdpSgnHWVxdkrsFz1+HivwA+cIBx2vbf2e/AWckBITHRVr3fWticJOaaA59Hqwaw9f+OMyDx4/jQ5JidOTuOji6XVzubJrD5uuyYO7J+vNeIDPe89Z2YQyVnOmVeJwLFTfczHCAynLdc4j0NGTEpvolJfn+OFWpepH76CXZ/vu7H7oV3Zt59BF0id66i8Ihoj/ET/84qXKz6/us2ho8WiambkhyrsBeY4lLBWh1L4mwC3ydYOXRirMCMj/vKKiGMouOasSKV7NvdZTLX5xzoqaz6eZoawoIqCn7tjJpHIV1+XaaJwIfAlGv2t3MHUcnC2p71d9X7+fzUtrGhxcxtP986AWgo/RRLem8jtn9pX/InXALq8LVP9p4GZQQcOVDds2rPBKcTlyKbXxI+zLeOJgx/chZDTQag//65SVsF1gm8cBZtkL2eEBljWmD+2L8nUGTPn00qcK5xcJ244KJFGIissi7b/kUBuny+okWQNbZI2vV2hh33B/49AfdinE0Tpf1isD3v7STAWte0pLNio44RF0GLfj7zWHsL/P6e/y8Ps0/8uw40n79M9D0rEYGvHiKTLo/1a54oGR4gAnb9BDCp6ydtxzhATJB1IDacr74v9mGCyEDWM9408Hf9/xaRaXafKHGd9zZ/EQPhdI/Qy9l2gPWjmMLt41D3KbHVxJbTM6rA3SK26KB2h1i3rBJDU5wZzhzx3tlFZPFl29p6nghgCnCsYH3/r/3YxRadwMb3HtGn8ZQ4trd9H1d4yvYCiB65JwRbCep+HG8T6zK10yJ0vIkt/qjPp4nsPFkt+EIHTaxPeoEF+Oz6QGRAa4Fmgyg3r/KVeHVSZ8PBLElOBTylfQHfAueyQZqpEEdJMwHW3eOs7BPILe4y4sCSiAsm+2wGJZdqWQuF6KXu8thBDrjFXSpkWWOKd3jFPb4uo6CADFUqWPifUkIVFGD1rdUcxkJbIdNWJzZIua3TLinqKAyi5jLOMrngGXeH24HlJslmzb3Nci6vFCA5wi7bjDrTrJsp1gK4tMk4x/RxhxddG2V+eqpjbrLIKNv0chy8+QBmecAN7gMEoGeWB9TIsMEE24zybd6hj2O6qQZ2Wd1ZlQo3aZBikZtsORtObS1S0K57JZpCy8JHTMm3yxpTjFAJ6bsi9VjNZWEKCmVUAESLJFOss0s21HfzLAUGoeyiRD45po9X+BkNUlSdvJRoI4aYDDxHkhYHDLHpfvMrnvSb9wK9joUtSvo6ypYDodUAsCmMtEUSyx84YYPxwBRsec2tQIvXeYNBDtwCzHzc73AbC+nMs8E4ky7HvuWgr2SwVQf8Dpx1J0DXZNoTlMmzyM1Q/6ZpOH2lErCCpLeXPPfVb6qxVf83SHlq8D0G2Q+kGRvT+TA2MlS9T3eR116FLJuM823eIU+ZBikm2ERBJcOBHv+Xv74QQK9ByqQVLxNXhjRh7/nfnW3CgvtoiPavm+MZdoO4TLwpXSfG2G9gRZMo93PEYAXd3D70MxyGGl0c00uThNNr88zykBxlZzYlA/vJmFQJ1pnke7wZpIqbjAMGTBi7rZcDhmiQYoRd7nMDeRcodGGeJR/MzYA4axtNEixxg/d4CYVLSLKol0IuADf6TAdjzjop5NuXdUw5RznIOEUNBRvgStLR72LoyVdBF4Ve7YO64usUJZdMLjMXBrIYXlpBekKH3ZQ/JK42LmEPoh8SWQ/fwR6yCnD+HaL/hkAIPcgu+WdVeIqq/5injakLvmo45n/P4bo389D7Pj9miXmUoCOgdZxN7rFAkQK9HJOl4jeaRGgfmZDmKAeTzWN6GWeTee4HVqWFdBcC8DfIQaD0xqCLBllH8g103Q3SXPVLgxTLvMAjZnwCMU9HrSZpFUVpyNZXvZTJ8yf8HgcMMsFmkMkOcsCQT5ImrR5z1l40lZ1kLTDryuRYZzKwU5VyK6o4EJiZa0y5xNjOIEfJJyMbxyYX6GaXEd7iVdaYpJsavV8JjRl0c2bs2MZOKBguHmOgyHcgMwq0nDG2RSwK9zBmmWQweeAH7jvn4z1cX0dEKduhyVVLH7j8T5+7j11/KqbGIPsbzpKbwB7OnVmbTDjg5QzBjgHzyDvf8WPX/sVccqCjM+kS4RMCOya7AFx3MOtD+1wy4UENRWwuvwGluoN0PcDH8IJLPX89Ac/dIvhK5Qt2jB2SKyWBYQfGJJXacpmymGIqMup2HKtimogVsUBkGmZdDlkkyIyee5FYbEq+lLCfjwQaOGhY3bC2Zdn20d1lfbvxxwZiihlIl4FReP/zop/TGPAb0L/g29B9bRQrUh/HfuZ5nmL/5JxRGczd/ZzD/PiYyISSFFbz6dvW3xvbzsRzNkl+wKWon/jxQpQxOnhG0/vO5dgcYsW25vE9B3CLBlBX9+CoTlyI8bbkHxGYmJWfGyuSlm877d6SG/F8nrtuDL2SM6+yYil12ecyPQ7KXrH3O7LQ+bq1W/Z1b4c37P+M5LVYe/Q74JNp9xlLE4vVVfu9c54AQExPG4jYnTYpdKf3T14gZZIo2zyydsnngBT4OuGX+6XrXe0hAFfWHIfYc55L/8+cdd+z/MTu6Q4I0wOn1y7RJQZSCY6ynXw2OsDe8zbJdkpWKum62Gtb0NnO4hUrbYDIvhMjaYCYmnoIndtExtYAkfXmgNiFwHZnYnYIfNJiQhP2bnXxzNKJgSeSYTaJklVXlQTvTB/zZy8TwxC08CF5ue4d/zzuh0WiKmYDAw0FJEtKCtFHU4viC/EcO0WKOcOesYvYnLNMlIY6I/UpWeUJ8bldwNjDtn1p35I/L2D3BoH7YlVq0fcD7Dnwnn9vlAgE9/gxSaHh9wdycPTdzgjSqd807yex2kFgU3u/H/p5aeFEcuQKVnc8JHqPnvrPXRjTeIOnAlwC0/Gy/10LXB/6calG6iLOnyI3rBLZjCVsHiv4fiWj1vtiuGluEhOyXR2jc1ObF4hMTn/eoEwEusH6veB/0xwoIE6goZ7bxeqTvUUOu5bFOH9k7fPsHx1G1qHuX/O+n37gc74Sr1N6QwHfxwl1lw2a91qdXQfNxCYrcpk5lpliLSycgymmlpljjmUy1MhRZpxNbnMnSFkVYKBnerMausrr/DkFdsLCe40MHzHHfW4Eia8AwD6OGaHCR8z5Qn4S2fhUyQSJ72u8yQi7AEFiu85kqHGSmKf3PRaCIs58zZr8Nj9ECZ8VRrjKCnN8FOqJDcYpkw9qsjH3je920CjvNb1klqNsc9VBxZbX3DUyTLLGDCsukUyGut38wg0IeptXWWEmBEWkaLDGFCtuS2WMsp3A/DJAzCyJRBxSfyrddJRtRqiwzFyom9T2AoAsuNAkq+NshDaTF+EIu4F0IQsjyXQVYFklg4V9DgU8Y46PUNDiOpOscDXUiQr/aE/oLWHe7vKBl6qw19V6VbppkuAut0jRYJGbLrvefQrrGHToskWCO9wGTP32Pi8FxWKZHA1SlLxvtxkN3v3rTPIN7vJd3uIb3HXLMgtameFR2EeaOjsU+AW3yFFiiRs8YJYiBR5xNdT17YrFBe4x4SEyiyzQdCwjT4kRdp+Sq4ORawwUrgRZ9ibjId22QJEDhthgnAI75CiF6649CVqejlLjlcizyUQYZ/KGbJJg7alVqP/vry8E0EvSiqw7FQa6WUBcMfUb2LMfH8ZVvXb/jT1i8ZRt+12MhKx/Xh4+WeLNW6s+l4BjSHFOmTz/HX87mEQuM8c6k+z6E59FL5tcVdTgKdZ9sssiP7A6Ke5yC5lr7js4N+7uBaNsB9mtVgm0khJXJRLkKTPDCre5Q4VsANOkebcEnd3AhNNFazryEhlq1PyiX2Le6ajfCNLdV3jH0fg63VR5lbfCINHqxDajfOTa9hF2WeRmMIgcZZs5lgEcdS+Fi1tMwBfc5PGyU7KHBFqmiFKPJvYwc9TWR+rfhP2984hgIh48PprYA4ivIB9d67Sf1f8qjsBW/rrc0LpILFRd3rfrCDgYlVcTqABPMceWuBEmxDopbriRZjIMRMIko4s8Q81Xh8aQT5/Rn7t5wCxDmEHqOJsMOutSPncKPTGdvzG4Kr6qYoy6UgCEFYKiFB0x6eRroXCV13iTfWfDtXtYyIND4GvKx5MmuAZpX9lZCxPwMX0hMeuYXsAAunE2KVIIY818+Oruz2D08jxlthnltieipKljRrnGIGyEzvvyvxI0SR5jTLQTB4wOsYJiDyi4J14Wuwa2scL2IdHLyRkcGbHQ2mRhF8vmpxa8eaYt2bNfK+85B2Xq2DVTIDIxVBguQ/Wu/dxxBUsW/R37TGnDpLOdOUuELK1ic24Jjn5CKAxqflzZ1/zEdR0uWQIoDrpl80SpUhr4EIYT/p2iM/IK9nP2t/yc+r29Jmx71VX7XlULRWDFUsLOs1+sryVCsbyxYRLIsC8VQY+9zR8SF5PElFTbF/2cE/53P/Zz2T5smWS3dEpk92BszI4rMHHLQMyOLNEu4ptExsZD38fPsSLsMG5DjONPP4FPVSBtExIdL7ww7hgjAgLa7ouE4qvjNWxcvezn8rb35bztpvSJhZF0iDlSN2ZihwqvaWfaObPuQoVo2ZmikslteBuUCOM76wsymWvWRsM9cZsUXBL7TwhSuJKAvENLqL0QAFPEitGi7b8jZyBv6ROi0XwCYx9NEwrWzh74dLWt7ZJ+Tag47gFutHk36nnjOjb2yvDpx3Z8lWUPFxEYqueRF71/ga9JpXDq7Nef8PS9y0FIfgtah3D8K778rwOs/yaw60zKDLDx2M60+hC6/pTYX2CAlQNvPUtPIvBxCP0fnvPsTw4Z/umZ7eOMAF5cTMO5QKBrROBffbzox3XEU9LNve/4BSjwpEJkOy06009s6kML5gigigCbHoL0//Pf7yXZasXtOcs6AOQCxSZ8H1cIAFi1pyuCfmKxHba1pxQsR0TLE4Gkem4a9f1orpNU9BpxwbSLKOWUTPK7sHe9Kya+CpzWvCig/xoxwEl9QNvxDhBBJC1eSMUjyeYqEeAXsKYFFjH1dP/TfK25p0kMaZiH/q3zkOAd7At03GWsr8VgEytN179Y5UvEJN0NYk2j968R04oFJvYSGYZSqnQRrSwk408TfQElddbfrxECpwLrXNLsCT9eMec/9m1X4nmevnjJ3rvi25ongugC4wRU/kVWtIDrvyhvXvRze5EYsAHRaqFM7GcBsWr3vB+nGKIConVuAlmP4Csi3iDBE25xl25qHuyw5jLGFTLUAkwksgkQWFcCdCbYpEGK29wJ5JIVrgbiSZo6K8ywzyD3WKBEntvcYYp1l8LaSpJBEhuYN9w6CywGe6Ysu0hya6qtzQA+yT+sQDHY6fRxzBpTgNlWjbDLZSwV9A63WWOKXbLMsxRqkzR1lnnBQY0WZk9UZYeCS2GHvNaqkKLhQJQls0odlKIRJMq2DSPwbDIRgBmRDiruj14hS5p6YKAp8LGPY2Z5ABAScs1Lbi14x/VxwhLzgY0nlleV7qCAG3IWXMFVcEvMY1723SjpN0WdY3oZoeKy0QZJzItPnooGVpYCmcPSUbMBz5DXm4AtY1NuMsh+6Ac7NgNme50FatjFJvsM8hLvB5BRNeUo29RJk2WXcTawJOPBwHpTOyrpd4RdZEm2zVioOyXJ/oazPxWwonAKKd7WmQznaxLhFN3UeMQMj5ihRZJuqqGvRIaRp/8cy9zkHoMcBAxEijn5GpbcG7DX62zV8weuahM4qtDQKdaCXLpFkrd5FfkZplzlZ6GXS9zlFgssss0Y7/NSSNxdY5IKWVLUg5x5kH3usRBAQYWNGP5g9XGG2v9/Ab0z0rblQ+yGcAWb4C9jNxZfeTrTypBuAhBvBFrpFBtEMo0t7CYxjRUlc3D2W8S491XfT8k/kwb2CTTSOZZROk2LRKB66qJWYkyWXSZZD54C7/AKeUq0SHDAECPsBn22TCmnWPf3DeBL00BJoElarDNF2geIvNNSNML3zQ+hwQYTjFBhjmWWuOFa7wJb7otwTB+7ZAPK28dxmCyBABztkg0Ayz0WApNK2v1xNshR5lu8j9JnRGs1P72ZQFGVX94DZlG0d5ECOSzx5hfcIkGTDi6CRDg8tEhG9piY5LaMrXSKhfcmxtrUQ5JYJj0YsLAE/f/0PD7AT2BF3S2ijG7Lk9e0YitJQcMYibsOmooKG33qukO7Er5iyUIy0rT/Lwd/OyXyWEBFjiYx3dZYeVthFWqDCR4xQ8nNaVeY4TZ3uM2dp3wdGlh4hNpPN6kqGU7oC0zMOmlnkt5H8ematJokUDpP3dmcFbJhlUgrLLvuCSDPANGFgTCxCQwGY4qWyXOfG6xwNVwLCVphTC1wjyQt0tQZZ4Mq3WSoUSYfjl1AcJEC7/Ly/+fk8SV8dTsrsz50idYxZP9PQM69y3CGV9GltAKkvkdkTLyM+Y79CCto08SCYgl4bEEZ/deIbIINB7rEMvinJkFc3YDSx23bcFDkvGzMtc4kbCwRwB7etWMaHnAZpxei+QmXFbacaZW2fYZQBUncZH/gjAl5vNEPpR/az9VtA2uy3/QAgWnzTQssboFa9zxgYZjAviJpLMRzXesqTHzF/+LUJZQ9FoYwkQN6HSSc8GCEIw8F6eepcIPQRir0VIjNE0G/JmSvYYXOtoGyeRW7LxLZMlvWJkcPrQ1LRfh0w86DCpHtpvv2Dx0sE3PEJdfdCZfYajELO54OzbWjDoZWiH5US7btjY/9O9uEQuz8yPqSoh1bPtfWfwIyx4jeh3seJmJrDxbQ4eyecxXl8wRmyvmOSVarD4kAxBn0J5x5OkDw7OvPuldjEbhu3dHhbJ2Lpu2r8xbm4+gslI6c98vv+tgT6OoML75JKM6PKg4injr43fTtzxNZc/0OFCfbPCk/9jFa9O9vGMCYFbBeIBbIW7bfjmno0PQm4F3/jux46MfG8kNIjEDfDF/+1yDRMkPAyk0iq1LsLzGfkhiwUyGCBw8xcPSQGKShcT7m29jjKW/H+8PXjLHXQ1xoLhKfM/K+/w+JCwBbMPyjM9uOgDzJzxOY7YHkuS/7sd73bW1gc8UZcdEmCc/88IT+//bc3v8mEczSc1DWv3OX6EvnoEoIQ2hnRSUxwPkDDFTaxq7VFpG9/DF2vSTh8fSzcdw5ozjILQUUPvJtv0z0TGvC8AfeFgIqBUg/Jvqj3iUG4g17Gyz63yEywcT4Eije33YuEFmVCWLq6hXiIvGZb+dh2zlWiB7b2t+Gb/syEajaInqRbhAZ7JqPHvv2PyCCcHo2nfd2aV+4wI9bEtI0NoYFvrYzoQUI3ifKpk+JaibNI2KX9hNZlqfYuO8nMke3vA2cEUqWwBDtefgkqp0E8F7zNhC78goRSBMYqUWQ60RptRa+tACnBTdnUHPkidQTRGBV4LZ+fkysySCCyWLFvk6wwHhKDvwlfwlcUPjEIAd0u5JGP4ttlfZ6UcqoUbZYZIFZHtDtEsAVZoK0skSOKhkKFEm6/FMEjwxVJlnjAbP0ccwMj9hggm6qbqdTZMMZQg3SwY99ijW2GQ2yUL0yTjopUGTHpbsC1u5zAzAvs8sO/BXYCQy2NHU+cn+1BE0H9yz44yorAXgRoUWkhxZJdpzNKHKC1XYW/LjMXKivBDoq1LJAEQsynArWV3MsB/BKEueMS2kn2HRVl+3nFnf5Fu85iLYfAJ4VZkJIiPVBPhBCWg6eSS1nddllJpwgcYCFKgiMm2CTJomgiNt3kLbqLEpTCEabowln8wFsMs4S8wEcMnusXKhzJ9jkDrd5xAwVstTIBCDNwjJNkp1xWXWDNA+YZcKVWtau+2SdiSn8QanCV917UYpCZQkotDNBM9SnvX7M8yxxk8XABpQPothtYPWpwNv2Y1xjMhBx5JcnDCNDNVhuKaz0Ko/YZIIMNfIesHGbO7zEewEfUrhMnTTv8Arv8y0KFLnmZJll5hhqG+faTosEc3zkYyxPhWyQJescdF2JDGPfS3JCH0vMB1xqgUU621Sbf9nrCwH0+jiOK27tcgBJGnyFrktyCBVHesC7S6TcQ5z0z4jU7TLBT6Jrm/hAJ8kC2APGI9vvLmbUOe5+YwJzLNbbQAbRnYHgS2bsuhPmXUc/zmZIBLrHTTYZJ0ErSCwtzecub/Iau47G9nIcEotylFA4QZkcStbRviI7q+VocMIv2DIN0kyxxovcQbLNFI0wKSdoMsMjEjSpk6bmN4GYVLQV0HfRnBUCoov5u7wVJtEp1gBCFLr6Vpr0eZZQuo6SZI7pZZ8h68eK9/0VogRAxaj6dI6wynjh8gr9H7xoIHqYFIhhGAnMePkacSVYK4ofYA8TF7aNNA3GfOWmSiZMhC0SnGAR4LM8CCa0cyyHRCah8GLUTbAZbkRZdgONOksFBVS0SLLGVLjx5igz4RO19bNNWAJltSKg+G8Bj/KjaPd4TNBkxOm+knLrppOn7IBrHZnbjrNJmga3uUPZmZ99HDsYm+Hb/CyM7TylcPM1hul6uFbM3Nbow7tkUYS4gL8il8PK4QNmwzhTWlGDFLshMbr5lMntl/mlPk7XnvDkCVT/AGi5lG/AfOhWi9g4FkBxis2hcxhja88AD+TZcwiUobRNLDokK13APPWSxELTC5jpCQdtPoZPvflrdWOt1c6g8zpMLPixXPNgikX7Ox8CZw5+OfC0IVmOFyr937TjufCH96NlYtBNGSuM/Bkw78Vbdzom9nbO+/GOQuWPfNuLJh+ulBwE+pjINkhD//dc2qhCo8v3sWRf7/CCbXrU91/C7jEfe5uKZbfn7bntn1GbVoDfst/Pl6D0Y2we+jlWrHcRmCfDA5ARM+ZtIqPc27P/GuDA2XPPWzuVtnmajbfH04mSrxswyalt/6Lp/nPtcqmS9Q1L8JxsBwRcJA0oy/fAxr+AkqR489bvVWeA9Gdt7HR8kwjG1v34VwmhF309xDAWtREubZ0nStfm/HROzZcxjNsB92RUgb7qx9nvzM092+fXHHQoFQ3ovZDs7wPr35KDsfJu6ndmzcWp9/+bWCF/xc/vmoN+Pe79KEmlpHpJ+2xn0vqiMxf7LzMNHQvu1QdPA3MVT8ltEZNFITKNms4uPIOLt/09ASliGl3w1TCCT2B9OOzy1AIRXPFFAXrg6LVOS6793UsGLCxgQN33CDLPve91RbN9l0aeX4Z/X7hCWCsaA3JwY+9hCFIJoM11bLy+6D+L6ZW17Z/+1qUY8HDq/6vP6m2/i+FU8G1fx+YLAUTf82MRcASRzaSFj3eJ4PC0f+4G8Rkaon+jL9yc/Zb/Xed/mQgWXSewBkOoxipc+dPPIivxY6IPn47tEAOTBnxbvURrBYGnEAM8/JoREzVIqKWu0DEX/ZwnsPvIIsFCIXgHPt92PnrGl3y0hwhASu3zPAYCQVB6sODtpjrioX9+p+3YpBChrT8gEgtOMWnvGdHvsp1FuOrt2yQy67Q99dU0YRwp9OP8O8RFDc0dOv8yEeyr+/m87cdRIt5Dzvw7qqPUbwPYGPrQz1XsuXvEBSpJteeJcvMl4rPzPPY8LQa/+lTgqp6tNa7OiAs9PdAlcLNJfFbXOG8HYzXnaZFP94sPvX0zRLbgl/x1yEBQWa0xyTJz7p1WoUEK+eIprKBAkTvcDmSTTSa4w216OQ7S2iqZwPQrUGSKNRS2KHXSkj/jlz2coUo3d7iNPLtL7mOXdqZYhSw3WWSQfd7hlSDHTNBEqbA/4vu8wytsemjHIPvMcz+AOgCX/XxEipCd1Zu8xgyPmGOZMnmKFIJXnSx/5GWWocYMK9x3QHGRBR4xQ68Dd0UK5Ck587HqrK2PngJdwAIDHzBLnhIbjPM6b4SazOqzbsrknEnWDHLJmpMiBHp9nx+FtFILQEyRokG3g48iXlTp5ib3UMCg1ZuP+Bbvk6LBDgU23C9xlgesMcmf8HsMcsBVHjHOBqNsB/Zl0lllSjMucpkNJpBn3iAHfJt3OHE+XoYa24wF1mLKa0Lrf2PRifCx5vJojYd1Z1SOUGGRBZQcXGGEPGUKFINt0yILISFX8lKxNbcZRfZmfZyQoMk8S4yxzRLzbDIeVGI1uqk541B1+TxLgRAln8Y8pRCIssYkSWd3LjEflHlNEsyxzDu8gtJvb/MBBYrh+H7BrafUlGL1qa4vUmCKNap0M8MjwGrmHGXe4yW2GaXumALgAHo6+DVmnQRW87aTBZbAegvSNG9IMOu6LBVmeUA2SJD+8tcXAug16Yyx6avYg8PrRBluBXtQuEt8EJJ/xjbxgXia+MCmG0Aeu3k9JN4k9N1T4Hdh7wdeGX2A3ZT6CAMg4yi1ALgCRSZCcmuTKdZ5xAxVB7gEtCVphUGcp0SddGC63fBJq0XCtf0zzPIQi/9u8Atu8T7fIkWDN/hN0tSpk3ajUasQJIXUKo3JIMeCnLHiMltdGGJ2ASFCWp9bZ6rNsHTZWXUWn6xgC5PIRlaW6Nt5yiQdoOymyibjLDNHkwS9TkFWUIddfMbSEkp/TifndEKNKJsVg04PCS6H4Drxga/HTXYfQodW8vSAoxX7MkEWFVYjK9hDiR4421euc9DsB0YgyTkbTIR2FJV3l2zwzKuQdfPPPFl2meVBkLaKll5wYE0moxmPPT+hj1G26PPpU6w1TT4CaUfZDiaxusG0m9EqeblE3ldLmoyxHWSst7gbKPgl8oxh6VU/5AdsMs4ak6SpM4QZccq8dpRt7/VC8LZYZi6w91I0qPlNdpD9sDIlA1OtKOQohQkT4IS+QL1P0uI9voXSryTHteuuFtrPzm2Mm6Ga+HK/amRYYJGLS/DkiTPLXK6qdMS8itmkgQPVN4gr8AVLni05g6K6AZWHQN3ZVVowOSRKlvY8eONP/W8qXORrc+gsuNPIdOvTg78esssGlPX32s8bzuzqnLbtZ74DE79rAFLlMbFAG/YQhlUHWRaJRZjm+KQzCDFftn5JgorY3N4yDzJaBAAoe81/l7QoB1VJeHxeuSgTV/nH/Dh6sDkiT5B4rRbdJ87njGYTOHPA54wAAgW/uvt2XudNy9kJrIkC0TPrsbeNAxYMOFvOC9SLD4mgbc6OtWMa8i/ydFHYY8fasUCQYHVkDXjrGLCfK1qwkxSxyyWnKgbHbHvVu8Dz1paZUWMo5nXMvsgSQjE03rT4JqbzoaX0qsDOqDAHA0OG3dvuOqEwvXCQsTMNz03wdOLoYVvARxkrXGlLLR7G/PoG7PjyBQd6wTyqkna83Wmg30Gy/8xZd/POVpT08Mj+Rj8mSZ4jskYEdmgB0BkznTetfyqPvS3bQWmIXn4QwhE6nSl+UcSeO5wpc7Fqx1JzUKBDz0UqsBPe9oPg62df7leWEIDQIbaWJMs57Pq/Af2lcyhAz+ET6DK/vACmAfRA5vSMXz0/bADgjU4DqI+MFUGaKFvf8KR7yXsdjD2TNHCYCIw4yPir7w2zkp6BLDx+/tkwfi/m4/5D2ugWBuwnCM+m55d9YVLAVD/xeeib2JhzEFvjmQLRl+1FO/ZffueZGNqgBU5XrHQd+j73MABxjijdXSIyrsDa7kX/7hY2x4lNJvBnyX/v93ZYJSbCCkjTdySD1XEXeJrlJZCpQJwPf+rbuNa2HYGYAt7yfozb2LWVJ7K61H9bRJYfRBaz7oMQF7e+R1T5lL0N54lKkAUi4JjDagnNTd/0Y/ge0TswQUwT1jPoXT/OF4k1yx6Riern2CnGvMCqM9+HlEVN4DWitxy+jd8gzll5316RyLyUamWBWBOJRXpGZBEWiUDtADaXNonP0avYfU5MwhLxud0XpBjF+rOn7ZgkFRdzU3N9keiB2D7ehomeiuovsZz1zN8OHn+JX5/ytRCeJ0VXijqLLJB1+SUQiAK7ZPn7/NeAMaLkd7bJBGnq1BzMk4cbEBhex/TyAsuhFvnI2WslcsFnTaEHAjAOGAxswR0KVBgJDLgdCiQdwJLVkFhYm4w70LMT6tQhLF32Vd4KSaUGNJa45oCY6kmp0taYQiGU24yywlXkda66+zZ3mGM5AG1SToHJFRM0WWeKBqkg+xTZRaBYw0kQ6TYm1BAH7LbJL3cZCVJiS4U1mfSJk1rWmGKTceRnLxLMEjfIshtAwjppXufPSVNHIRSbjJNz+bMFNFaZYJNeZxJOsMEIFU7oQ0GESrgVWCW56wbjQYYL0E0tMM5G2OWAQVI0uMfNoCg8YJBl5lhgkYZbTaldegNLrhaAQvMZzAQy1ApXA/5xg/uM+6Qj/KDlwlYjFFkAS43u4Duo+lIqLinZDLQe5z43qJJxfGPSJc1p0tTDdhO0mHD7LyCQYLYZdblsJMCkaFAmT4lcAODASCzv8y22GQ2YjgDv3+NfkaVCgzTLzJFyNuoBg8yxzAwrLDGPAlFWnPmYpuGptUNY7sFgCNkoUuBV3vI+GGKQA97iuyiI1UDvxlPH+Je9vhBA74AB27JWXdNEeno7+2qr7e+6cbxMvEHrQQdiupRWp65gN5GP2z7zsr03/Kdn9kDwGBiCVjdc5jNO6HM2lA1MoeTtcksxnZY8mfSYPtaYDCi9ZIsTbDDPEk2fgErk2fdBZQanx9ToDv5yC766odULmZpeZSVQb9u9/TYYZ8RDLixSoMpHzDHFGrseTqH0o0UWAmNLF5ilvJiPm1ZHErQCPVQGoIYgV8IKkBJcNxz1T9DiFd4JskmASdYD06/ist4Tb78Gafo5Mg8MyWrKxKQvAQplDNR9TPDKYs/Hxz1iOqKkFtewB80znk5crGMPCC8SEzxbBOPe5J7tK8V5WJlRwk8vx4EJN4SZi4qp+JBZ9hlkl5FwU/1t/k242QgA1GqLTSpDQU46ziYHTn+Xr0WKemDfGVOwO5h65t1jQQahQGCw1UmHCbPiAOQiCyiqW558eihI0WDf2aJacZFJaYFiCLcAyFFmifkgs5bPgibVAwbZdBm6AYSW/Kub3EfMUXaptq34fIBSmAVWPmKGNHUuUwz+ILM84DA8tX65X4+Z4D1eYr3766THsbCAaw5geFHQP02QWh2dOBMoGd/PCPg5hMwtyM5hD9eS1GoOfJ1YuFTs/9I2QRJaFRAF0TesgAU0TBOLAMl9Tj1NdwAmVKzN+3s6xn7IXiHKFnPYtSgGWa7tvQJWeOBsuwnbxvkGNpdDuH6fe52Qutd5HbvG+7F5wsHHTs0vXuR2jGEMhVWiibdLgC4eE+Sj4wMu7/1Hdkz9c9Yn/e0MrGFs8SCNAUPbBn4+932ih5G8liSXLfl7O7bd/ABW7E97+6axom3M9697YXuBOkaUJanIx4HXJvAD74u6M8O8v3OaB50xR9aBygE/jjoRpBN4u0BkbUBkUTuYhoOEHd7PQYqXdbmts+46p73/hu33jqS3wS0iA84Lu8pDS/flYw8u0TMBhMWf0qKz2hYJPrkdPX6+fh/pHwN6HcDDGYanhOK0VMRYK8vEV8lBNrB7yxkWiuGMxaMfEby6slcIcuDKhzzF4uq8RQRYJFfs8TYRsEMMV+kWcKJCGP9Mr//tgBDg9GV+Vfv9JKXGEFiVb/uQJJMbhKJ/N53lNHspXpddxghK0IIeOE70ceHy7+dXfxl93PT5U6z/xLgbdXuOdubStnntkYCvbezx6x88hAqMHn4WmHQdejbVQuMWcW6T39kAdO65n68za7kCZ+1sPvyzv0FgEQZfuT0M/PoQvv7Tz+NcrMWWPW+bn/rnh4lSWD0f1/38Bcr1YNf6HnatS5qZJiopfLGDFnZNXPO/SVkjJU3d+yVL9LZzpmqQMkNgTdLEvFg174z5tgWkaRFnlehjOOzvXycGWYDNb2orvA00x0udo0Xky0QwS+xhzdECwRaJwXqSvmq+WiXWHKuEEBveJdrI6LjOiHXLY2I6bYXoI7rknxVre4/ISnudyKrWYopArh6il2LB96V7h+Szeha4Tqy3RI7QGEwSQ+nKxPmoSHxOv0aU/WaJYYOas8Qe1yKd6ruXiUBfAn71g+F4LBDBbAGOPdgzgtpI4PoZcAz+2Pqlfz3LZ2wyHpRj3VRDnSXCxBqTyPZHdkvHrio6YBBLxixhwYrGYhOY0yJJnjI3WWSESqjxMlQZYzv4bCtUopsqI+zSx3GQAyrwYo5lKmQZY5uXeI9uahSdVaZtZ6mwy0ioEaUSGmUr1BOylNqhEBRet7jrstCa1yPpIPttD9yzQItuZ/llAtCxS5YHzAaALEuFFgmqdLPMC+ySZZJ16h66kKAVwEApsN7mVRY9pCNBk/aQwlG2mWAD+ZVPso4CBkWuEINOhApTNJW5xV02mQgBFA1SgaUm5ZKRaUqBGbfvAFueMpu+KqM02oaDQvLzb5frXqYYfP+NlPKQb/EeI1TIOL6QpRLsoQSgzfKAHOXA9hOTcZxN1p1EZOwxq1Mz1KjS7cEOBgCKrFH0fs3593XMYvlVGGGTiUCQkvffLe5ywKDnA1QDc1DAWNbHpX3PiDQCMuU1b+CopQ8f08cC9/gGd5FHY4M0JXI8YJZ3eIUWSfZ9fKUcTC2RQ4Gglq6ccyXnCSnqlPxhpUaGyxQDbmApxymAp5igDxxLaDip6iorKFymgFmlzbHMIPvujVgJKtC73GKRm0wFf4u//JX8qz/yH/7q4RSq8Ic/wZha3cTUoi7/fRd4ggF/Z9gDXQ57kJAUd4SYotiN3ZSGiDBkGvgMC2B4gq2MPyF6bPhnE6dw3tUZGHUtR4IL3hlgaO4JfWwwwSAHYVKTwaMGyjz3g0QyTZ0XWOaAQSZ9eX2TiaAL33fN9yNmmOBNquRp9xHLebBFgxT3ucEcH3HAoMs3d3nkKSh2rDvIDFLmnNLsCyDadd19mnpI6y2TY4JN7nKLUbYD284m2e2QBjTDCgmabDDODI9QJHqV7uA3sEuWBumQuAS2+rPpNN8p1vkFdT7jWb7WXeYP/wfvjyfYzfpz4B3sJv4Y6MNu5v1YTH0/9iAvpkY3VvD8D96fSR8Tmz5eklgyoORqGkv6bBdW1CfjKoX8BXXxyz9vy+my42xgkdoJdpwuXKDovgnJgJYnaYWVCrXrIPvhBjTIvvth7NMgHQA/BU9olehbvB/YoIb6NwKbTqafkv0eMMi+9zkQbs510tzmDkBg47Wv3A2yT4ukg3U2NgRELzPH3+FfBpBbK4GTTi22FCt7apX3hCa/BC0fK9VghJugRZkMf8bfIkONBRaZ5YGzEfPskuVbbrza+oo8tR0yQJYTuvjMivbHGAgyTyyotPp+CNkbRP+kAYzBNAG0TGaYv45dQ29jEnVnbjGAMfKuEVe5u5zFVzeAIz/q+/se0b9Hhcl1ogfZKLGYGQZuwcUfO2DxJrHY2CZKdCpt23qbpxiGwQT7FLvGVUz2AFnodPbWedmCEEIIwxJWSL2OFWeSU2Lvd4ot4gyHquSdY3D+MXR+Qih4a9uQ+VP7XOcElJYg/3OiLcBjA5E6vsvTCYIPsUJSxbuAVjEPmt4OKljF6DqFzu8RPa/ACipn2XT+PT8/FVsbRMafClSBBL8L/JBYzN2ydkz6wl21DJn/GLt/5glMn/45P47rBkplF4h2Fi3fv4o6AaVq37LvTwWY2Cbq81F7v1KErEAJZwye16GzSQgZuFhyxmEPDJ/6z1sOyvXYvo9OIJuz3/Oy4qgT2UBjDuxqHFz3vvkmoZDkEz/2pAOc+DFc9nO84sDqx21tjrf5u5ZIDMRid8t+7hS7ZYGQyFk9hcyHxsrbO/S2FUi+TAgYON+JabfBXwxszAoo6cTuh2W+1K/M/nlog8/ne3lm8cR8OAud9C+e2xsfYtejQKYt+PrHn1vi7QDWZw4k5PcOLQyLFB2SVOo1DdyH09cu0bP6JLJZ6/Dhy/8R3/zjfxcXlq/Z/x0Ttu/TwiVjB+Yg6eDJ6cAlUukndEpu6OD30Q079rMe6LoGj0efZWLvMxKa053F1OjqpGvgPM7rYkVNY3PUKhHgmCZef0dExplI7WLHVfzYHxO96HTuBWwcftPfFyvtk7bP+GJHCLMYIIKtD4nMRV37YsjOE5nJW8QgifbvF4hgkl9HVIhWAFJViI33MvBH2L3pHjEobwMuft8Yneej7luoceBsZpaIi1tiE3cRALFf/v4zfP2Nz6P9ywA2f12Bs+vQlbRzOJrupP9tH4fDBMugs78HXXvEe8BcW198BwMWBXge+vEkiADmQ6LctIcQ/BOsHfb8vN8g+pZeAz6E0/lL9PzTJ9auj4nsyQnv7x7inDhPfJ74HT8+AXg535/kx7eIc+ApkcG56Ochia1Ye9f8vU+w53IxrK9htdc8gYX9tbt7sR+clR1k0c8Tx9I1b0uB+zvYM/0XUpn+zXt9zjNMsOdSxMRTYIkULlYfDPGA2RC22E5CEfCmujCNhdMprXORBcx/rkaJPDOs0CTh1kMm3cw428y8xkcC2QDM72uGR9x3oK1OmmVeYIYVUtQ5YIhFFoJP2ff5ETW6WWOKGVYouVJIqq66e3xHX/ZJl9qav9s1HjDiMt4qGUYcBrK6ZD2AdqNs80N+mwI7JGiSdGKN6tYWyQCs1ciwzBwzPEIhgFUylMkx6d73qqNV3xR8ZUKfbwdgTDJ67Gq8B6FGrjtwNckay7wQ2JLH9DHHMoss0McxWXbZoeDEHwO2fsgPeJW3WGOSF1hmxKWe8kZvkQw2W6r9TXJadtZaxv3qLCjCyEP1oOhqeZ+LRfkS75PCgkhEMlphJoSvtCcoD7JPzVmZNQfZfo8/QSnHAlElEx1xz5h2rMVszVJknSW4zByzPMASgM3jUaC1pTVXeY9vBaC4jxOKXPYxNxiIVVUy3OYOm0zwgFmy7DLKNmVyKPVYte4o20GhabEgZgtlANq+V9zJAARvM8qrvAUQrpWaB1f0cRy8EoXD2OeGAkg+yRoZaqwwE0DiY/r4Ib8dQHCdswJqzA6rFHwoTZorX4S//PWFTJtJWsbQUhHwBJq/5u/tYUCNHl6fYBP9JbhIQccQBu74Sk3za1g6pK986qgbgx2kdi9sP1Vg379z2bYVfI28iDzPdiIfAfmYSfuv1QhFCZhWfDcM0oTLbY0SnAzeBve5ES6SKdaC+aPkltJUK2ACCMirTBynWOcmi7RIss6ks/Q2uMOLYUIRTRgMHBSY8oBZcpQpkWOdKeacTi0kWEy7cY+lbp+0NLhFoS2RD+w9rXQI0Rb9U8CS2IQKVdBEOsgBlzwUozUCp13d9B/XOO1L0VNpsPVrlxkr79gDxjgRLBDtv4k9cIwTQboG9rDT6/37KQbgHgPP2f8XV6CjgYHEl6Ax10Hq31/YOCsBzxP8D25wP8RJS26acaeGe4wjX4cG6ZDuKsDS2sVWjgQE60KukUEedjZhDYXxoAn9Vd4KF/AKVwOYqtTjOmlnVk7SxAJbjl3SaunEE+xQ4MBl3wLaZljxG+Uxr/NGAO7K5MLKneTlK8wEIPKAIV7iPWcWGktUiUd6aeVOgR26YT5gFoWLaJXMHiouhyjvtDMFLbU5z33mmfKVuzrprwxD7wZLJOhhlQvYhT+8y9OLHEPYwkQP5qV1iBUN3Rjosos9AHdiD9Ef+HsXwAp23XQTwfMtbGbfB46gVYHE17GH9E7s2nkDA8drvu9dbI71uZgikWF7DPz32HW34qBXyr+n67Tgv9ft8+cV6BQ4MoQVIH2+n4Sf3yUiK2/Ej7fTz+f/6Z8X8PcjoqxqD/iln7MYIWIQQPC9a51BokhkoHQTi5s+4Flg3QFRLQhMYsXYv/PPfeDt97m3w7ewoqbm5wW0PoDEgG2LS8DPiMy7Fd8v/p4YHd3A/4PIzEoRi/c9bN57Blu82AP+jf+tB/hvseKsg7g4kgP+X779Nd9XNxFI7cXm2G1vuwk/v32ij23Dj22JyEoc9GNQ24mh0fK/PfS2/Pd+DjXiON7HxsQTf88Bg9YpJDaBHQ+7EJv0GW/jz/24q77tJe+rTT/GGtHYvgMDj8+9DXoJyfZcAv6tf6bix7HqvzvAWl+GtPdjuI7q3m+PiUzyJPAndvws+XF83b+T8nPeb/vuBdHrNY2NDex75zXo1GKVjuucr4TMrNULnzz/dZ5/95c8c3JiY6IOiflWZCVBZEAJmDmFLjGg+oEs/HLiGb6+8TnkYKRVieARQBJOc5foGXtCT/lJDL9wAGp0dDvKD+sEFtvnuV6eaZ4AcD5hEt4OVxikzp7QuQPnz9vffzU6TDdVht89s+NbtX1kRmt0PHTWqjOeLwrQd3gOAxYG13UXu74EoFQw5u4qMbFbQM0Zkel0iIFSUuA4gEK27d9jok2AVC5XiAsNA23f1b0iTQTDdB0JaJIUWmzraSJrTcf050Tpr/fBRQE6long41bbz8NEaaYY3OpzgVWSX55Bh7PiOgWagc090xgArLGixYou38e2tfPXf/K57euEyJBzsK/rTwls8v4/dzCvjM0veaK82VnNZ7/lfnELBCboxevQ8TZxITnrxzVAHMM65lHifW2ByBY887aZ8LbwBbKepScxrXiMGCS44dvVoosWKsoYOPrYP3OdyAwW4K3FhVUMyFv04532tpF3o9jGE5hnrGTUJ962WiDUWBcTb4koZU/457QwlGzbZr+/v+Tnfhkbq718JV7D7PkCvslLFxwlrjASwLwRdslTCiy9fQbJUOMG97nPDUrkKPtzudV8EzRIMccyJfIBqDO/M0tJrbuKbINxLlMM6h35XIvQoSCIAkXkpyYZ6yYTNGgPAtwm5zVyiyQlcljYn6W9bjLOqLMCARZZoEKWOZap0h0IBSaJNGLEFGvheMfZ9EC+MvLrnuUhLSeoVFwSm2XXgZEKJfIOaaVYZ5IELW5xl/d5iV2ynNDHLA/o9fZJucIJQMENQJATW41XCscxwwoPmKVEjlkPAcxQpUzeVVkNlOQKhJrQ1HMWplF2dZ+YgrJ3qpIJNdNNFnnAbFDfWSKqYRdSl82zRJVMABwVJqEQCsldDffoDm0+6hIQebgPeY0qHCNDlW3GqPnnZVFV5DJ3uM3rvEGdFO/zUiAs7ZJlioPQF5ZUW2XKH4TEutx3ME1sxRGvJ3fJMuEqR52HAkQEhKWos9VWh9/jJvMsOSaTpJdjlph/ijjVIuHjp8AsD8N2lVJcIRvqafn2yYNvH0tB7qaG2YxVuMstZlih3sa6bJBimbnA1jPg8mG4lla4GnAVBWIIk1Ey7wbjwUrNzkc3kL/89YUAev/J/2aE8X5jBClhRimhSqZJUefrxc85yneSOjtnvecKSuwcXj3jdOwSxXQhDKpCvchieoE5PvJY6yYv7K2yP9xFstWiv3LO6cAl6mlr2MHDE9YHvs746S8B+HHPNVIOtlgQRcZlijvU6KabmhNYTdVdJ80Iu35BpwLz7Q63ucoK405z1aS14fRoTSqit97lG7zgmh8x9hqkWOEqNTIU2CFFnU0Hb8Bo0vJ400DTRGD0XvMk0+BVQIEAtzwl9rFE2jQNj8GuB4064Be/rQIpeafIZW5xl3WmwgQEBJAm6uUtpVWBEB8xF/wJfvMPRplijZfql2glm/QdQj3doJW8RE95B07hbNQfziFQ+08Ll+jZ8lX0nvh3hrEHlDqQNiPtDpfOnQ5csod1FU4V32b2wr6jVe95+L8WFhhhLcio7zKGQkKU2iqWpUxoNXnaJGIg3QQbLDMXJtM6aTaZcDmprayJ5SbasYA0AcCjbLPAPU+g6g7tv8YkNbqD76FWLWSSKfamEoas3ZWS0wgXv8mCR0IfalUs5XLe29zhHV7hFd4JFOiym6xVGAl+EnnKHt5iFPUp1lhjihvcZ4INPnIDX4tqrzPJOkOYD+AU62GFb40pChS5wRK7ZIN3RyogCF/u1w7PMoxJ8Xu6G3HFWjJGyZwuYeBAd9uXBZKo4DrHHoa7setjE5giSlVy/vl9DChoQkISrBEiA6iOPTwf+DYH7Xjqn0L6im/j1I9pAQPSdzE/t0v+vrOp2IOLh9Axat9p7TuYN4gBMscY+JXwfzonyXvz/hnJ4Sp+TAcYkJPz91VUDvm5pX07u74fFYEj1j4JtZXmhRHgCC6e+Dn02HY6ejDg/7xtuxn7LCfefnMYOCV5ktjAdXv//DPovEQEcEb983vAC9i8Nktkpj/xPjjiaaCvz8+7bfGK676tS37uB/5eDwYs5Yky6WlsTJz7Nqfa2i7tf58mFmvT3oZ9GLAocPQ533aZyL7pI0rFjonFmRjRAhF72s7xjAh4+e+JPm+nr0FjFdIq6DPW3uG8hvwcrvl2j/1Ym/6eGKF72DgZwMb9JAagPevt3en7G/F20+cbkNZ2xYA69fNcx4rKfv+brkmd13PY9ffvfPu92DUscLZOLOaHfZuH1o+dKaLK4AnGSnke3Gf5S/1KHEOhVbTrIQHnr0Pnu9i9f9gZWHXiPHXG02w0gWAV+Hr6c/tcAfor58FmQ8BePZ2Caw2q6QzPHJ5Eueuh+TF9LbsXLQIA6vZsxiokBp5wPNDFcP3MgJGH0OlM305sG32FY/rvn0eWm0uvn20ehvCDz6d7eeanJ5bG/Il58FV7uuhKnNlYP8XGzQIGuG37to54mj13iI1bSTOXsOehOQfNxDj9vp+L2KmHGBAjVpcDVIEVLFajALE9OP9d6Pwp0RNPwCLYfPGQGGywSgwDkdzUAcSOnxPnD+3H2yUs9mshpkW8ZnRvFCC06n1f958lrfc+C6xmyVPHvD10v5iwtg9gpUCqMQzEEpD+offDEnFem/O/5wi+4F3attq0BLvf6eWZ8klcaJAEVpLYBQw0e+jHdGTfA6LseILoFSigLkv0Gmy1td13iAzHlp/Talu7iAk/gNnXSHorUK1ATPy9SRwPYMEYJ0QfRlkf6B61RQQdxfKUtFjA8xVvgx8R2aLavhju14ig8QSRyXgMX5FHQ37Fcwxgz8gNl4Pe4yaTrAc5p0IILXk1ggQm1dx35p7JSRVM2IctSiRocps7gVQgllyOMnd4ETBCwDJz/F3+GzLUuM+NIB2Vb5mC7ASGqM6R7/s7vEKBYghb2GaUE2c/jbPBMX3B20yEACnm8pRY5oVg+7RLFnmGqx0EmhXYoUo3I1SwcMBduqlyz5N+Baxskw8hfxvu5/dd3grncZVHlMmRosE7vMLv8SfUHBVQu4kFZ3yzLCvMBFksEBh5FbIU2An1X4EdjukNLLUsu0x57TnFWiBqSF6qOk313rd5hyWvFcV+u8dCALbArJJG2GWNqYCxGOhqtZhSbxX0qfRc2+8QM6xwh9uMs8ko26wzRdqtqBqkAmFD0m7JwrNOQpFKbJI1u2cCt7mD/ABL5FCqq5GXpsL2BPpdZSV4281znx0K1EkHQsoKM0yyzrpLzkfZ9pBGk8+WyDHEQRhvGlsaX1Oss8k4j5ihScKZnGYDladE0xmDxrq8zC2vnwWc1x3eneMj1plixDGfNHXWmGScTQ/JMMDbLNBGngIgJ9hkgXvBb0+MygI73OMmt7nDXW5xi7vM8oAqGTYYd+DQ1Jg1MjwTVoT/8tcXAujd5Rb7lBxgOqHhgJhMOkVXnSqYoWO6p8EP+QELLBqldjrFHW6zzSg3WTR6bvoB95kPUs9j+nh/+FtGc0zASu5qWNUYZZvEgCHMf9Lze0HPbx54Fgww5FRGIMgo1Vm3uRMGkAaiXkp2LZNzdlaTA4YCem9SwkRg9FnseI1B9lECyjF9PGSWv8WfUSPDul+UYt09YJZxNimwyTqTyJRxjUlHmtNBClknTYYaNTJkHYAU68wMTCsBhRcQpHCQXY8/F1OvSIHb3AmTgphkgxww5qtIWSrMc9895EbYcQhUgKOMHg/SZqb6YHiU0dY2a4kp5vofUhx9hjJ55oc/5sHANBNjm1QTGVLUqU4nqUxneX7jl8Ek+2wA7kz/TxhngzJ5UjSY6VnhTtqA1bXRQfKU6asfU5owcLVGhu4JmzyS0+Yp0SAdgCVRnAGyVMhQI0uFNA3ucgsFX4g1l/GpvkyOG9wPE5JAXU14N7nHNqOsMRkowDUyQTO/y0iY/GzVqkyKevCDEGVXdO9NX2nL+oqEfBZkzGqUdaOXzPERGWoO4tYD4Ciz0GP6GGObIU9c0uSv8IxdRhhhlxk/VkWtK0SlwkhYQRTb8wVfAcxTCjT9DFVucycwVTPUgsdDijpjbNNNjQMGuWgDjb/MrxrdlOjhkAGG+k70x/hKEAGDTqzYTxILjxJW+Av0U3HU6d/p8L+LtfGEWKypiD3GWEO+nYsnzmqFyO7rg0tF/1udyFYSkFS3f619SLT5hIXirgs4gnoDMt3+/RQGIukYu/y4Oohshg4iSLJJLGDUNgJ4cr7PS21/E9Ohz7fX1/Zvt+0zag9N5Z1E8AWe9jHr8v/FVhRI1YcVM7KKEGA14Amv3UQWnYrOQ2Ii4GX/Ts33WyKyEFttbaXjEWtQAJjOL+Hv1YjMzSf+vQJWfA/6+ST8fdlW9Pk2NXZU4NWJTLqafyaNjRsHhhnGgDCNXR3PLrGQgwi0PiGa+Lefp/oqBWntv+l/l9zq0I+3HWwUozSFjUexNBv+t3TbvnQ9CUjUNSUp+pO2c28fnwLa9N0MEegVsJ7C+rcTu6YEZkgmT1u7d/j3h4isQXy7Yql2EkH6dqbpl/FVhf7H5ybPewzbA89yZe6zKMHsIQJz8m6TTFEAxhlQsDTbXzt6zFHBBnN/8TwuBgLJVouepSfUbzWjVD4JXIHZ1gPrsxMiU+zQLESoQ9cpdB2ePZ1EC3ER48T3d0S0G9B8BmFsNUhFNuwZdBzCcPnMvnOF6NW2gQEgYqWl244rS5Q1bmD7vG7f63iMATYL1p58YN/Zm+5i+Kdn0d+s6P9vEBc+pv07Yn2dAt9zibEAsjTRK08MyR2M1fWBb0tzuuS2Y2372SMCdFfa2tBZl7xM9OsTINUkso7FLBZjTBYEAie1OFHw9utq2+c13842NneNEheNlv17eWwe1vEv+t+y5qfYIUsGB/vPrkPXtn9nEZvT0/DMvzh5WtJcwdiKvTZW+NeY9BkMtJrDQPw/9v0tECXmOp+P/bPXiNfDj4i+pwLFtGBVJgZLVfyc1ZctorxW7ZomBn6MEsNp6oRxsfd6F8MbZzH45GPfxwDmL5vw9nW7kPBsMoHdK+veH1qUH8AWSQRCpokpu1tEn+3P+Eq8qnQF0GqFGVpY+KAxru6TZZcTr5dTNEJdus6UAx5rvMAyKRoBoFngHi0SbsQ/yBpTQeUjq6Y8JWTmrxrwHgvkKJH3f0o1fYPXmWeJNHV+zPfJUWacDQY5QJ7f42zwHi8xy0PylIKV0SjbQVUmtpj87FQ3KRHXAEMLxthgnAxV7nCbV3gnHPcEmx4aYQ8hCVoscYNJ1gN4N8dHDmKZ9PEGS4GRuM4Ub/JakMmKRbfITe5wm3/Ef4kCNI2dVgukl6orj/LuOz74/ybv72LjTLP8TvCnDIrBT4lkMCOKUU0lQ6TEFJ2USYtbrFW28qNSUzKyUYVOT/X22J413FgDXmCxF4u53evF3i1mgQXWgIH2tsdu93bPlFGFyhn1Kjs/1EkUa6gmW8yhkhSZZIpVwYpIhkiJFMmgGMq9OOd/npAHcNcCneParAAESWTEG+/H8z7vc/7n/8EuJTbivMqeKkudWb7FMVlucJMa/Q64ZsNzrkFLMMDyVPiAN5+TjhpZpJU8FfqdaTjIZvjtqX7vYZcHrpgTkLXnrEPV9VIHCmST971A2116kffiurM5RUha5iKjrMS1PqCDIdbZpZc1RoI92cMuGwz5Pu1E+Irq3XEWWWQcMC8+295xgMwiH9VpDXWkSEpSIh7TGiCupMGqVaWUy9AIxp2FRFrNL1B5j+5QFDbIMMVcAJQGOHYFiaoXC4LZoIQsxzSO+sOj0fZTvoPCDTYZdLVezcei/X8bC+W8y3goKt/g/VB+CvTUODMLr17O/ooLw69McjvLNAtM8ibvs4OleoyxhEIUauSCgdbRhIwrZECyQF30DYbo4DBMI6tusJnhhGOybGHBBPNMcEBH0DjrvhLLcMJ7XGecReSF1sUeSsQx+WAtug5CldcYZpBNLrLMoV9o6aCFxssTzcwyV9nkXEh1S2ywRxdZR2gr3g6+wh0HqKxyFfBSpEyObdY8MUc0ZAFa3+NHzDLNCGsoIbdIOfwIethljitBmdZA1SBu5ZgSG4GEF6iEDl0dkzJFSj5hF9woU6BXhhOP+ja2oxB8+R0olUWJTLv0UsnYcd4++78OwGz3bA9zTDGVmYuOT9HN83ZLNl408ShFZ5QVM1bN9gBEzPcuvRxnW5lngsssIrNUXU9NXkLxldTa7lJbSW+HWQ3asSYJgAnmqdHPBAtx8x/QjsxlNxhCASvyqjgmi3wctigyQJltp3Qb+NvKiT8AtsnR6+daoNg6Q2T9nmmmqtfJ8iO+T4EKoyzTz7aB4t7SFDA8zyTHtDKAGbPW6GeUFTKceDy90Ysr7mvXbEKqcdDKMaOshNwbQD4Is0wzxR2G2Ahpr4XD5GPcmRR8mBFWke8gECEbJf76b3vq+bV8vcQDtjnPf/1/rnLmI2zB+ndJ7JNOrDiSB5DAILH3BFY0syNUFEmiViQtxMXYWicxXF/neZDpPvAPsWIKUtH1d7FCQ9vQ/twnMa0k323BFuG/hbHPWoBr2KK/1nRskoWe8229RCro7pMKLUjy3DMkY/RzpCTJXsz75xOe9yYSAJTHiokuDGiS9EiMhDN+rou+L2CF2RskpoZYDp08H8T0CPN4+tckWVgbyYdOTJEyiUXY4fsgZoUKVPy4P2k69pq/92P//zkS+03g6QXfziVSUT5PkttVSOnh/xmJXfMWSdZUIvkYCSgUqPZbJIP/T/y9AixUmAkUPOfn4TIJjNFnVXwL0OzDCto88F/7/h9hjLoLJP/AAZKH42Pg7/j+XQH+HVYkP8KM6af9O8RQHW+6LpJsaSw1s40EPj8gMWPEyNE5bsOK/vP/wXbECMxjxfCLJE+uSyTfrUcY0+UeCYAdJzGQ2vwYNYa/AY934P/6dS9kH5PYXhctkfCLUhcvfrhvXo9i5gk4O8EAkcdEoMHTadg928Xfuf8ZZODMvacmsS25V56DyGcqT6EGfQsGSDw5+wKdc8+gxX+n15P0fS8tfJGCASBJYF8GWuCXE2ep00rLYIP8o4ecVpOhD7u/aoQE8suchWsEECZQ7JEdw2nNGQ/8u+QJ94QkqRwk+Y+JVduC3ZsPSIEaF0jhHw89GK5MYnpdwnzpBkjj9ajpeyWzbHHpaKcf8yckltmRH2MeuzdKJIBcstwqCZA7QwQ2ffFPuwz0ypAYWa/Cw3wbfX1HyYf1Hun+eIjNzY+we/0SCdDVSyCR5NNlUhrvfR87l0jJrQ/te8M6QM9EMRSL2Bz6xK0AJklel23QpoZXg6QMwb932ve3EwO99GzKkeZagV5lUijOUdN+D9g1/enE3+XbH/617Y/WAQ+wuV3M5BoJgBODX2PoIslCo0AEC8V5LmNzm+ajx/6n7NfbJcl9/+IorTvAxlitaX+1DzmSH2jW/zRIoS2bJLaynjl6BkgO/1P/mZqIvwGvl3jAGsPhM1cjRwsNRl3VVaM/CDDtLudUnamUWfPDNnBCoYqy7wGrLVsdRBFBQPWqat0CFVo5ZpHxsOeR7/b3+BENWqiR4wY3wwcOYIwlctTYoYfv82OWGWWOqQAFNxnkIstBWhEoJvah6lMDNLK0ex1+QoZDOqIO7GGX17hN3RVJvW4TBeYlvuiqnxr9rDCKwilVbxvmYOwpI7bsB0FFiaYiIujn8kerkw0wS/7xA15zywuwTpaaq52yrvJrocEcU2GppNpug6Go9ZcZZZy7QYgRyzLDCYdei02wQI1cAI3v8wavcZtFxrnOLdo5YJHLse+jLIdyb5Nz3OYa5ue+G+fDQhaNFCTJ8xrDDGDBilUKjlscs8zFAGNFFKn6FX6D99lkEEvnNQmErvOqK/3sPBmwV6SMUmlPsFRc4TxZjumnRp4Kd3yMdbPH7/Lvg00JhC3UJoN0uUruwOXONXJkaETar1RrhiMZZvAGH8RxrFMKkswyo5QZCGxlknm26UdJumDS6zmucJnF8AJsJoS9xkesOwAoea28MCUnP3Blpjzx5V+/Sw8TzLPJIC00WGOYCRacNTv6K80nX8m02c4RBapMOBtojCVHTduRt5bohXVaucZthtgIueAs04G4tnIcmu5jWhlhzcGSDmdNFeIiA1xmMSYqUV2PaaWFBuMsIg1884S1xFgMMpl33uI6Mmds54AlxiJ5VkmnBux10cNODHglnWpbAItcDl37IR3uz7aOor51g28yiPzbJliIm76VY25yI2ickvAaxXkbwB8K+aAJy5BRHgDS8R/QzjYW/TzEBqMs84BB98DbCdluK8dhZjnMGorY1rUbZTlAJLG4lAJ8SDtLjPEBb7LABD/kd1lgkh/zvdg/o6yuxzVfY4RZpslS5xbXA8gTQFuj3+Wf+Zi4Vp0mfIcrlCkGHVe/m+MKPeyy42wxe1iYTHiYtQD4hllDseIGOvfHtVtmlBVGkanoLj1kqUf3Y8g7NAbmNTj0LksPu9Sc9aYJUHRvM7k9h3wmFLohOvQyo1z2GOw9urnIchiVVslHV2eVEeR5OM+ER9Pbdyi1qEEL3ey5V14PQNDoKxSC8arOgMD2dYZYYzgmIYVsyJx0mtlgg9oYH2eDITYZDEp5N3t8jx/HWBXYqDmhyotfxfTza/fap4s8FXYyPbY4vkgCulRQCKiR7E8eQ52kQmMTW+y+TvIHFWAjkAFSgSOpizPn+Ji0gH4F8x6D5G/zKibpqpOYcQ9JPjtZUhqqACR9zyVSe0g+PCX/vwAoAZFig2SwsAcVsZJXdfp+fBsrCh5ghdW0b6/s29n3bUw3HbsXkODHuYgVNG1YoSZgQPtxBmM8CNTRuX8Zuz7fw4osXa93STLYt/w7Bn0b3/Vtv0pi6b1N8jiq+f5WSV5Er/h57fPtbpIYKQIBHvh3iWEhZs8jrHDWObpAAtbEjhHop2vzsv/+PAmAlHyqCWgh7+dV+y3QL4ONv9d9n9/2z77sxyKWStbf24eNmYYf9yd+TK/4z77t1yZLYohcIDE5JEuv+ndc8uvwKqnA72zaRp+fiwmSNOysv1+sz7N+3nSNir7fAkfw45MUOO/78G0MlPsv/ef/0t8r4Enbk7Sw5p99TLq+53ieTdTi2wR4h9+Ml4MaX+ah+PAhL366b2NB10H3Sx5owC+m+pLXbgs0WqxB+/BCW9pepyXhhqQyT5oH8nDUCR1PnMaawYAUAb+d2DVygOpJ/gUL4NBcmYejKfvdN8qP6K+brOz0p+lYgDQfugT1VBU+LH0r7c8FYjw1dD8ukO5NMZq075IzrmP3hsaQGL9ip6lhch675zMk8KiPxBoU00xj8JH5wZHHxmqJlIirOaoZqJkgAWcCcwQiqdGkc6HnEk0/ExAnsG0O+v6boxSCdpbEhBRAfgGbW7tIcv+H2Pwxjc3pZT93baTnUJ9/3w3/3YJvt4oBRyXf35d9//6i6ZgEwD7wc1jw7Ypp+ZckMFP3cBGeTmDztEB9PZMf+PfMkcJCHmHhUi/D0T8kAWsO5H77T//a9k8NEoGwYm0K8Fajou77IkD5HnbtXsfmaD1jH5ICTsSO+wQbMy/7+Zrwf2eA78GXPvbj+j4msVu1fnmV9LxqAD/2bZ8hjckrpPn+pOm71RQTyJcljdmv+WuArSBCZBycG2YN8wSbivV9gwwf8EawoXbpZQB57NWYYypqTLGEZplmhqu0er2iBr/5xPeTpxKMLwF0HRwwxRwVCgGItbgiRz5nYywxw6sowbZOK+fYpIMDygyQ4QQFEI6xhCWu1hhmzVlUJxFgcEImWGWt1DmkI2rQYdYY524wmcDULgWq7NDDMqPkvP69xkdR1+9gXt+bDDpMZHXrBkMsOjPK2GnHQaSR1ZDO3xxXWGeIdg7IcOIqqZ3wGZ/ijodJ1FHC7DiLTDFHnVYyNNyG6YBJFnifN4MJKY/ylKa7H1jHIpfpZ5tFxpGH/jIXOaCDm9ygSoGSqx1HWWabHHeYCpaYUnt36CHr5JFm+ajwlxHWIrDwAHP+kx2VZQ1UYr8KVB3064jaWwzAO0zFeduji2NaI6XZ1HDt3OFKjFuw1NdWjgNg1XUwO7ECC0wGQ7HdwWap4mwstkTdeeigmZRqUrPtOJtTLEFTklUD4Btxey1dBwVZVimg4A6Ru0ymXgo5cosr3mSvBiY9LlBhggVKrFPHPPI6OAzVm+Tz245tDLLJj/l+fI8FgRjzVGClWI1dLqH/m15fEaB3wJoz6Q4cwBIKL5+4dgenjJXUEWy0MgMMsR4AVw87lCkGTVfa7inmgnVVpMybfECRLbbpR6b7+043FQXTJpQHSDKo+GddnBzbcYNqogDodxX9JAvRFeh1Oq5SXuQjYDfsOq1+4Yxem4mLtkc37/OGJ6ial2COGnVnKxaoMs8EGww5DdlAvQ4OnQ1l8swc23GD1shRd4y7Ro4CVSZZ8K5Kf0zwNqlng2kor70GLQzyAHkAqGsitqQSk7QdfV4gk0w5iz6BtbsPQ95NQkZZIcc2A5Tj/PawywxX43y2c0CJ9TCZbJBhjeFgUNZpRcaoojfLF8JYaJWYcIwubTdnlTx3/GFn/y+wyvBzE2aNHBuUWGWYBhmmmQ3249u8G50BGawaENYf11Mptdofi7lu5SozDLv2fcPBYLBixCSyNpWa54IBhkqEzVMN77xjssgLUfHpu/SGuax53V2Oa1xiI8DsZkBRTMsUdGH04S3vSDWnWvWyS92l1Ifu89fs6aGOirzzJBfeo5stZ35OshDszYrLeuvuSWAyaOkdv96vzzkXCxUmeZ5NcYIVLOewIkGFrAqFNgxAKGKLZoF8RX//b2OLZLHdxPbq9L/PYYtzgR1lDEA479ub8G2+TgLrprFFuUAfscPw//+e//2af/cgyeT6gu/v/8W3J7lQGymB8TwJMFQBqcJYYI5AtUF/f8m/SyBhiZBGhZl6jpR4euTH95Z/r0CC7/r5FgD0FokZOUAqSlRQSg6l43zk/58kse5eJRmaPwH+N75/Op+S+p3zY3nHt93m3y0W2IR/xxV/z4Wm4973c9IH/BckRki96Vx8hhW638bYlwKlVFSqsBYQ8AhLQqz5Mb3i23qFBEzp3D7y/dfY+TZJEpn3fa9iBaFkbWex8amxqnHShxX7kpnpffL9ggTwqLi7QDKab5ah4ft7xrcpfyYBdq+SAFbJxtr8+wD+qf8tEKBBAn8v+XWQZPv7JJ+u1/2cv+LbFGh6z4/9dZJ8dJCUDFryc3iOBKyoaN/hN+PlDKVTNfd/e0BiAKmJ0IkV+4/gm5sPQ+7PWQuf6Js7om/uKHnuZow9LtbaL/Nn0xz4xJhVp8T2KpC8ysRMFivsHHTef2aJpgJkBmG281v2/xZotGTofrKf5lPtax4e/l5bYqZ2wmRjni/P+/ctpPe3zZGSkC+RmgJq5LxMYucKoBNbWLLXdeB1ePhOW2KACZAuYXNbjgRu6b4XENfmfnB9JJmsJJqS3ApE1DnS80n3n3zZGqS5/Cw2B14i5ocX5/aTD+AUCbx5GZvv5khM40lSk0HH8xkJlJvif+6n94iUqirGu5oiAgXViBHwJSYz4HZiiVGH74ekq2VSI0rSU829L9vPT8+SUovbSCzoV0jej8Wma9iwY2r70L9Pc5z2Q02GB77/035dJvw9Rd+3SyTAsfn5WPLtyP9OgJyAxY9JScaS5Pp3PX2dsG849SFpfuwieRsW/Ri1P2KxC7h9QkqrFpNVrEU1p7Re+S421woYPs1vxEv2P2IMKeVyiTEHQXaokYtaysz0T1BgoUkvc0wyH6SCbbeeGmOJYdaoOri1Qw/7Xq8UKbPAJB/xGhUX2grcU9O9lWO62Y+a/SoztDg4JEXPEBsoUHKVEVpo0E/Na1Lz7bYQgFZuciNIB4uM08FBsPJU06wywgITVF0Sue9AX51W1l3S+S5vs+K1kBR8PV6vAEhKK7Ziq9dOAoXM6z7HHFeYY4rbXKObPRSaKRKR+et3BGC1S68rC7NRXwHBftN5k7XVApPByKuSjxqulTpzXInrbd5rJsXsd9WbasIR1vgX/O/ZZJAcNT7iWhBxAMcgMmSps+PMyh0siLFCgRzbjLFEgap7CpoMFIysYqw0U51NME/WZd01x1FaMa86YSaqvxcZR6mtygA49IpWQaAZJ1EJd+jggFmm6eCQEVYpUmbEgbBRlqOuN3ZhP93sB0tP+ImB2O1RuwrkU+BF836Z399AWDwBUY9bcu8uk8y7mtDYhcaGtH+vMhKEF32+3QHSXXqokeN93nT7tX3GWGKR8bCvEu4jOe6Qd7hqbnXWIIOlDI87mG1kGgXcNMu5f9XXVyK5vc8FWp22KfpjximEOWrMcBWTlpoOeYMhxlhizpFmAXFFyqwxEqyuKnkaZLjLOCU3vDTa5BD9TiNu9gmQuaEov4NsssAEoywHrdYGeyXkl0ZzrTrDylh4zYmjukg3uIm0zkqzHWHV5agVLBW0hQ4OaKUeAFg3e7zJB/EzIBDxIluUGWDQux0mUawHHVcyZMVdy6+uh12GWY33rDESN5m8ECyswKYcJf1WKHBIRwA0GUe/LRK6PbTz6lrobyBAtgLVOCeaGMoMkKXOPt2ha19ijG72GGGN93mDwTBVbYlrJk+/CV+52UOlToMW5H23yjALTFKkHMm7I6yxykjQjGXGqXTiN3g/5LkWrZ0N8EqpTrv0MMUdlMpjEe2WVmOmp+UAlysuMRVrUYk76ihIbm1UeAsc72Iv/AUOvSOyQ09Iai0EYyvYj2IoyltDY11Ao0I8VhkOYA+MwWdgbP9z162Dg/B/zHJMju2InldEuMJWAN7lba5zC/OzMApxhQIyK51ijl16GMAMRQ+iK7PFIA9iPM0z4V0gM7JdZyjo1H0R5/f1fu1ylhMemknufWxhLu8Z+X6pgz5FkoR+Hyv6LmHMsCrWba+RCsEaVgyqeMiSJFTjJMaSisVN36kH/nsx/zLYQl8sJRV28jY6IQERffZdT1+H0xf9c3MkloEW6o9J0qM+rGA50/Q+gUVHJBBIRcc5jEF4ieQLN0gq8HKkBNcCiWV4nyS9zJDAFP+OL78Pp94lsQ5V0G2SwBnJjOXdJcnWBb8GYn5JwgkGjD0iMdMkYfvQz0Gn7+vbfixlrEgV23KCJPOT59F3SF5R9/13+abroX17HSuGFzCgSudv0/f7Lb8G/4CQk0VSZaefr0ckYFNy6fO+HUhFqAC5cWxs/gOSbFBsPY3nt7BxUSKxayB5LxVIoHaexDzU9YYEdp734z7CwMQL2D3xbVKqZx0rCuf8vPyIZCr/iDTuzvjPb5ASIHUuHpBAkIcYcKJrvYCBvndI0uVx0viQLFcM2Eskduk90jgXy+VVEoPydYyx83V/tZFAC/lqiTkmf66XiZTPx6+ftsCLZqme7s8TeHrBNnW6DoV6NeSqu/kecp2POC3A/yw2liuk+/SE1IgQM0syys+w67cJPIap+hycuER07ijtt+4PZ7j1zR7BETz5tsl/zzx6muafZoaaxuhD36fm+fZjbPxovzWfCywSK8tB+r6/OEoJtVVSM0jeapJY3icl6T4gMUvbsIaBpJ8C/iGBZWIfnvVj+/hZuh4C+O6RGNDzvt0uUmADhP8gv4eB8xf99+P++bwfb80/r/tD50vgukBfgXSaU9tIgFOfX8cWEqNY8k7N4bqONezeFnipJsiib3PCfybp6OtNx9TMyj0iNRbWScm7j7D7fcGPtdO3LaZ9A5s7Cr4vsi3I+X7oOaw58p6Bx33/6ihZSUgGrEYM/n1iBb5CYsKJca2m4X1svXHPvvf0AxJj/kHTZy5g96maZpBk9C6zffo9l87rmohxukkCafXcrJAARTVAXiD5AX/NX+0c8P/if8ckC0ywwDCr/An/RTC9jGxhQXjyk9+gRI6akzoUInAcQJ388cROksLssivUOpx1lqHhCZxLQW4xae9BbEPBgIksYSCRBeu9wQEd3OYaA5QjBKJBJiyqOjikn5rbGbc6SLXKOTbD9mmcuyHz3aWHK9yJfTeyT4kyA3R4cGUPuyGVFSDU4kBajm3M1/wwzodkmDqmJcYYwEL6ipTDJ1/1qwI75NWmGviY1mDZyRdQrwwnLDDhRIksoyxzkxu8yft0sRdKv0M6nPBQReEJyhYQqLhNfxCDshzzj/g3UXePsRQApP5fIc9dxhllJZSDSpMVocfkyGYtNcYS225DtcAEV5jj0KXQDVpYYoxpZlEYSgsp0DRL3dl75l1n57UaoGqOGleZYYlLgY8UqFCnNdhxAif1mV16GGaNHXqo0c/v8ydBJpLl2TU+8muQDc8/wP0h7V7497wTVmYNWhz/MGuwO0wxx5UIa2zQwoEbLY+zyCzT1MixyjA1+p3IYxiNgL1m0tIgmy79XaeVY9Y8KEWgcpY6oywz4jZeStqVclQqxSkf63aOi4ETjbISACXAb8XD5j/++koAPe10B4dsMMQDB276/WaTNE9gk5BXpfgMOH1UXYB2DhmgjEIexIi66BjzEmNxsgfZjIEo6an2aZ4JxllkgQmXTHbFpNHuzCXJAheYcFNIMx7tdxadJtiUSJsJyaml2k7TIMMMV7nGbcZYQsmwAtzkIyBm2yQLLDP63IQxxAYbTZHiAgZbHKRSx6BCgVGWQ+9fZAsFKog+28FhMKLyVDl02e2kJ91KYmsR0ScxAYhSrU7EOt1s088GQ1znVrDh+h0YbeWYIdZZY4Qa/exghqw3uEmDDEp1LTnleJxFzrHJDj0xoQxQpko+PBQ2KDHFnHsDTtHvuayiSRccnNTE3e008Rr9keK6TY4cNbocOMyxTb9PKHsOOpr8t4V9umnxSUYeBmJP5qlyzsFVgVxliuSpUCPn3oG95rHjXZpjssGsO/YukyTT6wwxw1UO6QivulWGQ4YtBqTGmUxfNV4WmOQ9rtPLbmj+za+yGJ0oICbOKnkGMB/HKeZY5HI8rOeYCgBxiA2mmY2H5qFPfPKA6GEnALx9Bwgr5BlhLR4ULTS4y3gAlQ1afKFQ9YlzhLNhHvT1fvXwiF4svYvBz23RLBmggJlPMGabwASBU5IwniMt1pulg0+whXqdxLz4p1jBo0W5ZFVVbEH+GAP4BIY9xlgSn9rvv7wAp35KMg8X8+7Dpu8ct3TKKPgEelwgFZavYsf6KskEW/5UYk+oqMlhANA5Etij75YEWCbgJ/57FSpikUBizKg4EVPCZUunxKS7RCpoX/HzJV8igVavYEVIDX75X57lG/cfJZP8caxYbCOBiRn/rJiD72GF4Kv+mZz/7o5/XhJZFctPfFubJKC16NcqQ2J5aFsCknQ+bvi1eB0bK2JpfOa/F9NExdwEyctpsOm8iGkmdlxL0+/OYEVhhST1c4CXvO8r9vMvp+DUOjauxIxRsb2AsTIekmSDkvO1kMbOBUwOp2L/92zzX553xlWnf6dYM7pXLgBvw6dvv8TL5c9T2MBDktz1EUnC/sg+/+UfOCNFrMIWDFjVeZZHlWRkAksggc2v+N8aRypeVQSfJ3lNSR5dxoC/r/vLWXBAYledw87Dp/BlEQ46X6Bz4Zml1957CnlPi/1wP33WmZin6/BFvosX1/fpLLuk9iwM1jctLVeyaUkWJaccJ+S2vyye5RstjyKA4+nLcLoCR0Voc++yzvcMwOrbPEr+n0XfD4FoAvvPQWf5mSX2bsLTATj9hMRC1DyWw+SbDRJ49y5prr4ER4PQJkBIrDbJHwVEa8w/wu7LHCmU4r2m34mBpcfuBQw8FFsZEjNMjLQSzzed1qHzj5/Zz86TZKIOfIbP3hEJdBsn2R7ouSbGWBkD+HQuNQ/rej0ihUSo6bBJkryKYSZmnY71kh/PIgnE1HPkEqm5dafpPOZI89QKSWorKW4zSOiy3SeX3JdRrEZInnKvkDxqdSyXLOn4VNnPn54hauLc9/35KQko7PNzmvHjXwAG3BsSbE7ewuYxNWTUgJH0Wec0j437C6Tmziek57YaFQ9JTbcpEgju9wOQmmHf9t87KHdatgpZEmNSz7c+UniHGjdtvs1ZPx/7WJjQb8Brn25KbASJoUCV7/OjIELsetNfZIsf8T06OOT3+RMAVhlmiyLjLAbZQCqfea9zZSU04Kw8gXZv8xOmmUWBB/LGM2jM1EIf8Rp1stRpZdkJN6qbjsmyxjDb5JhggU0GmeEqA5SjXs97EADARa9TVVNvMsg4i/SyG/LQJAut88AVfPLfNsCuhsImpa7r8Tp6wEkfStcteSorGFim/QADuq5zi1aOQ2oKOKvsLjX3O0/kkhPM/mjFCRzHTmRoD4KIQBtJPH/An9HKMXeYCksxpdXe4CYdHPBD3gl2nEgyGU4YZJMZrjLJAqOsBLlI5+OP+CeMseRgpBGRdunhA95klGUsvGIDyW0lZ5W3G1hdKI+2Tc4xyAM2KDHBPBsMhVXVOItYQuxJ1LsZGvwZ/zlv8gHd7AWJSICdjSDDEqSkVD3d7liGEV4aDLHhjDdTva1wEQWMDrIZ7NFh1iI45gpz1DwUZJeeSDke9MlJnoUTLDhBqSPYhN3ss8h47Fez+vAyixHYssoIPeywRZG8K0kP6GCcRXbpYc2DKTtckTqA2ZM1yLDKcDDzxKYUcFtiA0s8tmRqha5I7Wd2cJnYRyNkbfxK88lXAuh1s8+UR2ELZDPgroUMDa5xOxDaLUfT953pVmKDXnYZY4kR9znTyRMq20wHvss4SuNcZBxFXGdo8AP+LDzAtkgBESb9PGaBSVqpc533OKY1oqLli9bjrLZ9v9lbnGkmSaakspsMMspKAGg67ix15pmgWWqswblHN/3UWGWEfmoc0xpCRlFXu9mj17sDmkCr3jVROMg0s+zQE7Tg1ucGRzuLjFPBwjS62WOGq4AFHiTUPA0DMfTABuCbvM88k1zl4xiImhQkEa6QZ5NBpvlZHKdYYrrBR1lmlZH4bqXDqrNQZIsNhlAUuJKDmw0ra1h4g1BynXsDO495wKAzEVuiU7PrXgJKCq649LSfWvjWbTDEKMuseDemnUMU7PI9fsQUd7jNtUDmR1nBUmor4dOg8TzCKvIWXOQyBSpsMITMaKe44+egHoagdfd5yNDgJjcoscEwa9xhijd8wsx7spJMbAVcyxdSYJ4mJrFf1ZmaZ9Kp+1Uus8iqM1blVaCYcwG5Bs5uxM9kOlqmyITTlO1+PsGCPg6DZq2ujnUZWljmIgWqDjVbkvJPeJvfbvIx+Dq/XuQLylgk+29P/RWU4PPii7y0+YW94Qnm1dZp/k2dF57x2dQ3KNSrZE6eUevs45uXHtqC3MGOJ7kX6Kw9g00D4Lb7uowFWa/RevQM8nD6BP5q4hKjl5bpLD/j8eRpziw+hX348rdtzfyL7/TxzaxL2rxgOXUPnr4Ke2fb6OMouuqff/dFehu7nFl8ymevfIPz1V8mkEqg4iOSBNj90J4UX2Av203Pk0e0PYJfvNrHN2cfWvHxbQKs+tJBpgd9L9pc/V8dsdt5ltyjR1Yk+DaffNu2943NR5D1gn5hH9oMkAHbxkuPvohAgs9LL/LSgy/s/L0Dj3OnaT16Sts9UoJiCTgLv5w+a9t+Ave/81tcqP7cGL1nMUbaEzfgLz4zH6qSSfoeTrXR98MjqMHTV4B/CqcfwlEe2mRMXsYAogUSALru528QHp8/zZkHT8MI/8txP5bcF1ZYbWIAJUCXgQUbZ3+LC5s/t59lsQJtkORHpGtb9nEGiQ0JqeBab/p3Ewvqi1IXx99pNYN/l9c9fRlOS/5d9/F0zwCZ7b4uXuzct/1+/Qsr0Nr8PDUDwHV4cuEFKq/kOV/+pe2zA1sPB9voe3jE51Mv8lLjiwB0H0610dJo2DmatuN6mocPzv42/1n9LxMg4SzEdg6gDkcT2LXGWF2nP4UvL5ns83/Kn2fo7AadT54x33eJv5e/l6TmTzwx9NMjA2bEaDnnx7PpBfpn9r1PX7HAhgYZOhrWkDnz2dMEWOSwonUcvhjs4sXqPkeddl7+bds7wA/5Wr/EvpFHYpUEhD6y89jZ9Sx5bDoA3XH2IMkCBbo7o+zF6n5irZ21z3U+epbAEQFJYmMJlCgB97F7XeDrpgMSBWgTCNZGkpYLJBGjr0ZaRdeb9uHE7n2emF/e6U9tmxEUcYKBNs37lcHGdJUAZtp+gs2Rkr8ukkIfxNrrxOYTAdAnJBBIVg4LJACs2VZgHGPTqXH0gCQ3V/Plvh+Xmj8CxvUaxED7UtO2IQHdYnI1g01nsXnqVRIYWPb3qvkjJtcTbM5zyXOAVboWAvwk2Rfg5A2GJ6UXDOyVvH+fBDRdsffwKSksqtP3p+6/E1D7BB5OtNF3/wieWFOh88GzJBPtbPr8fez7ftvPryTRCx62UfPz2cwObiMFUYnhfZZkHyDQT2DqTWxsaN6egy/fhlOSk+saCyxWI+gz0j3YIPmvaj4X07LZy66N52XORyR2qxp0ZZIiQGoCMT61j2Ls+b3HkZ+LV23/acOCpLr5jXidOJlFnuvNEj/5y03zswgzuM57zq6zcDuxogR8FKjSy66rbobpYTfqY0kJLdzAQv2OaWWZi5xjM9RCVhOk0MRjWh00vBv1oQU32vbf5AMynIRscpDNCCTIcEKvk1iUHmoKNAttXGCCHDXGuYt8x7R/IuQICDHTpWNOnNwAII+4bXJRXzTbB8n3XHWrakf5D26TC8/Ai14DtjuRSMGBGRpMMccHvOnn7wF/xD/hD/hDethllmkq5LnsTC8xHjcZRNJO1ffypW+lzjpDNMhEGIfYY7Ieq1JgjimGWKeX3aiDh9hgnLtYsMcA3e6vZkSNOzGuRGYaZYWb3CDrKrK6y4azWDLyMKuUGWCS+QgiGaBMnSyjrKCsgF16yVKPcXSVGVrdEmuYVVZ83w5pZ9VDUPZIar4ZbjDIJsuMBki9xFioxcoMcNmB6R52A5g8IcNtXgOgiz23jjpAgRQdHJCn+pwvnkhMkg1PMxu4RpU8CihVWIvGgI3RE/fym6Do4PQ5N9XaoQcLMz12uHOXVYY5IRMEIwMN9+hnMcDiA0YYZRllSPezzSojXGWGW7wV7L1RlllmlIrLeJe4RDf7tPL0V5pPvhJAb4tvsEsl6Lq6Ids5iIAMMZAqFMhTRemg7Rxwkxu8xS2WGGOJMcwwss4Ck1zjI/rZpu7dgXaXEs5xxeWUrYHUf8Q1GrQwzl2GWWMPk/JmHD2Wpl6goRJsK+QZZzHCKh4wyAYlRlilhYb7up0L8KKHXW5zjRw1stRp55Ab3PTQglxsW5576ihkaDDBfLAWFaUNhBHqjnch1DUR4q1UFKG8YoIZiHc5kGPJNTcoBdAnQFRGmLbPB+GvZqzF9oh6XuEi49wNbfcB7f7HAihaqVNiI+SYrb69TQa5whyWBtPLJPO8z5vsOsgEsMAEJTaC8i3vQj1sci7TlI7cEG2jwio1VfRX6eZtwq/GxNGcRjvNbGxLvoQ/5HfD/06BEydkuM4tClSDWbnJIMuMkqfCm3wQ1GwxHw98IutnmwkWnvNYAHu4SOo8xRw3uOlhJLsOUO8xxj0GecAhHQHmWYpQHclnlxkNcFoToyZBAcIaH3kqQSVX4q+OX7HbZoprD4Vmk1tJpzUJF9mgnYMYS2KsNmhhiHXKFANwVFz4scuyC1RQou42Oa4yE/Ler/vrKjP8FW9SI8cvXu2ju2G+hQzaOB+pr7H8slkMzHCVwSmb75ayY4xll1jkMuv5bUbzK8E+bpChu7jHXHEq5scCVRaz40yc/DWLna/Q8aoloi1lxyiXzBf08vgi2xM5k8B/Z99Skl+1RU+BKj1PHtE49wLbWWNO33llhEXG+R4/ZpmL9GR26Z2wLtsvv3OWWaa5ygwzXDVZ9+ACDTLMcYWrzITJ7CEdrHcOMda5RJUCJ9PLLhNpj3l3k0HGHt1njRGzQei0RejC2Ql41e4jm1fOWRdrMKVlLU90u7QjR4kNWmjw/5n+7WAOt9Dg6YSBLboHC50Vuqc89n5iz6X0Zny7MDgRSVpz+SsmQci3RCOiRo7MYIPWwWNGWGX9gvlT1t7ZI8c2VQosMcbE2XkatDBS/znrfd/gsGgLpsyFE2e2FuLf5GGbHMWSGWRnfRm4xgiH3+1gmVEmLpjPiRb+akr81eAlujET3avfmeGAdt7jOleZoYs9WgYb9NR3Wcras7hHrN7iPNsZGw+jpZX43UHeUuEsfdwCpD4tddPOAf1na8xkr3L10gx7WZtn2jkg++oxHY0DlrlIprTEPt18/jLRwd6lh5bOBq35YwrnK2xnbLFcpcBm8RyForn5qCnUVzqihQa/mO4j/+ghe2fbqFJgOTNKT2mX/tI28nap08rD6TZv8JhnygITXOM290u/xRJjfP/8n3PQ+QI3sze4MXGT2ew0o33ePc2O0T1hzYzGqzYvTtXn2M2adUfj5Q1q5Hi5+Dm/zJ/1jneejpdtDjvoa6dKIZgVe3TTyGSM0XDBWNCt1LnHGJcGl8Iq4vP8i6wwSrGzzDceb/0vOzH9p3gJkCkCf04CoMQaLWJgwD4GVvwUWIHO/Wcp7fXsf/AZ9+364uUuXizv8yT3Ah1PnnEqT4QDfHkJTomBJGBVgJ0AIUiSzEEMYHDG9NNBOL1FAp0605+ng3D6x1h4xoT74/nK+ksxxTLAeQeq1x3hymKS03n/zoIf+0OS/P0tknxSPnzyJBNrTUwnscwGMSBPklWBTPLJm/DvWCD5OMrfTACOmLqdtt/UMDCxioFcAiPFihNrNevnSFYCZzCW4D+EL895gq4YWUcYK+sVksermFwvk0KLJuCLV7p48d19AwFpug5dJJl/kQS6zhGyWbE9gSQ1FpAoqwlI1/1+03cUm373BPo+OYrzfur/6edCx/3nft0yJPbzpzwvH5XceoJkQbFA8tiUz6Oui1jIJ75vkrZCCgoRuHze7STEnHsZA+xuYNdW94oYoC1wNO3jNUuyG3hMStRVY0c2DR/7v1/HxoBAdnns1f3zuq+aGbktJPuDTzBQr4GxIf+CxIp+j+dl31/jV46HnKfGMhdjfZ+jxhxXKLKFGfB38QFv8s/4l2yTcz/sEiYrLDlQkI+64WOu0sEhy1zkVWaok2WAMlvO4OvgIPzoLZVziHYOvZ7ZCaLHIuPk2GbDjRmVmDrFHB0cMM4iBSoMsYF8/uTjDQSzTsBZM0FHdYLVMxdDFSarLa0Jlxhzp+7W2K7YZpKBqr4T4685GETpo3knXwyxYeshTOHVwQHrDNHDLhuUgsQgwOgW1xlkkwnmUdKsiBtWdw1wSDs97NLlJKAkXT6kh50g2+SoBTgn7/orzHHgnzdvxGMOMR/EK8zFta46ziFSU4EqdVrDakxAaI0c7RyE+k+S2xFWvT5rQX7zNXJMME8/NbIch11Uxf3+ygygsEsglHDCOGRtpcwCKSebrbk6OGQb86iXklE4jd5Tc4lxM3YjAHiVYQ7p4B1+GACdCDNSO9bJ0miaZEUiqpOlxDo1cpz4uFSNf9elrNe5xSoj1MnGev/QyVSygZPvnrIYVGsXKfM+b9BCgzxVv9atARzamH0Q32nYiwVJ9nslvMzF+L0+I7KS9j1Dg5/zzV9pPvlKAL1zfB6DOk81mFIy9gRLI1ljmN/nT1Cqjd1w61zjNs2Gl7rxr/ERSl7Zo4sNhrjGbZ8cDmmhwrazwobYYI4rHPrAVdErPzoltdTI8Wf8gH/CH8X3K+DghEwAXyOsBnD0b/hHvMkHdHDAPt18i1k377SBpmMRy2+WbzHNLMe0ssYw457Eu8owkyw4XbdKlwNSkjYKtFpxAKeV4/BLE/DUTLPuZzuCFMzQsx15wlnRI+nuMUoiWmQcC9kwRlcrdUZZYZFxRlilmz0/x1bM6rsXmORt3kXmp2Ih9rAbE0Yvu1h6cG9M5KK9ijkpWnCFQhSnSkjeoETWOy2WjFNnxCmty4zGbS957qTTa+0h0k4/201yUXuo6Bx+xDXACmI9vKa4wy5mHCtvP8l39+hmijm62GMfCzbp4JBbvMUP+G/d37ElgDcV3PNMUqeVKe4EbVpgm+K2paFXChAQevpdehhinQHKnLgce5scq+5ELGacultgoMA5f58Vx3seU26MPZmWauKxtCGjR2tCVffjAYPB+jRpunWvFMfdHOZxTBZ5WpY82KZMkSHWuc1rkXgFFh/+iG8C/+pvb+L5NX3d5TKWbtzDOkPUMv0oyGaNYX6c/X6MQWPZ1j29aTQm+ztMcY+x8GEsscG8jwEzmj0IcHm7M8caIxz4vKUO5XVucStzHSWG79HNkmuTDv3adnQeUiEfLEvFzJcpsskga86yNa+PXHTtZGNgBrOpA7jqXVwgFoaW7lwIoFrNhFGWWTj7SoAxO/Rwzh90YHPARZZZYJIClZCZKB18lBXe5w0us8gSYzGfhE/KWfMrMYZpLxlOQmZSJf9cRH2BanhrWrdsj116wzNT85ExqLti8TTOYiyqFrnMKsPs0subfe/HYry5q3yVGX7M98M6wmQA5sEK5pUpo2jN22D3j6QKkpvIYHnVw4RW3bN2lmkG2aQna76wV5iLRPH/W+b/RN49aHTfi+ls/iHDvMZtIBkJ//vsO7RSZzU7HExnJX+RIUA6eaPIx0fPgBIb3M5cY50h5Od56M+gVYYp+TOhWCozx5Rd67OLwbzv4AClnWe9o62F5D5mC6EF9xJj8dz5Ud93nZEwylzWLAbe5W2ueEW/RZEBynzAm1xlhnezb7PJINv0M8m83S95A0TVrLLnZ7v/7Bw5aixxKZpfc1yhxIbPuSbfuOtSikXGUTr7Njk+pYhVyV/j10NSEnWJxPaRpG+BAKa+bIFTkiXKi22z6fPyk/NV7Ivv7kMROj99ZuCC2MNZlzg2g4CQQBIxjyRvhMRIcmZVi/z3JOmvE5L50wtEonGj5QU4+yyAkIPOF+hcf2a+c+VnZOvHCaCj6bs2ScCJAENc0vmvnyWp6eskAOceBnoqrEHAlthr9zDrgT8nseSmScy5HIlddo7k9fmAxDC7TwrzOYMx+vR9n5DY2Au2vcffP82Zv3xq9gwCjp4AH8Mp2UN8QpL+y1utQgrcaJBYfI9s2y+e7CdA6Nv+/jYSE01j4kOSBUFzaId84C6QzuVnJHaZMztZIPmLitVWsyTatlkSm1T+dlk/p5v+mTIG8mmM6Dw5s5nXScEkP236+SNMnlvCQDvJkR2spoGBrJLlCtSVzcCm/7/i1+gsIf8OCXQbycLinB1b23skL9iH/vN9EggnRqD8GB+RGH1lkp9g1b/nFf//Z/5+Abw50liS1FzMT0mJ3RMSwKfUr/2riz1qvMSuM3/e4H2qFCiyxS49zHCVOlne5t1goRmI0RqkjXkmkFc9GNizxjCvMsMDlz+KpSdCjdhqH/EaPey4imkn6hPYQtZEAr7qZMOKp5n8oNrAAi4OPRzyASuMMkCZkstNJT/U+kmhCAo4VFLrEOtUnTE3ygoHtLPEWDRs3+QDDmhnwxluoyxH7bnuvmlSeY2xFOeg3Ruxe3RTdTLRlD/77zBFhQJ/wB9Gndvu4Q1G7ikx4GrDLMfc4GYEOA6xgQI1RKYwgO1BrL3UvFbDeIVRJljgmFZWGWGaWRQEWiVPuzMYW7w2XuZiJNju0RWAp4UqmuJQ6wkl064wGtvdpYcNZ00eYL75Ju/ccqutRqyrBcLqPBq5yB6yqgUO6GCaWd7nDaa4w7ETbRrODNyjmzGWWGIs1sN7dDPLdFhJvckHnDjJqJs9vseP2aPLAT0Lx1CIyzwTFNni2IFdgXsZGsEs/SHv8A4/JEeN/wf/h8g5yFFjgyHqjj1U3GNPNaplNQx7kq/V41nqEaqi9eMB7THOdLy9KCPXQj6vc4s8FRaY9LFt8uYGLbHeFRlKWIc8CHvZjfXuZRa564rTUZbZ99r+b3q98Lc5OenVoIU6rZw4UjrOYhQWGhjSRAOhMTb21CGt1OMGs7CBLB0cssAkawwHSisft116jBXgF0fx1f3UuMgyijKW7HKXnij6ctQC/R1kky2/ITRhHtDONW6Tp0Irxyj6WAyHvFOcAU+mNXBlmdEomgpUGWOJHWeTiHosPwIwkEzy2nMOPgpQu84tppnlOreCet1K3f3LzFdP3YVGsNMusuMMvl16mGMqADQwEMdCHA4ZZDNowBq8BT9eA8Hq7NHFNLORQKu/pZfXea2R4xbXWWWYB15kKfRBN243ewyzGoWtJuYp7sTgPnbUvYu9QMQve/fFCsY8lma7G5LoMhZ8YZLp/eg4qKsgo8x5JuinxjKj7PuNJO/BCRbYpj86CCOupx9igyE26KdGK8ecY5MedniHf+8+EonOrlRmMOBjkgU2GGLdfQnyVFinFAy7XnYZdqZlK8eU2KCVY2QS+x7XsWCQLRQx308tOglVLNX3wFNyGrTwEa9hRrNbdHDIND9jiA0mmAcIwFnXTXJt0aN36Al2Tit1D7+w9COdG02A8mjQA1UgjFiHkkXLWHaJMcZZ5O+HwczX+/WIs/RTY9RtCG7xFtvkmOEqOf+5PDZ1vtYZikaIvCS0oJLhb4FqALNiG4txCQSte5t+DhwgtETnoViACXjTgxWsIXHOWZk79PhYa49OaXOEvHwoND82S9ztvm6h4Asd3YNG3++hQCXulwYZPuIaM1x1lmg2wGozFDYmlBaSdbLMMcUBHdGdW2AigCXzhTkOkFSpUgd0REDPBiUOffw/aGJpH/p7qj6/GOOrN5oD8qBsocEyoyHFKFBxoM8k6JPe/exnm1mmqTobV4uxY7IsMBkgvTqOAsN26eFf8s84oJ0BX/xuUWSNEdYpoYRwAan6bjHiRlijQp4h1mMuydDgnvvTatzs0ss2/cwyzQMGyXKMPEzSItKYuwe0M8wq3exHo+Y9roeUYNWtMSx8qUKZAbbJse9gm7xV67RSpByL0gF/FrbQYJ0hbnKDj7gWqW/qXBowbizHZfda0fVcYDLmxwqFaNi1Y4bXt3iLVUYYZzHGQ87nURl6m4fMggOxPf7Mr8Q+GLvTUgHFIl/kcnyvGkpKUFfKWdaZlg8c+K36tRvFWJEtNLjM3a96KvpP/8oS/lxfjpMCMeokAMa9tk59Zuw3vk0CFFTwl+B/KL1u/675NiWt3ScBIpB8SR9jAIJCCYrwZY4UWvCEkJR++spLcA6evPoCPIFTVRK7SeEKAvfc744L0PnxM47kU1qF3WwPnIHMybMEJIIBGwKgMiQWl0I5HNft/Nh9AXVeBAZe8L/lAznRdPzyT1UoC35uBQTeJwV/lEhhBB/7+2UPIG86SZ8/wRhjzXLOe/4Z95Q888dPkyT5gp+vXNN+QAojyTf9v0qATEqNRR6vRyT/t04SWCTg88jPwRHPs8V0fuSxWmw6vwIEL5FkrvInlD+pPOwa0PZDjEk5R/LTEzD4qe9fCWP+febnUsDYKyQ2Za3p/D/AQLB9EtAteayoFgpzEciYxWTCsqAQ6NiJsT27MEBQIVQ/Jfl21vzz+37dqv4dsgNo9lvVPaWgkBM/Ju2T2K2SfeP7UPBtPPRzJaBPYSEV0lgXI1Pj9L5/7gk09ba/1q/PeQkpZGrkWPF14B2u0MMuF/35UPEG1gBlNhiKwEHVRVJfiSih9dK+Axo97DLIJod0sMAksnFa4hKLXA4Si61XatFkE7Fgx5usVvcOeDO3J45DdfkeXSHLNL+zlqb1WD1AqxzbbDJIF+bZd+yCWjHsxKgzi6Ut+qlhXmUjHPv7lA58gtJNG76uG4p11we8wSEd3OQGBaqOC5gdk9Z+Cl2UvFgBgXt0cdGxiao3uXfpjTpZicI6v2UG4nzIRzzrq2y9TGpbiut4QoZpZtmjmwUmqJELBpsUTAI8FxlnhqteD+/EeWt1xYbITxXySJ5cJxvBJze4SSsW5Gi1XC6awQJ4t92XTsDWIR3uTbfJOHfDq192ZJPunTjLdKxfL7OIVIticF52Hz4jDrXQT82vQUfUPWseeGmEGPMwVN29Sy8bDIUsFpKUVwEaV5kBjOX2j/g3jLKMsgO0zQJVxllkjCVnUO4CkG8C1TYZjPP+Nu8yxDoKKc1yTJU8q4yw7nWUwOkiZe4yzqEzFUU26Pd6aYo77NHNZJNfpo5dzMVpZmOsiLnYw+6vHCD5lQB6j9xEQ3p73cAy/m/xm1pFi8z49+iOi6MEHiXRDLEewNMcV1hmlCXGwr/tHf59IKearCZYIMtxJI38W/4x3ewHpVfovElTLzLvKTWK3l7kMsdkmWWabvZZYxjRiHUD9bPNie+/Chl1G8ZYCjqvOgwqsmQ2Kee8BSb4d/w+h7SHh5uYa2CdnAr5AHXEjupij4ssB3NDRfkoKyhcQTHmeo+KaSXegAGsKjgVSqEiUQCbOhdAsBFPsNTcY2d9tXLMMKv0eiEs7TvADFdRKo6KfgWAFKhEvLkYipo4s9SZYg55vr3PG1xkmZLTowWQ6qazyfbE5FmMAgb2CYQU0wNgnRKKlFZMfD/bvMUtTsg81/06oCNA5h0fxzmXfytKe52hAMgkp912iZ88Bhe5jMw7ZRRq1O0OL+77n7tOuj41ctGFMcarATrDrDHD1UjyFUtQbMkedl3M3s6Ks77s/swEaKLzZg/2czRoYYVR+qmx79df99Ui4zRoYYEJOjyz17wEWymxQTuH/t4uRlmOay12k+657VjRf71frU1jvUCVUVbo8HMkM1UzuB3269xPkS1/kBxyx4ErgRBKtN5gKEA1zWkzXOVdfodtcjzwBZFeWpAtMs4qw8Fek+ltPzVuciPmMksF643/G3jWQpU8N90PY5BNVhnhmGx0iCV1aGb9CtwVo6rD+1SrjDg4votMjwXQ9bMdoHyzx6Po+dZB3mbAK/cMlmhe93GmBoZ5y5jkW/eddRG7mPfFLRggl3eQUYDMHl1x/vTQ13g+wQKRBALOMh2LwttcC1BWkve8N5ryzmCWHESLvw4OuMoMwy7Vl/+s2F5APA8KVDh0T9BuXxQbyGv3e4kNzIO0Sjf7ZHyuEpNT8pEiZa4yQz/bNMjwGrcRw1iG2gL/W2hwTJYVZ0fb+elGclJ1MHM+V2Y55j2u8x7X3Q6iI553tiBsoZV6sJkPaI8FtOwnZOrcoIW7Pu/IPuHYRcntztI2Br+dJ82TAtrqtEZjBWCS+bjGOV9ctnJMP9vBVraxI7+Vgn+beff2e0HyMVfJOuNcAKKYjFe4wy69WApbLZptYmgrta+AmUw/JJl2f21fWSJh9tSJ+ROGf5sknArJaViYxFEzaCYvuzr8/fsfWvHvzKOnV+DJuRcM2BDYIbmiGH3+/V+659ipz8yHkiI8nSZSsV+ufs6TCbMeCHBInmdi7nVhMtRzcPQqBnKcwF5nVwAXxYcPeZJ7gbZNoOyea/4+lOz5mJR2qlAIhRxlSN5nqhcbpPRXSU8XSMECfn4QCKnAGwUdCJTUef4OyQNPvoCbJOCuirHzaiTQ7Cw4QTxJqCU93fTf10kJvW0kUEpBOAosWSeBg48IMDQAsEskAFVAqFh+Vb8OkJLKn/i+bWIgURcJCF7377nfdKxiCopdJ/lphhQedIKBYjlMHgoGluX93Oj6f+zHd8avk7z9dB1Ulwm0E+tOwHXB/61gnXP+R0BgleR79xkJpLuASVXFdLxP8k0UODjRdG4fk+6Re34+dS0EnOp+FJtSoKt7q5InjdtHGFAuj8ROUvBUnQT+QQLvIXn2abuDwIvwG+LGQo6HjLFEljpv824ohi6yQgcHHDqwskuv18f9sd75Q/5pECdanXFliqcTRljlX/LP+MP6H1AhzyrDmDXOBm/zLieuqhnjXoBF3eyz7YqrfV/rK1xghLWwrbI15GUO6EC+8oNsMs+Es/QseFC2VVL2VHyFJQsPNRkFQGrdlXVVXIvX04e+rqiT5Xv8iB16Qu0xy7fc0McsTjYoUaeVbXIMsxbA5reYDSZ9u6tBhtxCSMDktq8oc16nq86eZZq7jFOgSj/b9LDrZJnVwC+WGGPBU62U/NuFqdsE/hWosuhqHbHgepswC/MSNNWJgh/LFCmxwXXeo50Dht32CwiAS+vlHnbJU6VKISxw9PMub/bLI69ImRvcpN8l1cuMRghDnor7+w/HesekoucYwMI/lTaspqzGTZU86wyR4YQ8VS6yzDCrQTyQx6LwgzLFWIdJGm3BE3eRpHqQzWjsyjsSrM44JsvHXPV/W/1ddd6bZN0CNqWQM3JJV+ANep+IR0CMaYHIwqeMjLQWtc8oy1xkmTmmHIjNomBTyaAVctFskSXJc4U8ZYqs+PkXi9ICWWyNuswoVV78leaTrwzQu+NSppwXCrv0PleU5KnG/yVxyvnNYl5uRs8ViCSw44RMeK5pQpHcsJllpCJKg63m8qasy1tVRMinrkELV5nhmCzb5J5L2ZW0M+MF51VmovDL0GDNNdjS8UvSKxBT8lYBJlnv+gsoEdhUoMowa1TJo5jwDA3e500vrM6FTE2sHQvKKEQRNsoyx7Ry6JTVm9xgjy6UWKobKO/Awh5dwbASdVhUUKN7Gviw4UCVgLA1huMGEUNCA76FRjx0ZJRaoBKdCAFqVhzXQ3Y7yCY5aih8QRI/BZ5IAjfNbHyfHmSa3DIOJ6j4siSijhiL7RwwyQLNsewqtHbpDdamQF35Tiwxxo/5nrMysj5O+llijBLrXGbRJ7pjT8k5DMZGiY3nJk+xUkRD1h/5PqhLVCdLF3v8rjNIh9iIh4BNAhejOzDJgndathhnkSHWWWQ8JIWWhryCzGH72Y7EYmPZmVzWJhxb/bb7ddB5L7GOIum72WPeASJNyA98YaBuGcC8SwVz1Mh7hwwISeRvwkvGvM2AVI5tLAAmy8+YjodAD7vc4KbDQFuUKWISAZv4lxnlNq9RocAECyhQBXD+nD0oZaJ7QAdTzFGg4nLAMd7gAwpUkSeksToz8aCv0c8MV1GCtgAvfc+yh8d8zFWWuMQ0swF6PGCQBz7PmAdLzcfDSZPM1sbDin+3QJsBzLBY93aeKg1aWGKMWaY5oIMtivwR/9uY+607ezkWmB/wZswdc1x57rzYM2G/CYDOBrW/wxeUYvsKcGxxMF8U+1bqbGOeHL3s0u9Aje7iPboZZo1xFiNJW4tGNbIWuYysAqaYC/CouYkiKwSx2Lf8PhTIZT6lh96IyCLvUZtbT4IxN8xqSB/AmgQKJ5JHiZ4PYlVqbpb0eZlRtr2bW6bIKiNISj/MGsMeBGTP6Ae85wztA+/uvsWtWMwIyF5gMp6Letat+NjO+lynRXsLDd7lbVYYZYEJlDo+xlLI0rvZp0ELt7ge8m97Zljj7Q5T0WjTMZ6QoZ/teA7Is/XQwUhbdPX7Yr4SxYeB6muINT3IJmuMxDNU295giNf4CLDnJdjiepy7TLCAPINucsMbZ80Urq/p6wUSmHHPutD8BQYKKKRFjB1nbu11diWDfmfdffFKVySkPn0ZnvbBcdsLdC4aE+7pFfhS4J88u+4TabSnPkv/Pv2hfffpD0nJnj+FzvvPKD76Ai446DdIYqaViKTnLy9AVvve5yEd7oF26oFtJ4CwMimMoIKBLIMkaaPAl1LTObtAYjiNk3zdpjAQSGy9S7Y/nPix1ny7F/y9AlQUuiEG3iYJ4JPUuI8UdqRhKb+8PAZ21fx9WYxV18ywbMEApwuk0A8BlvKA07lQMMWEb/vI/y//webbQj5v3/Xt6jwpUOcT/5y854qkEBUd91kSyPeEBDzN+fn6hPAo/OWrZ21/9J4yKWFX10VqKI3ZZm/He37M3yGxDTux6zZBGk8NEjgr6fUj+OI7XYnBpwCJrB+Xgo4ErJWwEA75P/ZhydkCzB9i28r7dw9gQK6k0C2+X3Mk0E2MRgWtSJY+zvOpvk0BNgG6n/fjP+Pv+y4pgTlPAngFEJb8mJ7xG5Ny+3O+ySLjXPTQQElqS6wjFYzAgKyvYcZYYoIFprjjwEVLNASXGAvm0reY5Z9n/0U8p8oMsMFQyCrlifY2PwlgSKChpJFax9fIkaWOlG9/wB+SocE6JXbpiefxAR2haMixHQ27FUY5pjUkig0yrDPEinu8qx6Wp9hdxmnlmC72vFZdDmzAQLZv0cox4yyGGko1cIkNal6byY9Ma7U6WbK+htOzXqSMQTZDZSfbEDWfxRA0xttlZIElRmDdWWDWvN9BfthgDX2tp+w8HntzeZMu9timn36vB4QFHNDOIe0ooELrcDHMLCihTgcH3OI67RwwwioFKlxlhkkWuM4tzJevHqzLZiIOEGvlFS6yyggbDCHfvavMMMIqNXJuwWIBJwp9qFAIwpICEIfYYI2RANRsjd/va6P1GPcWUJnUhmq8alxm/dxK4TfOIte55WQHWwSYKqjOsdfJqmGBUIuodsm61HbbSTG79Pp4Gw1sZtud7URMatDCtidEi0055+tIqYvAmHat1FFgpMA/rTUlOzYrotYYCxmSnZo89nrYDezEMg7yHNBO9lcMxfhKAL0BfhnssxYajLMIEKwrLY4t/tjQ6lmmAYK1VyPHKiOBooq9pw53qy+4T7yDMMu3oqOgdJo5rqB0H6Gku/Qwy3QMaEnc+p1ibACPrap0sTVR5NyTzYrVy1HcNDNOxAqRBGgXk71uOFtD6bInZFDirXUwDoPdMcQGYyzFza2BbZN6PaiizX57JjE1Y9NVRtihJwZnN/uh9z727oXOldhYzcwYHdMCE8jDTkw6ncMuv3E0qFcZpoMDFpzluO/XS2izWDZCvS1IosKOs+mMcmuJMzq2kptUZn3iFqhaZMsntGPMt+ou8nUw74QelFZTcsNWkwP2UvMOjEnNLAHHjFdbfb+ywYCD5BvVzmF4VjTIRGfCZIi2QtXDVONKE5++S4COjDP1/cOsIW85IGjzS4xxhykkU7Qk4VnaOWCaWYbYwIw1reDudfB5w7sU6mxo7AIBwprEzbwY5IPWLMNskCHrk9QSY9x2z8ExlpxhWec1bgdgK78N871YJk+FLCYfNn+QPFXytPo3nJCJ8/Z1f/0Wv2jqIA6xzEUAB5IrHjQy5Cwua3SUKXKHK84YMoDFGH4VstSpkmeRcZe7Vn3i7/AH+sfBcJLU2YCmVZddtAeTq0CFdfddM4m2dU1z/gi6xfW4H/T9oomLrTXPRDwozQtvJVh58sSo0U+FPHmqSO7ZzkGwZmv0s0EJBVaI9fRjvhf3lI5F3V0BLgLrJdVooeFHvB8M7jIDAcplfREAcJlFxBzcJsc8k0jSCfAjvs+O7+uOg/PyNW13e4g8lfCaFJC5EB6XB0G5V6dac4EaF2vOlux1pm7JZQY9vohq94Wk5kyZGx/TygYlZpmmRj8l1qO7qs64JDy73tXWM+PEn5PqLAtUNF+VMte4HWwBNSrERDdQ8QRJg4yNbPf2iocGgS3a5I9o/++IosOsAgpIxq0uKBD7lfOxL9mrFkj/LT9ArLsi5ecY86MsM0AZmSL3+EL+BjfjWaXnuoly+smxzRAbbNPPu7zNKiNxjSaZpwXzO5QPYI0cs0yj9PJ1hlw2fzHm/ENMFiK28gMGveF0EgxJedHkqFF3sPxr/5J8rwZ0woVPf57AOjGD7gHrFjBBC3TUD6z4V9jEuq0TOQectTTZ03XonHtmycn5FzjsOs1y30uJ6SUzfkkyn5CYYy2ExPThVJuBCg2gz7YLcLqZ1dQHX06ZZPjx+GlOPYBTi358j33/xZI7a8nPYMf25TiJ9VQgyYLFiHoZA1cEblRJoEoRCxDI+u/v+b6c923kMTBnk+QVJ3ZhBgNrBLZcIgGoCySfNzECz5JYdy1AF3z5fb9uJyR/OMkv9RJoqPPdnDRcxUC+ZmbXfRJD8VNSWMc9UvLqE+xai9n4iAQMynNQoRICWiVPVfiJ0m3P+++clck5kgR2HAPlsna8zME3/tWj5xKVeUAKFRFTs8//6DqfITEUj3zbAlgvYemvCkF5GfOcE4tPSfHYsbz47r4BYIMkIK45MOICCcRtIXlCFv0Y+jDWprzqGr7vFf/9mab9bgYLBaJW/XMF+56jV3z78r0TU6+LxHbU/i/ynI8ls9i1lZW6ko0d4H/y+gs2Bk7Ap8/fiNc8Eywwiax99IwAmGABpdgK6JvhajyvJTMFYu1oBIxSAAIKKTPVh9n57DjpRGGUN7gZ6zDV0LLuaCZYyG5lw5VASrdtpc4il6mSJ8MJGwyxRzdT3EEyW0l3b3MtyDIiDRQp084hi1yOZvYuPRzS4Z5y5n+3zEUOML/0CebpdWXHKMuxptyhh5vcCEWQGHXGjGpnmVEWmEQhB1oHp2M/CSa/roEYWUMeVKAQStV0HRySYxsLEjwmQ4OrzLBHF2MsMcIqrdTD8khJuFLarVPyJqjJgOW1O+qe0arv5AGsEE1ZaP2Y78eaVWujupN97jLO+7wZzekyA/Q7A1BWO11eK+haVSiw5WQCS10tcM4JTGpUm0TYmv86LwLnNIbW/TxK2iyLHuEiUt2JWLTuzdYyxbBQEUFK5BvLNWinF7PbGnYrGmNMGpP1OreYYi6wJAFskpdnqQem0Fzf6L5ToGOHM0u36Uc2OiISyWd/jWF62Y3aWHWYVHTb9FMnyxZFZpnmXd4Oklgrx9zmGhnHybTWTuzLFg7pCGD9b3p9JYCepKe79LDjAFqGE9ZdJgOGDDf7gKk7IM82peV0O/l3lGXqTmcU6t/DDlUK4a1W9clLF6bkg32KOeSllvNlPNC0aF8IttRFBygAj+m2/ZpnkioFZ/NlGGGVSb85ZR6+5swFAXDHtDLLNIuMo5SeIpY2ZOk1JofNcBIegO3eURCgJHR6yDs2B3SwwASLjLPMxZCVis5qgREXvWNzyDiLjLBKhQIDlDHpYzbke5BSYYBgli0yTp5qTPwCPueZYA8zvLR0mRYH6Q5RwuwuvdxlnAkWAnQaYZUlxviAN1hijDrZMGttocEqIyGxNRCgnQkW4qYTkwiSX4OYZMfOjmz2WzqmlcssIjmuFU9GudYD8Ir7YG2TY8fZF/KhWPb4cj00Rt2LUQWmPJ00yUhPL59BGZECcVzNJqoa/0oKEjtRybkdHHCNj4I5IgbIKsNByR5jKUJfVHAbg6ifUZZD4ltxCrLRhc0sfo0RlLjcww4VH4+SSA6x7mzJg5icZcYrYBoMfDzBZOh6eOaouS9hObymTjAJZpV8MFd/2eQ58XV+ybdCD+4NSixymVGWn5vj5Emm66BQHi0CdunhR3wfsMWbgFI9LMWyUqy6krHF/uvgkEXGecBgMLmav7/iC6cc2yH1FnA9x1QA5ZI42rEd0++MVvmkSPqu7pS8UPqdrbdNP4uMx7OgnUPk1wgmh5Vp7IB/vyTLYjiZTL0Y4HjNO2klB6WUON7ii0ggGFHyBt3FwkJktdBPzZ8V2xy4Z+A/4t94o8fsIz7itWBN2sLWGLcjrAVofoz5r+pe0CJY8+1VZqKrnOGEB75ctH0+DkBfsoaCg6DysMz6eJLcVv6Z5v2ZZZ0hfxqt8mf8gP87/8d4XubYZpIFN7vOheegWH9zTNHqlf4dpqiTZYTV6HLr2ScpsLxfqxToZ5tvMUs3+1QpUKOfFszvdNsXfupMasEpZl7eGaSDbDLCakhvbMxZpzpPlSvc4Rq3qWG+fDKEtiQ1WwyOsuLApgVCzTPhVgmW5DbEeiz2M5wYSwyCvS9P39tNwUlVChzSwRrDLvkxEK8dkzVLSbCFJdbnqURzRfuqgknhQZKMC8x7+hvS4GAdK/rbMIBqHAM14LkU2bZ79u/Wo2c8Pn86+bGdwIX1nxvo4FLWMPQ/C53lZ9QzWV7+5PMkV80BJWftNQVHfDmBgSQeAtD3yVFKkN2Ep2KW1THww33zTtUs5KGe8WvWLCNtDt0o23sFwpwSK0yecoukkAOBH49JQOOE/1tg5Ke2Lw+/22Ygyn1PNn2VBNA9IqWs/oWf78dw1EcC6+6Rkms7MUZcFQNpXvZt/YQESP0UTn1IsMce/4PTibklEE7nSX6HjzEQEf8OMQAbfr5b/L1ilL1ChGA8B4IJJGrDADn56OVI10oAnmTW50hhDkrubcNAPXzb8m97xc+XJLZTPk58zPCI5yTfT0vw5etYGIa+f923LwBSASXnSezAZlnxHCkFd4UE6IKNDYGNkrOexcb6pm+rTgLn1v0Y7mGejFW/nrreJVIisFimAvXaSFLbOgnsHfRzd86/58je3ybJ8Mf+p8rzY19+ih+SknL7SFLpI2yMye/xO/7eCnTee2bX4AmQbMe+1q8+l9w2nNFtYX+HUUMLVFCQ2Y6vdWaZDpVUDzvuEzvgjXTzqst5fdHjwIcab2YrVPPvLD3HEJK1lQCEXXqj6SprJ61NZZOy7jTZIdZ5i1usMIqkogqoVBO4QUtYBclbXiGJGwwxwirtrtKo04pCqWrOnlKTuplBpcZjDgvwqLoKadt5afL0Vo0rv7MClViTHdARisA1RvgR3wubEKk4BDCaesDW6N3sceI1NxDMMrEJ5Y0olUkHhwy7Bdgwaw7k3EVqLmt8i4xR+5+BR+ZpbeJg1fHKKFAj3urNXuRtfZ33AvMQoUIWPrbPdUpsxJq5WTm5zCiTzEczFEya3LwGVnNW65seLEfgkPZQU+54dZhCzazeNIKXKXGm+Vk0vzcYcvDZ1sBSDAngq5MNP2QxI83P7hLy2JMlzgxX2WSQCRaQhY5IYbKCUrqyAlcqFEIJIlWgyBWDbAbpa4eeYGCarU8+yBJLjLHMxZA/b9PPkFvhCI859qa0xqeIW4NsMsUcUsA1W//8x15fCaAnL51desP8UMBFxRf38nAzkGIk0M1pfgYQQFSPDwVIDD9pyMGAQYFDEyw42GATmmXkjLLOUKDCYvXpZtCAFLAoNFT0R7FC3uGHmPl4LzKAt4nwQXQ5hOqqEOtiLwpipVaKIXWFOVoxg8UWGjHxttAI9l8z4LbGCBXXxstHqZt95BOkomyJMS9oqmHmKDaeQCGLXh7ghEwwrDRp6bhVXG1RjEJnj27e5APGWELSMLsZbDJbYsyPpYKM2pVQtEtPpARJWqa4aN2A+p1aYS/TAAEAAElEQVSCJ9YYDjZjg0x4yy07TfXQASZ1U8S6UFFbphhFVTd7TLKAZNFzXGGMpZB76wZtdVr5FeZ8zPSG1Kzm5XkPO9RchqqJZIMSzSlRh7THe+TnJIaWZM2aGFe4GB2tMZaCXq0JWn5bPexw6JR2sZzUechTeY4iru87aXroALHdbXJMMo9MZ/XQFjOyQDU+bw/dYx/fxt7TPb7KcDBdJMtuBnIKVEKS180eDzCT0F16OB/u1l/vV40+v+/MD0UhN+oMdXAQD/k9urjF9RgLRr3viIbEVT528GmbvD84DminzAArXKRImVmmmeEqS4yF4W2DjIOptQD/Ojhkx79f7FUgFl2/w7veBNnmKjMomXyKO5Sa5Pl1fyDKPHePbnYwtp9AXiBAjh52QkLRPC5vc412DlGASA87fg9sP3c+G7TE3F0nGyCc9keAjQGoFszRT40hNhhnMbqQegiLxbVNDvmMqHMo2aeSu9SRHmeRXXrc52KLYVZRYIzAo5pT7HfpCYbWz5imRs5BNWtA/IxpFA60S4/vc8bnL2Nu2zP0ed9TMcT6HQiUD56S1OTdaZIAq5De5Xd4nzeYZZo6rUywEM8N80HdcaB/J9JfVxl5rkuo54I6xM1Avp6j1zwZd5lRHjAYc2Pd54+fMc0gD+jxzmbNZSeaFzV2rFFXoFkWW6EQ3yuPHEnIdZwK9lBHWWuJyywywpp3gCeisfUub0cRpQRqAW1FtphwSwNbkB3G+DrnnXsFbawyEgzBuz7vj7PIt5xRnfGn2bJLUcQyr1LgG00s7a/tS5JSBScAv3i5LzF9FHCQhSfjL0ARTq9D5qSRDP3Pk+SNYmwdwV8PXghZ4IsL+8mXr89ksV+egxNJRXP296kqSWLYsP375YWzPH0ZqMDpj/3nShItkVJYH8CLc44QOcvwqOTv03skvXQA637+txLwNYgBeLJOrGHgjuSjYrEpuAL72ePXT9P37tHzMmR56rVhYJDCHV7BQLsH0ObSYuoYiOoAaKSS9vl2NkmpsDmelwK7DPPM3FO7Xo8xMBESsKYghz6/niWSFFegXcXf99sYECUG15QfhwOq3CcFlmRIPn9i9z30YxG7rep/in5uFbzSlBzMI+At396cf6+AViXy3iT5HDZ8H//SPn561iXbCySJtq7hOf/OBsmv0H0ZeeLn911/7wlJzis5MyRp9sckgLhGAhcFwnU2/V7j5VLTNtpI0uBz2DXdJN0XkMIxfKw+OfcCn0+/aD6UedK4ECvyvm9nneQ7KGZnc+iIPPLqpOvoEnWKvo0aBmieBbZ8v9qA38Jkt78Br2VeBmz98xa3OKC9iYBgTc2cT5TyYRtnMQKhtJ4Dk+glgsADxN5rfh7LFx5sPbbBEB3OfhMBwcgG29Hsl/XHiodcqGFfJxt1gSyLtigywQK/z5+QpxK16oArKgZ5EM94Pc9r9DPPJBsM8TbvolCpKe6EX5vUQwaSmH/+GsNUyWMSX9v3KeaYZpZpZhnkQfxcgRhS+KkR2Oyb1u31ujwDRRqpUghwSI3DiywzxZzXTUaMEDhqQKAFWRy6RqGdA15lJkBBA7XyDsraultKhnHuMsQGdbIukbZafpt+9umm7IQgW28MY/6LP4k1vjXXd57DNfJUeeBrHYHHWkNrLTXJfBBT7FxY0rGBp5lgU7bQ4ApzTcCkeT7nqDHBPP3u1dzlY8/WWC3RNC5S5jq3UMioOVebgqvoaywpBmuOFSmtV2NGXvsmyS3FdVMS7hJj4cP4+/wJb3GLHnYo+Xm1tN6BAIktbNACRfpJ9mQFl/VauNohYnBqPdqC+e/nnZEnr3lt1xr7O6HsaJDhCneithhnMYLnRlilQYZ5JgPXUfDLr/r6SgC9h/RxhbkAk2T+p4RYaak1eD7gDeaYouzdbVF81xniA94MyqVQfRW7I6wxxAZ7dPnkkY8Fsr4zT4VjB43knafOvyQ01uHvR+aJQt6rFAKRFatgz4fpLj0sM8qxa+rF0hIAU6c1gMcedplmNgoUdUyKlBmg7LfYSTCh9P3yVRBgVfLuyRKXMMPyHG/wPvInMgbWGtf4yLfXEgV3M7vRUOGtADmBkMZKnjfOXbLUA0gQkGUGqyNBk95kkC0sQVD7rO6CGU62BHX32B8AmlxnuBr+A3qvJh8lCOsYUielnQnmWWKMYdZQ0qSA2qvMMMcVZJSq5M07HqSi65v1cVKgGkCDPB7E0FxxanMXeywwwTb9AQaLCaqJRQmet7juY8tAt3kmeI/rznrbCEB2nLsx2QrUUJE4z6QnJB+TYzsANQEge3Q7k+aYPBXM8LM/ADcL+bDicZHL0R0TNVjpQnv+cNC5zVONBYXkceaNYMDvXcYBXF55mRM/B3uYF+IJmQBZ9+gO4FasFaNpT3LiXbuf882vYvr5tXs9JcsQG7zG7fBM0/whJqcx0B5QZIsxlhhn0WUYh+S9k2gmyR0olbRBS8gv0jyWiweAHjxiRyaZvDUhstQ5xAx81VXccE+UBhlfsNXZ8jEi3zZFudv4WI4uruaOVu/4WTfuMCT+I96RFJAoOb91Zte4whxiFH7ENe9OGcjxQ36XZe/8FqgwwQKSvueo8SozwXK282N+otd5LzqgSvVaYzjAxx52I5RDHjVisErmsUd3LBB62Y0FW4U8CmaQXcCJLzjUHAHIsR2LLAFozTT+q8xQpByyEDAg7Ed8L65DkuDMB9NMzE0tjts5jMaLGelap/r3+RPKDDDDq4ywSr83a5Tsekh7zMUjrLHAxHOgpjqxejatM8QDBn0uy4c3omSkCvCxY69FenmNHAcu977BTTrcIkKsULF5Be6a/6udw2FWo8CRv5AW3LJCyGNBIZb8Vo/nkxoYYtjvYb6Gb/A+RbbiPpTE1xLqv8UxWU+lzQXLzhjKA9zgZhQrrdRRKqAaZyqytJ/GujCalu5lscFl0/Hf8Z9/RTPQr9FLkttxDGi4BN+sOu1nneQDB2xmB+NjnYvPEuDinlxfisXm5IG/e/8+bHqIhiS8ecwz7whOLcDpBf/MEc/LCcFSb/NWOJ8W80hBEgJfxPZSMi8kH7Q8NFp8Sb1v7z0SyFYGsnCh/POUktqGgT3NAFwXBrIc+feuYwymhrPCzsCZv3xq76mTUkO/i233EcZ6UmrqBQw003lq9qMTU+te03FBAlfFclMi7Wf+3iIG0OR8P/UzXS752gnMKWKsv+8SibpP3/Z9E6g5ZcdGp33+83deNNZcM0h4HgPgzvi/s1gwhVh4CvuYIAVuyFdPDL47JA/HTYxlN4UBS2L/iS3a7Ft3ngS+1nyb8uMTk0/XTN+V9f1V6McExlgskoC4hxj415w4LCAU/52u0yP/rEBvZ4By5PsjUNMBsy/lnXfPz5PCTMSiK5IAXQfXO+8/46WFLxJ7775ve4sETuP7P0ViEa5jAKRYk31N21eKcYEEAoqh+a5fgwukNNxjEiD4NX9NMo+8kdcY4VWXaer5YN6qZuDfw24wgLLeMNR6RmsXNdfkTSfLIKWBDrEefsTHZJ11Zz70/2H9UKTskXembBpigyp55phyttQOCjmrkA9mewcHbvBfitrimCwLTESzUEm78+53m+GEq8wg/zpLmbVaWb50IgZJjWXsuZR4KgWbvNRVb0oFJ4saBcgB0VTX9wpoMUBxjl52mWCBUVZC5QQGngrgkx2Igtcq5ENKq2apBYAd8z5vRNBinipzTAU5w3zYBrDwsVbe5icMsRFWNt2OPswzEaDXJAsc0MG+E3UqFOjytbzWTkYoGeAcm88FQh74Gk+WHzsONvawQ4EKUp4AQcoRi7RKIYglm5yLNaISfcVQXGXEPaXvhqy5NdbZJzEOxbqTUkw1jZQ4CiwTvpB3dqe8CyV7nmKOK85sky+3/LaljBjkAQWqvMvvAMl2TbiAGHIiYTVoYd2B31aO6eCQBSaQp7jV8fs+zmz9KB/oPbpDBahADKXumjw9Sea1nlxjmFbqrDLMkkfXfPGfMhRjgF82odZDvMH7ziKoO9CTDZ8dATiWkLkeByePpnEW+Xf8fgAaFfIBatTI+S19GABNmYHwijLQ6lx0GiSTkbS11we95F497DDLtziggxvcDOBkiHWWuUjNCzAQZbPu7I7tQGNVkIywxkWWOfBBYWEM84yyzAkK4khF3y69NMiE5FKTufmT1cIbaJRl1+Zb52bBPZ8EMhpKbwNjhqvOwDmMLoduqFGWvcvSGnKzXYzOK98gGaVmaPAv+WcxCZcZoEZ/nGcFbIhSvcGQF5xWdF9lBslUldyYocENbpKnwm1eC0bLFuYpJVAtw0mAHEOsI1+2IdbZZDDo2fIemOEqJTY8XbUeY+kKd6I7ISkpGN34nOv6KxScul7E0ppsguinFua0YnbaWCw8t/1dehh1EFbFbT81rnhBW6ASnbI9up26m1iYKjYbmFm+ilA99PRd+kyZIiOsOZho18mkanXv3BxHOrCAUY27HLXw8xKzxACg3ugeXeM2x86QVOLlKsPe1VlHCauDbEawTJkiCj2QBF1BI5J+yiz2V/UF+P/31zf5OUAwTRWYIxarJO0blBAT7JB2htxD0hYEKVHVPjPAGsN8y4NmlMo1yCbv8EPkq6n7WgDLIuMxtzxwsEPyzgIVRliNjq3JIErxsDOgIoOSmQSW79EV968e/Aqn2cN8VOxzdr9sMMSaBzN0sx+Lh2xsrztYaOrSXWYR+W8uMh5zRN27cfKCMynlDgoUOXCmLMA2/SHXl3fbOkOsU+KP+CfuHdoVc4l83YZZZZQV2r1bNsyqJ5+nDqT2WzYPdZfdtnIczzvN9bqH5Yeo+XuMJfawAAd5Uv6Qd5jlW4AtkvRdYuVt008vu7RzwCzfCu+YQTa5wpwbIzd4jduMsRQNmuaFczuHvMMPGWcxxpCOX34ydz3spt0XcHpOf8CbDLLJsNs6tFL3NFoDZk0udEKFfDyLMjQizbabPbZI6emTzAcj9R1+yATzNMiw70CeAGv5195z6Xg7B0xxh3YHkCUlBiIVTyE8xsysOpC2zlVmYmGqLr1x+5dR+rfktzIg18K9TpY7TMX1kTeQvHglJ1pgIt6nZ7rJfXPRnR3n7t/epPPr+jrAgAJJTqv+byVqQniivfwXnyeJYRND7Mh9204p5GCA5JV2BG1Vwjvu8bnTSWLrINuHr3zLwIUJoAxPJl4wQOUzk8ce0J6CHAQMObPo85df5LPBb/Dkwgu2Xff0E2us80OnFjnQ0iYm0yM/zk9JnmUCYsDCC8Q6fOw/W/C/Hcg8pTTQTQz4rGBAkzz0/pzkyZfx987acXEmnZOn34GjPBwNkgA+yYmVylr2z33ctL9tGBAkwKpJZvr4xmk7Z52kJFmAmsuWc348s/bv0+s8HzKh775nv3/pT79IXoT6vkUM+Ck4uClGms7THAZA3Qd+REpufcW//7F/V43krfhj/+6Mb3/Cr4P873Q+z2Dgo2TJSptdJwFaDRJ7UDJZsTHv+/Ylh5bHXp9/3xOS1FihHQJA10nSV8m3XyYFY8jb8QI2xhd9PyCFTshz8AQD4qZ9317xbX4fG0dK0t30n18gefNJMnvOP+cy3AAKBUjmSCEfn/nvNAY7MTBf2xmwc/LlhF/LNmCP35iU2zqnw65CXupqdGkNVWQrGkKX3Y9e3raS6603Me1mmWaZ0WA5mUXT5QC/5GlvPnhmSdHvPrKWhpvCuZQALy++OllWuMiIq27UaJSv8bAz27SurZCnRo4b3GScxVCcyEdWfse9mJRSSrHLLLLIeHjyVSkEQGkMxVEAV//U6cIsLLQ/WmNp/VGj361IrDFoDVpbY19mkSr58C0bZZlh1pyVdxhrLlmG6fl9hykUoqn1RT/bFKiGKrBOK9PMckg7Zj1lAJn8B6eYo0gKg5viDkuMcZdxtrw5KgWd1F1aT2vtuMowH3M1agPZg1i2wDR/xg8oshXkHrHPzMfPQkLMn8+UbfKhk9+bvPDXGA7wb9Xl3nmqjLCKWYjUYj2ZoRF1aY7tULqYLcpJ1AaJ7dYSDXrLReiIBrLk2BVXoImIBUTAXLNlkK79Lr200OBf8M8jF8DW0LbOe5ufsMYIlqq7GFhNF3sscQlL3LVwkkMsXLCDA+a4Qp0sOz4mZrgaoPcaww5c5gLMs3yEakh4dZzyE9fPcs5sNPVPb4CkU66U+VVeXwmgV2IdeSmNsUQ/5g227pHSx7QyygoABSqh2xfCKYaBgIPv82MfvKk4E7NME49ootIurzJCDzuMc5c5rrBLbxQB1nHvD1mYJD1Zjmk2fpfe2aSTltojJkqObfeqMjmqzL9nuBqgjAEeDxhjiS0HNga8CyLar1iGWerh4yaGgYoKGUE2S4TLFJnlW87kMenQTW7EjfAzpp/TZ08zyyTzDDutc4kxtun3fW1hlumYMM1XajIAszJFfpcfRroswJu8T9bp1mMsMcUcRgmvMMt0nNNVN3yXL5IKGAEaW47Ua1ITC0ffM+X0VCHjGRps088hHU7tNamzgjJ6sOhuAUg6Nz3sBCCgxBoBc0rHqbvDAOAeX61xPpXElGObYZ/AbFz1BBChbodAEQFs8q5S6mQ3e1z24hkIxp+xYE5QIimkNCIBEWLtKaBlgQkGMBP7MqkwPibLGEtOLTdgU7T5JDesIo2+wEqFu0gOLmPOY1q5xkfujbeF4s3l4afrkMJLTuL4r3HbH/arcd0tknyf34TXL/gtNhhiyzuxBSqsMRKy5FZnyhkQYNT0HcwfDwggtJt9FK6jsa77L0eNWaZDGrnjrEz5G+o+n2CBDUoRlgA2LtRNVKqqQFz5/NXJBrVe8kaT+3aEH4tYgjYfmwzYjGjHn2MD72KmxWI/qQtnsvLdCEhq8QVthXyA3wLCxTj8GdPxoB5igwkWsJRSC6vYoshtrkXSlPxJ9MA1Y94HwdBtocFtXsO82JZj0QMwwhoFB+bEcFXqleTlt7geEtVt+v2ZlWONkViYKDhDi1Ltz21eY4wlrjBHwZ8paihIrrpLL0oHA+hnO5ixYyzxJu/HOVNinrqfWuDuYDYAqwzH/Su2rwBkMbo7OGSIDUrebZT3Y4kNN/y1ppqCi3bpjZRreWhuUOKYrM83O8H61Bw5wQIypL7LeDDuNPa1QLRF4nGw+Vux5LIVZzdoYaegE51rpRnfYYpebwr+C/45x2TZx7x3h30cSMouv1XNhQrN0LkCuMFNb0ja/aygFkkndukJb0nJMA69Banu7hAbFKi4VPeXX8n882v12iMxfeS9JdAuQ/LykjRTnlp5ePzbp3laamLBOeuNAjwunjYQpAFfyqtsFs7cfwoP4RcX+gzIKFqx91cvXzJgaBw6158ZuHDe9uOl+19wVIKH/7CN//G7rySgsWG/O1/+ZaTp0oKBKJIaKvlVktsskSD7xVSX/duDNWgjMbsqfjyL/vcdDEQ5hzGoyqQwBAEjuaZtvee/O0sKuShjwE/B98cBt9OfQNsstP0xyauui5Q2KpbXY5JUVKw2MeoEVp2x63Tmv3uavBFb0vl4+HttxnaUDFYgWafv4wIGxH3ixyoWV73pb4GObf7+moObdQwEkm9enZS02uLn9pJvRy+BgGLXQWKSjZOAyAlSYusTbKyqrsphgJhYaOewcSop6xFpTHeSmJIK/7iPyXcV8nKBdC9k/bNn4KhIku2K1QnGlmv2KjyDBW20+Xd4WMWpBd++JLV5EjCuY5ol3XMnGPCm+66AjYtM03mFxBx9TEpddqDuF6/22RjRvfGYuEcDVBQALqC8Cqf+GGOiTvl3pkfc1/r1C18TXGWGAhXucIUFJlxieBJSxGbrKQFFagIOs8YxWQYohzev2OqLjKNAwk0G6XWSTZU84yyixFupKxRe0ewFD0Q6rZqBUtMte3rtEmPxswyN8BxTDSLGnRQXsqVSM1nsLKXRS4lxt8lrWS8pjsyeaAWFhImQkuGETQb5Q/7A22oNB9Z+FgqUYVZZp0QPKTBjmLWorXfpCf+3DCfBDsxToZ1DVhn2WtRAyXEWgyWZY5stiqFEbMYljJG1z0e8FuqaCgUmWAgFC9jad94JNMOsRT1t1jgmjxZGUqAanuUTXuNbcITVFAKEVEMPsumS5E2k0urC/NW/z48Z5657792Kmr9OK1IxCNNRqKeYlse0UqBKhhOGWCeDBYPsOzAlELFBi5OVDqP5L2zFKs5qXF/VFFI96nyCgciyRylT5JyrTrrZD4WaqeFMon6ba6wzxCAP4l7QPQXW6B1inQUmGeNegIYZGhFSanYwW0Fe0nltTtgV+7KDg/DUB5NUbzIYnt57dIf6CghGoFQdkDzMf1VQ7ysB9B75k9Ioqf0hY9pgKDoFYsU1ywWFRO/RxSjLMXnkqLHOED/m+7HQBxxxtsW6uuMqVDVRWQLOCordzlL3m2c1JiyxTlRgyfS9zAAKNFC3vu6eRUqxK1ANHf0uPfwj/m0k7swxxU1uUKbIPJPBEBCgeUImmDAqPAR4qYhbYswH0wC79MYNL/R3jWEmWKDgN6DAyC72HPltieI1T5UWv8nkyaZCW34HQs0FLAm8lCmp5Frb5DzPdJQMJwyz5h0cu+lWGWaOKWeR5AL5P6AjYqPtQWUyagFeKjq3XZ61zMWgDMszapmLtHMQElF5DezRFV5Jeg2zxvf4McdkA8HXPoqhY8aruWCGiHL+Bu+zyjCLHqHezkEwNABeZSYk0xqrChMQG6vdEfcFJhnnbkxiAPLJkBy1Rj8rLh8Wy0bec2LIDbPKMVl62eWiB2w0aGGNYZdDD9PDrntsGPtykct+LbuicB/kQQCAdnz1AHvl4bjunhDTzgKTBF2Ju2K/mvHtOmKfqSOhTpcSSGv0M8kCBR+Hpd8QD73PvHu36rLMu4yHT5ju0XkmkT9DBwfcYQqllhWcmt8g40ExdwM8PSYbAFYWCzWY4wqLzpKSv6GZ2HZxjY+YZpYr3OE67zHIZsg5JN+wB3WWKvno6G0wFHJtAXuixotCXyeLUm21AJKUf4By3BtXuMPv8ye00Ih7b4h15j277Coz9PqD1nzhWqh7J1QdvKrLXWWjsMwoI6zGfii9LEeNK+6rMswqSgWTBFoLPj2MDxwYG2Qz0n/VBBCIOckC17gdqbRiPLdzwNu8y9v8hAmnjQj4a05uO6AdyfUrFGKB1iDDHFMouVc+hQKYlJgmhrNYvZKC6Flm7apafK+8WtRh18JUncwhLAl8xZ9/CufRM1kp5Ap10uJcQU2aRzo4oMQ6I6wFe1Ip2xkajLCKpdYVogCw+dqe3SdkGGENBe1Y2rHJbdR9tlAfu0f6vVuswmaOKR+zWeTvo8bCZRaDHb9FkTf4ILqkJmneIctxsAiLbAVzHawhpiANLbJWGI31iPwKVz00A/D0P2t6ZWhwnffC01TeRxZiZM+6c3z+lc5DvxYvmf9Pwf/4yivJC+y+/74E5OGLYldK7BRYBpz+FDInz1K6qss+dzI94ZN20OnL2iOClbTIeLCG/t6n96zYysJOX1sC0+TXtml+czX6Q0nCAjCPAU8KIpDv2joJXLtAAmaKDsp4YuyL6/tJjnhCCsJQ4ul5EtvpDAmgqmIAp8AuBS/ovIlVpdTR8yS/tUckCazO4yMMuBIo14kBiUdN1+ExBmpJjikPuodNnxXI1yCBnmK2FYBB6PvTI3u/gkB+u2n/HWCNc3/PPsNnJN8+SW51nvSdVX/vPZKH2+uktFeFWuh4MoS/YoB2+tlPfXvv+fGJMSdvQI21S/4ddT++C/7zeVJAyBN/n9h1T3w/dc3n/e8iBgrKA1Ly1fPYtf8U2jZJoLBAw01SeIdYcJvwpPhCAhU/8Wt3xv89TfLle2Tb5qeYj+A7JFbmPYwp+tCPs+jMuaIf0xTh1fflW378Gn912+Y3f/gwpQbrvImBCynoJA+flb4BnfD0Vd9W1n//DH5Der3s00ne6ZRqwMp6Qt6/elbse72rICY9V0SIgNT8lQe21RD1IFWsY2EDF1lm3YkNw/7MVUBBDzvhCabE3bqrDA5ojzAHhRSArdNMN2U+wLIU0XE1e5Dbc3yNVo656M9k2Z8YYHYQPtLWOKyECkC1vtZP/WxHM06BDFtYaOAP+LOoSVr8PBWoxJqh30OpOjhkjqkAUFudjCRAbdOdcs2T/pBD2qNBq2NTUIeFah4iCxf5/olkY/58toYZZDN82WQXU2aAi+7RnOEkroMARIB5Jtmmn+vuuTjBvLPKxqh6A3WZi8gjX6owEYUUoGGqNKvBVxgNpYQSgOe4wgDl8Cm2oDHzTxx3xYwwAwUwWt1hQJeUFKoRNT61jtK1zNBgH8tSMEDZOlcbDMXaUKF+AnB72GHRgzdFSKmTZY6pCA2VdHmCea7znjNajfizSw/zTHozdTjUlgqzk8Kpm/1QCyUbthPGWUTBbdf4iAp55G897OQlgI89EEMKyqt8HOFyRcpBMlunxAEdFCkHPqC1Zxd7fPErdjha/ua3/P/+OqAtwLEaOaehmrmgFuOSAFrBaoNWCSajrEQHu+S+YxuUGPYsWX1O6K7+bdLHOQ6dhippjOKAhURvYrHF8jAzmU5/oN76eYmN0E5Ly1/3TnuVAte5hfyStA8bDDHlgRfShxvCP0CWOlPcYYByTLJgA1fMQFFKxQKYYIF1hiixQYsXcVmOucoMxw5Iic4q3bgeBNLdS0I2zBrLXAwEe5FxpHkvscG2s2VExRa7QzRvMeRKbDDLdHhlKRDCYrFrvMEH7NFFFjPTHHAWZNY5cNPMsuH+ifK62qU3bgIN7ObwEyAeFJLe5tim24FOse/k1dfioJz8pbRNBY9kaNDrk4nkrAIOZa5vQPNWXGOBrupm9btv0iaDARBve/HaQiOuYbXpwadX3QHGbva4ygwVzHhVyH4rx/yM6ZhMi2yw5pp6dQuWuRhSZ3lP5thmlRH6qbFFkX5nzLVy7KxVY4EJwElsvw62KD73vj26kAFpN3usU0IJSvq5GCsNWhz8OIwuWasLG8X4MQNbA2t36WWfl4GP/tbmnV/X10s8YIuLsTiyMXocgEozaCLQXp2xJcYctLUgElkL1DBAWMneAhoEur/G7Rhz9tA0OfVNbkTq15rLp5v9vmScK488Lfhucy06e2sMM+APnhNMHqGHmRYvK4zGwqvMQIBtkoAo+cx+b9L0N3k/upYmAW8E3V8gvBLSzJfPqshpZpGHps6HZN0TntB1l/EAkuUVIrbaCGuMssxHvMY0s9TIRUCFdd7uolQwSSjB7uHL/mxpkAnAVnLfMgNxDNak2aZKPsBKsR4NqF8LsG/YpZgKV1DT6pisL+I6Iohol15fgFsi+YmPJ11b26ZJCtS9F3Os7l39Zsa4FhOjLLPt5z5HjQ2GQtLS7UzeVo4Z4150sZtl/1qkC9DUfhjrfgPZHxjAVWeMJX7C21xmkfd5M7ra6liKUVwPVqX5+4mNWCPHorP7ND8P8iCutzxNlxjzbRtIOMs0Yunf4jo5B5Br/lySf4+UA2InNPuetNCI8dTDLrd5zQW5lTh2AX+97MZ36nyrkaXnxdf69QIBDOWLFQMLciSZoDO8XpzbT4DFOXv/mepTOIGNzpd4ufPzBHa0wUuzX9i25qFz7pkBDPKua4G/v/mhAUXuLde3eQSPoK9+ZGDChxgAITllBS786OeRbBrgmEATAXliIuH/Vqque6+1CcgQw0kMuBop9fUhiYl2DwNTlKyaJYEiYrkpPOEEuELyFqzbd/zy5bN84+RRCol4gIFTC/65RxjI9BADCs9h50YMstebvrvTP58jeeVJLn3Gz4Eks2dI3oTyDpTn2hYp9CTTdEzfJgFqZf8zTmK6CdCVP12R5BUowGjCj78C3EjXL/qFAvkek/zrlEi7QGLSicmnYBEd5xHJK+8n/nezx9sFUriDJNgv+3mt8XyVJeZhs3y5TgK09rFACnnjCYS97/v9CsmXTufiCXR+/Mw+O4XJjR/7tsQIFbtTMvKM/7tO8tUTu3IaAw4fwakH/nv/Ho3tU39MCqWp+bYu+HfofOoaKRTlFew+c7D2/Lu/NMbovyP5L77i2zzFb8Srj4dMcZ8uzHJkC/MOlx3KJAu8y9tcZYZ5JiIJ9IAOClSYY4oClVCbyfJDEsQhNqh4w0/2FlXyLtE9jHqpThb5fimMS9JcNQp/xjSy7JDPtnzjxHBbYCJsXjI0qLrCRx5yeoYqxXSf7uf2Y4kxLrMY363aUQwxhUKUGeAqM66gssEthdkbfBCS1hYaTpzpD4BkhDWWGWWOKca90Wes+hYnXPQ6GGfBYlnMd36NETYo0cqxW4G0hN+e1nk692KXqdlYocBb3KJMkfd5M2xmqm4hpjVYD7sc0sGK+/ouMcabfEArlj5r1+Wu1/VGBpDF1og32pcY4yLLrHhyq9YrrRxzztfbGg/rbqkjVqKu4VVmKLFBN3sschnZV6nZa/ti0ld9xx7drDmhRESAHNtxvUZYQ6qNImWWGAsFnvyVsxyzSCnW4QJu9Z1GbOqJVF7hSfJw17i38dTq43I11BtrDHOFuZDmynrKrv1BrP2k0NR5PqaVOaaYYi5UT61ODpP/fyt1xllkhqtRR9fIYT7Sc1FzZ7Bk6EEecEgHk8wHFqL1pY5L686aY0V/0+srYejleIi8jvJUOPGFfq+j1pI7atGep0rFu/bGUDBGmbyFWjnmHX4Y4NSxDxajatZCLmUeSSOckGGSBVbdp0kedwJg5P+k773NtTjhivxWAIGkRAKLstSp0U/OGRAmfZ2OwVekzPu8yR5djLPo+73Pa9xmggUWmKDIFhlnp6w3gXnaFtik8C5vR8FtQN9h3OTS2TdoYZJ5FMGd5Tj+PeIdjSJbwQaUAaVCLcZ8awIwF9ywc9iZEzX6uct4JAHd5hry7zPPIkPPTQpWCBquwEcb1MYQGnB2hySvQHgKLHMx2HLLjKIU4W72gh154sc0whrzjsLLs0tR02KuSCo7494CVS/69khhDe1YfLSKLXtAVWOykoG7jGPFTpQ3gG72modlCAzWTWi+DKUAm9XB0I0to1W7P06iSNS5kWxY7J0TMmE02yATsvWqd5WmmEMpw8OskXdppPmfDTPKMgUqXOVjVty4c42RKO43GUQBH1nqvMkH0UEB4qEm6WMrxxFZf0yrp1KtoxQmeaqJat3lBTgQxfZvwuvnfJNBNsPEVSb6YpNJnq+O0gHtDpdax0/+dgbeGHCX8zltwB+mFczwX35t8pnQ+Janxj7dKJ1aTGRJdiXNFhVccusc20wz6x1cC2ERS0mJUO0+P4rJpY7qLNO8ysxzwLoYf81+oxrzYyyRx7z8VrjIMKsoJasfS9kVc6rdH+QKa1ljhHVnu2oBpIWKFky6j4dZjeaOjfsOxrlLjRwnDpA2g1IlT7JaYJKPnLovGb+6nUqzVmNHfpQyKQYiWOfEu7K6LmKJA85YTsl2xw6Nmz/nMLNMh/+rWRlsIYlomSJzTHHgbGMg5lFJ5xXA0e9hHQ0y4S0j0G+PbpenFgKoOqSDBSaN7QTxnc0y3Ysss8kgM05vSV1Xu9eHWKdGjnkPGbLACuvkl9gIVsEUc2T9GkIy1RarW9+t+0E+JK2Yr4wSoOeY8uf0QFgqHNAR1hjyHFUabYGqd/1XnXk6gBLlxIw01qmFHGndMep89UEeMMk82z736RmouV8LzWVGWXU2bNYXgr8RryNLm+WJyYoCBJGnGPb/LxV6MEHy73oEnLcQkmC0iSkGBuAIROkkhU0o2KCFkGYeuZ8c8yRZ6SWgCk+mXkiyTeBL/R4MbGmWQUq6WSHJYBV40YWFE7TYMT+58ALxyDvbtH9TpJTQt0gg4hM/fjERT2x78UeBEwqfcPntNzYf4R2fBAbN2bHRR2KY1X07RRIYI/abwjAkj9RxKpyh6vv5iJRg+sT3/21M+jzh/7/gx3fBj0Mg6MOmc4H/Tgw/MDmoft+Csd7ukZJ4P/PPSI78xN+nJFjtu66JWHL3MLCrggFv3wH+Acnbro8EMH5CpB8zCPwOzwN0Z/29HtRCtulclEnXqd50DArfEMA5QRpTbTwPtrWRAj8kT89jY0sMVh3XEwwcfcWPccE/K/mxwmJKdi2+1HlX2qykyI/8uxZIIR/nfT91jkoYSNyGgbJPsDHm1/TLt/x9OpZO7Hq+jt1DYrOe97/zfg3+lZ8T+Uh+zV96DlUpYLLCLEOso8RarZlkXSFgRcqHjK/dwdYNq4yEzdEuvVE/qFF3kZWobyeYj6Zfgwy3uB7rAzWiKuTjO0R8AHvu9rMdaZ5qTilg0LzA7sb2tQZoluvayscIC8dkybGNedL1R810hymXCBtopeTUDg6RKk51TDuHVMh7LMJU2J6oRtwm52QZq2+GWQ07GNmeWGL93VgrHvqaSDZOWo/IHinrCj4pIHS9lhllnolgA2qfq76eUrKsrt0GQzR8Lb5DDwOUmWY21HQA/5Z/jGxH3uXtANBWPezQmJcr9LBLlYKfq30OaI9rIuzlgA52MCXjkAfYjbtVySjLoRpLabojUduraSpLnjpZZrhKgQpv8D7DrDrgts0oK7FGzbHthCNjp436WlFy21EfmyIyiKQjP36RsEzW26Cfbe452aqdw5Bml9jwu8Aav1UK/IjvUfd11wyvckyWYQcYu9kPRYlZkdkaOLFWDTCXCkdkpxaMUQlGXOv19WbZ27UNMsFkFHlLzNZ+PzdDbPARr4V0WxiUQHbVS7l4WP7HX18JoKfizG76GpucQ4EDYAs5edqA6enrtFJpYvB0s8cs08+hvB0csshlZ6WZuWKZAXrYZZURZvlWAIlFymH0LfRYBY7Rc03qKvRWbCklCtqkU/LOwElMbmLrSV6qiVJUzyE23DzxkDID0R0xlDUXA7aHXU8QNc+sj3iNPBX+gD9kzZFdo4VOhIT30Au/DCa1LbHBIJt0sceO03JFgxYdVlRjTYjaF0mTMo40q3uim3s/JqGDkC1LTgmSwmVYYRQZl6rwk6ZciLmOuUCVN/mAAWfiiUrbyjGXWaSfWkjKZDIJ+NixCVxgnPmJlcK/C4i/55hCrLXXuM2P+V7sl8zK9ep3qW+WOlf5OMafWB7yAxSab16QQwyxHqAhwAalKOBq8eA4DnaRjEcNuR9mhqsxGezSwx0vPIHoVBUp8ybve5ctT41+RliNB6d5eF0JPwKlPtUxI1V5sCl5WdTwrMuHJUkUe0VMuxw1tsmxyjB1WnmfN6iT5QpzDLFBK/XwglNqq44j65JenS8Z9zbIBNVYsuU2knz+6/y6yoyP05bo2gHRHRxmLRia6wzF5zYZDM+tbZdh6loqLUwdSwH3mtfuMIXZGeS4zTUUpDDBQoBt8uH7gDdQGIckDofOzlXnVIDOKiOMc5d+avQ44HOTGwFemXltPuj5b/J+bMP80ua5wU3kn5LzeWSByej6as7IU3Uvko1YMLZyzAKTwUQUQNfhC7U9unnTQ5hscXkYCwAgwB9zhSsxygp5b6aouaBOoiTDQHSmJXUeZSUaJdvkwoelhx26MT+SaWYZ8KZJuh/W41n2O7yL2IwCNsXoNvnzSNznCgEy/752by7ZwqKf7RgzShfXAnXdZQtizmnRsk+3G0nbM9ECnw54lRmucyuehbNM80f8kwDxxaTfJscHvOmShgVe43bMcXUHH7Mueb3BzbBCkFTl0Lue8tHU88fkRCZzFFi3xnB0lcdYQmlpevaCSV4veuNHcheFmkh+tMKop6OvMskCZQZCmqIForxutDjcpRf5o8gfNcc2JWcZWiNsHflJ2gK6I6Qd4ywy4uCgGpAaS1suHbFFZz5UCV/rV6sFT5CBby48TCy6JnbUlxNwkgFa4PMLLyb2moconF//ZQqQWAcq8HC6LSXPjpNSRHNwNAVPS/ZvJoCXoU2eZTl4nDtt++GpoZ3vPUuebA1nKUkCKqBLrxwJiJEHmSSb+/b7B30vUs9C50+f2e8ll/0EA2DmfVt/SQKcxKKT/5z80sRKe+jbF9jUZ8cVAF6O5yWinRhw0sDAJ/nO5UhAjNhz7/l3vOffXSKd2z7f7gAJDNS25TP3iR3TqZu+P5/4ORIjbt3/L+bWPUKizCX//U1SgIWu87qfk1dIIJCAQoFm/29SKrGkz4MkWei6f88dv2Yad2KI5v04Pms6drHbPibJRwWAirn2KTbu2jCw9EOSzDSPsd4UxqFEWwGx75HAw/d4nkn5ih+jrn/Wz1cF+FPSeCyRmIWPfZ8v+bFnSMEcJ358n8KpvySNxyd+fAKPdT0k+17wYyr799/zY5ny49R4cjnwqTmSnFsybY0/MT3FyM37eVj045Uv5W/AS2GPakhp7aKfqdFUZoAh1ll3ZVMKwjPpZq+z2ZUWO8Iqkx4oVXCQbdV9ZrUWElNf+3CVGXJY2FazDVGVfKy9cg7izXHF7U76g/1lAJcxkwTinXiTTbLgnHvUTrAQZIMlxhh1qaoSXw1gfAvZYshGKMsxSvqd5VusM4T52Fe4yQ02OUeDlvAt22QQ2UUtMOnfcUgrFq6oRquAEwufKMV6SY3QaWajXi1SZpNz7NIbSpUdesIix7bXzqSn4676+gWItbfUXkZGygZIJnUZWHP20MHcQTa5zi326Ip1TwqlsEC893kzgD6tj9UMnmeCAzro4DBSYA/pYNa99od8DaO1pNaMlrB7EPWBSAJaqy+7J7vWNw1a2HIZqcaO6mt5+hmpIaXACgOREk7nfY/uwDB0jTR29X+AZUb5Md+LekVWWiJcaUz3Oi4iUFy+34e0s86QB2S0M8YSB3Q48GuqiTVGAhtSnSGmXnsTWComYA87dHDAKMv0h+WUMfAEdMt3W3iRWZFZHaGxpiTcOqd/pfnkKwH0nrnnkTra3exxSDtKiFXRpmJJcsgiWyG/zFHjOreQJl6yvywm87zBzWD8tVJnhNUowMZZDOmXPNbsxs75jbqFIrg7OGTYbwh5gRWohJmn9PDNpofd7IUf0IkPQMD9ysaRf5Mu4ge84cwT80qQpK3MQFzcaWZRapCMEuXDJDRcDCczj6x66qWtNsZYouRGkKsuiStgBp6S7W27wLJAhS6S8eISYyxzMSZSSaY2GAqEWYV3DzvRhVBxZynFVrAbmHAFpbxaIdgVrIg1hllgMlB1sdk04bVSZ5AHdHlBCQSltoedMDxX6q0kvELBlXw8xhJv8D4XWaaHXYZZi2sr34Djpu2r4DOmzWV2nNarjkKd1gAuU8hAJh6gB7RHgrK6MvKg2qWXBwwyQDmO4Xv8yLsWlpZ00TsUkp8b/TeDPKv6vZhUElYvu3GcViSaV9UbvA/gRXd/AJNDrNPPdgAPIy5dt4nWwFNJ5yrkKbFBlmP3ujPqcc0dPQ7p4CozAdTp4d3jXSJR6CU5FA1a7EmwTuFvCkMPCAr6CqO00GCRy4hqXmaAOa4AoLh7sbZmmY77yBKDLwG2GFvxJDN5zu3RRZdfp1wsY2pc9IRsgTJioIl9NMECu/SEKe++A445B9jFxrTraz4i6lj2s801bqM01DwVshzT76DFAGWG2GDDgUoZB4vptEc3H3ENSSfzmPepQizaXcKtRK9ZptlgiDtM0cpxeJfZ+y0Nd5t+LrLsC+MdlxQMxCJB87yaEBuU6OAASfL36ObP+IF7vhqr6hbXWWGUOtl4+OoB/DOmuc1rAWgLUDqg3UH+FlYZYYar9LIbrLi7HoyhRaIYZjX6kfH1ApOxX2DNsEE2WWIsPEV36EH2ANtO8Tf5f390WOe4giXVWTDKBAvs+7lQk0GGvXt0e7LvMgoU0vWSR4iaRjlqYbwtmUEKEEpefh9xLQBYzQlAU5PqxJ97LbEd81bc4Bq3oxO8Qw8/4e2QrOgZraRyMV63yTmLzgK6LrPIRZZDFqPuez81PuBNZvkW2/RTIR8gbA+7AURue4PNlnjWPVWDUsCo5m2JiUtuDK3zNsl8SJe16BR78oQMn/Ly/1LT0X+61zFW4OuP+2k1M5NOHcHpWeAJvPTxFwZEdMLnr79o75c8UAELj6Bv4SiAqyfFFyy99sILcBbKnd+gpUHIZZ/kXuBLhRWchTOVpwk0cvYgef/9Ikl66V50T0sYeCPGnxv7x0u+eZ4+ekgHx22nE+MKeDx52vZnnAQqKfRgjhSqkAN+DwNnzvu+PPTv7SLJHSWvvYedL/mllTFQp43EfOvCALNBEjhZJgVntPnfkgYL8BF4VCYCSOL4H/v2H2Bgk4I4furbP+/nUkmrn/gfSZgv+fv6/Lz6eQpw6ojEuHuCgZJiUc417d8Fkregg7BHl0hy5yMSy7BZOi1Pv5rvyzn/v4A7eRoqnOImKcH2BBsv7/m/M368rwDjnsg7x/MS6/skSa2OVdJgeTTWSEBluela6WfyRsQ/o98LRGs+xkHsmmV9uwO+HYVySOoqMPMhiRWo46/6z7W/Amb191t+3GLaajyLMSsgsohde+3be34+dFwdfEWV6a/f6+/wP7HMaIAMMt6XPNC85XY4pINpfkYHh6w5A69GjhHW6GebVl9vVCmwxghd/vyXZ7AYWCYlNMuiGV6Nz+XcT04gSpFyNHClsCn42s6aceaXLLmpfNH36A4wYoVRZ7zXgm14TJaS262o7pMllAgGeraDkYPKDIS6LOeed6YcOKSFBu/yO1joVgULmlwN4Oc215wNtoL8ok3NlY+1l57XhlOYhFdYQTsHyANcSgQprEZYZcsbjaqdP+I1lhijQJVpZmmQCW86kWfA5LFKbm0GsHJsx7kXMHdMK/tOSFpjJGrbPbpZ4SJKM9b1yFHjMovkqfjazJJ3FdAGRDNyjKVo9muNKTATrAYYZ5HXuB3SUK1TZRVWpMwNbgZRoe5NaakO1CiV3zMYI3GV4ViHS1lSpzWazPLqluqlQIUFJlyF0e7g2CKy8koWJ72BGQn8bQ4zzTnQWabIj/iex830UKc1VHOmErE04VVXpakRLfBb/vYNWhhmLYJCTsgEOalMkY94DVkLHdPKbV7jASZzFgjYIMNFVsJK56Lvr+TQv2qt/JV46H3Bi7zoKGYrdYqUnQllLLh+X/yvecqebj4xEwzxr7NPt8tnzKhTqX0ZLF1GHXj7bKKMGmvCZDxT3GGGq4y60WSZYiCjA864UOEsD4Jmaqnko6MsY/krBZ8EzCNMXkei+DZoQem4h3RwxQcFwB5dvqCveZFqxfs8E75lG5C97HLJNfgtNPgzfsAEC4yyjJJ1i5RRep99r3UxjMHWG4MPCFBSOnTzPloKGesGQ+w7O0/swT26uchyMIQ04G0A22dM1mlsCnliFR1IVDdIGnIxC7UfSqFpfsnT6jiK5ssUKdPObmje9aDaoytYPhUKAcCCTUIfcY0R1sIXznzdjO4KuDfCMfNM8o/5N1GIbZMLLwLJEZW+LBC6yBaHWCS4HnTangpFFXu69qJb1+inxEbICIXoL7gBq9iDor0vOwD0Edf4Hd4N5t4s02SpM8JapFUOUKZGf4AKRcp8wBvBcMpRc9ncBHl/wCqavUKBq8w4ddqAcXWf2j25UmmsYl+ZFCAfrBiBTgKCb3MtuiKtmCeFJkcw/5DfhNdnnGeHoZhPtul3pphJa1cYRT4jB3QwxAYLbtgqsA3MI6TEBqvOu627PGKbXLB1a/RzQAeDXoUe0BGel0NsBD3/Pa5zhblYoCjEZJHxeF+RLdbcjFfjUZYCQFz7IR/Pmn+AYBq2ewdSiagaM1mOY46sUmCaWSQdLVPkGrfDZ3OZUWe5HqMQhwM6AsS7ygySaFgq90DcRwYa4uO13efPY27zGr/Pn7DGMEo5lQ3BAR3c4CbLjKIAC4FNkkxKDlBkixvcZJ5JcmwzxxQ5arFw2qJIluNYqEiunKMWzxU97Fs5Rv6Uzf6wearhw6lF05BLGjRPjnPXfdxsxraGRWsA7qOsIK/MJcaYZpb3eSOaGoB3WTMorAesUTTCGhXyjLHk93EWpdlpDl/mInt0hy2BLUrb4xqIJa/F15qHR0jaIsnFHFdigVPwrvsgm7E/ejboc5b82xOJ0dd5LxZfC0wwwUI0N4whugAYO3aW6QByx1kMZrMW17v0xDjO+rWxc57kGfKB7OAwpCeSWjSnjq8ywnVuxfg49oanFU29LDHGEcfAv/7bmHJ+vV99JOmnWEvy4ypg0rxL8PjCaUupdbCmhUYCwDyrIkCcZlksQCd0PnrG0zM2Zk45C/Dx+dOcefA0JI9PLrxA571nEb7w5PUX6Kz5/z9t2q9zBJh1GlIwRBVjEx35PijY4gzBAHu5+nnahgNKO5kezlS/MNBLPmWSiZ714yqRAiWO/PfyppNP2b6//zskH7dX/Lx+G/jzps+e9X9/iDEVm9NP+/z975HYkJCk0PKvy5PkwAJBXc569A60/am99/E/PM2ZHz1Ncth3fb+aWV9TGNA1SWLjNS8JnpAAX4GkH5O8Clv8OJxpCSTmlwCpE2j7xD+7j8lEy/59D5q20fDv6vLtiKn2sf9fAR3z2BgVmOusUS407a9Asj+3Yzx1D/MQfJkkkxbo9pZ/l7Yj/zrJkj/zfz/29/WRfB4lexZ78QJJBo0fV80/u+7nX555Z7Hx8h5JBi2pd82/pwaP/6vTnPnJUxs/ndh9d87/7T57cY2UPKzrS9NxCGy858ctRqdA7c9IKbxHwIv8Rry+yS/o4gUG2URMsB/xfRQSAdYQsLV7e6jVxFhXo1yhDfv+3LLaeIdVhhl1oKBCniJbVCkEuFAj5zVwS9iAKKlUYBcQ9Z6e40XKrnBY5jbXqLtVTIMWipRj/VMh7/tvzK9lRil5+usyo4y7Mmubfnb8WWq+beOMsoIFvsmx+zjWqrNMByFIjLFBb+oBTrBYYZpZxllkg6GQTm45O044gNX6q1F/ya9etbXV6V3BKBxhNZJgr3DMMheR+saAzIvUvBlZ97WiyEha94LVoFpTbTAUtZPOe4U8g2yy44QJrZ1HPQzRLHta2aOLgpNqxKqUp73Cwka9qb/l4FADUwvI+xrgJjcYoBx2JQq02KObVVcE2vcOOMvRLFHmmKKHHUZZoULyiJZqZs29pdXwtjGyEaxICyErs8owY85yFP5j1zKBiBdZYZfeINVIzmyElVoohd7iFmDkq1VGUBpvs71ZgQqvcZshNkLFY6xHszeytaiFWEr6LBXcLicU2WLdZfBSTkkq3M4Ba261IlWdgEo1/HfpYYarMb7NA9KYrFITtmIWdVuu5vubXl8JoNfGAUO+CNcJt2KrEP4AhkjaIl7sDcmOVIxImqkLJ1aAQDihsxUKIfNT4MEgmz5R5CKlU0w+MZ+WGQ221hDrUVAapXaQdg4ZoOz6fGOJST5lJ97Sc1s55k3ej4J2gnn26Y50mR523cNsxYGPFtYd9Dh0dqIMscW62qUnAM1r3HZ2WTUmSnlIDbFPlXwYO4pdlwIxOpw+exLnwWRh+6wxzDBrZJmhQp4p7mCecGYILg8qkwptO73UOkQ3uMkwa9zhShST8qsbZxEzT1cC5gBTzAU7Q8VZ1YG4kst85Q3V/CBRgWXE4WP26aZAhXHuxs0riZ7YIkOsM8Ud9ugO+qyM8Q3pr4YefphV2p1xNMQ6LTTCzFLstE0HNJq18Cr6xcyQ0WqObX7An7HjN2uzF9cWRd7k/fj/JoORvrnEWASTSPKnInWcRY+xT2EJ024ws8AEWY5ZZygYMKK2q9sjsFIS4DIWqa590Pb26OYqM8E+EViozliRLTo4YJnRkGUq0dJSohrRNclR423ejS5E3rtaE8wH0w+efhXTz6/dK8dDXsIkEUq1Kvq8sodJHyfdz0SsMc13y1zknN8PegAL8BllORZYvX6/KZhkgyEmmGeXHladLt4sT51mllX3TzSpZ2vMFXmqtFJH4SnWvKjToIePuMYdrjDisKLmR4H5Rus/iO6SmS3XKbHOKiM+v5v0EqwTpS6vus4GzNyK4yszEMBfMmruQl6hPezQzzbLDoz+jGnyVBljiQwnAVptco5D2hmgzFVmmOOKS3OrsXDRQ7RMkQnmqVII30BIyVuS9GtOK8TzZ9Ul8AfIZ03d0AYtKAzprrPa5J2nDu8CE3RwwBXuAPj7rfNaJ8ttrnGJJSzlbivOdcOffHt0hz+NFrzad7Go1RE1hmiWaWaZZwIFmCxymavMINNjY3VXQ4qjufzQAWk9w7V9AfdgCyoBz/J8XGScNQ+tUqFQp9WZfVUUgCKGvZ7V6srKz1UArCSsdS9QNhjC/PxWkCeJmmXyRLWmxQOyHMd6wtgFxhrXAlvXL8lc+v1ctgbzAIwxW2IdBVyI2d0sFVZjUWPFgMGsH+sJ1/iIP/uK5qBfm9cBxs4ZhKcX4LR8z5o97rzPlzlpJDbeI/jmpw8T6+gcETBwVIQ2SSofQed9D8X4BE6X4OXHn9v226D70dMEvACNlgw8eWb/qULnA/vs/eJvceHMz1PAg5JhL4DXo4nBpH1xwOzz6Rd56U+/SOEVSnitEzLR3sZuAs3cuy8YS1lgCh5POfj4rzEQSQEHOl9PMJBI3nPzJODuhBQO8dsYYLLg3/9dePoKnH7X972CAZECYfpIgRbyGryAgW/1pv/Lg8+94Nr+G4LRdmbuqR3XAgYs3Scxu8TKE2hWIaUDP/T9nvD/6xyv+88k3RU7cKFpH48wRqDkuBP+uff8M4MYCFXBADZd14Kfzwt+njKklNZLJAZkmZTKe4EEQEvyqnCJMpHyywkGChb9HJwjjXOx9Now9uK4/0zMQ4G1AusE1MnKTHJlAcUtGHAqv8A/xgDMZp9IhYiIOQlpXGX8OH7q23gIZz58aufqu03vkxefWHYa520YeNjX9D33SaD1OYKF+PA7bfR9egQr8Pl3XuSl/S+SbL0XnFj2tX894ixlipTYCOCjn2126WGcRRT2pWAtMbrWGA6QQUFgzeQYsdePyTp4UY16SMqwGv3McJW3eZd1ipzDpLsjrFJ3cEh1oVj0RqCwelPrtmlm+Yhr3GOMdg4ZYTXAqF16AQPdJpkPttYwqwFwqCko4E/P5AHK3HYrKlmNrHjtoXVTP7XnPO+aLZ6y1KNm0zpNioExloLQoAaemIMZb1J3sxdpu2r6zXGFA6971hhhnokgekBaH46zSMOZWi2YfUyGBsuMMsJqgJcWrGHrtevcCj/+LvbY8MAK1VPtbqsk5dUmg1xmkR1nN6rxab87F6CX1vTN/u5qptr27yKPQ3nsax2k9Fdrfh4iH+66MyLX/dxojat6oZl8JTKQamCd+wwnEVSScfBRGQn91AK01TpJUuqUgWBe4XNMcYObcR2S9U+BKeb4Ed93Rd8GYOtGkXbk7b/MKJNeL0nmruuZw+x7TPm0jYWqGq6R4cRVO2bVZUzFLixteCi2o7Wsec3PscEQV91bfMMDMmSjI0myWKLGBPzVPAi+EkDvbf4Hio19tjM5GrRQpsggD7jCHL0Pjzh1Ar/I95F/9JDTm3Dh7M/55eBZrj35Sw462+h4ckS58xsU6lU6a8/4otjFHl3U6GeMJS4++swWgg9dVoEtxB6fP037/lNOP4FfFs/yjfIjvmwzCceXbXCqCmRg4EI5mB3yOxpmlXMPv+CjPvPhe+vRh5zehF+80oelFg7wBh/wYnWfv8pfYvLhPU65rKOz/IxiqUwrdXobu7TvP2XpbA8TzLPEGDm2kafRGEt01/dYzhr4c+7hF5w6gr8s/r1I9/3m5kPyZx7ydx5+lrxcgMfF0+Qy2y75sehnA1VWo0sjJs1gfZODrFlKvvbwZ9ztu8AxWcbqS3Tef8ZRCYqdxhIqUOHtJ/89e51drDHMOItcKP8cHsKXxb9mve8bgMVZv/HkQzo6D/hfVT+BJ7BX6ubvfnqfT19+iavMMF5fpLP2jMHiJnt0cb76y7S4/P+S92+xcZ9pmif4kyPE4FGkGHSEFc6gSZEUJaapIksc0yunbCttpBuutafcm925VT3d6AEKqL0YLDDAYPdiLxZ7s3szwACLvtgCetCNrulDdmWXq51T3lHCTh+UUpteqsgWVZQpkSLNcAYVYQYP4jFCDGkv3vf5vlDOoiuxGAM1dgCCJDLiH/8T+T3xvM/Bszm6MpuUyfImf0myXufE7Yd8+fzT/Ffl/57PMr/DPq0e2DrMSH2enUQHzy5vcJj5DwDUmo9zoviQvcxTtG0/4q8zp/l+4R4PT8BYp30IH6nO03T4iHJnN29sfMJq99NOhu0Ghdgzy9tQtvwdSb5Pbhxyqtualfr2vqTY9gwvMMUuHWQos0M784xwkeuUyZCm4nkSJRSsf3r5Pnf7v8fb/JwqTbxZtWyutvIjDrvh47ZXsEyED2mt7pM4esRk2+f0bOyy2W2ot7twSCZf5unCbgB9j9ug2N1NbmODqgtrJpNTFFL5QA58wOtc4irZjW2ObcNf959mYO8eC21D5Fjj6bu7bAw10100i9Jebpq2yiP20k+xkuoL2+mqblFNNXG+PsdmwmzsO3QwXF0glyqGqvvfLd5mI9fMBW4Em+gBreTrBU5UjLC7l3nmCYL2B7f+ii+ef457/uH42/7YpjMAhz6WmeM8au1qZT+0TwOhgVaDjxopVBAzxSRq8pJaVQt0hnJQ48mSCQQSw8iFU6ElWbl4GrYoiLaV/VBOc545ajQxwwsMc4cJpvmX/CGX+Zh10qHd1vImaq6OM4JxnhHe4d0ATOcYDaSKrCRgyqcbDPtCbbZYMEVTH8thkVMDmyl29wPw62KLLU6GhVjATTbVpA8QlOupVtcs1iatlrQFzgSFr6yQyhG0SeRuAJ4aUr3GByh7ziyWK048tYahUB1r3D3jGTFNVOn16bsI81TD9RX5Y+emGizyy/SRY40utrjORS7zcZg8zzHKW7zHAmfoYhMgZC6OMcsSA2FCKYLT5owHdLDMIgNutz4KxKBZYtrDeVRIcpYS84y4SnyNq1wKw4UqTXzA62EiqQBrrU1Sc3exFQYtAz4QqJMMgcIiWrvY4vd4H0V0tDpp3OXkeNpB36t8FO5h2Y3V4tfBDhbK0YQKaQ5c9TnFJD/mZ5TJskqeXgqhfaxKKkzP9bOpbL/rXAw5gzvEoiMDfekA5o9IBMJPmTSNH7iUUzjoOb6NmYDf2scjjJyoQK35KQ4mErZOiPAQadKGKeX0/2aM4JBiDgLRkjgitrFK+SVLYhIenoDjvcCyYcGwzXtwov1hzBfbI2SfDb3/VVR9ZTDyQmSTrJEqa4BoL9Rjg1jYcI/Y1toNFODElYdG+lzx147667TtCpz404exSEKW06GG9zhLzNSTLbYTI94gKrjuYSq4uu8DcPwaRrBIHfYZeI+NneuKv6+UZb8ikjk5YtGISiSmiE23Ug5KCZf3/fiVf+0VYu6dKxwfnoDjWaL9dZtInsrS6Uq9w+ehWaUYPyQWQEz4vqeJ17Ix56/Zn6vzfI9InIk0VKHFmJOeBT83Vd9+zp/TaEeWUlM2Z2XGSfmmDLxRPxfb/l51YvmDSK+M/zvh56fb31N250Ni67JyHUUC61jzvs0k0ao7hinydG5kE25UBMomLYJ4EiMjlZ84S/yZeEAsuhA5KZUf/rwH/vXTRDLv9+zcdL9/GJSGz1372s6fVIBf852x3K7Sy/Os8pe8GZw7yj8fZDE4dC4wjTLWhBlnGKdCmgmmw3p6gWl3abSwTjqIBQZYDMp6U6IbFjnnApUs5TDwB4JwQa6ElA94ZWls5SC4dIRHl1yF3ogrk9SZYTw4L1QmmaQe8svf500mmXI3yklyFGnHXEuyWi4xyACLwSlRIhsijmxQaoonkXxHJKiSYozZkEOmYbP2QSUZIjtVALbpog9Fmowzg2JX/kv+GdZfbySqPrMPskSFNAOewywct8AwAEVOBUHPOj2kqJJ0/N8YR2TFZ4Ph/X/Mz1gnzTB3UPyJcGuLOxUq9LBCP11sMe6cQ5UU/5J/wE/4NwF/iXST2033mBXD9QahQaPSrEyWA1pd8FRklrFAEgqvCOdIhJWkHnLnbWC7GJ6fpEDVBSJ2nyaRIk/OTbmG5PBTtIuUqfZZfTPco43D9QJ5rCSyFsg3RW1J9TbFJG/yl9xh2Ie2PSimJeORV8LK2u95RlAmtBGhZlPuZyXE8mxxMgzuZVVWh0IXm2xxMvy8Sp2onzmd/xHmsf6Ek/SxzHUucomrLPDsb/X75Bsh9J7e3uTEr6Dlpfsc/wKGur+KcnmXVT+7vBEXxCNo/fv7NN+F5uIh7MHp5H28M4On7+7ydGGXnlcqnJh5GCeNOQ8a9gX1RP2hLXQleGZ0G6bhWBVI+N8uke+uHrLzfJUffvEfbOFchu7eQziCVw4/569y5yzDZRuePdyga3SL3111JLABv8vtELLbdvQINmBo+atwbId5GKwu0Tb7iB90/1XI2ni6bdf29R787t5t9v7uUxzzEOMfbPxVaCljFo4rmLbfvr/30lOcKD5kPQ9n734Z29I0PdyFZ5q3fVHfgFVoS+9CdRfy8Dtzd22x/dCe35yEfP4r6smnqKaaaH4fms/t8vS9/2jPc+vDsTk4Xb0PZTjd9v+GQ/jPzt0K0/DR/ptQgo6zO5yd/TLk2Dx9a5enz+1GS40k+WOQ377P6bv3Y1jzNjx362tYhRdH/2MINB6dMHb72U82oATNr9g+Nd9+CO1+7XPw/b17MAfH2+G5oa95bu9rA2Ft8GzGpvrP9X5tx6QPBJqC3oPuw0O62+7z+LSFcZ/cOOQkX3JsD04X7xv4Stnrn+7e5TT3YQ8qb6Z5przN/3bjl1CC38ndtef2w9CtryLoWsbu5W1onoO/c/qTGH7t90xz2e6N7tVDA2U5u+9pg4dnLVPo2JEfTy80v++v7X7E2eSXdmKSMPL8PM9MbRvw64Xv37oHezBy9m54Tvfdw3Avt1UtqLst98jOo8KaV6HtnJF+J1a/hjQ8PGUfwl4s/EdIQEenkXnd1w7tWCZ24QjuTnzPPrD4B5PTQ/chBx25HbqXD6EM+WqB3PyX/8nfI9+WRz/LVFyarTIA/cLOseZ5DqeC3F6KO5FRNZpCw2c/ywywxPu8GRR0mkYuMhiy4wDe5R3e5r2QNWc5jEsoe0TNtkVypKgGtaaq5LvY8oDjk5TIBIsAWEisFFmy08sSG1XMZnGcYpIlBhhjlo95NVgnqqRCTkaegtv0D0IbsBqVIeZ6LNOHgpyV7akJpxZDNZUfeDbLODMkqPMu7zDKTeY4H6wGU0wy4M3ZUpMZqLTrMsYsC5wJbb5SUut5Zre3dvV+Vhhgkff5vUA8TXOBH/MzVn2qJ/JVUQcGxvp4i/e4yHVqDdO5HtZZpo86SQZZDBPINBXGmOEOZ7ykZM6JxQMaizw+5jITTAfbtmWo9DDg+S0d7AQ7s6w4IjYHPbhZwCtBnRtc4I/5k9DMp+GI2UjXKZPlItdCUPAWJ/mcSU45uXmZjwPZNscoGSdVZduRms7o2a2gPhShN8F0UNmbzeaIPlZQZqSu+Q4dTDKFWsrmGA1xHB3shmb5CW6g8pFJpmhxoFwkF0LGJ5jmJFthCq5yFgOKRuCecvtR1dUQY8yGCAY9ZGESfQ6m8p5lLBDuB3wHSjGkaCpC694jjs0+iuH/20SSLIGt1y8SG2Rl9ZTizQmA42u+bam2PKfrMGPlF8eXsfX2BEZq7MHXz7fz9OqukUwqy1AxgOyyUh594tv2VtrHP/DCh2kCQcYPMEyYg+emvzYct0u0y4rgWCYoDunGyA58nzcI1t9A5EzzpMVSeXH9xFw6KfzUVitbqvLYRHg61gqlGy8SG2sBfv4b1yrlNtr3MCvqKBHPCXdqf5XHd9qPpe7Pe4mobMw0fF3vuQf80K+hVJayr0oxeMGf7yRas2yeBaKVNIUp0dr9evX7ew1h13HVnyvVG0SrdmP+nMjiG64efYV4390lFp6oDEJZd8mG48sQLdH9GJnqZOfjNBxTOcWJhmOE2CKsrD+RdSJe9TMx6s+V7btkx//4NRctiPwVWXcau5/P8qSlGKIKUgUVq5gar+7nsx/7mXmPWLoiglXkXYnY0tzYmrxNtMgrv/FXRNJZpLfI43PYtWvlu2LeoJfVkAUvK6Y5r5bDh35T6ll8RZWmEOejAgNhihJZVwHFxtgKPa6g70eRVnIjSHUv95keyhTrYIeyx2R1sUWZTMCjckZJqZV1940yxCe4ESJTspSYYSyQI3USZCixhmVDv84HriaMQ8fPmcQaf1ecmJtx0rEayCKza9oQeYBF8ljJmqn4yk8MjuUCtPKNfa5yKSgPNZiTQ0S21RnG6GeFZfrJUmLQbbnzjPAS11HBQ8rxmobDcpRNcwFlxwk/DrMQjtNSC3sYZyZkBu/QwYRH4YjYBbMuA+RYQ2WcliVnGGKAJUa56c6EBc8HXqeDXfq9iM3yCIcDuSV8pSJNYfZ+lmlnJxRjSuwi26hF0FjR2BIDnGEBZQOKdB5wolAW1Skm6aESijCkhAQbdtp9usAiA+xjFvMLjs+OSJB2glQ28aR/3lh3FZtEEVbKWKbscUByXbSwH4rgcphg51MuBbdeiQxFcuE5+7QEgtpqzKyEzaKBiuxiWeR23XqCJV7512PMuOhqM7j38qyiUpE0FW4yykteRGOll425jRUq9JChzBXe4O/w09/q98k3QugdnwbKcPwGkUBRM9IesVZdYcJll3br+2pMmvMNOnl04t5Da6fKEPMtJO3O+nMFjK5hi8sQEXSIVKrAc1Nf2+IiEHjoz/vX8Lu527FmvgBttx6FqR1lTNbe5scx6/srkJmB5iKw/cj2v0qcTunYc8AvvE1NpNYc0W6iaTV+fElom33E4yE4/f59mxYPEQOKx2w/BShpaziPd4kTxYLvY8q/loe2a49oO3FoX79FtC8ojFjkl45P++aBvN2fHEIBnn13w87NCSKA0fOVC+PNWMcVTDyJAY1VP6+9vm3PeGn77JF9fZZ4r2gaqJBn/bvN9/1D/1skYjm+b5jaC0we+de+sP091g3HldUiEKLQ43O+n3PA23Yuz9790oCJJvHX/NwKsN/1a5P01yp0WiHBso58gQGiOWK+ySzBbnJ8jpghs4H9DJSIH4C6fR/r8Lvbt22y/Avih4dcwznXOXm+YT827HiCZWXUt/eJH4+rK4+X4PjpRwb0zkHzJ1D/u7W4H9eACRi6+1X4zXL/Dzp55s+24S50Nx+GKXPblUc8uMN34nGd/w3j3Au/zBUpUCDPVV5mgumQLaGFR7EBygPVoqopkxqQpMSyTJM+6ljzUskVsAveoHrSyQhljonMO+lW6A94zVWnVqKgHAy1toI1OYPlt6m8YZQ5lhhwBZxN6GS7F4gqe9GAbKCnXEWc8m1c5HqwTwKBzGtxkk7ASVYH2xc71pNsserA7iqXQsGRbJoCPTmKTvj1cEAL17lIkxN/W5wMdt4SGQZZDPb8HGtBbVUgz6t8DOBTTStaksWiiRolV0kXyaFqelPxTmB9XyX2acFa0oxkMwtC0mmsLi4w7ZPbrGd+lEmzzhzngwJNU9U+lkND8AJn+CP+KUAASKtupTA7qlkGBNSkqpQ1uYUjJriBhQlnUZue7PuydI8wzxEJdukI4b0r9JOh5AoCUx9e4Q0uct2tDze8ha9OkRyv8UEAXJbTaYVZInab3N4rtRsQLOe6v5SXI0WhqUv7nSCzqX1j+cy6nxNNnucYDSpG3d9WfpRFDYCLboMCAtmqCbnyh5Tro5ZaNb+NM9NA0PZQ89w9s7sPhNIlAdumBgLw2/p41IqtO9uw3t3O04ndqHDSWtZMyEXb6G+m++gwKvDqsDf2FG2Hj6AZ7j3/DKcL9//nmXq3oFmYLg0b+WYrznC75w7tPL2xa6TW+8RG2YxvQzl9UrDVCcTYsTn/f78/r0AkZraxddzJP1IECy3/lkjyNDe85y1/7fPELDURRad5kgDMYKooFSvc9dd3ApPwuBeOQcyZ0/kU1t3GsMxew58xonVYdlO/Hs23iViwQsTFs0RCrI5hhuXfOA9Sk8le+wURiwt7uGIxkDr9fjwv+XmTOvGBXw9ho7zv95xvL00kqaRKfAXDJJ1EQjVLJGFlXdb7CXtV/Fi+wLCs8GDJXzNBJPaEb9swLKhBsTIBZWX1bL9jsssqm7CXWFwCdg9ImfcD4M+Jyjydx/cxZWKKJ0jBY39OsKGTIOIy/ez4Z4nwmUg28RTxnk1j95dbbuknfu6Ruk8YF0KxTMjy0xBbKkLdwznfJ5HaYw3nVVzSPX/+Fjh/9a1/PMcqTTSz6euXkS42UCq5A8hstYYFTmJlfsv0sUYutMLL/icVkJR5NVKuLjL76SSfe0zSHItesHDgNs59x0Uvc5UCeS5ynReY8tzmwRClBEYwHbnmfI5Rqq5SkyMNCKRgEzUmuBHUZ0CIaVEWXDs7YYim7PdJplxdn6KPZVboJ+0W0Et8yizjTLvqx/Ldd0MER4IjXmAqxLXIFTDHKAMsMcJ8IKNUvqbYGLB8u3FmA87YocNjrQx7yxJrpCZscTJYpU3JtRWGrLL5KtvayjkuO5Fac9Jp/4kMuBIZRpkLjpx5RkKpSdnPfdZdYco+HGHeI5FGA0axPO4xJ+JKQSSgIaxixrKUUFkeWAZhCwe8yzvBzqqMeTAs1MVmwE5AwITKNCyTZZ00OdbC5w9hVynyMpT4C94JpZVAKLCQYlCFgXpYfnQlKPKM1LVcvzwF+ljm57wd4kyEMVV+J2XhJJ+H63LSlZMtHFChB7XPJqhzhoUQN6NBski5BcebAFNMBkHFHOep0eSfC+xnT0PpYRaYYZxWuoJd1659VyCG5zgPwCU+dQfQo9/q98k3Quj9P/4FNNexScsO9ku/CZuOtWK/2OuYrDrhz7mOLUwdmC1D0u4KtgjvA7/EshW6sIWhBzgA/gO2iDRhC99jLLn4EbYop4BF4Fni4vgQuOPP6SBaW5v8a0/5Ng4wCXgHkci7jy2KAlQJf13N30NBti1EO8d9/9r/6Nt9Fpj3bbf5+7T5+TmOLYYHfg6O/N/KsNgEvoctfBngv/f90/7rnA/761Z8XzTt6wD+P/C4D47N+LHW/O+HRGC3419vIsr3nyG2ZIGBHJ13PZ5u2N62f/+Kf0/HuQ3hd8EjojXgEAMPn+DI1F+/DPwMy9fY8/fY8GNeB76P3ROP/BwKIDb5eU76/5/iySntQ+LkU9er5ufISbIALEv+emWH/E/+3G3/u+znp+7H0YSRidrGpu/bvu+PzpsI05p/P+P7tud/72CgaAsDcPf8698jAiyIeTCHfp5b/D3rfjwlPw5dA537Dj+uR/699/3/Sf+ePtRo+zX/A/DPH9n7b/nrb/prN/39/sxVozUiyezvd/gV34lHJ9ssMsg0F/g93meEeW66TDvtIEDFEnOc52Ne5b/mv/NMOJtmFjnFPq0sNpRU/D/5P9LBDheYdiXYv2OJAbdQlIKKrcsnl3WSofRlgWFyFLnGxVDcoOwSgb9rXKTXp4QqVNCkseaWf1lqLeOkNRAbarHqoUI7O/RixSgi3LY4QM3lJTKUsXaoCW6gHD3ZVG84aGvxxViLoxbzHiohu0T5kR3ssk6aWcaDXQGM/Olii8t8RM3z4+okQkbbHYYZZIleCl4yYSCuQg/tWPOcbJJ5CkwxyQLDgZRUJtxVLnmu35kg3b/NCH/Iv6KLLdZYp0ZTaJJVTksfK+zSwTL9XOYjZhjDGt5sqitLheVuFFDr7T6tvMzVQNpJ7amCHgvdLbNFF1d4gxb2+TE/Y58Wv68MaKsZ2awDBtbb2aGfFUbdgm2Kz1PBnntAa7Cl5Cgyw3iwQFgr7pK3v7cg27IUoh/wOhe5HvJLlOkyzB2u8AZACHZWYdIOHUwzEXInRZKvuupSlglZbOYZQeUmOi/rbuUAyyGVmrSL2H4uxaYB3jLtrljQdHqaCwxzxz9y1DwXZxUFjptCcyKUDeWdhlVjvABrnQQt7PMwLHjf3sdTm4SCga7t3Wi99MHkYcZJJCdGur845MG54ywkhvnPbhvz1XbtUSAMTi/f53EnHGu314dmV1daPXRCrWP7kAejx2k6fEjzNJy+dZ+9v/eU5e1NYmv6OaJiqUBUI8liqnV5ljjYzBGLBER0vUIcYrdhpOGvsLVTRJuGt7KXniIO7PawfSoSrY1pfx9lkenfGgC7q+HYXXjwd49z4p89jA2kUvCNEhX4+NfUStqG2WtlC84QyxieJ1qS93w7J4iNuN3E8ggNlDVMvg0PfuBZgCIDRRrKPjzr28gTM/dSGEE26ue+DcM9DZZs2rBSiVtE2/HzREJNhGPF90WfKUTEicySAu4T/1qu4bqq+EPbmiYOvjUYzhMHy2P+HF0XvddnRFyo61XGrrNIzHTD868Q7417fh12iffCLSL2k6Kvzd//l74vIpzniKpKvfbIj0k237f9NTN+TI33qwbOIvWUISgyu9uan4/fIqoZiw3nR1b4s/5H+yoSsY1Y+JImthl/Bx5f8zTHsKKtJQZRw6lIBUX5aD2zSJN2cqxx0dU9CY74p/wRw9zBGmsrrNBP2fP2tM6omO4i1zkiwTznyFFE5WYpLA9XpJYGpspdt9KsOtNcYJxZ3uWdMLyUunCARa7wBuPMBgW7Yj6UL6uscRFZwywEIkzrosgsFVes0M/HvMoocyhWao5RJpmiz22P5rh4IWSy10kGclCkygLDzDNCmQztPqjbpCvYbaX4U4zIFJNB3S+77jQTjtH6eIMrqMhsxovsFK9VIR0KC9/giisueynQGzLR5xlBObsF8iHeY5g7pKhSJcWSD1F1bsBIqqpjofPMobZUKdZU6Kj7RoVf8V5qoY8dV1sehGiWBc6wxUn6WaaFA97k/SfeV2Wa2vc8BVQQpsiZS3waRAPCkkuuvFMuv+5LfX7Yooufe9Zdj9trRSLmWAtWVrvXDphjlBYXCLSyzwzjpKhSo4k+lt19coYca2HAq88bKmNposokU0xzgV06GGOWEpnwuaKDnRApo2xt+xk8FYi3CaaxTL8qr3kMC+BRSUY+W5TRQcCiymeskH7iZ2eSz1mhL+T53WSUFDXGmOVeWLz+049vJqkghxElReyDvVROYB/stzCS4ph/72lia9W6P68T+IrYevQQI6Y2scU04Xsv0gh/3lMYYfIVtjisYAvir/17qxiJdsf3s5WYZXHft/EVRqo97c8Z9Pf/2r/3PSJRh7+u5ttZw4iNPUzerungEAZONv3494mTT2ValDHi8a99m4+IC/YKsODPPfBtH/N90uMRRuIcwxbWAz83PX6+H2IkkpNVx+4QVXgdflw98Djnz6sSr10SI6v2/Htf+Xsf+fu2YSTlnu+nrkunv/eDhq/tEIlJKdn2/Bif8nO148eUhKOJhvOj/e8g3jMJjOQ9wIDBPtDn239EDCFu8e0+hQHnDQzsPfT9fNrP1Ul/btK3deDbOUmccssdJcJT9pMOf80j7B5aJoK9uu+TyLOU78+2X6+sv2+Hv1fajy3h+9WMAahNoqVmxbd/4Mdx6Odf6kIR+4d+/Q59v477djf9z12/nmtEQm7P32cTu7ZPYfenLDMiBg+I0+NV7Get5McmlYPO4Y6f922+Mzkp00xQJ8E7/EXI7xC5ohZlBdQOs8CrfBwIP2WTgE2mep2U0KJ0kesADl5aQo6dFnBrljX5+J/yDymSC23XQMgZU5bZOj0h56NOkk26gu2yhX0vMloI9k+RIsoeaXIQMsBiyLgDuOkhUQmO+IDXWKGPFp9EinRKUndQMewA6oCrXCJHkQtM0+8LoV6rcF8w9ZZA0gGtTPECSwySphImmcpSUxizGuPUgnWdlzjjuSynsJKFJqpk/FrZ1DwbFuAyGRRmrCmhpmxjzNDODpf5GMvUWOdVPmaFPp9iVwIhauHRRrRN8QI3GQ2ZJ9Zc1vNEU5em4ApPtjzBaiDEymRRZpwIQpGkUgAOssQNJgIJOspNLnItkF4i9DKUg+0CCPdT2SeVrezTx4qXCq0AOKhaYZSb7NPKz3mLDnYYZ5af8eOgatyhI0xb7Z61IG4FRe/QQZEcn3KJHTrCpBuicnTVVZIGMW0+KXu6tc8luMxHXOQ6F7kepszD3An2BtmYlRsowk02FJHYAvFq4B33iZTa5YzQXCNFjd/nXVrY9ynvUQgE1we3Jmq0s4NCy02lsPsN/Pb5W/Y4wAiPMhz/AlsLXLV2mHE75bI/d89iHhJHdbPma8ClAZO7Bo6V4bFHV5CDvdGngsXz+DIk63D8E1hMDJp7woeTbZVIDCrahG7/fjexjdPdCBSJhF8/Mb9um9j42Y/hzcass18RHR3KUNNx5Pzra0R3QTNRuTRBtNOKZDpBVH2dJmLEZtvnE9MPbd9Gic4CZcZJraUBrBT4dd9uBsOWWf97F8MhE769Xn+N1FsQc9SEYw/9TzdwC078+cNIeCq3rkIsVDgbrx0vEvPcRLDe9a/1EhVnGjDLftxNVHoqh+8zoiJROFFY9m7DOfB4GUaJ1u9yw3vrffcwAjFBvEeOMMJL96SUgXeJRPU/bzi/6YZzPoThYikiV4mW9Bf9ay/6vmX8673E4apUeL1+fcaJZPDzPGnnlUU2RyRte/1c3TIr8OM24Iy/b7vvT7s/V/evXqd7rs3+ffwGsaBlCLsvl4G34fHbfl6+IJLAIu2H/P8inyu+v98RhZ6C8pUbrnwzrataJ1WylGeVDnZdVSYckg14soNd8qzSxzJvcIV1X2vVoikL5OdMMsJtUlRp5SAUTwyyyKrbclfoY9UHoSpak0VVgzE1nRoBZ02rUnR1sMMgi4G8ucIbvr7bgNSGf2P8CX/MPCPMMxKGZWA5ykdO+oj4UblbjiJv8R4DHpWS9qHuoDfx1kmwxABAUPtPcyEMrC1vbpY6Sc47uSPyaZiFcF2MeGxnhrGgys9S8qHwx6hg0FT6pUCiKVamn5UQ/6HzJ7eNMJrOaR8rDHOHsmf0rXoEjizQQMDbSepc4Q2UMdfKQcgNzlJCrbH6vgovlUn4BlfIsYYabTUQb/XSvpK7FEpkAhark2CNXPh6Y5nIBDdownKuy05FAwFHDrCElakYsZXDctgr/nmjToI+VkIZWbSeGmayZt5EIKDzFLxVN4tKL+UOmmWcUeZ8oN0SbN5jzKKiui62QovuGjnOsMA8Iwxzhz6WGWCRPr92gGdZW37eBDd4gyuhaGOSKVLU6HE78hzn/RqsBQyvnMR9WvmYVymRCQWX/5I/dKfHJspRHGCJLOVwb3z9W9Z+fzMfqTUhbcM+xNeIBINUX0fYYiYC7YhItjzAyAUBJinmEv7vX2OL8CFGnhz5/x8QlUJt2OIgguQYMetB6qgv/X12iQSM/t7z793DFh8prlp8fw+xRW2f2Ai2TyR3av76+/73AtFCjD+vTgRuB/6+mm6m/D3WicRJ0rdb9ffa8/Oy5+duByNfNnwfpbz7dcN12PZzdEBsZzvw16za+x0r+td0but+Lld937f9PDS+t14vUhGMYNJ+HCMC8qp/r+bP7/Z/S1F21//fbs9L/jVRrfi1/xFArPj7i2Da9G1LxVbzr68TSeQtIhmM78O2v1ZEpUinum+jGbuWeshOoPc88NduN5zTKkbMdfhz94mk5pa/h4hBTTF1fCXsuon8vE+0fDwiEt+y9OhnTITrnr+ffuaqGGCq+v6WfRtS5Z3wfWv15zz27W02nPdtosIW7N6476/fI5KeUvc9bjjHD4mAP0Uk3r8Dj+8zzxgzof2rRNazwJaoeyisyBi1IKmNVnZJtUf1ed17F1vesrweJpuy01oQ6y6y2vb4pOwCNxhkKSyCW3TRwzoXuME4M1RJkWeVZfpYoc8zOCx3rE4Ca4nVxLPGDu0scCaUAvRQYYlBZj0vJUOJmG1ntuEiOc4z50qqk1jBTyqQf2pPu8A0ajRXQcVHXA6SeRU0COioLEL71oE1NytXRG3kSbc3KgxZ5EyGMpf5KJBGN5ggSZ07DPMxrzLHKEVygJGXVVLMME7dJ6MLDLPEIBnKXOVSyK8ZYZ5RbqKcQzV8N07cZblMUwnnQcq9YRaCGlBqtAR11si5/TpJnSQWNFxh0IOja6SCclFAYosubjLKMHdCFgiYfcZCpU+G8hbZjBMcYc2zdg51jc16ar+Up7nAAmfCe/Wx4vaTk3zA66jhDXDwN811LqKWbynkZC8WQTfOTMgHNFuufRwxEnKNfVrppRCao2VjH2ApBFsPsEQTNZYYRA21/axw4Iq9Hiohm2WBM5TJBmJQjdGycfSxEmxBur91D9pUeyVMdlN+r1VpYpcO1Nwuy/wBLeRYCxP1XTpY45lv9PfQ34pHFzEqJAEPzh231suxZpqLVl5Gm1lH9/qf4vgGtM09onXv0AgJEToiGDqBe07qtVkBU9v2o+i4qMKxVfu7gx0oW9lBUID9a+KAqg0O38bWqNNEUkpKudP+9yvE3LVOjFCSzVAKONlmT2NE0emG425uOB+KA3meaOXsJJIf94ik4WcYJpLKTzbcqm+/4n8+BHLwWFbIDEa0iMh6yb8ue6/eU+qoVctsDo6QQ0y9JhzcSbSWCudryC7CVMfoVtLHp4kkZCdGXInslApRSrsjbOA+5tsaJZZNnCYq+44a/ogcSvq1qGBk2KhvO090dOz5/t4l2p1FLLcTizNkXf3Mz2k/HL7k+5InZk0n/H0SDcfd5v+XjVyfOxIY7s77uZoh2q877Xw8zsDeK0/ZdTr069JNVFhO+DV8zY+xEyNVpR6UOm6ISDSOEtWfL/n5/5W/76Rh/mO3sXuh5O8r67LEGLpXtf27RPKzgt2zshL/ikBcHnvPt6Wh/CtEEs+t3Uz7e0nhJ4z5LX/0c48+VhhjJjggLB+txj4t3GCCG1ygg92QNQag0q15Rtihg1f5KJBFB7SyQn/INct53IkKGrbc6tfFphcQbJLycadKFkQ69VAJJJycAFJKVVw1NM5MGCrafvUCBFUXgAqh5AJJcBRIr1f5OJAhIjKF4e4wzE1GSbPuOvgmdxxUnTJsZ9GJOynQ0lSokuI6FwPuqJFqKKHIBjJqnhFvlu2hj2Ufng5QJBesjypRq5PgKpeCwipDiV6suXWKSRrLJ3SOl50oyzjJ1kSVUW6yThqVhuzQEbKMW9nnDa7QygFrfo4VcSJnQoay4wmzfv4lb4Y85hRVMpToZ8WJylq45nICSVQgsskKG7oAi7KZZAoVvSnD7ogEH3EZZf/JMt3YBmtDW8tR/JjLqB13ikmszOOAv+D3w3W2ohW7R9odH6/TE3C/ZSwmSVAPYoEiuUDuSXEHViJozbO5oM6rOSbWsW/RxSzjfj8ekaEc8KLig+wzWIo7/rNyypWtc5ynjDU1G4lrGFfka8mjilLUGGGedv9Mt06aPlY4oJUlBuhhPcT3gDliXufDcK6qruyb5kKwm1dI0xvIl//04xux3FKC/+t5YvOXiKvbxPr4JLHmfQMDNJ8R89D0R3YASbM/Ida0F4iZFr3ETLRGqfdFf5+L2AJTJOZyTBGl8VI0FsGvuT3nNDHkV/v9CUZcnCfmZ7T5/rxEKMHgjm/nGYzAOMIW4Qy28I4RAdEeMbhWyjFNZqWSm8CAxaq/9kV/rxQxwyMLvOCvP+fn/HtEQrDi7zPp2wBb+D8kZpF0E/M5qkTQeM+3WSUG4sriolyUs75ft/0cdfr5+wF2fb9HXNgFLGeJ0+0yZt8QcKoSsxD/jh/DHBE861z3A79LnKBPE9vxyn4smnDKqlBt+Pc0Rij+DtGOKotJmx/Xru+7AKbsQrqvZjEy7QUiCH+JOJ0t+HYF8rYbXq/zq0k8xHy7MnavjWPgVyC/HXgVuy+X/dwIGE77NnQPZfyaCIRquo5/vRm73zf8uXmiBafPnzdAyPUL092zRFvPFez+TmHg7hAe/5/h2P+94b18svt/u+bn8zvweI4V7jDsi0DFcyh6gly95ra+Js/TUL6dQvQtG8NIi0UGAomk6VidZFjgzfbZHwiEAZawMoQ0XT7rs1alfAA7mgjH0OIkiwywRo4f87OwWEttp4mXJmclj0XW905R5LbbQrfYYpBFJrylTcBon9bQ4vURl1ngDJNMkaROhQ72yZKlFNR0KkNYpj+oGoGwvSaqXOBG2AdrnNpFLaeS76/QFwBZlaZQaiGLpJrClf2yxABqEB5mgXZXDu7TQgc7rJPmiAQpqkwwzZGr2rRPV7nkloKTwbqpzI0PeI0s5QBC8hSCzUIWZzBgrEmlAZcqNz0npcgpenyyLAvELOMBFGk6bduoBJJVltObjJJ1wm2BM6HN25ps7X6sOagYZDHk5tiUPc0lrgYbR7IBaMsWc4lP2fV7WmQf4JafkQDANUlWY54s4fu0uoXjZMgMGmSJFfrIUApq031amWTKKT9r27Z9b6JIDrWXVRxIS7G5Tg9FciwwzOt8gApelEdkOUbr4WfRAOcq+7SQohbUpbKSrJPmcyaDrUnKiSqpAPrLZNwGX8GKbTZZYoDjYbrzLX5oOHkEGxPN1EhxIrFN9xeHsAvHtmHjzWZS1Rpttx8FNVuzkxGPe+FYoxpMmO/QSInTt+/b1xQ9IQvjHgwVvjI10Rq23gm7NWPYahqabxFz66SI15oppdgv4eFbVlRFElvrlCWm56SIdtVZYusp2BoqYmwUWzelThJmkTJfZJWiORT1Uvfvf+HbLPkx63hXnchMErP0pIL7JWbxbTx/FWL+YCe0LT+K1uAykZCRrThDJHSOeDLT2Z0rG/+4me73DiHZkO8mHJIhtLTe/3udPPPetr22m9gOe9f3q+TbfsmPVUNwEUg699r/Wf/+L4iEZK+/Vq6RNBFX0nAuEti9cBoj2+4ShQV3PUqomWiB7Se2AgsPVvy63vU/b/vfOvZPiEo9iBZdx6LH3oO2zkcxNkbWWGFafb7R56pt35du//MAw5sPfD9u+x+pTn/p+1IlYNeNt5vp/h8O7fhltX3ez6E+O6wBP4SHGTj+c+K9JvtthSdxvAhqWdUz/v6fNLw/xOPcI5LEdb4TjwXOctZV3VqrpagTqXSKosf6m1LCBqOnGGGeWcZ4i58HpbcwWgc7ofwLCO4Gbb/V19EeKkGNvkaOUeYYYMmJCssJO6CVLVdMabA8zIKTgltOXPSENd/C/Y84ckWXHA5dbIbs2CzlQCQpT7lEhi26Ggg1G3opziXPKltemaUICykYZZfV8bZ4uZoye0WKNVELOOY6F1HmnpT/jQVrW3Qx6KVtyjccYxY1pV5gmnFmUZmcVItHJFB5hYrNeqiEcow5znOR69xhmGX6GGGeFLWQOdfheFBZ01VSHNBC1tWHr/MBiwwEsqrq+PYAy8Zroso4s2FIOs0FlMunyA8wUkvqTjUQjzDPdS4ywCJJ6vQH10XKz+t+EBsoY/ljXg0OI91LfayESBkr3au5OMG20+54FWJRSdXxzxZd4bzs0OFD3XQYVItklDLPCG9ryjXc1uWfC5L0sE6OIu/xlqsSi8FtIyx/nYsMshhKVOTQEcnZRI2LXOOOZ0AnOAoDcsu+PPDPJqYu7GGdeUbC54gd2l2NmWKEeVbJh2ihVSyvfIYxsv6LPUuJBYbp8QFxgTwPf0v1yzdnetsgLnwJojxd5IUIEJ8IBpm52ygCMMpjv/A/IS6Amhae8P/XMZJHoOsesSr+fYys+tBfd9e3L3CkKdYhcYJ4lpjXIWJMgKiCLVRHxLr3asP+3CUucgIOjXkQSYzMKzVsU5kRJX/Pz/w5sryKPKoQC0AKRIDV7K87RwQ7ZYywfMCTWR5F4vT3C+KUWwuxcs50/TR1veavuUUso5CVZI9Iqnb68ejc6PqIeMv5MfT7c24RA5K/8ON50Z8rC0Ta90fAVhN0kbNDxEBmHYsmiNr2aZ5UGsoOMUckKM9h1z5DVEr2E23BzQ3nuky0P+g6vUYEozoXBWJ+iki8PT+eW0TbxLZf12ViuHDBn3vW91NWpCGiqqDk+5bybfVjP1e63rqmbX7eNTk+JN73mrDuEdqjQ/YkxPyVTkIrL93YhwKRj//Ut6375LYd47E/8n08RfwQsYGpUdv5zjyW6aNAPijUpNC6yssoVF95IJp8WvtRli1OAjbl1ORokUH+W/6bYEkQsKmTZJgFDmihi01qNNFDxcsFkoEMNCuhLXbDLAS5uxpMX+I6F7gRZP/AE4QeELLZXucDipwK5EmWckN2in3tDAtBMm+S/gxTTHrlezutHASrgk2ezzHCPCt+3g6c+NF56GHdQeGWA5uTPpVrYoHhQHbNMsZ1LpKmEogXTfN2XX9YJkML+0wzwY7bKo+csBphnkEWGWaBd3kH2UEt8Hg/TMNlkS6TDY20SwxSJcUKfWQpcZIt9mmhSI4Ced7gCsMsMMK857ucYZ4RrvAGSwwy48o1WT+lajzHPOPMhmslgs3IvLFAJiaoY3k7Rc9/WQ/tc3cYZpFBTrpVRAUPrzmpJZJN1g3LzpmgRgoL156iiVqY+ldpckKyxig3SbNOC/uskeOU2yR0j5TJ+P3+OXlWGWQxNO1NMM0ocyGXsYkqdZL0sRyAsu73A1o9+6dKhTRVUuzT4h+IqsGeYlkoL7uFuhYs3XkKDLIYgqftw4p9khRJmqQecvtEamq766RR69sAS6hZUErTxvY8FcSkWWeM2WDx6GKTflY8v09ezG/xQzbLV6D73UOe+eU2j9NwmOcJrNQ2+ygOc3uJ6nSMUAgWU63dsre6BfHB0PFInB3B43Pw8ARRea8hVy+2Rk4Tiw+EGTS0nMGwXZ4wCDs+5dt+nqiaEq4QXpW6S8PrE8BZePhDP9YqRuaJjBLJtQ28aeeINHGN7cZwrOyWVQwL/BA2/qA5Kvb2Gl5XJTa54v8/QSSD9oiFDFJNbWMFHrKCLhPz5HRudA5TxDxBYc8je/7JjcNIMoo8Ej4qEwaqz1zbjq9bIxZOZDHMMuHvIWJKQ+wfEofDZQxPzWLEX4KoxJMyTqpEqcCEKzX0ve3HcQ4bxm8QW2dFxh76+Wq8/0pEjCg7bYVI2sqCrM85TmgH7ChRQRtP5ujh11efAV7z594lYjK9xzni9U4QHTO3MRyd9PM5hH22uYvdt21w+JpfK1lrZacV4f08EacW3V6bIdqAZV9WHE2jwlGKvTRPEpc0XBud47PEWJ3fzmH2v/pHnST7tPIeb7HvDe37tAZCYJgFXuZqUJNb1MMMgyzRykHAVSp0kCpPAy1ZD4GgBldW7zQTqJBqmgmqpAIJJeJLmEyt9ld4gwL5YMtVGUcjkafm11YOQlSIyqNyrAGE3OR9Whj3eBJFV9RJUiJDq+csKyNNrowCvZQdF8vqqHZUWXLzrAaV4xZdwdJb5BQqf5CST0NzgIxn4N1gIqghV+jDygsOmOZCKCur0IOaiBWhogFogiNOssWRK9DmGSFJnQWGqZDmwMnZA7/WItTuMIzacqXUHOWmO3NauMSnAefLEaH8wyMSoUVW2ctFTqGiO70m5edFw3215gqbWgZwimtc9HsiFZSTB+4qWSdNimogUIVfJThQXqHui5Lj4iwlqjQFh8kZFoINfIlBxj3Ec4Ib/Dt+HGzTKsqr0sQ66UAG1miiPQzr+13gkHBicbOhoGw2qENF2pXJUvQygEXPr1xkkB3aA0Eu0nKE2ywyGI53jlHWSbPEYLjnZUsXUVigl3lGqNBDD5Z1CQRHlhw/cu1c52KI1bGyPiO3de/8No9vhtATcbOHTY6SxJwwKc/S/j1ZJyX9l8LoJd/OL7EP/jnsF/8YUY5dIFguAjEkwkeZZAIoEAGMFsd+IrADW4iU5wG2oEn99vd8H2W1SBFJnhJGGEEM4JX8/iUi8TPqzykRlW6azAo8Cmgpb0RTvj/HQOIXvt8CJQIX8KS8/4gYbiwAlCICrGU/V7ILCxQ8Twy1nfbnpf3rbxJBh5SVIsjuERfoz4jE2CF2nT/zv0VKSSkn8lbASOdKoEgqsVUMWM/66/9tw+vzRIJK5OLzROWlQIrA0QQReEmlp0nvNSKRW/H91XHpHP+ImJeyhwFk5eOcIBK4+qCRwgi5aw3XTMCyQAS7mg5P+LkVuJ8lktWyNshGkyYqCeo8aUu6RVSz9vq51NR6lpCfEu63N4mkbyOZd8LfoxNr2G3DyOI68P8iBlz3EkFlN5EknCCSoRm/Zg/Aeapv/eMepxlh3q0G9dBM2wjClJdXIM8mloWyTws9nucFZgHs8wVrh/agIpJlMEWNfpbDpHTNiSOwXDFZPpVvsk+ry8UzlMmERlmzMQwC1vxpdoCU78OgZ3XsB9XSFl2MM+uWyVKwReQpBHXZFidR4+xNRrnhZQGA19kvo4a2Dix7TrkeyhqxCeMq84ywTD/7tPAuv0/Nc0gOaHUwaVL+JPUA3orkOKCVjKvjLOh5K+QCKktQsvktTgYCSG2wZoWIU2qBML3mFMWQ86JQYoAPeD1YSNQUa4UNB2H6qvy1dre7iliSFVvWkLJPsVvY54JbswWIlOEC1sIr67WdwxS7dPAebzHDeFBulsgG67DZeneDklH2g2HuhClwE1UWfLLcxzIHvo1+VkI49RST1EmSY40ZxgMgkQ1cE3GBsn0sMlg5Mxb83eFqQiN6T/qHgRX6+Bf8owDUMl7+ovDoGqkQCL5FF3OMUifBm/xl+HmTWrBRNXeRa6zQ5/YKyzCUeuAqlwBTFVZJcZWXAQJBWybLEgMsMcgAiwywFIg8aycepUSWi1yn1ZUDdZIO7FtDk27WP+x8qx/N8MnZF7g39oytd7twbA9KbU/z6/5uaIPu8mEkKhrx0K6p8I7ftcyvL/LPQa+TgRCdEknL3XuQPR6Is5nucyx1Pmf4URhJ6vVt4tfTGJYTIdKNDRibMezUS8wnk0odIlkjjKS19Ix//yVCEdfxa75diERZklhC4dhqL/1UHFimMYW+SBytpd1AAbp/6ecsi7kvlPnWhhFfr/j77GIYIeXHpc8JwrX46841vF74RwTWkR+PBtdjtg+hSdXP37HPiBl3Ew3nprnhGij37pzv45Afp+O/h2NEF0iK6MrQvVEnlnQkiEP1075ful7txDw92UnH/I/sszmiUu9F/9o7fqzCs2PEYbIECrIga4ifIg60/fr8+g+6I3GoYe+DhvcVPs349cv597Yx3K9B8mjDPuue6yco2x6/7a99iYhzt33/S/6at4HX4PEokIbmgv0MMkYUAwgX54iFcpNEpaHIURG6+H70Eu2+CSL5u+fnbQ+7D86ZEnfvlacisfnAt9cBhye/G55bDT1NBWeAOE+BUW5yg4mwtv+MH6NGU3NeLJJmnTVylMiwyIBHddyhSI6rXArr3R2G2aSLQZbIUuJn/Dgo65bpC+RRgiMqrlivk2CVPB/zKmBrdAXLnlVkh7LwrFG+GpT6Iu1ElJXIMsJ8cFMIL5mLwDDCHKOMMUO/55sdYJmCwsmW7Wst9MLSyraz41wLGEZ/FPVSJ8FFrgf8dYMJrnMxWCCFQ+okaeWATT9vGmC3s0MXmxTI8++//DEprEwh67mDTdQYZoEcxWAHLpNl1QfRUke2sB/cA5bJZkVc2leVY6nMLEuZPpZJuspQ90djwZvcLluuFGtlPxDAyiCuulKulf1QBmGKwv7gSsm626GJaogRMdfBKQ5oCS3Mym1MUWOKySecOZf5OOBNqfVmGQulIp9yiXlGyLrjZYsudh0HpqjSwn4oKDEF5A262GKOUVbop0SWHirkWONlrtLkhKKISlnCrbQtzRYnaXFlZZ4CM25J1GeZJqrMcT58RimSo0yGfo81GvOit+tcdCLU9tGG2WYAV/akFKXKApeDSZ+PzOFzJ9ilFxhGrdVS8uUpuLW4Fuy6Swwyys1Q4PI3Pb4Zy20XcSqWJeZtnMMIBcnf94jKpbvEqvYPiRl5h8QGMJFFvTwZrJsmLvqdxCp5Tb7e9Of+kkhU/FfAf+GvkzWi39/3iu+3gIBUXxCJF4hKJ03vRIRtYATOb75uFVu8NHG85vslUCM7qSaiWihFODYq6QQkK76vbrMIpApEif5pIlh5iUh47hHDaicwkiaPLewCLKP+tV8QiSqd9woxM0XgSschhVfV33+WKKXXwj2EgQwBHRGe08TJX68f8wSRsOwE/sy3IzWdAJXuhWZ/r13sOl4jhjr3EknHAgYCk0TlnGT/mnJrX3TuZfW45u+9S8zTkYpwF7s/lolTSk00RaIdEcOzpazrbfhapx+Tq93I+DGs+nZ1/yWJSrz3iOHWUqRKJXii4dzIMiOSvOjntNuv113iz9p/QQy+lt03QZzESrEnFcC/Bf6+b+NEw/PasXtGoO8R34lHi5MSFXoYZDEAlAJ5VEJwhgVuMBFk5TbVNGn8555DobDbKk1c5uOg/JHiDgxEHZGgh4pPs3pYoY+PuMxFrlOjCeXymfz8JBUv5RhlLqiUelhHLaFAmC71s8wV3qCfFdJY/oZstwmOGGGeZa+HB8hQZo7zAVx1+CT2AtO0chAW36QvZFKiNVHjY171so4DLLi3nzpJWlyGfuC2R03XLEB2lykmGeYONZfw72AZZsoXLJOliRrTTFAhzQWm6XJyJu0E2WU+okA+ZJCoaavswb52zBk3ppRpokqNFDeYIEGdG1zgElcZZgFlwgEOlpNhgm7tbjZV72OZCj1MMhVAPhAUZU2ez6HJsXLy1L6lLJa0T9jf580QvFshHSbcKsmQPTdLiRYOmON8CITuYIdX+ZhZxgJJCBbGnHWibZ4R1PC2TB/rTlDlKKLQbqkDlulHWT0CtD1uK85S5iLXQwOYJumtHIT7XerWGcZ4m/f4iMsNOYxNjDPjdpNaeG/ZTNb95+4kW7Rw4PeNgUFNfE9iRTBpP5+yyShwu+z2oy42ucSnrNDPHYaZcnvtRa7T5BZcsKDlPIWQNyjV5A4dLDLAFC+4QtEm27avp76JXz9/qx77mePBcv7l20+TokbX3ja7btnhFWvse676Nffyz3C6eJ+99FPsp+y8dm3vUmt+ioXUsDV6500F2dG2QyJXp4lqiA0A2J/cQfk5rezzP2VeoS9jH7CO/nGC54pfQwZ+nenm2b0N2IaNfDPJXJ2W3YdGAgJny19y7+wzrNDPWH6Gbg6h09o960moJ5+ide8Rxe5ulvN9/KD4Vzxsg0pnJ890b/MfM0P0n16hkMiTrxc4SiTobrYG35bdhxwvwP3nO3mmsB3w5U6qg7YTDiAzsJd5irbXHkER7o59j/zeV+y0tfP0rV3uPf8Mp9+/Dxk47IStXCcJ6nTs7dI8DTTDwzfheAHohntjz9gH1rPQXTgMg+7HvbA49j1y1SJbqS6evbVhmYadsDN0nBOVhzxIH2cmMc54fYaWEw+pJ6H5R36BbxsJd9wHw4874Shh5yjhKqzjwvqO2/66/zRntu9RT8L+UDPdy4eG9xKw1PkcZ8e/hG34+vl2Wqv7tHU+4t7QM5wu34dtOMxBcwruvf0MNVL07X1Jpa2bjvoOpYStS6e/uA/98LAbjjtGPcxAsc2387zdA2pnrJBm54cdjFbnrDzlAXz9ir1/a/Mjjk3A3tBTtC0/4jBvx7bT2UyZLAPbXwL+Pu68ePbuhhFiSdjrfIpSKsPp8n2772Y32Dv3FDupDp4pbnPYCR+3vcJo3n4WTr64ReKoTjVl61nlbA9D01/BGPw6182z5Q0ejB7nxO2HHHOF6sM8FDqf4XTbfajCvbN2nBuZZpL1OpsJy1rLvFRCJUr99RWa3nxIcxH+esgUCi3sUyPF2btfsjHUTHfvIQ+77bpk/sDaI7u2d7nTeZoMZVL1KidyD/k6307H3i4LbUP8zvZdSMLdd77H0PRX/DrfzU6+g7N3v+TroXbajnYNo7fB10PtPPi4zvGdg/9lf/H8LX08xypP0cabvO9qspOouEBRKCUyvMEViuS4zkXe4V2SruApkaVKKjgvFNI/zQV3ERyEFlERfCv0USbDBNMsMEydJBNMUyfBOj3MMRpec5HrdLEZ7L4ptzVqYCXsqa8tMRiINcvgW+cmo4EQ1IDrlOM1DYBHuRmGrAmOOOMZwhZV0hrUgBV6mPUBpGy0KlU4IhFKywrkmWWcJizXT3jqDsOkg2PFnCKj3GSRQdcnmvVVw2DLVruJWlL/8+d+xgBLwWZsOYCbNFHliITHk6TC9TugNeSrZSh5bnaCD3ndC+asBEMW4kmmAkmo99e5bWXfY2y6ggNBJXY7dHCBaaaYJE2FVseoP+Un/DF/ElRgVqZnZJRiaFo58PvIfr+ccoLJMLF9BrDX3QwYXvelvl7zs2e26C7GmaFAnuVQnlLjJFtBfKBtyMK6Qwe9fs+Iku1gh494NQyauzzQXdly1iw85q3GR9RJoExqI2B7w/2p7Ef7fWZEG5iVuu7OjyleCHnPVlCRZI5RLvGp36NzJLHSveGQp0b4TPMRrzLJ50wzwbCX6+UpsMgAk3xOjSZKZFFOesI/Q+hzhojWBEeO4e3nqYcK931//6bHN0PoPUVU32lSc4T90l4mkgg/wAiCZn9dGiM1NP2UpbLsX5ctsw0jMJT/oUeBSMxAnGBKTdb4GhElsvkeNbwm689VJkRjloiIMCmWtol5GFIlimAScVEhqrA0jZKtEt+WrIgXGo59iGjt1SSu6H/6McLkiKhse0AkNQvEBilNNxvz/jQ105S6SszUu4cRMW3E7Lmx33j/Mzxpd8gQLdCyfawSVZCf+fZewojdf93wvrousva+1PA+e9hE8ZYfw62Gc3ELI5vW/Lm6RrL13PVjbsemvzrnFeJkWtcTIrmn66pjOE20mvwII77S/vxXsPt7mhhULfWhLLOytcqC3HifeG4KSd/Wtu9b2o/pFf/eh0R1mxQAUjfKIttNLL449K/LSl7wv58nKg9Etp9ruD5Ff67yTtLAu8THkJ935cXoHu1uOP46RiaKMNU5KPg+yQ7zmO/E4xRrPCCPNcUe8BGXwwRQeSkHtAb5/I6TDBkHBXks+L9AnqQvEl1s8RLX2SQWHShbTQtMnQQ9rJOgHuTuy/Rxkets0eVgzia+AiCX+YiPPNBWBQkXmHZgUaednVA60ESOBEe0OPGyyADjzHr+xEnKZEhSZ5SbZD2AtkIPl/g0NPeqZc0UWWVKZBljhhop/jH/jAJ51twCIOVhlrIrvmxfNFlWTouy+KyP1wguEYWS+6/TwzAL5ClQJosyQF7nQ2o08RGXSTloWqaPYe649aKJI1f//SP+NLR5ASED5ohEUKGpaVZg+SRbnPcg4XUHuMqNq5MMk1EgKByVhTfIYlBO9rAe7DlzjKIWuxpNZCm74qvEAIt0sIsalVtdkahjttauaYrkmGSKBc6wRo4Jfs4KfeG9s5S4zsWgUFQeoGwlK/TzF7zOGLNcYDq0oQ2yiDV7XeaP+ZNAZJ5ky+0NHZyiSBf10MhnmTq1QOYJRFZJ0c8KpygGEnSLrkBagtnCR5inMQtxkUGUU6g8nyI5Np1YH+YOC5whSyl8MBpmIahmGwlk2X3NwlwJP8PKjhEQ1XGuu215jBm3Idm29IFih/bw/sfdUv5tfjzmGMMbX1JNQaHteySp01yG77fdo69zxcgTd2yk8jX4AhKTjyAFT5d3rR0384hcpkiWEs9+sQFtGwHXbZxtJr99n1rzU6yk+gDIVwucrXzJ42bIdJeMwJJyaRtIwrPXNuxrzdA9dRgwwPDQlyx2fw/24HTxPl25LbqvHQZMd7zT0iN4/hEUIHN2g2c3NuA2HJ+AZ2a3oQ1+Z+MuJOD7G/cMr40/hDKc2HsYcNQzRw3W0zQ8U9+OGXXL0Lb6KKjbctUizcvQzC7MwunO+wEnNL8ClaE0+XrBWn0dQx//pW+rH05X70MKUzHKUbIBxyowNPQVDzPw7NxGcGMc2/N97YUTGw955ejzUDx3vJmY/wscv2Xvczhh2YfJNicS9+Cx4kKE04fgzPY9jt+A49vQPHYY41meh7O3vgzKv9S5KvVkAqYfGQmXhIdnodkja05fu2/Yaw6ePdqAcWjq/sryF+eANjieJFz75mY43X8/OE2eZYNnT2/wOIMRa/2e3XgPyMLTy7u2L+5AaLv9CDaguWTf7/7ikO6jL2NO9aE/VxE5blNuKz2i/wf3YRae7d2AVWirPqItZde/uQh/p/5JtDL7EtOG2WK7H3xlWH8Zns1t2H3U+TAKI4bsGvSfu2/HfRpO370Pe9B9dAhfwInE1yErr/vel4bZpDhsg+/fvReFBkd2D3Q3H8JdON4Nfee+NKLY9/H7o/fCPfQ4B08Xd6EAv5O5G9R+Q3e/gjRGEnduQBGebtu1g3PrbWt1nxPrjzjUcPhb/timk36PD7nCGw35ZlZktcAwl/mIIxLcYAIrDjAFybqXbjU5hgKCMqtxiNnkRJVImje4EuJSLCP2VBgM9rAe1P3pBpughpA3GWWQpTC4spzbFlQAdsfdHHkKHr8SSaxPucQ/4k8DhmssfBNG6feWVBFbhg/3w3opckbkTtJxw4HnqSnmooMYA9JElRJZLjDNLONkXJmi1tZ9d25kKJFyamqTrkB0K2Zkhw76nDxScYcprVY5cH2ciKo0FZQxfYoiPX5dpVqskqKHdZQ3J/vlAa0Bu7dy8ISrRnnPK/S50q4WhtaDLFIgT4+/rwb3/zt+hhp/ZxkLeYxdbDHPCJNMufOgiTJZz75L0UrZ9X4tPig+Q5p17jDMAEvkKNLPCpuO14a5w5/wx7zFe674s+v7E34acu+UiZemEtwtwrs1UvSxEu475Vorw0+DZinw5KAQsTboJKuyo9OsY3Z2G9IvMRAiUZSrqBKMF5jiBhMAjHKTLbr4gNc5cDJTVlrLI5xg0weGo9wM+HiRQS7zMRXHsGCfbczCbu9/gelA1pvN+WQQREAs9pCl2qJyDkhT4fFvGcfyzVhulT2RI2bBJYl2SVlv+7GFT8TDNlHtNOTPHSMqlIaI8ngHYiSJFt9XGr4n5VKBuCjtYQuh1FztmJW1mSgH1/QQzJa7DfwzjGiSHH+DSIR1Eu2d2g+pqUSK1bGF8hymsBL59CYxkFjbniUWFkhBlfD9PSQqsWaJkvsHPGlpnfP3m/BtZzBCCKKi8Hk/zrPEnLx7/qdAzN77wrddJob/yqasjJdTxPwYZYvg2xehOEa0rMg6KgChjJU2YlOZSDbZmsvE/Jtt7No9D/wPmCoN4n0lm+oRMcPkRWL2n8hdgTupCMd8/xTkKwtLN5E4ft+P55BosVX+Y4ZYbqFMnDZiVlyWWKhxghjCLBJum5hRKLvDMkaObRNz/xpzSvr9Wum87Pk2T/t+v+LHJGu7SM12LCdG9zzY/fkGUQUpVWSGSATi1yiHWXnKxJ8XWWxl9ZYSUD8zR/7esrJ/R3JSDnw6abkb6WAlqJDmOhfpY5l5RgI5pNyuFfpDcYDZMtvZdGJGNe+R4NsMtffnXVbf4sDC4pSNNFPzqUoRpBS05irLaxABlmONLrZIUifNOje4wIErwWSfkErQ1FpdXOENJyXbaWE/kDMCliv0eRtsCWsWW0FtqyrqsIlVlVnGURhvllKQtSc4YpqJAHJEFnax5WDkIACl1/mACS/LsOKGOiPMM8F0ALgqL0hRY54Rb/NqxzLorFrD7JhG8An8lpywXPIsugo9TDFJjxM9miNOc4EPeJ0ipyiRRY1lZbKkqDHDmCvsLDx338ndJmp8ystBfVciyyg3GWSRdW/lEpGUp8BFrod7Q/kqNaz5+ALTnKJICwchfFcZeZrwW6BvhVNYC12VJjKUOaCFBHUPzF5kikkK9JKjSDs7lH3qOMYsZc/Gkd1E9mzlBioXr50dcp7YonupTJZ5RsIEV+HXU0zSygH9LHOGhWDXERmpzBiRqHMu9TZVnIUxi8RTIYWybrY4SZFTfM6k21rMCqP7UhahLU4GRSUQsgP/iH+K7NECfbLaJqgzzJ1g8wG4yqXw893BDlNMBlKvJVS5f3sfbV/VOFaGnbZ2hm59xbPLG+zlnjLC6u6jGC8B4bw278HT07scusXvsM2+9+y1jejiwP7eoovje7atkY17tNb3aSsb8XJsG7qLhzZ8m8ZU5+3EwaiU7ocY5vnMCgqGpr+y709b7h9JYgyMcKU7Qo7/wret4bTW3A8xh8gccc3NY2umFPuK2ZjGsJwGdmnYeKfZ1uI5e++2Dx/FPLlV4vDzNFCA7//yHif+ycP4nreJA9ZlwgDyxK8e2tdvNWxn28m/KX+d9m3bX6f30oD1GoYxbhCbZIvQ/J69/th7BMfKMTk/5KTJwPE/I5aATBOjc4RnCrbPJ/70ISf+7UPDUbfs/B6/geEt/HV/2rAPn0DzbX9vWZoVqwLRLaF4nG1imcgcNP/Cn6eMuFkiwaah/AliAd4s0T0xTYxykZMFwuDz2BwxHmgcw7Cr2H33S9v38DrfH4o82W684fsvR86HxHutAsc+8f833idTvq2C7/MVYrGKBv0a6v7C9+c2dj/PEQi85lk/Nt0fn2BYvAjH7vnxr/q51ueUDVNF8hlReDBLHAqXoO2fPLJ7v8Z34qG8LiuAKFJxwkZWRjk6ymQZYJG3+Dkn2XIF+XpYj+pYMZeUXMJpreyHgdg+VpqgIaZl1t6gRiqUSwnzKG6ii62g5pLKSkVWiocRptTQbILpsNYr066LLSa4QZr1oDbMUAoxKRW3SBo5ZEUKK/Sh0ocyGcekRV7mUya4EaI2LM7FHBfCrwBv83M62PG2VKnd6gEfifSsO1laJBfOe9LxjlqHlX0n8tRcIGaznWKSddLBKSGFbxM1NjElrAZ/NxnlGhddhVUJGXEiu7QN7YeUc8J5PawzyRQqUJOddZ00yu+dZ4RFBh33nKSLLV7jA17jQ8aZ9SziGP8jQknFIrpvWtj3vO923uEvSFHjVT4KVmM9hrnDDu1MeATMCPPhXgLoY4VR5phzpeYiA6gsQmSw3AsammrYLvKvSM5LKY7oZxmVskkJVydBhhJlMuHa6nMK4C6gehiez7nw4QLTlMmSwApAjDS3XPAWrBxlgWGUZ/gmf0mKGnd88P0BrzvWPqKDHW4yGqzsGhgPsBRwYRPVJ8pACvSywDBN1IJLYZ8Wv7fWGGSRCmkWOPtb/T75Zgi9Y0QbH0RQ8y4GAsawxegzbNG6hy2KG9hi/ZJ/r79hm3lskckS209fxBZUhe0KEIhwKPvrlP3RT8x9KGFkVqe/ToSXiCRZZJULMUu0VYp41H6I7NIC3Ua0xApIgIGBD33fRJq86dsX+SESUqo+EVrKj/slUaWlyai2n27YhlR+vUQFmIjBNj/XyqfR+UoTM/ba/Pl5IuCUGkx2Zv1fuXRSM64Sw25zRGCWIza+SRt62l/fScy7+1XDNcj461NExWebv0edaE190V/zAz/mbqK9uhMDHGVi4C/+Gr2niCgRd6NEgHOXWCqha96MEWCy4koFKiJM91ESU13+XWKeoZRqsv86AAZijolA8xxGyo027PttIgFcIJLFWaJysOTb+DkxlFiE3BGxaU33xQ+I1uI0MaPlCLv+ylOUMlXkeMavg45d9/IhUfE31rCP+iDQRGz9/ZY/6iQ4RZEC+WBx0If5LrZCC2jWFWpadNTWqnyUHir0s+K/9G1hXKfHAZdNuntYZ5Muki6lz1Pw8of2sD+S5Gt/JpjGWqZStDgAvMkoNZq4xFVmGA8LdJEcqrTfooua2wvGmHF7huXVpRyRv8rHgaRLYSG4GUr0UOENroTtWjGBWXbVzrbAGYpYs6mk9FnKnisxF0DcDGOMMePgzsJ9pYwS4CqSY5GBkF0iAusGF2jlIABMAWRluYj47GAHBT2LxCyT5RRFLnGVNBVyFPl93iVDiUt8SspJv5NOLnawS44iZQdryqRT+LPlz9g+r5OmQpqLXAtKtywlVuinQD5YBdZJ8x5vscSAt5MtBXtFjSbmGOVf8YdU6KFMlgNamGGMDCX6WGGAxfABYo5REtQZZzZMm/8Vf8i0g933eIsV+v1cVAPZladAhjKX+Yh2V7RNcIMM5XC+xphB7citHLBFFxlKdLHFNBfYoosxZkhQD9dBeTxSASSou8XaGt4mmGadNPu0sEaOCulg7WkEda3so0ZcqRCylGiiygEtLDHIOj1kKVHC2pUXOBPKUazN1nJkPuD1cG5lLe5jmS62WGSAA7cr61oLIEst0ecFGCUyJKhToSeQrg992v6tfnjMwhZdAUsVUvmYPayhTwqeubXNlz98mvuZTqibou/LIZsCPX1rNyiHGh+ny/cDKXXs0AmrPTh07Hco/NaGrV0aailbLWnKMpLYmvsatr5pyKicuFViTIgiWOR+GIIHE8eh32y0dMPhP8awnueH8Ty2rir/bQ9b1zWoniISN/eg+xeH9n5ZYpyLImX+Ibbey60hIvAIwx4/8OMYIw60x2BjrPlJUlK5dMJA2xjeVJ5aGrON9hMLJESSzUJwjJd8W1lic62w6qrvgzDYbT8fRcxpoRw/4S5h8HNEBZrIv0nfZp04TMwRh6wlP4/CHFIGHhGJ3Lz/vYthGJGzjdscJUYANWNY6BYRgytKRm4P3VvKUJ4lZgl2Egfeig06xHCt8Nsedn8c8aQoQIPqX/Eklptr2IduDNeOEiNrGp1EGjKLSK77ewkrp60kgwo8bvxs4pjvYZ7oSNLPQIPaMghJ6sRoJTlcSq6mTPt10+cIuabWiO4WF+592x9PY43yK/SHfF+tG8oYthiIKlaeVgqZa9a4XggDscahoFkpLZNsgEUnq6yYSplfV3gDZaxpkFh1+6uppky1tewW3SK5gGOlViuTZZHBUObWwkEgt2w9P2KfFuYZCThQSvgaKZocU62TJksJ5dvmKdDOjhNWuyE78CajwaWgAbhl/TYFy6rcLlpjNdQTbtW5nPaMwgxl0lRCJm5XwGs7nlVYcXV/yXHoEXkKobgkxxo1UkFNqPedZ4QbTIRhs9l6DRenXF3Xwn4gLkeZC8NMtexuOSHYxwrL9IVhr47LCicy4ZilYpM7oUyGGcZZI0c/y36dLLKliy3ucIYjx2RNjq1EqIKV+Z33wXHWh/DKxzMsZS3JABe4wSKDIetQxyKsWCJLnURDRvFJR3c5CvSi8ozG4r4qTaH4JU8hkJY6x8pUTFMJpKwGuiqXkCJRpWklJ4cL5FliMJx/le7J+aLMwiKnqJLyYJWXWHCVospr9mnlJFuhcEQFKrt0BBxdpYk5zj8xjN7xz2W2/+us08M0ExzQygxjzDIWlLTf569/q98n3wyht09ckBvtlso4myXm50kd103M26r6n15sAfKpY2iRkjJORJEW6WaMDBwjqtCUE6fFVtO1Ok8SFHf9vWeJC8wNolX2kGhJbQzCTWALI76/aaLiUMpAPT9NDM3VVEqLbOM0Tpbee0QSUcosTQh/5O/9gNjO20tskRVJVfZjfc33UdL6ZSLpon9DtHhUiMUHAlNSeY35eXpABMM6L+eIC3nGz6lcaVJOKty47Mco5ZzA35tYGLEIomt+ngQ2RVgKPJz14yhgRJWm4FLinfP3EdDRtRCo0BT1ATHTUPfrIXGiK+J4kgi+IV4b5Sv2YvdehphVJ+L6Mz+/D3y/mn3/pWLbIzbb5okk4CERQNUbzk2eeI+u+vEf+mse+HtPYmq6LLH8ZJJoqa77a6SiK/u2f0S0owu4Jvx9BCi7iZZ63dtSBWrKLMXqNlG59zXfmSlsmaeD3W6Um6Q8b+MC04xyE4AuNgMgUZaCSK6XuE4L+yzTx01GKZPlA/+BVhOZFs3GSavsB9YwtRQUZmpFA2vfsglRlS42w+StQo+3oh0xzAIqiZhjlD5WAjAxS+IBdxgmRc0XW1uUNflT2G+JDFbcsRLsxAqkbaIWcmEg5t5ZRqCRjyIeiw5OpPqzHDrLMhHpKGk9mPRdAdJqtrWWM8sJLJMJFlJNH3/KTwJQEQG4wDBqTZPycZ4RPuC1AKTqJFkjh0o2aqQYY5YER2QpBbXdp1xC7b0TTAOW0wcE68mwl3WMMcM+rSF3Rtc3T4HzzDHJ54wwTwv7zDJGgiMWGeSIBMv08ZZPqvexhrJBlsK1k3VZU/RFBpD9eJAlxpjlTd5niQEmuMEsY6H1TVZbU9nZh5EaKZLUqZBmlrGQ+3jSbQh5CswxSsqvdw1rL/uUSyjUuUIP7ez4fWZTaKkudfzWAGbAPkmdAZbcYn0GsCKSBSxnbc5tQrJtLDLIPCPBvtvFFpf4FLCgZFMsJlEOm5GMZXop8DofsEO7l580kaZCnSTrpJlkKtiNdN8rq7JKkweQ27lp5SDYMxLU+ZhXw/36rX60Am0w9GdfBdLp7LtfRpJNcRRONGX3vuaZL7bhEPq2vwIsxJ+iE2/NwLJlowXc2IyRatnjgbzYaWuHPWgWYeZ2w7Bm+VD2r/LnLOttCFsbK24TzRMjKjqJGXBS03fC3rmnwjp3MzEKnfDM9Da0+z6vetGF8GoeI2ey/l4aEMo5oKFwveF9hH2L/u97GN7Z8Od/QYzc2MAw7CcN7yOS7K4XaRT8fc8S8bEcCjkMh0mB7xEmj4UhdL00VBUe1oDvHnHoqGG3HCcQo2kU75EnfjbQtYRY4qGoHJFmwtN6fpZYuqdIETl1ZON1C2qICZE67YuGc6zBaTOG8zRg1pBb94PcE1V/3phvW/h3g5hFfcqfM41d6w3ffprYECxHRca3XSDmGcvJkiLi4H5w4W/83JDz93if6ObRuZNKU9dsiFgOM01QGDZv2Dk7do8YpVK0fT7+C2LLrgbFrhB88PbxiGklmtiGw0m/Fg8wJeKhH4M+vyhOR5/tmojE7rf8cQprmJ9jNCjImhxHaX2YY5QdOviQ17npZAgQbJVdbDHAkts9DYvpez1UmGWcJQZo5YBBlsK6pegIqcdX6GOWcVJOxjVRC8RWuxN8rRzwOh+EgZsyv4SbRpj3FMBNPmeSFDXHQ/ssMcAdVyNBbOIdZDHsl+y+yvuzgqz2oPBXLp4wUpYSwyxgBVcvBLJLCnxT/nV5/MgS55kL6sW3eQ9lGP8j/kVQI+7TSo0mVugLGEAkpuJcajSFfdK/q6R8SGiEzATTgZgzTNrk27bW2EUGyVJm1CNY5jzdzjCctRFbC63lxfW6fdjUfDag36eVWcbJUaREBisxW3C81xIyEDUQv87FYEHOUeQ1PgifNVRSojzkDnZD3vS6k20iu5SRPcVkyFfsYjPssxVSHLj61Kzjeo9BV6yNePewxQ/ZPgpzl8iyTppeCvSzQpPboPW9flYcS55HLcYi/cZ8IG3DcyMfKu5AkgpUpKBIvwEWKbl7Q/dEgTwt7Ac7r0hGWXqbqPIm75OnwBEJLnGVARYDnnyBqXBdWzmgTMaHy+XwOewi112N2s8SA1zkWlBQmtLTFLvbv+UvxG+G0FM+SQb7pS2AAkZ0aMIpEkSLlYgwESRSQwkYlImARIvuud/43gZGwMzyJEniORvhtSKntAB2EsmiJJGMa8MmoBM82Z6b8+eJUJshgqoiUZmXIqqvRPItY3J2ET1S+TVO96QM3MZAiEDCKaK9oZ0IRgUeBGhFdGrfpv31Ig4rGIi5SyS49hq+p8nebZ4kuQSINUWEaNPtxSZrsq9o+qsJr0i2OhHEaCrp2R3U/XiuEW3UKX8PEXdF4kRa5GcCA0olohJv0t9nmjj5k3KtSFSSzfnzfkW8J4sY0BApKMAqQriXmEm4zf986rqBAbxkw7md8NcNEW0wsmvrw4F+Fn5JBFlFDNjJspv3r73v2+4n2mZPERUFF3wfdI/rfTTZT2P3r0h0iI1rIojH/G8pQYvEht0Sdg9NE39WpR7sxH7WZMmWGlQEq/bjO/A4oCVM6VboD9Xyb/NzWjngDHcCyEhTYZg7nGGBdVdVtXBAnSSX+ZiTvuAYuZFk37NDCuSZYdzB0EkUfizLgoG3A1f2DQZroVRJAEueaZanQB/L5FjjNiNc4Q0AtjhJHyssMRAWO5sGHzHAEhXSIStjmX426WKJAVrYp04yHJ+AwTQXmGGcOwxT5BTr9DDPSFA1VTznrpV9chS5zkWAQHBJ4TTO7BOqQLWyinhSeYKaZwUwwAgmZRfO+sRmkEVe8AyXxny/CmnWsOw1tWuddEvyv+If0Mo+yjwpkQngZIsuet3e3Mo+WUqMMxtIMeUYWp7IbrBQyLoBBGCq1ruPebXhfrF7RUDFyK9N5hlh1+0zCjweYCnYMrboYpoJLHtklct8RNKn6GA2BZGNIpo1SZa1tk6CRQYDkasw7R06aGGf93iLFvZDkLTA4LrbzTUdv8zHwZLdRJVxZoNNBQgKg3lG+JjLgCkZADb9/dJUGGSJIjle5wNGmSNDOahGB1ikTpIiuWD5rZNkikkOaHXb+aATvS3BHp6iSh/L3j69E7a3xclwjWWjACiTYYmBcF7A2qIFttX6Z2DyiAppXmCK9u+ALOVRB7ZWi8BLE/HSIYZpEnA38z1IOhFWsuceX4bnCl9HxwEEJf7xB/7/lJUVUIUTxYdhXe7Z2I1EROMat01UjK3C707d5vgsMeKi7BZMxY2ICDrtr69j63kZs/YWgSyMV2ftjQuENl+Atsojvn6+PZAkG3/QzK9/2G22y7NEp8aonw8NW6W42yXiG4iY9QjDEs8Ti82GiJEXr2BqxB8RLZpShpWx9fodoqIM/55IwiOCw+WYVGWd/v1lIt6U++SEv2cOw2Fp32ai4XVS7CnmRoSiCCHs/Zgh4rIk0bUiMk2EVTdRNKB9GsIwia5DJ4GoDaSqiElZroXh5aKBiGmElxsjYkSSyTbbSRxWC1vXiVhRWKiEDXjlUNn2Y9JnBzmO9BnmHHavvtKwTyJFhd/0EFY7wu5VxQyN+/eLGB7VMF5ENUQLc6MdXQNs4X5lPYqoPYITVx5G8rRhoN78HnGYL7yrQbTOvT4PLPOdKUsD2KXdK8+mUPGDVF6nfH1TPMc+raiAzAqdUq6aSoc1/iqXmGISIAy/FOgf3RDl8P5ZSlziKlnK3lpq6qUDWoMqK0uZHMVQHgagrDg10YMVqCQ4okSWDnaD+k/lFdbeOxfU+Dq2f8NPAmbQPjVRDe2wgywx6LhlgumQySaiSZm3F7ke1F2yMB/5/4uu4F+nhwGWAk6TKlKKNKn7V8nTx4oPektOEybDkHqRwYDF1Pya4IhWDlD2tKI7BnyAqmuQ9pxCDfemmWCRgeBgEGEnZ0qNJqaYpN0JWynaVCrxDu+GAX7jMRWcNKiRCgTZAIuuxqsGxwMQ8OE+LT7KtLKKFn8P3X+RLGwN8UG6brrvjFhsCsN5XVM5XURWrtAXrMH9nkm4T2sgTyteOiKsrlbeNOveGNxKgqMwxBVRJvWb7Us2RNVc4irKOBbxKmLSytriZxTLVl5wp5N9HjEVbAut7AdlrN1bpyiQJ02FST7nItdYoZ85zgfnjiKXRNQrjkaNuLLmWo62FRXmKAaxhYjJv+nxzRB6j/3vUaKkO4ktkNPYQjJEJIm0IC0TM8bAgIVsDf1EZZdspVoAZIdMERceKaNy2KL1Q0LoccjjSxBVbC/5c/uJoETk4iyx4AJs0RYZIwVhGgNbmrLp+SK6IC5gWrD3sAX9jp+LPyKSYAJHeSJpOe7bnvXXyFqw3LC/3b5vmsI1TtGSmPpt249fU0wpwDTN0zk54dt4k2gvkEowRVR0acIrWb+ISZF4276NfqJVOed/Kv71IT+fsmvI4iHF4QTRBiGy6TQx220KA56yOYg4FJBRPomm6yKVNV0WEBwiTnAzRADSSSxdKWKgR+BYQFB2hjU/f+/58Wrq3UkkB5UlJ5Ckn9cHRDBcaDjnn/j3E76fApgipnv97zN+rgRqU0S7rK5PgQj4drFrr2s47d/719jPnewPsk8XfVszhA9flBteL9D6GXHKv+b7XvH3voDl54kE/ZY/FhkKdlTZIBXmKzBmcvImbnCBiudhJDjCiiDaUcCqiJOTbIXXdLDjSqPN0FYmsKMMOAGaWcboYd2JLGsTs+YpU7Rpu8r9s0wQy2p5mU/JUQyTsi1Ocp2LoQBB5RhF916pFEAL+wQ3SFElRZXrXAyExhGWn3aRa6iVbI1cKFS4ySgt3tYGkKVMHysMssg4Myj8uEpTIH0kzVejagc7rgR7OYQGazq3yABHJMg4qFX2mc6vrBoCZr0UHCZYO2yGMm9wJZChIooWGA4KLNkgSj7xzFFkgmk+5HWUMwMGKI9I+KKeZpFBppgMeYTDLLhlthxIuVasuUvT5VbP/sj+BsBROLJairVvKmW5zkWmmaBEJmSBKMtmmX5S1LjEVazkYZYOdphkKtgfVEyxyCALDJOjyE/4qZNZTSiTTrmMeQpc5yKyGC25dedkIMwst0TBzwqYfp0PSFAPygVl/hTIM8coP+ZnrurbZ4su3uMtZhmjTDacm3FmmWYiEHItPn3NUmKO80F5mKYSlIhqyFOhiMhwTcsFsv+SN4OqU+BxkEWa/FP3MAuBrBxn1oneg996Cvu/5sdTm0RclsCwigiSOkGZNrRsajwqREJiAxuEle21zbfsuWFYtwf8wssj7hEHd7fhmOJdRPKUiVEpbxGjPGT5VdyL4mJWiQNTKc4cN/31xGnb7zl/zRy0ffbI9rfbG0OFdZfh6S92LXplzYoUni1s2L59Av5ZDHf/2MMVh4z6udBArUAkuuR26QXOWSPrw3eI+ETECcRh8RGWoabBqNwbOWK2s54vt4EGxsKBCQKJ+HCSQM4+/gEximXWz5dw0XbD60U6PSCeozHikFZxMsIKUk/q3/3EiJBlDCNrcK6B8ytE/KofsV5/bpvv52rD341E5yER98h+K1I3RXT+jBGdLYfAPyaqPzXA/IKIbYWxO/35J4iOl1NEVaSuxwQRr0oosIcNdTVoniSWt7X5uen31+X9/W77sbzh5+uaX4cx3wfh207sHj2NuXv0eaS/4f2yDcchvO+qPCCSvY24vYoNyvVzK2FG0o9RpO23/1chAF/6h0OROyLbZhknSbQUqr12wJVsNVIc0MICw4FwKHs+r7KRd+jgIy5zFJwGR9QcIy0xQIYSVVIMshgsvspNXvTBVjWo3Mx+mKLKLGOsk24YpK2HwWljDrIRbMlARJnizdbEFfpdRWdru6I7RPosuYpedmNZikUwyfr6Ia+zTB9AUMa3eMPrTXcCtGPFcmaj7PKCBxuWakA3zwgqMOtjhX5WPDevJ8SDDLPAAsNc4Y3goklwRAorDevxX5iKulEemoa7wvmKYBlh3gea6+RYC1gBCPukZtQEddbIBbt0lpIfn+Fls9dmgyukyRVmYGTlLGOhyETvJ/xSJssNJqiQDkN9qcZS1FjgDAlXJcoa3USVC0zTz4qTv0kOaGWBMzRmFWpQDbjjp+7qxAFKZNmnhR7WWaaPDnYoYoV15sAYCC6cHiq8zKeBWC2TpcgpBlnyzOrNMGyWE0ZYPk+BcWZJ++ceRRcpp0/nXdndIq1BGYYpLvMRLRygPMo5zgd8n6TOeeaY5xwpqoEEtHKN11Brr4bYck3Jrr5OGmtwTvvnknbUILxDO0nqrAYS6T/9+GYIvR0si+H/RAyJlVJJCiYtag2SbfDv6fkip0SCDWEgqdHqoIlXFSPlfoQtFK8RpfcVopQ/R2xj3fO/te28f38VW3R+QJwsaqL3IlEyfs23LxBYJba07mHtrC8RFzhZFlO+fdkmNG3WfsjmmMNARwVbPPP+PE2XvyAugDreMhFACXgJ2LyIKQNHidejUe2l49L+yBIgwukTP7cCDJrc9RKniCIW38QWaC3Ur2EgZ9S3LQAgQgsiqNf07x5GMInMeokns026iVmJIst0j0khJuAjMk5Teb3vHgZaRERliVktEImyVd+fWWJGoJR5bf78qm9fKsAHxIIYqTAh5vMI0G74djXFrRLJQpFphw2vrWLXXpPSBFGJqamxlHBSwWX8/J1qeI97xNya236eG5WYMw37rZ9VgbdOolpgrOH4ZRsqAr+Hfci5g137N4iT+C7w9eVb/3iBKbcSWsbIPCN0scW/48chj2LZ1XRW/GBqvRxrFMnRxRYZyqHwQC1agC8OVs5w4JZKFW40tjx1sMMRCV7ngycURsrEqDoxqOIAIEyqspSp0cS7vBMmWppyjjLHEQlGmQv5YVucJIs1hpXJ0sUW7/Mmll9Sc3XUWrBhDnMnBCXLBjnJFKvkGWbBc1FaUJ5ejiLTXAiKNLVx9VDhvOeQWPtUlUUGOOnWkjd5nz6W3e58A2XXGQgoM84MGZ/G7tARQIeAnVmg68GuItACBGKtiVqYVIPZYrKUfGps9t4SmTCZfI0PsNDbM4GcqtBDP8uB+DvPHDeY4Iar6c4zF8ixIjk+4jJnWECtdKbAPMkgiwFYqhjEMuHMVmrqzlWylFDzWyv7XOZjVC4iq4ZIWllF9MhQ4iWuu52hiyKn2KeFEebpocIuHVznottRakFJoO2KLFX+IUATNaaYZJYxBllEuYLL9IeA6SaqKAuyhwrWprcYGpyl6Otgh3/En1IlFTJzBHQ/4lVyFLnIddQM/AJTjDAfwpa72GSKScpkqLpVpujAWkrZCj2eYWNFIi9zNUzaRQSeohiAngKd9YEi4/fHs3z1Tf0K+tvzkDNjFFsfIRZRbGPr0GtYWZlIuPeJzoENIuaTcyOFrV1SVf2S6LBoVFZp/Z0mKsPuYmuvyDi5CaaJQ089mrE1V4o5J/q+/8t7kRhZ40mnxhf+/SmiO2O1YZt3sHVWjoHXiIPqTqIF8wFPDiBvE8mTDeLg0Ad4T8/uWttsxY/h50Q1vbYljLPh+3YFw0kaTv//Imi2/XrIcil8dMubbN0FcEzRMEX7Pw+w6/wmEVPK9dCIe3sb9kvqNuEz4VuI+E+4TAowEZNjDc8XXhbOxPbtUFhEThBhcVmGha3TRKVjws9j4/B4CLuHTvufZuLQu3GoqqgdDbaFHeWG0fcK2LD0NFHgUCHiWQ2m09j9qHNTIKop5dqBqLgUXsfPXYkYE1MkOn5EimYa9lv3QJlo7xURp//rXmgk/ySUGCJi8DHsPpcTyzHl/clOe+5TRFfTt/wh9VXNh7VauyzSIYXaX2s0hXVDpQxqbwcj68aY5Txz7PsamaMYCAYw2+EyfWQpey5Z0rHHcHAKpFkPRJIRPRd84HjEik851E560l0iIufWyDkhuBmIsiwlPmeSgivemqgFfCXF3ktcRxnSRoDZ0NOyBfuY4zxVH6ymHBP9mJ9RJ8lrfMAkn5Nw/KtGWJWxdbDDS1xnn9Yn4j9KZFxJtxvUWIqMAQIeVoFWPythWHwKy0EeYT4MRhWrYREiAySpB7JnN1g8s/SwzqoTR8KOJ33wvEIfBfIckeBzJslRDBE6OYq0sM9VLpHgCGUQnvLnTDPhnoBFlG2doxjso31uUe3xiJDrXAyuArlBqj4EL5BngEXAVJ4a9iozz1pu16jQQ5EcKnlTKZ+wsRVvHLHihGsHu6SoBlVnnlX6WSFGnCR4k79kmIVAOlphSk8QDFRpCnmMUm3aZ5Ea+7Q4UV1mkEUmHcs1FqXJmSTieYcOjkiEIjvFxcy4lFkW5zwF+llmmAVOUQzKWBGuVVKkqFEkx7IXxPSxHO6vAnnGmQ2igC42GWaBPpa9eKQjKCvPM8cI84591zgiQXf4Zf6ffnwzhJ4TBs3/lPiLXYBNxICk79s8+cu7k0jwPeBJgmuZJzPwZOUVoTGNAasicdET6TLkrykRbZqa+mmiJ2AjcmiWSNQJfMwSCa/niQBD2xrDwFsKm3BpQYQIFqT+ymCLnIDGof+/m9jses/Pl6yyEAmqfmJeymzDNjVdFphVFovUkcpp0WLajZGXyYbXCRztEhqqmCBOKmX1GCJO36TaSxIB7pHv2yxWinKbOFGWpUHTOP0tJWWW2AwMdk01tW3cfxFQ+rCg7+lekY1Z9t9GZWiWCFrbiB8adA9qSp3BAMsEUUWp6epew/N1/8hu3k0E2roPpEyQ3aOz4RilkrxGVCtKkapHyl8rcKZ7/Bwxa08qUhGAZez6rxGVnFKibvtrX+HJ0o9OoiJQ50ZgfBsDgBkMRI4R77VeP6+/whSDOewD2odEQv4B35kMvedYpUA+qNdW6AsSepEaSSynq4+VYBnYoZ03eR8gqJ9aXNIvMKAciRnG2aGDC0yjjJTLfOQEUdpBQJKbjPIRl9mnlR5vsy1yijrJ0PzU1HBhJFEvkuMn/JRFBnmZq0Hur1bdiqsBI+jcD7kqQCB4ymSok3R1m6miFCybpM4yfVToCVkjM4yHBTxPgRtMsE46qKREFgmMiRBdJ80s4z5dLaOiiN6GfLMe1slRpJ8VZhnjU17GWk9zYVpeo4mBBlJJNk8VY1zhjaD0E1l2gIXlKlxYWTRqJhZ5pGmqCjN07jrYYZMuVuhz8qrGKHNc9CxFFT2oNbmPFdbIMc8IPVj6YdkBa5UUE0yTZj0oHM12bDbwLGVkvT4iwWt8wFUuBaL4fd6kToKTbAUiTtmHUlbu0xoavfKeedLHMje9ZEMtzDpmAW1ZDbY4Gaapaju7yDUyWEmMyOssJUaYp+pgVcS1VHSyS0hVsEMHow6OFDwsW4tlupQD0K83XDsp6HIU6XEb71v8nJ/wb1Az8EWuo1DqCabDcR/Q6rC+FvJ1BlhijVzYz02fPgtorpFjxnNzvvUPV7tv5JsNO2g9foOo/AFbD9/G1pi8fe/hjzBs8zxRRSRscoKYSdzo/hCZ8BoRF+WJg8mJhu1ouCxs2Ab3xzqjSmus4XW98OCPjkelWwZbQ2V31boqQrDb/zwPjycwvAW2HtcbjqdKJCaT2BousnGD2BAqEgdihrJUhGVsYFwmEoVulw2E4hGRNJIyaw9b4xO+X3tE1ZiUcUOYEizn10HRI41kkf5/y//OEl06jYPVXv9bcTHCsSI8C368s8Thd+NAVpl6wl4v+mvlGhAuKhLxlxSXv3ArqFRrbcSCvX5i863EA7KF14nXNUkkNld/45pUiYTaJ7bNx/+QiEfTxOxhXSMpDiFiZ7knckSyMIMRtPrstO3PPUt0P2n4f41YdqKfhzpGetf9nI0TidQC0cqrn4vPfL8kMmh0RlWJDirh7zY/p42Eq66BHvf8j+6tCjzzy+0Yc/Mdsd3WSboqPhviJpRDViZDhXRoyVRofoIjLnI9rKHLbu9Ts6qcADYssnAMDR/nOM8+LYEAsX1IkGONNOu8zFWylILqTZZdNfFqGN3FFi3uDNDwEmJrb5YSV7nEPq0MeH5zo1tBCiatgz2so8gWI57WGWE+2De7HH9YeUeLDzNPhTICDekSHDHLWFD95ymETL510tQdE9WcRKqQDvhSWWwqoxOJquxhDb7VgKvcZJWC1Uk6GbZE1W/2PIUwoExRpcVzDGW9XGKAJmrMMcooc+RY44BWzrCASkOUj32Vl8lT4I4TsLp/qqSwhliLDUlQ5yqXWGIAlX5oQFmliZRfizTWSHtAK4MsUqOJQS8Bqfn+m0OowyNMbgaVo9pkzWlygzIZR4SWp2ilF13USdLCAWbbzbgjw9SBHewGgtdy9CzDUFbgGk0cuENokUEOaKFOMmDyPlYC2b3IIEnqbDqBKfXnDu3hc4HZYtdRWcwigyjre9nVoxBJPBXY6TNM0XGaPhONMcMmXX4ftDDFZLgOFaxVV7ZZqUe1b3Ze9gNJbrmMZo2eYZwld7kIk2rf/qZH8m9+yv8fj6cwImgKW1yUO7GK2UrfJ5Y7dBJVRL0YeEljZMYotghMEe2xUkdJzi51lKZ6snEuE5t2lbcmVZgmnGMNr/mESM4kiMRbN9E2IFLodMP+CFxoAdxu2NYEUWovib6ASJo4Odzw/fk5kWw5JJJ4bf6es0R1V4lI5vUSrSsb2FRMoEoTtGbf7qzv+xxx2j2BAQCRriJABRZ+gS3YJ3xfRILJbjBNnDCK0Cr6NnWd/qxhf8AW82Z/73sYcBRYaSSjdR42iK3EBT92ARqBumU/D7JAiCBcJdpGlPEmO+g0caqbINqBpaATcGkjEmYiuK4R74kNop2i3/9+DbvXpfxrxgCLJpmy964SgWC3H9N7RCtRM6bYE8jT/VPEwFge+OdE8Fr095v01/yQqDCV7VakpYhZZeSd8/35u0TwCdGim/fXd2M/47JJTRPViWcxAP8uUdUgYJnxc/A135kmszoJBlhhnXQgF/pZ4SajZClxjYtMcIMip7jDMC8wxS4dgexIUWWBMywxyACLDHOHddJYnX2SN7hCK/t8wOuUyZKnEBbzHiqMMxuIjDwFkg6qRBy9zFVOYRZQK6HYD5MkFRCI9JENUrJ/K7ywhiy15AJhqjvBdGjx3aIrNOYqFFbnR/lqFSwId5U817nIq3xExfPhzvsn2xX6GwBKKgA8tbWq/bSPZVo54MAXXFlTUg4iSm7BlKrOJrvtjHvbqgiiHirMMIZFE1c9B3EZtbTaPvWFSaaB6M2wDTXvgllqu9hijBnKnjlXIR0KG6Tkk216i65A2ikz0JRp+67iLAYyS83DAvGygm7RxZp/6lVWiYJ+K6RpxzL7TrrabIClAJb+kH8ZlJAiJZfpo0o6gBRlBMr2OsENVuinhwoZSqEld4IbPhm1lrhFBsmzGrL5ZAO/4zaiVqwBroIVTiQwm3rSAd8oN1kjF0CPzq/UAADXucgE0/SwTh1TkhY5xRYnAxHXaGNJU+E93mKYO+zTQouTsFt0hdBpm1rbPbUW2ASbdA9zJygN1Tz8Ju9jTXtH9FBhhw4u8zFqKzZSscyv+d438evnb9djH9iD1r3DSJSkiFEYyk9zgurhBag1P0Xb9COOu9rpsBOaJ+AwbyUXG7lmujOHcQCb8e2cIMR/fJ1r5+nVXcjBXu4ps8RqIKroCmFRrfNVeOauS5OKDc/xoVbH9kPIwcN+OP4FMUduDzgDX59t5+m7u1Ftl7byjnoSmqXWEh4RkTKBrZfniCVpE8QB3y7RKnraz5Xwtdb01zB8t03EXykjEo9JNVcgDnfPErMA2/y1cp78iKjmn/Vr+JsuB2GEXowk3CMq9rcxzFBp2Ff8vaf9+d1Ecghi9rOI1LsYphUWvhWPiVki9tYwVMSayCJZVE8TiTnl+r1HjEQ5h5V+/ACOvU8kANeI4oNRvz53ibEiR8QB/AUiESY1m9ujj31GUPs9fAeO/9K3/UOi40dD6h8R8a2cERDVd/rMpHOSazgPRd+uCDgRg/i+S6Ep/HvOj2XDv//nxPsc3247dg/IWdTm2xjz7dxu2KYUjhJuCIc/IPxchYF60bdRIMbNPMbw4XfgkaHMj/mZk0an6GeFeUYYYZ4utsLAVXEUgx66rwKBtKvTrbisCxCJVA1rWtXjOFTQZOVTBwHXqbBCmcH2tYOwJqsR1gaIPWQ8A3jFW1f7XKU2zYWA7dYdH0iNZwq3bNhHizoZDJm35ogYDA4Pqd9zrKGCi12Pj0lTCRbNFi8fk7PEBoDrTwwH5xlhh45A3EzyOT2s8ykvu1UzH4g+2S/lLJGCvkJPiAlZZJAR5vkL3uEC005AVVFDbgc7/JSfcImrqKiti81AtikeZocOBljioMFFUyUVzp3OQ54CpyiGQhCVhUwwzTQTNObK3eACaSoB/+zTSj/LXONiuNZ5x2qNA1GVeclCLWXiDh1c4ioHnq0nPJtmnSMS4T4cYZ5VJ7qkviyTYYrJ0JoscYEwsBHQ1XD9qzSFIXofy6zQF4bQV7kUnjfAIhV6nvj8oHPSmL+nayHyTNniVriyRp5Vx7U1ppkIoglzO7VQJRUcH1L4WYZ5zLgDs0fX/PyNMB9I9yZq4XyKqJQKVvmUyp+0e8PylE/5Pmrg20SNjCsm/6bHN6PQqxEJB6mnpGi6Qax4l8IJIjkEBjB6iQAvT7R99hIVfxAXuraG12hKJVUdxEWlUV1VxoCGyCsa9qHRCvtnRNvnKrF4oeD7J6uhwJMsvbJaagIq+X5vw/Mlt88Q8+WU03K74Tkiqu76Pr9IVBVqctlLnCxWiWHPZ/wYk74vOWKZwvNEcJb2Pyf8/coN25TKS0pE2US3MYCZJZJfUk3KKqrX6FgERqX60nWQpSCPAZpVDOSsYtd12c/BCeK11fRR7ynybQ8jgnsxELZBvH8EUPC/h4jTTU3JBUQ0bRTRW+bJ+1EEoMiyw4bXzvnX7/p2PvPX3yGGVutryj4RKH2l4TkiK4t+zu/5+XgJuxd/0bAPt/x87BKVkVVMASECOEMsY+kmqld1vyYJIeHhfc8Rm+SKxMyePHYvCvydITYIys4t+4kI79uYLf+bGSf8rXt0shUmWzWfps0zwhKDNFFjmDsBTKWpsEYuLBIprJFKzbA51sKkVJZIkXDKjqg5MAGChF6htwJxktSv0E+JLDVSTDFJBzvMMB6sgVWXlCvYWMUFauqt0cQ85wI4GGSJEeZ90nmSdXpY99yJIxJc5iPP7sgEwky5cwKDm3QxyBJ/yL8k6xkjUvKpJEPk0jALZCkH64myR6yWvpcFhgNA1cRaMnztU44ik3yO8t2qTtrYFNHOY6/v4xznsSyaFD1UgjXjFEUnNK3NKuUKrWEWmGOUOwxTJ4kVNyyyRs4zMjqCXVdqN7WFacqcoRymovu0BKCsdrcuh363Xemo1jydkyZq3GQ0qBRTVJnmQgBtBfKs0M86PVhuYgtj/uld2S5gdtsCeSr0hDyXq7xMiSzt7LBMHyPMB1t2lSa2OMllPqKHSsjLkTWhlX23GRlw7WOZHp8aZ1yNp8ycBYbDh4MqKRYZpEwWMNB6ketUSYXJsO17tCUrxLpMhmHuBDBoTcMtPsHvQWHcB27hrtDzRMCz7qF2dkLepMhqTei17T5WaPFzpp/9v+RN5hlBluME9WAt+opn/xf+zfO38FEDeqFZynqImMcjMO5mvmdrxRdwfAPaio9Cft3GRDPNBXh4ygszytA9dRixhxR2ymXzNbVjbze4PdqWXf6jNVOOAyeovjz7dMQx28R83XrDto/cVlp0Mq+bOMjate9XSAfr5tcvtcM2HF+DetJh9y6RVJTaTWRbmWhZnfXjeBHDK0V/vvDbEDFjTUo8KejAhoq34diHRHWenp/Azt0c0TmQJebuSTl3mqCUDHhTSsZue98HE8dtmyeIiq5XfB9u+/n7+0ScVfd9lOo/4ddMFmMp90RWCoPqGBXzIsz+GVGZCNFlUCHau0XoFfzaCg9WMXLrLhybJipFj4jEcJo4fJXVW5g0hWHWsn/tjp83iRL0GaMEzMLxG/4e3USFnx7CmSJFhR9FGHc2nMNe4ucFDeCF/4Z8eylidp0iWmQdl0iiccA7RLzPz2L3XCNpmMEI0Qe+b7d58udExyD8PEuMJ0pi95rOia6tFKBtDef2O/AoeyzEFX5EKwdc4Q2UG6Z8LdkZazR5wVjCh6NjARcpXkLuji1X+KtAASzjVXZGI48Mu1iLu2GdFfpoYZ9RbjLGrNtfq6jQq49lFOQvgmqWsWCrVNvoCv0+8rLCihYnDRc4g5p7lecn5T4QlHey65qiqZ19WmhnJ9iJ7zh2muKFsH8tnl0nx0WFHsAwoQa3HeyS4Ih1esizSisHYbhr2CYdomDkOJllPAwDB1mi5irBSaZYcuXYdS5Sw0rOVAw3wjwd7ISM6ileQDm/suSK8BOmVbGGhn3CqvpMYDh0DVmzO9jhOhcpkyVJ3YfrNhkRqVYlxTB36GDHiz6sUG6VfLh3iuSYZiIoJ8HK4U5RDLhN5J3ZeGsBzy57+Zzwe9Yx9inH9D1UKNAbHBz7tIZ7sxbG5EY2q132cyZJUwnD7S62WGCY1/mggQRLh+u6T4t/NjgIA3TD4VVXHi6RoxhI1wRHdLDL50x6w3T6ifNdckLX7nMrSulg5wmhg33mMaL3ItcZZS4U99VIYXFJm+RYQxmEkWRMhJ/RWcZIUeVDXm/4LLRLF1tc5Hr4DPDbPL4ZQq+VKB+fJVo1Z7HFVYsR2IIimbVUeZqUaqKzQcyX0FSnUREFkaCZ4slSjV5iW2yOJyddEw2vF8km66MWPYjk4V1/H8nutZ0xIkmSbPhzirgwlYkLqKZr2p8SkUxLY4uqMlG0f1KUiSSZ9a/L0iGbpXL8UgSgFVSMEIk0Lc7KvlBunRRYWaLKrUC0FIjger7hPT4jApNb/l4ibkb9WPRcsOsqhZ+IRl3fMkZQvev7dhsDsiKZ8Gugcw2xpfU0Np0eIwKPkv/pxgCbbCEidbux6+mT00A6QQRqY8TJexkjd6XSAwM/srbqg8E9IsgSKZf28yu7scDlLFGdKBuywFmVJ4G0PljAkwHGSew6vkQkkPHvvY/l4/gHEGYxy4Um7CKh88Rrteqv+40PO+DvkyEqIWQdEVi8Qvy57yZOmPXhQQrDJr4Tj3/P73s4aq8Tb2W3IiyG4FeznbaQ8CliyZPNRLgos2SKF+j3QF1N2cAW2yNfJH7OW16SscUsYywywCzjFHwBn2GMOc47UFwOk6YK6UBmVWligWEO3FIgArJIjjFmaMfyRZZdMl4gH0igFvbDQmSKuKovgLtUSXGT0aB0MgATQaoRbGtY5qBN2caZZYIbWC6e2YFl+ZV9w8KTa6havostz+hYDlZis5iWwuSxiSp3GKZEJuzDoNtbdE5VZiJgMcrNIIFXq9c+rZxki1FuMsrNMCWUek619np8xGUWvT3VzKlmrVWWmoULD6Mm4SwlJpkKissV+lh3W7KA9CZdXOAGWUqhne2/3f5vSHDEvmcbLjDMuivYBBrtuJKUyZCjSMazDxWaLetqkRzXucg+rYwzwxm3E48wH5SlPVRIudpRxSo3fGov0AywwHAgtCx4uertyYPBwnzSAdwuZmeeYSwQlFlK1GgKdmtTie7T45N5KRgXGA5Edpp1AJbpD9l5RXLBEjPMAj2s8zGXw3RUbdAqd6n7L9UUVSr0BCtJj4eCFzmFZfdlw9+TfI5lG5pi4B3+IoA9gfI0FUY9+/G78jgUYaK1cQhbVw5hqPwVf50/HQmTaYJ6q/uuKfuON9pJ27D1NgWPc7aN0KBaAOqQUkyLBrIa3Dlx93iCsMb3bnwd3QuysM4RB3hO6D2YOB4dCRCJON/XXL0YcRu2r48z0FZ5FMmZHDGaQ1jxFJGcGic6ABQx0zjMFjE2TcR2IoIK/rxeIkYRVthzC7P+r6Fr1c+P3kNYPEXASBuTzU+WefkQ8MS9hzGWI0l0KgjfTRIba/eIBW1SdmkQKHdMJ7HcTbbPXt8vWT+FH4+Iw36RUlLL6Zi0LyJKhWd0L7URM351vLLEZhrOn3Bg3ffjR0Q3kJR6ihY5wvCrCNC7RGVqI17Ufun5ek8JIspEXLZBtD2/SMS7Us+JSNTP2AM7f4//D0ScvOd/v+LH9EPiUFx25XO+vyWi7VvuoQ0/vxP+/xQ2zD1HtIDrnI8S8wbPEQsDhQOlzBzC7oEW//MdeNQ4Hga2adb5CT9l1DO15jlHkRxLDKKc2SXPr81S4h/wr+hj2UsuBqnS5AOlZFhj6j42mmKSLja5wDQq7KrQEwiPHl+jlEksC6/W8XFmSLsNFqwsIEWVOUZJuxJ/kKUQbyLbqgrZau7eGGGeOXemNKq2NAzsYyVk4soZMMnnlMmSosYAi6zQFzIAU07STXOBGk2MMcMpilzgBhe5jrLcmqixyACDLIZjW6Efa+JNed7ZDuv0oEiPBc7QRC0QoMv0oRgPKQc1VFVDq+zGUuep3EzKOOERNdj+lP89V3iDPlZ8yGnFclI59rmzR8PzI8fMPU525Sk4yWVK/wN3DYiUkwtFWW/WbnvkarEkl7jKBDdCdEiC+hOk1prfQ5t0hcZVOXQsmmQz2L97qLh7ouo24SSDLGIlElZgpsiYEllUOjbGbHCHmBqtzKYLD4qc4qaTMro+uq+T1Glnh8aCuywlXudD1N6rzwU7dDDCPNYSbT8vZTLunKiHQf57vMU8IywygOzWdZKhbAOM6LSInksoi2+LLqaYDEWH1ty7TL8LD3boYIZxqqSCNXqVPIrUaWGfV/n4CVeWyjRs6N3Jb/P4Zgi9x9gvfKm7ktgv8jeIyp88thhksCmQlGXbGCF1mpj1tkckRooN7zNLJBKK/u/nMcLlHjFXpFGKrodUbyJN3iQWcUAM1i0QW6A2iNYBWTrS/j6yTGiiJmAh8jHl7/kjQvMa28Qg4kYpej8RzEiN+JIf2yv+nveIdltN5Sr+3qtEAk/TPSnArhAJUhrOixZxgRlNJGXJkGXhHrE8ZIKYYfcJkbQTgOwmqvo07ZUaTtkssqPoGmtSJ/KzEVgL3OhYMsRp6WfEDJbG4wEDOppuy14L8X6QZVrTYTDgKXvtGEZ0ydqi6fUysXVuqOG1n/nfIh2XwaPQLDtHZN4XhA8iAfxOEe9XWYOnfVuyBQ/5vhYxAFQhhmRr0nrO//yRv6+uuYD7pL9O9/+Ub3PC3+cBEUxPYPetbNkiSGWhEbCvEO3QIkizRFWAfg62sd88Auff8scIf+0A6xSbPpebYJqXuB5+4avKXLJtI8F2g6R+hw5O+Q2rVlKp8gZYpIV9+h0UjDEbJqVnvMnJslgWSVFl0AstNM2U/P9N3meaCyiMt8v3tu7KvCpN7LqS8CSWd3FASwgtltKplQN2aGeLLvpZZt2JOVW8K+Q37QCgQN6DgmsBEMj68DGvUiJLhTSqpRdAm2ckZKfs0MEsY2ECWaGHJVdlCSBXSfFTfsIiA8x5A5o1TFnuXo4iBfIsMUCfnxfLwDNL6DQTWHhtOSgKs5T5KT9hmX7UgKUmOsvoSJKhRC8FFjiDrMGDDaHDSeoOcs0qe+QTSdkRjIjrcfDZRIYSZTJBiVgmG4KsN7FMkQ52aW0/QHkdOq93GA5Tc9kyxplhhHnUrgxGZs5xHrAPDwLHshgrBzBFNUyi92lljlEK5ClyKhR1SEUo27HKLmRn2Kc13I99rLBMn+fvmTVX9+y+2z6W3eoz4FNX3ZcKftZUVc19iwzQygFdbDLCPLtOkmuCrQmwzu9FrtPHCipWmWLSPzxU2aeVKilW6OMql4KtxzJXbHKe9esD0McyahdUU6DlSa4H4jzPKmkqPP1d8Jk5sbTf1sxDd1V8+crTtnaUsPVjGb7/yb1ICnUSB04iYfbMjvvwFJE0q8IxJ9tIEzFOBY7NYaopDTFFpLjS69gcgdA5dpe4ronUkbsiac+nGU588tDWMDkyjojRFRk4sfoQ9uCLoees2RbfPxFORWzdBbNIPiAO7HRMGoq+RCS+RBqdIGJS/FzdwvDHNIaFRol4TTbaXiAFx6eISkAN0BXl0kZUuAnTeuRH97uH9l7dRMx5iGFAxX6kiAToOQwHTPv+rhELK3qJGH0OwxolosLQzzV/QMSHsrhqaNzprboakDcOq4UTpdRTRp3IMeHwNzHyVJZvqf+a/etrRGwtss/PR8CTd4l53vgxd/p5UXwPfp63ibmKupbnfLvaJz1P2FJW9FNEp4fOiY6xUdG3ShxQj8KxIrHFV3bbWSJBqX0+5+de51lEpjCcBupfYJblZj//JSJGljovRRzE32g4ZyJUJRIYJTbwNjWc02/5o4UDJpjm9/kLet3e2scKBfK8zocknZIztXjaB5E1TytLBCup7JJAwESv80FQRQnrARz4OqwcWCnGRbQUyTHIYlD7n6Low8N+H4BmWeCMN8Iuu3rQok+UvQvQ49lnUuENcydkBldJscAwHeyw6I22RjJavIYcBvOMcOCDbrWVXuQ6QMCRRU5xQKs7ArrcDZFggTN8zKukWWecGdbc9yCllNwEhjEswkMxMglXXbU6TaY4DTW+lsm4vq7LicjlgFnX3Y65Qn/AFptOsIlMNYeNDZ8vcTXs02zIAbPnigzSgPiA1mDVFZFmhRkHKP5mky4GWCJNhQnP1NaAW/blaS5Q9nxCuSWk0LS4lHWUjbjuycymoKuF7Gk5jcpkmWKS61wMWNoyvdtRvl+eQihp04BZqrVG67jFAq2GnGe7jyruTiqyQ3t4vojifVpZIxdyoyukw7mRilH7qnZZNTMbhrfBtTLF7Wek1XFsLjhoFJuSocQYs8GNpCgiiTUkYlABov4/zALv82YYigPhM1ydJAmOmPbiOyCcLykuf5vHN0PoadJ4l1jZvodNdBoz3UQgFYiqMYitSYfYL/khbBERqCgSJ2kCeBVik1i6YftSUel5mtTKZvo2tsCUiConqejewxbn3/Pj0EOWA4GpW0RybY+YMZIiNkeJlFomAo5PiGG1jQSOCKNeIsAr+NcfEG3FIkQ6MdJJFshJIhmm6fX/hSfViZ8RAVGFqLgSkJQSbwxbbHsxICG1lZRqmm5miOBb1k6pEnMYcCj4e50m5qYIjEJUa+r99dpzPDmdTft5nSVOR2XH0PV5iRhanPZjPdGw7Xs8SWAWMYBzizh1PiJagpv9OrzVcI1kt9j214og1H2s1wu83MaKIk4T7a74sW0Tm2n186sJ9BDRMiySTRYdgWHlvWjCfdf3+xpRxdeYJ6MJbZZIJs5hxKPUnrca/j3lz68TM1qu+b7UiR94lPFS8vOzS5yMy9bdi1luvwOfX0FToirD3PHlxOriZQOULdQmfEauqfhihHlGuRmKD2wy2E7G7bXL9LFLB3Ocp4kaWUoBvAnc5ClwkevBlqDGrGkvmEhSD4vfMHdCKKzyU1boo9cnte3EEouPeDUQhnqfJmpMc4ElBjnDQrAgmKopHfJbNDmsuk1BC6sII4GYDGUqWN17gTwlMtxklCUGAqFkTVhpxpgNVgXl0AyzQBM1VMwwwBKtHHCBabbo4nU+DBblDGXSVAKBuMQgf8If8zN+HFRWljFzFKy6U0wywTQKu11ikApp1sgFQFIgzyKDoZADzJrSgmUVynppxG07dxgmRzEQZV1sscRAyNwoe1GElIBm7b2DlTRYcHY/y/zXif+Osh+LFJtvcAU1bxU5RZ7CE9dUQdWyN3exxU1GsZYxm7Av0+/XeIBV//CgiX2GMmWy3GEYZfQpvxEstPqSZzYWyDPIIk1UGWApKAD7WSFJnZe5irJlmqgyyRRn3FYxzgx1EswzEgo1RLICoX3O2t7WqJDmDsMA4bxK8afm20mmeJ0PA8mbdYv7JT4N19I+/JwK1pEOdrEg5JagOpDVqO73vpR9XWyiBuYWn6jPMYpyHhvLaL61j+NAArpnDzn+CVCB5774OmK5Nnh4lkjMQMBwD7LH49rYDEn/0P84CXsvPhXJHuDh8/Dr/u5IJkBsTO0lrs0bxCzXlOXhiZR58OLxGM8xRhzm6n1OYGvjF0Tio9m2/2XmaR70HuewH/LVQti+lEkPU0RrpAbA2qdDYtlY45DwHDEiQ3Es93w7vxkv041hwV8RSR8wDDZNzJqTs0LH3U60P2vg10lUmeFfEw6X20DK+1Vi66siX/7Mn6Oh4pjvgyJKzhExdaPtViTYHHw59LQRaxryl4hW0m44dtuex/MN22hUCmoAS8P/pQzthI2h5pgzrM8X+owB0YUw7vs9RiQHZzAsvOHn4xwxp1tDZV2bNBGridjthsen4d/nfxSvS+43XiuSeg7DXtMYJrsLe288Fe2qe75vs/79TuzzQN5fA3FILsGAxAca7nc2vKfUeNr/Nt/WOXj8JgELH3u/YbtSFAp/6+fmLIbLq/63BAD67JDx40sSHVff8kfNVXVzjNLeEG0xwnwgc8aZ8dyyShiwbnHS141WXuMD+nzNlKJ8n1jOVCJDlSammWCJQaaYDG2o+7RwRII5X+PvcIYqTf7aKuukucrLYX8XGaSLLYa548SfZcCJuFCBVoYSo8wFzGTFHzaErJD2kqoKyi2+zMd0sRlIvCMSlMiwwHAg/pSPq1ICDdjA4i3KZPmYy0DMNWuiFqJMFLMywCLKKxbWk7pOpXTrjjmv8EYgKDWs1hBSZGqJDGqwtyy11eA+UWHHLOOc9MG8iFnLp/uUBEfhuPIUwmvGmSFHkSR1eimQoE6JLCqVq9HECn0B64JZuE+6XVmPLU6GjGc5dWqkUOlYgiPOsODDxQJ9LHPKyUP7fHImnHPhTks4NjWgInhEPunYRTSXyPpgs84dv5aNBWA6F3KxlMly4K4XsOiULOVgmR5mgZoPthcYZh8rEZFTRsUpRvqdCoIJOTLSVBjmTiDw2tkJ+HiCG/S5AypBPVi67TzVWWKQpZD12AXgUS3m8hhjJjh8DmgJ7htZr2WLl6qvi61AzDe6rZSdaKWHoyxw9rf6ffLNEHot2C/+C0RipJlYWpDGfsl/SLRnynL7Nga6KkTl2/PYovQikTQSeaEJHESwJeuiQMxr2AJSIU7PPvFtKStOIGKbMCWmTiwXyBNBhsgmEYYi624R8/W+IFpfRcLsERVZUlCmiAt8zt/3n/jfyi+Tem2DOHWTAm+PaNMUEBBJM+3fz/r7nvNzu0EEt41TSVk13PoCxIX+rh9P4/+lrusk5q4IBDQTJ+Ra3JXRUvTrIduqSL0c8A6R6Mz5uX+PCFY0rbzt7zVFtDyPYdaB00TFZA4D3n/esE+TDcfRSPrq+mpiKbu2SLAKZlUVQagJ9TZRpddGtFJkiQUS/USr+SqR6FO2S6dvG+L1FCkt0FzFyNUq9rMzR7yPlNXSj92rmuiLUMsTQ6HPYD9T2oeyf1+g8SXfZsqP4W1/n35iyPOu75/eQz9b+rA0SrynpdocIv5M6mf3O/DYdQWPAI8eWmi6PIuri62QmaJJnOrpS2Q8i6PJf/nbp1Bl23WxSZlMmIABwfpYI4Waq5SdUiYbti1L5U/5CWqWkgJPi7gsAGs+4TQb6y43mKCLTWSlLZNBtfe7WAGF7KKayGkhlI2zTjJksq2TDnkmypAzq4C1t8lmrKnfGLNO/JXClLOFfcaZYdnnx9e5SNaDnFvZZ5DFYFlY8XarWcZ8gd10a0SKARa5xFU+Z5I6CSaZClPKOkl26KBMhktcpYMdJplyFWLO27YMTNdJ0sdymK7/l/yzYHmQakxTOC3wIj9lPxHpaSRoU1jsW9xuLBCRZp0+ll1J1hQA1ayXkRgQbUcBwsp+E2GpEGEBkyaqKKsx61l+HezQz0pQ/00xyb4TUirzaHfCzBrlmsIUVeRWnWQANq0c8FN+gpWItId7d92tCxnK1EiFe6SLLdqdAB5gkfPMUXLQDoRz8QGvs09LsJXr50QNdMqvkzpPeYZqp9W+A8FiCxaMrHtZx6BQZ1nFc6wxzAKNeSn6wAUEi9OgE7pqXPvWPx5h69ke9qFdgx6tn0dwXEO2Q6IqrR1adh9GGyNwrAzHl+HYKmylumIGHUb2ZbY3onJJOE1qcanQ7vKEmu+4yKwh2Ex02Wt34XGnkYRUebK8S4NnYG/sqaBcf275axJHdZq33WILYQC41/8UteanTBU2QVSfKdcZI3gCyTWLYVgpxkSs4ecvTyT3FBEidZ3IFVlYD4lK+lWiKm8DwweT2PovrKRswtvEeJBuf50G48qApuF9kxiZKIfHrB/j+0Q3x714Dh8niSV1Z4kkkjs2nvvl14bhhJW1fxmii6becH52MXzUS8TREEv2dO06gXNGMJPz579CtPIeEnH1mG833bBtGrZzlkhIybWQ9PP5GZEoFaaEQAIeW4X//F//Anrh8A/8Ned4Midan526/ThfAfqh7f1HUQQhIlD3yHTD/jQOVov+95yfE2HTHNExI5VmN1EZqvOShGN/TvwsoIGw4mE0YO8kunE2/DxoHzf8eY14/hxwku8MNtygmya3va6RY45RVuijxz8UdbEVrHpZSvSw7ja8zbCWWGlYe8i0s/Xf1HI3uECKGq0cMMwCamgXWbhCP60cBFJwnZ6gcCuTZZdYKmFEzFEgM2RzVEayqYzqDLhy6ToX6WLTc44tykNESYE8/SxTJ8kIt33tPAhlZ8LE7/AuQCBUpAADmGGcBPVQTFUnwRizYbCrshAd6xizDHipSJI6P+PHZClhJWGLZJwEa8ey0Ya5E9SHci5IUVYn4QrFFXbpYNNxg/CMVJIt7LPIgOOyFUa5yY/5WfheDxW2OOlNu0coV1pYtxHvgCn+lblbdMWhbJ4ihNqRxbXd87GbnAwzNV+eApf4NFzPLGWmmMQy37bC548Wjy0RllGpgxwJlrhccdHBHAMskXJ7q+2rFbxc5yIHtAai9o4rMfdpYZFBFjgDECJ99DjDAmDFZnOMhoHoNBNODFu+sf1c2DnbdJwlazoQ7t0UVZYYoJ/lcD1a2SdJHRXvmYXcCkZSLsIQWVsgzzppwPKhdZ1qLigwEUYyHLuu3Q7tXOMi7/MmTW6lFam9Tpos5aDuu8xH1F19u++Eaj8rPMtXv9Xvk2+G0JMybI2YFQG2sEqSL1WPrKK9/u/3iIuegJgW5G1iGcQykQjSYnaOmJOi7JECRpD9OZGs28NICuVWaBL3IbZgvkW0bwpUniEuVHsNfzcTM1m08CtXo5FslI0iiRF/FSIJIzXfIbZIjxJttZoaloiATTkY/cT8jHtEK+Y0tsg+T7QGzPp2bhNr5Lsx0vV5YgbLBjHTUPaNz4gWClk2ND3N+/E1Ai3ZBLL+/zv+HAELkWb/X/L+NjbOM83zxX5yUSySIiVSRVeZ1U01aVKkxTE15IrH9NIt2xoLLUSNbkxPek+f2Tm7mAUGOQfZA+RD8mGDAxzgBAGyST7lQ4KzwASz2M2ZRe920oN22ogb6vGLxtyml1pyTA9tSqTJJruLZpklUiLFUpVYVj5c1/+6Sxtgp0+yzpm1CxAkkVXPy/089dzX/b/+Lx+RJnoBis1SmXOke+nPSfKOT/z3eRLrUeO6iDEJ1XXPYeDqOZL/h9hw7/ln7/NkIVr087rX9PscCYg+T/KAafHzfJ4ki9ACRffDXT+Wj/zfFzDp7bOkRDYBtPea3pvx8/4FKQl5kSRdqZG+Q965fvxfknwPBawJmJQXzj1M/qBiXFKZb5LYennsu/aQJBcWeKyibsKPQX42KsK+R5IBf+jHMOGfe55kAC0m75f8dUAnMnJVZPoiE8jvC4gJTl0/yRQt2TT3xEQBsMJISEvBQAZR5hu0sMwYAH2UmOdS+PTJ/0vFoCbfCjle5a1gyEkaLB+JH/M9CpS55G1+mRabVLOXEn3U3T3jIkuUKXBMhllmHEhqD7DEknpXAhTp9cm1OXzBkp5MotjLbvjc/ZyrkYwmeee2Mwv36I6xFjjVQTUARUkca2TZp7tJirAVk7kKMUlis9T4Xf6MHOZdpyALTfpDrIX8Uz4l13iTUW5To5Ue9kN+2eclWCt1FN6xwWBQ+1Wk9HonfolxZpkJ/7Z1BllmjCUuhpTAfGD6+DN+lwaZKKhqtDLoBacK6nUvAmUobZIb8/EzM2NjSObYpZ+t2L6CSHQPic14jTdDHm2FqTHyZE7c4ouLPOUYZ/OM20UyboGqEyx4J/OQPGW6OGSbIkpFO6CL95iJQk1d8jpZhlhjkYmmwm/fu7ArrDHMlsu5C5RZZJIVRiLVWDLuIVYDUNunJzrp6sRPMY8SynTfjnjgiRV6vXGvbdHPZd4NP0KBhTI2VtqzJMVV2hlnibtB2f4Sv7LwyXPPwCm4/8pJ82NzVv+DcS9HG0AOPnulEx7A3cE2OAulM09z9/m2aGJ9+pz949EgfK10F8rw0D26TjQ3JCHVJWfg04kzVh+cIwF+amYKnHgAxXuf2TzWCScqcFJKkmZ7FNUMH8Gp9xy484bgqcXPE5ixQzQ7T9353FJ257H6Ygs4Dw+/hQF3wIm/ILGbBEQ+xCxTxIaSpYsAUNlpNMtoW7A5tw0eywpFtUAzOAQpoEv1i9iL5337UgV0YjUWpKCDGmk+f0iqowZJte8FEgh3Dqt/nO144iHwOuEN/XiC1MSWVFTnIzsWrRMyPKnU+ZikJHjof3eSasVmeaoUDm2kBngLSXHRBBJHraZaUzWmlBOqsz7yn+XgwStPWZ0pIE3S36Jv9xf+fjEc70DbHWALPvudzrSGkApGx5D1z6qmk1JE4OIxBs6KPQkpuE21uuxZ5nxbJaz5LZCv1vS5edK9uE5SWZ0iyeEL8NlUZ2re67vSR1qDSL3xMamZr7pYCps9koz9S/7q5JB9ep5o6uxQiKbTCqPhJ6e5SA1dGfOrJsxSY5wlqnQESLBLL29yLbZhXq51r0H2nmAaZamFkkPAT54yV7mBfG6HWWPHG8eDrLPGUDS26rSSpUaZPB1U3YO2JxrG8ouVlcUuvcH86qCKpZ7WvdHdG42zfbqp0h6AkwEzw2FtYamuJv3V/gdY59jrPYAf8gPK5FGg1zqDDLHmTW3zi36bKxzRTpY6A6wzw2ywqqT8UE1+TIYVRlllCEu5tbpLDcAGGdYYppcKV3ibKW65xUfB5aXlALk6OOI1btBLJQDHG1yNGrafLba9PrQGvdWwJYrhXZhkrtZElzJA3nrTzLHOIN3s80N+EKDcFufYIc9FloIFOMzaE1LZZnnoKkNMsBgSWylgTHqbJ0ODCRZDptzLLjl2w2OuQJkJFoOtlwgKB9GIlad31ZvAUgFpXKVaGXVW4ToDTTLVtSBCmGei2d+IRSdLGzXkZWUzwDqyK2rQQpFt+iixxhCAs02PQ/lhlj5D4X93REf48hXYIcduWMIAXHTAU96WJtsuUPHvgGpipTd3UA0GZoYG5wMg+Pe/vjjJ7R3sodzMmiuRGDuaWCRvnMYKBoFY75D8uzSJnCKBGxkSgKfJVF4rouRLDgoJfDvr7zlFMjEuY5OzJlmBxGLstQB/QioEVDwMklJN1/2YBO6oC/cRKVFLHassNkHmMaCw2d9vyrcp4GzCj/n3sGLoRd+WGLUu4YiiqkTqbGqSlGSzRgK/+kkF2ASpIJDPjGSrAnjuYOCSpBjPkhh2KtxKpDS2dVJXuBO7vmLRnSIBdQVSOlabj5ekIKLiS546RZI+X/fPPE/qQGd8G3Mkg+AdEptMMtRbWKF9jmQ0rWLrpaZjFtNx03+f8W2+R0pI0/jIH0TbxcfpELuez5MCVzb9OMQ+UCc9S0qmVUF9Civy1T3Fx/Je0x+Bq6dceiLW6zgpyQ7fxmu+7Zf89yrWMyRgXFKJs9h1LpMK6G+SjI7B2AV3/Zi1AND3QQDuPKnI1/icIQGdX/KXkpz26WbT6e4jThsXvX6CRXqpRBFjHbi+MMJNAIaxrnq9iJE01Dp8jZAy5rzzd5vR8K9LEsBMMAIVFjDOElPcCo+w933CXmCSYVabvCJ6ApiRya38SAQEaQLu4pA+SgE02eQnoGeDbvaQmbDAvDGWXQbRG5P3AV0MssEe3fwufxYFpUlMrWM27+ELAijf5TIbDEZwxQojEcaRpRZSZTHd1Mm1MTCq/EWWotOpYqXXjaHNL60nJnwFgOjvbvacgbfvYOBgAGkrjNDFATPMkqUWk7skMCYxtXGZYDH8EgWeCVgrUUSJWPJ7McvibMhNMhwjzxGByvJbuc0oLc4uy7HLER0RBFGhNzrzzZ3bfrYYd4d0LTLGWGaINUZZ4RK32CFPhuNId9twM2kzBG5HyXJVl21YIW6yaMk1LKCjTN59VYqUuMLb5Nil4jLxfrawhN6BKLxVzK0wwipD7JIjS50lxilS8nTklgCkC+xwmxF6nKUnoPUS88jbT6zWfbrdoNwYBlX/rgjw1M8zNJxpMcg6A3yfH/F9fhRdXBWKYkyuMswtLj0hQ/nSvh7Cs1ufmgdd6RFn5x/y2OusU4ufh78bZ+Dp8iG0wNnSQ7iH+UDW6uE5dkQ75C05VkN3dKotGr7lM2dtvhYg1Aa/fv4suXv3Yj6LMIwcT4IhLcb+4y48nOZJ/+RTpKaUfvY8CRh6QEr5VAMxR2LOqdZQLZyx/bVtYYAd2DypefQCSc6oJnALKSAhiwEkYl7lSXVpG1FXnfgLrO77FqnmVM34CakOUfNcktQaPHqJpErQuZ9O2w4ViQDCih/js03bmiDVXMdN+8vzZNP+Lpz451hzW3WsmpOQ/Ktf8XFvIdX1qikEGn7o+8lgNY9+L8ApZ+d3//zJpPr5iGSFI9sfeJKNdgGrc3Mk1YWkzWpY34NTbzp7TuP2kGTxoqY+JCbgoB/jaXj6nx5aLavjavPfvUKS62otcrdpuwJXZXc04b9/0X9WwtYkAiS1XwGlAnWlimkjWakI9DuFMRLVgHaG7dPvHSZwXPdEkeSXDiEzjuO+Q7pvZInzFXmd4R4dHIW9RScH4dkLMM1csOJVK4gppTqoTJ5FJhnwYA354e6SY4b3Qllg0sF8MPRNObARNYWx86zZ1QySqDbIupzS1A3t7NKLQg0ULrBLjn/MP6JOKzO8x6B7yw07UKX5UU1ehVHJXmaVIY4c6FLCvaxiCuyQ4Zg9B4fy7DDCChsMRG3VSp1dr11uM0qWOjkqTDMXvmx7dAfwIhaVfILlySbGlurmZouOHLuhXjGA0+xj5Oc7zyVWGcZSVc2HULLaVupsMBDrgR/zPXaxZF2rZSyoY4cCu+TIs0Or16sCzow5NxLN7LyPi1iDW/TzKm9Tp5VLzLtKI08/m2EtoqZ+kVJYwQhMFZNPHn5ipcnWRMqOdgft1ETdo5u3eJV9ukMVkafMpHdprjhhoJt9xllyZYrZjEjWLLm3rHoG2Ig63hRMvSGJlb9hhV6OyYRf4w4F1hkg6/ekwkt6vXY0kLnTwbLjaMp2Y6GDi0xQJs8gG/wuf0Y3+/wz/h7/d74f8liB3Zaka1SGgkuA9+jmdb7LCiPc5GV6qcR1z1GJ75epk6xJLPWL3SO1aHYPsMEQq/zSw+/+ulfLX/+W/y9eT8F/ewfrtHwO/BXwCPiUJNmTdLWC+Wn9dyRgpg2bcH/o2/vcj/QnwC+BLmAfmwgeAc9gNO33gTo2yfwSOAKeBqq+DXmU3ANWsMnmMTb5fer72vNtfe7b/gxY9u3mSB2/M/7/ZVLwx0dYEfG+72uXVLjUfXvdfvy/Av6F71MFzlPAf+M/O8AmxV/551b8XP5ffg4F/9l9357OTQxIASu74GQTK9oOfD/v+/Z+5dfhV1hR1dV03J/7+Jz0MVz1sdnBum514P+JTdx/RWJpFX17f+XbO/Bx/RQrsD7393696Rz/0rf9K+we+Trwb/33Ff/dj0lmxh/7/gVAtft+/i2WsvyZH/OBj8cdzGy33ff/lJ/jIwyM+syPVRJWb7bzyN+rguwxqWD+Y//cKex+/Asf/y4/tgMSCPev/f/yaDntx/6rprHe9+M79n31YPfq+9g9Lu+avaZzy/p13PP9/FtSAMlfkhYpKpZ7/LO9/reKwF/6MdRJbFM1BerAhh9bB092mM9h1/UUxnD9uv9/17d3Aev4fuTjqCeO7oGvwKvOSUoUnSnWzhzTvOSGxOo0Vb3QyFJHwQcKXdhwH4Y5psmxy7qzsgSCiOX37ya5ZjgO4EqstRwVXuc7jLPEKCsByrRS4wav0cUhGY4ZYg0Z/MsXLEuddQbZbZIJzzLj9P2s+9ydY5SV8IeY4pZ7brQ7k8sYTnO8EHLSgvsB6jwGWKfuLDr9McbaRcb5gCwWniFJ7pIDdUVuR5HST56Ct/wlb5VU1AqwahSVR7RHUdCKBTDc5DLTzHGNN2mnyg1eCxYgECDpEGv8Gb/LDLMcu0wlzw5bnHN/OLtG8vCw8zPmnCWtDUSnvcAOC0wyzgeUyZP8No6p0sGeF91dHDDOB1Eo7NNNlhqbLlOu0mCEFb8XynGeWWrkqLDCKErU/cCLMQGbdVrDX6eb/ZA/zzAbYGmWWoRwbDBAgZ04t0kWg5G4S45xlrD05Fbe4Dqv8lZ05dcZiE6kWJJHtFMnG4EnVoQn+bldw5VIyu3iIDrXSra1QmgdC8LYj2PJ0OAS8yErVyFdI0sHR0ywGPfPEheRJ1+FnC8CClFIChTtZo+MA9RgIOckC34uLbEQENArn8URVlhmjCu8TQdHbDDA1/j1F/4s+h/9pee/7B4O4YSabS8a6+6Z8r0EhJ1PH/1aydEYlyAO3v3UgJcdoqY8e+dh2Dl0NQ5snmpi631t/W4CpO6ZbDe2qfcJwPAar952krZTj+xz8psr8WRC533//EMCDHrUByfvmlz3xC9IipB1Uh2jxrLOobmp/BCbPz8iefjJ0qMPA0keYIw9saWaAZkpUrPvPFbnFLHaSew//e4jP69/BfwdUsNRipbrpMAuKWMEDr1CUnjo2NWQ3CGBbmqcP/Djz2MAoxrBg75dKTA+JIW+qZGueu9bJH/gs6QgrwcY0CSA7ZyP45Yfz3M+/rLu8eb56b94ZPfgeT+Pn2N1fc3PT6qV5rroF75PWeiIISeSwlkf6yn//4t+XFIqnSY1e4vwOOdMxZ+RmIF9pGarGI0P/bMFkpeiAOIMyeNP1jWL/vNFrBksWfAkCZATgPceqUn9M8zCZotUF5dJKqSPSJLZLRJRY4rkPS2F1THB4osgDkgAetHHuN+3+YivxEt2DBsMkKeMAhkUALXMGDWfZ0fdJ+zIQyKmeT9Y5mq+qfEGYImp26GcMCbgsfs4l6NpLP85+RArHMsSUTPRbJQtSI5KeO7Ji1eqgG72+YEv3M0rOU8nB8E4vMUlwLzelhkL6wkDYvLBRrvOT9niHAoZu8WlSMKtehOxxdmGSrwFQmWwxlDUNZKoij3f4nVwK7WoawVIqlaxebuPDqrhB7hPd3g5TzMXNUgHR2zSzzm2Iq1W0lmNlcCtfra4yWVqmIfdCCtUXUIssLNIiSlXwqwxTI5KqDby7HDojLYyBWq08ibXmGSRV3mLCr3hr/cWV8KmR2m98tiu08qP+D7f48ch8Wx15qP5/7YE87LioXYKF5tlJmS28keUgkEhfymQ7oNI6hXQ1us1aIYG13gzWHoXmSXjDWUBpsuM0clBMDUzHPM2ryJrHUuF7abINlnqbDDIgFOSd8j7OVTj/lXTtI5ZBL3ErPtqG0hawFKaJTeWXcwkiwyy4TLfrJMqDOiWF7j8Gat0MMECGwwyzZxb3kwwxBrdvlDvYZ8RB/EtTO/QG/TbZKmxwiiHfg91UOUbXl/+da8vhqHXiQFXLRhoUPM95TFQoO7vq5FAFIFuHf7eAgY+yOvsFAZg1IET2MQxgAEIAvEeYBNBJza5DPhne0gAwzOk4IBWDKxq93+LFfe5H9fX/OdHTb9vJ/m9tPt5NJo+c9KPpe77+jrwDVJgRdV//1skn78T/nmxGZ/yf58mBUyok1X3/XWRwDyBdKd83Pcw4Kng+9DYSqJwidS5xX/f0zQ2z/j7uvwYnvbz6PT3qSgXA6vV/93lP98lJXw9JAFc7i9Dl+/nBAmUqvlxPPTtqdDIYAXGMxhQdIDdI71N10/sSt1P7X7MedI9J1DulI9Fe9N7n/HjfRq7f3S/CtQ70bTNb5Du2TrpXtJ46JoeN42nXlUf8wPg176fuu9LwHKrn1ve39/i5/i0f+4k6T4c9e0ekIDKNh+np0jfm6qf1wF2vapYsXXgf7eS2ALP+DbF/Ovx//dggGPd9/WpH++G71cLo5z/rYXHgZ/DI+y+PCKxHL6YdsLfuNervB0hDL1UGGaNFUZZYtxloFl26Q15HuCmrZZs1u5l3DhLbFMMUEsgiFJpVxlGYRkZjqnQy7d5g1d5O0CdW1wKA9x2jkICeUgXSmlVN1gT4AFdLDLJHNP0NnUngSjA5EmhBKwJFilR5Ed8nw0GaHFQrUYWefepK6uO8xwvUHa/N0kyTVZQRqEWtx2wEftMHn9jLFMm774cQ5TdO6RIKbqX1uFtIO9CRdIr+KOXClUsGKKPEpv00041WFpdHGAmyDZBCwi9xC3+j/yvouM9yu0Aekr0sUM+upIp9KOTIzo8eKEU1HyTtvbQzb6nqBp4uUsv57yI6OKANYbZJecFRzvtVNmmyBbnaKXOGsNYgEoXb3KNMgV26WWVISZZ4NAf1jPMcs67/Ee0M8QaA2y47NU669bRNRB3kQlucJUCO1xinte4QTf77Dvg1eXF+z49zPISs8wAIP8cIArtYdaQEXSesgshGrRS80InF2EdqwyxRzfmGdMbfiYqwnXNrMg8iqJfi6Vh1phinm2K0QnNeiGiQJMSfd5Nt23m2EXpZh1UA5hdZZjbjFBghxYarPiD2GTcWReZ5JAU+YBOVhkK8FySG12fXXIBZn/pX93wUOwcgV8C0irwzHvOnrtPkgo6iHC/cJLHbfDg/FOwA0ennkq+YWUiQOzxGfjLQUMCHw66H53kkGK1F3zbAoRUe4HNvQLFduD00iMDmcQwcvb5p8+dSaCjmGQurXx4HhreqD2hujIDj85aOm8wqgRoSPlQ8DGRDYf8y1pIoNZZ/7ysVSQ7zWLg0xRJ5TBC8skVq0oyXVllaOw+9P+/Q/I4c7nuyZ/55wWw6phpOgaNoYDH/qbtC6AtYDXlCAYIzfvv75K8hgUYSXb5ezwZkvYJyXKnQqqRVWvJ+iVHYgD+Dk8yJAtpvB+LyXbPj0kWOmLiFUnMxW/6WE9jlkI6L6lYJEEGA7m0VhAo10IKmNP92GbvPSFlUnNjXFLdbzaN/X1SvSbl01k/H0l3nR15/49OJjXGIEltcYEk1W0jBatIun3ex6uFxLaUEidDsmlxBmcAlQJxj7F75wzJP7nT96d6WbVikWS104bV8/f5SrzEVpPfWIMMHRyFhYp5/hr7HVJgBsAaQ6x4+NSEs6CUDrtDgSX3NO7igJtcRmmaGwwEE65BC8OsYlLJBTo4ct+41lAGSA4pj7MjD4DKUQnP5xJ9zDJDmQL9bLJDwevFigMTxhx8gTkWmWCEFf6QP0GhC5aeWmGa99mlNwC65uCCItt0cUiDDN/jxwHCSbKp2qPugJxsUrrZ53f5MxaYZI9uRlihlRoF9+YVYLrMGHvOhjSgxhQNB1hyrySZ3+H1aAKmZqxCGw6ioW3BDFYPqzFqwFLdQdlj5GF9QBd9lOKz/WyhsDo1MmUxosa/pK1SJ1To5cgDSlYZDkaiFDQW1GYqn3UGkUdfjSxlClEPvc53WXMpsYDAHQrRIL/OGyi5GGCKeXYohKdzjVZnkh57iISpWFqphTJI9bwanduY73SGY1b9vl7xoL0qKRVW9RtYTalQmSrtzirMNLEPt6lh6ctb9EdwnwIzpOhQcu0kiwHUlShGIu0BXe5/uOQAZy7uuQwN9rCE2wUm2aYYKcYDrEfjX/ZFDVroZxML0bgNmN2RVDn6u+aWLkr1Pfsbytm+GEBvEAMJDvz/8hpRAdNKAqBaIdiEPaT0sK9jE0k3SRoqYOobGOghwAL/dzcGtkhC+XUMRKj4Z/uwyeQRBiwMYkCJQB5NhFXf3rMYaHKJBETW/P9n/Py6fFs9fi6ajNv8vM7B8W8BL0J95oSd32MSWNRFKtYEgJRJYM4z/p49rHjowECdc36+Gf+724/haR+bQRKjSjLVVqyQ0Rjt+XsEaj2LTa7P+vF0kCSpZ3zcBRTdIwFI8vl41vfzgASi9ZHYjqdInh/Nni+7/t49P46/1bTfAhzPkAC0p9O4Uvftd/lxZ0mmvCp+TpNMm8/4sQik0nUQ+HaeVFBq3J/ycWslgXVPYWDvsG+r1/d9niQZ0B8V02d8ew/9WqlQ1+sbfl5fI3UyJdvuhMdf9/8/8mMu+vYe+LipiM1i95DuxzbfdzsGIrf6WDzjfwuI/hWJJegMiHjv5ySZxJ4fg8bh69j9qO+hmIJaHNVJILzuJ52DCvYv+euXnGODQWreiRKr7hLzzDFNllpM9sOsIgnELDO8xwx/yh8wz1QAZUAwhSRBnGKeMvkAgyS72KFAkRI5dn1qXXsCTBhnKXwdutkPhtSeT4g6VoGHoqZvMBBMLAE443yAklf/lL8bhYjCGcxoOc+egyxKzNqin7wb2+6S8+M1cG2I1QC7NNlJKtxBNYyRregqYD4m2ZAFb7h05Co3qJFlnqmQoColdZ/u8Ddrpc4qQw44tlAhxxzTJvfzzpmMgU0ycptRVpzef0wWM7jW8fa63FbykVZqXmgXolu3wig1smRoMMMs3eyFlLlOK50cREEjCUo3+1TpCJaaCv1B1oPKL1lnjkrIXTWWzSCywLS3ucIc01GAaWy03w0GAgS2ZGH7/D7dLHEx5EFitun/iWE5Ti8V6l7wdbPPVW5g5twmQ5lgkR7vsE8zxzCrFNhhilvcZpRjMtxyT8gCZUoUeZW3XTLdEosjMUxz7EYhZol/heiE676RAXGJYvjiSXa8wigbDGChHzVe5W0A8pRD2q7CVmxPGY0LPB5kIzxglIi8zBjLXPD0YmNmZIPu9SV+fQ5t9+DhBAY8iSkl5peALElYxWprg9ObjzixCAfZLmiDU+ufp+0KwDprrLsuDjjOZNg59TQnShhQ89C2wyRJLqp6oYUAGh6fI6XNnyPZgQiAcOCqq3bwRJAFkBjxQFuZAGQe9cOjPJxchJO3fBvbpJCJ38MAj3s+Jq/4Z++Q0j8FXOkY7pMYUzmSJFKA2p8D/xKeuK1Kfs4C51QznMJAqr/j27tDskaR7FR/LmC1nmxfLpBC457FapeCH8+4j+EtUijelH/2FEmKeY/kTScZcIEk37xLUsi0kBQH50kedsf+f4FWvm64/+2TiRjQQjALH75ix3FCoOIgCSBTQ1LnLCDr55j/turYCxjwJbBLwOwD7B67R2LKyd5E53CPBKydJSUDnydJoKd8jG/7vq/72LXB3Yk2e+9zJFYgRDIwp+D0/KP4d4CW15vGVYy/T0igndYLZ0jMy3skZcakX4uMj00/SQoue58H/rmHJPsj2b9M8ySbUEDqWf+7TlobfMlfz/ExAz4/CBA5oIt5plht8otVMJjqIv1MYJDmFAsRywfLK0ODdbe8EDMezL6ggyOAqP02GOSIDkZZoc/rhF16o1aQX9waw9TIUiHnYQTbFChzlZ/T6seRpRb+bTsertEgE8oK1S9iRQ2w4XNwnzP++4IZX6KPHvajXlMohs3jxjjMcPwEi26cJXrZZddBLgFvF1lig8Fg3gvUXPek1ovOOjNOYy3AJrEFxXITc9LY/OPIc3eJcZYYZ5KFaGILlFOacQdHvMxNJlkMsLSdIwa9kdrnAKBkpKsMoSCFeS7Rwz5DrEbNVG2ySilQbmqA73ORpfi3VA4feH0jb2mrb6z+GWCD7/CTYLKZxcxHXOen3OQy8l28wttxPN3sBwNxnx7kfV32tYdYaHVfJ+g4xIYbZ4l2jthgkCx1hp0x185RnMse3WEj00o9muMC0ySFrTmjToFkHRzFGLRTDXDvbV5FIYF2ffup0cqq18wdVEMmC9DsA2kkhGPe5WW62aNKR9SzecqM+/6qDp62UmeGWeTD2HxPSO0kn0iNzSi32aeHBi1xv/8mry+EI/O/fhlO/23sAa9iRxOY/D/0wJbk7yVS8dLACrr/BOtyPYdNdKewSe8SNvG/5L9v7s5BAtVOYQVKFjPcncaKC8k9Psa6QQXfryYseVBIHnEH8x47jU1km6RwDtHvBVZJ2tDseXYWkys89xi+7e/9HR+Pj0mhHOf8/c0SSbG9XiAx3u745yVZkIRA0oQ7Pr7fIwUpTPjxvkRKL5vGZL/y3xNT7rskeac6wpIUGXsHmwABAABJREFUD/rPx7EJWR4lOs7nCUPgMHNWN1zXWtsQg/AYK/jU0d1sGm8V9NP+ngn//QQw1LSP3/fz1Gc2iRSwOMdxHz8Vb5D8bdZJkoEa6X7SvfS8b18AGb6v+yQZ7bq/T9sQkHhMCidRh1kg94Wm7Uj28BJJatzwc/kW6brO+/n8Z8AYyStH4/KhH1+R5P8nicRLpG64GJY50vfyAUkWo67pEKnbOkEym+4kLR5Kvs9/QPLiW8Su2yLJo1Ed6wbcn4d/PMeX/vUZeZ5jO/6fvE8suauPEp0ccJOXUcR5i0+oL3OTAmWGWY2umbpZ+3QzySLLjIUsQKwtTRo5doPp1krNGWsGZCjNdojVMJ/tYZ8PGKfIdiTAajsqmkzmYcmr6iiav9hQAGOKkle311hOJlU8x1bQ4NWhNk+67pjQZPx7RAe3mOIqN2KCFFPvGPNbk89Jtxd98vkw6av5E5rJbydKD1O6mfnTHEZ3r9d9AIEYwzGWoyi+zLtU6YhJ2JhpeX7AD+l1kFCyji4OeIsrdLPPbUYZZynkKZIpHJOhRJEp5pEHjIoedXazmIF0P5tkaMSYAyFdaNDCCCu8wbeRb5/kCArG6HDvji4Oo2Oojq0KEl27dqq0Owi27gxLBWWAeZ2oi66FQp4dL8qM0bhDnqvc4IgO5pniVd6mlVpIeIAohLv9PrQuc0cAmgow6WafS8xHkXzs0iRdS8lzh1mNrqs63UpMtkVQPhYPJkkf4SJLdLPHCiOMcjsYEAqWOaKdBoUnzKENOFwPBq28HIdZY5Wh+O68wBwHWHquWBZvco0xlrni4GCBHXbI80z4fnyJX22YX9yHwKCBZyc+AbLw+JvGujt15/PEevqIFAbgc1Ph7j2bqw6x+VF1wx0DCtuAZz/+lF8/d9bkTM0gEPBoAir9ZxIbUOCDGm+q28S607ysee8scN/90QRGOjj4+FkDFNvUyPP66aSYWM3sq3melGyexWqqT0hA3RQW6Ca1QYv/vkiq6+RVVrLfP56y1NQAMAWinfbzOYeBTDQdj7ahOiRPspL5BKvV1Ij15uj9V05y+v/xKNnYyDctgzHwcqQVxgQG7BRIzD4BTGreCpTT2M9jddrPSbVZjuQNfYYkBxXj8ZgEPp2z/Z6uPErhdqp9LkC2Rqqp5LMnkLNCqml1jKorfw6PrntIShmrjfBjGWw6H903YpCKcXqKBL5uke5fAba6H9ZJ6xjdJ2XsXq3A2Z89tGtb9G1JOp3z7Q1isuApEkCL/1trKNW653zb/T4+C6Q695AnPQ8lTdbYCbguNL3vdNM+L/h5SnotWbJYow3f53v+2X74DUMd/6N//ZJv8LdZdhOOAYY45hALrxhmlZ9ynWnep0KOAju0Uw0Qr/llYQ3H7FCgi0OXk1apeoPpiltdbLgXW54dqk1WFmaL0uE+dsPh6SbJ4E0uk3c5qxhMFgq2ym1nqJvcdS/mcLPsyEcTUWESecqsMcwc0yHVzHBMN/vO8LP6S7YzaojmqLDqUtp3eZkuDphlJppnZV9oGgurI5rGOs9eZ5oJyDT2VaerJLYpUmKdQZRoamEHpo/Zop9hVumgyjGZYOtLKt3hx5dzVY0FUOwF48/O/5gBNjCvvWywv3LsUieLgkFuM8oIKwyywY+ZZIxleryxvspQ1CV6KaRLycdjLLPEuHvnFaJ5OcRa/MzscGzsF5gMWbAse6QcWmCSDxhnhlkmWIz7TgoH1chDrEZQiaU2m2RbDXDdN3NMc5UbyF+wTJ5W6gyyESoFNcwFpn6fH1Fy5pte8gG3+7eFDQYxX8IetujnKj+POlhhZ7o3+339obGbYJElxslSD6alrIBWGKVKO2sMhXrFLIiqca+JtZqlFjWnhfjZe1YZjntyn272MI9BETe62WeWGaaZY5dc3H87FHiZd1llmBMhWfz3v74Y0VsHT3YONTFWSMb8t0m+CS0kv48GCVg60/T50xgg40DD4/8lnPhjbAIcJzGy7pAmVE2IZ7GulMAvASCaUNTh68cANnXa7pLi2iXrbJDkr+pKCrS578f7km/7E/+sPC/WscImjwF8gyQ6/gOSZ4pAUB27A6CPJ+DEG6Sr9ry/9zoJAMTHt7mgfNb3oc7rJimpVJ01ySxOgcv3UzdYxYaKmvMkr4sJ0oQusO4VP78aUXzwCmnCbpCCOSZ8f5dIXd97PoZgXWxd098hFRUCqU6R0mcnSJ4i6laWSEX6sR+frrkKyxZSEIkkBGKF3ieFnaggnyaS6fCFSRQq6urj45wnFWgCffMk+YMWLiqezpIKY4HLD0kyCXXw72IAZ47kVyPQ7fdJHjBZUhdcHj0VEqg76OeQ8XOtkAovHZvG6hLp+ziIfVeuYx3gcyTw8HlSZ3+KFNQiSTJ+Xl8Rhp7M8jcY4BLz8aAfYCNALKXBdrPPPJcoUKbdQS9Nfv1sBZ19hVFknqxwCvnCNWhhkQkG2PDOaEvQ+wVECXwT80+hG1PMM8MsH3knNMcuZQoc0cEwayFjUIqaip0SRZdRmnxjnKXwSLGibAAgPPS6OGCBCaoO/FlCWp0SXQyzFgCgZLLHZGjHUtsqnlhVowsZ32apeXeu/QkzZXmPLDLhIMxt3uRa+NEIxFK8/AKTyEB6i35WGWacD+hhnxVGo/OXd9+4CRZZY8i5WeY3AnBMhnmmGGOZNYYoO4jbS4UWp+nr2ikdt0gpOtRb9DPCCotMItNmyY3BChp5wAAsMoHMs1VQrDr7SwX4MKv0OOsvxy5dHHohuI+ZEdfY8EK0TitjLPM2V8jQYJI55LVy6OO+jqULt1JnmrkIjFARCQQjzhYra7R4can7Taw0SXb36eaH/IDrvBHpvg0vSRXgUaeViyyxRzc5KhFioWK0j1LIJOouLT8mw3u8ysvcpEiJDxhnjeEo0JsXEs2AqViM3ZRDLp53j8oWGiFNXmGEDQbpYT88elYYoZcKSjAe5TZFStF5XmI8QmOKlILZ+WV+PToJD09Bm7OGPnj+PL+9dAdaoJaFU+98nuZ4gSkPSPVdm/venSY1CB2I+vR3ztBVO+DjfD/PffRLvsZdOH03NRcBynDyDuxM5XnmwT2bo85htZqDSrUstMmXTDJJAVYZf/8d3+84qRFdc9lkFj4b7OTpxqFtU2oZgTN6SQWSIdW7apSdJ7Ht2kjJtPdI9aHm7vOkOfu0M86eJclSxbCaxACeRRIQKLBUNUozWCa/QHm3qemJnfPp0qNUi6rhXiQlvX5ESmS9gNVyqnP092I6bj4i1VjfJLHGVDud4QmpbIQ6tJHqKQGOmySW3c9IcmQBmTUHPX+/6ThqJIBQMlPVkZKkYts9+Q52fVRr50j3hdYv93y8mu/nZ0msNvnsqabSOGw1Ha/OQ+uZBmk9NUUCGyEFYiyRGqj9JO/DB9j9qhoZ35/G7Zs8qSgR0FkmsfZo2t/Zpu195Odf9OP+iOQVXcaulcY0QwJ7Rex4h8QyrZDsjL7krxZnvrdSZ4hVRrnNAZ0hfxzzRJY8O2xiyaVFSgyxGpYd7VRdAloNGWDVG1Y7FIKpd4wl6FZpp5fdaIKpVltgwi1ZbjPMagQ+NIcYbLkNiZqFUmQMsBGNNEisQvk5l307Fu5Vj7lfgEaJIkpnlQJDdhxZai7pXGCfblYYZZwPKFB+onmnRqLqSwXAmUdgPhjz8s+7xRSD3twbZD1sVlYZ8v3WgQPqZBlyX2E1QnvZ5RaX3OPsiLzbb0iCDAZ6Dbo/oVhsqgvkS1chF/P/DnnWnJUp793rvEGVdlYYZYFJh4P2A1RUHSg5J9SDqZnhGPkqHrk6Y4HJAKEUGNYg80Qd0urjuOt+fALWgLgvL7IUtaiBZi2sMMokC2SpM8tLHNAZdjHf48fsuAexQsMs9G2BfXrcuzCLwsVmmOUmlyMkb4VRJJFVKJvpjSxpVvYqIhTIQ7HmHnoKOCmwwy69mNy3yipDnPN1lUBu1f5ikwLuAZhHPtRHdITKSYzCXQdjpXKqemNaAOUA69TIMswa+/TwOt/hKjfYpD/SjXWuDTJc56d0ccAmFqbymz1PvojXEJCBhy9B2zqJ0q9OjJhkAluO4f6LJzmdfZSo4BmMBaeCqAKfPP8Mz25+Cne8qHvJfq6J4NElOFnxzz7r29n2v8V4clDl4TS0CWz5iMQWuwCfnj/DMz+5FwXPo2+ZVCKAoykSWDdN6uI+Zz97dAlOigXWIHU8RWnftL8ffcuT1DSBNnwfmgjlP7EJj8fhOAP7/3knT79zmJLZRP0XkFQhhTZAKrAEtr1HFBaPsnDwrTYatPD01qH9XqCjJl+BXn7M1LAioc22+egVOPlx03lBSkgV8HWaJPEQsLTj2yr72Ety8yzW3T2ER+eh2nmS0z99lMBVFUfqSl4gUf/vYUw2dUMF3EGSAmRJgKK6veeA75qXygl15SHJEUoksE+F11n45dTTfIPPiNfv+PmqABv0cfrEj1PFkRiNYmVq0aJiT91qAawTpO7uOXj8oqfANXeDXQ70y+mn+cb8Z0k64fKPhxPQJhC3+RhypKLTt/Vo0GVBAjf1fToFD4pPcar0uRl9n4Nf58/ytZ27Bi6+YmP3IPcUp+Y/t+v6Mz8OLci8M/3oJb4yaWYrPMf/hPc80fYcBXbYYCDkrItMxuRw5CmglvR1gX62npAkqCC6yg3WPdJcgQCQWGXyYqmRpZMD9umhRJ+n4244QLhJnVZ2yTHFrfCjEMABRME2yAYfME7OATJ5hGU4jn8rAEEdyVFuUyYfRU6WeoQHGMC05l2rHlYYDTr6HNNMevGm4wQcHDx0RtkxSpIdZpVVhsMTxbpbeef4PZmiK+mCii5JRBq00MsuZfLR6ZRXoOSkux6cAVCh14HVEbo4ZIlxWqnRQZVedqmRpddDR/rZYp2BMHVeZyBYZvI8tELWzscSxI4CYKrQywDrNLwgX2MoCrosdYqUWGSCfrZYZYhZZqIAlbdKqxfFAmhVzNccRGrQwiAbYVLd7cBUgwxDrHrBYoVQmQKt1DwZtg8lJatTPMZySIGtuDE/EL0n553aHvaZYDFMmHex9NpLLksF6OIw/P0yNBhjmXfdVFrXUEbZox40cUwG89tZj+78joOFb3KNCfdKEVRYpYMlxrnOGyjApUoHM8wimbQKbckkdG8Osu7dXAP2lE58jElKVhgNKU87VXJUmOJWgOFiOVqKc+Y/+LPnb9rr5K+g7T2CFf7b83eisdrWzNzatDni5DskPy3VIBl47B7AJyB8uZ555x6cgv7xLdvGDjzOwwlvzn72O51kOObs3EMatPDJt57h2X/6aQKGLthn2g5tn48uwckz2PwtyeQmNkffJckcxYRTvXQKnv7Joc3tLv18PA4nlkh1B1hd4ZLXB9ee4tQbn1v9+5BQXzwahJMfkYIFVM+IeXeGdPzPNb1P7xn3f7dgTfQsT8qHb2F19Mf+53TT7+41HWNzLdWsSpnw/2dI9dJ7JPByh5S2KjDwFyQmXDOI2ebb+MTf+1MMZPqIFK5wt+lagAFBqs3Wfbx3sPtkHavVxbhcJEly7/m5/jlpjXGe1NDuJxEOxAwskqTOz2G13gJpXSMJ8gQGop319/jv7/5Rm7HqsiR7GtWx+N8TfnwTPk7n/HgapHpPa555UspulqSm0bbvkRisurZiHi6SAGHVfxk/f61tBMRCqkvP+nHKZ/Aj//0p0vpBtWUWu64C3Y9JQSpl0vWWnBlSM/sr4D4ARPNzlWHOscUaQwywwRzTDLAeioFlxuhxxtER7TEfHZOhSjut1COEa4c8u/RRdDBnjaGQ0Mp/eYMBOjkIkK/mTTJrHpYj2bRMgQkWyXlTUCw887C15mUvu6wyRAsNamS5zQgvuO+ugtOmuBWezCuMMsxqHJPmfyX2inW1Tw/bFON9WW/yWqhDNljwQDTRFDICMMJKNNRUo0jKOspthhy0/AnfaWow1kMumfF6skKOt3mV/4J/wi65CCCZYZZ2jig766/VPbAtoK2EfO/WGfD5/8jZ/i00h2TVyDLEGqsRgLHbpA6wml8hEGrY18k60Lj2BBsv+V8bsKcQOGviGgOuRNHtebrjWIZZ4w2u8wN+6ICgpQqDEQ9u8Brf50dsuPdec0CKLFokr1UzXjWOgs3UtJR6ZJYZ3uYK3+F1V+mUwstQAPIIK1FvSjosb+VRVtihEB7P/WyxwASj3GaNoRhXWQMNscY8l9iin152qdJBLxWOydDFIfIQb6FBj4Omi0xSozXubdtnPsDARSa5wlu8wXWu8wbyR5bPdS8VOpydJ9CvWd3T6hJja+rneYProWqpk6XFFVsf8xyWCvvvf30hgN6jHvjsohVPR88bWt9BlY7vHnF65xHU4NPBMxTu3jN/kwk4ynRw+tw9Hp03MOzPz/9tZh78a9pKZj5cc634r6+f5Wt37iZa/Hli4jo400bP+ENOPICP+7/Bc2d/ycMz0CbA7RgD3Prg5qlvMvT8KnWyDBR/CUDbHbgz8XXWGOK1V97h5C347JVOjmjn1itTXKu9SUfxcxbOXmAy/xEnSvDZ8508feeQz8530lE74tS9zzk400b1TAf5/F02znwd81aqB4L89JlDHhSfopQtcj73KzgFf3X+WfKUOaCTZ/k0AT7OQDvxAKrFkwB88soz7NOD+WcZhbQ7f8jWmWco1MrsZ7v52qm7PM7BztkzPLN+j4cvQeXUWbqePeD00iPuXzjJesa+PMOs8fT0h/zl+fMUXjI/padLhzbpnoMH+afIHH/O2qlnGbn3CScFkE7B2hkb5/vFk5T6ixQbJU7fecSvJ87SXdun9dTnnBS93ouDO/1fp7W/RvHeZ7Q0rFP6yfPP8OydT/n1+bNmDvngkKNTbcY+euUzTn5oKWDHGah+86R1h93n5t/0P89/cupDHp2ye2C7WOS3ip/AMXxatPts5+wZMjToqB3RaMnQ+vARbZKi9MPdYhstjQandx5x97k2Oh48tAVGDT6bsnvgG+XPeNwCc2d/mxfLfwnAg/GnaLRkOMiYufngsxucrjzibr6N+kSWjsYRpwcfhSzn4XmYP/W37IE/dcjTHx9awtkpTzh7zo7lbOkhj8/DCTELBu1YHudh8+zTFP7oM+ptJznOZKjSwdfKd3lw5ik+Yoze8Zs0WjJ03XvEXP9vM8QaFXIU20qc/uQRDwfNxygKwWfhs+c6KdFHHfPyGn5llVomS9eDQ9rOwmfFzig2SoNdtFKjSgfP3fkld6faaJlssJMpJPrwd+d45s49GIS/GrQKs5t99vPd/Fb2E6qdJ/nXL45hUbxf7tczbKO0U1v01+jAghn6HIzJscskCxw7ENfNPoOs0+5dV5PImv/DAOscetcsRyUYfAKyJBss0UcJM5FVcpkMfgfYoIOqy0BtxSMJgF5Zaph3XB2ZBAsYW2MYJc/KI6yMRcY3nE2X4Zg+ShHAILBN0sUVRihTcKnCLi0uMym5pFhdzxJFJlmMCVEpt32UqJNljmne4grf48cMsRrFkAAp/QEDZAQ4jbEcYGU7R2xTZJXh2O44S+HTckQ7w6wGAKaCpcg2Jfpim0rsylOmRB9FtqPT3IL5zwgsbGZtSU4wwHqEgljCmY3LbUZZZTio+gKq1M2eYZYj2umlwii3yVLjA8a5zSgzzPp4jwYLTMVvF4cBJKsYlZR0h3xIrI/9fh1gPaTM/Wxxm1HaOXJwr8gCE+QpM8A68lLJOYjczNScZBFJfcR6XGYsmH3tTfeainSxVdURlYeevh8KpZCHnViB80wxzgf8AX8aY1ClnQFPZNslx/+UH4V0qMcXNeqsLrkn4QWW6fBOuFi2R3Qwx/QTgSe6F3r82tTJskPeObTtIXGfYp5ZZiIVt90XHV/q1+ckdj4k9rbsTdSIHIeTcyRfu6IDYveBcw7SZeDuYBtnP3zIo+dcAnkHTrV4M2kHTggMysPTW4f8Rf/f4ptn/y1/62NHIhwIeThl9dHX5u5GEzOarQVg0wI22tQUFiN9CWsCP3eGZ7buJUsPNXIbdk4nyraPtkWrPwFOTmDgyyacWvo8yX/P+jbOw0mBmUUMuPuI1GS94GPnnmoBqnxMajAXMNBrk+R7ViAlwE6QwBb9W7YxqtvUMJzAQCSpIrZIgN+zNvZcIPnX5UigYgarteZ9v20kWS/++QWiMf3wFLR9E6uBlrD7RYy3TcxG5Tk/9x0SCLpOAt8e+vblaSeF0DgGbkpd4XJtwBQHOvYySYEjEGqalHirBqkYc0WSNc1pjEzQBLJma3U7JrHj7pKSc2U1VPPtLJFAtQIJlHRJ7f3vnuT0HzdJiS+Qwi0gNYk3Sc38TpJCQ2Oue07XquLXtYUUoKLzF4tUUmcpfgTMvoE1dZdIPoh3/RjOkiTkP8buZbEbpVDR9+pNEij9JX895awueeCJ7W/MJAseWPdgBwEdlpRqktMCO1TJxBx9RHd4JAvYybrlSq8z07Y4Fyx589Kr0uIMPtV4ClcYZo0q7c66muIS8+w1AUFqFA6w7p67PZh38WB41wrgUJDAKCsBbDSrShTgUSMb7HZrsHaEZLGdatRYBpoMcZmb0bzMscs+PSwyEc1SkxEP0eMsOQUj9LPFLuYDqBq0lRqWFFtGXrsA3+LNAJ1KyHMtSztH0YA9oItDLNxil1yk18rGZg/zrZPdywGdIUMVu1BjM8WtYEBmOOYGVxlmlao304dZA2CI1WDU5ahEDWSS7TVnJBrbcYVRutlngHUmWeB/w3/DmLv5FinxGjfIs8MCE15t7dMcWrLIJK3UsDA486rOsxOA4QAb1JwgICXCGsMBNCtwTIDoEGvB+hQBoR0L/zuigxpZ1jzcY5dcrGUkcwb8ehtr8hLzdLPPCiOASZzL5Km5MsnUL+UInFHoh5ErNh0kbY112RrDTPhaZYtzLHOBHWd6moS7wgDrwRq074KlNQ+ywQSLyDdxnCUyNLjIEmatU+MF5qLG1RpshllnR+b8yoxRosgFfjNvqhOPHz/+D/RoghMnTpwG7r1zb4Tj03ZAW/RzjTedGmpdhHmmnljcStIlc3hJ0Wq0UqBMjVbKvlCUfrkZiW72AWj1RWjGEfs1hqKrIUaIFlpa3ORdzmSmjmakvY0ZhcofSJIyS8QZ9IXVYSwMVhiNxRaYN5Clr3TE4q7FH6LyBcqxy/f4M5REKDrqAOu8zzRdHNBHiX16XB9uX/AJX9yCmZtXaafTKcaiMPdipvu33XD9FpfoZ4sVRpliHiXtSPJWdtNVu7n6gk1TJu/vOmKVIUa5HZ5LFvU8GpI9fXEyHIdx62VuBkig5BfADVFHY4K6wWt0UEWpQFucC0q2rov06aJNH/lEs8R4UKzBulbNXmSr/sWs0hHMqBrZSAd6i1ed6t4V+nWlIO1jyYoHdDHFvC8YB6LrAEaPnmUmJhdR2LvZR8aqMuzscgq3HsBKGBW1vUyePkqUnffRzR6j3GaL/vAV0z0mTyiZi4oZJM8tvW+aOZYYb6Kyn0O+Bun8On1sW5CJrFg6674IX2M4PDV03sOsssAk8m7YdyBmiXHG+IjbjDDEGjl2adDCLDMxoZXvt/E/O/MTgDOPHz/W0uVL89Lz8P907z/l3dPficJD3xVL0qyQxfxOrnKDHfK8zncZZYUh79zUaPXuaDmYYAXKwcKq0sEuvVRpD/8vY/9kwothlJXo8Inur0lYPmYCaS5xiz/hD927Y59derGkWOv/dLMX3+nbjHLJNfoCWPRsUuGxzBgK5dBxLTPGHNMOkhmIJBBFBrnGSMtH19j2seMFVDU60wpVAIKOr+ep5Kej3KZEXzDgxCYDgnXXxQFvcyW8Oa7xJhsMcIwFG6gokWziYgB+DS+qDinRFwmrKpozDkoOu0xGAJq8+PrZ4k2uoYCFNYaYYDE6zRMs0KCFZcYok2eL/igGqnSE7MP8WCrxLNQiYMoTlheYDMBUwKQ60vp8jVYH6cwYOvkJZniXl/k+PwIIGW2eHbYp0unPNYV4yE9Q49vrq8iVJoDRGKv90aGv0s4LzPE+09GVV6qwZNVKAstwTJFtZpnxdL7qEyzJAda5ycsBcg6xhjxLJHEaZQVJ3M0TxyQmb3HF2REVWqmHRLsrnuQHT7BOm8Mx9IzOcEyLMx0P6ApWwh6WdG0Sos3wmqnSwfn783z3zL+BL+HzUM/Cf/R34X/3v4X7505y+s6jYF/95bfO89v/5A7kDazYzeR49r1PQ7r42fc6eXr+MDU5G/DweQ+egAQ8rWPgTyf8+rmzfG39bgJr8tZQa7uL7VdS2oz59wkkZJHk7wahTHj0vANsD0nqgiV4/Pfg4MxJ82q7Q2Lii6Uv4Mh90R4+7+Dhh3cTi0tsu2Y/u9cwMO4U3P9996s79vdsYf7QiyTFwiZJfjoHXIdf95/lmAzfeOezdD7yZ5O0dN33Jd+68zzJ9hJjS7Yq8kc7RwoukbJD1i9SMsgeZJDk93YPU2HctusUoJ48/MBAOgcCH1x7ilOLn9vxNEjJtrI0aWs6rhae9G4Ti62CeUNXSP51Ug1lSOxKqRZkbbJFkkRn/Zh+QQLbxNTM+LZKJJuRPAlYk2f1HR+n90hy7Ywfqzz+9HlIFiZ/TrK6aSPZnCw2XS9v+lJq2tZzJHnrpm/75/7ZQd/HeyRblTzpXhwnyZ43fdtSbXxCkthmfZwkD3+JZL9yh8QuhNREzmPXWpL3TR/7c/Df/h/gYQP+8b+0T3zZnoWQnof/9b3/iudOb1OlnT2f7wV+FSgzy0yoMMrkucQtDuiM5qzmMqXOHtHOIBso6MLAh86o16p0BJNLNT7YfK5GsmSKto29WAcBAWYA3OQyl5jnkC46fa0lkExSVqXMigHXSo0xlrnFFLIcmXaf2VbqlMmTc1Zd8r0tPMEWEzDUwRFzTPMqbwEEwFSlI9ZfJolcDfacSS5zFNl2ZuFw4AeSY5a9kbnOAD0OakmOmnEAtuqqD4Vvafz6KFGhlw6OeIsrwShU6qu8sXNUopqQLLhEH7cZZZo5BthglSH+lD/gOm+wzFiw/uQVXaOVXixYbsibnKqDJTuWDYzGepEJLnEr1gmLTDiIaO8R222F0QCkpOJpocELzPm5mt9fiSLys1NdXibPDLOxFuhmnx/zPaaYZ5ccM8yyyCSLTHCdN1hliCx1rvMGCjXZocAM70V9q/uo2btZgRTHjgupBhxyH+VeH2OxA3UPCzyTR2SenWC8jrLCKsNP2K60UqdKO+v+EKt6crBhNRtNKqZ1VhmmQo7rvBFjo/WX6s959wSXx6PA5m72WXc7Ix2j1Dfcv8//9cx/DX/N8/ALYehtco4OTnLkqR1aLApMk76/ylAg7Vr4yDjQoqsz4aFUc8NDW2x1xhdDD4kOTzCRX1SBMj/kB+QpM81ceNzo4fI2V1xKZDeBku7EYBHNE4j45GYdt/yMdsgzzfuB7ALxoM1jZva3uMQyYwECySB7lWHmuUSVDtYYIkuNY1+Ev8k1CuwEiFhkOxYsb3A96Kd6UMwzRYYGvQ6cmEb+Grf9mCWTa5CJRUXZH+y3mELm6Fp8vcG3A4itkGPVwZwSfbGAs1uwJxY0VdpD+qVURN3wZmppiUaaRMyLyzT6dbJsO3BWJ8ssM+TY9ePuZcNN6bVYFbhXcpYSEA+TXXrZ4hwbDDDlqL0Bm5bMuOeMUQEpDVrCD+F1vhMTwRTzcb21KKvTyp4/wIuUghnSzxadzkAR0HdEe3hq6YEq766Cd48sKWgK863KkqNCO9WmNM7OYA4NsE6WOvNcwoxgjfkpSrk6R82MLfNOMwC2QYZF776UKJJnhzpmFmgpTofIk+G2x4aPshIFRZESs8w4u+sIGfxXXVanVNEVRn2SO8cV3qKVGjd5ORb4Jglco+sr4nx8TMZlC9YJfJNrLsBcj8lgiDVWGKHIdkxsmkg1WWnitEnNvqeadAZZD0+xFUaDZj7OUjA062RZc6+2Do78O2bF0xHtKLlzjGW+y+vINHiAdTqourz0gDKFKKyGWCNL3Z+Npv3ap9sBmdRV62cr5IgA81xigHVGWGGfnmBv5b3gynDMMKvRCJrnElPcQklTBSyUo4d9T5mtBUNuz8HlATaoOjhthW+NI5+MZ5nhCm+FdFMy5QE2opEg8O5NrkUCLxCd5ZSsZUBWN/tRUL3K2yxzgSUuRvexRJ+nrA1EkQEwx7TPYQaqqdEwxzS97DLLS9ENz7u3YguN+O6KSWbX0Z4px2R4idl4PqkRIE+PQ7qYYBEls6lpZZ3VahSPet6aLGM1JKmSlfz3/F2u8TMOMVZihmPGWKZMgXaOOPTjOqAebNJmWcwsM87rLAdweUAXl9jmFpeiQbHKcHRhs9TY8/t7mFWWuBihHxYiUmLWTVjHWGaDQbbop0yeEX/+apy0eBFzsuh32DZF91OxJqSOW2N0k5fpZ4sZZmNOBUJWss5ggM9HdASICfiodrqEqBrsgnmmgH/zH/z58zfp9ehrzqp77yEPpp7i1O3P4SH89uKdsGA4Pf+I08VPkzfZGeioHaX0TJcwZpXSKUuTe8B5Z/MdY2CePPCc+dcmFqDsLNwe48QmBrp4mMHjF43d92DK7SNqbkOh/cnepAYnFiHzUiN5Mssrt9mfbIvwTGtbh6+duWugyC98YAQsPSSFeHySjvv0m4+SFFYAlD47QWI6FUj+ZZvwtZL7hwjAEuNQHm95zNrmjv95kRTMsI0BQPJHmyPJKGVXIq9hMeEkqZTCRD698iCUrUyzrFPHJobZJxiY5ON86qPPU9CWvLgLJJmtQNCHwCt+7QRAKezhtab3CixzFucTYJ78mccxIFbWJe80nZ8YpjUSG08su498HJsD8rIYsHa3aXyKPi5nfT/vkdKH50lBeTrHrP9coBykMcmSGIIl//81UlKurHYukHy65XMoCa7sj8TOk5z2DMmupuCffZMEeopNepaQysd9JRbjuB+7WHe6LyCx/ASIloED8DLhS/+6xxlW6IqgMFvb9PAy71KiiGwm5F13QCc3eZmr3GCMZWSrIg+8l7kZ6zwgavRDupwo08OAW1GIqNDNPhMsoKTPLfo9GXTzCbWDGp9gSgIjxpTYYDAALktrr4etiEDGZiLCdhOr/pKTJAQyyqJkjGXqtCJ/OjW+gCe8il/lrTg2Me43GIz1juoiHYfWcC00uMUldigEDtDuIFWnN+yGWYv5fpVhjpyfL0BTxJEsNRaZCOWLESpy9LIbQJuwgqIDflrnT7LIka//cy7//IDx2K/C0iZZYJde5phmjOWovd/iStQ+AjqPnOu2yhCTLpcWoeMyN59gSB7QFUmxWqfXaWWcJeq00ssue3Qz6usEwMd+1y1brA4ssBO+xKbuKETTeIQVLvMuYpsqDPBV3qafLfLs8Kf8AV0cMMIKOQcpl7gYQLWCXLZd+bDOIPJrtLV8nVWG4pp3UHWunCUS12mNOrfVbWqaJdtAEA3klSxCDRDNedXsyV88j9KS85SdvZpBoWs75BljGbPx6UF+hhsM+H2fp0FLNK0P/dgV7gY4KaGN3+T11P+Qh8//kJcYO6OsREJgA/NmskVGT4Bo6w4CyMxxk/5gW60zGA8eY4lkUPqdCnMBLvv0PIGC97PFJAvMcwnJfwwVNWnLGsNNQNFhLOjqZHmTa8j4WoDjsDNihKxKay/9/LtcJoMZKR5j0i4zO10LnwTFkx+TYYZZ3uQau47o9jkzbZEJvs+P6GeLDQbiQTjAOoNsMM0cMtoHe0Ca79FedFXErhpggxFWGGElujZdHHCDq7RSD6BPBprDzmS45hRjMT2kHW80YcCSKLVSY8kpxaKyiuWl7sYiE64nPyKLpW0OOWNBYG4fpTiOLmd59PgiWfeTFsO79PoCCCxVaACAPn+4dHDEBAsBItScpt3NPsOsBXIvz691BmMyKVJijGUUG16kxADrkSjZxUE8iHacXdrNPtNOi32d72Cx672IuizTS7Gm9EeAjQC2A0yqbnDaCkW2yVHx/R4GuGMP0XJMWDYhWTdkz8ez4p0oMUJXXLan9wlALbDDFPNUaaeDo2CV2mRaDjDhEvPBzlM6J+AL+QYy25cBqwCKNYZZZAIxiMw3boJf8o0v5uHzN+z10B/+irTvZo9FJqmTZZTbmCdIK7O8xA1eo0w+WG5gxZQ85SrkuMiSFxnmXZFzxk/Vv2sFdhhjmXaqKNVLYJOaEwIZ5F1n4RJmoiyfuYrLEQywG6FONrz15rnEqne1MjS4yWU2GAhp4aF/l5pTzgTE73tDoYVGFGbmeXbgndMK8j2TZGKKW4yywop3MPMuKxGTS2CmpCXGyG33Tm7VnyE9wdLNsRvPaIFLeXbIegd5gsVgXF3jTcDYbJMsRgfwJi8jySdYQTDCijN0L5ClTo5dxlmijxKTLALEc1d+gkpZM5+QTfYczJ1kgRFWqLoctsg2kv6qiQKE7ENGyEoNW2U4WIh6zh36d1DXpjkYpJ8tD1c5iusEBEip8JJhn89yVLjGz7CgiLJ/56tsOwPw0J+3wBMM/BVGEYN9gkWu8HZ01ivkgp0ozz+ZJOuZp2fyFueoOaKwxDirLgNvNsguUGaUFeSbqIRfPd8lHVpinN14OuVirujiIABWjfc8UwywQY5dVhihnSPOsUWG4/AmUiJxO0euNDCGQRcH3ii5Hd8HBd30fQVSbk/uWb1CDk5tfp7kfpD8wyqYXYzAlR049fPPUxiEBwGcWDIbjviMey2fKGNgxM8w+ekh4UP7y+efTuw0ba9ISlQ9xkC6sv3daMmkZPoFkvRyEWMiuefYqV98ngLHBJKICaZAixYMMLmHgXEKBRAwctd/Lz9nBZCJEZjx7X/s+72LgWs/wfYtmanYdfI3q2BsKAVrPSR5xEkm+olvW5/PYSDUoo1bgGCSrg6SQC35GwuEe44Eohb9nD4mMbME4i02/Qzf5kMSK/CBXzvJfE/7eZ3HgDjJj4+b9vmRy6w/tDF+/IqP2y9IAJjWRpK/ShKq8BExF/O+349IARAK/mj43wXfZqdvU0BdjRScdwYDSgV4bft5L5EC6BT6kSf5GRd9bOebfq5tS+7bTwK6N0kJtPo+6B6HxBYUaKix0DnLj1r7zpMkugLs3iMFhLSRAtXwv9v8PQJPCySAWF7KktjrOyjmpYDJDHwV3AcAOjnkkK6op7V2UQiaakHNQVucc5llPVhtxlYv8W3e8Prt3BMgTdl945QaK+BMnmfd7KHAqZu8HOoCrV96nDkEJh/tZZcNBn1tfMgU87GO33RFm+Y2KTvEKAOr1eQR3NNUe+zTzau8HaFWzUEAK4yy7YSBHlc17JBnnx5WGWaLc8xzCfkli4QwxXyoAQG3DLGAqxeYY5q5qHMUnLbBoLPo8yGpVDPPGs1rFCi7HUxf1JFX+TnyoB72RNkNBqIRvMZwAF5ihEmuKuXXIBuhMExevJYuLOBs3GWbHRwxzgdxnc0/sRA1WoMWFpjgJi8HUAs4WcBq+SIlstRZcCJOiWKoII7o4APG6fF1a4VcNB+z1PkhPwAIMkcP+8H8E8NUcmrzoz7kKj8nzw5P2uC0RG0via3IRDkqWGBeLVQ9wljks5jFQkHEcgOCTHbba812quQphx3MER0MOWC7zFhIicX2M0DXLNnkmZylFvWlpNh9Tp7R2OzTE2xApeba2PWyxhBzTPsqvsuThbejiSyfQDEfpQI5oIszv2HK7RcC6H3ARYAAZm47fVM+OsuMBWtPrDZ9EUtYct4V3vIHzp7DdtUo+OWNlGcnim9LENxF5vLGZtihnaPwFDJWzEbc/O0cxWJT8i2TZRmjZpi1kPcKnABigSDJmkU4G0twhzxzTPuXo48yed/3Rnz55I80xzSihhqjzSidQ6ySpcYQq3T6F6JBhtuMBhNPxyQWyRjLNGiJJEH9XHRge5DYA1ognZB0kx9nOSZDBpNY3uISZfLxIAMzSFXikEBERUULGW+mv5phaJ51BnjVF21Gye5FqTyLTMbkUqGXN7kWtGvA2XYmy2qlxk+5zhpD8ZATcm4MupHo/rRSY9DlhHq4SFom6bbA4DqtDLLuZrK5AF7WGA5N/BrDDLqkWp5IehB1ccAqQ9TdU2GG2QDbtC2xIY/9QdZMgT+inRYabJOSngAWmGSNIV9078V3psBOmN8r4Wif7ujCtdBwtlfJ6dMjLDNGczrjkcvbZCQv6r4W0jIv7WWXA7q4xRRv8O1IMS1TYJTbbDAQ3Y+cgzSa0I+8CzjHdEjeXuc71Egm+V+F19f41ROgiXl27EYXcZwlRljhOj+NePguDoIKPsd0mBcDwcRaYzgMeYdYDUBrjunoFKl4a6XGDLMhb6jTSp1W1hhigQkq5NhgMDwj1NWcYxpZBxgIbwm08t7odQ+LGWafAHGUfNVLJY5Fz0wwEGqElfgu2KRr300B6qKsrzFE3VmJmiw3GGCNofi+2xPymGMvAvbpiWbJKkN0YjLNPDsUKYUEVI2aOq0sM0Y/W4xwm4KD9c0v+acc+viN8wEDbATNv58tBr1LrO3rOS0G2B7d3GYk/GI0/8gXxrxv6tGwatDCC8xFE0rX89i/883fNc0hJfqcRWhz1gKT7PqzY5feABmVLmbdxVTsixFfosgqQ9EMkoGw7mUw2YOxIdcD4MpTDllpiSIj3kEWU1OsNbHtJLnQ/KP78zLv8jI3m9ofW8FCliet/GfUdAGTeq8zQA0zGm72r5QcIkODQWdw7pLjEvMMsxaJYgK9bdFgx7vh2xxlxRdeVYZZi46z5hTJocRuOHTwUh102Rw0N3hWGeYkXwEn+AP4rfInBi7MkeSfd82PODzNjkmJngKvFKqQwcCQD+GEWEjuG/dQPm3NCa4A/8p+/42ffRaBHMEYkiRXIVUTRBjW6f/uUQJJJCGdBr7n+5S3WwkDfmp2XMF2amaqzZNC3wTeiZmm92X9/ARyCdR8iAFgm/6eFkyKueSfu0vyLJPPmYCd46bfic1G0/nPk5hod0gg0jwJcBFIqPNd9OMv+/HexUC2igeWHGJ+ag99XA59DN4hhYWAXeOPSX51Cn0okMCq6/5+90hEvosad3wMxcp7jwjeOyFvPbEBm7y0g4l2vml7CpETyHzsYwwp8AMS4PcST8pXJZfN+HkrFEKsyTN+PjUfD8mWdZ+O+zjnSSEjUyQG4H2/Lh/7Psd9nCQ3l0y4Qgqp+9D/ltw5S/LRE1B3lhQaKNC2jcTcPPb3HGP3v76XL5FeW/63ZOabPOGLSM7HUsdaaRqv84QnNp18gVSTv1mvdqoomKmfTW8c7QZzvtOBqBVGucFrjLIS3miqvdcYpsBOKGOybsmiJE4ptCr0Iq9cseXBGFcKBhPwtUuON7mGwr8ushSWKWIuveAEhiM6GGaVKW5FI1GAE1gQB1jwExD2KTp/a7zt+BrWwI8NBshwzAAbvtY8DlVDu6vxjN1mJIQCOxi735B1hYkIg5A9k4F1Nr5Vr5lE8FB9WXDcwIIivh0N8VZqQQxaY4g9ut1Gq+eJuki+gOYjbb83duBINFNzmEJOWETZ2X3NtccS4wyzRoYG80xxgKkgujhgwMMuxCKcY5oVRuO89+mOMe1ni4sscYW3vLYzgscbXGeZMXbJxVpOwJSITiIfSWVSJxvj2s8Wc7wAwCpDoTZ6jRuOE1jDuBkAk/WY7kmpiSZYjNo+w3Gco2xqWqmzTTGUkmYttscBnRyT4Riz6tHaSetp1aKWcnzMEuOxlgEjQ5hKoidA8w0G2GCQVYbJs0OPk2T6sCTiHLv0NnlbD7PKBItILbnneMQOhcAP9ukO2TdItbUQSip9VwygbwSuIGXIs0Fp/ve/vpDHZrvr74WO9nv3utWpqJJkCmmXEbeKZqHaetAZM+o4mA3qFjQDKh3x5emO35Uo0kKDKu2xgFFcsTrvu/Qi2ZSYCDkqsd21f4cFA+ZbJ+NJPQD1sFniImMsxxdNLMIstWC3iMXRwREtNPhn/H2WGMckdZtkqXODqywyiWKltfASnXOf7ljUdXDEPJcwBmSeVYZjMdMgwy2mWGLcQUdj44iZYmBYZ7A31JHpZj983TI0GGI1Hjh6WE0zF+y9VuqeQmlgmgAuJQrpXNXlkDGmFusCoF7mJopWtwVhn0dbdzPIBlPcotNZDmIjAb5Y62WBSX9AmuSrl11K9DnVOtv00D0K+ZgeGELUldSzzBgXWSKLJUeBTawGuNaZY5od8sxziTKFJybFEsUAHsUGlE/TDLPhK1eiyM+5Got9Q/t7nSGyR54yFXKYv2AlQNp9ulliPCYLMfDMr8ySdhRQsO307QYtTLIQkmN9PwWeLjnVu4uDYJVIkqiJUZOFZJ8C6IfcpNXkh5YGNOjJnON8wJFfzxFWgmmjCPQv+yvjkLw942wceh0sVRgCEN2sFGTRyygr1LybpsJCoMcl5qObqueEPEoKzpoUkGFMzdYnGifm47UV6WbDLj2QBEKAUd6lgz/hOwGklf3ZIH9NGesKpJDVAuDfH6Pgt1IPprKAKUt3tVRQMXC1b4HgOmedQyu1uG+NyVVxtnQ1nuPd7MfP1Ane4lzMI2sMxwSrxo+B1VaIpCTSDAqR0PNXIQhiuOo41OXT+JknZQeXuYmSTy944aDOpsx5lXbVLHNdYYQe9uP5IvbiFLcCOIXUPJtinmneZwdLixtgIwokMODwba4wz5SHsVQouKRFzDlJUgQQihksOZDmFWNeT0bBUifLNd50I+vEQATi2dXNPld4iwI70YAosk0/W8EOP6CLXXqjcddKLe6Lbva4wlvBNJXfjJoMW/TzXV5nkA3OOcCq69Pq3xH5/+l5q7ExywozDlczyp6F2WBEFpyJqDGXh+IKo16rjASrXlL1Tg6i4aEwFoHLet53s8f7TP+HfvT8zXv1wGN5cglAq8DDacg2asmX6xyQh8evwcPXMPDqmOTtdR4DEzrt54+v2+bbJIGcwACIZqbbi/7/5+DRBCkA4RzmrybZosCes75fl9be/69OphAISXeLwO+TpKTnfJvyzxshsY76gd/xY7ne9HOJHvS3QLVjEius4Pst+LmpYX/O/5afm8KuxIZqw4AWgUQeqsAZErPsed/GK75thV4USKCRAhGKPo5iFuqYS7atRy/BiTu+3Qf+2W/5/8/7Nt7BgJzfJwGvAnjFZhS49wALUZCU9D7G4BOLTeEqAm8FWk6R/OQaGIPvRZInXIUEzk2SANKKH8tHPOn79iHGrDvXdCw/xoBIyZ9/AfxzUkJrjsT8U3jGPQyQq5FAW52L2IJK6/VQOvI+fvLxO0MKmbjj75WXnTwMt30cKiQA9CMSmy+HXesHTT+vNe3jPez+llT4PuneO+NjdZZ0D8i78hC79y75+5pZgh/5tVAIRo3EvsTPRSE2SQn3pX4plEnroU2XGkqF1KCFt7hCmXywxpYZ43W+g6nWGtEoksG/1pJgwQDtrrrJcEwHVZ931+P38oUbZpVRb941aGGauQDZMjRYYAIwGxcFkxkRphZSUzWpX+ZmACspjK0Q6wYl1mYcjtEYCFAymfG5mOdFiJCvdI8zpXrYj2A3MQ0VqiZF1QqjLDnJSLWvxj7DMasMscYQu/Qib3V5OKfxsGNWGmneGXrCG17nuywygZJ855imRJErvEWDjNdGP+OIdtYZoJddBw1Xo76UxFjpwft0M+D1Szf7LDGOfPKKrmZrXgfLzx+s+Sz7LNVUJtk2kokp+qxGW2MYKepkC7bnwNpNXuZ1vssxGYYc0BVA106VGWadPbgdioZ9ekLWKpzhiHb+hD9knx4WmIzzOqI9AMM8O3E8P+Z7AebpOo2xzJDbn2g9b/dML7cZpUIvCr4QC1NMUYBzbHGFt2h38Ez1dYEdhlmN++NV3vLav523ucKP+D4t3gCeZDFCVARcA00Etd4A1eu08j7T4QNdJs8U87zGDRq0sMFgjKd53h8+cc8V2Y57Y5tnfqPnyRcC6MnMXOywPDtBY836hRbjQHTUYU88GWeJWsArrbRzhBIZJX2VpNYeBL3s0xNfXl08W5hk2fUU2DmmWWYsJLIzzNLPFvJe0sPIAjpMf97sLTTLDJCQVC0M9ulmiFUqmCZ9hvcC9OglJVCKOaLjstCO3QA4BI5UHQAEgn7dSi1SHyX/EqNC7DR58cgfSn4MkvYK8U5+hN0MscYO+fAD1ALFOgE7IRPtZ4st+hlniXn3HZAsU12NQdb9YW6R2ooLr5MNdsamL37EoqyQ4xK3yLMTzAtJYzcxM86qMx7kI9GB+TLpIbfCaBMYtxNfJDHPLLTDDFD1cN9x2bcedBVyTzxUh1ijl12mmSNHBUW6C1hYY5guLJGoh32+zRvhkaTEngzHseAW/VeTp6j1BuBkuMxNZKoutp1ACUm9BOKtMkQrda7yc37AD0OuN8qKA6x7MRHo/Jq7I50Ye9IWzeYh1YWFr0hybsd26HTi9rjPBHTquiwzFmDKkfsnKpmrOSJ9iYvIf0CfMwr9b/aQ+o/91ckhkjZq4htnqalB0MrrfNeZcJYu9i4v08FRyC/VVT32Z6u+U63O6JQtgbqgqwwx6MljkhIa9b3mEgVLy21O5zwmE/uaYp41hoJZOcIK07xPKzWu8SZ5fzZZKluVIzoiLbbZw0XSAYEcoqw3aGGLfvcB7In9qrtlkfK75L3LuOsNDSCkGsPOiiuTj+ZJkVJIOyCFg5Sc3C5wR4y2DMfxXM5wjLz+ZKQs0K7uYKSaR8uMRaexD5OaqhiVv6l1B3ejSdXh3XgxvyVZ1rW0e8EkpGIoyvR4lBUPvWmlFQvakdffIpMAwVjrZi+OwZiNlsoqawj5oxiYVnJpv4ovkwxMsBiWGTr3H/M95MVo57cTtgBqQmz7NdxggKp7hVToZYURlAyccTgw5+CZ+fEUY44WS/6ArpDT1LzYBTPG1nGpi7nCKDkqTDHPG1ynlTqbzkhUWlgzS0/hVgozyfpiaMO9f27ycjw3d8jHQqQ5SEssCj1rd+mNYq9A2ecuCxnRYkudfrHR5ZPzMjf5RlBqvsSvu86q8zAKBRi0vQOnf/IoAU6D9ufEIrQJkKiRZH93MaDk0H5+QiALEMRaeXg9S2Jg5YD7nqC77u+9RwJRxJLL+r4+JvzoTi94Wv1DDBjK+fEL3MuQmGdiOYm1901SkugOySetgQEhSifNkfzgcqQE0yU/17O+vzvwUKCdxstBrc++1cmn02d4JKBEkk+l9kpWK/BxkSRzleefxnPOfy+5q8JAXsGYWt/y/ffbMZ6U19yxf/Zf+Dmf9+M73TTOSz5mArTEPnyWlHYswEzJsGIyKviiSPIGnPQxOuPb7ifdC7qO477tU/77dYxFJqZagcS4kyT1PAZgZfz4FHwiL8Z7TZ99hcRofN7H4NjHUEzNEgZGK4hEL7EUi75PBZ2U/e/n/bieJ7ETH2Bgo/6GBN6+SAIXNbZTJNntov/uRRLYLf+7cRJQlyGFxEiCLDBU9+0pEui36OP2IukeK2P3l/wlJf8VK1JhJeeBVqCdr8TrHmdCPWS2Ud2xZiyww1VuxLw3zRwNWpAthcAArfnqtDLBInnKrDCKPOWlltpy9L+fLW/EFajQ65LGehBU5C+ubbRiwYMtNMKuRISSbvY5dMLCT/guGwzEelOSTdl9HNEessy812GAb3cQC14cjnnX6rY+8pTDvkpkgnaqsTZtkIkAt2bwbZGJ4Par7mj19b58b/fp4YAuLnOTl3k3iBG3uMRxUw0iksoBXfR4TbhLjre4QpV2ZpiNsAxZ43RxwAKTsda3deltWjB7KVlniWGousjCHtrDp3rdATwjA+Rj/Wp1dCbWmZe4FSoC2YnYGs2auyX6WGMIqfSmXaGlUC7ZQ5kCwQDLGWZDcWbMzx1km9XPJmZ90o8IV1a3dWJKOAtYlE+xcISC1052j5epkw3y1ZHb5EiNUSGHhdH1uvrPmstXucEuOb7NG7RSY4JFBxRtrbXGkNsEtUYtrvW7VDRgEvIlxmnnKN6run6YNcwuy4DMVYZZZSiUJx2OTQlTsbXEbihs5JO4wmhYsawwGuQLqWjUUF5mjDe4HmtFA49N/SGm7l/3+kIAvS4O3VRziwE2kHGkbjYt6KSR14LS5EETgWju0kvd6aFG32xnl96gpVboRZ5HAtTML80SJAdYJ8NxsOl62aWVOrvkXFJqs/0U82zST86XvnVnGXWzH+hxO0fskOc9ZoI1oARJ+ZjJpFHdlgO6WPeFTYMW5piOToTeWyfLq7wVQQvSUOuBKeZZs5dfiT72sXTLTgccBdxkaDDFfLBjqnQEsKcbKIsl3OpB3u6G+8Zi7GaZMX7E93mbK7GYrXj6zyi3Q3papZ12jlgIf7RdGmR4g+soICHHLqsMUaM1WCVi5AgMbNDCICktRje4vOCMrXNIjSx7DlYpsfOIDr/OBpSNe/IkEPeYJFPGAjEkXgwcMFnvDoUwDj2gkx0K4QkGyfdK7FKl/+y4P4W6VDIKlQ9X3cHADo6CMmzx7t28zndZZ8DlkiYX33FfA2OIGLhs6Y41xJ7cYCDSr97iVbrZ4wPG2XfmnRb7zd8/dfvsAaPFtcnYVxmiQi99mI7fmDqdcd/1UQrZnEBufW+1H8XBt2BsTtGtc+yiRGgrMDJx/nk++yIeP3/jXpJTZqljqWE7AeKbd2EHQ35fWkdyk2UuUHNgXHYFB5h5cpUO5pimQi/zXEL+GtZpNTl7LxU2vZDRdyrDMTe4GhOimiby+hps+l4pPr7qwS5KMBO41sUhW/Sz7tIIBRJ0cYBSy5uLjhlm2eKcy+ktyVpdWgFGArXEepKkYds7xjl2WWOYG7yG5NwC5rrZo0YrSmrOUmPcvQbVRcthwRbNz2oBXS00uMnL7JAPgFRBEHrezDEdjZwcuywzFgAh4JP+UEgt1UHV3CEZ5ptcA4jnuJ5FkpnoeskIWL6X4yyF1406+xkaIU0wVu++PyV6gmkm2wogbBR2yTHJAgd0eSiHzcW97IbNgYo/nYuKPTt2A+rFslZn/l1eZpsi6wy6V07Vx3HNn5N1xOKW/L9KB2VvAM4xTZWOGM+KMwfO+b2nwlBFj5ogSiVbd3/bI9o5pCsKYyt6dwMwBvPMKXiQh0BCi8Mynxo1zawAM+asDMgr9DLARjzjNfcBiDWvItAKwvaYly6yFI2SHQpRk4zxV/+Bnzx/A1+Smp73/29iYJc858S0EutogSQnVcqqJIzH/jtITKE7GHDwY/97EfgpBipskhhMApUW/OdK7Zz398xhIFDefy4GmSSiOXh8ngS8XCCx1nIYkFIkAXz3SOyvEgmw0jlI9giJEadUWPmrCbhz6WbbT0iSWCW9noKnS4c8c+eegWtLJBBGrCiBdRXgjaZxFcAivz4PDEEJqAI9l/z98yQG2H0/ljJ8dr0znfMFf4/86sq+HZ33FgmobGZ6lUnegvhx6J7Qtmg6b41p0X9eazovSJJlvecUxjY7xthvYl3K126b5PEnRqg8Byew+0zg4EskBp6YlRM8yahr8euna7nuf9p8G+dJ/oxitrWRWIfXLWWZBxjDseZjJ/nqYtN4yCOwhN0vAna3sftAvz/23+/4v9dJYOJpEutTknB9f8CAQcmX9Z16jiQTPot9pyQdPuOfEfPuHHadB5uO/bTvP8NXRnLbyWHUMfIEk+T2Jpd5i1eZYIHXuBFzcfJ0tfWswiqsEbcQSqyk9Mg5W309WE8GPNRQ8KCIIar/tH69yFIAiN3su897vyuHeqOeWmSCq9yItdG6N3AH2eBdXva1ghm9zDLDLaaeADzmeIF5poIMI3IFwP+F/3mMV6trgBQCYkzGHEOshpS024G9Vuq8wXUmWIjt2ZrQUG6BflnqARwZoGfS2ENf077Mu/SwH+vXDxh3eaiFdK4700prdK0jW2j4mnmFLHUuMc8iEwywEaQbIz8ZKUKAqgBD2V/1OLgjqbKIIQqhEygo32Bbew86GLqDfKq7OOAyN6OBuuCgrgghraRwDylR5O9mTc0sP+QH7LoMu5cKFXqban6xDyvMM8UW/UG+KlLiKj8PdYPCNxJZZM9xm94ADrUO0NrGlCp5lhiP+0H5DJIIH9BJiT5qZBlsUhTKms1IMcOsMEqBnQDGwdazZQoo/FTMVykkOzjiFlP0OjhrAYQj7NPNRZYY9Ab5NHMoOO7v8c+5zE3GWA6GoMA8gbhSIglPOaI9Mg4GWKeXXR7ym6UEfSGPzaccUdSNVicbgMqga7+lHa7SEYBFM6hRp5Uj2oNi2eMPBD3MzP8tH4bgEyyyyEQU1aL7yoCwSnuAHkW2yXi3AWzh8DZX2Hba7g75GGgBOMOsYQl22XioiMEAxKJhiYuBqhqAVo1FxDgf0OJdArtx7Wark2XYvalEbZ1hFgv5aFBghyE34lSIghgRWpDqvAUsCUCQZl/dFbGjFG7RwRGjrAQ7Tv5K3+YNxlhmx79AYls2PzCPY6wPka/ekOvJu9lngkVuM0oHVUBmnK2B/Ku7IlabADPRV5W0+Jp3qarug9BKjTWnu1ZpD8pw3ll77c5sWmOIKu1MM+dfxkuha5dXlBiEAqZ2KMSDecTHRXJHseQEEsvXqUpHpLiK/ixPL8msNEltMBDdOFtE3kYeZSX64louM4b8mFqphzGpmXpuOBBjBq3mEWkLcp0bEACurrFJsgsRhqGQmS36mecSdbIx4d1iim72WWCSDQaRwekYy3Q62HCLS8icV4mrXRywyGQENBgAOegZUga+/AP+KQOs/8Zdh//YX6ucZ4d8gOxKqgbrloIVaZI/D7PGNX7mKVmr8T1QQnKJYki2k3Sh4RLekZiE7Hlmz6BVhtmnJzzyan7fizbe4sWD0cANxJOMo4Mj1r2DusRFlrjICiPONC2HP6Nk9q/yVkyyQEza8pcQIDnEqqdV2aRdcL+KAedKgYHtx5gVwT49FNhhlhmO6GCWGUoOkjdoCa8ySewzNAJcUxJYljq97DLKbSw0xnzxxDZW0E8DM3H+gHGqDsaIhbXApM9gO2GNoO9jF4csMomCfEwS0xuJdL2eDvYy70bQg55Z3ewz6B2/VYaemH/qLh+wb1EV+bnsY4npHzDOj/h+FB8l+pDXnBLt9N3VnKXkORtPo0QoqVbeiSuM8mO+R5kC08xFwaimwEBTESPwsJ8tXuZdGrT439bpVtCUhXVkOaKddqosMBFpbf+Q/zOXuRksfrGTgSeKKxV76poLRKvQG9e5k4Mn/HyWGWObIpeYjwaEil9LkLdnqJh6KqxX3TpBneUFJugg+e/u081tlwaNsMIQq5QoMsMsA247IBAWrJh9mZvBVNe4CMj8Ur+6Scy8Fgz4EAvpEgZUbGJso3WM5bNEYvicwQCKQf+5y2p//dJZHk3b5x/8npe1Z0igklhJAm0UADFOMvkvNe0bEuh2yo+1jIETLtM9IXBDjC35353342v43/MYCLMOj/oxGe55jM0koFEA50OCdYh8zJToqsTWU35O9+3z9//Tk8baeomUrCpfwCn/2SvYe54nedgJJK342N7F2HHPYXLYCxggI8mk2Fav+f8LPJHey3n799Pzh3bO/aSkVoFUSngtksAfgYyQGHAtGOPuRf+80mk3SWm7AvPEYBOoK8/Be/7zjJ8XJF/GHAbMHmOprZv270d/p+laDvq25X+3Do91/8kDrgW7XxZJHoQF388hTyYeT5PYaKfhzvTXDUzzMBfOksJZ7pHkwaeAX8BJjbWkuNr/df+/5Op+LgGG1vzYND7PNY31ff/Zov9swsd1m8SCPIvdR3kft2d932KzTvj2BcKK/dcGn33PwV2xFBXoIgZqjSdZhmUfj68IoKdFu5rjxjy3tYVsbLY4F/W0+SWv8RO+wyKT7tFejxpCtg0m+7P5rEiJBSZZZZh3uRzghtmFmDXLq7yN+RUPR/POrHI6wrdNabPytJPvcjNLSaz1n3M1FBdqqso6a4ZZ5phm21lZRUr8gB9ylRt0sxeA2yUH0JrXimYJ0xrM9w5vRJcdMxBpY5wPaJDhGm8GYGmquV3kb77KEArvk9rLyAnbAZ6WKURgYrezC83HbYQB1plh1slEVvfIrkv1U973JYxBDEB5G7ZzFKCqVCy79DLBYjRwxaibYCGYiABv8q2ondcZCBVggXKQpnQvJa84wz++y0+YZAEpTgwM7XHptIVk1ByDUaPc8Ji1uA8VZlqiyDRzTlwxaygjT9l1VK0tCxPV0gJZk3LJOJMKN8uzE8qGIiXeYyZUYasMYarNQyQvznDMGsOYhctmELuEx6gRrGaqAjmLlLjJy1FTap1lrNb+UK/Ia1phGje5zCi3OaIjglxl+7IdnaXko51zoLPd1ZNat4nxB3CNNwPo1RpChLTf5PWFPDbXGYwUF7HHhlgNv7q00MnRzhEWF93LIV0Msh43GoAiqEWxLTvT4YiOAAty7Aa7bYANel3Oq+TDDMd0+iNM4I2xNXqRh84f8cd0YQEeGwxihovWyb/MTVqpUWQ7vtCtjoZL/tXNPr1UsCTa9Xgolii6D1st5Dg9WHSxQB4tDDIcc0hXACWST+p3km7qSy7/KaG93aTkUoFNFWcEigK6Sy/DHroB5ufXxQHjLCHJr9ghNVoZbFpcy7Re41x3RH3NDTHXGeBNrkVacYVcSDn1kBGLAmDIzUgzHCMZapZ6MN3kZ3TbfQKOycRY6dXuYOF2dCVskig48KXUnZrTeo9oZ4pbyIBTYJuAC3lLiJlhDMajWHCJGTrGciTumLFpLZB9yYcVnpGhwWVuxoLUDFztoSi/sxHv4kiK/vf557HgXGMo0nvH+SDkgC2YbG2JcfenMGBYiUYKXgBLJVV4grEILcxELFj5WOm7k/cqXkDIAV28y2W26OeQLnrZ5YJ/F0QLX3dfKjFRamRpp9rEHssxwywdHIVM8Kvw2ucMg2zwHjPh9SA/C3vAGxtT4J6A0Q8YjwQm+ZLVsLCAcT544n4xdpdZBkiir6bFEuNMeZyeUj/Nw8sSn+RvoibFoDO+ch6IskOBQS86e51xKd9TSb2b0031TLAkVDu+BhnOsRVNhkkWnG7fGmwmGc+qyylw5rYXDTIOnmGWOq3kXQZgDZdVLnPTpQ6Hsc8arYyxzCb9bpq7EClqCv0w2eoEYyzH7+Thpg7zAV3B7l1mzJ+u51Ci86bf88OscpUbyPdygHWmmKeLQySrF3uxw71m9UxS0at5KOuNizle8KLLvtcyPu71eU8BPVe5EYw1AfCSvndhXpeaV60JY1LSF5hDhtmLTFChlyu8RZ4yw6zy9/ln7g9oTTEBr5Jc/5TrwQ6e4hYDbCC/O/nUbdHPbUYxaXVfSJAP6KTINv+AP6GPUjSgjHHXE4XOprMm1SDRPSywWEzNAjusM0AHR9HIUQpgljoTLMZ3TbKfNCYHKDjrKjdop0qBcqSXq2M9ySKSaVvBm6WTg2BzgzFtVxgJX0QB5kowNz/BPcb5IFjbd2MF/iV+1Qkvsr/6w2cTIPMiBoScxsCv50g+cWIqvUJil7X5/52R9LV/cddktPc8EVdS22dJ0lgxihRCUMN8zzKk9NkLvt1BePhHJMAi78d0gQTQCIDYxICYY1JogR8Lm7YtSTpPvkHyD5Q/3QQGdijQooEBHpN+bGLPiZkocGvatnX6Xz6y/QrsueDnU8SAknks8Xez6T3NTC4BbgJAP/bjWfT3nPYxFIjTDGw+T2KdQUovfYUkZ/7I/0hO2+fvq5FAnd9L4x4Aq9iSFT+mF/39YqqJRaakXoWDHPt+xI684H8X/bOTJNn0N0k+hONQb3vKzud5P47nSazCs3Ci4scgoFOA7CB2L532bT30z8t7UJ6FCoh4A86/8yu7PjtN75sgJfJCAid1/w76ecirLovdlw4cPjj/VPJP3Gq6bh/5MV/A2KtiKj7n57ZJuq+aWZ8ZUjLyx76dTf+dvBgVnrJlYxhMygo8/c6hfV6PNgWcCCg99u1PkGTQh6R780v+UpOnm71YT2reNh9q86Yzlr5ZdhzQxVV+HuCerJEatNDJAUrzlN8yGHFjggXke1ym4B6u7cxziRVGYk6sO8VmmvdpTiQtO5CScaKM1p1qqrU07esH/JAxlsPTDgiwspU6U8yHCk9MPdV8g2zwZ/yu23Z0hI2LvNi62ecqNxhggx/xfZYZi9CIPV/TqYlXc+DPVHa2VlTjzTz196PmHGQ9wCMjFHUg+xaxvzYYQOm+8jNWzSz56SrDfIefOIh2FOxH4RYDrAebrkELZQosOttQDVqtz3co8AHjTeux20EQ6qAaLK/mhraxDWuxngBTXqj2vMnlsN3JcOw2I5lg49l1LYd//BrD3HTlxRjLzHMJINYJsrQ5osNrm13PCKjyFlfYYIB5plDQ2xCrcSxg650yeZQIO8EC8ms+oDOAt5e5SbvfWyIyFSlF4KfIAFVnx1W9Sa31lNYnLTQY95AXeV03W+pkaMT3QIBj2s5hgHEWTJKnSIlDuujzsWt1JqosWo5oZ49uJ+kYOUD4TZESZVcFtXrzPcMxU8w3pfoeU/kNa8MvBND7Or9GKSySXWqRL888gWXTvB8SJ5mKd2Lml0Iqm4E8ScfEoJL0aYURf+jkWWAy2CMCVswr6DarDKMwiUHW6fCHhS6cFiwFygyxRpUOZ3p1xKLaLO5bApyUlErS0xpZZj3+yeiqhsCuMhxfXMmKBSqt+j60AFJaj7zvGrTEAxOMfdXDPrO8hJJRBEbpuGp+TpeYJ8NxUHePyTyxqNRn9OAVyNZCg1WG44snpqV8DrqwdKIcFaaZc216SyzQLzHvuvgOX8CZh5OkziuMOJNnMCTBMvVXoqKYX7p/lhnjNqPI+22aOQrs0OeMC0ngDrDk3E6MzTnPJdo5YpaZQL6b7yWZlLc4eKz0WN2n+rILrFxjiBJFbnGJmt9f3ewBNkkbi60WbMQKORaZoN0nGZmGVrAUzm2KbnpqQI/YplmXplXpYJ4pl2vbfaCuhFKnhlnFkq/MO1KhFzWXj8vT0B68t5Gcd4hVBlnHvKUMFOx1Sn5iMx5zzosN+XzJp1GJpnWyIc0Um++ATkZZ4RLzWFBHPphRpxx4+bK/JlmklTqDbMR9Kjq82D0LTMQD/10uh8xd4SWidys9VV6bdbJ8wHh0lCQfNebmCgNsMMV8k9VBhiXGUaL2MGvRhRpnKQrMlNSUD1nBTS7zHjPhtyGGmJKqh1iLTqq8+bLO4ASiQ6ZnrRoa6k6KzSsqvoAPFUw1sswzhVLFFAhyk8suXaxxiVtRZKj5ILlpLxWWuBhSC3lqWvfTWMXDrLHBQMh69+nmOj+lTIEbXI0CzgqpY77NG+Qwb1j5FwJMsEiJIlU6eJfLLu2oecf5PbboZ5kxn4t6QrYqfxd1BwfY4B/xv6eb/WAlv8UVlrgY3Vn5h06wGJ6x1gk9F0E3OSqMsBJBIP1s8r7LW1VIpVCSdlYZDgbnurOKG7REk6Hdu7q79IbNgdihK1ga+xrD7olnTZPv8Dqt1LnNaBSPDVqiA1qhN6TJ6wy4VD/Nf/KOVJ2gOfGYDAOsowCiDQbDYqBEMVjpSiibZYYlLgaAl/NiVwsVddcP6Iz6YYCNaEQa8Dri9+jtkMPID1KynSLbLDARxZsWOKpj9N0GeIlZ2vw+/VK/TsPD/xw4C32UDMhQCMImyaz/LgYofej/z8LjZ+1zjGMgQAMeDvrn3LD/0//FmSS7HITHE/77c6SQh5xvI08C0ZRHcgEeu4/Z0ak2Ax7es33xLNx5/usJnBGI9aLt++7vt9nxid2l358BrpGkl2KRfUQC18TQKjf9TLLWX2CATh4Do8QEnCOFDiyRADn55H1IkjjKJ9DTe8nYOYbf2zd9+/3+s2f9uigRtlk6DEkafYbkf7buP5sjAVTnMbAREhj0wMdT2zjGQNwlP+aKj98xia2ngJPNpm2Ldan95ElS4WmSD54CHgTi3vFjukDyKNyyf58qfZ5CMAT07vi2CiRZ6msYANni16NACjE54/9W+mzGx3CRFI7yIuke0vt1L37Y9Lt1UvqrmG/P+fhpLMS0PAWn1j9PLDd8LMXIlDw2TwLJ72PfL4WINEhSWSUwr/v7VK5p3DU+SuY9RfLJU5KzQFalO7/jn3ngYyggVn6Fi0AH8NXIS+NTnnHftR4U0icWuuSveXYYZJ2qNw9V14ywEnWTLCx6XQWk+qmbvSeC/KToGGKVOlkWmWTY1V9zTCOfXzGmbnt9ZAoPY30B4YcuEKLZC2yG2ahlTIm0Tr9zmIBYM8kX+BZTzDDLBfdJb+eI17gRjbqKR8i9xaux/3UGaKXGkKfAdrNHiWIk1hbZ5gVvNIOtGzecUaYgOhEjOpx00OrNZnnJme1KNUCu5rVUkZLLjftQ2OeBA2piR8oCC2w9qrVqlQ7HCGZQ1kA3+8zxAg0yEU4mL3axDwHe4tVYjymIznyq24OEA7DGMP1sskuONfd9E5NQYYliHQ64p5zWxfKx26c7bF2KlEIZVqDMApPhX3+JW4Cte1upscTFAAgl/1ZegcJBhX0IR5CfuO4hXdMyBV5iNuqvLHVuchnJVMWulNWVzksBjFrTCNvocSYrmHe5VHQjrmBTgu4hFsAn0pFeUmmMsBLjr7WTQG4gPB93yVGmEN8RrW8sMNJs2PooBeGiRjYyDVSPWmjaPX6T1xcC6H2NX1GlnQzHobmvOD8NDKkfckPzNYYwqu9QIKPyJ5PXWhcH3m045gMHPXYoBOPgZ+5JtEn/E1843SipKF+nmz02GIyFhmiSugmUdDjHNEp/1eAqcRTs5lXyraVFWuS4JJwylRerbp/u8GPSgkuMLX1hDEYs/H8shtVtEPVZkmR1cUr0ORtnML7s6nrIkFI3mDoWOqabXI4HnB5+ospqf0rkMerqMVXaucUl5pkKRoVov2KI7NPN+0wHKCCgUg9+LYYkTW5xBte2I/2SyilZV8msXVjqpWi8S4yzwqjTsjcDbJQfRB3z3dNiapwlBthghBVqtNJLJYCINZ+01hhiiYvObLQHWDd7dGLJlJI064tswGaZQTY4JsOId6IqnppkKb6jrDLs5q9VJ/7ag0UMT7HdzDur7Iwsu5/NY2mZBi2RSNWghVtMAQa2ZnxxK6aKEpB0Hyup0yarPuTVV6AcjDFRrC2Y2xbFGh8B0/L5kpmrJL2v8hb9bDHhSbp1WrnFVDB0lHx9RIcb5341AD0gwOxDX8wPsxby+2Mv0FSs6N7ShK5JRs+iivvkHbk/mEyMX+e7cR0l6QabJMSYFivJ/DNrIe00wMgm/nUGKPuEm6XOCiN0s+cMpe2YnIvOqNqinz/hD5GXRrOnpyZ2HXuvGyp/4BLHYe8ud7PPq7xNhuMoJOw48iHL3KKfa7zp3VTrxIkyb15uw7zOdwCiO12gHM8lJazLRPm2n5dkBA0yrDqz8GVu0iDDOoPB/i5SYpaZeHYPus1Cr0sm9B1TYbfGEDWyIWvp4sA9VTsCuAPi+wREMaWkLvm5iJp/QCfdzvDe9aJf36dVhuhnkxUHiMUonGI+5mA1Khq0BPN40dPrJEtQoaLuYMMNBBRqU3FRxRHt4V0n71XdV/tYKvI+3REu1I2Zd084w01F1hb9LDARjRuFRxhLOgWAdCFTYbPnUEK5edWYrGKCRa7zUyZZoOxgtKwtDujiNqNxvS21LtkMNDC7iynm43slKdGW1xZWBDa8uJctyFqAmbLlmGSRWWbo8YbaS8wGGG+pe+PuLWt1yS69PEKpDl/iVxtkjoEGdN17mNhrv8DAjyUMTBrEQJnzLlM9hoMzJxMraQEoQZuAi7OWnlshlyS5JTghWa0AIb2/SJKyTvjPLvhnjoEWOPsz19wqkfQhnF//VWKVOcvp/oWT0GKevRzb7x5OkGSoZ+Buf5sBKzkMkJEn3l/4dl4hBSScwlhs5zEwpRncEguwgbHBnvdjk+xTzCdJbSXFbD5nsep0u2WBn/tnFeKgcBIBhFn/+RQGJIkxtkhKa4Uko9XfkNiW8vCTXPQTkiS3SGLf5TBGoa7jS76dOf/9RyQwab1pzAqkAI0PSQBZC3Ztz/hx7/gfyY3vYCCb0mofksBeyV5bfLznsXuvOUFWMld5Jn7ix6axVBptuWlbFT923X9iEbYB/9DPWyBeGfgjkiefJLq6LoskyfJt7L5TSIsksDkCnLz/eyftPVt+Ph/6dk778Z4jyXR1LeUxWWw6LoXOPPRzGMSAYQVoCOR74NfmJVJgh8JdJCnW/SK24Od8JV5a85bJR2CdNcpyLDKJLFPEPlODruoBEwI6en0dJpKD2P4KJ6zQy4aDYM11mlJKVXeIcdTLLg1aWG/yEe9mn5d5FyBUZmrOAyH5VBBFL7tPkEGaQ8OkkDqgi1bqTpSw89ymyCi3gwwkn+WXuRmEhduMMsZysPAFmKhuqNPKLDPIWkNrZdUSLV4r9HodoWat2Fpax1jtux9rYvkKz7sHf9UbiyI3DLDBdd5AoSbyopO9kVnlVIKgYio0Cyr7+/xzgFDVSSVmeMka5mNv+5R6bZ0B6rQyzFpgE+bJt4sShi207ci98luYZIG8M/tmmYmG5gAb7NJLiSKS/qr5aio2U8MoRC3nq0QF2inMdNA9+uq0Ms4S8nnepZchtxYrO7FD+1KNZWB2bwS0jbASRJZmf28xKM3KzDzqD+gKX0VZvXVxwBCrKDjvLa5w2+svO9YNv8eqIQWWVFzrfpGuVPftY97e2qesa0RS0H0uax+B262uqMqz4+SES0GEWnH1yjgfkKcca+rrvEGO3bA3++teXwigd48zrDKMEkpl0G1FcwsjrLDt2OaSG0y+yttBXQST6pqOfynQ6Q0GafFFYgLKevhd/oxJFuNLPckCrdRjASnqrJlf9iK9ux42So804GUkLsyas/m0qBA18iaXWWaMG1xFHmVAgBxiwihpBngCqT+ig3VnyGz4FxKMzXeZmywxHqCbPLOUmiPG267TaoXIi/48wm1kgtlBlV6XHN92/4JeKnQiTys7JjMLzQTDzORah6wwEnJOS661G19+iFlfBAloLfpVlafCCqPk2eEQS/adZYZuLJFHDCA9fPVlEQALUPGHi/ydFAzRxSH7DtJ1OJPlFlPB6NR1XWTSWWj1SFcaYzmo3YtMMuLSrTWGQ7bajklhBarukEfpRf1sBS1bFGI97JMx6mFMDAOsByh3hbei06OOjhB9PdiOyfiDotNZgCZPW2M4gNLbjLpH5TETLMYD9yd8J7w2dijEBDfIRrA7ZbqZgGLzVQCTXx/S5YtjA1aWGGeOFwIcFkNV5vBmaGthAUrTUqqk2LgVck+EKggg/zjMXL7cr4895aiApTkLFDIWVDWYjfp+9pDo2C1eZKlbKCbyrk/uYlnKzL+fzaDnK2RGoTHyKJUnw0/4LktcDGltStcuR5GUYze6tJKXyn9CXTx1e+VHohQ0samsYOyIAu4F5jikiyXGEbvZfOJsUj8mEz6WfZSCIS3Q0cJqCsFw0/nOMkON1mjWCBASm7qFRrDkrPNtrKosNZYYD1PmLDVnNTcC+DFPD5OgqoDV/W2Oa+u0UkdBF0oaMyDTnl8H/hw8duAw534uApuMym8yCjU9gDAqNvC8GgW55gN1i5cY55YXP2Ufnwo5Np0NKPambCimeZ8DugIkrdLOBIteCKYEWd0/Ah33fH7r8TnHGgJH8fxXk+cP+FNGuc0OeWZ4DwWRKJVWiwElm+uezdDgTa65N2pHPGPqjkDs0ss2xXgmit0v+a1186/QzT5TzAcTtIUGHzDOoLPyxFo9oBP5DYkhq+MRkGhLlE2yXnwD3GY0npUK0TLGXyW6xQvOXhVYqp+LtWhjvE2d1q+E5Pagt42T7v128o8xUEHsnQYGGhySZKZZOPm6/f70/KMULCFWm6SCZwy8+631T3goYEVglFJ1wUCKU3C/eDJApl8Xz0bQRIBnOyTWnOSudzHAcYdgKX06cYbWh35cwMPX7Jjb5kjgzUM4u/7QmH+n4XGbn+dDElNrnuTvpvRWgWBicOVJsmF54T2LAXynMRBQDDyxtor+uyk/t00/jxop0VSgl9JpnyUxtHK+3RxJVqnAjrJ/Rp5or5A82QRiVfwzYrBNkJJqxW6TvPQ8BoJJDlrz90uSfZoEhN7x95/38/iFX2eBqErCLWPA1kd+7cTa+2bTsTs78/5rJ+0f75AAshzJ927d/99JCt2QDPw8KakXvz5TJO9AgZM6LoFiui/FICz5eN3F7jNd7zv+WY1vG4mp2CwBboOH59O/KfjvJghm3+lPHiV5ueS6YuLpXi/5/t07kDMkOe1DP08HubmLpRmXfIwV/oG/X33bdeyePevnUSElB8un8e8AXwcvi7/0r7PcxULR1nytZs34YdYYYD3Wkqbo2Q5Vjua8bsyrvNY0X0sRJRnhFPNBQJEH3T4paFJEAasBTAmkoAvVXaphjsl4I0tr++6QFzb7Lqv+yTqlYZccebevUC1q/oGW5HqOLbrZ4zLvumSxxgvMheRWNk8HdKEATKWotlPlmBTqmKHhPrdJ4fcy75J3Bn+eHfYwFv0Ko1ETqeZZYDJIQL0um1UQR5+rqlSHXfL6Yoc8ecoUKcXYq2k7w3sMux+i3iuCjfCDf8J/gYJMVIfvkGecJWpkw39OtaKNQy9v8O0IichjibHDrIZaJMduKIOy1AIYk9+9SDw/4vssMc4A6yiYQvYjYomKgCHrkQ0GmWfK15t51lzGe4wpTJS2rJDFfn84ilWYcVDM6uq1CFiRT7ZeAq336WHcwydENgLifshS45CuaNibqmkU+WznqHDFSSfyjl9mLEgLJrNtjfo7QyMIRpa0m6OBpSNvukTcanpLVVCdt8Q4/WzxLpdZYSRUcKYwqca1LVAOZdWkB7dIOSUg0r7Lg/yar/1Gz5MvBNDbpi/kXmae3hcHagV2D2Cd6j0HE8RUu8FVtinGglJF7xb9jLPEkEcJm2R2A8kSd5qYbSqWxYLSQ2WZMfrZ8uJ7jyPaucQtFNaRpxwSrWnmUECCOhe7nugi/bQQeCDYdLa4MmbWpHcABJhJ7qY4ZaXpiXGiaOpxlsJnDozm2clBGOkbkt0S43OLKaouk5Kkt8cXrboplZgpkCpHBflbNYOb9qDMBMKtxb4YihkHFJU0bA/zlvgiCbACuMQ82xSDzjrDLJIXa6IS5dVAgJ4A85RcvMFA/MxSoLrpZzMedF2Y/98RHQ7U5QJIExNFEjDRfDXhyQfQzrMSCz3gCSZhxVMfuzjE/ByPnliAirWyypADdSaXtg7ISy7V3otxNW290d0r5ILp2c5RGLGbrK3KKLddgm5sm2ZwW2BNgR1/8JpP1z7dKElV5ysQdp8e3uQavViac6uzaSyptBq+kgLWc+yGCWuF3gBler1zJq++do5YZML9KgzEluy83dlp3eyxyjBKvP6tr0KqI5Zk1ueT2Lp73clrYpSVYO6e84mmjxLNssYi2zEByaOhTD4k7bv0UvXCrJt9qrQj/8QOZ2DWnamr74do98ayuk2RUvilCAhcdVbfABvhpwGpOdEg4x6LVQbYQNLOSRYZc/mEGLr6t3mnmix01Fmys8xQJu+y9kOmed/BQesoqsMns9rL3CRLjRFWQi4qawGlZSt1dI9uxvkAhRMB0eyZZCEm4rxLaPWsWWM4wDgB1jbJrkVRpSbAPFMscRExjaeZo0iJKW6xxhBFtimwwy4W5rDERVposMYwA6yHbFTyBF3nI9rZpsgNrgYg3urvkR+OgNUGLcwwywyzTHh6reTK59iKQlrXAwi28S65aGZYk8iaL9bxP2SZsSee1T3OftT9kWM3wLYFf6ZJii9Pvp9zNfxZxbY89vnQQoeq0RDR81HjkKXGZW7SxUEEHSl1XH8rvU+dW7ETV5wRrDCiUW4HG7buTAg1FgUGyidF5smzvBSgsoBPdXQPvAEiOdGgM/DlOdnPFmUKvMUV2jlinkuMsBLMwV63DDE26tP/f3ga/Y/76vrkoS3638FAAgUWKATgbtMfhRe8QmL6NIAiFoAhL65TwKYDZZvQJjDrHEnKKJmgJ6S2Hz4KL73i3bspCKGFJGNUkIKCLuQBV8PAjlNQuHuPtp/bvhpk2D91JnngVXzfngtw4iNwZVE6F/mNCThSUq4ATbHXvkliBkqKWfIxO49JcXMkULCEMbc+8p8t8WR4h0AagV+nMQZVDvhX9vvHAsvuk8A/SP5tZ0heZ9/EmGuD/r73/OcFkjyzQJIAK/lUjLAs8JOm8xb78CMSG03n/hIpMVXX9bsY6NfwbQj0xH8mEPhDIg2YIomNtoUBsznsHpC7jVKO/b7jkp+/2IcC5mpN79c9J7CuBfgd/92LGDA25ecsptwdklejAD8PD3l43X9+2s9ZDLxBkgS4RPjQtf3ffL/PkwDeB34e57HvngDxmm9z3o9LKbcvkZJ8BURKTnvs10Ny2hp2j+u+bGbylUjfl7MkFmqeBHg24NH3fBsCDCXx/pK/REDQGrZMniNvyhcoo+RVMZ56HMhqpe42Te2xVs5wHI27y7xLzedQrSUFhnVhQYMKmqyQi8aXiB3tHHGJeUZZ4RzmG77EOGKjqQGc84aofHONHDEU82ueMjU/7jle4D1mHDy6SCs1tujnkssNtd0sNSwssx52G1qLyfNOUsdDbwif8/lXvmodVGN9WnEwUSyrijcEzW+6Ho1fhR7Id12EIjWmW2hwkSV26cWCKlc5oIsCO2xjQWFi5qkOsqbuIfL+G2cp6vwj2tn0OijPDrv0horKcIhk/bTu62CpNRQipzqni4PwdhapQk1ts5kypYlYilLyiJF2iVsB6EppIgILGL6hOlsNSdV5NSckSGkDUGTb19jrtFLj51yl7LLfVmoRzGbrouO4t2u0Ms9UNNMllRbwOc8UN7jqOQMCyoxtKmuYZjzDPOoKQRSSSkaMxH62+AnfCaWGre+r0WQ1T8Y+utkLgoyUmLIEEwYlctUMs4HjTLoNjtYysuoS+eHP+F3EUjUS1AjmST8YLNoOjuj8DR+IXwigJ3nQDnmmuMVFlijRFyZ/de/Im0H07ZAeHtBJK/VAVwVG6IStaG9Hho9igYkGKZpxAmJy8Vld4FZqgTZLtmVRx0Wy1DjHVlA/tfDdJeedij1GWKHPgRItoIWyirkx6CCLmE9dWMjEe57KWHcWWDf7rDPgxb4tigWeGBtnNNh/LQ4CSOLVwZHLqtaic1EmH6yR5qRgSfb26Q6qrRZNmjDEsDL24ECwiLo4ZIKFoJIe0EmdVpckJ53/JW5hfnq7fn02I7FROv28I9+SbknSp/PtdYBDQRJGzzWGjRbuYyxTxTwGj2hnmbGQb+vcTPbbEou9AdbZoj/i0vUwEdtOoKwAPwGLku/qGgqo66XivZ0VFEZiDCmTySoVVw+QY2f5yHsO7EFjgIb9bIxlypgB6q53gJRMe0hXyPR+ynVaqYcXg7GBsvGgUbdmhdHwuRBII7bNDLOASd8lVQNjo0hyrNTPiywFuykFK+xwRAdjLFN3mvUP+c+ik6OgBPkr6hpnHQTWOL/Nq/+/P2z+I3h9g186S7WVKW7RSg2llYqdtsEANafH91JhkcmQMPY65TrHLlU6WGQiGEfLjMVzEwxgfpeXWXMPtFo8axtNQLExUIdYZZJFurxZ8CbXAkjSpCNfSvlEimZ+iLGRV50lJSPfVQ/IWXHfP30f5cWhya/ZX2ScpXgOyZ9yl94Aq41htevAUWvMJUAUFQY6tbBLL5e5SYEyOSqsMRyAS5Y6CpkpUWSXXpRya15u21Tp4D2HxuQDN8ECA07Nz6KMtRpTzHNEe4RUvM2rfj26gi2u0KEaWX9uddHNXkhAlrjIuqesquGh8Cj5eSrFS8VqP1thOixWWom+MGkWo0yA3TxT0f01VmUPRba5xDxKQC+41YUMfzs5CE9OefSoWSNzaXnLACHlkY+dvGQG2GCIVdqpxv7XGA5WwAFdcY+JkZmhwWXe5So3GGY1wNZZZniNGy7jOI4FwQSL0bGVLGOADVYZjuOeYZa82wNIptLhnWqTeFsAS4Uc43wAwBt8G/mTysJBSfQKZRlilVH3MpLZdIk+3uVlJljwcJkK3+dH1DH5tXyMdN8f0Mk2xdjvl/qVwRb4r2AL/7skoKyALfzlPSdw6i9IbKYK3Dn/dU7+OwAdp+DEvfTvAG30ErvIt33yLpGEekLy0nkMxPiIlOTZDE6s+zFkfTv34UQZC/m4B7l793jmnXvJn66EgTCHpECEB56Ou+nneg4eTD1loEmGxFiqkYCsTRIDrd+PWymuOo9jP/7fwYCdIgaaPCABX/LW02cknRVDTywpD3bYOXsmpZBqbE6TQMYpEgPPAc6QwIqpBkkm/In//4G/77r/X+N7Bvgv/VjW4dGg/15g4qBfm3dIDDQxNNsw2bB8/wQ2SQTQ8M+LSfemb7fm27gObT8j+eNpTJ15yQSJwdZGArU+IrHQBHA+IEl58fN+z3++hMli7/gxtZEk02+QfPbu+bFc8+NaBP6cJClWKrPYhxrze9g9Muj7EAANSVqb8/NbxK5rAQNoM/6ze74vgWv6vIBHvT/ftG+BddPw6DTJr/EeCZg+JrEP5YG4aeNzUkDrh2k7X4XXXc7G3CwvNTGwlhgnw7ErKo7Z9ea/AJAC5VA61ciywSB5Z8vLPseke7fZocBNLocyaNubr/t0M8d0yDTlnyeAQxY+l3k3vINz7DLMagQt7HndZsSVFlYZptcZ8GqKaS2m5m+jCQw5x1bYGakGWGWIeaZQ4rxArwo53uYKYB5o7a5oUGN23X3g1IAFY/SLxCDGveqMUVaQd558CKeY5xjzMRxlxZV2T5JVtG5738dOAJxqPUvaXXI7kDwWQJiLQIlVhqjQyzm2vOGeRf51UjFtMMAhJikd5TbyVpxinlWGyVEhT5kJFj1wxJRuZQq8ytvB7hKeoXVigXKsz8Xgk/e8gh5l12Ofa2XXyTWrDIV0VGt5I7MMO8BrqpMNB5GrjrvYdcgF6Cgg1aTgg0idN8xaAGejHhRZIReJzwpMFeazwWAw9JROnMF8tcFUO1p36JX1VesBnezTzQyzvMpbQdaqenCFsKhJFumgymvcwOzUbjnv8LY3Ywd9TdsTIG4HVaaZQ7YyqtG1DlAozSVucehNdqufy1HDq5ltqo7fDKr7QgC9TU//q/qi30wLP0Km+CWK5JtoxQmFtS+n5KhapK56lLYtHltQLHCdVq5yIxaG+rJ1cRAUWLCFx6SDUgJHDugkT5lNp9bqBtEDrI/kj1YJ5LyFLg5jsSbJWYMMN3nZkfgO5K8jQKhGFoskvx3Ha12PHL1YoMQcLwQLUF9cMIqzPMgELirO+yo/j/fu0c0Qa/HlbEapdQ2OveujboE80OQN1M2+M3iyIU8VSKkY8GYpm5hfStbZo5syBRQaIiYfmPeAQNctzjHLTAChoibLM27YPY7AuiSTLARCLyN2Q/t7yVOmhUZ4SjRTlAUO9DjoOuRMKPkT6J5aZiwW+XpAJGDQjD61yG71Bb3kiFpAVpA/V0tce5mIQkoIFpChCUjgtoDbiywFcCKG1RBrvMUVVhjlu7zOJAtxfGYC28kBnRTYoZUaJYpMesS52KSaDMFCGgSuCvCpO491jOUI8QCeONZdcnF/Szp9nTeQzN26a/VY5I86mKFrvMpwdJUG2OBpPvsiHj9/414/4xoyfRUYZmC2AWAmoe/F0oxMtiDfM91Hw6yFn8VlbjLGctDJuziMCXGQDcb5gIpfK8l0W6lFcq3SrQRwbTDAGMsxifRSYZylAKv1nNN1NFlt8kBTx/CC+15I/nGTy9z2IA9N1GJBb9HPm1zjj/mjANW0LfM1zQcoNMEi+/SwxEVeYI4CZX82H8Z3VO9XGviGe7+I9a3uqQFmZmZ8i0vIO0bsaoFh13kjGhE9PrFKmmG+lF1s0h9ddDEGlbKmbqWAdrHbJFEdYzm8EzMcM+hMOcntxUxPso6eYMR1cRBp5rIEEH1f6dWt/nyWJNosJ6wRpiJsmbFYROSdLS5JwCAbIa2dZo5lxoI5Lz+YDCZh3eIcPZgv5zoDzDAbgL7sCDR/GPPApA1qwohxb4lrVoCuMUyNbLAqBbypCWUF3+2Q2ciseINBVhjhBlep+1hIZl3GQro0h42zRN4BtmafPxW6V7mBUpLBpOi6b1VzWJBHIT6/xlDYGwjIrtLu9197BLYkT0xjyF5iPhofX+rXI1IAhmSu8iFz/zmyJCBAElExy4pw/se/gtcxQEUBGEp5fYCBEZWmz8rrTEDSL0jsuYcYwPELDJxY9O1t+nvFmMtgIEOZxNZawMCZ5+z9J7f899tNxy9gr4SBIQu+rxoGcnwCp/7F5wlMu0ACbVrs9wGStfnPixjwIVDkHEkiWvOxkIwxb9t59A/9fWJY3SMx12oYAPShn+M54DQ88969JMkc9P03msb0EyIQBElQs6TghWNSCMZ5/+w6KQhFIFeFxMgSa+0CnFQgRs6vja6HmJSS5p7ycX2W5BcoYG+exOJTYu4f+dgJQFYog4JKTpFCNhSisWljwj0SCHrWx0Vefpu+z0k/rubjayH58t3xn8lLTuy6CyTAUMC0vPkkucbPQb/XfaRtl0nJzgIrFSbST2JF3ielG8u/TmzKMsGke/ga4WVJ3se+nyRBL8KDP3zKGH0OHp58g5SO2yAB02LKioH6CxIT8hzGKOwDvsGTgPCX/KV5R2BFB0fR4JUPmJp1c0zzNleCvDDsoRBgIYNV2llkErA5s5nZZvZVxtpTk6+VeqzfNLdqfjKfs96Qr6qeMDagKUPm3cPbAEEDzK7wFqsMe6OwHEx2sfgh1YxiRMlXWd7lFnBhzTytq6p0MM5SKBDUVAYjZ2gfFphhta18gIuUeItXmfAG9kWWvEZuj9+ZL5rJdCdZDFbcPj2xHpMti8YUDFiUfPZtXkXecFp/KxBrkA0q7k0+ySIzzKIwSDDwTKFlO+Rp54gVRllkgkUmGHD1yRzTlOgL8tIOed7l5fC207pRa1rVfFqLSh5tkJT8861ZbH7Rm0/UhwIqbU1Q9nrLJqy8A1Aie8gr8XW+w5Kn8xp5YC0Ulaojtc7NUuMGV2PM5JGnY5V6RWsoqxsNBC1RZJQVlLsgC58SRXrZZcjXPFLHrXoz2ex9ziF7GJ2rjkEBIgVfr6hJv0vvE6BmN/vIQ1xNX7FkpTCRH7pYtP2umGnQEmC1JNk5P+ZJFpystIb59/9mfvNfCKA3xTxKjdFCftRTQYZZQybmAtgkg1E3vZ/NWJzl2GXDTdoNaDkO1Fc3rskWdymwE7pmsVc0UFqwqSvRQZWyz5B6OO7Si0woFTKgZZk6+lXamfHUFQU2HDlNtUQf8mZSF16UXAUL5NmhRJ+noNYD5NLiTFTSV3mLGWbjC6QHs7ZbIYe8s/qaqMfy1pOZtyRMYsUtM8Yki2wwEDegwMZ5LsXiqEbyAJAMbYFJbjPKMRl+wA+djdHJIBuxcNNiXt0WMETcmCoGPKh7UaKP95mmg6MABw0obA9wVvtW+Ih9ITYDrMrGuWbpZ4thZ+uJHSRA5Do/DTmrpNhlCgyzGl9iffHFYJNsUPermEBiMFUc5DuigwUmKJPHTOHr0SGTJFm0cclNm1OMMxyH2e0KoxScpq4UYIGdZfKIot8gE0ElmhB2KHCRpUiZkqRMk5aO+YgO3uQau+61KGaU7vN9ugPMFrBq120tFuliYgEB8sm/Y5mxADMkcRdr9ZhMgLydfn982V9HtAUdW2O2EdLb2wGSFCi7Z2WeATbopRIsqB3yWChCV8gKp5hnnKUI4JFhv5iQaww5w69CmUJ4ek7zPhfdrFaMyQwN9yFtD/r3KsO8z3SEw6jQWHcK/A4F91c7jm6gPOsyWADNa9zAwoZWggW9zJh3yLq4zhuIDQ3GEt2j22X6LRHs0vzd6nZq/hb97GFBCq/yNg0yDLLB21yJTtgU8wyxyjln49b9mVhkm05MYiB5upLlstS9s2eF4C69fMA4s8xEsSappVJZNacogAGsSJIXIJhPpklT2uN3WWoMs8YxmWASTvM+S4zT6c/8AuUo9gX4an5cZZge/57Jc7FOazyzVt3XRM0mdZkzTcWrmjJLjJNjl3e5zLEXIAtMRJOl3Z8R59ii3ecgPdc26Y/goZqDda1Y6ESVDrYpekPJ0nh3KDDHCyjhV3YDZtWxzrgzg5cZC1m5pWZ3+fdn0BcvExzRzptcCw+bMZa5zLu8ytvxXLvJZdo5CkBYPjlAMPfUiBNLYYhVethHqcpipVvicio4lRyvLriBpHvs04OS4vVveR/J5Fj3UheHXwkPvfCF6ySlqp7BFvAPMeDjLgaUiLklWWib/5GsUwy/u/BwmidBtPMkYMnDLij73zn/XIsfRwUDJC5goIK82YoY6FAGPubJdFUBYWKKCbjRvh/49j7GwBMFGDR8/2LMgYEnLRigUiTJGV/CgJ6XSJJfAXfnfMzEqtLPahhzTuwql8SefIfkQbfoP88AIxio9THGmJMUF99+Cwbo5EggmZJJ38XAqZxfEwVtXMcYkfcJ2SiHJM86+cHpmkBifOm66NoI6JN0M0sCnWok5qU8BzcJiTOn/N8OBMsT8HELBkRWMPC1hjHn5CEodqeuq9KHb2HXL4uBeFu+734S4/QBBvKOk1hpAmjX/b1F39885hm46L/vJ7Epz/v+7pBk1QrYkHehwF9JfM+6dPU2KdVWDMpTpOAN3UclPzelLh+SvP8cCM7qHheoKAC5TDAnT/3x53atl5reI8bnoG9PUubzJJ/KF0kBLUukIJavSCAGQCcPQgZrdV4hmuyDjuSrJm+hwSQLKGleQWUiZshcP+NAmvxaAfrZDKnjls/Vuy6jlUKulRqy7xG5wsz6swEkvcWVaL4qdVcBDWLFybevzxukWVcU/b/J+//YtvMzzxN8lSmTJi2WJZNFldSRI0WMlNJEXmkllBqucbU9ZYwP7kvQ2U0js707gx1g/tr964D753C4BW4P99ficH/dAAccbgYzd70IJrPpTS7GuOFqu8sdTatOWmmsjCpSxEixuqWIRZbokkyatOi6P57n/XzpWVx3Dui6yVQIFMrlksgvvz8+n+d5P+8f6i1FzjBbixwVJshzylU2QkkhIolYV2V2kM9yh4z3XHMojGGJa2y517MlzJ4x5Mx+kRQWWCVDO4C6ayyxzxVWWGCR5QjLWmOOZRZpMOBZANaPLrIcfoQn5PmQxRg6Sw4rKyp5z/WG2O0yxhxrAZiardOpM9B2AodIYdLecVc3iHzR29fPsc4YuxxRirpbCog0bdaYZZ5V5lhjGAusNLDPkHr1sxNUAijL0uQP+EMqlB0sPA2gUoGNCkIR6UUeyGKYqp78L/knzLLOFpOsskDBswyuscQ8q8jHUYzGW9wPQLFDJmy0GgywyIfc4zbTbLJDOTAGY+iNufJxOGo/3cdGpOqERYxhL4ZpyHN8gxnWmUP2U2ImSmoMSX+rQXCXPh5yA4WNTrPJf80/5l0+oEWOMpXwkdew2ghFlRjw7zIWRLYRDtlhIu55AZUDPiQfpBH90V/3+lwAvao3Oeav1AwUWcCEmp8T8gxzEECU5H99GOUzQ4dDb4JE/dx2VFpyVYEPJpk64DofRJEsBowewKxPGbKYcXubDOYrVYzmLUuTB9zkiJJrz8cAWPMoNBkqmoJ/mCNKKE2vRS4kOpqaACEzBlxol3sldTJHk6tsIEPwbWfeCHDUItlLWbVkPZPSjnBAPyfuG9fHPldoOdX5sYdajLKP9O9KbTTK7CHDjiCLgSJGlphYc26UXqQWkldjg2Risd9kOpJpeiV+2owErIo6XuKIayyRpeWL2Bk5mhwzEMybE/pZZQEFMGgCs+1yPoFaa8wiY0qlq9pEY9fN2C2RUo11b8JSlibXWAovsDwnrDProGCNGTbCV0C+ENsuhRaAkHEwU+CbvAeussEYu5HkLJCx5HJZaf/BQLUx9phnhSNK4W+xwgJ5Tphmk7fcSDXljWHdvdO69MWmIQ8HNf0CiiVRV/DAIh/G/ZKkYBorL+vTKLGVxPZTGEjVNwBtpkpbkjwwxRmn5FljLlhSOu8tcjEt6ut5Rr7Ir6+zySANdhl3evdD2qS5x+0Ag7SZmcy+xR5jTHpysIAc+bDZM5iNjXiNWUpYyvIGMwFKDDvAqnvulDzf5TuxHorWLgBcxYgGBtp4JL+dYhswgF62A30OIOo5b2Bmw2L8CcSXWbG8HEd5woJ73knOK5bhIA32uRLHKT/J3qJij3E/b4cBcMtE1hh9A7Ge5mjFpEwWCTma3OQhBerhyZKiGybQAsklNxHNX76dmlBqgg7E8yEmq2QZCoWRhH6TadaY44wUNQoBumpNq1KiTdo9+krsMRb2C2N+jdNeqMh8uUmWFRZQurmKDdk+iPUnI+wjSn6tbK9JWI8nvOODpBJHjHCIQqFA7HdLYzdmwTH7jDJIw8E8Wx87vi6IBaxzVHI/xxRdNrhKy9nikuqYp+dgrKUGHrZ4lw+4ziNWmGeLSUY44Nifmz3GURjKfW7RYNAtCoYDXMzSZI9xB5vPGKARw5kKZXYZQ5KgNumYJKccdD31PU3g3bYbPWufqzq4rbAk2Yz0yo+XXUdmnn1XAWJa/Ef8Hj8P07Yv8EusI4ET8iCTtO9rJAmfAv/64MXXMcAjgzX+Yjd9HXgGF35CAGov5jEgZwYDZb5OAtTN+u85I+j5Ys/nKUTgAgaCvOX/OGONcZLU0H7/t1huCoEYh1/+nUsGTGQwgEZ+Z2LIjfqxFEhAR0lgn2LBAJ4EzFcwJtuCn78L9jvPv4WBKAKd5HeXAldPwW0SpqISZuXn1uc/s03iOacQC3nICcxZIQnZqPo5vOTH/XMM9Fz349jF2JOSg9YxiaxYbfpH8uff8XP5kV8vSTjlD6hgk1mS1wWMySU5tmScCyTswxn/2ddJmJ4Ocr12179TGwOxBAReImHJOdvys7f8verYdRPb7uckASYKvvBz/Pw9f4+fkACXf0YSZqHvrmAUeeEt+/kQkUlhJlV4NnMueSYkJRcjtUt4TJ5f9ffWs6NU5wI8L5F4V14mkQhLQr6KXcf15BhDji727AiWQLzIq6EeYtkKrBW47p6Az3uTlSf98+rY9RY4Kl+/JnZv/wa8rvJvULCELHr2GHerigpt0qwxR9qhrCY5Fllmg5kANUQoaTsQkgw/29EraG+boOJ2JDVmeEzTAQgBf3uMsczbNMmGFYaS7NUnKdxNIWFpOuE1v0M5hsuPeDcUAkcMRU2o73nslZZUUuqTZQel76WhnPzhRX5QjabeJc8J11gKEPEDrscQ0HrmHdpkWGA1fk92KR0yISkdY/eV4bGIPQIglQRsSbjrUZsv83YMURWgMIKFuimo7NhrMA3+5IE47T1ChQlk6yJFQpe+qEkXWEEBXENUeZdHEbYowkjOUQaQMqzPFSBFpHB8yI2oR01ZMR61rJKDGwywxDWWHbh8wijrzIVs20IcxuijyzWWGGWfZRYjdDLnnw1WJxeoseZsQ51b9TAif8ibsOm0mywt5NGoPsl+9zgksXX3qBPuI6WN5N4nmEe2gOVjBwJle6OeIkPnFTJRb38qS5gTEh9K+ZGLwWf9rpEu0nS4xfsBupuCTeQne15meMw3+GEoS+SvPUCDDWZCUQOJb/lf9/pcAD0g/NNkfl6kHkl8xwyERLFOkRkeM8c6j7hOkVok4GkRy9CmQD3AJz3Mc6wz7ExAMUZ0I0lfruQgoZ0VJgCo+gIzxi45Zwfowc1zEoxAmXFP8xGSGD3gJinOuMftCH2wWAdDrje4+gparUCDqoMbWtiaZFFKoS3kY3Gsemj33GNvhwkkDS6Fr1Q9mhMgAJgiNcwE8gplKkiPL1BJSH+WFsu8HTeTtObrzPI+t2iSjamLJL1ayARijvWEiQjAK7oXg67hEUN+/AbiGCujHCDsAMfI+P8K+9FAdulzsDZFkRoDHAe7R9dRC5nFbQ+jVCRLs7WmaZlF2mR4wihp2u6BJEbfq2lS8sOrO8As1kWeExZYiU10hzInmGcj2CTJJNEWzZ1o3/uYcFq8co8bDAabRLTnglPq6xSZYpsx9phmMzwedI/YNawFBXyHcjS4Sp/Sw3/ACH1YEIOYibouJ/SzxzgzPKbfFypN6oxVk41FSky+M1Ih+87RCjZsjhaHjHgYQz2o9SYv6+OAYRT8Yb4Xxsj8C770eS0/v1avIV+3BjhGQS91inyH7zLKk2DOCeTeYtInaoeY96INA1R4bDIdYLA2VAvZqDsDeTAkkhqG7HOFXca5ziPMw68Zz2xvuE+THDueJDvNJhk6TLATm6hYXXuMc8vZd1tM+ZqVjqAZO8YSqw7AnJGKtVYJtRO+NinmXuuHpmSPuB6F0QIrwaTttQJY5m1mXD7R8nVuyM+j1roGA6ywwBqzTLosQenUYnwrucvWq1IA/EMc8Yh3ATPwtTVv1y0djuL9ZagsZmUDS4g2U+pxB5TMjHfcPU8F5p+QZ9J92J74pPcW70dBu+/rFhDr/gCNkOBOsBNF7SAN7nCXLaa4z3tIbtry4+ujG54lbdIcUWKdWdqkQ2YBlsKltVWAqQDNLabinlSqtpieNuYycPYR71KgTpE6H/Au4+xxwLCbCdfiGvWmm2lIobVOgS+aPFux2YoGZZiDAGdTnDHGbgwUzYMyE8Ui2B68zGKcF/meXmE/CkbtBQXMQKtNJv48xRarLFDiiKLLNSQ3ApBvr3xtNTzskgrjcHkRmSykThbzLBzml5/TCvRr9MqRSPzEYvsKian+J/BZL7CSAi7C+U+x9Fqxt55iIIUYVAop6LOfBfj46/1Qh+cCLi7Di1F4MUuAIs2LF5L02sv+9z/HgJ7LDkTgx6MADklJMySsNwiA782VpzBqIMxnMyQ+fAKEBOQoGEJA33MMvFvvOY66fU8gYUnpuPXdlTgqMEu/L7DuLQxcAgNcrmCAzAgJI+6y/zPj30myZ8lhxSCTVHbXr40SX5V6W/DfFyNMYQ/fJPHd+zskjL5d/57v+DUQc3HUP/8r/uev9HzPFAlLcMG/i0AsyaGP/Ofl1yim3E/85yQhXcBAZKXFnvn7j9r3eO1f+Hdb8HNz5t9LclUx1SDkqBeeYsCZZM9itaUw8FP3/EUMdFWi8HMskETPB5jX31tw8aOXSRCJzuPPSUJGnpLIjSUvlozV77ULf0riu6h7SUCdmJAjJD6OCrD4cxI59lftvPATEj/CS34sz/xcC7wGnv32OfhtOLnYD0/h098+n6Qd/4wkPOXrJGEtYvj9Brz+ki85I+4Y2SBp2LbJdCgIBNbIA75MJZg8E+ygkAQLelwJNr5q+sMe4kCeEyouidVelKIb/u3qI80n9iiGcUVqTLLlfaMx2H7MteibemsagTxgvZEse9aYi/dU8JTVme0gK4ApvWSnMepDvWk2aZPmNveYY80ByzO2mXKg8iiYgltMOdmiE2Cg9nUpMaSY0CA6RZcidVrk/Hs2UWq9akl5/1m/X2SWtRhQHjLi3sCp8LJvMMCwX5tFltljHFlbyS85TYd15tihzDyrEdaQJKeeIcWVrkWaNivMx7A8jUlSdxnrYXwes8FVOqTZYopNpj2kdCTsyORxrsHwQ25w5NYkMzx2FuPoK/16ntPwbszS5DqPIt9AdaGUK7qWGnrKN3yJayFNVYKycJuuw8NFzMLEJNR27o/cSmuVBaTgVLCgcgkaDDJBJa63vXcrcI9e33j5BSrkTGQV9Vcd0hSoscMERwwhOzOpy9Q3CDtaZBlTmtqgW+SfYSdEHDEUvbXIUDVXno5wQJkdGgzwNsuceZ917MDur/L6XAC9r/KzkOeIVmh02CuUOAqJkBBP/XsAS63rDckoUKNGMR6CQWdaiNJacRNq3UgKGhAjQ41KgwGnBncY94e4wkT8ncAsS4A1Zpa8xAzEeoJYbE1nRZWpuCb/NDydTGY8DBALl4Af0WbnWYkbtx8LTfg/8r9lggoLblSuZMEZNnrYLifc4W7o7AE2maZOkXH2AlHWFKHsC/0UW+wwwRPMm+oet5GG3QInzOhUAI0lHFmYyQ5ldijH9ZKkcoeym30aI0eedjIOlyxQycINBoOhkKHNLOtUKaFEozqFV9DtGgXWmSXtm9iAM9bynFCgxgEm4Tol7/fTE+oUMdP7Mv3OalNTLt1/npOQhYk23GAwGIzGWjwIbwNtgGJmiuXTS8k9Ic80m8ywEX+X+C8MUGbHk40zsZGJrj7LWgAikvjKZ1KsPUtGngoWnlhEknspvbiPRCLeJRWL3Ls8okMmQg/ENsxhsuNTP+d9dCOGHHiFTt6b6CPjTvlR1Ckw62k+93mPGoUwsZWh/D1uAwYynvoz/5viofcJ5k+i+7dLKiadAu2AmGaNcMhNHtIhzQYzDsztksbsAH7AN8nRDCmsPRP1mOgoBfWEPHvuJzLFFjM8ZpQn5Gg56PdWhAppE9LEdtgBsy2mqDLEDuXYVDSMMEZdiUWWnf01hHzqcjQpUwlfNt3PP+CbQJJiLXkxEEXFFlMxlRN4pfswTTt8P5pkmWMd+Y1ozRfDsJcFCfAdvsupT2sBB94scT1DmwfcjOmiEtvapKn686jpprxhDdy339f+02AgBjsKILG19tAZeUXOSIWnq/Y8pePmaLHEtVh3zMLBgC7JOju+doltqWIrRzNSqquUmOajSAIWqG/31wEWMmRhQ5oG65wA4TW7wAoKwUkMngc4ZMTvv0z4lsrPpkI5UnLFWL7JAz8vxZhUD3AMECxg3TtivamYPfZzYc2NMfwkadAkf4sp/pD/3JOD92LKb4MrOy7bB8sBuNYcLK54sSZAU754Yiwr4SxHM/xwRjh0eVA7WHxKJav6/TjooKM8+tqk4xzpvhDIu8gy45Ea8AV+nZF4wsmPTMCTs3pekzxVzLmLZrR/QQCfM4o+uwgXPoJnb50zAOBnBCvu+Si8sXsKGbgg5tknZr7f7bPf/bRwntyz58E+e6E0z2fApEkzLzj48ZnklPoODgB9dhuezZ5LmHZKlQUuPnlpQR2zJEwqSS8vYSwxgUECtwQWOmDJV0mYUFX/Zxcu/9Pnr6a8foKBRAKQJHeVPHUWA4HewgC/H/s5/23C6+yXv3Mp+fkCr3rj6TifkQCfc7wqBe1Nwn3u3++rfk5Wen7mE//MERKwUEwwXfefkCT5HmAJuO/5e3/acw7lk7jiPyM5Zz+JBPZ9Epmq0lYlAZW3mxht6ySSbH3Xp/7Pcz/Hl0jYjLquRz3XRwnNQyQAdMbPl+TfkqfKw3HWz90sCUjW9fdXSMoaCZNS9+kMBqYJ3FWaLyRMTfep/PhOfyJzFVj3Mz8eAazyruuSAHYl/5k/xliEVX8PXR8B8woQ6SMYmhf/h5dwAG/87BTa8PoPXth3f58EsJ0lAYUB0iTemF/w1wVX+tR9aL7LGO/yKJh1IidoD9awtMGAD5VqrmcyoscJeSqUuc+tkDVKZimgUH2xPHtVV5z50GmIKuvONjLGugFLAhg2mUahCOPsITsYY8gZQiu5rykisrQctNG+fEaKKbaxkKh2WD9JSdSljwztGIDLCmaf0RjsFhx801BvjD0OGQkChtVWbeRZXOnpY0c45AYPYiBboB7vvcEMReoMUQ1ij1l/jVNzsKxAPWrw7/DdULiopu2QiX636n3tsttLbTPFLOtIAr3DhB//btSvDSc9yULHCCoz/JhrKAwMeMVHu0CNJa5FvZMAUnasc6y5P3CdBVbieNv+MwaI2jkWYDXCARNUgp2pQDLzG2wGvnFCPiTTJ+SjVzReX4L1FHyQe4OHKIVZDFEBiaoZT8jzDX6IlHECjfVMmCey5S3InmaT6QgPzdChRjHqNJEXVNvLd1ukgQkPMDNV2Rn7jPLY+y8Ffei49jwIQ8No1eVi+imrQGrFVRYc+D2Lml+EAMMlTkM5qYA68x43Mpiu6V/3+lwAvVNnV4l1IQYXwGAPzbLtX/CQEaTrF+Bi+mijgSqi+oQ8KyzwgTMmtLDpwdMC2HFunwEbfWQxzzSBWzYlqJKiyxqz7DEWyLYWsR0mSNHlzBlakmMasGgUW4EqJ3475Wgyzi55TqlRCAqnkmjlKSQWgh7uFjlucf8V9pc05PIF+JBFn/r3+yShRpVSJJ2KDXhCP5JoljgK36JxN3cf5oDv8F1W/AaT152+3xh7jHAYGvQRDlhnlg6ZkC/P+IP7gJvBujNq8hlFXzwA96cb9uZ8lzE3Wm+TCaZGr4wtzwlrzCGfJvnPSVanaY0WaLuHMvT7dTEK9Fq8V44m6z1SaYFZQABroj0DsaCpsdMmd0Lepw/G1DADcwMaBTpUKblm/jgWW90vejiBYJnocyR1kx+AsR+HQi6rf2uKpvMgD0djniYbXIEaSk6VebxownqG1Ngr6lvN6wl53+Q6AaxPscU6s1Tci0sTIZOVn4WEVvekNukRDpGfhZKtDIgosssYCmz4TXhJIiCa+ij77DIW/mZi92hipedH7NgjhsIUWWmeEx4yIaBnjzFPZZ1wxl0fkx5RDwmQWqdIhQkqTPCId+MeMwnrYBjKamOWd8kJ/TH5k7RaYL2A+zTtoKDLlqBGgTnWMC/QQcrsBKO4gSWFm//ZkbOwDUi0dTfNLGuxzprFwGCAjWUqSA6c8Q1yjD2euDTChKHGwCpQo8EAWWd3CYA0tp0VXNdYYoYNlnmbDWY86GHEz7WlcI9wwBFDVJyhO8oTDhhh3KeqVjit00+S+GryWQtLqFOgQjn2xCWuoTR1u841l6jYJLJFjnH2uMV9FMigvXSKLUpYmq+GLWBAvDEwn4RPX57TmNLLs3HcveoWPJBBBZr2Pcl4dihTZif2hxk2fJ84iD1L7F+lju9QZpV5dpjgscvANYiQZLlK4v+pQlmMZK13CkMRC05+qVY4taNhqVLiO3yXb/CDYPaJxb3KAn/Et2iT5hpLHDEU/olHDPGe+7fo8wUI69nVs1egxgnm+yh5uGRCmuJrzf/Q0+LE9NtljCm2XwnY0F4koPKXvPn5LEC/bq8LGLgh4ENJn2INCVhw5tCnb53n4NIbBvIcYIBOCV57AnSh25cKIO/FZfjzkf+ICwopEKglT7E2XFiG1+rw+sELY1M5QNe5cI7PSvD8d4DL8No6Abq8tkIihRzyPz+Dg8uXufjkZSIRrJNIiZ9hIIW891L+PY/8Z+QFKKkiJCCOGGn/F/+suyQMNklblbZ6ZsdLCl78PglDTZJcSSU3SNhpoyTsOA+mePOfPk187p6T+NtJJitwR5+nwA/5CCoUZBkDqUb876+QgD8C1nQeUiSgkK77R0QwRoB+JQdOL2CMOoVE6HspJELBFvoMecRdIAnY6PPfUdjFFQwslMz5uR+XvAEVMLHvf79NAtTJ+0/A55We8yxGoc6fwiEUDCJJs+SpkARPKCUW7Dk5IJFNQ3L9BSDrZ5Vc/HUMnBwifOveWD4NCewrnye2oUA9f74+eeeCvb/ATIWAXILPvuLvMe7vs86rYS5V/+wuCRhYImFR6tpe9u8gUPId//6/IT56L8j43l8KYE/DePnTqSbTXmuJ6EYe0F6t8AYgBkQjHLLNVDDxBr2OkvRS4Vl3+V2UjKv9yurOUoBCqrFkNVR2PzB5FXdIs8o8+1zhBg/j9+9yhw4ZsrS44mq9NO3ohzqu2JE3u4gvAmdU64r9p+HwCgs0vJeUrFZML5Ey0j1DNvWYGhivMM8pebaZCtWF6tZJtlhmMaTDQJyrdeZYYYEtJlGopc6/wJtpNllkOVQzs6yjcEu7LgcxyBNIa8qpIvL4W2HeYVLzeVPva4M/U8EM0mCAY/KcuErrkH/IPw0AS4PEDulIrzXykiUnC8hSPalAFJFDFLRWpIbUehYwuh4ewA0GA3vYZYwK5egfdyi7/UpvHsFgyMIXWGGSLbaYIuvhfb334R5jVJhwklY6an2p8GoU2GeUGTY4ZCTYdQ0GQoEhW640HbaZYpcxJyAMBoN1lH1m2EDe9xa4mqHEEXNOVBGmUqMYrED1X0kWQzXIBkeuYLTcBhtlL3ENMHBuhfnw7tPxlrAAGQ2wBbr3Mgr/utfnAuj9lCkOGEZhBy2/GYpeEIOxyEyaOsiRSxtlPN0bcLDDBJIYTrATCSBg3lFiiyTSMnNoEs1TSO2pTxjs5suS4ow0pjfX5KI3wdAYDKmgPDfJ0pvoYovKPCssUGUoQJaCo6qSVVnKpDFOdphABvc6tlH2WWMuinuL0z4LtkyFCe7wI2bdsH7Vo7yXWYyHyph/HUf1ExbXNlNUKHPmN7XYMnlOKLuvgTyluqQ8RdjOjxg1AlOPem5asUdSnHHEEEp80ZQJDGhL0WWB1Wg0h5ydqeOUt5Eis/OcUHSmYMkb8Q5pHnKDMXYj8bDjN3rRNx4BSCeYX5wW8rbL944cIGuRpeMAoN2VrfAGaPvGqknQNJusMce4S18VxNIkS5UhN4UvRrhIL9VczSCYZ6ClmGrSZOEbTedoHFFCaTldUvHzveDjIsuYxHwtAN4tJoMhY5vyHQruB6HzBgauL7OIvMJ0fyvp2HwTa9EsazNN0w7z90WWezaDbrC6hhwU36EcXpMPuYFk29q0E8P5TMhw9xnlL/itv6kl59f6pVTsHE3u816ATQoqWeZtv4+PAqBN+wIPxCTwPu9xwLDLAGoBXptkNOtP6og/e2dBI5cvR80DFWoUWWSZayy57cAeOZoo1AfsPt5kmn5OmOFxMJllagzE9EhJzF36AlTWOp+jRY0iHWe6Ke1Z4Q6Svme8mND9raAkMYC3mOIW94Ntbf5nuTiHxn4yKUiVIX++slEo99FliXfYYhLJN+sk0nGTt5jh77f4o5BM6iVZxff5vSh6Flgl7+lTbTIBmK0xi8Ii5IGiYcAADa7zCEuK7QtAVM9kv0+9FaYhYHWTaYao8g1+EPeIzr2miRoeSHIMhEWBJqUKZTCpZyuKGTGexVpLUr+GqVNgi6nYp6qUKFAPqZCm3GJRtshxm3vc4CEtckyxTZF6MHaVIiZQ0MJgrmLef5byq3vYwEjba1aYZ4+xKGLFCuxzRp+K0yxNFpwFL9+bWdZjyqogEoF4FcpMssWwg7UlqlGED3PgoRYDTPMR2x7SkuKMVeZjnTaZ7W6AygKzbZ8/9nUgG+dogAZbTFFzNuAjrvNb/OXnug79Wrw6JKb8kgmKGafAg+cYYOFpo6//+Qu+/Kcf23/vY0DQOnw6c57PvgqvH70w0KMfzj+D+af/JoCr55eIUIBnb50zQKaXdSWA5DJc3H3Ja89dMnlgv/9CwNVFBzF6AxPqMNBuJImr+n9HJIDeM/hXo7/Di9ddHgwwCT8tfTlJ5lWwhIA2MaIEqP3Ez5OkuSVM2vgc+94FIjH2/LL/nGSQkuH+9yT+aH0YYPgWCZgksOiABCyqkgCsz/3f6yQyXkj8AyUp1nuJifdzEqBH7Mp9/869ASBiIA75P7s9n+9S64sHjvLsk4BoBxgI9Dt+/lZIwjWe+t9fwjz3xkmAyCow798jBf929iuJB+EkieRzv+ccCHz8FAPnlC58hgFooxBhhPJszPjfVTHgSkBkqed3xU674N97lST05T/x7yegTFL1M0z6esU/51P/ziU/Nl3D/8Hf+2f+O++TAHoF/5k/9WMQ6zFj/1zef54k/s6RgJVVeO19kpcCZOj5TpKCX/b/v+DnT2Cz+xx+9h6J9LuL3etp/+c34HXOyRDWr5jPmPVTxhTSoCvPCSssuAzU1GmrLCD/cik/pHjTP2ekHCBaYJItzE9cQWZWM8oSy3yex9hmMhJTR3mCvIC3mArfNUkgxSYb4YC32KRKiQ03sBzhMCSoDQZi0Cr2lilJ1gHrKxf5kAGOo7bJO1VmmcWoAWQ9Yr5nBiQu8mEAPmbnk42+X+FrOZphVSVWVAqzIxKJQvVDxvuctoNmIlFcccKIHbv1j1L1VZgISbANbC0IU9jFkNs4HTHEsDMk9xgP8FHXrkaRVRYCXOqSYp7V6Mm69MXVnXDZdRaToErRuO/9rLyx5b8nixUw1cGED+sPsYAVMSXrFNhx/2bZhG0zxY4rAzWclX2IFDkn5LnNPabYesVrcciBScsZsACzYQ6COGOst/5XakhZfOn6bTDDBjMxFN52SbVqLZEKlGSrPkLEnTrmPb7AKim6lJ2Nd8iI13gTmIqzFizRbaZQgCPgdf9xhIBKyaZnY53ZCPFTpoIIMFJ9lqmwz2j46ze9JhQh6pgkb2CDq36fNbnCL37F9eRzeEmnLBBPX1KLkR7KAcwEspeJJCPDAWeT7TFO3VMG9xlljnVMVjnBuEu1ZKKt5naazWAmLfO2J6NkuMvvcsAIV9hH8rYV5rnqccxgFFN5PQ3QYJZ1zMQ/4xOBNMe+KAiBNeP1ZtBFdfxq/Cy5NWFPiK6pV46mA0qlaArBbqBZ1qPxe8Io86xwm3tMssUgDSbZYgxLNxIbr+2U5jNfNMUY6502aNqjRUN+h5tMM+6NlhpHNaZzrEdjm8ISOrVxCLTYdbNJpTGJuSGD8TQdxth1M/BMNGOPmUF+daPshy/cmJvmW1LqHkMcheebNpoT8qwzGyAkmAb+0P9bCUBAABZa5NukKTvbqelBAxUmGOGQA7fL32LSv3EqgEKdG8kFaxSYYisW/yGqyJuxiaU8qnk7JR/x7OZB1UeZHSaouNwvywrzscgLDFphAflpaJqjzXiGjZATtklSF5vkYhMuUkehMJpmaCIiDwn5NHbpQ+b3ecy/Y5pNRtlnmk2ukJh1Sr59gPlJlpzWvEM5AgIUliFQMUeTL/0mNLDAHGsU/NyX3U9RkvQUZ7HuKURA680WkzGZS2EptGLT6h4b4YAVFpwFuRuAWY6WA+4lzhysH+IoJr/LLMYUTLR7yRym2URBOld9cjXGXrAJlZqa9kGJ5P1FamRox9qR8lVIsg5NmUQtlw+L1iEVpWIxia09iFHUxXSsU+Q29/y85WJ9kmxhgh1a5DwVbh0FxNgz3Ido8Xq+tIYfMxBBSCnOYu2TZ6HSvoBYVx9xnQoTPfJMC3hQQp2Yq/qdHM2QjEq6UKDGHGsooEnTQAG0+sfkGK1YEzSl/NCv5Sxr3ORBPM8KqbB10XxFtDdK7qACPM9JDNhKVPkWf0SaDmUqLLLMIsso/MfSuo5ZZd5X5k6sx7Os0SbtrL92NCRgBb7WHbH5ep8RSW2VtqxpupqXP+JbDigOxX6j7yJZUoUydYo0GGCBFcrseFCWBVjJu1dDDPnzWnF9GpNoPZfGTEhMmWe9/ij6gES+LAobEktilnUOvdCtU4xrkXbZvYBUeQyXqP5mhGK8xECCFRKQR4EGCl74iERSuIGBDWL6gIEL/nrtDF4omMAZVufX7c8vLkK371z4wV386CV84tLaAgmgt4CBSE/9uPaBJybLPa/jeIrJZy8Cl+Hjr/VDFy5WX/KX45cNGPrE3+9TDMhyltr/4k/+lPOrcOHHWMDB+DlGugevgjN1EpDrUxKfODG8RknAm4KHeQiQo+fPVTs+IJH4yg+tgPmgPfPPeu4/83dJQKaqf8Zl/++Cf+eLwJ/48UmaKhntRQy02vf3lFQTDDgsYaCUvNvkCyiJ8RWSgBD8u1/x45b8+Mz/+8/t7579J+cSYE6SW0hCKi7795Ts9xmW5It/vuSyu3aMf+uf/jxhUx75e35EAi7r/LkXIzP+/xQisk/CiBOILEm5zuEnJGESYu196t/R2YUf/34/zMKLRT9v+v6jfu6GMJBSYPhlEgBN9+pIz+/p2NoYmHeJJGBE9/M72P0qBmqfn6sjkoTakp+HPl4Ns+n3n5PvnaTiYi/2+vNdIElYdjZm7XJ/Ind+1vOPwOwv+OuUfu5yJ4geFnBnUstT8iEpBJjhcYA5GvqD2WQoINGGcCPRCzUYRL7y8hiWommIKmUqYUXxAe/yIYvIC7zl7DEROATQmCf7eFiLiJnWRzfkr+q3pLywuicTw1P5/zadZFF0BYX801QfVyiHJ7sBgX0UqHGDByS+e2cRIig/797UVfXtLXLMsBFhYhrEqWcCQi2jPl6+8bOscebvJZ/ycXZj6CtG3hXHBOru6S4lhwa5J+Sj5zPP4EJgAQK+JtmKGjhNhz3GaHuvnFhYDTDGLm1XyImxabhLH+vMhirLhs+mwrjCfliBNBhENi0dHzif+rGW2eER73Ls59DAQ7OwEXFHRC2RgsadVKUwtjMHttoOOpplTseTfvuQnFgkDw1+5dFtdZaRA0RUMUuzkSApFalRdNB0xi3CpDLRtVGI3wSVAIblPz5BJa6HVJu6HkdO1Cqzg/z9Dv2zB2lEKJsRJc6CfZn1IbMYmOpZShyxxRRLvBNkDQGUNScqqC9Rf7/PKCOxMf71r88F0CvxMQM0Igo66zfNPleiPQEzqF5kOQCeMpVYYIBIAsnQDiNvmUunsORGGU4OcBwsoZJLrY5ckmr003YANL2gy23uBR224GEShuJ34mFfY87BnBJ9dNlghhEOGcSkXF1S9DuCLvaS6MqGmhtrZYgqE+www2N/6Assualol1RIi8ROaWNJRWKlqJnThW/6jaiQg149u2ncjZ78PreQx90yixwwzLEzEtVsDTh9V4wrpQaKPZfy773rYs+qS8JKrvfeoexsTGMV/og77DPKCgusM4vCGNTgGCPQ0n9kRpmlFVRW+XXVKbDgJq9AyBQbDLLHGI+4zgYzKCnoiCE2uMoBw8HMUGiKghlk5F5wiahARwMO2sH2tJSaRrBkShwFy/HQqeiioxuA0Q20vfceGuA46NwGnth3S3sz2STLMQPBfBpnj3GXJ8skU4ChEoDkS6BFo0qJNe90DNywtEbJvST/ApAEtsIEG1xl0BdwsfoMoM2GB4RCMQBWmSdHky2mqPhUw6ZFO7FAW7DHVizGuofl8ajzfTki2L7Yr1946rTCcU7oR8EQQ1RZYJXv8vcAgg11gHmUPfEpkzYsTX1UHPVKMQZpBIige/J3uUvRpazyuJthg5I/12na4TOn5Ci7L2vxvve4TZo2C6ywwwT7jPqgZIItpoIda0ETZiuQdhBdwLA8MBZYjfMwxRYrLASwI9m4GGfbTNEkFxO2RZaDTbbCPFNsYdLRhJ09wiFF6k5XNxaggnxu8sCBx3ow8LRuqsCThBUM7Nb6OMcaTxyIVNq4jGwlfRdwOMQRWQ9s0Jp6wDDLXiw3yYXvjc6NXGw2meaMVDCugQBeDRzP8oAbjHAQps8F6jzgJhbAMRYT/xpFxthllXmfxg9TclB3jzGKPs01g+UFlykYm0xDkCWu0ZvGrT24QplrLMUaIxn+VTaoU4wi9h2WaJKNazjDBpKvKmVPgUwLrMT3OCHvkhJbk+9wl/+Kf8w/4x/Qxfw5SxzFRF5rreRKYuZlaXJKngVWGcQCj1Rwq2nQ2ldhIuqMPca98M8gRmfH2coqYDXNH/D3HaIaA0w1Vxqs6DrqWX7IDYzZPey1yBH5oPd8gV/6imKarZB4fX2KgQ0jGMNJwJ4CKOTV5QDA6xsv4Cmc3yVJenUZLgU4/1MH8eRf5vLZ/UtvJkypUwx0EKhS9ePpcy+/n5EAfz1stuInp+EXV3j2SfKd3sLAlwvwQqywr/n3cdllO5NmNzVmgEwdYyUNkaS0vo6xxL5BMMjQsXhQxoWfkTCq6iTgjOSTBYyVpt8dIgHmlJI65Mf6E5LQDMmeq5jf2uskCbG9QN9F/9yM//cQiaQYErmrrteu//4+CXirzxGDTXLLiyRJumIKCtR1qerFP31prMSvYPfQrH/O37bfeX7Hj0MSX3m1XfE/d/18XsRA4wwJSxI/zx5m8tnv97zXc/v75+/4sckjUMCpzuEdP39izfnff7Jwwd7nEsn9KgD0DN44MN/H8+skUuauf4ZkuJIP9/oM9hE+kfH+CyQhGpf8Gj0hudbyJ6wChySsSgHACouR5PYiJk3+HZIEY/znBFJKkq17RlLdOvzi776RHJdk6Pi/j0hSfZ/zOcY1/nq9uqS4zb0ArGTtc4L5chd8PxGQYp5mO4glp+GfEUXGGPdaRNY7N3ngTKCcAyst3ueWA1MmUT3GbCtmeBxsMLHsem1X5EcrtpVUbQXqAaCpBzXPsn5kOyX/NfnIakitsC4Nt+X3J1aZBtJNH4eqR5pmkwkqlNlh29lYKbpBBBJLDcxuSSSa3uGy6m8l2howeUaeE274eTNP5QKHmK3KFNuY7DPx9GuT5i02o/4dc19BBdqlHX9okkW2TpJvbjJNhQmOGaBElbb3k/Lg1fAbrD6WGixFlwpl5M18kwfBLGw4uy1LkzVm2WSaXc8xEAtQKi7Z6wChNhObrEAtmHgVJsKn2q7LUISfQWLfVKDOjpO0qq7eEzAlwOzM++CaA9e6zrJ8KXFEijMqTFCjyPf5vcCC9hhjgxnG2QuVD1itPsFOKIhEJtpnlLvcoUKZFea5y50gr6jnEcN1gGPapJliizwnocTMY6GgChPRvaU+uswOc6xzjKk0W+RYZpFdxhxyzngNfIUMbYr+bCo92GD3RvR2j33APuy9BcAmSuf6q1+fy7J5mU+CsdNgIB6CKbbYZBqZw8+zgphekvzJv0bAUtEXC4U2CGQSxVPNYMsfJgCZho9wwCLLAeSMcEiBGiWOgr0kv7+i37zy/RIr6xHXOWCYHQ9aMEPzdSrusZfnxJNY+xjE4obFUBSqLABKnmOWfLrDCRZGIFaNTDF7vcmyngojnXyDQQfQTN+vxkXsB6Ha8gwoOHtLqDUkcczyvTJjx+FAxzeYQQxGIFiGMmacYMdJtVPRdJnhvrENzFjUwMk5N+e3NMOiN7DWSBV9M5B864R+b9aqcb8oql2gpjaNUZ6QohuUbfkGiOGkBMIqJcbYxSjUaYY4okYBk0qdIk9CXWOl7e4xxirzsTDLELYX9FKalMBAsImUADRNAk6wFMsZNgJcWGDFfQqOyNFC5qsLrHgoyQqDNKhRZIUFtpkK1pQ2V3l/ybi0SolBGiERVyJpjhadkKAfo5juEQ5iEiSvQAFKJgu1pvmEvIcjlJydaiCCJjHy19CGA8ZY3KEcUnd5FbT8fM2wQYfzn8fy82v3yrpXoHzeMnRYZ5ZxdoP1JNr/KPtc5wPfUFZpYXJtS4TNcuaAhYAfDTi0MWiT3WAmQKNNpkP6sM6sAwunwdydoOJpTHa/nJKP4YHAfU0HQWzUba76VFCFgeQX2sz7HETe85SqCXaoMMEpSubqMMPjAMQ0iZWvW5ZWFA4T7EQBlOfEE1NtPLTGXIDoun/BAMNexqA2ZQEpmnJPOkPKvCrO/L4eROEvkgKLTTzFdhRUE+6P2jvZE4CzxDUPUcpRp0iNQgwB5llFiWdgMl0NGsQwm2KLGgUeMxOs2mUWOWQknsE2aa7zKEyCFdqkiego+0yyHYy9jHubiNG8QxkFBykV3qTRLeSnowLoGkuvDBTA2N4d0kw6U/iMVOz98vzUEO377mOngU0fXSpMcMAI97jNFlPMsMEElZAiz/CYdz1pPkObb/M99+g59XCrQZRMq3VG+40NvwZjvWyTCeuGFeZjSKRmoUaBLSY5ooTZcigBrUmeU77Pt6IoLlKLcCUlAsrTR4BkiaqD253YfwWea92VYTYQRtRf6NcbvMooUlrpn5F4h32C+bCJvaWfVdDCcwJ4+kzspzN4NnIuGHQ8h8/EzLoE/9PoWzx/CxiCr/zkl4m0VLJOMaauAG345Z1LkbD77LfPJV5szhp77amzqJ7ABQEr4/Bvv/4VXpTsz+c/tc9/fskCNl58zd7v8vpz/qO7PzNAJBFq2LH8sf/dAfBDEl82SWfFeNKxLGAAjzzWxL57hrGnhkjYVE8xMOeuf57Ana9hQMxb7h+Iv9+fkshzRRLo938rVEGBF8pzaZMAWH2Y39w+CejYK3n9BAPx+v27KFNs139+HJ79vgeezJIAd18n8QL8yD/nCQnL8s890fVTEpbcAQHU/vzrb5rcVr53F0nAvAxJKrEHULz2536sr/vvbMCFdRIg7av+3vq9Z/CL8TcSYE0A6hO4/H99bu/rkm6+TgKIFUhYkPJHzPh3PCTxv3tO4nd3QAKOKcQDIgiDDAmLMuXnesQ/S/f0RQz8fYYlEEv+fuaf+z4Gns76dftzjKHY599bAN4Bdj/9jCQkY44Ao7/8xx/bvSaJ9S688S9O7bzN+HcWq1DBHl/w15f4S+RLpxAL9WDmA1umQC1SXFUvFKjT5/1Pmg7XWEL2D6Psh2+eBnzqVS0QIxNMsV6WvBQfZqPUjt85c/JDnhP2GI/+pezeduZHbMBbxe0pTG3RR5s0pz7sVT3yNsuhVGiTYY9xhjii40x79RWbTFOk7hqAtMuRTXaasMtsuDrPKlNssccYkvrK21eyV53nIaohv1VwwY6f5waDzsQbxFQo7RhoiomVps0wB3Hu5HkOVvudkHflivnx7zPKA27G53ZJuV2HDdBvcZ+WkzKED6hvEvlJnzXGLjvuk33ACC23gJLvmhJxwYgdUnyoRpFypuW9hABhkUusjxyKGlZqtCwt79drHDCMgi5FKhljlym2gwTVJcV1HjHuYLIx8s4o9oSL9NEN9ZgCNVVf/y53Qw32D/jnzvw0AG2aTR96t+OeEpt0jD0mfGAtZdg8qwxxRB/dAHdlvaM+yMgppq4Y8B665Co7U7ltx/GrpxLxYIUFFBrXGxSi5633JbxIwPHb7nHYJsOw180jHCCPeSlFTmMT+atfnwug93PG2WeUD7iOJLQmIzMwREW9EMl73EahAGauON5jNJhEat/kYTDoxBpS4yn0XUES97nFNlNB9z2ixBRbKDq5SY51ZpH3jaRkUx5XfcXBuGsscYv3GWOXLn2vNGFA3ASizo6yzzqzKOWn4lp0Y+L1RVNXp+j+VbsoxebQm82KN9H2/sb4esDNMNWWMWWfsxoytJnhMVMuv02kRDXkWSSwUwCWyXgt0spYclcC0LnFfYBgNIpSrYASofpa7Jpkg9Zdwow0FXCi5iWDac4bDDDpLDyBW5q6AIHed0n1XFMDn5Q8m+c0Fgh5Fyo9UmajAqKOGaBCGfNj6njjPxjJSQIF9rkSUruEQWfpk8ssYibuJSTxa5Nh270RtajJfH6QBrPu8yiJJMAjrpOl6SzJEWSEr/u+RJUfcy0MPs8cgJGZv/z7dOy9z5T88yTrOiGPYtwl6bbrb0xDGW2OOW28QyY8NqruO2YAe4sDhh1cKDoVepgKE8h7Mc9JSOuU0tshwxRbvM2yAzt97FBmw8GJTab5t/ytv8ll59f6NcxBALNt0rzHfZ94GnDyLh9E0SPgyBb6NNsOprYcBNd9fgVzDC1S82fAZJ9KOm2T4bEPGGx4YOCh5NzTbHqgzTHzrHCEBbuYL2jJp7YbfIfvBigySINv8UcB3o2xF6EHAt+7pPiA64hFPctaMDd3GY8BiyZpZXbi3m2SZZsp9x/rJ0czBkDbTLoPxkqcKytK30LUf61HKsZ2GadOgTSdYOZZWpUVhOvMkcGSyW2fOmTFWahipY1wEOuJeXCcxdpWdT9UhRxpQtvFUtyyLoUe4YCrbEQhKKargCBNWm2z70ZhKA/PKbaZcinGLOtIol30fWuBFWoUIuJewPAGV12S0ELsbfNhNBCy1x9T64Qm4bYXWbCEik/zcDG/kw+4HmzdProeLGVJ4xpYyf/G9iVjBGZp+kAqE8MgsZ8XWGGd2Zi4V3vWSHmhKmlXkp+MsxkPGUGJ0csskqYdDOc6BTaYQZ6GdQeHNSg0j0erDaQi6E1Cl6TaBn6WmPY9vh3rYZsMu4zRIc0ca2EkDeY1aSyDLAp+EaNCbFDJgr7wrzwwAs9un0uM8AWkORhDHWv8BdT0k8g0JRN1Jt5rK0ToxcWVl68AKDuXv2Tv34XpZx9x4SMMlBG4hL3nZ/InOyK8z97806dxXBd/9hJG4Bdff8OAiivw8Xg/fV2SpFL3yJv+5Oec3/f3dJbShV147Wdw/hMMqCiQSCNHMVDuCYnMUACR3ltMLUkdnwEH7j+mfuGMJOxhw7+ns/lY9O/12ySedGLavUUC6mzAhaqfX7HldkmklwIFJzGwrODXRhJTyYfx4xrFAKHn/jMKdzjDAKlZ//9ilkkiXCK86y4+eZlISAUatf+dzxrx4xwl8fdrk7DtRjAwy8MjvvL/+CUhDrjoPysJ7oF/jt5DgSpiflbhk//sQgJ67frPCkhdseP68srHCbsT7P6+7e+3QMJ8bJPIcH9m5/rFOMk9KrBMYRmSRRdI2Ix3/Bq5HDvYcpAwJD0ZGnlI6nyk7Jw8u33OjkWA4t/235fiU4nBz0mA0AwJ4KxwjWckHo4HGPty2d9Dxy2ZcN3PxUckbEFd1wa/Ea8qb6Awgim2I0BxzC07pjyl/oT+YOtY6qftFSnOvN+0oZqFERjZRAEC8v+u+qDK/NKsRxhlP2wqBM5pQN8lFUPJvI+HFWJxj9sAzgasvwLGSSk15MNrWSRJpSPWV4kqZXaoU4ifqbg9lkgu6qPPSPEhi4yzR5Ms93nPv+OhM8L6Ucih1AKqe9eZC2VFjSJt0pGG+7vc5RgLRhRDfpNptpjkPu/xkJvOlKyHQk+gm3z8BPBsMRnDTslrT8izygJ1CjzgBku8A8CYB1u8z3vUKJKmE2GBXVIO0J2yxVSoYmRBI7KKlE7yjzMPOTu7G8xExoC80lXDy/5piKr3dGPx/+U/KAWjAC8DbYcCjyg6wKs+5V/ybQ4YRp6GY+yFVY0Gp+PuZ28D0boHZBqYtcgyG1xljD3ucZslrlGgzj1uu+9xJwatbTJUXck45cF/8neXSrNJLnAB1V8C144oRSLvnrPoUnRZZT5836VOU91YoMY0mzz2sDwLNhkPSxfZsghYLTng2qUP+TyLASn8aM59nWtus9WljznWGOEQsVWltrsUG8lf/fpcAL1dvoLkdwJChPju+s2z42ENvTRaoeiipR5RIs8pSogV+LbJdBTYAgwLzu4QU0Un7cDZDOYPZIvVBjMho5S0y8I3jC22x7gbeGaDvWaT9H4WWMGSS+rxnfSoDHHEPCuB7IJJ2sbZY51ZHnEdmaXL8HSEw5DqGs21/oq8SWCaZLpK1Ov9fobUGxAKJo81RN78k+oUYoKgpreOxS1vMu0yNUtu+T2+jxl9tllglRJHkbLUK+c1Y8lKbApiSWy4F94YuxwwEsdpoKIlz4h1tOPOcTUKDDnIVKEcDLcT+knTYRDzSRI9udPD8lBgQItsIP/W6BlVd4OrcYySAbbIUvJ7TIyiDmm+wQ/ZZDrkbYteiagBE6sCjJVkEzBr6LQZ7vmxNxgI1mivcewm01QpvcLsMIaisbWGqLLlbLwufcyw4YbuR6/cu2KVZGkhur78JCwEocNjZthjHNGaRRHX9GCT6ZgEpWnHxj/vhjRK6JHv2z6j3OFHDNCI5Kl+LPVUEukSR6wzF4ukvCnFsJxkiwYDYbb6m/D6Cj8nz2kwU3sl0RaOkIqF3oJSjCmmyZAAOk1aDxmJKZVYuDY5GwlgXdd5hENPdTKGloB9bdIKERIofYMH4dlhxsFn4c0oBpKu5RMsnOXUmVB1ZziVXJKR54RDRhjhMMAKAUW9ic7LLEaYyggH7DIWzG5JY/e54kzoJLhBm+wo+/RzwhZTDHAcIOU2U6Q44zEzAdiZ95xJ+0fZDx+TEQ4BK5CVsl5hAvPWOArvty0mWXcLBiULi62mNFslwykVWHuSgqBm2GCABt/me85cLpChzbazv6qUqHmB3SQXshWzrRjlD/kDWsiX09ZODZP6sNCaDpmY+ooVrWstpqjMmIt+HgWias2eZS1AYjAgWEWj7BVqvo88dtNiNRomBa75Wt3q2Sv7wt9QxWGdIot8GM9Hb9KXGgEN/lJ0WWHBmZPGANjypLoT8uwyhgUqHdNydqBk1Eoay9CO0BAx/BTuNMEODQY5cHBQPo+SnIt1L/YCmIeRktIFaoMFErVJ832+BYCY5buMRZo7EMOqLb72N7zy/Bq+nmGSyepLAwDEkFOyq6do8ikGQo2Q+HJlMFBEDD1nwtElGE5i6f1y4RJf3f0LnpfgsxJceJ8IAvj4d/rhLfhsARj1tFwHdH4+8iafzF5IAB9JGi/AlU8+5sU4/KL0BlVK5qknr7RP4MJHzuZ6AseXLyTgosCVNgmY0gt+SAa7CPx9DIjrlT6+g3mPZTC54wImCRYjq04CqF0gYWu95eetN9jib8Pz/4IEOBuHX5YuEY/5j/34JJG9iIFukuyOY6CVwKZ5ePaPztm1WiCRPv82CfPutv/7dTueF2KXlTAwqoABuEqBFXB0gIFcSoUd6fl/l/3/L2Jg1jt+TF+3Y3x255z9/QxJcIgSYJ/b+WOchPkoMBESYE/ecAr68D9f/uPncAC//P1L9nlKypXc+pm/31M/JwrPUGjKMz8/AvQEBrp0+fwhCZg4RAIASzarZNgDfx9IAHEBp5f8fB+R3F9n/vMC0AV4fgIX/+nLhP04QhJcIzn7c+B9Z3COYMzLkZ73HsLu26+TMP/O/Pe/5tfh79r7vBj3nxc7d9bP26ifwzfAl8Yv/GuHcpACwPrFKiWGqMbfp2kzxXYAM8u8HQPbbaZc9lcJRcYc68jiR/uehnUiWEjWqf5Dg0XZAgHxu7L0UY34iHdDjWAMov6o75a4FjYx2o9lqwSJhzlYLdUmE3Wo0l/vcZu7/G4w6lY8JGKGDWoUGKTBFNt8j29zn/cYZ499rqAgTNWLeU7Ieu+l97BwhasO+OyyzyhF6rzNskuLjXU1zh63uRcqQtXn+vcMj5mgwnUeAaZ6K7vPnPo79YtZmgF0itgiIOk93o8arMpQqElEOjFprCkLdh2syvoQtU2GFRYAGHR2ppJUp9jiHZZ8aFhDdjbqWzWUlmWTknor7nveO3jUdTaLmUMe8a4Pb+0OOXZ1hEBSizIx5Zj1/MdIEanefZPpsDQRo6/o9aIAYeEd6gf2GeWQkcBbpHpYYw55y0+xFT1QhYlgcYo8pt5XvXKOZti8pZy8I1mzgttmWY/P1sA47UNdnTOFYqgvEntRNjt5TrjDXUpU2WECedUD8UwucY0dynQccBbuss8oT2Nz+qtfnwug9zbL9KaAiClSoxhaY1FdDxiOA1fia6/H3SrzkQ6nEAGjhu7EQySQ6YQ83+L7zLHGEaVXJgNldshzEh5wYjWUqHKMedJ1SHOf9+iQxkINWv6QGKq+zpyzC8qvsEHEQihRDbnUEGYGqob7Oo9YZJkhjnwikEM69ipDbDjLpUWWUfapU2SJa8FiUWCFmmEg2IhHDPGAm7EYK7L5hHzIRdXkqzEfoMEV9in6Ym/S31bQh1d8qpDzJERJkPRA2Odng3XRJMexv68WewG5emBHXA5oqb92vq0ZsqlEiaNXmIp1J/maJ1SJojN79I8YidtMkvVrtcoCSlEd4RBJTJX628WSCztkHCQ7jCmGJTO3AvWXiacaNHkv1H3Ss0OZOdZQ0pCmApqMaQGTjt7I0H2xoY6y/4o5ptKQE4PWWshnBRrMsBHgaIOB2EBOMK8LSby7pIICnMH8n7qkopmWKXuWFhlnIkoiryAMLaLy7BBd3UDHSSbY8dCEdjSngzSYZpNBGuERYFT9MUY4iAnXLOu/8iL1H/rrZ3yVR1zHZAgpB+kt5VQhOJoAyrtyiWs+4UnxLb4fz402AZPxnTLhqUli9mmdk0ceWJElgE3XUGxmTRhFWe+jy3UescI8QIC8mgQqFGeZRXK0uMoG11gKr7WrbAT4tc8o3+U7yHJA/hV7vgY/4EZMEUtUw44B4CE3ydBm1Y9D99EQR4jt2SET8vmWT0YF3it2XqxG7TFHlNw70kKW1phDaany1zwjFdR3GfRKKlFxM+cT8lznEZL1C4AXGCaJhIAnPR8CNGWuLBBf94DuD/3/ChP+rA8iW4Q/4A+RB0zLGcO6L7SuqIgVo1iJZ0r9tYmnraNKqbbJfyZYmqfkWeRDL4NOOWQkrCYK1Bj251ket1qfxT478WGBmgX5jhqDrxKDK1kqmLRlmEm26JBYRqio1DojFvY+o3TIhMfPIsuUqbgs+5QaBV97076nH4V0WwzHBibDHuKIGR4zzh4d0rF+aTAnv5YqJR4zQ4MBvsN3aZKNe1/3yxRb3OM2M2zEfrvOHOaUMujvZYC9Gph15niDj//G1pxf29frQB88v0ySfAlJWqpkd0ox/QnW9NexoIvXCc+xF5ftZ55fNiDvxbCx6Z4VzvHm+lP4mXnNPbn8RsghX1yGN5ZPoQpHly/xycgFerehr/z0l1zefc5nCh4YxYCfIwPrzh8asFeimoBwAhc/hWfvnYNZuPyT50mC6VOT23761fMJeOMgoTuG4CVmAiIp9GLSv7uAk+cE6+tZ6VwiX5zFAKJhgmH1yTsXkkACMMD0ufvvPSWkum+uPLXr8NSvj4IdCiQpwGt+/sf9fEj2egAX6y9flWmuYIATJMyyIQzgOzNvQ9rw8Vf7E6bWJfu+n/5n5/n0H57nk390gc/+NklIh97nWc97fd3uA95z6fUF//t9uLj+Mvn8r2LAkhiJf9v/7gwDSEfsc7lM4tu3QCJnHvffe92uy2fOVnzzp08TX8VxO//PZs4lXoi/TyKPfoskDXcXY6K+RcIuFFMwReKr9ynGcNP3r8Kz2XMJyCc5usA9MeUWXd7tAHaApPI9FBNulAhuYdyu5wv/HgEC3yGRo7/j945ASYWFyPcR/6yf9Jyzi9h99wSTel9wwFJsQzEu+zF57jbwMfSIdr7Qr9/hIU1yTFDhEdfZ5wolryhm2ODM92oL7DOF0FUfCEoOC1Y7ZL3rMOWUKdwWWOEaS0ilts8oG1wFrFY/YogBjsk6M10eYU0ffQKxR62wwC5jmLou697lLWfz9TnhZs/3ugHWmA17lbYz+7aYYoMZVxnl4tgHabBDmTQdRtnnGkvxWcss0ibNMouR7LvhQ9oufWwxFQSPtPeV9v+s35IyRdY0CbMsQ8kJFGIsNhjkJg+RTYbq8znWgo1oQZkWmigvfHnranir3nOKLW5zL7zXNQhM0wmbJakPZB+lwajVN1ZvS+XVYMAlzFkeciMIJGLCifFv6cbjtMk40JYO1YnVmX0BrlWYYJ05tpik4s6E8rjrOPGkwSB9JEqFVRYoccQZFhS5wCr9mOT3Ee+GkqFFjke8G7iESDzqZw0ctTpp2GvXDG1m3apLpI8tpphjnUm2uMYSN3jIAcM+zH3iipOzyDIYYy/UJ+p1RdbpDWex+78RpBcRV1QbbjDDEtf4kEUnmQ2xyxgbXGWUfR4zg1RvUjzVnfUo+fk+o25p1c8jrkdoyx5jfJfvsM4sS1wLZciRkxyqzojskvqVGXp9f/2P/P/+eukgzjAHHFFinVnWmOW/4f/gSGwdSRFXmGeRZaRj7zhrJeWNwj1uO6Lc5Vt8Px7IJ1jibdsBE0VAy1B83Fl9hg5bSuwYe5SocsBwAF0d0kEFzTp4JfNHac7FGCxQ5y6/Gw2SsS6M7SVASQ2TJbWal1ODQeR1JbZWr+F5gTo3eECFcrBLuvTxLo+CZl2lFJRRAUwNBphmkz3Ggr1yQp6sN6d7jDHNZqDlorqqITMTzgwyYy9SD++lt9gkSxOZlC7yoUvX2sH8GOCYQ0bYZiqmER3SDpQeBYglTfhd7nCHu7FIyeMh7bRssMZ9lnWfIBBsNF0/AR6G/tsiPMl2MEOUNLPAChvMRHMo1owmM9N8xCOuh3efrqXAPbEOhzngQxZ9mmWSwCeMMs4uZ84WmmXdG8NhFL6hCYpos4M06DrzyixSM8HqHGc3GnibMmzHgtd7zaoMUXC6tdHfzbBdTMgxv4+vu+eUvovAIDHrhhyckI+ZqO1DHPHEgSGL8i47s8z0/aJkz7CB+VO04lkS+6lGAaVIKsDgjBRvsRnsqAOf5Pyqi9R/6C8L/7GkTU2G8py+Ig/f4GowLesUA8TX+iZAvO7TM/NENJmBpLB5TqhQjs3FvPBsyikPMU1uBYhPeMIUWCExQIMcTcZdmjrGHo+4Tolq+JIo8GjLGXDyPlXq6D1uh9HzJNsoqGCKLTqkecBNJtlinL04nhUWYjr5Dkt8xDRNcrHJS1K+zCKD/vlHlPz3DcBf5m0W+ZBBv+d7J55gU7U6xQhmEKvNouMHowjOcxIMrmk2uc8tMl5oCrRXcrnOZcrX7T669DsYLoBHgRsAt7gffpVVSjxhlJs8jOJNfoUCX1V8WZrxPJKEqgApxF5q11mF6BAWVmTeOsdxL6pASp7XYrDiZfAs/01Jf83oN8uws7BHecIqC2Hae8AIZXYi3as3UGWOdbJYENINHsbfm0RhN1hrSqrXnnvqgyudK927/ZygkA2ligsMFrgKuCXBYQB8mv7LQybnnjCbTHtinjUlAm6TCXMnzpuKPd0HJY6c8dfhv+G/DRY72D72NstMY75H8qeVbYQk0ko/65DhZaBbX+DXIXDgia+SAoIBK8+wJl+gVS+Q0waqcH4VA71W4PyM/b/Nr7/Ff/yzj3h25Rzn6QFyHND48u7HBix04fxPSAz/gcvV5wn7SYEYz+C1GRLZ4AX//H37u9dO4Y0/Ow3W2rOZc1z885fwHI4yJb6y/0t7T4FkM3D+x3C+8MKO6wJJoqoYim1gHF58Hc7vY9LHkv/zJxj4Iqaa+69d3H1pf5ZsWUm5Lg29XHpu31PhFfj/E7gjnzOFPUj22mfnLTztdC4vwfk/JZFAz5Iw2Nr++30YC+zPMcZWlUQyK/mmH8MbP+0JgfmZvf/rT14YyHnxhR1fxt+ni4FGo36NfgfzGPQQhtdW/LwKwJz1z73rPyswTam38k8E+BRe73uRSH8FuoqpKGmvg4mv/dw/d9u/92zyfhfXXyYMwHUSibG84fTfP/Hz+NTP5RU/R7oPlcQLCcBXdVl53c9x1T/3I5KAFf/585AwROXP9zMsvfaSH7d+T+B51a9vwY+vTZJG/RF8evu8BdFI9i6pulJ0u3YuAzS87O9V9z8rWEYBLvqueu7/zP/7HJ9TZ/rr9/oz3mWCj1lhnjQdtpmM4fseY5Qwj20RP0To0PDPqAKmvBHYYjBWN8C5rLPz1D9qgGjWK30BJCggqu6sf/VBD7kRvesADdaZY4GVABvEblJy6ZADPe/yiC2mULiC9k/5OVuH0h99gfzJ1AeVqVCgzv+a/y4GfNdYYo1Zas7qT3EWdcQ+V1BQ2QDmZz/NZigEFIymWk2qohkeI1WV/AsFuh17ry7Q7RpLbDPJMQNI9XWdR0FCkvRTSg9ox7US0UIWZAmRZCQGjlIXqraRN6FwCjBwq0SDLuueUDzhRKcaQHxWgwHe5RGyW5plLfoMkXhSPsCvU2DSWX27Hgw2zWYMaRWsMkCD63xAjpaPJ5OQjBRnTLHt/nIGMqpuAyKMo0vKlRADMVCVP3/K6+cHLnWWtFj9soaikn+X2WHYazurE9Mx3FfYi1QrOrdibcojWx6AZu9SouM1+Bh7ZDFrOCkElTSt9Oc51lGGQYtseEmrvyhxxBX24/4CAzHnWaWLhamKVDXMQUh9b/AwbLX2GeWXvPkrrSefy7LZJMs4u/Q7Y+o97jPKPvuMRuNhnkomdZKE1LzCzDNJDZN8gL7JDwBCXz/FNpKViQYrpkCHTMQ4iz6ph6pLiqsONMj0esCn8XZCLKRD6L8FJZhv3Bh75L2h2GAmmFzy6BF4o+MsuBRHzLYjStQpMsEOikAWHVNNZtunBinOqLpUyiRZHWrOmDMZcTuYGApbEKq+zlw0To+Z8XRMOw6BnJKYFahxj9vc5CGKEH/LH+QBGjzi3aAi6/qUqUSjJQAUzM9QEwo1hEq31MJVp0AWMypVUILO+w7lmKokm0TS5Bw5S+8K+5yRYplFyp5so3Nkks5BBxO2olETpVvvL/+DA4YdDDn1xt6kXuP+MD/kJiMObg1w7PdwK76PpMFJs2iJiFqcxaZU0tAt3g9QOs9JsLCyNMN3wFg8lhBl4Gs9gJyC+2FVKcVmv8hyyNfrFDx8oBzPhqZW2jD1Hc9IcUyJOdb9urS4gnmZfY9vO0Bk6UZ6Tk2i3E+BGpZ0bEC2mFZKl9bGJUq2JOHyRxxjj6vuM/hFfw1zSJUS4y4fFahiIS1NVlnwlCbztBzhwJmZOWfrFpD0QtJ8PVOSVFuxlmaFBf4B/yyuiwYd68zGOqvJq8AJTUXFLM7RZJcx5PO464xmrZ8HDHNGimss+bNXjERzMZfkqTjKfrDdDFArxIBGm+g+owESW0hPkQkqyJhZvmealopqr1AO2RhcYymAkxk26E2UXmTZ5cLmvVr2pN0zUmwz5YC1yYs16RbIJpnEMSZbVsEt8ElrXp+DbPuMevrvQYDtKbqsM4tMnU/I84TR2AclR9d0b5b1WJv76HKDh9QpMu57kNLmNP3TOVGxL5bclEvcp9iiQJ0NnyjOshbsOhDj8ySk1gL9C9RY4lpMmA2M68Q+rXtJe8EWU8iweZb12A8NrK7F8EaBJ5IfTLEV50xsdJ1XG54duy+dMS4V3GOsyQlnGNqQwoYeT3zta8dEftI9dIeougwlyw0eBDu1gaXD7TJOztdjgXRKrrPvZMl1fXRZ5ENWmWeHMltMssAqKyxwh7tUKHtB2oqC94qzSJdZDLnOCIdsMMObvid/oV/n4H///yIJongGHAM/whp92QhewgIi2hg60QI6GAiSxxg82/53/+NH/LANp6Xz9NfakH3J2XnoO8FAnhP49M0srx+37PPS9vlPHue4cvwUTqAz8hrpk8/ss19A9xGkXtjxdQegc6GPbOUMfgzd34LUX2Jg00v47I2XvHbk7/svfgl90PpSH9m9M6uwv+/HPwhk/c8XSYIkcv4da/73IyQg1v/bjp+fYL5iffaZ/Bhjbw355x77Oc35z0nu+tTOOXmSJFQBev+C8P+LtN+L/l5v+Dlu+zGf+PvlgDftHEXy6R/678hn7X+Ezwaxc3IC/IAEpLngv/MSgpCq934BjPn5+ZjEo+0CBhTpzy+B7/pn/RYmzzzBwKCs3xP/FvjMz+Mv/P3+lX+nrwB7/jn/k7/vvyKRiWb8c3R8Ff+sCQzgavnPvunv/8d+DXb884f9ffb8+P61H/9nQJHEr/EnfqwdEtn4c2jM5xg4btpnCoD+DPhLf/8+4P/ux+Yaq7O3oG/f36MF/Pd+TOdI2H+a63zJ37Pl/33B3/cpCTPuGXbPvCB5bb6g+zqkfknyrCrYRffvoP9s08/Dx8TzxlP/udexayigVMd3zn8v58fzG/C6wi/AVTNmbXMWioAs5vErsoYFi1ld2CLLsQMKeU5ClaUAMtn9WE0wToY2x5Re6W3Njy4X4FWFiZAZat8rUOM97tNHl8fMsMhyEAvEDjxghFvcR6qAaTbDYw9gnyuM8oQMHd5hicfMUPbgqx33N08stOx4tpgMEokURBqKlqkgb7KkPmxFz2z92gTDHIQa8BbvY/5/LSpM9BBNspSpxOdKDaVB8QIrbLmsWSDZAivs9igaxthDFlZSSW27DcgYe2wwE6x+KTTyWBjFDhNsMxm+y/uMUqAWoRFAgEvyDTap8BVGOCDnWIj6g1Py/JhrWMDJoUumsxSpUafoPWA/o+yzwQxHDHkoRocf8k2+zffI0vqfXQ8LhDBCzQ/5Zgz1RUTRv+WX/kO+wQSVGBybh3UtelAFu6nGy2B+/FIVzrLGFNs85AbyZBcQaNjGYGBED7kZis0T8jHQl32LzuGEJyLrWVOPaufiKvLAL1MJFqk879U/5B2A22M8MAqpAPW8iJh2Qj4UIb2ksJpjIHoGVQfr9wRISv47yj4XeTVc4//b63MB9IQ8ahJgxtHGyhHQJ3mS/H12KNMky9UeHzlJqCo0WWEh0h9b5EIy1MXkpEqEXWU+QA0wf5sitZAzphw46n2wBDRKDjTJFkA8gJNssc9o6Jklp007p0IeOCYRqtGljwoT7DLGAqvBhtH03tJnCgEKiXKqRcsaxkQSZF5BhBmmEGSBPZLP1bzh0+Rmki1amEfhH/F73OYec6y94mmgB9Nuhi55fz8xEvTdFJmuYx5yLbgh07k4j2I26jPEFtHNLoBpkAa7jDFE1dkxlrSoEIA8J6wwzxzr0dRJHqZFQouDFr8qQwHkahGScb4WHzHWlrjmSP0gMpG3c9+JKYKCI+x7HTNE1adX1bj3zID2LJhpAkXluyVKskCYPCfMssaHLAZgKcaNfAbSDkxPsRVU6sTbIY18D8AkkdpsJHXcZJpDb6gVWHKNJdpkYvEwP4cOdTJBgda0RJOEKbY5ohQJvusO2ukel+nnOLt0MFP4EQ4ZZ883vITpInBRAQOWfPmbEWV2mU8Y8KKp5CBMh0z4F9qUrcwqC77o1zhmwH0R269cazMaNhBGUtsJdpzp/CG3ucd9bnGdDwJAlMG/Umdb5CKSXTJ9C8/Jhty0S18kypapMM+Ky9lTbDLNIsvII6LgzN4BjqlSIkObQSwZq7d4GObA/94K1aKz7vYZpcxOPKsJO7WfFGcBKi2yzBVfB0RNFxtMAPgas9zkIUtcCzALYIUFzBfNzueQs6oNsG5RpsIKC69MLy2gaQwghhYqQvKcUKOI0rZ7ZQ9ZX5u0h20yzQCWQDxENYA2DXoaDPA9vs0iy8GuVPH49/iu7z3DER4i6wgVLt/l73GTBwFkSmIi9q4k77bH5oJdq/XawiHqMYVN0w7wcpgD9zQpeWhEkzbpALLM33UjvoddN7vntN7LT7DBALOsMeifWWaHmg9W1piL6b2xftu+X5+hlPsBGsFw03RXjFIluS+z6OzsqzGdz2E2GfJN1DWse8jPNJtUmPDi3/ZLAaQajAkIlwT3BDPCvsmDAMz1s2LMyzexSI2H3GCYA9aZi0m2hj0J+1YRlV/c1/OvpbjQ6hpQcA4D7r4Ep/kMzZEcpafHtPPnOD3Xz6XOp7w89xqf9A3y5sknnOYznH/5guY5a1afcTGm9w0sifl58TRA/BeF8wBcuNgyD53BDucHX3CB53RI8xf8FucHX3D50id8fO4NGIQ+XpChQ5s0pxfyXMg/54w+nnOBL038BRc6bZ6mXyc1cUb25XOa54ybnBtrUqdAiSrPuGiF+Nh+3E+psy6f9Bnakb90yqe8zpuTNV57CZ9ezNIkS2asw3lecEKeN79W43m2jyY5Chc/pXbxkq1NL5ucnMvzgvMMP63RuJTjjPMMvv6UVBu6GWiNe6jXWcdkxn1+Hp53OBnJ0d9pUktf5hRLYj7PC9qk+YxzXDx7xvkXn/Hi/Gs867vIYP2Uszw001lef9aicTHHM/ptN2+1aGbTZPId+DIcpIe5zCf0P2vzLJuh/402ZyPQ14CzAej7FOrF1znPC55zgVLn2MCeQWiPnOP43ADn+IxPeZ1y6Rd8ejHLC85zzCDl6i+ol16nS4pzvKT4y6d0B+ye6va9RvrcZ3RLkOrC2Xn798vX4LNZ+EX6CoWRGhk6pJ+fce4zeD5nrc8Jec7zgtefn9K6kKG/3oY0fJrPUi2VGOSYwvGnnF2E115Cqo19JwFdX4FO9jXOv/iMl/8xnFzIcanV5Gk2x8Cgy/Uvvk7/y1Nee/kZz/sucI6XNL9k98UpF3nz2SfQgc8uwIvzr/GcC7QvPedssI+Lxx3al87x4tx5+l9vG1h8qY/sX5wZ6HUBWhf7SJ11eTLxJkMvj2iey5Ea73LxeYtUGxqXcuTOWjzruxiM44u/7Bh77hg7bw7cPruU5hwvSZ0ZmHDu5Wf0taCdP0fm6Us+Owe8AY0xW1mHn9UMPG9Ba8y6kgudtp2rFgbyfgxno/Dy3Gt82vc6LzlHjiYXOm36BLAL1ByAVqGPs2dC+77Yr35OOcOCqJZZJONDz5YzwKWKUaCijPPTdGKfkTWQMewzrDPHLGuhhNIA/5Q868y68gNKjvDq9+X1tsQ7bPIW11iKHmEQC7i4x23KVMLaRcOuBgPBgqpR5Nt8DyBqHMupteGlSCnlAGcGwudMsl+RGiQTnXAARkFVdo6ywUIU0CJftjKVYG3pc1VHyHN3iCoHjETfNECDMpWolSFRMkw5JmAhFeWoCfaxEECzEVqL76bB4jKLLqsdD2aieWfnuM8tUpwxyTYZ2vyIO9zifU7IM0TVsY0WU2yzxSSbTAdrTsCVwkdUn+xQDrVcywkeVi9aUOk3+QFnpDhym6ahHmse2erIb1pA8BFDUevkaFGgzhRbzljbYJlFitS4xhJbTHGNH8cxTbAT3o42SF5niWtuv7YWA/PeWniLqQgzy/rUIeODevPFNnDuiCFWmGeIaliYaTi7xxjf4IeBZRy5L6XYeuqZZckisg/gWIUl/q4zyzWW4hmSJZBqcdlKjbEbFlciLQmLGKDBoQ/27f63+nKVBbaY5F0eIX/8I4aYYIdlFhljL7CTI974ldaTzwXQM7S/zAZXUUz2NZY4crPvklMd234xa+47p58VZXOHiQCxxG4b8kUOQCmeSi898QJFLzGzBJaoebHGwoIG7MGzxkOLh12YFstM8C3+iD5nex1gZvQ6yQKxwLyRqu6jpEXKzMOzseCJDgxwxFAEBNh/2/ebchAuTYd/zH/F/47/1r9hJoAQFayj7LPLWDCsBAzlOeE+7/FNfsiaJ/necF8AsRWbZMNLzczfDQSsUmKYA+qeBqQHotEzyRHwqUZaRYI8BWVqOc2mP2TZoN6qWRdo0Gsgb9fT0lb76DLnD78MRSWrNRD0cTR1knBvMRUPnth8SoxRKIoeJjGctDko+eYEM7af8IVdwGDi6VSLBQPgKhvhwSivvAIWza17UyCsSavsPZXw9F2+Q5t0eEHKU0sA8ji7pOiG5NdSrIwNYilEJ8GAkg9Y73XqTZ0c4Jg8ZiqrZ0nMIgGIDQZ9ynXoUxk7Q3/IH/CWX08wPyt5YPSyUcGAcHliGJ3ejt0WTUXOt9zL4+7nsAL9+r3EFJbPQs7vP2MGmQwcbB0Rm7hGIcAryfflCyqZoTbkOaff24R3jD3GY0Cg+7JFKrzLBNz0+/1jjK5xxn2tWmSZIjXOHACsexKX1s5jBsi6HKDMTrzHKPvc5xayJJhiG0uTnY0hT4oUiywHe23GnyHJgltkafn6dIKlhGniphSuXSz5SoMSK4AtYVtSXLFWBYpqLQNiyCJgUIMaJaeqyNQwQb8HvAJCCtS/xfvB6pOPiRhkY+zykJvBthTT1di2Bh6OcMCsr+MaPgkIT9GNgkXFVY0CC6yGVF7npp+TGLT0yq3FVhugG4w28+dphwRB7EVJfCzQp8UOEwEGy89FjN46BYrUghkoj9gCdT5imgmfdk6wwx7jvq9kmOExYiqKLXmNH5OjxSbTIbWuOaMTrLh+zAxgLFbdy1tMMufGxQL2gABU+zmJcylv394pucmI95EBuCSwm0zTIc0UW8hfVff4I64zzab7FGZjki1wUcMdydnFuDzBvGHlvTvLGvuMUqPAX3AJo9Z8cV/f/t98mezr2gtSsTfIY1ReUg0GeI/7bPu6pxCmooeftUl7I3fKJm+FgkHM+hwttphknL1XmKtaA4yBcoMvs81NHgTobjVpx20O+khxFqmAU2zRJcUkW3zoDMsjSsHGeMyMS5bGXmF3KOV7xxOjx7E0vC5fiYF07zEKELehgTVk294sm8/0LA0GuMPdGA6JAW31VCaYJqZWMHBklH32GEdM6zVmGWcv9hvtNZLIyR5ig6tMsYWMwA8xGw3VPpLTqfk5c6bslFuhmI3LFea6ayyl5mItvfH0zzi5ZEM9Sde1V0354Eg16R+099nMXEGJ5def/mvuXvq7yI6hQRJClvF9bZ9RTslzkw4p3ox6RhYATbIcOligAf90e5NmJsd93mOPcUbZf6W5XGivUMsUnMndjBpWg3jZHCxxzYeo6QAMGgwE++nIQwZs/atEXWX2KJNcdf80U0mYt5gNeEs0GGSuu0YtVYj3HmWfD3ibMhV2mKBOkZs8YKCnDjtgJIbEi88+pHnxAn3dLiuphRjoHlGKvUODZMkZtT/aEN4q6F5JqGoFALG9Gwyw2F7mXua2f3ezaJHHr+wVNDDTOeDTp/yf/rukl/uivl6QZpxdV1rY0L7pz1Oe06g1NJgCgg3VJs0jrlOgzjqzTLMZNUef11IpzgLsmWSLbe+RPuA6f4/vAtavbzHpQyZTdCywyhTbVClRcGa9hncdMvyIO4yzxwQVmmR57J7Et7n3CsC4zyh3uMt93oseRzWC2HOAf79WT+/5amhAlRI7lPkW36dOMZ4d7d1aU7TGmtVHK6S8vR7uIxygcE0x46S6kGfyKPscMsIj3o1eUxjBMm+7lVU/QABQgw7wPWE0vMWVbG/71lk8T8IDVNvsMc4iH3qdm2WbKW7wEEmspagb4ZBNpmmToejEJx2bFFwCnTI9oK/soHYZQx7TAuMEtxmLLyHHiFCl8DnhDtqD9T1URwkQPGI6lCSnWHDiGnMcMMwc69zhLhvMBFOt11JFKjPZvgBBPhDjTgEYdYoxtNU9J5CxSY4V5lFis9Jrs7QYYy/A8yMfUsv2TSGqeczyRrWkWbH0hfpGA/k51sjRpMQRV9mIAEP5je9Qjh5Nkm4DmE3VtMs4W25Zdpt73OUOgzSQfFoBIquRYPRXvz4XQC9Dh4+xmONxduME1R1MaPqj1qUvmh8lmihxUw9smg7TbAaYIm2yFj8BRJIqTrEVxZ6kkbuM0Y9JDBUnLXlllhbvcyuarBTdV5gpop6KSZahzQYz7FAOmvEJ+WCDCDjUQiP/s16m3QANZlnDDDtNtjTFNhtkosk9I8Xf55+zzhwrzPO73I2iTo2kNsVe74Q9NxKVdKvlDa7YOkDcrFos1Agp7UbgDoAMw82n0Dy1ptlkmUVqvjmLWqqNY58rNMnGRERMv2+6LFgP3pSDpJLeGhBnD1iNQsh+Nb0ymZmlJvfRpUYxdOYCBraYBD/HGy431vccoBGsxbSDwLpO8noTyCnK7IjLJeXXl4dXWJn9Dp7tMcb73ArW3zV+DJih7HUe0WAgEqkE3AFMss0pSZKjGCiiWdcpsMQ1bnMPyW1VfE2xxbFPNCS91oalqG5RivcZDaZdwZlfAgNUNEuWrAV+h4lYVN92RlbVGX7y7BMoDsSCb54PmfiscfYiLVOTkiZZLkeU4Bf79afc4LYX9yfkQ9KXjgbGmscuKWZZD9nEAA3StMn1+ItsMs01lpy5ZpMyBepY4TMUAA6YpL7im8oTRqNxFejdpQ8llop922Ag7u0qQzEk2WISed6dOjCRocMHvMs4u4yyH36aBcyf7Db32GaSO9yNjVrPXW8oR4Y0a54ee4MHZB3YKbo0f4y9YCaLom/TRJOGrLDAGHuMumzZvFyqXoRZCnOKs2AAilXXJBcFT5E6JY6Cwi+/ShlAz7Pq67hZF6wxS5kKQw6uyoTXgIoW4854A5hkC7H65J1ZpB5pYQZwDjNElTnW3IMzTdf3F63LKgDfdd+WUZ5E2I+A+qoPUzQ8SNFljVnAvFC11xobboQcLZRoPECDVeaZZZ0HnjxcpM59brmseicm0kVqrDEXa6vAUe0tSkQWECAprtk/nEWhpWthbPyyA9mlYCBuM8V73GeLqfCY7JLiCaOUqTh4M4WxkSVP78T6KYZiPye86/v/j7kWDGQD6N4NkBkgSaDOxr4g2ZPu3S2mqFLiNvfifu3nhEmXNcluQBYSYlWq2brJQ+oUXLGQ4oTP/v+5LP17ef2Ur9HhDWbYcJ8nC65ROr28dIc5iGHsFlMB/AmkbmIpz3Xfl+sOavUOFffctE3s2KqD4QusBAtG7E0NwpQOrcZajYzADoBRcg4KFdhmCksotmRpY3BMMM4eK85otns4GaKIWazPqTBBPycM0ogJvwzwDxiO/VsA3yl5X5dM4nTqtZmSCqWM2fRR6BzryLtZPsIKZZKtwgAWPKY1HCyB8xpLMbgeoMES16KeA0ty7m1w2mTC4LtO3W09zF94LLXLEUPBZDy5dIFDRmJgof1NntdnpHjsDIydzERIrzaZZuiS1b4aFgjEbJFjki32GGeAY07JO1hp186GoualqrCehh9fhwypjLEstF80GGCXsfAvK2ZqPqZNx/Vs+bpj+7Uph8CAiB0mMNsXG4bUfA/UYLPldXLD+yXdg4+ZYYRD5C26wgJFagGm7qdG4/mQ6kgNpxIUj33vMHsWuyea5FhnlrGLuwbEprrRC2mIXHevKwEgdYocOfNe6iIbeBVjSKk1UQNmNbFdUuxlxuJeltLnkJFQMGkN1N5cp8hnZEhMDr+4r58yxZs0Yy9NbEQM6C/7IF5Jmtf5gCdOIlFC6DSbvM0yh34flTjiHrf5L/kn/nzZXrvPFSbZoksft7kXNaJ6EfVJ1mvXg+Em9tt1PkB2ReoR1POqz9hmKkgx2kstIKETw04B4Lb/78V61CJHhXLsySX3ki9Qd6LDkYP8hg9of7f9IOt2KJkYTrS81jwhzz6jXOdR9GpJbWhDWA2MDT/IxN+JvKP/Vl2pwaMN5K4gf9wmCl+0gY4YY2LzieBhQZUtKm7pZcD9BJL6yjJmk2mu8yievX1GecDNAKC2mOQ291jiGjd4GPvXIsvhQ5eiG3UjEGm0AkF1TUQWkm+b7E/svsgjn2z5NndIuwXQ4x4Lridu2DIUIGONImV2wmJHwJkIJSlnSqqun2cFqRzVU5Y44tT75mMfPtt+bwMIeSRbPN1R1Fu2/uV8+GJ7kWFFrRiepejGtZMtzYCDaronxN77gHeZZc3h52ycwyHPI5AfNeAD8WbsF5I2rzOL/KsHOGaPcfYYix5+hYUYBoLhNW+zzOqvsJ58Lim3WZpcY8mNslsBVkCS+ic0WeDaPqPsMk6FMjlaiKIpnyCbrraimO/zaYF02wM0KPnkqMoQgz7N1M3XpY8NrlKnQJVSgHctsvFwKExhzKe6OSyVZ4upKLxUYC56ku+JFwwGsNkGJB+CR1znsd8c8mOqMsSe01/VXBepO2jUDjBRBU6XFAusRuNbcnT6mAE2uBqTExVkkuGaafxQsOckIdtjjKaDYBMuc9N1kaehilAVgTUKVCiTpRneCCVvSIUgG6vSNg57oLajAFHiY5s0T0hkuZoIK/VV8muFnAi0NBlZJxg7BeoRVV2iGoWFNgVLQBoJNkudAlNsoeQZmypaus8RJSaohN+TTNblJXXAMDLkPCHPGrM+bymiRBttbr3sNfu3Ra0r4bXgzWuWZsi7FllG8m1j2dm0c9ibboVciDmgDXSCnXiWitRCXmuUdwPPjAlnDYICStK0UQrtFpMoul5TdXlBasJuU4xS0LxPyCNquhgWZ6RiAtVgwBvWdLDOelmzKtpa5IJO/UV/vec0+hEsVEDPnpK+xYSwMJXJYIf0JpaCsVTAppCaigEBxJlnXNqL6mGe9BT3JjM1Gn/vJN5o8GvIzFgsWoXdHDGE0qqvepEhE2NNPQUaNRiMjd2KqWNWmQ+wI8+JszYyId/cYooV5uP/m/yxjCQVwxxgMu5dsjSd3d0frBJjzKaDoSq2tr7nENXYTMv+nJdc9rrDBCssUGEimqoWOa7zKID8DWZIYR52Kiolk7YBjaWACWjQBM+AyFasdUNUqbhfjCbeKv52sYZHa6+8acSeMcCzE0xl7Wl5ThjhMKj/evX6iciHUYnE5p9qa+2uFxFiU8riWB6C4+yxxRSTbPEH/D8BS3vVYKLkpdsMG8HGBptE7jEW67AGFFbEt4NplEx1s76/lnnADYaooqCdARr0cxJ7iJroNhkyPhjStRfIYAmy2VdAY7FhbSBYcmmOAcSHjDDHWjyPDQaZZpM51plhA9l7SBZkjfRZAEXH/kzL/0iN6xmWKC3LDzHo5YGkphtsGNJPT0jAF/T1nFzcZ0qVVqOjRihL0/2DMw6w3whQ4QE3olkAq7XEGNJga9DvZWv8TuO57mU7n5DnGkvIE1QDAtUfaTph02HrSsK2F+vq2L9DlSEHgK2410BWXkgdMqwxxw/5Bh+y6BP3BZa4Ft+jRS5qggfcxNir/fT5qAeSQBsZ4UuuDokXqPZngAplf5JzcZ+ppsz7vaZmFYjGQ/6pZjtSQomROgYBYSfkUaiOfv6A4aglaxTivWUJIgaNQCEBp/Z3RRQKp5/XM6ieQFI3rZFSv2iwI8+wE/qpU4zkTIB1l/XrGdW56pCOPUdggEC/LqlYi+RXmuzZtuc99oHaFpMYW9ekbzXve/YYC+XR+9zyJt9CrZS43Xs/ywMNLGSuQJ2yS8x2KFOnyLGfBwGE20xioVtt7zNKUS+qN9hk2q/nSACZYvy1HaCUP6gG/dtMRv2h89j2OlnrvGrSA9+tNRzWebJn4jjAQN2PYtYcMdQDrI74YOaLbz8Axj4SuUB1gXrXe9xmhzJLvEPBATUbQrQCQJtmkym2Yj2xgVkugJgaRTaZjvtrk+kgkKgPSdNhgdUAa8SWNFuKQgyLRTxQX6l7YIMZRtnnfW698p3K7MRgcZ6V6DXa3m+kfKCj4AIDw23IbMGLViMqSFDPv6mfOgFoq9+RBdYZqej9T8gzwwbXeRT3tDyGDxlhhYUAB4UDlD0oboHVYOFOuMzYBpVpjihxjSX66IaNmGqcUefptf3ZFctLjDphFrJzUu09QSX+LEDXhhXWB0puLOsxq3kM9J9nNepg1RUKOtFnSy0A9jxuMOPXqs0UW8yzEgEjea+5JClVaMMO5fj+Ixww5Wq6jJ/7h9wkRfcV1qT6gxwtShyxxWRgGFLEiCGotSZHk1nWucOPyNJkGwuZNJLYXnjcaTAjUHmEw/g51QEimAioFdgqRYD6LCkr8pywxDWWWaRJNoDBM0xZpJDNLaZY4hoDNILYUqfgPMxUkJWENYngNMaek5CO45ocOQiqfAFdXxHMvsRf/krryeckuX2BpCtKZ11hnim2Y4PrTWE0eWAm9NdWkBRjKpHDYrItcjgdTV0aFe82GRKgpcZZ04Y+zJBbRfk+V+KGvckDxJgS4i8zdiX0jLsZpCQbN3iA9Pd7jPEP+Se0yVClFPp8TbiUFikgR3KRLn0eKmCL3D6j9GNpK0eUIvhhnythBp7HYrQtcaiFJFy66G0yzLEW02Ohw5L/AC4vaMXUWWwdAXiK4pYnlKQBKpiUvtNw99tdZ43oWCTlGOEwZGN5TrjLHc5IMe7adT0EhtDb8cuAMoUlGh8x5EBSP9NshqRTJpOSEwJUHOSQ8X/GpzgmUysFiCxJh5iec6zFfWKpl08wn7EsNV8sTCJ7RIVy0Jk1uZEHWYokYCXFGRXKANFkmiy1FtMrJdSCsaiGqEYqr4pGgXVDHPm1MIBO7DjFm8tMv+PLahqx8BKJpBrIWZemveXsnDpFzBPPjG4lp95ghm/yQ1J0qVAOwNPSiZKUod4GQoyfElUklwP8/J76YpoKluZvRKojcIEmv0WFI0oxYR/yjcvo7aUAoOTXAMR0X2E468z683rKBlc5YDjeY5KtkBKdkOc293w40gxwQyC/Jqv2/B9H4STrA8kh5HeX9fdQMbPGnHv1vedg4jADHCMa/jgbwVjpc6BL98kDbqCwCNv0z5hjPQpOkzyMRaqyMYBtb7B7cSISaPcZpeSy8wl2UGiD1oET+tlmygu9ThS5q54op5eaUR3/lnt4yqJArDswyr6ZPBtrZo61eLbF0miTDnNoPRtqlBQa8+96rWi41NswLrMY7LC2N9EDHMfapedP7D8lSItxfMRQ3CMpujxxWYK9fzuefSCMoleZ5xv8MKQHiyyH5Lo3iUyNpooThVQI4NP5A1hlIQo8SbPFLrf1JmEFTLFNirMorLK0kCeg7cMZD59YiWGTmHN7jDPLGqsssMgy/RgLoIn5jGqC28soHsBYUSr6NIzpBcIbDNAmHUzOWkiTm7GHaQBSJwml6vp+JyNrycJt6FZjg6vMOZieoc2fMf83tOL8+r7e5JAzLiM5q1hdbdLhk1ShHKD8ISPOSO7G8BMM+ChQD2mlrq8AOMlaTkgsTjQ8ztBhhYWYtHcxNrIALbD9U/K1XcaQzUbbhwNWv1Rjb9ZLwI/sMCQtLmIhUgL5gRi+CvTaoUyVI25zDzCQT+uPrcEmxdOAXCCP1AJiiAko0/uLySDgUQy+IY487KvBCf0BqIjlbcoMG2ymXT7W9UZFz+cGM6Rpc5WNOA+jPAnAcJBGMAm7pII5KTadGvXedU81lmx3Tsi7bM4GKHZv9MV9oP7AlAZDWCp3Is+S0bg8MPW8qYHSudNaeEI/h84gecANpvmIDO2QXQkwkwerNV8tjHVnA00By6ssRO8ABEvDmvMiYgOKxaf7R4oh1egaQmsYssd4eJCJeXpCPoCRfk5QKFSXFEtco0SVM78GVQdlVI9laCM5rJQcei7AwGF5djXJhjRT+0mKLttYYNcac9zhR7Fuyo5IAIOAGfv9NjvhzWwAjHm/JcnsX+SX9XgjmCd43VdCGyBNOCAmYsVDbkaKpnoyIIZdGjAJUNA99W2+F5ZDGqbKY7bo0DsQ65AGGGJCyx9bw4HE385AdrOhqvINfkjF1TsjHLDGHAMc02CQUfaZY51lFmOQfILJ9xWyofR5qcPucif2gcfMMOi9otYmDcklb++QcZ+6vlhrNLzRvaqeSzWy2GMatAl8XGOODG1+l7s9fWOab/KDqFVlmSXrB62n/5B/Eow3Dd3nWWGT6ajJxtlzJprV/SWO3JN5PwbCNhjPsenPqpR3OlcigTSwoI5eibzOaYe0k3isNjtmINR6GqgPccQwB6/syQqp6/UITNHlfd7jPd4Pn2c907L2Ul1nElhTMy6yTI0Ch94bqv7XoEpM7DIV7nOLLinucDfWRjE2hStIsWOYRD8bzARhBpJh0SzrTLPJhtu0dEgjT0Kz8DDJ9CEj7DGOyZWN8CJy0wHDr/TrIi0VnIRlCdKG32RpReALELV3rw2I6pdDRhh2As8GMxSoMYJ5jI+zx44HqrVJc4v7ZHj6K60nnwtDr8obr0gf+x05lVxU/gw7zvrStG+Gx1QZouJpHzJeFEXzwE8CgPx3GgwGcJClGdP7/h6Es9dbySipWcbYZY61QI8tvMDYWptMR2GvWOIGg8yyRpZW+Fb0UlIly5S2vkuK3+OPaJMOnXoLOWcZGDbPaiwOw/4N51jHDFCLLPFOINlWcNRpOzqsB1mLlYC5LaZCPgfEQ1GnSIqz2DBXmY/fBWIKUveJjjYRFabXWEIeh3uMUaQW0xWbuSTMiym2EVtlh3LIdDPeIOf8gdSCUaXEY2aoMsQ8K1xjiTSdWLQbDMb0TzIua/aaIWGaoELBWWIqoFRMq7mSzG2PsWjaBbCKndlgkHVmI9V2ms1gfmoKn6IbU+w0HZ44UDWA+QV2yLik2n5aCcRgBZ18xypMsMk0fV64gm3Op+QjBSrPCfLH0jXfZJp1X0AnqFChzF3u0PbNSHJ0STc14clirER5FM2zgqjqAl1KbhxqhdlsMGz0/TSFOnLwXIW1JmpXHNiVxFiFdNEXy37kX3jMpV9xkfoP/fWxA3ZF6rzNchQcQ1SZZAt5imotFCgthoHWulnWmWWNBgNkaMc9IsngQ25Gsdylj3lWANtQJl1K8IAb7DARzLIiJo2VpMc2+Cpd+lhjLp6vUfapMsRVz+xaZT5AGvu7JFVchZMmhWnalNnhMTOckifPaQxeNNQRk0xsqhytmKjuMBEx920y7FBGBsEtsq9MoAWO2RpxGuxQyUcU5NAkyyCNkMarwFSwhRLQphwsA3jCqMv4H3vozBr9/ixscDWOwYKQSrEGap1QQIZAK/nmaSJoLMXTYDlrUirg3VjPxtbYY8xZDs1gjqjRz9J0j70V9+OoM85uyFv3XPqp698iy5azo9TA7TBBkyz3uO0NZu0VwFSMUID73KJKiSPfAx9xPf6fQj7U7Kfocov7VCgjE281nJY4txP7pIZYkhEf9+x3j7ge01YV6U2yVB2wvsdtuvQFa6tJ1gdLv8sH7jskM2YBx2LzZWjH9y/4QOUjZzYokbc3sVogxwYzsd7rnharT/fiAMdksDQ67cd1CjxmhswrkZJfzFeajoPvzQA+xPDSfTXKvgMMI87KPYphpiSbJ5ic0YKCqjF409BUEmwDdq5wRAkFW5l30m4oO/r9ORNLD4h9dteHzxryym/2ATcAA/D03MuHTV6m97gd97LAb9WVGvoawNgOtoM8jXstBQywysV9rOPTM6UBqczf9TJWlIH+NvBNRyCN2LOjPImhY5o2Co0Rk0r1lPZ3nVt97hRbMYyX/U3Vhw12DEkKuD3rfWEFI8C0QzrUHnpuDjBlxz6jPOI6NYpsMMM6c5gKpxR1hsDYFN0AHk/IM8d6HGeWJrd4v2eonglgSqCuefqafEo9h9WzW95MJuCwrAUsaMk8yFpkyXP6Su2qvUyDca1VGW/QxTjWdVNNL780sNr80Jk9AloytIPZqnpXn7fMIkNUvUYdZpPpqCVVH9h1MlWQWERDPohVLa71V+ucBhnqITTMKfl3tSTwIVfDjPvaVkQMPvljifEjv67e89IkywNu/kawlQF2+GrUUsbCykR9V6eIfOhEjPiI6RgEyo5I6+M8K1xxNr5qqbaDGKo3zGvTgCCFZlQ8kE3guNbXSbY86MEAWT0L1s99BJjqSs8mmBpH66DJIC1YQfecDfCGo788w7yiN5iJ+159k9YakzK2gjDRJcX3+RZFauwzGkn1XV+h9Qxp7TQvs4lgcokll6LLt5/9y7jH1euNPPslt7hvPr7d/ajlrrcf8dvVf8OsBzXmOeHqJz/jf1n9EwY45mu7v+AW9xnt7nP92Z/x7fb3KPnA79D3twEaEYhY7amJlEBrNkc2kEpUGAc+OCoFE+zQr+YIByyyjJRVWusOGGGM3VirxT5TMId8ioWRVDxsUvJV1cJZWoxwGP7Os6yHDFz+yyde02d8GGM9a5aiD8V0vMIHVHeaOqYcdbEA0FvcR4QrDXSOGGKBVWZ4TNGHHZCEQk66Ak/haVLwLPM2U2yFykL3g9kkFNngKjtOvgECJDcAei08AMVc/JBFZMk1zSbjvgYe9wxf2qRZ4prfk32+jp5S9/vc1GlNH6q0WWAlvMa1T+v5sHNQps35X2k9+VwAvZZTeiGh2iuxTgVThQlWmEfSMlEyC9SR90yWJtf5gJK3C0MccehsCrAmrcxO3IDym9CUy0DDCQ4YJkWXQZ90ZX2apo29SyoKGflZHTvqrYI7xRmnJOzCIY6c/vooioQjSoyxG99DRtrSpItabZMRAzgUSS4qtTXwtmHLkPeqMx4MHW7HJFrMsGRxzwbboO1MRm3WZXZ4yM14EIxRthusx32u0GCAMXYZY48dJmJCKPmkjkcAKFgSqiaG9vt7iGExz0roz9XQzrIG4HOhIjVna73r/gZK19RiMeHAl4CCE8w/JusTLXkkdLA4bTV5ork2/bxa4dRx6NFM2QX0HTLCGnPIJwSsuBWTUfeb5FNK1FSRdKVnWi0JRZ5T5B8g+YGQfm0gYikeYPJGMVR65a/mtdCMBrKNecDomNSoTrJFDkvzG/SN3q69FUYCnp8wyjAHIcfRJtO70Ok4hqgyzWb4l+m45ZMo2TgY28WKu+or36/mQISM8sfdM6OPLr8pKbdpZ9ntOkVcE1FJj7VZJ95NWfcSsmusuPeqy2M0ncs5oH3sIItCHmZZY4vJYBmpQNeESowJFT36vTMHvbsOON/mXnjpNRhkwi0UylSYYYOWNxiyJFAhVacQvjoGZhedaZ2s7wA1CvynfI8sLWd1mE+qradn0aQp3n2WNW5xn+t8ABCsDjBTZUsTG0NyL/mJdki7v91ZgJB5ToOVpXQ27U0DHKNQH7FrNKyxlGElXdkk7gr7r9g2/J/5X/Ff848Ba9C09o1wGGm+e4yHH4zZKqx4wXocRZCYbnlOmGONARo+9W5wnUexVm4zRd3NeHuZxDb5raJQImPSTUZjKgBFzMQT+hnhkHWfhArw2PG1YobHjHAQTD1IpqECAo2BMxYFeu/0Xew8W8PsHM6x5kCXFchPnFnUJBfSrYRpYoFTOVoxIRYDtehr1ij7XGOJSbYjeXbPGVbG3MnGQEIDJYF+KvgN7Oug9DQxnTa4iqQwAu1UhNUpRA0hcNvA1ishKTOp4iBZWiE5U7JyixwXes7rF/X1l3wpBprJ89bgKhsYS6UWwyMBAkqDk2yxSypYWAYUJNYFmoCnOOMqG6QwdYZkamIMZOg4FyEVoTuqz9T8mCfzNg0Gw9MW7LpO85E3TXsBZLX9/nniIL78gjRwFuAo1oSBwFeDpQZE3QLGoOtNVxQAMuEJjrJuGOGgZ+/I+fe3dVMNlzVBgyiQweR1tWgqrYYyhqLqUjHhkgCIVFwj1VNKxxZLTlJzDbAEmAvU0R4hUFfHKwmfsUZM5mn70iHz7nmoa2NAb8tr+WZ4xNq1aUXNvevVbC9IK2/pBgPRmInNvMVkALcKI5lj3cFWs4oQYC/mitjuGsJrDdGeL8BSIGEvUCwWRpc+Jj31Wl7fWisLzkwUi1AhBBqayf9WKpIsTb5b/06sR2UqcY9quK+QKGOZDFFhwk3rTYIosNmULp0YlFsKepYRDpmgwqozihsMsM6sgzBnPoQpxPFnvf4GwtcZRMDoBCAvn0h959+EV78DwLqvgAAI5A2uOlDMy6bv57ISUoKsBnIGjBmIJ2bxCIeUOGKEA4ou6QNiaPWAG0xQiedCjEv1Thrgi8W2ziymyOqLddWUaBbAs0OZdWbjv3vDLkfZf+V5lQ+7ZKgAb7HJdR5FzysGliyABIAq+fc+t6KP2WGC3gCKNB1a5HqUT6kADi/8Mfytg59jYUJpfmf/Qy6sw9+p/mv66HKWSlFuV/jKT37Jxfdfwo/hjYNTZp79hMvV57QzQNskrZ9dgq/t/oLX33/BhWfJNR57+hfugbZAhjZ/wB+iAbJYqjmaoUgzYLwUNglaQ0c4ZIw9bvKAMfaQLFPqvg2uss0UGQds5Xco1VgeC6lISBp9YQtQx6SvHdI84EbcH7JbSHFGPycxWK8yxDAHQfiZYitqIdnHNL1mlDWa9pA9xllhIWrfProssBr1qPYBrbsZOoyxS9qHGIYVGeAlMFPDvw2uUuupxeZYp0aBCffwE5FMQLmtpdbz9w6SZbv1lrNPOw60KzlXmJPdT30xqCpSD1/ECSph29HbJ+u+H6DBNlPusyz+n639GoAYQSwfbMa/7vW5AHoDPKVFlgaDzuqypKuWT6OGnem1wCrrzgIa4ogCNdaZpUSVK14kydS2jy7DTu8Ue0+hCgJ2pMUXdVzmmbpwmsSO8oQKEz1AWzsMRSVhkC+LAgAkY5K8BmxDsklHxhdKKybL7LDENd7nVjRM8nDrkuK7fIcDRthxJqLAS2MAGPKbpRkJpwKVBLB0HbCbZCsacKH1Y+yFIamKX7EbJ6gwxm54QO0xzgQVnvhGCpaioyZS1GlNGBp+nJuJ7LIAAQAASURBVLqR5Z2XdwRb8tYT8j6xzAXirRu0SJ0aBZZZREmxDQZYc6NIk8/sUqMYVNh5Vsj0TJ81MVYxJXDRmHaHARBr0tQlxbt8wBi7DPkESfempo8jWBqOAljULGvhEBAncKMXvLANbygaud5iRAmOKswnXCahqWQKMyzVtKSO+RVKTjZAI6ZUmuZ36YvpqBY4Y3amgjEof0CZLkt2Ms0miywj2rNkLDVngymp0ujvSfqeruEWU7zPrZjsy/dP4Rr62SzNYFDp73QtTugnRZe/dIr/F/31S96kj27ce1fYD+mfCt2rbKBwGK1JMrDeoeyTTGsYDp0NBDj4bWudzPXVgGqdGGePEuZFeov74V0mli6YFL9IPTwy7Lk4C/BKzGJt/LuM+Z/Mc2UfS+qU+fEyi1xjKdYA8+jJxmZYZocMHX9ah8PfdJ25kBAp5GWGxwAuWTTZk9iibTLMezEgxlqajrPgbMJbouoMqCS9ao61YMb2yhXUpB25B5Gmh/LL0IZrRu8jYTCs5vSIEgusIBP2CWfT2cROsjBbIwvUGHQgK0/iH5ijGcWNku5U9I/yJMBTsTi0nottO+GhSQZUHjOMJVcOc0CZChNUgjmon7X3NLB42NkAsi6QDcYJeYYdPFBzMcp+mD+rkfs9vu/XK8sasz0mxDVPXjRRt66RUtP2GEcSjpw/CwVqvM1yFIxdzOBee7n5wo6/AigDvMsHjHDABjMht2xj3qTj7DHHOpLuCJAxRsI6j7ge31fN/gQ7cd0eMxOfr2JRQLW8dsWYKVJDlhc/4BtAIsXI+/kTI/fLHujyRX495RJ7jLn8SCzvVEhKC14fCMzfYSJ8NIvUYqCogdEOZcwDLOPAuzGOylR4zAwrLHBGKtZJINQESlNUDQfEfaQaT/Wj9i6wKb7YLPIOHqQRqdPygpugEkC0Git5o+nesBrvLMI0tK4eORsuAcDtmEHMKgPAZO3Ry96SD1nXBxa94Q/y9NMx6L6VVcMOZQ4YiaZI7NEGg7HeSw0BVhOsM4dCkLS+j7nUvPdZFhPN2MenyEtSDaOpPqru9dmI5j/nsvsyOwxxxILbg2tgIBBOdgT2Pc2CRAmyBkxkg6lta0mff58ditRCimqMqEP3HO7EoEaNn4G/9ueaN5MiF4hdAQTrV3uO9krV2mLKVJhgiWsB7uke0TFKomcM5FLsmXp2zFy94ZLNDv+o8H/zgV8rjkc1qpjW+g4y3jep5DEzPI76Q89ljhaDNKhQZpspzG7BmDDaA7WGSg6aDILNxiAZvCehBdvOotX5MGaagRGfOOj/RX99ib/wUKXkvlA9AGb9kKWFUrbNU3kQCzo5it5OaiRjf5lPb4scZXbCO1EEhQl/JvKchEfnjPvrqh8B4pqZHPAw3kdgmvomsavVjym0Q8y6E8zSKu+A0BDVAB6loEqYpUcRxqYBmADpAedBCWSWvNf85xJ/uznWY6i56yoPEUAESqZ8fWYW+GP4L/7kX/Jbf+whfc+An8DfWv45l3/2nNyzl5ABzoAU0IUL7wPrcOEpfDJ6gd/a/4TX/tT+jio8u3SOi/WXfPnHH3P+EC7/yXPk+2f+cGvh/6t1WCC6CBzmA2uJ0Fr7pFI58nVKpCXdL8N+PfYZZZX5+G8BRweMhMeg2NsFr1EEuJkVgqnWxp0VucqC2xBUuc8t5B0rZZfAqJTjLxUnUrXIxfBKQO4IB+79uM1t7rFDObwgxVQHghWofrxLH2aXMR9DboGiCgNRXyCrBWPeJ/Y6+1iQqnISxIAUC9PszExy3vJBsfZO1R16RlUf9tYLIldlabHFZKiLFKChgf0S15BtiDG8p1Ag1JDbshj+csht7sWe8Ne9PhdAr8zPyLo858wbTLGmGgy4iWKbWdaQmWybNKfkucPduEn6/OHLc8IwB0HbPHagTdThx97cimbcR5dlFmk5gJTnNKiRSvYqcRTgYJ5Thn3DtnZnIr6LUPBt93ACwqOgTCWCMnTBN7iKJAMC/CRJXWQZ+YgZFfeYHcoOlg0GuKLPkUmyErWOKNF2poFJpexz+h0h1/RVxqpTbHFCPmRTC6w4MHXqXj5G0R30RXGGDSwe3L6/zr0mJykSLXmZCiMcemxzi1OfcBtboYhYjvK4MxZCljXmGGWfO9xlhg2ueEOjCb0afU1OrUm6EgtMHpMu1yiw5mCHpu0ZOiGRE8tTtPLHzLyyYXZIU+thgh75Bin5mppMFeJpZyKBPbQCvuQJIuBL9/g6szzkRtwrDd+O1pkj5wyNitPAxToRg9DkXiYlUuKYih2Zq4OSsFoss8hOJCRZ02GU4z6y3kj3Yx4lFcqsMxfXd4QDVlkgxVkAJ01ynJJHgQgyCVeRf51HPOQm/X4exYSR4a2eX6UWfsB19+2Y8WuSCXD4N+GlIgKsGTB5/1Cwj+QBpU1iyJuaHE3mWeE6H1DEJORmU9AK4EqeTLa5KkjjCW972IqKLU1B7QoZE0VSeLFIzTcqGx5WVWcWJf8uBaNJ8m8BhmJ6KHlZUh+tIXOsc8Un/1nMYFesOBUNu4z7JG0PMC8mfaYmXGb83s8QR4z1NDkKbhEDRsytGR4z6nxSMVTtOTNbBjWPegbrLiuSPQAQhRjYZA0SWZka6Q+47sXpaYBxOy5jEKindPZJL1gkIxlzX1GtL2qUDhj5d1hmaQcxJpBVwCLLjPv50iBHRUWXVKzFBpgWX2ku5WPSJMc3+AEyoy87C0Tm1V36OGIo5FHmc9VmmylqzrTW2mrMllNnY6/HM2AFVibWJbtnSjG1B6K4lSffjjeQeoYU+FKmQoZOALn6/V7J3i5j1ChifGyb6h8y4sOmqZBZ6LksUQ0wDog0T1kWqGHZx1IFlbKuPyuVVDLlPcaY8GFOijPG2fNE3sRwXACM7r+veIjQF/l1yJvUKYTH5gEj4VGnPV9BWhUmOPR7NEM7ZDkKc7FnqoTknTUHpRRkU6TOI64zSMO9iYd8j7/CEEcxQExUC2dc5wO+z7dcgm7gsczq5eMpJrBqSMmfBNTqeGwgdhZslGUWA1zWvf6E0WAGjLOHgrjucifAyK7XNrs+GFNzb893IRimQABt8meT9+aOB/JIzq/6oumQzRi7ZPxe13uJKXfV68Ik+dmAKHkKTrEVNQvgz8OQPzH9KMHYmGhbERQmbycBPWZnUwrJmJjqComQEkbvqzpmiWuxT2Wc7SLmsBowY2sbuKD1QQFxDQY59vpKDO99RvnIB+IazsgmQE2katEU3RjQCTQRuDDKvtsyDMV6d0TJ6+V2KF/EQEpxFsw+24NLMSTrkOED3g3fQ9Xvqvm0b0heaUxpG5Qduc6pwSCyQDn0wdQas0x6/7DOHF366HMweYMZtphEnq0TVIJxfMRQ2NeAAThaW8XGVC0oIFWDSu0XFcrImkA/u8FVfsrX/mYXnl/TlwAPgeEZH0hMsR1s1I4PQzeYYdWtUcSgLfrznqRXd0Ndk6VJPyfM+LBYAykx1EQW2WWcW7wfiiP5rek5XOKdYG2WqDqTLAm0HOUJZw6GqP6RTFS9ymNmwmt9hXlaWHqoGGJ6plYcONpiKgaV6gPVgzcxFdIs6yhoQjWLBqKylRl3a6ci9bBZkldakyz8DAPrngJ14E+BJ/7nZ8CP4bU/w34OoOt/7gd2gZ/C5f3n9vtPgJ8DF+HivZfwU+AAOAVG8R3iwG0jipQ4Yo3ZULcdee99j9vsMhZrTB/dYPI3GPCB43GsbYsss8c4FiSXC89ZrfGyBlP9I7sF3Weq6w4xa5hJtrjHbe5zKwA/SYAl35elwJrXp/JmvckDxr2XUYr9Mcb63OAqu75nF90zTqQhDZvkw37Ws7c1yXl9PIn8xMWoVzrtDBthC9YkF6qhXjJUzkG2pO48o+iqMdVzImCp/pY9mLwBVSNLHiymeYpuMI4LPniccw+/Prpc55FL4+35uMYSsg+RH/4Jee5yhwYDXtee+TDkmMt88iutJ58Lr/ljSrR7kNVRngRKaoBGkwkqtMixwGoASP2IlWCF83UeoaAL+XBIQqmGM4XRNbXx9jKusjSRX5cAN52sPKcoFWaLSepeJE2yxYcOkMyxHo2YJhFj7GLGuJmgQaoQkgfQASPc4n5M0OxnG4BJkgQ6KhnH6Pv2GXOsezNxFh4gAsUkqxUtFWwhV3S0zoNQfJnqX+cDn0anAwAdxCi3WpTbZFDq0SoL5HkQG3Lbp2xK4Sw7w0OLv1h+ai7H2At2iJDlARq8zTJ1igH+qbGUpEqTvC2mGGP3fzb5ke687Y2hEi0lY9PxGGvTaOW7bsA8wiEPuelo/BCzro8vUo+GwoqdxEdJx6PGDoiJsEzhAdaYdSPNYqTnbDEVyLoo8DbxNpZVn0/CRAE2SawZzV5jiTwWFX/mExPJwW/ygGEOwnh9wIFbsKZ3k2musM+PuRaF+BFDIa/WplmngAznlTit1Eh5YBSovUL932ECGafe5l4AvdqM15gLHzZjx1wNHy8VvJKeDNDguW9IX/TXLxlmjh9Hw2JFWoabPAj/txxNFljlh3yDO9ylSQ6lZMq2YMb96yQvNfDFGJ+3uB/TvxPyyID/ipPLDxhxRm+Vf8bfZ4HV2PTFBFZhtOVTeE3dbHpsL/lArTFHx4cwa8w5U8ASJ8tUuMdtMs7U2GAmmr5kzcnFs233UD9lKj5UsSS/fa7EBg/mx9Zrmi5vuS59yGcq7aB+kpxVjw1e8t8ClqYlzzV7X0uw3WCGirMUNcnbYKbHSqHGHuOU3P5BvqZTbFNmh6YXVFtMcUqeVRaYZIs73A1gXulikozIqkDskg1m4rxP+HtqbZOnibG97Vza1H4gipsh94yd8L1IfrZibIKtFeMOcmgQZoxaWz8HaaCwqj3GmGILSVc0SW34xPcaP6bu4JmxK68gywiZVPeGUaQ4o9c7V0b3QADPalItjMfYxR/wXvhBHjJCbziSCk6FaGnSrT1oiymqDLk1QeLTo6GGeXIVESvI9vvhAHr3uULWpb7rzIXkcYOrLPM23+ZfRrErPxQgagT5KMr3bYptek26R7DgMPjB57kU/Xt/XeEXnDibd4BGAJsdB9k18BBLXCyqGgWGOfAkXLPJAOK5GGOXVRaiGd1jjBoF/j7/jGMGnDV3FKFiP+IOM2xEcqGAnT66IZMRs0MAcpNc1EOWkNsXDP0ptoI5Ix+s3iAY8xLe5UMWkbwqRzPkhsbqrFGm4j6dGzGU2GeUNWa5ycNgnOj5EjtYTK0M7WD0CWgXg0fgU81lp4lc1+S58kizcDjzrZxghyeMkqMV6dZiZCtcQ/e2mp62V08C8VvkYpArXzClUQLRvMkaQOxCY7AcIlnfI95FKeOQ2I0UnQ0rto8ad8AHt8W4TmIEA7FuKhF3mUW+yQ9CLSNZltho+v0WWZTELWnvAA0UTKfa3fztCOm17HbynPCQm7GX6V7Ic0KFcih9jihhibxmi6FepsoQpw6Cyr9OgI7Yj9qPTVpdjz1U4WhbTEXP8U1+GEEYHZLwKMCfv1oEXqww72oZu9dKVF/ZV4xt2Y2mPI/5wx4xhFiE68wyQYWaM2QFHqkWmGONQ341Rsp/6K8iVX6LXR4zE8CoBkFNzOu9Q5pNpvkO3w1QRT2SaiHthUVq7tOVBGyVPWxIoGnd11Jd/2UWw9ZIn52mwzpzKP1VzFsNoYF4xrRuVphglnUUUDXvBBLt5TtMuETzNLzCpB7R/t8lxX1uMc8KRWdaq5eUQuQaP0ahLkY2aMf9OuVe0WUqSIUlVZm+g5QxDQYNhJOaser/voT9vf67DRyBP0IG3n0EXADmgf8BA/963+MC8Bx4CwP1nkHhq7UgmKRpU6TuCo0N5PeqmmCVBW5zD5FTHnE9hr8T7AT+oXp/wHss1Wtj7pm8xLXou1UTQoJZVF2RYn7rnVCm3ORh1HOyP+iSin5Q4PwhIx4wYef/hHwAW1rrpGA0pmbH7+1cALUiOBScpASmzIQkeEzEEdnQHDAWtVoOCycSC1PEGgM2z2I9G2OPd3kUijdI6jMDJU3GnqHNvIeu9fvxb3AVqfj2GHef3C7yMNU5VB0/6P2ynikN1WRDNM1mnJN1ZmMALqxD/pNSrTzvYRn+Va/PhaH3M76KdM4CoFZYAAg6ovmNWaLsBjPkOY1JrE7CAcPejE2yxziHjphK4gA2eZN/g/whBESZ4eFEyIGUVCPpmySKQrEFtIkts8EMJaqxgA3QCONcyU0PGOExMz41HowmVeaf2tyytNj1h0ZAzh7jwXJSvLc2tnd5hNiB5jPQZoTDkC3rxstz4lTcwWDi5WiyxDXKHoM9ink8dekLk31NWeQNqGYSiIekzE4slk+w8AqBnMb6aftDXwqZXG8ikAqxPJZA3KWPWdZiKqui9diba5meyxNHgJWme0q4kX/hLmMssMIWU0yyhRLjjB1WjAKo6Gw6gbmK2lbBK8+VDG2WuBaNngBgBY3Ih+cKluCqYApr4Iy5I3nPBjPBRqo6oGYG9TWeMMoEFZfC1YMpIC8mAYANBhwwMS8KNfqQSIHE9lRzXHQQ7pv8MFgnkgyr4B1lnxLV8IhU4W3Aajru03EsTdkMkhNphCRuuv/3GfXgluNgm5VcHn6CmH5Drzwbtkn89PNYfn7tXjd4EEMJNVc2qVwIAFkAvYpveY/o2pWwxD2xrCQr12au6apeNYqsMs8ZltIoFkedAuPs8X1+D8k2lfYpudYdfsSwbzaSYkmuA1bszXkghED3KbZ8jUkF2DHLOlVKYRMA5rkm+eL3+HZshB1vTHO0Qpauif0IB8HwEKNE64Smcvpni0lyPplWKt8WU3GfLrIc56gVz7jJe7aYYpY1JtiJ9DWTrg8FkGUDKvM+vM29mEIbC2KIu9wJ+nw/5pllDU0JhdSMsRfAuT0Xp8jbZoYNSlSZY50FVlFSnTFsus7cOKZALdiHbWe36Nk+IU/FwVNNyDuk2WCGR7zLBlddHpYJ2aOxcQajObSCPxmQab+Td9QOE6ywwJGv+3uMcehTSyVCArFGSZpsgOVVNriKjIsHnW0iGbl8/jSUWXGPs3dYwtJMx4NF3VvwmUz7MTks/EdTT+01xjXsco2lAChVdNq02sIMVFTXKbqPkDF+ptkMAEXfz/bWD6l7s9QiR4FaNE9ZZ2Hqfk4sIc5i+FalxDAHZH0P+SK/LGzHPBqN1WhWKDs9ygib5s8gm4sUZ7TI8T63kNS7N2hFQxGxL2oU+SHfCNmV1kuBggVqTPMRH3m9ogGvhr5ig4JJCCVv2mAmwDsg1gatwzmaEW6mIYKY6r0MCHlB7TDBQ26wyTS3ucf73IpBhI5FssmbPKRALdgUJ+Sj1hNAqKZkgxnfN6wGG6ARKda96/WHLPK+y6fEotL3MubNPkpg/ef8fYBXhpEAD7gZjUiOFg+46WvKWawV+kxrKg0oU2BW7/V77MyRPu8dFlkOhrbWEQPUzF8zkQSa3LeGBbpJJZGmHefF5L8me1LInPnajgfIOMBxDNHKVPi73lCL9dwhTZ0CO5Tje2UdlBW4pbAKsRJln6JaVqEkxvicZNfZWQckNhqS8SqIQJ6GKbpu9pIEoMgr9bF7mMlb94ihVxjJAssNzB0HiHVTe4hdzxusMh/37Bi7sXYvcY19Rvkh3wgG8z6jrDBPxc0c2qR5xHXOSAUJQp64GlYZG3CYOgWqzn6UfE0KmRbZz3Ud+nV59fneqn/rHBh0Mx6hATqXslHSkHYrzKcm0WDLrArKXvP3xbolZpNUc2JEpzhjhYUAhPQ8qp9QIrQpk4xZJU/HM8y+RImiGjTOsRbSQUnNZVU0woH7+R0i2x/JT+WTKasu9aTyeH/MTPSx+4yGNLXj7GGlfBtjzFjYZQecNBgCgqXHBWAD+ARj3s1igF0/BsQJoHvm/7+LSW93MTbeXQzw+yoGBJb8Z55jdKkLyXsr1VtyeAV4ynNOqr0ptlAQk4AyDSg7pH2oZT38E0ZZ86AgsGe67Ws0QJYWS1yL61l3Fprquus8wiwGDmJ/WWYx7k1ZU5yQZ4UFPmTR66B02LfI9kx1j6TNstISJpCj6XYaBoCVnDfcYJBv8EPEYNRg2jz7KhSc2HKHu0yxRZlK7D99mJ3ZdR5xy9N3b3Mv2K2yp7LvboqxO9yNQXCKrvc29ajxlllkk2nmWGcQqePasa/LEk3PY4UyJyjt+YirbPAEs23QOVf/o0GazucCKwzQYJFlptnkDneRQkUg+wn5WCf/+vXkc3h9mT3ymMTATG6ngnVU8CK9woSj+mWm+Sgmm1NskaUVwMwoTwK5FVNhg6vkaFHDNMhi4Kl5AeL/DdJgj3F2GYvERqXeFqizzGI0omCAzAQ71CmGl84YezH1NOp7OhpoY36YpFESMz2o8sRQcyJpmBBrefvpvHyXv8c3+YFPUTUFOQ322TqzMVVRcQI23TdD6Bq7jGOS1h8FUJgAQ3OxGWjRT9MOFoS8U6Tvf5dHcUOVqUQhqcbmEddZZPmVAm+dWeZZRd4jZrh6M8AGA1HbAYwazdym3yoWe1lcZpCbigLGjPg7IZ0Bm2Q+5GY8KHOscZ9bQfEWYDJAI65LkywDHLPJdIBw86yE7FYLncwxx9jjATfCI0Qgyi5jzLEeG8ihA7xlKiHr0sRb5/6KT4Z7JQkqJM3bYZ9l3uYaS1QZYoRDT9VcD+q5rruK8XF2kTx4m6loMufDb6bfYdZOsExtQcsFGGjelNtB6U7RjZ9VI2GJp084wNLdUnRfkdYpEVjAnWTxenZPyMeU5zfldZFT4FKscWIqbDHpxZpNscX4vO+N3Rh74Rk1RJVHvMu4J9eekGeBFfYYY4cJptgOFlzb2XsCoNTcHDCCfDrynKLodwVbaK1QkqMm7DKfFxtM0sl3WPI1pOMSgdMA1nS9xcYYwDymVph3uUGVO/yINWaD6bHGHEpR01S4H2NmCOAcckaAPMrynLDM27Eev8MSj5lxr05jnBgLxYCDB9xgkWUqlN0/rg8laopVVaHMPKuMso+M0gXISHJpct9cDA7SdIIFqZ8V61vsXEkrNGm0fS0b68Am00ywg/wrMw7+rTOLjOeNvdLnzZA5ver5VXBUmnb4oUyxxX1uxbEbYHHG9/g2k2wxSIN1ZiNIR4ynbab4l3yb3+OPYhgicPUudyhxxDh77FCOdUeMK5vY9pOliRJ95f8o5nOTLEeUwndFQKlYLFWG4vopGU2Dj6Geib7qBE29B31yLX8/W4cnqFIKUGeXsbinNbHXNRj3Z6KXPbrGbKRLi0mjPdDulwmUpizfIDENe1lSBWxC388Je4yTckGlpJy/xV9+/ovRv+fXabgP5r1+moyGrEaRdWYZoBHAWK8fba/CYseNpzeZZtxBXg0nTDr7CMly73KH6zzC/JaqLPFOWGrovtY9IDa/7YemWhA4K+ms7o81ZjmhP57dGR6HNFR78wYzXOcDToBHXOcGD4HEHHuCCrIHucFDahQDZJRHFCi4ocRVNpBBOBBg1gDH5Gix7p6VagpMEtRi0s3FdV9rLbdhjYW5KQzkmAEGsbQ+yT3/U76HrGq09sqLtOpyTu31Ag669DnLMQkkGWMvZHQCJVdYQGzjnA++xbqrUaCEhZHpWVetb+OfnA9csl7jmWeocd/sHAvsUEiUBpubTLPOHLOsxWBHnyE/phUWKLPDBjPI3zaR/drxinktZcwc62FOr5RrXe8Dhv13+xllnz/kP+c296gwwbwrbOoUGeEQpblLGaPhsYZ/a8yxxDUUMNT0vcQUJJkYSmuoL5aT/MNFuhB7C4ghbIEMNa8j5IN45EN5gdICakbZD4DVAuc22GAm2LB6bjJ0mGQ7vLhG2WfbB439DmKDPOR+M1Ju1de2SUfYlyWe1uO6qt6RVB7w58yunQZwbTIOcu3Sz0lIVOVvKI9rY3EVmfz/kPf/sW3faZ4n+EookyEjJlTIJkvsklsqKmJFXTKktTaaVZ099sU7xrqR2sl1cHXowQxugAH6sH8scP8eDjdo3B/372H/uJsBGphDz03P1G4WVUi2vXDDGbusia6VlVc6q04pKVJJY1VJRRYZyZFMFhkxuT+e5/2QvlvM1B06M5nUFzBsyzRFfX98Ps/zft4/2OLMn0H1bxvMIH9OqT/ECFxg5RlPxaQzNdW7AV4vpoOVPM8qKyxgadhJfshboWRQ35rCkj7lwWz7/EUUlFb2n+0HfN+lisUYzBobbyfWE2MWzsbPbICiwet/zt+JfdvYx7vwPgbgfYJJb38ITGAg38t+kZoYmPddDORL+a9XMfCuCbziX3sKvIgBereAfwF8x/7/OfIqzsXPr5qz62utVHSS5aY4HFBwmYcxwAqvk6LjIJIRlNQjjznhRPVc24coGiCKpSdrFmOv7UUtLNKN1mvVWjqPgDOLi+FnJyKSpN6yvVnnhg+VjqN3WOIKs6xTosYiy7zV+SGJ888pv2iDTikTxXoeZ8/Y5E9+RXv4AluJKlee/itqL/4OQJBFvv3xv+bpxeeZYYMXNz7n07kLJM57bKWqyA92yHtaqUsMBO8Dp3pe9FwMMg91PvV/5ZUsUpXwmEGGnewlpKRTiE2TAjM8ChZtxwfu8jK0YYrtlRYU1/mN1pMvBdB7kTMOmQpaoZhmmsYrCU43wtgAgKdJp+jwh5RZYAWZGFoipDGGJr0YEv1UaYJqEpUGpWACmSDq5l5gJTbjMQ64xzXf/voPiNEqzffB/FSaAXxdYoMqW9QossEln/rbiTd0OOENbTeAI6XtyJNpl0lmWaNAkxvcRQmsZz5Z089sYOJFJjzUQgWLijOxNybZCeRX8ckKa0hwzjSbyDA1wTmW3mWLcRlLZllmMZoZFW8qfsFAmzpFZtig5ue9SI1tqvHwSxKoJlAAqsWHp4LyazK/nWi2huiFaWeffTbCPKtR3OgeyXEcD4G8mLRADgZUSCYhVkZ/8zkL+qwKxTolbnGbBOfsUglPPjUgfcm2GBeHwQzUoqtzOM4eQ/R8g0wjE1HJKQc1+mAFWdNnHZIUSSKimHFNoDK0QqqS8O9xlxu8zTssshzTCDVEXQeSBNwl6bLMYjBNWi4jMUr78jOMky2qzzTRKrbl7yfzZlukNuK+z3FCl2SwaXQeLmIm/2l+/de+9nwVj88ZouHTdiAkncYOOoupa4Jzchwz7gODQRPcPA3k75DwyZkmaQDLXlhlYmOtxUZxRpZZ1p0FYNTx7/FuFHJaD9eZ5QoPoojT9H+BFdbc+3GIHnWUIG0JaWJNGxvA0nUlVc9x7KbpjUjrFtg7jklgJReSsbg2T7GIB4dASvnTuSjQ4IQRjijzmvPI1phjgn3ucT3Oo5o8+WUIuLQ0rnQAYgUs+S/HMSk6XOQg9ixLmD32ZzgdQKpYw+ZtZEOCG9yNBljeSnWKbDATBZXWE8n7BFwZ2GOT0hwnTLFFmwx3uMllVrHwjhIzPELMhlnWkJQ7y2n4CRqIb0zqY3IRNFJhN7xZbE9oxn1gIEaBWdaDEWnA5bEXf2YcrAHRPKu+VwqgMu8tJaCtsBD3UY9EgC0qXiUHq3hqsNYsgRIFl0hrsCUfM3nPbTLNAisk6XLsDW0/sSztzP2uA2pmrVCniNJCJde1ZPgaKyywzizXuB9T8QImrdZQpkbR2TqVqBH02cRuUrN9yChmJWHS5wLExLXonmljHPCKA/pf52ODSzHJ1pByk9e4ylIM3nQOL/qzoETiWdY5ZRiF62jyb/qAPjOh47IjeRpqOl/0QaEMuy+xQYckktbKj1R+az2G2MZCdcRgPyHHMosuhzrjOvdRMJjY7Aqe0EBynTkksxHzyNjao8FM1npkrOdRLtEIZoHYvWMcBIBuIF6fmS1pa5oWN7jLGAessODD0jRKMJTUPO1P9hRbwcCQxcaRD+sEFqqG056e9+H0KvNU2GHM93M9x9p7NOiZYz1AmxrFUNc0vHaRTckZUyywErWymHNga6WaJxtEjcba2iPBa2zy0QDrWTYKh86SVM1ngFc3eowq2+7b146fb8gH6rKCEKhl9ggjKFDO1rha1F8N8jEY0ZBYUjgxAMV4FJAzwyN23f9Ye4NklqqB7Z6djIGGeW/bPawUWzXr8h3Uvn5Klrf4IRYIMoFS5FUrqO41OwW7N1u+dtr7DkX9YX5nw1TZ8v00yfvcCELANJuRzGmf4aPYU4DYm3bd/zxPJ86d/GtPyHGRAz7+DRkp/6EfL/OEvDN+O6SCSat7T1Jx85tPRT2tPkq9Q5o2ktPWKHKTOxSpYWm31hum6FDxkAyrfYwVbnWnyaF3/Xk0cK3vt6zeqeBrbotc+FsKTNMAUdYEpwyHMkSebVKiFTEPZPO6Tw/YNPUthE6xkJ4ZHlHHwsas/y8GsKQ6Y41ZJtwO4Br36ZFglXnm/LwBPtCp8dgrrd/5yZmBb+cYEDdGn5X3KgbSHWJMvEMIG7NbQB4D8P4KA/7q/quJvecQ8JcYWOjv2WOIKluh3rKQw24MCIy11nI7iuM4B+rbjFm9TRMLlXyLHwbRwkDfRvTqIg1IKmtJujbw6ToIalYUeW7xF9zhJk0KzLIWRCQAeadmMb/pHSbZc8Vcim4o9oCQ1QNBzLrB3RiQyNdVyowKu/xu/RNjOD6GV1M/t/P6BJ6+9jwvPv6cb/D/4OnF53lx73P4GVx47TP+4yc/gY/h98q/giJkXm3zO4dn8BG82LPX0YGXPv0MijBX/ojn1uF/+J9/B7G9jZVs+IPCNYRPqMeS2ixNi6Kz9HUeT8ky7GCzhihWeyRjMKR9Xb7yUhrKtkjKSilHtNdLQSNrtRFO2OD3fqP15EuR3Ioyb0hzMfxyJJeAftJYzhkCq1xm3nXLQvzFCKr7jTJ4cjTB0cnQoqGiQp9DJqwJzKBx8OGRd5+CKMQU0UUXmLNFlX3GOSMbVNjBKHmhrdocB30ANYHYZBoFSlTZJk+TIrWQwspLQpufmn+lE074pMsKuLOgPudpMupgmORlkggdYYaqdcyw+zr3o9kTJV+0TsAf0k4s8E3yrLps75Th8DoYlA4KiJDmHWyRTWAmkVYcW9iFGvO8F6t5mkG/1kRc0d1ALA5q5lR85ziOKXLWQasJLAlp3E1QNf2Xnl7+FBvMsMm0x3ePBjiwzzj3uc4Vlhx9nwzAt0uS+1yLQlST03MS/iAOB+grHX6JGikstED+CPo5wcDESXbCr0VF2zyrJDBZWNclcXsukdj2+1AppWWOAnQ+IecMw3r4cvUYYpcKW0wh2Y1ASIWCqICtU4rGu0uSHacR26JmCcYqaO26HYVESoX2JDsOFtpitUvFfX3sM+4z7qEGtun8tiSZiS0l8FvXuo2l/PU3uSG/31Lx9Wk2Hbi+FM3DYGOVw4ywp9mMNVcyraQDUmCAra6/gJeas6Aa7isnGYQaEoWhSM6jgYsxfE0Gp2d2iF4YzEpyK98mM5GfiNf9OX+EDM71OeZY44/5x8H2VIEoWeTuwP0INrUe9xCBMubVp+dTzAqTcBz7LmP+mEm63OGmN2DGAFMwhJXLXZTIbtIpY1i1fCCgz7FNlV0mWWYxGjdJKsfZQymdu0wiL1dj3+4ESK5rodRpsVbFoC5S48/5o2BLytMuy1nsG00K7FBhnTkUMrBFlQ1m+JAFLyza7DPBJWdOKKHzlGwMy3YcLBXQV3XfP01tU85+03DpnEQkJtuw7Tyec2OLbsegTJ52AiQ01MhyhpKENUCpO3ih/cdME3Le2KRDiiDpyhZV3uYdGuSDFdImE0CDSS72fG2ywl7PW4oODfqpzUoMzdBilnWUeKz1VpPuVS5zh5uckAvmutjYAhh7XhsUXMai66rQlUEVQhuT3PyCb36Zy9BX4ngBY+Tf4WZIqQFPd23EXpOiixJXs1iojw0a7Z7Rnl3mCCXH1SkF4CXmikCEigeYPeQyFXZjCNh2poSAddWY/XrTGH+6VnpObI1IU6OESWLvRaOQoR0gZMHZVWApysOcYmw6SzKURcwpWTaZZpsqH3p4hhplSSfFdppmk2vcR9I8DUOsTp2I/TXLaTxD5vFnNbgsME6x4DmBRoBXqwZcH2Ip2LOssce4e2IlfU0zP9ER36+kQpHthoIqBLCaBcQ8+0xEPa5DwNVrbLLPhO+LGeTTp/pe1zXlTVXZhzSDgy/tWcZEm4yaVkD8KIfMsxq1G+Ay/nESnCNmW4purCcK7xI7WJLmitsWSLVTZTvqT9138nm1hNCSe3zZAMv27Y943YcRuhd0PnR9u173CvxfZy6SZXskqPu91iLDOnN8yEL0GvOsRvCemIn7TLDElbBOEICnukKS8yWusEuFf8rfRem7Rz5I0/3TcmKAwJcDzJpnkp0AmHaYDPm5Bmd6psSO1Dm0oWCVX/KNf5fL0r+3o8fz/nzYPiSrGyXaLrLMDBvM8xD5yStg6TKr0QOKrVVhl+vc5yHztLGwAAH5YrROsuvDfpM2z7GOAnSqbFFhN0BxKaXsczyKVdIsERTo1/dxU/896LGZ4wSliJY5ZJFlLrmEvESNLarc5Ub0KFpTNfB8yDzH5J4Jo6x7/ypPNvWKsj7aocICK15fFuP8nJPgktuaUMQApEOMffcaBs7NYmm2T7DU2qcYiAcG4v1zDLj7CQbyfUKflfcJ8Kn/nvf3+wQoG6FGrDhjS06EbYQAyAPGWOJq1AR94K+DQuDsuVkn7cDSPa7R8H4/xzE1LIlYypM8DeR5KfbcHhNeq5pkWcCvUo8fcpkZHoWHnKS44+xR5ggg+mxdbxEJZOGloaXUcZLfq/dM0THL4Pcxz8JPgFUMmFv9PAJIXnz3czv3T/11H/t1+Rg4gN9ZObO/fwL8K0zmPOHX6mfw3D+1r2tdU+L5JLuuapqMPl8+ykk6Edyn+zhBL/wo5aktUFz2ESY3Po/nRKxADb0kW09gw/R+jkMVhS/JRsySqVvRk/wmx5fC0KtT5Js+MTXfsbNoJEwmUeEMMZ5GOKTM9/lBNLtgD6gxTFKOpI5GgX3i0wE1EafOQFFhomZTcsSilzAqkKCf4CpGiCaXmoKYT5JNNtO0YvKmTW+Mx/QYYoUFsljMdoek+6XtB3il12c5pUEhaMQyo9TnP2Q0PIgOGAsvvw1PBzLj531q9KOiS+xSoxgP4UWnMgu0VPN0wBij9FMpd6hQ8OJZaTtqZmqUWGQ5ikzpwcX+UCEmI98MrUjLytD2oq6v9x+cjmhyeEqWJa46u6fNLpMU/X7pYbr7eR46C6IQYNK2e+XpARs00wRbMFWILrLMPQfhVMzmOKHCDgdcDGDCAk7Mf0lgwqB0QSAXmMQhT8OB1ccozU2+TnbPDgME2m8MyFQ09QJsuiR5zBj7LpHW9zBPx1oUilZIpQP8VBKaLQzNZxhN8o4S81XPmAomMX0kvdxhkjOyXij25Zg5TgKsFX1Y132cvZiwvsZmSNlUbChNz15rskQBfocuwQCTAGd58mUsP1+545/zv+I/4aMorOQducYcbdJBP99xkG+cvWjgbEgwwhiPo3DK0Irp6ISDKfL5WWCFGiVK1KPI0bBimk3+glu+2dbimSxRC4az/DCsCdwmT4M73EQGrlsYfV3gkxVyxxxS5iIH4WeZoRVT2UFJkMkKUt4IajObouIbpeRi035vCWAWA+2EHNPO/DIv0UIUii0HGM16wFg28jU9ZTjYeH/IOzx0T1c1xBlnLYgV2KDg5aOdW8lTDJgtMuxrewYz4lUzr8bkgIuI0VblkLu8wT2u8RY/osp2SKXlhWJre5Gs75lgcpxhTsOsXUOjZRb5Hu9S88bJ7ANOyNCONVfPsZ5VDUHUMGodU3E55IC7gc9DsV9I1i0Pscs8jKLGrmnGme1DXOFBMBG1n2qdtfWmEs20BV2kYx+Z9PREeQN1SPoeUGKEEx5wJZoKY3w2YzIsubhSL+Vv0qRAhV0rHDFfyWk2eY83QyIru4dtqqSxNHuZPEsyuMJCGHwb8LLgQ5t6NNXQT3ncd3sP3aMdB1oLfs5NtnfO3+Wfum/S6Je8An11Dktet7pBXrwWkDVE3dctrQEaqm4MJNQLoDLG3looELJYkqjY9vLdUZ0nE3Zj4E1Ec7fCAmMchP2L5IEKDxhkncjLzCRrE8GcGKLHIwd5ZtiI76lhstjUCXruMWnsNzXEYvi1MTZuh2QA19NsMurKCTENTaUwHEmXYr3c4WZ4WBojvq8s6ZIKRqqabslrxZjQe+v96hSpssU9rpEZaFoElkp9sM4sCXrBztI1tjrE5LbjbgmSou//fEIufExVN0nSqYGPLHWktlGd1MG8pCQDlTRPZICOA48C8iT01mDKEg+rNMm7/3IjBp0dB+PEsBCYK6WG2Gsn5LjLGxFGB4TPrYY3AhsHw6AEQugQS1N1U51SWFiIgWj3YBp5QpU5ZJdKJB9rjz2kzAwbQZJYZNmHBukYfmsvbzsAuMAKknSuueTd9g6T+v1tfkidIg1XbxxS5jKr7DKJAovEdhn03AP8+p14/5D0P48ygjmq6RkTsCOFTYLP/1rXna/q8Z89ucsvX/oWU09+xoVP4LNX4MKn8KuxYWqU+E8//pch4/wvyv9XekPP8+KhnZtPL17gpY3P+I/LP+HT/AVeWv2M6dlNXtz7nJsTdwBopTJBDrnNLfI0Y9hwydn66p/UWz7kMrI7UB23wyRKth3jgGvcA8zbTj6/kjWKgad1VtddBBcBeWADsGvc4w43ozcXAWaeh+RpsMEl5lwGOkSPLsT7ac0pOEFG7MMJB7/EtLZBykkMTrokjZn3a2AGOPBfHSzwoglcxEC+dQykA0NM9O+fYKy8In0wr4mBgU8xoHDW//+rxNola5stphhnL84FEEB9hV0kUTZ5sa2bluQ+TJYzzIeyEP2w1GtHmB+n+fSZDPeQcjCnr7LEGrMx2JVSJ+cYh2r8E0YoUafmdgqDBBsNQyw53oYuCXrsMR6qmym3m1F9rZ5Bw7JzEuZF+Iqfu3nMk/BvYKDpDH2/wpT/uY6BgC9jicR5P8cbfm1SGBD4kl/LPUzy3LH+Q73NBjOMDtzjWU45x9QmsmcDI57ZkDgdQywjOs1zhQc0KNDG/P9lYSQw3Hyy21EjSsUh9ZO85NO0grWnobPW+AdcpUCDb3jf/G87vhSGXo4nHGER6Al6SE/dceDEfPM2g7qoxUFSQkklFL9uLIEul3zaUMRCLIQId7z4UPqopkfyBcly5tu0/buKCgGG8sUYd5YXWNHymDH2GI8pvBrOFB3e54Yz39KxEcmjRGbE5hdlzIIsp0x4KlHLqe0ChIxFNsIoh8E8E5BkbDvz8zvB/JdMAmk+gDIIzTvrLunTyIY3urOsIaq0gjgOuMg5/aQ4JRT2r1U7FoOG0+BV2GwxhZglDQohHS14UXhMjlXm6ZDEDMH33IQ158a5kwGyHXmTI4lLiq4Ds0NxDgUqQZ+1KKmhmCzymzphBIU6WDLjNjIdrTgbLstZTJoMHDCwdJZ1FIyRossCH8ZEURJVUcGrbKEE2kPKrDEb95RNvA0nn/CHNOPfd8SbbvkC2gTfOFJlDqmyFcyPQ0ZRZLUKTpvsplniajQ48jIZpDILMFWDLINZJeiKfVVly7laiWAUyadxmk0a7nUmn6f+Am9TJYGFQGzUE+yRxVLc5Mvy/9nYy6z06LekkX3ikyzJkSXzU/jENJs8diDoHtfZZDrSvZRcJ68eNS4KjlhhIcCYjjcyxjBaAyw5XJKLInVucocWaW9208FCTtDjPtdikt921scQPS65t9IN7gYwo42/RpEyRxiLLeONQT285cQOmWMtJDXyj6tRCrDlhFwwplXsZDlliSv++Y2NJsNdSfo11RaTbpNp0rS4yhJJn8oqhESMPiV3qdBRmrXJgPcieObI17VDytzhJg+4inxZs5zyGpvRSKlYmWTHgdjhkDfL6P1/wz8mQ4sVXkdpYjJab5F+Zu3QGv4WPwqAV/8+yDhO0GOBD5l01pEx5vbC2yjta6OkGfJXEVh4Qi4mqZZubOwcpYlKqniZVeQ9OshmytAKX69lFsPYXem/At00Je75HFjF4Y6zeDVRBrNLsL2xGOzLG7zPJTaiwd1iijVmfd1rIJNpNSdlDgfAs17s8ybVqz+zp5Rc/jPPQ2TgnuOYCfaQPcjgBFrsxRNy7DFOZcCkWaxl2SkYG3PKmdLGUpHETIDWJTZY4fW/tvXmq3zkacbQUwOLbaaCkSJGwQFjmHdYNdauCruxpgwm4inpWmCfDL7nPKxhxq1RMrQ9QfZRgEmySDHg3cDADQ9nmOFRrGs5jmPQWXPPuH3GUapsm0z4RIvFCta8mB9WJ7x79DMrAEAgzzSbHvzW5pBR5FGm9G8xmKw5qwegt8k0NQeB1DSbZ6X5PktqtcVU7PsKxFriaqyje1hyoMnPU0yxzQ4VJnxAvcZs1AktMlEbKPRIElYZlwvYrFPkyIGmPE2GOQ2PSyka1GirVpbHpUAE1YJiD9YpscYcKW80JcHTczhoR5OkyxlZJO+UasQSIw0olWeZ2LWSclfYpcq2cxpt3Rj1NSnLGW/xI3pYaJH2y76kyhrtJGaoLraUQCzVrQJYUg5sdzCJvxr7WdZpUAhze/UhadpMumm8gEPV6UXqXGUphtyDgTt5mrzJu+Q4YZy9uI9rlFjgQ84ctFTdluOEY6+V9az0GGKLKn+bHz0zENL5kQVO0SWSko4C4VN6TsIZm+kA7UVG6HDh38Fq9O//uPAL+P0f/owLPwQ6cOEIWIXf+ckZ//neXxoL6RPgL+GFd+HFf/S5MZrehZf+688MLFqFl35sf35x/XNYM1bTi//N5/zOX57xOz8843d+fEbFQw4Fcm1RpUE+asdBGaKCnMxz2yTd5uNZiprfmF0tNpiJrymcRoEuIhco7MdkuBYGI9nlCOav/Dbv8CbvhQKoRTqUVzoaDhgayFgJr7MsFoJmSi4DRcTkPmWYI8ohoy9zaCBZj34YxmsYWFTDQLkZux78GmPq/Rg4w8A8AXkT/u+H/poyffltHmOTrQJrwJ/CpFuK1CgF0xDseTp30H4USx1WIOjbvDNQ1xnIk3GZtEIv51mN9VF+rA+ZDxKL7YGPGOWQOdadhHQWTOofeUCeyCEJetEXaj0WGNr2gckgC3zce75lFmPdUv0vqwMRRjQkkK0W2L1N0c/tyxgY96Kf87/y6/FTv06HGHCn33+GPQP/0q+Bwkve8+sgRt9HxH6g4BmRBWQ3c0IOhQFp/1ziangYWs9gfcYsa5id1zkzbASLXkM/qZWu8ABJpDukwkpCljHH5DjgIhvMRF9n+5ERwhb5wC0/kr/RevKlAHqvOMhgxoDjURTP89CL87tU2KVEjXlW48bWjTSYTCN0U+lVQvcHU0pSdPnAN7u0I8JWqNfpkESx9DJzTTsqXaOEkmW1gWkjqlEM5FqyzAZ5bnCXVeYZ9qJHkpw15pBUVyzBeR5GwZCgx2vOvkth3iKKMR7lkENGHcgyecI+4y5XNrcNpQ7q4hozpBHSxn3GvYG5SIckMzziTd4ly1k09GJIavqshdaYLyOIbm+eIeaPZcaoZ84c2meBD7FkwfozDD9dJxl0djEvQAWR/DP+iAo7VNjhnETIjYcdGdfDpKSZY3LRDI5hPlYzbCDNuSb64+zTIM9jTIpX5og51jl3RDzv/ksmP51EqWlqWg1griDWZ2PAi2ywCRYIJ5BQkg29TkxQTYgtWSxJjRIPuEqPRIAo+0xg3o67Ia0BW9jlEdlPChqh6RukroMSz0xSlIxrqEWiTSZ8ilTgqxgTm0XgSp1ShGBo8pzg3L0EzjlklA7JkH6cYgnU68xSoMll9zYUwNhwQ+c/5h9T8DXApE3paMaUrPXZb7hI/Yd+zDm4Jg9I+XAaIKIJVjsK7BNG2KLKO7wdRbKmOatcRtKJAy4GcNIjEX5OYraqUdDGKSYqEBNysQa1thSpP8NsEat5n3H//Caz2qXCJDvMsR4geJ4mMmxf4gpAAMoq+I4d4BM4bcEbZ3FvKQnLzHXb/szb/9Fk83TAWN9kIcM+vcxHcWPsi0I04B86k7rg53/KPWFK1GhQoEQtpLZljoLVIdbPoMmy2F1KwAICYDPfug7yw5NXk1hjtmecIVm02MwaEGgtt+v22Pe6OsssMoxJ6MbZ54AxRhwcvx16EGLqqOJFzXmeJkMY48X8dersunWAAga+zw9i2CSrCR0HXGSRZcwMuRRsxgwtHjET0lmtQWIqrjEbTaYacsnDhjkNuY+8SwZ/DoGL9jPv0SITU/wFPuQtfkSRGkMO8NYpcYebyKdK8g7dh1d4QI8hFliJolIepEqezXKG7B/0DHRIhpTcZE07KLyl7qC0/UxpKuyy6Gm8RerI11esXMmYdJ40GNPg6Ot+nPByNBkmXdnndVZCMtr2imfQ7uEyD9lghjpFllnkGveRpccc6wHmyNZA0lXt6fLaM7/efj0GMM9DclgIhzxxDEAz6ZuGfGNYANaHLJChHU3uJtMxkAOeYbnuMsl7vMmWByRIur/FVHx+C0A4jJ/XGA55B8cs1OiAMc7IetVrLBro+zDWKbLi6YOT7ATgKEaW1q99l1nNsIHCsapsUXcNS5mjeFZ3qfAOf4jkokeUucRGDD9kM7DJa1F7mOR/lFUuh2+cLGMMWOsEeFOnxD4TFJwBDgb0KHXakjnTMeCeZIemDwhl1TDHWjBZTsmG7YTq3Wk2nand9ynWKEL+eyb1n4x1Sa/T8EF+dgKL8zS57t6aAuOUAJ+gx6gPZjukWGeWnteJCrJTaJ4OC9U7CnbHYLo9WIiGwC7V3NaENsLfCgwkEGPc9prRAVa9DeHVuGqYLha+QhAOGY3v22OICruUOQyJMfRDA9eZjddr4C07CdV9CmRp02eJvcuboWqS5ciRN/saBpmiqM9a+lof/wMG0A0B/zUGanyAAUU/xgAh/VrxX+sYW+kDf/0hBloUgTv+5z1/3bv+uqdm2SMvbQtBSARLUn70APInVq+o9UbsXZO+W40h1YjssgTiaVir+x+svylzRMFrEd0HUgStcjksTJTgLMBxcN1TvaYh5iVfz+5xnUtssMQVBmX9ZY58MDREze2nNpnue+BJXnvm5w47X/wMA4W+46/p0GeKSao74//3p/76FH3A74l/7WXgFQJbOHSyk3zXBCZpv/o+/8Kr236a+RHlAN5Vx56SZYZHTlpJO1uuxjwPueb2WvJeTdFFHu5SeVm/sc8tbgdTT4OGAs1gOzZdraJwEtV+GsRMsuuhjrW4XuZBbZYoK7weta3V4yVkA8PhwL286ufqPT+Hr2DAnhKFO/7aJ5isNuH//jPgsv8ZYJt+sImuR5OoO8Y44DIPuc59xLgGC9zb4BJtZ+Nr/c5xHPe6wrs2uOSqlUvsMR4KGw12GuQdFB3iCksUqcWAZJ5VlN47gflRy6PyhJFgre8x7mOk4m/sr/ylAHonvEyJWtD79YMsswhYsyBjX00HFM6gm0AgjBIBZXotHbTikXOcoOQdAz6KyGtOTegGl3wePE6OEybY5yZ3GONxbOD7jJOnSYGGN6HGOpnAEkrzNJljPWj0VbZjUpXg3Iv5HW5yh3H2WeJqAFITLj3cdSadPoOaPrDCUihwllOK1JEHmhgeGdqUqDHLOpInn5DjFre5zCrDnAbLYYNLiM1hXm3tkGKZX18dyVnVMPeT0xqx8GqhmWIrGC53uRH00Bk2YkJr16gTTCwgqM4Fx6UfMu/nZoIdJqlTiiJbhY/MPWdZp8IuW0wF47DKFhM+VVzzqTNYAaJJgVJrcvRp/acMI5qvpqhiarzOipsR7zPOHot8wI6b0xorxZiQktQKfF1l3sG+Jne4yXt8jw7JABPVHGoh0PXqkeAe14IJV6QWm2maVkyyxeqcZS3AV8m1jIvVjaRisXg0EROr4dgZAcauNIaIpLiSEh37s1ai5swSm+DJw0HmqmMcBLCk+08sT5vU7FOgEXIdgS5axJe4grwxBuXbX/ejSxJ5xR0wRps0MzyyDQ24w01fQzLMsc517rHPON/jXeSTl3ZfJrMSKLqB8DHyY9L1sGt9kR1PsnuHt9lk2j2qrCAzM3gbRsibbZ6HXOWB++xZE6j1ucKuA0UJNrgU91GadhQhAqGGfMAilqlAGCskGgF+a9LVpi933aYaDL88jSgIV5kPiwUB0xbIYMxteeBddIaPNuhJdlBgiwYrtjaYvEsg8xiPaZFhgn06JFn39EpjTdiamHG2cYoOGw5gaTo65c+GwOu+Z9pj0rSd9TEUjZaYbbpexxjtfpdJRp1NuMd4DH7k/6LGR3tA0aXHGlrsu9wh42tIizTrzMXepAJPR9JZGUrJy9BigQ9jsKYG9ICxAGXllWVBTo0YIDTIM8E+km1MskOOEybdb2yfiRgW3OcaCc65w81YDwal04eUOfIJfI0SjxnjhJFgFyTpct8DrGQun+WUy6wGM1V2G3avzPq9NPTM1LnKNvLdTdJhnTnWmWWfiWAA6BCQa43FUIDoFTcvNvatyY7lK7XBDAoBkP+lrXvWtOvzlTGP3FF++WUsP1+5Y5C1oZpi1BmVlkKYjCl1j6FngAYD7BMO9FpdpmTE1z10ZYMZtnxYp5RoMXLFuGqTZrMzHSCCbEsG5ZbH5HjETIBdkpAmOGeLKnuYV2iaNg0swGGHSgxENXCQEsAGbR8Fc0sMQ5NlSwWwDdiwQDYdGvjJT2mQFVOg8Uy9IUuPcxJeRzRYcU++OdZiTd1iioz7OILUDudsMYU8Wd/mvw1PLf2MYgHO8CiY42CBNhoMZ2hzRJltD8fR8LztddSgd+Cxs0h0XwhAV0BO3ffMY3JU2EXpxMaCtCAHDfA1jAYibXyS3WDp7lAhT4MZNmL/GaIXgyKdh2UWWeJKDCkV1qLwnFUus8ZseBXPsxrX7YhyANNigghgPCXrCfaWMCpgOUOLZRbZYmqA1ddPrJxiK4C47MA4y+qtpq/7+WACLrJMjyEnBsgKxjytdn2sfk6Cu9xAoScbzCDP8RwnSAZ77kNsMKAtxwlVtjlgjHkexlqmtVgsx9Unl59h0Eu+PMF+DL5PMWN5ydQXWSbng/tPeOWvbb35Sh/uGcY/wgC4f44xlG5jQN8BBuwJzHgRAyh+jAEdTzGA4yP/vz/GwKXHGCj42P/9RXwgUPTQpzmUsJnjJNQgGdossMIho1gcWSGAYtlIiWkppYCSuneoRH0i+buUbxrIWlqyDSZucgep5FQby+deXvnLfJcFVqKeAKLPEQh1TI5dHwgeUuYa95ASRgoo9S6ShoKf0zwmp33if+9goNJHGOPug4Gvzfr1KgPf9nNfox+qUfL3+rZ/HfoMwKem7LK95BB5ZktdJ+sVCxAyUGfFrT2ymEfvAx+SS4kgzzsD4drea41gXqAG9K+4j7JAQ6kJ6w7IqWc+JRusSXlqik1uYPslgEg+znIaPYHuG9X12sdkE3aVpfDebLgaZd79H5nw84Zfi4/8z3/l5/QF+my92xjYV6YfUpIHvoX5Gd7GgNQefbmtWH0dkF+u9lAByXnfQ41s1QkJrIJmAB4zFphBl2TIpJvkHVDuhAe+DTlSyC5LoWfmgWskM/nBqna0NdFeu0WVA8bcf7fKLOt85qzTf9vxpXjoZfg1xw6U7DJJjSITzioQuCFgqS8jwEEIY941/GZT0pWmgoOsA2n3k3TdB8LSQEf8tfJR0veqshUstTStMEMcoueMqhTyPapRdBZFirvc4CZ3HPwa4TIP3Y+gEezC69yPhk4pvDlOPOzDNr4TcqGtblCg4NNLSQBOMA+sR8wEwKYGzR78Rky1waZ7/VShIVZ4PabHYAvfLhWX2RnqbBKtlWDeWENrQGI/jWWCBVaCvmyLdB15gxQxv6+b3ImC2Ca2x9zneniCyY9KRYmMIe9zLb6vChU1gia7yHCJDTaZRsmTOY5pkOch8yyyHICtALsyh+5xNUSWM59GnAT9+oQRzjHT+kNGeZc3Q+aiwk0sUIGnI8jo/jD8/3Rs+DU6xYyys5wyzyppzOxaG9UulWBs7HuTrmnykU9ktbjYBOEspJeLLHPAGI8Zi4Qhk13PBdBjgMt5NI0CCTe4xDqz4Y1Yoh7Py7GDxkq9nHR/AE1v5HGjqXDXmYbaWBKcx70oKcbg4i9KeSfAPys0tQm3Hewvx+r99T6+wS8DjNYUW0BWxyemg1NMUeWTdNll0plARS9KzL+pyhZKU6yyhQVAmHThgLFIs7qJeansMunBOvUANPI0PVlvNySTKs6ynHKL2+x4qIp52hlbbYsq4+zTJh1sVXkKCcC+yR1SLm8C+fjVfEPPcJtbzLiUV59dn1UsAws3MAPnBnky7sdk6dw2YLCU8PV4TpXaap5ZlgKnRkwDCoO0z8Jr5CZ3kD+TgjHstSPU/HtmaPGQy7zGZniqmbQ4T8f9SjK0IhHXzNp34943VoOl76qoM9+tERb5gKb7u9kw6Eo8q2LqqpCusBNhR5pkD7LJNpgh7Q2iZHkyINd6K89SySPKWNqwPJBs8jrMnJ9XJdkBUYSo8dpkmkWWaTmoJ/ZZjWI0p7aW7iB5sph+C6zEpPk691hlHkv2sgxOrT05TkjRiQmzeT4WQxokP8KrLLn/2nZMoTe4hEyYVX+INS7vlIRPocVgmWaTQ0apO9h5lSV2qKBQJgGog3LzgrPZzePH/Lsa5FEAlkBRS6sfo8p2gItljqJw/Lofn5CnQyMAksEk05IPoPaZIOVDOQ2EVbMMsj9ltK5aRnJ+seUG5dcCEOoD8r+3U+8848+n0AklvYoZP8JJgIGT7FCnxCGjvMWP4llRAyWAu8wRZ2SD0aTE6QTnz7D45Pc7RI815phkJwAOSZSknLDa9YgOqbASaFBgl0mucY8hegzKnFJ+ryXpkMWaux0m+S/5r0J9sMgyyyzGOi2fYjFkxfAXG0NNvcKQlBwtJrI8t07JxnDC1rhldqmEj68aeIGOGuhreD3HGvKKHWc/Ai7AgD+zfjAPtyJ12mSiqRd4KxWDmLqyzjEwsS/FB/MXu8FdwBrmN3mPjv9f3UNSMdi9NOyD7D4bWoNoSQn1rBcx+4rLntKp/VUsTA13ZKOTokuZQ5ZZjL1RIICaZgWFKJhPMmz57AkA0UBGdWfeB+vyctTzI0b2KIfBXE/SZcNDZCbZ5Qd8n2k+CtWV6kOrgc2vUGzm/8PL/8dYIxUYN8UWP+D7TLicU/tagzy3O7d4O/VODN6W+U++5JXoq3H8nx5C6mfw3AgmLexgjKM9DMgYwQCJlzGAThScMvBz//Vj4POB1/0Ei1If8fcp2Pum/6Z5ywsYVt+3xVSQHMS2NauObvStJWqxHggkNh/2fbokecQME1hS7QyPUOBKx0k6GmpIhaT0d7HhE5zzI97ij/nH5DFZqRi0ukelAhNmcO6khR6JuJ9ucytCxqwmKXitbL2rvEvf/5O/4k9+CezAF5/Acz/HgLkk8MivxRZ8cQrP/djP4T/FAKOn9v9aH0OmjAFIzwP3gFMsIfcTP/fy09uC3T/Z49o/LAcTV+cVQH70ItgMhlOaVYg932vMeQ0+xYivgcAz7yOv3yrbXOFBqGKASKhVsMYR5g+9waVgV77D28FClgRewY9pX5MXWWZ/4L02mY5aUjYZwgSOKCMv18EB/P/5T56S/u8BKaq/4dfgeaCBAXSv2L3bO4REGshgYOnnwK/8/v/cz3UO+O8wVt460AWy/m9Z6PzDAxb/pMIku9HX5L3O114zyxpljny/2Al7GgsSLcZ+IhxKva8GRFpDdW3kK19lizzN8OgbVEga27kc+0mGlgN5a1R9mPPUByf/tuNLYej9yidDTQr8mSckrTLPjJtwKqFODcw+Ezxknh0mQxakB103lYCjBnm2qFJwTzF5Xmg6N0QvfKNUCJl/xaNggpyQC5CoS8rlRxWUimbed30N+C3+IhaSdWbDNFS+dJI8rjEbTBJJicxsuUKWM0dmC8gfcJRDn+baxEOSLKHuYGw5o8Sno3hoBg25GFOwLaYitUUR8pL1iEKtptsSt0ySUaOIUqpk1jtYlJWduaGJt3nUHEXxIkq/TKxn2ABsGgTGOLMJcpdVN6JfYIUVXvemrRbXL8dx+ASATSnFjBMbx9IH7b1n2IipccmFJmIsKVFOksICjaCv7jKJzCpbZNhjnD1nb+qzS8ajgkqHTbOm2PHiVIEDr7HprDrzJkjTigVjsNGWRALgCkvMuT+KJFt9+cthfPYyh6wxxyGj4e9ln+0oQMZhB+ignzgEhGxH9OoeCW9LrExTIS+T8iQdKu7NoO9tPj47gE0kHjL/DENVAHs/Yc4Aw6ssIW8qNfNp+slAvy3HGWYdcI9rEayg+yrHMW3SboJtjYGuo+QBPZ8eDcoldE/qWSlS45BR5L2oQsf84kaiQdCgwdZgA233GeeIMmWOKFHjCkvMsh6NxBnZaKgSWAKqNnOlaUtuIY82TRB33Nhda8Uku2wyzYKzYvVvYM+7wlXaZCL1S0mH8nDLckaLjMu2xoORK7aDQDSxnwVQiwUo9uAYlrr6iJlYhyUh6pBijrUAKfXcmexpP0yXTY48EUWXJtRjHMT6rPVKnlnzrIafSZZTDrhIjSJrzDqrqxRG5XqWHjjjW/fACgv0SHDFn7ExDmK6vc8E8s+aZIcyR1F4KaVdwxIVjGAs9TolrrCEvPwSiBle9707GSw6+TXmAxg8ouPnTkWlim0VqgIb+ntHlSI1t6CouOzDvrel0BZ82JSKBnCW9Rg4Sf4xmKKsIqnpQ7MFHywOAuXyBTUPvJ3wefw+/yJYJ5dZHZDDpqhjKfKyYDB/RZuoiuGwxlw03yP+fFuoQCv2efOKG+Ue18JYPkmHJ7z8pa1BX5Xj932QJQsH1WliHh9RZtITimXVMuyFsmoisTwm3VMP7BkXK9UGFPvBNGq4rPUWt2lhlhUVDxADYq2QVcY21QCLrrDEZR6isAn5wkqStOfP5CzrTLLDPA+ZZT2GodaEWkJoyeXhStmVhFvr1zh77Lm8LME5D7jCFlPBfk5jxuIKszGfnyTXuIe8bfUMybahRD3kdEm6zLEWww6Zol9mFfljzbLO7eYfALb/6DmVbDzLWQA3slWQEmaF130dPuechHsOjiCLGA31BIzLL1HrutQTB4zxgKsk6YZ3Z8WBTg1gxeC2ir0Tn1/ndIotDimHYbvSv+1eKcQ51WDyCkuxxl/nPiVqIVPrJ8GOBMBs6pcRJt1Cpo6F083wKIatZ2S5zn1ynIRPuO7rXSpIxismUwcLCio64KGhiexubK8Z5z3e5MGAt6yxNW3NmuYjDhlFfoHqj6a9Pp1lLQazsnyYZZ0ptphhI3qAPT8/NqC1OmSBFeoU4z7U/npIGXlAS9WhhEYBdqZCKcRwf5HlGCptU2UmteESM2uaf4dffanr0FfmqMFzDtZ1JPccwsC8IeAJfPEUA4Uy9vvZAQZitIFf+r8NAd8EPsMAjbS/5gkGQn1qvpIN7wlVu/W8N1OfuMwiCXoBSNjAdC32X4HFbdI0KDDpgzqp0FJ0aPswQmmo6gs0dFRaqxj8sq5YYCXII2JZX2KDO9ykgXl8DnMaaj0pXCSl1HufYMxqgWQCBkWAqGEeyqTsvD034ufxGHjOr8HLdn6fS/mfPwd+0f/zFweQfgFDUAp+vp/369alH7ih65mEFzmL8yEfZkk1pSxR76b9LUknBgEZWlzhAcbMNuuweVZZYIVx9pljLRRfg6zbQSXOdbersFAbU/9p6KnAxO/xXgCEPRLM8Ch65QNnqomQYz3LMJL82i1tPaz14qaomGWNHCfkHTM5pEzivGcg9JmfJwkU0hhL9dfgPAcSWb8GZxhI1/P7vun3/Od2n3/2xK/DS34NpFRtwOfPP0+Tgis2DFuQlNgsWZaQz7IUHmWOwpJGQKQyALRuq0ZVkCTYMLHMYQDZwpJUL9jg8Yi0c8wXWcZ0B+cssswsa/EcHTDGL39Dv/kvBdA7I8tDjHL99/m/xVRMskI1OltMoahe0xQ3YtIqPw/Jk+T7IQaa+d6NxBRW3ivHzrJQcqOa5zOyrDGHaP4KolD89jXuxwTAfJYM0JH0V8CTpmIN8rEwiJbcY4hZ1phklyI1lPAlM3y9rzFdtsPHSjfBBHtsMIMMSdVEyVNQDDs1QpfYoEaJUQ497dKmdnsOpjacjaiJgHzR7Hp0A1FXc6apcHHgYTY5YC/o/yVqLqtMxURcnjfyzijQQB4jJepsO5NwDEsOTtDzoskmkvIAOGEkpteHXtirIVTxJl840XlTdKiyTYM8S1xhg0sx5W1SQMbHe55KJ5A3759xcOqrQ4W3qOhWGNYwvxWTJMqXQJ5KF/295d/QdVmzCqkdKnzIAgUH+ATyCeBT8qdN3CtI+iBZi52D/jUzivOwsyrNe1HyOk1eJUWpu6eOEsQWWOEqSzG1kWfaA67w0KO0VTza9PZsQN7XjHtQC5al+ZjsXQyaSXa9IDz24rgTkjv5LfymvgD/oR/f4IgkndhMj8lFcIs1cmawLcA1hfkbyb9JTa3O+aT7j4rdJCDDAh76KWIzbDhobAXZKP2AhhbpAHIS9PgB3w+Qq+W+KZbAWUaSmTyN8HhTeu0yi/FnW7+Hw5tP4TG3ucUEe+xQIeNFiORCCj6wYII99yZNOijYiGGFJHhtLyoGBzpii2jqJWllgQbyBdHwRI1kmSNGMXnSBPshrzwnEcmB5ySCmS2fI+0nWU4pc4SCLfQ8JzGPOSWlW+KayQpn2Ig1b4NLKPBEoLvAzRkesck0t7nFX3ALk2KvhWl9xwddmo5LNiHvTK2/21RZZT6KFsm1NCWVp6hdv84z8n/td5LaSmov8/geCW7zB3RIefFtwIOaBTGO5Sm644CwGJ2DRtfGhDMQUGyaES/+5llFvmg7VJy9sRjfQwy+BZdbKiDIZHX5GPiIjSAgSSzCCW8mDhjjL7jFkBfLlthuzLo1ZrEQgFqc110mqbDLTe6ElEa1C/T93GSOLG/gfSbcE2yX7/ODYDfWKYWk5ut8/JzfjftYKelWQ+XJcsax11dJf64E2Wj/qFFilXmkorAB1E4k1AMxcFvh9WeaON0rsn4BGzDtOGMV7LoJfFbzK5baMoussBBrXpN8eHJKYr3JtMtZW7GG7lKJULMWGR/WpQJQB6LmlbyxxxCLLAeY0yLj4Qx98Psub8TX910uleWMP3Qjda11HQcmx9kLKWvGB60dUhRoxiA4SYe38+/QxYI+BN5sMs1d3gjj9GUWSXrzrtARyV7FHlv3FHcgQLwPWQiW0A3uRi0kwFw+gktcwZiPqXhPAVWSt7/mjdI5CR9M29poUtiRqB3ts3YpOLNWycj6/BqIKGGwQ5JV5gPwlU+spNvWiFut/sgZnhUPAem5eFtm63b/2s9epxSDawFukima53GdB1zhfW4gr1QZ+aseq1EMdp08TM2facjZU+MxvDglG0N42WQsOVAKNmDaYZKW905d+l7Jg4xHsOFKnib3uM4+E9HTGGng2M9bCnnZ6r0NANrlzNfrOdYDZJhgnw1mmGKLm9xhkeX4bMXfEkDv/AQDHrKQEhj0GSY1fArRlnQxcC5pJD5+Sh/0K/hrXsMAqR5whDHN0v4e3umbpZWCDW1on6RLhxRSEqj3Baj4ID/jbCKpO8bZj2utrwExJNNQzqSdBZRc23AQ8aKvT0tcicHC66wg5pqCXhoUeIO7DDnIuMEl5KcnD1HVspKTzrJOle0AmBrkY00SiD7CJ3Z+0wMXI+/n7gl8sQetXwHj9CW1L/rrvwXPfcN+CXQlhYFNnsTae0pfqntsX//X/B5JulHbJLwOX2CFKluxh+VpMskOygeQlD1JN9jpNgz/iDQtB9OK/Ff8l2wwwzpzdEmxyTTnJMLeS57r2nNNQTjPrg8sKuzGkNlsYAyMG6LnYU1Wv5i/6tvID1RhiT1Mxq+ATKXdTrMZwScC+U/IcTKU6yNQ59A6wkC9LJCBjpKCJTd/2b5O268Hfs4fA2XonMKFFyECsuWp9xQYhs+4wIp74IrIYDXy5VDZHWE2CTmOAw9SOvAKCyTp8NjxhzIWaChwWnvltmMGh5RjfxDILEWC9oR9xlniajDgLYDKJNjqtxUk9ZscX4rkFmDKiw9jgZw5y8iQ0T0sgdRM982zq0meDS6F3EVSgCm2mKYVcthdP/Emw7EJVIlabL6D0iHz0NiJ4lqosxqTGR4h3b6YdvAs4p/llMeMhSRRm+89rseFVgMsmUjK25M1psPLw15nBVIWS/5K0WGFhZCaJelyjNHUpUmXltq8YjoBcC6yHOwISWV7JMI/rUmeM7Ih1ZX00h6+WoCqYxwwwT73uO7gUyMamQPG3DPQpFMyqdbPo4K672FyHpJiSdzkc5D35V9od9n5RGCAwhnmyXVMLkznW5hUwYyGTaJk3mEn0WgK1W6TCVT81MFbXXsBSxahnvLpbjfuCTE/Eo7At1B092N2qXgjXkMpumBF3j2uB4M04RaYg6bOYh9o8ZR3UNeL7HMSnDlgu884ReqMccAq8xQcBCxzhGTJkpGokLMJsbHpTC65wybTVNl2wOEwmLAqdDVV0GYnUE+yDKVKapqtezWL+To2KPAm77LPRDT8YpspqccYKEbdN/ZkPRqIOdZZ4qpPe/Nf1vLzlTo+4RXu8B3GOEA+F2JLbXAp2MIqkATUWeCMxcZL2q+1T8yvMofsUgmgt0jNgd1MTIck9zPAeZI9b6DA0pwmHF40g3cDWTUU0fvIvkA+eEoPM2/NfTe8HUHpZJKTVdlihQUaFLjO/WAFiL01RC9YL3ZfFmPDPWHEWSGn3OUG97geUzAVKje5wzqzyJIhQY8J9nnMGKdkabiUdZnvUqcYYUzGjBtDMnUBXidM812WkXfeoNQD4J/w97nF7WDIiWEjyryMnsfZi/VVBvC2N9h6WfCiOcsp97gW8lIVfGKqyz4hT5OrLAXoWqTOKcO0ndnSJcUe41x0BojYJgILmxSQX53AtlXmGXWmecrhkzaZYBNn/f4QCC/bAV2jSXYCdDG5zmj4GALRHArAVwjAPhPI83aXCisssMBKDHUkjUm6zHaWNR4yT8KbELHdJO+QPEXWGFlO6ZFglnW2mKJJIfxTtHel3aw95UVy0fnbko6Ns0fDh1hdkihts+qsbNlD5Dhmkl32GGfbww4UBiaJORDekXomZVatRMlx9nnKuVcCX9/j2/yU5/kFAPe4DsA4exxR9nprmBNGAILlJMDUPBT7Cd71gSm6GocWGZZZRJ5B8j3W8yyprvb7fca5xW2aFHjEDJfYiPoxQzvA+hzHDjA/pE6RFmmucZ8UHY7JccIIDQqYzH/PgXkDlfUsC1ge9BPTwEFs7cFQhC5J3uAuFjZRjjX6lGEOGIshroagGuBm/DnTOptydkzX1R9g644FMllqtTGKDViX/9S+M2LkVS2FTY8EV1niFPM5FkBaok6Cc2R6Ps+qJ9F2oikRS0gp7vIekrRILO8zpNBpByCb4ziaIDFE5lhjiyoTPuS3/XAyapMapbA80QBXXsSyrGj5IGSR5QBexe5UbShm3XXucYol554wwhnG0BZbpUUayYAFalbZIuVkBJN9lwJAVsqr6qxTslxliTRt7nONCru0feitPWOKLdaZi4GJWKAaZGiwkeWUv8efscEM+4yzwEqsf6cMBxtKKchiBYqJLS++dWbd2yvHFR7EYERMWcnRxcQ8YSRICTZwS/KAK8FWvMuNANblK7XJNPJVbJPhOQe6v+7H88/D//YUXkoCc8AY1pX/FTSbkJ/DmEpS3H0LPn0fXvqPMGnuhH/9FJPhTvrXPobPfgIXLsH/fgku+P8X+04BERNeX3RIxXPUdOadlE9aZ83iYMiZ6SajlCWA+XAbgC6PRanJ1NeaJ94ic6wj3/sGBa6wFEMtseEVfLnBDCVqobqTP1yLNEWXmAu8qrLl75UmT8cVUjbcTNJllcuUOcKCvDImSX4Z/uE85o33CQYCZaHVgMwoJp8Fk21O0E9W/Q4Gqn4Hk4y+CvynwDo0/xXkX7XX1v4l/KMXgW/Ay3zKoTOtfsD3ucJSqCfUT0mOL5Vcm3QMKQ0wN7a5hRledbzEMJQb3EXhnRqqt8nwgKtMsBc9nRRzqgNlBwRmO3XAGNe4h9JY1SOLqa1zv+qkrRu8H1Y8Ylzf5zpSgphH9yoAsg/K0CLZPYZT+N89BxeGgFEs3KLs5/PX9H30XgGewM9/Cd+s2p/5fX/NT+GLn8PpELyUBS76dRq25+FPNoAGvi42AthN0w//2OASKTosskyDAlnOMF/IyRiijbPPEWUUvKrhbRYLd9uhwgimfhJRqE6J2z6U/z4/QPJxeVSbiqYW6h59v4IrMwV2d/jNLFm+FIZeh2TIAnaZZDCyXE0FENpkNWnmoTGK/L4WWcYM0vtNplI1LfQhETRdgW8ClpoUuMxqyJY0MZUvxiFlN3M3NluNYpgcC5QQA88SeV5HoQEqwnRBTaSx5QWF+eGcknU/nVRMe8fZo44lBErTr8+opNcyR8Fu6pLkkhsm5jiOz20MPJs0CAlXvLg1S61A2FUsr7AQr5dMFAiG1QIrZGixzhyDMebyqFMimhBsW2ysSJxjDaUo2jSmG9cD4G3eiWamRI0dp/ruM8EGM0FxLXPIRWfxaTMY5dA1+GkGTTwlQ5Q8T9dZANoEe0g2nKTDhD+MkmV3SLLBDI/9Z9GUV9JXMV5k/CnvhYJP42sUWWeWQSlJki5FaoGq2+ZkDUTJwbq++fsRlwaYVyVqMUk2oLTrxV8xJjDyL9S5VGqQ+WglffJ5FuygHgnucy3ABgN4K75ZmNG4GoFzByc0TcjToOhAnAozJacBUdgLtJTURca0NYrc4WYwELSB65mxNKvf/zKWn6/ckXbXPPlh9hyAGaStT7LLijM4BQLoGsv7S2EY+4xzlxv+7JQZ5ZAtpqKwESOyM9Cs7DpjpcIOPYYCvJGUWob9sg7QvWiS/w5ljth1gFmR9sby3I57/z3eZIOZ8HiT5GmR5Ugp3KaKkmN3mAygaMe9Vg8ciGuRRvJdNRcmFU56E2FSyDxNRjlESeVKy6wO+KjJk0T3p0kk+yyaDWYc9Moz4XJmUeslsUpgkt8b3A3jW8DZcn2f1n6SuBWoYktIhqvnsuHyI/MitEnnsA+gJG+Z9Gm5ClixtiUZFuA7RM/XonZMfje4FCMpNV8CtnTUKQZ4fEIuUr8vs4okzNr/xD6Xd4hYvB1SHoZxHECMEs1WWHhG+ijPQoFk86xykzskOGeVy0zzEVd5EIMbMfa0ZrZIM8NG+KTZgOOce1yPJn6QdWoMYpObi/V1SjaSRCvONtI6p5rF/IH6TGoxlPI0feBUiz2mS4olrjCYZpanGUEyJ4zEfg/EkE5spoZ7r9QocolH/66WpH9vxy/4ZjDs5jxYRfetJOVi/Gi4pom2mLeSy8yw4UDpMHvOJu8MAMwnT3Pc5QYfMc2aB54Ym/NDB1k6UT8KeJNXrAYTDfLsuj2FwHCzjTiKfVHTfkmexLZWUyvJrgKDxDjV3rjPeCTiScYNMOtsJt0vBnakvV6oI+UE4CoI86FTsqvuaQ1TJV0H8wDepcK2g2qq8YAAmMXmU5CbBklaY8QQVkJfjpMAZiXBqlOMNT5D24ee5p0r704Nu2UvAeazqXVJdes+E8HKsWCyhHtfJ5ly0Mwk9Z1Yu6QiyHLKKvOsMs/UgF2IZLxi7VbcZ6/jbEUNs/TztciEwsdY5fvBWs94g2jqjY4PHKZYY5YOlkyroad8nu26jMS5v8RGDGOusMQuFbaootCsNhmynIVapu4giySFK7xOnmbspWlaTLHtgydrECUZ1tqWxdLs6xRjqDzHOve5/swQeY9xzvzekzJJ9jbaa0xNtBP3iKR68nxcZ5a3eQezaEnF97Z7tY7J0Fr8/oBf9df5eD4NL83SBzBWgR/Dp3uQvwi8BK09DGx6wf79pVeBn0FTCaF/A2o/Bd6F1iomsd2DC68Ah3DhZWDYBiTmC1YYYLfJ7mk0CCGq4bOuhdT1kdy+QZ5pNmO9M9m6MYq1NwvQ0BqoYfMCHyIblTwN5lhDcu0cJ1xy24RRH0Br7bF7vBcKgW0HpzaYiXW0R8KTSYdCrnhKNtQBGqgm/RdgoQkdLMziVSwpeAIy38VApHX64SIb/utw4AK+gIFL+vq3/bqVgFkolf11P7d1VcQJKaeUIC72rwVKmF1A1/exPA06zlK3lPRqkDqkZpCHacsxlSJ1vs8PkLpGIH2Ok0h2lzesFBeHjKKcgjOycc3EmBR5SGvPd1lGoUhin5+S5UMfahd8iCV8R8zAVeapUeKT5AhftOHRE/i0iYGpTzEPyA+wBOEZDOBzsPWbRYwN+b/w19ft78/9DXhpwuXpTSxcYxTzMHwBeBk+5/kI4KwM9D3qE9RLFGigcKh5VqMezNMIkkKBRvh4a9D1kHkeMxY9VZckb/JurH9ih9vgoz0ArJfimZMlja6DrORejfjlf/PxpTD0DNBpxYNt4I3JtCzV4xGi+gKB+Eobr2mdpmlN8gFkqGBQQwV2MxWpR+FzynBsRJoAyp/pGveRd8sJuZBKlqjH5EHTLTVyU2xRJhuNqNgB0GfzCVzKOHOi4w+EUS7PSHDOCgshiZtkJyR3GSzBUpM7ofbGkMgzzGkEfVTYpe60+xYZVrlM3R9uM3fvxOfrOMhzToLr3ENx3/KjMap1Mm5INZvnmHRj30FHJQSq2JWcAPrAjjboU7JcZjUYRCoOBZDJC0SNnRYgM+CdQZJmO/+WXCuK/j4TMSk4ZJQq289cb4EGQKTWyNFJ96WkXjVKMfXup/mORFGyzGKY5Wvyvsk0k85YLFHjGve8yEsHgCtDfKUBKW1UAHCWs/DJmXdw2gpgM1repeLeQMfM89Cb9zKS8K4zh9IlBxse8xPMR9OhJDNtdkrm1VRfE1eTM3Upsx2LnSY5tvl0WGaRYU65wfvBJpxgLxYbSeGyfp/as2VyeIUAbLvk4xr3mXfA4Ff0/QS/zkffK+o4iio1FJpWjXEQfoi2IZuMZpdKyEp1D6XoBFNAfhyPGSPr6+1jxpBHpACEaTZZZZ5lFmPyrvtVIKABcwZ8rTPnYLI9syfkeI3NaCLEYGqRjjWoRolr3ONHvMWbvBesJsmG9piIr0k2mqLLnHtOyYdNMq02aUx23CVBO1g2YuSkabHCAossI2PvMQ4wI+a+35UVho2Q/Vh6mA0eOi5f0CRMvnqSrMmTT+m1ApJsjbvIMovMsuY0/RPmWcW8MC0YxoYj1kSb9H4yhg5Kl36T91BK4TCnISmpssVdbriJ9Vkwwgo0g+FScQBQE0Nj2zwOdpjWyxlPNja2ojFqJHGSv6M1mE3qlLjO/QCaDim7xNmumcCBE0ZQiBQQa3eBZgAOYxzEGjfqwBoQw6kMLab5yJmElmgsFsm+SzNV6I56QzzuKedJZ8JrSi2WJhDvUXdJd9ebxwoHbDAT8mYxB/eZCPBUTOoUWXJYKtkacxwwxhTbDPn+nXbGDRBTbKWyzrHGu3yPLsnwVFOKq56JtAMugPOmv/7BGJJ/a/9XzSAJuUCaAg3KHLHPeAT3iGlhCfdzXOde7HcaRpkBtalDUi92GHXGloaLAo9OGY46Q0W0eceeO+g7xRzrFKmFiqPCDne4iRnEJ+PayxdZXn12HxsbZIwDjn2gXKQeA4IrLLnlhnk4H1FGqcs5ToK9B0R91hoA88TkqLLFP+OPnIVnIUV9T8wJN9pOxNq1xiwFB5zNXqWOpKYpH+Ao8Ejf4w43meER7/MGU/4ZVf+qJjTWrI3tBv2Vi9T5iOkA8aWp0DW1IYU1jf308QzdWGua7Hp9ofM96vucAZTJUF6sMcsN3qfkvUDRQQMBdIMMamvqdkOqPMt6gByjHHpTeub1qtWXaqI7WOjNAiucko1hfJpWDIu3qbLGLGWOKNCkTYZmaCMJ5o31GOehoJFn6SnDKBlcLPIU3QBZk3RI03bZeilYoX1fyKOo+USSOCHnw56ZZwYtApdN9dRhjMfsMxH9mwBvySgH+yMgBuc5H4CJwbLPOFNsxaBkh8lgfks10E8KfhjgjzHsL/71Ljxf1WMYAyueQusJZF4GUvDSReBvAT929tIt+OJdAy5IwWf/EvIl/781KM0CL8Mv9uDVj+CLX0P7CaTdJ45fWx0qFuUxJslWvW49+xmnZN0eZTJ6XTGaTxmmRyKAeegrGMREmmKLTaZj6Cl/TrFTxTSTqk2YwLu8ySS7wR6zXu88PEEtbGUvhnJgiauT7ETog4IH5P3ZJhPWST/kb/M275Ciyw6TPGXLwNARCLeGjzGQ6EX6QJ9sbScwOe6vMWluB1qHkPnIvrb3MUy85u+VAj6Cn/8YvjmGsS5/Ca/wCWWOWGM2ztlDLjPMaShpZlmPmixNK4KVSr7/bLukWc+f/PFNJdLv21RjatDfJM+Uq9wkrd9jnLd5BykkU04K0t5oDMwK5mX7iCxnPtQ35VeLNOPs+cDZ9tQxDkJdlibBJffUP/f7RhjEOHvs8GueexkuZ+GLc/iiCc+5tPaLx/Bc0+/djt3Pzy34NQFLwf3Er0cZA2LP4blX4YsP4Ll5DKR9Cr0mJJJmG6Awy/e5wetOYrKabJi8W/oMO/agcEvV7acMx5pfo+geyScYgcxAbtmx2f25S48hJ1E8O2zWUaDBu3wP2Yepp571DIaG9yWD/+ffdHwpDD09rAJ7+qwwu5Civap4ksdbPxZ+PjbPY9+EJB2Qke4t/gJJI/dc162GV14VQuEteXQPS8OyZlE3of7cxIzcTcp5Hqi+bUj1kEoouVMeeqtcDk8CTZtOGCFFB6Wq5jhG3hqaFgo40/kawUILhujF9O+UbMihGhS8WWoEG6WHSTZbziTb8bCHnj+MZY44JuesH/Mx0MZtSPvjkGBocchyGjIksSJUPCmRdXACKbBCzaa8SP6nJq87THKPa7FY6bqKyabraUBHyRk3E5yTcInBMR2fCFfZRr4OOU6Y8s1nx4t3yTzFOpHkbYdKsPk0ndV5B5jhER1vwsTgWWc2GD0CUQWyGefmIl0HNOVZ0qDAJtMxNVaazgk5LrmMcI05MrQ97fMx8kw0byjb9IwpVwv/FCBAOsmZJQFr+/lrefGYoc1lpzq3vcAyQ/dmMEQGnwGwhucf88cxsZGHxSU2YhItvwqb6lvjceabbIMCt7lFGfMn0zm16U6KLaZ8Wt38rfHQU1gL9L0axVpQYyUQXoxSGdWCFed5f+4lAbrLjZikC8Czzcc8OmXML0CwRYZFlqk6ICHfB4EPaqz0PoNsLIHlGdpRdIvZVacUkhkBT6+7fFKyRDCwJ8cxyyxiwUZTwabQhPbM1wHJm47Jxb2u+03eWgKwNCxIcE7aG0A1Lym6ISkRMG6G8M8244NG9ZIQ3eZWvFZNRp4ma8xhMjdjQuc4iWmxQCsNClT4jrPn62CaLabCY6jpclal0A6uU7OsRwq12GanDAebUSzaD1mIad4MG6Rp8Q5vB4MaiIbZpqOXGfQSzdBigxkKNFlghRkexbkB8/LS95SlQj+pLB1yPHttIj6LFXv78Tkb3hCWOeKhp9mK3ataQftMPxG0vz6VqHlKcy3A0l0qWIjLg/D0mXR5pfxO9XzJc1IWCtrb7NxaPXLkDC+BlRV2+VP+AZKajbPPAis0MGMK29dtr1VhJ1bgsbODtP7maXBOwusMY+U03d9vjVlOMZuIr/sxzFP3F25FM9ivB84H6g5rJgDe4H23J+iz+a9zjy2q4bkHRNGtevOU7DNMODEUchxTpxR74eAapQGrrQk7A/XRULCqpaiw90xFonTVm9lVLofv2hZVspyywgKHjIZvbo9EsLNlh3DIKF2SKOBC50G+fCm6jHIYz80pFqA0z8M4v3WKVNkOMFE1qwUT1KPmEfNezK5NpqlR4qEHEWk9sWHhIw982KBAA7GeNTSXWkRKGDBLEg1Jcpxw2YOxim4tIKDKBiq7wRwBs56psEOResjYs970ar2XZFZ1h+pdqSau8IB5Vr0uszA6DcNynDDOXvQmWvvFstbzKzLBBpeCuWZkghGa5Fljli2qUbtrXVItqJ8nTV+aqj3+L7gVdbhFLI0HECYARCC19klJjZVsLisUSYgFzMqfSbI7ERU0iJcs+8yHfRrw5zj2AbGFNMnMXUFVulcSnMdgQkeeZvioWrCbDVJk3dPwtblEndvcCgbkoERTfr2SUv9WHC2MRVSEzISBerU9DKT4b+zrnzwB9uC5IgZgfOzsu5cwRtPH9vUvNqCUAl60oI3MKw5svAg8NqBaILJIMWl/PuVvfTbQj4np+z3e8zCVM3KY3ZFS5q1mGQ/AQTYaUsPJxqdFOuxJFvmAE0b4IW9F3WPBW5aka8EJ6agXBBKpp7f9wsAhMfhNaVQIMKtLiooH1sjLve1jsxkx4dt+7hMYCJeCVh2aP4Y9Wfy+gklqe9Bcgy8O/WtFyMxjDLGSWx1+BM1V+OzI/r30Mgb+HQKfwQU+CwCpTil68S7mXyiQXQOTLKcBhNUo8ef8nfDLlx3OnqvpoE8uWmQ51krVrRV2o8dXCINd6TM2mHE/VduXptmMfUBDYCkNzWN6Ail8qmyjwBMNLsbZD4sgDXhK1IPApF7417yAc20AD4fJ2zl97lvwaR32PO35uaI9A5++j7Ehn0DtY/j5gZ/fVQxMPYDn8vZaHts1TYwYYCiCSw/z1NZgR73Ch65iNGLAY5ToK4/4EuYjf5tbfOSKjTzNOE86ZLkmQpoOXe8G5pf3iBnyNLnOPVI+oBmsy0VqGuOAn4W2/t98fCmAXoIejxmLB/0KD1hgJTyaul5gWBSzMUNM7lAMSrg22DnWKftNDGbof5EDjijHZEg3txheNUou+607s2UIMVX2mIgLkeOYQ8rsMEmDPHWKDHPKMt/lkFHEKhP9Uv4OSV8gJtiL9waQRMcm/O2YyI34BNmKB0vUs2SUkQCTzNvs/JliRoWepr6WJLbApBvw9o0sbfMTYi6arCabgDP2LPlQgJiulXl+1BDTTmloSfoR06JViwaaduaKUsZUmG8yzRqzUegdMBYLvNHuj6hRCuT+JneQbHWcPa5zL5KTNAWeZJeKpzUWXJqjqZEAEjEwspyiJJ1x9rnMQ8Y48LTHwyjy9TXzaSrGfbTBpQADd5gk6bIcNecytpdUeY1Zptlkhg1ynMSDmKITxa1kRAaKtKLBlBF1lySSaq95sAWY/v49vheTAJN9NTAJVz5kM0pW0+IrPz9JK6pshaeL/PaWWaRHgiWuRAEvoOPv8mdU2WKehxRokOUsJGsHjPEGd1GipuTMosPr59PkuUYppuJV95PUs6Ri/Ot+GH39CKWhGhg1EvKpDWZY5TJrzMaao2fAQhtMjiN7gmMHsgTAl3ytSNFl1z0qBR7pnq1RivVBgJyaIEkC15hDLLd9JphyGUTGNzZNmfQMZWizwErIjYxx1wm54irzwXpI+tdfY5NLbHDkzbw8TzXYMfZSgWUWucQGH7JAhyQK81FRMsgo0KTZjNzTwfaTj5Y+s0zo1aiIIbbj4RDyl5xlnSsskcMsIzaZjiZIwKFAWDErb/EXpOhwRDmKFxW1p2RZ4grmc/J+FD0qiO9wkyI1spwF+7bujG0NxTQB1Lp5lxsBSlTZ4jr3kDz2bTfFV8GiYrsva+p7lw5K4409cRbAsUJROj600eddYYEdJplklwe+fggUWeBDTF5h95vS6BTwUqfIDe5GwSPATgxxyWBl9i42p34G7fNtMgGqiDmS48ThUQMILVEsiaWwZWL4scSVeHZ0f6gh0P0oj9vv8wMH/NrBLLPE5ceRmKw9SDYgegZMZjGC0oM15BryPfeQMh95wQjwu+4t93U+hjmNukggAeCmBJlgCAOxlwu0UCqmMa5SXOMeBZp85CBy3a0tcpifa5E6TQpsMRVF+yqXYx0VyN8kT4cU68xSx7xl07Sw5F17xiQV6g8229zlDe5zLYYSZq1Ri/uh4tYpR5juqul+nlpztY4Yq9YGoQYIJQNsVF2mUB6tbQJ62lhYi4F0bZcej7oU7TieP1tLhoO1vUOFLabcFqAS65uawg6pCGyYYD8alo6DmgJ0tL6DPYdmTN8OkFoS+U2mabuNghJnH3CFFF0//8kA7sBqH2OMW9Kx6g0NcJU6mKTLOnMcMhr7qYb6CuKQlcQhZZfbDod6I4d5ua0z62b+Bmxd537UkcaoHw5gGOAxY2y7f+cs6yToscYsB1zkhJx7IHUwKwIDOqVIStPi+/yArgMeXZIMO7CrYYRqxzFnFGc5HRhe9WLt3GUyvKjtPjEWtCS6GoKVXAM0wR5TLpEe97rtlGEq7MT6JRlfwitIe1bPww5kBEsKFwBuio81StR5zdnSWU4dFC2Qps0R5egLptgKZQjYsEP1/ynDHJPjiG/8dS47X93jBfiiThj4Z142YhGHBkLQs4wMfoaxkw7hswMgBc2P7XecjXT6FIac0YSScl/EQhk6kKGN/G0X+JA3eQ8x4TWcE9sdCHZbxukCGszr39O0wuNY/bqIKrIQOPF7AIyVehJRkDlmWaPCToRCaD+XL61AQAULHjDGQ68pLUHVnpFNpqlTwmxmzJpBz70UceO+hglgBiw8wQMTWnWTMGe+Y//0C+DjOny6Dp+aQwCvvOyg04sYyPcd4BYwBpe+DTyB/N9wsLUOF77j1+F5u04/55sB1pvdij2LVbZ47OuRKdHGY+ALFkxi/XjH7adsX5Ill2p/Da8U2CRlAxDnSnUm4LWoqWAKNIPFPUQvWNALrJCnEeEZE+6BZ+tnN3pIDcPTtPghfzswHdX4z6QLQwyDOIfPOn0w74uf2fkEeOk1uIBfoxJwPiCr7Rgr9Zu+/XxxCI/q9H33nsDP96C1Dp1fWYBJ5rwdoZWX2Ag1j0g0s6xjcmKrG44oh9ephrbnvsaOccCKD9OtHzEy0wgn1ChRYSdqzpR3+atcBggMbI518jSosIvsetQHAd4rph2IfPI/sXj8fx9fCqD3LX4WRYCmSQlnQZj0yvxOhujFBNNopebr1vEiXFNKIcDy+mp40Q3ElF3It3z1tFkAgcgaMGjUdAMPC14kNmLi2cVMjbVAbbhkNkkXhTZI3nBMjkmf4spvY59xwCSOAmEafkMrnVRSLgFKSjAx49wWG1wKWZTkCQJ9DhjjHtfZcbaUZBZid7XJ+MRwjzSWjmuSzjQpOtHkyoB8jIM49yoUbHIqhpgV0EoMhr4sQN52mqpJNqBUOkl4VVRYCMpobBoKmwB4wFWaFCLlcozHKAikRpG2M1w6PsERPdukUd1IVxJr75RhLrPKDI9YZNkNVDPBAjJQuRBT96I3AkAU2fKW2WEyvCLqFJllDRnwT/NRsAJSdKiwiwInVHg3yXMU1OhuNJyamJqO3x7sGR5xwggyzlZTO8UWZl48xy4V5Dv0Bnc5coBMk/MhL3wtDU0cZTNTFmNmhg0Gg2CSWJqSAMktqp6KbJK3rkujzJR6AjOvP3eQ3Jh/SgWcZd1BiVJ4B4BtKhPsM81mBJb8Nhz/moshMXnMWKxXem5mWWfd2ZraGO1694t6MT3l2XaVB84GmSeFJYjvM+7DAGNRqSGVrFeyH4H8YlIDce9I4pCnEU2PZOdqKLaoco/riKm8xBUf3Cyx51O4P+fvRNy9mcunAhCU75+alBwnwfxTQyaZ2TBm3i5Zuho/JW0PAleD1PQ9xgOkUXFR941219lmVbbYc9aDZFMFGsEyGOMx8qY8pi/v0jotlrImefJXkhGw5CltMkHv33UpvN4rQ5sNZrzwPI8Byx4T/p7paJp6DAUzbJFl5C+jwZksGh76PSH2j9JZtc6o2TYpWYFrblZ+n+veGJt84oQcC6ywwApjPI7J4yQ7wRycdHbNLOvc5E54Zsmo3ZJ/LQlNQKzdbz3kZyM5+oonYGr9MrbicDxHShmbcmmN2KkCFeZZJcsp21QDhKlh5tHa54Bnhhdi5HdJcZUHweo/J/GM944M6W2Y1UZ+gUr4VB1j7L08q8yz5YCf7RO25ol9qvNwmYfc4P2YxH/djz0mMLbuSQzYFHRWox8eo6GrWFTm/1Wg4UoKGX7r+ui8bjATNc40m7zJu2Q5Y5FltyspPQPAdrEE2HlWmfXhcZZTFvgwpLIbXMLMq3e4yhKy5lADXGU7gGkgpuxmJVOLmkbMGIEXYI2NJN6nWHpsx9dKA/OH3E9uGCk57nONE3IhxVRAmBj4H7IQtabeXz/vMosRKKSvqyEXM7iMpY6XOaJEnTX3VZYcSMF2Gswde+OogbWC1WZZD5/f+1yjSJ11ZpH8XN6jUt9oMD/PKrI50ODUgoXGMbXHULA8paI48mGQ1mAD5Uu+BreiCW2TDi9DyXqVhr7rVgtZzmLvlXe19TC2Po9xwDwPUXibBsm7PnrWYLxNhjnWmeYj5KE3zWY0uWJqdEhGONrrrFBlO8BehatpACYWnK65qZJGaGPMvl0qLjmX16oB1lI/PWIm2DZrzALW2ANMsxkN6inZGMRqrUr7QOiQMve5xjj7waS+yw2SdGJIa+wUY6DLz1eegRrcaP84YcTXz7NYAx9x6ctagr5ax69h/xPgEH7+E2PofQbwbah/AvwM0gmoHWBAnRN+vqhb8MIXT4AV4E14ycGNTdltyY/seWAEZ2NOxe+q9bUOJLzOqVHi2NdPgDXmvAdNxaA4SZfvskzV/RNrWOCYJP1SWIlNLCZ/gUaAxgqEsm6sg4IhdA+M+OrSG9i3a5R4wNUgKuwzwfd4N/Zzeele4158b4AxHgfwFIcDpjyBzIuQL9vf8/OGH33qL3vpZeAVl3M+AYbg07/CWGFNjA0mdtkr/r5l//plO/e8aP2PEoTLHDLJLhnayDqkzBEn5CIESh7Zu0zSIsNVlih6ny/Q3AaclwYGnmlkB7HKfFzjhisDUnR5yOXYdzXENnzD9iB5UCvBVSxLDVZtDzMCiiTZknJLUSjWoFh56nfFMM7T5AV+zaefwlDCz2sKzv16tFzK/M0/tq+TsK/Tg+cuwsd7fq5fhI8PjMV66dsOjr8C/E345t+CT55CKgtcgF8PveDArvlwC6+QKsosKfoqiTxN5JnfJk2LNEr4HubU96s0FzlAXsl7jHsvNRIsP6k+RpwEoAwBY5pfZJy9IByp3pEVyTSbFGjyP/6G6o0vBdATtVUeaQpZEC1fSLDMekvUn3m4L3kzJ8aaCn8wtlbBNwVjWe2S8iJ/xtkLOikHjDHuAMIGl5hkh1HMmFWbv4AKxVr32QztmDK1SVP3m1YhHSq27DIbcKbppTWLplf/e/yZ68+tqFODtkOFHSadFDvBIWUq7FKkxgR7LLBCzwGrPZedFhz0mWONEW/ktBgr1XaDmSg2pWUXAJegxzZVGuTDN6vnxd0uFWoewCDGhW4wHWrI5DOk99UiKT8+AYI1Ssyw8YyPxqT71Ci5Rx5TYiGJZrrOnAOPGQeQzLRdIRMrLFCnxPvcYJlFUk4BViGm8BKlZ8mQ8xa3Y/IqdoUAJwMSHgWDVOb2xliylE8zlC3FzySJVdPBZhWrlsrXjcVStHZNX1pYFLmYcga0DPt1Oo8GwTxZUnE/agKTwwIVhug5w6jExbgOqQBnVeBqai2zeUng3+BuNBhTnuB44P4lNiHvoKQoTSHkS9OkEOzBJOazqKYFCA+xS2zEAi9QdY9xfvlbMoV9mScobKfpHhKaZsrwfZ5VlCAqAF2bjxom3ad5GgEStEgz7OtUn00yEma03+NdXmclWGlgsmixjBVgoiHFYKCNxc9bGtokO+xS4S+4xRbVkCC+x/e4xW2usIQZ20/QwcxgNQnte3ZMxODhDGOeiVUhaZnuNTB/pgJNtqjSdjBPzC412ztMRoqu5HrG5DAgb55V5F2mZl1SrCIWVLHIB4g5eu7/X4cYpgIaNIQS20C2ADImPsIsIeSXOJgUrE28n+JrDIfv8wM6JH19sSZvziXPGdruFGPyQ/1/AxIMkARChitGtQqThAOZel8DMVKs8Hp4i83wiE2mucY9lCq5TRUxYhTWksD8oSxBeDgabiD2dn3GH/B9TFq35+bJrVjPZabeIsMRZjwskFSWCQl63OcaD5kPUFDPRcbHOw0flBz79y1SZwRL4+ySiiR4md5LMqHC84AxHjMWzbAm+GKma/84ZZhhB7KB2Hen2AogydhkDbdTOKNOMSTBevb0Oc3rx/z6BHqDeex83Y8kn8UkO4ulnlZCcZAOf0Rjc9gzbgmcxqZSo6EmRSbdku1bXdkIT+WPBpjFALe47WzlDGKwaahWYSeUB4eM8iEL4V/0kHl2vAEouIckWHDF4H6o5F5JGjVYnnOjJkkqxX7Rfm7stilm2CCDyZHXmXXvSlsbPnR43faJUoA1ILajAT8CS/X+Cc7De61LKpL4JNHUoEhyZNWqW0zFUFB+dmLZL3GVcfZ9UNFG7GkZ0mtgkOOEUQ4DKMxxwjXuO0NsD6k9eiQi9bRD0gG64Wc+/wIrLLLM+7zBNtVISLdE7K7LzPZi7dewRt5tSToonEaMvT2vPwW4GZA6HPXXkTNq9MyvOwhm59wkqH07iI73A+1QpxiL+zEKwVhlniWuRmMPkOWMGTbYYTLSsFUHigEuxrRAUFmiCNTTEE7KEzHZk3S4whIy0NeaZkBbN3olpe0KtNUQSezlMkecOdCugIxV5oMJZIP0AvIwU1jWKVnStALAVlDULpPRRygED4jz9g1++de36HzFjwzAU/jmhMk4v5kyH7DiK0DJPfQwHzGa8PMnDnw8hedecFbTQ+AFyLwG07PAK9Dy7aT31F67xVQkbpc59B7pIqMO/ndJutf1MDd4P8B0rZ3WDw6FSkDAudavXSrc5I77wB9GD6L+fYWFYEKrfxlkDmuPh2fXMzDQpUiNeVZDYaDBkKl/trFc7n0UOiBlgz6fVBuWovy5AaSnGBhX9l+v2O+vfhsufxtemnGmJND6CTw3C5xDs2Pn+4sfY0DTy5iP2x7hvVc7hMAPn8ef26FYX1VfaR3R89kPc+wGu03DGiDUXUXq9EhEba7aUN6E193jvcxhAENivQsnUK1vz3A7PpsFpjWC3TzLGjlOIg37Lm8Eeeaqq1lkZaXEXDE1xziIAbtY4JtM82Kzy0tFaHfs12c/MWDusyOXM/eg+afGtKNjzwLfBr4Lr37X/p0O/O6L8NIw8KnLbVVGfQw14LOnwC/gMy5QpBZWAxokHTIaoKNqRQHEO0zSddWiBVoZjqCQFilFVA/Msc4E+7zDH9KkEIy/JB0fgp8zyW5gSBpMSiItpv8WUxSp85B50rT4Fj/7jdaSLwXQu+DMJiWBCJRRsyV/IbvZzPhYyVEHjLHMIjY9N/PzHSYxbf4keZoRYQ1982uBCZr46fvUKTqoZX59R5SDoqrGYcdDM+TDM81m0B+3qfLIb/41Ztl3Gc9F3ziVAFijiOjJxhibiptCsil5AOrCS5YoarFkVqMumRNlPcE5G1yiQSGYAmlanJPgPtdpkeYRM8GakExJUzKd9wZ5ZtigTYY/4LazB/PBGKuyzZzLB8TgS3iDKEBiPdgdWcT8MwnTaIQq2Pe1hUp+fx2fCtp0xqadq8wjqbGQf03QdR2b5COJThvFmX9dniKa4Fc8XUsMuyWuksISkRSbLmBJ8tcaRWT23hkoeKpsc8IImqjr82VoOROwHROgHMdhcC+mgTGi0vE5tdgJSDHK9T5VZ83d4aYzqPJuppmI7wuwymVWuUyeRjT3NZcJSp4zyFqVzKVFmirbXhTvBC1dm6GS/faZCLlmwX37xKzSJivWqnknbMXXR/x9dL11v5c5DCbgPhM0KLDKZfaYYIJ93vDJ8Nf9aJNmhwoyEBcbrUiNQ0ajIUnQCxaS5KAZ2iHtk3HqEeW4tmIiiS1i8snjGJiMs88ZNkGt+YRckyGxF5TEepUlJAdWw2k+SO1YU6+yxAyPQqo1WMBZg3HOJTboMRSTVjWWaj5zmOelGiGZzjf8e21RZYkrSA65yWu8wd2YgvUw71B5r56Qi2bxXb4XEmAxEcCKT6Vr2ipbQ9KPFF0Gg3Ek62o7W+Qa90KWL8ayDXAMqJxkh8fevIHtSZIvmeT5UYBLStQ6pBwSVIAJ9tlgBgCxc65zz/leDZZZpEYx9gwx2wTO7zPOPa7FNdbnEFCp5k6MljJHVB3AV4KxwNJr3I/iQmuFBmwavt3mD4JFbfLjdKw/VbZ5m3e8uE6xxlwE54yzh3xY8zTYc9bNoLQrxwkLrHCTO/FLwzOBqMZyt2GSmegnWWcWefOtO1NA10v7krGe6+xQYYgeFzlgi2o0GNrDBe7J4+ZDFmKoIe9SSYr0HGotNQnbLkqW1ERd0mOBqxYCMeTy3i5dE5h8rY+f87vB8ADVb8NY8Ip568h0WzKdUZcBmd1EOhrCSXYDpH3ovsuvswL0DeBbZLjCEgBi5coeYNJDEcQiW+Kqs7ZMACxftAb5sMfYYZIZNphljTQt95U1f5uay8nFftNQc9CLyHx9p6IesnPRYZPX4h5K+6BTzU+bDCsskKDHNe5HGE4Lk9tuOJtJtUz/fjNW3RJXaZKPpllM1XVPX7Vh6RRdkrEmTvioWXWPPLbSDsTf5A5AXC81zhmvS81ny85dysE7NeVi3SiwYWSgZj8lGzUwgELLUs4U32c8QmYkXxtUGei18nSSB+oc61znvsPGFrAkNpCIAQrTGPJPl6FFhd0gBoj5K5WJGuEmeWfBtz3YZDTWkxZpHjIfFgzWl+w5I8/2R9WUba/jAe5wk3XmkPfwIsvMssakM9ukJrJGuoH8mjukuMd1NplmkWWG6AVgpoGC+poEPYa9DgHz6jWVyY6zUwzgrA/cw6rrFF4l2fywDzTUt1lNbiQMG2Iam/EQSzrXvXlImdXwbRwONuQCf/VlLD9fueP0GEpjmHQzD81/ZeDGLz6B5140ptJLZci6L94XdZj4DlwoYnLOlxzEOATGzOeNFNDzQAwg8TJwDvM8DDa+rCW6WMCLkraznDLNR9Qp0vDeUQCaGO3qy3adwZ7BQgRFkFnmu0EYyWEhZGWOfNBmMYVFauFptssk68yxz0QMJuXNPuzPmBQHDfIOLh378273nI5pNknT9iFvHkls9dm1Jw/z1EC4rJ0bXvbz+TFQdh+8pxgz7zWMxfcKRtv7GL75sp3z516Ez5xh+emPofkRtJ5aIEYTaN7BvPqGiIGu1XFDAfgrVElsN3m2LfIBV3gQ66mx3RRYYUw8yTUr7MYgWX6dCmCS2uEON0MdqCHWD/h+KBES9FhlnrYP1x/7gHyVy3SddKPBiYDWModhLSF/f/WFGdoeilh0AD8VyptFPoAv7JrVnprU/MIElL5jv/OihWRcGHIvwo4D1z+FL/65/Z3HBtadPoWPnzhw92v/v+/Dp4eQBp5/HlotyJ9+ykUOuMJSYAoKDlVvLguQlBMoqj60tZrEWKR3uRHWGkpnbnmvLxu0BT5E8uUVFgJEnHCrHdUhM052aTkZqUaJRZa9Pz+O+vb3+X/9RuvJlwLoZd1aU42rNlwBQwJVThmm7RrhJgVGneovmZVYT9o8LZ0xEUbFWcxsuOJ6e4GCen8xnS76hm2SrVSg/zqEYlecN6dGsEeCKTd6b5Bn3v3Y9hyg6XsFJMhyFtRybUpGrTcWgeR1KvZUdFkMvTGh5KtikqNCGI8b8HgevnYq2hSuYHKhJXokPEp5P0xLu04vBYKlco37cS3ApBiDwJpuPDH0Cu7bJlNpsOlIFkueFXotz44KuyyyzBFlNrgUC0STQrC2BDTmacYD1b9/TrnCg2c+uzWtE7TIMMMGFXbj+wwPNGxaxOZY5woP0GRTU1sBuo8xM2DdS2ri65RCdigg0lh2nZgoCnDU+RnyxlryYMk0NAkbBEK3qQZoKKDvMeaLo3tn0P9AEy6Tuu0ywokDJtb067qJZm3ndwL50mQ5Y1Ayq+urAk3nTU2NpHlHPv03P4ZCfGZNcFScD7IQxbzYYsrPaSHeX/5TYAyHPcb51YD/ztf5mHALAk3YxHS9xAY3uRMFS5ckVbYp0AxvNd0HKqQkN5QprdYSybz0PYb8vjcQuMm2G1/LP0px7OPsu8TJWmB5NKVd0i0QROykcxLc4H2ucQ+lqwJxTy3wIfJ+mPdAAKVyialkCd8TlKgxymE0VFdZYpnFZ9Z6+fydYOmtovbvMYGo/0pu1XmV/92ay7vk52ISpkvUKVKkTooO8zxk36eHk+zQ9uGKGsFr3KdNJiwQ5N/ZIoNk0McOMPV8GilwsH9eLnJGlnRMjQsUsIANm1jP0RoAyRP0gumz66yN7/Ges0WMXSaGo2ScN7gbJuzvc4MspzGR1vktc8gm06RpcYu/cB/XXIBcm0xjoVWHAbINYSzsDub50U9sPom1c5dK+J9NuQRHrEINHzSVNGDfuPkT7DPn6ZKHlN371QAFNbbylbKETEs91yBEBfos63HetDY3fO3JYknjViu8jlLDLrFBkTodH1hMsMcWUyFTl1VBmzQZH1Jo2trBbDnqFNlghjol7vJGMLTVQICBs1r7FYxxhkkrteaajPqEXzL6Ja1AX51jlF/Gs9jxZznHSaQiWtNWQF5MSow2j+MSR8681zondpLVBY+cZXCG/BIVbiVQ8JBy3NvTbFLx50eDu1OyzygfgPDF2fKALUkRCzTjma5R9HuqFkDFIaPIi1lqE11v7clD9OJXim7Yn1jaYDYsDG5yB5NpmaR1jnVK1LC0brN7kZxz1tmAg3YyOlcfPl2IIbGt/Q9j/5CP9J4P2LOchixLSdAyc1et2XVAUMNQsUS2qKJQBKkDNpnmQxbYdgB9kM2vevSUYRrkyXLGhCsaWmS4x3UUAjHGAZddXq+QNYGKGlSKbVfmiIr70SYdxDNrit14TT8gxK6bhr9ixgm0EFNpxN9fSeNAsHSX3BdQ/Q/0mUR7jDuQOBRrqPxpB73mBkGUlquDDhiLc5/llAq7QTrIcsYVH8apHjDShA3T73KDLaqckWWaj2KYvEuFJa6y64mmbdKeJm0BBUlnTas+lHXHOHuUqPE6K85YGWGfCcQ0nHQf1B5D0XPoeZNNRY4TahRZd6b7NJvxHFh9/ntf+lr0VTiyWQyceAK8BLWegXffnAVe7nu6ZRbs788NYQykojOX8pjnWMLeJ/0CBkT92oIFSPnfC30WvaxWBDrnaZCkG4SZU4ZdVaTBsIFmFlZZRMFXJs+0Wn+GjRgyjnHAD3mLNWZDTQLE2quBY8qfSfnkzfAo9l3VT0eUeeSJ6Pe5zhA99640TzIxbm2dMpBLYTZtMlxmlVPM87lIzdUoRjh6XBw1qecTLEDBZZ/8GC58173aDoHXMPbeLHBm5/nCqKXctj6B9q+Buklz83MWbnIBKCWg3cNYgL82PEJDG7MDKUYfqV5JfYIFio3QYyjqOlmNiQ2uviFFJ2rqJgVqFJ8h97zL96iyxS1uM8NG+LTmOOFv88Po8beYYjB0Ux54GuzseRBcjSJ/xJ+Tx0INZb2kgUHaB2IaXra9Z9eeLcYkKWACxl06iyfVGhJqbMiXyvDpGXz2Mex8Ah9/DB9+QvzfIRcQTpfds/Bv2v3+XN4k6OPypnwN6OK+uvmo8cQmtx7iuyhnwYatiVAtWv+fYoZHMcxSrTJEj+vcfwZ0nWaTLaoxuJf/rT1nFaRWMazhIvLNV3jbNlU2uISpamZ4+d+nh94v+QZJOtS8EJOXmsCAJa7Sci8LocNqJPTwT7oX1CAwmKdBjSIN8rEQiD56Qo73ueEF2YRP6ediwxULTiwryaFAwF+aI/rJgKN+M1rhZlR2JYGNeDG6y6SHKNRQMq7CI3Kc8D43aFCg6CELa8zGeTA2wHHIdc2k3j7DOYmQqmp6KZmFJoJiH0y5fEdFm9gnmsLmnblj4GlfftkjEayyfcZ9bmIAUtVNcwXuSDYtvb8lFia8yTZzT5ks6/NtUY2JbcVl0ir6xtkHiKncOQlk2m+bRDXAo5vcicmFwGCBWPp+BZoo/VDFkwqKMQ64yR26JEn7RFRNtRaZQ8oMY2EEOU74Hu9RcjmekPi2g8EmDxmiTZpNptlgxsGPxjNsED2M8vlL0GOXCpdZDSPYE3Ih2+3r6I+4x3U+YJEVFlCIgXns7QSrSf4jKhBFeTZmwV4Ud0B4PIk5J3mMFhr5ICaxVL4GefYYp0gtisnXWaFNhjzN8DNsUqBLMpg/TSzZV348M2yghLQMLRZYidSlIXp87BKmr/vxezwOeaKaCnnjPGSekvsB6dnRMyUPKRVikqNIJi9jcgFeBWff6TmX/9MKC9FAi8GkP28yHQ1Ml2SskVtM8U/4XwMWaDHHGvJlAoIJIbDZotmHaJLnDjfJchqF31EUck1PCbWG/TFj0cAAAdDPeuqu1helLKpRshStHS9Kje2hMIUStSgKjWVra1yZQ2ZZi3MG/dQrAVdaN3QOJYnIccIbvO9OiAc+2HnMFZZif1LzNs4+NUossOKDGjN932Sah1wOED1BjwVWKFGjRC0Mjfc9tGmRD6JozmEBHjKmP3egUwMH6E/PeySi4DCvw2tIXq80tQn2ech8rCtgLBFJWCUrUOrgm7xLim5Im+WFo+FJmpbzP+uxJkjevMTVWJPLHLLMIiOYDE6J3GDs330mWOQDn1WbvcEac5F2bGfjDBkqi5EEhG+nQJNx9miQD/bcsIPEk97IP+AqBZd3F6mxwyRtBxUecpk9xj3xPMWOe9iIWSBG3ahPpxdZ5jr3SdENYFUsIe31lr5rDP1zHwDOsBHAxw4V0rS+1HXoq3B8wiuhclDY0mC4iDGCitFs2uDJJJjy3dLzYIFmlQDDTxhByeCLLGMxALZ/yY9Itd8pWR5wJZorrasCMASqyMM24UCD1mKlMUo22iZDmjb7TIRZdpsME+yT48QBRgP1NPWXjLhDilGvbYbohawzSZczX480fIG+fFfMZ9WLkqeKgaHguEWWWWeWMocsvriMrFK0FvbD5YxFVeaID1mIzzDjjGvAXz+KPKO1llbZRt5uqlfFwlRNsODWDwl6sUZvU+XcBxNKcEw5E08skiZ5UnScBdbkNrdok2GUQ27wPvLu1b0hVnqHFPuMs85csFQE+m8ww4csxEByh0kytLjMagC8eq2ldBdCTlvEEjN1j5w4kUDEBVOuWC2pmjpFhyHkH27AveSsqt9Va+rcip0pAoLksZLra4i67X5ouz6I1nO0xiwtH0YlOI/hhYaxkjF3SMZwVvsRELI89RB6btQHidk+w6NgXh/QT801ZuCZsywbIb3OO3OyzBFTbDPpUvc8zRjk/IJvfinrz1fueAlYwIAjZxRlPFShJW82hTCMWVDD3qHJEwF41X5TKmvmVWOJ4Synzw6gd25/XmEhekcg7hMpHYou5RTp5ISR2Ku0Pgtw0pB5nocuyTYAWnvdLW47ID+Bgn1EGKiyjbGabO9veL9YZRsNkLWuyMtPIZoiVCjYQGx6Mb/0MwlH6DFEyutXES+SdPmMIb5x/ks+aWOA5xAGJr1g556msSR5ioF9B8C3MNnnd4D/pTHLTp+6d6En3zIBvAGl75oM9KUU8Lv2PlrL1N/uMsk4e6EQ0D5jIXbFGFaBrcM9H/ZIGSA2nLAB2ZBlOYv9sUOSv88/iRrbwu2GvK7eiHUnh4Uf6WvqjUWg0Xqd5ZQR/z9iAap2FnYiMNbqznr0t9obNCABOy/PzRo4CsCnLhW/aP/28z3IzxioN+SXaeHbGAj+iQF3pXk793sfYEm3ZX9mOsZSTRTs2nZffo4WafaYCEBTe+cJI8yx5kP6Y6QaeJ8b0ccIIwEcKH0z6gudb6lmav71wcGNAitfc8KAPOX3GWeDS+wxHuoNKf8syGnrN14Ph36jV/3/eNQp8gsKsUmbCXkvmiv7xob4yivunARtMiH/GqLnC8EQCc7DbNP80Ozm3aIaYFsCS08SlVUPtoGAJoGUT0vXmSU7VChzxJxT+E9J8ogZ5nlIlW1ucytYCCfkvPDYJUmHZRbjARIiXaLGEL2I/pZprozGVdALyS3Q5EMWKHlgQ5eUswxNmnPIaHhbyPtAC9gas8yxHovYBjO0yLDKfEzfWmS4xW1kLC62jxbnLqkAtgT+JDinQT7o/E3y0WikvAAdTNEZ48C9mM7Cb07mugUarLCAErbApptN8shgX6CuJnVgDK4aJcbZQ8ERSivSBE9SMoGE8sJJ0fGJp4GOdm8YR2eLKY6wMI7r3GPLi8m6T52UuCapwCbTzvI7Z4EVT9+yzU9MoF0PJzHApRCT5jYZStT4gEWU/tqgwCLLbDBD0+9BSVI0pR1nLxZQSa7nWUVm+AIKBZqBgd/y1hGriVh4bOK9yHI8F1nMON7uzXJMjczHyiLSlezYxdLuOiSjoRpnnxUWmGGDAo0Aie28tHiXN+OZNNZjMQpCNcfw21O0PeKSF7AyPR1CPklqJrKcutdC39g9yxmS+G0yzWVWecAVPmKa/4L/C0rHFGihZ1igc5ck17kXLFf9uxpmmbous8gfcJtRnxS+w9uUOWSbKpPsxkY95I3YFlPPND2S5UiOtMhysJyn2EKSzodcdoD3PDY5TbnEmuk631dFmaWvNfiARabZDN83vbbmXnEX/R4eDD7okmSWdQdX0tHkibUr02fgGV+3FRaiwdHwI8G5g6TmaXfIaIRllKj70MD8RuoUQzImgFagthIlx9ljk2kqbtswiknUqmyRxvy3JDFT87/IB6ywwAFjwdAoY6nH2sMk0ZJ04BIbXniNxl6x44wMMWtTdKJ5XmU+PN6UVJvl1P2TGtFg6tqNs++DKslPM8yxhmwQ/ph/RJcU7/Emt7gdQGeaVuwdmuxmOX1mnW+RJsdJsLLmechDLqPEbqWHy85DjPTLrJKiw11ucJlV2phxdIEGt7nF9/kBVbY8XbjOJDtR4OVp+tR6KPZqDSQVKpWnGSCCLBDkzdJwsFEMfu1p5yRYZDlsRWSdcYIFax1RpkM/wOjrepzzPJdZjQZEYNoJubgH5amngK9RDnnIPArx6gPUSV/HrLZQIJnqnSxnIT9SzdUjgQKyJPccXDM0GFWtKGsYAMkIBeJLPqkhmWoOPVsCfLacUSJWrUBBDRAlt1X64DkJRmmEFY2YYJPsYN6+Rz5ItGAeBSCscpkUXYoO3u9SifMlq4IxDhiln4qYpEOR2jOD1hQdXmfFGxMbkipZUvXAPA99z+957WrXQt6dUgxM+IBDIOkjT4kexUzhi9RYZy6UOY+YQSnhNfdxkk+XXYtjryMMvJplnSZ51pkjhcmJb3GbA8Z4LeqhdPxcNUrxmd/kPbKY36cYfw3ylKg/E8Ihn+AWGWfKmbLgMg/j3lBzLSBua6C+0nrwOisRjgbGKhq0o6iyxeushARyii2OvKFTmN6Oe8+ZbM1sHGZZZ4MZ5G33Fj/CQresV/oj/hxJobWXmZzX1iBJjc0jqhTggtimk+zE4ETMrvtcD/B0iF6w5CfYD6WTyZ4b7FJxxvQwVbYZ9MLVEE6KAt3LvzXHMQYgOVpxDvz8wJSdp8DCx9B8bAEYPIVXBR69AKU94LalhH4CTBwCb8CFjzDp6KdwIQWJ54A93HetxgYzHJML1tARZa6wFAPjA8YY5TD2qATnMXw6ZBQLXEvHfi87K9V8Sv2UhLfMIStuWZHFAjDVRynQBUDBgIeMIi+4HkMM0WOXSd7ihwHqCYzJcsoasyjUUWvFTrANreYrc+jBUy0+YJEX+H+SPPyC4YRJZDOvYiCQ+6998TF8c4G+J94ExgpT2vBTmChjIN4rfr5fAP7KmH3PfQ8uPIYLLwFn8OmJve8GM8iL1PYm81mrU0S2TMIotqgyw6MYBgFRN8oKRIPJPcapYwFJxq7tUPJhlNZx9bFLXKHitk5KVD/H1HLG3hxCkmzlEpj/YT/YycgtFhWxRTUGA1KCgfUl+j9lLDxunbnwCm9kX6bw5AnkTXJLByhD5hzYsGtRA755CPmL8Iq8I3smLX/lZQsqoQP8GvIpA7PzfxNaKxaIUXoZOr+E1DcsFOO/5W0HTC2RV8ndKccPNNSQ/+rrAwGrZY4iaClPkwn2Gfb+xQhLKZRL0CYTte4asxxjxCOTLu/HGtv1vtqsJNa8v6gEoK4aeM+ZqP+240th6P0lf8uLj0KgsTmOg56b5ZRhTOYi3x15dWkSn/cfXmbWQNwokgEucSUotwIBRTPvT/QtjWTKKeUl6sEwk++eSY5qyENHG6a+n4x3q2wjzyCh/Wr4VLDUKIVUJMtp+OwVqTmN1oxGRcd8nRXWmaVNmholZFQPpkHXxj3GQaDaomWmseRKMdM03TtkNAwzJfnSdPAhl+OhnGSHeVaZZCcQdy2g8pmxiYnyhnIssxhTc6XNqTGW9EXMzMEJcg9LJz4nwR4TSOsPJgU2MDbhk6K6S5pKMYUXlVsGypaS1gqGXdPZGGIT6j6xycZQyKXEEtWD2yXFLW6Hf905iSjg5lllgn2aFAJotSZ/xBMZ00E7VvM/4QV+gh5rzMX3G2TS6F4RW8CaYDPXNsmeTWwvesOTpIv8bZQ6KWCt4wu/zKQfD4B2ev9tB75leG1yhxKPmEEeaVMu95O0OEMrYrbFCLCwktloak4Z5hEz9BjCPADM1P86972ZKkYxoHNUoOGAZp7f5ed/3UvPV/YoeHEhlohkqPImkjQQbLKldVN+i2Mc0CXFHOtU2I3XKjlP7DVjA1hi6jkJ9+KZDdZVwpupZRbZZJp15sL7UlJZFRVvcJdx93w4YYSkF/wZ2rzPjVgH5M+2yXR4QJnPk/kSrTgTouhr2zwPkQxuz6W3NrwYZ9jv3XH2A5jUOnxCLljck94wVNnycJBM/OwGuJVjHdU0VJO2A8a82BnGEmXNR+suN6JgNHb3VKzjF339UMGkKfFFl6xoKmfJlvUYPkniLs8MeUyCsVNK1BnG2IwdkqwxG6lmq55G1iTvIUgTDGG+MjnMU7RFhkn3eZJHqhIklSB84kCkAnZ0lDmkS5IHXI3ib5Fl5KOo++kONx0QGIrPrz1cAINkOSk6rDE3MHAzBr0k0GKFyi+t5+tt2ieYDWe5ACj8YtQlWtoDlMCb8QKxS3KAAWvSoRolLvv6bcOrJOPss8iye/LmuTwgN9QE3JiER9Goa70EgjEPJhfqIBNxS9c7x3xy5bcCxLBJDNsk3UhdV6BJiwyzrMc6+3U+8nzCGAfIP3KazQCUKi7UFuBlwNYhWc7iNZLBCCQqUWeXiisCGsj+5A43qfvzmOWUIvXwpnmfNzhkNAYoVmemApSzoLZaXMtTsjHUNI80W++UGihFhMkR9ylSY5XLLt8xr7DBGkDDSHk82XrYDguCE3LsumRdqaFiwIgto+AW3Z/3ueZrXyXeS0FFYxxQZSuAc62jFkDURkm6Wv/PfUDTJI98CLW+HlJmwuWcqsMA7nE9mDhAgFaqs8T2lQxTkiSdc7Fyyxxh4Sj7lDnieOCzSnaqNe8Wt8Prc5KdqJN7DFFhN9bREnXStDgm5+vUMLJPuc0tFJwnubPAz1XmkZIFiDAJvbZOMdYN3bNJvwaDskb1JBtcIk07amQxAFXHipmUoMctbrv3bQmRGsScP6TMOPtxTnokUODeJLuxxqrebZGOVHog6nWx7DXoA2JgZLXsftwvYvG0nHQhax/zVWxTp4SFlBSQ72+PBFtUI/lR1jv6OTO0otEHQiZcpM70b+gZ9bU4XiMkn68W4ZUXYXoMJhPAuaevKuz9VQw4wqWeF+HCrBH9AD79p/DSRaj9FEjAp0+geQK0cRWI+RBbX5NHxBMxhQWAHbkiQHtukg4FGgxh4UF7jHOXGwDhe171Hk6srRNG2PVEzx4Jxp3dpx7I1HTy0D2PPk2sadUZYjVr/ZTiZDAVV8FrSt6WAs7UFulQo4nZd0IOkuavlnkVVj7wE5gwgFS+ebzi1+avgA8MbAX4Yt1+/2wPA/16/lqMtccefPYpMGPX8KVvQJFfMYyFkAE+zDGbE/n6npDjNn/gg8THmJPpOO/wdgxkxBpWcKXIKFNscUiZZRbpkoq6S6Bql1Qw/nokwpf1lCxtH3Ap+V1+r12v780iYSjWvgTnKEG9yla8rxjzxtY+ihCrNO3oK6xfL9j1dCVps4bdxGcGsHLRrsPlMYJtB8bUW/nYwbwh+HQdY7F+Ci/Ne4DMT+33NgZop16EXgM+57nopSbZiXVQljIlaq42nGSEk1jXyxxy5IN62WiZx+Fy9Fp2PQ3ENk/DnWAiy0pANeAKC2y5KkHeuhV2yNDmkHL0fAou2vV69Tc5vhSG3hX+VUguzVunyzCW8iGmgCKDRT3UdAtMPrNFlTEeU/fC7RIbgaQmOeOQ0TA2BCLVUYksJjebicQVS36cCLq8ElFlCqxDIJqkp5JdgIGO2sTFBtyhQt4XOkuibfpDuo+8ljTNtfNwSo8hGs7Gsu+0FQudgh5UQM3wCEurzQULxuifdqEr7LDOHPIQmWCfHSZDfpdyabKmzZKzrTHn7JdmFDKPfHIzz8NYGNWQaiER20wG8/OsBhhkAQjpKJZtAtxlnwmu8IACeY4x3f8dbnqD2A4wVtdBi4+KHJ3LLOaZ2G+8Dh2UmOUf8KfRUMkPTMWSHsoaJSrsIglM3qfgo36N5X2044xS6KdHigqe9QV5mypp2tzjOgussEOFLinucoO/x5/5hLQbi3aPIWZ4RIsMlhK6FI2pgDQV1/KakOx3iyl6DEVjKOqviuldKkjuoMRN+f6N+M+qnwNsavwm70bBqGtdYYc2GfeaKAUbVdOyLKe8yXtsM4Uo1nVKtMnEJtqkwCxrdEjG5E1JqiUHmW2Bb1Hmp1/G8vOVOz5mkio1dqiEzEpNnUm2bENQGtIZWf7AWQYCpSR1McZtdmA62gtwQcE+fc8SY3sIzNa9AwRIcpM71NzDTGVW1X36RLOXz0qdEl2SbDAT30dFmBUbjwHCe0NrsDZ+rSMHjLHCAre4HSCXGjFNtMT0fch8rEF1SuHJA9YASCq1yTR3ucEf8c8wOVwjWMQ6bF1Ne3OdjO+tBuYmd6iyzQYzLg3OByC1yLJbAxTpkGSehwEsjPEYydY0qdOz3/bBlvYEW1/N18Xk7hlOGeaAMS6xEZPmLKfPSOsUdCO56SnDKDFYQFGKLg+5jIIxllmkylaAZEUsrfMKS5FWJgbOKZasK09Dy5/P+3rfZospFKSRohs+sX25fT728aJ/rlOGI3Bqkp3Y1+zeLDvTrUCbdFgeZHw/kCz9BnfpkAyZUIcUP+ItrnGfMQ54xEwMuk7Jxvfp+CBQIQBiH02xxY94iyI1Z8gch+3HPuMoJU8S5ixnwew6YQQwKbO8L+UdZN6rk8yzyhqzZGjHpN3uxUI8GwbYVJhlnX2Xf0yxxc95+a9v0fmKHvJ4TTnYbcwNkzHuMhlDQDVqg4CwQke0HimVs0idPA22qZJ09oglq6eYZTOkg6dkGXWATp56gDeH48H8XGcumhwpS1RL6N7Q1F6DgyssscUUpwzTIxHP7gk59pxlKzsWBQIUfEgstp0CZzRofosfAUTTK5ahajHVvlJOjGGG3/IN7ZDiNre4wpIP0PejOdtxVYXkyGrcxtkPP8xTsrzGZigvNOCQ9cgCK6wyH3ua+YLOBsvWDPcrTLHNFlPRMKnmkG2NPNUytELO3ibDbW6Rp0GV7Wc8fhdYiaGI6mXVfFcjAMUYvpKMKtFXMtEcJyyzGAxdvZ/22Ul24u9dH7QM1mICy8wX1ICECru0nQk+wT6mGmkEs9dY75ZeeMBYDDpVu8mwftiHRaZmSIdJvtaZaTaRTFK+i/M8dNsea8zVkBuLsxtBVvKRnGGDaTa5yxuknYUqSwbJs1uk2WUyGDzy7NW1Naa1pfEmSDi7qhxDsxQditSZ56GDwymkJpiI+iHhzGZToJgNyWX+I+59uQvRV+VIAYfu14aFLGRetq/nX8DAjHMMVFoA6iajvVCEoSEsBAB41dlkL3nf38TUobUOvJK29zhhBEs7bUSNkaaFQk/M4816jg5JmhRCLSKyS9aHjxPsU3LiheyRRIYRE11epPLr1H1RZZu2s2a1T7bIRKBbiTrH5KiyDeA8sEzs87JQEhglyxrt2ZKQb3CJCfbiedn2vqtGkZf4FJoG6JEyVeynP4aXJixptXQOfGIJt6dPLaikNAS/+4p97bmXgdfgQh3zL+xBcxXy3zJAlTG48AqwDq1f2TWVTYqUNVpDFDCh3nXa9ywxx8scUaDJHuP8iLcCZzDrqL4iQNdVdjRKnNY5Vq2WdgCrOVAXDnmNrfPa//8lZHUmwFbgHoAkzGCDKpGBCm4L0PBhdIKe9w+p6L0/44JRylKQfw0+ewAXvg2ZF+x+vSAwz1mTz71kmOknn5gc+ptF+Owc+MjAvwt1SyWurUJpFiYfYwzKx/D551Z7fct/BnnTWp29hgWEWi2qzABZZXVIMswpjxkLvERgt8gE2qMV4mnnxqpyqZR0reSVbcOqIx/KWN+/wUzYF0mluE2Vl1Fc8r/5+FIYevIK0eIv1of8McCYJSZBG3JvilYUcgZkPGbdTcMPKcfCs8c4yywGI6Ufm27eTim6TLAf/jwtMjxiJnwktMGvMs8Judjc9VkF6MgDwwC5i89QMo2lYabqf8DtaHBksCgpRMo39CmXYFgUdNMXuL2gYMrzyqbRSngdduZeJibRalQs8tpAACVv6ZcKXjNt70/fRNOVrFmTEH1NqYAZLCFon3EeeSFtYKA04LYRWNG6FpNJwIuydiwg+rqo/WZEb+dxgQ9jYi5ZWpbTYBvpM7d8qlfmKIzpm+RZdT+qFF1eZ8Wn/t2Y5o6zR5IO97jOOrORnKxNR5NkFfEpulTZ5gbvxwNn1+KYCjtI5isjaitw0syyRpIO173BVBCHvFEEdIjFOeifIlP9E3I8ZB4l4kqqKmltkwJbnkKnxmSPcWe8jA4Afd0odtWMm5m0MSHnWaXpoPg+Ezz2u0ZTeG3s9n0fxyYumdI6s2zyGmLipB20rFGKe1wpylW2uexG57aIbVNyoFCNyM/41pex/Hzljuv82MGYAkrAllzPUi5L3OEmShw7JkeNkkuu8yFXWGAl2AtaA8zvskOB5oCfw6hf1xQl6lTZDnnVJLu8z40YfkjqrTTyNC0q7LDhRsTv8IfIKqHjIHuVLWbYQLYAurcPuMgy3w35qtb1BVbYYooE5zF4qDhYbI1HGwvVSTu4NhIg/zSb7Lh0TGyEBMY2lsxbMse3+KGzqBuMYHIgMQLklSYfvF0m2WMCsV4lEz4lyz2u+RDgiLSzbhRNb+l+xgws0Awwz/wo98hh/l5isoKsDjrILFdsVhAY32aSXfaYoOKNZIM8q8wHWFZyb1SlWW8yzT2uIRZ1kk7YLgDRlItBNwiIdEky4/4zKS/yGuR5xEwY1oudJ9a0yfFbwS4p+URZfleS8HRI8ZDLcV/tesL8ubNIJDE9wXynThn2YrTpk8upeD/thWJSmZVBmjd5L/YGvSbHCXOsBdtAQwQ9cyk6NMmz7cxRGTWXqIdth9biTaaDZbDEFZJ0ou5Qorvtz3OY39UICtvIccIZZmQsNumIfx4NZdaYCyDZQrxSrLDAPa79e1mf/l0eWR/Gal9ZZ9aZRTvIsHzSp9sAkjhbIMp+3OcWqjUUtYMFFTR9X2qTph21jxiaSnJ+xEzUj2DP55T7N4mRon87JRt7qjw39dkHU7TlCahrqmAZDUokbVvhdVqkSdEJpl+OE6bZdBDd3JHlZQrWCGr4mPaBcwZLwn3IZXa8njMZujEN2s56ucZ95Ll6lxvRVGrsqZAC1RqyDwFQXIfVlcWoMbOYZcee+2NpP1dytIBPwAPuWtzgfcYDBNh31sgRYAMjMK/WNG02mIkaU42jeRHbYFEsaX3OlFfFJ+TC6+42tzjycy/T9hJ1ii6nUr0kZnLdmecCis9JxN4qsCvBOZPsxvWWjcwMG9ziNgUa8TWrTTsoOEVN7GWXKivBcIkrLHEF2RhIwip1g9YuBQaNs0/FvZP7A52+HCvrg5F9JpC6RpYIsgHYx8I5HnI5hq4K6tHgY/CZ07VMYsF3PQfvzv35lRG/erEspyywwqiDgtqTNKQSUG6Mw2oMZcQ6z3HCL/jd//8Xmf+QjgsGJO18As9dBDruJ/YUmj/DpJ5PzDuPnwJFT7j1MAAuwqcb9nU8KABgehb4ljH+nvs94JvGIGqS57GD+A3y0QOKbazBv+1VHRZZZo9xVpmng/mQV9iNXlWhXTVKMSQUUQbs2V5njk2mWeJK1BMKlFQ/ZfYAj5F1R5lD6u6BCiCP8suskqEV7N4GBSTHn2U9atETcrQdPJb/re5lAecMQcLP7+86u45PPWjhCdTqBhy99LIFleztWdDIc2UCiOUVIjAj/wYGsL7i/+ZJxInnLYG1RpFtqoz4enKCMYaPMeaaPFllKzDhLOUDxiKx+oAxLjrgqgyBWdYoUaNDioafKQGgTa/F5ZnaoIAFFF6Kdbbtr3jAVWZZ55ByqFikDNKw4M/4e88M5MRUT2MWQkUHKWVroXVoh8nw7FSgUIkajMAXq/DxTxwAfcHOGZ9iAReHfk8XLeH5uTz8Z2Vj33ER8vP2+4WX/NynPN25bKBr8yPgCwP0zkmwzHc5971b0mGtRevM8kPeYo8JZAuQ44Tb/EFYfYHVBLtUkL2VAGeFSIq8ZbX3IWKqau9skXEfP7MWGvGBomwrFH6nQdAb3OVb/Ow3Wk6+FEAPjGUlUMUKECtEJG3VFNKSCw3U0sndcfaeeXadx9RMcshB5tgwpyixxNJCbPNQ2qgYRgLYzL/JNtNBqneHlKPZLW5wF3mPZDllkQ/8AndisZDhrBYwGYX2MJ+9YU59w74abDNpqkd8mtnypusYk1jsMknRpaSauN7jeiyOxmIciUZdPkXSqavhlmQt50WuwCndgAl6yHS4SzKMaJU+qKZZ5pqi8a9ymQwt3uV7UWzqJk9wTo1igGaDflYT3li3nWVi6b6W3jUoeZKsSoXu4BT6DjexYA6j5I84MAfwFj8K01Q1y10sPVJ+Vte4H/p2NfhnDrDpM9j04TiaxyRdl54U4rOI5jzHelDUTxiJCe8lTxca9F4UqKBI92k2kRRrJL7vSUypK+zEvQbGCNH7lrywy3Ia7FUlkp2SjY1hgv0oXIvUnD1pz5hAWN0nlo73OD6vPqv+LF8wNSgqDNWIVNmKCHvR+AUoKVVUHjllDlljliynvzVJZie8zAYzzLPKTe4w4dL7QRnoPKtxfsVSanoAgRho97ge0nBLEj+L76Ep3aAMUNYCJg1vRJjPa041v8KDYIvlaTLPKim6bHCJGTa4x3WXB9ZYZzYkYQrwsLCMdZJ0I2nUgEGbvtqaYyDG3+HPfYBhjZCZ2OdY4oqzvw5dAmRN1qYLszokI3H7FrejIb3NHwTz5qID6fqeI5yEFYOe27xLPMVYFJusThGlioulO8NGMC+MXZuI9STBOVMeMqPrpQnrEleRZ9cYB2xTRYmomsC1Me9WTZOVxKv1boNLAaadMswKCw6iFcNs/JRh5lgPebPALxW7xhrrxnMsM/VhTvke7wLEPiY5BtgwzNgzozHs2vMOQQMQFZyHlCnQ5ICxYJyoWBerdN+noFW2sbAMY6tt+RBK7yEAUfuG2FG6BrrmTS9UW6TDpw8M8NBQ4pBRJA/e4BI9EjF9/cBl5mKC5DiJAKgSNeZZ9fuzFqwdeRyWOeIKDxh3Ecw6c9Qossx3Hbwz0HSVy8FylDxycCo7mOp3Qo63eScAKaVCf52PBD2ushT3nljhs6yHv9gm0yyziCwwzHN3L1LSBZCpqZDkuk4xag75P8kHUQFrQLCSAdaYDSmXEo21bk2xhXylcpwwyW6wic3gf82bguQz9hWSAx8yiozj1TRV2SbLGZd9vVe4xvsuX5OHrvZQ7bFiFRZcatWhL5+SYkO1hvw/wYAn2RfontN9rZpann/6nmrE6hRpk2YwYbjKdrCsEpzTJcWZr2WAp8daiMIs64xwEs251gMBtmKpK11d13CKLYbpezr3SPg5NFuaDskYuqteHPJVrk2aO9yMPUlqHNWR+56OnsJsTLaoxjj8kFG2qTLHOmWOOPVdVvdR16HDHomQRg9KZa2Or6AQiIYznCTVamOecqtcpkSdDWZI0uEKS36P1uOaQ1/WL4a1WE3aX2WuLxaVsWksKE8seA2Q5ZclfzQ7j7Y37FJhz9nJbSwgzcKgzBz+nITvkQY0C5C1ut0sfsY4CKDRPouRF858+GufOxP1pAYZLbdBmvXQAsDBmMxfx3LzlT/ano4ahwMSnx7CL3rAB8BFeFVspTyRXJsZAzYMbGIPPq1jTL4xTIZ46K89BbLEEFGBU9tUaVBACchikIr9KWDZni2TTIsNrJrMQCmrHSs+qKtRDK9ywwH2Q7KtRNc2GbcASUZ/apJDs16RpdQxOVaZR/7zJ+TYcVavkublm16jyGMnJIgpqt52m6lg6hnr1q1HPgVegOdeMLbXF782kOizIyi9Ct90MCnzmiXXShr96R4GID0FPjapM4d+jQS+/iVwDqlvwYUXLBxvsHeSxdWc186ygKoPECRSdFjiClKQXGaVPSYo0OQKS5j1wVDUeB+yQJkjbnMr+lqpZDSwFlHlH/CnnJDjXb5Hiwzz7iN6wBhrHsw0yQ7LLKJk3EFQyhKtd1Fa+0UOou9Q3XxCLvYp+QfKBkBYzSdP4NVXMSDvYyx05Al89n8H5oE37Lye9+zrNQ/Q2FuF1k8c0O5glNQmvPRdex1FyP/P7BlIVeAC58zwiCYFFNokqXaH1DPDuofMA7b/CCzdZJp3efMZIs4ho666NEajWYkVow8BA7W1twrLqVMMdYdwrxwnjLNHhd1IZpef4Vlo7v/Nx5cC6FlxneaEkQBDwOS1WhQytELqIqBEcgJJwPq+UMOYkXwbeYLIAFfIqYoC+ZnohOo9xC4b4YQsZyzyQYQI2IY8jDx7hOBLFgBEoyFmi6ZXdYqkaSNzS036ZW44zh6S84hKb8BKMjwJqmxjnh1maqxGzACuc2SIq+mDJhSiZFqRZcWCWA7yhtIDKnqvGZHmkKxJaVWi0crYEYhUMsktNc0xlL3pYGIq5NNiYVleqpk/SoIm1h3gi76xxpS0Kpq3inY9dJoglzlkyiemJt3YBwhkXBRkyYzVCA6a+YohYt/LjEIF2AHUKLHMd+PcCHAUSHWC+fpsMEOHJJbs1ZejAjxmjD/nj1hhIRqUgt+zMvjvkGSGR8hXUPI7Abkq/k0mXGSGR6RpU6PIA65Gw2EFbCYkPcZ8GWGLKbaootRGY4EZe2vSDYslacpxDMABF+n4gm2eWDZpWOJqNNI5+r5++97o71JhgxkUCS+JkhZygSl79NPm7B4f+Y2juP9DP37JKDtM0iFJzSX7Sucuc8gMGzGY0H1hniN7sXbZhnPskLuaoVGqbEUBk/SpvbHNksEcBty0tr+hq0FT8p02V0vdNpaYrAROGGHHfcnEeLIJUjdYSLtUgsJ/5mv6OnPB1lhjNhpNSzrbokQdBd4YuyIfEi7Jw04YoUaJLGeYp6CtTeY7Yk/wHhPB5MlgaXlapwfZtoUBRuQs65SohT9Sko7zxPJRHlXdVsGmjWmqbCGjfsCvRMH90CaoOgAgBqOM0bepBtviLjfYYIZNpsnT5Dr3ASL5fRAQW2SZjoNg8pu7x7UYNg1zGuvMCSNRkJz4xHeeh9H01ii5B5SFUckSQPIBmZkn6bDte4vO5y6TzLKOJTQPxZpnwzcLOxFAl6HNFZYQQ18TX7H9JM+XMbRAUSBCiqw53KHKVvivykdG92/FfQN1LQS0aNBTohZ7foWdZ/YISRP1feUveeyNubxyK87GqVFijjX2mXDPtzrzrDLNR8hTSxNV3WuzrHkwVTr2e4H0Gsxp6Cb5xat8/GUsP1+p47/nFlsOdCt5WB64kiAqbOKULEtc5ZByAEMZZ4hoKCZpuNa5MfoJ4TNsICWD7Eo6JFlghTJHyMtHtZUUGZJYG/OoFMDDKdmYnrcxK5UdKlgAUd+zSEoJ7X2SrGkCLzWBQGnJnIouuVXoSp4mK7zOOrMui03F86H3VHMoRrTkpSlnjgpE0dBGvmsHXIx61UIyOsg/sMoWFtizG8zCPE2KWFiFBgkA97kWAwkL0jIWr+olAXxal/IuZwKi0RRwpkHUOnM8ZJ5FlqMhlb+wZOx6xpUYLN9qJeXOuE/W/5u8/4+N+07zPLGXWMUqVpEUSRVdZbJNmTQpssVp6sgRYfbRI7c8bYwBL9yYPsyhs7OZRTbYP5L8EeD+CQLk/7v8E2AR4PIDOWAvc7nZdG73eq57x4kn7rbaGjNDgxpxRY9sUqTJFm3SVWKJpEhWsYpVUv54nvfD0iKX6QPGuz2eAgzJIln81vfH5/M87+f9Q/Xfhvsw2zpuUj4LXzF/uVE2WOEaYv0ZCGdhTJbAuRogle1p6QCTNXhVkJEUDVq/NhkOib4FEq3FMF/+4LKAkDeuktmlHDGPyQ26OeLPeYsGCWTJITnu+4ff9+FpiRt8iEnfyvRxwDLTLDLHGBsBytqwt+T2J7v0s0cDY0Bedwmv1EGta7jup7rX9XouzKu34NfsGgpc07C9RD6AQzFZRUy4xRuhcqqRpp1vfkAQQKbb5IICNJ6dGAsp02H4RuUEk9z2AKfw7OcYI8xZTPp+cKlnEwOTPrXvP3sCnAFV2+ck95SsUMNkDUIE2JS9L5GiapBd3uMtEjQjMdwYcsbKXPLQIg1bBzCfMRtudKG08DwlFFIof0j5QIslrPtcA1CwPWGVcf6UH9LNEZsMI083+Wz2Y976/ZRJYiGZH/tA9Aa3WWCeUTZ4ndvW1yehVvTzOwSPm3AhDxxC+whwAhUFlgAveZoqBbs+NDFt82O4+D3/Wg/Qand2AnwFvEys/631kwZGqjnXGWWPXASJ9nLAm7xPhkqsZQvM+9qWCkBUe5eu3zwLZKiwyKsxuBEzfIthHyyPOVhao+r1bZYKb/NnYVlRwYI1zSv6PNFa/fG297ub7i8/xMPoCyw8aSn8ZStkXIo9ErUXdQfq3C+SOeDndt7a3Rjy7D8FtqFdwSVAIQ0j34bsiF2Lchk4NiCWJ37uS1BZgrND8Pkeg+xGf6pB2Ae8waonhb/J+74XF5H/Xd6HL7u+nmlIuM0Qt3mdY7qjz9B6uMR19uhnk+G4xjawMgnzFCtsMMoGY6SpMcsSTcezRCAQ+9Fq19KvtZ58LYCeaIQKLmiSDLBKwIBJmTaDRiqqtd101gwUvemc5Q4JGlFUDbMZ0015wSnJTNJBNbmScWjSqw1XRpIysRVgp3TCohP0t7nMe7wV0yzAi5edKBhKDmQsMB/yXk2e+ilTcIaUQI5BdsJcUoypGmle9yZD5vFFCsyzgKQgXY7iG0K/F8yPDV8ErED+iNe5zSoTcYya6BkAWQjgRow9yTvNH0mIcSOKMjVY+w50CWTo5YCiT16tAR+IB0UsCEm8ZAotw81Uy4Ztk94U11y6oOLNpAkHiOY/wVpMLQ0cKURBt8QsMuPPUY7rWPArCSb30YRE0m41lt1YSMgU90hTC4/AI8wk1gCZ84Qa3WNqruUNJ3BU0gtL+C3GeTSW2m4AFJqgi52oc14mxybDbHPZQWjbZMdYj2OdYDWmue/xFpsupdDzM8pGFJ0qouUhORoSp3q8n5mDpuO4yuS4wYdBr9fzJaCuTD/jDl4c0c0K1yhgyWjya+hl34GO/mDpGRst89w98E1+CWwYZDfOtzy0thlimWln3RpYJQ+kOumQXYr6bsypvWhMVpgKVte7/AO2GEY+HAWKvO7G6ALhWosHgeECJFaZ4I6nZG8xzAzLwXSbcTZKkXx4S+wwyCbDzuLoD7muPK00gBAQ2M1xsGnUDIuNJvb1LEsOSk/EvWv3ZiXO5xHdvq6WAnyUtGCd0QCWxRoRA0Ms1mEHr1Y8UbHLhz9aZ/UzJt/cj8mknicxcLSOGEBjBVaDRKR2S6qnZ1QNtIClc0lrk2nu0u9AbauBsdka9CH/jRlnMlXIcNkBrAEvLtI+1BIjPkuF1/mQ/haT/3XGgtErYEkpt/IwVOEoCZjWeTW8mi4PswnYmlInHXLhJol4T60lvRyw72w1AcAyRRco/EN+wiT3uc5S1AVJvwcmWGWORWb9a5LFKpmtTL9f+0KwbsRY1po8zFawdsTIWWLWbTCaSDxRIRMSMrD9XiBT675pe0U91tcujoJlmqbOKBvMeMqylAWtDPFWyWcfB6Q4+9rWoN+UVxsNFLy0wRhSL+yRQyoCY6jXY+g5zbLXVFYHSLKbp+TppMekqXOV+8EW0PWz86rE925nRl1DMqa3eTfkm70ckKbGENvkKfITfj/YvAKilei+wyC3eT0K+FmWYkhQoMhtbnDsw1ftcybr7QqjeAWjiTGnoYQYSv3sMcsdcpR5iz/3tebYh3GVAIh3GEBWK1sMB7CooZCAUKX/zvFxsAWSPuQe8OdwjA3WGWPGZVxqSrQG5p2tsMZEWOJMsUKTpHvsZRlmkwF2otncYpgGCa5ynyRNlrjOIDtMsBoptVOsMM0y8yxQoIgS4TUgv8MsNc6lXwLeNAgqUfDzXQ2WtAU4GEAmdqOedYXkDbHND/kJaWpMca+FGdhk10kFcyzGNamQDXm9GHNSuqgBt59vBLh/7L2IeggNvZWgvMIU11y5oiZzwg3uRz2w7j3ewqwqLPyjm+NQRxjDuMRYzwY1bwRH2OI6d5CcWVYEAjXrmMzfSArGLtYASgyaVlZrN0fBNBGzXffQNVZiL5TvuCXLZ8lQRb7M3+d9ZrkTNUrrORv3AZ9SxcXW+8a/2uGLQ5fZ7pikE+zfrvTAlycYsLRpQRePDzE23g584UwlPAFXFqzPTmGzBBX3HuMUuEDI3XvZjxpItYuCFQWOiwWccqBfvbH2VIGBeiaO6A67DHm5y0fPgH6zQFhgPvxwtUfrmVQfqt5H9ihSdfVjSdGtdbLqtZTfb62yb9VzknarDte6RCeks5hH22W4lDBZZ2XbrgVAowFPPsWYeZcw5tehy0Mbft5fw8C8y/5ehyaxfbJjst3KMfAVfMFLAZoJr5BfOZx7oSa9f9IaJ7BzhwHqpINRbRYgrwdBJosFiKlWtHN+HL1Dvw+6ezkIyxWw9SvjrE2tc+N+nJKC6jwacD9DhSw/5QekqD13TUoU/FpkAufp9z1thmUHiWskadLGU8hBYQ4owBebfn6bzsKrwZN3/R4+hGef2/m+1GNehzwBOi0c5lIPlB9YCMa9Jbt+Z48hOwjtGaAfFIY06j7LdudWnFFdjhpxliWGMN9xMeHf4APe4WcRCLXv9ULWgVat+2DP2adMUifFrq/pIuhsMxS9v9bSfZQMfa5QBIIFu8Mg/y3/0a+1nHwtgN4In7NPb8jJVhlHMsHWxkzTaW1kRfKIPiom36ssBhukSZK0swQMaLEHc9lT9cRW0e8QZVHx1aKXm4nnMatMIF8docgq0BSWkKARDZR06fInqZDxOOe0G+MqOc0KuFXGKVKIaQUQsk95g6gAnGUpHspVxhlm05HkPqpYYpaYE0M8DBZiLweMOu1Vprcya9SEVnJnnXP9bkmVxF7TQ6ubU0apTZ8G9nFAq+G6/Ew0hdY0pUghvP+WuB7MDbACTM3lgP+s5JpanAuUqHtzLO8qk7/m4/Po/YpeWEgSI8DAFrC95649GKtGElgDdWvRKEg3b0mcS/GA2T1nn1WTbskgBLDI92Gau7zNuyjxxhIV++NnB9lhlXGfoNuiYFPertiUlO53DmRbYZpyNmMvB8GYAgKsEY18ymGeOy6RFjC5ygSSFAtY2nQmowCGYTbZ8w1c0yQgnlHA2Qs2zZdHQp8zD7QhKxm4n3KwjHoxPyw99y/x5d/SivOb/cpTivRjJeDJ41LXu9hyb0+xEuDdDHd9prUZAT/aZNLU2KPfpbLGDjKfiHn+Of+E93kTUb11/wP+263R7MZMjpXoBwRb+sf8iDHWUeqyGG5rTIQPzzIz4cuRpMkxZiL+c96MVFOwde6IrmDTLTDPMjPAuTRXcqoNRlFyoVkjVHmfN4MVIo/KXg6ChZzyZ9TW7hHe5e3YbNXMCHxL0GCBeabduP4Wb7Dja7wxumwducVNxI4u088tbrLELPL6u+bS3FXGeYMPKFFgxNkH626fMMcieZdSVMgE4NmNpa8tMet+HJbAZvvZNJK1iEE4zTIrTPlnt0LNDMmbyGdJCWMaCChx/YhuplhxdtDDWK9rpGK4JImEhgcaFlQdeK+SDeanBlBVLG3SjKyLiDW8xCyLzEUzbnYK++w6iLHEdRI0PSHbGEpKeJMPWatf2T69sZYC3GWGLYaZdjNjpezKtP2IbqYdSMtSjXVzlfEo7sFSHuWTtcRsDJJkASKQVFJ1AaZqttccONyj3wvfdLBmaqTC/2fAAUuxnjXwkDzJgrXKfy98o/I8QjLVsnPGerEk9grZGDgJUFENpiZTzBCBxLKsUErqKuPcZTpqJe39CmI6opt3eZsxB9C0pqr+kCyoiiVYl/z6qDbJUo0h3r/+6/+YbsxUW7VhA7NBUSFuA8201yj70QAvMhcApmqyNcZjDZZJ/LIzm6tYevYy0wE6aU1TsIRk6jZcm4pzbkwYC3U5l4haqI68M/spu5eT+YOOsxbefEm/d0vOZB1jPYYt8qCzRuWIRV714Uo1fpdCbZokuc8kt3iDbYZQIJq82Uy+ORjPudUS/THo1LBT9Z5YamDWLxmqvMdbFFwtICmo+oRzoL8rQNl+yvzx4R+xwhRK2ZV1S4MEcyySocJ17gRA1+93rkCIBI3w2FT6+jIzmNKnGoEpatA/4I2QrW4xHEnI532O1QOjbASw9UP+NOp8nfs6KaZZZsyHUxqoHGMeyzsMsIfJ1qdYCUmkgn5sfd7nPlcRa2WLEWSJVHJmvAbk2wyxxGz0dVOsMOugoQLudF6MlGBeo4vMUaY/yASD7HCTDxj3gaTVFmbgf48pJj2I5e/F6xRGRkxme3aCMZU6PaGz09NrO+3rhW9DrgB8xwCNS5IhLhsY8uxzeFK2YI12IPsdAzuOnwA1Yl9vkmSaZbJUKZOL/UmMYmO65RjiIabcSXvfVoo/BfKMs+oSevNFy1PiHX5GhSzXuRO+3eotJTFMUQvLgj1y/O/5X3rNVvV+Z8xZwUWUGC1p+j7mx68gn37vIQVCC5S0MMbbMZgTeKm+mCqQwTzalozp9fjQQNTKCTAEF6+6pBkMvAMDUL/jf4JJcP8b4JdADxQfeAIxds2yrwIvg1J3rddMOxt2l1mWnmMxZ6gGy3jP6zj5mQKxdsywHMN4IGpBqccSNCLorJsj1hljj/4YhMomZ5YlFnmVA3rDN99699lgltkanQn59A6D7vN6zAF9iNRiNk99sfaVvAYVaabVh66dM2M4Htq5bQf4xADpJwCDcHHQmHpnNfcuxEHtxw5oN+36XMhD7rtAEq7lDUxtvwhcgrMq8ERS81z0ybofFFYpxagIX1kqiOGv3kOS4l3MKuIGt12JYZiQevxx1kKRpCEF4APncc4TpU0Bqr2hFfizfeuYQXb4Pj//tZaTrwXQOyPt6KYV/5pybTLsk9VibBgJmiEVVBMnNlHOqbOikg7xkCO6+TE/imJOxo0q9GQ2LGlLkwTv8yYH9DHugJ8mnAWKjDvD64C+QM6NMl9kgjWXIhlNvXWCpgQ2MWEMlLuDAjPWmECMFJCXi5msC6QSy0v/9WLeT0lH300yZMWsfNB62Uc+ehtuYGqm6UW2GA5plZh5WwxHQ7/DAPICFLqsYkoNzD2HgyRRqTvtVuytVcYB/P3OI5YH2ImmUS/JplWASIIgyZVNdScQqw8McLvNDT5iHnmjaIK+5+a78hswjxe7V+TdYXlbVgTJL6lCJgocm5CWotlUE33uezOIZGrGKbT3HWYTScX72eMYS2puegGviQkQ02ylQDUx/6oSBQbZZYQtxPzT11o9nyZYY40JslS47M1Dwpd0m4qZdFdAo+4dgWaaAk+z7AvVaExMkr6xqvFNIpq3NaUqRMEWGRnfK/xjiG2XnZmZre7vfQefNMmtkwoz+DI5qmTddyzj790X1+mb/hLjSRNNFeViul72pklguoBRScYVULNPr8sdBpjljk839+L+NTZJ1Yul5WgYJK1vTR6edLZEjZSzw/Zikz+im7d4L45D4NkR3W5eb5v0PfewMxZ2Ir4nQ4Wb3OI/4Z8hNiJYUMOIs5zEQihSCIBPzLI5FsPbUUyNKe6FdOCA3ohyVyEnZpmsBbo5CuBMjaXAOPkorTLBMtPBKriMyfVk7iwz+iG2WWA+mBhg/oMZ3/BnueNrtxVfYihIEmhrZyoKnBE2kaWDZPyST5coeFhDMcANsbrE4gFbJ+vOUlbzrkmoCts0tZD9g1gjxwE0rXCN93jLmUIDUWzLDkO+fXYujVWixlVeWwbOH4e/nzVoxgDQEGPEpeOa8MvMXYmUtg6a12KZHLd4gzteTG4yTMllXHo/sZPPn5l90n4/wXkKnhilYrHvtkxBzevE1nxNvbexJGUpAfT8LDIX3pUHDnoo1Guau0jGIlbpOqPBXspSCbBq2K+7DdGsOG+SZARLce9q8cT8pr5muMsaE8ijTn6DYojpuamQ8cl/CdmZCDjaYIx1xqiTYpE5iuTDl9TkPrsBVkg+07oODLEdMi0NxXTNv8/PUTrfKBsBKqeoxXOiYvzKb/0bNt1nc53R8BZdY9yT7XZiIHedJcq+ynZzhILCcq7gyLGHJPACSypkA8RRCqgxWneddVdhnFU3RzdrEzVMauLEABejVknlGpxvMMaWD1m01mhN72Xf/XUFbI6xwjX2HIS9yS3GfQ2vOktWTPOfudeQ9QB9rDh43wpYqgZp9QvWczvs/B4FhQE+jGmSoEGGCiNsRfNvqb3GLDPp1zZjbMQ+Iu/SbRS6ZBYGo6zzBz3/ioxDrRpeASwzw4fcQLJsAblgEtmM73uq46+zFHulamEN6ib5NMDFGe4Ggz1FnWusRNKx9hixpUfZYBPzjt5glJzb6phdiwHiVqXazwhoKVCK9FFZWoy4TU2BIm/zLmZns+uD1mJ4nmWxtOE932OO6AqmSc7rDXn3JWjyAW9wRFf0Fa0ywkF2mWchnjUx5a1+HmWeBZaZDqDFANUBLjmL6xv/agc8SbU9Tcg4J4eAEQOEaFrKKjlnLp0ANQOe2i/av1WBlcdQrtnXXvo2kDd/vq5u+x1KohdhpZURph4azLv+Jrc8dXyfGe4y5kzRmoP4RQrskYu9/JjuYJ0JBAGQN/oq47EOC5BXz5mkyT/mj7nhaoLzwauxh8WO1jqgpGb1IgpQMpn6LjXOgy+034uYU/fnL0sFeoFJoATlh5DNm3/eRSA7jbH0BuHCaxj7bgTKCmnYxrzzSsAmfFSD4iY4UY2Ll+HiFbt2x4v2/S/xZfSWaR+SiqV4n0kfTlsNoNAsBT81STw3FNjzdVE9Qitr2+TtsphIx1DA1oYGt7gZDNte79HUD5ulipGWZFOQok6rF6cNgKz+uc9krEvmw2ckFPWqNrjOPjeo0T71lDaTM3cAVzDIrMcAu4vYPftkx2TjyQSRdnuGMR/bAdL27AA8WbL3KZYs3fnsCZx9Zv6FtMPFw2pYJqj+7uYoWOMiUwm0/mP+cdSVZjs0GvffFCuBN2WoOiBqPa3W+CSmvJEioxezK5NtlSyDJt3TvEbKbQiKrDMapLb/Ia+vLRTDNuKRQHJFP1xkLmiiAgjgXBqpQktMim2GQppQokCGCv+YP2aMdW+EBmMCoGItQdPND82HxGi790IumXeWHBhoIbNgpaPlnUGm6eEwm88V81PcixtULCd5m8E5a0yo9B1mPYEwQ5YqG4xFwozka70cMM9CFIBjbIRkpEz/c7pzgSLmLXXkBaKZ4QqkGmWdy2wHqJmgyZYnq6iYEnV+intx/mZYjs8JVnAKBJzkPmNsBPtCExIlFQkktGKgnxnuMsdiFElqnoBgqKnQBqLgazioJW/ELl/c7Tr0s8B8C33aiutXPXBEzCZ9PjCp24jTavfpDa8PFfiSQk2wFg2xmjJdFzNsHQzQTwmkKkQFOt9hNn5vzpl72sQAlrge106x7roPrag3urIk2Xv0k6DBm7xPijo/4x326I8pvzwTNLUR+LfAPGK/dnPsbJp19160hl7eOEqNk7zjNRYAW3jH2EDSbZ2Du8xEg6vi+ZhuX8yMEWWMiCrD3mi1enTIp/Exipb65r9+yg8ocm7aPssSXRjTpMuBPK1lFmyyxw0+jGdM3mUZKiFtHmWDe0yxzhg59gJYs1CYVITwiP2sgYIkiAOYxMqmpP3+JFiQkBKTVfDdZzIYVTf4kAP6KFAKpt99JlllIpjZgAfv7LksMhsDHa0TYrXIRD1NLRoSa9QL7GBR7kma7jdhFgmrTHCXafbIOUO16qy0PEqZVHPYy34UExrcqIlJUY81GIjJmBgMGjrpMwDB1JIEVevAG9xikvvMsci0G6trHZpgDVk1iDGoibmKCvlgac3W3iRgqs9Be2P5TrivVop5FlA4Up5iNOEqxrT+lHw6mPFz38s+b/MurYxurf0Fihx7kypmzSqW0DbBKjn2gt0thvJdpr3hO6ZCJoBGeSBOcp83+ADzwrJzqeMz38F7kTg8xyITrMa6UiXLsDfwuhZdDriBrb8POTeUl1ftLuZ30iARCZOaaMv/ynzXtmJvMrZJJfye5APWmrLZJEnDm3kFDlTJROCHACKxC401dS3WbdU/Yk5Xyf7axsd/l1910kxynylW4rlNeONfIRs+hsfeDCh5UyC8GjQg6rM+DgLg+0n5h4gVquJ91/csDQ4FenVzxJonjksS1s8eGaoc+5qZoBnBZm/wAd0ch1/oD/lT3uAW8m/eYoRBdmPga/f2sT/jxzHg7OXAh4TGdlB4lcmgjBGfoMHbvItSziVR1hBAcrNW+f45WGxAnTwvr7MUg2L5r8rfSl6uDRLMs8ABveHRJMZIg0QE7xgT3JpOY8z1xYAmS4V5FlhnzIG+fDAdpCzoxWwV5AuoulDXXDYzauBliSN2h+TTSZrcZQaxfsx7dCDAXB3fqpv8p6jzBrd8OL9Kv/sYqT+pknGfqWzsDz/ix7zJz+PcrjLBj/kRDRLsOmngQ14PAOII8/9rkvDhet7r/dEYBpcoMMoG/4o/YIlZhjBvqk33JlRIVS8HwYRTs22hFVnmWKRBghmWHbwrhoROHnY2SNmKJjPHXiSV3uYGR3RH36MAEIF5Og9l+oNUIUVQkyRbDDPHYoCtWvOlHGiSCIN9KUuMHdvFMSbZ3Pf73WTduehlWpUmfy9evQY8dHdiss08BnB0EoywzSXIXgFK9n3lnwM1k4hyBQrTFpqRAYYvGaDxZBNYtr836/aeYmklaLDKBIvMAcR6UiEb/r7qwbNUsazZUlhrqD7op8y62weoRrLwQ1NnJdxeQaCy9RK70QdKISZVgZhjCvFZ4jr3mEIKovtMhmphj1Zfsjw3+cClqA22GKHsyhVJ32V3UiPNPr208cyYYffgWRlyVzHJcgkK3wF2zJ+Qz4EpTHL755DLYcBSycCmi1ftOv02Bkjd3zb5Jyfw5AGQhq5OoEp0tzVn1lqNuBMp1/KekwpRRBIN/6/5kEC2SrbH7cV6o/5UvbglwSeQTYhqo7cxHat8f8G85VoDw0bd4U216CC7bDHi+8dxYDKqUat+T5iiLxkWB9qzNdBUrbfNEKd0wIt+zydgJA9nJdhqQv4SkDQgO5mATx8b+xQskbiMsfjOPoGkQEHsuhXy9mx8cQjt37b3ru3AVz2XyFAh432sQoU2GWaOj+OeVn/6Nn9G0SXEwqJEFNBQ933e5BY3PQvBAgFFqNr0+1CErHXGuM0NGr4+ys9PAzW9h66HBoTdHPHIe/a/6fW1AHrtnHvOzLGIeXlsITZeN0cscT0axT1yYapfcoaZfCHOIZ4Goosrta5Omh2XZUxyP9heapA0LTLDXzM4VpFvk/SxYKz0cuDeJgPe+JzT8wXaKIXugD5K5B0oswVDG/Ef80cuu60HUJfC/HTe4y3AQI1pT4eUVBGIyZamCwma7KGE1f1Y1PQzr7vx7b+daGjehVU3ax8ORFyNmBbCe0wxzmr8nE0UC4yy7il/XUh2VCEbKP2GG/yrKTNvpAb3meSh3/SD7NDFEeMtxsDyAxOooZfkLjnKUZBYwpbJ95SU1SQZANYR3VFkmHznfPESAHWXmWAD2GS2l2O6g1mjiaiMSEvkowiuk+Yt3kOMI8m01FC8xgID7MQ9puRHgatJmqwxEQuvPqfYOgYg2/u+x1sY26rsjZ2dj2VmUFrfe7xFmhrv8DN62Uc+iGItyF/hgN4wHc96o2mfqx7HViXLXWZCzgSgAIIMFfbop0aKXvaDHabPtsp4TIUFqmrSLCnPim/CVTJsMEqNNLsM0iQRk9n/X/fBN/XVy2GAAFmqLoieig1c6VPzfAQQa5IkhDKLX2U8gI4dLFq+HzOqVeE+yjoKjFADJaN0rWMCyRaZ40NuhPwLDOSV56T5RN2IAYDk/Gp8EzR5m3fD1whgjI0A+7UWT7GCpFsm8c7EfXOfyQDEBJ5sM8Qci9zmBveZDHP0P+BfkqDJLHeY4S6z3Inp1gG9wS4c9kCNJWaR15WAUplBi534Ju+HzKlBwr2rynFMkpcLmBPL4ue8yR2uO7uqwF1nGawyHsMRrefaw1pZzgvMUyPNuDf7GRR8ZMwtFR1ifEywhhi1QASlHHhxq8ZVe0MrG0j7ntaAO8yidF/J6P6EfxTXS/5Tthsb+Ljm7DOBhAL5tL8INLQwp/0Aio3RXkMpazLm1zRZ7Eo4ZwzWSCEvsQTNYEOKHSl5tUzo09SDrV0kH7K7u0wzziorTDlUuR/Sck2l5e6ql8A+FdC698Xqkw+jimrJAfe8cJtliX5/3gzsLMfUWy8LqDEg1sJhzHf0rx0I/6a/TBba5TWFDTHUSArwkFUFmPeNFBVT3Is9V02C9tcdBvnHuT9+bliboMmAD6wUZKb64D6TcQyjrLPFcAD/5gmWRKnEWwzzHm8FYDbKOmK9672VaKqXmmJLd+2KYYUGtXqezErGPMXk5fYn/CNucZNcrO+9fMDNGD6q9pAUSL5UYGEP5ttrNjeyiDHjemvec5TZYYA0NR+6luOcSaVwjKlhxBaT3EhSaQv6qXFEV9S0w+6lfIs3OKDPr193NKICx9/iPXoxuxEDq84bVzEkl5ilSoY3+XlI4xX2ZJL8/VBCTLAWjB35ZppP5XEM+lecWSLbgvtMcpvXWWGKIoVQvNg4y66zbB8k25vhLgon0bm0+no3/OEk8ZUPaDdHfOAy41E2AsCUTZDtp+W4j/fIseZMEQu4S0e9vc5YgH06f7ZmG4vQhlTn/lsabIH1LyJNaJghGbOSHiXvs+GJhTQ1SCCLliqZGOp2cxS/R9dNv0sDw00s+MLY+Vvc5BbyVJOVzxQr0U/pubwkOs43/fXI/riQw0CJFdh8gDGXToGmSXI5BXog+7twsQtIu8RwByqepXTlHbjwNhS+BxdzwKD5k7W12ffvuaKmnzIz3KWXg7DpWGc0np9tLCFZoUK3uYGsMYwRloqhmu4LrXWzzlIF8zVe4RpwHl54i5vByFXyrQYz8nUEG6pVvVeX77rCGBUyqNAqU65cI0WN27xOgSJv8j5dHHn/pwDAg6hx0tQsrKINLiSxIAulDffY+X98aL5s/Lcm+SyW/GufAnkHkpImES1cgYsJmMybVJqGpeY+eQDNBtAOj7lEmX5u+xBAQ1IjHT1E6cJ7zsgrUAyLBg1E5EWfcnal7HN0joVJyKdTaa56VhV0I+Dd/K4FxGZiTejmyAMUN57zRu7mKFiR/ewxxrrLorO8z5t0c8wMd6M/V12rYYBA2y6O6G0cGKjacMnyoJ2764NwQeDqt+HClJ3XZBIYsUTiyTxc+T37/myP3d+AgeAjJkUvKHH4KdSaOKv4GltucTDPR+57W2KGu+zRH8zjTR8Um4d22u1Z1qIO3WA01DRzLDLKBrIW+5RJFAYjvCbp2JfVtX1hpaMhhtQn8tAb4mEMUlqZm3/T62sB9B7yMgf0MsudmAKCeXuJ2l6gFA8k4LTavmDtrTIeDVWWKsvMkKeEDHTlGSQKuIoNAS6a0Bs1vT+KLwEYkiiCJD8JN3g3A1eZrQuUUShC3YEOKySKKIVKF2WeBZ/4Gxp9z5l5onFq09IDu8kwG+4fdICZYwvMs4d2nwN6gxY9w3JMS810toIkwjItzrv8tuRyIytUR2NCLYkZ2MRcwKOOaYMx8pRIOih7n0lHnfuCVVDCfFne4y2O6WaB1/yMV4NtI8PlLFX6fCoNBEBY9LmPTbeH+Qm/T86NiwFvutNkfGqtpnrcfSDknzPPwr8lATPm4w0+dHZfI/xWplghiTE+xDbZ9UmDJMQ3+JAhtoPJtsEYk9wPGWOThBdF6SjSBcJo47rvD7WKyQnWuMkHDLOJglLG3GR/kF3MV0GLtU3xpb1XgZ3y0i5NPcCVXEsh/x5vkaLmZto2lc9S4R1+5tOyOkqYWmMcGXT2U0ZpaWIKdXMUgLoSpOy9y88ZqqoQ03HKi8yeJ0vCHXGT7GmfKKeoU6TAt/jib3vp+Y18SYINxlp7i/eiIMpQjWmXGRGblGeMjSh0iuSZZcn/rS+AWqUZ1x2wN4Ze0sEkAxjkg2H3aCaePZCnylrYBmhNUfMir8gjzLT99/kJOcqRRmiST2MdSk5oKYlrSOq2xQhikEyxgtLTNhlmkvs+RbV77tzj58gTwk12JXl6kbyvuTXmWUBSbknWhtmk6gWnUrB1nFkqzLEIWGGS8T1IxaqaFsnUBeDcc5ZZ2tdiySOMqb0SwyRbCWohM9c6YcdgzCsNl/o4iATxOmnGWOdN3m9hQZjXa5UMJRffCmCUd6klfW/GObXzbLLVXS8MxahtNYqe5Q5TLRKvIgWWmWbaZSgCROG8ud9glOvcoVWmqoGNyYjzIZ0UaCw5h3wXm1jKmrGb+oM1p0Yw27KPSd4ggLpJMvaEBebZdaBTv8v89AxM6PM93n63FapiwXRzHJ6GYicnMa+2O1xnkTlPm857sVyNIca5tK4rZDJiB9naNxCFrhiP3Ry12D5kY9/v5sg9gNIhiwP4LQenv8mvCh3RtEteq31dzKwslbgfdX8bk7bq4M1qDEw1uN3whlTMR7AG1oJZqgE8HNEVbGT51WjdVNiBrnUZC1uYYzEGhXbN64ywRdKBezgHNIDYC1XHyrJE68EWw94ADIQMVOehRpqys/IHWsCYUTZ4g1thR6Dfrf80pBX7V4xDDRfG2AgG9LoDVwIVDQSzWnmcVX7EjymR5y4zIaGTafgYG8jC4Y4DhArqaJKItXmeBZdl7QLnbErZvoCtqQI1BbIqtMzSNfe46h5Re5ynEQMx2NC6kqDh0q6B5zyZlS6uga5qeIGL5l+158POvbhfFLxmxIIi1314NMyWDySqESqQdtGrhuJ2HSxwbZq7gA1g7rr0WYFBYlGLEWPDzxRzfAwQ/YkGcD/n+6y4zUWTJDUHPsVqHWc11jYBalJNHGCWE0rqbQUHgedYwwkaWFjWp6Sjyq1xl2lucJtplpniHrISKVCiQiZqFzH5uzkOT1mryaux3tn9Nc06YwGKtrLSdZ2/6a/6qUttE8AhPNg2+axmTGcljMH0ChbK4Iwl0hiYt23BDa0MpXh5yMCFPuDE6o+M96kH9IZKyYYS5s8pRlWaGgrNk/onRZ1ZliLwQkom9SGSYJshwID33PuAKfA0JKyQfY5Z39uyksmeaYeBIFxooFukwLu8HcCUlBgCS+4zGYCk7QljoeJrtZ7aYoRjOu0cpt0vT2w8jPW1+QByM/CkaaBeMuHnvYcAobKX7LpdGHSW3yvwFyW4swN8B3KDcHHar08DkjRimClmoYUibiKmc5n+kOKuO3HGGJXjbGJu2uqtbSBjCjYNyXo54BorbDMU7DIg+t8jH4JK9SY/d+EBs+4VKosBsyHrp+qD19vcCGxBPa7URaNOAhK7d4VrKOH4gN6Q1lddqZg6eQbbcHbHJLL0AP8QkzRfNaC0/MCfjSuQ7fRzDwZ4dwLv+Nebnjw8aM9Id6d/fw32n8DFTvtssp8YZR0F6VmNNxGDpw+4Sd33Yas9bMSj4YudVyOwrDNKl4Ocsj276nWccKFNRoK9rD5LCjcRhuSHnaKGZSlUIywjS5VPfs1h79cC6D3mEibxNP+mdUYDnBPLYYx1ZB49whYycqxy7suzxHXEThO4JZligwQjbGGeScdRoAiNzjv9U3r1AqUwrrZizppbodWSk9oNl/VQgiXy7hEgkCpFnRWuse/FwQ4W164N0hrmDAf0scw0TZLhgyaq6zBbAbBlqbLJSCxpkkvJhFusDp1PNWZqKOQjJA+DLUb4U34YYR1C63ed0aNzJ0Zfq/ee0OEmCaoOgKqRmvbUM0WF6zinuYsCRbQYSzojgEdFqfy3VpgKgHPUC0Td5AILzOjcDOeVRqu/l7E0HkkDbvFGTOzVvA6yywRrzHKHEgVvAg0YFJhiTLZUMFHyboBw4BPMLUZikxEQrGbfAK+im7zPBiCm5lGyIBWi5jVgfjU1Z6oIRNXEf4Qtn4qsxwIrU80cllSpB3/f75UN9+4RXXfMQXJNXnW/XGOFJglnYBX5Q/6EPt+4RR8GeMjQc5LzLZ8OqAhX4hJAnzdFOj8y2BfYKOBYPkUC6bXh/rpTh7/rL61J/eyx5bJTA0sGWOTV8KMoOIheJx3PpLxGag6eCZx+nzfpp+xTy70YYpjhd583mGkHaDZDrmQ+X42g54uRrEAeINbOKhnmWUDejEpCE7PSJDVjfMwcaerkKbLAayj979jXTaWQq2mygqrbWaAHcXwlCrFuafPTs3hEF5L17DnbWgmL8vq8wywyh99mCEnJuxyo3HKAOUuFf8kfoIRpMUiPUKBLLiaob/FesMvVCGnts8LXWBVFZ7xlqAZ4qxTzbS6jsB0xKxaZY5XxCC6RREqMa23yt7lBiUIY7M67HP6A3gBO1fwonMKYG+k4Lg0WWlmHN7lFkySyFBDTUcMyARVaH0ou2VbxZxPcDZT4pclmt0/FdZ9rjbPn/nLsL/aeFp5kcvQCS1wPH9FSyAGvscEoH/AGMiGW557ATzFV5O0zx8cBTM6wTI1UrM+SDEoWu48xuYsUmOQ+x3Rzh1k2GKNEniG2meUOYCBllWxcX1kbALzObUq+zomdKla8ivUpVlhnNLwnF5jnFjex8IQ8Lzgz9pv8Euj8OrcDNNfe3o1ZR2Qxf7RWXzSxyeRlJ1Bmj/6Q9tgQoRRsBKVj6x5pOlC0wWjUehoaNL2etMGZsfLe5H0mWOVd3kasLjhvTvXcNrDQDQ0WLT20K9idkl9nqLLFMOOsRWGvOqL1/Stk+Ae8GxKxXg6CGQ/nKegVH4KPs8YqE8hMW02aUqgV/qMBzTv8lG6OuMr9aCCO6I7mukqGDFVmWeK6N/BFCv6exn5WMrWxclOxv9zz2m6QHRaY50+Kf8iWe8DJwD6JhY+kHCwwT87LbGIJmappNfBQvSFgLkXNa1jzwdOQ1oCHY8qu+Blmi099+AIGtKaphQ/ofa4Gw09AmECCDca4wywLzLPFMHe8F7nLdFyjVm9HWdN0cxQpyvJ47fJ973U36M+7h3OJPCtMcYubYfEAYH6m9RiAgzWHXZyHP73BBzFcusNsy+erO5khE9Y+spMRQ0+gh3yotxhmngXkubrMTICVGd+P1OBb3V505Y6xhIxtVfLhWim8XLexpHgBGAZkmvezPTOfMs9CBGuILZun+GtLzP6uv1JZDKhrAoNwZQSuXjKAiCY8OYYnyxiQ4eywCw5UbG5C8QQuTvn3bwKfAUNYAmsaAz4cABSbXeSHH/g6oP0qRzlSaHOUUeDdBqNBvtCaJr/FOT4mxfOBXLIOUJ8Kstqx50O9ogBlMZvL5MImJk2dqvclKc7lpVIGAcFE3XRp/h1mKZOL5GwNNgQ0A3zATZa4zhntdm7OnOGl2y1twF0WO4cjv2dBJEof5tt2nbgKvt3zbMdCGTgx77dwEOyxa5LuAHLGJKx6/SgixgG9QY6R1Y78rs23vc4cH7PLYHyfrp9UEiWv3a3+rPjA3MJtFplrUfKYZHeETWa5Q5NErI/aP5UwfD4QMbBUNamuJxCkkw3GUMqt7H6G3Sv7Z/yAQXYYdaaz6u2f8Q5f9ZjlUnva5OIcAn/pXnjL59541Ow+rpzYn8UdDMxbwoJI3Iq9/TuYFnfIAmG4ZKBgVzs8OoHuajX2BSnGgACXNVD4AT+LpFtbr+rxNQGq8gwcYpvXWKBIPrjr11iJulzksCWuI7sL9eQa+txnMoKm4NyqSxiPDTdP//uWkOdeXwugl+BpACxqSIs+kdlhgARN3wi7mGAtWCD9lH2quocZou/ykCG2ucw1l51lqAaCqYSXBA0mue+bS5czGixpSy8VQyZJ2wr9si1A93xB22Pc5Wx6CdSokgm50Lk58U6gt5JygLENxcqRF5peotWrEVThssA8DRIBNildUabwktDVSD/n67TELFsMoxTAui9eOjf9mD9HF6b91sRUNF4h9ZqWi1G250waFYqSDgsUXGcsfPrS1D2ZMxVTlaTf0GKb1UgHq1H0VN24XV44iIorur98Y+ThJ9r0lrMa1RwqkXHNAaMhtoNC/D7f54juYJi0JrhKwiZ/BUlW15gIg3OQbCEdExVjoCWjqBdzR7565i1nD33V2ZnaNBXrXiYX8jxJswSoSnKbpxjpaxuMselTJi1AYhCOsUGKOpPcD0pzK6Cowlsbqgz/51kIKUiWaizKG4yF7H0AS+WVR1Crp2SNdEz2V7gWRq7jrIYfnzaLXQa57AWrNvr/K//4b2vJ+Y1+yQthlQmuOiCqtSJNnX2fjIsht8oE8iQyObWBTUqy1jMsAFosIJ1XNccVMgFwSToqBqtAViCYFfdbmp+y+zSOuSn7LoNhAC92k4FOFQZ84gtE8A0Q69E2l+Oe1DCnNcnugD4eMuSFWe259Vxm7/KKUsCG2NbyO7L1qRYeZpPerK4zxjVWGGYrBkRdnCcVKllRv2+PHNdZ4vu8D5gEWZIsrTeSSmkoIzAAYINR5Hu4wyC97DPCJuanZM3R+7zJdW+u3uT9AHfFCDOp10YAh2ZbkQz5ve6HI7q5zY1gOhpAex6CscIUM56CqHRBAepjzobUsKHKebqWGJliMcm/SQW17lUwkEBDHgFfOS8e/3P+F/wZbwcAqJCTlIMqmp6Psc5tblD3PULG9gf00suBp2XveWG6F2v8JiPB6tr3u0AFr9gwkivbPW/ertpPlWBboBjS17vM8BbvITmKQFDt85qiCgRS8yoWg55zSYKu+vCr6qC2jkUN0Kiv3SUKLHlj/k1+vcLnsU7JVH2HAeZZCKWC+TyZOqDVP/SI7ljLxPQG+KgljAqI2gNAHsza99XcKYRH95LuNZPll6O+GsDSau3r+4yywQA7EYJh5vJ1H7ZVgnkl2b4N2tbYYSA8hYfY5i4zNEmyiyXhDrLDClPOfiiQp0SJAmOsxyCiQjYY1wqmkY/ZEtdJUfchepK7zHDH5eUGOO0hmfexN2VjLv/UsNAaOmN2Ww2YCyacwoHURJtKI88wW3Fu61jokrxeEzT5YeEnzLMQ9bHJsCpRyxzRxRyLFDDvT9XpEy1WMNrT1hllkxHSXuuoZq2SDZuQHQYYYIe0n4vr3GGRV50ztMMe/dxhNpp9rYdbjMQxrrslyDTL5Nhjn14G2OFDbjDBGitc446nvYqt2Grl8wYfxN+XmQ4p7xQrbDLs+4nVbvIhhnOZt9bgMTZiEDvEtodL7Dprx5hQAqFbJf0AW4zwATeDfShps/y3NUgWe0+s0SPMO1IsK7NAuhrgpUgMQOwPumYaCrUODgVsC+BVAq+UBDoW1cJzLPog8K//1tac3+hXD2YG1gBcansh5yEYlyB3GR7UjDXGinm0cdl+dGTQ5bh5T7t9DJVDDOi4DPyOvR9VTLrLJnvkeOhAsQYCAiYKFBnwulS1lywlVA++z/cdUMpEf22qHmOsangmhmZf1Jv5AJ6076uem2Il+kRZ9KiGO6DPZeepGAAlW45J6rXW0Bp56m94GKCOQ0PZNHUD9PowKbPOfQGo2bm81ANPPgWW4cEOPFgytt6zd6GyDMX/BmNDdkLpsXkWFnfg2hWYEw7/fTv/Z3UgDWe0Ixa2BqXqmYy5a76vP+LHHNHNFiPsOUFFfnsawAyzhfzvBIbnKXFAXwxG1P9vY+nU8me3PnOAbix0x1KoDa/ZZiiIHh9wkxWmwmvugL5YIxok+H1+EvvsHjkmuc8Eqzz0azHGOkYOsj1BdlkFivyIH9P39IAWqMXAuE3YqmEJw3ljSQLwuTPuSuaRB/YsbH6GMfqu+M9ftWtGzZ6HoxOT5fZnoJ5uQ1Y0kjpLbdckEcSCUSceKXDVcIwae5jyrsv7WakJixQcMxiPc2EMZqtHpMjQICRFjXtMscUI/eyhANk0NZaZIUmTPXL0U44h8X/odkx/0+trAfRedONL8+rYCxNZkwn0Yb5lY1haayqmRkY3X2SDMeSxY4y+h5iYM+sT797wO1Fy4wG9kSQmOYLYgPL4sSK/P0CY6yzFVFWNsxiCYigZQrrMDoMsME+JwnOsjKpvptqcJHFIOFouHbwupiaaQ2yToRoF2RyLjLAVQJKYbmIW3GE2pqSaaIMx51oBNMkrRJ0WnVq/d5shLmPykVYQS0aQZixqjCtN1QQc7DDAFCsefS6PmbongeW4y0ycN/NnMANWJXXukQt24DCbIem8zDbbDPHP+SdB8C9RYB9Ldqw6+1GFjj5X1dlhamSViiafF5N3V31jsuQdJdToYd1kOEC61gL/Jh8wxT0UcKKJhX6vNg3J+MRGE5hRcPB0lA0KFIPFeJMPkIQWbONU8Swp3T69MVlR8STvJjW78iMQwClPFKVfmtGqzYq0WCttcZshVpgKSY+xuzLPAcmaaG0xQpbqcywVeazofmpg/hryX0s/V6AaO+L7Huohin6dFK/x//k6lp/fuJeaSDWOYmnp/u9zRpUmb2LzjTqLRIBzihorTMXkfsSZY02Sce82SXLsf9/2yi9PKcA6AYlT3HOGlQ1I5ANXJxWNSooaP+Ud7jKN/NGUvvoub4c/hNYaeaJqcrjDIAp12WCU93mTj90jZd8nwgf0Bkin9VbsLzCmqSb6TR94aJ1Tc6DUP8mR5bXUJMmEJ2mKpVqkQJl+3uT9kJRIFmIQX7+HXViSuBqYVqsEMKC85CCfGCOtrFv7MxmAbZZqFMuS5L/L2xhr0YrMFaZCrvQBN4PNAcR6vEc/E6wyzJaz5nac8T0W95vWxBvOCDE2hr2PziEQjXzK2YNKUdaEXIxa+UiJ1VHH/DkLFDGZx35cNxVtOcr8gJ+FLYK8RxI0gzUp8LJBglE2mGYZhS/pJeZ2hSzLTAdwt8x0NItd/nsfMhTN8bEXne/zZgyhbG/fRz5CeQfwtP52c8QMdxli22V/tVirdhkMQHXDE4BtULSEUumNSWCeZEcOHa8xgYW1GGBnDHJ5i3WFefwNbjMizc83+PU5ryBLBgO6jHlgSa65aCxrWEr6FCsRpCJAddSZd6uMO4Bu9Z3SorUvyipEtZKeb4HR8hRurXF2Md9QsXRVc46y4cxz21PlLSnmyT69wY6Sn64AE9lrWHhRmSoZn8g3ovFJYIl4kp+KSauwgD4O3Ej9LvMs+N5xniY543Ygsn4ZZpNRZ9DaMKc/apWGA6J6Dv4Vf0DT65OKy/wlN17yurPuzJiSM1lVL9RIkXRwVc/ZNkPc4g0k55S8L+371y6DwX4Ae8bvMxm12aaz0w+wJECxfksU3Eok5yBezuvoSqzLY36dgKh5+ylzmxvOcjEQUl9bYJ4ieSZYZa+FhKDhvfbmNPUAQmW5088eRfLMcJcyOd/T9pCVhhrm1lA1sVSkQLnOnVivdb5kg5H3unHLQUDz3TXR8AfcjAFZlYwPUEsMshPN4evcRkxmPQsCbBWkJJmegGsbzBsLXr2Qwp2sHh2gSJ5JPkXhZ1IcaDhUoMggO4ywhZjsRQohx4VzgFhECR2nbB7EhPzGv/oxBl2nm/7PAicGXjx7QLC+Hh8CV+ClNAY+nWAg0WNgydJu6YTskH2tfBc4Nn+9J3tAGwHkmeKnTJE8QzxknVHuM+l1VDLADF13PQvqxRI0I+hxxEEQsZ9l36ParuisMiBsoVr32VG3HRIY1wpOK1zgnPXcjdiw09ylSJ4MVcY9jEB96aoTMsRM0wBbe4TWdcdbzv0KT4EatF8yZmQyaef4ypxdg5Eh+PIxtCcNOyoXobIIhdfMs/BSDzDoYRo7wIoxxNragBK8zMPw/tTQVJ+7RpoPuOkDioyHQW0iWWjO+4ExT143ufNY1MOmImkwxEPm+NgzCQo+uKgE228tcgZMHfU+3ydLJfYpsdy11sN5b6t9s0yOEbY88bw/lDSLzAXDU6QjrS1aG9YZJeUEoPTRUzv/yka8Yuc7ibNSk8BDePYpbG6bj+H/uwRPDuGLB3Clx0JgeODnugQcWsgMnXYtLvbAsxpcaINU7Sk3+DDuxWnuOslpJxRSCrQC+JAbSMUiUsMP+ClwrlRTH2/P1S5VMqy5DZJ6YTH4FRa1wVhgVJuuEVDtoEG6WJxiXT91b+2/6fW1AHq9HIZ0okSBguvmBfBIOioPOWM69IVhYZYKeQeXzJB4hBQ1ZwRZMSgZEBA3iqZLGSqO+hsKPuI+cHMsoqRB+bsJDBplI1JhZUBpaaurHNFNnmKY00su2iQZhpAyCZYme5L7fOygTJFCeKWI2ppjjzK5MOmukWadMVYZZ4RNGiSYY9Gb4lwsdKI6p6mzyBy73lAqnXfKJ3q62RI0eZP3meQ+koqK5aiFRf+1SlZUwElyrKJGPkvyLND0UObto6wzxQp75NhhAEm99ADIpHSby+HDIEDyf83/loSDAgdeII+wxQA7MdkWDVVeENKg59iL65N1uQjY9EIBFd0cBdsDrKjQ5EAveQ5UyfIxcyixqU7KU8LScQz3mSRBk9e57f9mfnSLzEXBfIClJ8tgXZJXAYr97MUERAxFk2JXnCUnn5kGBZcGGzPEvKm0GIGlSUq6I2YWEJMCLe6SSiva3IDEUhT1R3QzwZp/vkZslL3sxzS2tSkyWvhiNNNi7N3mdfdAysVn0s9kqPCCHIG/4a/7fCdkyK9zO1hyCmoAAuS1lGv7t7I3LL0ccEx3+EUpSECgg+5fk8XmGWftOdl2gkbIRgX6ZalS8cZSE9TXWHhuY0vS5BorzLBMF+fGx/3shRRLflFKqlOjZqDTJhbDXmKKFWa4i1KPSxQCRJ9mmRmWw3g2TZ27TPszZCxQfXY1D5J3Kxwk5bT4cVaDySsfGIEqGarIA3SboWA3fMwc91wCJglwP3uR0C0vEV2jLUaCaWygVDLW2xQ1n5Ta/mZDBjP3V8LfERaO8zbvolTbu0z781flLjMhr1CxZWERaU/Syj7HtpV3zCx3wj/VEhEzwYhJ0ER2Bzn2MCsEk/4rWEDgm/xnQeyJCUz2OBhspXtuHFwlG4CM2Ma2xzXIUeZVFqmQRdI5+a6AGfkPs8UEa/SzhwJL+inHvSbQr0aK6yzFtR1lnbQ3pGKWm7VFIwBmrTkH9MZkW3Jbsb3e5s9I0Iz3lUG4pv9qwuWvZ9fDmOPGbLdCTHuEWP/aD/LO3KqRCia5ANI0JmNZZpo0NQ7Dlfub/dIzLd8xTf3VZNiQagSZQ6tuqZKJwUKKejxXE6w60NsX7DAxx3s5CLBLzVOaetwDa572KMsANSAazKquEbO31VdHrC5dyyG//7K+/xYdGJNvWIUMRfIodTWNecnqvpLFh9JvwRi/5g+6hcJmFD4gv9sce+QpBmCuc1x1NsY6ozGABVAK9ab/viG2w5ZAwyMB/9pDejngFm+wxPVoCNWQyt4j5c2Lyd7uMs0yb/EemwyzwwCrTMRz1s2xn6dd7jIdNegC80ywFsPvFa4hNuZNbmGSVkt2H2QXeWVpTZ+KoU0uBqxK6NR6InWGvEKzXjtrr636IF1gwiA7ZJyxZ/vlcXhlA+ENN8FasJDERBLro5eDAJTFBhHjSCbyG85ot7U6H+uImMIKujOG9UasVze4HXLhfc69EXXfSkkhJrEA2GkP+Bh26yINqc3Wxu5bYxiO+jBwN5hT2wzxp/x+1MBS8AiEFgPXkr0zsU9mqYac0hh8BlyLYZ6hyigbpDn7d7Ye/Xt9PXEAqNN9xH7p/z5oYQDkYewSFGaBElz8PaAHvvCU1WQCHpQwRp57wZV3zhl72Utw8RKwQ/TiFqBmnpNSKM2xiKkd9hniIQvMs8ir5NyP+4C+WOM2GY5Qx3MCQzH6QKUni9ihIa8GvXCeQq9nspVUocHoeSK3relFP/4Vpljgtfi99meJHQa5wW1ueI1tQJn1Pk3M+muELaZZNsJCG5Zgm8eA1BrB9mo0ITt9fl7zl6DyGF6atrCLq5fg06b76E3bz7V/2753/TGRhHthEBIZ4AzaeEqVLMvMBKi/wjW6vbbuxyTPXRzxOrfj2ogZptpjiO0IAZE9yn0mvW7aReGVSma1gUeSD7kRw3tZaglPaA3Su8VNzywwgG/f10GRlmRTYWQDAymvsUIVs9qSgkyfS+dfwx+wYUuppw/2gQ47r2zbvT055KEuNXsOqu4n+cUhzKWNuffSHLRfMQbe/RLGbJ0FLhm4ffYJlFfs/S44ynXWfiHIX/2U+Zg5KmRI0vQQLoOul32YYKGrA+71OUre+yIF1NlQz8gA46ySpsYAO+T9XjS5eC1AcjHYJX0WYFshy7u8TZEC/yX/hG0s8VasZatVZZL5///1tQB6QKCMlkCai8LhgL7YTNWUHNDHNkMxcTR/CSv6F5kLbz1Np4Syd3EUTZYQUSvezFOvSpb7TDLKBl2ce7RpWtXwgk+yDxVzWmCUBgrEYqYmUkU8EBuhmhZRhsXIkQ4bCIPtFa4FddZkthm2GGaEraDOanOVsawWuVYT8VYPOfkFDLNFnmI0hCoMBAqqIdbx59hjwwFReSmkqDkKPxXNmoF0Vuh0eaOVpxjBF/3sUSfNBqOsuexom8vIbyXrm3Xe5RWSWVfIMs0yQy3MQUma5I2wygTL3uSLQSLq8jIzwRQSwKD0TJNfzQTVXAllKZ9WyBNKhaY8A+8yzST3GXc2jCYYvewz7iDvHIvUSfE+b7LqQGWKOnlKbDDKJsNRYBsL0tKhNIkCIrhCDeT5VHSHCdYYcRnIZQcVdM3E1JH8TrRhgWa6VyYc4AADjRoO9gps7sb8MLYZCumkPIuyVHiL9+KZltSl7gK0AWcHqfFr/DAZAAEAAElEQVRVISjfhWWmWWWCu8xQpp97fi9pE/+Cb31Nq89v1uuQnhbGWg55fe15QyrmU78DzFmqPHR2ZmsK5ygbwVwRu9a8Kg0432CUUTaYYPU5NonCbc6vj/37AX0xje3miI+YR74ZMiIHA4onWHNwoso9l4Froq4UJ7FDxzzJUMdpUfYJHjIUYRcKpbCUbZNpSJqcapn02nH2hkzjgN7n7nvJ09V0yCvVmkhj/6w4K0BrSzdHfixj4QFaoIQSAydYCwmlpTLuRfEpiwfJZNddYjvLnWAFqik3kDMfoLwM129yKyTBejZ1PrUeqWDWtZAsTcOwY2d06N+Ugr7t5/iAXh5iUvrXuc0wmzFcEkte7G/7/ZVYM/IUUeKZ1tF+yh5GlHDmdj3AxyIFFpiPtfB8Py6GbAQMeBliu4UJOeXsxFoU4JIVAgEiAg42JlEIjwZDGjTVSfPQmdSaWM/4niLwr5eDYHCtMkGRAh8zhzxfDHCoIKnfQ4ZC1pKhQpUsm4zEUG6bIT7gjfidmwzTTxkLNrCkSjUz1lif79tieMmvd59eesLx+Zv7EuCqoZjqlCWuc0QXC8zzgXuKCUC2YLW9mPTLPkAAqZ7NI7qQx66uUSv7SeCwBp6tpvxi4lvNZVP7CtmQreqe1aBuhSk2fEhroW1Wm2hIPMn9aF5TXqv0cRDekGK/DrITTGMBnPKWrpFmmmWWmQkg04bWJvHc94b5gD6O/XyKOa96W4oDeamtMRGsRjWD9jPnqcznKZUKmbP9wmT3Ze4yE1KhVj9K1aqvshjDw70WRiSc+0v2+1BBw8NujgJIlW2A9oMCRWa4G/XmG9xCwQ2qZ9SY3eImFTL8lB+w5zJR+WumvIbXPrDFMFNux6CGdZXxAHHL9AeI+CkWWGVrW+rfUlnsRyJoxskIUg6tcC0kbQK+wPZkW8v7fJhugzxbZzIue6sHCKtAAu1zkjbKQ3mTYTJU2PXjUh0saZ2Yn1VnVhrz3dZESZLtsxwE62eaZW5yiwF23OqgizppH67tM88CMx76YYO7YrC/BRwa09U+g8ADex5Ssb8sMscKU6x5b3RE19+flNu6pXayY8AdaQxUOrV/owZ/9RjzF+sA7gBD8NLbcHHEAI0reaBkbDCakMt5gIMDIvQDvcZK+hnvcEQ3t9yTVvtrhazbEh3EwMXChPqQSkRKE9VKWd8T1xnjoa/L6h/Efl5mmoz7qknppEFEhQyrnuasIDH1pRU3dFEQmtbuOilGWWeMdcbcuumAvljfNcjr5oh3+JkDyMaan/HgLHlCUwY2MCbYJ5j0tgwVqRvTGNh3Yh557Um7Do9PDPD77U7/vp/4tWrCs8/hW53+nkm7Bs8ckBIxZ5q7MbTXgFYkIOvv0z4Ayga7+7JjCWsuZRcLVszFBA0ndBjxQ0QorVHdHLHFSHhubzLCInNBNNj1nlmBYBoua+1WfaY9wQg3tdiTxOqTaihPkQ+46SrEfjJUYvi56DVX7nSfs0PgO5hU9sTOP0mXjg/a/x+dwEs9MDJnISNc9q91WhBGA5dHb2Ky88dQPYVqEyoKiemGJ8mLiKwEphI6dlykm6NQuQywQ9H9IgWuHdMd0m8NyqQkbMUxkr7OJmjwM37ACtdC9TLoLGhZf6ieyLmNTJME7/Az5GWp5HJTfD79tZaTrwXQG+HzAJDEEpJB9Iinv+pmaJIM4EVMOyUaHtHNz3kzJDfdDuDZhKnm07BqLDZbbuZY8unWuUntFBOsIW8HFd8q4KQPV3R9nRR7fhPaVHSdCllWmKLiCKsl6e3T6mmx7tKxVcYpko/0ygIlplmml/04XisqHiIprs6R3fjmI1UnFc1ggSJZzPtFqVa6SYbYZp1RVhlH/n0K5xDCLkC0SMGT1zLxUFbJxlRYn0s0ZaW/GJW+FL+37tcIZLZq6LQavjwl5llgglWfCuQD3JTnFxCSmAoZlNCmQnyfXsR61EIis3UxxuZYdI8oizy3RWWTcZcOS1ame02eNIu8GmCtzu8gO1Hgyb8xS5U7XEdSV2POJAOYMzldJaK9rblfIkfZU2yt+dc1qDuoV3MZ1xDb/js34/7ZYoQF5mPKtcT18Fqy813zxtNSzmoOZstkU42B2JGSuphJeDWKfC3WWwxzgw9JOuig6fNNPuCY8zAbADEiuzlGcu3Wabem3zqv2wzFlFqTat3viqj/pr+UaGrSBHkvdiEZeMbB5C6Ogg0pryjR121tGqWbY37CD2P6KXB7zSUGmnS+z5uUfGAgVh4Q93CCpoP1luQ3yX3e4r1gDUi6td1SqIkls8K1kOZ3YUzVQXZ4m3e9cBhGUnsZcXdhPhLa8LWm69kQk6/oRuG6n9TcKSnVnnEDwYoUPNL9yP3mHnLXk9q0/uv9BdCZjOw6cyyyxbD79XzKClPkKYUUbonZoMN3c/zcetskSYYK11hBUtYdBiKB1lK8KmF9UPXrLfNb80/JuAw6E0xcFV9KZRP4qmGIKPopagFIAtG4N0mwzAwzLAdoJKuDMv3MssQU91hmOgZuOwyy68W0BjZl+mNN6eaIm9xilA2UAK+1zsDZTcZY9yY2Hcw6JTPKR0zvLTZRhUwAxqNsIG8RsXm1RoiVPu5sfSAmnMaWHI5C2eSRa7EmrTPGErNhUq8iWpYYTRI+qOqPxjpFPRimBWf2VLBE9FWXq4z4sEmejGAT6CTNGDaOssFDhoI5I7P4VoaiPss1D3b5dY2P/y6/XuLLOO8PGWLZ9+BZ7kTDdUAfCqYAa0aSNNlgLAZ9o2xwnaVYJ0Y4T8PW/jfu4quU1ziSQSo1cZJPSdBg3IHBQXaj3hLTbM+BmJqz4sSCGmGLG9wOgGqIbTYYZd8b2iLmfzfu3oxrjJNxOCVNLQJl9P6typAsFW7zOvKIU1LqKhNRI4ihLJWEhpQaJuj5aJUfy2t5z2spMWEAv/drLgvvZ91tb0xpU4094Ca3Yl8A+K/4Iz83adbd1zhJEwUoie0hUBsItvgtbnrjkgtPSzGMtd9ItrdHPzsMonAh1Spll3xpOLTJMBMeOtL6HrL60OeULN48Mrt8rRzxoUEB+WSrATNWSzbuPcmlf8ifOsttM2pM8yM2lvabvB/3e4aKewPaPSMmnxrhGQ8vSVEP2bGIDilqLDKHWDVrTFAlw1UsTVshLzXSMTQwAG0XedJ2+fnPOmhofdFq1HsiIIiZuso4WwzHuQZLGd9zWyNjpJt/5DirYaMwxT1kM2Ckg0wQOwzI63KLoGTU3mLVJnynl9XEN/118iUmNewwYK+4CcyafLD4ADiE60MYsFR0oKMGfArkLM2zcgKxdVyCYskSVx8sweYiPNsGOo0Rf5X7SHVznr5ujL1thqLe1x55h+tupWTgf9J7KknTJbmU1dI2l+njwOuyY6ZYoZ+9AMkrZLjLDKtMAHCNFeTV1+dr1wajDgb3M8Ga1xW7DLMZai6p8BR8JNuCBeZjUGm2DqvkKYWlkYYskgF7SxXsRrogewUKQxh78pd+7p84Ay8NL+UtyCHb4z5uO3B/07524TJkr/rP7Fhabr0OjMhuIutr4bHXaMXYozSMB+udplihVUG3zVA8q1q3b/IBCt0TOK7woSk3cRF78Uf83+l1iHaGu1TIRriS1ep36OMg7IEGHdgSI32MdSZYDZApRT38U5eZ5jLbPvxfpc/7vFvcjH7wvIc0mf9JR8ZkzUtYwnADvtgmfPXKd+1eL4xAe57wxWMHHvzE7un2PFwbgYtXgbfta42Ggd0A2TxI+NDBKcNsMcUK5t28ERYuQADHt3mdfidOyZJN5xsIIpjWdA0I9bVththgjLwjH7KJk3JP50I1zmssMO01u3y3zYf6HmI2jvHgb15M+NpSbk1KJqmqJCdCnVU4q/gf9RtF7DpFzWep8A4/Y8DBwCVm+YCbwQqTDCHrUwPp5Pfp9Qc4ibynSo48z7NAwxtlXaQbfBiPjaS92wxRohAGyd0chQxAcgzAwSWTXKkBAvNiAWJiAYT0YofBkPVIpiVPHzgHOqzgMJRWm63Mw2UgvOeT6gIlzC+u7HKUHEr0HXSLWyVZmsF8MjTwCjoQw6V1AZningMxVuAo6beIpR6KOv/Qb2KTL68z32LiKGACjI00x8cc0Md9n3qKlXSfq0gGvMEoWUf3V5kIcFDNa400K1yLBWnDZSWagFe9VJIswwK/NxHjRQCnUmgz7nGiNFEDn7fiQe3jIFiMKrIEpnRxhPzQTHJo/hRNzCxfTa2aGLEp95yVJ3AmHbsL8bWUs0/ELJAZ7RQrZFoKR0lptxlij1x4leQpUXNZhSTrkmGI4bnNEGtM8D5v+nlMhsa/5rxYFZerTLjMLo8MlzMOuIp1e4T5V93gtp9La7IF7u9h6W+v/D3wjAJoc4aDZKBi5lz2jVnpYSqSNWEXcC3mpaZCk17E32eSWe6EqXArO/WA3mgmJQcsUmCKe7zNuyRohMylSB4TgKUDCBIwkaCJAnbA1iTJ2eV9k/fvX2SOIgXe4y1u8UawCSzN842WxnXT2WcNmiTp4wBLca2F1NR+d4MxD1fRRFgNkSjr/5T/ws2YreiTZ0ovB4ywxY/4MT/gZyhxHeBNfh5rI8AQDxlnlSqWegrEJi1rhxL5WNvVTKs4AAJsqPl5hnP5vvlAHcdARoCUnn0b1lRJ0CBPiQlWI11XrDLZFlxjhW4HR9PUnG9RYYI11hmLvSzl91nRBxAbjDpYUI19U0WjPq+tK/fiPpXPkY7T9vDj2E/+2cl/Qj9lGiR43cENgTCyeJDc9xorzrjpi/1rinsc0eVgqp2jIbZjug/4JD8bwLIGTyp+X3VfMNURWo/uMxlyORVFMojOU/KAD5OvAD7IOojiTe+xw0A0HCZ93Iy1087lJgpuGWUjJHUbjIbv2SjrAfIIWBYzWpKgA3r5zJucb/Lrr7E05CO6WGYm1qAsFYdl8gGOyC6j4lLbHGVK5KMIVzK1ZPeSY4kJpem5pM1gjZKUCmJfaki3w0A0tNqL9Zzr1Rrmk6LmUtXzdUMJrQBdnMtDBaaUXVy+6n62M252blLeXNTIOtYExg6w/WCfA4yJL/m4mL5JjNm2zLTXk3vBmkpj6dBg/mxAsAhU89iA79hZVuchGSXyfm3yiKFxwy1GZOouthngv7+OFB16/iUxlWxJCocZ7iJWkDH7N5hjkVHWqZPmJh9wgIWK6ZxofRfzToNggWmtzOoqWa8d1yg5SaBEgXXGUHqmnnkxX7RuGyPGWGMa0hYpsMirLpfOc59JlriOEkH1Urr4lqs0jjCT+xVPuNZw1gzx+8lRjsGbsR1LEdQz4mvGuDf7i7zqgPUaQ2xHr9Hvz4cCnNQbHdEdSps97znUzItB/GN+FAN6W1vN+kLA7bqDLH/xq3P2rO1Ng86VGuNTH0yZVM2G1XnvS8RQ/pPyP4rPu8Y409yNGneKFao+4JKd0jf91d6GgXOdwCUDL1gxcK9bTK8/Ag4teCEr838w5tgrkH0NuGxMpicPoDCIJeYOGrPpQhvQBlL+qE9N+/BqkvsUKFEiH0MB2YwMs8UY63Gf6vmRdYDILtrH1hj3Ae0IJtvfi8HCGuMkaYblhHpwKUgk1RbrdsJljDsMuMjTnp8lT58W40+qM9WJGooLPDGrhsvR+wFkODWgp7PlfOaBYwwcdVCuWrPz/IUYeCXzcqucwOKO4Usj34bJQYylp3ThE7ueI1c85RaQX3OrpQ6ALLSkJNG/LzMdCgkFLlkQ0wgJLOBDwxYFMx07oclApXOCkUIltR4JY1DarXAK4RxgrM20g4Wqq4V9SMUHxCDzIUO+H9VdeVZlnoVQHkl5Jx/PbL3K06fAK0AJ6IGXZu2ezw5C0dNr6cRYqyeY32SPp+KuQPlzoGZekSzZNbt4xa7VS/4c0A/U4ZjOwJ+0f8h+QPWqWJEJmuGPfJ07br+2FnuVQu4AD3sdpEieLUZC+fYaC9zgtjPyJ6JW2WEgBlw7DLDJMGPunScVqr5XgxQlmf9Nr1/Pae9/4KtCR0yxdxhkmuXnjM8zVDy9sxIbdDfHbDHMBKsc0x0Gnq9zOzYTsXwG2fUiPc0yM/RywASr0cgkMb+gY2cOyT9HjbIawmO6HQypxgZiBVAN8wvrj2ZahrGiKOtYdxhwBtIuSsSb5D79mKHhT/ihT/aSFHwpbJLgMtsOgo0yzmo0fGDT5iVmg4o5zJZ7rO0Fy6nhzU3dwZYs5sWTYy9YMEapHkAeBEqVNZlLklmW4vOkvaUXc8y8DExWoWZKXoMyTB5kB6Wh9vm0xq5/IRaADS8ubGHPkPUG/3wqcc72sGI1Ged+w+V5q0x4howBQ1vOykk7ALDIXExC9cBKPqziuhKtbzZAFUl/JJVtkojJeM0p4t0ccd0DIYCQTVUx6vAbfMA6o8iDbs/PjXzA/gHvItZagSLrjLHAPL/PT0hTY4nrTLBGK4NKEsxeDljiOm/xHkvMYrLMMgoZsEIoFYmViuTW/Som3pazeuy+N25mkTwfMc8195qUXwVYc1sjHXJ1Y3za4i1wKEeZXQYZ9wYhQTO8tgQwArzBLZSIK7aihYPc4oin/B//1lef37zXn/5n61zs+JR2zjijnSwV9vkV7c4+PeMjPqIdk5rsc8YGaWpc4BkPOaPJWvzcLi+S5xF3qHNCJ2s8o4ctvuIR9+jhRb6ii2Mu8AK/5MDBh4d8Qo1TVviUZ7zIV3zFi2yzx0t8QZUO2mnQxXFs2Ak+o0oHF7nNEkchDT9lkzPaqfMVTRKc0sFT/pIvSNDGz1nzcVgdk0j8CSl6WKaNp/w/6XY6eZYGGzzmhE5OeMAViuR5hU1e4v/FF7zET2iwTt2nfY85oYt2zmKQcpFDTsnwiQM+bTwlQZPPeUKCBi/z59zhW9xxOOqMO3yJ+ZjYlpniKWt8yT4HfOFrxza/4jIv8Igmn1AnxVecefP1Cx7wiCRN7mK+mJ0cc0oHVe6zy4tcYp80NR7xCLHELvKEJzzkCy+YOznhX3FGhgqPucd9Hsc0vJ0zjumii2O+aJlyF8nzLXY4o51OTuK8A3RyQpkcf80Je14YtvGUTk7Y5UXqfMmZX7MFHnNMNxd4xk9IUCRPB6ek+b9Q5YgLPKWDU9b9XOv3VMjyAo9I8Nd8xYtUyNDBKW/yBr/kKc9oY51HPGKTLQ5I0qCTE2q8zxOStPGUDUyCW6RAO2f0P91jp83kYd0ccUoHZub+V4BNU+1+6yDJGW08Y4kOujnikB6aPKSNp3xGnR33gDqhk6e0McRtdnmFds54xhZ/zRCX/Dy38y5/ThudHHNCF3sc08YzZBnwmEtscMIj+nnKPUpUWOGUMvvs8xXGOq7RYJFnpPncZbJHfMhHtNHEPGW/ZIgqjzmjnae00SDJPr208YwcZX5BH30ccEZ7gLvp02++5PZlHlLglARN3uOt2KcLFLnPJMNsBRiwxPVgwMqDUE2cGElidE5xj3XGmGMx5D1bDD/HMh7AkmTFTrfk510mWA1p2DmrKIvCp1RPZKlEum0KC0no4ogNNydXI/whNxhk1/fHVQeaKizyaoC51qhacMa6D0INAK9GXQUa6uYCpOr35kBBX2LK2FDErD4WeC2aJ7GUa6SiZh5zI/oNlxvrHA2ziQJbJrnPJsN0cRSMvgnWeJ/vM++MgtvcQAEyvRz4kP5O1Gfmv3WHAiV2HfgZY93lukXExM050C5WmTw+5TksaewqExQoxnkT2HqbGw442HGuMxq1Xas9jIbBYvBYDVoPkFTDURERwPzxlIjYzRGrjCOzfaUTK0CoTjoGTscOSOj3ymqj34cDGr5WyDAbu9Q5617D+2G2oskUm3OWOw4QDkfzn/f6U2EENVJ87IyQClne4j2WmY7+wcL4RjigN54ZMPsd1aLmZW4D/l0sbfp/9fJ/+tzgQ32TWKB9GDPUrs1mPNsCA7K5avyOVjN+AcJ79PN93ufJv5vl6N/7K3XJTP4vKu3TvcPOTiDrARn8FDiEi1PgNqM82DTAjotAEbgC5Zol3z7YgSsNoMdZZUtA9TzEUb678odfoZ9eDhj1ILIlZpnxwAA9DxpAKSSnF/OunOLec6zmAXbo4yA81pWu3STJq86KXWQuhgKbDDuhoxJDFlMyGdP03DO15tSRxHNDBN1rOwxyjylfh6xXaZII8FkDUQ2J9uiH03U4gWfAhe/Cs7+0c3shB8+WDFTNzto5vvgA+I/hwr+A9oYlp059YjLcs10PJekhQL1nZZPltl8Euu3fLRTtKkrlzVJh05NO5Qmv9ahI3oFO82gtYQFux95/tfZ4IgpNcj/knZu+991hliO6mWGZIvnoEVeZYIx17+X2glCwTy+SXEt6LwntMjMksCDIVSbodzBY10r+8grWUxLvErNMseL9pAFXC8zT9/S/M8D0IQaCdsHZAwskyeUsAOZZAy702P3Pof//FXhpxM7zpR5LFy64PPfBZ3BlyHwptx5DwcNkGIUenqBQNLGBG5yrz5SKrv+XCg9sEJekyD2m6MNsLgSMz3In2PTdHAUYrtcS15nhbgDWBVeogHk/6u+GNZxjMrI22OYyDVL8Oq+vBdDL8ZiES8rkr7FHP0pu3GaIGiYnFY1UoJReopFrugWE+SIIAOoLpsZPeYd/wLskaMYkS+DTAX0hy9R7SaagYABtskd0scosSouSz8AY66y651qZHKOsk6cUQIeO+a7LmRTLLrmQsfEyQUnVq4FJdcwMt+FzWkvxucMsMibW9Ewyxg2XEFjhZKy8DFVKFNz14CDASiWgyt9F10JSEQD5FhwxTIkCb/EeKWr8KT+MRUWyzW7M+0YmxHvkgvbb7yCkmBCS2VpBXI2CpZvz1El5B1hkeQr5NoyywSrjLHHdi6L+5yQ0CgCZ5i6KeT4Hrg4C3dY5l3eLpqMGmM16wEQCyV1s4j/nIFSTNDU2veAwj8AxZ58VkEE64IVmkknuM+pTrQ95HVHbE1hAyU95BwBL/7WiSlPYBA3mWQjW1jVPHZPsNU+R93grjt+YnaXYKAUsCjw+97TbCMBZDLExl/FOss4ic89RvBM0YlOokEVGqrMshczHWI0DAZzqWpu593KY9YvtdEQ3U6ywyBzLTPOUI+D9v6VV5zf3NcYGaS7wlDaecYEz2r3JSJI7eUK1M8ljj3rKsUfvVxWqLyZJNJo0kwkyXzWgDRq98DTVFg1nH4+RMXx41+x/CVVIDp4ZuPP0KReePgMgdfSMh30DJJ82eKHtEd0c8ZQLXG485Mvkt3jh6SNqbWkGjvZotsOzNkg04cIjSF4+C8C/96EZCp+8lCJ/sk+1Mxmg1FPa6OCUHg5pf3rG07Y2TungjHaG2CZzWuNS2z7NZBuP2l6ggiX0XS/fo9kJiQO40rtB4gC+9eKXbDNEV71CI2VgVr68T6MbDlI9DJ1+SdszuPB0n1qmjfT+U+o5854C+A5/TRtPaXtq/hPpo6fUutuotdnXK2RIU+cFHpGlwgmdDmyesM0QV4/W2e/u4pQO+inTxjP6y4f0dxzyrA0uPIVa5pSuthMun35BveM8HOOMdr7Fl3Q0TmlPntHGU75dXedRpo8OTrlYqtLTvcmFOuRSh5xm7Hp/66zIhSOgE6bqqxz3pTmii5f2i6z3vUyKGj3VCicZk7vnv9qnt/+AVPUZ3d1HdNePeZzqI1/ep9BX5FdtL3NKB9/iSzKHDeo9aU7p4PLeLhf7D6OxSp02aHsGlUyKTo7p3alQHrxIhgov8hWp0waNVBu/tbfGST7FPn186bIFyfrT1GjjqUmvTiucdqR4xgUaJLj09DHpr54ynPkSzoAEDGe/4MtMgSRnHHKRdmc9p6iTO3lCox1qqSqndJArPbFJ7RE8evEFXqlvktTW2w09HHK5vEs1lySz0+DK4APS9TqJJlzKPCb/1T75zD57PT0kaHKBp0j20s4ZL/CIF+p7JFJN8uV9hju+5KvOS8jjsIsjXjx6TLPdfmX/8SH13gvUkynOaGfgaI/97i6e0sYJnaSp8WLVWIbFzCWe0EMXJ/TxmBdOH1PoKJI6bVDtSNNVrvFCdp/awde0AP0GveqkWeXlkPTcZ5JplnmP3wugQYFNS1xH4T2TfEqrKXiKWngzprGgG1mWlChEw2HSwQlucJsNxoKZ1iCDWPFF8uF5qWJfRbbUEcaqrzDILmCsD7GdlIgrSb5Yr/LWkQ/gLHeC3Q/G3FVCPBBsxS2f2CuNVjXrHa4zzwKjrCNp6ITLTGUJknNZt2SkAi5thFELJty7vB0+xkpdB2tqLLl1mQ3Ggo1Y8fba2L5jTLDKHIsR4CPWuDzwJLNU6MK7vB2DQLHLR9lAARZwDgqVybl38WbU87J4yGDyuiVm49zkKbHELJIZZ6kEwDbIjgOue1SwICZdqx0GY1gOBmApgVGgsSTO8rjLUg2J/DTL3OE6KerMs8Cxg4XyUe7lgBpmi5KkGbWtPq8UJbpGeYqRAp9z5rMA3ZIzJM1zNu116kAw85Wyu8EoV7nPILuUyFNzKTQYoCD/MnmF77mcbpJPsYTNrKt+1phmmW2GuMN1cpQjOEEKALEjBe7d4MMAW4EIDmq1YJFPbZUst7jJdZZYd3marGQO6OMz6e7+nrw2l43phQdYtHdi+13D/nt2Ao0HJvVkxMC8yiG0n0D7ELAJBU/KvTIIJOCsBO0JrMs/srU3hyU+v827AE7gsDVHjLxVxqNHFTi2ygRKUt1miB/w02AjaY1ukmSCtXhOB9nhA97gbd5F1i5VzLNe6pMyOVaduTfKBnsuv9c9ssoEb/MuaWrcZYYEjVApfOBJ2t0chRJlndEALVtZehb4sB/3ZJG8eRLW4IKnrF4YhLNtO6fxOgU+d8D1XwBpePbQwb4ReLZjP/fFJ/At/7kLHQYKtuv6HQIXTeU1wRrLTCNriAQN9/p8GHtNkTyX2UbKhFZcZJ/eAP1MgbYT10usRnn4aigy4koPrT+6rrIJK1CiSoYuTN34Nu+ywhSrjDvho+6Dlz3HD3KxVvY5S7fRwvITkaRVhZKm5vtSN2/wAYvM0fYM2i74B/u3LTN74OIsnH0E7SW/lzv9WuUwVt/PLTimUITNzwzMvoiFwrQnjZ2aTNj1owmJt5oomwBgk2EPbryHVH8bbvk24oF+Apq7OQqsRv2FgFTJu3XtpN5bchzp2Htffa8wmzI53udNslSYZ4EETe4yzUbLYHLN1Yn/xvGHv+n1tQB6X/ISv8U26RYpwAx3EWVfjRQQm6dJOHfcT6Pk/mUVn7Lu+o3RR420AzPlMCIUOLHJCEM85IA+lB6opE5JIgBfgGzjEr1UyV4qArYYZsCnWfLQkPzHvDDW4uLbJKvocovj2DQlHRNdWbIfTWM1deviKFIsN90TSObE8g1Qaq7AtVXGg7Isv8EZ7rLDoPu4ZGOqbAteiRx73GGWNU/SlefA2w6E9nLACv0OsOZpkqQ1IUtJaDr/kmXqPM/xMUfupDHKBk0sqRfgI/eXEtNRKWS9HPhmsRnnp0x/BKoMsc0/5b9ggzHSLiUZZJfb3HgOzGySYIF5plkOYO18MtgIFlqVTEjDVplgkB2XaPfzJu8Hyt56/tQ4GPBKyJ1tAjQSxaY8+ixgZR+ZuFfJBNqviGolXo45mNbrbCrdZwpW0aakqcoUKzHR1WuBeWTmLpZqkdEA8FSIHfh9IZ+xmjPvTHaT5jY3uMFtdhjkmG6usRKLvMIwUtQZZd0Bui62ucwIm2wyHDK5eT4K2aE8rgqUDAzCXM0yVGhwLjH+Jr86Sk06eqCRgeQRPMvWuFDHNvsatLc3uJR6TAenJGlCHVKnDRInQLKB938ka9CZOqarXuEo1UWaOp0c03doY9tsTwWe2nvWSdO7X7EVXn6qR9Dbd0D65Cl01mi2JeiuH5NoQi5ZJn30lPRZFZ5CooEZMpwAh9B9WqHtGaQuNMzLogKd3XWo2vFfTD2hvXFGKlmjjWd07dUgDY30UzJnx9QybZy1tZM4ts+dzDzlYs8TuqtVLjy1Y0s8A/Yh0WbHnDlskO8pktyD/u5D+71PIXkCvRza+XkCJCDd8RQOoTdn3hZtPKWzXOcklyLzuGHnIA3pr56STlfhGVxsr1qxlbNjyjw9JNNXpXO/TmffCdTgYvsx2VSFRluSdL0eXisXfOdMV5/aUKcBmc4GqfZ9ElU46TvhhE4u1qp0JE+5eFiFfchn96HdzumFp/5endCWfkrq4Bn13gukTp/F8bY/PePltodwCAN9u3Tu1e3cv1CjlqlCElJfPKMxCJ2NE5Jn0J46gyfQyCUZPd2k2pEmc9Kwc9vT5MXGV1CHdhr07leod18gUbNz39lX51mqDnW4VH3CaSZJ5sjOX6L5FE6gvXHGS9Uime4qbX5z9dYP6Uid0lmt0UxA4kvozNRBKjS/13nqf2/ChSfQNXLECV0M8BUp6nQ0TknVnsEJJDNwkMrQv3doshgvjl988SuSR0AVSEK6u0ZntQZn0FFtQBWy1boBoyeQv7RvP5+Di51P7P3BivWUvc+30iU4g3z7vgGOSZvodlQbnGTSdHECVUj4NaMBqQvPSHTW6KrVoAp9jWOqfUk6OOUCT7nQgGdJ6OKE/vpjjlJdJkc8hhQNEsdwoeMZ1OBpJzhW9I1+mRTcwg80IN3yIaKaAKXUq97SYGqQnQCkthmKAQMY8JakyW1eDzl3FUuknuYu8iq2ibc1oRuMhl2G+bPVuOoJjfKLlPRfZuHyVVtgnrd4L2odMKnUPaZYY4JeTG5twzGTrtrg0mow1TryC1M92udNkKTu3RzxX/OHIfdZZ4wKGUoUYpi6zIwnlqZoeGNxi5v0U446dtVDygBmuBt+0MNs0udgnvyArV5fJuWQXJWM1yJJhtkEDJxRAySlzbmNgjmhmR/RDd7ivaj5TIqajzAjNX3jrLLGRLAfFb6gobiuzwZjjLLOm7xPzaWddVJMczcsUt7jLYbYZowNlrhO0mttk9X2hnexjPhN7pePerqXg2C/CYxrkGCQXRdDHQWDpYuj6EXETsuxFywXEAsj66BcwwFHk9ePu5WQQovEyJNHU4k8DSwAUAmRAmSvsxRqDlkLiO1U9iG77AXK5NxH0vqSJE1nX/YzyC5iM8qqQkPxlNeHU6ywwHyw6YbZ8qCqAeQF1grmSWFUoOSMyWMUptbNoHvBmvevSAsbjIWdR9P7sm/8KwMX++HiCSYPPMRSbD8xhhI9WB3VdB+xNAZ+dEJ2DpMqpmHzF5DFAYyGAXtPas5kytj32D1RC5n+gbOxhhw8yrEX9xjgmqgJxllllHUWmHfp4SoNEqSx4MQF5pFUV+wikRjOrQL6kA+fVFFNErH2LTIXw4g3ed8JAk1/9geCMGB+8WMoBEwgk8gt11hhxZl6e+SY8UTb8/AZW1MG+SvohmdPMQbXA3jy0L3YPATj/jJM/lPg/wTUYHMTRkbsWjwpQnUHvnXJrocYY3QCQ/YeQTNNAVl4zCWkUJTfNVg/KWJLBbPiEQFC+IPwBIUm6vPddjZ4N0cxHOnlgOsssctgkFw+4Gb0k4vM0STJHjkUjFMhG/uWgsP62cNSjFMx2OzmOABYMYz7MYsrWfccYWnls9xhkB3mWfDwvsGwfppjkQ8zPfT3HVL8BArvAItQPLTyq/rAALn2TvOSLIxgstvHmES9BwO/yyaDfgyMuC3ipR6TSrcPAN+DZ38MF/qg7ekzSuSxxGRb72/wIWUnON3hOgWKTHGP+0wGY/GAXq6x4jZESXLsIZ88Db+E6fSzxy3e4LqvY7KZyFDxoeMui7zKGBuxJ4yzimUM9D1ndSCWvQGo1V9rOflaAL0HXOGaN/lAgC5CQZXaKgBCAJbSR4x6a83+uZ9IgxE2Y8MAY0RJzy2/oV72A6Hv5YA3+IA9crFx6OcH2WGPHMd0xyanjXyc1ShS5N/xEfMMsc0IWxw4vd9SZSxhcZJEbExAPIxLXGeS+wGSHTtDTn5okrT2+zkqUAqfJbCAhC1P1pOx7TIzATTJ58wYUxX3HOlj2UEbY3XZ75DxZg1Lx5QsWOCMfOfMa6DqLMl1ihToZy+SdhI+bWydyMpna4vhoJyq2BIbKUWdMdY5ogvJoDX5VFKhiliZ5I64bKRJkkF23DMvE+lAkqjIb6YVlJWfm86vPKWyVMK80o7VZC/aIDSll5dPlSxllxwK0NS5NW+yfIB58guseiMyyX3zC6DKClNBOc5RjmnLtJsh97PnrD+Tbtxl2gt52xA1JQMCBJU3nwBUK8ys2THAuD9YLzVngQIO3lpaqWTlkl1IkjzEtqfnJknQYJ1JRtgMhl+aetzvYgRqIlumn1HWQ25u72u+mG/ycxaY5zq/+Ftfe34TXyf5FP+j/+xl/oOdB/BL4HcwL4jPsCJgBDhpQP4Jpz3Q8Qnm55GE00uQrsFRTzsXl86gs2Ib2eYxv3rtBbo54tIScBm+yneQO6zR/ks4+94+7Q/g2StwQYlpJ0CzahKN7z6Fk2PIw2kndCxWraD8HJiFx/kOLm2e2ubpps2k/Xu3sX8H8xq5BDTq9js6Kjy52s7FHfjV0AsUTh7RUQJOnnI2VKO9hAE7J8Bp1Xbi1zhPcfscTmdhp/NFXil9BR9V4H+KyUZ6/FjSLSf3Ezh5rY3Ow6ewBKffOybRgPY7dlyPp9u49Etsopfw97kKp4PQsemfVwlbj4F03a4Hu/Z5doCup3Cxbsed9uOX2e6y/fyTwXYufn5mx/QLYKDOr37QQ5YuXvjlsX2+77Zch00s3evQf//Dp1CD0+lndJz4+zaAwafQWYUTOL1Sp8N//mwE2k+e2HstwpN/2M7FT8/4xXf+QyZY5Vu/AL5Tt4L/1Klsd4AfPuFJrp2LD8941lPnwgk8GurkhY+OA9jkc8JImEKDJ1faufhnZ9Dln7/nGb/6zgu8vP3I5BL5YzuOnhp0wklPG52fPrXPmuRcinJq91b4+04BOxWgYulxv9dB9+Ez2jfhs+mX+fbmr3g8UuPST/37nbTxZKbBduIVfmvzc2jAgyvdXFk6xFXI0AmfjbzMtz/7Ffyl3zOX/bPtPCPCZB/bNXg03cULD44tKfCqPWvdh2cUL3VSeHzIhQc1Hs118cJSzc7RA38/MKCwbP//q+kXePnBIyjBv3ktx3/w0WM+f+1FXvnsK3vmrh7zed7v64afE+qcXYH/zT9LkRj8+zHgUM13gw8DZLjOUoBAYn2DAMCDaGwqZDCf3a74/3kWAFjhGjf4kC1GwjtObDFZtgi0kBRxnoUYnlniYh9lZxiYt7B54L7ObTJUg90/x2Kw1ofYZoCdUGEoLf493mKORQ8zMj89BQhICmVejVcZYYt/xR/wR/xX4TtnTJKCy6VM3vnPm/+EHyV+7OCm1TeSNiqxT83tfSYZZ5U09QDithhhjHVmWSKFBae1qiS2GeKH/ClpasywzB65ANRU24nd0cpQKJJ3hUAx2DlHdIeESGqXJBbG1MURKa8btxnyELA+htnkU2eASQp8niZr9Vs3R+FZJ4WGvLcOfPgoZqbukyO6mWeBKpbmucNAsJAKlJhyJYSAhZr3Jgbi7lIlg0KeFn2wLjahGjCFD+Uos8R1+r0f0LXXvb/KRAC6WSzBXKmiWcwra5FX2WWQjPt0ytf4UyapkEXhTAKA5QsuxZNYmTKgFxMzS4W3efc59o95KZpXqAGcW/xL/sDlaMfIO1tm7Rpwbzi4nKXq583UGbMsBcvWJL0fs8Eo/eyxyTALzPN7vMcKU0yxEgmSCp8yRc1n/87Wo3/vrxqcPYH2B/53m02ZrHYa2HQwrwerYWoWtjCSBg7hzja8BBTyQCdUSnBmcy37mQfAiybLNvlqnQXm6cWCsdLUuc0NcuzRxRHm59ukjqVsD7OJkkqBuG/kNStCyjCb3GcSpTMfOdmlm2MO6AvAd4a7vM+bAYqL3dQkEWv5eRhNnvd4i3/CfxkMaBEVlLgr9ZrUSAP+bMjPV+SOkkuFTXJfhTrm4bYJJOGi1wjFBxaKMdwJlf8dbJ0YuDoyAuWHkJuCXAPKn8L6YxjugfbrUPkFZDvh7EOXOh+6x1sWODIbESkBRQhKOImn36XyBq4Z+1ukEIUVzbPAOKtseK+apeq9ZSWGVQLlDuiNVHizVdj1ftXIL1q3ZWGlwZjIF2/zZwB87PJokYYG2Q1lnflOW8qxvBnf4y3e4j3kUScmn8msPwyPP4AveIn+zGE8A/Q4Gw/zv3uyAhe/B/lTrO4q2fUpP4Tc96CyCNlL5h15fdDeozBoac8Z+Ri+ayEZPIJqKkOWdPTjCZq8xkLgSBn/tzL9XGabLgeRu53UMsEat7iJrD4SNPkD/iUlCsw601hDvzXv1bVHm9TXSDNiU95nkj/kT9hiGHkA10kxyE7IlS3P4TL9bk32N72+llAMSxAc4YC+8FI7oJcdBpjkPiaT3QLMU8+mlKbt3sf04wWKYSQIRm9UumuXs4tG3Vxzh4F4LyX2HWD08zyWcKqFwgqlBvKFmGaZNHUvyGwKnHUvlVE2GPX0nGusxOZp4IiBaJouZqgGyAUGYgoUkT+gGG+iCANBc5e+WhK0Oikusx2A14GzyOT30c1RmMkrQVhAi/mtrDPJffY595kp+yIxwWoAOa1+GPfcsHeHgVgkBXaK4Shm1wrXkNmp+SAZS0jFhqYKekAsuKTo0toxmiSdfn8cPjkG5FUZZZ0VrpGgQYYKC7wW9ORlZnxzqcY99QFvxGRIAR+6Fgp80LGosNxihLwDUDsMMssSRgE3GY2lJo8EIKiwC8lez71K0g5GpqKw0vRam9KYg21aNCVj7acchdIBvfxL/gDJlncYdIbBcEisJz2hykDXRgDgBmKahD1NLYA1MHBcMh4DOncZc0aBGRZXgjkww3KAjQf0ss4YuwwyzCbHdDPPR+Qoc4dZGv55KmTIeCG66VNtRX7LvFUgus6/zFeXfk2jz7/rr86vTI5OEk7+o7bz6V0D26SWsQ3tEwz8uuT//xA6HsCFh3Dx/3FmQESZmNB2c8SlxVPOrtj7vPjnh7R/Alz14rALLjQw4HAbA7XywIy//+fAkgNbmpM0gE/h0meneA9or7vADnQsY7z2ETuGk5G28/SpGjwbhIt/cQZFeHnpER3/Nwys+U4H7btAEwOFRrBN+tR/Nmm/99mUHU83x/bvh5x7bAwC79r5epJrDylDMZ3nV/kX4BU7vnYdYw4ubZ/a+cY+KwCbdl4BGIezPOdAllLknvifScy3psM+L5ftHH5+5UVOetp4Ngsn+TYu/sUZz3L+ngP2c5cfP+KFz47tMz+Br/I99h6H/l4PMbDpU/9dNehYsuMj7efn0L7+eLrDgN4dOw/tD/ze2bHvTTSa0DAP2BR1uGig7OffedE+izMZOYRGIsGvRl6g0tkGD6D7xAFH991h3I/nEFiDi3cdzHvgx/w5vPzJIwOpNoFFgilADQNXG/Dsu/459XOv+PuW/LyewNm3/R5Iw6VPTg2ITcK3P/sVj0c6OKKbs+/5uRiE06tw8cEZv/Xgczu+Hbjy0y/svLs85lmPSWzohCd/1A47Boyf5v36Tfn1HIRnl81knh47tgsNuPjpGRccsL7gbLwXPjq2n33o52jl/HzSYZ/l5c8eBVh57fED2MTAu2M//k+hULNx8lknPJrt4uwKNJPQeVLnpPfX80n5u/xSYMIug5R8eGUKjHMGRdYDqsDAFvkmqXEpu+dTilr4s5WcEZ7m3OBaQ9VujtnH0uKV0LfFMPJwkjxJSeFwHkqlBlENlppJs4+4hxJbmyR5n+9jsqc1t1moscq4Ky22opm0ZG1rNm/zOgroMXXBQPgkCciSpDJFncmE1QDyrbOBZNUZhSVkG5KhynWWqJMOtoH8o1WfGCCWjJpOsjWtIWIyijmmAWZrLX+D2+w7o/EGHwLnvn/bDPExc6wygWxDejngKvdjyKfBc9LZDVWyjLtsr9XGRewdAZVZKpTIs8o48ryrY8E0srwZZpMJ1vghf8ok9/nAU3VbG1qBxZKY9bs3oTWoRVaYYo1xFpmjTI67zASTdJYl5MdYdN9oCziq+OC/N+pUq/mstr/BbfpdwjruEjmdM7EG5Z81xyJp6vSzx4APtEdZjzpX7NAjLGjDWD4GYK8zyjZDfMok7/FWAJWbDIdntQJlqliSd9WVKXAeoCKAIOmMwWusRH0pFokk6mIOqe8bd0/B9fBr3I36cpBdNhhj03sjPd859niBR1/vQvSb8jrG6rUrQO78n7PAFU9KZZrzAdsmxpIH249mrVwsvAZ8D0jD4xPIdMCVb2NDw0tAH9EDifSQpo6Sm80CwUIOJ52lbHZCo5QosMw0VYecxW5VQIORJ9J87JY/R3STphbPdpVMWAhpUKHnZ5E5htimQDHWJ8mv1Tu9yc/pZy/sniR9vMx2rC0rTAUwI0l6N8fIQ1QWD5I+NknAIbS1cc72SnM+qPsuZH/Xkmwnpz01NQnVJhSX7VtyOStjHhwCJVj3oXD7d+z/OTTgiSEgI6JSLcKalpiNZ0+enwqrkOXYDgNscxnZUQiUNO/DqWBSC+CfZ8HXTGMNG4kqFaxcEX82GOW/5g99Xztw2zELqROTcosRujhikbkAoIwYVI9eeYlZP0ZjHGpI0ss+KephKTHIDgrGbGB2Z2Os8+RLqGCehRwaKJ3FrsfFK3a/H534tfm+PSNVr6dXTuDeNjyoGSO1vAJcNPXMhQ5PzMXA8OMzuHhY5YhuFORZJxX3sfb3HHvRA8tea4MxFCjSmjAsheEmwxHko5pB2Q1dHCGpt3yA5Rs6x2Lcz0oSVjiSZMzCUc6eYzH897++FkDvkk+eetn3g83FJiuaqUC7ovudbDEShUeddEhuh52VZ6CILfp10pQouGngQdCENxh1oCEdJ3uLEVaZ4APeAIx9NMhusMpU/KX9JjVfvTxzLLLDQCRIiV3YuiCIGq9kxmM/+RaaYBvcHB8jqWk3ZoasokqF3DwL8cAYNbn+nPxkhC0HFhso4bRVQixpwK77d5i849OQYyjIwWSiyQAFtbHKF2HE5byAFyl5l+qWSVOPTVnXQV4HovR3c8SISwdS1ILNJvNmY7hlkK5eE9ZZlpw91mSRV1ngNdYYRynDSoA5wkz1dY5/yjtYotYAOww4ldgeAqV2TrHCO/zMAaZhlJpX9kmEgLJeLGgkRc2vUz2mEpI5yxcGYJq7zLMQANqoe97IE8+MTU0Wo80RYJvLft/sBzicpu7XeCMK2bQv0kpFUwS2pC+izQNxzbYYCbaqPWPm8bfZkkqmqYnowXYMNeStIN8AyWns+8oOCo6gxKU6acr0oxQk8x8y5ucK12IyXfNFs1V+rg33780Uto6xdD6BWjplxYPAuUGsoPCYdTb9/z/Higv3+WCQ84LjEtBp6Yw0oN2BNE45Z5ptwpMr7cZQSmBAxCF89Z2eczBpF9iBsyGsMknAyVttfPm9S3Z8eX+vbTuOJ1PtdgxiXonf7YAMaShe6rHCNIkBWQPGgLr0i1P7vDt27MbowkCeh34ursCFQ3ufF3aOg01H0n/uEHjHjuvie2f2b014ZfMrXv7sEV9++xJPvttuv//EQJyziwSI9ux3OGdq1ey4n1xpp/2Jf86r/vVD/0w5B6V67BgeT3cYkJiEkcdf0Vl6yoUydH70FLbhwl/a73r2O/YzF07gdAgDF+fgxUVnkeXgwQ9f4q9+cBWAJ7/Tbtc37+cMf58rBIiYPTk9B5M2W87fNpz9HnT+0uSwv/XLz0k3azyZaefSJ6cMnnxl7zeIMQQfQ/fhKS9vPuIobY1bWoDsp34dHvrvnfLfk/R77qJ/n5oLlwORh7M5DDR86MfXhAsl/0wCY4fs71/9T3rs+z41MIsmUOD552EHLj2w4wSCsdqx6d/3wI/Rz8+zV4jXUY99dj6HiytnMGhAeaWz4/xnj+HsOuxf6uAfPP4Fp512//HQwGd6IHd4aPdP3j/XX/qxnnL+bAz6MeQw0NsT2S6swFf/4x6e5Nr5cvaS/fsr0LlpEuX2B9B7eEy9o82A2ga0Pzvjm/56zCXK5GJABjaQusGHz7HGNCwrOzhwQB93meYt/jyGoSNsRZOmV6uXa6u/TR/mtSTbC4E5GuB1Y+FXB/Ry1e0lrEbpYowNlERtklBjqH3MXMhyxTBSiEPNQQwBaRpqKZhC1i0CRlr34RxlPuCNAFxWmGK1ORGy3TvMkqXKOmP0cRCysztcj+bpLd5jxNmFakBu8QaSVg6zGTLU83rHPOYWmCfhjMYKGdYZi+MTCHjkrKoi+QC05PksHy2Fm8yy1FJDZUOZo0ZSg15jA235ce1TJcOrLKLADNWLOo9DbPMGtziglzUmgj2xwlQ0zgrASFEPG5s6KdaYIOWKgR0GI5istZ+okGWCtWD3iQzQzRHLTAejJo8F6cG5akj3oTy3bdhaD79sA6TrISsW40hG/gIgdB+fM0M/RmoQwJU6/QGGWG2fDKBSbFSdO7FUxYC1kD7byDWENnXKFkALw+SADFW6/BkaZsuDCI9Z5FUG2Y0eyqpXY71+ymSEoVz1wbH5uL1Oa1CB7lF9zsPYZP4evHwwySAwZ+yugvbNJDHYq3yK7TtX4KVvAw04+wWMzBIsM8k/M2koPwA+wbr8QxuoLzONvNbAlD4iIogZLRusNSbowrwmr7t8Mk+RA/pokgjAV+m3Xd4z6rnI+GBm33shPWurTCAPVGP3FhxsToWSL0uVAkVuc4MmibDwUfKq1EOT3Hcf1rvP9Rw1Usir0nCGfDz7WSoc0wlt8GUV28+n/dxq6LuCDTGn7TxXtuHBA5thFvIYYHfJfNuGfW+/5nX0g4/gmernE6zmS8EpHbH+1kkFoNPq168UWEmWlYwrlrT8TjPefxvDMRnnTVZjYjZfdlVhkwQfMY+spEYdKB3iIWb/VWKS+0ywSo4yBUo+OLGBRGvftso48pkdYpvXuR1rjQgwChjSvaH+b5gtqk5meUobmXYnMJ5gtXeny2tzJjs/K8HF1zhXyyThpbzdz14Scn3Qvif3O37tpoGEM1Q7gDPozQBPz0G4ZWZQ2rx8yNf87/IrrTsQCjZ4WmGKIgV+zI9CGbjNEH2YXZbAOEmY5TFZ9vW5QInr3KGX/SBwrTLBCFsxMJMSc41xbvM6yqE4ouvXWkq+FkDv0FHKEgXqpCMxqkCRfXrDhLZBIkAKMcP0dyCmtGJ9jbl3l2ShAoxaWX9pzMcjj6WmqXgb8QLGJsAVFCsvsGuVCfZ9CiX23RoTAUb0csAU9wLJlv+ZNu8KGR46vfUu0+zTG4lYCZpOQc+z7olo2lDrpPymysXDncO8ATc9LWybIQcLqw6M2oRRLEB5jugc2iJsrMVhtmiSjE1THh4qblW0jLDFdZa4xkpMzA/oi8mbksu08eYpUvbZqXm7WKDFHv1RpHZzxD2mKLm09iPmI35ZfmqauArsPaCPETbD12+J2fi9BfcDWXe0+23e5QiTx/RxEMWKQkHkf6MCSkW0zsVtbpB3duAR3WwwRokCe+TCT2KHQRaZY5VxwIxN15hgjQkqZMNnsUoWhbTIh2+Gu/E55VXR7xMAAcMm101EYSv2qK7tKBsB+HVzxJonvfVTpkQhikDA/SVGY1oA+FTGaNuiXyvpVw2VnikV7UpE1rVed2Dvfb6PyagNMNe9qvtJpttzLEYxaizdvWisFHlv3pOnf8srz2/oq58AHy791IGZU/jqHzq4duqMs2nOWXtXsA3sLlboDQIdzjLaBJbh2w9+ZUXfu3BhCWNW9fh7CPRy5hfftfd9cfOQZ53+ft+zf2/fxXbGGnSuPOVbm4+NOZX3/7zY7D50ptaOAYiPfreLzpJ514mht8MgpyNwctXYXxTghX9xbEXTITaRXoazS/a5kTeaZLzL/vcHfg6G4PQ7frwNeDTYxamALvf3owQkbJ+4+NMzAyg7je1W72izc3ICF3b8ejjbi5KxvTgBRuDJd9s5lRfKDrDioNRnwOfmS5g6PePRSBcXHvr3QIA4zBrz6kLDz+cDB6DESkvD46EOSFgj9tu//JTTHsgcn9l1dFBTRWAtTfiwdJz4cQvoE2g65CbOV+HRa12Qs+t0cekMPoWOj4j3/uo7PVA0EO3xSAcvlg7h23ChbOePaf/daTsHn428HOAoDYzZOefHeIg1C85YbJdfTBm4BCfTbefX/Iq/d83O2Ys7h3AVHv+wg63Ol+0e67R7hTT2fCSIJiXeu+T3DHauTy63GZDX6efKC76Lf+bAWIcft0uJLy2ewiB8/rsvwit23i5tn3LhEDoeO/jbZUxBOqH9Ezjo6TqXS2OfjR746ns9Brpj/0/ZvufR97rsODug8PiQiztnfOujx+ZrNNhuDEIv9Nt/AZ0Pn/LsChbWcuHXm8L+XX4d0+2eMpZ2qWS+qoMIQzykVeYHBt7c4iafMkmBostQhqiR5kNuAMYMUtKcmtG7TAcj3NJrkyFbkq0KiLnSYI1xplh5zqdoy8tt1ZpVTBqpRMItRjwBXB5DRwEwyW9PoVmqW8XcS/rfzUS+yqwX+9sMuYpCbVOV+cQCq640uMmtsDXZZNhrU5NBDbNFjnI07gLSxKrIO/tOoEsrS0uSKjUQSjzU0LufcliV9DnwpZpUrA44t5uZ5H74B5lM2pg7KWoBQOmlZrWV6aW66j6T3OYGvRxE4N09pthztqRYhhk/Fg3Ip1mOfiJNjWG2IvzBpM6TFClQIh8pqzXS7JFjgXlucdMZQ6WokRQklqHCInNsMex1cjbkwGq0p1lmkbk431Il6JrcZ5K9UDRkPEzsgEXmovc5oC+YibLE0TC+Tpq7TMd9bD7G5WCfFigh65ybfBDycbNHKQXQB+blJ5aobFQWmA+li2xg5Fu5wpQzU6629ERZ/xzDDnJPkKAZ9jhl+gOcfZP3oybv5pg/Kf6h9z0ZNhh77t74xr/ECnuA1T5NqJxYEAaD8MW/8FCAJDEIvveZfX/7deAibO5gdi4OAF4Q2++ieYzxkvXfb/EeBYqsM0aBIsNs8tCf54I/q+p38xSZYI2yPw979LPh4Ow+vSwwH8MLew5641lcYjaeuV3Mg/F93qSXg+iLTYX1fFCK1iIpxIbY5o/441jjtMaYzHOXHQY8gPAyCrAUMJOixgrX+JAbbHOZMv0oDfoZbZCCly7BF58BP8PqvBEH7B779XBPw+wQXEqYtJlBSybmif09+z3gUwtjKO6YZPTC9zkf+pWBr6DECywy52zgiSCxKJ1X/xUoBtA/yX1mWA72W95Zw7IyUlhTnRRDPAymOsBtbvCQIQdrB8PaQEy5MdaRtVndFWkWyZmj5oMhhVSNsRFS2jT1AIRL5Flgng1nA9s6s4mUimBAsvYZIPCgChnaL5vv45MaNmR97OftgZ3HLw6BTQdITzm3KBo6D8HAQ2FIcN7/vOIM1x5oHppPda2nLchUwlVMuWb33zwL9HLgNC9ThOYpBdimZPJR1rnPVVLU2XWizAx3GWI78AXZdzVJRv2x5eulhcesBrFHA4/WfcSCjcxXdJnp6PH/ptfXAujVvYiSL5nAGsXQy9NMN5MKKk32xKSSPPWI7ohsly+XJLlgN0yVDPIBEyAFBDgjmcGqyyrELFKq0zCbZKn6ojUakyo41/OrkDuimxKFkAQoRluSWgNuypi3xKsc0RVTTTB2ogAbSUCkvZY/gSSQoiB3ObuvNYxBjMZe9hl2hpel2qb5OW+yzeXYGAUgvcdbbDLCHpacJVRYiasynBY6vcBrUUQKBNQDm6VCn08LslTDp+aI7jBk1hR9hC3e5Ofc4DY3uB1yYTHSVAC0ArpKQdpkmJ/xjj9MG/S7V0fW/UXMAfAo4ssFWA27V6MmzcasTCKvkj1y3PcJ4hLXg022zAwrXKOXg0hzyzrhXB4IYr3Z9SwECCwJhhh6d5j1IqoYPokyKN6nl8sOLu6Rc3qygWVFB3/rpHyDK3CXmbjfxfiU94Jdm0bc8wq30H0lqraKOE3jh10aUicd1N8CJUoUyFOMiY6mNgL7Nr3JASK4ZoQtZlkiQSPo4WYyahKNhk+fR1xKstuy+XyjXxVsk0ljLLAOOPmuL70Orl184Iyzyy0/5yysL4cu8eSVdk6m20ySm/Tv8+JPLKFneQxw8EkXHdjm5zjB2XUCpHpytZ3H3+44lw8WMSCiCXzaIunsweLkh5w91wAeuxQRB6jEHizBb3/2KR3b0Ln81DbYBOdMqjzokreX/P0f+HF+B2OEvebfu02wFjt24Ow1/3kcpOqAR293wRV4PNcBn8Dw4Rdw6u9dAHLQ+a4x15BZ9FQ7lOHRUBdfvd1jn+ehHcvFPzszf0CXfZLz8+m/98VPDtnufIn+x8fnnoJi1vUAnxgIxEO/fmXCQ+5Xr71goNKySZm/tfOYk++20bED7ducy2eL/rnzLm/ubLkfOoElB28FJsnTrQzZWsWAy2W/dzTCvAx/9dpVXlw+hCfm0ZhsNo1xlsSkwpdxD0EMeOuEice/CjYoPXA24O+77Mc755LZHOcS1C67Np2lp/Y9BUJeezLYFtJWemxP+vaDX8EJ/MXQb5+DdX6P0QBO4V8P/S5PXmk3Fmry/Hs6//IpF1bsvcudl+zefYVzebCYmGt+3J12jV4pfWXvU8IA85ode7sIwz0GeJKDF356bIX7jn2Wk6ttkLc1mO9yzuZ0Sc4LD44DeL3wF/5zy/Z7L949g4ZJ6AXan+Xtebzw9Bndn3/zBxw12qmTcs80Y1OZ7DDlSoHLbDCKfOkazs4Qe0GNifzBxGyvkfIANAPJlCqbxoz3N1xieIubzqIbYZSNqDUEuun7tJdLQiN2icAhDZCNQbiHfH2H2SJDxQG2fJhhAwyy6/tn2RtOs3oRC8veYy0YWXvO7JrhLmlqjLLOAJbSq/YvSzWaOEkjtefvMMgo617/NhhnNVLnzYdumDtcb6lX8q68MABL8jqBdeuMRZhXDQsnkWfwOGvRyBzRRTnqbqtJ3uMt0tTIUOUYSySWXFT+cgWH1zToTVGPobaBcSZTHvLRZIFSDGelFNF7nQeK2YB0nbGokcSM+9dfvhO/Z5itCO74GT/AwvvMo9kAWGNSyHdK94UFO4zHgPMmHyDvxkF2whzd7v0Uw56eqJTDXQZ9dH4Q94GYdsZmtDpcIOSnfo8vMx02PgI/dhmMe0PkgA1G2XSwxe6BNbYYjsFt3ofITZIo4GKVcbJUGHUWoJ453Te7DDLhabsH9LHFSLACAQcbzQJGhu9q8JWKnndpsj3DmwwXtgAfmlFjkxbK9Tf51QfFf8G5FcepMfGOTix8YXPJghfaRywwQGqN4TQx9D27Y9sJneYf5o8cuUEo/gwudNvPGXHClGVZKuFtbkb/5r9oRAUjq5gXeIZRZyh3cxTpmwL+887wVC9tbM0dbvChP7ebpKhzh+tMsIq8TSdYY4p7yJdcdgS97Lu2qs4e/YyywR1mfQQzEQQYC3d4NXrNI7oCAJPSqZtjZrjL69yO9RvMaqhAMQan3/KU22du/3LWarWySQxuL/WYtx4nJsEtF/1cT9u1qDYNhJp0QIpNeFb26/yihWNpuGKKObN1mOUOu87ELpNjnTHuMkMT83ZfYYoDeiPAqeB0JAtrKvAub/MBbyD1nZhfsoKQqm+MDa6zFPYVkj6bh+ZgAK3rjLHFCHXM1kw4zQpTMYQAYl9L0ER2VLKBStBkliXf1yzTwNidvdHvdnECj+DLpl2Ds11ov+jn/iIMX4KR3zXPvC1XHVWWiWE8F+GlK0DTgcAn8GSZIEkwyLlfch2224a4xxTyLRVjPOEYitjBwjqAwA3Gnbk4zBYzLKOsA3n9/5gfUSET2EnWMZF+9hhimxWm2GKYZWZYZjqS6OWjusMgd7jekiBuCfWjrJOnhCzN/qbX1wLo/YrLHGGpqzaZyQXgIcBLXiXrXkhlfWJboMhNbjHPQkyKUtT4P/M/413eDhRTSSk1BzxUbInSrqJikvsRHJCg4ROCidjEWyUPB/TSzx4K1BAd3KLoa/yMdyi61LfhAFQKS/IVrdQWqaoDkI2QXMinzsIjbJprBV+VCVZ5i/cw/76K06D7Qk8/whZ9DsbUSJGhGiyoVv8NOAfuBvy9NNXQ9EKgW9YNnlUAyDxXXneSePayH9dBuvD7TDLGRkyExUhTCIYYaBWyTLFCBUuM22aIVcbp5YABdthlkB0GKJOjTsp9ZvaRpFmGqeaHshXfl6DprMx9wExPwQrat3gvNglLyCsF9VvvfYQZKL/BLV5335cCJSZYY54FRllninvBoBN4qT8NQM4i/xr5pqiwlARWvnmtScEJz8rZYTC8AyVNSWM5YCqSxVBQmlDB5T1lcmwxHM3BFCv+fCVbANqUT07tDApozbnMNkvF/Qhzfm03Y9ouNqIxFvMx5Z3kvp8DAzdVMGtT2GQYM+/epejsQRli10jRxwHXuUOFLKuM88pzJm3f4FcKvhy5xK+mXwhftkraxg9//Z1X7N8k1/MC4PGVDgPgktDdPOJi8czkeg62MGgA3ZdzlwyEOYQLnxPhAydTbVB0KWIOAyyeuBy0ARd3zrjN6wYMST576v8JbFsCRuDRt7vMl26H8wnZDryweGxsJk2O9V+n/T5+h/OkLwVhFDGJpIMefA8D89zT75lLf/keVkxt25/tT4AeDEy7Yn9/4cGxgWRLp2ao+xn2NZwNhZ/PTnv/k6ttNBIJ6LRjf/Enh/b5vaCzcAp/jxFs/HcIZ7+LAUWfw5VffmFssAZ8Nd1jzDnsaxzbeTu7wnmhlzY248ufPLLP4jLNJ4V2C444dMmzwLfH5gFHiXP2osBVAaOSwbpslYL92Vl28HLQj72DkJH+9uKn58xEHEBu2u+70IDHr3WcMyFH7PxeUJpYj7Hh6h1t9n4NP7aPHPj9nHP/H/nKiaXo9yNA587Tc/bjCbz80SM7hiGYO/yrc9lQj98Ts3b95/iYRiLB3UtXY2IuGThX4PSKA2w9DmqLMYn/OePnd8f//MSPuWH3ImXOZe3u+XepdGr3RQfnktsRe25puqeejvXEj6cIX165ZM9yGQOoBfY5wzYATr//20t2zKmdZ/x9ICwf+94rtcUOg1zG/JuMWTfOErNRA/V7DTDITqTLAwE4DbRIbk01kAvWviRIxuxaQyFVxmLbc6nnHpI5ZqhGrZbAPMgmWA1Wu+ogG5xWAhwyuetseAxpyPs6txlkl1mWXAEwGix4Db4UBPZv27vIBkWDbbEEdhmM4bCYDhps/5CfUCPNAvMxMF5jgmVmgn1XcqaAWFw3uA0QzDfVfVmqKH2yy5sbfV6xZCZYZYdBF1Gey6hLFHifN8Nzq+TgqoGADXKUWWCe9/l+GJELSLzPpMtW+6KZ0u86T3GtUqAUoNsQD0lR95CxWjRCYqmp0R9imzkWmWCVq9znf/6t/wP3maROKjzy8u5tNODyPYF5E6wy4PW23Y+7KJlWdfmWD3nNRmgcC02xoWeNFEqGlCxX/nnDbNGFeWYdYGb2eUouaT1ilA22GGaDMWf7mRJGIKfUK6NuS2SKmbGoEeWjaPfoVZaYZYVr3jQeRxP+c970XqI/GCzdHPM6H0biZTdHTLOMKYT2mGehRRJtwXoydZd9kt075r8nuZ9UWkd0s08vf8C/DCKIfN3+XrwqDhLtOpBUMLlsIX8ebHHBPd4KPbDotdlFDeCeQHsaftsDwy5MAUkLY6g8hsK3McO9hwSjtZsjplgJVm7W2apKpVU/u81Q+KoDAeqlqTPLEvIGK5PjJh8AMM8C95kM5hIQz3wrS1jBAOo55aUneykjgWxGL5OmzjLTbDPEmPvalyiwy2Csf/KKz1Jhno9YZTxIDVpH5PdW4gXbuw/9/PrQ+1nZPNeendq5PTsxdljxM2c9evBWUcO/PJz951B5Fy51Wnl7VoOzTQOZLryGoXzt8JQLQQiR3YDu8yVmY/3IOQgkAF1+qSUKwUwv088IWyhxWsMAEaIU2mBKrD1y7CHbJ1t734zeVmuHwEb17zYEOY77RoDsFiMhrVaegZRs2le2GI6QCPXEVbJMs4z8GzvqNR49galLlioMdu8+WTKJc+kxFH8Bue/CiNfIWffVQz7XDmC3+9cvXgU+cWCvZMnFiT6gGzJUg52o8/4jfox85uukkFe/emANvg7oc1LOng9mtjBW/wQJGh60ZH38ngcjCQNZc6LS27zLW7zHKBuMs4qCLnU/2H5twyERg/o4YIx1/r/k/X1s3Hme34m9yCrWI4tPRRWl6qaaFElR4ja11IjbbKtH/TDTGRlaTGfbXnu965xjA/tPHOCAIAHuLjnEMYLADnBAHgBfcLhF1mfHa0927ZmbuRWiSff2g6a1w15qxBG1VFMkRTapLqpKLIpkFatYxSoyf3weftVr5HYOcNt7vQUIksiqX/0evr/f9/N9f94Pj3/BBsdXAuhZByxC3SWFIIDLqN6skyy4ZvuiTrbGFMuSI06FaeZcf3yNj7EIbDOXTFDhEgsO0pg0M6WTY5wqo6xysWXSm2aOAfLc5Qr9bAM4q22cJUWbtx0YkYfDHb84gVfcOsOaMrrBIGe04ExRZop7Hj88wip1og6kiF49zxT3mGGW1/nYgQ8LXzD/DAHQxFjSvCvsRh9hxSf8Ue1QL3HeOzCBTFVCM/r1mL7Lj/xa1ImozGPXCxSjmA5rkWG+I2ZsWmCAUe1sS4Fnvi/bXujZtTWPlhVGNEJ7W1l0ZwjTJE7Fk8Ay2m2V/VhHkq4kbMSApPMal243X4qyg6OiVU87EChhHGlPixnWY5phln62XUryCrMu+za5gCweHro0wtJyK8R5rhOGBL8M+UN3inntWkZU5ixj/jLzmPTFJrBxlnib90hQ4Tk9zDBLHUlQs87XIJtOARawdwvzeHxOj7McjflqwOsoq0xzF8C9hqxja5J2W3T8On/gXRWThKT1nmgSYoZZMhSY4p4zPW1stvr5GbvTvCTt4WRei9PcVfNWmdDF46bOM6M+fc1fzTi8ML8jCZhF4DGc+qMy5378lF/6SJI6eVVAEx4KAJTaO6RjCx5/5zRdPzwSwCCKMKGKcJKEYnc32Z0dTiaBSdi/rP5xOUjeOoaz0PaRsPHYAfIK+mnQwv90/scCaEwhINurCOAwrX+6Jcjh1GwZsnAw3c7JWXj8xulA7rpB4NtnwNgykBb23hff6hPGlHWgz8txtBnwZAw5BTJrUaAzkKYS0n1LSsJu20/0Owxs0yF0MqXf3wlsQimUkv16RwAfuiHUOBbJf4zAbDqGBxkcnG3n4I32IKhCgbWOLeCRgqFhDa7IIYDgBgFj8qzsb4ddqxqeBvz45dOBdDWjgFpMQh7Wu1/kabZbGF8ZlQYvIyBiN8JaBD56+RXZB71e1MQ/7+iMnG9+H5EfaODCFzN9cl4VgOQQfv6tMdnmnJ7bKBxFkdRqK5Kasu0T8y9cE8Zd4kABQxszDQKQ6gD4hOAY5/Sa5+SaPJ3qDlijSQGiTy7qew+g4xPYf6dDCjQF9r7I9EEeTs2V6fv+Id+4+VD2zfwn+4BZSV0+/dkeDMr4eTajfiMKPB/2EQSvJGWsfHbjJRiAx1On5X0PCSQdXQSMyYx66qUlvffUbJlng51QFInu/mSHXCf1/nthbUeAYUtEbiIpyNPiP3l0Qa/Ptzo56hMAsG1P39fKxvyavk7z1L1+ASZY5D6T3FE7jgh1foPvUdC60YC1eaZYYZQMBZ9/4lT4MdcpkKFOlGGVmwbexpI+P8U8l7nHK8zSifi9lkkpI6KfFUaZZMG76eblFtWmr3nVWnPKGoIPmcDSY0M0WWKcOBXMbN4kn526KDPWiAUPmN/uHb3BKyRYYJIUJQoMMMy612mSn1rkjNZy1iwO0VQFQQXzHBTPqcDLCqRhWW2RQ1oD2upJS63/lBkPTIhSY5URLBwsyxZ1IlzljrP0LKW2VVURoc4V5lhkwhvO1nAv0k9NVSejCoyaHMvkTyYhK9LvaZw/5B230VllxKWsUWr+2SL9LWDEWR8/dh4k2fUsNaKc1abrJAtMMU+CiqYQixT1MvNcYY4QTSZZoElIw1cyDhI0CfMWH7h/8ASLDsoO6Dg1aXSWLZfW1XThKAFlK6wwQlkBlG1VSPSrqiiuax3Zf5HbCpvwPhEkeKCM+G8PkFfpnCzot+nH7HY29wZZZMLXWVe5g4TK5HUB30maorPzItTpRWxr1hjWNnRYm7HjbJN2j8a/wz9zsFlk6EPuA2hjK8cZV4gYqFIhwS2uY36MYpkjRIY+dv69PZP+g76qKq3dgKpakHxhTHlUUgis/ZFIE/tA5qVuYfI9yUG+IL9jL/hcPCYyUW84RXHWT5acro/6Man0iAZOAGww6PewhbsYwLfGEPeY8vsZBMQbZt1B8CHWHdSwZ4MBd/YZC7MwVrWROOxeApz1ZQmtAMY+y3GGGhEmWXCCiq0hrQlj4X+W6GxM1DoRnnGKcn8UeiQVmCxUa9D2f0bY9VkB9TqiAuT1dUMlh3tFPwHyTaTZfAYS05DIwJWMAIIdg8o2KwDHcm3MDizNNkvKGk9T9Pvb1uzGio6otNXSqwEFMxvMM4WltFs4qBFIeth1H9gedlnVcMNxHjlGIc2xfvIM+DPDmNOGi1zjY30eVH1NJ2DwfXrYZZq7mEpskvtc0ZAgU4AJgzDjzSxZlzdcvRauQV9UzjWdmgx8AF3dkLgIA98VYPvkIUGQ2UU5lxVrzlqNWYPKR3qzdENXFghBV0bluuckP6EVyO7hOXe5QqsvY1wZ74NsUlQrjUkWMCsMC8GMUuMSC0yyAICl/Mq5EqLRcEvDx8Z3a9DVIhe5xXVX2w2xzkUWWVEiTYoSawyTZ4A+WyD9Oa+vBNAb5rGnqzYJe8BFRcmei0y42X+eAX7Au/TwnHWGucV15pnikaLuFlttVNoqCafUVkjwCVfJ6CS8TT8rjPhNXyXOHFdYVdqqpUjFqXCFu2wyyDxTDlYYNX2X3i+lQBlYmKDCHNPUiHqBkGfAC7gQTVYZ8Q7qLpKsZuCOQISdfMBb/AG/zvf4Wy6zNN8/EABG4r+lWCkwgCW7Wfz3h7yFpZ/myWBR4duk1RxYQDaTPRtLzo5XHohR1hniNtfIcYZVRvk+v8YS573LYh2+Cgk6FTgVOegIWbbYUlaeFZdyQ2RcIjDLDP1aZFtCalXZaoZQAw6mzetkYVRdgbAaSmBNsMAlakTUF0E08P1s+822jaSrWYpMgQz3mdQ0Hin8bLKxJFuQQtTkz4AXja2efxZQEnSemiwwqV2sTswI21iIBgYOKHNghFU/rhVN9+pl90v3wxxXWGKcW1zn+7yLpdsZGGznxkxUb3GdW1znLtMOOi9poIh4AA2xyojeD/Iw6WFXU/+m6SRIm7XuqKRDRZ2ivqVdZ0ClzhU/V9bFnmfKx64ZRlvX/hbXWWCSEA2fcEqk+PxL+tKv76vSEQvYZi3sHJII0KAgRbJwDGFoO1RQCJUHmuedeoRRE5ne6Y/2aPuphjEAXY+POBhTQMo8vwaFjecGvTsEXmR7IoM8VFCspkw/KwrJwOllBa2akDiQEIhz80/lOywMAN0/Y+otC8us75NDXljeYf+NDn722kX2f7VDQiLCoI86ASHVc4xzLaEH+no23clnF16i1N0hybTG+ppDWHl6/tqKLft+AV6Y25Fj3gsAuNgm/E+WfyI/n1Ifvz6c8bYeHSK5fMzTwe6ASWVMuLMStnA4pfu6QSAhNulFGik4onjyKRloW5YQDV4jkOMqqBr7fktKa4OAJdZqp7Ym1ytLjjYDvFSeE27Carf60E3K7w77INqsiXebAmoWsPLLm8uBX15W3t8xDy/8eEdSbw+DfWwztibAPZXyNuW4TgxshID5ZibeBtbmgRDsXIhx+sGevE/ZcBUS4k9o24hBJZSQ72vIn8zeTlCwZfSc2vhRNiN9yspTcPdO8q8QbdYELNVtx0zSrCBr20fyDKQhHlV+7sM6rnSBxQPZbt+aeO8l547hUABGdsSfcTuUDlJ8CwSBIlN6nfpk/7t+egQFKHXHYF4A/Y41AQCP+oBdqLzUwdf9FVUGlYWI2SLGZK6W2LemnmZ5Mu6vJ2DKGfJktLVY8HCwHnbdkzmtIV1Sp0kyrcxXvc7mB9xA3Pxmn+t8ZkqAJiHmuIIElckcF1ZAYpdeb2SlKXKdW1zlE7JsEaJJngFnIYW1oK8Qp07EmfXSQCvyH/N/1+bvistviqQ5Q06tMRK+oItS5w+5wRZZT+YzpYcFlRkb3+ZaY+AYAzGnwEuaItvKajGD+uf0sMqoN4+vc8ulx1Xi6u2z5Q1GA61MqbHOkO+rsQpNWRAkyG4B+EJHFAxxZ+ltk3bG2ziPsICuR4yzzhAZCg4qWl1SI8I0c6Qp8kO+62y7KDUyFLjNNcyMXtYF05jFTYkUV5jjTT50mZnV2jY+t3Xt0MOu15VW14/ziBxZ1hhy8M+UP6aQ6GfbAy1s4WiqFrNUMbaGXSMDnAMQu+Dgisghg7WQeJlF3dNaGDFxcpwRRmj3Xd7kAyxQDQTguafyrwIDzkC1z5rH4iPOY2bxTWXXRlUObWPDwLoedj1IwZiIcSoMUGipGcsePPK/5L+kn2ILM7ahgO7X/1kIQI8CGm9AVxrYE1befgES39EAAK0F2pIwps1JogLYxUMCerSZ120ByGvIQAyZI4+ATmlIPKfHrXzGWVIrpPcAkeS2JlJvctZZX6aEaxJWQFDu44xaX0Wou8WBNe3nVELYT9HZ1WaXsMqINiEitAZoPlLVW4gm95jih3wXMVRK+b2Rpsgoq0zw0NVQxkYbYVWfrWXVO0W5rT6r9jyuEeUUz+gs1Kg9hfyBgEaNBvC/k3N7tCnnmz5gEPbLkJjC/XhfBCasIV1DkNcxAt9pgN9GaoAUUIUkIucYZJNJ7rsCLUKdSe5zjdtIaGZUwXhTeEUc0KypzN3WeXkybu9lvncZ8pzV8ySy3RH3dqsTZZQVtTfI+7M6zbYTUZ7rc7KfImf1/rZ7+Tk9SiSJ6jmv+zO0n6IrzwbZcIBewk2F0bbOsK+Jn6c6qdUJ1CimjBlDatQC8K6ey2WkNttDQuLMKw880G/hIPhZcUPuIZrQFgc24BmnlAy1qoQjCfzcpQfzv5NzHHHFqCnqLGBpiDVnLOYRv/2wkoeMQNOvwOVzJN1cvEnvOSaWQNKhpZl0z7EHUQ0U3E7OlG8V4qR/wQbHVwLoHRN2qcAk97HEUJsga0RoKBrfzzbjLDlQMMl91hhSFF5KhyxbrDPsRr8WnWyD0eSi4slyyeWucapschbzEjGvEEOoI4rKGji4iRhIVok7Im3F1SirTLLgHTfbDwP2Wo1if8CvOTBkN+IWWWpECdPkMvcYRlKiLEpaitsyGQreXa3pk9yK2zoSI260zzlNFasqWFaikwEK3rFd4JL7Aa4zpH6B/cqUCpNmmwoJ7nCVKgnMGNOO28DGJQ2A2KXHuwGX9FzEVbprvnxScMtAlzSbbZ/sTZLyMdc0PEMAnjwDPGKcEilHvCva1TvLZgt6XnHAdICC++dJIV/QzuCwg7CLTHCfSUZZxcynzV/P0r126VGQL+0FkkkjLDGulQV4j8tOTV5kgiHWucQCYZruL2NyVIkLD5Mj66i7RZYbS25buyRLjLvPy64+CHbp8S6XGWTbw3uVUS1E7/Iu31cqc0R9EM46mxRwyrZdA5M7WVLau3wfS1eqkGCVEXp47gW3nYu8irFL2skxCbExQm2hMqS+ia3SjDmmWWUUk4SYIexfhldq5zAAqbIIKKHm+p+/ewosRMICMJaRlNZBZAIzgCEKTMPJNCLvVGYZMdwQNrl8zP5Ah7Cb0kixUdTtaneLaZxFlFw7FsCjD2I/RiS2Y8pwyqhHnDLPPuj7K1JMJnHQhQw8G+4MmFlJRPphAEkYIodHfGPtIV1zR+IBaD6AOdgMDUoBpADQ0SB88VofRfrFw2y+zIW1zwU4sfPXAJq6b8pq+snYN0TqmkNArYsErECb/B/K70DO52b3aQGmNFihRArC4pXnkk0DapLCqos90PNpKbMbBIy/BWUMbsKzlzslvEIDN9oO4E+HzwVedUkkYOJbsp3T399zie3nw6fkfXau1uQ7xnJPxPjavHSWZbvjO5/LOVR/l9gnGmCyTACI6aJgZzAm5z4jYCnoPr4skt39yY4AmP1Mf3eIjCWjCxQE/H16o1v22eSsl2HnOzEBPc/iQOkuPQH7LSkstTTbUISDTDtfjPVxOAOnN/eCdN0cEkhxTseqSX2X5XxyFge5zc+x4wBmarN0fXQkQO77ur8P9fMWnDEoNh4n3TKnMkeQ6Dupn9HAEWfq9REk8CLbS24ccy73VPbHGKt6XWhoSElN91Ulu32zh0EqdE6239T75IQ2vu6vz3mJhgIhaX8oiqRyinn3lPlVDbwyM+4mIc6QI0yTLZ3fNxnkOre8MRlWIM2AJVtA2KK0X2W2g0hCollcDLLJOkM+N0vSrhi0T/CQAhnucdnnQ/NSm2ZOm6NZrbGGWeSis5NynGGWV1hinDDNFuZ8gSXOM80cFshgjTrzZbYQCpu3h1jTRfI0o6yqvDLkc2qIhkqEBQAzWdMKI36+3+fbKo4tqgJkjbtMM8c0ErBV5TLziF+u+Dabz/M4S3zAW/wef5uKAkW79HjT0xbxkoxYccZalJqqOYQ5J8qVGltkHZAzmZ8BqnaOJllQntk2M8zSIIT5rkWpaaM47mzGNWWGZdliiXH3AW7q58QvecSZjCabTlGiTMrlYgUGMAseYw2CPMckCEJCKgQ0jXKZe77+AAFOjA0JcJMbLDLhnmEGGs/yCleYo677c4M/dHaHARVmwWK2PyJdrFEj6gxFs1SxYALz7bM6f5xHTHEPS5w0BqTJysy+J0STt3nf5cutyZS2Paut8wy4f7M1aI30YKwWqxWlQRxxLzZLbrTjFLnhsEvWvs17nFKW0Nf+9QyZV34KyzkgCWMXlGE0izfiBpKQ3xRJ6FFBklQB0mmkedQN+w/xmitl8/4BHNVlu5KCHdV1R9rX0NJ873frIPNRt7Eo6q4yZ8i5pQGIfNXSwwG3QwJ8nE+w+G8x9YZY17RPAZ4zFFyab/6du/RwkxsAThaJUHcw2kKT7nBVQ/vEK/ORymxb1UkjrBKn4v6hu/QQ4xA2IZqQc7uzJ754Jw04+gw6+pBaoBtO5sXnzZUBvw0DN5AGrXlja512YuqKPeDHeo0r8r4T2nzttslZsuT82WxqJmM5mlowRYlVRtmmX33XgoTiME23bRK7MAMyo3Qi/oXGNraQDVtf2loYhJEp+yBzrKkV7b42wHVNmdqAMvO2vQnQi4RzSjBixBnflhi7wojiFNuOebRxTOIUgef3ZwQhd1NInXwX2v6anONiUc9tTkNgrN4aAzrhBXBv5P0mhM2+JyXvfY6k9fazzT0uc5trbtGQJ8NdppWZXncyirHEt0kTR3wP7zLNeZbIkqNJ2G0i1nT+AJQhHnZSTJ0ovex6g65ImksscJl5B8ulfhFmns13YQVNO1Ql8Oe9wn/+W/6Hv3bp1gm809NHAaWJxp2WWSfqhZVN+FlyXGLBqduSRlb1ycoGpEkC6sokMpTUTkJOJZ5WIBn4lyHvcmCbWFY1odVAqgEKrDLqN9U4S84SNONcuzAW8S3R0GHWGeIqd7x7ZawpM1M2bze7GexBtcgEZ5DwgrPaoSvRySojnGdJOx0yyfXowDCZqMg5pGPSalQ5zpLTW4UdmGJaJ3tj9aUo8W3e4z6T/Co3ucEfqkRYvFBMGnOZe2xrSpXR9o35BTjaX9bvtw5cRK+tdRniVNhVMEpCPsSvY0TNcs1jYZNBT5uzosHAIpDu7zrDrDKivoQVL7IszbhJiLMK2JpO3eQyZkx8h6tEqLHOsCLhRS++TC5sFO9h1hllxRltFrbR+nC0LsUQazQJs6oJsRmVCFmwR4gG/Yg5tkmKBUAUVuXbvOcdbgON4xraYl1f8y0xIHdJQVEIpC+DbDLCKllyLDBJRn0wzFdQOhQJXUzUvLucokyJzhZPypQzRnfZdOnvApewtNuIFu8mv660bNfGwigrfu+1cfxVPH7+4r1WgJcQ4OenBGwu4KXCM1iG5OFxkIq1J7+PzSEFxA4CGuwAg9BmMlHryIYRKa4y/rr+zRFdyZ0APMrj3nJ8hhR6SVxO6cwwlb6eypZl+90QSyKm/n3wrdgfB10xA7POwqmb5SDIwGS3N5Hj6YOYgZJJRNIZwg1rf+nHj+X/OhF3NOCFzA507ghoqcDZubGnAbCp24gd4IDTNxs/g/f12LIQq7Wckz2EHWndbmVhnZt/KtdhD/h/w6vnfi6/TxJIOwm+gyYOzJBDJK4Z3KCXbpGOUoNT/6+yfO6xnr8w/FLysZ9XsrrNGIHseFmO66XsswAkNI8+u959uKzaQMS2GkEhtAe8Bm03W95jHo0H0Nd96GDVqc2yHK8aDpOBrgdHwTU2fzm73so2Yxlij+F0t54gAx4fQt9HCl7rGGYZzmWeBinGaej4EfR1HUJTwlOSuZ0AQLP9rQmY6+EeGT2PLRJp/7eN4yQkOQ7GYhQJODEgMKvH0w19d8Ww7tW+n8t4uKvn1/ahSZDmW0CKc/PUCxGEdjT03Oy0/HsPmINTA+UADFzjy/eaAcM7EPup/C5ZrfN1fxnLv0i/11IrjDDNXQcQrJloDb+6ghfGbrJFxiyv0KsLRLEcGVdW+jBv855aO0jzzphQnZR8cWPNsQIDmOfsApPkyHozqkmIOBVeYVY5cAmv6Yw9b3XHFPfIsoWkSAq4NscVQBYTI6yS0d8Nq62IBUPM8oorFyLUmGCRPAPK7JcEvCvc5Q5XGWUFs6YxVmOdKGVSFMg4g8ZeZhNjYJvJXGvKQrQFpNUMJj02Npwt2M16RtiUYeaY5i0+wOxpzMvXbEcM0IkrSGAgqdly1IlSIEM/2yrzFBbkGXIsMuGLLWtcWsNd2GJBbZqnR5u28n/z2Erptbba1BZusMV5HqmXo8h+G4RYY4gQTU87NumbJSSfZ4lWc3LzMxZCwXNynPGG6cdccwDsu/yIWV5x9pB5IxdJM89lZ9JI41aC3iSdOUGZFAPqubRF1sHSojLxjG3ZCgZvkcUCZIytaU1xkMb0eR65PDxPBvP3LiJBcTbmRlnx2jVK3evdhDZv7V4wGbdJxJcYZ5EJLiljsRfx9bMx2CTEFe76AtaUHveZ5DLzFOj/ah9Ef0FepQquvHjBlBjqvwbQIUtnHh7ApW5oe0OCt17Q27tyAAltUh41EDliQSSgFpxVO4KOEryi/pER6sxxhXkklXmFEW8ezDPl16NEivtM8jq3yVAgxxlCNOlFPNCNbWfpxPNcdgargO9VRNpfoK7P15re8536HWaNZLZFraSHq9zx8ECRtvcrm2qDWWZc0SYqrSIRcnQqPmBWCJPcd3KR3WN1xAaATqAPSp/DwN9AAqua0GHqkwPxYovH4NIUgfLi9wmS7e01BsxLkEmH1dZqi0Ie6MSZb0bU6GGXs2ySJ+NEGgsgqpBwj1Ijuixy0cG8cZY8wNPWXra+BCEQGXvWntvGULQ1pAUnmRecyXBTlNhg0FPDDcgypnkwh4vq7Dq3WGOICHWGWWebNLe47n5x9kwZZJOCjrklxkkdVjgp6flpEjSMQeo19X9mXs53Oo3X2x0Q+IlHgUN4MYuHjQ1n8Jq9vCwk1ay69t9n0lPTbYwaM1yOQVpDq4z4ut6OPUSD69xSb185N8IkX+I+kw5wh2goO1zGqNUshkmZP+wmgwyz7mN+gAIrjDLNHNtIIKj4Sj7mF3l9JYDeBme5ygNSlFzqaGywprL3zmrBIF3QRczDwhhXNSRZM6cMPaPbNrRjZLK/BBXOs8SHvMUZcj5BG6Xd/Bn6KVLWTqH5akhBsE2OLBnyWNCF0Hq3XYYwywyTLJBQ2mpRGYBDrPnDyKSoJVKsMeSFYlylxoBPhPkWertJHsxE1gxAAS8gAXp47h1Bo7ZHtVM3QMFp0iOssMAlLBFXqLYbSGqQHM8Ko1gSqRVIvdqJPaP7ZQao8jC57wDSLr0qtwjzHm97kZQnwyqjXOM2u/QyzJozDJuEiFJ3IHKaOa5zyx9GS5xngII+XJpsk2aSBXKc0USlHN/nXcYVFY9Q08ml4f4nRhUeQIyVWwFPYYTJvhTIUFPaMUh30iQLd7gK3HVfkVVGmeauF20gMp0CGS/Eq8rs3GRQCyEB66w4X2OIt3nfz3uUmoOzH3ONYX1wmFeiMUOtAK3pBNAqSWi99tZxs8Lcum/2GTs2O6a7TDPJAnNcIctWC1suwahKgi0NywDfhhb69h1mkm3pegb4DehCweS+IJ0c6y738Ny7ddLN2/0qHj9/4V71D6XL1xYTk10Qb46TBrTpE/ikoea8wTqMkwP5/UlD6f81/XdaurQg3iltf+YpXjmARFLeW60F/26LiS9IVZs9iT5wkqT5rIXl75MDBQ5BAIxay/5Gg31D/09Yusf2fUc12bdGs2U/u9XPgkAicqJBAG1hNRNu6H6Fpai1bXR0EfiS1eS9HSZbNhbegZzfcAja/qsvn+vW/WSv5fPKGituaMGgvmdHB/q5KBxpsEeHeZyFguM/qrUcnwGBXfK3JZx9af/1WturWoOOsP6+CftF8f0w6aqdc/uMX2sdD5V/0vJ5GzMGbFpTL9xyLrr+7Wt+pMbadMu48jFl56vRcv1jLdfMwK2mvvcguIbxqGyjcgCJf6r7tvfle8De1zoeTw7kfIVDLcdrx6zd8Nb3tIWBf44X4Ec1OZbWv8Mh3dcuJHSkEWy3ouOxI6wLIkR6Ew6rBxG63f2W62zHrfJ3PweN4Do1mtrlbwTv82vb1M8QjKPmHgF79Gv8SnDIrqL+5ncrBb7YRJxniec6dz1kgjBipWLzvqWYlkixRVbhI2GimbQHcEa/BZhZ8maTMFHqJLShZUmkD5lQmU0Rk/+eZ4lHyvSKcpcEVRaYdNmsAVXGFkxQUa9YAdjkGMOMsEIYseeoEaHAgHvzmZedgWHW5DWFgvknmfdTQr/XLEwkmTTsAIux8M0L1/bvTT50Rpw1ZYe1KWrhcAtM6kLzuVrO9Go9GPGaWWoNAVanmWupT3e9bquS8JrMwCpjPdzhqktd41SY4VNAkieLpFlinFeY9dpCWI8TmP9Sli0kQVdAhKg2CQGuMOdsQWN/miLF5LIDFFw6ar7DJcQAfph1ntPjib1Wq4B47Zn/0xZZLrLIukpsU5Qxfy6zUxFVkST0miw5xxmi1J3JFFflxxBrFBjgDlcZ5xEg9id3ucJV7lAkzVnEVD5OhSZhMhS8iW3XNEOBOa5wg5s6hqT2LahE3cbLc2UezjDLe1x28CNCjU+ZIYMkDZvViil1zCPKJNQi1c14s90SnQ2ksSA/EDZungFXN5VIMcsrDvjZ+wwQ6HNviq/3K6Wesuyo5HNf6p6ODPCbwO8KM68LnaM3gQNIaHDVymdwsQAdL8MXy5COSv3FBl4TJePy9wyf+jqoTpQMeUqkWOASM8z6/W2WRTXEl9SACrFgqur6sUmWLWe+mlWCrVGNOZZXBnKKkoPSGwx62JGBR2cRr8gh1rnJDQe0UurHd4/LLb6SVVeK3VULrKYSecqkaBJ2n+4VJY9Mch8Iklmf0yfMrQgMvEFgLRIisAY5B13TkqzakUHm+gziFazKl/2CsinnZRvVQ5n3j3agowhcQZrbY/CU04CAcc91pWfgWJptf57YM3WWGVdrGajXUATjORKkdEk94SZYpI4Eji4y0eLZatZVTZV6DjlRqUaUe0y5v7kRR0yme5trZMh7ToGt9VvXeOaPan6bNlYuM69rfrFSM7ZbWvGWHnYpxLroYz+wHspKCMbAy0jD86JckqNl6PgOrjJZ03FeLELa1CQ5grWTNVbVn7nzJX0Pe27RcIObWEin2QFMc5cgUDPujPEqcSz8ytbaS4yTVi/+Ke45S1xUatvMM0WRfq5yBwv+lPTaPH/Ar2uSbtkJS9e5hUmbE1R4j7fJqiIhToUNXvqFnidfCaB3hqcqP0y4NC+haa7Gauqk5B0ekV2OYga6g2z6CbOJw9hld7jKCCsaBBHVzo5QcYV1tU1VHwZGhUwoNGbeJj08x8z8zVzZpBkGpvToAJU02BqmqTb6fa/Shf8Zf8cRcIv/Nh8Be8jUkSSrRSaY4h4/5B0mua8054p7xMwp2GK0+VVGmeIeEyyywCUqxNmlhw94kxRl73Rap6OEJL8NkCevSDjIw7tOVDt8VWeHBQ9fAXsy5HnEuANj1sltEiaOeLFEqbHOENPMMc7Sl/b5bd5jhFX19Rtw+q0kv6RdyiHGpxEWmSBDnn6K3OaabyeqjEWAohbzdo7tWKsknK5s4Kw9zIwFZixEAzKtm2iMMetIpyiRIc93+RE5skSpcZdpP3/WWRpijSh1T/Za4jzv8CPMJ+Q8S0Sps8Q4o6xSIcHr3MZ0+FYITTHvFHQrxKzgaxByT8AMecyrQGS7I14AS9GYc+BMuq5L3OE1LPzCwGOTXG8gRsQyYcsMZuzFWWY4q5/ZZJA7XOVNPiBEglapfJUEi7zNBIsqmz9DlBpT3PtS58muVUbHohWDd7jKBIvMM0X2F4zi/h/7K/JXNe3qInRsIMWAJTvFgCK07SCTkHlHJBEB3h60bSHMoT1oG5PPdDzW95kEFoQ59hkkDuXnbRchcYCwuMYQP4mH6j+hoJl7nvUhReCAfFfbsu5bFA9+aAsjXa9OPR5j4Smo0baj2w5p+mkGOqaRYkcZem0WpKDbcoAqDB156DCJYlQLohp0vKrfW8PZhR17SAfvgIB2/5GeX0027Xio/95EutXdOAuyw2Sk6i2YnidI281qZ1wZdB0HLd+lks82PScdZ/VnXXJe6NLtHkLbvvyuQ4M96JNz0Wb7kYTEPkE6MNAVxtNxWUYCE2o6FgzQNI+WNUjM6PcpS64tp583eYhe3w4zx87q32f07309z+rN0zHPl31h7Hsz0HYWeKhjw/xiNGiCTTnmDrR7qrLiRCPYdtuCnjNl73XoWEjY8Q+LN6R3X43t2U3gZRiGtqh+VhmAXNRjPavXdV/GEkBHk8CvUru7nmp3oODxXfmujgIB+/JAt6vnrOMhPi6BoIC08fpYjqVNwe+ObkTa/tPg/HQl5RyRxVOf25SBGPpv4OgUck99jV8lOjnNbguAsaQ1TNlZZmu6ALSFyC49TGvIgjjv7npXfYZZT9Mb5xGzvOK1m4F3JhFsEnI5bJacBy4A3iSzsIAwTcZ55PO0zd8jLUmkgEvVmoRcGbDOMBGVlfbw3O1AxMP4si+arVbdpYcMBcqI35sAVRKaYK8VnbOt9rjNNb7N+yrhGiFKTUHNqtZow1zjY7cFKWgt1Kp2MCXBPJddsWCLwxxnAEm636VHlTIVl2uFaGhdKkEPc1xxEEgYQNNMch/zX05R4owy+WUcpDDWv9idxIlTVQCrXxu6WX/vba55g9L201iF1jAE/BybKgTEvuXbvMc6w5gpvdTTCWfzWVLnPJdZYZAsOeZUgmWG84UWK5x1hv8MYzHEVe54k9r8BQ0grpLwcdvDrjeJW4kGZu1i0tVf4weYosRk4ItMcIU5B0htDWTrpkUmMOnvAAXmmXLgxABFAw2tLh5Qm58SKSZYdPZUCUmgndb/rzPEEuddJnuZe0SoO8nAgHJTYU0xT1XXLPbH1hkRalRJ8Ifc4Dq3/DqPsMotrjOqcs+v/Usbm/kcDLwGaAOKl5G5rSkpuCltRJXEkYj9HLz4MowmFejb0+kyKU00Y/YnxqDtOdAlvuANZUtaCmqdCG/zHrv0qFt5yJ+Pdv+9xh0+4SpxBXPvMeXEi2HWnY0sJIoNf2ZGqTmbz3zhE1S/ZI0gIZUFLJ3bWKxv8iF3uUKWnHv+RZWFZsyzXXod5JK1ZIFHnFcQRZ5nCQVYACdapCjxAk9k/j5G5vLvIBJnq3GnkBpGa62jWej4LvBAm70F4ApUfwThggKsw9C1Jo3LDrPLMWnoPXjprQ1CnOO5ssOtoWSy2Apie9XDLkuc1zloyZPc5b4Qq4V+xRls/b/BIEuMc5U7vl4c55Hff/NMeVq3EKaizDFNUwXNISTUyZR009z1MEuQee4y95zk8YhxLKQoSw7xxSu4NDVDgVVGANzWwgJOE0rm2qWHdGqf4jKkL8u5HxjEa+2jeRnbHbYG0VpuqE88IuMxbZIOw91NCSQxT+yjNeiYUQl0Sj7bwZGq2DqZ4VPSbJPXpuGI2nLZ3Liqc+kCk85qLZKmwIA/0019ZiCxkaOybDnD3p69TcI+3jMUELuMEWaYZYsst7nmtYddV8MspKlpXi///a+vBNADvuS/MaRpSBn1LzH0EnBpZ0X11YBPSObZNs9lIABgrBMWVYngPabUOyTCFlk6KSmdfYpOJDHMOoY2ga0wwgAF5pimh12GmWNNDX3nuMKv8weYAegCk4xoz7JIPxFqzDLDBIu8y/dJUWJNwxksfMJYWynKDLKBGX0CvMMPWWeYLDmWGPcEVAl2EOmvsfP62faHo9Fxx3nkwKIl5Fqhco8pT58xaeN8SxfOaO2XWPDADJAO6U1+lQpxLrV0I/NkGCFOQdOILGXWZKQ28AbI64T93NmHVshJ3H2ZAhk3IzaprphKb3sBkSHPgHZrTU6wTdo71Euc5xILbsLc2jmQJN0ixsI0ENbGk4GLEZVRmMdAjjPe/TRmohVOFs7SzzaW4mrdTpMJWYEepe7nwdgCkuLUIEHVJ0kB2jJcYoHv8y4zzDpgbR4+Yuhc93MB+L+tM2tFuBXZUjI9/xKbE0Qu3UDkx+ZfYB3cEA0KDFBFAl42GHTQMUEVM5K2VOkfctVZEeM8clpylQSrjDKiqW1m8m0mrDJJiQzjLT7QBUznV/Pw+Yv2Mo+4DN51MnbU/rkOuopHssD/CYEcMw1/+vI5zu89puMznIl29LIY6/d9ciiMni4EIBvGU6BO0rDYd45fmn0sT/g34ODVdpJFlSN+GwEOHxB4xSnji9fg8fBp+r9ZpOvxEV+M9fHCZyJ/XZ5+kbGCFEJHSej4luzn58OneOnms8ALo4GEchjoMobIZMsEqWsHeg6yBPLIHfh85hTrDDPKCi882PFjLnZ3u7fdyVlJuz18A6I1CcT4o7G/wltjfyygUbd878Fr7RI0clb3wcCUGJCHL97oI7O3I+DjDfijzF/hW2t/LFKLdzro2jgSQCYq5/VwUAMWHuv+awHOMAIoNXFp9OG3VWo8I756HTsSwtGBnpMoAp7mkGJFAbKTs7DS9yJjD57I9sp67l7W8TOr165Tvu/w23IOGi9Dxz4iH1WvRRZwT7ijQQEmf5a9yDcKD6EBB+l2kp8cy3e/TABiPdZjafXHsxCMjBzjs3c6OZUrB5LvsBzDSTfk+7olTGVe9mX/VzvouncE2gk/eRUqSf3ul+FZplPkvxDInPdg/9UOuh4f+W2EySimdcwYMPcGgaS7pufzZQLvyFZPFvVdPByDWA6Wx15kjCdo3RrIZ/N6nRQo5KKedwtEsTyfrPgAJt8/Ds5DVBKCN/pO8VLjGYdTELup4+Wzls+rl+H+xQ746IijIb72gF43e9TppEmIcZYY0gWhWZDU1WvrPb7NKKtew4AsDMSvWEIUJOlT1AxlgtTWVUZ5ziYhGiww6exyY3UY26/V88aAIpPiWt1nfkLiUTfKLK8wwUP6KbLAJHkGuMbHjLPECqPkyaiFxxBnkCCDCnHuMcUw64jtSpwZPmUXCaAQn16pT8WKJuLNcAteE8mOGJ+vMMIZxEPKatYSKXrZdUDQau8B9aRqIMFoZj0iDP+Iz9P9CrRZ6EKCKv0UWWLc1QgWopGi7O/POLthzhlYgDehS3TyFh+6bMssUWQRGKWBpMeKbKzu5yCvLLoRVpw5ZrVWhThmezPBosunItQoMODJl5YwKPInYcZFQJlFVQfETH5s18I+m1b/Z2OQRqlzkUWXafWzzbauY6rEsWTCImmXgbd6aRuDsvIlxkfZgesJFl2aZv5+dj7NF6yu18yYg7Z9qwlnmPXvKyJS9eDchumhQIQaZVIeSgOyYLc61BbpIIy5Oa7wNu/7fbbApBMk7Nr0s434eQuA0KvMQLuvcpwhQYVxlqiQcOBZ9rXMqoYZAm4t9JfiFYb9ZZV8rgEz2sQ7h9QeXfKe0qYw7/ZrMNCtfm85YZYzBtTgxdeAPWWWWyhXDtEbgoPvBkrbGGvqs8EsrwAHpA2wsHGSZ4AZZl0ZdF/D/GydsMgEjxjn27xHRkkD5g9WJ6oEmbr7wi8wyQSL/rwydZwpkZ7TQ5ptT9u194kqSKTuZQWzzbPT1qa79DLIhrN9jYRjx0oMeAq8gysRjjZVcptGmpRrkHhZ/612KeEQUuc1BYStzENlTc97BkrL0FUjCO7qlG1bQnqabY0HlWd+jYhLay3YyOwChIQi3uq97CqLetuxBGEWr3GJBZ/PzErBnlnCBpd50pSOjxhnlx5mmHW4/R5T3lSbYJEVRhhhlbtcYUQJKmLLJOMnqvYMFhphnvTWuAjUkMbilefpLK8A6qPcrmPYGtAXEWuWs4EiprImCcJWX7cta3PUarYNuHJB75kGMK/XcEOJDE+ANug4PnLrsAQVD7QwK4I1hlli3FV74jYrOISM+Yg3GwMrgwh5MjzU0CmBxCfc2myJccdtQjT4hKsObg+xTgOx9DA5uRGuLADMQjyaOoZ/gcfJv/tXh6K481x2uUGdCOZPZgmaRrGVJLJ+P0kG7oBMWOZH1iDkYEmrF5/FcY8jvm4bCvTEqfqANlBonCUsGcZAthQlPuYaJiW4zDx1lT8Yq2uXXmcuDbPOZeY9vr1Xu8ZrDDNAngIDGiNfcCPOBS5h6SaAT9ZmEmveJ3bMeQZcRrKhYJEx8Oy4rfgyCYIkFwnY14l4aZi3SYEMV7jr4BLgD+wCA6xqqq8YYApKXSRNP0WnzALKPItrx7rgYI1119YZZoFJWg0/ITDAnuS+A1PWyRRa8Zbrxg2gCs6TAEtWCMS1sLVOPKAcxLp3P62wsHG3rtemlUFp3QfpXPd6yo15y4GAktYtXmOYQTYwzzrAZbQGoBqdOEKdO1ylkxKjrLLJoBbaz73Dso354wizTfyC5NpFqPliQNJx+v2+sO60pQEOse5jYoJFPuQtZph1JqQ9xOeZ0ntPqNo2uUuSmkyAPTx3v4ASKffJsQ7epNKvDRyXgk2YtDJm+jFDbutKLzHOx1wjSp1p5viEq6Qoud/i1/4VRQqAKAIUGNOqCV0Pj2Rx3w18E/GBe01+90vLj9kZi9F3eCgMvQ3o+Aj6woduhMxjAqr5oYB5bQX4pYPHAZuoW8IvLCGKey37ZgBbEwFGNuAcmqxbgHR2B+Zg/zc7GNp7Ip/Z0UlYQZ+Xis8CMMX81N6V950koRGC1exL/ox6YVnSV09e1eJVGYlk4aXcM17aeSZpvVE4mG6nFE2RaFacpdWmnjMx8zo7hG8V/lgASi2AeQzJqHo07uk5MiAoBAzACwUBDHkgnxnJrEAY/uTll/mVzx6wcyEmCafaac1dOE3qQplT5XLgV2eMtzCcjOnxhCH2UM9vU1iHOy/H6MsdyufO6/78RN+ThKMZ6fo2Qhp+sYEHl7CHFJ8g193YYWegHuuglIxy6rOyFEIhec9JTNmPRRlr4aaAsEOssZ8WoCz52bG8Pw3MwdFr0LGGd0KPrijTMk0AQqmHX/9OWcDD8wSA5JxIqU937QXjvoYA1la0peUclfpSJKN7kINTlOEx7H9TwW1lQXYVj6SQbpX+nifwoivK9o6SCmYW4NlUJ6eiZdiRUIpTs+XAS9LYgvOwOfUiQ5knVIgL6DkHJ99WFqG9cgQsxCIBI68beAgHvylj8/RHewFTVdmcbQcylhlG0pknZb8PZyCmDFoyAoBGDmXFFWqRYn9dX4fE+SXWvXlrKghr/BpAdJl5t34YZZV1hvgef4txlrymtLmmqvXICiOYyuImNxhQ5ruxDsyWxMC1UWXbGbtpgUldaFVVZhghzbazSla1UdXPNiuMKLglDWOrD2Uh02BVWYN/wK8zzhLXueWWHIAznazWEsnVsLM2SkhIw5AuZM2fGUT+uc6wqxnSFJliHvN722TQ591r3MZUDVlymAVGQpUh5mmUpshdriB+SufdM3CAPJe5xxLjPGRCGYW99LPtTBMLmDMAsq7ne5QVVhhlm7RWwhPc4CYNQryiwFOCKq8wS4IqN7mBSbCtebrKCEOsuwx3hFWX4Mr6QRrVZqVyp3aVqei8qlQyjCuzsEgaC6+zRN0FBSNqRLisnolLutCtkHBvY/OYEzZL2L9LGD9xB1dN7bHOkBMHrPEubL1tPWaRVIVpagN8yxkrkmYrckcDQoxt2MOue1ItMMk1but6KuJyO2OhRrQBe6d5lb8f+icU6XebmmG9z3KcwSxXVhlxsNtYj5PaODeGz3kNrllkggkWGWGFpl7LJcYxP7brmgZgfuZV4r5/u4gxvbCostzQ8BsJflnH7In6aDUo+xq/SvBfAI1/A9Ek4recRGqDVYRBdoTUNQ1k/lWlQrMGoRQSrHEg72vuQcg83OpwUhNGO+0wopY6gDOzjAndzzZDrLHOMFFqKnctOfBmDKsqCf28rLsstNDYSsYckyRUMfs3QERCDUcVENly1rWxwxaZ4Cp3yLJFWaka0uSJejPiHped1CBg/utc4S5V4u5bb89lCyGw+3JDlXcgDRxCQAf8w/cRj+un0DyEkAVa1KFShMQ5vQ7twM8QxpcCRxxDTS1IojVgF+iX68NppDZqyGc6OXBGnuUHmMVXipI+d+KYt5tdHxAgVZo1CWcwS1DSJZ4rXmDPOTs+Wz8ucd5tzSTx+3WXSNtnDEepEeEsmw6+9vCcV5glqgxhS0I3xZYEMgVEnyZh1hjypkOIJt9VAlOG59r0KCOBKnKu/i8huQ/oQGpxoLkGoSzeIK3dhGgMuAOc0jH/ud4r6jd9tAodBvIZ8/KpXi8genDMtjINrVF2XpuKu/QwzBpLjHst0uoRCoJhnNcAV1O6mResgabWjDAWv4HLW0jCdFmJO2ahtUuv41J/qDWL1TBzTPM273lN8Yu8vpKU2x36mOcyC0w61fo93qZImiw5hlmjQEY9y4RqbR4cZvQa0kdOQo0ZpXMmhsOW9mlyxIDCnvKbw2iP1hEzkMLANSuSJNl1iBRlZphllBXGWWKWGVYYpUJcafnikWHBGAJEyn5t009DO84RxAjxb/N7CnaJWn6QDQdDjAVmSVWbDPKcHtexW/rPqJooW8hHhBpn9CZc4jzmXWYTZWu6b5mUo/4GngF8yox3ui1FCCQO+xofq5eLMOGsSJvkvha+nfqQKTPPlHcJDfxpEmKINVojoE3mvMR5TH5iyWs2eQ9qN/0OV2kSdtDKfOwMZJxmzrsaksgqnc517VLnGeAeU+QZoEaUEVac3mpgqXkiWmJYXn0OLRUpQ96P37rJdmyXuYcwLjeVKblEP9vqm9f0B3BEEXmjmtv3VhEPydbxbSlPprH/RM9Br94Hjxh37wHzuTEfiTgVRnWBIGlyne5juE1au++rLKgJqHWfLzOv4SQiJ5lkwcNr6kQZYdXHlpmw2iRkfj4GQBoLr6YFmwCReWaYpULCOw/GBIio7KfAADuuqfuav4yNNUBA6VfTYwaQAi0Mh33IBNUNR2fk57v0CAi0SZDAmRZ21UkWuEyQXtutYFcOKQiN/ZUM/j6ZgpNv6n6Y9E+9Jk5MlmjpURuQT56CMQg1mpS6Y5yElVE0j4CTOf7tUIALQAE+v3CKe30X6fgMLnzyOad+XOaFtR2XtTqYZ8NgQ4AowrAdTcMeJD865nRuj3j5iIPhdgdMmJbP7lwQpOvEjqcJLMPRlB7zIZK6mpH3/MmFl+VcPkKAoYd4UfBS4RmHffAraw8gD4mDQ7l2r8mxnXvwlFOflAMmW4EA9OlT+eRDvd7dcDDZ7kV4gQFhX52TfX72cqekwv5mjJ+9c5FwU467Ywv3Y+MAAZIGZRt/mj0XmC0rAz9ePpLJ3q77tHyu7RAeXzjt0tK2edn2Lj3CepvDJdb7Fzt4eqNb0lZjev0GBQTEwjsm4dAkyUmRbrODMAhN8moBHjE9twN4AtzBxXYOp3EAOUSTk4sEQGUNuvJHgdHxAByaRNXGr44RFDTlnPy+QwMxQIM0VGZ8arkMWeQ+sW65svXyZFjvflEaM+qj2NYQJitJgnRdYyXuwcmk/Ht55kUYhlw0S8/BHieTSFpyhoAZuCysSDYJmIQZZW2eEyYqCIAbU0C7/Qu+9q+zfE6/es+8z9tsk3am+bomiAr7bsEBPmsWzTDLCCuIlYM01NIUsQAH809KUeJt3ndQLMuWM7vMrsNYWXEqCgg2fG4SeaVYVRQ1COxf8FuYXDBHlgUuedNXPOJq7i9kBbo1rYUt1a/dd2luG4Bk3X7zwatpA9LqWQPxhlhz5lmWnANqIN5xZrZtDK9t+mkqKGlsN6kbKg4y1RSGMjnRIJv0U9RzHvamukleS6Rc8mZgjXkSLTDJj/gudWWHmDKiX9UXcq22nUnTT1FZ/SOEabo6xWo1kWXWvW41LyFh7jxniDVSlLw+NBXLb0S/xzv80Be+awqUWa2eoEqVBNuIUXtc1xI1XWAbI8+kuCGa7tW4ygiPOK92QXJ897jMLa5jHlUWsHGPKa8BjR0Z+Hf1uMLkDleZ5RXfRwMVF5jUGjfBCiNeE97liquA5riiY6jMFPOUSHGPKSw1tEGI8ZAAMxMseh0mNiwiv82So6zrrxxZDYQLFDALTDLFvIKFYSw8w/ydzOrmOrc4zxITPKSuAKGNoTPkGGFFtSM9vkYztlSEGhbItksPF1mk+dWJx/5ivZJwUFOwojv42dHPkLkwpb6sEWSeakfmkjSELMCrBpxAuSA/ax7o+7IK5p0Czsp9nFfWJARs3AHyZCjwKTPepN8m7eSKOabZZJBRVpwBWiGwCiiRcm9Ts9lZYZQVRokT+DyagsfsoCzYxWSxv8Xv+Vq+QoIp5r/kmQ/473JkvXmwySAf8JZLzi1JNq46twpxhln3ho5J2jmS89rcA7aBDgj1IkBfA4hDqB14LtdBeTDy2oOKOiJEUxDVMKyjor63Q6/Baf1/DZIcEFGmsKULW/CPhUjaPAC4fD7eAroNsY6Fe+zSS50I/RSZVIKGNMFEWWgNKFNlGYEG8OCce1x273ZJDq779R1lhQRVehUErRBnjWEHg3+Pv+3n09bXKUrc4SolxPNvnCXCNLnMPWd1D7Lhsn+SyHWwtUOnnvcoUkcdIh7QTTgxUBUgofdBDw7YdWT1WjUIVCYJ3f4A1ONtgJBw7LzbmrYVuLvPpM6XDfdOlVog7Zff1AApSkxxz8eUeLsmlEwTdfzLGoVmIbLGECuMcptrTqSSbAJhpb/JB7zFB/7cXuICv8jrKwH06krnleIh6tT4GlFWVFd9XrXhu0hClRnD2mucJTq1CLMDthNqYA+ApcFKV+mMs7gs2r6H5/Syy3mWvtSttc+ZpPN1PvbB3kD8MAyEkWj6eZ88S6Q0yKDmk7AVXynKzgAz09s5rrCq4OB7vM19lXLIwymug0Eo6NalnFP/ANP8p9nmMvN6HiNfYs3JOY/wNu+rfFKAskkWHHgR0PQ5nZTcaPnbvIcl4w6z5t8lAsoqOc5QQ7z3Vhlhk7PMMkOBjN8E5sE3yIaCbWFnl5kJpMhrHmG+KVly3hmWh3XVQSJ7cFlwyDVu+zkW1mXFY8o3OUuVOCuMAtKlFf+XLHky9LLLKCtu9mzFZw+7WER0hJrTjyV1bYAodWaYVXm1FLs2TozR1sOum8MaVdo63bZg2GSQLFuaLlvw5DEBHzPejc6SY4h1bnGdSyywrje7TV4Au/Tq4iTnHjd1oqwzRJ6MPvx7vcvZSiWeZo4INZU+Bx6E0mENM8sM95n07lCKEtv0uyznJjcYYp1p5rjMvBvMrmpqWatkyDwzrHhoPQZjlVr4xgs8+Xf85PmL+Wp2wBcX+vhisE8msMtwcKOdn33rIj+Z+YZMTO/rYv8isAHNsLC6zv34qQB5wwiQcQ6IQnLvmLaiyP1YQ4CKGjIBDsLyb74ossW/1uHSyYOxdtoOhcHHGPzJ9MsCQM0DOfVG20N+pkzCl3LPeDrTTXLumL6PDmmbh673j2SfOwlo71mCJFkFWs7uPOMbf6RUtSJy7AsE0tc9AjmydpXbDoGypv+aLLcgDKzkw+MAcFSAsm9T2qNtlh4cJUj0HQA+UbbcngA2Q6x/OdXXJCtqhhzTc3Hwart8Lg0H3e3OQAMFC5Nw9B39DgPyFnTflN2Y3DjmcAoOu+HC2uee1to3eyjNjEPo++SQbxQeCjPMQDaV+LKs1/UjuRa/tPZYZDhzyDVvKmPzs0O5Xt/hS6mv53JPA4lxQ877uR8/FeDvm7qfCqaWSLGaPOceJKDjpIaw4vqgkowJOJYjAC6NeWdyVnuZDFalqcnlY2GglWUsnPqkTNuyAtfAzndi0p3thp0bMWhATD1sPpt6if2/1sHnN04FXnjKwuSyXKPlwRcDkHxNj2sTdgZjAnLr8dOQff/m93/G2NoTkXHv4L4tydwxNOVeOTG5rrIx24oCTI6tPYEwjG0+ITYvYGnbvLznyMDHLmUNHrZc1wIiuQVe+vEz2IOOTYJU5Tpf+9cGL3Ffm1J/l9/VBlHIa5S7ClIYi8xqEGsWrjNMmKYyStZ9PrvCXa+3rIGVoMI9LhNFvHyrJLwBLEBPrzOHrGa1OdUWR+abbAz4QTZ5kw+Y5D7i27fkiyGz+7AFcoKK1rAJZ8hZXWiLCTMqBxz0MYbYCKvElYkizcCQS0MNfLRaxhgug2x62q2xPsyjZ4nz3OEq5rHUrx5+Zmxv9jOAN0mf6+LDlAem+jDgFPA61sKytul3qxJTbySouEVJTmHJkAJCi0xoo1u83G5xXdOGz5An498d1rplgUuA1OnzTAGySLO6L0eWOhEmWWBVTfGNLDDCip7jXiZYZFWBh3mmeMS4K3/yWkdbPRpRHpxZ+BQYYIssl7nncsC8+kKaBNDOl4C/ET7kLV07jDrzcIACWbaw1GRb5JuMO0fWGS1nyHlgx1XukKLENW5jvscpSrzDj5jRNNNh1vl7/G4AdvI93uQDBsgzziNV6NSZZIEr3PWGrLBiV7jKHcwTWfY174ocSxy2uryHXcqk/PfnWWKAPOdZ8oX8DLNcZp4zSoIQAFmYqRMsenM5S45L/Pzfx+PoP/yrCl09SPjWU2Ru64WONChez/ExMt+dQqSbprSIIPPzsby38wKQglA/AiQlhaFHCdiTlGpLbr7GxzouRFW0zhAjrDo49yPeYUsJIaOskGWLJca53wI028uADEuTLWqKqnhu9rq81Dy/J1j05oo0HGTNtcCkWwgYoFIn6snj5u8nir0Q2yq77+E5g2zSq/e3PfdKdPp9IUSJkCqReujgyBt5oRQC6O3iQRn0A02IJvTfWofShzAfP1eVSkjPdTcQV+/cdv0T0m2l5Loe0eHPdrP8el3vXwsOHWSDbZV5mlw9rHOHebzaM9qe/4ZpGJgUKKfk/1e0cM2S88bNdW4hIUOyFg/ksaLEMg9VWWs33QfdMJJJFvyeXWFUyVcCzP46/xpL3s2R5R6X2VZRvjQxXmOCRbqrFWHQVfV87en56kHWFu1yTklBZ48qTo70fJpbU5WAPXkANbNeSev5r+CBaaHGidcCq4w6e1uIUE1v8FxmnllmtF5oMMgmA+SZYJEtnVuWGKdImlVGsIRim9vMM9X+bc98wwisTnmLDxhhhSw5b5QJSCgYk9VBq4zw2S8I6H0lbZCXWOcUNZ7r4IVAcjmgtFFDzA0MiyDJT3NccfBniyzbajrcqQdnHUqTzQqQJibEMjH8Ky0AnrtHnHXyLIrd2Fg5LU4uM+8MuT/kBr/KTWpEWeI8o/qQqxFxQ39DXAcosMR5f4BcYU4fgp0OBAL+IDNTSJOcSpEntGZD6K9zi3WGWGWU17ntuvizOtkG+3yPPAMu4V1jiCnMvFjMS23QiVmtgJO2/wYMAp56I7JQCeiQRLWqn2vrrOb15r+vnbtFJviY1wHpLhiYlCXH2wTGjnNcoUmYfrbJ6AMpQRWL8TZg0NhwM8ySpugx6taRF4PpYRXYRthQYNGKaGPuTZJzBuQQ61QVOC1psdujprsmDTWzawlkOe/U123SSJBHv8tezVzU/BAsWt3AOzNoHqBAlJrr8u8xxSojTDFPDxUfw3kyhGl6PPwS57HAE7s+lnpjna0FLtHLx57kN8Q63+ddBsgzxDplxItviXEGyDsIWSFOmm2X6oh3SafKPobVVLWh5zPvqXM2MfawyzrDClbm2GSCJerUiGBSoThVFhhXScku6wxhPgvjLDmroobFcH69X6ESvJDbCVhsedgdFLA7u7MjwMc0ApSolDX2AGLFQwjD0wvd8hxLl0Sia94oywpAmLdXVJhCbRsCNnAOuuaOHOjajA5y4bPPsblhvLkkheEjBHgAAQ7N/+M1YBNON/fcG869LibFU64ZbidxcCzsNAVniMr+tH2EFDo5BOwxAChHADLdRMCrDAHTr4aAWFM4G+skKQy4/ckOun54JADlZDvJ3DEHF9sF7OtGAK831LS4SSBR0Q5qf1i82k7OwfPpGH3zh7I/UwigNAjchSTiiXY4CMmbeo4vwhczfXLNEGbYyVllRZ7T40ojoE0ImIeYPNZFvts4lOLiIbyUeSY+bubNYi/zFOzTa7EBXBb2ZsyYaVqgOHC5IeNn/1wHXRwFRsy6HyeT6lm30SK71vTVoyh05Y7oyj8Jwkoey3EcXVDA6QAoQyJ5KMw8YxNMwbOxTlIHZWIbLecgKmzINmPX6X6vd6tf3TkZQ0+nujk9uwfd0MyEPeClb+5QfAMPZV8rJKiEEpzdeRYcuwGJmuaXzeQELMzosS3rtj46FKB5WPdPj42svm9Bzh0QsFUzsBvtIZnbCe41ZbOGGsccZNspDafEJxD5nqMLAsLHCvreMAH703wBs3IeCQXHcDDWTnLhmMYg/GXob4zzGWVecLDDAsHWGaJBiDf50Gs6k3KuM8QoK24hAfAebzur7zq3vNmWosQff/Qt/mdv/NdMM8ckCy7dNTAvocVzirLLdW27kyywxHlWGOEqd5A0yAKW5inqgbOM84g5UmwwSIEBtxeZYdYXxyEaDnr9WUnVApNYyMEMs+5L1k/RWf0mg5ziHhFq3OZ1T82TZqXIL62elXm74Cwr+95XmGWdYVc6mIzUTPCtPjUwzMK0rPZrEmaKeQC+zfsuVR1lxSVGZjlistE6EVWTVFlkwoMWakR4qCF3wu4J7EtM4bKqC8QebQ7WiWrztEGFBAUyFNSSZliZZKJQSPmCvUHIF5jGJrLQtTwZZviUO1xtse3JO4hrljTGVLLmt9VAu/Syygg5XZ9Mct+btrYwFvZajVVtPi+pibyEpkiaZZMQZ8ixpQs/81bMsuUKHZNjrzKqJIMqFk5iPozjLGn9teVjwfZHltHjJKgwpQnMFlxhf9vC3JKEzfjd0kvFY3xd68cEPexyhTk2tVszzxQ97PJr/IAB8nzAm74v95jCAjJsnOTJOHkgQ54r3CVKzeWXFRKMqTLk6/76z05B1yBSG20ic8QMAh5tIPNgHJmzksCLsP9T6CoCryDzlaW0voYkvlv9tqfvOQT+E/i/6VoQYIFLmBrMnodzGn8ywyxmizXJAnfUImcXSWUd5xE5zpCihATiBSF/RdKMsoLJ2+Wu71SwfsDv0de5zQKT6ji2SJ6MsqHk3mkQ4javO3hnzwVTP11kkYcqvRfLgx6XqBsrdJOzriJrVQadIccr/2CI35z/eRBcsYH4PmvACJ/BySG0/XWCkCxrPo8ReBlrfee1Zy9SHyX1ff9r4B/Ie//rf/AWeXr4PX6L3+Z3sKTvRSY0YESUhYtMOCknQo2aSo7NxmmINW7yq+5fN8S6rzuv8bE3pd7kQz7kTWfzGbhkXqUW2jDDrKv5rHEyw6cU9D41Rq/ZhAmpJa3byHgz5zk9DCOJ6Te54XZXYkOWcQnqJPdpEuJv/+MXGVt8EqgYHuo5/pvAApz8S2g7kTFPL0Gz+VXENshqQYAbwD9F1hJZ/fMAqbfSst0//UfnuKXz8XN6lBcs9lAWRmLPfrNpE+l41O3UzPbNUqHXGHIrMyMkmQ+i3WtVfWa2vsyHVUBwARitPimQIa5MbxBP4c9FoPznvr4SQK+PHaJ0eBfIulx2kLsKnpm/nE2ClhJmHhdC4V4kTpV1ht2QM0KNh0xwhhxDrDHOIyrEFQwb9iLDEM8oNe4xRVk7VZZQ1nqSrUv7Nu9TIaGA2HmnVG6R9a6YdQfqRLzwqKuPhaQ+CQfUBr9JCKRzt8GwUojjVCiT4i0+9AFl3cjf4veIUPfY8G3VzQsgWXAvg7f4AAsoMBq9Mb/y2qW1tDSjM5t/m3RdzjOsHmxmVDzOEkuMe2KXdZqte5igyq9ykxFWkTQdSRsLElTzzqI0PxE7pz3sUlVJjRXINpClM5oB8CCVJca9m2CU4x4kBaiXXWccXuUOIFKqVmNX666CdJKHWOe8dj5FXpLXDrrQa6WbXHUQN0pdb/qaA1qGxk+yQJE0W2QZRAInJlmgn23iClYCTju/zDyvcccpvWfZ9E5WnCqWdPsad/iAt7AQjW3S3OAmOc4wQIEcWd7hh4CYUlvX5zq3sPAKk3KLl2Peadxv8SGLTJAn4+/LsqWdGjl36woiX9EFUZSaF3xLjPt4t7E9wooC2OKpYJN7D7sMaMFmiW4pSswywxXm+IRp4I++ikfQX6xXRH2+lpHi4FV4YXaH/ekOl8j+7LWLfCP3UCahMQLQKw+nP9sTD5VN9WlLIqwfk+DeQyawHLQZSw8cPDKw7MJHn8MY7A9ISEHXztGXpIsuf1TDXw6BYuANt39RgyJqcJIRMC+5dhzILc/D/lgHqb0jnr8co+/hoRScJmE40G2mNaRhC5EohvEABS+cFEA8GVMw6n1h5+VDA3RNPxEw85NjOFRQc1pYWmMPn/A4c5pze0/hEHbeiQmDDTzllzEB4fp+eijnMCMS5si3junYAa6AWjMR68O98g5fFt+9g+52kofHsK/pswdyfE+/083pwp78fw8HwogJK48ofD52ipcuPuMwA7E5hOFnAJC91BdxZypG3558LraJJ8GSAV0Dy89elmPLhbJ0JT/n89dO8dLsM9lOVo45GT7m6Uw3px/uCWgZhsPvKAtuT4/3Ig70sQeb3ac5d/epezHGlE32s9cuCvPyIZzaK0MTlm+8yNjyEwevKmfbScaOg/3sVJB5B47GoGMBesb2+GKmjxce7IhU1hh0BhiuyZj4xryyPG0M6eLm8cxphnee0laExIEw65x1mSEIzrBAkc2WQI61Yw7OtpPsPpYQk8GWYzxAAlkO4PG7pzm3/FR+uQaxJDwbVnbCPDJ+VPbb0Q3PhjvlnLSm5L6Kg8OxT/T41BMz2X3MyTk4bm8jl+1HzGG+vq9nZHiF++TIuvQQ4E0+ZJZXvOlmjVizfbDF/gir3twDmeNlcRHGgsN+843/J1FqLmkUVoewqO4xxSUWMNsQ83Z6xDhmHG5WL63fUSLlDDRjL4Rp8ikzvp9LjHOFOeaZIscZsmxRbWFIiGKhwAB5Zplx4E5kttuuCDB/Nquh7H2SspehTIoi/RRJc43b1NTDx1jyOa1HZnmF8yxRUHDOgKtZZlhniCnm6WWXe1x2aZQpDkwSmVUVjdV2o8qAMbuTuHo9WWPTEuzvM8ll5h1ItOMPwrvEZ3hUJXi3uM67fJ86UaaZw3zjiiodfsR5rnCXBBVeYdaN143tckaZJlEFgId0YVmkn2Hm2KbfG/zmg2e1vDHQTFL9r/l1Lqp/XokUrzDLh7xFkxBVZdJZgq0FO1zhrtv3mBLlOrd4pI1NO85HnOfbvMcjxn3tk6bICiO8yw9Y+If/LWscsMfPyZHlNJ+yXa1zEI/yf6CfsDLXYhwS12CPPnbYZJCRxipfhF+glx3K/Alhjjh1uMOz2C4dNIhxSPKgzpPkPmGOlAnSyWJ9h8PIBibFPOIJYu+S4CU+Z49uOilzTDspihSp8P/lmKgSAZos8YRDakRJNUochP81D+ggQYUdCtynRicHPOMUXezTzi4xDimRooMj2jim56BCOfmFcrkS/NFhq77xa/xKEMgN3yBofK4h89fL+HxNA7gIXQf63jyB0sHm7YtI/biGAEzTSHP0MFj/mQdihoKvz+ReEyVSQ+9ne+4J0yvuBJ1+BXunuevS/l16nNlcawFHxCN0W0HDDWcXLyqob2vwHnYxnzZbg4kVw7Y3J25zjRFW2SbN28x7cGSKEtPM8RwJZKgQx+y0LrLIAAU+5E23KYpSFwaxAT92zhcQ5peCem0WZGd19ADSDH2A1GFWg2/o+/4aUnN9QuDb+zcRIOo6fMJV+iny2/wOZ5ScYVZgJoc1ZqKt697nbYAvBSx9ygzmbfcpMwyQ92wC88UfUd/ZM+RYZMJ9aM1v0FjTmwzyHm8zxT1tnIwgiewF7nEZs5MI0/QmW03VhQI+yTPXWMmLTOj4EQKX+ekbC93W1AJMrgdBYg09p2eR9cIYtE0TWLB0ETRXDWAd08/OIZ6HalfkyljzLS/I+/MMkGdAm4P9rgg1n9wIdbfNGGKNXXpZ4BJv854z1uO6Vt+lh9YkYQNKzXoryxYSbhX3wM2aYi/GKl3gkq/xjW0pLPyoe/XZ3DnDLN//73mM2OsrAfTO8JRjLULSbDPdnGMzNEgnJaokMAN+A7GMfnqeJbJsebz2gMoWTKZpySECCsmDxZLDJOxiwE1yQRhj1sEaoMAIK6wyygSLAN4tswLjQ95kiHWuMIclck2yQIU4F1nkDlc9CSqOmOoOUFAUuoCltRpTzR4qxsD7Nu+xSy8mNRU54686RV1SeUQmeZVPvLBaYtzBtl0kIeVt3nO02PwmzHBzgUmmmWNGHxYgMuUqce/CmRb/KnfckNfQ8/5mkXxogP+If06RtJuZmgfINHNf8mCTySH/JaakdSBrRPguP/JOoHVJTNYgEswVp/uWHUgT086r3KHVpNK6kYBLcKyYtULW2Jir2tV9iw8J0WSKeYqkMWmC6dx79foPsokkczW41FxgMySSk4RKZGQ8CygVoun7aMyAYda9OyQeBWuUdQytMMJFHXdxqhTIOPOt9SYvkuYMOf4+/4SBg2eUkp0sMKljZs1DUdKauts6KcpDqEcn0aIvjM6QI8+AU+Ht/eaFYym4wu5b8xCapv7MjjujDMqQT0Lb7q9gtOxHnNfo+W2ybLFLD28efMSHyTd4hVlWGWWQTX0OBAuzr/VrV4IRKMDhO/Kj2B50/ZsjB9u+kXvokk5AirRJHKgjjwBSB5JCO9z9VNJQ556w/zc7iJeP6PhEP3sOuAcn14WtRxgp6t6A/awmh+ZAcX7pbh0AfSIPbYbbSc4fO7vIJYsgxUtIfpbcOxbw6LNnLt/cDqXpeviUvuShTM55OLjeTvKnx8GxnZXEVQOKaCAMOZMwaHgCc+IBkzwQ0IWzCgrlcW8NsvrenCy897/dwbnPnkIRvnitj57abiCDVW87ckihkIHPB0+R3XtGcuE4AIvMpy6qCbVnkXCDNTgcFintwaSCmch1pQinb+7JuUfPpxWLy/D0NWGjvVR4BodQSnYSnSw7wGgeiC5NPkBCNNIECa72u0aw/+TEIzA2BxcOP/fvfTbTyam+ModZiM3K/p9+sAdnFVwuQDHTxwvv78j1WT4WgOpl3Jfn3IOngS/fHrJAaMA3eCiLDOtKZzWxzIC0A0jOHQcsuA1kgaHAWjMMHTmI/RheeG1HiuCzMr79WHPw7DuSpLszpuEkIGBYQa7/ufBTD6tos/NRaAn3sPCJHfnc4csSUJHcOfYC8lmmk2i6RiWU4PT8HjQCluvRBfE+zGafSkqtsjxPzUvoBmn8viQLfAKnNsry8z046oLSYIxws0nXwpEwLKMt10/lyG1zECmdcLr96w3mgfgrC6Ailhti7ZH15ug8U1gQlTE8iqR9kXGDP/RC3JIazUrDGAzneeTgjUlWzSeogniLGduqRMqlqu/xNt/lh2QoOABjdYktODcZ1CJ760sMQlvYgiy+qgqAlehkl16CpDthIE0xzy2uazJj3aVVt7jOm3xIkUmu8TE97DLPZWpE+Hv8rsqCqmQo+ALAFg11Is5MW2fIQy8M9LQ6QKSnq0SQULolxqmoyqCuShk7zlaViVmsGChmtZTUugP++21VMqwzxB/u3eCd7h+5UX1rY9cYitaovc+kMoVEpTPEGp8ywxlyX/KImmWG3+B7zugBSZndIss8U1xk0eu0OhGucJc7XHVp4BLniVNlins8YpwVRt0aZps0U8xjCbUmhwJcZmqAniXVWp1jIOi2gq1LnMeSbZ8rq+U8S5QVJMlxxiVwr3EH81tKUOGIDqLUOKGNo442Oks1tlP4YjLJASU66WOHSKPOufbHRA5OOOyO0UGDF0t5yqkooQNoj52wyATXDn5KORkVtuRhhVAVtnpTpCJlktUabcdI0md3B8m9Oi93P6BGlG72SDeKHIST1IhwRAfHtBPjkJ5qmb14gkNi7NDHfrjLF/Od2zU6O7bkeReBUuqQ9ME+xWQX8WKDZlrWEG2c0JFs0LlcozKW4MzxFo+dqv41f72NgHrm1bqPNAHDyLxrqZ8gc8xjPHCMGlI7XAT+CTJ/HyBz5B7SSOpGUlzVDiOuRJklxn0s3+Gqj3nxYux0VlFe1UwS3pJjl14y5HmNO3RSYpNBbUTUyFDAbAVEuh12woh5kJlfeFPZwU1CKvV/jsju8y5NHGeJXnaZZcalpk1CXFIWdVxZpwPkWWfImVRmzWWgu63JUpRdwTXIJodJtWOZ1vN+maCxbRY380gdbs3ZDf1jNjGDek0eI9YkryL1SYagrtOG9TiP6OG5s7FGWOG+ru1MQbWroGRr4retcy0NvBMJ/Ngiq/L1tKvlWsk0Rr4QLZs866PUuMsVZWbLAsDITHYtDXMBlCEcEGaWGGeUFSa5T1nnTmu+vMWHHmZSIsUaQ1SIkyfDNv10UtKgobJbYlBAaqizSO18Vs95Tc+lKSrU/oaanvNv6T2wrJ8b1H/v4eQH3iCoAcNgCjWbM0zt2CRMnowrJ+uIf6FZaZjfnrE8ZfxsYCnRtr28Wn4V6feGka3/73BVG1jieb+qc4414aQBJWnsZlVn9UuCKk+Vafrnvb4SQO9XVh+Qu/wSg7VNStEUuVCWodq6MCnCiJcUMLG3zHz3y7zN++Q4wzhFXtjcIT0oDLuzO8/Y7uv0rkEPu5wu7PF55pSDbjdqN6lExV8kQ9714Gm26d055Hmf0E62SXNpZ5nx6DKzyVe4uvcpHTWIZIRxZmlNWbYoaNHza3v/HQDVzg4ih0e8nrzN6cIeiXSFseITxjOPWGeIX1l7wLNhkR6FGlDqjpEgQU9tl/XoEO8e/LfElBr6LFOWC1er0wyH+N+U/6982P1NCgwwxTyJWoXdqEh6z+WespON8Rt8T8mhkqKyrZ3cCGAhFVYIRLRLPXTwOUN8zm5SnFa/sfzQ0zUPzrZTiSa0wGwwwgrRWp31qBSBpVCdSe7TN3/Iqe4yO8MxsuS4tvfH7HZ3itl4E7YuJNQPIUHvziGlvm1+fe8hue5TFOln8uAB6WSRwYMnhBqyiOxrPqV6IUGqWWI3JEh4D7tEa3VmozMui4hQZ+LgIemkFAc5nZFMKnCNj2kSZri5znYoTfbgKfnkAP0UubSzTCMEC92XGEBS897a+WPgCdt9nVSIE6fCL8/ucDIGz/tiFOnn1GaZ/mSZtb7TpPaO+KXG42CBuQeJsYoXdxZUEW42mQnNuqHyyMFjSslOARmbFcKhJqlaidcOfkYjJEbzZ3nGSt+LANoZCIxR3+QDkbPuPaNjH+qxGtfKf0yu+xS9zV1CDXl4bEfT2i0QmU76YIfYAaQyJVJ7hwIgHcDg8KZT3o2pCHC9dovI4THp7sAo1ZKNEs0K90OTzOz9jJ7uXUA8dcwI1LrxL+R2eJw9DcjD8kJBfMLMI6Nnr8ypnTKHGQH8+pYPaY6tkyXHC7kd5jp/sYfU/+hfYfiTzMv8ytQDWdSrNxg5ghRPtcM8ekOZa+qlZ3RxHsp2WIZzB0+hDKG+RpCUi763gUxoF8Xzi2n5DGNAN3Qt63svIkBEN4G/2L6yxtIKVOX0933APHQ19LMDCJBSg4GDZ1LodAIFGA4/9XRT95L76THP3ujk1IOyTLjWWS4SAEbdSNLoqxqWEUUmdAWMyOp7fgi8DM9u6PYa8KeD50gPFmX8reHefHZPsKcsw/dxOTB9cj5f+uxZwAy0zqt1ZjegwwikDdlOTBOB16NDjAw+JrajCbWfwOEbmryrstT9VxVoBU7//h6P/8ZpAckO4NQPy7APJzc0WdWSjzXcAU1t5YCA7aVA0eG0JqcW5Gexm3DwjoCwB1Pt8uxYhsOLAs4SOhb57QbwhgBq9bNqn9sJzXAIMnrNu1VG/FjHTR9yfY31mdbtnNe/a8Bn0Ld/yP4bHXRFjzzt+HBQz4cxFpWJEPs+Urid1WPo1r+NbXAo16Fnr8wX2T7SB8KWO8nCyvCLjD14EgCbdq5MhqvP2P3JDrqyRyL9vSWJvTEDTZX5mrx1TPJymZ8O/jKvbv7cPSrbcrI/q1MvMbPzc/m/Fej78OxCJ6f+ZVkK/WXdjzICSpvn3hh03IS+Vw/lfMT0vXpff/7aKWH313ZJ5o+pp9poL5/wdX9Zw9HCAyrEvUtt4Ee8RRpaopMUZU9FvcmvElUZkjU5J1hkRcMVjIViQIk1DmWxlOBt3tOmqNQuBfWyjVPhXb7vIKNYj8hCSoyqV3nEeRJUFHBLY75HFeIO9glTsO6G2OZJZUz8HGd4pAm31qy9zi1XHPwG32ONIQWYwhr0EaKfIiuMYumkBTIuVbTvEA+0+pe6+uZHbMfZWkfJ1JJXtpwwGmtEVOq57WCggaOy0Ov05qctQFOUKZBhgUlP8R1kk7tM8273DxhinSFtdlpan9VRBuyV6FSFQhZLh73DVaLUmecyCSqsMUQvu19qyC9ykWFleVqqr9naiKd1ibtcYZwlFpgkzwD9bLPIRSZZ4Aw599+zBnSCqqsOhHER9qb5Zebdn3iOabUzEWZThQSdek3NE3BFZdPGiCyRop8iH3ONXm28ihRZQjkO1Rqma7tKe/8xncWaz6Uv1r+gFOnkxeMn1NqjnC7uUOttp+PohIN4hGi1xpnuHMnndcq9UTqf16AqZvyvHH8Kh9BZrNHMQDPcRogTRqqfS50QQ+jmEYg1hFn/CVd58/gjdtr7OAp30MERXYdlYrFDAQkO5VqmDiuE9qE/uQdVaHRBuAaEoNodpv34mGjpmBiHcAzp0j6EIdKoc/o4T3gf8bpKQV/9OW3HeCP5a//6FgHz3ICgKPAGHH2XoEn7XYSFNI3MffN48+1gup3k3zqWuuwW0hR9jcC2YliUARVlEvWyq6D/sD8nC2qrFKVGkJJc9XvRPLVznKGfbUqktHlQBbXwuccUTUJO3BBGsFkX9fOH3OC3+R1nZZu8O0qNeS7zG3wPk87KM7DAtqYzrzPktj6zzLDJoCuSmoRcQmlguwHu1pww327z06xbN/kswsxLInWpqQM29JpYfawNXm82H+r1eoDU0Q+QuV1VEeQILFyUMTnJfZ2RBl3Sbkq721xjoqURscEgltJuzadRVlhTD1mbByT9fNiBuPtMeuiQNatMNl9GwiZbQ41aiUE274qdlJjUmdVYVpsqab32Gwwywywr6g1n/otxZboBjLLKAAVn75UVJLzNNTIUZA6YJmDlhQma1qYc6Sbw3H6VoOazmjIk45uXCdYJv4/I1g/1fTtAlzSdr3KHAgPeVLKGYYWEe0Cm2WZU5yXAE+vNwkCaUgUeMc55llhllDmu8A4/opddFrjkLHG71pKCW3OwO0XJWXit6cxVmi71DdFklVEnlf0ir7aTk393RWRbW1sXsLf3+9D1shb0e/hi1RYsh1lhKJyaL7M89SLZWk78fcB9j3YyMfHSsRssBJ9nT/HSpiQRRmtQ6u6QzvpmIHPamYnRlzvksFv8bH4y/A0uNRdI7R2Jp48tINaACyI/CzWaAjaqb8HJtyV9rmMZyMIX2T4yezssdo8xfhAYHpWSAg4NHDwjdiDd/lMFlduswcFr7dSiIkM8tVwOBmhSv1/NvT8fbmG5tErfDLl+SGBuHgr2OXFwLMeUk8VbrAD7ZwV8bIbbSRaP5cEygNOCjzLqL2W+UmoMyoZsI9QQALPrp2p83wSGxRi+FE2J55GxRbKA+VrljmTfDTwA98s6uajjIwdfvCwLtEoyJjK0pPgINcMhnod6eGnzWeAxZJ2mHPAy7GRjJA4OZewsl3k21smp2bIwLx4Enk/PXu7k1GY5eEiYN9IGcFGOpRaNyPgaUH8qI4sV5Bz7Q1kX8G6cbwvPGjIRZODZdCf9O2UpjHb0urX6MgEH2XZ2oz0CMmjX5llG9/MQTtKQ7+vmdG4P1uDo5RbDdNs3M/Lfk+0fRYXpdBJTECQs+3swrJ5iDQLvDesqQTBRfSRjvc28njKyvzvDMR4xzqvzP5dzMKnXuxuRCqoUzs7tSQbW+k6LCX8BDsegmOzjhcKOT2pfjPXxwvyOJLj2CYNm64U2spkTgO6Tk5N9vmYvex7+x/9pB/VYitN7O4Ef1zFi6HqAmO4eAUnYTSbo2avI74FGEkLq09H2lADIqEJtuJ1Q45jwrvx8Pxmn66AKz6A8FKWzUOMkBW11gntAP8tp+c56TxtH4Q6SuboYyxZx5hDtiGltB+4L0gxByCbbdmR8dUAjjuxHCPbTcVLVKpV4hES1TltJtwFyL0WRNKpjPf5TBOltTxEWV1SP+wmBV0YE6JNFQrzYgBOgDNWhMPGDRlAQg/w7CeVMlM6NWgB2qrHxSUJTae2ZXJJ9B9yPkOd6Xdr1Pa2hBVFopCC8Kdsjoue1DVgHOqE21k61PUZPoSLPxl4CgK6CdBYtQe05cjwZqMXbiS5L84s4XtQ0UhDekf2p9bcTqenz/wkwJMdQzkY5pp2u9SonAwrqNvQ71vR9yPcfnI2QLNUF9LLrYdckpf826w57vhzree0OFoxE8OOrR9s4DMfoelr1MUyEQEn6IjLGTpBxX9X9q0P9xTYitRMB71LQdqxj+mE1uCbtUO/X79iuBn59tn9R2ebTTB+nt3ek9uiRP7XudqIFZWLWCeS9/XpcJSQEJRWho3FEMxyScXUI9e42IoUTuR42NymjhZJco1qmnWjpGJ5DIwvhNb127XJ+mhmoxqJ0Fmsy/p7ruemQMd32uME//mfA1/B5aM/C/8Xe/56lrl9x6al5z8pCUQA9s/EAkZlaMmaCKv/bL/4Rf/2FPyCu/r6Ae++aVHWXHlYZdYbVNW47MCUd9LQDSqY8mGYOS040poh5+JoMdZcetyAx3xtjji1x3tNCJZWw34GnFUawBDsLozAwyJQaKcpe7D9kAhBG2A1ussIoPTx3Nr8pBEwK1yTs6avGxthS65YcWSLUqBNV797nlEgxz2VvvAHayM6wxpB/h8lpK8QpMMAV5jSUYhJJIM6ToOrS5nGWOM8SdaK8x9vs0uPy2YjaduzSS6HFVqWHXf45/xEjrDrwVSFBmm3GecSHvElGvYjtM8bAWWOIGT51GaGFOth1zalKIssW4yyxzpBbodgi1UA2S4EMgIi8++dNc5cl9aGrEXEAUXwcRRJoViiPOM8ZcjxinCvcZZceotSwZFqzZzEGiDCIZPFcJcFP/uGHDJDnW3s/4R/8r6Q2bYbbyUWzjM094fH0ac7NPeWL6T5emNuBTqm/QD1LP9MbbgypQw9g540YfYVDmfvUI/RZtpNTa2WvDY2VTEy213aoTO4tXcc9RAAiYyWtAWl9r203itQ359TztghPx7pJ7+1JLWvzb7f+UTsKikBTmi7r3S/yL/7TJ9SK8I9/B/gaPguhZa28Al02TyaRc9wna5TI4TGL3WP88uYyPxu8yOWdh3zc9wrjLHG6sCfs8maN1N4RjRBCtvhxWRpLygI/6Ya5vpdJs80trlNgAPHWPk9dpfoTLLpU3FhwWXK8x9v8Fv+CIv3OxMpxhte5TZ4Bt90BXP59lTsMqI2RgRl2v36P3+Dv81+yyoiGphTco9MsCmx7JuO159GbfMAsM0yw6KBY4H8pUtQUJR4xjvnK5clwmXl+yHd5jTs+j5gs/7ebv0PX/+lIlDHdcr50SpExacwvCIAhU5NYE1IxAm4i4OxnBGupDeQ+3AEO4afv/zJ/yA3KpLjGbeaYxuwKCgxwjyne4UeAyEPN23CJcfejqxB3WwILbDRGXI2IP4dCNOjXBk6EGr1IEJT56zcIEaXuz0zxpZfE85vcYJwlMgrm7tKjjPDn1Il6I8f8StcZxnzZLXSo1c9wk0EmWWhppojH6w1uMvafPAloZRZmob7IPNb74QLynu6W3ym5AfQcGyYxQLDOsfWv4jHL/8WLvMe3NYSpzCgrDgavM8w0c34eo9S5zTWmmPfr00DCPY1UJY2cmjP8TD1nfvcGxlpw1hLjTLJAAQmxHGHVm28gza05rlCkn2nmnNE+yCbP99v47e6b8Oc8D78Shh5dwD31H2riCYbG6miebRfZygEC5v30ODCSVJCgL3cY3GCdwAa89NozMf7OHcEGdB0ckf9OitP5PQcr+mYPORmD2A+BbvgmP+OkWye7/Zb92AAuIAbrxhZRNlYtqhOY3rTp7h2aYfjlNR1BDWATYtky7JXlpt+BU8tll1aRFQPtvqJRG2RbdPLlNL6L8NInz6BbEiuTtpAzY9OPCIA1fUh0nT0KQB59xR7K/ncVjmSB2TyWz14BfoIs0vdUimQJiujPFQiKzQJl6Og+Ctg5NaBP5HXJnT33i3LfpTHounUk7JQH+v69lv3NCAOub/4Q9uCFP9qBC1CPNYU1MweJ7DFte8d0FZ8FTBlj5KD7tyMsEB5BrFsYggaSxvqAPHTk5Rqf6iuznxVgM7ZMwHA6K/uXvHVM8uIhR2PC5ojlEJNTYzOFcBkfnchiNUfQOVDarx3zqT8qczijoOAB8lBRlooBtMnaMc2xErGDoFA6tVPGGpFtm3B6WM/vMnS0srMMaDADUJ2sOx7Kd7Qpc8fGYXMsBHvHwfl7oGNomUByGJPttG3o/88Gv+/77JBXH/88eHDmcEPS2APdhpnBPoa2R3Cu86nLIEtTnbywLKwa8//I7uzI8fwUOpR9lfzx15+RApAoH9FX3ZHFu0k67dUOzTg0utt51n6KU8fPZIz1yK/DNSSBKwpk4ElS2Cbm1dCInEBPnXAJ6skIqPfMU04z2v65PPeaCBBRgnq2jUjphHpSgLwT2ojVa+xmE3TWK4Tb5X1EEdAlhAMWzRCElPlJOw4AnyShEomTSlXJxTP0sUPbASTrdQeAnic7SRxXiG4fC4gTg3pfGx1HJyL1seCAY9lmqCb7XBzvIr22L991ZG9pZzvdTX9pD+oQf9KQe7MNiskuYhwSfqlBdO+YSKMesN6OEfCmHdoquuho6N/HBOEidXjSPcCLx3m5PlFoRNo5bm8nvtZw4Ct8BKTk+oX2EdAygoz5JFTaE3Qdlnma6aOTAzqf1uTe7UcAPPO9OSIA3+oQ3TsWIC0O1VSYZ5zi7LMtdtPd9If3oAzR0jH73XG6DqsBmJiCzuc1dnsTXy6SUDBr/5hmJ4S0SdEkBO1w3AbtvdD2BOiF2ovtRNeOeT4i7PjkXl32py5joZZqp7NUo55qo9SbEgP87W1OlPTXgTR3Tgb0vB7rWCnpdT7CQdRCtldsAQ62aYZDHITbiXbUCR/IeW3nmJMh3bcuYBf2T3fRv70n24rC4Yth4ocNeebqOO/rey47c0p/tg3R2jHNHgglZQzUo21EqidB11f9jJJPZcw0OxrUo218kXyBY9oZCW/IvusYIQy72QQ9BxUoyTVpxEUmvhfpIt0rdVejRxblpXbpUHc2a7Q1ZB+q/WHiuQaRaIOjr92y9d9+LTPGJRY8aMI8ybbUj6bewsKY4p53/G1B8n984T8nrYuCLDkP/jLZj0laxKJDEjRnmXFbFbOvsMRaC4qIq8zIwB1bhBhjUHyKl4hQ/zOMO5GSWViXJdiaTNcS7xa5yKgGZZhH1RllJoqctZM6UUKIIbwxYGpElWGfJ0WZGlFn962pzEyAQFmcNQm7tUpC5cYR6szyCiEa3OZ1JCRuBPOP62GXWV7BfAiXGP+SJ59Jj7bIuqT2Ios80vflyfjC5Ue8wwSLTDPnC0xbtL/P2+6bt8KoewtPsuBAnUl7BTBY5xVm6UfSGs1H2RIJJ1gkRAPzM7b0wRFWAJHcDbQsSuNU6Webe1x2G5Q8GaJIeBjgUj+TnPUrIGHAnNn4nCGnTI5V+ikigXJxT14OK3CcoMLHXOMy8zxkwr2xLJlykA0WuMQk9ynSzwJ7nGfZw6dCXbCbTEmydgwGagVoQmZP66llKKlv7XL2RcZmn0gd1oczg/seHAaNYfUpPbWvtWdS3lPq7hAGflRrwgNNWk0qKSOm3qfz8ruDaQnzacvJfjIGRGH/mx10PTyirSHEjdPLewGpAAJ/NwOvwNcgHWsw1v2EtgqoDfrX/nX31EXau1IegtCZLall0l2aUQkuKAwOsE2a+b4pNhkUBl2mRpYtEqEKm32D7nP+g+9IUESEmstmzdJqlVEf3ze5wTVuI4mfIx6Ok6bonmCWgGoy+RpRhhWcNjsoA9aqxBlhxT3IKiRYZ0iDXOQZO8MsRdKkKboPqD1v7RlhYTtW46YocYerFOnnU2b8eSf3Ya+ftwRVdul1htsuPTxinEssMMim+pbLZya5zxlyRA6PZAzaeliJEswRMCatNpgkaBgbEeZlZDwXEXknBIEmDeCb+jNdz9s5W2fYnzcWAiLP7pBaLEwxwqp7kQ+QZ4URSqQYZo1tTRm+x2UsCMmenwbIzjFNlpxbUgyoRYMxzgfVv92uk/mJ1om4vFnkqWLZJHZNDfcuBbjFdQD9rFgupPVZaB7+JpmWpkfem2I2B41dfBKwHo0B+ZqeswvIunwAqamtaVvUcz+Ms++8UT5IAMqq1QoN4LsS3iOJ5L3OWC+oTHaYdW0kFTE/SDsPNpfbmus5PczyCqOaIXBWQeJ+itSIMM2cXwfz1quplUWOM+6bmOMM09wlRYkVRpxJ+YhxntPDCKssMKmA+C9WHH41gF4DB9gOMu0kG8fCZtKTm1zWLvlDhEk0xpeS6WggN9AassiqAd8G7kHX3pF03ZUJNjb3BHaQztUnT+EstN0kSBych7aXkZv0z7CmeKDbN6qtmoLHPkGYRu9C7CMFuvp0vwYIWB33dFtFHMQ6fbAnA20TYiECVN9AlzLBhGaU0TXZt+RPj2Uf1JOJTT2PIYIHzoF+Z0j3wdgC2gWgqb/bRDoJWQL51hjyQFomABUV6HP5XxYZFfv6b/v9DoHPw4Z8z8k7uKl/bI5g4bymzK9bctx9Oe0ORhGAbBO6Zo9kW4cqOWvquTEQKSPXjjCSnpkjALZ2cHDOdfTdSHdkDPgRdF3R1b+BbGG9XlZY1KDjAQEwaR0BO3dNAq8jk+BBQPF9ALHBln//S4IHfR8y3gvIOM7LOet6dAQXNe48j3SA7Lo8IGA9XkQ6PjM4mOn3VFmP5x5Bt1O7rgbMds0duam/d2rNb8MmKrtWxkK0eyAH+9c1LbOIe1QZG9HPgb7XAT+Tvb0Gp36/LGPkmzgrsm2j5VqsIZI9u55f89dRHIrJDN3s0XlcYz8Z54gOUtESzd4gTKZJiM72EtFUhYNeYU/Vku1Eq8cQF1CsQoI2TjgkRp4MZ3hKV2SfWFpMqYkhgBhNiEI9HgB38Y4au+EeUr0l96E8JEYo0qRKgmYkTHfPPm3HKslpnNCehLZnwshq44Roe52wsrfKvVFi9Rp7kS7qRGjGxdD3iA7i0YYwp+oCBO7Sw157N6cyzxxEfBw+R2e4zKnjZ0TrxzSSMpzqPcLUanQISyUxLP6op3hGslinnWMOiVGP79MePSG8D/VUG5HjEw5IUifCcXs7/d3bHLe300g1OG5vIxQ6YT/W6delRoTO+IEUWvESx7TLpJ2UibgZzxNqwm6sKwi46dkW8CyOAGnH8EXsDC+wRT0WJtRochJvo9IulgYdsSMOVZJX76/TfnwiYE/7Pk9TfXR373NAkjZOSHfv0+yAUESYmlHqHJCUa5mCLU4T6m/SGypT7RZ/ViJVeQbEhVnWzrHISSIV9uIJGvEOZxid7duiGOslGTsgeVJnny6ayRDHtJOgQryvQTUd5ph2otE6bRzT0TiCsFzDRnc70eNjuY7h5xyGY7RzzDZp0j1FKmFh8mTJcTLQIBfP0M4xXexzQhvJRE0A5ggyF8ThmDZqRCkke9VEvY+uyB6dVChHEjynj3K8wun+HQFOj8QrjQ6gTxisByQ57q2SfF4XdmPqmJP2NogKo243maCnvQIRKMT6iccqtHPCPl0kUwdYKBdAnQi9xTLNDnlviCZJDsT3p0tYo8aibUahgwZPkgOcij+j3N6JGd0fkKSna59QE0qRTizJvZ9typkokUadCCdioRCX+42er3+DY4xl0hxgIVriESO+Tk1CzkboYRdLKDRz9UeMM8w6TcLup1Yh4YWxef+I/FVkpiMqtVpgkjoRZW2tM88U31U2hIQZDJMhzwSLfI/fwBLlE+qVbCCgsRxCNDjPI2fwmX+aSdgs+dHsPUzWC2lSlBlmnTtc5TvcYp7L7NLDdW6pL13ZfY3WGeIu035fdVJy2SzgzDRjJdq5s3CNCnFGWeUtPtTuv4Bmb/KhL6aNQTPKCkuM8zbvUSPKba4Rocaw+hcba8bYkzWiLDHu8jczTLd7IKoMkkE2+ZQZlzBJGMoaUTXHzytoEKGm3nnrDrDa4m8bCT5ZZQQJ8sq5x6HY8cg4EuCt7pImub5RZ1vWibgX8TiP1FcrrVLYbWeI5skouLBKj8p8NxnkKneoqF/fVe6wyiiAezBZ0Fga8UW2cQPCYhpVsHGRCTX9F0/rIv1sMkiSOyJNDQN70nBONCvewE/mZO3UUVO1BLg6Ziz3RGq1c3iDbP/VDro+UrVNF5BVVt0GkAzUJYDU1Dn97B7svKaBUveAi6Lc6TgnZIrk5rFs8xDIiEoHkOfZAjz7TVUrGYM9JN/nae05AiP8Anw28xIX+Jz9bAe0H3lD8+v+WmGMM5TdFzROBUlnPUs/2wyyyR2uMscVLjPvgLGw0c67RFCAtF6GWHNGrt0/rcw7kOTU69xiinvqrS6+osa4NaasJYcbYxbwwERrMnyb94hSZ5s0M3zKTW6wwCRv8x4RauTJMMqqpjxL0m2VOBkKrDLCFPP6THnEIhOk2XamdJQac1z5kozdmjnX9blpLFdjN4dpqu95xSWP/RT9fCeoUiYVPEON2RUjIBV9G3ifYN3YjQBFZ5A1aQbJ8rO14QECMO3o++xze8ga/AywLzVwP0WfW2wOtKCGEVad3WXyaMCPr0SKFX3eRKkxzJr7wFnyeZU4u/QwyX21Qhhwu4Redinq/GF+egkqrGiC9j0u+zxmLD4bR5vEmWadNYZoEvbnd5qiN+Ge08MqI6wwyjhLnFW7i7/H74rlmYabgDSTLfmaMT33FwgYj6ZkmgY24WBKyU6mDPtEJenL+pk0AVPvrPx90g1tP5HfHUy3u72DhFUI0zzNNneZZpBNl3nbORcwXCTF1rwzMNQSyEWeXvfmlwVg2Jw1xLorCJqEKDDAEOs09L0ga5xedrnN6y4LFgsHqY7mmOYFZfv/ea+vBND7R/8PiKV066FjkUTda0ghHyMw/TSQ64F+cBnpqO8SPNCtw///IZCEgQBDTxCJVgL40VOZPNL6ftOwh+BkView9whAsV7djxeQieUImfB2CPT0nyCsApMLRQgWclGR0ITWWvZJu1306vEd6nb7EGBDF4CsI9KnMPB9eV91NUz8J41A3nWsx/WsZbt1/Xe7btco61ndz7D+XW45DxHdt0fApC58H4qsiReB39X9jRDI6EzaOSDHSVS3q3JoHup5+KG+/3nLdxmC/icEIJ4WCA7orSOSv4RcH1IEzL4IAg4tIwCb0dFrLceUBn6gP/7ldqIPjsXgvxf47/R7forLGN2jQhlkpIPztHslQc/PZbFn0igfA+36d0qPN6b7dEb2+yQGbes4c4WU7n9Sx8YW8KF+Z0WP93O9vueBPyVI5DnUn6d0v58Bq7rtCMLq+V7LOa3rv22/joFxhFW1RTDGv6fX+QD4Y+AuzhI7mVRAdgsZj8YY+mdHLm/kKUGoQEKvbVy3UYSTUZGO1TNttB+fEP5vkIJyHwEBQ8C/wr3LTrqh7UPZ7m40RED1+/q+vvmfv0pXVxspSmTI8ykzbnprCwUx4e5lXAe8Sbwy5J2dUmrpar7FB/wO/3PSFHmX79Mg5Ca5Caoui7IUM5OYWTewQYi72uGoEeGvc5caEfopck87WeYj1STMHFcYoIAFCU1xjzAShDLHFa5yx6UTAFE1DM+RZYJFBhUN7qTkHqVv6ZEv8SaWCjV18HNuJv+qLwrfYZMal5R5MqqLvzjf4REJTruBrIAyDT7kLYJ0RtH6Nwh5N61OhDPkmOeyT57v8ypXmCNK3QOMhCL/HWXl1HRCDlPkgnc3rQP5r/gNTVATnxQrCnJkiVIjRJOMmhWbDMJCnNJsc5vXsQCgWWZY4jy/ze+R4xwrjDDBIlXOkGGKUVbdK9akAeZJM6uJm1FqxKlSopNRVllhhCZhxpGQAeva3uYaM4j/Z5gmEyyyTb9e85COwV6/3mKUX2VVu8V/lTtUSOgi9gKrjDDHNFe5wxBrJKg64ADimWNFzBly7k1SJ0KeAVYZ4e9yiwadfMhb/G1uObsgrRJHMwleZ4gRVljgEmKoXWadIcZZ0u6wLJAmWWCeKe+whmiwxS95d9pkmSVSLiExT917TDHOI0A8RCc5pZ5vEtyVosQU8+TpYp433OfWTJAttd06smKiP+IAjBlYD7HOCiMM7f+cf/xPg8XH1/FVJ8osLzNA3pNJLXhhk0F/rjxXhoWlq68yQg+SyGqSF/PYG2adIda4zetMssAqI2yTFpYL4otmHmcZ8oyzRIgG80wxxLqDYItMIN64RQ/1sjFiY1gkazUNwOrkGre/xBybYNFBMpOLFRjgOrdYV6+cgoaBGaNOPPpWqCEBahM8xEI0jGVnC60PeMufFQYwRfS9soCXhfcjXUCvqrdgCGnaXNXwBTFiT7u0K0WJ+0ySZculy2/zHiuMujzUPpsn4557Ji0ybypb/BgTB8Rv+DyPeIVZ5rnMJoO8zftIgNkIu/QwwgphxO/KALQFLrGLhEkYMyJDniL9vt91nTeNcWnP5vMsYUnAkywQVd8iCeeIsMmgeh1GPLDDQvBAFpx27y8w6QyTBBUHcS0gYF0XucY8rBH1xaL5d8WpsK3SYAOy5dwImLhFlossssoJW5ymP7InSY8FxP7mLIGljSovYrPy9+GMKnQ64fCG+rw+AMagEkoQvyKSV0uWb7Om6rSADM2+EKfn9gL1QExqw8TBYUASSCtwaEDcBfmOpze6iVCTpn0T97s6VSgHBvUtap9YCI6mkDT5KLKWSOJjJXJ4RDNOsKb6mr+qxAiz5wwrY8pFqXlC6SITXOWO1yUR9bmzJlSYpnvC1XVU2304j7D6jKFlEvMKCZqEybLFHFd8f1YZcT80eyWoeB1RQ9zbL+t2xrWp8YhxqvqsvMFNElS4xAI5ss6626XHG6OW5Cryy/tk2XLZrEk1LQBjW8FuSZWWYIGEZtxmVOIk83uDLbLs0suwMhqMYTWqIUCbDHoDJtQgIFZkCCSfUb4s2XyMWxQxTUCsyCIAX5++L0tAlhhG2GUZnCkWeMut+LUDlH3cxIIjxzU9eousWyLUtCmRJccnXCVHlsvcw4KW+im6B6mAwoMuj80zQJwK95hCwgpzbv1g8lwDe60eW9FASXuuWT1o46FJmDf5gE+ZIUSTbWXwZcj7cRqYbGP0PpOAzPMWJlX7u7JeObVZFku18DMOk1A/10EtFCXarNHVPKIUTZHM7PE0080mg0xkF1mKjjM0vUYfh5CGZ8OdOk62ucNVJljkl88vQxcki8dEsnXmmEY8SyPOjl9jiBFWKZOiTMpDsezcDLHOKiOMsuLSc2M1nmcJS6mV+0qu4RpDZMn5GglgifPq+yh36Vt8iIUvJagwzRzbpIlSd2Z/nYgC7C/9Qs+Tr4ahB4G/TAgxT60RMOOqSIfdPIziuid1xIOoqZ8vI8CCgRMGvNUJvI2q+v+4/tvkW3UEVOiEUjxOV70asJkMJDT/HgOSavqdZQLPKWM3aYeJdv39MYS2CdB9Wr4fApCl9U9ZP28+RSGcVRV/rlKudv2sSYTryAOmjAAqBy3bMKDIACsIvIFMfmTvVY+gSOREjtXkT7adQ/1jv7P/t/puHbd85giXi3FEQE2ut/yp6HWuELBaTIFsAKTJxRr6O7suNX0Pegx2XBX9t57n6J5K+I5azoF9Tr2ZHKirBuebivy7p1SR/x/pvtp+hFrORRx5KMdb9qG9RU6mMkE/H2H1GdsnuJ5V3e4Jwb3Rrt9jY6qk/7Zj7205J03dHzvPZf13ky+PKbsGh/oeCOR9BjTr2G6z62TX2O5PAzfNoN7G17G+P42Ph7bn8u/I9kmwrT09RyZXTuDjpM1A7mOI7X/9wTyAf8lvMsI2r/OxP/hlshCZWFjBhSJpqsTdj+QeU7zFh05ht0IEUB+IEhFqfMw1B5HMuyJEkw95EzNCt4S/KnFyZLUwi3oRMMsMeTL0U2SWGe8El0g5K8ISqg2UhKBIeaQd1E0G2SLLJoOaajwCoB5QZ6lqytSIFngGQhkbp5YUcG5FARMQwHGdYVYZ4Sp3GGXVpR0pykSpcZ9JzmpnuVUOYob4d3jNO6ObSHq1yRjCNFngEmm2+RHvOBi1woh7e0m3Wqj6tlgcYcWZM6uMkiHPXabZpYcJFt0nw4yE73DV33OFOZqEkaQsofJ/j9/QxMk4H3MNk3dtMujeMCuMKOg3zjhL7rFiC20xNX7kjE9JFBUw1QC1bdI8UsmHmU4bE8A8nepEv9QxNwPhKgnuM+nApHmHWKfWFrFLnHc/rzoRFpngPEvejbT0UEvmXGfoS6b/ZmofpvmlhEpJMRUj4ltcJ0STUVZEQkONRSaQtEpJs7O0TvOrmWCRm9xAkunzCrpI8WVj0NgM4h0UdqmIgeyLTBBWZtA2/SxxngIDTLJAiRRLjLPAJDPMEqLpwNEAeb8Xd+lhgUl26VH2Qp6PeAv4g38PT6T/cK86HS6p2lYwY5o5B+rN3HtLWQT2DDJgbYRVLMk1QYUBCoyzpM/QuPsA2edkMZunh+dY6qI9V+x9sshrkCXnjRAL5ajp+DQwxuRNreB0iRTrDDsj0EClLFtYCEREn7iyiJaxWmDAAaclzpNli6vc8eO1FNUMBSZY1Psir35Eck+bz474T1V9fJp3nXkB5jjDFPM0CfEeb/Mu33epsUlAo9RZZYQElS/dD0OsU1Hmh4GIJVJc5h41ohRJM8IqltJqSYzzXHbQDuDbvOcApbDS0ioPrHuCoyVQ5sh6MyCvxvnGcOlhF0AbVVWqxDmjkuCmwva3eZ0ZZp3pkifDFlk6kVRDkehGiSABK1Fq+vzJc5vXWWeIKxo7f1GbbpMssI34L4ZpOhh5RWVTIMz4WV7xRVmKsjZRqoyySoUEd7jKdW4xq4thYyM+Ypw23idK3WvOo0Ho6EJqyQGgU0J5ErUKlW8lOPWgLGCeNoZjm0gzflj+Pn24J6BZtypDosACHH1LPNfGCk8Ca6OavM/yAmLLBMwZtYYxWxea8t7ThT320x0CbHRL4no0raFK5jt2qNs+kG11bMLTbykQqOnlpzalWI3tQagsCeF/GV4Rjpz5Y1L7W1znXX7AI8a5w1VCNLzmsflsiXFWtB7aZJA5pkmz7SxluydFJruuNdeqM44NKDdWcpUEH/IWlmpqjQGTTlriuPidZt1PrEI8CARklSHWmWXGJbpWj2U05Mfku3NMM8U9v2/WGaLAgHt/GhBl8+4Ei5iHpUnq09ossaYuSPPWvEqNkWXMPpOwWjDNbncnp6bLQXKq2SS9S+CFN0igfjqL3B/LCCED5N4wNeQDZKwn9T1R5L4Yln+bD2irN6kAqyFtLG5R1VRYm2eMUWbNSqtBRnUevMJdZfpue+MlrOxomxsMFLzMvPt4hhRosjCGJcZ9nrR5raqzrMmv/wW/5aFA6xrc1CDEx1xjnEfq+1YmQZW8+sRZgKI1YmeZwYJMWtmfq4Pynbczr1MlToQ6PewyGlphe1DAwvlMij/g15lkgYXopDbtexiYzrNNvzdILURqk0HCFwRsbPVetPo+iwQiGcPxGrd9bXaGHHNMa42Rp0AGC2c1UHqOaWermy2F3FeS+nyb15niHhlVG7yrLKR1rTdrRLjFdVKUHFi01HvAa8Rf5w+I/lmPtf8/r68G0DuCf/A2gnyPIXLXIQS8aCK+bmv68wsEyPgIgnKbweoyAaNqWP8/iDDxHhJQMtXLjXv63gKBZ1oIOFcVcGGSgGKrHawvyV+HCXzHHiK6+Lv6fkPajWLbp/szrb8zfwr7vMmGi/q5GwhjyejwUQJZ7DxC2Z3GJ1MaBMEZMf2uLuSho95VdBN4T10kCNQYQxhqYUS2Oa/HNqX78wKBj9pv6/Zu6n6e0XNo5wcCRmVS/zR1fy607NsF/bl5vyUJ6Ml2zjv1uAb1fJ0jSBgKE3gUtF67KIEM2YCnA4JOyhrwZsv3XUQ6KiqfduruPp6yyAYBRdrugC4CHznzBKnpd3S3/F8lpCwTRJvvEDDnjE1p1/0CgdQ0TTDe54Frup3XEDZolIC1+lO9XnYcBYJUSJVL+HdmCUzjd5D764/0/F3WbZlk902C++pA98HOu4GF03qsD3VfzhKYkaJ/W5FpcnO7fv+ZbndB9x39vL1vUz7/D3MEReLX/HWkXRiZ4IqaPFVXlshlBxZSlF3yM8gm4zxSIGObLFsscZ4ZZllniEUmfLE3zLrIFsnwXNkX/bpQklToipuNW1czQp27yoBZZ4gMecLKJJtkgX62vSBrEOK8Jj4aU3CKefdaMV8T8wUZUZmSAYZ1IhTpZ5wlilo8rCqV3Ra8daLUiLi8rZddOik51d0AnSXGFYoUv4kCA4ywwjDrLDJBXBMqNxlkm34vnEp0EqKBmaaLl8wjotTIM+CgZoKK+nNtcYkFGsrSkQRo2ZdOSi79y/l3JNRLRoCHNYYdGCqT4nvc4C0+9FRLKVjFv8m6tT3sMsSad6VNciKSmgEv9EZZIUJNDf77qRNxCceapl68puy5NNvUifjiMa8ggl1D8/RoEnaQLUSTuhbOZVKcZZPbXPMCyFLx7FqZtE8YiXU/vwUGdJGe8A6oAKBbDkIaWCZjUlL0moS1yMr6uTVG5DZpIgy7jMGSQs9oMTXLDL3s+iLd5LR2nVcY4bv8CPO2MoDlOT3qrxJ4n1kn2zquBTK+mBmgwJymcEapkyFPmm1l9iz5/rXKBnvY5RMFJAtaTBuw08MuNb7+HgQNQkT0HptkgQRVBZWz5DjD27zPEuep6kIiQ55RVr0jbgs7886zZNw1hv1cm4TLmJfbpJlQ7zIJ4yj4M3aTQX/22QLIGJ0yDnpJUKVIP2+pTNWSUwGX14RoeEqgAV8gDNFdeh2Qt9TFM+SoE/XF5mUk9Xeey84UaxLyReA8U2yTdqbJEueZ4KGPVwv6yKjfkjUyQjSY5RX3aDJPJntOWgqlsRvFZ0lSLm1RXVQGm91nxjAzwD5Ew5k9C1wiQp1HnOe7/Milewmq3vSZYJH7THrQBqDP7grXueUMWZMx2eInRZQVRjw8xWTB4yxhiZwLTCqb9r6Dqgb+WvPHwOEJFp2lHqHONT72eWmQTcI6F9vYMCZfnSj9+mxoEGKRi1xW+ZgxXcyD0J4j9vxKUOVNPiRN0dNAhZ0uwOguPfSyS6NDwuIq0YSEV+wgKeLFI5Y4zzcLP6M0GAr8nW0tUkZq1WWkNv4ugU92Fw7EdRQg2lmDNfjpzC9TGUzwrT/6Yw7G2iVsr0DQ6E/j3s5Pp7s5Pb8X+Dvn1OLlQL4nNithgMmd44Ct9E3dx0MN35iHgZ092nQ9dxKDtmUNtZv1B8VfileFGM8ZYInz9FPkCnNcYoGb3GCEFS4zzwqjDkyvM+xsXQPL+nUsFUmzwojXLVXijLLCJoOunLBawe7tEilPdDZwzZpZ5lF6h6uMKmuvQpxr3OYH/Br9FFni/JcamFaHWKPXEjrtvrH3WX1o1i8SwiPA3BpD3OEq7/IDBztsv6okeJ+3Oc8So+oxZveRvHfLt9faeJMwnKjP9+YX55ZVttbLIvfOFQTUCxOMX7uvkgTeeWFknXWIrJ0tlOEBgSWW2irVVL5qdZYFPUljVEIXiqqQyJPBgkfMCw8EFJzmLnkyfMoMV7mj85E0iS3t3Bpm0vB65AFOq4xiPndRavpMK1Mlrt9TdUAqhHi9GtusTpQGIa9Xa0QZoMDf4Z/7szHHGaLaoIlTZZAq/RRVqhtydqJ5xFbo4RbXXc2wRRbzqzWGnD2TQZLbN1TRZKqHTQYpqrzVQDJjjRtDrqrNPlMcWWpvEQk+KjBAmCYRZW2XSTHEGgMUqCEpz2sM8TbvYz6W5oULkuhrvr6DbGJp6UICGGAGebDNMuOAdJF+ZfpLE7im37vbAnb+Gt9ng0FK/GJ2LO2/0Lv+h77KBDLanyBggHV2zEPOAIpXcfme3xgQBFgcIDfT7yMgWkz/niRg3JXxLhRhBKwxgGuSLwN/84jEcIMvSzEbCHh3kwC4+ER//jd0exeQm/4M/3Zq6B6Bf5r5ktnNbN5j5rdn4AcEgQNKPWeDALBJIw+Qh3puOvV7DDDa0L+NUWagou3bQ4QmbIBnEU+nIqnHstFyrfoIQJoQQaGQ1uNPIg85Nc3lpn6HTb4buv2c7suU/vwigRQ3ik/+bOg5mdTvzrR8toAAZnYOTBtPy98QyESX9fMLwN/Un5sp5gABo8284woEvohmZGrAbpjg2u7oMT0gKJIe6ns+0//XEFBuR/8s6H53EfjzZZAUJPP9SxMA1+/rd3cjINecnjMtojCvvwLB2DKArtbyPpN/WwEGgcw4STAm7Xd5AhbqIR4Kw5z+MSAxj4DbBvoZtRyC8WjH+Alyr03hxs4u07D9GSOQgv8leJ3lczYZ5GOucYerCrhtu2QpryAH4P4W26S9kLFF5AyfOpBXI8oIq+4HMcsriEdXkTBiGm7SyEE2ucJdotR8orGo+RBNBSAKDoQZa8wSIxeZ4A6vMUCeSyz4RFghwSgrDLJJJyUHg9JsO/Moz4BLxsx/4ip3APS7H7mMZJdezKh+SSUccSTkw7ZhMqsf8o4Calm29GaVyXQDM4y3jubC/4+8/w+OOz/vO8HXTIPdBAiQABvTLbQEChiAxBAe0ICBDLQcc0R6uOIdfaNYXjm6OHZiX1zn3MYV395dpa72ckml7pLcbe3W5vac3fhKV3bijRVFimXPRCzTyzGpoQcR5gADJsagAAIDiJAb6p5uAiRAgN1Ec+6P53k/36a2KlFVMok96ioWSaD729+fn8/zeT/vH5zhjDMyqs7cEkCnYiBNDZlCD7HMNp1UyLLr517gzEWuRcdbDA11MZWs2EMxAB2T25a5xFWGWIoFZdUXuSraTIZQi+9ap8/9xDLMMkEn27zMVLDwTILcxgzjSNaQosEr3OQEG8wx5mw1A8cktVGBfMqlqXUywYpTR1ugpzq5KS90bIFsciAxkTrYiSJJLFJ18lVoLzDCDu3cdbmLJHRiExhwawty+ZDNMMEKg8HGUgc672EKNTKMMofJwtcB88fpZYMVBuljLbalEINeNtxHJhsgWx9ryGTfjPr3KdLjAFMC+khC3sk2XWwH6NMgxSTTfn+3UGqSkEpyIkaCwEExmcQkyFFij1YeeWf8o/zKeLKNMaHOsUcr6/ShlMNOtuLZ62M9FpIaO5Y4hWTjp1gKpm6VbMjApjjbBAQfIIm0QDprQiQg+KYDMyVy1Ek78GV+iAsuEwJinBIYnnNwsI398FTbp5UZxgPgX2KITrb4R9W/7vfPloNk3TF2KGxCJvZ5SsHUkEegPOnEKDTml3mqimm8wAi/zeeQfQEQMtYpzlLzuaKHohvNZ2PsKVBkiCVGWGCYRb54/xdi7JaUtVn+KyZlmXzsV5sDcoOscJpF5O80yTuc5zpp6hQp8Dqf9bFrgm26yPg53aTALBPMMO7g1148I9t00cmWi2iNXSuvJwCx3dV0EDNZ11HefkVnj0tinabOCLd8gZ9x8HeRERaC7ZGlGpYWGZczSgJYJ8Mqg2zQyxr9yMOvjzVyLivPUaJOmi5najSb3B+QopsKeUqcYoktjlMjTS2d5sjaE9pqe1ZvHYfW3cdQgzxlHh035joNkia+VFCq/4+T1K9l/90joArvn2xnK9UJOfhU+Y/4sfl/DUdMmvZMGatdVS+rxswZ05TnSQLzIGn8V+Hejx1mL9Nmv+/3ny9gNeA9TyPvh9LxY/H7Z3zddOhB07Z+QF7v++JwkmkapML6YoAVhlimQpZOtkIeqGAJNXM15wJxX7c6iLJFJ0BYjLSxT80lfL3cpdsbhaqjWtmLem6GceYYpUqWSaYpUvC50577Hgepu9hmkNWY7zVeirkkkNCahhY2JI+3Gcapk6FID4Os0E01LDN+3GW7Ytb1skGrA+0W+LP/VONDtcs1Xg22oeoiC9toj5pDioEVBhM7IRE35IEnj+8my6YHE4fsnv00fPsXn0vAvJMElvHBZfjDnzttmMFJbB33k5hqiwNK5ENxo2ZtcwNQjVDVFkMsMc0kPd50FKBWYJPXeAN5vdlaIBPMtgFWaNASkk01khYZZp5RZ4kbY1yNz2yTh2ieMgpWAQJs7qZKH+s0SEWwUppazL0AU5zlVhPQusiwz3G2L0DMOys+Lw+yQoEir/EGSvRVOmwHO7SzQ84XnS00yFOmBwvPklR9xpszA6ywR2sczxJDLDEUNgcAeUpMMxl1AhCMeNlzqBm0Tj9Vsk8pXwZYDbVQnnJIfZcYYo0+vsrn43vEhFeTr0o3DVpYYIRW9hhghREWGGOeOcZo8TpbIOogq9zj+Pc1nnw4gN4DktAImax+A5tUNkmCAIokIJ4mow0S4EcstBQGEDQwwEDSWDGllNx5x79f7L2W7/ldEZvcBNoUsQf4MAnIJdptngT8EMABNlluYODaQxLQKuXftUYCMFWbvn/e31f2322QgHAjTb/Dt7uBASmnSVJgpPdXJ+EYNpA88GN4ERtwBJ6NNv38bYIWj6j0GZIAjocYuPoyxuqCp2WbCkDQS+e/BQN7FMIgo1uw63AbA6zkFXeYxDD0jp+D5tCNI769fhLwTXLWDInfwUP/fnVB5NORJbnv9Lv3fBvvYsXFp3wbbxCFBhN+fk6QMPoELooFqX1o+O++6b877scvAKyGXSv3HgmZ6wzJ9RdLTow++S5kfV8U+qF78gF27wnYk3fiSX//ZNP5k6HrBsk1F7hZ8/MmYFXgqo5PHSsdUwt2r3/Dv38EA+mLfl6z2DMkQ9Ljfl7kKaHnWQCowNv34Adg/QoYxX7E07ZkiDrHmC9gtwNkSXEQbDpJHQQWzTDOAiPBUJPZuAAgTZQqoPS7Li901umLRaMZ4Q6wxCnqpGnHpLujzNHPOgWKIWvKUmXQjeXBwEV5/jWnaSmyHowq3s4OnWw9JYFN0eAaFxGFXzIOMDDGiplcdKCLFLjJOer+vgYpWjET38/yOvLK2/KleoVuwIpJGR+f5zoTzNDu+z/PaHSjjfWWj84pGB1efksLnGGayaf2v0SeNHXmfeCX/9SQgwvy1xpnJlgxf4v/O/2sU6GbHooMsvLU980xRs0lrtt0USFLkQJpapxlyjutJdrZYZBV1pyBssQQk7yDJHy6V7bo5A1eY4kh3uA1pl0eLcZPjUwAWyq69l36YYv8DK3se2fbWEfy3RPrqU46gD7dUxnqTV1eK7I26A2J2glfgIuxkqLBnJ/HMjlmmOANPuuF+924t2X438EueUoMsBoSPC0c1n3SWac/utYV90MD+dQc0OMdVPkBdgUbz+SRddIOoG4xwUywbCBZMHWwwwCr5DGph0ByhQvs0eom/il6ucucs3Blkr/BCQoUg93Vxj4bnOBdhv99DTl/al9zjLLtbMgBVlHAhflgmhddP+tc4EaANgKSwaT9Woy00GDQ0wA72Q4mb879ojrZIkOdWcaDKSyWrTHNWsNKQIDSKZZcHm2deUnObT8OWKc/AB1Jh7/MFwLQbWWfz/NVLnGVKc4CBgT+fPbX6GUjwB759ukeB2Jx08oe17jILBOxmNU408oeVR/nFjhDgxTLznZtocG7s3+OHdoD5DY/utv0s06Lg+nyHAQCXBTD2sb2DJ899kaM3TUyAXHXyQTDTQ0b+WRd4yJTnPVFTwvzjIZBvczVBV6nqXOB6/Rylx6KfIEv08d6jCdmvL7OMIsUKNLt0i2NB5qHejAbhXlGadASzNwqWW+slGPuWmUgwA/AZb6VABkERqzRh6TDOcreoOpiholggSuYQ4yMNfpYd2aRgTMt0UCyxbExlnQ/23y5Cpjtgdg6XdyjnYccKdbhkQFsamgf2gQW4GT5O9QPH+KT775vNecokIVH/Wb+rpDBx5+B919st9/L3ucwcAqe+8Yunyy/z53+T3AvdzgJWPPa/F7hMI8EEi5jtVw/HH/7kdVzR4D3LAzjvZMfC/XT8TuPeK64a/V1liSITSQJZ/59bP5+sgYowsMTz0IKHpw4RL3zmX+HEebP3svk7F30+NxaI8MZFgJAt/CWHcw/boU+Z5KLidwgRQc7ATAIEFGNUyfDgNcc00yywkAoA8Qm1jynxqXJP9vcGsRUDvJVa2aB7dHGEEuYHYsx2IdY4hoXAQLInmEimn1nmaJKN8PcxiwpxphjjGE3/lcTAYi6r+yhH2Jvaa4QE8uCOjqYYJYKWc5xk1e4GfN/g5aQNM8xFlYgjABH4fFlePwyyZqqCFwi1rwPX36WYqoQZIbuWtWeq1f9/QUsIboIPzJ9m8cvYL9vArvNx3gpxpxXuBnJw+blmomxapNC1BfWDDbG+b6fbzVWtukkTS2YyZrfxPhVA6Pbg1MUIiLlhmoZvZY4FcCrJNLzjFEhy22Gg+2ZooF8iaeZDLDKAqMasf6YYYIDB8DanBUuZrOYz51sUaGbBc5QJsdrvMEgKy7SbYs6wRrvdQ9vMXBOdiv73iTvphrzh4KHOtkiTY13mHTLhi22vAl4l17qpBllPpjczU16sVLN0/uADXqDFa41GhDM6j7WaKHxlH+vGmA9FBlwwFzM2A16WWXQ93M7mls1n2fFqp/kne9rLPlwAL0USZSwQAuBBmLFiYW2RiJNPEnC0FP3R5TvAolETyylb/r/cxhAMdq0DwcYcHEXAw/ELtJ7cxi4KIDkoX+/5KB3SMA9sZ/ErmrBQKMWDNz4pn/+XQzAyGAgi5hUYq09JGHpHW/6/RESuvwDEjZVw7//Zf/ZqO8f/l1iWh0lSR7dIJEAy79C3yOGl9hwYvzpXInFNufbEvCpczRDkpKrrqCYf0X/nYCoF/yznyGRkN7FwCZICohP+WclyTxGAuhpX3+GhB15x7cjae5xEkm0QMA7fswTvn+SJguomyMBVCV/FtvNTX2ZI+lyHvZjVxdH1+x00/8lLT7in2uQ+CSKSfkN32edK8mTdU9+q+mY5N0oL4aTfj2Pk8h2U/5Zyde/6ed1g6SzJGacru9d//99bDKr+Xk7gYGCB03vOU5SDEq2USQBvyFJRJ7379Z93+L71OL7o3NwQAL4/4AAes+5B1Kbp9wNscwQS/T7wi7vixwlYNXIMMztYO2BLd7kbtI88Sj4YpuuMOUWQHiWKQ8fGHC2y0qATJu+SAXrvpl0MxNFT46Se6NVYnGol7GsujnwQvJ1XsPkkTbpzjIRC/Vck/RQslkxAK0QO8U8o5h0pMKWF5UFZ7mJbbfiPn4yo1+jj2lewgyiTYYyzGKwcOTpphRFFU5iJcrYNkuFVQbockBALEMBpvJ3a2Z2yChX/k66hlrEqQsrX41LXEXeOHUyvM5nASvkJ5jxbuFLUVBL7jLEchSprey5XML8+EweYHK3FA2WGWKYRWeElXmNN7jAdRQuogXuGv00SPE2Z1G65Dyj5NzfTSbvZffGkym3JL6SOC65hFCm8nvOLrrOefKUuM4F6mTCZL7du6xbfn5XGaBKFsmm79JLv4dx7Prx3eRcgLuSzd7F/PksKGEwCi6BLJZUeeAMnNPODuygSA/7tLFOf8g1zVsr/xSTa45RehygXnOWpBb7tpCvseaS31HmXb5jXW4z7bb7cYEzzoLqjkV/p0PPAsyrHuyQosEk0/T8AHgQPMf75CjRyh4j3ArPtgFWuMKPBxtM8tcihQgh2PLxTgmIO3TEuKDPiRWmxUuaGue5Ecw8IMChLgfUslTp8nFDTJKrXCJPmQYtAagpdVbppJL0TzLNaRZZp49uKmTc6qDiAK8SLDUWKYVWbFgbC9vpYNdZv110sMNrvBFy4ANnKEoutO9jhzyv3uIcFbr5q+O/wiCrXOUSAApfEot6lHnaMYmtmgbyltS8ojHUxrSUszEGg8Egdp+B+DWyVFwavUKdNEsMscyp8KmzIIusN2A2+TxfjbFumknqZIJ9lKdEnzeVlGJrz3hbeNyJaZinRLezYAsUfdHfGWOUBZzIA3Qr5oQ0NZe2rbPMEOv0B/tn18EM3VMAG5wgxQGveRNJMlo1SnT/GKtqiVb2KLuHVBXzXtynlRoZxphjiKVgafe7H6Pkjx1Y2jppLLjsMEkDu4TVXbfhaPXx03LYh+Z5d2T+iX3mHhz6ljVKAlBT417+dA9tDgJ49DI87rFtUzXgbvvIMas93a7mkVQY8tzLwdG5xzz/je/ysP9ZHp+ERwXgbbjXfziprz9FsraSx3KRROlyH5YyQ9CwEI/0zgc0kWk+0q8OdjnjgSsCrxqkKJEPg3wx6VcY5BoX4z0m5++MBquk98YSrYUSo+rbqZPmZabYpossFqIgZqCCw+QjCkmdt0YfGep8jq8xwgJpLJ267CzaFQaDBT/BDPKtU/0klr3AFSB8yRqkOMfNSM+dchsLNRI7SIIHgKgh911NUqQnxkbVAfLtVHCO/IU1r6jpOMeorX3G4NA8LBw7bffvYXg8bpL3R772PnL3iTG87gIZOLL2xO5pqbmOw8ORZwMA3Dl2GA7Dn/zYcR6cPASj1rwFos4HkPxXXmpg48kWnShMQfeFau4SOZY4hQIVVGv3uXJErDjVw0uc4i6WZiwf6W26ookMSRN81+fI5rCGPKWQSav5m6ZGH+sMsMIk0yF13aOVUeZc5jvAK7xFVxMr3kgKiU8qJOQDsx0x+5arXAq7hpuc4ybnvM5spYUGV7nEsrPupJ4wyxbb5ga9ARCbhmczVCpSkwywQps3Z2YZZ82tJkzu29N0b58JG6EsFSxB3jxnpfjZo40lhoKYYEFxVqMsMIK5vbahVPUMNbf8sTrgwJvpWruoSbZGHxv08h0+/n2NJx8OoDdEwmBbw9JeBM5IrvctDCR4FwOs5BUm0CWFTQCvkqTEymRfvmhiE037v6exSUKg20MSLzNJLF8gkRYK7CmQSFjBWFwnMTBKnSaBNQLF8iSa+dMY8HHcf3YPA2JO+3slAZZ/nDphDRJG1RskwNsdDITUd37a36/00maZrliPdzBQpRnE0Tna8H+LfQZJgaD3lUjknZskwJT25xE2MTeDVzIBveLfISDpqP9bL4GRYAOoJKKSAIuNKRbgN4H/kUTGKYbl2/73ZtMxyhex4eddYJIA32/6efoUCYNxjESOPYr5G7qkIMC/bNP5Ou7/VmGUIZErF0nYegLH1MEUiJrD7hPJh++TSHcXSBK93vPvETt0l+hocptEto5vR/eigMYTvq/4sY6QpKMVsHuw5u9p9oUQa/Nd376uhfYX/37JjjO+jyex++a2H6O2dUAiIc/58T4giRw/jgWQ/IAAejKRBQJcANwLIuM/swFcJv8b3jkCgjovxsIKA17MGMhk1HQrlHq5GxOvyUm7g9F3i5Hwg7CggX026EVptvoui1JoxOeNjXXAivtvpDiIAnSIJc54sqRADYFzYkGpUJF8RAAfmHceyEPF5LUHpLyTPOjd6K4wWDeGRlfIBzY4QSLLMpaKOo85yuzTRj9rZKmEGXSRAtc5792z3Vicgxm379HGeW4gzy0BMAuMUCLHPGNIrid/O/NVKwUIUXbmClhxtEZfFM/mHFOP621g5O3Y9wFWyFMKM3kVaCrENujldT4bzJINehlnlm4qT3mNmStZkSwVKmTZpOBMzTSSm6qbv+xsG7uHNpyhaEEjJmXbDJmFFV5W8E0zyTZd1EnHeVdhL/+XBi1sUghGnGTlAiJvcs7lQOaxI+BPshF1KdPU2cUM5kvkQsLc4XcUENITeZ6pcJMfVomcd0DTdFOJbnmGegDjkoFv0xWpcwJRzLNsi2Z/yiVOsUVneEqarPztMFlWWEYHO7zDZMhN9ByUySEPtI/66yJv0qCFDU7wvcblX+Cfh+eNvMiKFJhkmhwldukIuWUWS+PWQkDAdokcKRrBSLNmRdalr9tPATWWSWzPm2SVYPeQkgYl+7QkP2O0ysNT97i8JgU8b9PJPGO8ws0YpxcZ5ktL/5sIetmjNcBfLTIsnXrPGQsmh+1nnXbv8E8zybJ7ViWFfw9VsrzMFObJaIsNMWsWGHGQaT/Gl3nGGOEWl7kSgCbY4tLuy3a26XSfv3Sw2sTg7XbfII1fStDMuQxqj9aQZU0wE4yDZW/erNMfgF3dF3Aae/Zoo+QsbYG2WarxvFrTKPEN1RgrpqX8OKtkmWeUK/x4MOJyLn9S4E+FLKecXaQAIl2/srPjbZ5rd0Ak4+ymWrCW+7zBZABdt+9HF3OMkaIRzHyF9LzN2WA66f4ukw82quZD7tufZx45SHYAHIZHE/Y3B+ZHB/Dt/uf47ovHeH+0HUrwzJtYrfUIfuhb7yXe3gLSHhB+zD88c4fjM49IHbjkVU3qmgVeUCM8lTeOfMLq0l549CJJ6MVDaHv4hEMbUD98CE7A8fIj3j/ZHkw+7cMH8sM+RqKMysJgYwXeg48VXQ7z+N9pmPkz8/oWQ+4rWg8PLzUapeBYcWZpt0sI5VmnMU/PgIA5AW5q/olhrETYQVZYYMQbDLm4/6VAUGNK9aXZCliYhthEqwyy4hYj8veskFhZ5L1pUybPrNtN2DOzH81OsfyGWQy1hsYvMbE7MFXCACtUyboXtAVxyIN11gOv+lkPdlo7O0zzElmqwYQy8CVponRT5bujx/iD3h+Bk5ClwuKR0zzugcVjJ9nJdFA9ctxCXw5brfp41J67xz3Jc/ftwnPcO3mYI9UnvPfCx3g4+iyrDPLHLz5PigYHqRT3Jg4HMKfmhJqFOmY1VDfoDRa1xl+BuGdYYN+h2iv8OPKtU3NHDZY+b45mqQSbT/OZUm1FJJCaQs1WNR3bsGTuAVZZZTDUDSsM0hJzo43HXWxznhu0+FzRxh7mtbpPD8VgxXVTZYx52tgP1t46/T7XmXegVBNVspRd1SB5dwsN5hijj3XW6GMf81eWRH2bTlYYjLWAgEQBdHOM0scaGX/eAM7xFksMhY+eWO97tEWTSADsGPNMMh3KHQu4sOf0LFOkOIgQjn7Wfd4px5yjNdIebawyEMosqQ5a2QvLkAzmr7xHKz1N5I5/0+vDCcXYJwEExMT7DAZiyNtNwJM8uyRNfUgi2VzDgL8qNgGdxIAbn9w4QQISHCFJaurHJqGrJCynFgy8UciGWE+/QeJpd5xE0ikfOYElCtLIYSDGSRLjS+1Pc0iFmGM1kpAJ0c5bfB9r/n55rpX9/CiIQKEHXyIJN/gxP19iiGUwoEeBDpItt2AT6fO+H955I+/nQR5z/f73NMbQuk8C1GR9W2MYQCSgRozJImGyy2HfX4VNCKTK+vepWLhH4luw5p8XANjs8waJr506lDon6jA2A3hiEcpT7yEGcEoim/LzUSCR4Db8On3D33uSRIp634/1IYnXnq7HST9v7/qxlf34XsDud50LBXRskLAgBai1+LXBrwkkAKp88MR2FMuy6NvS+cF/r+dKwOYDEu/DNRIfPXkRimF6zPdPfikKZDne9D79XSMBcyWPln+eaOUqGAXE9vp5lTdhO9Hhop0EnPyIv1I8oY91ivRwlUuMM0ONNCfY4L/jb/B/4r9mjb6QU0qGN8gKFbpZZSA6WsZaMylVP2vs0MEtRjjDAlOcZZT5SAdU4SCzfoUfZKjxs/wG8hITXV4Fh/yF2jGz97QvZsSEWOJUdJeUcFYjwxJDwRgxSdJmSDWBoJArxEOswhL5CO2o+3JZIE0be1zgehSgeUpc5uvk3eRehu2dbNHmKY8l8kwzySWusuSFYb+nr0kONcgK5jlYQX4lY8xhXnZ1yuRQKEK7s4XOc50WGpSdkl8nzRkWwrOpWRInECopztaDpahFpAqXtEtpZPAreUgf61zjYgShKNRknzYmmGWHDmaZ8JCFXFxHserqpDnPDZdpLLPuKVrGvimzTRfdXvx1sEudNG9xLiTDp1lEARDyOBNg9VneoEaaV7mGfHUMnNwNAGTL2TKdbCFPRjMS3onFhu43gaaSUqjDar5WBrYqaaxZ/j3AKiXyXOcCY8xFR14A6JBLKDPUmeIsaerORNqP6yFWjVhZiwy7nHIrvqeP9fC9KjsQoULPwmTKzDLOQRRiufBCkdSv4eWWFk7dVIJ9pXPxUX/9IWN08oED7luc46Y3M9o9NdEKXSU2yoPmOhdCYinwpko3r3CTOcbo5S559ypr9Xuxh6I3MTIBLquhocXjFmYPkBiU99DBjrM0a5znOje4QI00ecrOVKtxnQtI5jvICgOsIl/RsrMDJeGOVL0h86k7cBZqq49X8koSEyZDnUneiTFkjzbO8RaLDIenZyt77NHqQLs1fCydOk3OwSFjwVl6rBbdywwxwkI0JPYdtNKYL6mRFv/m2XTgbNZcgA7yburAkoBbaATDo5sqrc5b2KPNGynmlQfEAtKkd1mqdLPKYDCMADL+HQIvFkhSDTswi4iKs/5qpH3h00aOEhPMco3O8FwCkzMrtbHu4GAX26zTzzkHXsHAXAF0ZXLBXKqRZpMCu3TQxXYsusAYIAIXBQB3uzeWiY91OAABAABJREFUkuPl3yVmeHMKpTw8LXF43cadY/B3/yXUOp5l71mbN7vv3ueD5+CZEuz3tdBaPoBn4YMj7/PMIw+XWMEapR2EQuSD5+CZJ8D7GIXjCHzQZmAhYOu1DmDLfkeaRJ3TCo0MpMoA37H3d5E01FVr/w5W9z16TOMIPPsBPFPfpdbxLJmtJ/beBokipg2rS9O+rdpjOG7Hm9l/ktSiH/HXc+43rBpK/lxt7FP25sQ6/WEtUSUbYLhJLPeRHNeSbqs0aCFHCQWGTXHWJYK7cZ+DErLzoaKQ9HeQlWiUGKjTHRLAZja0AKIsVfo8NE3PzBkW6MLsAxQIoITQPVojQdQavO2hRjHf5i4OMN9LWWnIimScGZadCQU4I2w+9iPrz5rqTIUegAUSSKVSc2WBms5/XHg+QtjKx46HN2iDFAupEU73LrJHK7PHftib8O200OAWI7SxT5YK/QVLZX8985o3bcxHtY81ppmMZqJ8PwUuZtymZc8VBLJjkL1As7xVTZQUjUiDzXkdOccoBTajEaI6cp82/hk/zef5l6z4/JXB/Ew1Nq17iJvOaZFCMMoKLhW1lG5jGh9gwQ0V94LVfCKG3WITQ04+fACv8xqvcJMUDW5wntMuKZfMVR6okNgTdLDDCLeouKJhhFt0Oyu9RjrY36aOydHJFh3scMsb0sbKNGsL1ZQKKDQ2pxEVRlighll/KHRmhAWv/21GU90nb99Jptl3SW7COLwb95yeIbNvMMWRbDTEgGxjP1j9CprS2m+Sacy25hHfz+vDAfQk9RSIsUACcohR1E6SLNPs7yVZq1JTqxjrTWmqAnPkv9CPgTWfwcADgW4zJEmpAhDfI4l0L/t720mSZvv9zzeajuMAA0YO+89eJPFWE5ilSUoAmHtYhCfbXd/vdix9VODJZzDWmV6fIYnLhgSQ2yTxtft9TNt/myRxVQy25kAHSWMh8bqTB9qCH6fkpLpO+abzcYUkZfc9DOD7FMkdo66fEmWP+fFK2irgTyCSWJE6p5f92MWy1HmVL6KYZgL1BOadxFibt/19V/AkY9/uRNO5mPB9kRRaQSsKqsiQeLw1SCTWORJ2owA+gW+PfNtfI5Gbav8V8iEmp0BNgYJigupeWmi6TpKi95MAtXpeRn0/dW6bwTdIpKwCs/tJfPpy/n1idR7283606Zxv+mfl5XeChHkooH2URJ79iOgAk/Xr8UXf5hUSaUXR92+UhFVb9OuxRwJ+f8Rfu7RTo5VlhoK10+0Lop/lnzqwYMl+JxyIE7V7g15GWCBLhXnGkDG45I+tzmwS6KD0LEmazLepFu9JU2eaScaYC5bUKgMhmTKZ00HTJN2C4t4nmGHFWWMlB7x2fZsj3GKDE8E80YJcgJWYY0AUKvJ4AWNYKDVqm67wIhLY1kPRU9WGYuEnqYUW+GL3CBSQYW/FO7Pm6zTmVHvzpNpyNkYr+7RiIQ0qgvq8S7pOfyxGgWDF9bEWHlHm2NXp3hm2uK+R8UVaF+v0RWEmhpLAJvlnyNvNfDUGOM8N5BNYdyAi7R0+mTsPs+iFkC0EJTcZYCWKDzHd+lhnlQFWGWCcWe+Ub9GghXX6IlVv3TufukdV2Kq4bO6MyvfDmC/pWKSKrVgixxjzTDMZIFuz2fIpljExbof/zq6lMbHKIY9VN79EjgXOMOH3kqSzxliwItqYlQZqKHlZz0eNtEv2WqMA26EdhbXITF8JcSWXHos9uE6/3+8LFOlhnjEmmGGDXl5ysPg6F7xrPgsQYI9YpWL9ad91jZ+Jzs5H93XnH/wOf3J44Ck50GGKvE+Ok86MXKbOd50FWqBIOw9Z4yFPuOqB7Ut8i2f5gGX+FTXucZcnLLJFJ49Y4DGHaOchy6zxHd4gRYPv8jHeYJ+HHKGLe2xxnPscpYN/zX02+S4V5h3yqdBCjTTrrPMdPsEe/yqA4A3ucYgDnvAMv8P7dHODuzQo0sND2gFo5Q8NuP87P+WsiXo8qykavMW5uNcGWUGeQvI71SJ4hvGQ3Xc788W2vxdjkthzMoffoYNW9gJY26Yr2J8ZOniNNwB7btacLQjEQn2GiWAwgAFh8qG7zue5wA3afHkjXzgB1de5wAWuAyaxL5NnnlEy1OmmEkw1wFl6mwFyKcVTDQT9XHJ/awxZKrjS0C9yDSBCRUaZD+ZbBvM5lTWCpRXvISmxmku2+LXrJguBjD/f3VTYo40KWb7MFzjDAhYgVGgCW1tp9lI6xVKEGAkw7fB5VmxTMZDEkkl7s2GQFZ7wjJ3POhwchUzlCZm9XXgO6IJHrS20Hjug9aEd5253hvb7Neodz5CufED99DOk739AretZMoeewD7staY5slM30O4DaByB+uEWWusHVsNuY79zMK/e+gzp2gesdX+C3vp32E230dm1x4OOVo48MiAl9Sx88Cw0UtA48iyZ+0+sHtyBZwUWPoHHzx7iSbZBa+WAg05oeRarHet2PI0UpB5gte8TeObJB9Rzz8CD7y/V8c/6a41+TvgcO8l0NAF36GCQFa5xkQlmgqV1iqVQe0gtIT+vHCUyXjO2eWNRDKslhrjINZTQOeAeZSkO6KZK2f2Ek0Tp3QiGkfRerNsSOfKUucF5XmKabiqUsTTsAVaZZ5QaGQe494PNrmalza/dDLJChjolZ/HJ6mKQlWjKGRBuCdllt04RACkgqjk8LkPNa7p81AvdVKmQ5SLXyFLhTS6So8wOHcwzSpGCz+fGNmz2H1TDeI0+uqlGDSNQZtNZjOe5EY1NsSq36WKHDlYZoEaGIZZJceDNCrN92KYrwKXXeY2/xG/G/2uYv7XZBvR4gyAfTfKzTJGlwjJDnGKJXpej2j1iQKik13+D/zdZKgEYmmTbgLE5xhyQ6omAuTOuKpC6x65TLuaFfl9raFwXk02eirtek2n9ADDBLJuuRMpS5SxTAXjJEkX32BadjDLvjHu7R+tkMIsca6D3sx71tGx3MtTpZ4GrXIo6fpJp9miL+W6ayWg0y6JF93Ub+/SxFoofNau+yC8wwWwQJUrkkCei7gc9Oy00+Cqf5zXeiKbhmjfTG7RQoZutJlZ4LxtMcZYRFsKmQ3WhmPLfb7P3w5HctpDI7yDxsutt+n2zZ1oGAzfEMlJIQoZk0T+JgXwnMIDvEQlb6AgJKy2DATZ3MYBpFvh5f69kf/LFPfD9FEtphoRR18CkwAKi3BSWexjo9SkSwEYg0RESr7e7GCDzB8Dv+b4IVJHZ7NsYiNLu25GkWGyoLPDXSbzjMv7510lYjDrH8mqTX53YVZIoC+wTuCnJ7yhPJ7z2kzAnm0G1FuwaPcKAMiUWy/T2PRIWW8v3bHPGf3/fz/PzJIEYP0YCQLb43z9DwkKTLFvHJ7BzlEQie9rfv+DHXm3arzUSz0Cd9+NN51TS1Qx27apN/2/BANCsH7ekq2+TXHud4zsk7NF7JN52a77vWT/3J0j889zrJEBCXcv3SMJjtG2dn8mmYxfwJrA8499B0//lFSj5dsrPi8BWAY+fJfH2K/ln9dy86P8XINvw89Li514Sj2Mk3pD3SZ4zgbvykBQoXOcH4tXOLq3OzFKnJ+ssBiDSaMXUSTnbQX4ok0xjpvGWbiUgQr5ibex5p3CPnMvRVhhklDkHtQxw26OVMjlGuEXOF03TvOQARIG3OBdSC3XXSuQCcNqhgxtcoEo3E8yywYnw/oEkibaXDbq9+yWGR5Yq57gZUjGxo+RLsUGvG0Hv000lJnsFL4hRpdh7gHnGmHHj+G0sAWzeZXgveVfYgIMtFhmO/digN0ILZLprgGQvo8zTz3oYL/ezHkBTxvmDlz2Brd+9BSXdksF9jTQzTLBOHzKwr5FhmkmWGHrKqNcWjN0sMMK+g6Hy+jPfkq3wpzE/DjMOXmCEr3M55HJ2Hw1SJRseVH2s0ck2u3RE11IhIhv0UsJyOiVFXmWQNvY4x02ucZEFRnjTje7f4lywScQYkPxHXWdJESWjVCEoLykzejZfskWGUbLmhCcwX+VSdNeBuM9VNDUc9OhjLc7bCoNMMEOBItc5D0CfF3pFClTJsuIyoSKF6NjKv66TLSyrNI+CGST9lrfYeW44a2E3JBL2bHaRpkY7Jg+0c9HOMIt8ljeCdShZo0zOtVASG1dSKYVvfJRfj8jwArdp4bEz8AwsOsIu7Tykn3U+znfi2Tzk2jtJZDrY4TCPeMRhUhxwiMfxfLbzkDb2OOAQSmp+wDEecZgPeJZHHOYwjzjEY7q4xzEe8IRnOcRjnuEDHnAMefEc5x5HecD7PEeNDId5xGEexWKvgx2Oc4/D3jlP0eAJz3CIxzzH+3Sx7YzDVqY4y5ZLgZSWV3ZZcYoGfawHQD7KnC9e0tx2n6pOtoNdZwzrOnlKjDMbLBA9m9o3saS1GBWgL8sBsQQ7sYTEaV5imkky1IJdIqmqGHATzDalvypF1hbWu85WsGaUsYSGWeQUy+QoOfOtI5I1+1jjDV6L+aGD3Uhbl6wZCOaF7gcLI1nlPNejCWBz5oGPnwIZzZtLwHvdgXydH7FlFNjT7Yxh+YfNMs4cY0xxlpu8wivcdBDWgoJkf1F1tucmBeqk2aYr/M+KFBhglSzmmSXPs7KzogBnwrRSoEiFLPfI8phDPCyk2U4f46ATHvalaaTgOx15HnKEla5P8vBImvXcx3nCs9SPeIjEIdho6eWDNsjcf0Kl6xik7VysdHwSnoX97hYO0s/aGFuD6pGjcBQ+aMHYcs/C+y3PQcoAo920NcI+aLF7vHy4m4XDP8T6kY/zsDXDMw7a1Y49y1r2E1T6jrHT2srDrjTUoP1+zZiEKdhOH4NW+G7HcajBwSH47uEc38nlOfgk8F140HKUZ598QKnt+0t1/LP+OuRMKdkvLDASdeCaNwFnXFKqRNoamQCkrK6xhGeFX9Qd8M5TcvZPDXl22jxtUn/NyVIDyMNSSc7zjEbYhNjEAvMKFN1f2DxpNeaoGaembZsziVUP1klziiUkPVXzdYBVunycW2QYSUM1hvV5TbZBLy2YEcciw0y4tUDa6441+pniLK3sUSMd/sPySy1joWbdVChgnsId7LgnsDGzhnz/9mmNukvHIxlwJ9suJd1mlHnqpJlmkhRJmuxZ3qaDHaaZjAYWgPyR1WzXGCpQ8Rw3KVDkBBvBkmtjn2tc5Gv8hCtCjMmp+nWd/gC1FjgTzR8lHefdi1Xgk42duwHKqeHdyj4vMU2WatS0YmSrMQ1W87ayHw1xk+IORIO51ZPfzVaiL1j3Or+aBwZYJU0t2Jxa88iWQs0ssVjl8bfKQIThmcdkOtjdRQpc4iqrDEbDf85Dk3KUA/DuYJc5xjB7lusRrLFJgSrd5CiziXnyjjEfCfCymRBjXPcQEHWdQvGGWIrraKB0zv3T7X4WGcBYrrbW6GfdJcA5VxZsft8eeh8OQ+8QCVtIi3iBemIZHcZkf6f9M8cwoE7eY5KH3iMBUSRLFZNJXmX9mAddgSTZVjJWSJhE8vJSuMCBv/d5DMSQob/AL4Evktwq/EFn7QQJg+k4BsI0A2gC6nr9ZwptkOSyTMLigwRgFKttAgMDBdw8ImFqSdKsBNE8BsrIazDl5+NVjHFYaPoOMfce+e/kXSjWo2TEkqBK5qmQDl0fgZ+SwYpl9h4JGKvjVqhIsww1R8KQk1x6gQRweo8E8J0lST/+AxKZqWSg8mq759/RnDwr8Ezefw99n3+UhEnWj7HudD/u+jZebDrH95v2Tea+75EAui/6edB1KZCAgLp+AhJrGCNTgSv9GEh8n+SekJefrmVzgAskAGem6djuYwDopF8vSWsFKB74d91t2o6eDQHj+vebvt13SQBOsRb1LOu5OEHim6ftpvy8PyQBLXVPzfl+/P/4yL/uMOhinR2XaK0GqDDPGFUHhESDF0UbbPLfo41R5pFHkP4o4U/SUKURSvK5Tj9Ko93BwhW26XTzdiuw1DVSl3aHjvBjusoletkgTxnzdzJpgU3aZsqusAUZvysEoJnZscwQNTJP0cxlKi5a/RhzAL64q3lXqiWKhT1aQ+orqYc6s3u0cZapYDMuMkwfa8gbRgy0GhleZooaGfKUOCBFgU1mGQ9gagkLlVBxqiJYBu1i/mWdLah0snX6mWfMO3WbTxW4e7QyyCqSPq+7n56SZdUd3PLFtgpKAaUrDDLEEmPMsUMHKwzSTYV2B4PSDiZpkbhPGy2Y5LXFQV95+p3jZpxbgYfyMBOAaume5seiVFvJHZTsCNDJFi2YtFEdyn1aQ9qbp8SMs1Va2WeIJW5yjlHmOcCMoD/PV6Ng7mAnivQZJkhTo5tqMHUkt8lQdz7kFrNMROf1LFOY8XLeny/zPLPFT3ssPrTgKFAkS5V+vhpBJZKz3OACfayHgX8DkwtlqfI1PkedDBYo0EKZfLALxCjUtu35NZ+aNJZsmYCgtigbZR6w4JuP+ivDYx7STpp73Oco9zlKG/u08zAAsQYtHOU+7VhK9zN8QM2ltA84Rnt9j560sVYf0s5x7tHJFnXSPImOHxzhIUe5zz2O8z7P8Rzv8wxPkHT9GZ5Qpw0zuK5xgm/zgKM8ywd0OwDbxT0OOfh4lB3ucTwYcEAwUx/Twvs8xzEeoFTuaU/V2/FFaXfTeGAM5HcYdLawpbu2UiYfrF4xTtVMOcfNGI/ktaQQCmNE74e5vO5VLYwXGeaMs/gy1DggRY5yjGv9WLKv/Fn3nC2x5+dHsigxrYv0IC/NfdoYZpENeiPUSFJcgdTrHmzUTRUl0YqlmMESJ8UOBJPHXeRagG92Pg6QtKnQ9LwJpDzLVDTETK7XF4skY5HkY1yVtEneempKdLATbGuBk5e4aqCYByu1OajXoIWsh6CMM8uyp8Z3suVsnX3mGUVhI7JyqJLlNIssM0QvG9FAaGOfn/k7n2SULb5w/5vMHztFL9BR26GWOcwCn6RKlmkm+QW+6I2FAYZri6xn+vih4nv8bqGfXlpQGMrA/ftsHDvGPikGHsLhewe839tOkR7O3LtD8XgLH1+DD47B1vHD1MmwQY4/t1HmD3stNXOGCa8TbK5Z4AVfrO5S4yhKjV8jxxDbVJ2tOHD/22wc+xht7NNR22E6Mxzslx8t3+O93Mdi7Pyk1//f6u+kgxTfeXCUX/t/fPQ9WSaY4RM8CMatmj5vcS4kf2p+6t5U6nMfa9zkFSoOgvQ6cGA+y4MBNFgjuOiM6CEKbNJNha/xOc5zHUn22337Jfd0FFh+hctc5gpZqtEEnGGcV7jJAKsU6aGVvUgmFUCVw4LCBLTMM0aBYiSJL3MKBXPUMJuVLt/Hy1zhGq86QGUguypfHZeYfBWvOcvkKLsiYIYJLnA9mtNl8swxiqxjAOTT2SzTPc8N9j20oYMdVhhkh3YH8vcjuK2DHVpoRJiOUoPFhpa1S5oao8wHS08+pRW6o/mpsa7uNXJzIMoebRFcYYENy8iWRP56As0EPhqQa56Hzf6ENdKsMkCr184ay2VjkeKAecZYpx+xxxW4opovQy3uSbB6P0+JFQfPhpxBqgRZnVuxBnOUaGfH1Ubbfh12nQdovrhDLEczV57LSwwxwi2qdMfxmCzWmE0VuummEvPRCoOMM4M8jjPebJbSJu3M7FnGOcsUYI1gpbwXKIb1yhp95CgHIC1bBSAa5GoI9bMeic2q9e/SyyTTVOimRJ45xshTQoEo8sIVO7REjhEWWKcvEqQ72P2+xpMPB9CTHPAuCRgmaeppjEUlkKGl6c9XSJhvAotyJKwvgTZHSAIslGaaw0ADyXQFnLnpKndIkjoFsgjMypN4tWkOyfjvj4GvNQ2MOIGBOEVgHJPIniQJ8hAgIkBL7D4x/RRyoe8WwHLEv+t20/4IfBv1/8+TMM9qGFAooOwhCQNN5z3r+ym/uhQm1835fuv8yaRW4NhVP6diMwo0uuPfoeaZWJYCQSf83LxLIpFVAEg/SUrqp0iuqT5/hARYnScBfiGRseZJZLFJ3Y7XgE+HV8z48X8aA6YEsh5g122WJIlZADP+s3tN+yiA7WUScFfecKNNx9Tv50asS0l3J5qugTzwjvE00F3EQNiv+O/kM6dQlwP//Qnfj1/3vyG57vcgWLn9JKCjwOA1klCNhyQhLW/7zxd4+jl4t+kYFWSjQIuTfn4F8BZ8u72+nwIs875PkqgLtD2BcYM/+h7wABzjPoOss8CIBxMknijyM8pSYZfEH0NMOQET6uIAyG9l1Vl48prLuJRxnT4mmIlOb+K7YQsiTVySTI4xFzR/SxI0QGuU+ZBwrtEfXUYLR5A3n9HdlTIq0HKDXg93KAeYt++yC7DJ85YXHHPhJ2CLGsmedjDfFk3okqSoW2rZUvshga02FbZKSm31Be04s+zQTol8AKIpGkxxlktcZZFhurzAkJRKElgtvDrYiQ6dimtJUmSKK5lIjhJDLHONV1EKVwe75H0hvkY/I9xilw73azPDXyUg5igx4r6IKQ4CdFMxkMNSVi3ZtRpykXPcjHtkhcEoTNQJBZOomZTNACYtXNvYY5FhdjB2qIAESxcWKy7rx97FDc4zzmwUQNNMBgDdLG/T5/Uy0HLZC+aB6EgKFNT3S4798/wanWw7yGLFsby8WjFPwVHm6WCHGcYDlBQgogJYYOQ1LnKd80zyDn+Jf+Y+WSvhn1WkwHmuh/x5x5lMO7STpu4MwdY4nw0sNVrnUF5qO3RwnhvMMk4n28wxSj/r0ZWVL6YAw3O8xVc/rEHoT8nrEDUu/p3/hBFukaHONS5Gl32EBX5p44/4v/ZeAKzb/Uv8t3RT5RrPRcH7t+Z/l98aNU/JJU7RxTb/+cN3+eqRH6FID4sMc4mr/K/vvcsXj4+yhfntpelniGUAZ6QOuNT6Lqeo8aucZYlTvMwUOY7y59fW+Er/0TDZ/hxf4xp/jhQNpnmJX+S/Z5Q/YZ2PsU4fX+PPc463mPm7vxfsAbE8FxmOxUeRHoZZpI815hiN5so6fcwxFgtVLcTltSSgTmMtEMyAApvMMxoLDf2uQYqKG3evOdNaRt0ZatzknLN3d7FAplVK5BhghTJ5BlnhFiMx3gHkKAfTcIqzgM1jA6zyNX4CSMbQdfo5yxTDLKIwkmkmoxnRDHTLqF6S+RUGaGOfCWZZp48dH9O12KmRZpBVMs50FqNDIOZZpiiTo0aG2wy7PYWZz2tfBL6LkbFDu8vdMux76I3OqUIIxKDXPKRGiGS8nWw7g73Xz3+WLrZ9od4dzJQeiuQos8wp5N2k+/LGsR8Nn8TtTCcrHkbUxh5f4MusMsApZyztZGw/9gptnHbWoJoaxWPPuU1AjfUjnyR1xKS/y5yifNxkifQTTSK9/rDXEsJVX4hl1fCxUp6wU5wlS4Vuqg5qHCQsnmNZVhkkT4m+zHqAnw1a+N3cp+M8AzzIH+J66gIpDpyFtQXOgP8ov56Qok4GWalc5VI0X+VZKRYXJM97hW5kd9HPeigl9mkLWxIgmFBiyS8wwmWuBEhjoRLjjDJPF9us+linz+UoebCW1Z79WBjBEFV6KDLPqHvjWYOrwCZZKpGyve5giILaLnItgHUF6GjOBOihGIEfCttRQm6OcoynS5wCCDBcygSpQkaZi/oFbO7XeZEnaJo657lBkR7yPqbVSQdg1wFc5RKv8FY0ZwXILXCGUyy5r1wbHa78kEoFbLxooUEvG+FpPMxiBJEMskIr+6GGucg10tSjSbTEEEMskaUaafAaT/KUqZAN/zeFRh34+NPMpOvymt1CGcxaoccBujoZZKnSwEKMJFnOUAtiwJg3HRtuR2FeiFbjTDLtiovNmKM62HEGpwGNC5xBQRsWPGa+xc3eqNNMhh1OnzeYqs4EnGSaeUbJUQ7Gm8LVrnKJMeYDFJY9xggLKIE2woYg7GikjNigNwgVNn5vxT0qqwoBoGlqAexJOtvl6zGtjSaZdmXIAFUHbgGmOOsM2BqSdOvaCvS1/w/S79LjFR8/v9+l8ocD6ImlphQkSPy4Nkj8ujIkTCaxqGYwsEEGqidIZJDy2Ctj8sjTGIPtdf+3GFpiqR3GACKxqSBJG5Vvn8CpI/5zfb/YTPKYUzBD2Y+hl4RJd4fEu+0V4C0MGJJv2BomURS77/eatvcpEgZbybd93P+t0AZ5s4lVKCacGFlKN5XvGSTsrfeaju/TJKETBQxsUSjFmh9DC4lXXgED/gTECIQSQFVo2nbGtyPZNCRA5V0/3y/65+dJmHfFpr9HMKBznIQlKenwgW//AYmXnkBQeTHqu8QKO+HbUyiGmJLTJEDxt/yaPWj6fTuJ3FWMP0nAN0gCSWQM/Gnsfpkn8cnLYQxA/Uzn7CiJX6Rk5s/7uXmPRB67QQKmzflxfRYDw3tImIFiB0ryLfCt6OfodNM+CBQtYffqiyQs1nzT/ihE5rifk29hz9s8CQgr7z8F2vSTPCsK1Tjwber5O9L0ucN8WKPPn8qXGFBmRFt56ueSjJ5lKkxms95tKjFIhpqnd6adLZVlhFsscIZllzvI/63dJ9ItzLh11dld6ni9wWv85/z3yGtM0eqnWGKfNuQrMe+x1FqoWNJfzSfWsSjCmvdL6ZPyBmvQ4uy0FV9MbkXHTgWoFmBiTTWby951gKdOhjGXD4thscAIOUp0U41jeYtzvOKy3mZJh7wuJM2yBLZ9JAndpMA2XeQpx4JNDKqyT7oCRYdYokKWGcZp82IsTS3kuhY0Yt06FXhX+HEv1moR7DHkBYQtBW3/rnCZHgedJAG1xWaWPVpZow8lH5fJY/40tWA9GlvQCi35v0gevEVnSDEWOEOKA8556i5Yt1dBIEsMBXCpa6OEuSGWwlj5vEtR09Q9AdjOVSdbXOUS57nBXSwURP5crezHMSl5FnCJylTcG8Zc2WOeMRYYCfmRHXsu2Fv9rKPE4CI9nGEhPP4kr5E/jFh5nWzz41yJgl9mzHVf7OfdUUh+RJLZaL8HHRwdZJU5DDAyGWUuwNE6aa5yCSWamcynGtsS61RSETvmd/+DjEX/MV+HeUSbsxoERGscyFKBOWjrtXAK+cZ11rbZyFjnfJhFWIPOUZNQWSJklcNrMPLiLRYZphvzX3zmLtw6PsLn+O1oMsh3LsVBMIRHagscKT9hp7cjGBI9FGENWvutUSJguvk+OMUSz63t0lZYZCUz4F33TY5zz59qu8YVsu45uhmLmmkmnVGaCSZMkUL4Ze1h3j86P/KR23fvR6VGGjDWEouCqn/XRd5kj1YPvbD72VJyh4I9sEEv57jJNl3IY05Al7GMd8lQ4wwL0WSQNDhLBUshzDHAKuYpus5F3gygdIqzwcrWokaenr1s0EIjADGwlEk9r71sBDMnxYGnhL8TgG2nQ6Yb9DLPKL1scNpBw00KTDCLya+NWSv/zHX6GWGBFAfcZphrtYtcylzllDfY9mnjJq9QoOgMo1QsopuZTGJWaPE+xdmnGiMCYS2RNxNMKUvYPIhFd4MU4+61KQBQ9gy9bPAmF92s3fZd57ZE3pO124LVoibFLOMoDXqRYVYYoE4mmChlcswxFqmT8lNsZsaIPTTLBAuMeOOnlSGWWeIUX+dyNIvGmEcp4bpmkCQWyxNLAVECQi0cqosyOQ5SJqnewQJZvhP+Mx/tVz/v0UYLHc4o1XleYii861RHyDN4lQHSWCK2nuVBVgK8GmDV659WwJ6rAVbYpEAPFjrQzxpp6lzjVSaYjWcPklq1QjcN8rzMFLOMx3ZlQzLHGPueOHvCmaZFetjgBN1UA4QGA/bGmQHgJueAxGfTfMUs8GKBM6w5W9GsaawOtuCvPAoOETNKoUQlVyCoblBDJEuVdW9GTzDDAiN0sBuMLmt69EbNmHIA7jf4y5hv7xa3GOEsUywxzgWu08uGNx27o6YrUOQi16jQzYE3+A5IhaedfaadDnbIuw9n0ZuAeUrRvFFtu0YfP84V9rxBb+PmKonnaBu97IdyB2xsNQCpHsBgc3BH3llm5qPYT4oDutjmJueo+fjQTQUL9qrHukAN0mWGsIA8a5ZWyAZ4pdpKc7Ka3lt0uuKjwhUu8wW+TJWs1+FWX6opJL9ZWcxIvaNawNJijVc9wApgAONZppC6Q3OpfPkKbDLACr/BXw5LiC624978HL9NiRxFCiFJnmaSPGX6WKfsBADVGev08RLTURvXSCP/75rX5lIS6Th7vClnShV7Zg2MXPO51/witaYbZS6Yp4OsuBdg+vsaTz4cD700BgwUMCZRswT2ftPPJSl8SCKb/JT/v4Qt+HtIJJ5XfPsTGFgzgwEOAlEk8VR6q/zMbmMgh3zFMv67l0kkgMdIGH4CRk6SAIF3sEAKSR7FrlLq6R3/HnmWHfP9TGHACSRMNjAA5qR/p6S97/J0qqskiwpskK+eWG06PjGgxEDLkMiBT5PITf8AA4ee9+9dI/FrE+Co0APtw1HfzhF/jzwKlWR6GAOejpEEhdzBQLEqBgJtksg1FRiR8/Mgr/nnSQAsSMBLSTXF5kz5MU2QMPcy/rNy03nW9ftJ35bAOwGSayQstndJfAXlw6hGt7ztDvz4xdLTPSLJtQCrAz8HAqsUsnIYu9/yTcdYJrl+zWy9lqbtl/w77pAAas3nUp51J0kYh70k94vAtSLGxltoOm9gfoWQyJ61phRjUl5+8zwto79DwqCFxHfxNCYlFkh9jOReFHjY6+f32/xAvE5yx/1PUnSwE95Hae/UyHdihnHAJmZFqAM+SbVzQIpVD6WwtNVcAHnr9IdXSLNJ8AoD7NEa7I3POwdISWYC3sxwtkqb+2KUyNPKPsuc8kXspjOWToScUCm4MhNXQblDRyQY7tARMqwWGkwyzRxjmO9FJt4/w4Tvq4UlZKl6t3M3fDCa5SAjLGBpZRmGWCLtUoAK3WHYbnLhksswc95xbKHHwRuBfvKO2qYzjkNFlBacSnW0wmUzFh8As0xQoZsZximRZ4MTDDrQWXZwqkghJBV9rDPFWWaYAHCxgYVo7NIR8uWsJ/BmqbJPWwR6iMpv+11H6XUCp8R6GmWefWetDLIaoQ4mc3mHbTpZYCQWYTUyXOFygAor3jGUD2NyzRsMsUyeEnOMhTdgnpJ3kve9WM8F4CpmoclyjN3W6YCcwOCKA1spDpz1t8lrvM4CI8wy4WCMedxJUqxghQYptuny56crutZAsAplQlygSI8XzyXypKlFIq8Ypuo+y1/HUoZbmWMMmUurC24gx4HHjViHOUfJvS/Nu0tSqgNSrNHncosW5FVWIkc1uosf3dezfMAwixQo8sKdb5OlggzTJ5iFK9DHGi00nHW5y5G7T+JZrJKFb8JEY4b/dOMPwsuMGRh6eId+943sZQNuwyWuxn2pxbHSBFMcMMo8R648gRligTfBjG1zDsaYjwVHJ1uUyPMq18hR4pN33oe34cjMEwps8nP8Gm3scbhe4xCPKVAkT5khlplglj7WQnI2zCJKOtW4Ila2nhExRDu97O9gJ2RxtjA0jywgmMLDLMbYZKl/xudtdcbsWaaQF9Y4MwEapDjg//PHv+yAUiKVrfi4JOsE+b4uM8QUZxlgNdg3NzlHkZ5oMIywEOwiSQh1LFX3v9Sx23jcwg7tsVh8jTfoociyB9vIu0+WESVywTTvczbXAmc48KaQ/AV7MEuKApsx7itF91zmpgMVLbzDJNe5QB9rpKmx6aDpGn0BiureqZBF/plbdDLCApNMBxB2g/NxXAuM8BavcJ3zyD9L11ds/Gb/zIYzjGT5sMQQywxxlUtc4yLXuIjS4M0n1DxYlxlikdMoafI6F/gqnw8j/Ktc4jf5aa5zwb+zi5ozga5yieucjzT5r/L5mBumOMuX+UKAp5IbzjLBPpZiLB9eSfRWGGSKs7zDJCsMMssEdTLMMBGJ1QucYZqXWGSYd5iMefcmr/AOk/9hBqT/yC+Tc7ZQpBDP1r43UMUyV6NW4KfY6gqWkupAwAtYUqn8HBc4E+OI0mTVELjIm86AM7C45L5diwxzk3OUHERTw0GsX41Xr/EGBTa5Sy8LjFAmH895lW4G3Z9Y9V+zJL6ZEdXBblx/PQ8a26RuGGbRlQKtUbO2shfN4Q52qGAeaAU22aaTJU7F3DHjdVqddKTdlsmxygBXucQiw/HeSaYZYomzTDHJO7SxH0ER3VQZ9KCrbix6ZJWBaB6AsZjFip5lIsb5DXqjGZijRJECtxjxedDAu4KzFCvOGDRQMxPzg/nt3YqxrO7jdYY6wyzGuFOgGHWw+b7ZbCAmomozgWdqBoulOc9opKBLEZGmFpLgQVYpUgh7FDWX+1hnwEHWBi0U2Ay/1hQNcpSiySGAK0eJftZC2SE2ogBhsHVRjQw3OE+BTZpDyyQ1lxpD9dtX+XwkqIvx3Mm21682plsgkdXHo8wzyGp4Wg+wEl6Jeg7L5Jll3O1Vuv0a2FpGDTPdj51sRxDIkM/7gM91HSFhHmSFfdoY4VYAoWoCmULk+0uQ/HAAvWMk/mZrJNLN4xhAIwDsHgkIVfOfgwELYui96/+WTLCHBKwbIZHyzpOAQ6qL1zAA43nfdpYk9fSbJJ5fYlspfECeZJJ21jCpqmS0Ys3d9u1J5ilARzJMsRTfJQEeJV19DwMkN0gAR+3fiP/5UT9WATr5pu+BBAiVJ5qkzHkSXzOBXAJiGv59t/24syQhI2skgSbydpv2Y75P4pumfX2AgYR3SFiDBySAYbOstpck2EEgHU3fm8KYiz+G3RfPk4CEh/27XyVhgen8KvBCgFKeJEjimyRgWr//0fdOkLD8yv5eAXNlDMja8H3Td/0BCdB6gMl2JfMV40xgothpAg4XsHu06seSa3rPIxJZd8PPlaS6LX4ujvh7xNAc8fcKEFSYitJxx32/7pCwOI+QMGP177f9/f0YoCqGICQeeY9IpO3PY/eE7lWBxpLX7pLIih/57z5F4tMoP8Y0PzAMPaOH90SxaymiVtALcFOUfSdbFCjGAqxIDznKtNCgi20Ho0yKKt8uYwGZIbii6EVJH2GBfWcg7dHGASkWGKFIgSnO0qCFPKWQIpXIMc9YTM5vczYKxj1n8EkuqOSpAZeMyki5Rjr8LM6wQL8vus0YfoBOtpDvnfkzLdHJFuaJdCoKuwXOhDdFkUIkhMrfyIqrCvIkk4fULh3M+IS75t55dTIhAVBQhVhBWpTWvKDJOsQGBGNE/jZp6hTp4RRLjHALBVvk3S/GpEkVZphgiaGnJBACdlTUmEzYEnhvMRLdX8XbW7qqfaZE3o1y88FUyntBKPndEqdoY48JZujz4miFwSjOxS6SiXCaOjLYrpEOBqXCGj7HbyPJswrVf8h/ET5Q6kx3U2GMObJUOc8NslTo8gKok20WGAkgZY5RNjgRBaK8YnrZYJBVLzi7vStrku6f5jf5B/yfOcWSS1juMso8DfeKUjHaIMUtRuj2hGVLQduKxN48pWCKdFONRLVdzPtEsrKydynkX6JrvEmBWcbd18+A7AYt0fXW9ZzibEia09SZZywKvAYttDhzAAy8EmCe8QCIj/KrjYfs0UZ3owpfMsDs/zb/D8hTovfhd2DWxsuXmGaEW7TV9uAOnOMmv/nuX+ULjS/D23D064/h5+BnvvQv+XN/5134ChyehgNS/K21/4aTG9+BNyBPmR8qvofJIGeCQWredftM1qbhbwNXCJD3NIs8v/Zd+Ap8/Cv3MF+bPM+Xv0sHOxz/+49o0GLz5hXgTZN0/fBX7vCffusPaHlgHj01Z19KDqZFwa6zkGz8qT7FCh5ghbv0BtgnSc4iwywxRAsN5hllm07mGPXl5xavci3AmUtcbWKyGUvjBhcC8G9nh1062OAEFbIscYoNejn5Q38UCyixe+a9+SL2qczoTQJnc5YaGyatX2fLGQfNvkvy2lQTyXyNar5oOQgZF1iDw6SD1kzKUY4GCfAU06KP9fD3UjBFmTxLnAqZ7g0uBIDWywYNUuGlmXW2/L4HVZk8+Db9WDKtfFjFmplhPCT/u3Qw73YRAj0GWMUCidajeSKmTz/rAYqUyYe0UMFORXrCw7BKd+z/r/KLTDOJPGLVUBOjXeOP5kmbo7vY87CNMjluMYISO/OUWGKIG5z3czXEEMthCq85SmPaaV+EvsnFAE80H2vRWiYXc9Syy+4EWM77faqkcjVJrLmyGfOXvMUapHguFi4f7dcKJ5niLNNMUqTAr/FzSEqu51fWGlWyzDARbKgK2aiFFEIlMCZPOYB/NaD2aCNDjV7uRv0gAHoH8/zsZ50cZUZY4At8mc/yOp3+nFmQVp41B7RVd3ZToe6NVUlSZe0i8NcSQA30uMg1LnCdFA1eYpqv8nky1FhlkBI5FhmO5ybjzPYlTsXxikVqsuFNLAXV5vwhltmglzI52tjjtoeGzDAezRo9V3ruFhmOprDYa2LlrtNPGQuGU2PgLc5RIoeCrAQqbnoTAYxVLDm0WcacYhcLMZFSQs+NWMU7dESDXp7HCiGTf7IUFS00WKOfPVrdVqYRjRoxk62m23ZLh7uYrL/BgTdoBQCryan6V5YxP8Fv08d6NEjqfl9OMEMHO0xxliI9yCs475LoPVrpwuxWys7QTdHgHDdjDJZkX016+QUqzRlgjtFQcljDb4Yx5lzgn2WD3rBuSVOPUBJZCw06o7Ti868F7lVDkSHm8AVuoKAosaYvc4U0ddbpD+Bv0FmBQAQcTXvjIYtSeM2LXGs4YwMOxvppgxPMeiNfrn7ZqBKqsXbrdkKD7CDyDsT/214fDqBXIfFPa/bTu0LCMCqSADzPkyTf3sHABQVHCDg4TeJZ9iYGJhUwUOxtEjBNgNZdjBl3AmM5iV30NgZUCCSRBFRyyioGwsgLT4b+AqwE2BzDQJ/7GDMq07R/8vtToqdAvyIJuCiW1mmS9Nmj/l2S3DYf26T/7BGJL6FSZY81be++v0fsLTHMNkjAHIErkgyLudZPwqj7KZKkXgUyyNfwgAQM/SwJwCY56otN/8a//5h/vyTAYqq1+Oc3SQIxBCiK2TXu3/smCYuv4N9z36/Xu/4eyZDla1glkafKm/EAk5BKEv1pjFEo2XUBA9Ue+Tl5GQPQaiSA3wYGhD7AwEAB0ycxYEuAYJEEOJX8VJJh+TsK2BJ7Nevn/jgJCHnaz4cAMYGyb5JIg8VUFHgr1t0ECfMzRcIyXSPxe9T+Zn0bUjwoPEP3/Izvu8I1xWiUXFnHcZgkfVjJuy+TyNfr4GuGj/zrOp+OBU2/G40PsAqY6WtL08JBRa8mAus9WddJ8isZhYspICBiiaEAcPQ6wQY5ylHMZahHYIQm1Yp3GsvkGPT9Uvf0Im+GJ8YKA+zTxqtuVr7CQABT8jtbYoh3mKTkDEML6zA2wRln1bU4Xd0khxnvRGZQbLwkBVrAiV0HVvQrbctkHYNPJRWCJXu9wk062OEESWpZP5b+WqTANJP0se4gaA8gJqTR9UXp18JFxZWYYPu0sU1XJHlZEWbnT5IPfb/S2vJeKKvLawzDNGlqmI/OdoC0OUohPc16F/gL/POItS9SiH+3sUcPRSZ5JzqR6oaKKaMFYJpayMNMGnFAL3fJUw7gd51+FhlmlYEArlYYRF6ESghu9S7qDh3RQZYURSnOYrFNMo2SxdQ51u8k8a2TJucLkX3amGECSbv3aYuubp2MF/1mpNvLBl/nMtt00s86dx08lGH1AKvBMhLIqMWqwmRa2eMmr1AizwgL0YnWvjRI8RavMMICrewxxrwXbzk62Al56F5TMp7uXwUfSC4EJtHboSNMnzvY4VhTN/qj+nrx8W26qXB07jF7/xW88O634e/bc314A3gE48zwF7/xO/SywZGvPIHXLaWPN+Ho5x7bnHQHa2gpUOoOcBVj+b0O/BrwHozefxfeJsZES9ir8lMz/4ohljjy60/4l+/a51/hJn/7/j/gk197H9bgA2fFm8/eFKzBCLfgRbumMbedcG+r01Dy0K+2g32UuKqxbIER5H+qxU8fa5TIscSpAHkVMmDjcoVxZsPzKEXD01WzTDDbBAbXg9krzyCBMn2sM8ICMkvvdqatxssJZjFD82Vn+pV9IW3p45I5ZXzsuFq9RA/FWHTXSaOE8TnGOMtUsLuSREWDMsUkkl/sLUboYptFhiPQyeRSZoMgX9Y92nj9/mtIAqumlJ5pMWu0uGy2I5B8Xh57OUr0sca+z5vbdNLOTjQ8ZhnnLW+AHDirvkCRXToYYYFOtlFqqHxrdb0EjmapeMPHFs6rDDqTPRPjTg9FbjsoBiZzVsLxdc6zxBDzjIaPndK8BUTOMxqBCDuYXLxKd/i49juInKMcHoZKpyz5uHVAiiwVSuRYYQDZJ9gx1mIh3Me6h7K0BntOygI1awSi7NHGVS5RJx0NKjGJpjgbbLESObqp0MoetxjxBf0BbeyxG4mCH+1Xh7sxmvWCySX1DHR5k1Rg6ChzkfRqksZdMpg/7fdKwHV9zS9xiCI90Risuq2LpNsGYplMMuvNKoHEb3OWBimGWIq6sYMdNp0ptsogaeoBdqRoxBzZTYUUDeYYC6BLjF95Gyu1uhkUUiNMdh/yigMidTTFAXUy3lzsDvBQz3LFG6XnuImsBBTa0ewFnMhy+5Cv2h6trDBI2dUgxlJMs0mBFQbCogVsHm/xUanotSBY/XyLkQjIaGOfHToYdeaGQPser7fUKM5Qd0uTeoBV5t2WJJarSa36R6zISaYBHLCyOUGezfuYEsWYZ23e0LV0WQGzqwyyxCla2Q/7HY0tmj8XGWaNPuQp3ctG+CPXSNNDkX3aXOGzx2u8QY00o8zHudl0sEKNTyMtlLyOTCN/uRYHH+VPV8GsAc7xFlOcRWFWsnzod5a2+TnWgxU3yCqdbJGmxi1XoywyTIk8v87PR1N8keH4IwDPrHFqAZjWMTuEEnna2OMSV+lkO5Qw5iOZ+BP2UGSQFXKUmGAmyAzywjXP7NZo6l3nQjTYp5mkQYox5njyfbJfPhxAT+maYk2p2fImCZgnkOIRBoi8CIyRyDfFepN32oskQJS2fwUDDuRDJt+vF3k65EHnQuCiPL8ekkiBlXwrvzP58UnWOu/vF9CRxcARhQdkSJiDku5+mqfljVkMDJkkkYQqhbUFA9bEFHxAwh4Um1HyTgEuJ3wf5jEwRudsvuk6vOifuePvzZKAgL3+96dJAJqjvj9f8X16gSTI4Ii/73kSSaw8EgWmtTR9v3zbJNOtkgBnYqod+PH8GImMlqZzOdF0HcAAJUmwH/r2lLzaQiLVFrtSXuzzJMEX8tb7JgnAeRID7Y5gRXoRY0i2YPdIrulYtI/yIZQE+9Wmc/JC0+92SdJxde7FhuwnAS5vkwC29zAGoJJ6IfFF1PmWBPskCTg5T+KbNw1uhWbfddi/SyDiI5LrdRsD3CZJPPgkdZ7wc3PXP9NLIkcvYKDzGyTemGt+fidIJOD92PMqkLkDnFH/kX9l3VNJrCB176puqgoEK2uWCZTIKsNuk84OehfWUqW26aLbmVBGay/6sqsW3ccFL5KVZqVOq0BFdTqbu4FaJGkRmOLAe+8lnxi3UVJYhrp3460Qsm5TJQp/pSQCQSNX4m2VLEoB6/furzzjslRoTlNtcYDP5AvjtHkXU8y5FhooSVUdQAGd6uaZD5FJXk2ykcgjgAAdAWaY4AYXuMLlmHQ1oYtN2SwBls9Iu3fDlRCmxF2xw7TfeS9eVhkgQ51dlNjVx6YDdasM0iAVi8UcZdrYR/4tWarsOviYo8QZN4q3EIj9YGhaAZ1mgBXvXLagNDaZM2/TxU3OkaLBAKtc5BoFitxtYv5JErdHKxe4Ed1zySY26A2Z7U3O0cYeSguWJE/d3ww15hn1BbcVxiZ9taRPLVq1GOxxNoJMjDuwhDslZOqaC4SVR8qbXGSVQcrkULBIG/tPLZCyzvCcZjLYOg1SUSRLhiGZSit7UdTK92/Nz7slVNugJvNwyTR6KLLEqZBw1L0YbWcH+Wrd+wGQ3Kb+GM4//AZMw72HGPj2Fx0Qc//bDHV4Ho6vPbKArmn41J0/MpXEYf+TB/4P8M3/8od5+BeftXnlazBx712++8vHbP45CY0WoGYMuv/Fr3+DT238EZP3/oi982aOzXtJsP3Hv3SPQ1eALwK/Bs9MAJ+Fv9H47+hjDa4a6MIxDOCT3cSoAey/8+JnyPcDtyF9/wNWPFFQDIJtulhpAsnlsWRJkDauSy574MCvxf60Umjq0Lf7on2eUTboDQDMJHoHsWjtZCsAEgE+WZ+Ddp2tB6AEzT7WfKFjYMAcY24sbmOQ0hAns9Px/Gve6GUD8/E0uXQfFgLV5wyVnC8CxIQ+7d5fQDSulhlCkrwkBbDFx98D/i/H/j59zgAUo0EARgOTsgvANNDvTGzzlAO5A6ySoc4Nl4hq8aZ93qDXmYS7Ma6KBdfLhjsebWOeYybVF6AhdoVYbNt0cZVLSE4r2X6aWjDyc5QDWBhm0WHQBbqpxgJdjBaxC2UsX6Tg4IJ57groMLlj1tt3Bo+I1aWFeCfbDgx3M8sEbewjSwKd024fu20sL7k0bDXAEgGtksI3hx/0sc5p95ctsMk0k9x15tYCIwEsm4VG2RtktmDOUY4U6Y/6S8FlSgj9Wf4pQyzRQ5ESeWdH9bDMENt0Mck0A6y44X7Wx5NGsGI1Fyulu8OBanlZqqYSI1DNiglmotm4ymDUV1W3EplhAnnGSfZbIs9/y39BkYI3zYwlr3FMwSyzjHu9Z86ikt/mXXkywgIlcswwwQgLgD0rzQFmsi25xQirLuGW2kCMz697vSYgS/eoGuSy8xhnJgDCrD9nW033/T5tDLLCKPNRVxfYZMYl5vItVCq9njNdhynOMucLL7H9OtlmgNVQ68jmRSFZAvhWGGSYRbqpsO/+q4l1SDeTTIc/aIZ6sL0mmCGN+UFrHlhhMOxUTCmyxQEpRliIQJ0SFowzxcucZSqYnWuuZLGk19VoENedFVl22S0QrO5FhtmnzUOosuE/J+sgq4/2IjCq09cukmeb2qPqTWEDXCUrlxfioDOgB1ili21MIjzw1D1uDZQB/ik/S44SCuNpY5+X3Uc0S4U8pQj+k82GxkjNoQrkqznjuJcNT0/ucY/bHtbpo0iBNDUnWXQjhrs1d6p0eRNZzFjVqro+RXpiPXKD88x6srgB2t18h49/X+PJhyN6W8IApmkSUE9BBV8hYQXNYyDArr8XEp85+eI1p482SNh28pJLYeDXN5o+004CvAhUEcNO/mfN8kRJJAUCNSfz6rOSWwq0Oty0TclzxcpTyu5X/NhO+L+PAr/V9F0533ex6gRCHmv6t0JA7mOgSBHz8itiYI2AusNNny36+fnn/v06X81gFL6fYhNWm87pQxIfN4VTSNar6/HI/928n7pOG1iBPUdyPRskAJgSgQUYvenXLwlCtM8rOfUwibxWgJiuhe4fhWO0NB2z5M/H4PEaHFJnHxJm4Al/bw4DtbLfcy0UrKJz07wvr5P4L97H7pGiv+dF7P4WoFzl6cRggdzNLFaBctMkrLsjfqwvYIDv7/E/v/fnffu6R/WMHcPANl1bgYFV7N4RQw/fHwVcFJs+r8/QdK4F1H6LRIZ+jIQ9qzCcb5DIdQWyin25ww8MoHeM+7FYkFT1WpPZtTxv2hyQUhJWw1kP1lnN8Qo3o1PWyRbDLIa8QUWLJKkC2MAWBAJJbMGzhryrOtmijX2Ps9+PrpZAkFUGsVTSJSQBM1lqAtypUBTzTBN8w/+W4XqdDKPMB5ttj9YoxjrYCeBsz+VIJlHOIL8X+U71sc4KA1ToZsQXXMYG66dAMfbZJs7VYIn0se6pVfU4LwpaMGNmY0yJTdPHOqdYcmlE/ikmhBLLzJ/PficAT35pAqkUprGH+Q2pcJbkWAbGWki30Ii0sG06ybk3lorAVQboZy387NbpZ59SMBHX6aOVvQBKc5TYpMAqg+4JMx2SBclcBQrIHFoLwH3aGGOenEthJUH9Opc5w0KwBUxeYcXhODPUyDSxAHKxUMw7QKdruMiw++i1k6FOxQs7LXAT+VBXMIfkQVfye3SWCU6xRAe7sZjuYpsxlyqtMBgBAwpFEQtl2xfkkoIp5U5sSrF8xPJrocFv8znGmQkGjN0/qXiW5JMmWbjk9QUSPzB9rk7GObht9PFH/wFGo/+4r7XRT3D4H30H7sMnXgOy8E8+9xcYZd7mhbvwwre+zf/wwl/hf1f8J9Y8vA98Cf7kbx/n4//wHvzv/WefsRTCTxX/CBqweAeG78DVyUv8lZ//F3AbDnuT7O/83n9l895PwjP/NbR9zneoCMOXSeqeAtAPd/4RnPxl4DgcffMxi58Z5od//w5jv3QbGsZEIYfN84ctVGaSafgVqH0WMmVrlOgekV+mnoNlZ0JkWIpuvYUm1IMdo4VUlSzL7hOpgKK7vlCQXLUDSzpf8vtLKZUd7HCdC5zjLbboZJNCMKvku6T0xyI94XUEOJNqC8n+1ezJUwpmm56nFkxSVXbmQjKupoIJbp6bo7SxT5YKmw4o7NJBK/uIyVwhG/LnXjaYZjLmxH1M9rvqCd4KA9GCeJjbMe4MsMIbfJZR5lzelCRfn+d6jFcln2+mOMsqA5z2BGJ5fuUoUaE7rk/BmXU9FGmhEVJu+eFKbr9Ha4ByKRosctohDWsO2fxhTMpOtgLMNLP8CiueYLnAGUa4xTCLfI2fYIx5ivTQx3rMSWlvSbWx76yefnbooMelX0BI28C8JeXBpyaL/J0koda+WAOy7oztht8/tmBVGMOKp3CuMMAOHZxhgRJ5hphlnlEKFNn0OsJA3p4wi9+mk3Fm6KYaklJt/6P+MkDfJOD27N+l7HNYH+u8ycUIbFFNJ6DjKpc4y5RLTPPRFF7gDDVnKa0wGGB8jUyw1eRhawmvBn6pwTbCAtd4FQWCvcJNKmQjJbVOPbZ1mSvRVBNQt+LPZoMU17gYUk8BvbIuSTvzyRQY1hy09Owlb4Cbh7DqxSGWwtdykJWoV/pY57f5CXKUUfCMPUsHXj+V6WSLGQdJBpkPVl/GK/B92iJRVONfc7hbJ1vkKCFpvTW7G55UuxeWKmPMBwgFUHYwXzJ4C5Z7h6/ynwUQ2umw5df4CX6BLyLbnDX66abiYWEt0axXkIWOXexgNX536GCZIVIchOWLLBDEhraxoyvGSjEs7XdrIX8WI9oan6aMafOmpmrVaSZpZY99Z+sK6BcYuU0nV7gckuyvcxm8cXGNVxl2tnore+F/fZYpVhh0JvoMSkGuksXCo2Ydym13CXEtGkuq7V7hJg1avGlTpkwumI4GTOeZYIYDUrSxj9LSNf7IsmiWceR/XXJf6Db2qZHhIm+iwIwSOQZZQYxsneO6S58bWNKwPcO7AMwxxkWuBeA9yEqsewQmfy/54N88nnwIr5U/MazjMXDI/7Ri6/fH2Fq/A5pue9j7lv1/z//fdsewCg3rh3xn7/nPDq3Z74XLABz3n+n9eu03fX/Lhn3PY5LQ1NY120YJw2lamz7zwLcl7EE/a236ef6Ofbb1jv38oOk9j8GAD3+/XHJ2gD7//wP/zNGN5PiP+t8iowFky/77Dceqisl7dCxH/Ry2rdnfOjdHHSx7ar98n1rv2HHsN53Po/6exzoXd54+l7qu2o6Ou3n/de7Q++7Yudd10/v2gf1v2XsOmrb3GDh6J/me5vtJ10/nRtvV8esctzbtS+vvJ/dPHOdGcgz7AGv2u6f22393tOnfLcWn7wnt04H/v1X3xJp9Tuemebs6z9qXqu/Poab36pq03Wk6t2t2HNq3o8Xk3wdA6wbx0vVrBksPAcffbbrvgO8AR8tP3xuQXJ/m5/fQt5rOg7a5kbxP7z16JzlOPZdH79hxvvs93/NRft3lBB/HzIRlwm/+ZWlOuOxBzD1JiOQPoQSqvHe/zbukG6URDrMY/jU1LEpdDD8twgTQSNrYyTaTvOPdojLr9IVpfIkcZ3mbbbpcTlELRplYAG3s8RbneJkpppkMnzu9SuRChiAfKS2QwPyKlKQlUK/kXV/JLEWDz1JliCXmGENGvkB0U7fp5ADzTjMmXysnmjpsmijFCgTztypS8AWTsQHX6KOFBhW6GWKJn+BryL9FRYC8RYoUOMEGlvTYHYtupT+uehGt62Pd5/HouKkrKgPnJYb4Al8GjBUhXw7Jr2XqO8It1ulnkulgPy65Of0X+OdkXXatolnSW7DFWbN8w+S4+8gEP+uLKRXLSi+WbA+IIn3PQT7dVzoWeQma1KeHvBeXlrBmXWYxISVZHmLZgeux+G7tq9hHM4w707ES0mXJ7Bq0MM4MMoYXmCafSYHixrC5i2QdSqNU8SYPvglmmGaSqsvnnjawP6CVPX6Cr7FOP0r/7aaK/GrMj8oWHmJCqgNtUm6TtDcvOHR9bnEGuPbvffz50/Ta4BPwa9+Bv4ApMh7BCgOcYQHKUK1C9v8J9V/LwK+SWE4ctsXGVKGTnyr8K/jHwKvwi7lfhSJU53x+/scwOTlt7PB5rPl5BPgl4O/CgwU4eh8e/Pohk6j+PDZRfw1rer0LjECfmlnH4Nufec7kPEfgmS/Bo5+Dj33jPvc+fZjjE4/gwFgaHyve5+Grz5JpewJPCGae7uMJZoLF0I5Jx5cYQtIyux/b2XaWR44Sl7gagQ9aKNuid5kcJdbpB4gFvRblYmJJxiuQAMySQPK7fVq92ZIm7151WaockAqPNzGClbyqZoXep32TxE++XWLeyCfNvDl3eYW3WKOfDVIuK9wPwHsHSzTfoDeY2WKAiVWjxZGSZ/Uz+XkKGMh5o0KNNDPBN1myZPQ1MuzTGkEY57iJfN/M+qDMio89YCEG+5gXbbPUVuPgIsNMcTaaNkMsOSuw5r6yGa5xMRIxbW4bxYIRepAlQZaK+38dMMQS84yxT1swtVIchAm8rCCWOBU+eGJ8N2ih3xtZWsDX/FqrodHjDZS6j4urDHCK5Zgrym5DIDaJ0jY1vyjgoEY6/KNkO1D1eWGUOd5sCmvqYDdYeHu0Onhap0zOF//v/Hsbc/40vwRCAKwywDCLDLDiYLtJnmeZCFmo2GJFCrzKtZjnJj2x/q4/R5IAWhPU6p1SE4Bt/rs9SNbexl4k0quJ1sFu1JadbIev5AzjbjlRYYgl5HmsBoPM/7/G56KmFctMfmpVsshaxECLFoZZfKrRNs0kl7niKgRjsippV+ct67Vnu9ccCrCy966E/5qFVq1Q8fl4iCWUQqqxoEgPFtBhkk/5yqU4YJ1+H1e63aO0wCTTwSAUuFYl6yD8SLC9pKowpqxJyS/yZtT51jBc4RK/54CUMYsVBqfEXNnwmHKhHGDbdQ+JaGOfMjnGmY2m7qoz/qzZkqO9icnW3XT9wFiRsidorhuBACnPMsUUZznHTZY4FYCr5M575BlkhXUsxdUaIsZeERv1x7kS+3+GBVYZ8P+3BOhpQONd5PVsNgF5tz255QqTfLBQ606KSDuzSFJqU0IJmE0FC7STBuuusrAGd3esU0zKbSGG+7SSoxxrEbAadoglrnKJy1wJ26FVBplghgFWMD9CU5vItkKM+F42eIPXvIlRCWsCrUlU98uKp0SOduRn9W9+fSiA3uCPwGc7SAImxB5TsqtQGDHUdiHSzqsYw6uXhKGUwVh3x0mSOOXrlmp6XwHrskq5IoTnnv+cpv1JkbDp5D+n7RzDirx2328xkMq+PYVTSF4rhtYp/9yGH9tx/7e8w5rP9m3fTpGEUSbZqOS8YsO95/t20s/hBMZ++1GeDlOQ7+BdEhaVzq+YeJAwwXSPPO//7vf9LfnP803HXiAJc1BIRjtJGq4YcwVMonoYY5Vpew2MFdYs09U5fuTnSCxNmvZPwRW3/bi/QXLfiNkmph88LcdtTq29g0l2bpOghpLaNvwY32v6XgV7KJBDPj1i7OVJ5KSH/Ttzfrxg0tVv+HbEyBRbVfdSioRN2uLfnydJqxWL8z62+JkhYczpGO417bNYjS+QpNDqmcn7Z4/47xS6USYJMHnVv/sOSZiHAjTERq1hEu2HJCEsYm4qoOVd//2kv1/szfew53wBVr8Nj7bgd5pZmR/R18f5E8DkU6/zWsSsn2GBincka5gvmBZIg6zSwU54NHRTcdaZTYSKuldnNE/JpaYG6A2wGgVDH2vI56ZBygu4/WCLiYavInyd/uhc9rEeARMXuI58iKyD2BcdXi3eMtSjW7dGXxRtAqoU1y5pYhfbLie1rp9AQ7FOJNXMuvFyp3cnxXgUq0qJVxn3zlDIhnVVEzmtWAwjLISkWVKfIU9lFMAIBrys0RfdPKVcrTDIXcxvao9WD2mwgkXyB3XVJAfIU47i7iqXyFPCgiSuUyLn27IgjG7Mg06dVxVU07zEX+I3qbjcRjJlSRe6qXixbJJuBTeAeZO9wyTjzEYRep4bUbAKBDCjZwP71uhjnjE+z1f5OpdDMnDLC1aBh3lKwRrSPfImF7nMFcaYY8mlb0Ms8TU+xwQzAWrlKQezSBJpMwOfQ0md+7SipGgV5TLEluR7iCUqdLPMEPIpWWGQl5omloxLH1XsKyn3Juf4Al9mxUED+dDMMM4Es0w400ReYGUH5q9znkmmkV+hFlCSRdoCZ5l9WmOftulkhUEuci2YOrcY4WNRGH10X3u0W/L8N4H/I3DbWCo/Nf2v4BFkXwXmfSExQ+IrPA/XucBFrsEBzL4L44/gY9P3I5n9E5PAfSu4kQLgt4BfwSw9vgZHvwRMwGJqmBwlvvFjLzH58B0OF7Ga01UJh37Kd/gAvswX+Mv8hv3uV2Dvrx/m8J1HNg/6XF4nzT8p/AUD306+A88ZyDTLeIxvxsTaDtYwEAurAkXa2QkZq9jPO3SwSUcwjtPUglms5wdsoWws1hLr9FEmF11+SdMMyNunky126QgGt3yWslTcvmCLBi10sEYX2xHIMMxiyI8yPr5Z4E9/AEomx8r5tW5lgtmQ4ml8lt/qJO9QJufjdymAoArdYWkggPDAmym7zkY75eFHFj5h/l+XuYL86cRG73FWihi4Zlzfiny6ZKK+7ImFQywDeJp11ZnzSWNMTKcyefZpI+esYZPBGjg26snI8mL9DX7WmcuzcW172YhUzbwzfzowo/kUBwGCitGepsY1LhrA83CcLxz5sjP9x8In7CqX3DagIxiO+7TGGGmL0xKrDIaP7RUu+71mfoBqdqQ4oIci7zAZHrynWKJBC9O8xCWuksH89sS4FsOwnR2mmWSIpbh+YrhoIb9DO23ObHqJacrk2aONcWapkv2BsB8AG6uOs8e4+yPq2UlT54BUE5g/wDgzWGKx+REL7K41gQX2fNSjDgFo9YaBGm+rDMZ8pOumxoMAiHPc5CbnwvvMAC+Td0uyucwQs0wwyjzj3qxQMJlYvQOssOoghca8FAdseb0jz0D5JOvek+RS9Ugn29xiJFj7Bn4MMMk0HexSJ0M/6yi1tECRBc4wwQxt7IXVS4oDlhiKemHT7QBqZLjADW/enYi5eZpJ9yCu0EZbNDPMa9TCZWRlUqQnZPlgjW15F9t1ygQrUjW4xiVLBF5xZuYaGWosMcQco1ziaoBwg6ywzBA5SswyQY4yE8xSciD8LFPsuy3MXW9kqC6UhLpGJgC/OukA1PpYY4D9kOjrma2RiVp+kmmULq5af4BVLOivLRJhdR7Mj8+CU/pYZ4mhsEyQ7yMQIK58tOW3LCDYQs7WSHFAP+tMcZazTKGACyV35ymzwiBneTua8e0+7gu4rpPmq/xnoSaSwmaQlZDLijgggE3PJVhzzPy7B1injz7Wkb+zMbGHg3mt4LoSZmv0Ob6Ggkg6nGbRyn54n49wi33aUCBH2efM79dT9MOR3HZiC3eFP8j3rEYSOFD099xv+rmAiNNNPzvhf94jSdSU1HIcY7+1Y4CQUkEFvnwKAyZk6H+SxAvvRRJgqTmUQL5r3ytDlT+ZvO8kg82RAG2j/r0nMYBD8kLgg78Gz/xj309JYPH9kE9blgQUeYOkwDxGQg87TeKLJiCnl0RuKtntyaZzMt90nM3AXIPEQ07g1wt+Xp8nSa/VOZHZzGmeBjoFbuqaFTDg7DBJuq8ATtHzcliR/Q3/zmNYwIZ83R767yFJy72HgXKPSMBb+SDqXqmRAIoZEvnx8yRpvkf8/Dz09x33Y32BxONRgKikzr0k94L843QtBbTp/5LL/iiJvHWBBJRtAS6TpCo3/DgFDr6CSWUnSCTPNd+PkyS+jN9sOpYjvs2q//8NbFEzSuJjKSl0xo+9n8RjUXKjI9jzdNLfL1nyqO+LJMtl7Pk66ddQYOGL/vvn/dju+M+Lfn5nsIXQ7/r+/QAAeoPc4QY/wRhzTDCLUr8kUVAxtk6/dzR3w6fDWEipWKCAMaXs/X0uozHI6utcDj85MyQ+CGaUJImSKEES7S7WARBy0ipZzNPMDNblM6KO3ZJ3EF/xxYDR81swl4NGLJ4kgxAzylhJXV6gGCi25UyrHOa9oolWnUmBbFpwFihyyzu5WqwaIFYK+a4KpSKFYFJsYal6AjgPMKlLoWnxA4TMwrDoLDIFlzRNxa/COFqx4IZxL6xavSiSXFgFVIt3piXVUFeumWHR6YwVHVfZZXOLntYmj5OKMwOVDiY5hhLPDDhdJ02NWSYiqKPHAcwSOSaYYY9WlMwqw+0+1rjGq4wx3yTh6gt/L8DlbYs0aGGJU3Gt6w6ertPPgIPSzfea5LI10vSzFvfORa55kuepeCZ0DjrZ5hw32aYzQNxdZ/4JiJT0DHBJxgxv8UrI4XRdB1lljzaGWGaKs2w7yNF8fkrkSFOL7q9k5ePMkqHGASkGvLAWgJxxcKCTrfA/kWdZwxmkZ5ly1momZN01Msy5j+CjJpbrR/X1DE/4k793nK72e7R+yRhvKRoWYvE28MtAEX6af2bz/zzhG9zLXWPZHsD4y/DN0R9miSH+ym/9CwMCR4FP273J2h14BLfW4Myvwx/9i5P88C/dsXm8xRbM/6tf/32+9HN/nvUjn+SFwrfhMPzKZ/4qv/Tr/9/EkuLvw9989Ve49ZPwsZPw4C60NBp84xdeMpnS/UdwBzp+bCc8FekkGm+t7KOU21UGYoFuMtv9aFg0sLTljEtZ5Um3ymD4f+q5EYs7RYOLvBkpomKi6Duak63F3FWToeKMUclc1TTIuZ+Zggtk3P5FfoHP8dvxTBTYjO/V8ahpIrsEhWBI9j/Mbeqko3Ej2b/kqhoHtaBPUyNLhUH355IvaNoXlgnLLh2McEgko0oKtePNxrOnBVY3FeRvZNdqL551+YgqkVqehGCLy1MsBZtphQFfSA4g1zqxcTPUo1kmSfRrvB4JprJR0JwhRmGBTcY99CTnMkA1qPaPGCApKwz55IF5d6Yxb1sBK+Z92sKeLxQHXNbVyj6lRh5SBrKoCVEiR5ECg6z4+LsVbKB1X9irWSRwVr6F5vNnPmnTTIatRI10WIzsOECddgBn1xmgYJK6Kw8v8wqv/zuONH82XkqNfolp5C+5wJmQQOoZ2KONd5jkgJQDD9kAQeTXesLZs2D1meZj1YsWXJJnkmlWGAhQoY81bnCBQVZZ9hpnm86oGcVwUnO0hUZYkOhelzxdnrqrDJKjxBDLbNMVzGRZhMjKQix1Y50mz29zk1f+bWLXlskHU1ip36oBNAZ3U+Gug/vap0WGGWcmmqCq5WQZI09pAdG9bDDiQW4KLlhkOKTIpqJZYoZxB7fPsE9bMAebA4N26IiarUELeT++NfoYZDXqfCCYxCMscIXL1MlEDadGvySbqwzEsVziKkCwh218NJ9qnUdLAbeE3qEmwKuPNap0s89esK273V9YfsZ2D7VGA1XAlKkw9qJZvU2nA11rHvnSEeoRMRo1LkoKrHpatjmDrIRqxgIA+1hhkM/xNSSjVi1o4681pb7MF7yJtRljVpXuYJzf9XltmNvs0B7MYykl2vwcm++rMeCLFKLpYHOmNThe4WbMuyVy1Eiz4izbIh3h27hDO3UyTDAT6iWzOajHObTvtTXBm1wMWwwRM17kbX7l+xhPPpxQjEMYGKHgA4EYn8MW+SMkgFENA0LuYAyteZJ0UIUn3Paft5AABBMYYCLQRQEHD5vec5/E0+weSdpmFQscEFhTJdFv3sWABwVkyEvuM/4zpd4qjfZTJGEUCyRg1AFWoD4CUvCM/PmKvq93/d9i0wlYKsIHIySg3Yb/u0HCSlsgYaIJtCmQMMxeJgGV3iYB+ARwibFW9XMwg4FdGRK2mkAggZvySuslCemAxANOQJ0CEOT9VvPP6XwKsBOg1o512L+FecDVSHz3HmL3xDE/zhd8P1tIWIIZkvtL/9c1q5EAWvLiE2D3PHYf7pKEQMg7ruD7O+/H+KLvo4DF4yRMN4FYx77nnCrN9wSJFx9+Lh81Hefb2D1wnySUYxMDTQUeH8HuzwJJQq3CRFqwe+Qkdn9rPyYxxt2av1/gbXPoSLbpHE345+ZJfP90zhbAm332u+ZwDLH9PkMCUj/v2/w9EsB4DXtWsr7NHfg+bQH+zL8q5KI7PeKsvCwVaj7Zpx2wKlDkIm8yyAqWrmXAwgIjzDHqAF6OBUYiin2EW2zQywIjVOkOankn21FkmT+EeeBIuqEupoCaA1IBDFnRb5JLLezA0qnSWPptH2uYj5kZDUt2KjbYjjNAVBTMMMEyQ4wxTy93MSP4LCfYoI199mgNg98VBkPmYcBaJlh02rbMccEWIP2s0+7gj3ySZMLb6gwLSbZUNIz5A25JsLdCiiYQ5wwLFNikky36WKOT7WCSTDId4ClYjH3dmSurDDxlGJynxGWuUKDIFp3MMcoAq1zlkoNBtWARapsqPgoUWWGQOUbpY42zTHlRskW/+6ekOIgFEVhBmvP7R8WnuqlKMV72LvU8YyENMMP8tZDeNUjFsba67EWG2Re5xj5t0ZU32ZaZ/YtF1MZeFMopDhhlLhZ7zZJYeWqlqTHIanSVC86GAVsw5ihxjpvknOkIMMZcMCNNArblzLkL4ZkiRivIg6UnFsEZzND+EldDXqZQkSWG4hy3scc8o5TIM8sEHexyQMo74ibvvsolWki8/8R6smAVSxCVB02fL8Ikrdqg9weClXLx8e8D0HYMisePwxFLQCYPpXexOS0Px//HRzZnTWNz72cMqBtg1X7+yzZOTDNpjayfxOqeNXsW5eV65jJwBH6bz9l7fN7NUIv5fYYJ2+ZvWZMkvGRniPn2AcB9OHoSWncf86v8orGp7wPfIO7HNDVoQPlIFzXSMW6I3bXkiZPm22MySPkNmQ+cLdSXOBXA3h6tKLCl7OwQ+Z5pQSUmr0zFm/2qFhlG5uHNrDeFxMwzyhp99FBkmVOkXWqqxkWLA4eSqPe7tEzerHbc9fBelfx0h/YYl0wm3x7smCv8OFOcZYCVYISIPW6sbXtexUaUr5D8REdYCH86fX/ZF1U5Z6/rpURQSewEhJ1mMd5njOoMm1jQhBjwSwxRJYuS5t/kYkihdF6BkEFrgfYT/HY0EyrOBG/4eKH0d+2n2NA6b2AL56tccmagjZkFiig5UTJt1RM10r6QtOWsmlSbFFAStzz3BOTUSZNNVcKrzYKA+lE4hgJGBFBkPbV0iKVYANsiNR/3sMYz3R8CTOW/ao2zNrJUwyKj3fdllQFWGGD0yDwvOFPyo/5qZ4d2Z2gVKbBDB2PMRWNPjPJJpjnLFBe4EeDuroNsqh13sDAdgV2LDLNBLxW6nfVvc1Ea80u8zJVgp8oCRnPvmhv9C2iSKgNAfnvjHs5QIs8tRpqsMGxMW2aIaSaxYJ79uPck3Za6ZINeRriFfPaMuWcNtRUGQtIo0E6KDfk0KplW+7bEKeQfKruYbqqMM8OmPxtKqa6T9nk9F+OtgLgFRoJRr5dq6hQHVPyeVjaqaqgdOniHSdbpo+LSYtXHRXqQNFQNfSWsrns9UG8a587xFvIhld2C6os0dU6xFHJk/X6brgDRgLi35Onc7g2ZHTpc3r7MflPt33Dwa4XBmJO6MMm1AkMqvh9qappn6Wo0Z9LUeIPPctfvv+ucDyWPEl2XOOXsv37mGGWQVc7ydgCQgPNIrcEtOxfzMLwV9+osExQpfE8AVadfyV4fWyw5WBZHYrbLC9CYkwbo6u9lhig5g7xKd3y3CAbDLFIhS96vVRv71MmwwJlgwGtd1pwK3O6fBZ5a0zQHzTXLiYv0sObWGv+214cD6PWSyD8VGKE0z9sYICBJhJhvR/29n8bAggOsyGonAVxksv9Z/71kmD9GAiBV/b05kmTVZoDqZUy+uIuBC6cxoKGGASonSFhmJ3y/jmGAk0CRTRJGkwAcMJBQgRhiVOHvv03CdNN+png68MIZdM/c9p9NYGDRHay4FPD3wM/vMT+GNf+TJwkhoGm7+luyz3YSIKdGAgyJZZjDQJxRv5bumRbyzRzG4mtghXPD/y+p6NskkuhmxprYlw/9fDRIkohzWGGuc1Twv2u+vU2/Tt8iCS8RIIyfJ33fcQxQE/uxl4SFqHO44Pu7SSKlFfhYbjrHG1g6q4DKHAkbDZLk5eP+O8mYRzAAslmC+qp/Ltf0PdoGfp7eI5FIH/jx5kgSb18kuT9zwE+RMAjx72qQSLhP+s/EriuTAJva72ag8hEJm1DPb5bkGZSsWOEgYnB+iyT8RucGEjZhBnt+dY5b/bt+AF7mr7XFEqcAnKnVHcXBKoPMMMEEM2zQG/JEATyaDGTemsXS9K5znqrLk1YYcGmAFfky3B1mkXlG2XPQrk46Fn/yZFFQRBt7VOgO9oS6lPKOU8G1RSdKpetjLTqOKrjkAaXiqM9pmGIGWnf/gBJ57npRV6WbVvYCVBM7K0+JMeYYYIXf5KeZYSLMctXdVequvJb07yIF2tmJczjk5tLGSqkFoATGbOh3RptA0DUHX+oOKGZd9rxDB3fpje5eG/ukaHCFywFEiY1ni2ZbDB6Qcm8ak1a1shesBqWuzjFKkR4qdLNLhzMRt3iFm3Swywzj0XmtkY4kNvnGWEplPopFSbokWZ5hwn2tisgXsd8Xbdt+XW9yLlK4VNRrkWDd+y4vYYejk3uGBTKYYbwS9sCM2Nfcy6mDHTLUPE3NCm0V3kAsGFrZi4InYfhZwS4gQwyjVofTJAcrk49CWCxXMeT2aUPBFmKYAsGwUypw8wJJLAX5RckYfptOhljmOuefAg/ERFQBLWBQYS12/vPIc08STEs2/O6/76HnT90rtWvniH5Yo4/Hf49glOX/Oja/vIfNnS/CB1Uo+Tw5zCIj92/DbXj42Wdp8+fnjz59Ej4NDy89Cw/hBudtDnwb+Bl4/A/t848msbnor0EPRfgpC8Mp0mP11bzLdV8G7sLaN4C/Cb/7M5/mRxcItcShb8FFrvHJn38favDBVfj4iCWZt9CAI/CYQ2QcIDZWSl8wQ6Y4S4OWYFdnqDHEMhYI0U2GWjRZtBjR4ri5YdHJdrB3JnmH077AUKNolPl4/u2ZseRTAc0GEKUdjjYLhFMs0+bAuDyVtNhQwipI4tvprOUtZhhH4RLyhepgN0BsAxQtcXrAQXtbBG8Gs0fP3te5zG2GYwyrkmUXs5XQMyiWSR/rtNAIJoykTwWKznBYceZIuwPoXd5cM/nuICvIB0pgwR5t3PK8WbHVDdTfj2CmurPONBbIKqNKN3XSzDIeAJYM3FcYZIw55G9ri+HE40n78CrX6PJGUB9r0RTboDeOR/PEAiMhAetj/anGTgc7nGKZA79Wtr318LJN0aDAZtQlnWyH99coc7SyH8DMOv0oSGCPNn7z4U9TpCfY0AKX5VN7iasUKEYQyCoDXOdCeI+2sUfNZZLvMMl1zmPKgmosen8QXkptl8eWmrJZqpjHXSfzfq3B0jmldlAddouRAPMs3KsbIOqPdfoc/Ctj3sQn6GDXAxV2GWHhKcl7G3vsYv57YtGu0RdzpiSiZW9U10mzzBBFCliCtIE3o8zTyRZnWKCDHUaZj6aAwL9hFrnE1QBLVhigRC6eQwUQmK/vCm3sM8EMLTR4m7OAgf4b9HpS7y3kh6aQLUnm29gPZpfmjoaf/wKbTDDDPq3REF9ghA16ucm5eJZX3M/YfI23gp0ooFtjnwBusQqtIWr+dGDs4RylAMHk/SYGsRreHewib+ZZJqiR4etcDonyGffqXKefPWdA9rGGwjuUPC7pcpFCgEgCmBIP7gzm47kT4W69bIRMFhLmJxBgLBDs8BFusUcbZ5zZ2O1MRqllAL/PDljgTIwRepkc3BQ1lgx7Imr0ERZYYcC1L/Vo4opZbb6O5rmt86k5RS/NY2XynGUqGmVih48yHz6sFppSD2ajsf3Mu2+GcR/H91mjPxr38lU0hvJL9LLhoSYW+qExvtXZ2hobFSa05wzPUeailjzjDP3v5/XhAHrfxkA6yT/1ekSS1JrHALMSiYfdbQx8mCBhWUkiqPTNMmZgLF+1GRIwLkvCkJNnm5hH7/n7voUBOfLs+ybmQycWl0APMQTl5v8eBo6IYSU58UMSACpFIkEtkDCzXiAB7vDf/aj/eRnufe6wHeddP351ht8kAX3keQaJ/9+Bf6bs3yE/OB2/gKoWDBCa9PP/AgasvU3Cwmvxn5VJpMW9JNLpHAmAmPPzeBwDqU5iAFCehCn3yLfXizG25DEnMO4wCaNOLLYTfj1G/bjwbR/z7bxOwt4rk0iABWA9xO6nh35uT2PMMYFZd30/Hvm5lNzzNCZz7fdjEAPvhH//aNP5EWgov0BtW3+L9Vb24xYw9wIG1N33n0v2POqfmWg6v3dI2J4F7J7IYMD1Pd+O2Kb3SO5rPTNg95AYhJKUZ0gSOgQoF/w7F/x7BKTLN0/g5Wn/rntN57Tsx/FbTef1mB/TDAkTdJbkXu3nacD+B+ClcAUlVanD3sk27zBJB5Z6qAXcICvRBa14d02ph8bGqsQkV8LSv36cK8GOWGCEIgUWGWaOUbZciqCukSLUrUOZYYMTKG21n7WQU5gkwnwgGrQ48Fdzb4y9KBKs4EwSx5oNgtfoQ/LXPVrD2H2BM01FpBl897Puvhc1n6YNcCuRp4UGp1gKxpOBfWWyVFlkOArVAVbpY40+1hlkhTJ539JeyEN0LTRJK9BBBYo6spZ8NuCsiy462EVpVv1NEqMSOUrk6GOdRV+IpqmTpRrA0A7tKEBjjHnS1HiFm7H/mxRQSETVF/WSlEhese6m8pLd9bIRTAiBgzI+FyNPHWNdY4GlljJr0oppJqmQpeT3zyjzzDPGHGOx8NIiNutS7k5n0aj41b0yzSSSvElu2kIjJESS4cojT+ylTZIEzTaXKd7yBXXdZT47dHCdCyGfsGLzFB3sBKNQXc5muUyWahTWtt/l8IHR/zuw0BOTBR1wiqWQPyz4gqmDHUZYCLZet8sBzR/RurTqsksSteaguSQqIyywxKmnimHJDXe+T5+UP8uvd7vs2Lls/pnzx15klQFr5v0yPHarmv/XxP+Wb19+jmdykH8ZKBi4fMiboXOZ0WB4LHCGBycPUcwU+OAXzP+MF2DN5+Cbx/4Ttulk9cjz3Bs9zNrvQaZW5w9fPk0nW+Qp2/z139h3v/8X2+FF6C/AB8/DP+Uv86UX/7zNg68COQP+HnwJ6IdnWuDxBrH4bZyBe3Qx46BOJ9v/s+aBWNjNoHLCzmoLdpwYbQoiyFKJsRcMQFLS922Xg4k9oIXJGn0Yw2szFmkCvnKU3QeuRgtJGrfAoxoZbnKODXpp96aSwnPUvKiT4RVuMsiKy9pm3Q+wRp00A6xSdj+pV3kTGc+LdXGJqyg5t8eZ08Z4NhavGG9qcolx/Rv8ZWaYIE09vMCUpmpNoiy3GQ5JbIMWuqkEs0R+ewoJ0KIOjJ1h5ukGoJbIY+bkO86wT8aUDnaRtE2BAKdYClBqzxlpY8wxwwQ3OB9suT7WeZ3XWGDEF6J1VhmkRsa98fapuL+WNeH6vY6ox70lb0MFW+07603MaJvrW4Md2s5OpBQXKJKhzmWuxP8tsdYkwGJ/r7tVQj9r5CgxfmQ2moJFCm51scs4s6Ro0ONspX0HlHqxJE0dxxRnWXI2aB/rTPJOzCdmzfD9MVL+rL8ek2GeMeSRuU4fW3SyygCS4KoZZIElg8hLOYP57FXdN1Ys19/mJ1ijjwlmGGIp7mmTKhrzdZ5Rb04duPVDOuYkeVhuYl6UOcrhk9lCI8abHTqYc9Y6mCWC/b0R39ONhYDJasQaWCsB7kx7/XuDC9E4lGxVjYubnEPex8ZctKaCGFim4OjylNpy1BWa0y1IK2kGCDRTjdnHOn2scUCKaSYDGJMXnHlivhxMQikg9GzK/wxAFioTntrc7KFnPs/W9FAQSJGCP/vLdLJNmVyAnnb+TLr7Bp+NejLjknrNK5acO80CIyhVVo1wa/b2hxWLAuwEzIKBiPIy3ceCzcTiXWIoGL4GeM0h2W2Vbl5impkmSxfVcUo2nmGCXjYYYx5ZDIgNJ+BrkncosBnpu/B0qIU9BxlvsGRchmuedBbCs4mx2i0QBfDWms2Jay7xFhNSoRYCDbVWGGEhmI/GwMwywEqE2b3FK6QdkF2nH/MRrCH/VD0XA6zQxzpjzFuD0I+nSjfveODdpl/3VQaeek52aI/vaJAKX0U13P5trw8H0HuMgSoPMFbOQ8z7zNPK2MAAMilMFAAgCarCABTwIBbXL5BIF++QSEvFRhLTqx8DKBTUILCrQCI7FMPvXf+/JJeSlz7w3wlQfJ7Ew+yYf/4OiUwzhwFAAlSqJJLNd0mkpgKJHmES0zU4/nuPDCi53PR5/f2QBBRN+R+BTfpOfW+OhPl43/dRxyQg6ph9ZwRCCKxbaNo+fvwK/xAYepsEzHxEAn4KGNS5KmDHU2q6Xg+b/igY5RgJALiGyWse+PeINSbPOwFXkg3fa9oHnWudpywGKH0TAwEbJNevQMJCPPDjFetMARFHSGTDR33b9/x6KRziHom/ncBOgb0Cwu77vn3Kj+sOieRXHn+5pvd+0/+vc6ZrKIbrYRLWoeStDzGw81HT+29/z3Z13sewewUST8I3SEJPXvR9Peqfa/bcw8/VXf9ZPwk7UlJh+Ql+keQ66xoKaK+SALDal4/461lMYrPMKZdLtdBD0QsEAwgEoii2XZJKFeQd7EY3UAa/AjLkc/EabzDICqPMc5apYB6JAdbuoJokR/L0Ggqz68no7I0yzzluUsM8jxrOfphjjFb2kV+G/E52aPei0EAJ87yrIvadsbMMFLL9XvHO6omQqYIVg6sMotRSSZKXGGKQVbq8yNqhg6/xufClMubCXYoUovhMU/cFsfkHSaqwwmAwvsTwkx9hG/sB3txiJBbcWrx8L5Ojj/VIC9YiVfIKSZN62XDT9SyLDLPipuQl90nRolIMmEmmSVOnhyI5ynGtBDR2Y+mqmw7aTvEySlE1iV5b+C7NMO6dbmPkWNHRwgoDdLATMuRBZ3NqAdvGHpf5OkqO1LFX6WaCWeRxKNkDGKCxwEgU8Dt0xOK/QpY6Ga5yiSpZZpjgCj+OpH/GTso6eFgLUCFF4ykph5k7twT7APDzlwugV8WTrrNJXpcCPFUyrXno1MI7cZAVT7/rdibP3ZBxq3uapcok03yBL7PIMPOMBljXyXZI13vZ4Iv8Al3OaJRUUc/1Lh0BHiqJuZnp91F93eeYMeguEzKj1/ks/8PkX+H9k+0sHjsJP4UX5/2m2PhZuDdxmD1a+d3Cp+HTJj0tkWeBETLU2Ep1ssQprh7/tD0nl6D/x4B+a3qkaLDCINt00v/3oJLJ8gavBdjBp+BO/yeQfcHDS8/CL8Lbx38EMFY1LwN/Hd7vN3D+6Bex+fKn4NA1G0tqZDhIP8sTnnV28no8O6d8ca1ghVb2glUls+5VZyBc4DpdvmATMK7FbpczBsQWFptO1gSrDPIOk9zFQiGAYPNlqQaAoEV1lgrnuBk+UzIFb2abaPFXYJNRXyg2PxeyWFAyboHNpxZ2wFMLRclsxSaukQkG+p4zaY211OrMhnYf043NmKXKRa4Fk9cMC0wupudc8xMQTBwBc1lfbEsOKxnyKV+sjzMTC8lR5lH6YxfbXOVSeCZZsqyNMVW6kd+e2Jli+ZXdly7nLA410GqkucTVp4J1xAqcZ5QlTsXcJKmfrBDkpyUgUo2SLFWWPWRIfnxiESmIQzWDQCMFKeQocZE3AYJxqrlSgSUCflVbpKkx4iwsMfXETNX5UD2gpuUwiz7/DAT4c4MLwTz9fhkpf9ZfVu+Z5YZ8xMTOzTuQduBNTTXvnk4m7Q+AyxqlI5z2OmeJIUruN6f6op91FHIB1hCo0O0/rzuYdeDpy2PMM0qdNL/AFwG7B+YZpZU99/OzJnOPA03GoKpzk1cCRFZDYsibZAU22aaT13idXcxXV36/3T7P61UnTR/rDhqfivuo01uXdh/W+AL/HHkHD7Ia83DJwSg1zEZYAGCGcaZ42VuxpWiqmi2CPXNZKqw5S/kV3gpgZZrJaDCCWUb0uR/wJNMMsEJrUx0p38kGKbqpBEvP6vK7ZKnQyRYHPnYpcVoS2RI5BhzY6WT7KS9eqQq26eQyV9xjehNI2GkpDtjEQn1UB+/TSp10NIJ7XBFjrWdrFtfIhJR2iGW3H+hmk4Ifb2uMBWqSt7IfIFY/a1zguqd7p7nmKdfyk7ba0fw5pcKxJlPJ7+2+mLM130mhU6QnGmiymtijlfNcZ4VBVhlgg17OcwPA5wxLGe/2cUiWCSVnKMpiSPOiarc914KoPs5SYZLpYIWPMkcHu/wmP+3J5csx5lU9pNCaUelgOtbIxNpBzf9591nTvJujxJqP/Xe8Tv+3vT4cQO8wtljvhyY2JX6fGXjQwAADsZzEThJIJ/bWBok/213/mcb6af/8axhD6U7TtgTuHMPYWvp3c3qoghxo+vcxjFF0HAMC8f1S4MZDkpRV+Zsdw4CK0xh4d48kJVQegvMkIRZiErb4z2/7MZVJZKvHSXzmJOdUsIH86xok3nk6JqWmCryaJPH90z7Jy+82CYg65tsUuLYLLJP4uEmKXCOR/d4jAcVKJGy/Bd+WQKxmOWqKBGDaJQF9TvJ0iIOSg7XvOj8HfmxKzhWgpn2THFX+b59u+j4BuXnflphxAszu+d8P/Jw8bHrvC34OJvzYFCRxF7tf7pDc17ofvkkCVGeaPiep6qskkumibz/jnz3RdD4VBiOWpxiVYjk+78epa91Lwvh7lyQpUMw+se6qJMy5+yTswhP+2UckwO59ktCReyQJuJ/iaRAbEoC8jEmxNR485GkJ9A/Ia5EfQn408kaYZwzzz9kLGj/YYG4+eWeYY4wGLch/p4iFRGgSU5BFhW7mGKXqzAF5Y8j7R7IlkwPZQtI6XD3RAetlg4tc4xqvkqYWEybAOW5S964WWJE1xdnozHZ7WMUyQxHeIGaf/MeUiKhFVIVsAJdiz9kCzxZK8pLa9sAAdZ8FOFpi2BYD7qW3TRdll7AtcYoFRsIIWGmRYgwaC9KM1pUKLKaYFjqiunex/VRnuECRCQ9HEACnTqMAqDk3aZacNOdMQqVb7scC6YB9Wplkmkmmo4jKU2KG8TBMX2Egio99WsM3RVIq84SpRbe7TjpAIy3I5KkomUmZfPh7STYD+GIs59vJBMgm0MF8mnpoYy9CUgRkXOQaPRQD5MtQY4w5ihSYZ4xpJhlkJe6PCWZokGLBA04sua+VHOUABCUZMiC1i/PcQD5AddKcYINKE0CnQm2dvvAikq+QCmoBjDNMRKrlASlam67zPq2UybPMULA6y+QCjCyR54AU48wCBFunm2rIouVp1ckWa/T5gn3fJTZ1xpmhTD7809qdiflRft3nGDUy3Bs9jAylBVSJCXZv4jDhtXQZmLSFq0IRuGQgnUDqW4xwm2EatCB/uYe5Z+En4Ru5l9ilI56hWSb47n95zI3Z68Ga5VViobHKAKmDJ/ApQnKzRxtchju5T4Tn0h/8zI/w/ovt8Bfhtyb+l1ioTytPnn02vDDFlM5SiXFbflKrDGKyRwPdUjQ4yxR1F+Ka91Ml5GFiQcwx5kBgJcbo61wgS4VXuYZZJJSR2bieDZ0fJTGbUX1rjF+rTYsGGavv0RoNoX3aGGIpfDTFhrjJOU6xhNJa2zzZcItOhlgK9osWRjJ4t2CHngCjxBpTMEWaOrNMUKXbJW7bsX/NbHQbH9pjMbxOX7BfzzJFP+sxxiigSXYBag4ZqGXJ4FW6yVOO90heO88o7ewwwSzdVIMBDAkbWaCCFs+9bLDizarXeY0q3dEkyFOihQa7dARTR3JLNTokTZTJfh4LmRIYKOArRykSGjvZdol3mqtcCilghhoXuEGGOlt0Ms1LEUKk+fmMs0zmGUVeY5JGfpkvIMmZ9i9HOcANARzyT1Vzr7kukQekGk7yihP7VJLiT/AnH8r486ftZaFfdRS+coEb0WwTI77DowUU7CKQWGBZibyDzmVa2WOTAmfcfqXusnBJ0NXwE9NU/rICbyaZDvZXgSLjzPh9mEhyxUY7gfzmMkjBMcgqCujKY8mpQyzRyRYLjCDfOgG/Yv8pnGuJIW65wkTs0BQHlMnF+wRWilkvpnYG85sW4C0VjMaDKt0UKDLEEmdcZgxW81jdnWeQVeYZo0I2/O3ETj7LFEA858b62yJFI3xFixQ8sGsPBTWoCSzlyhJDrsiwQK4hlslQR4FnaqirodFNNZQA84zGGK51gTEFs5TJhfpH3yvljFhfqoe3vLHdFU1NA5FrZNj1WtvUEsbsy2C+yFqDlL3BIK9rqWCMfb3rPzNWmQWc7IfvdpZqAPpaB5XIs8pgWFMUKYQUXCnOo8xFDdrigCYQCp28yxkFCJ9iiVUGGGQF82c9EWOTzk+BYrC1D0hxnfMscSpIAEri3qYLU6NsUSeDAn1WGWSTAlOcdQm7rXfUlFYtbGsq20dLwD2IRpJSjS2IaTMaYHUsTd1UMU++r/Hkw0m5PSBJIpVP3m1scf81DLSrYiCcDP4fYt54d7HFf5VErlggAQ0UTCEZ50MMtNj130m6OY8BH5IVygdP2/kWBpKIbadAjBH/dxkDl94lYWuJCZbDAKi3MVbTPAlrTewzgTaQpMUKPPwmyZmXL13Zj/95EjnlBgZ+yHdPjKZ5EiAvTwLQ3CbxXzvinxdwqeP8CgaG/ah/fhwDpJpZWJ/zn236/4tN37FBArbqPLzbdM4f+bbnfB8f+Oc3/FydwAA/SYPFNNS5HfVzMOP7J1n2AYlM8zRJMIOOreHfU/LPK3RFwNwoSZrtXb8Wd3wbm37eMn4s8oR7RAL6idUoaW3Gt3MaA6zm/fvlHSmA8TaJb2DBt/Wuv1d/Q+KZKNmqwGdJVO/5ORVYW/W/38OYg0dIALkNEvCyioG1L2JsRcmdqyTA8H0MEJz1/VnwbX2axCtPbD/8uD/VtO9i4D0gYVGeIAmlOYLdR2K4TmOthB+QUIwah+jzk6UOtKR5oqPPMUqWCiNsRvhFB7tkqIUPXIEip1iKruwGvZxiiSGW3GFk0D1EsgGSyVNHiVLqzHZTjLS7bTrdk6NOgU3K5CO1VGmmSkzToghAfhuWvld2adAq+7SiNCf5ugyx1JRuaGbCClBoi6WjSQ2GWGaBkfCjWHePClsUdgI0gZw9Lj3tjg5mP+sMsMq6iylk8it2ZBfbAfp0skWJPK9yLRhwJXKsMshlrjgQc8As4wBs0ckZN/a1kIgB1uhDXh/jzEShIOnKeoA5eyG76qFIgxa2XKagbreSX0+wwVu8whhzyH9khFsoQVZSNy3+slRYZRAlV0pmp8637j2BoaeciWasiywn2AvwQgCnrp06l1kqbJELgFPdfnmBSF6h1Ns+1r3rXIl7Rj48kjovcIYJZkLeZQmKSYJf82Jakhl16CXjMW+ckgOGq7F4WfHzUaDIASYNlsegvIjMh2U/WJ3y8lE687iDjgLv5HllhV6/m1a3xGJWC1ULuLkWIMQiw0ieLYA9TS0WY2JGfNRfT3iW/+nvTrPGUbYps8cU9znmAPP7PMsH/A7HWOB32GCbahU+aIPV39ljhVla2WOjAn9w6zZbHGePf8Ih3mOFXRqkeMK3eZ91/ibHyK1vsfJ3S2xRo8omv8cj5nif3yfFn/CICn/EHm0c4jEztPJt3uebvMkef8wf005XdZc/+NdtbPE/scw26zuwPHeIGu/zLf4136HGJ4Gjj2D+2p/wbf6AeT7gRY7yLE+CPQ2wT6svxG5TJkers0aL9FBgE6U6y7tplnH6WKdGmmkmyVPi1aYgGmM2WBFZpZshlmihEUxha7q8TMaffaWWS8Ke88WjZKFizgkQHWaROUY5yxSDLpnVYn6G8WBRZajxGq/zBp/lLFP+7LVGsydPib9W+secz1/3BXF3sGyyVJjiLMsMcYqlYF2aFGol2DVLnMJ8QKvkKAV4vkFvLHwbtLDKAK3sIT9XY+JVgkl9k3MBTjYwm4K6MwFnmeA815Ev7P+fvP+PjTs/8zyxV3exWWKJZZEqdpVZY2pIk012c5sCeeQ1HfZSlrYFC5DRhr3nuU7msIs7ZIALskiCAwIEh/yVPwIkQIAkB9wiC2ywwezd7DXWdx60YwEy1CeNdM0dasmQJ3rYJps0aXFcdFWzxOomVdVVYrnzx/O8n29pA+wYyPSMt12AoF+sqm996/v9fJ7n/bx/ZGhEoytvMw0vFO6zxAJTPMLCC0x6te0sIu2HZqrfTzfbzLHqu9yQgy8Nev2cay8E4jO+w7tsMR5rVZsuLIQgz4dM8i1us88IKc7Ct7RGP9tMMMsqbVJ8m1tUyVmYDBYAVaIYTB6lHEuCqBAApXh2suvku3jsQISAHcnk1CxvMBW+vGL8yJNLgKoYlRnqIccuchhMphYvfdFL0W/F42Py4cWrQdk8DyNpWnLRAuWQZSsVWYwqMWUfsMgVHnBEjkFKwegUUG3+ad3Bjs3QoAkBcIttOUjipTdAlQ0uU6MvVCXzLIeaQdYwY+xESIekqVlOKTHIGjNM8Yg9hslRpUl3sA9N6m7X7xrTMWBTnTrqtikKDxnwgbBYqVJKiBGqROWGs2SVWGqy3qtc5a4DdgPPnd85ViNIJMtJeAhOsRH3v2oWgWOSjaZpBVP4fd7iD/mTWM97OQl/O32uLcbDf1CArsIzhjjgDte5wW3ylJHNwCg7bDCFBfyYwmXX2ZAaCB07GNimy7uBXVaYC9Au7VJSKXdkl3JELt6rTYo9RmLwmncZuAaSGkhJNWRswTP2GWGLcRZYIu11jWp0sP1nlbkARc051tQ6GjwpHFBpsre5gcJzDp2depW7UesXKIcHpUmRm3zAAvMsk6bFGtMMUGWHMUbYY4pH0U+MsE+TNPdZZJASI+xzRI7LbDCIhYsoddcANxugDFClRJGG7yn7DEdtKc/LYfYY8kFzlw9f1AMArDFNP+adLK/HEx++66FglH2GXS79m9WGXwxDr8HzoQVlEmaRAgvEKOtkq62R+OL1+vOUcDpNEpIhQEKyzBIGhkmGWMbSUCUnLfmxQBIUIGBQryPmHiThFyUSEE7Mv2mSZNeK/5IHoMBC+ZJJGimpsVhxe/5v0xiA2CkZ3iCRlK6TBBIo9OACBs7MYQCKpMkV4L/HwKkD//XYz+U5/3wHJH6Ep/77OAlj7ysYEHOOBMg78HMntpqOQ9LmJyQy0IskHnRt//OI/1kSUIV7fMv/XyEWXyeRrdJxXpVa+/dJmHgjGNgEScqrrpVXMCBr3V9XTEeFmXSRMPn2/LkChv+AhHWYJkkuFoOviIFzkiVLGgvGjhOj7kN/rlidVRKmoz7XBX9tsQ9LWCrsR/5zAs8+IgFjz5GEe4jJBwnbdc/Psaf9xXX9GAv2EMvyQz/fug86/QflmygAt4JdawK1u0jCTOQjWPDjHyRhQopl+9SPVSw9sWi/RuJh+CV/fI1fBu3/BrdDxmQFVCs8kUTFF7W7j+OQuCyx4Ftykhx7g9tsexS8jIC3mWDQJ+tgYQJiieghvwl7bn+Ag5tMssj9ML7WBLPicg0BVaL9y8xYNPo6PZYY6Y9uzDtQdHnzQzLG3Swr5Dii35lcZ6Top0aRw6C0S3olWZ2M1HXeNF27xbfZZJKb3ApafcUXEm22ShXV5AyskJVniLw/2g5iLbBEhTxtuoLNI5NfYxrk41xOsB1AqnmEHLPCXGzwnTJdS5Ldp0DFJ3ktUrQ5pEiVHL2YLOwxQ8ywxhmp8FE0H78TnxIao2SIgwCHs5ygBMaKS23UlCqIQb50E2z792x+KGUKwRSV/K1NV6TraRJ/SNElBtZMGFPSrlV5L1UZoE4m5C1WsPSGNE3mwZfZYIa1kBVse3iEmnp7fUP985RRkMkJWU9I6w7J3Ptc59RZkpqU9nEcQJua5io5b5AqzLDmEt5UXNdiG4ohOMlmNKfyvhM4roeYV5tMssHlDjlJDcCn+ZVIdD5iIADVMU/5VJDKl/3Rxyd8xjk+5mXkTdmim/POTjzzhuIZL/ESzzjNpTnp6eGXFOniGU85T/Pii3zOi5zjM1qk2WEsWBMCID7jHPTDp34ldfGME7L8mhd8Qt7mHJ+Roc7nvMgzXuIZL9FHjU+5YGDyhRc44yUH1AepZTPOaknm4FVy/OqcrQWfcIHPeZEa/c6WkrH7ETuMMcQBq8zSTYssp9QdnNv3dWmFOY6iiDXWlxX+O8GKqJPhKvcCmAJJfbsDAJche4ozspyEtFeysCbpYPEN+M6hcyePoU0mw8x+3w3xlWY6z0NMTpQj7950Kc7YZJItJrjHNbKYH+YeIywWHiDPPjGojUlnrEuxvIbZ92TYI2cEN2LNXXYec4MMPZjEcNYBsiZp6vQEY1DSextGpOP8WCLsQLCHl1iI9dn82yzdVcBZxkETBYdY8nsyUEk7UALWpPXQoOzAgppuIIYc+ixVBthkkhbdHFLsYNwcBrtEUrB1Zsj6QG/ADdzTtDxh1JiQ/ZhsdoItpngUgwcxc8783jgh+5zdhK4PS3nfcGizxSMHDjqlZmLymXSzKxj7s6wgs/0+jnnAIibmPmSUHeZZjmR1XV/GqBmM9fzH3Iw9Vaz3V6Jh+3I/dnglhpe2lo1Graj7W55u06wHgKABm36uU94uiXWeCocOPhg4Z7WR+RbuUSEfAVsa1IoFuskkecrBwBJ41SAT9Yik63b/t9ljhBbm0axALl3rDTJ8m1sB8DQxr+huWsy4N1XawTUFYIB5WW4xEXujvP1MnbETA/IcVd/bK14fTJDlhB33CRTb7x7XgkE1xUZ41Ak0F5jdJM0tvk3RFQf6Hgo+dhBrWtf0DmP0UOcd3o1aK0WbhgN7TZe3ijGdpxIA3G1u0CLtXoHNAPL7fTCoYJoCZRb4II51kJKz/IyJKPDSZNIK10hFrTzEAV3OJuyjFomzRQ6dHd3vwJ+xJ5eZp0Yfs6yy69JXreEC5jaYCjnvCPvsMuYD3rM4thRnMVRR7bjMG+ExqJqwRToSsM3+p9uZdeaTqO9UTGaTn297wqztCZfZoEa/9wytUPL0ep8iYoT8Cu3eMIbjIRYkqIGQPM8hSbFfZj7qxTo98R2DyXoHKQXrsEZ/3KtAsKznWEUhIhqoKzRuhdmwZBCRoUEmVD1/1eOLAfReIvGmkxeXWFUC5IoYQCO/tGkSae03MABBHmtNDOx43PFLqaQXSbzD5Kf3ir+fvM3+OwyEkGeffk7ghgI3JHmUT51CBZ6QgII6nhV/noMsz/7AX1vefXkM4LiIgY2vdnweAYcCrORvt0EC9qT9M73vxyPp8hAGoN0mYQ3qIQnwt0jYgUWSEA351kmO/NRfRyER/+bnEgNOklv5D/45z4Onr/hn/bTjMw2RsDNfJ0n8/YQkQVVsMHkRKkziPRJgr+Sv/+d+XGLc/YyEISYppxiAArs6AygkoxW4+Ykfo1hjn2KMSwHBOh6xPOWx9+ckQSCS+4r1lifxl3uCAWuvk9wHYq3pvfW8Cx3HDQkQPNTx+gIJV/zPh/66+h6G/Pmvk/gu6hoXiPvYP9drJGEyAgd/hN13YnWmgPvY93ubJEQkjwG/H2LXxgaJv1+npFbMS4WySNb71F9bgODvwKOPT5DkU15x06yRp8wuo3zolHFJJExOVo3pe44qN7iNPITEMgKChTfFI0bZIUeVU7IMs4c8cAQsKGZd8hv5K5UpMM/DAAi1iXVO00sUWWM6Gjw1GfIZUSN9Qm9MJ61gazLsXoDyYtNxSWLaQ4NTsi7z6mGTSeRl0cexy7b2Q+ZTJecsE5OKFClxjbtsMU7LN3AVEApLKDHIQy9QBOooEbhJmscO+GQ5YYpHgE08y+TppolM0zXRHKQUDayawFF2GcGS43TuVPyBTXSBmJDvMcwKc85crLLFBC1McnvZwbB/Ezww8Pc0mGlmYm2TQJOKWvHemcymYwQz5LdpbC8DHFGgwhg7rDMdxznBFiMO9inwRKCtpGFbTFAnwy1uss60M+1Wg8VxnTsBFqroGcQ8/OTXItmqinA16hnq1MnQQwOTnB/GuZC0uEY/8l/spolkGyWK7DKKvHokC1HQyFvccflNLoqtByx6A2ty5hH2eMBigNiaznd58SXQWol6knTbdWBJaWde9Cl4xSa2A9EIy/+njxplCgy7RPrL/uimxRMu8glfoUWaizzhM3p45oycBhl+zQuc4zPapPiEC9Tp4UU+p02Kr/Ap9RcznNBLjT73ADKm6zO6aDjge0SOTy/08DEv8xnneMp5umnyjJc4IsdnnCNFm895kV/zAp9xjme8xFf4hCbdnHKep13nA2D5PX5Jmy7O8Rl1eniBX/MCv+bXvBhr9stU4vmfcQ5ZGpyRCs8xrcViQs3zMMBmsQcUKiA5ra5//YwYNcu8ESyKfm/IBYQfurznEVPBLttlzIcJ5VgPxGDuxuTx17mDAmXsGrb31rqve0JsK0mXtI6o2Zn2YcQqs8ywFsOTblqRkN4mxbjL8eQJq8GJ7A+6neX1XX6IpM8ajlSc7QpwSjbYhMZManuKYTXAOmumVoJ5BgaaLrFAmpYPg2xtFpupToZjv84a9MT5tdCQ3fhO1CBOsRHM8L1gbxyTpuWN/2hInuV7qDUAbO37E/6j8ApNJMEmw95hjAm2GGMnGMpK2D2mL7xaO/1Cu2hHeqfSzm2dHCPrzFbVFCnOGGE/QAKFP/V3SOjErrfr2PZfyaOznMS6Kh/cHFWm3SNLUjUxqOQFqIdsFtQkf9kfc6xQJRf3tVKHdS8LBJD80oZdpw69ph1UOHOA6lGAIApJ0SBVknPd9226ntujlMSp61vyaIV1CODIUWWIx4yxwyU/LqUdC9RXOrLWiaLXShq8DHEQ69USC9z3WkUgUZkCp84i66PGnPtZSpKvpGa7744jjCBPxcH6Vsfw0obgkLCQTZ5ua6vuHSlVNJyUV+EuY+EjKOm7gE4g1owGPRQ5DKaeBokrzJGh7r6nxroyQOk4BgM6/pvcimGDMYRbXuNYQNoiD4L9b0MZc8bUAFLfHdiAQfXaEgsccIkTshz72ilGsT63jhcMuHzk18sqc8j3ulPhcerD/Rp93PHgMF03RVefaCjw0IPSJtjyPaD5HOAomx6xf2UhM8M68uHU9yEGZc6ZcrIikr+nsa67mWY9vPjUSx1wiR4aDLMfg18LN7LB/ThbiAkndmsfNfcst8GyVET6/oed6TfgPoiXOIhjHGOHAZcXL7DEJJtIbj7FRig1AHYZDbZhnR7StCK4w5iev5kdyxcjuR0kkXoKgNkgAZPEZBrxI5gmkYlK1ii5HiQJqfKia2KgwOskoMA6iYn/R5js838gYdjhz38Tk52KuaVEUfm9fUbigzZDIpcV8LFOIuEUaNYFLy2TgCUKS5jHgJPzJMyl7/lrXMIAJMk6BVpKftrl50fAjpJji8B/RRLAIHZfwY817+dWPmcCUeQ595Efu3zl5F/3EYms9Jaf31ewUJPpjmMRyCkZ6CvA/4vE6w8MbBKglMeuAfm55fw93iMB/CRxlaT3PImsuBMQ6+34PsTWe8t/dsPPg0AnSVb/jCQl98yPcZaEiXfOP98Hfi7kmSd/QgGmYmjqun4L+H+QsEQ3MNbgY//8gyTg5RB2fQmME6PzHAaOFUgCSXpJ5N+6dg9IAEN59UlSqxASsQYlCR7CUnEFmBdIrpdX/Two9OUGBnrr+l/Brs9pjE37mp9HfV/y2ROQ/mf+76cYu0+sSgHmn/qx6Z4fwa6xr/A785hmnTu8xWOGUGLrIUW6abHCHPL8UMPUpssnlQZIVcnx2Cc9w15wq9hqhYRhOKLg+zDj9GP6Ytq5wygtLLH0EVP0dCTZgQFGew7WicVnPmvmfyI/NrG+1DjPsRom5PKiK1DxjbuIUlrVrClBykyYe3zaXA32RZsuRtxrRAy2BIC5hMyfc5j/RIMMt7nhfizDURjKP6ZKjve5zgJL9JIY/8rfLU2TQ4pOux8IbzowaW/n5xLYWqFAH8cMcBSAlyQGFfL0cYzJbnM0yLDAEutMB3inSXUfx9Eoyluu6ZI4FQ1gjaeM2WvO7rzLNVKccZmNAAjFIFzkASsucdC1IZ+bApVoXPVrmvWQpnQ7W8h8ArvCj2uNaSwp1xq7FG3+IX/MD/h+GF6LDaNkxBLF52QZYNN5XZ9FDjGJlR3PsjesNnk/BiRXfcwy89zgdjBn/s0i1kDcPcoUYnpdoEzdz69M9wWuDfGYMgWWWOAGtzuCAPrpoRGSPDXBk2zSdJZigTJLvMkYO95+2uvmKUfgxSFFHjEVQKckhHe5yg1uA+Z/aefyLJrkL/Nj6j+/QfYrl3mHd8Nz898nMfPfYpzLbHCbGyzygJvexP0X/K/ooYtr3OUGR1T5D2n5dWYxB+do+FDhEVPMsM4iNb7Cv48Sh+16qIQETfJyA3rqLDPPHsPOYBhmlhXe5R0yNChR5Fv8N9HkLrHAH/DHgDUMW/w+Jnm0wnybCfIcUnApuO5rwIG+VjAY5I83wdZz14Bkj+ajZ03yHa5ToOz7QleAOsa86w5mje7vkQ5DeSWXipWSoc4aM1hQQRKoMckmnbL3bocPRtnhEDNhz1Bn0Y3igRiQ1OmhTRcVCuwzgrzTspzE+tTdAWyCXfvy9+sML1Jq+BAHwWSzfbLBAFV+yPeCEbPOtDPTm9ziJm/zIwreuJ96I77DGCnOwmtMn0+WEpLZyTS9TRcrLsU1QNPAVoH0JoezwVInu1YBEWKvC7STr6qaVEnrZB/QoMfZdGf+/vrVFQFLel+wdXTLwy+KlFhljm6awcAR8/c+i0zyYTCKxKwcZScGaE3SMTTUHjLHSly7x/Qx4O63Yixag98bzHH5yU6wHYm7SrlXjXGFBwDPDSTttXpiCGaA9Fe/iOXnt+4xws/5tV8j8tmU9FGDMAVASZKYdlBU8uYHXMF83PYcvD9DHmSADyVNsSHAZYMpB1hbkYQr6bTqGSkhBODuMsogpQDk85RZYY4pNmK96KdGw9myk2yyw1iAuPIm0/oyiNm+bDMR16wlUpcpeW28zzDTrDlQ2cUwewGoJ9YjlpQsFlM3Lb7tdimbDIWEXnLfKgNxjQ9zhMI4quQYZp/b3AiASYPCYfaZcFsAgZK6R2S50ePse7GTb3MjZPx9WJjOOFvILmWGNSpY2Ek3TQcZDYCfc+9C7RFnft/vMObr92NkTyIAaJn5ACi11hwwFPclEOuSQjc0lCmShGKk/byrfq7RF4MJvcY+FmSyyAP+Of+AHFV6aDDGTgza5OdpicurMXAV6KkkdbPsMcnvIUUkQRVgu88IYprLr1NyYQUIge0jJiNPx7qpVG2zd5miSo5p1kIFonvBrh8b3nT5fiq1T84BQVPc9LPABzFwkOdrF22ucs97sTI/4Pso4V092pFzEhUU1I15meaphIxd0lsLRLFk3kFK/IrB32g9+WIYep0MIbHBfooBEz8lkdoJVFKAxuskUtbzJEy772CARJXEj6tNEkCR89d5FQM9nmAAS4FEVioZolJ3KxioIIDhFRJZb5WE0VYiARdfwwCPVzHwY44ElBB4o+AGMZDOdXyeCgY+VUikt70Y8Kdk1SYJqJOz4//8hj9H/nrTJAEZSkHdIAHaXvVzNISBSwrweJ0EPM2TSHw/xQDQIQyE0bH/jCS04Sd+vvR3yadTJEmml/z3IRLmmLwSKxg4pFAQyTXfJEmeFYD3lp8LMRwVdCEwscvP0ddJwile8eeJsXnBv588CdAnllonUJfy1/mGP+/nJOCpkpHl5ajvs+3nQt9tFwZkfeif7Ssk4KOuj2LHsep6KJMwB+VB94m//hM/lp+SAJjn/Ji+3nFcYoI+8fMs8O8Cdq31ksh9v0kCQutaOY9dAwKsxUAtk6QUi10oMF4Mvoskab8KGxHoqNRiSc0VzKHXgd8ZQK/mEi6Z3iYedMYm6vw3eXJImnVCliUWOPZ/V2qZCuEsJ9ziZgBEi9wPYMlM2jPPMX82maSbFte4F1N7NSOSGSl5bYpHVCg4661GngobXA5mmmj25lPUwxSPgnVn4IzR5nddipl2tp6KKRXvaZpMsMWoG/8axd6KCWuo684y64+JtqZZc6w+1whYgdCkyCFKhlPCqaSR2jSbpHmXdzghG2yLlgNWw+yH8W+nJG2XMZfTmpTlEVMcOWPwgCG2mIiiquTFiaS8CvCQXPcKD+jCUly3mEBpldtMhLmzGCJqiMrkY0KYphkeHTIXP8HM6peZx7wF5fc2HACYjIfNwL4erDFJFzQZb5JmjB2HPw0cuM77wdYb4Cjko5Zi9hYyejZmZxOZMDecJWAyhhYPmeeIgZCZiH2iqWrGgd00TSru2yfmjgJJ9txfxAzmK+Q8nEWsugMuIa+mUff4sSl7lT6OMc+xMm/zozinRQdhxtjxlDNjX4pRCDDKLn3OsBOIOeBeXdvuJ6gCXMl/+4wwwzptUg7/mTG5ptwPmf+daGIH+RVj7LLLmDd7rbh+DQToCrbWPsPsMurphokkt0QRM9E3w/RuWmwzwTF9PGIKBQfY8KEVTIMCFSbZDINxPbQW7TBGhYJ71lgzbQOIdjRwYD5Iiw5MtEhzwFA0SPJE+jE33RfLjlUyewX45B2UU8MsH015VxngeIwM29UEq6GtYaEh+nxiPRv79dTN3acDCDBJqxXe91kEDFRpOLtUDdAUGxwwxG1uROOcxcIj0rQYZ4sMjZCD/oQbNBxM1GsAsXZIFiiGokIyZO7eoIdTLKk3hZmv63wqtVuhMgLuFQgwz3Ksb7OsYomCI7zhqZOS6Iqpo/1N65Ea3VG/GsVAsYGZyVnlTdjApH0rzCIz/iIlbnCbLto8YirY5goeUJMr+WuWkwiW6qPmXk9NvxYMXGnTxff5b2PdXGY+2Jw1+sLTa5NJBqhyjbvR3OpYUrSjcRaTe4CjSAkddgP/Nl30csIUGxF2tMUER+TYYTT2VJNHGvNRAKvAvIpfQzmO3K+1FSweDW4EhkqaqzXeZGXDjLNNgQqj7Aa7+fA3bGD/XX980gHqX2YDhaV0DgAE3o24H64xms5o0h32LKprOocWFlBgSooW3ew5yGb1jg2iLOCnwG1ucI+ryAJBa4X8wKrkOMYktD3UQ2qve0o2LSWKwSY1GegOkuTPscoYO8ift+Kgit0ndQ+4GYnrToE5VQbCYkBDIMnYdV8YaDMQIP0WE8GY03mRX7XYjwpX0PvpGPKU456VZ6HWCkuVHQggaYuJkDIrdbXEICnaLHp9J2XGVe4ywbbLnFOx9+nn0l6r9Hi9W6eHOVZCKiuAy87EpXjdQ4p+3i0kTB5yfdS4yY9RINsYOyjYy9aaVAzoxfzTfjXNeqxRx/TRT42KC45zHiymYfw4274/9rLl+/ABl9hnhF3GwqKhQp66DxAExr3JUqTEtkhHqIeSzAtUYkCywWXEBm86Y7Xuw/IipbCt0UBY18ERudh7jQ3bHwCbvCE7ZeXyaNb3lHFWnln37FHxfb7KQFz/8rFUUFCWk/CibJJmk8kATW1IZrLmKzzwgV4j1gEQG7/fz1Oal0PW+W9/fDEMvV9gwAUkTCpIwh0kydsDrmAg26sYoCHA4CkJaKSggxIGCki++yoJS6wTLPjQP1lneMMnHb8EroCBF5LuCiz8FklggVhQSl2VbBYSeaoYcZ0y188w1leehNUnIEPgkKS+3yIBYMRiPEve/4V/QcLykxQ1TQKC6T3FcNOwUIw9HUOl4+/6XsR+E6Ao5pa8zvD3+cyfL9nt047n38S+Q7EjS/4cAVhiaupzieWm12/7n0f8Pd701/oJiQ9cDmOc/ZREUpvCQC9IwjcESJ3HAD0xxf4lzyerXvLXF/txiiSRWKDhn5Gw+OQ5KPakAljkNTeEXac/9T/r518hSbEV8AgJ4KhrAv/8H5EA1xew617BH49JZNZiTOr86pek2j8lkXKLKdfp5Siw9sBfW9JceUvK707Xl+TElzDZMf7aCvKQZ6PO3et+nPIELPh5qPoxHIMTfb70jz6/0GXeK4nJNOs+qX8rinBJARZ5QIqzML7NcsIA+9F8WlLuNDe5FZPYJmm2mSBHlXmWne5vE6tj+tjgMos8iOm6fEcEisjvwyZbdowqYmQMawXFpWhwNeGbZ5kMjfDxKJPnkku3bnMjiiqdB8l6Tf7bCuaafE0amPfUJJtIwmtePhPRNKewxLcVZrnO+1TJBaNOUzo1pGJqXWaDHcbCJFxUeMmElOQ1zF4UEpKOjnoxusEURUrud2PBJZp2GqXePLIiQRNC3gAGCG0wBZgko+AFpIyKJbExY3qLH5dUVvKRDaZCQq30RYFL0+5JM8VGAMYLLMUEXlNFMSLl0SPGUpESAxxFk9Ckm4o3tCp4VbAInLKprx2bsfGGoxEEY6Jd5a5fj90MUvIi0QJIipSiidjyov0Gt5Hk2+6jY5aZZ4ElzC8szS5jyNi+i3aEmBiYZsCfGFqjHlJQ7vA/PMF89yRhU5qfEiR17cif6DY34lpU+q7AnBPMX08ss0FKIQ2xBjoVPyM21SwrUUjXEc36y/v4iFcY5WMH3Ush+ZEnVJaTYLJe5R5gDLgFPogGRo2uZJkVCiE71TW7xAIFygGeL7BEnQxbTCA5jSR/Rz4gmGCLu1xlk8kAiNW0tklF47TFRMhLu2m66XgrmtQTsrzJkjdszWCaXXO2hiRVCiHQPiBwTQwbSf2teZ2gRXd4zsl7UQ2MmphNJplgG3kMaegDsMHlkM61/fMKHNthlHkeIqnld/nTaILlgWq+dyahnGAbeR/JG6pFOtalUXZZYiEaatku9PgeIXbhEQPIw9TsJWy9FUPHUtAbbilgQGLn0CfnTbF8xFaYQxL4DHVkwK/rpkAFeb1+nx8gJrqM5QtUWGY+1nwBKNq/lLyo8BD5JFpSpcloJZtTQqZkjS1f9zLUw2ReAT2SRSv9sdOuQA+tV9qzZaUw60y6WVZ4zdkvP+FGBCPoM8yxGgx2DWW05ymYoMihAyldLLtUTmwlAbzH9AVD5YgcE2yjZGDJLjvZUlWXhqZpIgloC/MUW2WO7/LDuL5lOzL4O5Jy+4C/y2uUkLS22+uaFt0hUdW1pvoOTKUh1cBRBDYMRA10SpZtr5UMgCsHCCRZPODAWZLKLDZRjiStXQyzy2xQciXDEgsBRBxgfr+WgJwn72vWHsMBpIh1ZQnHlnq6xjTf8WGaUn5tvxz0ms+Ga91eHwLIo7dFmjEfrGn/UAIuEOvEiNc8nYPOHEd0+6CtQsGTxcFsPExK/6GDTmIeWgKsAZ1dtHnMUMgvJUlNccYBQ/E8MImmhgbm93sYQKBkznVn5iq4QnYzO4xynffppsldrkVNuOMsan1/KR9MlilwTF/YKtj3asznKR5Rohjg1QRb3OG6W8TYnnlEjn6vV3WvXuVurO+SxFY9UKTZUXOJ6dy5TirkR7J+qY2U/N1NK4A3G1zYemeer3vIHsf888aZZJMcVcrkUWKxQDcBc3sMM0iJtK+3YLXzGjPIU9quj4QYkfV/U68hZjSYpFrDH11DQxxEoMWRD8nFru3jOBiXRQ6RSsSu3XoMPC5xwA5jMTDZZJIKecad2GDn/JKzRM84+ltl6L2AgQIKS5DEVsDHJRJ5Zq//288wcEaA2QWMwdPEwJoNf47klJdI5Kg/x0ChdZKADQUNTJFIeyXplWH/KyR+eWCgx8/8/XQceQy0eA0DJRTeME3iBTjvx/p1klTWD/31z2GSxk4p4iskQMxX/Fj+nITxVvafPU8ioa2QyCkF6IjtJfD2p/56ZZ5Pjy2RMB5f9/c98NcTS0rv8VN/nuSyAqwKGHCngIgzjIH1GAOv8h3H8hTzZEtjyamv+fl6BQueqJKk+674d6i02KeYpPh9EgbYByQecpJKQ5IeqyCMA56XQ/9LkpAVSW7FxpSkOU8iJb5E4peoa/eMREqqc4n/nMJNFCAiKfhPSa7DQ+waGcKCPeZ4PkSlRAL4io0oyWznNavvUL5+FZJAF0iYpk3sOhSDTs8X47NI4lm5gX3/+h4FhF/oeN4GCUO11PF+50gA3CZJwItCTwT4nu84jiJ2n6aAz/miVp/fukdnEhMQctM2KfYZZp6HPGCRdaaR3HTUJ5vTrMdmssewG6imgrVxRI4yBR4xFdOlDHU2mSRNExlfC3Rb4IOQ3ZhRr7GpOoMvxOSSSbbYUptMIlNZ2/LOuMN11pihQSYADoFXCloYd1ZCCksmK1D25Kn9aLTH3U9MRUuPb35iyMis2yQEhgQXsERRk2schwcbENPDooMqmlR3Sk7KFPg+P/CJ4lCAnBXyrLrkVE1UN83wJ+qhTpkCM6wHMDHlAQ+dPiiKqt9nmGMHRsEKB/2cPsO4+2WoqBDbQ2EJKlpLFLnLVWr0OWhRYdzZL5raFygzwVZ8JhXSAueamNR1mP1ohPXdiCkChAl7gwyj7EZBVfOGTiEuYjuZoX0isev3c/eQeTZ5jXkeYvLaNDIMVjMigFNTdZ33JukIHJEf5BbjwepUsEfOZXJZTqOwbGI+LZe9uBS4KUaDWCQ5jrjDdS80x9hkkl2X50nussEUO4xGupwad01gZfItoNGasa4w6herZcpZGPuMMMUG8qDSd/Blf9Q5F/eqUrMlt57wSf88y8EYEgBg61mLqsc4iE267/6dmo5XKAQ7AYiggrIzE/YZZoS9AFENbB0IFmaBCiPshyxKE/U990Qzz9Ij7rvHYot0sKjucS0aHSBYbUCAellOGGcrQMdjZ5dI2qq9YYwdlBK+xzAKZRAov8cweSo0SSNPOZMq2noj1neJIn/y9A+RT5d81ASkCjicYzWae2NHnwVD7tgb0nZHU2tDm0KwyvReYtu0SQWrUADcQ+bj/NiAxRol+36MCb7CLOvMUKZAwb3vZJFgTL9tAHp9fVEj3yQd4KAGRCnaPuA6ikauRl8kYW8wFUyzEsVo2MTEPCH73NoHCagmqas8YedYIU8FeYn1epMs5ouOv+EsphZpthmPpnSatQByU5xx6vtwrd3ncO2EG3BYyveHHqYippVeu+Es8mH2ManuNkUOQ45sMsRJ1pgOxmeKM6ouqC0x6HFZW8HMFKB9RopeLAFUHoRiqMqH65AiAxxRpkCeih+HrcudwK68zpRkL+BZScQXYtr/5X4s8K8iNELAcbqDhTfGDgpUaGNJ6/Lblb2FgX+jrDIL4CnDDa/dGshHboS9AMikupCnl9jvAnFLDHLZvd1U/4hdKdBKLNAJtnjk+7eYnAJT9LsCVlQbyV9MryGgQ8CypKLyrrzEQQSo5TgKgE/HJwBcqd0mkSzG2qh6AAgWWj81l1+aT3KbFPMsk+WE17y23mEMwFldFja2zDxpzAs0UWaMo2RiscxtIHjKICVWmcXsbuw8zrPMFuNIxdHvXEMBuvMsM8cqshiQ7DWpaY/iHkzk75aIa2DgWPQKGpTqnhZzrUTRVTQGf4nhrbo7R5Xb3MD8hyVrtqGYQFt5G5qKZjxAMoF9FZf9JrJYqzPnWOWELHe4Tp0M/c5+k91Pg0yAflLJTLBN3UOAxtjhgEtxHwkMtWvOPLHNJmI3zrfVxTaImmOFM+9FxLgUkCdAVnWt1BZbjHNEjk0mg2UnYoGFJQ3HvjPPw7jONezVPatab5g92k5OkH/lCdlQKmzyWvz/HCu/0XryxbTUfSQNfY7Eu06ywTyJV5qkqp1NvzzBlLYquepTTBoJBlD8HANhejEA5nUsKbeIgUCfYGCJmFR5DHQokIB+PyNhqYGx/gSWKcgi76/9mISlJPafAA1JdV8lYYeBgYdlEgBToKRCIooYE0zyYIEuYtHtYaCLGH6fkbCsBDZd7Pj7ExJfvZ9i4E4FA78U9jDlP6vkWklTBdgoCEKAkhhv8qcTyHdK4ncnAExAqL77V/19n/j7Lftz2tg1odc6w77PFAYsSb4sLz954km2nMa+Y537op9nPaczFOU1EtAp7897SgKunfl7jmDfqySx57Hv+lLHZxPY9SrmhyiATHLfr/v/5UhCLuSpKJDu6yRMQvn6CQwVc/EDfx955EkOLdBPYODPsevyZyTXtLwlX8HAZjH8Tv3cPCGRByupV8xLfT55/RX8Z1731yv7+dT3qxTdFRIfw3kSRuKcnz/dEz/H7pkB4GN+Jx6iU6c447v8kH5qlMkHyJKhHmmic54a13IKvyauZqK/TY1+tjzJ1mj+lpSp9C3R0AXmyINlnxH2GebQQSVt/pLDHpF7rsES6LfIfW8Wkom7MQpyVCigsAs1RJJAXOd9Rh3gWGWOZeYBm4y9yzso1VFMrAm26eOYNZeASKqQdwTZqO8N5Mcjma2kPkUOaZEOo1vJRKbYeG7yfeaT6Hd5hxRnrDHjZt6nwdLKUyFP2eV9g3Hux9nyptEYMjKkB5xVYWmyaqa3nQ1kIGHhucJLzKFeToJxWKbgoEEzGBQlilE4qVAeY5dRdoNh2cm8mXHJ0hIL1OlxyKIU15kBsofx+vuMIA87FcVgBfgeI3E+BRZaSIkl5FqCnEmRl1gISaqA6yZphjhgllWXmljKrSSvSmweZj9ADp07gdgCNPNUOCMVyZF7njy8zzAyFzYpt8mDt32iq0ZeEldjNTwvTCi4mbaBEoMoFVShGvIVFMAjtmOREiPscZ07tOkKCUfdpezLvBFsRjVEJQYZZi98i2SMLxP+L/vDErvfZJ+RAJO7sXTDGn2RgtlNi0k+7GCQWBKjmHFqBIY48MK4K5hE+g6OHcDKUA9j62H2Kbu/m+SaKuC7XVp1gqWebjLJCrOUKZChwTXuxYBkiINgVQxiycya6oMBP/Zcu88b9GDejTnkZTfCfoCParTEEF5hLpgPatJ0jKvMcko25FiSK8tPTybuahxunr9FkzTTrEWDkKfClp8TBRTpGAQCbDAVDR0Y43eeh4CxcHPuqQbWuBcpeWCDNVHag25xE7A1Ug2w7mV9X/qeTzE54DXussMoBww5kL4boUrG7hvgGJOgHXrjLhmbZPKSfD5kHgtOuhdsCAXSWMBSGqW0a4BlXnCJb53CNSRR01DrhGyALmCMc6VWFiizwRRLLHBIMUDdZebppkkPjWDk1egPaeQ2Eywzzw5jzKVWuMktJDXroU6VHLOsMs4WNfrZdd8xsWwMvjam8b6DwW+yRI1+ZljHTNyrIWGUf6IACQ1+7Hu2IYMCm07JesrpYDT517nDMPsOMKXZcxaL+cCduc3GEeMe5jHjjFSxpyUt66bF9/mBM/hbfwOr0d/+4wkXA8QwBrGBBvILU3BFhgY7HqimULBl5tlnhD2GkVRT4PEJvQ4pNWOQISsQeaHJgkK1kfnj1pHM75F7i/VR44BLcY1YiquBU2LEmTdmYlgvu4kTsqwzHcEz5jNr17GUJfuMBFtZ9dIoO+Qps8FlJN+VRFUeZ2BryhQbDlyXAuQX0HifKwH6aTgs/2ewAWIXFhik9UqM5gm2meIRG0xRcFl8k3Qw62QLA8YCk+PlEI9jqK602nG2yDnQLQBWtbtqZw0ROz3odO6ucde9eO2+sXq324dAA+x73Wg+2d1IoixWsixmCj50eMBiMNIV4mNry0CA9wW37Gn5EFj7S9WZfEqkHXfvV72fUq7B5OJiIN7iJmmarDkD3ywBzoIFqWtbnnpiF46wx5avifoln+v7LPJjbnLApTgGCwMaYJH7AXx2+gEe+c6lOlX/t8x8DDoGKcXA7tQHM5N8yHf4EVNs0JmCPsGWg48G8NlwoxeTcTfYYIptxv0sNpFXoc6PJPZ5KrRIh9fgNe4hi4SLfs/+VY8vRnL7Ffg//CUWlpAB6iRyzWcY0PRrDAh4kUS+2MAa/1/ba/BLf/4Z8DXgh5h32Yn/+irGADvGQIN9IAv8v/21+oFd//1jYNhfu40xp/7S/74FtPy5GQx0+AXmvfeXwB+TsOte8s+Q9ff9tb9+iyQl9kV//6z/P/7cKokX4Ev+Mz/zzymQUIy5z/yYs/7cX2EgyFPgX/nze0mAxV/7cb3U8V79wP/HX+cj//uLwCM/doCX/d93/Jz2Az3AEQbMngP+ws9ZD9CNAUNP/TtZ9mPY9Nc+9vf8mn8f5/07+8TP7Uv+/h+TAJTL/txP/P8/9dcv+b/3kQR44Oetzz/vCYkH3a8wwG7VP9evO85X3Z8nv78tf215EJ7312mQMCEVhpL1c33mx6awkQsY0+wUuzZ1jZz316n7c9v+nv8C87uTZLjbfx/EroFf+2s+888+5J9TxCOBhwLCGiRMzhf99T7z81v2f8v6OQL7bn+NAXovYN/tR/765/zc/wXwe/5zku12+2tk/Rz0YN+lgnc+8fd6ht1j/3P/XMN+PPoMAiufAmM8Lzf+Ej8MDEmToREFh6QLmhTJyFxslCNP5bzLNfo47kjvO2OIx5w60CC5kBqigr+OiiVJWZKCf8BBGfPuMYPuoyhw1JhWyHNMHzOsuxyqHabtVXL/P8yODWcILjMfPndbTISEUVN4yXvMpNgmrWPsYhLimZiQHTvdfpk3UHCCGnZLB7YJ5CFTIV9S4piBmj0Msx8bd8ZlJ/uMBIik6eg7vBuykzMHALKYibsCRgSIqZmXXGmWFZeAdEfBbRK8Jgsuu7PEwlQY1tfp4YgBthhnjF3kP1Um75K6Mkt+PsUaG+JxFAGSnu0wGgWUPrOYY8buOwz22yi77HkzXKDMJJvBUlRSV41+TjBj+CEsKa9C3n30stzjGkAUMZIZC8gok3f2z6VoGqrkAqg7JvEn0fUxzB4yFU47sKOQlF0vTuWteI+rNDjgMhtR2KlIT8yiD6gywAJLEQRQo4/3+A6L3I8paBdtspxScF/IeZapk2GeZRpkKLgPigAQsGTqCoVouAQgWzLkHgpDGOKAB1xhgaVgzxQcIFLTLKm2vtMFlviEF/6GVqS/vcfLHPFTxtlnmEUeUCbPHCuckGWDKc4cXDY5U6+zvo4oMYjSYMVqFUgqRgEQTVWVAXbdkF1yHN23SsxWM6b1AUwO/6d8NxiAJvsxD6cafZySpUY/aW8sKz780HPl9yimU4WCg4np8A/tcb4KmLXCBlMR6iAG3RAH0exlOWGeZQc/+ljkAQrB0PUsNljTwSlLyR2I5s4awS62mOCAIW5w26/dZD2XV1SWkzDAP2CIAhXWmXZpcMLaFeN5l1GX0dkau8Y0ux3hNmpgGvSE7x8QvoF9PuBSQqyCM5TmKfZXwgrrZpo1llign1o0uWKWD/oQwMDbvIds9FOjH0hCeSxV3dLQJQ+WPKrqzHcxIs3L02RahxRdwroSwzMZ7n+H9wLYL5Nn1JmW+ox32tdZTN0nQ4NF7kf4kOTWZrMwTQ91FlhyFs0bnNAbrCXJu/uphSWDMVaGHAipII+8WVbCQ3eKR9Top0Le/e6ajLrXovmHlhigyjJvkHW4RyCp1qlFHqDAo3WmkTct2NBtjJ1gtIghladMjX6ULlmm8Bz72wCVUaZZd3ZZnaqnXn/ZH+e8JjoiF+x8Mflt0FFx0KzFiHsfqq4R815gEiQAwR2uBytNKohumuwzEoxLsZ8PGGKadSbYppsWSywwxUZcNxbANvgcs8jYtHMMcRCeoyPsu8S0P/boHFWXQLaCXbbBFGPseABG4kdpPmsmQVcdIEuBPWe62+C0Lwbkt7nBW9xBntFN0kz4cLDpa59klPosnfYYm850Fdtf9gZVv4fnecgkmzEEGHMFg3n25cJiwAI9xphmjS7aTLAR9xSYd/U8D13h0cCCyozVowGmyc3TUVtkaLDFeAwbxXoGYxpPuQT6hF6KHHpdto0YwrgEG+CxK1sm2WSWlRjcXuf9qMN1DLIAUE0MuFemAaFzrMS+K6a1gLQW6ZArK+zG/LNbLLDk8uz1qG1lKVSkxAcsxCBAMtcxX8+GOIhrJ8cRq8xxnTvBOtxgKoavBTafIxjIgmGDKXo54RIHXhf2I3VHytmJGqxf4y7yw5N6RNek6lYphU7IcoUHz/nq7biNzBEDTLNGlQEOKUYvoV5phnXKFNhmnFF2WWGWKzwIpvY+w+wwRj/7GLDxb398MQy9BglAdwJnRQwg+DUGBhz7/4vpM+y/wICCZ/5zgxh4kvN/y5Gw7f4OBjy0Ov49jYEO4/57AfgqfH4JAzMEKJRJkmVftp8h538+89c8R5Iyqr2ly/+9YD/bnvNjkR+YBuznMECr2z/P1zDwI+u/l0kYXw6mtL72goEmv8BAo5Yfz4kfx1f99XScAkp7/Nz1Y6CgZMq/76//Igm7rQc+FyMNDDD6mCSVNuc/L0ZVxj/L7/nrd/vPnfifX/RfL/mxfEaAm+0Bnme3vYiBSF0YeFj01/8KSUhG1v/e55+3n4TZiH9uMT7b9lqtay8kTLGv++9inXV1vP9Zx/f4Nf+3hp87vW6GBLQUQJYlCfjo8ee9bO/V+toLz3sngl2D3f6+L3ecswv+dwWDfI0EzMP/f5BEKj3qz33i7znsx3tM4lPXwL5rgZBfw4AyAZG6fgTaCuDGzlHjG132f11+vnUeyn4e+/3vn2Fgcg/JffySn6MhjJE4C+03Sbz5dI5f9ufr8435+w/AyZy+qC/3I80zKk7r33MgSOEKasS0gSvVCEDJUpriy/dJgE2JIle4H4wgUetr9LPBVLBdwAADAy2MhWWF3CVG/DmaEskE2Y675WwCm9Ep3fAY84W4xAErzCLfi05j2D2GGWaPA4Z4xBSzThlPccY8D5liA/NIqUTTIEnnPsMo/Uu+fmJ3iBWhjXzYZbuKnq8yQIUCG1ymBzOSlg9QF20GOHJGnDGumnSjNCmBYAIB1Ig1SbPEQsjs5MWixFexWzI0uOy+ezX6g60nqr3SG+1n65z6cWkCOM+yS2jSXOEBWSzkY8QZSPpOBJKNsI9SWA+4RJsujukLEFggYp+DyEAUG0ssxORb3jOWqFkN6Y/CSOzcWNEuMKEcjMOeAGoly7Ypc7/zHAsO/K7QKRGSbETf2ZF7SEm60+0/ucQCW4wD5kdjjXM6rtUafawwF2CssUbsmq54Qf3YG+FVp83X6GeQEjLdliG+AXP70QCsM+0F1ahPqo1xeMmllJYyOR4mybuMkXfJ5nd47zkAvFOmt8HlkP/uMUyJQZfAf/mb2AvUmGSTadYoMcghxfDFvOqeeWCymS7a4VOpe7izqRQAXCHPAEfc5gYbTEVTUCfDANUITBDDUqw9eYuVyXPk12CVHKPscpdrZDlhjN1gap2Q5YxU+EuqqVGjoWOs0UeRwwBf5MMo6WSNfpqk4xrcZRQFssgMWyE4shHIUA85pY5fLMM2qfBlLFAOD03zpdxHDFyZko+xwxbjVMkF41H3z2sO9N/nChUKARYYu+w1lwcZW3KZ+QBgxO6rMuCM5q0AYPUZmqS507weUuQyBR4yj5JnG/TEedplFAVG7IbsrS+Y7T/hBkUOYwCjYB3Jt+S1ZJ55mWhsBVKIDQoG3s2xEiwzY2hWOs7hnjMc18lySp4KE2zFPtJ0NuOp3+MaPtnwpBL7WpYT3km9ywTb/n0UgkGyxkwM+rowL70iJQpYgq6uQ4GabbrCZkOsYiX0PmCRFG0qPiA6po8dxoKtr/VN7CqBIAo7KHJIhTyynBjigGkP9JF1gewpBCx3O+vT2KanDqT0oFAO2X6ckEV+cDmqDLMfth+bTDLuISSdbK8v86MzsKxJNyPu0SaQs0w+9jd9b2IMaziad1DFPC7NgkBWI0AA6CY332Gf4ZBNSuZoA9A95y6Zf14vxp7uo8YM6+59mXKvxRLzLAOEFYkkrbJU0fGkXdUhG5UqOdaYoctBqjJ5FDi2xzC3+DayYTHfXZPHmv+csdE0KDZ2soUrtelyBtZAqDwm2EL+n32+LmjwoDrkBrcZZZcZ1ujGbGqkXLGU3XXqZMICxbxA6xQ55Cp3GWcr1pIu2ii53iTOFfJU3H9wkDxlBjhyNmKv12DHwZ5cZ5pTssGak4dpnQxH5J6zSrDh7TEDmE3MJpNY0JCtgbuMxjBUwx0xpMH84STzH3Dg1eqemWCNTzujV9ddmia3uRGDNwFmFQqsM8Md3qLXr6cNpoI9vcFUDLE2mIr9oukqjWNnokvKrXV0jxHWmfY9oswCS6FQ0XUtME6DKTAWqhEEusIHUue4M9SkM51c15Pq0LLvl+aRuhUA7TzL4ZXb7QzY29zw/e4sfl7vkaaF5OayqSi7NYi8EiUDn2PVgURTdhj43Psbp9x+IQy9//wd+MoQYez/q9cv8NX/6hOdNWNCpbHGv4qlbzaxkII3MUnlHCbhy2OghvzBHpPIT4cwGah86VYwaaAkha/Z/30+DS/8OUk4gEIwDjF54BOS4IuPMFnigb9Wxf8tjQF5ClEo+s//hOQsSiYsjzkw4GnIj63t52QFk3+mMebXz+Ev/miEv/N//3niD/gZSdJuHgP5JAPt6nh9yRp13HrOpY7XT/lxzvmxrWCg0tf9eSMkwQbn/XOvkoRk5Py84595hUSGKSadZLn4z/4BSbLszzGgp4gBduuY7PcCyXVw6j+vlOPvAO+RPDoDJSQtBvjG50n4gvwLmyTy4lzHayrQ4pK/n9J/NzrO7VM/1iH/vr4CzJAwIT/EZN/n4Wf5S7x66xd2HOv+uik7r5+9Dud+4n/v9eOCSEv+7JtwTrL4cyT+ka+R+NVd6vj3oh/7n/txPiFJ7BWg+U1/vQ/9eUX/jPnkuPjv/Pm98PkfnPHCun/+10gkvm0/xzk/jg9JvPAO/GdTfk5m/Gcu+vO6STwiXycJ4oDnpeP/Gzg81+S//D/xpX9c5AmnLicSEJPl1BssMXZOYsJklPp9IPH8uc8iChQwaY5518yxEsWyUbzrbupuPmoq8NqkOKaPbSa4zh1kqCyZpLycNGXLcRQyjhRnVFxmoSndGLuxSVlDXWXFfcHkmaTiZopHyMxYCbw29S1GQanGFHBZRjmYNUssMM1asGzucS3YBDI170z+lYl0GvPdswbUJJ5nDu3lqUQ62aFPInXewBppNcby1+j35maHMW5yK5rudaY9/dHAMvlmWFhGPgraNOZpc5sbIY0FGPfmsEWay2wEw0E+SONs8y7vhJTqzItqKyYGomFSsa2U2QGf1su3a5cxqgzQTdPliF1M8SiMtlV0F2mxxXic314HKOWtI3mkCst5lp9jf6ZphZRU0ucxNqMYFSjRjyUny0RdHnP7DDPFBv2Yx88I+16EpZFEI0Wbfmq8yRLH9PGAKyFXlP+YgBbJz6z5b7i310AUVCYb7gk5uiRiy8yTx8yllfycSHUSqaDJ0Kvui2fXuhhSYKzXHFXSNDlzBpbOq9h817jLJ95gf5kfn3jDpft3nxGadLPKXDCpxEyT3GuLcSbYxpI9rQnJuGOYwAGtM1UGwsdmwL3TLEG6Fg1Sijb3WaTIYVxvWrM6/TnzVCKJV4xeTeCBYC2JYSKWlYz9SwwiT0gL/2nGzzX9Wt5giik2AtDJUHcGsaXpFahwQpY1ZpB8Xmv8JJsB5InRPOjDD5OcGjC+zgw3uI2Fv+wi+bgYf3m3a6j5/pChzgIfRJN36kygST5EOehHDDDBlqc8VsNSoTONFsyH0xr8USbYopgu+QChPxqoPmqsM80UG9ToC+bqCnPMseJ+isVolO5wnYyzHE/o5cfc5B/xjzn0pug2N+J7NabuhMvytvhTvstV7lGnhxnWw9/UgMMkcV7rljzHxNIwv7HH9FBnlzGmWQ9m4BmpAJNlFwBmXyB/27SvIVpLJ9iiQoF5llliIYCHXQfgtIaeOeCqYVueMlVyLqPucjDDmn6FKvQ4O1iPLf9uxfYRA7JNinG22GAKSd+A+PMew/T7YKvKAJKwqfkdYT98aMVgNxaWpbeLYSspXbcPQsSCLZOnx4dCA1T5b/k+f59/9te/+PwWPk7p5av+PW0zESEKx1gCJhCsRzGR/k3VQM0d2Aw8aFKnx8+zgVPas2r0ByANoGCaJmkkkdUaq7phnWmynLDGNA0yLPLAvdm6fJDc1eFd2aRAhTWmAwjXHmgDvgJtuqiQJ+8A/gFDDLPvklFjPY84s1bAk2SKqutuciv+LFb0n/JdRtkN25kU7QCFxLTWGpcwSrvcDznPj/gOf8h/HWwyhUcolXWOFSp+TKoRhzhwoCcfLL5HTCFLBf2bKSgMZJP1TZ1MKFMMGK8F6KQgOzFWyxQYZyuk1yeYv6a++zM/D1YXWU0qRrhScRVeVKOPAarc4Trf4T0UWiJbixUfeqoXMPAqH8oKDX4aXqtpMJF31YcFbmw/xxhXOJn8RD9ggR4awaDWMO1HvI2sa8DYpsvMM8ZODMqH2aNBhvd4O/xEr3OHHEccukJJbEpZzQhIvsFtl6kPI69nq3fNMkg/b9LyHipYaNF3eC+8d8XgtDp2NIDFIQ6irtTeLMsPgMts8JghJC1XUE2bLk4xOfgouzH00KOPGocUufIbsPPgi2LoySvsEnz8ei9f/ekn1vCPYEDKWxi4sIc1++sYKKCAiBEMMJDPm/z15KEnsKbkf78Iz+QxpgTWpxhIVYUXfk6SVvoNDDRsY6mpeySyy0/g2d/zn8nD02+8aKDGaxgYJouUXv993T/rNAmbcJqEIfWK/7+DOKT9s33T/6/pf78Af+dnP0+OTSDaZ/56SodVuMFnJAy/ixggIwDwIvB3MbCnBJ/n/TiL8OncSwZ84c8vwed/AJ/PkQByxY7PJ4npBgnz7RxJwIe84dIkPnwp/wwKl5B/3wgG8FwA/kMSr7ZPsGui7f8mf0MBoALgJHOVx5385P7Mj23EP7P86eRTKHaYgNIRPy6BmwJh6fhdfosdXoFP5s/x2Sv2+s/cs7DYLtm5UKpr3t8DOPeBnz8xIv16ePZH9vu5D/z/BA4rROMT/3mFn7zlr1ny8/xK8lq8QuK5+Lqfx5/7Z/u6H/ssyX1UwoJNLgFD8MIt/7x5/70KfGpgJCP+9yoGegvwHiHx9StgnpUfYbLpP8N8BV8h8Q/UsQ1h15hSb0tw/r3P+V14fMwAH7BAjmokMbboZpEHjLLDEAcUqFAmHxtfmUKwq2xmamCJksaUiAfEBrDiXnALfBDsoFF2kTQ3Q4N5lpE8VWDYJpMMceBsuMOQ6xQpMcZuJOdqYiTZpky3f8zNoN1r4prjiMcMRQOiFEsBXzJWrtHPI6Yi3ENstxZpxtny8mc/mHfbTLjcdCyes8kkewxHYzXJJte54xPikShiOjfKEoMButnfi1EgCOTc9cnZMTKst8mvmnOltKrAEaNCnjiWXJkhxxFdzlQRU8+k0odRlGnynLDjbDq8xAIVlyVOsYGlbjZCWmsg4ijrTAdwa/I287WTnKDqRXeBMpfZ4JJL+lRwC1xUapjSzmTQWyFPkVKYQsvvpkiJXUZDzqiJp0ACsWw6Df9V6FnRPR5Ns64VsfiynDDLKn3UWGXWmURdfj/k4trP+ORcHoM7jPGoYwoM5lWoBlJgshp3MHGKQJsTejmmjyKlYOOdYsExYmXpmpGJeQbzBDLGmbH2NEHv4zgMo9O03C+yxgaXg82Xos3XI7L9y/tIOTShpkbMMyXGTfEI+TJuM+7XdJcDIb3IA8lYAflgkIglKrat1j+w5mSAo0iPS3GGfCRzVKORzHJK3b3uxL6UZ558O00unwvGqqTwi958q8k2yazR4X/E2yjFW2soJN6Nlg6+E+9xhiXqlsn7/WdJiFVyIeu5zAYbXEbeSwCveUMhKR5YIzHsLOW8DwTkRTrgDCs1/Z1BDpKZbzPBCnPRgJ/QyyAlZljjiIFgAMp/dIPL8fom3bdzWWUg1kXJ7CSVFWND8k014wssMUgpEsllGyEnpWH2meRD/iH/PGwm8pSZYoMcVd5gORiUbVIRuKDmDwzkStPifa4/x7js/K60Dyd+hWM+pLHjL1GM9VPXrmwQBFjVybDBVACuJ/Qyz0PKvk6okcxQ98+1SZkCfRzHOiXAVybsQy4dkz+j2NQlZ3MIlDQ2ZD6YLGmaYRWgtazijCb5D+q+0n6q86FjNSN9W/fk4ab9T2mnZfLOBLW091lW3OLAZIoKDzK/wUowyW9wm98FP1GAPj6JYVGeMuvMMM5W1IliP7YcdJtigzqZqH8kse2jxjD75KmwyxgbXI6hlZhCAhM6k697qIcvbTdNTn0gMckmTWdgKQxtig3MN6+fLcZ5wBVSnDHDmge0GcNZtZoAwgcsss8wV7nLCHu+1z9mmH3OSIV1xgBHkQxvqdZ1VpilTVfUZ/LUFACo0Atdr4DDm8fBdCpQjnVegx0liO8yxq6nxirl9l3eYZ0Z5K85wVawHSt+H5UocpsbvMfbwWjrcSbhde6wxQQKY5I9jdb9UXaYYY1p1umhzhILPuzsR17YQLDaxNpWDTfEQXjyDXDkg9oc8j+VMiSDeeJZEFE6wKIafSEplWqo7M7Rdq5smDnq3qCdDE8b9iyhkBatfUu8CfBcgJnYjJ2J4CnawfSUIkLMwf8d/+cADY1xbf8uAHqLCQ6x0KY5Vhlll3mW+WP+ARka4SsttrXsOYY48M/dH4xpAamnZIPMIKm3+qEJtlCIicLSPmAhAEGxw9XL7DJGhjpKhbfRlwGwZZcsW7BHJjwIJcGWHDlDnREnOWhf/w/4QbBf/6rHFwPoeVjDZxfh5b3TxBBf4EMKA2Pm4ePv9SbgQ7HjZ85h/y6Q5afw9M0X7bmXCNDi0+JLcA5eeoIBB0X4/JsYaNYFn78FT6de5NNvv5SwisRAEutIARRVeOkD+EX+ZRiB8x/+GvLwP37vFT7+Zi9P//6L8Bo8m/VjmiYJX3D23pPXzwVY9WnBJDTPpkkYfWLwNUnAHgGdIxhY1XRQ5RsYoNb2z/xNPz9Tfg4/8+PolLb2+r/7c19YIQCnr/z8mQEtUwQg9MLP4YUSCfCS9ucPkgBur8HTt1604y93nDuFZxQdOOz0RDuzc89FePLKuWBtPZsGvmKsSZ2nZ6/4ZxczET9mnV+d62/6z3yDhM2WJwFHp+34nr3dca6LDvam/Ge/npznz6b9vb9Fwkw8b///+d8lSUeuwMXlzzh3YJ/rpU/h2Qh8pfwsAk+efbPj81f9WBSuMm3H/LO536d1zs7jk2+dS675j/xnXvdj3sOub4XB6DtWmEjaP4sDz3EdYc//2dDvJwCmAlZm/O+SVuf8nMizUdfnEJz7iARAdDD02c2O19L5Lvr5FLj4KvAYfjV/gc+/QzBXn6XhM73+JQwgHCIBEr/kD03dBA7VyXiKrbGyWi7pPCUbE9hhT2KUUa1NF/tj2q8JkQAgRcu36Kbh4FoP5n0i4+M2qZB9bXA5plI9NKhQYIkFis6CszQxC11QKAIQUqAPWAhWnX6+j+N4vphiKk4m2aTi5YpYECrAEnNmSzCzRiZpKtXkSKIo1kubLvfxsdRGsdcEqskQXObbYkzI+DnLSaS6SZqRoe4yvgIyojdPtXJ4tMlvzYBIA8T+Gf9JFC4fsBCTYW3MKj5zVN20NxfNrlgbg5QYZ8sBXivSp3hEpx8MWIKvirZj+iJ10NhL7Wg87RyZebMYJGqaNL1Wwp0VOY1oMHNUmWCLN1jmhN5o3ofZj4TeDabYYtzN9dPRlBcpscmkM6dy/v32kqbFDmM+ybfr4pJ/JskSa/Qhg3CzGO52ANrYQhtMRcCIJGeQ+DfpvBQ5jO8KYI5VtpkIVpJ80wQC6xzrftRkvelsVUlB5CWkCfixX5O3uEmbFP8N77DB5bjHwUCeSxwE4LTBFPsMh5RGQS0fBQX9y/v4S34vJtJAMHr/Y/4ZGRocevMjSaMCZDaZ5NvcCiBN143YSLb2pVHaMxgzcp0Z5KsH+Bp7Oa43Bc8YS6WXqjelWU6DzWEAfssZdocssBSSODM+t8TAPBWHmqsoLdaCLFp0JpXvMhrHeIqZxpco0u8sjVXmGKSEDMwl1RYwL+N7rRtqxE1qehT3hOSWDW/kxeTSsdR9XZN5vcIxlA6oYcDbvBdgozHLDeRSEEfTmc8LLPEd3gu2jxIGxTZeYY4f8TYbTIU/piTPatqapB10NBbkIcWQdun+EaC066mvQxyEfYECHjRwEIPT7kd7xjYTDLu0XgM17Y9JAFFvSKx0LGXy1Ohjh1GWWKCP42gELeV9hNvcQJYKNfpd4tdAnnLrzsQ0QPUo9m4wf7oU7WC6yRbCmsR0MPaUqimv2yEOqJAPZqYYczK6F/DXxzHbzlY9YMjBm6NgMQ46a1Y+jkfknPk5EEwTu7YHfXhi6ZgNMtzlKgpCWWMasCHJ/5R3g8n8gCuArcWX2SBFO+qMDaa4w1vIfuM0WAVf7sfv8Zd02mkssASYH+eOA8eScHeCvW0s8bRKjnG2HHQ1K4AFllwR0AxA5sTXhx33Fd1gijRNlDQ7xm6wL8sOg5mtRBKSZfWK/X2AagwYlVwtuaHqLKsdj5hiIxLd5RNZo59umrzJEtOs0aI7vC9VOwDc4HYMVcTmrdFPj/sISyKvkCnVInYfmyqjl5MALWv08Z/xf43j1r0qsHKIA/4Bf8wCSyjRW4PLLCfknTFt99Ex8ui9w3WAYLJd5w41+phjlSk2OOASCt5R2EmaJl0knq8bTCFbCVlLnJDlGndR6vhJxzrXIh3+clqDdQ1kqPvwJxfAn/lWV2M/LFBGVj8K3BFwOc9yrFvTrCFrgB3GkLWCnQ9Ljr3CfVp0o5C1TgDKbBcabl3QHddGhUIMOEzp0AyZ62U2KFDhJrfis+h8FDlk2IFA8xX8kE0mo15XDVunB4XLVMnFIF69gIb5Ii9ImjvJpvua236uQeMou/R7XQ3EXiGfRnmGykqjj2OGeBxEglF2KPjeNkiJWVZiCCJ/RPmaK5DtxAfJv+njiwH06sBrkDqDz8XEkkTyHHx+Dn7+ylfhvDEAno44E07A3nl49hUMjJm1f//sW3CSzsITeJp/EYbg569/ldRZm2evEmyyX45c5IUzePKmgUiPL75MPZ2h5/RZwoK6SDCdnn7jRT6e7rWfn7HjG2hWeTJ3LlhwI+19Bp6cUkv38cyv009nXuKXr1zko1e+xi9GDAB8OvUi/U8+C8+6cqrAv37ldU4unOPzLgzg+QqJtNGP4dOZl/jsNXiSP8fnDlLVz5/jszx8/Pd6k+M9A143EPNX37zA51MOkJ2Hp6+8yLNZ+OWrF3l66UU773/Pfv7J984labAFDKS75KDhpeR8fDrzEr/85kV+Nv37CQCbh6eX7DL5+NVee09noz35j89BAX45Z0Z3T195EQrw+dftu3vBk04vHnzGL6Zfhkuwe+H3+bjYS/niBTsHX4eDC1/lSf4cv3z1ol0DN+HTt16CET/GInz62kv86+LrfPqNl/j0tZcgD7945WV4za+xInw0/bUkXbhp4OrT1140EE1suE/gv3/zf8LPpn+fc+vwUgU+O++AXAUDyb4BRxd77XsSwDxkn588PBlylNklxb+cu0j1woUEpBLAVrT74Ff5C3x20WQS9XQGmpB5+hk/K/4+n868xLNZAz0/LvbydORFPv8OPJu35//y9Yvmeygvwa8QQOW/fv11fvGtl/mzV9/gszk/7yPuu3PRr/Wn8LkDwM8G4Vne7qlnr3Z8tr+bXAPP8vD0tReT6/91+Dxn54nz8Iu5lw3s82TiZ0Pw8XwvP5//qr3PFGSbJ6xcfN3e4yl0taF8/mU7J9MY0/FTOPqmNNpf7scy34gNWTIxSSYKLo1Q4W2x8bbRH3tjpkYwxRll8vG8vDd8GRrsMsaoe4HJk+cUk/d20/REKfOmEZAjjxx5Qg1xgBl575KnQp0eShQjNWrdE6BUYHX79PcKD+jlJH72n/MPY+O39zMqf5M0DzyVSs2yiiT5BJkP0bg3egUU0mFhH+kABNV0DLuP3DXuRVN6jElB5dEjcHDLU2cz1EMeMMkmo+wiuaemkJ1TakscM19ABU+sMx2vNcE2N7jNGakwvq/RxxoznPlGrdSzAY6YYd3f/zhkySUGo7gSwKlmW75EKhpapFnkfhQKkjB2phPXyQS78x7X6KPGCPtsMRHNnjzBOtkfkiSCpTOfkg32oaatZvabcxbdKZJdD7PPLf9uJY3c9km1wgNO6OWxg696rDEd9wMQhecBQ+H7KAPtvE9cVdRKuqbnX+E+N/kxBcoMOvBhIQZWrO8yRp0MK8yywxgyyFbTDgYujrEbMqcClSi0FQRg4OyRy5or9Dhr8ga3WeQ+8ofbZoKGg3aWcJdmyllTPdQjqVAF/Jf9keOJJ3RbYS82WZsuWnQzzjayFuhzgEtA+Boz7DPCDqM8cs+6XUaDbWJrgn0fuk67abLNOE3Ms8juC2M9SWqZ4izYn/J8M+D2lAm2USDGDmNsMY5CEF5jk4azHMQonWMFBUdkaIQBvDW/KWZYZ5EHZDl1H8408roTKC6GbZYTbnIr1galUJ6QZd8TqPuoRVNozNl0XMvdtFwOVYmAG32ODPVoaPQ9CECVZ6XWXbFDNIDZZ5gyhfBFBYLpK8bQKDusM+1gZoNtxslxxHf5U+duVUJWVvBADSCacLHIBUZo4AI20ABiD3rAYjB8ZXKuvUCehgJAxKBLvFi3SWFeW6Pshkm75IhKKdb+2I2FE4j1USZPizSTbJKm+dy6bD6Htldoz9UQLO2Mb63LGnLoHEumL0+wfTcZN0+yZoSrnJEKFsg06yxy39e8PtaZdr5PPmoPrTvmmWfycvPd6uEBV4Lt2sD8J1eZC8aJDZLyAcaXKPq9lQ5fQIBV5jwReTkGWZKql12+1+1XtEBXAQNqYsUK+rI//gX/M/YZdpDKzs8+IxR8XRILT2yoEoPBrJI9gIDSIochGzcfQjH7euPetgTWBnOsxOB0kQdsMRE1Q5aTYOSPOAijGkaJuWJoAb4+9jtLaodRdgLAb/hrao099oFdxTn8dTLMsM4JWWdf2Ro4wJFLeSvx2nln2tlA9pg2XVGnyZPXgqvynJIN0E7JvFo3clTdL8+8zDTotGCLUbqwtHu9t8KXNEw/IcssKygpukjJmY+NWIclu19hlg2mosYeYZ8cVbc+aDlD1faO69x5zuNZdaoB92Z5s8KcD1FsGKheQkMc1ccagNhQPpGBKqinSo5NJmOwpZ5D+6CGBhVXpIgJLH/iNE3e5Z0AwXJ+LsDqRg1JC1SYZo0UZyyxwLYPvwa9htzgMko91gD/kCLjbFPAApakCpIlkdQZspmxQW6eEfdU1lq/z0iwEsXSFqAsJvY4W5QYjDRysfV2/XuRtcsqc2z4AF9sa7HhgRgiick3wbYPQrqYYCtY6ptMUifD+1wPFr1Y+aZcGGGDKRRkqAC/XyN56L/98YV46D395gscvVyg0KxwkLYbN5evUmyWSJ39mtr5C5yQ5ckrtniU03lKQ5Y4aJMzM3nngk0ZUxfaMU38+PVeWnRTLnZTo5+TdJaD9BBTFzbiBNXz5ks19Yo1aP3tGicXzpHp+ozq+YuckKUvX6Pv6SeU03nMSyLNR0MDZIas8ZpvL/Ppay/Rc/qMo1SOs4s21cp1PaF0/qsUn/6K5fNGSy02S3yaMzbe0cUMrYvdNEe6YwLfpov6+RepX7QbMPfJJ9Sme2OBOWCI1vm0sXYudrF1cdzM3M+bnOij6a9xwFAs4jX6zFT64kW7+S+Y6eJJ2nyTNtOTDKf36fvklOqFC9TpofF6i+KTJzTTUB2yc3BEjonz2zHhlpFwlhN+XvwqX+/6FeThKJ0UIZsXv87kk5/zy7mLlrQ0ZFTT+kVrCifnNwMIuJzbYCtl09DC048hDa+WfsH/WHyFPmr8auQCW0wwxg4NTDf/s6Hf96a1m4XcEndT15h83bwI2qQYSlnRdjRiN8L/8Oq/ZwmgF7PGtilmmWhuUb2Q5TY3WEgv2fTnlRLpSy3Of/Jr5tordH/2DHLw8Ss2CazRx9ilv6R88QKbTDLNGh9P9/pG1MXAk1OWeYPCK1Z8blwYYOzNnZDAnJClViwj3wU1gGo62+dT5J4+od31Is++ApvnX7MFKzVD+0LK6b4VmulultJzzLJCpuszsu0TNi9+3QCHpz+lVXiJZiqhT4sJ1Dr3EunmM341coFTsnw83WDgySnNNByc/xonFx0E+uQJ+xe+ZhPkb9nmKjNiJdqlOKNFGqbLbvRepn0xxUDbKMq/mrbrTSBJlhMm2lvUz7/I1sUJFLDQ7oKXnHRS/ORjA2HzL5vZ+atjdH16BL8DMrNBDhnhiYdKWBHW5awjK9KsUbnPIvM85DY3vEEwKZiYSwJ3avS7fLEZlP4r3GfHKdrLzHOTH7PDGHOscOTTv05/iy3GHeyzouaYvpBPDTvwY35rrQD62qSiGVRa6yN/3XmWecg8o+y6p0U1TLwrFFyilQuWgSRgundyHCEpZBft8JaqkmOWFXa8UDXW2gZAACEquLJYMu2hs0IkN5ZkTkzCM1KsMscoO6wxwzXuBri5xzCWXroXEtE0rQCoqgwES0ifQcBkN02WWPDPU2WMHTaYiu8BbPKuolB7GhBTePOOmo3rxIDYM5p0+3d4HI3ovh/rgDPIJFdQeIka2KvcRXIbUfsPnVEkppCAKhnMZ6izzTg9NHjs60KaVoQOnJDlbX6EDI/lXWOeXpqQ17zwMRacmKe7DvZqwtv21lvT4xJFKh3eKvJ32WcYM5WuxjVzwFA02kcu9eihn1vcDNBQnmwC6CRLLmIpnkq7k6Qv9hqXyKqxPyHxjlThbMWhgeMqSqsMMEDVWQvGRDUWyzWmWYumuYIFhtToY4Itvs5f/g2tSH97j3/FAl/jE5eeWBiL7iE7V8fuhdbwYn037n01MMPs8RNuBKCl7/WAIc78OZ3yenl/2b3WxBL0LMBG9/sWE+GBt8040w66L7FAlpMIKgIL7FCoQIo2hxTju9fvup//iH/KCVnWmGbEJd0C1QY4CsaHZEc2TCnzkHlucsv390Yw7MRUNia21Vlioa4zzTrTzLLqe7ixcwQ07jBGlhPu8FawOARON+mmnxrTrHGbG6Q4I+fAkMB+Je/10MCCIbZR4rY8l25wmyq5aM7l4aQEQa1LAA166OOYadajgR+gGiyFGv3BJmv65xcwpT2xxCAZGtTp4U/4Q/qohZeWpFNixZhcuyeYmVq3bV8bZY5VFDRg/lw7nJKlixorzHKNe5FeLe8urZliWMsOYY1pJvkQycQll9a+vsMoecqRei8Wo+THBwzxBsusMkeDHmZZpeJ7vbxCh5w/+pD5YKzUHIDUa6o5lSRzk9coUGHYQcSHzLPJJAssBSgAPnwmE8DBAUPUyaCEUwUJaR0f4sA9Ryu8xR3Mo3EgrA2G2Web8QBuKn6c8mg0YOSQW9xknmUu8vEXvBL9djzmWOH3OKHKAA0yEeIlWZ4YygI4G2S4zyJjHnYgG4ASgw7yG6Osx8G3lO+uumd0LQ46i16J2Cf0hgQ/yyn7jISMXOoSBZUoMVu1i3zXplnzfbTia9lOsKEl+1cCuIaIm0zyNj+i6YMISdWVji15bR/Hsb5UfMjbopur3OXQr7EyBe5wne/zA2QnI3/UHNW4f8RCs3TY0nMAtdjK7/Au8oHeZySsROZZDmDoCFvDspyETNqUDOYdqL2/TYpBSkgaLIuDEkUmPFBDYKrWpU7WlwYbkkvf5WoMAuze2iPFWfTQBcqsMOfpxgbCa6BfoBJ1vTHqhgOA22KCUXZo0ONqiMvxfYvxvM4MU2xwQtYHU+avKP/lGdZ8cJkksGsYoyELgNji2h/Mz7rbfQUbsU7NsepKiW7q9ATJQeFoukY13JGqSEQAqUZKDMaaZ1iK1XVFZ4Ua+DrH27wX17URAawvkFeq9lOtl6qXFQRXoBxs0ALlYHmr5pAP7L73KZNsxv1uYYU9vMFy1Ofa5/6S3/uN1pMvBND7l+k/YJwy7XRX0CBr9NFKd1NOF4Jeq8brNjfooY4SD8Us2HZGhaZJMrZMjN+NRWKpTIYky7fEGlCfjKVsAy2cr8QmXifD5vlJZB6rdC3z/KmwlbLknr4LNWeaWOx26rwh8MXzpZi2baatcFDTMcqOb3SnDHDEBlPU0smkOXXhLIoTa9QuM88yP+EG06yTocGZF4wbbuqui2OV4ThHSpE0mYmZqu77glEnQ/aCpc1Y4s0Ym87yUmHcJsUI+5HgmKHBIveDTnuQN0O4DHU/Dmv2yxdNcjHlPi52E+djobNUmjZ7qSTZivMwcX4rmulxtuJ6EahhAFi3N8oVdlIGHjxgESVWGsumF4UKaKOTb0KVHBvpqZj0qKhdYoFKusBo3hrq4fN71F41zwQtqrWLmwEm7jPCLqOe/NNF5aIVrT/g+9zgdjQSH7rkUebu3S4UU3MuGVedHrLnT5niEUfpbKS4ndAbnkAt0shM/pAizfNWEB9jRvLN81bUqohVUZSnQjZ1Qu1iH7e5wThbNhm4uBXftU3+hum7YEbzYgYcMBSLX+e1BLgfjnk8DHFAOmUU/NveTOkaylDnh6nvkUnZxFjSw8L5Mifns0mzdSHFA65wg9veoHkizJf8McivyPgmLq8MNYh7PnlX0aUGTgldd7nGhEsqxKqaZ5k05n1xmQ1G2Y0N1EC7rSgoNK0DnktqUoGuBqZBJsBZTV+3PECjTg8NMlzxhNMdRrnNDS57Um2bFPuMcJV7YVorhpl84RZ5gDxEbnCb/wv/WxuGUIrhgt0/LW5yy43sj2nRjVLfNGEUqGXreE805lr/e2hw7Cwx+fJZ833GHsMBthSoMMMaSuhVcIKSscwIXobsPZhhctPPlxrEDJZiZc3POFvc4xo5Z1C8wXKYyptJ+Livsw+o0RdyM0nO0j60EWBQYtB9+CSN2aHfhwZKGTTmQyHkframtAN0FOvjiFwMHJScvMU420wwywoVCqwxjXnSHQbzb8TvdU2MVZivM80ouzHxBHz6a0DcoDOPfsD3wwdLDKIu2qwwRx81FvggGr9OaZdMgjM0mGCLPmpeVB2yyH1W/flau6ZZC9n6W9zB/KSKzxVt+4wwxIEXw2fBplKAxjD7tr+73LabFqvMsu3G+nUyzLNLm64oFsXoNAbgKPJxa5LmGnddnlfjP+GfhbxMXm2SB5co8qIX5F/mx9/lAYe8yoSb8Odcxr7uoQ9ggzrt7Z1NoKwEwFgAkjdtMxGMn35vitaY5hr3bDAF8bwUKbpQQrIxPyShGWYPC+mw50gav8U4l9mgF2MCSvZpDZgNFSQVW2Y+JIx5KiGnrlBgwBtJsGYyTZNeZ21oz27R7Wzr3WClJvfEEac8L78XU3mbCZaZj711mjXucS280ppeWxib5TCGGwA77sFkgNpRXJdJ82Vr0RQbUSu0SbHLaICpWbdBkJVAinYwqjsZCj/ibfJUfB1tu3fhSQSXqN7KceTS3tdi8FSnhyU3VNfaPOKMM/PlOw0Z8AxrnPhaoHVa36n2Ipm656hyhQcozd0azGoAdU3S4fs0zB7bjPOar3lNB46teTwFbC3ZYSxkjap/xn0NExP70AcVZQpkHTzVUEPsKtlAKDREkly7DlscUuQ1NvnQ906Bl3OsUiYfdV4PdRo+cFFNbsypdqRLz7LKJpPIkmLdgxBUKxQcgNxhLMD0Lfe5FFCk70RDyjYp35VyvMYmh850esQU8zxkiAM2fViZyKpbHrLy//zrWXR+ix8tr0NsH+uKgZy+45zvphqCHjDEZTaYZj3Shg2kscRq7XFKlde9r0AHXe/HPlRcZp55lhlzebwCTOQ7p55bbGfJxTWw0HW0yyjrzCAPZHn99nGMgqX0OsvM0+19tobLXQ5Mal9tYoCI5JE2gDvEwjgyiMmpOtdeZ4Ib3GaYPZaZp4c6izxgkk3uci3WsS3GY+ijgYFq57oDdGBrxan3dj3ek5coIkuQTkbkqL/egMvvxbDLUA+wJouFmpQcyJHyQOBkClNrKABHjNc6l9jktai/+7AYFIGkBcqcYlJUBS4NccAOo1ziAKXHinWn9V1DYKv3Lblc52QVI5VIbt/ErAxec8bgOFvxs2larDMTwG1iW5D1GtYk3ZfZ4F3eYQEj2YhlWXW1h9YU1V8rzAWLV9dtkcNgiI54+jgYq6+BJSPrXHZ31NIHXCLj18N9Fqk4O1VpypCoBa7zfgxN8s4S7ML8Rxtkou86IcsSC+HXp3sFCMDQejH7/dgHtxnvqHTNCfjVgF4D92nWkZ3D1/jlb7SefCGAXoMMK8wFmtrwZkdf8GOGuMSBN/+XImnPJvGpuMHkEVQkyw5jlCgyx0oARwKTTsnG5lahEDIsNZDalG0ibpu2TMTF2FB6nhYKoIN50fKi/Sh8mVaciq6FVQXQIJZ+V2UgijwtOHq9kpty1uhngSXmWAmkXKDiKrPkqTznAyVj2hJFVpmlSo4dRuN4K97UaTo5xm5caFooZSbdy0mk3dgNk6ZNVzxPPkoqrGv0hdeHFeJVlnkDMHT8AYsxBdCEYZcxHrDIDW5HMkyVHCvMIa25fGJq9LHCLBNsM8aOJ2sliHyGBss+iayQp4sD1piJInKcLWr00yYVCHiRUpiji2kmwHCTSSoU4vi0wQ2zxwoLyFNHv2c59em/sW7mWQ4/JzWi8qUS0wAIMPaIHAUq3OYGMvleYY4iJdaZiaJcU+01ZjDJxtXYWOUT1E2TihdrZf8ujTJvngECyjtZPwUqkUQnttJdrqIUPU20yhQYZQeTuz3kAYtMscE6M8jrbYgD7nGVeZZ5j++wwJLLOhpRCPb4ZqaNpEQxGuaKS0B+4UXfl/3xCy7xl5yPa3WCLU6xVFADlI01N8UGAxwhvwpJQkWpH2WXTSZDulllgGasaOkAWWdZiTU3hXk99VAPloh84sRek6m1ZMGS8V7hfjRD1rykY9q3zQQ7jDHLakgei9iQ4z5XuMJ91piJxk3SJd3P7/AuRu03yaMNQUwaKcnmI6a4xr3YB3SeDhhyEGqVXZdI1OgP5ljNf1bNtGj4XT6hHPYGWv5P/b6pnpGKIdIUG4y7sX6Sqpl4jCyxQMsba7HMBDqI3r/LmEsB9ilToEA5zJ73fTBzwCXEkqthyXZisWmyJ/aL1vU2JrMqMUiVgUg6VjNoUrkK3TR5wJXw2AOTQ8kvSoWcQHhLPDt0UMGkZwrfkPRH8hkVpEqRFQhdZSAKUZM9HvJ9fhCSaXmZTLIZbAIV1xqG6TtU82kFpb2mmoce6lHMyV9Fsr8tl/dtu7G+mkszXy/HZHaSD7nDWxGGAtaASho3xk6AIJryS7In7y5L+TyKmqSHOllOWWfmufcWy6jzPYY4iHvWhoNffplZr0u0JaktU4j9SteY2HgyMZePZZ0Mg5R4wBUWuU+DjK99JglcYIkCZf5r/hCl9z3ydFI1izK51rRenmjzPATwQn7Q19sdJL/soeGpy+apdkbKfTYHSXcwUBPQ2Rq6KgMO2hs7xtjP4w4/poMRosk/GCi+7bXEPiPMs8wZKX7Ed4JtWuQexgro44BL9HLCd/lh7MHaG9pe26r5/yHfZYqNuOa7aQZTsuGM6woFihwCBGNmk0mvYayGEmt1nofRcK0zzTTrAR5qcH5EjstsUPHhikBzM123RlH7GBigaw1qKVgqYnDJlkIyKqupDUgzg/hR5HepgblAxR4aMazSnnrAEKPsxCBzhH3f2/pcFpvjOu8/V3+Z91vLd8/eAKFWmY3hxnXuRK2kodIE2yzzBhka0VSf0Evb96kNpphl1evV0WCA9PiefOSAmVIp9xlmiwnmWaaXE07JRj1n3qwtJB2UN9oCS3HfaF2Xb17F9/Y2qZDomRy2Eo31CdnolfYZZoJtllgI1pUYt/KH3WAqfOEKVDh0QETMyH2GGXO/RtWhBgz+Be/9ja5MfzuPHE+iX9pxEK/ltZz5ew6i1FlZmOjnz0g5E3Qz9h4RDRTkYiDTVtQFuucvs8EM64ARNnYYY4wdRtnlFjdjXxK4OMcqB1yKOkuDOVlPqNew8B5jQ5t9gt2D6slWmCNDPQApAYX/nH/IPMscMMQ1r80OGOKIHFlOyXLqa/dgANJam8CCtAZc5SGfUbtW2xEuMcqO4wL5SO+14JBmHL/knHWMLSn1gRQuIuiIlS9QTMC9kScKXrHWAiBP+rAyCsuRJYlqN7Chu10D1qdq7Zpiw1dIS2u10BPbL1eYi6GJhvJ91Mg5tjHJJnsMI1ZchQJXucs6M4y5wuAW3+YK96OGzrtaQSrDIQ4ipKhBhpQzzlTXKFBnmTdQ8I1Y1Rooi9WnWinLCTOsc5dryEdO122bVAz4lplHXpuSnpv9hLxJB50tXg8yVJES91mMIaBYgko+/7/xnwULs0Ih+lUxncUulN2EhYEY+UlsSwB554LhIObR3P9cjyWGszAtrfXyu1VInu1Rdv3a4Kc7BobCXv6qxxfiofeS3yC7jIWhn4wgm6QZQBHIVmDtM0I3LQaosscwP+YmJyTGyUZJtZvggKHwvqmQZ40ZHjl7bJTdKJrFSBIoo0181VNz1Mwag3CAVeaeo5fvORtGYJ5SSo6clQc4iDPOuDO8xO4QmCLWiC7eE7Ix0QT8IhuMxWSXUbYYZ4cxjumL6aJopCp8ipR8ueiLi07Akqiru4wFiCbGjJg2llhmvgJaqGRIn3FQ0W7OeVaYI4WZJU/yYTSDuug3mWSJhWDB/TH/IDYUyXglp9lnmCMGIoGu3993i3Hn6JUCGDsl68mVA3EjlCl4s2Z0W0vKMsNkE8YZgLHCnE8nLSDAUruacaM06GGfEUbZ4T/gB+w5a0PyWhUtAw5oZjkNoDnvjbJ8f+R/05kgBUQjp8mRJXrZFEsJf51SQYHBMoreYhz5p9jvOXYZY4VZDhjiAxaCfSImjya/2sjk31JiMIy4C958A8Fm0PcpqeUhZtBdYhCFLqig1abVR401ZphhDaWiqkGS1FFgShkzsRdV+5i+SO/8XXiM8RFd3gRos+nlhD6OOSUbTE3AvSMqNOlmzadeNfoi7VBFjYCxNl088oLFTLRtEyhTCObrW9xhjlXadAVztVPe2O+TqgEs0MCkFz30csK6e1jIO848ddLc5BZ/xD+lQp5V5thlNOS/migv8wbdtJjrmPQdUvSp1p6vZ2m/TvqjUV5mnhzVAETUnNg9eUSNfmZZDRmTfEgEVpYYpOJeNPL/EWPKrt1javSFr4yKrhJFejoYOwIZDjzSQIELur8E3ItFU3U4VlLPFO0otoc4YNYlXTLalZeMAQVpZjz1zPxSrKCzNc9M8cVYkgm6itpNJoO1ssIsy8zzHm9H8Q1EYyn58YQzgrTm6TOq0VMz10M9mj6lNR5wyWwpWGaUnWgINZjRHvEu74RZsYDII2fwnJHy53W5NGYkruc2KeZYQcmeljbWiom3gDytMdpfwRiON7jt4QqtACHaWHLaJJthtJ32v+u7lmfjICbDGfdEMqXxCfioOKtylF0UziHmuK45nXcNobTG23c0hwI/7nE1vt9PnkuV+nI+3uetGBLkveC1a8SSOev0BJCn7z9PhVmX3iyxECxVY4F1R7MhCfYE21EjzbDOEAd00fY6p4UlMubcl9TW5YYzm9RsqmBPmH1nAXxvMhm12AJLfm+vxOsDjHktqmHpHKvsMOp78RjzLDPFI2coTQa7T4zqUXY5po8xdsg6WKNrX/KfNC12GQvG/gTbWLKo1W8zrCMWoZgT7/AuVZdC5jiKtUcM4KQ2TyEZW8MZJqteCyqhukGGZd6gHathim3GecBiDD9adFPkkM6URa2L8yxH/aJaR/L8Hho0SdNwFks3rWCXTLAd6zeY7K1GX4BQ8yxzRI41Zly+XY9hQppWMIM1aNr3LPUDhqLm1jpt7NHpWPsAH3zmGeCIOVZRgIqG/2XyZkfjddMNbrPAEmKbArEvAc56Og4QZYvxAGPEQppgC0tFb8R1/x5vk+WEMnmu8CAacUvwTBKU9V2PsB/XtNin+n+x5k7IcperwYgW8L3GDHsuXxRoqOG9mNuqDQFvnkcCyJaHbIo2o+zE/aqa3fbRMrKukErky/5QmIkIIZ2MeiMgpHnsa06Tbk+/LgTrq8hheJ/p3LXpQsEytte1Y29WPyjlnAghYiSJ/SQmWr/36WKuKexln2GOMUapFAo5joJEYrVKL1MOHKr/FUgj/2cDa1pMsYEsYVRDiLXccBKKAPU+aoyxE8din78LWVnIB+82N3jAImW3tpA3scDEEe/btG5PudpFbNEipWDzykNYe5NIRLrmxY41dukb1OgHjPU9zzLrTAcoPua2KxUKvMUd8s6wFCYBxkBvkOEGtzkh+1yvq/1S+4YIPfuMoKRu9WjyHkzT4k/4QyQX1eC5myaHmG1DngpHDDhAb+zhWVYZYS9qwU5iDxCDYA22bY2y78DWqoQolfhq2/WS5dRrSwNJT3yPk+WB1sgC5QgtESjaTy165BH2USCf9UldATLmHYwFw1uslxpjnO24fssUwpZAQ6RNJv3zGGhs5gZDcU8YG3EvQMY+jhn1vVrnRdiHhhTmwZcLUPEyG4idrt7cPBbNN2+PEVaYxSS3X/uN1pMvBNC7wCfuj2Tm3LoA1LzuMMqRI+GG9ncH1X+M3ZgcyLhQvjnS1EuKZdM7YymITqoI6QOGGGYfmTaK2qpCsY5JzES31NRhgKNYZDTVMEr5GWvOUnrsG3Dn5D/LKQ2f3IuhaCBaBtFOi5Rc0mEXW9kXqSOSFCl5I7XpwtKA+lhj2hvk+ZgQqjAYiSlHK2TDYN5LSj08IkeFPIc+5VOy4yqz9FDnhF4mHEiwSa55ycgfQF4t0tyrkZrkw/BvmeIRg5T4NrcwuVYu0Gg9VzHPw954y+9Kr5emRc6PWX8Xo888vcybRYWxrpEDhuJaAwKMMxAtSeWR9PTYJ58C+wBvGBvOTFsmywmPmIppywqzcTxKBH3AImsd8eYyWB9wP7xOjwDzAeqPYmWfYd7nOlVv7IEAL+WzIr8FTXd0f2Qx03Y1IZ2m1QXK/gybxtmkz5rlfUbCe00yPhWBmpz1cRzGnocUY8ESy1QTY/kkbDER996Zn98sJzHBfsQUy7zBFhPIPFx04t+Voi3LU6ZZj2JqmXluc4OGgwXmg2QMEU28Bnwz0PUxSIky+fBoGqDKKDuIpdEmxV2uhY+e1pMsJ/T7RqVUqGXmqdPDMBaYceLrstYzNZa6Z+TfZNNFK9zE7ADcm8cYr2J52jpxikywtXbo3t9nhAx15lmOaewa06R9zV9jOq5bwAceY/R4kdCim9vcAIgJscDjOVaD0q6GX79sOnYZsTr6OGaJhZhsLvBBMBceMk+DTLAiBJja2tFDE/MeXeoA10/IRnw92D0tqYbZO9SpkGeCbboxz61h9gPsFmg+5l5aKdrB/NGU2aav1RhUAMEq6neQ8NCL8yo5ejnxqf5jxExRgW2Dmk0vVpvOdDZvsGnWIvSh2wdvYo/sM8wuYwHmqaGQF6IllW4zxwrTrMVAAHBQ+ZQ1phFre4GlYJ50O19HJsJ3uRbDNhlGF6gwxk4UcrKfsFAQk/ve4DaSrVkz0kChIRrcADGdlRGxzJJXmaVBj9cBXTG0OHZQD4jm+Rp3kYfKjrMrZVMhJpFgj3/IH2MejQPPNQRKh/wyP1714af2E4EJk3yIkpZtL+9BUmtIkqkLLmO1IWITsTfABlQ9mOG77iVZk3Q7aCcvxRZm5N8mFemikg7mqDLNmgNQvc+Bvg9YxFgfl6lQCGaCko1LDKKAowqFWDOqWNpzlYEIL1K9oaAOWaxUKLDLKGMuOV9jhkFKIcERACCQ/EP3wtpi3M3gE5N3eV5uMU6VXDBCDhjiHte88ThCEn4BLranT7DONHsMB2O5mybD7DHFRkhddxkFbI2WLNQYjPkYjpr1STMAL62TUsq0SPz2Npl0uWdP1HQn9MZ3L8ae6kYLlrEhqQZZD7hie11z3hkVPUi6p/quTYob3KZNiqvcowezFxGbXHWSTNm1vg2z5+y3YgywjJ0x4NfkSQwg3n36DqvMss8wCgvR8GiCLSQJF8i6zjS77nVYxoKG5O0pKbOCOTrDREpeU+36/q+9fJq1uBY12MpRjUATpTybcX+VE3oDLL3jxu1HzlARu1L9lPVgPQGOZDllhTn2GQn1jhicAhk0+DKW3imvYWELS7zJAxaRJPljXv5iF6LfksfvO3tfNbVSndVTpGgHiGcAhYUMaEAlpvc06xQ5dCDYhsNnpOL7Vf8g9lbbB6GSUG94r6Oe2wz6hwO4MGnrGWJXKmwBrNY0KWEjlFHmzzfCHa47wcLUY6rJSgyS4yi8hY0xvxkMsSwnbDNBhnooJRZ5EJ9Zw8kB95cTgeYxlt4s4KXbe0qFhHT6mzcdEFVt9k/5o7g3AdaYCYapeUKb76vWV7GWNdiTRYEAfgUoaQhTpsAP+Z4DOO3ABrKYB98y89zhOiUfemvgMMRBEDXktS4WpwWnNVlmPr5bDRbWmaFOD6c+WPhP+SfPEWek3lOIXJUcJQbpxRRdAutzVKO+F1Av9h4Qg/URPx71s/LptqFEjhH2kGdh2ok8h36uLbXYgOou2jxmyEHlY+o+/NtjBPm9H2MJwpMOaw44U/EMs4IQyNgpb9Z1P8pO1Bo595/Wnrzn6skm6Rj0FznkKveiNthhLAYtqvP+Mf+Ih8xzwKUA6WWfpaHFICWKHPqAuhn7xQh7kfp9wBDvcz3qeu0zX/cwkr/q8YUAeoq273FquXTByeZsVNI6PUHtLDlQoyJ/j2H2GY7poDZqASVDHDDFBhNsAyZXOqTohXVfXJDyEJHBqAyYy+5cJDRem7PYCWLCAVHQq+mRNGmKjfgiJtlkjZmYqvVR87nfPk26yXHEFhNsMomSGI3JZxMIfR41AJIjFZyLqEJEsrZ9hnnEFGvMYElb3ciIXkCiiipN64Y4YIBqpMFImmHFaE8AnVnMrFwT0F6MSnqXa9HEt+gO9lqBMocUQ+amhDjT8j9GMglNu7eYoMelITvO4lTD06aL29ygjPk5HZFj2BeCCbZi2l6iSMMX1yEOIoFy3T2gBPQZA9Q2pik2oikVUCv5VZ5ysNXUfF7igHmWw79L0+RuWpGMKWC3Ux6hRq1zuppIGhuIjg0ETV7gsVhDuqEvkXjdmCR4P343U/t2sGrse6uEAbRNzHaeY7WokbWEPUuvMmDJFowZ1hHbxu6vLdaYien6JpPsMuaG+TaZFdPCmIxd0dSIxTnJpk9j08991lf46ItYfn7rHj/3yVmeCje4zU1uMcF2APnmv2lTnhN6eeiA+wZTEYGu6XzFwbIyBSTrlymw/N62GMfMWXej+AACFDKmWT8KNpGcNssJZ16cac0YZysYRhacsRdAuKZaE2z5hK/MNe5i8qgSN/kxI+yzwyhlCiyw5AOZWhT5W4wHy2WeZVaYi/fTQ54c3TTZZNIncjVmWQlws+ng/TRrzkbYQ8EDovjL21MBFw1nBl7lHhnqDPi0eZRdxtgND7gSgyhhrezsOTFeTGZqwymTCltTrP//L/lfBui1wyhLvBmWAyYvuQcQ3muanptXoEk55Kei9UShHLZW9dNNKxhLKdrc4Daj7FL1YvOAoQA/xDqRL6B9lykHfI3hqz2mQYYd/44lAd5lNHzztBZ2yqVMnlhHRvVNutlmIqwo7Bw3o2GZYyXWVRWJYgfuO4OqRNHXtLO4Lh+wSI0+9hmh4SCeJtxKbLO9wABTPXQdgzWzkiwm9hrGcBAQ2OuNtQBxSS2VaiuJozEOj+I+1B4qJleeCrIAUVCWru1JNilQDlD/y/yQgbS8gdM0fU/rDbl7mxSTfBhN0y6j3OWqe8qVw1PN5DJ5SgxiTP8JVpmN82y1zVQ0yfItPSUJzBjigNvcQLYiamL0f+ZzZiDEPiP8A/55AD6TbHLmYKxAIgDJxDW8q/uAt5sW06wx4rIeMcEG3C8uxVkMBcSy0z2hEBZJFgUanpBlnO1YU/XYZZQ7XPchRk+AKFoj5lmOOvs2NxjioMMGYAilbGodEwC3ylw0dp0sLbFVNpn0Stoku0fk4t5UYrAkp0q3lq+QbBSAAB1H2WGOVVqkna3QT4V81K1tUvyr3Wsc0+eg5BFbjDuI2+Sd9LukaQV7ZZAS60yHhYFkYGCS0Ld4HwsQqCBp4xSPmGEthtfy8bLnlIO5JrmfFDGj7PJH5/+ps/FrsV7ZfdB6jtSge0MpilrbwZpdyRMl7zeA4z5SNok1Kp9FwO17ZBdkvrFZLMFU60+dDFM8YtpZVInkrYth9pAEvYiFV2goZ+ymTOwXBwxhVhdbmEfrhwEcaD0XgLHEQgwrtcfIuzzFGXnKfJVf/XUsN/9OPFqYAqGNhSeIMWZDsS1yrpjIO4dcQF/FQS2pfTrtLMBUcRagscMiD+JeVshC0nOloh8WmSRNizVm3PIq2Z8lq1VNLzudKTYY4oBRdimTp0CZadYA2R2kQmIoL7yHnga7whxiKoGBe+pZ8pT5Ed8JlpUpDGyPFVHISDoZX1fTAXxLdbXrAMw609FLi4GX5SR+1+Axx1HUM1J1CLTfZiKAUd2jJQZZZp41ZkhxxgIfMMxeAHy3uBl9kAXG2dBzkftR1+wzwgMWY6ComtfqdBtaaAg25kNdHYeYcyWKzLAWIJ99zn62mPCadY9p1jAbBANjdxlznz1LaD30WquNkW/ucpVl5p/DDwTkKURDvv9rzASzUsxMW1823GLFrj8DDi2A5MfcDDDS1rXEa1y++UYqMns0DWzlcQrWQ+seGaDKFBuBHSiEr0EmQFIgZOxVZ4WvMxMkBhvwj8e6aqDf8XNqNllOiFUsWzGRFHqox54o0NaGNoMMUvL9+zGrzKHU7zoZHjMU+1Efx0yyyRQbHPLV32gt+UIAvUdc9gvgcbBHuh1p3GMkKItgF9Qw+0F11RcvuvqZF0YTbLHI/SisgUBddUNrIUxxFsV95xReja0S+65yLyZWW4zT7c1TkVIwx4CYJhhV1qRhJ/RGPPcJvVTIM8YOU2w4s+IMSSHVKFadXtpDgxZpLntao2RnYsuomCmTZ48RxJhT2MWgTzOKHQWqCgbRbHUzgxUKQxzQywk7jIW3lFnVHlGkFNTqJt0xXZFcTLRaTSzvcyUWEiAAuyyW6pqmxRCPGeCICbbddHkgNi1JxvYdcRfoKnS/j+MAiApUqDjzTcXjMPsumxmgTk8Aj/qurQA3xp4a2hMvRgC2nVUmcGGXUbZ9M5EvyQBVerGI7EcO3e75FFhyZDWYw+yRp8ww+85oMbq7EoZ6qHOdOwHOiV15lXtYGMF4TK5UDKqxUeFoRemws1mrLpeoB6ugSo4f8Ta3uRH/Ju8seQdO8ShAQy0wkqjrPSWPkB+KSW56nruXNKlIJq8GsIsar41MJuLybRAzV34Pa/x7f00rzm/3w6QRpZgsah1IccY4W/5d5ELudOwgwDu8S5cXbmLciXUpKnsftWBgyYi3QIVeL1TMyyYdsgGxU4d4jFIZ6/REepcYAwaGWc7SCnNesPfH/aw1tptWFFvyhZpmLfzoch1rHxBgvO5JfbY+jhmgGhH0ajhafk/0cUzF2bJ3uUaVHG+yxARb5ClHswVwwKXYD7Qej7PFKDuMsMcmk4DtCdsub7rKPYqUeI+3WeaNYBCoaN1nJO65ht9fJm2pBLtOflFiiDfo4X/BP2GSTeZY6QhisGJEm/0DFjlgyIJv/Pxb0u9lN4U+7Bgg1J6bjHdOSleYjaZ9hrVghXZ6y8lwV81dp7QLzB9V9hGSvAmMPPJCbIydYGukOKNEMZgn5u9oRd+MM0ZUzAoYMFa4hbvUvaHT96FHm1TsDRWXu4lhZ6barZDBGovaaoo9hoOFpOtetUAN82m1PcrYQmBMHAMPdqlQCH+dPOZ5aL6DlmIrEDvLSTCDWs7UlCeqBhpj7PI2P+IW3yZDnS3GkcxIgVrWkPX4sPHLn+yowBnJ18WuKFAJebQ8u1TPiL1xg9v00AjbkwdccaZ4OphyU2ygNEf5LUs6KsbHEQOI/aD7VKC2GAsGWYwg43aFLWSoc9kHXd20uMRBAFLrTEdQ0C1uhhxKrOR5lmOdMKB6MM6L7gl5vwGIlTLLSryWalXV0MaIO4v6VINv+bFuMBWsPT1f4PU8y4ywz2U2fI2tOZva0gPF0FaojzXxie9ekcNgOEyyiVmSlL3pPuMACwK6x1X3cLLh0hILsZ/pHlRNp0Y08XBKh4zU1qvj+P4bXv+/MXqfDI1gNBoo24h1r/P47Fxb/ZWjyinmwSSGesJIysW110ctWDtKna+Qj3rUQKlRb2zrwSLUmir2uRQqYgRrv5etTxpT2UjOaImyBu2IRafr44gc/7j8j+I8ao2zxOUG8ubTPmugRJUa/ZyRYp1p1phhike8z3Wk6Oj3c2UAxinGEDcWk7ErrRbXgGaF2Y7a8Yy8kx3kx2uhMhNxTeSoMscK8sS21+vtuMcGOCXLR74n/C48xI4qUuISB/yQ7zmzNx0ECxv6Wn9mTNdm9L22D40gdqPqG5Ps74YPnhKUBahf5w5HDkwIWE359Z3jyGtCY6ZPscGIy6/VK5l3pK3TpkzriX5R3pja86Vs0vp8QjaupU1eQ+yzE3qjt9Bg4Hv8kAWWWHG7LMnAZdeh9cz6T6tr3uNtShR5k6WQQuqelFer6s48FrQ5w3qATj3Un2OziTnXqdrTfaw+KknetmeO+2Dc9rdyADsj7HOH67EPbjtjb5aV52rDAWdOa98RO1vp3aolAJfklxy8k4rP7j+T8nex7sSMChYsl6YZGIKwEbDUYgWsiQWngZl+TszQQ6/9cg6QgfXXWkdEMBLomKIdSgTZP+WdaWwe4zbQmGQzSFhi6Q9xwEgHU+0+i1hQ0pssMx9rXca/O6unTaEz7j1nHQuo0uAkywlXuYuCB+dYQem6ssxQzaK9SpiRWJ8akv8hfxKA86kDyFtMcOx1jHoAYSE1+nmbH1Gi6DVuDzOs002Te1wjjcm773GVr/+G4ZFfCKAnrx/d3GCo+zzLzLAW3khdHSi6WEurzCG/uG5aMbU12K4/KJT2bwZYyX/BvBhqVCjEVAhggKrTwOcjTUcNjaYe8zzkMhtxEmV0uMkkaVp00Y7GSYWJpvjyxoHE0LloA8IAAQAASURBVFcae7GlZDQquqkmENKLi34qaUna0d0BLIVvl1E2uIw8X6zJvhSLvYw3tchYZtlRgGwp2tzjWjAx9DlmWI/0PnkKjbCPkjLlqaUi01Iij4J6K1ltlQG2GMfCEYyhkaPq9Fe70WV0XXLyadqBWkn6rBgd9KK3J9gbRrk+i8JMnlpaTNOYgx4Q7J4afQ5A9sQipMARfU+6+VK0YyFUo9kJEkquJ5BBk9sRlxoqUESUXjWbl5x9IYapfGGMrWWSdPlEGA/TKMeXOGCJBX7E21GI69zt+CIl021JlkxGscoYO7R8GiMJLCRhBJp2qAkuchjTfqUMTbFBkVL4XV3lXkxQlN4zxwoTbPu0N8UGl32aYcmbYs6AAQ0yfU3TCsBYLMQv+6PBOer0sOZTIHm1zfhkS2ud7u0ih4ywzxSPopCukuOee9toGqpm2CjlVth1+tkIhGmTigQ0bUJiJtv32kXFV0J5JAEhOTcQfY8hHiN5gorLFGeMum9KydksAAqfADN5z1Nhz5my2qSnHCqXfHTNU9L6MWaaGeum3Z8sG2uO1noBO8bQygXLY4S9YNKNsuNWDyap/4CFABn7qPE2P+KEXhTsscASh85ylETtGvdiGnrmjY/YjgIdNKkTKCBfO4GXAgqUXiy2EBAFmJhFavoUitHGmNbrXgip8JUdgJ4754bqTbrp9fMsIKFNV6yJ06wHwLbPMGmaIfEVy7dNVzBEDSBcp5+aSx+Gw9RX+5S+nxnWwttFk3JJsnXe9H+dbCD7jCbLqdGPSX7XYz8U+KImQQMrXceS9+l4juljikcxOVWDXOQw2M2SwE+zziwrsa9Zs2GvN8puSBDlbagByhAHsY6maUVdo4AQ+cGMsYOFVVWcYbYXLM8jBpApc51zf3OL0t/S4xdcCm8aY2AaKy1HlQYZfsj3gjmS5STWnzEHW4FgaQ6zh7yVVSPK4iPHUci8JCPrphX1hgYMArE65e4FKkzxKPbzCbbiOthiInxtlSCZos0ew8HoUFjaDOvROGpwk6HBLqMUKUUaqDH6usJ/CmCMnRhMtkhzg9soYEiNvhioA37uxJ4Ry0+MGfkNS66mQY+YYfItbWNyJVl+yP7E/JwSqZqANoF2SigfZZcu2jGYVA1tw8H+uAYErk2wHYMhyWXFIBug+lzAXMXXNyWea5+qkmOKjahha/Sxylz47VlyuoEfo+zwE25gQT+WlP6GMytVi5snYFdcO03S7DrQscEUewwHs04WFPI3BqLOkW/UUbBJEgP5lteZYntIedIplbba+zDSdOWh22nzs1CwsIkafaE8sh7omC4HtBWqB4S3a5ZTpllnjB26aPMGy97PWH/zkHmOsZCUMnlnLVW9PmnGkE0BWaa4qfvwMR9DXe33m7wW63aeMpNsssmkD8J6AzhVPWOytle+iOXnt+7xl3yNByzy2EEwY4Yd84gpJIEsk3fChQ1cFZQl1dsi95E/m92jppSR32KN/mC7KjhBz73sKrdh9lnkPgPOTrMAjL7nJNmyJpGn+y5jTLLJLCs8Ygrzlzv22uo4iBMKZQHrAQV+CRi7zvvIx8xAZOuJ15n2RHgjJcgTtO3Dxiq5qBHU6ypxVIQTMeq1Bib2CGYxIKbYLmNxjCIgAGHl0aQ7CCEablziILz/5nmI+YReokKBfmoe9nL0nKe4gLLv84MA5OSnLcxCw48macxPOx2Av3oq2ZTd5BYiVqjP1d6W5SQGjjmOAlxbZj7qnGMS71H9mmc56in10rKLWmc69lT1g7e5EQGYsqKxmq0Qa9cmk+wwRptUhGCdkYraytQvwg4EkqbDnmOP4QhGVY1doEKN/hiKjrn0WSrIm9zyPXaQJd7klCTLQNdLFgvMlOep6oiWr9OzvoZagKetn7OsRu+qe8RsI7rjdRRG0sdxXLcabGuAK+VhjT56fRijHlB1cwqT2f8Ff+c3Wk++EEAvz8cx7UpYc1ao7LlcLEeVPBV23H9D9GEh6RNsRwCCTDctcdVo6aPsxKRMEktp89d8IdhhlC0muM9iACAKKGj5BEHP1eZfJh+eG2cYm0ybjWKUVQhtMIVi28WQO0Ai06Fgk9XpiZQaofcywBWoOeCFgC4Ioc0Ckrqd/6LJoB6iCxsjYCfAGmNhpGMavM50vKfkxKLpa2YoSq8YfKPsxORYhuE1+oMyqokBWGEsU9dj+p7zChETQQlkmpz2kHhCaRIJthCNsdsR6W0Ag/y4JEuzZNdMgHhKVxJQkeUkUm5zHDHNGinawV6SX4+osbuMcpV7yGNpn5HY/Ey6tccEW1zjbshtwDzHdt3bcYW58LbbYYx1ZmITlfQXiHMlieo9rsaESf4AV7kXTXCn11WN/pD2yadJxfiWU8JrPp0ruATX2IHW/L7FHQ8mOQv5w0Of9IBtuvIZsgARk77lOEIpbroGjWZuEh7R3C2BqB6BKzL/7OpYpPo45mUv+L/sj25aKLRl1FOS7/AWSyxE0V92YHSFOQqUw6BaUvNuWvwhfxL3qRkJPwKgyCEmGVhnllUkBZDHkw0MJjgjFYA/GFi9zwgzfl+MOjtuiMfkqIZp8AxrAYjJ06SGma4rASoVV2EbRcJrurnuabcNMsyySoY6s6ywxJu+0Y/6Bl2OBnKIA77PD5DnqmTvkudq2qeGXKCWbf4jHWBYFys+JNKmn+OINabZdo8oA1VtWCTGuK5VscdqDogL6BJbRfeBJWI2HdxPhU+GwKdNJiPFOkPdmSHWnKnYE6UfCCBvmH1kyC5ZQb+XWA2XzGpCCvAebwOJ7E9FKhAgpoJTDh1MuM+VmOofkSPFGVNsYL5yCZutjxrf40+55PufgC8NHczjJknQlaxXEtOG2zoo5KpT9qbniEWwwxgz7v9k6aWVKKp1T1TcY0oJZjmOAoRokEHefzLm15q7xTi7jLLCHGvMcIe3Imm3iHmVrTNDgQoNejjgUhS3WkONKbvHGDvPXftimvyA70dBesQAu4w6AJXIXQacHa/1IcvTL2YB+i16DHIYoOsou1HoqrFPO+ik7zpN02XPVn8IREnRDpZa3q8NgeRaL9TkKrRLzNlFHqBk6tvciPpAKgkBLBMOwpWdtVnx9xfrT2bxf8p3ecAVB5SbTLnyQtfzCrPIhPyAoQjjEPjzmjPTujvAtqb/ywmWWKomSv6UYAz4PZeNq05pYBIn+0xVt08wBorsNvRZ5fOc5ZTr3KFTkrvFhA+4m0iyqaGeBpur7pem71P+kgImFdCmpltMHbFRJtjioUvJSgySos2RS4NLFBnxAbjJBE0yusewg+MGCsvLT5YE8zzk+/wASX5lByPFhwYP216PGSuuQolBH9qnY+imBk8MH7v+KsywziCl2Lclj5NcTAnL2v/kH2zvORLDIANvkr5Bw1D53oltb2nsSdCOjOJvcot5ltljOJju+wyzySSDlBhllzwVepypA+ZF2HDWj0Je9H2lMCugvB+/kp2H2UNJ7J1r3SQf+kDOJOOSjWkdvOwp5SPsYxLbgbj+VetP8iEjPmBRM73DaKiXvuwPDa5O/d7YY5h5HqJwwhHnCgPBFj0hG17xIlyMsuuvdxZgRYEyMy57FaOtRj9Sua0wywpz4amu9UF9SJESV7nLDGtc5w6DlGJgrMHJtquZNDDsZFRZfXTm1Yop9Tq9mq9zJ45NcsoKeWr0c8QA4858BqJnVACOLKo0tADYczm7HcM2Fo50GOSdooMyqg1tRchGDSdfXIGfeq1RdilyGKQKJcsCMZQSY7hBD9OsIUm9wNcPWEBsO4Vb1MlEvyrVFlg9qD3IVIjHsf6VKcS90k0rQEb5Oo/68FD34BAHzzEYa/S7tVcXOx7OpOGv+ZwaS/iMlEtSE3BQSjkb5Frq7DRr9Pu+qvWr5hWqQiuMLdiIIccbLPsedYok+/JFtsFmJtZzsd+kSitS4gGLmGLDro05VrjCg8BWxIrXgMT65aPAULaY4DFDyNM1g6kpzG4lhYhRsuswn9WuUE5p+LznYLeIC+oRtPYJkDXjtWHus8gOY3FN1Ohzu48mFQqckYqe2YhpxqQc4nGsl3/V4wsB9IBAlOsuw6uQd++gfmRAvcsoMs+v0cddrsbNpcZFiU8CQvYZ8XncZUpYep6eZ0EBGeZ56DeLAQYj7Efxp4ZWG2qFvKfS9EUjoFQyNVV1v/ltwlRhk0lO/WJr+IU1zlYsQBkaLPIgQC0xrPo4DkaKQLtOybCYbpKYKBxECTjyTmmT8tQsK4IVJX2fK35RDwaQpqJEibtCtlMkCYzy7FIBoQK3QgEZrYLdOH0cxzkV0GXnzbz1uvzm3WckmklpyzUhMR+mnfg+V5gLuZUaMW0wMjKVrCZFO4DRznjpTv29TJN7HRgU80xTUpsipwNxt+Zi5znJl5qBadaC4djpA1nx6aS+PwGfo+zwyGVrov7KN0+Tc7EuNU2YYZ1FHtBDnUFKpGkxxg4WS3703OI4QJUSg+z5Qv4O78a1IZ+VOmb8L2aTgF0BzzLCFvW+RZpxtthiPM6lMVkzrDEDWGFsbgPmyyfpxzXuxucSsJChgaS8bbpigxllF0lBMjRI8+yva7n5rX68ylZsvLuM8V1+GIa9SvGc8ERNY+6aj5gmNirkBZ606OYBi1RdOtYgMfwWa6zEIFNshBRezd4A1WgI5f0oNtglDlyueBrAkjU7xeeGDAor2GAqmpGyWw5YoWFJvCvMxeasgkoShyUWPHE8FSESdi12R7KukrLFgD5yFp6KExnSVslFMp+K0UzcS80osDTBTtMKNuy4Ty21v2i6K1aPwCKBjWK2qQhVGMUDrjDCPvJMk7fWAUPx505Zg+wC5I3SxzE3uUWOo5B8iGW4z0is+ROezrXLGL2cxOdRs1yg4qnDYzFUUvqwwCPtZ1oXJG/cdWsEpbDJA07AnEJUUpjp/aFPt42haJ5T3TTD/FfMArGuDcCrRCKjbBO0fggoFGtJa1wSCtKIn1VxXacn2AEHXCJJgUxHEaprAmzdlqH0HCuYVUAmfHzylCkxGD5EkmWooCu7KFQFqAphDdsg8bxSYJcmt0kC+VlInLpphi9W5/7zZX3IBsKUD00u+bWukCapGCRnX2bepYnHPoSy9U7eiFd4gCSWBi41A5zd8XtgikcYM70nhgHG/Mpxk1tRXEvitccwp1gAxr6zUYFgGGnSDnBIkbd4P5rYTSZZY9rZChn/2Q8ZpMRjV3Fc4QGdcsVTTJKk9VVgsa6vdAdDS82fDbQrKFxGINFV7mEKFAMElRCr4JAjZ/ypyR1lN9j8Ap8E3gAxtFStuMRCrIEWJnIWQzw1NjYoGmaPYfqpRSMmixDzNU7WtBOyIR3e5DWOvN5VMyqQ3xKkbc2SdYT97GnUf9lYE5vkOIo1sk4PJQZ5g+XwoOoMrhFQr0eNvmBAak3v9iZ2hzG6fJ/QQ8ocXUdiF0qSmKHBAksxkO+sG/X5CpRZ4IOQP1fJcYubyJBfwyU9BAzIzkQM0QKV5xpgky0bm0W1r1kn7AZTWTDdmIMjS7zJNuOA1eSS0HWyldI0+Qk36O9gBqkuFOgh5YexQI39KCa8fBoFyI6xQzctTslygU/+/15r/l149PFJ9CEaEohFK6VF2Rlmt7kRvaDt9WXkaa59OoOFC2g/MfsgY92tMutDTQsAECt0nWnG2HErnDSPfGA56v20Bs9g68cP+W7cn3kfcMiyRYSQdR/0rzNDN01G2WGUXXp8mKl+W+uKDXeOka+yXj/LibP0emLf1/uoJzOFhcmWy34viLX/A77PNhOITabrU5JgszCY8Hs8zRrTDHgPs8kkq8wheeoYO7GOFSgjCaZCMCzkrIGspSoUov4WiNjja5YSvcfZQgF4SojddhZ4ijPmWI36f4Aqk2yGKspqu0IMrS040kDzTSZj+NGpLlNirWpk61PND9iGnfbelqRrpCABsVJLNDCvtw2mvC4fiJ7FPBUH3Yt7O2p/MIaw7J5ASd+DMYze9/2iQDlYi6vMssU4Tbq5yl2WmQ97BtXhOnYNfsbZcozI9m2xHYc4YM899NO0eOjhf6ZlzHnfmo57U9dLHzX2GQ4rqQyW4jvioOEuo/yIt+N6sKGb7bJl8rFuS0kkvEcBGTX6UZr8DqPc5gayIbD69ZQUv/6N1pMvBND7yOnSmhqKtaVGUwwgFUcWONGOBUZ65kFKvMO7nJANb58Z1qjTg0w3R9lliAOWeQMFQwiEM+CgzrHfbPL76nGugEyuC1RYZxqxZVSky/tBSLAkNAcMBUglAKWzIdTkHZTUe4jkFvsM84BF7nIVpcdokemmGR6CmoCoyBDjSY1ShjoLLIUkw1Jm9uijxkBHYWxJvz2MuI+LpsKaKgpVH+CIR0zRotun2zaJ2Gc4AAABQpK3NhwkkmeCAFNJiMV+W2AppoE1+phl1VH8fpRYLPNPNdJaoJVmKW+xfQcmJcsecI8rSHzg1PSpUEnRRubaO+7pVKBMk7TTZXvCSFh+cfJSVBOmTUReS4POcExxFuyjAyxWfYxdJKtVkZt2BqmmBvJ30sZmDNJGgMjyefkT/iN23LhUn0XyN2N2JN4NCWPJQIEyeeTVJBBd31uRQ1o+9ZXRONiiqg1HMvgcVTaY4r/gf80tvh3Hu8VEgDr6jG26eMBiJA6ahMIa1iwnDMQUp48qF//a157fxsdHvMK4e1w8YJEW6ZiEKS1Y5sLdNFllDqXqlcmzwmwwFsrkWWMamfKLmabJtgoXIFhoui6OMF9JxbkrDXKTyQB3NBmS5888y8yzjBK1lFZb6GhsjXY+giXwNr3A6Y8GdJj9ACve53oMDUYdbJeUSPLwUZebyV8tRZs1ZlBiuTyK1BRLGq6CY5QdavQFtb/hoKLAnR3GgnmdSMvOohHU8AMIloXWlhVmecAiSywAVmQpNThFOxg2CoKaZg0Z2otJbClZvYywzyg7sT6D+f/tMMY+I0zxCEsfL/v795KhjtJtlSr2gEUqFOL1B31PkjRM65RYNPY+Q8F+6WTd2rrYHcMDrV8mSekJg+lLHMR+3SlhbJGm6muHhgIG3jdDnmX71kAk1oKxmbRXaPhz6Kw7/ZzYWJJYqFlN+zqoAcg0a1HkS7Ig+Y3StbUuNugJsLdJOnyttKerjrCQlQYzrAUYJ0aCDcxG2MP8V6d4RI4jNrjMAksubzPZzQIfUKDCoLMk3uc6e4yQos0v+doXvBL97T8EHIhBIH9dDTdVj5QYDH/MIyzdvu4FsaTc2o8le5fMVutYxmsR2YHI8sJqh/54PfnGKZ370Nn/Yh3MsxxNlYzcNcxU4yF2W54Ku4yFr+YUGwyzx0+4wT2uoQCrHkwqO8OaXwt2HS+xgBKkpVYRUGLNR2ItoKZswkMxNDQQIzpDgzZdca2PsUO/nxcBUsu8wYfuzzdIiRN6kXeebEB0H+Q44ir3QoYHCcgpqa2+G5MYn8Y9oe9EQ9B9hrnLtQC+0rSYYBsLUzhE9iJ6Lw1Cp1nnhF6KHLLEAruM0aKbcbYi0EuA/oCzCvuo8SGTtOmKplj1b94HVpLSi3XyNu8xxEH4klp6eCFqznEPf1Cgm1gtAj27aAezT+BvHzVucgsxesS2KlFkhTm3s7GG1OSuhWhUtVYBcazap7QOnpHibd5jmrVgq+ueU12s+l9rl3y3thgP7yyT7p7R64Mt1XcaSorMYHzrRih95I/cy0mwUmSc30ctAqA+ZDJ8zBpkfJ2vBngwzD6PufQ3sRz9rT8u8oQ3nCWlvTjvzPIFljj2HmbYYyI1FBx1v8wTstzhenw3Zh+1TNNryj7MY/kt7jDLqvchaRR8BsaUk9y36sCGrSPTAQrV6KOfGt/hR9HLiPHV44O2pq9hFkTQzSqzEQJklgBnZDllllXqZMKTXANVeap3AmKqCYBQEdi6OOg11V4kjNs9fRy1nfwa/1P+SfSDqgkEoqo3GmU3PM56veefZJNFHqBgBbBho+pN+bRLOagBsBSBYPuFksZ1nwpfkHJBwWOqOTsZaiaZTVN3ZmKZPMeYyirnFiG7DmBqqCJ7KrEYhYk8cgsVMPZkkVIMv8QOEylG63iRUqyRiQqySMKss35dIK2Sz8VWV0+vwdQ+I7F3KTxtnxF2GKOHOnkqca4MADWAtMsHJlq/kuFTm7tcC2ab1uQjBhikxA/5XuAbQOzVfdSYZt0Z4xZW2aIbBV2Y3+OjqJkFIItUpPt0mH3e4k4A0wplEQCtvfSELONssePS7k0muc2NIAsM8Rip2GSjofMGMMlPf6P15AsB9A4pBL3V0hxNwiip4gRbzLHqDWqBikspJ9hGEkMr1Ew2JuBMvlH6Xcknc6zGBF0SGyCmSQNUwwtCqWhgfmtK/7KFy9JMVpgNqWY3rfCCED1+mvVoOoEoLuXPt8JcJMZYsspZbOJCl7UoLfIgilyx/QQWAu5NYh5Ub7AcSHGVXFzgSyywjSXH5jgKyYU2dFFIxWbTZi5QTD+nG1EU/V1GUeR35wRPYKUMT1OcBSCqC/iSLwi6gZQMZsVdkk5bZcAjoc8w75UeN4I3z8Vj+vgj/il91JjxJK4TLK1YMmZ9VnkQrLnMVQmQAim7aTHMXkxJOiO69f01STuQORJgrgBCFcNqInTOxKxTqrHo1JLf1emh26fS3TSfa0JkGiwvNbDFVlOdadacij/izYoVdT2+AGmyJMq1Eh4nvMBVwajXFDip99pl1KUjSWF6SpYhHqNwFW0+/3v+j8yxgpgvLd9AhtmPn+mUpMtsvFNWAsR985saff67/rBzb3Kfq86gUCLtGDvsuS+cJS9VAuQ69kYnQ8O9I62okMSpj1okN+0wFpM++T8AAYBYwXHICrP0eEMoYLZGf7ABxPjto8YlZ16o8chRjbVFIUMGXJtkSWw0MHBdJucK5UnRfo4KP8FWyIumWQ+zZWu0DKS+yY9DHr7BVDTC4+5D9z3+lAqF8DBRIaQ12YqUtk/EbLoqUEDHv85MNCVKD85x5HzUXKxzy8yHpG2QUsgAbZL8PKtRbEM1uhreGFujHsxnsWTFOO48PjWL8uOwpEfzh1JidA8N3mDZfSmHoym4wn3eZMkn79ukafG4g2GsVOs2SUiOfilgQEONadbJccSuM8rqXmipQF5jJkDNHQ8PaJChF2N6p2kyy4o3mWcckaO7o0hSYWvFtrGDxpzB3ek/KIaq1i5N8HNUo3mWp8oE2zFAvM0Nb+5P/dh6eIylqE2zzjB79HEcgLCuE7Hc9b2KXdPG5Cg7DtwMUmKMHcZ8uChLj6yDPWLgNP16ELjcJM0ouxQos8Ls78SA44wXkZy1hiVeyp6l4jUaQL+DqpN8yJj7wO0zHIMGA2C7A2hK0wywRub706wzzhbyqBMjwNYhs8/Qfg0ECxeMiTLLKkVKrHk6dmf4isA2EAv9KBhHncFuMrfX4FlNT4MMlgiaceAthRii8haSp9zzRunVqCEFTEPil1QhHw2wAE9J7PI+QBIrdo1pr0laAfBd8XpUQ1Wt9ZtMBqC1ySR3eCvuTbH/ACStatOF5ICS+QtA3WAK+fmBhbZZ4MNg3K8Nev6/7P1/fNt3VueLP9+RLUWKFMuWLcdKlMixY6fuOHUmngYyk9LOlClTGJgZZvl5WWCX5dfCXvbCwP6AXb57udxdFi7MDtyFXe6FBS4wMOwM84sptNPQzGQmHWfsxq0bO3as2IkcyZItR4oUKVI+3z/e7/OOkqZtWpq2Sd+vx8OPxPJH0ufneZ/zOq9zDsc4hB40dq0/lgxa62eRPjJ2nZhmH4/zsE1qRShZYq1I1JSVha2vJk3aFxjg8zxqpxyKbyPqyihF5hhGtwGateuLqN2EYJGkVoDadW1zpIxxhhFkiueUmR4q7U5GmGGMSSKUmWeQOYaRUrAxM7VS9lv8UCmhBj1c7R/zR4BuXdRKwkq5ndg2HfPEbPsZ6YMnZcJ1/BzimO2tJsoj6RU5wAL3mCRegW6SLF+nqJQegeIX+mgiA2Y0SRMnTMnGYkLA66mSeXvvPWfIm7sdq/Qg5ciaAAmiRQKa1Oo2xEvdVBRlSDDPIFni1q+um6dJEiRZ4uxnCl0mGkSmwAvZXSRqe34GTVJCSBQtQli0lQPyTMi2osTqNcpOvSY2LOHe2n5KxBOihDvCQywwgI8GMthH7IIoW/ebKaxSASKKxCKdSPXHOlFT0RJkmlEWGDDnwG9JfPErWkvnJTmr1bZ6eKbEwq1rjwy+kmsBGJImZOKyFUSAVCHIAAvWzqVJ8QiPtZDc3Zac0q3G8tamJsggghC9TZB50/JFt3nYb+NlOY4Vrs0QOGFagMmEdV2d0LBxqrQRO8phkuie7yKuClAzrU908uwIDwHad5VKFx8Nm2SXcxChbO2w+H+tSSrhB0QU0xqzSismSXDoapB5e04ilKydlPOZYtGSiWFKHOYpmuiBaVOMkTYtJ6TPt3BKEksJWSbXWxOqYXtPVNA962XtL5vXJWabZ9BM761ZvkGqz9LmGRKBk8R1oIlf4VykRYH4g+IjSGwk8VWebvusCXEpNnyR3bdkT24LofdOvmIXH7mxKkb5BPrCSkaotTRKbowsvRznoG1uLkSEEGGA7Tckny1lawEje+03I9elx5P029DsfM7KH1OkOc5BEqwgfXakl4YOlAesMkQY6RIR2w+pgZb6VwlZR1MkqqJam2YfJ0z5mQQxw8zZcqQQFTsiXE+/0aSgKKj6SRNlnRV0ibEEzTWjAhH2V0oZAKOg0r2CZH9FVdAqT5brMsq0KaktWidEzvVJRq3iD7DZNHEo9zPFIzxG69RZKYnIoad65ohbkk6IrxJhS8BKFkeYfJHhJlixRJCUR4gcXchhuadkEIc0+5VALEGGA0zYEp8qIcY5wSALVk2XIm0yTDXrEALm+urPCqLVnlIG2G0UjJLBFSm8Dsa1IZTzKKokYdwlUIxQMuoPXbIrSkaZWDvIAoc4Zgk+Ub3IZ4hDKU6XHo19bRqTkH1Scisly6LEA521ANjPFHFyvIfHLYmRMM6vLNIS8EhwIipbCXTEQQ2bQCRLL0d5wKpd88RsgCCG8W5HLytUCVoDL/d03WTaT3AAGWSgm/Xm7fmULGyOOAsM0EmRw6bMrELI9pTTPSL0lG4JHDrRE5zl+ZEGxdLwV3oIiUM2YJ6FIlHbW0SGX8j2srjK54lTIg1qtVpk3Thtw0gPC+l7WUOXH/4hP2wCsVFK6EbQhziGKEz01MJ5jvAQ8wzSS872mpFelJJVi1Bi1pQHtSYxRBUHWGdBkwQzVukLcIhjVvmcIIMMT1g3T7YoZK51RhXSRp8XCeal96iU88mwGd3Ef50MfUjJqqgS9UQ5nUGVaY5CYNbwkyNup9KGqNDPIlIyp4PIlM3ES4P3snHsdZ+QunU0OtEqpjwxSwpLIDrCDNI/doYRS5xVCNnepxWjpqibxMuXOWSUFrq35gKD1/WkGWHGOkFCGLRO+ZIsL+iA+E/5PkvUSLZWTxfutmVfYtsC1E15iFYf6dIenbyRsiXtbGr7pwcp1UiRtm0NhKAUEjBhSNoC3cgUeVF3L5G0anrp2SMKWenxKwpP6fM3wgxtNK3DumLIz7zxSWTStSTzwi3EyN2KGGv2ufRTtz5d3DRmkXVBVEkScEUMOZxghWn22QSvrPHS3FsUrLqf7JDthQl6vZRnRVQkukV5DJl0KEGeXt+1D9JmiA8JLhvoxGxrci9E1fSdrF63ToqvJk77ATPYIUKJJZI2MJSe0nqSpLQHaNjnQ/w8GaaVN6pG8SnFn5Dz5UMPKBjlJFKimqbfBu5iz2QScMYkn7UtLlqllkzzk0TDMkkOcYwHOGp9Ra13iBoVW5wsceYYste2lywySET6Z4tKQogvH03jgSd4lM9ZgkDsrQRfUi66RJKDPG3/ViJCL1lTrqSPQffXqxqSfoUIZcpoFUWRKE/yEDX8HGACSXqLQlkG5+hJvgXiZM1gHU0Ai2JY+jvVCNjS5Qc4ahPKQv5HWaeJz9heneBKkbbl1oCNMYRMEDV9hZDthywKuNbkb444i/QjfVNlbZAkW4q0nbAshDbADPcYFVQNUcQL6ZAhYUlbgGMcMtfbZwk7nZTUrT2039BJ3RDvAFOMWRKpmzwyGEn6ri2SssH1NPts6wSA9/GF22iF3jyoELTxjiifjvIARaJ2eIFUakjZoAyt0SXVK/acgbYTafpN/7agjYmEmJI+8dI/V5TBaVI24STCA0kMl9ClmDJoQ1pGSbyi2yhcG5oDunJBkpKSaJ1nAOlT3E3BxssSw6VIG9uwbuOLGgHyxEi1xPNSHl+kkzT9jJmellLSqtXKmugSSDWK9gs7OcphinRaRdiQSa7kiVl16QgzSBmm2HqdmG4wwQE7cGPBDJ8TX7SNpr0uKRaRMn0haAPU7YAGUUnK8I+UiQV9NDhohtWIajFinpYmbcwxjB5kcpQ+MhzmKDHyzDFstrmmJzvABICJ+zS5XiFEH7qnq25zlSVK0ZapdlI0ZfuaaNa8TNwmPoPmPkixaAnKNP1WkKQH5PTae6HbrN1HOcy6WR9L6N78Iv5qjdlrxsYIV+CjwQoJCqaCErACg0d4zCSNdCOcQ3zZ3ofSUkcSX5JskjVLKiyFS5IkhFRiAqbEuc20iKtZOwfXeKhrQy2DPMVhZMq6JA8lERQwgjSJ3aXaU1qt6YSb7vetE/c6xjjK4VuyJ7eF0GuyiXKLY6CX6YwZDNBPkU56yV03PW6S/TzFYRsMJVmmgY/9Rj4uJTm63Es/BMJ8SgZAZKkZ+mxZ7bhZrKWUUZp9CwEyaxwPMSISpApDrZuoF5ASXGHppVRRl8aVrYpLFnc/dU5wwCgRwowxZTNgklEOmwAHdFB4kOP2oh7kuFVW5U1A02cIMdANQJv4OGJKd3XZj64lF6WGlM360I1XkywhfY7y6FruQRZsk9NZhq3SQ4JRmSArN7g8CHL+hVTUvzc4xDEGWaATLfWWxtci8RWnOGDMfN0Y7GWjmBCCSh6YEmEWGCRDn+nBph3dsjXO0l+u05amiYJTSj1FXVMiwpJxUkVOLD0lRGrbZ5xdUWiI/FxnyXUAKouvlLlIJuakyTwPMct7eNwG73JMNfzoyW5NGyxKc+WGuTcTxshKTz4xcEL8ilxbjmuaUZt9XSZpM2viPGboI8myJTxEGSby+KBRC4laU2TDcwwjTVHTpiQMdGAiY8dbVURSgiTZoxy9pv+YlsY/wmM20zTMnCkL6bsd5udNh0V2WzsI2jluXUAOcYzP8O3MGcMO18pbZHS99O+qEOIIDxpnQ9O0M4ywboh6UWfqctRxS6qKWlQmK0l/OpkYnSdmJpTeY5MnJeNCgFZM9ZkMpzS3bZjgQTcWz1pCd8H0GBpnwqoVpAQOsJl9rQTu5iDH7aSpeQZtzxStvFqwwZl8rxbq68wiYBMnkjyaMwpnUQz4TfA1wALHzfAXOX8ypGTQKLzEgS4RtkRh3izMMfK2L6AQ+YBN1hzhIaQPmCgmxYkU1M2aA9hMo5Bl8tzMGkUIaCdMmhhLw3ghLRrocpEinTzK58nRyzSjDDHHMLOUDSGfYAVd0tzLER4yNnPYZiITZCwpIXYXtJLkGIf4A36YAHX2M4lMiwOdbBGnukiUQxyjzxAtkpjQzmOQvLnm4tiKDZRGxlGKfJhP2MSIOIdy3nWTaf1sxExLi1aVoZTZCkkgJSdClkoJoxB+MjG4SZsNbE6avitCAEpi7mEep9MkGuv4GTdqQ3nORDkoCcJrGWidNOs1RFWebmTCZh+6RGnBlH8PsECMtdfC3LypEaZMjIIZMqErMyQpq8tH9TkV8lSIOVnXZf0XUq5hgiRRvtYIIOVW0gepblQlMtRrggNImaco4KqEeJ4R0zqgavRjAXu/655S85YQlKSCJpxjTHCAScasYlqmr0q5r/g9PhpkSNg+mBX0JNESEdsSpGj+Nsew9e0qhLif4yRYManrIZr4mGfAKlV0OZjuzdQ6QV5K8bNGYRqhxFMcppccMulRt+QI8Inah5kwfYuEtBISrmEIwyxx4mQJoSdoV0x56DJJJtlPvyHNJRgRX1n8NVkr8sSQiZCSaIyTsyTWPS19LDP08XketYTrER7iGIeQChtZpyQxM2X6GB7nfps8A5CKBa2s0Kp1PcRp3dhYXY4tFT0L5vym6beDC4ZMH9N50/tVBqEFqJv+VzEilFkwBEaebvpNFYMo1XV1Td62Vpkz9njW9Ptq0oa0hRGirmDIBtB9u0qEWSbJuvHH4Vo1gAx9EfW3tOWoGvVTkzaO8U6rttLkrZ6erpP/ejDFgBn6I8NgpBerELwSuEoiXQhPOdYUaWQKpKhwZL05xDFLuB/iGN3oaqN5BjlpiIW7HTLQB7RvrQmgvBnEkGk559p31P3Er/VzlJgrQYZ+49vp5INeK0UdKgpMTZR1coATALb0VJIYYu+k365UVMhzfq0ComGSAytmLdf/ihrrABPI8DEZwJJgxRLOAywgrUOkpBdA2h808fF+PsMoJ5HhZr2mTYyUkwshoyc5V5EhFKJIFOJcqjQkUTRoBph9ig9YeyAE6TBzPMVhnuIwx3ineSaHOMphRGmsSWtNoIsIRmyWnzonGTUkmG47Ir52qyhC+s1JmzAds+o2CZOM2XMlbU4SZPj/+H7Tt7iGKL90vN9PiTAyHTVE1SZiR5mm3zyD+h5bt7GacC1y/80yzLDp9y0DIKQH6LDp9TfMHGlDxMvwOD91IzoqMsl+26NUE9BL9t6WRFTrABA5L/L9cj0f5z0c5yDzDPI470F6b04xZs9zL1mjMk/ZZNaCEWCJr1YnwIrxpafYT4YEo5xkjEnb/kH8NVF3S0yToc/yND4azDNo2xCJDyv/fpBP8iBPmn6NbVbNrfdLl6Xrye9Zo8DW6/MgC0jbrAglUwFXRqacRynSTZ7DHL0le9L2CmzPLePCxRANuigTpgcfa3TRwyoAezlODj+z7GUXSzS4hI+rdLJCkX5W8RNmBT19tsLz7KBMmCBVFogBRepc5goVqlyhSTvz9LKNq/hocIUAZ+hhgEku0sdWLnPGlBUscR9lIoyzxkW0cqZGB8M8a/ridFPjMn5WCaCoEmQD8LNGHR+XzVSzeXYb1UGBKk1muJdDHGMzOZ4jRRtrXKXEQ/w18+zGxzozbCfIZZpsooOzhI3yKU0fddpJ8Qxz9NJplGLnibCDZ+lgjQ06OGOC13EmeJIHqVFjFT9+coTJUKSDIFWjjgszyzYURVaJsYfTHOUwg8zTwRI9nCNHnE2UqXCFAj5OM0QHG2xnhhhrtFHnawzho0kdH88Z47OfKVbosmqIDpY5R4QAAbZxmrCRDq/Ry6d4Px/g06zQzRpdVLnCZWp4XDQPwybW8dGOImcylZeIssQuDnKcDUIUCDHI13mKd9FGgSZlztNBEx+bWOOj/CQPcoQ2yqwQYoUwV41KZTvnuEgfX2OIMu008NPHAhcIsUGKGgFWiRGmTBtNBvk6c/RSBtq4wgI9JLnKGUN+NijTxmXq+NnBs5wjQgfnOMYhtnOeIBvEOMss29jKeVbYRgdFKlxhjS1s5RzPsQM/dfq4SCdnqbCZi8SYZIANcw3v52+5TIgyHgXaaVJinC9yxshud3OGC/RRwkeFKzS5RI7NjPIlaoxzlRIf51v4Xv6MGL2cJo6fIktEWeTtNPHRwToXCNHFGl9nwBqnC+wiSJU9nCZHlBl2mO2LFFGc5m2UaWcba2zQRZgSG8BWlknTyRV6qaGbTDeosJNn0T0IrnKFKj0sUOIqEc5z5WL77TA/bzq0X1zjy4yyizRVmnSzwBI7uUSQJr3s4FkuAs+ykzBltrGCHx9xLlEHRjhOk02s0McXOUwPq1Sps0oPFxjkXmZYYRu6fCHCKYaIscYiXdxHkyTPcpk9fBdfIEKZx3kPa7TRQ5YcXfho515mKNHObp7hWXYyygZlfOxlmQ42+HPex73MkOAUpxnkJHsZY5JzbKWPM8ywnSTP8td8gJ0s0WQTf8f9VAmyj2dYZxNxTlMmwmXqbGKdBKf4az7AMlsJc4k4OTZR5B08zgabqAObjcO5ho8SV5llG8OcYgsrnKGbbayS4x462aBMkzx+DvNZLtBHBxc4y07uY4oldnGFCu/gcbZQpmie5HNs5RINVgjRoE4XaZbQZWQN6oS4wNcZZJSTZImym0mOso/38AQlwnRziQV68CixnRn8rNKgSQ/zFGjnJKPcywxbuECZHfSxTDtBcmwmyllCXKCIood5vsZeRjlJkCoX6GMnSyQ4xQTj7GWWBXZzmRo7OEWRDlOecZYmZZaIcprd6GmK21ghQpFNZNhCnStcpcQW9OTCDTqMyu4KA0xymkEuEGILGc4Q4zwddNGgi0V6yNHBEnmCTLOTJM9yET+nSNBBll2sE6LKM+zjFH1s0MElmjzO/fw4v0uZEIvE2M1FqrTTSZpZsx5vIUKedvxcZCvn2KCD59jBbs5Qx8d5kmywmTBtnKGHEZ6ljyxNNvF5HqZCkIc4Qokw5+mgzmXSRAlxmSDrnOFe7uU5hnkaRY3zbGGVAD6KHOLzNGkjh58+TnGeMD6atJPnMnXO0E2OGOfZwU7OAvA+/pwyYZ4hxTZmibHGCtto4qNMmH7OUOcyZ0jSxwU2gFnu5T08wWX6WKWDg3yRLgqcYTun2UaJJltYoZN2GhfvfoVe9OISJbazyL2EKVOjRjdZ1hkhwxbOEGMfUzZBO8t7uYeT5OghTRcRzrFKnBm2c55eelilQDvgEWWJL3KA3ZxhjRjDnMJnSNJ1NrGGj81kuUKDCfawRpvxeea5QB8XCNqJ389xLzvw2EBxmiR7OM0ZdrODJUp4rBGgyCZ8rFOnSoEuOtjgIh69XKAJtFGgQA95/OzjFAViTNFPgCsEWCVEk5OmV2YPRQq0Mch56rQzwlnOsJtuFthMlixBztHBHnJEOIefuqlwucABnmSePSR4nj5WCFNmjj7gIn42WGcTPSzQA5QJs0CcGjUqXMHPFRpcIsQKV4nwKH/K/8x9iD0dC+zn63yCb6aDDeOznGMr5whRxs9loJ1LNFinDT9V5ojTwwJn6WSUk6wSoEAbf8U/YpwJBjltnugNLtBHglPs4Dy6L9MWAtQ4w24uAhX8RGmnyVWO8TYO8WUGmGKBHq5QocRWNuFZH6adNTpYJmHUwA1Dil1gG+cIE0bho0QHWdboopM07+aTTLKfA3yRk+xjlW42UaSDIifpN+VgG6wSpw58hXtZx0cHGwxymnYKrBBkH0c5zw72scx2nqdKgzJb8LjIRTzaabJGnF2cpoTHVcp8mbdxmC+xip9drBDlCpfwU0SxSoB+zuMBVaJsY4UsHVygkxXC+NhGjAJXqLBKgD4KVLjCMF9jgr1s5xzbOY9Ca+0bXObrDDLMKY5zkH0cpc4Vvo//SpbN/B3vI84KbawzQJpVutlBnnNsZ8kMGhrlq2yiiiJEG2vMGTX2EBOs0m2U812cYzshcpwjwkU86lwmwjmalNGVTE2iLLFq7sgqNdrJG596ht1MskYX33hxysxAvbuxfrGNBEtsxccZ+gkR5iydtBOjjo8qsMROBvg68+wx6/dmivSyh3l2csb4ME0uEiDFM3RzhlMME6bMLpa4QJDH+AbCXGIfT1MnQBXYQobn2M15djDOBCfZxQ7OU+Iqi+hp1D1kybKLAu0s0EMHfsJkiXCeNbq4go8LhHjOCEWirFDlCgUibOUcQ9T4OnsZpcKgUYpdQfeEu8A27iXDcySp4aOPVdbZxFVKXMHPBUJsY4M2CvxPHmaE58iymX6eoQp4XCTMOQrsJkGFIU7gsWGUuNuYZidxzrHZ+FsxFomxyDm2EyTLAb7IZrKcZzvDZp04x1b+Kb9FF2s8yTfR4BJNmpxjK0mmOYPuC9+kRB4/aXazg/PGR9CVU0Egzlkj6hnCR5ntnOcSTebZxV5mqaCADUo06WXW7HXMJFzO42eVr/INnGMbKZ4hzHl8rFPiKhe5SgdnOc8OLgJn6GE3JVboIUiVT/FueshRpZ2zSOuUUxxnlBxx+nmGJmUusIWdFEjyHBt08HZmgQrt1NlibH6RDkpGEBXjDM+xixW62EOBFUIssZMgVTPAs8g8ezjOPWaoTY0yV7lAlBMMspMlxvh7LgIlgvSRoQuPLkMMbiaFjzUinGeEZ4lwiSf5JqJcYIrdfCNfpsZlEqaf8Qrb+BpDPMoJinQwzS728Qy6xYLu6zdlJvmG2GA3VUqEuUCIVQJcYBu7WGKDBDUUbRTYwXn6aOM0g3QZtXwXa6zRxWGOc5JRVgkQpshF4uzlGY7wENtYoU6AdvJsY40aNe7ncZ5jhDg5PCOAyBPmnOF5vs4g38Zn2USYNgrkCABlPPxsocpW1jjNIEf4EO+++KlbsifK87zXyjahlNoOnHvNPtDBweGtgB2e551/o3fitYazhw4ODq8Cd509dLbQwcHhVeCus4Xg7KGDg8Orwkvaw9ea0FNAAii93LYODg4OQATIeK+lIXqTwNlDBweHV4i70h46W+jg4PAKcVfaQnD20MHB4RXjZe3ha0roOTg4ODg4ODg4ODg4ODg4ODg4ONxe3JahGA4ODg4ODg4ODg4ODg4ODg4ODg63B47Qc3BwcHBwcHBwcHBwcHBwcHBwuIPgCD0HBwcHBwcHBwcHBwcHBwcHB4c7CI7Qc3BwcHBwcHBwcHBwcHBwcHBwuIPgCD0HBwcHBwcHBwcHBwcHBwcHB4c7CI7Qc3BwcHBwcHBwcHBwcHBwcHBwuIPgCD0HBwcHBwcHBwcHBwcHBwcHB4c7CI7Qc3BwcHBwcHBwcHBwcHBwcHBwuIPgCD0HBwcHBwcHBwcHBwcHBwcHB4c7CI7Qc3BwcHBwcHBwcHBwcHBwcHBwuIPgCD0HBwcHBwcHBwcHBwcHBwcHB4c7CI7Qc3BwcHBwcHBwcHBwcHBwcHBwuIPgCD0HBwcHBwcHBwcHBwcHBwcHB4c7CI7Qc3BwcHBwcHBwcHBwcHBwcHBwuIPgCD0HBwcHBwcHBwcHBwcHBwcHB4c7CI7Qc3BwcHBwcHBwcHBwcHBwcHBwuIPgCD0HBwcHBwcHBwcHBwcHBwcHB4c7CI7Qc3BwcHBwcHBwcHBwcHBwcHBwuIPgCD0HBwcHBwcHBwcHBwcHBwcHB4c7CI7Qc3BwcHBwcHBwcHBwcHBwcHBwuIPgCD0HBwcHBwcHBwcHBwcHBwcHB4c7CI7Qc3BwcHBwcHBwcHBwcHBwcHBwuIPgCD0HBwcHBwcHBwcHBwcHBwcHB4c7CI7Qc3BwcHBwcHBwcHBwcHBwcHBwuIPgCD0HBwcHBwcHBwcHBwcHBwcHB4c7CI7Qc3BwcHBwcHBwcHBwcHBwcHBwuIPgCD0HBwcHBwcHBwcHBwcHBwcHB4c7CI7Qc3BwcHBwcHBwcHBwcHBwcHBwuIPgCD0HBwcHBwcHBwcHBwcHBwcHB4c7CI7Qexkopf5QKeWZn2ff6P1xuDOhlDryau4fpdQHWu4/Tyk1fjv2z8HhxXAn2ECzb7/9Ru/Hi0Ep1auU+oRSqmD29WdeYtsfMtukXr89vPOglCq23Jdv2mvv4HCn4M1u61/ts66U+q2W4yrfjn1zcHC4fXgltqnFh3pd4yWzj29q+6KUeodS6phS6pI5R2O3+L60Uuqzr+L7fuaGGLb7Fe+0wy3BEXq3hjzwA8C/an3R3OC/3PJ7Qin1J0qpWaVUyQQcTyulflAppW5474eUUh9XSp1RSlXMe35DKRV9PQ7oHwKlVMo8mA++yvdfd97Ma/9WKfVppVTWfPYv3/zddvvvVkp9xRilojFQ7341+/Nmwk3OzQT63vtvb8weOTgAt2gDb4RS6vvfLEHU7bBbrwC/CTwC/J/o8/iFV/k5ryle6TqklPp2pdTXlVKXlVJLSqn/n1Kq7WW+47+b8/4CZ1AptVkp9a+VUjPm+88rpf5SKXXvDdv9slIqfcPbfxR9Lh0cHF47vMDW3wV2/o/Rx3T0DdkpBweH1wKvyg99s0Fpgccfvsr33swXav17VCmVMzbwwzf8rR34S6AL+Jfoc3n21ezHS3y/p5T6oZaXvmC+55Ov5fc4vBAv6Yg7WFzyPO9PbmG7bmAH8AlgCWgHvhn4Q2AY+Dct2/43IAP8idl2FPgp4FGl1Ns9z6u+Znt/Z+BXgAvAJDrwfVEYw/3v0Of5D9Hn+W3A9tu6h28APM87B/yJCZp/9I3eH4e3LG7VBloopcLArwGXbs8u3VF4N/DXnuf9+hu9IzfgltchpdT7gE8BR4CfNtv+IhAHfuJmH24y5D8EXH6R7///gG8H/jvwdSAB/HPgK0qpUc/zXtTZ9DzvL8x3/PEtHamDg8Ot4BXZ+jvBznuedwI4oZR6GHj7G70/Dg4Orwqv2A99C+I/AKEX+dsAsAv4Z57n/f7rsTOe550CTimlBoEPvh7f+VaFI/ReQ3iedxJ48IaXf1sp9RngXyilfsnzvKZ5/cOe5x1p3VApdQL4H8D3A6/Lw/YmQr/neWkjx119sY2UUt+AJvN+1vO833zd9s7BweGV4heBEvAk8IE3dlfecMSB4hu9EzfBK1mHfh04CbzX87yG2fYi8G+UUh81jlvr5yjgvwB/BLznxi9WSm0HPgT8uud5H2l5/SjwRfM3Z+MdHN7ccHbewcHB4Q2GUupt6OTqfzA/NyJu/i2+Xvvk8PrBldy+PkijGXO/vHBjEGUgktR75IWW8oGfU0r9S6XUWaVUVSn19+bhpWXbfUrX8J8xJVEXlFL/r1IqdsN2v2w+c0jpEuENpdSqUup/VxpJpdRfK6Uums/42dfqRLwYPM9L3+KmP4NW8n3U7Gv4xTZUSu1Suoz3kpEg/6ZS6pEbyzGM/PlZc/7+3pR+zYtcWSn1TUqp4+a8z5osb+v3RJTu0ZJWStXMd/2dUuolM8FKqfea7/oz9TJlaw4OdxKUUnvQkv7/DWi8yDbfoZT6nFIqY56bBaXULymlfDd+llLqr4wtuqyUOqeU+nOlVMfL7MMvKqWuKqV++jU7sBd+x26lS0TXzLP8VaXUt7b8/YeUUh6ggH9ubI/X8vd7lVJfNLblnFLqF7nJumxsy2eVUg8qpSbM9tNix5QunZ025+eEUmr/rez/K1iHRoAR4L8JmWfwf5tju660w+AH0Mrpf/siXx8x/2ZveH3F/PtWU6k7ONxReKvYeQcHhzsSIaXU7yndu/iiUuqPlFKdrRu0+FbvVUpNGdszo5T60A3btSul/r1S6rTZpqCU+pJS6ptfageUUmNKx9dHXipefY3wUbT/9oLWAkqX+P69+fUvjS96xPxtm1LqD4zNrSmlVpTmAFIv9WVKtxNrKKX+82t6FA6vCo5EuA1QSgWBLUAY+Cbgh4Gv3EIZ7Tbzb/4mf/vH6ADod4DNwP8KfFHpsiQJiL4Z2A38AZr0uhddpnmvUuobPM/zbvjMjwPPo/sRfCs607oG/BhaIfELaJXGryulvuZ53lO3cPi3G+8BjgH/Ar2/MaXUBeD/8DzPNktWSm1BH0Mf2shdAL4PeOhFPrcT+Czw5+geAz8B/LlS6vuB3wJ+F/hT4CPAJ5RSSc/zSua9v4sOaH8bmAFiwLvQAfHXb/ZlSqlvQ5cMfxz4Jy3KTQeHuwG/BTzped7nlVLf9SLb/BBQBv4v8++70VnFrejnDKWUH3gMCAAfQz/H24FvA6LAxs0+WCn1K+gWBz/med5/fy0O6Cbf0Yu2RSG0Eq0A/CDwaaXUhz3P+yTwFJrY+mPg79BqNXn/NrSqpQ34j+iStR/lxYmsQbQN+j10iezPAZ9RSv048Ktocg3gXwN/oZQa9jzv6qs4tJutQ0IQTrRu6HleRil1ruXvgE5yAP8J+FXP8y6o61vIChaAc8DPKqVm0e0WEujyvUW0LXZwcHjz4re4y+28g4PDHYvfRqvRfhnd9uongF1KqQdviIf3oGOx30VXJ/wwmvT6Fs/z/s5s88to3+r3gafR9mscXcL/d9wESql3oO3aBPAdt7OVllLqHwGH0HFn6iab/B5wHm0v/wvwNa4lU/8KzRd8DC1AiqP5hJ3m95t934+iz9evep73i6/NUTj8g+B5nvt5iR90j7b0K3zPvwK8lp/HgeQtvO/30VnOPS2vpcxnVIDtLa/fb17/v1peC97kM7/HbHe45bVfNq/9XstrPmAZuAr8QsvrUfPdf/g6ne9us2+/fJO/dZq/5dElHj8HfBfwN+b1H2vZ9n8zr31Hy2ub0QSmBzzY8voR89r3trw2bF5rAgdbXn+vef2HWl4rAr/9Msd1BHjW/P9DQB3dv2rTLZ6XHzLfO/5GPxPu563180ptIDo5cAUYaXl/+Sbb3cxe/S6a2AqY38fMff/hl/lOT55BdGloE/jB23xeftN877taXgsDZ9CE1Kab7d9N3n9/y2s9xp54QKrl9bR57RtbXhNbVAF2trz+ozfauFd4XDdbh37OfOYL1jG0c/uVG177z+Y8BFr2/7M3ee/9wDzXr5cTwLZXsL8vOLfux/24n1f+80ps/Z1o519sH92P+3E/b+6fV2ibfqjFl2hvef0j5vVvb3lNfKsPtby2Fd1b+Ostr03dzIe5yT6Wzf/fiU5EfFbs3G08N0H0cItfNb8/eDN7erPX0TG+B/zcy3yH9eHQgpqrwC++gn38ZfM93W/0vXS3/riS29uDP0Oz29+HVlSAfuBeFEqp7wP+KfAbnuedvskmn/I877z84nne08Bx4NGW11obmG9Wuh/dV81LNyv/tP2RPK0Qm0CXT/0/La8XgVm08u+NhsiVY8CPeJ73655ujP6taGVca5bgW9DZiE/LC57nXUY3X78ZyrQoQjzPm0UH1s97nne8ZTv5f+v5KAIHlVKJlzsApdT3ojNBv4cmIF+NgsbB4U0Jo7T4TeB3Pc+bealtb7BXEWOvjqIVb3vNn0SZ8YhS6sUa/bZ8jPpttHr5f/E873+8mmN4BXgUeNrzvC/JC57nldFEfQpdovpy7/+qseXy/lX0oIibYcbzvK+0/C626Iue5y3d5PVXbLNfYh2S9at2k7ddbvk7Sqkh9DX4iOd5N9u+FetoR/k/ovtv/Rz63P2lUmrzK91/BweH24+3mJ13cHC4M/HfPM+70vL7f0UnKx+9YbsMLVNYPc+7iK6m2G8qKUDHefeaNgMvCaXUQ2hl3hNoovDl/KB/KP4Vejjkr76K91bRApMHbyxHvhmUUj+Prnr7Bc/zfuVVfJ/DbYIj9G4DPM8763ne457n/Znned+PVio8bkpxXwCl1GE0ifYYL95v6GYk3xwt0lqlVJdS6qNKqSz6IV1FK0UAOm7y/qUbft8ALnued2PJ7wZaHfdGQxzDK+hyVQAMKfZxYIdSaqd5eRew4JnUQAvmX+Szz91k2w20atHC8zxxPFvPx8+je0UtK6WeVrpH4c2C6X50qdxfeZ730zf5PgeHOx3/Eq2y/fcvt6HS/eM+qZTaAC6i7ZVMMOsA8DxvEV2q9SNAXin1mFLqn79IX6V/jJ6Q+tOe5/3ZP/xQXha70MmOG/F8y99f7v03s+s3+0y4wV632KLlG7a7zkYppYKmR4r9udmHv8w6JLY3cJO3bub6MuGPAsc8z/urFzkO+b4OdGD/Fc/z/rXneX/ted5vAN+Jblnwwy/1fgcHhzcMbyU77+DgcGfiOv/KJFxXeGFJ6vxN4rE5869s++/QarY5pfsV/2el1L6bfOdm4HPoFiLf5Xle/VXv/S3A9Ln7CPBvzfG9Ihiy8ReA9wFZpdRTSqmffxE/8ZvQrVT+k+d5rm/emwyO0Ht98AkgCTxw4x+UUvehVWTPomWwN20sfIv4C+CfocsZPoQuyfoW87ebXeub9W17sV5uN22C9DpjDa0GKXgv7DmXM/++WuLxxY77Zc+HUQnuBn4anen5CPCcUup9N7xnBd1z61Gl1Pir3E8HhzclTPD1i2gV7FalB/qk0MpaZX6Pm22j6Aa996EdpfejVc2/YD7O2ivP834W2IfOPgbR/T+eU0rtuGEXvozuCfJTSqmu23GMbzBerY36brTtaf25fsOXX4fkPX03+Z4+tN1DKfVu9JrzUbn+5h5oA4Lm963mfd8J9NKiogbwPO/v0YH/O1/kuBwcHN4gODvv4ODwVoOne8gPAP8E7Sf9CPB1pdSP3LBpDU3oHeRa/H078R/Q1WhHWmyxkHE95rWX5Ho8z/stYAjdI/Ay8L8Dz6sXDld7Dp1w/gGlVP9rdwgOrwUcoff6QJR512UblVIDwBfQZNSjL8Ou30zmO4RpWGmksu8B/qPnef/e87xPerqZ55l/4L6/aWCUeFNoI+W/4c9S7rpq/j0LDKgXdmMfvE37tuJ53v/ted4H0Eq8Ai9UuVxGN3k+DXxBKXXv7dgXB4c3CJ3ooO7n0cpg+flOdHnVIrocFXQvjxi6F+VHPc/7rOd5j6NLMF8Az/OmPc/7Fc/zHgAOoxum//gNm82jkxgJ9PMV4fbiLLrX5o3Y2/L3l3v/zez6zT7zH4LH0EF064/FLa5DU+bf6xIRps3Ajpa/i0L6f3L9PbAd3Qx/Ee0QgybzQPdvbf1MZV5zQ7scHN58eKvZeQcHhzsT1/lXSk+Z7eOFgx4GbxIrDpl/7bae5615nvcHnud9L1qkcxLdG64VHnqY5BPo1iEPvuq9vzXsRMe10rt5Ed32C/SgtEV0T8CXhOd5C57n/Ybnee9FV5z5gZ+9YbM88DC6Su6JW2kz5fD6wRF6ryGUUj0v8qd/in7Iv96y7Tbgb9GNJR8xvZNeCh9QSm1vef/96AzA35iXRKVxo1H6mVva+TsHH0cHez8oL5heS9+P7jGVMS8/hnYGv/2G7f7Za7kzSinfjWUhnufl0IqVF5SnmTK5R9DB89+ZYNrB4W5ADvjgTX6eRJPZHwT+T7PtC+yVIel/svUDlVJblVI3EjvTaLt5s+frJLo/yj3oCbAv2bv0H4jPA/crpb6xZX+3oIdSpNF9PV/u/d9gbLm8vwdty14zmGTD460/Ld93S+uQ53nPAaeAH1VKtRJwP4Fe26QFwhe5+T2wiu7R+kHgM2ZbKWn5nhu+7tvRU+InX8XhOjg43F681ey8g4PDnYkfVUq1t/z+E+hE4d/csF0CbbcAbY/Qpf1TnuddMK/FWt9gEp/z3Nw+1dFVcl9D26f7b9zmNcQv8kJb/Evmb79mfr/0Ym9WSoXUC/sVL6AHT97s2M6hSb0gOoaN3biNwxsDlwF/bfFvlVLvRKsdloAudNbyHcDHPM9r7d/2BXSZ5q8B71JKvavlb1nv2qhswTzwJaXUf0U/ZD+DVoH9Gugmnkqpp4CfNwbsPDqL+brIYo3MdxH4H57n/dCreP8PoHtKSUPkB5RSMuTijz3PE7XL76Glzr+jdPP1JUDe+/6Wj/w94KeAP1NKfRRdMvb9aIcTdBD6WiACnFNKfQJ4Bj1c42H0Nb8xu6G/2PPySqlvBr6E7q34rtaBJw4OdyI8z6sAn7rxdaXUB9CTXFv/dgyt0vgfSqn/gn4ef4AXJiTeDfy2Uuov0QRQm9muCdy0R5vneV9VSn0HmjD7hFLqAzc0Rm7dtxSv3m79R+B7gb8xx7CGTjT0A995CwNvfs0cyxeMjbqEJgPPokvPXg+8knXoI+jy2L9VSv05Oov7U8Dve573PIAZznFjb1aUUr9lPu9TLS9/Bl3C8e+UUrvQA5wGzWeu0DKcycHB4c2BO9HOOzg4vCXhRyvJ/gJd+fCT6Ljr0zdsNwf8P0qpd6DL+f8JuoKgtY/vjFLqCHAC7euNAx8GfvtmX+x5XlUp9W3oJOffKKW+yfO8Z19sR81nf5Pnea+ovVXrULaWzyqa/37tBnt8Mwxx7RzNoIeGfBB9/H9+szd4njevlHovcAR4TCn1bjNIxOENhCP0Xlt8jms19j1o8ugk2ijcOInrPvPvz9/kc/4euJHQ+yN0tvJngDjwNPBTnue19kP6PuBj6IbBCq28eB+mv9FthkygfUF/plvEP0U33BQ8ZH5AG+CzYI3ku9EB6D9BKzmmgG/1PO8xebPneWWz3cfQ09DK6HN4DO0gCrH3D0UFLWt+LzojswlNvv6k53n/9cXe5HneeaXUw+im8H+nlHrgJsNIHBzuSnieVzDOzm8Av4IO+v4EXabwWMumz5jf349W3FbMa+/zPO+rvAg8z/uiUuq70M/6Hyulvu9FCLZXbbc8z8sqpQ6hmwT/NLoZ8kng/Z7nfe4W3r+i9DS0j6GnlBXQ/U8zvH5k1i2vQ57nfVYp9SF0I/yPoVV3v4ru4fKK4XleXelBHL+EnlT+veis8KeAf+PsoYPDnY03kZ13cHB46+Gn0EKO/4CeAvtnwL+4yQCM02gf7j+jib9F4LtbY0p0T89vR8d6AXRM+ovmPTeFEdo8AjyFjvMO3yDsaUUYuPDKDu81wTL6vLwHnURpoKsxvuulBpt5njetdJ/4x9EqxG/xWiaaO7z+UC+8rx1aoZT6Q3T28O1Aw/O84uv8/Sm0cfmI53m//np+9yuBUuon0STbgOd52Td6f14MSqmfAX4T2HEnqOJMecpWdFnax4B3eJ438cbulcNbCW+0DbyduFPslsMLYRrib0ITi7/jed5PvcG75OBwR+NutfWmFUIQ7UO93/O88Mu8xcHB4U2E22WblFJp4FnP877ttfi8V7kPEbTq72c8z/udN2o/bgdMOa/0XP0I0OOStbcHroferSGJDhpeIG11sHgI+C9vpqD4xr4qxrD8GHD6TiDzDB5F33sfe6N3xOEtjbvVBr7p7JbDLeMM14YgOTg4vDa4G239/4E+phv7dTo4ONw5uBttE8AD6DZZ//2N3pHbgB9HX7OPvNE7crfDKfReBkqpEa5NUC2/lPz/Nn1/ijtAofdmhFLqb9D9nKbQE4b/F+Be4Ps9z/vTN3DXbhmmSf59LS8d9zyv9Ebtj8NbD2+0DXRwuBmUUt+ELqMBWPY8b/aN3B8Hhzsdd6utN/2WZQJ3w/O8I2/g7jg4OLxC3C7b9GZQ6N3NUEol0WXMgr93vU5vDxyh9yaHI/RePUx57Y8AKfRk3Bng1zzP+/gbuFsODg4ODg4ODg4ODg4ObxAcoedwt8AReg4ODg4ODg4ODg4ODg4ODg4ODncQXA89BwcHBwcHBwcHBwcHBwcHBweHOwiO0HNwcHBwcHBwcHBwcHBwcHBwcLiD0PZafphSSqGbVrqm/Q4ODreCCJDx7sLaf2cPHRwcXiHuSnvobKGDg8MrxF1pC8HZQwcHh1eMl7WHrymhhzZQ517jz3RwcLi7sQM9sv1ug7OHDg4OrxR3oz10ttDBweGV4m60heDsoYODwyvHS9rD15rQKwH83PKPktq6xjZWqBPgNINs5xxtNDnOQbZxgfNsB6CHVTrYYJUetrFCiMsEqVCgizaaBLnMMQ4xzgQ12mmjSY0AIaqcZJQgVbab44tQ5gz97GEegBW2UcdPnBxBLgNwhn781HmAoxTp4BjvZDdn6CFHlSBn2cUU+/lWPkOEMiXCLLKbDTro4wIFYlTZTJkw/SwSokqFIGHK+GhwgT6ibLCZCjHWeI57ibFGF2us0kOYEn6uUGEzES6xiQYAS+yigyJXCNBOjTaa5Iizg/PUaadKiC7WKLGFDaLU8dNDjgBXOMd2+lihTIRzbGeQ06wRo46fOn4A9jBPk008x73cy3MABLnMKfYyzgRlwlTZzFlShCmxmzNcoI8SYaqE2M0ZcvRQx88ulqiwmTIRohTxcRUfTXL0sJsz+KlzgW1MMA7Ad/DXnGQfa3RRoIsAVxhngu2cY4MOGvi4ShvPMUIfFwhSIUecDTroYdXeXLs5wyRvx0+NvZziAn10sEGJMNOM0sUa2znPNKP22jTx0cUaAB1smM/McYE+/NQ5ySg+mvRxgQpBAtRp4KNK0HznIkU6CFElTIkyEQD81Gnio8Jm+shyjG/kPDvoIcd7eIISYS4TokY7ES4xwQEGmaeLAmvmjigTZi+zrLCNEFXaqRMnxwYdBLlMlc2cYTdNfPRzBoA1YvRzhjxxwpTZoIPNVFhkNx1sABAnx3Pcy/0cZ4MO1oixh9Ns0GHPaxdr9rirbGYLZbL0USDGPp7hDLsJUGeFbQSpso+T1PAT4jITjNNBkT4ucI7t7OYMBbroYIN59rCXU5xmDzs4zwYd1PATpApAmbC9J0MXL/Dvkh+3duMuRAngY8vfzJ6tOYJUCVCnQpAIZSbZz3bO08cKRTpYpQeAVeJ0UMRPnQ42WGKXtXGrdBOkSt2c022sEGOdM8ZG+alRJkwXa+xhnqMcZidnOcd29nKKDTpZYifjTHCaPfipUSeAnxpBLtPBOgAbdFKnHQAfTS7QRw85/FxhhV7irFIliI8mANtYsffgeXbQwQZdFPBTJ0SVMmFOsZdBTlMlSBMfUTZop84qPZxhN/cyQ5AKZ+hnN4v2WW3jqrW7QS4bO7GCnzo9rFo7p4+/zgZRuihQpIP7mOY5RgAIUmU3i/wF/4hDHKOOn3NsZ40Y7+EJQlQ5w266KBBjjQ06KBEmSJULbMPPFWO/6/YeLhNhjS58NDnHdvZwmjBlyoTpIU+ZLZxlF+NM4KcGwCK7zXqhz90E4+zkLG9nipOMso0LbNBBlSBlIua81xnkNF/iATbosM82QJUQPrOO6JsuzF5OsUSKIBXOs4Mu1uhggw7WCVPmb3mECGVGeYYyEfzUOc92Otgw99ZltrPMFPsZ5DQhsw53WHvfoEkbTTbRwQZVgsyzh7Ps5Hv48+uOtY8LNPCxiyWzTnRTJ8B5trOHeYp08BwjvJ/P8be819qz9/NZavgpE6FOO018BI1/AOCnRojLtFPjEhEabGKJFNtYYYmd+GjSwyqLLdc0R5wONghSYYMOyub6nmUnTdrookAfWXw0CFIlQpk1uminzgYdLLGLMCXClDnPdrZQpo+s3acNOriXGTbo4Cw72c0iK/SxSrdZw7X9D1KhTsAcU4UqIeIXT/OdyWet3bjLUAL45uWPEd7aRoUgfVyggyKg11N9LS5Tp52jHOYgx+lh1fgNMfpYoYs1qgStXZM1ZpU4IzzHHk5zir008RGmTBtN2s1nr5k16iiHibHGIKfxUydCmQnG6SHHXk5x1jw3k4zxTr5CmBKTvJ1xJlhhGz6aLNJPF2vs5gzn2MEqcfZwmhw9bBDFT43dLNLExymG6WKNMhGCVCgTYSdnKROhymZWiTNs/Bm5j7RNC9DFGjEKnGE3fmqcZSd7mGeCce7lOXazCECFIBt0cJ4dBKkQpkwTH89xL3uZBaCHHKDteT9nWGIXAOfZQYXNXCLCQY5zmj30oNer8+xghGdpo8k5dhCkSowCK/QRoUzR2Kk+LnCWnVQJ0sEG40xwkvvYzjIzvI0Km4myQZEOvoHjFIkC0MSHjyZVggxymr/nQQaZ54I5zz2s0kaTpzjMPk4yzx4GOQ1oe36aQfYwz5c4zDCnmGUvJcIc4hg+rlJmCz6anGcHH+KvOMNuAMKUWaTf+pA7OUuMAlVCNPFRpIOz7OIgX2WNGKv0WP/qHNuJsoGfOovsZpu5L+VYeshRJkKYEmvEzDl8jhBVG9ecZSd1AuzkLHX8rNFFmEvUaaeLNer4zXkJEaZEjAJnSV13v/hoUiZCk02EKROiSo4e1uhigyjbWOECfZxhNx/ir+z910WBz/F+uxY38BHisrXpYUosspscPXyAv+YM/YD2hSvGL16lh0FOG9u6xin2souzrBFjO+cIUeU5Rsz++Rhknl2keY572cYFykTM38PsZxIfTSYYZx8nqRJiy8UVfif5UWs37kKUAH5p+Qd4eOtx4qySo4cAdbpYI752kdNdSSrGBwiY9bSfRVbpoUyYGgH6WLHrk8SiOs4ss0bMrnvd5Hiag+xhngqbbSwEmJhbx9MjPMcqcfo5Q5kwbSa2O8koYcqEKbGrucQFXx812ukjS4XNzHAvQar0c8Y+oyEus0g/o5eeBWB6y9so0sFuFumkwBK7OM0gu1lkb+0UpwJ76ecM68TYRINZ9lq/J8AVJhmjSRs7SfMED/MgRwhQ51lGeBsz+KmzQh912vHRpIsC8+zh2zYeY61jK2t0cZadAAxzii/wKCM8x05z3/poskYXu1iiSAc+muy9NEd5yxZOM2i2aeCnzqFLX+VvtzzMXmZ5hlH7/TlzbQAGOU28tkoh0MXf8xAdFAlTZpU47+EJTjNI1NiUXlZYYI+5MbT/voPzHOeg8a82c4E+RniOKiEC1BjgNFn62N48x2mfttkbdHCCcd7HF1hhG6v0sIPznGM7hy99GYC1LZ0kzq2ztkP7YDHW6VtbZ70rwBK7iFAGoGK+8/ClL3N6y25CXGaFPnw0iLLBObazg/Nsb57D19C+rK/hsbglRS8r9v6K11apBfz8Gr/AD/JHTLKfBznCKYbZxRKbaNg45wp+3rH6LPmeLazRxSmGaeJjjEnKhGnSxg7OW65ggw7rm4UpW85GxyzbaNJGkAqDnCba3OCk7z52kmaVOF0UAM29HLz0NZ7bcg9lwuzkLBfosxzMN/JlzrOdAFfoJkeWPk4zSB8XGL30LJUtAa4QYMncW93k6GCDKwR4gvfYdXeYU/Z788TZznk2m/V+mn1s0MF2zhOhTDc5yx9cpY3Vi34eSaat3XgxvNaEHgB7t57j6a3vxc8E60TZQYEM9wDQy2W6aNJhiJcreIYwOEuGPoLkyHAPAWp4NPFTJIziIjs4zFMsk2SZOIsMMca8cYrDBKkQpJ01+vGxYh7oJlkibKJKgyB1AnTSJEEORYSrdDLOLHUC5NhDgRhJllnlIlfpMjfwDrbQxhXa2U6Jq0QZ5Cw5ehklTYEYG3RTI0SFEFupsEGSLWRoAnOMM8LztBNkL2mKRMmQxE+NdWIADLJAmSYQwQcUiRMnyxr93EeaPFu5QBJFmBBVNhOghxIRmjRpZy8rhKhQAVbZTI1e2vGzlQrL9PIIjzHHMEmWuchFdlDiMR5hjEn6KTDDQbopmL83KZAkQpomNdZI0c8yDbq4RIIky+xggzqXmSHBeRKMMk2JreygRIDN5NnObpbp4jjHOMTTfDMpFumiyQjnqBIiSDsrDFuCNkqRCIoeatQIspsCxxlkE5eJUiRAjQCbaSPETrIU2cUWmgRpx2MT95ChiQ8/QQ4wT4iKCchKLJMkyTJ1873bKbNCBzUgyQZFOtlNnhlG2EqBJrCLFaYZZYkQTdrwkcfPZi4RpZcc89xLhBJtNImQpZ81olxlhBly7CFBhgwd+PDhA2I0mOcAD/M4z3IPUYps5wIX2UE7fnooEqbEHPcRowD4uUQ3+zhLhBIlE3TXaKMTj53M83keZYQZlkjRxhZ6WGWWYXqoM8Aqig6iwDIJ/CxzkSS7yVChygIDxMnhYwtBfFyli50UWWGINPexmTp1InRzhQYBAmwmAPgIoIiwiSY1mvRQp8BuYhSI0iBEmipdbKOKn81cIcZzjHKIY1QI0UWFJnWiFCkYUuRuR3BrOzu2llgnyibq7CJPhgR+NtNFg3V2McwsFxiiSRs1ekhxhjIR2gnxIF8nQokMCbZzhhUS9HGWAt1USFCjl91kmCFOlCpbuUSEOnn6GWCVFFnWSOERZY0UPoIEaaefAhkSBIBR5igRIUmODH3EyVIgRoUQPhSKMv3kyNPNOKdpo8kiKQJcxU8dHxESXCJEnXNsJcIGe8jaoCNMhRxX2EaFAEWKRKkQIUaWOOfYYCfP8o08xBEGyeMjyGYCLDFKJ0U2U6eLMiUiDJGlRAf3MkkDHzlibKfANqqEqADnyJAgRw8eHfgMidzLApsIcy/n6KZOk6t8hVEe4TEuMEQnRbqpEwFO8i4ilIhSJIiPEc6zTJJzJKkTYIwpAM6RZIgFJhjnGzhJlCLPM0KSZWrE6CdDgM2skyJGgW7yQAebuUKSZdaJspcMvaxzkneRZBkfATZxla1cpsBumlyhCnQyRwdX6SNDnBqbuEqEEicYZJRpGvjoJccCAyyynyY+QhS5n1NkSNBOkBp+sgxzD+dJ04+fEHvIssxOBlmlSJQLJBlijjnuB0JkGSZGgQFWmWeQWYb4cX6PDAmWSbKZy1xmK29nnm1U2MU6RTqp42eZtxFhE0Wi9FAnyjpD5JhhhDo9nGELw8xxgAWyDBJmE006uI807QS5TITL5j5MkKFJkAZBohRpEuE8KfucNWmjmwoNYkAHGeLs5wyXuEyFHqq00U2dPDvoYYE4OT7HON0UGCFDhZA5/9qRi1Mkyw6u4mcH8ywyxgBZwpQo0M1u8gSoE+ciAG00ydNNmn34aLLBTs4TIECdDPcQokInq3RzgV6y+Kkzw4ghAjZRYRvw7OtomV5/dG+tE91aZ4E+GtSJsEGdAHW2AgG2cplp9jLOaaADxWUSXMLHFlbYSyczXCVEP2scZIYIJY6znXaCrDJIF012U2CRftbpJkyJzRTZTIAkG6yQoJMmPdTIMUgbTbYyy3nuYTN+LnGR7ZSoEOI+zrIFH6sMMMpZGnSx2SQ/wvgosJsIii006ed56gToZ41ZehjmDLOMMsg8fVTwo1hhO0V8NPAxxAW6KFIiQsb4VhChRCdN2oiyToVOFFeo4iNPP+OcwEeBBGX2cZY6XayyiSy9jDNhCHmPCA3iXKSbPBX6CNJGkmVmGKGXHG3USHMfBbqNvdxKhkG6ydNGEI+tbGUVHwFSrDHJQ4SokCKNDx9LjDLDCAeYYIV+qgTpZw0fYe5nhgwJ5nk7GyQokGKQBZr4mGSM/UxxkSRhKvipUyRCkSijTJPmbfRR4QoxfGxhkAVKRJhjgCvEyDHIN/AcgywwyRhn2Esveb7Ad7NOlHHmGGGZKiF2ssEySYaNjc0QZp63UyZChRBxstTpYRfrVAhxiQQ91GnHz1kGKRAzpOMpNkiSoMABpvg9fpwRZvBzhZ2cI8ce0twHpIlRIEecPeTI08t5Rsw+zBJmE3O8HR9NmvhIUMTHRQbIMMcwGe6hSJRDHGMzAdboo580PoomcQE5BvHRoIMmV+hmjQglIkQocZV2VkmYc3aZZXwkWSeKxxVinGeEUabx0WSBUQ7yPDniNAjho0mUCjU2000BH026mWUaPz3UeIYdRCjRTpAek5DcwhoQpco2nmMvMQp0chXFFS7Ty9s5xioDhPHRS5YGPtoJkmLdPBcLbKNCGR9zvIMky3wPf2PO+2YqdL1hNur1xHdufYz61jgVtnGgNstMYIQ6m6huVfRxiSxhDtQmyQdizDHMMvcSoEY3FSJm/VkkSYIMYWr0kWcX67TRJEOTqLl/YCsP8AxpUgSp29gAIMplagTYzxn8bKKTLDO8w1zTLPPspco2BjlJnRBtbKFBF0HqLHMvSZY4aOxfkzDfwPNkieOjSCdNrmztooafAH7KbKdGGcUV+qiwg68zxzBtLNNHhat0soOLNPFR4AoVQgQIEqHBTjYYYIFlkryLad7GEnUCnCLMRXYwwgyX8OgkR4UQTSKMcJ6zW++hRAQfDdrYYp6aTdzHIilyFOmjRpQ4OZbYzil6OchxupsFalvDFEmymQD7SLNMkjgbzG19OwkusYt1uvg6u3MXOBPfRgdZjjHIo3yOOgGWuZcmPnaxxijTmqymjQiKXebaNGljg51sp0SaFP1kyNHLx3mUUU6yl/M8wcN0UOUSfRTo5oPNT5L19bKJMDn2EMZHgCA+IvRRIcNeoqzTQY4AHuu0sXlLO8d8h/DRJDlwjMuBbfRRobtZZn1rD1uoMkTWJlE34eMs+/jO8pdRW3OkSdFDDR9NAmziIU5QJEqZ7TYp6aNJBx7nuJcEGYp0kqODAHUe4avcdynN6pbdRLlKPwV6uYSfGlW28DaWSNNPaWsXEeos00eIdiKUSHKRx/hGxjlBb61KPZAjTw9luhlhhjA+I3K6TDubDfG7QYYE3RRRJnm7hyxZdtEOhPCzwABXCbB5SztDviwlKvjw4xFlO2m6qbGZzcRNEv8MbydLnCoRtnGG57feT5IlsiTYzwx1AhSJcsmQimE2UaebftKEaOdtLFMkynZKJGsbpAMp+siwjSrbKRNlnQhlE3O1gfF1V+gD0i9rT27LUIwAdQaY5ySjFOg2zrePGHlDVkCJCGNMMcg8UYqUCBOhhJ8aAWoc5yBZeplijAQrJmsWpUqIAt2UiBAyqp8GPropsEySPuOYp0kxzCwJMiaw2EmUolnwwswyZLOhMfKUiDDCjFkgtXpCGwHNPCdZZpmk3fcaAfPeAsPMUsNPlHVi5DnIcfzUWCTFIY7Rz+J1pEySZbop2GOo4SdOlhAVsvRSMcc4zgTzDHKMdzLOhM0egs7I+mhSIUSWOLOGyQ4bAlfTfW0mi9pJnm4a5r3TjNrrINcLsI7VELPXfWaAGjX8DDNrz0fJOGL6PIXNwlEnT4xecuTo5QQHGOUkgL0HIpQJUsFHkwwJSkSs2iVBxpJkku1MskyBmCGfmvZ+8VMjarL7VULkiBOiYq9HlCLdhqTz0SBjFHnHOcgySSLmPIWoEqBmjMYyPhqUjMk/yHEA9jNJhJJVhmZIkKafHL1EKDHHMEPmXsvRS5Eok4yxwAB+ahSJmuC6wjEOMcCC3T5pKGqf0bvUCFAyTqdckxIR4mQpETbEbYi8ySg18LHAIA18lIiQMPf/DCPMMmy3CVElQYYSEXrJMsACw8zaa1EiQoEYbTSJUaCXLEWiBKnQTYEaATIkmGTMnLeKva4RSjTxkaGPMhGy9FLHTw0/fmoc4hhZek1WaZ4RZigaFdVbAXs5BcAxDjHBAYp0UiTKMLPEKJAmxSIpG2ClSFM3FPYsQxzhQdKk7DMNOqOjz3nC2oQEGQDyxGiYO0oHRMOMmMVGMowNowzSNqhiHAu9KH6CD1PHT5JloyYsEaJKnm4KxFhgEMB8XhMfDSqEGGaWDAkSrDDHsHFAk2TpJUsvbUZxALBIilmGLKExwgzfzmcA6DaOap5uc6aKZIlTIcQA8yTIEGXdri/yLBdMgkSTfrOMMk2RqDm7aYaZtcdbJWSVHH7q7GOa4xwkQ8ISeX3mfAaMGtdPjUEWGGOKEBWbKBhhhiTLjDJNJ0VqBFgmScCcU3lmT3CAGUbMOqdJ7Ry9NGljggN2jSwRJkaBIFWGmGWcExzkOIukmGMYHw1jJzRReQ8zgKYD5LqNtLzmM459lCIJMswyTC85a4+O8gAA8wwSpkSKNHMMMcswAGlDmmmlSJ5xTnCSUWr4KRFhmlFqBIhRIE6WJm3MMEKeGI/wGCPMECNvLN1Oa48PcpxOikwxRo44KyRMINCkz9iqADWyxA0BHDTrbJEafmYZJkCduiHNCsSYZIwafhJk6DXEoSYiGgTMOe81a0kDH/2kGWHGnh+55wEmGaOOnwglZhghRt4kXYYJUKOfNEPMmmtdt9c0b8iAAUNIBKmQYpEB5kmRJmqSNz4axMibVGDlOjX63Yq4OcYUabrJc4xDZEgAMMwsk4zZ9S9LnDoBPsGHqRqyVSt+KyRZpkSEGUY4yHFiFKzPVSFElHXydJMgQx8ZlkkyY5S6B3nafH/BPlNa0dUgTcrY3WGq5n7rpMgsw0wwbtbJbmLkDQHWJEuv8e10sFM3z0WAGhkS1PGzj2kOcYwgVUaZptf4ez6ajDJNkKpREixYO679yQJ1AjYhlmTZeAo+/NSvs/86qaZJwhxxQPutEcosk+RpDhKlSJ0A3RRYYAAfTUaYIcUiGRIU6Lb27hiHKBK1xwGQo5cJxolSJETV2j393phRb6wToI6Ppn3W5HkE7dMskzTrmc+oVf3WNibIEKJqv1+TkE0OcpwIJbLEWWCQXrIEqeKjybfyeer4CVGlgY8svfa6P8HDjDJtrlvBrHMBhpglTs7aHPFnRT2oE9UR6gRYJMXH+R57nuS6p0ibc1yy92WQCr1kTfVK0/jKnWTpNYm8OhVCFImywCBBKowzwRiTjDBjVv66eQZ6jW2pkWSZQRYIUrFr5gM8RZJlEmQImooUfU1OkqGPKEVSJhDMEyNAjTzdiKI7RZoHeOq6e8dv/P08MZZJmmtdIU8304yyQoIQVeYZtGtf1txvswzhp0aGPvOsHSfJMm00mWYfswyZu7dJJ0XuYYZDHDP3pbbtsva9FRDhkon3YtQCfpr4WCbJ53mUCiHq+MkEEnQ29dq9vzlJnhgldKVQkShZ4mTpBaBCiOcZsb+Lb57YWGWKMXOPN+y9GTfq/yohErUMVUJEa0Xz9wY1/HSTt/5jxIhBUqRNkrnPrr+6YimEnxpzDJOmn8/zqPER9hGiyoM8SZJlAPu6n7qNxxcYtLF+hBL7mbLPvBzvLEMMM2tjozEmeZyHmWaUXnI08BlFd4bh5qy1KfKcxijQv3aBMaY4xiGSLFvfRuKaHL34Gk1L7EdN5Yr4lG00SbFImpT2yS/pWDJKkYd4kjT9Nu5r4OMgTwMQN1erRBg/NftMrJhYWBPug8Qo2H1u0sZhjlq/7v18mrwvRhMfcbIc4xAzjLDAACnSdn1p0kaRTiYYZ4AFJn37zdpYBKCGnyn2s+hLUSVE91qZCkFOMM4xDlEnwAgzXOxtJ9CsESNv/Cdt29L027V6jmFzPKP2+h3lAbMW9dpERmbLNoaZo4afNprMMsyKWVvamjqRqn2AMCPMcJDjPLz2JdL0k2CFNClmAjpmWCHBCDMUTDVilCKdzaKNScWmJchYu6+FJN2skCBtqhEHmWfGN0KGBBVCRChxqKlt0vCl08wyTIQSDWNbB1lglGnrw4Wosq85TejSZQrEbPzgp8Z+Ju293FvLmfhLcxfLgSSzDJtno8Jgc14LLJo1Fhi05yVNirhZO18Ot4XQO88OQlTpNjelDvIy1mmWE14gRpZemvhoo0mdAAW6qRnDMcg8j/AYoIO1Jm32hn2QJ/EZ8kHIvCxxhpmzpEyWXqqE6CNDN3ljDIapE2CK/cyZ/zdpM0GtdkJCJtCVC6GdEa02kWBbthHoAKlqFDbasdjPFIMsEKPAuglIqgTxU9NGhTQVgswwwgoJS8bJQyOOQS9ZMiRMUBMyAUCVjCmRLNJJmhTLJCnQDWjD4aNhj1v+liJtb9op9tsHMm/KgIRkzNFLyDgOFUKskODLHCJLnGWS9gGS7z/BuHmY26wR1NexzCDz5OjFb4KuAt12fySwOsEB6gRoGEf1d/kxhpm1xF6OODX8lkxbMNnKgiEvwkaJB5osmGfQZHdq9JIzjmUDHw1OMkodv8kCxRhggXVDXsm1rePHT51uCmSNQZIHtUiUR/kcEUqEKRGkQpFOqubaaGe+zggzJFix5G+KNOvGyNdN0C9BgxC++vrrxeMID7JM0m4vzpZ2suvWWX+Yx819lmfAlJv3G5qoQIxuChSJmoCoZh01uceD5t5v4jP3t58KIcaYMgpEfW4TZOz5iFEwAUnjOiI3bOhQydhUjVPaS5YsvZZc1sZ243aYnzcdLhMiTzcP8wQRysboa1l7wRCzZSLEyFvHXYgyCSokYJKFqpu8yfRr4mOSMXw0yRKnzTgFdfzkDBGWZNk4LNrpmGI/IaqkSDPJfqYZteTPiCkfmGcQKQssEuXzPEoTH6NMAzDPABMcMJ+lkxE1E5gNsECebtpokiZFhSBxcpbAHGYOwBL7DWNnMiTsM9JNngY+Zhm2hLQ4ByGqhnzOG7JZBy/rRJk3ypsQVZNBjLBMkid50BItmoCcMw5tjTAl3sPjNPGxaNR0EUrMG1I+b66ZJCbmGbCOsWR/n+YgE4xbpbccT8UkHOLkKBGxAVKWXvzUGGfCEksBo1dKkyJCiQB1JjjAMd7JMkmGmCVC2RBNZWsLlkmSpp/HeMTa2STL1gaIvcsTY5STVvF2iGNGHZNikHl7roSg9VNjlGmmGaVMhCTLhKiYxEWnvV/3M2kJzgIxUizSTYGK0c6PMm3XE3HynuQhBoxzNGDWyRFmeJjH7fdEKHGQp837q8bB9VklScwkxrL0kmSZYebs3xJkGGKWADXGOUGcLGlSTBv7L+tP0CSC5FlaJkmMAmXjYNcIWBL7BOMc4hgDLNi1KE2/WSe1Le8nzRiTDDNrr+c+k52XwD9HL3MMc5QHrLMpZP3dDCkx1CX+VQZZsAoevU7kzFqSJUTVJlrFdoSoMM8gJcLkDBGTIcE4EwSoc5CnrdM+zCxHeYA2mgRMG5MwJRYYsGTRIY7Z5Nh+pkzSsmFt8LLROaVI2/s3ZnyqODmWSZIyZa/L7CRDwhIu60SJk6VCiHkGWSbJKCdpo8k8gzzFA8YH6TbkfxtTjNFL1gYO4v/MmaCibnwJSVanTNXHcQ4yy5AlpcUHCpgEecgkB7RSOQtgk4AZEnRS5FE+b+pfsvwBP4wuva9wkONm7c+TIs04EyRZZoEBSz5OMkaFEFPsp40mfmo2gVIhaMnuoHmm/dQpEeEYh0jTb5I1C2jF8bhdh2IUmGLMPufHOUiafkaZtr5KijRxcjaJMccwMUNC+KkbNV7AEhSSqNHr5AAjPE+BmLXzY0zaILBm/EHxg3rJWZ/6GIes/ynJ9RRp0vTboHmCA0hiupcsKdJWZJAnZrfLGi9VPjdoSP4o68wYpV+OODHy1E1Fi5RhStKtmzxZekmb5KAkppNGFSKtFaKsW1s0xxCL9BOgRtlsf4Jx0kYRKiSInAdN3vWSJU6GPiYYJ2yS8EWijHOCTopUjaiiQIxFUpYgatJm1yfQ9lT8x5OMWj9HWtvc7Vijy/px0+zjwMYzjDLNCDM08dFHRvs4vgAVQmzNXrGERIFuks1lS+BIAl38DL126dLt5Y5tNvbWiTN9r+nkgy4RzQR0jLkcSNrr06SNODkilIgbIkdIlCxx+k2CymdWsCjrtDX1/T5em7Cq0IQ5DrFnEqeGqDDGpPEbupFKFNAtNSqEmGbUksB+Y8cb+AxZdQDQRJvfCFN6yZFkWa/fjSapjXMkahnaaNr4KN8V5nEeJmaSOmUiZi1PUSegY6RA0u5HnQDJ5jI1Iz6R9UGf3wYX+juY4AAnGKeG35J5BzaeoY2mtXNCikriRD+3BSpG3TbELBVCRnQxb+19hJJNmC+TtInnEFUGmTf+fcEm/vNowk/4iwpBSoSNrcxSCYQo0mkT0zEKqMs6eS2JDakgyfgSZH3XSDkR9TTxkaafFIs2OT3MrE1CpEgbS5Glt5m1cYNwAHJcfvOdx30HqRFgmDkr0skTI9+lhSwBagSpMMswFcPrgE5U9Bl7nfHp50JavtTxc4Jx64cLGdxn+KhuCuTNfSe2uUCMhs9HljjpLbtIskRsY4M2c9zyHAWom6oRH1lfL8tbdpgYrNc+f4CNddKBFKFLly15C5gE77oWAfh09U+wfMX4F1kr7JHPejncFkLvHNtNAJe1i9cQc+jS1jgFYjY7GaFEkajJd8asw/sgR6zyIso6KSN3LRCzrLg8NFGKxMnxEEcQyWKSZSMp91nyQr4PYIB5E7gE7WfOMoT0rgiZbIGfGiUinGTUkJN9FIlaxYFkCST4kGypBH2tmd0EK5YQAt03ppecYax11lTLqfMATLGfPDFDNDbImJJXgF6yBKjbwLOPDAMsMM6Eddj6TRZFCMIMCaMAWmSYWQ5xzH5WP2kC1CkRtscgSgJRU45zwpA7O2028BDHWCZpSK2ocVS6baZCPqdCCFGapUgTI0+KRWr4OcoDlpCTgP0BjlqGvdeUOfWSM4TuSeu01wiY4E8TFRn6jPomYs+XEIFN2hhkgX7S+E3QLESpKABaFS1CeC2TtMasSpC6Mdh+ow6ZYYTP8H5rnFIsWgJYq3OC9j5P2PLooDXiBbqZMVk1UZJMMkaEEkPMUiNg1CIBnUGzJILeJyHqhOTw0bAEoQRKWeLMM0CJiCHZtOplzqhwpHRDgpg0KRu0AGTos995iC8zy7ANzEEvBNOMGpLcb5VYcbL0m4AnRIUTHKBKkBAVnuPe22F+3nRoN+dG30cN6/gskmKC8evIY1ECVW1ZoXaoKobG14rTJgMsEDaLdRMfncapGmGGIWZtMBOkip+aXUBBX4eHeRzAODB+ug2pcJyD9JKzyiQJmHXwuGgDOU3q68VXVG4Z+qzjIapbUaBIQCWvy30bN7ZK+r8UiFkbUDOZXwBRfEp2OkMCyWbKvSk9kBJkTOCnSTG5VzuNffDRYMooaOtGgaNJngADLHCcgxSI8TQHrTJbAhKxF2K3AZZJMmhIQgkkNfFWsuo2Cdwk0aKJyiH77MaMU6cdv5RdV8QBFWI+wYq1RykWbQAXN9fsEMfs+iLPoyZEsmbbfop0otVheu3IEecQx6yzKNcmRsEoJbWyQxOtbTQMqdtLlm7zGeIwASZD3m0dtYgJLcXhrhp1iqgeRSHfGjDOGXW4BB6iRrx2b/gJULMBvWSrx5g0AbwfUbqLHZ9hxBILWiWjfZRp9lm10jJJxjlhCZmjHCZDnw3qRf2tHeTIdWveMklrT6uEmGWYWYap4WedKGNMWWdfno39TJIxmeYqm19Tu/NmxBT76SPDIAv22sl6m2SJGn5DRGsCTT9rWaoErdpXAhndC27RqI50cnjakAKaDCkaIv8hAOsniJ0Up1qSFn5qNimYIGOJER2IadXnsGnRMsewTVwukzQKJK1OmGOYLL30G2WUVtn5rZJT+0JhqsbepVi0+6IVLnXazL2YJc40o9c9SxWC5OkmS5yAIc40KbDCMLMskrJVDpKsm2WIgzxtAw55VuW5FOXGAgM0aWOMSa6vppkErqmgpxhjmSTHOUiRKA9wlAA1ew7T9FtCMUevPa8B6rYKIUKJwxwlQYYJxjnCgxznoLlWS8YmBo2CMM0KCRsQixpZSLHj3E/DECNit2YYQRS5moxts0kSUc5IslV6vQ6yYJOO2lcKsm58PZ04iOOnTpiSVWrLvVwgZtUyGRJMM8o4J+w1DJv1QCp8VkhwnIOEqNqEi44tCjbQlKRDJ1q5JsRGDT+T7LfJhqJJZMl+SGK+SpBZhmwyWVRMokAfYwofDY5xyF7X4xxEFDIS3EtiP0KJcSZ4moNEKDPCDM8zwj1mW0mqnWTU2vJpRplngAQr7GeSqFlvJZCWe2OQBQBGmKG1J+zdjO21c4SoWLVPoaOD2KU1k2gds+IK8WXOJLZxiGN27a74rj3HrQmjXrL23Io6UuKwmrF3ElPDNXLfb2IPSZqK3RpcO0diY9Uk0fKsE6WTIgMs8BiPWFKwSRvrPn0PpwMpeskSI28JthBVqyaTNVsqzwLUiJtkhhB3BSM0keToCgkOc5QyEaYYM8SPbjkgydYKQVK1NHm6mQ0Mc6zjfjKBBNFa0RDvQZMAXmeQeTopMsQs+5uT3M9xYuQt+SQE3jwDTPr2k6afZZJMMsbzjJjS5gR+ataHjlC2ycFSx2ZrY5r4rEo8a8gqIZ6EO5hiP+NM2PMfI4+0vuld2yBA3cZWQSo2kS2VWSKWEvJJlLIS+6ZYNHb7fitikoqcyx2QWFuzJKzYkGRt2T6PNeOHixAoQokFI56pESBubK0QULLNrG/Y+j0ZEswwopN1l543n6vvyUHm0YnnbnuPLzBgfOsCw8zZSr4RZlhggIM8TWdTK3zTpEypb9QmteWcyBq7TJJOioyvPWvvf23vw9ZPnGOYbq5VkC107DL9s7W6LkaBx3mYnFFdt/r3ASO6qROw1RlZenVF0ZYu8ibBLuc1YPgdnVjOs9yxjQQZducukGKROFnbv/XlcFsIPT3IQZMPMQqkTK85YYxTLYRKiIplm+UiyM0gQV2VkHVu5KKIAZHFLcq6US91IgMNgsYJB71gB4yaIE+MTuPUzzDCNKMMmMVEShKDhiASh12yf03Tj0Qyy2JoQDs7Ott+TaUnxnWnUS5oB6iTBQbIGQGuBG9ZekmQsYGP3CRJ0ytggAVaVSHiAOSI06TNOgVJluknbUvvhISMsm6DUTmPTXw2UAbMIJIKcbLkidkMrDhgWv3QIGCyJzpjqM/PmFmshZVfJGWDf3HMm7SRoY+cUU+m6echniRE1QY8Cwywbh4sCV5z9HKcg/iNgxgxC6BkuMXACJknwYA4rnLvSIYhYxSRohz10bTMuZQypknZkhJxIoNUTcaqbD93mDn8xlGVjNEi/cbpGqNs7qkIJfpZJE83OXrpJs9THLbBs2SAdcnYCkPMWRJYZMpaRRlGyobFgZZyzaIJuoXEbjPBi1xzcWr1Ptfs90YosUTSPiN+o/oBzDZlYhRs8D1sCAspjRJyUozttUWszRKbAOtEmWD8uuz03Q5RFvloMM0+KgRt2coIMzzIEaRcS8pS14mSo5ckSwwyTx2/KdHN23Kq5xmxJN8k+60dkfuiic8oOVbIkLDNdFtL3YeZtYoOed1PzQbOj/EIaVIc5yDSYDZKkVGmGWOSCkFyxEmTsqVRA8zbBVrk6qKwEgVugRiDLNBtsopHeJAnTMZUl1xp0lsvnnlDPInWNm5LMeFaRnaBAWuzJZsbJ8dhjpo+Rpp4WmCQFGn7rIvjIgTNPqaJUjT51hNWDSsklCjeNCEYsAGPlOSKvcqb9SBGniFmLSlUNNdWym2l98gCA2jFbNUmwo7xTvt85omRI84CA0wxRoFum5mWBIP8P06WwxwFsM7ZtfVEExsTHLBlB0Lk9ZFhiDkGmDeuW82ccU3s141tEhXJtfJunQQKcK059zSjtox5iv30kmWGEZ7kQR7kiFHM9dvSbFEOZ+gja+y9VjlnbCJLtpGsd42AvR6SzdbKwbpdH1udzwpB6/CJLRxk3t6nA8xbBdcH+ZRpmZG259aHHuz1BA9bAlL6KeohI9M2eVUwSjMhYoSQzNLLkzx4XfKv9RzezehgwyqBRKEFmgDtNkTMAxy1RLisN0KiAlYpB9hseN0k9mSdl8E1oi6TfroSyOoSxynKRAyB0LR+xAoJFhjgfo5beyJluHm6mTf9Z+NkbRWClAJLoCHJjROM20BB+j/5aF6nMNWKtrpV3EnZXZGo6e84wyDz9j7qNMkFrQYJkCLNGFPMMMIiKevb+mgiQ5ikikXIFB08LSADhURBUzHBtSj+xR+tEuIpHrCK6WWS3M9xQlRs+5CgWc9SRm0swZQ+f357nkXhBiAl9PuZ5CDHjdIoQJp+02czYFW2T/KQDc6EcNc+U5YRnkf3BNWKxChaJXaEB62wALQfqwUB+hxL8klUu3qtu58ANR7jvcwyzAKDzDBCgowlGTrNfohNnTFrsbSmCVBjjClSLNoYRErUxK8aMOe/adbE+zmOjyZjTJoEbcXclzG7nulz4jfq4QbThjibYBwfDRJkEHVN2ijj+o3ypJuCvS/mW9auiCEnkyxzgBN8kE/yME/YVgoBsy9VgvZZEAX1FGOso0sQ44a8CVFlmDnrX383H0daGYgvKKTdASbsMyNCiQyJWw5g73RsuegxWpumiW6LA+BrYJ/ZkukPHyNP6tJZltlpk0kVQvwp30cVrQAWv0NaSQ2undM2o6nLSUW1FSNP1ghrZhmmt5azSVwfDUaYsZUh6yZuVJehvnkTaVJMsd+qA5v4eD+fprtZsAphWYelnU/VxMiiqBKFlPhdOmFYt0SPXs/1Z4jqXt+jk9aX8dG07TxGmbbVAZKEyAQSRFm3ftoCA9QCWmggfmqSZRsHLjBIzadLTNuMHy5qYqm2GuWk2Z9ZQlQRZakWD/VSI0CQqi0f1j01dUwvcZHuFxeyfiWAqBuFjJWEgI8GyY0L9plZ6uqxMaD4MG007XnVSi9NwB7YeMbYvRWbNJ1ngCq6JFti3vHmBP+K/0SeGDNb7qGyZRO6Cihv+Iw804FRptgP6HiuQDezDBNlXceCTW1DpWJwyFR2VI2QRSoBNdfRCXAtKbO53d53+hiKlquIXtI2oESEweY8UpafJW55liFmKRBj3Re1sUXW8CExCqRqaXuuSkRsm5QYBWa6djPELLopR59Zx3VMPGSUhkc5bDmmFXTpu9SZHuYpe+0qBNmT00OrNTnftD6OJBiHmSN2aQ2p9PFfvopUw+h1qZ/f50dYYJA4Oc7Hu6gToLeWs0KIl8NtIfS6WKPXEDoZEswybIOsdZPRbOJjjCnTs2fRkgwN44RL2ewEB2xwKKy3ZHSzxOk1cnohY6oEbV8NuajCnGvyrc8qYaIUr+vfkGDFBrdCbACWVPQbRYBI88PGmRC5s8jktZIrZAkWPzV7swGWlJOFV5jpZZLUCPAkD9r+dYMsIBJPHeRpQ5el1/RGq5j+cg1mGWYJXZctzhRgmeLWTOmsqXmXUp8RZiz5lTOlL/JeIS3Fud5ngshesswxzCjThlC8Jg8WJ0b2U4g06YkYMw7tOBNWdqoVPAFkCnGJsFU0iLJF/g7YMgjt+Obt+ZbzIhko6fGQJmXJPNDGSfotSCAgx1rDT8woJQF7/woxLQom2Qdx4vpJG9J3CZH03s9xG2S0qgdqBIyyJ2iNufQbkeyRNgphu8hVCVlFQcU4WLoESRuPRdO7Icky7+QYouSR7xhkHq0Gy5tFSCskpRxi3vR06SbPGFNUCRrHcJ206TfUbUqfJMA4wkNIKU+NgGnOrwlMwF6vOFlLJEYos5Ol22B93nw4zR4C5piHmaWfNH1kmOAAvaYMsGD6093PcUN4dZt7uxMpd5ByWt14P2UzrpqwzdoFfoYRq5zUroTO0s2bXosDzBsyRquodDmQJpJzJsGgFaNxHuVzpiRy3pBm2nHM0mv6nbRZlY2oCE8wblWqBWI2o+ejYe2PoESEIeZ4hMf4Pv7U2v1lkuipgLqkX0rJQNvjGAUGWbD92Zq0cZJRc5wDNtiSMns/ddP7rG5sns+c15zp++azSQLpISkl/aLmlkSBJH+EAJLeXaJS1YrzmOkPo5WzrX2v6i0BEWCVm3pqXcbaAUlwyVrVbZJjhzmK9N3R5Rta5SO92PLEWDHXvUYAmd4tytgkSywwYJUaz5us8RCz9tmuErJtMHQ5RRwZnFQkanvJ6NYMVWtzpYVGLzli5HmII/Y6SymJtD/QZN4QWr2esWtGwJAjI8yQNa0W5J6QcrynOEyQqi1PjFGgQIwneNjaZik3ESdfzqGsp5IRl2s5zahVQGtlsy7pbCC9V/S9rJUFOkEifRELXOs35TMETWvP2SKdSB9SeR7XDamRIMMU+xk2vTbvZrTaCUn+iXJfnq9J9tvnXZS3RaK2n1KrQl03edc9QPtZtGqPDH2cZJS4KV0CTHCq36vLbBusE7VKMF0+m7Zq2VaVF2gisUCMftLsZ5IVElbJoctppy0pXiJi1NYFFhhkgAXmGLL7vEySMaaYZdj4yX3GKjVsIiBunk8hOaTMC7Bray9Zc9+ts59JTjBuypPz1s7VjXKiaZ7RR/k8WeK2Zxtgbb4EIk18lmAVtauQiUWiDDHLFPutfasRMGWCbVaVJaSd+MOzRtUoyqw0KU4wju7RHLiubYpAPl9UwVIZkzZlcg9xhEVSjHKSFIsU6SRsiHsfukeYkIM6LdFrg7Beo3wX1Zmor6Vf4SALZI16+Zqfr/3hPN1UCBKjYMmK3hb/Ru7tEFXCxrcTUlESUYCtkqmj+1kJsXytj7T2nmcYsZ+VJ2YTpqL4kYC4NTEgZKzYI2nXo8vO9BAswFZsSBKvz5SdadW1JNUK9jmYZpSGWS91VdAJ/NTZiR68cpz7dRDOgvUTxW+VxKVOv9SRhK/c00U6SbLMNlb+QXbmTsFiT5x8QIspMvSRJsVnOt5n/b7upib8kxsXKG0J23hG9xJft/Gr2NEZRmybm/muHUQpMusbtmu39CDWgo9uHuXzbFm6ygwj1AhwX+40g7UFtuU2iJrhGjl6+bvEuwCdYNHtrhrX1IEbl6n5dLssIR4qBJliv0nu+jnCg4C2k9JCRWxY3Wh7RWwiNtom4i6VbZwXpUjy0jl0n8UKi6So4efhtS+RI257sorIoY8MB5ggSJWjPGDv8ShF7sucNsKifqSib4FBXY5Z0/6BlKVKWywfDWvfS+jWSjLJWQgsOc6MofKyxJE+ypKslyTHMHNIC4e88TWlwqCbAkc63kXMtJ4pE7FxQW8tZ30VXfqaIk2//f5CR4fx3/wmJtU9Nxv4bKK3QAxfo9miZM7asusEK/SRsYkLnZDUcedRDjPIPAHj49R8OjGQYIVJxtD97nQSdppRohQZYJ6HL32REhFLiko5r/hnFUKWJ4lSZHbLHiRZ/qTvIWuTCib+EWJbiw189v4QstZPjWIgagkzKS9u5WRA+5sRdJ9kWQOlnUIfGVZIWN/7pG8U3dvXT3etYGy9bmGwGg/b5KIQk+LTCneQ3dKDTBZva8J+psjQZ3mef8lv2vORN3KASiBER614S/bkthB6dfy22aEuFdK9HQBbSiAnWPfs2Yko42Qhm2PY9BPJIb1+pARWl9oEbG8w6cciLLksaFqqqvvaCHmlS7R0udYg82jVVaUlGNR9o3QPtiDS1Fikt7rhf8AqbCpGPShkizzIuvwzYRn+BQb5DO9nmFmk/O0aseSzi3aAGvuZQqTNyyRNfX/Kkpp1dLkRYNl7yRwWTMNb6e8ToWwJJNmneQbsORTlopQdSSNe6bEEmvkPULMlwIAxwXVLLhzjkJHR6zKUCcZp0mZKAtuMbDpoGij3IYoWwKjMdloHcZSTxhSuUKSTeVNSIA8HcF3WPUqRRVJIk+Kd6NJZOR69PwfstpJJl+b7RaL2327ySCPsAHWTodWfM8mYlVfL9ZEHV5O83dbRkVK9EhGm2E9rD7SmIVWkdFeUItJ7x0eTIp22eaos0Nrod1t1njw33UbSru+HhlVK1ghcFyin6eekyc4LKSPnpErIPg/i9GboQ/eR8dt9FCJWjK+PBh/mE8QoXNc03EeTRfqRpt1adbRCL1ke4gg+Gnas+d2ODTrM87duB63IsxE3jftlsESdAEd4kBH0BMdZhqgQYtSoxoR0r+G36tsky7YMA7RSSAgfrTrTWbEo6/Sb0iUZ2iB9knTCYMVm+1qVr1KSLzZbl7X1mfLDdXuv5IhbsvBa/zEdqOjhF7pHWJGozWLJ4ijfmWDlOqVWnm7TZzJgFvFrvd1EaSDKQ1mUD/K0ycxeI7pFrSvnULJ0Qga2JljEuZXedEU6bc/BLL06I8i1UiR9LVfsd40xZXvB6UmFDUsySU86PzVSpG053YpZM3oNwSjkkAyOkL4hEgiLQ1siYqenXVNs99pnWs57wShitapCl2pJILVE0pKWE4yTJoXfkJNCcgoZJeRVAl02Kaoo6QMj51kaPTeNI5oypZGSXQ5R5VE+Rx8ZZPiLvkevNZIXYlJKykQ5GCPPIAs8wmNk6bWDVSQgl/Wrhp9jHGKWIebM54sSKUTFEgSt5SHiG3RzrbxNVPo6YRgy64Veu2R9SJPiKIft+REFkCR9tO8xQIY+2tDqgnFO2ExwhSBL7Lq9huhNgNMMkiWOVFQ00IqRAHWe5CHbDF8/K3WbWASYYNyW6kgrlAEWCFBniv08zsNWdSHPvPhPOeJmYFPcEk9T7KcbPZm0SoiDHLfqM6nkkN5xovoSRZk0yM6ZpLKfmk0YrhjyTfo6jjHFUaPElySYtFGpErQqlAC6mfyK8dHE75AyYVEHi3/xoCHL/dRtslaUCPuYJkiFmgkuJPkgnyE9fyXAEqV+kmUCXCs9ludJq/1qRs9Xsy1KtG0cY4IDNmCaYsyWCOqeglW7Vkj5/jCzjDPBQaNK0z5hm0nUzNtrXqDb+meictEJ3pwNrIeZ4wTjVr3UbUhUKQ+Osm77IMogKuktJkSY2P4UaavgbuJjP1OUiJhOoDoBo3sDhumkyBEetOdQEr1wraeg+L9yTyfIEDDJ8Jwh0YR4TJEmhx5GN8+gKd/SwWaJiLWRokhPsMKjfB4fTdvLrBs9UEInedJk6LNxhXxOr+mJJucmaNQjojyR614hiExtPMYhu3aOMm2HXQBmO10CLISMtDDQVTY77fU8wTiSjK4Q4lN8gDSp61TqT/LQW6aH3lXaaKNJ/9oFe/9pMYbuo53x6Z6chY4O0oa4FtuXM/GOPLfSwgi0L6VjA+2v782dNSITnVw8xiEOXtJ+Eh163U2xCBtQCWhyQqoW8uiWVLWAn4BJNot9KBBjquNtFInyIE/a+G+afYAedDDDCGNMcYJx5hmgYhKLouySNVj6BoaaFUsiA0xveRugk2LLJHl8y7ttcq9JG09zkKWuHktYixJfetD1N9M8sPY0w8xaWx2kwpUtoAemLZKsLdt+yk3a8DWuoltaae5in1EBCgkuvYFHmCHZXKaPDPcwg5Tgix2VqhupSmniY39tyiYotbiprcVWFe2aJ8lRH006m0WbtNydu0A+oMtwpxlFlJQyr0D8TLl202Z4nKbQA/YYg1Rsn8AV9MBDUZDricA6manbec3T29QKXD1VtmTXmmlGbd9HWU8l/pQYv0yEQA17X8eN4EN8L+EnPsUHSZCxa1OrQEf8vA/ySRunhqjy3Zf+wvps8lmifBaOJcUiQSo08DF86TSiNCwb/1kT3kuGIF9HBijJkMhFUsQ2NtjXnLbXZzYwTMIkHuQ4pCpT7kM5dlm3V0hQI8Af84+pbNnE9swaDzSPIsk3KaeWtlUN4zeWA7dmD28LoddhApFH+bxdIITllewPXJOaSs2xDDKQh0b6tMlNLRM3xemOo5spH+MQMlGwQMyWPYoaQpr+ti7qw6Y3mZBwuvxLl49KL7U2mpYcqhKyjevleyVglp5Hkr3LEbf7eI3wqfMon7dqJcD2JRE56iG+bI/fb9RelRanCzQJOMl+87C3McC8JexiFDjEMSKU7TRScX5EtpwgwwnG7UMvTpqouqRp+mM8gihjQlRt8NhtAsllkkYdsWTZfWkILI5slHWbHZeHQJRmmtjSRkUa+EvzUZl8BJo4TLHIAoNIw/USYRZJUTUZ0hAVHuKIle0v0m+VnkK2PWB6tVy7nxrk0UNChNAAneFsQ/f9am2MLcTbIPMkWOE4BykTsfe1Plfr6JLihHXiAON8aWPb2rdF+tuI2lRKZcXpXTDksp86/SwyzgTd5K1hEiLXNs5Fl3nX0T33xNhLT4AscdvfJ0PC9CtoQ9SDeSOxBqykWZxFwBIiQnLre0qTRzLRV5ROQmD0m6lwuRbiRgy1GK+7HT0tWUdRomgnu85jPGIXswHmGTBTnAcMuSoKtKc5yBzD/Cd+Aa3mrNJJ8brWAXCttcAg84wybZwKrVIr0kkD3cdD7LIMvJFeetqB77SLYidF+9klM4q9tQQyyTKJms741sx7Fxg0DmLalqCKglAClILpASXKtQohPs37bSY3bsoiAkYCP8M9VvUk/QglgSHlkIMsWKI8SJVxJqxSRBzeCLrlg6hv/pZHmGLMOEBhpLxWGvJ+2SQqxNkcMKG2TG8sEbGlslIiNWtUZxMcQKb7DpmSXwly5wxBJ+VVosyTSY8lItTwG/XJtC17OsYh3e+FSetYi+IjRoE+MjzM49ZG6Ouu158svcybKXIpFq3ifZwTLJhBIkLaA7Z/6gKDNpE0z4C1ueKEyz0o08AF0ri+gY9p9pmJYnpKo14zO+k36/E1p1crX66p/ApG3bLCIPN8mL8CMMHiPci0OJkcLgMmpL3DAU6Y9UsTRdJMW/rXSJAqSSO5v4NGbShZX59ZE+Lk7FCMIdOHdsgo8eTaymCUZZKWgJJy8G70gKwVEswyZFUNMlTrbkfckLFSep4wWlIJBEuErepMCGoh8nX7i5PoBtl1m6EXkixq7kO5J/VArgWb6LsWhITJErfEmiYVdTmi9PUUYjxm8uQ+msjgJ2lzESdnB+zIMyDqpRUSjDFpkm1LRCghvYWHTY/TJm22v+gySR7nYQbM8yG2X/qKyr0pk+uf4GFKhM09lWeSMUse+mgwb4a4LDBg/do2miyh+95J30fA2i7QE8bj5GwZ21McNsoIrSoNUONhnuAAJ9ADx7LWZ5IgJkSF9/MZmmatkeEYAeo2QMqa5DtgSUvQwZgcv/RZlsFEgL3OMmFY+gKLwkdK+HS4XUWmELa1PJ9yLPp4C5bsFF9P/JgxpohStNU6MjxPJw46WSdKn1kLJfiVPqUFui2pL2ulkJHiR0nTeN0GYoASYRr42M+k9RGEfBB1pATcyyRNoK7bMPiN2k2UJZJ8kwElorYTUlQUjKLmXyZpEoxZe26GmaOXLI/zsI1nQujqDSkla23LMspJJjhg79UpxpDJuELcS0K7RATpjS5l2iKOKBG29+/djgqbdaKsazdRc31lDb2mlm2zMW2TNlaMInSABWr4rX3srV3r6yslzuKrn4lvs/dNiQjv5TGKW3RC/VLHJgab83Q2i1xOXFPrSkJPBuEtMMgsw6RJ8WH+ilCzYu+zWYY4wbitfiuhBxms+6JW9e9D94IUUmndJ1OlO61oYYYRMwAkSPLSOeuvTTJmhQvSE/PGcm1pWSAtbvSQzRg1X4D5rh0ka8smIdpPZOMymY4eQlQpEyEfiBGqVaxysL65nQZawV/Hz7WBbvrZfoCj7GNaC0l8+vmRCb3zDPC8UWd3m3Yr2p5M6qqYy1dJkTbqx7iJnTTdJs9ijYBVzq2Q4JO+D1LDzxCznI33IBU9QuiOc4KR2owVOcnUWal6lErJCkEWGGSQeXTZcM3Qijo5I20WpGVMmn47bRV0D9yK4ULkPhVCX4Zu6DhdD3oa5wQHa8cJUyLb1WFFUFLNJ/7pMQ4RQg9gEvshsYis8cIXtarzs8QJ1LRQTJTl1o+7dMFyOUU6bY/O+ub26zgo4ZckeQTYhI603egnTTXcjq8h7XU02SvtzpKXztnjAZCWLzLsL8kyQ8yamGiewxxlOjDKaiLMsk/H/NKHUJPOdVOKL3zCrbVjuS2E3hK7WDQZuiTLBKnaiyYjmWXEsTQ6bqKbYrYqUQaZN5LVXpuJKxK1rKswrPuZQpomSqmGSJJFgikOhZQPiKGTUgZRwwmzLuw6YC/IJPvZxzRp+gkYImaZJIc4RpJlZPKkZER1CYDUbi8iPYmkRxlgP0cQQZfxJsgYNaDfOpSyGEqfjBIRnuBh8qZ/ms/eQg2ryopSZJYhq7bSsusFm9UVpZn0khtmjhBVDvFlq7TMmgy2PPhzDDNp6uIjlJFR3AkyVl2nVYC6n5J89gmj4BIZfsBkegHr9OiCjLx5KBsmj6eVMbpMuG6zjFopFkSmRS6TNPfAunWWRaki2WrpvVInwDgTlEyYLYGb9EgUkraXrHGSdfCqmxAPWBm0NIOXBznFon34OrmmqNLlfVmTibzW8Feab+uSBL/NCvipW1JHN5YtWIWOyJ9DJk8kAYEo9pr4eMCMOdcqL03iCekpDVRF4SXXQ7I4QpzKEBgpVZdG2NLEd4oxTnAAKTOSwQBpUkyy3xxzDlFxXSsPuTbl6q2AHZynaO45yfYLadBN3pTd9tvrCFpNeYxDrBjyRxRS7+czNgNUM0piceBFISA2UxY3yWbWjbrkER4jQtmWaueJMcIMi6anaQjds0VaJuSJMc8gemKznzBadew35Fw2ELfZ0SJRHuXzNgGQQk9bFnWIqKeKRK2KQsrBinQyxKxVdMlkQ5kcKiXmQmjOmmmGMXMOxSmSTOY8gwyyYHq4XBvqEqCG9DcbMv0vFxg0PYZ0MCdr1gMcJWUIbcBmDsXhLdBtGzkD1qFso8kgC1bJNcV+Q5z28yk+QGuZaTcFa18f4knbv0Um9c4ybM/nkzxkk0c+GvbeAQxBqoOlAt2GLJuzPVlCVBhHT567NjWubteTrFH2SWsJSWjE0P23wi3Oc+v0rbAh8GVdzRFHhnfoPrlaMTLHMMcNMS33qu496kdKw0T1LBPb5Lukz5We3K6Vldq+lU2voQhzDNvAUBQlkuwa5aR9FuS9CwzytBmeIuvWDPege9nqzOs0o0h/n8d4hBMcMM5X0K6fIzxvemE+yX4meYCnqBFgiDmGmUUGW0mvWnl25JoF0aWcQnDczdjDaQaYtyXqC8ZP6CVne+mK0lXKQmXN99Gwg02EwABs0k4HE0tMM4ouddX0u9z7ZfPczphm5qIa28e0CXQG0GWpVaswayXu22jyST7AUR6gm4LtRVcxCmIpE+8lR5AKKyRYND0iRenqN0op8QslIS1r/IjZwyhFPs377XogrVxE2XGACUaYYZZhqxYMUmWZpH0+pEcrYMvTyiapNMIMdfz2fMwyjEwBlu/JE7MEgdgLWVf2m+C0ic9OFj6JLkcSey6JKfEHJhhn0ZQba78tjlRKlLjW+zVHr2nNoqs0pBG8JgzLzDPAIv1Mmom6uh1Iv/FhdG/W543qXQYF9JG5TnUI2PYSNfSQE+mb3GkSbGJL9JAkfVZFoSgK9nFO2P6G3RQ4yHEb9+gerlqJJ+tDHD3tcd4Q/PMMALrdgawPebpta4IQVVulFKNgKkdqJimjVfOyTuaI28SQ9sEHEfU3YFWEomDVA2XqzJs+10Kqi8Jb/IVDHGOYWaTf0yT70aXVcUN46riqQLetbAGtEpPhM9I3M2jEAVK1dIAJYuStsjlCiYc4YhMwdzt2NXXbmRIRUy6vkwmJSxdMj04/FYLXrZlRipSJIL3IpWdZJRCyNkaEGNL/u0gnUnIvxLuQhACTvv2UfBGWt+zAT80mbSeM+OMQxzjKYZvwE0JEyr/l+S0S5f18mkMcs3ZACOkUixwwgxVzxo7o5z2OnxojzPAeHqdEmAglAjUM8dywtn6WIZ3A2ziLlIDq5yVnCWfp5Se+a4GYJswDEVtlMNOxB1HNx8nxPCMsB7RvMMsQM74RS1qJ/9Pa3kYmN8sE2bpZ1fvIWJsrPV/rBNibO4sP3f4o09FDEx9hdE92sTUy1VfWCqlo8FPnYR5vUW9pQYwm/vz22TkeOGgJ0KhJaEk1wzgT1iaLX7fAAIUWwl0GGIkyvZccg8ybqrMy676o9XVlTZaYWSqBhPjPEmedKL1rG+QDMU4wzrbcBr3NrE3SyFAgiT1Frew3Ai/hPKT3aopFHZc2M8wyxIBpudPw6USt+MgyKG7zJex6Kz5/P2l8DZ0IEsFVopmxiahp9hFAt6TKkKCtqSsfG/ho+HzkAzFr/3OGk8gSp765HcCKJWZNew0pkU7VtNjpOAeRlj5+6gSa+hoX6bS9waO1It1rZXyNq1QIMswsp28xwXFbCL3NJhgRRUqUdWJGWSQPnZTwyfREYXulf5Ao4UTZIRJK7ZxPW6dj0jDGks2qmUxknJzNFgyZJpzyHa0lBRETnD7Bw/azWstO83SbXj69yFQtCVRBEzitfSuGDQubIEMZaeYcsiXHImEH3avuKIdtxlnUKxIwg16Er8l8Zd/ilvSTppCL9BNlnQUGKaNLUQrGmF2b+tpn+uv9/8n739/G7+zOF3yhKZMWJaaoIk1aTKtMWbQUa6KKlNJYu9W3POVx7RjXWTcmmADZO4MJEOACd7ELLLDP9j/YhwsscB8MsECADG52A2Q2s+1tA7VbjfJ1pTVXtapIKSVyJEstutRDmTRZYg1VpEmLfffBOe9DVhaY21i0Jz1uAk7ctksi+f1+z+ec93n/eEKXSTa5GT8b4M/5XZf4TfpBbxsHNUWidFvazAHyDZD+e5w+K4membfbFlEIta6D5KlqVq5xSpV5xGrU9yFTUcmftFXVUFZj1oe5k2BjAnGQaFszwNIGRYuVdGTN08oEljXd9POEMgXqKNhEjah5HKRi+MjQcb+Qnv+Wfmxd1DQesBRSB217izRiOy7Wo1KLJIPWn1XSqFKb5zhFyVQtclja0qyHIMj0fVTA5bVgfk2r7qfVC38FsRd1gHXIYL5C1+I7X2UXeVZJBjfy5rEGbIMtFjhmg60oorqPde31z55y9RdYdX55X3/t2zpjm8wHCwBGVG2B3ocsMUuNBJfuXXdMgQYKobHNq1HtGy4fE8gFI+p6l8mIZteBqKATPUeqIRWO3aR/IpqyZfbZ4KFfswv38OkGWKU62KBIy5knq+ygFL8zSuyyiqWa5+Nz5n1xYl50R1FHTyiz5oxlsVY0vGrAyHDh96U1rhtskafFJjc5osIuq2HWK5aoydQNRBEbTFIHgXur7CDZ2T7LHHlgEdimbW24E/Wu6szgMidseCKanlOdERlMPl/wQ/vSG3EtFFbZjWvRJxVMsCT9CAMyg/dBbNTF3s1y7iz1WU6dbZPgMgyQ1TQobEDXeJ3tF9ihJ4zM3yUrFONCYRYNZ1pLQmEJ3b3Yjhob7QZV5iPJcM2Nq8W6kkTamOO2nCjQQBJqS7yr+Hk+HbVG3lFi0qkR3+M626wHYNdwg2SxreQnqMWCPO9MYm5naiNYNCOZi5hDSoaXJ6t8ICXzBmKTLma3ns1DllwoaUBuh2lPnP7Ua/IMRWc/CSya4zSkFU9dGv9tfplp9zVkDL3K7gvgrs5DO/fPXBbbjB5picPo3ZbZZ583/VrPu/y1EeffB3xIkQZKmbM6as+UetE2M5x4WIGuZ5tssFSB6F/FxtKyQJ56YiMMScSGXbVbg5vuLTDlicLQqh6epfNaLGljihhYbT10OxbbxoivcEyFnktMUwwQK6buUiQB+RYck/fFpgFE8g/qkAlAYOQTNfQFdSt+3ji7eJ9lfsj70ZOZb7VdH/lM/TH/kgTDYIjkXaqlhUEWY5dPYp6JYmqo/9Az+YBbVL0PA5sPtCjRkqaDyaaWOIjF0i0eBKApMoEW2lnatMhHHawxy6X3sivsMUvNFRILVNw7dkiCu7zHgGR8RwJZ1WfJd1YAsqwY1NvtsOoLJgNotFhouHLCwk12MAZpMeYesBRGXRcNrFrGauiT1YWkyKOl1YEv0WYifVYMdWNQHsb3PWSCHVZpk+U+73BCOdQ3QxLsshqgkDy07IzNI6uhBY7J0OGEsi93asFaFTN7hT3kCW6puhlucz+G8lf48j9hVfr7e32RmHVQKhdAUI4Wnalpt9GYiD57fDbtkGH52WexRJO9hi3R5v3MPqdFjoXnP4l5WYmx5nttirK9lFmo6KwsPv+SDB2Xyu6gpM7f509jedwkx2lijhJnPOIG887MEtAjP3ogehdjXSVD4abPB3DKtaiJIt90rrxEgiGPWGeZfQo0gtnVm34pzgF9zuzzZ2T7bd7pf2wST/rIr32BY4pPn9EnifzD5559gdjzZv2R5GNPRNcCU71Emi5SkSkR2zoUs2uRhL/KPI9Y5032aZH3pfsCnxW+G+qPcVm7JO8iloDNAvNUWfCZMkeT3POnTNJl/flfIiuxFUz++XdZxkn6kVsgKbt8iCf8740MY1jCAsdckOEttrj97C/I03K1jS1ARTS4wHwxl/oHSP2Wo8kGWyisJ0WfIxbi/Di5+ipnlLjJJl9NwWbiZlxDJXQLmFt1hYcUiqbMW4habez4ASeJsjPUM6T6A6pXvouCMo3BaWfFf8i9FPf8rC84uqSppwpe887tvrwcxnVd4oC5/mkoPY4SlbAZA7j29MuYQzJ02GCL68M9OolMLDUWnv8kZh71rvVUIXpTzQpdJjlJlMkPWwFiX5KglipxmYDhxHfI0+KSxN9vyq0eUh1k8jIa98AQZXaaTjCotDk6YsE99NY4oRxmjhZeUIzGQglVNUp+QJyF2ecjbnBCmST9F8wky1SDPjueCGiJhtuIEQKgFNUaJcwkfRjgVocMD7hFkQYyoJ+khyRCAls0YOdoRiNQ8m2hdO6Sh2rwOHMIS8Oo0oik2y9xhiQJKQYoHVfylS02/Ocb6+EG23FdpE8XY6xDJh76dbYRBVnbtVV2KFDn3JvPCwd65H8jZtDHzhyRBFNmpWrEmuSdSTkZTIQZ2vHZwVK/1Bjp54qiK7o+2PCvRkrSLEPzL5DRNYz8V5pOTe6TjIbfWCWjOPHxZGFj+I0OHP07gb81SmGirL9kpqlUSKH/s9RCEqefITmGqLQCO46o0KAYsrpxb5uRjKIX7DuBwGDAw9s8COTfEpdGgCaMfNcEvo6ehzqKI5e8WO9Jz6t+lrbodkgYW9E2PvKAS8bPP2DJ0+NScQ+bVMlABiVVf9tfOZ4iuUuLXACpSh6WD6Wulfy7JI8dDzQx5lqTsh/4QGyX1BDZdbrgR9wJ5qQ2fvLjlOxIW0F5qKhe/Ft+N372Otussx3sBBgx1QRcLXDELmvc4kFsKrO03Ya8zhlmfjvO3ijScJ8o22QuenoYWLMzxym3eBDsQaVni32yxQY7rDqwJ3b0eXhtjMu6BFbX/H3oQK5R4mPeCZBvyAQz/r7NF3WS/cRyyNdnqTn7/CI20zKkztJ2T7RC1FUN/EqJVdNmTOmjAB8F7PwJ/4IcLf++jbG+znZIqEfBUTMoVVVAgRohec5q0SUwWemv2qoCwTI+ZY473OMmm5Q4Y5VdVtlBPo+yUBDDOunsKm3+V9llgAXilLw5XmM35HYtB/cseMOkdAXfAKv+yi5ArL4kfRRioXtRnmUC3tQgq7+oUqZBkXe4j1JljflxEQxEMUTHGaSL7q+jfyeWq1hJBoA34vqO13HJ3MXkEpPH5C8zKJRFgIZsKDS4yAMzwc++sRr0y/IakuDf8k8Rm9eYQfnoxYw1145hTaC/zp2SM5AsYToZzDGxxFVb+iSRVNVk+f1YVCzzKZKyJLhEadWqCcvuhQSwzQ0OWYpeQF6ZFt6xygnlWN7JGmPHvfnE+uuN9S8TDLnLeyEBXWaf3+PPYkmnMDSAO9xDoW5SP2ihBnbmd0lzjzvIcF39i4UZnHPkidhVymF3I9BwfMmW90qlM7zpzGkpJcRQEbivXjLrPVzD5XJiXi7zafR1Zhth3ngWUGe1x2SZa4i9XqLmTLlZ7yHNXP0WD5A9i86cNpZGXqDODO1gUQiArDqYpMXTdScB1CkGC3Ik3+uxziOThY3NF/rMGTrIOy7hZIGUkwdOKPOEuWCmNPzn1ynGQjPDRZxn6gsXOEbSXTHdy1TJ0+IOPwp10kjKPxtzxeg9WJ+XpU2VcrCKZcq+4HYXUtbkaTJD29mgNlnc8kRp1fkWOa6zR98VLB/yfY6oxHchKZlqcsHBPtV0LdQWOGKeaii1HrLhqb9VzI97FSmPer58ecgGy3zq3cuvRm/4GW9wggUaGJuziHmgz0YNGzIRy85xhlX7yjTr/W0U+miprilnhecRc+rlZ6YcGMkYswHGa6lY4die6WGN2tSrY8SNQ3qk2WWNSywMKoPJv6Vye5N9Fjj2c7tL8fmXfMxtDlh0sMKWBsXnX7LNOg/ZCM9g3fc97wHBess+STqJDJ+6BYnqd5kq159+Ri1RivMjPMKnXqOdytJPJePc7pAJC5SDq6+Rpseb7JNkwODl75BzwKTSP35hmVCmyiFLgHtfDo10ku/bokdAl1QRYmWrR53w51xnvGb3maH1vZptZUMgfEKJ1sJCBGhZmELar00q7hedkzo/91ghTQ8lznZJs+ve77JiaTMTgKARb6ajhm9d+W2yfVtSZuhwc7gZiyt5j6af/8y9sntxtoqJKd9b9ftKgB+SoDb1quMIZeapkqPJKjsxx8se4PrTz8g4LiQ1p1mk2XXdZ5nf50/J0GE4kQhg8ZF77Mq24ShRCeBRRKHK05/yeuMLTO0zY716yvAhzaY7qVWGJJBNzxynXGAqvidXX4mfKWXJZSIR3/0cp9yd+iex9BiQ4rYrD6QsUnjq9eFe3PN6psFmn5f6MNX6GbK+Gn8+/mOvbwTQE/NmhjZV5r15M2+lInXeYoscLc4cCJGcrEDdt1sjuvU8VSxYo0XTARpLnzPZ4gZbKCG1Sjmoo0+wlER5OKnZ0M1T5iQkhJICWlP1hCrzLhGbQFJcyeQkrZA2fp/luBjyoWpjHjmS/uRpxqZADBbJB7RJtJvQPrcAqQOXamgIArvwYnTZgZ7kJj9myf+bSbqh2ReAOjLETMamZp9lH97MBF/DTJZzTwlLk6cZci75LWkbPiAVLAV5E443MXlvRFVsJfOUtPScLAoyUSiAgivs4KhHMzMgGQ9kkj7XOA3phkANXdcKx8xTjc1lhk4YtGa4wJK/+sx4sdUmSv52GvwnXSosqdcpcxywSJ8k1zgNgKvoDNQyJ2zxFsdUOGIhDuM1dlnnETlaDBxQEyAqqnPfQem8N/2SUtzlvWDo6B4WQKn7aIsNmuQDKABtfkz68Am3YljoYQmkJWohgRSIYf4wxjiU9ESAJ5jZp36u2J7avDYxX0TbzlSiATXZ8DFJ+jx2uZzkzp9wiy/GvGy+za8MF/RIv8DwuMcdwDwlKxxF8qCWIPKvEDtrhb1gUEgKUKUcRtk7rEVDL+vyhG/cCw6ACFSapcbbnnQlFtZNNhFDTyzBHpMB8JactaDN5BYbAMhoWSngOugeevLUA27FtlDP5AJHNF0G8Sb7NDCfOckht9hA4ROqY5LdTzhwD3Cb+xRpcMo1HrvMzpYVF1ySCA+rearhXSmmodIFLUXRBsUqZYAYVnR/H7Dk9aobqd4aVmWBa1JQswpQOqyui5Y1eW9gVHOt8TLmrZqhP+SPkEy0QZGe+4QpVCdNl7u8R8W9AsVi1NJJy7E5LBxgfFGh92gm1JdRE5SKPiQRfoFzPEGyKoV6jKeoibGcd4msFkxabgHRjB04+6SOpcg1nS3UIRPfqxqgsi/k6i5TK1ON+33FB80muTizu34aitmss1hnaIYOYienHCCU99cGW7HUytJmj5WosbIZKFFjiQMAv3ZnmJSlFXKyIvWQI0vyIaBc3lTGVLXN+i5rKPkOCHnmuBXDt/WVpsc/50+QR54tJfsvsDPkeSepldgEKQZscwMFFIwPYLZI7UV/aP5zI1+mtMtR7VqfB7trQCq80kzebgoFqQdM/t7DEupnKbpcVSyKNXadSWHDnBh6On9nqaF0e6WML3kQSp0CXSajzlcpM0rZNf+rB9zixM96MRq1NMu7ikVgoZbUsjoRE8r8floBaCr4SItTMYzls6QliLG+euHLBATAVfQloBjKkl/OO3AgEFDfoRjiYAqZNsZELlDnDvdoYebtAqjAmDdStigVW2F7dYqxmDnysDwlsKsu1imSp8UCR8xSC7WF/BsFpKXpcsSCM1DMW6oQTOKkL59sMa16bX/2gmMqnFFigSPWfXGu6yMmkyTFmjXkZ2ehU9M0KMT9bsO8pZPrvjd5bDWkv8aOG9kTDbwmnjLn4JABK/OcMG63od56h1VSvuxX2IuGVNVfMfuqfQNG1YvLW9r8YQs8ZCOeMxEWUgx4wNvBqllnm9/nTzHlj4JwWlEPb7KJvFYbDpCImfhtf33MP6JIIzw1+1iY1yFLKGE1TZeCkwRko9MlTbrfpZ9KBttYrKAdVi0AYmjP6P+z9I/jmdDsqzolD3ZT3SxwL3HHAVY761PDPstPf+KL2pQvfS9Dmi910gGLTGL+lcdTr5NgaIGXCesf/zV/wP7Um0FSKFOl8Owpr9ae+VxnteEhJhsVXWOBY47c31eg2I+v/nac2zpntWzW89In6cqspAe0mX3TEAvcTNNlL7USYFw7lY0ZynzcV5w9PkGXSc4TWQCOUgv+nJyEdYPwCtUV/X71r1pY7LLGfmI5lgX/uPbv4j2b1VQrwDyllBfcL1CL+l3WaPhCUQzLDubtX+kfszE0D7oKx0G4AZsJM0P7M2a3YDiG7inNDml6NFO2HLnLezxOrDBJN8C8HmkeX32DieEoVFRYQqV/TM5rnZZOmp31Z0ucIRan5g7Vyb4vYPevvo58vA3v6AWmIR9FyZ1PEmUA5KWtRYhZFdT5kO/H9V7hMf0U/KTwKgoqs0WqYRQ5mkwMh7GQLlEj/fwrQIDpTNzzZapI8q1+0UgASWrMBpFp/HvI0KH87KcUn39JgTo/SHzfVsGeEK3rMCTB3xZeg/8AmecXpOgHjvI/9fpGAD05Jpw4wPWYFZY4iAMlTS8kTdKD28MwE7IiC5CwOHu1+/POILkgE9tIY7ydcYGlrTxkgwJ1rvlFt4d+wDrbXMPkqzagnrHBFsvsR2DCuI+bEvokMeo5u0AF1czLbbC0jVmdA5bYZxmlr4JdUMVUy6sO8IfJDnANfCn6IQkFWGPH5QXGwrNNZD5kampI57FgBzAQVewGHeJ6ePZYiWZYW1YN4Np2AIGui3IMo1ALNXO2wa3HMCcGkBgQkiOo2IJ5lnR94NQhoG2jmlpLvUwF80wMiBzNYKmpCKlYaXsw/nlt238Yzc8WG/SYZI8VZMAqxqeBh5chhyz6BnbSB+7xBl7bTwGdy+xzyjVqlJh3HwRt3rukA1DTITX0VCtp6QVAKhnJHmqTIlScQm2HTj0OCrELtElqOCNonIGiplmAQ4dMmA8nMU+au7zHHivxs8UaMk8p2x5YGuFoK2sMFDOFFYNGAHXdt4vmizATYGzK2SliytZdGrXM3/zCa88v46tPim3W41nT/QGwyi6KphkZ4iZRWrUlR5np+S0e8GNuIvPUroNXAp87TNMn5SxaY4dlOQ+ArsM003RiIBIzT5sjPb/yb5vEzIUlC1VDaM9IPdigj7jBKXMseQqpGL+LHj6UpkuTPH0Hx5c4jGWO2QMcjRmr91h1ZpcGDRixEAWeKalLjVOKAVXKAfAP/HsouLxM8kwxoiU5q7g8SAOn5EWS8oH5nPUcULjJJlXmKVIPMEvscLHN7ZpbTb3Jj1HCrGRPGngVCnLEgvtYLcbyqEs6tupqZi5J8C73eIePow52yPAu94JhKPCiTgH5eYrir/tCcn+dM5LbKkhJ7OF7vMsZJd8+92LIkkXCB3zILR6QocMRC2zyvVg8NBywkEettvo2IJ97rToP5sr4oKv78ZFLa3Vm9H2gSNNzr6geZU48PGXgjW3LAcgUb3mitICMSxLhF3WPOzxmhQsyAcCO5M0j6aMYjJK3KKXNmF8mxfgj/jBqvP7S4J3lnIbLPbV1FutC59ce10O+821//ZRff2H5BAZ6j/5+lSwWHCFfNBvVdO+Zp5qUGAJFGw7B2CKyhcl6O/48nzDwBh3gmAqW9piI83VAMp7nPa7HkvUWD2KZWnFWlQYQKQrkN6qhWOEYH/IBZ5T4iPej/5vxeiEpqIbwm2zyPh8hRrxCwLQMb5L3vmykVJBsTampSxzQoBB1QD2Qlt0KlAPzdzJ7GPtuJn0A6jAdi0X9DDF4JCXWgKl6veT+b0n6AY5qMNHzO/QlkNh1WiQJaL3JpoN59nyJ3WD3gbFu9TzJb0p1f4XHweQVe1hMcDGl5VEq1gpYb16nEF6F40sfsL5SNaFPkhX2PBSthpiQkmKr/gDI37RLmqLbC0jmK6/REmdx/QVgamkjz9c0XXZZZZObwcyrO/in5ZzCxqwnnPUz2M7AJnmWOGCVXSypcR4FBsgDtk6RVXYQM1MzUJssu6zxh6k/YtrvNy0hJp2MkKYX1yzB0M+/SX9OjSWuRfkkXT7mnfiOROTQuVXhiOvecy5xwFWe/v9dY/5zelU8tb3MCQ0K7LIWFlFFV45N0qVBweeBS19SndNO2f3zKcuUhrVYTBadaXmQWEJqjbovBzUnanmkRWuNUkgf1Qd1yPBJ4lawkrK0SfUHSCE2632A7CzSdKkyT4Iht3gQIKTUKZp5b7BNmywPrvzP+ZvS6yj4R5YASQaUnn0ZC2Kxoec4ZZl9MnR4xDor7PEed5FqpOPAnXpGkQrmOOVj3qHhSjZ5zo1CeSa5zztI4WbKkjqpYT/IHx/zDgp0NPZzGyDYwGCgT5O8p6oXgzyic0e++GKzfT1l9h0Kj1PPriWP7JNUT43AckTOGdv7LKMgkDbGTPy11tex0DWgaZK32KLEGf1Eilcbz+gySXFoKbPyLE0NbbFdGZp64NCTtgFnpydint/jOv2EhTWmhzbLd8iwnVpngmEwdXWv2uyeD1JUh2nKzz+Pcw5MPdgiHyEStnQzDEbs4/mnX8RiQUSDNjPhpa2ZW/8u229zh3uhgGqTpTV1FUlmlzgg88wAuyxtPuJ3OEgYG7/NjJ3bU1eipxfbUmEwsoyRKkNM1Dv8KOYbM9qxbvKAJVpXrvDyMyg+/zJsfLSMVk+pmezrWWOdqv7+PK9vBNDr+6Glh1uNyQp7XGA00qbLkMaL1DwngR7XXawl4K9Dhid+oc4dBa9S5i7vUWOWI09WlBdEgmE0aALONJhuctMTmHLRbIAdqDr89bBLCtd3kEmFTZ4b8qnIcBGbfAFFGg4MQLLPIdAFDDgzeY4lOVry6HH49Wi7vOMpjKCDdjVYCzvuG1VlnhPKNL1pEGItj74cTW7wyJlgrQAswR4mDe+i/vaYDMBPr2MW2GE1Hpo9rmNMoXnyzlgwym+XE+b5Ad9/4QE7cRBMJtG6rmq88r5lV6PVdBkFWOE7YsHBykEYF4OlMUqOcMocf87vBmvtEsm5uvG/tcWV14lCTrpMcuBovlB7eTgm/07DBkTRBLjGKZKNCXhN+WFgDZyx4lrknJrdCMBOGn1JXPokqVPg0rdpTXJMY16CLfJ8zG33riojr7V5TuJgFrAp8GieE+Z4EoVP93PHAY9PuBWAXY90FJocLd/kmvT8gCUecIs2lkitAAIbdE2yKZ+yFR6PmcNaqpGkKtq2/aq8hnwn7lUBGALGZARt7DT7vrU91/ekoeSYBa47O6xNllV2WGY/mB3aGAnANd+bidiam4Q0TdM3h2JZiD2gLZyGTAU6aICTF4eaOW0jlaBap8CZN/DymRRTzOSSRSQPKtDgPe5SoOH33CF1zAxdMlRJjvqkyNGMIU6sUiBM3nOYx6MNef2QI4jKr8ZphcfBTNMSw0yEzylSj6ZDTC+Tcp4hab08OmyoN8a4AaHnMfwq2GaZfd4ePggGj7EpDJhQarr5XpkEO08r/p220RaYkOdN9iPgQ547OvgNJMoHa0VeOgIl9J3IW0kNqNJkdV3FyJOPXsPPsFPm6DHJgjduahQfcAsxdixF7CjqqhLhJBcEa5reHj6IRlRgRIYOv8efxfkj5pbYRw+4FTYQA1IeYHGGwoQ0vOszqWFrM0OJGve4gxLAD1miQ8aBiR7nvl09YJFVdmORkaPF+3yEJJZiSZ5yDfOqXYjzYJ1t5qmiBM0BSZfHW4KjGM/673UeKDlZks/f4G+/4Ur09/9qObsyi3l7CoxSorH5E5p7ss7Hc6+ZZvVwGWDAkESEAt3m4/gdxqQ15rItm3pRd4C43lrkqaZtsRE1V2mdWpQJCJLkc0AqUqx7pGm4LFs+uzpb33TbEvkuGnA9G/Icq0WTiEmq9ywm7yKHsTB97AtrWVk8ZIP/9tn/JkBqLUdVo9SfyEtOy07AlyEpZmgjW49RDTAPPi2gpd6o+8JJPf0k3ag1Ca939rMTXoMN1lca6yGLyOtLQGqbbKgMjMlaRN7Qp8x5wu3AQbr6CxJ8WZwotVrsCb1neVUesESTHBdkYtmuaym5rQWhzGNBcBZno4T0gvf3Vcqx3My77YMG7YKzM/uYj9Q1Pz/0/ege22CLDbZokcMsJT6JtFKAT7jFfd7x97XNBlvhLSVfvgYFes52E4NJ4TJSRwiYlIWArkGLXMic9T0KuJ2kh0IIZl2dMotZ+Yx7TLeZYZ83KVP1sIS3ASJUxZb4fT7x2QMIieCQRPTGQ+9yxmXNk3Tj8/8qvK7z2AkE5mlY4Shkk6p36gflayvVhhQNk/QisECej9PePwmMaJN1+aTJPIdMhGIE7NxMY+qQbQ9+EqPdrlmODtO0U1le+eyCKvPBshfQLFB4dKYlKT//POT8xno6Y4JhAHyapWRlssJjqwtXpoOBJjb8xHDoij9PoiXJIUvMD6sAsYQQQ3mJQ8wvPo08f8FUfW+6CsGYcNZLpoZ9Sv1a1OIfJL7PI9aj/1zw7zbjS/EEl+a5xmmoHrZ4i2lMVXeO/ICH8XzrGcrT4vDK6/HPFZj5FlsscUiZk+i1BPIJjF1hL86IAUkqT39K6fkX9EjztPAywAvzXL7fojI84oBF/n3hKgNS/Frta2qUombUE8aETn71NTNDmzD+9/yffLlg5BGzm7L+Jt3vku53qSXsO7UZZZJsv43YdeN5AaNFRcn++dQV8s7STWNhberr/2Hjrxn4d26sdPMV7U59J84AqX+kogBI97ssDQ/C17ObMsKCWKEt8lEPkwzIPX9K+8o0u6xSp8Dv8WdkGUnJ57BwTHl+r/CYzHCUwyALFTGXy5yQfv4V5Wc/jaVTjzTpYTcICgcs8VelN+hOvczK878OzEr9a5Y25eefA9C4ctWAZQZ8xhs/Vz35RgA9FScZHYOl4YiWr8MceKE4CbxpkguTQ0W7VzhC3mRq/k6ZiyYCDHy5JMGJM61+wPdp+JCpYVAHkxm3XlCjxCe8HQyK8YbFMtKOw7/ggCVa5EJuNs6UOWYB+VBInpqlzRGV8PmQd12bLDusIQnpADPOFMglFFpsEZkeC4DSe+2T5Hf4CFBi1wwdpt3Hoh2gkBqXkUlpgve4S52C+1Z1qTGLwkma5IP1o6LdJ4mitmuUWGOX9/khLfLx4Inl0iHDx9zGGI7dCDExuncVpYfNu8xAtHLJfLW5la9Dh2mUXiZEW9epwzQKm9DD9bv8ucscpgPkyNLmnKxvQiajSTyigvwKUwxYY4c6RT8MJ8eYUJ2QbDziBqKwm9Sx5gXPWJEy1JZnmEJYBqRcUnkNeZiYRHsmtkuj0A77/C3yVDjmDDO3tgaz4Zv3YTTkoqiriTv37YWKMRBF9sh9y+Y49S3QWWzDzjE2iwBNFX3977fYCoBHW+o6BfqkIghH211dowwjev6CU8HztPgZP18U93/uL5nFbnITM2EvA1avlL63yU1M1ljGfHaMqfApy0gypa28gAANn0XqcQAde2oe4EsCC8IR+0rs3r7vjhoUkd+GBt4hCWcad6NR00CiFDsNtlu85WB80+vaKmJciwlhg3s/hl/5UyQYRlMnaa1JcSuI9ZlgyMfcDgb3DR4xwZBH3KDHJLf5OAZeSe/kYXKDRyh1UXVXbCw9s2KjlTizppFhXJ993uQ6e2Q5Z4OtAHsk91Ndsb+fCHBCy4MuaU4S5WhyjX3eDkBQtVkAvM5E+Thp0ztKY0wGqwJsuy/QdZUdKhyxxIGbuR/H1lKpZ2ITaaEhoDLpYK+WT6fMscIe73KPDB2OWeAttmhQoEqZLibd13kFBBMEiHqvGnnAEtuecC5Jj85hMQrFTpFNhJItizS4ySbnZJF3p7GkLEDDGvgR8Hw4Ju+W1G2DrVgizXHKIgdx7ohtYAudtEOsBnx8yAfs+jJNALeAUpBFhy1ydE/YuWvejVXKLpPLxXsVG0XPlby5crR+7iSz/5xfr/F5+CaeuKxLz2aN2TjfitQDqDhljk/9Pmm5HFD9Vs7Zc1IXAFha9qGz5SzcoEqZc19K7PNmLH7F1hOoZezAQ4o0wjtM4QVZzt1fz6wprjtbTQb/lyR406VzBWfMDZlgiUNytKL/VYq9ZE5aWghsP3LfJAXeGJvO0mZ/wPddFmtL89+/8qdhH5BgyLybuEuSpBo1PjCI/b3HSgRSyFP1JptxXgnIHmJ+yhostYSSN67UGhNYeqCF0aQc3rb3sMMaR1SQnFrefeoLxbrWshNsyJXPrNgYP+AD6hSYoe1+bAMUtCC/TmNxD31QK7LEASkGIaPWMkt1QixA82lKsc4j5N+65t6gczzBGBqjRfsBiwHSydZFjDzJefXSfXtEBaVwgjHJwcCwT1mOMDkBnZKyWp/dQnLfHC22Wffrbkx+Dfz6mWvsIDsXAZOaS8aD/E6Z4//6+b9EjEGdZUpsb3vtVQKmZIvqy9O+BJPfY54mUg5pEaJrKQLFIodR81UzpRKZ45TPufYLqzm/zK8cT3nALRSKkaXNBg9Ze/opr9e+AAyMq1NkgSOS9Jl7/lOUgCoGs5ieOSwk7GPeQSzRBJeUOeEkUY7F5DL7FJ9/Sc9nBXt2re9STQabxcVKlprsL974beTBt8eKA+jWY4kJ33RSy97Ub8ac0XYahn6e+YD3Y4mdHyMHKAVbsxbASWLcMqsa90wzYaSYDBcBUAHxvWTo8N/wr5APPtjz1sMSrFXX7ybeo59KUhzW/QyoBxnpzN9z7tmzsednIq5Bqm+STAF+qf4g5igxu2b9vPq7RBU9h7LTEfNY4TTnmIWXpNAWrmDqjXvc4ejqdxm8/BIHLEXAmGrBAkdMPfsZv1b/Ghh5OP8Pc78Vi9sMHYpDk4juTf1myIvlBXyDbUr9GrIfuMkm3VSa09ScL9XsnD2hzHZq3Wpq/4BMvxOzgJbNIhwoYXmO05Dgi3n6t4XXAhfR/8/SZjiRYI/roTD8J9zlOnthj7adWucyMfpZDQosPf08pMEC88T6q0+9Qub5RczmIq7obBWzWISjDhm6iTSnCVPRKFFc32mbLO2pK+xfeYM/4g8jPPAkUY4+Mss5Co8avPwS5eefx2ygoIz9qTeRsrGB2bdcZRTS9R97fSOAngY1u6Ev2eSmy8msSI9TJs08uhnyGFFc1VzLJ0MJghrE5GUiye062858mYhCZgOisU0aYzfUKrt0mKbHZDRBWdphPK4m0Sji0zTJE5HCDsLNOIC1wuN4f8ZiWoztHxiSqyh6sR1AVGsxoIxBIm8gGamb6aSFCZjRqW31dGN+zDtBi9X3lfJNpgameR/mRG3XxgAI00/500iWADjcZeCUWGf7LHtiW5M9VjhkCclIxSoDkyyvsMctHsTDpW2qzMPNM28dhU5ogNfvVlLO+D0lhswSh9G0FWlQpxDJh3WK4T2o+0lNzRKHVClHc5X3DfQKj5mkG3TmJH1nCRaDKWMAayM+izUqs6T8vxWQPP5+dS01GFgxmSBNFxkBK/RA3+c1Z2/Jb0wg7g5rASqKwm4slkawWLWNSHBJg2JIhcR+HJfw6KAD3LfE3pdk6UA0vjrktcG7dEAmQ4cfcYcJhjQocMK8syfsOU3RR6bUuvcTXLohaive97f9NclXDipdkHfPIQstsRAAbezUrNcpsMYub7FFmWo0NZJD6N6/JMGn/kyCARqXJHxwtOQvGLFM1Qxt8DCYWzfZDEZznSKPWA/wp+Uyrx6TnPl9qAWNWGUbPMQYwC3kw5imR5M88uNUw56nGbIEk+EaiKht/Q6rsS3VEClzXklGRG1fYY9JRr5Y8ptTvdXAcubDTJ8kR57MrFq4w2pIKnWPnjg1X9J4C+OwJrPDNGKbqoYKKNB3pkRqDU57XA+AMEfzBTaNyTJ7DpwaCCQbgwEpbvAo5MhZ2lw4CDgkEeePUnFlwpzGEh7b3gTusRI1cNeljRryq5TJ0uYe7yJmi4Z/NdnTyLQ67efdHpKRyGNUZ5oYwnYNyrG4scTulajnWvzIhF++KwoQ0p/bYiNYMSXO/DObnFZDr/5bLfgWfGEzLvXSwkNsRHm5AHSYjqWDhiNthz/gw2DNC/htuIxYHkIjka0BHw3vU4yRXmbIBG+yH6Cd5G4CTpXgWaLGl78C9fCCaWYdtFV/J/bGkAnKzvCedvBVAO+4/7D1YNYzqL/Z9YUFEMuJMtVgqyQY8jYPqHDE2zwID131MkqD1b1cohbnp+59LTe1PLFn2H6XFnU648ROMHmp+SeqjhywxE1+HDW6TtHNz3MokVtLGoVn/Cm/j6wrDMgfBJMYTH77MbdjOSJGvUIK9JyYTYINv7JhURDOh3w/vl/1pFqqg9lD6HNraDc7fwt4Uq0UiCdA3yRlR3zAD6JvUJKrvJJbztBbcqBHyg/ziN6MM+xtHpBiEGwySd2lfDBGcy5SbXWv2PLUxE99P3MFgFySYIGjYGyqPgrI15mjBZWGr6J7JhVpUMWGtgfcQn7QNWYDkNafz9Gk7WnWYkWa5LkbiydbciU5YIl7vMs0nRhKBVBnsXAdq1kpFjkISbj+G32H5pVmSZa3uR89q+SQaXr8L1/7t8gAfp1t5EG2yypinC5yEKDtW2xxRilIFZrpjFVpM4mk5eNsOy0ytNgQm0b/HJRkfPTNFaFfotdLzpwX805LjH4KvixNx2yV4DJA/uHEd0gyCF+tm/3NkP7pHDdv4F6A7/IVs5nO2GTdqZfD81oqJnl/DRxqy3ARagMY+bprRjKgZDJmZslDM1zEcrM0rFHuV+M+Ua0VaFJ6+pQsZseR6Xd49bNnGAu2FcEuHTLRp5aGNcQKXHBLqmtPv4x+Jvf8afTCAqE0OynIoPDsaYByKf+0Zl9ky1IFqwmoztGycKTpl2iRZ62/6zU6RZM8+6ll5Mt7Rol2KsvVxlcBHomh1iPNBBYGVKARkl0LTrPvvk6RT7jFEodI9aXvS2zpdL8b6pRjFqgnikGMiZDL538JWNrrT0qvxpJdrLks7TgbLxOJULpNMESKwTRdjqlQTZU9A6GBJbfORn2coU2eFmvsUuaEJH2qqTL3U7c5oYxCxaROWuEx6zyi8OwpR1QCpMz6z0nSp/T8C+ae/zSuR4s8jxMrbjGQijNJ6dngUv3aV2T6nSC1PL76RvTbSinWGQeQuDTGZhELpJEljdiYlf5xzFzqE87JUnr+BRND9dymGtSzOsEwmLLXh3sBls/4Mq80tDyBbiLN1tRbce3FWNa5oXCqQ5b4nNd+rnryjQB6V3jmEqwi1zhljV3EQJKPhiWqdgPhPKPEMRUessEJ5WAS2MbSAJFzb7iL/uHvcSeaF/37EjVnLRlF1uQ5NSQ71YUV402JQNLby/+rx6SDDtZsnXjTZgBiLT6rtokAMiS2BKcmWc6RgaNYBAqH0DZE27MyVcwf7wSl1gr80lZDcdK24S+ywl6wNzRcaNgTkCYa9AGLSDY3ntp6MTaMmIdRGqWS7bh5twCrFfYC+MvQ8e/j0sFOmQQvkMdSGq2hKAPE55C/3oBUNGrHLKBQlC4mCZynyi6rSJImGYmAMYFRbbJ86hKOikdS2KbX/swMZtQ87+xDDcRNB7QkxZJMVn5ZZU7CN0nMIZMEmGGyNsw32aTlD53YVZKSCOgwL4xtmn64SmJ9MJaipO9Lg4rS4uRTtsEWKafwisKu9FIZ6uf9/lZDfumgiL7Tu7yHUpjloTEgyVtsYenD1oAbYycZoEWSPjuelGTxGdbkqtnuY15TMoMWMDxLjWucxkZQkjrJpJ5x5ZsoP790L0vtNgmYlh0mFzQgVxu1IyrIe0YglQAJ8yO5ZJ3tqGEt8iHJ0gE24QuOCscxSEzSdc+pXNyf+r3jQ7L8gdJ0g6lxm4+DbSCJ6RELaKv4iBvseLhQljbrbLPFBmVO/KDOI1sCADEPtaHVtlMS4yL1ACKTDAIs0/scr2GyQ9CyRsBNlranJZZYdF+/NjOk6PMm+7GpFWjVoIAChTb5HoeeKG7Nx17UV7Gek/T5AR/QZdIlz/NR5/TcKOBpgy3e5kH8PiVUS0JotcIGvBUeRxN+n9s84kZwHlJYwIyYKfJAVEiJvEcEoI7XWm0gU86yyDIKBEowZIMt6hRZ5IAFjuhisri61/UStfje684En/Vl2d/1S9X1lCRmk5skGYQdxQFLrLMdS4s03XhPQCS8p+lym/uMMxcNtHgn2IXm72jbe/0snc0m1X07nkEFziSdZafrVeGYAUmXGRqwmqXNp86mW/JUW0nSb/GAnt8bixySoo/S5icxXzYZvtvzfkmPNAsuR9b3NjKFT3NGyeXL334bglf5gjNKcU8dsBj92DrbKDxFfmNi/WQxb0+xw2EEDKfp8h532WWN+9ymTZb3uEuGDnd5z1Or60jSV3CFhzFEBjGMiuU7PsiBsdR1D8pAXrYJBQfp1IhXOA5gWD5YBRcR67nsk/R+wRaAd7gXv0fhQgLxkwyQRDHBkN/nTzl3xs4kXT5lGbH4FzmI+86WHo8RI3CPlWBjpBhg3rh9/oA/puULa30mBQGphgxJsO0+qfKu1sLDhrtSJCYKENUCVrVTg7fMBMTu088zEO57Ua96vghoeW8OvPCz1Req18nQ4QFvvwDIGsPMatMjbmBKk1QsiFL02eYGCmVScJ/eu5YkAnqL1EP+fYtPApyQib3CNy58eTlkglsePqVltfkzduM81PBtqiNjgkqVc5NNNngIWO0Tw7xDJq6HiBNS7WQxKXuTfBARjljggEWa5Jlg6BYQPSTHvs9tukwy4zVYs4ZY5LKn0L+zvrQRoDsYiL7lgQZaDAmsMDle2sFKk0vq3rSAhBN2WQtm0ilzfMkrv7Ca88v8SvF1qBY6ZAK4PZ36rgOp0/EML3DEMvvUUwUHxW3xfpqaC8/RTN/++bJL/SUzNZDGFqql51/wI+4wZAKzGmkE21TKoBzNuGdX+pbuLDN/MeslG9/jundvif8fokOfFNuJdeqpAul+F8nxzUvSvOi2r/5mYAA7qVX+5o3XOaZCtt/mFp8gH7IIrEoY8HudvTgzu1PfQSzC4cR3gnQgKwyRR9RPDF7+Tkh/c8+fIoXTXP+U04QxzxTW+cpnF75A7nKamLP3nkoHO08MfNVFKRW+moItNlhmn0Un5Ei1Jy+5GrOh0lFgWJZz7vAjf44swEnLSFnd1FPmB13ijBX2Qg0gULxNltOp75Lhgk4iE2eNgohkByL84hHr0ePYfdmPngwIwFULTyn1FHrWJc3q87+Kf55wEHgGk8ze4V6w0WTlNZwwEG7j+cM4J9pkmX/6BYOXX+J46nU6DlqO+qlROKSS5wUsZ/odmIBuKs36cJshE0gVJxJMiTMS/iycMsePrvyjqJ2STt9kk9caXwLQT42CRNPIkb7H3tRv8jixQp+kg+mWyn3hi2ndA58kblGnGAnDSQZ0E+lYtkm5NuN9h86vAo0Acyfp8g/GlKj/sdc3Aui9ylloiCd94NDNMcep0wgHSMoJBECTYMh1bw5MipD0JNs21xxYEiMOTEJ2wBLmc5KPw6TNDBde8Ez22qDlJrEa/DSMmCdOhRqzbLDFHE8C8Gk7SCh/I91ISru1h6oWTYc28UoZU4Mo7w0gbhB9Xg2xSxzEdlLGtkn6sYnTECBvKLEZ9F3Kt8S2Yt1gGmhzWvHAg1PmYrjXkCygS7I/sbPmsZj5Tb6HJEs2sDbc16sSrKIMHd5iK97PHitxbSXt1PcuT4YtNljkgHc8sVLb2pE0eyI2L0oyUoOozf2bzuRpYwmw2gZIGg0jqrGYakqcVVPU94H3lGvIR2yfZXZZ9UScCReKlFljN2jmYt8InFQTW+GIRQ+CUSJx3nfw190DQT4JYiWND3nmDVVHzMUsbfczsUTMngNwA1KxKdYzIfqw5GSirGvrqQZSyWJKlrKNeIoasy8w6MTwU7OhYmO+KGYUb0OCMWfFehL7suL37zD+uQz+f/QLqDa//K+KP8uSSaz6/SOgM8HQG/mTqBF6NkW51ib+vgMakmubb1kqNmnTdGKLZ8yFfFzXdR5hKZurkXqrZ18JjQb+2iCgbV4G88yTWfoyn8YiRE2B5PICQbRUEXspS9vZbxaWokFKQF6NEm95SJESShNcxnZL972WH2YAfhADhJrPcZmvapv8rZIM2ORmNH5iiK2yG/VZw5GAskNPgAUCLJKPS54WJ5TJco7kwdqimm+fMdWUejrn7FctUCocByvEBu7rDhKYp9hd3qOFSXHMP3RUp/T5VPfk9yRGhskYmpFoqYFMrCTVzorLFdRYyHNHjIt9l3wrdbFH2j2gLKFRDL0TLA3RakCDRfcM0fJNPneqeQINk/R54B6eCnza580YqO367CCZl+TDj7hBn5S/D+sH1C+Yd5iBpA/ZIEs7mJopBmEzoTPmHnfC81Ny0DedTWCszploArXV1j0FxPtc4XEAwLIgaCO/33mSDLjwaybAp8skZaqUqP3csor/nF/PMEmtQhjytDhymdCJs3WPqbDJTcBAHMlehkygNM8WObRM1JJ1nW0P87FncY+VOGvzvlh7xDpKuNU9qIAG9UtmSWE2A1I7qE7qGRerSt6ZQLALUpgRe97rS5F6yK2HPmjq3tdi7yabdN2nUqFypiyYJUeTRQ65x7s84BZr7LLOdoDIUmM8Yp1xRpnkV2KqFlzyKZBFMuEaJSbpBVPBzoxyAG1N8tG7jABMqxfGNlkNpvJ4PVYfo7NMEq8L5MNpsqJVt7SRjE8goZYzsg4pUmeHNeRZrSFaah35yIrxqnOwTTbCPHTu6hmVH5OUDjqzkt5dKTFZ11LsYPWDSg+WX6xYzSXOyNFEoU1aiqWwVMsf8n4AWuor1QeKPSigUoOplrQ5Wi8EA076UkRDr1ni7IRXoWqy+TsaeCRGaJou/4I/4W0eBLM85/YZYt8tcEyRBg1Xv5hSoB+SsiQDfsj73OITyi6z1TLYlknJ6PmX2ecmm9Eb6n5T2qRA196vwHID4HOu2aKo/yASqZOMfKuL/QafskyTXDDs9VzbvTfDDqv8w9pfs97fppoqO7PZvB1veJ3I0GGP6+RoUpt61c+kcpxjb/OAhWefI4N+IHrRo9SC1ZWpq7FglO1AAYWj9VkaHgToLBKIEuVPucZU62fB6r3z9C/I03K2vPUoN9kMoDLJgGYqx5CJUCOYcsGezHS/yzlZ5B2cuPwZ8j7789TvBgMeTIGk96jZsp8aKQvaU1fYZp0idaZaP+OICktuy1Gmyk/eeJVjFnh7+MDPri4DkvHdye+0Q4bys5+Se/aM3POntKaucod73otfBNtsyRenDSflvNb4MpZNKfpU+sdjS4xrrPMIY0qf+LzdD4BcM4Uk21LRNChyl/eQhFRe7BWOuCDDrst5W+RYePY5G8MtPvUlrpiiwimqlMn2TQqe8PN1llqApVoEtaauehBqKpYLUptM0qU79TKlYY3l55/SJMfe1G8C8PIzWB7uB/j846u/HbLWDB0mhkP+Z42/ouKhLWVO+I2Tz5mkG58r0+/QTmX5amp88XMZi2v1g9lnFzGv5h07EHP6EiM6dJnk65QFcO1xnSzmDy8fb1sIWbCj+m4RF4SL2OJ/4Oz1esxyqqtZzjllzv0BM8wNT2MWlNJGZDXV+J/n9Y0Aej9hnrybTUoiqYQahT1scyOGrxPKfMLbNLG00mlGTCqBFWm6PGEubh6FDIhtNPCD84gFlKQnOqZ8pRTXbTIec5GywyP9dwx9bYMpuYB8mWqUArgSQKT0FPlaiZ6eclmSTMrVGKnRWeGxDxj2fYidNWoYbEMABDtD71sbxJmxwitNvYpwnQLmoTLB/Jj0xKjMI3q0DD8/4nei6dDPmqQbAKqxOYzVZUP9aPAWeCiZV8M91e5wL4Ig5ME1IBlR1pZSWCXDBSZFsZRHFceED8WikNsglIomTQO7jJzV0OmwkTcTwDnZaOT1UEmGq3RWewBPollUwwjQY5IjFqJJk1edvn9dgzoFjqjQd6AtwaUzK20A0DVrUGDeN8gCAuV3pxCXCYYhSRC7RqxRDdfaaogOPCQRqZkqNpKti/FqqcDNuI+1Xde1lRxYVGNtwhc5CJnjAYtIfmSU8GQwHZY4ZEAy5CaSBibpU/FnNkOHMz/gvu2vMz+4lVSte8tA+WIAb2cO5stwt4iFPaiGyWPMalKTIyrhadP0a1riLIBosY4kz26TDYBKoPakmyRvscEmNyNZ68SHPpMxGmi442baYosIwFNgzxYbyOdRMlAggLMlDrFEvEsqHCMpqGppxeUVJc4wWc41kgx4h/tM0kPJu/Y92H+zzTqyO9DBrBqsRYI23zmabPBw1Mj5skY2C4cucVKTqoRzIMBIsHPkJpvc5b2oY9usc493Ayic9WF50pc+p1wLfykFB9UpxGBWosaB5wJLUrDCXvh0HLoPnZ6dFrkAM97jbrCYElyajMXTQDN0qHCMknM1hNsqoM8OawxJvLDN1yJhg4cUqbPNDY5ZYI4niKWX8aE1wTAYJRoGbWNtwO0NtgGTttq5OAiptQZlSaHFBleohf28VsiRapS4yY/jPtO5b+DAZIA9Ws5VKYcNgphJGn4fsxLBQmqqEgxRIpqYgGvs0HOfyj1W2GUVSSSOWeCAJU4oc+hnl9JPZcSs5HOBOUkG3OZjpn0ru8yncR4q2f3b/LriQ5l8cB9wK5rpND1OXIIspmfOhz4D8k/CbkOeTElMaSEwqUs6BpY32Q/JeIcMj1nh0oH0MifUfEWmQbFNlge8zffYDBC/QTF8XwXc1Sl4T2fDLRAAsWSHYid1meQTbmGp0t3wQRXb1sDGUYpuz1k5krnJ6ylNlw0eosW3pGNivup3S7pofs71AIdkRq/Ag0P3WzpkKe7NIQke+xJWCw4LN0r6EtH6DbG7t1l/oQcakGKVHeQJrOEyyShMTuER4yqXeWeL1Cn4EsOGbgvISyLmrBZfTa99RyxQ9xp4yhxbvIXCkBSAJ+BQ31uLHPOc8KJU2pjskocaj8McAMWOlMpGtgIJLrnvyZcKUBF/45AlFIjWJssGWzFYN8khybYtYMos+jWsMcsOa3F+qWaK1anvTKoKMYiO3QfarBEmYxHTYTqktjma/D7/N/q+gNHZdEI5elOBb0UHLUbBRf1gtKp/G0/nzXIePo4j9rstLRRMIvBYZ9QBi9SYjfpsNj2PnRXejznm2/4q8KX1Gs9/hlKEwUC7FnmaqVyciWLWi21saoBL5jjlqyvQSWViNjLmcyqUaFZHJwMgFjtfvVmCIY0rV5E8WqQV9XiPuBGAU5Y2S/0DlK4qZpaCOaZ9GSGmapY2czzh6ylYev4ZpWGN86sv0/S50OwWTPI54aB1kTpKezbv08tYpqUYsJXaQNZJHTIkLuF9fuhAks3ulf4xkndfkuAR6wHY7HEd2Xi1yPH7z/4NpadP+R9KvxUz6gYPOWCRj3nHes3EOvss84j1UKxJyj83tATt1pUrDF7+DvWpV8j22zE/NyiwwRZdjK0vJUKLPD8pvEqZk+jtwcAk2TWolxVDbML7FFvE2LN4nT0Kvsgd90c33/8880+/QKxZEZoOVPsnYPLia/4Jd6PGr7MdS+hVdklc/izOiDNKPGLdGfO9mEHbZIMwk+U8ACwtNNtkqSVK3Jv6x4G3nDLH56VXqCeK8f41iw68hm8n1vkfJzAGHrZQ//qq4SJnThzppiy0qTv1MpXhEZMXXwf7XlYpk3QZThDWGfr9UgjIq2+CIYdXXg+bNT2TZn9xgewzhCstOFFGhAOzgbiIRU7B2dciRBlDeS9qwDgTUv05EOedWOM/z+sbAfQO+A1v0LpxoeULZ8aRT5h3yaK2TKKO20Z/gk1uepPbD9baEodckInUKhWfCsfetNTMbJAUQyaQT44oqQLLbEiyFJye++1UKcdwcUQlWC99b/SMoXQcLLKUb/B0KMrw88w3i7ogHTIscBQHpKSRSvOTT4z57k0jrxAb7haZwCR6arpaLnsznws70I88cU9DovwSBAzK56DKvPsUFePm1UblHe5H4yRZ6xklqsyHvBRAniU6pEVhTtMNDzuTLdtGu+oBJUq2U1qZGBwacDXYr3hhOnIAQ9+jjPJN9tt3cM78j9bZ5h3uB7ChhkmMIkk/GxTpk2SBYxY4DoBBDCKxzyTPWPUtp/yYrDGbiEP1mIU4+ASu5DGpc41Z94CydK+UszO22OAxK8FiNPZLMjT08leCF0NXxPLRPaN7b5t1Dlhyqd35C7KYMlVOmA//KgUhAC/IBMUYkPG1hmndWwJ5ZNCfoRMsxfHNwXgoRoIhq+wiFizgf9o2/PqMvwqvE14PcE3PgRiX5qFk4HvTh8MDltjke0h6qKFJ0h4xsbRBE3PAfJGexLbuDve4zf2oi3p2FzgONqcYodrGi0m14nIGMaPGGyUdXH1SMZjKo0Q1oUYpvJQkrRhi8h0NcAIwJUuXbEB/Xsbs+rPjpuYaXFQbf8j75GnSoMgeKwE2N8kFU2OGNis8jntSDUqHaa8NxtjYYiMaP3luDEhFunh1DCSaYMh9bkf9KHvatHw91JRKIpZkEPLYR6zzmBUkHTQD+GkfUm15IksEa7wngz2kYXWcVQcjs2clhabp0SXNJjc5YoFJbLPdwHxHzZvHNuGSmE34YijLebDNBTqvsMcM8pe6REymHC0WHTx9zAodprn088rO7wuOnHm1x3USjMJHTJ5dRox481M5Z5Xd2FDOccp73I3vXX63qmclzljiMGrYdfZ4n49YY4cWORY5jE2q0vZU5/T5xPRaYY/f5c9jAH3T2ZD6nsUW05ku+VnLJW0CrcWQnKcazHex1vU864ybpUaCn/3ii88v2avAl1FvdMYo/KXLZJyfAtTkoalNv5iwso7QvxOokaTvsuYckrJokDH5+FksNga+dCw4gw4MWHjMChZkM0GSfvjzSWIquWLd7U4kgT9gKVhLCsDIcMGMA4ZiOZu0qRmDmsnbrR7rftaw1yfFFhsopGvE2u+Rp+kLDFvA3eIBJc5Y4IgjKpxR4j632WUthg/VaoFE44ONPJ3lzad+RtJMDYJ6VuR1fINHKAxOzBjzkFMCogFTu6yGx6SGlQFJ7vJevDez5cix4LYyAB/yAcvsYx57FjQyS40JB/IE2mmBIaP5FjnW2Iklx4EnXB+wFPJ4+XSBDWQVjlhjh3GrHPkFLrhHXQmTyN1kM+q2/MFS9ENutcOaMwZNDbHOI4rum9XDPJkUgKJFHoB8ddP0WOFxMHM6ZEJ1lKfF9/kBClSSlccNHmEhZ4P47hc5dJ/jYvQLa+6HKIsOMYj7pNhjJe5JsSZ7TLLPctR4zXZifsmLTEDTERVkWSFJm9g++yxTpIGF/fXjs45qxMjG6Nv+esmXPSdXX+X6089iYWbMyKNgdamvqnBMpW/qJPXeSxyyO/VbHPkznmDo4X+jvk4gj+4jnZMCTvskORkjjCQZ0PO+TWoeJRKDgYd9Z6lVp14LAK9HOgIkkgx408NaSs+/oHHlqkmJE+kA+OeH1ajdprDKR8+gZ1ozvb4DIOy02mTZeP7QgDT/b4ZMWH1NZXxZuRsA1xynLD/7jPX+dgBo52SpXvkuzavT/rOPbZ56dhHnhylgzGpGS6a6M/8OWKKZyAXbeiu1QY80+ymb5QYkOXegZ45TJoZDlp/+hCVXCghM0kyWfv4zOkzzgFsxww8xe5zloZjIBoSeUWKXVWcYF6kyH4orAfwlapxcfZWSzxvGBDf59jL7nE59l970Sy8ssLUYlZf+7tRvBXsPCCyi69ZkltSdCtA56z2iFhdLHARAp7NdQLKRdAxs3uRm1IokfeRzf3D1Nbop80peYY/WlSsBSip0TtLnyYuveek5MbvMYEEebWZoTV2NJG7hJCIvVZ7+NJilUhTpfjNsweYzLagkWxbJqEQtlt3r/e0XlkhAMPylhqsx6yzqS+qJop+SI8/xBJdknz+jzAlXxkC//9jrGwH0hu60pRAKMT1sG3oeGwJ5boldkHZ/sg7T4f01bp6dpss0nfClEJNJm1NdiD5JB81ysbFokw0vibYj/tpWilEh5DTBZQwYEwwD1BtvIJVeKuqmad1LIWOzB2KBDtNc49QHq8k4fFfZIUcrGDaWHpZ3ZpcBQAIPJX+yAfoohmA1REvuoyVPNn0nkofYIHzBCo+pcBwbERX5JCaXFMNL1OVzH67kcScj5aRv30655mClDapKe7vFg2CfACw6IGR+QpNcx4wi7/EuSxxQ5oSeD9wKdLBwk2Gwb4YkwkPxnGwUQRkvy3xTxtHStCcZ8CPu8N/yv0X+KeZ1dxmDmbbzdQrsshpGoWeUeI+7TNINuVyCyyh2An/1szSwyx9Fh+UD3o6HGohDVUXL5HnWgOn6WrPYj+up798MZY2BqjSzogMpDYrhkQCjYUhFx0BuG1jHDcflxyO5g/75GjvIY8H+XRILmbGEyIEf4op+17MqZp6ed21pzCOlH2zNAl9+E+Xnl+41z08oUg8p2HgTu8pubGhkSm1Di907BerB9lHTX6cQILoSZ2UmP274X/cDXg2amnxLzxuZUGt4y2CJppJk6/6ybeRjSpwFDf6ICg3fKB9R8QAL87WzlL++s8puuETDPvsKe/Gsamid4zSSUOU4leU8NsJtsixwRAfz3ZMcS4mLWdpB/2+TDRY32BavT4r73PZNXTEGDLE57vIeByyxwmNuskmaHjd4RIXj2I6N+7UJUJTf0Rq7GNPWvrN9ljmiQt7Z2SvsObBngMMau9znNgmGIWOwEB5jqMk8V1YTXdKss82FN0pdzIPDwgRSsXCoMRs2AsbSM78Va0QnwmBfA7A8QiUbAwIsuclmMKMGJJn2P2cstDwNX/ycMuff/Sx7XOdTXwwAMYwss0+PSfI02WArzn4wIGuJQ2dyWOKYfFwFampIVOKZAB+xZwQk66WlgeqnNrRggM0MbZbc4F2ys/EzU4OFzl/Zf0iOLWsKPZcC9fRe0/SQX8uQCc4x5sItHoSXnqShWdrcYDvCRr7tr79hmWMWUBiYBioNJwXqkfitAVJex8bMTMbzvcUGB86GqlEKIF9s513W+IRbHLMQHnFiBh5RiYWtJG0F6qzzKK6ZeotT5gLwV7K4ntkEQx5wK8CNSXqhiADinjIPYANzltmPn1fhCCXcNp2BrfRpLbSlRLHeciYGHsl4ukzG8DHELDT0Huddzi0rBbEl3uVePHfymdaiSc+AWLaTdJG6ocM0c1i41gd8GEboSpTWWfAed2Nglf2AgHmxdhQIIuBn0oF1sJ5Jz3/B2Y1SMcjAXOfmaFlsUjSls5uMe94N7icCUDpgiQ22WOQghsp5TgA7M+XRpGX0KXMBtmk5KaBE/0yLEvsOz/3euIxleILLCES6wz0keX6Hj2MIXmGPNXZYZh+FzGmJINudMlUm6cV7VIibarotjqxfVViJloKSYRtzsk+bGSwsxeSt8icvOeFBLFkBBrYEm3Cfr/YLyyTd/1r0lTkJpqqUQ0pSl2cbWIqqGMrHVMhwwSGLTPLVN1qHflleX/l1GTJBP2X3VYkapadPQ5bfdD/R3659Su7ZMw5SS54gehHMJy0sFQJRfGpAgFRDYLNQ15d9ko7uskqCS/L9VvRiSpwWc17n/kghdumsvfWYG/a4Trlfjf5Qz6MYgXtTvxlSVZPeX6dBkZOEsWRzNFl+9lnMiVrUav4FAvwx/2kD+1bZpTV1lT1WuM9t+iS930i/YLl0yBJN8qYYu3KFbiod58gMpg67x7vRN1U45vTKqwDBGF9wVUmZE+5zG4DMUF7uM9QxL2YRZUqMUsZ13h+wyE7CpNPnft36JHnn6b+L/uIyYZ/1TfYj0fyICnuscJkYBXEtcchbbFnv9PyCG2xT4YgFjmO2nKbDiX9f5rltzHZJd6cxT/fHCanmujGnmP3JMrPOZZeKsEyVWSwQbZl9ys9+Sv7pBVLWARHSIuavSAB2JvQCg1ngKAhbOn/U33/E77DDGuPS6XS/S+b5hYfPzZKmG6xG1beJIfyH4ktx7trZl8MCOwY+e9l9qnOvQ4adq2+yy1oA0soSmKTL/NMvWGafXVYDf9GCy37PE9L0uD60BUbi8mexsKtRYpPvMSAV9/TacIc/4F+HldseK8HM65O07+m51cAUA4544+eqJ98IoHeNz6O4C1AwbbU18aLJa8hUemsVS1KpMo9SciRzFT1Um1QDBS9eYLxoaz4gFSgsEBKYonOM9MWlsKhpMTC07ctjJvSKL24z4yazOWdHFGLwBcluZ2KoKHPCLDX6DqJIrpHhgjqFkAb1mAyEWACLZHjaXpukbRDN0Bkl5O3xiBvhBwS2YXzA2w5OFV+gkwq8kuGtve95b66tIdZWrui0adteWsqiPqc25YbCn6MAkS6Tzlq0v+apxjXThkXDoLU82XjPeuh0bfWwK8REbK9l9tligxJn8R0dUaHLJOazYv4PkhFqw5ulzft8FP9eB0PSm8wEZrS5yfdiKzTvXk+SaHXIxLZGW+x3uM8GWy+w3Up+3fUdF6lTcaN5MPBkg60ofvmxwiAPlsc+mNjvnfbPcO7NkFHRP+T7HPm1ExiexQxILRzEtsn63dqWC6zTszVkIiSMx+7TBaD0OSUEy6NSG/CCD7vyXdHznqUd26hjTyqepEfPB4p9lmOY+wmv/+KKzi/x63VOkJ+QAAtt3sZTNY89/Ee+FHrpmui7FXhQoOEMUvPb6JDhnCwdpn0INQbJPd5llR2KwYw1MLjGbAwbaXqWluVAm+SSbbJckOGQpaCND3zpkMB8qgzQHQVsJLgMcGbIRAR5FKmjwJsVHgfLRvLLBJcoyVdsTxkJC+RXoyTwfo5T1thhgWNkjbDOI+Y4ZYFjN59dDPANRoxUJWQeU/EmzCS1bUyev8nNYEmKRp+jxQZbdDDDcLGjtRDQACi28A22kYTWWIjmZ3jdpUhAgIrzVAP4k5xCXqcnlFllN+QISnWXzFNJYwZG5UIKKCnyOtsscsBH/E4ATjZwnsSwqFTvOoWQZonVJx8UnekCN82CIBXDrzXgF/Hd2ncpADbNAseIqS4DdKvf2fBNWmOHU65RZT6GzRPKPOBtdpwtlaETQLaCRIw1MhP39ZkDnQJ3ZVOgv1/kIJpWhajI6kKSPrMwMA9HLQxztDhiIXoHLcBUC0+ZIz9sxaLnzM9c2SisssvycD+ee53P7V+BkKAEQyS91FlU4sxBjFTct+rFZOOww1o8o2qoLZ3VaoHOmve4Gyy9IQmW+TTkuNqeZ+iwyk54ZBZosMHDYOFqQdUh47VqjyEJKq60UG1RPbdBYiGWD+MsNjGqxbxRjRSjq+lsVAGYfZJIcligHjJQS6ttc8iisTh88LLecoY2M7F4lhdpAQvjkp+cFtz6DtSHSxq17WnqUnWoH52nGj3OdfaiL9WZv89yDJ5a9AnslI2O/H8PWGKBY2SorxpvQShW65XqmeHCl4RNDljCpJ457vMOsjgZMkGBOh9zm3ksyTfvTMMCDeZ4wnX3tdQis8JRsK3TdFlyYE8SPvXaFrA2CAmqzuW626XsseJswmMazrrrkOFf8wfIzkWp2BMMYyGT8wot/zzd77KH+BP+OT3MosJ6+FEqr5ZaQCx3lzhEKbvygBZ7WtfJ+mJjpSexgAGxZ8D8lVfZjaFdUkTV2AHJkFgaA3mI7DWsb+0Hu2uOJwHeqb7rfprFPAzf5gEF72VX2OOARa8N574Ae/k/eW36+3j1eYlJuvwr/hv2p96MmbJ+9Qq9uJeNxff/Kf0mp1deDdBELy2ZBFwD1K5e5VOWaTgo/HrtC2cNn7/Qh6um7qRWo7dL9Y2BdItPgjUk4EPPtdLZK30LASpSp5MasX3DKuD5V8gKQLVWoJhsAqQeqV75LqX+CEyWDF+qMi0CpFCwxXCBE0a+gTrfLzEbEXlGStllLLECXVfmdcgwjSmO8rSYYMhd3uM+tznlGtuss/78L7HQyhxnlNjjOnfc//txYiX6SVkoZDkPZZV6aalL7Lk+YOfqmyhdt8o83anvBDvt9MqrNLAU7Q/4gQG0XsvFPrQgs0Jc/4OpN5gYWmhGmRMP4rNEYs2i5ufaoDK0RO8Ln9uUPVCixuKzn/B644tYfqg/BlObmNrF5u25ofnODiegnyLOglFQ5wTFfoN1nyPEqLvLe3zMOyxxOBaQZZkHtki21OR1tkMdNsQY1t1UmsHLL4X67lb/QfzeWzwwluTV17hMmJJN4J31iJq2Rx79LXJIJaBZXcs9qSHbzPDk6iskuGTFPXm13OqRpsIRZg/Up5nImd3V1G/Ggu3m83/HGjv+XRv200lkYoFrntx2no+H/+1O/RatqasAf7+hGF/ySjSzp5iB8R1+FF5MDYrxlQjE0QcSE0/eAAkuY8tom56JaNAbvoWT6aox6+Zju6ZCIzBEbMG+P0ryGdNgJUahiqrADgP5mmS4ACypCojNk+RdJjGypCYlNgpQy9F0f5RMMCU0QMk3KcHQNyY2KCsZFECJN9q4iPUkiYWKvKjwiuFWcylwTeyxDuYrJfRdQNM8J8Gc0fdSZT42mCZFS8d7Fi174EyRgTflaljMXNTegz63BpslDh16qiAfHckmZmj7UFeORlFy5tG9MYzPYpHhD53d2A8ATb5jtnm0gq8EJ70fa5SXkLmyDq8crUjIO6bCpW8ZBVva57bB15rH0wCX7/NOJEbqPQrENtnDJPIGHG3QRpLalhcVHXpiyyjhzv7biWja9lkmTTcSjnVggRKLzgOYUEHSgWMSkEmnTRsLT/f6PObXNtrcGquh5Y26ZDrG1FoIqby+C234dG9Kbihm4q/C6ylXY5kh0DNDh0+4xV3ei0O1ToFpf+bmOKVAPZogACUyF6jHYbDMPhs8JO+Do57Z8QZ+mU85ZY5VdjlkiRX2WGebO/wIY+UpdSuD2MkmeTXvTslmRjT7dIBnlhrbQHJuDem6z5TaLVCnRf6FMBo1ZTKZXeIwQPEfcYdlPo1aJ18e2xKeIPm8+YQYA9ZCNBaiJuddxAEgf0kB0HoGTIqyENvUHE2qzLPMPu/zw5BJpulGMtWibxrnqTIkwaxvdU0Gmgy5TJV5Xky+nY3ru8KeM6wtFEieYWp+JE3SNVWa2DELaCtvktm8L3ls8SCT8X2W2WY9ALgiFmAzDtBXmadDxoMurNmZYRQKIq8PyaVVj+apUuE4nmGTA5mMQ75eR/4+JRVUrSpQd4/dRPx5SRwufeA0ye0O8o0pcUaRurMQUiHrtbO+HJ6PCS5JMeC/418gqaB+t2qwwHQ9IwmGAYBLSqgwkRqWQCuQVDVagRdK69PAIY+p/cRy2DUUsNCYj50lOiRBPVGM99BxwPzpGIv72/p6RjYYBECAZQJQRvdpO4YdAUyA90AnSDGh+1PgthLr3+aBMx8fIxnNgBRLHCKPNJ3/6tN0PgsYl7qhSY5VdpnEgocaFKkx6wtbe2ZlV5BzidChA3AKU+g7K3OBY84oxbM7ZCIsY+Y5YcLBezF19TsqHMVCUpJY9dGyFzEAPP3CYN8iH0C7giF09iooRvXL2H52NovhoaFXVijn/t+fk/U0c/PPlKIl6SD9Q2eBz1ONnhesF1GvZ4yzE+apxjKl61YKQybcDmc2GF0K9JDVhxZAAB/wYdTONJYML59DhY3Jh6tMNZbzGlxrlDhgiR3W4l7rk4pls+R8s9RQAEfOlUWm+BjGElSMkha5kPaaIsHua7McuIxnQvLEcWsNswBqxt+bBHHSz61pql4rjXmTi/cC1q8XsUF6wUN+6hQ4c0DymAWUMqzP1iTPMQvc5T0UhLTMPscundUspV5OdU/LK91rSfoR7qT+eMgEChCUJYY+q5Kgl/nUQUQD9K/w7BdZdn5pX08c0LX7t0mFowA+dF6tPv8rFjnAvFivGcAxkaBBwYMUZ2NeqXCEbJcKNLj0BdVfld4w1uawiuSJ6uPELlofbtMix15qJcCnYyrUKcZzL4BZYRv3U7eRxDL7/BlilpWePgWgMzUdAL+Y+fPDatRePUvrPGJAkmYqFwzVHM1QL42WclrRjZRS8/4sagkiMEngsxjQVtMnmWBIlXl2WfW5qfcC4cLyRw+dcNOlPvWK99H73OIBUomA2X2tPPuUW3zCkQdEmj/pAtvc4AbblPtWIzU7avkoK64sbe6l7gTeoUWf2IOyypLyRuq1OU7ZdQ/kPa6zmbgZM7J59w5CSaHrnKNJLVFifliNxFxjKnro45Xv8rTwst8/pioq+CJa3oiHLJm3X8K+09rUq3SnXg5GpjFKbQlRS5XC93CXVfI0I5hUIWpiZBa81+2QIT8cBYRpzhdwV0uUoj9+kDJ2vAgBWqppIXfAUszc8uwGm7V15ouxWnr6lBwt1tiNgKkcLVaefUqLvAGk7uOnPr7pLPMO0zxkA8l3RURqk6U69RowIi/J4/4R6z5DN1lhD1NhJtnkZtTgNlmTrH95/nPVk28E0LvK02BAyfhSh40AMDW2eg1JcM0bE6HHJqGaiaFSpqFicGkwU5qO2Hry/9FNssf1aDQkyxiX4ia4DL26fEVU9KZ9UBnRxpPBLgFjycxS4yabET28wl54xM06EGnfx2jbp02bhl5to9/jLnM8wainswFwKjmx5WyMNXYjGU1MBttWNhAV/4DFaCa0TU0yiLCEMlU2eMh4Gu8Tb/4U7jDhA47S1LThlW+LbjqZ+8vbqUo5mDm69ieUkXeMTM1FubXUnovYCsgYVZTVbdZR0qIkHOPfi20izE9G3kxg7EyxLXvuCSYmot2HRtuddUBjHNBVYEnFE3WBGC4FbCgefbzR6jDNCo8DtBA7R8EDO6zSZgbJdCXjaVB0toHJVqzIzpOlHc24gR524IyzAdJ0aZIPKaTJF+w6jYOKYns2yUUy7xo7MThcZ8+2bUxzjzucUOaCTEg/5ZMjKrXA064P+3UKrLHrEE0dRcNLSpyhwz3eDSnor8Iry7PwW1jgGJlez/hw1iHD/5n/HUUaXJCJrZHqkT23L/rJiSWqxseG0b4PeRd0STOBAgua8V4eu7xFZr1qjwRENyjyPh8hbx6FAZjkYt6ZhOZvKdmEeXPk41nVJmyBI/MSYTmkTscs8JANtJgxMPGMDBdI7i9LACWGKqRC9gjyBJSNgczfT5njMSvO8LZlkej281RfSM5Ug6fPvsou29zgLu9xnb1g0HTIRKOhcAMbsuaDtSAvIi2vrBlMu2Rqkkus+W6FjPMy/DhUV2wJY84o8orTYNhlkgrH8V432GKBY/I0nTdjCVw32WSeKutYY26AYN2hKGt49f/10rlRdwmbhsNjFgK8k8ecglfW2X6hAdZZMhqU7f5WyIEkWlqWFH3Q0PA7nsKnLXebGQeUrek1JuFxnNvmBXYRTZfJW40Nt8w+b/MJt3gQywXVz21u+O8ykLZBEZn3W7ZwIc72FINYCCn0qc0MW56cq880IBWeNPJI1PAqmwH9HA0Dkskp8fPH3PyVSLl9g8+oMRuDh4AKLRW0lBB4ovAfNeBDJjjlGgkH7tWTyTdP4VZHzirQACog4WOXuqtH0lk4zoDSM6mzTsPhhN9rGTqs8wgLlVlFkvQhiWA9FPw5F/t+yATbrJNCMvBRQJcZlTfZYS3OZ0nX5N+nHlLDgu5BeSxbKMKJ93wTcdaKGSv2vj5Hh0y8NwUOSWGyy1qwXOWrlqcZy4U2WeZ9sfzn/NM4x0ucId9NLWe7vkAFmHbwcYIhe1wPFYgBpQvOWJtng4fOhuwF6KhFgc5PpUbqTBRgVKPEE6/vUiGYtcEWe1wP5ufI0qXwAlimBa2B7ItssYGpZOz83WUtgBZ5JvVJ8oBb7LNMmRPe56Pwhc5yjsL3jC1tbOQlDlFQnu55LQDe4y7vco9zstxg22t9K86YND2XvKWi3qzwOKxWNGPZ35t8/BqncY7pLNN/Z9/dNNN0IqAjQ4cH3ArPVtVEPRtdLHzmLbeFEKAyzoDWrJCniRJ3T5ljg61YrJ0yxwFL9JhEATeW4jv9zRWhX6LXMn8d84Webz3T8lzuTE2T4YJK31I+t7nBSaIci4Ke///14Ta/3niKmEEWrNYINty1p1/SSWSC9ZTlnI3+livVstxPvEONkttATQQ4rnCeBObNJwazQC55nlenXoue6vzqy7FQlqqnSZ4dVjlJlOO+b5GP5zBLOwCqPBaGVcZCpQRMt8iz8fxhAEYwAsAXOIo/L2m35J0CFaUOKlLnAz7kFg+CtCM10o6ztG8ON0OhpV4sPezG7zW23gqnV16NILss50zTiWd25qnJJgXwaMGhXmX+6Rcs9Q/iPJCHrNjaYOzZCYY2q/a7pIb9YDYucUCSAetsc3O4GX0XwM1nD1EQT3rYDVJInSK/Vv+a9POv4r/9mNvBfDabmMdh/TJAAWTy6T4N8pV6ohZ55p59EWe3gqhE5OmT5AM+JMGQ/0XjLyhzwiUJlp5+HgQHWVxM0g0pts2URZrkYxEskGuDhxRo0CTHFhuxvJn056bUr0XgWZmTOC/EipadF5jX6GViRFiadGyhyyRbV347+or9lFmGSIEiqyzNdp+yHMsSIPpKIPIfiu43a32lYWM7rJKmx9vDB2FBNwpHyvDklZ9v2fuNAHrf5d/7MGgHSMs9AETN10N6l/coUYsPID+3lnt9iC67z5scuueCDu5Rmoq89xrc4UdUnK0myr1QeklnwGSQBywiU2sYGbHKbLhInbIzA83VydhSSQZUOA6WXIo+19kLpDbh4IyGFDM/tCKpgdC8fwYB6GgYFtOrh/k7DZkY868zsOySRLwvNYrSsmc5D3ZEin40SwZKWcqjpAfaWh466HfAIpIriGV4yhznZN17ZdrTUI2pJ1NyNU1Cu2Wcr+ZKKcBtssHoMH3+SUielziIRlEDuBqPBY5QgqJM+rdZj3tBTacdbqnYymawhEuTDUyH4bI2khpQJQ2ocBzFUZ40uXiw0n59rvm22zwmtJW2IJdReIC8kyRjBivoakrv8KNgIXXI+PZrIoZEJYbJtFZspCfMITPUFhZBfotP3Fdl5Alw6QetgFSLb7HtkIYE+Ufo84E1a3pPlpBl99CRsxIEBNlw3ENsnw7T0cwtcUiBujOXJpB8UABmhk7cN5LTfdtfVa7Fszsupb3JJtN+kK2zzZHL+DUcpl2q3CKHwiR6TPIj7rwwmOj52mc5DkYgmEHTdLggwyY3qbjkccgEDQoB+mnosuarH3UDcH+2kjdGKcwEV75OoyEiQyeAy5tsIomq+TTtUeGIsh+Eqi0Co5WkqFSvJH2XGCSiFgm41yBs7J4JljjE0r5y8dyrTgIBuC+6KXKZk6gbSWcyg7FRN9iKRGZLgLX6KjmtBifVXxg1a5K/6ntUnVUq2h4rlKmGV+guq/RdAiL/yRnMQ0TsowfcYtfThbfYiO8nwSVbbEQDd0aJD/nAwSL7WWb434g6WfatrdiLJvM0ZoxqgvxqJ+lRZZ4Kx3F/Af7eDVAY30SaP4mxhlu+WBDzb4glzB2wGExind+SRprfZhtJ7GrMss0N/l+8F4CM0uITXMaArAEcCGBRjCMBGWDLjFV2WWP3BTBRMrxbfBILDzX4xkYepaoXnP0tNYEWSHOcujSyG30B2Ba4xCgxuuAeao0x+ZECvpbZ5w1PS/s2v9RbGDiyiny5ulhitViu5w7a5mkFc74wdmZ8xPvIPF3P1E02UbCLzuMzB08F6spzTHVIoSUasrpMss06tt233ugd7gPmedQmy3iYye/zp7HoSmCSp5G/aM/ZUMnoXZrkY3kokLhBAZlkj+SJZxy5WbwGoxX2aDmTSkE/WtplaYeX8oAk/5p/ySMHEEdy33lnCFScxWfDzCNukKOFpLQ1Sqywxx7XA2wy8O8ybCEuSXCHHyHG4DQdLBXQfFTFtG55j3VC2cN0rFeTBMlq0wULvrDYYAt5zBaxRFw762biO+45u/GICg+4ZV5cLkPWmTjPiQ+ddr8kHCRZ4JgE5mEtGx6BFuqPxY6XlFT3bNcZO4DPNfbZYOR1KyLDLR4w4f15izyPuBEDvXofDbINCuyxEqyfSbrscR2ztmiggCMl09r31otz8+8qHcSk030sv8YBSeS9rUFejPoBKXc+H6LAqBwtfoeP4jsAGcLPkKMZgOsxC0GEyNKmwpETEmxu0VnQJhsqEPVBknDL31o+Vc9+BewHYNQ72GJ8klR/EFYeYtdnnl/QYZpaykgwbztLbJ9lfqvxmTO6Es2EAAEAAElEQVR0W/QTKZ4WXkaWSFrEKYm0O/WdAExkLdRPJcPDTmdliTPkV5+lzRunP3ViyqWDIBPIfz7jsV26n9rMRIK2QG0lZgu80LMjok+OJlKoKcBGHmyZvr2HHukIrxlOfAdJ9s3zuBsLj1FoUjPAm1t8AsB93qHpy/IAPIf1IKc0XPmUcgziILHkSxxjFBdocJKwOiMroxI1dlmjTyqsCSrusL7KLgdXX6OdMkAxTZeF5z9heWhBIdN06Fx5iXqqEP7zAoC2ucH80Pxlx9Nyu6k0kxdfB+klM+yQ7nf5jZPP6SbScV9M0qV15UqcC51EJjCOFH3+36X/gv2pN22GfX7BbT7mD/jj6GnlA708NOZbhg7FYZ38U+vpZf2iXjXBJS/1bdYcJz91faFtJINJNrnJ8yvfCQ/U86sv2xkz7ASxp+hesVo8iaC1zD7lfjUwnwbmeV/hOJ4fBZ4luKSWGikNVX9kxbXLWtzjb7rnYuvKlVhcFGmwyU02uRnSd/XBy+yzyIEDiE3k+68eWyxwMcY7TNMkzw/4fpxrsiwYKScbvNH4Kb9W/5oP+BD5Rev1FT9fiOQ3xNBrvbD9ElBjSXQHwapSWIIGDbEEJPsTPV9DyriUT8OmBhQ1KGK+acATAwHsoFtlB7DB5Ngpsnla7qNhzdQOa9G01fzAGm+4ms7CEIuti0XVJ73ZP6YS8ihtC4xdlw/AT4EYoptqcK1SjgQvDcxJ+px7ozHaqGUijfGAJfcDsaLaIROyTA1kj1mJpkRgGYyCREoYmp1gyIKDf9/nBwFMnnKNDhmamMG9bvy+b5W07RV4u8EWabrc4gFHVJD8FnCGjw195ulg9O8Ntii6zFCAp5JpgfhOqpTZwYxFJS+FEQ1Wm35t4kW/PfdmXMOsEt/MW6D+wmDfZoYjFmLokNdNn1QYsgq0FnAis2hRqjX8ashL+8ZB10iDtWTAooTr36tRn8BSfo3d2QumgGTP435WOVrIp02sz3lnzliKprGyPuT7vg01+fEuq3EACnyURERDqQDKqvNxxLRUE6tNiDEO0wESS7Iuiciap8BNu6z32/5K8xUNB4QUeb7NegDXk/RYYc+36HWue8Ks/btusKDUMC9yGNvZGrMBJKcYsMVGgMDydWpQ9KCXy2CXfcT7NH0gluxAh0yHDI9YZ4+VMNTdYCuGvbRvLcUCHJKIrZcaNKuDCzGwPuJG1MMCDVrkUFrsiPFwRpkqu6yh0BtjVa1T96HEalsh3keGDnd5jwvMZDxNj11WGQ/iKLrX4IAUZ5iU2NhU5j+prd80nZCJVpmPetUn6YD/YRjaawu+w2pI5gvUUXq4PFMW3KRYPmEazirYtr3DtDMUO/SY5C7vRRNcZT7OSNVkSdXUEKl5lZQdrP5p+FSdFyMZYJWdMDlWXbrBNoAvaGaRv54BUXVnqh+HP6YA4E1u8mf8M46pIOm9gE/z7coja4EUFpykBRcQ3nIG6BmbRUnCkiiKySGTeS0Ehv6ZJTk8J8smN31478XCLU2POZ4gY3qBPBqEFY6yy2oANvNUkWdPxdnFPedNGDh9jDywTK5r59Sug8AacKf9jBD7UXVQPrq25FGo1W9806Xo7/31pTfYCxzzJvsvNP+2PDX56xmlSHdVujzgiy9bJMn7UY35Eodeu24AxDJDS0Sx68S+rTvoJo/gJP0IbbnHu5gnszkEG1N6BllkGGsgF+x1yQotDbb5Qs3u+NgrxnGHzAuM2zJVj9caLVvEyl5lF7GdUvRZYY9bPEBG+QJC0nR5xA3S9FjkwNNOawFMSgVw4gtW+XNu8RbyMr3BdoCfZ5Ri8DDbhEIMV+9yLxZ+a+zGMyuQfYMtBsi6w+qPlrJiDc5So8p8JG5LfiW2Y5M8SlnVe9pn2WuhLYY3ZAiPGEA51tkmT5M6RQYumbVna4kFjpBkz+wQygAoZEKDn5a+8mk8YoEH3DLQBJPeHrHAfd7x+mAeep+yHAw6+clpHjGJdIFLfwdnzkQrUucttlzCaAt/YycVvJ6sut9ZP2R71ueZd6n6cD0bYoBuc8Ov/3SwVEzpciNqnMBSqYBkG3Cf23zCrbh/9J6NKNFnmX0eshHfc44Wu6yx759fi30tzcCAKyM4WD/RY6QgkHpDy/8kgwjU+7a/Zp+1HNxKUeKMdirLzNCSZd/nI1ae/zXHU6/HvSRgtco8Zar8+8LVWExKqq7l6gjgtjmqlhot17XQb5En1R+4BdJBPANJBihM56urBLtJksaPeSeCYir9Y4o+p673t5n0OVTPnsIXStRY6++GEuHMZzHNUrJ5STEIkHE7tc6AFKVhjWMWzLYkZXiAPCvVI6sPk4R0mxs0yTExHAal4ZS5sKjqkGEnscYBi6EwEONK6irVijS9WBxKOVOgzj9o/CR6BNW/4tNnnDLHJjejzp5gjMrByy/xa7Wv+Yjfsd+TmIuUaPvup0lwSYkz6gljlddThVg0JLikduUVxOI7TcxRTZX5cn4asX/1jIlJ3aBAtm9LLklZ1fMkGXAw9UaAYV0mKdJgjV1boFza508x4DyRpXl1Gi0nhxhBofz8c6rM87eF15C/t7EqDYDVjCD1Ty1VikXCHtdJ06OZyEVPbf39bNzzBngP+Jh3OE3NRd8FmjcsZdfOJMMN5LsnixpZDWWxABTN+wL8hBUoxDHt91SJMxY54MStHrS80lmW4YLlZ58FaF0aCvguIP97WxzVI3xKPpLCsvTf/G3hNf629BqnzDGD+SaCkcw6Pydj+RsB9NoYMmyBCelggEjOIvBHZpgNzKRyl1VqzMbFti9pIqjtKjY62OsuaRHibqyWbkh2BTJIPmZ+F/Nssx5Mki6T7LAagNoeK8gYt0s6ipZuCrDEnDTdSDNTY1biLA78v+vZIZDJ3ucEe6ygREp5HQi8k6RRQCCYIaXCJjR4S8KUoRPb44QfkvKMG2cFHnmKlJqADpl48DNchNwvTY9DllAC2TL7VJzyrBv+gMUYStrMxLZQ/nNd0uywhsnFjuJ9qIHYZRWZ85vky/wQJautO2AgGcwSB2HwLDaEwLwJHwglDy5TDUBWf75PihkvvPIOOPDP2CLHpYMSxyzwY27SoMBH/E5sb0QdVoOqgVTBFEr10pa17+8jR5NDliIBbZz9oYNTfjnajgxIOgywgKTlGnwSXIYE0VhQGsp7XGDMHXmYiKVwSSJYsG0sVOAO90jRZ5c1Z4+O2EoyZ9YmWc+qCswOa5gscgIZJw9IBWMKrNBeeMlToqokBZbE2wgT/G/766f8OpIr6OAoOvijpOYcTZQeasE0jZAhjHv59B3kKvoQKa8FeU3e8LCECUZ+jZLYm3+PyWdvshn1Y53tAMMrHHHioK5YdkYnt637HKconj6L+Tron4v1a4PvgJtshgxTwEyWNvu8ibxKylSD/az7XBtVMQ1FP9/kJkPMx2WSbqQG7rESQ4fuNZONZ14An1UbtEUUg1wLnB7pAFi0gRWL5Qd8YPXt+RfRfBZokMdCMgT6jSeVasuY5Tykc6oJ97hDzge0AxZjQ65AEDEl87SQabB5HppRvD6DmO8t8sgMWVKWHdbYdnADRgl6kt2BsZzlzSgPxzMsDbhIgwUHGmSunvLfXfFmbYkDJNlJOhdYfqdi3el+BpP4qvGW0b/8mkqcMcGQS4wVJSanlgwC6cRmFpiXou+Lpl7cT0psFBNPbC4lkUsatseKb3uL0eRb4qxJc8a9QMUkVA+ira/8t8Sw1hJRg4Ve4wwjSTP1+eY45XV+8gusOr+crzO3Ecly/oL82wDrFsdUuMedUFeML74EGGfocItPmHEAaJ/lSKYzlqzJ2SWZVe1TPTFj9GI8A1rsKZQmSZ+bbPp1fhN5khkTfSLAdG3QxYjR8levOsXoW8y3shDsYA0H+owCeeXPp75GPeTQ65t60zxN5LdjlTj7wnJWzDyx9ZUga2xX81MTiz7nwEzGQVEBngIRtYyeYOiM8lS8b/OsmomBWXYmOVp0mI5nQiE7LXLxHWl52yeF0lQfs8IFo8CoonNa53iC/KONMV30ZVWBHVb5s+HvUaQRYXj6vQAPuIWYoAIZzFjfQLOULxvytPin/DnyZ04wDD/CRQeLa+5mZUunfgCE/zX/F691hVjK9klyzIKrgXo8ZgV5xAn86pPimEoEri2zT5ssq+zGd/wu96IGyWLHltQ2xMsrS17iOVqs8wgYBf8JGNVS2J6/JnVnuYhttMgB3+fDkJSJ4SdAI8HQe3cL6JLaSuoTLXBPuRb9hs50kRFWXNFkYUpl5PPYJxXntpRA3/bXT69YSGKJWliETF58TQmzG2hNXaVPigsyLD//lD4msz5gkbWhkVME5Nl9bYtgmyUHcY7p3hQTrNSvxbUcToxshqxnnGaXVTb5nrFT+3jfOoOUUrKUyj67oJYq+Vk4QyeVCdJFgyKZZ19x6L7DSQZ0UnZmKrjMPMELMbsnGZAeGpjyeuOLAJVPEuUAhTU/iYHboEi6b1LlOU7J9I2lfIcfGcsrkaHUr8UiTt+ZwsFU78qchPoCiOWg+mizZ+rFIjXFgL8tvGbX6vnTuNdPrr4a86F+lxY8zUSOL+auUOEoQGstJMWqlPpJjMZD91PM91sxa3WZZL2/HbXO+vprwGhhWxrWok/cTq3TJ8llIhEg+7ja0UDVC37r9DNk+TDHKcmvfua+xn0/56aR8g7s3N6aeivAs1PmKHMSVjuGVSTZ5obLYm3+LferXo+fUKUc94ju1WX2KT//nH3epMckk3R5l3vssYK8jtU3pvvdWPDJrkd9Q54m7z777wOnqVPgD/kjm1me/5QcTWaefsXCs8+ZZMS+ls/0EgccU4klm84U9bxtsrz0FH678SmTdDlP2FJ5woFg9cy2LHwI4DPMtTgPgViWgfXINssUkT9f5uckv3wjgN4zrgSav8puyJX6pCJJq04xENwElgA16wwLNTBKMjF/pQksvrcSRrgC77QdUAFrYJprRTX3vfFScShSZ4dVLEDBfO1qGGp8g+0YUEvUItXEbvJefEY18TVmkRZbkiA1E/JZUmOjh1o33CRdLGF2FlHeW1iarlg352TZdW8VeR0dsISlWE3GFlONimSaCYYofXfojaCYKBq+1LiIRWOGyIP4bGoo6hSQsXSaHkdU6JGORlh/6YGQr55MyzVgdsgEU09hCgBZzgPFF6VVkoQEwwC7BK7q4az54CmAMsHQ2XKWkvNjTw0SANIh47LVlJvxWyiJBi81NeY7UeU97pLxbXGbGZch2h0348PmJjeDIj7pm1nJEjTkye9EkgnA5X9PAmw2EMUM3c0wtOjX9CK+zz5JLhgZTB94MqO+Rx0yb/MJXdIub0hFimeNWWeJWKCB3u8p11DaYg8LaTliISTJXSa5wTYyO13igBlvMEUxlrxCh1oHS/LbZ5m8y3nEiCr6M/u3DpB/21+znMVhZ6B1MiRgIC+HCcqehmsNsQWhaGiUNNcMjE0K+PvP/g3fYzNAkT2uByAyTYcVHiNDd7BNmUx9dZgL8FBz0yXNHteRLYENJKPQHjHJdG+A1cIbPKLnG8IBI98/gHUeoRAY2x5fBICsrWLL2SJWwwx8SWD+TvJD0edZ51GAMG2y3OFeNCUztGMYEitHw2qBRjQiBywiryQByzVKsayRb5RYehs8tNo49Woktusw1tk0xDy0KkOTTooRqU2y/BAHpIIJJNmcbBa6TDLtQI8sBIz5nMNsDS6dAdlDNgcpr9mycpCHqBiLP+ADZPwvI3jdjzI5lrSg5+9H4KwA1KJvZMEADDXWuTHmjcCrH/J+SOAkNQQ7rxUUIrb4uJeT/HMlydRyR8PNNjd8QDGmXZmTAC3kVadAkwTDeA9K+EzTY4GjAOnMX3clpEH/R/4PcU7ss4z8Gpu+tLDl3AlDEixxEA233p/5u418Dy/83pIBuba4+mwCUvZZ5gFvR5/ybX6t+1JODOAWuRgWlHSq4fJNX9yN+4lqCTnhS79zssxSY4OteHbW3CvOerByDGOy85DXmRi/J84UHsnfjDGyzjbLfBr9hEzJb7DNKZZKKtmMJD+TDjqrj9GzYREp5kVVpMGJKzHMg9G8m0z1UQwmlpYvPSajbtliLBn3sEI4FHJhC96LYF+be6ZZprTIM8cpb7GFJM43/fxQ3ZXCYNoXCgKS9N2IfW++WSa/VR1SoE2bLEcssMQh8uMcMsEsteiBeqRZ5MB7o2T0CzBaGKp3ytHiI34HKRGk5Dkny5v+vX6Q+AFi3eqcWvLgopG1yIjB8g73KdJAPnTjbDItZTuYZcA/57/DwpgMELvOHrf4JJYQ4zL7EmfBRtTyWksHLWAFiGrmEHC2wLGri4wtr9ReIOqw5qMGBTJcIFml5gmBp2DqFXmF6v4aZ2ZZcnAv2DbWm1m424IvcewMNraU+gUlF4sVr5DAaQfawaT16geVBqlnoEUupMdHVBiSYJ3tYAmaxcivRsrtM4xFlXv2LHqy/StvUBra2S2bnAhhGB6R7ne5ySbniSwKDBTYOzNsu3+nrJ/sfJVHV5WygWtf/YwMHZOFJpYoUCf37BlzPAm7njRdFjngB1f/CWVOWBvu+DKhRQ8L1Pvoyj8h5+f28vNPo+4ucsAy+7z0nHjea5TI9DvBBJ2ky1p/N+7/8vPPefvpQy4TpuT5vGDhmm2yEc4iH2ctw8AAs/up25Za36+aLBWTgYp920ll4nzN91u8N7xrvcHQFus1SmzyPf6EfwEQs+rovr/E7LHsfLr29MvwiSs//5zdqd8KoonOqAFJZoZmBTEg5QtoS6GWJUiHDL/d+JQCjZgv0xg4WaDB9/sfssIe14d7HKSWkC3EkAnqqQIlakGUOWaBE8rMD6v2+xKVOH+K1Ck+/zIWl3laHlKajB7klDn+Q+klDljEAtPKtK5cYf35X5LhIs4pBeedMudptQcxR8CoP9Sy9/XaFyi8U0Qlk8PmEOEpwZBzn3GXOGRAigdT/8XYQi/FzNDYeOeY8kJ++x+l3ke+2o9YDzZ9jZIxwK9cZYdVzKoqHwu4ztQ0M8M2+1dfj/tCz9zQF2Fa3FpvaTiDZnHV5s/mv8tPCq/SIs9DNgBifhFTO8MF6X6X0rDGq7VnQWTTTA+Gm4wDyjrne6T59f5Pf6568o0AeqZ9no6kOHmUiFWkDfoQ8wowgGroTZr5cMhjwdI6Z6PBtpvEBsUy1UhumqcaTBf5Na2wF//9gYMHy+w7G2uefZbj4umGFPpfdYos2MURm0VSG22Kjfl37sEdj1lmP5ovAZLjDcIkljJmjDcDkSQX3mcZY8t1QkqgwIoBSRrObBj4TXBMJQqM0vwKTiU1Lbk97KvsxlBf9hRbvXTTyfjXWA2XfMAPYri5ximSOIthMk6nloTDtq2jFB81pvpcTfKxURSiv+Pbvi5pl+Y2/TofRgMm434BnCq2AsM0MMrXyLxjBtFEiK1mLLcJ1tmmwjEbbEWSnO4pSdqsib2kSJ15ToJRoIZHlHQlhWrAViNeYzaAzDzmI6aBWQajlg6aCvBGkmw9yDVK3ONd5NknTwFQU3se361SpY0KbpJGk7GcB7gyZCI2wMaeNRZA3odRvUbN2HUfVgxMlh9QlXL4+Sl8RttXDfAyEf0D/hhJANvMIBPkA5Z+JTyjAD7jDSStt+ubCkBLwPrQwfIMnbFtUjGkQLpXTK5odgTVK9+1RDFq9JiM53XgG13dewam2TCa5RwxYJXXrCADhUusjxlx62DWUiBJn0lng2oIqlIOf9QDZ1wooCONJcOKLXxJwplKly+8zyxtrvvypIj5ETUdUBIYaBLcng9qxiyTTxnYAFOmimTMGuwkdZdHCeC1yeqoFi0JhtzgkXtcme/FgfvBrPCYAUmOqXDdqfvyI1IUvQ7/ncSagxX5AILk7SFAv0OGP+IPw8R+fMuu703vWzW2TTZSpJVsN6rLJxSp8x53I5laZ8k6j9hmHTEXS5zFFnAe89+U4byALm1SEwzDGF4Am1jxCqX4l/yxL1+sBn2fDxmlwKbinNdAmKUdbCQxokySsBcDpDbca+yQdKBWfoa6XxSOpHTFRPxOAwi22KBLOra5Wc7jeutZkExm3IdKfYTSJYdMsMCxS99GQ78aUMlXGhTiXpRcU1I1WVAUaLDBFhtshS9LkTq3+CQSrr/Nr5/wOve57UxK8xAcBcrkKTgrVL496hWOwvak5IBPCnkVH7IUqg3AE6it1j7GEhs/5h2A8NKVB9kSB0geCNYP6cwzcM3ORjXdPSZZZj9qrZ6Tcx/MxQIEGzSPPPRnlV3EqD5lLmTleiZ6zjmRYb2kh6OzQtYncwFwXpBBwROz1MI/UlYLOneVFqkkb/kMqibmaSEbA4Flj1hni41gDbXIhXexAjMEAqr/EKNQ0J/AVDBAyoKczqKHliSsTZbr7LHFBiXOMHmq1bV5qsjjDvAwJFuE9zCrGz27srqpMcseK9zjDkMS3OCRkwQmOPRFtSRUAlsBh5uWOWSRqi9tdK1usM2MA/pawowHQVySiBAXAdI6e/U785h/Y4YO/5J/TZF6gIGSTssSRh6zNnSn4tza5gYp+h4oMrK2KFFDidAzGGNHzF8Ysd3l/wXGrlavIS+yU+ai7xAwaMEkM0gWK1/LWzxAScMCZLUQWmUnlABKelbtl1Q46QxHLa1sAdVlld1fmZRbAbXVK98NQkGPNM1ELuqbGFP1qVfYTywz9exniPygcBcRSDoJY9BtcpNDlkKeuMRhLJTbZDm+8hrZvtUA9S2NK1ejfwS7P0TqkBd4zn1jwWbzFR7ziHXazNCdejnIJteffkbu+VM+L71ClXnE3G+mbIEjxiwQapL61CscXH3NPemSwfI/ckavZotTriGrrPmhqeSM4TTB1LOfeT92Lfx6y26fIfAKCCZVPTGyT5EHvYLO+lgir2pNCUvXzj+94Pzqy2SfXVif4CmmImZoqf4u98g8+zrAzHEbKQFOGTr8+8JVWuR4yEao86IOpEwW20zYPKcQOclqJ+n+nR6jRz1RDOKQALy5/indKQPJxQYU8CamdYYO3UQ6zsZT5sg+f0Zr6mosL2cw9txbbndQokZ62A2sZejLVS2AOmT429JrwYTU4iJLmyNP2xar9O8mrycZsMauWzwkOUgsRc2eG55yg23qFFh12wf1DqYuqQdw2SETPXuKPkojH5Dkk8QtEgx5dOW3aKZy0bOOk8Dkd98mG+SLhs9PZuVjAKLmZp1v8q4Xa7udypL86mv+pvS630s9NnjIIgcUh3YWTAwN/DPmvM1fCYb0U6O+4j/2+sZSbicY8oh1ekwGq27BvSbEOFNEsBox6dW1RRAjLE8rNrtiJWnIkWm1ik6V+WAEVinzCbfYYiNANnmbfZ8fxIZ0/GEXO6A+NlT9Ln/uB3gzNh8CwHqkA7kfMhF+LHr/dhNZ0yWQy4bbQQy77/AxOVoscsAkXWRUrsbBfmc6hinbcvaCmadDu0WeXdYC4NNwDHagT9L1bcQsCiuw/3vGu9yLw9gixFMBdF16sat6pmLekWpJBDW8awO9wRYyTO/777Xre+kgpjXFkvMOSLHKTnw/ahAll5GUVh41YrqoqbRi2Y/vzKLcSzFsq6mUh9FjVpDJs6jFT/yw22UtAMueN8rWTF8E4FikzjELvm1NBqtH8gMdLkrmE4AtH4Us7TASHpIIs1IdtpPOJNE2rOGMwCTmLSFgx7yhTqMBs/JhzBcN+6dcC68A/TNtOM59aGiSD/Zm39mLHd++vs8PY0uv77pMFSWt6blV8uVNNsMjRpJIATop+szQpuDF9lfFQ+8an1PhOMIuTO5Z51OWY1FgA4+ZT/8pv4+k2KK3y4s0xYAGBRY4jmQnyT8VIjHEgmOOWGDBm3cNxxpGdZALWC5xxpk3GAJsjInRCABdYGSWcyTfbJHz+ysXzVDVm5q+Q4bGzCrQI806j2iR4wyjyL85tgVb4JgDFjknG//NLqvh16c6b9toS8VWrWw6g81S+SZj6BNo2SETPkq6B2VQP02HDbaCjTczNBNmbRwlN5mmE75eYueKMW2U/2PK7lmicCHVQDXUMALM/4A/DgnIjqcnypBaz5+216oRqrEyJZ7jNMBDk6QVA4QS48kYdnX/zDn23E/V2OD5sHHQIqtNNiQ7h27aa4zoWVL0uccdxs3hdb4ByA9WW9cyVVbZZcaHkjZZdlnlggxlqhxRidqk71XpdDVm4+ywMK2TAGhnaLPDGpckyNEMFiTYBnWbGzFIGnvOavskPcQMTDHgfX4YgIlAS9k3GINzGjFO1Qja+15wRpOx9ivOhhZgqqZUgS7mjWj//jEr7LNMk1wwcsxE/Po3V4R+SV4pZzl1yLwQxDJiVHVfAFfNzqIasiMNX3kHqSTTmvYFVMPPvMfOTFJv9Yf8UZx58kQckgi5j9i6Vs8MtEnRZ5ObVCnHMlLDo57NUSBKL1gnUhaY8iJJj8mocWDAke51saAEcIElkScYss2NAOY32ELWJl0fEKe9N2w4KCRbGQUslKixxGEAeG/6MjuB+WUpDXubdeR7KeZtgpHHtWqKgHL1yHZ+JOO9S1JqPsOTcc6fk43Fqnp7Y8Za6IZScQu+TBZ7WQnHxvLKBOC7wVYM6WIKzvsix9iGF9ETywur6yxHJe1ekAn22gGL7LDKI25w7H7Pe6xE7bl0gPKEeTb5Hpvc5JiKL4iVkmg9n+qBGIkCzKbpBNNdiyoBosaOHgVuiBGnRWqHTPQAPdKcuAWM+rIaJR/qp+MeEts+wUi23SETgShJ+siHVstyLfprzLLMfsjgdtxHWv2tvleBI7r/BAKWXcotD20BFA+45YucAmIqTjDkNvfp+/ylGikA89v+MlWRDfN5zC9+0WV+Z5TIPX9K9tlF2FPlaPFlYZo0PSr9Y0r9ml8Lk6LrHF7ikAWOQl1lc+RlAHhNcjRTOVLD/gtnuM49scgmvFcF6CQynHKNrksgizR4vfFF9CCmKrPQtu2rv8n21G/HchLsGXnEOvNUkdx6M3Uz7udjKmxy0xmtgwB5ijRY4iCWC3M8ibrYT6Ti/HjALXhuv6dBwVQdz/+aNz77adS1DtN0U2mUoCtLIauJh7EQTtHnv2r8PwBi8aHad3L1VSaGQ3rTL5FiEKSUBEP3FB1gzOAJmlenfZk6GUumpPelS85Q1jw7WsrYM/+JPy+yKFhwj1XNdyK3DJngDvf4B42fBHgkWyuFdR6lFqLPspm2H0sd2RpkaZN79owuk+z5jHw69V3G/Zf7pJgYDh2ENXDsNGH4SWlYY5ObNMlxwBJVysHerFGi2G9g3tjJ8NGXNFvp2rK56ZNy9v4gfi8QfrWniTmqzHNGKYBeLVzFvF9nm7m+1V8pSeznT/DbtU8pPHuKpLTLw/0AP8WSE7nIssibLPf3WX7+aShBZqlRpE65bwDwJQluDs3KKIV5RBaoM0ObmWEbsEAXIJYZurbNhAUf/iDx/SAE9X2xbJ/tN3+uevKNAHpXeBbR8fLWMIr3YnwY6YcPPEyiQD0OF0UPyxtND4ttuZoh1ZWR9gGLweQSLbSOGcGv84hJv8XVEGowFGvFZMHF2Eg0/cYXuwIs4Qws3lgm5vp542bxaXovbOYTWMiE2GYKWtDmQ1IqbWPky6eDWWwnvcRWaGOR9ips+g7Gm0QVbgGQQEgh5GkkZoHYIfo8Ap2MnXGNND2K1MOTygabE5Y4CIBPYGbTqbTL7Ic3SN/ZLceOyos9I1p+w6XDhoIX3Lh8EN+/rkGdAmvsInr+NutIfiuQtYBFtasZ3WAripckqG2ylDjjlGscsMgMbXetO0IBIAJjlbooKrI8wZQEJMBD0jmFAqQYScDHweIBqfCikbm7kqfE/BQlWvRebXOCeu8m+WagWmOdR9GYAUhWOe/MHXlYCuDUJkLPlACfLG1+h4+QBPPMqcMyCVWYgO5XNfXaSut3KwBD5uFq0hTAkOFXwwQe4Dedig92IGm4ETNzk5t0yMSwpaERTKJmT8l0HFzafNn9MMsxC2RpO/vThrcFjrxOGWiqOqHhVXJ7gTUJLsMw3dh5TVrk2OdNTpkL/4sOmZAHjmLlTa4v4F+MWzDvzzJV7nEnwK/HrDDHKR/zDhMMqXDELqsBnGiblmTAu9zjNvfpMskxC17T8ixxwBo7YUZssrqSewmZnNE+dyuaj57XQT2DCrjQ1s+WQm9ympiLYU5Duxgo62zHIKPzQgwrNQDyrdH3I+ZKmm4MkV0mOcdCa9QwjkKX8u5NZfKwFINYPvRIh0eYhsIkg/Cc0/Z1jie8zYNgtet+alDkFp9QwAKixgd4nR26VwVgVDjCfLnsc93hHkkGFKmz59fSzLJnAhQT6KHESlsODYIVIpmXNr8JhtznNmIxKcznEeuxFBEbYZn92JiKRaqhpkeaN90H8Q73yHLuIIOxnsucOMunh4KC5NUFNsxqeL3Fg/BB6TJJz5tNedlKZSD/wbwv/I5dDiyGkszvhyQ48YVYmaoHWdl3vc8yr3o/8m1/aYGRpM8DbkWf1HS2mzGB5mOAFdPSvHOMuafApllqZDn3Ae2EfZYjFCODedUpTTqHCVB/zE32WCHpzf+4ncp93omaLB+bVXboMhlKkyrz7PjiVHJVG15MhvjIexIBS0dU+DP+GXM8CYVGl3SkgWrxJ9m9FsS/y78NxpqBgLMBYMsmRAtfMdp0v437CI9L8IEA0LT46TDNDG0UYKPnUuoFnf0C+Q2UmyDvahirN6fBQBMT9SEb7POmWyR0g0WpaywWhnqRt3nAvL9v1c3xhajJ36ZjmWKf6Sz6ZalDBKZLNmh+xBVK1Jih7fNFL8Kl5MF4k00fosxLT6x4XQ+TIJ/HDJEfq93yqVUPpqVWikEElIjhDsQ9kKPJ7/FnvljN+RI6H2eYzsa7vOeZi5sjYIFynFM90vwOH8XiapJeLLkV2Jf34bDgCzyry7Zwl7WG7tsGBd5iKxbjD7jFNutUmY8ZCYxEcOJMwPE0cn3/tojvoRT0Q39vYl3VKXLsFj5SO7XJ8pSr33QZ+qV4vdH/jPmnX7DEIUAAxCLAvPwUGleuuue0ERyOne1eS5UYTug+tzAczU5VymzyPV+smlVHxROGb7LJkAl6pDlP2D2rtE2RBkRoUH0rUYv+TqFiWdp8XnglFg6z1ELCL/A5RzMCt4AIpGg4I1hzonoZPbO6T6XoMIDGfCHlPW3qgbeoUaLCMUcs8Pm8BUZoud2depmvSgaSr7LrKgCT8aa9n8rQCQJFgssApb8oXCFxOWTh2ecsPP8Jq8/+mi5pttjgKFHhIGGKtDV2+Y3G5/G+ZcVixJlZKhyRpxW2SmBzABiruIYF5MhjNzU01c46j5in6mdcO3rAYyeW6BqCzfU/KbwaLDgxXYvuVS5mc5ssCrkAq0P664BFGleuRs+uoFCFkWgOPEgsIf98SfcvSXCaMEbuEoeInDIxHHL15CsDNJ//zLAFZ4a+x90Am1vk6ZKOAB99Rys89vvwnOX+vi9SLsMSrOn+m3PPvohl17j/dT+V5Bzzy1evX2OWL0pX6E2/xCo7FKjTTxhg2CVN8fmXyLteqrtJuhylFjxAZLQ8TjCknio4LjJPLVEK1cYk5iXdJM9pYo5fbzxlOGHLnRmf146oBCN2hb14FtZ5ZMu4oQVIaaH/P/X6RgA9IJpvUSJFBe+QYYZ2HJ5gAECVeY6oMOssPDGO5niC9OHjmvk9rscQlqcVdO9zsmGWrK3uHX5EhWPkxwJ2IeT5VHepTI5WoK7yxsv4Zk2bAoFB+vKVjChGyzELIWWUpNbefyW2AAJbtJ3p+6Zqy/XXPUfYlTJocrNkgGDaljYohvdcigHb3AgvigMWucE281SZwPTp1pjkOfb3q+9CgRAaxFSYJPMAQq6hras8guRxNU6hPuUaLfLUKcTBr5Q30XT1GQ5ZYo+VeEhEaYWRYTtYElnP0fUuaZQ8p3tgld0obkK9xUNU4y3Wk6X5WmEtegMt9qNArnE5eJV5MnT4nssSlGSpv2QkW6UcrBZtYVPeuGk4lkxYxtpKq9NBZh6Gsxz5hu4G27SZiQPge2yi5GdR3QXOqMgKtJDPTp8Uhyxx4kPHDG1nv45k45IwSTqpbV6dIgkuWeAYkzJ2kVeXGUoPAuwGkAxA6UGSIyvReZZabJGW+NtfdNn5pXy1uQJYTSzSoOHPxYKz9sSM0uCQxZKYGr5dHWeD/JD3kZeDmfle0CXNIYsxWI4zUg9YpEeaYyq+Ic8zzpRYZp9VdiNZesfTjhO+OQdiQJE5sOQ1lhJuTbqBO9djEBFTUMbFt7mPZLv/K/6UHQ+JkD/ZW2zRJM8Ke8GuEWh8yjUOWeI2H1PhCAWAGPvNGMdLHCLPF9XGHC2OWLAmyZ99MQe3uRGAgUzyi9TZ4CHnfg/LrmGO01iiyONHz6t8PFrkOaMUw7CkWMcs+HBlcgt5f0lakHemsKRv19lDAQAylxfIq0TYDB2O/DwBJdOW4vqus80Ak/ILrCtg29GCXyfVXQP7WwGmqiFUs6YmX9JHNeE6H5Ukn6XtjJkGkryNA486O5IMuMWDYLsvulBbQK48AsXSkgfiHKfxOY3pkuQd7juEOpI2G6BmvkzGsu+5fM7OtkO391DadIdMvM8V9ljnEWLelHx7PulmCeMvybPrFCPgSueM0tIlIROLXtfffAL74bFq9+/BC0uRb+vrFZpM0mXBLUdkBdImy4UziB6zQoUj5A2ZocPv8ue8yz3ESpccXf9bsucWOSbpcp09jlmgS9rDmhLIy3CeaoAXabrBMOuQiYFUYRC3uR8Nt/qOsltwKIFUNUZpjivsobR5eQZVPBRIwNs62xR81TfBMEA3eUSByej3nM0p1m3aPaGMYTVLlTJ3eQ/ZgBx5n6bwDLFdzBPTGKViuz1mJSSdsr2pUeIxKyF/f8SNABnkCX2LB6F40aJdDFkDwZI+VD/y722SbdajhxjvneoU4nnsYuwze3YL9ElRoM4au+5/Oh+Dn6wp8jRRAEiDIjus0nJWinyPljh0IHUQqg1bYieCTa1lZh6z01HIkDwzFzjiBttY0q0t4OU1fO7L4ZQD1HkHXLO0ox+XnUoKCz0yCwHr220BNun9b8FtGBIBat/gUXznD7jFjC/MJjCptq79LLWw6pHthMDvNjPB2hHQIA8wsP563YGXLd7i0ue1BBbmpTqtRbpku2Z5YXYa48y6U+bG+kWzV9C1k/+WmNyql2A9kkD0X4XXk9Rr7F99nQ7T3msPYzk5IMnnc6/E9y2wXczMBJfUE0Uqw6NQXeRpsdI3b+ZxRt4hS+ywGvcUwFz/FAVJSe2l3s6UV6PFJBCWQQATw6GDPZVg4w9IYfYXA9bZDj/6M0ocsIhkp0ZyOeYWnzDHaczpAkLAzv0DFoN5m6HDNjds2fb8c+RPmWKAvHTXfAYUCaXr73dr6i3OfLlx4WQGMRBVDyYYumd0hUesI1XHUWqB6pXvcjD1BrUrr9BlMmpEgmGA5T8pvBpLbEmn9Z3NUuPW87+IZ9N6s2tIlimQqkWeLd6im0jHYkTYwczTr+IcKlEjP2yR5dzPlqPAW/a47qy1tBNaClHLjQGbjPsHoM0MW2xEf6N06zRdcs+fvkBekjR2aWhsOi1TrX4bCUryVzEdk199zdP5l5mhzZ9f/S9tOZVajj8nhZiIO1mvi1r8XK19ReHZUwM+UyOrMNme3eTH1qdeeRUp5mQto+sjdmvW594JLF9gK7Exdj2MldpjksHLLwV7WLOQAkdSDFju78ezYp3dNSz0YisUllKLar6vUeJp4WU6iUzMzFKsJBnZxggbqfks0U+k2OQmrZ9zwfGNAHoNXkFeNjKH1NZQLAZrsPIBxKlBAJjjSUiRNIQItNCWIO8eN5Jg5hzUM2lMI+RPtn1YjMNDAI/+9zEVrsWwMEueVvysAUkOWCLDKAlRsgA9vIcsMeNbOm3bxV6Rx5i2/HooxqVUMuSUlEefse9D6bo3EecOMrV8iwcmQ3riQ6maNzUmAu9U+LT5VMprlvPQmavIpumyzTo5lypVfLeZpss0nRh8PuDD+H3aRijFdda/BwM2DVm/5s2NrqEaZgWj3OCRD76i/1vYh8A9bYU32GKNnRgslziMDWmL3Au02i02ogCqIc47S83S9SYCLK14wh7YcCzpoFIVByRRSqyaLjVEczwhy/kYw+rSAy9Oo4jUKbhBdNMlX2mU+maSQGPxKe0zw0XI+YDYJIkJJXDAANLHyIfFktqaIccTldtYpTXW2A2AzzyeuvE8iLFqfoHtOLi7pCOtVv9cPjBiSmqYlVnrI268AEZXfGiQCfXHvOP33SgR9Nv+kkG/NvT67Bd+YCQYRl2w+3w3wDw1yTO0eYeP/Ts3s/1Dj2CXEfItHgAEA02JoFXKrLBHEQtD0eZVbM1FDuiT5G0eONvKQK0NHnKLT5ytZAxPM/m1dMkfcYdFByOynCPPiUsSAUKZh9AMYi8YY6nhQM6MU9QNFBc7Acy7Z48VHnHDVxzGnFrgCHk3SaInzykBefe4Q9uXO2LPbrPu0rfpeP4bFNhjBcnJ2mTDf6hFjrnhKVnOkaxJsl0Z9C+5TYIBQzk2uRkAmOqRLA6OqIRVwiwmh5M8HWwIesxKSJvMj+MoWCdqbFPIg8aAWUnjcrR4xA22WadGKX6XPbeTlKlGEyaW5Anl8OWTfYX8afSZ5jiNJck+y8EyBFsGNVySJ4kz4F6uJyQZvJBObMsbqxMlanzqUsRtboSH3JAJmg7MyE9x0wOOdGbJB6vNDEXq3ObjFzb8YvJpWz/y2UnEkCuZkliK8rpa4gBZdoAt2HReibUshs4629FzmKRtIViV+p0ZOsEyk4UEjBie8z7UXuXpN1Z/fllesv1QanqOJvIMO2CJZfapuLRIzOSyS7QkXxYbv0mOLTawwBZbAv4z/owlDmN5KGnRaLC5DLaUwGHzmrWggTRdtthghb3wjTpigX/D7/EhH9DBDM/VJ2phpYFs4Iw2k81Px1lnLLIZFPoiAFxWCrp39ZzNccoua5SpxrAu0L1Iw5mrNohsOJPKpMj2nsRQ0D3XcvGQjPIlfb7wZajAMas5xzHM3+ZjgADaLZ00GV7UklnKvibtYKoBXothcL7BFgOSXJLgyA3uEwwjndgWAaUYDG1RNckp1zyEzYKL2mSjxuZoMU0nzrKsn4+yswFiiX/o11mgbI0SH/G+s3bt+VOAlJZFYnvbcnYihjtZAgjAlFJhjtNIyB6SiPdZpxj1K8HQ4bRaLGskjVa/XnGPKfWUsuWwZfQu8jQcJRMb0CbQQjYd4wxI2T/c5mMaFHmbB8HUt2DAeizP5TOpWctYNBex8MnQiQWtfE0Hfna0yfKAWwHY6TvL0OF9Poq0W4XK9ZhkjifBlG1QIEeTv+Dt/5Rl6e/t9bIDpGKKCVwymX/OZ4hzLMDPevJT5viHjb+m9PwLA/YTpVi2ZmlzkDLvvA22PMDLvtslDsMaJ0+TZspqwgJHlPo13qj9NJZeXdLkn17EwlLXUOm2R4lK1HAB3AY8GJNVTDKAIypBZFE9PmAxFtiyoKkyT8+r55H7QmaGnZjv13lkz+YlToqwUAEp+TTvK2xuSILM0AIhRBYCyHDBEodknn0VQNcOq9Ezi3WsPsVMqUrMDG3WXHEFiZQG5ixn1i/q5eWfdsASD9lge+q3UXiRzh+dL3pmNUvnnj0LX0HNAE+uvmKry2GL0rBG5tnXzA+rTNOJJevQe26dSwasPooFmrxjRbQxNWSTlv+9lgM5Py3qUwZgNr3XPuUav157GqEluedPQ57aJkvu+VP/PPlY2ApMFYFEKrpPuGX31rOL6Bk7ZNhlzTELWxL/30v/JYdXXkfWPeqnxJTukeYWnwQpZ/X5X6HQtDpFjqiwyAEZOtRdiXifd4KsssuaL5fOWX/+l6yySyehrAMjNKlnnGBI+fnnJL/6WdwP1lM3/Vqbgm/5+afkafEed0nR5z7vIEmwlJvys7/FJ+y63c4xFdLDLne4R44mW2zQYZoiDV7jyc9VT74RQO8rP3DU0EoaKxZWnyR7voU9ZS409Eql0kUT08P+vhUbLlEgF3zYSdPjgEVE04cR0pvEfLuO3DDXZFDnIWNc4gBLRk1j/nvFkIEoht22gU/igZEBIhCbQvm2Sevd88FVWn0NpAKhxI4TewEI8EhsGdE2tS2ThFaNmrY2XdLssRJAjrbPVcoh4xMq/4S5aKIkpxCI1sQMSyW7kgeg6L1Gh5+JA7xOkS024tDQ3lUx9qLSPmEOGeFXKVOnEBRSk/FNx2AobwbbcJ6Tos8eKwE89TGTSW04tdkE2wTr/hlnVGgANIlbCxkQA7HZVFHRdyVG3RynziorhqRYdFkx+pRymcGotLovFnwrr8NnlzXmeEKDAkYZv4xCJ2+9HpMMSL7AyipR48SHRIW1LHBMl0la5L1pNlaQjOszdHjA2wHY9v16iX0o2YwaBXnMWKPcpEAjviP5CSUZOAMq9QLD0743G2gETgvM65AJNqUxoprc5j7zvyIDLBDDpthDsgQYNxjWd6WaKX+NLTZiY3VEBfl/nTLHNusx2EgqIPo84P4UBfMWASSFzXJOkn6w5E6Zcx/IXgA6kr/ts0zDBxLdV1XKTGLhFNY8XAQjQWEG150V0yTHB3wYzf1d3uM+t6ORWmMnPOg6ZKhg22bJYLukX0gTXOCIM0rB4OiTfOH8WPLDW1R+MU9l9m6y9l54eC563TbJ5ztxT2cxj5J6wlheSQZUOOYd7rukZZ4FjhGrakgi6q8SLysccYsH9ByIsp97jqWbDwJckGRUbGAZJAss1PB/5A2yNq2SEQJRR5bZp+xyUNWXgQ/cGhI6mEmwUtUBbvNxgPBiPFU4Yp1HZOjwpv9cIMArgCIN7nEnAEH5z8mjL0czJLJiPbbJMjfWoBywyBq7KJFTRuklzmKonPB7T/eD/HXli5b2zeiQRDRwHTKY1+4MktxaYIsB5HuscEQlzjptaQVUyDus6cwSyd3GZb97rCDJupLbdW8rRTRH0xlp5n2r0I8so2CVDB2+5uczPv7P+bXDavRRJslLxWJPxvxAXFMxzseXD2A164IMkujZ+WfhFRqWxGoTK0GMDS0f5ziNRPgas9znnRiyJumaqTkd5Hms3y3GrAZH1YCaD7haxOmelTdnh+kA8zSsaxiTj+WsA8Zi1qr3HfVT5vF3k82QhScZBAuxi0ny5ROoZXqSQTy/6gnrFMjRYt7tSVTbEwz5mNuxKLRldY8SZ1jYxbx/HpMkKW38Hne4xx3ERJRUT/JSMdIq7u0l1U2NWcBqo5JgS9Ti5/aYjNT2JQ7Co6jrUrIyVdp+TctUWWOHBQclwfyj9Vybr6ixIeTvJlVKwxnHYlFawJOFGf0J/5yH7p+awUCCBZd2Selg0u1ugCSr7LLHCgkuuckmczyJJZc+myTRtpC1c3uVnbHf04jFsIIkNLCrBjXJO7Cait5LQKEpUAzAFFgsL1W9b/1cLXEn6VGkgUmwz+LaAUEYyHARizQDAczSo8IRt9230p6HRiyiNKu9zw+ZphPzhYFIpkjQsHuNz3+RZeeX9vU1FspU7o95QA478b0IPFayq8gof1l4k4+n/pFbB/RR8Nl9bsdCQfVPpv4vnu+NOE/PKNFJZfgfX4YVHjPpfcSTq6/EkvR4zMtyXDWVxMIH5aGuM876oyNS/QEbbAEGrueH1qtarzmJFB+XJFjhcZzdF2Qo9m1GbDNDetgl0+8wT5Xe9EuxwCzSiHvZ+k1j1m48f2hsp0QJhSXKg7NNluKwTuvKlZhTltlno7+FVBhnlMjT4gG3AiSsJUoORi6R6Xd4pXERfpD6HJZO3I16qn/XoEix34jQRS0eLcCsFYuMPC32r5isc9zSSUvfzLOv6SdS1K5e5SCxFItDhTcpDClDh9SwzxuNnzqjcEROaZFnbbjDJeYrLDuQRQ7okeYBt5DPcwqzc1G9+ZvS6zzgbcMTpq5Ej7U+3KYzNR2AvJh8ReqxqFVfBLDGLgscUbvySvh/rrNNkTqLWDquzsSmE7+yfZvLpW7L0nbrlolQOxxPvY5Ypis8DiZxjibHVFDgZI5WkGH2Wbbec+oqIgQZm3gyCFG2xMgHU7NOkYOEBa12neQiNuPg5Ze4dGwiySB86NOuMiz1a07IyLP87LM420+Z4yCxFMEqG2yFbP1Kv/1z1ZNvBNATNXNcqqOh9oxSRFBLNiR6r7aMAmWqzDPpf3/kUlYxI8CQdoENLfIcscC0gyfaxmlrITq5UhXHXzrw19nGEmuPouEUs2CeKqKFCmQ6phIgT4IhOZoxmMvvTR52Jc58cLyMh2CZ/RjYhAZrI2eeZ0ZTV+GVZEwsOJM72GZAWxSjWZuP1Qp7zDh4eMAS8rmQFCnvxo4ajmZoI08hMXTEpDSfoUawIBV4IKr1rksd1MjJR/CIhQAK7Hp23YtmOhoKebMZS9C8+rq+kdX1kyZfiTLnZIOhWfAtkcyfJc8S+LHCnm8PZ7jPbXp+kGhjXWUemQKLVWMSBTMyvSAT9+X4AD2e1GUSbmuI8j6aVjjyxuoMY8YlY0hVAyXPRDBAVwU/RxNJy+VpoSZPjB2xU+R7pu9KzDyTpI0kKrrXlQg5Yvb1Q8ahrQcY2CrAWfagSvsrUWPbvYp0IPVJhoSv6CC5GmX56+yzjFKfrnL+iyw7v7SvC6ZiWJB0XglJR+4Lp4WFhjiB5KLLj7N8lXytJG81RqLda2uuA2+V3aDA59xjzRKgP40aKSn8aMs68OFg+oXapntxvI7labLNDeTpscd1OmTcTLsXIL+YFNrs3uITlIg7hxmVH7AUg3KWdgBvJtE+DGPkJQ4RA0/eKrJpUGqrniOxVuTP0WWSMidYEMxMMDLe54fevFy43NaG+CrlaIZX2ONN9pEPixgjAkJL1HjMCjLJP2YhFgMmubhAcowGRf4V/2uAaMLkRaN6rgNdtbjgDGIx6PRMjliyZtWwyAFDJmLB0HY30wssDa3vPB3V3w7TAC65nY46Wvchy0IqSigUyOR73ZCRLI2BaJcY+/2UORSuZF521iRKyqAgkTNnLxrz3RqdCscRPLTH9TgTJQvUOSWWip1FlwGOrT/96wC+N7mJ0nbHJdHmEzTJXd5jXH69yxptsqyz7cmZi3697Lso+NnSIscRlfD0zdBBCXn6DpMObE54vZUkXgwzeW8dsMRP+fX/ZDXp7+u1zqM452xJYSCDEj/FXm8zg0KerP+xfmCDLRSUIQB1m3VK1HjALWTgrZ5B/sAXGLNe96ieyUmXnCnBVKxYe94maP9/yfv/2LjvNM8Te0lVqlIVSbHIoqvMsiiTJiVaHFNNjnhmj3rktqd968S93djZTNLZmewiCxwOl2AR4BAcEiBAgvsjf1x+IEBwCC7AAhtsMIP0zdzNpn1twLN2221Na5t91IoteqmmRJq0aJdcJRZ/iGSVqlgl5o/neT+kLsBsB1nf9boLbahFFau+Pz7fz+f5vJ/3D/pI0+Rt3o2k+hYpB8a7kW+bMbi62cakcBnqXOIeSlAVKHPMIjUpuADECkXkN9YkzQpj4Rmo+TdDgykWkAejPsuUJJcC7E7QpkLxRKDXXsxVkvnrmV5gio95jVEPddH7tZmQFFn+rXbt1yhTYt+fdfm1as4SA8/S+qz2f4fvBStDz4Sxrc1Zucwg9xhnmUvs0cMyl5D/9jbmsTfERhjDnwyP07qZohlNbK21Ao1OSsfEslONW6WA0oUFWOzR43LbJDVn7sm/UBY7AgOkxllmPOojBdxI4VCizAe8ySKTLLv80awQKjFHq3FV4uGJ58HGvZrXNi8/cPWKPM2a8R6tc9qraH1P0WTQ1xgLI+mLOqDqIKe8yxtkYl7SvTfZmc2x1/kYETSWuRT7ifd5kw95gzRNJrmDWSkNR81skkDbN2ndkQRulNXYS3UccP5teFkKdY1yuuRr9zqpJ4de363GfVfyq9iskjcnfQ+YpsUNrpN1CyRb59IxfxSp0LP7hB1y/G71LmUGyR48Ic8my4xzk2us9J/nn/GH8RkKQBNAmKfGKmNUMRueBpmoAzVHCXDMUqe/+oRKuhAhPQCJtt3X2eYcpYMvGWU19jo1BpBPbZM05XSJdsLG+EZiiNSTpwbMJ2x8jLIS+wudszUlrOHwQnWL0d3PuOvNuZMEoUqiSE9zLyT/PexTT1szxKyeDByfdAsUNXNE0NhM5/l54RssMcHQwedMcocc2wH6SaIp0L9AhUq6QJoWyxgQdDJkC44bLSUeOnMuH2DPsO+Zf9T/twJkMpZugRX3VDwZsLTMOIl2h63CWZQiffzvmyTats94s/m+rSWdvbiGApMXuRJjTuueKRUHA+AH+Eb1vl3Pg31vBr3BPcZpJox41dcxSxqRSaQO2/F5XWttihZDnQ1GOutR06kptc4Ic+lZxlhFknEgVBR7dLPMJScjNWL+MLKOKU5GnQA1yR0b/yca+2okrjLKDa4zxAYvlh9Fo3yRSTacDCULBmPnG1lFIUA5driTsNA5AfEiBSlMppNMBD603ns+yF62j84HGalOhjseHpU9OPq15pOvBNCT7DDHNmIJ3OA6kqakaGLGk2uBiIruLx8Ui9peRmbk49zjqrMFKhSi0BNrSyCfGHBNTHtsPm/1kBdKupqlwRyzSOKqdNV1RkjTeobVJx88GWOrsJD8UYwFpfxsOCNN0ow+TGJqUmPbmL3Ld5FvkCYLAVRrjET5pc6zNrfaAKnLv0POE2PyyLhc3Y8FLxoUWQ8WppD1AqTbN9eScKpIGXYjzpNFhArlFmYyWaTqBqfdjLLCD/ghYIWrmBJi7uzR45NKmyJVPuSN8KUTmCjgUh2Sk6lwkmfMMcsik5h3gCUKq0hb9XslE3bz1LmAkmsGsKCKKy6JUEEhmYPYAGJe1slQpBqTYZMUc8xisddVBz8rwUbZoyeKEk0Axn7L+LivuKzCHthx7rGNycYkTwCi6B9ig7d4Dzj2XlORJsaBDMIlG2r6An6D1wJgMKP2doCnCmI4yYIVq1Sgt4CCTe9kK6Bmjx5PsjMmZ5FqSPfybHLBmT0n2bWb7m+lzbKejZpvZn8bXr3sMskiQ2zQzV5Qr0s8ZIFprnGTHXIBzAns1TNzsmgSoL5DLqjwAmCz1CkePEK+bze5RpnBGDcCaZSUl6YZPn0Cw04+60UqTLIYjFh1EPV58qoS0DzNbbcNaDPs3p3LXEIG4ZdY5ho3uc6NANjHOivhAyrW7hqWTg4gn41pFqIoFPtMz/4GQyx40pgkuPPMBGCljrKYcpJ+zzPDLa5SpOos4IdsYpIRsTY0dw00bX0oOztP19vm5btMc5sUTS45y3zYpeuSB64xHOzbBB3e4y12yPEP+Ke+uBfj2VHqV54am1hy+TKXAvxYYiIYzGIuW+MoG0CGTI/liakNgAoL+ccOs84ki55omIxC/u6J+dfYuIMUqTDDrWhAyJNJRakAO5uvKrF+N8gEkNnEAoFu8BrGTDZJh4ybTSJtc7VJEU3wv82x36CYdENYYIfCBAacFZKgw2Z/N/cYD5ag2FCa9xRgdZklFJyi+znqthQ75Pj3+Me8yQcMe0PP1tmH0cAwuYfZDmSp8xGvR/MrzybpTtMLuUYA8S3SjLGKJbIOIV+p34ZN7Hm+4Do3Aoz6Lu+GbEs+mPcYDzaRlAUCZOUrqebQCqNc42co5dvA/2wweGUPoGaVGH9qrqa9IVemFIwAARAn5WNmrbFzooY0n9gr7peXpR7MK91jgcS3mQ5bAWN9Dp7YiPRE/QEGZogxAjZnpWnSIYlk4LeZjvqoRj6YFaohpt2zWmP6uIZJ08M+CnArM8ggZaa5HbJyeQvLxkXNaT2/undpB4hUb6uGOQmMNcjwI74fa8wki3Szxy33wlIg0BIT7NAXgFiLVCSc6/6naAbDYoMhr7uakYKrWnySRW4xw1/wRxGcIUZMko43P6ymHWeZGnnaJMKmQCogkQTUOFdIT5YGrRPMaGv4XyDj9eMg5WDfpmkGO3qTfMjAs9TDUuihN9sB1hiJ+tzmcQOU5Xkt4EbhIloPrfY0b1kFC4l1IwZdn9eVLVIBiqv5YSB0J45H8k1jna8Zq4RyEARENFCzTOvlFLdZZZQ2CVY9TXeFMSzsyQCIeWZI0HEP1yuxkVcdU/C1eN8bTF/3V8OVMQLMW6Sod52Nca+mxQzzwe4VG0y1kalj8lF7WQ1pMmp5xu7RQ6P7DD3s8VnhOQA2us6Ht/ubnffpkGCKhQCtba3cJ0M9pJXafxsbtcEC01QoICsMWQSsM8xW4WyA7uMsM95ZppNMkG62qKQLvNv13+cjXmf84H40lI1Rnwtm6S1mrJ5qrjPX+7vc5FvIjzLne/TZzlwQHtTELXc9z39deIXF3ssk6PAW7wVesEcPxU6FZtoaKCmaLDhzfJg1TIa/hixdjG11zDA+biCahH2p6zI1Bhjo1FDokcIDOyTDNks1/ZSrUrI0yHbqMUfb3r0eIZGS4VqS92hgD2Ijak/VIBsWNyma5HZtrr6ZtvnPgNjRwF0GqLGSNiLBYtpYl/VENggA1uiqB1gKhBpmmDVm+QXdJwC3XxVeJM8mla7nSNHkGjed+WyM9GYiTQlL8H3d2X5JOgztfhlr0bu8TZlBbiemuZOY5IWNLTIce7yr5hzd/QxTsh2HPwKx9ha80VtjgGSnwzojlDoWWpT0ZhPgzGPz6E75OrLiCeezzLHBEF+WehmgFooY1dAbXOAXzKJAIUuIzsS+SD6VO+Qo7T4yQLFpx9cgSzORZsTt38RwHz34FKnyNF8OdGpuH3KH+/3HIObf9PpKAD2lb5k3QzU8TbQJS9Jxv4cBBthkmLUYMNKNm7Q1F2is+fFZt0q0fPnfnPQQA9PsrzLKBEtcYjlAl5PSVrG9NAko1EKTpUx11Y3cZIBVxkLqVKQSIGSaZrDglLol9FeUWXVJrANoniJWyFrnsUoB+ZbYudl3CL1XumyJMt2+aRI4ouJCCLhdL/NNUNdWRaQ2cOZXlwxqPBBdc0nwOiRC310nw0qk3g4FgzCHsfokexvEpLXLjMcGTxRkIACzCZbcADkZhbImXD2QHZLBANHmsps9xEybZiEeeBUcAneNwrztIR7dyKNDpu/WgZgMBH2HHFPuzyequ2QOH3Md+dNpYtdm/TbTmPH2nWAobpMLmrG09QIBdA3knaRzs477PuuMOEuvj2UuoYhvEIuh6KzLQSSZTdAOcEeL0Em/wgFqbHrHutu7PScnSlGk1W3QpkkgoLrvYFJKebOZ8epDygyywRDb5IKqrPGnglJAxiy/AOASy5z+LdjAAnzOC0hC1XAG1Q59DnxZCrGAECCeS7FHwYByC14ZQeEiAuHFQLjJNcpdz5+QD6ajAKlQcOBrOgp8ATrHBr6ZYLfOubxIbCkzXB9zeewgP+QHFKkGU6BDMmRyJR6yR0+YiAtEWWDaAW0bn2maVBLFkDiWGSRPjbtMIHaTSR8LsUHcp4duX1vqZLjNFE3vHDZ9425mvuUobqsUUYDFFAusMMqHvI58N7WO3PQcQSWwbjvImqHOfHom5okOZnJv3l7mk9qNdYaNPbNmHUrSvM6HXGUeJT4DLDAdARFqDig5FSSVLrrEpdtZkMfBT5rn9JkC+AUKibleZjBAUisujxPxjlmQxpJVKqLY4FqHtTmUsb5AsRYpbnINMcFlhCz7CVsLy7zD92PjaH5X2+YV4hvlPXr4B/xTftD54TO+i92YXFqSolXG2CQfhdAtZoBjiwQl8uXZZIHpkPMpYECm7ZIbaT1ukGWGea5xE7H9xWwU00sMGCkOtBYD3ryo+f1s8j3eYcq9ShtkWUpMhPRSGy81eFTkpmgyygq/4yDO1/l1nzE+5PUAvJbdEP2kl/D3eIeMjw+t7Rp35mVYYJ8e8u5dI19MhaOsM0wP++zRHTWF+SslucQ9+hz4l4TyoTNFZZJuLGAr0Nscq0uU0DjOPeSjbHPXZXbIBbO2jx2XAG2zzjAD3jSTZ66BvTVe50P+mD/1TcJQAJEnu/qb5GPTM+PJjWl/lhX6ofU5RYsFpsIeRM1oNUrFwpU8U7XboLOK73i4C1iNMskiU9yO8SvQTsDVDn1IwSBAUnYPJcohoZa8cpx7jGC+T2KatzA/vgEs7VUWFNpY2vNnTeoNhvgxb7PJQCgkTtYvJyXKRSpc5ZaTAZZjjs44eyNBJ2T1WcxTdsZN/E9au4jRA8fWLQItVt1lGojrBra5bPleZg9LPZafmOpfAbeDzvAT+22TPH/KH0djSRKxOhlucRWlmCqVdIML/ly0ojEBPNO8SNHkVeaihtacuEcPN7nGOPcQE7DgjYjRCL1oxaZZG9qTyosezMPLLJRWucQ9sliKrc2rZlqvhqExqIZjXCq1eAcziQd4nQ9R6vTX/ZXEWPWrjCH59QLTAayLeZtr7pzY26VYcRKHUuNtvmz7ztfAYtUfAgp+lPg+KVphGaJ6YJg11hLDzDFLiTLJTieUQ2UGKTarzgk0D9kkHU8mzrg1hxEZzP8uE2v3D/lB1CTZTp29RA+bCY1/U5NMskiibfskC4JomKrk4JfIb7lDgk4ywT7mR6y9u2y71hLDvFDdivkCiCbDAlPMdubIHexG06NCgeWEAcpzvMoC01xlPp6B56u7yJtfa9MQG2wy4KQbG6dS2qgxWUmY56ZwCAVXyHu+G/fz3f0yQFwBaf+Afxoe6nrOZpljk3zY3lg9YnvaAhUmmktRo1iNbrLPcq8Ba1JOSS1pe7xG4BxFqtxmKshK5hc4yB49jHTWY66TJ6fmOCkWhlkne/Ak9i6SXktSLXXOHt0BCsvuAOBe70sxvxlRoY8BVwI9GjKFw3hnOeaMHvZY7X0xGnuyimqR4pvlX2JMRsOS8myymTCF2V6i5xn2uV5izStNXVZsTW8eyofUrHEeht2Z9g1S/phP/CplSsG4l5/jQu8rVCgwl56NZrv5CLZC4ZmiSb3rbDQ5Q46esPtdY4DnOw9/rfnkKwH0npII02D5ROyQCwBIMefLjMcmR0WMyYEM+ZTMVIXJNkYBl2knEBOf9Nm6AfLtAmMSLDPOx1ynxoCzFLIR+KBOpiSrJwEI0R+NYWcg1g2uO3Bli+emA1czzPMRrzPGCuanZ3IMdfYlW9QGp+3fqDQiM5m1nwk4W2eYBaaQua48isBQZoV0AAEwtbDY7Utuliv/p2XGI/Ti5EupaUralSzINpxmbj7COkoFnOUX0fHToG45G2aWuQA55dekh0TS1hTNSAac5E7IRlcYQwlYFj2dQcbl6khYXPrxpCYZq2QP6wxTpBKb37Sfuzar2uSdpPULSBhjNRhlOcygd4ccf8RfBCNE8myNKwGAMsO+yjxFqsFCW2GUEdbj+/Wd6kQZi2ncjTVtUjGT18EomK4yH6CLFhOTsW5SoQBYsfU2P44u3rr7sshHRoxUAeFjGDPqFjMOFpncURJcjVtNpvJbvMNkeBCNsIZSn5RUpeNcZPJEV6MZ3yGQ2uTRu/+GZpzf7NehMyAlM7QtpFwIH0YnW82LZS5h/jdVfx5HsBj5e17E3UMG8eMsR6HeJMUC08E0UTdPkepgi9htpsL/RImxMt0WePY272KGxe1gOAyzBtjm5T/g/46SJS3V0TxKJJsxCf5AdPrk82Nm2h1OJmDPcCvYrpLoGDvBwLOHlMLDz9gieyjh9xo3KfGQt3gPydjWu15EyVF97MR6oo2JNVvucp0bAdy1SIXXlXVFqyjZfAgLhVhnONiISpSU6fs9xhljBbErbSM+6H5YlkQ9xW2UcHrFmRrZZj3Mmm2OLwTIOsVtnzvMu3LAgaPEifVKjSwBfmJlgLHVS5QjjbNEmeLBo9jQzTjQKBbxPDPcZjrGZk9nj3f4HreZQobnYs59j3eY5E74V/VtPXHQdooVBxpkgGwG2aNhd6F5pUMiitbUk0MGXCqijYPSvFUgi8WjjbY2zJqHxa7Z45iVL5uJEg9ZZjw2GWrqqMusNLIm5gW76X6g2mSpGan53kyaG7Ge5NjhnntBatMg64NuB1Te4KO4Z3aMDSRNBPj0RNPn6/r6jBcBA61VHxSwZNSTLDFrBHRHk1NznHkeNpwbZCzJHva5xUzYD1xy5lWSToSZqbYSs+xkPSk/Kds4HQelAAG0bHAhmKCSXlvd0keWRnTqdW9z7DDtCb5rDuoJ8K6RZ5VRqphXk5gR5gF6L+a+HvYDbDIPzVHknyam4TBrsVabHFIMOmtg18nwIa8jT2AFHp2U8a8y5u9PIna9GoTyIgQDNOeZiU3QEA8oU2LKG6sTLLknlNVXP+ZtRlmhSDWuxcmkSwE7eWqRdqymvoIe9jA/pA2G4vO1DuVdfbBDH+aRNOqNJtsQd0g4S90AjFXGGPC5T8crW5RZ5lhmnH/G32GcZa8jqyGL17Mtr2GlopvCpRlyuZO+xB/xOpLkKjVTzJ6bXGOV0SA3pGhG+FjS78wKY8jPtod9Cu5rN+pQooBKAT26FyOsxbVbZJKHlGj4fCwrD/lzCzgz1rCxA+WvKpmeQj326GGOWZa5RIFK7CPUPN6jh2v8jDRNpllgxVl6kmCqcbnDccCT9hR5apR4yCR33F7h2T3K1/Ulzzv5tJlVTSb2nWBjdSNt906gkyxHdryJDsdsJTH9xpvLFJtVsp161IrG8J2K3ej01l3f/1rK8R49JNqd8GvOscN6ejgIGqaQMnZriha/cI9nWXpoTzHJHd7go9gDLyUmghldSdv6rdp1vfc8FRcSg825G132sxp5ejp7JNqmpPsT/gyFrgEMdTa4snUfgBtcP7GHtjn0Esu0EwkWur4RzREpQsSU7ZBwObIpy35VeJEyg1G/yv+7RerEnrMce5062dj/an9WI892IkeWBtOd27GedEjQOnua63yMBcnY/ezp2Jyda1oTSfukEdafAcFu8Bot0iQ7HZrp4zASXfueg30eUkKMdu35tEeXjF8WFGA2FtofvLX7E/Jscu7BIVeZR7ZLUhdZQ/VhjLFy1/NRJ+kYBeSdtLiw4NORqE2ljMyxQ0/TkuFFmOlhPxofAoCFE4lsYtkBpvyoUGSrdNbn/GQ0vKyRtxbrCVijqUGWVUZ5a/cnFLd2WWM4lDUiQCiIS+QINa4SdJCP7Q45T0Q+ZjSL+axxYXVNNtYs2R5kvT4FC35VczFDPZjPYHutUVbI7Ld/rfnkK2LoJaK7XqbEmi+AKjokWRVAIo+TKsUotqvuKbLvXSa7YMlYmLSoJrG4akkUJM8Q68skZIUAXeS7JO8JFYw6XqH46iAJ9V1jmHseqjHLHKu+AS9RjthpsA7XJnkUfKDUSX2ede6PAxfkk2aySRu0Q2zwJu8juYMMysUysM8zf7cFprnnlH1NBGB+P5IbgwFB17gZIJV1xAdpkXKqvHUQJ1gKWZwKa/MnHMMkUwZmqaA0qaD5POkegT14Y6yGlFmTnyZDXQs95DL2V6f6bd516UOLjHdt9DBKqmSMHwPgsjQC7VZ3VV3KMiUGvcv/wNmHAiL62ImNsJIte9jjBtdD1rJDX8hUTybvmrfK7WC2iRG1Qy4ALgW4rDESD/3JRVjd95NMp7IXYAUqbPsEqEIwQYc1n3y3HSQvUkXpeYtMMupFqjq8klBedUmt0jblH1TiYXy+pN4nzbrlNVUnyzQLWDx9nhSteKamWKDPgWu7zxb7LSlc3qUZur+6V78NrzO+wEiOJ9C5dPDlM/fezMfrSHYLOFBlEhwthsVOJQA4gUwbDMVCojEzzBoZBx3GMYNasRnE1lDSk82IuQB4JaM5Tvdrs8gkw6yhECHbUK6Ta+4EM63lJHYlCe7TE4zmMVbYIRdy02HWGDr4nBtcR8laOq+GbzfEopa0VJLfNe+eyQNITA2x1ca8WaNmhliD6kC2SPE+bzLMOn/Cn/Ed3qdJKvw2gUjvNf/H1jNJ45rvgWh+3OQai1zxzV7VfTtW2SHHj/h+XFvbpFmxuJiefIaFLpsCMZc23RJAco0NLkQDSE0GSTa1URcAIKNyAYYViix1XSZ78CSKlaaDkcOscZ2Pqfq8CXAnMekg/cPYmJqXlzVPlJhWosxmf3c81+rkdrP3TPAGEKDYyQ3wLWZY73rR2SHGrtG/qcGnFHpdq2vcZJXR8DaRFMnA5+3olOtZqnrx+j1+FB11rckVX09UmAm4fNPHRMvnMgE1KZrM8gtvTF2JYxpmnSUuB1tdErIaA8GmUmPPDJIz8UyPsM5n7rvzdX4t8Tv0sB9zlMbtIpMOnBrAodpI0sEilWB9rjKKfIItZdSS5BpkAoSXhN/GaT2YCU0Hd8VcNz+0QeZ4lX1/3kZZ5YorA+Rvps66agJ56ezRHUxWzT0nlRNaU1XfbDIQAKIkc2UGGfDntkY+6lux21VPixGmmvBt3g2Glskj11Fq8DLjzvJqcYVFrnitM8x6WHnIB+0m104032xTJDNx+QfLukHXXA0apVYXfG0RM1W1j+rwOtmQ0QnUERApT+p5T+7tYOzCNgkWmeRD3oj7KE+pDklu8Bq/YJYGGZac1d0kxQpjFKlwg+u8ylyArJLPyZsvxw5zzKKUyWXG+QE/DIP1FUbpkOSP+IsAUhe5Ek1rNc1k7TAQa6sxSS9xD7B63nyxashTe4Mh5ph1WxNjohfcCkKsGKlletgnQZtZ5njTg1rku9sgS7cfy7TXomoaVyiGzHmJCa6wyBt8FCFUFnxhe5VjWW+OO75vE+NRtcJNrvk9NPuABO14juVHrfVP3rhiTJ3c9Gpdlcd1mmYwqhe5QtV//7fh1etN7WvcJNc0iyXtIRIOjr3D9yJsZpx7zHZs/P1R5y8Au/ZWkw8w1LQaMEPdfPnSWfYSPTGPqE4cYZ0yg6z0nw8bLDWx3k2/DQgYtGf4Oh+jAJk2iagFrnETsd3XGGaTAa5zgz16GGpu8N3Ouy4F7sR6K0BZ40EKLv1MqgGA6wd/TTlhIKDWYDBpeJYGtxPTLPe/yK8KLzqI/oYpAJp1XufDqF+1P1J45iVnNkq1Ve3txyxojvdhHSyM8g0+emZf1CBL6eDLqCGq7o2b7dR5YWPL2Ii+J93DWIk69zQtltPjDHRqDB18jljKmwkjPSXaTyl6g2uHHD2dvbBv0Twj9la62YoQNDBQcK7rVSdDZaKOlaTfxsqAN6AaDGDJwaWOgWOrjFLt7afYrPLZyHMnGmZmW/MRb5CgE+DYCmP8E/5hfA9Yffd8dTeaPpY4bmtvGgvPuMsES0yQ9YbmRtqA3omtT6OW1R1Ie90taxOFkMwx6zVfd+BF2sNnsKT6FqbWk3VDgnawIDPUqfb2s9J//oSVgvxwE+R29xlgkyJV/l75/00C8/mc4rZjI4YZZfyYVBcePzcpZO9jairzNQcCdL7SWQx7INUEWRrB2lU9XaXIv+q99GvNJ18JoPeQ51llFFF6T5pWirFQZtDLEwP2RA8Xki1AIeMa9x1yYWCoBVWSiApmvKlN6BgrDFBjhPVgkhWpRDKYea/tR8dSxcwUt0nQ8WSqDu/zJj2OSmdpcMkHsmRaCb8ZQDCjAN8AW3dLi7w2hmKagT1c2txLdqNNuSZ0DWowJoseHpkwirJ6lVucTMbNseMGn42QKou51iLFqHsPqQMqxLyD+YloA5RytpYG4XeduaNzlLRN5w6G0E9yJ0A/FQ7THHcqJN/TBC2GoHk4mLRrhvlAs+UXBdoUJgOwk7RG3lKr3sOUaapAYk3YkrvtYB52SjcWo2OWuYh378FCKCSZUUFqSaGtKKglS9FkdMkTKnVe0sur26Fu6R7mvafOlzYDYMxJsd80PlRYXmU+ukJl78g0SXHVTcdzbMeCaSyWTHQgJlmMQk4LqLy11C3eIccP+QHzzATYo+fUrkcqQGWTsbQdPC/6pqrCIGUGqDm7qh0Lopidvy2yijxbZGg8Q/veo4dO8nQwt97m3QBiSzykSpEFpuL50KbkpM/WJIuRCibGgRhUe/Q4+LUdY+B/x38cm1l1ghVyoLSot7ECrE6WDHUH8CooyVm+fhsMcYPXqJHnRvp6eK5oDAPR1QOCtfWaL4Y79HFh6xGVrudCsiOmwX/C/yrWhYwzVNTVt27bvVggteiBsULNCLoTGxKxj8U00MKep8abvP/MBqjlLYQqBZa5FAWk2Ndv8gFg8lSBPLoWCnBII/MIY6aJ8SqGlzVIzCNWaZYKJBILdoVRcpgPV9GZyBnv4uteKrhE4JQKdXVptdbWyFOkGiBbnQwbXeejuB/2GTCJsUYsldcSz9cZ4Xv8KO6fmWVb8+1D3gigEYzlLBaQXj3scYl7pGgyxUJcmRp5xlhFXjsdEiExE7P7F77R1nqhsKApFmL9v810rLOyatDanqDDCqPhXSMPXUl6duhjgyEKDggJoJWawCTv2bALkSylQCWYNAIqF5nkJtdI0eQNPgoQSGw/XWNjlldRoAfgxeA2awxT4NG/mQnnN/gl0Fj12eu+WVKDc4UxKhRDXi1PuzpZxlgJZpCk4KOskGOHN1ym9x3eD0lMjm0s1T4VTDv54qmDL2mQNd4aASbrGatjKZBqponRV6EYTPU9eqKZkaATEsolJmJeFpNWTN+Cz7/mOfcwlAGbPjcA3izNRI2VwDzgdrBwG5NOdSMGNRChQZK2Sz6fohUyXHtW0tGMU4CNpJSq28FA6kHKLDERMnexE+WttsgVlphglTFuco1Nl3mNugrA6pNUAJ5StPSwF/L8YxDUzOCttk1H83eCJf6UPwEIwPOkv7OaLjPcYpg1Rln1sTDAGsNRr+3RwxKXucm1YP2pjp7ydFyND8nHxPAwEHgT2fFIkqc5PEMjFDg5r5rkFyoFxojPtVNOQlDdp7AYsaWtoWFAdo08d13KpY1eAksiLlOKBvUex9IySWX36OECluqY8oavNqo5B3i72YsmnVLr1XgRKGxNukaAfGAqEamFtA/KYwFZqsmrFIP5qvFUpPoM218hSnbNC94I/O3w0PtdbjPLnK1v6RxDnQ3k1yoA+1XmKHktXWbQkk45VgmJxblHD9mDpwFwqFGSa+5EXSZrH73fbEnMyuUel2iQYZBygLgpmrEX72MnQOcGWZJ0wnZEyq1VRqNJtZSe4E7CCAbav1g4VDFYZ9oTlClFw1PHvkOOvS47DoUkDTU3wi84zyYKcFlhNGqDDHWW0+P0sI/sQhR+do2bBlLtPon9qYAYPVuq0bXfEutejeJLu5+y3vVi7MtEjCgnSjwa6qaeyPLvVD9BDGmBirJT6pBgLTFM6+yZeC7AWGsLXd9AfpnrDLOUsBBBSxk3i440LQq7WzTTxv4aY8VAvEQ2iE1ZGkgxp6b4ydrs22u/CBAqs3+IwjJVu59URVximX16eJ0PyXaMIFQ6+JIOCaZZYIgHbGChJt3scdB7mpPZCWoUZKizlJgIMsc8V8PfNU2TSn8vZp2R96q3GEQiSY572CNDHQWziRCkIDwRi8z7zqqtFUaRVYHUGwtMA8fEpB7MS3SUVZaY4F7vS6Ro8Xx5l63SWaquCpFUXWvTOPdC2faN6n0kIy9QYfTgUxK0g5xWoErf1hMPfxpnL9ETDRHtGU4mP6cwVd9NrgWG8697fSWA3u94F63pbA0wMEm+HeMsO9OgEw+/ZBAZ6qwzEsV5gja3PMWszCCbzgDSpGOA3T5iiimxUB0BmSBqIVJCoMx1ux0VtcLBvIfMY6fNDPOUKcWgkpa+ToYHvoEaZ5nr3IjzGPP0E8mNBVppAQMCaFnmUiRQKo12nqsxweTYYZTVOB/biG7G53Szx3VueK/aigDrONylQyLQfBUAmrCM7j8WwNEHvBlFojoD2+Se6YjYZ5nsSgNtlBWapN3AeJptX0CWGY+N3rGUrxhA5g59SPqZphleerYBv8yASzZ0nWrkjcXBcHjdFKkw4v5j8uF7g48CkBv1pLp5ZlCogxIRZXpslO4BzPPvEkrH0Zgd9o53ljrTLpfT/VMRJZrwyWAWA632saTb1fgd3Ud5cWncSfaoIkybgmkfG2sMBxOkSMXLtXSABjm22SHnk2qeDskotLSA6Dh07+z+GWhyk28Fo6hAFaX9XudjFK7Q8o7pSYamWISS7awxHFRldY/lhSNW5QzzASTu+jPzdX/Zc7nNOMvRCEjQ8VQtm88kSZRPkQDmLPVnxl2OHW4mrmE0fzNUteXBmg0Km5As66Hfyx1y/M/5vwHwQ37A+7xJhyQTLFGgGoCUvJpk7C+Wk1h3RfdkK1GOWWmTgaCIq0MmRpzAXZkSi901wCZ7vWdYZSxYFypML7MUALTM1BVSIFZTlUKMLXl/JP3ZGtjaZ4EplGYrxlkPFgKkebFCgXlmgh2tOWcP62hLfirTdRlPSz4PxKbWOsy2SVIaphXAdu/GWGWSxegOzzCPZbFXqTjDUAxKpRyK+TvBkoeKmNfRe7zFCmMUnLUkuwKNtdbZM5T8ejVJM+7NhVVGo/GkNUbm5TbukjGX1RgISeEe3SbLadajuJffqAoiAKWMf4f3KVF26YfNVWq+WHJaOtZLS3pvxNjXz+VXog7xGKv++ca++zFvR5NnksWwatghxwCb7l1WY51hvsP7Pl8aAPrcmqUYj7ISAISlBLe5xk3Mi8bY/QIOLnuhLI9FycGNWfuQWeaicP+Y6yxyhQE2UXiQWNkC2JVCaul1Frzy29DgkAVEk5QHnWwyx6usM0LWARHzmkmS8U2JxoTCKNQ4s4ZsK4B6JT6rzlRC7Q59LtNOPtP4s+bqpjN5m9EEk2eiknTlJ6uuvxicDbLhSWrSqHw8q+sMR2M4SSfkXgpMsHmsL5pvGhMGdqyHn9+Cg9Y1BphkkWGXYAngXmeEZcZRYu4iV1hgCgD5T0myqkRXPe9Z6uFtPcHdABTF7BWTS8mtH/I68jxLYAFNd7yRLn8g1fy3mQ6LlQ4Jn3/GQvLWxPx8Bb4KfJIvqzZvwy6xFWNNm12rve8xyio97DngsckCUywy6Y2CJCmavOaMIflr7mHhXjq2k80JMXjKlBhmPdQvAmhfZQ5jetg6uEcPq97M0pz7Ad/xhrGtw5PcCcaZNZQ6zHMVkRIEnomJM8pK/H+NPwXvyUtKe4wmqZDgGkNcjOXtkND+iO+zhyUHN50BKCZK2u/YMGsxh46zHE0yrQ95akxyB2OVHsuHdSzmCV71xva+17YPkV+z1AQ6XzW3xHwqnADn3+F7vxXNDYDT3pBqkaanYzVF+Kv5fhhMFvnvVv+aAWp83P8qO+S4nZhmvLMcoPdYZ4W93jPUyTDbmYtUz2baQsQu+Zqn5O8JlhjoGIA7zjJTLHCtc5P0iX2IjmePHgYpM+akEwEj8vcVKeZ1PmTVG2njneUAkUY666H0EhOq4ftSsNrsOjdCCTDMeiincuxEs7CTTMSzfJLlbHLlSuyvilS4xVU2nXwgIoaaN7d6v8EGQ0xxmwUPGbIatEmpWfba5gI7WEBHhnqws1d7X3SGojWWGmSiVkl3bO34V4WXjuvfTiXWjEUmoyZsJtJc5RbDzfUA0HRuHRLMduZoko6AUQtqrNAmQbn3OTokw4/0LhOOAVjwpHzX62S41rwZNmC6po8v2DgZP7jPTm83eWq8dfBXXGKZlfRo4A2aFw1gtvpkgyHmu36XZS4xzDof8cYzc8pfpP8oADNd97qz543RaFYTb/IBWerc8AC8DonwT77SWYxG1sjWl0Fk0pqmALlJFplh3pKzO3ux9xXRwWrtWxSphvVJsmMsw/zBVpAoNG7UQFPw1mGX3ZOr3MIY3a/yIW9QpvSMlY2k2oY7GOC30PUNPuBNxjvL0bQ89QSucotRVtjE7JOsBjaMQg2OojeO1xkhT40X+PzXmk9OHR39enG4v9aHnTp1Dtj93+7+zzg8NxCUccml1BEYYZ0M9WCoXWI5kPljeW0iNNsGMvX5AyzDxWNjSj1oY6yEzEeFk4AI+d/ps8UeWvbwhykWMI2/aefVZdODDgQIJaPkHNtMcBcZdF7lFje5Fgu7gRoZlD7aIYmCLcTSsoW626WXzxqT6zhr7u9TJ8sscyEvUPrkGiMM8QClI540GJ1jlpPeFZpAC1SQT8tNrj3TYRZTRpK1tNOxqxS4xs1IbdNDeJNrnsC7QpUic8xisuoVLNzimOotoMEeyP2YhBpkA0RUASpQWB1hmUcLEJN3iSQJukdiHq55p3vAC3KATQfw7EF8yARL7tu1Gd1kyS2SdEKuNs49qhR44ONZDA0xHNVpVmdbMmNtPNZ8gwlGgX6DD4Oht8FQSFuB6JRMsBQbdhWtirZeZjwAZ3U4VDRqETzpWzfJYkiWgBMbpwQP/Pvz1JjnKlWKvMn70fm/wyQ7WCLzA4bY93OW7HiTAT7idV7nIwfrh8KPQ/dbkpa3eRdFhqcfP+Lf7/0RQO/R0dHjf2MT0W/IS/Ph//rfh3QfdBLw9PQpEu0jDs5mONt+QitpAGmTNPm9xzS7TpNqPgVgL5Ph3G6Dx732ZycNT85a//0sT8hst2n0JTnbaHPqADrdsHP2HPk9v5SngYb9/PQRHJ45RT2ZobdR51QdWr2n+CL5Al0ckKBDb+sxu6lzPOI5jjjFIGWOOE2CDtlWg3oqw2memvfFdp2Vvhc5x2MOOYPSyHue7pFoP2U/lSV3UIcn0OmCxD40BpJkttv8su8yrzy5S6IKpODx83Z+zZ7TJFtPeXI2RddBi6PTcKoF7AEZaPadpn3aJP3Jp23ap5N01Vo0+06TaD8luQccARU4egla6dOk955S7TXz9u4vm3ZNuuDotF2PRPuIRAM2+3oZ2N1lv9eeoTNPD0lvPYU6kPdjeAI8B9td3fTt7cMetAqnSO0eQdKudzsNyT04ysKpug+EFBwlYTeTJbdZhzSwaefELhxdgKenINEEDoC2HSNamvegM2j/vt9rUtlcrU7HzwOgnspwrtqAp8A2djwD0Oqx42v3QPLQz+MA6AHOwIO+QfrZorvWtPu0A60BGye57TrVvj76W9skN4Gn0CydJl1+yvr5Fyi1y6T2juzznsLBhRRdX7bgNBwUUnRVW9AF7TOQbEKjJ8kTznLuyT6Jx0DCr8N5e8+ppzZOT7Vhvydt9+uJXT96gKb9zk5flu5WnWbKnoW+bfOg2+nLcoa2fe9p7Dq3YCdv708+Bk4BVaDPPvPzriIJOpzjsTXBGg0bc6fhoCfFE87S094jVT2CBjRGk2SqbVr9p3iSPEvXkwaJQ6Bs46Q2cI5Dkjz3ZIvEgd/DBDR7T9M4fZbeRv143DnZdrurmyecpftgk//z/xH4Gs6Hmgv/N7v/iC/PjQfoX6VA2zvfCrmQv5vY5w0HVBWWc5V5NrjAGCthV6C00iUmmOUX3OOS+9UYW/XkhmKRSV7nI6oUGPQa9QqLtElEE1MsDdWW1jTrY4Z55IuTosUNriM7E9l4vMvbwfYTCCXJl+rdBlnmmSFLnVFWnVVgzVpZaYgZLY9h1RHW/DTGr8z0dX26OVa5qEYDHERLs86wg9IV3uAj8s6gl+XDHLMe6rIdTd81hpFvko5f0jlJWVdO+NPplXdAve5NDzAg10KfNml4A14JwObqZTVVmUFnYlstqvq1jQW1Gbhp4UOjrAZzboEpLnEvroE2lB9znRJmLJ6myTLjTHGbW8zQIcGrzJGl4VIwY1gqUK9AhZt8ixzbzPKLaGBIcjzOclg1iF05znLUZgJABtgMpriOb5j1YCmPskqZQUZYZ5scC0yHtYAShRVEdFIyLDDjn/APybPJDLcAmOcq3+VdfsT3o1EksLqO+ToZC9E8WeVtXuIhO5h/olKUFfSiGnWF0Ti+kxt27Y12yEVyqRQuAgw1FiRX1v0YYiPY9OcfL/G/7/1P4Ws4F8LxfHh3t4/MuaTVwx0LCVtiIupo7QOvc4M6Gfo6O5QTpWD/X9m6T7m/38Ca5hIraWvaGRzYYI9ulKbaTKRj/2mWHPZ8TrHAcxv7POmH1a6XrAnYXGYuPcs4y7zPm+F1K2KLnik1eAVK59jhBte5xk1+Z+1TtkbOIq+4Ra7E3m2SRRaYQuFv+/QwySLyY3tr66cs978Yz7zG3SpjyKpL+2fNhZbgPRj+j5J5bpN7RkHXw16wt2Y7c9xJTLrP2Xo0K1YZje+0QIx8NLeLLtsUc6/ugBcQdfA8M7zOh9HEs2tgDYNr3AQ40XzaptisspnOx7GXKfG7G3fZGjoLwDt8n9f5MP5dAGKVYgQOtZyMoz2+WOhiXgsUM7uxVlh/SHVjntsNPuJ1/rj5Z8ylZ7nJNQu36dzkXOWQR6VuJ9ZYA2GIjSBcJegw25ljLWHPuQIQc7v7LPZeJsd2AFZS3ZwkDI101mkm0uzRzUtrX/JopJvnqvv8vPANjKm/+Qy2seJsUGE1wn00xux+WICLZMNFqnH8OXZY5EqoHAFKnTLNhO0B9Bl79DDWsfCVW8xEkwlggwsM8YA5ZrnCIiJV1ckgv9iT+BGYp26WBqsYcKpQOREKRDqST3OZErnHDxjtPYB/zXyY/P9xHvq1Xvv08NSpg+qALjHhC1aJHR/8WUe5dxzIsQk+FR3XLA3WGGaMVRa5wjVuUsNSX7RoiYmmLoUYY+oIahCInn9SmmQmw5usM4L5aAxyxeU1CTpYvP12yBlr5KNjMkDNi6kBZMBepYCkEfI2apMIyqmCPyoU3WtvIDpV9xin6JOTpJ4yxdUELI8QG0hDSG4w7gXWAtPBojHvk2R4n5nUos049wK8kxxXA0gPl4AnPfCSYVzlFm0STHIHmfLrAZKMw+55DRmFyiNBxY5o/irCJfkQo+8Sy9TJhu5chbU68Dp3FaBrjDDJnQBrNVEMYck5/wV/xN/hnwX4JzReSTI5timSIU+NRSbpYS9kEJIla7Gy8ZakxkBIZSyFKsM8M88UtPIblMREY3WFMRaYCln4AtNBa9dkIKaJ/H1mvdgUe9A612veYVogS/3/C9grM8gUt4MK/S5vc9UBQHXBROsdYxUZpIqFKnmKTDwHqNH2DgoY02KFUcZYDX9DAdlFKtxhknHuUaFIipZ3mUxGYGzJAmO/Ztfh3/rXj+FUFpK7QNJQmnNDDWhAqt2Ep9DdbEIa0l1P4TFwBs4dNuCU/wkkGtB1pkXXaQNKOIDM6bYBQ21IdCB//jFhQVIFTkMiB2xBqnBEqq9u4MMupJ4eMfLK57CFASeXID3TZLyxyqknGIDSA7SABpzbbhjYdNr+G9v6zACkOvaZG/7/C5BL1e37cxiw0QeZVhsO4BvZu3AGO+4mnEs1oALpvqewDV1nW7ALp9LH38UupC8+Jb3Rsu/sh/RhC55A+rmnBg6tAlm7FqduQHrgKUerUHhxG84CD+CoAad64NRFSLWP7JifwkBiFxrQTdPeO2D3gD07du5jwNII9PXswzqwA6kXj+zfkkAXJHuATTg1YH/SYz8/BeSo2+/12PUEuwanuuwaHW3CqYLdK/r93zeBNCRKdh260037WQ0SZ/19Rb83a3DUtvPjCZCH1OkjOy4H5I524VSv3Rc6cCHz0O5p28C8+iPIXjgi9Xwd7kNheNvG04GdRzr5FCowPPYF7D97jl0LLbv/T/0e1uzaJU/bvcnk2mS69g3k2vVrVrfzShaAQzsOmtCdadq4O/Tvzth14DLkVuuQgeRei67eFt7cJrdTh4Lfsz07f55Arqdu3+fnwFm/tr1wPlGx+9oF3LFj57Td+66eFl2Zlt0P7DnI/LINZyDFEamjxjF4ip1TvvT4+Hr1+v1ZhnTPU9KpOmxC6oWj+H62oS+1D6f3efJb4AP/iOdQSuj7vBlr2nU+jiaZAAWt8WbqkPWN1UA0dwVu7dEdGwUxHdYYJkWLhqs0prlNmVLIEcGK/arLvxTWJY81AURVCgG4AfFnymWISpmUT9E8M1x2xrEYKGJkHHvsJLnDJGICr7rE3mT1x+z6MVYjtXaBqajHZONhks0rALFBB2s+znM1aoZlLqH0ebHjBrxGU2NUNcex/0+VdUaQx5TAmmUusU+Pp6TbNbvNFD3sRzMdQOnbJ1k0um5ibFkTv8AiV5jkTjAWJU+WnFkb1WHWucF1r1lW2HbQSVJYu9bVaK4Cwa4Ru6SFha8ohOmkVYya32K9Wf3aCRa51BF1MvSxE415bWwlA1QAXZNUXI8OCdYYZsQZuWqo7pBjnGU+5nqMKZmjm7LBPKNqDLDj9gBAXNdZT6/ddJmyWMlSX5icdQ15RAlorJONJPYlJrjGTUZY5w6T0YRPO1NZ4z7hdZtSh4+Z9c2od7WPEOgCBPCoZ0yAg9h6QACpFYrs08OXDP7/N9H8W/L6FeO8zEOSdFhNjAaBQns9jR+FDmwkhuJ3Szxkr/cML1S3oAAr6VFnOte5xDJVCqEuSyQ6HNsajAZgnaBNixQ/H/oGsrBqkWInnQvARZJZJakCDjreC+ZcDyYtb/s+MUWL+yPn7TibZRbSU8wwH8zgKgUHldfZIcdVbrGHJZumaNJOHLNZFTQ2vvUZnf5EzGlVirEmjHTWmUvMMspKNIcEIFWxkC0pHk7u75YTtu9ecoabGPXa91cokKIZEkuRXCQzLlHGfPjbyPtwE/NWf7H6iE4hwQ/5HyMW6zj3uMc415o3yaYb3OA6BTIMPfmSCwfGSl3qf4kOCf7V0Ev8KX/CH/EXMU9Z4E7mGfmzGgxtBxfFXvuIN4LRdtLzWcpI29cmn3l2pTDp2n1KsVDhD/lLNhjiXO2QrZIVTnk26dl9wrXemwHmTbFAhwTnaockC8dstx1yJHo3mNy9y05vd+yn07TCTkzjXCEiG1xg4EKNga19vij0B2lm09Vnx7YzAyGxtX25Ac7JToedhEmWZ5mLxsUtZsJH3j4n6c9RORpbzUQq/l2/N8QGmwmTqKu5IW/8IhU+4g0mWWQTI7EtMUHL9/45dljmEh2SfH/rr1juf5EWaQaclW5qGGuaJDsdsokGuYNd0k2Y6/9GEOEOaWBF5d/8+koktyma7ldnwFGkmbDHEA+AY88FLaybDASIZ54S80hSs4OZIsowWHIuUb9VyBgjzy6k2H6SUlmyTTIAtQ95gxoDKLK4gxlgvsdbMZEoAEFIuICgcfcFUuKgJso1hkn7ww2G8Aqhn2GeCSxmWgXUmEtWm6SZZ4abXKPq/jEWKrESE3mFIu/xFpKX1pyMr0GjsAl5epjEqTs6AJIo6AEwT6R6SIfzuEGmP9yiv6pwVvEn75V1hmPyky+c/ONapIL+n/B7a4y91ShUJCfU2FAMtExYxYYEkNHzcaphJlB5vQouUZNkDqwrfZ0bpGkyz0x4G8mwssRD7jHOHU9krZMN02qTUoyFt428RiRvlRnqyTEEoNhtgbxghucD1HiVOcZZ5ho3A+y9zg0kObCFw4rg1/nQmX/3WGXMF9fueMDVBZ3nKvPMRDqx0t326Im0I/nZmRFyJe6XOmoa+3DcCZeMxGRLLcysvoqSoSoUggmpokDdoASdkJkJcJfnT8TY0+ALzn8V089v3KvxBfAllKtANxxtA8v2Mz4HdmB/DfgCeAg8guYyx8Cc5vEe6FRh+zMM+EhjQMWmf9Y2sAIdfXYdAzs2oPnIf/avMNDijH/mArCGgW8V6F5ucuqmf+Y94AHwqX9Pzb93F1s5HvnnpOw8mhX/zIfQuQ/7VWAf9r8A9qB2D+pl6Dywv/Or42M/2vLvcjCmtgnlL/y7Mv59G/Z9+1XorPl3n8XAxLNQ24HDR35+2OdtNuDoM39Pj4NZDT/vZdgv+2c3MfAI+/76ot+LL/17m35sVb/OO/49q7C/49d50+5V8xE07/p9K/t128XAvKcYAOQgGjt+Lk/hVNKPIQdsQedLOHpq1/dwGQ7vwuGCfW6nCc2an9uyHdfjPdhr+Ofm/TifHl/X5iOoNqCzbZ/Plz5WDuFwzcC89pFfn0/8cx7ZuZWrcPSln5ODppyGwz3/njKw4tcna9eFI/97GRjxz/0CDtftd+sPAVlCbvk1AgMj2369z0DtAOo1/3sDmg/8nnT8d5r2X/2Rf98eBpb1cPx8PIbmno3FozIcPsAAyS8wQHYVY9L599Q/92Oq+u8LXHziP3dWYgCNLT/mKhw5kK4xcXRo3882bO/5d572329iz1/N//uav9QI2sMCpgSyrTPi0rPUM++teWUgtcIe3dTJRA21wRBJ36Ao6RngLf4quvDT3AbwT9oMT7syJSoUmGGeZca5wWso6VCbI7GGcuxQPAHMySJg2z/H5O0G9tx1w++2r8MKhjEfpzSSv2a9FpKpuRhRklkuMBUepADyIpYFgIFZ28GS+JDXg2UiVpiC5aoU+Ig3wsPxGjd9g5tmkDLdmCpEElYpJDoOkq548zpLgzsnZJ0NshQ5DixTkrlSAa2h14xaXvdsnWHMTqJKmUFuMcMscwyxwSWX/50cC5LhKvlRTW81h1e8RipSieakApA2sJCne1xijtkA/nR/5dGk5rc2eusM0zgBWOg+LzAd0uIs9bAmkaRPqcImhD22QpA5vMDNa9xkitseorPPDPPB9BvAwoEkybdrUIgaVE1uNdsb3gTXXgTgCovRZFdw1kmJoyTPb/EeObZDJSSiRR0L3OjjOHlTz5qxxj72hn2DeWYo8RDZdixziU0nX0jlVKIcHroCCj/kDRaZJO/yW8mZH/Hcv6kp5zf6JYZX/mArmFdwrKARS+82U+zQZ0DUwafxbH6cuM4XhX5k4TPLHDl2+Mf8e8jeaoGpaIzIJ/uK24IYgGbBkKVOOY5LFkl5ah6JVeL58i5ViqSbrRhjHZLcZYJkx6TD9xi3e9208KIKBfbSPaE6us0UUwe/JE8tgne0t9ngAmHR0ftcMOV62GN86zPqXacpNm1fMcJ6kARmmvNsJmzeFNtUzQztj+WZvs4IGWftJjC//JNhkwK1xNQ2j83GCdZU2gHJYwLJWGeFid378V0lB2gfFbpRwJA+v8ygzSXpEtmm2ekMUGO99zwr/edZ6n8pLCNGDz7l+/wIk9dvogA4yVIVCNHDHulOM/ZuHRIkO51oGExxG4WJ5timePCIoc6Gr0mmwprd/ZfP4Ce/LFxkqGMe2Fe5xWEaFpjmL/gf2B7/7Gn6tp7EPnyBKcqU+KLQ777ELe4yQZEqGwzR6LYNh/auWvfLlEJ63yFBtlknQZv5xAy3+y/T09kL3ERgXsYbF8KGrJm1yabjQxuJoUhnl0WDgOkxVrnEMimaKATTgicKcY2Faeia9Rzs08N+kKCEt2wwRKlT5nU+BPDGS54ilVh/KxSC0brW//x/w+6jxjjLXN39JT27T2gnLARqp6uX7f6zZDB/b8mCf53XV8LQk8+R2FAKBTgpkxWraJ1hun2y3yFHhSKrjDLJHWRuqFhtsad+wA/jgtog6Q7GmAwS9+gJOvc25gnX4x1E86fYDk8PSTnln7fGMObT8QD54shXTPIH8x1ZosYAaWfRrTDKKCtRZA6xgczL5e8Hx93dFcaQIbcAP3mWSG5gflFFFJWsZKhRVlGy1ElvjSE2omjZoY9h1uL4VGTY4vqQNpaMZkBdCnmwNUkzyR2UWNnnC4u6t02nDxvwVovroQl10hPiFC8uhl6aZlBRF13GmacWIJ2KYhnwCiQEQqYwwhrbmHmwviNLgyqFYHNKAnDMiCwE0GcAo8lEwdB5i2Qf8LHZ5gIb8WeZEm0SzPFqPNDqegjklNR124E+6eU1QWwwRJN0mEobJTfLKmO+AJSRPDyi4hkJ1mmRCubhNUCJRSSPkBxbY01pcTJmViqSgjRWGGORSV71mHKxKtcY5gIbMQnKB88A6fwzDIMmaTbdX0tjxzpb5k8lo2cVnOsMs0mePi/WTgLQu19NP+E37pU4Df/RU8MZit/AAI8yVKqQScO5lzCAYxeyJajM+89T/t4UBiA8gaMujPF1GrgMzENlw99fhPv34eLL8HgNkknIZgzoyXTDmRIGUEwATTiah6096O+FU2eBv40BIV0Y0+l5YBaiuSdP3Qf+nibwbTsGbsKdDlwZtnMjBxT9fUMYwNSAQw82PpME+qFWhnwROO/fWbVzXQPO98KZQWyV+g4GeBz455aBSf/zvH/HA3hchXO/h4E9B1D3a3kqCfwOcNeuNW1ns01hgEzTQK31LRjrhy+O4PxFP9cCfF72vx/47/fD4UM4MwRrWzDSa59Rr0I7Ced6/VruAi/5dWsCV/0cm8Ar8Pin/t4+4Age16CnCxpPYb0JE98DfgWVL+0+Pd6HfK9fq7NAxb7nqGzH9MUWnDswLOvUuH1/Zcd+98wFuLMGY0nI6vfLQMl+d2kOJi7atVmrwsgr/m8l4K+gVoH8OQyccgnsUQ/sHdg51A8gk4TqAhRn/Z6DAWZtgsW4tAETExgY1gtchMqfG15WPITKLpzvset29ABOzXAM9tXscw+bcOac/e7jv4JzJTg8B2e64HEZMh040wYu+bX61L5/7RMonobs7/q91JhrweE+nJmGo0/hVMm+c20Dil2QPcKet4KPibPAy/67u34e9+0Qj5x1SdPHahMOD+DMc36fk8C4X58P7Pr+xzW+omrsN+s1yJcUeUKbBNPcDkuLtDeiJM+UN1mKFqPOZpdkRrKvPnZCzaE6Qs1O+XQJBDOJmknv1WiUdLFAhRXGHMZrO6hTdNBvkA7JSIatUOB93gzgUEFkJuOysIQsDf6MPwbge7wTLBOdl0K+JM0RS0nHXSPPAJsBIEmmWHGJcIY6FQpRW68x7InM6QCxJMESWCKfOhnji2Fi6dGlYDsUqTDHbKgTtKbf4HpsgrM0kM/mOsNUKDLLXNRFdhwDsYm1RuBxIrZ5eTaDqaPNs7zvBNKpLs9TY4rb8Rmqc+vhXZWOen+WORaYYoMh3ubdkPHqGlsz9dn0dPljXTpRc7dIBVHgWJ1h32WMt3o0fkuUeYfvobA8hY+Ns0yFIotMxvfKwzXtTLUqRe4xznd4HzAp7DjLNP34UrQYpEyfs9wM/N3jQ97APFdrAW6acuQekimu+P7Ggp8azwCpAgknWApGSQ97XONmBCKtM8z7vMlbvMd7vMXb/BiFacjqSGxaUwhN0YMlUJYp8RbvuZ1NLT5/mxzT3A6G6gCb4eEr4LxFmnG++Ipnot+M1xj36eE0rbMGeIx3lrmdmI6Gh4J3ZMmzxATtrrVgQgrsGOpssJIYC0DnTT7ghV9t8WRoi2aXNdsbZBlqbjCRXqJCETiW/5UpQYJgC4npt8QEkywaC7VkQEQnmQjwvO7qpnMPDpkauX1MPkj3MMVC7OumPBDxNW6w2vUS3b4vAZjiduxRsw47pmlRpUCKFlWK9PEZlXSB0sGX5NI7vMvbTLIIQPbgKbX0QOxDpQoa61RoJ8xuYbY5RyVdCM+8Jilern7GZMGSRuWZpj2vJOCyodpDPrd1Nh0EEpA03V4IXz1JJzV3gT1jTdIsc4lx7jHWWaGcKLGYnsRsmUYiqLDpBIwULcpdzwPEswVEMKftsfaDgbydyPFi+RGjpRUDfhPWgJLXq+aVka0v2es9Q6LdoZwoMcwa7/EWw71rrlocY5Y5swFIJKMxc6v3qp/LXaoU+UV6lqn0Quyp9ZJPvyzPJLMvJgzYM+JNg/d4K0hfpsocY49ucmkL7GthHrvbiVykz8uGqkEW+ah2HMMQ0UrWGG/yflx/rUPLXIr9qohOeWqksbCVfLqHea7SJM2Ye9zlqVHueh7zBa3HWjxAjZGOBaEocfeNzodsJ3I+gmyjo+ZFgg73TlgWDPp9r5Mh1Xsc1qkEcFmOFJtV9tI9nOHUrzWffCUlZD9bVJyqKA+FlKPbdTcDBkJ6CgTS3CDj9M2kJ5UYEm5U4DTXuEkHS6BSlyzpC6PolJscm5cLbJG0VtR7Ibb6HNHgrUOWYYgH9LBPlQKK1R7iQSz+QmDlSSCAyDqC5u9iHYpjJF9+HjvkXMbRzQ594dXWzV54nTXIhHeAwETRegXeZai7SMGmfTimsUu+LA33HSYDeQac8UYYM6rbe5V5PuBNzKB6IApVyaVVpFhYiPkMZGnwDt/nGjdJc5yKNMw6NzEDf8kwhxws02IAVigpjew1boRUQwEnkthYTpoVQuoi65rXyTLNApJmSMqhUAGlf2b8vKTDFwOyQ4IxVmiTYJtcsM/khadj14Mmuq1AWsll8jz0TYH5QmRoBJh6g9cAkIFzwidQux9plP4mXwpJjuQrIqPSPSwlcsWLIB2PPCHFLjAAztiW25gp6xS3g/Gg8WjH33AW53KM15MS4qRvHrTpUFd8jJXwB1RHcY5Z/pC/DJarusFAdAOXmOB57YC/5q/UACaPTWMAioMYxZ8TQFJlF4q94ARmzn3b/jyaN8AkcxbOTMGpB/Y79GJgQi8Uk9hMfgAXRzAJZrcBE0cHcG4EAw8uYBLA+w5GvQL5XY5ZTv8B/PPC78fmT0a+8ms52SUrUGED81P873X9FP4crpSAVzCArIPJYAUO7to5f/4zGLkIlOBo0S9QwX+nH47uGvg28oofUzfHgOIn/r6zDpD8zL7jcRXOddl5NzbgXBKOfma/UjkwsK2+C9kFA8zOjQBbztZ7Ao/vGoh2pgAXu+w4zoldd2D/nXely+EBNBbg3JSDksA5HcO3Ibvlx1uDwyoctiHrzKujJ3DqvjG4TrlkOpkEvgVHP7XzTibt3zLARD+wYIBtccauU/6uXdP6fQcqL9v9bDQh2wvn/xbUPoCtXei/b59ZfBmWfgUTV+FKAWrzkE1iYGCCYJadw+9T2u9R1QAwgJECPO5AvoMBWfdt7J26AOe8sZ/ttd8tnvX7/wT4h8B/Zse89isYmYKJpP970r/vZwbmHQLru3CxZPeYGqxswUWXzvIdvx8/g60qFPuBNbt3AGdG/H58x+/dvP/ZD5//Cs6XYLjfwV0IpmStAvnpY8D7VBJqn0L+won3J6D215C/DJVPoPhtG0NHP3WZ9MzxdTzV5f//Itz/KVyUSqrLz7cfmMOelaZds8M92BFD9Gv8+hm/x+/zSXi6lXiIUtMF0MlTTGz+fWe5qVGWpMOGb0jFbhNrPkHHqwTbUNzkmgNcyxSohHwyQYcFpsixzS1maLisV409A912vDlmtY8aytPcDvadJE8mR2sFcCGWk3z+BFju0c0qo8wy52FXk0yzEPVhnlqw47QRkNewAjl62I8NsFKstZGS7EibyhwWwKFOf4cksmsZYY26NxytblqLDVoP+yFXTtFCCadm22IhTCuMhVdg3esl1RTDrPFDfuChGx1k1l4nE8ETTd8sD7ER3n9qdgrQ1B7iWB5sAKrYi2K7DVLmXd4mQZsFphlmLe6DNlg5dtwT0eruATZRCB/ALd/MJWjzXd6N2l2gooCsEZoBYpnndj5CJKRQ0f1UYvwCU9H41PibY5Y8m0yyyA59sfEuMxi+zyfBNgHALbdXUSiUPBDTNPmI16lQ5A0+DL89SXMlYda1MBBUsmhbZA0gN0XRDa7zx/wpPezxh/xlgBpq2Bvz6yFLTAR4ICBdG9eCs/p0/KrBR3xvcN0Ze5JFT7DEB7zJcyFP+Hq/HvAi3+QuGwm3UEoUo8nQIMtsc44fpn8QwYsTCgzr1Olpm1/xatdLbCaM3DHCeihxHl80kNBYmhZ8cDs9FcD+JgMBXIgFpr215h4xuL7D+9xzv/lcwvaY855Ke52POewn5qwe9mJfPNCp8ePE21xhMdhNLdLkd3dZ7z1PhUKA0HUyyE/d/DXTsdf7cf8f8FrnBrWufpJ0+JPOn7GXsGez3Z+I4wWCjFJPZMkd7PLd5k/Y7O9maPdLqr39Pjfs86jQbfunzh71hEnQ5elnQTQGPtm120QM3Hd5O+bWHvbYTJscU/ZTbRJ002Td/TVTrnCScir15JB6VzbmgIfOFL/iz5X2VSJ2mCR5nh36Yg2w8Jp7QY5YZYx0qYWY3/fcez1FKzztAepdp2km0rQSqWiSyAZpkDKDlPmFv19epj3sk6HBOMtB1JL1WJa6s4Z3ggEqWyqx7kQ+mmguUU+bSmuc5ZCWA9QYYIxV7rkPfbc3BnRc2ifLg7AbY0wvM84w6xGgKr9b+QeKCdwixQy3WGWUyyxFqOU0CwB0kgb8DlBjk3w0/BrYuLjkQUF5D1wTSSZFE9kLnKsdslfoxDO3wVA04MQYVaJ639YTFvrNhu0e4xSo8NBxkw5Ko2+zk+5ztmALHBf4m15fGUXGZKKFWOxMBlt4huYJJlG0dJo2N7jOoKP0CdpkvIOniGKx+sRq0mQkhBSOgZVVRk8UAQZ6yGsOjr3QrKB4wJhHVFsCYy0GhphKWgQfelevQyK6bW1fTMsMuub6AQVHzsVKqlBgA4vIzlCnzCANshEuIO8XJfIsM86Ad1Z17PKkU0dag0TgU4VCmBBrMKrLm/UOnSY+S9/tZpWxuN4qXq5xM+QE8sMQU0zmlLPM8QYfkcb8ZvLUWGIiiqBFJqMLJGmJwFQt8K9xgxEvIlcYpUiVFKatX2SSVcbYwJJkpfffp4cCFdYYjgThd/heFLDyV1AHFwg5abcXmvILqZMJw2fBogLsFFeeoUE3xymLkgKLrp70YtWox9vBTlUghZiPDyn5NmPTwUoV58cydHVZ5RWoBVU+ORq7YKbEDbKMc49jeXAeyctTNOnzDdANrgdFucYAZUoBRCbocIEN9uimgJm9yrdR17NBljWGXRqyFwzNFqno8NlxmhRoljnKlCKSXBJ4jbk5ZqkxwD7dX8XU85v3yhgj6txlA6xoY2yfLqAEZ16D89+CMy/bz4oFDLx6AKe+CRWxke7b+0lj4NwFDPhowuMHBkzwTQyoeWBAYHULYwntEtJUmnDmbf/Zrh/HK8AH8O/O/TW/O3+X5+b3uTj/OS/Mb9H/kyexiZzcvUuezQhGud68Ycc14sf2M/+eCjxewBhxP4X6z+y8G/jxPzAgJF/CwMktA+GqWwT77NAlu9TsMx/vwq0N4MCvxwjwvzRA5+jnQD8UXwEWoN0x1uEeQMKYj/QbwEYv8H2/Dwdw7u86KNP2z2z6+9p+jXsxNmAXNJ5ArQmHv4L6mh33uW5/v3sTMkJISdcP/Jr32t/rG3Zsj12Kmi3Yn6cu2nlvOQOx0QT+kf1ecQoDtPrteA/XIDsFp16y363VHCyeteudn/Trih/LN50s5/h5/jLh0Vff8mMrwfmXwUnEdu17jSA6UrDrMDJk1+BoAQ4fEyAyM/b/j57Y3++XoX7Xr8E/JpiVI7M2zh6XofJTv1YO1p4fgpESvNAFvOzfn4eL3/LvuGzjk/sGzhZftn+v3XV2adqPp2TjjU/93r3s1wwDY08VnCVaJaTJ+TwB3q6twedVB2vTPi4ucsw23IKC3wfuG6OTs1D/S/vzaNdk5Ufu2TfWb8d05hXieadq1+po3s6FDpw5Czl5+32NX3m2XHo1zQZDIdVR7ZBzJhLANAvcZYJlxllj2Dv5hWD9y4/tJtfCwkMG1wOuHChRRomhHZIUHHzaIcerzDHBEkNscJVbsSEsUmGFUWrkWWE0VAPDrGGuelUsYMDSFcUUAGO8VNyepUWKO0xSoUCFQrAqUi5hNZmnhXQsO0ymDcIKY8wz401ZU3FIbiopZtprSaut6q5sMQDtBtfDs9jUAKPR/JVy5P/FD6ImtYTJh9GolPR3hnnf6GzGpsgaiI3YJF7iXtSVArbArEYeYunWkqj1scObfBASuFH3wtt3KEjpwErFrpPlZw5YSUJobM3jtOFh1uiQZJZfkKTDm7yPGeSXeOBgpUnpthnw0AhJey3ZOxNS1UnuAHCbaR+bgywzzoe8zg2uU6HgPo45l5LuO6umGmxGIBqwAkmG2GCKBYZZJ0Uz/LYHXHZVIx/qJIW3KNldHsTWGK/GuBfTb5rbFKhQocgESwHW5akx6MzOtsOqFjJjftUiUQiAS9NijldZYJo6Wa4yT4Ns+D0Z4LzpJkH2VOzRE9LJTfKsOcPSQMpcXAfZJWnDKvWWGITaAMsHPBeU7K/3SyC/5gsxhHPs8DvlT6mkC2SoM7z7eUjJd8jRTiTYTOepd51l25utRizJx75hPjFD6skhUuKIZbvIJMOso1RvMXU7JGmTQEFDKZrMbH1Ck1SADW9t/ZRN8txihjybfM8loau9LyIVXY8TU5qkuJm4xjVussw4K4zykBLFrV3men+XOhnGuUeCduyvtbfV/kIBiUWqbCQsXK9OltsJY9mN+r7MgvcG43wUHrjY9Qpr/c8bVNVrMu4e9uk52Oe5qskoE+1O4A1gHvLDrPFi+RG53X1eqn5Jjh3ueZr4dW4wwCbT3EZMVwVO2F6oj3VG3Eap5aSYAjl2KDNIvessHRLIj/J1PmLkRGPqmNl7hbwH6UjdJULLDLeY8u83q4gcChTpkIjn7iQR5uXqZyTaT2Ov/Atmg6Ah/CRLg7d5lwQdBlzhBsQ+dpN8eL5mqbPpCrHh3c9pkQ61mEmDNwPE2qOHpfQEQGAjmsMNs0lE00SNshwm9V9kEjCgdpY5wOZXNYbSNMPrzhj51pTLe1NonqtxHk3SNMgGftImwSZ5VhLGZi5QCZBP9gJmQ7GPLCfU3NtIDAWTtUCVLwpWVMtWaogNvvGr+/R1DPsaZo3Rg0/JUOfD/t+L+VeK0kGOw2PHWWaCJZQI3ev351/3+koAvSQdLzyqIXUF3KB1nWvc9AtaP1G0tIJhpwRWobMGMph0VjRb3SBbdhcCYAPiAp+UuYptNcw6+yceQmNu9VGhGKmhkhgCQY1PYwbLtz2OWaxBSQ8SdFxvX2eaBRpkSdPi+7wTmmqj4V4Io9M1hlFCT5Z6DER5qonCe1KyocleC6EmMGOYrUandIecFyzGzlIR1+1FwDjLFKnSJMX7zsjTee3Rw22m3TsvQ5Z6UPUtPETpPpmYiCWn1WI9SNk74DshvU3QcTNl69LpZ2KlmS9bhpTLFSThLft9VdGjgkSFhLqQDT/WNC3e582QcswzE4vcyU1ElkZ0NATOWZdxnzFW6GGPMWdxAuFRouMyFL0T41vG0Btc4B6W5FdwJqJ8UaxDauDtKKukacb4UYc744WTxmiHREilq77pEeiY9g2A2IMpWlQoxnfJ/06To3XAMpR4GKw5k8iUWGeEJWzSLVMK2Yn8L3rY989sxvHqeVPXxpifxnhUJ0ZsQEtjsy6Dzu+34qXppOaAVRXc1gmSUP8JwVY6Uh2bwNhpCQcFLvjP28AUBpx9igE9Cfi8CY0O8MDYSADnLjjQ46w2PvXP+KZ9zqH7kNUlpe3y98xhmtef+bF+Cs/95T4v/+QzzjyEl/7qS35n7lP6157Q9d5TA2bu2/mRNrDn8DGcy/v5CKjqgokCBmp0AXn4fAMD/boM1CpOEeDJmRGo3Xfwq22g2Xns9w8fY0DSBwZcfrFFsAGPdo3xeHjgrMGiXycBJiWMvSV58V+779m3gTIc1SD/+37dKn5uT+y/czMwMgLJBGT7jfF3psvYa2D3kLvAkL3nDHB4H+oLBjxVDgwUPFfA2FlJjn3UcGvDB852e9ePcQQDlX5lx55MwON5P/YuyL/kwNOBsfk4AN72n/XaNUomjK3JpH+WWHVDGLjXS8iU6Ti4nIbiiH//Vbt+Rw/gVN7YjMgbEGcfFuy9F/+eXRsSfi26fRx12Z/nRqD4LbtXOr+jAzu3bL+9Z2v3+BjBflbfMjCz8QR4DLXbkP+23ycFUCzafTp86Mfn1/V8L5zpt987lP+ky7+57MfaPP66zFkfE2LCjkD+ov3eKTEGCzYWwO+XMyKzvS4TfuCSbgVytO1ntI1ZearXxm7tU4ySeY6v/SvBU+oeSjDFbYZZj4Appe2pnstS5zJLXGU+PJCVgqoNH1hdKeaA6sCKN5BWGKVDknWG4/2qFwweG4kGq2S7bRLM8gt2yDHGKiV3kaoxwCxzwUYqUGGJCaoUWWEMyTUtACDzDKtugFq8R+yHEmWucovX+YgJllhgikWusO1A5CxzpGkxz0xIwcTqUw1zg9diM1mgEgy7V5lD4R4pmlxi2ZvlDcSwVgCcsR+3WWQyamiBUWJOFtw4XuEcN7iOVC2WWl+PzVidDFWKXOKeX+9tVrw5u8YIaZqsMsr7fAcLkzMAVJ5tJkMbjo3oDLdYYoJ1hsl489BqJatZtamyGtTq47d4jyx1FrxeT9BhgwukaDlfwhiZHRJcYZFxvz4lHvIGHyE5llIV07T48e7bASKKoaNmuEBWgcOjrHiD3Rg2y4wH81Cb1Rw7vM+byDNLYJzq/XVGGPfggj16mOROfKca7k3SrDHCDn0UqTDBEm/yPhnqTLFAkSpjrFJ0eXDjhOWNrGiyToJQoJ78pb7Luw5Fn9wPWe36gCFmmEc+XoOUA7xd5lJ4D8o6aI8eprlNkQrLzo7RRvYm18JuSID257zw38Js9N/9a5AvQwk16Iw2gCpFHhfPIJufP+v9HwEGZIwf3CfdtBlB++QNhlhljIeUGG/aWG6R4mbX7zG5excgmhojrCOvNzCigJ5bgRgrjFHafcRa//MhlVxigrX+50nSibGl8MUVRsMrUcC+PCNbpCP4ME+NO/0XAx+oUuAD3uQGr9EhQd/Wk5gbxYBV0IPGizwxpVYTM3uSRfr8HPfoDuC9xgD3GGff9163uEq96yy/LFxkmXFup6cAXF7bDkb1p6XnKfc+x08Kv0eNAbYxqabwhRQtilQpHjxC1lrPbewH+0x+fM+v7QZ4M80CD1GAoTWExjorQabIUqenaXt0gayS3WepM9A59gnUXk0Am9R08oEXO1j+b1uFs7TOniHbqUfCao4dLnmwk8aRsAylz6uZUnc+n1mSmaxf7Ppqr/k4grHohI1McocmqWhILHOJC1uP/HqbAq9KEaV9v7z2WeAhSgk2CwMLgmqQZd9JRiUeBgDcJBXrglkjmHJzlVFuMRNNrRnmo87Q/lgAbhKTxa65t572tNrfT7CEKdNGqZMJJr3dy6azv3tC3VQnC2loJwyDaZGm3PU864zEOVYp+hrRF3XKxfLnyJ5B5JnBg389Ow++IkDvOR4FS0sPfJnBYBoJCFBcr5hkSQd8xG4Sg0m+HUm/cEKTlSKaoO1I7AxVikh6sMyl8BhoYEmvLVJ0+8VUkpmSo1YYDeqjKPC2MN5GMkHzdzMJruSsGsg22Eei27rIJHPM0o0lnq0zHCy3IlVHYA1M2XQ/ErGrilRjgpZBo0ApMCRfgQMqZCsU2CEXJtDS/wtoNOTcfBk0gXyfd0JbLkYXWJfaqNMjrDAWfgfH4FuRjUAZDHiSKe4GQ/FZ6larUHzAkN+nAu/xVjyIY6ww7gWgGGrmJdBkjWEkFWiSCoNmFSOSF8srseLya4WWZB0Y1T0SdX2YNRK0ozswxAYFKlS9E9bDXoRV6HdPdo9VxKpoB2N+7jjwXHUg7KQhsQHDmSh8tp39ucpodLk1XlXsSPIhvz953bVIBVipv/ewF5KOJunwrVF3tod9Ljl1ep8e90Epu+zHZA56npqkA8gdYxWlzYEB6qOsMOJ+PCUv6CzFqhEFqjZR6moAjHhH/XkvKL72rzRQMkCiOAs46+jwIcfeYA+AooE+j5UA+gS45UwsB8voQO1HGKOubN5pRwcwUYLzrwBrkBFJosslnVX/LDBQ4S5w30CvWsXZSC9h3mgOgITxf9Xeyy4GQt7GwLB5jAkl4O+bUFmzczpsG+uQhMtau/zYyn5ea4Sk8gzmZUcV8+gTMOPsrf5el1Ru2HEW/xaw7/LKD4CHcO6if7772J3Kw/lZB37+FjBoAODjRfu8z//SgCGxw+pbxoTkp/b3Uy8RbDZ+34/5VxjQ2AWMmMfa46r73w05i23X2HIc+HGUoN/vheSoI0MGCh4d2PXhFfv8ozZQMAD2sOnHlvDrsMZxcMKBjZFzvRgANOLf122fUxTjcY1jELjXWHvVLY7TiDsYMNxtx8qQ/17ZmZ67mMT1oo8Ff8+pvJ0HYEBpCR5/4LLUbmMu8nP7ee2n5hPJOYJdyF2/jpfh80/sfTQN2KrM+3XJOwvuFf+eIeCJgX1n+k0Ky0VjRrIGn69xzDYt2e+fSXMcHIN5HdJrP8vO+PmcBNmcITly0aTvjScund2yz6j/FfZ8dGHPrzzzRuy613dP3M+E/16vX+uk37uOf68nLpN20NfZgByTm762r+eohveqpWXWg/ndg3kclz3hUgx/dfHl46sNm5rF2iQZ2DTAHLMhA5zhFgrfEgNPaZ9jrDgrbCQ2c/LkNdnoOgCyEbnJNSoUg8Fyz5NUjRlQYdFtOWaZC9BGPncf8gaSld3jEgNsRu1aoUCdDNe4CVjdIY9o2ZwIaFxnBPn6pmhxnY+R7GmE9WBoGIDTTYWiexKlkYegLDwUoDGIhVVI0WCNQ7MseZfvxjVTqIXsNbTpUpNujBVmuBWNYgMOqywwzR7dmJyvwDwz5JypV6bENW6GmmWMVZPROTB70s9umHXe5zusMMYkd6hQCCmb9gLjLLPIJO/zHTYZCHXOIpOIRSkLkIrvFTYZ4P/Cf8i+A5RgTJVxlsNIfZQVrvXeRCmNe/Q4K64Qm9smKT7metSPCraQRFX7jB1yzDNDh2RY/MjvOU+NDObzeIursSfQfwor2yQfAJ1tPtt8h/ejTh5xH0JJsFvO9JStz7ADKhb6Z2DxCOtMsETVx7h57o3wf+I/YoMh36/Znkf2Li3SDLFBHzuMOnCYY4eM14BA1MuyNlK9reb+IpO8x1tY2I15jz3Ho69mAvoNe40crMfmv0GWucRs1Nh7iR5e3vgsmuJ9WABDraufZjoVTCYgAOIhNqins8jvcYccO73djG99xigr1MkEv1IsvB4sEEcKpHGWDTQ+e5oqxSA+mLdlMkgGdp/r8b1ip2Y7dYoHj0h3mhHqIqKH2Lra1xSosol5hg50ajzofy6aEhnqfMQb1MjHcQjEGmad/MEWkoxrPwzGkNqhjzKDJOgwzHo8G2UGyXgjwBROxtKVJ6GAsQWmQopfJ8MCU8xwC1PtGZh+ccOAl1pXv9sZJLD/dULGXKXA1shZwwqatsZJuilQ51zNWJT6r6v6lALVGAdFl/52SLCSGAt27L7vQRUOokAGsZaLnUr8vrz6thPmSycwTx788gXMUmeF0bA4sz1yJ2yrBGLu0BdS4Q0uRKhLwT1uf8APbT3vGG4i/7s0LZb6X2J2918y2VwkT43R3c+ccTfOFyP93mArscoYVQpMssgoq3Sz5163kvBv+9qwyQjrrDIWctiTpKZr3ERKyRXGfHw3eLP5Pgk6lLa2wlP+pB9gjbz55FGiSsFXgVFGWHdbh/UgNG37d9l4yUYt8fjCGR5iuQg75ALHUbKumLkKN6pQ5LPSc4jJP8QDrnOD+10v8eu8vhJAb4dep/IrHdMG5Bt8iIIVRGcfYZ1lxplxdp6QbPM5s4fsI14HjCEl7xIBSiqYBLzIryNDnRluIRox2A2qO8IroElFxwCbgVBLr60HSsBYjh1e50N62GfTfcjqZJ5JbQNC6qAbJ5mxuoOSDqdpUfGBMserMTGZ/KTgyLPFyisaW8WeyU+sC12h4J0D82tbYwSZHh8fW8F9+3qCEqwUImnxAVa9iwxWkExyJwqCDI0A4Ew2bQBQk7QbTdt1l3+JJmrRT2eZY8BlHKOsuuddXxRWGuQAd5hknhl/qIt+/0xnL0BOxQ+YrLZINdiPSe/Aq2urDuBtzENikckIW9FDvEOOVcaO/QYwfxkA0ZLFUmw53btEORgGKlpPdqnStLjg56778YAhBxKTXHApsgxYRQ9WWq02FhobSj6+xzhNl2AbBXs+Ck2Nvbp3obVp0jkKaNQ1T/k1UkfJkn4qLHMpFvs8NW4zFd0cdaSMHdEXLL9RVpGP0Q45Nt2vUOwBSXkGPDDkt+L1PFCA7GXC2+vwlrGQas6a+3wNPv8pMOISUgf1lsocB1A4yy0kgh2TZm7tOqDg0sN8Eeg1b7hsPwaIuCwSMdkO4HzB2F2PJWv9AJP6LmDA3X0MeFAKrkCKB/6ny2g5gNp/bmDSmbTLSNeMLXZfwNIuBojo5WykQr9JUDmHgSFt/x5M0nrqrAcUXLTgA8AAIWdyBZAjgG/NrgF598r7BHgIZy4aY/DUZQP/zqQ5Bi0hAM/aA5OL1ip+zcrG9CPBM+DWUdmBxgt+bwp+by47KDVkn50v+ndJ0itAMGmBIGKhnfJrljlrQKvXknadh/xc0z5e2pi8ds7/8+Tho5+fAJaax+Pm8X2oLRp4VHnXgLOQE6c59pqrHI+fyq8whqAA3rv2/4+UxNrv79910LjfmIhnurBxtgFfdE7Ix3WuZ/1cFszTjgd+jdvOJgX41GW0+JjIY8DjBf//BWDKWXwjBsAFOL5l4z5k0mCekRvmO0iXH7fuB/6zDYKJeeZl80jkm4S/ZLttLMT7n/i1SPvvfQIM+pgXy7HkkmP3aKQLG0sVB3xfAV/SyBcdnD2A1jER5mv7UoNH3skd3zictLmoOmCmxqD5Fn036oMFprjikj4xNCZZZIoFxljhGjfDw1Xrd59v1GRN8Rf8UWw0Wr65Fai4yijzXKVDwjcDnZCm1h1AaZLmbd51llQqms8t0tSwdM8VxhhgkyUm+D4/4nU+dHDI/PbaJBjAUiQHqDHlTTV5TMtDuEDFjzHJuG/eNhiKBFGlSyr8QgwuKRRUt5jnrwF7xhgcZYKlaLRJPlygijyb1XwUY1AN8o94nQ2GDIRwiXSTVDSHR1gn7zJdsWfEbDmp+BATs+FMnjpZvsePPLxunTSt8P9d5pIDhhVKPESBJ/IbU/iYapw9urnODcyruxJ1cJlB5EHYcN8uSa/BFAcngyPA9iXj3GPK5VjLXMK8B/sCbtunhwWXkpv3Vg8fcz3qqGWv2eRZl6bJAJveBO4LFqLVbA02GWCJCeSPWKYUKpESD7nJNR5gicb7yHZlwAPITOY67CCdZIjaWDZdytUgEwCk1DmXWGaa2xF+NuC+UWpirzHCSelshSK3maZDIkL40jQDyMmxw3VuxHdIcWOp1T3BaARcpZPlA77z1UxAv2GvB11D4VEsv+lRVih1bK/7aMgYkOET1u7wQnmLKgrtKQWgts4w8qm3a/4xV5mnRp61/ud56HJrm8MGWGTSU2P7gulUJ0vb58Lb6am453k2mWnOx/8XOKbP03hP0KGdSLDQ9Q1WEmNBJtA+6WL1cwpUQn6+yihgTZGNxFDsLcWeGmUlggLqZHibHzsZwpopIpCIHJPBZO9FKoyxSp5Nqm53tenA4BAPSHY6wT6dPfhFAILaFy8zTokyfR3ZKhnwYvjEPi9vfMZB4TQjnXVfh0YYpMwvSxe5xVVmuEWpU/Yk6QEKVOgkn/VdFfD0WeE5/hl/GGFNW0NW/KT8ORpqbgSzVYQihUvKH1O+f20HaQEqiWKk0uqa3mUCeaibrusCd5nw5lojAHv7/mawKIU7jHniqljmpkbMkG4qP2DIr+GYYSOJMUZYp0U6gm+2ybHYe5mV9Ch7dLPR+zzjLDPMmtsO2B58mXGmWKCGpaYbM/R2+J4mncjykNIJSw4rrFrOkSy6z2iaVsjMlXeQPTD58Xa/Xe8aeUZZCZJVE/NhFANS6tBLHlqkMKIdctxlggZZhg8+QwrKwu4WK4kxB3BrpHwtU/BUljrjHQMctT6Ms0xp9xEK6Bro1FxZuf9rzSdfCaD3Ip+FHFC07joZlNTVIcE4y1SxaGz5LYgFZ4ukAX+i6S5zKQAYfeYIazTIRGe3h/2Y3PQwC3iQz17VtexKkhpmPWi9KVrM8otY0G1w72Na/2VfoMxRe8AntQFqTLPgBaVRytXB0H86JgGa1jUw5NskvlUmWeQq8w4yJh2QOmb0CTyrYyaN8pcDA69mmCdB22jbjljn2QzDUfNrybjk+WcORI6xyBV/SC0uXkw3097bQ66XAVbWqRFopwcV8InCrs+a70g/di+Xj7kePhoPXCQq1F/JwdY9snQv0WDBQiTmuRoFtboImmBHWSFFK7T2A+47AEZRtzGXDNagzFZ3MFNKA4LNZWSOWdY8mccWlz7SmOeN5LJTLCAvvWXGuc20j0f529i97WOHNYaDni3JbMsnmknuUKBKgnZ0zVSctU4U85PcoYNp/QHy1HidD2NSlXxhmPV4xhre7ZQcRwWnUpEkEdHiLPPwITbc2lThIWb03SIV3dc6WT7mOotM+vmkqFJggiV/jtv+nBaR2bKKfr162OOzEwzPr/XrC8wjTpLXAwMNMmlj52RfgRf6ob8LuG8AV6MJlKEollbBWVy7x0mxj2vGNnrccUmrgCMweei3MBBkyz6XLuCB+/iJWVR2eeFP7bgYwZhbFzAQosRxwuwD4M8xYO4D/9mv7HvzDrIdCbRyZt3Fi/D4R/55Xe6z5hLEw4d2rme6gO/691Yx37M2ZEfMj42z9vejXQLEu/UTDGATIHcfA0le9vMtW9Lv40WO2Y1dfu5n7dwrnjablfw1b95zewfuM+eA5ZlB/440xs7y639KoQ4jhB8beft9uu346rsY+CZ5b9OuWa1mbEEUvvHYzu/MIJwTWHTfpbUO5vES5L/pnzXnxyTfuLSHp6TtmNZ+SsigzxUMOMpftntSLPn9cE86xNBUWETJpbYJP74E1D8x77tT/r7KnMulDyD7LY7lzBqvCbgyxbHf41n362s7KLmPAZXdNm4yZw2APXXZ76M8I3t9XDgDsiLw8b776JVs/HzuAPj9+8chGd4jhBFj9u05IH7kY+hQILkf+2P5SW6dGFMz5ud3rnQcVhLsR5c8gx+fS5nvz0HWgzHqW35dXXLc6HDstVgigOD6Nhw85bfipY2J/n+JMubtlbENFnMh52mToEiF/wX/V29urYWUaIK74Z0koETKA9URkkHmHcBS49Lek0bBBaq7zDfXWP9K69OmWRI38wLbRl43LdIUqIZFyjDrztJLscmA+5gVA3RSHTOA+Q5r7bdNpbEPF5hmnRFn3CXJU6NBhopv5OVpVuKhr+PG4C9SoU0izr2F+Q4OUvb12jZnGd8gSRon6Q8YI1GyyASWorvCGE3SwQy8yq3wQZphno+57n7MjWjQgnlazzJHHztsMoB59VbJ0OBD3kChbxWKzDFLD3u8y3djXFgtnfQ6xMBSbfple6LGe8abrW0STLLowSupsE056UEstYdtaTd4lblokIqlo3GQcYWCvOPMm/EhV1iM+iZBOyRYslKRLLiHfaZYcEufwWi+q2FcpYCkq5IeCwj5Hu9ErZlx4NPUFoMuPTRgUuy3MoNBhJA31bYzCBeYYpRVFPJXoMooq1Gf3uSa19V2n6UY6WbPjelHucH1AMD1bE5zmyoFAy1I+rVNBzlDe0GNfUnS5Fc9zBolHjLBUkg+f4d/9d/SbPTf7esd/jZFl0fqmu7Qx+3ENPuYikfe2w8psZSeYKt0Nlhikga2SDPFQkhVP+BNenafhMpshz5GWfVmugU/rDPMcnqcHNuU/P4mMLusyeaitwsMDF5ljJvpa7xQ3aJ08CWyEwBCfSaGkSS2WQeeOiR8bmzxLwuXAzABnMxzCzAm51hzNeboDGZfpfG/xAQDHdsXlhmk0vUcCpLRHLDKGMMHn4U1QdY90Aeo0cM+5nW+w0pijA5JFphmqetygPdiTk+yaKBXYogMjdiP9bFDutPkl0MXmU/PBNtNzYkd+nx9yrCX6Akbpw4J1hLDgUOkfV8lQspbvIeSdrWnA9hkwNJ9t7aQbdK7fDfmgabDfn3skGfTmxTZAFhnuBVgXplBBxiPgX7z+7d9XakpJq/Yfw23OagHiaZO1j1pzYtVvm9L/S8xzBo3ucYylwKQrTrZyCwcaixyhX3Hg6Sy65Dkfd5k3+cL2QFMc9uaF50yPR2bu18sP3KSScb34rfDy1RWWcdZAhYeo7U12zH57JgzVT/s/z1ucN1trLYZZZUd+pjidijKTLVZDdXoDLf4xsZ9pllgmDUPE7XQmGXG+bOuv+f+gTXKvc9Fk8RqDPPaV52Soc5GYijUnCXKvFz9jGpvP8mOqfnqiSzzzJANidXf/PpKAL3PeQEZ9urhTHJMvUzQ4YGDEPKCu8008voQQ0kySAPg7sXvl3hIh0SkqxSoMoiFZGiRk0eK6JkyDP1T/iTCFCStAAPKtFA1Md8MUdmBYBepk6vCJkGHUVax9Kl0FBpWEBgYpsGg9KFNBxkN2LxHmiYdkiGvHWDTKfH23qwj0kooS9FihvkAcApUue2x1qK2q4AUs0zFj1hcIz7hvsGHMcHknOUmnwwVTqLIS08vsEghHW0S/DF/hnmodEeho+/OU2Oce8jT8KHf84eUAsxVgVljABlcy9T6EsuMsUofFq6Qoc4vmOWkD946w1G4676om610VnkwDLPm/jDpCLswVxWTVytEI4V5NABM+0MuGYMAYNuMDMbEpQ6FzklUaVGD/5C/ZIyVkGwLlJQXxhirAIg9KtmzyXLHUHqtIuy1aN5ixru5tlEweY51VeUlocQdMePmmKVKMajbMh3P0gipiPx2dE/ML2iUKyySY4dNB2nVxS9SIU2LGnkH0IvRTZeXihmNp+n5NbsO/7a/9vaJEAhKGAC0ayDBOfeLO1VyP7MknJk99jbLv0QAZKdcMgjApAMXu1DsMkCQGnDRQTP5pLlX2NFd98xzDLX+M3tfdsYAxVMuCeWifS8X/DgLwKAf9+9j7KIpzHfsm/73koEjRwp3aAPfdkZiwhlIVfvsqgCOA0s0PSPQ7j8H/ooIG+AV++4xebEpgKBsn3Uee29914/1gABVjp7Ye84VzEcw2InYeR59asecSTuII+mls6lqEAnCtB0A6mAg2l07hi0BQv0YkNc5vjfnLmCy07sexrFxfG9IEwDWKZcI0wZedsbZgQOx9+0an5skwKDDn8HhJ368SjZOw+cLNh7OXXBAbMsxKfdJPHRm5OEGLB5gYFnCAE+mLFCFD+yzHt/3613AfOoq9nnZER+rCfPR6+/1MSfWZ82YiIePYa1q7MO1BR+rZY6DSQoO/jYNFBRrMdvv11lgF35tysD/EwOTzzoIKoDMmYBgzwBNA5DbSlj2NGWS9h39zto7VQBesufscI1g7B16WM1hFQPt2jZ2zgwac5MSnL/on/vz4+8+/NiPp2lgZRICZM36c/j5z8yr8lBjK21/Hj2AehWy3dD3PF/7l6R4ZZfIKslUBtwt0qw4MJTxTYnktsYqGghWhgy91bQ0cKQYvnkmn7XNlH5WZpArLDLqTcxr3ETeXcf+TC0sPGowrC8kRRvxmmuHPmrkSdEK2dcqY7G5FcAmmwp56knqqERDsdWXmGCOWZa5FCDNNW6GLFZNy3tcCpDP5D7bDLMWm7Y62fAyk9QRzGdOwF+RCpIE9zl7703e5w0+pE2COtlgDQyzHgyVBO2w5six4wyhQTbJM81CMBaOfYUs4MzCJIohb7NzbD4DnimIY5lLFKnwNu8ir6x1hqlSiPpOnolmBWJpkObfmw4mhxgwPexxm+n4HsDtQ9LhV7jJQLBW5G+s0A4gguPaJJhj1mXMFkLxGjcYY4Ui1fD/E+FgljnMlmXbq0sDJ9U8bjnLw76rj3WGmeJ2jFepgmaYxxKhy4yySoUis/yCf8g/oeQst3GWmfINsNWgw05GyHKLmRh7eTb5mOvc5Fvk2PYx0u3v33Orn9FnVBwKtOthPxRSstjZoycIAAo+kRRYIKVAXEm9B5xooeNO+rXQ/ShQ5Xdcvvl1f13jJsWOqWEklR9gk+nO7diXfaN8nxw7fu8L4f1ZJ8vrfAQQUmxZEgyzzk5vN6VOmbtMIDWZAnxGMC97yVNzB7t0SIYkfj5tYybXtPmh4oDtQe9p6l1nkW9dhSIpmoz6c6ikbMB9S411q8a/ZKY2bruZYT6e6xJlUk+eMrl7FwWAmH3WAApdXEpMMMQGM9yKn5tPqBEmJlhiuesifZiazvZrA8iGq0OCW8yEBN+YbibNfZ0Pn9mrb7q3eZommx79OOiSiqSTcgCGmhawo6aBfOs2yZM/sO7gS9UvA7fIsxmqqYGmSR60RhQPHiEGLxzbH93uv0yJcijcEnTiWEZ3Pwtbr9LBl0w2bf+9yqjPU4WYy9K+Xum/Ra7EnmwpPWE+oh0LRFxl1FV2Nd7h+wABwHV8VbjHOKOsxPcrzXyYNQeia1TdUkLYxiBlxrn3jJR4lrnwdE/RZIc+utkz38bEMPWENT8+Kz0XzPAsdUY66wyzzhgrpGkySJkR1gMbaSbSvk8dYClhwJ/t45MMsxYyWc3HRcwr8k3eZ5XRYG0reKtCgaMuI9Wkmy2mWWCeq9FsmmDJG10p9h1E1VjP0uDC1iNuM4WSnBVWlKBDqVnms8JzxuROpAPTsYbNmV9rPvlKAL00h+zR45NTLZhFAEXvZAo02nC2lhaNlktMTaJqVAijTDajk6vuruSSmkDUkTKj4gLHnmDmI/caN5hljh726GDJtPZgJ8mxHd4oObYdRa3S58WnWFACcGSUrGNM0kFJtgLNBtiMIAJJZwWmKVBhjBWXn5rv3bLHNguEk0+f/PtUpKoI0iJ5wWmlKmokHU7QDgmL4pXV1ZBRpYoYW/TXggq8yigy9F1iIiYiMKmMqM4CzJQyA/g1tg6c0neWuQQQIG+drDPvWvSx4x1KS/4apByAj3zvxCAr8ZApFrwjaClRMqzUeFh3484EHa5yixRNBqiFT4SMYQUyrXpqbIu0p+GuB/CmCV4yjA2GuOEMNQOyHgbKLrNgBYKAdZ7e4y1u8BrdDgYvMcGmS3ckuRUjT4VoyQnFkqCr+zbiBrNghacWEjvvEeaYZYc+T64rk2Mb84ysMcdsAOlDPGCZcQYpM8w6fexwg9cQt1T0+qyz9fQdYgwYtd3YpZvkWWGMFfcxONll1qviYKzNEdYh/2149bwAh1sW8BBMpiLwigNSGxx7oSU4ZnvJrN892egy37Ez54AanJqEyoLLaiFCHbYUUoH/3j6c+vtw5nv22afOmoTwVBIDM+SRluc4SOAuxnD6hGM2GBg77wkBdrFr53HmqvurHfh77rvsMGmpoUc1O5dMGj530OaiS0kvvuxMpgOXt25Y4u3RgjPC1qB+YKBN3VlWxSk7nOyUHUetjAV6/NRBRQWByEft4Pi/UxcJSeu5yxgguAFrn8DSr44DTXHw6NSkH/OIXZdDSWnPYcy2hINiYuwNGUhT33JwqObHIuaXe8bdX8OAsxLU5xy8TRIMQnYx8KgJ/F0DzM6cA/4AA+U8nfhc2r9DYRlJuOrndyYNZ6aAWQOmfrfX70/HQEW27Bp8/okxJs8V3AevbNeu0iGCOx67h9/egX2upNDsm8z4qG0g2chFA8/OYNdHv0fB7nelate8OOKAlnvpnXLgWjLXw6aPQZcNH953eXgBA/gO7Lzru86Ic4ZqUh52NY5v5mX/XYWj3LffPzPo5zcD+Wn7+ZmuE+y9/9Ku1bluTMLr4w0cOP4W3Jfn5ad2TUeGOH61bSycn7Hn9LynHT++b/LdU1MGqDMAPMfX/tUiTd5ZEJfdBmOd4WDGyWdtg6Fn/I0Exqh2E6t8kzzrDEctZ+umrZmSrFYocs+bmTl2uMMk9xgn6U0zgXhjrEQHXQbxOiax0dRAFlAnrx+FqclnrEY+gI4ZblHiYbDd5cP7Hm9hNiUN9/FLxbF3HLRSgIgawHlqbp3SjczeV13Iqw2qAK8ipuGWykLy1k1vtknKucgka4yEl+ECU6FkEeNvkUnWGeE2JsMzH0DzQetjhwpFlAp8DM6NRy1htjDW1BTgdzKETmw5+fOdZH+UKEc4nsK5xFDUuLjgQIVYhHv0RGCJXas85if8MDazA2xG2Jiul2RfquVlY2MyxH2k7JDnkzWp0yj4boIlRlhnlFWUwglW15cpeU1nGzywjWHLWYR6PgpUKFLlTd5HljEAG1ygRj5ScetkQ6a7SZ4W6WBZpmhFSJx5+O1HUz7p1/TYA7wvnpUhNuhmL4gUqsdNStvkivvvmaxzOwDfOtlIhh5iI0BSnYsUHgYoGLNLY+uOSw1tfNr1rv42TIaYciazf8h0c4GJzhIy699O5CjsGivrcfEMsm3SnKVxL/B20Jvp8phTw6Jn9zD2ISIWAIgNKoBtsesVByMaz6iMdtI58r5vekiJ2+kpNhgKC6EOCUoHX5J2AKjqAJ9sjKRCMzCkiDzHdshFWIH2akOdDTZ6n6fRfSb2PALupTYDCwwpdirk2eTixuexf801d545tw0u8EN+gLxBFbQ425nz9O4sb/IBI940kbWWsby3KTPICqMMUmaSO2RpGAiTSLDMeDxLifZTsjRCBizSxypj1Lr6mWeGR4VulMDeIh0BReW0kVLaDsTWu86itGeb+6uutMpE40jerkoRX+89z135qp814GeHHP/D6n+FhU7dY5RVJlii4koqzRNKjh2gxigr1BignbA9W4YGM87E1twhlnLJySGj7kO76jZlYlvK2gsctKaKyE9LTISqT+sQ4N58OabdOkOYxS1mAn9J0mEA857LNXcoJ4xJV6HIh7yBZNfybpRXvPxyqxRCwmthGzZ2JNG9zRT3GKdNglfdC3eMFd7iPcDqj3K/bbjKaZP6jvlc/zbvMnXwS2Sh0MZ8L0sHX8baBURq+JLLn6UoWEnb82Osf2teCs84RH40f/PrKwrFqFJwfwuFBqizpg7iKCu+EGTYJO8PjDH6JlhinGV26IsuneSOY6wEeCKvuYaz48Qy08XaoQ+Tjjajk6oEThV6Ak8UUiGz2fd4iw0U4FCkxHHCqYxbwWSmJgEdY8C4HSEhlUyz4f1mSTsqTvHU5LtHTxQh+nvrBNihLoHo+GLpCfjr+HU1qcOxsbEVnX0xSSkCXADhDV5jnqvhxSIvjWoUX3bPVDylabHsXi1Np3jXsdQb8wU06bIBeAPRdZcx8RUWucIikyzGYqL72/aiuYElGgnoXXNwSOllluLbzRgrDFALaY06gzm2qbs0RYVCju3wkxFAl8BScdecUizKuwBS+cppIRLILCmy/HO0sApoveASjVnmWGfE+zqbwfYTOCavIJkwp2kGKzFF0ztEBoK2fARr4jKPunSIl+EYJE3RZIrbSJO/znB4MNqEZh4DMgZVKE2dDNvOxqyRD9NaXasFpkLKYuB3gTXfSFl37WFQne1ZbUZXEWxSz7EdGzR5uvxWvOoGHGQE5nlyLGtu0F/CQIbL/u9rGEBQNtbS0QOOveLAGGdVePxzKA4BUw6GdAO/stCAw8f+eZ4eyiLmjefpnOcKGLvMJY/ywqObY58yDz0IVmE/x4w0gS9imZXss2t3/RgXnZG1ayEdp0rALWORnZ+xtzyuEoBW1pmBZ/zvpy57UqgHaWTcm++LA56VO64BG35tL9rxHN23gI7ap36sn9hnP67B/apf60VnDjpw9rhmwRbDXQ4ISbrsgOAhx8cCJ77/p8Cce65pOFcNYMr2Ousrj7Ecdb2d4XZxyt5+9MCvlSfLUuY4kGTe7i/vupwZ+86amHSP3Svwrv3/WhMD+9L2XY93sbFWtmtzRmDTOU999aTa81MGZC1tGFhXc3ZnMeH3FvfKK/h3SEJ8AGwZK+5UEgPK0nDqApwfsc8/dxn4+/5dl+1aHi6YxPhU3gHpNYzlWHYwLelj4cLxvThz0f0hxU68bKzQ7BCWlFvGwkhmbCwcPiSAv8c/8vAJB1w5cPl10cD2x/+Zy7PPGmB7xmXYhxv2O8mEXePaf2nfy4wzLNcskEYy8sYTwkePLfOBzMoH0c/paNck9Q3sO6gC23xF1dhv1utF75wXqVixS5l5ZrjtJuSb3uVWSIDW15w3/E7KLa8yHxuOCkWucyM2kjJSVw0qYGmce94UNIBoCWN8aI2XV5FY+pIAGrhTjw004ADIA67zcTDIxGiSFNRqvZ047jIlZpnzZl4qQJUSZV7nI8oMevO0FkwEhWHJysWAo7sMsREd/mHWWXP/NTEUEg5Iiu2h+lubGJ3/trM3lCQsDy0ZeI9zjzf4kIRv6vfp8YarSTHLWHjFJZcfS0Islcayg3/asK0yRo4duh08VFjX27z7TPNfLDt973EoSsJhsVI0GPfoCcuPNC2+z4+ins/ScPmxKUq0EZfUbIEpv34jvMP3meNVGn4flQjbIRkbcku2tbryfb5DmUHaDgybBcwqHRIBFh6rjJa9Xk/GBtc8r4dDibPBEPu+D5BcVkQDed8JYBarrkIxGuKqITU+552NZFZAGdI0ucQ9ai4lN3OVTOx/dC8tQfl6AEhqGqtOFnNV53yVea6wyB4mfrM92TEDaIkJlrn0TP2dosk+PXHsPexFKuY8V7/Kaeg35nWBdRrdZ0i0n7KdyJGlQZ4ad5lgo/d58myynBgPMsFJ9VHe9xaX3MM7RcuZYgWSHZsHl/tfREmZe/RQ2toKUNrkk+sxx666jZEl5KZjr2MWA/a8Ki25Rp7pzm0usUwneTqOrUCFe4yTbdZjfClBNMc2fZ0dXihvBSgFxFy1krDGyFpiGCBUQ5Lb6znao4eVhLGhDwqnA1gEgqm3SZ5VRunB5LbybltgiqXERDQr0h0j5Iw7U6vg/pw97Ac5ZaBZi5CZ0tYW2YMnAfpVKNI6e4aTtlxqUsh3XGCO9rILztA6nkvaHhhxHL44ygoNV2PZMRkAuOmNEjG2zd98k8vOaC0nSqykR9ngAl8U+p25fNxISTsBZIBNABa5EvvaBianvcc4y1zCfEsNuDSGmd3T7hPNMikdl7mEbB4KVPhG9X6s3ylaDB18HnvLMVbj5zo24TLWiEv7PNTH0MHnXOcGspeqk+WFjS2KVNhL9yAvuzRNJrlDnQwf8QY9B/uOB+zE3neKBdbctKPUKceeWuxNyYSH2KB48OgZBSIY1jPEBu/zpmNIbVqkmTz4hD3Mn3Wu69W41otcYY5ZNrrOu3XcJiv95+M7tXcXq91SbU2GvcZwNG6GWePTMNX+m19fSQnZ8sW87kDBIpPMc5USD0NOKr10kSqvcQOl50hbb0a3lshzx9PDRNGXjNNYdq1nAAQLKDDwTQub5BkbXOCCy3nVubLQhjaSUw54IaVEm9yJxabEwygmzUPAFvgaFv7QJMVbvBcDKUs9itZu9gLZ1iIvc8QOiQhzkOnuz7hGh0SY9XZ7V3OV0ejqgQ2yogNgNtGa4aO8T3QvlP5rbmgt18HveB9tMxYKFXgmk6xwwR9KgYJiktl92LZJzqn3Q2yEiXLWSwUZFRsde907J8eJakWqbHsBoesMBCOxSDU6NAKQBqh5hHgqwjA+5noUlH3sRNdBPniafGSaPM8Me/RE+q51bdPevXyIhXUUYvJT513F+abLbcT01MKnboUZlrYD0JrkDq/zYXzXeBi9ZmOi2qOHd/h+gK6KG0/R4gqLVChGwXaLq0jCPcpKFHraiGhzknLZS9G9hQpYevEdZwlkaXgMeZ9P6OvRwVcRrMCWAWqUGaRFmns+0a8xwj/j77gPSplRLIJ9gJrLTDLeuTMfw2HWKLjPpJ7Pr/2rCWw5oHCX40CCXYwhJ3CozTE7qwaUbeN/ahIDq7o8SMDDKc4VLHiCon/Hexjw9raDNc4G4qx9FpcxQGnk+JjowgAnyW1fxuSub8GT/4n/f4GOI/7ftzGW2Lcx2e0DDDTrcpaZJ5fStuPr7/Xz7ffvOGeAY4CKYq7tQuU+Bgqt+edMGQPrVK8xncaUfnrB3vO4ZgBM9n8KPLTjOZW0sI3+XqjdJsJEzhXg4tv++R0DyI4+NR/Bc3k7t+yQB1t4WIWCD0YK8PmcHcMZhVNcPPGeXQeQnnDsjVZy5phSZx/6PW568EXBjuVU8vh7cOluXbLaJxggh4OiHWPD5RXQUfH72rTrMCJGn8uTz1308eGyXQp+3846kFU28JMqMAQTQ3ZdznXb9/QrTbftYNUFGBYj1FNx1/ya0GtglUAw2gTLETCG2wM4/20DOvcO/Pzcf7HugHVDdiEC+vD7U+PYhzB94pps+X3X/aja7zbk19h2j74Lfo3vG+PyVMk+88yUHc+5C+bRd9gmGJyHnj58ysfbFx3/fAGLbexZ8Geq0sGeIR9XW2LdSu7uQGCxAC+IfXvg12mTr/3rpFF1nWyoDAQcjLHq3lxVFpgiTdPXJ9vsClQQSGVMvnuR7K6m3hrDpGiRoc4qo1znBkr7U2P22G4lEzWUius5ZkN2KUWJgMEmKTbJu0+UqUqWGXfDcUsVHfN01Bw7vMP3mOfqM8FvUgvI60ebvg5JLnkhn/PacY0RqhTIs8l3eN+ZhA8Aq582GIoNsppoKZpUKDLCustt17yWaHIbY9kUqfAP+Kche1JAyAR3WWbcm3A7UR/bMRjAJg84AY418txlwlNSC9H0TtHiNW4g1qNsaRSEoeTMFqlgxOla3OQa7/A9xlhhjeFgAErqm/LNl0AiWdFcdYmq+YzZuUkyqLpbgW15NqOuylLnOjfcb8vqHQXcWQiasehMKr0ZjELJuFRvzvFq2PrUycReR6DuydReEQPE6tvB/O4qFGj7vkDyZDGgRDLIYamNeQ+e26MnwtEUGjfMGte4SYUiChhJ0A4A0hhVLf+sUdYZZpx7sUG1P4sBCqluU0M+73JxICTHBapMscBVblFyWaCkoBnqzPEqQHy3fP2AYPUUfhsmQyDLE7YTOTrJ07xYfUS2U2d493MuO4tKTYy6gzzXd/8FsnxScxzgubV9crumaEpgwRQi0ki9VOIh2/3mvyc1VIomPZ29GJ9qsivcRh5h5rtdDeZyhSL1RJbS7iN20rkAKF6sPmKSRZrpFNd9X6+5IkuDtcQwX5asMB1llcmDT+iQYJlLMT8YSaYR4ZRgYSl1MtxmCgW6ZKhzI21KqRRNdtK5aL4MscF1bvA6H0UjQJ6cagbcZopKosi2z/E3uM46I+R297nFVZ/HV+nafRrz/nL/i5S7ng8ApoMlz8pvPMc2k9zhHuOOC9Qc+El5WE0bhT/d4DpNUlQp8hBjmu15s6RIlUssB3NQgLr2+/fc4xSIsJMUzZivzEuuGGOgb+sJxWY1AkbA5LdicS8zTk9nL+TJwlmKzlce515gJB0SlHYfIe/Vsa3P+T7vMMscZQYZY5XPCs+FxHmVUZa7rDjTvFwnG2NMFmkZJ8hMd4yQcpNr7HT1oiR4O7YMnw49H0QmMLxp05lusqc4u2tz6sDWfpBdcrsG0vawT6Jt1+CF8lawDWXvNcw6O129SCZ8kijWs/uEWeZ4/pNdf37rlLueZ4Aa5g05yCpjLDLJDPP8Hf4SJQnrWRaJqUSZCZYodex+q0kmsPfq7i8B28v/uhYEXwmg1yHBvoNaaVqRnnWLqw6R5Z6hoAPBDhNIdJNrfMgb4U8h01Zj1W3GQJMUc4FpZGR4UnusIkESDnUfle6l362TCVaSCpAqRY+rno/zWmKCRSYDIS8zyAOGgskmBpUAkYx7wSjdTCERorwq2ajtXVYZlMrjRIynAQcwh9gIWYCCIbS4NrwwlMRhxAG0e4w7JT+F+deYZNhCGQxcGXEfFgFkYJRbod/qEJpRbhuZ2sqTBeC/4I/C9PNkgWm+IkXWGeY2UxSpRJc2zyYz3Aop7BITJOnwBh9RohypNg2ykd61wlgsZqJ0i45tx10PgNc6kYMBBhsTzjhpKVoMUsY8+Eai27nKaHTHwSYh87ewtLksdb+2bQpUuMbNYKrZ+y1sRRLnFmYQbN4tJnle80JeXWx5/11lPjoYuq6aEASIyt9hmoXYbAgIlzm4JrFr3AwwUt24NK3oZoPRjcEKVUlzxRbVWL7KrZCwjLo0SV2KyyzRIRlUYiBAQZO4pJ+ZcFukGWc5PBO+9i8HLM6MmPy0pvTYJMfJryf8wD6/T7Dxskrl/BkGFH3LPktm+j1dcPjnsFR1IKWNgYbfxoAPyW+7gQNY8lCB8H87ABY94OBvwafffp6ffOv3+D+8/I94p+tv89OZV/mvZ19ha+YsP5n5PT77/nP88pWL/LT0Kj955ff457O/D2/794iZ1E8kzRaH4NR37FjxMILaT43xVN+yc64sYMCOyzBJu0zzA7tOZxzwyorBqGCEhAGeZ9L2vqNP/ToVnOGXhK2Oy17n7PjqP/XjSxir8VTSQx3SGHjUbSzDU3ngU3j8M/+3Epx/GbLftt/PF/3epe2/+oaBdEfyduuy9x02/X407RjrLoV+od9+roCTowcEsFtfg+wsEVwiIKzyifkN7knWfDLddeYE+07S5LT/voCj+1iIScU++0zaQS7/HbDPqW7ZWD3l4KgvB3bO8/4z92asVVyBWjAAq7rlsuALnva7a8y32n8C/PwY7Mv2m4fkY12vpgNwaTj392Htvn1vxb0EGTKw8PEDk97Wq+YpGL6EC3b/Hi/6eNpwZmDRrudh2z5DrNV+H4+H/szlnWVXHHHWrMu/swoucZ/Ffvx+/tivl+7Phv3/c2Cg4WPzHTw/iz3/Yl1+au87bPp3KqDkNDS+4Gv/+mu3qhBAI4aVzNfFqFrxxmXba0lJPfMuySzxMDySywzyDt+LGkVr7RAb/D/4h4yyygCbrPi6foPXOKmKKPHQ/XMXjjfOnsopoKaEhUoIJBJDSTVR3hvVBlRmyLgdTBrzu53hltuvdALYucqtYDFoA/UGHwZ7YZi1UD+kaAUwVKEY1hjy+THFQdY3ffkI1rJaKcEC08GKlMRMbJJh1lhnmA95Ixh9o6wgz+MsjfCvPsmskNpkiA23QKlGs1P+1wNskqHBbaaQCfrrfHQCKLWQiWHWg6Whe/gmH/A275KgwzQLbJIPZpuAQdm5SHrd9IaumtsCtASg7pDz0IpWNFDHWIkmu7Hg0sGEUc1tQWkXfIwOhA+fvPnsc1diQ5ZjO0z5lehcocgy42y6P6MAZdVMdTJc46YxU9igz+voZcZZO8EKlddxkzRpmtxzSxyFt2gM2Ia5zzfo257cbHXzALVgfR3vp6oUqcR+523eDVYNHMvdpZQxBuwAwy79G/FmsOR0ZQYDbNl0y5gNLrCPKWVkli+FkZivSTpcDM+Qr/erRYp1RriZvsZnheeoJ7Ls9HZjwRLWzRJIXqXITm93MDnLlFhigoeU+GzkOc40QV7gCgM0RuxoAOY1BoLtBuYP+aPE92OuNe+1MeRzKjDqZECP9gkJOmz0Pk+GOmMdk0j+88LvY+nJ2SCdWGrsJRaYir2G5P/lrudjj25SxZyHHNj+R8oq2/8as1Xkl32fwxUEkWvuOJhlz6aCODPUQ5F2nRvhDT7mjQ9jSe/zKnPskKPW28tbvBdsqSddNvZ1LBtccJXhahAkjN3V9GckycdcZ5Y5cuw4G7gSeIiaWVMsxP1SeOI6I/Z8NAWEW7ND1g/23KQCdLNsgIHAAEQysfdkYg+813uGjfRQAF4CSxVMWabkQSGWVH2lYz58wwef8c3qLxlnOdapDknKvc+RoG1gbP+L0XQDa1gJgFQDyAgypkxUgMckixSokt/dJUuDF8uPSNGikjBG8tv8mNzBLgOdGgtMk6aJJQRfcEBwnEWuxFppxBWba++XzrPCGJX+XmSRtdd7lommqT87SasrHpW6kYUHEOvCAlMM7X4ZjRKw5uFS70Uy1Pnyld5nAmeapJja/SSaeMUT1lnHc7LZVnU7Q89IQU3O1Q4Z7yw74c2aQhrjwwefGaGr8+vtlb8SQG/fuzpCOE3+mQ6UvkmKq8yzQy78U+SNp06rCpw6WcZYiYU2x7bpvEmQ8Y6taKdLTPAeb1HFYupHWUFx93lqwbiyjp0BTNvkwgvsEsuMssqao9zqSAnQqbuxLdgDbmltaUZYp8YA5qtxKW4oEOwkAUE97AcTTVR6RdULJGuT4Bo3GaQcfihKnLIFMBkDRAaMKkgEPMn/ZYEpf9iti5h2iWWWugMr9+hhLxaHFSxqXCCYupIKlFARImr++yfi5V9ljlFW41hF5RWTUYUQEECuSVDz3vnrY4KlkFIvMcEC0ySxhJyTCPcOuUhfU3dvlTEqFNxk14Ctq8wzQI0MjSh4RPc3hpulzA6x4T4xw0HBzbHDdQd3bfwUAxhre8dLHUXJJ4BIkdKCo5dMhsUETdMKYNDSmJvRFTbgcjQKU3XUdK7jHh6zyhhNUuEJWCfDBhfcEeeYyWCmuebbYs/kvm9C1hhiI+QgYlpKAlyl4N0ZS2ezMTWNQmvGvDhWga/umtKO9fyXKEca0SKTXvRv8VvxeoSBXUk4P+RJl2cJ8Kv211D7J/7eXSdebWDeYe4nxsv+71Wo/CUhJZSsc7jLvfM6GDD1c0wOehkYMRDk6OeW0ln/xCWEeeCcAWvnS8Cfw0sLX/IH1X/Bf7j7n/J3dv8rvr32C/6dTz6hf+MJf1D+F7y49ohvfHKfb3/yC/7gk3/Bm1t/DR/7sc1gwNACFqAx4uf5ALjv4NV9kwSfuuAy21lPZi1yLGlNO7PMwzTODDrwUvNAgy0CJCu+7FLUvPvtyYPQAdHhXpNqcg4oGDhYX7NAiJqATU9wZcSOP/9Nv95TcO5t4O9y7Ml330E7T2E93AJ+ZQDVY2BFx+b378wf2PFV7gMX3S8tDafesr+fGbI/t3adFXjZAaVP/DxKfh08JHqs30G4i5h34R8QYCHuQ8gkVJTo+sD+/cjZn7UKrP0EAzidVZf0a1aZs7Tj4sv+ey5dZdLOc6nsxyjGXduYgheVStx/jE9T+2+AgSUbZ2fSfp2LBsqd+7Zf6wvO7vQgjJGSXYviRR9PF+HU37VxcaZgQPeZITj8CfE6bBqTr/g2kYqr48oKUPZxlZ0iGJb1eWOMVqoch6OsnZBetx0Ulurh/0Pe3wXHdZ55nuAPzgSSSHwj4UwzLVBIAQREtMACixjBRZkSVVaXYtRrb7uiOjxdsbXRE9sXfTGxG7M3GzGXu7GXExO7V9sRvbET0z1dXdM15Qp5rVh5JEsWLZahAQsoQg0KJKCEmXTCmUbigwASTCDT2Ivn+T8J9kWXI3a0US1nBIMkkHnynPec857n/T//Dx+3VbFJ33Z24ajLyQf8OmzQltS6z+GTZUvi7Tx3Pel3vw0RQVN8BliNmPDn+jWWQoFwm1fpokGeLYBgdwyyR5UsG4zzLm9yQhff498gyY8aiA1fuIo5n6VKigarTGOBBK0wC7fFwajXZlZLrjBjzAAGqZANuY4aZFaLbDPNKvJoFqjV9vQ1rx41MPWS5YeAPQUtyONOjdItB6lsAXAYzUl5j60zjixOJENTU1iAmjWT665MsfEwY/eR+LlqOT3z51nAHPEGjcXg/mkCdMQga2GBdKp11cxWQMUUDxhxzyst/i1Mw1gOAt4k31ONIoAWiNokTZ073KBBitf5EJnnm2WILXLVfBVD5gDzUK6S5YFLlTU2aip2U6dOmu/y/ajRFpiPJusJKcZZZ5ZlxllnigfB4stRQb7apmxpBlNTQMkKV8liXoKLXOdd3mSMIjPcY5BdTkhRIcsYRaZ4EOOx7edFqhx5VxfY9JTJ7mgQC/icYYUGXWwyxp/zRw4aZgKAW2bWz8MxSpuVjFIgQxcnLDPLrrPBplhzmVjNa+/euGbVGJ9hBcnnu6nzfb5LiyRZqrGQvcUHAS4rxOVlFs6Bws2QWc+wgrkl5rngde6X/SWJ6AwrbkY0E8ylBC1yR7/i69UdMg7Agq01pJap0x1rwV9lDZxI+vpZllZjbDpcm415DdoMrT7M+miCjfAaVc0+v//XjLZsfSCygBJrBRCWGGUtYYzUbkymKcWXbIkk2dW6UH7yx6Sj6XDeBiFBi7Gjn0djwDw2H0X4RpaKq94MIJvc/5z1lK1xzs/VSlMFvGnUi1KYK+QYadSCddYiwU0+ciDTZP57DEYISNbX9Ep4lXxfaryK2xmJmTfY2AvcIkGLbWcV7jnmIJ9CEUfq7nnZTZ291KDPJ48CUCoyFkzbMYpB9Bhxb3sxsUdaBn4e0sddrtMgRSkxGuc0ffSUm3yEWLNNB1dHKbHOuB1/s0WVHJs9z/OrbC8rzABEAGiJUYarTwOQH/K5BIjnSn5n5xkp7Yg7a+ocy3t/Y+B59hjktMfCJ8RmOyFFrWeY1cQ0ssASHtRFA2UKAGEltcwsG0w4eWk3GN29HJBstaikjOmeaLaCbbzEbJzrLhr8bvU+g+yxMfC8MfcatnZVc05p9+segqUaZHPgOWNuHz12f2Cbyw69UWlhWoPk3I5OY/irbC/lhDnFLvkcXCZPbWCAWs8wOaosJuZ+o/nkCwH0HjJBjQxJWmx7epSAMCtahthgIkxvRTO3NM4hB8DMaPZd3mTbqZZCwpW2pfQku6HaDyuh4fLdELij9DAA+ZsIeFD34TgoxVnWmGSWJVI+Aehz22Tc0DDDe7yBNPxJ7ySmqbPLYCDx60zwiNEwbZ5h5RlJhSjvQoONwTgZIQ3qAKqrIdPoMYpUyblXQToom9tkyFJhwmPKrcv4KLqfWarhr6bkoUH2mHRQR1JWdc9l7pxnKy5ijYUxBo05JvagOjsmVUiFzHWMYgCZJue0hzxYATfBOkqnUZE+RjEk013ORBO7zIqSXcyEtYnMtnf9xjS6+X0yjnqrW6MCfoZ7KNVVxZn8CuRTUXfZ6AG9mEGxSYXPd6C2yYTUW74GYswpot1APvM/nPRi1CYQ6w6JDq7iE6CPwyhcs1R8Ird04owzDga9BDc5cVfcB71ezJ34gyuDBWL0nXuonr+uBKxLQq5r15Kqd71obt8b6tZrXCWzVvBJHwfBwmgnHu+GVEag62/Dq/YUmDc5HxfgOQd1eIiBPkk33XeG1tUC5OaBK+5b1iTSXUlB7iX/v7/S7kGXexFjX72EMfJ64Mn7/h0pl/r12PcdiLF1oZ0+GsDQfeh8CJ0LGEBUBn4K/CssifZtDCz8C+h4BwMvJCf+3Pbx7C/g7H2CSUjVmFuVqgE5Z4/8eB6201O5RDD16LF94xU7xk5n/PEmBpgIXGm5dPI+Rp9qOeDmwQud133cn9i+dI4a068/Y75vnSljYh07U46HBChZe4d2sq1LP/EwiDMHqjoLdm4ZgOl5A0xJ2jYrP7Fz13EJcq/Q9kDM0A4j2bcE1EzOE2qf+vf1QOXHnmr7jp2HXMG9Ev2c1H9kAByNNtNM7MPCa/Y9HQ5I7Tjg1H0BCi/Z+55UbTu/aPn289Dxmm2m4xtE8i33zV/vFzhIl/djGKAd2uHBKsMJB6OPHIyeM8C5puv1Jd//UWch+tjWF+2c1iSrlXw274EjC35tZXwcPTzksUDspx564YExHBlI+2TRt+PMR37m3//IvrfzJfv15r7JtPmGjQn9NtZnnm7b6T5+z/l98njBQz/8Oky/5mEiCmD5JiF5r+jYk8ZKHBvw43zq700BZ/hT9cv9kuWGAhgspGGEEWpMscYci84iMVmYFqRpjr32GmGDccII3QPMBKQcR51pwND58IK0A1nyFgM8YKIvaiGlKtrCYSMWk+vux6Tk+gS24Fl3NlKKE+4yFwu0LFXkgydLmIlz0kLziB7kmHRIG2uMxGJYLCwttk0BsB1NSNVUZgZ+ixoZrrJC0xlUbS/gE6ZY4wZ3AGvsJWlxk9tUyLmNiS2+jWH4iKQvxD9hngZdzLDCLMtRO0iGBAQwaJK4dLynSMF8jrwuUBqlrD/KXIz60RQSY6H+AKubWiQ9OMS8Cg28NMBO9RWYKkG+dQKnpJw4v49iT24yFmw91bi2nG8Gk0/MnTzlkIPLR3mKNZMq+rkpMYrYikXGWGCeMhd5ldtsk4ntSIasRN0D+kjSYoUZTO64jTHoGrEOkH9dhRzTrGIea9thHK+accR5igpm6eOQqgPNN7kd6qUGbS8yNdv7MC/DKx5wZ353U8H6MZbeSBAazGv6JBbexgqydZRCP7RwBVOJzLJMnq3wadSiX/JmAHmlacx/G15LzMZ9LWWOmGObFFju+R3+5+xLsfa1xnpXgAhKdDYAsMkq0ywyF3W/7H9mWWKJaxxgoYwVctGo0DwMhMVTjREDKwYuUEnkQrpr5IMRnyu7497KuOVUiyTjrJNqtYMxZlg5Ny83g1CRYTvW85LFA/wx/73J1nsuc0BfgH+5RjWuRyWKC9yrDQzEdSTQUgBTgiaSTRrYk2KEbVI0uJO6EUSG88QJhfQc+5qtQpYNJp4h3XRTZ5pVFng5GkpKen6Ld9hMtcNKdD1XyZmKbf8wwiE2GSNHlRYJZ/wdRsNAc90WeR4wFfOnWLZqijWdcCTwMk2dK6wy6cSPdSYiLLHWMxwAGJht1yxLwZi/1lhmMzUW9/gys6HWE/mojwP+p+w3Yy4YxLwRtT7sosHC8O/wCfMB7PZywNeLOywyR5pjZDUlv9nywFeZ4R59HDDpfoT5nR0apFzhaLGLmpfA1pkCpSvkuMEdJ3gZYSbNMVOsMc0qi4k5m4uPfsl2ypoICsSaZZk9BlnmGj/PfpVxNiiTJ0mLpdQsIoEp/VvXSR8H0XjSnL7Z83wwYXXdbzARrDxJpW9wh19mTVIsyy2B3Do+vbSdv+31hUluL1Jml8FAnMXg0YNKQIrRQ43lJqPGBqnoSn6Ht6mRCYDPvLnS3OFGPCCNtZcJnL1Fkg0m6HaDUSDQV2OKZbjNzXhgGmOo/cBSN0vFRoOUyzAvkaPCK9zhhNQ5j5FWSEEAFpljwxNmrTu5hJJltZ9iG6pj/KwvXTJuZPmNiBkm/5cxNl3+aIy4cWcxiu0otppov2XyYX6sCXSbdhKbJrBBdjn0h7QiyLfIs8JVZGC5HUVcjmWuRUrRClej0NNEqA64aNW6+fVQEk13kwINUtzhRoR0iFkotiQQTMtZllwPf4AioEeocZtXMZpyyh9wV6Kzar4sr8TEJDbZ+ZQx7ZtoyMekg4ZrwOBQvMeOecbZkMfOUMtg7oEGsK4wE+EgklPvMRRdICsqe6OI14N7kevIuBiM0aCktm1G3GPIpOLd3uEfYi9Sk9/nDcy/sCsWA0DQxg0gP0RGqwksCVpgprpCCvEAonB9hTt+ZkvxPkmYrrKCUgfVjUk5yJlnyx+sZib779x75cv+yvQBAgzkX+eSTFImm+28THhpncrbruxg24xvyEGFusClWQwIy/pnL3gYRhELYcC2zf12oEI6ayBXv3vyCTw6ewQ8wJhhP8aAux9hYNKPgLsYoHIfA0MEyH1ux3YqEO0CMAcrOw4iKaHXGUu5UWNLdWQxCWSJSD/VvlC27Zx97j8f8GPtwVhxDw1QYQBjd4mR5yBbdceZdyngmz7u58MmUsBLzv5KGSi3CW2Q9KEdQ3+v7+O5MTotuSTXgbLaCu1E4ZbhdJWH0PmiB5a47LS+fA5068cARj/f/fIvrNl4KBQi2G49/v5Z269aBXjq43jZx7/p23WGG01jfp65d173Bfs7nbeEVRoOYqbgyoD54NEkGIhP3vd9cm+9s6fwSg/tkIrKubHS9ZyyMRP780kDWDawMnPNpdNJ+xnLWEKwg8hpD2bJXMJk0xijlLJ7LY5icmGX5T6pAcOeKOvsw84kbW+7ooHh/QpwmW1/xxO/vuruY5i+YszHnX3bdqVE+BJ2ZDBJuRh/BUx+nYXLWSgueLgGxpZ8sujnZ8VSnp/ch9wcPC7a/lKw+294wEDOx2U753RDz/l03C/x6zqL8UxX/aZwKzGelJIumQrAJA+YZ4GL3kAy2eVQNLxWmCFLNeqnDDXe4D36OGCTMbLunSa2i/ko2wJi1lmCYqpLPiUfZCV5CuzSM1OLwW0yzLKMktzlj3ONZfKUw8bCABHbPwFuZk+zG0yGE7q4xjJv8i7yOdtlkPtMs8FEsBNk4THhi49VpoP5n+bYWRO7NH2hOOGMMzVfgUjoG2SPB0xylzkWzgF5nzDPErPRDBaoOc561AtKDFZzVuxIMSsbzihT/XleqWI+vvVgzm15c1pMPgVTPHBPOiBqlBKjrDPhfsRNZ8PNRbNXNSRYfSmgY5z1CCVRs3iFGQbZi+anGDgmdzuOWm0X819OYf6MJpk+jBp3lBL/kO+HhFwLda1D8mwFA0s1tNX3DVa4Go1rARDyRBxkjzWmGGSPq6xEE/48U1H+UAKA51lAIS6bFOiiEYF3YhSt+0Kz4WyX84F1ecrc5iYZV5xIZaWwtmWXwcvfTBZIFfdaVCifyAN7PnaSA9/m5jP3g5KV+ziIYJAv++urmBdZnW72GOQi5SDDmFzdwk8ksU1xwrGDqjPco9s9J2XNJNanfMp1n6Q44S1+SJ5yMOJktyQyQb5l95WFCmZdcm7ga6rVCEm0WHJqBIy0bM4xcol5bC8lrqGwA8nRLfjBGIkFNlES6DwLTLLGBBvBWFUzJX2OgLGWmgpG1G1uhq3P+aAirc90TGD3nCW7jjHLMvJrB1OegUmfxURW+qgIDeaHN0KDLrJYAvD0/kOeL/2KBE27744OnUGbDoJE0xl8XTRizhhnnTd4j72BXg79eXCRMlOtNVL+LNCaXz73WiO/xTuAMfnkmd4iQbplx6D1WCVhYJ1As69WD1GopiS7SiIWa7xFkm0yvMpt6ql0eP5nnX37wANtNCeZXVaNSQ8T2SbDTv6CE0mSMe/v+lxsCdi2jrTn0BIKTlpjkiwVP/YhxHw8oI/t4V5yVJg5+tRsuVoHgR1IIt2gixerP0csdT07NAd1cUKerSDgbPY8z7HPeTeO/ioaEFIkKtRlrrXItsvHdU0pDAQs0bfitgNG3DJLD9mbqS4Rc3OPwWi8NEixRT6aeSLHzLMQz4p1VyMYSa36G80nX1DK7a8onEuVOsYo3C0SXMJMaa+xjPwpBJ6om6e0UHUQMtTi5q2TjuQn+YtUvYjq44B5FjztJB3d21mWQrIpBFQ02DGKzLOAAiAadEVymLz0UjSY9Y7Y+WSSE7qokg25sAAs0dNXuBqAnzTwOnH2EG53qjadzSQ/jDxllpn1Yx+JNNo1pqIAArzQGuI2r7LHEBm2w7RU75G5Z4HN6IIdYD4zh15obVLA4uXbN+GBg0hizd3hhgN1l7xYMR9DUYnlWdjHAetMIGryOBsRc64ugIoxgWNK+ZG01dh9XdHxTfv2EzRdMnwcN4hA2kXmohMrOrFSyjTGdqNvR8deE4/13bujeB+lFEg64D6OVrDqgWtJv0uA+YVIOmAS33og7Y98O7p21KXSsR2TZoNxzJNw24vAZCxy5K93jxkO6aNAEQWmtEhSI8Meg1xh1WXgXV6EGdA5zgYbTDj1dwQlHtvDV2CrSaqLXjzIcFSTV86ZsLpPRXc2fxS7N2uM8MhBP133otLbeeumy7vPB/QxEJSlL/nrq8AFY2rV3vefzWCAxpGzohSSgLO+PJWUUf/dBZdKVt1LboAId3iyiIFUV8yHrHYfA+BSzqjKGnjzUOm5GdseHlxx9silom8C/xi4jjGp5jHD//8MA5P+BPhH/p7XMCnqdzDpqAIXnNG1gwMsZQz8u+SMrR7fB4U+KGFXAQqX7BhJGJhy+qml1garasXG6BQiYKJewlhjPcBTYzCeOjjF255GKo84MODMQaLTJ3DqAOnpE9qpvmUPFjkyRiFZY2xFYIOfg8wVH8sLvj++eRrOgPMk4PQr7i3XgPqCn9OnNgb9V/z/lwzE7HzRvq8bZ5BlCRko9yGT8XP4GsYEGzawql5yNttn8D99bOPf4b6D6TzwqclEHzfMSzA3Z8fRmYKCS5efPDRAtK8HA9acRdlx2Rl1NdsHPJGWBu1U3R5jssmP7rlRB6x87J8cYheGGKHOyqPl2ym2x5BH0HGBdmhGy5luJfN7PJY3Yc6vGQGM8rubdVlts/3z+o69t/81IOF+iEU7po5LDuAWIaef9zhQXSY8A+O+ecX2PddjTM+zn9k4nTYhM+OgKZ5AjPkvsg9ny/b/jrfs72F9h/b9S/76kFuscDVMvMveLNxjiE3GkHm76kAtvDYYJ0UjlBQCQ0z6uscx5kmUosE0q5w4ww0IcKJFMkLKLjqb/oRU2IloEZGiwcVzTdI73OAi5WBEydNNz19JcTYYp+ydFBX0YkMZU6sRLPmiL/jA6oIquQCZVJO0SHKTj+jCrDkapMIe5gZ3zgFKB2HR0sVJsO0NuDT/5hojVMihEC2pDQxIMTle1r2qx9xCBghfvBVmkCfQkDNdbEHSXqzc5lVKjIYSoubHk3OfJqk9FEoHxGJXjfSsG+9bo7IeddJF77aoDpMaQ4voB0xxk9uYx5OBj5K3CaQQ8KWGrxamWkSpljqhizvcIEHL65kmdbpDbnVe/jjCNsf+u2O6o84Ss2iMzaiZBtljxOWz17nLFmaML6BTzVzdF0ppPqA3PL/bDMgx3uVNwEAJszhKU+YiFbJUXLkzxZoTDMbJUeVN3mWIPbJUmWMxQLgRv1YE9g2yxyJzjLHp7MktamS4y3X6MA9y+ePV3M9Z9+p9t8y5xwySkSsARN7jOapc526wvIyhWGOGlWfCEL7srxdanwfTR6xjSxFNkXW/OPOnrDDFGllnvY6x6eBeN+NscIsPGGrtxXwj8GWKNVJ+Pcm+QP8HkK96njLbCVOeSXZrpJEs64x7Aq/5hR3QR75VDv+43cRgrL+vshKNGs0tvedIF7LZ0hpQLzE8DbDrZbRRItkyosw461TIBglFKqdDBzDBErzzR78MdivY3PKAqVBOCaA/oNc96ypG3GmYGilLlULLxnWUEiYXTfIyC0ywTooTCq3NYEvtjF4IUspGzwsscj18T9edCWhhS5dCPSh7hXSjzs3Gbcc/jqkkjLm3xlSMiaSdCmqQFVOuUQ2WYIMu1hM25+SoButxhRluc5MSo3ye/RqTzlJLt+qx/woUsjmlaY2lxh4H9EbD4AFTcd2cZ/QKMD4mzYfcYsvnq0Mni8hDb8J9Bo3U0c1fF66Q9SCnqsuHv8tfYizPWoDQZS4iRn03dUo9z1Emz73ETLAddX2UyfN59mvG4GtseNCpzfmDWIp5i0TkN1gUkpOSer5Kr2MGIi/NsMJeapC1hN0H484KlIIt4xJnPVuUMXBCijTHjDhjUiqEPQa5yW1mWQpS1gTrjDU241j0fFCzTR6lukfPW3f9h15fCKAHhA9d1u08NblkqQZgJk8zi4U3Vp+SVIz1ZsDLBuPhYWGa8VqAXxVycbCbGE206oWLgAl1rba8i9nHAW/xQwoUHcaxm8xSmraiC1v0AlMPWiWbQlsn/rIDiNAOJFBXVuDVNpnwOBNbEQh0VuEA8jkZoxhpbwJcgJjIJf9tkIqUXKPi7oYs85oDTee9V8Te0+SoLp2kDyvM+P+HkEQ5TT06ePJHUEJLxSdrsSbrdLPOOOuMc+w3tYIkLAe2y8GfXVa4irxKBET+kLfo44A5FplgPZBqyWc1ngIOp1gz40tyERpSIcsx3a5Dv0gSk5JkqHGLD8n55CLPmxyVKCDPd5NVTC4wH546WhioQywvgTWmzo2BTZZp9+xTcu57vMEy12LB0nfunCs04oC+SMiZ4Z6DruuxfwX37mv6g60P87FR6t5d5qJgsnCLbacRz2Lx59Xw0bDvtgI7xUlcu0MOoJ+/xs3zxuLsp1gL+v0mYxTYDKbkCjPB4jNz83owdWuMUPQF04kvTH5bjI85xYCRpvuEibnmoQVnCmp4SCR5nlWN4cOfEKBE4UX/3KF9jl7bRr8AvkNjM3Umze+MCw6iuedYPxijbRmKAgEHDMwbTtj3Ps1innj/BpNcfkoblHtEgI4Ugf8X8F9jDKN+D3zw/XplAPpn/f/fsOPqz2JMM/n3Vd2T7QLGBitgIE2WNqCJy4P9OOo7Bh7mBNBJKvuZM6Ua7fE6UxCCM95wX7YnRUwyXLKE084X4XfdizBYgQ7QnZUdQC0CL9gxZfL2nlOX9ZLy/duHyymYdjVY/4xtR/LiU2flpUf92Br+t5J78878a0HlYw/OuOTXxSXaAQz4PioB1wHJZtOBzBT8/blz14WA06Sl2D6XgvTv+3mo+bh80767r8ekvc0WEQaCQj4khdVYCux0QO5JkfAhPKsZ8Pb1YfOMo+bg52V4vEwAaeyYPPmJUnEb7W2fHtmYUwUeOVCagtyAg5EtP1/OUO3P0waGoS3dbsDZogPMGf/uHf9+ByJ5ei4VtwIPl+04kwmMsdqiLfd92pY6py8bIHrs57Izae/pv2RsWF6w7zndguJn/r6yfX8mY9dW58X2Nftlf11jCbP9sMXUlCf56Wfm2GWWD2rkbbiXrArdKdb4kFuxTSXaSlIIbZBslFIAcufDKrYcZElg1g9VcjxgMlICgWDCfIv3ybPFtrM0JMGS3EzNO8lXN5iIY1pkLhYKa0wx5VKiTQoMsYf8g41FWIhm6yC7YXFhst8U8ywwxibyoJIKQCwTNc4y1KKJqe0vMxvM+BWuYlKqa2wwHgBnhu1nGqKDzvjf8sW/lARafGjMmyQYZ4Mb3Al2yhCWwNrnzpBik1it+Yg9BqnT7Syfpi3ivbmfcgmnbErGWUeqgkWuI99igVxVst5Anwlm5Xf4AWZLs4kko01fc5yX+moBbYtAuwnH2GSCDe5wg00Krk6x60qASJMEUzwIMPiAPiZ5QIIWu1i4nKxhxrz2X2GGe8y4nLUZtjyfMB8AiLEvUwEIG8skFc3WFWZ8XA1wOaCPQ7835JFc8Aa8auU5Fvk2P4hr2+TibWbIuKcIL3KdEpZ+nKAZLMMD+pjhHhexFMjbvEqKk0gxteVxLZrgSodukWTCFUSSWKv2k3WO5J+S04ltJWubL/vrMNHnEuw2oLVJIea9ImOYoioZALUCD1aZDqnlJgXKCfPr2iJPg64gFIj1qPOtRvtdB9JLjDJ4tB/kGfmDTx/dZ6yxGey7EqNk2OY+05QSoxzSxyRrJJ2UcB40UbIuwEijFhJVzc9ii0qaOLHzOO7FPYa4k7pBotnigF7kT7nOOClOuMWHzHE3iCcb7vte6xmOZ4bAIlsvdzlLcIMVZvz+2EKelz3VX/uxb/PDxFvMsxDjJmZqA5OC1xPW0Hkw8AIH9HGf6WAsiq07zyfc4GOMMWlr4Cs+HhUnAC2lZllLTflqru2NLkZiiVHe4w1WPTl8tFEKUK+SMkbsFvlgYf+98ufIFxMIYEjNLhEzPki8zmirFA21vsaBr83NtqCn9mtSnPAJ88+sM8VO0zPwamuFCTbY9nRfWT3UaYdX6ng2KYSiS0xUpXQLZFUzRaouBYlIgVdilBnv5jcdPCsmxhhkF2NkX6LGCEup2WBtyspA18AINSxIyK7nNMfxHguH2gysQ4y9PYZQiv0Ua3G9im1/QC+y2JJCtI+DUP+JCVhilA95Hdk8ALyXeoN1JljmGlONNYb83MluRKo5qQ5+k9cXAui9wOdM8QAzf+0KDbxO8gF9LDm4oUJNUlkhtOo+qtNWJeummiYXvc4iWSpsMkaaY+8xVkO+KjBCk9kgu8yyHD+TjNIYe8YcMpS5jfjLKPG8BCNFg26OoyMm4EsMPOswpsModtNRWoFp+k75/iVohnfCIHsUfHW2yBzzfOKFw9o5eWl3IOWv8hHnU273GIqL6qLTSPX9ADKoPCbN5LmUUUuHMUPnAkUGfVpeZC6onhNsRFda5xHwm6QrUrg2KcTNpwmt4g+DPS90lGg74QabloA854VcIr5bPjB2g5hUZt4NdVVQWnE8ZhHorPAqt2mQYo675NkKiW6CJpaaa0l25+U8Jw66jbNBgqYXgUYb1kLjPNtRnd2ae/+sMh0pfEqW0znPUw4z1fMSVclrN/2BLZZoC0s7TtKKAr7g+9NNPTxILDXIAiuStJjiQTzc+jAfRVHGM9SokovOheQu6lZLtmH33XHcg+ueTqXEtatugmwAbSq8iSRnz1KJh6FoyGDAoQWPmD+Pro2GA9tf+lcTAw/cA+9MEtGyMaY6BrCFv4MU9WVjSaWzwF/YJh4uYyDTixgo1sRSVBWEkIWzj207/QMWkkHZpZYOtOVGMeZe033U3Jj/8osONJbhQhV4FWPmfQtjIrVoM9yUMFvw/f0mkDfAIoA3Dyyg6N/h3oFcwYCrCwRA15HHAEr3YKMHHn9KSFUf79sxPHE2Yvr37bvTly31lH5LE6Uf7u8QQRzdKZdLVuFu2ff5U6i9a+NDBtQgPnvYDloA38a+7e8vlNvifm9n8tgruq9f1c7Xw4c2Dv3uQYf7sPGovR9PDttsrNqSS2sFkF7wv3vtc7kXPR0462BXAgPwygQAePYxbe9ADDDNvGD7EfusUBW9ehxYxca4tuhAbAL4B+7Rl3c2XR5jZl52Zpmz9chj1/MwpP+ASEtOelotOTvmY/+aJ/i5ugxUoNv9Eus7dkydBWcEvmDHeupBEZ0pP0cv2bnoB2g6gxWTAUsmyxzwTzCw0T30xHrkyNh+nS9hDM99O4Yz9RMuADu+/wX7TBL73s0dqH3uP+83cPbJQ7/WPfmWrAe8DBugWq9a4i/59v53XoZMCtL/lHYYRgGTxu9goP95FumX9NXN0wBYZFZtiopu0i4fm2Itagb5L9/kdjwz1z3Z1Z5ZzagjlGq4yVg0yDYZY4YVrrIS4FHKlzBmeWIgzgF9jLPBuPsOJ2mh4LUTuhzyuogsRR4wRbdLmhaYp5s6b/B+LGRVm8yyxCB73OBOhFUoKK07WoD1UDFIBSB54x1uxOK+QRd/xvdCGqY6TObi7/Imn3iDN02dFWZiwS7W3Q/4trO4cigh0YLFjkPWJyms/h53+ZtsTKxeN1aRzuUdblB1O5BdzOtQTWJZu9hi+9jHZZmapzO+wfvBRmmDQYlo/lbd69qCS9rRMUvMRgOxiwYVcqG8AWPzlRjlBndQwm/XOWaiakIdt0LmZGAOhO+1SeA2mXKJmcBQNX/XPUn0DjcosEmRMdaYwvytu/lL/qFfz+26UgvtGZfQii2jelZMFjFVdDwtzNpEckrzmFpngg33LTdmZIMu7nnQm9ZRkmbLV1pM0BxVZIkiryitVfqwhE8BzlKYWFiIhWfc5TotB3bnXFJ/7A3vCjn6OIzzuuGhLgbq2lrpPtPRTNc2fxteFxzAEWNNgGq+ZUC93RdDDlzneJ83GGKPBeaxcJgHzm7aDnJIFydMNOyeNYmi1epinU2zyhu8F+uYPg5Y7PldVplmgnVmWDHZYs/z/N9T//tQ4oy7ouuKs2In9z8n1Tihr3UQtX6OajQttO2efQPMthzENT/udDCV7nCDteHnQx4pVc9maow+Dqn5/Shm2AldjLMeijLDCczGaMGBqKY3FrTmbZEg3ygH6HTioM0eg/xs9HcAYm2s87DBBClOyLUqiEEmQKbIGPcdUFXitmSdY04UGmedMYqM7/8cBTsKZFWaaa5RjXX7DCtcYZWmrwFv8QFXWTHrgOav49wpiETqvRQn/CI/TIOuII3o+SlbsgdMscakzf0uyd0iz17KmkPybP1p/neRwsoabg+o0823eC8k1WXyVBI5JNO/wR2mWWWZWeTraom0XZ7A23QsokCLJPKGBWvGGeEjg/wQS4xy6+gnRr5qHTC183MPZTHpdc2Fqwb+F8izxY39T0j7+ji/s8MMK0zxgEn3qpUnv+6VaVYZPXocgaZ6ZmbYZpPCudwAI++MUeTr1R1Gjx6ToOnWDNtBGJI9xIhbkpkU29b99h0Z5lkIIF0BpeYJ2KTn0a+DXNPtNYHGI+3Pl9/k9YUx9OSHIF+4dSZCVnqJUhQ+1pU6iYdTmmMUQ71JIS5+gx5accAj1Ciw6aBHkTvcoMzF+J51JqKju+ARgXazWcdunXGUgCbPCnmzAM6mO2aWZZT0dIwFFlRjFQaiVMpYd41JKmTZxUxh5RuQYTuOC4gLMueShm0yrDPhXbUt96/rjQlGncUPeD3MeZWuNsJ27JcCHJSQpkjrhI+dJlk9oGXmCSavKLr0VjT4KlmmWY2CaYUZFrlOnjKjPIoOgG7QKdaCdq3OsRmQWiHcxPxEZAoNIO26QDB1FzQZqWgzL44CJy7j6MMMMVWUaaIwSvlFNvwmqJIL82nJpM/Tvs3k2PowVx1sAgPgrrOIec3Vo8hW+mw9br00G562K/r6mMtiTcJjdOMcFS5SDlC2QReTrDHiWn+BapKs7DEUx68HTBuISzhguU0WS+pVR2OTsfDssU6BFaMXHVyUFF1jv8ug070noyO2TYZXuOPA/F5I3CXlEItCxyyKtbowosKbnGowOh1dLhNokeCU345QDJ5iC/8rLocFA0d22mwuAXTkTT6ZHcbAkS0gC5clBX2IIRsuW+3sgccPbXvVHQyYGXYw8PK5FNTLGEAndpxLMUnYv58oJbWJBRn8I/ubI9+vS/a+f/ePX4BvwdG3vmLeYm/ZfnVe9FAOZ1idleGxS05Pd5ylloHTBQe1BLwMgPoDZz+zz3cnMNDjKYwNQ+crLl0s+3tTtp8df+L7twNc8+Np2M86XnFQ5cjCC85c1pt5gTYr6wLwuQGBdffPW9/xc5MEPjU2GGVgAe5VHcjpxWTJA8YQ2zlyhmOTYJyRhdpPCICTfmOodfbAw8/MQw2g8m/9+yoES+vJx36Ozvvz6fWItkQVwovviXvl1cu+72XMc85DMijb32c6tru2b82W7T8fAz+FsyOTOWe+SRuw+tSBvqoDcy/aOWbGxoUi7QTfR75fKfOl+8UOXOlx4LZk+5v5pr2lO+WsxQFjB56tmLfjaRMDimeh/n3b/tnPnLHY42NaM7Zb9wXfbhn4bzFwuEnIbqkZSPi47AEjGTv+06LJbANErrosedmOszBvx1bI+7nyYJWOjDEv+y870CeZbBOe/MjYm+lhZ+qJaVoERqH/D/2cOuBXWySYumdN8J7Rl/qlhpkYDWpGyYOtixN2GYzOt9QXFbIROjHHXWZYCYWDOv7q8pvv2sV43gKxkDOpkCXlqTEmJgMQSa1NEu7B1k6eTfqTV0qQFWaYYB2FlwlMVBCZ6tk0dczL9oR1xmPhZvVamm1GKHPRwZPDqIOsmVgN+eyIM+fP+zVXyXGPmWiAyx7lOouMsUnOvfO0D7Mse5poPhYLOSrI03qaVTJuGG+ehPYe1aCbFHibb3OHV8LTTRJYfR+YBYkMzFOccMlrhbaVRzOUKvLbM78iq40WuR4WL6rpxOopMcqQXz+StJq0eJ3z4WKqKaVOuIjJrnW+dc6AYAzuYV6FxjyxBbS8vSXjVkN5idlgYciSRA3nN3jfFUjmSf0W70To3AwrtEiG2kd+zivMIF9xAdTyEtc1JenqutebIhUUKYT1jYL0HjjjSXKxPYY87dkWr0q31HpGqcnLnsx87I3dOmne5jvBIspRDZKGgdFmRTTJmvsZWmBMl7d+TVnV6wmZlkbczbO2QSIOHDszr4vzXagv72uVl4JJmWGbcdZpkSDRbIW8W69J1viH/CUH9HGVFW/WbwewobVyHwfUU9Zo305kPEzFzrNUbUCczy4aFBzsELAtIsVb/BD5HAIRtrfHIMe9naynTI4rYkaaOmNHPydBM8DmX2at2Ckyxnt8K+5ZrSu+xXsAfu92IyXbkoPmWr/K8mfNPe20DuyiwRqTJGhxiw/Yc2DE1hrmubdNJoIeyuS5quCnKwABAABJREFUzmIQLPRcsPCQdviPmIylxGg0UbKuOOvj0JtRK4Fz1OlmiVk2Kbg1hI3TXw78r3ibbzuxpIUSqdNYmq3WiSd08Xz5V+ScFJSkFThCK/kVkq1WkIQKbDK38ylTrJkv7NEOI9SY4R5p6rzOB8z4Orzp6+sJNniLd6i7gk0ApTziJtiIa22PQRZ4mRyVkH4C4W1o62hj2eUb7RDLaVZD8n/Rn4eaqwVeqVmm8Es1eQYbeyRbRi466Ok1lWIiwfZwL00sdNQIVruBAelVGvgaANOtVbuWHLzdcpms1sySA4/v/5xEkyBDzRx9ymirFCDeeZahAoVOU3BhH16o/jLW91nHSqZZZaJlPvxKPgZYY4oF5hljkywViowxxiaTrHGFVeTvt3P5AnnK5Hb2gw0+yqM4Nzf4q99oPvlCAL177h13SF88bCXVs5vLAijG2GScdUbYxuj3jXi4n0940c0s/bzJRnMBGgkEzLPFnN+oJw7RiCV1lzlPEGuwy6CHA/RG51ApVHp4mlzjkfuimEw1Q41D+lhnIpBY3XznfceGHOSST4GME032sIe8MEYpxQPWQEslfHVxSF9QqnWRddHgBndI0AyKfJ4yTZ8QJO+U1NV8AC2e+ry3i7rHI2xjyaN5th3AO++DN0aRJolgJwoIepXbKCnsxKW48mkRLdc6bQ8CpOrjgB/yFiekkIRYDwrJTURdlbRWrEb9zoBKM6M2+XMjCogyF8PTReOgB0ydtMunkzGBZ6kiM0x5MSoteM87Bgf0BuB6Hugtcck7t2Y2eoOPmWUpHgJrTEZRtcwsK8wwx122GXHfh1wAXBaoYQWzutpZKhyTDlmEkurkYaMHUZmL1HwxYObgSgLMoGAZMQoFIIvCvEkhmHk1Rvzfx6Q4QR6B6vKo2ybqsa4Rk2a0omAU+GzweCo6w/aANa89sQYUO//b8DrYdTliwhJFO5IY8DEMzDrLbhlb+B8Cl/09zrJ7+AMPAXiKgTlHzqoaBrKevHnJGHiVH0PlM9+mknSv2PuUasshxuyawcCQfQ8P+CHwz4E/hc5/AfxL+zfLmPz2R/D3/vnn8H3o+Re/tt+9D/wPGFAyY9vivgFFz416kETTgJD62/Bw3/32XvExadq4INCn6WBIwsCljgt2vLzgx/s5banqu3ZMZ0+BRZh+CQPGjoC7HoKwAzPDtu3Thu9fy8e6amN9ZRjSA0DeEkjFPqPHWGKPy/bZKwPQ/098G3cNmOxIGtCUmfFztejMMiUXuwT0dMu2VyzD13ugY8bel3M/ufqPMXDsqQNakmU/dTDTU3pp+e+aDrK5J2EySXj1na14MIOPAxnMa87rslMBt75meq5AeP119Bg772yFkIY+edROru0YAH4Mj3/k19D5IAdds48suKUjb2OTdjCwtmR/5IfYccklrR4S0uHXcbqHYNL9wsHRjhf8njiy73hStvel3e9QjMoz+Rbu2/VKj7H/hnvcw9Dvux15VtbgdNnHALvmmKcdkJI6B/yNEmxY8u5lmLd9rhf9PDXsHCk9l0/974Zd/2fLts30vMuaW+cSgH8LVGb/julgR1TIorRWSWRlpB8+Of4c18JMsqIMNR4wFcWvLYpMcigG30UsLVP1ol4lRsOSQ0CO1QndbDtzUADepscYy58uR4UxNmNxpvpU0mGZoku6psVhH4fR3BXbSnWYVCzq2MvHb9s9y84HDkgaBtYUVrNadjIHXp+KNSJWgmotSchmuBeSNNXQGa8H9X4gkh27vEk6RpFr7lUoiWSerWCZZKl4k9mOf4RtNhnjh7zFErPRrE3SYpIHjFEMgFWgmDVFt5jjbngzi7knK58DLCFWoWdSxAgoXGMSMxOv8IApjl3eq2b2iPsgjbmz8rgrUOb5JBhz8uhT4zxBy1lBXX7NJdlgnIvOHpK6RGsU+W7J+1CgiAGRxfBE+wPeZYq1YPR0cxwBKOevbwWcqfaS1Y5q1SH2WOYag+yxynSsL9aYYsPviQ3Gw9/pPtMhw1V6pl5Gw7D1wByLvM4HKNRvnHUHU6qhzFlnIjz/xJjMUWGTAt3UY9zWmKRK1j3Wu86BNJOsMck2I1x0Vsxvy0vXtuyHBtlzOWbLvQ8rcd9KcWXz1BBbvr4W4L2NBemlG/UgmiwzSx8H7DpD0qx6DOzdZMzSY1sHztIsO1tqlzpppvcfxv2mUI4Sl9hkLFJDk0620Xkr9TwXjDpjKzeQbLbAJvIWrZALiblexsQ1ZuKUJ7QK1Cx4w0BrmRutO87AGgoPdptfR4JtZQq8dKyDjNG9HmxcganTrDLka3PZO8kaQHZEK8zEGgeMRZ3mmK9V9+P/FirTjG2rCST2axoL2dBced5TsEmCpwMWegEGgFrCdZb/JvVf8lHiJqmGSY7HGps0E9boSnFCuedrsbZL+NrNPDyLvk49CYVXobUJwCLXKTLGNKtc2vlVrNO1Dp7GwDGTxiaR3ZR8AMG8bbdTBl6ONkoo1duCjwzwHGcDpSrrelcC9gwrzqCrk2j+mmYiQV/LxjrfKmO+tr3PPIfEHlYTq0bGJOfkqSfSVIYHqKSy7e/a2Y/U7prPL9AGARO0eLfnD1hPWCK0NW5y/hy0c7FFnurAML/ID3M08JXwFvzd6v14VnyQeJ0GqWCDN0ihYK5FrrPBRICQJ1gohp4Xy1wzzGh4OPAmPVM1br/J6wsB9HbI0CThi/22OYyKkg+5FfLKDSaeMfwrumRTvCTzBGuwzjgPmCJLJYCkaVapkmOZ2WdotNJ9G3tolxQNrrMYoMMQe9Etk1yh6D5hSihRh8h8zcZZ9UK0ixNmuEeCFof0cYcb4Umn5FnJQfU+ec7JF3CUUuj/TZuecup5NYyJG6R4ldtYMo6lXElfDgS9vuJeARpfXUSaKATsnI+JlmwZCPRdfi4pGox74qtuOtGKV7hKFyfRTdtmhI+5EaDXJmMhHx5hmzGKQaNP0OKf8c+Rb5+o9jLF1QT8Hd4OQHaDcS/0KoywHTRldQDVnTap8CZg3V517tWV17V0TLezzNoMy23vRsmfYslpw+3UvUaYYVsC7xUG2fVzsB6AtR7EGmtL4l2OVD4xOcEQf3VF+7BEL3H9RMld4lp0cCWB3WSMbo6DhaB0tfNgqzE1cxQokqPqHaOxkLnuMcQdbgD4NboSILNkGV20jZ+VMifZSoJmMGr10LKfmZG4FglKS9ODdIlrHNIXneYqOT7jxf9fp5r/KF4nuL8Xro50xtvpZ0DZQQ3JKZO0k11fAnpMutg/g4EJfwC84Ib/T9rb4tDAiGTCmE+d/bQ96vaBn9EOHWj5zwUqFjFg4gUMXDlfS0ue+hoGEPYTcmHEQur1bX2MyQiHHdTKGXCVHrXPpofNw40scB8qSkeVBLfHmGaVhgMzYGBfP20JJX68/v31HQMLnzyi7eN2GQNfrti+iF3W+ZIfT79v95Gx4Tp6fL+PXGoqhlsW+Efw3JxJiCOsxF+dl41Z1THgwRoDcLng39vjoRo75z7TgMKcS4SbUD9yMPLIGZXOiHsiv7akn4sr/ruisf/qR3a+6juE3Dad9bHcMaAoI0nxZai8415z53zailX7bC7LsynDGfv8pqTGVWPC5fLOuEzaWD+nVOYj35ZA6qyx+NLDdl47/tAlw0ClZYm3VPwYxG771Md/x/chaYnAT5YtSRaX4JIFJ48ABrLWPrd/y7+v4w+BF5wF6gDbzr4BnQz4NjJ2j4Btr3PUAMJ62QFkXUOXsWutgLES/Rqt/4T29V8Glj0wZMD3U56Knzo7tezsU6DjG77Nku/DQwf5h/mtAPTSPI0m6jSrbidS8UWIJXAmaMYi8jp3GWSP6yzS5Ux3qQckIZOEMM1xGHAfYobsDVKhBjDWXjVYKLIxEegnEEys9wq52BcxQuSDlMQUJX/OHzHOOuvufbvujBI968WMk7xQHkoC5szwPceEy32tRrQQrD4Og5lgn81FLapG2gwrsYibYIMp1myxzVx4oAno22OQCTacoXUcqpEkrWeMzfNsMctySEktfOR+yPvAaocl9+Y1Vr/JguVdtMp0SJeyVJniQTT4V5mmyBjLzMaCt+kL/zJ5uqkzxZqDAofuTWj1+Ju8i6TCa0wx4RJpq82UAnzCFA8iqGGVaVcxtJ6pSVXzKbDEQJWuqJGHfLGlurlOGiUUCrxb4losNPXzHBVWucK0h5Rl3OrEgCyz1FHdLdaJlBzLvr0r7g94HvgYpcQS1xhnPc6pwMc+DlGoRJl81FpDmE+VFueTPGDP1x4vs8BNbkdSZYskm4xxiw+56CDHLEvBIlUAzQOmYo2hWhLaHt2LXOe8tZAsdiSZ13VeQWEsFQpscpc5Rs6BML8NrxQNZvbvx7WlxbvSP+XrpfGTTYHeU3EQdZdBXij/0r3ad2klE0yyhiXNnsQ5l5RQ82eCFpVUlu2EMdCKzjAeadW4zU2qA8MM7h9SJRtgX55yeMJJ3rnNiIEcrfo5xpnJ30uMkmoZ+aJJgl4HQDK+phMZJkONu1x3N8UJm4f3dzDvzgZfL+0EYzlPmUoiF/fRCSmaJMjt7MdaW96S063VMDfQ3AN2vc9wL0gHpoIaRzJzBXoAKP1azNJpVhlnnWVmORr4CpmjHcQU3/JniZpPo5S4wR3keznLMn+/+lNnSVddxFpmlBK3e75JihMmWuvxfBxij2/zNiVGeSf1FpuMcTtl50aEmLTbgGltbevkJlvOLms6W7BBF/VEOkgXfRzauAy/wAG9bFIIfEDPsSyVIBcteQEmNtsge9zhBn2tA9JHv6aPA27xAUD41Oo6z7eM+abACz2T5RN30NNLlRzrCWMfrycmYv24wTj3mAk/euEfwl20Rtb1Js/SEqN0HMH80SdOIivauR0YRinNYxSZYxF5uqr5Z36pJ45iJYLpWU+lA2T+ZXaAdSbYJhO1jEKKNhhnjCK9HATz3bZrVgSrTCNLBWE3TRJMH93nBncCpD+hiwvOpv3bXl8IoDfNp1jYhHI2bWeEdN/iQ6cg2kNWSLfJCqzIEKtslWnuMgeY1GCZa94BMslDgy6ncncHECap4qJ/rsu7CGJRATHhjHuBY6iydRFk8HrgD8UZVrxbeIxCNgQU5SmToxpS3oajuykaz5hRygTWvM/MkPEGd6h4V1rmkJIs1JxlNYpFMJs323iwsVQQm+FsnmssO4uq6xkpirrN540Wj0mz6DpuJZ42sRjzXQZD2qmbUZ0hSVnVoRhklznuss44Y2xyk9vIE6ZBKmjgQv4ViDLKI+87VGNslMIDBiDe5HYUEFZYW0djnA1y/neecsgKzNS5xj03g5Y0VZKZFCdM8sAnyQf+wJxCXnoLzIdJr3WFt8hRZZlrAQ6Lrm1GwG35i8yJ1S3Rg7lKlkXmSNLyCHij6CqwRBHY8oCQJ532W7KXEpfifLdI8MgfgKtM05Y8G7gnebrSZqd4wK5P5CZjbrjkwzwmVpiJBDv57Kizu8p0mGsv8DLdLi+xe3yVBeaR96X+CFjXeKg4Pqbbw0O2o3OnTveX/ZXpI4IEnrsMjz8zplJnj0v/JKd1xlXtvstoPRjiagEqiwZwSL6HklsFhrksstlyplAPxqjKu9zVQSYGMHaXkm53oPYIY7ZdxkBCBUPIj+0hBtY4+4jP/f9VjL2n4AkxlPS5Qww8y2BAjHzikkDJmGpU/U8Z6p+av91lZzd1zPlnJf3EgZsaJh8WLl/wsIGn8EShA1k/1m/Y9502aEuPc76P+twLfoxZB8JesnF5/DHwjo3Nacn3u+jgobMrxfTqVGBJw9ltShTusX3v7Hn2/5QN9OoYsPN66nLpx5/BcwKGlNSrFFcHhdPuYZee9e90ltiTj22/Ov8zP34fk9xLLhV+aNdH5zB2F7s3Yt09C89cXp3139er5meX+307j50Acx52MurjXIWf49fEBbt+qjuwWvJ9Vq8uCdP6XNJZmNh+PT7Hlnzi565z1kDs+pHLUTV2VRuXZNJ8DzuTxkbsvwS87eP1Mwdm79txdV+wUAx0bTwygL3yI5PJyj+vO0UAvezYMdV+av8+/ci33fT3CfBMOns2A5ScyZg0xh49JkXvuGJAYfq19v7Lc/BJDb6ewFD7Eb70r5t85DISM7NeYypSLR8whXzGLIG2i9vcjEasGkwJb8IKkBEg0kUjaj8ZbqsWAVCKreRnDbqYYJ1u6syxGE1F7V/GE0nFcDe7DdtX1bLf5m2GvO7qpu4ptJVo7NVJs8JV1ph00GgomBl6TbMai/UPuBVASIEic9wNIHOQvfCeU7Evi48+DoLBaGoTY3IJaLL973bFwxirTCOjezA5n0IuJC+b4gGjlIJ1MsuSLbiYQBI7U3rUHHBIkWeLgjPe9JJS4hYfkqfMIX2xLqi7EmGVaT7kdZSaKpsRaPsJblJggwlWmSZHhTkWkTpj18HKdfcnNLZlJozGEzTZYBwLalhn1xffSt+VOmLbGWYCGs0j0ABk+3uIUR4x5kyj7/FvfME5EQ1/Yxza8QsAXWUayckXeBkgQMIcVRpeM/VxwE0+ouoAgpq3MvJXM9ka9SdeF1dRcqmCQna9wT7rAX1aq+gemuY+d5lD0vBdBjmmG3lOi/1qwEY22HVLrjISMC0P6VWmAeJ6EJNJ4I78E6cxzxExXM3y5gEzrPAW77DLIHeZizH6sr9ybFEa+BppLFhnjCLv8BY1Rij4usLWAidskffr7tg/Ww0WW4skP89/1f0ftzyh8zDWcONsMMQeUzxwkD4bvu97DAWYqyCXg0SbELE30EuGGvlG2WXrCYbYY5x1/l718yCH1EnTSBiorSAd+bhtJ8wj7b7PO3sMRuiNZN0LzAe4ZeqpIU4ufCWCLE/7iYC/Cjl+wLfZY5AHzsbNUWV3+ALy/5Sf5nYi8wy4NkqJfKPsXqa5AGpE8lGYYYJWzO3y0U+2bB26wTiH9DHOOispWyNlfd63oJJ0kG/GWWeDca7v/42t944e8++yL4QqL0eVvsYBW5i1wru8SSWRI9lqBcgj1vKMe+rJqz/lYyG/eWOQF8mwzTVPR9azVp6Dd7hBFw3mWeAYC7KUPFnzQ5YqIw1rLB1iIU3GdLb1aT1hFglSYSWaLdaGn4/1YMP5ktdaS2TYpsgY2wmbWzUuXc6mrJBlgZe5y3VEgBIY3SJB3/5TbnKbOe4ye/Q3/An/XVwDIt0knTwigovyDxK0+IvR/5RKz1eR1cIeg2T3d6J5qPnJAEbbnvwaRTwSvmIJ6W0v3wMfGzAW9derJn0eo4hpRu2PNQ8Pw2JrmlVu8QEpb9RkqYZKYbPneTaYYLRVIteoxnPoN3l9IYBeO/49FUWGDFHFNNrEEmQnPBd1hnvIu0RG/sdO+7zBneg+ymTYMlXNL6Lmk5j01WnqzLOAEldGKdHtBo8Cqpa5FkBat29LhcKBd3dLjDqwZv5ma0wir7UalnjbJOE6/yaLXGeehQCi9LC86A9UPdyFOgu0HDy3jya/3eYWHwbgofSxHNVIc03QZNtpwzOssOldh1FKDli14sGroky67wYpxj1FVtJggapDPqGtM4HSlWRMnT33/RojAZc5KtGJVKdzlWnkUaLCCAi2oOQ1kmlqX45J8wO+HcW3oeib4TUnWuw2mfDlOMTMqQtsMsUDrrPona1DclR4lzedCXgcHXfJLrSPKsaMkj4Zi4QuTp5J973GUiDxKRrc5iYJmmxSiMlF6cmSmOu75PUwSomrrPhkfMKIG3XKdLmAxVsrZEKLH3XXAWa4F9evCuo9BrnGEpKhj1JiizwlRoMJeD7JR2Cr7lMDt9sLhfNegDoXoohLwnLskiBdyyvMUOZijH0fh9zgDqKvWxd3jq/yqy9i+vm79+rHFvEloMf873datpgXEPRkGVZdntff2/ZuO/UQhuGBNsuPz7DUz3eNLbT60MCXxyVLKCWHAQxZC5jokAn/MAaoyHy/aQyx9ZaDOQXg28B/gYVhzPnP/jEGer3in/8T4J/5z7+FgYUDwD/C0lz/LQaibdGWEn9mx0kLSEB934GpPCZxvOysritQ+dQBqGXf9gUMxMv4fi9jQFujzXYbHjA/tmEBZp9hQOc79pHOl1zu+dD+1Bft98kEBjy9RjtEYQcqZXjunwDu83b8FAMo9z1Uw+WqmT+04zt76KBcv8tSs5b0Wq96EmzKU4tr9tl7Dvic7UP/NwycImmgWaek0p60yyP7HQ3ovG7jR8nHVfvyyIHcPPCpMzCH/XM40PmaJ6pmDeQD+/2BA3kHRzZuO/sGWqXd84+SjUlOAGoP8B3ffgFu5d0Lz3+Xy8N01n39fmIA4NlTjIVasvHonLVjqzX8nDlw3C82Ys3GujsFHZcxcM7DLOqlNuuzP++MxiO4V7LvONuHzDV/f8I8AjsyPm5JH/uUfcWpS77Toy6tfQH4hjMuk55ofN/PzzdsrDsuu6TZpeL9c3Ysp0d2/9U+d6BxhWC7PqlhoKf8NPOePH3Zpdm/Bn7Bl/6ljv8UD3jgDR4xKgwQux/1oixWzidy5qjGYi3NMSPOmthjkEP6okAWeFImzyiPSNDiDd5z1t+ie9maN9gC82wzwrd4jxZJtxk5eYYdJR9lM/Q/RsEQWhACKD3vnifnqb6UFKzEKNdYQtYf971DX2KU+866m2eBTcYCzDIGQjGakGnqvMF7KFlXXtUJWrzOByGx3SYT42cyzjoFNplgnTH/W95ABp6mor6VfHnZ/aBS/54sTjWJ/I/ApFPTrAZoqLRGIGpl1bxSjajuVT10gzskaTHBetQmZS5GTbTI9WAySYUziMlM57hLhm1e5XY0W2VjoiTBJsau3PY6cNwlwwf0Uuaie/iZrNTseU6iydwiEWy4PYZI0QiF0KFfm7q+ZbWz62xPyeaUPKtrVlY2FZegWg1lskaTCk+GSsPqv0lGqJGjygozVF0ZBAYYCvQ1lqAtEBe5HqqLA/qcBLCFZIGSfNUY4c/5o/C8EpgoZo7UVCN+HxhY3R2A5LEHjUA78O0WHwYrReNSJRvMTAGg5ktoALV5n/12+OcBXNqqxf2i5O9bfBjsIvlTtxl1Tep0M8O9YMJ2ccIYRXJHv2KEWlwXIl/knLslGb2AVa3PgbbqZ/8pgPmy+TUgGftBqo+hnaeIUJPmmF9mB5B3eYbt8LwTw1RSbqPqWCiQfOTGjn7OVGMtlEkGOm/F/D99dJ9yykDqE1LcHfgdFKSXoxJyzm/zA6ZYo69xEOQfIED4kVaNl1kAiDHdS1kTSEzmUUqAgXICqcZdmdXtc9kS1+ivnbLpfpUZauQaRkop9TzHUMvYqNdYjjW7ZM9NEtwe+D2zAuh5jgpKeTWJcTllIGSNDNdZpEWCDxKvUyXrs2yaNxrvYbJ/8zUVXiJAV+SeDSbcUqzPgKH9X8axy6ZKqr4MNa6xbOO98zkZZ0wCVFL23F1nghxVbh79NMZUCe9dnPAW75Bo/poGXW75ZQ2AidY63YenLHONgvsmZqjZurFlpA5ZPRmR5jjWon37T0n5eryVNFnsBuPUey5w6MclRjiYt2O+UQ6cSR6jB/S2CVtHTxnaeWrYzsDXfK4fCWZ9ipMItxCpTJiV7KLElM1T5mprJTASWbE9yXSSOdqhj8MI4JQFgZpoAFLLmSKzERkQNX9ud9FgNzHIemrc+de9v9F88oUAelmXYILpr88n14A8JDaRwaylrFYD+bcObYM3eTcuhDJ5ioyFL5tMhuX/JmR5igfMsuTAUHeYG6vAkEZcSHoDi0y2TkIjAIcELa6yEn4kZfJcdWZTW+JhWv81ppDkMs8WdWcjmWyywSHtkIXzwMkJXRTYjAeYuqr3mOGBAz+Sl/bSjhs/7wNylzkWHdnOUgn5sroUBZ9Ay+QDxbbC8DiKq8q5i6yJ0fOvsYSSx+Svp3CKhnej85SpkAujXl2sDVJsu4+BHlaSOZxPFxYwK0r4CjPc4UYUeMYarIbH4hpTwe6yYvQQGRnvMui0VnuglRj1lLGLPMJS3vT5Y/dr3HZKhLqHmqwEnOYpc/WcJNVMn6sowvzYQc4uGvF+RZyn/AaeYi0mPoGg60wE8/Au10Myfj69bp0JL0its64J/B3ecvC0hrw0TlzqIZaq3Xe73OZmmNCKbSqfE/lFmARinQzbXna2r6FuX7jY72whNc8CewyGJ0uNzDMPlQ3Gg1I/wXoA4HXS/Jf8N1Gc3+SjL2Lq+Tv5+vWvaMtVC2a0n8QBmCKQsYV9JxjjR0F+SQccjhxQyGJSzftA3thW6R7bbLoHnhPLLwHsw9l9D5jIYqyzAQwoyvj7PHBhvuD+ZDv+ZwUL47iPAWM/w0A0MZeWbd9YIUIEArBM+P7vO2jTop3ym3Bg54IDcQqScPYYeWAWHmO+Z6cNDARpYkBbj4NpPeZrF4ERT0xi3Hm5nYIb7DatQ/dN2qjvbHqAReY1H48ibdaVA0khfcblwZLA4tv9ib3nzNmDyYQzCJP2+1/s2HFuHsHDIqTf8n3DfP0CoOzBQM28gWG1mjPVnmLJqT8mGI+nd6H2ECoPDRSlgQGSlzAg9yfwZNG3W7LPP/zUro2z96H4mX9mn2B5ngK84gm9WQOx+vOEhJaEHc/jKrDoPnA/8uN0NuFpE2M/PsQSkrN2rmoPgRcc5Lxg39Mt+eyAnaZ0ngDHFHpxWjJAtCPjDMIewjsxnfdjbWCMwYQBZlfcO68ja2Py0H3/nhu18Tvz6/Rq1j5/ZdjAtPoO0Av3ltvXTedLtGXP7nOIh6mcPTRAnh7CT49im4WZuWQsyO4LGDP1it/rlzBQsOT3MDYmndeBX8PeL/nSv068bjPJ43F46xjYteyKh0oYf19n0dNnLfBAEkgV200SHHpz0GqTVDwbrUlZD5NySbVu8yob/gy20IMaMv8uMRpMhfd5A3lXmeXJdkgWjT1/FXkugdVc4245IqmomEvWND5mkTne5c1nOu6SCy3wcjQ6VTupwSmfIC3Kj0lHKq9UEG0pntXTYnWNUAvGmNgIql/Nm9iksAU2WWA+6sFv8wPmWcAsYbpDDbHGZLAWUzSiiZvyZqZM+Iu+MN72iU6qmTUmSXOMGFoNuoKV1+vMiEnWol5vkGKFGa5GUzrpzA5LXZxj0YM/TOWjsdU5e4P3gnl5SB8lLtEiwTLXWGeCFslQ6MjeJuH1tczd5b9V8drSFAi5AF4O6GPMm7ACgleYoebhGmIKSgG0wUQwR/cY4iNussYUY2zGeGgdJQBbvpLyGdQ1J1VPni2O6Q5CAdiaY4INBxK3g80JxsCUd9sBffxDvu+gZy78EVeZ9lA8AxkbpAIwUtjbIBYgKDshWQcdOBNTnm0C/cQElX/lBBuh5unjgGss8y3e/19qyvk7/Vq5+EKsDx4wxTKzKLzR7HB2uUg5anL5sm1gckStrUeoUe75Gk0SjDXavphVcg4QnHCDOwyy67W7pVfpOhGwuzfQy3zDAPsUDWaP/gYpkha5zuLwS6wyHTZTmmvkmdbFCX/G91jmWoAtANON1QCZZWNwcqGTVjIR8nH5QopJutzzOwH8C2TT9QyEYqrm4t1SysC6G0d/hVRVvRxQTJgXnVk4WVKvQGcF95h8M0mJS1h68Jo3Q0y1JFLOTvZCrBG7aFBKmV0TQCORotebKYe+1m2SYI3JAAwFKM6yhGSxOgZbN2cc5M/FXNJwPrZJPbdj/tY9OLh/SKplVlmT59abei5UB4aDMSmZr+bscdbZJsMys6wOv+BKvBMLGDr6JVWyZNhmjSkqPV/lZRbifK1wNZ6blZ6vxnNduQDNRILywFcZZM9ZxCdYOM46lUQu5gIxIOcai6RbhhUsD7wUzOhW8isRcrFJAQvW3KbX5wv5OB6k+oIZmcM82gtOH1tlmjs9v8fa8PNkvXGi+XWEWqzf/yHf5xPmWWWa6ywGQFjzXAA9B/cYZD0xgRiFUlMuJObZ6HnBffQt8Tjr87NUlpJ2Z9hmgZfZY4hZb/RNusTaxtckxta0+t3faD75QgC9X/AcWQfopCMGQrteIxOdTnXG9PCQlEE0WNFNxUySkbHRhNuBDfLfWGYWRcMrtVZAmaGgdmELkDl0VFwyVnWDS4wGuCV9v7qf42ygFDKlPOWocIkSkoBYZ9gARlHjBfB0eRHU8ELR0tYsPnqROUYp8QiL5646NVpgXMYvvEe+f4YkJwOZP6SPY08ZFbNqnfEoeO0BYGi+giZOvD8mXxB5xmmchFjbA2EvJj+xtjJe+AgZF4AKVqyq46t9UiKaxk9dvJdZiJhpAYCKs9Z7z5tbD7LLNKvMsRiTszxY9hjimG5nXZrMdYq1OJcZp73WSYf2vUUibmIlxvZxwAbj3OQ2QMiei4x56u5YTGQqlAQaC6yU9Mck4V3RuVdKnD4H8A5vIU+8XQaZ5xMmnIU4x2LIVo7pZo8hRtimQRdrLleS14weJpJzKC5egN09ZjwoJMEmhSiodB8OsovMOtXRVQy8TKSNrj8YHWgBkJdcIiJ5j+45xaOPs8Ecd/mlB7V82V9f6SI80CgDo1B4EQMMJPO7DJcvA1cMCOh8Fcg6E6mJgTtVoMcDHB45YypvDKe60miP/H0ubx0e8J8t2Ge5DCgcavhc6MQl2mmoRWAennyn04BAD2HgYwzE68HAviLwU2DZACvJYjPf8n1x9tNZ048zZ95sZyt2bCihtOkMwaptP4fvFzwjUQzwLOPYm7PPuOjHdRED3JI2jnzD2Fp1l/VOeMIsSQOsajVsQwM2vmdPfWx6oD8Lpx8beNNZcG+8N2n7uO0bqMZ9l1S+ZpLn/m/4eH3TWZYD5ht4+SU/lic21h1XbDtVAaTL/rmUAUKnzuLigoO5AC/AvX27PnKqlUc9VMGTX8/cr67DfQRPPzLAl5TJrwuXMablJT8nNehP+bmUfDdvgOLpeRCz5Uy6l9xz8D7hhUjT2ZX6/GfEqzOJBZfs+zkqO1uuavt3+RWMHdnj5+ySfWfni+43V7BtPykTIHTtc9rA9YqBcv1X3Dfyie/zZTtnZ0d+3vYtWIMB4lrvGLBz23QJ9IQHepD3YynTBr977Bw9eWSA4dd7/Lv82jr10BsxBE8dzOUpBvzqsXXfxjDtQPGTFTsmhuCML/9LCw0DkS5GwdzHQaTiCXSQXEtdcGvSTWLhDXvBLslQC6b+ILthDyIj8w+5xTaZeL8YGWLR6fl7QB8PmCRLhTX3axZDy4Ap89GTpcYN7oSPrMIFDuh1UKOC/I3Mf7bqbHXzRauTDpZgni0adDHDClVy3OJDxr2WyVA7VwfvckIX7/AWFWftbDAOWE2tRZsl55XDN8mUK3sALDlgcOJ8KLEp8pQZ9wRD80A2D60TugJolORY1jQfcTO871aY4ZEv4FXbWvPd3pugify3CmxSIxMSNcnZxj15WOyfXmfDJWiGHcwnzLs01BQPsrsxVcl4sOtqHm6yzkQoeLrP1WP/gn/KItcB4lp5j295nWb7pLWIwLhj0kFUWGQuCANSJbzLmzFmVpveJ0GLgqc/rjGFqYNmo9Frpue9pDmmixOusRTHLPDVmKAWyqcANQvUMCBlyRvCLRJsM8Iic6ScidPHYQCna0zxQ94K1lCLBN/nu5iaZzcWtlKVyDxeoOQcd5lngV2/php0McUDUi7fy7MVazDV/2JpLvAyCqK7yUextppgIxhaWuBvk2FfnbQv+Utr1bH9x8grVICPElPBWHWmEjoJpU4dC3vI7ewj37sWCfZSBtLmWm3pf7pRdynhITe5HQCFyRB3Y+w/5BYLqXlKXLI5smeAu1x3EMJIBmLQmkVQN/9J+dMAtcYocoM7TLHGdMtYen2NAxqpLvoaB2SpsEWeO9yglBilmUgEeKZ7E3CyTYqRRo1Uw8DkBJZwLlav1pVd/ozY9rXiQU9vvH+FGeRnp+cO2Bxl+7vphJxB/32vnY+jn/sd0oz1aY4KQztPmWGFNHVWuBprm4mdx8GIFKst3yoH07vGSDCS6w5s10mzwQTTjVUuUmausehsV5PSGlerxiiP3Ee1m2SrxXUWSbVMJXiHGxwMXGA9McExabacrPQub7rvnz2r5D2ouWyMIrs+l6U5ZtJVfZqXBht7LPf8DoNYuGnOz1uVHDe57c+uNhtb88ESs0yyxizLmDzV5n5jfzcocYnh6lPkO/oht8hSZbCxRzmV515iBqn5tj1k8yDVx0pqhpnGCjkq0dhQwIoaXwodbZLwxO0Htm0f92Vmn7GJgjbhTNhIHweRgNwiibHzRoKEpvtRwa4Ak/ufc5OPOMAk2Flvps2wQolLmIp0xL1hH0QDJEkrSFN2TTYDvzghhUJaAYaDbfAffn0hgJ5ACztpYgztBfDRy0Gkeon6KbBnj0EWmOeQvtAfJ2gyxqYDL3ZhXmOJi0jTn/QHUe8zXT+zfTyJSHfrohWDaTXDCkoiK1AkTZ2LlClQjK6lQgDkLSLUWEaTTcf3dVKUcKUAEOn/VVjtMfhMYQDEw6xOOswzJ9iI7Rvrr91JBZM9VLEklhyVQLm7fAKZczPpPkepVahtMB4FrAJLxOASkClJxLYXYCOYlv6YbqZYiwteRbhJTOteiNWjWyOZ7HkQDnCZivkyqDuiMRpiL8DE80CXuq+icCvtpkUypK29HHBCF8ekUTqSusVKbFWRrJCTdcY5L1vdYygKHnVfje1oxqz2e0uonWY1uiV6qZOrfTX0vosmCe++pdwzJxV+cvK4a4dgpOPhI4NSXU8Ci4sUWGEGxV7PcI8pHvAyC4yzERIbsTm3fNKTTMmCMzafmcTVDb5Eyb/JvAEkE5lhJR5MMsNNONCsn2ubkuwKKBXIuUWeDcZDpvxb8UpjoEjVACJcIsjDc1JFB0biUurFwKZL/h4Bb412kALz9kd+ZEA7PGLfQSNMkluUV5284MSucv81arTTX52t1/9fn4KYRH9AO2W1BwODLvl+9Tu2tuhsJwFwvl8d7q1GBQpiAwqwSwFlA/oeF80H7jkHqzqdAVVf8P166mDSU7g65/uTxNiELQJIOl2wsT1714Ct9AAwa8DQ5X/kx9x0qeMwBsTknUXm4A4OqnWImeUJuqfWmzJ5szO/9Do78m39MzufnQrzaPCsfLbmY7dgoOyTGpYQPICBbTgQm/fjc7COHrguAKrHQbRPPWhi1FhtHXmXre7YdycTvp8N+3+97OdpmUi27b5AG8gaBl4wtl5njzPJLmPA2kvOFhxwgM5lw1JInS77MQrMLUD//8nGsyNPJNeSoH29PfKfNez7T9/x8a762LkMva/HfQxTdry1d+0Yaw9dDu37jcJB8kDGr5eabe/MAzROHxrTkSv2u/6MfT7d4+DoQ3t/JEsXCclvv7P20lm/DzH5dueo+ecpmbmzYNuo/9iYhtR8uw3brzi32M/qj2BI98SX+JX0wnmE7fAgyjuQN8UDMtTC3sOM87PeWJoNOaI1MC8yxmYELaj5p6apZK+TrPEn/EvSHIdMa97lVwqfUOpnmTw3uY2knAraEoP9hC42GaPmCw15PQ2yG8/uFklu8yrbZJhnIaxc1FQ2EGSNf1354+i+m/ToQTRJW17zmcVFM36Xo8osy8xgCxsliur4VatIcqvaWtuUv9Y2Iyy5N7CUAwDn0y1Vj3a7RcmEg33ywxulxKvcdumkeVELRBODw7Zl7EP5Q4n1IsuPGiNhXm/jZ4u5BeaRn6+pSZJRs7e9l6yRmPWa8PwiTbWO/p+m7kzFdWZZYp4FJpyNl6WKJMS2hB7hAZNA2+dYLKcCm8h6pU7a/ZJkIlQMEHmTQgBV3a5QkR2Q/Ld1rDOsuPSs7uuD7lADKTxNKpaCe3Wrtt92IFfSXS0ywUCLE8wnUgB5iVG3TOklR4V5FrjBHQ9imw3W4/t8C4ARau5LmAt20QQbdHHi9XciAO1VpkO6KfaRGs3/jH8eCpSCM2YAZOPSTZ0NJtyoJs2LruT4sr9Ofb1SHvhqyOglR9T9e+jEifNWTUvMBgnjYKCTBV5mLTHFAvPt9UOiD1lRrafGYx6V97ZUPwqv6MNSSeW1DZaCO85GgFi67qd44GnHKU57bB9zjSobTDDJmjG1EmYpsJSaBWAlZSmxk6xxjeW4hoqe3HvgnCvNXYPssp4a573UG7HOEtkC8OAcU8TJ/iffMAWarnXNqeseqgAmz9TYSlIsGyLwOahnONhm8o1rkeDe8GXWmIp9FqGmMjyAkmyTWPhl9+FpAJThB4eFIGqtBXCQMjJII2XPhtFWiUnWTLm4s0+uYWnSd5mjlDDA8E7iBmIF29prF3nR7zEU97zNb+ajN8WaK/2asXYWS3aPQRaZI0GLr1d3WEzNBTN5kD3yLWODdrs6cqRRC5/UXl9jrjIdwZ2aDy6XHiMrL815n2Wfp0WCQmsz8g/KqXxc82IlWnOuQJ1uLlJmJTXj3neG7MhTf5BdZty+yrjxfaQaJ5GovcYkFbJhAfCJJ8Of0MWf80fc4QZrTCL15XlyjpSd58lHkz5XK9CoOjDMhluUnZAi1TLClhqLNTLkWhb8s8Yke5iasK91EDWEAHZhCuarVyFztEOuVfmN55MvBNDr5TBAHAEsRffdEkUyQy3MI/s4DBNaA6MWA6EXuGIXXjoAiIx3kwQSmnfYcjzYBKSlqbvXWJJ5FgL1VHrXsXdKRbNXzLxADrGTqmT5AIslVqG1SYEWSWRqqOLKqNCNAHTEElRBpMQUpa1a0EKCOdfOP/BOXtp9/2R4qwe+mZkmkSS3jwO6sehyxTODdZWLjLmfyggyH9XNZrLLQ1I0oriRL4sSbtVx0IPXQjxSAebpJYZexhljaerUyLDIXGj2z/uM9HHIeRm2TI+1zbR3vu9wgxVmUDKMOkkqYJeZpUo2pNp9HIRJsHwZVKzr+I0dWkcS4IZ3cM6Dfu3CM8UN7gRb4HyRmqPCBOtRdLW8Wy0PSSAKzWPSzLIcN6ykqpIHqWPai3lR1BhBsiF5+4lRJyq7EoDLXMRo8dtsOX1bQRwqSNXNE0PxTd5FoSSarC46eNvNsT90hqLzu+5ul8vMxvVgxrWDNL0wFZC74ospXZ/6fgHOGe8C/9a86sB1DDTqAQ4NOKjVHPQRE+gtYN/AgsqfOhPJAY2zmn2efQfIcm7o/5mBNuk5DDTy1NO6B2p0ZCGXcEZg0wMyxOi61P53vQosESwjFMLwDQzQKdn2mMdko0l/jzMAC7O2rfQ87aCLp/a+s6e+jbwz5sTGE+jXgsJL8PVheNzw/Ro1QOXxgoc/pDDQ65L5Agp4qz90oOYRBoaVXeo7YONU/9S8zdjx8UkSTMLOl3wflmnLd3MYA6/hQKnv49nHUPtTZ06mnK2GA3yPgAXo8M/xvv/Mgdu6gL6mn+MBH+uajUv3BfvM2X0/33Pu53aftmQ4Cac/su33X7K/Ky4ppd+22anQE4VqVJ0NN+eebxhoxYD/nbB/JxPud4hvb8X29UntHPPO5a6dKft/xwX/mcIqLvjvwMDf/9x//q5Lg3fs/Q8/pS1hdbYlZah/bNfLk0PagSCPiFCVjh5PDb5g+51xhuPwgPsDPrTtCPg8e8e3uwNnP7F96MjYPpw2/b7b9+9PGFhYPzLvvTNTIxkwuu/AXs6/O2/n7Gzfz9EApP/AxxhnRqaI6z0978ErPn6nD4FF38+US8izkB7iC6rG/m69PucFgHiOJzE2l7HiJlngZWqu2FB42CYFRikxzgbtELEkIy4FGqNIjgrnA8quscwkaxyT9lTYZjA2xNaQ75Oax2Ns0sUJJS4F8KJGl+SuCSxc7aqnxmsBIJmWrERUoB87OLbuQWMyk7+V+4Bujl1qY41sKTAUFLHtAJnkOwJP9Bpj85n6SYFUVnuNxKJRwI8YDSPOcJRqwxYq5uV17Nswz7h77v17TIUsZtzfHazEovsNGbC1HcoK8/3K8j5vkGcrmpNiJwqYstq6FbVcjRHGKFIhxxRrVMlSI8Of8T1vrFuTWeoYA7yM+6h9kyfe+WakWIS6pjaYCEljgqZ7KE3Eeat6YIMWaJIVivHXiymC5NWohdiEN1L1vWtMRZ1pNdZxfK/kgkAsglW3i5mnWu3Q1wqLXGc3rpNt7nCDPFtc8SAW8+M6JkEzFp0VcuGBl6HGFA/cQ3GDhjeXa2SYZZkb3EHyTVNgGFtSLLo+BwPk9XidxTivkhuPO9gne5cGXZQYpejMWxEuXuV2qHBMomfrKPmCf+by7i/7a4B9BrHkYHmt9ddOA9jIsM06E9HIl/LrDd5HyqxGwsJoJMdV1S0Gcp3uaOxD28Nd13iWSoA62w5wKXRF6rcSo1xhlUnWYn2ngLw7Ay9bUyFlc5M8JQWwDLEXJJhF5ihxKSS022Q8UmU11gpiaG9SwIIlLdhQoTVgANkeg1zbuY+FxdgY1lPGektxEr7xecrMcZcRakyxxvOlX7HKtMloW9YwyFMODzzd5wKOZMkkb9VZlqgxgnwoc1Q82bk35rgJNvjzgf81SpytkouGlJhxAnuWmeU2r7LCVQYbe3QfnlJjhP+O/y0fDP8e5ZTNEze4w/TO5/RxQJ003yj/TTDIa24fJaWV7n+AVOMk8IIaI/Hva60lRvd/SYoTX6MbiHuWhBG3KNC6bTcx6A2JY+5wg82UqbXGna2pZkeCFp8wH2Dn02HYYJw/549ItloB6vVxQKLZYqqxFmMj2zDJ+FNOENpgggdM2XwxcAF5tRv7uBlgmp7Vd7hBKTUaPoJJWtx15WOOagRryldXJKEVZmKtvsIMC7zMRcreQMrEdbDHEGB+i0lv9gw61adCjlJi1H3k85jna41mIhFzaTd1vlo6pJlIxDM+RSPqkD4nJg2yx1rPZXYTg8whH53/8OsLKSF/yUXqdAc1W6aKkmwCyLtBHaPznmt2Wyfj/2Ly3OYmewwG6GNFYQPR01Xs9HHAq9wOAAjwQuSYD7jFMrNI1qgHphhzkloqUEOAZLd7fohxNUKNayxxQleEEwDMscj7vMEmhYgvfo836MUYfUpJ3WQM+djlKbPNCHe4EfIKUWUVLmEJaVbEnJDyItUmb4E13RxToOiGndsRYmEegBfd+287ilkD/5pxbAJcGqRYYhaZUlbch8G8PSzZZs2ThY5Jx3EpFjzPFhV/mKvzqolBf8vTRl0Eo7QW2fLzL3qwbhZ1PO27LsY2z/vmSNKSosE9Zmg6OFo4V/gqVGOcDfMl8LFLYVr+EbYjBVYvhWnICFQ3nSTSGk/zwRt5JvhC+9UiEQ8tsdt0fcpDYdy7KmI81tyCWNe/viPrvWkw6m+SVrD/3uY7bpBsiVkqxg8wA1jzvWii9FlJd+qkg0EAeApclgnWA6yTPACMEq+CUexIyVTOS4sFKGvhI98dgOd4/L/grPN393VSd/Ct6j8YsDTVzAsYUNADtZ9hvmRV4A8h96JLV1MuPxQrTvLVrKWAUjHA4MnP7N8kgUsu96sZg6m/FwMjLkPHDOHjRpGQ1KazWNDBn2ASyG9iXmg98PQ1DCz7DjALv5wbMHDtO8D/EQvPSHpa7kMCzDh1v7aOAcwLr2TBC+mXbN+QxNW9yTpeg+l/bLv2ZNnAjuc8rbUmJtcjeK5g/37iwRpVyWZ/hoE6D/3YK+bX1pnyz2axYIsBH/ekAYYBtojV3oDiogdINAhgLJiQW/a9lZKHajRos8qwfTwrO5CYcM+4F+z4Kdt7T7cwMOmKef8x7BLTKiZtlsde0mXGF6Dz20QQBU3IvXbuIhPw5LJd/ey0CpXve3qvM/tY9m1Wbaw6LjgY+DMMeJuz8enP0E5T9tTYStXPxXXaHnLf8PcNQ2UZTv8vwF8QqcLpfJtVmkvRZlPu2HVC1cdInoIu8SVv43ZaPLcf+9j1mQEu2bX/9WFnhmLvOb3rjEBnM3b0WMCH9jFdIIBoUj62wxaecfa5XaP1fR+fpAOuT+Hhw/Z3dFzy8ZT892cubU6euxaywBOoHBFBH53DtBOYUwTAfHoAv/4tICyf0MkYRRqY76tkW6OUOKSPV7mNpYSuO6jWHfWdsfKKURNIFqskWiX/LXKdP+ePUCCZpaynQ5YjH+AaFoJg0p5UPPMFnCV8IVBjBHkPm7/TcSyy9xiixkiw+K6xxCglylzkAPOtVYLuTW4zyzIHfpx6/ot5oiRcAWAmm3yAPM7ke6R/KxhOias3uY0CvMrkWWOKE7qi1rCgs1Y887f9uMxH0PzP1JjNUmUomtwm1RMIu0WeFWYiZG6CdeQrLIuWcTZcgWFBHkrqtTq1HvWumq7mxVykxgg3uBPXi4LwoL1YrZKN96hetwAK09DMsIL83UyVMhGMMEt0bHjtkg0vrPOhcllf9D1gylUZg9F8V6O/RZIxZ+tpDSMSw01ue8if0g+TKDTOWIkZBw1NyaE6tI8D1pmgmzp3uBEqh26OybPFG7xPlRyrTJN0UC1HhbvMOTmhOwgQ5p02wrF7QMqORf7ja0xRIcsH3AqJrvn7bQcRQqDQItfDb1phGAJojBwxgTyYtbAGvLbecuVMioveAFZQiepDKWCkbhlkjx/xB1/kNPR35nXBiRLTrDJGkZFGjZ3shQA3JhobMZ5iK2epkG+UmWA9auoyF+nCvKrB2JliVClwUGCwmH0KrlQAwR6WhLrKNGMUMXuBWoCEW84EHqFGdn/Hv687ALcELaZaa9HAP28vsMFEqOHGKJoklTITbLictG1/1cchSiCXx1mOKiVGGXLQXfYC28O9SMJ6PkBGwHrK5ZRiBVfIsTNq4/t89Vc0Eik2GLdrMGFz8XXuBttWoKq2pfGUjUIfB8602gq/QpEgRC5S40LPlxFqIeFUSMgYRUZ5RPro19QGTG5u4YbGEJNUd3H4JWqM8GbjXXbyFzDLpLF4nm244kxNhD0GOUjZvzcYd3AxS4WsHfvA89FUEYu3PDwcc6mIMVVXY5ki0GSsAohzVBnbfxzAl639Lax0recyAN/iPQ4Spji76MD+26lvs51q4wBg6r0TV6/J3knAr1lOpGiRpEI27K60/1o/Z6ky2ihF42mSNeZZQKETVbJIIjzOOkBcn7qnxjxcM330lFEeccV9SVMuZzao89ibaKl4BhlnvBrPZeUjSPFn1/UGO6MXSLbsmhALste3kWzZM1rno0qOR1z6jeaTLwTQkyGnigWBCO+4f4PQW8kWMh56IMNMo9du+8MuxSfMo5h0gUgrzPhFeBjJS+e7l0LGjVp8/AxII4abgLVFfyDqwu1y5Hzbu6wVcqwxSYEiij6WzNJ8V6wolQfAGJvI/HmUEtOsckgf8oFRYZiiwa6zow7oxTxNcmxSYIOJOEZRjAVgyfNikF3EFJMEo+IPfIFO+oyMHPNsxVjlKUcCqrxUNHEcO7IsNpjRsNtMsfMJxkB0ha6ywiiP6MJSwHJUYlwUmqGJRmAkEMcKbXpyFyd8hx8AoChpS9HJRWExxVpINASGiib9LOV4D6VyieloANVugHqaiATQrTAThRxAkULcfJIf1MhQpBCLBLud294FmkQbpMLvRh1Ok7WYifEsyyS9g6Li07T2dZedt7CY81ZMYirwB9ljhhXWGWeGeyGLEcuy/QAxvaDGbgtLC9ZErPf1ccAx6ZBil529IOm7Cnx10gE36h0PCYnAYXnoiM0oH5tJ1oKt8WV/dV0wcOr0CPhDDNwRQ0ryVEwayxHwLgaKCXB4AVv4V8/9bJEAbtJZZwEN2HtOP/X3X4DjlksS9zGgqObbg3barZ4Vr8FPX/pddl67wGejz/Oz/O/w08Lv8i96/nf8z4WX+KzwPD/O/x5rTPHjF3+Pz2e/xl/nr0DGpJlPFBjRbLOczp46UNaw4++/TMhB6zu+Dx5QwQ4GkNT8fZeAgoEsT1yyTN6O+2wfks4Oy80R4A84G+2Ssbc6ssa8evwQAzBb8PgnwFOTSn59GAPJvgOd8xgoKpmxvAX91V8wTzp6CCZkh84NUC86y27AAB/54HXM2DZXy8YWo+EAGgTAxyX37Htqx4yz7+qLBjCdPvTxadq5fOyBF1x3cHDLgKfip7R9BzN27k+x6+lhCSpF+3fHZdqS5QQG7F5wYHjRx6GAgXv7UPnMpN+5vAPRVb+mLhDM0tMtS8/tnLdjPPNxrJcdAOvx69QDUkicG8cB4CcWXFJ5SDskw0HS2n0bX8qYH2TNjjHdY8zI9HftfQ+dsYp7CfZfcil0xb+rgQGQYmp+y89DCp6btf3rn3OWbNmu3SeHwBW4nPfv90CQs7JdTyzD3c8wgabu0QRQtPviOZd8M+tMWI3BBT/GHej8GnzlNwsy+4/61c1xsMiVoqiOtzzC5H80yzJpjrnGcrCZLKFxlVEeRRe/xChLzNIiQYFihFrIkP/ElR6q3bRInAxwxhZflkhqCwUlgA5iQVQrzKDk+k3GgvmiegkIGailEB4HUPYxN2iS4B3eiuesJEXGljCWTIskq558q8bYKtPxTG7QFfVg2kEx+a2p5tQC9CYfBRNng/GoBeRdJAAhT5ldB1mgbcMiVuESs26dsh3NdrH7xAAxyVAm6kqBeEqRXWCeFA22yHuCo0mmc1RQoqWBV1t0uZy1iwaTPHAQYotj0uSoBKPL/HwtndcSY0+eqV20cMqwzZz7kklaKwBB12GOqqe/ll2OasBCliof8jqSgplv1kyMeZUsvc5OEztkjrvc5mYwNPOUWWGGD3g9FA+qL6d4QJmLDDmjUayMUWwxWnP2ksgGG4xTIcska7EWMqn6WjTktTAuYknJAngbdNHr17rWZikfvzT1OA8pTs4FuxzE/aNmtNQXaQc2BIa2w2qSQUSY4R4JmvHZpDe5UzR4j2/RIMVd5ljg5WBGTfh33+Cv/v8zIf0deAlQOibNQaovfLq2yNNImf91N/VIT22RZDuVieur4deNJOcCMvo4YKKxEWvVO9yI4BylF68yzd5Ar3t/GTg+Qo2h1l4AU93O4H2ZhbCL2hx4DsngJaPdY5BE09YlNudUgvm75P5m06xyTJo3eZcGXeR27EGtRoMA+/zRL6mTjv0dPNrngD5fPzR8Hqwi71C7RxtBZkg7v6zbgfsDej00cRv5AJ56/WzMU5sTphurpFoN8vu/cnlxd6y38i2zl/pz/ijk7VrTClvIUQ3A+wCzEpAMfYo18i1raCRbrViPap000qpRGR5AVhOyTtLvV7iKLL8qqWyAbFlnp986+gk3uIPsqMRO01qxxCjjrCNv9ff4lievWkqxFGTCEABGWxbkueaM2RYJbu7/FX2tg2BFZvb32Rh4HgW4jFLixJm5G0xwo3WHa43lYDiKGFJgkyo55lgM4DDjesLxo88DQNScZgzrbLCFy+QDfO7jgEJr0/GXIgepPhTCssEE7WRuIx0VGQuZcDdmITHPAgvMR8inGHJKMtfPvsPb7NJO+5WlRYoTxo5+Hmo+WWlsuLKtRYK7Tqo5oI/dxGB4zCt8Vc9pqRSSmHT3IZd/o7nkCwH0RJNN0vIHXhFTNreBPAPYnqWBlhglR5V1B0FSNDj2oinNMW/wHl3O/TkvNzXgysCdOunwmVC6SZuR1GKCjaD0CpA6Lw1M0OLQi6ZBduO9NUaQTPjE0eesXzC7DPKAKdbcd2OKtQA01NmVb4bQ/m5nHwpgU1KQUfLvUSftRrPlKETNe82Q+BZJbnAnuq96aKvDtsQ17nAD+X3c4E4AQAq5kNR4hG26vVgRG01d3zd5F4t+TsaDfI67pKlTJeeFx0jcBNuMuAiiGucXDIwUXVo/U7dQ201xwqT7xWjcBbaByXq7OGGWZUbY5gZ3yFNmngU3oBwNrzcr7jeD6SZ/PtH6VcQbXXs39ksMtIofm3xuumgwwXp0iVVcmlThY+RFkaPKLT4497kTL2ia3GMm2Gli7EmKLLZcjkqAimIqCug2+Wwz9l1Ar2jxI/7gti6esRVEZZ5gndf5MIDuY2dKKiJd6WY2Du0izEyMb5OjEmbi5wt7eSxeZ5FJ1qIzZv4VknpYCMr5yT7NMQNadX/ZXwkDlTpHMbDkIZZWW8JM9I8g8w3oBu4VsQW/wJsLwJKHThwRzCTmCAaRJKSnLovtHPX3vmjBDDXJWOXLlvJ/u/z27qJv90/hmwt/zfCnT3lx4ed84+Hf8M2Hf81/Ufp/8p98+ikvfvpzfn/xr3ht8RN+v/RXvPDxL/ndH92H+wYcFS5jQOQVA3A6UwZGdY56wAK+r6OEZ5mO6ayGAUzupUaPgVj1T41BVlBybd7GprrjQOWAf+eKfS/zJpsESwEmY4ys57L2nax48u+Rfb4j42P9NrDsMtaWS5QbGO3qNd/PAQerHtl3nQKVRWNzPS46G+wFf2/TmYg7Pt5Pbfc7XPZb9JCHJ+/Dw4/d9w8HvDwo5cl9Y7edNv2c4vtSdZCubPvROWr71FmAsWG/Jjz99mHDjx24/CJkh+17aWHegw6oCVTun/PxfOL74dLV7LB/T4+x/ij6Ob0C/J8tLKKz36+zT42p15G0MQUiMbhP57zHGZwPfXuzQMGCKepAsUQwLTs9jfbgyAFJAcAf+z44y5UeA906LsOTqgOKBWN+IkDYAdHiso/T2/4zv4+6nTV3tg+5gl3DCvao7ztY3AOPF11iPWr70g18UwE2HmbCU5OLd/Zj9/2CMwXL/p6yXfenut+7+NK/ujnmI25GDTJKiRG2I0hrxBUTf8b3okZbZ4J5Ftz7NUuKk1jMSNKoYImip+CJMZaj6pXZgwAB1UiUj5KYJmYOvhbARJ4yM6xwk9uMsenNOlv8dLsXrVgcQNRmsl1RsW/J8iPBsDEZ0Th5thilhMyxJZVqkeA2N+P5KZsZSUuXuUaRsWC73+GVWKSIdWNySauVezlg3VP1xF5T0r1Zh0+hwJE73AAMZFhjMlh4Tcy8XqFWFoy1/owKRWyRPYbC203NRSkANphghO3wS5TqQgtfsS/e5w3ucp0f8SYLvBy1fppj/iv+r2SohcLm2FUk64yzyjTm95wOhkPTm8mbLhH+iJvc4Qa3vB7aYJxbfBDXxQz3MOn0bng8asFugNsjrrpn0zLXLACA1VAzdDu7reCWLQe0EzxHeUSectRQ11imSCGku6OU2PJ1gRhtUuf0csA0991exs6HVE8jToDQ9b3hYSCqke0+q7HLIHe5HoqJG9xhngVe9sWsakD5S0paLFBRcvNdZ81I/bLMNWpkKFAk4+uJY8xrDYxtpKRW2dgozfW7/CWjGHCg+/m3JRTjFzwXoZA2140HI3S0ZWEKpiq7xjrj5ot9dMhQy2yjBNoMsce11pKDI3Z/9zUOWEzNBTnidT7k+eqvMM/L9Zh/ZB81SokSo8zv/A27CfNAFIFGgItAt3zDQHexpOUzV0+loyEi8K1Fgnk+QeEqXTTItaxp82j4qyz5tdNFg6bPd+WerwW76SJlPux5zRsFRhDIUmFk55B8y2wKpIZSkwGsefGAKaZ4wIe8jqWdj1Bobdo6aKCXFgmuOOnohC5WUjOsJaY4GLjghKMtb6T0cpAwYOs7vE2essukExwkjIii+16sazHYumiQbpiPZjExZr6viTx3eOUZRjbA16r7bGLvAcKPL02d7+z8iEnHOPYYosvVgtakGmKz53m+Xt0JtqLmvrKnDbzFOzxf/RXKIZB8uNfX2Xpe7DHo/ohd7CYGg0F+iAd5DDxPI2GJvFmqVAeGg6mm563YobMsUU+kKaWsgJVyS7YJYlOqoSSSVq2n7Uv3rf2fMMddlJVgzatUrK/3GCLFCcXEGBe9USHvzgw15lsLdDnYC4RyUdZfCqrINaqxvp1mlcH9Q6aOHnKRMiVGw65DAKulv1uopkGzdS7swyC70ZQc3D/0nIcE860F3uRdb+yZsu7b/CCebcIUmonEOTKSJYZfc5b63/b6wlxbjkk7gHESD1MFD7SpuN3ImDPldGEZ7p6QQn4cg+wxRpEuTp4BQITcNvw3KuLMB6AV7K8NJqKjZd5fW37j9QbAMOJAm24C6+5aQpTAF0vDGQpEVglOV52R1CJJw/djlBJVsnTRiIdeigZKiD3xfVWhIG+NPg5cQmIg0z1mWGXaO7iJYJLp5MuQWV3XFklSWFrW63wAEGw4yViq7jGY4iRoyjbZnsSFpWLIihHzDykxGudokrXY30WuU/B4ZnX71piK4lAdbPkXtruIhXiProtjf68VFCan1tiuO8NNzEbJZSTHOfAJBwyc08QmINOuiW7kNahrYMvlwtOsImPWE7rIOXV227siYN4Ct/gwJKd66Khzog6uriV1alokmeJBeOkIqFPHSiEdQMgsACbYiO+e5j5pjsODYZXp8H9RAb/HEN1+jkfYRr4O2t6Yy5Nk/q0+rBY3Yjycvw4SNIP1uMlYTFY6V6Kh59lyk2xjCgjMFKApn4cMNTYZY8DB0y/968zlfGUMaHlkIF63/MjcE60wD1cL7n93BQMpysAFmBgmpKkMWChAvYwBCFcg52EKtc/t94wCn53zNcvTTqx9hDGIPHDhskt4cbYRP/E/b/ufv8B84X6CsaN+DPwPmETTrR0yOUxCqyCDJjBvabE0jOUUya09tKWkHtbQcYF20usV+9nOvnu49dP2arsEDBvYkpnx3/0EkwD/EAOiFECAS5klDfUAi0zevjcz4/t7hWDJ5fLGpDsV2JXx8ZJcdd/35VNj9/X1GOCTE1h12Y+pgIFUGpOcgVVPapbyW5i3bfYPwJiDsAJAcVAxmbTzmBHA+THU/5Xtb+FFAzv52M+vA2Ud7kn3xNljz+FjdgT8Yx9nD3ig6b9rOKszYeN2+mMsAOSug01iGfbYOe28aD/r/APbRuWh72vGz2GPScbJ2vek530sqw5y+ns7/fednl7LfUt1Ljh4+dBDN053oPO6hXvkXjLwlKZd/51ZPz/LRAo0PdD/iofCNP2cOIgL5kVYUNqzvAAHgB0bv9NlHye/1/q9OXr8FDKS+4LJhssG8k2PEszbJ8u0pbhJ+3n9yMaysmjMP1pEynSnA7i//s2CzP6jfu0zGIuUUUouuU3zOh8Gw6uXA77ND1AC7fE5SZXsQTLUwvZjkjXkpaMwAzEVLPhqImovJSrKgkINUdlb1BjhOovBmrnNTczTNhNNTUkSJUc143l75iupVzYTlmxnIN2bvEsXJywwH/5tsvE4r5rQ4kA1nWoIKQ1U7GtBJGmW3mceyVeokmOQXT5hPhZkAhtVJ8nWRomoOaru41tjnk9CniUPIiU/ZqmEf90aU+5rvc241yvyL1r28I0+DrjOXYBggEjSJ3sdMYS2yFNkjEnWGHdJXh8H4bclj2IBF6qDJZ89pptJ1lhjig0meId/wALzKNDhGsvc4oMYe7FXJM2Slc8Weea4GwErAuFqjFB3xmCLBAvMs8S1UKtIAt6NScZvcCca00la3GOGPg74gFvBPBVLo0qWdSbYZIwJ94w8zyxUSF8Ds93R9TvLcgCK8lZUPW6A8AO6MAn3JA8CXFbTN4nJPk2iPB4y2POLe7HyKuSCSSdPwUEsXXKdCffmNpDgfH0tFp58GY3RuEiOSsgx15hCYRu/Da8MO0zxIK4vSVJTnLCbGIxmhUDZMnne6flPAav/Nxg3YkmrRCNhfm9K3E40f02Zi0yzGqyxn2e/Gvej1oXmsZYIn9Di8NciOEAkF/ltbzBuzL7UdDAJVetLyl8hF4quQ/q47udY0tg0xxQT5gcu4EpWVGKnPmCKicZGkHMapBhijwXmHQwaojw8TD2RjmtFhAyT7ptaTYSaPz760/h3otkKBpTAszWmWGeCCjm+z3ctgIJRDuhlpFWjj8MAb7o4YYWrwaLuax0EeytDDXlFGtBu81sllSVFg4nGBglajO//nDkWGT/6HHnyLybm+P9kX4uwBwFfCmHSSwC/PbNGGGoZY3qPQX6RHabQ2uTYfehkz7XHEGXy7GQvsMYUq1xx0owBWpJNC7QSq90ArAav80Gsi+XNOHf01wyyG89XgbebjJFhm3k+Qcq4MnnkR5jAvPMmnVkslvAB5iEnCXHG54nNgecCc9F8p+egGJ1FxshRZaRhqsJrrSX/bS+JZotNCsEaHKPIDCuBZdQdft5LDcaaPL9jxdhKz0sx5+nZbE/dXWS/1qCLT/z58nn+a4y0atxlzlSTAwNM7z9knA22E3ZNXqQcc2yVLPNHn/h8bd7/AivVwMtRocpXf6P55AsB9HTz59ly6Wom6NwCBv6M77n0oCse7IPsBYtLoQrqjgqEk9xR5r3LzPLAgyBU4FiZUQmq63kAToPW5eDSOBvMsxDmhHq/oqwVKiBZcJmL7GFBAAq3sGM1TwNJMSrkorj59wHGO9xw8KjPC8VEPHjleWIIcBcrXKVFMrqomxTIUWGdCe4zjcITpngQ7DF1ZARw7THII0YjTfW8nGOZ2fDAEBiqiVneHuax1h3HCkYHr3i3fI67mO/NBjIuNr273UDLXIsHkm7CburRQc9T9q66eXtIymo3qwwzm+SonvMByAWrcNvf28cB/5o/9mSm9ZBmiP0GRKFp5zONZC7WbZoMWcA462wyxlVWyGOO8RlqZKmyyRgPmGKbEZa5FmwBsQ7U6TVDzG2XhNgkrAJd16vG+C5zAPHzD7mFpCj62QIvh1mpFhgqgjcZQ0nPAgiLvp8q0taYjElZYOMKV891v+ux3V3fx0H24jpaw1K0jr1QU1iHFkhiaBrj8pi7XA8JiyYpSVHqpLnIb57e8x/1q8t83zoGgLL5kHVkHLzxhX2AR0oxPfJ012EsCKPHpYNHcPa+gTzpYTirwtkiEQaRmaMN4NTs3/0JDHj7DAMukhjI8ZLJXvvlKebpuDzCgKhLGCPM5btH//Qr9rmnGHDWsG1wuZ34GTLCfQyYculw5pKnzWaALU9kTWKgj0DHHox5+LF9Z+5y+7uLD/2zf+Fj5vJiHvrnngJ5qP3UP/NPDOzJ/OeE/PJ0wbfRIABH8v5nAGNS7sP0iwaw3fvMgygE5h1hst1ZoGJy3vScgZWdl52xJWnnEcZuw//tbLv+rJ/3IztnXDaPRNwHMDfnnx8w2WftJ0QicOdF/+znxu5sNj2tVt5rCQO5To8spZYm5H4fuOgS6B/bWD+R15/SV7/roJKzA0+bdl10OkOt9jPaHoTLRKotK8DPDJhOv0I7oGPYr519WC2dG4P5c9dG3vd7AAM/L9P2tcsZqHf5FbtOOi8SDEkK0O/AdvoV4BUfgwZtKXQLA5XFSnXJNw7kdvYAL/p+vebHJX+8hDHqzp5CxQNp+JZ9NjMDJE1G+3UB7DlPJJaMfcC9LYEnRUJC3mx6+Ah+XWeJhOi6zwNf6eZL/xpgzwO8TlhnnOssUvHwgwQtlpiNxqsYF8YisQbSDPcAgoX0Mgu0SHKXuQCqXuV2MCXWmSBNnY+4GUbnKtrV7Jpzz6Q6ZuXygKmQqanhKdBwjM2Q6CRosevP5TUmIyRtmlXSDjwuMI9CCdTIFPNqlWk+4BbbjJCiQcaf7Sfe+e/jkAXmvaayZtif80f+PJ9ghhWAYMKMuLxNTTrzHxqKMRpnIxZyMgJXGq/AT2u22UJdfkA6/j0sNVjP8EXmgkFmzeDDYPKrbumiEbW9Fo1SXJR98aaaXsBdlir/gHcosMkUa+GZbZYj1lxc8nAusSO2yLPBeLACVQdPscZNPuIt3iFFw9NBxWA8Camw1YqWqPg+byAfQIXZiTmUdSWN6i7Vc8Y0OY41hS3WcsibeYYVyuS5x4zXacZEMbVEd1wfJUbjvDboYp3xYIAWGYsFt/z3lNxsbJ1UjLPVdIcO2F3EAkbMyD/l14pJfC0ds+jS3fPAEtgaTmoOMS3lv2bHZwtQBQG0AdJLAbQMOhBjwKsBf2IylhhlkTlXdbVBxYmYkL/cr14OA7gfo+gg/J4nBo/wIbdCUq2m+xibNBIprrLCyyywwTj3EjMOfHXFWmit57J7kpqP4jYZVpgJsoPev50yz3VbH5iX4SzL9Pm+yTJrdP+XHpySDAWbFFAKyWtL7o8ZbOz5/WJkgg95Pcg9ks6PNTZ5g/eCtCBW20XKVFIWTvMhrzPHYrDHclRYZdrXThbSY1Jbe4BuMBHAaIlR/ozvcXKhE4CJxgY9tV8jD/EmFkSoxGcxFlsknMU1xFLiGmUucrn8mOz+ToBCuidKCbtn2wFMRhzR/iqE8oA+9lIGeC4M/C6D7LHc8zuBCwDe4EiQa1XYZZB20NExq8MvBMusTB4Fb/ZXTgPgWmCeUsK8Y2dYCVDMwPfxaH5M8cDXdJP0HR0CBLB2gzuMHj2mQYoRZxqOtkrReJpurdIkwUbPC4y0zGdP6+suGsECP6CXkyjuzb9+pGFzbTmVR4xcyfZvO3Nf53CFqwBB/JplKdbupuY0z07AmwbdfJC6RR8HFBNjyFbgg9StuK5nWGEIU9ypQTa9/xB53C0wzyZjLA1f4eTCV5B6EIx0lOKE29zE/EZrjkuZhDhztEOLJN2Hp4yZAQsL5xJ1FXwpFaGk45Wer4aNRxcnDB7tR+3ToMsYnn4P/W2vL8xDb5I1RinxiNGQioq+LfmpDk6otqS1Ve9KCRyxh4wFIRh63I6Sbzp7LkclmEGSdB7QFx2meRZoYgmhCutQV1ahBPJ6U0Ku0YyT0d1Ic8wEGzEZbbp3WsVBpxKj4edxXvud9A6gkk1HKcXNtcjcM2ah2rYelDkqMWYqJE3muM0jRsN48YS23OM8E1L+bctcC+ajWGqSbc6xGOlXmhTM7nkvUHFNJGL3NTCjVaVXAW7CnOIay+TZCi81paGKZquQFN2UYF2eDSaQf6Eow6IxX6LEBOtMesJxhpoX3tuhOz+gz6Opa/G922Q89agRYygjTD1EBErp/0qJ3Q7JTJYVroYkWUXWBOtxvUkaI1m1ttVOHjP56ru8GV0kFe9dNLjFB8jvr72dWjxclK6zyBxrTLkPQiUWI1n3o9FxG0M053C5AW81RthkLIyIJQmfYJ0x74QVHRSWX+I6ExHSAQSjVv40B/S55MV0fXpIbjAex3HiJb8Bnd0BEO+E3u+34HWEARd5X9APu9l+PwZiCaCqGuhz9i6kxfYCyDmT75EZ/p85wNFx+dz2H2Ig2ucYqLFv35MRsIF9nh148m+BTyH9ln+HWFsFIkAjEmCHgRr0rPzaAKAk7WCNJ/bZjqx74j0CVizFlyY8+RhjR13BWIOPzBOvM4sBLhk75vq+g04rGFCSx1JPy/bz/oR99ol7lJ09og0cveTbWPBjTQE/cwbjioGeNZcFC1A9a2IAp8tIzxbtuNMO7p2WDJs71fuytEGln2GgnjP8MjkbHz49d752bJzOqr6vSWdPKmTBZZ0I5PQAkrPPbZu1JfNbe9Ly8WvZ/uVess2nB+w6SQ84cOTss3TBpbEKXWhA/ccOBNaAV5xNd+TnuejXTMHG+nHJGIfpyzamj7UPZUyiKxBW10GPA8L4fvrrdMF+P5317xDgpqTYFT9+hU8MtH//ZIWQyD45JEBdnMl3qmAYfDxTUFvxY9rxfZ31/fixfYaUXz+Pzn3W90NpzKfnPBM7ZowFygDwDpz9jGBbHhy5NLpJO8zkoW0/PCGvePquglT89ZzvFw6AP/7MpOdnvwZ+CwC9X/AcLSwMQwETYtqLdQXtlHuFbd3mZix83uEtlLQ4gi0ozrMj1DWfYCOey1rYqu5R2JkCJEaoUaebMTa5wR3ka5yjgrzGwEIYVDfqWVYlx5Av7oCoV+XxN4iFRaleUTqlfJXLXGTXGXRSHGixqFpFC5cxiqwyTY6KMyGMDSAGxhibzLLsrAt7bksa9iG36MMWb+10vbbRu+oNJdkbw81UEZe80a1aVrY6ArtOXJYmmxA1wlPeWK6RYYWrAWTmKaNUYcBr4omoIwbZ4yNuek2eDPbhBhPux7sBGOC65UCZpMEVcnzI6zToCr8oC4sboYqFRwh8mHRJsRZqD1xCqPNm+25MGLHaDIgsIJ+ytj/jLhUHuaSgOaCP84ErSsvMU+Z1PgjGj9ntmMfxKldiH8RQylFhigfM84mvnZLOekoH+0VrJakrBtllmVl+wHcixVdJjC0s+ET+YwJBdU7sfPZFo9aC8q6xwTjd1LnnwJCCUFSnJjBfqjIXoyFfYjRYXFoftUg47ywfnwFifH9bJLf3mIlU2AQtZlgJ38xRSrzFOwG+GaGgEmxckTaUWpzZP+8zdxLr3w0/90p6zTfKARBIrnhCii3y8fN8o4yslqQqWhj43Zg7wcAxI2FMmuLo6DF5yqFYK6eMgbTGJOuMP0PYyFFlgg3eS71BnW6+x59xTHc0FJQ2qmtTaxY1fiZYR76DIkjI807JqxtMcIVVrrHMUuIa+VaZRPPXHGW+gmy00hzzfPFX3Nr/KbI0usYy3RwjK4ZVrpDihJ/kX+b2wO/5fWY+mgf0cRGzh1px5u0JqZCL3mMmjnediWAzS/JZZCyeSVpHbjDBUuIaI9QCxOprHKBU6j4OuMYSlhDfxef5r8U8MMZmKAyBmKPMS9QY0kq1lY9duedrgUXMHv2NHUuPFZoJWjYvJ3LBaCsmxujjwPz1Enb8aeoUdn6JmPR6lis5tosGY41NEs1fM8tSrNtl/6Qmm8Bm+QJqri2T5wFT/IBvB4PXGKZJut0qI+0NFSOQDVnTpWUhHiPUUDCTFG5JWqwxycbA80yzGrZdut+2UxnmW4Ybvcm7/JC34nfyZhSo+BE3STVsvA8GLgS7cZQSx72dlMkzsWP3h5SQsnH7EW/6s9eA4LWey5zQ5VLdJD/gO/T6c/tve30hgN7P3XCwLU+wlCajxNsDfN2pu1r0d9GIhBY9JEUJ32SMv+S7rDATzKoVZtikwAOmqJBjiWvIZPmELu4x4z4fG3GSNNF8yOsBoGWoOZtu3QuvLg7pC6BG4QIKUNAr50w/Y47Zg7XhGnJdlMYmG4riTIUTwJAXC0ZnT4XniGQXQqrlSaZJQVT2bi+EEzRjm5KAqCuo5C+AeRYCqRfS3uUylLozvpQa8x3edr8Uo+uOsE2Bdiy9fFEE1tgDPB9dGkvIbUSSURcN1hlnijWXamS9g9FACbkWJFELttsys97lsyh3TVgy3R1xeYc6OpIuCDRKuSxB6WzytDGZhunXJSUw2r89YAT6bjPCNKtsk6GXg2d8EYd88XCHGw4MWwJwhSzbZEKqqzG1dOFa3Mg6DgHLMh1ukYgHlLyFtsiTpYrk1vLT0WJEC58NZx9cosTH3MBS4zaZY5EDev1atQ64JiV135TYl6EWILS8J4+906Su7SRrbJMJ7x0dc9IfqPMskHL6ve6hOt0oKUvdvD4O+MyNVr/0r0EM0KoaUIMb/ndmMVDoIfAzB3MAvulAnUt0TwVS1AwEOS0ZoPD4U6DlYE0BYxtdtp9Rpi0XlW/edfvZ6UOThz5xKenZvieJXsaAkO/C0+9gQONbto+/+q96I5WVb9n7zv6Zf69LTdOjBkLVHrqP3Qz05x3oe+pSxKRLId1njgoBknR8A2M67fiYZOzz4MzDK/7/UZPj1u7b+PDQ/r1z5GPVY9tJe+hDR8Y82PpngazJQTuyGPC5DPzUwVJP6H2ybGyqv593n78EBux4UmqxBNzFmIRN4A/8e5VCfGTj+bgI6zu2r5WyS2eP/Lw7S7P2ru/Dp/a7DgeEMnkDqvoTGMj0yD7DJftT3/fzNeyS0DkfO0+vPf0RAertHLUlsY//lV9jeYylViCkqsmke/NBgFXDPeZf+LBqvnHs+3n0lGByfr7EZrtgycGVfdrg5gAGWBYNGKs/NBAyAkUEgjkwWfMAFQqe0Kxz6tvMyKvxUxu7jh4fWwddiw99TH9mY0/Zvud0x8HyfUudPtP7em17nc6GDQbra0RS8HEDVj+DJ4t273SnHLR2+frZU9u3hz9yALfoLL4eu1/7elwO/dR88+oe7PGcM1Q7OoEOvvSvTmeiAa4+sIXqKI/4gFs06AqmmcIV9GyVR+48C2yR503eZYUZ3uVNb/I2ucEdVrgaNZ8WxmXytsgkH+oKscu0MAPivWrIlR10GGSPayxHU2wJM+qUdNBCPJaQGkBNMHmwjVIKloal9W4GGwSI5rAWzKoTBLq1SDpQU2XFF4liRaiJp3E0sKyIJJMtEox7Em2OCkUKbDDO23wnmFa2UDaA7o/51xGCIc9ojU/FeXuSk2Uc7pKyRayLPYZQyIOUNVLIjFIiR8V9BMteg5jyQqbhfRy475apbCZZC9aDwFstpgbZ4yorZKhRYJMVZhilRIFNhrBQkFWmucZSAATGhuzmXf6AHBWus8gN7jDGZoBo51mVCcynTPIxNbrVjJd6Rg3NLk6YYQWl5x7QF6xIMB+5D3idogOD5iE4Ej7Dh/RFI10Aqxbn583YlRK9wkywYyT/3vQQt1mWQj0UZveUQtIncHObEUZ5FLWu1dq9Xv9dDHLBFnlyVENirWugyFiwFwtskqGGTP8rZH19l6ThxAs1/MUytOTfFnMs8nOe/4JmoL9br+d5RJZqECTk865AGSBYaFUP3DvP6NqkEGvl9wdec5bkIS2/bwEPOsjGPFVO5d3TzQI3+hrGZv0ef8Y0qyRbLQ5SpqqZaK1zrbVEzcHwFWZYcSutRqqLIb+eAWo9w1TImixx3/bhgD6utuw8m1fZbrCPAA81HIm5ZplZX+N2BwNYbFgRDwbZY7plVj7TO59jFgS7AcxL2jnGJiONmq9ZH1FJ5Kj1DJM++jVi1/ZxwC8LA+wNGJtMKcLGJjaw83U+RGnXYpHJbihLJT533dPMzTO/myEHzKZaa3EMBuAbO2y0YUEMhnEUkIe+juc8XlBPpbHgnBRFZzgqPXiPIRRAssE4D5hibP+xzznGKDb5fpZNCgZs+rps3T+/wQRjFLmwQ5BqACddbcc8bj6x1gzq27dqUYB0vecrMffUSdP0587o0WPDOFIZyj1fo8YIkvRmqbLtLGnZToxSotDaDBVjzkku24zwPf4syCtKbR5klxojDB7tk6TlqcgVqwMSo9GkkK1EgU369p8i/8EMNUZ2DulrHfDH/PeRxbDHIGuJKWqMRO2xzjg3uc1Iw0I2jJFqzOKF4d8BYJlrASqPUmIpcc2ITMPPkd3fCYuBjD9jFTgJBraOUmKRuSBfTbFG8zeE6r4QQK+Xg+hUtXXTTSqO1utmOp9ee4dX+Mi7sBVyLlU89gfVCbf4IACkPg6YYSWKiDxlCh6zrYtpgg1nE9nJVid2gZcjmVMgnR6m1vmsMssyo5RCDimtfYska0xFOphSW7bJ+EOxN5heKZcaKNZeDKkKWeZYjAlHwN4JqTCNlf8KmD+fxks6eqXSysS0RgZ5qmQdUOzlICQKuiFNvqHkUaPx6vjWXLa8jXlwlMmToxKsQbEe1Sm9ww1PuzXmpboLMtvUDaFJRYnC1gGtsscQaY5J0gowzor3FBWyXGeRV/nIff+s2yAfwbbPYZ11Z/VZh/zYQapkFOQjHhKiIj5BixvcYZwNDr2ju8tgFNHqYMt34Jh0FFdgnfJ/Xzqj8AxNJkBcF/LQ0YJDYKi6OTp/EcNOxosyS55bZfqZsdZDTb6Juo7XGQ8W4ivcIUclxsAksn1xTY5QY4q16NT8+6xWYx9YUtRFynGOJQMSqKoJVebgWnRJ3p7wDpKNmwH8Ar9rjISv35f+1YExmsTmGsBYUc4Y46GFMRwcwZOHUH/bAgMeVs1zrXMU+LZv6hsmg0xnDQtbcICBfQyMUxIn9n24Rx1lDIQ6MoZThxrgRdjccVkjBLPsQhV+9VIv7MDTgqd4HdnvBFx1CGD6E4K9lh52cGXfjgv3Cjxbdj89SRUL/u+cbSPnjMD6Tzwg40UDxU7d1wx8vBrmHZe55Gy8fqAHMt+C5140IO7MAVJSBsCc1UyOjPsR0gBecDloCgNAn8LjMjx+x3ztDgQ45ml7wz2yP4WsfeepA3fsw6YAtiqQNdCuPwVf77H9zM36dxfgoQcskLLf1fcxQM4ZaqdblijbkbGUYgbMf+1UUt0dly/P0JaTiuH5BHjFJbRlG/fn5p1xBxzj/y4bc6/+qR/XNfO6K4za9XFasm13OhB4edY2fSqftwTwf7Dv4rKPY6+NY3fCZbHyLSzbdUbKgOr0W34tPCKYhezT9r9z2SsPfVzlf/dN2j6KW/7vQz9/+He94sEgHg6Se8nO4+Oiv+eChWT0D7jk+5Lt3+my7d/pZ/5dK5hvZAI6XzJg9/IA9Gcg/Zp9NjPj4/3Q7qcnNbs9OgTYJgmGXoeA4R1j2KbluYefvz5wVeWX+vUcvyDPFvKQHWOTHBXuMscINa56oJUanBZCUOJNfoRSXtVg6sZsSsTIV3NRflBrTNIiEc+9uyERNYDsOneZZZk57sbnq84Qy1L1nMR0gA4CpdToNS/kLm5wBwAFv0kmOkrJ/bGGSFPnImX+R/6IOe4ywTq7WKpnihMmWGfbm9HG4N+M5pvqSUl7vsefsU3GDMdpp9Ef0x3hbCcOEADc4sNgL+gZbGP6rstyB2MxteVAKsCEswPFrDHPwSxz3GXNrTwEKrXBh3QwFLfJ8B7fYolZZEFy4jLSXQbDgznhtVOOyjPqEqlybAyGAmDbxmxq7rlfsdJ8pQCy8LyTsL3p5SC8F1XrSM41zX3kVyRj/l6MDbPOeHjjHdBLLwcRtiFLmEOMTTnPAi0SDiBOcJfrSM5bdTDlDjc4wUAQAyJ3Yztgtj1JWlSxkJENxqOBb5nNZnvTIBXgZgslRxpraI0pNhlj1xeTfRzwBu/TSzsgZIUZKuTYJhOAnMgBC8yz5iSJPg5Y5hoZtnnAFEVPFu51woUYNgu8TIlRHjDFErNsUqBCLtiddbrJsxWN6QOvpz/gdeThuMp0XFMGkv5mjJT/2F9f5VdI1lcnzeD+IQoKnGitk6HGCSlnY1kY4x6DLHIdeb9L2j7LspNJernDDfKYmX9f6yAIA4PsmUdZyiSANTIcpPqCtZRu1VlKXGOFmXbAXWI0SAnbjEQzRKDKHHc5oYt3eZM+v0fKA1+NtVElkQsCjb5fklmxqqtkybPlDuZ2X2luz7NF1cHtMTZZZpZKwgJpisNfI9eoxhiJjSYAfDM1Zmvl/V8iKfP2cC/bZLjNTbdKGHMG8Ux43lmzYtvZqfbcybh/ulJ/weyz5Cuea7QZZ2Y/dUKGGs1EItZi8mvdY5BSyhRVIgABzmRMIb9xWU8M7h/GnCYmG2DemS2bp61xY4SbkwtfIcP2uWemYTF5ytQTadKtenjg7THIFGsU2OT/Pfr7Du5tIosC2S5knXWco8IDpqj3fIXzoaK3Uzc5oYuqJ9Eek2akVWOvZyDWumW3RpBi70NuscJVNjHWX1gwJEZ5jzcAUEjk63xAlgp7DD3DShXRqdTzHF1YSreYrEpCHqPI16r7Do4lKA18jWWucZc51pjk3vBliomxUJPpeW/Nq11KjDLPQjTUWkkD5GaOPo0mEeCA9XY06OQ9ep1FO2a/L7acVd3HQQQISTIu0ssmY1xtrTDGJvsOlP5try8E0Dtvdp92yWSeLTfCNYnhCDWusBpF1JRzfoxh1ghZg9K3xFzSw0Ydujd4L278OmmKjnTrgpdsNUEzisglrsXg6QEtdpmAtA3GIwQgw7YDILZvYjhpUgJC56wbqNtPCFiRo5tW7KUiY4ii30c7pTRPOeQS8ubYYBz5IKigrDtII7bYHoPub2ByFh2XWJFCenWhZqixwDzjrDPOOhm2SdEI4FCFmQDZQSxlF6xLO8kaE2xEUZajEgy0PGXWGee7fD/OhTrl8ggwmYwFeshDxRDzXS5Roo9DFDCSosH5MBMVMWtMPQPy1ukOb0UVDjKxBAI8E7gmYOnYu4iSnIyxyQjbziRMh5xaBWXCQcgUJ36OhqIrK1ATYI67XKKEfBQf+P62r7ctGqTYZZB7zHgU9sgzwHCvd6ZMSpRijSnkuSE2aIoGEx5xvslY+BF2YQnHfV6gdnES8dnq/kterqLzxM99njL/mj/GJOe2MFDh2U4kO6bEJWTSXGOEBebpps5NlzitcJUHnsCsl+6F3xpAz6WFxaKDMiUHrbCEUxqQy5r3Vv8lA+s6U3B51MG6CwRId/Yz99w6gutZmEick93+SwKEANrBDAJBDo0d1ekgQ3/G2ESFLPANjPH0bzG/vX8LX/3+IbwNF/4UvvZ/27dt/0vgT7FwjBXg/wH8C/N6q3+KAUvuC7i6aNLWjiu+jxeAuxa2wD4mZRWrrYn5zPW4nLFkEtlOedcdQeXH9r6mh2mc7sDpR/Zvt6Cko8eZX9i+JJMOrDzEADCFbnwOYz0YCOW+gs/NmddhXZLKJO1kVAworB/ZMVUeGmjXOWzj1Y+PX5aQN/dfOeeXV8CkwUVTVqYFFBacSfgT369EO0DkrOYSzaR59IGPV79v65F9/qxmIHD9PsbCTJqsmBx0vOXH/L8BKgYwnj2y6zDtPoz1I+AvnDWGgYWdWQM474vh9pqNV+ewg3H7dt75b91jL2nbr7tkt/8tP54rUKzafj/52I4/7JFS/p59v55cuqvQktWiAZAkMTBXQOM+FBd9nJ2FePoEKp7Ie+AgYb3sY3/Jzmtnv2/H5cA1eQimnFGYN/Du1EHwWpkAuBk2T0Hydr7rkl8nTFZ9umPs0ULB06v1yjsgn8PAP11TSUL+jTNJ+S0IxRADSwyAA3pjgShriPPsLwUhjPKIaVajprrJ7WADKG01jSWuGptuiS3y3OFGsM1nPXJZzzl5kQGR1ijQTgmcSuCVrYrSALUwFUtLyhMtJJUOu8KM+xSPM88Ct/gwGF6vcvuZRpqsWtQIFrO9xCgVB5yMBWgA2IZzeSRTXeIa5n88xKaHSlRc8WCL1e1oKIqFIgBFjddxNkIKueeL9SH2GGedORaDrWBWNhvOZugmS/UZUM5krpvMcZc3eTfOt+Sht3k1GC+qabupc9VZbR9zAwVLCCQ15YR5/JbJU3BQq+EKF6kythkJNlqJUe67BFRWKYvMcZfrNJ19ovGB/y95fxvb2JXmeYI/mRSvSIp6o4K0aDOSDL1ZKsupqNBY2eGMdLpsZADuzZyu3qypqZ4uoBsoYBbbHxq7/W2+DHaB6cUM9gX7YXd7gQa6gZ6tmtrO7uzN3HLDOXb6JdLRlltRoQxFKayQFKSDkZTJECVRFEmR4o3YD8/znMvoBqpzsWNstZNAOBx8uffcc84995z/+b/g2DZbLLBPhiXuIKEoIs9LUnMMswop12cbJJxkS5JyN107m69WSufid1iiSlrnuBGd/3ed8uE2yyyy5eauxmJskOBdrmMSXJO2GehtHshJVdQYi8/YQrLpHla2lGzo2sLRbFZ8wlzlE8wo/u/yT/DossoaeV3k27rIgBCT02YpcY9Fkhwwwy5XuKXrCpkXz7PtFvotolzmNlMqkTfvxQgdNnnl15aY/cf+esQLZJuP3BplsAPjvjCJC6EcieYp8/62kj4iLLNBmopL+5yiTKYjc/yxZp1E85QxjrnOu0SV8XUUEq/sCF3SvlgchX3fMaVtvfhjfpetkITVZCkx7h8T6vlu/TbGEW2ivMX7dIiwT4ZxRNU2zR5/gx8jUseq87W3TQXAMZZM2i3ep1eUrSTreQNnRCK8TsxvcaF66gBJC+QxX8pjxomcPSFFRcBAv+FYThZi0CDB5ugCgPttGN89D6IKppq9QVtZuKKOEmZdGF9CcjrrDji0a5uizD4ZDjzBK0zxJESYHh/yhqsDYyfaulqSv6dZ4g7mgwcC7psPobWTgX52HUkO+Ff8DW6HLjtiy3xH2LUlL6uArYzXseYZOQpYCEQhlGMrvuBwgp6OU7amDOHzW9UHDlN4jzcpcZGurlenKPMj74cOnLekYdswidBluv4FgNsouc+8Y3MnqTHNrgvzMYZ5jiIXqqdUSDOpgKr4hR48AyR3lF3s91maBJ6gU4iFhKzhfUKEfZ9PU9+kRlK33YQItswGllEQo81Ys65qN1FqClnllCvq4WhBSIVQTgKh4rMUybPBZcweAsQ2wRSfSQ7o6iZMmxhHjLl5ioGFtsY2pvoc2y5teoxjhrVf/IdeXwmgF+NMHwgxRy20wAGZJNWct0VS5RXHumNnTLFjxritRjhmDpyioiipDEoGthggZg9H2600imiUltAsFeC6yickOKXMlJtAjnHMTa5iqSLGdjMQ60AZReYZJkDLntsZsESSDPuYIa2x5eQGjrhdmBZRZZGNk6PAMWOukxXIUyXldi+itB2gJNJOjxmVB5ssFuRml6SsaTd5svdtUmFgjVHbM5Q5JeE8C8yTYFNTvSQso+aALgPrsjwkrch3EOEsk+B+Np9PiHVWAkNQxtxut00gjG1pA6f54YlZ7hU8OjzUnUWTh9rkp0WUMY7YZt7tLoMMsFYGj65jGdpgtcuM2yUB8WExo1ajsOco8ibvKStNdgdKZLnBd7DEGzPZTFPhFTYdQ8608wkaHOlCxXbv7WW0ak9BN/NLAQGZzdTU4rHNxNikOrJo2KZMxk3afcK8zTu0iTnGoACAXQfmmlbfKNsChEfdTrRNWHMUWGZDH1AilQjkJz2dVBwoC1fMactkWGXNLcb605pBpDIHTJLkgMvcdglXX/tXR/4MIoABGU3RVOYTE7qwt4RbS4FtqmSwgoAQQ1A9hGITTtTvLnkZKImEsVUQ8KRQwvmNFX6MAAhnwvwysMZCMQZMjmsBDiahrSJgx8tyHCcLvYQAPJt933lffNYGwyqDVXbW4msKrvWxrx6VFVjJCKPJpMRkcGm0sQkFnXoiZWzZ7xEQJqwyzcGUgixnWv6OXteqMB1Rjzk8qWPuicz4/BPAV2DQZJOjIkWmI79Jz0p6aaGs4QgpCb2Ircg1hQ00Vc+1c4A3FdQEBxymU/Jb7uq5FhSksxAJH+ipv966tHsyLazGgVGVb2aBl2BwFQHE7qrnn8p0N5VJ1z4T1h0FOe/TB9JG5/vQ+q/12lLSp9pnWsakssUshENDNZ7WJLk3CgIQv6Py45SWuQmVT6RvDhrglpb/r3S0b6wL0Jj/HW3vjrTDyT2VYRvb8wfa79YIJK95CSeZ0aRZFJQdHJHv51PaXr7IvAez2iZV6R+tkpa3g5PcsqIgnfa/ni++gSdleFGTda2fMaRhFwY4D+nfdbn3YtngewNheGR99E3xMXRhF2cCQrbuSV8+Me/Bi3K8cwhkx78Br7QGTJkPlCVsTlHGQ8yxzWurRpI2MW5yFU+3MwGnejB/L0nVPHXPsCI5hmmQpcSrrClA1sX8l0AWl1VS+jwXQMxYZsO6wInorOYG13iHtymSU7lolQop9wze4DI+IW5xBZO1mezKQgT2mGGLRXfdgAsGkyRBUaGYFCpF1QFa06o2CSmIF/jwFklRcSFrJp00GfO4gkG2WS3AaMn55NpGpE9YF1QHDuCyALAuEYZ1QZvQOm2Q4BofY2qJDPvkKbh5SFdVFub5ZVJRwLEZPGXCyRxXNv1NcmjgqG1GBhv784gMrsMqa25ObKxL8+ld41WnjLDznZJgRsMqxjhikS31/k1TJUVOJaIW9JZWaXAD8Q1cZY1t5thgmVMS3GGJPWYUaBtmnStu3mcb5uaJ/Lf4Y0yylqPglDVihRKUu0ieDGV+wE8diGB9HHBspgYJZ95u9wmgwMruv6f2sbl9CvFdfEP9mg3IMB/wTZZ0M/kiK9wirXK4mG6VpxREBGEGib3OZRokuMUVspTc+3YfFslT02MI83ZSwRtJU5Y+uu+Sci3Q4JThr3Qc+qvyahOlFp+go8ymT1PfpBzK8IovwSiV+AV2QzOOpVkjycdcU8WYrKG3vEWnYirHn+e+zvkBzGvMQLpySFjPjVDCMZDNjN/uUUsfPQglWfNWyTW/YIk7TFLjb3X+mIiOvwtscaQAixFgPDpsssSqv+YIFWlfGMEzGhIJUCSnUvdbjqGY8OVe7/eqLIRyPA0Habv3mSfDvrMr8glRHZ0gQYPJTo1GSLzg+tOjxdtd6vczVpFQi6JTqdm61qS/pk4zv/tJX9jLBpS9w9sOwJrnPhZiZH71OQp0FFA6ZhwJr6iyxB3KZDhALJokoKbLHNuYrUFXWZjZTokL5VPKntgzVUcnSHJAjgJdPDy6ZJpfMsd9DUqMMt/c4ba3TIqKetcJceYK67TiQ1yqfkkIn0m/xoe84dbhMcVH+llmMVr8ReoSVbVYEK/bqAuEsE2EA5LOV9+emRbMNHgCnZDgE54y51rEmG4+4BZXnC3bTa4SpeV813+VmnDPHQi87q2OQvTIKyu9ER9mrFlXAovMEbp4FMnxPm+5530plHXPp2HFiKRc4nc6zR4hetTiEw5szvolFn1JiI7p3WLAu6eApdVfRW3E5J4Ls8It5v1tJn2xESuTwfMFo5phzzGz95hhlTXmfbnn0lRZrt/lm+UdDibk+WAbQ7/O6ysB9FoMuYeBT9iBC1lKbDPHgU7UDCTKUiKlIF2KimMXvcX7ZFTyZ53eaKS2A2cTGJs0jHFEioqTSIq+2+CyhkPnbbLYn0o6rzuaFdKO5ikSxEl3npTuQBrV3m6CED49QrSJImzAKUz/b7TaApK4avJTo60DRGk7TzTrmHZNBn4Z+DhFmQ2WmaLsBqyS4uMm0TWPDzD/jqoDCyuk2WYO8zGwGztDmQ94g/sqTzYg0qjaZqRsu5gGstlNk6FMRYFNj67z1JBduSgmy03Q4KEy3kyv7yno1SKqxqlHWCpyjUmMHv77/Kkmwkj4hgGEZihrOycNEuQ15ahInippt2tjZpsm97F27e+PvtsHDzFFmYLSqm131OrO+i2gjMIIxiK0ROcqKRoME9XJvMm1bQcIcH59NiD6hN1gA5JwZslM95nXVKcYkxxgCczGjLRdkmGEat8lwm2WHSvUJga282HMUJHjilmpPZwBd+/KZLejvg2yy2AGvDHaTsoD6DXLA8rk31FazLDLOMcqv/hKhp+/eq9zYFRYQnSQYIgzHIBVWEN606cCZtEEJgRwSF5E2D0TAkal87A4CyOvyTFb9+QUI8sCROWXIa8+c0/rwnB6tCNA06B6ejGKgHQWSJDEeec9/nvD/Or3Jvjyfz/K4z8a5v/9g9/hi//2AvwR8F9B8+88B/8A+Afwq783wdN/CPxNKcPglLKrFhCwqSegS6uA+Kc9FDDrRMM/ihYskAFqfXJOBcmSsqkqAElH6iiZhF+ZHDaFCyAgq9fRBN5X0M/X71xEQKOeBFK0z4CQhjlkgvMPerBTxiXv2vmjngKE6gVYWIfkt/vA1wX1QqsruFXQYzxEgDtl29XW5bh4OJD10Udy/qgm2dKR3w6EofZQ2YUmFb6HAKwZlXDGhXH5QkjAz6R5/p0CefHvoyBgVyyrZQGSf6ApuHkF1zQUg7h41hlYeXIKuVE99/cIZL3KQgyHpM5HZrUNPBh8DWYzytqb0PKkpT9E1YtwRJmBgIBZ7+s15rWMo1oPYQEZzwsinaajgNyfAKvCWjw3xum3tL1el/4SyypIjrJhPWBNv5uROqohZRm5qO99W65n8CXpTwNxkcLT1HrXpN+RvPStwkfaB1LSDW/d1e8oozOmASaDE8rC1PPRk/5GUmTiLQ2z6QWPkq/ty/ydLFm0SpoDJplhjw4eUdqs8SqnJJxvms1HbGPT0lEN6DhizD2rchRYZMulOQo7PeLAOFMf7DIj7BbK3OA7jHHkFpy2MWhspv8V/ycsbKOiO/41JrnGx4Tw+QE/IUeBOWU92Y68+PcOM8d95+kjrBnRf0vqqN/3zJQEyD1mKJF1ia0f8l23IVohRYIG66wgoWKy6bzBspMW2eJ3jVU3P0wgYWdSLz32mKFNVAE5mbftk2FY54F2zg4eVZ0Pb6vnrUmMd5l2Ek+TOtt8dV836WVxJT5xSQULEzSYokybmPPctfllwLDc4EPecIu4beadR2FK5xkBeHmgqZyinjA7n11dIAIuJRhwJuwmWwYBGMwr0TY2QdITpyirhKvNmyrnnaTmWBsiOfTYZMmBB+b5Je2cdHPMInks7A1E2WOm8UYeiNDFGIu2AWtMRQtsmWNbrz+M+UvFaGMy9n0ybqMYUD+ycabZdT7RIKwWA1TEmF4mFFa3dn+NceTYJ0VybDPHbS5TVfBlmj0OSHKVmw4olnVAx0nCRdXRcqwZA7lljSdAxob6b1ua9df99QKP2GaeeyonhcAPfJIaFw8fY1ZSxjhb5B5z3GcYkSjuMs17vEUjPuzq3gC/FFXyfpFVfw3P7zibAmOvenTc2sc85cx+SiJUxijHn+cYSVwtejlOSZBhnxqTzk5JPBiTmCSzERJ/+DRVKqE044dnRJTdaeugED4Xqqfk/SJz9QeM1M4dMcHWYA0S7E68SKLTcEDxMWMODDIyR5U0x96YW5OC3Fv7ZBzb9Q5LvMoaY4gXpvlcms2QWRjcZpkjXZt/o/qYyJl4xV1r/gLzr28w7IguPiGWuY1J779Z2qGtirqG4g8SdNl1639hxp3yUukLVdEJI7tCiml2KXsZPs98A2OQ22rUrBNqJCnG5XNjxwIuaHGObRKdhpKjxvE6Mg4UyXEQkmTzVP2QAyYxb/hsR9aNNSbdenPl8C4+YZcAfIVbTLNLWPuQeNHvIfJvSQU2e6dm6jkaCswbSaRFlK34grNAMOsxC2Wa72yzy4zbkLvOu4Ck3trmSow2u/qMLDNFJX7BjU2Zw0NyFJlj27GkjbWd5IAIHcb9Y9eXQIgmprxM+A0NjRGp+AehN9xGhz1DTQ0a9nFMyzf40JGcbCwthbIuNMSkziYdNwzCwjwKoZx73q+N/ja/ykzQUAG6MA/rv9Z48pWsqB+TwuxyzRctQpccRcw3DXCgldExRfY37jpKg2FS6rk1qZVogQaW0Hmdd7G0E2PKVdWDzyZuNnEx+QXgHvbGzLJwAZOcNkjwU77vKOVrvMou0yQ4dTJWGRgkDGNagQo5X0zDJqLOI85uFAFHHrLCugO0jAV2mdtaRy13U/yIH2K+MQ0kATcISpCkK0sMs4HfWI+A8yxbZY0Zdt1NZECiTKJl9yxKmyQHFMhxnzkskcVAUEshMmNSM6/eYJl9Mn1SEWGphXUiYhMOkB2jT7jqdjltpz2qoJ+BrDPqBWCDpk0G9xSwshSxLh6WDAs4acxtlh2gKW4ISbWanXEMxJtcdRPaDPsUyePRcTsCbaIOTJVI7zariC7NWG72MBPTzAPdtdl2E2B7yMVoO3+9KC32yfAx36GtIG0DCbawAcIAQ9sZMjlLGN9Rs/eYpkDOmRSLt2LaTYqPGVMQ2XdsSEv2sTCSGG0swMKCVGzxkFJD1RQV2rpLYRT2jpYzw75j4S2zwSavUCEd7M5RQVKrZTJrC7kWUSZ+EzRmAOOIJNQW8xMwoBJRNHQgr+EPDCHgw6ymeeYRgGZJJLIk9XNN7oxlCGS1GshAFigLE2vxe+Jn1lb/OTwC8MykfpZ6GheWysdcY5dpZ2L9M67zxWsX+Hn+r/Ej74d8tPwq/6/Z7/FjfpdPJn6b8/8S8isEiZ6jQZCH+Y8Rh4HX5DvhMFAXIAqTkh6K7PG8BGgIAehvRuVY6bjUx2y2ry7DiB+hpbgCpLVeanIsCoik9ZLUyYjJXb8l36lt4gCkEXAS30d35ZwJZU+dF+R4+QwQ0jq9p23xPfls0Bh5GT33jpTnV4dQ8aHyMznP+Sdy7S9mgT/UOlKgEU9kvSMmB/458AsEmFQmJ9+WzwbDAnLG/kDOWashQGYJZtU/DktrLQkbjXW5vpMN8ZKLmechAsoODAlzM/m2MOJaZYQ9N0HgiVdXBluYIPxCgWhW1fvPwOOylDt5Wdri/FDfT+HScislvb6Sft88HntyH4xoGaNDWgfqmzcYV0nrL/T9j/R3J5BSv0YL33h6Jm15fktAzMUULujEXdf7yrJUqW7aQOOf63Van1OwPKb33WwKfnsC8W7MaPJwGGFT1sXDr2rhHh4CDteAYQVbPQj/BhCWJzjkmDEW2eIqNzFvMBAwrk2UGfY4QtJjAecZZLLFA52T2Y75Rd3AOmbMLTzGONaJuGzITrOHeawZoGCsBGHTnzp2mHmKmb+Qza8yyi4MUl1FjfBQn7vGhDLWlbH4BWgr8kN+hNh0jPOQrHsO2satseZzFGkRdVJYY6mZvcg0u8qEP+AmV6kxSUI370yyJqmuSSZVrlUm45IihUkSUeb+fbaZA2TeaN5y3+VDB9AFIRApN9cxxqRtkNo80uapNqecYZerfOLmQOahZyFZBZVujnGs8z/pC/8X/pf4hPgRPxQpmZrnr3CLtm5IpqhypHN/kX9OUmaKGfbcHDVLyYWatYg94/2X4JQak44p2CXCRcSDzzZSo7S5wXcAnplrAyrJOmBbU4TF21hAkxJZhmlwn3nXjmF8x/CzviRg5hFmfh+hS14BXwPjbO1wzJgDHq3uZZHaJctDPAUwqqRYVw8Ks2QxBqcBMSEk5MPmugZgCvD9kK7yUyeV3bqPJIx2VV5pc9lp9ljhFllK4qtFlDVeRVJAfV1T1ByQbnJ18+o+UEmgT8h5HU7pffOb8KowRYYyc2wzXf/CXXs5lCFCl62JS3TwhIzgCzszR4FJDtz6ap77mP9YlRRtHUMsmKYXCrEeWuEglMQCEwOrpZqOpW0nWzUfMFMqmSpti0WmEO8XYybtqXe3JSYb69Mk7GUyQlKYmHAAV5U017hBgwRfpC5wJ7TExujLnMVxYL0xd812quwJ2L7IFmbPUCPJNT6WTZLmF+oz7rGkPqwmM85Q5pvlHb7DDcdCNNl4CUnstrUowH/BH2Oeb+ceDDVFDViLT7DBsobrSGBMiYtUSHOfeU5JkKs/4pfZWa76NymRRdLUBajbZIlxfS5tssQe0zzODmO+euNIcMhMZ88xaLP1L2kpfpGj6NR7080HbvNkg2WyfolK/AJzbLuxsOXFdP3dww+H2Em9qIm0kgq7NTpLlociU/Y7dLyIUlJkQhejxQcTfw2T6UoZCkx2xOJrhXWW2HSkqDIZ3Vy5LYm+3jw3+I4b/4yFbRiMgb/96/ddb9r53gNcKJ+yxKZbb0dpaYhlhSXusMFlakyyxB1C9Ph44lWqpEjUz9w6uUWUKil95oRphBLc17RlyyuwDbRGKEHHizhmfZcIl9lw57Yw0TQVtie+4dKb+8sXQrzjzZfS7oObXFXspcIUZWcfYs/VftxExsQwmY6A+A/Mj+Y/8PpKAL0JDjEdvLDfoo7Kb2k0URUkmNb8QOWbAKZDN9aW0bUN5Dhg0j34ZaIiF2uVssuMAz4ylHmokoYlNh1a+xbvOzmpTVyMzgliCLzMBhYpv8pnLtHHHkCTHLidEJt8JjnAGG0Z9jlmzHXOGXYZpuEoqyKXeA2TLhTIscc0H/CGk3tYgEeXiEN/DXCRBNIOZghsuw1lpnR3u8CR7r6Z3MQSVfaYRjxhBEQ7UOnCPPd5i/dd4leIHlHa3OSqY+0ZA83Yav3aebu5k9S4wxKLbDk2WBRJVvoON4jSZp77btd9g8vOa8TYauZ9mGEfSwIWnb9Q/1tEqel7tlOV5ABLUbVJtQGE13kX85Pr6mfmN2f+iOJBI7tHFjleIssK626CXiHt+kC/yXNEgT/ZjenwHT7mFTaZ02QjG8juM8+rrDlWgXnDmEx3SRPbWsSUPj7lBnSTcYs8W8BokEFBrr+GMU4lRTDsBpguHrvMcJ13XYT9Bsuuf1RI9+2m1xyYZ9404uc4o2DugZPdmtlsVRl8Iq1IssFlF+lungVGSy+S/7V9Af6jf50islll+NAE7kHhEwQoySBACAiAsQ9sKJvoUDy6KPBMKiyXCPzdajiAjxACdmQgeQlIBoAUxv5bgMHvy7GZQAISNuQ3H/JdtyiO0uIqN7nCLSY7NcywvcEwYxzzBh9QJc2gMqEYRQCLikph7bwXlaWnYE1sFPgeJP+BlPXpjvz2xT9Qz7w4xJYRcLOgx8ko4ykDrMDTe33HN7DSAMqKfq+EInRaVxlJuCWOsOfUhy35utZjSD+vCwjzwoQESAwsib8haB1nxDMweUnBqR8gfoB2XgV8nFS0Luy0xZe0LVQiSl2834hrO5in36z4Dg5mgZdFcny+L8dubei1CLFE2GQZ6S+kpM88reHSVfEIQjMUHDPgbWRZPz/T9+rAZQLWJNI+sVEEJFb/Ojw5/kBc2tP91gN+BifvyPU+3ZBjt9ZVaqrtNTih5/BxYKCTJj/Uv61tlyBmoG5IJM/mIVm7jZPDVj4PvO9aBamzAQsaURn2QErAvXv1gDF3/ole/wbwrgCpsVH9t8prnWT8ewgQfFHqb9HaOg0sa3rzLFBQn8GmXEvP15AQpKz4fXUe1/s7ym/E65AJDhRQKDNFAklO32TJebelqDDe95yN0sbCHJLKIE/Q0OTWCJ9w1T3rfcK6A77PMhuYz56FBtxjkQjiCWYA12VuY/JO8XcSMKzERQe4WdDDGMeOwWeLvq7OHoSptMsWi+wxQwVJJTQ7GNs4nlGGQ5UU5hXt0cG84tLKBrvFCvdY5Co3ySJevMIm6OpCuetktDmKzt5mg2UsVVKkblJP89x3G2tjHDPDrgPaJO1XpMK2cDNz+avcpKbsKxCmkGxkR5QBIYqZ+8rWM4l0hC4f8x1qygIxqWkw15aNxik9HuAAnr/LPyVJjWt8jAUkCPMx4hZ/GcqkqTo1TEUXbUYSsPNYGqHVcQfPbaL7iFIiRwFLGzUQUwLKxEOvqn2xraoI8zWUoLWeLjp7zLDn6sc2uQHHMpRN/K4DRQ24qql0zaPDAZNuvtjWOW6WkqsjXxlY5rMFBJJLMhwxhqUtCwAgPuI1kmwzxzK33TwzqnO8MlOqjDl2LKrL6jE2xjEFcrzHW07W3q+MsTZJUXWsW7uH7Jr6gUuTewchhlE3P11kiw95g7/gt76yMeiv0muQrgNfN0Zf5lSBD6kj2VQ3CygLl8jUHzvvQbEpEl2Z+L2L2gZUeeU38Dr9SqeQW1vbOuJY+4tt+NeYlHRWth2TySTcXkfWAiAg8AJbjHHMSmfd9XmzhpJ+cuQYxwKuKKjeaRCi51hJAK34EN8oPUYkji0nx7YghQhdHdMFM5hjWwHsNK34kAuY3GDZPQ/MOuqLzAU6RFhj1RESdjVl26SzUkciX7e+eDw6zK9SE24MFzVhFQtFGuMIS+6N0KU0+jwNEvRCIYeBLLHJX/ffYYEtOnisssYVbjnbKPNZm6s/EDVf74kDoGqjo5j/Wv8Y4nVkY8lwh1ZIACgjS20z58g/hj+YYqxDBK8jBI8uHqVQlsjZOWHfd207z30lYgmD85hxB+Z2PEkr/1b1l4xxzC7TRGmToezUcDkKeHRYYV3HzJpT3OUoOAWXhb4IoWXaYUO28fCrjCyMhNE77fzujYW5quto84M3QtH90Uvuuq0dDDMAkZWbLVT/5pl59AkjORirhdAUY5EtpxKwNbYFKglGM4klxxtj3J7rWUpMs6tgYbhPIVlV2xC558VfcI91rnDTu+qelb/O6ysB9IwGmqeAJYCK392Ue9D7hDU9NIVJQkXu+JDvcMOhqyF6XOMGOYrOGHOGXSqkMX8MEMDLALAGww60idDhMhuYj8hlbmOGyOZHEVG6ZUoZUJJMNgbIg/gmVx193nz3PuaaYzYZU8+YVIBDeG3yap3DXvbbVdZcw5pPSY6Ca2DzM+kQcZLSbeZdxwWJ/jbWotGUQSQc4zqRsl1lAXDaDOsDHXCAZIuo25lMUmObebczaACkgTe2w2sPn5LuONuOcp4CCU7dhHqFW24AMf8AA1xtULUbvEdIdfVtZ6JpARi2CxyhQxhfqf2S1mt+hiF8TcsLu7ZIcsCu0na/w8dMIZ4yHl3axChomATggiJm1PTZbqYyGY2TjjjQzADIDPuYP06PEFFa7nyWaGOLhmn2XNksCANwkiDzf2wRZYk7mNzavB0MTKyS5jIb5CjyivrttZRFmaHMG3xABvETtIluRqUuCd2VllThNKusscgWb/Ge66Oymz9OWR/SwtiUSfEUZRdQY/eJ3ENV15cF3A673Vuh8Yt8Q+QY5/+/DjX/cbw0pKF2D3gossGnTUkUZULeYxknNQyHhEkVVoniwCwwBawi4FgVAbXUJ46U+OadnyDBD6cKpoSAunixJY3RptJIwCWmtuoKlv1T+F//9/83Lv0fvuQb/91jvvkPd7jwJ6f89j+8R/ydJ1z1b/KfFn7G/+zzn/N69TN+a+cBf3P9X0uQRgoBFdUvkDACXoSBrLLANAkUD2FS3ZMyDAwhgMmmfPe8AOd3obJOABRZuEQJ2BDGG0PB+0/vSd2crMOjz/X6UgL0sCz1xUO487m8f36iicI7BIwvO95FDfJQnzO0zOEQzkNwZFjeG5yA1j/WOlfPNB7o8bLy2/OCMtZQsOjloI4GR4B/BoXP5bykgDUF7uq4FNhHdWBd5ccFfd/KnpLzc1cAw4FZ6VeDIwTBEcvyO8f629H+c0n7RFX//z/XtqgDc3KN53Yu60MXNQjipM/fsC5tU1F2ZTIt7VopwWFTmIDnGzg5szHU3HVqyEetpuCv+d7lCVKbV+S6YhNARYCyWg1ONkUWPTgrZYl6UNGE5/OS9jNfQdGa+tYl5ZyDU9oWSfntwBBy3ygAOmJS41Ets7EK01qmjLb3QxzYC8h9qMBlOCT+geGQlFUt2+R6PAVGO32//Rq/LqkkVgCBKjkKbPKKA3wklMLDJJo2v7DNwippt4kZ1ud8v7/bNnNu41i8c4fdplubqJtzpKg4AFFYXrKpapPtee5znzks6GmMY15h0wES17jhfJPTVJx00VQpGcrOGN6e7zYxN+/anj7jZcPNc55oFdLc4BpXuckyG/QIORmx+T0nEN9o8wVKIgnBWywyxzZrrAK4hbUtXPIUmWGXGG0idN2m8IHKHc2uRCRt48J2IDCxz1DmHd4mQcPZu7zCpgPlYrTcouWYMSbVIsfmPq+qx66w2bqY5x7g5scW0mDG9EVy3OAa+7r5e6Cbj2b3YhvkeYpuAQU4psO7XMd8+Pp9o37M30ASKqtuPlYjyUNVjWTYd7LmCF236DNgIUeRML5LtDTFUZU0abX9MY9s8b8qMowoK8z7TxaR47SIOd9EwC0erV7Mk9HWAqYUMQZQP9PTmD6AA/VMshujTZG8IyJMUnPKoXm2qZJim3k2uMxtlh2jcxJLko64NZd58tlGtSUx/5AfYbJCkwubuspAJMDZw0zqor5FlBwFvssHfKkJx1/31wQ1fuD/hEs7X7o5+WJni2Tz0LHT+kkh5qdmQI5ZEURpOdDfJLUAjVCCspfhh/yIBhJgMMOuhvVcBiB/+KWsX5pnrg+BAEb9rFxbAxsAeKF66sbqLU/Od8CkA5RLZB3QHKVFDwlGucxtOl7Ejfni4S42Bp9nv8E9XV/aBkWCBpaQbGv+kIprjWFoYJR9PqmEBPM4NzLCZTbYYpE1XpXnRqfBLjPEFKcok6GnhBzb4DAFYJE80+zi+YIXmHJNWNJCWmkgQZVeJ/A+s0DATZYwifOMv8sbnQ/ZJ+NswezVHRp8Zi1qPp1bLLogkI8nxJbCSEc2loi0tch13mWMIyW75FkPreApKLnBZSJnTxjjmBtco6BMsbXQKjWSTFJzmzrHjBH2fV3zhtljhs/02fJlapQyGX0uHbkNiBJZZjoS0jiMBP7YuHaFdbdxZuQk80Ld1tCMPWYokqNFlIKyKM2f00JNRF2Z12eXBFv6hElSw8KAjpE0aMtusGdQTzf3RPknfp6T1HiVNbdWPmacI8bES775S/fcjnVaag8iYLptckVpsegLecnIMHlfgomK5J2E2eYCIF7/mfpjdx+PIeFTIXpsM4dH11ly/boBkl8JoGfeIyL7G3cd7phxt5tXI+mYdQbyyG5D1T0o7OEIQv+M6AUajRdQVtm2nlceuKLlHnM7gOYnd0CSKG2W2XCSCfNv8wk5k34DyyywwFhPVlbzG6iQekaym9MJhe2K2jnMb8y8Uyym+xYr7DFNSsFMA/nmuc8uMxhd3naeDWS0gd+Q4ICG33G7z1UkuCFKG6PDVkg7ENAAHpssL7OBRxdL9bUk2G3m3G5IlbR7CINMfqK0OVD5A4Clfhn7apMl5tScWBKQKtSY1F3mKcyU1AZf83BIU3XXW2bKDWgz7GHSY7v5bICwXUKTD6+wjiXNWNqx3ewmZ7Ab3LT5WUruJrUdXClDxtWJgWvmPWLyHHtvlc/oKk0e5CEn1OIqZlJ7zBjLbDDpKLxyveb2GKPFJDX2ybgHl3kHmQGnmYxKEpAwUiUuWyZ/BnCbf4t5CFgf8FTKEqLngGe7P+3haZMJA9N9wm4nXBYrMjF9gw/chOIYiauP0WabOffQtYebpQj9xjD0RoGm+uGdiNfXQBwBEeoIkKLJm7wsQNJISsGFjHqvHSKsoRUFx36hnx/KMfMGTtTkXANLCEAFAooMCaBx/okwqFgHfleOH8vIb3iof3b0jwUXrAOfwMifnQvo9k/08ybwY+AnoNY7AYPJQJgHOD89egI4PSoggNc+Am6YB5v6z7XPBPxITQBpDXoISVl5Sa6ngp6zTiD5LEsgw69AmHll8Ry0lGGayAjfFGnsyKwCbCmCFFpf61BZgXQEYDpZFwDJEloH81LmVlXZXociU326ox6B4CTIgxPisXdu17sD51UCIPeuJg0n9dwmN1WQJ5aF/O/q8ZIKsF3EhacA1JTlOPAtPWZdAcaqtB1/IscaVD/AyudQPNT2Mal0GVp/iyCso4yAlpZQXEOSWjVQ4l5dg0UyAvCd1KR90xkF+kbk3y+mpG4HU3pNCoaS1Pq/iNwDJWEYOh/JsNbRRfFffPoOtH4WlDedEbnxeU/l6CPSTwbeVLD8nraTBsucnMp5r5gc+64c67wqnxNWD0VNtQUpE2ENGLmH3AuHUPlIzmX9vLZDEHxi7MJDqceBJM5pdSSJ89jDpPNxnpWMf41fExw6Fj/gPGZD+Bzps8bmKmYtIhK+MQ6YxNIVxc8uzRqrTFFmUjcgzR/J5ghd3bDa0/mUsdm2WGSZDfrljlYmY/hbsAHggB9jrZlNxjS7mOdajJbztjVZpjEJBRA5cjKvFlG3iLN5q6Wl2qLAUn1rTBKhy9u8o5vlwoK3oIu0WmIcqNewMdIkqGoKS8O0xafMq1Pc4JrKUe9TY5IUFacCsKTYHLIosTA323QN0aNAni4RHpJlnvtc5SYdPObVM9BC8Upkuc0yJn+2+cAkB2yy5KTH4vk35TYzjU1n8lpjqNjms/lGR+g4xpotahfZcunG13mX7/IhIV2wbzOHJermKGKJwiBqiT1msGRJ8aQSQ30DtcwbzldYoaje2Mb6M+DCwKs9ZtjgMntMc0oC8wy3DXHrd6Y2sYWsXb8xpywYzebAppOx4Dybw+32lX+JTYZpUCXNHZWgbzOnDKUZ1096ukYyRY/Nnc2maIlNrvGx3pspTWMcd+ocYy3GFLgxBmNSOSviK55xbBl7dR1wU9N/e/iEucL6VzQC/dV6JTuHFEI5Pp39Jgck2WWahpfgZvyvYbY6LWLkml+Q6YjE2sYJs9FJUdF1hJBlMn7ZjaO2GW/z+BA9phDPzGVuk+mUaYwOyho5foFsR9YstmbKUuI73NA29NnyFmXM6VR5nBrWdbls8l/vvMtlbvMKmyyypaSKEFeb/4YunmOLRWmJvVFHQHLr55JwvCTjuV/TviDKvKqueUL4ZDslxvs2fkL44lem/2/2Cgm/wYy/q/ds29kAyPh+ygJbbHoivcg1v2CRLX6fP1WQWzYA7jNP1i855pa9zApsuvmAFW4h4TSTDtQvexnKTFEgxw2+w1FozH3WIEEjlCDUk3Tea50bAhyODnOLK2yFFvlmdceRgowJZqzpbeYcgcnCFcyPf9KvYQGFCQXTfEKs+OtMs+dUgyAbTEtscpkN1uKvOtaapcnuk2GFW+yGZshRZL6z7Txa95h2wRsZ9h1YbMBXxZNnuoVPmQdjmioxldXbePldPnAbQOusOH9QgHFlDPuEWGzec0o9C0SRDahhppsPeKvzHhVSLKhFh3m3W9hRWdmcRX1uHTPu6s/qqUVMbbumHLDdiA+7NfOat+rCfkpk3TifoUwllGZag5dSVCmEcm6N/Iq/yWX/tlMQGgOzOjrhnqkNEm4T0MZJIUcVnyGD/WWvrwTQ+21u4yFeEpYwalrrGpNOI5+h7Ki95l1ngAsIOCS/SbqLk7SUXeeTEaHDMrexlJ5VNb00iqw9LDOUmee+kznOse1SVQwMEu8SabgsJRc6Yf5tFrVs5X6FTfdwsuSfiEoXLLp+jCMidLAE3IuU2GJRJ4eyU2mTGHsYih9HgTJTHDHGLtPkKLDKmpvEGTsMhIFWJEdBjZ+tPDZx29XkqIZOJo4Z0yQjWVkckFTq8LGbBJvf4Qx7Eh+uO7o2AZCd8q7KNSdZYZ15tllh3Zmr5nUA6gcjT5GErkW2GEfkrEblNSZjDEko22OaA5KE8V1KsRk/G9q+yBbzbHOVm85XxqTcWyw6+q4ZylqCXpIaByS5wjp5ncTajm+/Jj4wDe24iegqayyx6ZiPCZ0wiW+FMNCsnqTOH2o7RftA5I6TPti12ILD+kZH26GGyI8NaH6FTZXhyHGTuqNSI+nS23zCWMCI7OKKCWsbS1kOOXlxsPsnA7mA1Wknq+hPU85S4jVucqADof3WfC26Opm23a4YbUL0HGAvxsuy83yHb/5PPfT81Xx9Jr5craqCMcoGAk377CHMLgjYbZcQhtemSm9rysAzSWIBAaFm4eRT+c35Pmz9HAHHzD9uA8diG1wWgKNmjKQ1AjDrIgJA2DzavL4MqBvRzw1Q+THw3xN4iqGSxx5B6EcTAXtq8jcFYW+9mJfPznfg5CcEUsumyClHLgrgObAi5+31gFFNdj2Usl55SeqqpbLGAQUSZ7OwmoKnn2h5klpXD6ROXhxVgDSLsKhGELZVU8GiWflN4WdQeAeoQ2xVgBhjTGLMt0/EQ61S0Pq7LiBrdEiPoyAb4Nh8TEh9D2b1szUtZxiR0Wqaaiyl1zaqkkwDifKalKxS2fOqtFHyktb3AykXfgAIO0aYJ+WsdcT/Lv87Wu6HOA/GqKcy0xTwCz33CI4l+fRM+iRAzhPmHU0BEkdeU6bnyyr9rSqjMK91MSH1eb6D9NG8tsMOjuE2kpGyE9LAl8+BsrRvz4dGEzD/yRFgVa89rqzUtB7rkl6HJdUeCmuw8rncgycGONcFCC+UhM33ggbVnH+u166S4oFZOVblrlzHxCjiY5gS4HRitK8dwfkGkoedHVHUJpe0PRTo457UuZOqKxvz6/xqEHebnDFaFMhxm8u6FJXnXVF91SqkmeRA7VEOHCPCTLTXWGWObea5T4Gc2zD16DqfMkt5tWeazS1BFq0CPKQc8GYSM7NNEb8kCcYSy5O2m6dEkIAosVGJPOMvZc9Vk1ZaCIIl3daYxBJPzXt4g2Xe4a8DuIWTzU9tbrJPxi1SxLNvil2m1ccvRVJDsgCdd41jLEGb/5hM14K5ukScrHebOfVOles3qdwGy06p0UWktm3dVDT5sMlazfLF5iK2KR+i59iMtgCUpEmpj8vcZoVbDozbY9r5DZkyZYlNYrS4xYpjCt3gO04Zscoaxg6zubBtMprseYVb1JjkVdZYZsMtpkL0yFFkiU1eUQmtLfYMONlV3+JdTbg1A3kL+bNFqjEITdo6hiTfXuUmKaoO9LS52yZLTr68wWVW+YxjJOwlp+FuxlpqIT5UFqIXoueYo8Z6MrZiTMGTXaYVABnGJ+zqWIDoNjUmmWGXH/BTQELYZthzc/kiOTZ5xcl8ZdPaJNeeU9BkKWkfPXDswW3mmWEP8702e5lJrXdR6DwkryB4kZxTOn3dX1XvAm0FviepOdmo3X9jHLPaWaMSv+ASTw207hDhlcMdunj0pzeXQ+KjaIoaU8bY+LVPhmt8TJsYx94YjZCsyWpMEuo9Acy3MUnY93mhfOg2MAx0K3lZt4bwVJYY6j3hCJEJHzNO1hdFldcJrlcA8DwxWvhhIdEs1e+xxB3Szcdu3bUVWnQsOVmztd06zMAiC1w08M1HUl2rpBjjmKPQGNHTc3xCjrFs6d0JGpwiibgNhinGv8Fc/QFZSkTosMuMA8YiZ+eunxbJUwjlCPs+K4d3qcUnMJn6Ta469rUBXeNIUEa6+dgRVk5JMNY5Zqgpz6qSJ5sIt7jiEoZPkoNuzLD1X1WfX2YX1kJSZ/uZmZGzc2JqZzXp13iL95hnm15I2I57TJOjyN7oN5yUukGCGXaZ7AjwHqPNtNqDvcdbbDMn+IYn9hLmew8CbJrEu8EwOYqssE4Xjz1m9DlXfEbOnOmU3VpQQjEFE/o+P+U679JvI2Cbaj4hukODiKftPpZbkKLKCrcAKHo5R9SJKaFEFGiSXD7f2XbPZgk5ajkm64wv6eA2z5ikxn3m3YZO/zWDSH1D+Iw16yyy5dLnTXEY67SwUM0xjqmE0hyFArKL1J3s/Bsw2iXCAZOM+9KfVjtrbmy4QJVf5xX+D3/l//uX7K3u4hNmg2XMq2yPGTdxqOiO1y7TLLLFpF+jHBJK/RIN3uBDdwMbKGAPOKEN77ldwwz7bPKKTCL8LVKhipt0ifFt0kkDxzhyHijXeZcGCa7Uf8nm6AJpKqyx6vTqPiF+n//B0SQXO1u8571FjDY5ChTJ810+IKxo8C1WWGJTARMxSH6FTRbYcmlZXTzWueIo8R4dNYeOYl4jFR2MRe8uVPQ0VSQBRxJlkrrj+4f1P6ExOsRVbmJRz2kkibeqjLwlNt0DfV7TXxokmOe+m3QATr4JuJvUANIGYsY639zhw/jr/ICfkvAbHIXGiNBh1V+jEpKd07xfJBWqkGGfbeaYYY8l7jhWl006lrntdpoMOJW2XGKebbfL0CGik44kJp+9yk3Cvs9RaIz7zKtxdk/bpqiS4TkBcf0OrVDMXaP480mykEmC28R4i/cwDf8eM5jxtgDSdzA/HNH3J7FwiynKpJuPqcQvMM+2mlEL+LvHjPanYZ3EVR1bLeOXmQwJsGipyWbODDIovc2fUWPS9fM9pjEviiQH1JikQgpL8JVdcqFHW92Zb4JPGIs9z1FgjxkidHmT99hjBkD9DdJuwn+qu172b5NNJDjlsk6GLb3KdpuFFj7GNW4A/VKjqO7QCOC6Q4r/41cxAP1Ve2Ugdi7yw/TLCCDxAFgTAOXpvT55ZxlqDyD5n8H5OwICjSwJuBFTGSA1BBzRMIuRWfl7cAIW1RPv0V0FzizwQNlLVJW9pDLJ87sCaLRKEPseAnJlEIBxiIBBZ+EGKQQ0sdClLAIa9hSkUtbYQFK/25EgiuRFqHwioFhsVr+fhpP/Jw5EPCmrr1tBztn6RAChkaSAcMkFePqpJL+e1AX4i6msmLgex0dkjBkIP0SkqOZNNyxt8OJLUg+OLfZAgjGSGZGFDsYhptV8UocR9bjrlVTGOouARi/LtU+M6pffVflytq9MyuirVIVxOIC+d0l+e94R5tjgmRxjJAxcB36iQO5DkRe/uKH9IiUJssmktNNgUtrlaVOumTqQFBbeyB8iIQ/GIuyJ5LOHtEnaZNF1BGD7SHzmRpJSxkJJ+4rJnfV3yQUYBAbVA+5cGZ2DfxsBE5vCshzRdGLHFD2U+jzvQfKu1F/rrgCmz8hVtW16PblmEDAvnYX0rHx+vq9+iwWtl2/BgN4/5hFY60BiU8usPndpBdAGe9o+S9LXe58L2D3YA74Ng8ZQVIDv6T0BmZ0HogG2TfXO25HyVH4G6dekrs+bUkezL2mSsM22FAQ/3xfGJCt6rEnga05a3uAyUYLUxhn2qDFJB89JUN/mHTH6puSYRD4hrnKTda6wyRLTOqfwlKVgJudz3Gebebfpt8Gy2/htE1NLloSz2jAQwTZHt1hknm0qKqfdYtFtlN7kKstsMK9MBpOeznHfPeff4APHTLjKTd7lOh4dekgIh7EgZDMt647VweN7vIt58NjmpR3rQKU79uwE2GMaS5e/yVWylBwwc595ciqvlVTWA97jLbdIFgP9tJMibTNPR9lfNSYxyfM82wzrfANkvjpF2W3GNhAv33GOnUzMNrmNZSfJp2OY1csBk85Te4oyl9mgRYw9pgG4wi1n7m9ptCWyLHObGXZZZ8XNoS6z4cK29vo2rgHHbjPPN5tTm1yuRdSphSzteIlNPF3Qm2dif+KmT5hJau44xp4zsKNLhKhK72Rzus0Mu046WOIiCSQt0aPDKmvMs800sqA0oNukzhXSDNPgCEkM3mKRVT5jiwUHFFoAhwAZR26+NcmBW7Bf5rZTkNgCWfwYpcxmtWNG7QK4ptx3LeFY5NcCnJfJOSm4WeAYWFchzRXWqZLmHd7mOu86pZZJGQ0A3+QVN5e1BfEXFnX/NX/tMstL7BOhyyZLWIhkiJ4jtxx4STZZIk/RSZ6l73p0PAHKzVuzS4Rc8wtCcZ+xzjE9L6Tqq47rK8vc1vFSxpMpygoYpSAebOyXyJIKVehlDFjrOODY1te/Xb3HuQel0Szl+POAADtmIzVRPePcE+DnngLI82zzQvmQs1GY5sEz9XG98y4VL8W/4nd5m3cEdESCiUzqKT7iPY6VGb3BMtPsMcYRl6pf8nnqG5Lq6jVojA5hab7G6LNxdYqyMlJVZTZaUSZZlBl2KZOR+zj8HG/zZ0goTRBOUJkYdWDpFdad16iFKZmNVMYvU4x/w8mOu3hUvBSJ1CnbzCthIsKCboCUyVAOZRyBp0jOrd8MsLLQkl1meJP3AtVcfMIBvpnQvnuuWWCiyff77ZvmuS+gZh8gNu4fsxuaYR4BwSaqZ+ynZDNhTt9rkOAUYZYbgGYEHuunZmNhSscxjvHDArDOcx8L3Jjnvm4KDSs2se3G0J/wfX7AT+mEJADTNplsPTzNHkN1iMZb7jfDCtyZ1+HK4V3pO15VmY2TjiyWa37BVnyBIjkXFDPGMTmKbLCshCchOxnOcINrvMl7rl2NXATy/Ot4wuoukWVB1ZynJBy+AuJzaBt6MSRIKUOZtdCqsEnDIYeBfEmUX0fC8ZUAetnDGqO3gUuwlN3k+Z06J5cG+WZ5Bzw4i0OWRwxVYX70CyoTo4w8PGck/AXTI1/gh2HokMDsXI28Jy5+ydM4zIUeMHgCh9khxLkiwnXepUqKkco5I3wpE+QFYAMSr53y0uEXIru5PEgi1CDdqbLurfB66TPwZHL5fLXO971/jR8WHXuifs5ADzLxLxkqSTmu539Gd2iQRkikvS98fijsgDhc5F8z0IPD1BBh32c7NM/K4V0GenAx/JiBHSAPsVSLF8qHNJPPUfRyJDoNxnp18p0vacWfY3bzEZr2LAuDLAwWIJd/BIAfht+6+0AWQaOQ4IzGaIfZnUcqjXoMQ5Cd+pLu0HPE609IpSqOwvxC6VAW81kY7MC5emo1Rod4vSD1QRVm44/cQj6x0CC+8QQm4NrFG8TvPYEqjEw85hsXf865B7OlR/zq5Qmip+eMNB9zcegxM6O7jOycu3TN5tJz5HpfMOSkcl9CHV4a+sJ5e61m1ohXnxDNtgj7PiMPziEMtXySq81/49qCGowsPCbjiQ59sABns3AcH+PCzikXhv5cFncVGEnX5fgeVDJpaRf15zpJD9IJeVyontIcfY5Y8wnZiZIzB7aJVhePb27sQAcuxE85fHmIUxp8o/QYyvAN7zEnS4O8VPuCL1Ojgt7Ht+QaKuccZqS/xvwW5VCGkco5vYzs0o7VT7k/eonZjUc8Xh5m8vCUjgdDVZjwHrk79cLhL+EUzmdhcF/auD08SOTsnHL8eV4oHNLMPEf8obQPSSAE58rSGTyBk8wgI7VzGqkEM5094p8+of16jBQVJqpnxFJtkvU6g014OvSYgYe4Rf/T8A4DD+HB8kN8wsx+8kgW4rqI/q3yAznvyiP+bepl1/+bo88R6j1hqAnchRdePiS78ezD/Gv76sD5KaRfR0CCMiLP+x4MdBA/uQkEjBqBiRrwMpz/RBf8IQV3JnA+deeHEK6KtNaBNyZBHVXQKkwQ0qBMu1YdYq8DG/r/ceAQik1YLCDjxyYCOFWQJNielteYdp8izK46AcMoiYzXLxPIbXeA1yB5BjwUMCSm4Ac9oCRg2KMCpEeFvTdi4M9FaH8K0bIk3fZ+KmUbuAiFDUmffVoTAIpZYB+elgV0KZQgf0lSRdPfwoFqoPXiA38d+Jc8E1zgpLspSI9Aqiost6efCDNsJEkgRQ0H135eFiDoZAdGvgU7H8GsegbyMuLr9jNNWx2Fk09g5BBYgcEHMm6NzBIkrb4rzLtBT1iDL6bk2pNpHDvsaU+8EakDeRgoiDQ46kmfGnlN6tyu6WkdqgUBm0aUjXfyUQAGn/8MBq8gjDgNlwAFCmeh9icCeCY1abeyowBlGAb/c+CnCHsTud6Rb8nfTz8VELNWFtAtWtX8Bw8oaL870f6lXnJPz6TNR7Rttu7Kbx6V4MUwcKryXQ3jSCpjr1UVsPi8CodlyH9fzvGrQ0jOwtN/CX9+CFcmJLm319PwihPNTqkhc4Y/Qd5IaZ9OKRBbg3ZZwdEwIm3+SOryvCMAXtrkvArUJjsix00mBfgcNObrt2BwXe7jwU/g/GsO5NmrzhjP0aOqDHBjFaXVSkUAizUXmrbBZSJ0yCv73WwobLM28CEbY0F3ypfYdGCThaSZ5YVJcXeZcWCahSqAWbt0HNvKPJEOdAMPxJesQI4r3HLsqqvcVFlu5ZlFlLH7zCQ7wSnrXMEn7H7TQIIndplmnm01GZdFgpXdNsxMBmmJvWP6PfH7KSJex1WusO5S9SQNUlIl3+YdzK/IAClj43eIUFSQpkSWcY4d48QCH3YVRBSQVZQXN7nKH/GPAVwQhHkU2Qaz1YUt9gwQMCa/KU7M1sQC6wwkvMpNF5xmHoqAY1FWSNMh4th4y2y4vmULTpPILrFJmSnaxJwnnwFyBkK2EA8780ncZYYNlrnCurN7SVJji4VnAgqitLjJVS6zQUXN0hM0+IxV/hZ/TAPxJzRW6C4zz2zEbzPHKp9h4RjWl9JUdcG3D8gGdFv7dooq4iotTC1jlRrwsscM5v98nXfZZMlZAPUIcY0bzg85pdYvFi5jG83LbLjUaAHuJh24HKHDDHuYD6UpTkyS+ybvsc6KI3NssKwKKbFeMSaTBbKJnPA3gK4MvMImNfJuQ978Frt4LiVzjxkmqWkypsgFl5u/ZCP+TVrxqCO8WB/+MP46KaqUvQxpv0I4JH3oNstO9lomw7yG9VkK+CZL7t7sBx42uKzMWjF1OkX85jtEOEkOAiLtFul7nkm/RiGU4yCUZIQv2RxdUNn2HTZZkg2WjABHk4en3JmYBSAT32fy8JSSd5GOgtfT7Lp7t4OHhRf2B8SYyinmtzhJDorU26vh+R0OQknHSq6oVN+8Wm1DIEmNKilnvSAWSsduY+DYG3NsYkvLboVkA8lCL1pEnce8AWptYqz6a1oGcfU/ZhzxEG87z3l5fo07MG3GbBzqdbZGZ7nCOjUm2WbOsc2M5LKkvq4pqsIK82S8PGacmErxcxQ0r0C8PTsKmm0zx6IuDHzCDCt7sEUUPxRyz7MMDVFv0HLj4h4z2l/HaTDMSmcdPJHMJ+t17o9ecuzSsifA6Gz5EWej4HUgPVFV9nOHRSrEmmeU41P4hKkxSd4vUgmJZP81bqqdwrBLpP19/pR9xHeuRpLE6KkLbASw5Hfp38IMLEw8T7b+Jd3RiBv3jxijER8mTYU9pp1VmSkcLUsgTZUl7rjPQRiERfLOlzVFRZnKsjZe1lAhsWnzXbiX9UMb2w3Qjermj20gJurnRCdajHHs+BP/oddXAugNFIFdIA7Pl+uQgpHNc5GaAEM6mWdEFgTPz9YFBCjD4EXd+Vf/Hg7leySB96HzezC0Lsee2DzT1aK8LpydCnvknvz2i9QFvpF6zNA7YBs+Iw/PGSl8CWfweuozWexdhuc/kSobjMtCaqh8jvYDASHUEH2oLp+NHB7ydFbLtgMDh/qdOZjYOOPpCix5dxn4VMo+UEEWSjvA3wZKEPefMDfygOPRYS78s1PIQHz5iVyzMkdoChuCukz8uQSDoeCzsz+AoQJ842eP5fgv4QzTBx/C4NkTyMDE3TN46Uw8gbT+BnUBM3gi35/wzqTOwwjT4mVcumY8/sQxfOKdJ7L4igtAF3//CYMq3Xqhdii/D8siaKR2HiQ+LkO89kTOb55MaRyAaMeMh5/wNA4T62fOs4kmrB7+koF3EFbQRW3npCyKuSRlHarCS+EvpKyzwH3Eq6uu5zqD3y7fk7ZV0Hekcg4nUs742RPowET4TL48AcTPSCfrDDxAyqOSwYnSGRM7D+Al+HJ1lOc/r7t+/vxEHZow1DuT6yrDROYMwvLvkfAXUIOJ8plbdE8vP4AyXEieQh2G7sHTN2FAwwNsocgsDH4kdTD4EQw2z2EILsW/BA/im08Ck/WHUveDfvD/I81zGIFvru9IXxuFl3a+EObLy5DoNBgsab9+Te/BulzDgPpuXep8GSRoFhAmlKaGGmiV+6MiA8q+ii8/kfcPCeR3vxlzNjiCsMkwz4BfEIA3bwPvI0BRRT4fUFlezBhLYWG21e5B8m2gCScPVcJXUSbUL+R7xJXB9W09vnndLRMAW2dIUEVcjjOSgpz5sY0A30cAlks8m9ZqZTZQLk8QtFGAk4KAME+bMPA6EuKh4QRchFgdAaMPZYw1sOhFZYClU8ADkZrGspC8rOXtQHpV6oQe5DNI35vF+coVfgq5CWBIZLXnG+rB19TvPtTy+gLmxD6S3z0qwIueAjGeMOleBPg2DLxP4Ef4qdSZA6mSwO9I8WJ5OdbJn0hdzur4QAlhX9VFSnq+I8DfSAoBSj8BQgKqPS0rOFlVVmAebn0OV2blnIT0OtaUcWYAoJmzvQaxNS0jCDCnrLzNJqzGNQyiAPwdaP2fVRqMlL1dls0dtB5O1qUeB9QfMGl1XQdeh7SnbZ+WMoEArNVDSJ/p+3ZNQxLGUftUAcGMMEMBFpe1HbVfPXpHwN3BWzjGXgNJCD4pKGi3iht3WnafqFyYrEiSU+/otQ7BKxlgQ0DbNgKw9XxIL8vnpCG6KX305CM554gnDLpwSNta2YwGaDKLsB9Lcv7BWXneOpD8IgwqsB0dAkah/VAZnmE9xiiE61rmI9mosznS1/mVp+ikZZLGKjv+wvTpcpPX6E/ENL+xXabx6HKFW45lYaCNGbCnVUpjAKEtuiRw4IipPusN8aeT3Xc79jFjvM9bXOUmt9U0XhaSXcIcu98YI8S87DKUVW6acYunaTWRf5+3WGaDD3iDED4z7Ko8K+q8mOzajWkTU4mZMS+2mce8o69xA7OSMZ+6q9wkTZU9ptnTtPs8RcY4cmwf8yUzjz9LHBSfLZE93WfeeSjtqjl5TmMUOkTIU5SUSmW+zbPND/kX3GIFS3c1tlh/MmNI2VvGEDNPYgPc7jPngso2uIx51RXJK9PyMktsujCHrFrXBAuwrmMFiY+RhCrYItsWfiAS3P5ANfFXlkAKAwQBJ1M+Zox3+R5XucnPuO7sg0SKK0qFMhkylF1iaYSus+qJ0GVafe+OGeeYMf3vsbOxSShzcYlNqqQUfB4mS8ltKE+zy4bK051XlaopDNABXBhFf1tLIKH4/uUocp85LNG0xiR7TLOgno0goMIWi856yJKAt1h0APCeAs/GzCkjfs9V0myy5CR1eYqYsT2I6sesaoosOTaqAKgp1ljlCj//agafv2KvDoMOiJ1Cwnraeg+ZIqimyc/W1llKbMZfdv3cJ0Tar7AVEvmgeGtLAFAplHWyzRVuUVEWr8mfYzp+BYzoCPPNHUI9KI4GHpIhBaE9ugw7QPA+u6EZxjjiFit8lw9J0OCD0BtuLDlOjbPYvEc5PkUYn5Se1/zouhNyvQckHVidocx13nWA17jeJyDMUWPVzfvbNEKSWFsiSycU0UCYbWH19coQEibzq6xxpKy5InkynTIlT5heVfUkMdm7hTQa09RsoYrkHcvVxpsYLRKdBh0vwsXDx5QnJpg5fMTtiQW5p0NJfMKYvZUw1YTFNsaRbjRVXPsmaLDYvMdRfIzq6ARhAp94Y/xNUqSl9+Db/Bm3WBEw1RMvfQsvqSEp3bHmGYm4bPrYxpiprVY661Q88bhbat6lG/dINx/Tig+RVCYywOPMMEUFngUA3iXWPKMWnyTBKdvevG5QTOOPFp2fXsTrYhZihKEUf5Fk/ECfFVFX3378GIAKKdnUChlD+ohlNlhjlSoprnGDvD5XzEJjiTvsxS85oA3QrRup8xxFbk8ssM0c7dFNZXiKZ34QfFTR8Up8HTe47OwGchScitEsGK7zrjuHgasWhmS+vavNz4jG2/RbU61zhTRVp6g0lqPNT5LNQyrxNDUm+XDiDXIUean6BbWh0K81nnwlgN7/7r+FoSfAe0AcupkBIhtPBeG5gExmnxCwOkDc/CqIa3lTP08DXWThMAIcISyAJ/qdQQKD7RrBAqOMAD5//Fg+G0c8n57gFrMUpWx09Zht/f1R33mfABFk0m8hNDEE1GkTsFTQf4/2HSOq37VrMvZHAvy/OCRU0OtvAIOn8FjP09C6SOp50sCf6mcqy2IYWeA1kYX8IXAAPE+w+P5Sy6DJmXjIiu64ryweMKZ/bCFhfl7nCNAwiiyGk1qPNa2bES3fC0+k7OMIiDuqdYaWo6HHS0L33wwQKT2Vz0J6nSZNMx+nsPzez0Ooo9fh6fee0/O/oOWMAv9I//1Yy6heTzyn7XBBz/9Ey/YYAU8S+qenbRchuI6jvrq4pJ8fISt9u54Ygbl5C3ihLsBhWD9/AXik5zzV77cI+lRP35vU750j98eQlrmu1/qOntvayOo0rcftaHuMajkXgF/2XXejr15NR2hAkQUAjBMAAy8CT55IHUaAfxa0CSf6G5D7KarnjvR9Z5Sgz98/xTHqre6O9Dv/I5yd8Bvx6p7BQBqpiwwC9FxCQLE1HDhdq0HyOtLOHyHMqSYMDgsbK2rgaVMll+pTNhCGO1V4RcGj5ArSv+oIcFqG8zWRFMaUIfm0J2BLdAgYEolkbAQBoEYRwCJD4AMXRu7Zjv57AueLZ4y7kRRyDzb/nd+9JNd+XlJmFQraWXKo3bPK7muXIfZPccEJ52vi/0cTahVhK46M6vtazvxLwIkClEsEgQUKYp53BGC5U4JX1LOvVpNHyE5JGHWVArwwIQEMAybJNH8zYGcNZpdVHq1S48qaMi/vwYvqeYixAuvAp1B7KIDWoAUtJLV90XKGhVl4fksDHi5KPS/EtR3UD7FVlcCI5CXkGfBQgzYQefFAUkI5BpYJnokpwVWJ68aQB/yJJM++qNJQRgNGHWXgVOSqgx1lNO7o9R5KX+GetuWqXoOCcQMepO8qUHsm3nGzs5LyO+hBMq/fNWDL13a/J8d/9I4EmrxoLDbg5J5aAC5AuKTgqZXTE+ZkrCR9YGAZuZ9mBRSv3VPQW9s7HJJheWRY+jvhoI+MaBuOmOegXv+jMkQ/VXakbiw+faBA5T31DNQ+jQexgtZVR/0F6+onaGqJNDI+KthcPIT8MCL9fQzs8bV+DdEmpZYgJi9NUqNIjmUFRixIIEabRbY0JC3v0vd8JPW1p4wvsdpoOdZVkpoaoAsLzrxiLYTLLCqMrWGghv0bcAujfiBiCkmuPVBfIJNHtYm6xUSOok7aK4yrvPUaNyiR1bKkSFJzu/eWOF9T9zub5BuDRHyqUuq3JpYkDRK0iZKiyiQHjiVgPnsmdYrSdtYhRXJuIW7yzxZRjhnntE/iZJ5qq6xRIOdYiWIF4lEi5YBKC1vrKjtNmCmesoyE2SDe1dsUyGMBdmb2LmBVhDsqoW4R1UVW2QFrZj9iiZE5lR128dzidIxjBd7GeZ83+UP+GSVedfW4wTKvsoaPeAb+iDyT6jM4x31nG+LR5QbXWGSLYQUsLTk4T9ExmWzRFwF33QkabLGIR8cx7Yy1ZnLVXaax9E+AN/iAKC0nk20wjBnnA8yw5yRrETpU+1hCITcRE8BCmEHDLLLlGKsWuGfSdmOsenSc7Y4tUKfZczYtJtm1+k5RYZNXSFPhr/MOPW27PbVLKqh8e5xjl0TcI6SMlHEnVauSoqOyxwSa6KoytX2STLPrwOle3/V9nV8FLvGfaHBdhwhVBUKMjZbplNnzZhxryMBaG5PGtM4JwaK/ReTsHIBi/BtUNQjAbITMQy+sILeF+w0j1jxjHLPGKt24h/m5d/BIUuMmV9UaQMYCj44LUAzhc4V150lvEntj2w7VYSV+izIZASNZosEwk9RYY5Wr3CSq43csvofZa13mNimqTn5uzGHbuEiHKiSbhyzHbz8TuGEyxaKX44gxN96Mc+xAl44XYZt5lrntnhXXmr/gOD7KLtNIymtRgfQ9Es1TunHPMbvmuU+LKBVSlDx5RhxNCLP34YR4+SWpqT3ELpdKX9JMPUcsLOosEP88A8itjGkqDDXhcniD294yVdLq19bjlATTOiaYPYWBfRY4maPoPNlMOt2I+27DRoJqDhR8rBHqPSHhnYpce0jYlrW4TFSzPMSj6+wnjLm+xwxpv8Je/BI+EgC0wTLXOjdoeWLvJE+zmmPtpqhw7olU2LwAxfJqDLOjMna9AXVma2Blz1Fguv4Fx6PDziagRRQJNQ07tiZATD3n0irPtudjjxCJ5ilXe59RGx1VNvgBu8xgvrcZyvRbn8kcQ2wVrtR/SXfoOd7z3sL85mWTZtyx68wObi9+iRA9x6zfY5oM+1iOQ6p+yMGobDJZqv1xXEy3LQDFWKOXOoVfazz5SkIx8BGQ4AIQh8jmU1kYPUUWOYPIouYJgXn0XyAL/glk0dgPMiDHIYqAGOP6t0m+ntO/DxBg6AkBUJSE04TnGEYMQ3syLMcy8KxNAOAd6+8SCAByQcvb1O/XEODiOT3eOM6PypIUQa+pgdIi9Hqfk9+GfATYeIzUyzky0W/rnxYCngwhi442ssAZwrFUGNffPdHjG6hS02MP6vvjyKLxkdanlf2J/jGj/ah+z2RaLa1P9emi2ndsX+v/AvRskfqkr7x1vbaWlqMn543Un8rvzgjM4tHy+Ho9ek2hDnQSz8lvrZ0a0n4OrFDgsDY9Iv9zpN+JIu13JL/rGbvkiV6bydEjSBs3tbxf6t/Wh6b0u55exxM9Zlnr7ZG+N6zHOCBgoT3RsoT7/hg4bNfeQu6JKT2++aI91mN7+nlDPx9CVqRDWo5DAgDlHOknDaQPd/X/x/Xf5+Bn+9rJQEW0La3/bOvx2gjYaOCoh6y2mwgAldG/n9M6PEP8N4a17hsEIGpE//+xlts+t3vja/6KRIDvIX1mA3gNt0Hw9F3xNavV/h32Twph7kzgEl57PTXlj6vhf13AvJ2qDB9U9BwqqTzviPfcSR0e2cZDXFhoh3VhKg1OCWMtuYD0pX5J6SYOWOFU3zOAf0H/PgNGBLQ5P1EwbFTkp+YJSAdurWnKaFMYVL2eJqGe4UC9pxty/mRSrr91CNTkd48+EnBlMCygFxmtmykEcBoGJhQMUyDLbbD0BEislLSe8gJoJi8Jiy83KkDhOQIQFQ+1HRbkWOefyDlzowTpq00Bz9LmMTeKJPKWkI2Qvg2K5EUN1OhIm7Eq53fjQBUYEpArZkBqXKSd559omxgI35HfUxEWXftM6wNgWcHGS/p9X8/3stRvOqt9qyksOMpyDTzUOtvU43wLkp4+Qoakf1DSvqDXW7H+tKHXYkzOuCY492AiJG0ymNL+qpYHLAFv6u/t2ZIR8HACaWea0jdGVhSsvafMt7qckyFhV54jv60Y6/ui+N2BSIQNDK3VpF/m88LCH5nV5NqmtlNV2u/8UOtENz5ezGp/jCt4GlLw9afSn3RdJfddQfudMt6tPgZHRLo9kpTyn6gagboMnXwKPIInt/nav8ww23xwDDA6UC/YJAekqSgbadnJMu21q76vD1VSa6mka6wSo82csjMsAbVAjq5KSTPsa9jCjAM9PmOVJAeMcazBW5Iz/x5vOfafsb3uM0+ELmmV1faHWe0yTY+QA39SVDlSsMkAkjIZx0w04MQ8xRbZcmmJlpwrLIqkYyTYHwOjykw5AO2ASSQgboN1VrCgNJPS/pPO3+Uei847TxZpbSwt0cphaa8FcuyTeYYpWFFfOwEghTVkzL/+cA8r5wy77vqlrk4daGkeUOLlVNV2r1Ikxw2uOfBpmj1C+Kyw7kCCI/1dlJYDCDZ5BZ8Qr7LGTa6SYZ88RW6xQk8X8ymqzLHNJAdMUWaZDbI8pMGwA0qW2XDpiBKMIX3PWIY5is5v7hZXHCvzBtfo6IRUlrLSHsLAG8ZH/Ig3uMwyt51HdBVJYN5jxoHVJbKO7Wbm/wlOaRHju3yoHtGSlniDa05SfFllxkXt8wvq97TBMoBjHpqM2byOi5qoa0GGJnE0Gab5gVlbNki4BGqRy1cdqCoAfFV9BqUvmSTtQL3Ib3KVP+X3eY83eY+3iNLmihrb15SlOMWX/9MPPn8FX1fr/5aY38L82QJAVR7qx96YA1My7IsUr9NgnSus8SphfObYJkqLSiiNH36O4/iosxowkMe8LiVoUNrBAJp087Fj5xm7q98zE2CRLWJqgdAiSq4j3pvix5knRpssJeZ9ASdbRF2w4keZV3XcSSmgViWvPufzbGu/FzC54qWeYRBa8qgBjmkqKo0XVnMx/g08ui4ZtcRFLCzHvFJD+C5cwIAZC4ZJ0CDT/FIYx/EX2WSJDJICvMGyMIU7LWrxCVpEmWaXVdaw1Os9Zthlhm3msZTnfeVsW5mPGeckM8iBl6QT8hxYboy8BsPMsMuc+q9/kboA4PzWjxljg8suBX5KAXqPLgm/4WwjTI6docwSmzrGjjPuy+aQse0AHk5ckPqKv4hPiBeqh/RCsnlk4UElLjrPPXtelMmwzAYHoaSzRQBYYIuOJyBb/vBLJx+253yRPN2h55jYOXPSXWkf8d5McsASm1gASIwWV/rmCpssie/j6ItUSbHJkrsW83fsEOEnfJ8SWXaZ5gbXWGrepUHC+bCG8fE6cGv0mw4AbBNjkgNm2HUbMCF6LtXcNqxaRPHDUPYEmF7SFGdjyZbJ4NFlm3lh2yEhN+IPKkqAlc46HTz+MX/E5uiCu3dsrI/QYbF5jyppwtpPfpmaxQ///5GhR4sA/IkgC/9NAtmQgWuXENDgHNn9LgNfIIu8ArIoMQCpjUtN1HBPAQlO9e82MjG/gLDvDLCrwfBwR877HPAriHZ7At6Majltofac/q6sZdDvO1NvlbRxpNdwEWHdPEcA+ECwuBlAgJVDPeZzWjejBKDaF8isXiXKDCAgjo+U0YCRsv4d1WstahmNpfVYzz2pdW6AUFvfj+v7+/peWMuW1D9F/Y4Bqh0EeDFmQZQAlOoibbkD4bZer7G/DHxM6DUcIIvqfWSx8xxBGqOxzXp6TAP/evIdr/pEPh/VuojrcaYI2BVNSN48CcAr9P0IDrgLV/T4xpRs6nUawImWaxLIoSt7pJ1Ndmh1Fuo7T0br/TmEgWYL9DP97RM9h4F7bYJ+qSAnFQLGah3pa8/rd2xOY2CYAhw0CNiIu32/1XojRAB4lvW6zyC0ofXwKwJws611Ye08h/SpLnLPGsBYR1iCft/7A33l84EihGzRnebZdjbwtI2A92ECpujX/WUyuwkorEM+hQsvGEiKp9lJFRlPKlC7rSCCh/QpBV9GMhqaUFf2j96vLzQF6DqpKqBVAvIC9kSHoNIMznl+qPsHlzQh9VsQ66j/2zJyb31M0JcmEFnwA+TeU1CO1/TvQ+CuBGJU7kJa/cxqBWXslaH2PlxJCZBoxx1RGf3TpgAkJ1V41IHFSxJyELWNkTQkw8Kei3rCJKv9QgDE9pl6xe0g941tKNSkTHjIPZoHNgRnmVU580BSyjIwqvLlBWF0jbwGtZ9r3X6qdboCSbMHCEFrDWIrKn1NIQzEIWBdAzFO5HsnZWF+na8JQ+28qaELO5IKS01CIdpnKmldIUg+DQtgNRFXdiIQq2mQgrIOR74l/eVpVUE0BdXt93iI1LoO/CGc/G+lK1aqkP7bWg9lqGxIWMutElzxEW/UlHrtVRRIi2uAhYKULy7jwN6BZADk0pN+TVWZor6Uq9iBV6xNH0h7VMrqw2cbVR1h9KHS4/N99Y70A7/Ep1X5u7Uj1TyCSJmjJqtG5LSDmb6y1BTc6yGAZlXaZ+BQz9XE2RkU6wLcDqYJ5gYKvp6XFeRcgOLP5Hu/KMO3s9LPT2owEhJgu1gXL8zkRRywV1kTmW90CJd0nTaAvAnPGeP5a/x6yEUavOBSOH3CbDPndsctFdZ8y8aQsIUqKZbYZIV1J+0BnEzrGjcwT75NXhEZDjPKfJDFW/9O+RjHjkFlL2O8hZCQM5P1xAhkM7YIaSn0YZ49voqjTIZqKacWuGCgoqcgj4VtSbrlgWPMdPGoKsvQvHds4Qc44/AuHqusuUWvmb6XlZVmyb7rXGGRe/xX3n/jGI7GyjJWoElNDbyytkhRZZs5khxg3mkiURMPoDnuk+UhGfbVV2/asTKEgSEm/TWSjn1pi8oxxJfQ5HYlsi40ZJo9J+EUlpkErPUIcaTMPWGIzQA4YE8kvTI5KzPFKp8hnnIbjhlmcsYxlU9beqx4QSVc2Y35GcZ3rDwQgKNHiIvK7ASRtkXUzXuZ2yoT3ncLYDPjT1MlR4G2ivVM5iWS3uu8zTuUybjAF/HBanGgPnzG5OwScT5Lb/OOY1aKBFfYnFHaTq4Hsuhd5TPHJAwWqTHHDiuRdZ55luxrsrg0FSqkaRNlijIHTGLJwQYAWrt28GgTJaqAsYTMCZtvlxl+lx/zHm9RJMc82w40sv7+Ad9liu2vYPT5q/fyw3AYStPRh6mF1rSQdGjb8NhjhpnOHsfeGFGvpQ6KYh0Qa57hx8Pi0+k1HENtmdvUmOQmVx2b6EBlmHYvTFLD68BMeI+b3lUBg5p32Yh/0wUVWHighSEs+lscezJeGDicPqyLqqEH5YxIYo0l5tFhqbNJ2cvwU77Pq6whoYJt50tmLDDzfLOx0fzoJjs14rUnjMVPaYwOMa2bBR5dJ2MEHNhugZIz7LrNFAtSaDCMBWWm/QrF+DcAyPhlWqGoAFITXd7jLWkXL2gvjy5jzTp7cXk2XWEdjy7T7LoxzzaqLE113D92gZ8lslzjBmYXIcB8Gwu2SVMVr/twyLG0AZXVC8Bj/ntZHuKHJB31MhuuzuYPv6AVf45jbwwfn4NQ0snuS2TdJo6x1IvkaKRqVEgxzvEzdbfBMgkaxJRJ7BNirH6KPxpirFmnHM+Q6ZRJN5/wcOICmyxxMFFyzNwxjllUKf+xN0Z89JBTfYYay7RHiE1eYUbrMOE3aIVi+MrUM9DXPFbLCphOa4DTGqssc9tJaEHGkmU2qMUn2CfDEWPMqPxha+ISlnbbn0B/qn3tKjexQKTPWOUKt2gRlVCaoUEn0Z2rP2Bj9GXH6rPnpjGyl7jDgaoQxLc1Q8OTa89QpswUN7nqLCHMf9SPh5EUa2HvNUiwG1pFPHr+8tdXA+jF4L9eQBZSBoJcxrE1iCOAnS1Ks8iio4pMdHsEvl09AnZaE/g7iFzJI5jR26ujv59EFjffQhZIHeA/IWArbCDsizyy8NMJOT7BIvAhAYBX189MZgbBzn5Hv2ssiQUCnymTE+X12uwa/1MEFEkSJEj+I2RxcUk/MzlbD2E0mHRxWetmXY//ewQStzKBCf4EgeTNGAjL+t11Pe7LCIjQREAkr+86NvS8HoE3ny4kHchV1brb0br+tO+c1m7GYBjV61vW75tk2GR3Vg9e3zFAFlXGQlsAfoJLHuQe8D8n8PO6SwBIenrMu32fK4jg+lhZ30/2XVtTr8kWxMZ0UXCCnb46ntLjmwSxrP+/QyDDsuvY0fKbjC+DyKWtz9a1bt5BGDgFrd/XkPbqrw+7lzIErKyQtksNaatDgqAFT6/zc/1/q7+q/ukB13AsJ1cPO0j/KOtxl7WcdxHwId5X59W+3z1B7sHfBX6uv32bwM/tLvxvjGH7m/AKAevClstnFRgZVcBiGXggoJGBC8m0/KxSgrRPIP2uIe2xAaSFYdRoqvy0o0BBCqnnqjKCEE/Spz0BfQYvwos7EmowMYq0n8k8Z+W4fIdnx1b1TaODjKvG/JpA+sQZ8HM9ngeUIf86zp+xXZLvRo01/TLSnz/Cja13OvDtlHwvmYRHVQWNlOmWfl2PnYLkH8pv22UCP069/3Y+l1RRR+ppIs/BPIwog+pc2esWrJBMioR0ZFhYgvmU1MnTZlCHZg/xdEfbbkOvF4LxtYwwz9alzUf0+VesC1A1WFfpb0Hq4OmOAFax1/vqGQVGX1IJrwE+dQGzwgrWP20qnt6Egeva5p/39bm4SHSjH4lPIZ9K/zg/kb2b9OfAFbmmlv5kAvWAs2em9ScfdjbURWJBv3yKyFvfBDaFKdpal+sZVIYhBe03WVhq6rGSUPhI/A7TNiYvSPl4GbiF9PO4tk9K2qTdkXof8NWr8b+Bxf9O66sqHot2Xw3mNSE5rmVVVndrRyWyO8gYOUKwmbcgv5lNaTlOJEhkwNPfDyl7siRlmn1N2uXbnlxnpaoJuEkYvASzChAacM9QkIY8GEeeXaNaJgMVl5Bnwtf49SteZIKeA5GMtXGVm4BIT5bZwCekyYLjVEkzpRPmEL5LBnyPtzShT+AOQI3C7zgmmQEmUVpUhZ/LIltMKbtui0V8wm5CXiLLMWMOFMlR4D7zpKgwSY2CgkAgEsqwCnnS6oGzrGmiYqo97JI859hmmQ3HhtpikRgtMppwabvzEcQH6o56i2Uo8wFvMMkBr7JGjq4uyjwXbGFMiTVWaTDsyiLpphvsKvBlfnMV0rpcqDmZcgjfgZzvqk+cyZQSNFwCrZX1MhsUyLHBZUpcZIk7rh5vclVlbCHMfL9NtA+4EfCoQcIx+wx8bZDgPd7kLd7H/BONRbGiC6saky5M4yo38ei4AIEGw6xwi12mkfTEbceIrJFkijKnJNT3rebAO1uIrbCuDDmRZ4PIn7JuIgstxNjckkM7eK6fhZVRJ9ckktctFpxETxaot5wU8oAkVdK8yhodBT+FdfiKY9uZFDJFBY8Ot1kmwSkbXMaSGpMcUCJLmyjT7Lk+LHLiLhVlFFmSqvWDFBXC2vZtBZTNMy9NhTxF7rDk2GP2vRA9Zb2W++pF+lGNJFssOrm7GPF7rLOigIQYvc8reGuSUAM898nwK174Ssafv2qvenxEQViBtQxgz3ZKHHgikfXoUiZDyZNxxzwPl9hkg2VS8Qox2og8MalS+jE3/kGQOB2hq3YG8tQ/YozohIBPq/4a26F59uKXVIAu4ElLffSu1j9jfzTjWGbGOlpki4EafDF7waXSWrKpMW0bnqQmL7HpxjXA3XshfLLNR0TjMk4XVe5vY8qWt0gs02JYxwLAeaymqZKiIpLU+hesjf42aariG+jCGoLAHGMGz7PNUWjMpZePPDgnPOvT8YRlK8BOhgOSTOoGS4cIfvg5BdCjrDT/nLX4q+yTcWCeJdkm1Q6hGypj8vV+FnSDBDkKjoVmY3aaCr1QiAbDlMhq0ELJMcOL5IipxUCGMnP1Bwx24ItUiD1mCE8IlNohwiQ1fa5dpKqp1ebvOXl4ytFEj7ay0IyRbWCWWSeIbFQWoEkOuD96iWEaeB2IxVsCHIYbXDx8zL0J38nADcizTZJ1VuilbpPrFLnhXSOkzDwJwkiSoyAbGKEknspxbWOtRcwxFMP4zjfUwL7+BGJjpBogKv8W5uULnx/yb196GfPBtftpjCM6eHofDRPGZ50reHSpklJf2XHSoQoWQHR/9BI/4fu8wYd01GcS4C3eA4TRP8YRVcSj0ADuKcqOWb7IFmWmeIMPifnCsrVgHNss9DpdHjvJ5V/++moktyfIIs8YHgY2nRB4uhngker7zMAHA/rsb/OPyyBypg4BCJQkAEiMMZchMOvXiTM1ZGFUQBYhef3OhL63gEzwM3quSwS79ylkUV4gACXRvz/FLTRZIvDve0gg+zJgzgCkAoHUtYCk6n1Lr/+hXluJQMJ7RsAILBGkSKa0PprIIiTTd56wfj6i165SKwdSGTC5TiAPQ8+RJEi5rOvn1oaHWqeb+tufa90ZoOMRyI47fcc90+/f03Ip68MBtwbYFnA+TXhaJ+sE6aD22w2CBVOcAGToEAB3awTgXocA3DUwq6bfM3DWGKBJrYfRvs+tPDUEILAFtPmM/QkBKJgk8Eob0mPPErAPy3o8k7H1tH5sJ8hAtpSey44xqse+TQDcJJG2N1DRXj0ErHlIADakCPruCQLGrGq9zSKL9B2k7/RLJmsEknJfz5nVz08J+mNeyzGkx9tB+lBKr9XkiiZLO+U34zUGfFtYQk+bAiq06sJqO/kUSXD+FBlLjEWEAgR234LUe0G8yU42RRoaDgtY1z5TX7J+VpEy+F5cVvYUuPZIp0SyerIpIA9niOTwJeR+fh1YgvPX5Q+zerwMwcaGjZFpnKzVxrinmzjj/xdfAq5rWetyDeYFOKDPgW+nCMZNT5lLYYL70cDjT+SYrSqMfA/pRzbOzqoE096zcSDcJ4/NC1tu0O67npx3cFaAloGUgG4sCIgEIm21MXVgAViWuhswlumO/lnmGaltqyQBGjMT6qGWUkAuCdxSgHVE66KEG0/CIbjzOQGLtSzHHBgSb7inVW1PG68+lXYt7Ai70ViQsbwy9+LQ+rmUuX0GqymVm67JsdNa3vz3hWH4VIHFR33S09nXFGBEfrP1uUi9uSf1d651Naiy2opJTsvSZgMZvb6esNzaxgLPEGzu2Dg3zDPPiIGMsEwpiPw3HEbG/wk514mWKRaHgj4ndvsYnjwUBmEsizyvbFyzcT0e/L7VxI3LAxf1GHZfxYWF50BHm5+EBZyM2rPP5jZnIjWurAurFJSJ29M6zvb9Bu0HX/PXBapORjnGsWN9ROiox5j/DMvCpCu26BHp3xEJGvwuP6ZKihA92kQxvzmZjK845pFJSs1jroOHpekZ406SX+dokGCaXbKUqJLilARzbFPiopOHZtjHJ0yMNhG6zLCnoNcMCRq8y3WK5JEU2HEF2hKsc0UNt5fdos78ogzgOlWAbkZBmQNd6ERps0+GioJy5vHTIEFZJ3Nm5p50XoNh1jWsYo1X2WTJsQe66tFVJe3YGha88BbvOYAzRos2MVJUHbOtRtIxz0xydJ95ukTIUSRH0cmFfGXVlcmwywyW+mpl/IDvEqOl4M6utuu/wjyzYrSZVPlAiSwz7LHKGimVZdni3L4nrJOYSj5Fdmjggi1wQ/h4dBzgMcOuhngUSFITzywahBR4rpJ28tp+NuWByo6NRXRA0i2+M5RdqqH5HprXk7GFTJorclcBWmyRucUiM+xyhXUqypLKUhIGDvfZYoFrfIylKu+TcfJfkTsWWGOVNVbZY9qxAk3Kbd6DxoqtKBvM2iCqDNmWAjQGKDQY5oAkaapMs4ul3BpQ1yLKKmu8zTvc5CpVUkRpMcMuOWVgdvBY4o76Vyadd9xNrnKPRVrEuOhkWF/vV5VJJqk5JuYx47SJEa8/cQxfk+NFaTngX3wGQ8qC9QjRcyCxAV4G2o1x5DYjkhyQo8gaq44NbYA5CGAzTIMZdjXJWvxKF9lic3TBAWIdBTUK5HiHt2lefM55t+U0BOU2y3QUFLRySY+v4RPmPvMO7CiT4Ub820x2ao69BpIA6iOJqx08JjuyeWF91yfsmLVJatwfvYSFsfiEuO0ts8084qvadnWS5MB5El5hncXmPb6cHaVBgq34gt4TKSY5UGizQ4UU91jkwBPWdZsY3aFB0lQ4Yoxt5thjBgtXahNThmDPXZOkqQq7b4k7/At+SMxvPQOMp+qHTFTPyDS/dPedjfk23hjDrEKK6ugEZ3F5XhbJKaAaJe8XHStQZPsNB65NdmoM9J4FVFNUlT22jyTpetRI4tFlxt9VDrLHu1znHousT7zsxrGj0Bit+HO8Wf/ISaCFhT2pfprCoj4lQcVLscwGFVLsMePGNvP8A5xPp09Y5OQayJLX50uLGHvMUCDHEpvOu9NsOORZPuzmGSCbUV++NOqAbRAf2Pd4E58wOQouNdieIS1i3GFJffwe0iHCFGWW6vfIdYr8kB+RVk9Kl4xbr2NJ7AkaLKl1g4HZYQVbs5RYYZ157hPzWypjFmb6Jq9QJc1nrPKB913O+2mif8nrqwP0TPpUAP4msojJE4AoBkCYv1gFmThX9d/LCGigu/SEkcVSmUAOto5M7NcJDLbNZP1lggVoimCROkTAQrun5XpAACplkQm97bAbiHKRIHXX/IZ6fZ/7BN5Xxqr7lCDN0xalZWQBY+wpky+eEYA0du0ZAkabecdlCKRUC3qMKrJYaup1GCipMiYuESzw63p+9LwG4BmYViMAamwxbSBsmmeBJ11QEQb+jABY2yEAgPJ6Lb6WOaxtM0TAfDPZmp2npvU01Heui//O9RuzzryZfqHHMbBgSL9jzEuQfllHmEHKFnGAlfUJW+hZ3ykhfbNAEGBgYECVAFQ0ULmgn+9oXfXXRQHprwWczIp9BKRoEgBjdwmAUyubMSLtPLrIZ7avDNYfD3F+Uq7+rO2sTGU9z4bWz4Ze6yHPgoDGjFwiAGhDSH8r6fmqWp/rCGtxlqBfWL9/0Hd9BjgFlg5f79cZLlhmQNk6UWVK1joizbSQC2OpnjeVuRNSEGAdB9DPZuR3+VkBKQYuwcjbBB5uWeBQQRUDa4FWQcCg2qac46Qs/msnJtt/AIP/HGnPh/Jn8J/D4M9x4A9DSLvvaJl0zHhqfnjG6ETPb6DUPQFMBgygNCAlKeDm0x5yvyqrb9DGfiuLJ9d+ruzkqIeMa8bsrUuZFiZgx/rtJWRcmYVf2T2xpud6WSStJ3Xk/g7h0qvDITlmbFR+PzIqdcUEwQaHp8exMbtHAOZNSGpt7HcE9Ov5kv7KkMh0DRyqlZGNnG8RsFWrkHwTZmwjxID8Q5GonpcE4CoU/h0PuDjkX5Nz3Voj8BFckvPGFHwauYh47Rnj80QDIsCx8gb0eftiSn3jbPNlWa8xBIsZTfM9k/Zunylg9rJcQ8KY97P6Xi/484JtPHjaviXtJwZomf2GtunJjjD6dqpyjpjVuW4uhNF7JCXJvIUqvJLHjcNbKtNlVNt4QfwjH5W0TAUceByLK/iqY+75PjLWabuHjfGuLNpWVf59fqh1amWrS/sm4iKzTV7SS1OQcOCigKyNprBR6RJQJb/GL0uXbSkAZ/5q5q2UUmlfRBcUJn00+SsIC88WlsMKhqSoOuZbjxBL6qxmzAfzIzLZrU3+57kPiKRpnvscM6Yuegk+5hpTlJ28TcrfYY9pJCFSACVhg4nP0xaLzKtPm5RQRKK20KiSpkyGSWoqyxV5zTpXVKJVZY1VB+LUmGSTJSY5IEobjw4dlSaK906Pt3iPihrHv6LMuhVuIcbsskC4zzw5im5RZ6wzWcBE3ILzM1bZYpESWY4Qb75t5hUOalMjSYMEP+KHDpyzOjwgyQ2uOYZalBZzbDvJ6RJ3MN/BSSTpcJXPaOlC/zNWaatstEHCLU7XWCVBwwEFrb6Jg113TcG0BKfOY7BCmhXWmeSAAyZJU3VMzptcdRKuDOKnJ2xD8QU0efIWC5QVSDVfOwnlEL+xlPO5GiemgS8GgtlCeZMlx6CT5fVDQvSctLyjTCPzTquQZpEtJ8E2XpGFWyyyhXlUpamyyhpTuuBfZY0Ep+pLKMBHiioRZXZacrD0Rdl5MC89nzBdPPYVrL2BsGjmuc8YR05iXiXNNnPOY6pKWhb1jJGh7NKRo9oP5PNJlV+Kp+C+gjxW7gopt1AXwLbKb8LLZPohfOeh6BOiOfqcA+uNgXmqwBWINFeYlUfM+yJPtgCZKC22WHT37qRfw/y97um9HaXlwPc2MbZY5HboMulO1ZUnTYUFDaI4Qvwrt5l3FgnGYn2L99j25t25jxnjLd4jS4kwvmPq2XhoybFJHQNtkyGET9HLscEyOYq80fkQS8e+olYLJS+rzG55Fnh+RwF6SVPdYpE2MfbJOEBomt1nGIrz/rZjdm+xSIZ9Poy/rs+KY0CsHMY55jaXhTXXqbJPhiQ17rHowo22Q/N0iDDPfTLsOxZeigq5TpGE32DSt7E+RK5TdGCjT5gUVUI92fzYQ8JPGqNDfJ76BnvxSyon3WCdK5iVQgBgyjhXJkOoJwE9c2y7Z2I5JJsoxtYD3D1qnmxmHSEbEQ/5reoDN+4a8y1Bg6PQmEg/meYaN0hRdc/ENNJnOp6c45gx0p0qMb+lfoNp3dwaA4QRl+g0yCM+jJaIbQw7sZ1Ic5vL0r+bOw4Ms3vC/Bvnua/BQscssekSaYWZOM4e06yxKn6JzVO3kZajgCXU/hH/mCQHyhKPOgluhC4ZyrzCJvNqAeDRFen76DCRsycOtCyR5T7zwjgeHcLrSLjRpF9zDFfbUKyQpquM5SPGqJGkFwqR4BQL8rrKTUx6D/Ah3/21xpOvBtCLEYBcVQSweIgsiIxtd4ZMro2lZsBTHAHCDCQwNlMYtzB1QJsxzoZwC1AHZA0TSEHjWoZDZLHwjh5zFVnUzBHIpm4RePTVCICNlwnAOivLun7PypEiAGxssXuov9lAFgFL+vtDgnCIDIFU00A/W6j19HpNvtwPJOniihFk8WSAmEkl+8tf4Fk2my3SqghgY0Df5wjQM6RltXIY2Hddv2+SLGOIXCZITTWQbkWv85AARLyi5+wHzazMxui0BZMt+m2xbIu+gv5uSv/f2CxNbdOXCXzkZpFF/TKBxCpOwPg0MMuAUANcjU1oDM5+ObKBlCkC1p+x8owZekggiTUADZzR/jN+e1kCoCSlZc4j98O39DiH+v2qftf6xIYe3xg+mwRA6mpfuXRxTFyP2SRgWYb093GtUyvrkJZ/oa8NNgjaeaSvXNZnjYm3RCBxP+FZgLaGLGCj/Ea8mgUcs4ymyDUHlIGWjqvXXJwAmN2BwZeQdrsrss+WSUcLwCzkM7Bl90xNvsepygzLwiRKZwgYfnmIZdSvzhcwYyQjPmfJNLLZYSDKQ/m+A8KNnZqEw5eHgv7U03OHlYEVxo3VA0t6/oyCfQp00ZHkUgeGpSD2trLd7gm4ceuulPnppwJisYBj9A3m5VgN27wwcLAqIM2vrD9OEMhxdyAaAl6Cp2da1h14cVYlter7x8tSvgG9R2sV5J6Kq5zZxu1lacuBJNLfZ5F71dh0n2s9/0zqbdBTANIYbio1TS5IOajJ91p12Lkrx4i9RvCs6YjP3cQo/HldvP7yKamD2j05ZKskdZCagCvLeh4FP88/ket2Y6H1sxUpS/KSMNisHh3w5UmAidtU2FcmXhoZM+LIuF+XenxalXO2CtLXKCPPBt0oKCj4NTCr0t0m7rn9tAaP1tXX0SfYkEEA1YGLqgC3zQADv5G6ME/JQQX1mNVQlZSAj0+rOBb5001hy54jQGCtItd6rlLogQWcVcTgCDKO+jjbg4qOo62CgouvB8zE/mfbyLACucrAG7xCsImZ0jZGmY8xnvHq+bq+2sTIUaRK2gUvdPCIqgxwUqWK5gGXpqJwmpism39dB481yW92jL5pdgnjI0mRPW6zzD4Zx5wzJpqlCRrbLEWFCF0HvEXockCSt3jf+cVZUIH4822645WVGSD+eF3nw7PMBsfq2xOjRRePNFXe5bqTEKVVQtkm5oIFPF3s7SN+cxE6fEf9ActMYWmvWyyQpcRbvM8mS7zD233wobARD0gyzjEz7OqipeaSIgU0TDumxxqv6m8mncx1nvtc5ROm2SVCx3l2pahyjY8Z45iCgrMmA7bFlchsYwrEitH6MeMUyHGby2yx6CS/WywSUcbcNvPKRExxwCRJDshSwnyczFfvmHGm2SNNVVliXebZJk2FOyxxQBJL6jRGmi2GI3SZ4z4WdvKQrIYOlKkoyBWhy3/BHyMpiSLxitKiQE7LK0m34l0YYVKTg2O02WCZH/FDBTxa/C4/dl58Zu5uAIcBnCKdPtB+UmGTJW5y1d0H4meW5l2uqzytyDHjCo7H3ILZPAzNs9FSKC19N0lNJbARDV0RluomS64+jG1yhXXlZi1yzDhZSlgKr4WixBQSSFN1955I3IUxOc2uWyCbb+E89+ngOXaZLcAbDDtZ745b7H29X20FEARAE9bjEWMUvZze8xn1LgwYlunmY14oHDLHtoClIZFtp1Sya/5582wzxhGAhiTUHFC3wi0SNPgp32eXGb7LB8ywy6a3xIwyqAGK5MlRIE+RLCVlJMmD1EIlCuSY72xzmQ0HDsr9JoE6SQ5YbN7Dwh2EdX3g5LpJalz2bzsptq+MrtveMntM9wHmLQdum/UCyPhvjMApymQ7wlI2djPgGMQ+IbZD81iidETZ2Uc6PtjYaRYDLijBmydF1d03k9QcwC9y3Ag5CozVT51H64EnQE0hlHNjz6a3xDHjTPo1LAW45GXp4JHS6zDW3LAyiIUleY8aSXaZoUuENVbZ5BW38VAdnaBHyPlm2jPmB/5PWGKTPWZIUeU73JDz9nz+PLXAfeZpEUWSz0/5H1PfxlLgLVxjrHOsNgWyqVMhhXnchvAZa9bdc6Q8ekEg6d4TDkJJB0K2NRG4RYwsJba8RTrKhGsT4yZX3bhmIVIxHVc24t9khj2m2WWaPcd8M+n2JkukqLgQng4Rx+CeouyAtM34y5jv6THjlMmwxaJj95mf6CkWYjXFcv2uSzxPcEqDBMeeJIhvjc4So+2sCVJUsVCjkifH64SCxGgLSrGQm0W2eMXflOdb/QwLc5ERVQBoYZfvc8l5rv3lr68G0Isj3l8mn93BefFQ7nvPgLwsAjwYeGCsDAObFvqObf5n5tFm7Db1GXLnMC8aA6IMQPkcWegYk8x8oYypZWw6+06FAJDLIJP7lxDAMI8s7kw++Y/02g38+RYBcJTpK6PJPo1VuE4A8PX77c0iwNxLWvawvr9EAAQ2kcV8Vcva7/tnkmL66swYIisEsluV/zhftJCW74Ge2+rY2iGFyJYzOEmWkzSbDMyAQWOv2GI4SZCq+Lv6+RQC+tzT3xi4GEfYdKMEAK6xFq3vmBSwn+1RJQCHwUkVSev3JgikvmcEzLYzPe+JvmcAm/UH85QyKaCBqLYQs+OVCaTfSQJwu04gAa8SLPCvI/3KJKle39+jfX8MBKkRSNk3CVgw6DXOEjBa7xFI2r5NIGtf1ev5FoHEbUKvWUEjBzR/pNcwTCAPs4VqnEDy+Ac8C3RuELAPDUjdIZDmGivpa/6KDyPXPiJ/Bk1m15S0Vy7hGGiO8QvSj1aBjAJYKDim/SAXJwB3rQ/qmJCwdvFh5x2c3JG0gIgvziLJu3bvnwHLcPa/AGbh6ZCU58EfPQ9/FJRpYv1MruXbyDj0NgFbttd3zJ78/vwdBb7MZqApCaMDKwQy+h0F+Hrw4gpcycj/Dyyp71idABBekDoaycP5jwUEMrl+clauazYFHApIdfK+lDuZBpTdxorWucrGn36E2yyq1aDyCXBXf6Nj16CxxjyCZ5jdCzpmPSoIg+7pmbCzRl6T+ievgSOjkLxMwHbrEIzJ1yE2AS/0MfKc7UFZJJ3hECzFNWhhQtiVyQVhsMVmpQ0HUtqW1odSIiceWCbYGAtJEMjTj3AbZ+2OltU2FzyVYhfk/LWPpD0HlZX31Njwv8DJsAeMZYqy3PRZ2tINsbTd/2gqrYFyeQHsXpwV0OvpJtxZJ2Dhzcrx0zZPeF2Ofa7A2rlt8JWkbHfqsPUzuNeEwob8tmfHqSt4jGBoI0n9rKRt/DbyzH1ZWHcnVTj/uQKiFwWYTeh1xF4jUBesynnIEjxDgPRrBJtFQwSbYDvSb0aUQfn0CH5Nm5T/qF9fcJFNllhnhTRVWsS4zG3HVKuon5gZ8ofw2WLR/b5FTHeyQ0yzyyZL/IQfKOMvkF8lVMBqjAvzmzMpDMAarwIyud9mzsl4jUll0sM0VZaQibdJlzKUsYAJ8UuSBWSPEFe5SYMEi2w5kMUW2T/kR3yfn7iwgCgtWTQhBu8tYtT05jWZUo6iSm33HRvNymdsihVuUSHNLVY4Zox1VmgjKbFWrgxlDpAgjD1lURXJccAkeYrcVk8286erqUDulAR7zDhpb42kY0bMc5+LlCgrI8YkfJayeapSuzxFAHcNPZU6ZdjnMrcpkWWBLcY4ZljldsbEMZ+6Y2QhJaDPkdZ9xAGT5hcWRpI3OxpVYbIuAwOqyupLK6vzFEltNYDQ/JlswbrCOle5qb5ck87LblyZnhUk1KCi8kEQAGWSGtvMO2lilofOpP8UMXt/qJy993jLseJKZFli07Hd9pjhPd50fWmXGRbZcowsqysDmLtE3MLZwmDsM5NvGgBnRvtXuekWtpssUSXNOMeE6GHBJiZTnmcbCyERMDvvGHkHJB2gWCHNPhll31bcezWSmg2664AfA9Ql1GaJWedf8/V+jVFnXMcjASHajHPsbAIyCkgkqbHY2SJKi6Em/Co/QY1Jx1QykCmvybIgfaLGpHiS+R1yFES62Tl2AIxItntkml86/74IHbZYVCmujMEGYIuFQYe8L8y+mcNHwmz2xItuV++1Xd1EkXt2hlL8RQAnHT1mnAopKqSkX4SE5Vkg59JxjcUsLNUjBV2ilJnCQxJ6S6GsYzKJ72eVopejQop9MtSYdKBxB49kvc42807iLf5px7zBh4xxzJX6Lx3D+Eil5gZchugxw56zJ+hP9LZjbo4u0MFj3D/mHovqoyYp4S9Vv2DRl02qO6ElOkRY4ZYDd3zCiA9lj4QvMuh5trEkWcAxdxfZYoZdDvRZYKzg/gAQgIOQeCoaMzlKywHGJbJY4JBYEYjFwA/5F8quPeCl6hdseYuIl+CkO05HWcqJjnjpzXT2XF13ibAZf5ljxvH8jkrs5flprEgDKktkVYYfccB/kgMW2WKZ23zAd7lS/yXrXAEk7ChBg4wfMHsTnOLpZp2EsYidRpQWk52aY3cGm1IdLJjCnvFm73Gp+iUtYqzxqpOZl8hqcrwAn5YCXGOSD/mu2+wzywHb2FrUlHGTmcsY6DkP1AQNTRZO0x16jhpJF2BTJc17vMUqa2Qo85xjV/zlr68G0Osgi/mLBMl7EDA/TFJbJvDB8xD54QYBAGbMp35woUPgf2bvGbvJjmcTf5tcm29YVr9joIN5IxmwYADXBAIyhRDAY0i/93P9e4NggWng3EsEgI/9+YiAhWAsnCQiZ72nxzAm4k7f9Rn7BALZ7EP9nQEjn+r/X8fJiFyogYGXJts1oG9N3zfQ8J/rZ5sEC8DvIQv1FAIClAlAyYdaZz/jWa8gA+HiBJ5zIT22gXAG6hp4mUICLirI4scYjnH93KR7JoWGZwNKygSSPHsvT8BWNEDbrq9HEN5gC+kyQf+6q3/Seh4DHH4O3CeQ+i4QePvdJQDfzFcsrmUfIgBdDSz7+wRycStzHfHfW+ffT6ns6XX8QstgQHGdQFquUi7H6jNZsj0D+pmsn+r77+ufjP5mgkB65um1G3B4SAAcpgjuKWMrWpsZSKcLWTb0vTjSbxb038YYaxO062/C64ygbi4ikstN/bf5ZiqAc26MTmXGtu4JkNAqC3voXO+3WEYZTcpSPt9H2mVBgR3txxMhBSS0nWLKYKJAEIqj4M3QBvBzGHhX/r70zpfwj5F79SfyHu9omX+B9I1PhHXomJ82jiWhYmBGXWTEbtxYIEhCNiDK7BAMzN9RX76qAn4eMqauy2+LdQUmRwgktt/T72ZUipxEWMG2+dFDxl4FVAjDwGvIWPdzYVWlX0cAHQOsPbmerTUB7YxxWylrveo4OBEXqfBABpJvI/d3BgGg4gT+oVXkfvodApuGutRXTMfs1j0cU/ypSmJ/daiMsFmCkAVjD9oz0p5hZWWcvYYbl5/aWHlXpJ8D13HPp2eCObQ/nveAVQH2RoYl3dfGW5doa+xuBQpJybEGbCzsBMm/MdsAOVRQbIRgDDvTsnwu4PUrL2v9vURgYYAe82dybYMvAQUFyFUezZuSqBxFhrW0jqeDI1K/J/acvSRsRpCEX8dY/zHwqSQTt8+ExTo4pV6EZbnuio3fG1Lm848JNilPgGFh/bXPcDLi8w3cvKV1T1Kb7dm8s6PAfrA+/9q+fou/wHzLzAvox/wu95nDzLE3uIwFDBTJOXlpmSkqpJlUWMqkhcYgKZElQpdp9vAJM8mBS14V2e6wk7iJzPHUsaO2WHRyUvM7M0DLfMnMjHybeSzAwYAiC3zIU2SSmmNH9QhhSaHvcp1dphW89JwE1zyPrCxTlCkoUHeqTAuT8ZrsOE+RCilucI0KaXIUuconZClhoR3GdpjnPuNaxjYxfsBP+SE/couoED2OGHOgS5S2Y+iApP/e4Jr6QkVJUnPAlYFOUi9ztIg51uI825h3kEmUy0yR5IBNXmGVz5hUKarJqI0lNs4xK6yTo0iSAyrqxWYApQUAdFSSWiTHNvO6SK06xpz5fZnUGHCLZku6jNKmR0gZKC3e4W3axBzIa9LwMplnPJ4gSASO0XLtbseyhXWZKU5JcIsVhrVMu8w4SVtWna5Mum0yK/P+qyHhCOYBluRApY/z7ruWJmosxwOSjqUV1YWmMVDNd29YQYp1VhyLZJpd5/lkfckk7MYozFHU/lijg0dGuaPHjJOniAUp9LOwWsToKTO2TIYCOY4UoBT5pZjj5yg6kPo34fWAS5TIsse0Mol6DNMgV3/kNhKS1ISZ7MX4dunP+WVq1o1ZwzQoktd+7klSql9x45ywkCfZDs3jE3bMsQgdUsoKzlNkqC5Juia1TNBglxk9t8hZq6S5z7yTc2b9EpWJUSz8Zk5liTHazKgXY46iA8RSVDhmjH2VTBqbTKS3Kea5TxjfjUkZv+w89AyUM0+0YRqMIwnoab/CNLuOhWf+at/lQ9JUKJJTbnMZPwyXuU2OogN6zGt1m3n8MCSVcddVFqmxxTLsO5sBsVgQNq0BRcKKi4rXZCjBMhsK/ndJdBo8Tg3TCCWcN2gXj12m1bNN2GXma1oI5ch2SiR8GT9er37mZK6LbJGj6DYoKqTwCTkfRJDAjaxutHzIG+5erpLmFX9TnxkF3VSLIoE8AhCP1U/J1B9TJM+fpxZ4l+uO2bnMbTZ5xTGkS16WjgdFL+dAsykFmT06VEJpx6J77fDPAZG7WgDQB3yXGpN4dEkrA9JSfEtcZJIatdFRspTUszVMiyhHoTEAFus7zLPNAUndFJAkXgP3Wp7Ir9dZ4ZulHWEod6oc9W0WxfR5l6DBr1ITmOejAeMWWFMk7+YiUVpYeu0Sm45dCLgNwxZRbrFCVRnqBWVTG9hqTPwMZVpejDVWqamn5ry/7fj2PiG+1Ofif+j11QB6pwSMMAMN0gQeXCbn6iCAi7FJesji53UCUGqn71gTfd8FmehvEviyLSOLkX7WnzHuIEgktUn9RQKJ42HfsU1eZecw0GYWAR3Nk06ZJM78e4QAkLurn6vMhwlkwZslWFh+jyBEI0QgT51FwDl7GbPC2FXG1GoigI9dEwSMvjhBsMblvvq7pcfeJACeIJDkrun/2/FeJwCQzO/Q2s1AxxECANaYQsYuzBKAljWCUJEqAcvO+sAKz/qvlQgW4lbHZWRRDwETyIBEYzXeJfCeSuv1G8ut/xqU2eP6pTJNgABYHkXYiMv67w2kDxhz0xieCwT9xkCydQKAzgz9DRg0+an18yECxuZ/pvW/hPTdFa1LBYJ4U+vVPAGtHCal+1TPZ/fYRYJwFmOGWv82pt2oXoP1bZM4X0HuLZNDm7RQJZhO7muyUgNtjIVmrNY4jiFDGpHcGtD+dX9lldFUgUfKlNvRhf5IEuiopFY3CQZf1u8ngZSAeSPLwuBqbQhQUNNNgkEDSVYF4KioXNWB4j1hdG3a+Gbj2I6AFrzJs5L4hwQM0mWCcXFUrsNJZ5sEUlUPHtVxsljicq3nd1VOWENkiQaSfY6MaWdyvW5ssQ0OA/VHcEzsRrOvLAvy3REIbANWRKLLR/rdMtRu48KMzneUNZbWehkRZtfTM57ZIBp8iSDhGeA1kVa2muLPFw2p911Y2mXgIm7DJerJMXi7r6w1nJT10RqBvN/GsbtACWr/kgAQL6t0WkG6gZQwMyfi4uV38pG0wcCSfHcwT7D5kcGBtO0z5J5UYGlgVsthwB7wqIxLP69VtH6Uddzrye9PTiUwJPY9bT99rj6qBm321MYLZVw6awkF9egRjI9nym67rN//5wpGqyx55DW59paCj+e3kDErjTy3UKAX/Y49h30cSJ1/SaS4UU9ScUkSWGQoeHdoTHBjGPexvdtnMLLQV35jx8elaZ/2bboMzsL5T/U8avsxMgyVjhz/aU/Ylc7zEAUT9Vn4QhwGLxA8C77Grzpjjik0wy4dXYAtsMUGy8qEEgmtGUqnqTjWmsk+b7GCJNXtYimQ28wh3mQdl0T3HW7Qb/S9wbKCKA+5zG0Faqbw6PITvu/8225wzS0s20TZY4YGCe6wRIuoY4qZTK5Bgi4eP+KHHGhZjdE2pkynSWossenkjwJSZtyOvLBRZPf/DT5knvvOx2eXae6w5Lx8ptlDghdaXOddQrrDNs0uU5Qd+8nkwMYiy6l0TkDC++QpsspnzyxejYUVUulWgwTf4118QgpkDlNW5lUI37EnzI/P5K0baopvbMKQLuAzlFlhHTGv7zpQSoBeAWNN5lQkxy1WOCXhQMIwvpNOSa3Jgt5eMZUwdvHYYpE8RcZ18WvgWVfBD2GvDCtLrOO8mEyeDXDAJBss0yXCVW6qLHzGgbK2ILb0QpODmb+fJeqmqJKhTA/xMDxADOetr3+HG6yy5uTgWUr83/kv6eCxyhoWUPAzrtNW1o0Bmxssc6Dpp8aiqZLmY65xrFdvAKUBNG2Vu5mf5Fu870CSBgnWWGWVz3hF++wuM+pTKG1pScbmOWhAZVrlbjUmHcO2pXDklAKCgAM0bQG8yBaAu79/E14XlX1r7DyQhX5p9HmK5BybVMaXCP82K7LBfgBX0qjDwZgSErZQjqIDnHaZdozkUxIi1zw8dfLas1HZAOgRwrzubBx+vlqnQULTq9tUSLPLNLdDl9lgGZ8QKSra3j0idDRUZdoxpt/jLefjGaVFl4iTAG8zxwaXqZBiuflLVpp/zi1WaISkH5v/6K4Cjp5KtQ10KYVkA2OaXW5ylfd4iwgdDdKQ8We+uSMbNvFhxjjm+XLdgWG2AZKhTC0+4cCwaXYpM+XkmGkqTFHGwoBsnLFEdQPnbRyVTaA8Mb9F0cvRYJgIXedJ2lH/zgOSnCpAKxsA8txoeAkqobQbI4y5t3J4lzIZbrNMkTyLbDkWNgjT8//B33LArMns5zWoIlE/d2PEWLPOqT67LOynNjrK8eiwG1+SHDhmukeXH/ATB5SWybAWf1U3DWJ8yBsUybPFIkeo/2lHgN1W/DkHlqp4Q4gAAQAASURBVFVJk6TG3+P/yiJbZCgToeP8a40lbZspx4xzQJIQPfY0tb1LhMGm9I9NXsG8H1NUXJ+xVPkYLb7MCvjc8sSbNLgXlhxTOOEL+/473CDmC2jnE1J5u4RkVUiRp+i8RyukmGObWEcYhmlfksPF21cSvs1yY6WzThePMlOkqHLApJN9mzzd2v+y2nZsskTk11wsfzWA3osEyZgG3pjM0hg/EIA/ZYLF/z/Rz23Bpx5NDpQzMO4ygRcc+luT8DT7/owSmJ6XcbIzBwQaE8yYW6PIStFYdrbANL+muh4PhKGi7A1KyOIpSSCreU2PP0vA6jskkH+G9TsGVI4SGMCbhPIBARhaJZCDLhEsnAzICel3DEyb1XKFCEAsY4slCcBA8zgzho9JiUcRRs5wX/2aLPiEAHw0MG+ZQP5poOCK1ls/0/EeQSCGga51Au8mWwi+red5QAD6WVt4CDBgrMiX++q+wLNsT2MPzvaVz/5tTLZ+yeM9AtaJta8uyi1RkqQe2+oaAhaiAQfGRjJGot0Pxkit6jkMgDV26T8hYBI91OMuEDC5bDFpMi9jdNUIpLGrBF561qdMrvwHBH3GFrH2MoD0IgHwaHXxuX4nTwCaLxPIkO33aDnUh8pJwjtI25wCT/iN8dCjE6STRkNAXRbxyesIsNSEQ+srYaAqiaY8BDLqw1UVT7DDpgAFFV8+L1jd/kx+m84AZQUIN5ExCemO558jY9Y9xG/sZQLm5QlwEb78g1FO/miQv/j7l/jz7y3Q/L3n+OLvX4Dfgwf/4HkO/94Q538Hvvw7ozx4+3ke/MHz8G0Y0euqvY/rL4/q6mNWx435j+oKovUxrZ8a2JOS+mBIZZQ2voThjoHIHjIeTEhSrwPMayqlrKsnYVgkuIQFkAuH9POXkDGso0m1SwQbE2cIYD0hFTaoY0xsRTzf2h3xH0wqMD2ygNwDnnx/YEhB0pKyKO8RMM978OLLcn21HUSyrAz2yoay7CYUMLPxyiSnKwLqxUbFK27ExpQ4wThTQMauz7WvNOW7rYIk/J7Y2FOXUIqKgnovzkrbn2+olNc2iuIa4BDXQAcdEwaN5bysdZYHXldg8/f6+vz7yoY7I2APp6Q+7pSg8jOtH2UwD9omjm2CrQeHOjmVejnfwT3TW2X57LBJAFI/hNa61PH5fpC8O2KAp45N5wVofSSg29MmwTziELd5NmLjuDGqO8F3XkTBURvrHkoZo0Nar3kYXIW0bnoMxKXvDbwuQHxsQtiWtYpcS2xVDvPkLl/71/PsOwDmIVnS6sdWJM8yG253vT9hM6peTOYTZmw2M0M/QJIyi+SZYY8PeENlpdNOLmZA2RjH5ChyixUK5IjQdcyEKmmX6LjEJlXSFMlzpCwvS5EFWTQlOeAmV11ZzOPnJlcBWWjcZ96xUoTFNIalU1qyYYQuSWo6cZfF6rSmI5oRvRlm2+6+JSqucEsWeroQtMWA+RMlOXBsqy0WMb80kTP3iNBlj2kylNlThpj9vc0cXSLcZ86xGFJUqKrEVaRmc6xwiwW2XAqvyTuFFbOvUiVhSU5Rdj6KNV2gGTOpxiQdIoxx5BbHLWKkqDg57C4zDOsCLUIXM9WP0XYApwHGDRKssO7qd4xj540FYnBu3n8ibQxrgIWk5Z7qordLhF2mVcKYdKBnggZv844DIseVAZdhXyXC43SJuPoN0WODy8r4qJLg1EmbJb352AGu5jN2lZu8wQf/HkAh8uaOA0ZMrjqsMuSwltGjyyZLJDh1Plzm41QhTYsYv8+fssQmZnIfVhaUJR1PUVaQosc28659DYgTOWOENBWXyFwh7RanRXJ08dSXa9+Bz3kNaTH59BaLhPCdnPA34WX3tIH7ifoZMdq0iTmW7FgfyCqsYQFvJIk7rQEXBVJUKDOl0uwDQvREdkiNq9x0jK0jZT8au84nxHF8lBA9xpURZOb9PiF2Ui9SI8kiW0xywCQH6qn30AFUBpAYID/pi83AzOEj7dcFJx3N1r8UULv+SL0r91lljXGOKca/wVZ8wV27jbsG7FhwSNqvaE0ckPUlUMGjy6uscY2PBZzRcblCGj/8nAIrEXaZ4S8yl9zzYpo9xxS0MbRFDI+u8zE1TzqfMBb4I6zgOcc+XWKTNjEnmzcvuMjZOQe6AVFmCgv8SVOlSN6xEo3J2iL6/yHvb2Mbu9I8T/CnvJSuSIl6o5K0mMFIMSSFHJpQpFShtVzhjLSdNtIL92ROVaGrB1XTtegGajEDbAP1YRb7ZYH5vsB+3A/T2AK6gK7pmunu7azNnHHDCb87HZXyKDKUVrTCCklBOhhFmbSo0CsZl+JN7Yfnec5h1PRW5wDrnWqbgCCJL/flnHPP5fM//xd2yStjK8MqS3yW/SYHjLARzLE59m1GeIwlr4IAU2Z30GCc/wP/HPEEHBXGoM5lP+WHvDX2XfUbrTsAc4ptvlk9ccBkk6STNc9yH5PqG5PQ5tjlaMXdx8pMssyKk8yapDVOiGR8JVx2gT7Gbo/oY515utOZZcw/dgt6fboAZsCmgd8RIZ/nJZnYvF7f5lVAQDWZj8pEhE7WawCZfS+YUgm1hZkMNc5oqlVF0Ind/ce8V83zT4A8udflqJM//ZyDUMDmWpBz4TDWJ+b/eBxKW8ckSJ9KgFOZIvm4yh8e/ktePX1H2NJB4GwI5llnzJnV/+2PLwfQi/HsLwMLDIgwb7xDBMxK4Bkl4FkNBnAZqHYHX7wN4IM1bPXfAAqT7pg00hh0tv1TvOdTHu9plsWn6Mb6YxK5ga4flfm4Vft5pMBcxvuWGcvFZGKlrvOv4ZlrWW2De3i/Ni3on0rVvYrzUnJpqXbc9xCQyYpbZTy4QIl1vE+WAWbW/v16PhN4mbGyJFjDp9haMQZS8BqTYICn2YzGALqLMH8M6PqBHv+Y9ksBn3ybxfvx3dPt3+s6X5OkZfQ8QaRq3XJNAzyHgX+jzxlQdwdfeL2Pl0pZWxlr0FhJ1m7g+zLAe+XN6DmsarvYea3ydCgEeFZhiACa9py9/iOeZl4a220fGcdreMm1fa6h77nH06EsBvZVkX481OMysPineuw/xaf82rVmRbRJARP6HgMwT5HxbQCosQY/xYN1BorY+KnjJe7GEHxbz+UImXlO+Ho80kh66IsCmpztQ28CGm8Cg8J+upDFA8ngweV3NHU1FFZTL+IRN6fXhLsFZpF5QZmmqQI8uoubb3IzAprUKgo6GMBRkW3zELgKb/A6bwWvEhESElEJhab/F8X/zBnINoaHVRYzKv5WL0LmR7K93oQGNAwIyJf6Ps4moLkmYR6AZwwnBBw5f4BfsBgT1pObOwvwWza3RLr9WBli6Gf68QzWSypZzQEvqgTUmLm3kTF7Kmy383XpA7cAtoWT/zdP1eutA1wX8KiYxbNYn0hS6dGWHPP5EwW83hfm5Nk+3mLhCDeH7sfQ+Gfw6GeyrVxeQyTuKbBlgLotNpkVwHV9ThdXzj6SbR89hFK1a7zVhV1Xq0NqQSTFQ3lo6gJQz7De2mwBoaqMN7MhsMWrQNrIwDPW9ZxUTnthSdrz7Gfad/8UB9pxVQDQs0+lbc/eAfahsQrzCsaelaC2gv8u8CIuTKhh+9S58sxks8qkO1Zg74Kxft8XFmOnI3141hG2Zc9/pePFbCmAe3qN9f6uyLLP15F7eEn3e4pfKMvgGNdn+9LHuQKeYf2KANK9CRmzuavaXw8liXplTc9DLRwyOQERh0L5+8zm3WOI2nzlH2lOutJW5YtDipZLnVthWRP3BOAwXx0QBtc86yS02DMZ5CgHjOsN34oXA0fKTNIg48AskSo9Zo4NispguckHpDnmj/jnDsgwk/IlVt17O0gSoUl17jGnQNi0Gq4n1Kdq15lym+SspjCOsRNMTjPLJmbE3i3FsfcCjiU4wmOq5Jln3RWWllpaJ8caiy49tE6WJknGaTDNNpbeWmbSATGWuGuFrAQtjDDFDiGRM/q+zH0NTcg7A/IcNZXSnRAo667EJCZtLlBRzzmRx24zxQZzDkg9UKbmMWmSNB24leZEi/ETBSWTLvnWmEMmAzXWiRWhm8w6IMtYJZaqfIcFmqQoqRTaQK1XedsBUp7ZJr5eC6w5hsYNbjFBFZMOA4412iZUsE1AjbK2Q44aSVoMcuxYOOZPts0UdZXKGfhoAMUe46xzjVu8gAWdNBhnkrIDHrLU6ShjL80xN/kQM5G3dGcQMMiYVubHZema4+y5wn2DOTYR438bhwIwJLGk5To5vscHKjhLMqqMHvP5iwhFLsYm02xTJ8csm9zkQ9fGdbIOMMwqe6xK3rGcTCr9dUm5Degwz7p6b/WRiHGeZwYkVJkgoWC6SfzqCiYAjl10ixvUyTHFjps/dlTabe0rc859Nyd8q7rvwEKTknrAftDJZAFl3U0zQdWBc5YsalJUYawlqQbiX9cc+AarLCkDWL5kVYe/SYoWx8P9yrQbZIptSYVFJKYW3GI+jxGhXusnVCiQPDnDkmKjQDz2QMBoSyW35NQ2fTTDFNNs8636vmPJGugUxhE1JEgpq3NKniojp4eOQWoLORY2Y8Egxuy1gI00x0yx7UCuFE3a/b3Mssk61yhTJKeS91QsDD9LGs5TJUvNBZCMcMDC6a94mXcdmDWhTLYULf5x9M8cOHaFDSxJW2THSQ4YYVxDhWIC3uQ1t1gRENMgg3lttkjxRX4QS1ffJe98EE1uL+cfunkuRZO9MEObPipcdCCdMcNTtHjt9GfcCRYdIGxp2WUmeZtXSdFiT+9LHQIHNo/HMr6apPiYZSIkif3a/hbjSPDPJpfZYE7YpFGdFim3MGaA2DGDlJnkvt4bSkyywB2WTz8m4xxlxSohjCN+kf2Ou4eVQ3lv+vAJ95lliVVm402apHiMeCja/UgA8Vi3JveFydPPHAhtyc4VCqoWiFgb+A4bzDHOHn1PzigPX+B4YJBBjqkrW79Jkj7a7Dvp4N/++HIAvcd4f7oHuLQ6csjKvnl9GchmktMiAnL8AR6kM/DuFPG3WcKb/efwksxDvDS0gA9gsFX/IvIl/PfxrIoneDaYsaWG8LKydT2PT/HMDZNqLuixv41LUuRK12fvIJ5T9/ASxTXcl30u4mWKVZxBu+u3h/qaMg8YRoC9qn7O2GMm26zofl7AS0TVK4ioqw/2u85jAansDEy096/gPeCszZSBQ4hnTw7hWZcmI8vqa6t4Vpqx9Q7xBWld+82YW9bfb+P9AKv63kt4QGkdL5EzgLSKZ2AawxJ8/w/rvrN6HO/rvgLdzwyeIXpF/zepKjhjeMcqSug530bGxi5e9m3taIX5FTwAakVzQ/f3p9pWD/AJtFt4BtwYPnl3C8+wtO86EQIGvohnNxnzz4DWUzxTsYgPRTHWXgYPMFv7maQ7iwflK119ZMxZYzyOdX1uABk/BqJ2+2AZUN8BRrv66av+OEZAHQWzekPo/b4Hwcxb8KiOX4C4gpsPeo1du69ggjEtx+T/5iGS8lpD2roOxHDhj3X/fyCfqdUFPEoEyl4qIddPrAyurLBFZLWqwzGS2FglT5GykyltM0VJDdUTxD7tOCEm/ym7vtF9qLS99QQoaECDsqOPHsq59Bhwj5zr2ZZ4t5035PicnPVQ/27Ahdd9mzpvSWVyp2b0+YfAqoKYJiteQADHrKbiGut4Xv++LdtKXYHcs7gU4V40qfVQmV2RnpPupyehbW2MaHD+hNZH7IunYSanRG+TKH9fmXvDcr48QFJ/qwJ8na/jwE5bvOrVBZ/0ABSX5XNnW/KZ9IAEaZzfQ+aooj+eWgkmzaahhNxTh7XtGrgU3tqnEmCSmtFk12EBnwE/n+t13qhpIrGx72PxIuwdENZc7VBA21asbL6EtF3C2uqu9BM1YA0y/6324VXxCkyZ9FXHUq6Iv5dlZfyu76vv37ACyQPAG8KII5ZjexTB9ACkruqxBnI8Db2HDA1Cs46/t9p8r4/yPt77NAH8QgNewKeDd6Svikuw/AJ+8UkX0HrsvjIAvd9DFnt6IDnB1+KRU5aXFf62Gm8eT+L7tokFXQCsM+/knHuasGlptYGCHEusUiXvpGcRfUyxwyaz5BE/pjUWqJOjQ+AM3IWF0aZISUWhgQO+KhScnHCHacTQfUQ91mYdcAcCBJkc7jZLLoXxtnqU9RGxyBp5qtxmyckk7ZytaDS2gAGQuwq2AQ6MMr+mOypVM880S8Xro80oBypTit1PWqWsYgJ+oF5RfUyxjaX+Cjusocyvx066NEmJWe4DIkM1GZaBduYfmKOuMqkRBXFymKfXS7xLg3HKTJJhT9um5QAwn3T6mGMGeYFbpDl2/l6tLuZMhYJLyDXA0JgjIxxwWcG+OTYUvJxwgQPjNPiAm+44jTVj7VRSIDipTLbusIISk5r829axt0dWwUtL+T1g1IEi44gp+h0Wnfn8uIJyfQoEGPvvY5apMuHGggWqWHF3h0UmKdOmz0m6jOW3ypKTO24yS4lJAMeus5CFlqYSm7n/no7ZAhVWeI49lU6KzNCnCB+TpkSRiJATBSBjAqbZJqug4aamZhoIskfGSdrKFKmRc9evyWpD2ir1fOz6r/EbFrD/sT8mqDmgbS7eYGPskrs2U7Tc9Zyh4fw2DQSytNdusKxAhfH9E0zeLv6EDVZZosE4ubjmmLkFKpxmvsF45AMRZuNNIkLHeKtwEfO/S9FimRV2mEbCLEQ6uMKyBvdI+umgns8IB8QJAcONQRoQs0uegA5/ye9iXqR1cqyGSyRpUqTsgnGMJdimz4HTk5TZGJ5h6vAzjhlkk8tYarp5t+2R0QWDQfJUsSTuf5e95Jhrtv1PgnlcEvnpF05q2hzo5zq39blB+oiw0IkmSeZZd0y3TWZpMO6YxR0CinGZJikXTGHHP4EEOuwFGZZPP0ZSwEOeKR3SIkVS27BFkjjxDdKxZ6Nbgu0q19kLM27u2lVmYZaaA2g7BGwyS5Iml9lkim1eP/23JGlSocCEMuiMTRgjKblrLDqGZKgLIvmoSkQfd1ggoMMcG47FfEyanDLWG4w7O4yYgI2BK+Ivd/oZuf1D1z82JmpkucY617lNgYpjOTeDlJPWCptbWPSRqjq3meIGt5QFeEI1zJOkKQAcJ3zMMpY8v8AdluMVJAn9PmssUh14hnsatrXCc66fRjhwzOw+ZTf3RjiwOwpCdS+9r+14EQkdknR6C/i5xQ2aA/30IWE0k5Tc4o31md2jBjmmOvCMs/IAKEQVauRIKCty8Ddkv3w5gN45HiQxwMgKLgM7DGgAz1pTTxozm2YLD0p8t+t1Y1dZMWDeaMaeAg/G1REg0ECntxGWkvmCfQ8p5AJ8+mkDYbkt4EE6Y0qUkKLvbTwY9QLyJV+ZNGR0m+Z9dlW3a8BOiDCfDFCMun6blMe8sEyWbKwNkAL6Sdf/HYSVZav9Jq9S5giHSFF3ghSKP8abvVe7tmXMjFO8L94Tfb/Jl+/iwdgjfX4Cz+IzGexDbat38KmppzgAwXkSGRBoBbfJm+7o9u7otj7V/rjcdZzGujEg7gpemt1BxoCx5H6hx5HvOi9jqFifWz90EADxBAGYF/APk/CqfI6reNnxR/qa9cGw7sdkzsbStOeH8Oy1WPdpYF5Gtxvgx7QBhAE+yfYJ3lj+VLefwYdcHOn2AxwLi3nd76Ce95t40DfW7RhDaAw/hg0IN4aXsTetPbtlc8M4rzIH6Jpc/BSZeVp8PR4GXv9EwYIXkOvIFjQUaB4qKgPKxqLK0YeK6pmnEj3HOK4LsNSbEOCrYx5iY0h/2LX2F8BDOAMIlE00piCeAlpHEfCn8A/f/3/xW2/c4zsfbfH8+7/iOz/b4j97/2c8/5Nf8Xulf8u3V7/gu5/+kj9Y+3/ze5V/y/9+7X34c7wHpQIhGwboHeq+76qks4RP3H0IQ6/gx8ypynFLwhjrDTUs4yFsG/t0TAMKFNQ7f5unQT37beD9kbw3t6wgnM1DS9K+YwNdnzmF86r6ym1p+xlD9qIklhZfkHbveV4+34o14OEK3Dbps4LcvcaOXdAwi4QcV0bnnUlbhJgBKrIt0Oe6QKTeMQWNhmQ/vCIAm/m49fSLrJaGsNIuZBUgHRDAsrQl55NSMD1XVCDSGL7qS+fuT6dyDDljdZ9qUIjNX6Gk+Vqyde91GVNZO187VmObInLjnhm48KJ87uxUZcYIS620pSExg7rdN3ALVT22eDUMTEDpfe3zE5yNw1kHruW1bQ1As77uV7nuE0mGTl3Bs7MvyXFmMnotDUk7Hb2hALvdfxdEot4BvzBixxSpRBcZP+SknzkRQPXIVAkBbjFuKI9nMq8h1+mX823s79TD/NdAGE4fccMBNOY/NsW2A4nMEy/Q4tR8dBYUGPPG73Ljryl7LiRinIZnhaiMyqQwu3oMVrDa+8xvbo0FEsQuhGGTWTaYc6bkVfIssMY4DebYIKkSL/sxH7mUFlMLrHHAKBF9dJSNZ4CLgVtSNCT5kJuIR5bIiU3eWleJ5DrXGOExIW2m2XaFe4NxFrgjDBnydAiUq5LCvK1MOmTyoWPEvF3SMZtMUHVFhAAxo67v0pzQpo88uwBsMEebPi1mEo6FVdbzMsN3K+a/x4fOJ83OycAMYQZuu1RWY5g9VomyFX8Ay6w4cFK8+hYBmOcTJMZkD5D04hWWaZJiles0GKejkJ2xA9v0kaXORSr0EWlx3efadFq9Cm9xwwFd5k11oLBFTAIzxbeHjVVj8gTE3OQDJ4E0v8Q5Nmgw7kJiOgRMs8M4e45ZBzhZ7QZXqDKBGfUfMOr2nafqpLw3uEWLlPNmMnmxnKMwsGoKtBqgnkaSNctMOlZPXkWI5p9oyZ5JWk6GXCPHDtO0lGVWJ8cGc2RocKKg9BTbWOjKMYO0CZ+6Do1lasXub1rA/sf+2GfMyQ23g2keM+K8CUUqfUz6VNpiUxNTjXXcJMkq1921kOaEPTJ8MjZDlhpNUlxnFZO0xwQEndgtWhwwwkE4Asj8WCfHdjCtnnyycGC/K1wkoEMqlvnTWJwNxpnlvpvT7boVgCuj+wsc0216/xERoZPIm8elBf80GOdxF8NrRBclstSJCbqk7+OO6WeS1WvxOpOnnwGwq/P9ErcZ4YC3edWNrfz+vmOEt+mThOvDz1hhmf9h4B+wo4sDIGzJjYErVLjIiS5wz7JJcf/zp/pxWhdEHjPCd+pbtAmpBTlaynA19rYtTtiizM7AJbc4cz6MC4MYjQXsqYZ5NoI5x0oGlIHYcucYqnQ0R50dTRa3hZU84vkX0uYGtwAc6Ah0scBjamTpIPLYA0ZUPi8s870wQx1JrZ6OdjDvV5ODm/9ojEiPb3BLyQEljkmzPnCVt8a+q7YKIfm4qoDofQWQxSu1SYqf8kNERnuLhgKzJgNu9/fSR0RCgbHYtUmT0Vj6eZZNJimTpabMy5hmkGKdeczz0+anj1lG7Ag2KFOkqWC6ydvr5HgyIMzIdeZJRU0yp/vEBMwdbjkm5uj+E0Yi8coVMFOSdkPajnFui0ZpJOXdmLU7TMt1dLrlno9CtQiJDmiRYuY3tCD4cr5C9urvIbyX1zDyBXoYWZGO8IVrv/69hoAiXd46jmlnstGq/n8J+TJsRdwTpAgzMMJ87BL6uUP9vx8p1N7Rv9d0fwbcNXB+UuTxjKSObsf85SIE5LDtXtXn7uJZdgm8zPT7+tmL+j71OmJLn7Nj7+CZZx18sWpeZlqIOuBqEc9SHMMn0a7hQbhDBNAyNqIVSCBFRgZhVe3yNKgHXor8XT1/YzAW8eCOvb+CAIZPuo7XgNyjrn0YW0ulWwzhTdTreu7doFgRKTr3EQbSJfz4GMaz9E7w8lYtfF1fXEakvyHSf88DVkCDTxI2QOySHs89vIS8oJ8ztlBJj/FZvCG8segyeH+7I31vAz8mcvgCOoPI6QzQfQAu1MbasYBnpxrrz8DaNby01V4z6VsH7+V4hGeXXMHLeo3hamPIJJhbeJblFjJm93FFMvfwMuZM17HaeDTwroT3E3wFDwz28PV49CDt3q/Azl2k7UHmjbtIm2WEsdQ06XMHWBKz/cwlJNH6iiZmqjSyR6V+PVkBlmp3gYqAE0c/U9aezi05BY4TCWBBgja26iIZzZmk22Tfxph6iA9YMUmsjY11PHsYvEy4DnPLCjAqgJMINCHWAHUDsRfwAR6nElRw1JB2Obfx0xGZ8bkBMLHKKBU0PDNmmzLXGJP2KWkbHXWzrBpy7I/+FSJjXtZjOITzN+WYLzzb9X6zZ7gnoGRzDRoP5LNMwIVlTXStKuH0pKudMjhp85mxyfrl+fMtAZHObJ59In1w3uhKJF5QSWmxq1/eAN6E3AL0KHDvtqFAnN0zmiU5jCFb+DIgdEDCWB7V8XOFsXvt+h5A5nwdO2dryPyZkDbs/Z7uU9mkQz9Q0HGfp+9l3+9i19VxbOTeF4S9l8kJe6+Ylb9dDduBxs9xC1lnRzIm6IeMSqKJ8QsJ4NmLdh7vy9PnDZXrLqjU/Q7ee/ABLo285wXtswHxRzSQzrG6O+KLd7SKZ69b26gHYk+/HpOyZHv61cPPrsM88p3Irje7f2X5WqTc9tFmlSXMdP9EGVKA8wjbJe98mUwmc4NbYjytaagmt33MiANhDhhhnk/EgFsZdKEyUayAEg8vAerEYyxyjJTHymCy8IM9MtTJsov4hS2xSqQCqx2mXECFMUFAjNVNPjnFjjKZiy6lFiRN0s7FWId1ZaLEJBxLLMMeFlZhDD7zrXuDv4cl5q0zr8VIkjYhe4y7YAUrsiQIIeEKlTTH1JVR0yTpfAgtJXUXSa0sM0lL2SjGDvqQmzTIOJbPAaPUySr7YBTzjprjnvpOBSrLKrBLXqVXB+Soq39RCUk0LipwEDtpYIuUyugkZGGKHZI0XXqrGb5bu25wRc+/TlvPZ4QDfsRPqZJ3crw0x+TZVXn3Q2rkWGSNOe4xToNtpqmSdwWhMEE7jpFS1fMQ5lSWbaYY4YD7zDLNNuPqf9cg49hrBmIa+LGnoEyKJo8ZYY0FQtqsct15SJonVk3ZnyZ/MwmapdMaUGpgqrFWbbsRfSo/LrpiXgBL8XNqKvhn4kE7XhuLkvJZVXntlAMyX+JdLJjBWD3GLm3rPjPsOcaiyfssZbUPCeiwa8MABgNpv+qPiF5GOGCVJapMYP5zlo4dE7Ay8BziZbbp5OrGkpxWeTwIe3eNRSzhs0CFhpru3+AWTVJshHOObSbhFtPECUmRtX7eIyPedFSwwBNjIW8HAkaFtDV1etstXMyzTpU8MQkW4zuyaBCKXN4YZu+O/bYD7KfYcfuzc2jTxyz3iUlgQUfd86QtEPQRscYiEeIhGdKmGaTYGLjCBnP8Dj8moOOCOYzNmOaY4+FeLDk3SYubfEhl+BlucIsb3CJLnZd4l7HKE5WHP8ZSqw0UfzzWj/mwWVo4iC/kZ9lvIr6he+56Fbg17UIQhPU96hhh95hjZew7LHCHER47tlif3p/s/A3EMrag+VyWmUT8CKskVQa8wZxjdsv1PU67v9cdj/keWrCDyZUDOjqv1nW2TFJXT8zLbBKFfW7eMc/XMkXMt7BG1o1nY9vbnC792WSoccZsvEmVCTcfA7zFq86S45nqIVPsMM22Y6KWgkk3t4W0XeDOG7zOvw7+PpaabV6vocqHa2TdgqF5Vs6f3mWQYwo8ZIVl51ubpKmLZgeyeNSB5cNfipw3nGdn4BIRfXw4/NtYum1PAw7CESpcJEmTOhKuVSNHmUnWWHB2IOvMa7hGzrX9JGVqA9/UY24zVn8ii0ehAORf8M3faD75cgC9NFLIXUEKtR/igxg+Av4MAS5+H1885PESPAOyGvgv7A2elmd2S/xMCmjAWRXvh2esliu6jWcRcMfYTeDBozreu85YaN2sQpNhlvRYDRB6qL+VjcIH+n8Rnyib6dqOMVlM3mTnY8CXek7RjzAB7cu/gZYGZIZIofE8wiT7G2wTJ+cDHz5hzACTUVbwDCx0m8/qub6P9BUIUw68pMpYCloAuaTMbhZZFhkHBjz9I92PgXzWt7E+Z1Jale9xiGeMlfA+ddbnWohR0h/zczNQzaSxh/qZdxBQzBiEDXwxa+CjMQTfxqe4/lzPOdZ2iJBxHCFj7I2udj/pOsYq0p8mcTVQBHz/jmlbGRhhHk5a+Du5+SkCoNnfJpkFPx4M7LbtXOx6/xM8AG19s6bH1MX4cmCzgS3W/pHuy0AbA4btcwbuXsJLsg2stmMcQwroGGHn2Xj9qj++gbS99mXD2uBU0jHdddMRcCg1gwdelbnn/BrfV7+zIShVdPsdeX+nIxLRo4b6pj2vIMmQgGOfHMJGVQGWNSADM0sw9KJKH1+BB3/8DJ//l8M8+C+f4fP/ephP//jbvPN/+m1+9bsz/D+X/yE///5v8ekPvs2vfn+Gd17/bd7/0XMCRtvih0rHzz7V0Iocbp7NDePBXBvLHyHX1wPZRiajzK0s9FwBvqvMugHxfrMQj5RKkjuxyiwf4ANzbsv+UgBjAmAerSrwdlckp73o+1WKSSTMv0QgAGqtioz/F6X9GJPXjk8h84+RedOk7SpLn/mHSIDHXbxkM4TzVQlNcJYEF5VBZ4s1p3IcvaGCdOASz890vmjW5f3Oc82unTyUFdhlQNsqIYDhR6fitZjJdO1HF5Kah3DhBWAYztfkh5KCqB1937My7raqevyrCBgVI/e1APiX+LlwS8FYm78u4udyYxQbgGiLZAFcsMWZoh6/3s8z8/J3447uvyKfOzM2pS6QnNdFlku2Sy5rc1aowSfKXu19QbcbyLGcfYq/x38qffTIWPjGnkYAxbNPJSgkaaDdD2Q7vSEepCsqe9H6J6vnHneNtS0k+XpL2+d5PYY9vvKPv+aCyikFyLus7A6ThhrbQNgaGZXQ1om6QIY8u+pxdscBNmIOL2byZmAuMsWUSoTuqbF25HzXTJ4IsMgdYhJORmlAVZ/KAS10wrypJinTR0STFHdYcAXxBnOOPbPGAuOIL1pEH4McuyLOADoz4DaWmrGvAmLn1SeBCrEDhvLsMscGFi5g8rsEwoaZZpspthlFUvPMOqFAxYFQIRETVJ1nlhV4CWLmlbLbIsVNPnRsSJPqTWk6sTF58lSpkieij0WV/VqRb0BAjZzzbsqw56SpBkwMKnhkLJxdZWVsqzebGeuLD2BR23ncMQzTHPMqbymgOEiTJJacaN5YAl4FDnC0kJMyRcygvUKBiLCLsSagijEX+2izyJpjk1nhZgmle+pLJbJRSXnd0R55j5dp67ZF/rpLTIIkTfXXE+ZkgpgdphyoYowk8cRqOEmYgawxCddGH3KTYwaxYIRpHVsi1RukQcZ5ORnb1MaihF1MOA+2jgKxFqxiidMGqBpTS0IChHFl2ZhLrJKn6gChCgU2mSUiZNtJ6UoscsexSTsETLFDTMAuz/z/aUb63/5xwAjTbHODWwR02AxmqZMDUMbmNjvqZ9Yi5dhq5jdmAKp4KUrxucEc6UgYrGWK/CW/S56qk5aalUFIRDNIuXHWJEWRMiFtDhh1vpEZ9nSezaqnpUlhpQjJUtNjkzm278kZIRLkMk4DCyWydHALPJpimyVuu2tmMio74CpFk1nuK4NZvN+WWcFCkWwhoHD6yPml7jDFBFUnGS5SZpNZ5thggTUmqDLUOOOAUSTY5TF9RFhyraUHtwk5H8AtYhizeVyBpPvMasrrBA3G1YPyMhF9fMwyxbhMXX3TbC76T7YecMygu35DldpnqXOd20R6D2khctN1rnGPOe5zmQ4ihzWGsflXjkSyYGPzuLTTQwJillhVZrLcjw4YoRpYOnmHSGXMcl3XMQ88kXonmWKbQiRFxmwsi1d5dh1TPM0xYRxx4/SvFPzvMMgxi6wxwmPndbfNNBb8k6NOQMznWfliZfs1yf8id1hilTUW+Hf5S1Qo8FjZgrP7n4mHXiTbNbZbm9DdAxe4Q0Sfs74oMekkxubXWSNHgwy1AQHJbHHG5rNxGkxSwsJOGsPD7Ax/2wFygQKftmC0wjJnWZSx+NgdT0CHdebZU/mxLPJtuwUVu6/f4JYDrl+N3yKij8+zwy6MJCbgRBcM/0OPLwfQe4KwsSKkCDBQoIj3KzIQCDyAF+tnlvBgjhUw5j9mEsAn+GALYyNV8EwjkzUaW8gYagY8hXjWQ7cc8hAP2t3TbVfwnmQmJTX5aEGPc0Z/vov3PruLAED9+HAKA/8GELBnAe/vpmbizpDbwBxjd+zqc+ZZZjK0dbwhvsmPA33vPI5J4OScJnOzdjfAbahrfwYWoZ/ZxRWernCP8cX8C3jmjQE5BngZM2QNL7We1+cNgDrVtnwBZ0rPPL5frTCyfRtQF3a1PXggyfzBzMtOWTtsIcW/tclgV/8ZQ2kAz3YxMDhExvI+fswtde33F3jW5O/j2YYmSx3Wcyvg/QltLBvbLdJznccDp9ZPJTwb0phO+/jC2iTdq13tauPkivbfCl7+bZLxmr6/gJd7G3NSC24new/1WGeQcVtH+n8GAT5OdHszeg7z+HCVLB7gBM+E/To8YjzwnYDM7ymr6qEw0j75FBq/wDMlE8qs0+vnqKTpsbdVyqqMrMkxXLJo44ECHTOSbgp45s+gMIWuDeuUmxVQy81FyHFQgktrn/NM/ZDC4ec8s3XIs2uf8f27f8V33tni//jOn/PdN37Js298xnfe2eL77/wVL1Y/FiBE2XxNBaSPTvCLFMPCIOy9irAMkbAFAvVXM2BSx0nvALKYoAsf+4cSeOBYZkX57CcVkY6mDJijq50zGlBQERbeUB4HhGXHhOH2FMO7I8fWMwBDvyefPf8IsRv4FEmxnYHcH+MYsY9W1NsugLPbcP6GHONkqN51FyVttWcYMq9ofz4QJiARnD9UWe6Y71PG1GNQgbUzBepT1jbKHjy/p8BwFWYWkOsvr6zIh+L1dgU8IziDl+6HwhQ9uyuf78kLkHjeEGDwUQW5F7wj7TWTFWZb6cf6+aycB1U8YHdX+xT1/PuF9v2qgnxVHIj3aE36xTHdFcwjVJZcCEfv49ieR7Gel0rEM1fkXHvyvv96hoEjCYMhlmM628ffewyoNLZzRZipCVFsSDoust2kzXl2HRWVUajWCb0D0q/8Od6awO45hzp+ddw31nX8hMhcOQxbP5P+6Mkgc2YJ+DX82hZNvsKPQ4YdM8tYcn1aeMUE1MiS5tgZcpeZ5BY3eJtXnU+QFBs77sv3OvMOYDomzQZztEgSEFNmkpiE+z/QomiDOU5IE5OgTpbHynIoa2jCJrOazLjn2C4GqBn7zcDDJW6TUrYYiI/Va7zJFNsa+HDMv+C/cDKzA0a4xQ0k9bOKec0Zi+I/5793wJN4nGWUxdRwoQEg/kZmWm4shz3EfLzCRWUHFKlQYI1Fx4QcZ49IwTvwzJ6AmAXWKDPJtoJQVuRYoSlFzIkrzD7iBg0yCha0+IR5ClTIsIfJm/pU7tmdPlum6Nh/D1XCaiyUUZVxSTHdYY0FxzwzKV9Tlmswb0Izz88psGDFdJpjTlTSaOmwBjqYTM5SJW3cmDejhYVsM8U4wpoyeeskZTaY4zGWxpukj8gx5YzxZo8ULW5wy0nQAjoKBg46MDjNMUVKjrk2qtCG+QDmqTJJmQwNLIjDzPwNiLis7CZLDTYJHMAyH/MS77owkYiQD/gesZ5XQIeieqEZw2WVJVZYRoIrknqd1dWM3idPpxDfPgN7jGE4QVUluVNUyXOLGyxyh1nus0uePQ37qJPjRAEfY3R9XR4bzNEhYHT/CRZAYgBWTMJ5No5EEvQTEjHPOmmOmY033bUpAHpLJbxJ3ghfJx9XqZHld/gxFjI0wgGpSGS9VfK8xauYXN4WHwDHGLRr74Q0l9lkgiqTlLhU/5w+5SzvMO0Y0UmaHA8MugRRYU6vq4yzjCXXNsgoSB6xxoIATqGscjZJklV/QWMmB4i0djyWYJcULb5V3+d4YFCdKCWwYVrvDRn2SMfHbo49YIQ1FnmQfcbJTlO0qFBwqbW28NIkycbYJZI0Hct7kpKzLeiWHIdEFKhQpOwYuNVAzmObacZpkI6OObrUS4oWVzTNNoP4anYHFrUJ3WvTCv5c5j5lipifptlPGEO8QIVxDXgI6FCmyC55LIG1Q+AWFwpRhRRNtyBhSfBv8pq7V7WxZOEEB6HM/9VAWOoZ9jDPzxQtCSdJfAPzwDVGvTEiQ9q8yltuscv6skmSzWDWMQ0tEMgAZGE+hg60i0lQGxumE8DA4a/dtWNtYUzNNMcsRmvkIwluOSbNbZY4YNQteFnQlQXFzHKfDHtYWq1ZEsi3jV0yh4ck9T4jgUQ1XSSqu3l7bfiqaz/rk5A2y6yQ5oSb0YcuZMWA826m9DgN0qcnbAciv11Tn6824mH+v23KbROfwjqDZ5UZc2kY+RJrgMEhEiBhjLwKsupvflFabLok0lWeTijtZi28gwcfjvCAl0lxrAgxhpf5JJkEdBgpdA+7/g6RoqiBl1maf5vJdt7Hg4UfIWmr63iJmoFB9r/d61fwrK0Fbat7eEaiHdu+7gfdr8mAsl3HoAwD0PM9Bf5v+MTXFf39b/A+TQN4T7QYDxKaRNIkl+g5BHhZcw2fGmn7s23ZcduxVPTzJlXK6/8mX1vDMz0MhC3gwdwXdD/38ECEgY/WDwpeOJacSd8MvLNjBy+PPcGHqVg7ruPZmyblu6f/F/GMzn+p52WAjTEy30ZYR6v6uRV9/xvI+LFit6PnbGPjbbz/V6j//wI//mz8gvT1Fl7u2w1MdDNPnyDXlr2+hU+aNiDX2IMP8cDzkB7bLr6PDvV1Y5ms4/v+J/gAjQa+4Df5nT2s2LXr8evwMEZsAgFUGwokDAu4NIaCFAlhKDXvKatKGV7Jfn19DObyCJj1qfrL/UR2kexX5pBdL2sCBPI68EQYZ70F+BbyntyzyDWsYHFmBi+hLkHvT3Xbf46Et/xEX/sx4sn3C2Qe+TM82/hIAzyykFlEGEw6ts928eOrrqzDVwSQyxrwfCTPuTAWXTwZGxbw49EWcn2tyTYmQ2FMMaZA4gAyT9g9Zwk3b2ypdxnPqgcf+OAZkLl3FWE6n8h7e/4mC/zQ/5ydiv9ej7LQegck1RXk3Hr+CKgKe84tBCnjyxJ3e+y6jaRPuYowXKt6XHUB8o4MwL8ox9k8FID2KIaGzbHrOMlyowHFBZUO26OGX9RZkH064EmBqv1Ded3h7CYdfUHCMTI2/3RZQTRPcUznoYz89JpdgDLohubxi1xHcKEgx1L6GX4OMsajLgYNZaTNtuqQG4Dc93WbdT2Ht3FMwJ6LeN/QvGzjbEuPIwJK6hc5iJfjBiKr7dHFiZYtlJ3KGN66iwcB0deKOO/QfbMW6GZWGzA7pP1ikt0X8dd/oIEkdWVb2v32m/ANX/9/ZR8GVNkX2jKTTnJo7BEx/I/UT6rl5JUgAI6FIVRVCrvMx4S02WbKMQcmkMRAA0/M9w7QYiciSYtx9rjDomP62Zd2k/1sMMeP+R2apDTIQMCQedadFHaEA/VCE5bhnnomrXONUQU9UjSd55zIkO7Tps95nLUJVfITO7abMRcsjba7aDGD9Zq+NsumSobF387CJXLUsECQY9J8yE22mVY2SUiGBgExlrJpBu1SJHqw1PZt0uYRDthmio9ZJkudCDHmN7C2wTjbGiIS0NHC5pg1ZTMacLrHOGssKkuuTYYGE1SZZoc+2l3FeYMULZZYZYE15y8mTMyQx11+SpbIOEHVsUn2lM1nBWJNn7cEUUnRvO8ANPPYy9BwIJUlTRp7tI+IJW674naXvAsoMKblBnPc4gbmYdhCvJwsQVgCTIw5kmWTWSdvFdla3snHYwJWuU6ZSQcCZdhjVM/XWIdt+mghqZ5NUmwwR40cm1xmjUWSmixpgKP05bSTme2Sd8cJAhxn2ONdXuaasvTE/+wKm1zG/A3zyvg8ZpAMe07GZx6YBhwK2JckSYsykxwrUJSk5dixl1yx89V+pHjimKKlsWeYpOQA+hYp5tggpM0IB+yFGQd2BnQExO7EDuzaZhrxHG2zxzgZGpQCSWRN6Lwi4IZ45xWocJMPWWbFMaTGowZpTmiS4hrr1MmqP+gJE1TJn37OqDKiP8t+k5/xmpPBzvMJMeLbWWWCMJZ+F1A3q/Nrm13yxAQuECCMBDBb5Tq3uMEml4lJuPfZuDFvso1gzi1O/DJ7RVlw4u9oTCsDN2tBjhpZxwi0dpXE7etuzhiNhSFdjCVJOhfJnGbhR9be1n6faOo3oAE6Mt/tIinkNWU92/HUwiyPgxGd88cdyCis5Y5jtaY51nCjJCUmNUDjsWM7bjDHHhmu6HajUMDXyUjAxIaGFWWUFWkMaWM4Awxy7CwtFk5/RUDMD/kJMQnG6k8cmC/zVkwYtVUqes0FVaRossMUx8P9HIRyP5g7vSfWBdEa1+J1UrGkjEuoTsQbvO4Wf3JR3QGDEsK0R4WLDhCWIKMsC8qcP1DrgJ3hb/Mg+4y7J9j90BYx0odPOA7T1EJZGJxmhwXWKFBx/rmWDm0yXrsHAKwMPOe+owhQPUV5+AIpWuSiuluMs+P2fSiS4lwk7FnxJMwpS3qboPNrjgeEZVcj55jRTZJY6nf/vrTrpBp1HDNIUiXp9d9Qcpv4D7/lf/3jwS/h57+E3n+lRux4Wz0Qtd0Zghmc6WtnXa938BhFouv1ZNdzLSQ80sh1SUTp2+nalr2/+/Vj/XwSqQ2SXdvr/Fi2d6T7TOrzT72n69js2K0RW/+e87Pj6NXtJrva46zr/Z1/JcdnZLzutup0fc7aoaXbSHft19q4+/ha+EcHSLzh28XeC08FVbKv/2e1vc70t7VDDVHS2TGM6d+Jrvfb9rL6OcNQz36mx/oXvm272/nMWCBA8s/+v/eXtY21sY2T7j5I/I3/u/vjb47LMT2vXiD9U08eTeKPoRdo/akfIwC1d2Cyqz1tTBzhx0FvV3tZG4392LeLHaeNkzP+l+PYHnaOtq2xf+X/H+LfP8bs+K1P/uY2rf3seFp6vEdd55Xueu+Qvqd7rNp52rF8G+mvFpBWL6tW12fLoNPq1+DxGWI7YPLnkgAyzaoACReKuIt2ex9mfogAHD8C/kJBslORE6YU/LrWLyBZ7wJQgJSxQbtYPkNF4J746p0B7EvyJgMI0Ke+YDzBBwBVETA6h2fGXpHtsISEBc3gvTUNOB8WxtNQVv9/BedhRh7O7imA9BHeDuBQgMqjLRgyUGQNP+iW5f+eF+VYcra4YwxtA/FOtV2KOIDTScoHJNE3CTJYbREDBAzf1+19pP93AUUg729WIWVta4sdKDMQZbZdkmM7fyiy3KE1aZ+ZF/AM5C1hXg4NQq8xGI0V3BHWZE4tGBpVyLwobTk0r/v9N/Jaakb+LxYlLOWspMy9ugDFY8b+zUHtLyAXQHMfUkZ6qAsg2Wv2FMpEHjK2MnjJ7KH2fb9IuGlI8EPPvoDPqQFhT/Zk8Yn0g/I6g7hE89qqhmxk5bmjt2W+OK8LcNrcUnadAXMqSZ35Xe0bYyA/RBZIxrr+V9C1WdG2CZTZuAu9/wj4Cw0uOUHGro6bR2sSIELGA9EgY3EIPZ+SBJDk0PaI5fhztuj0EB9oFeE8/zLKth0bRhY3tC2PSgpC4xODa1VghK+Fp+hFPqPAF84LyCSbJSad5KiPNpfZZIVl51GzzMcuAQ5wXlx7yAr3TT50xcIGc8QkNFygwR0WqJKnjQQ2XGaTNiGbFGmR5FXeUlmYrDDlqPEJ87RIckKav8cbiLfcZb7Hh44NZbJFkUcKmyul/jm3uME4e6yyxBKrBMSMs+d8c0xeVyOHJYu3SLHEKgktzu0hrMUT1rmG+bCJs1HLMeiaJJlmxxWbRco8ZsSxyyIkgGGTy6wzzxKr1MkqqFRVYE/AACsezQOuTo4aOcZVwmlyuxe4xa6ec6jyYymS+pzp+DTbLqhETPYTTuJpoSbGLAkRX6/7XCarew0UbBMmnqS1SqhE1smIq+QdkDnPusIdwsJcZkXTLzsOoLrPLObxZmDqJ8w7xosZo5u8tMwk9S7AygDSEkXHCP0hPyXDHmWKyvrMkWcXk3abZ6BIxdfoIL5xBkqL/5gPu9hmilnuU6FAQIdpZXsaADvCAVXypDkmSVNBy4zKN3dcoQu4a8gM/Ts6fhMKPjdJssEV0pxgqahV8kyx48IB7BwsGRpgidv06XVg0l4DOUyCLDLePNdZpU3oWDrrzDPHPTWjnwQEaKiS11COf/dlTD9/5x4ClgkrCUSCaGCxSaAtFODV/Z9THivSJMFtlmQ8hikHQAO6IBKyyB3HjDVpf5OkAqdN95rNJdLf22yEkhpdoEKFgpOzm+9mPJBw3mknpPkBbwI4OfAEVe5r+nczSOm1mMS8PMVPraOfOeE9XuK5cIUb8S3eCl51Y/YmH6gvmwB5rxy+z87wt9nkMhb0YEDyDtMss0JSwTpb6KhQcNdDRJ+bB9uELHBHpafCIvskmHeMqczpPnHiGwR0eMyIY34fIx6PHQU/be4VKwAB0kY4oMQkoxwwGZUJOr+mOvCMLNgcfkZlWFjnOWo6fz2kwkVKTDLNjvMW/G79l/zP2asK/u06SbDJVp+pHvJZ/psueb0a5h2A+CHfc96tAR2+x4eO1Ws+b6BS08QGVSZUShzxq+wMKVpUyTs/usmwzFy0QS3MYkEPNvfYdkY4oG9A2IsD1V9zPvxrSmPPcJslDXlJUKDixsFeKIsJDcYBuYdbIJKdqwH8s9EmtTDLfWbdtWBs5QYZOvodYoptDoYHKTPJW7zKMitOij1JmfvMMqnhT02SbDPnWNp9tFnhOerkmGcdSQNPYb6JGRrcfPJXEIpPIghIOh43qAQFNrnMMWlyobBKd5jiChtIwFSKvYGMhpTsOgA3SZN8JAydcjhJpVBwQHRIm3d52cnKv90tp/pbHl8KoDeKfG9OD0hxc4bKWBDpTBNVzwb+M51YgaBQmA6JQFL/epG/O7GXx4C8doawBh5F8gXcPmtAyFAoX+xrsRR0mRAakXgrpQcgeSqf6wZgJvU9vfr5RiSm4sl+Kb6P4qfBuFTX3/bbQJNuAGlsAP761AND3QDnUdf7a3iQxI7LQDy03Ya6PvMtbeNEoEVJ16MVyfsM4DPQyI7LQBiQwqN26I83hxQ7jYa0vW0npa9fQPqxF/iWsjuS/VA79X3717G0Z3pA0hZtny2kbmvotlK6rdTTh08ylPTNXnx/9eKB4Jbupzch+04EypxAxkcykP6ia58OhNWx1JuQMZLJQaIqYyQ9APV9Px6PIt8fiUAK3/1DD55dz3qmjI3T/dgDc+DHVUrPO6fbeXToz78Xf50cxf6zQ/hroLsNz4ALOuabyDjdj/377Xi629mAOQMP7WHnltT9fku3Rdf70eNL9otf26NI9n/W8e3d0rFyZQyG9uVayHUdc06Pdxy+JjlmcNqEs3+qxvwgwJMW/PuxtFOvspdnnhWpZ08eYcFlxf8tkVCZ5L6CeJ/K9XrhFPiZeJ/1FEVGuW9AwhH0ZsTLrmkg2hDSIasI8LYAW3+uyvGLCJuog2dCWdBJpM8t4Tz7WEQmK2WApgfUa6yj4MwdHJKcGkYk2AaAFOH8fWHeDWXkfMjLT+PnMv6LJseswPkDCf84fyDnCQpYGjCjrC8nlzdZ5aqCOSCD0eS9T/CyfWubU6Qhbut5VYAMpA7xlgsNaTM+QgDHSM7paF1lveg1poze0kfCMEvNyPaHBgV8O/tUvdeKsg9WITfjzyGzKL/PKgL8NLfkmhsaxlsmPJR7WyaLYxJnchKqUXsHcr8rTMzGlt5LEzI2cgW5l/Xu63EMyed7fx9Yg7kFbXdjJQ/ik7239LmObCszD+U1OY3zhjLeStp+Cm6x1eWnGMo5pgdgaEnO4VFJ7jVnu5CoQ89r8pkeY+i/gmdlh+IdWbRxuq/tl4X9T6FXffKSv/DyY8agZ1B+n7+psuK6ePc1DwUMH5pBgE5rj5w/z5wxRj8CAgEae5b03MxTFQF+Ox25ns3moWcAuKv7W9KxaHYgHQGbywDfgNZvpqr4j/pxkc9YZ5ksNZdwKV9hU5yQ1hX5wCWaGsMuoONkWvaFOkQ88BIq49xTeackgj520igL0rCV+fd42ckfG4xjSYoGyJmcM0mLKXaYY4NVrruCsKXeOgYO3mOOpEoqy0ySpYYkL7Yck8T8xcTT6bKTjVoRaAW0GM3vAAJamnRRvJrmucEt0hw7mZFJQS0l11iCdq4mA7MiKc8uoQKmBiI0tXAx2WwHSbZc5TpFyiJzU4PHGjlXZEf0KTuv7yn57gfcJIF5A826wIwMDeb5hIaCSHmqCkKNkmeXt3iFa6wzoTKEdea1WNvFwhPWmWeedQpUsCTaNn18wjzTKvHbZtoxm7aZ5jbX+QFvcsAIjxlhkTWq5FVgXVawsuEADAsO+YCbLLLmjOmbpJikxCaz7vh+yE/JqsSmRYoMezTI8BLvERMoM6bMLnlOtOA2JlFVRV0xgZM6G7vQfKzWWOCP+VPne/gJ81hirckBb7OkbKIkRcpOBlZSWbPIBcvc4obbtiVmmoS7SJmI0LGYACex+5hlXucNoM2Ohn8k1d/MgkYMzLVE0wIVB5CbL2AL8aIsM0meKve5TIukAxAnqHKDW1QoMKYA7Vf9IZJB+UKT5pjxuAEBztjfEpABSmPPMM8nrLHoPLqqTHCfWa6zyjh77JFhlzyv8BaJOKYvEOB2JDqgGcq3+I9Z5oen/yMMgAVH3GeWiD6KlN2cNcIBudMv2Bm45JhWx6Qp6ZgqUqZDwAlpRuMD+oI26TjiRucWx6HMLeZnVmaSOTYYjxssPfklqwO/xQEjzhvuOEizzAq3uOHSv1O03IJEY3hYwCXKNNSZtBBVGA0P3CJHlpp7z2y0yWq4pP6OTfJxlb0go6znBGWKzLHBhoI6loje9+SMjYErbl42xphPEj7mHnPc5ENy1GmSpMJFLCE8ffiE5rCEvgSdX7MxcIUCFW4zy2z8GZZ6XSXvgjFSNHmZ91hnnhEOBOQ59R5rtvCQoqnM4iRHOZFMN8ioXD5298WbfMB7vMyP+Al7jLu5vknSLWzNsSEMdAVwZc4PHdgF4nHZQkDZO+ECs9ynTo515p0c2kCyBhnahBwzyDvF33aLMTJvJwiJ+B1+LGzfw0PWhq/qHFxyQKrZMRyTpkKBlh7HarjErEq9W3pvtsWDDHskiLnFDWbjTRqB3M+XWMUCefqI3KKX7Wf2dIv6QM6NUQt6MQ/PFC0HbNfIkmGP4+F+B2KaVHs8aDh7ELtHZmiwySwLrBHrvTlWgDnDnmN9TlKiePo5K2PfwXxbLWTlNkvMscFstEkurHNCEnj8H5xPvhxAbxlyl4BlSJmBdAkfpHCFp73KIn3PAHAEQ88iBZ559ZgUJYGXCJWQAiMBcybzzCvTwyRS+gU5Y7KnIgxFuECJOSvo8pCry2+KAuLwE0T609H9vwKpNyETdR1TBikAn+A9wvqhaH5qT+R8eBFYhZkxvGTSZGHzkLun/w9ALoH3IExA7gQJ8Qj1nJWBkAMpOPPe/N3M3Y2pMwTkjMLY6dqvSc1sX4NyXBe03S6YnOgUMtpPOTveU2WRoP9fkv1lQtlO0Qq+IciYDDoDFx7ocbyCABV/DLk/w/sn3cUX4kfaL9+HoY+kH8jCnMk3TfalbUZOf6/rUDG59ABkjJEzrPt4VtstxMuuK9IORWM5XdHx8EReHzI/pYdIsMdPIXcKuSqo1F3OtaDHtgCZNd3fjD6/q+MqAbmHiBH6CRT7ESaRgdXDcr6Ze3p8R/hkXutfZfFQkb+Hqjg/yYyNTWPL7Gp/6bjLqSQN8J5t5vG3Dxk7pxAyFXxy8iU9xrvIdZeBubd1X4Wu9r0ifU8JLuzDhTuIr6QBKAUBJQb/VNNW1/jKPwYmoLwrXmSECDCWh/01fW4GL2s3+f0p0rb7ynrTcdwbIeBCoGECVZETDql3Ze/vQ+4nyHVl23oFUgauxcjYuYdLZh5Cj2EYf22tIX0+JPt1ks0s3ldxAJ8CfSQASu+MAlVV2ebZB56JxAwiDdUVhp48NO5pcIft4yFk8pC0OUvHqslf6/s6hn+B8/O88AOc1+Z5XcM0hoFdGWOtSFmQHQRFNqC66x7i7kO6UnL2qQKTM8j8M6HvT4g/XO8A7h7Vk1D2WlX6sbwv7LmzfZkXjf3V/EgWKah0tcnzwJu6jxNlzg1JG59/JF6EybuQykPJGJC/wEk4cwH+On4ReF/aKrsu51P7FHJ/gNyzKpBQZuDQJfH/O+vImDpag7SBaFl82I2xCBXwcn2YFxZaY13OlVPtm0NEar0lfUkN74t7TwHpgrIYT4HvQu4NOf/eE7xH6UM8y7IqgFgLuV6KJiU2yesD6f8LxoYMNf15AAGuE7hgik4MvUtwIZL2SnX0PTrOyocwM6R98Y5fIMotIfNkQyW+ys5rbEHmeWmnlFpKNKuQfAI9FZ62FqhpCu4QzrJjv64LeFOQPOc3+c72H/Vjn4yTsxyTZlXBiCVWHVsk1sLfJGcmuele3bbkz7yGWAAO4LFAACu45Mv/BIt6sxEz87wLdfgpP+Qym+Spssms89UxDzaA2ywxzzobzLn9bGoh/RLvaZxBn/oyNfnX/H0nxTGfNfDsr1WWsNACkdVmqavctU2ZPTJaSHaY5xNmNXF2kTtECs5ZgWneZDe4RZ+CLuapt841x4zplstaGmaOmpOUGZATk1AoqIyZee8q4JJQWaf5+02z7aSpJSapUFDQMHIMTAkQaVMnS4WLTm67QUxMAjNtX+ZjBWBlDJQpOvmhSeNm2VR21wabzDLPujIzd1lh2ckXG2TI0KDMJK/wNmmOmWKHpvrASaBJEjFLbzv2iHkXZWggCaFtlrjtmHbCwAvIUuc5lRG/ylu8y0uYR6KBwiMcOFnr/8TrvMabRIRc5zZVJthgjiw159nVR8T/wH/OH/Onjmlo/lMVCtQ1qRGk2P+EeRZZI6PS6OusAjjmlYUJtOljhynaCgBbwSygc9N5+OUVYjTvyRw1LDm5SYpZNqlpWAaAJTYas8bYS7ZPK4YrFFjkjvN3LKuUUHzbQsf+22HapXJm3ZeXr/bjRGV1LVICGgcp50uXP/yC1nDKMVsFcGk5ACsm4ENu8hLvOYZYm9AB4sdB2l1HYegZtCMcUBm44Dzt7mtoREPTobPU1XOtw8bAFZoKFAOu3zoEjEQHVEKRu3YCGROVoEAQCLAroHNLg3j2xNcyKJAcEMaWeZNWKADo9ZniVd7GQg9ucIsWKQd2m4w7IqQcTpJVjzgBjFNMsyOLQKEwojvK+Ao6sR5XghEeM88nAA4M2yMj4NVAghw1d23aXJ/mmFxc43dO/kf+cvg/5Q4LLHFbgM24zHEg11Q4LAspLVKUB77t2KdJWpTGnqGPiOXDX/Jnw/+QH/AmFhKUiGNGApkvjsM0B8XAsZzTHJOPqlTDvPqMjhIHCcdEBmHQ7pEhR0wqbnI9WFUWo8hC24RsM+UCT8xe4p7uQ2SiHXdvzlMVGXIwwjrzbv6eYofbXKelFhTCo7Y+EUDYWL05aixwh3vMMcUOCcSCIDMsiwgBHa7tb1Eae0bYocyRo46FRpnNwgEjbDDn+mqWTbdgNRofUAvE864WiEzYvkvYnGLMxREOqFCgRo7WgHjqzu0/4OGYMB2bpEjSJNIvbBZEM6X3OLOKyFJngqoCsiPMskmGBk2SWFCThCJlGERsO0Y5cFJmSXDfFHuC4V6m2GGNBRpkmD+8R314TM+9STmcZDIq8zj+xm80n/xm7/pf+wgR7yKQL9szSKEf4b3UQnzyagFhb9jK9al+/gE+hdN8iBJI8ZPHy8UMmOngGSYGnA0gRdsQ8mV/GR8a0MD79A3h03EjvPTHtruKFNIF/Or9E92myZMipMCd132+hk/0u4pPBzWfpBgBmAZ0O2s4QIcB/RnEFwDKAOFIt/FDPYcBbV9jaiS0fQO8f48VZR0EsBnQc93Vv7P4ojaBFG/qYUU/UvAYGHiqx57TbWmxBHi/twQ+AVKBMRbwnnVv4E3HS/raVZ5OcDXJ3xbwM6SgsgLbgiVM0mTSMZNmDeD9jbZ0Hw08GyfsOsYhvFxKgTFCPT8Dg7P6uX+FBzVex0sOwbOelrTdX0TGy6C+/wXd14L+H+s5L+u+/gGeCTWMFPt2HRmYmefp5GXzAjSg0/q+gwMJKOC9ujp4uVoNHxpiIO8Mvt+v48FQO8clPIA6jw/nWMAHxZTw42ARf50oaOg8Lr8uj5QGFxwKc6p2V5JPL+QR8MP8xRbw13gWAU4G4KiuoRAGtogVBuc69w3ZmM3jfSvNG+AUuT6G8WFEp7hrr/aOgkwl/Pgxz0lbkDBGXk3fM4gPxVHA4uxU2KZO9nuKMOROoLaiIR/r+PlUAZROjL8WI2W6/h6kXtfEUmMXKrMr9ywCaJms1K6BeWBGfewayHzREGZgSufF5r7IMhlGrr8Cco3ZdozB2BFQsmPzxIC2rYIwPUv6mYK22yvatleFKVm8KufWW5SAjd7rss3UFWWfFTQUZUDPZR9HV+01evahMuBynt1XfFb7RiWmFCBzSfZLhDDIdB7vyUDpDWXq2gLTi/r+fTn/noxvm6ErGtJgY6aKzB9jIut197ZDAUzP7uJSicmKbDrZ1Y9uO9pmxrA70vl/6IqexwMFgGt6bjbuG9BYlf2X6nBhAWZmgCUB0Zyv7gNkjqlqHxTx99FI+pyu8d1rc98T5B70E5wvns1x56fAkbIZsyoVNq8/lcvavSSj98RzA1nHtL/AAZFc0ms90ms2BraEHZgr6KrqFl7m/RV+POQiy6yQo86rvMUyKxwzyArLAOwxziaz7DDtQBwLtigzqZ5cbfJUKarPnaUvTlAlJMLM1svqbdQi6QAfk8/UyVJVLz3z2BnhgHH25Iu0AhpWWL7OG0hYggQWTFDlOqscMOrCEcz/roP4Q5kfWIuUY50YiPS0sXrGMSksMdaKD5OJ5qk6qeYOU9zihitqLH3RwDoDJneYduCmsAFb1MkqIFWjQIVNZrGwCEuhDOioBFoMuYX9IhfHJrNuP21ldAkbS7ycEsTUybpCdIptPb49B0I0STLPOk0FbOfYIEWLIiViZQfuMe6SfM1PMK9f6g8YoUwRM3VfZUlFwTXHMDPGUppj6irLa5DhGusOsEzRcuCTyXfnWXdMM5MlW2iJhXoYgNwm5BY3HIhpoJYVdLbdbab4r/in3GOOmsqxRRYePOXZN8t9lvlYQz2ybvyL990CgzrWV1kSeRd1x7jJU+WijjVhyvj2eoyYsJuJuyVZgsgea9pflsAY0HFFdYLYtcMdFpwkLof4SYVEDkgFuMa6hge0WWGZi0iYQEnTTs37MCbBBFVyWuRK2mfN+Wfe4be+pBno79ajST8tFdrtaAgNwAGjHA/3UyXvPAzFZ6yAybKbpLjMJuYx16cjrkiZNRYFYNn/nGm22VMml12nb/A6g8r0tYCT105/5himJrW3dNLs4T41soS0HWu2FmZ5l5eI6HOeaxM6f5msfoTHBHTkfJTdl4vqHDNIQIeWgiiX2SSMI6bYJqNSdBBgzNLEC1S4Fq8zF29QoOKA8BEOxDogrro55oARauScd+BmOOsWQGSOlITpDA32lPXdJEWNrIa6TClLsu4A1I1gjt4jAZvH9Yv2LnmCTkw6lm3P7n+m85cwmF/iXUxiXKbICWmqw98kSUuuo7hGGLV5M3gN836tkXXXiWPWhRIGZYswubjmrk/b9q62+7vBywpQJXUxbJQMDWa5j4X1WDqsLCMJE7RbFguwF2QcOzpPVXxuoyZZ6lxm0zHLDxil41htcm8sUKEQC4vaFoY6SNhQqCy0AhWqY2OEtKkjKei5uAYIWzWjjLd5PtFk9dCBeg1d8NoMZt38FdBhStmsl9VaAAS0NVBzlvtMUiJJi0nKbI9d4LbePywNPCTimcohWWpu4VGCLCSMa5w9x1a1ICy7x5i/6Mu8yx7j3GOOOjmy1LnHnGt7Wcy8TimYZHz/BEscrg5/EwBLLg6ISZ3+2gHm/6HHlwPogV/ln0GAmRPky7d5z/QjX4pN6mSAwwDCTrPi0qQ7xpQzryV7/1HX562gVS8cF2QRI4Vbomt/Kjdz6aYX8Uyluv6/qOdwCc9wy+ES+VCGDEP4oIG7+ven+vsqXno00LW/U/3cB/giO0SKmY/0uQAP5j1BCsgx/fuBnv8MvlC383uirxkQZ4bfW/qeX3S9foIH0E71fVZUarGGScPAAzx5Pba38WbmxsoAD+qYzNAAvzwCdD7U88vizcS3kGLMivQHeCAS0AVI3w4dfKCF+iIxhhT3F/HA3wCOeUdGz8VYdx28rDCBB6YMMIvwYJrJrBr6/jfxoJidQwYJCtjS8zvCs5t+hk9i3tftrOlrz+pnCkjhbIC1AdMGEtsYUoaJY4AoiOCKewNNDCA0Jp0BtC/iQSDzBlOgCPDm8TZOhrraeQsZ52O4dFMX0GJjuaQ/z+JljcbGNIBkhK/HYw/pj6IwXdMDyoSyNo3hbAXOfoowgLK4pM7GzzVkQT24HHCd1+CFYb+b84dI32SBI9iq4gJczrfwATwK8B3dE7bb0Cs4BhUlZFx3kIChnyMgtoE6b+pzh8i1r/NC74CydG3cKuiS+QPIva6BHfu6fZtTL0LuB/hU5ayy2arSDuZRB3ig2hY2DIC8qNv7Czm3XgMki8icrwspza0uSwJbYHgRtxjQLOFYfed6Lxn6J3pcW8h1awxxA0erCOi9hZubegzQMsajLTYoq5IGzuvO7o0uudiO7wowqMzFIWBZk2Jz+MUS/Wk8wN2bzrb0szrfTI6JJPZRSY+xoW0X6DEV9PyWcOx0u3ccNXDM+swMnK0pOKYLG2d2H9U+H1pS9uAhPml7TPz2GELmn4t6Tgb4GlBsi1DDULqLY0Jm8pIeDOITSCDnkZmR1Oejt/Gp6sYgjCRtt6bXQUqB2IYxUk+R+9+pbLdxT/t+XuSvM1ll0RU0Cdnu3SU9F5sj9XzYh09W9Zo1pu0T3caM+j4+FPCuVFcJroLEKZUhXxiG8wiUIPWVfmwx49IEH6pvzsu8pxIy+ZJgMsXnWGGEAxZY04JW5KU1hW9EEiVsgo6CKfa8pUSKPNAkt5Hz3zHgyyS3luDap+EaDfUjM5DGEhaN2WBFSEhEjhqjHLjgAikARt3K/jrzTqY0TsMFR1ha6GU2qZNljUVymqRboeB816xNABfyICl6Pmxgih1StMSo3AFnKSd9rJJnhykuc5+AmFFlu0gwRcZJOI9JUyfHNdadTDdHjXH2uEjFeaaN8Jg+Ikpq1N4kxSgHRIQu0dJYDRZCcZlNJzU7Js0U26Q5JksNC0voI+K+tmMeCbUY5cCBpcbQEPbHmvPVu8mH/CH/gkjBrDo5B2T10XaAx6CCqCZTfotXqFBwvnoGwtpYm1L/rT/jH/Mxy9znMpZUWCPrGHgNZZ4aOCfeWmVy1JnlPjVyPMcK48q8sOJdAMdcl5RL0mI3maVCgTssuvFyUQHYgJisMllSCoZYmqz5bM2xQUT4FMP1NtcBWOcaOWpMUqatrJoRHtMipSDyNScHtmvtChsOeJvTlE5j1gkTTyRlJsE1T8Sf8CNaKqk3IFgk9knWueZCXabZpk3o/NkOu7/YfA0eaY65zir5WGSF39v/mEQcM886z5Y+c0wxC7AR5mvJXUsGCHZL8BuMczzcS5U8RU1HHtHRu848McLysgUNkMTdD7lJTVkrWQXJW4O96geWlHkvjvS4TxxoBjI/GYDSJIUFSTRVWj1Og+NQGFM56k5CG5OgFuQoqpfoMiuOYVs4/Nyx+LaDaUrBpFsoWWeeXfLiYRYIu8ykqDEBb/Eqxww6gDKjCwth7GWYoyohtyRpA/2m2aFO1rHFkzQhlMWVOTboI2IyKrMSLnMnkJTwTiCLGqMK1IdRm2Jcduw3Y/7OskmKJo+DEbbDKXdvyVHnmLS7Z43wGEkU7zg2Y5MUQ40z7Z86j/W6mlJ2ot0TDZwPiVhnXu9vEdtM63aSWCqusEAFNBqND3TRS9KpLcAjRYuDcITF/XuEtLt8TB/SYFwYxKeP2NHt3wpEPr3NlJO0PmaEfCzzekyCDebYZJZVlri4/wVRELowD0kMnsDCPmICBjl2rN+PWWaDObcYYP6lJvEfp8HC4V3XbpaiPh41WIzvENDhlqa0N1VabCFEnxW+qUnsRRcEkj/93Fl52H3NHhGh81oESNKkwEP1/11hgzkiQlZZUsZjxKu8TYKYzbFvK+hXUwC7rQoDkS0/HusnjNq/0Tzy5QB6J3hQ7lOkANxFvkQvIEXHKrJCboyDKlJAWDFmLIQYKUSKePmXATn2BR18UuqneDPuDFIENfAJq7eRAiDEG9GNdW3DVv8Pu46hgWcW2WcN7AiRL/bGqroK/In+tuPM4AG4OlJwxQhI082QMqAM/VyMGOMbE62blWasvnkEADRgzQAqO6cSPr3WZKNb+l5jG0YIQBPoNu/qe18A/rjr2FS27IBH8MVZAZGlGaAD0qfv6DFMaB/cxpmwk+DpFFQD4QyczOElgkUEYE3gTQqtPZ/Fs0CH8Ubu1a5tPUQK+Ht43yVjoz3salcDDq7q568A/xA/1q7oMb2uf19CxrR91oD0bhA3p/1kQNYpLgHSbdektTl8snC/vj/b9ZqBHAYAdjNd8zgZrmv/YTyYanL1AB9yYOPIGEfWDzHSxwGeTWjgH13HX8SzVgbw6bn9un1jcl3Eg/S2ja+4vMw9hsQLzVhvqSzSljmkHwbED6+3KGw8MuIVR1XAi3NlqvE8cLGL3bWFgCC6wNFj4P4pcFXTNLUvXLJrVbcTwtCCGvLfQ/p6Hw/I35VjJYNfDKjqsZQQALeBMJyUPduK8ICHzWkl2X7qCpzfE9DEAfYGmHexj4dm8Ayrq3JMqQF8ekxRjqVkTNgtPLj/QBlgCuy4BaMBSC10yVyHRVLrwhbuKrsMhLlmDN070PiJsgufQMNky1vaLvO+zRr3dHtmK5GV55t34dGnXeCTWkL0mPR9TJKLaxUBjBrKjj1XGSmxnM/Q6zwFfJ7dlfZsxTjrhd4JBHA1SbMywS/YQpUy4c5PtR/3FUBTef/5qrLTdD6u3VVwMxIZcMoWuw6lT2q2QGSfiZUFqe8ho8cwL31DoO1j/YW20zJu0aZoIGMCtiqwciiS3tYT5Hp5AlyR8x6a0X60xb2S/D10UQHTot9uZkY++8jGxoy0xdCgyH9ZVaZgHp+0VUDmdgUYey7B0UO8PF7P5ZrNi3rvOzPWex56f1deS41pII0B2/3a109kzHbsHL7ij5t8SJIW5mN0wAhv8Lpb9RaZ4J4Dxcw37x5zlJnkgFHHwttkFgsDSHNCTIJJyo4dZ/5t4pwmxZIVPREhFmphX8JNGlukzCDHygCRhFMDbqyAAJyPEMC7vEyGPabYJibBPJ8wrgX0TT586rOSdpp0LC3xrwpdiqEUpQn1mku5wlWYYpKG+ypv0SFwwSEmb73OqvNMm6TkGA1LrDq2SYomEowgQuE1Fglp0yLl2AM3uIWZ6BvjBow5IQbrIW1td5N9CZPDghvMe0q8vvKOwTDCgcIKow4IsGTX+8w65qGBU0majpFUocBllTi1tQjNs0uVCQdQVsmzwRyhSmkPGGGbaSwh2ZgrbUJe5j0AJ0O1QIKGjql15lljkTk2nOfeBFWaJPl7vOGAEGMeWvEqxah4MhoD8mXeo0bOAco5ZfoExBwwquxI8eoqUMEM901ybOMzJCIkIkWTVZaISTj2UVL5XnmqLHLHgYf20yDDfS5j4R7GWt1h2gHSOWVv2lixsJkF1sR4nhFaCuwYO9OYUnbeu+SJCLnJB5h/ogEP5hWV0n5d18TQTS4T0uZDbn6tAL25WMChNiHVQK6H6tiY+/voYq9jm5nUvoOkyQbETFIiwx4L6g3ZYNwxnPuenBHR54B/k4S/xHsO4J2kJGzXgUvUyXGd28wqA8vSm48Duf5F+ttH8uSMNCcscoeOjv0mSQ4YceBUlhp7GnrQ1vnW3iuBDSL/lfE/4piwJlXPsCfz4vAFXuNNamS7AioGHfiZpCkAWixWDBEhNfV6u84qLZW/9xGROn0iDNZAfDKXTn9JhgYbzJGP5LosK5t08vQzLAkVxNP0KNPLTOWRMGAPv2Cg/ms3B9xjjvvDl7DwmFxU5yAc4ThIq7dlhzUWnrrHpfReWKRMjaxbLAIJ+AnVuzCkzX293x0wwmfZbzr2XooWIzzWJOHHTKhsfoM57usCQI6aW/SaY4PZeJNQga8GGb03boufXhCQi2vONiAfVckoc71GjtLYMwTEIqGmQJoTClQEHBsYc+w6O1ZbsAiIuRavUwtyDqzzIPNj9sYk0KJJim/V9931EdJ2/ncW+jLCATe4xRKr5Nl19y7AJWevskR9eMzJp23RoRIW2AvE809SZcU3MlA2obGGbQw6yW1/r1t03CPDW7zKGgvK6azRR9vNmfeZZTxuOKY9yL1zgTvkqXKp/rljLe6R4SYfkj/8AhC2X5mi3jUK7JJnK5zhN3l8OYCegRqHSFFl/lvGMjG2nfltHSGFwXcRGamttpsk1Vh4JbzEr4R84TZ/qX6kMJjA+/Y80OMwBl5Vj+MqIpMKeFpSG+n2TJpqjCmTYoFnMpkUdBgPHoX6WQOx6niJ8QpSNNf1eK/jWWKf4qW3Eb6QDpDCuoo3fP9I/9/V37/Ay2612GEZKdqtbbKItM+Ye5muvrLieln7aQbvwWYyq+t6HnZOxii5pP1hMqJhfQ59zqTReX19Qc/T2t22AwIkmP/hDB7Y7ODBuAFtS5NGV/Uzg3qOBi7ae+7hJYh1hGkUaZutdfWFgVwGaGmR7+SpVvQe4pM7b+MZjPt6vsb8M1afMUfGkPFj7KVTvGTsVD9/T9vL2HkGcNt1UEKA8YGubRtg+aIeU7XrNfBg5s/1fxvrBkp0t7WBgsamexbpSy1meUHfN9G13bzuO4GMD7uuVdLnQPeryDh7iIxfuy5TfD0ejxVMivDgpjGC9Zq+oHLzobyANT0ZBR+eV1BkCxr/TMIXehfk//NfSHpo8Spy3efx4RJr0Ps9PGvSwOAO0qfKdk7YtWhgtEoJz/bxMdV6nZzdFSDq/J6EX9g8dNSQ13Lfh+Y9YcMBsAC1jyS9lRB6XhDQkgzU1uS8z9flXLijoGcCL2W/q0yxGQExG+vIdRdL0ASRstK6gPaOLgCcleTzzRV5X3MNGFLg5FT7Iy/nVqsLGHlu87g9tgTwycxIm3ViPPv7I2ljsgJ6ZV5X8MsWdvTaTy3BhWUBT9lXpuQh3g6gDvwB5P6RgK4ZZZn3LOFBr4+Q68sYtjMiB+3JiG/cWR0/z3VLmBf+xjiL1WMwo0xCm3t1LurpV6AxK96DubwyzRTgPzNWHbKPnC3uGFA/BKkfqORU27xpYLEtHJlkO4EAfYfAz4Sh2lzFSadJSIDOd/V+PGRzoi7iXHgWPrmrx2JzpYFiTzTQxxau9DvD0ZaEpzT1vJv7IsFN2yKUAb77eP/SPDyy+8wTlbfb/GftZ/Objt/aoYKdCn43anoMJwoIhtJfSZUYZ65Ab7+Oza/4I6OrcWbmbal+qyw5cGCda9znMpa+aACAAEuDypzadpJFYYMNMq5pqXVyvMUryqJou9X0PiKqTKhEUi70KXYY4bED+CoUmGedcRqMcuC8zMQHbI2AjgOdjJmyzTSTlDgh7Vgvu+TZI8MGc46VZqmiCWKuI9RT8Zdq8D0+4Hf4sSvUxZdnzyXjphVcLGqQh7EsUjSZZ92BIiDsgDTHKtVrsMSqA92aJJ1vmnholVyRbKy6OTaokSNHXYEZYS7+T7zuWGHbTDl2nICnlx0YZaDZbZZ4k9fctk1CZQyaRQ1AAbjDImUmnwKePmEeCyGJCVQ6LUW8MeLMuLxOjvvMYn6JICzHHDWm2HYyUDFob7tx0yTFFDvc4BYHjCgInBM2DjhGUx9tlWBJsS0MFfGTe4PXxXifXSdlDei4ItR+G3jWIXD9tcKyFr1ZV9z2EbHMChNUiUk4CbaxtEQSOM0GcyxwxxX8m8wiaY8CWhuYYmPkdd5gkrJjZIlx+x0HWlsQjaVbipekgacCaozTcOMjS42IUOWcLUwunaLJIMfkqRLSZo4NdphiVMESkVg3ySobdZmVrvEp/ZH7moRiTFAjeSJsK+vbGjlNZhawpRrksRRpG/c2p5n0vcJFDhjh5uFfMX94T2X8GcoD36ZARb1K+3QBZJwlVrnBLUCAhojQpSibz2RSJboGOiyc/oqYgNcO3+G94e+yzrwDpQRcue2k+1PsOA9Uk3PPsQHgkllt3NtcbGCWzUM2l5aZZJXrjmls1+8nwbz4kKklwF6QYTlaYTreJk+V13jTeQLK3J+nNvBNJFU7pkaOMIJn6oeSEB7K1X6dVS6zycHAsJPkjnBA+vAJyZMzPi18mw+5ycbwDJ8Wvk0urjnWaqTHmOaYvVDm/woF0vFx11wSscM0Kyy7hRgDDneYfmqhyPw+O8q4tpAHSxc39l4uqjPNDgExxbjsgN+MMjjNZ7CuCwqbwexTQK+B+uZXZxLPydPPiBMBMYkuZngbS+s2X9vC6SNh1EcHLKu3qM1nN/mQXCTHWQkK1MgqK7vlFi0At8AVEEMkAOq4sjStPeyzIPOpyXuNkV/gIQusue8TYjUgXohTbLPAHd7iVQcATrHDlCbdLsZ3yLDH3P4DNx5jEozGMvduB9NOcp4gZlkVBPeZdYxW6zMQNuk2U8xH66Q5Zp51lz5PR87lgFFy1IkJuDX8HBYUk2GPCQRI3WaamWiL3+Tx5QB6v8b7NoV4JoZ9+a8jxeMVfb6AZ64Zw8dknnX9bTJU+xJtoJ+xAUBAs490m1bgjgF/oK8PIwXDCwijzSRRCaTAfaivA/y+HutH+ITDMbwXnvkoDSAgj/lOmR+SyTIN1LyIl1RZMWPy2Cy4+9cDpOBZwgNvxtgyJpl5Oxnry1gaOXwYyKG2kbG0jK04o+ev0i/nJ1XR3yaNNH+iATzwarLVAf0xYCbSYzMgqIMHsl7AM+HsOExeZt5h9mMMiSPdjxbzForhJLhFvI+hse9M+lnX7fTjPfle0eMwtiVd27unx29tZ0WrXT/v4CSOJPDg6RYyXj/SbVTwoGNWz9PG/kM8w8ikzSYFtmI0gbCdjPkW4cHDh9r+/fjkyU/194A+1yV/c8CRsfuMhZdHrhEDOo1ptIAH4Gyba3jG5yECghq7saA/DT3/mv5vTJ0Gvng3KfxFPAB8Ee/N9nV49OnvELgOj97HM9yKSB/1CzBzfihedOcNTc2+iwPXk/2SlHy+jvikPa8BESDXq81LDeTauojvBxv3M0hf67WbURbXU1YEp8Iaah5C889wTNDeCfl8z4uaHv4pMCRgVe+yHGdqQBlPyvBNhkqE3kLG7IvAVVUXhhpgoYB/75DIgA2YOYtgSGXl+4cKrP1AfMhSupDSsmtHt5fLAgvqlRYquNRR6SXKADT7Al0USg8I8NZj860B3Bk556OSsKlyz0o71tbkXM/0/tMzANwWGfWZzb12TCDXzBVpj54M3ittRtqCX+ixKJO3YcB8pPu4qIw9lRXzM00xBg9O2uKItsdRA5p/IW1hwUWNN9XDLxAQkzwUF6R9zm1euyJjJ6VAWtPuYVnoVcl/YwseVeT4zpXxdq5z89EbuIWt1hM9RrM5sAWM63ifPj2PXgNK7X4ZyFgH2T4qzW405HONLbjW1c/EeP/VHMzk8Qs9GTnfI13MSmXxwO0VYY8+ZXvRkeM6WwPWxL/vzBY2VPJ89Attc5vX8wpeRhJ+lLPFm46AwmefSr8PZXFBI6ksNN7HgaGJcb7yj12ecfKhPFWSNB0L6YARJpSRl6Tl2Bsms5ykxCz3ARx77Zg0LVLui/YJaWpkXdqnMeKExZZgmh3SCjZMUGWTy7zHy1johjG6IvpcgRETkKTJBnO0CV0KbUTowDiQAsTSX81bZwMxlZ+kzDzrwkRQiWuaY2UXHjuZ6AGjJGlSI6vCxBZrLLDBHGmOeajSISn2pQ22NXl0Un3hANr0Kdsh6doJcMw/K+5XWHZSzcfa/n0q0RLArE2ZIhvMscgaF6mwwrJK0rYJaWvxeMIOU6Q55kNussM0GRoscoc0x9zgFsWupFVjPzZJscaisIlUkmUMF2OeGaCZpU6NHKss0UebG9xybJYVlp1n0iz3XdF3ixvc4oZjnDVJqjxLmCD2yFPV8I7IMZOMdSdl2bbKxITZOEmZsoaA3ORDpruSiXPUGVWJdDfzz8a5+d/lqZJVxqL4yokxfZoTmuqFN8umAzhMVmky7xEOuMa6Y3a2lRm4wnO8wetscIXu9M9tZW1FyqgrM8kueccgOSGtqcpJ2vQpsFRkUr0NjxlkgzkXbiFekINcY90BmMZKjUm4MW5SW5Gd9amksEmDcabY5rKGbRSoaPjBY0L59vOVf3zBN6kOf5MEMQsa2tNUnmVAh0JUIR9XnYelGxfxJtnDfSYPH6nUWaSJK8O/Rbv/G7ykzNN15h14Yewh87McUYl8mhPyVCnui6QwRcsxdo9JM82OgPQD/TRJUR8e4zKbLMWrPF/5FW2dKy0oaJodRg5P2FY/TpCxJR6lDcfgSimAKFL6jgP5TBaa5pg5Npzfp4U1TLHN6P4TEsROJmueqHEi4DhIO0DS7AfahM5+oE6OgJgF7vB4rJ/zhLR5h4DbLNEmZDxqKNt3wt1L3hj+AbeGnyOij5t8yA7TzO5/Ri3IOWDSrtM8VSoUWGWJPTI8DkZcsEhb7xtTbJM5PHT3OWOjW8L1HRZokeI+s7QUTLNkeLuGykyKnD0cYZspTkgTdGJ3j8lRc9ec2UxYG++SZ515Z1PR0AWoMkXu6+JAY2CMt4JX2WGKDfWAG4nExxMkaX6DOaoDz9BgnHI4SToW8G1HQzgCOjTDFLe4QUeBRpu3xQM0dNsyH83PC8OYh6wde0196kx2fJMPqSsQIHx6keaWmVTmnnzJmzvcEt/DqEHq9Al/yH/nFjFCZcYGCtg1GOfxWD95XUxpkhSPRF1kEna9MGP7VFJxwAhVJhxzNn/6OREh0/G2+JyGMr5XeI5Bjlk+/CX7+X5luYuFRaQOmH2OgyiWHm3ENuG98OXfaD75cgC9MaSQGEMKBFuVruBBlwTe28zApBLw58BP8VJLA/DywB/hjOK5gmcUGcBkYIGBggb6GDPuBAHyPu3atnk2hXhmhRVUS4jktYBnVdjK/BoeXOo28zZ52Azwe3imWU2fe75rP2O6/SxSiOXw7KYneF8rKzbuIgypGT3ej7raR72NHLBlDIEGHrxq4AuWPD7pclBfNzndjO7HpLoreNnmE3yAiYF/A3jJqjG/TFJmoM287svYc8YENF8qK4x+hPelW+g6l58h48SYpwEeiDUAbUlfM8acFW0/xxdjz+MZQCZ5rePlot0S3CPdj/UheO/HIQSceAEfRrKCB0XUf0rZ2E+z3wy8fB0vJ/4ePvDFrpd+/fsiHnA0oM7am6427XS1Xaer7WfwMuSruj1lwbhj3MVfLwYKNrqOu7+rrQ2ssAL9CA8odRCmrbGE+rvaJQvcxwMPX4/vbJDEy/iO4FtjyLhaw/kdfrIq4MTxqaaGIr+PFLxjDFJFKP5QtzmAGydnFfnN2/pzBFyCsz8HthRkMrmq9XdFwJjzhjLLTMY/A8QCHqYKcjznxqo2iXBdALVcF3vPeYOOKZihDLmhP4KZgiTx8gTnR1d8AZemzIAeW0bTelflfb0hji01ZosBVWUsZmV/W5H6yO3ref5AjqfxED/P2XVgILrN4SovTtpCkwKrNreXtH+G8uJFR07AvZzaKfSOAYcqkw5Eatqb1XM15qDNz/YI8KC/Lhyc38PPO4eyr6YyBxOBsBD3uyX4RQXxjFX8On4O1Os0kYB7p3D+b6TPzlYgoyz183qXXZt+rkdBrfO3pU+bOof12vx8CqWPRELcm9CQhzFlNjb08y8qaKb308ySft4WD0wGqwCxWyDRhZfUMn6+7wZEzaOzIAB0rQRHdj/K4BalmrpQcm7yXnB+s7mCXnenOBZxqqDbVjZ5Q0HNs0i22TuEG9+9E/g5tQM1nR/PjI19pNLwEIbmeWqBqvcF2ZYDBa/qvrKQ+QfaXq1/z1j5Cj5m1CurRpZj0oxq8W+F/zgNZciJMbr5yACkaJFTcOJf8/dp08cq19kjw7Z6x0nKbMsxxbLUyOtq6TGDrLKEhUaI5KblkjVHeIwFVrQJ6aPt5KfXWCep0seQiGMGmWWTHaZ4qIBIpGJIKxBStFjiNousaUEivkE3uOU8jkCCJiSEImSZFQBnun7MoGNrVZlwIN4Kz2kypQSAmHzRZI99tEnS5B5zvMlrWErhASPOd8oYEPaZUQ6c35kVKyAMqklKDjC7zioJBUvNrNz8/CINaOgjcqwKAyc6BLzOG44hdkyacfZcgu8BI9xnlttcx8zfN5hzhdkBI1jQRp2sY6SZn15MwsluJUWz6VhidXKMs0eZIilaWgiLh1SVCSfnLVAhVgYdiNn8JGXnH9hHREQfFQrs4cNXDHA1AMNCIExaK76MAmAZgCbpxgIuCGDRJkXLsUgFGN5jnnUHOCZp8QpvkaSpRf+i+s5FZKk71muA+K8ZUCzFugB8i6zRYNyBpLNsUmWCiNAV/AKC9LnrAVCvvQNC2pjHZJoTkirL3CXvJLllJp0Zvhngz7HB3+ONpyTc5p9m6Z0L3FFG5pdTmv5de/Qrm/YxI7TpY5ISBSpE9LHDNG+Gr9EJAidpNoZXKZikOvxN2v3foI820+yo9K/ORihjMUed68rOnaRE/vRz7rDALW7QVBl/mmPSpxKMsjF2yQFgm8zSRyReYJHME7dZcgyqmMDJcI1dtsAdB/62Bnudz12GPe6w6Jh/BnLXkCCNHDXG44ZblBmPG9zkA2ICClGFmIT6uU27e8GbYy865pz5po1ywONgxDGkjMU4SYkpve/sqCQexCsuJsGdsSsA5A+/oI+2AEZhinR8jAU9mBQ9T1XAwUgWCKpjY6RocosbDjBtkcRCaRbdeNa58/BXXGeV+UPxobs/fEll0hnHqrV53kDIx4wgYU57jnEn/oJFzKtzlSW3mBMnxKpAFpAExLPQpCp5MoiPq7HabnDLsXiLlJlWkN0WfYQZ2HD3FxDWr6Wy231slk2R0gZyfb/CW9TIOYZ2QjmXAn/W3Lxust0+naeTOoeZDcBlNt1nM+y59gxjSfYtK5u1cPrILcgAFE4f0STJ8XA/AR32wgxx4hu0FHAd4THmnSd/Jx3D3xYt2oTcCm+4xaSy+lnJffSaY9IKUzGWMJKBfmICakHO3UeOSfPa4TuMxgfsDH+b2yw54NraIEuN2WgTsCAwmdcDOgw7ts3f/vhyZs0WXqpXx3u/GdBjEqD3kYJtAJ8qO4TIP42VdooULVcQ0CmDT6ztZvgYqGfskG4wKaHbMEDCDN6NxZbp+pwdoxVMJne1nzX9jBVlR7rtNXzyohW3BrLM6/FbkdLAe1X9OVLYdgOCBpoYYLiG9wMynz1jgF3Uz1t7zCMFnnk5LeAlkRECZhqQZiy7AAGKbMxU9XiN7balx2uMMmu/GM9ENEDM2JGf6t/7SIFuclST1q52teltpKgaQMC3V/CJqJWu41rQczTmGnrsxtRcQ0C9EGGlDOux5PBG9id46aEBcSbnMqagSXezeJ+5ACeVcoDkR1399CweaAvwPn9DXW1gjBUDht/HMyq3kHFU7GqrBZ5OaLbjMODF3pfX8+zXc63rfup6rEfImLiLjI8M/voY0j4xD70F3ZcBlS/qNk3CbCDgmh5b8d/Tbvf0szXdvrGovq/9YvLoXr4Wj/YuUFfJ4rLKHVWC2NQxNK++YkMK9PT0y+tDxo41761TBXeGcT5cvROyjfNT4KLKVLd8YmpvN3uy4I+rJyHbatl1aiB/VRlwVwTs6rmID3HJ48fLgAQKlD5CxhaIrPOJ7ut9nBxzaFiPz5iCp8CKSGLP1rR97J4xoNu4Im3BVZEx0sAzVE8FwMmhSasNBblORYqcWeySBet10+yWu+rCwNEb2tY2RkPcAksKvBeqMlWH1DOyWfLpr2cKiKauSv+e2X3HvPQK+MWWYTmOkjG/h5Xhl8EHXoTS7tkxYf31fk+BMWUbGgjs7nPqu+cYZoF4tl0blnM7v6fg1CnwAO7tQzGLB1OrKkmu69i8IuAxGWXOvS4S0uKzsl0nO52X4+oZVlByS279Z0c44LRldgxPcGE+52u+PZt3JWn5UdX31VFdJNzFq9Im5zb/57Xf0b6xee6KJOKu6+LD/qEc2/kDbRfFJnpeQ+arCTzj2r5jPFC5sy0C2aLOsDDvzusCnJ/r95mZBdlury1e2pycQBiIh3qe93AqgN4BuF1CmJbgQ4ZsceZrwNBrMObAIilcQw3JCJ1HXFvFV1ZAGcAS0HFfgJdYxdIKBRgSWWCJSQWgyoCAgBYUYX5vJu21UINj0iyxyn1mAfHH6U4s7ZaATaikUQqQiHnWu0DAPgI6CtRkadPnWHh5qtzmOlUmyHUBL7YPQIHCNDtMuzS9cRquyLS0S/HhkVRVk7EZq88KR/Npe44VJ8u0Np9nnUnKmLm+pcGKxKdBkxRpTjCPJpNkVSjwFq9ywChpjtlGJEgFKo5BtMM0r/EmN7hFhQKTlJ13k8m2rLizwh7EL8pkWhkaTCOyOWMHybanlHlYZI9xJEFT4LsQ8SUsUmaODQo8ZI/xp5gUVfJYWuENbrmAjBx1Vlh2LFErgtv0kUO8pB4iaaDrzLt+M3B2UtOWKxQQH8cSOersIT6PKZosskaFAgeMssgaffhiNEWTEpO06aNOlnEa3OKGM46vKejXpo9xlS3LGGrRUlP/We5TV8nsNDv8iJ8wqwEoMQF3WCTNCSssa5GedJ6HBvK9zLs0yDBOg1d4y7FiDxjlMSN8ombuAbEDd0d47EAFSTY+QRJ7N2mQ4aG21R4ZOgQONCxSZtHJhSMm9X9j63yLv/7/6bzzd/VxqB5j5uF1oosJIW2m2OYl3nUsJJtTQrURaBNyEI64xQEBg4V9YP6iB4wCUIzLrAw8R55dF4aSVbnm6sBvccAokS5w5Kk6cKZCgb0w4xY31lhgk1k3V+4X+pmNJcYlfSj+dNtMcxykHeifO/2CG3xEg3EsLGhUGWEGAG8HIve8zRKPgxFG4wNhSYdzjpFsix0NxsnQcHNghj0mDx/Rp6xCk+0a+HXAKA3GqZJnQm/wMQGfBPMOmD4mTWX4Geq60NQkSSnwUk9LT20ryN735NeOSWyMbAEXAyYpO+AvIlSPtlEyp1IUrjPPh8O/zQgHDHLMtIL8tsBxwChzbLiFliJlbkS3aJEiRZPvln6JhSaIzLePabYZ4TFz+w8IOjKOTpCQHzuux4ywzAqW4j4bbzp5r4X5RLqQFZPQe0/ENNv87+p3HUsuTsg5DnLsGG4Gqmb1mCSco80Ij/lOacvNEREhuf1DZ1cxSYmAmGMGMZ/UNMdsMEeBCq/zBmmONUiiTZEyr+7/nDZ9msJbJaJP7AgGLmA+kx0C4sQ33FhIxDH3mWUznOUDbtJRYLpAhclImO3X4nUdoyPkqNPtHVony7SGOAEqT99z4ScSaiUp4F46LN6xNbK0CSW1Osg7NvoxaWbZZIE7mJ/hQTjiFotscbBOjm85ZtDf/vhyAD0DyowNYaDJAFKBmcQFPBNrGPly+7o+P9b1O8YHSRjzawsvXQoRgKGB9z0zBpmxU/b1+a4iAFtdt/eb7Kfe9aNFiEsp7N72Aj7B8CqS3mqMJpMpVnFeSwT48IZ9BPQyueYR3sOvjhR/AVLoGVAypJ836eUCAgIa68uYgmt4BsqAth26vQ7ee24YH9rxLD7EwRgRJhU+wUubjdFowKNty2SqBvZY0VTX9/0bfd8VBFRSdotjEC7o8dvnH2r7qXzLpcgqaGHG/66fTPJ7Hc/UMzmhSW2P8N6Dh3gQ1tgiBsAWkSLcGEUNZNwOIgygS7p9Y71ZO4/pe1/As4MMKLT/T7U9bZyCB3crev4X8fLZWPtnTdvpEj6V91M8G9RYkjXdtr2/jpeud5Dx8n7X+w1EsbEQ4dmF3aB0BwHa7bzts9ZXh3hWjAHIV/T/LP46NjDvG4g0/2vwiH4t4NPRCVLMmwy7qIDHjIA658YeuqLg35gm1xoQHgKfioTPFjAyBqaG6n+2IIBLU1lS5x3xDjs7FdDD5pIzZaWODUPNmEEmPf8hch0NK4BlwH6EBy6UHdpS4OtsDSd77NF5+fwJfpEiryyuDDJWQmGgpca8ZLR3DJn/I5ET09Dz35e00Kbd05SFmloSTzTHtJ2B8/dV8jsBvTN4S4NXVH47j5OXn0XKKDP2YUH23SxJW52BzBlqudDc0nMM5Lwz1t6DypLMACvK5hvDLxRFXb9jAcFS4FPVLwoL78iuuYtymj3zuEWpIV3QKa3JcTRP1Y9vUMIsQD+rDEsGFMgNobwvx3KkbMIh8OnA+35/hMg1u4a/noeBn4k/IjEyt/4Qx4Cu6dxvoO/MjACazT+X54de0W0P4mTBPRlc2EfqdcgtaxrsoPwMDStI/Tzwoh7/kR4Xkt6bm8EvKFQlJGNaWXqZjBxfzxVcmvOjCjKX7+t21D7gqC6puI5legS939fnOlBaVVA7C73P+qAR7HN2DxyCI+uHjIylHmUCGhv87BQuIAEomZzKnLdkDAF+wecr/Gipn9gia9TIscGc823a1tCELHVX4JoEcIIqKVpscpld9SgynzNjs5kcchPxBxJ2n1xAVfK0VPpqxu1Fyir9E5nsB9x08qyI0IEnm8w6nz5LejR54wEipTLgbVfZRxNU2WOcSX3tmDSTlLHQgKqymYQVlySkrav9HVcQGPiR5phXedsxxUY4YJE79KmXlBnmz7HhGFkbzDnGRo46ZSaxUIwDRmiQ4TZLWGKq+dABjnERE5DStMU2ISda+hXVj05Ey3ksPdCAwhKTToor6Ymykm0F0p4W0Q0yDlSzpEKTna2y5FhzFq4hRvt1cohnVZpj7rDg5HJZ6iK7I3BMChtrc2xwwAg3kMJYvN5a3NO2Nl8tY65Vybtju811DhjhmuYVm4RxhMfcYRFA/fUiB9DaOOr2IDPg0YDYthb7xuIrUHGSNJMkVsk7OaGlCa+wTEBHmZBtB5hmlIVjMsaGyrk7CmKLD1vSycsnKTnfr1k2sVRckwHvaXHb1oI5Vp6MSel+l790foZ3WCBP1XnkGZNyVGWUImUfdcysPTIKysr4tfOQFFcBlL8OD0kEjtULLSYixCwJjMkY0Ufu9AsmqHKFDeZP7zpQpo8268w7n0Zjx9rcVaDCBFUeB96vbpIyWWrcOPyY71S2mGODeT5xrMwkTZ7d+kyTv0O9HibIUuM6tzUhVObmNiGdQBh95eELTj7eJOXAxcrABflNgQ2uUCfHB9wkSRNL7TZZ5XVWaROyF2TcZyZ0USdzuk+kiyaWWG5s2fLwhafA5jy7Diy/xQ1dyHlIjrqCl30OLO8j4kO+x31mucx9B9qYFUKZScJIAoRszK4PX1HQ6SEtUtzglgO0DICqkWOSEllq0rb9vZSHL5Bnl1WuYwEmm11BQMbUNH9YCxc6CEeoaVudD/vxYxJQk06/NfZdKqEwdAd1HmswzifM68yZw5KkO0FA4VDCGcyfT3xEL7PCc7oIdsz1w1/xRXaQW9wgpO188MzDsamMxBWeo8JFMuxxQppULJLnreIFtyjXJEl1bMwtclm6fIKY2f3PWIpXKRx+rosyFQEuIwmzmlZQ9fFYPxYkZNLdiD7e4yU6CqiN0+Dd8CUAxxq07xlL3HaAZypuchym3aKPzX8WrGH3IGP/28PuaVfYoENAUpn+l9nUBblt9Q/8wEnXzaPwDotuIcaS3G1hzu5fy3zsxqD4Df5mXw6/HEBvSH/bCrh5OI0hhek6HmgZ0P8fIEXVbUReaa8vIIVFP097PWlR5gqYGgIwmExrDfdFm46+36Siw3gQwoCdLAJCVPFsDQMftECkigAqD/S1T/E+fB0EgAIf+HGq7zfm4BZwR98zgJdAWrE+hg/96OCBlgU8y9HkweDTWi2A4gECBJbwASI5PT8ryBfwYJjJuKxwG8Mzrkwia4CUsQ+sz5RR5NrHxnpHX/9U+8R89o7wjDg7fytox5B+N5+2EO/tZnJYYysW8X54Ztj+BM+u/LHux8bgqW7XZN1DeGDCzj2BDwyx8zD5s8mE1/CsDZO3WVsk8ImZMZLe/BABJ6wvr+ABs1h/zCtvoOu3eoNxSfdrIFxVj62GAHLWLiavNcA4jxTdr+DAByfnMxDb2CkGIBkLs4L3FHwWH9jSDTgay8nO5Yr+LOn5juG9A23M30XG4yoeXE3ztKzuK/z4BgJcAc5L80jZSZmc/G9y59qayCMfHSKMKbUQqNlCxJACgzFQVTbUIr6P3haGXkrZoj0zCpAsKxCoLK7eZeB5YeelwM8hv4uMnX+iv38E/CP9/X9B+vn35LP8iUgGc/9Iwy7uAR31XQskRKK5LwBZN+h+/lAAs5wtoCjbzzGoDUiuK3ttS6SnqWHdr3mazqjfnLEOHwiIMpSB5jvItXIE3FX5sbHv9NpNBOJ3xrCGa6xJaEFqTNsK9UrTOStlixinGmgQyzn3vqBMtidy/o6pbKxeZSMa4N1rgNRdXDpr75Am2XZkOz025z2PLEL0A29KGEj5VEDBY1206TE2r31GZfoNtWswNttQRhJgL8x0tcWMpPembNFhSMDgo7rs9/yBSpr7tZ/W8AsCDwVQbXQvECm7cN8WX+7h54sBDYuw+7exq4elTY7WtR+GtV3ehLP/XgNQOrgx3rOA3ANsbs7DhSWR+LrrzOZU5LyTxmw+VOA8K9dJekADN0xNEAAVBXovSdv1XMSndg/h7n1DSzIGtj4CbsMj63MFC+3+8KiCk2jnihrCUVRmrC2+7OG9Nr/CjxGl25ts9O/zr2mrc8wid/ibyaAGUIn5uwQkiMl528mIJJxB2CDbyuIyKeOxshRu8gELrFGkhKWIdgicxDdBzKu8zQEjzmfK5F3mh9QmdCBikiYt9WAzALHKBHtkmGVTC/WOK3YABbHGuc11ZtkkR50kLQpUqClLB0Tius1UV1FYZp15NrmMBCpc02K6z7EmLLhgleuO9RLQcYwFSZ58TEzAh9x0nmV2vlY8GsPA0v/s2OdZ5wobXGdVZWH5p+Sp4o+1p55vUjAnabq0zVEOnEdYm5DLbBITcJEK20wr4JpyDMKMsgat6DMp1QiPySMpsxUu6nt2aROyriEaJSaZ1tAUkwgaW3CEx06iKKnAt6mR4wVu0aaPFZYVMIudv5wFoExSZpQDZT+JX5wlLtfxKaTWZhYw0mAcS3o8YIRVlmgoezBDgx2m6COiRo4ULVZYduPfQDtAvQMjZrnPOteeYh8GdFy4iQGim8wS0GGRNUKV5I4jcQnGRBJG4B6fMM9P+aGCyQLcyXiRYIJtppUFdOA8rDY1QTNQsE9YYnJ9lJh0QEJC29L6TVhRo853TZiLI0jy9SRV8mw5b52v9qOfJpOHj5iNRfZs0nXzcRR5YYL1gaukaPHt+hf0n6IgQpNNLtNQsPiYQab3H5Fn13migcjGb7PE69EbTsoXk2Bl+Lf4ojCIJWkas+lNXmN/RlZlb/IhDcZJ0XJspL0gwzzrAGwz5VivM3WROGbYo0GGm6c/VxAqSZoTd04BMS/znvOptGAeEM/LGlkCYqYjCSwwX7RbA7/NLnnG44aywgQ0F3nmFHVyjvmcYY9Jyjxb/4wF7rhxainPltRs95pptrkR3yLU66nBuJtfGmRohmIb0FJA3ObHChf/F+xoAyfNH83CemqBeHCmOeYa67xY/5jZaNOxqY0x9tLhz8nHVWajTec7uKd9maXG47F+dsljSbPmLWisWwvSsDZaYdkBRptc5r4uUJUpsjE8Q5lJdphiPG7otnZpMM4Gc9TJsTZ8lQoF/pD/zt3/ClQIo7bzKQTc/GwegUEn5tq+sPNWWNYEWQGui7Gwmm3hapIye2ODItcd7qePSMdqgvVw3t3HkzT5WD1czY/W7puv8JYDlAUYS9BHREI/l9dFwbZKiQEeByOsscAxaVaDJVJx09ltTFLmt+r3MK/fKnn6iLgR3VIW632+Xf8CCw8ScXKLKbYdGzxHnUlljdtYe403ucKG3JOjA7aZcuB3VtOIYwJnMRHS5j1e+o3mky8H0OvFJ3YacIA+10C+7NYRIGAXz04bQ4CmJ3gwZQUBS6xgNZlpvmu7AQKAGOvAFneMFQFPs/Gs4FrAF5EqAXJf7I059wZejruk73sdz6IyCdkuXspostQFfW0ML+UxluGL4BYRjUVlq/nmp3eKZ9QZA89kZAYQ/Vx/r+Mln90Mqod63Kf4IsgYCa/ruRuTrIKEQNzV7S3gi6s1/ftH+FRVAxTNMwi8dNr6JItPuC3pMVgfFPG+VcYeNLbMOt5M/QifbGwednm8FDeDB67Qc7mIZ9stIYDkCh4EAwFpT5GicB7vNRcjQGQRATiuIGPKQCwbJ9YHHbzHIHq8g3jvOOuHu3jA02S5IT6RGDw4+QTvQfldnpbbjSGFZaDbjvHyRgPRrA+6gUJlrPB9fKjMQ/zYzOIDMUr6nEnK5vH+lwa+BNpOVbx8fljb5nl8ouWVrv3Ydu1cvwaPMAGfVJQ5pEV8ekBSLWu22PEE1vchtyDgTtGup9OuDUXAsIJJCpL0XsXPd0V5/1kHz/DsYhH1DihzD5zXZW9Cwx4GkGvTpNX/Ld7LbBjPDK4gY2AILxPVMdlo8BRIe3Qixv9JBY8atlgCZLrG/Hk3C/QNZcLZdap2CT0JZfx9pBs/lPdmMsiYMmln0Z9Xc18TRgfUj68O/ETknJQkdfesI4BVr85JQ0vSbr0zkqTq5KV231F5ayqvMlG7Dkxm/Dzuuj27LeCsAe5HaxqccFEYks17klLs5ry7OOuAc2N6Z/ELGYMS4DBXEDAyocDwU+FTds8NIfMjeS07hgfQDPSzeawh4OWRyocbbwhjc+iivL8nI/JlmyNqKmFt2BwzIECau8+qJPyC3c9s8SeQYIjcs3hp8QIyf+g2hy7q2D2ERyVpWxtDjKncFTmWo7/A+zeu+u07X8Y1bVvktYyyHR9t6XNZ6eue53HS7qbJc0+UMbim3o2v4C0lSl39chEerUoaL8BcXo/xLg48bFYlwfqoilxDM3o9PBSA+lEdtrbgzMDgr/jjmEEpJlnWokTYKCa3NLN+CzAwo+h7zLHHuPOfG+GAOyywhHRygQqSXrtLRMgGc1jqqoQJCGj0mBFKGmZQJ8csmwCUKGLpjEmVrskX8ppjiJn/0zgNipSdP1CGPXaYVo+/OpF+wUgQ8y/4LzDJ6jrzzLJJh4CqFmTGqMpTZZmPKVN0RZwVolaEH5PmbV7lPpfJqMegJN+WqZFlmyknxewj4m1e5QNuOoadpfG9wlu8zLuOBRIT8BavOlaQsQQ3uUydrANcxmnQIsUaC9znMoADTa0Nrdg9Ie3S+wwo+JCb7rwbjAtzSAtrY+7V1OfPWA3mBXhfQVNhLIUuGfWaAguAA0lNyj3CAVPs0EfEJrPEBOww7WTc20xpYV4iIuSYNPN84qRvfbSfYh1aMq0kHycc08xkygKq9jkWWkDHJc2aJLembAwbmwbKfqwJuDEBWWpcY50MDQ1HkWLSQkhE5iZpssYmqqgk2JJKTcJ8TJpVllhgjbZ62YEAQmWKbgxtMMdNPiQidCCRtdWkGtuLx+FlB7R7I/oMxwwywgEdJME4p3wg60dLkbZrvcoElk45xwYhEWssOEP7omMCfLUff8UL3Bp+juNAQKDHCk5YWrAB8dZvX2RlpTFBzCgHFKjwR6d/7hYL7oxdYZPLlJSdts480/G2ACKdX6ukMnLM4iZJUrQoxML8FRB517F1jdG5FK8iieF95KI6NWX7XYvlWphnnaNMLyMccIIENrT7e1ngDhaIYsxTA7Vs7j9glCYpyky667fBONUw79iuz2lyao0cQUdYnAZ0iydrzsn7RzlQqWKWB9lnSHPMJpe5xxx3WOxi6YZkqXHACAusEXQEUBOgfY/F+A59RExQdeDMZb1fiLefWCsU9z/nmDTPVA5Jc4IxLQtU+F78ITdPf+5kvSbFvMIGD7LP0AyFLTzLJiER4zSoD4+xF2Q4CEccM3GchptLWzrXNMjo8Y864CqnDMEKF7nFDUY4cFLlOTYY5cBJ7uX+GjLPOte5TRQIC1v8F2uOzZ5Wae143CB/+AVV8nI/DfMO7E1zTJEy36luuXCkOBHQ05EUYWPtGti2HUw7f7kUTbcglubYMfDNhqNDwCaXnfUCyOKYhUiNq9Q/JkGCmMuaEC8WCqP8J/UHzuKhoAz3DHuMcMBofECSlrD1aNIJAsfOiwk4T8i1KOnpkrA80Pg1Fgh0lOnlPV521+waCy7R3uwH7BwDYr5V3ce8bMsU2QszfC/+UNpEGa8Gxi9wh22m6RDwzG+Y+v3lAHpfIObsxtC7jkYdIkWhSXvU74cani22qq8t4KWVxnI6xDOEzNOpgU/KHcIXXsv694v4BFplYzjwyQqhPB4kzOKZf8aOK+jrVQRoegPvpVbS4y127Qs829DAq0O8tOkJApqoNIof6N/GYDRZmLJUqCJFu8kpTQZ6iIBVl/DgoYF14FkKBrSYD1seKfx28UWzgTsmhTYQc6urjUwKvKW/Dcx8gDdoN5lqHp9kbMc1o69dQgrh213bNdntIp4h+UTbwkCzq7qtirZvN4hnbEgDxqzIN1nsGB4o3sWz1Ez6aqCCMSX78Sw5A6aMJRJqX9xD+s2YFjb+8rqNGl4G3s3mM+mxnecv8GCzMq9I6HGu4SXCNraMqTmDgHNWFBt4buzWS/ik3wEE/DU5rQE79n3YrikD/uw96kdFFc/SMaAZvI/iAPD/wI9NA61NpruPv04P9Ti+BowUgEQ/XFtCwPABYT/1DCuAAcIgq8A1lc4e1VVyGyrQ8kSCJho1oF8BDgOZFAByHnszGn6gzCfAB8Dg016JEHbZVWRsnyJjwQB4s0Uwxpx5gRXwc4SxqZThm+xXduCY/J8RNRL7h8LKMzZizxL+esupNDEjr50/hNQCcAgbFfVP0/mh5xKQFwCEq5rkeiqgiDHijt6X4+2dEAbb0CDU7grYaOEgvVk9r9sC2PTqPNA8xSWXHq3jLQyewCMD5iI5ptKWsMIcszcngB3rOE/M3gL0Xte2qgsTzNJ5a4cSypA1cOtQgMUzvVZ7+pF7yvtw9jP5zPkDv7+eFyH1I9n0WRfQdNQtj1amdo9Jhm2RzBZDdHGnN6vejWMiXR0yZuE+nu3cEEZpWsdExu6ZtkAUCkB5ti/MTBIKeO7r+BpWafW+9sdDaf/u1PazujL7ZpQ5iY6ZV3Beg2cKRg4VgYfSZlsqke6d0X0h+88t6Ni1eRNvbUpdgN3SG+K5iDIejw4R2e2zMr56s3jPSAO3bWHknra/2SmE2tYzODZ6Shethl7R/uioNL5fmKwXrgog2NvH1yIk6JBh5wX2h/wLYhLskaFKnjKTJJS1lKOGpbFOUmKBNWY1DdMCMNoKwrRIUiPrTMABxHtKwKgUTW5wi5iAXfKIB9wJDTJ8okWFl0H2KYdJUgI7ymaxhEQDZQTY+YRVlthF5Dxv8Lpj01Uo8AE3+SE/IamG41Ps0CRFjrqCehOuuDAJ3SaXHVtrh2nn8ZSkSQIvOx3lgCw19RaMnfTIAKA0J1QokCB2SbodXfU/Ju0KYPM8MvlUt9deihYv8Z56bQmgmebYgVxpTphlU9MGRYJlSaoiyc0roNZ2RuQWVDHCAbvk+Ut+lxvcEkYOO5qEKhf/CsuUlellrLpGl2m8mbybuX9Ge84+a2CThYbUFKRo08cnzFOkTEQfJ6RZ5TpZ6g7kEFn0BBktpIuU2VO/RRGuiTy4SFl95kYc2wSkgNthmnH1uhrhwPktrnLdyeoyNFhlyYG6ZlgvgNskdXIq3xJmocnUDbAM1V/RxugoB1SZIKDjCmtjK06pB1SDcULaWMpogwyzKjUsUGGDOQcOghi0GxCQoeEAb7vWLIDhXV5il7wGvPQ55qqBUWYav8ksZYqY36Swi4Qx8xwr2g5upv5KP55hlwIPlZncwgKC1lhkjwy72s6Zw0M3FzzIPuP8CFO02Bi4okxSST828Mmx6IJpllilNvBNRnhMWYH3KnlG4wMAKkHBgUKTlBwjTJKPp6gFOXKxLG4ch2kFcmR8iOvlOO8GL5OIBThJ0WIzmCURx9zrAvNmue+8JduETFB112kfbQc+idy/yTgNstSoK6M4JOIgFJDJWNRTbLPMirsGQRirBvjZIozdVx4zgiXRjkcCvtTIsh1O6bwrrMMoCPV6F6sCAUJH2WGa9VD8JAtUeDzWzxqL/HVhTOTlp4+QVNNljoM0ceIbTla8wZzr6wNGuc11dphGAnfaTrZv97YqeRoDY2wqy2+FZcfWtveldMHjXV5mnXll/3ZYYtV5xYY6HydpMcsm86y7JO6R6ICAjuuDkIgkLczb0haTNoNZ6sNjTg57oDw5s4VokoIECsDNkjw54yyEz7PDDhhs6CxdJ8srh+8zGZXdtZBTP7RCXHFjwJjgS9zW5xKUVGouoOlDstRo6GKQfU78ZiX04/PssLOzaNMn2zz8nCYpgk7swLZtpp0NhTGYV8euOl/GabZ5l5f4n/NX3ULMdjDNTT6kj4gG4y5MJEuNMBbmJMA209TI8df5McRGQcbzCWnnH2kLZwYq32fW3Scu/Iaeol8OoGcPkwAOIl+IDbQwn64t5Muxebcpm4JLeODKikqQYivH04EQ4CVrOXwSoDFT/gwBGBbwKYffR1JFtxBWytt4gOMFvFzWAKoY7ytk+99C2BgFPFgW8HSQwet4eZixlMwTy4ryU4R1YkCQGYgbI8DYACa7UrmQO88KXjasDB4XSDCDsNBM3noJDz4ZK86Yi8YAK3T9vY5Pi83rOb2PFCYGFtYQ70BjN2R02zHef8oYcQ08uBbiwSXrc2PG9Ws7ZfBjwsYPeoz38Im85iGHtuWu7iuBSEYreAaZ9ZP5vF1EAKsCPhggQoCo72t7L+H9DK2tK/gwDGVAcVv/fhbp74oe2zze+86kblrcuXY08KCBZ9k1tD0MDDbwMdL/1/Bjq/g32mIVeFOPYV+3v4j3KRzQc3xFXzewtA5PqR1mtK0DZCwtdLWZyaD78YEcJs1exycxD2mbBHiGaoKvjYcePchYfxPPKtUFjQvWZ+DmBBeqkFM2nspLM3nkulBg6aiuPly2WAEyJ1lf/kL8umoG9pr9wDDSb2ZfMKbS3Ryc/pNvcP4ncP5fA78vP0f/TS/8MRz9X3v5/L8Zht+Hsz+B8z8B/gQ3NlMvCjB03r0IMyzsqGO7Vq56z7etT4XhZKAlVQE6qeIYXy1jkhVxiz9JgE+FoZaakcTVWh1KFRhawHlTZscEOMvNCDDUO4SX/e8LO7Ino2CWPs51kWLoovr3KSA0NoADOXsuaahER0G8h0jiqUnf87qdOjTeV+nrVXm+UfP7evRpl+xyTMHFCVwi9/kqbN0VNh74JNoza5NQ5dRF9fAbgCFl5RlLz1h5tZKCZcoEa1aRee1QAUEFfC8UBAQ9N7Zvl0w/Ze1kzLuS/v2KPJ1almPJ6X1zSO0AGndw6e1HhyI7HRrUtugCSXsH5DPn95Qh+EQDXt7XMZZRgM0WRoYFvJ55Vo9LQT4iTem1hSAd52d3BTTveV3YeL0z4sfX0vtmbkbHwoy8f+hFaaeznyFzuzIanaXFobRX5rvI3HgRGeMzyNz8CjJfVnAWIaV35DxYVuB7QMHJMWjv8ZV/DHNIlhqDWiCFRK7YM2aVMek2mCOhsiILKjCZVUjEHBvUyDl/PfPwMk+eQZWrmFzXZDvCDnrIlAJEJq0NiZxsc1yLgRYplUS2ucEtlriNCMGmOGCUSUpcUfaBpc4aC0UK0DZv86rzIxLvu4hdXVU+ZpA0J+oBV6NI2fmSmWw1q3K0EQ6YpOyASpOk2qNM0bG8AP6If44l8EnbJVxRDRL+YUmss2yywnOOUWNttsYCFhZxwKgDtaToECafJTwCjLOnoGdWDc87HDPoZLUm6Q3osMAa86zzCfMO1FlkjaYy9gyIMtnyNlOOhWeedzWV2VlyZUuDAAI6hAqMgkiGDYCwQt9AxWPSCpxI6uEs9ylQoajFrBjhN5jjnvPpGlGAK0lLAUeRiM2yqYwRAT73NJXY2HsZ9ghpOxDbZLmRFm5egjrKtgK6LQWBQ8w3TIr4baYcCG6y6Y4WswCXue/6ysI+zKMPBLSdpMR1bjuQNaXekiInlKTdx1pkTrFNH5EbX9Ps0CTJHuPUyDoGU0qzkiXpc5db3GCSEos6tlI0WWbFMW4sLRmEafgWr/KZK+6+2o9BTpz02MZshQI5aiSIWWWJNRY5Hu53YT0NxpHQgYhNLtMk6ZiP2cN98uwyefiIkejAMY0LccX5Q0qfrxIQ827wskpmBbQw2b2BNAGx+sNFwhpjFPM3zR7uUwkK7rjm+cQlnOajqrCI1bvMkpvf4yUszGKTWVKnT8hRc8nVsnwi7NV0LIsM95l148MWFkIiNpjDcsVrSJKzgFYC0FQoUDj8nDxV5mLxRpPAnR03b74bvkSTFNPRDhZuMEnZ+Y9WKOiiQsaBrQusEShD0gDJBe44VmXQgVnuE9HHLW6wGc4SElFlgknKvMlrhLGArwUqXGfVzflV8vzf+T+7ecuCf2IC8pGk1Q7q4sscG45hbtcyeACzSQpLATbmdJs+pg4/YzxqMBlJeMdBOOIARGPEyZwaKguw7iwALNSogSQMLxzedW29wRxfZAcZ10WCvxz+T7k9/B22mWJT2eFNUsyxwSRlerfgIJRE7HEaiIWAePutsUif3uPLFFljwdkTvMabzr7AWHqWeG7nP3n6GSM85jbXNZio5cbOXLTB2vBVYTCHafc5CyK5zKa7lxvDrswke4y7ufYKG248zB/Kyu4U2+ROv2A62gGgE8g8aUzqeT7BfG9tcewWN9x8eINbjhk4xTZzKsuNSfCN31C+8eUAeuZfdhEBSu4gxYEVDsb6ML8hY40ZsPEEAWLqeCZarNsyeSx4EMO+0BvzooQAIjFeKllCGErg01NfRICPRTyjbFWPW4s+Ijwbz/ZhIIrJKdU7ilW8tLCOD0nIdm1LmSjOaP6VrnOP9JwqeGmPAXrGajIQcA1hdhmL0Jg36D67mAqOmWZtbYWJSUiN0Xel6/3GJDN2g4FWGTzzp4NnaLyIl4MW8P5RD7rOdQ0f8GDbfqLv+UjPK6fbtvu5tZex6hoIUGgSN2uPi7rNq3hfxQq+X42ZmUGA1gZeqmjgacjT6cbv6/FYMb/E05JRY6hYG3WxXhjTNrPzaeDBUmPWZRCg74/w4R/GiDPQxdp7QF/fxYOcts+o639ri4S2k0mZrb+f4EHevwmOmwQ6wKf2gg+hifHJjFk99hKedWe+YPd4Wiq6j7+mQPqlF/T79Vf/oSDukYIMQ8NIW2T0+V/o+06BigAERyeIVPRZlQIGSH8ZGF8VIKAnr4BRRbehbCOywKCAQU2Qsb4o+zwraSrpMDTWBTg6OgGuwmY4y+rYVTbGLvFZ8Zt8mv82laDAF0syoUT08SQLB8ODRCE8sXF3Fzf+e/L4awrZR8LYo5+Krx8dYSZdeAGGnpdzODKmZwgU5DbifPN2cYnpYwNICq3NV8+KjHHIAGO9VnqGJXWVJ8AfAPMKwCmomjW/tQQQaUAJ3uetZwHHvE0V8OxcbStQSS7yvqFBnI9rK5JjyFyCjC3mlAS0OzpUIFcfTQXOeoZVsqly255h+Jay9Rq2mFFXptsR8D5s1WFrTYHAGAHSDVBHWI7Nqpzrt4xl9kRln2/Ldo9O9DyPZBu9Q8KiPGrIds7vAfsCuqWG8YnxBtSH/x/y/j827jvN88ReclFVYpElFlnlolhtyqRJkS2OqaFaXHNWHrntaWMUeK77prN917hdzOIO2NwGm+CAIPkjl/y1fyTYPwIEOOQO2WCBO8zezaVve7cn3TvOauIee6xpzdBLtThmN9WUSZM23UVVuYo/VGSVqsiS8sfzvJ+iDsluI5lO5twFCJL4o358f3w+z/N+3j+65zbWjHOw5ftB7pL78Ol4DRiYlst50Ml5vybOW6rzmYKDjBf957Ufpfx5dg1wfPSpS3PPuYTbBwwNrT0pl7oOGKuzJ+Gf6cDBSWfLNR87IzPFs2s5do2d/S0HHz+mu9/M0WW+HtGtZ7bpein+C3j0z+zfjT+x5x93JmQM+nrgeAc4hmSGL/xDxb9MpQ20yDtIU2OaNSwx7qrLMPNRaCtMokgJM/Y2QFBeY2pEwECbbUYpUGabUTYZD1nn7/A2W4wHiCjWmDVmywHkjFAKNpo8bZSUqNCFFG1PE7SQAjNFP4zGdJEFemmwyCsAlBmOMI47XOcqyyExzlNzeaP5tU2yQcqDNgR6dD+7fb4qOfecqwUIJfZJmgbXWArZnKRsAjflzSRpa4ceauSpkWeZOUbZ5h3epESRYTcK/4PO3wHgHd4M1ssNbtPrnoH9WFiJgkpStCmyQ4oWLZIOOFkTbiDACgoEMZnvNONshfQZLDhgmjWUvCsWnlJde2mgbGSZ2MvzrkOCD5kN4DFJmzWmAvwsUPHXarDKTDRxDffzK1Ngj6yzcT4NRozCQJr0OsDQpt9ZKqNsUyXHKjPc5gaSVp+QYIb7DpamArQUwCZZcI6qs5wazLFsoADTbry+yTRr5KiRpkmVPP0OHpqENxXHQ35ga0w7iyVPkzQrzJrHlV+jYjotsoAlT24FKN70BlxsoBWuRAKxWFbGBrpLkhbLXGWSddokmWGVCgWucZcU7QDUC+71p8/dIB3+g13WpBqYL/ZDwwSTkBtbWYCdvi5/wUk2gsl5tbUMEIMBSZuXB15mnyyrA5fYTo2Gr2I1kUMhNhtMMtjZZ/bArkWxmE8z5zIcmu9Yp8SLlc+5uPs55is3yjoTjLHJg4GXsETjByHzFHNzJTVLh55Yg8fdP+1/UvmvUcBGlj1qfUPBuAa7Vv8Jf8/AlkSGC5sHsTYrpAAMtClQocxwgG4jlEjRDo+9+c4StYEBNpiklUgx2Nn3IJjeSAEWU3U9NcEyV11EXncm1wgpl/yvMc0f8LdDUp+kRYM0NfLcZ4YipRgw1AfOscIsh2RCPjmCea6NscVr3GYvkY3zr8RgMGDuH/BfkPeh0CozZFp2f3d6Eix0Fh1UarIXo5dsAPe9sf+1KFPAAnP6w6M1QYe7A79OI5XmXmou2N/yhytSYp/B2BPHWls8v3lIcbcbSCLAtEOCTg+UGAkvTxuIpZ5hy4+zxTRrz3ic1snwZ/NfCS9XyYC7PrllLBXdUtanWDPAmgptUky31mLvT9Hi393+Y04nOqecEHBCgix7ca906KGaMjByizEa9LLkrLxRtvkbpZ9wcfdzACbYoE2SYscA4TxVrnOHLPuWONxqWPL6uefYwTxgt/teYCU1ywaTPHCvVXlMtklFEm7TP+/vHf3XrDITAyH58D1gOmxByhTYjCTOf/Oj59/+I/8fPPrgHy4DD4E2Vrw+BD+/RrF4iBXQSbqso7p/74n/bAKToSQwd+p7GKvoZ3SDCNRQPvE/GQxweI5IXeQ2XW+3CrDn3xvAwJHngf+HP0/Pqa/3+c+16QZC7Pv/D/y1oMu2egLksS4yB/y5f86z/rUnGJj1FX8Pz/lnOQv8GMj6e/ncn1ssl0/82NwHLvhzPfTvXQLW/f8tf44kXXDpOT/OTbqglxrTnL/eE+Az/9pz/vsf000UfkLXd/DxqWPZ9J/9b/1z7/s5eo4uVLznfycxkOG2nx+xA1N+jD/x46DXfg4DSNsYOJnwz/jAz8/zdMHCA2DQX2sdeOrPlfPPVffn7/XnW/Lv1zEz8p/47z7hWT+8M3SB0Yz//KF/7YAucNuLgS0P6Xou/vmp10pi11OG7nX0nB+/D+g+fnbqM7Ww6+AlukEVj/09poFVPw5/Trfh7aUbtNHwY7LjX/uEYPVEwMq/wu6vM8A/8ffU6+/5yI9Jge41r78rdK8L3bNN/95z/rVPMdBDVigP/fnq/vsv0E35/YI/jqrAtrHtGhWXvQqov2/gz3kffhzfhbNz7g13gvm19dnvh5fdz/yJxdIES7S935VX4vLG3CW7DR5t+mscOvjj0sWcA+cnzl79yj+73wXOHXAghV3f/2c4/9ufw4/g3KuHFl70VbqejT0muTwr0NGHLbkKzzICvwr8qQObbqXwqAPjbrHQqED6kXnYyTOzdg9yNzHvMZc3UiNA7/Oz/noaHh0ZANWLP8d/Z8zBTF/3vZ6ZAx6ZVDQ9CrmCyUGH5zDwfplgmD/a7M6pgmHqQ5vGpsl2zzrjik89UVeMOA1iitC8D+UWnD8wNlp6wEGmn9j5aLbseXudcfnzI5hMGTAYgy/gsx8ZM/E8MPwW3aHSRbr+pQcwM+7v+cQ8DHM1Ow5nCnYMc860rX1sLMbGgX+WXQuGOF4yoPJswnwMPyzBFbGVB+imxg8YwHZeDNQ+uCImec2ls1+lm9jsstz0gDEVX5inC3J/7FJwZ/hxnvCm7XWW85kinD8PPYt0PTudnXe2xxN+DxwQnHcS7GM4L7bynJ3fRz6oy/SdOo8DdJnrc/a6uSJdGwofoBy3/GdlrSC25R8Tw8nzRbtGT2SD8BvAJhz/STfduScBtOHk9BDkC/r4lBfp9bLTmBUFDslwzZlvSdpc4y41ctEAbDP6DJjXoNcbIbHcMgHeCOhaY4ppHjDIfsj78lS5ynL42akB2maUWVbC5F/MiXG2PEmyazC+zegzkqMGaeQJdUKC93gjfPLmHKxbZ4IaeWa4H+yuNilmuE+DNL/P7/F3+INomA3kagXDwuy/s/HvIjukaQQoIsaUmjBJw5RIq8ZglhX2ybLCLP3OvhHQV6HgZuG9jLGJ0mb/Af95hFVk2Wcisf4ME7Dm7BwwNkmaJje5FbKy7/Btvs73g9F2iCUA6xxc9lRB+avJl01MykNvVDvemJUZRiEllz1wQudG0rU2SW7wvjdUafJUWWWGr/EOaZrc4uYpEG2KSTaCITLJcjS+SdpM84BVZljhCtOsMc2as6msSFRDfo0lauRZYdZBGGMJZtlnjSlP1zRgJkEHJQMLuOuhwyjrAciaH2QppMRpGqS84W47G1FydEumnCbLHi0H4nRdNEibZJKCA80nDhkZiLfGNJ8ySop2/I4lT1cjfVbBNB0SvMk79Ho7KhndOnMRSGBS7Lqfv2Jcc/eYI00TpbEKDB5jMwz+JUlf4ANO+BVYDME9yw4dpLdEZgPYjQmqROU2SUZb29RTGdaYZi5l/pojlNw3sxFDAq0vGlBsMcY+g36fmPfj+doxPy28RIUCBSr0OpAg77wSIwb4J3LsFToMdvaDZZSiTe5ol52+Iko57fH7wa7HQWMCHnzGcH+ZvUQ2Pt9HhRci6CNPzYWmKe5wnQU+IEOdm9xihVmmWGN3/BzyYFzhCkVK8XeGOu/wNW5yKxjLh96UJ2lxkkhQpuDBDf1kDw95MGAg/iwfIi9PY+wmw/9Pw4h9BiMZXV6PvTQYa23RSiVJHz2m1jdEwo0ZTDK9R/roMbm+Kg0H+8WeBPMklCeoWHhKYh9lm8LBLrWBfIQutUmxmLKQnrHEJgps0Pp84ve42NZKKzcrirRbHexggR7pkHNu+z2/52vdsK/Bp1O6RyiROHnCvx5/GXl+jh59xlLfV0jTZLS1zX7fAE3STLFGkR02mGCVGSacBdlLgyRtZlsr9KYaHnBka02ZAjVyTLDOIgtcYYV+6qRpMslGSIWHPShCxw+gnsrEdbvEPCOjViFcqBxwnIL1oRcotkp0UsZKtzU74Xum2QSYXcOVGH7VyNEuJkPOm6TNDW6TOTjm3tBlFFijMCOlCbdS9juyruiQCKCy5h6qAtxz1NhmlCnWqDBMu0/SKgvEGGOLTKtOOWXKg4wfjyRnfqH15JfD0GvTBRcyWJOx79/LY0VvBmtOMnSn203/u46BDIP+8+7BQxprbM+deo0+rAl4Qjc59BwwhoEvg8B1ImGQA+BF7JM/8ec9639n6IImAxgQ00dXEvycf3+P7nS+6d876+/12L9X9r8b/pkEcuX9eY/99xv+eQv++T7zz/HcqddWQ9gLbPnPZ/1rAhfrGNg37J9D7z1/6u9D/2ySxZ74c6cwcEW/95iuzDnnn0Ofs4euL1ybLqsty7OMqx5/rnP+WQaAL/nv6H1e8+/n/evQvQ5GsOsjjV0LRxjAhf9O3b//OV0G4wBdRp2A3UH/fq//+6n/rvte0eP/F8tEx6XtPzNIl7GX8/cj4Krp3xOYJWaGGIHH/nMN/93Oqc8n6e+In5MW8HN/32n/nMlTxzTrn+t5fy3dR5Kt9vnzDtIFXdt0761DusC5WEYCpAVW1ulK1HSd6Njk/HdadO/ZJ3QB4DwG0r3kfz9PN71Ua4GO7Qv+3n5FJLd9zlo9u2BBGI8kvf8qYer16FMsjMFBm2MBCi7h5BJ2Hn5moMrTx/YcmxUHS3KeximPwwFM4rhpLKzjE2AZNsWiytn3+Q3gslucSkK5jH3B2WZUsPVsAbtuX/X39jJdQAd7P2f1fvHfXfTP8DJdyfuf0vXrzNlnG3/ZwZXUKWmnS0w5gtz/GPjY2Yp6OJv50ff930vO+HKw6cxFW5Z1P555yf37xumC8eN2TrQmDglk/DK2PvXZZ+0RUO5s7qdLfg4qFiJxfOIyzxOXHPcYc+5RBZh1FtZ5A+ouFe05zhfsuqi1uud598h+5kyPyYEvjbvH4Ff9vTg7/YVRO1bDRXsOTswj79ESPF2m6y/rDLKnR84UHHAwz8HTkEUPmz9detQBpkMLhsjl/NppmQ/hlSIw7MElBy7NfWTPVW4ZqPxI7PS3CE9IzhPegnSMldpw8O98ysNCxA7v9/e+7NfAv9+9ntKjfiwSdjzSl7E19L/za2q569V3/Mh/9r6xUpn161AWEpfg/Kv22U869txnxfAWi3aZ7oBF+0XKnuNsqvuzjQoh534qibiupaKB109dcfBoxUF1v1fPvGS/29PLF/7R4blINWz5NL5Knnf4Gi1v7O5yLZgdWfaDlSWTf/PHqQarw7y5JgLIm2CDB852Srr3jUIskrQoUOYadx0E7AmplZIPywzTT517zFHCDLob9LLJWHgGKZVRhvWSSaZpcEICmXCPscUCH7gRe28AKgLt2iSZ526APBnq3OWaSzV7/Y8xmCx19SLyKypSCrALCAZDk7RDgHu0SJGnhvnmFchRZZYVrrDChodCyD/P5JiH0dDpdffJUmbYGWQ9wb76kFkapCkzTIEKG568K1BA0iH5N3U9t/KUHWAUw0gyuDd4L363Qw8TbEQTVXMYSBK3HYrRZBUo0ybJNA/op84DZ7RlqAcYmqLtKaoj4akoCZX8rYyFYueiRs4YGn6czadpmKqDAHrdN3kHyZ/lWzZMmTTNuG7NE6wZUi41jGtM8w5vhmeZ/MQE2okNpGRnNfE6PoCHbJywwhV2KIasy3yjOiGxFqA4zxJlLHV32P3JJKUbw2R4eWeCZaiHr6V8xFK0mGWFE0yaeZ07llLp8vUfcT1kefIMk2fUVZaZ565f1caK3CNLywFOeUAKMP2iPwbYo0kvh2RoO4NV7KQ2KcaOPmGKNbtWUtPc5oZfm3m/TlO8w9eMncdV0jRJYUmng84OUyLo67zLJOvMs8TjPii4VyNAxuVKklXfZR7zNR03NlgiG4OCW9xkq+/F8Av7gAUKDipqSLDNKHcGXiFzcBzs4xxV2iQZ8ftJCanXWGKG+6RoMdwpM8VarM0Cvev0u69qjjFPKp/srHOFFSZbG8yxzAaTZNnnw8QsQMjMh6lQI8/dgV+n6gzlpg8XFFZToIJCdFokKTNMCgvEALjaMQC1ePA5fZUnZmLQZ16G24zyQ94k1TFa2GrfZV83B5lkIzwLDfRuMs0DZlilSIm3+CO+0fpBBOysDFymxIiHAKWYYZV9stzmRoBQw5RZ9ZCoDHVuHPw5lkptQO6bu38W8ukkLXJUUdKrEnm1bopFKYaaAXN2fjaYZLXvsjMRcyRpUesbIk2TLcbYTo2ihOU2KeQ52vI18x5XecA0dfoppYoxnJCX3W9u/5gJ1n1NuguYbUSd/lirgNjTthnFEsMLbDFGjipN0rzReTf2+39deJmNgRdtOPj4ibFFuRL+sw3fgwEfapwE+1/vfZk53uN1lrhGhwQ/GvqKM8wNfFtjKnwWZ1x6m6PKGlPBstYATOxDrZ9Xd+8zzxKTrY24/nUMx91/t9OT4Dp3mD76CNmRDAQz6t/8+OUAemmsaX8Ba5R+ThcUw/+ewAr3OgZ8PPTvPU8XkPNmg4w/Vx4DZMSQ6PHnEKjU9ufrw0CGUfu9h5mhLpvoS/D0AgYqQdf/S+Bghy5zbZBugAN02U/D/n0BPgJGxIYTmCM21SDdJmHYX0vAoY6LmBUp/1uAno5H4dTzynOuly5T4nn/u+HPO+SvexFrplr+u5lTn7WPZ44Lg/5vgXHuLUQPXQBG7Jukvwc9z1l/Dzm6wOcZfz017mJk9vnnqfv3BcLpPGTg5Dy0XzjTBVIH/G8dvyf+emk4uXzqHODPPUbXo07nsNffQ54um1Ln9pguoCzG30uE/I8XMFAtQRfM1bU25M+t5zg+9X4ll82der0L/vPP+XNKjqpz0KbLsBuiC64N+3s6DRxfoMusE/vu2M+HjlfHj/uX/L0M+vHR8T59fe3bMeUsdo8mT733un9+yXOn/f3pGnkenl7E7s9heJr0n9U90sDu3xf8eX8FGljAPjOYmf8AnH/LvNFwUGh4wYAFljHQ7L6HKbxMyC85IbwSZ4cM5DneMQ8w5uzrOFAUHnQvGStvaMCYeo8OIJci5LFPl7HQhR/BkNaej/01axj4Iqn+kn8GSdnFUP0I6DsVuCAJuAOOT+X59ydEAi2H2HWxDbVbwI/MA67cwtZzZ49RouulmTJgMj1kcsynYjx92YGxx5iUUxJIZz89woGUHF1WpO55Zyeef9W/N+LMLuy48Kf+9cMu6Pf0lh2TZsuBmAEY/6qxKNOj9v8zfs9fGvX3duTgz88s2IGX7fvHj+xYjQ3Box/a67xQNK+8Wo3uEOoxXQ/QHF2AacCvl037LL0pAx5POnTDkgp23s/IJkLDnI/cd+/EPe7GnWH4yFmCLQf25t3rDT+2fqybsnHAr5WEbTOVXWdBbhO+d3o+sONZ/lP3P3T24Pmv+Wt8SvikNrbpJr1/n67HLBgbUeDgY3vPtODpR9hanYLNkjFdFbi1K2a6apAfGih7fNeAzLMuoaYFx2+7B6KulQED2DeX6A52av757vv51XWXcpashkzYef+s4uflkrP2Zu0aLvt13PqIrg/mF/jRJE3Fgy3apIJ9NM9d5llihlVeYTGkVfKmq7t8KU0DSxccZo5lFljkDd4N6eQbvMd1fsQsK1hyXpGqM9+AYC5Ms+YN6Il7PBWZYJ1ZVphk3SQ1NJlzCrSaSwvmKLgP0CYZDmmQDp8heSrZxL43gCwZjquBkjRtjekIhVBTKXaamnMl/TZIk/aGbN49sFaZYZ1JFPqwzFz47lQY5jY3yFHjLd6mwnCkqQrs2WaUDSbMR4oNmvTyHm9g4Rvl8Ci8w3XMpH0kmlE17ubTZ/6G8uwSW02MEP0RsDhMOdiUljiZDE85MR5ljF/1ZtIa7nVKjHCX+fCRqpOJ/4OBgy1n7Q1T5oEbyt/iJgA3+WNjELHFNZaQN2GREj10WPaEuaqDZ/JEFHNwkvVoSmVcv81F1plglG2SLi+2JNomV1gJv8AlrhnLh00WWAzWXZ4aKdrsk/XftAl3kjbjnjYp1uYORcoMk6ca0u+LbHOVe9F0rjBLDx3kP2jg8iaWsmkg5hrT7Pk1bd5g95AXn8B0MXfSNOh3QH2VmTCgF4tslG2mWaNBL8MeoiKgWKbxJUZCVmYAQJFtRvmABSoMB4i3xRjZWDy/2I9LRx8zwUYMLj5ggQ49FFvGRN7qezHOo7zvet2fUMb8N7kV12eJYkhcG6QpdgyQ2vZiJ0mbiYNPKPVdINVpcZVlLMDF/Bi3ucgGk1xjCYVM7JPlkIyDRntc504A0ED414mJJo+0CgU+HLoUPpWSgytcSKngYKB0kjbbiVF6Op0AO/YZjH9rLdqhaFzZxDTXuEspVQxwWGzkDHWafq8o5EV52w3SAajL67JBbwyFdJ+LJbdPls3EWEiZj8+bTLxOhuGjzxllm7d4mw8TNipR6I7CcARKjrFF9uCQLQ+NSdBhhSskTp5QpMR4ZyuAIPlkap2a455LoevBqJN/nh7rTJCgw97QOU9H3o9jssY0d7ge11eJYkiblbqtPde87np9z90j70MgpQxPdtZjXdYje3QQw5Fv8AMa9PoAoB3J6PsMsshCMKd/PjpEh57wvdX63fT38ZXKfWShIGA1TYMp1tzaos4S8/QeHjPTWQ3GY4EyI5TYGHiRBr00/bMsshB7qo6VhZxMYAzvCe4yT4Eyr7DIa9yO9a1AhSKl8AoFGGMLwN9/iqssk6IVg47cwQErzDLGJmNsWnzS0AWStFlJzYbthD7blyq7ZmWQmCZDnff6vkqBMsNHn5P7BQG9X4rk9j/9BpzfwxqIhP/9p4S5O5tYQfwWVpiXsSbjL7AmROy23yRkNJEWO+d/P/avF/yPZGiXsMb4Gl3z7ku7Vvy3/LkvYv8fpxussEnX92kEaxJSp17jMV2p4kd0gzbU1BzRlRDe9+c85/8+hzWxM1iTsoA11UWeTTr9bcIknKJ/9gJdIBGs4ZYX2ZfphhMs0fVnK2AN9Hm6QFrOn+fP6AJSQ8A8/PTSS/za9z7upqwe+HHwBjWeWw2Mnu8n/llK2Dn+F3QBxgH/zNtEwMijf/8s5//iuOu9Jwl0zp+3j0gefvjWABe2D8wLqujndMhfc54usHjP31eBLmhawa67v0E3SCRBV0LcopuyLAYSBGMn/Atbfk5KdFNlJbUr+Ptd9t99y4+TS8y47Of0NBNG1+N5uqDDFF2Jq/s6MUfXt+5V7Nq+5D83hIFxkvS5ZCykYPP+ujl//pI/r8vEohEV0/LI/7/iX1ug63d54q+v332Lrqek2Jpf8fciyZnurRQ8/PcGuPDPDuznBE7d9/fbB48+gX/0J3zxHymMSfapgRuZP4ZLfpzPfM1+5OkPHXTRtSLLhAG65+ljuuvAqAEwm4swfgJ8ZODZGTGI+qDxpyZPPeP77vlvYDYFLn09M4ABOQOQW6YbjiImpXzjDrB7R9fYOHaNPsaur3/m0tCavX552ZljepwzZl1aa7XA+5pJGY8fOeCFv94l/3cFu3YcNMxddM804IVxbC2YO/W+RuxnGyWXKY/CpYQ/f82/7l5mDNnxfLRpANSZAWDRgJueBNQ/crnmI3vPxycW4PHCy/Ye0y/bOWp83352+BLwG3D8PfOky/kw6ngbzoo9LMbWp3RTXzFg8LwD5Y++D5nH9lkb2wYU9SS6ICGfwmcOer1QpMt6LHiqb9EZYj/xz3jeATZnGsZ61+chIQPG3Hu0ZNemCMG7m3DtEt0gqj7zt6NkQNR5H6SdmbOf+WzZzsmjEmzt2hJ15pb9/PCoy6jn4dFHMPyq/W7tTz0JecXex9OSs0wfd5OOwxNX1+CRXR/HP7NzktbaNg/1H8L5jr9XDV4Sdq0Nf9n+f/y+XWu1mrEPz/YA36TLSnWl1+4B5D4lgpLOXoJxP29I8v3Ij+scnF1yWfZlQipPwc912Z7mhUL3WgY/TkP2/eeeg86vACllgAOSWAKdeXlVmWaNEkUmWWeOewxTCcbbMOVInDW5USs86HrocIKZxKdohaH5KjMU2WGRV5hlhaYb96dpYKb+VvauMxkMDTG49slSoEKDNAlO2GaU29xAqa8KqLDAgJSz7joo3CNFi2ke0MbCBBRykGUvPPz23ZNNwF6RUngYNZ3xJjaKmBQbTATTQg2ZNTvjzPJhNPRbjGHhIsZ4qpKjQS8rXIkGpEOCXiwJ923eChCqTIFxthx4TDCIyezucTWYgNuMMunJtZJNlih6CMaWM8raDoTVGWSfZeaC9dF2jpdCIr7GO894SEkKOsNqPPc0D9hn0P2UjImywSQTrAcglXIIbYsx5jx4pEmaXsyHTkwJGZLf4TrzLMXzrDEVn0f+fSks9XOFK8g7SsxMSeyGKQeD5TY3GPbGL02TXppMsh4+ZUqDlYSsTIEJNjBJa4Fb3GSWFSwcoW0SPMouGe8Ea3Oeu9ziph8HY1nKtH6WD813C/PTMxDOGC+Stiq0RPfBCrNk2Wfc5bI1xsj6uW+RYoINZlh1mZ4VIDLm32bUQRpLdpTP5KSfG2P6THCVZe4xFwxQA3f7KbITDbwYNAUqPPcrwtDr9JwJcLVMgUk2SHBC+ugJk2zwndS3ucaSeR22aiRSlkJ7SCb8KE1Om3RTAgPfX2GRDHU+TBhwYBLNPJdKn/GXxUtsMc5kYp0ctfBhe+WUXx8QgwFjNFngwwqzXO/coZUwJu4g+8yzFNd3jbwz8Yx1dBrQEmNMQJWkkGJAJzihRYbESYcHCQN9tO4Oss817qIQofd4HQXWbDPKfGeJrye+796oNXo6HUhAiaLLOjfiXpLfXINeSw8eGEB+nvKUK7IDwIb7++WoRTjN8oBN/359+yM+Hr0QzEBJ/yW9LFBmnYlguu6TpT2QDEBvnyw5qpT6LjC++5Dy0AANel26ux/S+zG2qDNFplWnnUoGCKQ9MTVggU2pTot7iau0SbHBJHPcY5UZ8tSoMEze5Z5J2kyxxn/CfxbnRRYAGqaArQvDHmAF8AADmuqJTIDvVfLIC3HPhxGjR5+x3jfJKjP8bf4bAOZYRr51M6xSdbaz7DNy1Nzy4oQW5i8KxoZTuJTJ8tcBY3kXjx4y2rdNbcCO2+zBfVYHLlEjT54a60ySZY9emuSoMcVaAMODPjgbpswcyxHUJJlskRKbjHG1tcxEat336pFgK59OJBZ4naPGCCX3VLTrRxLbGVaZYAOFPCkUaYwtZlmhRp4XW5/T7yxMhUQVjx6y1PcVMo8++4XWk18KoMdvYNJQFb4tLAlV7I9x/7qK23m6YJ17zkRwg/ygvAn7+NULvPSnD7tS0D6ssdRzDmCNaAkDuzaxJtYBkN3/4BxDf/K4m/qqZktgyiW6YFoPXfDFpTNPi276fkA3qOAndCf/4/Zcx5fgrN6fszQU8vG4COf8e7uXztlCW/kMRuHxZTi3SFc618HAIUnNfs8/23373qOvneV87djesxr+bbqhDGrw1Sh/jWfB1T6YOvj42XPljeNpWd7jl+Hc8qnz4/vt40twrgVPB+DMb5w6X4/pmn87WHX+02P7XXkgChzY5VmZUx9c+NlBl5VRsGvkeNQldCd0G73/wI+/mk8BsD3+3D/x6+gluozCAYKlQg4ezg/Y671EF/DC3v/Ti1CfPUs1keOlnz3sgpcJeJqDM34eH/fBOYEe+HVyCWuGH/t7XSAYjUe55+i7/8Rebx44hE/mn+fF733ePQ5Fv44qdEMnDoDf8fPzEt1AlR664RRzdBtgly9+/mo/z//osAuoDGDX9iN/fzfhqaSOwJnHfp4KfkwqRCpmALk9dP0jO6eumxow634HxYPuPSbw8L5dU7+gLcD/8B9t+Ic6Hz1w+BH0r2HHzgcVT5vG3jr2dbunCmfy0PgM0i9gx2yAriepH/dOChJ/AXSg0YD0MMYSXYLWY0iVCZ/Mp/8S2m1InSOYr0//HM6I4bwEvOuv00tXGq71Vyy8M3TvkSbwY3sfT2zfpwX0n4XGGqTTmI1ALxx/AIfHMPgikLTPejYJx204m3V7yrPAh0AWWiVIzWIo0xa2Hg3RBdXBgJi6H5djjA2p9e4EY/zlofFTSCUhceDHxUHA4yfQ04QzLbpM19Ps733gYzjs2D+/tOHH6xzh1VoDck/g6XfgTAaetuFMHToVSKQw9nmDCCQ6/szBvB54ugZPnkBi0D9Txo9pBp4+hDMn/pk/geM1OFuEp71QacLwp933fPxTlztX/bh8htkRPLHnOv7MQE06PMu2Lfm/k8AL0PnMwKVqE/5lA55+dur6OC2v/zkcP4Sz+/7+vgxPP4Fm2y1ke+1zdypw1LKXHVyCvRYMfujPkbHrunMCiX0753zq79+Z4637kLqArVN7dtyP/5VfR9pXfchWa0Fuzd5nC+CefRaAsy/Y9dF5DE8asNuB4aYfgz/343UMT08cFPfB0HHdrs3OJ5DIY9f+p4C/DhAgewf7PImCHdfDn0B/wc5nJwX/4jN7nXYbUlVoJSB1DOzafdBxOfUX+dHgHHV6WOSVkMHsUOQyq1Hgiu3RJB1ynn2yEaAgpkCd/vC5kz24PMSy7IUf1YgX52kawQzZYgwFECyyEIw3MflMEmwsiRyWBCuZY55qNG8A06yRoMM7vMk0a+FT9zrvxvuV3555TbW4wgrf45vxnupkWGAx2IQWyDAcLLWkg41tZ2CtM8EwFSZZR2EHJUYYZ8uPo8vS2GCDSYBgCyYdfFxhNqSnG0wG4FemEDLiDzFze8llFUCidFl5fQlUKFAOSbR97kHe5wa/w9vskwUgRzV86rLsscKs+1qtuCRs2Bk01jClXCZt7BS7STr00EPHJVjD4XsEhNxZ/kOn2SbyfbPEQyU7DjLNA5a4RsHTZK9yjyo5fsA3gsVjz9cIP0d5/wl4+Nv8Nw7XDYcEt5cGt7hJnQw3ucUYmyxzFQVpWAjKCUnafq1Vn5Esmzh6NuRlSqIUG+s6d1hjOlJjWyRZwIzzv8836JBggUXkn7fNKG/zFnMsM8G6s34ybDDJbV7j7/L7Lie2kJd3eJN5ltxHcNbZpCfUyDPOliec9rDMXLDMkrRYZzIa8Q5NB0MrcR/lqdKk11lMe6xwhTzVAJRHvCH+oj8+To1z7ehj2n1Jrjro8QELjA0ZuHqdOyFTXE9NMNnaYCU1GyxgMGnpzaM/Zq3vUlzfKdpsMBmgmaR928XRU/dUhQoFWqQ4wdLDDXQZD4Ci6CElLWfXjVDiXuIqKVqWkN3ah5QB3EvMM80ad5l3P8yMS98bDDr4m3M/y6/zg3i9NM0AobPs0elJBMNawGWBCglOuMVNvskfcoPbrDDLLW6aLP+kw/lPj+mMmzS+njBGt0lObf1Wyq8Aq21GSQ20gzmcp4b8Um2AYp507/Am11t32E7Z3lCgTJM0H49eIN+p8Sbv8F8m/iPe4m2GKXOPq8GWzVNjy9mJY0efsN33Ajc7t/hO4tuUKPK3+QMSdLg3dJk1pmKtybLnLOsCDXq5zh1aKUs9zx3tstX3Ygw2TkiQOzqkfe4sY2yGzNaSbZvBBtc+IhBUSdRlCpjnqoGlWfbpocO3+C4NzMdPXqYtkuSOdmn0pQPIlxXGIWaHUe/LRHDOA6YjZKdCwVnAzQAEM9QjFEJ7Zw5LyaVABK6UKZCnSpomy8yZJLvnOdokkZ1BT8cCMRoJc5SU36n2jSZptjwcS8fizd0/49Oh59lgwtONjZ08evCQ1kCSpdQ8kxgjMUXbwbcco51t9hLGXLVQr3IMeUz+PcHJQIIZVvmAhWBzbvR1g2Ssbtlji3GGKfPz0SG2GA9W7CwrtM+dZZB9LhxU/l+uH//9xy8H0DuPgQsX4aeFl/i17Y95PASpPtgbOkf66DGpy9asPCwMcKFyEImPR7nnaKWSDFUed9koCaAFjwtQPHoYTKlPCs+b2e/RTyj1XaBDjwFj80AJjorP0ffpE55+FRp99u8Kw6z+Vpce3FPs0Ht4zIOXX2KstQVA38ETHl0yEEcThpe2H8JjOElAafR5GLWF9Nd/9hHMwaPcWfYSWV7c/pyPL12w6dXAKMPFCtmjAxInxgbY/e1zNvUYP6SnY8krE0cf8/NvDpE7crrfEF2G1YEDgOfgL0Z/nQk2eF7xrD1wvnTMJ6PPUykMM7GwbsftCPgy/Lw4RJI2z1cOOb4E9YFz7JNldOgh7XPP0elJcL50TKcHKgtDkZCTPnrMOQFt/h6AkKo9PedAFnDuPny+0G/F3Mu7VAaGyHTqJB8f0+l5jtZckqHNxzy6eJbzHx1zVHyOxm/5RO7g0EDPfnud4/NwtmXntXjwORsDL1LslDhfPoYCPBh4iV/7jY/thZ1l+Gj4LMkBe62+gSfQA5+P9vP8R4cmK5xzANavo6PZ51hNzfA3Kj8xALVom9HjUUicQO3LA2RadTo9CaqJXEyE850aP//yEF9K7QYbszrUT+fVBMO7B5xzcPqj8RcoFkvcS83xmxd/zKOLdl2k5tpOa7YJTI0c0xc/YW/Izsn47kMr1ufg54UhWoUk+U6N8x8dG5iZgk4PpFpw5lP4/Lf7eb5yyKPLZ6knMhQOdlkZuMxkxyYY5z897jLpCpBuNfjo1ReY3P2MRt9zNFJpVsctnenSzz7joy+/wHCnTPLxMRt9LzF18DFnv0wX3BiA3fFzpFpt+gpP+HHxMgBf4X4AwX86/gqv7X7AmY8NnEzQMeAnZec0P1CjlCpyqfgZR8Xn4JNfERO93lN/VyF11vzD0pIUHsOZs8ATB2WOgccGaD2RXHfcfje8ol0ynniJCKJJj/jXU0DH1lty/rU27DcNMOucONCES0BTdD0R5TnZtucUw4kD/77k+wcYuLMHZCHRY2AZGTj72D5D2qXbDSM1kE7DoDw1H8PZDHACZ8fh6Tb0Z4HL0LkNiTokk/aznU8gIa/TYwdZJNmHLkB1DlpHkBrGgJc0IVlOPOfP0Qepun+Gs3D2rEsuM5h8fRtj+u3QHQwkof+8Mf2OmtCf8c/wPLAPuT66lhFtOPOCH5+mvwdZBHxmz3f2efv8YKBtoscAt8NjGPwS4Yd5ps/Pw4S9t55l+96ZQcgK2O0HHsGjY8jJwkAeoOf9HH0KrWMDt1ptSB/Do4dwfsLP777/XgUSGfud55rQqdp7I0PX7/KxH6cB6Nmj65Pp12V6BHr37Pg8rUDiIvRuwdleO+aDQ7C3C4Mzfs78vHRq8FwVzsgC4Mj+pNJ+DOt2no4PDJgdvICxSdcw1v0w5C745+npgoBPT/w4+vMmavYZhx7C53V4vuDn5YldD2dSwBU7f09X/TNXHHT9NQxYfwiPHrmc+qyf6+dMlp0a9mvmCfQP2fcfVaDnjL3v556DjoOVqQEo71raM1l+JVK/DxigznkG2WeEEm/zO2GMX3YvL3ma5ai5p5ZJszr0cId5lP4pfzRjg9XYYIIyw4yxSYVhTlxeuEORDIfI/06SNbHibnKLBCfBYJplhSo51pmkTn/4p4kRdZptV2GYT93bZ8x9+oYdfPrf87/lf8P/jryzYEzuZb47iyyErNQaT0t6XeEKb/FHVDz8AUxmlHZAZIlrAVSOss0wZb7HN2m4D5dYXbd5jQnW4z2Z2CzhjVGNRSZZZ4Lr3HFGo/kClhl2lmAhmDOSBhkbqxmNe92BIMmJ51kiSZslrjHOVvi5jbLNHlnueQKqwEolI+bcXyvlrLocVU8gTMfx0fHYZNyPRTk8u/4b/jaA+xkZyGr5rQY0iTmZosX3+Tpv8B5NekPCusIsE6zzTf6Q93idMba4x9VgvhXc77FFjox727VIssIsNfJ8k++R4CSYhif+npX8KfmvBbxcZIJ1eujwLm8AUKTEBhOeCjvsbKBefsR1MtSDdQlWqy6ywCwrzjZNMMl6SGn/kG/yFm+HlK5BbyQ91skwyD7f5jtUyZFyluUdrpOmwU1uBSiqxMhZVtgj6z/TDGaf2FqzrIRcTsCmZLmv8T4tUqz5cZF0zuR4h87gk5TZgNpNxkxyGlKOL/ZjhDKJE2KtqpHjGndpuJenADmBo+upiZCDTvMgpI31vn6apFljmhxV3uV1Flj0EYSlr06xFqznUbYpMcIOFlxyjzmzEjj4CAaMgfkdvs3/gv8jJYockonAixq5kFOupIzdeY85UrRPpWa3aNCLUrn3yIace4ZV1phikH0KVMIXr0aefKdG8vEx5b6MM/1S3OF1LrPK4O5jRoe2T/lKlsOLr+/gCcdD1lOmzzWopwzALLITid3v8XpYKAiwTncaLCXmLUn96IC1vkvIu7PtXnoJOjRS6VgPBazXyZBKtGP/AULG28LSn0u+ryXoUO3LMeiy0m93vsOdxHX3JTQQVl6XbVJc+tlnPPzyAEna9NChwnD4jW70mXzHUlsTLHOVub57VFz6POLWAdtcDNamrdUTKHVXoUJ6nn7qcY3ZwOeQzNEhjb40w50y64nJWDPA2LQWTnSRVWaY5kF4I1owy17c09pLiuwEcDtzdJ/bfb+JZPlN3+XGjj6h0XeODgkuVA7IpYxBOUwlwNY5Dy7aTtkwRdf88tAcU6zRJkWDNPlOjbHEFre4yTxL7DNI/pT37j5ZMqlDFESlx0uVh/y08BKyx5Dfr9bcMsMUEhUfgm3S6/JjhcGkHESWzFwes1t9Fs6Vo0YHC82q00+eKgXK7FBklE+tlmhtUU0Z4FKgwucDg/ALyG7PPH369N/6Q7/o48yZM+eBg399MMrQ+WPkV6LJqf4/yjZbjLmRrl1kU6y5QXKONqnYxLRR1OlngQ+o0x+bXtt9N7Lsc5sb3OA2iprXTTeBpXKp6BDd/A3eY4J1PmCBr/EOOxRDviHzSYBJ1tlkzJHrPTLU2WASJW310oyi4xY3ucH7fkH1UvFFdJhKbIR5qqwxTdInHEKkNb2cYo0diqz7a6joK1GkRZJJp21WfbHS5E7JKqJq5qhy14vffp/YyChVk2hNjee4F5v0FmPskQ3KqCQGZro6xzXuhiSg16nT/4S/x9/ln7LGNPtkQ1JQYdjNJqvkqSEjZxlNq1DW83dIcNmLmlG2+c/4T5hnyWnXjaAHq+g/fZ6CokqJlqP2W4wH6q8CeJvRWJgy1MMU9pBMmCjrOJS8IJXfi7xslDAk+u60a/rlC1JiJBboDgnWmI7iUJ8hwQnDVNhijAx1T6h6Nbx9TkhE8toWY6wwy9d4ByXhaVFYYyoo9Q3SzLAaBTrYRH2dScw0eZYFPoiFdovxKPzWmfBCquQb7BZ1MuGRs+8bsiQWouVLSrPCLGkaIWvR8bYJUzomY2tMB236zKN9fnPgY4CBp0+fPvorW4j+mjy0Hv6vh+DcIAYaSO7ewAChlP9/j67U3sEenseApSRmIbDov/86Jp2XDUEvxmDKYiD8kL/WQ8yvsAcDA7+E+ZmewYC7Xv/9QYwB9zUMvJG34smp5235/wfpek3q8TMsdfkskaz99KEDWwl/jgN4+gTOXPDnEBv4cww428CYr0kMpMljQMtzdAOOmnSDWAp0g2nkMbmF0+gwEOghBng1/Q90vc2OMIbreYypm/ZzIu/LXoxde49uuM1jPz91ujLfIbphMkf+/aafh15s+LTlz9FLN308TxcUHcdSzh24ouC/M+Asvxv+fA0/djWMiZj15zimG5ixT1fe7gCiJNjBcsv438/7+7jvX7vg52EcAzYFXD7295XzY/oi3ZCrIbqsbgFSPf6zG9hg74n/eeo/t0H32pMMW//+jK7facuf8zn/PM9BpwSJabqJ9vf9uL1I19fUAbMYCPb6c4zyTCJ9o+ShGgJCBZZLEl7255z39yxQu0o3ET7Ps/Ycuh4u0g3e+qn/+wLd4RgYpa9BBD897oF/9AnwBVwPtRb++sG/4ub5vwjGiDEAkpFye81lkA3SXOUeHzIbAzDtO3mqXOMu7/F6sAOm3AfMknOH2WIsJKDPsu3Md8ym5GsoYGKMTZqkI42zRs6lNa0wFFfqYT8m081TY5UZrrGEwiIk1VWTss0o11jiPd7g23yHJa4Zi4FM7NkliiywGLVwlVzUzZbwmKTIDnmq3OMqw5TJUUN+ZTVyISdTo/U9fjeCJj5kliI71OmPmmiNaVK0eJ33wkNvhVlmWA0GW5fJljzFXKwEuKkBpcl+V0jTYJk5RiiFH5JSJ0fZZpUZRigFOCegMUmLSTai9lfjv8hCND6qwcRiUa2Soc5tbtAgTZIWNfKRcNsixRibfMBCSL7EcANjCgIhza25Yf4mYyGt0uurfzAmT5Uk7ThuY+5x9zZvcZNbwRYtU6BIiR/wDa65Ca1SSyfY4B2+FixCpd3uk42G/B3eJOestYJT0kfZ5i7XaJFCpv1Kjhxlm3/C3+NN3om0U/VDh2S81l8mTzXqTQEp6jN0HFK0qDrzRL5+8kmUd2I/JqkecxaXrj8lQyuE5HXeo8RINMgdEtzgNmAMnWXmkOdkmxQTrDP4aIv/5cB/C1/AtRC66+F/dXCT6+d/yhLXgo0kEHeCDQDq9Ac4PcFGMDbnHfgrUWSU7bhmbvA+NfK0SDLurFsxfBV8ov5F97iOve5tMHB1hlWGqVCiGMxMk802kby0SIliq8RqaoaCe1aKeTrcqlBKFWOQIGaW/i8SyQcsOABtrGz5lf165SN2C+f4gAWm3DNO/b8YxyZ3TUZfLSl8kna874WDH9M+Z2ShCsMUKMffd5lnjC3GDj7jzsArKPSnRZIMhyjJW+vJXeZP9c2JZ/wfdTwVcFJhONbkd3mDN3jXesbWmhFLPvoJu5fO8U/4e3yL71IjT4kib3TeZT1h3qi9NPghb7LAol8PGTYZ4zVuW5CGD4F2KMa+kO/UeDfxRqxXWmvnWEben0VKBjQxxhLXeMA0/yv+DyH51N62xTizB/epDQxEny7W6G1eY5YPnQ1qqdWyKFg4+DE/HPiqW2xU+fXSR/xZ8Svsk+W1zm3WEtPRZ//9o/8LiRO4PfA3GWOTNE3b9w4+Z3XgUoDSw5RjjRK2YfVCb/hGygpAYTB3eJUbvB/7W4VhlBx/hZXo4W1976dNKlibq8wwiUnTxexcZi7k2SZ7bz9zH6Vpmn/ewGWKlFhmjoJzt3NHu6z0vWx7wMEnlAaeZ5mrHhRWIXdwQPuckY72yfL6wZ+xNfACAzufycbo37ge/lIYehUK7NHLGtMBKIAirUW1t2nnPa4GICb/Bd2kW4zFTTHGVmyg0iQLqBHAUaZAyVFrAWiGHtvJ0mJlwMIUCb9I/pBvhtxAEw89FO9sC2B/oK6izBu41WKLMfJU2WCSJC2K7ITfyRpTYay4zqRveO2QCmwyxjQPqJHzVJhM+K5sMMGc+09c9cJiD0vMWWUmmIZ6/gZpthjjLtfCn6NO5hkQRp4VdTIUKHtxnXeAzxZ2STuk+U7RpkCF/4J/wFu8zbQDj9sk2KHIO7xJk96YbhfZicLmDtejELRNwTaTLcZiUdG0/J/zLWZYddD1XWScq0LiR1znd3ibCTZYZcaorJTdn6Memnsld2mhfcAUFlM9G8k024wG8PUjrnPVkX9NnyQNSNIOo+Rp1thiLN6/CqYWljyl69gMO6/5fMyAN23SNcxHx6ZkxSiezcelihLHPmDBE816mHRgepGF8MvY8+u/SCkAYBXBLZK8xxtMsB6+LfsMcpsbFCgzyD4VCjGt2PIEvzr99NDhe/xuvK5NWacA27C0mO8zyBpTyARaE/M1ppAhq+6hq9x75voyM+xjTCf+xX78p/8Yzk/yTMADHbqycXnGfQzHc8ZSfZQ7y/nysbFhPzZmad/KE/PKu2lfAwyMuogBBS/Zc4Skehf+7Le+wgyrDG0+ttfdxECQeWL1//zlfp7/ySEPXx6gRDHWTPP/2KFJb/habDHGGtMOYtt19eXSJxFmQAfz9oRuYq5LyvkZBhZdomtpsAmPfxvObcLuy+fo6XQ4/8NjA/fkGXnaj6/ln/my//+8/fXT4kv82vc/NgDvvn/fpd8fffkFLv3ksy5jFUJC/rAwwIW3D0LO+zQHZyRNTfn7H8CkqTXg37P39fAbA1z4kwM+/q0LvPTHD3n8Kpzbhad9/vslPx+P/TV/4s/zF/7eLvq5Krjk/48PuuCbSzbJ2e//6fwrfHXzAz4ev8Bwq0Lfj56Eb+XTi1AfOMtqYobf+OgvzTsVP87Q9WOUDPklP64pfx8Hfjxn/Wc/phvS496PIV+Wz6dLxx9fss9MyZ7j6Vtw5j48nsMYyx/Zz//ZV7/C/NGPObcNjy6d5fyfHdu1MQBHrz5H38ETqNj5H/rJ4653rKwRdN783B//ltsQbJ+6Bvw9cWC/szt6jsHdx5xZgr/87Us2FDp6TPvcWc7/0+OubcQhPP1N2By6wEuLDyPYggHMmuKrfg2W4NHVs5xfOrbXLNG1xRDYrWPqlgqJkyd2fCQjhq6NhT6PJO3L8KgP/tHv8IV+XGXZGQDE3tVLk21Gg0HSIhlm/BksIdHCFU7C8LxOP0na7JENbyDb9w2UG/eG8ir3HFwZDrbWEtdY4AOStFhlhllWfJfuMMkGa0yHd5H24mlqKFmy4iy2Kia/6tBDnf54HSWZypj8DtdZYJE6Ga6yHEOyKt0ESoF5akYWWGTTgcdv850w9k45o8PkksmQVt3hVSyx1OSyk2xEfSPJsoatGrYp7GGKNWd0WBOkptBkrodUfKXfYow3+WEM9gBniG2Ev5qYDu/yBjd4PwaiqnGAkMHJqD5HK8A5DWgFKogVo+HrRbb51OVia0yzwQSzrKCUwmnWqLhkt+0gk4DZOplgDVn64WwMKA1QnWSepWBXnJbfZdlnknWWvJnXkF8MoxJF3uJtipQcbBghRTu8C7v+YjUfTveHPHqBD1hlJgbs8ju7yS3WmGbEpWsTHloCxCB/lRlmWI3E3zd4l5Yz5iQtG6ZC2jkwSj7W+dpx2W6ZYUqMxHvdccA7SYsqOTK0YnDbT51r3GWbUa5zh0UWYoie4IRZVlhjijQNrnGXtLPJVBeXve4c5dM4VzlqLLAYwMKrDmZ90R8VCpT5nHH34RJ5o8SI3+dG4FAarCTkIr3YNf8gACRZB+h+a5FkuFWhkTLSh669KjmutpZZSc0y4vdeg97oZ4wksBP9QYY6YwefsTxgoN8wFRre469ymZmUMSoHO/sUEyUSnNi6mMpYwEeqlyQtlrnK67zrfOEOD5hmjmWuscT47kPeH3qFOv1xbCYHNljhit/PKd7mLWZZCWJEgTI18rzH6359XuFN3vFBSIo8VaOTDAwwvHtAI9XzzH2mfcNIDJ8FRiDWVYZDip0Si4mFCOfo+HEWptBLI/zlBKKqNzcZZ8NZeicUDnYpsMvZHSh8ucy/vvRySOf3GYx14FbiJkoO3ifLDW6jFOhRtpn3+0/rkghJmVadpdQ1hhOVACYrPlgQq3iMrfiMJUYwz8sNZriPvGHVW1fEEh24gKWTF/zcm8XDJOsBAFbJM1R5zHDBSEC1gQELp3BM5Nhr73G2WE/Y0K7qg7ONvpfo9f5xuFVhKzXmkuhlUrTjuKjHneYBHzLrnpMdUrTpp846kzEkEm5wlXtsMOk9/8W4n17jNplOHRLWo45g3qcauOWoMsZmsE6N7V5wUlCeSdZJOjxqidBj0R+XBwoxbGyQjsHISZ8RiLYZJTdQ475/rh2K5KmxMfAii6fA7TsDr5CnymbfGDhG9W96/FIAvQMG2MeSkSZZp0qeZeaCbi+ASQd/xqmfMt4VRd8MKptRSJ02UZSRoiaT0oVf5w5AbOAVhqOAkfmybrZRPg1QsE2SXqdxJGnFFFRFJeA3eB2zbErFxEGAxph7SuyTZZwtZGg8xib3HdzQdE43WIa6A3uW4lWgHMbLRXYoskOCE97gvWCP2aTAdOl2Ei1y+oQEd7jOGJvIPyBLx89BzqeATfbJMunJSppQN7EkNnm8bDHG13iHQfbjXCQ4iekOWNFVohibuxlQNhj1qUuDXnroREF3k1u8zw16afhN0+8FZJUFFuN4jLHlTK7VYHflqLJDkTf5ISOUnC3XYoIyh/657POYHFmg4Q3eR+ap9zwBTrIcTVyVcKZzIDajkus03V9jOjbVCdZjqll1IE902wU+oEIBGcwWKcUGa9dKij2yXONuTE4EEAMBcMsbyOjllWDJicFXZIdhllFylE3rpqN5UHGdZZ9+6tzg/WA/gnnqmFdMHoARSsEmVWNhiVDJmJzKkLxDDxkOSfkxAwOK73CdOe4xyYaDh3YM5RHzGreR+fGPmP2rX3z+Oj5mYHfmHEO5x+yOngtgoZrIMVys0Fd6wo/HL5Md3SPfqbE94PdqsUmxVaLv3BP6lp+EFL/R9xyt+SQ7FPm13MdwH45fNSAQD3r5uHghmt+eTofHBWj0nWOIx5CDo/HnqKbsfm+RhJdhiWtBGxeV31jAtWBVj3gJsMxVplijRZKfFl9ipFgyOXbtCX9S/JsA3Oj7c872wcNxs1U4mn2OO6nrJhcpPDBPnkt/TqPvHOWXzYOjN9GAr5l84fzoMZ/Pm7T8cR/s9w1QI8dM8WOqQ/2kOi2+l/gm8ywxdfAxRzcdHCoRLLX/2/hvM8uH/PzlIRskHR2w2nfZ53P7dn7cD/C4YLYEQ0eP7TnG4egtM0rru/8ETkzif/7qMWtMc2H8A1tvLsKtvt9mvm/J9pq+bfYv+TS8tUWnJ0Fv3zH7A/08Xz40MMl33kdXz1Inw4WBAxiHPyn8TfPkumTn5cXK5yQ44cfjl7nDdf5uz+9zfO1JPNfe0DkvmNrsXjpnwK08Rs85gFY75mkP1H/zLCeJBEMps2X4fNyOLT12PeynsnypsMuj3FkaCQMyvswnMA5P/f3uDZnsHmApNc9o36ckRju8ePI51aF+nh8/ZKXvZQpzZV7s+Txugfa5s6QKxywl5pn+6hpfKu3y9BzcS81xJbfC+dYx24zSc3mL8wfHMACfX+on3WpAARqpNM//7JCffvMlb0Aec7YCP37VzqUGJ7lCLQq6MzXzmNVQK81jlhLzzP2H9wKEUfG2ygyjX/6/c3YT/nLuEr++/RFcgkeXz3K+dGyga+UARt3/dPxJN80Zt8W4D49eOst6wsIWxh5/xsPRAS6kDgxIH4DPv9xPfveQtaEXUWjBKNv8es9HXVnzF/ixwwVyHCOJptIC1Ri0SHKFFe5wnVlWOHFmxCjbwQzKuUzwd/keP+RN8tS44tLANaaZcbmeFfQ97JGl6ex1hWpkqNPjbH8FNawwG4xzMdCGKbtcx+7ngjM/BOTd5gZprxv3MTmtfH2U4iuZ2RLzUWsKqFStqBrL6pB2yCTnuOeDUJNayr8pw6HLXfNRSyok5BY3Y19O0g6PvwQnyEvtItu8yxvGJnC5skA1MXHE1t90E/c5ByPFtkrTCB82DeLF5lpgkQ49wcyb5cMACwVKiE0xyjabjD0jqxJLp+SNjlhIq16Pb3igyQyrTLOGpGRiTYjlVCXnAGs+ht/yYCpQDrVAk3SAIZJMNxwGUw2jPkCAhg0le90MvuW1/br7NFndvswcl1mlB6XjdgJEbJCOpMpl5rjBbeQx1kOHEUrc5BYbnp6rganUTGqszbOwFrWkvCH3yUYdbywkk7aPePM9j+1XVWcggdXsg5jfmPVN+wGmiiGm97HCLGVnIEkuuuPApkASKbNMsbIWJv1iWbZIMc1aMKLkK9gnW6Ev+OMlPo61aM2ZbeZDaXJwMYXTzhBe4Qr7ZJlnyQEZI0IcknEG63T0DA+YthToVAYp3aSYybLPndR1pljjkAxtV68pNMg8xyxMyADwdSoDQxGgogAd+ZRtMcY8S6wnJr2XtuTcFilmUqYaGvRVVIy4Za46oaSfbS6yP2Q/oUHDCQmWUvM8OEUmMOZfJ+S/G1j4wp6vvQbIV8l3atxLXEUJvHmqNIaMuVZOWF1sg5TJ6M/uDLwSMl6xDLcZJZvYi/5unywtl3SKECN2mnrzKjkmfV057VuXp0Zp4HkGO/s0L1nfLu/Jcbac2LNmya00QopZ8WEUGEay4z33KjPRH296r7iVGgOMoAH4/VaNdSlFibtcY5aVYNqpv86yz31m6HV2XJoG7/I6M9yn6WCvesd9Bk0C7uEb+VaNbGqfTwrPx8Bf/rcKJFoc+ApA7G9aR7t7xAoPmKKSKvj1Y8dVAwoBgDqug94ja61WqvoGE06cIZR9ul4kCZbtw0pilgk2Ym+XylBMWa2Dpj6zYcqY+3wCZNlzEllP7D0fuhJuhSsssBikKdmDaKBRYsQHKaZYXGSBayzFUGWS9Qj2+IiX+EUAvV+K5Pa/OrjJ+vmvMMh+TM9EddeBkjxUExulmNTJRFG058ilaI26UKWbN1ChHgDdBhOucG8Ejd8Md8vMcJ8aOZaYj81rgUXWmEb+E3oOTRWFPEtjLWZhiREAlrnKNGtxkfR6CaAJwFXuISomEJNZgSU2Bd6M4uAec3yTP/SI52zQ0tM02HNw6DQlW2xFFaBpGqwzgbTiI1ji0WuO7ifoIGmuIrXLDLPNaHiiaHLZIskbvBfMuA+Z5TVu812+FYXHob+bMTemVuEtzX6JkSh2OyQYY4t3eJMEJ6RpIn1/iSLy1RA7Uwtdgg6rzERRLfmwNh8tvntkY/ovL5MMdarkmeXDYCAKrGiQ5jY3+F3+kCx7IQ8WuLfBRFByJcGQ9BQIkMrYqMYSKDMckzKx4syHJ0Odfq66f4MMpZX0pyn9NhcZ5VNKFAOgm2Qj7qEULRZZIMs+w5RDbqHzpgYx5eCZ0omAeP86/6Nss8Q15rkb9+YwZWdLjvCAaWRO2iLl3ytHMa1zvM4k06wFyFuiGAl1YhQA4Z0gVmKaBjx6xH888H34gssq/k8H32Lg/NMwl9bgYoIN7nKNLPuc0E0QFLNznqVIYhxjM2RA5jiUp0Mi5GQlRrzpHWSGVX7A14NK3iDNJOusMsMcy2wxRo1cSGZKFB2I3w4phSaR8rLKsoc8dCoMs8IsU6yxwCL/lL8bhZBSouT9ssAHgMlGTD4+zl2uMcUaHXpi6FGgzApXmGeJRRai8dZUVAmXWnMm2GCRV8j4V6ZZC18qyQSy7DllfiOkC5KsF3wQoMZR3kGaVLd9SqnicYZVms7MkHQ/RRvJ/9eZYJoHzpad4JBMrM2atKrh0hou3wz5eWnYJYBD7Is1L8y7Te1MNFVA7E93ucZ17jDa2aacGA45fsMZ2ZICpmj72mqNOxDrfIM0E6yzzyA/4Ot8nR/EQGiUbf4r/iNmWA17Al0jv1X6c/6s+BV66LDJmE1hmeQq94Dumid/rwUWY92f5kEMbDR1Frv/+tGf807fb4WsTPtDztMw1ciI2aEhlGwsNIn/Lt+K4eEMqx6SYFI3TU/l51Ilx13mmWXF/V8OadIb0rsTEu71ZUwms6OwJFD5kBk7zACQCTao+GR3z4dp7/J6SGbEKH/yqM7/aOAv4Qu4Hmot/I8P/iHp82eDIXDagF1G0EVK3PP93wy0zeJjjelTUqqRLiAP5H0v7aURig7gGTa8wLUtxmLAJgCqQiEknwIX5CmUoc67vIFsXxr0cpFtZ6fMxCBQw+EHTPNtvhOSrY43L7LRABuyif0ySjf9VV+TTEr7pUBq+0x5plmLZrVAmTtcZ9yZFwDyn3udd9mhGKwsDWb0HtSgyeeoQ09IzDb953ro8Ioz2LpBCvVYy7Ls80e8FYBXDx36sUTXNaa4w/UAnRSqUGGYRRbCJD1HNQb3ki5Psh4ArgAEpTQm6ISaQXXN6YRGwM+Z+bNN84AxNhnErHHEntEa0SGB/L400JWUzsAx85QzY/dlb6atydW1N8MqJ74eTvOADSaQmuh0DQmWICr/sgJl/pBvhkfTPoNk2aPmqbaSEGqfH/b95B5XybJHj4N8IjDooXUo78zFkl8Hdq0luc4dbvMaKVpRm8+wGgCH6jcxRmRP0/Z6sEqeCgWSp/YTyTblQaZ1VjWMjqN6gA0mqJJnwRNWtZ/+5aNxvjvwP4cv4FoI3fXw/sEg2fNPKFMIdpkGp1aTV7iwecDH4xdIO5MZiHMkFRvAb1Z+zMcF85IXMJ5ln/yuDf6apMm29llLWZponUyw9HLUGD36jFKf+b/L00xScyVsq45P0mbm6D7bfS9gaasGukgWm2q1KaWKsT8K9Fc9auu4rWfjuw95Z+g3A/hSL6uaQR6UGupksWAVgWmqVcEY0ybB7YYWhQy1VaOVSrLCFVLO4JLvm/qwYYzZtsR8HGPZTkn2rutcx1j1pEJj0kePSbXgu0P/DiOUuNpaZj+VjVpWoUwAIhspdKi4u8unQ89znxmmWIu1qEMPo0efUe/rD5UV2N6hHtD6XSMdDVOJ66NrldQMRZqkpKOdbVqJVNRxGh7NtFbZTo2y7uzkQccKJNtd5BVXSdpaBSAPRbGBtdZJvXZ6LdOaLQbpndR1H7i1YxAhtqPW521G+d2DfxmpxA1nKKuH6KXBIRkKVAJX0iBnjM04Zwqh0P4q6zZZNiR8+FLc3eXW0Fe5zKrVzEcHbPW9GACcktS15+yRZRBTpk050K0asJduIFeOKrd5jUnWo7+SFD7LnqlwDp7wl4VLYdvWedRgYuAI/i3r4XP/777x/81Dkk5tCutM+HTQLrgWSRZ5Bfmh2USg44wm25gF5tnN3OOT0RbXuBtfS9MINpN8vwQgDHqBVXTQo8SIFz2bAYDZpGIPmexqAdAFooXLUHmLdS4xQoXhYISJpaaJrYoKkyRm4xisMkOVHA164+aRP4H87FQkndD17VDzXvGbSRPe7s11L6SkouOO8ilZZCS8QwkzvVzDosAlTa66BHaaNSacsacmtkmat3kLMMPWNE3uOV26QW+cm6Q3jL3OHJP3gY6TFhQg/E/0ecWiFI1XlPOyT5GWmI8F3l6jGZNyTZLEwBSzrMIwvQ6WqbhaZSZuwgbpMC2Wx9s+g95c2gRLm4i8DG1ybICyQCmTglss7LBLqROcxLFS/LakrEV24pwZVbfljUyVLHsBwhmoaTd9mibrTMRxO/FNTQCQvBwy1LnDdcpezEnq2iTNIZlIQjrt8wBw0Rezu1wjwQlVcr45p5z+fBLgYZUcy1xlg0lavgAa8JhEXkh6XgHNkoesMR3U6jWmke+l7rcv+uOQfjLUKXZKAfhsmmtHsIKbpBn061xeKjqmKb9P1pnkFjdjGKL75wd8nS3GQ3aTPTgMqj/gxf8cYAOR06AuEAw8FUGSaon9oOIPiEboOneY5gGrzLjUaIcU7Whaeuj42jOCmfBejEbgdd5jnC3G2Ay2jdbze6cmkWXMCFjsZru3m8hL6SrLzLMUYJRA58HOPmCN7xUHwxvOaknQYZo15OG07g1FiZFYm7Ps+2AkC1ihkmq1yXQMAN1gMny4tM7nqcW9oCa3QCUaacn3txjze3qaO1yn5UV3gg5LXGORBZaZO1Wg5YNp0ibJKjPI62iVGZfd2Boyyjb91KknMiGZMG6tyfTapHyqOgEY+L7NaEgRez19TGCoJoXrTLJDkRp59jDWfIUC8uLcJ8vjATNXFgPDCjtjNWtvL1COtUngpPx5jPlT9F2kO6Q4d4Snz7VdArGFpJJKwNPeqeJWvl+63ssUmGeJCZdI5I52OaTrpaX7sUqeNbe8ENNftYyeS8C7GCkmBGoHgC2AULYZxozvj0HMoDcrkopony4zzF3m/8rWnL+ujy/x89gHwIIMxtg6pbaw/VKJdBvu7arGBwhZ6Y5PxmU8bWte85T3lIHjI5g9heScK8zG1L1Fklv8NlVyLPBB+OqpKSxRZJOxMFYfYzPMyzUM2GeQNE2uc4eb3GKOZZK0+YCFGNwmaTPoLA81WmLu1bAAjhVmHYAxmZiA/prfS9D1pNNDdZAAS/2RtFQMRSAYBgZAz8VzCtjf8deSbAgsZfCyN26SBmngWyVPlXxYxhTZIcOhy4/GnSnYZp9BTvuvbTFOgg43uB3rvpiyy8yhlFgRAdI0yFNzpqDtUeNsPnOvWZ2cQxYm65j/1Fv8UQzQHjBNlTxKxL3DdSSptt3IrFTEqFhngrSvs1pDVe+bXHyHvDNzVJNtMEmPn1/1EKvMcNfZmbpu5K2Voc6h9wItkg5+duviLfdOsHX0BNn9NEiTp0qGw5DQ7TPIadbNVe7xqqekypxfgyKdbw1czKexFExEMV8m2IhGu02Ku8yzxDWStMOLD6BJb/Q/I5RirbRrQjX/YNQSFnBznV6awd602naPGVb5jC/9VS47f60f6Y4RQf7O7j+PnvgB0zRJk+40OB4i6o0c1Rima30Aq1GOU5Dv1Jjc/czXRJcHDvXzgGmStKmmrI7QvraVGmOms2o9Vt85tl2uUDjYJeekEA3xG6S53rpDgTINelnse8WJGpvskWWJeXo6ZjNVT2W8H9wJYEy9ucA8pZ2WhoasPvaas0E6yAiSjqt3GWWb4Y6BWXe47gPCG9xjLupYsXC1p+yT5T4zrKZmaJNilg9pkfJBazOAT+gGt4jQA6Zcsr3dwDT19Q+YJt0xv/UNJhl31mGtb4g/GvotFJCxlRrzeiHPYGc/LJv0mUWoKBzs0uh7jgz1IHEoeKdNkk7Pc2SODpllhUMyoUyTHDWLpdM+YDpq2dmjnwAwwcapFNkq17ljhJ/EdSPTtOpRXxUoU04VSNJinrshZ5XEOtVpOcv20PuPb1D3WswsDqrxmdRPyuPOZMNWqQuoLKesjxZTWNd1Dx1fr1uckOAaS1QGhmz41DHAbs7XLyNhVTghEeDsNA+YYZXJzjpDpcfx3BUK3OE6RUo8/9EhhYPdGGaNsRmDpNLQENf88zfoZb9vIO5ZU0v69UsxVG4CtbPsh8euBnViIyqYJkmbOZYdf1kPIkE9leG/Lvwt6pjMPkP9F14PfymA3gEDMS2skeM+M+EN1yRNmmbE/64x5UCZ3TySFoQmHJOZyo/O/BjWQpqg5rPL9Eozywq9DrgpgeZ0MSWGRIdEyBROo9NC4jUpEJsEcM+HZOjS15imRi4mBdrc57lLknZcvJJYAA6A9MbxEkgjVoiYCve4Gu9rnQlq5KLwkEzZvOr2QnZw6Md40xl8kpa1STHJelzoSs85nWCWdCAziZntvsXbLscw00lt2kqRkayj6R57RlHNcUgmjKQ1uS4zzA95kwqFMA4WENXji7UKYSXL6sYWfXeDiWhUJR0xaWw5FjQgWEZ2U5nxsaYsDXqRsescy+FpqPcjBoxSpjThz7LPBBtBt1ahvOfNpF5H11mHnvB3meVDSoyQ4IRPvRkEA1LkNSj5hflE9sb90+MbQffesSmPmlzJd8QqFaCihlLFnTwRT7MwJVFqkYqN4Ad8nWXmeMC0Nyo2WbjLfDAQgGiYJ1wqJdNY3TO6p7WpTZ7yDpS86hNpHb/gDwHve4lsMLxsYpUOMHSJefpPDQIs4StJghN6aUZhD/h9ajHsJySQAbEat/a556IpHWPLWUkmQ1MTN8o2932zSXCCPJXedaP5EkX+c/5n7slosvE2SS8ilOqUDcmurktNVSVn79AT65CKeU19NUUUw1ceKCo4tX4rJWyWFfJUqVBg0L8nX5ic3w+TbHD+02M0odP1DmC+Ri32yAa72iTge5Ekdhpkvs4drnKPBmm2UmOsJybDw7JGLgqpKjkmWPdCN+3HxLyXMphp+zqTwQ6f9CapyA5jbAZTrcIwN7nFDW7H/VmkxBzLyJvptMerJp0m7+rE57SBRjWGJAUqjLmvyzajDGIMcTWVvTSRDUHKpWNiWbZJotQuebJo4KHJeJIWW30vkqMW/jYZDp3F3AqW3BbjzlhbR8FDkvWtcAVQodQI1tzHhQvIkF0hAzveJtjem49Jv9hdahYk4VQtkacW67SYiCkHRAbZ5wFTVriRjUa/QIUmvcjjrU2KRRYCkAJrAnq8rhAY2aGH7/FNUrRZ5ipZ9mmRCkBQ7zlF17hbxvlf5McuQ7RIOsg7iIKmNByTn64xpVrBPrHrtXs/7/hQKEXL1wtrYFbcxsECJ3pjD1V9suFgtpgKAhKssUuGb56AkzlXWSywSA+dYN7WMT82NX9pZxuKgWDedBaKpQTZnAPdBp4bdC3pqaXfVQPELzFCkRIrzLJPlu/yLQ9vsMAODQcVXqbPpka/7ffnNqP0eO2kRNMJ1nmd9wCcjWe1rYAqMSKkSjFG756//7wDc4OYWb8NFgUENumNQYAUIN/g+8Gqa/tgfIVZmvRG8yfAe5o1B03XyGGm+e/yBlVyjLMVLPAlr0cE/um+kyyry3xpMskGksRWKLivsKkNZGPST51xtnwwk2KaB3HPAuEDLmBSksQ6Gf6vfBuw2srq53ZcXxNsMMGGe2R1VTI6Pi2SURNedEaoZMlpmtGwak0RaK29TfXfA+9DZEv0vu85DdLOgsvFkExNpJrwD5nFmDbm96hBh3kDjsSxFbuqhw53uB4yx1G2qTrzvUqOee7GHpL3a3qCdYqUGMQCDCqYR7bJLU3GvcQ1thllhVmOvb78oj9qDLKdMIJDdaifOv2x1ydpU0oU6emY/7x8rBukKXZKKDFz3EGY9wZ+k83EGGtDL0aP0HaQuESRNaZ4sfR5MN1StBntbHO+fEyDXh4wTZY9G2QMPG+AlffRBlDbAK949BCT4e7FWijmuyS3IsDoWhqm7PfCOqOtbTIcku5YLfoub6DU62xrHyDALq1zBprZ2r2asLprmgdsM8pNbjHJBhnqpFpSb7V5vnToa0QhVBUaFmXZi37GwHlj0mV9YAvEui3ws0aeCQfES4zYYCORCkXhaMf8B7OtfSbZYA5Lnv2QWdIdC3FsJVJMd9aivjFw3mT7tYEB+g6eRGiDag0bAk9SThVY6Xs5BqAaxrZIGvDTMtWHYSumSNvue4FeGuZjiAWo7Hi9IZ/Ywc4+ycdPDHTaPQiQ0z5zLva2STb4Jt+jkeiyotM0mMEA4cGOKSd6Oh0mDj5BMuQEJ0y6rFUDXT2/+vwp1phsbSBC15zX3YBLhdsxuEvTpPfw+BmrNgGjZkNVJt2ygKYEJ5QTwzwegNzRrl3zbDPlqrKPL10AcLm/8ZcLB7ss7P6l/XynRYkiy1xlkQWkIlC9LSs4eaIKv6iRD0sH63k3mO6s+VDG2NEW/tFA0mQFUmVadYYxK7nB3cdsMMnPeeEXWk9+KYBetyi2yPTr3KHlVGw1dJoGqXGb92K24cVzJm61ekzFBNIAAULpwtLEPEmLEiPU6cdSqoz9t+amlVZG9TLG5jMTck295DWi92+TsFo8N9jF+KmzLoyp0ImJmCicYIX+6WmIAZAX2WQcUdNVPInBIFaFEriqnkCVZZ8l5pl2/wzRVe+6PK/lzbYK3tP0bNGe1YBNss4k68HIEPPtAdO+iFUYpoKkImNeSInWf5qGbM+fxiLWa3EMVQhZ82+JNPLfOiTDAos0SUfxB/LwygYr7ya3Aly4xc0oLtVsyS9P59iSam2TaGGeBbbYppCkWRIZsAVbHhDWVM4GI7OHDte5wwQbSJ9/h+txHdTpR+lgaz751Tk2OrBNM6yAHYym4iLb3HPATBuVztsmFpYiKaDOvxqE034k97hK3mVnJyR4jfcBA8Svc4fTaT8CJs2oNhH3X08sSifuA9PmTd4JIMiOY5fubkyKarB1FlngPd4AuhuwpHCWOteO61oFSvce6/C5N3Ff9McMP41pVZGdkOblfdp6mxvIvFx+mj10WGKeH/AN3uN1ZBI/zZo3eYMsssAf8k1fA3to+n24n8pGoyLTW50fnRN5hso3c4tx97usoLSq0zLru8zTcuZmgTIyTF5iPu6DAmXKzrK9w3Ue+LCm5sxPsR7U0BkT15gkWptnWH3GW1J+leZJZc3/CQn6qfOP+Z+yxLwPLJIxAHg6YPtD3lm6kmYJGLepp0ng5AcoRodCmBSEtMQ8TfdtNc+ojUhxnHRp6jCVKDhKzurNUEcsi4xPN2dZYYoH7hE6FbIPG1o84Dp3ggkiiwUxg8RgkQRDMos05n0qicwORVItG9ZouKRCWJNATU/FlDWPk14kDz29h6gIMxZ6BSV3aximtVtsdTV/YL5Q484U1f7dJB3ySRnMy+5Ca7fAYu3rej0wlneDNCNewGlAI7byHllqDjqcboJ76MRxTZzY2i9QKIcFH9noa9DZpl0AIEGHPYxZ1CDNTW4FmKqieIo1bvB+FOo2dtsMtrjVOjYQM/8YA/QlYbrKMjl2//+wOv3/9lHhecQo0zEGohabZD1ACw0fE5wEu1JDA9Vc60wyxhavsMiEAzca9F1lOYZbSQf+gGBxJGmzxXhc/7oW9fMX2eaQDIMY27ZKniXmSdPg+3yDNE3ymIxUDdYP+HoME+ZZYt49cfTeTXbT4CrL1MlEHSCwyrzRygG+TbpX7zX3d6vTT5lhB9mtRpTkSWvUuPO/7WsnJDGvI8mYd3x4fjo0TMM/HRsNYm3oPu33rXziNqL+W+Ka298YyKXBqPmlXXbQzoaK17nDng9HtT7KEmeBRcy6YDIaWrEa5O+kWllDXAMMC1ETaeB/0ffXJG0WWYj3qnVNA2SwOlHWKmIHrzJDm6Sv6y3n4CaZ5UMapPkO3yZN09UY1tAWKCNlxl2uRY1qwEnr1NDeWNZlV5asOtlB4KT2Z/VH+hu6dhBZ9himEg2t9hsBEKb2aMa6eZ07yGpigwkkaZbSKUXb33NvgLCqu2/zGiZFMxbpLB9G+IeB5IfR9L/G+1xlmXf4GmJuVX2dU0MveW4XILWBds3HLfsMUiXHl/j5L2cB+mv26OEJWfaZadm5FCi9wQTy0Xt/6JVQcNiAtJfk42OHfHvZ9B5CXtpWn5XopcFsa8X7GPOv/3lxCKVNAyROOhz3EQxSsc4MnLFwF4BrLCHbq42+l4LAouHH9NFHzHfMv04+ZyM+VGmTotgpBTmg05OI11ai+DBmgdJIWQ0o8E0+99Os+eDR2FXdYW7zlF1Mg3KqEEyonxZfYotxDskw2tmONUXXt0D3IiWKRw+ppqy3K7usfoZV+jFVYa/XodNHH5GnRoo2s6yQ6rSCTVhN5EwRkrL1VdYPbVJsJkxCmuq0qCcysSamaTKIMbXLFPhZ4cUgNxks2o6Bh2zJMlg855hb0sxzl56OrWkiw4hsVGzZILWaMvaySD1NB+Y7JFhPTPKHA/+O1UdD56JH3meQsdaW131GGMq29qOfEKlDAwiwwIvk42O2Bl5wZYnd07Ju0h5coMxwy4hT450tauS5nboBmP2DgjTE7gUYO/okBhhbAy/QJsWLm5/H7xizvMoEG2yn7He2GLdBX9/LlPueD+Y0wIfMUmGYjYEXmT76iA+ZZY1pVgYu8+nQ82z3vcBewrIDrnMn9qASI2bvc3SIyFTjbPGlzd3AcmTjZQnwH9IiSTkxzDYX2cfk103S4dnXIUHm4DH7ZFlPTWBhLzk+HLpEiSKz/OUvtJ78UgC9F/i5L0q2aK8zySTrYVop+ZOm5GJDaWo0xz1apNw3pxUIM67vAAEAAElEQVQnVBugLg41racndfI2UgEiAOO0XKZG3qWlJ9xzY842qbjBT0s6U7SigNRiOUyZiz7tAnzSapPBTSx5qJsamnF6bzmm0ONskqMaU2gwIEg6c/tcTb7J9yKq+lXuMMMqHzIbn33Yi0xr0MybQsWYTVg/jElf2hc9SYvAij3JCnRMN/z/Kj7/+xNFSUJOSESBJVbWGlNRLKRoIdPe08j8MBXe4c2YOmSos+nsIzE6OiR8MmIeJZYg9kfkqEbxLbk1EH/LWBpMprXOBOtMRmGUZd8Lx6ZPOa2ommeJExJMONVW11LKZbECorPsYYyb11AikTa5cZfiSC4hto8SYb/GOxibpe0k9GK8vjXqrWfo6Us+9Rabzc7HxXhfSm6WvEjnQsWXpgi2JdgiKh+qFslgT+r6072mzWCYchSSs6xwg9vhQyA5zlv8EbOsxGQBjHFijMc9xIK1zb+fMTbDO6tI6RmPvy/y44AB2l48Azxg+hnw4hpLvM671HyKLtBPm6idwXZc28YmK8RUVKyFOZaZ5UPki2lBKoPBOD1xAPkyq1z2351ggxw17nItpvt3uE6dDF/n+wGOiFGidUEF0QKLGIuw4YOGnpB3bzKOEg27DOsmY2xFgThMhZaXLne5xjxLTLeMga3XqzggXSUf9+J9ZhhjM6aOYp/VyVhoiG/8kqidlg3L70x7wQ3eZ4zN8E/Sa2wzGo1+wzffCoVoiLURy49DQL7ZDRR4i7fJU+MaS8GkrlDgO3wbMXzFTNOwpeqeH4Pss8gr0QR2EzH3Y30X++M0iJajRj1le8773MA8oGqscplrLAVYrwbcQqYssVpr1gYTwYaS75XWiXf4GvJKLTPMO7xJkR06JEK6K4admsPv8/UwcJb8Sw2+pqgaop32vQFLzeuQeAb4kpRQQCeAfHAeuMS3RZINJlBA1D3mELP6bMtsJNaYdnDEmM6D7DPGZjBdBMZl2Q8ARvJqDTi0Rr7HG9TIh/xt2dn1Fp5VjYGhgIIJ1uMzT7NGhwTnfE34oj/MWsLqCfO+vUeOGsNUAoBRLbfFGMtcRWzxadai3hJYIo+ebUb5Fv+cnlOgnAkxa+wzGEzVayyhVE6x2ovssE+WJa7FUPPE9+tPnQkxTJll5lj3ZluDq9MebNbopJ4Z4mods33yEDGzpAww6f8kxnrrDmV1fRWohAH9MJUY5EHXi8wsR4ZR2qtkkhsYY2YUS75VCIPYXVLJ6LxoeL7IQnivCdyRv9kdriO7hxnuk6fGh8yyxThSzQC8wXtRnyRpscYUw1QcRK9RoMIM95HlSY1ceLitOVton2yENMhfU2FPS8zTQ4emD4U0FNBQtUKBLHvhcSyrFa1rWmcz1GM9kILAjm3HgU4zp9/mIi2SAT5OshHrxwpXfE/cYZYVxKTeJ8v3+CYdEiEnLHhta1Yqh5QZDsaveScWWGWGNaZicCNwVTJz1dM5aqGUyWLhZ/JAVKBJh0TcN+YLOuyBGP0xaAIDAzSQVTKwBhRZzHpl+hTr1JJ2e2O9FUAsawvb38the7DNKN/lWwxT5gbvB2gMNmyaZQUpip6nG6j0RX4McGDgVE+CNaYCmHqd9zjxIWYKA41szy1QZIdS3wVGfEArVY7Yw5mDx5jlTTrSbQXki0UpBns5VaDZb56ms6xYrZCYYTthvnhXdj+iTn+sqeVUgdHOtrPsm9F/l/ousJfIUjzonrfBXUuMStChmjCwrMIwS4l5qy9SGbdUSMSgtkaOVMcG2gob0D2j+18kEDGbxXg3K6+FuNYsPdl7xkQ67DrkV656o0WSUp8xtWzYcEj26CA8VdUT1cmw1PeVWPcTdCgnhlGIz13mmTj6GLGuWiQZ7lioUpomFYbZTIw9s05vMcb73GDD1/91DycC65WnWWOOZb7Fd23gfWRKG63vCgy6l7jKdmo0hqfrTPLWwR/H11Sb92I2ExqK75EN9uRkayMGSvJsb6WMTZvuNLiwfUAjZTWM6jSBaHX6WU3MmDKw71ys58JopNLJUWPm6D4vVj4nffSEDgk2E2O+Vu8H9iH7qToZbnLL1C9955jpmDXBGlMsM8dR8TlGO9vBSN9inGKrxPTuJ7F+y+ZGVg8i7IhZaCDzc7HHVChw3+tNfc6yKzK1f06zRvvcWfKdWuz5D8cHkCweiOvSBkIWupWixQ1u84DpAK2/xzeN8DYwEADuPoNcY4kdisxxj/5fMCTolwLo7TPAAosxMVCBtsY0m4zH5Ftx8ECwOE7LQFukOPTpm7zYGvQ6slqIRmqTMVKYv56kiDKgvMFtCpSZY5kOPbFZ19yXLk+VcZ9matNU863CPsEJK8zyDm9ySIYqeQpUKFKiQCV8BioMc4dXWXczXC0gJldNx8/1+8Y/7B5LMre1TbPyzCaqKabYGIengCXJUcedTXPijY8mlmoGVTSq0NJiZ+emEsd6g4kwCd1mNFLZVOh1mQSmn9d5EStHoM6qJ+UITZd8Q94zej/W3JQZZzPOyW1eCzmFpNDy+WiSDtq+/FIkWVKirpgsOj5bjIUvkqa4dTK8x+soSEByCxXkMquEbiqxpsSaYA9TZszft8kJOwFM56hyg9v8Lt+jQ4JBv8YzXmy9xdtx3UtSIU8sGcevcjmYbTquYLKYTxmNIl0BFisO9MrHxIzEWzFJ0kSuQa97E02GPEmA50VvTutk6Pd7VF6Lur7VbFznThyzTcbcK8C8HSfYCGmFNjabGPcEUGOF8Qd/RSvOX+/HAQNYaIRNG7cZDU+TJuloUF7xRCQwzxybvi1xg/ej8QeCTXTa88Ym5jZVG2WbWVYQa3iSdV9Te+IeAGh7U7nGNNe5Q5tkgMoaxtjAJR0Asa1HV6Kx1eR3mavuDdKP5P163RIjSFbXoDdYfxqcGHtqMJr4pdR8bO7GxK2Hv0avMyIusxogiwBqye9aqe4UUFM1rXN1MvGZzNey4PeMpTavM0HBAZfXeY9pHsT6Zr9rDeo6E+SoRUqiQMAiO1xlmQbpYGUoVEFA7qSDOWJ0GGg/grGU9vxzNt1Avusz23ZoV2y0FC02mEAhJ10Jn7E4xNIAmOE+i+7ptcQ1P54GsGodPz0N1dBIwEfdd66rLNMmiVIUNUnMtmzKLNah1gExJzXhPD0AAmIwJZlHzrkaWn+3E7ZXCdBTcyvARg+t3QILJScGgomoIvU4ZbYMSVq8w9d4hzfZZCw8dSQhV3KZAn/03sUs7JBgnYlgCckbUY3CPHeRn1cGs/soUInrv+nXiORqvwqPSy631n37B/wd3uFNoFsAqyieYznYJnX6w/IiSTuCl2wo1Y5hYscHjYcYm1V77wKLbDPKIgvOVNiIf0+w4bVcOX4eiATFDSaRtOayh+OoMVhjii3GeIXFAL91bXcwP+D3uWHsEffnFfB8jaVgrm4wQZNeemmwyALyNKuSJ0UrEkWN+bTlFix55JWlvTyDpeVVKJCiFWCNvI0z1JlykA5gkYUAo9Qgy0f4hATrTCKml9Zh+QaeZpDd5FYMliR7B2LwOsq2s+B63bc4S51+SoxEXSR7jq6c3xpQDb4tObdbZ+q1T0jEkFAeoVKS6DzKlFyA6RpT4ZmnoZF5CeZ4lzeQ72mLFHlq7FCkQiGG+gIu5WmaZQ8NZhXYJ+biaQBCFgATbDDug5VJ30NlMbHja5hA5TZJbnA7AEljjpuPnQHatlbLaF8suFlWPIDnjRhOaDB9j6tkOHQQtsXrvBd+lSvMssoMTczLTCxv7cEtZ6KvcMVD7oxpdZsbrDCLUk5Pexqq7p5hlT1v2jUw26EY+7wpl/JccCn5F/2R9Ha/mshFjayeT0OGUWcKq4dJt2x9MQbYZhAhNFzfGHjRR6Qt8ruHKOBFTLZpHrDkjMxVZng38YYBiZ2uJ33BgffqUD/DLbsOix2rCy1EoYdtLGRnijXuMk+GOj0dmD76iC3GWRp6Oc7tFuMsc5UpTzT+tcrH8flz1HiP11nhivUbCeu7lUp+uvcCIxj0eK007MMOsQslVTVihHlOQjf0S0zQOv3xXPr6XeYdnDuh3Pe8PU+rxMXdz8lRDeaw9dZ70V/ukyVHzYJM+gbCJmKUbbYTo7zPDSRPBZhurbHFWPRWsoMQMN8iya9VPvbzYP2AgLNOz3Pekzdp0su6Dy3B2MZigGfZo9l/FjH63uV1zBbhkCZpLu5+zsXdz4N0M8Ym66kJr1FsH9xkjBWuGF6QSLE7eg7oMru3GEc+12J4DrLPUOkxCgsVuCU7rxlWSZzA54V+SkNDiIUt37leHwYrnFK/K3XHvcTVkILvkWUrNUY90VWqpGmwlJqnNDTEGJtuhVPhKstBatI6WGSHFqb6WU9N8C2+63tcnhFKUTfqcan0GV+q7KIE+PXEJNVELgb5La+La+QDsAWcvFOIfUABqhNsUMAAXwX4ySonwUmES+VbNTZ56RdaT34pgN4uQ4G0SnrXIsUsK1znR+HFoKABmbH30iRHDUnLsuzRIuXNbROlyI6yHY2ONsME3QhoscNWmeEdvhYbh4pnO5mlQMpFHVaxrUmkJgYK5RByLaagaPgqqsxDbC/SGQEyHDLNg1g0VHQIsNtgImjyV7nnppSVQJVtup+K9zjBRvy+mjVNPIE4pgomAGLqDCBZgmRnki436Q2T4gZp13jbhLhFKoCyJeYpU6DpzBgtoAlvi09IsMAiikfX9EXvVyw5+SBWyUfTrRtD3il6LzKWF+KudFeBAircTqdIirYsGY9uTCv0TmKh0+c/3SSWKAawKal4ky7jdIZV1t382OQRO6caZDOCPc3kUZFWdzA4TYMFFili8uMRSlQYDqNnSRnEMpUvlRohAbySRBRcJqliSsfLZEK5ADuBuAatGe8yPJeYdwhm0mnSJo+wyW4zrj/ztrFFuoX5DGn63YOlA8n01diJooJbYSp21w5FfsDv/DKWn792jzmWI5xkm9FgEZSwROAOCfeOS/GAadaYiml6gYpJEZxht8gCSgbNsh+eZpqsbzDBHa5HgVAnw2VWg1Wi9UGSv7IPRsD8q+T1NMo2P/QBhg1TmtzhOhvOeO2Q4BCZtudRQrIaDk01bahgDceeF6c2NTNW7h2uA9acXeMuQICeWcyKYYo18n4ttUmRpsl9Z3xd5w6DGIOq30GTZa5ySIY7vBqfEbrWAJIq1chRYZg/4G9TpMQDpujQE01mgpOQ7OvnAR8yLAeYpyRra2BGoqFaYZZtB98vnzIWN2CrhwQnjLNFmWEG2Q9Wgw0y+pF8QveOJKVaOyQZLlB2gecYNfIoUECSTw3LMtTDk1OhJO/xOh16WHAwWQ2EfD469FAlf2o/M8Dgh7wZa1WVHOup7nBODeYKs2wyxqvcYY0psuy5bUO/M6c/5W/x3Tg/Okda61adgzpMmZvcivtFqcEqpDPUQ8o3ywrbWDqb2D5iF475+np74G+iEBEFA2kqrH/X6XrqiqW+xlScC+0XW4yzwhXK3uwbe6nNNZZY4loMXtT4y3tH17zJp3sxH9Mnf9VLz1+7h6o4a7AGI3xEx7VGnrKPNSXrrpLjgSfKyjritJ+UMfXawXhIOqNlm9FIarVr40NyVFnmKmtMx14mIFAg8BZj/jztaETM6qQ3UpXf4m1jE/Mg9nztb/KS1P24waQDvYMBiJxgIQ0FylznDgVn2On+E7AiK5CWT/gVSCG2wTJzUZ/O8iGSu7ZIUSVHmUI0mJLlbzBJFjPvVuhBtx7qIelDQK17+kyq8eTZOux16gqzoTqQ9FjvT955RXZCFSBLmXGXwhuTdiuuETWlJUbYZtQ98NoxCBAYrodAkLLL45XcfRp4zFDnDd6LoVQd83mWv7YsBmRVooGCWLS9NGOIbwEFI9FHSC6u4D2RAVLe96iRF0PJep9W9Dq9/lmXuOY1qIGSkufWff/XoKSXBld8YGfH9yTAMnndph0YFhNTQUdKj9egYp9ssAA1gNHa2vK9tk2KKnmvQ6wmFQNHnoJFSkywQYmieXZ5jS62tur3hA/vUrT4Pt+gx68RrY8Z6tzl2jPn94v+yB4dsM3FGEqoZhbDEmC0sx3WEaVUkdGDh6EQy7ZsaChp5jajDFOhToYPhy7RJB0kEw3GtOfnMXuVbUapJnIxbMrvHrLGNFuM8b3UN9linN7DY4qUvEu24cA6EzzAEulr5FkbepH2ubNMso6SwouUmO8sxefaZpQ/K3yFLcac9bnGW7wdZBv5/UkaOso2D5zBKkuasdYWHXqidlB/M8o2M61VZo9+Ete17J9kdWPX7Y4DO/0BiMrPbp+s+8x1qKZylIcGIgxQICvY2qChkh51MuElpzVQg1kw5ZjkoDVyLLDIde74GNaG1T10eNxnx2nh4MdMt9YYO/iMDj20UklX3hkLsEk6VDQpH/nKauydxJv+uax/l0c7wIdDl1gfeoFVZlhkgZ5OJwa6AqQyHIZdTapjg9rswWHsifKIFpYjj9WfFl+KPn4HU6Lp/OSo8t2Bfxcgru0SxRiwJugw2tn2nmg2VGFi/cpOo0SRK04yOD08lyItQccCYtxbMf606kjxUqHg9XAubNe0f4pdLKXOPoMc5Z7j54Uhaj6oEMhYJ8Nd5mNIIQKb+hX1yyJGyfZm7OAzNphkjmUmWxtIeaKaccT//73UN8ly8AutJb8UQC9BJwAvMenU5AORzieDarG/VHgLkDht/qqo+0nWw7tHQJ4OpCZiZd80zeiwHZvSNqPhW2WvuxdgktIS894gGHjxIJobS/EyEHCczdhMLbmpwxVWoiAFo8vaxElsEWtClplDWWS3uBlNb51uYl+bJK+wGF5qCyxGQq3SguUnID8OIBBxbeICpMadKZikzTibsQmrwc2yzzXuRhNTYiTYdVZQrceEY4sxpOVvkYzptuQz+wwG20PpNKN8itKZBOzd4iYtZ28CyPPwW3yXq9xDcmc1T2A3vmTTKgCz7IeGXcw/LQZiqNTJBEA4TJlJZ9lIXz/Jhk8GKvE6YoMoMED0bQtZqbLBRMiO65gBsz5DhQJ7ZAPlrzAc7Ew1n5q8yPOphRl+yr9AC9Qe2Zg4m69BlgU+QFPtIiUv9AqnPqd8wKx4+yFvOlCXC5aAwFBtBKeTpCZZp0ma7/ItxIjR/abNQjJOS3y2FDp5Awi8WWTBGUTj7GPhAetMooTLl3yy9EV/fMQk7/IGqy4TLbLDNGvI305+IFoXjSWUCmBLf8AYc0pPUgOoFD0ZiysgaM/Ph6XZLUfDBQSYrftG582S+oxplMOSBROYxFdSoxIjTLDhLFwbxlzjLhvuj6cmrkAlJleKhL/voT8WS2+FxpK/9xq5AI60BTccuB+h68HSJsmIAzWDPrkVo0MAvZgIGqTIj8N8oIy+LtNeNSJg64kKyQ0mWWeCJC1uc8Mlq3u+FtSoeZOjAkI+WNuMssaUM1YL/t6sWUnTYPMUGy5BJyQPCTqsMMstbjIerA4DcuVlOekSWzHBZB8gc3wx4k43pWJqr3AlWDD91Nln8Blj4ZoDd1bgtnmbt5DZfcqbrk3GuMFtpnwCW6DsrL1UDJEyWLJjkRKTfmzTNNmhGGxMsQNWuEKeWgBsNiCxIBADGSvskw0fMvmBFiizwpUYHGWoc4P3mWeJLcZigFKi6N6nBmKuO6PxgQdqTLAR02HzRymSpsGYT/1LjMSxlJ2ADL8b9Lq0eI9v8ofIC0jsS4FVdTJhaWDAjw3ozLex6edzKsD2L/JDfr9bjMW10sJUBO/yRsh3tD+CBU2JQaz7WYxbA0VTSBJl7nHjdOhxdpkEaQmMObzBG7wba1WRHe5xFYVd6f63Ytx8iQUIXecOv8sfxsBQ9/UmYyjR/R5Xw6hcderrvBugjtZnIGonG4Ds+Yp3GN8fY4tZVjwo531n5k3S9HoVrK60xNpmgEWSdgMuSU3HGr/IK17DdS1lFBa0zSh3uI6xSifIUY0E0jWmyPlwWWuXAG4xZ/RcemjdUZO1zNWowXYoIum+2HSyN9CQXr6wkqF9h29TJR9heWNsxbo4xlYAjBp8iuUtKV6OKilazHEPpa/a0KMZdZGYIRqQS/IMRMCDaicDsdZjqJCnxmUf0L3NW8Ea1Ptpk+IaSyFjLlNwJv0hCgtcYBEpehJ0mGSDbUbj2OWphtpHbGywYbb1TRepY+mICywiGw8DMoyddM8tJyZYd+XMWgDlktuqXherPu99hZiIXQZODbGTk7S8vilFXaCaUMPFvAPot7gZ+598IsGUKnYMfymt6V+7xwEDbPW9yD5ZxtkyJhwmZ85RY4EP7PgmLJjQvK5btM89R97ZQPdSc1FnKbDsNBDR6/W5wPQNJph3T07dZ1uMMXrwMHrf6lA/8ngHuw+WB14OUFa2PKcTv9skWWeC1cQMCijT3llN2PUl72St23qvIquIdVsjH9eUPNLNlsj6qHKq8EytLABlhlVWUrNs9b2I7A4MLJ8nQYepg49J0o5B8jYXaTsL9ya3wkd6ijWkcJL/Phi7zvaDw6i5ADaYiFp6LTFNqmUp0AL7tK8oWMHCf7YCyNrB1GaZg8fsYWEWo2zTPvecSVN7rEfeYpyeTid6shFKYROywizDlFnkFd7mLVok+SFvxt6yh1mTTR18bNLaTplJ1slTpZow9t5Ma5UtxphgnYrjCwss0kiYSmR74AJ5uuFsAqk0SJCKBiB3cEDBLSKq5D0Iybwg13x43sbkszb8NIymlChG2J/taRZ4BcR5uMH75KgxdvQJYjavM8GVzor3qAm2E9briDFcoEw1lXNfeiMf3OMqJYpcb90JcE6gNuBs6UPSNGik0oENiEABtmZdYwmpTRT4d5r8ovOloX6TNPWBc3yd79MhwVrKAOvM0aG/Z7umi5R4iz9il6FfaD35payaBQezVFxoYqMULiHmm4w/E7lsmvUkpyWMHXq4zo+CiZWkTYEKvY5Qi+mSxOQVKmaUTCcJpCZS8o/TlGIiiocEkoEIVKv5sqomVwh6lTy3uRFNiYBI84Eph8TCwhIMINtybz0VB1pMNWHW9E6bMVhBZ5/NqLhWdF2kSo47XGeUbeZZ8qnzHMtcjamqUOMcVcxPIx9fN2lLOxZryR8y1MPbymRqCmOwG61DD2/xdgBHAIrWVsy0Nn7RVWUYbxPU4UC3lZpY9SY+w6GDnXmMzjsWCbJZZ+CIyfiAaUoUnykWTapV9evKmk55ezV8iqFCVAxQgXbv8GYg8mIGPGDaF9/BaNS6GvthCpS5woqft0IUZAJmKwxzSCbo4mbeasah8uCzadAgG1iCsdL/lMZYZphu1LV5ybzOe0x6ESlmlhYfYwUZbX2O5QC2p3jABhPcZZ5JNlDy8zxLrLuHxQkJN/A2kG2CDb7B9/0OqJ4qHAsxOd8nywQb9HuRq81LrD59TYt8lv1gIeoa/FV4/Dor0YCJYQkE+0S+FUpNVDCCJBYC5YvsMOnAj7EqTixBy0EpFTXyUZRp+wqzAVbY9bgXwwmlcO/4xN1i562ZsdW7GetxkpYXOu0YwogxssYUE17AabIFdq3nHQRWQE7ORxpqnOa4xwKLcV3UyJH3gnbdJ4o93mTKu0kyuFVmToUrnATwnfDCDIz900OHeZaYYZUSI4ie3+tNVI4qUzwIEFBy/w0mecB0FF9bjAebT2zY04MJA582PenvMBpLM8gdC3Ag6SzyJa6RoMMaU8Gke5MfIonJIPuMs0WFwjOyMd1rmpLO8mEwTlQ8bDMarArzC7HPpv1l2hk6CvAxw/RUNHRlCtziJhuYFKPH/wg0TdFCQSzpU/uBgFNJUouUovlWLSAT5WHKPi0djoYkvBCd4bHmfiMK9RnFwgOmWYtkaCXEG2i+xZxbQ9gabGulJGtq0jPUPZykHetZgbLvGb0BrIi9pN+Vj59ec5ytAJll7ZGjGoCO+YdueVFvLJlDMsFmTtLiKsvs+GDui/yQlOQmt1yp0cswFd7mLXJUfd84jLVMfpwCj3Uc5QNkUqhC3P8p2oyxiTxGx3z4KgnlPtkYKGm4ITnUGJsBQOhnZliNtdjANNsHFURh/97nQ2fjyk5CTE1rcnpioKB7v8drnFvcDHa/ZKprTDub2gzaywyT9/Xy23yHJebdziYZYFG3hu1HqY5XWAkbFvP/ecAsK1F3CqxXbSh1gupZG7yM+75t5u7X+RFSmYg1LVm51icDx82bUx5FCi8R4KCaJkGHKdYQM3GVywGEZag7aywVa9rbvBVgvRQmqjHUKHflyrlgCAlE13hMKbrmt90bPyfliVjyGsonOAmmo9YMgfxqTsfYYt5Z5nMsA7aHnq5z0jS5xlL8rh0DY4K/yTvUXLGywCLrTCDf0UlPiQVrIKd5EEMo1VprTFFihBlWfYjVDgaRpGwCYsT4A4LhYqylarACbWhvtYdqvC3v2TRMFFNLwPE8dzFWt4XpqceY8PGYhowJOvxdfj9q137qEZiVp8YID/8ql52/to8fM4ckhfJyzx4dBBkhR5Uv/+ST2PNG2TYdRcrYqBNuayLm/xRrAVYX2WGGVQY7++F5pz2zl4YxklvGLH2dd6kPnGO4ZaB4xcFmSebvci3esw1iDqPWkJRwtLMdNesqM848HGV69xNAIMVh1LBarwuUo/6xBNw6f59/7H6NPe6za8xa+TuLJKD3qiFrmxSzrRUmDj5BbFcLsbBhw9bAC+SoMsYmd7mGBtvyy5vZ/Rh5ssrvN+3Q+SD7lFLyPu9HFigJTuJ+V2pzOWWkjmXmwvNaLGOxbMHqpSZp5o7+kundT9geuMA0D2hjARrJx08oDQ2x3fcCsgD5buJbiJmm4f41lphgg1VmUBik9q/hVoXXeS/8Qh8MvGQqocfH9GJhlTXypFsNEidP0ABX51XDfrOD6YmAyBJFRlvbIfvWXpPv1GiS5sHAS0yzFoPqSTaYOPqYAhVfj/uxRPCd2I81fruy+xEWVqYas0Du4IDpo4/o0BPe2Kt9l2MdG2eL9cRk1O/ChhJ0uM1rbDCJFGoayuSpWh+csj4jQYf3PHVZfbK8zOXTfdmPqfoZqUbHDj7DmJOWTZA9OiBDnemjj1xGawDg6STiVMv2ANXL9b7+2M8AJFff4cIvtJ78UgC9JMeMseUF1RaHZLjH1ZBBzLDKCF2Nu6J9e5zVocACGUqnaYYpsBX7pn/XhNC09GWqDgZlMXPYGVapUGCFK7Fh6sKRL1iHnvD0UGJeFjPenGCdQfajcKm5XFJGlaKk/ojr/MgXmgk2WOADCk4l7tDj6URijTWiARJTzlIczddqlO2gp64xHRMKgWRiq+nG1cRaKPkYW6RoReErKZfkAZuMBXgjicaeH/tJfx+nqdmnWRdqqLTxXvQi8sSbrCnWAllXWpnMlOtkGKYcYG6REntkuct83JCSfP0+v0eVHIPsO4unFTdTiyRTrIXEz8BFaw5PSMTUSB5I0qNLemVyx1aAr0q3LDMcEgUlKGoCIZls1q8FNZXy5hIrUO29Gnk1wWtM8zZvUac/JpVpGqScMTnlhsCDXgivOYVdry/2EhALrI6pgBX5aVzlHubzdA0ZXmfZiwU+7Ru5TL0nPRQBzINBHkJWYFQCbDc50h7yJbJG6ZCUN6dWUE6zxXgwzhTLPc1abMBik+Z+hYq2AwaC+SSJAxAMta/zg5gyAiH3FrhcdC7fBhO8w5tIqv+Aadou3wL8muyNSazAa7GMG3T9+hSGY9dY033jNqLon2eJFqlnEsfa/n61Ic7yIWNskaeGEpPlZwJwl2thryBGw7Q3b+Z/Woj7IIOl5Op63GQMyR8UqCCmSYFKDDlmWQmKu9h6mm6JAWFsLvMF2vMp2pRPlqEr+5UHYZuUG+Uba/V1l2pp7QXiGGvQ0iLFOpMsshBMSyAYFjr/iyyQphkNoZqxIjskfX2qY5v6Plk2GWOJeSy4ZB4x/ea4FwwHk0gNhk+mjNGVWCzW9iQb3OE6OxQD7BSIqt+bZYVlT+EeZZsb3EapdZJWCJhU0aTPqqbcfBJtUjnNA2fzfQoQ5trDzuzLUWPZGVJipejcy0xZwVl5B+Y00Cr7vq0k3QceciG57mm2kNbIQS+ojUXXCM8zsSHlrbtDMQABMYdWmSHLPjOd1Tj3b/G2ByqZb6jY8acHaLr/Dsk4yHdIlTwfMutBNuZztuvH+Yv8EDtCwwUBVbOsMM/dOBenH/tkWXNGpfZlSfLkQyRWupL3dI1JBq3Bch3zVZ5gg1lWuOuA+j7ZAL/tWjEpl9gZYqAIHFOABRB763XucI0lB/MNCBLAbcMAu5c79DCCya2HqdBDJ9ZpWw9byH/6Nq9FnWjPN8Ic92IdL1Li63yfsjeMCoTTWjfudazkylJ9aDCSZZ/XeTcAthu8HyyCe1yN/WSJedaYZpmrsQ7Im3iJa7HGXHXfQ4HyJquztcZYfdOscIVeLEE7R5WrLCM2ujwsVVOJ/bzIQvjJlRmOgZSuD8ltddwswT2PAn9yVJEEW0PvBunw/1WSsequ03572uM0cH+N2+HvCITio0EvK8w6E7ergslQZ9O9tmqYfFz7aBpL5dUeLr+zVWZ4jduscpk0jfCyEyteclmFXpV9qCzfPa1D2ifTNPnU13kxKtM0WWMqFCBiJBUpoZR0haDkvUb8x62/T1e90pXRaS9QH6Xja/dBKoaKf8xNeugwx7IP8o21ckjGAYtBLCDwF2Ok/A/98Sp/Tt2HTkpTfq/vq8gXfIciDECq06JAJTzpShRp+bBAA/cmaSylvUSwxw8OKSWK/hpG7hDI1yLJfirLVR9CdehhMbXAHMuMtbZ8UGvDzKnoqQx43GIMMWOl9NlL2P7f66BG4sTuzdWhl0jT9HXyU8aOPonaVUCawKbEyRNb448OMY/NYtTAIqFseM8mz8AqeUqMMNlZDzBte+BC9PWq1eSVP3PwEW8e/QlTPCBHlXvMRWpvaWgIUxv0BljdIB1ANlidqIGyVHpm65WONaNEkUH2eYVF9nxwkepYmKG8sDskuLp737CFviHuDV02m6VOiz2yrCZmqA0MhKWLhowLLCLSkQ2jmowePAy28yjbzHHP/fb3qacyyAZnlpVImF7ru8Q+g4x3rH5qpZLU+oYieMIGnJVn+jYNVma4z+/x+4ABtemO4RlZ9llNzPj+ZkOUKjne4o9sje97AQ3d57nLcKccg3iBnFn2OXMEL1YsYEW118bAi6z2XSZDPa5PKehsL6nFoE2DHsmpE5xQcKLBGlMB+sn7tkaeYqcUwyjlFYBILKZuusaS7SsnT3iX12Ov2GKcjYEX+S7f8vvQPitA+9zZ+H31USWKbDBBOVWIz1egEu/NVFHdQflvcvsXWk9+KYDe8260qAVfkgjJUC3JrMI0DxhjM2iKoshqoxOzRx9Wm0iKNhWGadJNjZt2kEcMMTD/ulmXwp448GR0yVr42q0xheRhmqDq5kzRjsmnFhDJqE7LCy5iCWJi1ogRZxNlo/RrMbJ4+0Yw1DQpadAbLIqqs8nESLMGb8/Tchr00OFbfJdRtvnUJ89iFmgCCTYdlMQRDAS8zp1onIAA5gQAiHWixVDP1euTc7ACpsgOlhq3ySQbNOlF1OUyBSZZJ0kLJblJWiTmWZ1MvK5YH2Ln/R3+wOVRk6H5X3eflVE/1rqZTxucAmGwreJPXi26uRVGUifDHpZopgSwrnSk7YlbVjINU0YhH/Kx0qR9izHmuBeLSoEKTT+XDUwaIeBD9HdLBlUxZJIFgYRKwbMJ52YUr9ccYNEU4zTb9LTkb4RSSGZHKDHP3fg8sz6xn/INRSyfOhnG2XLJXTPuObFWZdKshsokHJXwfpIk2RqoZHyGCt30NoEOADLN1hTii/74GV8O5pOYrtbMmV+nedNN+P2XYsengh0SfJ+v+x3ZZoVZ5lmKdcpSjm3yKtlLhsNgTwl4kzT8m3zP5TV59yVqoSAFo5CfhGRbzZpSmpS+JEmOCkidQzFG1JitMcWeT29LjDDNWngQATGw0e/Lj05NwFWWyVPjNd/IFEevwCQBYLe4yY+4fkpCMeqsZVvjV5hl3JkCVSwlUMMK8zkyYPvQC48ULWZYDWk/EIwGa+4MpJbPadonnAL7jL1lnpppGsxxj5zLpMRO62Bpw2IrSz4rf8AeOiG/32AyvN90v7a96dOgSSCHGMRgwxF5tOl6a5EMD7oauTjnCuew4UQhfLWuc4dZPoyAFa2HM6xSJ+PgZzLkqZJhvMZtZvkwGEf7DHKHV1GIlUlzJv3ZsiGT1bm3gUwzpvhqBsSUAqLJVqEtppCYXLOsUGSHfh+KqPFQqqp5DBrrcsQlTg+YjsHYh+4LtkOR06m2LZJsJsYoMRLrYxYL3BCzSEC6wp0EIMizVAxZO479zsfO/Uqshytc4Sa3SNCJa19AqZoFAXYpWixzNcA0XeuSlYstP+nm0hnq4ZljHobz3OE6BSo8YAr5qQm8EDBl15wxtnQfCcjWOdb6o4FkiZFgjnT9ca05bZHkKssh31xmLq4T+ZPJq8jSRM1TTiDwLCsx4O2Q4J7/vnkP9vgApkyCDkvMc5vXADy5NBODb/nh2d4urn0+1gTVhRcdxCqyQ8pr8FVmkO1H2xlvqoVTtNxbyWR+uj8kmaqRZ4b79DiLxGpECwLKUyXv4Jr8r7pgZjM8pAB36jLQTKzW3+YW8l4Wi01NrQDXfbK8zVt8j991gL7ANA9iiLKP+XtGM+x1tLEbh523XkEBPWIhyTqi4ENieSNqr1TNJLBVTDfVtrKi0Nes77AhtzxqgbgO5U+rhzEDWwEciHmkQauYxA+YRh6rAk3UTEpRk6bJLCuMu1TZmKWpUInoGtUwR0SJ30v9PkrWleeTmC9q/PcZDFZ5jq5HW4Y6l31vLTESoMhtboS/rqWrd+v5L/qj+Pme9yRlJwW0o19O02Sms8ono8+zmpiJwdKEd0ZtLMhQoTYCkiWdrpKjfc5a/GEqAVAMlR67mX9P1EV1MiwzB9ia0+lJnBqeGEA72tl2SfAOsqjIHB2ikJgHTLsBiIFu7w38JgkfVojwUCdDqe9C9MkCXEYokenUqfdZou57fV/FbAQK7iVmZI0xtqKn1LX5Ju8wz12Sj48xL3Hzo55lhd/a/nPGjj6hSImpg48N4B/oZ6XvZcMOjj5HiacCliRDluVXlr1g8YpYoV77tCx9lRl6MIssqQVXmQnfv1KiyD3mfJ87ZJUZzhwRa5wGyJmD4/h3iyTzrSVq5Oihw2hr2wFMUyVqEPBg4KUAtzIdWzt6afLlyidxrYkQNMe9GFpvM8pJIhFDnHUmSZx0YjjaZWNXeanyEKl0gpSQspq/msj50NjqeIWLaE+X6k/HTzXkScJ86LaxVOYJNsgeHPKz0Rf5WeHFUGJo7ykxYnVgKuMVXw91+knTdMC6x+tQ64MyR4escCVqY5P8p4LwJC/+CdZJPj5mjE1e43Yoysw+4XeQ12OTNJOdddrnzrLAB1HHAb43WM5CEBx2H7KYWGCMzbj+xco2izXriedYRozVPa+LxTDdYIJjrzv+bY9fCqD3c76E4qRVpIptoUKlC9zZTdNNsVU4goUhSLqZZS8o/TZh78QkV0V+nYz7NnWlpJI6KBYaQMaYIHDBEhgtIdd8IOSxskc2ns9o/mZyPEKJcba8ue1GgxsbaSxu8C3GWWPKG8L+YI9ILKpCUAVbxem8Fad8avOeZCM+txa1NU97UXLWIYbES4qiizIo0Wxzl/nY1LsSkRQ/4Osx4Zxhldd5D/l4jbHpi+heHDMdXxUnatAy1LnIdgCJBcr8l/yHZNkL+Yj09r00meXDoMWKvSOKb5fJ2QmvBgVNZDh0v4NyFBP7DDLHchy/69zBDIwNINGUtOylopLIdD2qWS1TCHbkMOVYTADkS7HIAkBMF8W8EehXx0yatxn1DcYMVyXtVcOncyggWUwWwOnHJ9ziJpKJaGKknxfINsl6hG/oWA56kyR5hOSLKhI1CQAD95RSehhAjjFN5BeknzVPlznWmKZNkiXmg6Vk06lnmTFTrD0zaTvBQiDO0k2p/CI/zjkzRExRXQd2//RHs6iCocxwMPF+h7dDniVgxe4r85DS+Z50NnGd/pg+iV0qAFsNxhZjLmjNB3gmedVtXkNJhjUHwNRQSxK6zSg7FAPYtmnTZLC23ucGeQfU1KwLBFSwirxAxSYQIJaixRpTKLDoXd5AKaiS44ouL1mAJKpqtvXZNcWW52aRHU5IcIP3kWlvlVwUIWDDJzXOttZuIk+MoksTZERun8vSz04XL5qGSkIjY2Bt0NrfthmNAkXpv2L11OmPlDdJbUT9Vzqj9iVN+5SSpvMttor2Ng0sxKrWRL/ESMi+P2ABSy4f9mt0kCZpZo9+gmRtYpG/zVuse6iTjpn2ZLFFjI01EowSkwltRJK4jonWWskzFEyQpolMi2V/kaIdAJ+GbLpGU5h1ha6TLcbZZIzb3ECMZAWFKJlYYQh/i+9SoRBNywkW1CV2uFh+y1wFoEqOZebCE1JsRTEUJlkP+ab8cZtYyriOk7E1TX79qwDotUhSJR+FtWoJ1UR7XlO0sKCtG7wfno1KdT7tMyvmbw8dD1wxFqSaLRmzS460zSh3ufZMcyMGXocEt7mB1Az7ZGNAJm9lA8JryFRdDJB9ssGeSdMMlroYX5bi2vLk0fXwVNSwWJ8/Qz2GlWK3yyfqNCNqnyy3ucEWYy4xHg5gqUQxQpBsrZeM8wOuco9hKgFGrjHNJuO8zw1nvxUC+JfP3jaj0XSeYB7VasDElBTT0thVVlsLwPohbyJZ5wQbvMJi2KNo2CCbiBYWxqMaZ4cik6xzlWVeYRElTcrzT2B50v8v4EqDBQ3rtTb+93sGnWNjCB3G92dYDYsggc8mzb+I/BplD5CmQdMZxBpSbDqDaZWZUI6A+RNfYwkLvzPgUHufpLkKD5K/NRBKoRMfBhlQuhX+aKc9/ya8V8i7CgWI92rppmn+Kb8XQO02o1GTK/hNUt1DMky5BPB9bpDhkLLbP2hN03WccNqEmJj9GNPVBlUNZDNxmu0EcI0lFDSSwKS7vyoptxvP24BRPqJJWuFZ3iHBemISBWWZV64BLPJy3WY0gAzZVG1zMQDZe6k5gADve2mwWzxnkkimnJzSZrq1FsDGOhNsJsbc5qUU77WUKDq7aMSvlQnW+i4hHzitdbKJEmC9zSj3mCPfqYX9ipEALKxFvrqthIFAuaNdbrRuR98hGea7vM40a7zOu0ES0ZpYJ0OtbygUJtHbJKDWN0SJYngAVpzNW6BMo+8ccyzHfSYwXV640zxwCbhJ+A0ozcd9e6FywIiTlRZYDK/0X6t8TIEyHXq4xlIMr4vseN1jNhwfj14IBrlAzvLQALKo+X+S97+xcaZpei/2636pKrLIEousUlGs6VKTTTbZzR1qyBG3ueaseqRtHXfSuzPx+IwxxjpeHAcGYjjAQRIEQb4FyZfkQ4AEBzgGjBhwsI7XZ47HGXvG2z69UK80rWnuUiaXHLGXGlJkk1JpimKJRRa7yCKrVKXOh/u5blL+YE8Qt8+4p4BG/6OKVe/7vM9z39d9/fkT3qUQzzujtRY3rGE0gGoaUEkRVyPBbpT2+/Z5G957nfXylBVUhRRrjPpwJkmVWjzhqjfV/HXi/Cz7eug7L1EmQ1ur5cQlsMASgBFWvdeokmSwZeScCRZ9fxSQljg6IcsOb4czvkXEVvcryLZiMfjRDgbLlmE2nIRQJclofRWx5Qvkeb3wmMkAjiWpUuh8hSnmGcLYm7IraoU6UkO7Q5Isd34VpUG/WnzqdeUYK76/rjDGZjRA1Gzx9eJ9LhYOKIc6EKyOGWCLH/FtGsTY7213cpjOFhv9bjvoCbwQptQThsoTB5+gcLoDun+p/eQLAfS2Q4MgDwD7EqaTNs8g+xIqqvSXHW82tZO5qqSgGwxzSNInGTqgOzh+ocmJB0BOiG0isOMkeVV6jmQcQsrl7WAyQpMT6CHRQlejpodA0wXz6Ss7cKLPsk0ORWvbtOPQgb+zEzwwRFubkEBPwBNNFTs9fGZhqmAUXVl+M6dTyMs+XRB7UMxJSVPs8LdI5XRgPOigrwU/kVIo4ARC3Qvpa5KUaloBxrARy0HSrmnu+gMMODBVCoeJkmTl23ccihUBVqIXLzLxQjMmmv9ZOZykoPIMW2XEzdy1SW4x6MVOkkMHFPUeg0G2fBzYeKthw4sCgBgPhfcyl9lgiDpxTwi7F6QFMhXeYpA8heCNZp4mVhRnw4GxirwE9eCDFchWiDa4wYeeKKrkKUuiu+dApF2XjIPLVZLcC41xht2QKllwXyf566kI031RsubZe6X7qvUpJozuuVH+EyjhrEEchR7kKbDMZa5yx9/DDEn3f+mpw3/urwO6SVLlDm8zxzSHGJvutOi2hmOQLZcRiPU0EiSrSjOVh0iZNN9p/RDzVulwWr5YEhV6XCouWaaKlrOslA6OXQ5TCsxjgfQDwTvHjP+N4WpAeOSgXgc1/pC/DZxOLW/wYQDBdnxoI5ZCi4guquHZGAgFqR2WxnDdYYoFPxNU2EY0mWSRHfoCE7EaGuR79LHDBIsOOGnoI5aKvJsSYViRCfIWSeHMjL/sZ9YCV6jS5XuYGlSBTNqX9IxosCF2WESLHiphmDPq3oKSpmvAIFaMzH/LZDzRukDei2T52O2SZowV3uaO3888BX/+lE6swZN56u0Gw+BhT4rT+WCec28Sp8EQG3zAu76fDrCJ5L0RLYqdFzHbidPUze/xfWeASD69zjCbDFAkxw5ZrnLHPV0+Zgb5cxkrrhwA7KzLSKokna15FoAUE0qf+6zcWK8rLDASmFaSBZmtxKEzplcZZYEpchSD/G/cwUglL2+TY5RVbvChAyvzTFGkn2nmQt3SwwbDzrDaCcwSA/kM8EtR8cZfSfCS8hnA2YNsKP5dmemX9SXg+1FQA5h9ySJzvMUxCZdP61kuBzmVmFeWvHza3MZosEuGR4GtJ7NqnaNqMhQSscy4M9vlW9zAQhN2SXOFBeQvJinlvcDmqpIMHomRgyDySMs4005p8zaM1kBYZ68aUDHnBLjIykLsuRZtPv3vY8en+lJtmKxqyYcGScxfLoUZhL/Ln4S1aWDLHNPM8RazzDDNXNhnuvysF6u4QZxRz1o35cIQG5TJeA05xzQdHHvzqz1thbGgMqk4U/i09pG5/Snj1tIfm76fzjJDhZQzpQUWSuK5HYCCLCXuBXN9S9w9TQdPcOz7q11Xk1utBvZtlSTzTHntnsT83ySJ0j0TwCIwT4EYDWLc4hqD4fdqgNsVBuaSHPZRYowVxDbdDXWsAXKDyNbmZkgLt7q3w4c3YvsaWzPiFtdddm4qlXWWmHCWtpr1syQKKY2MIdRgmrv8Tb7PdW7xFnMsMsEmgwyx7nuT9n41zfVQy2mopedomA0Ow95mdi9bfu7IhL8Hsz6qh+H9GqNIUj7NXSLMA3eNUca554OaXdL8IqyfL/trj94XCBJSW4hRLyC2hwrJo0Nn7os9J9VDjQ56WhV/nxzbTLLklktnEzsXmMJYx2WXw6/G7fkwmXvcn4VsUCdJySAJdZ2425ck6vYZOwI5RAogMZLe431atFGLEqTqFa/RJlmyAJyW2WDNMkPi6IT2A4idmPRW3ruqr9S3CtSvE+PHfIsNhvgB33V/alkd/LPc/4wKqRBCl+N+AJJ1JldJkj448F73Dle93jsNbTDShYY6k61FcnUD+D7NXnQgtoqFX9WJ8bOspQvnKIYxgQ2p0uwy3Zoj0yojlYN5IMYcBK2Q4o/4faokeTMMLo25mnRgzgb6bVjAQocPrzYY4jj0Yi0i9nvbETM33yqgUBvVgOr7dV4qiHKce+5/p4HE5b0HJDlk+uguTu6pF8PQ2CwSOqi5d78Y0cUo5+vq1CLG6ridzgsO+GXqZVYZ9fN9gC3e5o4Pr4db634GA6wxym7clGxF+q2GiuN7OeB4jWzbWphfYp0YF4sHPkD7iKu0iJg4+ASAJ7nuUN/tcpWP/P1GWWXs4AFb8QGO0i/zNG/uouMsU6GHDGWG9x7zf239H9wbWgNvOA2tE0FiuL7hw/olJngz1KkF8lS6u+gKONHI08IvtZ98QR56Dd+Q5B8jRsM0c1wKk1U9OKKHqmhSga2HWGCEQjaELteJscQEWwzQhrGSdkkHL5QOf1A0+ZFUsB4u6hgrNMKU45hESJKyw9Aav11HcvWdWlhIhBL31KQNsOlyX3llKUlQEwP7szH3GjMa8am/iJgaMlbuocJwkNRlKDPOMruhKY5RDwyvEaok6cJoreVQlClNbJZvsB6kAfpsmqRoummI8enUUfp5yduA4Nl0iRT77oPUImKWGd8Y55gOjZwV1mp+xBRSgynmY5YSi0w488TYOaM+jU6z60wM+ZvYdN5kIWvh4Vd6UkQzpAXVHfQDuModLxYle9G0RVJqUc8FWIFtBgrgkFw8hmTYVnDLt6pBjCwleqigOGwZXWuqlqfAVmAJ6hpKOrt9pghNUg0b46kRrdiSYh5V6WKUNf/cxhwdoojRunW9h9gIB69JksQqGmLdmS82obEN56zPjxibmmolqPlkXYe7sWYveYMjWZOYT5J/6n6o+VWx/uvw+hrL5CjybX7ECKtc47avBzHtAL8HYlxK8mSDCjtwzbuzagdTlPYBggCiIdYZZAuleS8z7hNJMdUkAc1TIB4GEvLpURq0JuiDbHGFeYrk6ArNj1gNovv/b/h/kKfgSV0DbAbhdsL3TO0D8qsQc0ETXwufyfi+mKIS5A4mXfiAd7kXUrxUNBm7LOfgooFbZWc9lUl7qmOFVPh7jzOdtceI6aNhxAhr9FHiJjd84mbT74SHj+hMEWAgxo01UR1+nkkqshSeySRVB2yH2GCGWSwowe6vwFZ5ajaIu0R/OwD68upT2raxMtZ9/czxlrNL5FWjdF6xtQGXt2kYcRZAy7FNjQTLjDPPFTRVz4biRHJipY3L31Tgi+5DHzvONP8GsxgraMSbYzWBFXqC10zTm3Lt8wIq5dVqDcxpmJT20g2GHPQT0FgmwwwfIxsJrXeZvIsRAXYOipki0KYNM4aXT9o6w5g0os4U8xgDfhOFBByTcAsGa8q33StKn1vNRSYAsWKM6Tz+Mr/6wzl0iFlegLHt+yg5W36XdGCtWAOk9bofzm8wxYeul4amdtZYanaBPH3s8Lf5Q5dLSQGyxggAUywwxDpdVF0Wqwm5BmPmaxVnk0GkKpGi5CY3vK6TJ+8ki87Gk9fwUGDcnPWAs73a9pLdcC4KfFllxEHzGgn30BV4o+Z8lFVmmEXem0oTtbQ+Y2qLcXWNWz5QNFZs3c8XMerlU63zSEwOAa8VUkyx4PY24ywjU/UICx2q0cE4y9zgJmCN8yhrzuKXIseu57FfX/uMt5GnoKxNjAQwxc6ZfVZeb0p91dDKUqvXucYtLDzP0sPNm3vH/7zthbHg22bDjhqJwOJtkqHMIFveHxzT4Yw0ncVSyujZ1h4kk3sN/82LNuYA9Qe867WQGl6lyhfIB4WJmf4L/FLNGdFEPmim7Mn4+iuQd2BBfoEaYOgc1BkvgKJCDyWyzjbS2pKKoo8S3+ZHYfgx4vuinjWpcjQ8OfWAFNPQzi8RG1JUWGSCoQCUy3ZCTMuz8jwNmb/sr65A8pA/sJjgqtX1LGpv1PBflhPGRDpksLVFM7KfFbss2aq6PFwgts4h62HrzpxXmjvYgH6UtdAjZLx+2wmgkoFhMS6zbHVlPI/SxCXFHGOFy61lvrH3F5iXrp15P4h/lyI5J2xUMK+4UiA4tNpeZi/XzlL3V0lSdQa1wDJdK9kH3A92XBGtkBBt+ICGhUqilW9cnoINlFs2jCmTYaP7VSr0cLm1HBj/ce8V00d7/rxuBuXCR9FVqvFTm6IWEcN1W9O7pF9QA24w5LWdzpPVaJTYyTO/1xrYS20nFUOduAedCXyV9ZT2E6kUVP9PMxfOAfudbS2TfmpImmnZ8FwM81P7A7MwU00vFZd8hJOtKi8dQOrgkHaDLNiMBtiJZ/1zxGgwdvDAAeoWUsNYKJu8lmVRomddCcgr8TEaxFBQWI4i+VbB99P9KOUAnNSY8jXNU2CNUf519nd8MKzQkrG9T30/EdkoToOTbgJ4fYkWbWwyQKnbvDsFfi8xyXbo9MePPqGfImvdr9FPMYDOXT74Eanqn/b+l0RN+/eztgWDe0+8DzN1wJJfJ10jKe6qJD0ktEqSz39J8cYXAui9war7YMjkVHp/SUk1PYxocYkCg2y6gbkkRAKHzko9VciJiaYgBbGsrNmLO0ghqZMOVckIh9hgkkWy7IQ0z7JTmDfDgtoJky1tKDJ8n+Fjn2DtB/bYB7zLZpDbKATjfvDUkGeFqKb6LGokZdprAJMxCo0ZGPcCTIk7JbLskuHUVPc4NCt9vtCjUD7Kr++sXE8brgUbbHFMh98jFYFieokBIp+UDLv0UXL9eYuI93jfN4azD7K+x6kcK0LSvF0sacaQ6TV/L4GulqZj7yHpsNhzkrKqyVJCYJZS8NaLIxmXvKCqdJEJ19EkKqdNra6ZAakmmVVzHKPBSGDQrQfnCk17dR1lBKrCap1hJP+Lh2ZTU01tRvK0u8GHQUJWpyNM5rSWNYETjT5OnTtcBfDDUQWQpEvarEZZY5JFM1ZlDJlkp6gE941h9y2UJGWDIR6FIjCJxXKfTWAFnPUkiZw2MTXCWwwgr6O3uRNA/bhLMww47XCPGQGnX/ZXhe6wdloBpIm5Z8ICV9ihj10yyNi8ghm8RrRcRn/KqDJvo32MgWvAxCERLRaZdDaA5NBDbHhBMcAmYoGqGFdhp4AOAXZDbNDC5FVbDDozKwoFRh8lBtly2bsKDBUG8oGx75/yfUSTKfNUs3CLKRZoEHvBW1LpkAbodTDMhl+XK8wzyRJF+oM8vBHSWhNINqYo+Rt8iKRxFjbyCAtjinGHq154SUZuRaCYNyYB3CHr+8IKVnSIbW1T8h0/vAVoS7YhYGc8gLrLjDuQBAZG3OFtrnMrPBtZZ+yJ2SNArCNIWzSU0D4tWSyYRGKQLd7jfR8kCbSUx6WaLu1x8jrSpDCixVJI36tgqYMyx5dETiCpTXTjAWRuo40Wv8v7vi/MM+WeThomaFjXDGejWCWXWUb+rhrEac/RGbrGKPUAMIyxwl2mkS+f9k3JxcVevMPbJKgxEpjhYjmJDW9nRldomq2uWGcY+QMao2QOCzvq8mJYzG1Jf8S2t8HNoA9A5FWkvVGDDTEtrrBAigpf4fF/0n3pf4zXhfDM72ABJR/xNsuMI7+yGgmGQ2BFi8j9uRRwVSfmP2sMjk0vgDWUlHRbrOUOjp0pN8U8VwIDeD2wGY7DsyVvKMlldcbK4mSFMQ8QGAjgF5yyRdSoDLDFEpPOvjaALUkPFZf4yILlEfnQGFvDodQ/gTJmAbPlIGdEi00G/VpsMEyLNrbJuS+R+Wdus8WAP4dqutSY94UBaSkM18Q0lApg84zHp6xb1gNjIU+BRSYcbBALIRuAHoFT2vuWGSeLBZDZT/WxwRAbIZhJ+36NDmLU2Q0sNFmRDIWEV7FFBEjO8LE386Os8h1+SCmcVwAbDCObh2Uuu8fdYAAT8hTYZIBJFt3jaBDzad6hj3mm/Ln+kBu0YeEc9VDvK004T8EHGvWwZ+hzmm/3IWJKttFiPAAhES1n4aWDIsPYOH0+ZG8SMcw6A2wGhkmb1/hiwokpKVaMGMzDrCMVk+Rl2kuNdGB+1qorU1R4n/dYY9RZi/qMkhMb8NyBVFICTBNhEKjmNYZ5/c1zhf3QU+QpOLu8Spen/fZT9PNwjmnyFDj8NfHRaz8zxK+SpBSGmEXMAkXhOQmOWel8kyHWXUWlQWa8VacaJQNLymyElphkM7JnWP0N8EJfZuvSQP61oPwR21WenuoxNISvE3uB/DDLDHNM+7rVELONFtUoyb3e11ngioMs5lW6SzbURh3hXDYrgg124lm2GPQe2fa8pgNWCY7JtwrO+lePJ2spgSKykjJvvFaocYyMIN849clay8mDZw6aR1iIxUbnaySpss6wk3zUO9UwBl6SQ6pxAzptQLpOnkdIjZWrF9FAuBH2iEb7Obd+mWCRteAlKyDO6iUbwr5efOzDAikFVXumKfswJ3f0xMElgfzNKPK9dDUaZTWyBPXloLJT7TXHW+4tnT3Yo0XEPFdoEOcu09SjOA8HL7DW/Rr/fPD3WOYyS0y6fYjC18rd3fRjysrx+jK9hRPEyhdYqBo2wsKZMq2yhzEK4Nxg2P45shq1ScSf8K4PT+I0mGxZAOQGw86QH2bDvWsV3LTZe5Ec20zv/YyIFplWmWSrylznWw6ev8cfMxj2bSkk1QMpNLTS2U28bnXjMpcpdl9wbElWHaOscZWPqMftmdWQvY8d6nH898kWbTee9jpwMyiAbFiTRsSNMVaodp+qNv99ry8E0HvMV+inyCUKFOn3YqtOnGxgWAhVrYZJrSZVKorFqABDUVcDU0q+YIqm1wUS8CIGm3nX2NRB0zb53WnquB/ANDFUdAGVuGSG81boyLfCinQ7QLcY9HQca2xLiFobo+H0STXUmqpdCkwSM8Q1c/wMZeTHEcdSWEWBn2bOgbGO4CkkpoJeaux0YEvycboRKogj7j5BG0H2l2LfJUCSzalJbxFhQRd93oTYe+06Y8P88focBFRxJpaP2GEGNq2+8H1T7Huyi7E6ar4G5EEnA+c4DSZZQiEit7iORZubN9vZtMVx7jn4qz+vjVpNmIFwBhqI4aYCTmwb+ZMsMBWmDIPORNNE/ZgOB2TyFDxQI0uJFBX2SYUp89nUJHt4xfyz1GFLO4xossWgM4lUoP5d/hGS1w2yFQrzHZ+sCVxQc3AcUH/dk/uMOThn6YAZP8wizF8qj0WdG9Olxw+OqyGcQDLOtjP32Ojq/e6/qGZfHhxmxL8TZFM9pKiwS4bF4DvwZX8plU4eYErgFGAu0BnwZ04A9jxTdFDzJk2gj/YqARQA3+UHzv4Q6JfBot8VHnQcpOOTLLr0TEnQLSytc4p5ZyeLam5SgB7kJ3laKCa84JE0Q6CVTeAzLusX69OGGY98Uia5gkxzzXNl0gswmbuLuWXmvUPk2A6phTEvGgUsad/QfhXR8oHMMpeRpFgm7RpOnGUDKfxHgI1SE9VMySxCzY7AUMCvzynr3JjXWUo+dJB1wxTzKBxIAKbeA/BgJzA56HFgAKbZdalWPVzJj7jq59wKY+yScQDfBgrx4BFn+6UKH3m6CsASI0BGv7e5TpF+cph3rBoQSUQE1vdTRCmyYu1o/daJ+7WXt6jONoHLFVLMMhOCRnpQmt5qAAU1HNwhyx/zHiNhILRDH1l2WGSCHfpYZDJIwo69gVbRdy8kUSapkgmMcQFES8G0WmBsnRhdYS3neRTu+b7fj0G2mGUGY8c0uMYtrw8iWvwx7yGzarGM1LTqGa7RwRojXsx/mV86j2PU3adNEld5U+qeC8yJUffaUGtOddw3mGU7DDp1zllTWnd5/TEdrDHKGCvIZ7MePsduAMX1WfTc6veI2aXfucYoo6yRpxCAtgwDbCE2qYA/2WBUsTCMEVYxabVZvNiAoseLflOITGDhXI982Hs2eEhSVLHlthh0IEThP6qHxTodCqCOgqpmmKVMxhmJBlRXfdgp5ivgDAjt2wJMb3GNw7B/lcPwqIJ5+s0y40mvVbp8iKlwCilW9EzL4P2YDiQ1lq0BnMqnxD4R6GusjYwzwcFYTDmKwVMwy2ggFrQCKBanHgIZcr7Pl+jzM3OYDR90CUSokXDQcIUxvsf3/c8KxBADfjswcs8ynD4MIW2TLDHEBiOssc4QksdZmqlYh3X/7gLjtGeZGuLYr+kqo4GxM+zDXzG44zR831VIgpiEAArky1PgKh/5gNsYUUveXOreaf0PBIn4KGtEAZiUN7XWv9arrYvTPU176T3GKZJjOKSCv8NNppkjEayTRoPFSOzXYC8ESHDCcoieWmGMLqp8pbDnA8JlLgOnHpGDe0+4wU1njBbJUYiMBfRG8SFJqgy2tlCQGtiea3ufkRdUD1kNs89WsMjQOtLPyXcvRcWDAjSEnWQpgHpNrvIRChITQ/XsP/dTdG85wNNmK6TIHzxBPnNgtZ6YvDmKrlIAnHRTj+JeK4otKFZ0RxjESn2yygh1YrwV9rn9cNavhTAbDfSaRDzqvcAaoyjEAmzdgwFsfZToD4NJDfPSR3s+/KmF7y3JK8Aoa8ROnqPUYYVvFiJL9NbASkNh9b5SDVZI8Re5N5ES7aw/sghKFlp4SKHzFQrk6WlZXTrEOsbStrNTvsJZSk5akeXC7/I+08yRosJW9yvhfL6PVGja60UsylHkGreYOfozPxs3GGaZcY4x+5eo+ZzPcueQnYMGm7LuSbHvnvhRqH31ufWekhjnKNLBMTuBELZLmqjZIn/02BR+deulFHYk9V2aXWb5BsuMs9j7Jsl6ldlohmqU9J61SD8LTLnHvnoh2dpIpVMlyXx8il3SpNh3dWaCY97lA7YYIN6y504MR7PMKBmZKYDD/YHMlGmV/R5qzYuRKlxCtYjYt/+h1xcC6JmRtd18gXcq1gBvOEV/7wnFT5oy8tlQwyLmk3l5rDtIchhANLGTymSQF00iHPl6SQ4W0XSJ0DLjXrgobTbOKU3fWBxxdsI0UWhvBzWXdMjvT5MCMexkMGueWPd82jbDLFNh46rShQxB1egPBwaIeZlYiIL8BurEucFN+thBnlOaYihxV4WSmuae8IBcCcmYkvTaJLDHp4iWbloLDA4DAjdDcaci2aRKWZ/Uih7+ITdoEA9l0SkIKKPxs2EIXWEzEQItxpGkBy0iLyKFVAuMEzAxxLqz3LQBqhg9/bkGxyS84BXwa0xE83KRZ8FxmG8kqdIVGizFqEvum6PISCiixQgYDSbdmkI3whQtHua0x3ScOXDsQJJP1hITbuytDU5ybGMj9vhaLZP2hn8/FJCakPWE6yvvKk2S9TOK6dak9WNmWGUUpcfleeRMFx22ApbsvjfZJeNNUp6Cs8U6OHYvmGMSzDDr76FJmSb6ktUosl0yxGnmvojt51fudUgXklOf9Sy6H2RlRg23BnOeK8hOQEVAjm0K5BnnnpvDJrF0MfMVMpaV/ENsPzLf0X1SwbNv2J8XA2ETiLGbpOrsET13YE2vWBpqsMV6lg2CCh+xPQSqCeyNh8ZOIImt3YxPe8dYYYlJFAxkB3eNSRZ5mzsu4ymQD2bpHSwx4czR69z2z3uWXXOawLqJWIUqOtQEGh3eGlIVnLthfStJUlIQMSyUmG3Xx9Jam5gNg4ABa75q/pfSHFWgbDDEIUmXUiQxCa+ur2Qci0y6b9IYK+Qouh/fKKtsMExXeOYE/sUxSXstyMSM3bHlrBub8NozLXPgKkne5z3AhgnZIHszz1rTV1zljjMCVZBo2h+jTiacSTqPS/TxAe+yzDgbDHM3yAZ1rgEc0+GfXwVYiko4M7dRiMxZ8FoFW4oK7/IBFiixw7f4kQN4FVL8Lf6pD280sFJtMBwCEuw8P/b1U6ODLQb8WosZrjN4lm+gJGJ59wocGGAzSM2NYSgZi33PhDdLw6wzzjIZdukK93uZcT9nfx1eKfYZZIt9Us7w0d60zGU6qLHOEDUSnsT3TpBw6lq3iDzga4AtdujjVgCdAQfN68QYCamvy4xTpN+Btwy75HnkPpzFUKnBqf2BNVxpt1R5EYhNMM69IBm0AfEuGaaY520+QgFYOyEYwORiHS6ZUtNZxXzdxM4+JuHgzFmrlEZoPAEkN7c01l1mmPXAitvBb021kZpB2d+o+QTzBxR4OcGSM2nN4qYj1FoGJgywFXzy7jPCGnViPojcCTXb9/i+Dyb1LChBUuB/jAb9FF2WWybtEngxiDUAFos2htmxgA3GxZq0hNgaH/Cue4OJsa4hdIyGX18xmNQvZNlx5ZCCRM6GDm0wxGA4I4fYYJlx1hgNw4ByOAPN+60jWAzI+kY+26rtDEhpojAigWCSYNWJO/BWJMcsM9zhaqjxjpFqRYMIAb2An2GqZbV2VV/rv7Voc0C4StL3Oq0TwIcmqlnWGWaIdbdbUTCM9sdp7jLNHGl2ucHNM89IG2Os+NB9lhnOes9KIi8vUTESDSi98B930/kVfc3xFnkKAfBdZ5scD/KveLq9CCQLTJGgxh/3/o6vD5FOTDUQ52muixYRHYfPAJxZm0JpnubmFtFi4OAx8hKeYIm/z3+LQhr135VUrxpBygXZoMTDOonTYODgcagB+3zf0doWo0qWSnNMoxCfUncvK4x5UjdYLaB+TsBVlh1nLVtC8pDXX6rtZLeh359v2VBEyhMl/Qp4E2Ai26ptcgwFJUiLNpqREYOGQhDDekgUVq2ywBTLnV+lSvKFfQts7xMLrtTd64oI2YFo4CqrqbUwFJHHrj1PpoxoEGPg6CEWymPS+rUwDKmQIt8qOJ6RokI1smHLKGtYMJw9ywNska8byWoteIqKWCRmtQDATEtybgsCk6VVgTxXgo1AgziN9nNEtCjS79YIYpZXO7soRjZsM7LII2aY9QGzbFb2o5QrKaXwKQVVzGKwVFParayzjkmwEh+j/QhS9QrFuJ3bI6zSEQYLZ/sh96KN2zVeD6y+tpYReMT6n2XGGNKtIgrV03kfo+73uI0WSnZOnHnOqlGSRMtAZQ33dG6KApDgmMTRSbBMsnNggiUsfHSQNLtc51boUmqMH31C8uCXC5D8QgC9rgAeFbGEWjFItMlHtDytLE7DZWMy1pY3wGWWHfTQwjJQKuETBVHKlboD+MN6lja+Hx4WS9wzXbIh6f1kKXnSkBhE8o+TZ4E2s1HWSGJeale54wCFqPdqHASKAQ4eJaixyiiPyAdZyT2fkCr6WJJjMQq0MYL0+HV/fwudMICvLUxQBUqJwi8WmbH9zB9ETZDkoHkKL5inavqrJkoMmgxlRPMXJXaALb8XVZI+fRTbzgraPi8SwDZsgbkmNy6/cAhY6lnDAauUcyntvmjaJKnrOsOMs+zIfkTTAS5tpCZjy1Img/zu9NJUUeCh2BZF+qkHNohkK2fXs2SRkoqvB+BXm76A7FOQI+HTfHmhFel3SeBamK7meeQbkiLh1VgKDJenpDT6kljLA6oRQM8VxlCqqNHR036otGijKxzwWmO6FgKAI5phwp525o75QI5gUpc1JBFPhAmKnlEDtg0UEqii/5egxi945YvYfn7lXjd5J7Bvj5GhcIksV1hgho9ZDCb6CgxIUnVZUFcAIcT66eCYKeaRh6IBrY9QIrjJZA1AUtKxvMf0jFXpYocsSlitYD581hyWnZ3Vxw4jrKIAGsBZxGl2nTVbC8+yZK8RJk2aYTYk3fW55EesMPlHSAZlPqG7TBz9DHkLinauBlNsax2e80z5WsoG9qH2xHHusUMf2+T4Ed9CpsfjLDPDrKdeCXTfCD5KKlY1Db3CPBsMO0tWBWaSQzKYT8sWg0hWAPYM5SiyxGQY8GwzyBZDrNPA/EltMGVWEqthKlwn7l5FTSI/W+Z4C5OUGPNEzTjg4JzkgVeYdwC4QdwnyrqGSsNdDowAIAAkbWww5Hv0ThjR6N4Ya3w3+EqdFqQCUDSB1Xlhe6VJRvIUPEjJwnyWHdDZJsdbzLETwOAh1nm7dcf3OZ0NdWKsnGEYLzPujEgzbh98YTgizxzJJ9TgbzLAPFecvWCMqILvYTPMOtu8wCUfTtqE3ppOY3o3/XsmMS+Yu0yzyKTfHxn/bzHgzYzWmNgz1QBCyr/wy/7qCMPWHMXg72iqiuGghphlhrtM+zpsEnlDeCoPtWGt1obqRrGQxbZbZSQ0wsf8Hf6xD3pVNwKhebD6SKyFEn3uhRdhEirJcjuouUxcbKkqSX7Et9kIsqyz31WpzGrU9BxqwC3gUXVVlp0wdCu5b6MNKs2jz8J2zNpFTGUNdXJsI4mOmG16dgrkucU1mkSUgpIgTsNZ+RpQ65wXM0/qDAE+BmI9okqXy/xT7PtwU77VamDULJeC2kBsfnmGSda+wJQ3tBMsmWF6YL6JqQMGtA6z7kDuba75GbAeFBYbDDkLrUYHq4zQh9nP2BCjzWsvBTekKXtQQw8VLrPMJCbpekQ+eDg/ckZ9KwxxFpnwQBWBpWdZbfJNtDNkgBJ9L9SequfVs4gNLp9PBTrJ5kW2AB3h5+zsGmKKeQbZ4nIIVVLImnoF7XcCR/rDwGKLQd8rAWcKqcaUz94Wg+yTcobdKiNkKDs4bYqpbWI0ULJ3MlxXDSxGWePb/IgENXboc+BXChEwBnqaXd4IcvYv+6ufJ57uqRpJvrhSL4AlAc/UZ5nmrp8do6ySx8JxYoHUEaNOsfuC+7tZrW++nauMODCx1v2aS7P1uwGTULaq5I8e07t5EjzwzCJBww75YIq9XyVJububYxLcaN1kvL5MhrJbUI3tfUrq6MCVAdZf1bnCfAiyscFj/czzI0ZsmQz3AlglL3nZPkk2LtLGyMGnob+13r0Y5RjE0qTTR3vc4WqoUTvoocICV3xvkTpCVkIRTeL1RiAjxBhrrfhwU4B1kqoPwDvCmhZIOBT2qH4sfEuECDEvARS0I9DQ9vCinxPWd9ozVets543SQ8bqK15fpNg3hnmUYJxlr300SNTvkedqi4iV+JhTCFSvgu2raXYZ3HtClhKL0aTb2YyyyhDrYe/aCYMXS2gtRHm3dnibj5hink0GWAu2C/qsWwywzGVX4Ih01EYrKB2HAghpw7dr3KZOnEmWwqAiwWhr1a9PkiqzzPD/zP7P6Tx47mqe4fpG2EPK7tVp8nEjDGyGIZD2ptlohskAptl3XQNgN0o7c7hCT+jDjv25FPjZxEBfAa9FctSjOBth0A+G/3y3/gMGA6N/gyHKnb0ck0DKnTJp2lrm6Z2kSrJlYUoxGhQ7LzLXfeqn/+97fSGA3nEAGpQGKpml/rul4vX5Q6EmsRSkr0rbMtbaBpKLAl68STJYC2VWlaRPGFX8WaS7yWvlAyFDdhWD21jAgAytF7hCiewLQIpkUCreyoFyCSC5j5pjNZqG2sfDTUv4BqeNyRJ9+xwME93aHM42fEJooIo1LvOhOJUkVmxFS6VZNko2W85KKdJPHzu+2cRpsMmAy6J2STPEhgMHMeosMklEi+vc8sl3OQjTtOEWwnEvkEaFr22wRmcWG0eLWga4S0zwAe+yT4oeKuGhMUmWwFNtrgDyitqhj44gT5GnjqbUAlE16RewKraMTRR3+X3+yJkQVZLOcJEPg3my7Hjz3wgNtkl65A/R5pMRsUdFb9eal8RYn83W3u4ZIMYOcP2OjcBGUAEvo/o0uyHd1kA/YxxawaxQDiVxyrNSXldpysin8GxBrHtkBcBpauQikxTDRqiCcoZZEhwHY/iYT9saWHy4mnx5+ok6rGfEpBOWShenzvu85/46N7nhhe+X/fU6D6gT9wNW9x7AkpHsMNIkXkWAGipNVRNhN5llhuFQmJz6Nm26T1s8TI6qJF8InpDkOxMGAGK/GKjWhtgvMqwXsKdD/JRdWPQ9SmwkFVEF8qE5mvOmc4iNsNZ6GGDLCwnt+4qzX2WUWme7ezolOEZeR7p2YqEIdFthzJkJUZiamXSzxw/xweBpVaQfMZglwZNJsjy7bMLbxXZYz+Ww7yWpMs8UFXockLUiyPY/FdYqRJeYZIbZwFAb8gAAMRyVcCVZl0B0sXomQ5pmjLonfUmGIBBD90JeqWLEa7AltrEY7kBouIxdtkuaDo6djSxW9tmX5GZhHkuVLi+69f4aRGh4U+BS2H+2XfI/xYLLY7fJsUuaKRaQd58lfMaNORedMmAEcF4O9+cqd3w96fo3wme5wrwX2PNccUBDQxd5Mf49/iGjrLp3V4p9IpquABAT/TgUWxMsBvWANa7b5Dgk6dNyMNbKFRYC2NDvNYMS2y3RepcBtmgQY5nLSMIuoFPMxS/zK8mhg7Dyh2xhPjW3uMYMs7zJCmLRGSAV5w5XPR1bEkIz+58mx7aDGDp77oXpvK63miRLozOm/WrwLSqQd+BQjFaBIZVQp4gFPcwGZdJMsEgbLWfwmcWGDUN3AvvEhnKXvU5qEEMJ9+ZJetmbIdkBqGla4AqyCFHy9TjLITjG5P/zXOGYRBjGnNqarAY/rGshfMlqhW3+gH/CWVatVBabQeK8S4YsJU9Wn+MtJIVKYlI8AYyzzPjZEQ97SofbmERei/VhQWFn/a+3w8B6nWE+4qo3cikqPoAYYt1rNwEK2nPEJJJBvABW+d/p3klmJ2P5iFaQGnf50L6JeXcCDko2ibjHOI/Iu2w7wy4LTGFqnmNn8hi4sOnAfhTOVbHs1W9YWIXtIVJdyBbChsQGFojoYCoGSzAFKNJPG6eBQnkeUQ4qlyTVM8nifeG72H6iWlPsRNmlJKnyITeYZYYMuz5sBXyfU51/hQWvseU92kPF5cnrDLHBMCWy/kwJfBRzaZ0h7wkM4GjyEVeDF2Gfg58zzDLIFnv0/ifemf7HeXVx6H3IOkNMsuRrR/2x9iGxkCzkysgMmbCvlM7cd/XUGp6nwvl+iDGgEkcnvl+lKbMerJc0MNyPUlQ7u/h08CK1zpcRK1Te9Qp0SXDsLNx1hsi1iiQPntFZfo7Yw220qHafI2paratwBj1/gBNANNgohwHPOMt+TUQM0PrKUSR5cALYUDNPgWL3Bd8bdkm732mJPjY6XwtqkAl6qLhaQex8sAFMT6vCVGueFcbYig8EMk6DZmQsRfX5ImdogKNQQ5GFJHNOcMxQkPsrqVaycnmKLnOZVUaYqs87EWY9gLrDrFMLg+qTTugsPX8BpFdgR5k0ybqxA7WHpdinQN5te2xgbAxJ4Rd9rR3/rFWS7Pe2I9VfnTiJulxILXVWe5uCwLSvqs7SgKIfsz7oCzjKTW4Q0WTg6KGTC85aVRgAt06iVXMgzmBVww/Gjz7x+6Sgshh1xlnmqPtl7vC29bRxY3UKICyTIXfw9IWeXcCq2Jxiuwokz7JD/uAJkp4DHJIks2e+2bLSmOeKW4BtMOwhV6uMIMXMMOtGAmiLnGE+wBapusm2B9kKPplx1iNjLpbo8wAQIPjgt/9S+8kXAug95BIRLUcxVTCoQdSBkgpFvNhgOuTbwsIwUMuaVjGLlFg1wywzfOzAXuzM4hZLRFTKjuCjY8y1XZeZmUdKKbBmYmTZcaTbLmKHN8lKPivSH4rw0wVihUfG2R4p9plgiQkW/Zp8wLsoATIRWB4C7OI03JNELJsJFoljhsjmm9bhzSPg7JVd0uxj/nO2KW/5pFaLVqa1ZsoZ9w1wMrDEjDmixLgKg2y6tlwbWAKTggpUEOq9wdCppj38Hm2qisgeCwW6fDiUnKUkSHnPCbiUSfkOfQ5IKblJElhJfFWEaMIngMru/4sJNPoZg8H6vQFeYgJJO+4y7c2p5HfvcDN4mBW9WRZjSGzDNGWuc9tZkbUzTIIRVr1QbaPFYvCvEVtV6X0F8i4jEXj2KDBtqnRhpsd1Z87ILH+c5eB91fAiap6pUCB97M2TZNZqXtQ0q2jvY8eLRPn4Fci7LE1eQGKb6pqBscoWmeQe4+QCYFyk36n2Wpv6fGfvx5f9dZ3bGEOzAyVwAX7o5CkEs+CyF2MRxp6VVEwsLGNtGqPYmBn1sC6HiQc2s6jrOYosMEWdWDCjPvbJvBK7JOXRs2TTxQ2fsOkl1rSo/Xb/bDXpM+q/m19RI0xY0yhlMsW+mxRLMiqWmJKm3+d3vck3FmEOySZXGeEYM7bPUQyFnrEfBFhPsBgA037qxPgWP/biQnKLLQYc9LZ9LeUDlLMsSgFng2EPvsFNxrnn31UM7gmWGGSLiCYy+64T833tCguYN9QgES2ucscYv/GUD7ZiARBVMaNCQn40scCaEVAkHxoNOHZJ+z3soMZlljmbXpukyge8i5Jetf+cJs2mHTi8zTW/JmLErTLiTELZOegMEBCn+6/1KymiJH/6O+AenDtkWQtysYgmbaE5EAPurPefnpslJtyfUwOvs8nNYhwIYNZzcpZZI7++DYZo0YbCEYr0+3cEWAzybrVWmm4LfD+tK8o+WDxNbrY1IjCjP5xbYsyKPSHA5vjXANB7n/+ph89oyDjKKsNhqKbBrvZEm4aPOOixGwCSU2bDOhFNbnCTwSDDFOAliw0xzDRJH2HVn3dzsj0NQlDydAXTBQjoEptunSFSVByImWAp1KMf0xaaXbF/1SCYt5jVbx9yw8/pDLvOCqkT90CaHir+zM4yQ4vIQZ61wPYYYJMpFogw79s5pimQ5wPedSaamBmSreuZHA5sizmmg/S47MPBElkWmGKce0yxgPxXtfaL5FhikuvcZoIl1hnmv+G/dt/UbBg0m3Syx9niMRpnAhGSoW4ygH2RCW/ylNC7Tc77AvluHgegztbDvoNLU8zzZvDwsuCZJlPBZkYN0ylzZoM+LATMQI+eMGTJur0I4N5du1gY1C6ZIOcyNVCGXSZZdPlqkkMUCPEoAP06P8/6KGkApxpLYKnVAY8YZ5l3+QCwgdd+GFprDwJeGHZl2UGJp9bv7IZG1voDWWMY+zrmA6VG2E+1vyuMREPjTGC4DAdgdSQw5jQoFnNQzGwxm3S2qF5ULZI4w26VFzrImzflsjr5+m7y2n+C3ehX42U1kp1dsm5S6qb6skyrTP7oMbLmOCbB6N5DNLRV36egnA5qzBz9GeZdb8+veqlG+7kA6li4VpIqN3mH93mPJObFeJN3KJNhMT4R/IqLroxSH1clyUx9Fnkn1iIbBj7Ndfmzn6VEIcpT7L7g7DxZU0gpJA9iG0hs+yBDnuhzTPtgx4LdOlhkguXuNwEDftJHexi71eqGQbboo+TXU0NgrcctBplhlhJZFplknWH3czv/6TO3EAECQJNBVhHWo8YciGwR8RZzmLKuyY29nyKP/wulQzL1sgPWYD7kduZZ3z3OPeI0WI6b96hIFxr8y2e12HmRv8y/Ro0O3q1/QL5eYIh1Vx/uxLOBLPEOsgZ5mztc5xZ9R0/5euk+49xzX9XfLH1CPbL19cbmQ2d1ir2WZpfE0XPiNHi99NiHwo1QG2cP9ki0any9dJ8bfIjCMm8c/alLrzV4N7uxBVY630T2A6mDQxrEmNozsG6bHLXI/EQl291g2AYLna+wGo2eGdDeY4z71ufHk0Q0Q31/WkMJOyl194baPOkkH+UoSB0So07+6LHXrpXuLpe9a6gy1/s1wGryGWb5Lv/iBexjOdhX6H6JiLDGKOvRMLKxqpJkNW5S3ZvcYCNYU8mLVWeQvFPHWaaLw19qL/mCGHodyLx/PZg+qhk4y/RohY8v+VaEBUDoogsQkeZZ06ezKbdtGDNMKK8aniI5P0TNk8H+rJgp0pTLi0LThLMPngrBJIekKQcphxX08nJTEaPknl0ybJNzAFL+Ax1nHgalTYnZNsEiV1hAtNj1sIiNxZd94SAHmyQmOGaVERrEGQwa7RJZ3/zWGaINo+aDNYjDwWC6TNr9/049YzoCuGiJq7N8gwKXXLYsQ1wVfsfh3m4yEIyH2wLrw+RJLSIvzA00tPQZFZaKogab3Jz1mQOjfhs4aFunmCO6pjZhKvn6ELC4ySBxGi5v2A0gq+TWKSpc5xY9nLKNNFUwKcuxs19GWXOJWZGcN2I1OphlhhodrIfCcIEriBWZZtffQ943S0GK1YEZaKaoODOrj1LYwBosMunTdhXrkvWVgnQ5HgC1BMfOslRTORnkKin2fTOULDnPI2aZAWCWGZ9kWbCGTWw0fVBTq2skjzX5S4hVJJmOydFXHbAbY+VMgE0cUaIjmrwZpGhiFX7ZX5I4GdjQ5tNrAUqbDARpahYF10hKrxQyBWGkKXOba2byysQLz54OQZve1REzZDoUGwlqYd0fYmEPBmYJTBPwLTaBCi2Bvkro2w8slLONrXyvtAeKUaihjcxyNxhCASEylhdzYIwVBzU06LApX4kEx14kGHu67s+e9rD1IBkVcD7KGmXSbJNjkiVGWCNOnY94mzmmA8hqE2wZ8Wt4AXaggqVdKfntbiiENZkEvOHT2XKa8J4K7N06eR75WaeCRQ2YpGEqdNQQCWgHKyLmA2sH8Cn+Ale8ISiQ9z1H/ofGau4gRoNvBAn0bph0C1yT5EPDJK3VPAXmmCaieWaaHvf9OEPZZTRnm74Mu2wxEAyp4yjQBfCzoIuqF/NWC7SR4DiwsOxndW5KYmHN/bg3JiqirInt8cZFg6BxlinSz01u8D7v+RCuFOTmZ6XKqcA4OSbBlWAo3yRijPuAySb6w+9UY3KaRNpAfoxiqmsP1bCmRRsLTDEX5KTyghTwflb+8mV+XeSJD0nPGrUrNEeAsMKDEtSYZAkLNdv1gtkMOHoo0cdSUBXMMOsAgYYU9wPQbAqAuAPEbQEIAgPFB9lyNkSVLuRteIV5Z+oOsOn1UIr90NR2hXrVCu5Tr90tn7BvMuBgtDXt68iHVGvIpTZUUcrrWnhGzYLgVIoLp8mysihpETkrT8br80x5/Wkyx6yziQXeCcgcZ5kkVXboox+zyoiFOjOFMewEpOq5lFRONb2GgTU6vAYTg0WJwDpntM/ViTHNXXboY5RVYjTYYDj4B47QJGKKeR9URLRcVqc9UjVWgziLTGLhUbY/SbYHtmeWgn1KmjIjoV6pB4aT2O+Sl4qBrPuoUCnZEehs1trRHpzAvPSmWGCLAeaZwkJ1TFY/25phiwEfymgYItBWw37twmJtSla9yCQVUr6HykpAio8YDWSzILmcMbGG/f0NWNkKvpM5FpgK93Hf19wcb/lgy4Yfw8gvymqTOhrcDwaf1goWJrXAFAtc8RpSXtLaN29yI5z/m/6ZbF0bsNodzr0v+6udmjNiz9Zwqu9zLQMTmlFE+4H9mVVGWWeYxd43WWGMjcD0sr7OvCC/VnpAsfOi768v2KZEeUZZNfb4kQVpfId/SY5t97S1znPH16zeQzJBJR2vxg1kidEgfXBAsbeXeKvu6yRO3QGnFJZI2lcvea+unrdOLNhmdLiVhtRKOm9l4aNa0NaqedBXO7uIaFIOdVj2YM+uY/00ZDHFqSLsBjcRI/j3+afOpDq/84y919uJ0eAW18P+s+BDQjj1mJSFkcn8h33w0ozMvzLRqvEg+wqFuAH7CnMEfKg8EEC0WBjyqMaRpZQkpjHqLDHpg5LV+CjL8XG2yfmQ57XCE66wQI5tr0GKQQ1xp/O3eZi9gCmCyiQ45rP0OSdAPesFBUcqwbxBnI97v251bhOyB3suva6S5IPu32E1GuVZHO8rNxim0PkK81xxr9EFpkJ9ZXYvYEB+sfsCSaoUe3udtajvrSFSml2G2XAcYILFcDZfRr6sxnI/pBkGXlI+nGVNi7ig+7bAFB0cc4g5S5bJsNz5VSqY53hE09nNZ8kz2YM9G2rUi8RbNmTfYpAJFpE3fQ7zh10LHs3q2ZVRoCHXSFCuKmDtY2b8fG0QDwx5G4Q/5iu/1H7yhQB6kyGpYyoUQwIOlDAGOOKupkjyihoJ9km5V50h9lYMGUvLCiqxWyzYoSs0c3oItp091QhMiWXG2WTQiyKb0naxyKQznvZJhSLJqMSa8KvRU9OnA05+FzIc1QRREwGBU+YlZ3la68GAVxIDeQNFNLnLNCuMkWEX0Zz7Kfoi3SHrzfQdrvp3dPNElpEJvdHzR92/QqwpscnkdaFiRUXPKWvBKLuSRKko1gamPwenC7NEFjFrYjS8wRPTUglep4VrOhReu860EPAJ+ORR1OKzk8AtjA4trw4dPNowrnKHAbbcbFQsSHn23GPcN9cUlTM+B4/8M1fpIse232tLRIq5jLqPkjekWttqPjVdFutSbM6IJhsMu2TMJDqnkeppdoNU0R7yIjkvfN7jfWaZcXmsgbh9rDHCcvg+8l4xEKTm7yGK9O/yPvIZyvMI+RllKAeA+jD4WcSRzOYOV9knhXlzXXIAQqa7WUr+7Nh3KPs0WmBjNVx7eSDaxtX1/+9W85/F65Au30saYf2IsVcJ1zVOw9k+KpbEmpTpr4ocgL/GD7nObe4xzjxX/OAu0ccU8/7Mgj3bKhh3wwQuT4HVYIw7Epghko5bUb7ue5vAOjG21IgkAlgkGWWObS9sWkTBVPlUVmEMGWOUbjHonpdnwQzJtppEfMC7rDEajknbWzQZrmKS+RFWvRHV5FDPkA0wzIBd/n03ueFmzzU6WGY8AIfG0lEDqnPLknX7w/4/+IK3nfyhFPYAuI9gDxVnVcwxzRqjxKi7VFP+S8ckGGGVJSa9if6Iq8jTyxp1O7eG2SATQPsoAJZvBWmzBYYYm2+LQR/qJKmyzGVu8o4zkrfJcZWPyLFNR2BEiU0ify7ZFOh81pRS/ns7ZNlkgMuB0Z5lJ4Ad/cGTateZMHEazqqukmSBKxxi0hPZQZxl7iWpssIYt7keAPAtFOYkybbWzSaWpGyg4qGDohMs0kGNKRYYYt0Z4GLr2HORdglmgTx9WOp8PIAK5pO461PbEn3c5B33wjvbbIihp/PzcgCtAH/vFBUfPoLtk/LW0/74ZX+9wc+pE+e/5X/lDaIK2AE2XXYnnxoN8sQQSwSWXYp9H4gNsc4iE6wGGf0qo0jCpWQ8SaHA9sP14Jl5kxusMcIKY8wzFRgKhz6cUlK2rC3qAZRQU6NBm5iqYt+lMB/MIjk+5IanylpNagxOfa8WbSEcLUMaS92uh8ZjODB2e6g46KEQtyamatkmF3y0Gv7/9Uy1wj4qCeUAW2Qp8RFXGWPFZcwaboghOcc0gLO+BdDbPmSyuV3SjLDKVT5inHtBNXLoLA/V0otMOkg7zRyWDpwOvnR2ntkAO0s1OGpf4xaTLDlTRmEJksBpEB7RZIc+l+hp4BzDwi3sO2/6EFtArTEP4yiUT0OiRKilxcLRmataU+cT4Ax0Dd9lh5Kk6lLiIdZ9n1Fg29+N/hEjrAY/un4fxsr7KRXudZWkS1vLWBqw5Fy7pJlkyVl2Zm2w736dYodoXxdLVAF8UhLNMOtDHIEwYvu9z+96o96iza9RgTxzvOXrNskhNRI+JJbntMChCRbJYanq2fBZB9jiOICutXAGrgfZWoZdLoU6/Mv+WmKSApccbNgIRIyx+gqrjNBx+Ix1hllikk9zF5HHdiaotq5xi3frHxAPIK6ICJ9mL/qeKVWbbEgE+NZI0Gg/R6ZVZnjvcWAUr/m+ojrOGOanqjepcky2v+9Drmp3uw3gIgPqwcBHgXBai7PxGffgrtERBg9tiOlXxDxBVTNq4KXBxACbvBMAOSkUAOL1BhthqLzS/br33xp2aPBgHqZ1kq0qw/UNDs8MDn+R62WBqQDIzzuxQT2/anL5DkvaqmenjxIr3a+TpsxmNADA0MFDjInd8GGlWWwkHFAToaLAJQcuq5jnm+oFkWTOkoQU5jbBIs/O25oStqCeE0BBQOrRIprMRjNEtBhu2X4+wBa9xRMmWeIOV30/rdHBp7mLfND9O37uGrN+jbH6CqXuXnIUmQ+klgopxriPsg7Wgy2FhkNjrDDBEscB69HnrNHBBsO+72YooxTytjDIAdvLMuz6/ZVcvEwGBZo2Qx+lc1/EElNTpsNwyFj38vOW/YR8dLXWZ5nhGGNxb3W/Qo0OivEcs9EMZdJc5xYN4lxuLfu5UfS93JKk5T1/9eDP/GyUN5+CQH+X9111IEWJvO4TnPxS+8kXAug1sdhysdrkMSF6umKPLRGq7j47ceoo+XQ+MA8k2ZlmjhFWUUqt3seAPzMoH2EtFFlmvG4Hd8M3O0lYxWQzFt9pXLRkg2oYNYETdV0PhzEQBl0uJimuivKBMLED/L3E/BOgpmJPbI44Da6w4LILFRfabAS69IRJqJVWawHNjnthJFqxzCxlwNxPEdGrVXRokxTAoEmBpilrjIZpq7F+bnMd87KzjQTwJl7SURUX8nUo0YcSYLNBxqoUMT1cHzPDMuOsM0QPFYZZ90mKQMccxQCIWBLYqbFo2Rt2IfOa2uqh0iT4R3zbGRqDwQ/gbFS1SbEPKXCJXSyl7I/4/TPszFPA4yofkWb3BTp7iSyjrPlGI2mXpVMazfku02HKbBN5bQaa/kiKMMe0s3uSAaAD8zMbZt0no0qYU/Nhm6n5IegwFRgqwFTSiy0GHeDU2t4KG9oxHWTZIUOZAnkUACBPBG2Uej+xdVq08QHvIrq4QPYxVhhnGbFVqiTpZe+L2H5+5V5f4RfIZ+5HfNvXrnyTEtSY54r7N5rs8JSlq6JKbMuRMF0F3AdPabjpAMwqvWqATRQ4sMIYW6FAqJL0vfRPeJfv870geUl78SUm6iGnUkO9SgGETlJlgyH6KTLOPcSqTVFhgSnAiocpFlDyrMk2mgHEMgDGhMhpb9J1Jih8wQYK5sVofj19SJqiJm6aOfrYYZYZFNahn98ODfgES1zntnsjSZIiryYrIo+daVMmzV2mkceZGiuZ40a0uMZt3uc9LAn91D9jgiW2yZFlx6eBgJ83Gcq+l4lBmeCYUdbCftLnMkEreBKe8roaAgUqWLCELCvglLHcF5g6gEuvxcaTdYENSRq+JgQkx0IjMM49jknwxyEFV8bB8XCuyjbB2MLGLDoOww6xM3bI+louk2GcZZQ+Kaa0XmL46L6qCNdgBfBJrnz4BMjpO+ua6p6bF9W2g+kCZRRwooZWQPcSEy6fqZHwoYSaIsDPVRtKdfj1S1HhLebYZIBdMlbgh8AtMRIElOvPiAnx6yC5/QWvsMKbjLHiigvJk5SaqBrmOrecfRajwRzT1EhgliJtAQAzJrFk1fLcVBNqfsJNl3EvM45kmQUsOVzMSzGJbnMN+cUtM844y/7vGkYek2CVEcSI3iWNwrsAX2tpdvkuP3B/5zS7DnzU6OAu00gqr6TdOabZYIhFJpGtSVcYGupzn31d5U5oifa9JklQQ96CYkfJY65AnkmW2CWDhb6kvT4fCmwI1X+qkdOU+S7/woctfcGqpop5lNoAvI0qXT48ELgjj11JkSZZdKDSavP9AEYcUqGHFpGnuauOq9CDfIqltBhki0uhObfBvBiHWTYYfuFZtRTBLUZZpUmEQvg+5AaSIpvAdDgMfywEqRb2C6uJLbgkHaTSUhalKfN9vhcafRs4KAVxmru8w00/k2XjE6fBFAu8HQbP8sTeCn6IGjDVA+io1xQLKMVxJ7CURHjQgEYeqfITVELkm6x4rW/2LpaoqBBDAdTyK/y7/CNn0Alk0HUx9ZMlW2qfvsFNH8h3UPPepkDeh9Al+ty3Us+cQmc0pFew3K/D6zLLjLGCwiXcDiBukr3jrnPINH+FMfJ1s85ZZxilZcZOnvs+aYzwfa+xW0T0U2SwdbrGNPCs0WEJo1Eft3r/ipNLtH+mqPBa6YkPtqQsG62vcpvr5Ngm0yo7aebs0EREDMABatk+ySNfvYrYvQL6F5lwssUwG/whf4BsNdRjtNHyWmGce8a4bz7HPFPjp0BO3NjS17hFjDpNTr3MdqM0s/GZFwYxkkoq0EJDZ+2JVr2afyDgfZlINekANOl5aRHRaH+ZGHUfLMgHNhUGCRl2ubz3gPTRHiu8idJvK6SYrFvgifAU1QrCFxSascUgle4uf65sADPqwPlwsF9ZDXs6GIC3whjVKMlC99doEOOzvnM+oFxhjPzBE7cj2WCYBabYDLYWRXJsxa1fHD/6hBt8GNbeqcWK4SEWODHAJql6heTBSRhqx7z22yXNKGs+SI/RINcq+no6HXqa2kvfTTVmpl4O59RuYJ/3+aBedgNjrJBsVV8I2opTZ6y+4vuoLNdi1MnX7e9SpsnDVKEwTSImWPI+Qd7PAv8EqGvIVSTHuc/gLtOuQMhTYOzovteja4wGhWcGKYdqdPDgTHDRv+/1hQB6j3iVIda5w1UkpxG76mzQxA/5jifBagI3zDoKr1BRcMpuiTuIJnBMLCg1KWKM6FWjw2UFMi2Wf45YZ+bLMUqObWaYRf5qRfo9fUeod5OIrtCkSO8uBp78j0y2ZhuEEHRN30W/bAWBrzXExtgyCcopxX+eKfYxnwFD4Zdohg3a0qy6nPVg08OaS9gimuyGRSHavsJIwND+tjCFEaquFMNp5oiHDSxPgUcBMGhh8oe7TLPFIMZGbHqBE8cM6SVdVtMlT70+Soyy5kDkYJClXGaZaeb8EKqRQElct7nuLEH5tpXJsB8A3ToxDkk6y1HfT4DXMuPBSyqOWKGAA4UqNBXmUaWLeJjeZoMpsYVWdPh17g/T+iUmUUqYfvcdriKNvxhoO2TNHDZ8NwMRTHq9z6nEr0XkqLwlKK8hCdky4+5xcSUwsGxTqofrEHcmgQCCNJZCdoOb/jyYmfaU+72I+WU+l20eWpGiwjKXEYPL1u5pApR5Ax0jX50WkbMVx1ghFpgnAoYEOtmGZ/LCA7r/4248v6KvPXqQZFAFTD9F9kNzJHsBY7cZ8KpJpNirksv0BZBV4IHYpzKE11BEfktmc3DoBVoxwF+nrAzz9hI4N8gWubq5Z2bCc6eJPtjeNs8UMRp+0GtoscWg771Jqtxj3JkpBuxaYyLG61mmw93gAaUGxNKv7TOJBaDDXpI6fYdd0iidt0iOKRZIUeEOV93fQtKtPI+4WDpw4EBNxQRLzsYpB5hA90mG9gLAxcLWZLpFxP+a/zsDbDLIlp8Rel4M/DOfrI4AfI1zLzCbTW4/hRkiK426L/ASExx7Qq4K2l0ytIg8mVgzTvO0sxTvm9zAWIzG0vv7/ANMyl1CZuw2zOkI7F4rQvopuuSlSWS+JiS4zm2//pLIiMWtJGRJcwVYatKuUB2F5shLzjjQVS+CVxijSpLZID0Q8Cb2saRoli7b44WVgGl55CWxZGXJxWy40O/F7AJXkH+PAFyBgCX6GGHNwU5jWL7lYKRAYxk+K3RAZ6D2OlmB/LuSD8mVBY6nQ60D8OvAWH6NT5H0qUg/snPQVFv+wsPBG0hAdpWkMzVu8o43DbJ7uModB4/V/CmttY0WfWEKnqVEB8dh8Nf0vUXD5pifZ22+B+i50hBSPqiScMuOQAOTFm3OXtdzJLaCWAryDHyLOaokXXlhTEWri+Z4izdDcI9Yb0q1LpBnlhlWQwDZWXlajm0fDo0Fb7l1hpzhJa8esH1an289qF7WGPXhr5i+ui/XucU0c862WmCKe8E7SE3TDLPAqQeQGHHGkH4HhQLJB1l1/NlQCg1ZZpnxukZDqG8wi4bsaq5zYd+yRNuS244ovbpKl68xSduSVJ0hfJdp1hly5ocF6W07yCSbGcmUJf/Wvvl3+Md+TvaxQxemQGiF1SEA99QnOYbk1gIZtdab4ZwXCKJmUMxBASVjrIQ9Kxsa2LoPls8yWqXm6KHia0f1Q4O4D0W0Xqt0USaDycRK/jzJr7eFsdRHWeMP+MMw5DWvyiUmkRxe90w+mUry7KESmnzbCzUM0lr5Pt9zhteX/fUpg1woHfratcC6BktM2LMZ2SBJKoj5+JQ/NwlqVDu7uN3922wxyDLjDrTnjx4jtlBbq0Utsj00UTfQQMCs6vcdsg5ACVwtk+Gk0way9cCym2bOwcbUwSG1KOEgmIZjxryzHu4atxg/uO/DLAWRaTAiUFnBXsNscIMP3Uom1yryd/jHSE4r5ckOffQFhq8SueN1/JmUkkxKqySHIbjCgLizadILXEE+j8N7j33YucQkSQ5DzdnjkmUAWVdtMRCsjS4BOJiXP3rsn6EYz3nNK5BI/uQ6K+71vk6j/RzT3HWVSJWkB6EIEJSCoYNa8Bkd8HNU7GYNzSeDn3Q6kDJUbzeIcTckc4M85W0oFTVPyUQZdql2t5PCksBVD+teDrBJkRyvlx5T7uwNg9VLQWVoVXSFFFMsYAq+PmrxBEvdX6VMOlif2X1QXyQJcouI9WjYPXL1nbU+ZeGgIRzA0NGnXNp7ihjDMeoOaL/FHAC1yAaCspPJtwruE3jWJipOg3o85sOvCAuqHGeZC8VDWrR5n6s9W8PsiBaDYXgUC/1YClPs/CLfy+/X/4i+o6cejFTt7ApDYatL1Mcljk4YYIu7TDPFwi+1n3whgF5XkJ8C/uE0FdI0vEqS7/BDcmxjqTYbPgkXKil2j6j5Slg1mnobSka1i9WBpboai0MSLYGAmlKqIZxhljFW2GKQIjmucwuzRx5AyZMC8KzQM/aGpdOluMwyCY7DlCARDBEthMHkaV0+dR5iw0GRgTOBE3p/0XWVyqgJhmKT1QyJtqoDXU2xJrYmlXiLFPu+OUvaoQ1QgSBi2UniJ+BVXgtG3bYI6eGQ3iLmhh7UviCzOg6MLgPcmj45F1B2h6tU6aJCijne8uZMtONdMmwy6L/b/IUmuR88W1SAiAZeo4Np5pDHS40Eo6z5tFnrRECoirfhkDYkkEAgo9iKtQAkxGg4NbkLJRvLF8wmj80AMieoeTEtWZXkOCpkZOYtufHZ5rdEn6P1kqrKX9FA1rIDAx3hd6mRkMejCmiBP/osLSxRTX5aZmg9Eab3xtjUdzg1H99H6VcRTQflVXjZ57vEKqPOCtXfN4NnThXzthQz1wIbGk5nVjjLrwugd0gyMHbSiAF1TAKTIm4jr7RTScGWMy4llc2w6xN7MKbmCmNcCUmhPVTch0IgQj/FMFh4hGRgkyz686Rm6hjzkOrgmHWGWY/Lf9MaZSUjinU5HCSMmpoZ82GNVUaQSfYqoyEOfsvXvwEfZfooeePdjyUxaxihSe0KYwwH3017r0XfG8XW1qQzQzk0XubXVieG/H0SHDPJYmDUGKDzMHsBk1BaKl9bAKk3GHJjfjG9JQURyKCADbFP5ZuyxaBH1YtNVqLPC9ixljzA7FzYYtAHUDm2GQl77UaYxK0zTJWkM3vFSsoEGr8kY7I3ELtM3mQ3uIlk/OPcA/Cp91np3ino1GSSJbe6UFEpWehZhomkdTb9HA7gWcwZiHpvFSwaYohJYim3pxYPCrAYYJNRVv17fcC7RDR9YKamQfKyMVaYYoEGMUwuG0eSsY7QWB/TEYDXbQcitXc3iDGI+eielbuJMTTApu9nCqhROJVCrCQD1IDumNMwJFmEyJxZQVY2vY85qCSGVpanX+g+9KvwKnHhhTAHDZ7+CX/g+8spyy0eapYtZ3iKDb7KqAMU80who32tkTVGWQxhV/Jw1XXXeTfKGmDnplkELCPrEoFQiTA1176tWktsrUwY/OpslnyqQo/vP0kOkW+mJS2vh/O5jUuBBSimmrwCOzgOHk0ZNoP/muqfOjFnnV7lI2dzi71SpJ9tcl4bjrLmwzaF7MjqRCnBZ+053mLOG0GrQ3qClH/AhzcaNogB8i4fMMKqNzomUbXa0wDKQzqohcTxCSSbNdZJyWsSydR/zLe9HsxTYIsBlhkP9g/DwYvSADrZA6j2GWDLWXAJToMYpCg469k6zAZx6lzjNte5jdQEUuaYrLfl914yLF3fPAVGWUNS6hoJNhkMDKQeB9BUAwkUEEC8G+qyWWYYY4UKKZaYBGRLFPP6yobZp0DFRkjC3CUThufmH3aVO0RYoq9sF0RqSAQgQM+SfvfZ+kOWGsbgrCFmDOA1qYVqZf1M3WLQAcVx7pFiHwWwaQ1YyI3Vsn2U3E7Dho37zo4RqeDX4XWRbR5mL6C05bOsyxXGWOayn6u/X/8jMsEGY6y1Qq5l/VuOYvCAO/Z+p9rZ5Z6i1UiSw5gz1tLscrm1jIInFESpmkb1/wedfzVYfow4q0ry+Ep3lwPDWwySaxV9Xet9EkcnVLvbiWFWHSWyjLHiabcDbPrvFxtLw7yIJivRGItMOAMbcBJO/ugxgNfVLzXx81sAumoODQP1/mJzi7giIPtR7wXkbzrKKol6LTw/j1ACaYUUP+bb3OIaES2uhACeZjgjmuH66xk9O8Bejw9xnzEfVku91keJ/SgV+q8SklxKsTNZXyJ/8MS/g57HGHVmmPVhhUgsSar8xuanyItT1zROHVluHYfeQu9TJkMlnvIatIsqvaUT6sToaVW8b2nRxiirvFp8SpIqD7MXmGMaBfGonreAkoaDhdbDN8NwoOGErVNCgPVIS0z4PZXMVmfpAFuBnGUM4Xzdflchnqfc2ctLB5Co17xukzpNdjYiO8gLcCUao9p9zvrbuuUw5Ou2397hbdpoMRLMJrYYYJsc/0Pum5TIUqHHGc+SJqsGzVLiYukAs2/r4PXiYyZYst9z9JxqZ5cPkY2YZUzPrxT2yFFk5OBT2o/w56s/SLX/Q6+2/592n1/y9Qq/YDvQWpVOJ4NqHXDLjIfJfiYUQgbgRTRRKu3ZKX+RfvfrqdHhUh358AmRVXJZM3j3SHa1T4qBULDLPFQg1QZDvvDADi1R47cYRKa7xhI79iKtSpcjsqLB6wYnOPaJrhhMAjqk11ehGoXpzCFJdsl4U6lpYjpIfFVU6jOnsKCCIdZDY1Q/nWxgnnnGmCh7MaLDukrSJV3lcHCfpcGL7aCGZZNB5IMRCwxDyW7rxPmn/C2+yw98M4loOgNCgJcBTBmXQokxp8n7DB9ToYc53goFa9GZkj2hoNLn0uQTcHPrzcAaHGfZCx/5n8iTRv4RRXLOqBS77qwESrTlJFVndurh0uRxOhS+YjhqelQj4QXhFgNOg8+xzSwzWCKxTVENoEv7YXZW618lGUCAQT90BJSrOTydRpkHldiQHZiP1GHYKMWse5MVspSQdPNukDGlKfNH/D7f5QdMsuRTdDE+BWCosQA7JCWTtgLdJssrjNHEkjDNW8amt7PMeOHRxw4Xfg0aWIALlEjzDLFMdNCo+JIpepEZZpj1IYX8vGwdnJpQywtNQUIJasFL7tDDWqyAyDt4JCN2NVJar5KoAc4CyPOIApdQYuNWSC7uwtjEWrMtImRUrr1Nz6t8nXbI+sBAKeRikd7gQyTDGOM+pcC2klSuTowPeNdTt7PsuI9VkiqjR2b8XKIv+AEaA1AN1zuBmaoAD2Ptvc0Am/Rgvpl6jmKBni9psfYJ+ZE2sQTas0zFJSZ82BSnzi2uMc1dBthklRHEjFxnmB4WQ4N5jJjhkk1p8KQhVD0w2WSyfp8xusIQQr+vQZwJFqnQwwJXHKCaYRbzRzVG2C2ueSF3lhWuafkOWaaYZz/sLQrzMRac+QYqXECG/DbMKXnhr31dhY0Y5pvBz0mMukJYj0Ns8D7v+cBB57CYdfo83+ZHfMgNJlgKkkbzr5kPHjca1K0wxjVuhfPYiqpBtojR4M3AeN5gKMhiTs/vLKVgudBDiSxDbKBpvD6rPbNWTMmE3hICbT/XmXCbaw4+yGtW60SJ4eYpaNYdSt+TbDuiSecvmWT2n/Pr57zBJQ68tpFdxDVuh7XSCANfm1pXSQYbkiZiOkmKAngtKJBd96SfIu/xPhnKzkRQkI3OdrEzJR/SviQAWr5g7/IBHcGGQIMWMdhsLzp0ZsY+lnjawrzrbAgT83Crs/ut2NQRlvp9LwB7fZRY5rIDUjrTVf9ZnWyhHsYyNvsCNYDHmEy8HJ4ZfXewukFDTJ3LCWoo3EZBNYehPtMQyZ53Y5OcDaQY554PJ2RHItPvt7mDfPkkxTzGQpIqmGG57rmaO7MjKYfBRcX3Kj0zg6Ghk+WO6kgpM6RGEHP7tFJsITXCVe4AxogV++8K8+4bqD1snivEabDOEMuM8y5/4s0x4N6jYl2qfpa0LqLJB7zLaPB5Pcse1zBtmcsUgpedWL0A3+d7WJLssTO25XkrFuMCU+6Bl6HMDn3Bp6/ujbUABjDPUKmG1NdkA7AsNZKACTFgNVBfYcz7IyUsA5bgyJCD82Iti9UyHPbUYzpYZZRbXHMAdCgQBQTUyPO2TJo53viPuu/8qr6UXimw/ezA19LXO+gKPU3n/efEJozMsRKNMcCW9TitAuuRJduuMop8xNXbKfRF543sQuqR2Rftep1v55fUOho+3GMcC5vYcUJJgppbrSgspRDl/XldZYQZZil0vkKMOre5zhAbrDJKF9Wg5thnuL7BYHzLz/eLxQPKObMvGGxtUY2SSDGk2umYhNWina95j1slyWfpc8Socz8wosRSLnCJqfo8qXjFPfYUkDSCJaln2aGt1aIYnapXKqR44+Ah1aylDO9Hp6q+FBUmWEShCH3s8JXNPX4++Cpg55LZXJnjeurogNXOUY7pCIqxWBhibpGsV9mKD4R90IawGvhr2LkVH6AjXgt4iNnIaL+UvF34hHmd5/nFYC81Ohhi3UlAKSrB1zPDKiMomK9AnkG2yB7ssdud9vX5IPuKA6cTnYuu2FhnCHLGuN0I4KfOGrG8JUOuhXUtbOL4TH2/whgzfOw9iSxsjIgSY51hthhAAVRSyWwwZOqguA0bRHz6i8E3fXCdp8AGw5za6hipZijsc9/mR0Yoisxux1KCL5GPP6JEH+PcQzYDYmarT5f38lnyQCaA4Kpry1n7DllK0IJ4q04hylPrtX5ogSkfSqo2SOTtGW52nxIDBthi6Gnxl9pPvhBA77/7vzzifPsGmwwi7bkd9ls85yWe8zJttPgFVmD08+QFivVz7vNJMAHco5f28M8PA+DSxjPS7FEnznNewiRYJjPt5jP2SdHLAnv0co5nvsnco8rnvBxKiHgApjaJ8RM+ZIP58LNHdNHJIWVKNIhxj8/5nJc4pp0a21xkh89IchSKTgUQCLxo54RuPgPghHZ2OeYRr3IxmNh2YKj3Hr1EFOjmgB36eJnn9POEu8T5tzynxCEXeMo5nnHAL3iZz3mJ5/wrztHNv+WEduqUaHKOJvv0ssd57rAVPtcJBTo5okKKc1iqZpNzRLQ4xzaHdNIi4hnnOKKTiJ/TyREJanxEnJd4zueUyLDLL0LSo3yFWkT8CZ/zUjBqf4mf8zFP2AkNVCeHPOdlv95xGnRySIN/wP8nFGEqOgCO6ORjzpHkMVW22OA5n/NyKPrmKXGBIx5zjyontHOBp0j2VSbDeQ7Yo0Q/T9gKk+Ve9sJ96qSdEz7nZS+QHwem0EW2A9Po33KBp5zQ7tOqHX5BOyd0cMJjvkIv+zznJX8PTZWMwVmgl30OOE8XRw4uHwXAI06DCzzlUxo8YIcOTtjmIg95ymckOccd/gWfU+SAXvbpxGj4z3mZZ0H2fUQn52hSo4Nu1qgTo50TfsErvManPOclXuZzKjxxMLNAnoc8Q2EfXRyxEO45QIsf8wvKHHCeFH/BHFW2KNGkwC5bPOMc7aHpOaGdBSyB9RzPKNNLGz8P6+kZh3RymyY1fop8K7e56EV7g5/yU3rpZY+IFp+fnHqyfZlfHZzQGYAYSxPtRz41BoLt0lcvkY8bE0HsqLMH5Kks/jTOXtIAgRqS9U2xgBlXT/MuHwDmoaY/Gw9UdNkTaDovCVU2gDViXyiUYJscQ6w7qHeFedbC4GaIdSSJtwI+wR/ytxlky1kPZ5958/0Y8OZIwDiAZEhbDPAdfkiZNO/zu2GyayzuXN0OuLUQcjTFPKuMehOrhlZ7fYuILCVnMb7JCvNMuc9PRIv1wNAzRsYpy6ZFWwh3OAVbx1mmQYw1RrjCAuXAqla40SRLSPreIqIanTKMi+S4w1W+xY9JYVH2/4Lv8i1+DFgwjsJF1JCJYWMS0GkvoCxha8kHZLUAEk4xT5Ec3+bHIQnWrNQluTWQvxkkPuYtcxi+axUzYxewGqfBPqngJRb3JkxsTLGUJSmTUbsY2mLdiy21wZCv24gWt7nGDLN0UPMCU8CzJrEF8vRQYYIlrvKR3xMBsmJ97JAN17QVBh7mKqWmVs/UMOvOGj2mwxmoYI2+pHNVkoxzz60fwIy3p5mjFLwBrag2doSAC3nR6neqMZJvZo4iMrfXM/ALvgIhVffL+rocgnLE8gdrfkZZZYkJlHQtqblABK0JwAduGwwxwJazrjYZMKYIRa6z6cMPFeHa47YYDF5LsSBRO609DaSLOeCuIt4UDju+h62GhkVeiEmq7JMKTYNJwdNhhCHwX3tShR6XzMVCM9kkYpIlZpnhGrcAnLEmaZiGNwKLdkkjXzmBc6UApomtr5fYXGK67pD15lDBYmo+1dj/Me9xOaTfCqDWua5UWlO0pNy8fSewkmVFIn9UecpFNBnnHtvkPKVcz+8KY0ywyDjLKDFVVhECozQYN7VIHRmPSy0To+4exgIF5cGqfcEGKKa2EZCxxCTG5Ii5dYPSaiWhWmacfoo0MbuDGWbPWLrEzgza9304nAmehgOhJtW1rJL0QBGTOB87cCFLCdXG8jxWLyXPYwUhSU0CxqrbJUOVLv/zspKI0XC2p1jBHZiMdzsA7GIiCwwEC6oyv6hFHzKVSbPEJNNBMq5BkZQgZ8PzYjR4FEgcp7K6dAA457nD20Q0UVhggTzT/Dn//X+0XedX99V/VOLx+TcR0z8RBpdGgrnnQ7gyaVKvH/h5Y8DEBqmDwxAAkeUKC8j+oe/oKa22l6nEzXtS56rOR7A6Q715kiqLTJCmzChrDlbojJRFhhFv4g5QN0I/cHYA3UGN65iH/QBbHJL0FO08jyiTCQD5BxTieQrkXXnxeTv+nNajU+C/TpzUwSHF7n5K9AXSjj0jd7hqgE9kSqpdMkyFpPq2sGcW4kZosfpj2NehwJ8CeYhOQ7ny9QIDzYc8yXZbrRzZMGA/DC5sT8o4wSNZr0LbaRow4LVVnAaVzm4k/V1igv6wt1dIUYjnuRNCihqYEkLDCD2j6jVnmGWOtxyUk9+b2MlLTDBTnyURt71YJKOeVoVkZCGbp8QU8xUWeBnRotTd63t1Gy0awGznX2GMFTYYdvJQHyXfx1qYxUxub4/53q+6J6ZCqmKBfZ7kkAulQ4rZfnpaFZrRqVpz9OgBpc6+AFIbOaVCih/wXf5r/hsHMXUWGFhrpAapvgbYDKP4OFKwjLLKDn3hZzqwDIU+/2ygcKMM17jln1MWPxpW2ZmXdSadnsF6WP8a/KreXWf4hcH5Z7lzVCNTRTWxxOQZZplnig+5wTjLXhNlw36u+jBGg50L5yFgSv++1xciud2mn2ec80L1Ea/yMs/p5JB2TgJ41OQlnjPMBod0EtHiZT73C1InxjPOcYGnxKjzEs/ZJ+VAR0SLQzrp4IRX+AVK5KsFZLuLI+I0eJnP6Qmb1h69/oD1sEeNBBd4anrv8mckqfKUC7RzQm8wd1SBZ2BeIoBnbZzQTo0OetnjhHYO6SRJlWeco0XEyzzniM5wkZ9ziYd081lodts5oosGcbo5cOlhL/v0U+QlnnNCO+d4FgBBe7hj1DnHM7o4Quy0U3ndE+QJpQIzSZVuPqOXPS6Fw72NZ7zEc57zEmn26AsgWB8lXuEXJAPoqetUo4NDumjnhOe8RDef0c4J8voyboH9dRbMsgSgc5zjWfh5a5ZOMPr1c17iAk95medU6eI5L7kcCuAczzjHM9LsOviUYj/wPWJ+TV7mcwCe87IfTHpFmBy4QZxnnKNIjs9I8jD4HVRIkTqq8YSLvBKCC55hpqAyzUxQ8/XwnJd80iE5SDsn4Xt8Tp0YXRzRzol/5ld5RDef0UGNl3n+QhDEy3xOB8d0ccTnvEyGXb7GPTo55IBuPiPJM85xwHlaRPQG0LZFxAntyGOlPUwnzvGMCinaOQn3/oBe9vgqn6D0NjDw5HNe9okgmJee1uzTIC8+x7Pw87bW2jkJ6z5BmV4v2vS+klx3ckSNBOd4FsDrOB3hz3bzGS3afJ38OrwkX1DwA+CNiSaEs/EZT08Va+8Ob59hCMe8EZnnClsMkGYXhZpshyJaPwOEqWbNwTIFnUjq9AHvuuRNryvMh6nQpjcpJlfbdkauNX81D2PooMb9MMGXDDFJlb/HP0QsxAqpF2TDakK016vxMtZFl3/GOjHzuqDAakijLJBnN55mpfNN5EkqZoSKFclpjdEXc5+1UVZZ4IoztNV0CDTaYBiFHh0HOawAH2ucT43Z1xn2hlJyTUkExAaR9ENykzyWWP1f8Y99yp3gmO/xff95ySmaoZCXNFABIcboNkmhDKkV2NDCWLIKjqiQ4grz/pwLZExRYY5pVoOfTikwpeQfaAzyzcCyzTqrIqLphbwKW4FvgDNnxByaY/qMBUONFd584XvkeeSMHf15/bXFgE3qg6Rbsj9NrcFChH7Et72JN/+mUxuKLQa5w9sBHNhGMhf5ndkwxibjp74rbYyzzHqQnmyTYzRIvLPs8A432SXjg62IJlW6UBCUQCXJRGXLIem6/a4OlyCeZRR+2V/yUBYrU55l6wGcU0q7JtaSspxKcIzBoFUyxLoDDCaBtaCCeaaQ8boaTTAT8zS73jjrM1lY16CzC+QxNc2cs8wE/gjcMybcOqMhrC3BMWY8PhKYbru+hsWsitFgjRFPDV9mnATHDqBn2aHAJQfJgaBysGTLHEUPRRJbQvu0GPQKXItRZ50hr9H0bCowYyeEg6mxWQ5eeJtY0nWDOPuk+CN+372rxWYUYCX2c08AmmzvVWCRnTtxGoywyjj3yFMIid8NvsEsQ6y7PF6ggZjcFjiTYCkADZtB7SCpKMAcb7n6Y5RVDkm6DFSWBpZqaD6Zc7zF+7yH1A96pieCFcUIq9zhbQdTte7suq+5DFq2J2OseK2dpOrWOm8xR54Cb4b/rzRbMT/7AxtSvkliXdqwL8t/yQ+YYt7BU9nKKIBHQEQtWApIgVKknzneokHc14g+Z4oKUyy4N26FVPDDHmCc5QDnJnzvNHmcQSQy1hfDepMBpphnlhlknSN1igAjeYVm2MVC8UrMMMsgm2jgLHubDKbikh/VCYkvdB/6VXkddnb68yt1gkB61Q4bDDPPFFudr2J+mY8YZp0WEefqpyC7KeAMGG20n2M3bkw3BS8ImNYAN163vXh07yFFct57q0bNUXQbDK2fCj0+gBBIB/IkPyR9tMchSWLUA/vTzunR+ioDB4/JtMrOIMzVi77nTbFgLLjeduRFvhH2SAU8LnV/1RlXG0GBp7VbIP9C2KIsQM4CbHpGxd4T6CMPPp3PO/SxFR9go/M1Vhn1gEIjl9g5MnNwlwkW+c3SJyTrVVptEZ93Wl9oa77sJKX00R6JVi08ewaijrJGplX24V4Mk+PLj3SMFV4vPEbMRPXFFVIeQmTDhmaoLW3PvcI8N+M3ACjS7+x0gWcF8iafPTAbCNVe7/KBy/8N1F0lfWS9aoqKX4dG4A1eLB0YABiUZock2ent9pq7hVnUGHDfT6YVeowjq9GaUYR8+FNUKHS+QgoLT0kenGDqsE1ucJMVxkhy6D7SWocCA6X6EcDaxw6DbHkdKCuBRBi6ptlFYVmmujlGNmBxGiwzHqzBEh7k2BfGZeoZUlj4mdh/20HBpt8nabnOtJ3I7LHMP7rEMuMhXKRJBzXk9yf7pLP4zhYDv7Q91RfC0HuZz/nt/+M3GWeZFUYokuNtDkMTWg7U7E52SfM2d5hlyBfsNHcphAuSohImSD0sMeGbnmQ1KmAA+ilSIsV6oGKa5nmQiCb/++Kf889yV7jD28EYveCF9tt8RAfHfPNHj/jX3z7P7RDTriCGFPthimiIrcmEhygF76Ial16Y7IEBIN/lB3yfb7FLmuGQHCZWgR4sK+Q3aWJx1O/xPgO8zP+Z/4rkGSq2UHttnte4xTLjyFQT8AK1xNVQIJUCcv8qVZKBMWIJQmJgvMNNtskxwiq3+S0mWPKEUhUeBtLkkPxygCNWeM0lXmL9qLBUApokfXDq/TEU0lmPSbDOMNOccJtrdKAk320HIyy9Nct42Gh/yH/hD9tQKCw0ZZxjmmnmqBPnPX4e6MSvc4OHfBASbiSXStDGR1z1RJ3/7dICuYk0aUbYCoXsMLEgyYlTo4PLLPOH/AE3uOkTUQtRsWJwjBX+Jd9w1lKLNm7yV8hQZoaH/IjrDGLOkLu0keSYNX6DdYb5HltsYcbeRb4eEuEu8CO+5etG3nUWklBmmddRMuUALT7gt5lmjlFW+RG/iVLSfmfzkH8+aLRqFQ2zfIMCea5xmwRG702HTf+QJLe4TppdJllinWGffsujRia2FXrCIf8c+QtqbWsj/d/xf2OOr7DOEKOshXARa4L+8P/0jAbPv4jt51fu1QyM5BZt5OsFinEDVJYZd2mKiuImJtWqkeAGN5HkxZ6XOS/42mgFM3ljhSkFURO9HNsMhL1FTJV4oIZLRl8lydvcoUTWZVJTLDDPFdYYZZ+UT+BNinnIWY8p8w2yZ0sMAJOBddAR5DpqZGWFYJKsPkRNF6vZ0l1X2SXNZIiR1+RL7d1GMHb/W/wRgAPKBfJ0UeUwFEcDbDLHNGl2XQas4iNBjfd4nx2yzDCLZAsRTZfTaS8TiypN2eX5gIOPNvGNeSGhw19NaT9FH4rIV0QBCEr0nGCJIv1uXi+fWckRrgf5wVkw1ewUsqwx6rJmecQZE3HH5W+W5GsSDCWsp9lFMqsUFZeonGWEJqm6J6b51zR8gKDJss4j87k79omkAN9R1hgOjMqz0mIZ6gMUuOQsmIUQthLHDPTV9MrTNQdIwmHr3Bip3+UHrDDGOMvO6FliIjC4NjHTaAPzNhhyEFeggwFzxtQ7+1JhredF9csw6xxjad8TLPqaOA7NiRhB8idUk+wFK4cofbwjtNGLTNL6NZDcdnPAPa4yxTxZdviQG8gDMssOu6RZ5jJi8p5lK0W0uMkNvsWPaBD39dEgziqWMPdmAKf6KFElyW2uBVb0qaS2RRs79DHMOutccpBQjNhxln3NngWmVhkJkrVHPtDcYtDDCcSeUS0boxHWTw8TLJKiwgJXvBaJaDHDrAMhkiWp1pInngZmCnkRKC+mVZWknwnzTDHMOpsMMMqay3ZatPkepv3tbe64/x7AbLB8qAdmwhDrvkd1YCbpO2SRb/E6Q+TY9sTFOOY5WCLLfvid2iescU4Ej9O4Xx8D5499yLDMZZTUO80cFXpYYYx+iqFmi3uj3BMAqgJ5+ilinnW2j5cCQ1IhZn2UmGOaG3zo58YwG8wyc6ZJ7mCUNfcZtH3ikCw7yIJESgclhaq20vBfZ5kCSrTXSMrdJGKZccZY4T5jnr67Qxb5O1c4RimNKfZRcIFq4ypJTwlW/V+kn1FWMR/Vbap0uRf3IpN8hx8Ctn+KtaozRQxW2ReJ9TPLN3w/NcDaGF4C0FNU/D3kMV7BEh8nWPKas4MaGwwzyaIDJhaqVuMReWdFaf1dZpnHnPqxfplfT7ng1kvpMACw8JrRsKM8cuai1n2KCplWmd0ozWfpWiA52Dkpaf9qNBoGvqcsN/27APNC3HzGH/VeIEGNkYNP2eh+1fs1sSjf5QNiNOgKw9l4vUEpnmCBKaaZC8+AqSAKna8gZplqEgFqjfaXmY1mkEf0TtxqTtkI1aM4st2aCDUg4HsrWC/ZhTHNzl4Puz723RLUXFkCuIRc/bkBPMe0tVq0IturFXyknlK/d4BN3jv6N9Q621FqdpUkzW4Df/4ye1rLT/Qu8T8p/oQHuVf4SmmPZtZUD+XOXv/szVCfVekic3BIrNeUDlf5KOwTl2gQo2fvhJ/k3/L+C069yrfDniZZtv671cp1JoK9S45tNsKQMnF0wnan+c/GTp5R6L4ImFLhn/L7/AH/hATHrDLiIGOaPa97klSdVd4iYi/bjkIXzYbLgM5RVt2GSWdxRIv1aJg4deKXLFhH1mRVkiwwhXIE8kePKXd3O0ir81dWXzm2fWik4fVZpqAA5FNmZ4zpvZ/RjGCr+xW/TplwNoCd+9PcBXArjwJ5/wxihke02CWNggCVJp1m189Wk5WP8A43kfe9lFXqn79eus9A1nqhDYYdMyiQd7wrzyOU1jzNHL+gG8J9/ve9vhCGXk8wOG1h8fPXuc0AW2yGqWeSqiP+YtWNBamJTbuNGmu01O3wOBdQ8pVQWTWn6wx7gZQIkzg1d9e5De8bWDHAJjUSTLdsembeLOZfIjaj9PNqXLbJheAHa8p+u/AXiBKqptjAKpOkjrPMcKClqhlQiMMAmwyxgczLBwOjRBr+3yx94oaOengUYjHFPDe4yQBb5A6e+qLaYMiZORV62CVNhjLzXKEnTGLyFMi1iqHQ6WOSJbKUvFDIHzw5Q4utojRiRWurGQFCQ3/PpwoVUiwz7oCmAhli4ZiRT4rMjodD0pX5dNlDIyN5NddqiOUfomnpKKueMqjipUiOaebox8zgc0dPyGIphBdLB76WrnPbp9dvcwf5I9FpD2GKCjPMYiEm617YJDgOQeIrIQkz4h1u+pQrRYW+esllK9L4y/vxKz/ZC4zRKgNHDxlmg6/9/IFTn18rPQksAqOxq5DMU2CWmdD4W0LodW67R+EEi47sy7y7SeRF1DjLcHBqAKu0PF2nOPXgrVBnkC33dvkWP+IGH4aG4RE5tolTD9PZbZRKmOcRV/nIAQgDhfp8enGFBb7y/h5ysDG5UylIM23i1EWVX4fXU7I+gFiNj/o0aIh1FKiTYh95ReoexWiwyGTweVKa9D4yYC9gycH2jBhgoZRwpaT1YWtT7LIyGfeuOd2frDDIsc0SEyjUQhJMNZSSeTYC4y0dGHd3mSZGI8gY7blNUWE/gIsK9dHzcjbpzBoZW+P3GPdn2mxoR1kP8t6zHkpiMALOEgEbwvRj6WTWUG0zwZKzSfSMyaepGibJmtyqATWPtMoLe5ydHebzKqlYnoJPo20ynuWP+H32wzU9JBkGACXncIDJOlQ0xql707rFYHg/87mZClJeec3eZfoFFoRJbgcCA73uQPoWg9ziujdtMqfXcEieM6Os0aKNN1nxpFqtKYBBthBbUEX5WSZeBUvo7qHiUj9bh4cufwPznjtl7Zl8MEPZgS6BOWI+KYUUrLA6JOnNbJ2Ye/dItisgwUyY69To4ArzyPj5be74tZI3YowGdWIOpOglfyFLyzQPniHWGWGVGWYdUDTPn30iWixz2WUq8tq9w1U/8yph0Cg2pWTXaozBJJK61l/ml0yi9XxoKCDg2LxBbb0KsJ1hFpnFS46apOpAgBrQKebJYGFcVrPse/iZPInFagZcJlonjmToeq5Uh6jAVzCLDVYPHdyWb1093FsNgiWPtBrCfvdhqMVu8CF1YrzPew5uJ8JZLo/dKknuMn2mJjr0tZek+gLoqL01osVECA8ynuq+NzZ5Cs6KFRNaAIwYDLIjGAwAg+rZq3zE5eBpnQmNyTj33M/Yvnuf76dNosDoWvfmXVJSwMHZMpYSucQEYsoqLAxsn5QU7V0+8O8vGZ38lzXUESCaoBZqOatbBDIJuAVQAIDOtB36+B7fRxLhKuY9bLVt/AXAUZ5TWwyyE+oehajIwkEKkmXGUZqjKRsyjLMcWIFLvidnKNMk4ibv+P0UEKv1LqBYn7semm1JxmaZoQdj5Q9iaZFjoXa1+9NFgTw/5K+Ffd7Ws7xRjcXVDGdsW2CeWmiBzPhzbIeE6hxKiNbAqo2Wfyex5sXeMZA27k302WdsnWEHE3fI8oi8B4N82V99AXBPhoGkCBIzfOzXXoMzDS+2GGQ/spT2YnQaSCLfdqkqjLlpZ5xCCquhJpHUOk+BTN3WQKm71+t31Utpyk4eOcQ87QvxvO936ww7C3ieKQfL9QzPMU2TiN14ms7Sc7qoBs/FdR9+ioBSDoxcgZtKxhYINhDYhaoZ1DcnqbpUcyh4dM8xTZ0YiZb1pBrA6n1KZNmJzFNae91wy/p2CzK0urqNFrXOdmcorzNEnRiZejnARy2vQXfI8rPc6ywzzmdpU2j1h/1pNeRCi9CywTDzvV9FKeymrmhjmHXSlFnsfdPPqfzRYzJYqrrkog3i7JL2/Rugr7VD8uAE+cnp/KuSZKPzNa91Njpfo0Sfp8h/j+8DNhTIBCVFBzV2Oi8g6x5jWC97j1clSbxl9Z3AewuBqHGDDxln2c/3GHW7nnufhnWr86qJ1DtmRVZjqfNrLDHhdZfsJIrkzFe2ZeEdMereW6Qph5AKq3/vMU4TY7ttMchubxcAO2TDoHfYWdpn5ejq9TUU0WcTvhIPXZyu7Yfc8AGbhlAK50tw7KE/ES3iLatLxw/u8zB7wQfaM8xSClYZYvmL0T/HNFPMBxD7lxv2fiEMPaOR24LvO3pKofMVBg4ek+9+5KyvXTJc5zaJVg0ifBIFVgD3scMhSaaO/oKNztdIUOMbrJLGEs4GgheNTNcFqpXCpMtuqDFEODAK/G2uUyZNM4qcaVImzcX5AyjiN1eosJJ4klT5Ed+yNNFlaMvblEAHrgoWIdmG7J9OAo5JkDt6QqHzkhegQ2zQxw5/yB/4Qc08dE49J5fddoaigjKm937GS0fQzNsmf5U73tiDFUmDbPEB7zLdmuNmdMOTk9KUOf/TZ5x/7SEzeUs+6mOHN4oPKeTynFuAxO/Ygu4701iZn9d9R75TVBg6eMhy95tMMc8P+Y4DA0qjLJAPBfQx2+Tc38aMgq3AKHGVKkne432y7DhjUtPSce4xwRIrjNHWatFbPmA4u+HGqSOsMsgW6aM9djvT/N7mn/JksJtbXCNeh0Zn3GRqRYiyTfoocbFwwFw+icxYc2yTpszRpZdt0t3aYTUyP7BTec7p9NvYRvtelCqlKEmVzoPndGRrdFENYOpUYMPswiYMfHOLYTZovw8XLx3AMiy8McUki7AHi9kJ/h7/kE0G+NrPH/CzN+Ayy0g+ZsySYVJHB4x3WiEv42oDcTbYoc83oxoJLvzkELpxEO821/nrpX9DW7blh4wmrAIUrzDPba6TY9uBN01kAG9ok5jh9Ks/f0rfGyWffjWJfIK/Qx9s2tTXkqQssECHcQ8VngW59Jf9dUA354Ps+nTjriFpaCZMOMVy0j3UpKxM2gBa7Pq1YfdQybl5aqTYRzLw3cAqK5NhKey3x3T44a8GTnK/oTMMCwGMZtpvB66KoXWGuNxaphol+RHfQhIzSXaNJd3ne6A+g1hyZ03DqyT5mBlPVU1R4Xd535sgMEBpPXjJqbk2GW6cBaa4xi3uMk1H2GOVFmZA0zFKOxdgaM13wosBFURq4u3zNR3M07Bmmjk3KRYYKJN1hS5UAmhtEqUyt7hOhl0Hz8+G7qgxlf8qmAyhQQyZgqvIEQA3wyw5isxzhYhmCAI4BTdPhaqnSZwDbPqzK8a3pMwA81xhlDWK9NOGSekkp6mFd9shS4M47/E+q8EvUXtClhLzXPFh3E3e4V0+oEzG2YY5ihyGaaYkC+tnAipS7HOb64yxwnf4Ie/zHte4jYyQG2FkYWfzrrMMW2GvUTqtAAsryNcoh+ZRAOV7vM+P+RYjrL0wyRW7MYMlizaIcYV5H8z0hDNYDMAYDZaYcAbBBsMoYTfDLvcYp48S7/IB80yRwwZp6wyxyQCTLDm7+woLDorGqPNnoWn4Mr/K9LqXZYoKj8hzKUzA+4MqQIBPAzOUrgVwSIBSior/XEcYvA6zzkhggcMpa3SYDd93LDnwPgqjkR+wPaf3ybDrLOJp5lhnKEgRO0KJ3ROAiqYPfW2YZb5xAql1PsubaIc+NgJLfYwVbnONNUb5a/yQ21znW/yYiGZgO/0AwEPflhkPLB2TNsmHT0NO81czk+1R1iiQZ5uc+59GNF0Guh2GjnXifv60BdaUSYeMzbNLmvd4nxLZF4Jw5Fl1dgCyQ9bDFADkP6T9RuBPlSRvMefsy2QA+SNaXOMWSQ45poM+dgI7xMC3AbZeMJfP88g9ENOUPUBNgwaxPsRYSoUaWeEmBS4FU/RDPw/Ni66DJIfOOmzR5o1cRCskt1b8eT/1djS5tDxVk1TdZ0tejGBy5ivMB3/AEd8L62GP0b5/iQLrDDPGCv0UWQu+sCa5XUVG+REtLgeZrFghqh/EDO8P5AQN41tESAkg9ZFYmDtkQ0DINvUwlNB92mKAHEUktQa4zi0HfhLUXDKrwbZAUg2+DOSxxl69hFlpPHLzeVOnmFzvEg+/yG3oV+a1S5YLgQhxNmynr16iGj+Vi+oei4EnAG2UVT9DRlh1r7UWEYtMMsoqU615kgfPqMdhoHPTWcoaNBbieZcOAl7PpzCrKg3CNNRoYKoESbB3glpNTPvTdWYDUDFGf5Z/PRBZjH1s/scmZZQiQf9fvXM9/Hl5ZMaps8hEGLbWvRZQXSYFjFsJRQkHAtMHB2x0v8piGHYPh2CqZhhKJLAe7tLeU1Z6XyNPgfd5j36KIfCg5Z7UtXjCvHT3fsbHvV/3ZyxFhavcoR7FHUDtaVWIIg2uLJxOfd3Vo59S62y3Ie7RY6qdXaQODlnvHnKlTfsBdHTW3INSIGbkHG67580ooq317AybsclxAFeVgisPt7ZwvXZDz3CWZLXAFJWguDGZ/ryD8qbGapKpl4mdPGere8DPzPXsMBFNVhnlRusmgjUiEr624jS4tPcp1e5z1COTO0+w5EoYsdQMKLvENHNn9vQYtchCILXPVUj5GRfRYo1Reqi412eOIne4yl8/+jf8dv0v+GkWXzvT3EU+4hVSpI4OWOl804dbVZK+108c/YydzgteY1dIoXBJBXYJ2xljhTqxcG6YLH0n6uM210l2Wy8v3CN9tEeis+ZAvLG921gLDF39rtovOez9Qhh6x8Tpq5dIcEx7AV4vPebcEYHm2B8OlEdcLBxwvviMHEXGDh4wwBaX9x6Qp8AES6So0D4P+VaBEda4wgJTe+YHNsFiKKqOkfxh7Og+XVT9wCqT5vVPHkMOn9wVydGzd+KShTRlmMPZTEqk6qDGq4WnrtsWW4M9vGjSVCFPgemju2TZcXlTFH6fJmTtH1rDLCPtHEX6QyE6zIaBhfftcyiVVw16jiIvPQCO4NXiU879HC7+5MBpokoY/MqSRR6fn392mprVKpA+OIBNYIewQVoxyHyg8RZtE79YPGCdYU59OU4nmNnA9Kl2t5OjyG+UPmWcZYZY5woLTDPHDLNc4zbNML0WxRnwCaoo+COsWrJQWPQ5inyXHzDNHGPc5zc/+cQ8QaIcPMLZcto4k60q7QeY/8t9uFg4YIwVXnpgviIXPj6EJi75Io6vmSSHzvLrPHhOkirnf2R+ceMse3S0/AfEgBvce2LXtdXy6WSVJNQJ0rZiAAj2vZHjE9tA+vYO4CfY5KZo71klCYe2ySVbBuSwBpf3HmB+F5vc5IY3gO0FvKivY/LvHNu+EcdphBS7HfgToG4myb2FE7tuS5Cl5NOd3gcngZG4wQJXGNx7AtjnfZs79AUJlNgwFz4+5NrBTxlrrdjaW7RCX/KeUdZ4lw+4zi2bhh8ZUC+QI8khUywwzAYHnHefoi/7qyOYpIs6r2RHMXbFmhBzZ5FJVhmlFIzLTd4ep8AlbxqXmGSQLS/KKvT42gbc22eeKSJajASj4xT7PgTQ1F2SaYFdSarue2MMDDtMZpmhGOXYoc/Zmh3hmSxjxudKkIpR5x/w9x2MO8vqu8u0DWtCUp6mgDq4NcmUNAxAzC4xnsHMbFcZ9aK2QoqbvIOM6gEvxASObTHAGqPc5jpGly97cTTJYniW9qmSZJEJdkmH6avdM/muDfw73lMKfZDR/Xf5gdPwxQCKaPk5Iq86eT1l2A0sbiuOimGXVjNUpYs0uy612mTAAUAxLVXoTDGPZCcl+tgmR4p9Z8iJyaZrD7DKKDJRFii6Ezz/hsLUeIUxOgIYqYGUWGVW/NjeMsAmCsQ4JhEK8QYy5BYLTt6MVwODbpXRYOwdBf+ofQbYclaQGFk1OphjmgWmnAHVQS18z4qv4T52mGLeQ0PUkCoQ4JgEk6GYfCswvyVTSwQGA8B+GHhINix2iczCNcyrkaAn/PMIqz70EWNIrFr9fEQTea40iP9aNLGHdDHOPQe+VLvVAmQjNt0Ei1wNTHoB4sNsBCansRzFdphhlpFgpq9GdNAlgubxlqAWGjhTV0yw6EBilhLj3OMat73REuCkGkyBYGIGwqmUa4RV+gLwCPYsXGHefa5ucJO/xg/Dc9fgW/yYv8YPGWOF7/IDbwjKZDgmwbt8gFkrmHxqmctYcnXNbSvEaBpgixxFbyiGWXfwX/WxfNTSlJ0VL3aMBnsxGoxzjxvc5AYfesMk6Z1ATgV9mM3APjf4kP4AwIm1OM0ckyz6vpcOg40Gcb+/JuWUv1eZiCbmtVvjCgsBrDUbBilNRlijL/iw6bkfDAxAWbBIeZOkSo5tmkSMssbvhsTjSRYdlOjDwgfkF23vUfLnfoAt70MaxJ0F3wyAh4UX7Po1Vbq4ZMEl+hjEkkhvcJNp5ohoMhzS0u18O23UhtjwgcNZ1vmV4KUnNZHum86TSgAQ1Vsdk2ALSyqVXFFS2wWuAFa3rTGK7IK0J2u/0jXQ38/6M1qwyTKxsD61lsTQFAg7wyzTzDHEOmOs+NrR+ZfnEUkO6QkDtFFWmWAxsNPnv7hN6FfoZc/McWB0Npk4+IRcq0gxbmC3D9Hqpjork6YrPNcChNVTvVp6SoSFe8l3TrLT9d5XWO78aqiTejA/2zF2yDqLT3uB9lABEyOhB9TZuxIsOmSVMMYKd7iK0l9TmCXJHd7mLeZI1GvIo0513f0zvrLGhh1EzK9TK4WYM7YNsLZnbobZMLwzif06Q74v7sSziGUn+wKBe8XuC6yGABoxZk8l+n3UoziHJLnX+3rw4+tihllMrmysaTEDk0fW+632vooUhGUywcNzxJndPa0K69Ewky17TnYDXqC/qp1dLDBl17az3WrU7ld8IBTR5EHuFaokGWCLEVbd63CFMe4zxi5pOjDW8H5vO2DS0Qxl9sPQQv1pP0UnBOizKLlYqr9VRhligwkWfRgztvep72sRLXbjaTa6X/XzVeDXOMsMsMVKNOYDVg3NF3vfZJ4rPOq9YIBnveaSfdsfdrnCPFJlZhx3qTNx8Ak9mJXKLDPeEwn/ybTKZOrG8rvJDcdN0uwyyion3fAsjmMIkhdvhBTdKklWO1/3cx9syN4f+viNztecoWoS23Uf2Jm1zLorlpL1KrmDpywxwfu8xx3eZocsN7gZ/rkPJTZbCrQ9R3NMh6GmjbvHWPFe6ElQLfyHXl8IQ6+LGp3Lz+lsP4QycGK/qZazghegr16CIhDBQH6Lc5uQmqjw0gGM9a4wvPeYRm8M5uH8wTOm37lL+xGwBDfeucn5+WcUpss+mctToH0P8p2FcHBak8ynwJ41VTUSTDPHSwdQ7U2SOjhkqTttYFcTL7gl8eABvBo95Sj9Mn1xm1RStoN+nSHfOCukaD+Alc4xplhgmrv0tXaIoqYbglPCF69u0htLD0lNVLjRusmt6LrdjRJ0vV4N3KwKRXJc0eHWyamMugCpg0Pauls+TeNDSE+UYcfQ+S6qnP9jA6r4c+DNU0P7JhFsQ5Ecbxw9tD9fgNHcqk9OZfAu2cQKY/TsnbDa28fFpQPG/+o95NV0Voo1HGKydUDkeRSmxS16iydM5Ra8QfvKgz1+/vqrlElzjduAFQ8sAV81AJISvFF4SDVvk6c8Bc6Xn0Eb5A+eQB14AF9rPoCT4CsS/rxLa5sGho7nbJJqG9o4J51w8ecHsASp71gzyCOI5Rt0UQ9ml3GylHjpU8j1FmlGBnLIX/GkN4B29RLE7XolgyUrnXbNXyrbOoyaLagbwNxBDbqMCXj+02ecbz2Fz6AZWVMwzjKPyPMNZm0NBdat5NV5CvRunrA1KOleiikWmDn6M1srO/a7P++038EyjP7VVWLUeZ/fhQO7vjHqXOM2Lz2Cmd5ZXn/wGI4gNmGpaH2UDBRegnNlOJd7xrPXn0ER5Ok23DLyfezkGe1HUM0mIasNdJ3fKv6Mf5X7q5RJc6N1kxb9xEN69Zf9FYWyeYes+2wd00FHAPis2TKJRIls8Cppc3bjOMvMc4Vp7gbWgRkgS54tWa2mRqe+SRHXueWUclHIU6H4aBGxEeQSLaLAfN6knyJzTAeT7RyTwTBcptViW8qvJEcxeFjKQ8dYef9L/iFzgUHXCgfsCmN0efFv0lJ5EFUxk3gltKaDZ5OkcHHqjLLqLIMEx54MK6DfppFxn0LquwlYFOAjxsBxMBlPUkVG58NsONtaNH41Likq/lmNSdkRGtxThniVrhfAIIUriM3QCC2k+SoZuwYMfNfQSew0MR7kG5ejGORdjWDQbqbDVv42HCiRpPQj3nMWoHw81oJp/NmEz3QAFG9yw0E+eUzJbD2iyTa5YNdQdxadpFoLTLHEhMtfVNTqXNXfJZVdYzQ0qs0ApMUcbJS3oprXNGVnrhQZYINh3uN9KqTYYIgJlpw1J+9cwKVlEeZXtsUACY5fYN8kqJmcgzoLTCH/2RQVNhmgTMZsOcKzbAwFmyg3idgPBatCnVJhQjzMhgPCUhxI7tSP2XloWFMjwWtBYvVlfr3Ln/ASSabrc1TjFgpUoo/f/Pkn7L3RzhKTjLHCG0sPoRN+hz+DbtjLttOijQslOwQ/b4PV3lfdYiRNmRodvFp8yi9yvZjMbJfeByfQBj8ZfIsMu/xG8VNGc2tcKBzyaf4i73CT10pP+Cx9jvMfPuPrX73Pk1w36YMDOrqtse07ekq8Dj/o/T3e4Sa9myecZKH9AD7rO0fy4Bkv/Tn8zqU/42QQ2o+seTh3BKlchSsHP+NcCatTOoEynLz5J5Q7e/lKcQ/q8KwXNrpfZYAtvvbPH/C1bz7g0+xFMq0yq9Eov7n0CUdvvkznwXNOOiFeh5cO4LNL57h2+FPOKV+qCGThX+d+hwmWAgi2w9DBQ7a6X+H10mM+zV7ktcITY1B8Bid5aLW9TC2e4EIhFBlx+7x/mX8NsKH6+fIzjrpfprP8nM/6ztGMIno3T+AAPhs/R9RskTh6zkuPYG+inb+x9K/5/BK8VLLvfZR9mdjJc2a732Lm4C7HXZb8B1ZHvF56zJNsNxfmDvm93J/yIG+f9y+zrznQ0Lt5AnH4vN3qpHNH8GnuosEUeye8dALPOqGtZdeHznBN2sM/P4DPvnmO858+g3b4i7xJ2zqo8bVPHrD3VRvqjB99wkrnm8g/KVmvEjt5zgx32eo2A/fk0SHLnV8lyw6vbj7l6WAXF4qHfPOzu5zkodrZRRlLWh87eECh+yL5gye02qDc2UuqXqHz/nNogydf7bY6NA7JwSqTe/epdts17Sw/5/cKf8pfTr/GQH2LK/EF7nCV/+KTn0L2pzzJdiNmVOrowNZGE/4y+xoxGrxefMyD3Cu0iHjv4E+odFuAT6peoR6PkTg6ob0Ek7klAFptEcUoxxub9gw+yXbbXnxg9Vqj3XgghXieoYOHFLov0lcvMRJf5V/yHd6tf0CrLSJ28oyBzk3yB084dwS02XO8xii/9fOfcTRo66Hc3U2ZNGN7n9KM4LjrHJvBr+zL/pL3mAD9cnfG64r80WNanXZG7cSzvMmK91XLjAfGo53tg2zxMHuBZca9bxtineTBCY32l9mJspSCLF6sonjob65xm3irTj2K+7moUBWpleLUyVJyBZbqEQ1lRCpQ0EGBvA+F1+NDHhKxwTB/vfhvqORSzj7aYiAMLptkAktrgSlGWPXBoWpbeTdPcxfz5zOmoAGFHWRaZRpRnE0GaKMV/OqSJFo1qpHVX+MsUw9gYZmMM9WK9Duzy/r6HlLsU6KPoYOHFLubKP16pfPN4Adq9dMqI1jQUF/4rMZE3Y+sPolHRgox2bkB76l6hULchlBLTPAmK/QdPaXYmXMJpxQ1Y0eP2eh8DclrU/UKifhx8KwzW5ptctzhba7yUQBBR0NVaLVgEgOaeroqtvgiq5cz9TKFuAV43eI6w6yToEa83mA0bky1/d52BzTB5N9JqlznFmXSzDDr+QVaF1WSYfBs/oo2PE+6cq8cN/uBShh0FRhi4uhnvLb3hGfnodJdY51hqnRx3G0BO80wQJNfooHP+2xGA2QiAy3/Lv8IybV3g7ppp/NCGMbuB1WHMcCPz+BHNTqQKmo9hNX1Fk/Yzp1asuwEH26x3AGvYTWQq8RTpOKVgAOYmk24Vyw8sxoMC+xcYYxp5jDrIwv42CHrsuNuDn6p/eQLAfSe0QZ7GJjXDvwceMMawCsscEwHUfM5T6e7uPDzQ8bqKzAHX+++D0sw0PuYl4oQ620Q9it2vn2BS/WnvPQIzn/wDEoQTdumZFTQNA/zFzgmQaZV5vyDZ1x+YxleA0p2w8ynow5N84sodl8wptoh0GcPSTMekTt4SrZ7B5rAJ9CZfc70xBypegUuwUigY1oykMk02IN4rsHrm4+pDRqDJB7kOde5BUXIHTyl0p3iGrdsyluEaKLF+T9/xug3Vu33xeFya5lylPEpyBgrVpQc2XXkT4FHUOru9cSziBZsw2hrFQpmCt139NSuXwm7Hyf2mWokmDj4BA5NlkXTmj1O4EbrJquRUaHXGOHi5gHjg/fM6y2b4qUyRL0teGTyiszeIdloj3OfwU7ehCn7pLjMMrtkTI7RqrITtdHX2oHPIJmrOpOFB9DxujU4F+YOSU9b6h07VuRl2fGiLJGvMXT0KdXOLiuOT6D6eju9vSf274+AA5jcu2//3Am/celT7g2O81nfOc7/+TMKuVP/hRQVGu3naG8aOJWiQqJeg6I1uBnKbDBMsl4lFa9AyRhu8XqDKN5k7OABx90JS5QiTdR8TipeoXfphIttd6EXyBlo+pWDPYhD58FzyOKgDeVw7TfD/S3CuU8g/w2j28qbaYAtaIFMiltE9C6dQA7Gjz6h0PkKw3uPifXWaVdfuH1qpAr2/i2sCJ8anIcC5Kfsuehjx9boeNEYq0W40H3IjcEPufDzQzgI17cIXIJzbUCbrZ9hNqhFCS5+csAzwwL4reLPoBeXirIJYzmbwpxffMY497gXpo9f9pclHlZJ0SKNrW9JI1NUXE5mrAI7TOQTId/GTPAaEsOrjxIZyl4MGTW8nypdJKg5c7hIjnWGXRJkhtVm5L9NztM8k1SdwVqij8Mz07xZZswDkq0AshyGyWnOizvJZOWNZMmRGQcS0+w6UDTKGrPMMM4ycczLSB5Qer9p5oJ3acKLxxlmkSG8/Vc7UMWiKdHnUuFlxmnR5gbBSSzkAWAyMLb0/aokPSWsg5oXJjKZXmSCJSaZYp50uOaafBrzJOZMmSpd9FFilVFk2iuvF8l0Je2MUecY88NrEjHHWy4plPxIBbYmxGLHyUO2Tpy2MDixIqrLmeGS9M5zxQdPmkCKgdxHiR2yzkwRE0SpvSp+xYZKh0nvCmM2uWTIvVjEFFwP4TiWTlZ9YYobo06BPNkgs1ll1AHiLCWXTreI6KHCba67L9Mw61jARdF9UrcDg1VpmB2hYFeQh6SLO2Tdk8jqgAZVuvz5qdJFin2ucscZpmK4iLGl4rSAFb/TIclyg2EHobVeZ5nhzeDBUwg+Kgo10P3doY8b3HR2ZZXnEOTLX9bXb374CeeLQB462w6gBK9OPYUy9BZP+J1Hf2bn4F8FHmCDuW7sjC/ZP5ODl4rwxqWHsPzQzv5p4OgQ6vCV1/egtGdnVRlowjdzd+3njuDCm4fwKbzW+cRqizZI/tYzG3r+ebDF6IavHTwwYKsdOIC/kf3X9p6d0J4GSnC++Ayy4bOWoP3PgSk4dwAU4bdaP4Nl4BvAJWDe3qt9D76yuWf1XAHO9cIb8w9547WH9l5t8FrzCXTDb5Y+gR3onHsOh9Cew+rabjj/39tgk0/smtJm1+f3Cn/Kszfg9T99bGd3GV6/9Bi6w/cuhp/91L4e33xOZ/HQasssMGHX6jeKn9r9eABEVgvTDuf/388g+8zuxxGc33xm323Kfrb3JydwZMASObuGnTvP4XX45shdmIdz8Wec/8kevAe07cEmpP+mWZLwPrw+aIPF3xj81H5PE6tjH8BLcTjXbZ/ztY+f2GPTsntz7nWMRLBnnw3COnjX7sn5P34GXfZ+X38Qnrei3Zfe+RN6ez+BLvh6/r5dV/VzrwEfwOtTj71e+83sJ/Y7PoELf/cQ/th+b/sgtGcPubB3aHXTa/DaG0/g57Y2vjK9Z3VWNxCHiw9sYMp5+HruPizA+b/xDH5i34le+I2DT6ENOj895K+/9m+MrDAFFz88gEnsGiyH9RqH32j7FL4K/BxevxI+85uYeqUQ7ufrJ/Cx/ffO8nP7LvPPOX/00O7lHlx8dGDrF3uvc5GBkG+0PYTX4bVPn8AedLad8L/o/Wd23bN2r1/7+IkPojmC3u4TfmvwZ/bznz6HTbjYecDFtgNowrlOOHfwjMFzJX4dXhfr29RCnSRFghjbxc6Lzo5rEfERV7nO7VBvGAteQ2KRKlQjbTHA66XH/A/Zb5Ki4hY9OutLwQKkn6KFkUSzVOkK6ouiEzRaRCww5T53Q6xTCqBVHztew9Y4TVQW+9bO/C6G6xvcjN/wupMj61NXo1EmDj6h2J1zICV39IRKZzff4sfOXs9TYKC+RS2e8Ot0OghNBrWTvcdmJNKKDctVXymUYYRV0gcHHHedg8gAFpEjymTIsoM8ipNUPWG1o7uGws9kHzXHtCvYpljwumGJSS63lilGlrYuhrkYtQB5FpmP2/+zsKZLZOplGu3nUEJ5ju0wrK3TanuZe4wzGBiX2bjJmyuknDAzxIbXygagGot7iHVX8VW722lrtYiaLdoiq33r8ZiHSsl+oEKKStyUCcI70uySaZW5FV2nRgd/c+9fsdubdlsBeW/rmhTIh3Vi9bAS3t9izteNAY5x7nCVq9yh0tlNrNNqr+PAUpcUOhHYz5KiKqDnbHha/uAJt7t/myRKHB915YZsbxQaZ8qADk/lrdBD+owyqYsqT3NdyOYNjKAiMFGg3CojDLLleFCKCrPMBPJB3aXLP+JbTHOXATYp0ResbRLOWK7R4cQJI3f0USYTsKuXfqn95AsB9LI8tcPlCDuwOoFP4G9/859QpcsQ27aXyewdwgl0Lj+HHexgacK5/xcwbiaPtICSPaTF3t7/L3l/H9tWmu95Yh/5kOKbRMqkTFq0JYuWZFlqyyW3Na0aV1VXv01XtmZv7/TduZm9yE6SBRbILiZA/giCRTbABvPXJtl/k8EOEGRnMwnu3um7tzvd91a2eqpfqt12l2vksqrklixTMmXRRZu0SImSSJEiaeWP3+/3HNUAO/dukEZmqgkYlijynOc85znn/J7v833hQrsm227jgKwVrvMuf0mUI2617xJ7T9Iz01crDuQ5lz/k3an3qJLi5dQAAxxw6d5LXi4eyYMLAVti9ZcAJO+30GsPsrKS0gxFiW0fcqnwkp/mUs5Y3XwOyqQhBtONPOE8FOfl5pZq1KABwSJEE0dcuveS/YUgzIsfEQ8FWAHkQZ7pcDA6yCL3eJ93SC5JcUQVKdri0qdD7T3WQ9NuwkFSPAPiM3VH4Q039LvXpB//1sNf8y+uXeMgESaZbXF56QUO/I1B/EmH8aktAEmpqYCXE/DxOC2MyaneMwF8FOgJduW7r7XyZKee0ySCJKNK/1x4UCMeeCaFxiFcffSUkzRCDy7BpcpLemkP8tBbDAjToqGsMnBF9AAHhIsQSh/KMT2BZE9WiOlp/6Sgr4EUpQn57veyPyGWfwVVAXKXWOCbvV8Q8HpEDrUgjuFW/6nAbD3PcfgMe6EhmiHx8CEm1PdeQCQ4wQJMzG8SL3WYHV2jHDsn5+Gh9mdI2tSm34F11OT9YZVSUJWVNFq4yQd5+Buhh5AQsPNbhd+48z/IAedLdaKZJqxBa0p2NVV5BjXI8UKKumvAvsgBp5Pr/Bl/l68k/k/CCFjSYqwqY7UcO0e6LmO0vyXgJnlp715uiHOPZaJk1yJdZCISk1TUVL3ujjfYQAD8lmzj3IeH0r9rkF0oEVuSIk7S7fyVjy/zq06CQerugdTD4x6LfJNfsMsQAxw4wGWUIrOsskWOqrKWdhh2RdYOKcaVpWV+n+CnM9lKaJMoI5QwGdQHfJscW44d9zO+42RVFmYxyIED6gCWucEcK9ziLh/wHTaYYI+zjgFt/ikg7LMio3yd21RJEaLtbA+sbXa+Ty/CyAO24oDAW9xliQXHajPzZjPNtaLVfFs8uo7RdkU9hkCA7PssOC+0OVYI0GOGVTXTDbHKrPMykhU9+aytQhsAs6nMMPM6NbDJ/m5ArEeXaR6rtFRAKimyIgR0LTtCky1yHDDomIAgIKdJu6qknATb/O5sZT1DmQ0mHSPXGNdL3OQ6K1gAjaRN+smyIBLlcbZYZZYUVQd8GUgl+xmgh+cCo+R4A5xlz606LzNPWu0mLHhCvPiyuuI6xJLKSCZUXlYmw47Kso0VZ6myJoEwPz0z/jfJcYkRLGXeUoKPCblzMM8DV/iYWf0wO+zq9bTDMBllF2SoOMmQHaP5EA5y6IDHQXDn0JiPw1rYWSCTMQoBJ8m147FryZjoJoc2JoKB0uYLu8EEB9rfX+rXPZxig49wTDBCyHPzfWAKqdsS+l5cf84DM8jzvobYSlSBOeCHSJ1poN8oUm8oWEEFB9rwEeipkkW3APQtIc+3uu5HFwwBAX/eRgCXBgIe/p+BK8hz8KfafqvRAsAPgBwOROSHOLCNkrYrh4BFy3oMBT3ea9rGPFKbriFg4D2krukhQE9Cf87pZxf1/YfS9qABiOixvKltaQCPgf8d8GPtN7S/9LlPQ/usrG1rAyNASvdX0mO5AzxAwK4negxXdbt/pG1WBYyrH36q3zUG3TJyPqcg+B5SP/waeF3P4w9Ofb6hbajqtvLa94/0vay2r6DvP8EfEx/q3+Pap13gvVPt+LZu/2d6rhb0+G7qNt7TfS8jgJgBtXf0s/9Ut1nHH6PGEMzrdgt6TCBjvAH84am/ZXXbSWSMKTjHG7qdJT0+ndfwJ9omrbEo6jFn9O8G8Nk6QUH7aR43LyN/ql0F3VYJN45o67EcIuGBHq5m5j3d7tSp85PW9v1Yj8fOzxP9XEn760Pdd0K3l9BtPQAu8Xvxiu2fEEvucd9bcIulIM/7NGWeI2EAFkZn6e/23LLPfsYcf7v3HoP1Dr3kcypkaCTOuOevscGmeQxIfZTplel6Hne5pc+ynvM4fMwVxy6aY8WBihIYNe3UAcYuN+aWhLm1FYQ462oIY/ePs8WnU1OYN/nRQJBxCuxxlvd5h+nYY/dcPlbFx31uMh7aYkf352EhOAFCukBoz2NjSRmAM91eJ1Z5xd7oEDsM088xP0u8rdZDvtRYAg8kcME8nq1us1rL3u8R4DZv6cKn+Pr202adaee7XvDGXR2QYocMFQdynV6INiBxnAJLoQWnBJhsb1IMCaA5TJVSKOvIOGJvEHCLtwZ6mtrC7Hdme6vseCkNpxC7iBWuE/Wabj+WqtwkwoLOF2RBXyS+K8xRIe086tqe76/ZjJ1BguTOcpc33HENckC01yTryfbMikLCo0I8J/sF6xjzdi0xwnQjz3pMJrVRjiRstNem5GXZZJJb3KVEljJpzrIn6jH19gvQo5pIMMSeBD62j/FCPZaZ5+/1/hTP67GpoSZG6jHQ2K6nI6JcevSS6tUUa8wyo9ZFYmvQdv6km0yQpuICUG0uco9FF0Ri14t5QxroC2hImvjWXyq+JDr6vrP1sTFi7M8MPRJuZepf/fqdAHrJ1r4P5jVwq2XnSoecQyf4DUS2UENu/vvIDd9kpWMQL3fk4SFzRi5UavLQqEjL51jhF3yDIyJ8zCJv1D6hr4Q8vBIygflqYs09oP5G7CGfZqcYrh1ynNyCX0Nv0fMfYFbwxfAf+G15z+js1IFluJm7z31u+r4k1t8NkWJQF4ltP8eEbTV0G6Yaz2AZ4jH1bMuuwBNdHcsgD+AyvDX6KzK1Ov+z+j/zV/IqyENQ5Rux6iv6s21hXZVa0EXa2JWb/NXKU79dCeRhmofZqVVi269QCyuIISh7QT5zrnJIJwSZRAU88QFgCa7Mr0tbwvrvCX7BmpXjO9c4pJM7ZCshjLEMdXe+QNuehL4VOPvtFvREPnM5L6vGWUoMNg5hTiZG5wsKFoW1HWWVUoT0fM3gFz0P5ThbSQibBAWI/eyVFMQVSeQ5YJD4kw7pqTK9AATjSIFTkLbRgmABgolXTOfW6eEJ4NWD/tYrjgZ0ol1XULMEb3sf80l2RgCFUssveENCh+dDpKAty/sRmiTvtaAIrxXyMua7SLGm0nLG4OzUnnxXx9aVuqyYx9c60INwUbepRXkfev38z4GfCoPuQqXGrfRdKVituJyS/gjfgcB3e04SdBAbIIxK5asKOGeQgjOOFHVtHOvzfF4CZYwJS1rPha5KU9DPlxW4X9a/ReECn/P78KqT4Bt84qQS06wzoiynCTZZU4ChTYgV5nTFbtStEJrHlMlGzWB7lVmmecwHfFvSvPGDKaZZdwBUBDGtNvmQAVS2qupCefSzCyxRZJS2go+fMUeaMhV94KTYYZkb7JDiuspwjQlaYNzJP09LLgXAEkPgJlGXmmghSSCsWJNgrDDHLe6ywwhzrLjPGIgohvcb3OWWC0jy1OAWZLHHDGmtqDDTXXtdZ4UH3GCSDVa4jkfXrXQbYGWMtOdkhTmsbRjggAhHbCobbQkJuTGb4irDbkHitPlwrrfFpjeJ+ahZ6jlIwIL4VPksTklj9NMBLalXAgPEHPmAQXceRM4dVX8cGQcGCoqx+YgbX5KsnHVFoYC0z/HoqnH0oWOPGlhlPmUmqSiTZpGP3aLWn/F3tXgRJMGKxU0meJf32CHF+7xDWg20p1lnlVne4ldI0pvngOAyGeb4DJOZ7DCiEwsxrN9gkhIj3NB7ujFSLYUywhEjymjuKghbYJx3eJ/3eQfxIpPiTsbYkQsCKDHiQD6Q57/JY026bZMSk1f38FzgjfWV2WZYoFCBcZUlHbq2mo9S5K8pq/g3+fWffwLhPuQ5oPJTloAjIILUV78B1vX3QWADOAA6yPMkCLwCnRPAb4Eo8vw8r9uq62f6kVouoO+1dbtBxEE6Bnyuv9v39/WzSf35FfAMeKn7+5F+9hE+ILYNDGt7P8FntSWBXeAEaAJn9VgiyHM9oJ/5SP/2ELit26prP7xCQCMDpWJ6jKPAju4rpP1U175o6WfO6D4uAH+ubbG++F/p8RijP4vU2x3gF9p3XaTmi2mbDBA0YHFXf97Rtp4FPtXP/yP57EkN+gQhh7/Qvo5o285pf6QRMHdH/xbQYw3qcUzpOehpm3a1HZ8itV1Jz+0W8EL/1tVtqSULf3Gqref1bzv6OXs91XY2gLvaFyWkxjqj36npOavovp7pz4P4i+Mt/X1ftzWgnz2LjJU13ZeBYju6X5B6Nqj77tNt/FY/c6zbGNT9nsE/x6/07w3ddggZi572gVoWnzyEvvO672Pdz6D2d0h/3tHtxfT8NPQ8qJqJA/wx9hWEmWhg3xEydgZBbb7l92f67wT4b3XbIfzrN4FcIy+g9eW/FQJQOneWIe+Vs75ZYY5xClj6bH9IwiiMNT/OFtF2k73QEA+YxzzBDDhbSl5zHl+lkAAlHj32QkIuidB0HovHniwWW5iJ+Syar2hIWerG+jL/Ugs3MbacPcMM2DOP+QEFTVZCc86+panKBnuuF71RtanYZZGPMa/hY/qZUHWE1IE++BXVRdFv8gvucou0WmSYhcuOsqcGOaAX8DiJvSJDhQAC6HiITVWo1+bAG3T7tOAFs8ywYLeF2kNWk5e5XHnBP09P0iPg/JGtBsg2XnA/tsA4BaeuAJyv2tneHm0v5BZgV5kVv8j6C24n/iYS/NVmiZtEafKL0DdY5GOG2OMDvuPYXhNa81oIjfneScJqzp2LIfbY9YacysDmGyDz6lVvlhFVOlgoXpExLPzGgkIkTEoWyZ/rAusx/axzhV7Ic3MKq30cSOrJnMUUCeY3bcnnppCJcsQsq+zoQq3Jis9q7VtRH2fwCT5myzPe3pJ2h0ZdYIjNFc7WWuwkB1ytVvLkWrCQJwtA7SGWKbIvYVHmr15Ui4cjtshhCiMQos9y4poL47IwyF/yDfpViePR43u9H3PgqVyaVbcIXmSUTSacMuYx0wynxRf9X2bGStileEI+JYcP2Pz3v34noRiU8VdUbdXGGD4GmnUhbKzqAgIW2MNPfWI7MWR1MKWfU0kqVSAGqXrdRaXf4i5dD39ltyVsLKr6ew1YkhPS9YTdRlG2QV330UCKF1vNbch+qEvoQqiNW/mK0uTbfMAQu/QIONaVAwRrkHzYYpQi+5eD0vautu8Jjo2VrdXkYdzGSRPYh0v3XtL3HvLg38ZfLVY/EpLwMjtAlpLIMbUoCyvt3iYVrmC01deKeGQAUtxU7HiO/BXuhxDMw1ThGVRg1xuCBlx+9MJvg1Hwu3os27gV5mBeorb7tgW4o4sUXdv62WX5XJ+CqPY/wPl7dcLLcrwbTEibw3Iu4isdf+V8G19O3EKKawUvQ2097pD+v6yfb8P5Qt1N+jPtinz29Mp8TbZxMoYLkRhq1IV5VodgDeLVjkPaKev37uiqV63uF/MKZHr0pG+v4gq+DBUp4k+vMsfk3IP2R1cm8A6Eq0vfUtTtLCLXjUmqDRRviX8KST+xd4U5f/vGbtBx7tGTPsgiYKqtwPYQIFOvVwJIYa2sBhLIZOwhvryprn/r6nmxa2lOj0FXpftbXeLuYL/cr6Cu8BlN26SfBlRsaDSOraLZKlyVlAMI7vE1Bjlw7CDx9XpMRVNcy6TZ1RmBR49dhlhV4+E9LaJSVCmTcQ828wm7wTKDHCqTaFhp+lKw9GvbA/reKrP8iO8rC09WDNfVXLvKMPeN7gzODNsS0gDHhjO2mgEex/QTQHxP2+pxOcsqZ9VnQgDNgEvis34yc27ArSxakWNBDutMO7DOUnizlOjiufYN66rngoYyNIlQVs+ZNGXHAjRwyFbs2oS4yy0txhZY5gZ7DDHBBgMcsMkE5oMSoEfJyyrItuNku8vMqwdLSRlwNxwI9/yU7NZYkBXSmv4b4LnKPCVISphqtiJqK8rD7NCvbQX1+9TVf6P8j6tkYJ0rBBTYM3m/FRs5tphjhVlW8f1Ri64frKi3osaA4mNCjFBii3EOGeQN7rLJpFtZl0T1HCvMaQCByFCG2eGYkLJVZQW2xIhOWDadJYF5Akm6/JYryj26jn24yaQL/ejnmG/wS8Y1VMbSxA24FPnPczW0l9m+hdOsM82Gtn2IPVaYc6zECQ1BsGtulCL9HPMWv8L8ZCxJWSZL/uq1GDjXfif3n3+tXkfI82EDmdyHkefIEQKsnUeePwZUJPT9DD4D7iw4MmO//tzS91MIu+cIASWaCPjwCh/kqyMgRgABHU4DPyBgURcBYJr6r6v738dnfMV1vy+gZwunFtw+jIAxR9quoVN/MyCrru+XdJvPdF/H+u9Aj6GmP8/I13taG9hzeV9rOPrx656e/t7W/mzoNqL6XhR/YbYB5Qo+cHMAZQO6Xun27fj38BfVDSCN6d/OI7VBW7fbk5+7uh0OoXoAJ0faL2qTcvIMOa870DTgLKjH0a/f3cYHane0HwP6nvVTF78eDCJjYVDPlbG/zunnngGryLm24yjptnq6vSNtg6fvBfTvu9pGA53O6vHvalsbyPhKyHsnu7p9q/PP6nk80O3XoazlJHva/jo+qHde/7aNDxp2kHGRQMaFgaANfEDwCGwaAPpdLeHZ1T54od+9iE9gMGWSgd4gi7OvdNs2/nrajjFttx2ngZOD+GP7pX7fANwXuo1xbfewfj+s7TGZ7pf89ZzziE/xMgvcd+qMLcZZDc06ewkD0Hp49LdesUMKCXaIMM06N3oiZ02xg2+PsaO1x4CGbvTINl5gYToWpGA1WRePJW6yyqwD6+b4zNVLud6We+ZbrMM6V9zi1j2+ppLb58yx4uShpkowZpewms5ywKAqMM6Kt6TWXSWytBFf5Xd5j8n2JuZxDAJ2eHTpKvBozDzz2gup11qTCGUvw2fJKdaZpovHDKvOa7frSU6sAVZW5/YIMELJhf0cJIL0c8yT9Hm3oGdhNLneFj08yrFzzLPs6ggLPRylKLZJrY5j1JXJcEyIbEP8NPtpE1CQMcoRN1nCUrirpLCQNqv7szznA77DCnOsM02bft7nHSfnTbHDhUqNQQ7I9MouWGyWVacQMFlyrrdFrvaCHgE3huZ5QI8AAWVszvOA4Z6f2m4p2KKY6UoIBCVCvTYFximTZoMJTDlogRmbmjnQpp+bLLn6aodhioxyRJQH3GCNWd7nHQ613m17IZd8CzKHGKHEXmiI1ZA/X5BxNg5AIXmeofohbfpPhagMcY+vYb6moV6br1SesND4xAGPIrmO0FZZu7Ezr/dWmGSTHyX+bVe3Rmm6+ntEFTo9AtzlFg+8G84/ebq9rnOHXcpqv2K2SllKNENSA1ZJOUshA4RDHCswfoqh9K94/e4APQXd3EMsBCcxBPQxxloXeVh28U1rrVCrijmqY4Gh360gxV0Mgo+E4ptBBm3AKP3qszJCSQqwpH6/KIBMsIGY0YYguK/btwdIS9tjMoQZ+R5V9QNpAQ0ZVJeLL5hkU6RDYT8x1rES12CBJTHgbSOrdFY8VORzfU+krQYcktT9f4T/MOzhr4qCY+jZZMOjJ6BKDF4sJOCybxLv+jau+0GCGRpjZ/x+yQh70kBP1+dasFwqvJS+X0NWhdfwZRImzbACryzvbcYuyzYKwHM9niw+wFPW/0+Dc1kcM422THJYwQeUrF/z+CCcrcym8b1O7KUgnBs3dTmPoxQhD7HlV7RDwugj4bcdFIjMy8MjXNJ2GUCInH+KuPRgHsJw7VDkvl1EohOTn/tp+0Cdbj/bLslx2PlEt20g2L5s+/v80G0Ha4eNCzsuA/xMymRyohoi925Le1/mBuScG5Abk3/9tOWc1yH8UM/XPH7BGsKXdZjkxQpka0Nav6csScL4xaGd46K+lwDvEIaafz0a8b/pryk2nCSvoJ5dAppIOMA4BYbZYZNJt6plQSwmu/zbvIekZImPh938u3hMsMEwVXJsaRSLyETBD7QREKbrgi1KjLBFTk1nBzmmn8/UcNhWODOUWTnl2wG4gsVS/mzF0aPrJAa2antEVP3oIlgAgay+SkCRyC+7pNihSZQlTS2dZZVhJHDgJvf5Br8gRJuSsvUsWXSJm0pPP8KSyAqMY6lRIKDiac8MewhXSbHCdVaZZZl5BpBkX5Pbmh9MSEFPS+vbY0j/dpYyGVaYc4nCy8xjFgwmCU1TYYkFAgqyrjPNEgtM85gF7nPAAJZ2aDLfRe65oiPCEQXGRTbDHhnKDCAJrsPsEOGINGWXXm3nQFLCJMHxa9yTAhLxGiloUu+uSnhthVXSxp+zy5Bb4d5jyDEEbBXfZMEy0g6xRM5+2o5x59Fz4xkkSXmXISIc0Y8kSu6ob4gFGsyy6lIhzbtFPIIiDqC9wbJKX6/g0eUm9+nn2Pknhmi7gm+axypllfFtoKgVyuZbYn0rEuI2m0xQ0UTeYaqEFIC2gtiuyTJpB3Ye089ZlSV5dFXWLYnyq8xqITnMMjcwHxZjNOwhqcZPfh9Sv48QIOEyAlo9QZ5dYnlEcwk6xnyqAJ8hwMJv8cGJTWAXDvcUbLIF4ycII+k3CHiQwK8ddUG0Z6DLse7DvGtf6Psv5HsG0HUacNLBBwWDCPiQP9Xu8/DqFVIPlYE6nKxq+w+QeqmA7+u2izDLwnosxmZC96WqhxOTIhu4+ZdwcgDesIJBJ7L9+JD+fVfbv4sPPLUQQLSCzzQ8gs4Wvi/uGcgkdRtav2SG5XPNKsQH8UEqA9kC+vlXyGLqMeyuIiDZMVK3KYNrv6PtPYahkAJ89u8s9A3rtmMQNQajsble4AN4Vm/qgvlhRb93LO916tqPJ/o9q1PX5Vx16sg46iI1zAX5fsfAzou6H2MxvtK+MxJCCak7o9KfJx15f38TqT0NhDXQeBl/hnUAhzXd9wawD16/tjMMg31wYuzEjvZxUY63t6Z9YHJc235Aj81UOyX8MVyTz5x0ZF/tXWSsRaB2hFwb5xGAzaS8DQR46+j/dtx1hK1oMmcba0392/v47EUDeAva1zEc6L5fg85v9XPG9vxQ2/tQ+2YL2pvaht+DV1IX7tr0qxG/mPwbo82eQRZ0tccQK4kZLFwqy3P1KM9Q9jJOcmoBWOtcYZBD5ztWjF10YQkHDHKLO2wyySaTrHCdaR67VHvxRr7OB3wbgANvkI9ZZJ1pCoyTpcR19cjup61p1T1CPQEHrRYyFtZwu+oALQNJhOHWZi8xQJt+V0uJlFMC1jZCEyxzg0EFNspkXODZELsuIGSPIbpIQvRzJLzCgKJNlTja4p+FeB0TwqPLEgt4SPqrLJpKEukyN7jr3XL9ZQvQ/bS5xV3i1Q79HDvZqPkZ277MozlcQ1n4TZULe6zErgG475inm3kPG1PutFTztHc0oEDvEV/nNm363ULw5+kkd7nFhjfJEgvskOJ8sc5U5RmXKy/UemeAX3lvUUielwVfL0STiAODLcDrmBBdz9M9R1WefMxjptkix15oiALjFDwJUHyz9IlTS5wGN81P/Xotf6r9ooTJUNaF5QJdPJcubkDZMSFu1j/VlGKxkzHVEkiAm7FRbU6wmbhEiGMGewIqDnDAAvdZZVY8sj2PTgi2YpcI0MOSyV8r5Z0iZ7H2qVj8eBm2GOcPGn/Bd3ofaG197K7ds8oOzFLSdOARQPCDUkj6IcoRWZ4TocnXue1IDXsMqaf2sfNC7+FRQsJDAIK6r7/q9TuR3GIPjAoCANXk/z5b6ZvCGdhS0d/NU8VkunVNBE0hss+aVmQppFBIAtvQXZQbnZP+NXRbcdGhU0WYTAY6LSMeJXnZ1pPR82JW+xz57EPkoXlNj2UFeUgt674L0sYL+Rrcg6vffUo2VYIyHFwdhDa0shAOyP5SjZpjfVFHHpzmZQK+ZBUERNnWfT7CL3o8fFPglP9eoNcj23qBZyy5hKC85706XTxaMW1HGl9WYJ6FA/jFrgGpXfy2GpvL5Mcmowyc+vcEH+gxD5ea9N8IJTn3H+ln6vjSFwN5DRw67d3Sw0lVQhw7GbCTbmox54p1A0SXtP/Cgs5fTutSpBWABnrN47Pr8hBOi/SbLjIGMrq9Gi7F1cBXQjhAd6r2TMbgMi4Apq+FY5c6n5muGC3jIeBwHriMeMkZcBw6dX4UjDYPmAhNByi7a6Oi2wrhs/MMCG7Ifi3ZN6wg6ASbwr5Dz4X1W10YNJT0+rLV4RHZXtBYswY26rh2/j82mbqj32vhGLIOpFdfQGK6z4SOBZMwfclfksZ1ljRlsgyyx1mhnre3KIfSDCuTLE3ZebnZKqAZJQOuiLvPTWdSPM26W321lZ0UVaZdcM+Io8pXGXbUd0vvMnr+loI8s6zSI0A/bSelNTDlgAFucRePnq6Ypr7AnhtilyusM8gBljIb0BUa820ztlqINhGVOHbxlBnY5X3eYZwtJDl2mCIRFrnHY11hneaxo9cLMzHzhWJnmsccMOAKsxssa4JZlnEKfMwiN7lPk4ij+YsvYYgdhjHvv8+U1r/CHKMU2WWILXIKYgpsuskECywpi6/CPMtuVXxTVyjNY/BXvMUiHztZsRV1t7iLSasLjLPMDb7JL1zxbv1nyWvm32d9bLKYD/g2k2xSYoQMFbeiGeKYFa678zXOFptMEKHIIIeIn2HVAXeTbHCPReeDYz52m0zQJMouQxwyiEmZj4gIEx7fo+90elcWMd2+yRLPkTCO0cYzirGL7JByIRJZnmOy1gEOnCFyludEOcICRHZUBj3HiptA3OemQpJyEw1x7NgLtvJtK8VW9Flhfhq0PB3s4dFzfnldbde0pqutMssCSxQYp0nEsRxNzh3lyIGGUY5cG2x13GTDJkse5IB7LBJ0yMWX+PUU/rNXIsE8qUBfALGCiAP3YfUFXDwD8a/Ie51fydeC16C5DNEMUlc8BK7Bs4dwcQh5Ll3D9wIbA+rQvKMgUcfhX0R6EDR2WhKpGxSM6zwHDiVwYb8OcWVTOS/otny+80MI3kCAtyfQdw5fZTIPzQ8hGpW/VxuQyug2POR5bs/8OaROuAjln0IyIQEZpPDZTwUEfCnp+2kEuArr9rKwfwfi50EfFQKwXAaW9LhfQHzO75eTFvQtQue/geCg9l0AVt+DjAepOeQ5P4SvXkniQi/IA18D1qBTEJzzGXAxKf2UL8LUNDT3IPot6d9mHqIL+LVOG8rLkHkDf1Hwm8D7kK/A1Ji+V9A29OGDognoBCB4FehBdRNqPUiWIPUmvn3Jh7D/THYXv6XvhXCKlmYRDjrQ7EBuU/rhZBn6YoiH34e6byMaNJA69yFUjyHVD/shiFstewjNOkTTuJqxWoXUsJyn1YcwlYDgPFLn93T85eFkW/drtdYEvnXLlI49UyuB78XX0LauwckabB3INVSuw8VF/Hq2rOPt6/gsuwB07kAwpH/TxfX8HkxloVODZ3XIzcj71RLwUsZpX0Da0HkOwRE5lpMW9KV0rNTgpCrHtF+VS+PieR2XaWAZOnsShIGHsPxi8J8CvyfiDVK9GveZZ5wCAQWUenha35X5gO84lpwpFBa5x2RvgyVPQKh1b9rVZAYu9NN2Hm33uenY4h/wbbFf6RVZ9WYdcGaJnEPsUSFNk4irfb7HT9xC7hXWyfKcu9wCYLb2hO3kOa7X8gwl9wDxcS8yylkFZI4JEe01aYcEtJhggy1yNL2o87a1MDFrs9lYVJTRBOKp73V7DIX22GCSI607v8EvGe0VKXoC5DxXICnCEeMUeMy0q0V2SFEho6Cc+J7leltEvSM8ur6Co1diw5vEFBpX6k/YSlx0AXK3+Trfb/+QfPoiW4y7RckdhhllW4JGuEuZDCHa5EdFxhlttKjGJJjumBDH4SBpytzlDW7wgAwVbvMWs6xyk/vKapNarEnEAVm3uMtt3nKL2SCLpsNarxwwqBJcAVOjHNFInyHaeMVuMoyFQJiaxVK7QzE/PE38vgN49PiYRbqI1/AC991422QCwKk6Qr22pIw7wHXPjcseAd6q/4aDRFCBVAPfxEsYxPrLvmMLyMbMrCSEgXST+8JgVeDTl/0GnJqmSoo0Fc6VDjkJQzTZ5D4LzPOAv8MP3fV0O/E3sYDOLhH6afMim8BC0A4SQbYYd2zDXuAMq54sWKfYIUWVFbUkOtLF68n2JoTEy9DCAE3KbAve6XqN2cQqFTK0CTGsiqwmEVcrPlZPxg0m6TOC1l/x+t0w9I6RB74BUEmkkPgQeZAu44NnxtSrIwVPji8ygJQV1Pdr/IepMYC24bVinm+VfiOAwkN8VlEb8YlrIGy0rrbDABH17rv88IUPZp3yUHPgiQFixvAKIA+fHyMP5A8h/mEHUvANfiG+ZMqWowXhD/E95lQyoYxfnwVngJJ9DqToUMDFGdimtX3aN00vSvhDCdtgW7Yx2itCDy4VXxJewpchWKEQxje7NbZgCzEhNmCxoW1cQ4qAJd23rTCG8L3UYkghi27vqrQ72mhRy4blfQMmU/gFVVf7zxiaNd2eAZg1mWgzpv1gvi8GgtXxGXMm5S7I3y8XXviygeq/9PmupsuF5dyxrefLZDvbSGGjxdiN3gOXOueYknUEqDSp6Ty+gXcef7yAXwxO6fvWroIelxXvBsgZC06B8MF6y8kySOObEVdOffY0o7Qk++rnWFatVX5jtHAHjCb0OBNwvlKXSUYa+d+uPZS9aMCvjY8svoTexgMISHj6WM3nMKzHGNPjakH3tLz4S/4a4QXjjj034KR75VCaImNuJcYo2NMKilnwxDhbTLDpmEHGpDIz/7PsObCiRJYKaSevDHHMTe47LzEL2rjHIt/mA5eKZomuVYapkuKxroTNsqoAmzyYhN2XVZmGBCJkKHOPr3FEVMWLexwyyAaT9CtlfJQibfrVl84AoBkm2OQskhyWUyDPVmINbPkR32eEkktpa+OHOEyzroCKrAKasa0VMhZmYMbLM6w6EEz6p00OkU2I7LHKDsOu0B3Q83CosoFBDrEUuRRVRiixwaQDhXoEOCZ0CiQ7ciuaJgf5Br9gjyHKpJ2c1LxOAGVNDjBMlV0kscw82IqMMqCFt/nkRWkS4tjR+LcY54goFTKUybDJBGXSLnX8Fne/wDwz0NEA4bSu+lrwioVfWBFkfj6WoiYrwFJ0DbGrXolpJ5Gw7Y2zxXu8y5/G/scscZNhZQGY/LRMmnmW3Up2F88VjCYnOVKAO6CAm0lbJfHtrGOwhmhzqED0BhOUyfA+79BVENI+E6Wp8hEJcTK/GZM/28v2Mc06i9xjV+XbJjk+Vjalf15875ddBQozyqKU9LKUu56aRHmX93iLX//ubkL/urwuQN8M0IW+byPPkkPEAiIOswsQzyF1xzLU6jrhL0E0iTzPT9WWFxfwgQ4Dyuz5W4CjFjRLwBj0TUEkrGCK1YlhxGbFg9VH8lbwKpBUACyHH0KQ1f3/FIJp6CzD/gr0peFeScAhANYgeg1/IRb8Gqio/39X2kQVea4WFMzLwWcF6OT172qvUliGZgPKp1UqIW3/I+h0gYcCmgEC8HjAPPTNQdzAxIfynb40nPxA+sfVURUB8+ID+AETb2p/trTtatVxUkfqpyoEPDl3Qe3Pah6mrsLqPYiEoHNfvhO1mnoGTvQcdqxvsgJGUYfOPlzQeqZzX/dv0mEEMGvWFfjUxdRkApIeBANIXVmCzk+EwXnUhmpbzkv1n+r5rkmfR78HmX8AubdhvyR92fc6/gL6GP7cIa1sPl24TOk8Jb4AhaIcF104sDopJ/2RGtPf52EmqeO5IEBYs6T9WIetmrYhBqtF/PoQ6Pxcz3sIt+BdXdLzn8PJoLs9uKhj7uI1afPJh6fGSh6Zu6zhbFyObL5TwQGGUzonCY5AzuYko3IsycQp0C4rYHvnubS779v4i7xXoe8y0IN4CjIJ3X4cqn8un7exw2XdRxdC5/Hr2S/5q+vJoA5xjAVPmBw1TZkbKn/06JFtl5zP1mfeHBnK3Og9cM8wEMZTP8dsMkmbkCbTbjqQ5Pv8iBFKNL2oAyWMVX5MPyVG2GWISTZ5i199YXHOVF+DDfHWTVFlKXmNChm2k+cAnBTX7FiO1JKl63lEGy1XG/4Z/654IfeapNghxDHj9WdYarwtNu9o8qwl5O6FhnTxesTVuJO9Dda9aWftMsGmykx3WGXW2ZGUyBKgxxbjajcji9q/8t7CAgza9DNde0rRE2uMUYoSbpUQueyN3gOnIjGp5E2WmG6vk2lXFOSa5Bv8wkmk28rWC/Xa3I696bzbhhBfvUy7wvd6PyZCk3G2XM1tBIz7LFAmzSqzjhXm0eUtbjuptIU6pOs1zvb2iNBkngdkKFNRH7a90BD3kq+RrLS4yxusc0WXI484ZJBe4IwjBpiv4CQbjp1oNYzJTVOqc7B+slDJu4mvMdTeY67xkB6eBrxJWFs1kWDVm2W0XaRChoiOXWOGHmm9biCjWL5EWOImkj68yzpXXDDLOFuOfGBBZLZAfp+bfJ5NspsM8xa3GVf1BwgZygA0q20tZMMUJua9Z8zPXYZoh4QF2a81vSlMjIm5whzroWmiHLl+mWCDCE0nm43SpJgQH4URrWvNfsjIHMLmK+n5aXJoFP6/4vW7AfTABxue4Kd7GdjRRR4ocXyZYwjfR2xK3otVXvkS2KJuJ4XP7lI2kgOftvFZQm2keMnBSmhOPmv+dQGcxLaVQx7E9rCZwi/cDHhK4nusmV9I5dQ+Hsjfpht5H5ysnfpMHFnZbCEPLgNvDvFlmz1tywI+Swv8FLAAwqozxlNKWVj6UGaKLwAxNHDSZJeGZuDPtn4mq8eYONW/I/jgXwwpAgwAtQe1nQcrUp/jrwI+lO2HfwzJ91r+ubdzVkWAJAO3EtofBljagzyhSHcMWlooUdXt2P8x3RZI4WVsQWOCGXgGPtCUR8Df0+NqGykW38aXg8dle/EnHV/OgPYH+CvKFf2+9dNH+D6K4K9ol/R8pJEx6J1qr4ck5oEPGuu1EryDjM938Vl5S/iedS09Vjs3Ks0tMQIBOEiEIS4S7EuFl/KdEd3WPE6aQRefZfcGMtYCKp2289zDZ9fZ9ZrWvs/rd0KIybNd0zMIiJdExr4BfPB7I6t4xgUAuoj5vXmFSOEmUgMBgXZccrelwxoAt8cQb3HbgSQh/dYv+CYFxklpXPocK8641iSmkhIqDCXzNZtkk2NClEmzxE2OiHJFzXwtVfYB8+7hZuDFEjc5ndJZIssOkvj9Ad9RuWaAeyxiCV8GSt5ngX6OXTpplCNKjCgzTth2t7irD+ljBdmeOyNnk3GaabOBJ/20nbzC2IQlRpThJ4a5j5nGwge6WsCaPDiifjH9CsxY0quATSLVnWFVPD1B4aaoK3wWueeKXpOZmM/cHkNOnpxihzb9juFmQOPplDgJxBDWphUolgKcpkKEI0Icqwwn4FayrVCZZZUhJPxBRojIPkMcc4MHziPO2jXEnvMpNJ+eLM+dVNnYaiL5EdmzFHI7rDDHFuNsMOGkyX/G3+W/4j+gyKh626SY5jH3+Bppyq5fDhV8tTAOYz56dGkSwbw/u7rfZW5gkm1bXQdJlr9yKnV2i3EnV0hRdf46ViBmtA/XNcVPjLqjCubuOEARcMw78xiy4zXZ9bhK0SWcI+uu02F2OMueMk9PS5PFm8WYuG1C7noDeKmg6Jf6dYw8L5QBb4tE+yXkWVwGpoS9ly8KIORY3Sl4pswqGlD9NVJDhaD6APCg/AjfTzcm4EOtgQtK2z9Enr8J/PpOAaWMJ4AaKQGlXP3TRp5dMfxFqawAg3G1B5mLKeAIzlKlsy+fTSYEANtfk319VhFm3MmaMLYMuAm+K18/QhlPtgANpEICEmauIc/nOjTtu1OQ+l8KE+yoBfll/AXFtxHWmYFTcfmusSPjCWhWIP+e/C01JiFhzZr26RN8RcApkKXvHdnu6YX3zLvS5tQNICNMtL435M/lkvab1tF9ukAcD2l/rQnwSAs+qWtfLuj5sFcB9vMQzUE0i2MbkhIQLZmA+AxucTh4DQIBAY3Gk/CsAuUerv7P5xHwTxeCO7YwavWULXKmcKFqQfv98ql2dSH3Lq6uDnj6vbAcz+kaqU/HTyevQBq4GjwVgn0dO7PXtN/D8rdgXPZT/jkuODCVOnV+PgKuQvD7wqjrmBKqIaBa8w6O0bdf1+O7Jv0Uz0L5ofQJ2/o9mwOASw3u3JfP99k4MAlwBbYMIE/K8ZxsQ/kn8nO+BNWy9F0zL59P6TXdZ2odGyNZZFb611OY/Rv/WuUalsia7ZXItCtM9ja4VHzJEHsMKDNouF2lGBKQpUmEhcYnTDSe0PZ8a5ZMT2qMqeIz/kb+IUVGnZzPFhAtZMuYQD08Jtgk19sCcHVJql5nmCpD7CIpnm0JTgS8Loy3t9hiHLHH6HeAmEl7zU7GQLYeAUqx8xyr39n/of2/lZrU84OljsNnHFvw9dKnANziDhb8ES93KCu7bprHeHSZbayx6s0C4ts+2JP+MpXHHCuM9opcrrxgrvGQti62LtY/YbK9yWLtU77Z/iXZXokLxRpv1D5xnnmT7U2mWWeOFTy69HNMvNxR32phQI7Xn1FlmGjjFQehQVLsKIuxxOuVT2WBvi31yY4nKb2L3HPBZXsMsRNKETnsOPD0Vu8u07WnhGsw21t1rMhb3MX8hYfYY7L2zPnuAe78RA477jyOUGKeZRZqD9ljiLn2Co3EGcYpkKHCnIbTRWgSK72iSUQXLh878DhCk3d67xPimHkeqIz2mGP6mWMFC4t7lL7EujfNKNu0Q/2UYudpEmWWVVLscKv+savhDkIS5HG9lsdCUI4JOQmqWcHs6YL217nNaOMZrxXy9AgwyQaWAhs6dbPY0flSgXEGkJTmUPuYKik8ugR0LlPwxpWJeOiuD1ugNvA7c8ryyLwmRYm0x2R70wHWVVI8UEn4Le4CIkEXOzYJHtwiRxfPEQH2OEuGsvMpPJ1abeFs5sUMsM0Yf53X70Zya6ydUZzccn8sSLzV8ZlOeeTmbTLWHgJ4GCADX/Asc8mcRqU3ULCl/5sM8xq+15oCLgXGeb0rNwh6+NLRhEoSk0ihowAgPeRBWtf/byCrendwUkSX4lnFgT3hO9pWA3+yuICBzk3x73MyydSpz2rB6S1q8m8YH5CylbCYtq2C8+LbYwjqz3wvtrau+HgdaZ8xuuJ6TAaYGvCJ/j+DD+4d6nvGWLPzkTjVbyY9Ob1yehPfKy+A77tmrMIWfrCHgWbGHDQ/vO/js8Ba/v/VWJIL4Zq/L5N0NvAZfjFtuzEdDWS6jC8j1j5iG2ESxpCCaAY5zyqnJq59bDLtqu7H+swkpCvImAyfapMBjQr8nmSh72fy989Hk1xI1GQ8/aV+1uTm3ql+NlDvtMzYmKKNU/2V0j6v+/szsGyPsxBDPA6yu7KCd2qsksL3aZzS8zWGX9ApWDfEns8GNBlxC1cEk8IHFq/p961IBwENl3ESeZC+DZSg+3sC6NVIcYNNLBjBWFcmP7UI97vccn4a5qWXVs+0NiGl0Y9/IcE2R0FZYMcKJe2wxqwWLjuOJVZl2PmpGPNtjhW2yDn/NtCUaQX/hqmyyaQr/IZVBmusMvN9OCZEjnX+gB+zx1lWmFOwRHwkjJr/Du+zxIIDUKzgM8+RJhHuc5Nxttyq3L/HnzoZLECZDKvMOmbhOFsOYGnT71KhrrCuFPtlqqQc0CeyTgFz1rmiSWK77oEdoKcsLgEQ77HIO7zvpJO2T/POA2G/zrLKAYO8xa/c8U+zTpkMy8yTpUQA8SfM6Gz7i+mzWceyOyakfeB74RiIOMkGkjzW5oABtzJosuxxCrzPOwToaVH7mPvc1KS4YSe97eeYKsOEKLkEW5AQnnFlLAboieyAQSz9VVLMIgzhscg9B8hZGpr4/0mwislXhY02hgVJpKg6qbWUPlLMCcAaYZAD54OS5TkBZcaVNfm3h+faYQbFxlB9l/fYZII0FbcdWWWPMM4WZdJM85hZPefmrWeFo8l0IzR5h/dpEnFJZ3OsuDaYJH6DCbYY5y1uu3Fm1+8dbvG3eY9BHSNFxr4gAbZXjwBbjPOIK4gh1Zf4tQ+qNKbzUNlKFQFeOhWfvdR3GeI1YVbFuypHnFfWkT4LuxV49ggu5oSZ1HkuAOCzvABF8SkBei6OwrMiXByD/R4kG9Bn7HKzhXgIqRl4tgwZZcs5xrkBa8vyf/4RTL2NvzhdUGZYG8eW6jxXGWNFAZA5CHwIzMD1APKMfQLjbaAMJw3oPhLW2eL3kedsDalpGhD/D5Gk+df1bzGIzkP1fWUdLkufpjJwVNK2LwA/kPf7LiM1i6pA+rKw/zPIt6XcSXo4a5FyBdJJWGso8JLS73ra329ouyoI89HqUlWlmDw3GAceyf+ZKf1MF/aXBHhrFgVMwpiXo/KZxVHpj747+Cx/q0/BX0wNCVBZWRI7t/ic9KVbkC9BNCbgX6ci4wBkf9UHkAlBswBRrbdSM3qsSwLA9hkJwRYkgf1tiChYGjTlhwJnbMO9CizO4+YOz4pwoQF9fyTjx37vdGXMR7Pa3rSM87gtyppyyVh5uiDfQViaz4CbRhIoiRQ2pSDjERAdlfc7jwRIqzUgquBbPKEyYGQfzwoKrJ5aeC8XIDMq5yiqi7OBFj7gWQWKwjCMWxr5WgABAABJREFUZlWk00LYhgizdh/IlHT9fwoYgK5Ket38wpiQLV3f3QY68Op0zf4lfr354X3afzBAtN0k9uNX6jf/ShYjGi2SJbXrycPVsac+MSYE1CC8cAhV+PyNJPF/1oFGxwGt/07gp7KTOv58IQDfqv9GrpMUNBYOiJVewUfwlbefyD1O5xkX6jUuXK7xWjXv/M+T9byE8wVesfjtT+lbwieZxODlwgCX7ryEMRjMHhB/v8O5sYfwEZz79qE/V/fg8sILt4hzIVODEnxl6omb+12991S2PY/zd/9qaE3maxXkmvwZvJ79VO7j1yBc6BC3iGQD4j3gDoQT8NXkmpvXBd9+BSWI8Qqq0vd9YxC52mEwcUDso1fEsjWZ97+u+3sIX8k/kXllGRiAqcYzeAjnu3XfIkAXgy54NShAbKwO+bo8H5JwfqAOv34i438MWINku0Xy5jO5Np4AGYivdYjPvHQEj2Toifxd1XeXpl7KuVnT7ej+k+kWSZ7KeXkoHfqVxhO5vv4+vLn0iTtnl+ZfOkb7a6E8r/Xyoti7jD/XzUG8VpN9bQNtKP37I4R6bTyv53wcZ9urHITEa3GEknrjiV3KQSLMHuLPnKnVaSeLrCcvadCdn/BqQXey8HzWLZQ3Y1GOc/0aojbOrd5dit4oSyxwiztuftXPsZMZD7FHOSTqlGG1w0mxQ7bxgvXYFCBAqNWPsjC/yz0WmWZdvZBDZHkuwK2axJzbPqQ35TGgSiVhYkoda5Lx57rwbGomW4g3ebFHj6FGnW7Mc9LnLCWy7RL/OPS/4O/wQ7KNFxCDxb9mYNrvBtAbQC46AwjC8Jk3x5vpT/wHFMgF9yE+OGQPxjpyYzGw4xTN3fmveUjBUsD3ehvR/WVOfScnMh33EDFmURZfxmkPqQK0vgfhf6LvVeXvvx29zFeyT3yftoLuo4rPKmvr+9berB5DGLgMQVtZtv0a8NRCnoYlCQHZ9Ya4FFMmVQopnAwUC506rpCwOeghN5wFeS9Zavmrs7oizCN8oNNW/TIIgFk51Z5R/MCO7qlzYiCegXQevgdiXc/zFXxpqgFfICvECekD1x4DNF/Hl/wagJXXPgZi9VeQgsHewRfbV9M+m8FnfY3h+4KY9HcJYU9aX44hRXFYt2EAsYFYepPczwSJ7yvaZKCqMQy7+HJsD1ktz+v21vBl1dqe9eQlrhafQhIuPKpJn9sKsIFwtspd02M0vxa0bw5PnYOkfsYeonZOyvg+P8jEnrpIxYbqh+wlBnwJTxj/wTOGPGQM3AtJf528Dn0fwoVUzQfYbdXYwN0UPkDYxpfyngas5/UzyVPvHyJmRkF+L16XeYKYojZZZp5BDoioOfAkmw4kmmeZcQoOEJljhedk6RFghTkm2WCCDcpkmOMzfsk3uaIrlRtMkGOLsoYDlMhyyCDrTHOLu1RIs8jHjj5vq0EmZSwwziCHCq71OwbXIvcAkXDLiudnVFTmucg9SuqLZkEQFvIBmqwMbtV1gwksjdQecgcMMMcKt/m6A2YAbnGXSTbZYJKqDqaIylcXWGKLccbZQlLA9hjkkAhNhqlyj0UsIGKYHQY5oKKSBckT3nTeHCFlf2UpKbgpwJiZ+H6PH7PCHF/jHnu6jW/zASDg1yQbLLGAmVZvMkmVYefjAeItd0X914ymb/uYYINjQiwzzy3u6kqigLrmzTHEHmvM8l3eR4IV5plgk2EF+6wPhDE45lJXDUCzVfMNJjFfRiusbOyZh1yVlEokPEaU2XegRYqkAm8oC1HSdLcYZ4g9ioyqXPrQAYH3uckcK7Iizj0FrrKOCSpjTcZWmbSs4jPCLe6yzA0qOkZ3SPF1bjsgzdLSTFZt/iYGkgmjsesKxSZR7Ytdniv1fU+jJncYdql3xsCcZFPlN7DCde2jAjdZd+xVC7IwgBIEbBaGYdSxFLp4rsCLqozYxtkW49zirhvzhwz8/+aG86/zqw18BU6WYK0O198AVgSI6xvD+YlRhczbOAVCn9mFpCQ4I5pWkEifTZl5RCJYV3kpAtbst+GoCBe1Huii24opGBFQ8GYGKEHE85lTgwggGNf6jKtADiZt0bGkvn5ZOKqq19g1Yc5FYwKMZWwhbltluGb90QAuQ1QX4LaKEPcgZcqFElI7Lesx3tO+M/nkvrQnNYZbbAt+CMQVuLI6yeoMrYVd/VcXIHAKAT5JIbXGFGSy4os3ZVYfVrM3BDw9WZM+bDYU7MnqMdcVAHoX55NXyENuAccM5BrEnwMj0veM4i9cFnET174MviWMqjw6BWWeGaCkdW4kBBllEJaLUtp+VoSZhJzL+Bhs5eFCV5l/WQXvbPE0JhLgvgZ0isKOPGjA4JqCeo/wg9gQb7pMQseDsTGVcXcBqK6oZ+K+eNjtL8PgD6AvLGXaxTREexr+okBgc0mYh44EUIHCQ2X+nWKyRjxI/X2I/AmUFRhPJxXMewKMiax39ZEwTpMJAbhBZNtBpE3dClKLqhQ2OCLnnp9LnySVEXtUgmhbxkxfQADNuM3fQjLOycqYMT/JWl08GFN6frogc8JRiG/L9XbUVp9BcNZDF4y40IEz50A99L/Ur//8fwPhf3QoJ2YfGSDnwa33nEWCTtr46c8gXpnb+vcWMFKDx/hqLIA/P/XZ50gAykv9jG0z8cqfM/3fEFS1qt8zFVZA99FBmJOvtI3/SLdt6p0I0D2U//uB7Y6gy2NI8MkP9f+Q/v0HOHCIs3p8Sfx06TxyEz6LINiDuv8T3ZfN0ffwySt13cZT/V4WP6zG+gp8b/YjfJZ2QI+tH0jX/aCkA+2zM9p/qVPnZxo/sdkWGmy+FNHvVJDAnWe67WdIEntJ2zSs7T1Gbl67+EFIr3R7x/rdGD6JYvfUdveQsTGBBPkca3/ZsyKOn0T93+l2dvWc5vTnCn64TUf3PYVchyl83KYjP3/73x+k68lCZ7zc4Tjbz0pIgvXG2dJwPanpvskvWeE6i42PicaalJMJzvb2WPOk1iyTIU2ZUYokSy31sTtksr3JakhUOEVG+Wb7l2yEJhihRH+rw1BsT+v7jPPTe8C81lxnnU3NhC6Ef8wi3+CXNGNhjglJWi5DTLY3KYZE4TPdWyfqSRDccK/KgSdAodXz06zTygpRoU0/Q+zyfU0I7nqeW9Q1BdAx/Y5c4akax6yWmrEImXaFrdCgkz/fDd1C7JGGCcUECJzY+v8noBdFgA1lpxGAaR7Le8YiMmZcFz+d1CSIl0+1zMMHPdr4gBz4so0qctPY1+3F8dlSCQ0WMMkpyM8mIyjCybwWk0VYj03xWjov21am2RB7MuiNVWjAyJruf0b3XdV22g0xKe3fnwkSOeyI110Ff7Wxq8eqD/ADb5DnZLlUeelWYLgm7SIGny8kudCuyU2/ojKrHPK7gTuP8NmFtrJpq9AGGFmBZjcHu5k18Cn8xr4r4qj51IF39LjN+6WNDzD1kIJ8DR84yoqPW9AKVQMGOXVew6faYzdEu0EGYLDe+SLry2QYNhZqeg6quBWFp/PnuJRQYNSKagPtTJ6sUoIv+Ny0IV7qsD8VJJ7u+P2ygph3B3QbBq6dbo9tw6SnXRhvPJU23Dx1jHXkxm0szzVEUjuFjNuqHAM6JplCwOqG7v+NU+c0jRT9No7ycjwBetCFaLtJLwDnCod0kmrkrZ9xrECTzi7hvB4/S07xmpf3wWE7XyE9bmufnRdjGRq7UFmFL9IJzofqcn7u62fCyAPH4/fiFeTYySOLjPL3+FNHtW4q9d6SMqsMk6FMiDa7KnccZodZVt0DBQRosO94KiUtKUttlVkHdHj0OFIm0y3uOomf+WCUGOGYfucdkVHa/iAHpClj8fVNItxjkUk2+Tq3WVJfD4NSCoyzyMcOcElRJctzxik4wGLrVAKtGeICLpF3kEPxK9HVLXsYisxEQJIunvNrW+cKt7jLY6YB1Ctm14EkGcrsqhPHMjd4l/doamKq+HasA5zqiywf8B1GKbLAkpMsCwvwLCmqXGGdKEcK8AmoM88DKupVZ0lVJicFeIf3GaZKiSyW8mv9IOy7KPMsO3DNJMATLrmrywgljohyl1uOdWby04j6dZRJqwveDoAzHk5TccyyIqOsMssQe+o3s+HScAEGOOB93uHr3CbKkbLS0hwySJOo9r8POu6Qcp8xGbONL5MsbDJBlRQShNJ018IoRe6x6Pzq0lTcd1aZ5TsKnJoXo8mHdhQwNU+fImMuJc2j63z3jL1pxx6g59iBZTLM84C7vOEATo+ugrzHzj/QAOqKJvNJ6lu/gtQFjgmxxThzfMYsq9zmLeZZZpp1x/wTX8V+twJdUc/CByojnmCTNGWXGPilfmld1heG68Zm29f6oIIsTsaQespud99FvNt0wS6aVWDhXf37PXxvXnv+JJSdVYf9Ak7xMGULZp6ANtGWMuiWZRupG0AVqtvyfvx15Fl3E6kV0ioNVSBmqwEzVRiMifff6s+l/IwuQNpq0QUEiLM6x5QQU+LDF1yE8aoCjSH8hWFd7G42ZD+zWfFwC8YlZCBektCCYFK+01HG/P4SPGvDrC3+gtRlH/r9QENkklPXtO/+EE7+176cMhiS/ZwsSz91usKCzOTE6y03r+BYAfY/ErYZbWH13VyR9nf2IaesuJNlPb5H2p6QgGBBAxq7SO1pk2H0HOdErhm/I1LWrjErEwK+5esi7eWP4d5/InPYTALmGvLZuNbacQT4a9Ygui3H3ykKy+6kpJ5wXQgYYGgL8GEJejhqK8gXg4tzMkbI4NQxwZhIhZOIrDe1qNtQ9umdGrz5tpyz/CNhRG70YDEkYyQS0vak5DvVNe27FWlzrSGAVzAArAloPdhVpmVeg17icg76ZmDWau0YBGVNjkxCx0hFAbsQNNeE6UkAAVzGpG+CyP+pjPR/Smv2eAoHgFZqkFE2V3NNxkNfSsFSVeCsFnz2XvXHAjz2JSCYxweSkGt0UGtGDvgiKeDL/HqB3BPPItf+EXKNvNLfd/TnrwG/wKVBE0PApSIy6PMI4HOIzBV2EJCmgQ8CvtDfJ5A5SgM/QTqOH1po5AWbLxvx5Cy+z/YRcp7S+n8Df1HglbapjYBDHv4ifgtJZh5CcIJhBGiqaZsO9XsGmO0h11EQnwDRw0+Ttvc2ddsXkfubgW8v9LtGwjjSY42c6p8OQvHt4Mu9I7pNT7dp27Lt9PTYP9HPGABWwZ/jtPDnpU/xwcpX+EnU9r0d/fsT7buS7GP/AAYj/iKUIwT9VvvHyCkh7asTBOAbOtWP/fhzxH7d9jH+3P8jfKbgE91uQPukhE9WauoxX5T9ntV6cpQinRjMtVdohqJ4dElWWnya7meZG7zFrzhfqVNN77Aem8ISfQveODOscqT2NVGOOCbE06zgIK9XPoUGjOaKnK/UeZye5iA0SK63xa43xGbsMv0qA66QYYAD9ZQ+0sXus85neY4VrdWXAQkQKZN2/o3F0KiGj+yx4U26mnO89ZSjWNR5Gz7gBsf00415jgUIsOOJCiVLiTJpMlSYKj3jZfbYkQT2OEuPACHazLLKJhOEOCbaeEV/6JgUEjQ3zhajFCmTcdZFU+P/Ah8A+e9/nfkrP/H/zWsQ6MKLhYSjdf6Sb6A96UekF/HZT1l4mRvwffHu4a/QxXW7xo4yYM8YZzX9l5V9mTktdfg8l+SY0BfBohZSRFyT39sh+DQ9BSGRv7jiEGBAwxli6HKmfk+BD27g08ZPs83wj6u/1aGUOOeDeHV8ZmIVx9jq4gnLwI7TwDddPTtgUPpIV1R7eNJXBiaC3NhNbmwvY0uifW4P3CTO7JfkqXZn8b3+voWfSpWBl1cHfN+9Kf3MDDTSZ74IvmaBMrxMD0g6zbz2mwF1Y/gPAPAfJFaQW0G1CAeJoP/3CvLgyQJvSzy3k3cbU7IkOnR3Tuy4dIWfgrZzDn+144q2aVT+Ft/u+PR2e4DW+aLHyJz+bNTknO5jBAdU7sUSzn/FjcEeX2TdtaWfaOEzCQ388/y+d20wQDyDT7O2QlTP7Q4pCIPXfUVYge+jgaAcn41tLXY7Md1OGMfWfE5WJiINfHltWr8zj3+N2CqzgbvKHDBvxDJpGNNgGrs2s8iD5iW/F68aSapI0uo7vO+CHcbZ4ogICyzRVtnrIAcMtc1/a5i2Mur6kZAIY/4YICLQhFDGzVPCo4tH1/l1DbHHFU1XstWjHVKO0dbWkAwDRU77zjWJuJWjPYZYZ9pJZm0FbJMJledOOBmkhR0IcClJZn5gwbFrP+Co5uMUsKCJgiZLmTeZUfDFuLZMlhI3WMZSog4YZJl5Npnkz/i7bDHOA27wXKWsb3Ebj67zg1lhzgE0JpEcZ4tb3OEWd5hmnS3G3QpeT/0vzC9khTmmeUyKKs8VJL3CY6qksDQwo/EDDry0VNRBlVEfE2KDSefJYsBThTQZyqwwp8zHI9rqWTJKEUsMnmcZ88jL8hwLXNlUZqMwynacDNj8/Q4YoImEmDxg3kmMBznge/zEtblMmo9ZpExGpbgBl6J3TD85lQaLF0mITSZpEiFDRWQSGvpg3nkmEZ5jhXmWmecBeww5iawBofM8UPDP4x/wf8E8Ck2uMMGmmGrT5IABdhXsk0TcYyy4xcC2EiPODzJNBUsj/p/w/8R8+2w8RxTcBTEtPsseacrcZ4EA4vcnIGSAJlGiNB3gZyC7+RSaNH2FOda5giUZTrDJ3+NPnXx4jVmOnLnol/jl4fsn22IZQEtAKnvu7VdxABo/l8/urwnoQUtDDgJI3RfDSYbuF2F1Gd9bOAvxNDTvqS/e27hJkWP4WW3UQJ5d9nyM4VtI2GLsQwGwqEOnrT5xAfWEQ36/eBU++1DZXW093qun9vEO8px8oH5rDV1QziHPVlsMzwJJ+LwhbCu3ADalvmePhC1m6oXUO3Jc8TTMjurnFaBhW330bIEuoWV1VtvyX8LHNQGPmraYjYKaWWECBjz53gE4H+XqtrAgo4vS/pum6Ej7ABNxAcMKFWWlpaF8RyWrxpIzAoLWxyc2sURZZnVpS+YNXDhbpwvjMd3PfwmLVyVUhYRIXDtdXH0UCQnYFDUFQVdYaaslAZi4Jp/t0zoonpVz2lwTMO9IJaFRtY8pFJAE3RWR7z4ryVCNIPNdRzQIifz1zawc19Q1mPqWSJmTeh6aRQW54lD4UNqWSiHpvSWIfl9YlwcNDYxRsKvvdTl/8ZyCuq/jXws2B4qJt2FmVPo7aoBtTnwUo0l8G5qsdbj+nJMx1O0JOPusIuAmYenLzKiOqZK0rVzEXc/P9DiCCKuQOWGE8n15f/9QgEhTtNxrn/LT2+f3xl+520AAHQPf6/LzycGp3w+ACrTr0G7q7wfQbkCnJZ9pHkB7V/+2jw+yHSN9uifvt/W7JuV34Gnti99rnvr7yQF0jvT3PQTYaUOn7n++Z+237e+dasO+/nshnzm093YRIMsAQwPKbF+NU+1snNqW/Xwg2zipy3c6R/jhivaZprZrV/9Z+xqnfrY+O5LP905v/9T/zX/5u3a81sZd3caR/m0PAfIOtR3Hepy7p7bTOLUNe78r5+nwQE/JkZyPk/q/9LnTbdnTfb7UsVM79ZlDDfPZ1c9YG49PtfkA3+bhFb7Hvx1jHXp2XpQsZLYtR0QpJs5zEBpksHHIXW7xNH2OZW4AUt83Emc0TC7naugDBt0C/mkPueG2+Efvp4KygNdrUkuHSVGlTJpdb+gLpIAjnY+M1V6SYodp1rXG/IwFlvgOH3C+UndSXau5Zllli5xbHDYvvun2OgsskaXEUuyrQhRo1BnggBs8UCmx1LeD7QOn9phkw9W+TSJ8lH1Nvfn6WWdaA/wiztu5i8eFSo12SNSWTSLOM9rsgfqRwLgWUf46r98NQ0+p04PtA8e2WmcaYn/hs4za+EVLA7gMy8zztwK/lm0Yw6yBLxXoQSNxhljs1Rd9xwyMUskADYRinBFgY48hedqu4AOCSyor7MJBbEAmXgsij5qeWyf24SvHHjwi6vz9GnNn6AU84msd30/MZANG+z0tO01AWGn9Tu5gYI0BOjFgHvWR0hMX0+0+xPm5RXJNMSJd2CCZaDHcq/oySWNalfAZZ2l/O50kBD38MAhj5c1AJwfBMML0G0OKm3v4oOsori8qpDnHoSD+14A8nPwhlENpLtde+F5sJSAunx+hRC0dJjnV8ttnxQP4haqxvU6BkydvQ8Eb57Vu3ge4KnLOn2bPyXlL6TYX/DFzrnDopC4WJtEZUV+bnPRLLRcmeacFPXh69RyXll7KwzQN5WSC88t15x/AZXzAdhm/+A7A06lzXPrwpZOZnLwp8g0CMNSou3GxnwoSn1O2oRZGxKSfmkQge+hLVmf0Xx7ffFplrq1FCJckgTYcwvcjfBsJpMgqoJmEXkB52wHtx0TeZycmpB1Bkx/n5Hw3Umd4wA3eSt0mNvrKmSnTlWN+NH+Jq8tPpYBc0XFigGqVL5xjA9O97itoQO2NsMjC23xRWvwlfh0ywBifs8cQTaL08BxjySLm7f0mEZqhCCtcJ0qTSTZZZt6FQIisc4IMZT5jjizPsbROA/8EYDrLKEX+lL/Hd/gAS4/9IX/HAYfPyfILvum8JYxRBvAWt1lnmudk3cNrkXusM+082IbYxUIjjulng0mGkMAL86UzU91Ris6zzAC5IqOaiCpGx+MUXMDFsLKjTDJpYJUl5BoAZd51p4M/JtngivpfdJXOb6BniGMOGWRHE4UrClT9hD/gLW5jaXPGkjM2mwFl3+PHDlg1wGuQA66w7rZ1OiHXQKjnZHmL27SRVUsBooQpOMkGD5hnkEPKpJlEDHdNumBsuE3tXylExh2L8IBBbvMWV1hnXlf+JtgAJPVuhTkklavtmH/v8D5HGvpQZZgNJh3I1U+bPWU2ClAc4hZ3kWS2XTaZ5LkCZgbEeXSx9NYSWecLaYESD5hnljU8ujwnywgl7nOTHgFucp/73CRFlSH25Hmrr4iGmFhh0yOg43WAUYoOHD3UcZ+mQoU006y7/qsyTI4tBjhwMmUJp5HyR4C454A8rw4Z5C1uA7DGrAP1egRUJi7XSkTBxAk2MbNyky8DCsKjcut+ZWaKdMSSlS1Y4xZ3yX9hFe5L+jqjUlR99tAVUOqCJ6yyqaKqz9oiQXWhT13xGKtuQ7AlDDF7vjvPvBTcTCPPS4B9AfKiUxBpqKSxApQFtOp2lcmWk9TUaFyTUQ8l6bWaV++vGSj/UACt+IACEzkIdpFnnylPqgISdZ7L8TiLjjZST9lC6PsCjPSFJHk3f0eZcrY9BX+MHTGeEDZdKqAg1X0BmDILwnLr7EOwdKotbQFaaiVIvQ3PlkQq2zcmf++8J4zITBoowElVAKXFHH5d3kNq3i6UlyHzLWVplWAyhrPaSGXF7459/z0aKhdVwKcvL7Le8kOtvwoikW7m1UOursxD7Z/8Q2FSxk/h23FPffWq8FkJrncVnEsC83DynrA+3bzgoX4xjV9PWt3ZFTk2NQEEzUPR2Ze05L39vIypTgOiM3D/IcQrMoaiSNhDDRhHxt9gTEG2BlLTPVQALYAAuj1535QnEaCc1/PQljER9zSwRGu/1JgcW9dqpQFlNpqiYh54E5p/AtEl3dcUKBHFD0pDjr28JOBmvKHS2PCp/jFw71COv2PMPl3wv2iKFGVFdRoaWhIS+foBKr0tqex7TNJy9/PQ/LEG3BSlPfEBCI7iAPMLSLtP1oA+fm/sWNpd+C+MdVWF/SP1gjRlkV2TZfzwxgayWP5zyNzQvy0KO3h2QvxGDxoqpQ/jkyiMGDOjvx8hbL0uMpCntQ0liE/iz1GruHl8NQ9HPbiYkTaQwgfeMv7nnFQf2W/nCILXkcWNKdwc5ORn2lZbVLHvX5TQo5QSP5prEK2c+gzATWj+HGpHOt6yIm+PL8iCQTIBwZs4kodb3DiE1acw+za+qmsC39vd1Fy6WLK/qT6l5yRQJj4l/dWpaZCRzoHyFWULJ3Q71/HtoZL6cxr2dyD+mtoDpIFBed6V95VBvofPTg/p+TLQdUSOkw5y7QwBTSg8UsuGADCsTORBoB+qm5B6XZjbW224flW38VBtE74P5KF8T+8Nw/hqx5wymNO4eew/XJE2iyw05RZbS2RZjs07z25TwFTIMBTaI60DIqT1JeAWTifYwIIpBkMHjFDC6/Z4NHXJ1aRmXfKYafdeludOKZPlN1K/N+qUYxlXD1ZJ8TTtOYuWTK1OKZl1daUt8h/pHGw1JB7kEmQn9eJxrN+paVJUCXFMP212QjKPAyMmPMejyxYLroYeZ4sSWW41fkMg1mOdaYbZYZrHNBJn2AmlFGSUUJBDBqmQUZAzwBwrPGAaoVL+q1+/E4Ze5yw+VKirRP20fVP/USAHnSlkYLXg5eiASFK68ruTHiTwWT1VaIf6fYZZCpc45oAxY0qFAA9+wveEuWLbse9eFn8zAvjMi64U9yuhOT+wY0zTYxQwa4ai/Mp7ywfQDKyzB7Xd/Mbw/cmQQe3YhmP4QKaxxkrCuCuRlYJ0Hk6MGZeW45QLJcUmkzyZOk9/q+MHGCTwQSdbYdabwsupAfFQMxBlHhpZPfUB5G/oNubhtwuX5ecMvv+cvh5wwz92A6TwQxjI4piP1IThYBPA/ctBny2Y1L7ZRm4eViwYK1Ppv6vJyzLxMrDIALYMWOoMbwjQ6wphGw8L2ifX5POPE5flpliUz1UZdn6KK8x9QUZ7wKC0tYUPgHWRwlyBtU+vTfEil+BjFmUcTsm5KiTPO1lNMXZR/rYIu94QXIP917VasXNnwFcWPp9KyufncOO5lYWWPVwPBYAmAFuxS7xIJ3wPRPxzsscQJ3PqQ1iW8VVklFo6DAnZZucq7L8ZhLqyY7PS/lJIEkwPQoM+i0InGv9i/pqM0TFNZa7gswYHtL+z2mdp8aVqzJyRtFzt13z2oqwCRfi9eAloItJEk7SOUuT/zv8UkOt6gwlKZBmmymOmHeC1xxAjyl4DXEqYMfiM6WXb/Dq3VZ4ZIUTbgWcVlUReV381SbjN8A7vc4XHTPOYQQ74jDm6eFgiaVpXm1LsUCbNKEUsnfO06WuEJnN8Rpt+BjngNl93oNVtvs4Kcw5AKTKqYMggkli2riDnMBUyTqpogKABJMJiG3Yyyj2GXMrtNI8dlX+UIiFt13VNKLNE2h1SCrTtYim0lvh2m7fw6HFWt3NMPxUyjsVngJix7aqkqDLMMFVyvS0nDbbVQwt6yLHlgBvxnos4gNb66xZ3HWOxiND/LeF4iF2qpNxnxyng0XNsyShNrrCuybeeSz57TpZNJthkUlZRGWWDCd7nHSpkFOxM8y5/6Tw7TNadpsIVHrPAEovcI8UO91hkmRuOeShF3AggjN4h9phh1QVERGmSYsexJIuM8phpRnRsWwJekVHe4jaWiGzbD6hcfIU51pgFJL17gk13TKMU3QqrgY67WhhuMkEPjw/4DutMu4LttPlxgXEH8pUYoZ9jx5QfpUhEJRV2jc2xQpVhenhk9BwKu2/IFZm7OnYN7C4yyiaTDsyVMSvAYIoq/RyzwzD9vwe0lMKuTLT29RnaVHCvLwWz88ramoFkDApF5Lmizy9CAgTErZZTBtbFKZV82iJhQRM5R/R3UwE0ZDvNmoB78ZT4jXVqImklrFJTBc6OeshzuCZARVJZVMFrQF3DCSo4KfCJPgeD13Qiqgut+SUgIWyrZgHo6QRJGSlHSF9QQyTHv9ZE3IyAn8GcgHrPCjLhCo6oPPFQ2lOz56/VP2mRQ6Z04uleVfkXNJlaVs5D35y0f78kSaPNmgCctuCeeRtnWZOvKDATh9Ul2WzfPFI3vYEAVzchl9XjnFLALwdTizh/ZOra59sCEgQ8nOpmah74Q9mO5fWkxgSw2y/AdasvPT3uImzUpO37OjHtPFTAbwnYl3O9vyJedWg/drt6LFbDh+W4qh8K+BgISJuCSfnMVEjCPOJZ8a2bmoKvJoSpFk8pI9PqoaIAyfQ0Qbao4zDvj/uLOQFlq1Vgygft+qzejsnnQKTFHV2ID5rSxxZ583ocMT0HWjeemOLD5k9JGcfxnJ57ky8bU9VUO1mR1ILsq9lQ2bru9+Qj2XYwKb9XlwS8nTT1ky3M63iPp+Wa6pvTc9aG4B8gNf6C7H92SsbmJzXgBBo7/F68YmEciaGalzGX1+vKAbMtAXkNmOsU8M+5Sb/DMrWsrvgSeVu8KCzjsy4bcPIhwoK1+2JMQP1OXgNSdH56so2/yKDMyWBAGJf72/peXsA2wLec2kbuFwZUzmi6uN5jbV8U5JqJjyH3DU9AJ1vMsHRwDoVJ+qwi959mRRZ2uCztSdrY7anEPiZp4EEDkMekXZ1lYf42iwrkbwtY1Xku+8sXlEFcxZ9335BzEpwC5uU6byp5J3gNAfPekDZNKiBeXdM054IAiycVea+jJI94TvaRSeMIRuW24q09basuyjjST1g/+0T+lZf02VOU9kdR3866tDNqz8K0Xud6HR6hY6kmYyJqLPKC3IvibyPXpJKlmj9X5mxDU9UbwgwlLOSnQZW5mpf2EHtMs+6UDrO9VSbYYJAD5uprbhEYZM6bYodbjd8Q5cjVfbZguhcacl50Zlti7LUJNpAAwV1AAMEHyRm2GOcgNsAx/eyqJ/QOKSpk2GKcDSZZTV7GUnVzbLn9pRo1Ckj6rREA9hhiqvLMzSvM03udadWbiFWMBXCEem2n3EhTYUIXtifZwOuKV/kREVcDN0NRfso7TrpbZJQBrU8lOVoWgL+iAXx/1et3Aujtemc5ycKD0Ly80VYPvX18j7zvwnLiGp9fTULaHxxuAKeQi2UUfyUgAIFej0bujFxsM/iyQwMRMriLAsT0fZrHcmMysK0FrAkgRBk3uWikzrDFuMh69vEBHXBJUyaLoq1/7/FFSes1/FXOKQlYoAdL3ORkHt9/z9rsKTBShenaUzy6kICn6XMsJa85kIV9OGCAHZ3Q3meB43BQHuCX5XhfLg74wJKu4pBAWRMjss848BBi771ywNd9bnKShpMxeDGfYFUnT4xqP4Zwqy/D7MjNZQYHovZV1BcoBrwtLCwWpd3JSguLZW97IU5mgKvCAnsxpXJUe2jMneqfGWAZJ90zY2Qa2sceRBstYbbVYT007YcuJKCWDgtI1VXgOCdj7LTMuEnEbbdCRtq8IBLsftq0rC9zSD9PnWpDEj5mkSVu0s+xSHYVnO0REOAsrPu4In17nwVepgdoelG/D/VGXSbNp9kpAZ8HYP/tIC/eSEAKyrFzbMUuybgKS1/XcmF6eAKC63l2K1d6M19PXpJ2aKEf4phArwce3I39Td5LfJd73iIEtJ3zcoyWNBntNdkfC8oNPi3SXGMlMQPLsdf8fY7qv2u48Jn9VJAoRxRDwm4iLYDGFuNy3Of4vXhZWupdbjlfrnWmXeBEhjKTbDLMDhtMMssq4xScSX+W51i6Z1dZSlmeM8uqAlNdlRfm2GDSeYUJ+LPlVokMxJtlTe+L63K/AWZZpZ9jpnnMN/mle5hEabLKLGeRcIVxCoxTYIhdxtlSH8CIpj9JEuwt7pKl5B7kJr0dpcgIJa6wTpExJ5vs4TlGlbSjzV1uqTSySpuQu+9KmECOYXZcuIaFPlioQ1uBNAPIABV+CivLTHRtm4+ZxlJLLXH2UBmJs6ySpcQoRedj2CTCdVaYY4VF7rHKLDteCom6L7t+H2KPdab5jDkiNPkF36CHxw2WGWWbftpsMunAzXEKDsTMUiJFlZssORnpLKusMIcldZlEwVNZs0ePFDuO9TlKkSus8w7vE1EvwO/zIxZY0qJF2HUrXHcMR5Nh27EsscA068rULOua4x67CqpaGIV4JpYYVpZdm5CCsmNOziyyahmHgAPwspTop80t7qoktuxANvMsHFCQ1N43sDnFDgssUWDcgb+LfOyYnU2ifIcPHCt1RGlE42zxZ/xdB7re4i5n2WNSQ0pExtxmnAIZKlj6c0V9VwQ87jLJJlmeM806OfU+OWTQeS8aUHqTJbI8J0OZGyzrvbvrfCwBRpQl+GV+jQYUUAJJZzzFzDpds0QTcFFruPIjpC74tk6ssghQ81OcJUb0bVyK+n4J7tVlMhJNAgMKeqGppjZZM4ZcXdcsZ4D/UNgYkZCyCPPAE5mMrdRUVqhsiWeoL1lF2lCpIfXitrT3pCKpsJNJ2VfqexD9LnyWx19oDEl4A2vSpryyt+JvyN/SKvEMxkTK26f1h/2/X1E/tBIyeS3IMSa176orehzGwmoAnrDLqisiJ0XZbyCATzAg/V9dgqZKJynLMU59XwAD2vJ2Zx9/Em9sxDDwBzjWfl8Yqu/hLw5OSf/Mfl/2edRTUPBt3EIgOiEmp/0aEBn2lm0/rX14KH03lZZJfCQsE9Og1W3K0Gvq+S83oFCS446P6bFcVpAkKfus9QRg/NwWMpHPxOdwvnC1OrCgQOSUfiYt8lungLE+tTlMUcbEyUfSDhSQSWUEaAx4yv5UYKBTk7Ha7cn43O/JOeu0kTeSAk7sfyQMy18/lPZ1fipMoj4DlVOSdutAPhCprimc8tpPNWTB+pF8N6jqj+iC9FWzqOdzXgMyStLHEWVGRm1Rvq1tbGjabhiC39V9FfEZoHk5/s59AXma9rg2Jtnvw2tKwfvL4j0YCcEFA3JX9DNFuU/tF4QJuX8ooS/x7wIBHXPKikxdFrA/pWBavqhr/W3ZDoifY7MgwPHqHflbX0rugxcXcKSabk/a1mwIC/pErQ4iYQGHyvreml4n+YdI6KAC0idrsJpHEsTtvq1qrGBcQT275z/S1OsErGo7+wLQ9w4OULw4Kgy2YEBBqp/JYkd0FF+NZtdrWtoNOElsUIku0QWIfkvAwm5P7q2dmrLjkHs2P5Dj2P9z3X4Inv1UJPpHLQE7y3cEEOSR+kemZQEmNabM3Jyci0pNGalK7jmp6PcUszjZhqk35P5l96nglFoBqJqQspznchGoyH36Yk6A1eCogrvAs4dADfJ5HClqXIH3k4YkcPfN4eMnXSAvz52TJ8iz7SHQkzHorum0LpDUITQIXBJFpdSeQho4X6hzhXWn1MlQoe2FuFx5ITY+CQHclnVVx1hx4QaOnWcBEiGOSddrRHtNxhtPSbHDgNaqNp+IcESFjFvAl8XvPRc6N0yVVWY5VkueNv0UGeUuEjphQW85tnhOllLsvIKMYmdTZZglbvIkfZ42/RwRZZINtWSRmq1ElnOVQ1aYk3lzvYNHl0XuccAAmV6ZNGVZYE5cIkOFAuMAzms7rbX7RP2psyeK0GSWVUa0prZa/696Bf7qj/wPf4VocS/5Gh+zyJvZT6Aovk5cBfIiGSzHzgllkRQXLteokMaFTxjLbgWYg5fZAc6lD6ELG94kx14/r9c/pTMPwQY+O28bebiWcR5yQ+yxyiz/TuynvpxhCVgQsIhwjQ0mGKVIrPqKoeyeoKXbSFHyUNhnrdgLwqM476WF0U8It/DloiZztdeCvDdY74AnaHTfNn4gRgz3UFuOvcbrsU/pa4mU7GTM92h6OT9AiRGy6edskSOqUrAio+x6Q+wseFzWaGPA9zkzpl5J5M6DHICXFxZVDKjAy/kBhuqHePTYTYZJVlqsMMeveIs/Sv6FFEwtAXKCATmeJRb4HyU/9AGkgHxmlCKMify0QobkzENHux6NPWM9dkUm3MkUacqYWfj5mbqcryl4OnqOS2+8hBLUroZJ0qJNvzB0TlOhDbBMwKXll7KSQIRPrs3w1cqagpjDwgoNHLKamOK1dl5YFjO4WPHnZHmNPK1FCU75JDvDELsM96pcqryUQIe3pdr/fCrJhVJNjIMVCBU/MvEA+PXVr/Lmh584ALhHQNiPnKUzApuJS7Q12dCjx/nROp+PJsnGavS1JBjAUim/efUX7DDMLKtwTW52w1TlwbctJvGztSdsJmUdhMahLxtpAGM4SeB07ams+ocEjPtb1V8DwvQyyeP+TJDbfJ3A1C+4EKs5JsuBNwhAPFCj9T1hBvaQiO3WKKSoyhhuC5t0Nxkm1D4mtvwKwhLyUmKEeR7IZ/X6GWLP9278PXmJdLLrVqAmNGlV5JACCAgo0aWt1Ovv8yOiasK/xqzQtjXwwVhlRcbw6DrKuzwQq3JNM8Q7vO+u/7vcYo4V5viMaKNFuCYJ3sakSrEjQETjKeE6/PPsm9xq3yUdEpAq1D6mv/WKSiLD13u3OfBEdpimzGOmmWCTc6VDGqkz7IVkzGYUlJttrHEcDrox1SPAV4trzCbXOIgN8JXSE7dS/WThPP8J/0fOF+vixZpbd+zA2Z6sVA3WOyJrB2jAk6vnGafgwht6eOR6WzS9KLe4S4AebfpdalWWEnNaMVtyqb3a9JOtv+QgESZ5r8WLxQQ9AsyzTKZXpu2FOPfoUPyt0klS7HC58oJs7AWbscukNdihfSrkZLB3wLBXJdsrSUBSA7KJF/zt9s9pxs4wFNoj+bDFf5z+r/k8neRCpSasXCAQ7rHQXSJWf8Vr5EW6/1GHk5lP2E2G2WPIGQNHOeLNyidicVBokc9dZLzxlHasn6ulp9SyYWYbaxRjFzlfrHMwOqjA8B7nKoc8SZ8nyhFXS095mR1gkXt49PjKoyfMpp+wmwwTbbQoxc5jnntnay36us/kvj3f5GytxVdba9SyYVaZ5S1+Rbbxgq2YyCeme+vEtzu8zA0wXDukkBwnBZyttRj01giq3OPT3BSXSy84zoZ4q/4bDhJhptvreN1X9AJnKIZGOdvbI+QJ2NnWgu7qvaeQg3S6TJQjBhuH9AJnhK3chWTlCS/nB/gOP2OUbbGuAMa9La6WnvKVxhOIiaVDhCbZxgu8LsyGV4mVXrE/FqTryYP/bK3F+cbHNNJn8LqvKMfOCXjZKxHf7jCafkZIFBlsJ8+pT2WbXO0FzdgZYqVXHORkZTq7WeLL/jpzBohLemZkX8Cu/boGPDQgOI/UXml/AlYFksta6x2Csxp8F7gjYEywiygoajLZHC/KZKRchMyYTKiMiTc7BvRkQndQEnVfwEMULQ+E3RK8CsGEpPH2KWPvgkpubcJ786q0Jb8Mk2uatBtAPPI+Uu8xdAL1BAFMnijprIVMsBdg646Q1S90BTBjGXgIqxXBNi6GT8kb6/CsqGBnT9oV/yPgfQH3ImFhnkWN/Y8yqQaQumUKqh+pxDel7dqXyWNc2f3lkiShUpZtUZGJeQTIaV90apJQvHoHZh/q8TyU9jmbkDA8+zlcnIeUqTcK+DY6CWnPBQW/Vv8fwpyJJoGSMNsyKT03njBb5irCtAso6EhWJaoK0gYDOC/n/RWVx6V1gj0FkZ8rWwhpY+eJtH3/EFIP5dxOJkXymqqoHLkhoFl8DBiFmZaCZcZutFdNgZQs3P+plDgVRJKbWZA29dVkHxm9t3dqMtYiLU1+HcVJl82DMDgibJ6mvt/pQrAMvA2RPBwoWy8CPHtPUnSDI8gCdUAaEXxDgMTPazqe7mib2xqwkkZkwg3tq5J+fxkni+12dRwp8zPQAJ5rmxVc3i8K8BJM4gclVHFKLdaECTWV0L5tSZjIOBK4crMNf9GBWBSUmP/lfr1UQDSNjKcxiIZEOgqIVU4JUlW91tPQrUgIivmEBgPw2TJczwJXoa8IVAV8CiIBLCdV8cj8WhIWlWlMDC6GdDsB9ekcEeAoUhEw+VkBcgm1K0hB9ENZlNh/TzxImyX4alLAoskk4pF4B4csZDw5rmYRDh7JAkXfnKY6J4B/APxfBYCaUnnx7FX5fr4CU0t6D58SADGdFLn5RfA90zOyD94W78aLquyLKvPQrjkCYnNgF2bfZd82IZiTvwfXNBFda9H4HCLRvaP+qCMCrPZlYbAtjNLIh9rmGQEDM23k/hcQBlx3W+5hJ9viA7pVg5zNfcoC1vIG8HOIfk/Phz0PlUFu7EhbqOEasAZrbVisCHBYLknA7cUCZJTtTNIP1Oir467FTlHGk6XLT11Dnk8V3R96H07hWMfVst7forJt8aXuuRC+pzmPu9ziOiscMIhHl1VmWUx/LNtTIGxYAbOKhpW9TA+4QDnz+G7Tz+PEZcpk8GKyUFslRZYSnzHHLe6yyizf4Jfc42t8s/1LDkKDTiUjKo4J0pSpMswoRWfH08Uj2yvR9TyWmXeL0bLwXKDIGBXSzLHi/Ks9/JTbY0KEOKaHeGU/SctCdYhjSskkZTKEVA686wnTTixitp2X9DEhsrUaO8kBJ0Ee4pBMr0zVS53y+pbww5n29l/rdvI7AfQC9CirVIkMUIMcW85LYi+W4DZfZ5wCewwxfS3PCCWRQLahNhomudCCGnw6OsUxIc7NP4SWGSlGIAv3El/lzdAnnExB3xoQFpDq3KNDKRh+Auk/LotEMIGg4VlN8ioJK2oq+4yz7LHBBH+j8pBmNioMpBC8yCY4366LXC3W5bW6gEIpqtyN/U3eyv2GYFaTPGfq8E+BPwZbaP80PcV0I094G7xsT1h0uQE8uiSLivwoas8UfJ5NUiJLWa9aM5g3KV6KHZcgGaHJpcpLfp7+m/TeDpBt69N+X+SU4Z/qtns4xLozhUyWAJKwyQSv1z5lKzHOBBscp49YYU7MIWdwE65qIkGTCJcvv2CcLRpjovseq72kz5N+bROCpHgOdfFkUjpX4/Nc0smO7rPABJvMskqTCJtMcjy6xFeWnkBIGG/R+V9yrn7Ic7Ikv/fEsYq+0nriJL2fZGeYbq/TDvUTTkg/GjOktQjhJZw2/lLspWOEZClxsgB9PwW+K3JgurASuwag3kpNNrxJMumysN8C8OJagg/4Du+8/T7nf1AXsDaAY6LsMiTjOwO0pL8zPZFpbzLBjYEHToJlSZ9fzawJay25zmDvgCgSk73AEuPtLXZCwwzVD3kyf57nZJmt53kxleB8qc4Qe/SVoJ0UUO5SQkDNk3noeyBjHORa6SshD4i3BYz9g/RPOJc/JMKRkxC2vZBLbixls472WyZDkwgXqLEVu8R44ynjsS3ucov12JQA33WgAaVkkj2GiISaXE684CRr9OIoYv3f5uRNcOmfcWic7Qc1Iv0yvyK0iFNmhxQbTGgsghjvN4k6OaWx3EqMuBu6+dHt6MPsA74DwDwPnCddhCNhVCrNfZiqrvKI1PSf/cO8PKyqf0KxBz+Lg3eEFC2vnsAxnGTgVR+cnPmU93+LSrh+zd0D6A2/xHsOL3JJzhdqEHvIexGgUZOKsQKc/VRMdJLAwSs49xCq0BjrJ1ZY4ydxoL8D1DRlq8ZPwkhyWvXQJVNyDCd/9oK+Xfn5+GIfzUCHoYM8vSB4NWQ/g6DqZUnuOvMCUnAy+JLj0BlCL15BPxwNN4jk69LOft3Hkxq9qQ+5tyPb6uVq7IYTDG/WhZndr8c/2BLTYOqydDqC3NuHOjLTfgGcr9E+e4bQuh5L4IlUVXHECyjx0k82azyV49wDLslmeQUMv4J6S/bbRkwtI/pzDNjpSDvG9PORjmzzJRBucTS1Q2SlCyNP6Q3Iug0pfb4Ensmxd/L86Dkw0qKR7if222dSmEWeyedaSNs6L5wsiuwh7B4qKoEUd9staVPihbT/RNt4jMp/WnSTEHgBHLQg+4mcrx7AU3oj8MP+M4ReABHZdi/+c+4X4UdBPa81Oc7jiQ1+lAciT6EfTs626HuCHPv4K+jT/tyow+W6fO88vv/Q7kvp0zTQfiV9mNBj7T+EkBSa9r1u6CkBk3qF4CT6kr4WdGMQ2ANevlLPoA4MdWik+gkdQ6AN7L6S7w2+lH45o//aekxVIPXS94ANAIFXOtF4KNYKBlB/iV9nLgoAk5nCyVSP2uKPF8whTDXwF3sqMnyDUzLRTKWQumYK+DEQVjBGJay1hjAwLvaAFGR6wLzIrT63/q0CM+J3Ft+G/YcqrwXxnzWVyEMFWcYgWpXLhQBwQzzBoso466CTsrcRD9sKUl/W9TslJLHwI5l4ZdI4CSu/lltF5m3kOb2MUyjMekji5TUIGhBWV8adKhniDYQV01aZnV721RXpq9SY9HGf1oJ86HsAcl+9A/V490viNXgxLech9Y4ARJ0ncolMgVu4Di5Ke2bTwlAMLmq7Cwqw5qWNQXRfNfHLAp3QKpDQLAj4uL8sk/+jFkRrwmB5BmSq8HlPz3tX5ahLAi416xB9A/q2dSL93GfBOKlx+5QX3s/17yvKaGnrdovCyktlRcqWuYqTqPYV5fw9a8OsAoh9yqJxjMRRPcaq+hkWYCYm7L9xIPMH0ub9ivh7UVDgMaDAl4IL0br6NmZkcp75Lr4X4Pcg+pcy3p0NziMBYp/VRK5+vaAyQFOqPNSxp0qjrZr6II5KG4MtIA3xuEhs+y4rezWk7RhQ38K0XLP7ep1aEnU0CZT1MwFNejaVFPiMqX2E+afEi6lrsCriBMbbsHhNAzJiKrE0tlWBL/+rAcFpOPmxgK0RT5h68TGcpDxYUqlnHbB+ntdzNiYg33WTjdfk2k+KuIfMqIy7vjEYr8nc18gZZCHeEslmMK1j4yGk3kXuFRUB8B0YW/KTiON/CDzRMVAU0DE3Cvv/RO4v5TpcfBtSIgARaWdJr9+Gfq+H3C/D6r7T1XGv19LUAjAKmToQkmPq+zagbFY7/uqvdSHjT7RPY7KtTlvbse17psbTeh+II9L3vDwXxivyjGk24KgqDMCcqY3qcm8Kjsqxd7pyf4om5dKqNbQPB+BmTj0I93GJ3kd6b05lZJ85Q11K6jGagM4/1ntBTp9zU9rGAQi2gTgEL+u5KEFTAflFBVWjC5DZRq4ZD+Lflnt3vKL7XsARUZ7dk/tyZlTtJ6o4CS5dYR9nlF2dX4apq/L3YECZ3B35XA+PTK/MoHcAyEL4NI/ZZcjJb01ZlOttAZIGa1Y35jdsdkRmo9PPMR4ea4xyhXX1195ivv6QHyX+baoM8zGL9HMsykB93WrfZT00TYkRp1Q5rbYY5MDZ5ex6Yjs0gATFWTBflCbD7LCloXzzPCDaa9L0hCRwhXWWucEi91RZ9Jhj9ds7ViWRsekkOM0joOLcY0IcEXXhGLvJtvzPEOP1Z5QS5wQDQ9SEV1hnnAJZSnjdk3/lbcRevxPJbYOYM7c22eIuQ3yanuLTt6e0AweIKmWyHDvHEVGO6acTF/njv8hdo/PvoUmLUfLpizAgPko7DEMYfsk3BdhLvuZkhsvM8+JqwnnubTLJAYO00sAc/Cr5NSejLDIKafG4MlNso1JyWeiUn+eSDLHHFjk+yc7g0eWAQcqkJb11TMCjl6MDsuqbxq0+Picrq/PbmkhbEfnrc7I8Gr0kybDzagy5IOylKE3KpJ0xuA0K8wkyye0wVRqJM1RJcZdbrITmBEHuCvuREI6tN0yVEG02E5cE2Ve5whILdJJQ1idwql53iYS1XJj3eJeN5EVnOtkaFZroakhorBvJizAFrTTO5HKVWVa4TpFRnubOcWGp5lIXzV9qmXnus8ABg2ww6YA6SzkkIeem9S7q99Xv+whMwfu8Q6z6iirDfJKbcX6AJbKEVRJztidpkcSk71+mB+inzZ3kVyEu7I8qw5DA+WYtcVNBlgh3ucUqs5zMQKZWxxI3qUPnW9CaR0E6MfEvk/ENvEFktTlhsTW9KA+Yp0mUHVLiZXc1TIksG0xS9jLqNThBF49mSBiYjxOXWeYG/RzTC2hirBWTCYkNj3JEZ1H6pZA8D6/L/5a06LwE1+TaOZCLiAMGiHDkZIAePUpkuc1bbDCJJJpeYYscnavSt81Y2Hl2Pdd+snNXYFyZUQExX04mXKJlSb3W7iS/Cqg8ewjyTqvy5X6N8JwmUQKIyWmAHivMYYEGEV2KHmLPrVCVSfOYaSeJXWXWpcRayu2W9vkx/eyo1DTKkQtUOCakKakSRMEm8Dl4O/gJaABV6HshYFlgH0ke2wa2gJfgrcnP53dq8uAvn/r+Hn56FsjDfheX+hV7dizfOUEAsN8C6/gpgIf6XWNNtKFvC5fk1X9wwtBuE44VhDzCTwo7ks9wpNurQ99L6Ht1Iu8dQqTaFYDtmRyLgIngrWt7Xkp/nG0pmAcyIdpCwDs7th381Ll9Pc5j+Tm080racYyfInaox1eTY2L31Pb28JPJXmrb2vr9QwS0O9D3bFsvT7Wlod/R3yONrhzL5+Dt44N9IJOCDsJ2OAKKEG4dfzEBrqz7q2qbSvipbybVOUKqhV3tH/t8Wd97gTORDtSQ+8JLBKTo6DE9B6+iATkH+vkIeHt6PA3kHn8ofdGfP5G2bMn+6pGon+pm5/LFqf5E+zCBn+R2iD8etQ00tN1Heiy7ciyd/oC815Vj7duW4w+0dX/Wp9uyz9hHxwQ28T2GdgX84+TUMe9qP9vEqKJt1n3S0jbbZ77srxenPMLaImMdjEkCKiWRLFma++oyEBK2wckTnZTYPz03IEBM5z6QhYvXEF+vsoQ57FeBJYheEwZIxkOuySpyLioSaHBBZY6orNCSUKPvAmmdyOiiMCsyiUNZcrPX9HjuCDDx7E/k/UxCGRUqdfykLZN2s+1o1gUAyrytx2Nt0OPnuXpVFXBeu4wpY60inkZBq+cWVZLZFh+ko556LKVOeezldeIZ8Pcf/a5uuyaTwIAn++nsA0/UG70Hb35LJGEma3b9/4YCiWu49NngTTl+bHK+hrAy28Js6SI+d7R1Yq9MwtRlYUA+W9Z+0jFyXSeXpKXPAwE5zmgS8j9QmTIinTvZxoWmxd8GrqlMt+snAqf+voZO6CLGZyW57KsP4DMQFtqHup0FxOPtGnLPuINL0TzJAx5UfyzH2iz6qcXBgP4MDg2NK3uvWhbgkpowoOjiPMRSKfk/mYDqz3SMPAf+El+Wrqy3kyfyexwZ4zVjRyrryK4PqsAjAVzic7qdpAB0zTywr/59BlAOKPiw5qc336lpH62oXDAMfFv+9ek2++aEbUtZ95kTcPekJeevU1HgLiGeeVMJZffVtF01ZRPZs/T34XUCqPQz4inYDhCD1UeIlDaLsEyTp74XULm4jn0SyLhF7od9c3q9TikIhwLLMSAk90aeAK/r9Rr2t8s9YEXAbRr4fvYhTbO2um0MF/pwUQHCgI77i3a9NHSfOWV4JvX78zIuyj+Xa/aiqq/SSd1XDVlAXZZj7xQV8FKQuFaHtZp8t9vTYI2U3MfLyzLuOgomnjTk/h8IyH1t/1BYztUVYfFNvSFAfycvQH8yoeBmTRaCynm5LjtFYEbAtr6w9FlUFzg6XV9CHE/Lz9WyXr9oKIUtNM6opHpRrRNqKuOtA3fUfzWhfXAoYGn5kTBsTaYbDGh/xgTMq/5atplOIoC6PtdAruX9ZeQ+nICLf6xjIyPS42ZB9mGWCB2Q+3dPmXsZ+V5cj7t3DBwIllH2MvTTVgbbMB5dZll1qocMFZaZZ7Deoe2FnHxUJLllhy2sMMcoRVLsUGKEJhHahJzqxKNLNZFwIWxXWGeadYqMkuU55VDaBVSMUuSYEG8WPmGhtySqo/YW/bRlDo3YT0VpkqHCiNqpDLEHCB7wHT5glVnBeryMI2KE2hKaN0IJTz38TImzyiwRmvTwlBCT5gHzFBkVC5x2kdnaE6qkuM3XOVaqyzSPAWH+ZSgz115hnmVnD3SPRT6PZfnrvH4nJWSDmAN41mNTDF3bU8+iYaI0ucmS88KJ0GSLHD08fsVbXEmss8dZkaIlZKD08FhllqmpZ2o+PUAjfYZxtjhJwD0W6eY83lz7hCKjzLLKSUrQfKNK3ot9jVs3P2aTCd6ek5X5QQ440R4Y5ICTMfn/mBB8S4AHMydcZZZ1rpChwhI3mWWVPYa4MFUj1D5mLxQV4DIZJhlqcWIMrhCE59SvLy0o9h5nBbgLpTlOS7LtJ9kZHnCDSTbY4yxtQi4NzwZalWHHpOrhEau8ojQq6LX5ADImQNOlwktafwzhmvzuzMLT/WTSFVL1uhjFJ847I/Je4AUbTFAlxTu8T4Yy61xhmCoVMhzEBtTYe55+jhmlyFT7GZuxy2QpQRjnqbTHEA+Y5z/O/tduLJhHlPhmBbihLKOTBek3o9yeTwuwuBK7xgpz3GTJrUg3cmcE9GsIyFQlRSk0QpQjthjnq901GIAH3g3p8xkBm1JUOUTkfkyhYEkP5nHm+svccF5UBww4KbKZXA6xC1kckj7OlgItKVLsMDu1Ril2ngoZkchmBUzcYEKkXxxwwIAbT1VSbDHOLKtEaTLBJhUy0pf6ciBo7DXKZHitkXegnFCLNyglzpEJvKTIGMdvhFxQQImsn5S1jfMGYOAFz8kywAGLyLXQT1v9IyWdSPzIJAm0mkiwxxDPyXJEhIh6elUZhmwe0riAhCH2aMyf4XyhTjnXVG+3caqkXDCAR4/jwT52u2d/F7eff+1ez7jANOuUyTDNOn/K3+MmS5pk1CXKkbBVT4UoHBNii3HOIomrObbcvdJo46MUFViNulACi0O/yy0m2GCadX5KlIulMgzC//6/QCwHnuACcszLBp1wMIkUVW/g2J02wSWv3ykihZ4VYMYc6Or35pFJkemOwE+htqfOElK4vI2wCdLIJGsMPyFSC0XAN1uu6r5VCkBC92nMhMUTaV8Dme3cwU97s+3P4ORmoNsb1s9Zm9ParimkGJrBT80uIYsjU7qfJ/j+TwX9v4dM1H6Ob+DexTcif6Tt/2PEXmJZ35/Rz2wjtgfo/rVAI4ykm4XxfWmGTh1TE/j7wAPt6xp+EvuMtmlcP5vG9zGNnTo3JXyT/X3cBI0MbiJPQduY0e8+0W2ltc//Ld1XBTkf3wK+C2od6fulTumxH2qf9eEKXxeilQfaTRlD4IKiQPvxqm4jq+26qn8LnTqmCv45HEPGRkPbdhUId6UfS9qu/0j7EG1jSb9z7dR7Jp1Ef57TfT7SPrukf7NxlUXOZRg/xT4L//BP8a+TL/PrDCL7fF8mSTMJmUzl9L6QTOB8vy4quBfP4oc+LSMSyWUBiNJd6PseBH8mnkaZ7yLSx3dg/2diNh55pL59WUjWcT7Cdt+IP8S/37wBzR+cSsBdlvZUasJmGE/K5DGpbCMDmQxw63ykk9NrylLT/XbvwRsJTSetA2Mi/w0CU6evu5vSlv07wsKptlUOmcWBNX0x4CrUliCq7I1nP5FJdU1BqwtJAcWaawoShOTfVkmlcXkFCBQgquZFYtrtyWQxqNfP7FUEKBhDPKTX1A8rrGy2qkyKy0XIhPEDtDz1YMpKAmPOALq6hF50CnIeze86npL2dbrSfydduBgQQDM+g7tObL09p+ySyaQCxLqYevQQog3tz5Bs+3pOzuvFe8oItAUHBZqufxfKP5WJ9GIJ/16Yhv1/6rOjag3xrcLYgl3ph1RGjvlAmUfmR5h6UybabrErICzF+IAAsc1lBWtSUP0T2f9+XRM1cxAvCPgQXcC/h9r9bEbBrzVtU1Yk3yfvKUiQV/ZPALlvKXBGTq+hBFz8A5zcMhhC7mfKANqvwloJFrPycxBhUaVSKpE30C6LPOtjst2tNgwWNYU6LMzN5h0IVgRQ7aBAQ1c921oq/asrOPI2UhfEkYW4L/mr2xJ/OlAQzIDYGMz+EVT/XMD5WklCR6I5BVmrymwG37N9GwlU2Fd7An229VldZdu+Jtfq/poCqUVleSX1mp0RQCrgybkP1OV+uF+Bi28g94KfyeJLE8j9EQTDOKl4rQ5xZTzvH8r9JD4l9zKW9X62LGMzkxYmXXAGTpaFRXqESIHjBQm/qPVkUSeYAO5IiEwqBXFdILk4hVxjo+LnnuxJGyIhub72qxCvC/u0WdH7V1uk36m0tLtTU6a31nODyP/BKRjU2is4I8fN2/I7PwdycNGeBQbYxUSOXusp4/kNeT8+Jueh+j6UezCbF+brWk2sBvoCIpPOePKcsqTi3BsS8tN3GfgQCgXITZ3yoi3L885q6/LSKbas4RsxZdKW4LOfyvHllLF31ILcgqZnj4okv5BXWXBSx46HeISuidghiswnLeU2fcpL+0jnrJtMkqbMDKs0Y2coMeIIBxNsUND5TT/H3Oems3BpE2KF65xOzz3QufseQ4xS5Igow1TZYZgJNhlCMKZ+jolosfAilyDaa4r/cvcVg6EDFrnHHmcdhhKh6drbJEKJLIMc0E8/Fs6XY0vn74c0Q6KDMiadhNxF1Ud6hwoZ1plmiQUm2aBHgBJZmbuFxukPHfOVyhP+q/R/wDu8TxVhLPYCOCslQj6RS3z7Nv/a95PfCUPvkAEOGGSHYe6z4NhYltrYI+AYJkVGXfpIluc8J8seQ4RoK4g2zQpz/JJvuCTcY0KUQjLL20hedHpspgQsWGFOEmy/Jd59BlAUE+dJUeXl6AD72SCWuii+dBEOEkEGEU+5T7NTrDJLmbQalXc5VpDtBssUGaPAOPncRQC6ePA2LHMDUtD15ASVYufdRfUyN0CIY46IsMw8j/XYSoxwn5tEabJDisdcocQIPQLsaKKeUTnXmaaLJ+l7dZws8gE3xGzyGi6x93bsTT4c/RoHDDozfQGu5llNTHGbt1jhOk2ibJGjGks6ZuC6RkPvcZYygsJXSDuaqqUw7o8F2WBS/OpyqDF7VZlDIT7PJp2v1x5nsZRBwI2Jz5JTLHODTSZYYY5H2UuOhdQmxG2+zqP5S9RGwxRDAk5+PpWkqhLGn/EdNpmgTIZWDmrfCrPKDPe5Se1q2B33HW4Ju/NNaWebfvLpi44tZVTY04mF1l+bGlDAHG7MGrsqy3MOGeQ4HKTIGEVGKTDOk9x5Z7Av5vNzgJyzx0zTT5v3ecf12TgFojTduGwToofHA+a5yy1hlOpN/Lfpy6wyy22+ziGDLtnHwLNNJoWVVYfaVBjm7Nq4DnFJsTwiygEDSCLlEQA5CqwzTVnTRu1c2dhrEnWS0HWuwAy8eCPBEgvu+t4ITdBJin+gpKL2UyJLD48C44xSpBpIcVYTir7srxxP8JDEzlVmSVElp2EVw/pQnOeBCyUoq7fELKscMMgmk6wyyySbTGrQBODusZZ8O8wOacoE6PEH/Fjuk2SJ0ZA7fRn4c6T4sSLIihADwJbxV2VLSPHWhtr3wzKpMPbIE/1uGJnUxhGwpa1/W0ImEXeQCW8F3z/JVmqTui2TuFXwmUwGNOW1TcvIpK6K7xc6h0wowvhMuGXd5xrwJ0jRZQVvHgFaGgiAlte2bgOv6/4MNGsjEzc7pss4307zGqGE2Cz8TN8rIBPU1/E9VX+O7ytlbU8B/w2OScKP9Tsx/V5J3zPA7An+hD+s71eQyVlO22fgW0Y/++RUO21CmdZj+BAf8MrgM/IGoPZuWMZCQPtbi1B33DPa/rx+r4HP1Js/9Tk7x9YnyipyEjJ7PdH+q+rvNsm3Irmlx2fH1EXGWkzff46MM2Oj2KSloX1jbdVJE1kEkHuCn6Yew/cftfcMXNvX47E+NAZXABeO4EDlAd1PW/vGrh87tyl8gDSBz8aqItdnhC//6xVQ99l2wXllVcVEbuXYImWdbBqbQc/3SQt4JGBXB2VKIH/PKNuBMrAtQMxUTpM66/LegYE9umhw8qF+3+5HHwlrIf49ZfPFEM+zBch9SyZd8SxE5+H+HQGm9j9C7hsPVbqbwF+gQNr9rK6SraSGCazBbE7lTCpzdK+SeCM1H4rX2skScj+tINdGWLYf8TRhsqCy5KQConk5ziAyqT1qQfOnwgCZyp3yfXsdd29KJmRbjmlSwQ8qG4HODyH/IaTeBt5RZpceW6etHnE56a/qNvAfKZsnLdK1VbuewrLPYEhAwI49c5IKto0CbyhjLCSgqoVa7K/g2G92P+yLIV5vYWlz9JqmxiaRe8MS/oKBAhMFW6wII/eXOmS+L+9FdDv2PKrqmKs1BIjq1HBprw40XJQ+sElzt+cz9VJjuOdTIS/gY/C70ufRGWXwFGBL73nxeV+GGxwRNqE9lwolHSuejJHye9oGu9/k1Ui/JIzX/07b2tnXhEqQ556ytOghNhUlPWfLuAWn+Jzs6llJ+mRGwRG+p4AMMrmv/gwJEFiTz47bOK5C+QeyfTPsv5A8JUGfkttdtS2AaCSECzA5LEDjU34vXoFLAsh2wL/m7BlYkb6/OA/Xp2S85G0hoiG2BftVRDX0HJ+9ZePTni/6DDtZRp5BbWGxfdKGZz8Q/7qDhoxdS54+aikQl5VrMhJWFXsJ+FBA3XRSQZ81ZcTp4mitJ/e7o5YATXl9HucW5P7yWVHblhaJa8ADFlTqGRP25n5bxmV8QAJv4mNAVdqa1IWY4JQyq0fluJsP5R63VpdrMRKWa3e/DflHfmL06iO5B2dCmlgbkjakXtcEWCQ1O78s5yJqi7NJaW/zPej8RBh4X6iBbMG2Ltdh5jTze1vepy3HNDulvoINuQ6iylDMKEvzoKGAXFXGQXBe7surBQmzqVpNeGpR5GRb2pPJylghqc/LawLyH+l4mDOmZ0jaFdF2d7rKoO3Ks6Nalb5qPtTAGl3siQ4AHZivP+QK6xp8d0yOLaqkhJjjDbKlibFFRrkbuuVAOfOuvt5bIaXBFSmqlMl8YR68yL1T2MEQN3oPmEVSc0coMdTeY5F7lMgSbbQ4YNDNy5e5wW3eouRlhRyh/s0WmmGfCykJZYdhHjPNkSqphnti4TXJJnsMUSHtCF6iyEs7DGSTCQY5/AJDT7CBIxa5R5t+5lhxTL1fp7+Khe8dMEiaMuXYOWEhMkyZDGnKRGjSJsQ4WyRcAfpX3E/+Wp/6H/jaYZh/8g8/x+Mp90GhpM+pkeQST7kD/JbHnHCGfh5xwCBRnnCWPX5OkihVOrwkzgGHbPGUSwzzW/5TYlSpss9nPAB2WecvCFPlNsvUuU2UdfLsMcQEMEI/L3hAizAtwgzRT40y/2/C9IhxwBM+7vaxGigoVfMM6/y/eEybDzjic+4zyAH7JNhj11FLozQJs8IjeqTocEiOE/oYZZ+Pbge5fQDHkT5WA7sMEGKs28fHgU1+QYoAXVo84yVt+mlzTJsDWnj0CNOiQYxXnGGYNT6hzjFBBnhBkA4NYlT5x/yaFjEabNbhvcQnPOIJPTZ5yBlWiLLFNiub8Mk/3CNCC49/ToVzBOkQpsUeQxwxRoz/jD9hhyp7pHnJf8sAW/8f8v42uK0sze8Ef9TFCwGQAEkwgSRSUBEiKUpsUU2VuM0MqbKyqrI2c50z1ePucc24Pe0NT8TEjiP8wR/3LWI35tv4w37wxsaGHdERdqx7XGNXu2uiapx25lRWlSorZamCKrFFNSmKpMAklFACSfAFJAGCAMT98DzPOVBP21OxuxnRm3UjGCTxcu+555577jn/83/hj9lnnzW6nKNEiyjHJEhR5wUjwOc0iJOlwgn93CXEv6PNNAGDJPmEZc44R4eAKNv8OSH2ecIRnxLllH5OVDad5gEhTthmmxe02eUz1bvHlYbzKVHgfT7lNZ5xjjgpYuyxys+ocsZDjjnHEmEWWaHDOc44IMQBcZZ4xjC7LBGjwiMaxDnjA/6MNve1jl7Qx3sEVPkV5zgjTFvSbemnTZh/S5g4Xfr5nDbvsU+doQP4xWaIEFUOafIKn3NAkkEO+XOi7FNmjwZh2oRJcMCvOMcLuhxRUVpvmD9nlSZtQgzzgH9DmTBtPlU2apwoZ/wZ/yNwwCZHfMYoNY5IUNuB5w8eckyCNr/ilDBNhhmlyx4S7x1hCYAUdUpVuJO5yjWW+dm/XeE8n3KfOGt8TpRP6eeEDwnzGafk+Xc0iPE5n3LMAEPs8RGfE2WE59Q4xxkSU37CKDUSPGGVJDVGOOJP+IQTHlLnM14lzzBljmnwGcPsU2eb2/Rzjp9ylxeME3Cs4PGXfQvxgoCOgPDgDFjf4sfUGGWIPZa4zgoz3OQOTeL6kEkzw4pj38pKjxi0GiMPhAls/owgK2fPkRh5e00P7cNlPsBLeLaRVUdjLNng35gBRzDyRycyIEnjgQ8Da6oImGMr9sZC6+K98S4gkwmVFAEy0DR22w0EbMtpOfoR4OUY+AUCPM3re8Z+6tdyFPCDYZWzUcMzqLL4RHKT+l7ASVSoI0CnMi6ch4+ueLOOMMsOkAnuA/1MWf9PaVlv4wFCq2sDsqxcBigUdB+hnvem8MDTPD44yeR4JvlD96tyPka0LM8RoO6WfkcnTua95cDSfjyQdYDz3mEVRjhxzBVqup9CT7l28cw+Y20aWJVD2pWBbQZuLGn9q6QE8GyQWa23qJYppdfL5G0neszLwHX9X1kkpPETlqtIuy30nKNJFee1/FG8bPoYmex3EdbPVM9njrW8q1q3Nkl9hGdP5rU+i3gJqDH4lrQcAV6ulNP66mFtcRtnDeKYqFY/X9ZtAOqLIu80IMdkR4D4qu0KgJKtQ1hBuFhVUw8T6vuzoImMAHdlwlE5Bso6yTzG318JCJc8s8OA9IfGejmRCVK9K4BDdkD2k74iu68XNXXWQCldaLiRAd6C3e9Bcl3OYSQhEq1sRo+/BHSEZWEAcNIYx1M4wLm2qiyLx0jybVQZYXkNwehH7mtbFKh4aVZ9VW6BbEpYG42iJlHmgO/CyB+JZHIhBOELeuwW0v61z+w79mEI9QP1bUrgpLThhIZXXACeCjCW/Q7O44uyZ/WkZ5F7pYRbdJhJ4+8nZbBlb+HBKAVmGyVJLA5/S+plpoUD65Pal4WjyiQy0N/uo2PgHRhZFznsrrLd4mlgFs7eFw+72sdyDq7fMpbukTAo21VlKD4S1mNfSEAVUnoNtV8xBiIdAeHCCOBXOZCJ/PqisBFBwOq09T81DZ8IFDgZkGAB8foUGW42peD2utbZgLLe0tqmompZmkP6nl0cU7RREgbjYUlYVSGT5ylgBlJmFuW1Pl1o+MU6fO1NHOhayOvfBrpEgfcEuDufl3upUkX6vBTEtuVYhZz6MUaBuxo+kJE6b+zigI/xEZ8+Ddr2ViEcQCiM84P8Mm/Hm8BlaTuVqkjUK0UJVnhW1T5OmaZchqkj5B5UpncyI0xPkDqu34bk38axtRqrAshVHkufdPZU+tDBBHzDJKy7OGb9TE3SrZtdBXBBAhkuw7VdnFS/2VLm7Aki2/0D4IfC1JuqyNeKjyGZgBsLSN+5DenrGoJ7GegqK7OMA5bifyDndV7vlXoZ0t8CFqXtjATCls5an/mmHB9lCPalxPIjPifnTw12d+UWiuekvONoKvqJhPaEn2v9VRUQT0vXfK+EB/cTwD21YFiUa5K+KKB6Gzj/Lakbytpfzyl7ch55pueBkoZ/LEj/ZJ5+yZAck1DPM2ddr/GJfveKsC7PL0PydWR8NAb1D4QVey2jixv2XE1K/fXZ4qQyFPnb0Pc96UvafyzHis/J+YRDytrOCFv07GOpt493pX0uKEh6dAADSQh1URLHMA3ipNkhR5kl5oipEhNg5mCd5dQVotqRx1sNTqMR7gQ3VSV2jwYxnbu2yB18znKqpQhJhAZx8pRYCUQCm6fE9O4n7IzIAD5Ow4WRfcQbBHSJqPS2S0C+JRKKrei487ezzIZ9hugQcL37gMhJm63EVyRYI4gTo+HIE2Vy7DDKfGuRlegMIbpEVaU4zhZbSlQZ5JBxtshT0qDXPW5yhy4BD5l1JI09Rxo6dQBgSLElwAWgXu8+YC8YYuD4c36d7Qth6HUJiNAiTJsuIaKcckSCEXax9L8uAW1CxGkwwLHqicOE6PIZr7LPEDuMKrhVo58TDkhxqqmnzzjPCf3UGOFzXnFsr34Fx/o4Y49hFYAO0qSfXYbp54QwbdqEOSJBOxTmkEHqDFIhywv6ADgiwQDH7DFCmxAJjojT5IR+6qQ44xzneEGINl0COupzN8w+3TB8GnqNQwYZ4JBPQ6/pZ0Kc0K+eZcL46+MFYQWjTMc9xmc0iHFKmBppzujjOa9yQIoBjjkgSYsIe6kBslQ4xwvCtGkR4Tk5wrThggCpDeIckCRElyZxqsq8SnBMgiOOSDDMPi84xy7DBHQVgO0S6YmC7udEQb1z4k2HeA8ek3Dy6X2GOOMceyqxfUEfFhcd5ZSADif0U+UVXmjTO9GR3ClREhxxQj+fkuOF1m+UFiPsUeUVDkjRVg+yXUZcSft4QUCXE/oV9BylRQSAz/V7Z5zjgCRHJKiTUp37Mcfq+/aCPpr084JztAlzjjMOGeQcZ3QJ6c0/zOPUBCf0a0cT44R+5/13QIojEnzOK+7YIQVqw7TJU+KMc45aKwBkkiR1GhqJcI4z9hnihYKiHTXVbKuevj4a0zYoKwBnnOMFfdq2YpznGTFOiNMUOfMghGk71pexWZNKMQ7TZp9h+nhBmxB1Ugr8ikT4mAGOSDDIIUkO3L3bpF8pymO0iFAnRUcpym2xwuaQQcK0OSLBKVHCtBnkkBBdNrnIOc6+iO7nr9x2QMoxFEfZYYINTa+NuodchBYL3FNJelYDL6KORm4PhUMGJMhEJblZKgxpqE+F7EsPihYRrugDhAwy6DE2Xgp56O/ik7cv4Vkbs8hE6i4yOXuk/58gA4RbCLhh0tR1POBkkyRjtC3hWXc2SDdQw1Ywe8G4e/r7e1qWi/hUZGMSGmvLfhb0HAwcqeNZFOta/g4+AXzpL5RFGQ5E8ZNMk2blkUlTSOujqvV0C8dKIYSASl08M87KNsXLDMYykgbXr9+/iDD9dIWdK7r/Lh4w6+ITzOmpV/Rce0GtFgKKzen7GbzBeE7+bo/gQTa0TqsIWNlBwNcpPMvMgDaTHA/gmXtvInLZRzgvQ3J4pmYKD3AZuzIDGFPoCn6yaQBjVo9/QY9Z7PleWn8bmKmMFa7ikkMp6PkX8WypstZZsaeMIEDoNh7AVXmiK38duK/7NTBwCS+D/hi3gk8WL8MsI235tn4mgwDX1t56AVyTxn3Zt5jKK5eUXdIBdmFdAYC6giTnC/LxWk2YKIfH6gk3pZPAj5WdVga6MjmyNYtiVSaCxSXPNgtfVQCsAKTg4WOZiIX1/kwOCJjXRvdp953dHwos1Q+AVWU+RIFlsX88q8p78RGRPj6rAo+F9VJ5LPtsa99V21am1xLCTo0KS6lxG+d/ljT2CVoXAXK/6eSXC8DvCiuj2YLxFI6pEouqoXoH+EAmeuMoQLQKrCsQ0xFZ5tk2MC+/azVIvo1fVKnKfmsVYb9xF6gruFbHLxREBWhbNWDprnqm3cYZy7dbiIG+3Y8dAb3qNWHfdTrKoHwPuCcTdgO6d49xCwV1ldM5YMMYynrf983LftJZqb/6XeC2BpdcEaYlswJ8nRkY1tPHhm2RAAGyXF0tS32sKyuneYJ42S0JCFMvS72/piD1VEbrJxBWUVLBmfZ9LX9KpHehQMpsgPH5BWVZ6fO0/oEAMfVV4KmwGtu7MPMd+b9R1fZYlHMxX69rCyI5j2cEwKkv4hnc/dLubdEpnYOv5SV9tF2Ua+foHgkB/erKbBxJCGjBiJ5HDtbvyTnGDcxTgPZZEQ/iXtSQlAOps7603n8ZuV4NBXrPnYMXL/iN2KLKsGyjP7tapyGtqyM8I9TY4raoBQ6g7XR6XrNnlI1vFBBvHCvog95POu6qGcO+57NtcCy/to3ltC03T7wvH+DHV10cWI8yhB2DNIG050DPyfZXw4/lwIci9b62i+/ju/paqMdvsNZzrsdaDVVfN4Pos0EZck0bw4aE5RwKvN+eK39LDn/WwY8HbHxp41Xdfxj84rTu041/i1p/XblHY3o+na6W3xZZ7acl5Wx3/sKxWvJ+08bgVi/oPlvKkCzjF7HB28yYIsCeW7ty3qFAX6+rj5+WlZCUsdPtOcaxlOtcH9AP2yMyv51kg4AOTeIuDDVLlSH2GeTIyUnL5EizQysacSrDUWo0iFElS5odjhgk3IJBjjhikCxVB3gNse/Yfa0ozrLqkEFqjFIl46SvM6yQ1Q51LTpN4uCFAnRHXOsuM0qN+e6iC84A2Ep8hQZxNplw0tuh1j4bTHKJNbJU2IhOuLCPDuI9P737iVNGxWkywQZpalxijS0KGpYxyju8z9e7H3GdJf5L/glD7DkMY4h91pgmrY2qSoYMFYKOyJC3E3l+ne0LAfReocop4g03wu5LINkBKY4ZYIBjUtQ5IEUfL+jnhBppBjnkFT5nhF3iynQybfUuI5zjzP0vkcINXuFzUtSdVPECJZ7zKkcMONAFBODaZ5ht8hwo1aFKhkMGHMDXJUSbMCf0q9G8pE8mOCbJAa/wOWOU6eMFB6RekqiWdYaw35+kTZgkB3zKefYYIkVdJ+MxVx9JDugS8CrPHWA4So0OARFOOaFfvbS+4oAbAULDnOMFNdKEadMgzgn9nOPMBVxspi5wxjmHcIdpc0I/I+zSzwl9vFBASwCbQwZ4wTkSHNPPCUckHKh3xjnCtElwrOrzfczcv02YQQ4Z4Ih9htx+z/GCQwZ5xmuufKdEOVIoManywgEOaREhoOvKYnXfIM4uI3qtI7QJK8Aa5oAkYdrE9ArXSdEmTIUsK8wQVT8+k7zadTzjHJ/zCi0i7DLCIYMkOKJNmM94lT1tY2Ha5Cjzgj4OSNImRIUMxzojlY6jppBblwNSdAhxQIohhBkZoUUfLzihnxBtzjhHoMh+Pyd0VNK6z5AC0R0HQD/jNQdSGzBq51NnkGMGeMZrHJBkmH2itBhij+e8SoeAM/oE0I1F6OeEVS4jIRUDbJOnRVQB3xiDHBKm7QBJMSytMsgR/Zywq3VuqxsGxoZpK/B65rwhrW6snk7UlyBCi35OaBMioEOKursvv+zbA667h8aeexwMqWx5mhVmnNS/S+CMXQ8ZpKgPrEMGiOiyxykRTolQpMAD5qiRJkuVOR4wzRMHykc5xZKbWzHt6mvIQ38BGUzk8ZLFI+AfIAP9BAJoTCGDAXuemORjVd+r4L30qsjKq8qV6CADOANOssggJItMKIwNZauINQSUeUv/v4APEujXYxjDCTwTbhU/oesgk84cAriBTOIfICDVUwRA6v2elSOtdWOMKvRvA+bex8sr7XMGKizhDaBH8AM1A2ku4CegV2F3vh+icPImnim2qPu8p393eDnp7zlupZso3ttwVT9bw4chdXDyGudrZ6BlAcLG0Lyg9WHMSpPD9OONsh9peUw2oqvbzOJBSrveV3S/23rMAm612Ly1nOy3ovtZwLPt0nqdjBHypr5mA/3H+BVzkzJbOU0ybUzSjpYlgb++xg69iJc62ud+Hy9RLuHBQfD+kDrZcgDoVM9+qlrHq3r+U/r6VYQFqIAAtZ5rRs/+a3zpt+YnOsEZUWCvDgQygQyFdKIYxXn7xPrl72RagS1dQGi3ekzWR4SNlkQZdvr5OMKWahzD2SrCWFFgvw1MRUXWyLqAXdmcTs4MWEfAt0Flq66sq3wMnehcBPrhxpSwkNYV9GsXdVKnn8tmxPfIJLcjxrK1tlSSvzsK5jnZ1u/iLA8wZuGAgEfWxvr6FcDLI/3GBQ18QKWW6wKSjmif3G7JsbJ5Oc++15WV8lS8ttIXcF6blUUt54EyR6wftHa6Lu9ZH/ewqsyasgATuwdyTY1BF44KGJZNaChGV2RpyYywfWL9ataeU0abMsfqq5rsW5brkrwg3lm1B/7YFPXnn4lnW7IgdW3gFt/Cs527YjAfLwjA0T7Gs6BqKqXbFlC2aQBHSespquBpTssXgr45AXGTU9Im+myhS/v82iKEv4P0A7NSD31XRK6aDdTjrKphEyqxI4e3mkAAr0Fd6AiPacAHuGCRvitStmdV+V1XcDCEtOHqrnqYHQBHcP82jhFHP7KAlBXwL5zQxE/r0wFO9PzGBLTbRT6f1AWtyRGVcuflXgyPyDU1vzx7jp9XtlFfSlixbe17kwXxCkympM2UT/mN2EKv4UCk81MCCCczSLrrH+I9cIvAogbAlJAForIyWke0bZSlztsf4BbH4guy72xO2Vc5ICn308+qwnprdkX+3rgN95eEeVbIKcCqiwP1dbm/SUgf0TzRYI1d2R8fCihfeyDy1mclvfbr8Isl3ALJs3uymHJ2W8rYKCkYnRGQsbEkffX6OtCSPqF+F++lirKfF+Tc6h/LMSgqYxcBn+rbwlQ+K4tENYaAc/UDYWK31+HZB5qcm1FgOYdbWFupwnmUPW5A6i09XgB0pQ/LTilLtoIDINM2lkLqI3xV3u9LyDVuKPDf7si9+bCECxQrKkM91t8TxARO1lxHwPPaurSb5BVh/HFVpfpFLe8Deb9hY1llVvKPJYjk/vfk3PpyamWgUt+OLr48+4Fc460D+FrGy3R7n8n/T/4eHSVoie9/RFNia2r/VKBKhlLiPEPssUOaLiGqZLnPPE1iTO9+omQfUR3dY4F/m3lTwiFYJs0OcRrOgmuwdcgOaWqJEXLdslpelclTYodRZ8kmsts5FpmnzBh/nrkIQLTbYiWYEdXTSZs4TdLssBLMsKG2WhmqlMhzjwUWo/NUe0JKxaZK5uHPVTK7N9LvSE7Z3QNqjKpFWog8JZaYo6X1EXTEXitOEwvmsCTcOA1VqzZ0LhiiERXrsq4buP6Hty9Ecvu1/+NN2sk0aWqk2VFjfFlyHadIV2OCawqYbVFwQQDG5sqr0/QQ+1o5klZraaMzrABQ4TJdAsbZoswYVbLMsEKRcUap8YA5BjliiD2yVMV0EPH3ymm6yS3SDJAA9QYDSYYtMu5ij3dIU2OUNDsA5HiulTzOGtPEGSNPiVFqRLjONE+w1NA8JaZZcwCN6cav84AyOToEDLPPuGrQ9xgiRJcxylSVrTPHEiXy3OQO97lMjAuuPCvMaPMq0yDGEKPEabLPkDL9ok47nueMj/i6k+ud14jpPCU2mOAJ03yHH1EiT5yGq/8h9h3jL4oELgR0nXxwiD2aCE31HguMUmONabJU1HAyTo6yMsX2GCItQRsMEtBljUuMs++ADKO6PmSWee5rvUtC7CaTTKt2H3CMwFOiBMwR5xKTbOrNHXES4TQ1fsBfZ16l1BKHXXSBGnZO06yR1k4pwik/4xvkKVEizzu8T4k8MRpsMolEWy+xxBzjvOpCPFb43/AOTzhkgCxVlpklTY0sFQVcEvyYt5jmCXEa5Cm5+hKkfsfRcNNIsMYkm8TJsKPX4wnTtBTUnmeRFlH+OX+Lm9xhhhXWmGaWF9znBrMMumvVSzu2bZlr6kcwxqEGoZhhaJkcWSqq96/SJEbHGZzGiKoc1OrY/AebeizxE8gQokuRAlkq7JDmt+qH3Ptvf/H/8/7nr+ImwOmR65NMShvX++USaw4st3tgQk1VJ9lw/U+JPEPsk9E63GeYMcqE6DqvS6Ntiz/iKCf0s3duiFfZFYBiEe8rFkIGAHl8eIQBZrP4ScUUHuRa1/+n8P5gB/gkxnu6321emqCSQACeXhBtDr+CawAh+t114Lt4YGwMAelMWmkTMQPXPsB7ym0jQNFb+ncOmYAv41c4p3iZBWdAmB3/Ss/+t+X77b8D4dvIoNrYaFfw4OIUMtl+C5/8aKyvuzhgaeQfSiH6P9C6muupk34EyPqjnn0aILaMhGjsIgBsSN9b0PcH8EzEq/r5Gt4zyuSy7yFtYQHP7jPGmQFfZbxv12zPNbIJvV33455yWJuZ6nl/Ci/BHUCuY10/9zWkvUQRoHddr5NJVZ4ibTPAB7n0DnR76//7Wo91OYezr0GfDZbTeo739f/Levx5vOzczsUAbmNC1PR6mMTbVszn8DJaA/V+F+8JWEcYed2e79zS8zXgKom/H4b40m+xFIT/HvB9ZWa1xDR8pgu8Dc/+KZxPy2eTKWFHxXWyQx4Hmq8fwIwCy2frAnhUEHCNvLCgslOyn5V1yJ7IRCuuCxk3Wvg+TPvDWkUni8pEAfX66wpDaiajXnBRKdf5AgJWKWBxRZm64RFIDwBJAQjr27ABFJSdFw4pmInsi0AYUclbIgE7PycJjOmPERZXWculDLLslEz8xo/V0y8jr9fXof0vBXxr1wU4ChcQgE0ZHuEk0g5V8sYxMlH9vvgGcgEa/0iAsOyU1m9VmT3KpJwqqNw0r/u4BdTgmoKFhGSyms0Db8HZD6GvJpPp1xICLMRTUubkFI51FDbg/VgnyTkpeyik7EJlhQGc72gqpC0MdeDZbQERai3oPIap7wJFMabnMc6aoL6uQRcKAuwewMg9HwSSfgvHnI1fgY1FGOxIOEDfVI8c+QIe6J/136l8LEBBWBk9Iyko/rFIbpMFDQHoqDTZFqwyGkhyQYCG82od8KysISu2MLEAZ3+kAKfJ1HNQuyss01XUpB8pX6EkRvszeQFZ1peEOTgeyDU0sJpjARp2j/V4SQE8jTHKFfFy/PSRgHLXchL4kf4a8EjDCRSI5yrOMzdp7HBbtMsCS3KvpV/Xcib1GLo42HcOYka3/ZJvnU/hWQ9o6pjeLaAobbXZkkfJVAam3sSFNlUe6T2a8QEpJHrYncqIdQsHxppPSFv/RhH42xBfRZ6FAXxVv9uuSlvo9LDGXwuQ65eXx2lDWclJXWxN5pB01WNNnD4RQOtrOWBA2LjZqPbvSVlciY8I+JxcFIlvsQydY5Wryho4tRa0n4pc93xKUrCT/1TqpQEMLum9cxk4hsmO3NPNltzf4ZD248qsLVyV302TpCrz7NltKFyWepvJ4OxK6jVtx4/0ty6kOo9VY8DVcJYtZ+viwxdDX8/inivhENwvwY03Ib4ujNZ6WeoN5FmWzagsvyDXsPFIwPapKZVR2/jXmNtLOHuJ2lO/L5BnYShQwDMldTZuzLyr+IUZZLGg/Vz+TmaUVVyGPn0Gh0MC6sVfwBv8nGWuublhkxiXWOOUKBFOGVBvvRVmHNBXZoxRamSoUGOUvg7c4SZdAmZZZpZlR5Y5ZIC4BjAKbrLDcnTWkSHSJ7tEE6d8xBu8zfsMscc+wwxySK5bZisoENB13njf4Gd0AiFLAXRD55gqP+OT3CvMdFe4E9xUrOWBCx9tEiNPyRGlqmSYZRkJ+JB5lmQ+CM1ib0SUa4bzGP61yYRgNdEZcpS5w006BNzkDsPdfR4Gs2qrNEaBLTJUiHZbLAbzpNlh8mCdX2f7QgC9fhq8hqRbmsl/oDOlJnEaxFljmi4BM6xQJSvoK5LwuKPJKVYp5jE1yzJjSCJrhayTOgIOZBrkUH3umgo07ZOjTFS1yk099gL36KpMtoskRpbVl8oACqGDximRZ0eDAyxCWZh9g5rU22Se+2SpUCZHmZxDnd/lPd7nHQdqmReWBHHEyVBRgauANr1Ao9wYLYbY1wYhN4RFGWeossAmJS6wzxCTbFAhw6gChla/1uhE6jipV0DAOkOIF5knq0aMS8yRoUKLCBFaNIizx5Dz9moQd8msi8xr3Y8xwwpbFFhlhr/FP6dBnFEFQFtEucNNZlkmqkwjO75dvzUFqIz5ZpHOH/EGN7kD4JifEnFdY4txJtlUyaoksHYJkPjrnAP2lphjg0lGqTlw1RJ0FrhHmh3yCjDuKFNUpLFxMlS5xBogLM8OgQOOd0hTZoyYouo5yjxXeHWaJw6UMzbcBpNsMsEMK+QpscU4E2zQUmlzh4AsFfYYcglAEVqElJVaIcM+w64erL1bks5N7jDIIYvMM8oOK1xxwOeA/s5QZZMJpQLLuc7yUE1FC86w08phANMl1thkEpBgDwloOFL2WEuvW9fRiEFAwxjDDLGndS404yxVonz+RXQ/fyW3QY54wiWecIkxyho2k+HrfMQOo64NZ6i6+9NYv1Fajt69wgzv8h5xTb7dZ5/7zDPBJne4yRwPGGKfVWa4om1skV1G9w7gc+ThfQUBl6bwwNUqMvCeQwCzBJ6pEuCSkt1C0QkCuHT0899BJsa39f0cAjjpIM/Je7bxRuU5/b2s7y3jgzNUcucSQS/ivdXexPvYhbSMy/r5EV6SX/AxAtpc7NlXF8+8OsEz53R10knabLJfxHkChj/Ap9hexMtTbQsB72g5q3iG4oDu08BBcIwT59Nmg7A8Mgj8XS3zqpbXmJGLeh6BHt8mxQZ4GLPiBC+vUvmHAxcv6LF+gL/ub+PDO5SZ4rz0Mnps+34Vnxp7gk+kLevPm3iA7DGevVhBZgMDeJDzCjLReI5njm7r56/g5cbgGXQGEPeyIMFLeRKaQhnqqXe0ro2J+K7WzV19r6hls8nQRbwk3cAKA+7AS4ZyePDyAX5gb9Jrk/d2ECDVyr3Lyx6Hr/Kl3140ofYPhAXSbCl4cAW5PhlNLDxRQCqpkiC7x0vCpgof6IRP621rV1gYN3I4efnPDuB/raBpGkj/vjBXwglJyHU+dj2yr3AIL5teVyBLmaN9/cDbmno7opNSZVikvyZ/x6fk2C6EoQK8A4N/CiMtn9g4NYv3zFxGGLMAdTj/rpQnfRGXLpjtmbydPZV6CyPsivVHMHVV6si8lZ49EgZi4U1oLwl7r76q3lUpBbRKev4KKCaN7RvqmSzqMQ/172ZLpGsG5tUNsAnkvBvHmsjaUb8mBcr7Lsi1q7WkTCZ9s2TaXzyCrwXCIInnkftOgdNnZU2JREDMbFmZRlPQt6vtRhnR5/Veih0rcHlb5NdpY2IOSHlWW3ClJkBh41jAksaBJi3n/Lkno8JeGY9C/BY+COgqXp7fUWAwhTTKkoIs2q5scuzIuF1hvzmm94G22TchrKzs85fh2WNhVZ6f83XBCLDY4zt3V9lACU3GTcI3kHNIJuT9YlnBiYT4sRUX1ZvNFr6uCqOx05F6sW7WJOa1p8pETCjDKCGvr1RhypjYLfUQK+I9TI+1vGn9fR/f90ZVDl3FL4ocaRpyDhiE9Cu8/Fz9km6hCJyflHupVlbGWAg4gZUlCc5JthTgVmb3WUeYtTEDYgzALSBJyqt+H1xB2q1dhwpQ1H5rFu/5q2PBvpSmnRYguar9pIFVvcz0eb0Pl4BFYeSGMz2LDwoypgPcfZKNSuiLPffiu3LO6TS0H0P4FhRscfUYyAnLuhBFbtIa8Lakn9cq8u+VEQGTYwGky8JuO9QFgfax3P+FjByzXddFokcKaqWEwRx/W/qdQlEYg7GoAtRXVH7eQQKZtlW2/xMBK/tSUheVMoTKAqiHu3BW0yR0Zb09eyz3caMs/WN4Cm7cx6kQClfVMy8k6bW2uBzXsd/6Y2Wfh7TeTjzQm70ql76yJG2n3fFAee2uMsRz2rcmpA0UFpAxlS5Wh0J6792S9vTsQP0zwY/VtT9LpiCq4F6cJt9s/YydaJrn5GgQd3ORKhkinDJOkSH2SbNDoLZPEU5VAXbIJ5lXyKht0LgGBZoib4h9moo1bDHOIIfUdK60xjSZRJXp7hoEUpZTohJKCgwF+wR0mGGFUXYYQEIpRV0ok5hSNM/l0CfkDj6nG4KxRJktCkQ5JU2NCTbZZIKALnm2uVj9jD/PXHTYgWE3pr4y6W+OMsvM8tXqKruZfk45ZZZlYjRYYYYWESbY5CPeAGDwoM3wyD4gOElM7ZiKwbgSsnKkB2wS8h/evhDJbZwTslTIUWaIfZaY02jgIwdYDLFHg5hWVslprw8ZZJQacRpMsIFFCecpkaXiWF3GRjNQo6HpJE3iSmlskKXCAvdcZVt6aZqa0kSHHPOsiBgm7jPEBhOObXRKhDwlFvilQ6L3GSZGgzQ1IpwyzZrzJzMk2hJd1rjk2GQ5yu7cx9lyYJaVwb5vqbYRWmxRIM0OEU6pkeYjvg7ADRYpUKREnhxlIjrpH+RQJ/8i3/wx3yZCy533DmlXzzXSKocU6ucGE+7GKpMjRJclrtMi4upVgkE6WNKpgQ1RTnmizLLf4R5rTDtgyIC7OZYYYp+isuEMaIoouDfLMlUyNIgpm1Iior/BT5lgQzX5h4yy40DfClk2mHBsOqvnGqOOemvg3BD7vMFH7nh5SkQ5ZZNJtig4v7/n5HjAHGtMUyPNKDtYXDYIKD3BppalRpWs0+sbiDzDigOQjQrcJE5ARww+mWFYwWaj346yQ5cQHQKFJ4UBN0qNcbacr5qBwVkqzLPo2sw+Q1h6b0CHAWUhDnDIHkMOZIvSIkPVGYIGdF0Ha/dLhQwtouwzjKVA76vHooCPe+rHJ8B2lxBbeg9J6pG0uU0mCehgUeFNBYfT7ND8DZHcrjPlrvsAh2SpEtCR69raYpaHbDGuLGJhaD7U5GWjmlu0+jf4qXsoRjjlCiv6YAncdVhlhgGVclfNTKOJmIks4xlpxjQAH5aRRgbZuorpPOmqCEhjzInnePZaAg8U2oAkipsUkEAYDB3d9wEykAz0e3Xdf0v3bZMNk1QauLiMsJvWEQbc6whYY1K8PAIePccn5Ob0t8lUy/7vz39vwANdJfxg1Y5X1nqZ1+MtIAPYMgJu2WD1AgIOval1uYoHId7S81jEM94K+p35njIpq8yBYug1QP9/hICTu3gGXRHPFEPLXMeDfNme79skuqPfG0F8/EyOa+yKFB5gAg9iGSh7AQ/QgU+LNVaTySCtDrPIxOIq3mPRwK+PdR/L+BCDMgIK39c6W0ImIcd67saiTMPx3z33srS5gJcdq2SHAgJUniDXvR+5VtamjWFj17+jxzUJrEn51hHmXUfPyT5rbFCTytXxYKsxa3LIvXFRz30Az2hcx0l4+IQv/XYuqwBBCrKXkXr4BVJXP8AFmjQVjDaw7ExZoeE/xLXr2gMkhRABytrWX7VUVf8mjpHAAdSP5P+k9VEGll+U1wcT+p0EEAjDomggThQP7NdxvmDp61r2bQFGHJiBTFa5K6DgjTcFpAuBb+uryL17jGcKn+D7kd/HBx2UZWK4sSsT0PPKIp0yi4Mocp90BYgqFGT/uwdaj8ZE7Vd2oDI5SCH38xL+vmwJQ9CA63ZHfjLKjosvCNiZ/Lv6/aL6By7g/AdrCsjXVFpHR8tUxoUuGBv8SuAloibpbazKv1lbQJgXYC4+IlK0syVAGULt5+qFF0gbaJ5o+EJKWXG22PAAuAILV6UOwiGRj07lpWz1qjBrjFFmMuBkGh8OpMB85THejgH8M+QEeQ7pAlH9SANFEgoMKJuQrpz72YHIAtt/LECzsfxGEupzdoxnsLXknEZSIpNMDqiX3WOVa2cVuHyE88jbBf8sDhQwQ6/bDTmv+JSc68LbAn5UlF3HsRyDEbwVQ1cApRlD/qLCAHT3SBmfOG/P0KL6ZdpYII208QV8/xdSKXZZ28spvxnbOeSenZK2ZhJvjpWBHBVW7NlTvaei+plVTUHNIQsgNhawMcNTWC8Jq7K2DRzB+g80xTWqoI9KNBtFXrLrCI/J7+Qc/tmuTMDaA7yv7RJujPdMxwvZvDBQny3xcnBXSdjYzs7kvnw+/Z/J/88OZH+VKt5beR0oaJnzKgF/LN9LDsBMThYLklG5J2plCUbKXpZ9NE9kocf6T3umZHMCooWnBLxb+QE0lDUfDmkIk7LvwjdEYly0xZ2WgIl9ygyuVeT5MpKSJFo6mlD7lvT38ZTsq7Kkixw1nCLhzOovrX1MVOq5towHYQekf8ouSB3Y2DDWr8BpVbxGs98SQL9yDO1HvnmNpOTei8/hFs4q98ROof1I7ADi2v9ZsFwYXAJ2saRtpCTPH4BgEBiGadbYiE7Q1TmkqIo2Adz8skmcOA2WdT5jisNlZlWaOkqWKqPUeLV8QISW2mg1KKnPT4k8gxyywozO81s6vxygHAg5avD4yM09jTwmPn57jvVnYJ6FZlTI8mlmhPup36aceFVxHpn/nhKhpNZU+zp3/iwjPvEZKoxSU3JajB3SPGGaPNtCtNj9jHnucxZCZLPEGOweurmYkTTe4COOFCcao0yRcacgzXVF1AuCD60Fl/l1ti8E0KvyChtMsk2eihoVtohSJeN0xzOscJM7rHGJHdIO2AhUi3zIoIIXzZcqwgzhf8y3GeTIydG2GKdCljmWeMIlB+A1iRPllDWmiSjyWiWDGDTWHJvLjAlDql0GHOBh8tSixjD3No6KrmkZONYiSp4SeUqcElFT+5Y7pzI5msQ5JcI2eULKuhFGnRy39RfAqUMGmWaNPCWu84COIszmPyegU015b1GaxJ2X1nUeADhJ56mCNONsMYYk0hj6PcgR11gmQotJNt25dAlh0dElLjCprMCGgnymnx9ni2WuUWMUgC3G3c1pANQhg1yg5KSGck12HAiU1tu8RcS1Cav/CC13Q25RoEvANGvu8xbSMKj1MskGWSrOJ87q0sCPU03RsY4gQotRasyyzHWWnBRWrqXQiBvE9QYPWGPagS4RWlTJUCHjwGlhbzYYYo9p1rjBIsMK9uUp0SGgodr8Lcb5mJuuHZ1quUJ02SHtKMC9PmsBXR6qlDfCKe/xH73E4BPmp2/LTWJUyFImxyYTvMe7HDLIBpP8mG+zz5BjjxbYokvAJBu0dF/3uUFF/QQKCkhnqCpUJwCfrToAjOs+njDNoUaK5ihzgZKT4P8mbK9Roqag7jRPSLPDNE8Y5JA70ZsOeO4ScpLauD4ubFFkR/gVTLKp1gIZZUgessmk7nONgA5pagxy6PrTF5zjNNMng6sQfrCdwAcHzCMDtUU8EGODcJ0AYgwG8BJN+98mvt/X/837RSeRPNXPVJFy3EcmxifIRGsVL82t4n3oDnS/7+ESIFlFQJ+7+l6+51ySeM+2Ik6G8lJQhu7jlR8eeZAo0PPdxif3hvCstyJe3mnHUwbKSyvXxz3nHvAyW07ZMHS1jAU9JwMRryAAoE6c+Gdaz/N4VpcBbjrgIo9n1f2kp44/1jpSmRYhPWYU7yH4E93nLTyTsqPliurn0eOf4A2Xn/aU+QIvA7kGClt9HeGT9PJ40PK7eFC5jgdADRC0dtNCJn/zei27uHaR+NMX8vkQ0l5tsox+/66W94f4FF5rTyNapkU9xjzeL9KOYeByFJEo6uSUCt5n8KqeR0nP/Sl+wv66freL3BeLekxj28zhJz1hPPPvy7y18KzOloJw/QKknBnb0UC3Dk4O2JdBrsUPgLJMkupdxIetIJOe8BiOeXD+v4Jn35PvFrSvSw4Aq8qGSPljcSDgVqcLfAwr78l+pm6pBCunk2IF+BurvASa0FEvqhN8G9LJIceSeksgf3+KAmllrYtdBZEKuLAAN+mN4gC2Tkcmrq8l9P3XkfZjTNslnG9k8hYurCf7Lr5PQv2SkP9HDCxLaJDIh7hE7XRWJa1pAQPT16Hvfy+pwO37wmA5+2e4lO9kBm8Mr2ATx36izQLSzyjzxi20LHlz+7j1DwkN4CioFO4nwPcVwLgizMSmPsOSGfWkS8jxdw8EmI1fURnzLA6QWn+MTKZvAd+B8O9puS4Cb4k3X5+Co41VAQnrR3Lt6sbeVWZ2dgGXUtzp+JCUs2Opn5cSWv9QQDMzwW8Ys2pdwjD60ppQ2hKArvhYQdvLGk7Rr8dWC4tOV/3WEmr231FA4EjKWa9JuAV16cLbdanT9mP57EhCvfNaePuCEG7RJjOCYw+FM3r8PM6Cou9N+XzYFmlQT69+ASefLem9fEXb54GCQyPyc/YUWcR5pOAF8t14RploIeAFvxlbSvuDW9L+41cRoMgWHlW2aeEE7bq0t4fKtm+sS92vGtO4rL5vXfnehsqyz6rSVvoSCkavy76fLWkIx4ECNjn53b4HVIXh2d5Fnm8JDaV4qm2prB6dNelj21XgD6RdnP+WANTFD4BjaQ/nlSnKgXynbePQjnT1ZyfKbtUxVaUqx2228Anjq1I/7Q4uZC35ugBs6evobErqIpnRxaOctK2ktlXmcIsKfRmYuaqptzLEJplThrQt9On2bF36hLCOpepF+LQroGHfBSnX/ar2hTVkbJDsAd/0PJ5VBZzss8XUA+C/wi3epE09UgYqstDQeCTed+0lqZuwjp/uVZXt+ljazC7SH9buQnpK2NlJY82qrUj2TXlmhhNaPwNStraO6bI2Dqsqm+9Y+q+sLcZGpHg2dx3kSOfqDZ0t5506MMKpA++yVBx+MsuyerVXHJ5yO/c7dAmxxHVK5DEP8Ak2iHBKjudsqPVaCwmaeMAcGar8KPEf0+3BakDwgtFuzTHnTIkpZT5kmjVXnn2G1bQsx6vFA4bYdwGsRhAToleVLQpYNkGVrMsaiNOkQ8BhSnIFiiOvUlNbpKAjRBhT2hkucMggPx/5HWqMMsS+Az4PA/EAjNPkEmtu/vy/tH0hgN6AoqS9IN0oOzTUY62iLLuoLsMMs+9YbGUF/ExSO80aOcp0CchRZpINhthzsjSLTX7IrIsptgtmUsQIp0yyoYBgjIwiwl0CGsSQCOIWJfI0lEW1qJqsLiGnDzcre9sitJwfmwE9ZnRfIs+GyhNNcgkCSo6zRYwGq8yoLHSDKC1mWGGeRcdcCykbSsoh5pMdlTM2VQpsHnwgrCpjmf2Yt5hkgwxVPuTbDhUWj709Tok48MrArC3G2WCSU6I97LmWQ72H2KdA0YFtDWJEaCFR1df1hpJ9G7CQpeoAPgOShtjnAXNEtM6rCjINIJHPDeI8V1BrlB1CiA5+k0ki6q9oASQtIk4qWuICK8xwjwUKbJFWH78jfDx0jrKTEkt7EkluWo9jMltrezuk6RA4ee8alxxYG1GZ9x5DDrCZZJNTvXEBBW6OXKdibcLOIUuFU73G5h05Ss35oVXIUiVLQNetfthqiGn3DaCeZ5EuIaZZc+zPpnrc2T21zxAtIjxgzsmYo4jvmoUtDLHvGIjCah0gR5kZVrig0dxWhioZNph0ZqFCRa4qPTqNhW8YSGWrOPbd34TtK2w7mbctMqwwwxD7rv0aG/gON4lq2zSWb4sow+xTZgwzS91T8NWYrfsMM8MK0zwBRJq+yQSL3GCfIdqhMLyCDzTox8tMowj4YzKZXoaTvTYC/BwPSGTwE+IOXqpkbKRVnGTM+eFV8QCaUfptwmLsLGMMzvXs74K+/nVcoqKZF3OCZ+JdRCaYBjLmkYltHpnEJRG2lk0oL+EBu66WO9RT5gAZ0HUQoMbAnLrWjU3MbDXZJHt27o/wk6VdnNk8efjsD1IvS6kSQA0+f3vA+/DZM3wKz4470GtVwzPbvqv7XcTJbljV/R7gB6U5vHTXmG4Gchkbbh1/bU1maixJ295BWG5v63Fretys1unv6j4f6fUYwDMDlbnzeWHAJ9saY3RRr0NOr8sc3o9pUf9/E8+800mNA0ozeDButae8JqO+grAS0fdNEvw6Huy82lPfNgg2kHAWn7Q8pvVr7eYPtE4SPZ+fwpmQ8y197xZyHW1Ffk7PodnzvS/zFuCYnMWiAibKauh08UEqBpjaxC2LTPLKCgKiYIYyKUjj790EkNf3o3hpkYHptlm/dqAMP2NcoscwuXaqh6kUlQl12ySjyvqIRVX+aMyzAQ/gxKK44JYOcp5nB/aPgGO2HR7jQ18MtE/IZDSZUtmU9TnKmCOFTzA3QLqFX2iwRQy0THpcwEnhm0giam9q7aGBPdZfJIRxEk4KKNSXQAB7AzKj/jhhBcb6jITfwqcH6zU6q4l3VNPArzqOZQhSjriBVvScX0IZaWO+rL39U58u0NSP8Ow0ZD/1Gj7p1b5jrMpA/0/Ap8cCJHS0LmP9eOa0LTzpAkKsX9k7KTnf+hFeUgyun4/n/WtnykR1KenGeNZy0i/7a574sp0pczqkYBs5kTG6JM5jacMha3MJzTEJ/HuNY2E5PjO2tj1H7Toeq5TQ+jFjXV/E+6sm8P1l7/3UA2J2lIHo2mgaB5gcGgM8Kvedsx5AjfvhCzKD+iu4Wf08Qq7RY2FQ2WLAWUfB24L0QcaWzYLIL3PS/q7NK5j8c2XcBeJJF0OSlPtycO0W0A9bduxjBflm5fWmluN8HsILcm+eT0n7ebauQDXCZgsFAiDFE9qWohKgwA9xLOZkRtleGW1TyphuFwV0DwXAn8prU5dFotuuwoqyQbM6fovrImY8pcEWZbk/XR+5iiy4oYDwRakbA7Kd3y4KvFcRQG5b2L3tErQ/xrFji8bETshnCEkydiyQFO92RwDSUAiuFSD9rjIk19WbrqvhS7sCtjZPNGBEn22vjfSE9di491/qAsJ7eDl+SGXCOQHUMiMahlOD9veljq5on1urCLB3Xve5a8+AXWUwr8s1cZ5/F/ALvSfCsg3rcyesoHLbFqmVNR2yvuAQeCEYS54Sg8dHzoZrlofqQb/jFH02n24RYYYVNw/qElBkXOaG3QaStTCueE/IEWKiLcGJ9hlyDDrDf25yx82lIi4wUKykaoyyE6SVeLTjCFWHDCrxKK1svVNVTgrA+FkhRVEJYkb8MfDSBxoOOyXeDmnGKVJRwtpiMK+KuWHni78SnSFOU4lFzx0uZorVChmOGHSA4w6SQTFO0albf53tCwH0DlTKaqb4VnBjm8RpUCVLiwjXWCZPiYAuNWXqRWg5IK+mgEqHgApZKmSZ5z43WMRM+vNsc50l8pTYZ4gdRWMFVJtwBoS2BXRoqGzSKrZMjgxVxtlyAGOEFtd54ICyUWoq0xTDf/PBqqn9ocl4u8q8itDiG/xU5Y7CqorSUvZViCusEFPgpUWUEnlXzk0meMB1uoQYZt+x+PYZpqYXe5SaY3wZeBY4XlbXNfAJNtlniHG2iHJKU737DFy012dZZpQd9Zub0PJKYzdQrkPAc2VxDamQMs0OC9xzIKwBT0PsU1EJrdFnJ9ikyDjmoyeNOetMJwM6RGlxiTX2GKJFlB3SjFF2AJOFQFTIckqUZWYBAa/MRFMgVGFQ7jDq0PYyOapknfTTrtcy12gQZ4txADaYZINJaoyyxHUk3KLCKVH2GOJf8y7LXFOwV252AwkrZBmjjEVQN4k5cEYARRn1lsgzwKH76RI438ne+2dHu8dTIoxTRLz0so7hZ+zDjMrcW0pK3mTChXlcU0MSucbSdmZYcWC0gYcGvonEVjrUPCUaxBhQOfeOpviY32GWCiXyjq1oMlzzVwRc+wEJiJhkg7gfqn+pt6+wTYuIS1HaYBKTqud4ri21Q0dXkB7o/WdS+SgtWkSJcsqPecvVaYO4sh8H3f6MOZyhwgSbRDlFJPMx6e1tomfA3TF+0mPsvVZP4VUO48IyjEXUw/pw37MJcU0/G+r5nIFD1g3bRMAmor0Tg97/eyelBib2gnrHyERht+dzxnDrZSPu8j+f9NqEBl4GrND9P8ezvuz8uz3v22TVwASbJOsk372W6PlfB2qvlg58ea0+O/BK9chPMHsAht6JsGPp2fmb3OYvTGxfOr+QlrO/53WrR3o+R0/d9f7YazbxVIaVM4ROafmO4MQYHh1e9rezumxBvNXwbca2hH6vv+fzNvA90DL0AEKOCWfbAN6zsJftZudgjEkDLeza5JHBrgG1J3iJ8gV84q9N5IOefds1+cvOw+6vbk+92fU0toKVowd0+VJvEYSV2i+r/0kFrZNXNKVvFbirDJ8DIKsTriWgAtn/h0w46l0lkHZlAltcwrM4qsBtmHobCMGzohzv8BgoKJupgEzgHgHz4kNn3mwzGWVM3ZWAAg5UuqoAcDKjBuz9SL+SkMnoegkPHm/7JNJBA+iictkzIzqJVqDs/DyujSavIG3ELAlUwlisSsJlsaplv40A8MZoNgZ1Gc6W8Ysx23ocBQ3DSdy9fmjsyG0YT8DU7yHg9IGatBekHI2PJQGT76u8suvla05efBu579JS7kpZAIZK2TMj3YRSFzf63hUGXTotk2P0ero+rSyS2qmrwO/qBHNdQI9Yv4AX9bKwIxslOW4sqgyksjBUzlZx8v/ZEUi+i0i87yGs7x62XKMkE+h2CabmxEswY89J8M+NssoA14ETnbCXcQzn9HVkscPYk49kQl18DAxoKm0aeQb/QNMrZahINiVSQhbV6zHtr1/fBdlnX1pYprUHkqzcbCmD9IKmFKNg64FUdZ8C0/GCHHu9BDNz+P5nAUGIlJX0rKjltvadRuwG1nFSy0YJJ38EvcYJn+QZHsO30ZACJqtybZNTuIWMqSk82z+lQO0LHAvoy751VtXL7tizfNvodb+ggHhGmHDhMWGeJgcE7Kq9L/swNmtVv9/pqFQyEJbn+R5QmxNY0AXNdhWmbKHpAKZyAtxZsnYyJUBiXz+cX5A+MRbIMZotbedRlV+H5J5hXvbFCZBVa4CcJnMrQyys/WXfLPLcW8c9x9sdbf9RuRfPFnHt9FlZ/FJBgGyuCOBWN2az3ae6gGyLCsYCbLfkuI1V6a+SU/LMCUfld6UsfxfeRu7fsniLVnQxOv376mk4IKnS8Tm8IgHpi9Jpfy9Tk35qRNt1bVnOv+8CkFeW7K6Ur/hYvWCVyVdflTKHC7h7pe+C+oRekGvwzProljIngewt2d+ULZgXRM7cpwu4v3iMD0r5GKcMmbHPd+VYZ8dSJ+1dBUFRkD4NrQbwTMAtgP1Eirgq0kRiKvPhj3iDEF03917mmsMBAroOADtkkE4QOHszU9DZ/L4SzWAJsCa/ta1JnDzbymITn3cjQ5hF22R3gxzPmWWZLBXiNJjlIWOUXdiGgHyzlFRVWmCLBe4J006lsFmqtIiwxiXM4kq86sV2SxJzBSMy4lGDmIamNsh2JaPgPjdYUp8cs7rKUWZAVZKSeCtZDctc47XSLgWK/DrbF7IOss4k55StIxclgiWyGt2wRN5JHNeYdrTLcbZYYYZBasoWizDMPjv6fUtubRJnkXnHMoooUGbAkCRrNhjSiheeU5Uh9qmSIUaTZWaxxFxjJG0y4UA2Y8JYwAUI4PRQKaTGWhJPPpPNBcSVhWiN0NJ1u4Sc1FVSbpfYYIJF5plhxem2o5y6BjrNE2oK6BwyyD3yzLCqTLKYg+/knBoOTBQG2BinRFngHhYyYoCSMfzs5plkgxJ51pjmkspY7ebbY4gKGSbY4Dk5BzwOK3xooJjFLR8SdT5h+wyTp8Q4RSwYokSe6yw5g0iTbJq5ZIWsS8gxIKxLiApZZnnowKGADhFazLLMDCv8gN9zSL2wQZtM84RTImSoEFOGmAFqJl+dYYUVZlz7NWqwSI8rrh2bvn2YfSbZdOaVlk4MEfbpcpM7znuuSoY/4W+4dmqrEzOscI1l1zZrpJlgk/vcUDbeBhtMMsSeO3/ziYzRIEqLb/Iz7nCTPYawVGMDX/OUuMNNYjRoEWWIPQeI3mPBgbxZqoTossEk4xSxROf7zDPLspONdwk5MNg8CatkmGGFeyyQpeLYeCaNn+UhXULufjKWoaS7NnnGa19A7/NXb3vOqxxoKrUF+Rg7r/c+tH5mnvtuNclA6HG2eKLs0BhNxiizzDX+hL/Bf80/AiSZ+0d8h0uscaTtPE+JF5yTUIwaMpkxyWUNGYx0kQHMEjLAOEAmjU/xEsljZODdC0AYwyyqf99ApLQmzT3AA1A5ZNBu3nYV/bmISG47+HTRgJc9nWzVfhFv0GtgSxIv8VzETbKYxXvZreL9jX6IZ/Et41cgO3jZL8gER1d9KeEBsVrPZ4xguo2XTlTx6bg2uDUANYMMooxBeEWvxzE+XOFDBGSYwkt4TQZsYNIcnrlkzLYOsgL+CC+rNTCzwMvJxrYqnMKza3oZFbbPFN6X5z09jwKSJmwAakLr03yTjqH/ntbVRa1jm5TaoPEYEksv/Eq0gchv4lNjdfJOES+L+xiRCds1uYJP4bV2ayDDxZ6/TRr5GGGiZHvqN4TIYQ1wW8Wl4QG+vVmbTOv5fqz7NXbmth7TtgG8957V54D+VnkOGd3nFdDH3Jd/e6HG6UlNcs0iXnH/EmFKLsrHDo91srIusiEywhAJ/9+AjkirLIW1ctwjtRoAuvBvfgJ/7Za8n9SJXtv6rQ4C6GRlv9xFvJFqKrV6C/hQE3gzSOqqMWSNZatgdP2ulnNEJ7QtHHvpvLJM+5bh2felHEmg7yI+KbqO9xLN4O+/EF4yn4OC+qjVyjJ5re6KIXrlEWTn8P1tCrYWobMrabTFoqY67uIA7MauADuDCaAi5YkbWN0v55BM+3TbjrK+1m8L4+bsRMAyxzoOqXTL2nZN2TVd9bNS0HBrEQrv4hcnHgNTcG8RFjKaJplE+t0TfIrrlOzTfLYKV7WujiG0ruyfqFz7ZAiSBtQfq2H+h5B+R4IEWIeVRxLosHsAI7sCvMYCNbU3sOmHcl6f7sL5EITfRvoyZZg3W8qy0Yl0PI+X6SeAH+EWVxqr0p4LBaT/mcKzz8sQVuAkaQz1fije9v5fVPAsybIyG1sC/t0Yk/YYu42zZIiblK/o00LPlkXeW1sVs34nJ8xD5Y+FfVPv6n1lC0YtDdCAl9K52yW558aj0HckYHB4Svd3Wctqz5euXMumMYDsmWbs6inkmdWBh49E0k2E3xgPvVYH/htbAE1B+3OVOR8gTKgRhFKXAj7DLyyGoPEC4g04eyZp7p8Dr0SBM137eoEDZM+eQd8eUq+vAHtAH7CGfPgUZ3fRuguRCPQN6zEb/nNnETg9hegQMj6059Yecs/elrLRBp7BWQv6fooH8qtIJ2KM130N+egg1z2v530A7QaEY/J/63OIjsBZUwHqALlHI1A/hGQM2IR2DcIBHJUgGoZwGPifkH55CCfl3juG4UMt5wlCTxzVvxel7FSRRfAE8AmcbWrC67DU0blzCrj9j1KeWgvStsAZ1X3mdT+juMWKo8cwkIfGKcQ35PPdKBy3ILmvZQxBew/OHUDwTMthjGkra10/eyh/nivDQFjqudWAaELea4chfCzntgd82JG64hRaTxUHbUvd8TmEB/Hj+69Ad1Pb0oBc52gKiOPUbEYisYDRWZYduSmgyxhlJVAJxjBKjSH2ucMtnSMGbl7ZIkKhu8VeMOT+F3LRKbM81ADQYTJUiHDKFuMusDKrr51ySq5b5mEwS5cQ5SCHBKUKPpGnxGDrkLXotJub5lslBqMC3m0y6eS+Q+xzjWV+zht8k59xSpRv8yFdAibYYJwtTlU5GadJjbSScEZZYYYcz+mqwu8wGKTEBWZZpkLWzQONKWgEF1NslchLqGkAkW4vy+Lfv30hDL00u1g6bJWMA8NEQiraZ2OTHDKokscaOUVMDVAxcKZFlFF2XCCGyUqv84CmIqdN4krf3MO82ErkFcH1UtxDlV8awCWgV8S9b+myliz7hGknpz3VwIQop4yzhaXRmpTTjiNeWWsOsZYk0SO2GCegyz7DbsIeosskG+SU0WUASJcQk2w6htYCv2Se+xS0AUVpscAvmWaNKhkHPAoqHHcN1+rK/O5ADB+NemqG+gLALDPHkmMtbjBJhSwf8XUs4KCDxD6vMMMGkywzyxqXFKCVejH5YI1RRtnhCdN0CbHIDUJ0uc6Sk+1akqvJMSO0yKvnmCQOtxQgzTjA02KtJbk45G76STac3r1Clk0msFCMUZXMGuPM5Nomj76kku9ZZYwaa7GjtOCsGmHGEWrwDRaZZJM5HlAjzbgS2S1t9x6/o+zEODe5Q0b9A0FCQALlEB4yyBrT7lwn2CSiwNk9fod9hh3gucgNxxqMIHHdLSLENdl3hhVF+aVN2gqDtK/nrqNIs+Paa4MYHQLmWSTHc0rkOVIwPkKLbfVEWOOSgpa43+NsUSVDjjIxGljar5iG7jjZsfnlWeDJPsNsMc5/zL/+Irqfv3JblVecTFvk4eMALHGdHdKscclRtyPKrxRGsL9OTWJcYUWp3nvEaTLNmpNZFxlnhRkyVFw/u8W4a8cObArh020N7Mrj01wv40EkYxhs93x+GxmM3df9GAPrMgJ2/E1eTki1yUG/7s8GCq/jZTzX8SmpBhLVevZRQADH1/X78/r/lO5XV/55isxgWnjvuL8wmXUS4Sk4/v1zAs5Ue457ARkdJfE+fMYUs9fU28YBlTYRBi+hmcKnAxsjzoChqJZ5HedBRQiZMC717PeWfmax57u97Dwri0mn39LjjeA9q0xOG+3ZhzJJHID6PX0vr/s20MxkgQYsGHOwgA/K2EVAyff1nB7hg1RG8N58xoiyst/VY5jcuoNPNTzBg8cjWv5tPMBaxSVDmhzEXYMU0g7sWpbh5A/x/oh2bWzyfAPf3gwoLuDb6j28fHhey5XXejxA7oMq8DU9rl2LI60TY4nO4+V1xlQ0kLSGDMx/AwjLneea2loXWdmzMg7E47L6+KAg2a54OHEMPFJWnN67FXBen9mEgFPrxtAL4KvgEji3lPGWVvmsu4em8H6YIZW5lZG2mRJWisn9z2pSnkZZ9ttewklhuY1LUHVWBQbsbAtjbBX57C7qIVaVcrKKZ9O1oPIj4IcCmpytS7nqizifyPRbIp+rA/SrtNLqoijgUSGnXnspTU3cVSmjtj/7Tt9FPXYeHwBkYEJe3w9J3caiMDkix+3rRwug2y3Zd9tA/pTK3aJIn1QVdkkcPGDej0jUn8Kk9mtJYzrf89cxZP+XBRArvKnv1eW1PmPwhsTovV4WdtL6YwRQTPXIZXXxoJdMa1u9q6BUB8cwr9eEPblSlYRkJw3d1QCQDAIYXwAViUAUnhm4loH0FQH+tlApX0uliwZqKfAIOH/Jym0YHxEJd21bpbbggn+aCuaFo5qiWxSvtPZj+NmSlL/xHpCUa7Ze0jZzG7a60s4bRQ0SKQsLMX1RcJY6ypRN4FOnQ3K9zk6EaRVOyj23qwByPA/PFrU++nGs5Lb1nQfq62jPwY4A0Y5Oogtc1/LKkk1CZ/0vuUhfwi0WQfr+F8CIgLtnRkAKI3XZBC5DtwmNCpzt4VK521Xoi0LjObxi4Fpegwua+nMCfTHgHLSbiA43gwB7XXldUFv5O5rokcG/kM+0j+V7fQWI9gNt6Fq7PIW2PTttnHmCMDa/grMtADnHo30EJDwAvqLAoSkMukhH0YbwK1KeswOIDgMF9Qcc1B9dFEsOCXB49BmEzwMRGChAOA3s6L6H8UDjKAxf0n3E8ACcjlu7Jo81kHNCyv3iBcRf8XUUnkae81F5Lf0qPvDKFhMTeoxD3ecLGHhNPh8f0HMdhCAGya/gLFi6HTne8xYc7UDjczy4aDdqn5Z9EJITMDCiZX0B0fPAuLwfnobGM7nGwwXdz568F72AIMExCM9DeBh4Va/ZiNRlMCzXpfWZ1l8BSEJG7aLSB7LiPseSA/M2mWROSTuGY6ww4/CeEnne4X2useysscYoC8EhyDtPPgvNSGsIhVlDhVRJNsghT9RWy3CmHdKsBDNEkbBPU2sCmM1aKZpni3EsSLUbEkuzSTaJ0GKHtDDnumXGkIAKm9s2iFEjrVZhY+yQJqTnFFPQcIg90uyoj2DLKTjjNHitussQe6www31uOGWgkdVEKdchzQ5lcnyaG6EZuCXL/+D2hTD0CjylQxoJmtijxAWitNhjyNExj1SqaOEFAjANOPmisLGWRSqGyPTsgltYhtAyRVJZZoyCgirGFKqp1NL8+QwMPCXCBpNqIi/AyikRfsBfZ5onTLJBjAYdJJRglB2G2HfMowXuqQQy6kCxGqOUyXGJNcfEGdPZboYqVQ0H2Ve2m8QdR5zcUbwABdE2o8hlZrEEWWvIeUqkqTmZrzXWcbac1LREnkk2HJi4wgwFtmgRpUyOCtkeoCDubrAZVgD0Rko7Xfm3+bEmvkhdXmOZReZpEOc6D/g5bzCARE1vMY6l0w6r2nyMMptMck2RaZCAEQvcGGKffYZcOMcpEdLsuChsObcWNUbdjWNK9kMGCCkrzOKs51mkoYDYdZYA8e+TZFVjuTWR9GDpxfcZBnB1WCGjrM+o61DA+9dFOGWDCXKUsaRYgA0mGORITTWj3OEmXQK+oUEFp0Qoqqz2DjeZY8mx22T1Ysdd57/LP2ZH0fuWY1oKGGzS3l42obG8SuQdUDqKhJlsMMkgh5TIU2OUCyrFBdzrJr+VcJkHVFVCneM5HSQEZIMJbnKHHUaZZk077A1iNLHUIgPq7Rr9iO+4AIfn6hkpPonZL6L7+Su3nedTThnkXd7jkEHGlBJ+SoRlrvFNfgZ4fwbrt2ZZdqzfPYaIqF+iGbg2VDp/yIBjve6QJkvVeT3WSHPGZzLQbiDAQhovfzLAoYOXii4hD3MD9A4QwG0dZ1LvgCqdSDrfN2Of1fChBga2JRBgxNhqJ7pfk9JmkMn9czwz6jLOC8R5311GzPFtALiO+ClV8YBKDZ/IamU1YEnlQYnFFz7BDTx751g/e0t/f6Dv5xAvtMd4qeUxwkywCfEUnv1VRCajC3ivuRJOhsSJXo/5nvrqBT9NLnYF76FnIFMHmUSua53mcECEO1ebdF/Ag6V1fCpwUevVWEIq2XOhFMd41tscPuH3Yk85jeVnTE7w0kdjzZm8w7aQfu+W7nMOD/aZxG0e79lk7CWTw6a1HN/T1wzYXda6quN9F/uh/3t4P7QK4tszhQ/l6EdA5VU95uu6/wta/jTed6aI90Y0dmFU37f2aROaY3y4zFX8dbc6TevnK8gg2xiMX+ItpKwlRiB2rCDOU5EcFf6xsOjC1jbeE+DAAaDHSJ1V1UNqHUiq5Kwk79eXRbaaVaCuXhQmUa2sEjFtS8V1yP4Q4vPKRJsSvL6yrow3gH4B7sJRAbFWFuXSfqMuE97wMdImToAjuPcYFgoCnMT6hb1RXxLAZGQXmIdrT6VMyTQutZSagCV9FQXbRoDnIknlsYJa1laPRW6ZBKiIv1JlCbIhmXTHp2SfsWVlQObk9VhU6ujsROWY4P0Ka3rMFDhlzwWofF88qfqM4XoMN1Re5kJ+MlJGTgTgyTyVz4fHxD8q/aEcP5yRelgpwpURZb7VBPhLX5T9nK0qU2cKKu8Juy+eEVArPYKXpfcLeJe9KkVplwTcyCrg33zsmYHhDjTXkfvsgZzntTltQ1NShyMdbUNav2e35RwqLWDZZwNZgIpriyZHBf/sacH5gpjex5HXKo9g4TLSb55AWBcN6h/ItY2npF3WtiHdEYleny4UhUM95ziC+ApmBFjL/gGEfyGvTS0AZRhUYKV5ov6DLW3Xj6RbvDEldfDwHox3tK7m5bvnDdBsyXm11/WYUSSt+YKa+9eFoVe4ivM0zD7HP2cVEA1fFlC6b07ryoCOtLRXVpWdZWCo9p3tTfjsL0Ndv4Tb//k8JH8bz/a3BQFTN/Qjz+Z38c9VBVtZ52X7kAOkDuf0vSgeVLLF3KruC7z9hPVjxqbXxQs39rIFwAzSDwzq7yVkDGKLYfaMDvUcO4WA+u/jvZUTepwRpCO3MpiyoIqMF+1Z2dU6eF1f70f6n67u3/Z5jDxDB/BenLYQaQxXZdiaj56rAxsDGZPwryFgXUbL9BR57md0X1X8gig4n1Y3/rV6nNPvVfVvWyQewQfEXcWxX92Y+EPZd6OqILctfN7S3+/p+b2JXxytal3bYnPvYnJIj2NjD5D+6Al+nJJErm2hp17nkfGvKWdsfJuCXynOEeqa8myYBjGntLvPDWI0yVJhjiUCOjQ1R8FIOQEdN58FmG0t8yA6x8TxU4JEl+fk2GeIWZZZY5p9hl4ikKSpOdXXPkNM737C1kiUCllVnD3nPjcYYl/n3U2tqgxzPMByHB4E1xlij9Fujclg02Ei6aBGvNvgNIg4bOqUKDElPdkcebC7RSvwAZu57iGNIE681SAebXKHm4wp5lJPhwkUSLzEGs/JOazILLKirVNCUWEVClHtE36d7QsB9NpESagGuEmcUXaIqfxUwKsLTLDJDml9v6ZMsZBSEEdpEGeNS+R4zgCHNJRt1yWgTM6x45aZ5SZ3kMAHAafWuERAhwXuscg8OypBNCmmSTfjNN1xN5jkOksMsU8HMTQcpeYAyA0mHWPGZLQ/5RuaBhthn2G6BIoUd9zE2sI0DEQbZ8uxdKzRzLJMmh1aSFDFDmlXthIXSOvFNiTY5MkmE81rUEGNNHEaTLOm2vCau5EOGWSHtPNZE+lzkzJjDrhbZJ6ADqPUKJNz/oXmv2ag1RrTDm22sp4S5QHXXZCE7V+CG6TXm2OJGml3Yxk6DuItt8g8P+I7vMFHzkswoMsdbjLDiruxtxh3fovLzKpjnKTpGCiao8yslntHQSbxFws5cCRLlS4hArourMOkpMYAFHPKHapk2Fa6MOA09RZQ0iUgRoOmMvLMw/B93uEmdxwDr8g43+RnKiuXZF+x8Ww58GaaNWI02KJAVFcLLAU1SotR1fwbmNdRWblJZwHirLDGNDdYJEaTcYquo7V7ZYtxOgRcZ8l1irZfAwZnWFFwt0qUFovMO5AvS8WBRgK8FtmioICssBnXmObv8E+oMerkoxmqpNnhX/E28mT6cm+nRPhEzVEvsYYkEAcufMTSjUb1fl1m1rFqG8Rd/5EVXgpNZVVWyBBSJm6BLTJUGGeLJeYY5JA73OQmd0jyhLMU9I0hD/XbyEPZAJAo8kA3ttscfoJX0pOo4plMNkCwgdEcMkjJ4w3tjYFSwwNcNqiyVf8qMhiJIoOQBXy67Yc41gq7Wq5b+v8vkAGTDU6OkMHeD7WsNkB8Cz8wKSKD1qd6rt9HBjA2OLOBbwcBBw04MyZYGT/gy+g+d/ESqgwycEsgoOQ8brJOWctrsl+r8xAyaNYJsVvVPcAn+Z7oeZR1/wfA39b/DSyr4dl1aT2vC3B2Afr+AV5CHWg9GMD6OhJw8QS59j/UMl/Ap1DapHVb31Mw1PyWQPf9MT5UArzUtF/Pt4NMAKbwicgJJKSihGcVGhvJwEFrJ7a/Gh6U3sbJhNykw+r0in7eJjY2SK0gbSij13cbD7pd6al78ED1Nn6AXtFj7Oq5juh5wcv+eDaB6uixbUI7j5eTF/Ay9EFQd4Uv9/YCN/lsnghY1igJgaFeUzZVP/CxSEMPjwXwqBehWYLst4BdNQgvQzbAsWNDiBSxviTy1mcteT85AMnLQFH8lpItbS7HMLWqTLSiGJeb8XejKB5JoUCDBApw5QSyBwKKJdPIdQyEDTY1JYQIjiH5FhTfg0JNWHmNY7iR1xRZBLSs14T51qdgeV9R/KCSs8ARhG/gJOLx3n72kZri54CLAjgOJoT1F87g7tu+BKSViRiOqpz4Tej8BML9ChApk7mxLsBm4z25JmkFD7JTwkiM5yU1NX5LyuMAfZuwH0s91JBrk/1D4AOp98pjyL6NAyNmcsLKPD8n/z8swdQJhJTpHatCX1dArWePRbaczmp5x/Qabqu3nbKAw7bYEwCzkB1QMOqqeuiBPOsu6M+RNJazp1L/8RRyfyswcHgsrLupQNhxzZaw0tpVaQ9buwKGVXcVOEY9r1APxBTErV9uKfBo4G1H2JLxewLGrhTF2L4vo4AzEFZmMe9A8qmk/I4k5LzTt3vupZqWb1XPIQFf1cWYdBaow9YxzEx5hqktgr0WSDtNPtX6SAKvQ/sH0gaSCfVbNKDFAJN54EPt+hPCwgt/VxI4z38MFCQQoNORe2RrV7o5k5LXP5A23t6V/Verco+2S1rHdQhHYLjNb8b2VeQ5bMAWCEhmSohe1ujfwQdl2WLq68i9dRn4pzjQmAKySGXMM3ve1nT/SeSZfRVvWfI23ibC7i8DAxM9+7miP2/hAWDtA9wimI0BDejL4OT4zOGtOrRPdGMEY//fQsYCxvos67lcwo/TDNS8gox/Luh3riJjpRAydrNxj+1rXX+sXzrQ89XFIsfY+5taNlswtQXVDH5s+l38FMYWdG3BZA6/6LyALFTP48cBv9Drldcy7OIXkd+S/cQTOGm+G3OnEJsKG3N39HxsjPO7yDjFFuRXgb+HPE+UBezGYWlkPGljcX2uuEX8N7Vcprbox42vTUq6PfIKWarsM0SaHTaZfEkSK6GShwwdH1BOvMogR+yrVdeWI/ao7PbkhFC0y1piiunjdaqJLDukkQDAPZfDcEqEFV0BfefgJ5RTHbpIwuzcwSMyqQp3uOnUhpdYc3Nx86oXUsWpI9ocMkglyDq1pqgUJ3gSTDvVm3nWR2iR7VYIAhkEPwiuE9DhWneZvWCIRiCkpsPoIGXGnOVWjAblIMf48SdcSghOYwS1CC0nPa5EM47MJCrNXw+q+0IAvUMGeKHgg/imCSo7rIBJb7xwjuc0iKvPWZUyY84kcJINZ45oabO98tF7LDCt+ukMVce8s2TVOR5wk4+JckqRcQe6zbDCFuOUyfEO79MCxikS1RAJS5TtElAlI8gtOxQpOPZcRf3DTN62wgwzrNAhwCKaLb30kEFmWKFBzAE5OcrcY4EMFSbZYEeppRtMcEqUadboEiLPNqPU1M9tky3GKZHXyXtRzRgbThZsQN4bfMQalxRYggYhSuS5yR1OidIgRpWM7vuUGmlG2XFgWFdlmPvKqjS2mjHJJLzk1IETxlgEmGSTsnrtAY4l2SCm0Jt8Lu3AMWnEEqyRcWabaWW1SUJs2kk8DxlknC3e5x2mWXNhHJY6A+KpaCDUtsq4tyg4INDYjVFaynA7dawyk8Y+YE49F7NO824y5iXmHINqhzQbTDDDClWyPCfHIIfsMMo3+CnD7BPQYYNJuclVBpyh6iS6lgptMtgVZpy0e5s3GORQvewCXd3YcbLYEF0HUk6yoUzYmHYGIZrEqJJ1Uu4MVWUN/oz3eceFl9h9YYDzhDLpAgWRxd9NpLmn6pFgILlJaadZc6DdBpNYao/dVwZET7PGiDPJ+XJv5/mUFwzrQyHECjNYCrGxHLNU6CgdHMQstUyOUXZoEmNaQ2IsRXiZWQ4Z5CZ3nD+oeFiElId86Pwa24Tpe4EMbD5Gen1jA43gAbA3kUGCDXCKvAx01HiZuWbytDm81PRYP3eCDAwMeEojg5tFPJMpQCZa7yCDBp0QODYeeHmrDZQ+xvuWmYwjjQxe3sJLVgt6bGOGmfQ0gw9WsEEsOB+fl4IvbCAbwnvHdZHB8xTea83AJ2VJuIFlPx4o7eATWxOw+91+Rv74xK+8fqjHMnDrqV4jG2BfwUv5/ol+5yI+6KOsx7qLXMePoW8VPwC8jR8QhpABoV0PAyGN3Xeg+zM5ooFfGb1e7+LbibEPP+Zlhs9TPEvOWJkgK+EGPNq1ntNyL+InF0t4T7+KfseAUBtUGjBnrEJbnTYA1r53op/9uKc+lrR821rnc3hZcLVn/8Z6+BhpK2k8k/NjrQtjK67rfo3BetxTTzbSsnvqBJnQ2GTtkN8MQC8J9Sok52DwGMhBPATXtgV0CnWgvQq7xyIrHEkJQBfrV7CvpCDTAmRtoncg4F4Tqc5sVMCSmUTPccvCBkqmgUCM4X9WhteOIX4kXmF1lHC1qxOpkJifdxYRuRcQawn40n4uXk1MidTxrKbsJSRA4nwKkWH/QoGzeUiajNCAlTSyeFCC2lM1x68gQMl9SY2cyilwmdHP5yF9GedhGZ4Stlr7GAoKcte3exiA78LZD2GjC+mP1fPpWJmQBwJSxXPAiPrAlSRsIpyQaxVXpnQsirTtq1K++odiGO8mm6viS/fsQPbBWxD+UE3aZ4G7YqoeLsB5YxDPwY0TpOIzEg6xtQuFKxDOwXlj6VzUY2el3pLHCorpfdo+lnMhintutDvw7GO5Dskrcn481uP8XMDPPmM/dXmpr09mZF+NXTnvQWUUhVNAvwC3fSkY6WrZahCry7m1i/66rZc10CMExUdwvirlis9B7S6kC5AuKoBojKE01H4hdZWdk7Kd/5aULx7S81uS9vDsAzh/FeLHIkvsQ4Dcdl18J2u/kF2e1eQY2Tmth5Z4CrKEox/Wi7D6GBauCqvxJQuKmlyjWgXC28JcfC0h171+JCzMbAoqVWEUFQrCIGxXRDrsbBaKArLPdCA8BzzVun3kJZ7NE2i/gMQg0id+2bf/LZzdgk4A4UfIAtcj5Llq93ACb4Fygged8sAsnGSgfx1JWs/hAK/2lPY9q8hzyhYlwUtD5/T/Mp7R9negHYWwPatrsHtLVk1Gbp+4Z9nJHPQv4ceTxn6zRTJ77gXACHz65ggxGoysn8hnC/jFOBvv5fBgpo0zbZFyFx9QdgK/mrvCVxdXnRKhfQPCb0p5+c9wHtGf5wd4ZelIQmLe7GfkJydSHwW8l6Mx6q/K/k8K0F/EewzPwm6hn5HiiVguzMFp/zkSxRec/J+g/0MESLPxSQUfRnRF69cWIr8LZyFhhTt1SLrnmpoSQRnBv5q/wlfXV/3YNKrlLmh9fQ3H6Ny92s9I9cQFhrWTEL6n1/l1ZPymIGL9D8Ikl9uy8GtjzKt4f00DNn8XbyFTRxYAqqIoylPilyxwg0UmDj7hSeoigxySpUqeElkqjB9/wnLiKt1EQLZVpRTNO79/A6wGdL5STI2rVVmWUEKwCCMSDXLoyDOZg11ICZmpORAWYkO3RDEY50lq2llibTLBDe73YBFRKmTUSMrYCkI2ahBjmVm+3v2InUDIUTnKhBBLOAvflGDXgLVA7Ngm2aBJjAk2OQwGHUBnKtE8JYcrNIkzwCFriSmyVJk5WKeWkomMqP8GnMJzgwniNIhwyucM4n2I/v3bFwLopThgTAMBDIEN0eUB1xnkkGnWONSlhoAOZcaQKN+GkwgOse/SII1hlqVCgyyHDDjgz0IObBKbZ5tTlZaa/K9JzMlWd1SqamxB85kyfz4DmWqkiXDKgAJFpt9Oa/lqpMlTokWEGmlmWCFLhR0Fih4qczBE19E/s3R5wDBRlUdaSmynR+NtslFBgU/ZZIJRatQYxXz30tT4kG/z1/kBR3rmFkZggJP5/U2wyTKzzhvO5Hzicxd1LMFRdugoWAS4/awwwwSbDnkfZ4tZlh1T0hiMRhWdZq1H8px218j8vaKKiAMOsOiovl46AAnTqKqOPEbTgUF280vwgyT9Rjh14LBPbD11ybIGgBnzbkCBKZHkLhDQZYYVxpCo7DgNVpihTM7JlC3tuKhgakDXUYC7BBQ0KXiTSVpEXbhFh4Cb3HEsROnoKvyI75CnxA3uqzveEBWyTLDBJhPOjw9Q78YoWU0O3qLAJBvOZ6+p5zvMPgMc8q/4G2So8jO+yd/iv6PMGBbGYmUXxmyThgJFXZWWlxkD0HY86oC8ReZJs+NYYA1iHDHoALuADqdEHRPTQLtRdhhni494Q0HYIgFxhtijS8BrPR3ql3nbJ4XkdEsozBwPsLRqk1QDjFFmi4K7n43dar6VOcpk+Ujbvgff73CLGVZYZpa0ZhBbMM4+Q5zRJ7Pdc3j54BLeV80kCS3g7wP/UD83hQwuTZpwAc+MU3mMA6xsMGcAWhrvL4Ieo4KfAIKfQX+IDwoo6fs39O8BfCBEChmILWtZR/ADJQMXc7rPJTyrq6SfMUZZScs8q58Bv5L6NS33fbx3nrHTfk8/X8KvKKPHyOJlo8YqzCMDKWMImmSrCiOpE6mPJfjFH36Vr338KylPCL8C/r6W8QgPWplcxVh2b2oZtvFAoLHDjBFogK2tft/T7xkD0AazBly2kLGDSXmua33V9HO2Ir2MlwqbNNIYZ8bKrOrref3cUc9xjPX2Q/yq9jYykN/W/xe1PLN4+XEL549GHi8jtvGOgcjPkTrO9tSDTZKqeGm2vfY9ZNCb0/3V8czQy3hJTEj3GWhdmvwmqa93tH7/IX7wPaL7NpagMRkM3BzT3/f5cm819cf7mgIqHfGIS2bExyy9AJQgXFWGUEokk076Z2BbGmp/quEMU5BtQaZXTgqeXXQsICJAqKXAVQ6+gXpDdVVueKyJfrcQoOieAD/JFNIWZj3QF56Hh38M17oSCtD3FrAoCaGxAGIpHKsiPAXtnyiYFhIwKqasLI7leGmTsE7J+T88ELbV2YmCaTmkP8hKHVBTYDQnSZbPHuPCiZIpAV/SaeCuSGEHUXZiSo4R1zYa/lAA0lhN2WoJSYN0m07qOrvwbBcKKXkt1u/rx6Ru4X6RYdbvaprsPG4hpXZXy1PDyQvbH8s1PjuBvhMBhwrzSJ95D+iXsoV3NdBkCcJflzYTTwkYGc5D+Ft4H9Ul8XM7fxUKxi6akuO2j4GfwPqBsNacbC+JY6y3iwq6ZYWVWXwkAFV9VerurKPXbcAzHBkRQLGhz5LXEnKscVsgSUEhIwnFBZuEg/NAjPVLevCMPivTxrKyvlOfYZVHkB3BLcq0jZXc0uRMBS3bHSnvL7vw1wriK9hW9vLZkjJSbcEmJCzGZku9DA2MyIp8vflYWInhkALOU5DURaD6uqZrhuQ6Ng70PItQyEv77DMQAQFI09auOiKDb3YF4Eyuy3mFDyTQoPUbwtD7n968xWvJI7FOuSWyxdGczFLXmGa+tcid6E0Wcve4E9zkCiuUpiRULn614YgG87OLHM55H7E73CRDRQCQTECGKl9lld18vxBOuhViY23KqVeI02QwdcRhYoAtxkmzQ41RNlITOq8VAsBg95D1N8+T7VbYC0QRNDS/TyMa55ABLvIZu5l+upkQhwxQSHxGceRVLq5/xuM3v0KGCr9kgfKUzGFvcgcywvQyEkeGCrXMKOMHzwAoT73iPL1LubwDVn6/9G+I0uJX81eokeaSzmO6qZCb31byGTfH3Z87JNcq84Rpxr5VJsopd7jJNzI/BWCTSSSEUghCy8wyfnWLy9VP+LP5KaKcUibHGyP/jp8VvuZko5OFTfajQ7x2cZfPrqbYZ4gYDeKXmw77WGKOd3Zv0wlgOXUFQLz+v3UqRKfdE4q/9yq548/454k/4B3e5x/xX/M3+RfEaJBmh/Wp85wSEd+47iGNjABbAV22GKdClm92fyp+5Zkiy1wjzzb3mSf9tsw0QpkuwdUuuW6Z2FGbVhDl6VyaGqPMzK3QDQU8DGaZYYUnuWmnDJsuPHEkpsmcKBK/UvrcYQ5v8WPixyeEWwJKmRIroMMQ+zQS/bSIiHIvdOgwln2G3LzwifrIG0gY0jm6SW8XuaEyWVEwDaYOmeYJ91ggHgh41gjiRDklo4QuY+YFdFjiOje547CAIfZoqgKqQoZr3WX2A8GdKkEWgJnWCo1oHAs8vcGiU67VSEveQFcYd5a5cIP75HZ3KY+McMSgw4wCuk51VyFLmh3XB9RIM0aZGqNujm7e+GtMM8uyswb7X9rO/X/ZH/2l2xEDzsPpJnecdGyeRSwi+JSoY5QZiPOAOSpklcUVcZUxqLCVyRGneaJSyY5DSCVRdYgmcSwd8h4LDlgZZ4sh9rlAiRVmiHDKDCuMs+VYaAIk7jmwLU4DC14An6Rr4QuSwisATpkxBSBl4t3U/Zk8GMDSLLdV2mgXtUncyemMKbejj74YDScjtfoYYk9tGnMOzNwh7RhjIPJcAwnf4CNX10vMObAtrdLaKhks+XabPCvMaELwvgJgHXejWWTzA+aYYUWvaY1JNslTYpF5RaJjxHUfQ+y7B01EAT1D7zNU2WfYJR+vcYmy6uZrjLLPEDe03USQsJM97fyv88ABwqcKvAFsMa7yWAE9DIjKqEQWYJQd7nCTBjHxAVBg07wD9xmipUxJEE/HaZ6487B0nwk2mFF5K0CebUfNNUDFwlGsveYpOc28mH82GeSQFWZoENc2UMOSgyK0VJ4r4KUxJk1GLnLfpuu0xinyLu85IHqTCfX2O2SGFWI0GWKPGqOurOIjKQLgmPoMSCeedSnJ+wzpqsckRQrEabiAh5YybEEYqaPs0NJ7PE+JOR4o1XqIKllaRBh01KYv97bNBXoj14fYZ5QdNphgiwJiompWA9IexykyyYYDmo0RGSiKJCBt0d1rBpIvcZ19hvT7m1xniRP6OR3qE4Ngk0kpw4Mcnum2jWeKLSETiu8g4INJF8CxBFjHp3jN85Ks6KX00+t4aavJIjvIpOKpftb2M4aAdibBDfQzttJs5Q/hgygOcJ4jjr11uee9KT2HXXzIhbIwaOnPRQTE2caHMRiLsIjzR+J1PKPtPh7gO9FyWv18V/dj8tITvPxzCgGx6vLe1773K/hD/VxL9/1D/MTvWN+ralmMQTGrr3eQmdIiPsH4AM9i3NZzM+DVVowr+tk0sjJrK8Y66XfMwAoenLui+ztCwIWu1n0KaSNz+vdzLd/b+plWT7mV3cEyHnB9rOXrx7PalvGJv/meOgjwLEzw/nYlPKj8HJ88O6fnndXvXMF7E+X0OzUc28ZJsDP62RRy3Zfw25y+ZwCQAdy1nro3QPcWHnR+r6cu1vEMiQ6cFOwG+xJvYUQq+ke4ukrOAf0KdhQR/y27th0BrYz5cNYBpgTMa3ZFrmthD1vWthX4be8K0FWvChMoeUU9yUJIe6PnOAdAAH3Kbj1bFODH2lr9LrTfEzlh7S5wW0z8Seg+D4C3BcxLZ3U/Bl7lBaxiXo8ZElBl/R6s/wRpB7ZokZbvjCCAZ3VX68cYygHSzn5fQRpl+oWBs7KAdlxQyWpVzj8cgpnvSD3WnuJ9upQtHb+iAQc5AfPCY1Jmx4xJCHBWyAswyboAOOsHOIbc2bqWbVuZlMZWbUnIQ72r10776EZRgKJ2HfpuSZnT1wVE4gP9fSxebeEpARrDylCpKxuvrkwRSng/rQ81mViBR96WMnEsoHC7I0xCM+13TOdf4BZo4nn84hMCiDVbAsj1pfG2AwW9Znr8Tkfk0eZ7F76loRXK/itkfL2n35Tk2WRa6juMlKWx5NtBY1HrUFnb5oNo0syCsXlswSQh4Gh8XuTOl5F7IJmWcA7KPe0yhfNW7cuJdDj9rkiVQT77sCXS5li/sPIqS3Jd27ty3GRGpdP6vDifgodVrcaUhoUcC3Bn8nklU8m1laE0tbvC7uMAeAuGX4OhMX4jtlf4XEGHripyinRUEpijTCMq84wfB9+mpaujvQb8sshboRzkXMDfPkNu3mJqti3G+TQ/whOmWWGGB8F17qW+SpM4d7jJfiJFVJM0A7pMsMG3+dCNW9eYZi0Q0CXoyIUrkWcnmqZKhjI5PsuliB+fOJ/uhyNT1Bjlz6amKJMj1O0ygAA606wRbwlLa4UZBTlqPGGaChmWUleppQQgqyCyS/NSn2UZTqBD4HzoV5WEccigs2sSUtCEk0iWonlVo40SoUWOMs+V+AOwyA3e5x1aRJhgkwwVThIw2drkcvkTZlihORB2FjdN4rSiknDKCG58D7iQAxmLb7E4cpWl1FVVOnUcCeU5OYojrxKnSSPRzyUN0/w6H5HvloirN/kiN5ziphiMUyFDh4Al5shQIc2OY5V1CVElwz0WKOr8zIAs87C/n/ptpwbqErARnQBwdSLBnk+YYYX73OCUCFmqLHKDIwap58JOqrrPEGuJKerpMBVVgpndWknxBAPpOoFcmzUukWuVidJiiwIz3RWdUz8nRJeJ46dEaFFJvMJgSyyeDEcokZfgC2YoM+bOY4MJMlTIs42FagCEukJ8MGKQBZ8awQJgJ0jzM77BNE8YYl+CPjU4Q4hCQgobbB06XKNEnlIgGEuEU2cxZvddQJcOAcvMYiEaFqr5nBxlcpz2nyPfLfERXyeg40g/cZrM8pAVZrjHAp/x63WIXxCgN8gkmxwy2JP6sQ/AKDWHyNcQT7gl5njCNPsMs8Ylhzh76diAeq8VtKI6joliVMYuIU2IPFVZmkhjJ9h0nnAWoCEJu3sql4248kyw6eiO42yR1WRSK0dBwT/zmovSwmKHR6mRVX+6bSQ1Na4YMOAuoMltQeTGBuREOFW2k8gn7zPPPkOqrT4loKNnFyHKKTc0+GFRU1KyVGkQI6KMxjhN3uF9QBhX42y5G9QamnU45p9moR1rTPNcO8eCev5ZAEiILu/xrvO06+3ErrFMjjJbjLOm6cAmEY7TYJJNxzwUkWZDvegqLHONCKcU2OKCstciKocFlAF2qqwlWS0BiHLKAr/EkmzthslSpUXUSaTNyzGq4FiLKG/wkSuTtcePuekkkEaVrTHqOmipW7mmpvsXVF1eb6p8fIINRqmxyaQDUmuMEqXlGHibTFBRFqt1xMJC9cah5stoTEiQB9Vzci41aI1px0gEKGjbDcmaFRNsOo3+R7zBJhNUyTpwsEvAhvoeSN2OIWE20lml2eE6S05eWyJPVAHFafWEA/F2M4ZqDAlx+RP+hnuo2r4sjMW8Cr7s25HeR3EaLHGdX7Lg+jfbrE0ZuPuEafb0/rR7RjwnCrzPO64f6BLCQnJmWXaS3CWuu8FckjqRnTM5kEpsWNDfCWRAvoyX1RrLZRVv9HsFL0Wdwodm5HRf23hjYGPPHSPAz7bu/y28f4dN0gfwksZtZKK9hPdcK+ITtx7payYJBgFmjIUR1eMoE4ai/q7gpZTVnvOu4gE9Y06YHMz8XJ7jpa9lZOKnE1nHKFxHgBoDgRbwMswoAtqUELDSJLa7yKSyo+ds8swRfMDIe3j2JHjm3S6OpeP8a9C6DSET9Tx+wmmAZUePade4jk9Z7cenxppUNaOfU5DFJH+urnQSSRQPUFkbMZ+bIi8z7uZ4SXrMku5nrKd8q/hrehXv47Kq+zEZTgafeLuIAxQo629rpx/qsQ34KyP3wUWEkQneG8dkPY/xgOE2wv60NpVA2pkBvU/xnkZWrrt4oMHa1RX8fWcycmt7p9B/2yrvy7t1msCBgjkluPdIJLXPlN1aNDD3WPzVQOSE7eeI7FVZQul5kfnFrwJLwuQqGLs0K69VDgQoSV7xIQNNY6NO4TyH2npfnR3j/BM7XTgfxcs8U+JFF89r+mgZd0+FDWx+JODHszKwLgAbRdlnOg33/ghqDzStN6mEziie7RtC2lVI02mTCoAYI/W6lK1hCxjgFhqyVyXptNKSc9s9kO+evyW+guZL2eyKJJeclm9OdpPWezusbOOzdaAGxR+JP5qB/c0TATdJKcttTq7l7oHW1QXxrmNX2Y41kYcWviWgGGmRCO8eC9MtPCblqt8GjgQEeqag0rpd0yO9VpeBQOu4KEy2YlXCSurbcqyasXR7+spn94CuyEDjCfUn7JdzONsWv8OHJQlH+dUBfqGoA4XvCqCaVcCqvu3bZ/uRfKy4KJ8NaR2HM5pA+7FKkO0aZ+Q86mVo3BNGZEWljlNvS5ldanFN6rpWw4UpJWfxz4Mjba/HInOlBGcfK0O1LOBlYV7r157FCT23grbX28JIrK9rKnFJPSTT0sZujcg1spTeOgLqhWxBZQ7pn+ekDYYL+vgy4FJBy3Ra9hEKJHXXmOpphF06kpL2e3YsHn6EQOfZX/rtiEGqZInq2DpOk1FqjLPFVPEZP+YtKqoeA5lH/oDfI0uF4e4+uVbZsX8qZIjTcKDKMPsO2DtURY14ke0r8SDk5lEtIuwFQw4w+SULBHSYZNORF8QrO0bQeeEIK9njzwGxiNlinM3ERaeM2tJF/6b6axcDASnHKbJDmkY0zmDr0C1gN4iRocIRYq11jwWVLwqAIjqoAml2+GTqFWdtNMkGLZU5SnikyCptTgjwId/mjs7tfsY3CHWlzi4dPHUppN/mQ97hffIHnxGnwYd8m83ERRrROO2E1OFhYGiAzMmeqEqrng07VaFlAMywwuXqJ+5aGyZhc0ILyKsxyjKzCvg01TonYCOYfEltZ+GFVbJMtjYJ0SVDlRIXaBJnhRkCum5emKXKf8k/Zb67SJwmY5TFsioYdAByQJeZ7go1Rh0zzTCUbFfyBYx8EqfhVIKRkzYN4qo7CrFFgZ0gzSkRPuTb7nPmk39K1KkC17jEMPtsRCcoMs7P+IaWSWynDhmklhhxYPJ+dIjp1hp5SlTJcJM76jf+gP+cf+HmTIY5eZs2mZ+3gqiT7pq9V75V4tXqgWsjm0zyLu9RI0281cBSbc0X0HCrSjTj0m4nVCnXJWCyu4EFklZGUg6kNgWdYWBmq5WhKjhENEI5EGXlFgXG2cLyCVaYYZ5F4jR4hc9/rf7kC5HcTrHOKQnH+hplx9EKP+LrpNnRjiLmGoyl1prhPwhwsUPaAXRxmvwJ/ykA86pNMUCvQpY828ywwiI3OEVSQU+V5SRSzSpm8G+T5OfkiKhX2Sg7POC6A3PWuORYeS2kUbSIco/fYYINQFYzugQKmjSc1NeYgHYc6yjL5JhnkQwSmGHMQAvJmGTDUVErZJjnvgsHMVmwSWgtoKBLQI4y+wzxnBzjbDlU3CSTp0Tc6+ZNaGmyts+b3CFPiR3SxGhyyACj1Pgp3+Q6D5hlmWVm1a8w6h4I1hnb9RQh4Q6DHHHoXFzlobHCDJbiagkvIqct8mPe4m/yL2gRdZ3IIQMO1JBQi4Af8R0Al1J8yICsZunNM80a91hwwCFIqm6BLcxUc41p0uwomDVBiTzz3Hf1Igk2GQcQmo/fDCtsMEmaHccIlRtJvBTL5JhjSSnHVUye20VSYg3YtpCIfYaZYYU0NU3O6bjONtTDarTY67zOjCV1OEpaQUoJ+ag4sLJClgZxDhlknkUeMktVV3VusNZDB97BYrI3VUJ7h5vOP1FYhsOOmWjpRDG94lWyeq9Ms8Ekczxgk0lGqXHIoFuZMQDPJNcSrJLiN2FLKXA6zRoRBaMPGXBguQSy7HHIoJMtW58V0vsxT4csVSxIw9pkgPg7WP9UJeOSwYVqPkedx7x2rgoZ+G9+jHjTqGcNz4FneHPjLvCp/n0B+Ah4BRnND+l7BricA+4gUfbnkBTdNjJg/wTxBIsiARRhhCF4iBjjn0MmKhEklGEXD5johIUzPOjX0f13EPmwTp441X38Sv8fBP5Yjx3RcjzV1yP6+hZwvuf7IBPptu7/nP6+reUaRiZx48jEOqPfM7mkSVFjWjf/Ci/hNdaRSY7bWvZXtcwtYAL4v2gd39d9GuvnttbXju5/Uc+jgWcEWvnO6/k966lr8ImMG/rZYQRw2kGSH1/T7/0zBGU40vImkevfp+UeRBJiQSbvdT1uBJks7mndvaZ1/Es9z0OkvYwAn+lPTetcJ9Z8jpf42n7W9Fj38DLtov4OtDx2fuN63iZpjejxQ3igeUe/v6fHfYhcx5bW7RLStqwd/WO8UblJduN4KbfV2+d6jCZyr3icHv4Mn8qXQq7tM33PvmPeOKd86bfQBQFCwirRHF/UkIcUMAIFG5GewDWVFm7tCsB1dls87czrLBQALU1znQUOVO75pgAS5/MKVGSEcbe1K7tOgpP+ny0LGBU60lACldmHgXAR7wVp8vouMA/1H0Ba2bHFR1C4BbwO8aL4zp1tC7uuDZwPCTttBGFOGRCcVQCy/U8VBLPFkAE5BoF4sZHGJz8eqOfdrCSiuu+EpAnHAjh7X4C7KQVOzhvwfRXOFwUgZUr39x5+weSeBoBsKxPtOvBYQKb1H6g34ZsKvtlC0LYwr9LvIob1TxAgOyogau0BpN/S8kXl8zUUDESTcEMKhqlP23kFvXaR46w/UsBLFy7qR3Ke9W2V6JYF/AtVfWIu20hfOSWPrBEFap2NRAi4AX0lSAZSX31pGDRA/wLeSuBY04/fVvbdsrTP8HdkX4V35f/Yksqar+LA42wCWdD4iXo//j0YtLKMaNqr2R0koFmFeD88K4lsmF31x/t9pM/O4BZp+tLy98YxXLsq0vR4Cs+870idchmXopusKqCJMDjPT2kwTVHkrn0mKQ/1yGUT8FWtI0sWdgs9abmHQBil5zN4H7dV8RpsVIW5OJLSMiPgag0YLAkoX1+C5JSGo5yjh8r35d4OSHFIy7HtDhlwvuStQqRnUX6DLiEm2GSBe+Qp8SC4TjRoOUCviQSopalRIs9MS2SUa8E0M6wgPtwZ8myr2mcPEKDmK9XPWc+cV3LFLAPKYqqRFuCOClfUn7ySeIUh9rnEGtEWjCXKnKqq7g43VUW2zzyLlFVFJqGFBRa4JzJJmnTZZCeaduojwwjylKiQdaQRkw6b4sdINrMs00HsgnKUmTle5bQ/TCuIsskEXUJUlLgg/uzy9zhFGoGATPupAUrk3XwzwindkPy2QMk1LpFPibe5WXHZ3MbshYYCAcAOg0HHssoc7NKOylxti3G+w4+IdxsEQZdRajzQ1RRLebW5ldhdDbg51xhl/hb/nC4BewwxwwqlaN5hBz/m27zLv9Y55iWua7mzVIl2W1SCrAKQMedtvsysgrSjPAmm2WLcSV4tlPFBcJ0oLQpsOdLAJJIAW0m8Qp5tURd2K0zVnnE389t0CXiLH7PPsMNLTDJqzL9TxIe/Q8DXux+xHwyrddkoNUYZp8jPecMpwtaYZiK6Qfb4c1YSMwyxT4soIbq8Vt7lV7krmPwYUFLKKGtcYponjFFmTIFCI7IsRucZzxTJHX9GJfGKww8axNmKCivvSAlpF3Y/Z3Hk6kskM8MI8sfP+FniTSKBKD5fLR9Qz4aZDtbIdctOwtwgRok8Cwe/ojkQZisYZ44HDvzuIiGHc3QcuJ+lyvzuIxZHrnK+tc6vs30hDL1nvMaiMsxs4rmnssO4SivthjDfPAPxTHILQqGsKsppYMy3+dDdSMIwitFV6q0lnVq4gUkRxS/vFDP2n2HFleUSa3zEG2Q1lcXAlZYGWgxr4zlkgB/w191EvKlgySYTbt8iCd1RCXBXO9cdl0Y7w4pr5NYALVjAVkqs05ljiS4haqQpsEWtR4LbSymWbvSUDfVvs0YtjC85xig7TKgHm4GJVg6jk06wQZQWJSRNOEqLOE3ni5fRFRiTjLZUzz/PIjOsIkEJwogzqec+Q9xjgQk26RDwnBy9acRVvdYmVc5SdZ210aBHtYOzzuohs8yxxDu8zw6jlMmxRYEi44rIx/ghv4tp8wc55KF2XpYYau3yOkt0CBhm39HLo7TIKBBnoJiBiR0Cii4dRwBNk5laKIv592WosMGEY3mmqTHDioLDEcYp8gYfkafkKMpdAuJK27U2Iw+WB3qviBTWVnbylFT2K9c2RxkLIzEqsXn9ZTWA45SoroBFHUPWgDYDM+d4QExXdBq68rPFOBYgYknINoCwtmbBKQZe7jPs2r358VkMt9TZr7fq8P/vW4oDx4ptqBS9qew5i2G3egOpryH2mWXZSW7tfhAr17wD/JvEHL28RJ7/lD8B5P4XH5Uqp4SpZ2ICDB0iYMVrwFf07xgCvJwhTwQDtk6RCW6953sxZMIwgUwu0vqdlL4/jrrH62tj+veY7reJgD2fIeDIJDJJngJ+S78fQ2bdw9A1qdmr+t4YXk51Hp+gVtXPROR7RPQHLZ+yKhhGJmpNPcddYAiqvz0sIFEUAcua8joJPR/wYRovtCy2r6QeK4tPoRvQzxpYNKjnn9C6PKffjen/Awj4N6h1GtP9xfV4pwhY9Iqedxw3CexM67ntINf1gn7+Ip4RqcwLwtD5in7XzuGFHq8F7OMnmCN4T700NH/rL1n/G9Qymdx5Uq5N65vn5Byrem6zyHU+g9aVc3Idh6D+WzFOX+2TOkhree1a92t5NuS11d+ZVC0iPnXP2qvV/3ngf9VzbRJavhQy0Wzi2+SgnuOglKU7rcf9KtIWD6FTgO5X9Bz64ey39LhJLZcx817D30fn9Rqc131f1DKM6bU2xpTJBEN6fX7rf169X7qtJnLN+rqkjGZVohg2xih4M/4FoCOXrF3VRNgiwk6rQt8cEFWQRYGXtrJCwyEgrbLMjjDu4ihIVMAxQZstXSfoSnmoKjvtIvCWeu9tC3urbsD8gTLoEvLTBAF5H+DYzH2vi8w3rMfrS8DUvJTvTKWyZypz3ToQqWV7Fxc6wV2ofU8STllW0ETZxOvrOCZhrUe2PZIQNtThsTCfwgVhQbple2XU7SrDuO+W3ycqiY2PCPBDIOeUjopks4Ky/4q+jklA8XFP4u+H8p3iEo6B3TSQflt93uYl6Zarco3Ts3Ld4hm4X/bXLXlBrfYSCsBa/22fQQMVRgS8ncorWzOFu7+KalGw8Lb4tGXflvLVaspyVD/D9BVPXJ+xZ0lBy/2e1GENPcdtfF/yGM9ELguAmUxL+VeqsN6C5WPgR/KdeA74noBcTQVuz05wFhbtkno0BgJGm31F3xUEfNXzrxf1HOfk+K8Fcv0qxtaL6vW7ovWcknpvdvXarwtAOZIATuRejOeRwBC1gWie4AI0OBGgNKx1xOtSljNlQvelBMyr11Q6axYRKkOPKyO/b17O59ltAXfPR+V8G4+0TXW0XlpIn/4bsL3GMzdn62UXme3QLMvMsEKcJlFaHDLgSBfggwOjCkC1VAK5zxDL0VkeBNepkHHKmgk2nc1Ljudq7RNlPXOeBjEeMMcEm0Q55SPeYEdtYKyMp0R5To5lZjklyuLIVTaZdPPdt/gxLSLMdxcpqlzRlFzf7P6UDSZY5pojv9hczLbn5Nz8FGROM9qtkVYFHMATpsXjj0nMs65Chq3EV7gXLLDCjAP/Znnoxt7GVuy1wCoz5qyMRNUi86ZXqkeYvc00T5y3NUBvoMLQwZEj01hCqoF8AKXUqwR0ucF9AeSCIXf8JnHH2ltj2oUu1EhT4oKCpFGqZBlsHdIiwjD7DB6ckKGCWDjFGFXrrkusYQGg5pWfrLTdnLrAFubf/01+yj0WGOSQGA0XChEovBTqisWX/d8gRloVcFZ3JS6ITVQQ5yThZaZD7DPZ3WC2texAY2G61RygGqPJPPdpBVEH/JqNVJM47/A+3+ZDvnHwC944+HeMtmo0Ev1u/2aL9WluxN0zJlkdP/7EMeFsrrXCDMPdffWHTDsCSy0xwnB3X+dZotwUaW+Hh8xSYItOINfc8hwCOmSoKsB4xc1tS+RZz50n6HTluh60Vdor7ahKlqXUVTaCSZ0Liwu+eaGPKoPRpNXzu4+4N/LbxGmwHf3Kr9WffCEMvRFq9Kv/2B5DWPLrR2SZ4wEWOwxSUcvMuhtBOqeWA7usMcSQtA9jl4kctcETpp1hPEinGEI84jJUGWKPCGNYLLEEcgw66nGDOG/wERYoEaWlINE4syxTI02ZMWqMUmCLUWr83/kvWOAecyw5pFa0/LKSYX5uvUj7BpN6vsKwOlW2mvjPSTKppYduMIlFNNv3LMl2gXtYGIXc0EMONTZ0vaN1aTdyRxl8loBrwI38RLlAiXnuU9TkX0PAI7Qc3duYavbbIqHHKWLm/eNscUrEgZ0TbGJx1jmeOymrsQKNXWcdpdHFdzQl2Br6FgUHxj5Hkok7Ctbe43eUZdly6HtAR6+lIN3z3HesTat7C9AokefrfOTaX5wGa0wrONd6qQ0a5dhWYAzQvcGiUJZVI7+nsuBpnrgb3ZD4DoEL25DAiwgBAVXtDHuBXjsXOy8L9jDg2WLDy9q+jQEYp8E4RSf/tVQfMefs8N/xX/AGP+eCevBlqbDGtD4Ys1rX+4ToEldgHNB21XBBLHEabDDpyixpvl3yyk41qr4E10S07qPuc0OOqvLl3o4Y5BMKzLLsrlOUFsvM6upqE/NO3GDCDdLMT2OBeywxxyI33Oqb3T+A854USvdzdhh1TNQmMf7+/xVgljdLv5SZicrP6OIT1Gr40IvbWnBlCHz6rRFe+3iXz26lePWDA5kYbuPlO3cRRskHeBlhDqjA0zdf5eJPPvOhCDYxM4ZgVj7nwJcaMhFZB1JwPHWORjTOK+UjlLwo3zd2islNc5q6VoL2GISXZN/tMQj/BM/6u4JMhq/IuVEBXoeTxB79t/Vztk9j1+X0HNWHyPnE3YXjd84ROXkhSWI5fMCEsmOOXz9HYvGF7M9Ye2Wt2y7CgLiFl3qatK5X+ptG2CYF+fskr6l2RSCvaXbv4pklt3X/A1CfkiQzjrVOpySxbuSDEy8zNRmqsZC0nj+7leLV9QNh3CShPdUhfE0/M4+Xv5pnlf59UoD+pRfihWjS5iQQgs/nBjglwmsf7EICPrk1QJcUF3/wmUwgu/jQFasPnRCepDbkGh3rtajpe0sIALMNJ7eg/5HW9bqeWx45h4r+j5TFsea6cFw4RzmaY6r4zPtSteR1gET1BaxCewHCt6H9JnRDEHSEyXV2AfqeSp1zgpdbF+FkAfrv4QAgnmp5Q0hbTMnr9Q34b/9ffKm300PotYN5VlVgIdB0zqvI/fDHuHsvjHrdLSDsKvDBMx1h9lBWFlxKmFC/OoZrq/I/XQH2stYOdnFMu/gJ7P5EWFp9cwhw/R7E9X5Lqnyw2ZKEzmRRcFpQZmDaG/3XP9bAj6dASMCKjWPIGsszCfG34d4PYCGtbKi6hCh0OgL4nC0KQEJUy67n2mdM0wxM6f15VlVwqwQcyN9nHQVHQMCaI0jbPaiA5EgKau8LI7HdgvCJfLZPwWUDzNYXVRKcg1snAnoyJUmnRKH2oYCkLCD3WgFYhcJ3kPugLGy79n0tx9eQ+/ky3o/0n0ClBNlvwQ3zNB2T9lDIIffJPRyAtLqr7D67l1aV+ZfFJ2oXpJ4KWnbWlSU2oiAfqugsCXAVTysbTlmbjSKEfyQegVMpAaBnDGBbF7DufBSSv4v0tVc09fiygGPJbbiilhCdrqbwjsi5t1tyfQ6PIV7TNhAIsOiA6YRcz9pdARtrd+WabezCSCAejVyVOqkUlal6V9YXCglhN8Z2FSRXVvDZn6r8ehHoF3Cz9qGwAUMhXIhR80T2l5zCJ6Nruxi0/SnjefcA0uYtqhLypLa7dh2aZUga838O90zPpjTlVtnuq/eU8F2EWks+07R75ku+BXRYYdbJSgHmeICY+suNbLI/UUdViNNwYY02FjevNkA94kR1ZvOVDSZoKRho5BCxtso48ktTyRprXGKGFVoIQ9BCMYa7Ur7DQObPMRo6lxHbqtequ3yaGWGGFXaCNMPKFrRAw+TTNtGpU/5z/nuaSpQ4JUJR/QJt3rSpXmimSDsMBjEfebN0itBilB3K5NSDXspY1vnhls5lzcttgg1WmNFgxZDzKMzxnCXmGOSQm9wRxVgiYD8xzBB7ZFtVdqJpJSXIXMxCAQ8ZZD8l9R7ttrgXLJCjzAozdAkopV7lf+D3uMF9ojqXjqtc0wITTVJsaaabOv43nMDqqRLNUGOUmdYK91O/7VSNIbqMUcZ8+y0TwHCJP89ddGSR3jmDhTwAjgm5yaR6xa854LHIOEPKqhvkiApZN9c2luRg65AfJ77FNE9Y4xIAyVqbu5nfJkNF24dYoh0yqNLSIhUyPCfHJdYYpaYEGvEDHymfsJ/ruNAWOye7Z6zNW0io3T/PyVFJZLi2u87ayLQCfXLOe8GQU8Zdby2xE5XQj51AWKIZKjwnR/7gM/G2iwrZ5v3Ut5hhhY7eI6PUGDo4Uh/CuMMm7F7bio4L03NECGfPyTGz+5Rc8G+opVKIH58EssYUIN1BvmPWXkPsszMygAVyVOiHnrDMf9/Wd3Z29v95b/QXd9bXlwQO/v7B/4ELyQPGKLPMNTX5axCjyX1uUGSc6yxJSojqlHfcsAintz5kwMkO15hmjiVdpRjU74wyyYaTT1q88AYT7kYA0a6fEnVoeIguH3MT8yz7KWKGOM/iS2CfdTiC2coNPkrNyU4tbXSZWSpkGKXGJdYcoNUlYEeZNUPsIfLYkGu0IbpOjmvBE6PUuKdGO9/gp3zIt12IgTGeRA/eUUpxhi4hvs7P3ffMH89kzLM8dBrtKC22yTPJJubpF6XFmHZEgNPWD3LIMrPElEVpPm4mCzRa9AYTEhutIRB2AxlVOoaEi9hKjUlBr/OADFWqZCiqYVGOMml2PO2cCMtcI82OMtyiWIqRGaZGEaPUn/OGq1PpIFtuBco6ShDZ6CI3mGHlpXO1B12ZHB1ly1m9V8kwrj5oVsc5nlMi7wDC3nTiKC3mWGKJOQVry5hHpIAy3lfS0pAkPCNw98E4W6wx7VJpBznkHgsOzFtijgFtUwBVMkywiXko5ii7JN4cZfW1i7Kkq3Bm9GksvG/yU8BTwK2TsvvTVgoNVDRwqkvAJdZcMlGOMj/lm47qbiuGcWWX2opYrR7mf5f6IUDq7OzsSyeysP7wjw7eJZs8Icqp6+eaxNlgklkecoqsUu0wyn1uONq9yelbRJ05qzHzfo//AcCFkhgYXCbnwmbMsLaD2A1YUnWGijyUWpJQBvBK8YinhVdZ5hpzPHDeKP1l+POpiwR0mTj4hHLqFZa4zn9S+gCi8FkmxRJz5Ckx3toisfSCzxdEJp8/fkY3dI6daJrcwefspyRFrUtAhgqF3c9oRWE/kXIDQg7g7tRvM9taJui8oP8A/iw3RZwmU9Vn7Gb6CXW77AViL/B6+c/4f5P3t7Ft5Xl+L/iRD8UjkqKeKJM2q+gSLdkqayy33FZKHde4u2q6tr2o2WlMD2YSZJDZmwABEux9cV8ssMC+vHexwL7YF/tmFzdAgBvsJhnkzuztQQWpxJOqrgdPOa2KPFZb1XLJlkoq00WZNClRpkSKFGnti98DVXuxSd/dW9hO9QEKJUvkefifc/4P39/34XgAFse+w8LOL+g7gJ/l/qY8q90GpUAmHtbXXdh8wkH2FGvhNFPddTpBwFj5kKfp4RPs4JR7v463qqyF08poFhb4Etd4s/UhieoLDlKnKIVpQtq8VN7heUp4DEOlIz7PviJ9UFf6nVYgBQUpNpWIdLsEnS4roVRmv1f4BUdDUBw+TebgGQN7sJMdoECOEQXYW0TJ7T2lvwDHWfhk7LtcbS3LM9B5QTUxxkuFHX6Ru0CGslgptO5QDLNM7TyhFcJy4jtc2/sFAKvDF3xszO49487wa0ywSXbvGYXhM6wyw1sHP2MlcdmZ2dm9Z9wa/h2m2ODVwpcQwNOs3EOb4Fj6l1V3v/PoEV9cOKPPZ5mpnSfsjg1QY4Q/5w+5wgpvHHzEgIG1EXiWHmR8Z5+lscvM7X0mqZId+CJ7hvPFpxwPQH1Y2nszmCCjbOkzj/YgAjt5SfTLtooC1hWe8DQ3zJnyHl+lx5whsNBdpBRIhfd8+SkAB8OneC98i2nWfFEycrDHgDJgjhKwMfwKr5a/5DgCS2OXORly9VuffSGAdPoUhTDnfX2UFmObh3yZP825nWf0HfautfPsgGz6GL6F/aH1hX8X+L8EAnRk5jWRNIuAwmP0Anbe1VTQeQSITSDgzrLu8FUEbIggwMCOfP+4KPve2YPMqwjrL6GJqGN4umZqHvfTLG3Kxy4syGePl9XAvwUv/wQBwsrCQBpKIYBRCKs/EzAvoxLD6hc9xplLv1PiO5bJq3TSfBqNlZkRT7nMghyjtClBBCCMpucfiQcgVT3vFD1W2AAcV0Xam1GJrqVsbz4S3zoKKhddkJ+5BnwuctWhYWFUZX5HfvekKOBpekwAzHiar/v7PdLU2YhIphc/g4Ws7rOLAOfm7VlAgO1Z+R5jcr7uhXooQF56DL7aEeCPrN6TYcQ384G089HPNNBiR3wRX/4desUOLcCsfiZpw/UDAZ7iaX1O0ngR5bn660UUtDxSRiIomDwnx3vyl9IOyYT+3Z6zPeB1kX43W8IIPH6kzEMrQpR79xXk3I6/ULA0hfuXlj5T+eqAAKdTY/Lclvbg5Xk8OKhRlHO4XxAmXuqcPkcpPc5z/L1pHAhgTFmAu2RCzy2t9yBNzxN3AKp/pc/TJd2HStIJEcZgS+S4RBSUHJJnq3Ggz8Crsp/SRyofN2/KqoDNfcaiztKTAVsB8JK21Tl9T4rSPoufwL8dgf19+D8LnvWt6wuh1x/+9V6WzaHv+NrU1hQnfb2hpwCyNdgc9+iqINfWBBLkJ6sPsyNK7e3RHjjFSjhLiiobTHJJ1z3mbS12TmkG9Zgm8zWgz3y2bT29zpQSM2SNPt6t0gpCbnODOe4x3q2yGUz4tdr3Mq0yrTDqJAlTBYGEOJ70QDN/elHXtVjmqqrI2r4+idFgBakwmic+iER14wTRwAhEJlEVz74tRg72KCbOYImoE2xSJkOBHFmKpFWyWglSPm/pEjBx8CUDB/BVesyZZ5mdPT4ee41VLhGhywRbzpgbOdhjJXFZCSKjTnIwcLVI1u14yurzb2CurU/FWklYk8I2fAjgaz1TngV0WGSBLNs0iank9T4A54tP+Q/Zy1RJMUjdiRUWSGlreAOWjKi0yozKaEXuvE+SQb2npp6z9QzAzYO/ZKAMX+ZP01UylzEBa4ywzFXmuOfXB/g6Jc+WrxGLZPlu+QFfpM9QJkOHgIdMc5Nb3GPOsYV57mJBqHY/BDgU4Ncs1myteo0lRrs1B2CNQDPbWmE1FDA2RsPPu0jWZbMG3sn6+ypvdd9jM5hgqrVBMcxiFm+2X5OgL7Co90uwnk9ZIEYTC3o1EpGt1ey4hmEMPH9KfrgF/4n+8Bth6A2zx65WDEwKNsk6BXKkKbvMcIVZP+E2oUoCo/oiD3rgwCwritjLKG2R3gaeTLCJSWiNKTSqE+hNJvQ8mrQJWSHvXmOGjltCa0cBpKoa+4e0PM1zRv0DipylQ4BRMue5ywRbDkKZeaXdPKNI59likwmnWdrfl5kjRpPrfOILduuImsRd+20U37LOFFa44kw0Oa8s17mDhX+IuWqF+8yqmaR8z6TKRlG1cAo770UWNEVYgCXrfFdU/27HSymibmBWmYxLKe37ZTWmNNDNKkZRFZ4CauQpFQRr422t/rRVEjzPEiKrDr/GdCuTcWZmReWjBtqFtKgwTpM4u4xwhRXWmaJBzNmYgIONDeJedbKBBOBD3mSOZS6y5pJgM6zMss00a6wzCfQAzBwF7nKNSTaYYIu0sq+S1HmTD/37AR0i9KSoxiI9maRrg5v8vvM1CrNQ44VRusIsF3lIjREaxLyjneU+d5knoMs+EqBhgO8k617VidM4UZGpOYhg57JPkiZxrxyuMcsk6+6rWGPUmaYNxAT3fd4CcEDRButJNdptngAvv83bBI95VRmyNqGwd7XKODOsqtdI1Nl5JU0OM0BUvBGjzLJCg9d8YBmh5u+SeVQALPIagNsDLLLADT7G6OkzrFIP5V1aZ4qZ/Cr/gj8moMsGk9xM3JL0pQsLzq7sDgfuNfJvcz9gV88rzxZR2hTCHKWFjFfSUokKK1yRvmA44z4dJrffGJtyv5QtJphOrxFLy6B8J7xOKqwSJlpE6AorOR3jNt9nJpB+YolrNLICRs+ywv2xC4yMybu7wizpQKq8J+UrjXzMZebrwZRUMtPSDxvjeleLEre5wUS45RMRCXyJkGeL2+ENolmZjMxxjyZxnqUH6RKwxDWSWUl0zlFgK8j72FRFqoIXiUpCVoBPYv46dwkxno6TSlSoJUb8/XzItE+wisNZMsNlnzj8NPwJcRpMhuKzU8pJJXiLCVpEWQyl0NMYi/nkb3n4svdDNl5tDE/5uLM1/DIWQLSauHRCqtBlefiyV1S3chPuoWms8XGqBIFYW5hR8y8vnKel8pGQNutjEgo0SF2Z7ElWEpcJEl23eWgQ58MxKcQsD8tE1Cac/yF7GbEyqFAmQ4kM21QYpE7rQoFtxMJCzLc1MCinzPi0+LgO6vzhz4M/5Aa3hRGQThLSxhLpYzRY46IU2hIL1PL6HOnk7hfpC4S0KWmq3Jt8wC4j/LvLv60m0FFWmOWS2nw0iTGYl/GyOrZFmTSXWGWLPD8PZ4B/+g33Rv//3YZRL600UBVp4ZMCvNwRxlt/ROSWpbIytIr02L0PBJSJRJQZdg5YEXAkEkBKwZn+y4qnhOrRdhUiVWS2ewlSLTj6XEC/LRSUKgJpePKvZB9jCQRAVvmlndvxIfRtApeFtXX0XH5mU8Iy6NALZwkldGDsJOt3h55cHGBPcKvMgJxf5gcIzWlZrjeiTNJSQdmHBxCPiNdc6oJIHceGUU2onCs7kqj6/BMY+p4ml56nByQeKkh4oAy8z+WcXzZQZkzbV1nGjWVJwiUQBldsWPa1MKeftwAZY88OKGCYBZb0nBNQWpRwieOqAk0FAaZeTojMN1YW6efzFRjK0UscR/bbn4CXh2DzZzAxJtdOBJiFCfXWNGCUAwWkstLWx4fi/2dJ40fbci2dsrDR+pUVx5j4yrEn7NF4Ggeq7j+Cl96R9u505HpKwNiOPC/xFp64TIgwC1WOyjl6ut5A2KKlz4RdeCGtMmx97ngsz+lxVeSqm8sC5vVHgCx0dlT+uoPLbp8/UrC5LN8dqiJg36E+S8p+LBXEJzCekOThlD2bJblGDvT4CQXx9Pr7QwSQPID468An8g71n5V7+uSRHG7GZMLDuBXG0aYClQC/o+ezqMdbkn0+KUpf8BJw3IIXSmr/tm9tolLcZIuKqsEaGnBn4NA19Yuf6a7SCOIsM+fgioFYtoYokCPHupNSGBbv8hgNNpgkRpPMwTM2EueJ0KXGKBlkLjHLCtDzGx852KOWGCago+BIWwkOIzSJuYd2Mth3hUiXCPVALInsHCxgMRnWXRVnAJoVAJPURVYaRhlRJlxUC+BCJJB1mfisCcg53V1jJBCiTKZV5l44xxQbWJpogdzX1pppVX2NsCvASgfGu1VqwShdAp8zyJxaCAvF4Cw5JIVUMIQo3UiBp2nxV7P16ObYGV2ryr2qMeLKqm4iYJJ1qox7QrFZXZl6q0KKKzuPqI2NkOMxNUaZbq2xFU7QUTC1SZw3+NDBybbe11vcFKYcYlVlKj5bS2RaZVbCWUayNf19xddzC91FGoGs6+ZZokWUCilSVGgSZ6q7zgyrlIIMGcqUyTDLiq8PH6oqbKa1yno4xQg1CUbJ92zPJpB5jq0dDYMQzCfm681J1t0LUuauIYcJKZDOtlbYCie4yBrJbp1ssO0F+Hi3QT1IcpdrXFSgs02Ut7rvsRuMeNiEeffXGCEeNFXdJl7lg9SphcKEvcu8y4MNkzFCRY4CGyr1nmSdtWCaNCUaoQSUXueOpg6Lbds1JYmtMIvZlYlnuqjvmsQQ27WWz8PNy8+KwHWSDPD0V+pPvhEPPXuQ1pnEzODNYNMaxdBgSwExeqyxUrpEsIROYVw1Vc9vcs51f9Et3dSQU5EWdtVoVG78uiaKmgGhJEQKg05ouHLMMhn/vjTqLqvMENJilRnGqTLNQ0a1c9lgUsGQbWqIAts6rTgNFviULNsUyXonl9E0UZNI5tlki7zCkCOcpcic+rvllSJsjEOTDE+zxjQPyVFgnKozSIyZZ75vIW0eMu1/W9OFIeCsuy4RKozTJiSrebwZShSVDit01DI3uE2KCjEaChat0FKdv3m85fXFqZLScA0BisyPzYBZA1wF5Bj1h9nAAFvEG5vHmEnmhWfx6wEShX7Sj0A8ATeYYJOzFN0zzjqAcSp+PGMN1hkkRZWIstKMHmzeDeKjMOGAWJqSBlNEHXi1NhfJ6xa3uSEUXPXdA2FomAQ6pK1BGF2XEJs/pO0/Q4ldBVUzlBHfi4q/Y1atusZd8mxiabl2HUn2SVH164khMvWUtoGd1zRrfi8NMDXzV/vcGtMAJNlX+aiwJQ1U7SjoaotdeTYrztBdV68NCxv5nFe/ie7n126rM6gy+poDWCajsCThHAUPtKkxwlWWuco9LDCni3g9ZihxlWXe5W1NQEt7VbFAjnFNEc5rEcM8MOa45+xYECasmezaBOkP+XPe4j1ahOJPGWS1aig+pj/lJ+4zEqWtwSpNFllgjYvc5ob6rohx8C1uql1BylPHpGKX4hY3fcJm1Ug7VlSrdpIe3fWCQEibN/nA+3nrQ+I6Wd1G/COlwCPPok3obDJnk0sbB6waadXSAjn2SXKPOc6qN4q1o0n2QarAJsu3YJw2ksxWJkOVFHPco0yaFBUsDWuSDSbZcJmI9XNW/JDxSyZcFiBj3io2Jj3QFLM2UW5zw9+/be1pq6S4xxz3mPNAHvPWNDsJe+/te+Y3UmeQFlEsmbxBnDJpxAtEEtSsD2yqr4qNyfbOW0X8NjfUkzXmLOmoerhY22cpuk9tQNcr88bqNT/ckz5AmW6JKik3vo7R8KS7B8zwIW8S0NWKbIQ4TZa5islOjGVt/iZmIn6yrzPPUzHvjrCud07aJEaZDB/yJtsKxNu9smSzSdaxgKNB6myTZZk5LPnNrBJWmeE236dKimFP4Pj2bskz6pNlEtIUDIUCvnzVFQCKssooA9RIDQFolEEUTwhYRSi/z+Q0DGEHVnZEokhV9pO6BGq9JGm2AZAXCW/mVVhQD87Mq0BBGHkv67CUySLsvIIwmWIDAlQ8KcqxaClryfyqFRQqfQ6LyjTrP6sy4qyCWFmE5XWIgDwBvJHT89VgEFR2yKwAXKufi89ff07bZUhApdLnCrrkdF/z0p7HCiYODQOHGjiyoue4iYNk1S/oJUmnYFVBsaNtPEjn+IH6uu3L71NXRfbKEAK0Hsg1u5fkebmmoXN6fyIQX4DGI8mCef4Y+i4oazGNh2uMDetxnguI2fhLkb6yJ2Dbpt27lAC9fWn1wSsDX8h343l6/nf/5Yl7khUWowFVpGSfqZuaAKx+dgyjVE0598ywyFerVQE1kwhDri8h0tBIILdrLCGpvaWiJt8+QNiTJn0eo2d5kJC/GYNvKCWAZ19KwLPSAS7L74tIu+X/twIWe4rumLb5Jd3/jkq9f4AA0+/q7224Msbfnjw/cZX1TozJ82HvEeqfR1faLK6ed88VDC8t6ztUkGvqN4sEVBavh2NYmKYUpf2ah/DyH2lCsNTReV6Fo2V9ZoZELoxKn/sSEH2J34htmD1C2rSUGDF98Ig8W8ywygKf8gYfMt1aY4NJKoEE45mHuqjGaoCAdraOMDVUiTQBXZ8/DCrot5UQPy5h58ncYVKtrETF1WaXEeoJmQuY5dHV7j3Mt36CLR/z7nBdgUS5uba+AbGYmtB82llWXPkAOGlkg0kpEIZp7jLv+7BztOA9A4SucZe/Uf6MRhD3wL16mPTC2gqzVBino3OpNiH57hZ/yU2muutKTEhRGx6kEcgaP02J+xoGMt1d83k5CKBkyrEobdbCaVcB2roq0yrz3cIDjNFoMtAUFSo6rzQAzuZjJo22Avfu2IAX8muMsB5Ossa0+9FbkdFskSZaWwBc5w5XuiuuwjFbo+muFEW7EUlfFZushq9TZ1glenjkheGWssuqjLu/PaBtJIXyCQWeTYkXo8HfKH9GJUwprtFyhVGMhs9zdhHJrJF0zJ+/yjj7JH1+HumKCsXW8suJ7/hc1e5JKwidsNAmSj0Qv/w3+JAkdVJUaBFyL7jqc/MyadKUOUuRqdaGzvsqzLHsjEyRSkeEUdcSRp14B8pa2dYD9j3DqLJ7zwjo8Lvdd/36Vpkhc/CMk6GXti6ZZEPl3kUnkslnJGhzgk33/5/de8Aa05RO+pT8R7ZvBNDb14mxPDgiWK2QUjpw1MECgEk2qCoibA+B0YtNrmMAgKXPSppjxj2mGkq97BLwU35fF5wtn7Aba+Au86wx7Yi4LKTS/nDKw1D1qoEsHCW11eik8sJKh3aVe1iyqYElbcQbzSi7RoM1No34ZE2xhsi4ZljFvNiaxGgi0eVVUr7QsVCBAueYZIMp1r197aGyIAqRF0dpEFO9u4ClRm015olRUOM0vH3XmXRtt7DYHnsFqMhZlplzsKhCiiYxZ+gZg8wWy8aAtAEg1MWbaOnbxOj5QFgKsgGi0mmMO+h2MjpbQFB5pi5qGo8x+gw4Ne84qyjEtPMYp8Kogq0WwiG+YxqVrcBGlBbTPCTPpoOzJkfOKxs0yzZJ6u7hWFU24G1uOFBrIRW2X6tW2eK4SJY1Lro0MqTl92T0RHVjmoe+yLUOfY2LGNuxowvVVWZYZwoznO0iHXmo74ItUq9xlzhNHuqxbDFroHhJB1ALwYBeUIOwCAdZZ5IKKXb1blRJeRuZbD1HgbMU/fyuc4dp1jxsJO+Rld/u7RUeO4Bm/odb5JnnLje55W0+wRZFzhLQZYsJZ1IasCUR9XKvZllR0GPU+wFjd24y4ew5wAsYVfXWm2aNW9zUZ0Wk2SZfX2OaKdZ5yEXWmXTgPq08KPGykIF+UMFzCYKJOyt0myyrXOIh085+BXkuzN9zlhUecpEyGfclWWbOmdcmD5EixEVKClrKu3iJBnEG6cljjeK+RZ4yGQapc4ublElrJXrE+3lr7wI5BdykGhej6edngDjgAJhVVC3gKapMrjtcp8bI19jGvRAjYWM3iNEhYIsJl6zLxKXsPh/G0JT+ddwrh2IkvOX38xKrmsDe5iJrPom0YhLIGFxl3KvUTSSB3LxcrG+wPneZOZddmARFku6izqCM6mStSYwt8h4e1PtbxQt3acrqEVvx4pZ8N06JDIssUCLt7OERdmkQc3sCC4cyENz6r4Au94KrDvQt8poD2jZZMuBR+s41B3lXmKWl0HCFcQdjTfYyQo2y3gtbnLzL26xyiW2teKcpY2oASya/yzwVBa1LpP09FPuHlveDBiRagbBLRMf/Qe4x5wucb/VW6wEFtkVUvnflAgK+BerXdY6eBLMkIMzQOfn3UYeexA/9TA6mEpokO4hLU6tFAeL6zyLgTRlJxN3EWWgeeHEg/+0cIKDVHAJy/EABjGF4eQGoCgj5qNADGomINHJsGBYWENDP5LeJE23wqCeFbBTkGo7UB8+97nYQYOi5+LH1A9UHIiklI6yvTL4XcEEVAe0eyO8eFWT/FPS8lfFF2GuXnS49puAFOUbjoJcebD6nRy05z509HBzlPAJMdTQI4bmc86OP9GeT36rfGsB3x9ST8EAlmradg77zCPCVFhAzntdghmEByob0nBqPcD/OWAiPysIUY0Fkt8+Lerw/1UAU9Vm1azou6rUtQOMjAZOPVQZLVa9Pfd/608LeS6kbUD96r7PCgEy9LayyWAgvjQlg+WgP/qog97BPwU12YHVJ2vj5z6WNnq/0cGBjATaKsl+y8swyLPs+/u8knKXTUbDWvBWrcn3Vv9Ln6OfSllyTZ4SU/Pvok969GFIQtVFW2W5X2pKMBq8oCMym7P94TwH4UOTRkUCu6WhbQLtGUUE+YELZeSRETnx8AFutEx596DkqoBxRJmujIPlclHt/02HsW7+16Pf1rM2fV5kh7LaUjd6iHiZJU2aFK9zm+z7Gm68XIL8/2BN2vI5fJskdp0qGMtM8JEUFs9IRxp2szzKtMg1iLoWM0yR5sK8+2hJktxrMUCbDNA+x4D0DhqxYa+vSGA3e3vtLV94ZiFdlHPGV7/i4bxJJwM/b1qsn7bVM8VAlxVEoqrSPTwR3zO19JtYvbJGhxDx3nWUV2z8SUkkQJ9eVearNL82j7Qor7hMIuPzRjvtK8ZmDLiaJzB48lfVvmOSL3Bm/pgk2fV5sCkSAZa5yjSVSVJBAjhaz3HcViBUQG8Qwi60RamRaslYdOdgjpMUHvEEjjLPMVVHmdLre/qbA+yB4UyS8gaQHmxpsZu8RFsK5kTiPZRZIkTj0OVsGSe2NdxuE3RZVUiwz52tvIzg9T/UTQYIgzlIk2ZJ5qhW2txUwbCgAmlGMwp5vU4Usc5V/HvwxD5U4Ys9DjAb1MEmDOO/zFlVSXOcOpi6079vnt9S+q414Oy4cfMp9ZnnIRd7nLbbCCQHx9p5xurzv80uz2xmhxq3wJrN7DzDbsjSlEySjCKtaVE9SpzB8hk9ZYDWQ30ngYYX2QD9VUoqD7PrnrX1PKgKTe4dskXeS2yvlZzSI0R445crFX2X7RgC9R1xADPxlor3JBBG65NXUT0zcp5W1FtUJbpsVrpBk3yml1jkY2GadxiozrDBLgRxLzLPMHNtkqejNqCrbzMCIvC6GrnMHk+nm2eIGt7nOHUao+f5M7ms0SWPfZSl6Ys64VvQt4fRk8qTtXwBJkcQK26KFGWKa8aGFTkglofo1muVJ9pTJKM1I38DLO1zHZJoVlXLtK5jS1EXUFOsuXxKj/F3mWMbkShaGILLI7RPVH6EMz7BKRZmVdl4g2vcRhMJrkuNxqv5Sx2h6qpDJvJa4RqgvtJifTmnlowUO4qQAAQAASURBVMoEW5qMPOqLb+uYhPEndGXzMYzSZlQXYPYSfD0BVEAvY1nWkWRYY7u1kLAIA9dsALHEYpPGjVNhhJqDnC1CVphljYuKsWeVDSQA9GssEtChpNSCBjH1ROjS1EV9jgKmyxdftXGMdmzf21TDWmO7Gdhisrc2oS+KQ33eOgRMsMkcy4xQUyBN2GHrTLKsvgM5HitvSRa35j0AKHiw6QvvDCW69AJDBFDecGZNk7gCMnHOKdjeJaLE+CpVxh3UqTPoHViRszz9FasO/7lvNtAussAIuz5omH+CPOvyXhpzWUDSccwTwoyHJQVcKlgZBdkCukyx7qCvPA+hM1rNA8z6T0tfTlJng0nmWKZEmgwlfZerLvW3IBjzZ2wRxYJtrijtwyZlMZq8wYfMscy4asAaxD1V3IoiW1qzvaZ2BXEaaiEgXiHGpLKKrknbLc13nCpVUu5VmqNAmrKzkLeYoKnHtXHD/NUMbLG+NU3ZwZkiZ4nTJEbDCwjWZgCWHCZ9Y9r72aSOGCa9T1F1Fl6dQS0AFN3f0/oTM302pnmcJidT0VuE3GXe+xdjdD1kWvu+NJZebe0B6HMmiV42ibMCQ4tQPRZLDFJnhgeYX4nFJCUVyNsm6+Ow3DeRDku6+Fk+5A2KnGWSDZJI0p61r8nsI1psMklFh4A57mFS7bMUSVNimas81CKXTNNiWEiMSPplTEhToshZHWMabJH36rEVhcymwdpCmHVNTzIL6DClfjxR2s52nmTdk/OWmSNQQG6WFXYZYZ1JvdODKqENXNacpM5P+AvMj3CbLD/lJz657BLhR9xiHZGZ25wmR4EpNhinyvBvwipWF+zPN4VhRl59yooI+PE9+UzfLMIcM/ZQBPHNSwjTJ5VCpHt7CAgRIKyiLPT/DgIOFeS7qQwehvLkL3tJoEcKPhCBoVkEAFsWGW1mWM7x6BMEnFpBmE4G1KUFkIghgFlDwxSuvApP9uQzpSICegXCdHMQs4CAMS1NF90R8On5Y72egF7AjfrCjSU0jVX90EpF+XtGfcxIa+ItIsW9MKffD/EAnz4NPiAt38mEel7I5y7MC5DWN6vsspaAUv1puUeZrOxrIiHt8vwdabvMPFTvybkfgYfbPN9Tptag+M31JRBPPZOmKoMPY6UNnwCsEnIdVIXJl5oXYHHHAFJNLs6EPXD30pgw547LwmpMpZTlF0jC6/OiglM5YFNkxEMXtF0eSds0dhDfw7ICVRG5jv6ISpKhF5Q0AMyJ12HfgGBoGWXtYWAisFmU23n8iSTfXkgLM+8CeLL686rKmhX4Sp0X78O+89JuyYSca1ll040D2PxM2jyVUlBQk2L5DDY/0tRmlbuWyvDoc01tTgk4yIEe/wu5Z33f03NWr1IiwhJMK5DdF1FQF5XaKpjZf1l+NnkuRXlX+lJwaViCYfgzfccUFE4m9Dnbg/gw5I0Q1dHnx8KLvuVbhTTZnR3mDn5Bkn02Eud9vmGBDsbYmmGVq9zzAv/pzX0HIibYZCVx2WW7BpxYwdXWnEZySescLt6S+V1i7wUPlQ1mY3Ah8TIjLVnj2dodcDDQvMcCOmTZZuLgSwdXmsSpDw8o4NJxskCbqKvczA5lurtGi6isN1urRFUNZ4o9sVdKe5G0QZzmYD85CszwAAue7EYE2Jzf+Yxst+ikHhCvYJOKLgYLRHVNYnNNEG/AYpClEOSokmJfMQDDK44HZC6/zBxZtplpCdAy0qrp2kz88jeYckVATFUOtla2bZyqyJpPFGBNaipAVMTXniPUqIRCmFhMvEaKKle0oN9SYGwtnOal4g7mjWgqvousIUEQTS+O9j+HBRapIF56EoZ51ucj+e4WE2wy0hJ7nEqQYujR0dd8pc3+qkGctWD6a0qe98K3kADOihejzeNO5kdllx1P6ZrC1BjTPCRGk+zBU8qk1QJN1kHTrHGdO5itlt1fsytqE6WsKsysKuZKZBg4gCusuBy2oyB3c7Cf44ikA9scTnAYSftdGb7k7Lwao44bAYpLdXzuaeGvpm5LUid6eORrMlNLmn3RiCIdt/k+D5mmMHyGDCVMnfdVeowIXVbDGQexf5XtGwH08nyhnYywiyKIn85ZlV7aQqtO0qnCABZLHVM2nrC9JJFmnSk2NRXE9r2vrIl7XCVFFYvhFjZbjgm2yFHApJ7G7pNFiTSQ3YQ0JQVHWs6+Mlqk0VQfqk+QeP+1sfhju+lxmk6djCkDqsYIMZq0CNlkgnGq3OQW8yzRJM7JAIMoLdevtxTUNJCqwDkCuiwxj0lkZ1lxUMcWt8YwMWaeyF6bmHdclu0T1YlRB5VMNjWqFZeWsuskmbbMVZax9FKTj93jKhVSrHFRo8JlEWjhGxVFp0uk2WDSO3A7N3lRRlyKPc0aU6xTIaWS1JaDZva9JPvqRSidiwGZMsB0uMHHYvBOUeFNMf/MK0iVo8ACi4hP0jmM4WmU3/YJivlF1jyZ1CjJxj6zgeJkEIjIX7fJUNbkXZGKz3KfDCVahG5mahR36fR2fWCe5iHmNQfwKQtYoMQ4FSbZwCTNCyyywKKDBHm2yFD2BKf4iWcQYE7DOPJsuZ+gJQu3FCBc4yJdItzhOkWy7idWIeUDYEDXqfEilRdAKU3ZZXRRWlj6qvlfRBSIzCChDGfY/ia6n1+77Q5/0zv1GqNf8540gKzGqLPzjHEnUmqp5hlrKqDDNA9ZYRaTBq4xTYEcFWX/mgw7yT4glSqTO9dJkqHsrFV77y3QpEnM+5MCORZZYJk5UlTF8FiPt8GUB8MAPlkxsDtGg4useV9/kglrhsE2+Kao8mPecfsAAxqjtH1iJPJ2AaAn2fCBL6ZnbZWwKdYZ1PHBPCHvcdUBrigtbnETST8XekqHgDUuul0AyIC9TZZ1prCQHaPOixlv02n/I9R4oJ6aBqqBVNptwLcJAUiYUEknKwL4CcOurZNaY86Z76ixLq0/szaL0XDwLk6DG9zWwpMAoVbdNIanVV1XmWGZqwA+KbnIGhNsEmil1cbNOe59rUBiE8grrHCNu/6M2UTH+kljQnYIvBIpFgJlHbfjnhp2Ut5SYxQJqyp7ey0zR5oSUyLMYhuRKG8oQGzsOpvopdRLz6wPrDIszNEZ9hV0FMlHilnuk6XIMlcdAF5nkiWu+btmRT2Zj+RdpmH92hQbZFvCfrXjZBR83CJPlRQPmGGaNZ/kVUmxyQQVUkyyzqC25bd6G0WSafNC5OIR4rlmLK8HCKCwB8//KWxuIiyeMgIUGEsvL/9+8jPZX+MzeP6usK2q70iYBKF4hpHAk5GfowDijjL5Dk8w14rC+CopaDGUUhaRsvZ4BPwMVlU62fe2JIeCAD47B8B5CfJoFJVleAgsQt/rCJiWQBhmPwRWhOl0/Fj8zJqW3GshIene9cYXlF12DrigQRaBgHjHVeAz9Vg76LUfCsQQynkBvXRw9Rv8aAc2/xKO39XvtKCxJGDZX9n5voqnTpc+E3Cu/7LKPK8BlzUMZA5m5vUchuS802MIuHUivZVDemwsA3OVBdk3K21w/AiXHpt0tX9IAcMC0JUQi6FhaffqR9B3Sb31Lgk57bij8tKusOuG0gqapZTp91h+Pn6kstKEeNZxT8DL/gu432D/glz/832R/1ZXEP+3R3pNoYS7rHdh5lW9jxeEfZZPw5V/KODcEAIQHh+q5Fjl50PnEJDX7l+g3ojKkuyLyPEjgbD71g8gr2nBxx19P87Lvp5syjH7sgISv5wWyfaFnIKfe/p//f5mQd+XQPeRUNZlVXwEOxoqctxRkLWLM/uMvUeid64cQOPPxFevP62PWho4q8zDlu7zUJmqgXy/auzIA/gNEW/QIqQ0NkwpcZqADh0kYA6kCGQKm1nu+3hh6pzn5/ox1c4GU7SIenBgQJeJgy89cdXGxiXmscRSgHootilHIW49levKPKxOkkKY4+2Df+NMNyu4xmkQocsuI9ziJgVywvbqyrqvQor3eYt9kjxUVdwWE16IMyljjREqQcoZXtHDF77GkDDCDKPUmGTDPf4ylHr+x3SYYoMHzDCwBzf4mN2xAVpBSJcIRbJKfAnZIk+JtKvY5rtLLl9tEuet1ntSjD34grSqt6AnIa4P9ztAVSbNYrhAISGZ57PcZ27vMweGMpSokGKZq2RbRS589sSxhA2mToBHcS9e57rCLlzoLjLLfX6r8IW3EaB4xmNaRDlLkTUuEtJW+pEUXUdaNQfmTFkigRoy10126xwNoWsQsVcy6xcD/TqB+NO3QlH6ZQ+ewphYPhlbLEWVeZa8uB92W1joiH3GiuMVUl68tfXyptpXWaDmJVZ93ZihRDUxxiW3PAmcyGVSbiukm/+ykXyMnWrWVg1i/HX6kq9PrHj6AW9SDLIsjV1Wu5uIk5mutpZ5q/UeDWI8ZJp8dwvxsR/0Im9AhwfM0FDlyxV6kmfzB6wmxoSI0C26DUuNUfZJ+j3NakG7yji5ruArY5uHFMhxT9c+baK8yue/Un/yjQB6IW3u8Lqn6FgFvECODaZcAjWOmKYbYHFSBtRSIAjgBrexlFiTbi6wSFqBpmmVHZ1kGtnLb8hvlXFfBJuUtk3UZYfjiN2myQpBTDRBkGBjKRlYVmfQjwV8TYddVs8nQGVIUWXAlDHZrensI3QpkXbQzjzvzJ/MXkpj+CWp8yFvYLJT62hXmWFJQRarnBjIaHHb5v/TRSKzRdqU9oXePEv+UItpY9cXlBaZnlHgU8JNHjPPXcap0iWCeTqYRM7aeFQXtWllhtg+TqL41lYC5m07ANxQ08hp1vylSupircYIU2woE8xYTyIJXmLewSQBNM3nKmSJecy70Nh4xjg0SbPJpw34tQU1wHU+Ud8keS5M9hY98dJfZM1B1AI5H1gbxPiAN5zlGafp7WOAjaRIlZnnrgM8Jvcy5qCEeUhgwEmfrgYxbnHTmTUm9aohEd8lJEVpinVGdWEpC3mTCo47pXlKjVylgiLMyZJWytKUHXicYFOl52edqVhj1Bfw9n5UdF9pSqwzRZPY/+x9z6/rZnJK8UfYokXU5f81RlhhljYhE2yxzJwXPLpEvE9aZUZrnw1qjBLQZZHXGGGXs8qYnGCTJeYxj7U1ddsM6LDCrPfFBkK3iTqwVyXFx3wfgPvMOgPPvlNVJqklqFnfvcoMRc5SZ5B5lkiyzwg1xGz5rLNYrUJog+4uI9zhOiZrF9PmBruMOIjWJsok63S1SitVZvGuy7N1witSGFbGFjMZrBVnrMIl1yDBMtavFshxm+9rgSkkgkh351j2qtlP+Yn3MZKAlWKc6tdAsxlWffyyIoABN1tMONvWJl/2bohhrlgkAFxjyaWb1tdtkafOIAss8gYfuoeLjTsTbFEi7deRo8BVlpUhK4a748rIFh9HGVu7RJzhbFuVcda0EGCWE2/wAUlEgjPPEpa6nURk1y1lxBtI2ktJC5lgU31um1+T8IpvrDBKzTvSpPtVUg6iCqMxT0llSTYJNiDz5LgfVSlrkzhrTGMJ6Fvk6RBowWicLS0KVUnxF/yEdSapkmKCTZ/8GcvfxicbQ9/mXzuj2wpC60yyGs54Uc2YsVNagElR5T6z+hxIJd6k3iaJGvOYyW/xFkdAphZc+B35v05bOD5U+eQQcCBsq1QIzCnQMgClT/T7m7BaFhDluCzeY0N52NoRIGToApAQQKn6hTLIDoRBRQTx0Usj8tU0Ako8hws/EL+v5iGgoAggzDL9ecbw5wK9AIaO+H+xApQgPqesqawCUp8Jq4oibH4OfCJssCd7AkDlFyDzD+WYT35GD/zqAIdwdBf65vTcswhg9Jl42vWlgUsCrjTKcHeTXsDB27qvB/T824bxwI030iJnfbADvC7HiicEOLpkCnDzfjOADt2/ncfP6SXvBvS83Q7knI+2obGox95EwKCOyFer7+t39uR6SEv4RN8A8HdkN31Z+c7xgfq02f1SduXLF4SBx6a0JZvCGOt7Xdr8eEX+XS1KqjJ/JaywR2Vph760gHbH1t4m/wWRbs/h4ROpLOR/pCnJFnQSQfzrcjCb0DbJ05MngzM1L6RhaF7u1XMDXQfkeo734MmyhpgMi8+jAX5E5HPPuwJizpp/3Zi0j3tOLmhYbSj3c2he7tNQAPw2pH5bQL7YgLbfJfEkjET0WFU59/SY/P3ly9B/TX7Xpx6HJovnnD7jj+Du53odP+q13ZGex3PU1/JRL9ij/6wev4x7GD7vokistvtvwGZriLvMq81OhCrjrAYzPtYJUCIFQfOfbxLnXnAVs3eaZs193c1/zLzyPNRMmUNpZe5ZEuyFzSf0l2W9u8sIm8GEk2xaRKkmxjD7j9zeUwK6THdFWVImw5QWWHcZYTWYYaq1gSXlmpWMqQOs6DnalWud5y7Zg6ecRUCP/hY+F7nNDUDWsxvqx2/zAEmDTXG1JWqkWVb4MnuaGiM8ZJrb3OAO1+kSsMCizwGT7LuSoB5I4duUV/fCOZkPJ172+XeOgq/7hkpHbCNBdWZpE6VFJZQ1WX9LZNAXdX5sNjuJ6gsOld0rmQAtb18L9FxnikIgPnuVIEWXCDu5AVHstApk954xu/eATEvAtw21y0lTYkPJGU+zw3Qj4h0dKmfN1uRpysRosBlMcHf4Oz5fMpDMrErM4meEGmGrTW7vKR8mfsBX6THOlPdc/rrKDJN7XzppJeh0fV1aUksZmc+Ne0G5SZyTPn0zrPKAGWI0GO3WnOjxavFLVpilqlJqsz9JU6bCOGtcVLu1UVpEsZwDOa60bZwmGcrk2WK6tcY1lthUlqqEC973eyCBlyW+U34kirowRSuMMsWGXG+QVPuZkAI5Xik+I06Ta9x1UFTsZ6TyZOt1DzwJUo452X1JKjPyxsFf8Z3PHglLNQiZZB0iqIZJZNtCjIr+Sv3JNwLoAWqGX8aM/4ydZJ5dVqmeYp0bfOwxyGIeKWBWXJllJnPNs0VamU7id5NmgUVmWeFd3vbFiplOCmhYdUZTR0EX85gzGar5mZn2v0DOJZabTFBlnI+1cwEcFW4ReqKuXZdVQwyIGVe5nIUF2ITfrhVw+qp54xnS3CJ0EGCSDfcKMPafAWKAM6PM885owiA0ZDHp7jo7oaILJgOT6iSdqms+bDbYmDcR9Hzg4jRc1itAa8sf1ildVJsM1K7ZgFzA5U4gC2tLkLSqlPgKTnGTW/5CW2qtdfgmWzQD933Ev08GjiLn9FmwhaaYS6Z9QR+j6aEfBgiXSRNDEpH/nD/kLvMkqXOFFab1s7Y4NZDNGI4Z9VeSxWhTF527X6sylMlgqVLGGDIKsnkdjmsVzEDZNabd48q8F43pd59ZdnVgtZf+93jH3wGTcNr53OE6d7mGmdA3iLNP0hmHGUossoB5b02xziozziizwdBkzDf42Ac/CUyI+2cNZInSdunuQ6Y9UfkZp/9n7XN+Xbcmcbo+xYkwwSbXuYMF0oBMBAzMmGPZmU4gqdETyoDKUVDAV4JGzBvFQBFh095jAklnvaeeF1m2WWOaLSbc/2GEXa4paGxMy3H1QRunSkUnhwZMNxSAPYsYBNcZpETaiyEGQP2k9VNMIikToroDY9ZnlLUyanHuk6z7xM8GvgAJRSqr3Ny8QmWytM0gEtbTVC8XodinneUHwkCbYFOi6rWfzrLNFBteYb7CijNV20S5zyxJxCPFzt/6XbsHPWBMQLgYTda4qPLljPd7eTWDNqawgd4zPMDCFdKUEC9UAfPzymyfZEMroFXe4j31wJGAG/NVvaqeNyf7uXENWymppNe87ta1MlwnyTx3sdRVm8CVybDCrPdV5vkWqpzCbB4spMRY7PtIwpgEaEjl1ybZJndeZ5Lb3HAZ/ywr1BnE/FTNH1fG1kEv8sk97Drz3bxF20SZZo0b3GaaNdKUfGwRcDnp4PFJybT01y1iiH1ASiu75p33IW+SokKWbd7gA2fgjVMhq+yCLhGS1LnHHO/xlr6v237NUxrkZWO5MB4fM06VaywRp8FFHvqEUhj/LXYcRfgWbzEEUFIwjTGgo4ETFxQ8OBC5YypUBpBKC9lTVpMyomZ+BFwQaV/+dSAC+bxKB5XdtqNyydQPESBBwTw2cVCooYyvxSLC2iorYyqh+4kgoJYFdLSAopj6N5Tt9tcH8OQz/XuXHtuK3nfiwwLaDKnMMj6nLCsNf2BRjrmOApsmNc6qjPcz8WBjhR7jTRloPBAQpnkI1/LSLkT0PDL6s/oF6mNHPCGBD6lzMDOHy41NFp06J/eGFM6i67P2+ER/t6lS36pIStmB5+8D27BaBArKBoOexPNt+Vx/Wu/HsFwjK3K8DBL2wbvqLajX2ZcV6fHxY5XSfoFLVl/O6bla8AVyPZ2OgLzVojxjTfBAlqkxPZffBeZVzronP/szGuo+P0JAphPpxICHWzz/UwTgGlZ22578LZ6X/Rz/P07ck6L8PhLRYJNH0sZf7UAsEGZgafHE/e1oEEukJ03tuymSXAbluH2XpK35UwH7jp7rv1XGnPqettdjTYlOI+nEhwKkx9P0UoUfiefk0ba2qYVlGHM0os+Qyd0vwLUsHnLDc5GS539H/j2TFtn70bayOi+p3H5Hw2EUPMynQWtcvXb+lm/jlJ2hPXnwha57Gz4Xs/WpKXmsKCo+4FKsmmhtfU1BM96q8lCtlK6y7GtPY9kDzhqvkOJpfpjn5/tdmWT/BXS86BjT9dXd4e8wToVSIOGRYndSoq4IbJ0klVAAjGss6XosqoSFjks7C0EO89ELW3jh+ml6mDRlbnILk6ymT8wN4qo8mGXFbV1OAmTmbSzzyU0yai2SpM4Mq0yxTgMJMQzoKgpga1hZj9ratUKKiYMvEU+8LQ5Sp3z+aevouK4VAZ6lB51QssWE7+uvst9lKfFdLGTC1oNrTBPpdsmooszmbABmHWbpqw+Hz1MdHmYpnPc5ja39LWCxS0AhkOJ8SxVfI+yyRV4UKF0JyjNrJuiFT2ZbwnxrE2X64JEUKsM4ka6AkCvM8lV6jA2mvBhaHD7tgX23wpsssOjED7Gdkuftd7vvOhholid/m39J2G15uGIlSLkd0y+z573Ab/Oyk7Lxcapu/2LBLDOsekheQIfxnX0yXVHwGMhp80G7bx/yhrALWwI+Pk0P0yTu891VZkhSp0JKFXctP78kElhh96B3XyO0CSkrE9RIYTY/t2TktIKX9cQgJOB+MEudQeI0IYRkq+5WcTkK7Llx6n98+0YAvQYxzqocpUGcEmmWuEaRs5gBplULUlTdBDFKmwk2MVljjREySECGLawMyDIz700mXKoryYLLnJSqiqRlXBlWsqiqMM457RzSlFnXSoXQgvP8bf6l+1mNa7dnTI+TTAtjG5TUa84WOA2VrdVJKio8Spsod7iuD+Wog3628JtQsBLw9gnoMMt9LBGml2C56ZIiwOWalphiP4sBeppp1nRBHv/aAseklsJ8E+r1OQqYmaR93piATeKuuy+RVpmzVF6ucReJnI555UJYmedcJt2TWUvQx7h6PBlTEQRQsg7DTNplsBJPJQP7xKdq3Rd+HR0eimSZYp0SadY0sOJD3mBV5U720ltYhXkvWrvYwGMBEnMs64I+rp15R59LAagsdloAycCf+TpJzlEgQ5m3eI8b3KblFOcSUVry8oIDYFmKVEidWNgmFeRrOVPFggmWmWNQF8uj1FwyXD0RJmI+eutMqWwz5X5QNlGY454zsDY17XOWFSzJyBa05t1m0s4MZd7WOLUao8RpaJq1sFG2mNCUTwk8mHFKdZtVZpD0yx4r6Nu8Tan9dZsoy8yxwqwPFlbVsWSmOoMOsGyTZYlr/rs6g/xj/qGzzczfzlJcJ7UgYAyyHAVGdQIywi5TrLtPXoYSU2worfyiA+OWUjrNmk4otxHPx7POyCuT8T67S4RJNrjIGnkNs1kK532CYSDfLsLIbhHtGcGqfF6YtE2itFlkgSJnSSt93d4zY37VSbLENQD18hD5wT3mWOGKs6osGVv89sYxnwvzUTM287bKyhdYZIRdJtnwAoKx7xrE1HLgsb9bf8w/xxKwP2WBOoMOUsq7vM0S87zHW87S/YA3VYYg7LYNprQ6WHb55iz31XOzwwaTLgsFnGVrQSJWLDP7A0vBPlnwMnDLGPDWNsZ+jNF0WWqBnHsxmky+TdQDOaqktJLbYYl5r4qmqCpA1eE93iKt4K3464lMNsk+k6x7dbuLhK3kKHhhy5jmeba4pLINY5qaB4mBe+ZDGtUiki0sRqgxz13EUzDGKjOYR2VIi7tcI6DrDH4bxydZp6X/D5XpfJLdaAW2kwEcOQr+fFrSsk1wbQzN8RhjXVgart3LMmm2yNMixIKcvvXbUzi+hbPEDFjr/yNgQKSTx4/k30PzKls9ALK9QAIuI4DCgQBcx5poywACNpg3HiKrHUrrsd5VJpIxzg4QRtoPgAC+q6mmPJDfH9v5GfPMALvLwHNhUMX15+8meum4/EDPL5Tvb6nnHq8KaJnKyLkeP0CYf4G0x6NlSUl9I61yT5UYUxSgkogm16LnlEdAlbyASH3nVPqaRfwFE8BfAh9pIuwmvcRT5OfYgDLTFLy6vyf+fH3nTrQluIzW2WsHCHgTqnT5uQJiyDmWloTJWP1CwKt4TsHPSwjImJXz2DIG2qH+PyXA5I6y5frP6jUOyTnGL8sxLBHXPOeeFEQK+7yMA0Sk5PnJJITBF/+7cOFHeg4XVN67BPwcjv5MWWkp4J/0njnKei/VV+7IzvdAGZePT/gQVhWIRL9TBHYkzKQvLf9+UtT2vqC+hHno/5Hseyyh3pAGFobqKQi8/CO9JmNGPoLMHD3J8iV5hho7AgwCVG/JvvpS+rkdhO36Oj1vRfVoJKL7GBMm5Oamtv1zuZfWztUV8UU81kAOhum9F2Xgz/TnQWBAk2wRSfPzfb1nj1QyfkKi62BiAtEHGzv0W759RQ7zPAa+JsOsk2SSdUbY5S4yp7LCvNlxrDJDLRxxNU+XgETxBWaLZIFh5rM9xYar0i6yRo4CZwp7FIMsGUrku1uMd6vUGCHf3fI1bJO427kYMLPFBGYjY7ZRgAdLWJDUCrOetGtsd5B1wxYT7I4NOCAIvXmykTnKZDBlmylazN9tPZykyrgTckpq4+LyUQIJ6ezWfc4HOLmkqSCozb/WmXL/3H2SVBNjrnJbCuX7BXLqTZci7EoYWFMBKOjZEIEAodYWDSREcmrnCSUyMh8OJDSkqG1lcs0NJukl9sr8z+YT1u5xmq4ss3n1IHX1zI/52j1LkfmDvwZwZYk8axX/e9B54fegmhhzxdXjsdNkuiUHMu07BoDO73zGSEsKmfFuw1Us4zo3LpOhGGR5lH6Z0a6QhzKUibcaDgrXSeozN0odYcPZ3NCehwYxJ4+AzNtqjKgKdN+DVgNEXXN/7AL1QHIcLB3a1je27vp9/kLuZ5jj4t4XBHQd6M12i8xxj7vM+5q3TeggYUbNRA0MXGWGLSaY2HuCBeCNd2Xt0SYk2e358hvOJM92ms/zr7gd1enyPjvpAWrhiL8vbULyB1u/Un8S+U9/5H/6NkyNFF2XA9kLssqMA1/GUhOUvMkKV+gScIOPlcVUciBJUvR6E2HzYrKXO0KXi8pYMrDNvNgMDW/rZHxS5ZTmb2QsL+v4NplwuexF1lTb31Dt9ygSArHpLCt7Yc0P0NIGjVq8r+dpDERjYwga21C2lxy7yjgxJMhCzkkAn1lWuM0NNplggU8pI2b3piO/wxXe5l97pytMOUG/y6Qxv6myov8trdiU1TPwPrN8n9usMe2sihYhUVqsM+mDzQaT6rPQ9GvOUHLJmBmdisdABktqFJqzaNorjLPMHLOsUCKjC+yIMiPPuQeUgUu9xd6+o9oFcj5ApKhiEm0L3NhkgpPpv8IE3XDG0yILWgGKIGmrW/6yWYXE0n5Esj3oEinzGjMmpi2Wmwp+WqqyLQKN4mtVC5PGJdknSotPWWCOZWcQGuvHZF/GAgzo8JBpT4W+yS1vI7tfXQIFMzPu12D+lTkKbJNlnrtitqkeT1ZREcbLwxPgqzBcNphEZIZNpnmoDCNh9xmLUhbUj7nKMossUFYQ2eQCUVouEDeWV5eAMR1Yvu3bl5yjyRm6BB46YYOLgHbzvMEHfr/seUmrH+L7vIUFkgDe/wmwnuEu8179MUkG4MEQARL6cpE1B1uNzbSugQEpqpRIk9OBe5J1p5ibR1iMBg8Qk1YLkRCm5qCDvjkKrDDr/bz93lJWjclkviZRWmww5QwwY3PWGWRDJ5CWpiaScAGTC+QYCXfJUaCCGBhn2WaDSS+WnKSr32Vevfd2vV8xdqQFN1RIed8Pkkh2nTs6kW4g5sLS33/Imw7cgKbCnagEm3xT/tagRdQT5Lb13b7OHQJEMi+TxIckqbPCFYqcJaLA0xYTTCCTa/NfM7DfANir3CNNiYcqrxbPjg0HxKwoIc9g1avTTS1UrDHNRdYccDJJvTGex6notHyFEmnmWaKF+NKYrUSGMjf4GLFfECmteOKJXNpktTYZA9Tvc9t/Z/1KlDYlMnzKgrengc7iBVtkiXne5l87kGoeJk0dg/d1P/JMlR1krqgMRLwQG3peowR0yLPlf6uSUoZd2RmBIDKZD3nT/U8A93IdRLwXTUK0yAJ5NYXOUPb03S6B2iGI/+MS80R+EyS3w/DftJHFfxUpKX+CzEQb8KwLiV2I/zmQRBh9IfAIjtvQZ8y3EBp3oHMMQyZPrQIv9P8JIKr/foGDRkdt6N9DpL9t2a9OZ3rHakN3D4IINLZ67EG29Xz34OgZ9DcQT8BD6HYgMHbRHWg8hrgR0JMIO2pDf95HQMOsfJZTeg6T2i4d4AkcVaG/rdc7AK1nEMaBOgLOjePMRYb0WI/1uk9cW7cNgQGYn0pbNEoQP6fnc6jnE8MTZCnKd/cfweC47juq+29r+56iF8QQwC4w9BiCNLQCCKNwHIXmL+XnIAR+DsdH0JfU+3IFfvpE9zUK/Ds5zj4wWNHjPNPP7uixknBcgXoThtp6DSPQqkOY0vM80v8i+t1x4J/R8xTsl2MebUDzCMIAwt/SZ6et17kH3SIEffR8FMe1rbrQOoTwBTzfUebZBr105Wd6/BgcnYL+r6D1CE71Q/8R8Eu95239+Ut9hiJ6fyfh+N+rzHUHeKrXUURARzuG3e+P9Hux3nkdR6FvWe7N8RNt82VoPYZwGpG2FvT7z/TZqEsbHTehswH9UTjqh/5Vbftheu9VBLo/1/s6qr9DjsdjhGqaQcDQF1CtwNAzfabH9Vj6N7//T2C3BrHfjLw0VpjlNEu0iPJh4gcOKNi8wtatb/ABd5knrQXEG9wm2aqTDOuuIpvjHlvk+Spfc3KBzTNrjHCRNbbIiypp75D+A3iWHeR5tp81ph3caQRxX9daQNdJkkhZFQimyjDrpkyrTDLcZzMQALDGCJdYxXy9TZUS0GV650sqY4OeNBvSZpMJZ1LZHK7GCFOtDVbCWV/jpKiwHgp4ZmO6zXlsXwFd/vS/fkZLVWYwyDNWWKRLhC/ZJ8nZwy85HIjyjNOM0eaI51Q1dbhOkjJdooyRo8AOYzSoMkCMCM84/eIZQecp/0N0jFMc84I6XZrUyRCnSoMmw3QYYJs+vqLMLmPsMNR5Tv8RfBXb4ZABznDEETXiL4rsnxrkFC94wSmaHNLHMfCEOI0TarZBjvmKI/o5IMEEn+tqTeaaB7QZ4JAW6xzTR40RzvCc2CFUBwbZYZ8GSQY5xQCHpJBqRFX9u9u0GeWQU6wQ0OUpZ8iyS4tHxF4csn1KQL/TPCOx16ad6KMcOU3AIVFiFHjMGbYZb+/wLHqKgH/LAxq0CDkmznj9EfvJkIBTdHnGE14GmvRzlgQljjlFP0dEOCDCM/ZJMNYRRd3zyBAv+NznsjVOcUwfZ2lzQD8jnQo7kVGe8YJRnjPKPodqJ9Whn6/Y5h1CEhzRockAR+zxggTPiL04Rd+LA45PyXPfPDVAh35afOrfH+I5hwwy0ilxFImSOGhTSwxwwEMGOKSfI24dwOeJBCNUiROhQJyXeEI/fdTYJsE+ZkWW5IAOhzxnmNP8klMvXhDWgVOH1JKn6BLhFMgqo0cE/I9u3whDr5est+vsuknWfVItE+pzXj03fx9jcMVosMa0e0HZ4tH8Z8zHyzoZ8z2b5T5C3d1V1l3EWXXir7RORBe3kkYq1NgSaa+8j2onaN5tJTJsk3XAMaWStCoppnlIni03ZMxQPuHT13HzdmMnXWWZbbKMU2GZq7SU4ZfWKr8tno1NZ/5WRc5i0cpNJQnHNWgjyb5SXUccyDnJbLTFiFGE3+VtimQZp+qyvNe5g3lW3eWas1iMtWdAlaUEj7BLgXOMUGOTCaZYd2ASOHEOJV/MmbQzc+JaTVdvqL4EdLQc8baOTGTBg1xhxRf9Jn9KUaFEhmnWfAE6qgOTofnGsjN69BQbvn8D8VqEzpraVWZalm3EC2vbQbWWyqMnNKEoiyTn2gC4wZQzPIxRI89OxOXXxswz0PEO151FZDJn8xoMaSmnJ64SOvHoaxBnlJoDxsa6NIZRjMbXKlKSjtxkReWEYkya5y/4fcwHykCLFBVmuQ+IIawwX3YZYdcX6xZoYAtawCt4xsI08ME8P2IKYF/jLmlKvzEeekeEDiQJ82mXG3xMQIdLrDLHPWcUp5VxKV4gF7GIcwkcaTGuALZ51Bmga56VlvpskyGrwpps3FJne+DKPpZ6mtffWUDABpMUyfp9lXdfAD97141l2asuCvBhzOUiWe5yjUHqlElTJk1Eq582NlznDtc0ldSAqzpJbnHT2W4ZymwyQVQr09OsOWN4mywdApdSCgPWgMGk+n0WkIThHpiT4zFmRL2qoRaWcjWKhGgUOYsFQTSIs8S8vytSsZRE20nWsbAlO+6UArAik9/2qiZIccSus0PgFV0D2AUcu435etrzYf6BZlkBAo7vIt4xZnlgBsX2bsuEN+ZepMaEk5RXmS1YYtgdrmMpyOYzd0/l9DZe2722RDazbDDZjow9pa/1g2tMO8vNGKiSbpf2AohJYGyMeI1FYjR97De7DgOPbUtSd4beIguYN6DJuI1FvYswut/nLcwY2vpDC3qx/tPGxCJnsZRxA1PtOT353bM65qTUkiFJ3RcZxuK7xhJTKi+Xz1oS3CanXW/2Ld5O0/N3exlhmZ1BwIIonL4A8VEE7BpFvMtOIX52Sf05AcQgHoehpO43op//bd1/EwFB1GeNqPy/P6n/DhBQwY5tabo5+WwQ1WMMQt8peqXvFvCl+pul9d8xTQ1N6jVFIH4eAY3GdZ+n9d+DCJg4iXiRGatwV/bDi94++2MIKDQAHEJ4HegTz0ACvaY47G8i4MypE9c0rPuNQZDV4/UhTK1+SQO26+02oVrQY+l3q2X5/OAI7Fd6+/oauPRY9/Fd+c5oFoJX5LPhdTnnPh3ig1DO9dlzbau2tntZ9xkCTwQIJYDBV7R9k2h8rLbtaaArz8JQstdWxy0ITwYzjOvnvwt8R5+nU3L9x0+Bmhy3fxiGxiA0QKqp3z0l+w7SCICmzyCn9F6N6/Gi8n3Qc43TY799V34diQAj8v/+Yb0HUWjt6neK8OwAghQCcinA23dG7/EIztRkXO9jqPfrHPCS3FNG5PfhGfm5zyTiUejr12fAVnxPEFD4mZ7PJeQZSgED0DcO/Wfk+ehPI6zUcT3fIT1WAMEw8L/W8+noue3oPs8DFW3TGKSS0P+yMAD5Sq9pHnlvL+i+X4HRnLbjb8D2Q97Hks5BCoPGnstQYkntccY2D7mogUsTiMQ2sffCi5MGaBmlYPbgM7bJOunFyCUgxcj68AB0IXmg4RgKzBWCnI+9q4H4q7WVWV4mzT2u+rrQvOWtELYWTruawMfevWfc4DYXWcNC8szP/HR5H/OoaxFVL3bZX499VacUil+eSZABX1PYZrZY5lNfIMcTXibZETulsfYuv3XwkOSLuho7HRG0IHEggOABCQ4ZIMEB+/rzy3xFggOO6CfBAcPsMUCTCEccneoHoJ8Op3jB6cMdss0yAxw62LaDeA/202GMHRIcEK0fU4/FOGSAF5xisN5itL5PpC1hIMn2Pqd4QUCXhK7uBjikSYyBwzYHDNLHC4bY4zTPaBBngEMaxNlhTM6Nfvo5IkqbPo5pEOdgIMYpXjDGDhnKnOEpSeocMsApXpB5UaKfI87wlOFmg1O8oMYIA9qhxl4c8uLUKcbYYeLgKwBqw3FqkRH6OJY54eFzXuFLBjhkJyreff3ipMkpXpDggGYyQrQjaa8DbXl+BjjklfZjzhzs0McLUs09Dhmgxgj9ShGPto4FgDzcpb/doU6SBPsM8ZwjtTM6ivRzZneH6c5DIhwRb7YZfCHP9xH9TLHBMX3sk/T7+lK9zGC7QeNUnHokSbj3ghenTjlB58yh2GhFOCJ80WKsvcthRBilrdgpjjnl89WALvsJKX536OeIfpLUFZh7IffzUFKf+/QeDzdlvhvb7XB0qp/acJx2rM9BP3uW9gZ/tbXyN8TQ26PBICbTBGFYGePDmALGRBPvnzYt/XuGMnMss8wcVVIu0bTvPtRqgvlK2e9N8ml+dC1d/Fh0c5GkB1/YwmSdSWe1WJDACDVWmOUsRWqMMst9BxKtIvCYHOcoYD4AdVXqX+cOde04JTyg5J5DlkYaQ9JwDbDaUkZZC/FvMt8CkyWXdXEMArBUVSI6xbp7qpXISDVDJU4TbLpkyBJnAzpc464v8ky3b6yItC6Eu0RYY5p5lmgQU5BtVB+YrtO3l5nz5EfzgRPwNcskG2wxwSwrrDPp/gEGwprMWbyr0g4MnUyUbBFihuedE+wMAzBKuhBMUXGAwTTyxpYpctYX3yZfnWCLd3nbkxnlGtsssOhgZ0BHgywiFDnrvlQ2mFVVemy6+WmVnAmrTyTVViUzdkmJjINidn+NRbjAIu/we37Nxh60dmmphCtO0xl1xrYy6Z8BKHYO5slo4NoWExTIMcsK11iiTIY8m1QY5zY3SCLpoEWyXOUeZdLqB9XiLvNUGWeCTWqMkKLqoKikOWad5r7KDLPc/xoA1CLKBlNMss6GDtTnePxNdD+/dts5HruPWJuos3yhxw4DCUkwE9iKArxRxp2FKgBq2aWEJrFdY5obfEyWIneZ5x5XsYRcY0k1iLPMnMsrTZJaZ9AnSVHamgwVJ0WFfZIKektVzoCYNCX10Wy63YAUTYQBd4fXAbjDdf6Yf8E0awxS5wEz/iwYY1n8UkO6jDDHMutMkqHsfZkE+Ug69RoX/Rys4BCl5VXtTSaYYRXzUTGm7DhV0pTYQpyJt8gzoanXWYqscIUZVslQcjuH3jsqckkDukXWnuKHvMenLJCi4uORyTtsM1logZxbSWQok6Tu4R3v8rYWHITFbAxWA1kfMIMl1FlyGeB9t1xv4IWoCin+Pv/UGXBzLAPCCryoDNwt8sqwE78eY7hZ6vUGkywqC6CsRsMGvKXU9qGiBbUCOe83FnmNLEVn40lbi+/rLCveFwZ0nWVpqevCXNvUYljX5a8RxPsvRpNQx3KzCAB8LhGl7cxQuW8CcoqlxaAWPeSe1nSuMMt9NphycHKWFSxkxfwW15hmgk3ahO77t8IVrxJfZVlB3AbbZOkqSzCkTZGz6mN51c/L7ovMN8Q0usYIk6yzxpn/X7qZ/yy2//3fgqEYwihSySYgsj1jAD1GAIYEIkl9BwHFPkdAlSzCpDrC5ar+32UE5BlAALMsPUaTSSMjuMceWd1PVo97VfdTxsM72AfeRDzehhFgZQ4Bs0x2+AlwBQExTCprsk1jdz3G03m5gIArF+jJWlMnfp5FABdj3h0AbyFgUkev77Luq6PHeRNhAp7T/1tialrbs3jielp6jARQEzls3OS4eyJv7tdzO34MfdN67o/xBFcsMfd/qf831qH9XcGqY1TCOwbVZ5A6o9cakd9R1msp6O8MgAv1Oqu6vwcnrulA728ESQz+hJ7U+n+FAHsaREFE27KNyKGtvdB9WVLr67qfeUSyHNADnZb0PoMwH7+HPMOX9d8qeeVkUu1lPeYOkij7md4be4b39B6UJbQlZRJqO7cEPS+5BeR5Uek1eeBnut+UHrdFj+FpsmoN2GAP+F8A9+B4V++HBZlk9TxOhpu0dL9jyD3/XW2DPXoguV3r7yHvkPlSPtI2y2obWQDHF3of7ftz2kaL2n4H+refw/Nx+D9t8K3fDDyb7q4xGNgY3PQ5oZj7l/gyf9oLtO/zFiPU+CIt69O3eB+TwJrstpoY8yC/KuPM7X3GxvAr7is3unPIs9wg8VaDoNNlIVj0+aUFD26TdcVWSb3M5lki1yrwQfgGDWJu22I+efa9capMHHxJeXiMkVaNkVDkrBMaRHhv7BLTrZ6KxzydJ9Xyw8gs17njbPhct0ApyGCha1HGtcDZ5sbev2dj+BUqpNQHrcXLPKEWGeEFp/j7/8czjHerBJ0uW+FLiIVSnAvFJ/yH7BBJ+lhhllllpomySpRw58v7HAyfohDmHKsw+yIbzxv60hp7X/bToahrHcFCRni18CVf5gbpqs1VyCvKRuywzKtuUdIlIGTA55QVXXutMAXg3nNtnUtbYTLKC5oKhuW6BWCb3WCEu7xBlRS/x7+iyiAzO2U6AdSGBzld7vCL9AUBQw86BB24M/wdZrlPmQxRxhnvVukEARtMMsm6Sohl/tzhmH1e4reKX/A80+LPgz9kgi2VrIo6c4JNRuiwwRTT3TUqwRBNzjB58JC1xAWu7MDu2ABtutR4RVUj4uVv65Nkt07Qkfswufcl9eEBJcKcQXwQX3ioppTN5dmrhAktxJ5jXwvo0zwk2yqSKMN/yF1mnUkWWCS/85xG4gW18AUVzjKz94j68HMACkwys/eI8nBMsaIuIwd71BODrHLB54kpKqwyySgSoDfebZLc61AaS1DUxKgkdXIHOywnvkNAl79R3uPL9BBtQib2ntAe2KcSpthnlP/Df32KkD56UoL/z9s3wtBrKyNlgylWmWGTCYqcZV1TDGdYdQ8bk6qaNMgWJpa6aTRbAyPMM8lAuW2yvhBrE7onnVUljM1izDrpCCQhMUuR69wBcKZIShd/E2xxl3nqDOpr0yLLNpZQaxN/kyxZ+IBJrfZJco85tskS0GEXSRPtscUaLms15o6Ydm64J+BjBZBMxmX+PoPKaDQA0gC5Kda90mIeAbbQbRNi/gspKmwxwTpTpCljMqSQtsej20tUZdxNNCOI558ky9R8kVYniQVTCIiWxcxPq6Q4pwwhgBJpN4Y0KZqlMa5qDLTcPwEQrcMcV6DQQKslrmEBDXbfDfy6w3VWmKVExhdMple/z6x2bO9gxrKAB4jE9JxucdMN/GuMUlEtfFwXloMKFJRJawWr5Xp5S/0037OoSqDtmQTxWbjNDfdklMHyLhlKxBQwNNadhScssOiLzABJ8j3p/Wc+g5aybJHh8k4Kc8oGTFvcipF9mhvcds8K83UzYNoSP+38rSJRRPzHAK2RdBCj3vvklcES0vL3w97znlz+VzP6/M99e4knRJE01RhNlSVnWOaqA/HWj3SJ6HMrScJxBR7MRNfA+AllBktSbi9x21ijBsJawIkxpVb0+TfgJEOZEmnvK2ZY9WJHQJc0JQ1okImGMUwthdx87iZUqmj9eJMYb/CBVLKUlRWlreBf3lncbaKsMOtV1VCZdSPUHDgyAG9emZ1tLY/0vFNF2i/+eaP+Ti9zlS3yBHRZRhLhzJ/TZOMA5hdnEzVjmZX13hgrrK3SU5EVX/Eig8leQ9pI4va4Hl9S06xNt8k6oAX43+z+LTGvDOJ179dahEx315z9l6PgKWrmfXqPOZaYd+CvhqSCW7EGel50NvFrEOc238ekycIGlmKVFFOimOet7TONJKxVGfeJUUkBVjOrNj8/s2swE25rRwmjkKCdpjIHzZOlS4S4ctBtIVJjRH3vOsoe3fbnwxYDJmHtBRHV3C91ig3ybGG2ESL9DmgiiXkiLY/ymibhbTJBSZ/VRRZ83JKxXhZb06wpe1PYqzb+iIfrWbbIq3y7zThV7nLNi1IWOGNsQ0tm6xLh8DeBlrKLADc/RoAD8xy7jIAUywgA0EIAgZ/r76EHwKXpeYkNnvg5gYAJRQRQ+BMEzDin/53H01rJ0itnzyOA4U09pwv6GZNnntdzmNff/wMEXDIfuzHgGj1g5QJovUaApSqeCkqKXsjEj05cyw/peaTN6z6HEIAxSw9AmgX+lp6vMdf+RL93mR5ImqGXzHug7WIgzjlt37+LgGKvQ/y/QsAuBVX6/55eWwh9f3CiTX6s531Jf76p92iAHtvuMgL+LMjx++Z655v6OwiQM6+fm9P9ZZFU23+on12mB7RZ+mxEj3NJ22aQnifgq/QA3ct4ciyf0wOiLunv/0Cv9aZ+xvz75vU/TXrle/QANZOOpvReofdIE3j9Gc3o78aQZ+SCXo+BcAbQZvX4w8BPIPW2/vxD/dwP9Hhj9BJ9/+TEfrL0QOUqvWc7TQ/wPdDP5vXelYCr0DcP/O+Avwf8Eb3QF0sntnejRM/Pb+XENZu3Ylb//9/quV/S6/9deh6Z38MTgs17kB/qsYeRZ9qOb1LdMj1A8lu+PVKAphHEXaUTpaVzkH3muMc95nzMWlXLExuXbC4e7zaUj7+rHL+4ryvTlGgPnKJERsavnS8pjQ1TJk09TFILZb5nKqMt8lhoYbJbxzxo51gmoCthCXSdoFPgnBaOR1TdI5ZJS4nvSqH/4AVJJADNUmUXeY1CmCN38IS2rgtAFApVxpWwskGk22WBRWmXwyOfw5nnbIVx3uOHVIeH3YLEwixbhKQOd4nTIL/zlHqQpBVGubj3BUnqfMgbfJR9zdfDJTJiwbH3hJnWqq+Bn6aHaYTC2JKCqHjYmTWOBW1Ot9YYKxwqiUHWUCetPlaZ4avcmKuqzOqmyFm/nlfKzzi384ymzg82mGJm5wsm2HQyhqn1TF1iIJK1ofnFDZWOKAZZAYnY4jp3sHDQ0tiwtvcIO+kBxHs5StCB+vCAKNz2Dllnkhqj3A9mqTHChM6lDHuok3RvvEfZlwF4gw+kONrteiEz0yoTtoSZFz08wjyzC4mXyVCmMjboCpEkdV+3mIIlu7ND9PCIYigF8v7ngjOVSNMgRkXtUcSKRvT660xRCVOqbJT2tLVolBbRwxccpE9RJ6lJyPvsjg1QDEXxE6HL6rCYh3aJcJd5moP9PuetMUI9MejWZTb/NAKAEdoKQY5OgGMkZstVSpz2gMEv0md4qOu76rDcmzYhg7oO+1W3b4ShB7iOXfhSEV8kyYKr/TVGlrEpmsQZ1IekTchFXUQJyyjqSHdUwZMiWV0Qid+XyCfTzm5KKnItjCZ56Je4RpwmCyxyh+vc4PbX/PCMiZGjwA1uEyo74X3e8rScmF5VmjJVUh64MUjdO4E1pv2hrZB1cCag47Ja8ywyaVSFlBrLpzhpXnmPOfJsOYvQXihpv5YvbH/K7/MmHxLQ9e+sa1KMwSjGyDIPImm7x5hM2dht5sFmwJsBo3e4Tp6trzEhRAba0cVhywcVY0mYb1xcl2DjVJlnSUGuUV8sSohHBvNZMOmbHcfkUyZhM18BYYVk3EfCAiLyOqs2Np+wBc2XS4Csi6xhfocgFTGQ1FFLupEUxbKDWFbBMYmunZMBAxlK7p90k1usMsMNbnOdO8oYbDKuKaHCWhET/Ak23UvM/CfNCFfAlxL3mGOBRRrEfGFrfhtW1TMgWzzwpkiy7wzFGqOcTNacYZUGcQ8s6GpHZr4ck2y4ZK2LBGwssOjMHGNcGqtllxF/Hw2UskFEFtridblNlmm2v4Ge59dv6xKwrOyhD3nD+4hlTaAFkZqaDDOl9gPGRMqyTZzb/N/43yhrVgYnkz2HtFnhijJLe4ndRbLc4LZP+t7gQ7rKwLNnIK4y7BoR8sreK5F2yaUBbeZt8i/527QJnRm8wRTf5zZFlXfY9U6w5UCXTYBmWXFDZQsy2CLPDW5jQTQj7Pqzl6HELW7yJh8q4BOobF3GBPNhBUnevcN1ZzeGWiixglESSauaYdUBU7MSkOT0KKvMePECpF+xAtQKsyrrbXOfWcz/z1LCRY57javqh2nFDBuvTC5tYDygvmolL4gA2vZltz1IUaERiCfcFnkKyjoMaXONu15MMHansCbTjGq/YCzxNGVWueSSlCJZ2nrN5rModUeRt07zkDpi3jut3jvGKLf7K6zcXtFAjLG3KdELTRGQL0JS2cRiIRCnyFmusuxj+ASb/p1RBevKpJFgqBWy2lcUOcsirxEiSXYCoApbepJ1VpjF/Cb/Cf8AY2zPsuLM4BFqnLWqL3XuksWS9LpkWHE/wZb3h8JSSJOjoPOPlI9nxkqeYZU7XGeGVQedQ9q8wYfOrjRg3tiNAoiXKZNmjr/+xvqgX5ttFJFsGotrDwEvjEU1SC8JtczXAT9jOOURkObv6e8MyLCAADXwZ1t/Nubbqwi4YnLUUL9nTDxjYaURgMTCIgyoO4eAP2N6zhf0OiwgIq//NpDP2F9dBNTI6zWN6XeXETDrc3osqqt67jl6IJqx8ExCmcbBNnL0gJUDeqCeMReN+WjXMqf7yCOAi9XU5uil6howlkdANgtASOnv03rOxjL7nn7vdQRErOrnInoNC3gSr4OVj/Tv7yLA4B7CHPxbwJ9q+16mx3LM6T3JIUEf8/p9uycGwqFtHNID5Kq6/39E777v6b5v6ncea1tdoCcXtZ8NpIvoNfwAeVbmtS1+hIQ9LAB3tb0t7KSr3zcQ7l16YJwxUi/ofjbpAXaPgP8KYQwaGNyhByZ39Xuv02PQrSBsN0ubtefUgMHP9Bx/R3+2IAx7Zu19XKTHMOwizLof6vE/0fa2tv6BnquxAsf0O5dPtJPJys8BZ09cC/odDedgT/92gd8Yye1LfEVVmWCiatn3cQ9EFXGVZfeqtoJtkn3irQaFUP3EA/F8NwBmmjWfmzeJUwxlrhHQoTQ2rCDIuK/3xHt+nztcJ0WFCinmuMdPg59wnTuUSFMg4iqCS6w6SGLKoyxFN/u/0l3hfjBLQJfS2LAri1JUmNIiWoEcyYSw/5LUye09pT4sBblJ1qUwFqRcFVJLDFMlxSWdr0ggZpkZHrCuXt9VXdteY4n/hghBVwCuvkN4qbzj40ljOM7f2/tnbA2/zPnCUzLpMrPhClHa9O9AMZ8i0yrTCqNYIvCNg79iK/GKEH/29ng4fN4LuXMHv2DgMyCA+ewSjSCuyowtThf2ORqC2vCWQq4j7uluZIwrO49oja1xFEJ/S3CRs7r+ezx2miZxrnQFVX+l+ozP06/4PLBFlLHyIdvpqCtYLrLG80y/q22muiVKQUYA1IF+NoMJRiJ7/hye3tzni/wgkS6M7hzSHqtTHhYvgQwlXnq0w1EaCsNnyLTKdMOAbLdIPUhyP5hlmofEWwIIny8+5WlumPVAGJkLrUXqoawNXt/5a/o6ECRkDR2nwZniHs8z/ZQCmZd/t/iATvYecZqsMiPkqeF+kntHTHSeEB9ucDgGZz7bI35phfVgCgsc+e3iX/Nl9jRR2iwcfEojMUBN1wnz3HViV5eAW8O/gwVQJtknebDPQAG6r9ac+TjeqhI9fEE3Ar+X+FcEnS71IMnpR/u0L0SpM+j2LABT3XXWgyne7H5A9PCIaKItAOQBTA6va5F61EkKNUaZORDpwEZiivmdz+gzFnQasnvPyPKcjneY//HtGwvFAJx1JkyGc5ivmrGVDGwDkZKOUqOsfmYFcupLJADLCrPaIcliyBadAqMNKlNs0Cv9NgGf0hAB89uxGGRJjxl34C+k5RTWMhnqJD1FdR+R0prfkCQPjvui0GS822SdxTDLClVS6s1U1AVUyJaCN4Aj0LZwrDGqnnTCNTdZU5ZtT4a8zfd9kW1gjMnAbOFrAQfWxiZ/suhxk/KKKXuHkDYRPX9jetUYZVz9fZaYZ457PGSabbKEtNllhNfV1H2VGV2oR9hgzs37o7QdmEqyT0FloCYzFWBslBahxGor00IqED0Kd4QuuwpQGQNjUn37ZKEujJgMJcS4XpBykX6uMMGWy+uitFnjIueUTSLBIuLlkKbEBlPu51AhRYqqQpWBsnckvbVNSIQuo8rssYWeMTgA3uZdplh3dta4elVFaSmIVnUQeYUrLkEP6CqVWToie5abSnEXKbCAIvb8pilzh+suKW4Qp8K4S9WNgWXplmWVSlZJuUx7nSmyCiSsM8UU687uusKK09vbRJFIe0n8MZDzPrNk2WacKnd43YFAS8c0w3l7P/b03f+2bz1p56zfj4AuN7iNJDhJNbWGpLBW9b6tMEuRs5RJ0yLkb/MvPXFsVv0kS9pXGQC4wiziAdZUNlvUQWTrax5yUQHXce4ywRzLDr6H2gvWSbLEPNOsOYhjHmrWf6SoOLDTIuoyVsCLMKvMUCXFRdZ4yDRb5HVf0seYZ4pVHHv+dvKuGzvwNt9nniXWlYaf4zHi47nrx5tiQ4sDJZeZS+iEpGlZP5qkzh2ue78Z08lmnaQzn+skHeBcZ9IZzwKu9vzRLPRlgk0HaC092/rNqyzTIvQxw97PCQ3jidMkogUiCRFJO+AzpdYFBtA/5CJTbGAMvSJnybPlMmt5p3vjmjEcb3ODBRa9IpyigjDgow4cSpHsrDNpx6kQp0mDOBlKXGSNDW1/s4AQUH/fq/s1ZaKvMc3bvMstbjLLCk1i3pcKoCV1akt3D1ttkqEU825x0yc8xgAHGGGXImc90c/G+yJnOUuR0W6NMGhjNh6WGj7NQ6/OWhHCgkLE+28K88BtKVuvSdwZCdb24qcqY7l5vjaQdDuT2FhfLR5AU9zkllsSmPersAulIDOoi64Cua/Jtb+tW+m/GIJEk6HqEf8hfZm/UfyMnewAY8uHHP0eNP+OTNz7HiAgh4FEBnYZUysBR5eh+Sf9DD0+4jANYQv6DuBoCJqD/Qw9OhIAKAG/+MEFktQ5/9FTjuagfxk4B3+dv8R3P3ogAEsVuATHl2Q/AIdjMLAjx//88iu8+uhLATsuIkDKMD1pYRoHmg7fhoFH+rsiAlQa0HIOjueAm3qci/q3H8Gj9Mtc+L8+EaDlHBDAQeoUiXdeyHcP5XhHeeg3aWeVHuCkrKx/l/9teX7f7hDpdhmqHnGYQBadedD6gXwvq9fRkesn0P3m4cvsaUa7NYa+OJJ92/XO6vdVZnr8Peh7rNdrwNgnCFhnnn8Lst9fXL7Ad3jkQNfB907RjQQMPTri0asvc+HtJ3KdBmZqOxwPQN+K7tMAVmOj/ba2jTHHzF5z/sTv0e8Zqw94/geykMx0SwzdOoIsfD4n9/n5+X6SF478WTgaEhny8SXoM/ZmFlmEL8JXPxrjpQsKGpyDnfwA8YNDBsrSBl8unOaV9LMeaGwgVkKv6efSnofzMPAOHM9Dn6UCb9KTC4fw1fwYL72zA9+D56l+GkGcM0N70iZIe+3MD9AlwumlfQ4vQfg9DZUp6/EO8ETg57/dz9DKEcez0HeenqTWztOSmr9HTxqrvpMHPz5F4tELSMAv8+f5rc++4DgLjcQpgrdfMGBsVZUT7+QHGHvnUMDix9JWn6df4dXPv+yBoE/5jdnSlJXdnVWyRswVRSPUSHbrFAMpnsk6okodqIey7p04+JKthCRlio9ymh9332E1mCHXKlAPk64kiB8c0kzEqTGqc62YqyGSB/tsJCa9cBfpdkkGdS0MjpNREse5nWesjb2Cpb0HdHyMthDKepB0u56TKbSAh7fZPCtLkQZxisOnfZ1eY5QkdQfVrAgp1httbnPD7ZzahEyz5sz+OA0i3S4HDDNyap+QNo+yL3PhsydeFBlhl/bAKS4sP+HwAjTCuLMjT3dkblILR3ipsAO5TUbYZSvxChJ8GSM+2ODi3he0B06RePCCg0unoPQCLkInkDVciygje/scJ2Q8GmGX8+WnHIVwd/g7TLDFmcU9WNigrwzjw1XKw2M+R03t7dFfgC8un2Fy70v6C7BzeYCj8EiK/Qf7rCYu0SBGPvLU56I1RlyS+t3iA36ZPc8r955xfz5NPZHUuYfYejWIESXJ6LAwC/sOZMwDeGl5h3T+ZxSGz8Aw9JchG3lK0IFY2GBo5YjOXENyBHb26VOp/kH6FMmWtF/YEqDLAsaiYy3GNg+JtxoshgvMs8Qvs+fJdQtM7D0hF3kCZXil9Yzn5/qZCVZVFv6C4tiYAMRkiCbakN8nenhENyEpxdmdHQ5Sp3il8Mz9aauX45wvPyUfecr62MuErTbtMGSdKQ3u2+f0o30YgK9yY2TTOxQ5y/TBIwIdM/p3oHmun7DbohXK2peWFOS31ObHrLJCWky31tgKJ0glqqT29hjhATyCsUeHjJ17QimfZrRboxWEjHerDOwBZZiZW6UTQH9R5jYXlp5wfF7O4dAp1//x7RsB9J7wEnsETLPGPa5qQt59rcxnecg0cywrZVKCHAK6VBgnx2NaOnE26RcIOGhhEfMsOVtNKJZZbvCxLxBtwjzDqtNbjU1gxzLJ4ru8zQ0+xsxIo7TY1hslUp4Iq8ywwKcOpIg0SKjMBsoJp67qbDZD5wO6XjWZZwmTG6aRhFG5CV2ybGOG6bb4sMW6BFyEmNF3myjmC2fyKWNXGIBom7B9xBjyfd5yZl1FgcWQtntKgZi1W/xzlDZNXXiY9xOITNNS+wyAqjFKlm0H8wx4/T639Zrx+3CPOd7kwxMAbOAgGEgS8C1uKnFVWC3rTJJnq0cxp0mBnKYJxvRaq6wzifkG7iIJswZ0nNxiNL1tTMp9UoYoA02PQWZR1FmKynyUReAgdZZ1MW2JnZOsu4RynSmS1J3BYT5gRp82hqXInoUevMqMsnzk3K6yzB1eJ6Aj2n8kjTlF/UQlL81V7rHEPGtMq3G8sCLtfmSVxWQJpEVljp70aDPaeoVxLADEOtGOLpTtObH9igHupoPB41SYZs0nICbFMyA3pKXP19H/dx3Mf2Zbiiq/5G8ywyqD+izYAHfSF21QwfsiZ1lhljQlRrUfiClL0xjLNvmYYt2ZtivMuvwQhLK9xDxibBwyxz1W1ZOtTlL9JooOsJnM1vqfUIFnS162YIYWIRll95VJe9qyvJMyY7J3E4R9aMmuBiYC3OImlhQ6qgBOqG0CPXCorcczY+SzCqpsMMl17rCN+KNJqIhIR9fIM8Ku96nG/pVAHykW2XGkKFOhRcgs93mX36VNSJqSs3AF4Ko6+HKyGCVs4C1ucFsnSG3v+0WaEerokGKOZUaouRz3ooZ7mKTTJO8mETVgrkvE/95S6WyWojOVt5jgKveoMO7epa+x6LLhN/gAC+vJUSBDWYHTGiCg8xrTdLWPE5MJqWQaG3eDKZeYiPfiNte5wx2uYynqswr8v8EHtJFkX2HF7RKnyRoXvYBgRZouESph0gsYJvVuIl6P95jTNNyoM9in2KBMmrtcQ7xE89SCUUpkkPTuEWdJ2ngpE15JPrYxb4t5xpU1YFL0DGV/tmPKeDQWfYymTPh4SI4C7/EWloaeosJ17rDENWVHPMb8Rs2XV0I7XuMt3ncmtQRsrbHEBeAX30QX9GuzfcxvEwkGGUlLFbyelTGjOxfBgs5qYyP86PVbPl8EKOWEdXoSYA0U/A7zwlypJUYYGat5gErm1RKtV0XC/lADWWo/kOCt+g+SKpeOUvuBPNPxfyDzp3EqTIxtcYfrFMnyVuI9GjlhLi9eWKBOknmWKL0qzJI4DdJzJZfMmUfq+FyVO1xnMrtBnUHpH/M5n6s2iNEci+tz1XDm8x//l/+cf8WPcbN5ppn8I5HhW7E6oMP4sKSlJ/N17jPL97nthVWzZyiQIxq0mU6vybu7IIB3Ol3iNt/nTT7AlDRrTJPKVpzpvcWEzCuDJrULIz5XAxyg7hIwywoNYmyMTclYkZWCRC0/6uC5pXXb+HLnB9dpEif1alXfrBrNV2MsMc+fLPzf1bM3xUR+y+fLbUImfrDJMld97mvnYjYLd7gujNhsgWXmtNAqvsz2+XUmsZAuG0+rQYqzbwvjvEqKOxeuk6JKeSxNeqzsheb663J/2wvSd7vVxY+EjJCdFz/rD3lD0kQT+wT5Dvn8Fi1Ctl43H9cJMumSSwQbxMn8WMa4LhH4O7DGRbJj2+RyBcbnKs4gz2WFdVX4sVxPxYgD2W3Iwiz3aRNyh+syvs6XGWGXWmIUxqB7IWCJa87WzqRLpKjy3pwEpq2NTSvgIl6989xlIrvpY57N5UTCKSzlictbbuNTvJx1oIYQkpfrXiB8kw9YZIHcj+W6J9PrPGCGXUaovHqHB8zIvDr7FYIIf7u3szylpUFdoorqkRGmWCd1sMNS4rtkKfo4ssUEdZIyprdEtgh4oekNPiTodCGAQpj7mkpgLXGBfHeLVhDlKvfcly69t0Nh+AwlMrzGoigRgllutm7RCiVccUuVaPfGLnGXa0yy4YoHmR9MYgFZdZJMsImEVNYAUaeZUs8kovY3UR7tOgDezhdZ4hqEMMm6M8/kGZvkZvcWQafLvXDOw72M/FMnSTHIEuU57fAUZhF1cOEUQecFjcQAAV0S5RcQgY3EeSYPvqCQyJHtFmFYJJYdAr7KCcB2vviUr7JjpGhzurzP5+lXCIa7ZLolfjE3Kcq+H1eYam3QJULYbREGbZqD/dSDJC8t7hDMlfkqPUaUNt8r/4JfpC/AAowc7EGAnnOL7M4OrfCQ/m1gWJRXW8Mvc2H7CWOFQziE2vAIGwmxMLvSXWFz7IySkGQcKg6fJqTN4fAhacqQwtcSprRbSCxyZeeRJ8ePHR7yKPeyE4ZS+T36DyAcbnMwfIoEL2gP9BPbPyLf3eLp3LCrUO6NXWJ27wH9wGooGMQk60QPJfo6FjYcnxkLv6QVRl2dkqLKejDFdw8e0B2GwwtQTwxyh+u81XqPRhh3tWCJjHsf/43yZ/wyf541pnmTIn1VKIzlSOWqjAzt0692CYcJqCbGiNIiUX1BLRtwtXuPUiD9dO3CCD/kPR4yzUuHH8k9jJyimJDk5v7wBUGnS2LvBZSPmLm8ClUwtYcVnWM0GPriiINzp0hRJbOzR2lsmDObe3AJvkr3wNp6kBSJcJCkko0ykhUP7urwMLwueMP5c09phfI8RxTD+U9t3wigF+eQKP2sMuPURRDpo3UKNlmwRaR5bRk7zhZittiJqkzXJJomyQxV3LJPkmnWsHTYaR1s/9/ZTi1lgpjs0/zczPdIzr/hUkFLOLzDdUCQfZHUSIV/myyj1JyBYOwAA0xMDvo27+r5dKgyzhVWqCsLrMK4pjbGvna+NmkxgEfaR2Q/u7oQiNHAjNRLpNV8sqbwZI9pl1YZl03ULCjEJnNN4lxkDTGBF2naWXrG6z6JZAVLGLRrtYEG+BoAa4wvO4ZItwTRtoSkJFU3+L/N978m9bN9ikeT+HbdY84nnPeZddZkmQyDypoxySegcuqzNBRgKyEpmwVyLLCoLM51B2aNrTKCRMeb6X+VFBEk1XLzBGPGaMMmuxLmizjK1RnUfaSd4WPeXD/kPcpkMC8vAUqiNIk7oG2JpDVGuM4ndIk4cGgAbpGzPGSauJrf2/fEVHT6a2wvS1E1RldUWanWsRp7xYIuRCI/4kxLadOKTxwqpBxcOem/ZrJp208MMYw3Py4bVPbo+ya6n1+7zUAUk8nbIiOgQ5QWk2zIwlKfjwKv+fNrjF2Tp9u7Yf2PAW0ZSg6m2L0sq5Sj5/cx6gvEe1wlSZ23eZcHzKhk9wMHcOZY5ixFHjLtIJO9V8bWm2TDJZfGzBun6qCcMFPFz21dwSDzgCtwzgsQ+yT5kDfd6sCCCiy0oUDOgS8BlUe1d5O+e5A6+0jyqLAZoyywyCIL3v/UGMECckyqvsUE11jS/rXNJBtUtS8GfAEtIHXVF7CWmHuH18moXNdAUGPBGjvOKtjmn2HAXpoSEWUPmiTfZNQg/ehDpr1AklFJ6BrTDnRVSDFKjTUuelIySEEkRYUVrvhCt0uEd7jJAouAjKt3uM4f8udUGPcx+Tp3aGjVfo2LnrhsbWss5KoCh8bE3CarDN3i1+5RlXE+ZcEn/zbOjlN1X0MQ8NmYvCmqzLDKQ6b5x/wjplh3drUxLk1aY7KiVWYwbxJLu7VF5Ul/ySopZ8iKN6gAjiFt7nCd11j0guAmE2TZZos8s9x3CfwU4oNSUXazFW4stdlCWcy821KFBQgV75xl5ojRYI5lqjoHeKreL9/m7S7zTLADyBzhPd5ygNeSsQEfryJaeLXAEht7TGFh8wormtp+e8zTKutMYV6ltvC04jHIe77MDbIUGUSk/JZm3SLq4JjNRwz4XWTBwWN7T03WHSIepiUybDLBFnkylJhknfd5y+X7Nu94gw8AKWL8Y/6RAupRt675C37iBcBl5pjUOYtJ3LNs8695my4RLFDHim3rTLHEvI8dy8ypT/QmHQI+5gZ1kmoJ8aaPTVY0T1FhlBrv8ZYvpsz7833ewuwE2kRZ4prL9NeYZop1NpngHlf9u7OseF9lwWqSpD3HNA95n7fo6ttsxS6775a8LgE1SZexW9+YosqapsN39drybGEhXiEtLLjNiihpyphtyknrg3nu0iJ031kLMrIAsg2mHEw0e4lFFmgQ5zUWWdYwHPPIDehiqdYGjJXIsMQ1tslqQUjWL2ZJ1CRGkbP8C/4Y8dNdYYMpJtjiA950T9cyGfF8YoYNJpnQ4vemgqhmEQCyBrJE+yJnCehQIsNtbnBWZZNtouwiaesbTNIgxjbiX3WNuw7OmurKriNDmQop9kl64SlJnfd4C2Odt4hqUWVC3705GsS5y7x6WdW5zQ1+EwC9Ja4xwgvEn32cEdapKcEg1y3QHuh3pcDp4j6NbAyzQSqTIRVKcVZkul1/t8wHzHzhTFGQo8B6ICSDdaaIBTKHWhm+RI6Ck2VaiJ990HlBNRTyh3jN5UlR4Q0+9P4wQ4nUwQ7dhMwdJWU+YKq7zlaQxzzH7d0J6HKLm/7OBHS4oiaN3cgp6LxwVd0KV/znJHX301sNZsgFBVdWdYnIevlgn8nEuvZjH9E8NcAuY5zeXIfHwkQ1z+XPc68wkpN15sAeJBN1hqpHUIQg3VFlR4WXyjt8nn2FGA1eKu/zND3M5N6XFIdPO3A6zRorzHLl4BGJsrDypofXCDpdYkGDo1chUX1BIyvswj94/G+YGpYxoz3QT/WC+P6fpUgrhK3EK6RerTK+s8/oziHNsQYEwhJup0+R6ZaY2H9C/wE8z/QT0va19+zeAyJdhO31HFYTORr5imoZ64x2a6SCCtm9Z/QdwHEKWllp+wuFJ3yZO02UloCI5SeMtGo0wji1dJSXlncgAsXLov4zjzebZ9LBFRwhLarDbc6URdqbpM7E3hO+zJ5mvFXlWrjk8z6Q60juHWmbtJgPlkjsvSBxsM9hGlKhzL8i3S4znVUIe2zPOkkY3nE8pD48yPnNp1IsS0i/1yTO80w/UdoMVY/YTEvfb8FxacocJRB2HVUhCYQ50tkS/4of80b6A17hGWPlQ0hBtlukFoyQ7NZJHe4wsANPLwyT2dmjFgZ0AhlHktk6rTBKslunEVjxPs5sa4VuKASxSLdL5vAZ7YF+1oMpprrrcCCM+lSnytHR8a/Un3wjgN4vmSGDUDgleTau7JKoy7uk/t9mQ6V91kmd9G2zCbQk4EZdlmhVeNtsMWN0U2MambTRqvNJqn4sY6kYyNAmqh5yHTW9rjorEGRRbqEIZqxusi6pLnzqCwVjihn7xWSL41T5mBuATF6LZJlSr4Al5p2FMqqsDgsGmeOeA0LWpua7dJYiGco6oQodFLVFinnmjavxZwsJFRlVaNQYBzLoS4XZ2BllnVzLxFaAH6skieQp6eCCgRQy+Es1O6+SMpPULvCpd+Im2zOQ4w6vs8wcs6z8j6SiZtReZ5BpHrLFBGlKvMX7vlgGmQy31LtIFpPTLJ1gYEjoRpxZ7ivrMYoZsdvkd5k5BZNlIm2LDQM3O8TIso0k6Qj9OkvRWXY2ybHrNhbkRdaI0vKJqQHWdaQjn+OeSzMr+l1jRlq6coGMM6lsIAScDWTXb4wrOycD6paY5zp3ZMDX59pYpuajUdfzs0VtShmSlvJrQFOMBtNUXeZs76xV7I312CHwtGBL2LzBx0ToclbfvW/7tsMY5xSgMp/NDgFm/C/gyzUFaCU9Ns8Wf84fUiLD3+e/Y0Qn6+NUqKoUXCr7MeZZosI4a1z8+sDOCkXlcU2xTuVEoqaFq9iibZyKAxi/z0+doZSiygaTvMYi4yeYnHYM6LFwF1lQtoaYN49QY4p1fQZkwmjJ0LYguMkt6ogprTGC60T5gDfUH2WVDaZ8DDE2WkjPp87Y3Wtc1BCCed7mXSRko+V9VS9Mo8yaApUiUekFOxgr+jqfuLzUmC4LLNIh0DTTwMFT889MUleZZocYDZWGSgHH7sXJdqswzhTrLLCIheDkKKjEP8JZvXtLXGOGBw78JxEDa/OaE4CvzDJzXGPJ92/PiS1cv89tL6ClqHCTW1SUHSDV9aDHRCFJmQyj1DzNzdid1n+fBBUsAVi8+JrUGUQYly0vDBgz8lMWqFLlOnd4l7dJ6jsRo0lUJ4YBXSbZ4Me8QwnxFT2Z7GttcJd5Koxzj6uY7Kemo5sVWUbYJUeBbbLOYDWrhk9Z4Pf5KWUyXOcO60zxPm9xk1vu9znFOnldQBs7K02J93kL4Gv3aYQa8ywhfqUjjCt7T5QDu17kMVB8VQHjCF3GFOj6Nm82h7JUOWsbkaBvcofrjFNlhSueOmg+iaZKEFC5wSB13uV3/0dFYSsgbTLh/sah9htWPBR1wD5bTPj7H6PJhprUWzFVAqbaLpvOUqROko+5QUgLC2uLar9rxYcaEl5kYGNAhxbidSvzI2ELF7XQ9T5vMcGWz4mMvS1tFlWgRZLEZc4wSpaig3NlBZgmlMEqRb1dCpzjpGqlRFqDlKRobmnlcZruifUW77HLCBtMYengG4g8/y/4CTe4TYsoEbrupVWjyyZ5xI9ZwPQNJrnKPRb4lHd5mzybDmqLImGcNGViNLXfT36t6F3S4saUXrP19eZBWWGcDSZ5gw9YYp4tJrjBbaqkeMAMJTLk2WKVGZ/nGMAW0OEhF52NZIx466sERIlpv9Zhgi01zk97wcy+U2GcCuOsMMt17vic0YpfK8z6eiKgyzYS7hZVoL9LxMkAlhBujPMuEXYViE5Sd9+wd3mbCZ3b2zy8hZjKX1MlkBQfxHJoXYtk41S+ZlFj84NRalzjLsvMMcW6F+NNVgl48cwYz9YvW4q3gSpN4nygSZ8ZSj7n7hKhpczzuFqCGNvSiuITWnAc9jSOb/c2xz26jBGnSe7gCbXEsAeMrQXTTLJOjAYfc4Mg2+H85lOaeVFZpagSdluMBLuYdYsV2cyfNUmdT1ngNSTFdoMpSqS5rmmzZTJMqlWJeZmb3c4a07QSIWXSDCLBjCPU3BbE7EOitNlKvOJFBJvjVIIUZdK8xqICN+MMUuc238dsRmy8F/A+TxB22bqQ9GKK2FoI8AKyxltj2gspM6wSttqUwjR1BolHGj7f+imnmSp+yfDousjDl2Bo74joD5/QSAww9u6hSPN/B9iB3PATkZZ/AmOdQx7OB5z/5Cm04NXsl+Lx2YVUuEf/TyHzR88YeADfKT+CArzER3JTz0qKdHCpS2LpBYm9Q5HM5+B0a58/mP03UITE8xcaVPOCoeIOLyV23Gf11S/E2uHoR7LLlz7ZgWXon4P+zgvYe+HhUkPVI4Y+2uGlH+yIn6VaI/Rr2M93Dx+I3N3Sph/D0N4zsYEYgj5gIAWEL+AdeOUnz3jl+TO4BcxC4sELEs/35Vw1Tf6V4jOxMkD+fWZzz8OpfuvdLyAFXy2MceadPRiE8+mncm5VyP7RM/qfw/lQfvf8e0WGHgiQ+vRHw5z5yz06Pwp46dGO+KXmYKAMAxf23c7gOAt8BucLTzmffSrn8gBeGXzWS5kvwm+9/oXI+gcPOZ7boa8ILB/B6/Cddx6JdURR2+zCU/gIfuvtL+AdOHN+z1O//4uD/17sKErw5fxpXnn/GUPVI7536RfyzARy/DOP9iANL72/A+cQa4lDSEQO4REMsUf0760ytnwIZUhc3uNMd0+8VfMwsHfEd3kgyNyhPAvR2jEvfkUx2zcC6F3n33OHm6SokGUb8w+LKWC3yQRXWWZdI5ADus4GMXPqkwslq1ZVSbHAoksBU1QdGIzT5A6vA5BnE/GOElmWVX1sUWEDq018bOK0wCLLzPlgZuhvlBbvaVS4MWMWWeCHvEeKuk/8DdCJ0uIcBZdnXecORuE1aa+Zylv0s1Uaz1HgPrNcVdTYqlxtxJPOGDdWrTZGlaWNLnPVKbNfZwIJTBehq1W0cUbYZZHXmGKDJa2OGSOrzqCz6QzgszYzxoal89lEDIRRNE7VJQ0ngUvxXut61dUW/yanEOZeW0GiFAEdbnGT11jUQUSuSQa8cw6khbR9IW5stChtrnKPDsHXfL1yFNjXxf3JaqstRm3Qskq7LQAMVDN6uQErXSKYdNz8qWyzQUdM5iV1co2LXGXZ2SNm0G8+XyFtpnnoC2EDImyy0yBGk7hXmQz4tMWPAZo1Rgn0GbF7t8AiAR2XOZoHWJI6H/N9ZrnvjATz+zOAN0eBJZXB7OtkUWLZs8xxjztcZ4JNxLcx6uCe+aCJrOyhAhMCRJZ+Q1JuB9l3hq0xi0AYQ5ZGm1ZJu4H2ZkUwx7KzOGwybn3bNGtSHaXqrMeHTHOTW7zD76k8cdwLGnUGsXTuGE3e4j1MpmpbmbSzOC/qMzvPXaK0WGHWg3yMCZFl2/uMqIJn06y5nLtFqOcgrK4mcQezQQolZdK8wYeaDp2lgiRjS7LyKNdYooakxJoxdIvQ5ck22WwSY5INLwRY0cd8zwyQA+mrRS4gjGtjUNn7a4v8EmkmWXcfTwmmyOm7JMWbCTa1KNDRoo6wWwAWtYBj7LAsRU0sE7OjFWZ5Tftd+7c8F23ybHkVvEmMD3jD95OmxCYTdIm4P6G42cm9Xeaq9ictNtQw2jwQX1OWnj1n5s1nxr4hbR4qsG/s+BJprnEX8/yz79t4GqfJRda8CASwygwZys6gNOPiSTacpWLgF0j/bEnC1s7Wh6cpY7IhWzBIKvuKjy92r60o2CbKlPrgms2HFE96npEXWWOFKwDuYWrtH6PhwJIVom7wsbNMLCgJpBL7Fu9TJcUS83p+LTfANkB9kdfIUPY5jjyH4+QocEXnEd/m7SWeYInbxtY0gEsKoBHuMecgsb0PBpLf4TqzrHCVZToEDhhYYQ3ArAHMixiE4WWp1ObNfJdrnFUFBYgM0uwnDLSukmKFWX7Ie77oNS9is0EAkXqOUNO5gRRuxVZEWL7iLStjqoT7VJzZnuMxHypYbAnTVcbd99IAyYiCcgssssmEF9yMuTzNGi1CLwgb0ypKmyJntT3q3l+tM+myS7PWMN/TszrPBLzg2CXi806bx1nQkcgEL7HFBGIFseFFJ/N/Nt9g83RtE2WEXVfCSGFD/LbGFQDbVBaXFezN79j6nkk2FBStYGmVFVKYxU5U2XP3tFBrjO+o9h3GXLI2N2DY+kKzTrFN7Bxk3DMriiR1VwS1iXKPq84EtxAkU3IYCztGk7vM0yJkniUHyAZ1DiDg4r6THMyn28Bhe+7EYr+mRZkpnbtOuf93QJfHOh4KyBzz/vAGt7VknOaihiCZGuPk/HOCLX82bc0EqIXMtLOgJVxJ5nZmJWLMnaQW8oytuMGkSOC1DwaxHjJA6lDB72/7VuIsL1FnjYtUEylnn8qaMSC5d8jD4fPKqByF8Kmz5AvkSAZ1sq0iG+EUFWWymee3KYhsXmme4yDz+gxiKTLbWqEQispjgk0ylLjNDa5zh4+5wQKfYio2K/znKPCAGTI7ezweO+39R+7gCe2EsAt3gxH1kh/HFFkrzBLQYZ4lbnPDQWQDv63odnHvC2rDg5hlBsjc1Na1GUosMU9Al1f3vqSQPifPbLjv70+MPtiCvjoCmNwFIjBQhCB9KKFEjxEfyR0YMG/ITeAyLOz8At6nl4A9hoBqHeAzGPghEobzCQIK6feoAi0ozaU5/0CBrB39TBEB1wq9/dHV30X0/1U8/bk/gfi7foaE3ljo06b+/BM9/iICOFV1f5sIyGSBTZa+jh67o78b0HPeRMC6R7qvQP+f0jbaQQCmASTYpqXfsYCmJXphQ8vyc3ShLed9GQdUqQooyV8iCdtlAST5uZzrmYM9WIKxscPedRzSAyrVj7TvZIhOXu/vnrbpol5LUY/9sZxn396JfaWBnyE+ru/rvtPallkk9MmS0hXw2/nRAGOHh4x2a/J39db1KW9E75EFXpX1d4HuoyDHH7t0KOBoWb/X0ftdOtGuF+ilr3+l9/RX2E79ah/7n7Y91hjrCF2ayiiK0WSUnil1gzh5thwkMaNxk0KBLPaEbdUkyT7XWGJdmQQ2GOyTVOaVMJJsAVBRA/Kb3HIph03WbeIn1eIGdQZ9ESgeamIm/0/4BzSIayezKd4regUmWZVKZ8sH1hJpVriirLRpYrr4aSvD8AYfA7J4CFU+ATI4xhSumeeusyW6irmKb1xDZadXidEkR8EX6J+yQECXOe55Nfgkk26FWfcakAAQ+cmqJOatt8Ciy51SVIgqXVp8naJMqXTKBhXzCwLUY26bFr0gDgGiNr2SI2BS2YG+KC0PKplgy0Mk1jSA4zp3dBI17ccxgPgkADLDqkrYxL/FgCwDPQ38Dehyj6ssskCVlD8XwsY86yyYTfKY/55JHVsKW9hCuIXIaZNatbRn4+QzPsmGpk9J5f8qy37eHR10xbNOaMcpqpi8sUXorL4uEf+/gScgTE+bENUZxPyxAH+P7NzM50yAaQH5GgqzZxAfsyk2XJZiEmLzTDRWVUzBmZMTXUnnEhBkjWmf6Mo7Il6JJdKscokyGZrKQvhN2M6wrayuiLNzjLEsScLrzHKfBjGqpFhmzkEEY1VY3zVOhRIZZ0cZ22CSdWX7ia9Sni2XEpk03pgAksw6iEmjjSGVpqQTs44GMYw6cPwpCwoqVv0ZNRmETeYktVTk7fYMm8xnmjW3RLjNDcx3sUyGD3iTRV5zKds8d7nEKiWdwBXIsUXeAVB79g1cskWShRjMsuIFF2NkmEdUlwjrKkkytk0FsS6I0HXJcK+g1PSwgn0FiYwJJN8f9DYyb1WQgJlNZUTbdp07pKiwwZR73olsuclZREo/ywp3uO7PgPSv+87aS1LXZG4BP2ShNsosK7zNu1gCsNkcdJSNZky9NGVf/Fm7gMgNJIU760UbkyabpK5JTPvQjk++jT0jz64ANFbsseLIKJIqa0UGA1q7BM5uS6lkz1jGNpG3CXyBHA+ZRlLdQmfqGON5gi1nBtvzboW/XWUelEi71K5L4GOLLTqNwWPyYpODZCnSUqBxnyQPmGGZqxjTb0N9UuVdzfizPUJN38MS4qu46SCtFUmM0SdM1m9kOvZrtX3Oq+J3yKi/7/asGlPHAGMDMawvKSvjapwq95jjrgKntuDbYEoTu8VaAMRfzBhMebb4Y/65z4tKKt0GARWtcDLJuvevOQr8IX9OhK4W7tJsk3VweJJ194I0r2gpajxkXVPLV5ilzqADIbvKMslRYFoLJCJ1j7POFFuITG2BRff6NBajFSd7QWtRBWUktTyvMlorpk2ywXXuEKHLHa4jUnjxD7Z2NkZPgxh5trzAbeE+9lnzcEtSP/HsT7JN1gvjVsQfoeYytDYhV7nHNGuY5FzezyiLLLClRWCbyxr41NL5qc3PrHhk77iw1eTqhfWd1zZ9SJwGHQIeMu1Aoqh8Ztlkwj2VHzLNLhJ2ZOxbK9KYt12NEZcZWxHXgF5L/TyphMgrKGKJ6RNsMs0ak1p0kLZ6zCwrvqYQz2KZk8sx5f0wfzybb5q64iEXlbAwhVhuSHFBvJMzbJHH5LsRnVsLSB0hyT6vsehz95PPy5Qmh0+ywZqmjhsTVcaFUUqk6YWhdfzdDei4ZdLJYlCLUJVAUriRgmKDDSZdwXVOn7l3+LGuTX4zAL2Z1i8xdRDgcxJjeJuvnRXOfpG9wHhX2JzTLZn3xw9eMMEWlsZu6ggroIpViBBKWkqqMGVGkjrr4aS/L2UyTO596SDum3yoyp1Bsi05N1EuyJylODbm67cUFfen2w1GfD198hnJUXDiiBUILVgtRdXft9rwIPFWw9VKdQbpEBAzILNb9+LHl+nTXvDpEpCmxD5JCRJoIYDUP0bSmt8HWtC/iQApBrZZkncReAj8qUhWQT8DAk79twjgcg/+Xe63ZZ9L9FKeP0LAnI/g/KYmu+zosR/o/v8p8N/rfh/p9+18NhFQ6ZH+vKk/P0aAqgQC8ryPAEB27vv0wMii7rOg52IJ5XpefAT8DwgotUIv8Ro9z5AeIPZzBHh6oJ97gIBnmwgIVgT+7MR5/jP9/YAk5zqwdaDXZ+f00Ylj7Ohnino+JtwK6aWP75zYz6b+/BE9gA69JmvH/RP7XkKAt45+7+fAO/p3O4eytp+1dQcY0u8vyv/HPjvkKA1D7ysA+QgBUQ91H+8iQOVn+u+T9+1AP7ejbfhcP2v3o6i/Wz7x3c/0bxo28qts38gM0qoDu4xwj6tUSSlDr6naaqkY1hihQooJNmkQI6bypo4uXgGfwAR03ETaQBNb5MpEUCYnDeJ0iTDPEnMsY8kvAR1qjPhkzipmUpFru6zDJLKA09UBrrBCjoJ7pdhCBtDvjnuFVhYoFa9QmbzAqtKzui+A11hEPNGaX1sAVxjXid9FAiSV9w7Xvapp4OdjctxTVl6SujPw3uJ9r7Y9VKaj3ZvH5DzgQBZU2z65FuhtwoEmqfKGes+ymKzYJrdTbGDeM1bFy7OJmZ5mKLlnnTHSrI1scmwSkBRiOh8qu25CQQmbHNqkyUBBW9BZxdvSkXMUmGEViUjv3SeTlJhPXpS2LtwEZDED+TZR5lnyarD5IBp48ZBplrjGOFXM28km3VPqKzbBljP0hGG3y2tabbfB7f/JHyrbQ9hG5mUniZey6I3T1Ip6wyeMWYq8z1v+LqxwBZEAhv4MFznrbW3gdoGc/92AXmPpTbLOoD5T5kshISRNBzDf4j2MWRinwQZTPgHPK4V/gi3muMeUSgVmWPVJnjFRDET5M/7om+h+fu02Y+w85KJPWAQEifuCp0uEcR3JsgpyTLLBNA9dIioAr6QMl8n4ZLnGqE7QYs4aMCaXTa4t7RTAZJImza6q7HKUGtcRY2pjvJkNgAF263rPm1roMM+3urqkCONBWKQpZaEY+8wAbAOga4j/5h/y51QZV1+nLWXtibecyfA2mGSNaTaY4g7XWeQ1QBajkhbd9LYdYRcL+WkhPh//L/L+7zfuO83vBV9SlapYRZb4o+iiWW7KpEmRFmPqUBFjzlGP3PK0MNr1bDemg1nM7uQk2AABzsEeYO/OXuRm/4DFXuwCZ89mESBBspjdweacntN9YsCz7shjTSuhQ404YocyadKkxe6iq8QiiyZZZJVY0l48z/upUi4yvdhx0uMuwLAtkVXf+v74fJ7n/bx/CGgx9oGBOOtMIL+/I28+tPeIVatnskZfsHAFEkq+qwAYMBb1hHstrTAdvpspb4rEiClTCOBqi9GQIvZR4z3ej+HOBhMMOZtW94YYuoADhOMhKfsx3wupmDWXW+6dasyJpstY8uyywHw0Wbo3tM4IJNN6pAAghSjZNc9FIyjD9IKveWtMoeRiDUW0fgvILzPET7jNOBshq+mjhvyv+qix7wMbrXspH0apWZBnlO6zHg6dod2IYaKYBY89jGbVm+GmP096pgDucosZHrHvYGeKBje4HwBdgzRvs8AsD1nysA7dU1lOAgSt0c86E8gCQeC9gGTd/7JCWGSOvCc2f5Nfr/NF7B9i8xrDt8EC83HfpWmEQkLMEqUkA+z49dbe3k+NgrP1Epyx739XYSjS3wXmKmBqhO247lnqcR/W6OfIgUatsZOshnpENi0lhpEfsiTnljBtnsaySZlwRmCdLGs+mJQXlNWrCdaxprpCIcA/AeINZ2SLbWd+gDZsUc0sYH/Xm3hJmMWKyfjAXGC/DUksPOQD7tAiwQP3DUz5M57xcZ/Sw/X7QMiDz0hYEILXhjX6fXhtgJn82xaY5y7v+n6XYgkzs5dqQtdSe4WGowKCJEk1tnnGa83HlChyj5tR16wyxQrTLDLHie+vq0zSIBXHbkyylt8rLQckzuJca4hkypgUH3AnlAspmjF8z2Me2MvMcJd30SB5lSmeMMIK03EP9lEL8oGtGZe8zqq476CxrUdDCml2F1uMxeB1x4cXQHjpyXd5hekYDGvPWmGaFaZ9/z6jTibCzAapMuHsRtWsYqXm2Y1j32aEHsxfdYsxKhQ44mVvWbNh2GeNKc58P0hwxiwPA9hTL2Rep5bGOs6Ge4nn+Jh3YuhRZoiDXxP1Rur0RQwmU96H9rEf+8hQw6yBzkjEsPZRYsbWzNPn5Dhkc+BV6mQC1LvKMlKKjbRMYZbGwh51bVTzi3hhQ1G7Ty9smqWO2LGS5G+l7Roa68764nUPkamSZ80Hpm9ufwEQfaVCGcsUGPTBYoM008ePrRZt2H6wymSsx/IBNNn4OlKCjfCEEbZZTUwhSbrUG4N+foQhvMqXBuzs02ZEfYqBOw3awMmR/5kAvKT9/YWf0WbxORhUXiJApVG27D385+p/Ci8EDh3Di177OR7TBqQ24atF+GrTPvOZQDIPpgiQbs8/t+rHVoEXT/zPEvDisR/7KW3mmlLPxfIb8Z8v+WcIgNO5cCYhZ/47TzBQqUIbWNIx6PcEkh3731Vog26Vjs9b8u++hDHdBOZV29/v08LrBqh50jYtjO1WwQDIzzq+/2e0Qb9T2uDbn9Bmxm36fz/xzxLY+hkvMyDFplT6+nbHMR/QBmCTGKhY9j/vhQv62Sf+Z8f+c7ruYhI+6fgcsTI/9etw0PHz+Od91nEddK4/py0H/k8J6A2xg5IN1Zyq+O9knmnD2GAi/h+M1q6NvZ3AaR5clurXCBmomgMxDVaYZpsR7vIuW4xSosiJg3wxkWACBQt0vtaZiI16k7HwmtJCm+OQD/ku+/SxwDxglHej61tB0e+llbwvthkJXyW9NN0rM8SRN8dV8gxRYZ1xJDdte5tkYvOXR4FYBdYE7iMJk15p2n6CsywF2CUJpE1pbVPXBGUES89aZC6MzSVlOsRSCOtk2cQSgEV9LlEMidl9bkQTpklsp6xvlcnYDATwzPIwZLbrjPOQWZ+aluhjn7Ibvo6yxbp79EnaJtmy+X+VnD3UisJF95QmOECw2IwBmnYg0won/cw2I8jzSBITSbwapJlijTrZYGoI6JDvi5rizulylcGYOKVpcJN7rDKJ0pfF9tynjzRNFpinQgExf0yWUaDsEsVJVuljP+6tOll2yUfqKJhke8xhWhXlYofpc3U9DHDOR3Eu1kmWOifO5FtgPhqLaVYCgO3xRl2/u+6TYzEaxU7YYgzJdi+5Kfmvy0um2j3ObOhMOBYDQ/f5MCVWmWSJWZ+KjgebV6CAyW1NxiVQWTJyAU7yItWzWKDsQFYjmim9HnKNXfIRYqSGSkCj2NGSndXJhom8PRftqXqeKkV2WOQ6Cu+pMBTrpkKGJMOfwwxy7XtV4hk9Ikc/NSZZjSK130Fn+enJykH3tIJxKi4nUqEqsF52CmL+qGnJOoAgZlvBWRaH5ALslqmznedKsH7FfBbzsZOpIiaW2DopGuE72HBGxhKzAZwvM0ORHa7x0KVuiWA318lGYwwE2KVQiDt8ABCNlgYQapa3GKXKIGtMMcpWWAeokNbaKkNtADGndnwdbJGIafgjl0SKDQxtloFY3ErOlvccEGvKDe4H6CzQBYxZJXmtztkC8+E/tUveWZkP41iUSGwN6FgMn7TGXWGFWZa4xlI0/of0BHPgkFyYcw86ePQD/piZ45/FPS2Q/JAcsyzFM63rC7DCFW+Q95Hx+zoT8ewscj0Y55IKWthJ5v+/BeavwauPAyRZBsLT8MjrQzE69h2gkhetgcapGEQALwFUCoBSyrXCJMRskWeZscMzLw0GxZxq0Q5zkXpAgNSRN7ZH/hzJqF2suhp9PGSWGn0scS0AEQX9aNhhFis78Xd97JNxIL9Ahes84B3uxeD5yJ/fPNUYmmp4YIxtGxbMuo2H1tMJ1hmkHdIm5pWGl1r3l5gNqec0K25/0l7Hh7B0y1VXbEg+9xG3MKVBP1JvTPMYyUr1PGotuM4ieXYj+XyYUgwctAaKeV6jPwDDPvbDDiFFgyIlpnkc9YRIAar/dE/0UWOWJa7zAAXwSFFTZCfAvTxVClhiu+S3ClnTNUj6P8vM8BG3SDtjWb6cstFJOceuRcIHPSahlxfdpgejXOcBSltP02CISuzVD5ijD2M0a4++6+daDCq956gPXAWGah3L+V4mCwEN33IcMePrmwG+WwEc6Tk0KbUxRG/zYTBVhylRJ0OP38OrTAYz633eC7CxwpD3MIOkacbeIuKFFCFggLiOJcEZJl1eI8chr/+a1IaHvWkapFnkOmkaXC79nCWuRZhJKW1s4DkexHOpIeGFr/BBVn8QWhqkXSlVYrBRZT/RF/L3lPfVNfpZZTL2KyCYwFXyfDnbG2Fo6gE00FrxoZgk1G3Px0RYGjy7aGvzqg+wreczq5nXKnvxjJa6XzV0IF30+73JFZd1q5cVFqBnqupWUQXKIZk3xndfDHTtd/pJPveeu4ABQN2YPLOKMdwqGIC0gwEmFQxgyvvPiinWhckzR2DoOxig1AuX/9ufG+DyJlCE7HfgXAEDqIBzf+a/P4CBPr32cxffg4tzwGW48Jb9GQB/5seQbn8Gxxjg0w3niv7/fwrnrmAeeJsYINXAPO8eY6yxbozp5555ASyKiZekDXAl7T0DYBKAJ6bev/8dejHAKY0BYpfs3ATopJ/73H9PbEFBIAngIrz5J1/Y5y5iLDYx9JIY6++J/3fe3yfhn9nt30XnRyBoEQPG5BXY6z9f8GMTQ7LjGsU50j8C4xp+Tjb98w9oMwIrdu1CXlzyczaA3QtlDJwcoH1tt/34C7RZgbrHEth96aBh3K8z/ufJjnP3l7y+FkDvgN6YAtS9uVJqq3zS1Ghq0zsh40yjZEiqjErfBliynDjjLekzSdvsXw7QMM8MS24qRPFXoUCWekwILaVvLCaYVfIxCQDC7+QRM5jENxULkWRsxvrrp0naNzw1koUomtSkz/GAUTYxHzpj36UcvLHmfSpYA/LTyrPLEGV6OKTgTS5YUtyP+D5Z6mwxyokXQ+1o5wL73rzWHSyUl4kMpVUs6PzIg2+GZd7lbgCJYpGYJ0glijAAyT9FlVbjDDZBB2MajrLFMlcxxl7bd0iNzhhbISNTEpN5rRSpMhgMonX3tTMQcZgmZrC7yiRAAHwjbDPDMhVn5cjI/j7fjuYRbDO0lMo0IzxhiHI0cmKIqIDWsepzxADSS6CMfed83PvjrAdD5tDBCXkaAszzCZ1mtkoIW2CeGn1xf4txYIDYYExU+6jFOWtiyVRghe41HgZjS+a68qLqTJge9+J/y2XGMmted6BdbLEchyFJkW+fZPHy6xGgssxMACsCrjQdVHHx6yKr6OMgmjY1JUVK7FCMdUOG3JIQ9vtQYNJZYv+AfxzJfjKEN7l4MmQ/YgCUKPo8fctnp7uxlgiA3vcCaIMJFrke8tyms0XXGY97FF6OaLeBgv2dEkcrDLnwq+JeoZboKhZG0psNA97S/j5HWJKjrYNlCixyPdg7KRqckWCStRgezPEgmItqXgE3F7dCVsm5JnXLxX27ylQ0FpLXjrLpLOOdWN/FslNTYsEgE8iLECBFgzy71Oh38L8WzANNu635XImiU2CW2JXma7WOWLQlhpE8XUyFLCfRyMv/SMCYSaHGOtgzR0hWL0YPEDI0NVbykBJAKH/HNA2qzuQ00KEn2OaLXHfPU3vep1ij4FI3MeqsITDm4Hf5EKWRq1GwREjzSC270bbte7aWZ3xfklRI92KOI45oB6eoGZcUO8dRNKMTbPAuH3GD+5Egq8ZEqaJiCmqfAXwPUAiBDQrN+W6cre7XWXP5WYJWhGEYkDQZ0mj5rspzaJrH5DgM5rTsH4aoBMvrBJMDXuMh53/Zqu2v8avusm0x/nVeTP2wHtdGdYL2arEvKhRYYRqAVaaCeSywSiCC7UmjwbwTy7Ut894J4GObS4jRdI2HUUuuMcWa1xYPuUaJ4QjsqpMN5cE0K2TdKkVNrxiFCtwSc0Tgu9VlgyxxjWVmELO581WjLzzYBtl1YL4nmuQmqfDNOnQoW+v0Xd5lk9EYKgsoz/hQULXvrFuAtEhSZiju8zy7HkSW40NPnbUdZRSFfPVR413uYn6HVf+ZNrB2i7uYxcmsJ1r3B6iW44h9+sILUM+lBbztxiBYihYbSPRziHnJ2l6V6pAktwMXtFcsMB/9hljJJhUdjoFYiWEueb8gsEkehIfkKFDmbfdeLVLiFh8hKW6OQxqkw8fTfBB73FvxjLQPNOQLfUhP9C3bjHCPm0EgUCCaGL2SRFYocI2lqKe1hqZoMsguWeoBtq0z7qw9G4zJekheg6r3NAwSCLjlEuQG5gX9AXcAgnmc9HU1y0nIqyvebyhE0Dhgptq5xlLsM3YvGSljnXFOyDLBerD7zjAfaAFWRmSos8OrX9cS9Cv12nVGrhFVmnw1dCGGZ2Cg/aslCwgpMxTqnS1GeTrSwwMHAlV7bzEaQSONdCr2HtUOAnSznARbOMchQ40KVfKcYYGSt7jLmDP0Fbi4S55hSlFXZbGU9pHGNreO/xR5VN7vfTt6ElNPVZGVwi8KA6G+kIxdjGbtv1a37sZzJosNqQFOfO3NNupRj15hJXpcDZ5TjecGhpxgIM8s8F0MbJGMM4Ex9E4x0OUIA2KOaXuxVTEZ7pz/U8FAl38DPp9os98uE+EQ4D83SRtEGvHjmKMtBb2EATh7/udXaLPDrtAG+cYwcOlT/3n8e3T7z4nJ9RnwBgYC/SYvg1SXaANdAqUkDX3ixykG3iV/nzwGLuX9+L/jf9/tfz9H229OoGDCP0+gG35OCv6zl/znq/4dBBCe0Qb2PvXfF3tPnnRitM34n4lleBkDEQWMJf2zR/y9JXW9QtuT7rEfl67fmb+/GHwHwDxt8E73zO/wMiiq1yXsPhrx76n3x89fy98HPxeb/mdJ/3MP4aDXj/M3gVdoX++/5PW1AHrf4hesMM1N7jHCE3KYKXaFQgBMCV4OdchT5V3uIkNxsSD0IJcYRn4TlpbVjIVCqYoyVrZNxsqxPLvhrWQNdTMa0yHKMd1UoyBm2zAlJpwSLr8gMJARbKKhpNQErTDPzXgBKSaJNkyFaWgqJz9BpayKjWZTZGOV2OJtTVOVPCfOllJ61CE5l6WWI5lXEk8LpTjxCXA9mHT9mBRPRudgDeY1lthg3Fk8bZp3lbw32yZHFaPIfEXGY6IudssguwxRYZ8+PuJWXGsxQRKcRdLnDI+iOZOxc4IWY1hqq8DJWS+yH7uErUGKd7gX7EEBjGrsSgzz0CfPVfIkMd88yWdlDqxiO+vsIU2Ja/SH8fWgg5XmI2WJZwKDdY8DAUAI6DA5Tj4mvyZBSwWoIFacGByjbJHBEpqGnWmYpd4R0jERoLJAiiqDHPmWLE8gARyavgmISNKiyA4VCqw5O0VJUmIOqunRd7AJvAE/Yqp2gkoCE42BlwlpkMANMSaNydQM1pVkapf9+n3TXwPsBatDTYoYrhtMxHMnUETXMs9uJFEvMI+8PfuoOTPAYGOxbwHk7SZATsB91iX9Cc6YYRnz0zMgRqElYp+N8CTYZWka/Lf81wFm6/k3wGKFPNUICthilEWuRzMiVrECBlI0mPJGUKwOSSYqDLk/5+OQ4CsJrZNBqjVBQxalAhtoWY0GSet8iia75PkR3ws2mDFZB4ORAQbSQ9tXVQy+gn9f+W3KpF8NZh/75NlFvpN1MsGGGWHbZcLjMQiRvOyP+H3SNHnILJKbJDueXTEezBu2EqCBfCx1bgXamcfmMB9zM1jQ2mPFhpGErkyBaVZYd6muGCYCIcSilR1AlUGmeRxSbkmKbTpvQTgC+XX8CjeQkbW8QJeZYZ0JlrnKEtcAW7e1N9qQb5U7fBADEt2XAjUNuN2Ja6RGRQ2EDY6MeaIUR1lIyE9Ust22R+No+JjuOgxeJ8NPuM0H3GGdccoUWGAehReJDXCLjzghG+zkpg9FBNzr2LXXmaeX+dOuY2bmBuoWvt6F6FfgJZadhq9isWuYafeILCRSMdzVvWepqPWQ76uOkoRW17wfS63+Xf6YWR46Q8+8MeXFJv9c3UMCD3McRjruGYkAZJI+kBaDRDWjWLjaK29wnwRnrDDNgnsb6/4TEKXm1ZjM1hX2eHNtzOh61KwFr93kc1wnwxRryArEAHBTcZjixdjcLZKRVKta2lQXZiUjFpg9Mz0vDTSOyEUippKzzcpgK+rdQ8xntE6GBd6OtUj7v7yHdW7knap6QjWJAuQy1Fli1odVBfqoIc/Sft+LwKwbNp0RLBsesfk0CAUbyi8xG7+nxPQmadYZ55HbXawyRY1+Nlw6LAa7QNeKr/sasjd8j1hnHAXHCViUb/gyV/mQ25Qo8iHffWnYs8VYDBK0h8hn85oHjJUZYpXJSLhtBwHuUqbAOuMxhG+R9Lre9rRBdjnzfV3WNStMx7mc98TTTtuhBmblU6TEu9xFrOslZhFLtXM4op5JdgwaaN/gfqyrh5gX3AOuc0jbumGXfKyXOw7qa62vMsg6E/S4TPOb/jqkh9vH/4o0DbYZoZwYokCFEkXKFKjRx2kvsS7INqCPGque0ixbAK2JnZLYD/kuD7nGGlNuo2Lp15L5n5FgbO9LamnTeVWx0LUNJkjRNBuU4y9I0aBGP1dby1xx7zoNN+vpLK3keQ9sabHCFUoUeb30lBG2aZBikTnucTPSluUp2VmDHZKjePA0hg9i+clyKEWDcdaZPPg8PnuDcYYoRyBLmuZLPqA8B3Zphxv8BANgHmIg3ndoy0wPMNabJKf/A20w6SuMpQcG0og59QYG4vzv/ed/0/9fAE0BY3bNY4COwKwxf6+/izHzwMAtyTbzGFD1zzFvth/5n/0PGPiVx9hg/wQDseSFJ5/Ab2Mg1f/N3/NSx89t++8n/XjEumvRBvt+SiS38th/75S2d94sBjgN0PYPFGtuFniPtjdcCQNKHwO/QdvrT4y+Uz+/+Y73bvjxCiD9jp/rhn9uF+ZxJw8/MQ9b/v5z/jst/z2FV3j6LZ/572/7cY75+bvkfz9CW0Zc9Pd/6J+97f+96deDjt8t0r6Xzvz8pP3zurEgkE5Z7oH/8z3/3W4/7i4/rs+x++I5v9TrawH0PuVNLDHKZKPy5dinjyVm2fUFXA1qimZMItVIatog6dg1loLubYXEJIvModRAbeI24atGgaOGcMolWxNueFymEA21Cm8tiGKRqIGU74MWp2aHBCRFkyVmkT9Zkhb3uMknzGMUcvNXKjOEvNRytNk1ArqUDCljUxWSfewHENoTTI62uaxkItoQxToDAmQT07HfG9wzn6RKdmsFg5kry0jXJruX4rMkjQWCYWkJshkv/Ia8KDCgVNNMgVeiQ1cYYoMJZPwL8LEnQbant4cBZo2wzU+4TRrzMhJTrUSRReZ806k4p6mPR8y89D5mklqJ45py/64TskyxGhufCmsx6RaYZ4H5aLYm2PCp7BEzPCLPLqOepizWo7Ery1QZfKk5V/FrHhA2TTa2XJkGKQcKrQA276dsnENN2IuU3B+xzDwLdIZndHoLqjFSAArYxviQaywxy6aHC/R746NpXpVBL86zzp5Ld1y7DAoE0fuZ10rb02iOByFj3mQ0Uh3FOqtQYItR7nIrQIW94D1/s19fMhw+X+84AKwppyaQKvbVfNjE9SQCadSQtQNQ2k2fwAmBuKtMUfGGYJG5YE/Kw0meS2JFTbHKKFseGmFejGkajLjsRUyGI3IsMsc4696ANFjhSkzt2xIsu0+1luiel89onQxJ2onZanT1HmKomQ/jiQMx6ZBrSU6X5YQpZ/ZKeqT7WXI5fVcxpAX6VCiwSz4kwMvMoERgSx0fC2bwKlOe+rjPOOuxB/wRv88yV8lxhOREliwsywQDvfWMgLEeZlhmwtPd5U/1d/hDhjG5sdgvGmDVXSKocykmnHxnxeQAew5NNlZl2dnlarCMzdlkjgfOaEyGD6jClsxB1XycpnnMiU/2ZYwuZoaAe9lZ5Kkyy8PwF0wHU97WQQMk60j6m6XObT5khG1WuBJrq1lpWBjRDMtIrrbNSDAUxL66xpKznEyWPsvD2GfEeNfQcIF51hlnsoNNovMp9o6ZbKfDG/RdPgoG1DSPaZKOPURrfpkCeXaZZJUf8EPG2WDFPSgXuR4DyU6lwhaj3jAbS0rJob8OrJQ8ewAUnA2/wDwzLJOnGiES2l9SNN33qSdqKQ09xtiKYdcf8ftAO9zB2EATsX8p2EEyRdWdko4PUWGYElOsssB8+JoqhEpBRFI9nJAN8Ffr1X1uoGAtebzpcyT7VYCF1XrDAUTK91kMOL0nEPu+fN80sDGeV1+A1fKpzFOlQZo/4A+p0YcFjW0wylYwAM1Tz5QvSiltkg5AX7XxNhaupN/X81nxUASBNtpL7LpWkIRWA4F5PmGcDcZZj4GU5PQKUcpSD5DVzqsBOrJDEKC7ySg7FD1l2L7DHT5A1hMaistLOUOdVaac/ZmMfVThR3o2JQ/WYEfehGL+ikHV9sAb4QFz/AP+MVuMkvRrowA+JdQf0sM1llBI3Tjr/He/+N/S8PpK75XlhFUm4/hMMrsR9YL1ESex5m0wQRLzENXaP81KgMMbPoCzZ64d8qHvaefK+gHZY+j8XOeBA0pD3OEDZF2g+0wqpw+441L3fAwXZZ2U4CzWVYGRneqYlDNpNfjS+i6G+BE9f0Urzq/2K0GLencXo2wh70n1CWOtLark2eh+I4aY11mMfkK+u3l2mWitRw/Q516sTdLc5idMsM4VVsi26hRbVisBTPOYNE12B3piHVR/pPs/xyG17l7G9r5kgnUaiXRI0A8xFUSFAodpG+LpfUfZ4kUXyC4rxyHDmGKh2CoFmaRONogMh+S40MCtQKqx1lc7/OdbJKj29lrfk7ThnYBtY77vOkDfRyuBIRxntIGeS/b/8rCjGwOUxAxLEMETdQFfAo4E0ggcWsSAL4AG/GJsoM2seos2YHaAgVKSYFYxAKnlf+7H9kJAUIE2Y62LdvppEp59hYFBF+33NrdpA3EVeCGvuQECFPzqMcYmbNBmmA34e1z077vtnz1m71X/rH2u6PX/7vLvOkA7KVYecvjfy7tvCZwMap/X8u/zFm2G2ikGhP0MA/wk2+32n9n2z5j1933sf5fGADV9nhJ8OxJpKfj7F/yfFgaOifFXpi0nTmOAouSv0Pa+KwLX/Nxswgsx5S75+z/2/9c1PYNnn9GWcR/Qlux2+3EKyNO9cQD8bX8//HyqNdY12OOXen0tgN6JcwG2GAtkvUQxmFQ3uB8sOU27wJpUbU4CMVLe1LRIRDKfaOcy/lYjK8q/wC/51JkxrC0KmuxNsxJeYyanHKfpTY28csSmUqKuDIdVcBmQ1OdskXQUeWJwmERylAKV2KiGqJDhJAob+Yup4VKDf8mPq1NOqwncPAs+CZkONou+wyhb9HhhZswSa/wEfGkj2PVN2GSTNu0YZTNA1ApDwSJQQdzZkIAx4574dRLYI1AIbDGXzFoFaSdTQcddZCcA0ZRPRgXkVl3ikqfqBXU6wCgxYiSPtjCLB+5H0STBGXd5lwqFYIvJm8mYKfUoniSHlgF305s+bVzGIt3lhEywMw6xcAex5wwosCCKHsz7RDR2AXg6TmN3pt3DsBWFv4EZRnXv4ZB+vz90Tq1gTyHJQsEBgPUOT7YibQk3EAVVnSxpGsEM0YYtn7w597nZZiQ8M8bZ8FTUXEz16mScTXnGjheJnZIKTfk7PbFSDsIkfbqfpMV5fsks7r/mrx7ayaQKcZFx7wTrDmZlkHxAfl8VCrzPe2wwEeCUQACBZDrHU6whmYskNpqmyyS8EzzroxbPScpZySZxyMRwQNLQO3wQTFX5C+1Q5AFzwcbVGnibD1ECXgVLFRVbRZImSUOvseQhGNYgbzPCErPMtxY4wpL/JFPaZiQKWWscEogdU/bnW89YgrNgkQkA0zMN9vxZwdof9/QWY9zjJnd5l0fMIH9CNSeSAVpTq+fJztUglgQ9RIVNl6QZC2TCwbijAA/yVFlkLtZiPec1+lCiY5GdYPeNscUWYxgzcSjkUfo+E2www3Kwe7SOyQ9Ujb6ks5L363nWcK1CgRkeIblPxgdquwwGO1sS4jJDbPh0X3I8wBMlM+FpleWEBikfuPXHGtQk5Ym/tkdtcyn2FA167nODlLOHNCyqUOAsVhGTY86xGCD3Scc6OcI2JYY99dHsNtI0WWOKB1wP0Ed7tphOkoQqaX2OBzG8U+iMfKkeMss0j52B1B+DyIwPdxSsIClnljqDVLnFXerObJbnmI77m/66yy2ASOdM0+A+NwLY6GOfeRYYphTProZxH3IbMX8V+PUxN0NGtskYG4xzk3sB8Bg8PRpJxH3UWGCeTUaR3LdOhiZpxtkIwEFg8xDlYOu1SAYgYqzUXT7gTtRM42wwSNXl9jsATPr9Z8/aoO+3Nlixe3oo2LBSezRIU2Eo1CKPmPFQJAMTxbYGoqZYZ5wF3g7QRkoF/d0G4yG/NJuDJjmOghEnT8mqs6d23fOqM9yrQoG3WYj7fZUpB7jXuMF9zkiw5D6CE6xzjYcxnB3hSfhTdkpK0zT5I36fXbc3KFLiv+f3GHTW8zgbSEYtlpeBACfI8kU1h/Y+gO/x4wg4usMHFNkhwRnXWYxhZMpZ1WJodobb/SP+qwi9AWNwb2NpsvMs0CDFTe6xS55F5oLVq71pi1EWeNu96w6d4GBJw7/92gc0nV2u6yVQq+TMe/nDSn0hsFu1n9RAYLY2AtaAAM7MCmAuAFdJgzWklgxTIFCFAsvMxPEMUeYh14KppTpyjsWoBe5xkxp9fOzy4QoFxEYHC0aYj3vGPsusLBqRcqohMhAEg0t88Ve+9vwqvpa5SrphzOErbs+hvqucGIoeT4FLkpZrULTCNMtcpZQohlxeQywwv/aM7+mNRJqzhAU9zbLkgzzrW8T+VK8hQsIORdYZ58nAKwG4alAn8Fu9ziibbrVjqbg/HPifR783z0LUudsJseLH4rky240UnxdepUmK/PFe1Hxg9/jc3s/IcUT+4MDW7oR5+h6Ri97phGxYN7SS5w0MyWDAVRcG0izAxSIGygnYa9AGVFxSm53zn2/Qlm1ewQAaBTMkiFTZ1364Z6yqP8OAPoVRjGDsPgU1eDgGFcz3rhv4GZwTk+yANius4sddsD+7UPA//8red2zWj9llrefm/O9/6p/1pvv1iXn3JgZuCfja8Z87ox2u8di/uxxAZGcpMEvhE/+KtjRYstortAMxejGQS8d/DPzY3/dNDBR8kzbg9lPa7MiC/9xjjHEo77tSx3vLy07suYafN/1epePfuv4C1sTEq2LXU+CppMNj/nlrGAvPgcZz/yfs2utnrvj3GPLz0eW+iPLH+8rP31v+75/455X8O8jv7/9MG4jsZPhJwvyCX+r1tQB61sw3w3BXBbFSN6sMsug07EN/GAWQSN6pyZiYK09ctjPDMvMs0Pb5yfFJh6xh36fzQBTMFtVtnnpLXOMe77wEzGmKIHaGGiKxPOpkfDq6zxSr3paeuAyrQIEKMzwK/yixBeWfV2KYWZYoe4Ob7pCadMoaB93nSjK6LPVIyJQkSka306y4p9RiyItOHLBpkg6fjBp90QjLJyRFI5pHXQNN9ASezfKQTffnU1LpEtfivXSdh7CgDgE/Ot9FdphmJZpdAY/jrHPdj3mIMqNsBtAhppKde9vg086HKWPpWpKSHZJjitXweVDTnaLBGFshgbjDBwE+6bpY2u2l8BETcCom5TUecpsPY3quiZc+q072JR/Be9yMjbZGH+/znhe1G6z7JFXWyprgCiAsU4iJsmR8ek2x5oWrpZFqqrvBBGZObSm9SVr0UyNJi2FK0aQKsF1lMlhW8viRfEcTuQIVLF3QgDjJ8FT8XvNgFSVlKeRDQFVnMWkel/vhidVHLYo5ecapcfp1eCmxTcWTgHwV8JJEaWIuIB7M01LrGJjEoIfDKNr2HaQbZTMGImZEbhNuk7WZLDTvUhzJPN/hXoBvKRr+vJoUSCDOKpOseoCC2FaScI66R9+Wm32rAW3bD9gaKZ85aLOKG85mHXKWqpq5PFV2E/lIRxfzFmwtW2PS00MtiGiR63FPy+NH4GSTFEq61jNmQOacS3zXKVDhhCzvcpdx1plhOQYey1ylSZqrLEeB28c+8vqZ4wEpGsizSMcppvIhPfF7Yrd1shmu8ZAUjWBNfsxNDskxyiaS1zecFVZimBmWwy+pc9+Un6fJtw1ELFLylGozR9c5FvNdA5hBqjFUqjLoe2UrzOEP6Yk1fIF5by7qbgpRiaHNErOxL2q9A2K/VxhJghYLzDtQbbJwgY2SbbXXjP5gINm93Iy9RyEAfdTCp9H8I43xU/Z1Uc2lPKRyDq5rP9Wr4SxXpbrPsxB7rJ5VPRubDqoqeGOJa8Gil8+r2FFgjIOGs2FlJaJ7SR5SLRIM/Bqk3H6LXyAPM2sJpUSoxb14nxvxHJtUMB3rxQhPHKBIMcVqrH0PmAs2V4sEl5xNlI/1rG33Ija92EYaJkryLRBWawbgYE6ZcTbYZTCAu1keskue7/GjMIGXn59sO+wYt0hwhoLaBOAL1F7g7RgyCtzUEOzb3CeH2dZ8yG3KFJhgHaWjrzJJvw+LFcKxxCx3+IAZHnkdYetAmgbv8lGwqzUYEPjWGWylvWjXQS4x+g1wLMRzIbBtkCo3uRd7kZ0nAatj7hvd9u7UuR13lnLGgazrPOARMzx05Yv2TNUP06ywxiQnZEIlIxN/sY6kVOj3Y9RwSfWV9lhJum9wH7BBgLzpFIokNQvY0Ft7ZafUV0FOZyQcPt3gd3ifhjM9jZW7zzSPGWcD+b1Os8IN7nsA2hDyActxyNsshCxRKpsch8zxgA3G+YA7DiLvxt7TOSiSjFyAuAYpSR9iNx0YMpbfUCheTlyRUffxxAJvs8S12Dckhb7BfW7xEaNsMcMyNfoZpuRy4am4z01RM0zGLSPExlOfY8e5H8OoGn0c+Pf5pr/G2KScLkR9IIbtDMusMhls/aaz1pUQbsqjMrcbH/rwsRo+cklaFA724p5I0mK6teLDwKv0t2oxVE7SItuqs8EEChFTX9gkRYEKy8ywwQQTrfUgq/R5v1EnS3+rxjWWgqX6Ngu88dmX0UuKAJDlhAfMOSj8AHlnnvgQT0qMOlk2ut8IEojsYOrd522t7P2blCjykFmGXKo+SDVst1Q3nXv+wiS05zHgRODdGW1fsyIGrJxhwNBn/ucHGBAnb7USJiOVz1zL/xEYdIDJYuFlGesTTGaawBh9x7RBKElPBbhdpp22+hu0mXryjrtIm7ml453zP//c31sBEg0MTFLIgt5jyH9eAJySWsXEO8Akqhf92CQDbfhnKWxCktiq/1zCf3cAY9zJg08Ao0C4Jdrefp/S9qvD36ubAFhf6FgUTKGwjkX/PiOYJ2IaA0vTfty6jnn/OZ2rI/+Zno5zItlvwd+/iHnzbdMG3cR4FLuu4d/vCm3wUKEaBf9zSbLH/Gf1PXRuBK4OdJwX3Vf4dVLCb5cf8y/x+to89EbZ4ib3kK5dHjtqTq+xxJZL81RoSYolnxswQGeIChM+qdOGIAPvdhFmgJ1krTJh1z9gRqBzLDLBeoCOkplJ3tgpsc355HKeBbLUw4xZ8kQ1Pnp/hTjMsMwoWzHdS9Nkw5OfJOcUtd4auC1nIzYRbb9NTW/EAgvGtrJjyHOdBzEB1YK/T1+EfEhCK4BUsrcm6fB+k/+TAYxJFIogJpUxLEy+KaafpA8KGknRYINxGi7byHLChhuTmpzEmjQVm1uMOfvG3JN0vTv9+UoUI50xwRlDVPguH3KdRcT603RPRsbDlKKR1HkXaCrAVjLDHOZrl3bQFgzEyLv8VaCp3QdHATY/5JqDcM2ghQvUGnJg5m0WAELmYiEFm842Mv+KR8xEQppkb/r+anAP6UHytEFvEuShZWCHFZQZTgIoU2HYwAyzC5S5yjJ1sszzCWWGwntylE3qZJnjAQnOQn4jc+NVpqIR0nk05uvVYOUAAY52+lrJx1EypTkWXypMUzR/bSS3b3rjKcBfknoVL0lMbt0pUVXS444PABK02GSUYZ9wa11Y82ukdEYBzsbwaAYTFGxansQ8KssUnKUy6AX+yUtrjNY0eYiqmL/GUhSKYgFc42H4PgLRCNYwL9IPuBMeVGoIJlj3Yx+K51Q2DBWGQh47xSqSgkk6L0BEKa5iQSwzw0OuxXNpzUJ/pMaKjSNWlyS+8gMqskPTgUIgmlWdCzWWWveHKLOD+cLZZ7RDRey7VLjCCjM8Cia4jObF1El6A3NIjgk22MUkgkpzLTEcgy3JsDWt18Bpm0sckQuAwoJwCtEclCiGl1aBMpOsMevG5XUswEYgyYkPoVaYdlsCC60quE+NyfZHg83xPX6MZM0Kvxh3jy7dl1uMRsiODO2nWWGbEVa4wg3uk+MIWUSo6VfolbEHl30fMXa0BlYaBLXliDuUGCbLCeNskHEptiSW8qQVi0vMETtnQ8yxGF6LKWcITbHKTe5FcwXW+N/gftgvzLBMgjPG2IrwpbaXlFVjkoWr+U/63pKn6v5G0rR8c197DCAZ+qTLCM36ZByFyQhk0fMpybnM2R848KB6y671OoPsBqPjIddincpxxDSPI7Chxwd/GvxuuaGRqkV5DG8x5qFElUj8NEVID5OsMs2KX+8bLgezsDZ5A5ss9MStThpcZTnk92+zgAIQdhmM++GH/ADZKRhoPBoAyUOuMcH6Sx7TaVdQgNWE/b62irUo+TgQljI6J1Os8T1+HMxABfjI//aQXIRWLPA2q0wxw3KwHk+8URcIuu5+sEo/VS0txYVqGJ3nXR/ODmEm/xpIy+tOgCkQ769hyyhb7DLIJqO0HEQbpMo8C+Q4ZInZqH1VCx+R66itjJE0SDU8BROcUaHAD/kBN7nHNI+ZYIPf5YeUKXBILmp49QjyHJZn7RhbmBh6P1i3DVKR4mnqDBsSzLKEvATlwTrCdtga6HlQvarAsRYJt23YoOn1+e/yQ2T/I0AZCFsYER00gLF9w9ZfefgqWbjHQd4pVnmHeyFvl195kRJvs0CSVoBwE2wAFtgHvLTmTrDONCvIJ86YYPZMa5gB+M6WYYgyK/yNv/K151fx9RrbMbSy85vx57rJFGvMHf951D9iazacQ15kh3K6QIEy6ZYN4Y1gUmat9w22GQmQPHX6jLwD1YuJORaYtzqkdUgpYazQBK0YQomFt8wMae/9MkfPoq4oU2Cktc1NPmY9MdER8GIKjqeXe8yXu1WmyA6DjaoTAUodrNBaBLcJ/NslzxKzMcyQ/UeDFLV0n/dDtt5fYyn84cXGTdAijQXGlJJFA8R2MRDlOgay/Ix2Iun/2/9u2//uR7zMOntIO0DiTzEAR35ondLQBvAPMQDm/4mBMT/FAKsDDFwboB2GUaXtEffE//vbtL3lntAG/970Y9ihDfwpSOMAA57msO864O8h+Wje31fMPn2X7wB/4t9nwd/rz/zP/glwBwOjdDxito1hDLVv005rXaItfxWL7ycd5+ktjOUmxl8XJgE+pu31p+Pu+N7nZv1Y9L6/6cc/i4Fm/9TfRyBsEgPjBvzzdX4/o80a/Kn/DrQDL75D21NQ32/Aj+1PMenwDG259SJ2D3VhgSc7fu71GQmgAs/+xP4d50TgnsIwPvVj68WAyB3/9xPM+7CHdpjHX/BLvb4WQO8Vb7wMBDgKerZo5R9ymxyHMTUXC8g2w7ah/rqb1Mp7w3zclshT5YmDg8M+sRii8lLQBBA+SW2/AZMgbTJKiWHkbSIDUhVI13gYE7wZHiGPIIVcHMa215b66jNl9KxJraj9GW9WKhQYd9N0gSgfcOclVqIKUTBW2CxLDGPyY23UFmFfCJaPigcBVpo4bjMSPn4qJnKY6XCPsyfaQFw9gL0+atzgPmNsuZTSpGNKZZTnyi55FKKga2cpc1Z4adKXoMUUa5yQ5R43ecB1ipTYZRClYu5iMudlZhh0OTUQAKilHFvzX3YfF3kxQBvAAzjC5Ak6PxsuWRDou8Uokw4WaFJokzBrgJ/45EjnTXTuohdmZT/3VfIoSUqTK2tWLyHfiM7jG/SiTQWQZA9PXHalhL4cRwxSDe9HyR5aJOLPjFnVRMmQRUr0++cLJNTGLBAhjcmNO+XcJYZZc3m5/O9AjChj5HzMO3EeRtkMRo0AV90DaWfRiO1oxUCWTUbjWtkE8tFfyVrz1+HV4AJi9Ca9SBLINsI2m4zyz/m7rDnDQ42L2ERiqxqQY4Co0vuU+CoQapal8MQzywEDZnMc8gF3XirarKlrPwNKFtM1VVCLpFfDLtGQ9L6P/QhJ0bQfjEXY2cTpM2RmLjbTx9zkxOVDYpxtMhqsVjt3tn5oKl2PZ7J9/hQGM8tD3uFjhjGvojSNkGnKPPkx0zFAUfGsYlZy9bdZYIciE6xHUuS4g22SIXfaCchSosxQSD1NSmqykh2KTLIadhDacxpY8NAwpZDAbDHGKlP8iO8HAK5hx4fc5j43okFTAvUgu2ScUWt76hGWDm4Dr1Fn6p04HDjksmT5Qcl4fZfBuG7mu2RgRYaTMDGfZ4GaM23qZBllMwKZJKNcZgYx5jvDdKZZCVZnnirjHoJi0rIeHyCY1LCBGXOPek0gdp28XKvkucdNFBalpD9j0a858JKLtV0egRVvzG0YchQ1QI6jDvDU9nMZ7pv/bTtEo48a8hoE22tKFFlgnhWmeYeP4xkRwJqOoVeKu9wKT81BLEHY5JQvp5x+E18DbgZToy8CgcbYZJK18MSbYi3kqcBL+0mZodhTZeegQbAGCme+L5UpIO8yk6AWYx+sMsgQZWZYdoP2Dd+XzduySSr2wXZd1s8DrlNhyI/RhmqqkcTMrDDEGQmu84BBdtlklDWmWGUqADcwGecE69Gk7tPHu9x1ZmiFHObNJ1B7ilUmWQsVSJvpbDFqb7MQNjAjDhSsM84K0xySC9aiGMI1+sL/Wc+eBn0GFG3GUOh3eJ//Hf8XAGZ5yA/446gPBYYlOOM93g8bhRMyZHy4q2vwkFlWmWKKVU+tbsSaKLllljq3uBvsb/lkT7CObGt0HbOuYEi4GF/Nv2T2q55SrDVTQwYpCf6I349woH5qTLIaMub3eQ8FN1xlOYaxSifW4Fm+hxqqN0mHxHuCdZa4Fv2M1k6xG7VPgPUrYncLSLnLu+xQjHu3E7iQvF/3j+Sy+rlx1j1Uqx73sawbZNsgwkOP13V2h00FYLnKlIO2EhWbn+Rah7WO2SuNssKVAGH0LKu23WCCPGY3MORDFWNEjyJbCH3HMkO8Elqzb/5LjEV5xI4e/Jz8wYHtYd09ISEFu4byd29hrLcdijxMGIPyBvepYH6fJoEeok6Gxe6/yWCryrh7yKvX20/0cZdbsS4APlRrxF5oDNp+3u/97TiGHIdsJ0ZiYPA2C9ToxxLiGzzgOk3SrCcmKDHMSno6BiWjbIUlh95P9Vg/NX734H9ClgkJLCBOz4gNHGxwVmyVgmxRZdABelOh7DvrkwYWKDBCO3H1CGNAzfgFEGB1QBtUkRTyGGNNiZXVRZvVdQAvTjEg6Az2LnfZe+jW/QwDbpToqmTdLvud+h4GAiktVYxASYAbtIEfeQAqYRbannR7wL+CF2La6bO7MMZZy39HMmEHA59tQvUJfCb5bQue6fsquVYpvwLS5Jl37H59S/73b2EA1Jwd/1d6z+/aMdU3/Zzrz79NG9RzT7mypLzYNXr2oOO7Vto/x48wkEvstq/gxRPaTMs8rGx3nMs9O5dfKYzizM7Bi2M/v292fC8l/7Zo+9YJ6BvC7g+BcmJm6rOhnfybgC2BoGI/7sELZzW+EJuxQTtZOEFIfuvHtP0cD+H5Cb/U62sB9I7o4ZAeZNZt5buBY2ckmPPULJsQTccCI0kOGFsK4D43GKTq5vBWaC1yHTORnULSQ/mGaeoKbe8wSTE17RUwNM1KNKxDDkKWKLLpLKgUDT7i3WBtCKRKcMY8nyDT3bpT/+XxUaHACE/ooxZUf1Hf5X1l3yXtBeyqT/UMBJV/xZZ7/NXo44gcD5hj0/1agJfAv4fMovhvgSsy+pahs35HdGl546lZyruM5MQlxqLup2mS4SRATMkD1QjKr0nSYRVWSf+O0DasLlEM6YRNYc7iuHIccoOfMs0KT1yCasX8CUrZkkRQBc8WY75FTQTTRYDqP+XvM+5tg8AITfBnWEYSE5kdS6KwxGz4xgkU1HeT5+CP+T4Z6vRwGKBGp1xtjE3kzaPCR/JpMOC3x89RgYptUM5yUjJtgQqSpzYd5BumFFNOgY1gRZUYRJLuVFzuLoC8ToZJVl8y9Z5i9aWAAjUjOp52EEzKfSj7X5r6S9KWd9nHFKvhcbjKpAMfZygVWJK9LCfR3H3TX099DZCPpdYWMfGK7PAH/CGAA8SWhqwJvVh3q0yywDwpmkwdf0YOMxXXtVDjq2dy2BljYOy8GR4FEC3AMIMxj+VBIvbTR7wbDYue7TTNYFcA0dRIUr/MDNOshKReSWYpGnHvzPMJCVrk2SVJK/zjRtj237Nq6CGz0TzpM635yzi70Z7LqyxH47bMVSbdOF+p1eNsUGQn2D4JLHV8jakYNt3l3Wh2xJpTczzPJxyRC5BHw43f5gMSfvxiBAq00fuo6dLzf8VZafou2of0ncXeHGedm3wce6fk+De5xw/4YawbD7ge3oPyYbNn9glpGmwyyqCzUSR/kmG9sYqUQG5Sx0EH6QWGHpIL5pmxMNbZp49rLAWA9hNus80I8yyEPPyQXDCOlA4ulqcCIdQsCCir0e9g3y773qAquU73Rx+18DvMcBJ7mbF9BmN/FbtFA4gqeTYYZ4J1emiHDZhNw1GAD53SbLC02xWmSdMI9n6eKkfk+CE/iP1NDW+LJJuM0uP7o5iAApsERhyRw8IDzEdrijUGqTLG5/+RVqT/dK83+JxOv+AELe7y7ksN2zYjYddRZogxtoLlnsZCo5qkGGedeRb877YAwr4gxyEK4DIfT2NBmbfnUDBmm86SKzHMkDNYBTIZEG6V9H1uxH0tBqsS6QUwdoJsR+Tid/Rsqjm1QBatvyfM+gBZvnstv5/OSPA9fsw46ygVXf5zZ7T9L1VDJWmxwTiyudGA25JskzxxAEm1CljdVaDCDe4HU1d2DwIVxarWfrPFmIPutrdsM+J2KGZaL7DozM9rnmqANZLHm5/fpVDbiIEkT7nHnsraTqU2ybXqiZQPa6w+sTp/3VmeTdL8Hf4w1oMZlin4wF9+XTov42ywwUSswS2SES4xz0KwEcVulIfj7/EvSNNwaXYzhgOrTHKXWzGES9HkJveoMkiJ4WBlqlY0FrENlBK0eOxAWud6to/ZKiwyF5YnTWf9yVZglckA3cx2Y4cdivyUG+FZnKIZ99CkD/2URAzWNyR94Cf/PgtBGYohv54HqYB0TW3IZT6ito5arXBGgiMH6epkPD21wRyLbDNCgTJ97HNID0oMTtD6takNNRRc4UoEYrSSUOp9hSVmWWI2WKG6JtqXZeF05oBYJ4FhkKrv9ylnfJ5wP3EDY/qbRYjqvSnWAgSOQWzLwHUL1VlngnXvU2tBYhj2fr1FgonGBmaMZf3tOBuYb22Df8rfR2oNDTNVU/VwyI3GfXKNw7hflnrfYs3rX9WvU6wFK9ue9QlWEgYS2oBt09eISgwuAbjAy95vIxgwc4axr9ybLpJnhzHgTZ5yncDeGG0vvTNgzllk3cAeDPwf3IRvgPDho9v/u4KxwZbbv5+dB/7X/vMHHcc3Rlu++W3gt2kHOfwb/+wzXgaXfuDHMkMbXDrGWGoHGGj1G7Slx9twYR7yd+DybxNA0gUx1P45BlQlaKfKvu//dsnoue/45w3RDoc4tmO9OOvf44l9VlZhIEXaEtminTfSwBswNEfby64CF75NG0Q78vceoi01xv9/DM7N0AZCKzD9A9qS54t2vi5+h7aE+ADOXfbrIhnsAcZWlLw5gYGY+PcTQKf3vULbS6+LtufdZ/Yel2f9XCrYpBvOfRvIw7lL/r7f9s9PYvegzpdk2SX7vfN9/FKvrykUw/x4JBWzjdAWc23oBpqdBYBhTDYzv9WEr8Rw+E20SIZvh6aCS8zyY76H4r1TNLnNhzEVXWUy5FhiXonJpAlFPzV2sUReMR6mWPPG4CSm8UaZtyasSTq8QTrTsm7zIZbWZnIBea/1Y/4wkt6I4adJh0kzbQGSBHjXpUstEkHnN7pyP5KBaqpZpMRVlpHhvSQBos2bv1UzAJptRtyw3T5TPm6H9FB2QEf+a5oiqkiQZENMNYE55qV3hiS4aRrBOhPzRobMMqk/IRObSZlCAJEZ6sEwq9EX0z55uOXZDbNyFbgqlst+jxQo83f559HU9XcUGp3pifpsSeG2GYkiV+ByDvMqk4wYlCi2w6DTz9cd5BIoqGJX53iDCVokwrzY2H2D8Ts6nip5lAb7Pu8FgwRggbc5IYuCYgT22cS+n10GQ54hsLffQWLlOkpaoQJWIOg8n8Tza0a4E3GdFExi4FGPM0XTfmwnKPVTDBZdwwk2OhrZcjQs97nBB9zhYayW3+zXlwwHm7ZOJti+khNIKtsgHYwkgAk2ojkSQC52Va27N4qyFaYDxD7Eksfk63NIjne5GxJK+YDJO3GwUQ3GmdhnYkJL9i6vlCp5chyFn6aAOYE1MywHQKgwog0mOCIX3xUIlp9eAp37aKf+Cciz72WePllOeJePgsmtoYJJ4SyB8SPe5Y/4X8XaIZmdgj/E4gF8ePIkBkli/IilLG+fEkXucTOeoX36eMx0XBMlzdbJcoP7DFFBkmMV3fe5EWuw2MBifGiQA8QQ4IhcDBskDxxkN9aVEkVucN+ZyOmQ+U21jL27yagf20mw29VkWtL6UaRDSu4ssEJscx2bAHzbX2wPaAPTzQAstLbMs8Ai113uNhj+qfo+Cc6oko+hijH3jIGzzUhIwleY5iPeDaaBpEgt359kBVFw1qp+TozGZQ8T0Jp+iHnFqjE3Zt0wVfIB2G0zwgfcCeBIKgANeEoMc0YivHvsPCXjekqSrgTyZWY4IxHDKEvEXUPG9lobzS/ura9l/flVetXJhLSzRh+TDvqrWayTdQb6GSmazLHo/ph1+qmxzgRlhlh3H1l5P64zHjLsTtsNscf62Ocm96hjYSZaj+RHqf2sRn94jInlKXVFH/svAcZDlJGVwjWW3LNumRP3hpIKRCzABGchWV1nnI88sGvHAckEZ9FUZ50VW6bAJba5zYfOWh1nlSl2KKJU+ZCYufx8noWwW9Gguul7dKcNjOxqVpmMIYOkqPJprZPlR3yfVabY9ea5ToaHXGOVScy3zpi3v8e/IEOdcdZjQJ3lJNbeBmlWmKYd2GaDfkn0E5xFfdjjw6ZpViJ0STWUrACu84AsdarkGXROcqcVyX0MwJCPcB81BxKSVMm7hH4fSYYfOUgllpHuU7GgPnGZ4gbjcR5tEL4bNfsJWW7zEw7pCVWCDZyMaHBIT1g1bDFKmsZLPqs2hGsDmX3sx4C0U9U0zUqAdNo7JeXPUKePfRK0uMoyZqPTRHZH8k5T/wFE/bbrYK6Y53WyXGfRgd58ACpi1Fr/ZNfuJh+Hx/eGM1YVKmeSWwNkWiRjWPI+v8N9vs0GE86vsr7x9XDi/2a/DuhlgwnSNLnOIjMss9H9Bjv+7BlYbEoo2R6Nsknx4CkTjY3oDZQqLLKIanMNz+pkWGeCP+QPkPVEjkO2GAtCQosEo2zyGxXT98mnGOw+1/OTwiTm2ePTthQ7nWWoUSHXOIw+QMdxg/teI5q1gSTnqgFX01NspUcRc9aY1el4DsTKUz04xRpZ6iG3b5Ai3WgGyC/A+oSsATxjGHAkhtoZ9uclDORS2usQxq6q0g5lEADUjQE4BxgAs4ix0zpBoh/RTmktAN/3zzzAgDUxxL6DgTffp82kS2LgUZF2uIM84DZpS4DztIFC+etJ+nrN/63UXrkiXcGkoW/R9tv7zD/nt/z8zPr7/Bf+3ou0wzku+c8prOEUY7AVMZBSIrlhDPiS/5+nBUcoRLf/jMtWn/3M36vX/37Er5O85PQdRjBQTwBjlTaTT+myAkXf8p+ZwzwPj/28nNH2MtQ5lEz53/j7yC9R/n9F/509AqQj7b/bQxuwPMYAU/kzPsbuo+/7tTv271j069BNW9L7D/37XaQdHHKKMRuVPtwNHdb6/8HX1wLo7TEQ1GwtOCq+BEQIUJCEc8WzUDWpM5Bjh2s8ZJ8+ZOjf6Vk2xSq3+Ig1LzbSHYWDGXzaJHaNKZaYRYldmhCuM94B2hzF1FFFvnzftjqaowlnE0q+I2mDMR8yMV0V60DeAOuM88f8gHUmMGN1a8zWGUeSL6U1WnE/jejnCp6QP1mLBB9xi7L7zYiVBsZsVOKjFmMVFALU6mS5xkOGXHp5jSUk8VSBcUiO7/Ihsyy9xDYRPdymkDah3MFM9Tv9pcAmvGqmK5jJvoBVgV6S5YmJKAN9JZmpgVXRcEY7BbLhU3o1cGUKnGDG5O1pbDH8DlXsqYjvTEoWsFUljzxIJGXVPTJMiTt8gHztwICRaywF+CVQ0ZiMdk8JtDHfE/Nv1OYmAPan3HBweoiMG8uLLVJmiF3yzPMJotz3+/QWiImbJsZiP0ieUaAcDFclpq44INFmDKSQN6DAQBl4KxTmBvddgLIT4SYKLtB31L0iAKBOhiEscOMaD+ljn/d435/7o69j+fmVew34/b3MDEfk4v5TmqfOWZ0M7/NerAkZ6gGsZam771LKxZWWJK7hgzz1BKoI+BUzeYZHAYAIgMqzSytp4IQSYudYdHZnIaRHYpbquVBjMMtDipQoUGaeBQ7JcY93ghliDXOWAhUqDLnxcyECWTqlbwKVbnGXGR4xzjrDmK+kDN/FBuwEuvTcdgJjaRohf9W9XqPPm+UMBSxp3Bgp/QHcqaHcdVBdTbBYA7sMBvNVIF3Dn8UpVoP1ckiOf8bfA4h0X6VnH5LjBvfZYoxlriIWu871GFusMkXK1yYbPp0wyiZKDhZLos8BjhyH7PiaWkoUY3Am9ppYJID7JfWHr5+Nlg5jjdOwa5NR7jpLUyCzXSGT6i7w9ksDD62ty8yQpc7v8H5I7W5xN66LBQaZr+F9bsR9da2xFCCkseLkoWPMJLETNPxQU9skFem8h+S4yy1amORGx6f74CGzzLPAVGOVQ3IRKCNpmMnnrMERwFdimMdMIx/CKdZivdfwIs8u8nITIGrhUda8C9R54GEsNsyzkCSByFZbyAzmm/ta4W/wEe+S8trK2HbpAL5zDiSZ96c1c5IrPvJBhTWXFvSTdv2TmEqSSWepM89CMLCgzXx7h3vU6CdPlSnWgq3UIP0Sw/af8fdokQiPOkumNRaIhqLGvCoGS1mMEZnAK2Snj1qbNYLJtLV2ic1itjAnbDPCAvNYem6/P2/zVBnkBvdpkIoh5yBVMn7v2/BsP2pA+SFLbtw5BMlSD5BxmhU+4lYwZNI0IzmyRcKHFGVOMK9ifY9pVviYm3EPW83cDBBMrDTZeRzSwyhbMWCQfYdYharZi5SY4wETbAQILyaQsboqsb8kaPk6bGxXpSOrJm6RiJRiAV+ybnjAXABZlQ7rlipmrSDrAAs4OYn+YZNRPuZmDCsVNtQiiZh/CiyRn6qxlZpU3WJGShfVaPIVVYBJe702AHsQs0DolOgKXJPqZcrZ6TmO2GAi+oBrLKFAll2/X3/KjXhOhjE/M7OuOKPPQToFuijsQEx92ROpjlAvc8nZkrvkwytS+5OY2SJfyE5hhkc+2F+NcI9Vpn5t/JWBIBRcbS1TJU+P1wlGTtinQSqGDHavnbDV+y3q6XYI0zaXkE/4NCuMsx6kC91f73LX68ysr1/jvq/bwOMQ8yP+i8Jl/mXiPbYYo475qGv/F0h9SI5ady/ZRlv2vZ4e5276Fg0sjKyPGnmqXGcRC93bZPT4iw51Vsv7QUvjllroGkv0sc+t4z9lwQMvl7kaA5h0qxHPi2T6QKj1Nhmlv1Vj4PmeASF52gEKLQyEkcwygYEvl/2/l2nLXT/DAJ+k//8/8t9R8MIPMIbatzGgpxcDalqYF91D2h53RcyXruLH81N/j/+CdqDEEm3w8AADjP62v/82Jr1t+PsXaCeyXgL+rh+7mF7btJl6n/n3w//9lb/3WxjYV8QAvFP/PfnzSWo8j7EZP6ed6urMMfD3mvT36cL86yb9vx9jgNgSBm5NYkDXgSf2/ow2W6/o56/k3/+yf8YCbYbenB/XdT/O/8qvgaTMef/3nB/7th/j3/V/KzCj4L/X47+z2fG9jjGAU6EYZeye+TM/3oYfT9LPR9I/55i2jFgyZQWNPPZjOu34va/8vyX11mcqjVdy5wN+aaTuawH01HROscq6F1OdDd5Wh5+WijjzLjkLCaHACgFGh+R4yDXqZFlzX4d9nwTc5F5Q61UkpWgy6V5jWlg2GA9ZkxgNZSztUJLaVSaDVSDm0yE5Fj1FzRIW2+wrbVAJzhxMmmCFaa7zAAVtqKC6xUdeyByFH9o0K85GLAaoNekgkVIcE5zxgOukadLvU2xN/YFgSqig2CUfzEM1sjX6WGSOj1xeJhChn1pE2ytJTp5DAo06ZUjyTRpjixbJ2Ljv8+0wxNV7y/gUYN6DIjQh1BS1TiZASxW2SklVGh4Q5sNpLNlVxsZi9cnLRn5dYrs1SAVgId9F/bw8RwSQGPvM3q/sbCV5OeQwaZ08aiThWWAeycUn2EAJb0VKnJAJEFsAax0zfpavoVIr0zS5wX1SNGLyn+PQ/al2nfWad3ZM2c9JJoAgpQFrMm3NtDHidvzekjSnxHAwdrQZ3ucGl7AQgoLLvRO04lkWGFt30+ItxpD/ovyNNl0iLk/Lh8wGgCvWqKbRBSq/NrIKMXjEZJCkSXKHQZ9NW6jICWNsRbGjqekhFiAjFouaHxnIA8FoyFMNeQ7ArgdfGENtl6bfLTX6KCeGgkmhYA5oJ5WnvFkpUqJMIWwAhh1oGmpUUFgRmFeRBger3sjJ8mCWJcbZYJtLPGCOGZaDxWKJzUMh7xljK5pVMVF1zmRebv5JSX7C7VgnZlmKdV9sMMnVzQN0w4clPd5sm6m4+RztRDNrTKpVVphmk1GUyGuJ2XYPawCg1F01wQnOwsP0KsuMscUZxrSu0RfPd4IzBwKt4a84q1EghoBTHb/M0G3CXo5z27ZgOIvP6PG9VgDsIT1kHbQV+/yQnJust5PFFWYxxwNGeMKQrzV6xsFkjWmaKKG8QCWGUfLe0QBK6boN0mwyyh/wh5QY5nf5IbM85J/x9yhRZDdtTbQ+Q3IupXnqlafKAvOIEah0QA2SRrCkSdUfCuPRXltmiOX0jIPRO2wxhmRj8pMyyXEzhjAm2SsHi3vdFQUTrJNnlx3aHq2LXEdG8TqeGv1uiWHHLAaZfMVWmWKD8ZcAn2/qa4C9aDDF7jY2zxGSdALBev/H/AMk82qRjOGfGEqbDrzbXpVm3Pdgu/cMjNc1yFCPvazEMAu8jSUoVoItIjZdH7VQXCiMx3ZzG6qqfpGtxH1uhEfmLnkm2AjwqEZfXH8xl97jfe64bF/3ugaQAh5VD8njWGzRIbfiqJLnPjf8OMzyQLJbsbCqvruMs84Cb4ev477XhQJrpHy52iGb15+rdlewnUntzgLETtEMW5dVpoIlC4R6AmCOB+HLuuXsGltHtsKaYZwNr1NvOZhgKhN5y5qEsBDA1pavzaq5FOK0wHwAwkrertEX+8kUq+EtN8F6MMfEtNYgSqCdGIejvi9lOQmQVADWKJsMe80vsPSQnhg+5LHQjj/mBwA+kOoPNqWGdwIZR9gOBmXZFT/6bpJP1+jjI26xzNUYkK8xGcN3Md3BmFFKeU7SikFd1RVKo2w6o3OfeT5hlSkaWFqzBtMaftj5v4T8a4vsYOFEZmNgwORJ1ArqOX7AH0ePsu5rZoGKDxpPYgj86/Lq5YAp1pg9/gsaiTTyUp9klfd4P0Bg9VQicDRJUWIYhRfONRYpMcw640zs/Zw1puJeX2Uy1sebfEydDFXy4Y8NeB3RT4omD5hjIpRx1gPruSuyw/zBn0d/WkqbvFfXrMgONfr4z0qf0YeFAUmif0SOavcAVQaRzFqMbd1HnYqjxJmtx0OUnVRgrPdHiRne5z3AGN/bXGI7PYLYsjMskzp9RuLsORxiwEgPBtoMuHed0mmLtBl8YGBNEgOdGv57YvAJ4Glh4FYR9n7QhT9eBgipVBHzbI+2FHMOA+/EtivAizdoBzJ0ppkWMEBrljbbTcw/JeiKKdcNp79NOwm2CtVl/9lL9p2Z9f8GA6jE9uv1Pz/zz37Lj1WMRrHFrvjvvEUbCJ2h7UP4bdqJs2fYOXHvuPpj2uAWGHjYTZtJ6L53IW3u9Z9vE+3boKok0JL+LtJmCJ75e47Bs3k7fy9OMfDtJ7TZeQI9r9NOzj2Gr6q0WZx/G2NsChjcs3P9VdU/pwv+/K0rdhy61vJZBJNJj/l/69opzMQ9/BiG4yvn7Xfljyg/RSUfJzEPyHYJ/B98Jf/yH/n//TXMl8BFB4fM3FrFgRgSNfq5wU9ZYN4bR2tMHzHDVacA1+jjDh9Q8YmQfCWWmQlpTyelv3MqNcI2f8gfcJsPyWAmu3/MDxzRP3pJziX/sBwWCZ+mEUyDGR7FBPmQXEgbxtiMUIkyQ4x3GB3Ld6RBKgqOKdZiSmUFaCJ87epkmWE55Fxa2HbJBwAilgFYUzPHA5QoJCmZCkEzTjdwcpBdClSY5SEKLBBYqv/u4ZAWyTD3XWQuANYjb/rEitBkccOLLZ3vGR4hWr4KwJSfR8k+C5QpUXRfphYlhmm6DKNIiQ3GmWbFHZuMwSDAztgUiWAwCqywwqscTXOLJBn33Lve4dOxxhSXvNk7wiR+k6yiFLE1psJ3QiyBDcYZYTsSdFVwK0nNiv1yyBSMoj7oG1gzADkrNnfYYIKMN8Zj3vStMRWTtSIlFpmjQNnbm1zIIVWMJmixxLUoSHXNClSCJaMmXNcZiPPV6YMi30KlaynddptLzLLk93s15N9WDJ5EISlWjFivdj1N3mGFuLHHlDKnoJMyQ3zAHd7lh1/H8vMr90rR4CGzEYyge8x8oDZYZZIJNuIZk4yw4jDSOOssM0PGC/E2E8g85k7IeDCAglOS3OZDl5vuRBMpRoDCIOx369EwA85ONon1OuNsMM51FilTCF86gT8VhphKrwb4/RG3Yq3LcRgG2KtMBsNO7z/pz0Xam0E9j5IY697WuqeCMcchDzoGEC0SfJcPUSK3gOcRVthiLIYsaq4l9TohwxVWWGaGK852ESNFILdCcbT3CKgR0KaCdZAqK0wzyWoANjkOGaLMLvkAuiuY6fW6J54LqEtwxoZ7gOa9ODb2UTOaeVk8yIJADfMQZSQjluxKf7ft8m7J+Y0lepX3ec+HXMYsG2XT1yFrJNaYIs8uN/zvgRjA7TgLZoZl8uyywDxJWkzzOAACDTEEpIgVPceDOD9iCVroVIKPeDcGewJEdD3NC3E97tksdU/zNkbxB9wJWY8azmWuco2H3mhvBXt7gg1k6i7Wyu/zR/6c2q6t4dE4Gy/VJw1nbctLNk0jkthVc4jBaLJHqxkSnJGkxe/xL4L5LxB2mhUapFhjir1fVlfx1/h1iS/4Bd3c453gGWsIdEKGLca46gxJCxOzveo93g/gLu/79CajfMI8v8sfI4mh/OKGHGSuk2GCdbcySVKgzArTYcGhpFUbEhiYLN9JMZWHKAcwvsyMh7msBPQzxlYw1bQumDdu2ffmcjAIpcbQ4FlDXN3jUizsOtAoAEa1gMIW1j1NdpYlavTH+wBhezDFKhuMU6DCCtNhtyBrlhyHMdD9Lh8ilqpqvAqFGLA/4Dq3+Ig+TP5prN19H2oMBoRfZijkw1pH05hfsBj/Rdr+yQKxv839ULnIWke2EKpJFUIj4FDXQ56ECt9SPa21AEzhIameTPZl0K+QJg1YWiRiT1pmJtZYJXb3YYFxeq8WyZDybjMSNXuLZNxjYlhNsRry5ayz27R+FymFR/OEK0+u8ZAafcjTtMogszzkhCw9vp8LyKuSdza0tXViN2Woc493mGaFHiwIw9hZ+9Toi2F7jX6y1PkJtwPMlJLKAMUaa0xRZIes32MzGKvMZM/23GwxikKszG6hhwIVV1nt+3fd4YhcSH+V5mzxHzvO3v6nf7WLz6/g66k/Y+kG1LuNLZtrHPJB+g7XWWT84Auqvb0BpsrTVSxXDbtqadvz5lmgPNAb/WDVmZZJWlFnVhlkg/Hw4QOYbqzQTNtOpxooS50Puc0N7mOM5l0StDjs7QowWsnJN7kXe12OI057IXd8xFB3hSWuRd/bDlIxqwQpxPSZTccLErQo9b4S5+kG9+O5kucv0LGW9jDGFrJOSHc3STYO8Me/HXRRhexv0ZZVCkS64j/3bYwR9oS2f1oeA2H+IQYgjRHg2MDmaZvRBQawjfk/Ym8J0CljIJESd8fgnBJeixhrUCCXvOYEXo34v8VaU3pr0n6262f+Oy7bzF/iZSBJgFMPJiO97Ofksh+PPOi6MWBOwNUbtEM+5Hk343+e9r9TemvVz4MCPIr2udnvYGBajx/fm7SDRY79vxP+d/Klw4/5Ddr+dAX/Z6TjnF3xz32TNiiahAs7fn5n/Vr1+HsJ8XJQLhJzn8DFkfb5fHYRLhRpJ+Fix3kRQrL7N7cft5l+AxjYqeCVkp9b3SuSKhdog7RvwEp6mr/V+zP7ThX/TpIVj/j/H/CfFtD7Oa/RRTpYJkBsrAITrFiwv6uSD2NhATPmN/LIS62Ee9DlosnLUg+dvKaRh+QC3Qdja8hg+wRLnRVz7CNuMclqbFjymChQZpmrXGeRDSaYZ4FdBtlggh/ww5jeCcQRgCIJaZN0MC1u8yE1+mn7MVnTKKbiO3zMCtOsewjCNCvU6OPEm2bJveQxpaZWXhYKUTCj4x4HVyq8y1326eMdylGsdk5iD729F9NFJuliIgyyG4y/D7ntpr7m+9bjQJaYPpLtSi6iSbgA2WVm+B4/RmbMYo20PV7K4eFwncXwBbHzkGHXG99Lziir+5y8RDEmqwWXQfT7NZCXn8xRlfqkqbZk3bf5MJgvYuZ1NlqSkijlUrIZAcErbtxcox/5FKooFChRZTDkWfKgyVLnETOxMZUY5irL5KnGxmVTXvNaEnNKyWDyNwHinKYcrBU7pkiJMxLhv7LJaLBOthlhlod+bybiuTQwzqjvSoUTQCA/TG30MqM23xUD+u7wARtMhEmv7tWCy84ECFfJM8cif8Y7WMb7N/t1RA9DmDyq4hNYyciMeTBOEjPIFpNRoKyeM61VKsBWmaJIiYdummzszmY82yoA62SZduBqlC0O6Yn7UXIggVS6X5M+EU3SYp4FMpxg8vFmMGfu8AFNUjzywYfWFoFiO1jqq8DnPLsB9EyxGg2V0tXs2bB18yrLVBl0iZ2AONuq7nEzJELyvmt/n2YMUtT4qmHRc2QpqNYo1ujjOg9icKGCuVM+DwaULTLHDI9YZox73OQOH8TnmgxpKNYV3ecV94KZZyGGMZLuas3ZYNyve09M3rOc0E8tJKEykpY8dInZaAIfMcMN7vv+Juln3ZmVxsKzQJaGeyjuxiCpRh8TrLPCNGBNr4B3Na82gHnEDkV6OGSSNeQFa55Wdl00yNFxJWgxRMW9Fs9cMrbJj/k+o2zSxz4/4XZc3869bJdB5IUqzzMzxO8P0O493o+1q4Yx9TUMynHkQFmaf8rfJ0WTeRbckN1YiCm/V4Yo8xG3PKWvHepjAO5WyHrVqNsQa4cEZyh8YNwTy+XJCgYG5zjyRnsw7D+0v7RI8IDrvO3DoRRNzvNLRpn9NX59yatIggjGDpLse9w9biWzLFAOmZg8zzrDMyoM8T1+HP+t/U8AWIkiJ76OCUCSKbxAWLGVT7yuE+tznHW39NjA5JnXgy0GMMciuwxSocB9bmCStBO3hzHVyQzLPGEkUpBVX+6SR56fDVJcZ5FlrqKQHMBTtjdivTC7ihpKLJecN0UjPPgKlDGbm5PY93t8sCCf1TTmkWrnJhtSTjEjpXhZYpZpVthlMIY9Upq0/Yatq5Wtg9Zc7QGqi9NYKJKx+vPRjKumkARQ4XQ5DlnmanjK5Wmi5PBR988GW5ev+wBeQK08nMVqapFwX2FL7V3matw/kh5nOOlYe4wJqvvoptfokj9WXfUi0NBCrUoB5lbJM88CD7mGUqtPyNDj+0mKRoRtiIGZpc5PueFBatkAEBVapOFcylnRnzAfA9ciO/w9/hl1snzIbQ6xMBRZTmh4YGy/XR8oTdDvg91DzINVQWv23FWQZFLPm2pteezqHMoT2FiottZ/wjzDWAKpAtBMipyPXqFGnzP3kqwwzff5UeyHOQ659Gui3lhmht9kmScDr5DDEpoT6Wzsixu9rwOEbUMf++FpK0uKDcbJU3UPvUTsxU3SQeRQ31BlMMgapl6qxFoM9kx91/vWidY6txMfxppc815arM/5xgKJ9Jmv1+NxP+9QZKX7CiNs82rpgPniQvR/CjOq+jqmYaMGBQnOKFH0UDCTvev/040myXSLYqvEemKcJmke+zOv/rtKnqutZUqJIl/lmlzsOqFZPAeXXxgYNYCBTXO0vfLAwJTvYEBei7YU9QkB+j0rwAWl46aBErzo9UAGsbi+g4FF34bTOej6EwgnjTxwGU5noUvJqE/8z+doM8I6/fMOaLP1xC6TN13R/7zgnzFLW1or/zyBXk+A34JPi6/z5twX9tkJ2uEdv4VJevP+e2LIzcGzEbhwqeO7/RZtr8G0fVeWactdr/vvSoo878dRwoC3HtoAqkC63/T3+8r/nfff/6n/e5M2yDnj//1b/n4lIv33xXtwrgpfvtnLqz87MHByzN9vAANVx/w8KaQjicmhL2LS4Etw4Sva0uc7/m/8Zwv2u09Henil98i+3x3awOuinZ+vfucCFzeftb33dF6/QwCaRUptf0H93ed+fJt2/vm5f+4Cf+nrawH0vuRVihwjT6EiJR65eEW0WBXt06yw40XCpm/gLZLBpipToEUyimcLNXjECVkeMx1JOwLkxK66xkMGqbokIx0AkKZ2ApHAEH+l7RlAkuEqywDh66cFRywpJd+ZV2AhWGZ1MsinSuCNGrw+zPRd0q1NRmmQDh/BVaY4wSTFMywzy8OYbgw5ONciGbLgKfcS1IRL0oMhl83e5wbyuBLYKSPlB1xnkjX6vUhs+GRmmxH32jLvFUm0RthmketcYptDeiiywxKzLilOOuvHPNFMimkStO/x42ATGUuxGTJNAUQjbAdQ8YgZhqiE9EQTeZMRXg+G3g3us8RsTPiXuRrgX56qG0oPkXdwstOoXs21pIFJBwWapAII01T0jEQw7sSU04TziFyEpcibMMcRQ94ElBgOwFf3mnwH5TlmzexOMOx0HeQzlaLh9635LsqTZNTZmQJSzHfNJAsP/DwdkeP/yn/NLe4yxRoydNf0Wv58KgLUjCugROClMbSGkMek+T0ORRMuOVSFIRouc1lgPlgALZJcZxFLgRxzYCnHa/z861h+fiVfZhkwG/e2UoYloV5jih5v1Gr0BUtP90iSFgvMB9A3ymYwibRmZTnhAXPRMHW+mi6ZaJBGRunAS2CcJN1NUqwzwQTrmJH5FSaclVL0Ql1gylWW+ZibATYJVJI3pD5H7BcNVSR3UthBG3wzn8gF5mNdlC9RnipbjHqLWSXBGT/hNrfgJQaDfkeG5JYoWw/mywzLLDPDCdlYNwVy9WE+PwZEVzikJ87PA+Y4JMcP+CF5qiipUKCpmmJNuZ8wEk25pWKa5P4mH3NELjz5DLAbDmCvyE7YJeQwX7AF5h00OHNAwAYGSqPe5hIVhrjPDW5wP6wu+tjnhCxn7mWp9V3gpYFTbW8p3Xslhllmht/lh+Qwjz5rdM+Y4wHy+cp7y98elPSQ5cQB63FaWOLwFGvIH3WcdbYYI0WTWQcHxC5eZRKFDa0zQZoG73DP1187D5KuAxHGIlBPDMc+aoy4sbr2YJ0/+zsD11rOcNmhGNfSmAgW3HHocNMK0wGaixWt75zjkCVmUXJumiYfcxOZ1Bvz9GoMcTR0GWWLe7zDe/xLLITqElbBfnNfCSxwao1J6mSjoTOQ7yQGP2II63wpwXSG5ZC1i+mvl/GZrb6pep2V8RFgmSFOyLDKFLMs8YDr/D5/hHye7zP1EoiSxozf53hAkxQFv5arTFLwWkz7oZppAT0CF1XbnPgAUjJ8GzRmvB4ci++7wNtcZZldBrnJPRT8ssokDdLB3spS96a8FXXFKlPMsxDnMuVqj2ssAXCdRRSKcYP7sR4rhE0G+pKSGgvQ1hCxfMsMxdqpZ92GPCO8w8dRU4i9KCmuGI5FSgw6UKTnvcfXdtWoqlPz7MYA+YSa25lsOehkkmL5aFmQ0iVMDj/uILyBRrLaWXVmGdh60HQ1hfk1GvD4AXeYdSmhwI48jWDFa0il9UegvM6R+g8FqGnf0vfQoMuAlbwzljLkvPd44mtzmkYM+sRgFLPpE0+5X2XKpcgGGqZoxOBF6+wNfkqLZJyDpsPF8jUWW1gDRGOE20DJhjGzyC9SihApMYzBvB4Me0sOPmKKVWZZiv3pyJ+DVSYD2FujSIEKC7xNkZ0AxwfZ9fX7m289oFcvB3GPGIP0hD/md/ld/phVJknSYtjv8xp9TDQ2GExbanSJIlOtVUYTW+QPDkj1Nki2Wuwm3K6iscFhOke2VYcE4Y8pVpxqiqFWmcX0HGLVihCQOGuRSdTD01aAuvbP1OlzdtJFrrDCA+ZYYjZ6xUNyLPA214pLACHVH/TrKyLGTGOZUroYJImh46e0uo3xqvWvSYr+vVP2B7rC4mkIS4l/m4UYVog0s5kYBWwAwWVIHb9os6i2gTvw70be4G/wOQzAi0vQ+C6kG3BOslZJOy9hIFAe7vX+59yY/9d0jcCLPNS7z7ObzvN66akBL1doy3Lz0LVnUtiuEQyocqZcK3ke5p5DL5wWoeuYkGqezvr/X4Rn1+HCHjwbcLZYAgP9qrA328VA9ykMwOfFVxmcqXLx4TOeXbZg3wCjeuG0AKWxVwEYP/gCvgMvLhs78PORV0nT5LX8njH3uuH029D1mGD1XZB33Zu0gcZjOH3PmIHPRuDCGW2wq4IBfwe0Zb1JDAQcgGdj/n3E1CvCi244LF7gYuUZss98OtfDK28dtf36khh4NgCff+dV3lj4ki+KrzDU+xSuQJeA09+AJWb5n6X/FGZh770uBjZP+erSBS6+8Sw8DU97oath1+1FN5yr+PHMwZ+PXOFv/m8eG2CrMJMSbcZdydZRZo/awOas3yu/AXu/3UWVQS7O/dzOQQlezMJZAi5U7Pu86LJ6iDcwkPMSbRamwkg+x4DiX3JJ/FoAvdf4BT1eJCgYYJNR8u4Ttc0IcyzGlM880aoucTphlaloXCW/0fR7lqUokMR4EqulM8HwUUc6JF7M7/jv2FRKAMxhMOQaPjGtYX5zmhJogdOUVQlnVQYZdFaVUoWmWYkmVV57KmbEQtvBQjQG2Y3PVWFmIreNYGRo2qxkwpaDcmIWlihGcbNPXyTBDbqheo5DjrxIkldclUHeZiFkCuadUQ5m3SBbNEixwjRjbMX3nWCD+9zgkFw0N5rIAlG46XzWfKJboy/kajMsc58bTLDOmReeBco8ZJZBqi6JMqnSBOuU/VxKyrfsrB3z3jB54Y/5frBlxK7R+VNjKeanmrE+9j2Ztoc5HsT0VAXZOOvh6WRgSZ1F5tzPwe7TCTZiYq6C0Ap4k5XrnIjp8w734p7Ud+hkM2pSPcvDmLZJapv2Kf8WYzFtle+K/LHMv6bgYLkZ97/H+8FYNClSOaSxbZZAGtHdxcYTU0D/P4VJKy252JI4VcAqhACM6dcpW7Rk6Txvs8ADrgc4u0ue3hh7fLNfl3jCeXJ8yHe9SdgNNqvYtrY+VqlgXjx1MpQY5hoWFiCW2Cib3owVg52mtVNhEwla4YFyl3eZZsUFs+UAMlIuTRPrVQCPAItxNuK+UHMrYEsMDYWgWOrtLFdYYRBLLRcTQ0Cc2NVaqybdp2rJ/QUF6Nn9WeT7/IhVppCkvsogMlheYTrWTMlc9b0ECMl+QHYCmi7nOOIhs86gsrW/0xJB65UYqAohsgFQTySP63zJJN1sBSwl3QDEkwBaxYaeZYkNl8qZDHSISVYjsVKMDgOFGnzAHSZYp+AghUJ6NIQZ9zVUzDOxBK2w3ffJ936sM2K8dBbtYCCmjN9z3ngOUWGeBQYduMxwggIJ9J3k/1egEqCa9iuTXZ3E4Ezy8esskqbJLjmynLDBeEjt5BfURy2M7GVbsMI0u87sFdAtI/syhbBRkJ2HycJOkGerJNCrTMVz0keNe9yMfXqOReTrJT9HAwOPSNLiMdNMshbsmAx17nODWR4CoHCheT7xVMJGsIXMd3SUHcxLV+B5nqoz/1JcdtuOb/LrhCxj/DzWDrG0CpRZYpZZllAiuBKhtd+OsslDbxoFhGk/rtGHvGVH2H5pmFtzKWSVPHf4wAdiW4ANAvqoMckqTX/ei+wgppPuM4HuZiExGIODCdZZd7m8wEhTOVh6+EOuoQAP+UnWMW9F1RUKXhA4Yib0+zFsE6gjia4A+E4G8Tjr8XO6H43dl4/nIMtJsKRHva5TGqV8WlXfitEjJYhSYsVWvck9Nhh3+e2my2AnQ4KZpc6G7xkpmuz6/T7DMkvMRvPdJO1+0INRB2nQKz9TMe1UizRI04P5sEkl0Mlu3uYSSifXGqn1SbJDhawB8R4CSHXeB6myzaVgKGUc9NSgSD7eJ2R5m4XYZ8BIDGIYj7DNVZbZ9mv2Me8ABKhxhDHtFG4mPz956QLxHXU+1Q9p8K1eRQO5ORZZ82TdYUph+6Chl1h2o2y9tO/J+1EvedDe5wbz/h0FGCspOcfhS2C1pLb288Y67qcWihGrV4w00cMhU6yxxGwwrCzhuO0N/E1+ZbxOKFJigbcZYytqDCXK6p6q0U8i3XqJaNFIpMkfHLDce4UsdbYTI0yyagBcMmFgnr+KB09Z632D2YOfUe3t9SF7gtWE2U9MsRZMTTAZr1RiUi6I2JJnl1LvK7G/3+ReAL3FVonVxBRDVCgc7LHba0MSs/XY8FrDB6zpPC0SvFI64t8VCxTPnlKkFIMV9c1PBl6hv1VjLLFFKaGBwyxJH77odeYDxElW6eKU1quQOIFP33rdBkjFUrBKP/2t15na+4Jzp1Ab6KXRnSI7cEK2UaecLvDGZ1/yi8sDvLa9x+kA3Dz41xz2dlG7nObVygF307eYYIOvrlxgN2GJ3bMHPyPZgv2BLtKNJivpaUbntpDdS2KkxdDeAXuXuzxMssno2c85/EEXA6VTqt0D5L+9R727i59wm+neFTLU2Z6/FD1zcsTW9dZbO/QdHNnQP5Fke84GT4OXj2ikDThsJRM8TFxjgnXzkO25AG8+o9T7CtmBEx9qj5EYWSE1YmzeLcYYn1s30lBjlVK6SK3YF8P/xJh9mxp91Oetdxi6/JSF7rctE6CQYbBRpfvgOc/S0BqzYzlM57yvKfKblT/n+DcswiF7/JzNgVep0c/0tx/TdQxfFExu/W+LoxSLJV4r7kHLGIb571cZbFV5cdnS2svdr1iAz8w2Z4kE/ZdPuc4DPrv8LS53/5wqgyQvldlMjJJ785DiyJdxbtJzz1gZeIM+arx2tsfe/7LLFZJnfDb2LRtyzdZpJRNkjp5x4RieFnuojuTNFmPsKYdv9ViNOXbIq58d8IvLAz6mz/DVb1ygnBgi/+YuD5jjOosMfHbKswIs916hj32OLx/S3f2czwrfIlWwANHpxgoUIHv5OSdrSc6Oz36p9eRrCcUo8JQELU+m6+ED7rDFGEV2OCETm6c8iiZZjWl4ljo3+CmKrx9jC3lP2GR/lE1GWWYmpg1qRCdYp0Y//dRiGrfGFPIzG2fDC6l2SpfYb2qy0zRjWq8pa80BHvlraAqh6dgRuZAK5DiKBvYeNykzxPq/l9KlJF1N99X8zbFImgarTLLCdHiJaFFTUIGCKsB824zJaMWdaPk9mIfVLEvI6y7hLB810Nq4da4GqTLGFrvk2XBQDogGTgbyI2wj2cwWYzEtesgsZuprzEwVkpKpyP/BfJIMDC1SYs1BMX0Hk6JaQSvvmgfMRcOr5EAVmAK4lOykQl+gmWRhLZIBACQ7GloDg3e5yjIyjFdzPsOjYNnM8CimyErkGvSkPRlmd0raVHAZQGbXSyzLNE2mWWGG5ZhC6bvoePVZFSxwIssJ3+dHUeRnqfM+77HBRBThaoDLFDCpm93XZfcCWmeCEkU+5qaDh0v0sc8oW05vH6bgkg+BA7s+sQbcXNokxhUKJGi5d2EiJmXj7n8lhuokqyHFtcYjwwQbfItf/NUtOr/iry0HfaANegoM0mDBfAztPCu19ENuYz47uyFVFcMnRQP5dqVoco934tkUA2KQXQdgUxFSkMCSAe9zgxWmucc7/Jjvxfur2ZNpsaRQKtSHKDPKJgvMRzEv/zTzU/k4Al5koC6wWGCSJIxKBBczVanKuvfFBBSDV8+O5GNaw1aZZIMJ3uEeMg+v0U+aJoMuNarRxwpXOCHLKFsMU3LpeV8cgwBH+Ura0MkGFvIr3WCcRa67lLhKP5YAZ2zghjMIjRkMJk0SyAjG5igx7IzHHVI0YyCjkIoGaW7zIdOsMMgu06wgE3g1xkCkIgpAF3hrPn5HyLswywmLzIUPzQJvU3aJs0KPNhiPe1Wg/CJzvneXQqq4zSXy7JKhHuutWLt3uRXFuDHFUwEAz7AcCbFTrKEkdwNGNuIcqrnV/qq1DQh/Lu0FJYoscY0RtlHwkLHZz7zxqAaroIdDbnIvQI0UDd5mgQnWw95DqehiHys59A4fxL5prMMC9/k206wEE89kTOkYGpkdSD+SR0nap3ASseBXmYo14Zv+eo2fh+RcygULiDoJ77czEixynTMSrHCFFA0qFAKou8c7tEjEMMqGewbyWiCUedVOs8IG4z5U2OW7HnJhDLAqZR/YbbkdhYYVFQrB7hJj9UNus+PglsChlgM6uv9TNBmmFOmsYrwU2WGax2wzwiJzDsznkeXMAm8D8JBZthkJYFuBBDe476BgNWpYhRXJ3qPidaYAddVUW+7MrefHAKFGDGmtRupx8LLHP78Rz658MifYiKHoOOtRx+qZOPFnapoV7nODh1wj42xzAUVga4vWWQ2ImqRJ0aBOhgXm49wqcGedcWQ5I8nvCdmX/KWNfW71031uUMG8Z63O24nhuHlPV31fqPqgej1qmCVmUTr1CtMxGBJAKYb6PgZ2fJ8f810+jHs5QYsjcky6f7D2sG1GPFbD9mQN+bOccNbxLKwxFb1Ej4PDChwqUoqBjGwkTtxvdYux2N8lqa77PmfeeCfI31D7/KQPaRVGIWVO3r2OpZYaZ4MCFT7mHarkXaV0Fu+nIX+SVrA7JzzkZI1JUjS4wX0m2IihkZh4qokkmU7QosIQX/Lqf8RV6T/d6zLrzvZMksSUC/ONBarko4+YaGxwde8zipSY2Ps5GUzWKhukSu9A9NRas1RHbidG2E2YMmC513SOld4BxEIW207EDYU8/Qt+j2Vm+CE/iMGcUtkFhItsoJdUTB8nbtJHjbm9n3HScyEAthvcR2E/t/kJKZoMNmy4/+fFKwbs9/ZSdm9cBaupX0+ctQLAzviAQtL4vBNYzPbIYOeukzMSx8aEEss4RYOxvS959bMDMtQ59wRIGpvv0t5T0q0G3f/mOW9sfwm9UNzb48uRXurdXbSS0CRNtlXnWRr+F5V/xejxF4Ctq3+r9DNjs+HAdjLBzPHPeOXTI14tHdDXqPHqZwfUu8+TbLXo8R78pOcCA6VTSJr/aVfFvPmusxj17QTrvPbpHsWDp7z22V4Mny64Mj3PLuPHn7PNCLsDPWx3f4tGOsXF6jNmeERxb4+BzVMaiTQnPRd4/dOnvFI5IkWTudYi+YMD+vdOeaPypa01B0+5tveY7PFzpHL5Gz/7nMLBHn3HB7xSMTXe1PFntEjQtQkzPEJKocTZc74s9FLqfYWuA+j+7DmvLh7wxtKXQUZqJRN0HzznXBW3xirQ7LoAe/D69lMu7T3lb/3sZ7xW2eNZN3w50kuCFq98dhT3XLZVj7WynLD6/NwTkE/4cf48KRo8ShjB643Sl9S6e0mdPgfg3AH8je3PybUO2St0MfDpKa+V9oxctPdzCztL57hYfcZ276vQgle2j3hz8wurybu/xSE9tEjw6qcH0Auv/WyPy5/9nD5qXCw9o9gokWzZs509PuWraxeo9vYi+4Hu6nNIW79fPHjK39r8Gd2V52SPn3NuETLVM5MA/xKvrwXQ+4zLMU3qlAVq0ZFMVPIrm2pWXPppce9ZToLRYQmBE+GRIWZJCksZFZCjxnifPpRepgSlNaaoO5g4zQoTPilQE21NRCpQ6BkescYUq0x5WT8YoJzYUGKFiQK/zQhm3HwWEoJpVkhghqTLLrkZZdMbzzYzRdHf5u2T5l3uItP3KvmY1rUwU/stxmKKeOhTTPkoNUmT9I1RgSJg4N+YSwUke1CD1Lkwayozw3J4G24yCuDT7c1obIqUQpKg6Vwn60xIvszRxSJRUbrk6W9K2rrPDWQ0rBAFPZyd8mQLLjE/FH2fISpkMDNeSWzUnAr8E7irabeo5JphC6yTz5/5RCX4mJsAUUDLS1CNrKbdi8yhRNoWSWZYDpZBnmr47imdUffMmZ83MdpUqPX5RFPFp03XN+M7CTiXHElm9UnMw2qTMSyJuT+aoBbJkE/WvDDdZoQ/4A+j8NYEWBI1+W/Ns0CJYZ7EfT+JPGeM1Vhw8LAS0+UcR0iW2CLJIZYiKi+ub/pr2aOgrrt8q4UlDYp10GYDjND09U/M1Dy7AVqIbWET8gY5jsJwe5RNthj1hiQX69EMy+H9tc0I8hxVcaamUAw3AyjKyC9omxFn0jZifV1mJmQ4as7G2Iok8BWmHRjbiYayzXKouxH5EKtMeWFia4RkTOYVOBRshCqDzPEAsE0P4AFzZKnz2EEhaLMixL5b4G22GeGRS9VG2GaOByHp0pokK4QxtrjF3Ri0jLGFgoqKlLjOYhizq1HVS/KvKdaCvTDKZuwzg24oDcYKkmz/A+5QcinXEJVYj8XIkDWD0lsFRJhcqhl7kwDcFgmu7T0OELXkw6k0Df4+/ySAD5mRa+2Tf2qGkwAYbzbuBeND96EBzfseWWSJmlXyfMQtzJOuEuxkTfVBJtjWWFjTVgimXJ0Md7nljeQRJ1gK3zWWyLPLpg+yhqiwzAwfcMdZmunwubvie7rk3MaYN1C2QNmBFFvrLYRkPO7vcTYCrNReaUC3rfkKg8lQD3ZRiaJ7sB7GeVdzpPta7ArtlyanLrHFKFX35ZUEuUiJp2Ho881+KX1UCdeSl2sAmKYZqowRtsP/d4sxplgN9rrVESarnvJBHcA649zjHWr0cYUVFJo1xlbsd8YMNOb6x9yMOlQBE8YenqVFggnW+R4/ok6WD7gTkk9JtYFoLNd84CF2qd0X+6Qd6Jef2qiPpgEmXJEx5sCzhS0U/Pdtv7QhxCZV8jF4A6I+Vuq11r8er5sEKnZKXzeY4D43wkNuiApnfv9qzS378MJsN/aj1jCG5RZAfL8txuLcv8/vhJfWCRm3eCjHnmNspB36qL00xAG4xhL/gH8cktZd8l7zW+MuX7xtRphnIcDxCgXG2aDIjnvFblKgTJM0T5zpKYWIkoEBJp1h/DE3WeYqMyxzk3sU2Ylj0tBaPsUCrB4zHTJwBbgBcV1UG4+yyTYjUT8DwRicZgXJrTvrSg2SxPpuOiMR2kMlG8BMhBS86bV92tmQupbrDkIqHV2BHBZkkvRBWw9lZ1BvMOEEjFEU1ibwXYOtogN9xmZuhEKgs/8yT0KrCwepssgc64xHfaI+Sn3dkNtbqAY/8j39m/76zGXtG4yT4cTqv2QizmUfNRbTc5QGBkjR4LD3QuxRqic6PasnWutMHX/GWGuLDxJ3AKuVBNY95FrUD2JramgvUkuCVgwG7/ABCpQyv3W7Nx8zTY5DPvHEANUfu96rVslTGhhgM2HKE1lsDB0/tX7u+Ig+9jlMW/DeRKvNTk/TJM9uKKwSnPGAOVbTU6RoUKIYwV6qiwSmv7p5wCwPyR/vcZDJQhK+zAzyyuYRdTKWBp02yeylvafQDc/S8Fplj7MElBJFXsyYFPUvCpc5dwz5A1MSbXS/QZU8uYNnHPZ2meyyu4v9RB/pRhP24C+Kl9kf6GKXPI8SM1S7B0wqq/TTBqynx0mdPuOIHK+UjthP9EED/k3hPyN7fMppgQB4AIYankpxABcaQC9B6DktGOCbbjRpdl2I4cHE3s8tsKNivdxZAvbGukwRkUibtLbbgMjDRI4LO3DuFF4kYfT4Cy58BeceQ3mgN/aBvbe6uFCx7/zvCm9QJ2PyYYACDJROyXHIK58e0XWMYxeD7BW77Gd6gDMDH+mCi5+b/PWzy9/ijATXecDF0rPwmzvnASEvklDt7TXLrUYJeqGcGKLefZ6LT56FsrPYKDHYqkISXv/sKa9+ekAjbXvM1ZYNwJ9123NT6n2FcmLIpMFluFh+ZoOEN3s57W1/fsrVSV8Weu06JMw774X/jGE4R2Soczx2nr1CF6dj5rf4J9yBM0icPWczMcpvVv4csGOXHVofNZ4Wezjttb38QsOu/emAyXPphbMcfN6vKOX/8OtrAfTe5FPMm8YKN7GXgAB1VLiIQbUUUorRmHCbT1E6JpmD/v+D7DLh0zeZfir5R0W5JvCSV5YZ4gFzrDHlzEGTbG4wEY3RKlOckeA93ucBczFF2maEJWaDgWTGuYnwd7FmcBNJfpVcWqTECNtMsxLTulG22KHIOhOUKbDAfEgxzjD23/f40UvAVBvU2fV0P6PWP3HQJYmxxxK0WOZqgGmWsDjGXW7RIuleSraR6vwuMRtgnOSjWkg7WTE1+thkLEDahE/j6rQNXK2AmLApBnXe4/1gTgw6e2XLC5smKVbdRwdUEJ9QcPaP0gIz1NnwTU+MDS3gJz6xzXgTUMPSbzcdxBMjQq8+zJRak28V5gWXG68zHlJsk8BmUBKfWHu2CeajGcxTJYX5rKioLlHkh/yAPvZpOPQs+ayOQ8yCKoNkOKHCEJbO+SQAmSMHvtR4P+xoJiWNlM9EJwN0hG3G2UAMvX4HjtVgj7EZk/pFrsf9IgBWiWxivKqQ22XQfb/MdLtOBiV6Wqy9LVQ6d1qwDFgYZolryAuyyiADHdfmm/yaZSmAGhswWBF8l3fpx9L8BO5L7pCiQZO0+x0VUCL0EOVgdtUww/0Puc0S18IbUcONfV9rFTKUphnWBJJ1N0jFc25yo0IwhsZZD7ZzsuP+svXwGsOU2PF73VgPDfd6sVAirfkq+mZ4xBCWuCjJW8rl3BNsIIYpEIMLu8cS0ZgmnEtxnUVmWeI6DzBGrgHI64wH++4d7iFPJ5mei9VoJvR1h96Mwfwht3nAHAA9vodI7te5FoolrQZRQOYyV1nkejzvQ1RQCrg8ggQASapkXlqW/NdpsaAmTNPzE7LBkkz5qmJgSD6uiSR26wPfIk0zGHTXWYx7cclZ1KPuvTfkrZyYiDXaqYdWbO9inqcnyAZDXp6SuK4yxb4DC5JubbmEfMLTseWb+YDryLtTcscmaeb5BHmAivmzyBwf+TNismsL7RCj3I4lFcBgyu+/JK1g/Qx6MyEJntiAuh/EptK9KoZrgxTzLKAkS/PaqviAJsUt7sYeusWos86sARb73kAQS0+9yy0POcrGMFJrsJgZvw7r4ae8yTjrAUPbvtFOoxWYfoP7AXAVKHvi8Ns85Fow2Ycoh81FFUsxFWPS1sziS2CL1rf2vW4BXlOsIQ9OsYROyDDJWgzsxHwf8/tYnlbjYRHSg1h6j5iJeqZKnjUHUdqhWCe8z3vBIJWiA6wOavhAVnWUZLA2yG5EI/+QWfega1KjHwWcCUy8xDYTbASzTEOTIiXmWYj7roVJIVVHrzDNXW7RxHz7digGO1jDSdXpYgLt+1DHgrUaHXXJWYDski4nOCNPlU+YZ5HrSOYuX1mBYLbm2XO/xCxLzCLDf9WeK0yHvNMknuZJLBuIijMwj8jxPu+hUAeBUkrlXGMy9hdjmmSDzTnDIwYdYDA2ZCHq1vbAIhMWABm/7mKwi92slGXVqofkIvF8mRm2XCK+xlR4TC7wNqNsxbVaZzz2Cakg0jSZYZnrLHKdRQadpbXNCGtMUfIhjHxnxcJXUFaSFgossXOzE6CbvP5aJLjNh/EcgYE4H3tatZ0Duy/ky9oiwQ3u8yO+h2TiUjrpnte1qJPhGku+b+wyEUkC3+zXz3mNMgUP+jJLi3JiKMC1PLuMshn+6qnTZwBBmpg5eAzg61SBzNEzVrsvc7H6jGlWGD/+PJ55wIcV+1E3CLCVdFX3dpY6D7hOH/uMtbaibspx6P3mMoMt2+M0pOujFgFEGuAW2WH6+HE8N4kzA6UPu3tiqJunymJiLthvqsuGjp+SouHA+FbUHxaW9BFiRqtmPCTH52OvUmXQwa0k+709POMCdBOkka3u19kd6GF/oIu9y11caMCXhV5qvT28WfmCRtrO51hriy9HemklCRWgGHPbjPDF7CvkDk5tnUzP8OlbFmCSblggmewC6AJaUEoXefqW+fG2kucZaW3zp8W3KR485bh4ngJlat29rHZfZq/YRdi2pLO8VtmDMQO3vii8QpEddihaOnI6y8P0LKnTZ3GdzhLwxdgrPH2rx4aVvV0MbJ9SwALvPh15nXp3Fx9xi3UmeDZMAG/17i5OB4AxYnBaJ0v/3in/n8u/6diKfcdaui/2Vyr280/f7OHLQi+51mEMRJ6NwN6bXTyd6yHZavGvRv5zji+dx8meTDSs/j8unOfpWA+U4RfFAX4xO0B5wNhs11hiOz3CFwULkNlOj/BsABaZo0Yf3U+ec5jIwYB5EzLQVrmVE0MB5L2yeUR/y67j08s9HM+c54viK8Fcv9f9m4B9fp0MV1vGyO/efM7TYg+H9HDuAJMqc0adDK+XnrKbznOPd9jofoOtXpPrfj72KhvdbzBEhT8tvM1H3d+hTIFb3CVFg1e3D3ildMRW9+sUKXHabZ+73f0tWknYm+/iWSrJV5av+5e+vhYPvR6OsNj3s/Ba62xihiijpE8BcfLKkxxLjJFRNj3Fy6aZovofYv5J5guSQcmwMi6W/4lYJLM8DLaIfCrkiSc56jjrwSZSwd/HPkMuj5E3ngzjJftUEylD8ILLnMRK1OY97mwN+bXJPHybES6xzS6DISPoQTKORiy6OlaBVGpwCpRD8qAoeTD/iz72GWMzaPX6XDF1VCwKNBTgJ9BFm7eK3gRnUcT00faR0kRQi75AIgNpb0RaWJ0sy8wwzQpKXbUC/QnyeTFT/R2qDHKfbzPDowDK7Ka1c5R3VpMKejVH+/69VpjmHT5m04vPYUosc5W0/5wYL1UGOSEbHjy2QZ0FA9OSoE7CJFjNhcAqMQj0fQWG1OinSRoFqbRIeMKTbSy67wQ8WxFlLE0VPVXyDLIVm4n8Zo78ftKkW4CxgehK+j2JSa+BOtacDLLLFVac8bAWhcQu+TAmBlsMBTY0nNWwyhQTrAc4LcmEUqSvuIx9m0su+22xyHWuskzZN3CBwef9d7/prxYJepw1lPIRhVhxJs4cZIZHSJ5co59VJpGfhSSLCsoQSFUnwxhbzLPAGYnwPGqQYopVDslFIuoEGyjNVFJ0sA1YBZpAlwXe9kLJXpLX1MkwzWMUILTCNP3U+C/5R7GmyndO33uKVUoMU6HA2yyEVKTTAFv3rVjCW84qVdGiBq5JOho68zc74QHXYz1ScnCN/gDxxLbJYalvYu5WKDDFKmLWGFOlHMCkjh+MUVejL3zadoPZ3Apw0kD5AgUqmKVCMRi8RUqckEUG+mIKr7rHkQyeE5xx5ixy+z47cY3EsNDAZZkZ5llg2UOE1HDPutzYQKoT1hkPBg4Qwwkx6O17mo/hu3zEOuOkaLDBBOvOTja2pu01cywGuzRBi1mWYi/MYGbqxr61hnCJWfqoBSgmWbJJdm3/0zU98wYSCAbjOOtY+uFESPBsmLYbjYeGCf++JcU93sEY3tlYXwUaXGeRLcZYZzwk0zX6Qm4rFpEFATwKNvU463H+FMoliZukKdorNYwcY4uHzMa+KmaT2LZqiH4dXkd00yRNhaEAVwYdxBPIL89Q1YuH5Fj2NOdOpr+ei0GXtxsjrRXMdj1ndTIoGEO1gw0BG8Gw65R22dB2ECDAbQNmrVmVHFPMV3mAidli/n87pGlwxQHmTQc6JP0XQ0vWGU1SLDPDMKXwmzSZaTaGoJL3Zt2XbIytGJKpZlUNkqNBxn9um5EYUur41QTvUHRZ60TUhluMcocPwubG1s0CW4wxwzIytW+S4rt8GDXY+7zHP+Afs82lkMS/y0fUyYbqQyFqAteveB0oqapARKtzdzkh+xLIL6mxrpX8MxXkdYP7MQi3+6UvBtWygSj6ADLnrPMJ965UQIZkhdrTNpgIq5BJVlnzGuaqr8kjPAm1iMl/h6IO1rUaYZsPuf2ShYsYz/3UIuVZLGZL3Ta5/hibPPE69DY/wRQOVeb5BLGDJ9xDsepydl33WR7GfitCwBpTzPGAJWaZY5EUTebcm1brpaWRto9HNhwAZmXRoECFPvb5iHdjsL/LYKh6pERI0uKQHqZYC3KGzsmg7xUNB9n1/HzbGfnf9Nd3+QljrX22EyNkqEcg3yFmsTTFKrvkUbhhvbsL88Ku2DPpwEHTh26lXgM7/m3hLQBWuy9ToMwOxQhSqdHve9BJ7Mmq07cZ4RpLFChzhYT1w4lsMNh3yQfbrpQoel+yH8xRMOZumQIzB4+5sAOfvfmtqHU3el9HJBjZGqRbDQ4TNsTMHD2j0Wv3yP3u/zy+Wx/7gSHc4D4Dn51yWoTt7m9RpsDV1jKNRBrZxDQSab7iIgUqPOMC/81/l+Yca3QfN2mmz/F58g0G2CNLna4mtJKHHJ7P0X8K+129JDmmp/mMw1SLc2Q5Y4P+0wP2u3qBXpL8giZpnlEgQR2ok6TFMy5wjj6qZCnygDpZXjk7x2EyxzEtsiQ4YpHl55BqPONhps7/gyHOnBiRpsFzfm6/d/pzjruMEdnLM2pYiFCTM86T4JRjUvTT+/yAp+d/wf+dS+TY5QL4MTc5x3l6nq9wcL6Xbp5zwgnneEGLMwaap3yZ+rckaPH/YoC0j2MqDKKQxtdO/zWVrkEussG9A9jp/RSAFKYBvcAzcid71DMpuo+b/Px//AUpLnBKF9284EvSDPAUGOQiX3FCggOGyfMX/Pf00vv8gL1/ecpFktRocsq36OKUwed1Dv+lJbxPNDfYTbXJKqqbuvgF55+fZ/v8Kn0ckiJDtrlH8gRqvbY/pNmnTArZYu1Q5MrBU457z1H163GOHqr00M0xL3gKPCXjPtYJHvH+8+ece/6EC8+gloFzfAVk2aXOIOdJ8hUJkjQ45gX3+QnnucAztlnjY07In3zJueew3H3Acw55nS/4nzijxgu66EF+4wlaHPCa144v6CPLeV5wTF+oXv6y19fC0DtyDwr590i2J3aO6PTy02l40atCQw3nNiMR6LDBRPh3aSK0zFWUJLrMDCtMs8RsFIErTIcBeg1LLb3Bff9MMx5WEyxZnMAzyWQGqYZsTUX/oLNo5LUkWdUJWZaYJU2DdY+3WGbGp5Qmo5LRuSaIkrWqEXnkMd0mL7Cplc5HmaHwR6uS5zqLiA67zQgfccuNzM3XbYwtROM/8VZObEQzBTYz7i1GWXe2Wo0+1plglSlWmEZGywZKHLLBRDAUNT3VeTlxVpaa47LLLzVxucF9xNhUYprAI6NZV6MJlDxphkdsMMGWF/lihsywTIpGSOTs2plcDIzWe4OfxmS7RDFAxjP/LvLwmnAfC1F3FfpgU/m1aFCB8NdJ0opGUN/pNj+JhDfJ4AxUXotzZMWNTQ06p8xiHGhq2SmBkQx3zAG0KVajsTXAYAel0JkuP+UNUyOAhM4Qi30HikoMI1q0gL8SxTCKV9G8zaW4L2SgnOOQFI0IydA1uOr+QvMsRKGd4yhYDQasGHjRKfP+Jr9SNAJY03Re8uuCs7iMLWKG3vLW0VRVptZZBwU3XKopXxz5Nhm7NMMGE8HsHHWZmZhweXbDo3OEba45y61GX7ArrWnLhAeopLtjPrQQmHvka7Skc6Ns8iHfpcgODZccmqm6AVMG+tQj2ALaxd8S1/iIdwPASzsDVWC4GlBoN7Y1+rjOg0gQNJmvrT81+uI+rriUyFhsZwGMGrhse5MmxfJck0xZQINYKpIli2ky3mEBkKHODI9I0wh2igAssYqbpFxWlWWKVW7yMSaxt3VghenwT5Q8TqyldQ+/EBvP2MknIZOei8CJPGL5ae0TODVEJfyNJJOpUHCWmcm31/xciGELxHAtQ53v8WNucs8tAoZJ0YxroCGIUhG1JokFN0QlZNJrTFKmwBlWrCl1sk7WDIepRPOr/U/ps5JBj7PBEcaatvAQk/Yuc5Vx1iNEoU4GyTcfM82yh2Ytc7VDUv0gWCnmNzpOmQIPmOOhyy913/2E2+zTxyDmazbp+7KaJe2lYlO+y0fu+2uMg0Wuh+9Xi4TvtZn/uAvTf4JXD8exppQYJssJuw4WrzNOnSw3uM8C88EiEWtWsi+xVt7j/dibZXEh6a4YdxYUNcQWY8hzT3YFbUsIG55azVp2RukmJYZROvUaU25E/ySY/BpsmSS9GmuZ/N703hmvBzQkVFiEwt1kazDKVuzF73IXsy+4gjyb5z3RsXPP1ncCe0aXmOUD7rDrCgKTip/4wLNJ0xUIu/7/xlBc9eo2GXt3lUFPwE3GoHWVSSoUIszNwDNjQAoEl7WHgDepCzbcB0+1qgYul5zpXGI4rBDk06agVAzcAAEAAElEQVSEVA2yZ1linoU4v33s83f4w0i67JSGigGrtW+ZGVaZYoMJ6hjbWQMBgZNlCuGNJ58nA2fNm2uSVSq+34otZNLkfiZYjyRhMNZI2Wt8sOG7/PeMoVyI/QvMh1tgbKdnreTSuqe1Pukciq0nRvMqkwFgTnnQyyE59unjkfc4GkYpDb2PGhnM13PdfVRFjJA/q4U52Xp1SI+D7vso0V5elfpMWT4YMLRCjqOwhrFBtw3wDIjPYim55hloXmfPvu6l6FfitUeeesJY2y2SvF55GgPKcTZ4rbKHlAIVH2KoBm+SZqhVpu/gCDFBbQhyFL2HGMHyJ5cnrEU+GRGjwlAMBs3nsB6sK7Ht674K9FHjJh/HPqZhlmr5Bmne5z2apEm24NkwyANVgxgx4HUf7ifsvs9Qp9Zr2MH03ueuUklF/aCU3CZpnhWg1P2qg9VVyomhGAbueD9/ka9IPj9jgD0O6OUJl2imz/FV8iJ97HNKF885T/IE0ofPecYFzr+A55xnnwGepga5wDOStDjHC/a7ehk8PqBOlq/opUSRF5zj2Ik8GU4YPt6lh+P4bt0ckaq9IH/4Fa+efUlf84Aejjg438vzc3CJbS7yFbIfOqLbyR9JXpxvhxJeeP6MA3rJPD+lsG8kC7tnEuyft0FNjkMKx/tc4BlnXODi2Vd2rs+nOaULBZ/lj78yIC3Vz3PO84wL9HBMghbneY5Ca/JUeeEI0YWzZxz3prjAMy44uNgkRe7khHNN6D5uctJt6pXe5wcxGM+zS7e/9zOSnJGglwNyp3ZHJZvPUaL3eZ6TpsF5nrN/vo9zvLDaLWWBaa/zhF6+Itu0IcmF5hm75wc5oocDennOOZ6fPwfnIXtm8vXMsanU+qhxRI5ujml2nyPdbDKAGRAmOKObYwdTz9MgzQvOkTpr8pzznJzv4lnyAseZNP3HR8FmvXT2hPO84JQuavRxnhdcPD2i5/kRuRMzIehrHnCYybDf3YPlK+xxShcHXCRBi2O6OccLzvGC55yneFaii1Ne4SktkpznOcd008UvFxL0tQB6nzuCLzms2EsCrcBYVmUK7gtVd4aQvFTqsQE+YYR+asHok2eKpjtZlyuCTVaVzKcFTguONtoSwzExlCRCqZsCccT4U1FeJxMTW7EuJM2UeacmtjKQldQ2S50lrgXoIhbcCNssMO9sB3sQ5E1lNOZMNPTme1BAUiVJj5X8dkiOh8zyu/xxLCTWxNgmID8KTd/k8ZTjMORMapwqDHmhXXfmSR3JvBQlLkq+QCelBz5xBF3mumrMR9lCXk4CoJodUht5tmwwTpkh9n1CBcZSmWIVpcZA268hTTOKh7u8izwQBdxtMMEmY2wwzgzLpH0SOceDSNtKd9DDM86wMO8SS0tSs21SjGVu8RFpzOxfQGxbhnwWG+E8CxjrcTfM38EKPTDgK0vdN+ixKKzExGmS5kNuOyCZ4LqnQg97k63pp4Bomwab9FjsoJYvoJKTN/z8XPIiUECLaNo9zv6RdE73n55HNRZq1lsk3evoEpKc6P6U5HmHom/gev6KnGFyxB33m/mmv750CZ58fMTK/B4/Cvavpd0Ox4RRjCWBb7/D+4jtpWvQ8r9Xk7LM1QCp3+d3WGbGwdbdGJB8xLvRVAmQknRMU1pJtiSZH6ISjUmLZDDbvsuHNEizxLUAjY1tcUaJYczc2Fi9ww5S6rMFVqsIU7HXabQuqZLJu8YCOC6ywwrTlChScYbGLnlniJWjaR5ng8OOCdgueY7IxbMDhKeo5LPyAATbK5q+tguQk2dGw6VR5sPZQFKlT5gPNtwnzCOvNDFxxJq5z40AlJTkK/nvsMvjxGYVmGmTcJPEWPNmDD+x2iXFH3RmoiRkOo997NMkxSJzLHHtJaBMBY/2plUm437LccQicywwj6UY2zrdJB2em+b/txlDiwYp5Dsrn8VOEFsgiu4HMYg19FniWgAnJYZDmqd7RQmLZQo0nHk56ECPfLsA5lySbam39Q5mlYEbtkefhFpAHoUGDu+Q45BJZ9OOuzxXVgvaB+tkPODJQr9SNOhxYEHM+TpZxtkgRZNFrlOjnzNf5wUUaxj1TX8JsFljiiVmGWOLCdZRerVYWbq3xD6/zw1KFF3+n3TQ/h3uc4NdB7hMgtiI/XTN01lVg+bZZYiKA2EmFxXDCcxnWAMveZOJjZzEQsVMlp2M+0SgsbFeLEm+Rl/seTsUwyJGlgf3uBkS3AQmrxVYIzldgXKwypS2PM8n4YtWZohdBqOmrZKP0Iz2IH2fazxk1Ie7dbIB1K0yyRhbyD9NIVfDrl/ZctBG6/Xv80f0UQtWqlKdrelshj0EEAN1eVGKVdZpZaIaWHVd0tcDsyKwOlUsOWMRnbHOOJ1SeWPYbQT770d8jxG22fHBgOwaRtj2cJFarCMC24GQardIUifDFKsMUQ6lhIJ1Vplii7FgrMnDL0WTE7IsMO8Dr00s/KaC2bI0fTDfE8cnnz2l58ofURJUMfDlu2y1eyMICfe5QYtEDLlXmUSBT33UUICdgqfAhoOqJe1nNgPMbYe0bTLOBvMsIHZ8w/clUxesMcFGrG0Z6syyFPdNgTJrbl8k+a8NcY3ModC8Gv0BFkler5Tzh15vfNNfOY78ebTK8JnLPcdZZ66xyOeFV7naMl9sKbHKbsFSoEzm6BkrvZdRmFiLJLnjI972a2cp332UGOYG93mldMTY3pekXHWg+2qICuOsB3mljxrXGktRUygoRzYvQNQ5J2QZa22FtFe1bmlggI3e17m09zTqE+uHZ8N+QpYUG/5c/yP+S85IsDjwFmmajLPBVGvV/UeNYJCiQbW3N3qJbUainioefxl9yjPvxepk6eKUSzzhWfICDdK8erjHAHt2b+fOc5Yx1vZxJk03x7RI0M0x53jBhefPyB9/RYM0jcx5zvOcAfZ4lR22eJ1ujnjKK6SbTSrd/ewxQLrZpOvslOzZCSeDSc7S8OL8OU5T6TaxJHWe3PNDLvAsaocjcpzSxWvHFZ6lkvRyQIYTks3njLLF8/PnaWVwhKLOMd2c5wUDzX2y1Nnv7iF11iTJM+rJDM85R4UCzzB/vWO6OelO8vz8eWSPIMDt4rGloOdOTujilO7jJvVUhvxZlVqyD4D+0wNSNOnlgAs84zCT4ee9Q1S7L3JMt4Gk589zShepM1tbz/OcLk5J0uKUDF2cUuka5Ihuvurq4ZQuBp0Q8srzpwwf7PLK6R4vMOAtd2LH9Zxz9pwkjQFXT2V4wTlG2KaXA1okaSZTtC5AqvaCLk7hzKyiMvtnPOc8WeqkGi9opFKc0mUgLi9okWCXQS5yEOqRC89ecEw38gt9yis0MufpObTBymHSSDldnHKRrzili+2u13h6/hXqGVvvSinrcfcY4JQuejhknwHkOVplgG4s5OOULi48e2HnlR7OY8Edr/Ilpx3M5v/Q62uR3H6LXzDAs3gAwSSbACdkopA4xAwx73MjCoRBdn3CZg9zp5eFLQgn0cAM+TTnHjdjeqCJaJ1sUOXBgIQWiZCsWRFlHhQNn8hpcpmkFeaeAoZq9MXU/irLAcwIaBK4Y4BST/jVafLVCTblOKJGP+Osc5d33UNrPwAUyRy02YmWromKmA+iZje8sUpwxiqTL00XxbBYd8mSGh+lMB7SE142AulUnIpKLeBLII++S8apr0rRBYIhKV87TZEFCknCbBO8NIcOqKo4A/NKnGItDNdlyg/EccuHzKbQlgImA3lJZCXPEWigxlL+TUqV1Ev3gySQD5hDkr1Bqvw3rf8jfy/xz3iP98kwFA8lWFNgfnOXGOEJ8kfSZFJ+khOss+6egNoQJ1hH8poyBeSVpmJZzY/uXYHNsyxRJ+PejvvIuL4fkxuPRXhJkpt8jHkA9iAJvCTMg1SjGUjS8nTAiQg3yNP2OjJPowobjAcArgJUSVltE2wD9QQ2qpCXJOnXgZEC0McBl/jCvTUTwUgTGKRzNc0Ka26oL1BXEqgS5tWl9Dw927f5CQ+47sy5HmelXuKQXIDKmn5XaDHPAluMequ1Qvb4lFp3fzSvgy5zEqtSjbDWVwFbarpG2Oa2y65OXPK24wOUNaa8gE+H72aTFEdY4qmKxSnWqDIY5yNLnWFKwWCZZI1DejyBezDYB1rblpmh4ZIu2R2YSbo1pRq66HirDDLPgjMBbC2RrFLN+S555njAIteRt1uNfkoUucH9OFdiQFiwUikKVDAmoWSDWl8la/sBP4xptRXX/b5eKMm3wTwLHJLjA+7EOa95Efx7/AsHggd5wHUeMcP3+TFiShfcq/AaS86S62GUQ8Za9/kwcZtZHmJs5KwXwE/Y5tL/l71/j4/zvMv88fedkWesw0SSJUuWEjlSpFiJWrkyFjG4OCQ0NCWlpYUuZcupLMeFZekux11gYXeBXdjlx3HZLQtLl/ItFNpNaSElNGncuHWxkbFqNUqkSJFsJZIla3TI6OCRNXl+f3zu69bYsRPbsevYua/XS3UzmtE888zz3PfncF3XBzC7hw5GmfGMFXlZ6dyOsTGxWdeGTWwtC2wlsYobmEasZzHVZTXQ6GUdWs8UIxhjeszLeGqZoZEHeIQiZYGloCEeq5hk7hjd5MkGVk83x/xavFGUmaSJHvoDW6CH/lBkyJNljFayLKGBBCr86W9O0kSZT7ZG6QjsITDJ5oOLf8/Baitu9LGbOmZZJxWKHCDzc2M3rVLOY+xjN0f8vXXjI0OBcXYgObwaYhsyVWOYKl6TzKuDkSDF1fWmgtwOhmljjDFvqQIg7827GAy2IOu+cDFNAwN000M/GhKjQq/UHxkK4fsV4+lx7mMPh6hlgRkaQmFCsVnpdG4NVpC0rAaboCsmlWJB+V92+wafMd8t1sp41o4K+kfY7RO5Vc9gtebFAfax6gttGc940uA5rTFW2LGkSd5pslmxYW2zvkifJg3BX1XKhipfZO9mgAF2YpLxFeTN9zj3eeZpL+/modC4V8Hd7l81CzpDEXudFP3s8ozyMk8E6GeBGg6xh17v/2n3vrF5d9HPCjbldogd2ATv3eyin06GGaIz5BQ7GOYjvI/38LHAZFMOYoPGZgKrspnJ0FRvZirEZ0VSaLjaCuW0M4IGfx1iDw/wCBpkcj+PeluS0VCk0/chZqqu6S5seFEFK/SxO3h7FsgEpmCedGgKS+GQIR8aDkN0spcvcJQeb3dglg456jyrfzUw7NRUM5JDU2hGLFAT9glJhCWv1XRpfQfaw3Ud6R6u9w3kPGZLYezCJcSY1fe7Qjli6kstVEcu5Gx2vsrJX53U9DWHembYwhkvd16CanyBzRpSo3SQT2UZ9Q2KBqZZoJZmJjnIXu6r3g9Ys88apuVMV271voittPumiKxSnm3e5ouIOzjMHnZzxH+H62QXTzNZbazmclbIZepC0XmaBqZo5r7CfqYzDWhQVANmUzKSsvwyH/bK5pBXunVCnm3KKUnhd7CLfjK+qN5YmOEdmU+yhlmW7OMJANKnz1DHHAcqv440a8HfXs1GKxAayeChym9hp/eS/tZf6uHexc8zWl0OvtF2+8xJzmRmKJbBZGUtOcpJ005bcZz5VGWwMDDSgdUZWhkLsWiRuyh4tdkkdWQ5wQJm99FKJXXMskQ5b5iE5TrHbMZyz3HaQgybJ8sT7OOdfIrm4iTrqRQz3qvcvoubaV18gdHqW8Ia3s0AspUqtUw5QJdnLVcH+5A3PPMsz9+xOTQJ10KOvkiKM6xxMwN0U0eOzuIQI6kOuhefYrVqEyspxwK3kSdLZ3GI9VRC7VzC0S3bQh6XLeaZT4lRaB7SsvkC6CxM8mjma7i/8CgrmTXWqKRAmra5kxzbUkEFW/26Y9fxELfSQoIp7OqCZYFssuoLOQYz5n3byVCY5q41O8/NtCw/R3/lmxDLuWvuWUa22PlqXnye1apNPJG6iz0cZpI7/L2XY4A30MAMnYUhxjOtdM2tML9lM+O007X8FBOV9p2a7UQ5FZ7xrX1nlHYeKJ5gLNUKENa4esyPsLk4yXyqhjJv5ZbiZtY4Q9bHGSPcQm9hiIVMDQtU0cQLYf+x+MfUSPkXCvzpf33l9eSqMPQ2e/aPdSnTTNHsPS4KjNFGkTLKWeFuDgVJlRhtKt6pKynT2wVqw4IPeMP+mrBoiao+RisL1Ppk99FQdKnwhbVxWjnI3uC7YpuYHYNMdMWmMoaMGRpnMQPsWszHQ/LgNdJ0MBoo8vJks+fMMMF2ipQxS12QcIk634aNkE+zxgyNQb6l4laNDxxFU1ewqAKAFVxqaeFEYExJsibm3NkbbD4Um2Ryr88rbxnJ/eRtBYSOoAyZi6QYoy0EhquU00sf27HJtbPek07Bi0kJW8LfE1NGEuyNAQw1tHAiFEBlsC5/EkliwRJJBdVt2KTDcdrIkg+fe5ImGplmHwc4xB6O0Ms4beH3mi6noEQDOIzVU89eDgbmziBdfF/qT2jytHZJeuQHqWKySbJzIbiXRChLno/wPiQpOsqukLhroaxhIUis10kFH7RVKgJ7FYxq3eo765owN05bCFC10ImBY8wcM9hWsQiswLnRzbeJldZ1tuEkmoRrPozjYejCKO3hWraJjulQtGjA/IVUtGxjLPxeLBkrrpS/biaZ3VRybsGm+UkiKpZOD/2+CF0TJmgrodWE2VbGyfj/LybnCuWB8djFU2iS5z6eYMFvBjUscIRexCBWkHeYPYxW3s4kTRzi7iDDX/drhRgWD/Euf8+3nsWG1uS9o/Qg2aU8ltZIBz8jsSIk513HfMN0D5v/lCU28tXTdaoGwjCdjHnJjhU2h0JSWM5qMBWXJFlrqDqZKj5rwzd5kUnIj9AbCjRtjNPMFI3MnGVA3sxUeL9Jmpn1ExfFbjlCr1+ba8O9cz+PhWaGJoAfoTcwBiVbMQbRfGhAbMjPbIpjNwOskebX+dlwjIBfz1pDgKm9RYnjCO2+MGBB4AyNDKVsUpysBMzL1AqKD/NgkBceZG+4DroZCIV5ybYKZGj3RRb5f9Uwz1FvXK9CF9ha3cuRwByUxK1AOjCOTRpkBQ2ZuYsZ0M0AJn02N9Qf5oOkWQu+QPPUBMYO4BkMzaGZU85K2B/k7ygZnvmiWvKk1z/AI+ymz3+/jaGRaIUUGwq0l4PB97KfXSZbrr6VHHWe95MJw0zEwNGgjEbPUKxhgW/jY4jl9XqY+r2FOe72xXSxMjXFOE8VkzSjyarNTDLr2fjAWQWu7Z453MEI5sFsQ2fkrygP5XpsaJWsLDIUGKCbbgaC7NEG0ywAhKKfmNTy5APCNZony4M8TDcDvIeP0cIEffQGPz4xRFSs301fiH8maeY+HqeV8cA6Mc9FUwoUSZUwfm3tUxF7h/cjlYpAzRY1eSSXM3l+e0g8JHvfz71IClnPbLBvKXqWi1g7eaq835Y1WurI8TAPUup3CTLib6SdUep9M1FqDRsWtBsgfNdqzvZwlIIv/IvRqEJTqx/YpThuhA4amSbj76oFajnEHobYEa4JxReK4YfopId++uglxTo9HA1Fe03eXaCWMVoDy3nE7xliH+bJ+vWiGOIo7d9imq9QETwWbXJofYi9NAxtlvpQeM5QYNUXtDSARAVmNdHlNytPMvl+q/Ew7xsoer2KDSqwrFIePNfKfF6liaFZzwTRBFtJt9Vsm6GBVsZCwbqfnhLfxhVkZyEPNO0L+vzGcqkLjVwNAbOGSi0rlIeCc1nJOdXAtD7vh1vBKsuvk9gwu2hEBREfJJsGm46pgVb6DsCGxmhohvKDGd9y282RkkbokGeTzxr5ZW6OGRo5xN0A7OaItzQyOfymZcI1v0EoKQ9NlxoWmMw0k2Up+Ctq4BRYU6vVKx4U29ewwPMNW0Lek2WJ9uVnaS5Msov+oBzawRDp0y+GBlwzk2yZOW2EjcrN5Cq3sJs+NLTHitb1JUUwszTqYDTkSu2M2DRaLOd8hAc41WB77EJlNUXK6F7+MjM0MpZqpXnxVGgUq8hYxywZ1jjIXqZppJVx6phlxhc4lZe3M8I4rUx5ddTJ5momMi085UkRYuZqzQwWOamK0NBMY7ZTd0w8x3D17UzTSBVGmKifs7kEzcsnqVleZIVyJmkK090LvlEONuhBvrxrpGkp2iAU5bJqmlSwwnrKYrzVqk1hqEZz0WKysZR9ntktVaEusU6K6VSjV+uthjwQbMJykRQTGSMbDGa6yC4v0Tw3R4Y1prdUB1XFArV+kOd6IM2M0h7sZhrnFvmaiS9x28Qp8pmNoY0ir4ggMu3z68nKbQAhR81Xb0KKtfHqW5lIWZFMRJQaFsgW8yEOr1x8kfblZ5nfspnD7DFWc6WxQKUGWiNjpJTCSoifG5hhItVi8V5xHNncqNA9nWoMTf8iqdCoTPvGZZY805mGEO8Pe4sQNVo2PKLrL2o9uSoFvWWqGKeVL7CXMorsYAh5fjQyzf08yhTN3stmZ+gAKcgwOW2OQ+xhLwfJGNmVFOtB+ip20Rc87VxytlE6PPW8nBE6QoCjH9Ho1eVVYjFOKw96WdsOP3VxhsbQSZJxaLlfROVRUvCJpzw7tOgOcpefwHaCRqYZpw15ishUvY4cnQyF4ssMjaEAusFwWmE3RwLbSsbOHdjNY1OrtnuJQTmauqrgqZFp5AOi4EXG4EqgCp4OX+onYgwvKzgeYXe4sHVRyr+jxhc45dGgCcSSVQF+Y58ORUddC5/knaQocpRdvuNo0jAZR6vg1MkQnQxjUisxmsooNZ6XvGKVCo6yi3Fa2emLCyqW2d8ZCteE2HV6rZg2eznItJe2TdLMCd9RTLNGG+OsUMEYrYEl2cA0Y346V68P3h/j/pCs2/TaCd7Bp3yAuM49PBGCuAIZX7Su8ZvGGM1MhQBfBURjt20PTEmbYmcMVBVE1T3V51MBRgxHeee0MOELsOb3pQ3AZIDWpe6jlybfdVNxR7LvUe931M0AO0rYUkpcVTRVAGo+NBbm9nKEclbp5Omrsfy85rCVGeRxAQSJjNhsSvTE5JD/XTkrofM6SRNDdDLtu1c1PmG1wrjda10MhoK7dRbHwwZmkidLTI21mQp/Y41MYNXJqF1rdZ4q7uFAkBhJhq/AvZlJan1iOUwnYoru5khoAKibCCY51/0tRt0sdfSzywIWz/iQN6e6vZpY2eEDJ0lzZqlH08cVdIBdhynWGWZHSFbF8JmkicN+AqGsEyQ9tXNrBswHuCfITwA6GQIIhbgG39Tp8ZI2yZWKlPljrKPJJ7MqDKmAPkRnkChNYAFBinVaGQ9MNTVzJFl+Hx/hI7wvyNjEgqvzrHZJEsXk6OUIQ+wI0j6AQ+xh1TfGctSjIU1D7OA+HqebAcy7dIAc9TzG/YGdonV3P/eFppCGC1mxfpV7OBD2REmo0hSQNx5sTB4boDsUQM+VZgGhqSNJ2CgdzNDACO0YC9x8peTlKJ+fZqZ8orHgGVLm6/VOPslB9oYktFTu3coYezhEo5eLLZH1xcRjSC6nxEj3mRXbNXRhlY/xHsRI2cMhDrIXTac3hoIxwOVXK6/cvRzke/gwy6+Dgt4eDtPm1xAlbwqwrUC7I5zDFSro4imKlKGJ941M009PiPt2MBTiEpNeG4tcA7iK/trUNSVJfR05ynyjRazfLPlg4K+YIecVG5M0s4dDoQik5GidVJj4LpbRUXo8U3U23O/dfiiUJSE2sEGFHnlitTJGAzNoaJrYvcZIHmaSZjoZDvuIWF/DXh4vv+gKH2cVSdHNAPfwBJJ/llFkHwfC2pGjnnnf5OhiEJt+ujN8D4o7tCbp3tUQILHxNQghzVpojpqqZSYwylUszfnhb3my7OIoPfTTSx9tjDHBdsZp5Qn2UUcurIFiCnYyFNiFJjPt9P6dZYF1UsM83Qyg6bY2dCgTmiOS75oE+i6eootROkKDdAdDvvk9EWwr1BjQXrzDx8XTNHCIPWgSfWkDV8M15On1BPvCVGT5Fw7QTS9HSgar1aLhSZIJ6zsX41tF1fKS70XTQFUQq2GBHvoRk14FOx2XpkDLF09TyZfIcgJTMHUzQC3m5armofbodkZ9QX49rOs6rlmvxLGG745QzNU1uUBN2LclX89ifuWShn89j39F16VrhRPVVhSyucYm8671zaZ8ZRXZxdPUsMCOMMBrldqiMZo7GKG5MEl3YSBcO/ImbGfEu3jPBnn3yJZbGaOVDkaR3ZTFHRaHPt+8JTRS5H0Y2Hvkkce5PJN3eGXZKhV0FoaCum4HQ9zFII/wAPWFXFgTMsUCk95mZyLTEu4xNfsnq7eSo54q8qHJtuqbuzWFBcqKtoZr6nk7IyHPqGCFg7zZy8xPBEKFLJB6l/+J9/BxUqzzkepvt+Lj4nMMVd4RhsFMVm8NeZBiY6n5dnvrjhoW2FkcCD7sgPesX2M3fWiwnNYssKbDfYX9SLW1hg3pVHNT3sj1vlB4sqWaGhbCoJtyVpjcsoU10kxU3spQ5R0sUOuVhJZL2/sfCe+tukYVeVZSFWgKenNxkprFpXBsUlUcTO1lsnIbE7Rwc+4MrYvPhX1miB2Yr7wVDdMUmKU+PF6DDcNcSVWExsowO/gI7+Phym9ipfImI04VV4KtQheD4bsxf1A7/q7iIM2FSQoZSCrh9BZb2/YWDtLFYKghyK5lhkamfBOwjhzZYp5bnpkjffoM2aLF9yKwaOhgA9M8xv30pXpJs8Y6KY43bKWv8qvCXiavc+1h8uUuUsZAppsZ762s/Dvkv8uLIQffYBtnEflMn1n2PlLcLWFDcFQI1AC+bNGY8YO88aLWk6tS0JuhIXT4xFqQT5GCdvmvmUl5IfiGqOJeOmnzGN2M0epln+YzpQKS/PUA76O0EjzJNO1MN41YfjIWl2xtxgdY47Syn3sZpjN0+RuZQZMpS6U7OZ/Q1jAfimwKquQJIUpwAZuyooBeHn+S6kqKKEPYdZ/ur1BBP7sYoDtU7we5izHawvmzAKkOeRqpoyBfBBW71PEdpy38vuBLpWLpDdGJTWgdDZV/CzxWKcO878wfZBz5vWjhylHHiPesE/tGXR3731oA+tgdWEU5L62ZpIl5v8nLe2+EDjoZRn3ySZpoZ9RPSbNAwiRz1n3P+k1Ahcl2RjhBS0i+ZH4v9oqSOnWxzZdmig5GGaWDei9xNBaRXWuNTFM6xbOG+TC1TWatFoxbd+cQe3yX2DYi8yMzyrzJuey6VxI7SJf3kigL79HOKE1MhvtDsrUR2hnzjESxPNOsMUIHBdJhKIt8LOXJJymO7oNx2sL1qe5RgTS7fJCtrk+r93IxM9uxkOwoIdM1dJg9odAjplUrY8z7YuW0l5+tkeZ2nr0ay89rDqcxCcU0jSWsp2Peb8tk6ZIBiuGbJ+vZtkth+nYXg5jnSXk4j6VMTjFJVTCQP4o23YPs9YyNBt/ZyoVNq53REIyrA18g48sR5nN6H/uZpIlROjyTNRu6dnXM0s6o9/UpC1Mfde1LRtLKGLs5wm76wlQ1yV8lw1WxREGdjlUSRjFn06x5359j9NIX9gRjRM0HmbqxGc3vUUW/qsA6mEKycUlwVVzcw6GQwEg6ZayWxlCMUUOqdK2QZFhFCnnO6PtV0dW66o2BmSkf09JhNuukmMJ8w2REb8wI7XnGht7LwSDpe4QHzjLP14ARTWffYEHa9aE1GqxRpmJLFpu8+FHeS51vttX7xpYaK1lfVpaERuxqIDQLKkoY2pI9K5gHgjXDEJ2h+KsiqxghHZ69PkIHGjCgz7tOKpz/LHnPHrH7S36E8oFS4KVuu9jxds23MeuLsGO0UkWeYTq9tDrtG3gWIKobL29VDaLSZ6gjRwMzZNgYiKJCfI56+tgdgnuT16fZ6gvuNzIO8HWMeDasfLamvZfuChWBeZYK1/sXQiNIe5UlO8Yy1joxTmu4n8doZR8HUPe/nll6OArYHvwAj7BCOT2eDa97Os0aTZ7ZpAJQE5McoxtNFVdzS0Wtg+ylwXuvAezlCzQygw1a28kSWdo8q6OP3SFR1PoNhPtJPrwzmLxozN+zQ3QyQDcVmEeo5KBix9pk7XSIU+RVNeK9O6t8Ml7PrFewWENBz1vy99waGUZoD/daCxPc7RloSkYtqZ0nT1XwOlaxBswuxu6PNjoZDqzpYTrDEDsNtZmhgVnqgxecGtDGTF4NBVPZ7ShJrWAlWPU0M8mMl6S1M8JeDtLBKEPsYC8Hg4ddF4McYg9H6eEpuigdoLbu7z8VQ8WYMYuejYnAxiAcJ+PXjB0Mhe+k1JYGCLlGGeYbZ2qHKd8wmaKDETKshfVkghYe515fZLVGg2LDaX89rJFBXtw99Hs2R0MYXqdrSxJdMVo0MVnFmTpmmcc8Fs2CwKwmsuRDw002KxrgJKlnnZdma8ifmPQiVJgM0BphYruLfSlFjvYRqZzEKu+hH7EsT75O/JVvYp08WTqKIz7HmmRv8WBoduSrN4ciqFimg6musHZOZppZyVgxQ3l1fcGYvzWFhRDTyQtdXmV1zLKHQxzyjc2u4qAf2rQWYpPD7Am5Q94XHGb9vV7HLM3LJ+koWE62kKnxart1ctSHNWUhY3FBCyc4lurmMHtYqdyM7I9sqGUtH+PbWKCGluXnqC3aWnSyodrnJA2kT7/I0dQuZHlSJEVZsRgY3PMYm2mGBnK+QVM60TxXucWm6fpGdYYCo9UmLZU1jT67mFFrPg8ytrMN0HycezmY2svOuWeCV7gsXQDfiF4Pa6WkqEczPYGZ20M/Oer5KO8N6ykQ7l958h9kLx/lvUzQwi0zc3QzQD89aPCWvlM1UPNU+bhznnVSdC0+E64zvcdEqoWB6rvCfttPDzUs0M4oGnD0Qt0mNhXg9pmTtC8/SyMzdC4/Q3dhgAlaKMOYfxnWQsw6QQv99FDOCs2FSR7kYd7HR6xombE4aSVVEeoW47SydWaJ5uWTwXd0hXIOpfYwm6mjr/KrmN5SzeZlqJ07Tfr0i+E7srqK5fs99Ifi6grljKVaefqO2xivvI3ZVJ2/1i0WaylMhAJxM5P004MGPqkoqNxLtaEKzFf/zpnj7PDkKzXoD7APIJDDCqkME5W30kN/UPzIr1drcAUrzPtYWyx+ffcNTJOj3jxMl20oTD6VpZtj3MLzF7meXAXcyvN0cyxIbxToK0nsozdIImZoDCdZ3l6ik8s0U34U5azQyxGamWKPl+tudFeXaGSGenI8wCO0YF9eGUWfhKyHwK2GBfZxgFrfNRfTqp1RWhnHRofXho1WC5omTSrpkcfODA1ejtYQOicNzNDOKKuUY8MrxoPM9ZAvepixc22o/A/7KVxZ8qFQJahDuYfD1DDPQd6MyXemQyEw6zuVOu9i/pi/SwXyA9D0uJTfTJQYS5og77YhOgMbooFp2vxrFWAqANvF0ZAEtjEWCpRKhsFYLUAw2s2wxj4OkCUfOkb1zFLvbz7R+4foRGyQDAXKKIbP+QX2MsBOz86wKYbm5WTf3y76aWQak7GsheO1BLIKmcQ3M8k9HAjnWV1xJZx2y4vpZwtjPbngGyL2Wj+2aOs63+nZLi1MhM7/LHWUeseZJ9NoKLQBDNLFjJcwVLDCTm9Um2eDjVXhO+RiFklyKBaWhtFoA7cpnrN+gIJ5yBQxM/Ac9Z4NZgvYLvr9sBbznNTEVd1T/ewKXYfSiZprZNjhTaTbGaWRadoZ4RB7QuA3QyNDdLJCBUuvA0YKwJN0MUYrnT4BKJ2aXMFKYDsCiNmkIvwA3bQxzl6+EIrpMzQiw2AltkB4TRvjwavDghwrXuyiH8CzhVdD8aycFVoZI81aKD6J5XU/j4agRBOLxYzoZxc56hj18uoWTtDMVCiafIJ3k/FFixTrvoi2GlgD8tAB2MeBUAiSPKGCVdZJBdNzSZ1qsKmHjUwzQwMZv36Zx+h8KDI3MMM4rQzSRT2zQQ4+QUtg/IpRKMaYee6JEV4MhVjzglsJyeEo7UzSFNY13Q+Swueop0iKJiYD6zxLHhnPa41Ww0Ly2hnPElGwVqTMsyJXfeA1gszOG5kOyfcMjYz5Y9/LQYAQmI7T6jun9h2omKBj6mSIXfSTJ+sns++kz7Oy65hlHwfCdWHMjWNBDiJJsiSEE2wPyb95ohVCBzfFOjZpdzoETat+rxCDrdTHzIooNv3XfE0HgqRilQ3v2imaA7tB67aKzaXrpGwndI1lyYdzJVbqU75bX8Eqw56JpeEGtg5OMUA3R+kJLBNZbNzLfrr9lO813/gQo197iKRV2j8UJP4p38Mam67MgvMaxvPcGj6/Al7tKzb1+QCSwQDIQ7OLwbB+iu2sAl4t5k8365MpJXKrVAT2g+2nZSHW0UT3dkZ90dimJ0/R7C0Byumjl4d5OzsZYMxL82v9tVzKcu5ghGbM81Pxm6RBE7QEH0p9ZpOVbydHPU0+bjvKrhCX9dHLQfYGH8tWxumlL8RlE7QwRTPDdIZkVI0Km+Bt8d4QO9BwGvkxz9BIH71n2dsoDlMDzhrvtWgQmxo6igN07W7I0nKhqKNikApT+ryyBJDdjt7vCLtpZTwU6tW0vI/HQ6KoPaeLQRaoCTGWGj7mB7oSZKpiVTT4/UHNZw2ysQFphdBEkjRVjSTFNGBxVFl471oamQ5rkJpBpXKqWV86FaNliE40fMO8sKtCYWaIzsDGkpS/kyFmqaOe2VC4m/LFTE0LfZz7QsNcDBOta/IstXXLvPSG2BFUFwPsJEc9jcywh8MsUMO97A9FaDH4xA41FrUV7iZpYoBuJKEdphN5Y2v/m6KZToaCD6IVfy0PkUKohgV2cySoP/S+pSSL18uAoApO08IJhlLWCJJvo1QQ8viuwPzKJf+TDYQVezcGf62RYSFjqpi+TC/15NjLwRB3aeiTCoKSYM6nakzeWZwMipsmn5NUFFeoLdqQFTsWawLkK6uYyLR4L8vOUHQW8UE+gGIbaWBLxfJpds49E5pcljObbVW+soqxlDUBDrGHCWzK+Wj1bWd/Rmo4lrLJvCrqW9685tUk29mx+CzZ5SWG6eSTvIP1lMVaLdhE3dbl48g7/2HejghHYkY1+DhF8UBpU25ky61oKvQo7ZgfcL1vINaGwrrWlA5vC1ZKPnmAR4ANOXWKYmhApijSQz8jdFBGkScbbkeKQJPPmjJP950aoJrA2lEYZbXK4gnZCVSRDwNY2hj3+99IUNuoYTWbquMfG97IMw23MlF5q60HlbdSLEsFGTdsKNu0F+7wCpbJTHO4vhuYDk2OcVppYcIPRptmrmEzfZVfRYp1xmkNOa68Ocdp5emG2zixZSuD1XeEvzlCe7jeDrCPHPUM00nn8jNUsBoKhLp3xJ4uZNKM0MEapvy7l/300Rv+W/sWWMFbNYX6Qo6TDdVhv1MR8x18KjQY18iQKRb8OawK3+eneAetjLOPJwLzO0uelsJEaNKP0IEkvYHNV3mbr4KlqS/meJ5bLmo9uSoFvRU2k6Oe3fSFzuIu+ulikA5GfNVzLZyMFiZ4hAeYpIkTnlIuNoRJDwshgKjz3XKZunYy5FlmDYgRcoi7wxRDGSyLXdbJUGAXiF2V8pw4sIW0wwd5YElPD0eZpQ4ZNotRIRmFkpmUr3Fb0XAesRLBFsECmSDfnKQ5yCS1ATdgwyz62YUkPns5GJI3UVwzmGRSN6COs0iKXvrQsApNy9TQCUlAV6lg3DMeFczqu+jhqGczpEORUNNbx2hjO2agLomfdRQy4TjERjCZ0nzoLhprr5YKbJz0xuj1NGLQKXmTP4eOQ3IRLQxpfx3s4VBgPipgtsQwEyQEx3zypYRKTDYxyroYDOxKMXXUiVKXRn6LQGC8lLMSJMEp1sN5z/iEOkueJs8gNJmYFT2G6eQY3fTRizy+xPy0TsKG76HksX/Lg54ZWAyFDhWBC54Bp01KxvFiYKr4XCRFGUU00VjXnF3XNrzjE7wryIZamAhMUf20YpOsJDE0pxfzjjxGd/geZmgIrFJNwpQPI1hxV5v/6wFrnuk2SbPvCllhQJ0aK5jUnSVjLTVnly+opgGKwQLGglr3rxGrs4GZsxJFDTRRgUOs1U/wLuRZJc9L0cQlL5Tf3qxPdnPUBXmi6PUrVDBOW2DbSobezCSDdKHBGAoERr23m1jDM541q6I42Kat4QRaC5WUarrzo9x/1hUqFqsK05LayotV66a8IVVgLJ123oAZzTcwgywe5Mlna+lsWLOUCBaxKdSayKpJdCtUeD5Fcyg2rVARkkAxmcWWK/iCeJY8Jr1Kh8aWGCy26Vf5Iu/BYH2gYkeWJeqY5R18MjSV7vLft1h4FWF/qAjrszq+ClhrfbOo3qfmYjdvSBhtT1CxS0nqAfbRRy+ScogpaNfyWtjbAfZykB1+/9b5VLKiTnULE344SFX4WzM0BInfOG1IPrlOij4/yMiYwRa0SjqUxzzVJmlC8i8NCRqkK3RfxdAR43ONdGjmidXY4Vns5rc4TQ9HfUQxH/ZlJRtgBcRxz6jSROk0a6Fo+CAPX/mF5zWIzZg/6yx14d7Z7ospKuAcZG+QOol1WeqvmPESbmNuNSFmuTyEp31yJ/ap2PnyXxqnjTFaaeEEGljS6weTqLAi9meRVChcF0hT7puz0zR4/76MH8RlA8tGaKeP3f4qngpNwQJpdtPn4wfzUmtkOjR5bYqkDejYy8EQ96k5Ij9H3UuSbJ6gxbO7a0uap2v+vjlMM1OB6ZYnSzuj3MfjYY3UHmx7dTrIWfdwCFmF6N8ixkx4iHdjPkzGerR4zwpkKu7BhgxJ97N82JR4qkA/6c0HZNEwQQtHfdMwy1KQ9uq+W8B8U2t942uQLgbopsE3b3voJ41J8eX9qcRbXlJAKEA1MekZa8aOBsJaD3CMbp8kmjLoce5FtjYF0rQzgnxTJaOT5F/fySTNgWGigW6tjAEbLHu9n3KVD/M9QQ7Y7ptaBTL0cBRZBy1gcukqH6eb+mM93C8qXouosOYj4EZPsFDTR4U5eYhJjtnITGgwFik7K/bQGnwXg+SoZ5pGmpgMvoLGcl0NSikrQrT44k55sPQxZt46IlBI6fR6wAz1vtEgy6ZVRlIdvng8Q01hIeyJygN308cDPMICNlH+CL1nradqzBVJccuY+ebp3lJcN+lZ/yZ9NEZtIzOUL50hU1ijbnEx7Kn5VJb1VCqo5yRLlfee3luTctXMEAmnhQmWMJ+5ZiYZr7QijQrsK5RbzFu05qPlaYWQj5VK4JWf5ckGZr8k6mo8Z5eX2LN8mHz1ZvKV5ienYlF9MedpI9agrAlxzmwYWLVADflU1hdMG337og6xD2VrlSfLTgZ4y+LnwhqeKayFglmRslCg3ja5SH0hx1F6GKCbJbIc4B5fIM+EWFAsSt2HP8b/CIywGt+46lx+xivC0oGIo+GIatKnT79Iat1yWg0wO0IvDy5/OlwLIrdoYrzIHxo0IuKH1IQjKcthxfi0wm06HLcGOU3SzCH28DHeE9hwan50FEbppY+/9yqSNTLs4RB7ioeoW56ji8FAPFDuOkFLOEYjuVjOXOabFrI4GKh8IxO0+Ob/SshLrOFSFogHBU8eU9NFVi01zFOFTYae8SqcSZrJZ7LBjzpbsIa41vUKVhliB6O0M51qDESJAhmyhTwP8jAj3vZI3vRZ8ixkagB8/lQeYiKRkRS7VLDKSqqCObZc1HpyVQp6p9nwM2tn1NcZCzT4zaHgqf0HuCfI9+RPVOYTRFW2xVZS0lHmC1/15OhglDSFQOW24uGKZ7EtBGaXJDiq6iqxEZtNeukBL60QK03de1FRdUwaHGG/M3ZFFvO3M+pqKryvSYULoWJvjEGrBGtai6q5RVKMeLaODXiwzqRYDkq0FDCpgCVNOhACYF34rYyFoEAswTRr7OEQOWxSmtgIKlbZYm1TldoYp5GZsPGrqDaNadcLmCH6ds/UyLDGqg+yipQx7A3+NQUOCMdiHIuVIBt4hAdCt1mS53pywa9QLDJ9h1mWQtAovzn5cZSeAw2p2JD/1gR66zHPNLTzvmEAK8NVo8LOhMS6EfMCPMweJnx504ae1NPGWOh2G63YBsCM+CnJYEa0ZoK9MTbejGs3pja1Mcaj3O8NQufD+Z+kiT52h01bE5xVyVfCq0WwzQeMUzSH+6y2JDHX+ZKJ9V2+Cz1OK+WseCPYBsS2FNNKybDkG1nM/6SRmeA1qOQVbNGSLEeFHpO2bL4ay89rDqtsDsb+KuhkioXAElOQJGbHo7zFOmXU08o4S2TDOpXzDFldT5LbpFlDE3EPspcp32XXJER19NW8aGGCfRygkyHaGWWEjhCEZXyhQUwVeVxo0lYpu0/dpww2cVXrVL1naYpNIdkrENZCm4I6U3I/5/1eMMwu+tEwoD52h8LXhkdpV1j3bfJ1IciMZAVQzyzdDIRiXwUrPoEu41HuJ+fNkzW9uZMhxv2wHw2HUbG8zP8NFWAqWAlJsn5G6QhBYBs2wERNmkmaka+orT8zoVHQgpnqK8EU809+Hj0cRVO1ZHEgL6+C71YXfNKtJH2UjrC+a+p5G+O+ADYbEusZGkOBtd43fpRY6XOpSCXpwAwNgXEsxrmuL8mnJ2jhCfaFdb6LQSZooZ3RsGaIDaQOrdbsFSropc9LWu0am/IJTY46qsj7e8Gkt8bMXkMMIg0v0TWlYrLWIyWSg97DV/GJGFeShZRKu1uYCBJIFY0V5O9giDUyYc+rYJUROkJxSpJpIHxP+q7qyIXP/nqAWPY56nmc+0hRLGlurYRiNxCKZNp7h+hE02gnaeYgbyaHDR0QG8S+7zQ2RdQCezEmtP6JgZTzDMsNJljeF8ZXPIO4EIpWFazSyxGKpLz1gTVnH+JdrFLBvG/wdvFUKJivYZLFJd+8MksOa+5JMbGADUZqZZwUZmvSyZAfvlagyTdqzOuzPKydktMPewWD2HAd3ldKhvYrlHuPt0ZfWKsKDQT9K8sUMdnku6xmjzx2lcQ1M4kmPit2sLi0zHu2mg+xbAFqsMm+Yu7mqPdSWFuHav3aK8mwDQspD3GCxVh2bLIOEFRU3cFQiIHlS6SYuplJOhhlh7emGKc1xHkqSqkhUaQsDB2yhoUNvVOT04oMU5QOF7P9qxb5LEm1oj1aDQKx//S9q/Gt9Vl2N1oXeuhnkqZQqJjx7OZVKhjziapYlRYjWLFYBespmoMnkyRyVnS26y9NgR0M8Tj38ij3A3DCn+u0jzV0T8gbW42RjGdgpyiG9dV8vctYJ+WZM9Yc1L4vX2iw/GGIzpAfSUWgWOV2H7ve6Li9MBaKaxtssJXAxp3N1IVG6Bit4RpX3NMUyuGTjPjBa0VsuncNCyw33xS+I/NMbAz38SBddBUHPcOyyhi51dsYybSzWrUp5N5PsI/D7AnHbPFGOkhsxe63sk1z2A/FCJ7HJlbXF3O8YeZZL9+uCbGXmOtDKWNwDnkPWxXxxLRS01EkD7FJO4q25o3QTh2zbF6GicpbffxiTPy38ojlvqfPhH0ltU5YU9cx5p7YV5M0s21ykVXKQ56l2Gna+6etYhLSXHV1IF9MZxroLA5Zw2j5OSQvTTbDQqYmxCryFVccNkkTzcXJwD5c983GPnpZIotUbxWYfHiAbiMfzT3Hbc+cYsrHb2rQDlff7ien1oQctUiKXOUWW8cK+VCob2aSruIg0zQG9dg+DtDITNjzxLyUfF6NswpW6S32hbxdqrJWxnkvHwWsRiKbikImHa5ZFWxrWGA2Vcdk5TbEzl3zjYuMXx+Vv0vNBmYDdR/7WSPDLHXeG3c2NNFKmzNi/2pqdwUr7CwO+Oa9kWjUuNJ7mTpmzOfAVkRMrb8Y9vdmJtk2s0g9OZ851YS8oYZ58hlb38soki1Y3D9MJxpao8ZjPWYx8RRdAEHVtHVyiW0zi8iS7mJwVQp62zlOwS9I6qwN04l5JTSEKvQ+niiRMlphSpK9Ue8DBVYRVsB7kL3MePaDAuFpGpHH0ggdvlM46xkTzdzLfvrZBdgNrEl9os+rg6QClooekvx+jPf4xaMJTT/U5i3K8zrGjlNSAISCorERMwzTGUwZ1QFUgWqAbh7hgXARqcsiOvs4rQCUTj/UNKvSSVsy6JVZpqaIKWCTaXqBDLPegLTe3wS68dQxafByM7CbQ7TUg7zZp52TIZ0FwgVtdNfykLyWyldVwFKiV8EqVdjkxh/mg7Qyjrw/eumjwXdPVigPFXZR/lOshyRKLArdaPrutWgo6JBvjLrG5v9k3bAlvwE0MI0mi6oYpURslvowzU6dUMkmq/znVYAsKbAWbunpda3JyF3mwmAeDO2MsodDXrZQSw9HzyoSyhdt1NOH1QHQ5B2xKkXfl3eDPreYTqXyaksmJkuKTkuMerq3nqsCp9gKGWyEfKlcNI/5A8mnRxKaDZmUJbtFUjzDBo36RkaKFwEzMW9lnH56GEl1MEC397ixomkb49zNIXbR74MhWyvFtBTTttR3S8NhdN/mMU8QebgZ03YqsEUl0VWyqm673cdLoQuqtWuYTiZoCYFHK+M8wgOsUk4/PRxgH6N0nNXIUJKYocCDPBwmQ5udgrETlLyJ5adrD+B3+XFGvI9lhoLvRm8YPosxBoTJWGZQO4pMlbUnqPHSwkRgYWg9sklhzaHYeoB91mVljVbG0ARqJX2SXSxQ46/npdDYmPLrijqE9r0XfXJkgcUB9oXBPPKYNIbRemAgFnziv+7P5Sgd1Bdy7PIshnZGStafDeluaYF3gO7QeHmU+zGG+mTYN1ap4Jg3e68jRzmrYR3S3rSDYeTbWu8ZcGpmzVLPiPdRLJVcDNAdCnCalrhCefA9VXI46iUGYjAeoRcZrVdgE8/FtrSEcGMd0/cn6a/8yTQYRNYFkrmJBaNmktY6/SxQE4puKtwdZk9IGCQxky9Pnio04KeOnGe7WxF4hsbAslGhXixXBao1zHuG4EbRVPvd68FDb8mvNGJgqCgvT1zFXVlsWJQai7IL6fXThzVArZUxOhnGfC2bglG5imdixmqdswRhml6OIE80xQp5sqGwpzVQf6v0HtN1mKOe+3ksJDNa4yZoCc3rJbLB/H+Edi91agrMajGfzIai3Mc6NtVeMmEViUvtDBT39dAfPocK8GLWP8b9wV+ujhx7+UIormgvUcySJxvu03lsQmSK9SBJWqDGFxnX6KWPRmaYpT4wTtOemWF+azOhWThCh783GkhTwKZ/P0oj06HIoMnoWcySwBL31cDGaWCGeWroo9d7K5vKppxV+uj10tpGJtgeWA62rq2wn3v9wDKzR1HMJYmafOnEajRblPqwz5rixqa/9rMrTGS3xulqGCalwXGS7q6TCrnMrC+SNjMZvOWsgVAWrps+djNAN/s9+0+xVheDTNIc/Jqk+hEDpYUTgOUaGrZR5zlIQz557GQoNLYamGYPh5D00DzIjZG64aO1MUwPCBK2dVJhkJpUH5YTmJJIuYTYzWnf3Lcp0pIJtvjhXg1hXZefs+6dUvuZGx3PZ25lV/EoLcWJsDdlydNdsCnc47TRxWBopA7RSX1hg0m1IeU3yynJThXjTGeMgayGQI46ZtgYrFZIZZinhmamaGPcN/TbWElVBDsIebGnKdDPrtAQliotzVoovmv9HaGddkZCwbmdUdZTKZ5t2GbX5PIzoUmwmz5mqaPBF9reXXyItz3zOb567MvIt3YF+QRm6GaAgi8YTtLEeirliT0zZAprLFffRJGUj8lWQ8NmjNYwDbWjOMJE9bZQ+F+lgmxxY8hFgTSU2QC7+kKO1sJ4aDav+iKYGh4qmCrutb+RY7zyNk8ImWZ+y2ZqCgvBSsmULuPBHqGeHJOp5hATbJ87RZYl3sPH6KGfbgZCUcoYcnZnjW3ZxpkG81q3htIg0zSg6cF5sqGRLM/sPFkqF18MhctBugIDs4aFQChonFv0ZBOTDo/RyraJRXbOPeNVPuajeTS1C7EgparQcCDF7GLVy3tbTYw0hRAPiiSQC+o42x+aC2ZnMeQ9Q6dpMHVNcYWK4gp1zNLGuCcp1QdGuqnVGkLNYzd97OUgg75wNpZqJc0atcWFEIeoMb2ADe2z73qKGuat2VBZHXLmFSpYrr6JOnLsZAB599sQmSWkJpmkmWKZrWfKi8VWr2GBPcVD1CwucS/7Q51kmkaeb97CXMPmcM1fDK5KQQ/wC0shLNIyEocNnzKdFP3efLWMIWCdJaMHa8CEaIgWOBibSt1cGeWq0GYXVWMIgMSuEoVcP2Jx6QRrEqIVv0ya08kQotuO0h5YbFlskmCGNT+JxKaniRUjLw4FKmLy7ee+8LkPsYcxz2DpZoAHeAQZ7QJ+oZvx/m9mvrzBZigLXT4gdDzl22MsyfLgiaAgRj5Sed/VU+dQi/YCtUEPr8XHCjHtgaWVJR+CGS0MuhglyVRyO8BOu3FYoMqHncY26w1B07q/+GGDqi+JpmRQdeRC0JhinVq/WJpvX0VIjoqk2MkAA3Qz4qfYNfoiXT2zgQkAhKIWEIog8iEQNTlLPixICjgbmAlUZplnq9MElmx3MBI8ZbS5qWMDhC6oTaEqC2ymUdoBK+6ZifTGsJBeP8a+SBmio+saFSpYpY3xcM4kmyx4Fkmagr+mi8z7BUydVBUWs5ih6xhtoahbyrgSq1W+Aym/mE/QgkzFVXgsoxgo3Fq0s+TZeZGL1PWOW3guFDtgQ6rS6mWTebK8hUfJkw1Jkwpc5jm6+6z7Th0qFUhsTbmXcdqAjemdJsE/Amx4Aa34ANsC6NogxxX7oZRxpuE3KdYZozUkS0qqrYmSO6ugo/U+RTEw5oqUBflsnixD7AjdeJNxNQTWUpY8ezhMCxNhspsaGmkfNrUwESRpDZ4VqvVK97J1E1dCQDhOW2jAbEiNVoPPVJ4sY/78SdZe6mshA3oVgj7Md/tunNkBKJlX90/DZYypmkGSmjHPflVwLZacGCQqqBr72V7Xl+mlQMb7Gi6dxcbU2muJ9QjtjNBDv+eGjwf5/4iX4CiR14TaZiYZ9Yx0wLOKU6GYKcNyTcptZpJdfkLb/TwaipYtTHgP2jHEorTJcEtM0cxHeB9Z8tgApwbkRzpCR7gWwPbpeWp4mLeHeEByaF3X9eSCOTSAprxrTwM8iyYd9kgVSXUNSoqtNX4Hw+H58mMDgv+hmn+76GfSF/9s+FAH8uOSTYWGv8j2YYXy0EGe8iwJJcuAv64LV3DFee1is4+zFNg/zn2+lZANTLpmJnmIdzNJU7D1sPvFGMta/7SfquhrjT0rvqmwKpuDGX/fq+kqxUCOOg5wTyggSFaqjvuw9/1SUdDkaa0hBjMrlE6amQpMDovhzP+3inyQjFks1E0nw6HRoKC/mY3hLRb02+TaUdq9ncw6snHJkucY3cgfbYT2sBaIQSVPx3Efz4IxvFR4Mv/kqhBH6B4UU1dNCk0pVaFA64EY1ioOidk3STOf4h2BybtADZ0M+cE1bZ5VW2SEjnDMFnPPUyBDuWchi5WpeFqMDXn5WiO8yjcARv11UhUSqRXKWaAmeLlpjdK1YYWlHaG0r73OvhuTCWqasV6n71deVmLSia39IA+TZQkgFEYk99bE2RE6bHCBT67VqPs+PkQ3AzQxGRpCw+zgER4IXtaSGuu6OeRVIiqEt/mYW3HDbvp4wk9DV+yoIYKlDFWxWsQOU+O+gRmkfFF8rSKGxbWz9NPDYfawRjpEDmIrHmF3WN+1Blf45F4xoiTU3Rzz563GF4pfH3Ys24pTDKU6AzttnFayxTzTmQZ2Fge872I23GPNTHI00xOawfImNOZtOa2+WFxWLCI7ghXKA+OthgU6i0MhBl8jzX3sR57BnQXLdcdppZEZqvy6pUEOdv+dCMWlIikyRXvtLHUcoZenfAMjS55WxkKzUnmOFThuCszMN008E6wHNNjgH+54E8vNN1GO+aRKoaS1XooxU8K1BcuXYlmK6UwDLYWJUHPQtSliQ54s06lGNAxLTNTBlDXXWwtG6nmhbhP38yjFshQLmQ3lWzsjYd/Jkg/rmO0PZeRTVpitYYGKgkXcOepZyNQE1d86G36Iw17Wqs+1QA3TW6p5lLdQs7zICuXMYAP12n1OuUo5UkvNVG9Bw4dWsYGcQX5MPnyfGoaTYY0X6jYFZmYNVmhUDCKriKEtt4W1r4Z5xmljrmUz01uq0bA2KwLO81UTT4Wi3IqvOSgfvm3yFEDwPF31DRWAUTqQXUM9ueCvV85KsFAYybSHPV/Nlhz1HErtoXzpDPXFXKizZMnTWhinrTge6gENTDNANyKrNDLNJ3mHbxbOM5FqQcQTY8gPB3WSyFYiINQsLwaizBppFjKmCGotjHOUXSHPyhQLHKXHF1SnmUiZnZEVzydDjalIirFUKzPVW5B6Svmf8pIiKU6w/aLWk6tS0HuaOz1LqR5NJUxT4CB7GaQrTKmRx4wtDScQQ2yBGj+R0DZHk0psTEvUjTzruw1KQFUgOeqHE8jwsZlJ71FhBaFaFtjPvfTRiwYKqPMF5pkhLbOCP9HdxU6S0aTkD+mSgHyMVqZp9N0sC/ybmAyV3V76kKzVJuTlvKx2PrBYAB+i2rj5DGsc8rRnFd8yFDjAPg6xB9PEz/hug3V69Xnk66eujcnj6sK/0rLnPB8DCDRdUePVQbeEcyqYKoNtQtOemq0NvUiKfnqQOWqpKbOKCZKziOlgpp07wjVgC3ktE2xnBZPAKEnVUJUORjnmiyVKRi1pNu+UenLM0BCKguW+8q9zIa8cfR856jnhmXwD7AzfgzqRecyzwQqnlrie8EUsMc/GPTVeRdRx74Em/ygF+0r0TG5jbL9uBoLkSwUFfRdiCCnZ7mYATdUUy0MTRsWulNfkAN1M0xDkQto42hgPxVnb2JZCAUVG5PXMhiS9wrN5VACQbBpgJwPBL2+NNN0cY4ZG5LOla6uTIarIv24kt89za0ge9/IFan0XbJXysAnrvhCzLUueMTTQIcc+DoQksIlJb7ZtjYU6cuzhEJ0MBXbHIF2eIWADgWSy3E8P856VpI1xh5fdNvomipgoG5YB5rMhyY6M11VcVGFKybeSTrDEQ8Nu5KlX79nUGloh6VYV+cBWXSPtp/zmw+amJGac1vCedp0NYKbEdYHxIg9JyWU1KKOfXZ7lN+sbIFOeWZUL63I5K/TTg1iJ8oBdweRng3TxIA+HIuQo7dR52r184wAe5u1oqm0Fq+zlIDIfB1tXdjKADWZqCImn+VP1A2Bh53QI3sRAVgFPQYv+BTyz0+wkuhhkhgZG6eCoZ5fodeukQvdb+zUQigqyipihgft5jAI2RU8TgiVXVFHXBhCV0cduRulgxhfuWpjg/fxJuF7HaeMY3YFpOElzKKDJzqKDEdIUKJAJxvI6/3mygbWlAl4V+TCV2JqD5UgaKEl2o2+MaaKljlv+k2ruaN3V0Cjtt7oeldirgFvOCscwg27J3Ux2seD/prHzZfRfw0JgP9igENuflqi8iqvQawO3e/WBisMArYxxjO4wdW4Ph3iAR5CcdgIbYiOmmJqxYAnBEe+baEPPbJCD2YwsedHphrfmrJd7mndtJhQIJXkVS1Ry724G/LVXHpLgAbqR9EoWEmDWFhsxwoa3j7yJJmihyie5+7kXSU+lVmhjnKP0UMCGhhRI08A0Y74BuEYmTJbdyUCwUNF9JEa2rdU22Ed7sZgBKvaLfS87F8XUZjvQSivj7OYI9eQ4Qm+ICUbo4FHuZ9TbiOR9wV0NjBYm2E1fYHV0eH+59/Dx0CDQ2mIDt1aC1F/nUdOGxXgQG10MkEPsQZ6JPV7up8aRik/GqF0KSol+eshRx5JfL2RBAvj4d6MgpXhMTcoWJhimk4PsDXEjGOupgxGmaQxNfq13/fT4Nb02xGZSh4jsUCTlrRRWQnFAPnVA8CgGeCefAoxZn/ZFVSuwWdFGcaka9vW+oK2Y9yg9jHkGuGJOMVIlnc14ZuAh9nCE3eHYalgIOYIGW0xgAzbWSQWP0loWGKMNYyGbZ2AHIwzQHSTkOneymFEinmHNTxO1a3Gr/9w3Op5MvYER38Dv95OG5d+2kqqgiUmWfHN1t29G7CwO8EDhEfJU0c5I8M+VXc4SWY6mdoWBTdoj1dA9lNoTcsND7An7epEUsxmzdpFv74zfSzNFK7rIOy4o2uZOMpuyZnCRslAMBmsOSmJYyjDqp4cDmX3huJ5v2RIKR9ZgmKKOHBMZky+K9WoNyCl/3x8N7L4a5n3D1AYW5skykmkPReLd9NHMVLBx0UT0ruJgKGZXkedrZr5EIzMUMmaVMJkyWWQ+laVueS6wrCUB7mSYlqLlhd2LT9FcnPQSzUYOspcVypnI2Nqj/BfwhApTU3Uwyr3sD/Gq/IRz1NHBKNOVW5E1TC0LocEsKbJiBw3oqCPnG+rrNC+fpGXxZIjFZ7xENk+W+VQNYCzPFcqZppEROsK6Kx/5IT+o05jex9AQyBkag0KvozDKMy23hjV4gu00Fmb8+pnhdLXVLNo8G15rn10jrV6lKSXNCdSEVW7bzJT/Xm2IogZTLVDDePWtzKfMmiZb9E23shR9qV6AwGQUE1Dqpl30h7Ut7fOatZCn1nGYPUzRHHIMsek3zxHIPlmfr0zSzNFMDy2evZyiyHSqMVzvYqrXYUqbGhbQQNeW4kSwTCpSRnNhMqyTygvrludCI+eVcFUKeidpYrsPsDQKWj4Sph9uCgtImjXfDa2ljhy7ORLYGHYyUoHNtkI5nd4Ho9zTxPdxIGxEmghmHjnDgCUIA3SHCqw2FMkCgHDBr/ousAIMBY/zPnA3PxOTWrT5ANCkHY2hAysWzQQtaKpqkbIST4+yULAS7VzdT3ni6bhVaFIS0M0x6pklw1roxO3lIJ0MeVlQHWkKzHvmlApZtgDPexGShl/0h0qwJEHmK1VHDfPM0EiOOlo44f9+hgxrPmioCp0PSays22Nmk/30MEIHPX7KrCYCa6KwBbmzXnqwFrrpRcqoJ8cub/r7Ed5X0n23RFayTplEqwPdwUhgO4nm34tp+xUY6fuybld96NqX+hhaYc0Yku/mIUol1JK8yE9KE5LA2Fa7OBrOqbqvYs5plLm+72Ym2c5E2Dx1HVqAs0SeqhAgAiFAV8Kg6ZsrflE36cqxINmZYHvoktUwT5N/P1G87ZiK/ns6ShXmTzFOK7s4GoLoaRoCs2+cViQ3E4UbbKPIkg/XXYoiezlIM1Psps8XinLhe9bCr0LfjY4tzAVfnpyXK2qC54oPdrRxiPYOdr1piJAKudpE82SDd9kh7ibtO48qYqg7prVHm7nYZ62MUe+LWtbdbKKJySDpVoMky1IJM7cY1rRd9AePsRoWfJJrvj8qlJiprXnK6d5tZxRjatUjf5MGZtBkWLFLV6jgce7z16Gx07TRaU0sZyUUvnTNaZp6mgJH2O2vunra/RCD9/JRNGFXBUolppKTKzmTD5r5nZrHZoaCZ8IZ61XMO7DpV5IaZSiwjycAQnKlQsMUzezhMA1McxeD7OEQbdhgJUn/lNyK/aoCvIpT6hLmqONx7sO89GqDEfwo7WggVBM2zfF+HgtdUCW98kYUI9zWfAvKzWjdihyaTGqTjeuDN5NYmbI7sGOfCtfyAjWhASD2pA1VORyaS81M8pSXjJvsxtarjXvGkgxd9+WeWWcMO4svNPBHnW5NMdWkPCXRknGkKPpGnk0R1tTocVrZwyF/HbXRynhgSB9kL7PUe//UlsCStL2yPuwhkiKBSScmMDNxrdfW9GkLhd1VKqhlga2cugqrz2sLatpWsBJYtsb6NOmoisuSZ5ZRZA+HfAE+F5oeh9jjm4c1yLZE+7vkPxtFnrLAuFqghnFa6aeHx7mXWepoZySw4IbYERjpYEWyenKM0xa8fsWkLfPvp/VvjFY03Vqm6LbWjofClbGSy3gLj4VG3Ig3YzdpkikZNAG1hQl2+UmnumefoiswCJUIKznpZxeP8EBgumkdE7MkTYFabHiHeVl3hHMnaxh5CisOV6NGMUAHI2FNmvf3t8Xf1hzXeqh1SoU2NTIlP2328bQm8Q6xI9yrVjxY8wyLGboZ4BB7QoFCKgfF/mJiikVpnnHWGG9khn0coA6bKt3BqI8zjTVXwUpIpOUzqAZUM1OBUSI22bgvWqlxZNLvcYCwV+/lYGiWimGaZs1bLgxzhN5QwFMDSEqew+xhQxljTOYVKkL+YZ9pmr0cDEOXHuARNDzEmPdmwSLCgNhJpUSKoi/G6Xwd84NFwIgT93CAbgaComWQrtCE13c8QQtP+WKlGO5ZlmhlnCYmw5qs82AkiA12oq6xQ+wJihd7zdJVWX9ea7iF50JOooKAGnzKQcWqB2tcTacaWclYEUQSzsa5RYqYzFuFY5Nd76CMIjsWn6V9+dmz2GWSW+ramKCF/dzHDoZCXGOF3jUKKVMLZFijc/mZoH6b3lId7u81zNuutWTfTlEMLGwVbx/kYTRtd4xWHuV+5qmhrGhFZVMSzIbGXHbZBn01+VweoKxYDEXM+mIurMefTL2TT/FOipTRNnfSlBrLp4PkX3nLCB3GjPKEgw5GOZOBbZOLjNOGFGLysVuorKbUtqO5aIWv9OkzVhOormYlZTUOqbjMB99qC+2M0Fi0e0vXuTyxtQ+sUE43x8iSP6tw3s4I3zjzedqXnw1xb4PPPZ+iy6say8Lf03DEXOUWimVw+4wV9cqxwTeNxWluGzsVvifFTCq66njU/ACLr1epQBYv8v6sYYG+TC+P8IBfP5vIkudgZm/IaSQ9Bs0tqKe3aEqzfRxgAbPCEeFHhWTVfmQfpcIe2Pp3t5/wvoANh1GRsnxJPonzZzUXNJ/ALDHs9frsaqiArW1v4dHwPYjsM0kzJ1uqw2exnGwtrGddDDLspc6Kl8tZCXnWHZPP0bp8nBoWOMwe6pkNxxzUTRnbR0vlxwuV1RetZrsqBb0t5ELCkcImFqkKKkPFCbaTosgRdjNOWwj2i9iUKhWoxHrQ5lfwy8okTdSy4UNW9D01LX7jtHKIPaz6yvcaaQbYSZ4qDrIXTbsS3bZAhqPsCkmFpszIP0eL3gJmemtSx1QIKNW5XfUbf2mgJT85yQLAWEr3cAAbR78W5Dkm1xn3U9gmgnRMtHn5QDUyzTw1IehREigTSRXujtAbOryjdIQAboO5sxo6ZZquJqNlUAW/InyPkj0p4RdDsQabpGUTFj8VOh8rVDDAzlDVV5ClRF/FTTHwrCtti5U8aDoY4UEe9u5TG4NNTEa75n0DPCXWd6nryHmmZEOYJizZts6fukwFMhxkL6UG2g2Yh4hNAir4DcmKbJLfiLmn5FudXnnRKEmWUbsCXjHwdE+kWA8FGJsIal12Vft13Hp+K+OUs8KneAfGgMqFAG6eGvZwyMvz8iHZqfWf0+7BE0x7xqmKK5Lopigi/zEFEfIXkGROXQm7b6z7v0aaR3ggBJUKPHVtWmd6ySjsGAvr9SIz0+RgGz7RHthn+r4VvE/TSAPTPMyDQZInA10w5q/WQbAGhApe1mWzoOUBHmFHiVeZkmBtWEPsCAVuC3BsWI91dE0SeYB9vkEyRpEydvi7T9LFNAUfEN5FO6Pcz6MhqazABqpYASUdCj15sgx7KdlB9nLEM6SH2QEQ3lum53s5yDxmwLyTAd+5nQ3+qvLOlHxqxRfqdF9KfgYEOb+kvwfZC8AgdwVJvqZXDfn1T95UkqOJESZGt+QKktAK5v05QyfDgamrNWINY2sf4m6G6eSInwgr6cwK5XQxGNa3jaEJS0zTwDCdoZspI/Fe+mhhIkimAboZCOzuBWpLmgXGhmhljHZGsMnUuo7MeU6FEjNpNyP0Y96XT8l2lnyQo4pVp0IwWEIoY+4KVniM+5EMv9TbZCP5t+KxWAVASLb1N1MUGeQuVqkIBTJJ2sTG1N5W8EnSm33RSMVLTUc3aVdduO7UzOlmIEi+TNZrww503ctLpZSJvYINpWrwbEqwIq6Ga8lzqs4znSXXE8PcrsvG0Pm/kZFmjRE6mMUM88UM09TWDbbFQkhOjtEdCmOyhND5070uexfdq6WNj26OheZYHbOhMNXNQJDIjNDBMJ1BJjlCR2gO5Ml6X6UM5azQyXB4bxXgbV0xh0CpN8SMW6GcE75QZR56zaxS7gvtxzwLdyYMLxNbukCGcdrCOUuxTgcj7OaIZy9aQ0yeopJ/Wew6H1iHUlfID+gQe4IqBAgNyAo2fNEUQ3b4NWKIHb6wau/1MA+G6aYF3+wBi2vFGsywFuTlsmKYpQ75N2stltWHWJZKHi3OM1m9YrIMhaA+kT8nmGfXvexH9ifdDDBIF90MlMSh3WEtEbtYrGE1PuXd9Dj3MUQnR9jNUXqCWkGWMWtkqGc2JF5WSKsJzX/FpgfZa/5cPnFc9+vGgt/XdnGUTm+bkqLIbo6giZZq9MtQXj6mGf/YAibhq2E+2P3odSqgismi/WuE9mApoOKe2M9gRYY9HArEB2PN2n7TyDSH2RPuX01mtimcDfTTE+wbJJNeoJYaFjjKLpbI+j11LHgCaiheaTwsc/jXA077vUxeklaMs/PdXLAhebovhulkuGQgmuJvgOkt1aQohrhR1gEq5BypfhOZAqF4CHbfv5ePooFN3QVj/TYun6J3+Z8QkcL8cttDrDNZuY1BukI+ViRFV3GQvQUbhLN1ZikQFWpYoJc+5PlYUVxBqjXd85bzZPiT1PeRJ0sfu+lnV4gvUusbeYRY7WOpVjJFa/AOpTqDRUk3x3iAR+hafoqRLbfa+lxZxQgdHGJPGH6RYp22ohXc5Vmfq67mZHP1WfeMmFzGsmsLxbiJVAsNi3NMVN4aWHNatxqY8cxBu6ZVC5hP1fgmtw09UY1CRTt5/qVZYx8HqMEG1G2ZPM2ZDAxUvtF/b1OhyKn3lXrN8jobNFdTWOChym/hMw1fF+JhWdPMtW1Gapp6X3fI+IZnFXlP8Fj18X8qMK6tgT8ffO3V2FGOqqGdpSScaRrpZDjMN0hRZDDVFc7LOubf18pYaKJP0kz78rNkybNKRfCormGeWW/bUOYLiMqlNLhiuPr24BsoOypbk2YCQaUGm9nQzy6MgGUqQHmRi5z0Xj7KN05+HvlCr1BORXGFtqKRkSqKZiEiFdA6KTKsefWLxaRvmHiWNsZ5svl2/qTye5mgJdii6X30PYr9rwZ+E5P008P6RZbqrkpBL80aA+z0ssVuejkSinI7vEFrhgJ97GaW+pDAmPdQg/fbqgiSAkkmzP+kLCSIYokBofOpKS3yOCmQ8XrzDfnpPg6ELnEpw6zXU3OLlHECm9pUKiFTIaWOXOh2adOcpPksGrvoww3MYBO9cqH7LHagNjB1T1VcLPoLfIgdzFNDlQ82jtDLFM00Ms065v0nk9kiqWBwfDarzxJhBTIq9MnkW4muBcPmRSfPFyUtmjLZwSgyJhUr7LCX+1awEuScpTI3IDDg9JmV5AN0c4xVv/DLCF5T3boZCMma+YfISHLeTFb94qzPskANojObJ1hbSA51zejcanR1D0eDFFWLr4q4pdezZA17OBQ67UBgakzTgORnpdM8D7IXMTPtu58Ox6ONWcw/JTGSsdh7F5AcXIuYEhV5rShRT7FOL0d8R8EYRZooeMx7bshou57ZwLZS16WOHB1+tLzoxPL2a/fSmVIjWMkzGpjBZMhToeumbo0SffmNySRV38HrAbdxInx2dW12eAaxJNFidZVhfl4aBKSO4jQNIaAXs3eFCrqKg6H5oGA+g7GbdV8WSQUmgxI2eaDoegLCsdWwEOSvmta9FK6xYvCUWKU8FDc0qVL+j7t9kUn3ySBdtDPKbo4gaelDvJsVyoN5t6Q5CrjGaQ2SDZ2fJbLczSFSbAzfEFNG90E3xxilIzD/Vn3ip4ETYoyJdSE2YSfD/ljMn0QSMSCsn2JbTdLsC1PWSJDEsoUJfy7KmaQJ+cNuBNergTFZKvlaoYI+dgcfWBUP8mTZwRAL2FTvJiZZoZx+dp3V0ZcdhI6zVJaoQqn2pgamw3k1LvPG1OJaFkKyqMRVcrcFajzTZRazQmgJ76UCi7xKuhnwvmgWxFZhrHVrrHV7hz+ToUzTEIKuKUzuK+bJE+xDslYVROy6Xg3sdzGmBSskNLDDJ+AyAS9FkRT3eHb/E9yDJM3WALGmm+w1tBc2MsOUD8h3MIRk4CoiqigvZiRYElzLgi+grPnO9nSQ7epvpSkwVcIMu1GhIlGFl7zK9F/TOVXot4aWTbs7gslnTKq5FhoHmr4s43V15fMla5WSFDUsF6hFEltjyh5ikmbu43FqsMnGHZ6ROkpHmIyqoRJdDIbivPnimpVCL0dCQWgPh5mmMezvE2znIHtDopKhwBitJWb2tq+2Mc4+DoS9cYgdtGAG4zJFl/dcznPetZeqgd7NAA1Mh31XBew6cr74XI6G3ahwOEJH8Gkz77NeOhgJBaIc9fRyhFnquIcnmPZSKDHzxbTVXpX2bB+ALs8A09RbsUjGvZZGDS4loUBozuh8FklR7uPsHQxzL/t9Q2GYAT/cx9Qt80zTwFO+ANbFYLAVkEytSBkH2Yu8Q+WxajvVdgbp4gD7vPJjnm4GAlN4hA7P1isPn0/KH7BmEWxY0ICtIWqaSso/QDftjLLTFxvHsInEYmkYg8qICJLEqiip4XbaWzU1N0ddmFauvW3E/7fUPyoW2Tq9M8RfS2QD+0oSZZ27Ma9g0T217pP0BWqDsqfbW618N39KOSsM0M0QnfSxOxRh5EE9xA7WyPhraz4UGWQjYWz4jrAG3+hQw175i2TlHYVRUusvesZwAzZVdpU6crQyzgwNtDPCzuJAIHWYhZIVO7oLA7y78BA1LNBWtELP/JbN9Hlfw1KFjVhIYPHoYOVd5Cq3MEIH8u0botN7t1nsb/Yh0yGfTJ8+Q7HM8oUzGctbdN20M8IQnQzQzXzK7F5M3m9eovXYcMh38RBdxUF20R+ajTM0Mlx9OxWshsKj5N8HU3tDAVn1g46CTUHNV1YFCbNN9C4nwxp/xA8AVgcopDI8zIOM08Y0DQzQTR+7A2tRbCuRImQvZHnmGpPVW0PTxu658tD0kz3HKO00McmneGcoSoL5mbf7fLq7MECpfUBotBSM4bpcdxNHqt8Umv15qvho5bfTzBTfxsdC7iZrMe0705mGsHYADPvpwWMp83W2gmMhHJfFtCk/JMIKYmq2yZ5CMXdLcSOekqJjlQ2PdDGlq7DJ67CR86pgml08HRpmanLs4igF0vTSx3jlbSEWVZ6hAuwCNiRJ67oY5Mpl5PsPUFFcCUXLImU+VqsPsemsZ0nKNs1Ym2m/D5VD0VQl5gG6Sj6VZTLVTA3z3HziTIgPRCgAgr/gGhlObzFbmXVSwcJDpJc10nQUR4I1gd3bjWGKsRo1Jzwp65VwVQp6Db67py8WFBxnSooYkyEoA4IEtJGZUFRZ8EmYgjPR8adpoN6fQHWDwGSNYkfZJjFFJzbOXmasx+hGo+jTnu8n6rfYUmuk6WQ4sMV66KedUSZpYqcvRubJBj8hUURlkpvHJtSK9VAkxcd4D3myXmZZCIw0dfAlSVaVWFIP80TbhaRB6pLIOFj/qsq97m+aQboCeyrFevg8MudV8KEpZBWshHOvi1JJaCfDYdEAY6CYp1S5T1YbUEdaHjYq0MnXSteFyZKL4QYGfJEwHbyVFqgJ56ncF3lHaGe7v6nFZJA5qAp18kYyf4XVwBLU9VfOSpC/6Ds33z0/0ps6UqwHmajYajnqWKCGAXaG0fDqJGmhF4NAxyFatAzzJb2Vcbdo8ZaM2JUoz7SNZMTM78UwbWXMugKsME6bD9zlbbcSij0qnoudqmnKpUmtKN0NTNPkGZryuGxhggG6KfPdGAXTlvzb++lenKGRej/NaJVy7uNxsixRwzxZlkhhvjxiic5Sj01eGw4SjRsdm/xGIVmzDIDFDJDfkgLsUT8NUT4cjUxzhF40LEbMqRoWmE41Uu6lF5qoWPBFkwPsC0XudkYxeVOGRt9QmKTZM6AzYSCM/PLa/FojGa02/Ixfq8SMlsSslXFGaQ8dxxz11PjikBJIdZ1WqAiSqw4/nUudZkkoNahIxSwLyqzwL49OFa1K2SUpil4WagwgMaCMoWWeoZqAOswOmpkM0vxR2kMzyaYfyny/HA2RkIWB3t9YCR0hqND9aMnuEv3eGLee2eBJNEGLL/ynQjI8xI6Q9MrkuoLVsLcsUMMRPwlRyWrBr3e1LHCUHjQIQ+cC7H4zS4LR8Ng4bT6wWPNMuaZQuGplPAT4WtPVdBNjadjL5iTZUHFZ+7ACRAV1rYyHibdis3Uy7Auz6+zhUChe7vZDXGb9vtHGOOukQuHVmmOzPMIDAKFzXocZ+St4PObZ8pJVy8dVa7dYs2BNJTGz1OF+hAcYw/wd++kJjB5Jm7PkAzNa16v5EJqv7yBd/jNXMEIHYtoOe0mn/FrWyITv8E6evhrLz2sOdb4hVtp8rEMTrf+ePRxi1RdpJUnKUcca6bCHaX8zBpBJEjWB/ojfl+1eX/NMzqLvhNuUYpuVNxOaeCpiFH0BqItBzHttV/BDE6N2yCdGikOUCKkJmCcbWEcpitQzG9jG+sx7OIxYYyrGKZ7tYpB7eCI0wfJkvYXIkZCwCGooLGF+aoqd1khzhN1UsBqaz0Bgt4otWs5KYGcM0uWbxxa7dTIU2IY29MIm29r5sz2kl74gWyvHJlSvUE4V+cC2K2U3l8a3Ncwj5isQZKDy+hr1jA4VzxSXljaEOxkOxSV9PjW25bGtwTqlbBLFyzUs0OYT1UHuComZpKVK3lXQEvkg5feC0ua44iEwCZX8ApWEdng/QEm9TtDirQrKWPLNlg5GsGEBDaEx0ksf/fSEhFONYe0lSs7lf6VEUXuo9nqTQxobyRr0I6HAK59HY9ttDO3JkkdTeqdp9IXrhTBcRsolE8TXB6lyh2d2i9laIBNyslnq2E0fvRxBHralw/wA5thyJZaa1zyepMvL3y3+UY5cyKQD+0tWTOaRXM4o7YG5+URqXxjuosZQBStMZppJn36R3uV/Yj21YRvUyAytjFmMvrhUEjetM5FpoZcjdBStmCYmrPwkH+LdSIop4gH4qd/rBAbaaPVtaIDGCuW0zZ3kPh7nXd7CSEVuIDRn8mQDM1PTZp+iKwwWaF18zoZCLB732VoxrK9SAzQwzXSmgZrCQri3Ja/d6YdOvpNPhVw/T1VQlem6NWupAvfNfTFYcYzTioY0aB9RjiVZec3yYogDShUGaq68u/gQGdaoZ5ZD7GGSJsAGWRYy6dAUTbHuFWrmvzdOGwcze5GNzW76QiNMLDjl3Kq1iExhCkXzac8W8yH3llpmkibWPFtayq/m4iSFlBF2VKBUHt5Pj//OzN9RbE8pvfQdyB5jnRRH/GRy2QpIQruDIcqKBCmt5di1YWiEhl9a03qN1oIx4rIshbqB1CFSDDUyHdiFVpDrtJpEypqsUhROeaLZLPW+OFgb1m7NOVgj4317Mzzbsi0UE/UZjOzUxpfa7gixbppCiJGtcV9uBcvKKh8fz4S4RSqENGvkU1lmva3LBkt/hHrfhKtjlu0+1n4lXJWCniqRksxYF23DSF+MhCJl7OFw6DCp253FDOElVxj2X0we8w7b6buQjZgHkeQamk5a8EGykk759E3STKMvsBQ850M+VSnfGZFfhrFa7AYs+qp7xv8dLboyrJ2gJXRQNXlLHoG6eUx6Zd3jWS9TEGNiySfL6z4h1RRDLaqtjIXiny3sw+z0E0hLh33ILyZHnZcnGLNs1ReNMn4hGvdeL0foDdIrMQWNXpsLSZDYK81M+vJUQ1hEm720oYvB0GXuYDQwvsx7aA1RqxWYi6k3QDfjtIWOiLEwbZMXw0FdGbDk1OY4Wpd6kC7WSdHKGCbnsCl4kngUKfNBS0XwFVj1SaUKqTZdxzyudH3KMF3XnxL1DkY4zJ7QKQVCcVf+WOoYmNHwOvXe80peKyreyeswTxXTNFJGMbBP1NVUV0Lm1lOYd9CsL07oOMWqkpfTPDVhkmqeqtBhVufWioPjNDOFPHtMmjQQmCfrpPyZMiaFkvQuBsM0yzpy3M+jwWurwQf8mg6t4sYKFbyZg/6vlQcvh9eDZxTAGZ+0SC65Eu7Hgmc+1dLIDKO0o8lc6rSr09PFYNjEdU1q49ME3SryLJFllA4vkhhhkuZQ/FBhFwiNEEl/xMQsndJdpCwEi/Ita2IyXFulk3i1FljDwbz6RulghQo/WdECDLGT8mSDRMCOZykYtjczGRjW+vxPsC90+NTVEwNBXlBi8LYwwd1eVikZaJZ8sCiwcfTloZiw4lNbJR0yY9dGraRTgxcUHKZYDxtx2qctYnMpYFRRS/R77RVmFj/DCO2kKNLBqGdI1IdkTH9LvjFieijwGPXeWGDd1/3cF5hij3MvK1R4X89CCL6nve2BBkeVBvq6x/U3Z2gI7G+xOVUUAwsc5ZGq16pxYU2jRu7y0n+xi8UqVCdcvnyP8MBZw6nUXCuNGZRESKInqZ8Kukqwbe+y4SOyhOijFxkL58kGmUaTlxvatVUbmE8djHAPBwAbQjNCR7BpAFigNtwH7Yz4xtcQDUzT42U6Kk4bo1MBfC6oCFTULZKiiUnm/J5yI+NZbgeMxaT1a4R2+tgdinWH2BM60+WsBt9NMWMHvPx7nRS7OMoUNilwhgYamOHw83uQPYusHdZI008P8uCUEkCNRWvYNtOCmVFv7J/ZULg2xm8jg9wVihRWfCoPzQbd72qAgCXpYqvK8mOSJs9QNdtuFVok3U9R5D72M01j2HOV/OpvaGCE1mCtGSvYpGgbajEbzucneQcrVIR92eLpmXCMmsBoMftORujwic1QKFipKKQG1BCdIRYap40nuIen6PLNqIrwmj52U8bGkAzdS5K4pkvYRTrfGjyWJU+tb9zII1jDmMRUk3ecmG9aw3Tu2r3tiixuVn2hXc3aHQyzh8N0c4x2RuhiMMRzWfLBy1bSLa1zzV4SNUabF9wbm2ofB0Kxv9wXVY/5ZozY6OO0UUYxxL6dDDFPTVD6dDLEDA0cpYd38xAL1ATGoQYuvZ2HEQtpgVpMBdTErC+AS+pv18to2OdXKKePXsZpY9TvQQ1+37dPYYMAFTuqQAuEAR/GTDU5ZRvjaFp9DQuhUTjrvUXV9Na1JxXLQfYGVpGUSt/Hn1DN4pVcdl6zeAODZFgLbNNV3zycoIU+docGqbGWUyG/zVFHPbnAdNO+JBb4JM2sVm1ivPI2BtgZbIcshixjkiZGq2/jlsk5uhlgmM5wrcym6qgvWiGsnZHQ5NfaKWVUgTT7lj9v0s/qzb6BVjhLHdfCBNNbqpmghfpCDrPasuxYDGOz8LHhLpOpZo6mbFqoKYjMp61YZp+trIhvPBfCNZNinVE6OOyHRg5mujjE3SxQg3zg531je2MYVTHsEWu+GdFSnGAvB00FUXkT2UI+rOGl+TFAa2HcDxKsp7a4wEJlNeZp2ECOOpp8c6K+mLOGacrG2cz6Yl89ubCW9LOLR3mLl6ROBZ9lWYrI+zRPlp3Fjem1BdLBi9OGPlhh2PL1Keo9C7tIGYMpy5UH6EbqnCm/39Uwb6STwhCFlDUaG5nhzXP/FJoravaaR/p6iB0Vg9cxG4pgS2TpLJg9T6nCYcUrXzKFNSbYzoktWz377kSwDlgiS8viSXoWv4zJdRus6FymqcBN5KgP16riWqncNKzJLITuQrMYgFC41XW5Sjm1/lqyIUupkL/XsBDqCGDxdUVxhYJvMspzVbY2muJcX8gFtmQP/UzSjKbYj9AeWO2qyYiglWI9EKrMgq3NE7JqmaGRRaovaj25KgW9LMsh+NCUWQXqojpW+M6gLgwFQ3XMoglkYqlpIREToJxVBtiJSQs7ApuvCZuGKEmDLW0WyB2hlwafTNqGX8YB9oUvp9V7iGkRUNL4KPdjsgorwpmEcj10VCQN0rSwMl/YkPGsAih9iRaYnmBDEmHTEYfoZMKPJtZ0PU1cnaGRY3R7/xGjD7cyTgcjgbVnf6880HWzbIzTVoFGN59+L4aCLqoVbCJr0T9XydRevoDoqQ3MMEZrkOpKBgeETV4dwVK5stiC5r9hHU1Jey3J35C+icIqFmQ9ORao9SH0mi8IKnm27mYD08ErRzdLN8d8UGo3hlijLUwEqe8Qnaz7LWZDItPCNDZg5T72AxbwqgsiJmYnw+Gz2d89EaruKdaDPMskdg2BLdDITOiIAqHgrQ6tfAdkDKui8DG6sYElDcFLUef3YR4MUq9ROljy51CFbUkFxWLVhvgID/AE9/ik2xZqmcJqcTRPtDcHzwctmBO0kGYtyOSsy9FABatBapynKkjE5Zslnwh1lG50PMctLFCLTIglIxdzROvbMbrJUUcPR5EsbJZ66sh5z5IdjNBOLQvBRP5R3uKTvHIOswdNd65hgQd5mHZGMBsBu751HcxS7ycNW+coR13oAIs2X/T3nvwmhukMHXn5M6lICwRWhzqwdcz6BGk0dIZVDBIzRCyEGuZ9sci8VcUE1T0jk+yj7AIIAaaxVVtZpZxGXyATi1cT2rr9REi7J2ap8NIVscJsH6gPAfMOhsmw5tfklnC9q1iqTVpedJKDqAjew1HqmEXyVvn+1ZMLrBV1vjsZZoeXTKsxkGaNUc+MuYtBdjBEI9NhPZVEu5lJjrKLaRoDi1yBdD05WhkDLDhb8V1BJYW1PpkeopM2bIIe2OTG+3mUdi+5S/sAfZ6asJ8XyPAE+wJrDaCHo6Gjquu33gd5QOgAG/t3Z0hGxNopoxj8BhuZDlPuVUgQq66ITYaUjFaxxSTNLFDLEJ2BpSxmjSSxOo4Gvx6JldTJcAjU1VlW4ixJdzfHQrKcocAA3YEJqknk7YySoz40tLR+67tV4UN+iRtSPdsTnufWq7gKvTagOKUFG1JxiLt9ETsThjeoSTlNg5dEtYY1oYZ5Gjw7dJw2bMLfDE1MhgLpm27pD/fsArVoEJR8CjVhTmW9GhYCY3+Abgpk2M99oYFi69kSRVK8k0/SyxGfgK6HtSmLDQ0YoZ00BQ6xhxoWOMJuDnF3uMYXqKGfHi9lKlDBqmdWrZKiGAyxlaiMeiPvBWo8s9PiTknI9JklSwJjt9b7x1Uc1xoOJodTcV6FeGMR5ximM7yf5MSymVFhZpWKwGix/aofSSbl3fdOPoVYctM0ljS8s7Qxzjw1IblUElUgzQjtoahuqbatc5rua/FJa/BaskEZdSFuXaE8FIPlu3TIJ/prpNnLQWyw0Brv4JMhpmtkmiF2cIReH9ts92voeIhbd9MXBlqp+Z8nSxX5wJpSk3TNN+Mf5OHQyG8rseyp83uBSApKmKe8BExrVx052rDJ6o3M0MEoNnX9aLg2lLTWME8dNjSvjKKXRlsxUfLIfnrCoIQazCNcdgiykJBtjOJ/sVck0atnNsQYIiAM0hWSf8sBymhnBBs00xniW6kHxAwrkmKemlD4k/y31ELhRkYtucC2vJtDoViv5P4+HqfJF7Yf5kG/F1bZ3lec9I1Tuw5G6SBNwTdu5+lL9W5cX0XbQ6dpQKq4FEVONVfRWRyih/6Qm6+RYTK10dyQLYCIBfV+j+xkmM3LRoAY92obFfyKmDTbhmBa03U600CeqnCNa53JeQVAOyM+36nyeY3FfEN0eglwO2NbtoVmyttmPucb0Fb028EQzcsnSVOglyNByTbsBwwd9rmLlCOyy5LM9NHU/YghnM9k+UjmfYB5OdtgGcvPWxmjkLEW7jitzKbqwprdyrgvoqVoWJwjtW41jwlaQsFTTC01R42Fe8SrwtbZVTwahrhZA7uNJcw781iqmzQF2hePs33uFHdzKNQVGpj2kuh1DnF3aMIrrloiG4YCVbBClW8E6D6ezdQxxA5y1NG6+BxjW7aFmoBkyQvUBNk1ENaE2qIxSB/hAYboZDxj6/E9HAh77KpvxBzI7At/xwqlZSG+3MEQw9W3M1h9B/KVTLPGRErs5Y0hmqXy1hXK2Ta26Nmn1kzuZJgORoIN0AI1tC8eR9OaZd0jdYmahtrzW5igszgUiDMaYAF4gllV2Gt6OEpXcZCK5RfpLBopQHGKyEtWeF1jx+Kz1JGjtTBO/dxSuAd0LgHezUPcPnky7I8nfUP4lVB22SvRy+DkC+VUUqRIJW30c5oKBriTO3maebLs4nPk2UQZC2TIU2CVM7xI4gONGRp4kTywSB1znOA2UhTZzAwzbOYQX001C4xTw0maqGGRKbaxh+eZpoIlKkmxzCybmOV2tjLOOsvczHM8TTMNnCIhz/18nDqmmCVNllMco5fbOEEDz1AkxTHexDaGqWCGRapJsUyaHCOeVVLJi4ywlWrmSXu2URWrJKyR4kXG2cJJylkjSxNP8QJwjNtIc4YuvszzVDFFJRNUU2SJZ2ikh9MkLLGd5ymSYisz7OdeOujneVpIgC/QzS6OcpwacpRRwSLLlPva8XHqMClPLeOUscoSMMCbeJElzrBCNYvUUiDHJsrIschNrLHJB8FrrHGam3mOx9nFm/ki3RzhJNvYzTRTNHILT/MsbezkGV7gVhZwpFgn4QVWWaOCk3yab2UvBznNGjPUMEuaLYzTRy9V5NnCHA3McIg99HCUOSqpYolyVvlr7qOXPvKkaONZBtjJFqY5wxqbmeYMRTaxSoYltjDHHFs4znaqfBG4nGUaOMUwjRRZo4xlVikyRxZ5URyjlxTrnMGm2p4iwxLlZElo5BmO0c1u+kizzIvkOQ2schPrLLMITFFJNQssUUcZq2xiljSnyFFNkQyHuJOtnOJ5GrmNcY57yWkVz7PEi6Q4w808z1bWgBdYpsgklTSyzAybOcMKeWCCm7mTp6lkiTLmeI5b6OBZlihSJE+RZRxlvMF317cxxwpnmKKCJl5gjhRbfMg7Sh0vAG18iX52Uc4qbXyJJapYZ4llL0upIsfztLDKGRwL3MpJqjlOhjWe5k5OUE0dc9Ryki3kGOEOllmnkTkyFJliG5uYZYbNnCJDls2UMc8Yt5KiyJs4QZozFF54fTD0yl6YI0WWVR+ozHMTJ7mZGo5zgpup4DQpNvPt/DGLVFPJFCepZo3TvJEvUCTFXfwDz1HHHTzDY/R6n6dNmIPaKapZ5Baeoo/dwGbvXbrGGdbYyghlrPEiaarJc4IaiixRw3G+wE4aqaCeZ5mhmkXSbGGMMbbyPLdyByNMUUe1X4snqeLTPMgv8Uu8SBlptjBBDWdo4mnuJMsSN7GJF2iighlOUsE6y9SwSIEMp9nELFv8NNYVKsmRIkeBLZwiwxZuYp5buYN/4ii72MoMb+IJFqmmnmdJ6KSNfp5nC1uZYZk0ZcyxjeMc4zZOsoXtHGeSbSwACWc4TYEXWWOaWup5lqPczhpnuIOnGKKDN/BFjvtC4jJFysgzQ4YZ0lSzSj0zzJFlC2PMk/Ln4RbmaeAYrdzPY4zRYAFUcZZU6gzTNFHHGMe5jSpqWOEMI2ylnFWWKHKSelKsM8bt3Mt+HAtUk7DNU/W7GAFeYIHN1DPGEF/L82TZxhSLwCrb2M4JGhimg6fJcIYVypmigpsxyV2WSZ6ki5M0sUaaahZIM8tz3EIDMyQssY5jEahhnRXOsMZNzFHGKW7nVp6nQIFODjHG7ZyknBdZZpkqTtLCdgZYxLFOkZM0cRsnmKKKFBlOso08lWTIspUZjrGTFynjSW6liy9SxRKrVDBLmiqep5yTlJHjGLdRwyLPcQtpzlDNIsdpo4NnvL1FGUUquYt/4HluJuEFbuVJnuIWbuE5HuOruZXn2cYUpykwRh3PkaVAPW/wzMxGRrjdD966hSnm2EKOTdzEFjp5ms1kuYlFz/rfwpPcwoskwDpj1NPFk5Sxie2c8F3XO3yiPsZmLzteI81h7qKaU8xzE1VMchqoZ4ZWXqQILFMkyyp3cphR6ph7IXVtFqivJF5YpMgmRtnK33MPXTzJfTxGniqO0U0Zm9nFP5Gjlxk208tnSbHOKdKkSFHNAinmaWOIPC/yAgDrNDHsm0dj9PJZqshRxxxP0kUb8+ziczxJF4PcQhNTlPtXzlLFNNtYoJoGnvEKhhqWWec4tdQzyiDNzPm1d5FG1kmxiTlWKLJIwm08xynSZDjFcbYzRg+3MAgscidjzLGFDp7hr3kXO3maZ7iDJRq4l8+xSDV5qlhgG2kKPE0b3Ryj0rOcajjOOis8zm6qWfTX3hw3UeQIHayTIsscdZxklTWGaOSNDLLGGrcwyLM0ME4tt/I87fwT2zjJGVb5HG+mjWd5kTw2tO05jtBBihy3MchxtnOKBrbxDNt5kgWqWWWNZ7mdJbJM0cib+aIvQjZwwrMmqsnRyBSLVDMZ1rtNrFFBK1+ikREqWOLT7OU2xnicr+e7OMgUFeTYxDxlLHMzHTzD573/9vPcyu08y62+CdLPm3gbn6aaRf6ab+FejvEsbUCGO5nkOTrJs51F4GmayfIcm5mhiiqepZ4Ca5Qzzc1MUckt5NhEga2cIs2dDPpYtsitDLIODHILc2SYooqTVFDlmder3MQi21jlDHdyiEHewFZmGGcL2yhw0jcW1Cww/8gpTlPFAnCcu6hmkSXWWWeZOVK00c8x3sQp0jga2cos9TzLZ/gO3sCTVLPINoY4yF7O0MpbeIwcZVSxQBr4MttJs8wzdLDGKits4y08RpFl/p638iRdfBN/xwgdVDNBNRNMsc1L89KcoJZJKmjgFA2Mk2GRM37lHeQWtjDHVm/f0cpzPM2dPEsbFZwmTyUdTHETaW5jkiqWfLy4nd30sUg1jkXqGeMmFniSFu7m7zlCL0tU0cYsm1hnhEaSF/IvXTtuQMy/kAaWmaKSHFvYxCyrnGGRWs6wSiWLPEeWW3nSrwXQypfYtDzHico6YJEsMEcZWxkjTyVzbKLIaWo5zgqb+QJv4I04vswd3MPneZpOtnMcOM0CN9F46gxPbW3mRVKcopFdy1/iQOWb6eAZylnmNFlypKjlOKO+KTVHHVvIcXxzLZteWGIV2MJJlniRTaRY5QzTZDiNo0CRGsY5Th0L3EQVZqXyAo4XWeYUW9lZeJqDmb3cxgnG6WKYRvro5HaeJcULfJQHuJNh6ikwzDa+llEWV+DECzV0Fk+ymIItzPMZvpo7XhghA7yAETHqyHGcOrYwzvPcTIZZuvkCM1QzQwV3MEkyd4bClgIFCvwV/4y38TDVnGCJIpsX5/hSdRsZVjhKO+WcpombWKXAaQo8g/mSV3CSJaooUsZW5jnsbuf2F8aozExxBihjiU0UWKSJhEVuooIEKBRPM5cqo5EpvsxtZFmimkWOcRerwDoJs9zKLmap4TjHaQCXJ+0KpObnSaXWOchuujnGSbKUs8QJatjJAoe4i50MUGCVDGdIU2SW7XQvf4mVygx/yztoY4w6psjzIofp5E0M0DwLx10tNSxSyRQpcrQW58iltlDHPAf5WrYySxV5RmjgDKe5pfAcb858mmfo4DmybGOYYRoZ9LWfF3iROTb569Ji1TQLLOKo5CTPspUZGpijlh6OcoLbOUXax3Ivss5NNDDPCN3sW36GTAHObLmZDDM8R5bVunWmXqilj17e4IeUJaywTBMp5riJJQ6725l44WZqOc6zbGUTq9QxCpzhIPsoZ4WtnGKN02xilTluYp0laphlhO1+/X2afnZRzRTbWGKGBp7mFpq4ibWyNF9e7qKBU5zgNvZykEVS1DPK89xMHTNMv1jGsy80coYWNpetcPKFJpZwvIlng9HAKLdx06Z5ll54kTfwLCdfaLmo9cQlSXLFFifn3C3Ac1fsD0ZERLwecGuSJM9f64O40ojrYURExGXghlsP41oYERFxGbjh1kKI62FERMRl4WXXwytd0HNAM/D6aK9ERES8WmSByeRKLkSvEcT1MCIi4hJxQ66HcS2MiIi4RNyQayHE9TAiIuKS8Yrr4RUt6EVERERERERERERERERERERERERcXVyVoRgRERERERERERERERERERERERERVwexoBcREREREREREREREREREREREXEdIRb0IiIiIiIiIiIiIiIiIiIiIiIiriPEgl5ERERERERERERERERERERERMR1hFjQi4iIiIiIiIiIiIiIiIiIiIiIuI4QC3oRERERERERERERERERERERERHXEWJBLyIiIiIiIiIiIiIiIiIiIiIi4jpCLOhFRERERERERERERERERERERERcR4gFvYiIiIiIiIiIiIiIiIiIiIiIiOsIsaAXERERERERERERERERERERERFxHSEW9CIiIiIiIiIiIiIiIiIiIiIiIq4jxIJeRERERERERERERERERERERETEdYRY0IuIiIiIiIiIiIiIiIiIiIiIiLiOEAt6ERERERERERERERERERERERER1xFiQS8iIiIiIiIiIiIiIiIiIiIiIuI6QizoRUREREREREREREREREREREREXEeIBb2IiIiIiIiIiIiIiIiIiIiIiIjrCLGgFxERERERERERERERERERERERcR0hFvQiIiIiIiIiIiIiIiIiIiIiIiKuI8SCXkRERERERERERERERERERERExHWEWNCLiIiIiIiIiIiIiIiIiIiIiIi4jhALehEREREREREREREREREREREREdcRYkEvIiIiIiIiIiIiIiIiIiIiIiLiOkIs6EVERERERERERERERERERERERFxHiAW9iIiIiIiIiIiIiIiIiIiIiIiI6wixoBcREREREREREREREREREREREXEdIRb0IiIiIiIiIiIiIiIiIiIiIiIiriPEgl5ERERERERERERERERERERERMR1hEsq6DnnPuScS/zPl6/WQX0l4Jy713+O91zrY7kScM69zTnX75w77T9XzUW+LnHO/f5VPrwbAs659/vz1Xutj+V6gHNu/+WsE865d5WsM6/7830jrbsQ15yI1xacc+POub+5jNd94Jx1qv5qHF9ExPlwNfYF51yjc+5jzrmc/7sfeJnnKh5qvRLvfT3BOffbJed+6VofT0RExNXB1Yq/nXPf7Zx72jl3xjm3cJGvafXH8VOX8X6fuJHyiIiX4nIYerPAdwM/V/qgD4p/ueS/m51zf+acG3LO5Z1zC865w86573XOuXNe+63OuY865551zq341/zmxRalriYUtFzma3Xz3fsyz/nf/jmXnFCU/I064C+BVeDHsO9n+XL/3nn+/it+jld4/VnXxnl+/503UmDknPtl59z4Zb5WhebWcx6/3zn3uHNutuRe+u4rcbzXGue5Pvqwa/gPr80RvSZxUeuuf+znnXOfdM5N+2vprN+fC+fce51zX3TOLftr66Bz7huu9Ae4FFzpNcc5d6dz7jd80yPvnJtyzv3t+YrF/v5NzvNz+gLv1eic+6Bz7nlnDZVx59wfX85xfyXhrOD+oct87UvWOOfcW51zf+yc+7JzrvhKa6Bzrt059xHn3IxzbtU594xz7lcv53i+EvDXwPtLHvo77J586NocUUTES/eFV4q3XgG/BTwA/Bf/d//u1R7glYJz7jucc//k19hTfq05bxHdOff9zrmn/HOfcc79+AWed4tz7i/9vveCc+6vnXO3n/Oc8+1FH8bOz4Er9PEiIiJeu3jFdfYSY8w7gQ8Bo8APAj90JQ/2Annkb/nP8PSVfK+I1w7KLuM1y0mS/NlFPK8euBX4GHAC2AR8I3YRdwL/vuS5fwhMAn/mn9sN/CvgQefcVyVJsnoZx/mah7/R3w+cN1G8BHw1kAV+MUmSR1/tcX0l4ZyrAn6DK1iAvNHgnHsn8Angi8AvAwnw7cCfOufqkyT5rWt3dFceSZI8B/yZc66MK7zRXce42HUX4FeAk8BRLDm7IHxA8h+wdfpD2Dr9RuCWyz3Q1yh+APh+4OPAHwDVwA8D/+Cce9sF1s1/CZQ2GYrnPsE51wJ8wf/n/wKeB5qBu6/coV83eB/wXuCfsP38gnDO9QD7sfP1m0AO2A60XNUjvIJIkuRp4GnnXAfw7mt9PBGvS1zKvnAx+Abgr5Mk+e9X8G++ajjn/iW2bj8G/Fsst/gJoNc5tydJktMlz/1hbC3+OPD/A/YBv+ucq0iS5NdLnlcFPI7tBb8GnAH+DfA551xPkiS5Cx1PkiRHgCPOufuBr7qiHzYiIuK1hotZZy8lxrwXI1T9RJIkI1fheF+CJEk+B+Cc+wGsPhNxg+FyCnoXhSRJjmEXbSl+3zn3KeBfO+d+MUkSJUjvSZJkf+kTnXNHgP8LfCfwR1frOK8VnHMO+F3gT4G3vMo/1+D/XXiVf+da4BeAPBZYvevaHsprFv8KmAK+IUmSAoBz7oNYp+X9WOclIkJoS5Jk3LMXTl3oSc65r8GKeT95oxWFz4M/B345SZJQoHPO/R/gKaxIfr6C3seSJJl9hb/7QWAd+OqXSwBfJ/j3wA8mSXLGGeP8jed7knPuJozh8jRw343asIuIuA7RwGssjnTOpbGC2xPANyZJkvjHDwKfwhguv+cfKwd+FfjbJElkp/O//Zrzi865P0ySZN4//qPAHcDdSZL8o3/9p4EvAz/J2aSDiIiIiJfDpcSY13POHvEaxbUYijEOVABpPXBuMc9DMpa7Sh90zv2Ul4TlvEzniDuPD55z7hudc5/3VPolZzLeX3u5A3POZZxzf+OcW3TO7b3UD3aJ+G4s4fn5lzmeOufch70UYME593+dc28qlf445/ZjhU+Af/S/+5D/3R3OuY8750566cFzzrm/cM5Vv9yBOed+wTn34oVkClcKzrk7sI7ov8WS4vM95yZn8q5JZ3Lsx51zXZ7u/KGS58nP5eucc7/rJRkLzqRwaedcjXPuT51z8/7nN3xRtfS9vsNfT3l/zgeccz/xCp+h1pn89TnnXOerPyvnxc3AvIp5AEmSrGM08LOSYefcbc7klsvOpGy/5Zx7wJ0jGXHe3845t9M59zl/bkd0Lznnvt45d8jfY0O+E136PllnPjLjzrmCf6/POOdetlvtTJa34pz7c2cMvIgrjCRJxi/yqR/AmHy/4wxV53uS26Dvv9c592t+PVn211nLOc99Ta45SZIcKQ20/GM5TDJ11/lfhXPO3XzuOlHyyzuBbwL+W5IkOefcZufcpgsdg3Puh5xzo/6eOuyc2+fvw/0lz0k75/6TX4cW/Xk+4Jy775y/FbxUnHM/5jbsKv7eOdfiv89f9Od/1ZmUbMvFna3LQ5Ikk0mSnLmIp74V2/v+Y5Ikq865Cudc6nxP9OvL3/hrsM9/lgGtZc7sOgb8tXbEObfrnNdvc879iT8PBWcymL92r+D75cwaZN05998u5rNHRLyW4Zy73Tn3V865Ob9O/INz7u0lv5e1jAN+zK8tScnv3+Cc+6y//55zzv0C58kfXu39egG8EagBPqpiHkCSJH+DMai/o+S59wF1GEOmFP8DqATeXvLYe4B/VDHP/82nMRbgt1/EcUVEREQAFx9jOrMi+Y/+P0+5Elsc51yvc+4RZ9ZKq865MWdFwQvCx3p/6Jxbc85965X8TBHXF656Qu2sY1YJVAFfD3wf8MWL6Mpv8/+ey5D4CeCTwP+HFQW/A/gr59w3J0nyt/493wD8DXAMY6AUgA7gza9wnH8N9AL3l27yVxrOuSzw68CvJUly8nz5orOO4qcw6db/xNgM38JG8U74VWAIkyb+B2AMGHXW1XwEyGDdy5OYjO6bseBo8QLH9itYZ/KHkyT536/mc14Efht4PEmSh51zFwqg/gvwM9i5eAR4k/938wWer8/6S8DXYOdlAdiLybn/PfAg8NNYJ/ZPwQrAWIflMeBn/d+6C7tmfud8b+SMAfUZYAvw9UmSjL7yR74s7Ad+1jn3n7HvP8Hkbb2UBJ7OuUrgs0CTP+aT/nn3cX7UYvfJXwB/hUkM/8I5953Yd/O/gI9g5+pjzrmWJEny/rX/CwuIfx8YxILor8PO2T+d782cc9+MSTs/CvyLEoZuxLXBW4CDwL/GmLJ1zrmTwK8mSXK+oRU/j117v451GD8APOpMnrR6naw552IbL91jhGexfWvZOfcJjMk4XfJ7FbmnnXOPYXK1onPuM8C/LC2sOue+H2PzHcTurduxfWwOmCj5mzdj0o0/B/43ZqXw/cAjzrm7kyTpP+cYvxPbB38PW4d+BvNT/SzGkP91bO/7ceC/A//i5U/HVwQ6bwXnXB+wG1hzzj0E/GiSJHPnPL8DW4c+iNly/BTwKefcj2DMHSXv/w74S+dcZ5IkL/rHPg68ATs/49h1+42YvHf8fAfnnPshbH37tSRJfuHVfdSIiGsL51wjtu5UYKqQHPC9wCedc+9JkuQhjP323Rhz9jP4uMi/fhumoCgD/itmj/JDnNNMLMGruV/Ph4z/93zvtwrscs7d5P+GCoR95zzvCKDf/5mPr3cC50uWDwNvdc5lS+KdiIiIiMvBuTHmB4DvwWw6ZOtyzDnXAPw9pqr5r1je2gpcsEjnG6H/B7M6ebdqIBGvUyRJctE/mMfS+CW+5uewJFA/jwItF/G6P8JYW3ec83j5Of+9CRgAHit57AP+vepf5u/f65/zHixp24/dSD2X8vku5wf4b1iymPH/PQ78zTnP+VZ/fD9R8thNWMEpAd5f8vj7/WO9JY/16PO9wrEkwO/7///fMZ+o7/0KnIO3Y54lXSXX1tI5z2n0z3nonMd/yR/3h85zDv4OcCWPH8QCuf9Z8lgKS6L3lzz221jBIfUyxxzOM7ZIfxkzNb3tKp+rSqwI9mLJfbQMfMs5z/u3/nffUvLYZozynQD3ljy+3z/2z0se6/SPFYE9JY+/9TzX3IKum5c57v3Al0uu5zXML/Omi/zcL7muX48/XMa6619X78/fL5/nd7X+d7OY5P2nsOLwp/3jP1zy3Hv9Y88B2ZLH/5l//F/7/+7hNbzmnOc49vl76j+d8/hPYAWg9wHf5teGM8AwcHPJ836n5Bx+2p+/n/LncwSo8M/bBExjnobpktf/oH/9/pLHUqXP8Y/VYMXRPy55rNW/dgaoLnn81/zj/UBZyeMfwRpbma/Quf2bC12zWONM5+3P/Dn+T/4cf4Gz1+9x/9yvLXlM69EKsL3k8R+iZJ3z5y0BfuoVjnUcv/9ixe0XgV+4hM/6y7xCvBF/4s+V/uEi9wXMkiMBvq7ksSosBh2jZD8uXZvP8/q7Sx7bisUACdBa8vhl368vc/z1/p78o3MeV7ySAHX+sd8H1i/wd2aAPy/5mwnmO33u837U/67zIr+DpVd6XvyJP/Hn+vy52HX2Aq+9UIz5kpgBs5x62XyHjbjvp7AGy1/4dfWtl3BM+/F5Wfy5sX6+EpLbP8c64u/DkgqA8pd7gXPufRgr4TeTJHmm9HdJCbPPOVeLGU8e4Gxj2gX/77f4TtzLoRqrit+JBRb9r/D8VwXn3A4sYfzppERCeR68DUtwAmMlsQ7k/7jItxIb5gHnXMUrH5b7fX9c35UkybkswCsKz+T5LeB/JUky+DJPfQu2aJ0rn/i9l3nNHyd+1fI4hMlIwtTJxJhhfRhLRljACmff+ErHjxkyfw5L1O9JkuT4Rbzm1aCAFRM+Bvxz4Luw4/8zZz5owtswk/lP6oHEzKIvxHpawjYEPXcIOw9PJUlyqOR5+v/nnq89zrnmVzp459w/xwqSH8QKRS/XjY/4ykDy2jrgB5Ik+e9JkvwlVmgfxBh75+JPk7MZCx/DvB0f9P/9ml1zzvPmDdh+NIYN5QlIkuR3kiT58SRJPpIkyceTJPkAxmi5A0v2BJ3Dk8DbkyT5y8TM5H8QaMf2PLAGQAO23q2VvP5DnMNaTJKkqOc4sxvYgq2BfZzffP2vkiQp/Ru6V/8sMVl+6eNpXhvDTnTe/jFJku/y5/g/AL+IManP9ZQdTJLkiyX/rc/42SRJTpznca1Tq1gT4V4fK7wsnHM/gxVpfzZJkl+5+I8TEfGaxoPA4SRJPq8HEpOG/SGWIHZdxOv/IUmSwyWvP4WpZM6Hy71fz4vEfEz/Evhe59xPevnwPiymkMS/vOTftfP8GbDhc6XPA4utzve80udEREREXBJeLsa8ABb8v9/sXsa6xSONqaq+GXgwSZK/v9zjjLhxcNULekmSHE+S5NEkSf48SZLvxLqCj3qJ60vgN+o/xqRbL/GXc859s/f/OI3JlU5htNXqkqd9FOv0/xEmh/oL59y3X6C499vYlNj7kyR58rI/6MXjd4CDSZJ8/BWedxswlSTJyjmPX9REnCRJxrAJXz8AzHpd/o+583tZfQ/wY8CPJ0ny5xfz918l/g3WIf2lV3jebf7fsz5zYpKs+Qu85sQ5/61kd+I8j5cmeX+AFc0+7T1i/o9z7m0XeI8PYwn61ydJ8vzLHP+Vwu8D7wC+I0mSv0iS5P/DZGtTnC0Hvg0YPaegCRe+Zp47z3MXOedclRQMSs/Xz2DeNhPO/MB+2Tl3vsC8DWPhfNwXSc59v4hrAzVGzmCFOSA0DT4K3Oqc237Oa85triTYtdXq//u1vOYEeGn632By1m9JzvE9OR+SJPkIVrgr9ZLUOfzLc4rUf4Wxy+XDqnXs3PN3BtsPzz2+73XOHcMSyxy2x72ds/c44VLWOzj7Hr5W0Hk793tXw+9c/9qzPmPJevSyn9E3zH4W8zmcds494Zz7GS8hPBdfj8mTfz1JkuibF3Ej4TbMluVcPFXy+1d6/TPnefx8fxMu8351zpU787wMPyXP/WHgYYzRPYpJhAcwKxbYmEa+Sok/9znYzMbao38zF3he6XMiIiIiLhqXE2NiJJGPY3nxrDOv3+9zzp1vjfp3GKPvJQNFI16/uBZDMT4GtAD3nPsL59ybMHbRl7ELdf2c3+/zvz+NMSUexBhVH8FYWEBg8d2DJV8fxrwyPgp8xr3UfPuv/Wt/7iLYfK8KzrlvwFhUv+PM1LzVmTl3GVDu//vmK/V+SZL8JPbZfw3rNv4u8KRz7tZznvoFTBL2r9xVNk73yf0vYKyxm0vOQZX92rX6zsbl4kK+bOd7vPSamcEkg+/ErrH7sOLe+ZhD/w+Tc/3EqzjOi4JnM34/NrUtFA18MeDTQK9/zuXgUs4VnH2+/hLrrP84MIn57D3pnPumc14zhcmeH3TO9V7mcUZceczhC0bJS70MZ/y/l1z8eS2uOaXw98r/88f4LUmSfPkSXj6B+dQJk/7fUl89MYBzXMb5c859F8bcG8Xu+7dhe9xnOf9+fdn38DXEec8bF77uXs069dvADiwAPg38Z+Ap91Iz/iexAsV3O+faLnjkERERr4TLvV/fi8ULpT+AFQWTJPkWrLj49ZjM97sxv+BTSZIs+KdOAalzY0i/7texsfbMYey8pvMcjx6bPM/vIiIiIi6Iy40xE8N7gK/FSBy3YP54R9xLB9Y9gtku/Yxz7kJ+8hGvM1yLgp6YeWexDZxz7Zj/2QxGIT1fRfvbsKD8gSRJ/k+SJJ9OkuTR8zyPJEleTJLksSRJ/m2SJF0Y2+8beOmAgE9gRuHv4+LlrJcLMV7+H0bD1c8t/tjG2DAtPw40nUe61nEpb5gkyUCSJL+SJMk9mJ7/FuBHznnaCOZz0gz8nbOhHVcLtVjx7mc4+xx8G2baPIZJQcDOAZzzmZ1zdVwFpkmSJGtJknwqSZIfxSRzHwS+xzl37jn/PWwAyc85537uSh/HOajDCr7nmwK5CbuH9bvjQLtzL5mycknXzMUiSZKpJEn+IEmSd2FMvBwvZdWexmjhz2DX1huuxrFEXBp8cbgf2HqegrBk1KfOefyO0v/w11kH5wwXeA2uOTremzCz97cA70uS5HOX8FqHMRFLz8kR/+8t5zw3jTGQ9VytY+eev03YfVOK92CsvW9NkuTDSZI84ve4GyloO+9548LX3atCkiSjSZL8ZpIkmq6bBn7ynKfNYg3AM8BjF2MlEBFxneA45jd3Lu4s+f0rvf6O8zx+vr/5avAI1rwo/TkLSZKcSJLkiSRJjjvnarCBOqU5QL//99zmYS8WK/X7v/MixvA7X5NxD/BsEgdiREREXAJeTYwpJEnyD0mS/HySJL3Y0LM3cPYkb4B/wBh6e7GhoFd9wGnEax9XraDnnNt6gV99P2bq+E8lz92G+di9iBXrLhTQF/1rUyWvbcUu7NL3Ph/jo9//+xL6apIkf4qZYf+Ic+7XL/DeVwKfxSbbnPtzCvNIejcbEoJHsILND+rFfrH4sYt5I+fczee5yQewc3y+c3AMYzzehU0ku1r+ITOc/xw8jhV/3o1NtgUbALKOSapL8a+u9EH5ImGAD/iO+f883/n6z5j847845849viuJGcxb4d2lhRffsXkH8HSy4Sv5CJYkv7PkeZspuYauBJxzqXNllJ7hOMn5z9Ui8ID/LJ/xxfuIa4+PYmvp9+oBf718J+aDdC5D4XvOKby9B2MzfNq/9rW65gi/h7FAfjRJkv93oSddYO/6l5gR/N+VPLYfu6a/85wu6fux8/oZ/9992Br/I+cUT9+PMX1LIRZLKMo75/ZgXdsbBX+NsWO+7xxW/A/4fz/z0pdcOpxzFefpXo9iQ0vOdz0+hxX1yrF1qu7c50REXId4GLjbORfWEC8J+yGsGfNyPsZ6/dc45+4uef1WbJ+4YvANwkdLf17hJf8Fa3b+Vsljn8XYd+fGZP8SM48vnQL5MeCrS5UDzrlOrLn+V5f5MSIiIl6/uKgY83xwztWeh4zR7/89X7zyKFboexvw4autMIx47eNqVnV/3jn3ZiwBOoFJlb4N86v7vSRJSn29/g6T7/0G8HXOua8r+d10kiQK8P8Wm+T5d865j2A+Zj+GsT12lrzmPzjn7vHPP+6f96PYlMbPcx4kSfL7Xu76q865xSRJfu1CH8w5937gT4DvS5LkQ690Ikre4wQv9TzCOffb/nN+ouThTwCHgd/0DLGnsUKNipWv5EX2DcDvO+f+CvOGKwO+G0sYz+vflyTJPzjnvgUL4D7mnHuXl3a+BL6QOgb83yRJ3v8Kx1L6Hiv+s537996FTVH7RMlzp51zvwP8pHPuk9h18ibME2mWVz4Hl4I/8oXgz2LXyW2YnLSfDa+Zs5AkyU/7wtb/cM7lkyT5swv9cefcL2PeCPddiudBkiRF59x/B34F+Afn3J9ixYLvx4ZzfFfJ0z+IFTv/3J+3KSzolsnzlTpfWeA559zHgC9h/jX3Y/f2ucwXfY5Z59w3Yvffo865r/sK+Q++7uCc+27s+hW79x7nnIZcfDjZGOLyQayI8j+cDes5ga0Rt2HF4nMxB3zeOfcn2ATqD2Brr4auvCbXHP/aD2B7wBeBFS9tLcVDSZIs+/9/3Dn3UawYeRr4Oixw6sfOmY694Jz7aeD/Ak845z6MsbB/AhvU9P/888748/9B4LP+b7cB38dLPfT+BpsI/ZBz7m/9834ES7rPlV1ccTjn9mPeoJcszXXO7WSjmdABVJdcd19KkuRTAEmSnHTO/So22fbvnHOfwNb1H8SmUP7jq/sUATswtt1fYudvHWsYNVIyDKgUSZKMOOfeihVrH3HOfUOSJC9coeOJiLgW+K/YMK1PO+d+F1vHvxdbW74teeUhVb+BreN/5+OKZawYeJyz4+6rBq+EeCM2SGMda+K/FZtGHdaLJElWnXO/iO1pf4U1OfdhcdLPJ+a/LPwBtub8rY+xzmD5xTTwm1f9Q0VERNwwuMQY83z4XuBHnXMPYY3HLLY+vYDFxy9BkiSfcM59H8YKfAHzGo14neJqFvT+FpMt/guM2XAaYzx9H5YAleJN/t+fOc/f+Ry+Y58kyWedc98P/Bw2zGIMM71u5ezA4pP+sX+BSZ9m/d/5peTsiYBnIUmSX/MFGhX1LiTBVWI1dYHfv2r4Qs7bsaEH34uxXB4C/iPmP3X6ZV4OVmh5BEvMb8G6k18CvilJkn94mff9rHPu27EE/MPOufddIOC76ufA42exY/9BrGj0RSyQ+zyvfA4uBX+GBak/irFmTmIMpl9+hYD3R7Bz8Se+qPfXF3heFVZQO3mpB5Ykya8658awQsEvYd2aY5jP5MdLnrfkzKfx9/xzl7CF/iD2fV6p87WCBcNvxYoPN2GFnR9NkuR/vszneN45dz9W7PiMc+6exCbYRVxZfD/mMyTcx4bVwOfxEiuf/HwDlrD9C2zKcz82sfWR8/zdX8PW2X+HBRuPYd+5Bve8ltecHv/v13J+tlsblqiCTW/cizWgNmPn6zeAX03OGVKUJMmfOufWsD3pv2Fs2g8C/z4p8SZMkuQPnfm3/rR/3gBW/PrP5xzHh4BtWGD2AFaI+i7gnwH3XtInvjxUcRlrlMdX8dLPo//+v2ywz8EaFPNY0+S3/XuqyHelMIEN3ngLVpBYxxpj3568zFCqJEkGnHmBPooxR99WwoKOiLiu4Buje7GhLz+OrWnHgHckSfK3L/tie/2Uc+4+LK74Ocxa439hjPw/vmoHfjYGsGL8O7GG5jHsPn4Jky5Jkj9wzp3BmovvxNaBf8PZA8RIkiTvnLsXY/j9AhbH7Af+zcuohCIiIiLOhx7/78XEmOfD54C7seZxIzY06DDwnYkNnDsvkiT5M6+c+QPn3AtJkvz0ZRx7xA0Al1zC0Enn3IcwFsZXAevJhhHt6wq+49+aJMndr/jkK//e78IKe1+XJMkXvtLvX3IcP4olue1Jkpxrbn6137sGSwZ/IUmSX/1Kvvflwjl3GDieJMk/uwbv/QEsaL31emDFeVnizdjG9nvAVydJ0ndtj+ra4Vqvuz7peRz4Z0mSfOzln31Vj+OarTlXC54RR5Ik917bIwEfFM4BH3iZZlaEh5fzyg/2p4GtsUER8ZXCtd4XXs/wkuVyLD55R5IkV509HRER8ZXHjbLO+vgug1meVCdJ8sZrfEgRVxiXo7luwfyAzitdvdHhNe73Yh29q/1e5ef8dwrrsL5AiQfhNcJ9wO9e7cT6Ar5aH/D/7r+a732l4KXcb8IGaVzt9zr3mtmMsX2euR6KeR4PYmvM713rA3kN4XW97np8Rdac1zHuAZ5nQ0Id8fL4EeyejB3xiGuFuC9cG/wqdt7PNauPiIi48XAjrLMfxj7D3mt9IBFXB5fK0OtiYxLd0svJqCJePZxzf4R1Ab+IVda/FbsZ/32SJP/l5V57o8D7Fb4f8xBYwvys/jnw90mSPHDtjuy1CefcpzEvtH5skvR3YVOSvjNJko9cw0O7aHjD7TeVPHQoeR1PnLvW6+5rhaF3I+K1xNCLuDQ451o4e9Ln5y7k/xgRcaVxrfeF1zO85+x2/5/rl+KLHBERcf3gRllnvcdxg//P6/ZzRFwYl1TQi/jKwjn3PswHpAPzPRkB/meSJL9/TQ/sKwjn3FdhMrseTIY5jXlt/UKSJEvX8NBek/Dy2h/APCRTmAfXbyRJ8tFreFgR1zFiQe/qIRb0IiIiIiIiIiIiIiIuF7GgFxERERERERERERERERERERERcR3hcjz0IiIiIiIiIiIiIiIiIiIiIiIiIq4RYkEvIiIiIiIiIiIiIiIiIiIiIiLiOkLZlfxjfgJsM/C6NbCPiIi4JGSByeQG1P7H9TAiIuIScUOuh3EtjIiIuETckGshxPUwIiLikvGK6+EVLehhC9RzV/hvRkRE3Ni4FXj+Wh/EVUBcDyMiIi4VN+J6GNfCiIiIS8WNuBZCXA8jIiIuHS+7Hl7pgl4e4D9NvJetN6+Rp4pVygFYpZxVyqlmkQZO8Ry3cIoG3sojPMctLJFlji3cwQhFbmILc5zgNh7mm3grf0+GNQ6xhx6O0sRJVtnMElkameI0FTzHLexkgBNsp5wVAJbIskA15axSJMVtnOAUW6lmka3MkKeKMW6njWcBeJEyVtlMNYs8zZ2skWEvX+AkTeTYwk6OcYB7WKKSbZwkRTF8ttsZY400z3ELvfQxxJ1s5RTVLDBHHXNsoUCaIinSrLFGmue5lRRFFqlmOyfo4svMUUcTU6RZ42nuJMMa5ayQ5gxrbCLNGcpZoZxVjnMbAKfYyhi3s48nKJDhDp7hr3kX25iiiSlSvMgU21gjDcAaaW7hed7AIE/SxRxbAEizRgOnqCLPM9xBNYs8zy3MsJXbOMFJmvhmPsUSVTzJG/j/k/d3wW2laZ4n9hMPiINPAgRAgIQECeAXJKaopFKsZLeqpFJ2ajuns7tqKmfK0eOZmAlPeCPGHxHrm9lbb/jKF54rO8LeidiIccx4e7ft8mR1V3f2qls5mZXqUjezqSRTVDLFLxESJJAAARAgCIAHxKF88b7PK+U67K2wJ3dqqnFTpRQFAue8532f5//8P67wkE2mCHHEKRYhjgjRwk+XPUZ5Stbciyk22WMMF4uz+hw7IgxAhRGm2OQxF7nAM+rEeM5ZLrLOKLvc57ucpUiYNl18WJxyRIhdRnGxuMIqm0wywj4neBmkR5QmzzmLhcsYe2wySZQmEZoA+OjgwaWPxRqXOUuRN1ijTpxnnCdBhTYhRqjyZ/wd5lnCwWaHHP+A/5YmEV5wjhEq9LDZJUWYNg0iJKlwRJjnnGWcHb5ihousc5/f5B/wh2wxwS5jxKjTxU8PL0kq7DLGGLuMsscWU+TY4YgQXXw0iDLOE5aYJ8QRb7DGPgmOCDPJJnuMmofQywkdfLh4OCJEDy/j7PCYi4RoMcYeIVo0iRKjjheHPcYI0WKPMTr42df3fAAXiz4RmjzjAnFqWJzyhHG8OIQ5Yo4V9knwmIs0iXCRx3QJMIjDMy7wBmv6OfHhYLPHGFNscnR4yn+e+SOzb/wavloA/+vi/4b20BjXuU+MGl38uFh0CdBjkD4WHr2XWJxSI8ZFHhOiTZMI9/ge53jBDF+xyRQBujxkFguXN1jjiBDn9XMzQgWAJlEiNPgTfo/f5s+pMEKdODmecIqHHl5qxMxncfVR4KdDjiescRmXAXp4+R3+jBecw8XiiBBPOU+Eptn/whzhYhGhyVPO46dLiCPWeIMYdZJU6OBnik2+4g3CHHGepzxhnDf4ij/nt4lR5yKPqREjQpM4dWrE2GGcizzmBeeIUcdPh694gyhNs980iRCjbq5Nnsfsk2SfEUbYp4eXJhFCtHjOOa6ywkNmze+sE+OP+BG/yX1sHH7GD7jIY87xAj8dHGxO8BKjTpMIeR6zxhsM0mONN/i7/JRnnMfLCff5TeZY5gSbQRzG2WGPMZaZ4yorDOJwTIBPuWX2a4s+J9i4WIywzyILeHGI0GSMXSokmWITP10+5l1u8XMek6eH9xvXpkUIG8dci31GeMI4Y+xxnqec5ynPuGD2+B42+4wAUCNOFx9XWQGgQYRTLJ6QY5ItLPqMUdZ7/4x5jxGq9BikScTsCy4DzPKQMmM8YZwrfAnAU7LmfI3SxMFLkn2ekNPnvkWTCBWSJKkQoclXzBDR+3aYI/6M3+EaS1zkMV/xBm/wFUvMA3CFh8Q4YIU5HLxEaHCOF3zKLS7yGC8njFBhmatEaLLGG1zlCyxOec5ZRqgwzwOecZ46MY4IUyPOLT7hPtfZJ0mIFlNscZbn7JOkh5cQLbq6BrnIYxy85hyZY5kdxs29dPBygs0IFR5yhQBdIjRpEeL4sMf/NvOHZt/4NXu1ALbW4XA0zcRuicOkh5oVo0qS72w8ggCUzg0Tclv0LJvEfhscWDk3zdzzDZXZrrYcVs+NM9V+wlEwSIsgYdqE2m2awSFCTovg/ktWz43j4RQfHXLPK1ABQlCftjnBJrV9SPvcGRzbyykeNplknB1SXxzy9VtZQNUJVZKk2MXDKX0GSLZruJ4zBJ+/ZHsizcRaifLMEEeE8NNlpHnAYEt9xnFnh2X7La46X+B6LIYqfY6HoOfz0LUCdPBh4RJ1mwxV+ry04YvYJc7xglThkHrWxuO6LFtXmeUh4abDV5FpAnSJUSdeb3PGgZ+PfYfv7/4NpbFh+gyo99vuQwAOx9R1jrt1vMd9fHvAAbRnz2D1X2I74NhwFAzykFm8nJh6K/G8DX34eVa9Py0oTQ+T3j3geAiWg28yyi4BjvG7HfqWRWzXUTfJhe1zaQZxCHFErKD++0Y2Q4sQF53H6sc8Fl0rQJOIetbbh/j24VhtTfg6QB8Okx6G1vu0J84QPHzJiRe6IQ8NK8L5Qg1s+HosS4w6gzjEnjtgQ3tI3avDrId9KwnAxPMS2EAbytkhUhuHlKaHAYi1D1gOvkmex/ycW/jpcoFnXHpegOdw+B0PT63znOUFp3jwug59yyLQdsxnxYGV7DTj7hOG6n2OA+A7hPqYbf7N0G6f6rkgoXYb3x6UJ4ZwsYi1D6gE45QZI8Wu2i/cCi+sc4ywTwcfcadOxR4hwDEWLpFmm8FtqL9lE9tW3xtLXb/DpPreXzHDb7fv4nsB5ekhKiSY3X2inkwvvByCg5jNNlPMOF8RrL9kZWwaiz4X3Gf4j/oM9vT3A/DASwv6Fgz24NlInGMCTC8V2Z5P0yKkvv9uHzpQnQ4SabZpRWyOCFFmjO/sP9IfEtgHKWN/EZvg/cy22Td+DV8tgP9L8V1Gho7ZYooEFcqMMUiPLn5+wJ/wnLOc5yl14uwzQog2Fn2ec5ZzvKBJhB5e6sQIckSWZ3zGDabY1PWg6l9+mz83Z94g6jm0OSHHDvsk2GTK1Dtf8QZ5HhOlyT5JU1d0CXCW5+acVv3hOWrEOUuRFa4yyyoBuixzFT8dpthkhCqA7usPOCLIUy5wEfX8S20pfec5XrDMHNe5Tw+bCA1ahHjBOTy4pn+U2mORBdPbjbJLhCZdAuyQ4wnjjLLLTe7xKbfU80UdC9f0mGd5zjPOE+KIJ+S4wDM+5RbneMEgDi4eYtRMPdMkwv+E/zv7JBlllyXmmWSTLM9YYt7Ux5Nsmh5Tau7nnOUqy2wxxSwPiVFjhbfIsYONw1fMkGNH1+QW97jBVZZZZAGA69wnQpNVrjBIjyYRwhyxyyizPDRr4jEXcbGoE+M8z7jAU55zFsDUpvM80Nd+gDoxzvKCZa6S4wkrXOU8z5hik0UWeIOvuM91rrFEmxDPOUedOFf4Ei8nVBjRvayNnw4WLjY9ZvS/G2WXI8IcEeIG92gS4d/y9/ln/Jc84wJXeMguo/w5v801lvDgsskUPbxc4Bk5dnjBWVoESbLPJlMA5hwUnMHBy+cscIuf0yQCqJ6mRowxyjwmrzuDCvsk6eA3tW2PQUIc8ZArTLFJlwARGjSJMsoudWJ0CbDLqKmlLVwWWGSfEZ5xgRAtU9PXifMGa4RocUSYx+RZ4HO+YoZnnCfHE/YYY4R9zvGCEC3qxKiQ1D1NjXO8wMJl/9DH/zLzsdk3/j+9/n0DegCcH2oQGBrkkAgnhAnQ5ZA4YTrsM8lFSoTY5SK71MgRxiVKizE6gI84NTpEGKXD7/KXpGjhYvF7fEaHAC3O4qXHPhMckSZFme+wgYWHGH2idGgRpk2YYU5pkOIGnxGlQYYmZVLUyHGVFTyEiNInRZkyKRZ5kxBbTFHBS49ThvHiI4RFk/PkqFHC5gINXCxahJmiwH2+S54N3uA5dXKM0iHOMT2GOOACR4RJUCVOhTJJLlDhTQoAlEjrv5kmRZkuo0QpEcMlTRkHLw2iuvW22OIiKSokadHDS5YNgngYwWGXOEE8/Ih/R4Esft1wnGODAlkAtpggynOCWNximQZR1slTJskBAcZYY4QeXgYY5pRVpsnQIskxH/P3CNNiiBYVpnjBDNOs46PHOQ5ZZ5oENV4S5pQoZ7CYZJseIxwxRooKLjHi1GgQo0MAH9DiLEMADPEd1hnEzyHnCDHAEGARJkSHDlEGcHiDZwziJ0uBFmEusoufDkUyZCnjpUefDgG6uASxsdllmi4NXDykKAMQoEMAiwlqRIA6YaYo48UhwQs6BHiXJaI0KDHGPJv48XLAMA4jPGWULAX8eHEI4MUCIlTJ8pQ8Vyhwky9ZYh4/Xnx4mabMAGE6RDhHDQuXFGUOyTCIHw9BhoAj0uyQI8MzRnCoMc4ZhjjBR40cbcKcAb7mN1hgkSXmiVNlghIFspQYI0KLMQr08HGVbUqMYRGkhw8/MIxLkRwvsSkzygg1/BxwgQarzOJgM88SLc5xgQYN4vSBDeaZY5kuAZ5yGRcPJyS4yjpbzJBlhwAuWb6kQVTfbx/rZLnIDlUu4KH2bWw/v3Kv3xj6intDOS7xnG0mSVOiRZh1LrPGJX6Xj+jjJc0uNg5+Bukyik2DBB1SHJOjyinDhBjAgw8vPlqEOaCNF4ceCQbwY+OjooGHXS5yjS2inJKiyDJxbPzkWadIhq/4TfKsA+DVhUuBLNsMM4RDmudYuJyQwKsbzxgHfMEtomxzgkWedVwsolRpEGWIM2Sp0CDKBPsUyBLAIk2JFMesMsx3+SuKZIgAPRIUeJM8dygzxRVWsXBZ5w3iVLnILimOCVOiRpwwx5xhiPMUSFGhh5cUx0RpsM53GKXGKcOMcYTDCA4jlEnSJcAZangIUmSGv+Lv8GN+winDuMTYY5qXfMUgLS5SYpJ9ZlnnE27xNTP8Y/4NFn3inHBCgq9ZIEWZ6zxilzybzNAizDl2ydLgLrdJU+I5AXp4ybPHCy4yTIMMRf4ef0GDKCF6xKmxzjRn8BCnhB8PKeqkqdAiSgyXHiNAjzx7QJgLNAjToo+POllyVKmSJEmRFb5PnBrX+YoZXuj9/SqHZJhjBYuX2AwS5wgYwsFmlCINonjxkaGIxR6fckvvd11+yo+YYwUXizRH1MhwQoc+caI0eMh15lhhGJcWAb7mN8lS4Pf5M6rEsenxggBX2SJEixoJ3mSdDgFeYLPDm2afG6JMgC5eTrnCUzMAm2CP/5YMI/yCI85yjhZNzjNFhWdkCDBIk3O8xRYl0nzE+/xj/g3X+Yp1pulhM80d/qd8xDp5XvKcL7jFPA8YoYcfL1/xm6wxQ54NclS5SIkTEozSJUidCbbIUARgnyG8QJlR0uwySpcH/BZZCniBDE1s/AwSYJoNYACLQVa5zASfMEqHMEf6v79kiZn/ENvT/6ivkTqMJ0qceQmt4SES9GnhpTUfo0UYLw4VRklRZuhJG4JwbugQ8oOsW3m+s6IAgLdfPmGwCc2xYa7Un3MQ8+EOhUi5XZyhIEMvj8gONRRY1m7iTgwQjJ5yHIFgcBDb7TLkh9bIMDG3xbL1Bt9vf47rGSB4AS4MHTBabPIkM0qDAD2SvFH/GgBnCDpBm6Gnx0zbe7R+I0IUl7SzR/DrU4gDB5CdabDNVd5ffMDJRRh0+tTzPoJOj5F2nzO1Q/ZyZ4i2m5SGRvEP7FGLRBinikuAoe4h5aER2ni5QoEwZ+gNRRijQ6b9nFowxvOhFBPtJ4wGu6wNvUmUBmewOFep0Z4dIFg6ZWc4x5ulTf46/SYTbFMdCxHmiOH2Ea5ngJKdJkAHlwAJekyyTare5FlshM6Mh9GdJqNDXfwvoZKPcXGzDmEYOoLxsRplzpFvf4H1EgabfU5GoRA5R5wqDiMM0CFbqUEC2IFr/SKODZaaL+Nx+5SGPIQ5JNo+xArAgytvMuOuMVQ6gSqQg9LwWc7Fn9IaGSZs1XkWG6FCiiRlhsLQTg9wzj7kbPGQkyEozoxSI6HqM+8R1UiCuXqJtdg43guwHpzizc1NhsqHvJiPEcVlhTkuHv2cC0MNggxiESLACXtMMzrT5vzovvoctHAZJkqDBgly9T0ejk3xZmWTlx6oxkKEsDhX6bM5cY5M+zmrY5f5TuURXyXPYtHC693HDQ4TtLs4Y15KXAQgPrSGhxAJHLa5xiwPOcMQ41RpESYAjJVeMvakwvFlWAtewh1qMdV+jmWf4Fz1EfvzYzgP2DDU7XOuXcI75ePzod8iP7aBF4cWGapDHaI02GaS+fojjoaCTFJmbOcl+/kQv9ncYCMyTgAPAW8f3w6QhOMguJ4Blu05rrirdKwAR5wjSoOhy+qZ7XFM2D3D0Da8mI+Rchp4hyBoOVh9hzfcGmf88NIHZ/xAD55cGSXMESOHvf9xN6b/QK/6UJZLQ6t4KLHIAhme8YC3yVKgyjiDWBS5TIUUcWpM8YQlrlEhR5cxJtlimcukKGtKRZpztCjwJvMsscUkc+zgEiNImxEcGkRpESZOgVMi9Bhhk3neoIhLiCs8pcIFztAgSYMx2nTwY9Miwx5bTODHyxZvUSNBnnWiuFzmGUkcAhyzwNf0sYjiMKxBrTv8J8ywhgeXOH1OGSZAhwMukKCKxUsGCeDFxzybBBgkTZ0tJgAYIMxz0kxRpo/FCXFNpqnxNov8jB+S5Jg2AVw8TLDPNTZ1nXyBERxdq57gYDNIgAAeOoyR4hg/PZ4TIIiHd/iCNWYYpMMYFVx9bW/xBS1CHHGWQ1IMEOQKBVz8nCHMCA6jPKZIBluTmXr4mWWVNWYYp8Y2b+HD4ZRhHjJDjAZPuUyYI1PTtFB7dI46szwzddnXzJClzndYp0UYh0NqJMhRx8aPD5tjfAwQZpwCHzHPe/wVDUbw46VLgHGKRGlwQJZhHA4IE8KiR4IzhNngbXaZ4AP+HS2GuMguLjE+4N8BsMY5ctRI0OMhN5hllbfYoodNkQwOXq6wxhaTPOEqZxjCS5NBAlxlmyHOcMoA32eZQQJc4jknxJiiwtcckuIYgFVSTLBFjn2i9NkjyDRlUlSACCXGgBAhDihykTwb2Azgxcc2V01/2sdHhhZRerzFNj289BnmkHPkWadGnBRd1skAXQ7JkGaFAPv0sQjgwUOADqME6DJOjQ4jvEmBBlHqZAEPZzUeM8IhFVIMAbvkyVAkQI9ToozgcI5DLvFXeHDpkKbMNHPssMUMNRKkKVEijQ+bAnFmWCPCL+c68K2EYtSI0cdigzw1Elj0uc598mwwy0MyFElTwsIlR4EqCVwsqiQokzLotIOXG3xGmJb5mRZh/Bqwi9Kgi5+73GaLCRpEAbBwSVLmKstEOWCSLT7lHbaZ5DNu0sOLi4dVZimTJKxR1RZhwhoA7RCgQZQiGUL6v1m4tAgbMEj+zQZ5UlTYZoIufqI0SFLWDWCNAlkm2WKWVdKU2CWtCk0aACQpk6OApSGoEmkaulgokuEO7wFwQBQ/HWx6pCnRw0uZFA2i+s82cQ2SBOiQoUiZFF0ClBjTjKoWCWr0sfiI96kRp0qcDEWuskKLMKvMEtXAV5oSeTaYYY0GUWZYo0ySAln6WMywRo0EE2wBkKBGgyhhWtziU1JUSFGmSgKAMkmKZCgxRlgDtaBYPhVShGhRIs0MawQ06i4/J/ejQooGw8yySok0LhZrzGiwZBcLV09tGrQIUyINQI4CHlx6eHUhptaLi4ciGT7hHe5xkw4BNsizxSRFMnhxWGXWrIstJlhl1gAzJdKEOaJA1nwWLz3mWKZCiigNJtkiSZkSaeLUmGOZm9wjimo6/HTx4rDNJPe5jkXfrDUXj/kuWQossPiNayPPR0Zv1FXiWLiEadEhwDaTWLjU9H0O0aJMCi89HGy89GgQZY0ZGkTpYePgxUuPMC0NsOTZIWvWl6wLFw8uHrOOklTIsoMHlxJp7nFDw9B91slTIIuXHhmKZoLy6/5ysejoIgOgpZmpH/AhNRIc6ALLxaJEGgcvATo0iJr10iBq7s1DZplhjRnWyFKghw1AigoBOixzVQPbBcK0aBFmmTkK5MweqoC2DlkKZu9wsYhTI0GVDgFmNbhWJkmHACvM8SnvEKeGi0WKMp/wjgYwerrZ6FDSLM+o/tTqoD+vV6r63Xd4DwcvD5jnB/xMPyPbhGixyiwWfRpEzXNgaVrAp9wiTYkj/V5FMhTJADDPA0ANLLoESFMiSoM0JRy8ZCiSZ51tJrmu2XgVkli4+kzaJUeBnD6oyyQ5T5G3WaRGnAbDhPWz08PLde4zzQYFcoQ5YoY1ohwQpqWfIIc1ZkhSMfu2nCFyLxtEWWGOBDVWmKNFmEm2ucUnOHi5z3WqJNhikjhV/HpdbDFJlbi5v3d4jzQlAnTIs45Fny5+UpRJU+ImnzHLqtlLVbHdYJEFLPpkKTDBNgE69PBSIYmfjv65Ay6xRpQGcWoM02COZfPnRRaYZZUeXjoEDEjcwU+VOF0CuoGomjOtQJZ18rQIk6ZEkQw9bD3YSlEkw+d6D09TYoySOX9ahM36LJHmGRmGaXCf67h4eKj3avm+cj7GqVIgS4cABbLk2eAm94hT1e8/rIvjAjXi7OqzBaBIxuyloCbDIVpk9ZmyzrReiUX99x1y+vmTa7HGDMM0iHKgBy5pasTJs05Sg+C/9q8hBXZ8cfESFi7LzJGiQok0abdErr5HnCpnH9cVE8hVdZfVd4lTZX8uBBF4EHkTYjC1+BzHxuyPQ7UTRnaOoA5nK3U6+On5BinZaSiBrwnh9hFVK85xBuLtOgdWlAzPaAVDAHyVG6dGHIDxR3tkeEaUA9ZjF+gEB6gFYwTaxxxeHSRYOyXebLLCHGU7CRHgGF5egnS9rr5zBFoRnwJB8FC14xzEfJzE1FmwHRxnvLTHv4z8zwG4UNpnfGUPkup7VUlQIUWgfUzYaTFVeo6vCWeX6rzx6Am+RfhORQGdFi4hWrQjA5TtJPWcjxQVXvrgN0pfss60/rk+vias23nWmGGLSTr4+d7jLwg7Lc60dW3htMBWNepgG9bJszcV4UU6BkGYrD8nzwY93yCtiI+nmRF+Gvk9Mu3nxIrHtAiTocifJH+L4wi05weoxkL46lCLROiGBrkT+z5nK3XCTotaMMZgXf2+odIJxzF4ujDCcRCy7aec6Gvi2NAlwGz7ERdK+/xF7nt07ADJZh2OYXAFEm4NLw4jj47wuJByKpRiMTJuEdtR52X7/ACbU+c4u6Pu1a32z6ECFytPCbePuMFn/G793xGnyvn6Pluxc/jpMOw2aDBMD5swR3SCA1RIcRgfpBSLYdFnpv01VCDtlCgGz6l79AiyToELO/sATO08x3t8isd1SVAlRZlo88jUCH/30Z+TcGvE23UCToeUU6FFmM30OU4uwnZwnI4GDrAh0D4ltqMa4r2LEdrpAY4jQAXeKD1hgc/p4CdMizFKBOhSIMcEWzi2WrM1EuzlFFN6LTJFnBpdAnSCPojAXjJCzzfImj1jlAXxZpO59pek3RI8Qz2DwLqV58n8KF56eI9PKUYUBc/1QDkWYT8d4kwT9tMhniyMYtPDdh3Ot4v//veeX8FXBz8V3YOC6oOm9ZBU+jKbHlEamsIRxsXDVZZxsSiSYZItshTIUDRMN+lR47qWc7F0DRNlhywzrOk6pceBPh/T7Op6v8+Yrpk6BKjpgRzAGuqe/4LrDNMgRZkkZcokuaJrAD8dQrSI0sCDS5UEf8A/IkWFHAVTA6xqlcksD5lmgxJjrDFDmRQTbJtnIEeBAF3mWeIGn9F/rReU66ZwBpc1Zqjo+qxIxpBVOgSYZp0+llGWqP4syQ5ZHLwUyFHWf3axCNDBq7uhmgZWANKaPJKmpNUpHtaY0eSaAinKZChqLOCAA6KU9eAhS4FJtnibRWwcipzXgE+XdaZNby09a5U4HfxskOc+13lGhg3yBpQd1vWR6h3G2GCaDn7iVAnQYYItbHqIIug+1zWFxWWSLToEzPepkKJGAi+OqWNUrTmBi2VqtjAtCuRIs8stPsXBa66/g9fcY1W3u3hxyLLDJFtUSHGf6wD6/abZJc0f8I8M/tIiTJcARTIEtLazr/uWGgmWuKb7ly4pXTfZ9FhjhjAtfsjPNMnBpkPArN0iGbY1OFwjgY3DJ9zC0r3qHd7DxcJPlw5+GkTZIM9P+cAwJKUv8Oi+yNGqxxYh7nPdPJ9lUqY3T1LBxmGGNe5y2zz7B0SZYIs866/2WAKEaZGhyARbhGkRoMsuqV9qP/lWAL0jzcqbZt0UuR3NVJhkmw3yfMI7lBhji0mz+bhYpjksk6RCygAD0ohuM6EnShOkKZGkwm3uYtMjThWvbpoqpEwT7dUAmAIBDwzwcUCUGgm2mWCNSxTIUiFpgIc4VfMzHQLc4wZ51vU009JshRIdAmT1It5iEgebGglcPHTws8AiaUqUSVEmxTUeUGKMVWbx0iNFBQuXBsNmg5TNKk6NnGaj1HRh58XBwYufrmmSD4gaEECaRtkY/JqpViJNmRQzrBmQaJ08u6RNw5F/7Z5FabCm2VYWLnnWWWGOHAXe445GmAOmsX69UPDqQ2iBRYpkuMoyPWxSVMxBIj8zw5oBP2skKJA14FUANUHM6k19jhVmWaVFSDO/qgZ8CtDhAdfMZjVMAxuHFeb05tsiTYlbfKIftLL5Hbae3sQ108hLTzOCWubwEOCqqw9IAc9KpKmQZIFF03iqezFsNl4Ll2F9KK8wxy5pdsgaELCiN4kwLWZYM4drnBo9vOzqDR5Usyjfp0WYPhY9vKYxPiLMFpMG0MtSIEEVL44+hNU9qJA0DauDlwUWX2u4c6QpkWWHDn5meQhgvo8CIvtkeEaedcK0+ICfmuvTIUBKX99vgoCqWElQ5dyvpTXK//urh81t7rLI2+YZkSJogi26BADMHrfKldcOB4tFFugSwE9H0/u3mWTbAAlqAKAa2k94hzhVbHp08Gt2k02ALjaOAaAdbL0v+xmjRIaiBucV4yqgafNFMqZon2adCbbYZsL8u5t8Rok0K8wB0EfJd9VwQQE4s6zygGs4eJlhzewHNRJE9TNaJW6GMmV9eNn0TFHWJYCXHlUSBDTQtM60nlLarDFDnCphzf5SAJgCQlNUyFA0Be0Ma9zkM/x0TRE4zTpRDljmKjOs0dfFcok0XQKsMss603QIEKXBj/jQXPPr3CdMi6uscJUV4tSMpDXLDjXirHKFDEW8OLpITrDFhLkffjrc5q4BJ2skzBka5UAD8glT4Fv0qZGgwTAZiiywSJwafjoc6AInRMvssWOUiFOjTJIacQrk+JwFplmnS4AAHVaZNeeJAm09hDniHjdx8WDjEKfKJ7xjmIayx8g9yevJsXxeGRL8K/6pOVNyFLjOfRpEEbn3be7qIdowZVJkKTCn5b8C9pVJkmedNLvUiLPMnGFll/SQLE2JYRoGCJcBlRR/P+HHppFYYc4UUj09nBOgso+yxthikjXNvmwR4hNusc0kJcaw6bFOnnXyTOoGpEOAJGWWmKdB1DQCBXLM6Kn1JNs8I8N5isSpscoswmL+tX8dwiJvm/1lkm2mis+Zaz5iqHbCw9gUNRJwDE/nR/iLi98j3dynasdJORUFFNgw465xHITNhXP4iq+GJLT177HhxFYN8lD5hLRTUn93CK1gSIOE6v8nnBqZ5h626xB8dgoo0IUnQAwK5Ei4NS4+ekrHVvVOOTjC0NcnnAShGxpkwV1UjWIN2ucH2Iqdw7FhmAb7F0MM149ZC17Cos/5+j49bCqRGJN1xYLeS0d4jzuMPm5yHIGX5+E4CVHdNM84a3SCPoLPTvl/pH+Plz44mUJpbNSWoZUtSscRaJ8yXtpjm0lGK036FrAI36t8QcKt0cOmHR/AxjFNTr69Ccdg9U+hBrHKMQ07ypP0KAVyCpyiRAc/Z0t1jiNw5hnYroPVdymQI9XeV4qNHdjPhMhQxOOq4XUpOErLDpOoH/HXmTdZ04zUd5s/p5708Yl9y9y7KA32MhF8bUi192kE1f+vRJQ9jNVXoF8n6IND9blqxBncBIJAHIaenZCgBn0oxWKU7aSq7Y5PONNXa+YT+5YarPcVWNnzDfJ0boQnyVE6QR8XHu1zpgkzrHGmAlOl51zY3Gfo2Yketqr6qWwnudH+SzpWwPQdtgMv0+p6xqnCjlpPHTvAV7lx1oKX2MspULNvWTharja4CLPtR4qJomeetqPAukD7lDeLm0zWn9OK+PiEd0zzTRDOHMN+LgRzMFpq4nosfI+ANLTjA3TwM9PcJNw85s3NTVL1Jll22CDPdnCcM311LUdLTd54/IQeNuvkObtTx3ZUYzy62WSodGKGQH3LoucbwHZgyZqHEryMwBLzpnkf2Tli8OeQbu8BUAheIFVvss0Eh+cHCbePyNX3cPAytHmipMt/C14yBNtmgnmWTI9s4SLWKnEUML3FJNtMcI8b5oxWRlYdQ6JIUqaHbQCVNLuAAoakV8hQxE+HDgGWmTN1hgJGVI8gPbxFnzQllpmjQ0CDGDY/5ifMssotPsWDa4YyfU1oALX3CZh4m7vkNaDmp8N17uNo0E16jUm2mWWVqywbok2VODt6+FwlQU/31gHdZRTIsUOObSZI6PrPS8/UAwe6dwM1AOjqYV6RjCHWyOfv4SVBjYSuo+ZYIUoDr65DP+J9bBw9CFaATZYdCmTJ6R65g58l5jU64NLDZlj3VFIPWbiaZJNmki1+xg8NGBXmSO/5r0Ag6dUTuj6QGjRFmR3d45dIm+Gx4ARS/0pN56XHLKsALLJgQEaFZ3h019bhKiv46WrmWpnzFM3aqRE3QDIoqxbFuFSyagGtqsS1SqvDAosGlFZSXIciGWZZxYNLkgrv86fm/YXpl9WDddXDXzVD3KiuPRUxyzJ/vsoyfrpUiZPTfWcPL+vk+YwbBidoEcbWdXiDYa0gccizQZIy8ywZIg5AVterLh6SlGkwzDp5Taza1dZuw8Sp6TXqxaJvvpuQDhpEybJDD5v7fJePuU2FlLGES1Ix4J4C9T14NBEnbAqb/++vbwXQk4ZQWGeq8J02k3FHgw8JagToUCZlpgQ14qwwh02PCbYpk6JKnDhVdshSJc42k2QoGqReUFLZyFaYM8iyNDB+OsywxiTbVDWIV9GNY4gWG+RZ4popqoVl0MOmRNoAE8JuEDZKh4BuAg5IamRe3VDVKBbIqemUZjuJH4E0s8LWWGWWEmOUNYhZIMsS13jANfootqJCazuvNSAhM22okTBFrfzuEmkWWGSNGZa4RoLaawwHv2EKKKZjAK9urOU+WPR5l7umYNjRQJs0+n7N8BEQUIBPAb7kHjjYVPX3LZOkSsKwE4R9I6xDYcQJOy5Mi2nWtaC1Y4A8+X4NomwzqZvNmmEl+enwf+Q/o0WYWVYNsCuNpjT6ZU3rfaZ/720+poOfAlkUc9NLgK5hoOxohpkw/ORgke+XoGYa95QGZpe4ZtagHMQO9jcAUfnfBRYB9HOiWFNyoMywRpW4aWDVRGiHNWb0VhzgHjfpYzHPkn5Ptd4cbGzNyHOxmGOZWVap6QmQTY9tJllmjrKeBIZpkaKCRxcXwzQMi6yDn20mqZBikQXz35RnYYkkZTPFEjaSHAQNojxk1vge/Lq/BjQ7cRjFVhOGZ40Ev8tHxKmR0t5eW0xoCYMCTDsEuM1dshSokOKH/LEBDAQcybPOFhOsk6dCks9ZMKB5D68ubvp6OBFnmwkzZBEWtZIA5w2YHdeMMQEZe3jx4HKbj/X0McDH3GaJeVZ10TnHiik6XCw+4ncBsHG4xgNE6m7hskOWDn7SlHimiwM1NT4ywHKHgOb3pjSo6ec2d03hk6DG60zqAjkz2SySYY1LBixJUDPTQgXEJ0wRHKVBng3zPRXLbIMUFfO8ybP9OlNyiXk+5Ed8yi0qJE0RKYCZDGlmWWWeJQBWuEqUBhNscYVV1smTpkSXAHFqhlUIag9IaMApwzMCeoqqrq/HNJN51ulhG0uFbSbNcKdAlgZRPK+xEP16txijxAxrZChSJGPuv6WB4pRmmc+yqpnZKXZJ8wEfssWkYbvJEAVUMyh7dZYdtpnET4f3+VMzle/os2Zag39Zdthigkm2yLFDnCpdDXw7+jrf4T3CHJGhSIqyKRIDdM3AbJZV1pnWz1OZMC3u8q4BkS1c5jQLXRh3woQQFuOKZrfmNOMhRZnb3OUWn3CFVW5yz7AAtpigRtzUBS1COHjZZpIJthijBGD2xjAtXRNk9XVSQyhAMyPtb3Mb+pV4VWeCpNklX39qivHD9CCLkbf4m+TlVyxHjxoMT7DFSuQyHlyCmwpowgN9S639Hl6OM0oZEKbFF7lLvIwADvR8AzSI8tIHwZVTBfTYiqF34fE+pcgII5UjgpVTPC5YffExdenYAXAwDMG+ZVG/7OMB18i2n3KhohhWrYiPNUs1sKn2PidTcM++QY045eAIY5RoEeLM1/DWytfEisecaULA7ZBs1jnTxgxWLfocTg3ia8OZvgJxvDhknCLBZ4p5tT8VYpZVdmKjlCIjcAxE4EUyRrb5nElnW4EwMeWv/J3KI6jDoAMvvw88g44VMM/rG5tPuME9ohxgO/Dl3BQfBX+HJ3Oj4KDr3C7Xm5/DDprpkwAXfG1oXxpgx8pStVWj1wn6yLkFiCmgL+2W2LImsemRae4RbTdZjL3JMnPMsczQ5gm1SIQWYRIagP+b9GXWmMHBy0sP+B4pJlM96TODmp5vgFjxmHDzmMOpQcYocfHxU0jDXjrCSQYIwiqzHM4OEnUaBOiSdQr46rCfDLGqme7h9hFEFCOxb1kE6AIQKx1DUjE2h+vHUEOx3XxAX7HZOgQIOHr4FTxHwO2QdkqE20eUYxHONNV99LguLxZibM6do4MfRz/ro6UmQx+fECseE6fKheI+xBTzTi9GQPnUnXmiALt2coBfxN4i3DzmAz7kfH2fqV885zioQLsWIU5sJWUdWj3hcH6QvVyEYO2UhFOjFfGpN3UUWzZWOjYAxBfJS+rv6kBZXZOr7jInMQg2T42P5csgjDw6wnYdAu1jXI9F39J902+ot1hgUStturyMwNMfjmD1FRh78dFTzrRhrv0lB1aU1eBlHsamsHA5nBrk2Uj839+m8yv88uv+QcCM1xlRn3KLf8E/N8+Gi0WZFB/woQEhRMGg2EtxlNR0Cz8dSqQNAUbAPunlXDxY9A2bStb8L/Qg+YAoKQ0OHhDVoE6IVa4YcoM66yYokzJ9vWJMKS9K6TOFGCEEhJpWa4lf7yqzFMgi1kNeet8g5BTIaaaVgzANA3SMFZVFnz/lfcO+E0VbnBr3uIlXy4wFhFJgpt/sgVHd10iPLee2VwNPcapMs25qOOnF1Ofomv7N0YCg1C/yngcayEnrvkhUd3d4j3/JPzPEidfVYxmKBj8okCVDkSpxzuvBu5B2pH7KUuAm9+jgJ6MHhS1C5CiYvsvGYZZVs75k2LnENbaZQHnol3X9s4OfjtlvpUaeY4UxStzmLhZ9qsSpkjBDfxePUQ0daaxA+kpRaQjZCNCgp+otPmfB1I/TrJNlBy8Oiyzg6mGxsNcErN0hyypXNA5ks82E7rEm2WCaKgnTLwBmiCwKSXnPKA3mWTJkHT8dhP2ZomxwigopUtoGTQDpLSZJUGWSLW2rVtNUnoYhCwkIq/orNURTsvq4WdNRDkxtGtYaJMEFftnXtwLoCWgQp0ZFS2hlYQmyKdN9YUCJmaI0UPKgNohylRV62HR1o2XhMsG2eR8B3QR5nWbdINEiGUyzS0e3MhIOIRKsn/KBXqQfAxi5xRozrDNNWj/gcmNLpDWLMGWaqi4BjfSrRqKnNxuhwgoAozZS1zRIqrFXYM8k2+YaCcswSoPPWeBjbuPFIaSvlxTDchjMsGYa8RYhJtjiB/wMkTXP88CAlUIL7WGTpGIWZ4AuXQI4mqr6Ke8YdFkkZhNsG9aNAtXG2GICD6+kZIAGIJJsM6kZfn1mWMNGhaW0CJtGqkuARRYQmbDItJUkWol2t5k0QFqYFnk2UPIxjwEnBIBTTE4lqxNpmaD58hCKtFGxM5V23YNLhSQSRCLyZIBJtqiSYJJt05BViTOv/fXU4eoaZloPm2ssMf3aJiRS5y0mtCSvZ9bKfa4zrT2l4hroFoaTjcPf5yfm+ZL7KGxAASMEoFDsrIB57gCzXoSBKgyhPhZhjswatOlxk3tmrRfI8kzf/wm2zcFWIWXAE5lUixxNnkklF4rr+VFJS5Nb+vN4/lY0sABbTFFizEgaFXCkOKoyMZWD7TYfk6ZEXwOnUsTIum/prR7UpE6GDWGOUJR3m7dZRBiuMnmdZdUAUi3C3OMGInvvoIJZBOgTMEWGKWFabGnZdk9LVzMUyVJgllW8mg34CbcMm8nB5irLZv9IUCVNiS0m6WlavgDUNj0S1FjlCou8jYMXmx5ZXVREOSBNiUusMcGWmU5+wjvfOOxWmKNA1gBQJdLMsWyeDQHLZI+Woiahp4seXLIUKJPE1qBUiooBK0UCraaI6gyZ54G5HgG9Zwgwr9iqSnp8g3sE6JCkbFisE2zzHncQpm9Ns30FNBTA20sPkWsnKesC64A5Vsx6kiFLgC63ucuBBjHl30jx9iE/IkPR7INSFJZJmeCfj3jfAJENot/4bl56ZClQJKP3tCr/M/4VLhY/5QMDfspL9mjlSVcw/92jz2T5+3f4FFBnU4WUkXZY9JlnyTCpOwRYJ28mrdtMEOaIMc1YTlExBbGSTQwbsDpMi3f4xJwzymNoAmGvq723igo/yrLCnAEVRUYhA8MSaV3s18xZ8IB5fQ47Zn+T66vYCv5vNFRyHinLhQ55bRL+6/yKNNsE6HCmr0CtLSYYKp1w1Vkho5kANeLUL/sQhYAM+l5cjoEH2pEBbKeHrwkZt0gn6CNdr+NiMelucaYPL5PQssNk2s95GJuiPTfAscYqfG3AgvP1fWgqcOIg5mPVnoUgXNx5qp7vy4plNsOakbyOUVL/vg0cK9AnSZl1K4+vqWSkfrqMUTI1a4WUAgfbgA31nI+h2gmDbahnfGZfHS/tEW6esJeMUE/6ONOEYbdBoH2qAJY2jGwekXGKphk9ySk/MwuXnm+AYPPUMHo4BOpwnIF/m/wd1mLj4IHRx03FWm2fcpxG2y7scuZYyVBlj93MnONi5SnxZpPBIjCvZJszzhrUlPTyjv0eXQJc+Pk+36k8IlY5Zqh8wl+m36JjBQg3T1BM/qK59jt6UNEizMkYSmpLgoX6l2TbTymjgiu6BDjTV9cM0EPwA+LNJsG/VuDuRmSclqWaoHZugHZ8QMkCXagnVQjXUPmEsq2UEQU7y8mQkkjNsMZ4cQ/XM8BLD7xV/BrbUexnFw9P0yMcxgfJOgXWYxd4eQnKwRHayQFwoRMcUPu9HSbV3leNvRWgaGdoBCNsMcFeLsJBzIf/6IR0vc5k/TkBukQ5IMsOh6lBXs7DF5lLJJwaJ0NAWt3P0UqTr9LjDJVPGHwMxJU0tWErxnojElKs/dhlmFJA2Yf2ByTcmpKkA4ezg1Qt1c98lR6nZYfxuC6FyDlIKnDiRTqGyOVAqTXql33sfz+Ei8XQkxMGHcCBx+kL7F8MUY0p6fuBFQUg3DxhcFGBJXvJiHm+49QIuOocS7X3X20ESbX2Xc8AqfY+HQLkXDWM37ImSbb/FrCVgXmWdK9xRB+Lg9eYdlkK/Gf8nwxx430+MkSWAF3TBylI0I/yho9r4/606YeEGS/AXY4CPQ1eCdAlEkPZa/NsaIa/o5lFao+4yWdGdaDktHFDAADNcsVLhZTuH3K655nUwF/OAJOLevAsKq6f8QM6KFlonBpbTJiBooVLXA9l/ZoE1GCY69znPEXe4w4uHu5znXmWjFJgnWkm2aaDUrioGrxrsIMZ1lA2SpNmQLxB3sh8Z3nI17qm9dMxpBHpReX3pSmxzSTr5E0dOcE2oCS6Hv18VbRF1n2uE6bF3+cnJLVCUQgsyqLHzwxrJKgaMlGCGtNsmNqmTIqcHvSntcpGlDk14mb4Kz7oZVKGgReniouyRXPxoNRxcSbZJkORMUqGECCkD1ADNLkWaXZ5h0/5gA95yKxWQkidqEg5oNihoMC0T3mHJGUm2DLXoYVSlO1oGy9F9OqSZ4MoDRy8Zm138PO1xh08uGaQt8WkIb8oua3ay+TzhGlR5DwgQHPA9MtS/43ptb/FJA+YZ0f3EtMacxJp9esqx0+5xRzLlEkxx4pRX6q+umW+vyhexILoB/wMUdqBAtLFJkgG4tI/q/rf+qX2k28F0LM1qiosJ9WUKb8dofsKq0jJKXfMYk9QY0zLWAX8EuZDUvM1OvgN6CeNq8gAl5g30/MwLc0uUr9Ppu+uvtiy0JT3UNcgttdYMlJbAVQEXFJSzARlkng1JVb9vkkDtIhEtIPfMOoqJA3rRv6t+Pr0sRjW/yZMi/tc10IetSnd4lOtza9o4LOrF7BHv8+uWQCvSz0BLY9TG/4601R0sSTSY2VWX6HIeQOgdvCzpZv7EmkS1HDwssoVEnojaBBlkm0DslZJMMtDHL0BCBKvgExV2N7lXRpEjdfVsG78pHkSbyUBwKT5FQBzlVkqGmR4BV45+mBT5pYy2RAwTB74pA458ehJpGx+E2xzRXsbxqkZ/4RhGlripxrtz7hJirJ5XwfbgFZLXKNFmEUWTJPXQcn0EtTYIA+ojbWL0vQ3iHKXd82DKuuoTNIAD5LsLLKwEmnybHCPG8YTrcGwYVQK21ImMkI3V0yhqNnIBLyx9fWoEedtzQxMarDDwTYNdIoKW5r1E6XBL7jOe9whTYlrutl+n48QZug9blIkYzwzvPRYYp4wLW5wjzFKRDn4pTep/9hf17nPAousMmsSMZOUzeYu4L/yLPGzo6dXymDWNqCb/BuhaMv9Ebq+jcOk9l1QwEiS+1wnRZkKKW5wj7h+HgADEsrEdIY1FlhEpAPynIinJWC8KdOUuM59JtliniVSVMwkNU2JH/LHZjCQocgBUTO8aBClj0WFFHd4z8gFRO7x3wd6cxQYo8R9fejJWlZeca6h4YvEUgW/9MmzQZ4NUygphtgVHP3cyh65xSQV7RP4f+Z/hYQUJamYA7aH17CGy5omf4PPiOuCy8HmX/DPDQNL1vrbLBqgUdkWKENyC5ePeJ/XmYjy7AooKk2vSBe89PS56deynD4FspRJYaN8T5T/pqvPqJTevxLmvFSg7jANhvHgssoVA8wLsCBrb4lrhDky4KYU/PIq66JdDWcSTLOOg5c1ZkxSmUj0VDGmQMwGUUL6foAq9GooaU1S+0CKPEKAL1XAJs1gRjzr5OdlLxZZsRqh7RqvIEkTl4GZAKGgilTFkE+zzSST2g/2j/kBy1zlZ/yAbS2P9uLwY35CC+UNJnvYMA3e5yMSejo7wxqfcAvxw8xQNNdDsbZkL7a17YKHPcb+ve47v4ovjwsZpwgODG0qII8mBFdPGf15kws7+0w0n2I7PcKukq2HXdXgOng5nB3Esb0ES6dwqDy6XDw4NkSdBkNLJ9BWqa1FMrieAXJugZYdphFUnmIvPbA5dY47se8rmeITsJ0eM+4am+lz7OUixNt18MA6KuVzovlUgQ9U4GslKSQCFJU3m4ULLowWm9ysf875+r4ZGMy1v+R4AbDhSVIFNdAE6oq51SDKgrvIi3SMM8r+jCIZ9nIRvMcndIIDtOcGIAmH44Ms2fOGhe16FJDjYuE9PuUwPshIRckXXybh6cURbAf+3tKfkXUK/HzubajB9fZfcaYPnaAKUUrUj3iaHmH0UZMUFWLFYyWdq8N25IJivB2DJtVAGkYrTX7Q/DMW6l+qa1FBgZYV+F7pC0Y3m1RjIXXOOC02IuNQUSC/8iVNMOjAmj1D3lnnjCLAkKNgakM0kCTyvzcrmwzWgXEgroabZ0t13vzzTYI7pwQrp1i43I19D7E8+Co9Tqa5Z+qyO5HfokWYi5WnnAwp9uaZY/XZl+x59e+az7Hpccd6j3VbMZersRCp9j6uxzJJr3d4jw5+FoNvf2MQY31j70tQi0Q4U1IgYIEs45U9dkkzVDvhWWyEKAcE//qU7cgFaMPF4lMoqaHtk/Qox5dhLxehg590vc4064yUjlT97a7zIhlj8BHc5i6OZWPhshU7h/f4hPFHe4w+bpJxi4wuNilbymNsLxkxg/NJd4sr9U0D6Hhcl5GSGpQ8nrpgAGWp/SskaScHOF/fpxP0KUn3JYgVFdvvOKgYrw+4BsCZCvgqUIqMMHiowOBw8xjH9uLbge+XPmeodsLnLGDjsBPMfks70K/W64gwwh5y8ZCgxiTb5Nkw9ZIM3gR422YSpaByTW0jUk1hwctLiBYeXHb16SO+66oX7+rzvUuDqBm6NYiyS5oVrtLVZAkZ1IpPOWB+Xjz88tqW5XUgIs0uszwkRZltJjT5JkSWHcokjZpnTPc9t7lLmpKS+aMINutMv7IG0ECPWHUBiFf7+3yE2JoImAMK2BFp6Os2J8oe69U1BswzILYaomDbQPmNrjJrrnsHv6571DMnv9vRTDu5ri19n8WK4z3uUEXZcfSwWeWKHsSo3lBIGX66lBgzaogWIUTZpnCEniboKJBUyCkCYgmxRkgvYl+mrE2Sxm5HAF51j18Bsu9y19RSoHqGVa7wOQumllchLWpNbTGhB8HDiAWOyLe3mDQpyLOs0iHAj/jQYAZXWTGqmNeVY3k2TL1WIIfykf+cCbYRG6dJtgzmI1YoYjclA3fxmO6gLI7kGomiTggp4kkp/XyLEJKG+x53yLGDClva4ff5Qw0+rrPNhFF+zrCGo2s7+f0qTEXVkOtM49XfTTAWwADoS1yjQZSb3KPEGE81GPk/9PpWAD0vJ8YHSeQ8iuKoDMOVZEWBWjKdUA9wFgluED8BkX5m2dGASk2DXzsAXGWZVWYNC0wkoOJLpeRdOdaYMZN7rwZyJtnG0cwzkb6AWrS7pBFvIsVoUg/9Im+TpkROL6rXARNhiXUIGEBDfpd48SjGogeRuWUoMsuqbpxVQX+d+2YSIQsypZt5ke6ktPYdFENKeQZVDSPQg8t9rjOhU13UZrtBXzMn5QCQRk2Zp6uHdoM8V7V/gGjRpYkf0w+FGI+LBl88CifZNklGoDbSGnE9HeiaKbzyZlNsi5xm+oi/wj1u0CCqzddXvsF8k/ujaK+2AVktlPmqyLhlIxZ6rWzswo6Uh1iYpDL1kGARaVR72OZgitJAyYr9bGva8hgl/gn/xoR4iDdQT0uvRMKmPmPf/D4Hm9t8TJ9XBvUtwoatCBimUAsVahCnqp8b5bsoXo5KptxjhjVmeaj5jy0mNZvyde8AeSbl2q0xwysPBWWQ7GAbTwiReae0zPNf8r9AzP0VgPBdREY8z5Jh9cywZgpoMXuNUzWJVSqp6G/HS0WRq/1QGEw1EixzlSwFRGqQ0IzmLgFd6LWIU6VMij/kH/BAFwMlxgyw0sXPJFu4WEywbdZGnKoOEvKQpGKGJwI2KX8JJacokNX09VeSVSUNPUAYsDYOy8yZNdEhwCfcYp28YfAqcWyZNWZY1rYHszykRJoAXf6YH1AlbuS306yT0r4RoNblNBsawAmYPUQ+jxjlCotbgXkPDbgvUgP13A1T0XYLUrjCK5a1eHRcYwnx/0hR5h/zb5hkGxXSkzTg/ie8Q5QD3uMOYjgcoGuGEEUy3OAe4oUhfnSAOQ/Eh1QKYgXiJ/W/KfOnvM+EDsSoETf+srInuVjY9FjlCsvMGR8XUNKdCbZw8LLMnB5uXUN5tyqbAwuXBRZ1oeqYolzOAWEGKIb7Q82UmzY+NlkKbOmCfJZVI+Uf1oOqFBVWuYJYXzzUKdkSOiTAnfgS9vAiPidiY9FDpbLf5mNahEhQ1dehYopN1TgP87p0Q+TFRTLc4ybi4ZhnXXvFVAzALHttmBbXuU+cGrOskmUHkbYIQCdnm9QOIrGRdVHQ0nGRcN/nujFVFjNmlWKc/8bnVYzmCVQSvQoiGdXn76/7y3t8Sj3j43BqUMlobRRgcAloqsCLop3hwIoyxzIHVhRhqPqPTlSjVwNs5TUWcDr4mqj3QjHgfBUlNw02Twk3Twi4SoLmeiyWYpcN2Has5bkNO8rQ6okaDLebLAbf5qvkOAlqKu3wUP0MAONKAkkTyClvsygHPM2MUM/4OFOCM7VXgLd49W3OnyPT3GNq8zknSXhxOcZQ6UQ9n5ZqgNlRMswGw3hx8NXV9bpn3+BpcoSqpZrAG9wjtnKMrw3FyKhijEZGKVlpDuODrMcu0LeU/18nOMDefIRgU33Oze+ew/dIMdhilWPeqDzhzLECF0hqP0Jb7YfEVBjFoCzN81C145zY8N8lv6+Aqgo8mRvl8NKg8vRLK2nq4fggoN63aseZqT9h/7Jixg276nnaS0aYYIuineHlvAJ9Mq5iFGWcomLD2apuG6/scRyEw/ODvNTy6dFSUwGJOXhycZR6xkeGZ2S1IijNrgqdivjMQFKYwYfxQRqREE8XRqCkwM/vr3zO6EqTQQei7SYzrPFW8WsziPDtQMsKc3hpEO/xqbHH+H7xcxacRS5uPjV7cg+bbR02UiMOMeW1953KI/4meZk+Fl8lxzlf3yflVKh/30eVOCdJ9d3250LmPQrBC9SIc2Fz34TAfJmeIl2v4z86Id6us/fdiBloCQPG9ajrhwbY9DyfmfoT4s2mGXYPlU84U1MMK/M6hNjKMdn2U764eImTMUjqfbhFmODqKa3IoNrXIufYy0T4i8z31IBCpydPs4H3+IT6RR/1nI+EU+M4pmrblchlugT4i8vf4/+W/vscB+GS9q/tfzut6a/cq04M8VO36JsBn9TUarCuBrg14qYuFNXBIgs42GZArjxcK8b2RrHKDyhr1rtijnupkuAB82bwL4NJ6UVE8eai1F+iVpPaSbzlGig5bp51drW6QIg5gB5CH5j658f8hA4B4zecZtfUdVdZQTzoimS4yWeGkDNMQ4dLqCH1fa4jDO5lrlLTAKK8hIF1U9dk8qqRYJZVFlg0wGiWgumzFAGpq3uoIxMwGNfqKhvHEG92yJpheIsQaUp4cI33L2Ded4l5CmT5IX9s+sEP+Kkh37zDJwZslPpEgj0UIKZkwgLa1rRabJsJY2vlYnFLKxDku8j3+4wbrGqboypxM7SUGkaUjBmKVLRy8Cf8mHvcpEDODHrF026WVTM8fd2STH5WesAwLWZZNdkDQhSwdb/aJWBsqqS3ENKNIqxENamlav6+RJoNpg3xRA1aFTgmP3ebu7r37+v1emBsWURxIrWh9NsW7mvhG3FTD9dIsKGZl2UdohenaobmFZL0keBD9b+CE2QpcIf32GBak5EShiUrWIiEx4kMWBQuMjBWzL7mL7WffCu7pgIt1OIUuavo+1uEDRtKwK0iKrn0OvdNEyQacUG3xfNGkv529YZTJsUCi0a7L/IpwDTRaUossEhZN08FstzjBh38JohA6OZ9LIOWK0PQXfKs6zCGhyzwuTEulJ93Edlcnx3tWSQ6f9XMdgxzrI9Kh7Q1Q0+042Kg6eA1UqpFFtjWtOMQKtBBvqPQpeWzy/V8qL25BFBVBFTFeAnTMsVMgA7rTCPyU5k8xKkZkE7o4KvMmklPD9uAg1van0F80na1bAngJ/wYUBvrLzTjUBpnkbnmtRywQZRrLJkU2ve4842JkxcHgGeaXTmsN/IacSbYokKSLR2SIg/UEvMos33l16cOoxB3eI+GPhiECSMyuiLnzbTAr6+PAMzC8KnpZk+mOK+8shTDapEFPuJ9hKEjTbxIDxVTdA5hVAljRrGxvOZQ2iGrvbPUQy8bQJUEEgSSRaUxqmnQAeKTpyTsXiMNBwzLRrFE1eT0dcmdmiwkybJDC2WAOqHNeQWQUFOUZW7xiQalFNjeIMoDrvEZNxB/CQkoUSD3EcN6yuXiMVM9ARR+3V8Rmsa8Vg6rPOvk2DEeJ8KWC6P8HFRSWcU84wssIkxVSa3y0kOlI/d0uIZKNV1hjh42Fn1d/Kl1v8YlxI8xp8NOBAiTnwf0dNXBo9e1gIdpds06bRA10l85jKTR/IAPzWeUJOcoB7zDp9zmYxR7bp0jFMtOAKIdstzlXSQpzMLlu9xnnby5PuJTEqXBVZa1ZMAy4P11fmF8KC1clpg3z3eaktkvvKjkshWuGpmBnC8WrraaDrDMVUB5OAmILrYPsiccECWqWVmuPg+yFCiQNQW48hKZMM+cjUOSMjvk8OIwzwMtn0iasy7KAX0ss6/V9H1podI4BcAEEN++AF0m2WaBRfJsmGntO/qZXWMG8RNVA6VnAN8oekUCLYxNmdTLOimQVSwKLZ8RgHqSLZTvo58CORLUmOWhWWMOyoNUAGGvlnQ8I0OaXXp6yKCkL34qpAxbVSR7CZTkRaQoE2yxTl7Lc1xznvyEH+vhhJcMz5hki/tcN2zWz7hhWHMyKFtkgRnWuMIqN7hnbB2EBSiyoDFKxktmgm1SVJDgKEc/Rx79jEsRGKDDh3zAOnk+1wXqHCtc5z4VUvwxPyT5t2jIUSOB/+hE+dp5MD5wJznMEOxCZZ/xnT0STk0DzkcMOvDWztcQAl0W4D0+VamrTTi5qAaSJzGgDYfxQdZi45StlKk/Jtgi46j06k7QB0k4u1mHJMw2v8bXfNWIXSw+xYPLYXoQYS7TV/58+/MhniZH6AQHSDkVLqzs4+LhZRqO06ruzL7GeLnHDWqRCO3zA6xG1F58HIOrzoqRzbXnB6inFSi1S5q9TIRSZIS/U/q5CXcZ2Tki7LTYnwtxGB8kzBFxqoyX9rhYesqBpc6MwR3M0NfC5aVHPT/bTEAOYpvHvPSo6/Q0PYKFy4kNS1yDtgKi60kfpeAoxGBvSnnT7ZLG9Sj2WJkkJ2MwXtljqHQCm0oC7HoGaFlhM8Acdhv0LSgxpgKejk4YqRypBtHpkW0/5W7sexwnFWh7tlKnasep2nH25hQzjbYCRktWmp3YqPrsO0BaMS7Hi3vYTo8Gw0xtPtc7cZ/59hfK4qD9xAzJxkt7+I9OEIni/nyIC6V9iMBfz73J0+QIjWCEHbI8yYwSbR4pVtvliKrzLNUE/kblS2KVY45jKjH4xVSMHja267DFBEnKqMC+GvtpBdCdaCA6zS4z9SesxcYJtFXSrU2PUkSFckSbR2a9TjSf8kblCY+nLlAIXqDBsKq3gwNsRy7gq2DOhzeXNpG0Stej93UbgpVT8EDKLXPmGAbbkKvv8Vbpa/bSEQi+ClwDFCPTUTJpOR9s1yHvrJOlQHt2gKHaCRdK+0xVnpvepUOAkp0m037OQvtzfHUIN4+VT/fxKeXgCGl2Vd/SrnONJX6/+f9kOzhOD5tJZ9sA+L/ur/M8NTWfMNxUmOGYqWkUSSPNde4DalAwyypiZdLVckixtFE1+bAZeoFKuxVChNRXW9oOSUk7a5QYo4dNmhLzLDHBtlaaKdWFhHG1CLHNhBlevQJ3UsZiR/n6Khsn8V8D1Q+KP5uSsFaNfdYycyYYQ3pqCfOYYFv3XbvMsmq8gbeZYIFFHGxDclGKMOVhN806SV1LJqloRcgYAU2WkVRZYdwpqWqSDfKsMmuCPRSG8Dl9jR+Il6jgFFKrSz0mIKUoYuZ00IeQKLLsmKHe6xYlgOmtnmmWoJ8uWW1RIz22/JsxSqZOkXsk1yxJhbdZxMWih80HfIj4KEdpMKklwVkKXHrNl0/IGO/wCRJOIqwxS6/IOVaokKTBMDl9HdWwumR6RfG/lr1DVHGyXgHTn75utSb/RqX11lhgkQK5bwyFBd9oEaKnhbZSzwvApxh8uwZ8A+XX6KIk4AdEkdT3Va7gYrHA5wb0TFHhSIPa73KXS5oIFKfGfb5rANYDoqYuDmkAUymouogNjKOH8qLKlGtyh/fw6EH7GjMcoTwmpd+RPiBG/ZfaT74VQK9GDEm9EU8geCVFFRmki0UXPwmqZpogaK3E+wrdVemlVUEmxt6vI8QK9VUV3mfcpIMy/n29URHjzwnNIrvPd1knzw5ZJtl+7f1LhqIr0h55b6Fs9vBqGY9KgYpTNb5AAipZeroAajFLKMfrQEafVymjwiwTD6v3uMO0BoOOUBRb0c5LpLhNTzdcc8Y0UzzLGijTSNnIhcUgXoLiI5CibJpRac5EdiZ6eJHOeXFMUyTS2SoJI6mUVENZkLe5yzt8ikioX5cfCUPigKhpMkWSvc609l1IGqNKed9FFphllSpx0wRKGrIYkGYoGg2/eAOI919D/z7xcVxhzhwICVRSzS5pchTY1tp8YfTI95VJmMiYxzQ4KxuvsK7kXivQbBKRBt7ltv7eFpOaWSMsFDmERa4u9+sB88zy0MichQK/wCIVUtzlXT7hHTwodqeY2h8RNiEikg4pjJRrLBFGJeuKRFndw2HDGK0RZ4wSEuqhvBBu8ae8bw6TZxqUj3KgKfcJA2aDOsjLpLDoGznvXd79/3On+Y/jFaHJFX29xX5A9qwJtpFkQjFJTep1mNcMtiIZ4wsne6hIBaIcID4oiqhe02DEunluipznOr/QbOCHXNN+mjkK+j6nzb0XGbCEB13nvikeZKol09m4/ozi3wkYSv8E28yxwjp5VpijpoFoYd7KGne05DhFWe/BNUqkuc91lMeYbabMs6wiHmkiOxBvNBlSiFRA7A4UC6xqJrYyHBKWaQGVoDbHCuLnucYMd7lNBz/zLFHV4SUZioR00SeeInk2TGEk4I+wsBw9CRfpjADw20zwCe/wgHmz57QIc00PUJSsN4mSyp6njPKr3NLMw5vcM9dQzjc5/wS0l33Yq+U0yitODZiusmykMQHNJlP3s0qBnCmuxL9Untf7XDcDGwuVJF4mabz+WoT5XT7iKiss8jZhWqr512tbGofaa8Wb7NEiGZbJsaznim5eBJz200GMkuW/yXRfBj8yEXZRsu4COZa5agyQLVzmeYBiu6aNNYKLxzAeJLVZ5CiKfb6FhfsNhYCsaVl3KcqIpHyHnPEltXB5h0+YYAthyItvkcjjN5n6VvafX6VXMRZnsA5TxecMPtbSVQ8czg+SrtcZfIBuEKtK1thXrKazi3UCjlZROOq/o+Wpg4cQdltwHgqRc2o4GbnEz3Nvc99SEvSpynMuPNpn6OcngAJfZEi5PxWCINTTPpWi6nlVq4JmtFs2o48Uc46m+kyJ+hHp5r6SAFdOealVMTuxURrBCAWytAjhcdX3/af1/0Z9fNvLbPNrRnaOWA1exvVYZNwiw27DyDvhFbNXEmmVfYXDXi7Clj1BtHnE0LMTRh4d8YB5DlODHEdUnZuuqwbgO6VHLNtz33jPDEX+MvmW8kCL+SAIFyr7iA/fDGvQRg89EoQ54sRWnmilyAiggh4AZppKAntiw5PMKFyEnwV/j5YdJtmsI57GJStNIxIi5xbIuAqcf5GMKT8sO0k5OKLSoIMqzONvkpdJOIptPbrZVLV7UAWaFMmwwlXO9KH+XR9PkqNMFZ8DSrqdVekduFjEKse4ngEF2KJqYA8uODBY0fJvVGOIR61H1bQrdsjr55+wOSqk+E+Kf4mr/RwP44OUgyPmnBl9rNgUtmbLe3EYLTUNGxfAV1KD7VZkEAebh7EpHMsmS4ELlX2KnOdB5E0CrkryrERi/Dz5NuIFNstD5lghuHJKtv0UbBXul2rvw3nItJ/zZnGTjhUAn7rWWPDXmTdpWWHa8QG+SF/iIObjpU/d6y/Sl1jR5vUdKwBpVIKyo3oi1wNDT06MrHnLnqAdGeAkCDThws4+IztHXG9+Trb5HF9dSbqfZkbohlQwyWAbLjzaZ6SkTN+3g+OKKOAbIOMWybSfE6ycMu4++f99k/mP6GVxyoauYRKakafsgxLc4DPEp03qjSoJYw+ihvs1PXDqGkBllSuaSbbDPEsGzKiSQAz6hVlk0zNMp20mSVI2w74SY6wzbc6o69w39U6GInMsM6kHaj28zOte4oAon3HT1JUS9lAlziIL+OmyS9ooTnqanJCjYFKRozRY5ipFzpseSBhyPbyGVPC2HnRv66A5Cd0Skso2k8aOo8SYJtP0dE2lAMwqCW7xqakNQYalVUK0kMCzlGZrCRtLeRMeGCKM1J3Sv/fwGgslYe2WSPMD/tjUNSo91TKeq1EO6OElqe21VD7AmPkuUi+JmtGmx23umvRcBT7ucpu71IjzKe8wpm1jZOCp1oIiggjjtkjGgE3CQJNwEQGc5TtI+qx8f7EsE1/tGdYMi1H8BuU+e3GYYNsQXITgtcDnZCgiuQLiaai818eYY5kMRUNwUJ6FE9zjJkqdp0A+Uc+tM42SB8/SYBhRIgrYl+EZH3ObeR4Y26AacVaZ1USDDRZZMDV2AxWA2WCYDn4t893mAdeokSBF2eAaAsCLH98EWzo8JmlwmTVmuM91AihfR1FrVkkYubkQpuZ5wFle/FL7ybeWcjvHMkp+qGSGLcKscQkXix2yBgVWAEwB8f8RwEC8ixZYNDe6Q4A7vMc9bhhJzRVWCeuHDtAI+CVDmRTUWRKBhFkhfnlSXK8yyy+4jjKIrLLGjL64u6yTJ4TSZn/E+6wwxzp5s2GJQagwAAAz5RIKNYD4XsnfyUKRv69qr6NXslj1OQUc/Qk/Js+GkbQKGr5DjjzrnNfSMvEwCNDhcxbMZHeLCaqaydEiZAA8CWd4XXcvenUVn62MNpUE6pXOX2ixoBoyCecQIFNRT+MIKzKh5YOvPAZfBTeEabHIgvbHG2aSbXLsGFaOkgUrrxr5fOp+K1ndde6b6+rRzaZ8n+vcR3yqBDiVhlfM0EUOnqHIO3xCH0sfbo552EBNRCqacSHeZIrdeIVpPV0T/wRphIW9+QP+mH/KvyLLjpG0VTWbUmRdkkIsUmeRbcmak8mPSKsV2q/AyRwFPuBD04i8bqY/wTbzOqRjhjUzvRD/xzIpDRR5zbXrEsCib4I9BGyXz3Sd+4bJJOynPBuscNWYvjaI0sWPyBS3mUQFqUxy7pfcpP5jf63xhj6Mhg2DUnnvqOu7yhUDEieomWlhlbhhsipq/aTZ60qkKZNimAZKWrhhGKLCXJafbxHSsg2PkYGXSXKgGxa53yKRlgNTKP9yCIpBfUOD5uLb4eIxhaL6vjPfmILKQSyHXFWzBzoEuMlnJKmYg3yZObaZMD/f4lVohYCgkoouoTR+OmbKKvuCFBXXeECFlAlWOCJshigiFTjQrC55rta4pKfjasgwy0NAgTe7etAhU0gBMHPsmMJWGUjL/n9gihqZmiqpcdnQ+5OUKZBljRl62NzkHmJkLUMSkS9IYauMnJXUQp0hCpQL0GGFOZ0K2zLWExmKrJM3TPE4NY4Ia/lC3hRYM6wxrPcuGR6JNHZdsyFFziYWAaAaQvHslHvQQnnrhWkZVrYYCossJMoBV1lhWQdNgJyLwyZ1XibmMu1XE+8VUxTbqDS6YX2mi7fiPW7wEe+zzjRdbTItZ4kqvgOm2PbTYYFFlrjGp9wipD+zrOlp1hmjpL1vEnrS6zEDrzivEpAbDFMjgaS3iRXDJQ1o5vX9l1T4tGb6XdHr7Nf5lanXqOd8KjH0skpzBWWuf6YJBBXotMaMAgoikG7vgaWkrV8kL/H44gXql32QBt8OUIOH1ix7mQhRGvzY/QlRDsizrop37dn3+PIFmIIHzJOmZJ43gBfpGLHSsQLC6nBx86n6YJZKMx0pHhkGEyhG2pk2uB6IVY55mlFMvYoG4gXAHy/tceYZ0IYzTRjdVGDPYBsoqWZpqHbC0LMTrL7LTPtrWoQZ39lTdXTzEWmnRLByyhvFJ4rlhMObpU0GD+Ekpr7XLT7Ff3TCelCBwuuxCxAHDtF+wA5naopp/MbjJ0oS50CgfcyXySnQIGuwdKpSaj0K5CuTJOB06IYGcSybYVfVbluxc9RIMLipvtugo9heeDQDqN7E4ypQa2rnORdLTxnZOcLquwyVFajq12yahFtDbENcLIqRUeJUCVZOmWGNl3EYqRwZttisZtDiqGsf5oiXQRWyQFwxD59cHCVdr7OXjCiWWlOxBpMacN/PhXgZh2Dt1Oxjx0Hl9fbd+hdmoGA7yjO7GxpkhjXmWGbWWYW2Aqtcj8WOlTVWGXGq1C/6KFvKDmF0s2n2yNn2I44IM/hIresMRYqW2i/lnC4xxmbyHMpX3Oa+df0bYEZFM2Zsp8dosQkR5aFISYW8+OrKn67nG+RpZkRJaI81ccBV+1iyWadgZ6mQVAPxWMQMI0K0eLO0yehik5ceBXLvZSL8Ib/PdnCc/akQm5lzFMiSb2/SsQPK09ADfK0+x+AuDBZhM3OO2OYxPVQwSfCZ8r18mVbhHq+zW4LNU4aenNAKhvgyM0XDinyLu9Cvzutj3iVKwzCC73PdsNgBsuwwrVPsVZZp1hBKpFcQLzNRFwmgoHwnFTjT073IM1TaaV6fZwE6/Iwfss0EcyimsPKpV7YvC3xumELCzJcBI4B4xy0zR18zwZSl0TPdS+5oRppSX0kAm4BIMgj7A/6hHlgqf0ZhhrlY/AH/SIOUPRxNoBHijEgw/XSJU6NKnFkd0SDsQSFR7JI2QRU2julhVV+iLJTeZhGxNxmmwREqACJDkQJZbQVm81N+ZGpEUaMo5dM8Fq7xCJY/i1/5JFtm4CjXUAK1xFNXAh6iKNsPD64ZyIqXdYswu7qeFuWOhLWpnN0EKqxOBaQMaxKBOvOUH74KoVswrEYvPQrkqKGC6q7xQPf7Dq97xgtDs0rc4BtiuSUKE/Hgz/DMqF+qmnmm1EWO8byDV6ChUkMuG3BQ1DmibHo9KE56C+mD1Pp89Z3XuGTeu8Erb9MGyivyXe4yxzI7ZA2zMoDycoxTNWEtEoAiXoQ1TXQQObHYf8ngx4vDbe6aNb5LGrE4WmaOXdIm0DKulTAiYxdfyRRlHjDPfa6j1I+pX2o/+VZ4zRanrDJrgABpMGXRFcghQQ4C6ojkVn1JxzQNgoQLzdSLw0f8LlEarJPnBp+xxDVyFAyL6jYfGzRYwIcxSjiaiqtCG9SFVAw/xUSy6aH8qXY1cKOazLRGz8VrT0kbHTPZmGadJeaRdBiJa5ZmTRqIBDU12dKJkUvM66LTYYWrSFCGNLwuFhukjTm7mKDCKy+uHDt46bHFhA6pUMCbPKC3+NRQhCfZZpVZethUSBKixQ45UpodmdM+hQ62vpY7evMs6bAIjwEb7nED8dZTJvSKIadYLn7WmOFHfKgDAJTRpbwXoGmvE0gK8tssYuMY8FKumbB0JL2mpjcRYVH2dYMpJqgCGshnFsmqor6W+df8E3O4bZAn+ZqHF2AOSNV0dulhk9PvLweRHBDCqhE/RKGrp6gY9gXAXW6zwCJdvYYrpMizgaTlWqh0XQGHRRKmfKTC2HrzUnI5yyRmNhgmTIslriHeGAKGhzlCPATk+okZ/CXWNONT+Q+KLETkxSIXV+D3EQVy+kBTjewMa2Yy1sfC0ddEJPXCOtzSjET1vkdmGiig+Tqj38b28yv3+uP//WMivh4n2uezToyXPOYX7LGEQ5l7tAhzgaf4OKZDgGN8eqK4zD282DwDvmKTE1p0OeaZae6EVXdMjxh/xN/gI8k+ZZ7xN5xis8YLerQJYvFv+ZJBugTI8Sn/FXBC3QAXsmeWSXHM54ywzx8RZJgV+qzybzjmlOe85AxNnrPKkSrIafMP/oueAcsXWeAf869RhrJqYir+KcLMvscNwyaWQuO73EclUNsGLJNnRp4PP8pTRRjXyqrANn6sD7ShLKwj3jJ+/bzvkGOGNRoMs860SesWv5VFFvhdPuIZGVM853XYg4Da5/mmwXCHgCmI//sMOxeP8fkTyV+BHGFaTLDNz/gBgAE9ZYBwpM8LkdNLgdPVpthbTHCFVSSRXaQUK8whnnBi0qzM2QNk2WGVKxroU3KBqvaU8eJQIYWSjXqZ1IbDZVJ0ta+N3CspXmVvrpAywMiBnmQm9Gco6WJmnWmGUbKiXdLskEWkrgrodow1wSILzLGCyI0ek9KCxAABAABJREFU6j0nRZkjwmyQx0+Hj3ifH/Eh05qN6tdpZVIseulxnfsmNU8agIQuFIXdf+01FkOOgpEATejUeQcvH/G72sD6lTVHh4Y2DFdyPPFCFIb7BFvm/V8lzqknbJVZ07DM6lAmee9f59dubJiLjw94PHdBMYv6cBxTaa7YiqlXJqkUAx4UYw44G69zpg3EIO2WGKqpNFiSEG+qIAdh7f7Gky8Z8uyxmTvHHMs4tpfVjGK+5YNPudH+SzpBH9Osc+GRklm2kwN8lR4n6xQIxk6hrQIu6hkfsaVjcIE05OtPeTo3wtfMcN29T9lKQVDVM8HSPv5ch+nmE7qhQfxHJ7TjA1iRU5WMW4f9iyHWmSaXLnD2sM7F0lOOI4qxFbRPOY5of9m+kka2Ij7WmOG7wS848zUkh+oGQPkyM8VMc5OLlaccxgfxuJBvbwJQC8Y5GYJBFHPrAfMEptSggBim+SgGzzHpbHM4NcjQkxOowxAnfHlxijAtvrfyhQq86J/yJ1M3uGqt6GFxlwVnEVIKuIlTJbZyDEnlXXgchLXgJa7Wv+Y4qdJhE06Nsp1kvL6nUlMjkHZKlO0kR4SJNo8YqSuZ6ePcBSV1pcF67AItwsy2H+ErqjAOIoCt5L0VkmzHJshSoJ57tb92goqv4D0+4fCq/n7ne3RsJW8+0z7iy8yUYTkvBd/ie8dfcBDz8T5/qs4QW31G16N6lzd2nvAiFyPYrxNbPIYgRC+rIYPsgfe4iXhtUYHs+QJ76QhhR/VCx3PqusugZpaH9LAZXWrSnq2wZs8Y2SKomlTUH+JZG7UbBPv7EIRWxEcsdcyZpgrOGK0oMM4K1ujZNu3zA+qsbCqw8/FvXcBPh+uuknBWLdWTzbHMP6j/EV+lx3mj+ATHVr/7Qmmfd9N3AWXhM7XznL1cC9czQI04icgRrcggQ54TXgaVv6THBYs+fzn1FkeEmWo/Z28qwuhmk63YOTUYaj/FDmpg0laeixZ9Jp1tyq/J8n6dXyLD22LSDJuKZMizjviAtwhzT1tezLFsVEkJPSRXYElcn4EdxI8+qQkH8h5JymzpIZWSp6rzUoai8lonzx3eY5aHjFEyYQFSJ4CQU1T9JaF80huByEYTfM2M9pR9ZV8iwy8hScigWPx+pW8SgEr6bj/K63uOZUOgmdOJrVe0B/tN7hHmiBaKdSs1hlhmeLUCbowSK1xFgmvEHqxGgiPCXGLNSB+FyV0izSXWiFPlPe6Y9xZ/XAmtk3soyjOpY9bJM8uqIS4psLDLDGusM815ihoLSRrlywpzXOe+Joq8ss5S/yZv/A1FSvo+H2mQUwXD/SG/zz/hX/M2i9zn+je87ZWlWMmAbyvMoZR7jgFj0+xia6a2Cmf0m5AU8fKTdSH99y+4zg/5ma6LJ42yK0WZAjnTB19hFfFzXOMSHlzEzktCPBXBa9iQDKTXTlBFbMsEhJtgixZh7ROdNjJoGUgD3OITdknzGTe5yjLbTDKswTrFVgxp8LVhyFVSy4kFmJKdq/VQ1WQuUQ++zoSfZIsiGfwap7jOKj/jB7qWraAk231zDkh4nY3DOnlu8al5v1+W/PKtMPQcBilyniMNchyhqKgykRHQYEfLnR5qiqX40IjnmYulve4CumVzKHKeFGXjA9DDNqhsX/+8HKZpds3kQqiQfro4eE2z5tEP8X/Ff6o3zpss8jYB/XOyGZZRsfchFJVW6K0C/shUY1g3SZIKamvirNxkxRkLUSXODT6jQdQAfdIozrDGBnnKpIhrCWSIlqE0lxhjki2iHCCSzkkt3RNJc5YCUQ4AzEITFs4cy4al0tU69RRl1smzzFVejzTfZoIdskYiK823AFpiph7VDbaNSjSdYFuDlD2TqCpyWj8dQxMXRqAkwYiZ/OsR5WL6r/Twyquhj8US86SocJ37LLJgJljSwF9hlQTKdF0kfOLfJQwNAfskOcnCZZEFaiQMOi6sE9XEehBzdflMGYrc5q6hE4v/mPgTpikZYFdSQoUPmaKMUK63mTTMytdDI9RkeIU868brQMV7V+nh5bwGA8RYdJk5M6kTSTVgNqjPWTAMHyW3/po5VtglbbyoBIxXU1wliXwdzJR1Lc24FMV3eZct7RUm0xebHi1ChqFTJMM2k38rUh1BPWPH+DjGR40EA7zEwwlNhjjDS/pY+Dg2YGiADsf4SFEhQtMMB+RnwrR4gzXSlAjS1vLLEDHqpCkxyAlHBIlygAdlwNsmiEoQ3yNEmzOc4qFPFx+DKMaEhcs+IxwRZAhlmH2MD7/Wtg2hGM+DnNAhwCh7RDikiw9HAxoSXT/LKhvkTTE4oVOoJtkiTYmHzHKJNR4yS1l7N8oET1i8DiosQbzJlpnjoabQi0Q0QJePeF+vQRUrf4tPDSAPr4KZlJS5ygPmtT/c53TxG/mqDJ2SuhCYY8UMe5S0/AivnhILm1EK3L5+1gTUlmJQvLAkyew+3wXgGg8QE+w7vGf2LfHSEaBRWMPi7QKqmM6zwTp5vBoIq5BCkq5tHB1Q85A0u0bqntCgFsBDZlEBKmVemfgGNIC5YcCmbb0fCOtQSWFUIvmYZrfd57qZVMrg5BpLlEnqZPIku3qKLgEfr2TcXaIcICxoYTCqPXldD60KgAILZdjk4kEY4lJgfsT7bDFBDRVQkWedadb5ff6QWVbNgEEx4BW42iLM1xrQ7eE17DC5Th1dwAboUEYS4lUDf6QZFVKP3OAe4k8Dr4J/hE2vTMOHDRszz7qWiiT5CT9mhP1/zzvPr97rCePUL/pIUsanfZ7LwRHz90NPTvjezhfENo/xbWLqheOkAt0m3S0cy2YvGSHgdkjVm6xGLqEYzQlm3DVwFXNtsv6ccFMxhGbcNa6799mKncPqK+llgC4v0+p9G3ZUseXtpAq7qADHyvvryfyoSm8FzpTgwuN9plmnbKl9KtN+TpIyL3IKfBxsQ7h5QiMSomhnqAVj7CUjHE4N6rrWQ9ht8cXFS+ylI/gqcDwFe+kInwa/r1hVPhiqneBxXcOi2v9uiI8j32c/F6KdHFDqgMgUx0EoWykFwARDlIMjCvCO/Db7mRAXdvZNDRjbVHv5aKXJ48wFBVjbXiWxBAhCOz1gmCVE4C9zb3GSVFY3fSxybkHVe+1Tfp55G4u+ArOS8CQ9yhfJS9SCMXWvbFgPTpFq7xNon+LioX7Zx7/N/Y7yLfJYpNt7JKkokA/1++PUSDkVbKdneK8m4CGm2HjtyACuZ8CsES8OsdIxb1W+xouD9/iU0VKTnm9QAa8VCDZP+U7lEefr+1CCN0ub+OkQooXIel08xJaOGd/cUwMbW3n+AeYe0waewP7lkNk/ZH+4wWe8zSLZ9lNOLr9a+8HKKUnKFIMKAP27pT83dWDYafFiPqZYic4rPys5E85W6spawF0m394k4Simaz3jo0JKsRODCtzeTJ7TCbenTD1+TtWOE24f8fTyCIffHyRff8p4aY+hzRN2LJW4O8sqgfYxnaC69v/Nwt/FdpSMlroCir30OLtTZy8XMcSCbPupDmCxeBmEcixCJRLjWWyE8c09U9/Xp3wKuAuqPfdi6Sml4ChhpwW2kmx3LH0O2QEGJEb41/z1WCu94lTZ1iFY0gsJg02CBudZ0n2W6rlUuJhibopdSgLlOXaNB2yQ1yBVHBuHI00OkP5hhjW2mOQzbmoWkGKMCcAzwxqSGCqsP1E4SLBARXvQ+XXPIuelDO+FtSVnap4NJAhM+hMZVlr0qZDime4PJNxrjmUAPuUdJBF+h6xhWyn134zmRddQaqsjbnKPdab5mNvEqTFGydgg9bANk3+DPFkK3+hlt5lE/MHLpHig1QKf8g5dAia8TfpGUR/JcLhDgPNakirXQdUHSk6pwnIChuAiHumSOlskQ4oyt/iUpCbZKPlo1JBLfsqPEN9rGRBvMaFVFTYbGkAUcFVqNiEIpV6zh1G1V5l3+MSQp7aZ1LYRYe7wHi1C+OmSpGLwA1AgvzBIsxR4R3/mVWapahmrqCMVA00p5YSgJLZAW0war3HV5xyRZ4MFFplhjSWuIQGfLb0OlfRYBcUJxiMqSRnGKtse5Zvd1TVui5DpMwTLKTFmANiQ7nWu6LpWlG6CGYlNkpAJAMMCFNak8jjvIP7QWY1QqPUnIYLqHmxoso3Ya4lll6wFCe74H3p9Kwy9YwJsME2OHe5zHTE9V/TWLmiddoAuY3pBPyRs5IQd/HyX+7oReZUgCzDLQz7mNiXGjMRIQEDlL9YAlNlgnnX6KPNKB/sbDdrrQIcsEPEFArVIVf6MSnqsafnbe9zRrCTleSYP5DANtpg0DXeJMcO+AwE1lBRJ6LygUqOERRKipT9v3LBRVOrQAT1sA6CJFGyHaXZfu7ZdDVAJqqsmPGpDKZMyqLsy7N5gnWnDLpDrCGiGjJcrrOqiwmMaMTFelSmDmJ2LjnxLJwcJ21KSFtfJM6k9m3Y1A+cB13SMtdK3ywYf17LDAlnmWDZAJKBByx229bWWzzzLQzz6GqhHQjXzcap0CWh/sgS3+dgg+30s4/FUJGMYbLOsooxnHxpg7wafIWk5IjHs4kdJDf2GwSNeULKxC2i3S5pn+kGX39EixEMdODKjJz81EuZgEomdbHzioycPuVCIRbpZ1WwdAQ+VZPMG39VmumE9F5I1IpR8MRV1sM21luJC0dgTCDVdqNVelKn/BNuGZm3hcpUV420oPyO+NcIEFCn0wWuHwq/za5wdPvgv3kLJyr/DDT6jQspMGCs6OUntF0EyFPkZb3ONBxS1r1aJMcPYCtA1BeAqs/yID6kwQpJTNvgub9LhDu/xLndw8Zg9ysuQYS+oPw/Tw+Y+1/lP+QMs+nxN1gBaAopUtXzwBvfoYNMloPfks/x3/7sHRFDeUiXSPNRGwtd4QIuQmcZZ9M3gJUmZMEekqCCSiVlWCaPYGTf4DEmJSlAzEoQENeMNKUmpri4Vxihxn+/iYnGXd/mn/F/NdW0RZhrFDBWZsaLLPzQecZLGq0IqelzRXpsLfG4KHBlwKC/RngGyhd2nWG4TZiCxzrTZC1U6Vt8MS2QiKdM/YdbWUOlzedZNMSbAHmCk1Hlt9izTQbE6kDRfUNLCae3H42oQS/Z/UI3Vf80/5B/xB9xHeY0pxnDfTIRbqGTZHDvskEO8Fy1d+kQ5YFonmH3IB/xz/oWZMj5gXk/QlU2D8gPzssCiCTEKc0SNOHOs6EFZX7MAPaYgKmnJCKjJ8jTrrHCVJGUzfVUA7LLx5xU5Q4WU8SZ8oH1eZbgljL0dcsbeQc4zkRmJ/4o8BwdEzZnj6sZI1nCSMq4+e1uEaBBlWss+15k2wN7rRaSSIyvLA5Uw+eW3uhf9h36N84R73OSH9T8Hj2rkU+19XI/y4hrUIQ1/M3WZ7zx+RA+bsNPCVwI4BfeUzYsq4KJjBfDaTaIcEHA7BKwOB1YUK1dj0V4wVhfjpT1epGP09bPqcZ/TJcAqV5iJrTH1+DlB6nQuqrON4J76sBElJS2QI/xbqk46a9XhUMlLn8VGGCkdcZhSjGfxrQPYip1DQofOlup8lR6nYGW56qxQteOUrLSpuR7nLhDWDUSSCjPtrzmOKUmnx3VZcBbxHp/yk8jfNTKgtF3iGkuAAsyiNCgEL7BOnjzrXNx5ynZOyTjDySN+a+evaKcHwIWXHiUtXU/muc59bKdnkoZfLMQ4W6qTTRf4nAU2cg3mWKEYGTXPDhakm/t0ggNk2eHCpmI5UoFEqsaGlceiz46VJRDsYtHH9QzQ758ytfKcJ3Oj2ldokqFnJ7zIxciyw14yQrzZxPVYhNtH+JpK8inMpajdIMgRtGG4fsyZPjxNjpCr73Gmr+9ZWwWSXKjsK9AtqFJpa8SZSj6nnvQRaB8rqXZMvf+bpU2+TE/xVuVr8KHCKOKAA6OPm7xMwsPYlLGbKZAlebFOY0E943+n8nNeJGO0wJxbM81NFiNvYdNjtv2Imh2nk/GTq++xExtljRm+5/lCEx1e+Wg/zYzQQyVWZpwif2D/Q36bO9BWddtDa5ZAsEtKe53J8LpBlJizx2AJ3DnLeAMSgwub+9SnfKrWtSyGSnvUL/tw0x66BHjpgZFHR5CEF8ko6XqdH1t/RDUWohNTad2jm03S50vgUaBh1NNU1zAJ5WBKseOtYzr4GS8qiTwl6E3Z5NyCStitwcvzSkb60qeuVeZ4j58n3+Zm/XNGHzfpXFTw7DGDmNSbX+PXG9q7XIVIVRmjZOwyxJNN2e9UqRIngWLQXWOJHl7e5S4PmEc8jQsaNhB2mvK5TZGizA5ZZlkF1JBpjRne4RM+44auz1+FsAl7TrHbq4iH7/v8KUUyTGrfL2HEK+aUY3r6e9w0ANnr/sUicxVShRBrZJD5+mdTbDtldSV+c+tMI57vHfyI16+QTFRdvMAE25iUcVwWeZsruq8TQs+BJtO8xx2SOsIhQ5EP+YACWd7jDmvMGGbWJFvGnmWbCfx0tI++l5D+nkJKUcSHqqknxN/tKism4K5AljhV0uya+svBNn56H/KB+UxRGtp/V/WzXfz8iJ9i06NCigm2Ud7OAUMSyVLgOvcNqNvVg1uprcTvV6xZCuQMgCsBI1LfXuc+Nj2jRBCm3Lau40SZEEYlwwLmc8u9z2mVmfSeEuBRJkmOHUqkmdSgpCjMtpkww23BIOTcDGh2o4DLgkcsskCZJDbON+pjsYkBuMk9qpr0Ih7l6rw+YoesuU9y/ysktdLNYYU5xihpi4WaUXEqrEQRa5QlUtKwL5V/dsJ4cgt4+Lo3vyhRBQMpkNXEqDku8de/1H7yrTD0RtjnbZ00WCal5UBiuNg3OnChbcqDvsxVzQJTrIIsO7yeCKJS8WydIuIxvknyvgFU4qOFqzX0KthCNjEBjsTwUnyqlpjX042qMZ+vEmeCbU1vVo1hjoIq3Ng1v39Lp/10CJj3tLUMTgp/QaNFty8GloB+qIYJ6YdKmBIiB3LxMEzD0Hrj1MjqhMoZ1oyppYXLAVGWmCdOzUw+KtqfTcAYaWCFtis+M4DyB+GhoXuvMUMOlSgoZpk7ZJlgi3/IH/BjfkKYlgY+GwYcepe72k9tnTwbiGGrhECIyem73NWsva5hXMjEKUVZe4dNsk7eNMMpKgZgFYqtbOwdAsyyyrBmUMj0RYxEldzYa7zFAnQNA2idvPb4SxrGoshZZ1hjm0lz4EgjOKZBwausGG+yPipBR3k5rDLHMn46/Jf8M66wSppd81z0NDgiIQcCaCjmn9LYS9rSGjOooI8JwzpNUNPgSMtQdsXTTKZ6Oe3ftU7eNDSvS/nELFXRwZWHU4kxyiS1zNriKsvUiPMudxnTDb9iBCW030XKeGmI4fwr+W6CnP5+XQJI0mWJNBHdpP+6vwY4NcCvMvVVku/3uGP2Q5maKtZRlh/xIWlKSIqZMH/meYBKUFUy6B/xIYBmwioGkphx2/SQEBRhjYrJfwe/+f/CmFYHbEID/S0jZZdDU8IkBFRaZIFjfPSwOeWMAf8F5JUDXuQYkji7wlVSlNlmgkUWSFFGPOmWmNfrd8uwpJUHYMfIU0RKusYMy8yRo6DTarcMMKhGMVFWmcXBNvu1gJvKV+1VUIuwsDI8o4dX7/1qGmjjsMqsmQZaGkaUSbV8lq81A1X9jLqvKjDEMcEXytfET0BPOmdZNRPIZa4aLxflK5hkhasoT66EZgBaZNlhgi1SVAyAd5fb/Nf8Q8NqW2MGB5uEBruECQKY32vjcJN7uKg0uNvcpa+HTQcamJJpthhqrzGjPUeUAbww5O5znQm2EK9aCQ0SSfANPjMyEgHBJB1WirEyKVa0LGeRBX7GD8yfxbf1PtdJs8sEW2ZqKhYaV1kxwyslQ1dgn/KzUzKlgGbyvM7AS1FmjRnDeFSpbSmUb6vaX2XvFLag2D6k2dXM4yT3uGnkUnk28NNhl7SZrspkXYZsDl7TrPwf+M+xOP02t6FfidcLzmLjcKapjPpdD/geQcOO0vMNKBCmr/zGGFJndtWO89XUOIfjg2Arw//YjgIPfHVIuDVKVpq8q5Kzy3YS8Wwdf6R83cKuAsQn2FJefag1OVl/Dja0cwNEaSiWSgXa51XYwWF8kHl3ySSO7qUjHGegFFNMrS/Sl1i0FjhbqnOmAq3IIE/TI0g4TYNh2vEBsk6BJGXWbZVy7MVhovnUXJeo0yDebDLpbrEWvEQheAHb6dG3LBp2FNcD8zxAEm1Hd5rEKsdsaF/MAF0ubj4lRRk/HU5isOAsEqCrmG19dY0PpwZZj11QHnNaPl+yFTPnycIoYbdFOz7AvLtkmrPXvQbfXNnkwuY+25ELrNvK1/KrqXEA9udCDJVPjJwtRYXZ5tdMOtsES6f0fAMczg7i4iHnKkYrNmYQ3kCtgaHyCT3fIO34ALbTY0M/ly1CfJUb50+mfotWZJB2ZIALS/vqfvaBOtSnfDSCEZWAG0SlxToNxihxnEaz0HzKg9GnWBU48GZxE5rwIhOjFomosJYmEIO1mPp+fSyizSO+U3mEx1XG9FEa1JM+HT5XoaeH24Nt+N7KF8w4a/gqkHGLJNwaazEVAjFMAxxYaH5ByqmokBN9douHd9lOckODGlTUZ/3e5he6PktpUoNDwqnRYFjJVmcH8eIQ/PqUwV31/V/GwXZ6Bij46vI4BXKsMEeWAuWYSrh9kYwRb9fpW7ARGSdRP+J8fV+REiKKYfhlZoqNyLgG2OGvk29i43C+vk8xoiTSJ0NwEoSXs4rt5T86Ibh5CkmoxkLGfiDvrjP4SPnMnmkCtkqbFF/uvw2vHE+4xgOiHCAhVBIcpcz6HyDKLxePVrIVEJbaH/CPTA8knscSaqZ86FVvt6zTP8VuQ3wjt5jQdblivu+QNTXDClfNMP4aS3oQesRtPjZsMVeP9kABcRISVSOO2EpJeNqP+YkJ7hCZrdQ/ktorvfq07hdVb6hUKyXNcG+gAi5UTZbDxuF9PkLUVHLOrzBHHpXIPK+D4JSyr6IHiLYhv1RI4qdLizDzLJk6RT7bLKv8MT80g0UvylvTS49p1s2wTjyUhdlm67pc/Im3mECFj2WNBPku72LjGFlnAJVqKx5sKnG1bGoPUUxc5xeAwheUL/oWCd2nK4sxr2HSzmmASnoKNVSeMeQKsbyxcLnJZwZcVFJw+xtehKKyVF7wCmcRokacGhvkjb+fWFH1sJFcArGGklprjRkOiPIedwwD7v9F3r/Htpnu+Z3gRyJFUqQoUqRESizTFnWxbJXlksrqUsVVrss5Tpy4U6f7TGq2k56ZIB00kATZzWL2kl1ggASz2J3BYCcYzEywSAe909n0pk86qeR0qvpUj0+7Tl1c5XPkyCWV5ZIt60LJdNEiJVKiKFJ8KVLaP37P76Erf0wfLLqAM9UEDNsS+fK9PO/z/p7v73tR654GIlV28FhwUhnbmgDcsn7y0EnV3h+qBBkxoRRqxaW2YlqTt5q8Bxa7UYad+ucBXyNTPUvm8uAY3GCHYVbN2BAAVW1mZMwmbI3fw56tLWU9HbPnREBvscp6j7csYevneX0jgF4ICXJ4jMRqK821QC+LXLSDG7CxwBdZJGWS4xTtPESCDD7kTbuQU58ZSSact8CIAkq6+BIduEikDukkT4xVI/0U9leKZcZMku0Yakoqho0yCa4xzBjLTLFg6fSO+X6VeCxyEZVN6YMqTcr6CqjHji6a1FgXYI8eNKRBJ5dhVs2A7+Esy7hoWG23djSUnhvkwIIyXnNzqCZ7mTFWGbb7LAkqgkhrV0H80VoR6T2moNDFn948DTNp/x6/jkqNDukkZlB8EL8MDw6TLNiJBwScEsN252veU6eRcAX1blC6qjI51JRYGV51I3NdZoxZXjKhDuLXp5I2BYhnmWGDQWZ5yRzDLlEDSgrivmsXzPrwUgaM0L/TFkw7QGSmKiGTTpB0rJYY531+2U446j2hD1WVnZYJ8mv8vmXSKYNPJxK5Xmcp04Vjuj0q19WgDaWCS2qajM8G4mOhYG8r1SpqHyjqp+HgMXTjTm5z2UoIJVtKpO8qDQfMeOyhk6pl6iiDVu+1PSSlso7HMk82GLR+WS25urBDz7KMmsjOMU2RyJ/mtPML+6ohfk29z9D+G6YzpAD7pPFzWOI8i0yIVNvJMskCA2Qp04WY0wqLSSj2AmqIsXDr90HKXOEWe4R5g4+4ygc0cZMjbiWUbsSoN0mGN/jQAolqtqwPMW0GqARAKfIqWTyhjXWGOKGdPcJ8j3fx4nwN9FEaunjXhW1XbJg1rnHDnidtOrhocJOr+Kkyy4wdL72m46mSVm1cqPxCQymyDPA7/AZ54qSNpCBPzJ4v8YXzW0aapP1KMahpXXuEiZG3Xb3f5jdp4ELCDKKo5HyRCUuxVxZ5mF3i5FEJvFhOiARDvWskja2TKeYt402AOknjXmOYp4YNrYCThzqSCDbLAUE0bOEG11B2bBOXlbXLnFy3RYNcz6eIKfKElQoo0JcjzkUWrcWCNuGUOZ0gyyTz7BE2YTrCRlRA8pd5H7HHkHlEw0xU6jDLDIPG6xawzBvt9Op4q+PlOj9ikQkWmGSEVbsNKfDOoolwarUB+kyWjq+CFSoJ0oaI7JfYNnRyyBLj/HP+s6916MPscYsr7JiOt863Oucp6z5HjCnm7Twn3deoPa68AXeDhh0aZo85pi2gr/KOPcJ8whXytKSn39ZXrwnAqSTaBfhuwNE5GYP+yjEE4CQKPkN20yZkAxc5V5yV1CkWAi8Acj1OAtC9ciTPpIaYkWdJMFZZkSK4BqreO5PfpombL1NDDFfW8Tp1Hkf6OAlJam3f/QPplickBRfEXyxYOqLphufyRfrvi4QTWgvYYVYlwCMCq64RYfQ1y5xJbzPmLLPhHSQwd8zQyhZeHN4u/iF79AiAiRy7q3EsKaK5I17MP+Dcw01cjWMi6ZpIiwJnGCw9sVY05IGsLCzzxPE2HY5iWC+tQkjCIPzNKoGCnFcXTXKuOIOVTYbyW7aOcdHgA64S5ADH5cXVOGbHFeUvZj9mrLJCnhiJZpbRz55QnPRRS0g67IsrD/A74l9UC0Bv8YBKtB21QRnNPyEb6iOQFU/CRe8EO64o8WaO7pUj+jIH1ELYUKZzaTnmWggBgUrH7HijJMgyXlqxSpsET0m7BnnX+xZERV594pNrrM3yhkv89Zq4qXqFCesriSQ5kq3RU6yxnxBm5UrqFJjgEmWztJUAl7AZn8+u4+eQM+ltm+ibjUQQZdAA7/PLjLAmZIFmhiBlfpD4FUiAqyHnPlg6srJdXZBSg44iBFZEiuyv1PA3q7ibTf6juT+yi2R/pQY1uF75IwjIHK7hGJF8jdveyyTMNQATIhOQ8RFmj1wkRCB7jMp3B8haAEEXisWUnEBXA26EvkOUAm1zwuSM3BeZ9sfJl7hjQrcw51sbytVAu6x1SjUWQ+dpuiWYJUmGphsJwQlJszhKwYbhEJP5eDPVx1FElDYjrBJy9v6UZpxf7NdzyD2tqgtVpekrTs4+X8LsImFfacLsmvX0BGo9USZoGe3aPF1kgg95Aw2fUtscDelSoF6BD2UJKdHgCrdw8PKUhF033uaylQ4Os4aLhlXojLBm7SS06aVN5TXja6uMd11rawM0Q9LKY0Hu3V52iJG3a3oXDXLEucVrgNQYanP07DN1GWEfzzFtm3j6/AZpAibJMMwaaQZZZswQdEbYodcqBzVk7jK3ucxtGojM9i6XLK7xu/x1W2fuGKVazDTUm7jsZ0HW/DqPfd804+PkLYikNUsTF7/G75vzdWgbmuLtu2rXuje5Spkg73Pdvs9viExPSfA+120C8CQLVpmmDU2tze2chIQazTDLiGnQ1vGwxHmrntQAPrWf0tAOrXscxLrkWdbcsFE+vs07lumm1jl103BfNZJlBfHUG1GZjmFagRqDbDDCml1fq/2TjNs0b/IhTVzsEMVDnS4DNs4yw5xJV67it4m6on67ZMZUgTSDLDAJYGtvj1HfKVitHssz3CFDkgODm+g6RgE/DdpUxqqgNeJrr/ZqorgcRKx5JmxjZ5IF/FTZNvjTn/T6RgC9QxMIMGIWJwMGeAlSZgbpGm6YRZiLJh+aaGUXIj1Uym+nYWVc5jN7ERTB166koK0iQwuzaw0IH5NEk0gFcPFaTwFFpTU1sZcdHLxoEmATMdccZIM0g18DfkAWbGrMqIu2GDk0dbaXHTuZ6Y2ofm0KyqgMTQaLgIlpBo3RfZ1edvgt/jYqiX2Tj+z+ZkganwLH+hXIAjRnr8ES46jOvGA4dhrWkSVhEomEwaDHljUTAMgiTH2seilYwFO95wD7EEmTYpGLFAyVdIlxnpKwVO88cdw0UY8q7ZaUCRpgwbFgq55PXUSVCdrCQ5gfnVzmtllEi8wPYJo5HDyWGabnWoEqlWKNs2QXtX4OrZ9XlgHOIlHUavSpNHDVyo/xiDEe0UvBylv1IaihEuLNNWu+1zGdqKe2s6MUdJ3srnDLdFYKtkOrHlAg3l3KitOocmUX1vFaXwEvdXrYs5TdmGEyVvEzzJoFtxM8taypu0YOnSPOLDN2zChbqUlLkqxJuHq+9ffKGlWwXY1rG7iMWb6wwRJkbYE6yAZTzHOaFkPh2/wSkPq0BVDUrD9Gjjf40D701DvxLMuSTFgTxs4Ia0ywaLtewhKW8ynBPnH7wAuax4rK9TUEqImLOS7h4CVGjrM8QmTZQsFXMMTBywYpcsSMT+eevZf0oagFwxU+IUBFFrR0kCFpvDYk0EETtHRMV+lklhkrkRQZroB/a6bzrPJTNXd+YBZoYyyTJsVtXmGRCa7wiSkMH6HSdH3wp9iwkg5NBR807GoNIxAPz6odj1XDHtVULQnsEd/UBFn+Fv8EP4fMMY0mrgMW2FefSxAp0SrDLDCFSoKXGOczLgPYYBmRe4pExsHDayYcpZMqO0iSlkgyslY+qPef+saE2eNv8DtE2UE9PAdJ87f4LRMcIseowRUagCQ+lgLuqrxfTX4VONPGki4wxBTZzwhr/D/4L+xzWhsaq8ZzBbChFP8heKpeN34OrfwjZpoUWpTrM+7X+T3e4j3rz7NDr/2cgpDajdX6ImhCWuaY5jFJC8pqMbhsvGn1mKTY+siy8yUsKMZlbpNiw4LPgB1TGsCwwJSd+0ROP2OlnHKft0ybtRFZNfejyqJiphboYY9zz4QzfZtfCmB5mw4djgRfDJc2aVuXhM7lyBnrWTdAlrHmMi/cX2E0/YSR4hMGyFJM+QhSZjfi42gA/M0qGW+S08VtUmzgK8r5JyqsuqwrARWRQj+fWcdXAscr3sq7EZ/cVyEBqvajHSTI0j13xFB6i9XIKTYCZ6AI++c72HFFiZUEcTyT3iZlQh6+jA3hp8pUc57u7BFUhBVXxS+SVLNOb2vAi+kH+CvHhEsHhNnDV4G1wBBfJSJ8ERvlaECCEzBswiYuDrs6eEqC3maBlZlTnJyGF7MPGKxs0p07oiOPZd8vM4bj8lJ1+SkmfOzHO/A3xQi9EIjws9gLUtM4EiijTeP3uY6rAUFMqmwG3i7+IQ2XCwKIzYG7nabbxf5QB0vecSL5GnVfB215SY3tz5cYXXkCj0XuSQm2LoQ4yzJ79IhfXwQ2k33MBqTpGizVoAF1XwdNd7uAnWksI7xjX87DIGmrPpligS9So3RUoK0Cm+f67ByzETpF3ddha8ZFLvJFYpQsA3yViNBWEo/CQWeDKp18/sp5ipOCUp0trbN/ugNC8DjSB/swmn8iIBlw2NWBx9SqY5UVrvMj1Can6vIzUblPEzcrMdmH7VgXn0Ve5J3Qr9i5okyQk6gAaVsXQnhx8JWMF6LLS3Hah0oalwLnMc4b/CDxK0TZ4VrxY+JOniMv9plZDnTJ/RXoojgqKdBeRxrkNGAoK7Jkd1MYPEP5LfpmD+jPSxLvc/kiTbcA1f2ZEqRAlxQPY2eY4B6XuY2Dl6Nu7DY7qbLoFZlhOeST+c7XYec/r4MBN+GF/ArepgMOdD8+AgeilSK9ToGmG4bub+GhTqB48s1MPr9grxI9gDxb5NkWZYZZrnCLnGlI6nrSa8CaQwO4BSnzq/wQtYoSdtUtBknTxMUwq8SMPHWCRVO7qPKr9Xv1MJe1cAFNflefuwnuEUZY+ze5Ss40Rx08aFLyDLOW+X6RRXYRWarWRUHKdJrju8eE9WGr0skCkzRxW1ac2I88JcljU+924liGvbDoJlhkgSnOW8mlxDWoD78ALbN8nx/iwbFsMQVZdP1WpstIVldZZowg4t2rMlS1nlHSxW1e4TaXeYv3bJ1yjRu8xi06qdpr1cuOvX+18arKMg3hSJC1INC7vGV9S3cJ80N+lQUmLVYhfnBegyf00ED823UdcNmEyamKLkecAbJGpjyGelxX8ZswyJyxLBFlVdUQdBRM1JRcBcE2SFkQUNYTbgZJP+PrLLZcEup4QI7YM4pLacrp+dI1s4DS0rCZZg61+FErl7hRH2qdKaqfKI8Ys9kKMrdPUMVPLzvGf/mAKn7SSOqtpt/6qZqmvqgAFZhWT2T1zfvn/HX8HDJvGKpi3yJJ0Tf5LmdZJssAaoclCqJDuiibQA8/XbQsckD8nxXnUbBbiRnaLBdQcxjnGeboBIt8xmXWf07W8jcC6ClwpHHHanSpWnqVeWUZ4EPetJ5S6tMVZYcRVjk04ESQAyaZR9NPtUj2U7Wopt6AZYKMsMZFQ1PspGpkWGW7cNFo7iwDLDPGr/IHVmOt3kTCfqpa1HeGWVR+tEcPC0yafStb8FLN0odZ4xC/8RLzEDUsRTVt19AA3W+lDaskS0Gf7/GuZTDow1Elq/rdQj1NoMbmyuAYZpWnhgmnN5RKkRTU8lA3k6nc6EuMM2w6jU3c9uGhC/pp5iwIpowGBw9rJlxBZE4y8X7CFSTcZIwoBR4bZk+YPT7iDdR7QTuqEuohDLYmLiu5PU2GOuK3l+E0TdwcEGTkGXqx0mJ7KXCZ2wyyYWjej+iijMZ3KyNQWREuGkQp8Nf5XfxG9qtAozyARBb5LAtHEyODlK3OfpA0b/AhCZ7a96ku3o0k2DZMZ0EDUNTvQCnr2inRoBXAgolBytbPUKSUjmFWJqzsGoRWr+ajVbvAlT+aIhlmly5EljbxTPcjZoBvZWfpQhhkMfGIs/SyQy8F44EoC/gp5llGEgQVWKrSaeRBZWusO8uMfaiAdIbO8PibmH5+4V5lunnWr1Mp5yKwyFt59YBpCGwYr7KOfTEvV3mDJH+6LYgwWNm0TQuvAWt72bHA2wx3rCTUT5Vf5n1mmLUPN32AzjBLnByvcYvLfIaLBmuM2MJPrQTED2/XNie0YRNjm06qvM079t7LEeeAoPUc0/lK/DfEV64X8eTM2CWagPQKVDp4uc77trBM8th0P+VcqrfeCGv0UiBOHk0yU0a3n6plBu7Q8rMDuV/UO1PGcA/CeK5b81xl/Gihq/f/GsMsMc4VPuGXeR8Pdct0LhtYVbtygGWxqdebMpHFqzJPr+lKT3DPzj97hAmzR5qUSTpLWcC1k6rt+vo5pIc9W4Ae4rdyqjku2W76HmHbsApSNlYGTdvcEBPoHls4d1FmyniYArbBE6TM/53/wjQkPrH7kSdmn2HSwBEfE2VWSyOiahNuFXjOMoCw9EaMpXb1a4zspyRYY5gNBhlh1QKdGvKhqWN6PXWs6UsZfFozKHNaU9XLBHlsxsGHvMkEi1xi7mudZSkSpejVBcVv8Du2QAexrFDGirLb1Y+2bIDCKRaMR02eFBvU8VhLj35jx/Btfg1U8lzhE+q+Dqou8e/S5h1dWIN1arAf7yCSrtG9eMRXFyIQEMneASJFCpZq+Cs1sqE+Gi4XwyUx6M8RZzvZxQYp/jj1KtFSibHipgVkikkfDxNnUJsPbZCsJ/sJLB7T/fiI/nQJEoAjfspNXFRS7bgaTRIVAfCeyxTZP90hbK4HMF5cl2vuSlAz5HMPdX5p4b7IIUc7CLPHv479ZbZTXRJiEfIJ2OvI/fVcusgLmRU69mGw9ITNyT676OouHPEfZ/6Q7sIRN7jGfOQ8pMG3IuwnHGkYas3RlxGwpo6X7sIRZZcYjT+3UJSFVjNL4PExz2fWmXbmGMpv8RbvUgiF8DYdajH48twQbQWIZCXB1sFD2Ruku3BE1eVnungfHAGi1s/1U4mKVPnh6Bn2p+Tvo5T4roklxC79mRI1Aw4Ka8ehEApxFBOQJ/D4WFh9EQwbI816st+C9xK0I4FxT0mwneiCmjAwh/JbjBgrlu6cMDfP5LdJ8pgwe6SaGzK+KsB98FeOZRHvSMJ2uFKiY8UM1or4Ox4NCNtvM9YHXknNLdNFX/qAXECuT4w8/maV/rQwON/kQ0bzTwiWjuhbOWCENV7jFolmFnezybn7m7SVWo2ZKgK8JitP7HzmMSy6IGXWE/3UfR1cZBEvddoKAp6WQxK0dS67iYsGu64wfkfAg+I5H4EVCQE5iQIZAb7FU7CXrViIlZlT1ALCPqUEe4EQb1Q+luMPmT8BSZZeYIrhyjqDpOl4CJuTfTxMnGEovSVhNEiKbidVunNHDC1syf0QifDVaERA2iw0XC62kiEqiXbWL/SzEThDIHvMzcB3oAJ9Cwf8GZgKAawtlAT85WxjUWp9qeu0CaVNrwGy1kOuB7HX+JA3US9vDcYQtpBYctTx0suOrR81NLKXgmEJnTWsfY8NVlDAokCvbTJLuIWbNUbopUCXWYOq1c9NrvIJr+HnkBlmLRt0yvjXa/NWGfmHpjGqKqke9uzzeYxHnGcJZSdquIdaA13lJmuMsMAk73OdQdIsctE2QOeZsvurxARdy46whtoiPOthrHYh2oRUAkyWAeM9L97GBaIWwFScI8iBCfgctmtzlbMqgKgS3qvctGNAvfU6TePvMreZ5i5qDSbnV4LjbnGFWV7if+TvWaaYqmu0FhrjEVkS/AHfJ8wenUhgx20uM8uMtaJRCx4BF5+aIJCmXcNqHRpmjyt8YpVl888w19RvXgMdlHij4PQS43zCFWuXo8ejEle1G3IMTqIN5kOzDg4jKcOaPDyAeMeqr94aI0ywaNUgSobR66712m0uWzWnEhoUF9JnwyvcpomLq9wkzB6X+QwhIM2hvqYXjaWX1o0KtE8ybxUyfqoWA2vi4gHjbJDiI960Mts9whwQtKrJIGUTLJdHPcJF9i7netr45f5Jr28E0CsQMe5B41Zaq11twHqMFehl5hmvPb9h16lsUic2TTBMkUaTOjWRTwaiSH8UlFKGknojKfvFa2i3gqqKSaM4Le3aBcAAWZtQKnKGmN1nB48F6c6ybAEoTQAE0322IlVJTL3LtDXQlIvZg5pW6mc0ZrlgJEPKllF2X96w2wbZoG6Q+k4OxYyWMpMs2IXzojGmV9ZOi8LssmBClgH2CDPDrAVaY+QQ89VeBklb+vay8aFTQFRNvofN1JwwN5nIPjeYZs5KdxXEEz8sL6sMG6N28dXS7xcE3MNT02UYZ8myUaSbtMYYy7zGJywxbhZKXruAVmBQH1h1PEhohUiuQYpr9aQ7yyPKBG0QRhiJINdrtMGgTXQS0G7Djh31YdQx/t/yf7Ysyde49TVGi/pFHeJHA8wTZPkuNy3Io+NbuxZ6zZRRovJwmbBl7A6zatlPSkOf4B7Cyuu0dO+YkQhqMZAhybRJ2Ow0gK10UZ4yZhgiKtFTP8AyQSZZsLRywHaHZEITNucGg/bBrIEYDl7LtlIWUIEofg65Z5gs3/ZXnKcMVjbtYmuALEMrW8K2dATkulhc4TK3eYt3sf6bZmFx3Xn/GbPYMiNNMcddCLzAcytFNHRAQawDgixzlgRZ43dxYCndOj8sMc4kC/Y+vGckmAmecpnbjLFMJ1XGi+uojOHcwiaH+LnCLd4ysfSaIhUyVBKR2UoH8tf5PdT7bdwUZlq0ZknwQ74PYB+ks8xwm8toII/e9zFy7NBLkANjDC0P/BRp2+ETo92qvQ806Vkfntop04CaMl322aTAmXYFZ3mJeSZRjzP1l9ECQ58V08xZgF7noGXOMmUAO51/tRBUVpmG6mQ4bYIUXLYbX8dLj+nexcibefwxyk6fYt4yJLUxoExsNYVW1qGDhyXG+W1+E7WKACzDULuDKr9ZZIICUTS8QoEx7cRrl1uk2yP4OeQu03zIG8TJ0/VMJ1UbTBIOMmaLH7lOh6ifrKTE5i0bFCSNW49jgnumSB6xRfCz13XDyINdNG3xIx6FUlQtMc4Ia6j58I5hX7tocI8JAC5zmyZua7idIcldprnNZdYYsUxrPYYlxvkt/pYJHRJ/MZUZ9yBhViLN7sVFw0gzFbBdtHOmMgWVIaCF8rf55TNBvg2Xi/58iR9G/hJVOukwEtsJZ5Ez6W2+moyw5BqnFgNK4j+4EjtlmLgC3gP48gJob5Ci7msn6YjnZV/+gInSAy47t3E3BQikiOnYp+SeN754OeL0NgsEOaAy0S5e/CXYTnZRSbUzXFkn2czQdEsirC8NpIFFkcgeRQCfyBNV2uUrSQKqiwYk4MvRIVyNJs9lipZxDwKAPJ9ehxo8ly7yZWqIz5PnOeoWJtghfhJOligFjrxwEhAZ6N8t/r8JUqYy3Q4J2AicYetCiOHKOs+vrHPdeZ+TABRjPgpEWY/12xqCAAxX1ll1jbA92kUtIsAWJYhkamLR4fJS93XwfHad4qhPQDNH/AqjpRKfx85LIyRyhu1kF6N5CRrZ84bpfnyEB4esKyGLVCMtnqjcJ1XcYiV5ikIgwlhxk+9yk8jDGnuEWQudYTPVBz7YP93B+mg/7mYT8Taq42069M0d8J2HP8XBQ7h0wOXmbYKVA/AJ6PYwdoZYqcgeYT5PnCeSrVEJtRN3ZLzcc00QeVhj80IfjEKb3JbkvDH26OG9wF9mZfoUZVcQAhJMkgn1Uw34iFe2eZg4w1pgCD+HbKe6qOMlXCnRlz5gxxXlKAKOS/yitmNdVAMynsoEee6zIu+6vsc7rrfZuhACLxZwiZEjslIjG+hHvZUfMWYXkvrsOFtaJ14ssT3axX68g0fmmq4kTgkDu7JN1evnI97gI94EMwZApO0g99Jg6QnxYok6HlwNRJZuUnIzgVPgEmnxw8kz4icI0pw1oHFxxseZ7LaEbzREmg4ilz9d3IaMbLOJm+fyRdIMsuidgAbc4jXClRKB/DG9zYKA7Q2pKYszPvHaezHwpzjr/OK+tunjd/gN09hKGLufHgPOeVHrIXk+isz2Fq/ZNdAsM4ywaggQj6yP8rN2PurzKqQGaexrAJWsmzvJEbcKAz+H3OSqVfOE2eMOM1b1Jj51MUO8kPtqmbOAjJGr3GSMZdQvWT3bZ7jDmAFSxB6rbmsnrTMUvJRG61m7PpGUUPHiVoVflAKaChpmjwOCTJmmmvhb7lrCSgOXbR5rA07xgroB4/Q+U7Cxjocxli2wqudC2V1N3EywaFRdUT7iDSv9BOxaeYCsBSobuLjBNfxULcjnNqSUAr3MMmPIJiJjbeImS4KPeJM14wXfxG2vlVpIqbpFbZGUwJQweIaGiQUpkzL+fOKBLECghE1umHWwJL4WDNYxYqxqBtngogknucxtNKizTNAw2XqslFnXzFPMkyduQU0FVt3mqqSNzY8qL25wjSp+BhC7IW2qyzr9kF4KVgERZhc/4pmXM7YcGTNGw+zxJh+iygw5NwJ4j5mEYiXMuE0drQw9wAK4+sqQ5BOu2PpXsSxVlPSwxywzVnrsoW5rugHDQFS1pq6DHLy2RlZQNsqOcaXPkeApe4S5yCJdKln4E17fCKA3gHTJHpgFjgAUO3ZRIYbFh1aj7UYow6uM8MhIntTMWoEaP+LlpVCZ6s1HWOUsj3DRYJkxy2TKG0Nxx4ghlxmzsl1dQAkb7gD1r9NFCGA7ZBMsWrnTCGucNoi23uBiVr9rgTy9+aPsWMCtJdXdQ5NSB8wi1G0YEkkyTDJvgcExI4mTBCGNfhbPDukqi3RHu8uaLKhApIPXyrrUv2qcJboos0vYegM0DOAmqY11O4EeIN3cSRZQ76EkGTYYZI5LbJDiLpcsW8dN00i4BChSsKBqJphBkyLopknc0K1Vhlow4G6QMp9x2T6MdCEuMmXxK8gRpwsxa9bkSGW+KECm5q454lYCCAKcnTWmrIDtyOwQRUI3RBKp5veagrtLGPUSUNNTSTxzDFNp1Ur5wmZB9yzL7iyPmDQdmA0G7fFqCtOOkb9q0IQs/rss881PlVWGDbCrEfBuO1k9NbRuNRhVPwsBVN3sELW+gItctA+elJnAVQ7mwbFgjAZreA1ko8CpblvZNpqG6afKFW7RS4ER1uyxFIhaMDpP3MqRZaK6901MP79wrzLdNN3tRA0NP7JSEyPu7AqBlWOyJLgXGSVvxroXR7rUZrHhagiLYIoFxlim6vLzQnaFS6Uv2B7tIk/MgjFBypw397qwXQU8ulL6Ka9xiywJrnDL3svK7nxqikktGhUIAZEbDZBlf0IWeH35A4IVMWdv54QyQSp0McuM9RF9FpBfYJI4Oaa5az0hlLUcpWCNnhXAGeORZUgrGD/CKlkG7L07zxQ79PLYNH/UC+UWV2wjyUOdGHnmuESBqA0tkA6rjE2dZ5I85hC/lZlOscD3+QOGWbWMZPW362XHzps7BlBUb1MFpQA+5E0Ae4xjPLJFqFLu9dmzwSBPDWtZC9g4ObrMv/Xe01COeaZs2IIWJVJkixeJsqynucsEixZ8V7ZmnBzDrJpiTYOIxCx6jGXOsmyAYVlU/ojriDfdU8PwFnNlbWapzyeIvECZy9Z4nwFb4EqIRNw2Rqp0cvYZuamyFoThJ4nDepzawR0xKXbCGpSuqxhgp9H0sUvctWwdlXSo/PXwmedS1ATP9LDHW7xnJB971iPWRZM3+RANmkmQ5df4fQr0Wm/VJi4+4k081G1iXd00JNUjKG68gJQBnSWBSqwP8fOYM3/qc88v3GtLAgjyxKEIb5X+iJ7mHrUYfHXO0Nq8ECsVmax8IX5552UOGs0+4czKNkGnTH+6REdF3qvnedYr98PzD9ehAh0ZCGSPaZMpju1zXSSKRaaKD0iSoaMIqgYou2RRUvX6hckXEjnWnHfaeuY1XC5JhNUQBp8w4w67RJ5JQxgn8WaOzxPnuc1lDvFTjPkIs0cgfcxK8hQzpc+JpGusBYb4YnSUrVQImlCLiYT/xfQDyxILs4e/ckxf/oCl0CgNl4BQ2UiEeDNHIH0MeRgubdK/UhLvQTdkvElWI6coE+Rsad02IsOVEp+Ovkgu0IcwsYdputtxvEAFHibPIN6uMVyNJsWEpKP2ZQX87M6Jn6CqWZKOPEfIYuY2P9upLltznS5us+odZiN0imrAR1sJRu8/wcFDNdDOmfQ25LDz8CITrCf72XWF7ffliRF29lh1jUBIrmOGpABtLr9IUhGJ8h5h8qEIfqqMOcvQFNlzIH3Mmfw2CbJsn+vCTZNKTBhjQ/kt4k6ey6U7XGveIOGIVU7ltCyP1NC96W63TVYPDr3FAzw4+CqAA2uM0PEU+vIHXKl8SpYBHK+H/fMdqO/hFT6R9U2pBA70ZQ74TvannMlIUnCquEX/SonByqZhJIrZe5IM3etHHHZ1cCPyOmsM47i8Vp0ymn/CKsP4SsKUdiFBBtupLiKZGsuRM3RUoHvuiJt8lw7DgBsvrsu/3TKWM6F+/FTZTPRRCIWIUqCtJB6A/ZkSjhfT3OqFLMx5p/lqNIKXOs9lirQtiqT885nzfD59nj3CFGM+eo1yiTj8SvrH+IoCmO+4onbsTZQeyE5VoHfp51vA/q/9VSLMJeYsAFPHyywvWaBWG/uDbBjgx7F1S9w8Q3aIWqZTgqwlOwC2Xlpg0sprVSGma1htuKrKKcoO/wn/ggUmKSMJ0THy1PFyiTnzXJcBtMYwmlwPWCBOE+pzxux/1zx7Abte0qZimD0L2KhVlRJB1MJD2fxeo1TT75NmmmNra1mr1c26X7zKHDxMsWAathJCOcc0IM3kCdM8vsQcBwRtraSBk7r+VYknwHcNi0utkGSdt4wGKp7lka1xF5giS4Ix46P9mvEl9Jo1ptqbjLNElB3uGt+/KRZw0SDMLjPMEqRs7KfERmCPMNPMMWI8BB+ZxqmCRmonpR7mTdym7lszq32PXc+5DabQNMDnOA8Mo07YnHlifMgbBszqtYwyXf+rBY1iB2WCXOUmc0wbwtIAGU7TwMUuYRvoov5xLiS89E0+tCQqj7muBXrtPgjBSBqvZYLmPDpkSVhSja475pkkb6THwlQ8tHiLeoEnyFrSiq7/AQvm7RDlMy7zPteJk7fHqcEgSjpbZowCUetdqOvliyxSx2vX/SptVymyMj39VO19rfZbWjvKevzng+q+EUCv3XS/dRJSjy/RxWfopUCGJGd5RJIM5w0gA60kWzEKrdqFoU4sKjkcZo1h1iz7p24ArKgBWs4a002Vk4J0wdRAXFJBpZO+aiYlwKLor5iYZpUY6USjE5OyaNYYRtJuHHrYsx4Aui1NXJVEUqksZ7hDgqd2Qa37rZ5Ir3GLXnZ4i3d5jVsMs8ZbvGfZHjpx6QQOWBBM/c+UubFL2LLyBOiMk+CpZWmJj5EUZxrUUMfDDr1fk5lqUIlO/lHjO/gsoBYjT4KnVtJ3hVuMs2SZZJIiKUmtB4YVpN0ETbh8hdt2X9Vcc5ANLhkJp7L9/BxyjRuWGdFJlXd4m5t814JSysycNHRvlX93me9Tj7w9eixa32UmKp3khlmzSVMKNCtA3EvBTva6b6sMWx+uMkEWmGLBsIX0ASPeUjHLqGrtRxhJMPaT4bSlMcfIMcIak8xbkHbQsFX3kOCDaea4xwS97NjJSE08r/IBYzziEWN2Qm/isowQBcxV7ijdMwEwr3DLgkx+DhlmlUkW7LbFp+EzgpRZZIIo4i+oBbqyRrMkrNROZWhbDHwT088v3CvIPoHsMaeL2/z5zKcwB/xrpIv9WLo8L/xghUQzS2ShJqCQAywAK+D7GJ7LCoWlkyrhSkkWrCvQ99sH/AVuoEm0O0Rt8uEhfqYd0xkKdTHobDDCKioT1MCZZOUJLzGL15G5983iT0U6WyrR9i7wAFLNDbr/myMq0XZqAfA9kGKqe+uQI9wcECBhumrqW6dMKWjJY7VTKOwl6YxpIuUl5kixgYS6pEywhqCaVfw8JYGbpl2EiwwzxQyzKLtOwkB6WOQih3TyyCT2alPpHhNWxnSWZTs2gxzYZ5EAeGLJoN4umpKlzJo1RphnyoaaKBtWnwGTzHOby3zImxSIGrn6jikkxLNwjEesMsyuKUJi5HHTpJNDqvh5n+tWhl+lkw0GLQvWT5U8MT7higW5VHKslhRq76CsuCQZ3DSp4jfmzXmWEfP/SRZsQEmUAneY4V/wn6DhPGp2HTfP0Gd9/R4x9rWQnx72WGXka2njcfI2MGiGWVvYSCPkgDVGGDPM7RnuoDYMCgLOMGtT6J6dV7SBkjesw7yR/Wtg0ju8DWDZ9Wq3oGbTej1eYpbL3Lbd+SYueinQyaFpaUgdoD6m+px3I0nqInGfpYmL/5z/jhwxHLx2PN9lGmXSSxJmlDC7Bkyt2wbjt/51pgUaEYCOioAFhUCEWKlI0+3i08SLdOyDLyuKCRrCMjoKABUIlI7ZTnXBPuCIpHqQNDPOLJ7aMQ/PnQFHGHL7pzvYPtdFX+YAFw3aasLWey5TBK98Vn2XVSWAC8gLONfLjgAntSPuMIO/cszmK32cnAcSwuCadc2wea6Pk4TIcHdcUVuDuWgSuV/juWyRWlKAybqvnc1UHzHyXCwKcvfVuQhzgRcJs8dmqo/16X5cDbk/diJdUBIGUyEUYn+og7Czh+PycjQAuKHjoZze/UQHf5j6DotM0MTFmYfbdFQgUdrmMrfxVeDV9OfEK9uMVVZ4OfsFgdIx5UAXtVHsQm3Q2SCQP7bA3Haii+1UF5VoO0uB87ZhWfbKwnFzsk+Ah9IT+vIHjFVWOJfZxPEqU0UWnOupfrYvdEkz0u0CLxAQZmaMnA1r0sVpLQQOXrJeCe+onG6n7+GBfb5Bix0k5vdSs7+c/oLAg2P+OPkqICnGlVC7Zc0+ly8KK9HIqnPeGPlQhJwrjqd2jN+pEvjgmMhKzS5SAwvHjBfXucIt1hihrQZnstucuAVkBMQbMNaHqwEjzhqRjEjGw+zBNPQ0palyO/SSBFFUgCxsJUPWL/EkCk13uyUAxMnbRll39og3Kh8bP8IwYXY5lxEv4hQbFBM+ns+v81bpj0xTNcpm0oTtNIEUjPOA9XP9ZCMR2rLIeHdkLNfxkigWqeOlP1+i7ycHUIG2GlADryNqq9HME2jC69k7opQqFllP9vPl60NQwrK/ouwQeVjj3MomWQb4PHle7t2KeMke4udW4FUq59vpMMD7V6MRG2TzbX/1GduVZ8ka2viTZlLDrk2lge9mnkm7ptU1ttr36POxjocNUsKUZYA3+Mgy1pUk8wlX+JA37f8Blhnjn/Eb1n/NwWODGlU++iwJRT9ToNey7ssEecRZNkhx2qyrhJwRo0wXapO0hwQoxA0jKUcMP1XbgFxjhAEDUEYp8BKzRCnYGkjDESZYNHYwe9YnOWtWrde4gVor6HnSBpCy0hRfUMBGFQW/x68DAuqo6mGDFJrE2sTFIhctoKO1F8jaX1OENT1WwVe9dgrWTHMXkJCtJBlb87UslsTLLmZsu9QTXr2XO6nyyFiaOOa7VDWXMiy5ZcZYM2tTDQnLEbdAbidVexwg9Q8IsWmVYeZM/SLEp05LblFSlZ5DaXL3MsclW599nx8yxYJVtPg5NJLm1k2uhCSt99cYYdEoKDTgUdl8PYjEe8qQjSQUT6hew6yacSZYR9ZoyTZI2YbzDa5RN+PaRZNJ5nHR5CZXrXpomDWzZnHbdb42n8dZEi9Z3JZYo2A5YOvPBE85z5JhtAqZRex7dtglTJSCIXz12PrvEAkRXDXJyHGj4Pl5m73fCKCXY8D6uIXZs6bjXnMDBinbiSdG3kobx1mydGBNchUPLkEwdUDFyLOHpBICJt57zkQ/7FhJlppxqk4+xYY1o1fz0Wf9gfRG0BtKgL8HdHJIkLLxjcvb32mBriy4VUas95Qm2bUmgkFhynCLLAN4DSAywqoJLSjzPSNjU0mxSomEfXiWuqFyZhmwi6m08ZzZI8xZHn2NNbJDlDUjFf6EK9ZPUFNtFLFfNfp69QnUyVz4hS0vtmnmrPdCj2F26TmIUuAqN1lCOtOC7Ketp5aCRgroKlVZ/e2UVj5gFoqOkR30soMYYZ61IJOyDQHLFBPNu0infpPf5vv8AVF2+Cu88wwQWGWZMcQ/0LFpvHU8VjqnLCll4eSM1Ey9BbIMILHVLelgAxf3mDCGom7jw5i3k0UYTQoWIGKOSxaYUymqdikUiEzymCQZxngEtJIiJcq9amV82ok7i8TCjxufgQRZRliz3ZEFJuk0i/o1hlHtP2Ci1As2eUqZMOfNPk4ZerfQmD8y50x8fZ6SsKzWaeasBC5I2VwP6S6+zTtownSSDNPcJULxm5h+fuFeoeohzCHFcwm4D3xs/j0LLzELH0P3p0fwAK5UPoV/ArwLfAD8GEgLiyFe2RYWxn3z58fiHTTMKs+tFJlgkUkWmK58zvM/WSfw8TEv5h/Q9+MDAvljws4el5u3meEO46UVouzgy0hHKvCZMAEbLvmutdAZSVO8L+wU3oXAjWN8xs4hzB5swxke00XFLkAWmGSWGeqGUS1S3qy1EZCADL8daypRkECCOJ1mMXyISHo1mEHnkQHTwRXG3C4NXCwwhZ8qI6xaX8ABslZSMcwqUyzYjpkWsJrMtcxZbnKVpySYM36dH3AVZXRnSNpAh//QfkDkE73c5hVU9r9HmHGWmGbOzunLBlBXn5Yysgis4zXA4gCzzNgHuRYIU8yjQRA/5Pto8M1lbjNlAKJF492yxDh7hOlEAqPUG9Zjim0B13Lc5jJlgsxxifQzIGGWATvHamEywiozzNrGxgirdFGW9E1SVuqgBXOSjJ0ftUBUC4cxw5CWzvMev8lv22aS+qqqHHWDQfuMv8E1Fplgg0EWmbA2Gx5TBIpfUMsjT9KOE0yaZL8NUpatqKwHScBNkSeGn0M0HVDZ3bPMoL6CN7hmCz2QRW3MHGMLFJbnpISACftAx78y8maZYZ4pa1+gjbIFJv9MMJaLA+IzfJZlYUhloOGShUM+JDLbOl7xoAsY+d6+/P5RaIj1yX4+jr1Eb/GA/VFhzm2Qkvnr8TH5kLD8vjoXoS97QPf6EX3pAyhBT7HGw8QZgpUD2X4TszBzcya7TR0vz2WLVKLtkMQGQb3HW9R9HSTJ0JaX+TYbibBy7pSdHxKlbdpMUupQWrzDZpgVVYpXALFqwMfnsfPMeyfxUqcvc8BSZIgf8quAyLUH2RC2FsIujFLA23TYGg3Z+1dfOn+cxKA4I+mzuy7xc1bfyP3RDsiCuwlBp8x+tAPyUAjIedpM9LEf7WCNYXwV8VJz8LDonaASa7cWKOHSAX0PhaWXIEunuV/6V0okikVbA98K/TlO3IgsuSIBDcnSFj3NPcabSyQqWwQrAuA3XC6+SIxSnPax6J1gaGWLCRZ5Ll1knCV6KVAIRJgqPiBImTh5NryDgIQrqERqigX+OPkqz60UeTH/gEeMcRSB/YkOeS5mi+S8Mea94nvtbso5zEVCrI/282VyCJWGaoL1u963OHoFVkZPAfAXMx+jQYN994WdXkz4OPHJ+O1bOeDPZz9lO9bFI8boWBGQEBcQlfrt4+RLdGePmOYu4ywRSdcgAidD0J+VJp1jEnT9lWOCTpmX019QpZNOqmyPdlGJteNbgcjDGvGmmNqfBIAGhJ09IvkaWlapfKunucdgZZOTAHwRGxWJppMnVipylAR8UIm1C/sUmItcoI6Hz2PnIQYnCeSeKAqw58FhO9mF+rQnK0+oBtoZym7xfH4dQgI+TzXncTeb1JICUiZ4youZB/T95IBKqp3vZH5qCRmO18PWaAh/pUaOOMWLLbbMt/lVIGJYY2HLelNrCvEwdjPLDLeM3M+Lw5t8ZIkW8myX9YiOXZVBjrBKnjgpNoiTo5ND3uBD3uYdROKXwkWDO8zYuqNAlOu8b/dBPbPVQuQV45frGNWAsuMlyXbKKq9UadXJoW3aKVgvAI1YniwY31u1itHUXAHxJIhgnklbx7loWuVS3jDPFJBcNSFfop7YtRjBXS7ZBpsCXnkDnmktMc2cbebd5jJLjFs/dgkNkrpN10jKeAZsTaXKBWVrLZvG+gSLDJproE3Xu1yyayQXDZJkrA+y1B4vWe9stSBRgF4DLS5zG1VuqO3MiAlFKyAhmLPMWPDUZdaMIrGOEWWHZcZMsziFSkGv8Ak5Y5uiY0otc1w0meYunVSp4heWNhnGWEatn8LscojImTX8UZv3CgieZZkZ7jDMGjPM2uNUnGWGWTZIcYvXLCtVm0sxcw6V4anjwE+VRS6iftBa5w2YNbYm6Cph5xFjZElwaI4DsHW1JtWKjZXLMl/diN+fKs2kbhViiscwBZVo48WhQK9dFynDUhvrayYI9Fmf7UE2+Ig30cDAHaLkiPMl4z/XfPKNAHqarKqMnmflk3ozKLCUJ2blniIpcugyU1KOuJWodFJlwBS/CjSpdEZjhQXK66WTqgU61BtN2Xb6mayRUkYN+qp+dcJuEABPvM1clp2xxHnLOFAZrMor1RjxFldsoS8eU147GBTE1EWKg0SAazKsMruU0pojzirDuGkaiadc/GvcoECvAbwKVv75rHefgJ49RhpVYIoFy95TquebfEgUMUW9xg1zHiSOuo6HMHssctGCnpoEHKRsASn1pNOE2UP8TLBIHQ9rjHCXS0j4yFkTLy6Ti/oo7hH+2s2kMml5AFVNZyJvmW0x8pa+qnK1MkHL+kyS4SPDitHznSNmzkmO7/NDy+hYZoweMzq1oyM+Dme5xwR1Az4Adj9V/qbphDPMGsn4ml1Ea4fMRcMkzwpNW9Iro/SwZ02d5dF7YAHe17jFMmN4qaPGmNrVkBj6iyR4ao38tdNUNxTzZcbs+FYZuHYnZpg1D4M8A4ZOvcwY09w1lOgkO+aB8SFvWJP9HaJMsGgW/Ak7kelDUrt12pFRbyhlZMk2hMUqJvBx8wDv+iamn1+8VxV4ADwGakhX/jHiw/RAQGlMih8ZSRbkPhQeICy9x0ADCawJhESKu4IAfYuyDS91uC+pi30PD/BlgXUEEHwgn2cdAnPHYtSdP6AjAy/cX4GsjE0+gOfminR8JnPTuYebAjx+AJG5Gk9mZb+YA96Dvo9FFuynSolulG0qMo7HZqwcWlBLzdrVr871H3SWsyRs91AbQQrq1w1LSu+NJBlh5XCHu0xbyYXKC0Ry8JQBAyQqjV0f5vrgVT9KDUpKG+ms7qd2TNWPROfAMLtc4ROgJT9b4jwbDFKlkyXGbfNq1TAJtdOrnUPtzmoRAa1usDLCF7loWMppppkzoSaOYfRJEFGaQT7hCuq3FGaPu1z6WtHZxI2Dx6aDTXAPNSjWYjBLgkeMsWPmvDi5r1kyiNzsLAOIQfosMxSIMsIa13nfNsTUM0e3KUbAB1YKM88kzybuLjNmG3lh9vh9fs0mAet8I5IRASmCiBenFuCDpHEMgLdr2He6SEiRpkwQSb9rmFEkfyZZsI08NXtWb5g1hq0Jvz4blxhnjkuoV0wPwsLWRemsWRhppzrKDh9wFZXCq9y3lx0rS9H9nGGWA1OwfptfO0aCpeOSCHQ8FcnoD42JtzbrTnymCRIREE3lVBPcYzVyimXXGPunO6SRWylCCCvlDjbLnPiALMIIqgkYIVJPn8gkS/DcwyLBygH78Q5J9mwKkMZDuFb5MR4cvstNPLUjhivr0A3bsS7rfwRwibsi/9X+lMEiwuxJyqtPGEs9xRp+qjIXVUp8lYzg4OUaN0gUi3JWSgcUkz6CHFiWUrB0RLhSYjT7hDJdlF1Bmm65LwHejfwFItka5UAXvY5UpH+1+O84l98k54pDFHYjPla9w3ziugIpYTzPBV4kUdrG1Wjycv4LTtzChKzjtbKlJBmSjsiT6QZP7Zj+bMnei5XT7exGfARLNV6e+4LvPPwpuUiIWkpYcX2ZA+uhBwLweY2nnG5fJUqV0+2EnT2+SkVIFMV3rYqfm5FX8TerBJ0yz+fXKZ7zwQqcub9NHQ/nPtukTJCjmPjoDbJB093ydauFIE+cV9Of058v0f3giCOvWL0kKpL86qIBRWFlPgqJR95aSFgRWSQh+SgiYNv6hX7uMk0TN+VQBx+EXufh6Bkq0XbCpQMmWOTL6SFcNPlZ4gXWk+KL18sOR90Qrpjz54X/OfY6uUiIh4kzVM63U/d1kCOO44XAz46pxbCN10UmCDw4pnK+HbyS0quS2P14BxveQVZip9gf7aAQChHkAH+lRtkVZC7wIo7x7GvgIpA9pmMfSQ92iYdiIHuMy9TJZ0vrIlmOyH2T9SYgKcD0Bin60gdUQnJdXQ0J6HiYOMN+tIPNWJ/IkWtHpF2DLAdG2Yl00VsUQJgGzHsnOepu+YcHSzX6syV8aXmelgj9/z3H/K/p9ZgzuGhyhVuoX5koHcQrVxuXnVStlYOuQVdNoIwmu2qdovZRLprsmHXQIhOWgKGqrDf50IZi6Fp31zQo1LtN1xi63tO1e5hdPuEKg6R5jVuWiCEpuxvWt1YVUmF27dyszQb1L88R532uW1KPSmK1afY93jNgzYSVkw+yYVlxWvPFydu1pJum8blzcYm7aNiAhi3oemWeKSZYZJYZ7hmF0TVuWDsYZYdJcKVgCErQ0WRVoRHJelS8COcZY9kw/kdQrzrHzKteg0QsMW59MnVN2UmV6/zIqAOqzBsPwAeM4+AhQdb40LmN2k7W93qdMiQ5IGg9/gUbcawvth73NHft90ogqVhliQWT1zYnD5EwyTGW8VJnink2GDT77bGEHQ8Op40iDrA4hxCo8vjNWv42l0mSMetbsWHZMMw7ZWxqo1xVYEFkTi0TNE0cCc7UHAC1nlE7myg7vGbuJ/F/lvMUJ2cxA/HlFsVGkLLBXnatldkc03YMKrAbZpddwjwlwT0mDPlGiDd1vFYZpziX1sdzXCLKjmUVLjGOesuLHc8wVTrRcFMlPe3QK4xpA9z/PC/3n/YEBfAWf0iOUYu2u2iSKG23oueTG/TdP+AkAcuRMzRxMd2c47brMjHyjDRv4akd4SvBViIkEjPE+LcTDQJo0luUDudZlrlYXGEn0iVR2c0lyq4gz+WL1AKQC/Th55A8MbrMwkClOc/li4w2njAVXcDVOGYxcIFrxY9pa8BWLIQyy1RuqR4aavrpomHZXR4c/qfm36TskiJ/kYu8VrzDvYici5HmKruusJVLqqSok6ql3eqx7gVCBJ0yrobIIcKlAwohORe+iuybB4fI/RrFCz4aiHTnGjdQqnuQMt9J/5RiykdkpcYXo6N2ck6SIV4ssRopkCNGig3bnQ6UjvlJ7M/xErO2M6MeDxsM8nLmC7aTGd6ofCwFiEs6B5OVL5jmcwqBCGFnj6pXpGKni9ukI/30Ngs0XC5ez95hJXGKkeITspEIVcOmdNFggkVWGSFPjN8s/X/YC3Xhd6p4vY6VaemEGGWHK6WfUgiF7MIqZdiguqB00WQ0/wQa0o1W9L6Jm97iAauRU7hoEHfyOF6PpWwrM2688oCmu50db5Rep8Bl9226c0cyHhPinfA3+B16nQKr3mFeyK+wEpOuribJAny39DEboVOM8QjV8L/+8A5fnYvwXLrI64E7PIydYbi0CSEpdDup8pQEyaZQ25dc47yc/QKaRqKBeGP8xaykktVC8Pecf8pq5BTxZo6sS0CDa9wQ6UO+xlYsxNXKT/Dl4WHqDFf4RL4DkfyOO0ssecd5m39jC4opZ4GMN8lM8QseR/q4xWu8zTuyT4xzufJTfGnYuiAgjIKMQcp8lxx+DlllmL/r/L/IeJOcy2/yh7Hv/JlgpACQRUCwFeA3EI8mL3Agfy8xzqsPPhc2XAMB7AIQHUIWiQGMMXwnZ368DT8D4kAM0g8h9RNwvd4Uxt9j87sVRNKbMd9/H5iRn7dFZXssAqcBN7zD27yw+F/Ld30G8et5eAxHn0FHSraxj7yXItKddyPS3+Mjqu2SrDrDrLFLkDTsMZZZZVjmQj4hRp5DA0CrJF59zjRkY4OUbaroA85DnY94w4Y93OI168spndaLSDr6GvNMWh+0PXroZcfOBQrirTGMGuomucMjzpI2HcGEYSirvF4BGi0iouzQNF4i6sGpKeY79NLAZf0H9SGuXpdrjBBlhwUmDchzaB/YXuq2EJ5gEfX2W2WYMR7hosnbvGMBTwXflPWmnUA91jku0Yv4Wu0RlmcjSywxzlMDaMbJs0GK9/gev8bvmyRlWURsMMgy07ZQEU+bCS6yyAJTTDPHLDNWQh0jx5LpJGpK3HV+ZFjPu0yyy13jqaI+gUkyVgYi8uuCYfevWSa5Bn5U6UQ8o3ZRm4Q4eXLEGGGNd3ib6/yIIAeW5ZgjboDalGk9yPNsgxSDbIgXFR4LtmlTDzAsPyk6L5oEsiXGmeYueWLMM2XTBMsEbZNSWfoew8hXyVGGpA1HkUT5Q3Km2OyizD3D2vs2v/qbT2nSI4wub5LYqHjh1PFylZv2ud1fKckcFZMQiFwkxKvpz6kkBERIkGWk8oRcRHy+CoEInQFRAOSJ0b0uz+j9VzvIE2NvOmyB8jpefhKbYiK2SN/CAeVAF4tM8B3vT6EhstVujvDl4VXv53yeOM+Z0jb78Q4yAQlvi5NHQ6aGsltikZCCz1PneTH9wCwCB4kmPsVnpJRtWQhGygSbZXxFyAYS/FL6PvunO9iN+CgTpBFy4ecQv1PlJCq+vw0XwsoGEpUtMoFThBt7dM8dUZls51rlxxQTPvruizwyEDmgloDlyCgvpFdgAdynm4wfrFAOBSnGfHiMhUZHGkgdQxacUYgs1NiYFBZC1esn7OwBsJUK0T9Xoj7RTkfmmMuhn+KrQCXUziIXmfbN0RE/5vPkebw4uAJNPuINYkmZ7ydYNF5RXno5YLo5R9kVJFEsshQRNnPgs2O+/M4Qw5V1HK9c46G5LVzTDdKuQfyuQ8KxPWFYTsp64FxmE0pwhVsCUBUgOFlmMXCBQTboyx9QC8jcdRSBbKiPM9ltmm7ookw14GPQ2aDsDUI3nHu4SS0J4846uUjIsptr0oMnWilSDnTxH6f/kJMQ3IuM0oVJDC5JsEh/vkRmVOYunRPfdD6yLLxmSp7lWwn4i9mPOfGBJ+LwQ+/3ucxnjDnL0tQLiPQ22CzjajTFbxBY9E7gSgnwBlBJVMm6RCkSY4/u+SOy02F7X6wywkzlDl4H9gKyaD5T2oaohKy01QTwjVRqthm2GDov82QixvP31xlNP4EA9LkPqMZ2oABLqXH8iar4q4Vk7gy6ypxJb7Oe6mcovUUwVSZR2aLpbqetBJ+mXuTVyuesMcJIaA0/h1xijo68sCFHecJE5T71tW96JvrFeD3mDH2meV838kn1PM8RJ8oOCbIMs0qTB5aZNMGiVdosMMUbfMghSasOUJbUCGvsEeYlZq2aRteqOrZzxBlkAz9VE8jVtM9iAW3SgDRutZbYMSQWtYDyc8gaw9bbbJANvDho6u4iFy0AtMEgGqoHcp8rGyzLAOIfN2/rGLGAEtXZgJEyZhlArZXUIkVJECk2LOinCrcCUd7jLb7LTcQeJc8jxqxvXBW/rY0GSXNA0IJP4jUqliDLRnoaZs8EjsgxPDUNkKppDPdSYI1hPuQNfpn3GTDN2Qnu4cWxhKFVRkjy2DS3O2niJsNpJrjHGiPEyfOYJKcNCKf7qr56WgtOsoAGfoywxwYpmgYglRrw0Ki7xK7qbd6xlhC69lNfYlVGqMRXVAph2/xU4g9IjaQhhxpIKqpArzRjuMoYy8bHXRSSOeIm1G4D8YIUf/zzLHFg1ApKdhEfSUm/VWsvDRLqNcoMZQ+qSkJkqwJclg3rs47HAquqTtRGiTbFm7jREEtVJKpVhILGBXrpYc+Gjop39IElqkRp+d8pKUt95XcMa3OPsA1f1aa+3v9+qswyYwPwZJye/blDMdpOTk7+1Cantra2bqBUegjdh8ji9D6Wqs5pKF7wEVmowaz5/Svmd7NAklZU+gqywD2HMFpOYxe2VJAF8ssI4yVtttFAfCIiyIKzaL5bP79uflYBus3nYmBYpbL904ivRg6IIgvkovk7gCxiR82+RVrHVYsZmcHPgCGozYDvvvlcFFm8PwT+ArLA1uNRGXnabLMCR38VOhbMudPv7DbbeWA+6zWfOW227YOjGaRA0+PR875o3jtqji0EJyFo+8B8PoeAAA/MMU2Zc/QpLcj3vPn9NAI4mCIVtzmGkOwDK8AF8/um2fZpsy/m+Hhg/h81x+E223SeOV8JYAEq//t2mm4X3Q+OhK00KmldbqM8aXtftnHyXWhbMduumP3Ubek+ZJHx9mOsiTUNc+w6HrzPXJuFZ67zkDnegtkmsDnTx+nitiSlmX3DMe+/b7YVeuYYV7Bm2iTM/73AhDlfWfNn1HyPG9vtx2f2qQB0me2YBQ8Z5N4pms9jtp81398NnEXGv46NhjlHD8x2HfP+mPmdg9xfOfPzODKOJs35DQD7UPyOD69TF1ZD1uzzA/P9mP2vwMnL0LZuzt2c/H7fD6EXAQidnJwoR+1b89L58P/6IvxXG9B2HvgHyPn5AfAqch7/LvC3gf8tMI/cf/835Byum7//Bnz8vZd4ffYO/GPk3lqBwjxE/xrU/gn4/nta4yWEXEO9Z/8b4H8D/C7wPvAjZMxel219/J++xOu/dEeu7/vwxVejvPCDFY7+DnS8BnwXYesVgbfMPrrgv/w/AC/Cvz/1At/5h5cRQ13xjeg0EvsFpkzgxp594GrKubJ/9WE7xjJpBhnjkS3YXuOWfWADjLFsO6TQ8oDMmSbNIZ3WtFY96ZQtqsxtBWrcpkCBln9qEGESKNtWARh9abEaZo8PeZMoO1w0Xd4xlo0tgjDLlLW8YzxmtBjUYjFmir8GLtYYIUGWtAmY0OaE+pGM8chaQgDMMmNlIw4e3uYd+7v3+WUmWLSd5meByZyRmK4xzDVuoN4uej2i7DDOA2tCnCBrCzPtxC8whSZ1BSlbA+1BNuz1aeCyzHI93rjpjIJ4Pn3Ca2gavXjAeJlmzrKm1fogyAHv8FeYYoFZZphk/pl0uCgD5rzEDXNaLCq8qMn0d7n5NQajB4dbvGZDtdQXsEqnLXAfMWaS4Q4MK3AATfVz0bSgLAgof4VbeHBsoX+Xaa7zvmU+j/HIjgHH7NuiYYInyZDf9/F3Qj+Eb+F8qHNhNt9GvU/8eW9zmb+f+ccCoD04gpg0Kqt0MpTfEqaPU8DVOMa3APsvi8R21xXmzMI2lOAnr/852xjopCpWJ82qNN1W4GRCmsbDpU02QqcYzT7hxAePI32sMcJ3Mj/ly+QQVfz80sp9iqM+7jLNn09/CkAxJeyzjryw0QKPj6EJ/+W5v881bjDeXKLz4Ii10BnOLYiXmfrJPWLM2lZskCLKDiA+at2FI1Zip0hWntB0t9uU1aniA9KRfkCku1upELe5zBjLZEgyzBriTXrI6P0nbF7ow02TVUZ4rXiHxxHxS1tjhAkWBeQLAS74MjFElAL96RJfpSIsMsHl5m0cl3hWJ8lw5v42xODfxv4SM8yi/p1Bygxlt6hE2/HUjlkIXRAGc+UJNwPfMXL8TqsK6U+XOAnBzcirwkAq/VRYfhU4SkLd107ZKwqKpJMhUDjmxCfArQcHTSJWtYcyWaeL98XPbV8YgIHCMbhhPdbPUGaLL5NDJJsZqi4/8WKJtkUZA48jffQ0xXdQ2ZI/inyHv/zwJ1LjDMk54j4wKSByOtLPUH6LWgCWA6OMVVbIBvqJO3n2vGGilSJeRyS3HRUhH4AAetqcPezqYNU1wouZB7ZmrqVgLTBEl30+CatlgxQbDHKZ2/T/uCR1dF6kw1lXgkQzS/f6EftDHXIPZLb5KinN81XvMAme0pc/gDx8cWGUJBkimZoF7bYTXRawOJPdhgpsj3YRrByQC/SZZ+Qh/dkSXyaGaCBhS2dL6zaFmorsfyZwyjJEy3TRxE28mSNYOqKtArUI+FbkXjizsA0JOac7kS5zrIPEyHHm4TZHA3L+aiHx8YvM1tg47yUVcuBbOBdCaz78B6W/Q6Rb/Lve5EOT2XpoG48KKKnCQNUFGo73Nu9YZpaSB3LGb3GDQaaZs4o5Vc0sMGnnEcB6hYPITUFsrJRJpx5uTVyWsdbAxVU+YA8J9JpgkdtcNmFkDrPM0IsEKtzmMuoxr8++BFk0bE+aMHEr273KTW5ylRFW6aRKkANuGwnvmGGe/Ta/yZt8yFu8ZxVYGjKYZcCGYypAHaXAHJfsM1jZh/rs0DpHWGJe1If42VcZCTCU1FEJmQBQj7ycsfBQP+ecqZ/i5I1y7A0uc9so3yREUZu/qlJRtpjYlHVabzwFJxX0rRup8x1mbF2dIYmDlzf5kDmmbR2jzWgdT6pkU5/VSRZYYNIyFbWGV1LQB1wVQhKrdBowDTD8SWFdTjPHstlXtRFRNZ48t1Yp0GtrwFlmbENVVJTSuH8WsNR6bpVhLnObBaaIGnWDhnUscxYvdeaZZIxH1nZFWXJq9TaA5CysMswIa/a63zM+faIWjVvF4hyXmDIpu+rvN8iGJQvovuaIc4VbqCd/lgRhdrnFa1ZlqL7/C0zioc4Iq1xijhtcs2QwP1UTBHhoG9PqobjBIE/2g/zD0D+FP2E+/EYYevxXiJhXwQwFSu5D5IOaPNgSCHCg4MoKAhi8jAAQBfN/BY4y5mcNZNHpRgCbitm+AnAxrJk8AQRkeGw+/zry0P5XWINYKmZffmY+n0XAqxXz3QosngcGkAVtCVkoR81+uMCngNjrwA/Ap/veNH8nge+b/fjY/HzU7FvK7KvZ544fI6CH2xzrvzbHdZoWaPnYfH7dbH8fOn5mzlWcFuiWoAWkKTMnD22jCIiqwGrCnBvjj4XbnEc3AlDp/sVoAVNNWsDYZ7QA0EXzfT7kui+Y8/a62VbF/Cxk9meC1ssx1/Ox/DfwD45h6FiKm5x8f8dvIf9X5hPQ5jXnNm9+nkfA3iYynvJm3++bz/5/zb6YVDgC5lyepwXGKSD8kBYQ9ljONV448+l2i0GlAJuOuRXz3slntjNHC0A0CaYsmPc75mdF81k3Mt4emvN0gAB5kwg496/MefprZhsKzCnLSwH9hnnvafMdAfPzpNmfSVoBDAoeRc13/itzLqLP7Mt9WmBpHiKPaxa0s+P9sdn/lPmZD9oemJ+5afnI9fJn49UPbb3ItV0EZqEwZxh430HOXRGZFwrIOfwOcv8cmN99Bq+9ekfuUb0PIxA197fvM2Tsfma+8zPkfksBDpzkJX3uSRpOzSHnX8dEBKaa89I8MXP2WGVFzNYnaQH1YK8nDUTO2wEcQpAD2+kCbJEhCVVpS92XjlweiWvfwUvdSkoVfJLABmEfKJC3yrDxL+1EvVl0waGsPWVaHdJJig3SphN8SCcaOqRFb5MkYzziHd62he4yY5ZlpR4YWhCpX6V0+jrtwsuLw20uW3nIY5KkkPCRd/ke17jBIZJOraxWBy9nTeKZpoZ5cCxTT01/ywQ5jfjIyjmLWtlM2iSraRhH3CSyLTBFmD2umhS2PcIsMMlbvGftLfQz6pOyg6RzZUnwPd5llhkLZo2xzDxTqO9ZHS/v8T3EOqNhrqvsuwRF9DBvgC61ABhnyfr8ec1ZlNS3R0xwjzvMMGCsLjT1Sz1HtEhqGv/PMkHGWGaBKSvJvcE1LnPbesrU8eCmSQHx2IuRR42xF5mgk6oJUpGEXGVrtmwaekiRZpwl/iW/xt/jf2SBSVu43eaytYXQMaH+p1VivGL242/wO2yQIkaOJBIGleApDVzWFPoQ/zMLj2+mHPtFejXdUrQqA54GAng0JOGyf6FEcdKhGPMRpCyspwqcnBfpqeMFd6BJ5byw5idYJE+MhJNlxysSmmXXGCOJVfYSYcaL65zLb0IFBnnCHyde5c9nPyVe2SbONngh2cyQc8X5YnQUP4dcLX4KDWEMxZs5OjLw8MIZ2Y7Z52HWiFLAcXnJhAREL0767OL61fufE7xwQJkuNFGwiYuhlS1bdQ+WnrAX6qKOh7iTx+89tEy9Jm6obOHB4ZJJaAbx6Yk3c8y6Zqhf8NjFZ4IsDZcwY5XtskeY8gXxsNsLdTFcWWc5MEohJWN4kA2qrpZP0pn729RSwgaMUuC5hSKEijxMnaG3WWAzIQBr3ddOgqxlq+k8lCpu0dbY4qtYhEqinUD+mLMRkWp1rMD2dBd9Cwd05MEdPeamd4YRVq2yoXpe2JdPDdNCg3/UX3i6eJ+2dTgahbWESBWToSf4KiIlVWA240oSI0810I7zujDHFrnImGuZc9lNKtF2PotIJ7GWBN+BsDJvuq7yH/FHUITlc2cYK25CEZqhdoII60+bP6uMEHbP0ZY/pqME25Ndls2xF9vDwUNHHg67jKWGC/bPd9C9fkQ14OP5zDonAQENNXBNQYR4sSSN6wDUz7fT/eAI50KBHVeUxugekfs1ut3btnkXyB8TTErDoRnL44k5vMf3GGeJN5IfssYI484SZbp4rXiH1cgpyMDJqDAFXYEGvU6BQOmY9Vg/tVCJs6V1FkPn8VLnsKuDjuIR26kuy+rSxlGy8oR6wEOwWaA7e0Ql1o4T8VCgl9HAE+p4IWQA15UtypEu4k6esHePeGVbzr9JvPU2HSIZ8RWMrGnB/e1+Pc+XLPA6V/gE9WJVgEdBLB0fGlAwzV1meYkJFg0TXJjnGviQJ2ZlkA1cllm+xghXuGU8hyd5w3jxNZGU1Rh529B7TCvgwcGDF4cf8n3GWTIqqmG8Zt7Q0MEFJtlgkLMsWxXYgXle54izQy/DrLHIhJWOLjFuPbo1XEz9h1W2OMUCV7nJKsOoNZIqmHLEWGSCOHkcPITZJcsAOeJU6bR2K2rboeqhJi4ucxu1GkqQteoilQqDhDKtMWJBsT167PNb7akWmbCWKVf4xNo5DZJGAg9ieI3s9VlZpYe6qZHFW9pFwzZIP+IN62WfI45jahoN89LzMsgGOWIEkeTVlJEia3MyRwy1OfNTZY1h7hlvPrW8UW9+9XgfZ4l5Jq0K5C3e40Pe4Co3AXiXtxhhzaoWF5lgx8i4dX80MEzXAUHKFixWVU0dDw1cJMnwCVeQ0AmRRC9z1qofVK0zaOxTng1D6zF2MOIX38UgaQOqSpDjPSZY5iydHKLhrDrGCkRtnakgX564baD9Nr/JW7z7NYaqAnBa70mghiQd630gKdBZyx5UYFIBzkE2WDCBev9hJoMHx4ZurDHCASIz/nnNqb65CvI8suArId0vL7LQ10Wkj5afVAkBEyaRhWMOWdTqQrdgfpdHQIjTtHykFIRRmVmMFotP2UKnkYXqY/PdTQRcM2bzlsWXRcCaotlugJa8DVreVwrG/IwWyLZgvu9d875Z8x4FYtzAT2gx8koIW+YvmH3Imu+bN9vKAd8z+xKhxfDymr+vIwBAxWyzaM5PCgFedB8VgAwgjLsMLaAF87PrtEBDZV/peVGJ3Q8RMGHRHI8CgAVzjo3kxO6nsgjdCID2njmmnNn+nNluNy0QVaWIRXPeHPPzkjmvMfM35tjVZmMFGU8pLNCESU8jaf6fNu//gdl3BVk/M/v6yJz3hDlHyigsmc8u0mI9rdMCNRLmjwJo14H/3mzDJKhZgNFBxjzI+Kgg1/YzWqCgAr3PgpIJs39RZMzlaLE3H5j3zNNifOlY1nGhgJ2yA6fNMS1gwWBqtMDrhDmXeeT66n33ltnXCi0g9wNaIKGCiUO07oec+VsZmUVzDDHgp/zZeOn40LkvBNHT5ndDtIDVLHI99X59lda1SkPbp3D0OnTEkHHiRe4PZZo+QO4bBYiVjTwJbdpAgRZzNIKw9aaBX0YAQDNevDpuZ8zPlOmXMZ/XZkwX8ATaR4+p4ucyt+lhj094jXGW+IQrzDBr/RiVJQbYjp36hmpyYoq0pc87xlfNTRMxSRapqIYeCENqkB16WWOYS8wRN4WpUuqlIBKhvvqpauHmxcFlGC6dxqclQZYoO2ZhLL5vMfK8z3XUN7OJ2wKE4nUh0hIN/HCMVCVPjLQpcjXp14NjO7hqfqtp3hmS7BoQsWqYhgXjlDrMqvVZzRGjlwLDrOLBIcgBH/Em08xZuYKHui3u1Z9ujzCfcIXv8R6nyZhis844S8wywyojDLJh5Kc9dLFIlU6mmLfSSJVI7Bnp5D0mmGIB8daUAJAsCSvfUfBApTUq21Dp4gSLDJuCrECUJm4rpbHAA53Eydvic5o5y9hUebQWWiCWBQriSuJcJ1e4ZYv6R4zhxUF9VlUapEwD9fhKsYGmDyrTQNPqxXy6FzFPFkaAiwZdlJlniip+3uFtW5gqSH1AkFWT4qaG2Q4eDm2h8e19dWcaeDwmXCGQZTPVJ+yS1AOWQqO8UFzhD/g+fzPzA/mAV/6kI/0kS1v4KhD0lfFXjjmT3qaSEqYXiM8eDgyVtqiMtjPrneGsa13YPzGZ06IUoAJeH5RDHWQDUYIcMFJ8wlJkCD9V2vLC/hrNP5EQiZgwMldip/DHqjy3UOQ/Xfk34IZKop2YN8+CSYwfdDbwew+ppSQ8oY8DiIArsYbfqdqa5Uh99koHVm0AZTy1Y4KhMmuMULwg7PeC10uYPV7IrvAwcYa6y8skC/SlD8ROJV/DiXlwNyHRzLLrChNFvMiCfN3Dzm+SonW+6c+UOAmAN1KHiJGxVjaZqdyxtcS59CbbqS6eksDrFWeiYLNMNtAvYTNN6aq21RA/1lhVEmRd4ulaSbRDCG7yXf5a9N+BC6qBdjYY5KpzU1h2RfHni9ZKBH1lAoVjvkpEaODizMI2tdEntJWALvF9S3RlybniLAReoDNQtfPjeHFd9sPUY6ujSUacNYLe28JIKgJRkWuBUdWcBk/tiMuB23ZFtMEgnohD0rVF1esnw2nGWSJPjP58iZHkKnveMBupMM9n1+XaAjveqGEVlVkfFZsZFw1+kPgVpligu7kpIFepRhsQjByY+aVBorKFJ+AwF7lAMpKxc1nzvPhjN3ETLNXYvNDHmYcy1qv4oVZkKLvFVkLYdQD/l8A/4r3QX7Lp2gqkt5Ug6X0CIWgrgT9yyB5hhgriJRh38mQDwkzUJO7uxSOOUsLIUXbWOEv03y9JHReQ9N31ZD9D2S1yiTDxZo6jGIx+/MSOebX8CXql+ed1YD5yHn9Azldf4YCjblhMnsezr8Xnt/u1TcwAXvKcbjGJRrjMbeaZtPYdmnz6bCCUyrrVX04DCBaY5Ff5A+5yCTdNesz7xO/3EWsM08sOawwTM0wiFw1bN43xyD6vtLmo/nHPstIlXEOai+dZsnJXrwGrNkhZEFybGuLbPWdqFFEHaKiWMvh72LMsOPXaA3iPt5g0tUaSDHeM5UcQuY/Uz0zZdjv02joBRN0xxyVj29XgFq8xzRy7xottnCXWGLZSUPHmy/EJrzHFPBPcszJnOV8HBogS3+S8sVkST0K3AcnydD3DTNQAMq1F1K89SNl6KZYJct3IaB08pg5JWCaeyk8FGHSMlUHB1tha/4E8uwrGFmaVEaa5i4ZVjLNkwT7xcxuxqoE8MTQY8iKLluWnvvO6n6J62EW9cVUWq/54kyyYGlLCM3PE+ICrXOd9oOUbvcAkDl5mmMVjarOniJWAqim08dzJIRsMkibFNHNmzE/hpsmOIRFoqMoYjwizSxM3MXJsmDQfCb8sWCA9YWSwe4RtQMUGg/iNwkfXLgpQZ4zEvYnbXstD/NavX5UoUQpWsaMWM2W6LMtwg0EjJr9kx+kgaWu785QEUdZ/rvnkGwH0/utPwbeMLPDryCKwGzgy/w4iAMkWsqg8AdqQhWvN/B4w6z752Q4CDpSB/wnL4KKMAAPK/LqLsIkKwCECOvWYf7fTekY8Nj87RBalyrRqB94BjoFBs49us91N8+8q0EeLwaf1UictoKdu9mOdr8tSFdTpNJ/5N8CuOTfnaBkrHyLgVcb8XwEf3R9lQaXN/iQQYOZzs++d5ve75jp4zOfLZp/2EUCrhIAvT8x7QcChLmxCF2Xzp4Fcm4bZdpAWI60JLJufKXiL+Z6AOeZV5Do6Zh9dyLUfNftwbM7rtjl+ZX6tm88dm20ZuSd1Wl5k75vv2wLC5vvbaY2nPQS07EbGQxpYowXSHppj+ENz7j4w36fjSpl+Rwgr6cj87rb597g59//UbEtlxHeRMfEE6De/W6AFOCtw2GG+zzHnKUuL4fgAGRfKdu4wx+Yg4FgAGZsqsQ2a/4fN+Qgi198LbJj31c1+K8iNOZ40cIcWw85DizX2r82+ls051Ousx+Uz771v/n52DuqnBW72ACtQ+0YieX4BX4bFa2XRKQQccyHX7h+Z363QAtQVzM2a974L7EPTDR1qS6AybA3P+BnSBLhvPuel1fjwyX4cgYDhbuSamrCM7sdHAi6aBkWbCdtgymxPgd5XkPcpAzgMHMIx7dYHQmUH0m3r5RFjaMqnFBe9VkIm3apJAOOPtmc7fDEjeb3LNOMscZdphln92sP3qQGOtBiqGtHKPJMcmkWreN65rfeG0vBvGbDRg8MU80jKW6+Vn6h3yyPGjJ+oY/dvmjnmzX5PMU+SjDVEPjQd9V4KpBmkYMxtL3Mb8dWIWVnDGsNMsMg8k7ZbLt1ptwl/aknenprjVhbfHmGCHODnEC8OMRNioZIKlVzoSwoQFwme8tv8JpMs2KAf9atTqY0Wo1rcqelz03RUBwzY5qLBRROY08khmmh/k3Eusmg9ZXQ/FFQMs2e9UiVw4vzX9lnHhzIUlHk3zxSavqvSk2FWDbh6z3a5D+lkgCzTzBkfR8mTH2bN+gO5aFhQV/1QEmSZMd24VUZst1QkQnW8hp2iRtl6PVNs2A53nriVZF/nR3Y8aFqyeAE6Vk6oRtBdRkL+bX49GkwSCRyRLG0xNLtF7QJcb/yYjoeQmt4AF/zNhz8Q5k5a5JnlmI89eoj78nTkj+lGQg06SlD1+plwFsl6E1RjIpeOlGoECsdcSdyiEArR/1R8hwESkSxboyHxnk1/zIepi/xK9sfQhEZEHJ9rSVjyjvNLxfusxkZIxjKMFMWvL0cMJiFWKrIYOs+L+QcQqnK18iltNUkD7Vs54MvRIZ6PrfNVLGKbEoH8MScBARK7s0fUIpI2+1ymCA3Yi4TJeeOWifqUBEl3htGFJ2xNhvgqEWG4tEnTLeESRxEk1dQR1kNbA6ouP71OgVnvjPX1rHs9xEpFOhwYbDyh6YYp5wG7EZ/M9XmIRXKwD+eym/z76QtMlu5DAD4fPc+Ys0yZLl7Of0El1E7V6ydSqNHNFkOVLXkWnBZGWYcP3M0muUiI/myJ/dMdlF1BcqMexngkgR+lGp7aMb/m/X0y3iThxB7+eJV3Xd/jOj8S2bSvRKwkxfDJadNgciS1tzt3RPf8EdVpCceZcBbxeoV5sRo5xejCE9uMTpKRAJHSAWFjpQBynNuJAusXREILAuL1N76ACLxR+ZhyoItCSMZKhiSv5+9Qj3lYSYrv8lB6CyflgSZseAdJNjP85ZWfsDkqXs3epiOhJGDtDCqpdlw0OUmIb12wcsALxRX2Ex003e0SbpLI4eARzzw3fJp8EUnPPIsrJH5evakCG14x2l8ZPWUbQH+cmGCmOUt37ohrvhvc9l6WZpJrhBfTD4Q5uXIMAQGjC0TFt9koJwKZY4YSW3yVjHCl8ileR9iHfdkDGiFhdrsQj0WtTWPeIrhgKL/FiU+AnhHXGueebkrd0ISh2S3+/UwvKdMsquInH4mhft9hZ4/tmHBRXDSoEOTPAqC3wggzPMBLnRwxC0Yp+63XSF3F80tAInlOr1lv2weM46bJJAtsMMiPuM6z4YWdHKIeZH4DhJw1yfLq4wtYUAkEUHhgbEbKBBkgS5w8WQY4ZJi68UjLkmCBScZY5iVmSZLhNpeNx9+IbZoNGsVEjhjjLNnvV7BPbSq04ddjfM5SpFlmzNaN/yf+WzIkTQ341DY7D400speCtW3Zo4cyXZYdr2BYkAM2jJJEWY6dVHEbBv9lbtuaw0XTyId38FBn0DCv9NrMM8WbfGhUHm6iFJhlhnf4K/wG/4w4OXYJUyZFgixzTFsrg1tcYYJFRljDRZNedijThQSe5dkhigZbTLFAjjiNZxiyI6wZ9YLUFarUUG9/tY6RQAbJDxDWoNjRnGWZA4KWKbjBIE1czDPJm3xEhiTXuAFg2ZHKylOvtzC7iL/1m7zBh2g4I7SaqnuEeYe3+TV+nyBl1hgmSQYNVPObOk6BSBcNxFv6qWnG+u31LRgvPgePvXbaNB1jmZhRqkgwpdfWlFU6rbe31pjaNNaaVEIwxANyiXETrirP7lless3sHHELyKonnzICVfkh8vBHzDOFBrpo2Ffd7Ptv8bcZYdWynUGS7qMUOMRvG/MSjtd6z//S65tZUm/T8uPqgepTZDE/jCwKvbTkdgcIQOEBZxH4CvCb9yvzpCLvOSnK9uhHFrQB+buwgwAKg+bvKgI6GK8Ny2J7LN9/siPfxxkE2BiEI2X1HZrP+mmBZmO0/MFc5rNhrNzM+o41kQfYjjmObdmW89j8Lmu2fQScMsewZs6LMtVMR5pjhMW1Zf7/xOyrstL8CICkIGQeTjLmcyVz/s4gAJn6uoXA2QX24GjbbNsx+xQw76lBtYwAegos6PkblPN/UjT7pJ5vAfO9CpquyXcQpcVIK5v96jfb6jDX8oCWD6J+z6F5rwJj5rh2M+bcGebcSR4IyrGcPDH7ETTXV6//V2Y/AuaY3ebzZ57Z77K5ZjoGmuAUZEycZGQ/9rfMsSk41m72y2+ufxMZd3Hz+2PzPSfy+YIyJZU96IajDVrAiMecmw5aLFIFsnfMviZax4jXfF+TFrgXoAW+dprrq+Ol05zPEAKeKxhTBnrhRMdlPy1fyUNa4GqSFlj9LDjcY/ZPt3tk9qfHvM8xP9sxx1M3x5jgm+QH/2K9lhCgDOQcRBFmndoBPEBAM7UJUAasskWVdYn40lgG5QAyb4CAdMp8btBi1wLcgJN1IAKpaYQRuG6+Nw/sC4MFgAKk88A/a30nr2N9I63kXo+lE8v8kwCHEdOJdaNx71LkvMQgG8SN/FBj7/cIW98xNeltFbUitbpk2FhjLBM3iVlZEgyywRt8ZCRZDTScwE+Vq3wAYH2YsiSMIXGdQzqtb5Ga3UqnO2/YdyInreI3gQ57thOnHmz6wG7iYsBIUzTtfJEJVk0Cq5sm08xxhVt2OOzRYyWeUQp8yJu2YAFhcH3EG9bPY5q7piyRQlbZaOJ7JzJcTefVYuaHfN/sxwggRfmqSVwbYdUURPcYY9l2CtW4/oAgvaYI/Ig3WWOY9/ie9X0JIyndkoYuyW1LjNvf62JEAdxBNuz5lvPaaRmSap78+/xVY2YsXUwHj+1Aqylz2hTFYXbRtPo4OQMQP0KTxlSgoEFJQcr0skOCp9TxWDBP0+I0wVhTgXeIkmaQXnZYZcQCzXe5ZJl3akquhbNKw9VzRVmomrSsQOwIq4zxyC629Ho9Yoyo7eZ9e18f8gbv8DaLofNUJtvxFaVJsT/dQdXlh4DIIJcDoxQv+CiHfBZwDhSO2R/q4MQtLK3aBRlPOW+M0fQTXsiuCHDckIRcl05MB8K4o1skvdpI2EqF+JXsj1lP9MNjWYAc4mcpcF4CBwLys77sAY4X+tMlxksrrDLCQugCCbJsx7rIeJO0VYCMSIq3RkM8v7BuAIogQ/e3BHjzCngGIvHcC4TIkGQ/Id6AOv7KdPH94h/hoc47rrfZmgzh4BEGSChiwclMqF/mXpcsximKhNLxevDgkGxmSDhZnrtfpKMiiaoLoQssB0bJRUJEMjUqiXa2zoXEU80w234pfZ+OopzDF9MP8FeOOcTPV7GIZUPSEJbhV6mIPPvTkA9FICLNoXClxHaii3uuCTzUGUpv8WL6AYtcpByS6xp0ZMae4xI3XNcYY5lgqUaZIOlIP5lQPxuhU6Qj/bQtwqfnXqQ7e8R2oouV6VP0Z0u8PnsHT+2YpJMhWRKW2ZeTQ3yViLAf7aBAL50HRxRCIQ67Oti+0MWyd4zNRB99+QOauHE1jln2jgHweeI8xZgPryPzebhS4izLDLNGLYABHBoU6OXL1BB1vHyVjAiDyeXlKCZz/jJnWXWNWN/Et3mH5zJFMt6kbW7sEZbU+pLIzsveoG3o9zT35HlegldXPifu5HmteYtUcUsAHrcLD3XLkinTxR49XKmI96M++8dZwuvUmSqKpN1fETBvO9WF45VmQtMtyc12fYMc583Ad2irQN/DA75MDLHGiG3QPWJMrvuo3L9HhnAgYSZP2SEq99zL4idOTMIPEsUiVfz8kF81ifWOSAlrx2QZsEyjVGXjT2G2+cV/uTimlwIOHvM8clkGlj5rJww7St7foIHLevVqqjpgGOR1prlrJX8aAqkAhxcJahI9RAsw3SBlpIkSyvEBV1llhGXGDIBzyBjL9hk9yTxVOskT4w0+ZIJFC7xMsYAEJVSN3YWLKp28wm2auOllx7Kk6kYwPG2SaNWrr4sySR7TRZkYOdsQyxFngKxlJYI0KvU5r8FnC0yxwSBrjBj7lDoZTn+NYahNwsvcZoZZLjHHIBsAhskoTcVJ5o29xwAFoswizRJVCiggJkyxBsuc5Tf5bQZJWyA0zK49J8Lk6uQNPqKKnyg7lu3YxM0kCxb8GTGtyBxxFkyTWsNIVk0IiYOHSRasOiTKDhlOW3uQRS6ivoxN3NzmFdtAVr/nT7hCmkFcNPk+f8BVbjLOEotMkCXBI8as2kEVLQJABikQtQ32eSbNOT5AfauTZPh1/gUuGnhw+BHXrSfgs81atVtZYpwFJllgkiZuK9/24HCNGzatV9mQV7lJmaAF81w0v2ZloqBg0tjXaDBZlgRpEwCiawdVhOwQZYOUacZ7mOEO4m+dIm+sahSwzJLAwWtZe6sMy/xorh/AWVNn3+IKAOoH+S/5NSSgSkBNlZrHTOiW+mY+b8bDn/T6ZgC9DmShtwJsgt+PgAKfI4vILJAxIBpY0MKrMk0FrxRcU0AAqD5GFqOPZTvOY+hWxtQiAqToH2UeKdgUku9v60CAinvmPffN+5RZd4yAIZ1QLSALYG0Y7dGScBbNZ1bM9itm/zvMdxkWjDeADa7g2LxvyRxTB3DXAEceBGhRQCppzuMOlmV29BhOSsBTBBR9YvapB9piCMuugRRn9xC2V03ON0/McbaDWxl2hm13kpVrxREcn5jta8BCHZwSOF/IeW9zt84PAfPvsjl3u7QW/xrQUaI10pbl+E92zPdBCyBVEKlhzlPDXKeQfKan25w7j3yszS372d4ObSHZj/2sub7HciwEsaw0t8qHO+Hk3jP7rfLFdvOZqnkv0BaU/Qp20mLzlc1xBgRIbK6Ynx3K+Xa2oamgWlXOf2cbAu51mHNbgA71YMQc50NazCwFl9V3bsucu7z5dx5OzL5SgqOa2a7KKvX6KAMvb86Jjpd2OFqRYz9Jw7HeI2tQXTHbexYgWkIYsocGGC3Lfh1smvfsAPtQPZBzc7Apx0jd7GOPHP/RoXnvMi3Z97f9dUDL2zFl/lxHrvEoIrcNIWBZDJGoN2gxHe8jYPtjWkE4s2abUWROTZvPKPvuNC3pdQYOHQRsnhH/PntfriAeoCrhnoaUskY1UGWRVijPivm+WXkvZfm5SiK8OOwQZY1h2xUFbGdeU6A2SKGpZtpJG2bVstG0mBTw7IBOquzQa4vXVYat95OCJyBm8HNMG08YYRPkiVvZoxR/h9Txcp330ZCJKn78VE1qlbDhnu0mK3NA070+4Yp9sIOwCxWgiZFnjRHj4+K3zK4NBq00RoEffQVN4eqhbopY6bSuGnnNApNceqZQ1/1YZgzHdDcH2bCFepIMs8wQNZ1llUWoVOOv87u4ETPuDElucI06HtYYIUaeXSObuMpNOjnkOu9z1iS7ayBJnpiRJFStPOw2l1GfxEkWiJOzcpo5pi3YdUgnvewwwT1yxLjOj9DAkkUm+ICrxMjTyaH1PckTsx3UxyRZYtwuStSce54pwyjstb5B80xZrqMUb+JrprIRHT+LTHCeJTZI2W2oP5gAy3dt8ZojZhdGCkwOs2q73zFyxtXvsjVb1pT2XsMYneUly0DV8/ltf/2tJ7/L38/+Y0DkidvJLjKBU1RdfsKVEiuJU2QD/VwsrhDJ1+gp1tDk4aMAzLum2Il0sZ3swleCSLqGn0NqMdiPd5CobIm/XkSM+qt0gg8BbAzL2GUkMVU6oQJDK1vsv9xhx8RE6YEAXAUDCjaFLbid6qLDkcZFjBxZEpTpEvDPBUTE52+ZMYhBX/aAc+lN9s93yFych6MB6F4/Ilg6Yo8wL6e/oHvxCALij6fhQdlIhIST5TeKPyBaKhGvbFtp+Hasiw2z+PoiMcrDxBkBiczzNJKpCWPYFRcApyaAiyR6Z3ghv4K/WYUCOF4P4UqJmjbIzwMFafA4huHdti5eUg2zMM8TYz/eQUdRWKxboyGKMz46qbIf7wC3MA+DlQMK9LLBIMWUj89T5+k1MqhIvsaON2o9oa41bzBRESBR0sQT9DYLLQbRaZiufA6PBQQIUrZ1W8cK5LwxyiEfycoTHLzMM4nj8qLG/x4cOg+OeJ/rrDGMmybFmI/Rh09wNbCAl4Y2OV6EuQYMZbe4Uvoprob4HgY5YNxZ4vnsOjFyBJtlBshSIEpHGp57WKSJ28r/9giLFLbUelaVQx120U0Ikyg+BgEBZ7sLR4AwVPFB1puQwIl1xD/WJU0nHa91vLyYfcByYJRdV5hPYy9y03tVnjPeJG0NuablUAfrqX6edWWq+zpw0WAz1WdrbT9Vxlni4+RL4DJScqqMNWUx7KEujMl4B+VAl8i69+W6J8jy6v3P2fOGoSE/K6Z8PJcvUg51MFJ8wpt8xDhLDJsU1r1QF3HydCKSdt/P+DPxCiFpqV7q1odM/bT0j0pGd4hymgxumjiIwX/BsLgGyLLMGHNcstLEJi7bkJPW344FPNRns2rY5yAsUvXiVT8vfa6XCbLIBEkyzHBH2MNkuMYNm+CpCgCV8GZIssR5HLzkiRv7EPGp/T1+3dYCA8biJGjAR8mxFa88L3VrTzLDLFkGuMMMwNf84W5wjXEesMgE/5Jfsw3fcZas9HGKeVvfXed9JljkLMu2iXyXaQuc7iDSeTnui9wzwJaDlwnu0UnV2rV8xBtW1hqkzF/l902967USZPXODVJmkQnjNyzNmwWmSPLYstkkBGWHXgrEyDNA1gK5e4RtXax1q9rZNHFRIMoCUxyaOvoqN23TV5utr/EJKofWekSBWLGBkYARD3VWDSDaRRn13csTQ0MghEmXtZYtakUzwiqrDD9znCJHfUqCa9yw4yBv1Di75hmf4CnjLOHgNdLUoPUVnOYug2wYLzoR/opFiyThZhmwwXoZUx8qUOqYZq+fKvNMkiCLg8eGTlTxm7otbxvzCkhuMGjJBmF2rT+jg4ckGaaZ49BKLuE2r1DFb+87wJIBrnEDxzRh9FkzxiM6OSTKDje4ZoBVUY/kiVnQ++d5fTMcmRP4h6dgfxMKjlkgdkBh25i4HwMvIiwpw8Q7WYG2cVrgg4MALB7YL0N3D1CHexm4eB4b9lC9D/5RpBjREII0LQZQAWEd5bHBEvs/g+4onDyGRjt0uOAkCI0m7JcgOoEFQu6ewKlNiPfTSgVNyu8Ku+Z4MPvrMsdSgTYDclSPwR+Q72XAvNf43aVXIDX5zH76BFhrc0OhANFJhB3zMS35pbKnvof42nXKn+oKfFWBQcOU2t+CDjd0J7AAGB4T0hoxxwA8uQ+nRmHpEAbboVyB+CQCBLSsBzC2QRxVoCPYOge4oXoEjQZ0J2kx4NQzzSSsnaxA2wQwgrDrHsBXRYiHoGMDeJ5WSEbVfKcPAeT0+qosEblO3cajbsWB0X4EKJmDo30jS3TTCl9pB67I7wlhmWj7D6D7NJwU4LMyvDpujn3C/N0N1Qp0dgoBjSCkN4WYd1SEUwlaDM1hBDT5FHIZiB+Z67dizkXFjJEhBBzT43UjG1TG0wsIANY07xuGkzkD2Brg52QO2p4Zk7kjiCdkf6lgvU04gf3HAuioWjj+uuzvk8/g1Fjr2t7LwqAXup832/0ZHG3CUQOKFTh10YQrDD5zPdrNMTXlHDa6oeM0FEoQ7ePrIPcF2a/qAvw/XVD/9hNS5PUE+CUEmBtC5NyvI9f9HyFzw2MoLEL0vPnM/xGZxwwLmXla/oMlWiEsWfNzLy2vvhzwm4hfZAZIgr8bGV/XIfIDWgExp2mlKocQ/8e/Ruse0Hsoitw7KrNW2W8WOJQFgHqx5QyrTRcce4TJkuAyt63cUpkFmhh2i9fopYCGNAyStgtsTfu6wi0r+XxMEj+H1jS9lwKd5uGrMgA3TdZMUTHDLBukbLdaFvQi73jEGItc5Co3bYdXu6U7pvDopUCQA06bzmDeJOquMsIOUWaYZZVxcx4kosOLY7ucCjACphisW0+ZFGlrSP0+1xljmTC7LDHOGMvsEKWLMsucZdqASlMsWANk8QrxmICPBmM8Yop5Grh4amTQeg7dZrGgnWgQM2pdGAyzyiwzHNLJZW6bYlJEPyr5GbTfKwWoXrPXuMX7XEdDTsp0oUEo+l41Fc7jZ4xlGogEOE7OSpi1sALsIqKBiwkzVkAWH5MscJvLdkzc5jJXuGVlEMLWk9Q7kd0KwJwnbo9Ju7Nh9phkwabKaUCLJq6pfEc7yhmSXGLOAoXPJrQlyDLGI56SYNecHxkT4ml4yxhAq2Tqu9xkgxRpw1r4Vr8MCFDHw5n8Np/Hzks5XymRC4if3owzy73IKF7qnEtvMuza5IPQ6zTd8Hr+DmShcr4d8rA+2Q9A0F2me/1ImpOhYwILB9QuwM3AdxmK/DuSZDhKQTbUR54YY84yQe+B1Bhz4Ix6iZZK3A69xOuVO1Si7RCFRS4ylZinu3DELa4wGZtH0pML+I10Z48wzcQB1t/RmWsx5tMQDB1BFmqTMBt4idfTd2jEZJzXTBOnJbdsWin3jjdK0Ftm6OEWHQEIBspG0iTeSG4zR3mQ8KGTURjKbLGd7OJ0cZuGSxJ+zz3YJB+KMFbcpC0PJzFouFwUJ0XKV/d10HC58IVqUIH9Kfl/HS+Z6SS/lL5PEzcHBgwYICuAUwBmKnfwleBh4oyksBaO2E90EK0UmQ28ZBlqjxjj5ewXfJkYIkeMXEyStnudAh6vw7JrjF+q3IcsJE5nwQXduSNc0TJVr5/NlARybL4iAT7hSonNZB+HSQEmepsFuteP2BoNEWbXMGG6GC+t0PEUvL46HftwOXQbDw454ryYfsDDc2csE6KTKiPFJ7QVYGs0RH+mxFryDNFAgb7MATXjMdhJlb68/N/r1HG8HgugqJXKGMssc5ZX858Td5coJny4403riTU6/4TpiTn8lWM+T563kv790wKuFWM+yrEgZ/KSZBtv5shFQrgi4jPmbjZJHmxxO/QSsVCORDMLWQgmZOHtpskYy4yuPOHh6Bn+OCZhML7SEeWEeMiuMcIvZe/z7xOtxOIj01OQBlqUcZbYH+og54pzibt4akfEAjlezX4ONeh+cEQtdYTP1JAe6gQrB+CVJstz7iI7RPESZCkm3mhnXesScPIA1l/pZ4deyxSq4+FMdJsfDX0HMR3/dr++4jl26eAlZm1j7FmvrRxx67sGEDYKB8DILCUMQpUAHuoWjFH1w+/wG/zn/HemSRm3rH1lLGlqPAgrdZIFDum03sACgkxZ6e4Ck2gipwIPdeN9liNOjDxummg6/RTzNg31DT4ChL1/l2n8HJpaqc4NrhlJ5w4aHqDP4DVGjFSyB02R1eMJUsZNjFlewkv9ax5vaQbpYY8dolzmNje4xgyzLHOWEdYsiy/Kjt1/eYY/tSyqZcbQBGj1YAbIE7bXR2XJS4yb9q0EMGjqqkgnn7LGMG/xHje4hgTGbdDEzRiPbErwmvExzjLAqmk+NHFzlQ/IMmClzmM8Qr3mPNRtSu0Gg/xn/HOWjBRbgjViaLCKSkTTDHJIJ45pqGsIm4sGs8wwwT0muIcEkT2y7NFB0qw9M4byxkJGt6HhInniTLGAJt0meIqLhpXZai3lMZYnq4xQposwe0wzZ5J6HzPFPD/iOhdZ5BZXiJmQFw1b03CSHvbQ0BTdN2G57vK7/HX+d/wPxiZGVD/6/kvcZZEJBknzlIS9P9QX2YNjQmDqJtzCeWYsOITZtSokN01SpI39zgLLnDU1fC9+qgyyQcGw/2Lk+A1+x5IhrnGDP+D7FvzMG8Zfig0KRIB//yfOJ98IQ6+yC2kzFw9GzA8diMaRBaKDLFYVuHMESNr/DFkwXgAC8MRIULtjwIEAZReVPfIQ8AmYd5SG3GcIAPIQjjK05JM+4D6k72MlZA8c+HQBiiXoMMyTYgk6vBCdQtgwUdmvTgTD21+gxTjzQS4NnT7ZJwASUMgCpwWoIoKlr++XaDH0EEDjpACpUQEVAUiJLK4tCkyabc/Jvt97KMCTZdWEgN9CABXjpeUPwagB6ToG5Fx3G1DryIFcVvYpOmW+zwdHD6HbC4WPYTwFfr1WCeB1ARj2HyCL/e8bMO86LTCvJtfHf94w2ipQeCAAWOEBVOeArIB5XxURIKBhziNwSgkqowgooRLEIlZyevIxwsgcRYAx00Hsvi7X6EnWqA4jcqFOKvDESFtPHsu5Jm3OfRG4JvteeAwsCFh1lBcA9jlopd6WzPULybltGzXnpQnxAERCAoRWS3J+TrKIvPsxMAHxFBRytNKSQ5BbgScZOFlEgD8HCiqzxOx7GvbfFaCaLKQzcDQL+SJU8+a9puh6YlhZ1TTEY0BO7qGqjvWsHMOKA26XIc56ofCp/C4SoBUmgoz17pj52c9k/zZM1//UKDz5sdynCqbv/7g1lgjIOezohtyC+bkCmHo+zTH5jW+m59tPSJGXUSlxmlba8XlkLOu1mjb35igylheAf0srcCSOXJOmef99JKBEmX2vI9ehhIzh34WTfwJpZeP9A6xnXtuQ+f4k4omXxd6T1iqhRitlXK0ACma/7ptjWMCyfItEGGbNyhHLBJllBo14D5oOHwiLa8d4n5QJ4qXOFT5hlRHD8Orh0HTM8sS4wTU0VSrNIJp8pabHQcq2QxylwBiPcNEgZgIXekwnUX3NRMLiNsVRJ50cWuaaB8f6cygNvoc9I8kUfzYtJp6SYIZZetjjPb5nixTprB/g4MWPxNbr8aoUQDvLek4yJPkhv8oiE+RMOMIIqyTJECdvupq9SHJZnFWGrbwiTp5xlrjMbS6ySIHoMwW3gEZh9niDjwizZ6VaCrSF2SVGzjLM6njookzDdPjFmyVnwynUV0RlPyAdyEUmrDx1hDVu8Zo9HpW2ZEiywSB7hI03TcECZb0ULENAJNRdzHEJP1WmuWvDVTT1UiUPw6yxxDhneUSMHJMsEDP76+DhovGqG2GNGHkrr+1lx0pbFplgxBz/MKu4aFoGqKbvhtnjGjdIkGWShRZ7yFw/TUcuEGWJcRy8VkaVZpA6Hjo55CVmDdvJjyT7uVlgkj62f94Z5X+1r/RwjB1XlJniF6zH+hmvPCDu5CkEItxhhjeLPyWQPTYAelmekaGQLHzc7TKXRUXaik/k60P5Lfl/CPZPd5CO9HMyKumZCZ6yH+9gg0Huhl4gSJnzLFH2BulbMZ5qo4j80i2MvP858Tqr3mF2vFFGWGXZNcbmZB9jLNPEzXBpk77sAeHSgb3Xw6UD0gzibTp4asc2gXT/5Q6qgXa+eiXCWmBIGH+mURpsllkLDLEYuCD7D5bhOXr/iZXbbJ/r4mHyDJMscC6zyXMrRRw8dFIlTo6h7BaDbNDWgJOAkbUH2mm6JSTjq1ciuGjySeQlKql2kdvO1Yh8XCNcOmDWNYO/UpNnQEl8+MoE6V8p0cTFF6lRXDS4wTWSTobISk2eC4/BV4FaSJIwc644pGHXFQagTBdjPMLBI76kbtih13qf1vEQWDnm1YXPcfDwZWyI7VeEOZZ0Mpz4oOwVFkdPc0+CUB5uEysVqfs6eEqCwcomQytbeGoC5mkjxjGS/I6iyK0drwcqMJp/wiPGiJPjq1TELgY1CKcc6uAkKowkamJo7m06bCVD+CrC2qvjZTPZx0LgBVa9w0SyNWKlIsOVdbZf6eKLC6OWZbUZ66PtgQB/ZZd4Ns2UPudkCG56r9JWEY8rSSPN4akdMfRwi8jDGk1cbMe6LNvQ36wyy0t0UqV7/YhsqA8vDl6nTtaVYHu6i95mgQRPOcsyg5VN8GGtEGgKmN5JlaSTYdxZ4o8Tr9rF/l4gZO9TbbwViBpw14O36VAN+JhyFiAL26NdHCVlDHyVinA0AH2ZA3x5WB/tl+aLSxbW59KbXGwuMuhsUA75aCsIwC2hAo8ZzTyxPmUPk2d4zsqJvt2vN/gYTRPVZ+k9JphjmpwJuVAPR0kk9ZJm0PrPTXCP02SIkSdGjkM6yZC0IAnAr/N7SHptwdQ0YrfRy45l+t/mFdZMMJh69ybIcom7pE2TVFlX8pzrMc/xHlvjOXi5wTXe4W3SDKJedVX8LHMWTY+tG4moqibAzB/meGe4Y4Mv1hi2Xn9N3EwxLwxm40GsTNLL3LZsOA9122BLkCVGnrypmYZZZZ5Jm7CrCfRqm6F2DId0UqDXHPsel7nNlPFHdvBYpp/KoheZ4BavoT6EWr8uMW6tQzRM7BFnbW2nFiQFo2rJEWOYVR5xFvEKfspZHtHLDgtMEuTAMuKauGw9pKqABFne4EOSZEwd3OQWVxjjkZXLq0omTp6GUT5oUIf6t2mDHrD1k3o7KiC4R5gFJi0wF6TMMKs8mx6rDLs4efYIm0CwYZ4NqVtjxLI7QTwhsyS4zo/QADtNEdbGci87LJq0XuEoCptSGyOXuMsU80TZsaDmA8aN8qRKnriVaa+ZxOYlxg14uWxT7DWp2W3qwSg7+JHE3AOCzJt7E6TGFu+9Q3t+lhhnh14yJBk2fnkOXsSLUryVJTW5k9tcRpN+1b5Fx1eJ1tz8v/T6RgC9wHlIpYRBlTfgVlUX96eBFKzMGZAtC5SEydedwvqy5e4bA3cvVIuAD9rOm8+vwL0VhIlSgf0DCAZgvyBspKMGAq7kETAhBKlX5Huqc3DeCy8GINcUEC69AIfNZ/YxgyxoR2H8L8BLAdhwhFGXM52ooFlotwUQ8C8G0Zeh8DPD2pqUfe5wCzhHEe7+a/nbnzQAUciwrgAeCqi4sgI44E/BRlFYVBEMONcQgEeBmifvwf6KAFJ4ZX87ummZ3Rvwze0y9rIVBFhUH0OEqdhp2H/pDMQiWN/Cw6ZclycZ4GM5z8yb82q8t1gRINJ/Qb630ZTjiyYEuDmqyDGeeku2eTIHS1nDGNuHjoBsozAv4Nu9h+Y6dMNS5hlWWhaeqCT1e3KO1D8somO9YgAnsKCXPyFsR0JYQPDJnBxz1Rxjh/EPHHwW0AwZgG3WgKFF+VMtgT8GHRHgFfBPy5g8VJ9C9cRzIBo1//fKvrldAqI1mvKe3IJ5j2FXtfnklHZHhfG4X4BUQvYvnpIxUV2Qa9FoCkB38rGw5/DCfh6eOJCrCHtwJQPVDFyKQfS7ED8n47bDLdJk/3msdJ0ARAzTjgIcPZVxrSCxgtPdL5vPRMyYvGDObY2W3BcD3quvZAmM3QWEzP3cCeZ58e1/7SKLJRfwvgDolBAgdRQZq2nkOtSAItSu0wqiKCFjvUALZHOZz36XFiiXRUC6l2WbXxUhdcF8ztyrmHuLCnIPTSPz3b+llaysct2S+d3LCACoYK4CwcqYPcKCUNqNzDLACGu2sAtSFkkRIqkKs8v3eJcyQW5yFQmtqBp5QtYCUWlS+E3YgnpcqQ9cExde4z+R4CkjrJEgywaDPDWrZgV8XDSZYNHKYuXh/9QAbF3GD61Jig1u8wpZJH3NTxUPdar4bQH5fX6Ig4cB44s2/v8j739j20rzPF/sIx9ShyJFUSYl0qZNm9Qfy1ZbLrmsKXW7ylXlrtrxpma7Z3pv7527m73ILjDALi6QF5sECJIXAe6bIO/uIi9uMsECi9zF3U1nO9tzu+/Wwj3V7apyl7tVI5dVllu2LMmUTZsWKZESRfHPIXmsvPj9nseuBLjTSLaA3poDuKySSZ5znvPwnN/z/X3/sEKWTSt7GKRui58CGXZIaNrsDknK2gWV1N5pVqwUBeBP+AkpSrSQxGBPWXwtwrKooqPnmLNj1NQAiDBNzvCQLJuU1XOlSJpVpqgwQpHjNunOMItMqqyYbneIcsAlFrUj+3Jh7OFaaYrxFVllyvqoGP8ac01MIptZqBqvEVP8GSnCDgkF9aJWpvOcNBdZYoMJpnhovUlucFUZcyLSMAvVV732xC9GilGT4CssBnngZckro3OHBeZxtNi7xnWG2WOaFZsIaMA4I704qjIXgBQlTGKokc44+LY7/JKVWRZGDT55sizpYsIAgS4eU6wyyxKT1pzym7sl/CouHfoqkqgZqkKk9oKoLybdfQ14lDvGiXyVEwtVeaYCZ9ceU3ejtLVR2nTCHJraaQkGDro8SJ5m15GgmP8u/p/zm8xrsmh1XBLs6Pc1YKWr7TTSrY3Bg+RpNiOnma99wd9e+4Scv8np8rbcNxr3aKmsDSCodiTBB3DsQQ2HHq3BIDk2KTkp6rEQz9Jx6MFdZ4amG7Yg+AV/mWfJuICHPZ9dPZb+trALJ7wNYe7l4PSDbf6CH+DQ42z+McfWanL+YIHvRKPKfipI2GtSTYZ4Eh8lWmsTqb0glBcm3i0uC/Ox8TlFNy1NhAYwBpuxk5xhlWYkJGOdhOFGjQ0maKdhtvElOX+TCiNc4zpNN0w7DYcJ4BQ0YrKEmK6tUSfK/lyQ0/ltQmWY4iHGv2r0wQGN2BEyPMHD5W+XP+FM7RGNySMQgbfufcG3io8YLR4QrXUpuLpIatTIepsMrXXpK8Jvz47RGgwSrXWZbXxJSJ9RoTwkajWGawfsMcxN3hY5cC5GydWJ4opX3DB7nChWSTSqBPBJ+SWueh/b5Nv1+EkrhQ17TYaedLnFZR4lhQ06ufYUY67u0hG5MhAqSrLxa4U1Rh8csKGp5ofnBICO+nWifp2AD30VuMKn4AhT863CF5woC1DZPQ6PzkpYR5HjPGSKBd7A6fm83/glPg7dJJxe2Obb974k3HjBVPUxq5xh0ZljNC9AdSUSZy1zkkss8u3ilxxGoOikaRFmx03g9F4wwzIZCoxUxfNqKXaeeixEizCni9ucLTwWwJIyBUc8uHbcBIdjWDnzb5Nj9NOhHguxnw6yfyqoHquOHRtqMLTcJbL2goDvC9AYOU+TAcbWtqwPYYsBfBxmFx/+R7vn/D5vz5UtLkCEp2wzHyPTvMxnlj2eUi85l45tEFUY4Zz1dxNjemkYBtgkqx68i3jqz5VQJcMeR/mI9+ngMsfiK36uRy0TT8CLpvXGM0oImfcC7JimmmHWvc9HDLOLpJEeR+xVsqQo4+Dz3/FfAlInDtCystoWYSbY4DK3aDHAT/iBZbdPsE6WTX7G96wfmgGNPuJ9Vjlja8sUJSZYZ4Am51ihg8sqZxCbDwFExYohTImkrfU2FSQ1gKNRLRjwcEebpCVSjFChn4424xw85PmS5mUIV5qiVXdk2bS1rQlcMJLnFaaZ47YdS7EOybHKlP0OCVNvAg+XTbLskGCZGQWLElYKKyw48bIrk7IMP6NEedVTzlzv56R5otLnEikqJKxcWXyMj5KkrEoZmQNG1WDqnXEFJ3s4FtA0ddp1rtlzT1FinA2bxmtC3cZZt9e6g2vta0yNZNKDF5kjqaEU60xQIqlA9Y6twXs41BlkgnX66ViVRJoiT5TtZhrqxsdRgs1SXOVjMhQQj+gkBTKscoZB6tzhIhPaODY14HGKXwE3b3HZziXj6f1n/At9Bnq0CLPMjFWUmO/iBhMK/B4lQcWG7BnfZ4AjWuv/ddvX46FXEkChlIfUeazR60IBbn8CFOVXJ41vR0RluX8EJKC0IEyiMEBDwI3mGrIwLcrvLsxhQxQSF4VFNZSGoe/L69eKkC/C7UUB+ZpLCFCWFDZZOAfTadj3ZT8DjryPGWG15O8hzDBPJLMnHH2dC7QFFKk3EMaXYR81BMjqNqDyb4C0MqOGgHNwzsiCT2EZaft5aN6X9yRmYHJSmW0NGZMWIks1fnzZuJwbCQGH7nv6+Wn93BAC9pWBNfjLXwr40wMBEBJyDN2Fl5crfA7rN1hvQOUX8hknc5B7R5l0PQFp9vPKbhuCw7aAYn0RGbfDtqhlK2sCDuYLAkZ1nyNprzEBrYYQ0K9UE4bdflkBwEm4cFZAOAbhXFzeu6/X7kRc5hUfIgyhomC6wSE9/pgAVrl5Oc++N4GMXKvSJ/Iz/w5OnpV91Rtw8h0ENDYMpQa2sO07JeBsKiO/L63JXFjLKztuCVkQRHQuBBR0dPUzXDneZl5AxHhMzjuYk2NdQ65b/p7IwEnDpAK3AyEB9kgKsFd5ggA3yLiWlDnXl5A58rQA+55c3tws3K/pOM/rea1B/oF6DSIA9eEjOebuvhxrYlJZhecgeF499kICENIQABEFnG24R0/G9uMHwgR9WlCAVUHS/YrOzYqA8IdPRBqOy0vm2jd983k5bssyzoCAnE94CZ69gwX3Qgb0iyBjNaif4+n7jJQ8zkvW87L+2zyWDcz/QT+jxku5+T/GAt68A4e/ge5t5J5U088MIVJ/AxQa8DGGgHtJOYb9x/K3Sd6S03W4zC1MwtRDzhClzix3rK+d8YwxKbdLzGrXsKQ+LQuaMHvGyqcMm03MacVDapwNy4Qziaogkg5hSp2jQIaPeZdPuaLykH5b2BRJs8EEl7iNCeswMhTx2XAtANbSwshIih8yxSpT7DDCCDuIp4i4mvg47DLMOhNsMMEsS1ocimRC/DFStpNp5C9Gkgpwg6scEGVcC1QjQzXjYDrBy1zAJIA95Awm+UyktXmucNN2ME1hZmQQOyT4Gd+z3XzzmcbjzoBtRm7RoR8TyGGAupQy+Mz1zrJp/WsC+Pa8zecY/zKzIDYdyjAtPPrZVfZeiRRZpY4asNCce50ocyxaqXCaIhdZYoa7eMpi2OOoAim7bKjfUFmB512GOU7RsupMAt0ALStVNvPJsAw+4zLGh29TF1Sm8DOeLgmdB8bXyMVjF/G9ucgS7/ORGiTv4ONwiUWWmcGhx4AWsN/k7bfOt0RaOBYksvaCaiYEVVh05rhQXWM7M0iUA/DgwfxpHiRPc6xQgzwc+6RGPTIInjAi+9oyX4nDSmzSSlVGywfW89F8Z8byW5xe3GakemC/cyFtXhxGsImCfkDklkUnzXZyUJZ2HmQbj4l/0may+BQOoG2sESJyLIvOHIlGlZLOh346VNMhJthgNH9AizAnHlQpOSlWmWIvEiNSfsEUD0lTZCnyGo+Sx1h2Z2QhEZmknREZTrwgUlhiIvkk9rJxEiqKNHXVnSJaa3M6v02wgLC34yJ1fY+PmPJXAUh7RdJ+kcMZ+MvMWxZg9glwmIDt9CB+4AhXq7/GDxwRwAxhHxgvJ9cTQOrL5CQr7jQfRv5nBBvCDPyx80Oe5eJs5aTQaDJAmCaN3BE23SwjfoXX8/d5lDxG8B4C3BnLmaKkBO/GQ4zXHlOKxwTwLb6gexwenD/NMHsMVbr0PZHk22fpOGTEa64QO4YfwN6HjIwwygHRWhvK4Poef5C/Bw15/yB1Bg66RO6/sJYIDj1mG1/yZXJS2JZaG4dpiVecGhVF/Tpni48JlZHfG2WONjbHWWesvMWn8TcoOSk8x2Wo1MVzBRCNL7VpJI6wxEVrZVFyUpRjwqjcc4cBuMJNohyw4yYIfSIee+VYHNJy3n1F2IkPCnMOAcTj99oMe3syX5GAk74G1hfMpcNGZIzhRk1CGVxJbjYs7QQVka9HgICwLY9TJNo44CZv03MkuCPowXjjEUWO86/5nzNw0KXpiGF8yiuzF4lRJsWz2Ti/nP0OX5w/J+B1Q2qGDi7PJuOWcTrMHhm/8NIm6Bu+RWmwxCwrTGMsPoxcVjzZDnjVn80wpQwgs8glNrXpCTL3J1jHocenXLHAnfHAM41Dw+QaZo87XLRsNgNsNRlQlnm/ZbxXSFjAw4RdwMt65DZzXOYWAcTTzkhORYZbYo5Fcmxyg6taTw0wwbq1yDBSX5AwlwOiljUPL4O9iqStGmOaFXIatnaHi9zhIsPs8Zw0FUZIUmKaFa7wKSVStm7IsmntR8I0mWGZNEXOsGpZiyZtd45FCmS4xZs2UCyljVEHnxWmOSBqQa1+OsyyxBy31RfZs35wcywywzIgDY83VbVgarMlLlJnkHHdT5imZW1f5YatFa9wkyvcJMcm8yxYtYAJPtskq03VA3tdTU2YomQlyJ9x2TIzmwwIMK9MRWl49qxNgPGrO0BCLEyYmkvHNoY9rQ8nWGeWJa5wU1uiPTuvxQfPY4MJy7w0lgUe/WTZtHOiaUXLwho0achXucH7/ALjsW3COaIcENBrYsbtQFmCF7Sh36+AuAHIHXwLaidfua4VEuxxlKO6LgGYYMMel68PAtP4HWbPzh/jrXyTt5W5uME6E4RpahiQePQtcZEmAwpoDqiaI2dJB00GMJ7Tv8v29QB66oGWjPOSJYdIGlPIf7L60q5hoZxHJGVlyTAYSgoriYR4nPV6yGLSFeDAsKDyKhOwrBNl0LWQ52sdYZkFAwoGeQrKvSOvCyJyxcQ1lRs+EiAtiIIzT2SfAyEB5/ZVcht0BUziN8J2OmwjAJ3uf1/9z/oMo2VNQMeVAjY59rAtbMKw8arrYSWsuMC8eOI9rSGL6R70fVt98oryvhPo+Bo5sCPATRDZz99KQqstgCS+HMt+XmS5wbO636J89pAjx5NIA/cEuKKIBQwO2/LyxJxcl76IAKP4cPjvBDg8GYPEmMhSc8oE3D8QcPVQJbepmAB1Q65c65KHgJE94KK85+misN6C31U5b1GkgsGkAMVmTk26KnsuCluxb5KXIIQa/QcCkJrTqVnGyh3jCp4d1uTaVGvCwDv8TK5PfknHZwzIyfUvleW6nzBAiisTLRmH7mcCghIQkK5UkHOvN+DkrIZ4eAJO7/8G3owjyaPfVXZqSV7/tCzXZl8axlQ8ZVF+IseZm5T9p9Qnb8gcDzKe+/cV53FEgtv15DxPxgQYHFLgFGQfrTbC4NLC9e6HwjT9oiYg3JAj8zoakc9ZKeq4eND8pYzjGxHZ30kzlxsyLiUPKdZ9+e4/q8LkO+AVES/NvwmbsmGJaDLzNeRe9g4vk51rwB8ig2S+lwn9fQi5oPNIk6EMvKWv1XsJJeT6JZF5mVMg/pz+fxth9a0hwLABsCvCBA44WHCaSXlt03gcxhCmXoiX3lDflWPwkON36bChVHrASgwOiNqQhw0mKJMiyyYlUtzmEkXSpClahldCH4RNwhZU8ejHJJSmKbLOOGWNjvdx9MEXRg7F+UrXUrzPpEtqJAjGmNx0YKPUrUnvQ6YswCOJYi/9PX7En6rkNWmLhFnuYAyLk5Ssj4p44YjR7ff4qWXdpbQQTlNkAEnrNcezoX58xm9uiVnuMmOLinkWMLJgAwgZWbKh+pvx39FufUf/f1X986SgyrPDCA4+y1zgEou4WnSa7iFgqf9iBt1vC3qTlpakTIEMJe0k14laFqORcBhZ8IhKexNUeMgUN3kbkwjmE7DmyWX12rnJFbLkLRPGpCQbOesEGzawZETZV8bHxYAdHfo5yp6VfQC2oLzIEmmKtlO6zgTLzChDJKByJkn97WmhKUbSWWZZooQAM6tM2UTCDv2WOZWmyMdctV6FHv3saPcbRKJsilkJ/EhR1cXWN3k7zRMqJLjjXOSL8+fEi+eRAEY9B25yRRaKQ1hWWzUTovHOEQ5nBGxpJ+EPFu9BFQtYmPtKtvGYv0qeZ7h2QPxBm7DXlBCHU0E4BZ/FXyfNc+ILbZ7l4vzV2fMU43Hb6Q/VIOqJzGWkekAHl914iFABSMOj9DEez42yF5EgiGomhEni8wNHMCE7Fb0HNRmgkT5CiRSHSZFXXq3+mlWmeJQRxle6scUwe6QbW8w2viRJSYJZQkHSfpFqJsSj88f4MjlJlDp/mXwLB59orc325CA0YMJfpxM6QjuJsN5mRQo77a8Q/6yN0/MpRo4JQAXsxkNcYtF+10eLB6zHTzJcOyBSe0HPAaf3gnYM+ttdHHqEG20Cvk9P2frTtTWm/FU+aPwHHqdHbSOmSZhErcZk/qkFaApuxrK8GukjjOW3ODwnkmAC0J6T8Y1UJFG3HIsT9erQhkb6CHuxQet7upWMQVJArHUm2B8LshE7bRshw40af3zv55yqbnOsUMP1PTZjJ8ERxuL+qSAE4Eb8O7QIczv2Go9mj7HHMEPFLiN+hZuRt0jznGBBJLvTrJCq1ohUXtBIH2G0eMCKMy0hIB7ccWfBha10TMDMIWFRVpMhMjwR9lXjAAIQqkk4xfbsICU3yeXGr+3z2Cx8O7gsModLR8OOxLieJJwtP2aFaXAk7RlE6vqR+z7G4gFXQmeq6RBjxS36lBBhGlnH1mp8q/yIUAMSjSp+4AjBNVmcRhHQez8RpB4L0nXl+xUvtGlGQvzD4v+LYEMCYABWIuf0OPPsxYSpfKJYJVJ+wbG1GmJKLzYWBTKE7sMnZ9/4iuQsygFTjTXOsMrAQZf2+Nd7H/p92arEeYMFzrBqgatNsmQosEOClja+pljFw2WHBOtMWEDvKHu4eCwzgwm3MEm3OTYpq5x6mF3yZFlngg4uy8xYD9cRdrjJFfqV/S+gj3j6Sg02oHYVJVuPGSmgYaZ/xHtsamLoq029NEXrTWbsUkAAu55CPQboMJJrI130cOnh2GfoAE2u8CnzLFjGmTACxUZkilVy5PlUk0QB60FmkmYlLbWjEsgNLmqTWdQLZYzPnAlPMEFsHVwucocBmvbZPcsdqxRxkNCvOlEb3JXQ76xPQNUCnq1TJ1inTlTVEwl+yvfw9Vz3OGpTUgELHL1UibS0xnwJtjUZYIF5e9xGrnmZz0hTpMkAe4jn3wAtPuYqBTK8yS2u8KnOlRQJdmxDZIINCwBKUIUAnecUFDNed8az8VXlx11mWOUMTZWAG3Dt1Sa6YS62GGCaFWZYxqVjr4VR34RpWran8WT+MT+kyHGOU6TFAEXSnFP7lHENadkka5UgphG9wDwbjDPBBscpsswMq0wpG0/G3ADZouq5yzoTVvJbIolJ3JWm/3PruyjfJbH8KZImRcmGjMhaYxfjL22uj2nsT7PCBWVLz3DXqjtALIqM/Pmv274eQG9AAK++UyJ3NEDQibiAbKVFMeYPZgSsOlRGWvcewk4CCYiowd0lYUYNpZGF5imVfjriTZc7C8TUiywOrAn76IQDF2Iwo8VHwFHgIqkeUguyrxNxWCtjJbbNBfnck+cFhDGL8VYbqr54idEW0CWOMvkQcKtrZMMIoGXlcgo+PS1CykEW4XFZSAcDwHlhXP1Kz58n+t6qMK1aKGsvImwakGPslgVAaRq21B3Ah1xG5cptYB6GZiHxjoxN5Rd6jJ4y33LYpNuSLxLQpvrITcRfkfPqOQzlNCUzIOP19J4yBhEwMDgkr99sCOvwP+Tlc4MIYEZMWHuttgBtQ0DK1WtvWEZluS69HvCZsNqaNRnLprLyVtSvcOgDAYnyeWErklAZ9ZrMn/2fK8OsJF5+1QY8/YkAavsH4r1YrkogREtZrctVWPlErmGzpu+9L8yqVAbOOSqbffLSQ7HeUBmugq25OQG6Sr6yVI0U2FUQFOh7R17bvS3nQkDGv4pc+5aCf0F0LAyYgu5fAxNSSbhfFcbmCWBoRhinIODd/oFcK1AQMy2Aal9S9jGkYOphTeZj1hU2ZhaYicu8bxlQ3IPpjOz7blkAxoAjIHRfQH4fcOTzFspwIqLA5m8EVB1Q4Kjiw98AyyjZziPS2M/UNuAPsbLZNb1/EJN/5zrwv0Hmy3mofhB6GQoTQcDl5Vf+GHbfIDKHfoF8p+8D39fF3TkEkFt75XMMO+WU3C/6Irr/NPLdPqP3phpyf5hEGK56T2FMDjvuAqPwlBPWu0RKuRwDtLjLDA+ZUumqx4/5oaZIeYyzwZIGIZjiMEWJPYa5wbv0cJhliYsqN8myyTgbTPGQa1y3clIjuQQpfk5RYFw7aVMKuwhzapey+rQ0GaCuXdU/4Sdk2WSRS6yrTMp0xA37K8MTLnOLYfa4zRw9RDbcwWWTnKbEumocLzDQFKu4dCwrrEmYdcbZZdj6ngg7LWyBxZQ+xA1jUJIS+zmj8rUdErazbMC0DAXrCWO696aDvaPnYQpZkYEFSFHCxWOCdUao0MPhJlcwCbqD1G3XMU2R56St8fI8C0yxiiSPLZJgh0HqdpHR46XML02RDSb4lCsq1xXgdJ4F+unwUAtaAzbOsEyOTd7jI1rKZFzgDTrKwjSMzqb6/EgCXgrxYipwXyUREhbQseM4haQzJpVxZ+aMeO3l6dBvPU7KJNlFglweaqJcC/H4m2UJ4+lifLJEki0dVIce60ywxCwlpcGGaamo2bdej6ZANSyHWZbYZvT/51vMfyrb8eouHv28Xf2cLHnGWYdzAkgFy2CSgNsx+flYucYmOZpu2AIwoQKQgHYOHqdHIQVXGr+yYxmlzl5sEBxJt816m7LzHlbu89v5MYa9PWYa92wK4iY5HqdHidx/wbHFGs3IEcJ+UySCLlQnQ4ytbRFWqVi83CbcaOPiEfXqFNwMI37FdvHHilukG+Lvl6FAMR4n4PvUY0HeWfqcj5WpEsoLQ3Ah8oYw8IBZ7jD0pIvT8zEpgVFEsunRT5E0K7FJXN8TT+E7Aq50QkGabpjt3CCVSJy7zgxMSgrsiF/hZuw7OD2f+KIU5TPeMv10eJweZbL4lGAZCy51QkEKkZOEqhDwfUL3BdwD2B8Lshk7ya4zjOvB6fw2PgESVJjMPxWgyYNUY5uh+13qRNkkKxJjtx+eSIqu57h0hxD/toBczxPlKsPeHpG1F2xPDhKpvKDOIPGyMCSPFWt0IzBSFWnpriPf1QA+y5HzMj/a8CQ+yrNMnJKTksCHSQH0606UdhJ7z/12+UsKnJKTrgjj8f3qryiQ4VfnX8fpvbCAM774+uHJ+3ecBN3jAt49nh21DZDt9CDH1mrEy23KpEjXtmlGQhwGJHG45zhEGwciO9fanjRkaluMVA+YLD7FeM+6vmfDgB7MnabrCiCCB90h5HntwAe1nzPMHvEHwug0Hl4mwbit5z/OuoRfPBHJdCcUJFJ7wYO50yTU07RCgqGiXOtKLMa3y1/yODMqDSJP9nknfo79RJCL1fssMG+lu6uc4VH6GFSgceoIHfrJ1LYYzR/wx2s/Bx/mPAGTR+8dEKbFcO0AP3CEo9U2gd9NXfaN2EYoM8VDAspqinLANCs0GbDNoSJpC1bn1Hqkg8uUik09/XmVKT7jMgAbjDPOBmdYJUWJMilSlG2q/B1mSVDBWISY+imh3qUmzMbsy4Ay5s8K07axakCJfjosMofxUnPxbCNN7CYuMs0KE6wru+6+bQIaGw7znJ5HJGS3mbMNzAvqfXyDq1zmltZr4yqFlcTbJ2RsGqr5fg/QZJkZ9egtYUJHNhhH/O8u8Bf8gEUuscEEFUZ0bAI49CiRZEoBVwkrSDJAiz2OsqO+xsb642Ou8ilXkGRZkZ8+5IwFNI3c1cNlQ+WwIq8UJcQVPmWKVS5xW4HAlGVWOvRIq82L2ecgdevNPMwuaYrMs2ABOWGACag4q01MA4CtMM2gKjKMT+CSMhylsSCyapHijpBjk3UmeI74F2Z4YkHGBDs0GWCECgkqzPO5MvlEjrzCNNe5RlLr+yYSirZJlnOsMKAhE4bpt8cwd7hogcPnauFiAkgusUgAn5u8zQ0FJwtkGGGHcda5yBIgTUET4FYiyQzL4ufKS9KBUa8YH9V5FkhR/sr30RANchpWUiDDQ86wzAziPbhjFSYmWMY0uPYYtoqRPYbJsYmLxyJzltX3Ktj5XJv8jlK90xSJG5nrX7N9PYBeH9ZYPfGWgAHh8wIgdIHUJAISzQhY9awqAQ2ttoAKExHAEXngCUeYeit5ZFGqQAUhZS2pX1xiEvGDysGFWfUYS8LQ4EtvtKEEVsKWXwS+LxLQyUnkIfVAwJ+h2CsSzIQAEkEFnwyg8gw59qx6iTWrClh5As7VlTVGAKgK6HUyLcezXxE2WS6px7QozK63JoXBs18D1gRsOuEIgPKsIcfSFxI55FBaAgvWirovBTUPldV1MqlswSpSoN0TcCqRQthYAfFb4wkcKphz0pV9hyMCnFVrCgbty+f2fVs82Uq+SkTzck4DqHdeHBuYkHIEuIsD2YgAofs+PF0DJgV0Cr8J52LC4irVEHBCz6UvJECkYQduNmQ+gcyPyRjkf67HkBM59PxZ4JHsp4eMy9C3IeGKn1zLU6A2+dIDsYR4y13IyO9LDQ2HQM4nHBPG43pVpcNjcg0DDuTLInlt3lcPPU+ueeW+yFWDGSFZ2XCIOeAd9YfsYSWQrTaUfo4tlAaQeRyPybU4mYahN+VzKo9kvhtw9OknQBymzwvzdMARdmPilFwnqpre/JmArX0zQA3WdK7GY/pdzemYf6D7mn0ZNjyprLugApF4wkq9cBbI6LGoD9/amgB7+zWYz4i0OXVema1PZOyIQDoKdb2e3/ithYBgxvdOmaEUBMymh4Bus0BDw4Dy8if+b9svQbsY8oVSGRSn4Nl8HJZkDvK/0t8vyOfwbUS2oxJy0rKfdgS6H8r++tq637ew6bWN9BGIQ/DP9LirSGLut2WfFBGW3x+CcxLYhnM84CJ3rKTUGO2+rZR7j36meMg46/TjcYZVXDySKtv0tUtvul3Gbn6eha9Q/k2Mu/EMAQFR9hgmRYkF5tnVotOELXzIB2xoZ9p0wiVxy+cG73JA1EonTQFjJJNR6nzE+7gaxPAxVzFx9SnKrDJFkwHrdQFwlD31MBH24RVu2s70CBVZwLCnRfwGPg79eAwoHd+k2hkfHQefFgOYRLMnZKgwYrue/XQYV/9A09E0iwJJDh4gS55hdq101gSMGHkqiERskUv8mB/yOfNWemGSLY0PovGUa2pC2h5H+d/xf2KRS0iiqxRhq0xxhlVu8C4+AcZVhvEBH+r59SzwaCQGJZKcYdUm022SJccm46zzI/4UEPBrhIrKjbJW/mIAUAefq9xgilXLlJpliQQVXHXIMddik5wtBqdZYYcRnuj/bzCu0u0R65Fo/FIMGGyKQyOrnuY+E6wzzQrzfE6dKB/zru38G78gkZwnWGSOu8wwxapdtH2Tt3oswDB79LWhRZibvM1vc2OSujoZYq56Dx+HhYiAuNyHYXZx6DHvLQhLwIW/yp3H9UT21x166aG2GpHO1QJv0Dh1RJi/vRfcdWZ4lo6TpMSV2q9JUqbphlmIvKEg31FG2OE5aRrnjrB/MchH7vsMHAiogQdHq22eTcbxcXh97T6HAQkEGESSWMdrj3F6PmeLjzmWr7GWPsleJMauI1LsE/kqQ0+65J0s9OCH/o9x6PHo/DExdq99LouW2rZ4syXFX9AAyi4SrHCZW7yevy/MlHaXw1PweG6USO0FTs+nziCjhQNlwAR4loyzwjRDa12+W/w16+447XMiYSu5SbtQ/W16jOpkiEfzxyjH4tQduWcZJiGSV8Ht2GsMFbtka085Xd7mTvwc1VwI1/cI+03ri00JQgWRhSbY4Q/K98hQoMII1XdCrETOsccwC7HXBRDvSXr1dnKQgpuhMXmEZWagKo2ateRJqApLshyLsxMfZJhdThe3SbBDslYV2WxcgK8DBUMmy09Fqg2MLW0Jo1jZlCfyVQ4DwlJKeWVIwi/T36GvAlPeKhNs4HpwbK1GwIftzCDHijUOY9hEy2JslMmFp5wubGNSFUfLB7TTUE2G2GOYYEPOra8t8tx4uU2oBpEnwphsTB6hG4FgA/rUAzzBDieKVZyez+mlbdJ+kQQVglUY9vb4y9xbrMQmrTqpEzoi4LQ2ljeY4IK/TKgIh2lJUs7UthgrbIlEeFAYkTtOgsMAJClxrFyzfmnUBMBtMkA1GbLPgme5ONVkiClvVeTPNQE3w7Toa/PSNiIC4cYLaQ4FgLKA4mvzJ4lUXjBAk/1zQZGaBQR876tJTVKOfPPZygBPEBm58eeUMK+SZW4bLy3D+l1lig3G+Zf8Yxx8prnPMLt8ytsMs8eb3MKkxLt4aubfoV/lrwIESkPU1AGA2n3s2PpB5LLSuNhjmAH9XUdZ06+yw0yD6xrXbUNLPGylkXmTt22w2Etp6SxR6rzHR1YBYfx1jWrByA3rRLnONQpkmGLVBmNcYFlk8Lh8yB/h4HON68yzYJtlBqjsp0OCCv89/4ASScI0ucRt/nv+ARme8I/4l4xQYYVpjPXLPAsKrzy3jHwDrkpYxzkLDkapc4VPeZcb1mPPeAYbK409jlpm4s/4nmVE9mstUCDDEhcpaY2bJU+CHR1XYSQaZYWpN9M8p0ICk/bbJPwycRuRDRv2WJHjttaaVYHyBVUhAFY58qpvYlllyptkKSmTzMHnFpdZ5gJFjrPMDM9J22trmvJ5clYeDXwFmLvIHcv4u80cK5zDpMe7eDj0VPUxaCXRhgEZpklO/fJG2MEEpPxz/hmLzPEzvm+VEM9JqzQ4b5lzhh1ZVuuchF6vDAVucZmE1sx1ovyY/wyAj3iPFaat0uWiyokNIWFEjxukkeJqrR5AUqsDytKbZcmuXQSOP4NPwLL0jHWNyKZzpCgzzgad39GD4OsB9MynJhDzYCM1LMCltHja4QEH8iwacgUs2Pegb1aAlMOy+JQNhEQqe9KFhU+AggJDSwok9JAFqe7j6WdARH3PVEIKAsgwhO0+5jIIY6WnIJjKLcOIL1xQZWvNJZUOIwDH4RM5j/k/hMk5YdxUVLaYyoikMYgAl2sP5JjuFiVwoNsQIKXiCQB0t6zsRSOVS6onmgd3C5BKCzCDr2BiGwuYEYDJpIAtKQV7qr6ApocNZQsaZk9aPjus/h77FSAG0/MC+n1SFVB1KKahB0kBsoIBBQAdlQ4/EobbubgAYoc18VxrIeCdTfyNqWx3CN6IC3DXVBbfgIMN9aAo75tUMI24jHm3jA1QWVFQdDojoGk4Imyw4FmR9DbXgPN6vQFmRJI6mVGp7qR6K6IBFgEBMPtUcjsRAULKSjwFub8ngFoX8ZbrNmROdFFAy5G/+yLqAemKL6MBCHHlc4NxuSZGpmrAPj6Tl1WNH5qCM9GI7IueHPv+JxCclGu3X9HvUkyvh6shJxX1V0xj5bLBgOC1eMoG7ck82vcE1DxcFo/KlCPv21TweG1B2Yj39TuyJOf3rKqekDr3g3EB6wLGty2vbEH9nmXVo88kQHfzQFW+E/mygJzMwn79b04mBscRhl5A/05jwbmhv8/LdFoduyEXAeSeIPcFZR5TQGS6xj9vVuQyuGojsKSv+wXS6IhLZ5Q/Q+4DPnTPC/MiqEzjwxAC5v1Cj8/M4zcRBmABCdLReyRxYAwxCPeAYTnuQ/qsnNUUEb7KX0066SZZ5rhthyVPDp+ABUtMF9iw8S6ypGBZEZMaawqSEkntEkon0rDVOupfUSeqIF6/9Xsxnj27DNuEUwG+pOia4zYTrPM+HzHBujXoNQsZI3cNIB6Aksg7zAgVZriL8dfzcDHmx6aolTJZQLk0RVY5g0m1W2QOCQVpMcE6gA3wqJDgOteUORggRZkRBUCzbFqfkwQ77CmrTDp/Ykzt0a+LgRFbNBivEuO/kmMTnwA5NvkjPlQvumUkyOI4gO02S+CJdJvFXFo8sv4Jf06RtJXbiofVEte5xh/xIdOs0FK2Y4KKZRJe4ram7bm2MAYYoMUUD+0+BQzewBhHAxgvEyOZXmGaBQUi11XScYdZyqQok7TAn1mwiiG3x8dc5Q0Fjh16arotkuWkmmyb0I6XXWTpkpuxN9Kfji5wzMJ+nXEuc0uYaAgD4jhFkhqqYQyQo8qI/KZvz5yTBPCppkMka1VSKuOKL7Y5Wm3TV1QPztrnJGo1qu+EiHLAc9JEigJuVXMhmoTpOVB3orQGg3x5fpJiTBiOPg5v+zdZd4WBsRI5RwCfdLVKtNamHIvzf+R/zx7DTLHKiUIVH4dvFR4x7a/wU/d7RGtd/rjwc4qxUfJOlgdnT+O58j0O+022JmM8iY9KCq+GxAQ9CT/YTg+yljtp54oBgI31Ss7f5MHcaW45l9kkZ825g3kBaiqxGB79wtZrYBMTjQdRuNFmKxfjdHEbP3CEfPwYYVpUkyHCjReMFbboDmFZrcYXFBBfP2+DpchrnKoKRT5DgfHaY75VfmQXcsbGIEqddGOLoVIXXAEwAWhDPRaS5i0lAQecqLC6tGFffSfE/3j2u/gBGHuwBUU5psnyU7UfkO9jB9cyvyokGKkeMF57jB9wyJLnMC2SqX/Bn9HOYdm3Rt5HA167t0ZwTa79dlJkgIPKFKIo4RbF2Cjbs4NM+PJdDPtNHudG2YkP4uESbrygG4EpVmmcOkJ/+wUe/QKwFQVoWuUM+LASH+MKNy2jiRhUMyH1Zz2ANXB6EF9r87fLn7CWPikswYiCeDX4Mj0JEejOwqabpRBT4LQHW2djnC5scxhCGI1pyDtZCbzwBIjLsinjplZCdVeaDI+To2zlYtSJsujMQUCk5nU3SiF2jMOIvP/Z2TgEYGxxi924BGE808XOOOt0M+IzaLwpL3pLjBYPLAN6zx2m60rC7Qe1n8s47MuC9kM+oDoZYic+yOkHKsWIyGdNFp/ym/RruF6HphMmTAvXEwDzMAbkYZCDr/U+9PuynWWVAhkC+PyU71tJYR0JbymQYYZllpmxzFzx+xzgBu+yxzAbTFgwDoSVZDyJTbiDi8cew9pA3bGNwiVmSVG2DKRNsoyzgQm1WmWKO6qTMKmlYb1LXGCZPY7i4LOqTPac2mIYCwrAAlFivyFgb15FuUbSW+Q4t7lkn+3LzHCUPS6xSIoyF1hmgCY7JEhS1rTnFlPKQDR1jfEz69BvG7cgc9IAfktcVCDuCTk2SfNcrB94CWwWyLDMDCZ9tamy0BIpdkioHFpq3Iss4eFSJmU9g00tYWxRBOQUxttDprjGdSokuKm+zqY5KB6sp1hlig6urXGkoT1i/ahnuEuLMBuMWxDMgHvnFHRLUmKDcQvSPSdtFSp7iL/zrjbd++mwy7Ctr+9qeINhEP6YH3JL2Z/m98ayBiQUzwROiGWO1IVmbl9kiSh1jS9ZpV8bm2bN4BOwawfxzhYZ7AQbjLPBAE2y5LnGddaZYJg99bwrM8cim2S5xG1bXxt1yTgbpCixzAUkRVkaOyn1NtzRWs6k3I5QYYlZC04a78mjKus2oPS6jqthQ26StVYJMyzb9cyuNubFd1J8+AyAeFRBaYceUerc1flm/KKNxUtZZbu/y/a1SW6NPNaCaoZVckmBJjXkP3leWEFPl1TiWpD39s3JwrbUgOA8DM0JcERaAJZUTJh7zTLwC2E9GX82PGRxPAjhWQGjJjOIrLeBPET3BdwgLXJFqvLagCP7bLWBewIC9cVElpibFHlmUFl35pwS1yDxfUAlqwAn5xWEc+FCWkCPag2m54TVlzovwR59YwIwkRdGHjEBEM8pWMSbQEZAu6f3EEpZT5hQK2U9n7LIkicnBWzsOyX7Kt1TOXNA3tOsCvi474nsGYQh+O6cyDUJIIw99dQreYhXloJJpODkd6HvPWFz9SXkvCbPy+v79HUra3qtq/K7w0UZz2z8lVTXCMJKyknIw23jbTej3n6ngCUBDzkvrw+r1JMDkc8aMA1k7AlA80MsgBY2bCZPZaCaxNqncsG+wEtZYTiuY/tELm0LAa+CxwUQm55EwBUjdT0nsvLDonj6BQPiE1gqqPT0TeAdlddG5HwqyzImqTcFjCUGtx8I4NhqK2vulIz3UALL5jL+eSbIwHokBhSQ03Pom4Gh95ThdxYS50QaftiW108mJSgkGhHm7L7OAc4JUyx8TvwVSQiIaII3gv8IppMK3KXl2MIRuS5dTyXFSRlnk/4bfFtZskNy/qmcJF/fvSfJvEOnNfTmb8IWUNbbm3xFPvtsNi6/iyNyVvURGlLgmDJy3Zd4CfBd0884A1QlyY45Yc/a+ZlEmHVp6dJX50Lyux4EqzBU0UVXA/pq8rqnZT2GvCwu8HQ/868ccxLx7auoN9saEsIxCpucxnjQVUjYYmjESjgq9uHfwSWAGNG6eGwwrqy4ASvNNQVJgQx5cnZhfIvLXOea7UaKB8s4GQq26+tr526cdU0l27HAmo/Dm9xigXlM5L1JElvkki2aTUqX6aoZltfb3ORdPuYOs7zPR2TJ2/eYJFvjoTbBOkXSNpHsoSaXGVDQdEQvc4sf8ae2673OuGXkyULe0871cSZY5xKLDCPpcWKULKb7ewyzyJxl5snUk0JAuvYlBQ8d9jjKLS5bj48O/RjzYeMJ12TAhpu8ytYzHccmA5RJcZ1rDLPLPAuUSCqoNsgmWU2MLZNghx0S3OBdlpjlDKsscwEXkZMJgNpPmJYtVE3n2QCkRhoh6b+uLSDN4n6CdcbZIEveFp+G7XicIiVlTQ4gvmpNwlziNuuMIybkI9Y7SEr2ChdZYocRTFiIT8AWewF8ywrsp8MqZyxjoamgoE9AWY0BjK+gmQcm/W2THOuMcwlzQ/7mbhFdFAZ8n6AnKap/sHYP0uKJhivy0+BzCbqIF9qMLh7wrfIjnuXixAttXK/DnLeIH5DXFpwMaZ6TamyToSCpqMUuz0kzWj5gmF2m/RWakSMWLPtf8n9msviURK1Gd0hAnP10kKKTZo7b3Ih/h+3MIGFadsG7GTktnXsnyk2VkONKcnLUr9N1NdSAJGmvSIoyZ2qPJDG3uM12chAmJZG3SZg3WOBy49e6IMhRnQ2x7o6TqtaIIoELuJCuVhlvPGKBNxhmj9B98fLZTwVZd8fJ1Lbs/PVceJwZ5XbsNTKNp4yzrrLgDt3jIp1dd8eZ9le4Ef8OY/e26NBPazDIb5KvkSfLt8qPuMG7JNgRyVJkkq10zDZ7smyyPxYkXm7T1UZqmucM0GQrE6OttaTcB5/jeuJDR0SCEB4nRxmgSbpaZUDlSmm/yKPcMZt0HPRknMbubdFXgzO1R1zjOp1QkInqU5oMMOGv43odDhNQPR+iOhci5ZUZzR/Qjyc+hLi0JwXAMvNhqNIl3HhB0ZGEzbDXZLpxn2bkiCTo+nV5BqKG/z0gJXLgN6tf0EgesQERxluwexzCjTaD1PmYd+mel3NgCfAg03hKMxKyIOgnk28w4W1QTYcI+PCtwiMytS0OQ9JkC/tNqcHjMXwCbCVj5PxNHuWO0c5IeIhJpNw+PwiP5D0HRDm9ts1wo4axMCACbxW+4NhijXRji75HsJ8KUidqU4o7uJwoV6kTZZdhThe3aQ0GKcVjbDDBiQdVdtwE2+lBZrxlRteEAboZOykL0ACkqjVoy3z9p9X/O9FaG9f32J8MEqoC6sXXSBwhyyYFN0M/HqMPDngSH6XCCPVYkMdvjorM/W/Alienz/oOV7lhAbMUZevjtUPCymKNOf+b3KJMihWmMWFew+wxoM9Pw3jfJKsea9LEMuEbK5wD4E/4C9sM22WYz7hsQY+S1jNX+Rgfh5/wA+uV1lFbDgMkGu9QE1TxKut+gnVmuMsH/HuMJ1ua5/hIaqxRcpjnrJF6Dij7boF57jLDhso9H3KGo1r/mJrwKjcArMfgOhP8Of+EOpLkusyMSldFFApY0NIwDU2QwrqGNZhQCqknRUo6w119lh+19YRpfG6SfaXJu0MAn3f5mA79TLHKDiNskiVPljOsqlRT2GMprZGOsscMd0lRQsLNAjrGLdJaw/TjscRFrnONHRJMscoAks6bocAveJ9VprjPNJe5ZRmPAkZKo9JYuwBqxTLOh/wRi1yyDDgzt25xmX/Av+Ya162SIEUJE/5gEnFNCq8EiFy2ab9PtNluxnqdCYw1S5oiKQWZTRBHgVPWX0+YkWf4nHl7zX7AT+zcMiQAwwyc4qHOW1lv/IQ/0fr8OJvkGFG/5BWmmWGZKR5SUZDYhKXsMsyEKi/SPLdgXYYn8tyiyB5HucsMdaLcYZZPeZsSSUokuckV8uq1fFvr7SJpjrLHBuNi0UGdLJsM0GKTHAkqBPDp4ViAvERS7VzCPDaWEH/N9vUAemGEdWJAIuTvsHp+YUC3nr6u98p7a/q+nrKA0P83nUFHwJmAI5854GLZSYReAgj2M2OvfAYK1DUEjGl5gKsvVTbTvs/LrLney/fZtEl036820/U1h+1Xztd4iSHv66LHGhcwzCZUul99Da6AYEFX/y32yli+clxdvnqcRh7Zar987T6vsKcCIkFtvfqcNNdgSN+HvK4v8MprUq+ck4tqSPV9vZfvOXzl557+jfvyNQOh/4/P9RDWT1zOowdWKkAMmQcNTWX15GdUrklAx9D4gXkv91PXeXKo52z8RQArzzbv6XoqKe7pPnXcurwEzOxnvzrPdN6YsWqiHo36XgLINYu98reyPHGwc+mwotfQVfDLjHHvlb9rL1mm5nzNqeEqG8+AemY8zKbzpC+kcy8ApPRnR75f9uup18v8PRB65XPcV35uIEi1nmO1hgBPIT038z0N6Ni+elwxOR4zJ1/92n+jtyQ03bCAX3o/asfE5Jcx5Ds1p4sew+I7p+8tIoy8BLCGdNUHEZ+842KYynsIc6+gUngDPseE2XCbOZHLFnkp340AKWgngYwyZ08B92GdiZcT4xM9lnfED4caMAPXuSafdxR6cTCJZkb6+Sf8hDBNejgW3DOARoIKHi6rTGESwWaV/l8gY6UdxmzepKkaOUaRtJwTWLnYJlkGdP+mcAngK+Dm0o/HMhe4wVXru2cSyno4+uAVlprZVpjGpPeazh8Ik8DVB22UA/Y4qgXgS5aZh6ugk/izfZ+fkqRMmqJ+7kvm3xSrXOUGkhLm0iJs03F9HK5qUeiqdGaZGRaYV++YFC31U7nEovVWMRIW0zU0AQMpSpxhFcCmbTUJs8K0NbLeUWlPBxdXj9PIbE0AyDlWdHHg2DRbMdu+YGV1hiEAIkPOsUmYFnsM46qHoDmfV1mdUmC7DNAkRYmPeM+aeyfYoawG0+KheAYxL5a5Y4Iw0mp43MHVMQqzzAw7JKycu8hxHHq4dJjiIVnybJLlCjeZUDagzEfPsg2WmGWcDQU7XO16p/iYd8lQoEyKcdYtKNihn1nukGCHcTbsIkQYoyL/nWNRJI9M//9/r/k931y6DNDkrjPDo+QxHK0Bf5se40M+gBC8ll+DnjDH9tNBuReVJVW0kTxC0U1TcpOE1uC1wpqyLY/TjIQ4Wm3T335Bd0gCcrquhE4MVUQ6e6xYYyy/JZ5pRZGP1mMhThSrDFW6pP0iHfrZYBwxO+9ZRiYIQB7161zmFv14PEvGRUZU6xJUm5vp6iP2XA3liQ2KdDUAo/cOeJaLU4+FyFAgnm+zFxEmVZa8lXvtxkPC6PMRZlgNCpGTVsrVmDlCmuf2nIKepN6mvSJ+4Ain89t8e+1L/MARXK9DqAwnilUqsRgDB12mGmvsOMquiAiYtO5McJwib1a/4FHyGD/gL4iX21T0PtpkgK1kjGdJSSQtOBlhhcVCnChXGV2SJFkfh04oKA1YWry+dJ+d+CCL7hz/4+R3ucVlOriWEXPUF1euRWeODpIo/iwTZz8RFJlmDaq5EMEyXKn9GpC01lRjm2itK3LquMisHzKF03vBdm5Qpe0SYFSKjEJAnhX7CQl56CvCeO2xnZfNSIiim5YAkJ5Pxi/QGgwKIBiD7bODHPX3qMeC1F2Ra61EzhHPtwkV5BqEGjDiyQJ3JTYpYN45kSyHGgL4xcttqMFF/w51V+5DnguUIPgJFONxVuOnxVswjvIrRf41VBIvwnpkkD1Xwn3++MHPCXtNOANFJ03W2+S3k9Kx9uhn9JcHL5/7MWQsygKWni0/xnP7eTAnSdJdV1jPF/xlfpV+naYj/M4MBdoZObeRqqTtSm3hssI0xwo1bkW+Qz5+jGezcZ7ER6nHguzFBuk5DqvOFL/NjLE2eZLZ2j0i5RfsMczZ/GOOVtswhGXmlxwBeAYO/mZUh4Z5Y56BFQVoTACAwCQd5lngKHu8wQJTPGRQn/emaWg+Y4Vz7CDhVde5RomUAgYiTTwgqoy2+1rHeCSoMKG+YxdZsnXHBBucUvaR1BLiZRelznGK1ooiyybvagKrYbIbn7QseWvuf5s5Ktoqy1BQX7Fhq764yg0rNTT1ovHGEzVAmB6OBYOmWGWQugU7PfrVxuEKMyxzidvsKUhpvICnWeFdPqaHY/1xjVeZaVYakE4kvXIuBiAy0sppVphj0UqWh9kjy6b1djYWJQUyliFtwDBhL7r252H2mGCdNM95Q/3bxMpkmCLHGaDFjB5LmCb3FXi8pKnBprYz4yIA166tvTr0s8649Sc09d4wYg2zwBuUSFnWn6lTr3Fdq1hP63GHVaZscrA0OyW4JUzLAmMeLhdZooejHnUtRnTeBPApclzryZZN/xWlTp6L3LGyUwlXyRPl4BVPwZchEybZ+QyrVlZsntOGoSmWNgHrO20Yh2dY5b7WW0ZCbSTfc9xmkTnrP21SicukWOaCnddH2SNP1kqIv8/PLCPUJ8CP+SHzLJCgwpw2a5uEyZO1tkEirx1glSk8XI4q6WGCdVKU6dBPP54N5fjrtq8H0Csi0r1HCHimIEGpDHwmCZqcl5dW7kD3Uzh5FkpLCCNkCQ6X1M/Oge4v5bUBgLyAbptVYaX1BYB31JevKGwvakgxVIHmJ8KiWnuAJILG9IPi4ut3uCYhAMTEx2/IEc+3oRgwpyEUDZF2rt0TMKRa4yVQE4DKv4P9D0WGWSnpeX2iHmY9uJtXGR2w8nNhcjULcPfnGgaBHNvJeaAsPnN3jf/dz7FhFiczWFBgOgOXkgpgqrH90zXxEjy8Lyy/yTkIXsKCPKmket45kPpD4JzIJ3/1y1eunSavElF/r3+DZQWSh9K/BUMkOKwJkPV0SU31VQJ9YfLlOdGT5NlqQ67/vvHKUxkDt2H6LLweQ7y/fgPdBf2s78LtvL4uJD5hh/ozafmc/TVegq2enhcCBB4a4MIw8VRe213CAq5xBfIq93VeJDWJGZH+dpXVmL+HZfgBkqDbA3LC3Gx5ch4nM/r7XwE/hcNH2MTdxJjsv/ILkb/2ReCtnLDioma8VRJeymMTlns9BKTJyzFMnlUgsArnDEjuylzd/6kCgyp1zSmrr+SJ3+L+v1IZ7W3xt6sj+3nWkLkYjut+UbYrMgfyZQWoy1B6oOD1kozffk3PEx3DJeAzHVvDIL0nqcGXMsLA9Lb4HUnE/+lv5cGj4hEUg+rZEF8mJwnVYJkLNN48YkHsuhsVkDsJje8fke/6A2T+/AA4pwXgAZYROUBTLAd+ALwj7MnuP0IAQA+ekBGqtwGyTXMkJ59RicTZfmeQxN9F2IIBYZy8CthvfzBI9wNJPTSAdD+e/fet/hRtQuwwwipnGESi4pOUWeYCjpZkH/KBfRgKQOUpoOIR5cAWesYTw8gjPS0mrnKDa1znAz5E0kl3AGynT7p2g9bXxEgfAesXY2SvDj4j7KgcocU0K/yAn9iHuvGKM53AFGVb7BmjZuPpZzxnhtllj6P2fRUS7DLMAC1baD3RQnVC/eRWmMYYQhuGovFd2yTLoEpXsuojt8I0BU7ZIsMYI0epM0KF9/kFF1nCoWfHTYI9pNDwdDEdpsk/479hkTnrrQLis/KqV54wyLKW4Sjy1hE6uLzJLetXuMOIBfeM5MF0482CwCTAGbmrrzNjgwlMAhuI3Pgyn2FM9k032chViqTVqDnBBBuUSfIhHyjw2qGHw/t8hIvHHZUe3dDE2YsskVVmn0mT+4APlUl5gX46Ks2Q62fYDQagFZ9DMbkuchwTzDJAy55HWf12wlqIl9VUOkyTj3jfdsnN3DMSmEUFqb/JW5kRTj/Y5q3yF4zltwjmoR2Hb5Uf8b/I/z+pZoTBRETkijtOgm5OfNiGKgLgAPwFP5B7XA9Sfknlzi6eC8ECBNfg75R/STkWpxKJ82VykmV3hn+b/js8y8WZ4S6khEUWrbXBg8MADP2qS5Iyxynq9yfAtxYfUSLJ2eJjvvXgEUNPupx4UMUYrg9Sp08bWU0GKMVj9OxdT75/j5OjVM+HGFAZ0ujiAb/NjYl3Y+M+8V+2Re7lVSwTpZEUn7NuHCbLT5n2V3B9jxVXFnRbyRivldf4InmOZK1KpPiCSOWFrSHCjRd4br/IGBEfuJux77AcOa8yoF26caBtfH861GNBNslxrFjT9HKP8cYjRObqYXyPxhuP2E8Hid9rCyNP93HiXpWBgy4PkqeF6ZOQRdYUq4xQ4Y/8D3HoMdO4RzEugRWpxjbfLf+atF9krLDFiaUq0VqXhcgbrL15Ep8AhwkBzXadYSjBRmSMUjxGqAAXqmsEfJ9xNihETuLjkKrWeIMFpmtrkg6LpDMOVQR47WagEDsmjQQ3TLwoYORGZIwdN0HeyQr46a8SKsgCceCgS8lJaShPWIAAVb/sJ4J8kTxHpPICmzR7DvbPBeWZXRT5Knl5nvYcOcYRr0IlEmdrLgYpkVwbyVXQk4VhhRGb5izNkoS9Zzw7K53iZ2clqbnkJi3o933vZ/Y5387A48lRAvg03jvCv4795+wngsQLbQE2HRnfY4Ua684EIyrB3OMos7V7OD1Yd8fp68Hpe9vQEBD5qn+D7cwgV2q/xlGGyQYTDFW6lEkS8IVp/63CI1J+iaWYLPwSVOy8fJaOM9VY40S5SsoXAMB/tfn/Dd6C2ph6FTgyjSyTurnOOB1crnPNGuYbX7JXG53iv/ucCiMUSTPDMlHq1u7iKje4zC1WmbKMtQXmWeSS1m5TjLOORz95slYCaaSFYgEiLDNjwVEiRZ1BNpjgJleEnay1RpZN6/1n6qIdElb6OcGGMIA5Q5kkRdKsM47x5xXZ6wVMIIQBawx4laDyleMwTcJrXGePYeZZwMfhPtOkKLHOOItcwqTKG2/BYfY4RcEy/HPkEVuXlG2MVtTj7lOuqIyyp+oAkTIfVWlsggpJSkQ54A4XtaaTsARhUSdI8xzjwRulzhIXuavX47l69Jna1Ng5FMjYxF0jWwYBswz4KxLNnMqGK1rryu+PsmfrTrMZgDBFmXkWMKETBow1DWcDhBlfRsMMNWEZBrh7CcDV7fEZBuKg/q5JmAk2tJksdfiP+FM69FNWObORGYPYWbS0LhYLixF+xJ9atqpRSqQofWW/C8xbkDxM0ypNHHyMt+QNrgLYBqzxXDQKG7OPHVUHiTJmlyQlW0fO87n1XjSNOUmqXbZgtszflw1r01BuMqBMRvG0NH6P5rtgPMYLZGhp6Npft319klsD2Ewq2wwJH7ibFykgAWBMQK9STQIHAg4cfibeW30JAamCAQm3uLsEb81iJbe58+pPpjJR1BMsNwckBeyzYAjq7eUhLJQ2PH0AzKicNgckhAlV9YVJWKkAay+Tens99fubFNDs7icSPsAjBS4QuWVC0aCWr2mgIUkKferBUFK8AMMIk2wmrmnAhg2lTLSUertVKuonh4CYpBFfK2VHrZUFGKr8Csuc68q9lHpDjfI9OY9DE9AR0eO9D2v/RoDLc46EFTRrWCCo8kTGo6mS1cM14KwAmit5Aef69LNaqAedGeOahCawL16A5DUUAw1HMJ5vyiItPVA2l+4/aNhs9+D1OFARGW84pgDuE6AkHotDyiqqaCgDT+T3+byy9Soiy970FMjrCQh6WBFgdlkTfROTsv/Sz+Q4B5DXBeMvWZuHa/La7pqAhXkFXSsKZh2WZe5WKgLY4gp4BtgUZebk84bM9T4lbLhWW2W2CHiY+i407wEFTXhWT76KjmsCeW9VATPUe7HbU7AvoqCwK/LZlCt+i0OzIm1fq8n5zigrcvKsAnbfBmYh+KYkUBspdhCRKjdrAhZXa3JOwUm9prrd1W6wmR8GbOwiqcHdffl3NwSH/M3Yhg/3OOrv8ewfxtViN007JsBZuPEChuA3s69JAff3oP2/VvDsEtLgOI+Adu8ooPeO/My3NdI+Dm0zR2Yh+By2c4M0ckc0Zeko+zNBmIWtXIxfzb5uP9NIDfhHCKA3K+a9++8FRd77HkQbBwQbcD3yhzAHX85PCiX92+C7ckx9vLBsuQOiDNAiRYkRlaBukuU9PrILkSJp9S07pay0AQqc0uzSpn34mSCBVaZYYdqa7C4zwyY5plhljtt4uLzNTdvJNUVehRFG2OGH/JgJ1nmTW+xxlBmW8XAtuJPUgs8wBRLsMMMyR9mzD9N1JkhSYpx19jhqO6+v+mMYiYspDkxBBnCVG7zJLS6yxKp6hIjfiLDHTIGXpmjTWQF+yvetlFVe90RLUWHemQJhj2Gy5FlgnqPsMcGGLeiH2eU5aSokyLJJVLvaZZKUSeHQo0zSBhUYfyvDZMzwBBMKEqbJIpcYUB8dk/D2Ee9bXxNjSr2HJBZXSNBUWfAE6xivHPEl7Nj/X2XKeqiIyCWhiwzXgoFGVjtI3XbTEyr9aGnRt8gcuwxbybEp/kpq8rxDgovcQZL5LrHELDPcZZoVXAX1TAfVUYbSBOucQhLp5HjKtgCeZ4EwTXbVOyVDQb0ShQWwxCxF0lxikWlWyLLJOuP8hD+xjM0xg8R8g7fz1Ud0j/MV1nuoiDzDtFZrn4fHuVF+M/kaFUYEoGugrK0jpD2RqT/OjNKNw9Bi137+YuR1uQ+mgZow06J+nQlPEh8vc4uoX8cnwK8yr3OGVZuqeSd+DjwYLRzIIq+6LfKsopheb6VjwqL2kDqq3OY5aUa8ijAJXZjwNkhVa5xe2ubYZzWOFWqYIBXX6+j9paxKBocEO4SqsP3dQeILbSLFF/Kd9VeIFF/QPQ6twSD7CZEDN50wSUo49Fhgnu3kIMaMG+PTe17Y1CvxMeL5ttgqVKGbhO8Wf2291ySBV8ZpovqU4UaNuhPlu/lfS61YFKlrKTJK2isS8H18AmySI3RfGGGGvV/NhcSj7vwglViMfjzGylt8mZlkuFHj2GKNb+e/ZKjUJcoBoaJ897O1p4T02u46w19RdVz07wACpj2Jj/IsGWeTHPsXgyQpc6xQ4zdnX+PT+BsUnIxt1hy7V6OvB/F8m2AB0n6RrWRMJNLa5A2WYay4JemqOHyZnnzJYm5s81pxjVuxN2g6YRq5I/IsicWYzD/lvdonTHmrpHnOl5lJ8cJd7jJTu8+zdJyst8np/DaHEXB6wlwmAvVYkMbsEaKNA65zjb6egK4nClokZsSDcY9hkdxW5boYn8Dt9CCb5Ej7wv5J+0V73zxRrtpF8LcffMkCb+AHHKq5EPupIK4nwOqJYpWim+Ya19lxElQzITZip3mWlqL7l5nvMN24j/E5Naz0oCcs/GoyxKPzx3icE7/KoeUuru/hB+BjrlImRZY8+4kg441HRGtdotTZzgzi9Hz+oHCP7cwgq5zh/xH/Y+7GJymSJlSGrWSMkpNig3EOIq9KTb65WwyR15/hISW1YTDyV8Pmd+lojSKLwbJ67+TYpMmAZVYJAJRQJtUZ1hnHoUdHATrDiM9QQBJgRZo+xUPLhgvgM0KFU+pVu84EEiixo1LgEp6CaP14tNR2w9RQEhohIWWG4W7UDWZ+rjBtvcvSPLe2HB36eciUtaXYY5gF3qCnzcH3+QgTnHBBfQVXOcMSF1lhmiQlq1owDeMKCY5T5K6m3L5qddFiQEO1ynZcTLN3k6xt6pn64zaXCKu371/wAwViWxbsM/YvLh31MNxlk5zau0jNOcsSWfKscsb6/bp4jCgDcEebxOKz5tlauMUAdQaZYdn+Ps1zyqQ4UHAwSZkpVsmyiYOvGo91G7hiWIN1otZTtaTBEBWtuaShftyChiWS3GXG1jmLzFmJq9RTSSoa1GGUFyZ9OICP8Rg1TMQ6UQtY7iJpyQAf8oEFkS9ziw79HNd9mgbo+/xCpdhN8qrIMUy34xTZVfm1IQTMsMxF7ljvxbKyPQ0wOqENcrNmSLDDFKtkFNw16hVT5wmDPCD3c7AEAjOORv69qEzUnALapim8zjgf8CH9+n2uqMTcfF9M+vE5bYobGS5gg1X+uu3rAfRaSHGREHP/rocUbFX5p/w9/fdFAU7iEQEGgiqlvK9+C3iw5glgciGHLEJdBR7M/T4O+AqgLAMlWPu5gn37IiF8VhXgrPRKvXxyEviFADNrD4AehN+R8IpmQ0FHLSwSKQFKTNgAvtQ7LYQRWG8I6BLXgIIBVxl55xDZaFK84J7K+oxUWhiFz6oqDZ0XltavlrDMsfA5CcS4WxNG35Cyo7r7whbcfwInIuKLFgwAFWGHBTPiGbjvCQBGDAnbmNVwg0dyPCDnyqQEWASTwojsesK4SoyJ312rLZ/RFwNuy3kmgNQ8MCaegvAyGdcY+T/1ZH+biNdfaU32dzKp55EXb72VopzvwKvSa0/Oc/++yjNTAoQyJMd2twy3C3ByTuZE6YEAsbeXgFMq60TA1+bP5bwupGU/lfsCvNYb8tlxhD1294FcnwFXwKsqAs41ywISZyM6Bk9ezqFURADXxJh8Xl9a/iQm5fqZ+W6lt0uIKfakyl7flOvWakPiHaw0uIXM3V5PwLineWGx4ijLb0jnd1F9J8uwtiif2fNh8ruS0nxCvyf7noSddBt6YjkNxYjo9WvL7/uMB2FZzvNkTBh7a3ll/em598VkzqwpGzYeUfDOf8nOTKXlGnXLcvxBdEyQz99uQOx3C+75T3570XeEvJPlRL5KkbTc0COD3Gda5EJzKKV/F2Jipv1x5B0B7f4MSIiZOT8QwIgUdF1gUoAKfKhHBqm+E4J/Dr89O0bYa9J0wyor2BWJ1P8WW4Ts/1GQai4kgCDIAngQ+IewwTh3nRlhAZ6ChcgbPE6P4uJxOCMv93F4dPYYldBRyozi0rFhFscpMsIOxo/Nx2GTLBNsMMwey1wgqiw+U7QWSTPFKjk2VarZr/5p/Vp8CmvMAFGmW2geji6elWsm2FHgKm9ZW8ZjbhDxhhOJRJ4F3rBeIcaPLUyTUxSs4bDpGBqav/FhkdAJV88vZ6W3ILJc093c0dd+yhWbUpZQa+UZli2DzRg6m26hSQW7yg3KpEhTZJY7pHlOkhIzLDNChSJpPNyvsAebKkNuEmaJWT5nnlmWLN3fHOc8C0ypBHfnlW5rkhIrTHOLy5YhYK4RwI/4068YbxsPww31/zP+PwM0uciSJB1qsV0ihYNPlk2S+huzmBGZqstdZmzntKxsPI9+UpTo0M8SF3Hp8H/Z+GeAeKDdYZYSKW5yxUqDisqkW2GaMklWOcMyM8xxW+U7gwSsqEeYMStMk+b5K/NxlxRlmoSZYZkMBVuQr2vwikk1K5NihmXE6DtNhiesa1ruTa4ogy9p5cBG1uPj8C0tsr/JW19T2HN2M5YZFeA+9n5kFgA+jvi0+cLOCjde4AccO39vx16DpMgBBXTdgAb8ZfotqpMhttMiee1vvyDcaHNioUrdidKhn7fKXzDiVehTMHGYXdpvAo4AeJ4rDQ/SAr4NN2pEasJSbqs/b8YvsOMmGFrrQhUixRfiBRiDw3PwLBPHoccwe6y40xqCkYWknGOuukU1E6JCgvZ5hCHdECloOynJpXkni9PzdWEwwFFfTMQvc4vRNQkpuB17jf/h7B9yOAa/Sr4OwLeKj6jmQtLUOxck2AD2hUU4+eCpsNkCR2jrc7kZCXHisyrtJDxOjkJKgNQodSL3XzBU6TL54ClTrFKdC5HxChwmYC8SI+BLUFC0cUCTAXLVLWXpRXF6iI9rXvzhhmsHHGrzMtgAGjBU6uLjsJ8Iwinoq8BQsSt+Wp7cB3tourYj9zTaElpjkiI7uBz199g6H4MGwgDrQbTWtYyfrjLbCcgz1Q+IDDvnb8pdvVFlIzKmyboOUU8SjBPscKxQYysXI+AL8Bb2JA2ykThCNwd7sUGGvT1hSZZF1ltwxRy/raEW4cYLipFj/P3C/yCvUWA76tVhX84ZZK4fJmUcNhjn2WSc0bUDZmr3qTsiayw5ch/ddLM0YkdI+SVcOhCHv1MU2Y3rdVh05ug50qhrxyBbe8qxco0oB1bmbMCWcdYpRUYpk8Sjn6hXJ1iVEKwkJeIP2oz4FU4Xt2kSpnHuCE0nzF4kxjwLAuTe2yLvZLkV+Q4LcQHl6wwSqb3gUeYYo8UDwrSsvUU/Hr/NjRH16kwWnkr9sGm8W77Z2wsNA1hWP64CGUxyq5j1d6wsz9Qzd7hIijI9HBvCYJp0BTK8z0e2uZmizBke2vpGpIUD+kwTVpWrAJFJeTdJrmK70W8ZYiDNW5FRil/jLsOMs4FDjxH1zzOgzUPOAKjEfhyAAqdIUNE5YeS/0nAcoKUMxRaXWLT+wmmeE0Xuc1LTDNBDQs6M5FWsEQT4MZ5lBTKMa815UdNFi6T5jMsqZQ9bNqxhvd7kbQtCVUiQ1+AOH4dL3FZAbJDL3CLLpmW8HadIkbStDQ3odZlblln4Ee+zxCwtlX0aVplp3HboJ81zK2/u4HKGVSokuPRKmFwHl6TWQU3CFJGE2YecYZ4FkpQsk+8j3rfMNRO4Il588v3eJEuaIh4ux/U+ampl4+GX5jnXuUZCWYPGX7rIcQIK+pnGdJMwc9y2bLtlZmxYyB7DXOYWDj0LMs6xqJY7S+TYZIINe03LpEhRokySKHV+xvdw8XiTW4Rp8Rf8wH5vNskRpkWWvAWjxX87S4swt5mzKpkWA+rdWrFzxwR4rKt3swDDSWXN7jBA0wLTBjRcRhZDd7jIRe6QpMQf8aHWs+LRbMBaCW8RQH6JWfvcmmaFMikk4XiWZWY4QDyaDdg5xUNiNoTif3r7egA9X8GdvLCOggrElMpwAsjNQnNRTPkTrkhfOQ5DM2gSEtan7FJOALV9/TzKwiajKABG/h5woP58ZSAtYFupAbeL8EVD2VU9TautyHt5E0mGrcGE6eg+gsSMAGSV+xq0oRK4oUEBpCqP5P+nxbaAXE7Avm5VAKP9ZQFb9k23NI0FxE4q0GXCDeIGUFkT4PGtHOKxN4mALOeFodYDEhcRdtnbcq5DCQmEKJWV2eUjXlqeSIODYFPVDovQXBCpY2JGwc+I/MwTZU1pcAIIk5C2MAATxosxIIBQswypd/SzSxKIMBEXIHDAlTHFEwAsOATfiwsbbR+9bgEBeVptGfsqwlgLn5dxMqBt1QQyzAsjLhoBBoWRF0eZe20JWIhGRF6cQsYolxQ2GmUIz8scIy5sS4DUnDDVohEBxOIxZUvqqcYduDArsu4BV65X+E25xk/zsFAT8Ct8XoBQIjK3mnmdtykJHdmvyVzcX9Nzc2TMmkX1xVsEQnIsVOUaVkrK3nMUiMupX6LxZ9TxDRsWY1pAv2xMAOJN5Fq32jKPmwWVzhopuEqAEzMyPsm4BmHofGm1YWFB5v4XNQHlUgqiNxsCEq/k5ViyMQFqgwFNtNXivKu+g+ciwvI7mZEgkOZ9Ddo4L0D+EePH+A3fmkSoMMJf5URuUiDDCtPkyRKmxVY6xgLzbDDBo3eO8XHsLRx8upNACL7IneMhUzTOHaFEEnIiF2okj7DOBNuZQe3MBqAGWW+TRXfOAlWg0tw4toNbcETOsKmd29/Ojgn7ZFAWSZvk2P92kO5ZYRK6KmVcjZ/GJ6ASywDPOUaMfUbYIa/FVgfXPjxNIuoATTUlTpBSltu6erUUOW67fYYVFVBJWJiWZZnNaxJpihLzLFAk/ZUHd0kLgGnuUyLFZW5xjeuYBFhDxzcyzT2Okua5Pb+j6qcyQIt1JqyJsfjQZFlnnI95Vzvf8lnGmNww5GZZYoqHCgAN2KLTJNku8AaA9bPpqPFyhgI9HNtN7le6fU+LwSQle7xGLmrm0nWuWTlwlDphWvSrlMeAfSCd8Ske4mlBeIOr1nR3RH10yqQU1CvzPX7G+3zEUV1wyDxqscwMb3OTKHXuMMtF7jDDMt/jZ1ropekgQRam62zkqOMafmH87tI8t/KENEWVQrxLjk2OIillIPJUwwTwldm0xzD/avzv0aGfO1wEsN3356QZocI1rnOBZb7HT6kT5Sh7GONuOQZhaRr59qZ2iQ27bocRm8aWpsgdZlln3BZpt7hsFz95siQUYDUMhigHvM1NKiR4j48su89Th6QnZJhmhXUmuMV3vtb70O/N5kHXSP+T8Ffnz0vz8xyMVA+oR4SJZCT45VicZ5k4FUbET86RxWWqsc0ATX6Z+w6RsiTghv0mv5z8DrMs0cFltCBS/o3YaQqRk5CEE4UqJ8pVGrEjktR5HKqT0tzYjJxmPxUk7cuCo04UUnB6bZtmJMSzZJz9sSCVSJy1yZMAnKpu0z0Oj8+PQkQYzd24+KF59BO/12bEqzDOOt8t/9oyroYRT7Z4uc3ZtceEigIUNiMhik6aYuQYJVe8I/dcDW3xypI4iyxEDhPwtx98Yj2HVuOnBdQBKCIeZYhn2pfpSRq5I5wub4MjMt5I7QWhgoQv1IlCTgC6Dq6wz3z9jASWRWmsECLFF/TVRKY59ET83T6OvINPgM/ir2u7xaUeC1FhhC+/O8lOfJDgvhzeKlM0EkekeV+AEb8i59ZDAL8GnC5uc8u9zKXal4DcB1LVmlgO+DCW3yJbe0q29lRY2Y4Y1ROAvjIcas0nC76mhFKAMCyX2viBIzxIn2bXGeZEuUoxcgzjLTjvLRBZfsFo+YCj/h7tuABv9ViQuhNlx03w7fyXRMovWIqdp86gJNJqj+yvzp9nvPaYdGOLemSQNM/pU6/qB5nTrJ0/yaPkMX6bHCNSfmGZq1k2cenQ1xZW5beLX5JoVGmnxbPQwedotY1DjyQlMn6BSF6k6MPeHmtJmZcFJ0Ok/ILLjV8T3IfXy/cJ1aAci0MZRssHtsE4UX1KOyIekc9JaypnR7x/e5K0vMRFsS1a60JZgDjP7aekErFs4zET3gYkJck5wQ5ZBe3GCls8S8bZYIIH6dMk2JFjVxZ7k7CM3RpM19ZoHO/7j3Kr+X3fBvS5/a/4L0lR4jhFXDyVWCYsQ3yKh3TU8mGEHTIUCNOiSZgyKcvSNewlsaoQ2e6GNuTuMIuHa5lqRdKsMM1nXGaHBDd5m4ruM63H8QEfktUkWMPSypPl3/MBPRzrcSxewsMkKXNfvXX/rxpK0Y/HAC0FuD6zyaCGOQXwXFlVU6wSpW4lkq96Guc1cOEhUwTw1caiZetFAecCJNjB2IUYNtowe5a9dooCUQ6s7HVd/dNMc7isbcZZlvgv+JGVNG+oD52kp65btpujx5KhwCx3kLAtSefdUAmxCX/IkwXEX9SEKpjACPN5JZLc4k0qiN+vPMv6rd2IsYABsUi5w6xVOpgwLsO6axK282adcauW8QmonY3Lh3xgLU4ceuQ1WdX4AF/lBle4yXPS6uno0WSAAD5/wk807XjY1mZTrDLNir02CSoadiGA7AYTFMhoAIg0SD/gQzu/jE+xadD307GhYcaaxYCIJnnWzEPxhqxYOXWdKNe5ZkHCV/21S3qOIIBsizAuHdvE/zE/BARAtcx6BNS+wbv2Pi2Bc2VuM2fZfx1c5li09jIm+XmFabXRcb9iC2TmlalD++lYFVGdKNuM/k73k68H0AvJIv9pEUgKYDSUFLDhGUAFlhsi9xw6hYAgt4GzCDiCgD77ZSRwof0Kg8uEs8wJmy+XRArDAAKanBLmVBUBeIIIIGEAInoqW1QfuKov/9b9uQJdOQEdqr5IhEkJm2z/QGS0LR+o6TEBvKcMt4gw34ZU+ghIEVRUqWZSQMXptPxMW4C5aEQAn2BAX19TqWUDeCCg0gkFz/CAe8J4wxV24VNkzMjp+DiSdtvVMfrVmrDHNhv6urh4p7Evx9bdh2BODjeInGelCJxTUCyH9Y4LJoU11lyU63BYFrCwLyISzXpDQMDKI/Fke1qQa3QyqUxCZW9VawJUtXwBeMMgF0xlHriSijqUkPPdP9Bk2opIZVMxZe558EVV029RttoaAgpekmtDSMDSyn353ESKl0w4ZR8G4wLQpZKaAPuejF0up6y8R4CCUSeTAriVynKNDhXwrdYEPHy6JuOVSsr8zsYFvKvcUeA0IuOfeA8WFFgtLQgbkbSwIk8mZc6czCAgpmEwvimS11JexrakXkpJlVwAAQAASURBVJUVT2XrOrXCSbjvyzwMZ1TyXpVE3MQYkIe1JQHo+gL62a9IXeb/oUh+Jxy4lBb/vURCru9hWxJvu1UBbFN/KKDdZ8rUfFrUue/KvoccndcBuN8QELv0SxjMwe9oC/Cf/FZmFBNd3iTMFKsUOY4JCCiSZkSLEPEqkodRsAHbGaF09+sizSfAVi5GgVPqlzNIkeP64O7n2VycTTdrfep2SLBJjhWmaaexXbkSKabUTNZ0T5fdGRpvHsEka9WdKA9jYywzo8mrYfvgLnIcMeEVGLxGzDLUSiQJ08KknpnQASPBMCAjoCw2KQYN9d2EIrj6MJQu5HHLWuspi2qKVfYYZpUz1InaoIgVzpFSAEwCMI4yqFLWZS5wnWssMqcShrscaFElXeUp9WZbt0w+kzh2gWWOU2RCQxEM2ARYadKrfi8mrc4YFxuGnykuDLPNPLSNP91FlsRHiICVapjUWlNohRUgHaDJP+BfW9+mImlM2tcVbtp59XK8e1YCLJ44CTbJ8ilXKJHiBu/iajHhK8D4Bgtc5pYFT43EwVOmXw+Hm1xRKfIwN7hqFwamEJJFQZGj7FlpS54si1yy41HX4vUqH9s5UuS4Zoe9TP1bZ8KyOIfZtfLsDq79vZlHm2TpKdPhjAJwpoOf5rmVQ07xkFmWuMJNplmxzISOStJNolxLwU9TgF/lBrNqDr1JzibUARwQZZkZYXfpfvJkmWCdKVbpVxBZPHA83uXj/4h3nd/PrXjyKN3zWI+sR8ljzFXvcRgQ2wATcBCmKYVyTSSzHv1MN+6zlYtp4VshVBP/NIC1zEmeI5LUy41fU2eQRK3GdkYYmGeLj/Fx+E3uNR5kTvPb5Bh1N0qyVsUPyIIywQ5ni4/pb3eJ1roUIidpEeYwAmuTJ6kwQrpapeBkSNbE78tzBCzfi0kQQzuiDGttyoz4FboZSVmN1toSPODtcZgQBsLAQdcCMHiaWg5kvIKEPCiDBOC7S78m3HhBI3GETbLEi216DhCXhfzr5fucLT8Wfzo3TXdSQEU8aQDtcZQdN8EXyXO000jqrgePz45a6eaD9GmOFWtMFgQg6w5JCMV2ZpDH50d5dP4Y6apck0b6iA3B6sblmp1TRrZhFk2zwgYTZBpP7RzYTwfJx49xiUUJWNAm99CjLu2YJLg+iY/CgQC/GQoEPWFhrjJFX0NAxerZEHjC8rsde02bSf28XrjPs0wcavBZ/HWK8TgJdphtfClMIyMTng2x5w7TjycgZx7G7m1RJM1vcq8JwARW7ux6wsxbcObtwtywAD/ifUb8CuFGW+TNZ+VZ2xoMUoqMMpo/kHGKQMqTe9lk4Sl1oqwzwVrmJA9jY2zn5Hnv4MM+LMXOs5WOsReJESpCvNimTpTdeIhcdYv4T9sMPepCGzzHZcdNkGCHv0y/RcYv0B3SIIwKNmiuTlR8emNHyJKnRJLF+HmuR/5QWMjeMn9c/jk7JBgtHEBD6o9pVsTXUevm00vbtJSt02SAUF4kxFSh6YhU7VihJs+biiSQ/q3yr0hSIoDP2IMty6g3MktcCFah7P5uC9hvwlYnyrj6im0wwS4SHlZhhHXGKZHkI00ubRFmnA0WuWSZ/OuM4+EyxaoGQj2nQz8JKtZHziS7XuQOC8j8NQy9UxRY5oJ6fpUUbGtRJG1rxTJJkmpbscRFwrRw6diEdkddQwtkMCEdH/AhHVxlHEr9Y1JrfSSIbImLmKACw1A0EkTA2pcAXOYWsyzZUAszdkYJYOaSkeUadcJN3rZ1y0XucBzx+DXMR8Ms9HH4IT9Wb75+6gySpMwATRuAscA8FUYkCEnVFyLLLDHFKh1clciGVa67wTgbmGA3Y4NS0EbeOOuYABAP1zIlxZ+1hYdrQ+WMz7JZRwwg3s3TrNh1hHgsZ2yj2MWzXowuHTwdG+Ox3FIlQVllygF8rvIxT8hYgM08gxaZI6fJrOb6LHOBu8zYa2jYplk2bRhYWcG3aVYUiG4C8BmXrQKnyHHrO2vG38htjdy1ThQPl1tcJkWZP+NfcI3rVh4tntRCN5frF9XmdkdTc1uWQSqybJeK1nRmzhgG31/wA0sGAONlmiCsgHpOz8/Bp0O/XZ/UGWSApq1Bo9QZZ93WvFOsMsGGHdMix1lmhpKy9FoKLJumtfHp3jYssL9m+3oAvZSAPyczUFkWwKRUkOCD+VngFERRDzL1OcsXETCmJ/54pZoAFUQELAkeR1hoafm8tZ8gyEpc/NsO2+o394mwiC6lBfiZPytgYmJOfPm6+wJOHBZl/0MIePe0pgBPVQI6JnNIAmVE5brqsxIESfdqaDLkJwhgMSnntV8R9tTJvweU5P/7NKXtsyoCWiLnQQ7CaWEmBl1h9608UGliDPJrsj+T3Ior8sfpJKBS4qyj562SZlNgpWJAG946KyBVC6CAAGZx2XfXU7+6IhASjC+RUDZgRACj/c8U4HOFWTaUVjZkTcC6nq/+eRUFaBHJ6aSOv41kVXkpPfmrWRBwJ5cWeaZhjq0s6HkkJMSBiMqfI+KL15eA4PeEuUdcQNvDss6Fhlzf0i/1XD8BHqmk9ftYZubTBQVZgfwn2JTbriefD0ioiyfj/fSBzL2TOQHBLiQhlQHeESmzDX6JKAin7FICAnYmJoXpuH+gx6qS1jjydyqjLL2KAKK4AsZVijKHEikBjFFwNh6TsQ04Aqz1EBAw4cp13i/CfEyup/HyswBtTZiDQ8g8O+zpZwcEQB8aRKTB95TF5yqgrIzAvrT8LvjKeebm4C0FDk8m1Q/RR7z+Unrd0xLiEs6pZL4B7PI3YttniDJJmgzg4lmTVWMCvMQsuwy/4itSfCmlRdh3hiGVokSTAfXUiJLmOS4d/px/wgLzlEhxlxl1zxhniYtIjPybwlAB+8AAMT0fUJ+OAhnW3XH7wDVBBhVl4w1Y0Og4z5Udl6LEIX10CXKRO1YCWiJpZY6miyZS04ot/EyRaTzYmuppYrrDxsMEsD4dTUWBTVFjGH0uHa5yw3b8k5QwHmwTrPOQKS1I8kyzog/vo7QwIRhnvvK5daLc4rKVthoAJs1zMuqjtsglCxotMWs9bAw4ZwChhAoxrnDTMvtcvQbGayZDwcpaTYGywbiVk5luvRl/AyAamajxjenHs4VRmKaVguyqBOQhU6S1GymFSJosm8xxmyLH2eOo+sj0WGWKCiPqcSPmwDPcJUlJS9aW7j/ALS7zkCl6WigbAGuTHJIOJ6mwPS3YWupNcpQ9yiS5yBJ3mGWFaSvteELGdkANQGhkOiZ9c4F5O6eMLDtMizkW6alM5iFTrCtobeRHP+N7ItsDjFHyAvPc5ApLzJInyxkeMkCTSyxKUAzSyc2T5S4zGI/HFgNMs8IH/HtrjmwAWJnTOXvs17iuptoyD8yCvp8Ogxx8Hbef36st/XSXjdhp6pFB2mmRYK3Ex+grCjMtSp1o44CzS4+ZrslD2ukJMBYqChvsRLFK2G9STYfoa7w09zbdcMPwC5aF8TddfcR+KiiyqdqX9Ct3zMGXdNKCSGdbhPlteoxKJE5fW2Tzl71b9BwB6icLT1mMn2eXYSqxGEPFriw64oOUSXKsXJME0tggl7Rj7PR8ggWgAMF7EPBhzx2mryHS2kLsGJnGU6qTIboZMfN+rgtiI/0aK29RIgVpWI+fJFJ8wWXvFochAT/aEQj4PlvJGI+Sx6hEROZbj4VEStmAKAe888nnHBBlwl8nVBUPOxz4nHnSfpGj/h7rjLOWPgk9GPtsi73YIF9kzuHQI9XYpkiaO/Fz7DgJdtwEh2kB6IJVSNaqHBDlbPkxf5C/R7jR5li5RpISrif31g79eI6Lkbifzm9LHeGJ7189MkjdjXLU3+PR3DHqsZD1J110JTTmt5kxKxFdOyvPtCh1Ul6ZQerQE4l0dT5EAN+mFYaK2ObBfiJIwJeU8xZhGrEjQghow5QvTJ5wo011LoTTE6le330JZrns3WKCDVm8R46wlYvxPh/R3+4S0uCyvdggUzxk0ZkTFkhEmhPF2CiR4gtee7AmjD/qkmjol8RzrnHA6IMD+5xLU2SJWblfBGArHWOVM7QI04zI8q06GRJvcU9AoGitTZoiO06CSiwmaY4hrApkvPYYGlB003YfpkkEsOMmqCblu0gbtmZjOPQ49qCG03vB1mzMpuaa65hjk63zMXbjIapnQywwL0BCW3wYuzlI85xnyTjxQptkTQpXk44+iHjeMglruZP2/vhN38qMkqbID/iJbbCaMKhZ7nyl+Wl8wcokeU6aH/GnNkhpljuWjV8h8ZXnkwkaM81ESVXdsKz24xQtYGU85jYYt15sI+yww4j1A3ufj6z5vwkjMhYJRmoq/mVLtna6xOL/l6eeqYcMM22JWU3IPcoyFzSYK8AsdwjTtPdFk6r6LjcwCbUtBdWMbFICIrI2YMQEEJhmoLG5eKgpq6bWbDJgm9YmlfehhogYOxRznSpa2RlfQQOoGeuWHRIKcB63YKVhIHbo5yJLjFDhXW4o6CQ1RgeXAhllVvZbW5N+PC6wbMHGh6oKMOxEh57dv7y+wzoTTCigJN69ooSQRnWZ9/iI9/mIZWZIULHpt6dUMWKknz4OMyyTJ2tltE3ChGlaK50RdljgDXssZo3QJMwsS6xyRuwmwIKov+B9VjnDLd601zzBDjskeKJqnEXm7DwzrEOxYJHOzBkeMsIOHfpJUab0ypojwY4NdCmSpsUADj2aDHCFm5xhlQGabJJlhWn7XBGwXLqOBpCrE2WFaTxc9flzaTJgyQeSDvzckhdeDX0TYPbCVyyEsmrAMc4GEgwobEHTlDcBKQO0OPWq19f/xPa1AHq9NWEqdfeFEXRYE8ZSMI6gD08kETSXwyaPpiKwv4QAY7MCqgHQeEX2WUS6TDlhfBk5a6/3SvgAGuTg6P5CgCcsKGLCEvuVgmtBBEyaPCtgSCIl+0MBNWrw9BN5fQIBK5IaItDtKTBY0fc4ks46dE7AS55gqfcVqe1567vyu8ovJFEXDSYwgQkDIQ3SUJAtpZLQpyi4E9DzPicg3smzMr5BDUzgkUgfcTT9dhEYFNDtJPJ7BmU8QH0Bi8o2AyYzeqwK1nQRYGloUPbZaiPA3CkdnwgEZ4WJ1dUUYRAQqaRMrcOeXPPmzxFgaVL8BAeUwXXYlv0lJhEpc1Ilm8WXABQhGZPcWR2bRXktETnG8ivXvtVWdmJZJKD7eT3+MnIRXRm3clWAsSFHAUleBj3wBKjI+yfPK0ingG04LqAeHhb44ommIhcQhFGlkvsVbMouObkOz6o6P2MwOa9S8phcv25VJbplmdOJtHg0NmsKri5BalZk1yBAdHBevRADwmhMIEB4UP0VwxmRzTYX5Xj2a3JNUxmRMved0uuNSHyDEV4moraFDdjrITJ6VFY8CVQ1sdjIdRXow5Xj2q/otTXkoPvY0JREWufrIH8jtgBdejj8Of9UaeliLG4So0xCaZrnLDPDIpfYY1h8mgCTCLrpZi1wssMIJnDB0NyTlHDxLPPKfDagIIjIKlY5wzQrbJJlhxFybNoH1YS3YSnkewxb6WBZQxlM18swrgap84Ij+giXLt59xCtKPNLKTLBOhQSrTNkHOgiweEv9TAwI4tHPXWZYYZpx1smyad+zQ0IBoJQFvTIUrIwSUMr8DhtMWLmHYcJJl0yYI8aMtk6USyxaaW9YC0APl6t8zAgV1hm3Ragct7DLTHH8J/yE9/jInpNPgDtcpESKO1zExbP+V0Ya04/HS5Pgni2yNhhnhWlucsWaQYOwVExq1wgVy24rqVeJARIN0PUv+DM2yeJqYZOiTJQ6Myyzq93VOlEL5oq3ynOucoMcm2ySsyCl6WYaBuEeR6mQYIF5HXNPZSgbKuUYYIVp1hlnjkUmWGeHERKvBKQYGYlhW5ZIkeY5xljZpKGJVPsCBQX3ZlhmlSnru5eiLGCD+jfOcscW9hVN3h1nQ+dMzgKSJnzEmGAbf67jFOnhUGGE21yiTIoyKSbYYJkLrDBNAN92fs34gCwqyvqzg/gr7nEU46HWweU5aVJqAD7OOtOsaCrdDv+Ov/s13H1+v7bSySGi1HF9D6cn96VvFR9BQwCmscKWvDAGwX0BrJzeC6K1Lo1TR6AnqZhDa13ihTaN5BF2VPZuAKM9ZbhQhp4jf0pOijO1R7QGg4wVRKYJYsT/+OwodxxZ3PaQ4AAWxH8ssvSCQuyYfA9LAvK9lf8CENmkabTsIqmzDj1c35Ok2EKNRXeOvzp/nsfzozAJfW1Jgj2MSFJrrrpF6J7sK5gXcKVOlIKbYaZxD9cT1t8qZ1hLniTll2ikj+D0XlCPBdk/FaQYOcaOI0l6Y4Utor4skMONNsPscZiG0eIBTKpPpuNQzYSYqD6FPMyyhOe4DJW6zPM5JZJs5WJwygSE7BKttQk1xIj/9fJ9C7T3VaC/3WX/VBA/AN9ae8QnyTfAlbCTdgROP9jGc+E2c5woVhldPOD0vW3yZCVlV4Mq/IDDcE28spqOML82ydHB5a+S53kn/zlXar+mnw4bjON64ndKQGwmnN4LYdpFhB0b8H1tFkmaNTEZ3+2kpMwOPeoyQJMejkhLh6Axc4Sh33Q5tlQjlBfm5h13lgwFuueBBqy40/TjMZl/SsGVgKZh9mhGQtCGxjl5Hg7XDjByvEZMllpR6lCT1NlQFdKNLfvdKEaOEWrAYRJOl7dpZ+DEWpVL3GaDcbpxeW683/ileKm5szCDsAK1pp/w1wk2JDV6rLCFj8MsS1I3O+KvezP2HdCQDNcTYPts8bF9hj5kCtfrMPZgC4pwLF8jV92ikTvCXkSk2fvngrSTIkE234EmA/gEiP+yzQx3yZLnV5OvEywII3ekeiDMqp5Ih9s5SUsO0+QmbxOlzifJN4hS59Rm5eu6Bf1ebU84TT+eVUzMs2B97nwChNUM39QBRr1wnKIFujbJ4ROwTUgDRkjy7RlMcFSJJDuIt3CFBCPssMRFK9E8RcE2dg1DyEg8fRw+5irXuabA1oE27LJIOIYBuBIkqLChzELTyK0wwnGVRl7mFrvawL3MZ9SJWsarCSEz7LJNsjZxOUqdeRas5HKTnGUp9tNROXKFo+wBUjNN8RDAWpRIUMaIBZpmWGaeBbJskkFY0aapPqvhZT1l9Dv49NtaTpq+73IDE9K2yhmi1MmRZ5FL1nqjwgh5svyAnwDyjElSpkSKVZUP+zgWAAvTVNB0kztctDVTSt8jPs8itz4gyhNdwInMVexbTM09zQpNwnzOPHtISFg/HinK+IgH4+4rY5Ggggn3OsoeUzy0FiQ+DgvM4+Bb4NAk+6YpUiBja7gNJgBpxJsGtwkle6IqHfNHgKsew+xab+Gj7FkAe4a7mDC3aVaYYF2bd8dZ5Qw3uWLDKIqkbZCEYWFe5hYVbUaLP3JRff6Sdm6sM0GCHYz/tAC0x63/HkhNl2WTKVYxnpKmZvdxLOibUgZynSifcoV1xvkRf2obJkYlI4Bz6ytN+6QGcBh5+Sx37Lz9XbavBdALhASI2j+AtTVlqCHJqSbYgW8jwFkS6yk3NIsABJ8hD2l92FeeIIv/nvp3jSFySl+YVkPnJCAhGAfeFNYbp/RPAwkByCGAQ0ZSXd/KqLSxLa8JqLS3tMhLplteJMIn0BCIN9X8/0DAvFJZE2obwD2VNlbU760A3YJ87tAggrSEEMbZRWEwPn2AZXJRlt8dNoAlAdbC54G/D5cmFfBSSTElCP4X+nkKmOxXhN3X84UFVikqCFgURlTKgHRrWNlyeFJAnNS8pMg2qyopLgLLAnylcirJXVBg9ZeyfxK675rsr9WWc0lNCoMvNSmefX0K/rVMymtSPQKR82+ZwJRTwAxwXtlfjowVswidTP0RTZfx8EMZ81xGgCb25b1DkxpIEhFW59A5CJ6X4+QcAgbG5Lz6JmW8wnEBSO+CAHL7MrYG3GpWEUBKQdVSA56WIf+ZApYJPdYIwsBcFMbhUAyYk89gX67BySSE53TOKOORqhxfUBmLQ7NyHsTk/8NvKviY1PmiQNhkRsYkcUq890iLv2FuVuY5aRmrk+gxewrmvSPfIStDV6bsM/RzPB0rT9l0iFdebvaV18c1HVq/D1TVR28fJmcFLO6Lyf4N+IseV3dfrm/nGX9jtj2Gucgd7nCRBDtc4VNACrSX9HmPM6xSJiWhA5HXKJPC+IWVSGFMgw2l3rCTrnATk+5pPlO8yaRQGddEpzn19siTxcPFocdP+AEg5tt1V2SCQgNPavqYeH4ZY1tAfb/G2WGUQ/oYokaLMBOs85/xY+tp8RHvWYBwhrtEqdsFkCTULjJChTMatmCkWqYjZphiEoYgDK8CGbJsWhag8QsREE2SWsM0rYxXunK+9edoKuBkumQCje7YJF0x/d0lSp11JkhRtjT9LHmOaoctpaBnB5cWYW7wrgUKX/XE6KfDPJ+rXKHJTa4AsM64NV2WQljo/dKdXyKAWZAO2+60kZ0CVvY5x20d32Wu8KlllZkO6mVu2c6zpLuF1e8wzBQPLWh7kTtc5haD1CmT5F0+tvINY9Bb4WU6rKtsQJBQCnMtrnCTLJtcYFmDJ6JWrrvBhC4SBllhWp150vxr/oGe+46Vdxhj6CLHFSB7mR5sCur/lv+Kh0wxy5KVsmTZtIxE6SCv08NRJuVFrnPNersscwEXjyUu8mN+aIvSYV0UrGuxVtKEtBybvMdHtvsrjjL9tlt+hZs0CbPKFB/zLhOs08ElTdH67hiT5WVm+Jf8Y4ocp58Of8jPv85b0O/FViUuBbPj0hoMSgCEB2TEV+gwIkw9GnAYgb/KnacZCdGMHMFz+9k/pU63FfgyM0nRTdv7G8C4Sprmq1/CJKzEJtXDLcFS7DzrzgRbmRh+AFzfY7hRwxiZD+hiiABs/2BQQB5XjsvBh5g0V9ZyJ4l6kjL6dwv/gdHyARkK1kS75zi8/tl9aIhEftpb4S/4AY+To+IdCOzGQ/TTEcmsC/3tF5CAbxe+ZFyNwTciY0QqLwiVRW42zB5NJyzBHEjYQ8kRX8mUV2Z08YCtTAzPEYZHqAijDw7o62moElgPT9frUI8FpUlJk9ElYYeOPjiwkiCArUyMdGNLWIZFiPp1qknxcQv4vm3iFp00fkAkuFOs8jg9yvbky45dPSJG8hhv6SS8VfxCEobTsp87zkUCPkx7KxwrynXJkidRq+HjsJWLUY4J+/ASt9lzhzlRqLKdlGtVjwzSiB1hLXmSb5Uf0XPk3jPnLXKJ21STIcYebOH6cl9pp+XatpSVQRHW3XHr7QgiZZ7iodzDYoNs5WKkKRIvixme8dPq0I/rdSAGkScvSNRqBKtY4/tVd4oUZeL35H0h9SMMNeBbi48oOSnG7m3RjmgabuyIpD+HXvq03o5JPRCqis/eEhfZzg3SCQXBhUj+BUP3uxyGRE79LBPnxFqVY4UaXyYnISVsrDBNKMHZNQlfOervwT722TzvL9DfVk8//a7VY0E8V7xPJ9eeMnRffRx7L7js3yJZq5JuSGpwe17GxdyrATqhIPVY0C70O7gUIidxenJMWWXOCzjjkc/+bhKz/9S342wxohJDCbsQRcAeRy2jrUyKJWYtWDbLHdu8E3+9VRx6RKlzjeuWKTfDXVw61jbEyBYBNfnvSOo3dcviN825QeocZY8JbarOcodNshwQVT+8XQtuGPBigJat41aYFhAdqVkMmGTko0eRYB/jmWvsMna0hm0S5pyGRBkQMUmZTbIWtFlh2jbHXDyb9mqaO/14/Ig/JaGA4BSrDFK3zWvjs7fOhG2kGrWDCfFy8cixSQLxQA3TYoSKlbIuM8MC8/Tr64y/cgCfN/WePc0KB1qtDVK3tYaps3/En7JDgutcsyxLU7uIJHSA7/FTJJBCbAVu8C7D7HGJ23a/K0wj6baSyjtAkyx5+vHUK9DUXuIJWCRtiQHjrPOQMyTYYZE5CyRL7dWzTd8RxJvxCjdV6TGACQExMlJDBBikbuenuQ8mVK5aJM19BQUzFJjjNq6Csma90NHayjx/l5hlR2XMxsMvQ4F5FiybPUxTGXOeBTzFa1RqeEn6PeAWly3r1ISxmQC2PYa5yg2mVKFhkpvNM35TwbYKCVz9Dnm4liXr4FtG4By3rYWLkf2apm8eIWiMs46rte4G4xYQNUqWPYZ5xNjvdD8J/Ee9O5ktBP/1C+Rh7yOsp7D+6SGAxCdwuAV9IwilKopI8NRnjBbQr68PI7K9trzk6G+ALeAFeDVwN/T9dYQ1FUVobcZbLyivpaL/rs9vekiB0Q+HLzRxahhYx8p794sKpHjADQQCrSIgRRysSiaAeIIFkGLgBXAcKV4c4CEChHURBCqg+2rBodwD6RsHjgIdPYca8N/o57tyzl0FH/v+Sserqvs6p/tq6Xml9PdB3Z8nn9esq2R2CTitxxoCzwE3Jvtpfi5swb6aXqsnMs5dHwaHgEPgSz3WF9jUMLZ4yUhzXrmerh5PQa9LS8c7oq8bQACzF/q6HbnWoL8r67mhr+3X38s9h24Qgk/lNftFGBrS9wd0/wN6LI/1+Pp17kUQ4KsL9MHhANx6jg0T8XsvCWaHdeg7omM58so12gP/Pjg5Pbdl8Bpw5IgCvB/JNfDz4CT02qzq+48gQKaxl2nredUQdC0o14anMk6HO9CnISoc6rX/SyCs6tenCPgZQAwrjyFzThl49nuh0vZmH4QfQbelc2pE9t/cBLcIzilkXu0i36WGHFN3FYJHZVwPHsBgWsclBAdbMPhEgk6GdvV8DoAJBEwt6/h2oD+pc+YbvtUY5r//rx8zRI0uD7lDH0F26LFLgiprRLUIOCBIjwNucYTP+HP2iFGjwRY1nvKAPdo8Q9Kt2vyCOv1KNQ9RYRefBF8qM0geUPcIcIJtRqgQ5i5V4rygjwHaNAjjUqHNOvfwaPKAf06Du/yWIeqEaPN/Y4xjfEyXIE8p8IQCzzlGkC4iVQwQos0QdRaZY45FlVnuWs8Kw0QzyW2mM3iLy9bo1sgcDOvNwbfJrG/zKSZsIEWZZS5wm0u2S2yK2RmW2VC5hSlc+/H493zAPJ9jzJnDtJjhLj4BSiQ5IMoOI4RpfgVoNWbGRrpSZ5AodZ6rfMXIZR189T65j4/DTd7mInfwcaz59BSr7JDgOWk9Z/EbNCw4I301aVr9eDwnzapJKSbDDMuWGVMmpUxP8cIxhRFIV9RIj9eZsOMyxUOuc405IwfERzz/fI6qtKJAhmtcVy8sAUNnWLYejk3CHKfIT/m+sjxzduFmQFSACdYZoGmDOMyiYo9h1pkgTNN+rinQBIhtWbbcQ6aYZsUmH1cYYYNhBfr6mWIVk7pmQkvKytoTyUPAJiM/1yLfMCGNHHqaFZaZYZoVHHw2EUNZ40Nkro1PgPf5iFWmbOqdkRZ1uMSuFrtlkhQ5TgeX9/gIl46VwR8gyXPHlTF5g3e5zC1cOlRI8IDjSDfzm7udrW4SeyT+ZT3HoRkJ4+ckZXNy7al4zDbaPDh/WpjH/qoAM26UY4Uaa5mTwnz4tixqA/hMeBv0t1/QGgyy68hiohk5YlO+jYdjolZjI3aaRE06WUOlLo/SxxhmlwRRorU2t2Ov0Z/s0KGfGW+Z/ZkgTQa4wbtkTv0rC35Hii9Yy6UZaj+lkTxiQaEWYTK1LRpzR7jjznKcIjtugj/hJwTwCTZg7fxJy3rZiDmcTT+mGBulE3NJsMNI9QDim7i+x34qSH+7K6CLHvOX6UkJH/BekPJLDBx0CZZhe04AtJHqAZfjt2icOiKJq2vwPJkmGnnEP/X/nKH7XRqTR9hxEqxnjtKhnxOBKnjCDhOf1RyXhz5nmRn+VvVXUjtHRHL6ODnM6fI2D5KnWU1H7YJx1Z1ieHaXsbUtnk3GKZNkxDtg7awwC4ceda2KYT8RZMdJkPLK1ONRjuVrJOKf4xlwswqddD8VRojnnzI7+SWhmgCTA3qfGWYPHGEvTvGQsNdk1Z0S0KnxlHixTTRdZ90dZ7q2JmEQpTZOzidxUKMeC1nQZLRwAJ4ATYdCyGD1/Gl7rzC+XmmvSLjxgkfJY6S8MitMc7X6a0rxGAU3Q3KyRPznbYIRaKSP2IWui0eiVmP/XJChSpft5KAFaKKRA/GZCwjAV4wkcJ0O9UkBVV827BL049FIHsGjn6vcEGmks8mAWyPYBkICFoe9JqOvpAlPNdasH2+SEt1ZWI6d4/WiFN4GvPte7T8A8DA2JlL1t4IMPelK+m6vSyW3x+PJUdK1bfYiMTz6Sde28QMiXacHxfOjAnz4FYpOWpq/pS7VdIjvln8NZWjmJDCqHIuTrFW5MLhMz3GY8xfZdYZxRWfzjd+CeBZsMKAJCLvI+IDtMcwlFrnCTXwcPJVrGnZQD4df8L6tMxLsMMweH2volfgQD1AiaVloBTIMUueP+JA8WWVHXbAqBuMrZthYCXb4r/hvpenLID6ODXiSMIaBr9RuBpQBaWZXSKhtxwgiOXVVVTCIsTkpKYpuagUDlgjDUNj9Lh5Z8gra7Vop6ArTduzOsEqdKFf5WOvOfuZZsHLbYXZpEeYMq7a5afzlxtmwUs4EFeoM0tNrIaEREoBl1B8BfJLqWRymaX12JfBjxB5jlk0KZPiI9/k+P+WH/Ngy9408+BrXEQ/qlAUbp1mxiooBJFW7RMDWRKtMWe9ED9f69xY5rvMoYMe4Qz8TrPMpV7jIkjx/GGecDdI8V8WPq95tI9xlhpYy8JoMWGAzSl1VJzJOBtAUEHnZSqkPdO4agNGsAwLK1JtileMULWPSo58cm/Y6GpDtQ/5ImZ49pnjIj/khP+THyhbscZlb9CMJvneY5X1+YRmtkjTbsWy8KR6SJW/ny4SGb4woeGbSosWGZ8oyQAFt6kpytEe/SnVzePQzx202yZKhwE2uMMuSXZd0yNr62ci2B2jqfBZFzw4jvM9HVvJr6gMJ2rtD6Xc0nP96PPQ8BJR5HTgmIBIuIte8gFCGRqDPRYCz/zd5fxfcVnru+WI/aYFYIEAQIEACJCRIhEiKEltUky1atNVWf7g1o1R7t4896ZTP7MnsOrsqVVOVu3OTnHOVytVJpSp17lJJVar21J7MTpx4jj32uBOdka12y6bN3lSTLcqU+CWQghoUQAAEBAIEQIDKxfM+L9k3M07V9B6fNqrs7pZIYGGtd73ref7P/8N44TU3EVAuhoAwXUjzb4x/O03oSwIjCKAWAjcOxSpwCpjgGMTCfOaR+ZYBc0wjhlUVRMAUw9o7aCBAkQcBS2JAA3oN64+6+R0j9WQIAbQ8CBPKZ/53IP97lcee3freib87QkCy6+Y8HMCpb0mgBsYzkLPmvTPmfKgsIQZdw4b51G/+LoUAgxUBnejHSh+ZAYbNMZ6X7+uclmM4bJnfD8rPuuaa0A1Hr+DUWbDBKh5wA9AzIe/RaZm/q5jvdIZjIK/PnKsD8zMK2J3CsiUJwKk+c0yv5L9fFRBgzT1x/fTavZDzVzTsPNpyrV61zbkCOntAr4Cvnab5PQ+82sOut2bdnMsqnEohgFefOUatHwwwW6+L1PTVnhxP9cCc50HzHoPmeoXBOW++qwtcALfPsPtOeOmVlDHbRNZLHxxWzLlCri0K6HrN+ew239Vc11PJE589aL6jT7636zfv6zF/ljC/N2jeL3Hiz42c1m+k7F0jcHRk1sKkMDcdr/lvPe7XzDH6oUuB6zb09JvvEJNz0ROQ3+s9Y37faz63aI7X3G+Mmb//M3hd4KmkzCLeEQ18+KnTR5kafg7pwqXFPgFOc0TEsMM8tGngY58ejjhFCy+vOMUeYTwcUsfPNueQVFFhL+3TQwsvFclKNuwBl895nW3OUyJCAx9NXBr48NCmnwJdHBKhRJEoNQIc4OOlARprBNiln24aVOglxEs0SfE0R7ziFCCsPU2WUpkwHMvIAGLkLRNO2Wf9FG2BpIEFWRIMnfDda+I1IFWUd7ln3y9KgTh51BewQD/3eJcgVS6aqPhx1gw1X4C2lnkAK8tu2BQRF1k1aax9ZDhnJMTXKBBFU1Y/ZZZuA/TVTTF4koFYIMoMC8TI46XJiJE+qFl0jDz9FAmzR4Is73CPsolGkMThfSOH8JAkwzBpqkhSGxz7DUoYxr8mRp49VBrdokwfGq6SI8YC19hiGAdJ9VJQTf0HlWkWI08dvy3GPuK7/B1/SYF+NLRDJoxSxIwaM+cOji1Oujmw3jqXWaFMH66Zs46yYeWsSTJW5uHQtibQCtpqgSeeiWISrH/XwbFFrrJTFXjTsApNFBsmTdNMRts43OS+kZvkTLKtyLq0cPrQMEsB5rhBjrhlZkqjVKSDw8/4HmKe7GeFyxTo56oJEWninpjKurY58XPADea4xV0L8ibY+dL5G2X9H2I7+s/6OmVqoQ4eIpkG0UpF5NbNrCgiEhF8hjm+wShVR4C2wUwFsjBaek6GJHtOmJTxeApUjsiHIjQdl75OmTlucN+9SQsv7/AxmobdlYFL+W08HdgKnQXj6xZknwlWWAmN0TQNjQJxVUcSpcdZo+kKW6CvUxblCFFeXhDmUrKZ4fX1dV579JSukrC0xlmj36yZ8wu7lAmznRhgkxG7RpPNDI0AJxrcIKdqIssBYeG55hmcdob5deI6fg5oul5ONcSj76Cni6djg5ZxmI1EiMw3JNTBDFRfyz8FoPfxIYdJkbfGm3kb+PPFlQi7qR5JESYpAw+PyNYaEeR5HRWJ8vnMLrXQaaoEiZETxkqzRZg94s08jYT46UUpUoiYUKfG4fEQPCDHfWH9BYHHwjbEAy3faZw2HPR0URs7jZcW8U6OhlF0NEIQSTeIrDdIlWQS+DLeJVKzZp2sm+CN7GNuNe9SS5zmN4k3GG5u8Xpmnc3Qec6kSxCFpuvF04FIvsFAZp/p0mPLyhvvrHKqDaeKch7ipQplwozX1knWnst5bwuzL1A8wktTALROnfHSNpF0A84ZrztXGEo5YozUntKVkbCIz2KXrY1EuLKP2xTpKREBOuPNPOFmmcFsxbITBx7tk+hkSdReECgeEa/tIhLAFh/xPl1pOf4Xl0IEKw1W3XFexEKcqonM21fB2FT0EGSfj0PfZokpXsa7OAxANjRAkSgtnzQtMfKcaptEaY+soVLKZ6RiKTZD5wk2q8I8Cvlo+bpYv3SWRkoGSuHKPlknwXhpm88TY2DON23Ynh1Ak9DbOBz0dJFxkvhrDZqOS544iZ0/D4PlFa7YgdgoG/yWG4gjaDcFI5kcZ5Xv8pFloCs7SO4/YTJpTXL8LNlgiiUL8OhQLcWWsb8oGvllC5XrChsvzV3es/XZAd0m7KrPetzpULFAFA3Y0uGtAG89PCPJDAtmn5NEWT8HVt6qz71RNumnyC3uGk++PWaZp0DUylZH2cBjQHEvLQuoqE+t2o6oCsOlZQF4rUlPehtP8Jgplsgb+aqy/d7iE1aYwE+dFi4rTFgLk2EDoIXZQwMY9L0P8FtpsWtGhX2ULetKA9cUVFMrFf1OdbqZYolhtrjHu6gXswZNTLNk/KilbnBpcpP7qG3IyYRZtbHRa6I2MS1cJlk2PnJiZ6C2OQd0s8pF1MNar6++RKXhkmaYcVYti7FKkMusoH6fGu6h4J4Ck2mGLautg4ceqhboFMCw8CXAVEFsHeJOs8ioURiVCXOTT2SvwkufYaMCdm2o3LubA7YMC26FCTStNkPSsCxF5qqptteZx28saFS6HKTKHW4bplyfWW8xW5/7qTPHjS8RCTTgwqXFKhetB5+fOquMs8EoHTxW7r3KRVxj/aKy3AWuWbJAB88fHYrxlTD0/tur0HsFAaQMSKQgBmCSKIAyIlHsIKDKCPJgvWD+W/25Kogcs2P+/ToCzrXN+yTN39cQ4GEGWDY/60GkfiWEAZVBgEYF0DwI6HEWAfjgWCJ4BfiXiKTynwH/o/m9NDCNMJ36zM9GsSAjJlyDN4Ffmvf0YOWy1E6cF5Ul9gE/AFSGe9b83bJ57xHzHuvm89423/mpeZ/L5riMBIKA+f0RczznzPlom/ObNeelBnwP+D+Z7zaIgFsRjtmGJXPcpzkGhlxz7RLmmHrNNbuAFH8h8/t6bvbNP9PmWNSnzQv8I/O5HXNMafN5PnNOQoivXQQbJoKRgHCeY+BXGXlj5mcUwLpijvcVMG6+0zyyjtQHzsiQSZrj1P1MZdsq2TX+dzTN8SyZ7/JDhIG2jgVJGeMY1KshybulE8d/FlmriwgzUdmoV8zx9WJ9/8ggoJgXKwfBa97rgnn/8xwDduvmOPWfV8z5XTS/a/zZLOh6zvyMx5zXM8A3zDl8av6pkt+MOU8hc5xXzfcMmfN/FiursTvMmDl3C1gp8Ms4/B++/j0sWRK8wksXh3Rw6KPEE8bpp0iAfVpm0gUQoIamhPlocJojXppJTjd1XjBEiJf4qbNPwEx7GpzilaW8N/ARMOk4CnxNsEKNABFKlnbvo2GnbEUiuLQIUSFAjTxxeqkQYQ+HDl2mweyjzBck6KfIaY6swX+NAJr2NM0ibRz2CbLENKNs2ge0AlRt+zCXNLIWrvUTu89bVmKmDDJ9qdwSxFdigsckyPJ/5n9ti2INolhjHC8tW4TEybHBKOqd18LLAtcMICjF1zBbzHGDcVZJm4CONcatDFZNkmPWk+4hy1xlhgVauNa3UHxYdigifnALzBAnh5emAXPE7Fwn2iNs2oKoTrfx0HG4w222SPEv+L8AUjSp/PUAP66ZEj9kkhRbtsnWgmyGB9TpNlPgFGrOfJFVKzN26LCDlygFHMREXoyUnyHhF9Is3OemmaTHrbRDihOHlgHutEgVP5uClWt0c4BD2xRRQcZZ44BulozMSMHUFGmaRqKq50YZMpLc7LLEtC2QdE2IH6SAJCNsskXKnmdNHO7gkOEcLVxiJrtv1YSENA1jT9dnv1mXTVxmmWeBaxagDrNH2xS14vHltWDlT/kB/caLpUi/YYVKct0qFw2bQUBKnY4f4CdGjmec/wp2nz+t16s+eDJ8nmQzw6uAeGmpGbg+k3YTPVzKb5OIZq00t6spE7dTRWhFhLn1RvoxpVSdp7FB+jvS3O05YStzAkwiY503Mo85TCJABCIxSySy1ocvkD9iwF2nFjpNYPnIPs9KV3xmPxGGSJQCdcdP8FyFa5XPWQmNscY4tz13ICS/9yIZwkuT/tI+A5V9KxOeKD2lHjjNO+1fkwmcJVl7ji8DTy8NymCik+OhM4knKSEMUaeA131By9dF3fFb+c24YZbQbBDIHwFHNJP7ZJwkSV+GAlHOuCXxVgP+MHOB17JP6Woj1h4xWA4JWDpb+5RYIEeiVOJu5NvMnptnk1G+nRefwEIgSj3g543SY56kzjNe2gYHqm6Qb2Qf8VniMgmEtabS4a6XiPdaqkItdJqW6xWQtiPMzEi+QeD3R3ABXkVh8FEFAhLGcOD6RYYNjD17Dnl4dRk+iVzn7eynNozhVA36aJCNRMTzsAPJyHP+PnHFyq+TZMi5MS44L4iR4+U5YcdFftWg9uZpvI0jqjGfMMcjDmcyYqZ86EJ1zEeUIs8iAj4lfRnqjp/B9QqHMfGV+yIlC/YBM8wyTz1wGj9HnKpIeIs32bShSx3PaQgJAKiJ5IPZigx7Yz4BAgOw6gjjZsMZ5Y3SYzw+uJTZZvdKD8HaPr4M/PqSnAsn0OGN9GOSqQy1yyJJz5JgsFnhjfXHEpbRhsNe6Gpih1Aq8f+w82OqTpBcSNhRE6wQ+PURBGBgbJ9GQOSwLxNd9OYOzT6VZ6T2lHrAR86N0UNVgLomkDDhJwEB4y5ltnkVgInKuhzDS7k3PGaQdOHRC2GrOkFGak+ZD1y3thy1yCmkYP96v9KkWGaSLYZ5j7vsE7ShDxqcBdihhKa1aq2nDP4YOcsMy5sBFIicPkaeMGXe4j4bjFgPMuAEw7+HfiTlUyWRyrwVP74ha3PyL/mQ7/NT6nQzwwPLNAXM879l32OYLVa4bGs5CYfzWxBFJKYCCi4xzW3uABAnz31uWgsLHZwCjFO1zP0FZixzbY1xcsRt3bJFysqRk+TQsAYNatPgAj0XWlcpM9KlaesQrcmVVace1D/jA8ZZY55ZRtmw91fK+EeDDH7muMEkywBsGoWCyms3GeGv+RvUp1nr8xE22WQEDduIUmDEfMYWw7amzZKwARYK7vUYFt0yk5bBqEPTIbIsM2kZZre5YyxZ+hhnlRwxNEBFQTa9JsrC9NJkk1ESZLnNHZaYxoOEKilw2UPVvJ9ITKXevIhLi1v8ko9438hNW1Yq3cRrbE+yPGDGApXXWGCaJXsc6nUHsv9OmrAQlfr3UWaBGRJkiZGjaRQdgK359PNUir5P0NZnaiXTwst73KVM2CpHBHAUEDzNMDeYY4isAUr3bB1dJMoUS2honzL48saaY5i0qeFb1hNcrWw2GUUCZFpGTaTg1H/49dVIbicQwCuNgAiXESAgjXjn5cyfKfjQRECD97EJoJp0alNSAwj48WuOAa2iec8p87O/R0C0jHnvBMeMKA9SMEYRkONtBGxT0OSbSLHQMO93wmuOx+Z3Z8yfGUo+DgKoeBDAqsd8T/V/e8YxAKZg1BXzHnlznLMI0KFBASrh1c8ZM++DOSeT5t+ngP+3+fcLWEmyBfSK5n9j2LRe4DiRV/3Pfm3eXyWqNeCfmu+v3y3KMcBX5NifTd/TY86jCYPgGQIQOeZ/UQSYHDPff51jgCphzu8MAmrlzHv1ciyZfhMBi2LYFF/L9oNjz7cZ81l6PnvM59XMZ79vvu+5E++9znGgwxLwjxEw6p8ga/KCOfYhbIAL6+bnTUCL/X4Jcxy/R65fD7KuSuZ9GuZ7RE+ca5Uj67pJcAx+xc2xjHHs63JyDSeQ9ZA1f3b5xLlRcFmDRebN+zfNeTJejXY9xsx7RhGg9pw5Rl17z8zPPkPWrAK2Ku9um/fR321zDIAqMHzuxPkMAX8evsf8s/82Ab29JMlQ4IKhvadocckCDlH6TME9ZlPslJ22xTCTLFPlEh/zDu/wsWWrCRh2LB18RpKrLNtpZIEom4wywQoXWaXIGJuMECPPAd30UCXBDitcZpw1coyyyagNLpD0VaGXq6+DylzHWbOG2DJTlg0zSNUCen7q/IgfEiNvJphepo0HjHhFCKhxk/uG/TXMJiPcYI4qPeSI4RqGVoYkMXKsMGET2ABbtCgAdIM5CzqJz5mwF28wx7F8VsyEE+ophBS36jnYweGckbCqybNKBtSjJcsQknhbsMCp+toVjNF0HUlfk2tctAVYhiRDZOmjTNtIH2RaWDBJcwJAjbNm2JtS4C0zSdNcb/Uq2WAUNc1dZpJrBl7TdXDRmPi6Rqqa5Jk9V028Fnj6Gd9jhgWiFG3BCjqRlIJxhE1b8OlEXMynV2niWsBUU3uLRI0EpsfKXDLcQlO9HDqWraGFfg9V1hinm7r17Mmb66ly5CAi8Z5m0QBkUuAViOIaFl6dbuOVV+Bd7hGlyCgbhCmzyJT1CFJG6AQrFgTWoJlucx0UBNK0YT8HaALzEFnjg9hv30vXVQcPCXas5ONf8c/5S/6OJl7SDFtg8e/4Sy7YacvX97UT6WOksk1XCQ4jwuYZyz7ni0SEwLkSiZKAKq88Iu88dAXIexEL4Y01iWQb1vepljhtEuS8+B25TsocdpstNtwRe79RgS5HGHqHMXBCqwQWjiAhPmAUgZgAVZkZaYqaeJmpfca19ueAMMcA+ioV6gGRs8ZDeV5Pr/MiFaI3W+HlZBdNvASbVfGoC8n3eHUBnkUGCCoAEgCnLRJXPwe4zRZNV5imy0zyTu3XtHxdLAeuMFN6xF7Eyzczn7OePCtA0Ev47NJlxpvyPYKRffqb+zyLDNDC5cVUiMH1CkSE6TgSeiqgWkiCKt7IPKYRkWCGb5c+gxyEI2XajsP7fMQrj1jQeOgQJ0cp6SPZzHDqKRCVfWaw8xveWH9MIyGAW5kwhKC/p0iveyyZ9NKCJuymeqjSA7EykXaDPyQu8Nr6U+s/rH6xxUCEAlGWx67yg3M/oeNxSPIMPPDychfByiHpyCAXMi9wIh1exrtw2h28jSOSZIg8abB7qYe+TpmqE4SahFs4Tod6rMxgokIgfcSLSyIZzRNnvLNqAMlDtkJnGS09x+8+phwI8Y+yv4F1KLzdTSMhScbZ0BAuLb699BmNMZHK/jp2nRuNT+nEoOM5TWS9wcsLHc4US/x97ArjiVUi6QZ9oW1OFeEwBl3zELnSkFA0k3rrbRzyhmENZiMRgqEq/mZdvPKSh4TZ4/PEmDCUXAEMym6YKAXeSD8GF9bHzpJoZnmaGkRDhhzajD16zsvLXew5cq3PpEvgKR3bspzD9iBuE3ylhvWdOZMpsZ0cYODxPq3pDmGnjKfTERA8f2Sl3H4O6MpDIyHnIbBwROlNH1shKdh1P32VgGTtOW4TViIX2GSEmeYC47Vttl2XY3nI1/f1Nh8TI8ddbhEzagGVsLbwol5vIKFgCgC9x128NLnJJ3bPy5C0wCyI3FCHqCDAxwF+y2RfYYI9w2ITlUAfeWIWsFJGkgJpRaL4OeBf8H/FoUOGpAUhwpSZ5zopw/oC8Qh7wDXLbqsS5LfcYPqEHFEBqCwJq7zIMsQMDwgblpseQwcPZcJkzQL9hCRBJESnjUhU/46/5L/jv2GLFP1GsqkBVlK3yn3gmJ/X8DWRRnptbTjCJuJrOGUVBFpvOrRZZpKqGUyeTKJVBYQMf4oWRNN/v8iqVYQkyLLKOB/wczNUFcn0KuNcZ54tUniNFPgmn1iPQB0mhtmzPnIdHHrM0NaliZ8DWwMr+CfS3zQHdBvgM2P9AO9zE027ViWHMPZSqMecWp3sId7UIM+BKQO0aYDZDeYo0E83BzY8Q4gHB5wzrDMdwArg2iFH3FopTLFkh9AKBGsAiqok1FZGQU0vLXLEyBGzahVlzMXI0cFDHT/3uckky6hFz8n+RWvXBDvW2/kaC7YP81PnLrfsMF7CLVySrNhhmwaWnPQXVG/sSZZZZAq1Hxpmy665bupkSJr6Ok7MDLn1vv7P66G3B/yGYzZVHAEzFFiLcwwKVRAwo4EADDPIQ0X97gzdnggCAr3PMeB2zvx82vz3ZQQoKJn3DJnfzSJgQ8r8zlOEbWdCGgggzCEFiGbNn2fNezaQZ4sGa0QREEo/r40APVmOQcdLHPsB5uSzXv1zOLUO/A/m+18yx/pN877rCBA6Zd6jgQCPmuqqDCo93jfN8VbM+7TNfyfMuaqYY+1BHtJvm9/PmfPwyHxWFrjNMRj1tnlvtfNJmv9WcCnNscddnGOWXuzEzxTN8SSwYRKEOL6ePo4ZglMcg4P7HANuCXOMKQRkXEDWwQ7wL8x3VBDqbfO9pjhmNcJxum3MvM9lc2wKYiY4BgtV8qxg5UnpcoJj0Et96qLmvRR4Pmd+73scg9K6xsfMudXrp+sqjawD43FIE1lbUXPeKxz7zkU5Thn+mfm7WeAnyBoKmM/kxPunOGaWKquwbY7HNefLYz4TBHBTZp2GZiTMOcgi11v/PWfOuwKxut6zCNCYPHFO1VfRMd+hhqznX/G1f/2BCRLs082BSfyMWrBFiy6QKaxDhzXGja+FTJeKRK1h7zBbFoQQA1gvCQpsMEo3B+wbyneZsJX6DbMFYJmAOlXKkmCZSdO05Vlm0koSlSnm0KaJmMlq0tgmIzZJV4tNlVAmyHKXW9bcVgCcczzgGhmSvMUndnJZMGBPnjj3uWknZ+I91mSeWSTtdAMNuPgpP6CJa0In9lBPGS0KJ815nec6s3zKPmIerUCbSk03GaGFi3rh+U3QSJGoBWjmuMF15i3ra5MRa5yvAKEGhWwxbAs3L00+4S1mjD+gesbFzaRQCtoO97lJkgyfMksPEm7RQfzEikbmq0CmBDhMEqTKW2ZqXabPyIcXaCLBFeLPJqXNJqN8xPv8V/wN4nuyZeUGKlOYZokqQRIGXMySoJ+CZQIU6QdEIinNRpMZFlhkigQ7ZEgyy7wFSpNkUFNf9Y5aY5yLRrKaN8EuBaJ2mirMuSSjbODQYYEZ1rho5UMeOpblJkBwHxmSzHGDMHv23pGkaFmnq4wzwgZRCua87VtQso6fHRJsmCmoNiD6nWUKvWeK5rJtcjYZNf6Jm7iGaVmnmyxXDXCXtfdaHb9tWOKGHXBgmHnqjaPJwVsMc40HHFr/ha/vK9QsszVwlmGekwkNUiXIrxLfYpJlnsTOW6P+V1H4PDbGeG1dQjIQkI7Osb+M120Z0NTB36nTWzykEYC+QBl/7YiO6yHV2WKk8ZTa2Gk6Hofe7CFdL8EbavL3b15horlCIH9E7bKAEvFShZXIhF0rCi5NVIRK3ps7hDQExo4gD4PZCqUZH8FmFbKQnUoIiN/epeoGCdfkIdp0BciI5AW8UZ+33UQPg/kKX8SEaeaJFzlwMviWoP6m3BuFSI+kt9ZgLP1cnp1tmKg9phiIUH5TwJbDXgFIv5F+RCkl54w83IjNUQxE8AZaDDT3afm6yCTjjGWe80VSPMy6GhJG4W0cUQ71sBfxsUWKIbKcyZfYjg3QV9ulNimSzCmWeBWAU44EHigLWgHZp7FBLjx5QaB0xMalIVqpIolSCSfSJpJv8CRxXlg9Pgk3UbZ2qvSCbCTCaHOTHTdB2Q3zE34gCZF58AYO2Yv4yBOnmpTGKOhUzT18JGAnEKztUw/4OLNUghhWvgbYWtPfqbPhiFQq4yR5rfmUesyHQ5tsJEKiVGKwVBHgc0wY0R8H3uY684Qpc64k1yQbGMQJdHir9CmnGiIYeZEIEvBU6P39IYwZdpzjp5cKp4qAR9ip1X8c5Fxpl1MuFEMhwpRZCVxmuvmYU0nxz3voTDLurDGQ3aeU8DFeW2c1MEYTL40QjJe2OfUUfjXzLb7T/h2koZiIEnSrErSRgli7xFroAgRE9tvCxW0WqSXEa3K48pxsaIBIb0PqtzTszfroRDwMzO9DDF6FIF7bhaiEoEQp0nE8DDzdF3ubBAQWjqi/2aGREEDw1OMjiIkvZjAg/pNrjOOnznzkdb75RMDy4cAWjiug7F7ER+VlL8eMiq/v6xJPcPHxLvest6qCKnkja5zkIRIiJkywG8yhaaI7JCwrr9sMkHTgmCBLwYAhYkcSpY8yMfKWcVdl0gwQ61bCqSEsSTLGA3cV9Q4DAddi5L401MwTs9JUTRLVofQx42yDN5njImsC7CN74hLTNslWE0KXmSRKkU+MTYoMdXcMMNiDhw4ZzlnvuRRbvMmcGQyLR3KZPn7B+xZgCVJlnlmGSRMjx0d8lwMDHAWRBN073OYm98mQJEyZWT5Fg0KOQcG2GUB2W9DoGgssMc0qFy34BAJyabiZDn03GbG14ggbFtSa44YBLIUNOMIGy1y19jxJMnzEd5lghbu8x7SR6SprboUJe10kWOwat/glcXLWhkavySTLJrTulr0OWvsoAJrhHDMsEDbMO/UZbOHauu/HfIgkaS9appsOVFVmK+y4Natk2DRehv2GLShhaSM2VXiILOrfGKVgh9wbjOCnzjBbVnI7ZJh8MXJMs2TlxIBRRYxzgJ9xVq3VjHp2J0ytrJ6P3Yhvs0q5L7LKfd6y/UcZGZrIdXifSZaNOiTFMGkLQKsEWfuIFSbsmhhlg1XjDa01s9afEmCzh4afPDYBfVWC/Jq3gf/jf3Q/+WoAvf8txyCOMqEcIA6vxuDUMgLW+ZCm3qS/EjX/PIcAglcQ8EBliurF1Tbv/08RUKfGMStI2Vox87MXEGAigk0W5W0ExMlzzOL7Jhb0eXUBTvUgwIMy/pRNdMEcV4JjYEfTZ4sI6PQD8xmPEADokhz7qb8Bvo2AHcq2wvy+Aio1ePU2nEqY93pijkFlrEvmXChQljJ/foHjYIw2x8yxBAIkZRGAJW6uhfHFwGfOwxjHzMU3EUBK5ZCueW/9uZB5P/VEOfnnJ4FREJDnPfNn6+b3VFqbMtdGpdT68zFzDEvAP4HDJOIRosf/PXPcbYSleFJWq6DqNzkG3zLm/RbM+c8iwGkA603ImLleEeRaNhBWmwK4KY4B0yn53S/elhQxfOYcGyDy1RSc+rX5eZW7auCbsvSUeamsvgZyrfWa6ppW6TTmmjXMMSvLrmTeS0FU/bkEArKFgP8Fx5PXElYGvPu/6WHgV/vye7rGVM5bAr5jPqdofn/d/LcClCePw0HWsO4oSeS6BjiWYuueoNdaJfhf85cUBS45YqQZ5mTyaoyclWlmSTDLvJFDFq1kQX0yFplmi2FG2PgSpTxDkmmWqCOmrnFyBgQqgJErNvFSN14ZOr1bZZy2kRzETSGgso5xVvHSYocEF1kDsMcbRYp59bVr41jvkqaRzmqB8Ak3OcDPFEs28l6CAxK4tFgzks9xVplghQxJDvCzyPSXZBFRCtTpZogsGiKg9Pe8mTbOM2uZUAl22GTEeJoJ4KXTTkmrEhnAElN26qdSAhBWyXXmGWeNu7zHDeaMpDhBzIRQPDMAZ5953Ksv1j7iR7PMJAX6yRsz6py5zlWCqGxGZUzKnouRZ4NRxo2xs3rIeI3HBmAnnmpOrGDfNEuWjZghSYEo13jADgl2wDIANDGuhddQ/7cMOOW3Pith9ijTJ/5PxsPmIZNcPTFldNniGgtsMEIfZbo54IBuey7GDTNQCn6ZOt7nJnuEuWrkJ6NsWg9AlTVkGUIMqYN22j3Bigl2OWCcHzPPdd7nF3TwsMmIbT5k7XVMUevh53wPL03OkeEnfJ9RNlEjavEoERnwTe6btSP+L1qE6xpTD5wRNhln1d57kywzz6yVP93gt5YBIWnT3QaMluLtBnOWLXnSuHmWeX7FtX+4Tek/42ss/Rw84IQ6TFYesxIaI1zZJ8y+PEsCcCoPRITF5q812AyM8o30I9iHTlK8Cu9zkxvMkexk6N4/hAq0ol10U2c1ch6XJt7GIcVAxDIa6skDBhcquLEWuLDiTjCekOCNgNugEOlhikU+ZZZhJJgi2iiRCQ1yIfuCUsJHJNuQZ52xe1nmKm8XP6XxtjS7i0zxRu0x8WaF+cjrXGt/Lj54AWEeFi71EKXAi0SIYLPKK48AcrShe/+QYd8WjMEWKS6yyhw3mIk9YDBf4XAIsqkBez9J0mWbcExAzMnKY16F5JwRgu3YAEX6iZNjILPPv099m3+U/w3ewHMOeyHcLNPxwIOx17nIKoF8g3woRtSA4/FShd1YD+fTu1CBzqRD7/IhgcQ+u7EeBh7tU0hESZVekI4MynVzIRtJEL5UNhFEfsp0iDklMiS5E5vgXT6mg8OLZIjR5iYr7gQObVYiF2xDdo0HhCv73ArdJVYp0UjJeohkGgwnt1jgGtMscea3JV5dFjm2rp+ORzz+Ir4Gr3yGrVSryHVoC1tw4Lf7jL65aeXxjQhE1hsEYy/oMj+HI6nLvqUGr718yuKlacqEufDkBYdD0DUG/Z0iOScu3x35/CwJvKkmEcQ3LtwsU3WDNnhkNXKemBm4ncrD55fGLMAfpMopMzAffFTBe2VFGMqJNh085AID5ucEtGz5OvTGD/lO9nfipTjWYqr2ObnAAI2UsAc/i11mmDSllI/BRxWCY1UCafEvnL80yXeav2OZSfyJTxl4tA9JGeKscpHM7AFvZB9zqgarkTESqR3q+Ln0aFtq2MtAU77TpcC2ZRP6aofUJk9LGnG+hBNom6a4aJ9xL8e66F0/JLB+ROJylpbvNC1cCsT4cwD0zvCcNNNUCTLHh/zP+TEtvHzMu9agX6W3dbpRHzll/2ioi9aKrnl+JckYFpHUDAoaXDRWF8Ke7+ciq7ae0ppNaxUdKOpw0UuTPjMQW2OcgmFNdPCQNpJB9fiLk7N1VZphHNpIavUWVXpsnRekyrvcY4QNOngIUmWVi1bhkCDLAjNMscgqF+mjbBnvKdIkeWZDwdSDTEGaNca/pFSQgW63HeDe4i6a0OqlxQYjeGkaUEsSZmNG+qvn7z3uskWKJBkr11SlRJ1uxlkjxRarRmEwxw1jBSPJ4Ql2rDRXfAs3WWKKnAFV1d7Eb4BArR0XmWaYtBnS1229NM8sb/EJ3RyYAadwLVXSLN9VhqEPmURDL4ZJkyFpr0ePeb8pU0MuMcWBAaaUdKC9wTUW8NJkhQne4R4PmCFI1QLSauOiBIRpFrnHu+bPxYJlhQlmWLBSYFEPHa8nXWvSW/QRpmyH0Y4BjjcMMKpA5Yqpr7VfEslqkwVmeJd7li0XNr2TpNAuIL6C3ewRNgFtfgpmrY6ywWWj3AhTtizA9/nIyoP95imn9kDf5SP2CLPANft7ymLUZN0MSRuCoaSIi6yyxjgdHKZZsuxQqQOe8OCP2E++EkCvcQZ6o9CISVx9liFez69DWmj8v377Om/7PoUENCJmkpOQh5pLi+HaNr63gSZ8cSXCmXSJWkImg81LEg8fGDuilPBRHOvH+U6bIPsceyO5+KmLt4ZH3uez5GXi5Ah2qlQdYcaMlp5Lsq168bnw92Myta1+J2hvaICB7D61qPhUdPDQf3mfU3lsglfbcXiQnGFkaoMD/PRQJfOdJFfflvSmHRK8tv6UL8YiZGaFceHQJlETc1+fDyuBAHg500Vv6hDaYgZcD/g4wM+ZRIlXIfPwXN8WcOQcrMfOilRtbE6mjZmnvEiGGPx1hRf/NMTgfIXfz77OBqPMMk+imSUQPeJFMkS4VqEcCDEYqfDqnKRkFWP9xKdz7DmSaLYdG8A/e8AmI3wz+zm1t0/jrx3J+bsA60njCZMQ6UDLJxPvRgR8WfhD4gKxRB5/sy6FhJHU1r4pk3On3aHpeomkGxxGYCU0xug3Nwnkj2j5TrM1lSA59pxiIGJp0QmynPlOid2ZHvFFmGoxln/Ok9h5uqlTnO0nQZbBdIVGDDJTZ0VqdkkKo4H1fXbHehjISyNR+l/6DJgwJX4HM5Co7OLpQD1wGqd9hC+B1BkhWGSK9JhMGi5VtqmNnSaQlQlj+Qdh8sRtutE3so8o/QufnYDU6eY8uzx58zyXMtu8vNxFdibBpfw2uzHxS3GbMP+d1xkiS6Kyy4PQ63xzXSaar6Jm6u85LedTg1Nm4OUF8TxphGA5IOu57voZSO+znRrg/PouNKFON7U36/hrR+QiIRw6DGT2+SIZsSEO5ZkwF/Iv2I4NcH5ql0NX/FheRkV+lHaGSbDDwKN9St/zEck04LIUzP5mncCzI34/9joxclzwvOBVDE49Ey+dzJ/JFBbEn+MH/IQC/XzE+5ZO7jEF18kwiTh5Ow1aYopVxo2nWQaXJktMW5BKJZM60VTfL02SVZAjR9xOf7VQuMEcDm22SNmCrolrk6LyxMzU6iLdHFhgJk6OVcaZMWBOnDwH+Bk1D8MsQwTZJ8zel4oZBS0nWKGJl6ssGwPdPlvgqBfFBqOoLOQd7pEnziajxu/DzwLX7IRY5RAiu91DzGjHUc+gFSaYZZ5lJsmQtF59WwzbwmHVJL+NsGl9Y+LkaOHFNZPZGHnSDFuj+zQpSbU05yVMmbvcsimye4SZ4wY/4CeI0bKXPDErOVDGXpEoavLczQGaSqZTWynwDizDJMsQVSQBV/9MmWEqF80ZDZVL08p7V7lovF1EgqAFeZAqy0yywDXKhBlh4wR4tmrBqjh5FpixxVrbrDExTE6RIm19TaIUWWWcKAU0zEL9at7lY+LkeMikuU479hgkuXYHleQU6cfPASqx9VNHk/s0NVbAZRf1OdRGRtmL6lUzY0qiOt1cNN8LZIpeJGoTgcv02e+o95M2Rpo47CIBLuoZE2aPCfJsmDTheWatHHvPMCnU26uFyx1u25TfBFkLMH/dX8/c8wxtb4EPDpJ+ul7CBOt4OlIbEoXt5ADns7uy14TyDKYrfINHEIAnl84zVfucrcB5A6xe4932x3SVROLnbRziBDoM17bZCpynHvAZw3QBbuOlCq8uQNmVde7pdOjeP6QY8rMb8whTtLPBRUcm+i3Hy2slIwvtiHQzOPaUrnX4w9sXGKk9JckzthMDnCvtcqZU4sPef8t6TOqhbup0PJAPRbiQfsHnqTHClLlaWudUG2qh05xqQCkpz071+CvHsEyQ25Vf0bUDeCTM4z43uciqaSQyBGv7lAMhAtkKXRXYnZJ66LX8U9Tg3EsLKnAtuUAp5pPmubYvPnIhH9/Mfs6TxHn8kW0cOsI8TPg4VYR6pBs8+5L46/jJTgnIPt5Z5TCJBeAuZF9QuuSjr9RApcW/j8keFa2V6KqBP3RA3NwnM7XPWA5c4RvPHjETfcReROqvAlFw4Uy2xBeJCGHKHPR0MefckP3Z8xx/p85f5Ay9PwSLkcu80X4MPqlFoxTYIYF7qcXgkwqdiEPHc5pT60ccpsDfrMM5CDarFFxhJI1lngNSe47X1nGbsBE5y1j+OZyT+nyCFS7kX1hZ6otYiMF0hd72c16OdUnicAamA495GBkjGFmnqyn+gH4OICL19aVH27y4EqJIlIHsPhND66yExogZdnwtKnVxPeFn8EmFrUt+lpgmSgEPHUZqT/GlYfvKAFtOirfdT+ExJEIvyAYG8VWgHAgTR2o2DfGpEoQrOWG7OiL7HWEDanId/c06ROBpYhCHDim2WGSKVsJrvbsS/JwoBenNKiVKKR8ZkiJrnhJbhA4Ove0Xsr7cII1AiWTlBdWQDFpaeLmU3qYRA9aAaehdPuTVOYAqPdZ76Ov9Kpm6K0aOyzgsc5Xb3EGDxHQopn5aYfasFFevRx0/I2zwgBlG2DAg2DXL2jtHhihFA7oJs2CYLR4Y/2BVJlQJUjCM/BRpO4BMkuFv+GvGWcVjWFzCuJefdWiTMsw8DfjYYNTINv3WI22FCaZZsomiGVMrTLJs/W81OVb9xjTNXhUFd7jNB/ycZ4Yh5tJikSlJ5TZWDAqkTbLMBqMMkeVTZrnIqvXuFYOYGOohre/v54AsQ/RTpI3DXd5jghXLgFMJ6j3eIU6eOt008VKmjxRb1i5kytjKJMmYIaPHAoUKIKq6ZI+wZULe5g5tHJaZZINRejhOC1amoUPHDkQdOlYd46VFjBzzzHKNBTIk6UP87NKk5HlmaiIJT5MaV4PMNGxF+lM/15m3rLUkGbsmNcRtlXEWmWKcNRaZNmuy2xIOCvRzl/eYYYEJVlCrmTg5/pK/Y82QC1xatJBwlnFW8VO3A1RR+gi2o/7ZWksCbDBi95NhZMhzj3f5K/7WMvIUzOwzg1yV/KtUN82wEZyXvwScbzHMZQOoqVpDa3+/Aff8HDDDAsOkjVpDyA5rXMRDx9rq6PqaZ9beF6oUGjFJuz/lB3aQL4JfOd9LTBO2LJj/8OsrAfQWAteIDLXJESfLEB08lGN9JGPPyBNnnuv0z4pxYJkw2UCCTkQm2FGK5AJxqmM9hvHhZS7l5y63uM0dbnKfBfcqmcTxlFs13S28rDLO+3zEAd0sJ6SpmuGBnfRvOiPEDK23GglaDXMnIR5HC1wj4wrdVhsghw7dCbkR5WZdggjkIjGheDplJLK6325MSTLc4TZFp99OBxbHpu0xt3GIk2cp8Drd1GkFxG+oEOi3UjpiWH8E+TOX5VTTotXVsaBFogH5HUfAg0JSmpfc23v8S/6ad2Y/Jk+Mh0yyyQjX3AVSyS32CNMKyKb28ymJQJcFtUPeiREjz+OYNGWaoFNP/JgODlvusDVzj1IgG0jgT8mxe+jQnayzQwLGsBs8LjiXOsYHad+CBXknJr5YKTFb7+DhZ+4HBJNVNDHGGxCJjVK6i0TJzJT5Gd/jFnepEmQlNmGlcZokk0vtsYMYh6bY4if8AC9N+scEAJmIiWE5yPmeRYyhOzh8FHqfJBl2SFB3/YQDZeKJnKUng3hTVK/MCQCcylMkSo44E6wwxw0WmKGcCLPBCBJznsdPnYM3/WwwQiaZpJs6/4YPicXy3OIuS4EpogHxTxsiCyGRfGTGkqQZ5qqh++4RpnxJ1r8Ta1uvqXgiZxv5pivXYyXlckA3c2Nh4uYYfuneYtKVh8MSU1xOrpiJh0z9NhihL1amhyqbMXmAyUNPklXnmWWSZaauLLJPkMtJmSYvMUXd9XNtbIEf8UNuMMfyJWnMc5EYRfo5ogr8v76KLehP6iUMAAFPNhlhhgU0DUkfcurZBOJZdoCfETbR+HmJfd9jhQnUQPYcGYbI2msuhsebOLSZYsn4pWUIUyZNyu4TAN1GYtpNm7u8x6fM8s/5V/ip810+QpNUxeBWQgqyDNkkNtdIBxWsm2TZTnWr5kENAl608BqgJGzlHG9x304U+ylQMEyTDh47dOjg8GM+BDCzS79xHIsRJ4+a2kqxMGSKxCQ3mDPAoniSZI0sJUaeKEXmuMEs83KfkLc/o+w1BVoV1BlnlQ1jAHzVePUpECcT7H5WmGCSZSZ5iJcmkyb1tIPHev5lGeKqYXRNsIKERdSt/6FKdz10qJsJvF7DFl4DAj3EQ4ciQTSEREE9ZYGpb6BrmJdpI+msUv2SzLSDB5cmTTMAu8Ecm4zioWP9YNSHpWOKTIcOt7ljB2dp47PXwkvBnIcJVuyUuY6fZSatN5AWKZrepcera6NAlBv8ljJ9FIkyzSIFkzTXwWOT8bIM0TJ8hX4zjdb3aeKVZxwLNv1Ph0Dql+jnwAaV9JnrrT5ACSvtCfIJN7lqvFbmmeVDfox69SnLMk6OAlEmWWbLJLqJj02dHqr8lhsU6ecmn9gpswL4evzKLP26v841t2lchq3Aebw02U4O4NJiMFPhsBe2Ymdp4YXOrh3GHUag45HBb4wcvjyMh7YpRHoYIsuWO8xrPMX3CL6YjdDXEdlinW68NHk9u04jZIalRRkmncmXIAt/mLrAiOcpg5kKtdhpht00K46wBjYY5b/I/o+8CsAvuUU5KcnYHQ90xQUA8ZUg7slTdsM8jIyRiOwYxswQywEBqMuBELGKMPBUulsPnCbw+Ih6zE+AffpKInUcjmzjq0h6a5AqbcchH4pwplSyoIs2rh0c7nOTa4EF4s28tTgRX6NFMOEMg1Ssr3Mk3aCU8uF2hInc8YhMN8JzLj3appGCS/PbkJC9+1W0wfnsLqWkz8q/VI5WdYL05ktE1iXZlTz4Qw0eRsYo0wdZ+Gb2c7anBoQZZ+TS2kitBCRQQ+SnXcZf7imn8vByrIv1xFmyJCQMwwPRWJGxRwK6tS4DHvh97HWCiaq9rxvGhy5PnNnS57Qdea/vrP+OwxgQlYFk19IRv3r7W/ZZOt1Z5Mml85ZBvRK4zHAgzdj6c15eECBThwSHLuRnIgQ7VQGIQ9B2jBy7A59duWy9v7pq8P9I/Bd8t/MRP3O+x7uxe0RrJbavDKDpua+m5DqkOlv05g7p872wkueJ2mNqqdOW6awG6t2BOonUC+K1XcqBMI0A+C5Imm2q+YLdRA9XS+sUIjKw/k7md9Ripwl6jLz42VNeReX4EuxCQJJQq26QQLRCsvKCbGjAspCUPfJ9fgIgjE0T9BfJNvi7xFu8yz1AZLluE7YTA3RwuJTfphY6jS97hOtr0fF0mGwvQ1vuaS4IiH8usMupNmy5wwSaf1wD+z/1V8soJ8ZZo4rYg2QZYo8w3+PnFgDw0iJPDE3u3mKYeWaZZtEqGVaYIMWWSP7J49KyQQDKvFPAfJoly9Iv0I/XsNQ3GGHTAEl+6lbloCFUd7llVSN1ujkwAMs1HliGXMGM2aZYZJlJ+/xVdl+3qQtEyimAmwJlE6wwZOSxLhLKobLSBa7RNk/dN5mzvml502tJLdRmmau27h1lw8g1Ry0w1kPVyipF0rxsZcuAHZSGcRCrDg+bjFrJsSYDgwTvaLLqSW+8Av1sMYxDhwfMkCTDMpMMkSVlhq9Sm+zgIqm4I2zaYbzWt+Os2b1NwVsd7msdpeQA/bmYUegoM7GJa+1MpKZ5iyTPDJDmtVJdldKqUiVOnhUmuGiGrPNctwMHHXZr//Iu91hk2q7rPkQarfYyIPtylAITrLDJCM849mCUYW/T7r/3eIcP+TFJ6rYH8nOAJOU6ZgjbT51urrJMG8eQEgQUrJv+SQPaNCgvRwxNcffQMcNmDyNsEqXAlhnSD5kh+hYpwuxZEG6SZcOolKTbW9zlE26ae9nlFndNvyEe02mGSRkPyRwxbnEXkF5bgXElIOSIc8NK0gVb+MTY8hxaD7H/8Ov0/1+7zx/5esJF0gwbWuyWAdN6rK/OLJ9anbim6ai8Rn9WE/k0HniYLVNUXyfLkNVS7xG2NNZhtgyw02OR9z7KfMw7lAlzn5s08bLMVUTbP8QdbgMCOC0xZT2ROmZa0jRNg3oJKZNEmz6VzTxk0lJhU2xxYJBh/U4dHPoN3TNG3qLhWtirsacubEWTR4yJdw9VHNoWVBONu+jThcqbpZ+ipbAuM8lHvM8dbtODeAfoxq+sMZGDxb+k+e6naDccma5IYZJmmDB73OQTS2P10iJKAZV4ObTJkGSJ6S81bIo4q5mn0lQVdXdpMoSkzixwjVXGecA1s+G4aLy60vVvct82rxoBHidnvb9EUrXPuKHxlumzN64mWI6yaQEUjV4Psk/M0LV1ouAxG/KQYft0cNhDfA7kc/OMsGFBmSxDlvKuQO5JfymVeYmB6CQdPPacxMjTb5rxbg4sdVkbzjJhCsZPrUA/i0yzbGjUrrmH1EhTwXF54HpYZZy8kXz2G58vfbhuMMIKE+SIs49IGMUrQjy01GBUI8+lsZe1OMIGEmaQEsCZSTQyfJJle15AphMt08DOMs9rxrz36/4qEeUhkxbAahqvCX1QXWOBDhIiIey9fdS7S4EiNfedYMUWPsL0SqE+JcKqqqNeeWHKaPS5SmpvMGeamCETQCGFyv+e/x0TrBAzJvICnMWFkWL2OJUSPDYAFWDXxbLZ/04miv6c76GeZeo3JnT5tAULm2YIs8mIZaGlSNspWoKsvW+mWbSsaYc2fupGTpqwVHxlwU3y0MgHXOvTJ/tO3QJSygKrI5LgKAUWmeKX3GKVceDYG1D3djVf3jeFoKaCqdx2k1GyJFhkCpBkr5iZggogdWCZfMOk2SLFv+YvaeLyHnct23AJkXaJn4jXTP4K9j4V2cSWfS7p3qcMDr3HY4Y9qQlufrPvaJiKAr0F+i1ImzaMTdu402OLIZmeiveAskDF32cVMRp+aPddNT1WLzxl8miqnkp+W7gscM0ks8kA68Ck/EYpGnmLyxJTdAzUqkMF3adaRv7wE75PnDzvcZc53qRMHw+NgbWaD8eRoYsGZDxk0gLmJxPo7nPTNjeTLPMO96zM/Kq5JwG7PvU50cTLQyZZZMpOyd/lnn0eagqxyGb6WGXcMElf+wp3oT+NV+DlK3KBAQA70B3MVniSPM9BT5dlpu4mRQbUiEFXHj4OvM1q5DyeTofDCJyqHKcRxshDAGpTpykQZc4RL6KrnWVSpRdQAl9awJ7dKZF7vYx20RiTY6gGethODlB1g9zhNkGqDDelaX2SOM9i5DI3uW/uzTbZwCAvE10EO1VwIOMmCXaEmaHPxhkeyNrtZPgRPxT/sjxkQwMUQyEKbhRiwgz5Q+IC1VAXjSvgMzZvvcVDmo7IudIM8/9Nvc3nV8bwN+sM17Y586iEQ4cPS/+OVOkF/toRjQRQkn1/jXEaY0AWdpM9EihxrgsqEHnUYMWZwJcR/zu1GaABm4ELvBqDL5IRsiQ4VQFqIoPSevQd7nGz8jvOLJQgAE9nBq1X7t3Ad2xz+WTqPPgEDG07wkIcb64SQ1IKRzsbRGslXp4TwIx1AfaIQO+zQ0ZLz5lpLrCdGGA9dpZvZB/x8rIEjdQdP5RghE2b8EgefAvia+ilyamK+NJ17x/yyvRD28kBvohFaMzIXjiWec4DrtF0XBlIlUp8O/8Z401hShzGIOfI4G0gK/Vh144Mz3tzh9yLfIt64DRdNQFha7HThq3ht6CBhw5VJ8gPK/+GJl5ygQH2zUCk4znNSuSC/NOZ4ND4+60xznTpMbnAADlXnmcObQpIEFaRfgmtqIm9RCZwlsNe+CxxmXuRbzGwLgqiOt3sxmR9b7gj9BYPcejw2dhlmsai5qCni0YA8sTwd+o8TQ2SD0VIVHYJss8Ui7hNYUXvkGCZq7wKIXLbnBzv+/zCgkBuUwDOc6VdLuRf8Moj6cefj41RdsPUHT8dj0Pt3GlWI+d5ebmL85ldNiJnoSJAR87URl/31z49vMV9WngZZZMZFtDwhyJR2xupJUkbhzUuMswW73LPAAJNfskt4uTpNoNUBXkK9FtZog7gguwzzyxFonQbkEQABQEpbjCH+qgB3OU948ubt4EbKsGcZ5Y2Di28tq7op8gH/Jx9gmY4KT2IykB3SFg57yQPZa2zSBMvWwxTpo8JVlCvXcUHUmzxIf/G1o51uumjzC3uMmNSUNULOW+OOEyZ+9wkTNkyqToIE1tTcVeYsH2jnzr9FGz6qDLytZbWoata3ai3sEqOlVmmpB7tB+uItYqoDzq2txS1RdBcpwJVeljlInX8fMw7qOpQFTTqi7hh6kyVW2tdqOdfh58xciTJWPBTa7Q4eXIG6NRaRPy4JaSvaKShKv11DQHHNSN6rU11cKtgbpUeHjBjBsJ5m+wrNVudqyzbdTTNEgvM2DqwTB9NQwBQH2YADVh7l3t2+K79tGvUGurBOsu8VfGIAkZ8sleYsAEYmsicZpif8n3TS7VZY/xLTM08MQOiu2bf7bZAdAePraUVV6gSZIMRWyd3U+ddPraApgaEdHCsd2C/scuJm+u0yrjFbzYYRYlqF3j6R+0nXwmgF6WES4trPEBNCB8ww9/yV2wwwhoXcehYwEIbOzWM3iHBDeZsg1IgygQr1n9qhQk2GEGNpzcZsTeTbITCinvIJHuErWRG5UCqf1cN+SfcxDFwmqQCbZEjzigbbBozyAWu0TKsBQVpAHtDJdhBvTjUv0i9dBR17jH/vsIEcfIsMmVNNEEQXpXcKSC5Rcp4Q8W/ZDK6xTBNvPg5YMTEkBeI0m2YgnqTBalylWXbJOtkQdHuFSbIE0ep0uqfoFRnhw73eBcQuckBfnse1KdAv782zQIeCu2+bf43zywiEZEJTpkwnzJLgX67qW4aBpueW22qoxTpp2AarSGWmLKbK2AReQWTmqap18/JMoR6iPVQZZgt/NR5wAxFovZzRtkgwY5lpnlp0kPVshAVpdcUUI2WVjBa12faJHWucJl5ZkmQ5Wd8wBrjBliLs8Q0D0/cyILi7/EMMXvv4BimosMi0yYBs0i/+d+KEQ4ex3279FNkxzT+Q0igQrfZZPXn40jaqE6jVN6pRrwbZhMt0E8Lr13rD5ghy5AtxpWVpAmkJ43l53jT+qSNssktfsm+2cg+4S3q+Jnjho0G/7q/dhjkv+RHRgIwAsianuEB4nkmzdKw8STTB5qmjY2zakEdhzbqAaFgmnpi5IhTMNKJLEPkDCAoctGcBWkUdPeaCZ2XJjnihj2RJ2aq9GG2LECRI2aHGdeZ5wHX+Fv+ufVHmWDFFl5aOACW0bFqzGaXmGKNcdv8qqHwDeZYZpIVE9WsJs7XWGCHhLB7ETN2TUwdNnwoZe/pOpxnlqphsJ300+jgWEp8gqyVdujficR0zXgbCdA9xw3bRGmCldzrMnDaYtjKbv3UWeCaMCtYMUVUnKsss2Ye1Mq4U7/AWebpN4VtkH2CSDLxMGlb9K2aQmOHhPULHGeNODlG2PjSHtbBYyesm4zae1v9diTteM0+K5I8o2hYcU28TPKQGRaYMpPVLbOn5YgxzZK9zxUM1cLkt9ywzFIt7NWrUSUr6uWo/iXDbFnZtp8DUxzJdXjIpB18VenBT50RNqnSY9ecSm4U8Auyb2XcOrXv4NBnnum6TyvrWYszuY8ktfIDfmbriG4D/urgLsWWYT40LTtv1Mhof873bNOkSYJF+lFfQPWyucUvUSmzDpQSZJlghUke/gPtSP8ZXyY5Vb+7Mnlj5Gg6ItmJkWPg0T7nM7vUAz5eReW5EqRKb/GQjtGVnMmIP0l/aZ/PY2MCrJk1+Z3s7/A2DilEemiYMLNyIES4ss/r2XXSzjBbgfOoR9Qmo+SIsUWKkdpTvI0jvpF/ZBrjPS6tb9vBnwLTbceBDiSbGeqOn+9X/h0znQWR39cqDJMmWDnkh/yIVcbZfbNH9oGmpBG+jHfZwVtv8ZCWr4tXxjpsOzaABgH1U+SyaaSrbpByIAQxAWCaLpyqiX9cNdADRUmwHSLLVuA8pVkfRaK8iIWoOkFeTIXAY75DW1hlRfp55YPdGRmEFyI9hkXTDQF4MSYmvnFyRDINWrh0PQKaiDQUD4e9gA9u1X5ForLLVOURTbz86tK3pAHyCDsQYJWL0iQ5UUlu1ZcLvY8PeWVsck41ILB+RH9ThgkvEiHSzjCfJS/TxEstdRp/s854bV3Y5zEgAbuJHrIkhNmJQ9e62Hx0PNj9ezUwxjfXP+dpctD4Yg1zQDenitjU1vOZXQBGS88pE2Y9cZYD/JQu+WTd5uFm5Xdy7B1ZDwU3itts2b6lEcI21C3faTsIfi3/lMnaI/y1I6nXa0cy5A1dphrqkro1ErH74YX1F6iX6DUWKBJlL+KDZzCQ2Wcs/ZyuEkxWHgtAW8Im/bodCaIYr61DBUYq2yIpC5zH8Cpwm5DsZOjNHpIlwZlMiZbvNOo3Vnf9Zqgjlhv1wGlevBnixUyIRgguzL/g/CM5X9VQF0uhK/LGNbGGaflOG0sJea4qqOfQoe74aURkCE1AnmF/LrXhOZ4ZYoZ4LC8wg6gC1qz8tUi/qYf67cBvmUmbjCkkkZzZx0bse2v9DrJXKKNOnqUbtjYKUrWseK3JikQ5oJu73GKWT2kaNUAHB5emBbA0gEMD0RJkSTPMR7xv+3mpbSVpV8k2WycIPyNsAgJC9lA1/y+1lRCC+gzQJ2QffaZ+xHdZZJoFZvgxH1qJsAaJKeFFiCzPLPlBrTSSZJhi0RIuRtjgHu9aOXMHx9bfUQq25tFBktYU0qvJd6jTTRvH9PXDTLDCFEu2xlxiyl7DqgE8NcRCAxRAetHv81OLHWjPVCXIGuNo8JleP2WA6YBT5aEanpchadWGiqGo71+SDEX6meGBxS6EFdq0wKuqbzYY4RNukiNOB49N7VW1Q5w8F1lliSnucossCQtGao+j17COnxvMkTbXVtdINwfcYM5IV8fZJ8gKE9aD+1hlUbdMPPWRvsc75IjTT8H0ND0We9Gav0zYWviMsMnHvMMdbtvvqPdV1MiujwG8A8tY1c+XWnzVeiu3DJtVfZi1l19lnB/yI9u/jbJp+y7FiJI8o0qQZSbpocoSU0zy0JLf/pjXVwLoqVGk3lSAvRGEZSSg1wLXmGeWJaYNO0AYXj1U7Q2gzWeGJG9xH4CrLNNvdMramOqXVuRe02vyxFGjUIe2lRoClOnDbyb2ymrZYJRlJkkaOdtJMEoptCKjvGZTGmXSLoiyF0m/m+NNC1RFDRil0cagxub7LHMV9eJp4mWUDZaYIm+ooSdZXgWi5InZG1np94+ZsGwqbVAWzWJIsWVZJQpiAqZ4FQ+peWYteqyFnJcWXlp2g9dNNGe2EjXOLBAlZ+RC6nH0A36CmLzeAKSImmIRwMquikjK4ZZ5MPQb/6MJVkx8tDRLKj9WCusDZhDvLLnekhwo4KFSoUUuLek2+jP6832IF4KY2+fNNDBOv9m0VrnIKhd5wAyABVuVRameVCdZa645Vy4tS3tXoFcbv6ssU6CfOn4L+JUJs8iUXee6Bh8wwwYjpBm2dOGseVwqy1K8prIsc5WPeQc1e22ahlKQfRfXMDlHTTS7/M6kBYV1PWRJ2IZdwBeRxI+YhB8FM7IMWb8wNXAtE+Yj3keM/V27MWnzDML2nGDFGMKK78S+TQr5er8u8YQhsmwwahlV+nCLm1miTnFAJtRNXFaYsAD3ZVYMaHSAixjSNo0UNk7esLIKLHOVVS4iyWUH9nqCXIMFZgzlfJkpFomR510+NgD0BOphIk2IACOSkuZB5NYiZZ9ghTh58sRZ5iptHAvoq//ISQq9Mn017GDVJPmCMP+G2TLswwMKBghREEuPXRmg6gu1xbBtkLQAVN+NBDukzd+PGo8KfXBuMWyZvYDdh1a5aMF1mX6eo5+iHbT4qVs23jSLqO9IgixDiA/a+3xkH+xZhsiQZINRAzqqybA8m0Q6G0U98rYYRpmYcfK8wz0LhrVxeIePmWXe+t2MsGmZiXovznPdXm/dZ2eZ5wN+RpB9y3RMGEZ0Bw8OHX7KD+inaCfqWtgpIy1Onnlm2WCUTUbJE2eRaT5llk1GuMUvbfGqCbbzzHJAN0tMkyTDGuN2X9gnSJ1uw+KTUcctfsmQOebv8hEqHdcpr0oqJERm33AABZDZYthO4jXp71iCXLSAUAcPTVOfDJO2INwsn5Iga1adyG39HNiGYMPs137qdu3ofVgmbBndC1zjupGLA6hHjHqmVOlBvVb0ng1S5R7vWMDoa/2qY70Xz6/vkqw9h+Yx2HM+vyv+XkX4TfIN+koNcpEQUyxx5kmJUswnMr0mUIN9gqQjg4Dsm/Gm+IR+lrhMPeBj4NE+PsGgcejQVZN/H21KEzCQ3yfREVaCB5GT1wM+qiGfhFU8keE0AQmVubD0gki+QbByKLVcTSSCDh2qIR8FR6TY5UCI/maRbCTCYKZiGPHd0tC4QaY7i3gbhyTJEK1UoCZ+tNVQF4cpAT3HnjwnWXtOgShLTDNRWcdLk3BNUnHDlOW7ubA9NsDAbyWNFAfOL+2SbAqzIUYOf0dYsgA0xHto/cpZqAkIVIj0oP5B/madT5nl2+nPOJSShB/xQ/GkrkC8VOHwChCFpuslWXtOV16YgG4TukrCjHs9s26Zrb6aXDNv44g3S59Rp5sM51h1xnHaHe7xDi+/Ley7XCQkzK8OEBIQ06VFuFZhBwns2SdIIH9E4NkRThtmSo+gBk/GzgvTjAPWQhekQT4HJCATOEt/aZ8eqgJumTXxenadYbZ4r/JrCEAgfyTsMwe6XgqweLPyO8KU2UOse4LNKnggE5K114hIWEeRfgLFIy6kBYBzm2J2rn7C3858hqcjz/p6wMezyABJntF24PXsOhO1xwQrhxY01jTNw5gMX3X4907t11Lf1uT6N2KARyW0WV7MCgi754QpOFFulX6DrwSlMR9dNXjtyVMu5bc5DMCiM81G5CzexiGlpI9RNqnFTuNtHNnaWmShq4ywwaX5bToe6YsGsxV8FdieHYAYnPmtgOwJspxqw2epy7hN5DrRIZJpMFv5zKYRd3AYfFIhGxiUht4jz8fp2uf/ybacP+XXM86xZ3plrav1fGuvmGWIRaZtDXNS/RNkn6ap8/V39XnnIB7KWuMr2KLMcMAoI+oG/BlCrVXKhOlBkl/jRo6ZJ847fIwmeybY4a/5Gw7wm16yxQIz1jPsJ3zfstHV1z5vRsZpUvZZ28Jr2UgKcCkwo8ostUAQD2fp1ydYYYYFkmTs81jD0kQ4vImHjvHg67PedFr3bTBqA83ucNv4UEuK6QgbtHHoN/WqnwPWDJN+j7Adss9znQ1G2DIg5jyz3Oct+74awhWlYMHDu9xCVQ4OHcvoWmXcDrj0eLTnDFNmkmVjJfKAYbbw0LFsM+1A1cZHiTNaW6u6BEBVgOPGh1WTcbXH1R5lx/ScSgTw0iTFFuOsUcdPnhiqvhtlgyauCZLYNH1vmzB7qJIOMHV6ygLAE6zYtaus1Lxhiqp6RvqmqP2cETZsr9xPwa51P3VmmUd9lhU8+5h36EfstVR95KXFNRa4ySeMsEmQfVubCvDZJkbOpi+H2bOKSlVb6uBXe2Bluao6Uz3/sieeWWX6TrBTl3FoGz/KIgl2TF+Vs8Nw8U0tWizjP/b6SgC9biNZKRIVXzQ6FsgJsm9pmvKln5ElwUe8bwvc+7xlNc9rjNvFN8GKRatVunbcENWt4XiKLS6zgkYfKzMvhSb8iXGkNpktvOSIs8wk/RSoEmTTmL2Psokm3enmojLYZa5+CVBSKZZILp9xQLcFNFT6VjDTlg4OB3STZQjVqyvg14OYGKeMV8HJzUyR8RGzUZyU7Ko0WKWs6gPVZyY4cfK8yz3T/O3QxMsvuYXXAJ5bRn4l0qAe61mgm5xKq4ShljLAYh+3uYPSgXtMc63MFpVIKZAqNPKWvTESZJlm0fpXnZwoOHS4yy0kolweSnoN9JquMEHLNPq6FsR/bONLP1uk3zLqRLIqP7vJKCnSFoD2IL5g2mRPs4gaaitL5xZ37XVRcFj9HqZZZJVxa1oNmMa130rRzpmJLcg0UoE4x5ytG8wxwwOK9NPCteBhxzA9dEKrssMwZR4wY4DbtgXSNxkxYN6mkWx3WGSKMGU2GbFgbevEfSTeW3Jf6LWaYIW8AYCL9FuK8jir1u9CE0QV0PbSsps8YM+VykRdWjZF6c/hpXRu9YDcNEVAjBzLTNI0jNhpllCbAZGnitnwEtPGobNgGWaaiqUTnTp+W+AIIN9kjzBeQ2QXSYVj1mbdgtbCismbqWncSiT1oSoFZA9B9mmbCW2PmbqqB54C37pHeJC0J5X5Kgg/YoBllQAr9V/ZhMoMPil5/S03+AnfZ4FriOebgCz6WQrGqbeoS4sqPWgsvQ5GtAjOGqZb2wDpysbq4EEDCnTiJr59Mfvs0STCMhJ4od58wmyWRlKBvjJ93OQT4uS4ySe8xX07dNAJ8R5h3uFjRtggR4xVxi1QucS0BX6FCT1kGz2Jgojaf5eBjWsY1CLf0YGAymoecM1OcQEeM0GcnC2spPAsmv2uaa0XFJyaYulLP6+fq4xnNQweZ41NRug3TGEF5LTAfId7hJEEzE3jTaj7+xYpCkTN0GPUDj4cU7xqQlyZsAEz25YpEDUT6XmuozYUOkGXvStq13PcsP82GbEyE22q5rlu641RNs0x9Flwdo4b5IgTOyEpUYazehfFyPM+vyBqADs9X3O8yTJX0dTiPdPWbJFigN2vdhP6E3g1BgWsauNASAKzGjHAleAxTPPP5eNkxmBTBlFPLonktu1IOMZnly5TMJz117Pr7JAgsHxk70G32aJ0xXecZg+8SAjQUXWDhCv7NtzJoWPv42WuEkk3OFUDemWYcBgwQQoJOHThF5HvCNDnwmu/eorbaXKA3zLfBzMVAsUjYpUStdhpyxYNUiXYrLLqjJMLDFCnm5bvNE9S5+mnSO/TQ6ohn7APcyKpVEbnQU8XkYUGvhqEm2WitZL4wlWgr1Pmizcj1M6dhiasT53FXztiMF0hMt+g6ojUO1qRE/EX679iuPIcfMKe0r1kghU6Hkd8otsix9RBzmEAaIicEqBhLFlbPgHiHNrMR16nljhNEy+vAvJsWWJaZK7m50+1Yby2bp5QXgILR8zwgN7cIYe9Imf9/O0xvkhGICdJrwmyuE34n63/mk1GeS39FFzAB56OhMS9CglQOUSW8eYqFytPuVX6DY2AhMZ1cDj1THySfSX4zdgbnE/v8sonzKGOBz5PjFGLnebwCjxJnBfvwaachy2G+Xb2M85ndym7YYgdszWdNvwheYE3so8pJXyUUj76KbIROSs9i+sXSbRrmJ15BBimSoZzZEMDVm5bDXURI3fCn9Sl5TuNStqqBOl4ThNuljmckuPbDFzgi2SE3UQP6nm6xTDns7skKy9YiVzg8+QYbrPFYQBqqdPsxnpYC11gprlAsvacciBE5EmDwbysXZB1VcdPorJLvFSRQLWUSJ5H2YAlIC/PiCex8zx9c5De3x8SbpYpxXyE2RMmoU+a+VrstAS8ZGDDkfb85VgXidoL+koNXka7SHW28H39t0IAikTs8FIUY8LMT7CDWpS0jB2EMow+4SbK6AJsTRkjxyTLho0n1eH7/AI/dX7LDdvbbZhUeMB632kfpUBDmmH8HFiVXZSisSMSIGqYNAd0235cyQtqNwSyzx/gN+y+BD2mhxlhk7hRD6ntjyqSohS5yjL/jL+jg2Ofz9oPSq/RNGojIba08HKbO4DYRmkvuMgU3WaorV56WitMsMJbfGJVc9/j5+yQsD3bvmHC/YL3ASz4KAqGB3SbXmaWT9knyAaj1oZGCRgJsrY2vcoyK0zYNNmTZI8EO1xn3iju6oyzZll3atOygXj/v8PHOLStTUeCLCtMmN60aYkbWlvHyLHFsPVSPA4Z6TPD7g3bg97lPUZM7xszdbmo1YSo1MI1Ut8hYyWTZ5w1+z3U9zlHjBE2LLFEfan12inTr4WXj3ifBFmmWDJ1U876HkcpoMm04ieesOSbCVYsMKv/FDuyNxEVnahrPmWWazwwLMuiBUlXmDCMu1HDtHtGguyXvLXV9qxON5uM8t/zXxvijQxeF5hhzwB52mvogFdBw3e5RxBJ4e02NmNKdLnDbfMZ+5aB2jLkpSxD1o8vTJk5vvVH7SdfCaBXMTe1Sh+loWzyPh/Jg9MUzx46+DngXe5Z4E+NAZWxMsIm6smkrCL1uPFTtxP9e7xrmB/q3xe3DBHVTit7Q9l++hmTLKOefENmISm7TpvAGRbsBttnmhH1sdohYX2SlE3RT9GCW1WCllbaMq12kShtHDtF0AZEYsUFrFLpq9KcFfWWf28bZluBOn4rY4gbkE2NIvWGVE8m0cq7BkhbsjIsjTxfYYIwe4hheouTyZjK4FliSgosI9nLG+2++gqqj9NVllnlokX3FXRUnxxlDUqDHTOsI6+R+EmTr7pyPXcqvVO6q4KEuvAVUBJj8z0uGs29AkqrjBsp3g5qBD9Elm4ksKFg5GsyFZ9CZd2AZdjoukkb2bM2tl6all24ySjTLBrwIm8BGE0iVQ8BfcCox4DKs9RUtoP4U2jEu067xGMtbplLiuIru2qLYesd9WM+xG+8uzTBcZJlho1ZZ8zQtxXEkaTTaeaZZY4b9jvpJixzwaC5H1MmaUgmtsfruY2a7SfJ8DM+sFRuPc8KFHzdXwrguDRtuqZ6aILImw/ws8q4oXjvoZ6Qyjx1Ed9KYZLGbNGkbFEQ1q0yKUfZYIeEZTWrB4mylBRAVwq/AroLzNi15tIkah6ewoySMBP9DJWnH4PTsna1yCsYxrCCdY4By9som9axLLIHzNjUT4Cb3GeCx4yyyQF+dkjwJnNsMIpGxIPI7ZW56NA2TLmYZSsr/V2TpHRN6rRYwU2QaZ+ylYtEWWaSUTMNVCCwinjn7XEsiS4TtlYE+t4KNuo1WmGCT7hJnpiZWvZYBmILr/UmOuk5mCRj2YoTrJAyLEYF39R/9gZzdihz0XjWdXD4Hj/HpcU811GvsTneRNPabjBnn5sqAVHPOq8ZYCjbu0yYSR7a919hghFjtKzTUWVBT7FoPAllT9Lpq3qZFOknSYY0w6YY7eYm9ykSRUN39JmfIWlBSh0YqSGzJAVL0Mkt7uLQRj1kVP6jBe/JQA4FCOPkrZ/sKhetn8w4a5QJ23VwkVUrrfVTt74tm4xYoNGhY2Xnd7hth0A7JGzTssEoLk0rLdHiNEiVd7nHH5tk9j/l17OA1ABBqvwhdoHtsQGRkGYQttEzoCTpoQ4dTtUMYwp57vauH9L1UmSucdOszJQeQR5mS59DjzDI3E6TQPGIDEkaIaBHpLnhWoUXiRD+Tp2Dni4KTpQ9R9ia4co+A08knZumeL4BjGWFgRYoHrEdG6CrCdMscSZbYjs1AEkBOM6kS0Qp8p1HvwMXXvkkMdXbOEJTBcuECVSO7MC1hUugcsSl7DYFory80CWgSy8wBn+IXeCNzGOGa9usOuOQgCex8xTcKL6KAE34RKoKSOJ9EYYrz8lGIgA8mT1PmmHcZouuDOKt15TE3KfJQXJuzIbydPBQcMS3qmGUPgqWH/R0QU1YaQ9Cr+O0xQMw4yQpxXx2zw08OxLfuFCXBbMTpRL1gE8+MzZIMRDhZu03wgaJSm3+Mt5FJjTIudIuRfqFEdgDrxJw5lHJrqEplqAJjYAw49qOPHv2Ij5uMGcAL4eupoSP1ANyHTs48t0BcgJevgrBs8iANKQBH68/WSfnxiiHevDS5EUixMtzXTQd8dLeTfRwGJDn6ZPYeXZIUHWDdGWMZLQmzJayGaTp3jcwL6mtL6Mis355uYunsUGUWR6kSldTZNNNRwYzj5lguLZNjByrrgy44k0x5q+7fvy1I7pewt8nr0gaZKfKQH6f8/ldgh3xO8QwJkdqTxmvrRMoHtHxQGD5iIHsvqgBXC9uU4DURhIJV6nJ+uh9emjr32qoi5cXujh0seDEq29C7fJp1FfrPm/xmzffYMsdNkPMPlq47CZ7iHdyOO0jnlw6D0mRcE+yLMnUbWFC9uYOCVYO+fvhK/9pN54/0VeaCxTptyCK+iQvMWWVBWHKuKZeGjLDNGWTa+3yPh/ZZ2o3dWZYwKHNDmLQr+n2Gr6kHre69qR/FdsfZSm1jGJM2ZkptmwfqX67gGHmL9p6TmufIaNcCFKlnwJrjBOliGtAnRbiJe3SYpgtkmTYRIIZh9lCrYPELknAq2EjwVUShNqrqEXNYyasDUiCHduXlJFQQgWetH5aZhJVdCm4p6SeBFn2CdrjUolskahhCpetumaYNC5N3mSOETaNH3XeWC7toGm/fYZpp8FzyyZKTUJBDmxtpXYkwmBrmppGelapW9IkyFqlVtT4/inxQwEij7lGq4ybtVC3rDLt7ZS1KGoULz/mQ3MMaQvSrhn2mV4v9fXOEyNKAQ1ZE/LVGvsErSe0sgnnmbVkE01LVuCrhWQBSD20j/riqU/eKBto2FyWBKtG7XHSrkuBOV0ba4zbe0RVGbe5gybpanCZkpUSZPHSMgopwSWaRp0TpMp/x38jAwpTP06zaJ7rco8WiHLVBKyoR7niDsc9/oElu02zBMAaF8khvvWKOyTJEKXAKBtmuJ7+o/aTrwTQKxKxJwpE5tht5CtqDC3MAWk8NhixJ0RPgE7UtZlRZFt9mo43NKEmasHtGsbagpFmapMiBole5njTsFXi1mNNqZL6+5r+1zKIufqGaaBENwdEKVqkXTzrDtDwAW2IQJh5Co6piaW8n4BlI/a4m0Ym2s0Im/bmWWTaNmOOmXhcNJKuOt3mhmiyQ4Jh0gg9uG4NxhXh1uZmj7CRQU2RJcFN7ltasU5ANJlSjt2xlNhx1sgbwFUZJlGK/IwPrPa/amil6m2llFX12lMT8ANjMCla8mPJtDatqh0vGAp1B4ceqsbo3oua99/llqW2KiA1xSJ5YnzMu4bGvscwaZOmNGyZnSqD2zHgMGDBKC1iOwacBaGse2kyxw0DMkrYtXouLHMVTX/SDUFvZmVZCqDqtcCWUnnV70LPdYEo+wTNeqvbzRuwknCdxMoDtmlBE/UmmOVTC6JuGtAtTo4sQ6QZthMlwH5HkaXnrBRsxPj4Balas1EvLTttkzCEA9Qsf8PEcK8xbgAUr/V+0MCAVS7SR5knXPoqtp8/udc+Pdzmjk3j7iCpYEkyzHEDh7ZhwhZtyuhHvM9DJllgBg080aGGsEW7rWxdgzAO8FsWkiZmKStKi0G1JNBJkAAMwpo6Ti8TeWDaSFhV/p8hSZ1uI9keQiRkUsiIDN+1oHaVIEtMWdmwANndtliUYxZwWIM/QIJTFpmyQP248eiQwu44be3YhqDfAi4qY1SGrfq57RG261mZ1MesV49N9lZ2mk45R0zQkgY+aNE4z6yVfhUtaClyGfFFHbfPJ5CEYj0u3cNH2WTIAFQ/43uI78me3Qd0cKPhEJpit8GoYWnLn02a1N0UW0yyTIotI7set8BJii0zhJI1023uV/H8lHt00SR3PeAad7jNKhctcJxiCy9NC6zqkEsDLHQtKSisrPrb3KGJS96wApXVnDWFpYsk66n9hiat6RpT2YJDxw6nNMSqjfjgKFNZ33uNi0yxZIcvwgjYMGvXb/fLOW6goRoKqA+TtsziSZap021S4UettOWkWkDl48qE1rU8YlLoFplCk3+L9DPNoklea9kp8xRLNrW0TOgfeGf6h39dfJ4hVRI5Yg9VScsEYdHlofSmj89nxxjMViwDjmdwZr0kagcHcKDshonWSkywwkrkggQlBE5DQICBuuOnFj3N65l1fBn44lKEU23x0Rt8UqH32SFtx6GFS1+nTH+nSDnUAwF4PSNyTH+twXZigO3EAKUxH4cBkbKShTPpErwU8IaQDPsasWM265PYeZqu1H+bofN2ABukysuoBFGcSZdwaFOK+cAjrLWqE6TpeulqwmFAEhmpCZNxqvKIUsLHSGWb/maRp4lBVpwJarHT/PrKdZaZ5FUMtmcG6EoLY6GWOE03dVJsseJOsHulR0JJsljmaZF++2xQi5tIpkExEMHbOGTUsJVXnAkaM2pz0mIudB01u/d0pG5KdLK8ikK0VqL3l4f0lRp4aXKqKLLqsV89J0yZn/EBmcBZZpnncEjqjqyTIN7Mc6om5+1FIgSO+AO+SsBi5DKEhCnZSEpSsi8D1ZCPiZKYhivrbc8JQ00kvitMMJZ+zmv5p7hNAYZfzIRwmy3qgdMU6bcN5qsYJryvTbLygmBTUmEH8vt8O/MZA+l9utKGiV7alqa+VIEITDaXrTQ73syTKr0gWNunhcuT2fOAyKr3CdKbPaS/IxYH73CPMmFeecDtNOkvCfj3j7mDL8MJJr3fgtt1ujn1FMhiB1rByiEvowIUZh1piGnDq5AwPbcC5yUgpoJ453lEORB50qAQ6RFP2cB5DgOwPiaMxkbC1PShHnoXTVBLqIcpFonXdmm6co7nmSVIlRvMUaSfHkMccGni70ht7bTl/cuE+SIR4Uy2RH9T9tU7oe8IQ9EjnpDVPxM7lu/zb1FlTIo0qtiSGqBDNwcWsBLLkatsmj7iExPy6NBhlYvsE+Rj3qWFa8Of7nCbKj0smsDHMGVm+RSQEMAFrll2oDKiW0Y6qaEU/RSNTLRj64cthjkO25CgSa1d1F8uTp61E/2wPoP1WTnHDVa4zCrj3OU9siRo47DENE1DutgihYcO7/OReT4LmeU+N63CSEMCF5ixZIPb3LEMubYZ5Cpoo7Y13abnk+/stb1jgX4bvBGmbIk9YSRAS/3sdMiojH8QRUneKC1WuMw1FljlounDZa3f5BPLoNRaVsk2Qar8nA9s/1g0agVldekAVNKQE7Zv93OAhoQqiegaC7a2XWbSAGeu/S5qV6IYSAwJkbjFXQMkteinAHAC3HzGFEvWrukT3rJ4yjSLBgO5SBOXPtOb6CB9iiUeMEOUogXK3uUeLbzWokdZycOkTcCUAIqADf1TsFKUNBvEDRlFf8Zrhqbv8xEaBiJDbOlntKcNU+aiYUOqvHiFCXZMHyFBZROWeKM4SYIdFpmyYTVajwOkSbHJqCUSVAnyjCQ3TfCNej9PGTBPQUm10Zpmyd6PB2YQnCXBObb/qP3kKwH0dhngLrcs60TkoXuU6bPTgDBl7vOWRflFyrNjv6SXlmmA5UJvkbKAmErOlBmwykXboKkW2W+Q6CgFC7xppLEGBKjfmiZv6o2lYGSUIippLSKJsA5tDui2VGDXMNZONi0yqbp5Ij57z7ACpKjLG06UBC3kUVNvRYjzxFCzbzWUDLOHUmn1fGVIWiASRK7kIJ4Byt4CyBvwUsxIU7ZB6uBYaax66okng3AqQcyqFbxUX0L1atANZ5JlQ2kWbz1dyH7qNl1X2XPKOoqRR6XHecMs6qbOz/geZfos20zZMWEkHUlTa3cQyvI1FrjLLcuWPKCbMn0MGTZGmmGbfnSAJA19j58RpGpALo+lP6v2XmXhJxMaFeTQ46nSg3gb7FmJnUaDq1RL2ZFBu8Wqj2Qfd7htAD/xMHhmABNtQPW4BPyTh8UveJ+/4a/RNCivAWN+wE8YYdPIjJuWdeLQtgwrBYRzxPnUMOlkPfawQ4KHhoqsm6cCTFWCxkhfwERNNd4ixUVWiZOzD8erLNPBY0FplTaG2eMWv7SNbj9Fezx/Dq8DfJQJWzmWTuUBAz7t0EcZ9QL7hLcIU+acAdRXGUcNhu9z00oDQYr5GDmWzAPmWFIqTLAdEqQZZtWYywapmgFL3dDj4zQNQyxLwgwJYqxykQQ7POAaII2qyiFuGtafMq56OPaDUy9U9XmLk7NSzVnm7f2kALd4jEr6WZIMH/JjzpmHYQeHRWMiLKmRspfXDX29QD8PuGYlB8qAUZaZDAaWURmtJrvqoKZAP6tcRH3ZcidMmjcYtSlouv9EKTDJQ7sXxMkzxSLLTHKfm9TpttJKvQ7CmH1m/UcVFFR5swBxD+00tUA/w6SZMVIYLy378G/j8IBrCKs2bxmyK0xYqW6VIDeYY4MRlrmKsvZENtFiikWSPGPS3KsJsuwYNqAIXDc5Z6ai/YZhF6TKKJuWOagJaitMkCDLNR7Y4loGVjnWGGeDEea5zh5h1HdVhg2/pYOHWeaZZpFlrtJnBkYrTNBP0cpyRV4tlhQzLHDOQMtaRywaxoAOdN7hY06GBQkrOM8kDy3IKt/dMdITscfQ9D99jijLe5RNJDgqxhRL5lnaz8/5wH5fHQypt6MmWCrzQm0uNOxEnwaaiJpm2NRIX3+GHlsCvKU6WwLYZcHfqXOYBALSTL6eWWc9cZYMSb6IRXj5zS6ejg0yyTKvohLEUEAYapO1R4zUnvLvUt8hUDniVQC2EwMUiQqryQF6hSWLCXOlF2qJ03g6HWLkqDt+ehcPGcjvizS3Bk8vCYusTJi+jjR1XU14OjUIIfl9KgIO/Sr2LfwcsBm4IO/fhkv5bXw1AZh0Mj9Re8yZ9RK9xUOb1pusvKCFSyMAc4FvCYuz2eKVR6Sk5/O7EEGYVk0B07pKAmjqOoJjg/B64LT8Tkj27EV3ikRll3BTmb9D7BMEV+RpqkyZrXxGjhijnQ1uN+9w2Atn8iVygQEGMxUuLWyL2iEwSJphRjsbthkdzFboXT/kwpMX9D475FRFACTG4JPIdSLrDegIsEREgNK4qf/ipQodj7DYE50sgcdH4ApwvswkeIAS7EV8DJPms5iEJrV8XVzKb0Nb3u9UUf5JW56vicouu6kesqEBrnaWJeEXOJVHvDZrFQkYccO8kX1MuCksqHrgNA4dIksNuvJQcMU3qRTzCYO0AocpWbPVUBdnHpU41YYvEhEC+SO2EwPil5c/ounCSuAyUQpSM3tO46HDEFlqsdP0Fg85ky/xU35ABw/pyCBpZ5hTeQEFAUqXfEbVsid+kyZU5jETcjwhkXd3cLgXEVmW7psFouCBdGSQWug0MXI0UgIUP0mchzbcbN7n6aVBthgmR5zx0rawSg3jux7wUaeb/tI+jcsSwBGu7BOsNCgHQvhqwhJVNrmXJrPGQzROjteyT6k6QfzNOlk3YVnf3dR55YNARQDKfopUQz7+EJN7aMB8/6/7S0MJAMMQ20f9XnVYpWmdomxq20Hd9/g56qenIXXqmTzHDVQqqwBD3ZBBFCgBeJePrX2TgjQnvYLL9NlhsqoTxH6lanu6Av3GCsU16p4pC3Ko526dblvHKLlH+1MNVRNCjwSD6TnQPn6TEROkdhUJr/o5s8xzk/u2h1c7jTASGqcgqDJM3+Vj299oPax+ce9xl2HS/JJbFtxT9ZLajGioiH6OEIxaFiBrm31eCUTKqtsiZe2QxAaqz9rLbBjJ5yzz1tPupGdwmTCzfEo3dXOuo2yRYoFrLHDN1C1VVrnICBv0U7REDZcWEsA4xW3u2LoHQFR4x8yyYdIGFEzzAT8nZr6zYhCS5JtCveuUVSe+3ZMsMQVgFYLyvv02IK1KD8tM8g73iBs147DxqlZ5cJ/pAbYY5lNmLUCrQX9eWpYwpSFGO4Z4o9dcmZD6fPFTZ5JlbjDHMFsUiDLKJtdYAGRw8Ak3WTVBI64hJOiw+13uWfYqYOXQ3+Ujy368xV3UQ3/aMFU1Q0HBQiVsqURZPjtopdMKnGofpKC8qllW/0jyy1cUiuFFPe6G2WKOGywxzQHdRCmgZv1ew4IDeYAJfbNomtiLeJCC67FZ/Np45s1ttmmSbhPs2MlAnW7TzJZNQb1jG0k1uwxStYlyGhihDaTe/BmSFqjRwsVPnfu8xTyzPGSSAsceQsry66ZuGwOhPXeslLRMHxpqoLJDbcbUT0zN7hV9VzaAUjUXmGGZq3zCW5YxoZ4xQsfNWallmbClh2rDfSxXlo1HY9JBpMctvHYDLhK1bA3ATlkcNA04TYwcE6zYRl0jrhV1f5+PjC+iAJw/4wML+MmD/YA6fiZ5aBrJpgVmtRl/RpKoWfDzzFqWTZSCZfRFDU06TcrQmK9yk/vMMm+ZciBMSG3+9AGjcjOJAx+xa1JBly2GLU18i2GmWLIPQmVc9VNglXEWuEaRfurGX0JBX2WvtM3P6sNMj0vR+GOvruOEKp2cKfXYY9YcwAOu2YdKgh2r8deQDaXdO7TNhGLPbogaYDBkpla60Qg9WViWLUNr7zcgiQYfiCy4305b5N7aZJg0krhbsAwbDyIn9yCy3ShF8sR4jZX/lNvOn+xrwBi3KrClUfIanCI+DX5yFqR7Zos89etUYD9mjI0nWLHMUA8dRtg0kfA56nSbQAK/NaAXACSP+lFo0qSLhGCISfGeBXYOzCRV96GTUyj1FHVoc86sCQVCVNadMVOpv+WvuM9NAH7KD2yS1/+TH6ISDS3C6sZzVIF4CfA4h5rJC9i2YenyKncoGndBvXcODENWw2802VBCI2bpps5dbrHCZePz4VjGLwhzZYIVhsyxHXu8bFo51STLqESthZcbzNl7RK6NpMJ1m31b2LMiQ9dnUYwcBUO99xrZiUPbTgJBnqXzXCdnwL+b3MeliRpYV+nhI95HrI+HAaysRhPl5F5OEyeHpLCfsxI7kKCSByZdT4dZOtD67/mvWWQax+zrwggUg1+V3GYZsms4zbC93zeNPFqnjWoQvckoLbxmv5zhJp/Y866+heo5eVKCUSBqmXq6302bsCVtFJUFqv4nGnBy0uung2OtN7o5oEwfcfKE2bO1g0rltFhPk0Jl3mH2+D4/QZmUVUSWo9YeWURGrfKQKEVWGWeGB7QMi9Vr2PMKzgtrIfCV7UF/Mi9RDhKsHDKYrtCYgu79QzZD53kydZ55ZsGRZNEgVYKdKnec28KErQng6bSPCFJlPXEWgI5HEjTJCptL97oEWXYTPVAzPjsNGExX+HXiOjk3Ru/yIZGlBoOZCpxD0lUjwL4U22eyJV7PrtP7TGSHKittxISV9GoMw87IEWxWeS3zlGQzQ2nKB+siCS3FjGx36bmEedREdultHDIfeoOV0BhVJDxhlYu8nfmUQPqIU8/Ea249dpYXsRCNFPw+9jqxSonDiPhRjtfWmTDP0AySmJ1zY3wRi/AiFaJpBtUHPV2suOI5NdqUQVvtm6d5/ck646VtyoTpysBERZiJW+4wXSWgKaDgF8kIn8+MmbrE5S/Wf8WeY7ykaxVexrsECHXhRSrEdmqAF7EQuMK0eDo2CA0Bll5OdrEcuMJN7qMyWactn9NbPKQ05ePQhf6mDCL/PnWF0qyPvlIDt9liuvSYuuunN3cI6/DycpdItkOwEHiDl/EuzpV22QqdxaEtbLjlQ3qLh+zGeli/dFZkXE1ZC20cSRt2g0QrFQLPRA6ND7tutEZ7cuk8jTHIhyI4bTOMNP6MiVKJl4ku+jplcm6Mp8lBfIZp2N8p4u/U6XgcRmpPiWQbFsg6dOFDfiwgQeUFfg54FROmnjKg/2L9V/R3irhNeJoapI0w/Hff7qGRhJcJARZnm/P0Pj1kk1E0QKOWOE2QfQLPjghWGrR8XXg6sufTgY7HIVl5YVNPT1UEMDz/ZNfWmH4OONUWEHU7OUBXBrKhAQYXKhy60HRcvpF9xNvrn3J+aZfBRxULNn+eGJNhUkPk79Olx8TIE8k0+G3kDf597NtUAz2MsEkk3xAigQuTu0+/mv3nT+z1hEvmeeFaJcVJZo4+MxUknWbJ+rGp1Yf2QwoqaThdlR7UFqSDhy2GLUOrg8MKEywaIEZAoXHjeeei/slaZ2hNoz7tqsBQ4EQ9zVp4meVTplk0Cg8BjhQY1KE1YPsJgAQ7th6Z4wZbpLjLLQNM99ueUKWZSizop2AZ7hJkkLekCgVkOniQQAMBm5URqbYpBfMc3mSUPVMnaj8pnvQdU1f6LbAWpcgzQ6hRb2q1glFMoI3YJX3Ij+3QWBQe1y1wNGrqe4BFphA1Xo6PeZeLrLJHmAdcswoctcC6yjK3uXMCrzjHEtMAhsCRswmrbY6tbfSzHjBjA0/eZA4N5ztmC+6zZwDR66aHVpWLXtMRNq3SUklJGiChYR7qha2yZ63DhLAyZJUMGZLmfIm1wTUe8D4fETUuuapG015APKvjaGJymLK1nlHCi9awqlzSUNQcMdaMvRFIXz3FImXCMqwyNjs61NDBrCb5ak0oSk0Z1lSRkDolXigIXKCf97jLHmGrYlw0yiXtFcZZtYBlztSf11hgjXGrmlLF53/s9ZUAehFK9sKr1jthJFOAbcR+wE8ZMo2+RmGrJGaWTxlh0yLogDHU/pgoRbYYtpNxbX51Y/QisfF603dwTMJeD2uGWqoAIwhgM8EKewYAaxrkXNlvCsYMkbVmnuJjIADKDAtmw/WgEeMKqOmN7tJCkwi1WXNpsckIP+cDHppmQOR1PajpqAJeWRJW+iUJK217kYNUucgqMXL8gvc5GUsdJ/8l2q6ixmKsedFODtSzSM3gDwwleB9JpdG0Qd3chkmzQ8I2aiel0WLiOWpNW5Xt1U+B/5IfMcs8mwbY2WSEGRYo00eOOB/wcxzaqH9SmLIFGLy0mGGBKAWaePEYxlkdv32wuWbTlqTVHrZI2e+tbDV9XwVwVS7awcMcNwyVfP9L/zz2jdo0575pz71KomeZ5xwZe5NPGQ+9bg6sN94om1w30xiVOAMmHOEqD5m0Hgoqa1MJpZeWBXJUGqPMQm3EDwxNWDcj9XpUv7A4eZvIKaCOi58DVrloN5wDA4rrA1bfS0x7t+z0TNObVeqsDK0ODhdZQw1SewxbSc8niG/cjnmYf91fO8TtdRJm0JqV1CuQFTMMNgUHVMIp1O9uNozsb5KH3OctmngZJo16oSibVBmkysIt02eo9F7LRFZQP06eNsLS1WuthZwynm9zh3lmucVdKzNs4qWPMi1chsja+6hsoJBRNphiiVE2rCnsKuNMsYT6Zn7KrAUxVZIgYFOSAv3c4bYByQpWBq9FrFLhFRQTNrDIKByzpnVgsMyk9e7ops4H/NyysSd4zHsm4CbBDm9x3zIj9N5RWdo8s3bIoOCl3rs6qRZ/GAmH0SRYYfK2uGoAQJ3cKpAzzpoF4cUzVfww7/KenXArGKhs9QVm7KS0TJ+d6EowjUg1lCV8n5vGd1aANS9Nmww2wwInffh0sHUSTHzHmDAvM2nAL/n7bg5Y5ionmccq/dVwCg3BmTGpbApK6+Bgw0hVlVWpsmf1WK0i6WibjJihSL9tIMSbb493+PgEK7TfMt6jFC0rsmVYzjIVFi8S10x7i0S5wRyrZvr/Yz5klXFcmnZQNMu89Zm9aJ6NLVNI6pQWJAxslE1i5EQqybFBtjBSR6xcO28k6hOscM0M/vw0vuKd6D//a20gSWD9iFNFwHiGzYfesGvCT50vEhHSkUEcOuw5Yeuv6KsJU8uXB5V/OW3xthsiC1H4/djrRLINBtLil1c0LCWHDl+MRSzI1N8pUrt8WjzVHAHZNiJn+Sxxmd2ZHjp4+PeJb1NK+HiaGiROnsh6wzKtiqGQJNimK0yUnop3HeCvCXBCFAOedHgt/ZTGmElvjQmAOR+4biVww5Xn1AOn+avmvwLgcAhUfZ2sPWdwoSLy1NLndL2UBNmrpXV8FQH2Ao+P+Cfp/w8g+wHAYL7C+ewuI5Vt0s4w451VfsyHeBtH/KP8b2i6XkqXfGxEzsoAswJdj8SLz0HYg40IXFh/QRuHico6GgBXOyeeaZFMg0zgLBknCQFh4CmgHq5VoINN9itN+aw3dIIsA0v7eGkRyTfIhyQJGERN4umIR5yasWdI8tvIG1TdIIWISDFrUQmuAGGovYiFJFQkd8ip4rGEro0DUaAmUt2x/HO+kX3EqRq8PCcAnILLm6Hz4JP9/MWlEI0xSa7VexYkfMJLi6brpffpIbspkWk/iwwA0Lt+aIbOHtZjZwlX9sk5cXqLh/Q+O7THXgtJ61UN+exwpasGY0+eAxKc4e/UiWQb4IHe4iHVUBdbpOz+UaebjkeYfgQkcbh2TgJJwrUKk5XHsiabdQhAV0YSbUEAw+3kAN7GIdnQgDCPmlXIw2tLT6EtgKe/1mC09JxDV75bX6cMRWHS4pHjLxKV73TuNOtTZ3mVEHB4oinBhJM85H7oW2wyYq8NDZhuLnGRVar0sMIEX8QiZBliNyYg/J/D6xCvVUooeUSB1GG2LItnwSgRFPRRax0NU1OvcVVhxE2Pq0CYnzrvcdcSBdR+4ha/tDVKmbD1pAtSJc0w46xZ/+Ei/aSM77YAEE3mmeXHfGi92GJGOfaQSWOtcmAAQsfWLzr01XpN/fr8HKAe6eqTC1KLKfhygznmmbWqszp+5pllnlnClI0FUN3WxcIE7EY91LTeKdJPv/mpTUaRAEIvt/ilTb9V6xcvLUbYZM+oKNQrOU6eZSZR7zgFStX33m/6YLXVqRK0YKt+L61VJeirj1UucmCYleqHvsEo46waay+xqhGv+zIabjlq1E9eWtbmJkaOPcJ8l4/sNVDljIZ4qKWJ2t/M8SabjFAkiocOeTEQIEGW68zb6ytehjJw1eBQDUxRGxINDvGbumiWeQ7wW9KO1mozPKBMmF8a+6xzZOinIM9pil+yYlNClUOHETaYsUw7+cyPeRdVDkUpWmuxMmFahgChPc4yk1b5ocy5foqkGeYGc6g/ubJEXfMsUqupKj3EyfMR79NvAjzqdNsaVsOk/BxYa4UODpuMIjY9ki9xklmqNmktXJt+vcykfXb+x15fkeQ2ZqiaIlPdYIQgkoo4x5sU6Lf+Sor2t830QW/en/OBOTnCzNpg1CLaIBN5TVIJs2cBDZ2utwzLTdN1qoj5e4aklWve5D47JLjOvGVjuEZyOc0iLVwro9T0RKU4C61UQhe0gVA/KW1am3jtVEHZInW6WWQaTeD1Iol4V1mmQJSf8T2L5quRvppcakJMG4eUaZAU1FOQaoYH9mZQ809lRyk7TFMvNVnXz4FhQIq3nJ4LwKQUPqRKkCxDtoE+MM24LFxhSWp4RZUe+511g2ritWDUAjMWvC0QtR5XcSMdVI8I3YByxEgzTMvICP6Of0bWyEQ1bGKFCXLE7H9LQIg051MsoZI5BUxONhB63QH+in8lhZJ5ABXNQ2GcNbN+b1hWZJYhOzES+XOcYeNXdexJ1zHnw7UPoH2CNnylYFik/WYTaOHaYBHdNNMM2wa5xwC6UUOtVumzTtMAQ0f2GzncgqXr66agYJz+u5rceg1bSw1iR03y5jhraGKxbqS6htRXTScXGo7i0CZH3ALb81y3rEQtOEqG8fJ1f40ZfzdhgfZbubyXFg+4xhrj5I0cUynjmub5t/wVmjQcJ2cBW8AWXwpsl+mza1+ZkVUkDGOaJcMijttCRw3+h5B0JwkKatuhir7Up1MDiDaNj5tIESUVt0C/DWvoNgy6BZO8LN6jaQvmjLLJDeYM8C1WAiqRuMl9Rtlglk/JG9BTgS71P/kJ3ydIlXlm+ZRZ3uUe0yxSMFNYwIQiSWqWfq6GyagFgBZXi0zxgGusMs6asW8AuXd/xgc4tO3x1/EjsfKSLqy+lXL/7tlrUybMOKt2f9QhkO4VSq1XQFw94HQSP8om93iXMmFu8UvUjuJjE2IBfGlqqp8ZJ88EK9aEWJ+Huj9pMTNkWL/qW6cWEKuMs2r8L9MMkyJtpS3qLaqyE/1+VYI0cZlmEQ0dUXbugSlq9BmvJs9hs0fqvqT+OcdWGUU70DiWnLfNM9RvU9/Vr7TPHEeOGPe5yQLX2CKFJKqNogndB/hZNKFOUyySI86B2b+UNahehQqAO3Qso/kY+BaWXxuRlqlkWI9Zap+YBTuLRLnPW3YirwM3BQfFiPvr7xt1cSfDYRJeRUVOqC+tVSZYIdiRgcRo6Tnn87uEaxVG2KQU87HGOH9IXbAAfct3ms8TY8Rru/x98grzzPJFIsIXqQi+dRiubUMTLmW3CXaqHAZMyq7jUHCjVAM9El7hCGieIMtAft+MdoVNCrDANV5FId7JiZwSL93U+Sx1mb2Ij+1LA3yRjJCLhFgJjYEDe06YVWecw4ikoPo7IjMshkL2vk1UdumqwYY7Qsfj8G+T/5jl0GWbyrsVOA/nsMwKGjD4xPxlRgYwv596HTwQq5SsMuBltAuy0GVScrv3D/lL/rX8XhbcZssCdBOlp5CA2sxpDpMywOt6CW4TDmOQqOzS8p22dV/T9YovWgWWmBLwugGnsvJZV0vrzAeus5vssTYQa4zzWv4pTrvDmWyJ2uXTRCmwHjvLmUcl1pNnbeJwLhKy7Bthvl7FQ4fBJxJ2MpDZx9s4ouU7Te/CoYB1HWke/5C4QO3caaIUGVjfJ9XZ4vPkGAQgkD2CCqwnzvJ5cow9J0xv8ZDVyHkICCCPAwPr+3RwWA2McdiLlZNWEd/HcGVf9uC8sKFLCR/ns7s0HRcceIv7jGUFmCuGQiSaWbZjA+ABXxqW3Ulh6LWxkqqRyja7iR52L/VQiPQICNDuiOTYI0w+b+OQ76R/Rx0/d7iNhw5lNywpvqmzROYbNF2ps6uBHvKhCE3XS8ZN8sqHBYk3ImfFr7Am/pUH+OWeax+Jt14NiEAp5cNXkzCMrdBZti8N0L1/SGNG6uYXUyFbU6664zRdL/FOjlPPBDzMugmG2SLy2wYznQX+q8r/XUJVSIJHQNtzpV3rX3pmocRfZH5FCy+1oVNfwe7zp/caYNcqVvQZeZIhXiRqQS4lN6j/tSZ2qqJHJbEaLqZKnDluoN62SuxY5SLjrJIhyTyzXGTVwGLzbDHMiEmFVSuRJBmmWLSSx4usMsMDglT5X/F/A4QZpsqOLVKWNa+KIVVZ6CtGnhUmeGiCKaJm0KiKOq0hNFzAMSDVDAtMsmwG3zEcxGNPB6YF0yEpkPIuHxNmz7L+H5haU3vAjiG1XGQN9cVz6BhyhoChGZKMs4aGuSkIJgPYY7mk2rEogKb4gYJi3YZ88Ywk7/OR6ZNiltn2FveZYsn87IFVO2iQYjd1CxitMU6dbhLsWGnwsU/yMZCk+QNDhjG2wIxlhakqSIfrKdKkjb1ZlSCXTc26wgQaZnHymrRxuMNti+WADEuVnKAec2rTs8IEe4gfoKrhlNwgBK4oD5nkLrcoGsmusi0d89nql62hMWpjpsxIELWhgnray2vttsSUVbUtcI09c58p2eo4pFRYo9ovxAw7Mohkjesa91O33oWqBFJQVW3JdA2ocilJhj7KPGDGBnzU6bZKnRZe3uVjWnitb/Qf8/pKAL0ZFiwCKcjqAQ+ZxEPH0jwLRMkyZE51hwfM0DTIdgcP73CPO9y2+nNlFRSMzG+GBUsfVm8+jTmu0mMRZvWA0gt9jQXU+FrMwKdtUQ3mYQN2YqKIN2AXwTnEwFDZU4sGBfbQYc8guYCVcE2xxLgxbleWyTH6L1HTal75IT8mjMiFFDzzIubhyqLTaYqIrNLG2LSPPGKueNlshMqakltdmjkpsI59GtQYNEaOVS6amyNuGDw5rrKMhmQUTfiHTmCaZqOu0oPKkjWqetUkzGyRssaqKpNWTyZtRAXs6rfAq3g4xK3xuaYeyuZ6wAf8zKapql/IFEusMMEzkhbsVRr6fW6yykU7EdEbu4nIgsU01WsavJg1fleQsIgkTarBq16fuJ1f5Mz0Z4gyYR4yyaoBacQLox+VwKqBugCWx+ErACnS9mGpEmtNbFZ/jH0k8EWjyNWrboEZw4HsJ2YmH+pfIR4FwixdNAk6o2xawFDTm4Vdkjdy8Qf0IJK1PDE6eAxo12M9CTdMIlXCsLR0itHCy74BKdTLapZP0aCbIlEjfd//KrafP7nXItNMs2gneCd9GvUhoexb9TrRh9fxlKdup3l/xd+SJ06fafJ0gqoPGt1HNUzlpIxA/Q+LxvhXmZdz3OCk38g4q8YgOMr7/MLe94tMWw+WKAU0pAMw5sa3rPecsIrX0PQ2/Z0gVX7Ij4iTR/0ylw04ryy/IlEWmUaNhDMkrReb0PJdZpnnh/zIThxBgLwWXhaYYY4bbDJq722vkapqcRIzII6fA64zzyoX7Z6dNEzbuDl2PwcscI0f8UMWzeR7hE3i5AzA3bLFte4R4ocat8+D+8YbUaj4Au6rXFY/U1h5ksamz9EqPdQNW3uWeRw6LDGFphAnyVh5h0yMHQvi6b0ZNz4g/RTsPasF7Tir3OYOIJPxpt2Ptsxet2+Y9jv2GPPEjEx5yP5c1vDY0wwzz6wNVREfleNkOfXZmWLJyCqKdmqvzDwt7GSCu2An+Qqm3uYOGZLc4TZB9s1AcNFKUTQtUJ7NQ1aqHTOyEvX3VO+xcVaZZJlb3KVKDzliFEyBquuxYBjIKtNZYcIy2XVooj6JRTOoUjBXZSltc1/e5D7jrPIJNy0orBPur/MrPRTD0xE5qYYPTLDC6+l1U80M07twSAdHGG01AZaGK8+JZBq2wJ5uilF1YF3kt76MML9mmQekcfj11HUygbPQC9SEnVQMhajjJ5JpcP7JLgP5fU4Vpf5JVl4IUNWGC49eANiaJsUWpyqQc+LQgHOlXSL5BgmytmZs4xCuVUh1tjiMyboZYYNqyEdXTVhWuUiIwXSFbuqM1J5SDIX4Q+KC3GeVQ/OslTTWF7EQOeIcusKoOpXFJs+eqkBp1sdE7TFTtc8B8dwbZZPh2jZ1xw9xOGlF5tKiKw/bUwMsuDJsSVR2SUcGwQN/5/4l1ZBPZHA1Aei2QmfpeglVV4YIr6WfUqSfPSfM31+5wg3mOP9kF3qgkZKatxrqYpKHDGT3bSiGQ4cXsRDL7iTbiQEC2SMJycg/hwiMrT8nWDkkRo7B9QrhWoU6fvpKDWaZJ0yZRlKYa7vJHrpeiuyZBLyKCdg1zyxtHDbcEZaY4jAm59zPgYBUBhwbyz4nTp7zj3YpxXyonPp8ZpdXPgExY5WSDO9DPr6Rf8Rs7VPKhNkiRT4UkWfeGGbI1S/rtNPkxViIM/kShwEY+/+R9/+xbedpnif2sr8UKZGiKJESKdGmLVmSZastl1TWlGrcrepylzOV81z3dmca6dvb7GQHGGAPl+SS4IIgQPJnDgcEWAQ4IIcbYIBJZud207e9V7PT27Vbs+52td3lHnnllsqqkq3fsmlTIiVSoilSJEXK+eP5PI9Vm+C2L5i6q+0hUKgqW+KPLz/fz+d53s/7x4aAesHyMXUCfJ66QOFKK31kWI/3Uki2Mpx+Th8Zx1JtEC4f0PPZgahhGsesxM/yIhXlw8jvkA6dZXsgYqBNrFzgTKZA03da/PWeQTRTtTO94c76fTol8TiDSSMvbTylNScsUj812g6O5F5pAANAwXkS1uQaxpCU0sXIMK05qZ3v8C5qwQMQXanirwpb8FVSvtM1Bnl1WZ4jH4lQGG/l7cynkJPU6YYHX5td5/wnO9AEGnLWrwcGvrxN6Cv0GOUz+p1tkAZBqB+r1nB9ZDjnhqJzjBuZQ4a8r73IpxyDSodsP+CHVuNkSbDqAtdU0XCSqCKet0M0XB25yQCDrKF2HMrGWmLEERmEMOM5FhdgtZv61WqNUcMv+yDtBp4okWCMBYIcsutYSXo+KyFBA9VAQOQ1hhzbShi4Q6y5sD7xThemW6fVYPp6GsaoJJskGbPIuMYsCXIEEI86EOazKg3054JUUB/nWSaN3KC93BiPTEbZxCPrVE4n+7RNBhxTr251mgJS+v71z0WhV2GEJfyO2ONDpKfq4acqwGVGqBEgS4K7TBOgzjzjXGSJx07hscYQ3ewywZw9v6qvlHClQ1VlaW6RNMBNg8S6ybtzuOYcD0WxscQIP+GW7CccGuClNmg6xFSVUBOfKQrHmSPo1vp3+DHXuY8qVDrZNxWRWuEEqTj//276Xf2pVjzaTwvYKSBqnJwRSi6666mefQlytDnMIesICuIbuOGGr5eZYYp5xq0HU8ukNQYNU1B7LwX12lHP/E7DuZTssuxszDTLQMkROeLMMc6qW+eD1pN/9mvtJ18KoKdyCKXFilF4NxuuoddFoXIVnXbq/yecn1GKtIECIpFaNDqoThZkSe8ZADPjDP8HXdLhOPN2E1QImkGobhoKxgD27zwxJpllkFWjjoYp8ZBrhkorQ0OeW4IASoTpYp8+MgywaYBf/QRwNMG8yX7UG00klOfQMI9u1yh/zA1UN66b5jjz7BIzj5h7vGOy2hJhYxKox5U2S7f4EJCirttJQlednEzk0ftGfdbUYGU3jrJoDaNMWkRGrQCizx0MKpsaYtV8QcZ45CYbNduIRlnkOvdt4tTEY55xDgibVEqLEm3ElK6tVOdOd53lMw+QI877fMQQa6wy6GjU4tegsqk6ASuYw5Sc1LtOkEO2SHJAmAQ5dh39+iJLBho28XjLmbjrVEKvt0onR1hmlSE7lFXCBuKFpmlJG87IvkS7NbBKB9eNWinVdQKWyqObgiY4Ka1XAQOl7HezS5wsIyxRw88SF41d0sW+yUeUTafMJfmzNpP5pUmxyhB3ecc9l3hfbjp2pY8mC1y1yZQmcGZIWmMboI7EzcuaV7r/DFOM8OTL2H6+co8CUTIkWXMTKQnDyVrhUSJszb/cV3Fj9P5H/BG7DhBWlq7fTcD0+9Pv9mPeZZMBRlimht8mQjr46CZvYSwgQLruVXoYLnCV29y0AYCC+DEnfb3JbQN/VHqgoRDqZaEs2QA1A/A1aVuGMjE73JQ5prLcGpKufZPb5q0WpmTA+gOmTD6sE8YsCdSMF3CJjXsGTn6d++RI0E2eTQaMQaaT8ElX0KkXaYxdNwDoMom5yjTGmbPvUAtACVjyXIG5+gU2okpxO5F0rTwx7nCDLSTtWX1cbnPTrsVVFghQM2A+QY41hlDWXIpnxN0eqOsiQN3JY1976fw+f8p17huTOkMfJcL8Ef8R6hFy4FgB6hMyxoJbP7JmfsItbvMeD5hCw0Tu8g4Zt19qoayp4XquKkis34Feex1mHBCmkz0ecs0Y0QPuuulE8xxpJNFcUAn1dFRPwg3HRJagJWEPt3Fo+/V9rvMYSS2rEzAmgHoV6b4qpvNS3N3iQ5Q9qFPfEmE7C3YR+4ouhA2vUidllHezawz3ugOdlxkh74zDHzJpzKgkGd7hnoGK4b8BOrNt+shGIzyN9/Bbuc8kZTNTlZAJBNR+NSw/myYFDXgUHWYtcp71VC+apuyvHhvbo05AQB3qqD2GyIme0V98zk6ync+HL0jtUCgSREC7oz6gDD8b/m05qyPttB0cSXhGQ1JldV9q4EEIkrUML4ajnCpDOSLyxjeerHA+vcMBYbyGgEvLkQtskSSaqxLNVPk8eYF/Gf8m97nO04Ee8nSzFrpADT8Xi+sEOSQbjfB3y3/Gb33yGa0ZqUcna7MsRy4IUOJzF7EDjqLC7rod+hatIqZgJvqGDFhqECsWBcRKSiOaifSwTycvLwgLrpM9zqd3DMCrRuEPC3/GJgNMFQQgXL/SK08cgN5MUYbiARjOPaerKWd+uFkCD7YvRSiFZPDQ8fhIwCDg1DNEponU+W9vfCrD87JIdJ/GeySgAQEQo2kBkfZDEX4r9xmniiI7BpFn+5pNwuUDqlFYi5znV6nLlCItZEM9DLFKkEMGmpu0U+LjyDf4V/FvyGcIwasQ4NKD/dR4cSVqhIFDgjxN9TAXvUwp0spPI9+kiY/oRhUy0DoLU80ZJppzZtJeDQmA1l98Do9Fkqp/7nNK/FixyKmygFvKis6RYIYporkq26mIfGYEEGvNyHvtau5TCrWzT6exlVTK59EgRVrSapviKdlaAIc70MTHm+nHpqCYKnwqg/uk+DTGikW2ByI8GTiPv3pEopaj3nqaNCl2Btr5RfJNXlyJArCSOmv3rtb6uk0NscZocxGPhsh7m5AJ9bI9HOE/i/6nPB3uoY+MpE8X5HfCRUmOXpk6y6PoMPORK/J8DXgydZ6nAz008DjffPbrbyr/Dj/US0yGbNL/HTpQyqPJIUEeMMWuU7spEz3sBrcVJOhPU6o3nYe4Dti7yVu45DvcRZlwney515fzb4ExYQw7tpf2LQGnNdP+WvzTZLivNihLjinmp261xEmgt4nPBXR1mZpNezpRR9VcX7zJlus5B1kz0GyEJVc/9NvzKmNWrZy6yTPNXer4TUbr0TDFUYpn5mV3UgFwgNgFpUmxyKjzj5frr72sXo8sceaZoJ9NJpk14KuEBFyJ91//CdBwiw0GzD4p4diF+plOhmx4NBnjEWrNEabk/PMm3RD9KnliLDFiNd5FlphnwnrvHHEyJHmfj4xsox7p4hOcZZA1LrLMfa6jAYm7xJhhyhGGfEwyi9ruAMaUHGURJSPFyVmI2ySzTvL7zA1dBRzVNaLXXIfgmjwsdZ+PbnbNX1BZp6q0EZJWN+PMGztO158OkHVQC5id1CqDBDk0cLriwEut0/N043dAtno2KmAY5oB9Oplnghxx1LcwSYYP+C7zjHOf6w64rDDklKJZ12Mo+UZJE4ABr2q7FifHDFP4aBpxQvtB3esVGEyRZpErv9Z+8qUAej3kbFKgck5ZDF3GQIDXQRiaBgOcKIzlhlOvoRmmzNdGbq4EIy5580N+l306bVNQWmy7e67XHkciN13iIkvOcHCQVXbppuYaRNX4tztmYTtiQFkhyDjzboJxYIyQk/9eZQiPJh9zgxoBRlgiT4xZJglQZ4yFEzd3jrtMW3OhqakaiKFg5q5jh2kTo4muGhKi0zo1hNeFAaCyUJlsDBpzpd1tIPpQKZtuTt1OmnrRpeVu0s8yI7S5G6QL0XrHES/EDWdAeej8U2aYIkOSuJMI1vGb5Fe18IBNMFSerAg6yCYyxQO6eC2R00mONmzLjLDEReerl2eKB6h8VlkmSp3NkWCWSeLk8DuQqY1DNNJ6kDVmmLLmrEaAA8IOxKoZkzNNyg4sPZRWGfwCIybsmG1rzjNJD8rr3HeH065JctVXSv0MKrSxzAji+5R1JvTCsFN2kyQ/CrDWxb5tBGpqqoWArjMNR9Cmtc8xocT6PuXAwT1bN7oR3+e6kz/OOPms5HC1U7K1fIuf2Poc45HRvV8DLnFj9gyyaqm/STI2SflNf4zxyEB1BW8BA2791HnAlDGD9tz3qSC9TtSUrXrSY08fcbJc5z6HtKFms3q4x9i12Hp96FBDmMA5Ys47QgG7JBky9JlE8B/xd9AQjkHW0GAXpdD3s8k1VwgABk7qHq6+FmqOrEEzt/gJIy4tWe5rSRfTIYpMtGSvSpLhIsvc4GPakGQw9UWThKs2K2qTLrdXZeBxsqwyyARzxlq7z3VWGXL3/UUrEgC2SDLDWwbw7TvgbYg13uP2F+6zA8KojFZ/N06OQ9rwIR4iCm7rntHGoWOIHdLPJpp0JUxK2Ru62TXf0hGWSJJxw5tuutm1a6TAIcC4M6MOuOJaB0oCeubYo5Mb3DEg+eTPnJQ+K/vv7/CPTCr8Ad8zIFM9bRRMrrlCOsghbVS4zn0CDmDpc1PSJp4xRae557jNCdacV5YOcioE0eR6CdRosz1Y9ysNtdJpuE799QwqETZP19/jR8YkVSm2FoZqkbBLjFmuuSJ+zbEK1gw0l0TjefON1dqihKQKiyVFkj/l9yVFFKw4H2OBQTdmGmee686EWv1R2qg4BmblS9h9vnoP9aF5Gu8hRp5CspVKQHyDumt5ZqNXbArOCrzxZIVO9rmQ3uabGw8Yqy1Qikhy+NMrPcIaiUZtCLbGkHsNH/XW0/SkD4xBeSoHZ2YLrA/0irQ1JPvKucIOPZkDWhyYR0HYaW2uWUiIvpLdgASz7KREHh2gzqu4+M3VCNDyUsCor2XWeb/wc57Ge3iaFGDjomOBavMArt71QU/ugEShSOsKEABqElwQyhxLQ+47zfqlXgFuXkI60ksn+9yofQwdAryo1cGpKsxHrlBNCejYRoVkcYd2SlQ8kTl2k6ccP+3k9gnSobOsRs/K7+dg5dJZG+RUQ4APejYOoCB+gx0rRwSoES4esTJ8FvXO6yYPIQmo2E5GKF8+TcfjI0ZrLgDLJ6Bo4UorpzIif+4vPxWgsSqg28vLLXg0OQrItQjUMDb5qjfEbOhNFkJXuLTxlDfnH+OvHtm+E2OXjvwRE7V5Rlnkf7LxC4YKz9mOR8R/LyrXDqCzJmyJ7lqeM+mCa+49ugpVxplnk34KA628OgcMC1Db8DwS5BheeU5rDihD0wdPv9PDi0tRhgrPaS1IOMv2QISWNJK0HJFzIVysEqbETX5KOSKJuuX4aSbLv2J7OEJhuJWVgbN0ZIWtqeeZgge7xIjOVykR5mlSZN5eA16kory4FIWXAtIQEDDxZu02p/ICFj5N9VAnwHzkCn5qxMmSDfXQ9HmEisdMF39Jz8oBXy/8ijMrBVrLjmVYFBAyVUszWF7n5eUW8nQz0lyi5sl91bICLy5FCXOAR5P/y8Y/YIskXc19kRdXxefqsL1FZHvl59ZzbH8zwvY3RQ+8xhBXmwt05H7z2coAH/OukQqEASoEAR2KfsT7JhsEbOCv9byywQ8JomFWIAyze0zziDHrNUAAj27y1B2raJp71jd3skfdDVTXGCRHnAaeDfiWGGGKBwBs0O/CVyQWQvcKfX8lwtxj2uoi7U2UOa9gHmDnvoDXh9zjHTRoa5eYSVLVg18ZTeKR3s+f8vssODY/iG+nvI8uq3mVkai2DkHELmOcedR2aZRFq6NU6qrBh2pnInXIuPWXYUqupqgxxBqADTMrtDHEKvPO97Cdkg13Vxmy+kglqgokJchRIuzYcQkBzHlEjDzjzBEjzx3etdcVj+QKc0w4wGgLH00ussQio9zn6zacFDWfSJMrtDni05Yp2sTX7TV7UKWidcceVQVfiXa3BgbpI2Ps0ve4jShxRIsljngCwuqA+pkDGm/yU5Pm6pBEbdFOPtYYdPtVjk36mWecTvb5Hh+gslix4DhkwKnOpnhA3WEKuu587vPpsF8GwBVjyCoupSqAkx6Dfmr8hFv4EJu0AHXOuR4KcB77l404JoGwG4Q5MOXTCEsmM/doMM68yxNQ+xghxajCMU2KWa4x5Cyufp3Hl5Zyu4WaT8Z45opwZRI18Tn5ihgCfsD3aOJZqsrribcU3KsMoZHYKhOVG9xvjY5KcfvZYIa3EO2yoPiKyuqFk1TIVQM8utllkVG63OG5yiDzTPAx71qhADh2YLdNMzRxT5H3DH027Ve6qE5TREbUTYY+oxOHObCmQGU8AtzkjammKD5gYRgKjG4yYAvqZBpumAP7HQV8dOEe0sY/5fsGTAWpMMuksUw2nPwrRt4SHbXJBVxK5KGbUjw0lp/KXS9a4ylg3iiLbqOsm2eSbDLXHSAnKTg6uQHQ6HK9hidleAHqKLNtjAWGXNOl6YW6mSgY0M+GNVviS9ZmExW9Bp3skSfGAmMGSulmIBufxG6L5183S1y0z6TM0k72iLFLljg54uwS4z1ukyBrfmNKAdc1rgxIDWJR8ENZKDUC3Oc6/5Tv08CzZlQ3fJ3iiFRZEi0V/Cg5kCFDEk2rXWaER4wZc1Zp4drU6+FVw28sSA8x/9eEJKVM67qoO3ZphTYeOMbsspsi6QG6yKjJPHW9Jsj9jfHQe8FZBh3jVQHtFGnz06i4/1JAfcQFiuwS4y7TtrbV7HeTflSipwDhFkk3fc1bgZgizX2u2+EedkDsyelsgLr5buierb4aanGQJ+YONuEZp0l9IYjhJj+lkz3z+RN/iX5jJStDVBm2Crir74ZHkz4yBvKVCLPGEPf5ups+SqEYpEIne0aXn2PcWIjq3/In/IExlF+H6OSdTUGX2Seox4gOcRTg3KSfH/MdA61Vbq4ygTnGeYwkkUviWd2kGQHHHVSw6w43eOSm5SCGznFyNuF9lzvcdHuEFuOrDKI+cRkHKor0X6aOel4AJvdUz5p7TJt9xAJj7t58DTSWCPMxNyzcIkWaG3zMMiPsIV6dJ1nHOSS1/aGblKuvo0pUAG7xE/qd+bXKcPbpIkOSa8yywJgzTZbXlDUs+4DKS8ZYQBnTYi9x9wuFmgzcAgaMq/RVpd4b9Jv5dIakpbvp/bbs6glNMrvNe+y5f8ecBFm9SzXJdoJ5ayRU5qs+LynSlvKrCgH1/1EQUVmoD5nkZGiT1i+6N8pgZsAsR37TH8Ou7rqQ3qaruf8FeUyq/JxQ8diasRp+mARCMvz7Weq3ISR+XcFylVQzzfncDqMsciZTYKr8gJ70Ab+V/owkGYYKz/FXj3mZbKGfDTwavBxuoTx2GjVlpyBN2aPoMC+SUfFxqwFJnar7UJk5wPnMjkh1Mwc0fSKx3Yu2iizYsdD1/tyNtnM+t8P5lR0CNbFZGJ59zlT5AWMsmCRyNvQmv4i/KV584z28mIxCROrovxp4gxGWWQwIu/9lskVSUKnTkzsgtHFMNSL+TaPFFWGzpkURUAq1UwkE8TWb1FtPiw9dpiiMKeBO4F3u8K4xWzbp52JxnU8vDTOce06iUJQaLTQsqbUAUUk1JSry2kw0yvCT51yY37b1vT7Qy2T5V3g0qQX84INQTmSnhZT4JoaLEvaQLBTYD0WY8yYoTLYyF71Mx7MjejIHZCI9fJ68wKkqzve6IWye2jxj5c9MQhuoIcOn2hprDFGItxIqHhMvFiAHp8qQKIj/3ivHciwRxmsckyAngSZl+NrKOmFKnCqDGpb7mk1O5STIYj8UIVys0rtSlHTbEBCBfCjqmtwwmWiUQqqV7eEIM0yxc6Wdv0q+wXq8lz4ytJTFz7GJRyaQpCd9QCh3TGvxdahfqvycV62vlU4nWcCHBNkejzBW/ozzuR1RRER6jJAAcGnjKevxXrvnng73UD53mi2SfOvJL20QdUiQTQbwVyUBGICiyOE/H75ggGo1KQPDzUA/+6EINS9gYN6f812C5SqvLmBDm+7CAa/ccunIHuFuC4Yzz/EaTWLlAqVQuw1h8sSIFYvEnX1F28ERP+t7+69z2/nKPp4h7NRJZvFTs/6rHTHt12CMQVZNbjjOPCc9wvV7n+Et++8gh8wwxYGrb7Ik2KPT2V/IgPPkUF1Z6TrkH2WRGaZYc3o3VWXVEfuSJFsWVqD+egHqDLCJWquoL5gCeErkiLFrfVrTnb1KUFDG/jwTzo5kwPV8YZacTHGQNathFZzyaHKf63ZdlX2vPvwV2uxzjLDEPp1M8tAAnwpBNpwvXIl2dq1GaTO7khh5R0JKGGipveoIy7S5GkHYlQ0OCbKL2Aup0kLl0fJ5xDtN710Fg3TQ3uc6QVFs1FllkEPEpuWkb3bcWZjVHTMQcKCczw3Gnlkvp9YxHqIsnOauEUPWGGSURSPjZOiz96QecYAjZRwYA03CVw7QkLAMfa4Wk4Tkmw7kE4u1Bjf5qfW6TTxTCSmANud89LPECXLIIGvkkPC8GHkuskSMPDNMmeJzlMdk6DOyjoasBhyRa83Z2KSQZGXde7rJs8CYeSzrGtOaT5WedQK8wz2mmDG2ocpkVUKdp5tFRgkg1j77dJEmxRCrzDLJKkMu7M5n9aBeU1XwCfDaMIs4UfsF6TnpnfHf8fhSAL0S7TRcs6gbhTarytxQJFWAuF23oH1UkORZQUFrllrzDndNJtVNnhFnytnAsxtmiYv8Q37fwBxteOeYcDr2VYta7iZvaHUn+6anPint1UZDJyHq4aQsvjAlS5cBiZ9Pcw41yZQYbWGeZB3TLeBAIGUp7dFJjF1j2N1lmjUGnazRx4Db0HeJ0U6Jc465EydnbLhNF5qgBpMqR1JJmvr7aSP+Lh87BtyMUUD72UCMzeed/E+kl7vEuMasa9oqaAqvvscAdVcsN60pi5GnHUlJUjBUGVrqFai0adXSq3xXmUlqNqkHyQJjxj7UxmufTjMx15TWZS6y5pri29xE49uDVOz39XcnmTV24j6dXEamyEKJlRtaN2ll/024w0xZLCMsu4PJZwlTCs4sM4KGouhGL652rzf4Ba4a62OXmKPgiueiAozaEGqQSIYkasAfdFMJnaKoREgnLAEHhadIc41ZozbroaGeh1M84N/0cApQ/0KqVpoUd7jBbW4SI28gaIpnrDHEe9y2kJiTbBOVkcrGJ3zMGn4i6vz9G/7Y4AL/T/6AVQbt4FaGhjJPde9JkDPQeYRl84DbJUY/m7aulU4/4tKttTC4w7vGslpihFUGv2DY6tHgqtvXFh3cDsKW3qXbwA/xXZNDRA1jNxnggLDZCwyxyjR30TAWPZz2HWNPwEIJzLnHNA+YIkvcwV4Bu7d04qpNLuDAurjR4Q9dUXEyOS3MAW2IBF9BvyFXyA2wQYl2Z+rbMB+3PsTXZZMBA2NE4tJlg4opZhyo2s0jxuy+qp24v2Z4ix/zHQOotcBTiSbIIa3hRwHqJtVVyYePJnOMs4dQ/TX8Q1LHK6wyRJBD+w5mmHLpZBsG6Ot31YlE3eugQBiWAgwqG2+GKZtGiv+HMOP6yBjgqcm0ypbWdaryFmWX1fGzRycfc8OljjXoZN/5sLYzwhKScCjsdk3i23UDsTnGyRJnnHkH1h5y2U3OhaW5Z8bWsne025R9CzEajjmWaMABt37qbDiwW0NahG0XsDM6RdruK/Ei6jbz5IuOiaCydn3odVeP2U36iZMzr1UfTTfgEE/gP+d7qN/te9zmPteZY5w5xvFo8FNu8ud8186gMCX62aR6gqH+m/rYQtLmKcOuF2O0sI6v2eRcYYdsqIdqCHrni8bQeBrv4c9Sv8cyI9YQhimxGTrPrhfjRTzKPp1UI8KMIwB4IqlseJLC6a8eOcb6Af7qEYsBsZPIkgAPA1LP5Ap0rB9BQHzZxCO0j66mAK/l4dO8TLRQdQQCr9EkHTpLNF1lNyrJuNWo+P3RdJLhGpTPnSa0cSznawJac/IZlc2iYSrBctU8lgqpVvzUGS9/Sk/uwI2km4SLR5x6BrGy0zBWobUAPekDliMXBHiMSugFSMKp12gSKh6TLMjvpAMpl9IX5gYfEyxXTQ46E3mTTvbZibdTirTwdvpTghzSmyuyM9BOIelSTSOnTQ3zKg60YiB2kEOWQsPG2itcauWoQ66nhmq05OS9n2oIk0wlSgmy/POBb1FIthLkkK99ts5RSBjfiVqOi8V19gOd1FtbhJV2ReTPORLMBcbNFxgQtmUE8wOseQFKkRY0GKi17KTJIYyVmWxmxA+POqPFFRqex1Gf+OBVaCMfiUAEniZ7+NfxKzyJn+dMuiBsnuJTMiQJlqv0bhSZZJZAU2RZ3c080c+qVCOwk3wNZlEEMvLaAWr0pot4Dbkul9JP7Xz8Vu6XfC23bvu715Dfq+PnXGHHhhsEgBxcSG/T4pZIV3OfYPmYJUY46sOGzOqlmg6dJVircNjeAhF45ZOB/kLkMuvJXlpzEJ2VhGe1O7rj3aCOX9jPIQEPo+kqiUKRWgBqAQFeqMHLyRbWx3v5NDlMNhCnEmoV8JglYuxysbhOSxmWGeFcYYemD4qa4PEb/pjmLjX8bNDPQybJkTACCgiw3MSjC1FoqC2VWp0IKSF2YmgnwOyQ63U1IEvA8LoNMIdYs5perZLUG7jbEUqkL9xkjgnmmbCaUn3TpphBZdhbbngGMri8ygIjLNHEZwqoDEnmGWeLJG1UzKZFgS0/dWoEGGCT69znFh8yxQwx8lQIMsQaWRIsc5EkW4ywbKwmwAafWad80GGeSCYP6CNj7Dmt6xa5bIGLQaeaUNXcDFM2HAYJGxTPNCHtxMkh/sYCzujwLkOSATYduWWLPN3Wt+keqUQXZe8B/JAfWK2pgOCIA6+UPaYSzwaeq7n28CH+wtKnb7BJP/eYRlJ7bzPFA1NZqMLuOvfRsI9N+g3ABMwzMEHO7LcSJz6rDlYUB7nPdUq0oxZi3Y5JCFgdWsfv7LVkNdYIOAuhOkm2EOsnGfIrKJxDrb/6bLir63ONQbvWAKqCm2fc1X8xq8tU9QNCJsuSIE6OJS6aZ6IGx/jcNZIQNgkDucO7aGjbKkPEydpazZwgUqg3tgbSaPKtqjI9GuRIGLhYw4967oUpWV9QImy4jCbr/rq98pcC6JWdNC9IhYtOFgvi/6bNR9zJf/LErMEUgGyNQVb5mHcdYCFU+zkmrAFVZFe85RKoV90hQUsQkabo0MmAKqwy6Kb6NaMgJ8gx59J29UIquBcjT81NLUEa7wmXPlN3TEGdLKRJ8UN+wPwJyqtOHrrJG7vEO4GqS9PUhhquq8+PJNeIzCfFMzQQQxkJu87rKEnGNoUSYZv6q8QL5LBXlkLFsTmaeNxjGpCGs41D1G9LQTNlK7yeKvjQ0Av1blJD1E1HvQ46kLRGgHtMs+YMWLdIsuokMD73/jRcZIQlNNFFpyYBB/Zk6GPW+Q3NMGVpaXHHTtOiTb3kVLKt30edANPcdZOZIaNra4M8yiK3uWmgggIbh44uqxMQkGY656SQYtK5Z4EdItsbtJtR2ZkPmDLgVhgtr83Y9XOq1E0l0IdIGMKak/Cqj5cC1spUFECoy0BrfR0xRY0zySy7dJMlbtOMmJu+Tbqmv4lPjLlZpY6fNQZp4nNzEkk5SpNyhUSbMRQ03CVDH31k3CTMZ0whZQUquLns/LUE7Gi4Q/WcWwe/Ho343/XHKJ9bYaUTV722eh9rqph6J/iR4Js/4E8Ic4B4cslhf51P0GChTvbJkTA2kFDZbxtY9R/wQ7ZI8oApx1zyGZNTvUwkwCVuhtk5N7S4w7tufR2SJEO3G1SUCLPqvEV9aMLr/mv5FucMAFN2a5gSbzHjQEjx1Ox2zLa/4NsGHs4zQQ0/73CPa8wyySw54swwZTKRBFnWGERTame5ZtJ29fBTid2f8z1yJBhjgXOk2SLJh9xCZbdJttw+02a/ryBZkgxf5z7f5QMDeAQEkyJEzxadLL6Wh9atQBQz6DBzjANSiCuL9w43DPRUAEPuLwmsSZJhlmtIavmm7V37dHGRJdo4xO8OfMC8O6a5i6Yp1x3Iq0l1OvgSYGvJps06Jdah2QxTPCNlCVtarClopfJvlbCUkKQ99dVr4jn+9RLKnNa9URhPMqxSVqSe3+rnUidgjbfuzTqgUGazBgedLJLPObbALX5CwrEQVDZ+cl+TAdMaH/DdL7wPkRrJfaipbT/i+yjDXkHZupPkfsgtAwyneECYkjU6MXZtgBPm4AvnX5ycFYiSlP43Q2IW4Eg+qwcXMtucaggwVoq0cD6zQ+sKvBxr4W9n/pkEV8zuMMkst2of0keG7XiEIBUuPXkqe1i5wG+lP6M1Jyy/7XgEfHBhdpvD9hbWGKJ1A8LNEvOMsxaSAApdmzvD7VzIbBOgznY8wsrwWY7iGEAXpkTaS4kEvHrMojcqAEYNQsVjEs0sRx2Sdqp1VUsBBLvLQsOFN+RhkwF+lvptVgbOsj0ugEWeGD1PDrhaWCFQg6nyA9mXy1VpnGrwi7gEJgyW1zmVg1+MvyngZQOqwyK3LaRa5XoUizwd7pFr3awRyh2zGejnRTzKqQa8TLRwaeMpfsem6c0VmQ+94WwC5H45v7FDsFYRMKtDwNH1eC8zvEX0s6oDH4/duLNNAheKUk/vOxZQghznV3ZIFbfJ000+EiH6WZV4sUB0pQqt8Pn4BcqR02xGztJffM5w7jkVJIBEvfJoiEQ2T4zZwCT7kXbCzRId2SOpucoFqApQr56KF9LbvIy1sBI/Cx58eklSbntWDvAaTZK1jICvIXgYeYMXqSjbVyL8auoyG14/L4db6C8/ZSFymUCtzn6knVNVYcz1PimyE2/n0LGcLm085VVIwOCWsvgu1ltb2B6ISEPoiTqh4Xm8vNxCJdQqnwsBfHeutENEZMYXi+t8mhqm3nqaF3Fh+vWzSWfZNXMN+F+m/xvenH3MZuQsRwOyJ56qynMlmxkIwNOpHshCNQ77gU68RpNTZfh+7Ue0vBRWZJgS80ygrMpawE/D83gVg1MrwmgcKz7mwsY2OwPyHmPlgvmDTjEjTDvXue1G2znqECAyHRLfvZ7cAS8GopS8MBdy2ww0N1H/qjAlGaoUtmkpy7oEyESjzIfe4KpTAPymP87xjLzzxxtk1ern+1znOveNIKHhAnOMox6zqnh4RsqRFboIUCdDkiVGGGCDODlq7iztRBLl1Y9Oww72HalkwqW+a60TpuRIC0tWF6k1hvYg6omsNhaqYLrNTesJHnINTXr3I6n1CXKmrhNVz0UC1Jhk1ggRN7mNBrmpimGSWZNuip+6qONqiK1TDbH3+oDvGtNMagvBChS0AviI91EGtvb/KdIW5hWkIr6oiAJLvcH1ewEM6CwRpt8BkRric+AIDGKrU7P+SHvpFGn81K1uVi81xQg0HO81EWTNhtnq4av96km7qkFW0bA09ZkTNrjEaI4zbySjfbp4n4/MwiXJFpPMAlLnq42NRxMNDu1yv6sEhHHmSJGmRoBdB/ifZC+qSjND0hiYojTsJEececaZYYpZJq0GH3HGaJLQ22XKiD/l75IlQZ9TAYYRf+55V1/HyRogrj1/mJIRU/rZcOZoq9Z/jLJIP5toeJmoMdotSHOLpGEq4hcogZ66/lTyLL3cY8Z4hA/xc36XOw4raTg14L5dz7xTlaqVz7f5CwOGk4gX4H9fG5YvBdDLOapkG4cGvqkPkaKXSplVNo9HkwRZmzaMscBF96Uq3VgT9DSBRn32dGOqEGSSWZYZcfLZfgfh+VngKhWCzDKJ6qLFm2jZIay7dmPuugu/T9cXFmiJsLETKrSRdTRQgFt86BJ7KswzbmDQLJOWCpkkY8yrCm0mUSoRJk7OfkY3HWUxlgjbpqUAzib97mYTuU+SLS46gEw3jFUHtM0yaTeJAmklwpZepKwtYZMFUH85pSdrs6G+hUEOTaapzLuTDKCTyLmCZSLvfD0VBAygGmWRZ25S0HDMIPVd2KDfEoV9bo34qaMx2wCd7JFwN7Ki3eIDIT4FKp3V8Ac/dWMhKq1aJcRqrqmTLAVhlJGxxEU7FIVhIp5c2rQr01NN0RV0htfeCg0k6fSk1E+p79rwPnJSNRAQcpFRpnjgWCsVTprKqkeBgskKfAeoOz+KJB/zLoDz5BLGkgYF6PRIZcXKAOpk38xIhfW0iZ8a7a4YlMJMZOPvcNdktXJPHxqzS5Md9X6VDXaCp5z7Mrafr9yjk6IBH0pf12CQJUZs+iTASsAAhQAy3T90svvX3okD7n57XVDFXBBKnCyLjPIhtxhhmV3n2Kh2BdpwKQDT5/YkLb50/1Nz22VGOHSFZBuHVAi6gs7njIfl/tBCNEecPDFj4Q2y+gUQX/dTfe9hSvyv+C9ZYIwANQe0iSXDgAO1dMIF4rdSI8Aio3zE+8xyzYYiu8QMyAPM/3OVQZacB6gWBv1IUtwhbUxzlz06meWaMXd0Sqmf7QO+a9PFATZcsVs3cN5PzYAtKWxjdj8GqViKXMXtHXFy3OY9NAFSfVqUkaEF6wCb5vUpBVofarsww1vUCTjfEtmjNXBK5RMAV1kw6wXAprUNtyfn6WbI+SI28Rhlke/zI4IcMsSaJY7F2HX3uLBL+tlgkFU0lEKLXY+GsQN1sKfSiBi77gypGDirMpFdYswzgfoIDrFKljjXXKK9NCEJNO07Q5JDO0cFaDyZwqYMc/XHUzm3MrObSLCPDgkXGf1C6piCkv8J/wX9bCCp9HWuc998F+POiwYE9BQD41HWGGSZET7ifeLkGOORrQ+9zmnOMcs1dwYc8Jwz/0NtSf+jPc6V05aeSRN24u0sBUbIegletQIxWPLEhqMaxaR8IL5GOmDdudROorwjTKUG/NXAG7IPuJRakhJSoOEHADcLvzBPohmmOJMrEGjWoAmpmtSEw7PPaSnDPONuD64zWF7nanOBlpzUqxdmtyknT7Mdj9B2cETTyTinucdSaJhqHF6ea+FMrsDLcy3UW0/z8u0W1ChclBOS1j3OPITEc60SOo3XgJ7MAa1OprgR7WWiNs8bGyuUQu3gSYOSKBQtAThL3NLsfU2pF2oBPx3ZI16FZM88k3HsPC8FZfHaHC9/SiHeaob6QQ658GQbyohUFvGHO58RBth17oMPzqQLnGpgg+0zTwoQkNpF2a0zTLE9HKHlJSSa8plfXIkaw+1J6jxfm18nlD9mqPCclgIcBWTg0UeGjvyRfLdxsWAZc4wfjwYd+SPKsdP0kZFgiBBcevKUM+kCPbkDnqZ6WPWGbL9bZFRAqVYIZY4Jlo9p4jEfeoO3M58aKzzGLiPlFfa8TkqhdsaKj/EaxzJQ8EGyuANZAaoyJFlmhJfnWqiETos8tQm5iKw1HZCM1RYskK3t4IjoZ1Vai1gYUqBZE18/77VvVCh/zJmNAsFylSYegRoCTjZdsEdM3mvLBtbIv537FK/R5GmyhyCHrE/2kgn1UsPPfkCuQzYQd9+tfFeamN5ZLuJrCltrLnoZkvIzuUgUfNBZPBCfxFCrKV7CtZIw+zjkjfQKJdrJRaK8ch6JlVCrXYcafp7Ge/BXJb06VX4u/UhzScDgl5JeXCNAvFjg7ZVPGfyrzF/DbvPVf6wzYH3hEGv8x/yX1g8MssZbzKD+1krqUHIGCIFBB0g6dFeQVlj14rv9Ph8ZQ0sHgCqTVMsOlcre57r5jZ9UJvipf8GWSu2IxlhgjUF2iZGhjwNHMFEARZRtCceyW7WzV33KtN/UnkOBvlkmecCU2RVJWNkIHg1737vEuMgSH/K7RooAzGs/6DAITZLXPlcJEAIGTZjUUQfS0p0FrDbRYecUM8aWPFnTaI+kNdIc4y7kLcDv86c08RGgxiYDpEjb8HCCObtOD5lEfe+VBVchaJ59GqrWzwYXHQFG5Nd+IxodIMowBeVUnaffWdwNw/3UmGKGQ9rYoB8NDFXfRMBUgn43oPZTMzXeJv1MOP9BDQbVPvJdPjZZ6wxTpkZRCesCVw08fc+RD/yO4KLkE1VxHjgiiKg+xD97hrdsvSqTTzwJa1bLVWgzdqeA1fPc5Lb1HEKMuG/2RhWCnCNtElpVzeWJWc+gA+wwJWa5Roy89T+KDwkrr5slRrjHtPPJFhWR+h3W8DvZs4Cauia1FtX72O8ICyMsEebg19pPvrSUW2X1rLnkS2XLyUW/TADxAlOJzSFtBmrpZFTpoQlnn61fsEzLYwYQfsjvGrPlNjetKa25VmufLvflSnmvzaw2fn5q5k8mGuu40R0neeigw5gh/hdZYoGr5q+kIBFg71upnwJe7pv8IEucfmRSpcmPYzzi0DEo9EZVc0qdkmi4gzIZ9unkEDGl17AGZdlpKk2CrEOfBaBRwExR4Vkm0YQYlf3KBERALU0OPHBg6QxvoTTtqywYlbrb3YB6DWLkmWTWsf8k6c+PGMJr8pYmGgr1NGDNcd4xywLU8TsQT/3/1PupiceSk+Bo0aYFlNKhtdls4nGLnyA0X7+bAOyxwFWSbCEeSTnXWDdMcijspUO7bppemHATL0HlD5H0wro137rurnPfeUwcGIA8wxQg0gIFbveR5Nk2Dk32oiazCjbuI2k3QSo2HVFzeAXQKoipuB5ci1y2zSFAzbGwEmzQTzd5k/g18GzqKtLFvGNd7XKDOwSpMMIyF1ky9qZuip3so36GbU42qkwg/W4HHSipKZpqNjvkgJ6/CQ896OC1JOLk/RJ2bCORZtYYZ54sCWoEOCRIm2NmqbRc91Zle42wjHqGitGuhA6o9P8Gd8wbQ19P5QlbJPmE60y7tE011r3LO6h/Bsj395BrjDlwKEmGCkHnPRFzfm5t7NHJ9/jAJEB5unlGygEih/ZznewZULfKINfcZFb3nkkeOrmsTF2/zY+twVYGq0dTmkx3jSeY53t8gMbYKwN0lEU3ZKoY0KOgPwjrbpRFYw6OsmgDmhp+J/eTvWCVIRt2qA+rgrKzTJq/q/qlaFFznfs2FdfPeJOf2hmo7EsFhO4xbc87z7gxdMNuYtnJHkm2yJDkOvcRyUHGAP73uG1Drj33exXaGGCDAHV+xPdtL910BZ0CpTKUkfs4TpY7vMt9rtueo8+rTAsdRDXd2bLJgPnm6NR13w1QAk6qEHdAngRG1czzD7D/18m0AsFBKiatVb8RZf2VCPNjvg1gSXvyHF0MscYE805G8RpsbOLxLh9buEonEmy0ypAr1PO2hgKOKZ8kw1vMuMArAb61QdKzXv9fmQTKGAdsCKVNQIA6WSezimoU5G/ww2tAvbWFp1d6eJlsoWfjgInCY2Ls0vDgaaqHMCV2ku20FmAxeoGu5j6ZgBqENzkzX6BCG61l2I+0QwCWGBH2iOfxr5NXWE/2QghGiyvijVQ84lQeC1L7Qfm/YSfejr8qoFeoeAzA9mTE2EJ9ZEgWCrSmoePZEeVzEmJAOywGRkVJEBE23NfS6/TMH/DGkxXqrS3seZ1QhI7MEf7qMTOeNDajhXVGy485JMiSC7866oDt4QiZQJL7kbegDNUBqb/qBOS9NURxsTPcToo0pxqwM9xOwxNgLU5W7FaiF6xRWEme5VQDBpqbrCd7eRlroY8M1QHwNZsshYZtrZ7JFRj+7DkE4CgF0VxV4IPWFmgKw3GRUV7FhRH4Ih4VQKpWhyy8OifnSqq4TZIM75f/kt50kUKqlY7MEcO555zZKNA7W4SGNIsqXQWX2huJcCZXIPrzKhTgsL2FT5PDBJo1O0OjT6oU4q2kAynx4atBNQJEoRw/TSHeyrnCDqPlxwyyCiH4XvmfkSPO01QP5eRpai4wYrz8KeQEsOwsF0kWd2j6TtPVlD3F1xTAdLI2y8tYC6VIK9VJoAbfWvkl15il7eBIAEIfEJDr1JE/4vzMDsMZ8XBUX+OWGry4EuUoJGfScPo5HY+PKMRb6a9tUooICKYJwIGaAM0gw++XyRZOrcjf/SP+Dj8ff0t+PCafu+nz6K7l6Xly4KAfqavPzBZgRfqyp5d6yIZ6yJIgUSiSKj+ntQgdf3XEG/MrTBQes52KsB+KcGamAO4eC1Khq1AlXBNv86WArN2e9AE7KbFDSBYKnCrCZqCfB0yxE28nVRT2qw7ILs0/pTWDAO+IH1d54DRNfIzxiKYP1od7oePL2oG+Wo+zvLBzU/va69x3oVI1AtTN2kEBDGGc71mdveVAm2numX2AAmaaqK7SvRJhA5okbGHBDRLbjWCgNkfKugJMLbfK0BfIOSqBVBZg3vU/2hOqt26MXcYdA7CPDHeZNlKMECo2qOHnI95nn07UpqiNQ5OIbzLgPM67DfRQ38lx5hhhiWnuOa9hn7P7kP5JP+eBI54EqPMOdwG+oCrSekj7PiWdBN37UJVVFkmU1fNEiBBi4dHvaqwKQXLErU72U0ftaTrZZ4MB0qSsflO7gH266CbPKkMcumFhnm7DPha4an1lhj4jRIHUF7uIFZIOtzVgQYfi7ZR4zChZ4gyyZszqOFnuMm29Z4kwawyatFsINTkjJswyyS4xG1QqhqDXQ0k5gnGI9YraSAUcmKuDfZ8bxirTbYN+Zpl0Ks5uwzyCVLjqQkDV33jaedupcmaMBbYQebefGh/xvhHL9pHglY94n036OaTN8AhVH2p+gQRdjNrn0TrUo8lVt5726eQ+18kTo4/XgXaqgOl38mFRgAww6FiWSmpS8pXeW4Os8h63UZucGHkk7OnXqw2/FEDvBWfpdsWwFvs60VKGnKbi3XUMIgUplIapjJ52t7A2HBh1nftMMG/T+EVGuc59NJlFkmzrfMT7aLqqXvi6a5BFyDUJSPMAr9N1FahQqeqaMyJXE3qdAKR4Rj+bDLEKCCtRG6NdYowzT4Y+A/aa+ByAdmhNkRb5dQLsusAMZch1ucagRJg73DC6qgJdgE0cVEJUIUgbFWsarjmUPskWatguyT8SVqISOpVJKfADcOhAA2V/6XXJEWeJi2zQT4IsKtdS3zZF4pcY+YJE79Bt3qvOg0A9EzwazuxSwE011pSD56KBGiJhk2SifjbpZtfQ/DoB5plAKeV+6rYJ6OSnRJhzvE6R7WQPTfN9Da510efAJgWd9MY+yUjsZI+LjoauEwFt5IVhumeIvzb1MXa5yW362bSERH2IL0ofEhxQd9LbBjUHYASpUCOAei0oG0sBj7qTfOlzAIywTD+bwgAAvs1foF5eCmzqFAuwza5Cm7Ggsk6O9yf8Afd4x5hhJ9eCyrEDbnqj0kllnt7nuhUJG84vQ+8zj+O/tj3nq/yo04LK3kuEucc7BjxPMGcpyXrNdEKnD2G+yvc8xYztAZv0kyNBhj5GWOYmt22KqlHwCsrFeJ2YKrImoYDEyfEO91hj0BVnu6hxL0jhUSNgB3Ue8fJcdQbDe3TyyBXraVJMMWMMwZPJVTqxi5HnHGnSnHP7aoMFrrrPVGOZEZNoLLu1cp/rzDPuABZh+k1zz4Y6oyySJGOFi0pNm/i4xkM0pEE9YOr4LV1UmYubDJAgy4RLN0yTsrNBr1+KZ67QaUc96DwknOcd7uGnhjLV9um0Qq2Nik32NGFOwiJWjQEoxZ543+3Sjcotvs2Pv8CcnnD+mhI00++8UATw1YRBLUKUKZxEfANPTvKFdeezNeDRsKKlRJguxBvlh/zAUtuDHPI+H1HDb+C9BivJ68v0f8gZ/Opeoc3I17lvQFrOMe2UNVdzUtYYu7Q5cFsDPZRpvet2ff1OhA0oZ6B6j7YhMpm6qy/Amfe781w9UvZPrFtNX1ZmpK6nMCXzxdl0/qWaPKiBWDKokqZFvn+PP+SP3dBMwpZ0Iv7IFcYK0O87pu5r+dThl7H9fKUeLSsCcp0r7NCRPaIah1OPIbpR5bC9hUR5h0u5p2g4SRsVSp6sowRZRmuLvDon8tUn8fPc5j1eJlp4lzsS/uCax4HCNtupCL4mfCPzK0qRFl5eENZcqrgtzC5EHjgTfQOAnvkDWf9e2Bj2tYCwAf/ZwO9QCcjaxYPJwmcCohd3jE1XGG+FKKx6sl63h8XTryUntZqe361pGKstGFsPsHo4SQZC0LohTL0mHuvxXnaG2znz8wIeDbZIshMXH+OWHHwr/UvOFXZIssUenQRqdS5ktoX170DFC7ltOrLiJfhR6HdoOzgigBindzX3oQFPrpynMNDKTORNC1VoOzgCTxhUA2zS8GA495xYucCbmccEy8dwARqegFn11tMyeHFpwcFylZ1UO0cBAe1eXQDS8BYz7Ay0kyzucGpBwC4/NQrxVrgsMlmv0WSotkZH5gj1sd6+FCFYrgrzpCmv0erYfbuBGD/kByxFz+M1IPqkypPkeVpz8LWcBF5kAkkqoVZKkVZa03A0AJTl+8tEeggVj6l5Ui0/i/bQ8ES2WvMCBMtVSbZtIKm8QL31NIvRC2RCvbzyyXdPAUhCIdnKcuSCNKLNCjvxdhmi+IQ9ThmIivdcOpByA1gfR3F5P6fysBoYJBONkiLNXW+a9aleagHcQL+NIBU2A/0EanUansdmoB+i4r93Kf2UM/MFPp0chkuYDco+nXSzy6mMgIZ/lXwDYkArlCItxIpFwrUSr4bhqA9rWhseeI1jW6dxcrxIRel5ckBvTsJhXkUE3L7IEnli1FtPG7EhG+phZ7wdneN2PDvim+kH3A9cpycnDBRlAW6Mxv+ad56v5mOeCe5wA1U49bNpPrDqDafet1oTbiAG/irz1LpRfcoAA3CW3DBSQDbpjW9yGw0YVMmreHsNuXphiyTiN6cD/SQZY9Qn2eJ9PrK+c4YpY90DNuSrOBDm2/wFXYisMEfcpK8BV8NqX35IkHe589onkgbiC58wT7hNBqjQhgYSBjm0nrHmFFHaoy0yakM2Hfjs8TrBVEGwhCPpiD/xJgmyZEgyyKrVOgqGKfNwy2EPwibbcoCmZz3woLMl8jswW4fpv8uHxu7TMI99OrnHO+aXpzYlCpSNsGxsPQku9AxsVN8/fT4/Na6y4Oo1Cdz7gO9xgzt0uTpJMw3UOz5Gng36OSTIVce2VPslCZSrWZ0y44IPv8+PXAhezj5jjgQf8rvkiBtpSGW/Gubnp2Z+izK8vkyQiinxlEyjyg7tbdXTTgG1RUYdWasTlQanSXGPae7wLn1k6CNjtXAJSRmeYJ5D56WtYaDT3HP/L6y7hCPUaAZEHfEwV5aeDmPDSHBJHAlN2WQAwEhjmpvgdzXuNHcNbxAVSZfVvmpvNMIyai2kigRRhm79WvvJlwLovcdPWWWIA8IkyLrmdY82KvyAH9J0bjJbJPk+P3IGnqtGrVWteYWgJS8OOJ8iRVAF5PA7+ZBQcFU2oCEaYyw49LphTYWCXDFnWBh3AEQDz3yOxNC9ZuwGv5OCabDEMiMGjM0yaeisn5ohtKqjVqlwimeo54geiGLoXTMqq3rvqaRUG15lHupi16ZATVL1zzRdWL1cZFrid1CkRyd7xixo4lmwhi56ve7q5aYsHk3Z/Dr3zS8qjCSsavPbzyYjLNmN1+loyerXpA21JryclMGqFPYiy4yxgCS5ysGxxiBpUs6IsmYHmTR9DdZc0IBSiaXpFZBEU24OCaIx7zp1SpOygA4B4rrNP06NQvXnEuRQY/4SYQbYZIRlY9y0IcmNoyxSc4cOSBEvfy+R2drgb5HkLu/YtMxP3ckDB4zlpOmxYdS3cM+uufpeHRDmoZMJSlDJkHkR6gGsG97J6dMoj2nimd9XmAM0MOSqSw5WMAMkyVLls5osvMYgmlKlr6GbVdbR13UKsexMb5V+rPf4527d/aY//Byhnp9diKQgQY4BNnjEmN33IyxZmJCAMw3UeDXGLv8h/8jMb7X4O8nYnWOcNCkeMUa7mySqhNNH0yahOn1VAEL3VJH0N1lihPtcN6mbJnyqH+oBYZJsscBVF5IR5CJL5qX3yE0HdfJ080RYiu4NypQC7H4LIw11HxIWtMgoew5w/pBbaPq0srLaKRmgpKBZ3BVjr+X/mm62yRzjdLLHLT5090eXTVZVbqEG1cqQU98LZcsoiKV7zkmP2HNuqtY8sa9UCDLBvA0fVFqg+5A4HXaapFb3rEFWGWCDLHFucIdFRpljHLEaiBuortPlqyxQoh01J1ammZ4RypDQ9Oxux5bPEqfbWTaMsYCE3XSz5/aQKR4Qd1YYS4zwF3ybEmHmGTdJgspU9fyUYIm6TbN1n1NG/D6d5pmiBbZKCtQyQAdmKidRS46gk/JrCpiyLFUmMnCiUNeprD5UWpF1+5DWJ7t0o4bPCXKMsWBNQZwsAdcIKMgkU+rH3OInNkS5xzTLDlCeYYogFSRNvJvr3GeRUbrcjqyfX4twLd57f82i7d/ph1MVn3Km/gAkRaLakT+i6XNSVir8KnWZC5ltws0SvRtFOmti7l+KtJDiGamaVCwdCwJUPfLG6M0VSZbFm683XaQUaeHz5AU6Fo7oWD/iabyHzchZXiZayNDHEhfpZ5OV+FlejrW4s6vJSEE8+vZDEZp4jDPnWCx1VobPcqoqYFUm0sOTK+ehIay27XgETbtdYoTP4xcoDLcyVZshWcvwLNoDIQVG8ry98Sn7kXbOb+xQd03hq1YgDi+SUe5z3QYznJOaLk7OGB+/GH4TAhL60JM5EOP4QBxyMFheh1bAE8nmy0QLyUKBae7S9GGDvY7HR+DD7hVlCQebFfYjEoQRfVLlTKaArwnVELQ6EGwv2srnqQu01AQ4zAYkGfrUM/jXA1do+k5Lo+uDtch5agH4fOoCvuZr1hoXcADlEIcEhdlFmlDmmFDu2DzqBlklVixSCrUzXfwlp9bhVQzIi2+hjyZTPKC//JR0pJejPhlIEZDPn6fb9u86AY76oOWlMB2zoR7OFXYoxFsJNGvGMG9Jw5mVAhn62A9FeDrQw+cDF5j1JvE1m4Tmj2kgfmIb0V6pmzqELRioSR1fR/zpHnJNWKYNx7zrAHwiP9Zwnwx9LEcucCoHFIWlqQNwnzs7Z0Nv8vf5I9tL/NQJ5Y9Ndq0A5UrqrAR9sAU+uFhct+831Uzz8nKLeFgizL2dS+1kvCSH7S3sBzrJRiN8GPkdglRkAOQTdq0OGHs2DphhiheXolRDEsRSC8j7Xj6x3+tQd4skwVqFzy9doGP9iJfnWiArr1+OnEbY6BPO7/zoy9h9vnKPNndtlUUmINohS1x0NUmcb/NjhlzAlvahnewbm01rAAXQPJonZPQSnrHMRXZd36dD0ftcZ4YpY1FVCJrFitpqaO+XIGv90wJjbLnaTWsNBbM00EufU4EwJQiMM4/asWhPPsgqC4zZQFAtYNQOSL3spc+K0e36f7HmemRsf1WeqMw2QI15JmijYqFcD5m04WWFIAeurj0kaMq2d/kY9b/VUDOxkREWoiat9rPBPp3m56y+8kq4uc59hpyfnfZDqjKTQbnfPN/GWKDPqbC01kogbsvd7Fovqt+1DCE7jTSldY0AXSLTlO/Fx3XuW60tSgxJw1X1AMAUM8TJGgFmiYuMscA0d7nMImoJNcksWed7J154QqyaZJZB1kzqq2tL9z/9uToB5phwVi8x1Mu9k30WGGPP9az3eAfAhrqqwDx0pCWV1Pa5PhewunqShyTIMclDRljm69xnjAVJbGeEXUf2CVMyDGCeCVPVbNBvirhrzBruVMdPjjgPmMLvlFBKjFGsQ4BWAer0e3zIpH32KWZsP59gDuFj7htYWHH33hIjaNJ0mNKvHRL0pQB6kn6y50y7hXG0yQBi9NhGDpm+aFLLIGsmexJ6Yd4long2RVcD9iYe84zTwLNGVumb2uSoz9Moi0Y7V/nloQOS1Gcn4ECiIIcWlvER77vGx88hQXIkeMQYmqKnIKAae37CdbaQtJN5xglQZ54JBp154knWlOjUZUKx4J5TmkCRGY+xgMrFBlkzCapSkAPUHBOtzQA0ZdztEmOKGWsy/Q7M0oZ8ny7UnyFOzpoRlWpeRBIzPZrEyTLOHO/zkX0vn3DdCot9ujhHmuvcp0SYD7llB0onezzkmtFjdQNTwEe9BrWp043/HtNuk2+wyKgDP6URXmOIeSZQbwFhSxzaQQQYmCoskTVEupyw70qpvZPMojHTPprMMkkTj1UGrbEXQKSPPN3/xoYuB8E9pg3kVBBwkVES5EzqqgXzfa4bOy1B1kBl/c4HnFfhFDPk6TbQR72kDmmzg1Ul3k18fMJ1+tmkhp95Jk5Qn4WmqxuRSDVHDFhVHyJtfEEK31EWDZD13L2mUm+N75ZNWP48jJj462vpREGnb6/9IaURH3NGx1qE/k2QmIH4pNQIuIYiaEw9oaTnyBFnlmtuLWw6T4Z2Bxy1uwLER4Y+RAowgN9Jcy+6PUA9PzvZo4mPZUYc5XvD9kXxc5MgBSnkcja5TJKxe2SEJd7nI865EkIGDBLgs+GA7jUGCVKh3R1oAw7QVzn3FDMAVtQvcBVJ4+4jS8LCC0DkR+/yMUtcJE3KMQzzNm1MkeYtZiyURg/u9/mISWZpOMBS6fOrDJIlgY8mQ6yZpFIaY2GlKbNP91rdUzcZQCUHui8G3VBojAWuc58scUtyE0PrODUCLuSi5gpNWesayKBJXToU0j/XAYGyk7UgkzT012eSZLfl3NQ6gBoOdztDYC3YtOBRC4ND2tilm7eYMa+RbnZtj5viAW1UWHYNhDLmVBrfzS7f48+NSaiTSWUWAWy5QlZlKgmytu5yxI19r4OjJUZsMKQS7AXGUOagAt6d7J9g5c/ZdFyLMPVaUeuBnLOp0IJa2eIqTdf9W+sPkb30M8kshwTpZI86fj7mXWsuA9TZYIBu8mww4ID0DWssvuOaLQWexX6g4lJxX9s3qH/oNHfRACm1PdDQoG0nx/mNf+ShEG+lMCksKRAw6GWshduBmzTx3NAgw06ynYoX5MVAFH/1mKXoebJegguZbfzVY7rJczTg0kmBfxX/hoBNNdhJtTPjTfG13DqvzgFpDKhpeMISl3R3GXl2PDsy2f2pFQiXD2xtHhCW8Iym+OAUkq1UQq2IhKci4ETN+VcVqw7Ub5eCvVAltHBMKH9Mnm7WU720pqHnyQGExKOMsqQLLjDGqSq8jLVw5rMCv8ePePvJp/R+VqQw0Cr3aLPGWPkzxoqPCVAX/7Y8vGoVKWl3M8/TcZFWUhZJpkcDf/XIUl5byyJHDlNi/UovFOFrmXXCxSpBDiXgpXhEz/yB7Jkd8K+TV2h4wohTqes+nTTw+EX8Tf5l6pt0sk8fGZ6O99DE415ApHUg9eh+KEIfGXY9Gc68iEchIAObfjY5kynQsyLg/s5AO09TPZQiLZQjpwlySMtLuV4tNXg50cJutJ1/Nf4NXkWkWR1qrtJahgtPtlmIXMZPjfVkr+0Db8yvAMLYSEd62U5F2KSfP+YPOdWQ/bMjf0Rvrsi5wg6vksLG0wG+sp3GmaPj2RFERNKsNWsfGbaTEe4FpgmWj+WsaqZR8/3r5V/SUhaJ93Yywk683epWtRj42s/WIQrVy1jT+0N+QBuHRDNVaTZrFRsohSnxi+SbUkc3S6wMnOXz1AUSzawkHjdlOPswIkxUX7NJx/oRDc/jRTzKSHOJRHmH7oJc95IX5sxsgd4nRYZYdd60fpZCw9S8ABc2hP25PRCR0IGmgDah/DH7oQgvrkQZY8EA4kFWLXQllHGqjAiSKJ0Q+XI6kCJV3EbDTZJbe1/K1vNVe0QpoLY12jeo6mueCSMR6HBOpeclN1RV/2/xZBfQRRUH6hGufWKeGO/zET/kB1/oydQrTkgeEj6hKoM6flYZdKodCTlT5RKI761KUUESTnWYmHdyTPU+VwaZ1hG6PtTqZ49Ouskb0UX7l1EWnZegqEW099h35Ia603fknC+pgn3qk6yEk072+TY/xuf6OfXJ87l+V1UBgLNPilnPM8skM7zFPOOI6qqbSR7asFEAqz4Dl7ZIkiBn3m55uo3xmCTDOPNmIeZHbGSkv22ax7HU9XsGii0yagPOcea4xqwxxkAsGQRjkBTVIBX+nO8a6KrXUsO9tDdTDGWGKQ4d71GVXBq0pgoTGayK7ZRIwdtR3/xD16+r9HSUResRtAeRAfoGM7xl9ZFKeceZd4GkuzYU8yO+szHyzrM4R4A6Iyyjcl31TqzQZr2tYib6OdWiR6TNG1Y7vsM9KrSx6ohBCbJmh7FBv7PDqnCIWFpdd+DgEhcRD+egWZ/pPaXqPyUvCJNRbHaUPKS2LsrI1cBWraVHnMXVBHOkSfGES7/WfvKlAHr/glvGVMjQZ/4eneyhiYwaJqG+b9JQZi2oQZN86gRcvssQd7jxhZAEYRPIYaNMpR/xe6gvn07UAUsqUaaAbkiAAUwis/DbNEJ13e9x24ApnRqIZ9I1t2EumzRUqJdCs1T9/gTzJp0UKrWwztSodJ9OS39RvbqgvO3E2OUd7gHCHFQati7SIVa/YE55mUUCiBegUkZVyqXXNUaeHHF8NO2za8S4+l2oXEo8pwY5dEyPrDPNFOmtIN4DbPJt/gL14xthmT4kDEHTdVRPr5v/niuEVfu+yQBCEb94gsosRXrMyWt1shN3nooKTE4wxzvcM+beKq8NkeuOMq2brk5GAHfz7RvL47WkVhI79SBSfwGlIGsRK3Lj1weIpsy+z0fEHWisoLP6RALO02mOQ9oYZ47b3LTJxGtAV+TI+hhh2ZpmXavaJCorVWVlCnbUHTN2jAXzZ9DDQSc1Iiu7ZoD0kkubUuBy1eVOKyisG9+gkwvq1CqNBH48I2X3eIIsQ6yyxpD9rppBn2TO/KY/rnPfNnQ9VJp47BIzqvj7fGQFlgIbeu8eEiRF2oINRllkiyQLjNmAQoA8KfbGeGQFQc6xzmQNyjXvcvtfGEmg0kmuGrxqerau8ftcB+R+GWGZJl8MtlFJg8o5NeBB5Ri7dDPBHHt08j4f2e9skWSUx3YITjDvrAqSDmT3uYKo7gCmLQM/PuJ9m3wpUKrJp5paqkAkCEvhXe6YdMNP3Tw21GxaZcyTzNKOJKO99v88tGvXyT7LjJjPYJsDAG9yG8Amnwrq1FyhpaEmgAPtajbYUG9KndyJr2vc7b9DjvVWs31U71EtQHVYod8TwG3eo4HHBHN0kzcmon6vH3MD9SX0U+chk+Yt0nCg/V3eIUucBcaYYI4kWy5hbfb/C2AbZZFx5omTJU3KrCcmmOMGd2zwkiLNLX7CyfAgjyYb9NukXr1FAOZcCto+nTYRTfGMe0wbg1yBBJUiVwjyHrdRb0B4bRauXr0qE1GQUhmmyky4yW1q+A18HWKVdkoMsYbaTOg6S5CjQpAkGX7KTTSkQ/0bteZYY4jb3DT2Zje77NHppL1tX9IO9NV5VJ03VjRXFQ+0DPLPiZDfMxsF9ugk4xg9TTyShQJNH9Z4HoXEcy3ZzFgoxQCbTJd/QSHeyj9Pfcv2yk/jwzQ8ePnNFpQpHc1USZa3AUluTtRyEJI1ssgo61O9BGqwT5cxV8ux0+x6MWFt1uQ+7mSfc4UdMl6S7VSECkFaCrLPj7FAuFliKXoeEiLBHKktcSG3DVn5zL+IvymhGZdbHCPiHtvJCBkvyaukXKejPvG1M7/mqrCX1iLnCVIhHenl6Td7eBQdpqUAu15MBtS1PDuX2skG4iRqOVoLIqHtWTmgGhJ2WqxYJMghheFWCslW1iLnre5YjF7gaECuydNkD781+xktnwAevEhFSYfOosmaKdK0UyKaqZrn6Nuzn9LGoZz/IQE3w7US0ZWqMTPCzRJsSAJrjjg7yXbIQDRTpbN4wPnMDiBJwXlibKciFr7gNZrOzL7Jo+iwnKlejGpI1kPYvZ9UcZszuYLsPzUJ6egvPpcapVDEo8kf8CdQlsCPnXg72/EIu9F2lqLn8VePRA5WrBIuHxBjl+hGFfLwjy/9LWpegKuFFW6Wf0ZXoUqwWRHP4Wg7l1ae0jF7RKBZ42ufrNOaE+B1J95Onhg9KweEywe8mXvMRZa4NP/U/ONaCzDVFAuLMRao4+dlokWa7YCfCyvb1AnQu1FkgE3ObBRY8oQl3EeGjuwR5cun8VeP2I5HuFb8VGpXz6OaFIbpn/AHdOSPaE1LsrNH0wA6ENLF1cKK1f89uQOeDvRIrVmTfbNj5YjWz2A7GaF3o8g+nZyZL+DRJJQ75o2NFWLkuZCRMJlUM80rH1CTkA9NZW7JSaBGnByvAn+du85X99HDDhPMf4GZc5/rDLDpgrzEykeHUMpy82jwPT5ggnkbTM4ySYy8+ZopuKbJnRLgFLQeJ0ucae6Z1FEtefboZJJZ1IJCz8Ugh6y5YakOf1Wmq+FrqjJQ65CsG+jVCDDDlDH7AO5wwxhpUjv6TOLaxiH3uY6fOhPMc871s+/zEVnXe2q/rf9cZpE1BtlHkknnGKePDFfdvSNCYgnWbOPQPNMyTmSsQZ2KG6h3vACCG7zDPUZ1ITj1AAEAAElEQVRZJObAGiU9hClZjQcCQvmp8wHfRX0CFxhjkFWCVMymSYFU3W8VgFIwTNmYouDb5Af80PyXU6TNi10tZQZZY4Ql4uSsrh93a0u/F2GK+a0mCrrrLD7xeZP0aiCDuDl+nUHWrG/T/lnfh4Yj/YRblJAE8Elm0dwBBak8GkwxwwjLTPIQsUerma2agpfLjDDEGhkHit7nOmFKJNlC8wAUbO5GJMEqPx5l0ZQ1WjOKhL1BmhRLjLDlJMDqPZghaQQExQ5Udbbk1GWKNT1yg2eVQoPU8te57z5T/gvDblWHxsmy6hSE2j/d5qbZVs0xTru7B5U5KIqgoAPYf71h75cC6I3wxMlStQB/zE1+6lgHFQfL1N1UfN+a211iVtRooa6SlHtMG6igiTk6Xeh29NEaASZ5aDJTbVB1aq+TDZ2IeTRd4dhnlFU/deKOegmSXKafQydVwo4RuqSy4oZYZcPpnePk8LnNEUC9n9RLYooHxhoAmQpqeIDS6BWtVTRcJ3Hy823WTGlDobI59fI5KcNThDlIhV26UYaUyITlPdbxk6HPblY13tTNx4+YgjfxkSNhflw6OfC55m8LiVzXz6+gkzaeu07a2sSHGsLLRKnfDppJHtLEY4Ypsq6pBWxq4NFAjSvzxMybT4NA+tlwrCPxNlBvLU0XUhqyNp3djjo7xJr5L6kHlJ+621y3HHC3Z0zDGHmTvynzUTaiPgO12qg4meoqHk1bC+K12I1SuH00bdMTCnWbrYV2SubroKwO2Qg8FhjjIdeY5p7R51VOJsBrAk1ilE1oyaXs1ugmb+9RfQLVzFUDOhQ00MlHgpxbdwf2vawxaIVHl2uI1SdSglH81jCfNGDtY/vL2H6+cg8Nh1GJ6zR3qeEnyRbd5Bln3sAw/c6TbFEizFWX7qfgsfovvsdt2w91sujRNPC/jt/8PzcZMCbQLNcoEWbIJTdpAt8SIywwZmDUHOOM8pgKbdziJ042uosGcii7UyfIKvX4xMlrwpSMZfM6XfQhykr1U6fd3TN1dyKIwCBuYL4c0gJej7uhxapLb1UwKOsAGaWs97Nh+4CySzXRGuAH/JCKo9uLSe9VQKSoKu3PkCTgmNPqVaIUevUTbENkJR9yy9hnbQ6ckzNKZOfK8q7jt6GQsm11H9A0rnf52F2HBIdIelyJsHklSfFSN6uEDEn23DWS0Jpuk/EG3b6TIelYleLRJX4ssqepvcEG/Q7crPOH/DFTzFgR9nf4rznnBh4e0kA/c2CUAogqFZzigU041cgbsKCeNee7qBYAet7I3vyM7/Mj1GLiEWPMMW6+neJt95ggFWO5DzoWNogU5AYff4GxfY93EK+gmrEAhC23yyCr5sG3Sb99pkHW7N5aZYg054ytoFLEP+YPHZOzwhzjqOxGB4Z/lz8lzAHvOM+U1wVo4AssxRRpBlkjgHj+Hv8NGHKshC5QvixlZybSA1dg5+vt/JOBf5+0J6ErPJN9JUCN0LNjOmv7nKpC03eacPmANio0fc6n1QvTmoaKFyTcLDkQrpP3iz+jhJhYHxIkE+mh4glPK08328kIrUUJKRotrlAL+CnEW+nNFd39Kv55Y8XHdJYF9FkIjDFQ2GakvEJo/phouip+v5EWaQHKkmb+rwa+Yc1eR+aIVC0tYR/FKoCw0i4AUfhG7lf4q8eSrErYNYM1aQCiZ6EsPm311tMEmjWiT6oiewwJmPm1zDqd7BuoRhFjEu4GpDENUCeUO4aMSFMdSRnk7RjAqQb6y4wQLh8wWF7H14TenDMcTAKTcBQSNlyyJnu01CPS5K8ne10qtdSRmsioj9CzY7aHIwynn5MjQdpL8XKyhd1AjNHCOnX8PP1mDzvJdg7bW6AswF1LTYYW+l5KkRZWA4OmDghTItnMEKDOYugyO5faGc4851WrXD8aAuStT/VS8wKUIq0EOWQ3Kn6oF3LbEAACwgDsLBcJlw+4lHlKa0FCHJo+8Zw7nxOQkXZhlwdrFU6VxffwVAPCxSO6m3l6MgdQgJ2pdna9GJyTQItTVWF/ejRhRWSsFJ2vHsI8pCzvpSNzxN/K/SXT3BUygDfEmY2CSJZbRVZOwyVBF2G0tsgIS0QzVfDBncC7zITeooaffCTChZVtCTxpbcFrwB/wJ6zHe3l6qQeVTNa8AOWx0+xckrCLU2XpSwbL61RD8vknC59RCsj+Xh44DRGn+HBra3s8gp8aNGB7ICL7dFNYfOGik9NG5VokyjskmxmqSagEJEjgSbT/r2fD+Yo/Dmh3Eslldl3IlBIhRB31GAk23OTQET7Ua118twTwUW9Y7UFi7LpQvhLLjDjGnASbPeQag6zyPf7cwIvb3GSIVZN1Ntxg4y7voGoy4AsKHg3zipNjjUEAA2G011DCxD2mXV05gfqzScBVzUIcxLd8zdiG6omncuJNZ0cCoIn3Go5VQnx/bzmPuj4yNPFxlQVWXTCnKsikZm3nHtNfsIzSx64DbnRfUTadWoto4rfWGrr/qhRWGYjf4ceotc1NbtPEx12mDZSTYEVRU2gQhIBRAsYtMEbWqUrUC1n76TzdprYackBhljh3eNcGmo8YM/VBnphhMs9cL77IZSpO6afWYmlSXGPWrEcmeUjuRC3rd8qPURbZpdv63Bh5Jpg3EFntbxRIrOF3bLig2WjJeg2w7Hz755kg4/ADUSiuWq/9ejiaQIPKBKvJun62boOPCeYMTFRwT/+um10js2h9eoD4CY7xyIhSGZIMsCmscjr5Y/6QQYcP1AjY96Fy8zAlBl1YTROfESaSbNGJeFTmSJgqcZ5xxpnDT51x5szfUJ9zngnrs9TC69d5fCmAXpEI73LHNVY5o7u3UUFlQLpx7SNG5QoArTqEveSAlTYqFt+tUhxdvAFqlqbXhvjmKb1bWSPC1vOMtqkSSPXiyZGgi33uMe0klgLw9LPJGAsc0sY+XezRyQ0+BnDAkFzkIIfMco2fcMs21TUGmWWSfrcJqL8dcIL1NkQ3eWZ4ixJhY/MpM6qBx11nnp8gyznEu0AloRocoYj7rJvw3+e6NaPauOsmkHQMBk1blTAJAfxkc5DPJImPSyaf0kjqNSdJ1aAFjXRuc41M0IG1CpoqOKGeh+oFJ9f2ERpDfo9pY5VMMO+8A7J83QWgCPCxyySzjmorh9AmA+w6SrVSj+8y7cDLQ5p41PG7m7vPDoYlLrLAGOPMvZbg4BlIqLRcvS7qJ1Fx1NpO9m1qdc6x//LEzNusm7wdgEEOmWSWjGNU5d3hJSlJgrorWKOegkrpzpGw67LqDkxld11kGTV3vcWHeDRdQyzgjgA/PrvnNHJbKNZdxj7NEucQ8avIuUNPP6f6YSjDUTcukdTWHPBRo4+MTc8aeOy55hegkz2bxuimpwfaScnvb/LjGedRCa0CVT6EpayeaOJxF2SVQeaY4Ef8HtddiIAWEiq1VvBJp5m61nRSqAlZwpbKOUZmm/kv6p6ha0pZn2rku8EAV52fi8rrle2ne6v6dmjhESPPHOOMsEwne3yfH/HITSV1zTYdAK9sUQXNB1nlPtfden2dLA2YP4XS/t/nI/LEOCndkPtaQK80KTYck/ZkKI/K60++j0lmGWDDgaEyJT1H2gpcZRcqmJN192OCHFskmeYe15g1EHGLJO/zESp5GWKNEZZtgKThDIPOV0Up/iKRFUb3EKukSFuqdImwyerDlIwhWyFok3X1BNHiIuhYysL07nSsswMDHsVHRE1+K65wEUCgn00bLmnx/IyUK0jFAkMB+bgT1HquENHgI20IlD2qXowx8mw5tnjaMXkPERnRAJskyJFkCw12Uc/CJj7uc51FLtv7Vh9IkEZ/gTHH7N41Rl0/G2RJmHRamfXPSHHgQEJlRKtnikz4uxDbj1ULj1HgWMHoFGlmmTRm+bf5sSX6Jtw51+ZqDP3sypRPkeYGd/AQk+k0Kd7ljrEwfpMfw+V1soE4L2MtnJ/dgQIEaxVjeP3WZ5/BZbhZ+IWw4s6d5l5gmmoEQivHNH2n2WSA1pxMv/3U+fzSBSq04a8ecaoKyfI2pUirm4Rv8fbGpyK/blYY/uw5UzVhPZVjp+lu5gUsq9XpKkhq6iiLXMo8lWAHoBRqp7twwNvpTzlVFObUytRZVlJnZdhZPZL2syZATQ0/gWaNC59tU41CKRCmq7kvibzIfvQiFaUcO81RAAtJiLHLFuK1c+gAMwJQC/ipBfySnBuFjrkjwrUSNS/AerKXaKZKDT/BcpX18V6OQtCRPeJDbuHRINws8TTVw9OpHp4O9FCNQyYkQRvzkStsMsDLRAuxcoELuW2uFT9lMXQZgGw0wot4lPOf7fCz5G+zEj9LS0GCMdIBAWAna7MivXQ1h0eTM08KvLog9Y+qcOaZgILUMj9L/bYNNRqepLM2PAxwbeIJw+zcaUILx+arx4qA4R3rRww0N+lu5hkqPOfCZ9t0ZI44kynIWVE8gBri6YbIg71G09n/9NNVqNKzcUDdDf9X4mfFuzAjvnmtGQkvoQmUBTBuLSPeditAA6opOXNDG8c8SZ2HnEjJd6MC4L1IRnkxFUWsbc7xaWqYUyvASwl/uDTzFOJQ8wLQFAXOy7EWAdSSp1mP9/LKsQ19zSaTTbFqISCg4YtUVAJH3LaxMn6WWkD8qtTNZJKHiJ9Ync5yEUJQjpymI3vEQuQynbV9NhmgiUdvpkiYA4K1CqHiMR4N+ovPhbk4WyAb6qESapXwj6is/SRbLAVGeHqph57cASups6SaaXozRaLpKq8c0Hcp85TtVAReypqqhE7zaXKYf5n8pqwzL0E6dNa8IS+vbX5pe9BX6dFG1WohDckZY8FZr2xQot3qunZKTl2VQAMD6vh57T8rQ3iVaXe7M2eVISadF1iWBO/yMQHqLHHRasCb3La6QDx3rxKm5HrqNcIcWN2kNWwNvwN14sb+16G1qrJ0+CoMplkb8KoyLEGOPN0AppzQMLQ1BtlkgEVG8VNDQ8xyJMx3TZUQStZRsFEGkg3rQxWATLLl/vt10qiqtjRgToNFtL8OID51y4zwCddZZZA1BtFQNq0tQCxWthzQpgGTmmT/Ad9lny4j2/ipmbpBdSJqA6J2WNr/ZYmbL3zQ9XT7dBpoq/ZegCkMJ5hnj07zBH6Xj4mTNc82Heqrn16YA1TplyRDDknyrRHgAVMscBVVLkoCc83wjAx99DuZsvYXQqgRIE8xHf2n4oZmk8wy7oLoJMRRpMSqyOlkn3bXj4vnrdqYiNXMMiPMM8Eks0wxQ5aEqYwqjsGpKsoRlnjP1bHKLFxlkPe4zX2uO2ag1OaTzNramWeCJBmWuUgn+2YrFaRiHn4V2lwyhGABCXLWJwMGeoLUF0r60t5Nw21kT6iYSknu2fgX1Kb/XY8vBdATVs85VGanElNlaakOfp8u0+Cr3EyK+gyjLDLNPdtIdGOIOf8fTVcp0W6AglBbr6Lm46+pkTIpUHmuIvraaLxOwTvATx1NFJUtdcC8mVSepI9RFpHo46DbdKV6mOaeJZooyt/mgEUFiHQyoZ9XDlWf8zWacRKpDQ4ciqzJoypPUs8nbdxi7KJegnF3MMTJGoinbMQxHjHCkqHX0uR0ifyBkmnG/83vE4Rdl3cNroBDOZa4aH5H0kxWHFtwF/Xn0+9cm80gFYtaV6BV2XMqK6sToIFniT/6ObUR1KSgAHVbP3XEp0y/hwRZBlkzY0tNYUqyZYDqGAu0I55vHg1SpI3OnSFJimfsEuMDvmssmTQpsiQIUCPufBS1UVMabxuHzDGOJDPJNEk3MmHo+EiyZUBrgJpJdjU1aNUljwLG+lGpFnCisc7aVEdBnryb9unn6GeDCkHuc50J5twES75XZePpd7dPJ11uqqDeHbvEmGMCgDkmuM1NW5d6QAlwK4mP95imn02bCgU55A43WHOS8U0GeK4O6b/hDwXZK7R9gcWrQOmA28zV41PX+BqDxqyUKVXDvCk3GbCCSVl2SsPfJeZkAQ1UYjjCsvOS27Q1KAbU8n3olFH8k2ZQn7xFRm0qfJubdLLvmF3ibaH+l2sMmo+dhL5MG8gFGJNMD3Y9ADedf4RMIkUeetIDJWyHuRQJIyzT5mS1YggsoPNDJlE/Om0g73DjC8bRu25SF0PS0wEneWhacdOHJLJ/h79wgM8jA6PVskDtINSA+YCwsXzVDyVF2l67RJhFRhlhyQC7H/F7BrDNM2Es4por0nV/VG89lR+/9kn0jCUnA66ETTI14VXlwSL9b0PTztVzJYB4Ka46/1qV/OzTaQzwGgGGWDMmtyTebTnwb8PO7Q23x8nz57nBx85vMGFnloZSKEtUk+aSSAjKH/H3TTLTxiHT3LXzs0SYP+d7LDPCGAs8I8W8k+JeY5Zdul2hLeu5QpsxEffptPc6yyRf5z4XWba9Vaf2uk726eSH/IAsCdvfh1glQ5Ju8tzkNuoFqyz5kxYDMmysmx+Nylj05+v4meaeMS9V5tv8csqxr9TDa7z2sSMGNIS19XbuU87P7EiCaKyFWgB6M0X81WMus0jTd5qnV3pYDAgj4yiqbPF2S3LMh6K8TLTYa8XYJVyWZjfcLNF2cMSrpPiXTRd/SbAszLjQJ8eEnh1z6hk8TfWIHUsBKqHTtLyE7sIBj6LD8t7OtfAy2cJQ4bkNnCuhVnIkhKVVhJvln9GRP4K4hEf0PinSsXAkdV/1mGRT7tOmz6PeepoPQ/+eNWiqPMmQxF895sgBOpsM4KPJ03iPeMcFYi4F1ydsNoI0fZIomotEwQff558SqNVZ8uSezpHgfHqH1gJu6NvOSFPSSPe8TlrnMYAxjLAd/dQ4ky6AD8Yd8+FXA5d5Ej/PpZWnMgxpHHP+yY7cy7UM5wo7HPXBKRfOoPdKkgwMYBJBCTWKES5W2Q3EyER6iLHLm+nHohRZkbXBOfEXjJPl5dstfGvjlxACf/WIjsdHVEKnRbZdBFags1ykJSfMsFKonbnAOJuh8+wHOhksrzNW/kyAuRxWY/qpcerZiYXqE8DuaaqH9UuS+Pt5/AJE4egKlM+dZik0TCf7HPUJC5k4RFeqjmUsu28Dj5HyirWyJOHlcAvRJ1VYgKNh2X9eXIrKeMRLmJfdIUF2o+1QEL+5jvUjhpqrPE32cCqP9T+H7eKL6KdmyevbVyJ8Gh9mk35ucpsSYUkDDkE6kIKyfMf+6jF+amwywFEIej45oOnzwDFdD9tb+PzSBaqX4Xx6R5h/YMNhgKHmKsniDtUQ9Bef07FyBE2R0+5FW+mZP6Aagd7ZIi+HJUU3GxBly/8093Na06+laTF26WSfZ4O/XgP77/pjnnFr6qe5R5IMH3PDagtNIq27nkbPqDYqX2DuqVVLhSAXWSZH3Az1JbxJgtV0MCr7jfigrzLoJKNCmFH1Qdx5wN3nOv1u8KnBFKpM6meDVYYcaUbCA8X2ZYFN+llzfZuyocJIMqhYTw0ZI0rVY2LRlbP6WACWXff5xLaon00X3rfKkBsYixQ3gVhNSS/V5QC/MR5Rd0qAfTpNRdHAY9DVY1o3zzNhAVaAMb1OEo+0btZ+S4fuyriPO29qrXc36ec697nBx+Zvp+ytBa6aCk1II23u9bpQe5UFxlBf/gMkNK7iaosBNp1kVYZFCXftOpEsAd0XdukmQM1kxBpqqMnXQQ5ZZBT1dfNokiXh9uo9q28Ax5wMGnhWd2DoEhdRBY5c43breSXkr2lgWje7iDKz284HJTqEOeARY8wzTtIxLR8whYbY6YA+6Wg6GqJyUhkmGMUeMXYZZ44Kbcw5ALCNCvNMoJLxPN3GBhSZ7UV+xPfZR4In3+cjRlgy9Ysm2mZIEuSQOFlhm7seQ+W5u67eVUsYSbGVsJIpZlBlkf6uYjQ5t46/xweI12OAM254/W97fCkVpDRIQgPtYt9RfgctulpjnBWQUd8kRbp1gwNNppPmr0aATQYceFVzC8THDFM08ZzeWVL+1AtIPXkWGEPlnbqg0pxjlUHiZJlihut8Yg2iNhzvcNf89jYc4JRzC11BjDhZ1xA+s4nfAJsmm02TYoukyUXViFMnEx5NJ7vaRRJmG3ZYDrKGh3LkhKujxuvK3Glzkw5hSzSsgVIKqzIUhNq75RInnzHBnDUboAwfmYCIlCJu7003HAUWwpToZI8EEhAiyYxrhlzre3jtXbdnUxSNB1fqqoY59JH5Akvs35SL7dLNx7xLxV0jbYQAZrmGnxpjPDKas/pRLDPCA5e4A9LsAdakqgmmj6ZNSVQmrP6HKdK2Oen1UimWejLI5OzQ2EN6KOzSbdMifchEQ4zjrzHrDrmGeQKMssgkDx2I0G1MS5XTLXLZaOIKKDfxzOMx5yY6kvC0zJYD9cIcMMcEdQJImrNMxNSMP0nGkoPbqJgXX5BDu65DrDLGAjnirNl36bf7XkEejyYNdz/PMGVecsqIOs/JCvo39zHMCnGyblIlnkOvEzNf+43pREgTujccS62JjxKSxCSBGWFucIeckxy0UaGfTZuUDrH2BYaTTvpUxhagZrKooGOH6WE7zhwjLFGi3QD5pBuYKANXE5v0ADoZUa+Dh1EWucHHeDRdoIpIX2VYsYumnKmn4hiPUKq73ifq06mATvsJUE2NeyXJaskmnm3ugNUQlz/gTxhhmX42mGCOW3zICEvGpn5N8a+j8mRlQyrbUVOI9920E7CJ9BIjNNzAQQuJMRa4yW2XjBm26eMsk+w6pmC3YxDG3TBC/QnziO2E+u95NE1y/w53HXN6gBh5Bp05tU6RVxlkgjlUMtzJvslQ2xyDWaQiWzTxcYcbrkBqN3BW2W6HBF1Ij5y/h7xONBvjEfNMMM8EQ6wxxiNyJMxDU5Pt/wv+E0SKO2PXVCwO8rbn62dfZoQ+Mva9HdLGj/i+k/LJ9/n3+SMzWx9ijV1ijLDEAJvc4A77iN+jDvy0OO1nkyCHVlAtMcI848677hqPGGOJEeLkmOYet3nP1nQdP/eYJkzJLDIqtJl0dtLt3eqTp2xI9bJRIFhrk2nn9apWCoNuv0yRZsKFxPymP87kCtS8ADsD7RBCGEZFIAnVYWGXtWaAAsxHrnD+yQ6hZ8ckyjuMlT8zCWewWXGDsQy9mSIVgmx4/ZRC7UQ3qlzYcJYODejIH7EfaWcv2koh3kpLWcCG7lqe9W/1SlpqRICzNCleXIkSenxMIdXKqQZcLaxQTp6mY/2Iihek4ckgbKS8QqAmic7l+GlYgdbHsB2PUI5IYu/TSz0Ql3qhxbH+ejNFOp4dEcofm0ffQGGb33ryGcmajJibPtiPCLN7qLnKEiN0NffZ86TR4KUAbj1PDkg2M5QCIh3SOqdn5YBSQIZBb2yskCTDUYeEhZzZEDZex7Mj3mJGhu3DkI704jVkjWejEZEnpyIULrUSqNVt/42R58nwebkffac56hN24lJghGw0QksaCqlW8sQ4kymYlUIh3kqwXOXN3GPqiIdUSw6T70fTVbZTTqJ5AdaHe3kZa0HZ6Q3Pg4AEfeh3G1o4pvp1eHm5haNxJ2F1QKjYV2S4lHtKslCgtSDSbQJAXOSeg+V1umt5VsbPyi+F5HlLoXYDVRKFoiTDxlqot54mG4gzVFsjOl+l5YmkRJaHT8OGfAZlvoQpSYgIAoL9s9TviAdiBzApcuDhzHPO5Ap87ZN1YWUioHN/bZOezAGv4rAyfJYXw1HuetMCiNegZ0aa5Eee+DoF7Azrp3ejyBu5FWdxJEyanVQ7a5HzAkLGIVV+znLkgrBBybAWOQ/D7iYtQnczT9ZLiPdn6AJ48DLRwrOoyHPP/3yHnpUDOtaPyER6uB/6bZFJe7LGKqHTRJ9U+Xz8gjA+k7DnddJSExZtgDqU4cWlqK3xAHX+iL/P/5u//de97XwlH1v0IoqA91Cp6WvLiGkbbKZIc0DY6gP111IfWWFHdRtvXuW7WvspIAZiM6A9mQZjKYNfzv+rbDgpp4JKTXyMOn92sW/ptuG91g3qoz3IKqpq0LpSSQ0Vd0fpoG6Tfj7mXdRDre5AExAl3IYbZg6xhlq3aMCF1kZSN/axyKgbgkvAVYq02T8Nsuaey+P3+VPrlWRYWbN7Vf3xrvEQ9S/bcKzRpKtPprlHJ3uot7IOc5ddyqlHg0lmbTijoJd6sKs3m9pcyT64a33+VRbwaNBGxVnfLNrra22s1loXWXKkiS6WGWGWa2ToM2aY9o+qTKy5vk+ZZVkSbNLv1tUjU3lsur5bH2MsoH6CApj6zT4l7motZZUqwUVDInX/mWHKekG1QlNVTT8bBoBqOJ4mNKunoq79LkfOyrp++zr30bRfXTsXWeYmP8WHsDUXGTUbKpWEa0BJnhhbJE36rQFIOljW9aYIDGA4kV5jVQuNsESQigW8KLFC2YzS189aLxWkwofcAmCau+SdD6UGz2i/pffuv+3x6/3Uf8+HMqrUr0vo+AfkiXGbm2gyJm7RaNOj8pclRrjIEpJM5zdmm7BIxB9O45/1QgFMuAZKmjOfbQbKPtuj0xaYTNt3rYiWL+QANVhXaaTKCPbpMikbYDru1yy6mvmgqe+YAka6ETzkGqsMocEQan55n+vE2EWN6XU6o5tN0rFGlCaqAICaYerGe5+vs8agi6DOWYOhN6bSjlV2dw5JsAxQ4zKLzDPhWCYCRKq8r5tdNhigkz3HxpHpxATzxkDZo9MOCbkZuk78/OAJhoZ4cIXdRixNkt8h1XE2nIxWQk26GWCTj7lhUjuN9s44SrVSkvWG1clQjF2uMcsDpugjw/t8RM1RbK9zn4Bj0qgXFUjBrZOnWSa5yU9tUw5QZ4skbVTYcGtVJys+t5GEKRn7Uz3zANs46vjdFOmZTTJOyjAVpVdvADFab7PvRL9HvWdGWHZJybKeR1mkzx2uNQIMsMmWA0jaOKTLHc5ZEpYUDTiZ5L47XPqtGFXfsDYqTDDnJhRdjLLINWYt2SdJxrwV1Lco6A7DJj4D/ABjADXweMm5L2P7+co9vsE9xpsbeI0m/QFhlr2RWWE92WsNqbJiS4R5Y2OFfzzwt3ifjwiWZSK+FrrArdqH3AtM0+emrCqNTDSzVDzxP6oTIFYs8lHEzxQPzLdsjEc8YIpbfGiMTZWPDueeQxGeDJ9npPCU1ehZRlh299KAGSSrjDHNOTvMfTRN/hDkkBneYuAEWJ8kQ7xYIBeJCusE8W68yBJBDtEgFwUOVX48zV0eMGWFn4KI6rMplPo2Rosr7EfanVF0k2Ctgtc4pt7aQtYTacokswZOBpEUdTUOVzaxDkumucvvN/+UjuwR/zIpTHH1WGniMdmcxWs0uRN4132+LduPlOU2yyTT3GWSL4YraKqvytIEaKowyUPUiyZPjEsrT4kN/5D7XOdW8S9ZiFy2tTHCEoNuKJYgRxf3zGdHntsz0FdeYwNfs0mnt8+ZdIFXITE/H2GJ/zv/e/5j/h8sMso155UyxgLJZoaKJ4OL97iNJqANsUp/bZPdQIwRll0DEjBDYQVOQSSE7/MRaVKof12imWXVGyJHnLjzhh1njvvOd7GfTb71s1/CJQkQuOwS2fRzxcnyvcK/4E+j/3NGWGKURZMix8jzDveIk7PwIQlqOrQhSDuSIi2suVXqBEg4lrkWiu2UmGAeVQWoj8n/LPcv+FX88onp7z63+Imd1de5T4q0k50v8Vvpz/jPU/87bvET5pngO/wFfWSoE3CyD58B6Um2uF58wE9Ovf0/xHb0P+pjPnKFoY4s5zd2+NXAZR4OxBlnnt6tIi9SUUqEuZR+KtLAc8I4ezncQrgoIN+rGCRCOfIRMeDPDMi6eJGMkio/537otxmqrXEUFaZZawHcMUzPkwO2L0XMdyxcrFJvPU0TH3PRy7zZeMxEc460JzKuM7kHIsNFpJuZQJJhnuOnRksamhEfpZCk/OkeFwoVqF4WVh5VCMWK/Cz123TH8kw052ADOjiiHDtNKHPMq1ashslEoyQpkA6k5EwP9ZKo5Qj4aux6Iq1Ke7qP5SCKMKNSEnZRingGuidiWRpxGXIHqNGZ3CdZEGQpR5z8QMwGKAmy+GjyaXyYkfIKPne9lE0abFboeHwEAWgfFi/cnvQB4egBXgMBKWvQEoC1kEj4egNFCchIdlJIZkUF0azRdnBEy0v4PHXBAH58kCwUaHjC6pKAgG5epPIky9vyHabE265lBU6WDdVhB+Ah0tV0xDEdkhUS5R0+Cr3Pu9zhlU8A3LBXpenzeDHQyZmNApVQq7DlosckIxkow6fjw7yRWaFCG921PF7jmFMNYcm9GI7S8MQSJUEOVcl7NMkG4lwY34YG9KQPqEaFsQkuoGOlyndif0nDg51kOz0+AUBHYksEy8fUxiX841QOjvqESTfS+pRMNGoDpRGWCddKvErKmkyUdwiHSkRzVaohiIXyeDR4ea7FkpwXGeUbT37Fi0tR4kjw4GhkkTO5Ap0hWXvJZoZw8YjP4xfIkuBboV9S8wIkmll2Pek1XiSjNBB59EJgjP1vCqgyvPKc87kdDuJh0l6Ki/F1APFtrPJa8VOWc+F8YwevIdfsxUCUWLmAF2riNZpWx/y95n/Ff/bXt+18ZR//Pv+cz7nOde6zyYCx1xQkCThygEfTDdTrBlwoo1cT6IdYpUaAD/ge6jGsAyUFlBQ0kh5MGL63ec9C0JSC4XPDeO1jNuk3CxAB2FZt0CoWQEvUCTDNXUZ5zDzjrpe/aAw8VRsoODLJLDUkUKHh3lmeGBdZMmWHDlM9muzSbazUTQaM3TTNPfPw071UwxBVvqj2U1LviY+5su80jfcu01znPt2OYaVA6A0+Rq2HKrRxQJgcce4x7Rilr8PB1JZF1RKvwTKxsBlkjX42uM91A70yJA3k0aCMO7xrsmB9n5v08z4fscgoFYKODHDO+swYea45EoiyANXzXQFWwIAo/U7UritPNzF2+Yj36WSfAWeN4wfrQbXf7SZPl/sexU4o5hich2Z1o0oZVc9p7znovBpPvgcJu/KxxiCaYrtLt1Na1OwzKSnLT91ZTTUcjNhPzqlUNOhOcZbb3CRA3cI3Tl4DBSqzJBhjiTvcMGm42lU95JrV97vEHClCnL9VJdPpVJGKMQB2f2pi81UWqDnC0BIjJJCQmm/zY0D6ArXdUTm5ApQayvdve5x69erV/18b0f/PJzt1qgMo/m+L/yeSHQdGK92nkwRZdl1cMmCIrerYFQXNEudjbjDtzN1zxNlD4tz36eRDbvEDfmiIutys7SSQ5DqlTHaxzx6dxlIZYs2+RMC+INGhC5Y6xYxJCNsc8KX0yRRpY3MkyaBptv226GvGCpjmLj/mOwZc/pSb1twAxqhbZNRpp/vMdFMb5Dzdtvj62bA0IdXld7LHsmOHvL5RD/mA7/I9/pxN+g0UAgyYAZhhigB1vs1fcEjQZIA6ORl0sekzTPGAKS6yxBQPKNHukm5lIqR0YJU8q//Dbd4z4LSLfT5xksNBVp3xct02aW2+FMjKOcmpStY0+lonDHeZ5gf80CZF1/nEpQomucgSN/iYJS46CvAIN7mNnzrd7HLSjD5LHLGpzLLnmB0TzNuNtocYfx4QRpP1Hp3wKtsiSQPPfBX10BXwr+YI0TJVkHTiQfO0UDN2XQ+K7iurTb0kZBNrWPN3UlanNO45xk0GremkmvT4Lh+7hlpkzTNMWZy2roUDN2EROeekHQQjLHGbm1xzYIh6AigrVeXkf8Lf44Z7nRTiPzbLJJ3skWSLMR7ZZ9ynC0nelanjn738Dj+K/K8BIq9evXr517QNfWUeuh8Wn0DHPrAA1b8NrZ+BkTUvIHKhKLw6JybRfAYv32uhY/0INtzPfgPx7kkCz4BhqMahdQYIwKvLcCrjfuYKUENYL8jvVOPOE8gZoVN0r51HGAkzUPhftBIuVlmOXBBmXfGpNFBlKL99mtDsMdVxkZHxiXudVjjqwBpskPf3agxOzcp7q05CNtQjiYUZkRmVIq1EPxHPKjygAEffEsZCKHcMAZHeVbwgvStFXsXg1Doi5Rl2XkYNZCSVlT+nCuSQhi8u17SQbCW6UWVnoF0awh8DA3JNdgbEG2sm+obd45f+8qk8Z9E93zfkM9i1LLrXakB1XIDWr+XWeRGPcuYvCzAusrWWl+73nrn3FHfyqkg7gWaNjmdHfD5wga/9bB0uCfOhY+FIZIjrUPhmK9FMVRr/4jEvYy14jSb+6jEtBWeungMOoDx2mtCHx/L+xt17jLs1kIfqZbfmyvLzxGD76xEqtHHhn2wLK6Mo3yVR9+9ZqP6OsI1owoupKGf+oiDPcVmeA9eYBmsVmj6PRW+Utz/7FH4KvO/WtQckMFDmVB6IuOuSOLF2Voryfj+Bo/8AWh667ykgn+NfD1xhvPiZ/Lkna/dVSGSRoeKxvH993ggUhluJfljl1duIb1VAmv9sqIfzKzswA1yC9cleAQ1m3H0QlbVIVJhj9dbTBMvHnPq5ez8FSUvtyB7xqlX8oMK1ErWAX5IvfW7d1IQxpI+SF5b1EXD3qF7ziwhbZwVe1iDyPvAbuB/qXrhQjHGlmueVTwCsOca5UfuYps8z5lkbFZLlbbIhYQKlitu01GQ/6MgfsR7vZaCwTSnSwobXD+DSAOumcogXCxJ84AYiC6ErjJU/w3NpuvlIhCYeZzIFXiQFVMiHoiQLBU7l4FeXLjPUXKXheURzVSjCp8PDdsZdyGxDBj6dHLZCXJnMyUKBTDTKmScF2aPisBI/y/DGc2gIUBnKHRsT7dLGU8rJ0yIvrcHTKz2cT+9w1CH7ZKBWl/u+Jv5nmUCS4cxzVpLuOcvIeg0JuPZpfJiAGwre5zrd5GmjwkBzk478ke1P/23q32OcOVMVlAjTXctTCoTpnS/yygFne1HZQwsDrSZNHyyvsxi6zJtPHkOHJJwmCkVKEQGSfM0m/uqR7I+frctaj0HhUivRn1dlj67J/wfLVdKhsxKyEeh0YWfdjBUfG1j4Min7x1L0PACX/vIpO78je2m4eMRq9Ky8L1aJZqr8q+Q3uOiY21qH6f+nisLcLEVkj8WBhOWkfC+FlPvzDJDAzqKO2SNeDUPDk4ThVC2N1zgmE+olzTmmyg/wGnDYLvtDOXZavreXyOf3wc6ldur4OZMu8DIpfnk9mQOOQrAZOctw+vX3+av4Zer4uVb8lBYnXz4KnTgjgXL8NKHHx5Qvn6bp88SPDwFFz2d24DNkrwnBKx+cysNfDb/BRZZkvwpI6u5eVL6He6FvmJl9dLbK0TDMRN6kmzyXMk95mWih5IVJk2K0uciMN8XNwi94FBUwuBRqp2fmgE+nhglT4kJ62/bm/2vqP+X/UP4HtG4ADdgZF5lgoFmj5oklT9YxnbuWdohcAn4D90J4vR/+oniBn3T8HScLVVWTWP88ZtSYPkpKqRMgQ5I1BukjQxf7ZmekQ71FRtkl9oUwK32Il2sfTXzUnapGFWnadybIGiGnn03UK06lp/3O7kRJOmpp9RHvEyPPNHf5kN81htV73CZHgmsuoEGtrLrZpY8MB4QN6FGiQ8DJRJXkovLLPToZcF5tSbYAWes5EmY3pB7GIywxy6SBlJJG+gmHBE2RNMksavuhFiiDrJJzPa7amWjYgVp5zDJJHT83uU0FCZxU2adYJR0Y1pEmxbf5MQ+5Zr2Tqg7Vc1gHggqsbdLPOPOmuhGmlniuK9MszIGBZ+rFPclDW0OvezLpu3Z5HZKk+/0E8+ZlPcMUk84HXolAac4xwIYxPisnrFuUEKLvt0KQIVbNwilHgl1i3OBjssRt7WrwnoaIfY8PTK0hXtiHjth0mUVGeYd7Bvzu02nYgRBGPP6YP6SGnwnmaaPiglXkvSjxKeeIOnNMMMYjG/TGyJMgyyyTTDHDn/AHNqCeZJafcMuINyXCTHOXJj7uMc37fGTkpW5nMaZey7vEzKdZ31OWBB4NCxIcZdHCaLT/aEM8DNOk2HMkoQWu8t7L/5bvRz6Bf8t++KUw9C6xxEvOkCOBmG+OGGqdJU4X+6wyhJ86aVKMM88c4wyw6SSCIqlQfzy5oDKh/Lv8QwM/lAmXJGNIsGr5ldlUd0WebABy8VXrrr5sao6thUSWuGMgBB2Q14cGewyySpebOLQhEdTf4wPUxF1ZdEoBbeKjj4z7MpsOxAraxqgTC92glCKtsk6PhrEUANv4FVCZYcqYEaLNfmDgnfp2JRzzQ00vp5hB0ka7OHR/r5Hk6nOnEl1lwwSofUGy7NGkht+umaYR54gbQ0dBN02nVTq1ALfiKffa/87vCjJhHdXxM8ksJ2WuahzZxEfcbdwAF1kiRt6YKWnO0cket/gQjYmuuQ1NGGMbNl3Ycwi4SJ2b3OJDM7300TTmIQgDRY3fx5k3aa16Fd7nOtd4yCFt+KnbBph3m4qCYnk36VLpcD8bxm4bclp+8WiQQwSw6dkSI0bn/iP+PpddWuUCY8Yk0scMU2jK42uD/D3UI1KTgJe4aMEpFYImKxxjwcJqFLTWDTVDkhGWeId7NBEvCmWo6rXSaZ4C02lSjLjvqo6f6AkJ8m/04ykwDxSh9Z8AjxHQ4HeAv0JAiBCc+l1gVv67Y/ZIgAHdoZ0fNs8Q4CMOrX8FvAQacGoD+fkmkAbmEFDlE3m91hoCBs4ioEXavX4aA9SiP5MC/2uxdXmPIQTwK0Bo9hg2oNWBGkTccw9ASwZ6y8XXIGIDTj3BwKXWP4bz77lkwLQ0k9FUVZ57xX2uJrSsQMvfk6k+c9CxckTHuSIEHHhVk58/dRlIuWszgAFXrLj/fga8B6xDtCmv03P5AP4JAqjkgTL0lA/gMrwd/xT+ErjkntM1VJSBBfeZvgn8jNdgzJSAqV97LGyEM/GCXK8VaPlL4BqwxWtgcBJa5qGndiCvcQVGI+vSNDagI+fA28/ktaMbVfjHEIofQxk6Ckf2uvwTOIX7LEkJCyDhXusx8pwh908EWv9MPlt1Clr/sbzH3oEiPCnK9zjjvoNrWHNLAFr/K3c94nDmsft8E3JdXS4SPckDud7xY95OfAq/OPE9aGjrOWElMYeAyAX3M58Jq6f3XFE+exQ4gJY/k9dkHbglP/tbs58ZuEdGXv9UCEIXjg0QA/fcZYgmpSE/5QAcfgatw3D+8o48rwPtLvzxtnzeDXftvv76NVouQUvsWO6bKrLei8LU4RycugK9HxYhDaFbbj0raF6DjsaRvNdhCMfc9dvgNei8deJavQ24W+Q3+eHjmKOAgB46APRXj8lFOumu5Tmf35FrGIH9S5L2XW89DRzT8UxYYkEOhTG1ckTnpX3OZ3bYTkboLBfJhHrlLI9I+uNC6AriuxxnpLWFjl/Id9eMCJvijK8g8ukQXGNWfN8O4M2fP+bpN3tYY4jx+BzpeIrR4gqH7S0EvLrtgW/kVvjH8b/lAmByeBxyKgdnGgUBz8vwKilNZzkp4EvT54HzLouThTyEAscmP+6u5SEgibT5SDf+QI3zuR2R9ALDmefwEsLJEk8HekiUd6i3tpD2UvTXNgFhXM16k6hHM4jnHA2oR07TUju278RPjWiuSjPuI5Q/ppmoQAFOxeHz5AVSzTTbAxGCzQqe16S/tklrBiZij2XPOYBa0k8ldJqOzBGUj6imIB+KinzQByQFMItmqhyNYyCXr9mktQgpnpMOnXWNZDtv5h5DBl6OtbDnCSvEC+3bgJ241BOd3h61qPNJdM3PN8sPiJMlQJ2h2hpe45jhleesj/cS5kAAt8wRzYgcrtvfjAAQKxZ5FYKuQpVXrXDqnACo6YAMXP1XhNFnoGb1Kb4mdLfmwZPhzsXiOrtejI7yNl7EXWNP1gpFAa+aTjZ815tmiDV6OKBlC9YigyTjGQMBk2TED7Am6+jz4Qtiv1AWsLeptUFE0mHXGOTtJ5+yc6mdNYY417rDqagMrnTo0pE5Ik5WUnLL4gmZ9RKkys/xGnIPBGp1mj6Po2EBvsWXrM7LRIuB7nGydMwd8e7wL9iI9vLGygqEIFA7gAAM1dbYDcT4Weq3+Vbgl1CA/3PhH7AUPc+lyFPWU72ojNpfPSIbStBffE4z4nEmVyDX8SVsPl/BxzxvOmVPwggn6oEt/cwY/zX/Ib/PP2TT9VkeDb7LnzuGmLsfwHqIMRaYZ9zAozp+643k57pIkGWcOR67kD+AWSYZZJV2SkYc8JDwM/UeXmKEceYNwNKf0bCqWSatf1cig/rAq3zST93CpuoEeOTUBvcdU7FE2EIL06TMosOPpMEvcJVJZskR5xOuWxDbLjHWnB9wgix3mTZWnlpB7RIz4oV+blUi6fVUtZWCYvA6gVq9haeYYYYp2inRxqExJBVPqBNwssqa861uM7xDQ9xUlSCEC/GUC1A3Mo6SONRW5RwSHLVLN2J3lbXeWIggIt0VOekhawzxkEkusmTee2lSjPIY9WWsIIzYJp38gB8awUbwlU5SPCNG3hiBClhJiJtIw5UJJ9YsQUtoVTLOGoO0IwnMN7hjpBb12Nuk3/xUhdEmONG/aXMlQRsZA+I26WefTiO2pEhTw49421W+gDtl6CNG3pJsfQ4Q7GSf29xkgjlSpHmfjyyoVBnRJdoZYdmFaV5F/ZCVKfgxN7jOfcZYsDTd17LwhgGb3ezSTonHjJIkY+9V7FnEeqnuitx2So6OFTQlx6/z+FIAvRZqxnZSwE1AsU7mGWeQNWa55nhxeVvMG/Rb4p42/6qrVmqxGAbLc4EAXMosE93/GvOME0fScLvYd7RIOTxyxOlml4ssu0mFZ6ylQ4LEHJPr5ELVRFBJnM2xTydxcnQjIQAVJwEWyajQYkE2CjUiBaEDa8CGThJyxJ3cat/JpBoO1NtDZakzTKEpjEkyTq7kZ5A1Rllkg35LR1NzWTWKFNBMDEYXGeUiS2Zyrtp21dvrhEECMy6iPmubDKASz0VGmeaeJbV2sW+LbYN+Vhliihlj4ekhM8ksS4zwIbf43/BfoBr0GOIZd9JEVG8ETW/apJ9RFkmS4bt8AGD0YIAh1pjiAUtcZI1BhlhllSEG3HpRQE8nErLiug0kPKSNPjJm+qmTAPV7ipN1UR5Bl4Yrr7vMiB1qQSpc4yGaDCwbeM08AW9wh5qbUDxijAFn+J8nxpDzHszTbZuQAqv3mOYiS3Sx78Ivuh37T2SO6psih4ifNQbZpdv5bomhu04zlGUaI8/HvOsMoZeRpCzZgDbpZ9FtOCAGqAqEKsCtEkOdKKiPXhMfIyxxSBu7dLuI8DYeco23mGGMR+YRoGD334THf/5PoXUPeI4AanngCPgc6HL/bAKrCIB0wf1/AHE59WNAmdla/ENA83l6EJZaFwLs/L8Q8OATYA04i4BTnvt3CAgC/zek6fQD3cA/R8CIHvd6bSf++znSlPwfgQqvWWw9CBCxB5QQ5lYLAmJG3PMCfOj+DvdzWaDfvb+4+yxB4Ofu+XpwQJF7v2n3335gidegWwfwqXut0+45V93PrwJn3Hu/jAA5PmDRvd4KMOief9c9T8ld51fAefe7YeDP3O8U3HP9pfsMx+7vd93fn3bP8St3LRsI6Ppz99q7yPc/7N5zmddMwz1gCPnuD911bDtxzY7ca512f3fa/U7EXbuSez9F915a3e/HEQDuT4Ft9zv/FFkvkf8PeX8b3NaV5nmCPwkgLwgQAgmQAAUbEimSosQUbcpimi455ZeyOt3jGrvLPVlT0dXTvVMRHdMR07M7sbEbuxH7YSdmP+ynjdjoiY3Zno3a7d6pnqqp7ep2hXPKM66W03bKVllOKkWLMiWKrxJkkAAJkCAIEJcEpP3wPM+5dG9Ed0bseCbbhQgFReK+nHPuuefe8z//F+AB0A38C/0upW1S05+dCNg1oGWJI333CXASQRefIv3skdbnF3rebZyfFRvAmLZBEwG1nmg5trVtnyD96wzSN/4fyDVdQfqEMlVAj7FPwHaraptECO6VGaQ/dSP95i/1utWAP9bj5fRnJwJIWt8e1TL1IcDccf3uuJYxhfSPXuD/qeWLaTt9DfwTbf+W/jyOAO5V4EstexfSh2eg+VdgfSO7ts3+D4R5K4mKPfR2SxBXbFVALTxYOTfgFmb76ns8SvbT270joBQCtMRKTwjTpp46TqZSZSn57LcYHTY5G2aJab6ka++Qr18VgCpbqfB+8m1eaN1TzycJMfDSJfK5HOc+fcjp0iY76R5X9vnEKH06uTnMVQRoacFF9YC2RWYKSB/LCju2FhOAJey1+UFkReSrChwtJZ8lmXgMYWGBLYVGyFIgVqny8JyERKwxRDxXc89LP9siudukRpzR/GO+ySVJVyt0J2rqmbdOKySTvIn6XQ4iwqqKVAEfonUBVcdYYKiywVLyWfbTMtltZHc4nd+EUWFudVPjxMwhnReqeD4sJHP8cPUuNMHPqqS0Cacqm7LocgKIoVLkNj/M3+Wbc8J8DLVkcaKdgI6QbheKs5qV96wedui/u0d8aE+89mJNtkKSVz5ZvUtHHmoXQiLJTuHeedqEyPoFYqUnnOMhtAn85LxBxusrUBLftrXYaYb3HnJ4QsJODmO4a5dP5Jiq3GU+eYYfrK5wf0hYeHFqpKsVOtYhstdkcUqkf2YjId7TnawxRCsR4vnVRZpZkXv/Mneeke4lTixKIIsf8mTxP73mFj2fRmA7G2GYZda8QX5QXYFHMNCscpgWxuXzrUXMW9qLHTCQr9LhwdPwEzaGEgwUqniZeQgJESLFFsea8PSM+mh5IiHsHJIk23woR+OCWA+MVB6zmhTWazLfhBA8jTzhUVIA7SvVv1RQHU5VN3mUFKkv3YHHY2E0665hI9nFDr2M+Qv0UeZn6d9gLL2AhSZVchF62CFZaPJNNslOLEHWLzip92fpF5hY++X/BKPR//yfh5wipsyvAwU6fDy3EH+SAn+XP0QCL+TN/wFjzp/LfPImmKOgPmAptTQxQobZHIHMaY3ttsYQq2qpcp55F44llj1iZWGgyyVuscBZ/o/8nzDvNQuaGDnCrHuX9/iQN50CSMJTSs5mo0wfIdrOIiVPjt/nn3CNNxhhmQwlDuhkgbPs0Ms0X1LgJGsM8Tof8zY/5R/z+y4wYEitUIx4YGEQB3Syp4wqm79e54pjn17SFXKb8/SwzVkWiLPngDnRb2W4yG3mGXcMSVMc/i7/rVNqGaHC5rkjCoyKx/+LiIXWkns+2bUwGa6xtvaJOuXgAmMueHNafU5NemnBJkUFGgdZpU2IT3gd88KvIf6plj9gIOY13mCKW4wzT0mDFsUptAsLiZtjwpF2HjDmnqVmfSZKN7HmMhn4GA/4kDedMs9IPEeB4dtMqkpPgnjMDsWyAsRC6sAtmhg4alZq17jqSDcNotxhgueY4znmGGaZD3mTGt28w0/posE9vW4XmXXs+n2dD/8j/r7z4J5n3IWETvMlFq5hnoEFTroMCCNdWfjosDLs7N47imH8AX+Pq3zk2KgG1BsB7S3+XBl/rzhP/S1SzjvacgV+1c93EopRIcUNLjPGgkPEzZjRdOlv8iFXuaYppmGGWeY55jDzR9NCH039us0kDbpYZsQxhZYZ4Y4mYBmAc4XrDLJKmiJd7DPGAif1ApmhcogWGUpMctvdHADLjDDLJCXSjqprdMh9og7xtQQ78R0Tqq+lSZphqMk/RlimTZgFzrrOv8QI2/RwUv3Hlhl2lNoSabKss8YgJdJuwDwKpJQVkDLj/G3EU2GINa5yTRmQwkg0Q1ILQSiSYV9pykZFvs4VXTEuOdaeUYnNL8EGkDw51hgkTFu99XYAWW0xmvEywywwhq+ourHxLjFDhhLTfEmKLcdWs9UGMCB171tArjzQxAjfwLywgkIy+Kbpo+xu2st8ruDkSTcovcwNtwoguv0tanS7lzLz+bOEGkuW+oirFMk4jzJjPBqFOU7NRY0HNN6SY7Y16KIbCWY5QIz2Q7RdtLYYpHruoWu0b7s2O/Qyw5TrfxJwsebSe+U+kaQrMdB95ABD4bJ2063sO1sFPEnBmdXbgGvf2eqE/buodJyMugzaw36HHtbJkqXAAmcpcJIacfew72KfNYaYZNa1JeCO+6+mKX9vPzMIIOEjgEUbAZIOkAnsVwh49xU4q4TjCJunhgAXdQQQaSHMnppuF0MAi5ru+6WeZ+PINtsEYFQNuI9MOGNHtrlDADTOIaDEBgFDbV/L8Fh/L+hxm1pWHwE0uhDAJqbfPdLfH+s/AyGzuj8ISFLQ7csIsFJGAKJDLXdIy7BOAJStarv26nEPEDDsCQLe3NfjNxEZaEHL2ND27kXAqZKWe1/PF9XfS1rXJ0fqjrbJipYhgoBFdQTE7NJjF4+UfVuPta3f9REw6QwkeqTn/4X+vaHHrCHAY4pg+e0oiGh/U6aMa+8n+s/+/7Uep6bta/1qScuQ1W3rBP2pV38vEwBSNW3nBHLN7fpbX/D0+MoOZAvY0Wt1qG3UQQBgWjqlTwBIRvWcHdpui3qMFQLguEPbpKrbbOkxwvp9VY/xWM+xp9utazu3tHx23Y2FZwDrcS3rY/0Z1/J36LGNpbp/5BhPkP43g9zjZeQeeoQAzPt6jqbWZ1/L/UCPZ+Dt9/hTHDxBMSTvHc+15SW8a++Q5OdNNs91800uSf38cTJ+iWi74cISHjBGqNWmGOsnVa1KUmdSmOuh1hMWkqeZZZJn7lY4XdrkpL5D/rXZzwRw4CS1RIQfFFY4sXLIsaakwK5kB1wy8ie8ju+JDO1wEu6nT7NDr3ufM++bNQapJSIcekAFzi0+5DcLf0mqWhWZbRq+eTXJN6NJGrEIXtvnNT7mbHWFb84lISkWCCBKhMO0yCFboZCbND1NG0siTA/bfMRVnVzLBLuZ41vP61oiwun8JnG/Rn9hT9UxPjuxBCeKhzxTqEABHg71U0t0UEtE6KbGUvJZZ/EBcLqgTMCmyDN72zuQFPbZzeTzxKlRORfh4WQ/oRY8nYLNdyQAAZB02CTOew9Q+XMH+dizbI5280nsVb7OnoEq9PgSppStVOjP7/E0K8y+ZL5JpApnShvCINFxrk2I3WwHX+fOEPUbYnJeqQpYiEj4CcG5nz3EEigbseN8/eMzRErik1xOJOgoieS7oy4prW1CjPvzHHuEsBw9GKs8pLP5RBYtE6dp5mD3YgcHdIocmxA/LNzFwpMsBG9laICdWIKHuX5y5NkO9cAJmEle0Oi6DAOlKuYtVkwmhOHZLjJeWaFp7GofOj6HofYaTyOy4L7EMJ34bOa6qaQjbCW7yVSq8n0oClXxYhpqr4EvScOjhcdu8lmOJYn6Def/VCNOKyR9aDU5ACFhZbZCkmo7zBKFhKRL73g9gIClEfX589ri7TzGA7JtYRQuM0KDLra8FLFHT5zXaYottdURdc5KdgCfTgbyVba8FJ8nX2CLFD8q/NUA8wA2SWMhchCY7XdywB0FiSQ0bO5btlEtXfBf06CHAlkFHw50DtOHhfbt0Ov8wY3JJMqqFBaGZZ5jxkjLKGlklotYeNo483Qp88lSaY21lWJLrBIQv/JXuK7+cTLv71LVl5E2fDq5yYsscBbzKJ9gjgzit/kT/lTJCC3CtB3IFqXh/JvB1FlbGnZQ5IBOLDwjTYk8p5zXeQjxfrM53J4yAWXus0+GkvMSNKnk63zMWZUeWyCF2V4d4Dlc4TI3OKCTJSWUWIDEMsOOjGK+zQHJxHN2XyHa9Co2YmxHkLnSJLOKO6xj3v6WVmvefmX6uMk0P+cKLUJYwusga9xR8Ej8nveZ5qbzpRPyxjotQs6qqai+hGmKTHHL4SNLjODhY37aNWX92cJKii2mmOFlbgBigzHNTcdYS1Mkyr4Dm63dzOfQWJT7dDHJLDv0qgf8liP+jDPPA87SoIsiaV7nEyaYc7jOBHcQb8gQs1x0SrklhrnNpAM1W4S4ykdMMYP5KpqfnzAj0yp3FiZpH2W2VHZrkuE1hvgp79BHmTkmuMHLDLLm+tsaQ4ywzAJn2abHKdhM3n6Nq/RRdvecBfIBpBUP8ThQ2XvyVxpPvhNA71m+QRJpB7HIal8HBWOm5cizTQ+3lZ5pAQWWbGiJg0IZ9ly6X5Z1d3PZTb2vFTdqpiHd5kEmkc0HhGjxU96hRpwvmaYTCdhIU1IUVsCytCKjxqiyFMRtevgjfo8tUi6xxYITJLlXADlL8bTBeIYpx9Rr60CaVe8AW9Wy9MEs65xUgMSAlgmN6LZ2tOAGM/tcY8h1lh52NPyjyAEeQ6zSIMosk1iCkhlY2v8bdNGl12aOCZfOd5nPsYRca88eth2afYlbzoMAUFmmgJMG/IVpK6tQ2tSM4yU5cM/BRiZbTakW3ZJ8AUZYQhKSuthRluc+YmRZJoVPpwtb8BU4KpFhlUHmeI4DPFqEuMk0j9QnwVhrMuBnHP3YZK1Z1rFUmjf50PVb86+r6bWzJMspbhFln9/mPSzIxZhzUQW2bPXIzGEtvMMo5vYAFulyxgGGtooBOJZdkTRlNQ01WroBkmHtByYJltWpVxzYaAPXPlFleorx7baCbBYpbualEp3d6R5kHgecpKDpvWLQO8Iy5g1R0FWrGt3q6jeubM1e591g5rJ/JT4GsmwiwIaBBceBf4nz13Egxp7+zSMAdJI4qSh1ZPKvUhziCAhictGy7vcIARQOELDBAAgPAewMSNlAQCaTJ3YhwESNAKzxECDiQLcvI6CEAVVPtJwPEXBiHwE1nmo5OhFg5TECdn2u26f12E90v8faTnn9v3n+VRCQ7psjdezQMm9r+3radscJ2FoP9Hur220tY0nrt0UADhorzsDRDQTE2eDb8mcDNMPapt9o++kEn6jW54AATPUIQNBlAqZdXf++o9uAXOsBhM22od9t6z4xAqZfU8vna7kj2s5dWoY6wp7b1f2tLGWtw0Pd9xsETDYQcYOA8bas7fMYYfkZGGjgcF7L36v7GVPx6HmSep5z2i7Lul0/gYT2kZZbJb4OnLO+0SIAWut6Xju+AYEGVqJtYYBm4kj77ms7mDzclIfLBCBoRK+NnbeqbZ8mYAgOIH0ort/XtQ1qBKCi9UO7n0vaRhUC1utxPca6fvc9/3T7shD0TL7CicKhMKx07Our7BFv1yh4WTqbTxwQdawgL7g1L06mvsmDxBm6aLCSHaBMH5E6nMs/5Hdm/zvwhNE01F7jmUKF3YkOBquPZYHNl1TNymiESjZCf2GPvnbZSbLe4gOShSYHdDKbuEDOzzNd/5JcXYIw+vwy0/5N9TbKkE8MULkQ4dPRF/kmmxQWUxJoid0FQHKxyYnFQ2EGdHfQIMpmtptCbIDtZIRcO0+4jbAL600GWRU5jidpqf039zhT2mCYZeLsEWePfaIUYgNuQezczYckF5s09Z1/N9PhwJodejiMQVNUpWKBExojmW9SVk9r81zKUKKeEo++ymiEpykcIzJFmRYhzpUesk+UPeJ07IqvaYMuCfhIQzMmIRU79OCHPCq5CGuJZ2mERLYXr+/x1/Of4uNxOAq+J8oJ38ONfy1Ccm+H5XjPlxYpx5I0h+T7zuYhZ6srROtP6PPL+B7sxBKu/rTFXqBH1SMNL8rZ6gqbQ93c4hJF0hCRtOVKNkIxJEb2NS/O4ZAkzP4iewHfw4WmDNYfUoz1Mx8S760TK4ecLm1CHfWLlgnqa/VPOXN/g4GCmK4ayHIYQ5dW5Z2yngimXpmKAMEnVg5pxI5TjPWzO9HBVxdGOXwZbocuUkgmudi+zet8wjIjbq7xAW+xmhxgPim+t83z8r64Herhm6Ek9fRxvs6eIVkSRme8XWPH6yHTLpLjEWHa7Hd3sEMvUfapZCMM+mu0w5JUe7qwSaa+SYg2P+cK88kzUjcPCol+uvYOGWee/sIeJz6T4JoiGdqEBYz3YWCm6lg9DbrItmXus8YQUfbZzHXjKR0gQ4nNbDeLydx3MPr8+n2mmNGgxJJbrBcvOwmeyrLONd5ghkuO4GAsuk6dI5kvngUXLDDm2G+d+EoWyTpgUNLr+zAbqdtMund2m1PaHNrmk5bwvk6WBlEXDgC4c7UJ4+M5OaHMXe8wwyX1nV9145LNWQGV0U7Q0BWtZUb4gN/SefVzrlyrDDpVkc0b94keIdCUHego32/TJuRUZG1CbCGhZaK485xKTdRxbVc2Y60Buqgi8ymTPC8w5uY2ZgF2mRtY4JkBdBaSEaLNx7zOT3mHEZYYZsmBsV00uMFlCkqOiLPHEiNOhZVRZZbZjlmwnXm2SbJvlxKkHuDp4ozZHQ2pF+Ayw5RIUyLj7MZahFxdi0rZkPMJoUV8/aKOuWdSbCNzACxwlqyyzyxgwsdjWwFDC5yTe36QNYboVAA5rTiFSGTPssog24oDZSjShSTZ9+k8eYZLjjhlXoBGxppjggcKNpt9VYMulhh25B9TeVpom82ZU2xxVolfP+eKwzKMINbJgSrZag58N7KTMY972FbSjufm6z3syBhLlNtc5Ke8jQVEvst7DlOJU+N1PnbjQpR90hSxQJsFzv1K48l3onnrxHdS2MvcwNJWDNk/oJNbTLlABZNl2kB1k2kKnOQVrrOqEkZDzW9wmSlN2PTxGGGJHHm2SGn08b6LAb7MDQd8WJCBUBr7GFHjyy01dJRGbDhAaIceJxeeYI4QbS4y624WCCS5C5wlrCi/gZYWHW4MLWMoGXBl5pf2sTSUT3gNQMGmtENzUwr8+XS6AIcMxW/RctNansIR2aaxtiwW21ZHTD5p3nUlHXhOkUcMSVOO5nuJW/SwjYUvrJGVlTtlpO3QywhLWJqvpSV+wmukKDvGVqdSom0gBQnrsECHLOssM8wH/BaT3HYAqPUNG5SNWWYAm0+nGzRtBfTPecv5whnIZYCW+czNM06JNNPcdKsmWzpogqz+2EBv4RRikppmT8t0gOfO0aCLOSboo8w1rn5r9WGOCd7lPaI0XAjJ0VTdHsSf8QYvu4degyhjLDDJbcJKWRbqetGtMtlqgW1vA6UY5QoNvo8yf8pPuMSM85aZYI5bTDkWgL38H43TnuWi+l6K/6OY5Q4DuBWWHHnWGMTSmHfodTT3PsrOYFRWRrYpkXFhLmfMiOv7/mnCf9YLTCGgwBeIZ9Y9ZDL/KjChf48QeO68i/ibfUYgp/UQ5tp5PcZJBBxrE7DiJgh88o4CKhZo8B/qccuIz91dLWdCzxFCwIczBD56ZxFw41WEoWbMqbSWeRT4kEDSa5JKk8u2gBf07xEEWJnSc95DgI3jCIg1ikhUQYCYUf2/HXsIAYHe0DKUEPZWVNtjBXgRFx7CkNaxgAB3vVqGKd3239HjLBKEa5wCXte2L2i7xbRNVhB2mAGsFxGQ0te2fgl4X/fp1b+VtK7ovlltO/VyY0y3/+xIu5h0dlaPc173n9Nt9nT/AnLNDRQe1fN9odtVEe+9CgEIVgfG9TyzWrc68L8gCF85iYBOLyLAoYHMYcTb7nMEpEvo+QqIfDWlx5zScseQa3tey5DVOof1u1FcSAbmu4eWRyV8vKDnyOo583odOnW7AQLfPusfXbq9eha64Iy7ut2snvu8tqmVxzwZf4T0WwNRW3qdEgjj84T+bRTpV68ifSel57up5wnr9zmENaqeYkxrnevwn9u1/p5/fK+TH5bu0kwKCFMjTjxSgzcOiVTEd7CWFkbUMA9F0pdN6YJsm1qs+1vynzYhNtOSsjd84iEdJQGAdlMdEIbtUA8nSpv4iU4y9ScQgeT9Jl+dG6WdXad/cY8fxu46ttAvshcAnK1GpAT/dOjf4wo/J3ZP/BQbaRisP+Qg0sGJ24dcvHibUKvNlpdiKw2nq5tMclveN7IVIos4aeto/jH/Mvcj/lrpM+6nT3OuKEEDdq4ziup+NTRKLpYnGWryMC1Mr/7VPSpDEbpocKqySSN2nF/mzjOWXiBWeEKkDvWEMLXi1Biv32M29jwd/kM66vDNVJItUkxV7nJ4AgmdWIWVyQGi9SbxlqT+jpYecz99mgdJeV/KniowMFslOjEHVciGK+STOQHQkpK0a2DcQUTCe+6EJpjmJnH2SLFF8maTkeklF7LTzoW4lXieHHl62ztEFoPE2gM8CYgqQTtxHApPaKSjEJP38mcqFek/iW76V/fYPdVBplKlFRLPt1CiTY1uzpQ22E8La2cnIWnE/8vq/512GDZyCQberzL/zjg58gysVtkc6uaTxI+YYE7ekS0Bd6hBO3ycdcTQPd6usTgq8u5UrCIAVxtey30ijVCF+tBxLOxsYFG8SnN+Ht/rxPOF6dNf2iOaaFBLSNgLYYjNPeH61DjnQ/MMtde4kXiRCe6wTpZQqM1AqUrKq9JRgt0zHbwdeh+x9ikTr+9RjiXde/IsF/kbq39BbjTPRjrBmL/AjtfDM6UKu6kOYcHWn3BsBV458yWFZJIdejhT2gAP8rEe2tkQqWqV8fo9DmKdDNdX+CabdFLBjhIcJDwoNeG8BEK9zsd00SC52uRpFmqJDlWghBmrL7IWO82gv0baK1Gjmyj7zDHBMEssMaxeWEGg0Pf5s0c37/IeS8oSNk9yA5eWGVaZZ68DeGrE6dVFiGVG3OK8+WWaaumATj7hda5yjXnGOcBzjKCbTHNRyQgNBcXahDil7L01hrjMDWWB7etigqTJ2/zLEkFtPE6x5cAVAZvSnCLPLBd5jjn6dC5oFlxtwo6JVqPbyVxFntnFT3mbrFohGcMUoI8txww0//kaca5xlZ/wpzrf7nR1Paq0E+DYx7zL8+QcaWWEJQXHxNvcAiPMj74TCYIwgMwA1CFlwZXIODaq+RM26FK14gMmue1AL8sGMHbva3yswR6ehiW8wRqDbg4MAg7JfbekWQMPnPR0nHkH8o2xgIUhCuHFI0+ON7jGPlHe410muIOFT/YqA8/a3QBak5yOseAYhj4e3To/NiA0zp4m/Obc3w7o5Bpv8b/l/+KwF7PrahPiGm/Qyw7LjDDBHFEa/Nf8XccS3SPODFP/P0SWq3zkvPXMT2+ce1gqsXm9d9HgJAUKZF0o6UkK3GIKkAWqo8Qmk233sKM2VB5x9njAGJa+vMQIl7mB+CCexKTjwl4cZog1LnPDneOnvM1ZbTtTp/4ef8QCZ8mRZ5+o88o3lR/IApEB6GZ51fkrvhx+Jwy9tnb6LhqsMYQlrQrDzHMPoElmaSu3rKArE0UyjLHAA2UDRdlXCukOljZrsdNH01jEyHKPTnynke/EJ6wD4xYSHf33+APHKjMGn8kwT1IgSoPX+YQCWSzqW4Ibth019gCJHh5kjQM6HY3TVlDEf63P3bAZSlhAQJuwA6+mmCHtvpP01WGW+W3+jI953dGnZTDuVEAnQxhJIjWacQiJGO9TabB5ABqyHqXh2kESTB8wwR0WOIuZdHbRYF1XcZYYYYRlHjDmQLwH6oc4wRxvcI0pbpFlHQkUucMMU6QpOq8EEFPUP+Un2v59bvBeZpgo+xQ46YIubnDZJdFIhPe+ave3HGPTgF/7VySNh8+HvKl9pcEks4wzz2/xARPMaT+QYBZLLRpk1aUDiZ/jFCnKWErSJLMsM8w+UT7gLUxuPccEPp2MM08POxTIssQwIdruZrQVLpGSh5R1KczE21x0A4Z50UXZp1cH6jmeI0vBGWwaaGn+fbYqZftKcHanY7xOcMf1BQHyhHIdos1VrqmvTBhJyZIXgWm+5DpX3P1pfccAvqBNbqsXRsYFiABu4JcXAknOMh+MLXe/brmVp7MscIXrZChR+RVpxP/WfwyIM0lfCgEwCvp9BPHEMybeqm5fQsCJKd3P0ms1HIIqcAsJa3iAADinEBBhkQBgMSDEvMJmEfCtRBAsUddy3NPja+ACLQL54BwCVP1Uj5HVfYr63SgCaryh5RjVcuzp/43VZuBInSCZ1ADJAsIoO6/lSiDAzRAB+JLXcy/ybYDKAiiq2gYmyVzVc07pMZIEDLQ0wtqz61PWOlXkvI27um+EACRbPVLmitbP2ixPEGBiTL7zeoxTWp9J/VlAALyI1u8egX/dH+rvCQRENP/Be3qs28i1L2lZ6kgfKCGAVVXrexcXyEKB4Dqj7bxIwDSc1O2KenwLIslrmf4WLpGZR1pma8eStp31qbS2k11TjyB8I6t//0jPuxq0N5Ej12tUr4l5AK5o297SemRxqbZktb4QAK9pBDQ7h/S3zwmk1zNa/rC2QQbptxE93ikEVJ49UjeT48K3+5yn5/wX2l4rR7YzIDlNMA4YKzWj283ofiW+9x/PP9CfwkxKUebEyiGerO/RjEG8LRPH2cQFzJIjTo2+injqDnwq+8kC4hJzTMiqeyLJYVpAhc7mIRvpBMuMsDGaYI84hWTSMSxtgbV+6jiVbIQzixucLmzyw8Jdxv15zhQ22PJSfD10Rn1hoxwOiXdfmxCNWIRQqw0JCUlph0Ocqgibifa3kyUPh+BRst/9ftm/wW6qg5yf55tsEj/kSdBFDA51bIqyT3KxyWL2WXrbO0T9BhtDkop7Oi9+dSYzjVWfsDj0LJvpbmLlJwzkqxzQST72rEyCfUmhjbflXaKW6KAjDx152JhMiM9vLEKHL4DroYemA4o5/J94v0tlUgeNGPgeTNa/AgSULSWSUJHE6UIoS80Tr+Iz9zfoL+xxgEfzghjK40PzAm5B+ZlChc7mIQ8n+4kswonyIaMl8TbYOJeg4UV5OBm03TY9UIZ2+DhRv8HK0ACFUNaF32QqVfoLe5xZ3KAZg1S9Iqw0eohXm5QSSdZip1ljkKc/gunqL2kT4jAJ/XnpX+bdFG63OTwJnc0nhFpPMEP/rr1DBquPZUE21s9upoNmUgC6Yqyfw3PQDocYYZnnKotsjCbAl+O0CdMOh6h5cfET1KCK+qnjPNUFtS726W3v4Ic8BlmlTB897DBQqPI0DOG29NsTZWF+ZqvCoGvEIk7CXFCp2jfnkpwoHNKJz01v2l2D+dA4DS/K58kXIAPH7klb5aobEIKH6X4HHhUS/URKssAdqcMzsxVqxOm/uwdVGLhfhbSk8rbD8Ey+QrLU5LOhF7iTHKUWijtWiucLEBB79IS+yh7Z+gbRdoMr9c84k9+Q+9wvU6X3///B5t+CT4cSG+zzQJlf13iDfU3OvsJ1FzRhLDtRDMl81xhhgCNiTHCHszoH2UbCBht08Qf8Pbpo8Lv8iQKnnrvOb3DNzceOzrd72NagwD0H/NSI8y7vEafGB7zFDS47iek84wyxxkVm2VLSiql5SqQd6cX8LwFVgPUiaa5ZPA64yjUsiANwBA0DVVJsOfufWSYdgL7MCCnK3GHCLcykFew0LMACO/soU1KJJODIIRbmaX9fYMz53IFYFplcdYExR3BYY5AHjPERV1llEI8DohqaMcYDxplngTHW1ULMPPjtuAY+PqdMyhSScGwedIBjtoqXv3gCzjCl8/0tbjPJGkPc4DLdCiRNMOfqZEmtFtiwxAhFZcRZ0q6V5QPeoqCszG7Eb98SXwtkHRAs3nVxp2RLUeYq1yiTUtbpPhPMUSPuAjetDxg7NMUWPew4RV2ItmYh7DvC0RqDTg0ZWLh1KyuvmywFB8hd5xUaRDnLAsMsY158URrMcIklRpwVgGUwzDNOmRRFMs4izZ4HxsYz/3cDD82ey0g0dn+MM48k1p7CPPaOzpVbhMhS4CKz3GSan/IOczxHiDbrOkeX/hDmB5pg/W/6fCeA3tf8gNtM0kdZwwA6meM5OlWbLDfpWUeLXGWICeZ0ZaJFijKXuMXPuUKIFj3sMMdzDhASWZ9Qzk0XH6bNA87yz/mJW6X4iKvuRjZTfwt+MBCvVwES00TnyDtEdVxJtS1Fb4Xdtcqg+pPFqXGNq4inW9l1DqN8eki0t6XYFEm7mwWEmm4U0iAdVAbuKWaIU+MkBZ5jjqUjNPsXuckSI/RRppuaG5C2SLFNDxPcUb16w0kclxhxck9bvTMpbC87XOUjp7c3zwSLmLYbp0iaEG3+jHeVptuF6NXDTHKbKPtKt5dBqYcdBZJ8+thyPoFGw5WVn5pD3E1yav4OZvhpoKalA3XRcJHZBbL8hH9OG0mtu8ZVDuh0A0RJj2mDwZ/yE9Z1JSMAWkPO7+EWU66d3+dthcwCvxFj5NlDVKjy247Su8YQC4y5lz+bbFhf6sQXNoH6LBgdWejaIXf9Q7QYYcmtQBXIulQfodIf8HNecYNtgZNK7e3SOmRdOy4xjDkDzqoPpZm43uRFQrqfJRdJIEmNQdaQaPU0N7jMDj2cZcElPZnP5Wt8ghn0CuDdqbKBPvdAtNj1sK4eAySofhfDz6/fxxg5EWSybwBABQEeysjEPkXglVZFwCNft83q32IIoFJATP3/kIA59yoCcMwSgAhq3M7nBAytf6bHm9TtPYRx9Q6BxLCbAOiwshiIZsDkIgJ+mOzyrv5/jwDEqmq9F3Uf/8jxq1qGi1r2US3DIt8GsboJAEQLDpjU47UJwLqy1vlHBKmnPgGw9EjLZXVuav0iWvYW8J/qv1dl3+gFLYf505nnW4mApZUhYOGdQEC3OgJyJpEADQOPKgiA8wUB2NdEwK45LfdfaLnb+vsFPY6Bam/o9+aD+De1fUyG+oW2Q1b/pbRNrP0n9bwhXGIyFW2DRT1OHQGKE7gUZAfIfqq/h48c04Iv0lqflwn6gPVJCzJp6nHPa1nOIcCbMTEv6LX4HYL7IUkACie1DSv6NwP2vtCyf6rX4JS2ocnUHyHX+qgHXkuPWUaCW0b1/waGJwlAvUdHfh5ljXZrvUv6EyQQo6p1qWh7fAblL3SfySNltoCU7+Rt7NfrM+NNQV38yx4l+ymTopmFrWQ3hCBSEDCuwEm3gJXWRctjTWFy7P5I2DtjlYfkqhuMscAP83d5Jl/hIHKc+cQoEQUahlkiVa06OdHuaAcPz/XTiY/X9ql58iZn4/Fi9lk6m0/YzXQQZZ+z1RUGWeNcXtiCIMf1/ANiq0/YPdPxLZ2L58PDc/3sEecHhRUi9wSAOV3YJMUWlVyEaP2JgIGIh9zRd8IOH56eglz9MRujCVm4DYWIVQW8i7PH17kzkBQ220h7CZDtd+hhJTvARi7BoL/m3mEPT0C03eBE4ZAiGVqhkMhXwzBwt8pLha94wBgb6QThdpt8YoAderjELQZWq4wzzye8Ti0UZzH7LIXYAJFqIK2dY4KnWdjxerjJNKlqlcH6Q2jhGI/vxf6GgEWjwkTsY4tUXXz9Ip/D6fub7nn1TTrJf5H8j5SFeZIDPEZLj0nVK1z0ZyEswR6dzSdOmkRJGHu+Bw+z/TxNaWAHAhIe0Ek+MaCMiB2GWcb3oKMu7MkPE79JMynMjTRFTv9sk2Iow0HkOOE2zMfOB+9ZbSglkmQoUiJD194hkbyAYH1+mY465EM5ZpmkmEywxDDf5JKUEwnWGGQ1JO9xFCQk42lMQNnPky/wde4MOR7RtXdImRR7SFBevF3jYbafVgi2kxEaXhTqcKawQUcd4vU9asSJlZ7gtUVGOFX/Jc8UKjyNwRzPMcgqyVKT3WyHS97cI84vc+fhFETy0ld/kb3ALBfpq+y5xWxWNemzCmRhmCUoS+jGyrkBKtkIWQrcjL3oFiNtMbqTA3rbsmh9rATPzFRoZqEVgkYswlJohINIByu5AQH7Ck84w8p3MwD9mn2MaGEJoHeYcHMnm2OUSDsVGQioZ3ZJBiLViNOJzywXKZDlFlPSN5UYATgwy4gsaUpYGqmF78wxQVaJLQYyxdlzqaRLDPOAs1jKbY24U6rdYkqN/1NuTpulwCS3HSFjmGW6aLBPlC4aLDFMH2Xe4gOu8HMsWMjG/nnGKZJ24Rf7RI/MbfoUWBHw913eU7LQlmMHipdekCLbqT5sEvwo7XKWB0wxg0kx8+RcO6UURLQwixGWucwNRzaZY4J5xo8QO4YYZtnNe4T4s+rwgnHmuajsbSHFFHSG6eHTidlR3VELpk58xPc+rQCTzwGdbp54g8uYj7rJa41QMcyyw0ysziFajPGAFFvsEaiyzM9dyrnnAjQvc8MtEJitmQG+nWpjBuh5iw7jGWSVFhJG+R7vOlwnT86x2nw8uhSY/IirjoUv7b1PiBaWp7CkvpxWV7OkMsl1ixAHeA6AMx+7SW7Tyw63uMQCZ9Vj3oI2uomzp+EwBr7Kdf5d/lsXpGHELAMgjTxjjMl9olxixi2AAbrNnPoF+swzzh5xrvEGBbJ8wmtujr2k5Jrf5x87STcIoGrz7PSvuNr7nbxCWmKssdX6KDOCvHiIBrvFLBdV3zzCPl3U6GaOCdqEmeGSG2iMKSTMH0kPXSfLGA/IUGSGSy5dtUDW0UFN9hmi5RhNJn3sUmntBHNs0cdtLqpGvMU1DUCwWOMu9vE4cOaVczyHpEiV3Q0v9ZkkQ4kMJU3bXWKbHspKlzSWoqXClEgzy6Sm84jRpMh0U9zkRcyA07wVokr7NYZgmRQLjLGn7MAs605WCugAf0CWdSyowkItDKWOs6dMuawOtkuMM4/FaafVZBRw1yNPjsvcwFN/tltcokEXYSSh5go/d8DfGAsO5ElrPcr0cZVrmHzVJMPC1gyxypADEFNscYBHWqWlIABeiQxDrGGJqRa+0qDLSW7DCralKQIyoJ2kwGt8wjDLWApygZOYcWacGmdZIEybTg6OrKjIQGoA2xzPYWEf5oEnrMYlF39tKb92XHu4ZVmniwY79NKgyw0ANpiK/0WL67yCpT33KcvSkH/T6BvwbH08aLeyk7WnKXJKB0FJO+p09QOcLN76S5uQ0owFDBRWo1DuG3TRR5l9LautOMwyySwX3erGPOPuBcNeGs0TpIXImqM0SLP5XQw/v36fAwK2WIZAwvcyMonJIxP6CwiokEMm/AZCmVzP5KYReGpstPNwuIqAQMYKiiAgDwSSxhM4ie1TYxstIsCIATmfEgATBmiYr1s3Ao54CFCS1p8PEEClBId3EWbXfQIm4DsEKaQ5AiaasQj/odbRmHYTWndjvbUIJMMmWS0jLMGkHvPv6/enCGSX6M8vtD4zBHLmurZ/Rv9ubMYJbcdZ3d8YWEUCVtg7up0x27oRYO9nuu2rWn4D8HytnwWjmOzTgLSCHiumxzJw4GXZtngTAfseQeMfIgBuQdv6RwgQZn0ni4BkKd3nnpZ9EgELzf/NAisiun1By20ArEmbXwYuEQBn72ubm/R3Bum7JeDHerxbBCDpAwJJdoQg8ddYfatajooezxh0d3U/k8YakF0nYK7av9iRNrB2nNDjWbvPEoDTBo6fJwg9QetX178ZU1L7tbsnDJysS5nLn2qdPD2H2T4V4DCvZc/o3/6plDF1kcA30JixKwT3wPf8E2Wfb4aSxNs1Ti8Ks2g5doY2ITaz3Y492sMOufpjBkpVetviX3QYk3T7ePWQEmmOtQSA8OmER7CSG6AdDjFWXxTPuCqcLm2y393BJLeJU+NE8ZA+X8Kz4tVDfDo5Xdjkm2ySp1lh+ecTA847LtyG/sIetJQ9EQ7RzCGASlWDCMIQrx5yrA7Hmgp82OeUMNrqqeNE6008/4CPk79BrPyEWOEJa94gpwubVLIR8VWrCtjZDh/nA94i7teI1pvC8ELS9sYrK3yafpFaKM5WKMVuqoPIKmT9An1tkRJF609kctSusZPoZiuUop4+7hIUIwVo5qSNKtkIE/4cA4Uq8eqhC3Lrn9njm6GkU7x0qSpgjSHw4cTioXuX/jj5G3TRYII5OuoC1GxcSAjrol7lIrOUEkmaMfjF0AW6qbETS0AKmi8jz6cSUBSG12t8rCzMdTLtIrSgGOsnNvMEEhL20FHCTfKbQ8KQq8VEugeS0rscO8NKeoDh+goPGKOHbX0j62YhNsphDI61YIpbRCoSkFEiAydkUbXhCSvGJlpZ1llIniZEm2dKFVn0DMiYxBafUE8dJ0XZqSzGmSdVr9AmxA/zdxnxlwFoTorC4VryR3ydPsM48/wgv0IPO3TsiiWMMWw6m4eczm9SS8gN0r+4J30+K2AawOnVTec520eZyCpQF3/GMRbI+CV+kb7An4R+V+cA+5KsyyAbuQR40q7DLDHJbXxPQLlz9x9CUvofMdhIJ0TJkRBZdK66QbzaJO4LGPM0DJsXup1qqX9VUnXXGGR3tANKci0LiX61jimyGhpklouEaLN7qoNkfZu/Ch+TFgLcZpLf4gMGWeMVrmvgQxkfz83bbEG/gXhSGiHFgguNbWdJtVEazlroFa7zt/kj9w7/IW8iQSU+GSSJdpseouy7d/sSaceius4r9FGmi31OUmBZ7XfSlByzzex0RJLYUtnoOgWyyiaUkAtjNR31vJNE1JYLBPyQNxljgQM8ZphiS4M+llQ9JaBnixAtZyd0oOUwxtQsF/GQIJY/4XeV9RR292aRDH/Gb6tl1xrDLNPHFkPq9gbi6WehgQuM0cmBOsGtOXJGlH3ahLjJixQ4iXn8LzNMHAHbFzir4uGMAwoHWXPkkyzr2pby0h2npmcZJMo+YzwgzynH1iuT4jI3lPyxzIhKcQ/o5OQRoNAstADynAKgVxVmwyxTVNVVnxJgSqSVjPKcs0kDAQ/t/4ZXZFlnjgle5CbDLLPMiAMVexH/uPEj7LIceXeNjRTUoIvX+AQLNbEgzCFVl4nf/SPGmXfA8DQ3OVA5aoGsC4yx7ALBYsR7UBivVznAc8QgU0mKhdggYzzAfORtTm8qgAVNlTamnwHdRdLuPttXeyzpdb6TM1topADLJZ5jjgM6mWecHXp5wFksB8CYjftEWWUQs1mLU/uVyS/fCaA3ypILmhhkjQXGOGqy2UeZDEUuMksfW0wwxywXKZImR14BpVVnSjnHc4yxgMUZG/ttS0EC81fz8ZzHna+DwDIjDKsJZQ/bTDHDOlmljqawVCHziLvMDSdjtdWSBZWbGoNMghY6MV8xQbzLFMhyk2kk1aeBSUPLpFhjkF6V6RpDaZhlfKWXioVnDx/yJnFqrmPbSond/EXSWCLMIKt06S3h4SuAKKsWlmD7Ca853wIzgLSy23mkjmfZI/BmMN+5Ihn1SBO5pjErGyq7lIhwj9tcJE0RMbAsu9Uj86WzVaRBVl1ajEmWy6SwVGFjU4KsDJk3W4g25tkHOBacJX89xxxDrHGF606au6TS3mGWmGKGsIKMC5wlTo0ZprjKR1zlmmubPeI80hfCNiFucBnxIxSKrNzcW+5GzpPjE153IJ6sTLUcy88GnwZd+HQqW1Hax/ztulQGbOCf9fE5nZl26WqY9YkxFlhl0HlASOR41D0IbOXIV8cIkEnGtlKHzXvy51xxL7dHJewy6AqgbXLnHrYZ0nvZXhrMt8Oo3iEFCuPU6NXVtTJ9dHLAFikntR5ijbMsfIuZ8L3+DBCwpUz2egoBA84TAAGVI99/joAjjxBgxZhQM8C7cGxUt78HHWk9li3ieIj87x4CipT0fOeBd+DYJAHrrq37riBgTUTO9XSOAGhJI35qcwjQ0dJ/xuYKye8dnpbxHkGKq8krzx+pg4FJBq6YB1sLATWyBEm8xl78HWSy4gN/j4Cd9yMCiWdMz3tLzx0jAPFa+t2ilsVASQMFz2kZpvXYJsN9U4//YwJZZVWPYR5qUwg4M4mwJttaB5MdG0vQ/NPO4xiALpjEmH8Gtq3KMTMXtHx56DJJ7wfQ8bK2zS4CxFpbGvhbRfrKrrbbKgKSLgJ/QCA3tjrs6TX2df+LBAw8Yx6mCBiORS3ntLbvvSPXqkAAIH5AAMQ1tb27dd8hBCT8XOuQ1b9d0GO8r+U/CkROynl2jY1ZAv4RgSw4puV5A+m/xoRs6bFn9Z9JX63/Gxs0iYBwrxJIr00mbiAism/qP0GYpD4BazUm+3dc0P0fEYCOLyEAaYzA+xE9dh/oo+17/Rn3v6bH36EWikMVNwEbKFXpL+2BB6GWpKtGlAnrh8QDaDlxmhx5WiFZ2KMiAFrGL8EpNQEPSZKn58PuVAeb6W78kEe43WZ09THkoeilSRaatELQ55dZzD7LKoPcSY6KV3N1g0hVgLxj6vlWGYqQqlbxQx5zsQvyHtKCgcUq3+TEOmIx9yxPIzIR6+SAZgK+Tp8hUhdmYjHWz5YnyZKb2W4OkwJc7mY6KNPnQMJ0tcKSNyzm514Wz4d6+jg7SFLedjKCJCqOiA9uVcBH35PF1+H6Co+S/bQJ4Yc8+lf3GKpssOP1MJp/zJn8BkQEVFl5eYA5nmPH66GZEL+zbp1YPD0jnl7paoU+v0yy0ETsbnwnLe9tC5PmSvUvSd5vklUfCbNEKdOH58sif5EMO7EEwyxx+i82SVWr/HLovFyrTAffTCZZnHqWldyAskJOiqVHKE4lG+FUZZOVlwegAE9jcJiGZxYrhGhzI/YbPA3jWB3HqgKkmql6IxZx7zRRGpwpbPD8otK4K9BTr0ITThQPObf4EFLiExyv71FLdNDJAWcKG4iBeplMpQqLcr5jJUl8PV3Y5J9d+HfpbAqbcoExPuRNkjNNIqtIArICbp34zMUukKHIOPMBA+MRjlEljJ0+kqtNGrGIW3xYJ8v90dOQlfe6GnFJHE7AL0fP44c8nslXxMvv1HHKpBiYqdLwokxW7/J36v+UTLtIW4EEM7y35OVkqcnpu5tEPtUyx2B3ooNsfYOV7AAgwLxZB3SUoB0WCXiKLY410QXhPi63b0ALzLu6s3nI05eC72vESdUrZFlnnHmWGaGzeUg1duK7GH5+7T5DrNImxARzvMJ1R2ywa7/MMBPc4TI33CJ+jjx96ld3kgI97NDFPrNcBITF/AbX6EUCFd7kQ7bpYZVBbjPJh7zpQnuiSlgBuUanyLsQgetcUbKIeN4dBXPmeE4BMZFqmkQ0To0SEjL4QOcKpnqb4zkXOGFBFSMs8xxzlHV+sEMv5qk+zDLDLKvsPOXAO48D9dTrdsBRlH3CShwxoDCrbTPHBDeZZphlN8f08LHk1LMs0EeZhkqczed9nnHMY8/IPTW6seBOA23MCzBLgd/iA0dGiVPjDa4xz3k8fA7wWCfLFDNOzZelQC8W7pFy5CWzL/LwucZVnW91cZHbDLPETaZp6PzLwiZWFWPIkecisw5UNI9E8xZc4CyAYx6a6s1CKAGucs2NTUY6kWCSoW8pGD18JjVbYIceFhijm5p6+osC7hIzfMibjqjVJkyWdcyqrE8JKCbP3qGHZfXSNHabtIfn7NdMXi1hogW2SNHFPnvKGC2TolvxjStc5/f4I8cmBVhi2C38DLLGDj3McIllRqgR5x7jbv5tKtMvFdsRos4ee8Sx5GALR9miT8lL2/h0MsGcPC/UjqyhbL43+dBhSynKPKdy5DYh3udtLAzFtqnR/SuNJ98JoFchiUT/ZtxFk5SbNfaJOjDGWEfGThrjATv06A3ex7auRpgPgDGoQF6ETEv/EVcVVV/FvM162HbU2eu8QomMYtgjTtbZww7PMadovRgfmqecIegh2nqrrDrG2et8zKom+FqAwBqDbtAz+eUp8iq3FdBmiz7nefAxr7vBcIceJ1H0OHAprOb1Z/RRA0iMVVYi40AhM5406a6d0yimRt3MUqDriG4/Rdkl7K4yREOBIQMNAwpsgzYhLjq6bKczchUD0i3CtHVFoqbfS7pSWFc3zNTVBpZ5xgFcOwpCvUUP2y7ow5LY5pjgTT78FmvTwNJPeN0l6khKbxHzgjugkz3iTvveoIsMJZe8ZEBiWoMkAAf8GXi2d4TROMEduqkpBTzsjDQtUWeecSTZd91RzNuEnI/C51ymSEb7jLARhcHWxxYpzEtxhCXM/7Ck21sbWZv2sMMCYyww5sDZo+a6xhw1hmecmoZrdNHDDuPcw1J4TLor4R8hB5xOcIdx5pnloiufncvuzywFTWvexsPHUpLN09GSpFYZZJZJthQsfuKoVN/zj4EuZshvstYEMrl/FQEGinwbQDCDfpMPnkLArPsIUDSpPy3w4BEBy6qEAAoGJCYQgOef6XEi+tO+m0JAhnvAy3AsSyAjNTZeCQGGSgTyTvMtiyCg10sIcFIikJvGCMDLDwnCDkxG/DKBP+DnCLi4ouf4fT22gZkm7R3SbT5A5I2etmNa/72kbWIgkHm5GdPKgLOK/u0igV+hsiB5RBAQUQL+DoH/XOzI32dxXnWNvO5zU8tkwFEaAZrSen7z+EPbKavXsUjgC6fyJqvHsTd0vxABuFlGZLgGlHoIO9N88QwsDiP9sAWHCgTzSL+ra1ubnyIIoFkg8AisE3jyvUTAljSZ9QcIOPa3tNx5LZOBdENaX6vXLAFI9g+03Qzovk8ATJrfnIFfrwLn4cQb8pPzyL3zm0faNkEQqvJ3CFiH946U5Wjdf0QAWt4luBdaBPeYhXMMEbA+CwSejSDMQGsnjwBoPSrV3dVjZnWftv59hwC4/B5/9r0onc0nLDFC8zx0U+OZxQr4kk5bTxynY1cki5VshOaQWKysMURKnycPEmeEPREDdiFWfsIXuec56h98bBG2Qil6qntE/QZ+SJ7tm9PdnClsQB1uJZ5ny0u5dzYQgGQn0S3Xqw2UYDcrpv4deQH5ojQYqTymPnWc3TMdFMhyrCkTkWMF1POoxVrsND8orLCRTjBd/5I8Offe4rV9rid+QyYm1UPHdtmYSnAz8QJR9hlYrPIn/C7HmnDTmxZFQjtPiYxboH6DaxxTn8nk/SYnCoeEWgJGzXCJGt3snuqgFRKgsJmEb3JJHuZEFmwWIj3+Do1YhI9Dr7PGECFaEjJBH6VEEt/r5GlEPOqsrUhDqNWmjy06KgJqDaxWnVzZUhIBRu8/5mLlHplKleRqk903OuhYhRcK91hKPisgVEG82YYqGyRLTcbqiw4cjdabbCUlDZUhYTHuJLpZGR2gTYh5xrmZfJ7eSpMedmimBRgeqmyQ9Qsk7zYZZ57kYpNnVkXqS0SSWvFgLXba9aenKahnj5OtVCjEBlgKyZzBFrj683tsJyOQkiTip2mR7uLLe/d+d4cLeXibn0IYds93UB86zsPRftphAbPG/XluM4mFruXJwSi8VPiKSi7C68pauT90mt5Kk93zAvz+oLDiWCKmoOjIQzGZYKS9JKqaKpASkK1FCE6JdU3HfSR8pnzIkgYujLFAf2mPiC3O2bvJGfjmXJJmEgcai8VOiBcW70EFmmlJjY7kRYI91F6DNqSqMiieKB5CBAZKVXmnjkVYSj7LUGWDkfYSIVpE8tB/f49z+YdMtWfwfEnD/qvw2aPbqVxsvlwkLSA7PU49M8+4kzsaUcTmjMaimuESJdI8YIw1hjhJgfMKbFkoQZ6cA2mmuek8tos6DzrLA6a5yVkW+I/5L530d47nHLvX0l7Nb88CJwSkKutcqpNJZnWbk2QoMsEdJAHX4ySServAmANyWoTYp8sRY5YVdLnJtFO57dCrkuAAiDTprI2vtngQp8YNLrNFHxau8aIGIG4psaWhbOQdehScaTgAxhRUMhfbwqSQW+obZ8EFRoDp5AAfD7Ea6mWfqJsLWvs0VGpsLMllhunkwMlTzUPdrL4GWVPCScsdP0+OHrbZoYc2IWaYch76d5jAvPzN/sjky4IdiMLNghmXGKZNmH2iyhSUfIKU+q/bPM/S1y05+DaTjpC0o0SkBl1OiWkJ7JJULMCY+QxaEGcP266/WHDmSQqMsMRtJt1xTL56jav8IX/3Wx7uNhctEQRvGsht6j6TNft0OkKVpCJvUSDrmJfm6ycqun0yFF1IimEra4r7THDHWVp1KqiZJ8cDzjpso03YKeFCtOlWPCVzxGItpfNmH48FxiiQZYpbDLHm0nZz5FlxL+b/+s935KE3jkX+3maSODW29UXGpIdpis7I0VYeDPjz9UXgFGL8aXJCiyg28GaNIXrYVjrvAd2IH5vRFg2A+xN+lwXGsHRZ6fS9WJiBMdS6aCDhBBOUSZFlnRAtlhnB/N5Mz5yhxKDqxk2GOs1NxGtOdPgmMw3RcpTWHXppE+KqBkuYFNi83qa56VYXhGqdVrGvXHhjZXnaFkYbBphkFgtLKHCSPb1h44qYW1qwrXQYaw7Eu2+am46CahTRoxLeKA33QpplnR62VTpZYpJZZxSaJ8cIy5gsc5hlXuSm08ubNr1BlwOpRliimxpHE1vN96BGnAnmdPWm18mCe9h25bbVPruRh1lSmvOYkxTLDTfmbiqjtDaIOq+SBcZYYoT3eZu2Dqg/5xVuMo2Hzz5RHjDmouU7EfNWX6UocSSsxAaCHgLpwAjLZNS3whD9PDk3UAAOVJNo7gVdfWs4H6E0RZYYcYCuseXe413MNPUAj6t8xDQ3HXNQHpbCkL3ILAuMMcKSypX7sICNDCUHjIpAOMt7vEuGoltds7AV81QoKkXbEpwE0PW4zA0GWWONISxhy9IJd+jhodK/v/efBhRn+DaIMIeAEYvAewRhBwYcgLDSbJJvAMwuAvrcR8AFDwGZzHQfAv80k7fOEPiCmZfYJAFzygILfAIGljEALeDBWH4GYuT09yYCZJh0M0kQ/mBgoAWBtLSMo7qPyVErBHLeR7D7zwjkto/0GC0EuJnS89yDp7NaP2NHKSi1+5GeL0kgY/S1PXwtVx0JpDD2oElWzZtN/eLKH+r+dp3qej5LwjVWYU7OGZ3W7ff0upj80+psGLYFYbxJAKz6WschPaaBSlY/naTRrWUsarlt24Kex4If7HpCIKHOQscl+Xl4S4+XIQiC4Mh5DISN6O8eAqKa3NiASpNljxKArnace/B05sjx/oIglMTTv70H0QSBp51JotsEYHBWy2kBGq9qPe07O4eBfwXkXrI2rWtZR4/UM6/bfASHf0AQ2nEPuX5DR+qXQoDMmP4sE7AQPyNITLb9S8g9Nqn7GqCH/szrdsbQrEL9r8ActkGEtsrKDyIdnC5t8s1okv937t+nREbYTU3xXD3AoxGL0Nve4ap/jRrdskjpr5GrS3DCw3P9fJUdJU2Rc58+ZKJ+V4CRnDwHOyqQ93KEaPHNUFKY874wl+wZnKpXVCXRK4yByh5khRXHBTgxdygMrgQcxoQBd6wFscIT/JC8awD8cPUuzSHcO8IOPVAXNpbno8yaMi/NfEW8eshUe4YedmiF4K/nP6WvskeRtMh0/AJE4O/zX0EFJrnND/N3AXSRdU/AE4BdCQI5PAmVXISOdfnzv1v6GWcKG7RCIQnBKEEt1u3eG82e5oXSPWKzT0h+2nSG+vFqkweJM7xQugdImInvidfhIGs8TcPuRfEyzLXzPBzqF1ALAYv67+45/8JjVZH3HiuoV2JdgR717pRguW4owHj9HscK8DQsst0UW6Iqici58uR4mO7HgvB26KVGnEluE6LNQvI08aow4jp8Abli1ScQQyaWbQ0eOQXNpEiyD1VOuph9ls1z3bRC4tF3O3nevR934kNTJpDURYaHJ+1dTCbYzXTw9dAZcuS5GZp2gQT9hT2enhJfyFj1CacLm6yGBhlkjVj1iQPIkqWm2PL48FV21IE2z5QqnCs8ZDU5oPdPF7sZ8cAjjAN7mkPCnGqFQjyzWGHlwgCVcxHa4eP0UaaeOE62XaB5AajCZlrYTQOLVQbuVvkmnWTzXLeMRXXk2eIJyNKIRfA9KMckBbfH33HPo0hJmLG05D45ce8QQtBRgYuVewEL/Qu95/FEreJJAvWZwgbNnPjw7WYl7fdYE77xnv0fZ8D5Nf/UiOn8weMD3uI6V8hQcnNAWdTfZ4wFR84wS6MpbmEebTbnCtF2yZomeV7VJNQo+/SphFfmSZ0OSLa5bVlXGc0PbI1BFhhzKiaTZ4pqSRb+P+eykjTECmpIiTuigrokzGntzwZklMjQq2UwppSFKowzzwRzTDJLiBZT3FIZo3ixF8nwX/If8yFvOs8/Ce0QP/koDfZV/WNtYADoPOOOFZbV+eptJjEf/RtcZoGzzDDlAKgFxrin81rDIszDrpMDZpmkQNZ5CQpTTVhwDaLMcIkdehhSJtg842yRYoYp8uSY4ZJTLoVoO9lsnD0KZB1AZenVgSKrkyIZMhQZYdn54YdoM8ukAwFDtLil7Lg4NeaRZO+zLJAjr4xBeYnz8N21Arn/DUgdZI0RlrHQECPvmA+8qcHmmFAQcVsJH+u8rMrHNEXECqxACckQkAAImS8boepd/oz3eQcLsjB24pt8iNmRTTIr9g/ad6x/GdBreIURXsK0+Slv0yDKBHfoZYfLfO7YhgLmCnBrBJou9llj0FkfWFBMmT76lNncqxhPkQyfc5mfc4VPeN3dz2mKXOOq2EdQ5B/z+46NJ2xRwUAMRJ7kNsOKFZgy71m++ZXGk+8E0LvILGVSjsJYJoWnrKNJbjtWkDGt2oTIkXeIvHU8H48+thxQJoPEHqfIO5kpwNu8jwQ57DsvgRRlTRoN8yYfMsiqGxzj7CkIlKJNmCJpLjLLu/yZowgbqy1MmwXGOKCTVQbdTSWd2ncstyJpt9ppQKKgwkKzBXkRqyEvVOZRYKBZJ+KjZ4ahJ5GY6Cj7+HhYSmiOPO/wU4ZZ5qRqs81w0uSpNmD5eHzJNG1CTHOTVQbdYGADWpyaY3VZu5meG+SmaClouKqr5JPMsq8D+DDLXFfp5p7WR8CdlLuxjB5+1PxTVnbCjpE2wxTiq7eviUeyYhJXkNaAShv8TeprKzEePj6eA30zlBhRU9A4EqU9zJLzVbQVKZMbnNQBJq0rSc8x567JT/hTBlllnnF8OtXo8sABt50cOIpslIYDDduEWGaE21x0dHVrc5tMWLvbQNSgS1msZ92qXJk+B/iWyLgVozYht4okpqbCfAQZVMO0VSZ81g149kAxingXDUbUO9HiziW848D1B0vpLZJmmCVlmL7m6mNsSpNGm4FrUanpxs59jU94g2tE2adGnNNuhvv9/uyvQiaLgBQFBLho44Cpb8n1jLVUJgAADMCpIy/GszjpDmECz68mASAyqt+9Q5A4+neA/wMCgHym2yYQiap52pnP3xkEjAgj4OEs8GM4NBZVHgE6FpGX9gt6XgNF3kJAlyyBtx8EQOLnBBLTz7QcKsU9MaHHu4Awpgzcq2qbqRfdsZcR0OWMttm/QNhbWa3PKgGQZvJbCFhuuwQMqj9EGFU39RwX5LvUS7pPjADIWyRIvTX5bhsBzMJax24EuPpcj/Wy1s9AWwtHOepZuKrHN3ZbmCAoxQC/GAFge0bbx5iE1mdaCNvPyrpKwJobRa6vDx0/1nO/TOCNZ32nBId/QdAHv0AAtCxBfyrrzwkp69M53dYCLhT8OnaKAIgzaXRa28akz6/qtcwjQLaWwTE3SwQy1dt6vR4ReBwaQ7UFjc+1jfMIIzRE4FuY0rY+4pFXnIUOY0ma5FsZlw5QTyMAXh74BwgL8m9J/cgg1/8m7P6xljGh+76PMFetrY1tO6n7nNPz9ULMAjW+x59Tj8tEqnC5+iWhVpuv0gJevM37/LWZz+jQsJLRu4+FzVWSgS5WfuLkh7HFJzRiEerp42Tqm4xXF4WZd17YR5P1r1jJDuDTyS+HzpNtF/D8A+JteamvZ4+z5A3z27zHLBfZiSWIss+rn3/JaP4xW8lunoYl5OEwLSm1kSp8nTvDQeQ45ViSb9JJdk91EPVl0vBF9nk+HXqRcixJFw0ucYuX7n9FZTQiC9vJ85TICDusWxJhb4am3QS3mRQvtxIZkXGFQ5KcWthj8cKzlOmjmRRgaLT0mP78Hl17h+L3lhSm2SeJHxGtN9kd7ZCJubK9eytNSArzrE2IQX+NvnaZ0/c3yfl5dlMdkIXmlMg8o/UmHatwtroCi5CtVFjzBmmHjzPLpDBNYscFpCpJwEeeHJvZbipDEReW1FtpchA5TmUows3Yi1QuyAB8mBN/u81sN7+8cJ4f5FdEBtwt7bx5oZtG7LhOesJ00aAQytJf2GOy/hX7RGkTZrD6mCwFzt1/yI8Kv3QWKAeR45CWkIpoW9676tnjvFn5FDw4iBxnMf0stVg3u6kOwm04U9pwKpSOikiPc+RdiFefLxLkbKXC5rluuW7atpmKsNEsZOCyf4Pe9g5n8hs8jYiHXSE2QCUd4bPsC2QoEa/vQUXvA2NrVKts5BI8X1oUn8f6Y/DhZ9nfIM4eJx4dkmVdANP7e1CH0dJjPHzWYqd5Jl8hXm2CgmzxapMZb4pzhYeAsOza4eN8feEM4v+9xeZoN19dGHVl2D3VweZkt4C1MQkr6a00ieQlxK9Imhlvio3JBE/PA754F9q4Xh89zv+QfZXNoW4KySSbQ93yHDorKbqd+DxfWqQW66ZNCOqSlHyAR6jV5tCTvjFUzf9PMRz9z/55njkaRPHwGWbJSdbHmWeLFHNMuHvO5om97HCTaQdYmNxxnHne4gOmuMU0NzHrIk8BlJzOm23ObYv8KSWahGgzzzjrZNlXICFEmwXOEkJCIYdZ4iwLLDDGDFMOJBT/u7YqvDodkPZbfOBIIVlkpWGEJXLkXfDDRW473/MUZUpkSLHFAmddYEeItkuvBfht/oyrXHMECgE6M47UMMgaPp38Pv+YaW4yxgI79HKKvJt/G9PO5vgmp7+oxJijIAsIGG0LCD4eaww5JZfV165Dm7CSGUQGe5R4k6FEn2IGS4y4+tYQ6ew+Ue4wgVkwmQ+gBRCZ2u4qHxGi5drcCC0CRDWcH56ENtyiE9+lG99iyuEVBiztEaelZBMjb0TZVzxhy0lAh1miE1+DKAR4NOJKQ8fmdbKOVR+loWEoklZrVgqXNIjEWHo2dzWp8EVuq/pri9tcdNZNxjo0Wy9jtQKOuXhS+3uJtMOSDNsZZ54MJVqEWGNITQeEeCRqwn1XbpP8GrDYIuTuu1Ul4RiGk1LvxT4k/GOQVS5zgzBtRljCrNdMKWkS52tcxUJCTJo+xwQZipgf3ypnfqXx5DsB9LrVBHKZESaYc4OP+JQJ32xLo9hBUPQCWWdCOccERdIOJTZQQzzB5KIbqmnhBwKI+BqJLGb8Jpud5DZDrDkEdoI73OAylpqa5xRzmu46wR2iNPT83S7sYIExp68+UP17t6LxHj7LmiJrZqVF0vw3/J7ThheVTWWSY5PWSufoJUybYZadWeU/5yeYD5uAIxmWGXYgmYfvaKYmmbQyGHjk4XOF69SIO/ab+TMY08oktbeZZJlhzDtPqLyXsDShZYaVotxFiJYbRK2dS6Td9bGwkHnGXXqOIekCdHrfYhfe4DIAt7hEiBYTzLkVI/MzsEFTgCWRoNoAZis7wth7wARzWq4tGkSxdJoo+1jQRK/uV+CkS+udZFZWXgmkDMYmE8PSIvtaF+ubb/EBNboJ68pKnBqv8QmWJtwgyhCrCG19wsmQh5XBaIOUpSNbfLa1T4aiuxc8fMZY4CwL9LLDSQq8zidEaSgIu+cGnAxFB0i3CROn5kJgRMqc4r/m73KdV9yDOE0JMck9cAP9HBNqXLvPFLeIs8d1rnCRWTdA9ulD1hKOxIj1wA30BsoaNXqHHtKUWGfguxh+fu0+XTlEEmgJly0E1PgIAXUmEIbP7xBIGScR8MC86h4d2beFAEoZAiZWEQGkTHKYQsCOEPBbBAy6f0QgfTzquQeB19xtBHD6HHkZD+GCKToMqDEwrkQQLGGgl3mseQigYkBOSf9mvm1pLZclhpYJ2FurBIm5BvjMEcgbf6Q//1X/OWMf3iMIBDF/vtCRMlt9ZwkkvRZ6YNfHADjzZhs6cn3ML87knCGp59OZI2WsEvgMzuo2L+vf1pHrtYqAOovaLhW+HTyxCk/NB87YimUCuTYI4GrebFkCD78JAolyDAEcHxF4Blp9P0KAp/+b/t6WOnWcRK7nNAIetgnA1aPAXBF2C3DM5LQGgp3SOiWObOsRSHkn9Xdjzz0iMMc3f79PcT6Eh7MEIFuYQFJuzLy0/D/6stZdWZNk9OcprWtSy1OWY2WG9LpM6nGbBP3GJNrWhxLAf0XANmweuQ5DcOKUXguTq+8SgPAVAsC9TJAA7SEeenYffo8/q8+m2c100LEO7XCQWniABxl4ONTP/fRpvrmQpBUC6ji57A/zd2mmoTkEH3GVvJcjojLILAUOlW08F7vAA7V1eWHxHqFWm3Y4xHZIXvRjpSc8V1kkXm2SoUimUuWFwj0x/M8lxNg8meSZQoWOCnTcB3wY9NdoeFGeWayQJ8eJLw6JffGEvnaZ8fY8PWyzRYo+v4zX9uEEJAtNF8KRpeAY0e1wSKU/8q62HDvD1+kzhFArjdAYoRY0EyJXHb3/mFqsm0gFVtIDVHIRyokEPp1sprs5vboprHlfwirSlDg8CdwTcGox+yzHNNjDmIV4AlrmQzke5vqJVMWkvxGLsDsh10jnSbIY6PWQpcDp0qbz62smhakI0FOV935SAUDZDoeI1ptM+TN4/gH9hT3aYQlfiNf3WGOQZhI2c+IR1EzI3/NejnWyTmmSbRegAIXYADNM0cMOHXVJHD48CVTgR7O/5LJ/g7yX45t0knuMsxASOd6CN8ZS8lk2hhIsecOMVB7TU91jO9SD70ElHXFWNwDFUIb+1T1+cH/FgSz26V/cE/YZ8POk9BWA/lmRjcZKT0Si6sGxMmTaReLsUaaPMR4AEPlUGJXhtiz01xOSptuJDy2Rykb0+T/OPAd0cpgUNuOhhwC0WSn3hD/HudWHGgoDhGE0/5iOXZiuf4lWiWNV2PJSMtmtP3ZEgxx5ou0GNbr5MPQmJdKcWDykqc+9YwVhWL5QusdU/ZfEqTGQr3I7eR5CEpJBATZGE2x5Ka7410XhVKkI2If0+WKsn+Rqk0NP2vBMYQPlZIjszkuzlniWY59Chy0Mfs8/i4y6hfsMJbboc4CBMcuOqnFs3ioS2ymnwHqTD+mioQZSE44sYKypHnYokaZXiSgS4DDttjewoUzKKXDED6zogCNj5AlYM8gwS1zh566ca2rkX1B54gJjjmFkPvHmP7eGhaC08JGQv6MMqDWGKNPHLaaY4zkAzOrJGFtC4DhwklYDhzrxmVMVXkr9zndUNmqg9AEePWw72WiBLFuk3LWYYI5hlpxNWDeiEFxmmHnG2afL1V0AoqKzHxLZr7C8TlJw0mObK5syzfabYI57qmocVqslC6A0WXOenGPEWWhlii0smdXsq4RB2YXHgQKwy9xhAg+fOHsOFDaVG+DmnyCg6xCrTvpswSjiVT9CixC3mHLP7CVGXB38fwUfsGcboEBlFzeZpkSGJUbU47GkSrVTpCgzwjKAC1ZMq2WZh+/A0TQlGnosA15NlWfpyRZMNcia0qp8zBveiCcCuq7icYDYrG0dyUmYUF++BpPcdriTyX2NESrBnZ14qigYZlnB1muOzVgk467jNj2MseDk1yZ9tzm73Ksiaxa7tzXmmKDh2Aj/+s93JrlNU+Q/5z8jSsP5ANxm0skUx5TuaSw2Wx0QcMLTAWxbwRwzq9x2jC678QwYEXabyGILusKQJ+dQXIvAFtPEkpMjWmLoIGvc5qIitn1kKCl/rKUstmHHRuqmhseBQ/aNJWZg4Djz9LLDu/yZG9AmuKPhCMHKxxCrbJHidT52NNSbTJOizBtcA+RFysAtkx2bH5kBQwIkdjm5qvkNthQQsrRhu4GHWHNg6rLWa4wHnNRzWFJqH2XnAxiizTBLLiVIOrCYd2YpOEqqpaPOMEVIgcYPedNdA5OZTjDnaN9mpmrls7ARo0mbj8INLjvmY0ph4QZdmO/fGA94j992wNE6WfrYoqWMT5Hvig/LsKbiRNmnhST2FDjJBHP06UPJVl1CtPW48gCxm81Sd6zdBfiTyHeLPRez0iEWGMPXFRGAN/nQtUmeUw7wtFURT1l/W6TIqKR5G5GbrzFEkQwWZz7PuGPCWvuC0KUNCBQgctAxXoc1sVeATlmJuMk0bcJYopOFzRizdIQlSqSZYsZdB8D5wAxpMpF5JswxgYRwiKeABWoMskqNbqacnvN7/jkkMN9XbxonoVxFJvx7CDCTRkACA51i0DAJX1KPM0XgCdcmYGyN6jYgAQcvI95mtxFw46jkNgv8pwTgiC0A2XPDWGOvIv5yp3S/txGgL0kgdwQB9TIEQRC3CECyrO4TIUgxPQqMGfC0iDCefnykThFtn/ePHM9AEPMfMwBoksB/MIGw7e5qG+jEwclE0XNZ2U8RgHhpBIgxIMrkrG3d7iWCBNs6ATjmwTEDmTzk2hoo9rmWZZTAH659pM0NKD3KFFNQ69irul2KgKVmIG9Vf0YIwKIQAjbZdTIwNaFtdBcBl8pB263m9fhWpz0CduanBKEpo0hfeYcgNfYUnJiS7Q/zesyVI20E3w5GMQ/EUSlzYwYBa0cRZuNneoyXCGThexr+YuEjYW13tC3aiHzZmHgGxNm5i8h1tnYwKXiagE1nnnkGWpp3nsmI7V77iCBYw9d9DMj9DxAAN4uwVIu4vuHumTm9NmkCQL4T/io4EIRo07V3yMq5AU4UDhlvz3O5/pfCpKrCdV6hS+Uuy4nT4EGJNItZCUuYj53nRuw3OKsvxSu5AQ4ix4myz06im8X0s0xV7vLXS58Kuy8MseoTaqFgcYuQsKY6fDhJgdXkALuZDv6HyVdpE+KV9nWeKVVccAUt8Qq74V2mRje7Zzp4Kf8VDMFXr46SD+VohUJ4HPD86iIL3piEfiAAVaz8hP7FPZ4piVdgZSjCicKhTu6idKwLG268ssIYC05N0JEXSeP9c6fZOJegRjesiI/ZOlnHhInX99gYSjBRvcdM8gKcEOBnPjEK58WPMEqD3VQH2UqFylCE/sU9VoYGKJJhvLJCn1+mnjpOkYw8q0NjfHHueZ6mJFwiT454W95dnoYhWm+yE0vQDh8HHy76s3T4Agh+dW6UnViCT9MvAsLAyntq5lkRFmUzCe3wcf5m6b9nITZKmxAPz/VTiA3QDh+nhx0m618x1F7jB/dX2AqlICUBKH+78s+J+g1WsgPUh45zM/ECJCW4IfboCWaj0sU+U5W7NGMoUNHFwGyVMn3MJ8/Q4YtHYEiZkaLk6Ob+0GkGq4/lno0JkFDz4rRCCMgM0s7gbGwANifl+lAQ8MzG5VBLAtdG7z+mv7THPONU3oqQTwywnYxQo5t2OMR8UphzlaxIZb85l4SY+BI+k6/QsSshILWEJCJbWaL1J9CSyeZOLCFjZEuCQyIV8YAseFmISQhC8tMmkRnxrxST/wwnVg7J+CXSlMi182ycS1CIDfBF7nl2z3dQiwlrNbIq7fE0JkDgZ6MvCBs0DQOFqizSe/KA/fPkb3I/fZpfTF2gmdYgjTKUEwkOVW5NQo4Xbsu9mWkXZbz+K7C4Abj34AnmNMRPgK0ZppxXpQViAG5+9hYf0MM2p8hzg8vOX90UR+ZXvaaqMl/n2R/zOi1Ebt8mzDY9tAk7Vc6gEl8sLFFUUxIsI8eTucwwS0o6CKvN1ZZTNFniq82FAG4xRZmUI2D0sMM0Nx2xwubtxjaz+WoPO0xpgu0ks98CrmZVKmvzbgvS2deZnZFeLnODszxgnayCkr0Kygy5OUwPO4zxQJl8AnrZYpOPxx5xPA44ywI9bDtGYZ4c84xLeBAlZ3HkIRZgFg5oCwXCcpO2fI45ByZaau06WW5xyc1XTSFm2IMxFOPUJEAGn5MU1L5rH/PINzmxebMaCLzEsJPlFsjygDHn9VdU9twjVZ29zsfU6Hb4gRGofCXHZCk4sokFcYYVx7nFFBZq0aWz9AZR3uIDWto37jDh5OI9bLv+0qCLMZWN5znFEsO0CHGJGVLKfitrHoFPJznyXD2i/Iqz56yz1jQv96gKUYDmLgWpBeWZVmmRKd/ieu126P2WlZSFnRqbD3B9cowFB2a2lMzToIsbXCalnFADaoXZKsEpRdIqWpZ7x+5jA6Kvc4WTCvb9mz7fCaB3jvvOfN/AD8AlekoyjDyNrnDdodmArlAKq2eHXkZYwgIrPtHBSOKlRVrboIvbTDrzTUsftZtEEOYMt5l0jC9J30o5FpSBG5Z2K8ytLGkkQcdYXinKbr85JpxcUdhNsgpnyCvgKLNpvRhrDDLHBG/zU+edZsmic5qo20VDUf5ezKQxR55ZJmkQdQynHXqJ0mBZGV+eIv7G2LPQD/H7K+LpILOlnfMo+60TnxGWHKpviaeWWmoodZswc0ywxqBbKQFJjPlSU5Ms0jxLgUluE2WfQdZcu97mIuYHMMaC84ezsBBL+zGmpfksSOqRBE8Y0DbEmmNqWn/KqG9hmqJ7IBidVWS/nktdtv3ynHIA2QhLFMmwwFksfKRGN1f5yD1oLA6+TUi9CSW2PaNyYwF49xhnnsvcYF/vgyFWGeMBEnSRJqWeciYZ7lIfBRu4ozTIc8p5WxgYaAxQEGnFm3zIZW64h5UBnA/UP9DARMCB4DJobJGm5LwsQejw4tW4RhEx3xZ58B6rmlxkjFp7mO3QS4aiRn6X9Xpb+IlHmzDLDDt6tFCQl6k49Ol7/ulFwIcJgjCHMgEz7CiwZ6yeMzg/veh54H+DgCiWItpCgAWTj4IAMrsEgManBNLQnxEAPp8TeHoZsNLUbVf0OGUCZpIBLE3gPXhqXnh3CTzqJgkSRv9Cy1jApZJS1fpoeMbTL+DwJgK6PUIApG4ts8kwjf2U1fKjxzgaapCAQ5PAWnDHrNbzZT1ODgFTTJapDDTUc27XZJtZLacxBs3n7RQBmy1HIJE2L0EDNR8RML88gtCNH+k2TYSZ90iv0Y+1vQ0wq2jb/ycEicAcOX5Mv/87R44fRmSpVQQAM6lolcDnME3Q/yyUYYYgAAPIGAvxnO73KkG4g3k0VvXnLMK8tKCLu/rdJHRYkAsIkGx9IqHtbSzHIwBqdEr3sX4DAUuyjtwbEYK05wwClB4N8zBJ7BwB0/SMtt2iXgMDTWcIgL8IAVv1KCPPZNcGgCf5tpzZO3Lej5BrmUWuZZNA5mx1m9H2vyhlOKxouZJHzrHB9/5TJ04pkWSZEX6Ru8CJxUMiVTjxxSG0ZKHr9Oeb9K/uycJUATWTbpGrbjBRvcdUe4bnFxexpLy8l9P3kW4BZRIdPA0DFWH8/SIt4EuPvyNlSB3HDM5nuciZ0gYnyodOknZi5ZCv02eI1/coJPp5+HI/B5EOJpiTSV4oyxe55/ll9jzLjLBND18yLe9DJQl6CNHmMCZg1mfZF9g90xEkRiPBFD8s3RXgqCmeY4+S/cTb8r5oUlp8YW0NrFaFbRMTiWOINqfzm/T5ZSJ1iPs1Onz4YekuX2fPiDqiusg/TP9Hzke4s3mI70HyZpOnKZwp+6OkBDXESk+Y9m8ywjI/zN/lpdWveJTsJ1KBN9sfEq8ecra6wlLyWSKLAuBE6+J5GKs+YSOd4Gx1hecqi6SqVab8GbZCKaLtBmOVh8TKTzjMCZgXKUnaMFXUK6jLAQSxxScMlKoCBIZywfPNC9iAW54sOS95wwyxxm6mg3j1kGZWpKsFsrxS+VLCM2IJLvs3REmQsomXzElG2kt0rMO5xYeO5dMmRC0RYTfTwS9z58m18+KhiIZoRIRRtph7lrHKQ06vbtLZPBRw4DzO97M+cZzDE1LWLVI8TcNi+lk3iT3AY58oZ2Y2ODFzyA/yKyKDqzZph2VCSF3Saykjz6g2JH/WJFp/QsdNRFabvEAzK16GSwwLs64Ox75AfP+qh8LA8QVAYhSIiH9glH3OFR7yNAVr3iA5HlEIZclUqpxZ3OCl0leEWm36Z/dYSj7LYQ4mmOP95I9p0MV09ZfkybGRTfB19ozU5+YG50oPGeOBmxzXYt30z+xxOCrBKh23gLQwYscqD0VKvviYmdAUxKD46onvbhD6NfqMssgwS84ixyScZhNkzCkLOPA4QPy6B4mzx02m2aLPzSEsZPEGl7EABpC56CCr/B7/DReZVVVbSz0z55z/uo0VRqRZZhgfCT08ScH5YpsXthEZDKib4RIT3HEpujaPzJHHggfNi8+UP/OcV2sgmZeZ4seA+TYh97eLzGLBR9Pc5BaXHIPP/NaNhOCrYPFP+F1qdJOizFkF7KI0HHlmihkucpsSaW5wmRBtx4gc1PmY1SVOjSj7SnIQ/8qbTGOyYl8BQvMcv8MEN7is0lSZv0nwo7TXFDO0CblzdCpbbF0Zg+JPLgGj3XqNTQVoXnZxVUSuMUiRNPuaE1BSSe8p8g6U8zhw4JGFTxobc5Lb5Mm54EsB3tYVCBxx46alJ3dy4IIPTYFp7WI4zCBrhBU8FfFoJ+tkmWWSLOscqPrOU5xBcJh9JfPsM8fEEXJOWQHtbYZZ4gCPsGIUoqAcdiCepcpa4FCDLoqk3b3zCa/zCa+7bXaUKGPe+iLjzbg+ZaQUU+yFaLm6iaRXAHOPA8Z44NpwjSF26OEWU47JaqzBm0yzxiAWSmLXaJ5xd64GUf4+/xUuBf3f8PlOAL1FRrXThNmiz9Edt0hpAs+g8x+zTmkmsguMkSfnBqKjvl95coqaixTVGrtEhjkm8DhwKw7mlWaATpk+t3IxzziPyDHFjLuRCmQdcGGS3RJpVhlikDV6FQg0UGhQwSRjGRpoATiTUWP1SR16WWKEaW7Sic+Bgo4mb7XV2l4FQq7xhtOP7xHoxA24GmHJmZ0aTdoCOwyNNgT5aGJtn6bXGHvsIrcBuMFlB9bZtsb6s+PYy84cE1hISI1uxnjAOPPOiPQ6r3CdK6yTZUR9IQRo6mKceddhjaJs5qO3mXSrGTeZxsdjmx53Y+U5RZw9Jx22G9GQbPvbKoOO7ddFw9F6jZJufSJOjZtMk+MRbUJOHp6hqANV2D1YAVdna5+jLLx9BcSKaspao5uTFJjhEpPMuuCIWSZZZZD3eccxTvvUP6FGN1sK3E1whwYSpLLEsPo4eoGniw5u5vtgK1ohWo7JCEI5FsPolgMxhd3aRVSTfOwBJ/LejDtHJz7rZDGjXElv6nGgpjH8zAzWTE4lEn7LmcAucFZBwJMc0MnnXGaHHlZ+RV+Af+s/2wQMOE3Ss6TLp00EFBlCQIBVAiaP+dP9h8AfI2CBjwAQL+k+byEA1VFmWBMBEHw91oT+zBMkv1YR5pqBFHUCsKSlxzevtAi4BaJJOPYSgWzRmGG+nts81kIIaGOee1kCmeUtOBaDjnPAG3qMun73CEniXdc2Cx9pkyndtkAAvnjQcQGR2M4SMLpM9nmXIMnUQEoDmLIETME8Aaj3vv4tjfP/Ky5q+VV+x4913w+Af0oADk3qvm1EZu0B/x8CJtYfEsh+S3zbi09DQfgMmXS9qvuY/Cimx79N0AceEbAJV3W7FAEz7wOCvnRbj31Pz1cKyhJNI6DiOkEy8iLSv17W+qhPnJtgmwTYvBKbuu09pB/9SP9/BgHaHsHhzwnANOtzR+W45on4DnI9ra1MwtrSv0/ovrMEwKsBcxndvkgQBnOPb4HA3NTvRwlYqmFtn4Ie43Ntyzf1fKeObFvR835KAHIaiI3+7S+0nQ1cNCnvqxA20NHYex2gbhrf+0+qXhGGuz/Pw3P9fJ09w/2XT/PLyfMCtCUEiLvs32D3YoeGTe2xk+imlJBFoK9GR4n6DTdReMAY13nFscsaseOQhDWGiNJglUGKXpr+xT1ihSdE2efQE5bRV+lRaAkg0iYMCWHMNWIRTpcENPNDMsH9wewKKcq8NPsVFyv3mOQ2veywyiDj/rz03zYM5AUAsneUYigjwIwGKtSIQwtqiQhPT8HKkNhPnHh06CbB32STkESkiR4M1h/S1P40XH3I4QmRtFKBmhennjgOLfH0WWCMciLB7/FHgLy7NWLiZffNdBLfEwnx2/X/jjBtTpQP2cx1E6s+oUiaSi7C04QAAfX0cVqhEI+S/ewkxAOaiLAPLaxhMy1/f5A4w7ESdCyq3JZ9uvYOhbEWFvnyWuy0eKfRy+Los0TbDff+NM+4e/416GKBMQ6V3fWz7G/QTMN88sy33sueuV+ha++QrWQ3a7HTlBJJLle/5FhJFjDXGCTv5XhmpgJleCZfYbj6kKdhCfAA8RccnX3MUHsNs/i5GZomTo0Ttw85iHSwnDhNpr7JZk6A41z9MavJATaHutmJJUhXKzLOJGBzVFh3s4kLZOqbjPFAwjZoEGePLOucm31IixCHo4AHD3P95Pw8+cQAhZCAFg+H+tlKdlOZjLB7sYOVcwMwJGEftKSdpyp3ieSFiTlV/yWNWITDHGy8laAyKoEWvZUmtCBb36CSjbjFprhf42G2n2OLEvayQy9dNPD1GXroQcOLUj9/XKSgiW76S3tMMUNve4d8YkDUMtWqSHnbeTdmj64+Jk2JbLtAjW5+MXWBWiLCfPIMDEEzJvfJsYIEbhCDYZZoTkK6svsdjkC/Pp8yScr0uTmj9Wvzzoqy73y6DcQBWGKEAiexsMQZprCU3EkNHYxTo48yP+VtzNdsnHnmmNC5oAAXc0w4KekIS44cEGWfCeZYZsSpi9qIb9pHXGWMB+zQwzDL7CkQZ8o4A7iW1PfukqpxjClrQZbmvdbLjgOMupSldUCnI9AY+OHr33IKUgmrcBVL2H2OOfLkGGOBAicJ0+Zd3nNsPLHoKjLHBBe57aTGW5oAe1LJE8Y2vMFl1hikkwMHPJm/fgqxUvhf83/lAM8lmx6du/Wyw9u8r0nE+0BgKdZyhBApj4RcpPmY19VbcJZZLqrkUhY8UpQ5oFPntZI0PM95+tgiS4EbvMxtLhKnxlkWeJv3OUnBhXgUyTDBHBZuUkPCLm9xiRIZB2iJV53ngFuA93jXkT/SFClwkptMu7m8gbgXmeU1PuYBY9xk2llI2Tz8TT7kLT4AwOSrNr8FAUOFwPWaU0/OM87HvI75yLcJO6JOSv39zvKAKWYcYGogmNmUmbXZoPL2TG0pKjKPK/zcEWmMfSjyaJEov87Hbu5voS8geI+nfdnISj6dLnvBcAljMmYp0MsOwyovNsDUgPVx5pllknd5L7Dq+BU/3wmg9yzfuAa/zOcOUTYQwkIELCxhiWHuqVG/XJwSczznQMAR1ZUb6l7SzmiIZpoiwyzrYOMRouWotEXSTDBHloKTLz7HHOuqZ15ixCGuk9xmny5Eox9Vhl83f8TvscAY03yp+u0oGSSa28wdTXPtKWgD8CXTfMzrLDOCh+8G7TWGOMvCv+I10OVu8jBtFylu9GgJLXjgGHQ+HkMawWy0UxtEjZGXpuT070IB7cLCGkAGVx/PodFdyjozxN3aYJUhBwr2sMPb/BTzrQOcn8Ejco76fHSVxCjcYhi5xSCrbvDuo8xNpulVZB7kJdLYdSAeIka9NkPMNiF+zhV62GFYPQ7XGKSHbZYZcRr8GpL0ayuydsMI1TWjfWPdgcbGSOxBEpcbdCktWWTfOfKMsEyKLU5pPbfpcX1RTD9FrrvGECPaL22FSYJeyrzFn7v7xRKhQeTQC5zlOq8AtjLnOfDT/B0MnDRA1+o7zjz/K/4Ldx3MI2CdLGk1NTVPwKhSoY1u3ED8Hd/jXZYYcV4JMoB1OfDPVmbmmHAx4AaimnR7jAeYTPs55twqlJXxLAtMcOe7GH5+/T5dCLBiktcVBMipHtnG2Hv3kEm++Ws1kbAHk6iE9Dtjie0iwMA5nIcYaAJsiEA+eDTlc5IggEM9qNx2lwjSRksIIBIikE8aGJgn8OUzNpUBki8RAIIQsN4sRKGg5TRPMavzHAHgaBLhFcRbcErbx5hddlyV7ZAl8JkzKbDVNaXn6CbwWivjkvdO/M6RNipoWcoEAF4SMr955FoZM+48AkgmCHzvTIZ5gkBCbNLUUYT1NYFcr0e6/SXZ5+msHv8DgtCJsNZ7Sq+H+TCqd93hfQKG51ta7xzw70u9Hysge7iuZXjzSP3vwe4MEvDwkpZ/j2975VUIQKv/HUGoyUsEsm9LavX1+pzS43xGIFN9h4BpWAceEIR5FAjYdI8I5MZ1AiB8CumHbYLrb5JaC//4QM9d1u0q2r4XEHAuiwRZvEXQR+ra/i05zlMDOXPSpk/N59KuVQwB70CATANkTZJrnoslAqangewW0vG5BrrEtH5pPY7V53v8Ob+5Ri3WzW/O/iWx1SecXt3E/GVvcYlwu83TrLDHlrxhPg697p7DAM+sVjhRPnQJr2awfrXyGW/zPr+Z/0t5b/RSGrjR7RaFM37JyfU78aklIowWHpOhRCUb4cTKIf2FPfEEQ9hP1IOU3Cj7PD0FIVpUJgUoyVWFVnmZG2x5KZ6GRer4NCb+aDW6ucwNAArJJIeX5Jmepgi7skh2O3meAlnK9PEvh36kcqphtkhBS5J1K9kIkYKAYfWU+K0tJ06zFBrh8KRMKra8FA+z/W7hNESb/tU93qr/9+QRT7oetslWKuzEEix4YxRiA5iHm70z24LranKAaF3YYvFqE48Don6DqcpdKEtZ+tplnp7CLc4XyUi/7oZaKM5AqSohFTFhpx2ek/e7ry6MEqXB6OJj/JCnwMQOIyxRTx1nI5vgAWNMcltYcahcLXycH9xfIVlo8pulvyTLOvWh43SsBmygHn+Hg8hxVs4NsMagSrh96JaAE+oSjHEnOco36ST1oeNsJbv5ZjJJ194hE/W7jp1TJkXzPDRC4p1UiAmAuU6WQmyAvraodq5xlXIiAefhX+Z+JMmXoSzDLFGIDbDMMPvdHTyzWqGMGLs/PSWL7u0w/GLyAh4HkvIMnFt9SK7+WMDs+h7xapN49ZB9oqwMDci7vvqCHitInzYPxXC7zVriWSUlZMjHnmUmeYGNoQSRqqg6mjmcl2OfXwZPAkkAets73Iy9yBeTz7Pf3QEIYGye49+kJfglXj10CpJSIimT3OohzSG4f+E094dOC4ATirp7MFpvUiPO0wRECsLWrI8ep0GU3UwHp+9ushY7zTGzo/ief5pEndrGx+MkBUZYciqpgtoGjbHABHPOJipOjTEe8CYfMsYDMqpIEn+4TiWwtBSouM4gqzSIcpNpHpFztk/7Kk3dUissuw9tfuYYljonNuDsCtedtU+NOHeYIE+Osyw4H3OZOwgLMAjGKHCKvAvgM1DJmEumfjPwxwIx0xSdtNEAF1/BEpvvmerMpKXG9DLP9ZMUKJLhDa5xhesOmAKxKDA2W5YCDxhTckmLMRYcwGfzrSFWMUVdQzEDawtj96UpOdaWEWQkzFOA2nVlYJln+RS36KPM63zMGAuUSbmQE7EG23fz8F5V1+XJMcQaeXJ8zOu8ws+1ndfJUKJMH/vaxzpVgWa+/1ukWNK2axB1ZBIDgu26+HQyxCoevlNv2dz8Xd4jpSw9YVyK0HSEZVqE3LPPgDDDT8zG6TpXXLK69ScL1rzEjCOEWJiHMeVucJkxFphlkgeqQLPrY6o9A8W3SDmilLEHC5wkS4GwLrgZIcX6u3nz7SPeljd4GR+Pi8wyxoLz17O5vyn8zMKqTZjLfE6BrJtjj7BMn3rUW96AlTtDkRkuUSaFBVPmVZ/p4/3K5JfvBNADHFvLZHkWbBBCIpXbhFwKTJyaM+DsU8meoODdtAnzOZfpYUeNBoXxdYXrrDFIWAclMxS0NJsu9slQwuPANYyZH3Yh/mAiQ/Vd6mubMMMsM8ksW6RoE2KKW+pXsKOywW5HRzW6aJZ1LE76OlcYZpmf8wr/Hn9KXME4S7U1ZqKxv4J0VNFOB0kqMhitk3Wad9N/53VANtNLeXmT2GRjP1oEdDeS1LNHnAMkRaVAlhYhzrLgVhU61W/ATCG3SGHy5x62GVITTjEJ7XLn36HXDUg2yIKsfH+sCDuIRGGBMVb1ejfociCUT6czgxWT0k6VQW9TIuMYk+ZVN868SolLRGm4FKFVBimRYYwFLABjhGUnLQm71YCzrOmqgYdPmRRnVf8uacsjrr0P8Jhgjm16nCzYkny6NAHI/A1nmFITzy1XVhuwJ5lVOrlo9GXFyHPMUAMRfZVhiOS8h2FNhr7Czx3gar4ndj8VyDLBHJ0c8CFvEqLNEiOIn2GfA9F36MWMPNcYdJRhwKUbzTKpLxIn3QqUeDYOOUq8vQwYY9P+DyiD8zkXdGJJW2lKDLFGJwdM8yVl+tzKyff+U0UYcx4CBrypP5Nw7G/ybannBVyKK0lkwq9phS6EYREBKCxFM4UATx/hGEnHpgjAs1n9v48AQsaWO0Ugf2zpz58RpNiapxzy89CYYqsE7D0DCa1+KT1WWctm8kUNIGAUAVSsfmh9fYJACGN9mY/aLAGQ+AUBGzFNIHv04OkjBPj5LQJQ0hh7FoqhIOjhzwkARfNeMxBoVdvAw/m80dZzXiCQOxf0bye13kUCb7q7ek1WEcBolMDvzzwMrR4ZOf8xA4gg8JozPz2VxB7eImD7/UiDK17VMvyBHr8SbPOsymo70lpn82OsSplPTOKATXetDeyFb7PYPgjK4RQAdQL2ZgwB/0Ja97buO4fzqDtsIdd4F7muv6Pfzem1M5bdXdj9SNt6SNvFQlIe6b4G2J5BZMgvIcBZCnj3yHlaCMDqEYBvJgG+gACZaWARasYanJF2P2aAnZbJSXKtrntarncIkqVf1XNN67Gs7E1tE2u7iNT76ecEAP73/LPcL6ju01Pwy3PnwZN3A/PUPVEUNpc9D439HWUfr+2ze6qDSloaKvboCYP+GiUyHFvUEzRhlkm3OGiTjKv1nxFqPXEgeXKxiecf8DDbT4g2ydUmxIR1tkMPHXmRwX4zlHRqkYGSIB69lSYA12M/4qeJf4dBf40Rf1neB2PBK/V2MkKZPpL5Jpm2LIbVEhH3rro72sEOPYy0l3iuPaeTymHi7CFeyx7/r+zfopxIyHP0rsjQ3vPe5VgdFhhjpL0EwET9LnFqnF7cJFvddIyMw6T4qL3Jh/wgv8LzpUWO1YUZdUCnJBFWq3Q2nzDHBBvpBHFqjLBMtr5BpC7AXDsMAzNVYuUnEiLxsqT3du0d8nnyBQZZpROfK9W/ZCU3wOa5bp4pVNhNdRArP2Ex/SxRGnQsQrwtE6UdJEXY5FkeB5Ksi5TP3pnCtLnBZTo5YMkblhCMNnyTTlKjG9/rZHeiA/P1XfKG+dh7Td/u1e+pviHAZ2KAyrmIBDBouNm8N05fZY8uGpQTCSIV6M/vkfVlATeyCD31KmYDVNLJsccBJ8rihfiu/x5F0jTVW+616mdIEEGGM59vSOhDKANhGKs8JE+OYjJBFw1mYi+QpSCWPInzhGjzcKifnViCKX+GSAE6SpKMfJICZwobDNYfQloCUmw8atBFIyZsytHCY/raZSyozCxSvsqOynuvDxtDCYqhDEveMJXJiDBCgVYoxKuFLzlJge1QDz3VPURFtEVve4d4Wya/xWSCHI/cO3yBLNvJCJ4vwMa50kNyfp6BQpUs6/KeGOsWKWXsOJuj3URWoeAJSHGiLGDgWOUhW/0x/ip8OhEz/TRFxEJJ2LuzTLp3apsnN+hyYLCo2c66322xfJmRb5EvPHwkQdSjTIoSGfZUDTXGAiLFDdRmNu9YZZAQLeaVaGPzXpBrO8Ec5vd3QCcjLDPBHIDKKQt4+Iwj4TEltSFqIR745ne3pSvQpnQK0WKHXocb1IjzIW86kCZDiXHmFcwLkyfnwhLWNHXUQBvxJ885YLJEhhGW3DaW7nteCSPiLb5MkYyzDxrjAYOssUdcFoGIK4twnwXG2KGHPsqq6triOlccYcm8xNuE3Jx0H7Pnqgl7VUHIP+ctl4B6lBVnASZ2nUGIFx8i4TVGHuqmRoGTdLGPhGX49LDDda6wxIhTy6UpUlY24jj31MpKMIQpbgFm6ZRxzDfzPOxSb/cDHf2sLSzERazUwtxkWgMr9imTYk/3N0LIDJcokWaMB7LgQZY4e+5+AHnOWcCFybU9fMK0ncLuDhNkKTDDlMtfGGSVtOYGbJGiRBoLVL3IrMsxMFXgPONOpmtS28AT7wGXuIWHz0VuYzZbEnS5xj/h9wnTdsq420yqXdeYs6Iykktacwisb5ZU/mu5CUsMu7m6MTGF1dlglklZkPoVPt8JoLfOAOahZejwkOqB0hTpQlJZzExfJBVi5m+sOHuJKyGJNLYSmyfHKoOu4QtkyVJwN9GCywE96yjKwtwS4MVCDLZ1ABlm2VGazUgyQ5FXuE6nIuvjumZpA5qZQ5r8sEa3SmnFoy6lKyoSN+07amaKLaaYwcMnRIspZrBUszg1pTqHyXPKDUSrDDm6b5SGo9ZaoqrFRgtdVqiqF7ntzmuDYoGsA72MyWimlXNMMMUtdw67OYdZcisl9nISos01rjoE2WLFD9RT76LSvaM0+C0+cKtPJo0R8FMMNKe5iQizRedu12hZo7xLZPDp5OQRymmbEO/xLn1sUSbFNj2OvXZR04QsMMMSlYxZVyPu0PoWIT7mNR0AhSpuDyeRsUqYtdVdQMOwDuBb7hquMeioyTZg9bLjBnkLc1lmGAsosSSmJYZdn5rmpoKuUt9B1tykRuodpkwfW6TcSrh5+XUqKFngJOv64lbgJEUyfMibSIL0KhYy8xFXiVPjBpdpEWKLFHlOMcIS09xUP419XSn03YoYyEBrkeo/4U/dPdtHWV+6ffcQErCvpYOb+AeMsOTA1Nu88F0MP79+n04CZpjJOE8oIyuBACAfEEhszbPNgIMLsr1jLU0QAHEgIM1HCFBwT//2FgIw/AMCUAQC4MwAsrqe12SLkwjwYOAhwX6HJne8gABNFvIxQ8C4+wwBiN4hAOUMKKoi4J359v2fCVhOK4hc01haf6z72P4m6w3rto+g/AUyQT8lbXIsq/Uvazn/WNu2rHVcxbHjOv6DI/Vd1HZ4VdsrK/s//VS3MRnyJb1OKqtyfmzrCLBT1+8WtY0eEUiBZwnYZeabaDLQFQQUM2DpbyJg0N9DZLsTev4idJwgYDs+IgCHTT7saZ2LeqwLwXcdJ7Vsdv3TR/6Z39sU0pf+BQJ4dSNg1AXdb0XPv4fIVk2C6iHAmoG0bxGk94b15xR02LZpAq9HYwIWCJKSH8AJq5P5QZpUN3aknetH9jlxpI2r+s/AxhQ0fqZ1u4kw8M7r7x/gGHInRgmCLDJahxLflpRnj9TzDSQII3ak/e4TMBuNwZpG+mkOkdBbuRMKvqPl/55/+tslDuhkOxkhxRZPI7iFxGGW2c10cJgUht7pwiaDrDGwWhUGfWic1dAg8WoTP+RRGY0QW3zCubsPeToKyc+bfD16Rtj91T1dwNqjjzKRKkTuIQmsCkrHCk/IVjepIeEXK9kB8rFnybYLbFxIUM8ep8ffIVvdBER+eCc5SiskZR5kjStcJzbzhKKXZvT+Y6L1JxxryXbJUpNB1qAu0s4f5FdYZoRspUK43WY71CPph6EoJx4d8tLsV0zzJfH6HsMsMdZe4ArXyVSqwhT7sbD7/nbln0NZ3oWWQiPsJLqJ5IWZ1czCfrcAhVG/QYeO721C4End6+njVHIRLlW/4nL9L1lOnKacSHC5fYOBz6u8Wf0ZqWqVWqybzXQ3S4wQqcLuxQ52Mx1E7sq1HNbJsVlxJAtNOnxJ1uyr7EnIRihDPXWc0dJjUvUKT88IQBinxkulr+ioCDvGU0ZSKZEkVn3C4Qmp64i/jKU/9rDD8/lFDiLHWcw9S7xdY5aLjhk2sFp1wW5Z1ulhh1fa1xmpPCayCB11mchH6033zm2e1ceaUu64X6OZhEpOQL9nChUJuwAG/qJKii1+UFphdOYxz+RFYtuf3yO2+IQs6zRiEYarD+m4LwBwzs9DHc7c32Ck8pjdbAdLyWc5SYGBfJXk/SbPted4plBRKZgwfzL1TQbui0fhYRqVzkrY26GFXZzqoIcdNs91u/ur4UXprTSpp2Rqd4CExV3mBuLF3McMlzjWEpBy9HORGSdLTXw6eaF0T4CkOsreOqDDh2cKFQEwPzt0MuW4X+PM4gbnCg/dBD9ab1JIJuW9dVUDO0oQ9Ruk2KJ/Zo9z9x8Su/eEnuoeJCXFeWC1yhfp54lUBLjsm6nzV+Ezzl3Mf9ve9S0U8W3eZ4wFbnCZJUY4wFOgRSSskgItnl7m827sIoAHSqDoJUiP9enkTT50klVjJ3VywLLOR9YYJM8pDvBc+FCbMGlKtAm7uZ55gdeIO0afkFeEnGG+3HPK3jP2V5sQRdKYB6pJH23OLwEdInMskOVNPiRN0c0XQ7RZJ4sFLlhQxLCmitaIM82XTs1lQRFGxJH5vgAkF7nt5ngNjW/YoYff5x/TUFXSPOOkKVEj7uaSMmb5DlzqYt8FdM4yqfZFaZ2JplhgjDYhbnORBwrUiLebWAL8Ln/CkoK5Zr/Vww5/yk9oEXLswiJpl1C7wBjm2d7LDu/wU25w2YFVZk1mstUCWdYYYoZLDlC1uZgtKBir0oBFuz63ucgr/Nyp8gCHx1hqbI1uPuAt3uCayziQuack/C4wBogKrVuxiylu0Sbkjvshb7LMsFPoWZDVh7zpwGBJf11lmi+ViNNmgjtc4yofcZUvVZ4NQcAmCPYkHoG3VTKcVXBZLLfmOe/qZUFH1odkTi1qNVM2XuG62/5AlXcG2E1z81tkFyO2dCrB7CQF2oTpYceRvQwfuMwNetjG8hNCtOlWwPPf9PlOAL2TbLiHaoi2A8eMCjzGA8w7zQCkHnYc+FAi4zrLSQpMMEeDqEOtJdEnxaQaD3Zy4LT2IJrpi8w6IO0StzDjQqPweoozZyjyIjedhj3FlqMVx5XdZn5iEp98oGDMCFvK7FpH0mYlvllkhFkKTHOTNCXHDjylnVYAL2F3FTjpBlbzGNunixRb7Gvai5gqXnLtZAyvG1zmNhdV8tqpZepzA4B5wZmUVPT3nmOPzfGci1Euk2Kamwrw9LGOJOCUVUbs06nId5e7ifLknGnlNj1qbiwUbhsM7JoZjVfYXS3n/ycDeyFYwVNW2yqD3GbSGWJ6SLrsNj1c5DZG4Q/raok9zIw1ZslDgHuw2OB0kgJDrPEOP3X9b5hlevXmsoHZWIhyQ9Vcvbbo4w4Tri3NHHacebKsUyDLbSY1AVkeeCcpYFHeZoRZpo8J5hhk1b0Q/TlvEabtdPZrDBGm7R6iIpXdp4dtxniAmYjaivGLSm+PI5OCCeaYY0IBxhJtQrzITW4z6e7HDCVnxmvpzwaS2yBmAKeAwHK/mb+kp8xFGzBDtLmk/pQlMo4Ob0lQlk70zJGHw/f6E0WAI5PzqfT22BQCzByVZBo7qkwgaV1FwIwIPK3rd28TMLcmEZCsqr9PIKDFFEGK5xABCDGHgBLhI/udIpBFGrPP2HV1IAfR3ySQAw8hII8tpFs4RgRhyH2KAC4qZXSMNPOL+98jjLJ/pMcyueoogddfjsCHzkClpB6rG1Ln9f//CAERDZwyuW9M9zMfvVMI2PUGAoKpPNmBRTkCmSYqi8wjgE9JjzEl53YeavcIGHrGpEwRAH6xI//PEXzu6/EqCAi1qtelgIBM9xBQLU/g/eZrO5kk1gCtotbRAM7Zf+V7NUcnRQDEvqrntFCJSb4N7Pq6/R5BYu89Pd7PCNhwxha0BUSTcFe1nCf0HMqM6/gdhDVXRq67sRyNoXZf99/V7w2QK+NYhY4pCc6AnjyBvNdAuJeQa659KzpNcM8YMP4S0hebBCB6hqAvWX3s2mvfIEMQQrKKsFFbBAzbKW3TewRy9Kz+3yTVIEzbUwjo/6stwv5b/dkJJdzEore9g69SQZvw/WnoJ7TDwthYyQ7IxCsGo4uPuVT9ijZhSW9FklYBDnOSxLry8gBLjDBcX6HDhwnuEK/vkapXaOr4SQEiyuY7TMJ8YtSx+c6UNmSxN9TDNa6y5aXwvU46fEjeb9KxDs/fXaSjhHtXucmL4MnvVOGYWiEc4PE0DP2Ley745PAEjLUXaMSOc6J8qCqMbgYKVajDxqSsfESqMOIv0wgJU7+YTMhCdWyUvsoex+oiHU1R5oXSPeJ1Ocd8aJyDSIdIPesrNLwohOHpJKSrFTbSCWqxbua9cfaJchA5TiE2oBPILlqhEGTF566USEraYn2PKX9GgkRabUnvzYHnH1Cmj1IiyZv1vxDpcRh2Ux2kKON7ItMsk5KE1UeSaruaHOCZUoUf5FfcgtKEP0e03XDv6J+lXxCvtpk9YqtPaBPi+ZlF+ksyqZnzJgjR4sSjQ662r4nsTZmRydkmGb/EC6V7DCzKitSxFjRH4Y+zf4PnVxeJLApDc6o9I8yfdo3DGHzMa8SqT4jcDfoWYfDaPjuxBJUfi6ci9whY7bqI8jQr2yVvNgVE1UWoNW8Q0girEDhRONQF2D4Wc8+yea6bYijDbqZD/JfrTc7cF2bkxrkErRB0rEp7J0tN4kj4ST19nBOFQ5FEE6KSjjBU2aD//h7H5iC2+IR49ZA1BimToqe6h4UEgsifDyIdsohROORhWmTNVOB0YRNiuOvxMN3PbqbDvcs3Y7KwW/CyLI4+Sz11nLHKQ3mHjEVI1UVWTEKCXmjBjtfD84VF8GHzXDf188c5iBxnN9MhY68PLxW+groErDTP/4825Pxaf+Z4nuu84liONlc5wGOdrC7YH2Ae2AbWGZmirSCHzbfSFJ13WBcNkeLTxwxTKofc1/fxdUK06FIZ5w49jDPvFEVmhwUiCzdvshAtZ91jc/Nx5vmY11W94zHPebboc2CXhXMY4eCozdVFZh05xuZRBui0dN5tSjXzSy+SAeDPeYs9guAQA9Pi1Bw7zgDKAicZVrWWyZUtUKFMn2O/3WSaG1wmzyn6KOPjucBKm7/atfJV41ck44ggZoFVJEOWdV7jExcQetQLzfzXjU3pIV6ARvbIkecOE25O1SbMGAuMM881rnKDy5RJOeJSty5OmD2VqeeucN1JYrMUHIgmwGrYybStPA266GWHcebdQo0AxyfZRhJXj3rKCzibcR54xtI0ItEgq1rWPoqknYLQwjkEdxH26KBKhy0IRcS7QjLyOHD++lPMEGdPAeheN88UEtKyU5Nd5xWWGCatpCRjbcpdEGWYJa5yjT7KTDDn+p5djw94y5HOcuSZ4ZJj9BmD1tpslkll1wtmFNI5PAhofDQUskRaqWAB+DzEmjIexbTbWIkFBa4P3Ivnv/7znQB6NWIKwJ10SHgnvpOBmrnlGAsMssbbvE+Nbt7lzxzAEtXLacab5lu3TY8DMMxEUKSsaUSHPqOmj2kH7Bjl1QYO8yAw+ekDxlxHNADJzCpnmOIGlx2PzGjNDbpcymqNuEPiDaU16qgNgMYgLCh8ZUxBM0QVdphQr09S4ADxpAMZvHPk+ZzLDuW2Oo3oyqV56EWV/Vgiw8+54sAZA0jtxo3SoPz/Je9vg9tM0/xe7CcBxAMCBEECJEBBgkSIpChxRDXZ4jZn1a1+97bd62nvusZZrx274spWNqn4VF6+nEq+nW/Jh1Qqp/JhXbWJEzu2M3XGHp/p3c7pcfd0T2uGO+ylhmxRQ4kiKVKCBBIgARICAQIgQOXDdV031K6Ud/PSOXt6nyqVJBJ4Xu7nfu7nvv/X/4W4qwx9oQ9qPwf0sa8S06ZjAhYZwK8VmGmWXHS5IesG3t3mOmfIcZ3bDLPFOA8A3OC+yDQhjlyct0mLzaNNKNcCDgJcZ4FujhzQdp4sZ7R6YAEb9rKz87BwkTRZxw6T5NmKO1+7H3kS/JDva5+URFa73h/yfU0xekWpwjMqhenQve3BHNG04w3167vBHDNqBGuej1YhGmaLJHn6OCCgVZ6GylhTbDuWaYAmBRLcUX/GNj48Giwx5ViN1rY+WphE2Pr8AEXGWXUeeW18TtZuIKOnz2eIGt/nh25fe8RZZtJR6S1p2jwmzYzXKmY/4PecPPyAPjYYdS/fS6xiHhzGuD0iRMkhKt/y7Tkd2WgVAWgu0gF8LiMAgAFlBsKt0QHK7gEenDLftm0EkHiRBfddBJQzplYD+L/o/goIiNCrvzcALUYHpHtDz22GDgsppceBDhAT5WuJpMfbdPz+0nRAmDE9dhv4ER1m1i8RUGMRl3pa/BQB1j7V45pXoHn1lekAVZN6HXFpv2Nj7hmzcVHPzcIiDFDz6Xn/iI708h4iz5xCwi0MPHubTrrrlB7/Rdmz+gY+r+r1mUdbWK/TAFHzXQsi99w874yAYBLjKzi/PhZ0n7e1Texcv4uTruLpvfgIAZca8MzAsSCd5GLb1G/JpfAaiHxFf/cpnYCNi3pfwnRk2UtIv7iIBIK0gN+G4kM6bLmf6bEM4Ksife6M/tvuhXkmTun3EnTSmi/TAaCjdAC89/Rvn+7T2Kw5bZ8FhB3q0QHZDDQz/8cgHWbimrZPGWFyRhH576z+eUaH4fhQ97tGJ+35Z9peb9ABCRf0fAwYfaa/z2n4zUM9J7t2A6TLwC7wiG/9lqh2LFVqvpBI8MqHjLNKuvpEFBXhC8yWvmKgXWSZa5JY65eEUVNHeO0GwRKsXT0HIOAE8Hfu/4RgVkIaYpt1tsIX8Bodf7Bj9Rq9n7oAiNdQpFGhGTzN00SMCVa4kNtlhgWR+TaaPE3EoA5PL8c4TsPTsRjp6hNucVM8gvzKgEsjAIVfioh7sR6+Ghvjl4mX1K8MepePJcgiJ/M6gJ1UlKdXYwRoMN5YBT8E6ifOvmQoW+bvFH7CAEVaPvhl+iUeRCUY4lm8i2AVnvtFmtfweaTaOXwtAROr0dO0fHLseLnMYOFQ5LntCuGi+LX1lQ8ZaEuw1sPMELuzPZzdLPFO+WcEcxBekM8telOcXStxrEWcCBIqFrwr7LenCakYRaqHeA0JY2voQuR4TPzaMqUdeQYsmMiDFW+CQP2YeLXEQLvItfYyFXqkcHKobZsUhiTAJVa5eH+HnYwAoP52m3DhhFImyHFGgMRn8S52xqIs+qahBBvhi4yywbPzXc5HL1I+pkGAfV8fueggAxTZTfRQnTpNMRwjVd3hWVz6VZE4oWqdUiLIs9e6WEucYzfTw59PWWUBNn3DkII/T13lp5d/k1+nLtLCR/WKeB7eiY3xMD2EeSaN5Z7gtQUayPuSFBkgWMB53/ZVy3QVoHrlNHkvQTV6mrObJShAuHjCTjpKLjxEngSxtTqnishYFIedq1FOlXF+y4VoTBf6e0yzhI+WALgZXJEiVd3psKXvSx9OVoWd2vvwWNimKZzvYrItiqADr48vYq8AAnzXwkECNKmntY8nZb5dV1WB+WFuecP4Wm0316jGT/P0cgzKENz/f3Ng+e/ots2Qs0zaYJQmAf63/OcUiZMnySe8S4UeUmwzybISWER91cL3NcJEkwAH9NPGxzyzXGPZyShNDmnebgUSLvxOPM/WXUHfVFU1Qk7i+KJSqInn/g84jzrzYnuXT1liSokLQqo4Upuid/iEDJuE1BLLfOgfMM57fMwwm2ot5GeFCTY04NHCBpoEuMGcI8GYesrAoXVNHTcFWYDm16SvBmraWrBJwK3zRpXUISnjCadiMoadgDozzGuiua1/bvIFK0ywzKRaXEn7ii/7FdJkyShDLkQN89XLcp4kea5r0q2FChpG4iFe5VnSbDDytfvxHh8Tp8gHfMgs89xjgk95Fx8tkgoCvsVnKuOW9NdlJjEfzBohbnOdNj6usYwl9wpjbACT2SY0JOMDPuSIkAuoAFlrX1J/QVNHLjHl2Go+Woyy4YBhkBTgd/nEvcctNFQUgAnXl2UdLWtasbGSwBPLLgAcmaSNz1lMecrsnGGBG8zx23zEMJuOmGTsRwOfJQDFyF0FB4Ib29RIQmZD0cbHNIsvkLCEbHSd28zypfuOKOZSfMx7NPAc8xHExx9wrMgKEa6zQIocBX2WhMTT8dmz7/5F2zcC6K1wlUU1K2zjd0DeOiMsKeKZpMAeA9QIsU3KyRktDvkj3sfilcXnToIXUuQcZdinnxCj/35nUCgd4ZAD+lwsdAOPSxoqYRTMAA1HM5WO4WePOAvMOLroJHcUve1xyLE9fAZi7SOecyEFnqzyKtWBjFRDCTi6sbG+jLlk1Q9Lg23jx0fbgYVGpwaR7VaQuGsbVE3yaG2TYtuhxQYUNRVAnWDFhW0YrXeFCV5X+qiElRTp132bTDXOHpbKayDZESECSns2D4cWPgVNpdo0zyuufTuMuW6uc5ssaUdpXmGCTfVEnGCFJgHe5VPnj2fAZwufA/t8tJ33W4AmmwwzyjoSyX3gZKNCqd53dNciA27A9dPmH/CvABy49V/ynzHHDVLk1LNR4rWT5JlhgUusugqWXXcTT5lnnvodeFopusYykw5kTbHNMpPMM4unldoiA4Q4ctHx5k1hMfIH9LOtlRyThlt1wEeLAgk8BShv8gWXWCWp6H6SPI+VkWlAW4Amf58fkGLbPQcGQDecfLjgni0z5rVAlnFWNYQkQwXxRHmfjxxIarHcj0kzyjp+2lgE9x4DDhi3ZLtv/fYioOBHFjJ1OgDfbWSRY75rBnwZCDKGTHqvIBPwIgJoGXBmIEcYAUDqdEIfDLTa5OssrV8iQIKxBgvA/1r3V6DDnhpDAIrziCTWEmvzOODoqK7nYGBGmw57bU3P+w09dhABGc1HrgC1/wrikwhYdJFO6ERbv//v9PPGBrRjqDS461U6MtIZBHwymeOLgJyxrVL6M02d5Ce6f7tWA+QM+Gzp38YGSwMxyP/f4FRCrvOJga9WSLuo/76v+zqjbZbm6zJXA/geahvNIH5wFtZgAOySfsakmwZYXdZ2qEPvFTrMkXl49gs6INpDPb+Unpt5GPr0PL9LJ6jF0+sd0zYz8CutfyfAyLVx8+o1xqaxRMt8XVZrbLe8/j6lvzMfRGM2VuH5Gh22qvkgLko78xo8ewxapJc2g06whMnC7dkyBuqU/syCKyywIqd/fkJHrp6lE8xRoiMlNgbpFb0vyvjiHTr+f7zwc3suSyoHb9Dx2svqucaQvtcPShT7Vm/NoB+v3SBSPXTF3q6SyGHafknSHC894tSaBBEMKPviOCYLsuGyJGf2fnoMa/Lu6noGvWvHXNzcgUMoXQ4ymDuEhiwg/jT2Nl+lxsAPxWiUP0m9TRsfzeBpWQx4I4Qfn3A2W6KvWuZRalDfiAFJR82WKE0FSZVKfB59jbPZEivhK9zkFrG1OvUxmTc9D8o576SjukDuZqK8RpqsePW14NlkFyu+CYjDy5v3SJd3iDQqnM2W8BpNwuUTnsW7qESFDdbG54D5ZSbJRoeYbCw7BkDv42OowkLsqjB4GjV688d03QfCwoxq++EgHKXrtjDo8uFBevPH8EwSdCvRIPs+CZQAaedn57voKsGzi13svBolnDtxc8KuBoQ3T1hnhGG2qF8F2uKNt+/rI5jDATyjrJNs5yWEwjfJKWO1beIKG+uMkA8P4jXA12oTqB9zcU3uJUGZ3z5LddHWAkksW8cUSL33junNHUNevA0fRC8yVCiz7+tjqFDmjdyX0JK54m/k7tKbP8bfhkdTgzyODRLiiFR5l2R1lzxJPuJ9Kp4Uh4M5kUrv+zS/MBylQoR9n8gU+8qHVIiwm+ihEu2SOXodJ9/7TuEhL91fI/z4hMXYFSUFiPSqQYBq/DSR8jHJ6i4bjDDJMk8zMX49dpFq4jTBNUnfDdQllbniRdjJRNm92iNJymtlUtUdYb5Z0achYB7A86gkAG+RIV6Vl5+Ersmc8gHj7CSiVKOn6W8fEMxKmMXTqzGeT0GynSe4ICEZzy52Mbh2yM/HXsZHm4HSoQsKSZVKeDRIlEvcv3zBFcWDBXht/lfwUMDlZrALypAq7xL+mfhf+lon7CZ6oCVeepsMd2xI/hpsPRwquWIAEOBzghXnz2YhfAYsyDy+n2Wu0cRzlkcWCmkJszc1HMFsb+xzFpZn4QQBJKxxgRnMm8888ny0WNf1wiJTfMmsA+hC1HjAOD/me25NnOaxWvscMKV+ZQZ8NZRosEWGSQVmBPASENDSZf20Ffw649poiiUaBJySKkSNSZZ5l0+ZZJkebRtTO/Vz4MC9InFeYZ7kC0o5ECZeQ9l1NbqdddMdJrEQC/NRN1JMg4A79xfDSUAAU5NFi5xWCBchjlQqm2RTfctNJWhBEdvKTEyTJUmB17nFTf3jo804DzTEQ8gUN5jjkqqzbFtlnCmWMP/VOHtOVm3yVTum+abbObd0vSzqPz8VeljlksMszGfxkhKwxjXQs0mAOV4lpAq5GRZ4n48c6OYhgRS/w78HxJPOVHAW1NnAY4MRisRV4SYswh5lySXIu7Wv9WfzoLOf1ehmlnkuqZrR7k+cPe4wyQPGGWGDGiGWmeSAPua44dJ5LURV5LLnsaAKC0yp0c26+urv00cPFaZYZJlJJ3k2C65VxjlDJ0vAnoFxVXKOqif+oa7HE6rq3CLDOqOIx33RqRevKyBvmRR/0faNAHrv8KmTAxrjapwHvM4t90AKQ2nfgRc1uhlh3envAZa5hgU4GG3yRcTaOl+cIgUSLjFnmWsUSDiJ4J76i4npZttRjAEHqJkJp3VgA+8iHCqoKJLPTYY1yUdYRwbuGYAodM2GS6BNKgXaADwD11LkuK6gXAOPQ6VLy2B1x5l32j42FbEX4EikkJua4GWGt5Z6k+MMRQZY5hq3eN09+EIN9lzlwVh6RkcViWhSKcWeBjiI352x+iSNLc4ky7QUaDtUSrSh2Ib2R6g4vb/RVs3YtEmAAfbo1sH5BnOaRBNyslg7D6OX24BmC4FVxunngGssY56BJi3eZJh5Zumm5ipZReI8YBzzoDOwykJTBODc12ShBWaZ5zPewmLFbZBfZhIJJFlX4LWhcJf0Xdu3nfc7fEKarA640r9sUE/pi8wCV5bUWFMSpTwsYdbCQsy3wYDXUTYYZosQNQeSDVB0zEqA82T19eLjRW8FHy0e67W7pDbiLmTGwNAjup3nQRNJVDYPQ2OuCuAnYLN4B25zjWUHXntKnS+QII8kAffo+f212DJ0GEavIZPvJAIcLNMBL3x0gKdehI1mjD0z0zem0BrCDDNJbhhhG5mvm31+EwFj3qADoPwWnRTa30IYaWbYX9e/X6WT0GlMQQ2YqGURkKgAfgNk3qHD1EsiYJWljuYRwKQMRfO9Q44ZuoKwowxkKkNtEwF3lukAPg06XoCeHMul+cbopARfUVBohk6gwSQd5qH5/B3y9UTbJf33trbZx7pvYwguIKyrZ7KfZApJTf0unI3pNTXoMMyuINLoMW2Pu3TYegn9uYE+V5B+cBdh3dU1LAEEKDOQV9vQSXkNMDNWnrVVHXqtzxnImKDDjvnohXtQ1Xt5Xb/7qd7DTTpy3ZTcKxa0nep0EoWNEWrBLlFtxwKoZ3MHJG3rcU16/V3dR1DPyQ+njDFoybc55JlRuXBvCumvCVx/oaT7s2Ot6fnd1+swZmUKYdeZDDao52uMT/P0iyOMzaq2V/CF75hc9xCR2i7Q8bT8MRwbG7aEk6s778SPtE0NnLbnu5sOSPkt3roPW0TKxwQLImscvHsIZbhQ2MXXOuEKKyLTS+MkWJuxIQ6iPVzM7uBvw+D9Q9Z+6xxcFnCAMi7s4ulMTOSSGoaSaW8xwQrbpHieQCvsS/RQIesJQy5JwXlz+lqoIEfQ1T4OqMcglqvT8OBv5H4OOZio3sNHi+OEMJaypKmFTxNpVBjKlV3Bs6sAfY0DBhpFCtEYvcVjrpdFWriTiZKLDgqA1JKQj91EDwu+GY4IOUYaVfgPidd4p/wzLm7uEC6cuGK0jYszpbvE2WPdG+FZsovSbJBSKsjZpRJt/2n6qmWIiX/dQKPovB2fB0XOaSmKPtr0Vcv4WhLM0H14LEBfEUaqIpN9Fu+CXpzHT1DDhcwbj6AAeZPle5zNlvjE9y7hwgnTjSVowc8vv8yz73ZBEEpTQUbZYJsUp1rCrguWBMi6P3OB5ym5Z5u+YRbCL3cYyilEqmzFsaSkvX4n+xBaIll8mBgSiefVHlLtHM+SXfwy9RL5WJQLuV3Ol3YZvHtIV0kAzxA1KZRXy5y9Ly/hUiKIXwkIQ7kyF+4L+DdUKFOIxhhhncH5QwL1Y1GJhGVeNcuXPExIAAdVGGaT6dI9ku086fIOTTz+2PsDcrEYG+GLXOc2feVDxw4Jr51AC04Vhf2YI0WeBMlSmRrdPEt18WhMZLLPg7jgoNLbQYbulhkqlOU5OpRCdTZ8DlOyTHKHFDkusUqoLWutTd8whCVdt5sap6oCkoMwGXt/fiyBHjzgwt1dVmMXGMqVGWZLjgPcjr4kHl7thsggtYD06I1Bnself1THTtNVAs5DuHBCcE0WzDupKOnqE9JkeRbv4vivSa23RMz5YVuSKkihYpVxJ0NcZvJri3oDWSZZJsW2WxsZIGcKqFXGMcskA+Rt3fcR7/Mlsy7cr4HHJsNu7AtxRJMAG4w4yV+WNHGKzDOLT8G3EDV6FCgykoasuwecTDZJng/5HhbQ0oN4/W2TokHASUUBupVBd41lVdGd4TYz7BFXyWYCC2MwUGaAIre5zpZ6zscpcoNfYD734nsWYJ5Z/X4LD/ExNzJMjRBv8bnz8Dugj1HWGaCI+NeLfVVc7YtezAnYI867fKJy0IoLc3gxWCLEkcMgRlhnmE2S5FlkmnVGNbAi7kIaJBRUwLZJZdGZR1uOM+RIaTpxQ3V/OSV5CBlIAjtzfMZbbDDCHSY1lVcermG2dB034FizHg0XEGpWDDlSbDDiMBIDnRNKcLHvmTehkDb8WLCTkWfMmmmUDSmWKfj8PT4kT5IEBW5yiz0G+JJZLNl4T/0fDTwLqV+h9JWaYwMeKqHIxtAU20xrwKmMfT1OWjvLPA0F8QBHjkmpVVk3NbbIsEUGT0k0glsVvhagOqzpvw08t/b103bP0CjrhBSD2KcTduKjzSJTtPE7/35JZx51oGOSgmu3vyz55RtNuZUY6n4sHSSuD4Z50NnWwuckoz5aTLLM9/jQgRcm1SsS10HqkgYG7DPKBlsM04Okg9iA1tDqhaDr20Q41BCNM67Ssa3sujhF9hhgWdH56yy4c1zhCne0gcdZZYbbbCvIaMkolihmev9hrYKtq+zQwjjEiFIePUkwOXLGmcZUtImgpapaNLdVFkySbKDPtnYQk0ACTk48w4IbYFaY4BY3MXPKSZYdg69BgGG23PcEJZZ4ZZOihjhysmRBu8U8tKbMSWFn7btBzEDCLTJukAHRkxsVe5gtJIEmwB5xdy+aBLBE2i2GsQhp2+cS04BMBAw43NTgkySShhPiiAH2OEJSiI1K/R4fu3YMaAXAfBU+403a+J0Z6zqjTLPIAuJabt6DDxjHIt8DSIrUqHoogsgc9pQyv8Uwh/qiNXNNY1taf7XBaplrJF5IcbI+Z0zKOV4lT9Kl3RrNGCTlyHwncqT41/xDx0w1AA1kgSKVkwE3SBRUjlxTL8YWPhdDb33tgRqwGtMvQYERNkiRI06RFpLyvMgUd5h0zNcmAdfnbTPg23wrvvVbBAEZ8sD/DHhAxyttmw5jyfy7inRSaY31Zh5rIKDIPQQwOPPC9+8h4IFVuFNAVqWYm3SArV5kwWuedmb6b+AI+v8XvfTM800ljl1+HMMuNIaAgmMICFhGwBST85jEVAHEeIqOTHEMkTgW6Hj8pSCknzllquwXpbMGurT09yZfNbClDKfewwF9+Y/4OghmTEFrczu3N+gAkBn9nDEb6wi7ygJGwnq+Cnqd+nt6DiZzNb+5Zwio9T4CzDW0/X+J3NcUHSlrSffnyXmeMoDQvNWMXblJRw5qss0z2i5LCNhlnoEGWhmAZCEZJgU2EPAdOh50DSj+MXKv39fv5egwPHVB7eSrdaRfWR/y9HMP/6N2zyCMwjG9ZgPdrP2n6DBS1xDg1fz3TMbq188u6f6h0y9USuc8Ja2dfIh8T2XXz9WzyUnODbS1rYyAm56e34tgukmqq3qNVxBQ/V/qfmagy67TPmssxhid59aYgdZfovqdb/nWVRO/OzyVwVofKsNK+Ip7x9OA8caqk1ptMEI9BqfK4i1m744ukzBXJcgg0q5QDMd4dHmQ3as9DpCaYol8LEqNEGfXSpwv7RKh4gCNegJ235BwATNHbxBgaEHCIQCRQ7bh0ewgC+GXKZCkKyvee9dKa7T9PsKPT3iW7KJb57lfjY0RqJ8QqJ/QwsfTRIyuEnx1eYwVJjhf2hVgqgU7Y1EKJHg792dSWI0GSZSFHTjBCl33halIS3yiI1Q47kXS0gsQ26zL4qYlch2v0eQ4A1kvjaeFhrN3S46B9uxKF6fKAqy08TE4f0iqvEvbf5pw4YQP+YCDaA8+WuzO9JAPD1K/Iimov0pdce/w52G4n7nA2VyJI0LUY3A2W6KrCg/TEpBXTZwmXDzhUWqQJp5jMoaqdeLsMVX9ClqQLJX58/RVTtVhpPyIUwUcOylJQZ67KjxNxVhLnaOaOM1xAn6eflnk1z7gGYxlnxDh0Hng9eaPyfuSbiFYj8JmbMhZUyRLZa6zwKXyQ4L3oJ6WIAqvIWDIWO4J9Sg8vDxELjzEsSdt6aft3msRKlCFgXaRCj34aNNfqrMzFaWJx2LsCpHyMc3gaVLtHL/Dj0iVSkyUHiqD7TTf3fyKkfIjdq/28FxtOarx02ypeqXhwUCjSG/xWBQ//tOcymmbzMYEeEmIR16BJPUrsnhMV584D74Ih/RVyy5MxNc6IdPekr6EhMvUbVyMS0jF8RTsZnqIVA95dqWLGiGq8dMMrh3i0eQMktZ5iVV6c8dkSbMzE+XX6Yskq7tUovJM/Nj7HiDteNwrz/1Ao+ierwvZXfK+JF1P/3888PwV3WKUtEBedKSRETa4pgy5FwPlzFMsQoW3+MyppizYwOSJxjRLaNxQhIpTlJkct0hc5ZId/3n7nJnzS9hDzREeTGG1xBTzzJIjhQQQFqVv6jrR1gjmr2aAyBRLbOvad4NRl6ALAh4aM2lJ1X131LvugH76OHA+bBUiDhhbZpINZTYtMu1ArVll5U2wooCmh/mbNfHw0+aP+EPOk+Umtzig3+ENKbW8usMkLXwu5TxO0a0fD+gjzh4DSh4ZoOgYXS18jgn3gHF+wY1O2I2SQx4wzhEh1hl15CZTT6XI8SHfc0BhhR42GCFFjgR5KvSopdRjZyu1x4ADhCv00CDg/DM95ZvPMs81lW1PsOL6oBQybrv1qZGdTE7qo80CMyxzjS2GWeA6NbpVcSaMOgujbOPnNtcds97smd7lExaZppsaDSRo4havA1LsMJmq2IDlnd+hnzaf85Z7FoxUZJiC4A1y3H2VYBvoaeGqJt82YNL63Cgb3GDO4UHmKTjCuiMwmQ+eyXSnFL8w5maII/d8GNP1C27io+UUewCf8q6zfCso4Uck4/tY2ArgcA7DC2qKo20z9JcaT74RQG+eVxyAM86qA0KWFSG2hrPUTgOx7OdmDDnJMpYo0q0DRULRf2kUv+u0bfxYGIE9OBEF+eyB6FAs204qeUC/a9BJlhlRieU2KSzWepolB3JY9WHAUVak4x/RTYptMmyRV9PDKRYx2WIbnzIFJZXXaKPmeRChwirjSrWUaxMmm+c0+5Msu7CLJHne5RMdsBo0kaQkYzcaO8tQ6GG2HMBpAJl1Q5BJ7DirLKtfm6W02oPf1OqG3VcxsT5UVl23grZ+8sqUlErOnpOH1uh2qUw2SbcqyAQrYpKN+bcNMMKG812Ma2XEPCBMvpvU5KF9+lhi2nkfmqegeRn6aKkUuN/57wVoOqr7HnFS5LimIOehAsI2UA6zyRkdTEPUeEUTbGqEeKDyBXmZFlhhAjOxzJPgBnOkyar3wBXmuKEDw5IDdo0Wb/c0oIi8DSiWejPDgqsI2TUGaPIZbwKwxbDzOXiPjzV4pBvzjhBGnzA/V7nk7rPQyT1GXxhEt0lxRqtWFlIyxw0+4y3yJOljn6bKuS1RyNiXIU2UssF1nFWVDqxjUqEQNRYVmP3Wb0VEVtsD/Fd8XUp7HQFcFuh4zpk/mHltGUDWoiMJbSCgioFsxu4yT7dJBNRIQ+8kAiJMIiBIEJEw+hDQZwEBF8t0GF/Q8VQzhh84cKbrf4oAFb/P133yWnTCNt5HAJkl/TtKB7gxyW1K/72mn8nhvPG4Skei+lt6bSYHhg6485qeu3kOF7Rdb8v1JNN02Gi2UDGfNDueSWDtHO/SAYWqCJPMJKK/oMOi9CPswjG99u/SCRMx2eVdhBVmnnLGHkzped2j49PWC7W7+t2M7vMx0neWtF3Mk+4X+jk13XcA1W06LDhj30W1fU0+/Y5e97+hA6qt4dKG479Ph+l2Xs/XjwBYa3ouZaRPpeiwSM0TLowAoAX93l069zhBh3Fofdij49cXQ4DtaWkPB0COaVt9V8//uwjQbCy/Ap20X+g8SxcREF1ZjKd+nw6gaKy9MRxDkDgdj8sx/ePx9YAM83Q0ANOk3q/pfdPgBaAj9TXQMEGHsWdgYY6/HltD/O6q8dM8DwpI8Cg1yHFCADwQ1cRa5hzz3ixZ0vS3D0SKh8gI4+WyLC5tjIzB8xlYYpq8L8nZtZKz1eh6Jgyvvqqw5pLtPGQlvOKAPrK+NEP3y6yEr/Bf8p/xIHqRA/rcAps4DG5KYms1dZrnYSSpFvEl3r3aw04iyqmi+OMB7PniWsgWpt9W9By3oy85RcCjzKBbvJ9q4YKH4uWyWF/4O9Yq/rYsis4WSjLuFuDXGTnH72w+5CDaI4ymM8L4O7tWYsWboEGA8M9O6CrJQjQXi/HrzEWIisS1Onla5LphWEufo5saz2ZE6lvzROJq4GpBC5MDjSKrYdGqx9kjtlYn0q6wGRNPtZ+lXuHsUolgFp6luniaipEp7bg5ZDV+mggVblT/THyXqmWCVVHi1MJBaAgjLc4eP0+9TCEa4/7lC6RKAnok23l2rkYpXQ2qbKubPS9O1za8lv0VY9knrj/gEybn03SMdd8oQjIUX+BkqUw+LKyyR2OD0AuVaBcDjSJb0XNUJ0+zEb6Iv90m56U4oB+eQTZ8jmSjIN6OUXmYAzT5N5m/QyUsOZ07Y1F6Hx4zx6tcyO5yqiBz8Hi5LAX9WIyGF6D38TEX5ndpeHCqKmAuwMOMLNwGs4e0fOLJGC6f0McB39mUCkbb7+NhYgh/u82WN8zzFFCSc2nj41eJK66oHixLEMtS+CXWEudIlEvU6CYfHqSFj72YJCT3Fo/pysKjzCBEvw62hwsnLEWvMrh5SD48yKZPfJ8OvD6eXezCpwvVy7lHvJb9FXjC3uyrlvnO0kO2whfY90kK8jRLHMfg4uYOXQX42RuvkPNSorqpwnMtPNUvfDPDz1+17QKPmOSOSyGWOXMPq4xzTQMnjGxhc/4a3XzGWywxraBZwq11/LTJqwWPscmMhfRjPiBHijlusK9rbmF+1RhhHQuEzJPEAh4MpLX14zirxCk6VdAcN7jFTQJaYDDvsBdDPGzdO8kdBzKuKinCAhiLqqKz9aX5pfcoGSVFznmvGcA/rJQPI/oMs4ml49bodqo1UwUOUKQHkbneYZIZbtOD+LWFqJFQ1p3ZDpnllcnkP+dNDTTYJ0Gez3mLdUaw8AgDJQuIH2YLn6SU67pwhHX2FTj9mPccg26EDSycQtZ0DZUZe5gv+h5x1hlRS6p7iI3ZeadKNGaYEFwO8SvRpYEEVZgqy8JKjETUg0g8rQ0sNMLwgQANcpxRIE0yEabVA85CVEzaa953hpXYcTYYYZNhMmySJc2XzPIx7zHDggOSfbT5Eb9LhQgj6ttuFk3XWaBA0rH6DE9oK4nE7nWGLf2/BKgWnMx5kwKSBLzAjLOjahLgC25i4R6mIjugnyIDrt+/mDuwxDQ/5gMHlBpTMkRN3mN0Y36VRsKqEFGfzLaT/QKaxOw5FdswW0ypP1+cIjnOOHVk9AV59X9q+8ZSbmXRL5rtS6q5Nt25SfcCNFjmGuIJMEmNbjYYJccZlpXlY0hzjjOY/9kWGSzueZ8+Lmk4RIAmD9S88oA+GgQcMgvwPn/qIrxXGSdO0Q2YJhs0o+IsaWfSKfi2GPlb/HU3NaZYcp5/YiTZ42imIWp6s2SQNIR3hgUkZnlZgagpLI7ZHiAbGI3dJ4NCHjFRzDjPABuoG3iO8WhodYCm0rXPu87bxwEbqgVPKbxmiLF5piVeAEJti1Chh4obqFe5RL9SRBMUHPIs9yzjgMmC9gEbiM4oV6ubmqtm2ABuwJc9BDag1uh2Jq0pcgwomzJJQbmFDZf4Y76HWdLc4iaAkw0f0M8wmywx7fzxWkis9ABFFpl2lO8EBQbYY5R19eQT75MU265/WP8y2vIiU9zmOu/xMXmSWFKR9SVjWRrQaqnCprU3Wrw9Ez7aznsBcNT0Nn4Xb97HPitMcJsZ+jlw/bxCj/Zpv7svZqJraYJ+2g7INml8WqW5+/SxyjhFBjAJuZ82UywyzKbrh0Z7t+djkmXmmXUU8wP6XJpxiBqbDLvjmZfEX4ttDFnk/wwBFczry4As6MgiC3D8DAGc1hDA5S4d6aEBR1cQNlyDTjKuMuacHHIBAQ+u0wFaGgigdh4BGVpAEZ4ZiBdDwIlZPc9eOl5o5ktmwQotRHJ4HgEUexEgxBhlCwgr0TzrMnSANWP9PXihjQwQMv/XSwi44kdAGx8dnzyV1JGTNjo2rzrz0rtPJzziHTqgl8kqZxDAcRYJxTAgT4M4nt2j43MW1Pa8Rwc0MkZfHgFy/PqZBgJCNvRagwgb754e77peS1LvYZFOMIkBo9Y+qRf+ziD325h0V7XNynpNxuI0lpyGduDT7xhgt4YAV+qpd7xNx2/xIR2m4E/1uG/QAbWWEBnyxReOZfekoP9egNq8Xu/Sf3RtDTrBEL/Qc7mr7X9FvrP2v0MSmq3fBfUefkAH/DNmXosOGHpe2ySH8/cjRscDsUfv1Xn9zP9R9w0dubWBxhb0YT5+S3qetr/v0gECDdRGr+dTOoCiPZcmpf8lnYAaA/eWZD/PC3SehW/z1hSGV7h4wn4s6Nj4lWiQcPmESLlOlvMEaDDOKgny9OaOmWYJTwGfroYwOo5jknD7MDHE49ggb6/9GWPZJzyPw8u5e3yn8JDnYYhwyFL4JTfXIAa04Tu5h9QI8fDyEGIMv8Ef8YesMEFf44CzmyV+mXmJh5khDrw+fK0TWj4YYd0BcjZP2h3rgThUz592v5N5XzfJdp7Z0ldczO7wG7m7aqcRYLY9z9NEjPoVeDoVYzl6hSxpfp0QVpOfNqfuwYXNXZ7Fu3iekP038GghPne3uQ5IYEhftcyzi13E2ePC3V3wC0A0+LNDcqQELKyiTK8ATzMxjj1ZcPhpC+iyVmcwd0hv7lgX73uMlx4xU7pLqHrCS9k1IuU6W2Sop3BswBrdvLH5pZPBV3wRvuAmm7Eh1hkhUD9h3pulQFJkzdU6zWAXjxKDshhtt6El15cp7TDdWCJVKom8L/aSY3HFywLMXiutMdrYEEaa2VW0JDjjuR++So3xq8tXaKi9zVfpMV00bbIYu+KKohEqPEwN0Zs/Jpw7YbT0hB973yNOkXXfKOnqE6ZL91i7fI4mAQ68PiLlY1LkeJ7CzZtCjRoXcuJ5+HQsxijrjuW2TYpm8DSDWfHcKzIAYfgPs69RCfdQTYhUO+uJx1dbQ6qawdP0/vIYyvD2/T8Dv0jCfa02Wc7TfXhMA4+9mAR5gMi7DWy9XHgEfpHMjrDBcPkJ/rbc/wv3dzkkwkDpkEeXB6mHhbHZxsfO1Sg7qShUhen3NB2TuWwZNyc0AsK+r4++8iHXSms8TA3xNB1jLXGO/lKdYEn6dbcuhNmU9UnXM2WaRmVOv8IEc9ygnoH12Dn6OCD47P9/Q9J/m1uUMlnSfMabbg1nrCazafqEdx0BIs4e27oOM7sek/glyat33ZeIHFZSoYrEGWGdIyVeRJCUVwMKxb9ugCYeL4Y/XtdgoG1SzhtvkWk2GCGj6wADGo21ZOdv6/wIFRdQaOw3A54TShgJKINOQJCGU7R1c8QWGWaZl8AftfuxYIgCCaZYVMKDJLNaiq8RG2w9aOm9Ip/Pc15JFodEHIh1RLfKi0UVZ+w+W88YUGRtNcwW4q8u68ANRgApIJmPOpgSS1hiZsX1Hh9jfunyHSPwBLAoBAOvbI2+oX53JhU2IMx85i2w0aOh6sg+B9Z+n39LkQHGWaWNj1XGOaLbrQNfDCs1/78cZ/AjHn5psrzHx2TYYoQNlpjWNWLcsdDs/lpqa0jX+XmS/DF/4ABpH21nCZUjxS1eJ0WO9/lTanSzwhUeqLGZ9cU+VdglKChs6WeBGVr4GFWlmHnz9bHvPBrb+OnnwKkLrR92U+OM9t8CCSwZ2hScRjj7nDdpKsBrnvSjrCsWIs+dnFfeEXBEbtyNpQsvMcUeA67IcklBcSN6CZDd0md1wN3zPr2vf8r7/Cnf+0uNJ98IoNeloJTQDps6eGw6SaRpvwH62Mej4Rp3kmUOsZABSXmZYpENRp1fnOi89xxTzlDMCVb4A/6YKRaRVNV+R7E3euY+Yqw5xSJFPQdL+gFUNz0MwMe8h6X6GFvsAZfYp8+92AzkMpahSFVFKy4U0gHmeBWLkV5hQiYGSBz0LPM80FTTRaYchdVYhotMOdS3QYA4ezSVRDvHDRaZZpxVLO3FOkLH+yBAiJoOPjnXSZoE2NeBIkGecVbd4AzwBTcxX70a3RQZIEUOP6KBt/OxFNYsad5UGrixEiVg5DpJCjwmzSER7jDpQlCynKdInCWmHTpu6cgmpU2Rc8xCEMZnH/usMo6FOqTJ8iafuxh1M+gM0HThE1bpyJKmSYB1RiiQdOEWKXIavS2T8D01qRXfxj2Vjp4hoD6Glpq8roN4E088SbSP9nNAhi3HYrOXisi7467vZdgiQQEJnijyQM8hT9KFgxzQxx2lltv5meR3i2H+Cf/c+VQASq/voY99jgjxJp/TSR5qu2qa6fxrhJjjBuZZtE2KKRaJs0dC/QTiFIlQYYbbrk+Mqwmpp2zHVcZ5nz91bFJLoBpmk00NhzFAUXw3Dr+J4eev3rYN+FXqZxJa6ARkGIMKoAhdJqV8lY6k0sAVk+uZz53JH6f0s0E6rL4xBPi6jyy0zNfsjxBw4QouPbU3g4BMth/07xIdr7J/hzCQqgjgY1X8PB3GoYF4BvxdQcCz30eAqGU6jLiqts0aPP+XdEASEHAmr98tAv9cr+NTPYYGU/B35Zy7rsu1FRf5uneZSVSrsp9nf0SHmWaAoDGqCgh4dBl67bgW9DCj52WAWYmODDih+zqPAFEmpa3r9ZpP25LeD79e21U9ryQCLOq+QgY2WtCJ4d5+BKwyyagxPc3zLUqHSTmjbR/Va0zpMUzGqyEYXfZ5k616+lnzffuXCFBpgG9SP/OGnr9Jlws4ALNlsmRjTVrIxiyddN2qXsdlOr59wJj15TbO58uxOM1jcRsBBNHPGuNvXvdt99La757+iet9K9EBGaN0wmF+ovuM02GQTtKRhfuRZ8eA9beRPpLV9pzRa7L2tv4fRFJ69ZjPDUDN4eTop9LAKf5abEeEIAsPtPC3ziixtTp/nrjKRvQCA+xxvrRLljQv3V+jlA7io80pZRc/Skjabdc2+NuyGApxRD0lDJ/N2BA7qSjP4l38IvYyA6VDJtorwmbxJSEFx73wKDXIRGOFiL6Hfrf9I36PH0hhy++DMHx38ytCHHG2UCK4CUc9XWRJs0ec72w+ZJVLGvTW4s/TV9nyhkmUS0yV75Iq71IhQqR8zErsIs9SXeykomo9c8Qd3ySpUolaWBhnS0w5mU6wiiSaKju7994x+ViUvJdgunSP8eoaeZ8UTBs+j4FGkbb/NL0Pj7m4sMPa1XOU3g6yzDVIwkRDfKFAfIdiuTpnCyXa/o7pd5Y0O2MC5jxLdXG9/BVFBvgk9hqbsSFysRhP0zEKUQGsVsJXyHtSbB2vrsk4HpS020hb/JQ9mmTY4iDaw9uFPxOLk54uFsIv0314zIXCLpdYpeKLUNex/1QRwssCng7mxJu67ffRWzzmICry54YHvtYJIWrspnt4lBnkl5mXAMjFYkyU13i5cA/ztjZZXqa08wITSgriG4yym5JghlM5eJdPGcqWmSxLSs6pqqgfAjRJlUpUol3kSbAZGyJWqPNa7leEyyfQkGCQbmp8d/4rgjY+I+dKVcJfxgpPuJ+4QJ4k87xCzQvR8AKMlMW/LmhFKeiw8T1hUoKkw46zSle1k24aqp4wmDskVBX5dPX8aRnTNOinRjddJcjHojQIcP/yBdLtLI9jg2wwSiXcw7pvlA21cRm6X4agsCXj1RJtfJSmgow3VrGAuGE2ubC2C8BerIcD+h3wdKoO1cRplpmkiccMC/z01d+kSJy19DmOerqgITZFN5hjhtt4DQniAFg+Yz4F3+7tDtdcamiTAB/xPltkeDFYwZhpWdLM8apb49QIscIE3RyR44xKXmsUSLDCBA08ZwsV4dCtf83/fYpFsqQ5IoT5m4n3/B4jrLt1GSDeiDQZ0AAOI3hUiGDpqCbTvcGcO38D8Aw8txACk6ua8sgCQIS1F1cv9x63Vljguq7z+wnQ5IA+tRwS9lxKQUn7t/mm3eAXHNGNjxZF4vhoO4aijxY1tQnqY98RZQI06aFCnoQjnpiPm8mWLWAERGJrKjuQ9dSIprsaaLfElFvHfsFNalrU+Yy3yHGGaRYdo85slIrEGVXv9BfXYIuaJGv3pYWP69x23zOvuz0GHOi0zCQ/5PuO3GEJtrYWNbnzBPeYZJmMejeuM+pISQWStBQ7mGKRcVbppsZtrjusQaSy3bTw8RlvOj/2DFsAjngiZI8MN5jD/OatsGT+f33sO/A5rox5k3LbtR4SYV799gokmWWet/hc8QkJUTU7KguGsTRnw3Yu8cABeUZOypLmB/we5ncYUJDU+rp40aeUCCbrdsFQDpGQDbk/C8zgU9BUMh+kHNIgoFLrA9fWS0xhdmdGHOrmiBlu85qGlv5Fm///k0HoL9rilFhgysk7l9QZe5uUC7fwaGr6q0eFAOf1BmwwwgQr3GES0xXnSHGDOX0g5SH0KZhiSSoJ8nzE+4yw7gwr02S5zXUsPVaosZLuZCac1kEkmSTDKOtUiDhKsMlBbzPD9/jQSTol/CChdOBtZpnngH62yDDHDd7lE2rameeZ5QGX9EHZdLRfQ4W7OSLzAuAmhpCSAmxVB+iwuD7jTQeqxZGQENOPGxtwi2GmWGKYLVdBMW9B8+GzNjKPtRwpVpjgXT7BTC0t2ts63xbDJMjTQ0V9/gSwtcTWDUb1RXFegc5+bjCnkmp5CEXGKgj+BCusqxzamJUWdpLlPBk2tSIScFTyA/qdjKOtHb9GN3O8isVW28tEfhdyDMca3Zgv4xYZ3uIzujlysuEKET7jLdffzODUTF8P6HN+BZYQbDHoG8qcO6Kbx6TJkSKhALbFfWdJM8UiewyQoIDJr/MkGGGdPg6wqHUfLUyePMNtisQ5Q45XmHc07xQ59pXubWC5DW4jbDDHq7zLJ441KZr9HvcCtkhtT48p0PIqS0xTIMkhESyZd1wjys1UtEKEH/G7Ltlojzj9HDDPrHv5jSjD0fq2jA9FPQczbPuWb/3wX+SR0XYH2IfjMnSBAAIB4A7wG8AeYpD/7xDQIwQ0EXafscVOAyuyH1r6+TU6oOCC/u0HNoABYF1/X9LPV4H/h/69pefwJeL3dxdZSJoH8xawqsf7Uo8fo8NaKiNgyoke0wNuAecQgGMV+NUL7WEJh90IqBFAFjC7CFDTpJNw+xkwqO1k5adf0fGAO9bP+fT3Y3RApCrwSM9r9YXr+7V+9v+AAC//BQKq9uv+j3R//XQSc6vAE+T+den+P33h/O/qPg38GtZrPNHrqeu5qgcUl3RfFUQiu4oAOkfahj/Wf9t1/jfIfTz/QnuGgecI+6xf788CsgC8q+c5oMc1Fssz/c5PkFCHlO5vDfgO0q8GtB2WtL0qwJ/ov0e0HT5F+mLshf2vI/3Xr+cX0usu6c/XgLPIvT2tx1/R4zSQftYNzOl1fkSHbfgL4AIdP0YD+7r12nf1uCf6p6b/n9P780R//kT30ULu+YJeb0E/91D3X9E2KCH9eFnP2dN7061t/EQ/t67tENN9NXU/Dd2/nZdJzwf0GAaUJuhIer/Nmw8n75xsLBOonzBWfQJBkQaCJMWeqkJ3rAaehDaEvBqlmaArpK4yTvZyjZnSXbfroLafF2sSaVQI5054zfsVz5JdtHw+Lq894ldjV7ifuMDl+4+40NiFBoRbh0QSh9TCQafM6H187DzDlpjibxZ+RnVMklqnG0s0vADPznfx26Wfsh47xzYpfiN7l2epLgErgN7Hx8zyK+ZjLxGnSMvnI0CD2FKdylQPIY44VQB/tE3SV+B7fMhg4ZC1xDn+PHFV2ASJMkFlBg8tlKlOVjiVg/xVATXb+Ag1ajQ8YfqHg3Uo4eYyo6xDLzS8AAONIg8vD7HBKBupUd7kM/du9mgK0Feo8zAxxLJvknfbP0e8nUZINgqEqidsxoYYaBfZ94l/shURD8JRhq6UOfUYArEmkfIxv1G/y04qqiqEADyGiFenEI2RpEDbLwnHsc06OxmP1fCYGI5frNCbO6arCqVUUJhE5WN+nbjId3IPGXx2yO7lHgZKhxyEZR470CgS8o7oqsJc9AbD0S1mSncZLBxSTMR5r/ExW96wO//e4jGU4PgMxKNFmXeOiTR78CeHMAZdS9D87ml+np5ybKRTZeitH9NOiZk5JVxoznEMGj6PwbVDJ8uvnj/NVPUrgmXx5TsixK8Tsg6a5A4SRNIilqtDFrypJnjiCRjiiPHJVfJegovZHcayT3iajomEq/SQ47CAQACbMVFvxNkj2SjQ9vuojkH+qqxRplmCqoAEl8oPKURjLPhmmGDFrYEALrHK2UKJY1Ho8SWzTIaXibQrtHw+sp6EIgxmBQT/amyMCBU+5APe5ROGCmVnodD2+3iFeY4IkSiXWIhGXNF+7OETCMuacKK9QsUX4ZPYa/yNzZ+zlkni5+SbGX/+im27DHKs66EmHtdZoI2fSZY50vTVBWYYYI9xHmioQ1Ln+mfIk2ScVbYYZoMR9hjgA37smEx5EmpZdIURNsiT+JpdVIQKFoQoQX9iu1NUaeYKEw4sMnsjsxCStZFYDMn8fwALXAio0sqCDAI0nDTW7I1ySJDiOqMUSLj1WoptkhRYYIZJ7jh7J7NaMoLLFsNkSfMunzim9CbDjOp1/pDvk2GLN/n8a7JgW8cCiHeerGGLar3kKRPSwEKTc4pVU8Oxyzpr/y9Z4QoDFFnguvtenCLrjGq7JxllgwVVcdk98Gg6H/wBlTJbEMU4q6xrGEWEQ/rYd8Wrceao0c0y19gmxSe8wzgPOIP4/33I93iFeXKcceEK7/IJJo+XcIxu2vi5xU1+jx8o2NTjGJYptlVKKp5/It2V9OUtTewVG7SCI29lSdPNEXeY5EjxA4B3+EQk/oppmAVbG3knCqnqiH4OXBjMMpMOEF3hClnOM8Ae11nAj6gJ7zCpxBmPbn3nzTPLTb5w2IWd6x4DDjwDWGGCUdYR+yjPMfdEIXqNf8y/cIxMy2I4oM/1fVPpbTCqqdBtfsDv8X1+SFPJTvaOTpEjT5JpFllhgkMibj+WaG1ho56qK2V9L/dgR4lDf9H2jTD0CiSYYIUNRlw89BlyLlbYaLaCOu/x23zEK8yTIsci00ptLDi54QPG2dJE1xBHzOpnZ/kS0/mDSCFMD20o6wIzivo2nO55kmUsEAHMA0+02DZgvMsnjLDuWF3DbLnOmSar6MAxqAABAABJREFUyPQMEQ6102Sc70CSvGP9BWgyybIz0/TRdpHFo6xziVWS5LFkmgJJpYXuM8GKS97NkaKmDCeQF7OFIxjt1kILzKBxmUmterTYp+9rWvAATdeRQtQwb8FR1h1TMETNATwtpfTmSZIlrUwyQaFNqrzBiDOZfJF551dW2J5OxiXGXMIS1hlhlA3WGaWBh/n6bTDqqjx5EuwxgJmrWvBFljRv8ZmblJgRMcA6o6wy7hDxbgUxzXMgRY5xVtlDTDg77S65SDlSWHKNp1TtdUZ1wAzwEb/twDNjQSZUJNvHAaNsuOTblr5YjR1p0tsDlbYCTLPkWKhWLbMKiSWcSe8POT8BAxtNmmwVOwu7MB/JGt1sqZ9elvPcZsaxPYW9uen6t7AMj4izp56SG445K14Lo7zPnwJSHbIXRA1J1zXgcJNh9lQOsMEIWwyzyiVlYvZg6dF/bTaTaTYRL6RxBLDpB4aAa3RCMCII6HFChzHV0p/V6SR2dun3k/rZFjKitxFw4TQCtJxGWEcnuu8IMI6AEi+yu7oQIGRHP1vWc44j4MO4ft7m2r26DzO2j+q1ROiw30DAi7xe+2m9hgouMZde/fk5bZMdBNw6o8cGAWfO0fFZO9brrOh523UN6f76ERDwnB73GBil412X0M8n9FgX9d9ddJJojUnWjwB1XXps/wvtm0KYahU9b79+7xSd9NLndJJtI9oexhSL0glN2UPAyx0954j+/oiOn14OAbZe07awazeg97Tet6bep2d6PDVuZ1B/vq6f3dPzHUIAtyYd4Dij3zun343TAUMjdPrXgN7TiLbViLbDAAKS5bT97L6fRvpZEGGwGQP0QI9joHANAcBCep17eu5xBBhMa9tE6YCxAf23hV6k9JhXXzjXgB77iA4IPUIH/Izq7+0ZWNfv2rG76QBxRaBPz91HB8AL0ZG/mxS8qedt7JuQHtfCPL6R8upfre3xiPgd+1rqTxbt4Vmyi+NeYaH15o+JNARNfWltDfyQ9+Td11+qk64KgmpziM3YEGO5JwzmxC+NqrCkQtUTdjJRqvHT7PniRMp18aljj8vZRwImvwAM58JDRMp15w90HOuc883GLapjp8l5wqKf92ZlHuGLkIvFSDWEBUAOAvVjfK02vcVjfp25SC46qH44KfztNrHNOsRx88bjM9B9eMwBfQwWDjn20KKe2IkEC/BsugvGoDp5mooXYedqVBj5pTJz3KDt98n1IczDndmoFDTLu4xUH1KNn2aJaULVEy7e32GYLZ23CPg00C5ydq1Ef6nOf0i8hgXDVaJdpMs7vN/4iHD5hFMtlVyWj7mnixIQdUKROKW0JLpGqofsxeS+Gisw0q5AClaiIn2Ns0ctHKSu41KkUSHFNn2NAz72vcfTdIx6VACwA/rYi/XwnYJq7cswuHYowRnVh/iQvuS1G9SjuIXmndgYbMqcO1w8YbixRYRDcr6UMNdaIt82dsYq4zSDXZCR+//wjSHCvzzBT9uxd2hJoEaTAHsM8DwBD8ckXKMZPM1g7pDncTi+Lj/PemnZJ+IdeTZXYp8+vHaDTHtLwio263yVGuO/nv0tKl6Ep4kYA8bG8aZkPlcH1oQpNFX9ilMFKERjbGr4WLJRYGztCf2lOlveMFlfmponhIkJVuimxsOrElDSdRfO/qzkmFoTrBAvl5ku3ZN7mpN9V6JBx5jqLR6zzDVdNPdQSgfZSUdJsU2qusM/af9zAHYTPTzNxOTe149p4+fsmgSkfFD6iSuuE8WxVb/w3STSrjDCOscxSDVyXNna+gZGn796W5koeZKq4Opjhttuvr7HgFPsGFiR0VRNW5fMMs88swqkCGPMfMMDSrI4opsD+p2izZhyDxh3irF5XhGrAQ7Yp+9ryi5TGQnpQXzithhmm5QKVY80FGXfsYuWmHIEhlUu8SWzANzkCxm3NdQiS5pxVjlDjh/zPeeBD6LGMpKEJY+aIshse5qqVNsTLikDFB0g9S6fYvZVZg+0p1ZHrzBPmiwf8GPGWdVV7jjdqjQSlWDAWR3tEWeTYQq6/rVrW+GKrpMfYAms1r7m87bFMCtM8DHvuSBLCzqxYJGPeY8VJpjnFe4xQZ6kI7mIhHWTbSXcGBgZ4og+9nmFecwayXCIKZa4xrJjxJl9hYFlBQUYfbQYYQOzRGvjZ4CiSoalbbPqk2Meb+ZhuKdrfAtVseKC5QlcYtUxIkXFdcQR3YywzgwLJJTsZG1qQZy2prZ1f54Eo2wgMu0CKbbJk6SJh6c4hrHrjHy0wSh97JMn6VKDzVPxNtcdLmJptiCFRmHy3SPOHvu6rpV1u58icYevtBTgTupEUJh1RW7yBctMsq7WZj5aTh1p9mwJCpwhp9FbNQULRV1o0mcB+w4docdIXX/R9o0AescEMHNJoR8GXKP5aJGgQIGEQ4FtcHkxCdMkl30caKqqMKqMurupyT7G+DMdttE0a3TzEe/rQHBES1l47/Gx8zYx+Z8EMcR5XWmNIkMtOMAqzp6LZxbwrUWRAWaZd9pn0/Cbiehjvemmbb/DpBu49xhwg5OlADd1kAMU6T7vgA/AoefbpGTio6sfA7yMCmvn+y6fEGePeWYxbwRDzC1Yw6q45uOW4wx7ikYb0l5DQhJuM8MKE1SIaHiFUOtXmGCTDGmyTOlkOMU2b/IZN5gjQYF1Rjmi21GS+5UhBwKOikS5xbKmCnlIcqzQxgNcY5lJ7jhGWTc1bc+Ee+AybDFA0SXUiK/BJmbUacCapRJ36wOyRcaBpquM0yDAJHeYYcEl9Rhy38e+68ev84XzFBBHyKbTv19nAdP9p8ipxn+bYTaZZNnRbc3k09JqAzQci9XSaA2EtnM8UMjRwMYiA1hQjP150QhXKlznmWGBaywzyroDAc301aoAHg2+ZJZVLrkKmhl+GogqIOEhc9wgQIPv80MHmoIYpb7FZ0yz5PqJ9EnxdpQBdYbbXHcTkG/9tossHBsI2GAMnZT+7DEyEheBCQRc6abD1qrQYWBF6PjZhRAgpEnH2L+KAAstBBDx0ZFThvg6GHGODpBXRAALAzK+gwBRxoQaQsAO9Hwqen6DdADFqO7/RM/FABKTOBp4N6Tn+4wOQOfptRmIeKznN6TnZ/52O/q5Xr1u9BwMwHmm+95/4Xz7QRn/sq8GHWDNvAs9OmDQkP6p0mFWxfX/MT2HJ/qdc9pmZuIdQNh5p+kAiad0H3t6XGsjO2ZUfzeA9AUDRe3eVvRn5sVo7DZjAgZwybhOhmt9qInc9ye6nzodYNHax0/HTD6M3NdTdIIbqrq/ih4v9cJ9aeh++hGwakj/PY6ApE3Q4rnc65Du28DKIl8HR0f0u0EEgO2lA3Z5+rl9Pccz+v8TvVbvhfaJ0QE3I3TAO2M9RvR8MnRSebtxyY4MISCdBS9EkXtt9y7xQlsM6v6G9XgV/VyEzvPb1Ptk/dSeh8oLnx/kW7+lS0Ui1UPCCyekq084oI953yxb0XP88upLwpi7d8Kj9CCEBaBKVXcYKzxhPxYkWJUCbIptZsu/4mJuB4DjsLJCYrDim+DUYwkjyHppPuQD/n30b0NKGEFr6XOUZoLsZno4vgy05R1fiQZFDlut429LGAZA+LFUMMzHx4CQs5slgd088T0qzQaphHvwtU54mohRI8SF3C5x9vBoSAhFC56mY9ToFgZ99BW6SpBq5wRgeiZzZI8moWodPPGjex6Gmheir1omXi4T4ojN2BBTLFHxRZwUdTl6hVC7RrxcpmsTgjmRe/poSwAHMocdoCjzvqp4GpbGguzHgtys/pyz90t4jSZ5X5KDaA/h3Am/TlyklAjSIEDLBzfac65AP156RA8VYrk61ZnTZMPniFQPiZSPdS7m0X14TCkVZIsM8XKZJh6xbJ2gpnqvegJcbHnDXGdBCswtuacidWpxbPLTBDwdi7Gb6iFYxS2ae9eOWQ0LYGiWH6QEINpN9RDePKGvfCgsoqB4xlHCeURNcofe/DHHCbkPAFyRheyFzV3HAtoKX2CyscwAe9yJjRHhkJ8nXmbRm+Kr1BgrsYu0/WAhfou+aY7D4mX3LNnFbPlX9K4J8Bssw88yrygr646TX17OPnJriuHGFs8udkFCFo7BEhKeRKizPvAiEBa5soGcpsS4uCnPyAPG6WscUJ8CLqLzVlGadJXg1DJ85+5D6mOQKJcIVetMssxEeY1fJy66+fTFn+4oi0uCDFbCV+gtHjNSfUiWNGfvl4iUj8mFhxjcPOQ4IeDdqSLOb9rktunqE8Z5QPfhMZnSDl0lyHkpjq1A8y3fplnS8aTHKYvMH9zWB8LW6WeeV5y9kSlmzMbqBnOMqwnrLW5yiEj83uNjB/B9wjuYN5+x7CZYoYHHH/DHTLCiRXdZFxh4tM4Iy0yypPZOZhfUQ4UthrnFTQV+xAPS9m2yzGmWMDmp+MJv08bvQDQ7n1nmmUCsEcyjzNJT94jzOW/hp+0kmx4NbnKLdUbIKABiYUUSmLGp5J0Gk9yhjU9DHEMK0AywybDiEULo8CvIaBZJgPreCdDVTc0xCJMUGKDIOiOMsO6k0KZ+u8Xrrv1MEXUGiVF4kaEWZ49RDYGUcUiUfHZeIM/qO3zCsPoizjPLZ7zpLMciVHSs3KRGiBkWHCEqRc6RfozAY+SkASSA1DAIHy0tJUmYyO/wI1LkeEdl30eE2FfcxTz5RljHT5tNJAF3T7GRNFkWmSJBgVvcpEicFj7muEFeQyri7InlgraHqTdt/TvNokvDHVdLKwvSEE/JogtBaeA5IokBbwFdsxpJaplJpljigD4ybOHHQljW2ZbyhCPdAI6YBpAn4dpJpO6SZJ8gT0NB8TZ+rrPAFIuEqHGDOQbYc2tpAeIlNPOIEF8yqxL0ogO5zev+SIH9JgH3zP1F2zdSEx5ljV5OkXXu5sIos1CMNj4useo8wAx5NX19hQimnS8SZ5pFp1cOqMTWzBybBMiwxTVl3a1ySVlD/Uyx6EARk/d2IxHNlkwLuIRdQchn9SFJuE4PuIH0XT51fnJ7xLFET2F/dTPJMotMqfmmUF3NoFF8+LrpY9+df0s12FZ5sBes0WlHWWeLYQcOCtizT1GrN3mSangaIs4DDugjTxLzl1vmGhEqZNh0MlVL3bnJLSz+W1JaJfK8H4mvNoAwRY64UoRD1FhnlBrdjLLBBCuus9rLIkuaGaXFCour5ai2bXwsM0mApvvMFhn9nZ8NRl0FQRKMBmjjZ5R1IvoCMampDe597JMlzXVu08RzPhFWQTYzU9O2txHPAUvx/YR3yZHiJrewIBKjvGZVOmveeFtkiFBRlmkDieDed23to+XSoIxFl1CzU3t5JSlwiVVuM+NeOMbCtOpEh9ItUo/3+BgLszAPR6PBG5C4zDVS5Pgh3yfOHgvMuD5sg50Mkkvq41Nzk2F7EZm8XTwO04gPn7D/zI9giSnnZ2mpvvaCtQmIpStb37CX47ImRQdouvvzbd/+V0noNWaOMdnUxJufAP8ICQb4v+vP0sii/3+EyPoe6mf+JeIZ9gzx7zJ/OzPyTyHecOfpBCwsIn5nBf3ZfcS3zPY3jIA803TCBSw8w5iBY3QCEJL6efM48/RPEJFhxhE2njHcMoik0sDGOALSfAT8TTp+fcqY4GU6qb9TetzLiOTYAiBMVvtd/a7JXF9F5LwW0GD+gyb7hA5rK/4f7e9TPV/zazP5chsBzy7qPkE83Hx6fujxzOvO/A4f0klZbWs75JA37jLiqWZMwSX9/Du6jzTi3XYZ+J/TScW1tjKPttwL12mhHDlt5xSdYIckHQ+6K3q8x3TYl8uIBDhPB7h8Vdvgx0jf/GO9F7+p5/AyIoO1oIgPkP5k3nsW3FLTc1gD/sf6ncd6H/572u7WTtZv/Xru5mFowRgJOomxRf1Zn/6sR6/vVTr9wYDKMW2nFJ0AkxbSxyb1nM1n0sJE5ul4HMbg+T+BUz+jkwhs+0hqO20C/32kX1vAy106cu0q0gdKdPz5qnpf0/K9Zwn43/yUb/V2qibG/pyX1NAADW405tjyxOvp2fkueu8d49HkOAxd9yE3O8iF8i6Rcp1SIoiPlsga/VBNnSZQP+Eg2oOPFj9N/KYYYCegv30APgnc+mf8Id/3/4lbPBijrRINEqHurD5C1GgGuwh+dMyzv9tFzpficvCRsOCqhwSzgFdnLRNiJxPl4v0diMGvExI6EaLGh+G/ze+U/4SzjRLPkl0UGRAv55akql64v8vO5Sg+WhKekJCgg51UlDluIIbccRLhPG1/U7z0gFqsm4GGpJ+aP26SvPy+JUmpESrUfCEqUR9nKUEQgksw+eod6XsepEolTj0uUb1ymvoYGnDVkoW2/zTPEycceH2MFZ7wLN4FYSnIbas1R1cDNqIphquP2ApfoBLt4kJul+dBAZYCNNgKX2C88QiAsbUnVM+fJrZWZ2psEX9bQNl4b5mjVBe9D49dQTBJnlSpxEZslEo0yAF9jG0+oZoS7kEpExR5VOOAZW+SSiLPQLvIsG+L4zO4NUaBBJfKwuireLK4G+y9y0b0Aj5a1K+KPPb4zDGjpSecKgAxkfi28TP47NBJ5+y4abIQFmC37fdxqfyQ+ejLtCkw3Vhi3RtxC8RgAcYTa6yGx+hjn64C3B+7QIMAo8EN2ukTlr1JpqJfiU1M9R5eQ+TiAZr8LP2KmxMH6nVy0ThcOeDi0g7HGQ1BUcXHeOkRX8ReoS/6JQcqcR4pP6KrKuEgQ40y26QYYYNw8YS6+ob60i362wcC6GaCxMLiY+mjzWRZzqcSjhCINhipSlv6dElnHuim5niugR0vF+7BIZzywcXqDruZHgdMRc4vk6DANEvspntk/hqWxMpcVJKfh6plQtTYjVoF89u9davtUB8H5EmyyiXVitW0WF/gY97jH/MvnPrH1hEvyk/7kCRwI54IN8jn2l7WUBs0kZCYAOZTdqDrjUOOFPQ5Q45+Dphiya23JIhQgBFTFZmqy45pyqYthjXOr+DGszRZFtSI2G8MXZV8FlQWbM+bAVMgz/My11jmGpMsY5LtChEHLs5wm5ZOziz8okmAI1UsdQI5tqkQ4QGXnNzXngsDgjIqg5R1Wp4aIUc8sPbw0aKND0vYneOG8yeXNdMBq1wSuwNwx/ZoEOLIrZPiFB0ry5KKLeCkh4oLPzTPN1ur2zrMfActDXeYTW4zw00lJsXZo48D7jHhwK8P+LGSofqdQtHYbzlStPCRJss0i2ww8oJsNeMSZC3opECCG8zxr/kHDGvF3GSpq1xinAe08SO2DcJYM8mrhHVsIEnIoqoskHSg3hfcZIIVIlSYYhHzKDRJrYWKbDHspOlmX2BFjqR600tabhyTspsCrkicT3hXLaMK/JDvc4acs31rKEvQiiNGGDIvyiNVzDWVHrPBKDMsKPGm38m/c6S4xCqLTBFRvEtiJAXrKeqzNcEKKbaJs+ewDZOyn30Bi/pPbd8IoLfDEFuq8bGOLKb+I+zTxye8ywQrZElTIMFNbrHKOKOsYzp6o76myJGgwA3msMQaP52Ai4MXtPdNBRFM0pik4FBhMzM0QMaANgOzWohM14BBn0Johppv6wAggGOP4v/iuTfJHddhLYl3mC0CSGKPMbAG1NjRKMHmYXdAv3uQAoreDlB0gKCBPW0dpiXFVqQM4yqHfdEvzs7jgD6+zw+5xU08vQ6TbxoAM8yWq5SYxLWBh5+2uydNAoyzSp6E87CxAdcYWJaeY2DXHpLyYwnChpjH1VRVwh1EminhF9uY54MYesZdBzf/v3FWFawqfg38WuaaG1BqdLu2NZnwe3zspMoSxlDhiG5HG5aEu3UsYUkCHi6RJ8kcN5hlXiQ/HBBihY95j7f4zNGmpdJQBO5wQL9jplrYBchLqq0vYPEM8Dup6iTLHNDvKkcGPpqkdp8+xyhcYMZJpo3pB7i/TVIuXnkRLI57gxEuKe36iBCf86aLHV9lnH/Mv2CeWcQDMKQv/G43ONW0vUQa3mBAKyNbZNhkmGmW2CPumKMmATBWQ4YtFpkGIE+St/iMvIuZ/JZv0whYYGDPp/D8P4dT/xIBpa4ggMasfm4TASjGEJDjx3SSMTWokRzwDqxlzjH2b57IZ9sIsGKyUHSfLT2HxwjgMYMAD3FEurmk+zOg0dhwV/VnhRd+NqV/L+n59cpxj9+GroR+NooAMhaMMKmfm6YDGjXoACZLeu4JBKSxdNGWfq6AAGB5bY+Cfs7Yh+pXxBqd8I9/RCflN0Un/fZjOum+k9omLSThNKv7MiloStvezs1YbOfpADqP9f9VBDitaxsZKHhe2/wXL7TdjLZHUM85rN9F2+wdBGT7GRKOsaY/v6ptVdfPRvV8fqKfa2vbxel4z1nAw4we565+BjpBH+bTl9H9/Eyvd1KPF9X2R49t14Wed1nbKfzC7xa0jf6pnscMHWao9dGf0wG4z+v1xfWYFtABnaCUgv4+hYCdJls2INajAwyGEeD7un73Ih3QdE2v4w06KcIGQBtYfZ1Ov7kCp35JJ2jGgE4DvK0t0N8H6YSP1OkkK8f02NbHr+i/N4G/Bzr//1Zvz0NQjEZpR32kGjlC1RP2Yj2uYLjv6yOS2iVeLlOMRhlKlAUk8cv3QBaElAE/7GXiFDwp/vWX6qRjWQZKhzxNxTibK9Ed3qW/54D/he9/z6kCxMp1Yo06lKF+VRIIQ/4dko0C4eIJpVSQQP0YEtCbO8aXyEIO8ukkKX+O0uUA/nabZDvPvq8PwrCTiPKdzYfsZnpY5RJ/7/6fcHwGnsW72PPJ/AKEVXZECGK4+dvZXAn88OuEWMpMsUimtMMPY39bGGEeHGT6Zf7WztLywT+L/g9VaSKMl71MnJdya3zGm/z+/f+ap5djwsQaE4YecQTA9NF5L+QgHD6BMkRmKqSrT/C1Osy0g1gfCa9E7z1hFQ6Vywz5yzyPSihJHwdshS9wOfeIZ8kufpl6yRXyUuVdHkQvshfr4YgQO2MCMoWDuyIJi0kxsisLzbE2z+NSNDa1yF5M2EqxXB1Se1RTp2l4AfJeH8lGgabnES6ccCad40J2l510lHT1CcVolGSpzKmHdSozETaiFxjhkQBU1bvQFtbceHuVtv80g/cPoQ4Pp4YIxY6wMLehQpn/Jv0GUyzxXNvrFq/zQeknoIzA3uIx1ehpxnlAX/mQreg5UmwzuHnIs/NdUIatzAXHasIP46VHVKJd+FonBKuQCOcJlmA4vEUtHGQ5PEqaLIPzh9y4/CVHPV3UfCE+jr7N6+1btHw+vprS+XJ1h2I4xgF9PI4J8SEbPkeqkSNeF0bpo9SggJC9OE+1+6kLwojKPCFLmpeW16B6DGNwP3GBLGluMEdXQSTDJjsc4SHBLFQzp+m6LDLkPEn6WCeWrfM8DNnoEJnSDo0r4DWg5RNblg9KPyESrRCon9DwhLAxXH1EsAwPU0NYsmqNbuqxMgGatNzg/+3eDolQI0wDj1UuuUTYI0L4aLlUzQriuZUlzSzzCiS96kCjmlrxjLDOKBssMuXm5LY1Vcgvn+9miWln9C+yyAZTLL0AYnQIERayJx58Io08ohtPgSIQ9ugdJgnQoEdlpxaIYSDOJMsOJMywhY8NisRZZZxJ7nBEyEljl5gmzh79HDDOKmmyzHHDjaef8ZYCa5uS2KwmRwb47RFnmUkHgpovup3TOKsO2JtmyYF4n/GWswUzYosEQ8Yd283klBaWYJiG+Iw3OeAmJvPt1uv+iN9mnz7e42M8mg4DkfCOOTYY5TFp9pSg8WJoiZ2nKNSOHKhmNlxvqR9qXr3TjdllRKXHpHmdW7TwqSz4EEtvtTXbJMuEqLnrt5CTS6zygHECNNlghFHW2VdcYo4bDhQe54H2Mc9JR61vmET6Y95jQIMzmwQYYI89Bpy6L0SNBp72cfFkzLBFS8lMlolgSbB5ZVam2JYxUDGGEEf8gN/jH/CvHDOzyAA5zihxSqS6cYqOcDXDbcZ5wCqXEL99adtJllnlEm38LvfAT5sz5JRQJO1nGJVlRyTJqwlX0u1f/ABFbWdtZfJiP20XsHFGj2/4SvQv6Tf/jQB6B/QxhsT+GoW3iccc15ngnmv4UdYx08UATRaZZlQRUDMJNWaeAVR5EmTU4NAYdotME1LwAHBUU4AzCnSFOHL7MP20gVh3mKSNn9f5QgEtwU+LClA08VzH9JDk1FE26GMfSxsy8K6mKLYAiwH9jlCDTX47wQpLGv8NIrEIcUSehKuQeIiZqIA8PqWOdphexvyypFEbfFaYYIpFzBsDRHqywAwBmq6zB2iQJ0kPFSw1d5lJ3uUTPBrsaRDFHgP0aCWjhU/NH1s8YJwEBSr0uEqJnVeDAKNsOLaWgUtNPJVN7zPDbRa4Tj+SGHOb69xgDkujTVKgX+9nHwfOYy+OJCPN8aq7100CzkRWzFOl7YbZdAnINULMM8sUi66tepAgC5OoWpy2PIQCXtpLIE6ReWa5zgIf8GNnRmuD2BbDXOc2BRIkVS5s525A139MK86RYoR1VwkZZd09wBNkkaTgAfrYp0CSB+p/IADvGeeHAR0TWnvhWNCFsV3luexnnAc6WWgzzyzij3eHBWa+Rne3F4il7vhps8KEgo99rDPCJMsO5PbpYGTAufg7HCh7r5+aSuNBJhNiDGro1Ld8+/uIzDCGgAEZOGXg0xgCdvwSASCu0JFNnod6DGpvB4mU63QZuycMFMTnZ2xBXfkNZMro3waexOiw7cYQoC2q/4/C8zE4pSBYdfI04U9PBMipIsy0OB0wyySYm/r9Kzh2Wtc28KqkHLZ84H9f0gH5JQJaTCMgz7QYkXeFoTpzmi1vmO+cf9g5x2U9779Hhyn4GAHDLGQgCs/eEY+e4D0EQLlMJ0HVgJnfwoF3xxlZrD7/p5JkaMBUPaVm+g8R8GYMAUFzut8ZBHQ91PtTl7Z49kEXvb88hvPahnU6gGBDjx2Xdq3PQNDaXAGoegyC83p/3tDvvQi2VekwEK/IMfKxKMnzZZf26cChv0cHLPYDeXh+EVZmLvKdtYeQhd23exhcOoTr8rtTP9d9tOiw/IzVqWy452E4dVX7Vhuevh3j7I9L8tmGHjdIB1i9B0zKudbeP+0WrizpuRXh+H8pRviPMoNc8O3Kvsr6pw2PZge54O3K9Z9HGKYzCMh4Xo91Wdt6jA6j7jzUM9qmZW1TT6SY/jasxi5w+eGjDjvuobZvFMfArKehEhaz/VO/1L6d1ns+qffM7u8bevxNqL+KMLceyH44pCPlNYD7Vb2nyPGPr4rnVrggoEr1u6dh69tvBF8Ln+IEH6lSiYYnQOlg6hCC8NXlMdIIaHXU00WOFPOZWeLs0Z2QRdzQZplGJsDTGQGtLmzuspSZZqKxQi18WhaDsR4O6CMeLTEfFqbTpfJDnifgVBl55mJyr0McsRK+wjCbrKfSXCutcaoFj94Y5MLaLhUvQtgrk64+IViGz1I3eJ1b9D48JhLf5WfpVwSwKUIzE+C13K+op9WTj0MiHDK4ecjTjCS/Zn1pdhIHAjy1pH92NXBzqYu5HZ6mYs62I0mBZKNAxYvQfXhM2w9/WP4/8Xn0NSy0zaeA5zWW+ZPLb8uc1AsxlnsCfkRCagzlKjRiEJzEPbdZ0qT8OQ6UjdXGzxfcZMT/kK6ojAN7MXkuGoqz5EkIo0b79HezX3HcC59G38CLLpFuZyWVNtGHeQA9Sg+q3Eg8uXauRsmR4uW1e1RiwtSy+cJk+Z7z0Au16g7cDxdPCITLsAYXWruAFJXnw69wRDd7sQH+If+WsdwT/kPqNVI9OQZ/cUh9SuTbU+W7HER7KPriXPY9onrlNAf0E+GQCj2kyzs8i3dxRWVcC7E0M6W7zMbmaXgQbMPZ+yU4hPWZEVlIRqPkSUhCa0M8EetjAnCkyTLRXuGnmd/k7cKfiX9fGNL+rMjFc+BLt4ll65Bep8gAQ16ZrmfQ9eyYRlraLlA/phGWhfJvl34q74AZ3Fzr3fYn7Pv6CK+duHd1f88Be744/cEdAS9zMNRbZm3mHMEq9IUPeDQl4Sqx+3USiTwBGgwVyjwaG+Ti0g7VK6cJF2Wf9bT4WTZTHg0tmh8RYjfdw+D9Q9oxP6cKENRiXCETY5xVNmNDXMzuUI+Bv90m5KsRLAsb0nyi+kt1FmJX8cJNzmZL5KN/PQC9IjF68DHBPcweaF39w2VNm2dbGT5LTDl1lM39zV7KZJNFp4Ty8yN+l1G1IAJJY91glAxbzhvOfjfJHZaYdt5wRhAQUoWQUobZdH6SBV07miprmUkHvjXx+JR3GWGDcfVR21NF0RbD5ElqwMIZCiQJ0CTHGXeuZ8iRQhJNxRNugBkWmOOGkkm2SJLnR/yuW5+bQsxUTQaA9vEJ/5bvu9RZ8+KXdaQAYnPcIM4eS0yLxFy96w3gM2/3kH7PCCYgWEcH4GuzxTBnyDGCPMv2c7HKEgBomUnn+w4C6ppvqnkVVhALhTZ+N47cUtbasgaG2jrW1mwCDzUcOG7BG+bP/6LycZ1RJrnjWHmi8CuyyiWgYy1mbLhJltkjznt87NRW+/SxwgR/nx9wh0nXJhV6FEOIu5CPdUYcueVF1Vg3NQfqGYazpV6FgMN05pllkjsvkLP22Sala/M9hysNs4mFSrT1uiRRd9gRYYzpN8EKTX0G5pnVdfMZ/LQ1nbblcAzzF7QE3z4ONBtAWJdz3GCKRQ7o4zPecoSfNj6HBfwBf+yINdukHLFlnlnnB2kMU08JQPa8hDBD8v/09o0Aen7amHzB/ObimtIzwB597OPRZJNhkrrQX2XcURD3iDsgq499xHB/z1HM7cFJksfMRI3dZeaBpnc2lNM8woxGaVJcH21NJfG+Rs/dIuMeOB9tR5+sEOFV5pTZNu4eHkPRLdTA5LE2SHs0tIqScMw480ezQAGhBPcoe0vowgayWLqKgCmjtPARQPwSzBeujY9xVp1cFaSaaFp/64SmxzammLT/DAnyrgoUoeKqPxEq/HvtdDV9GK3iZyzIPEk2GOEdPnHHtYF+ikXMj1ASh/u4xU2RoSAAzzbimWDmrUZvtqARk4SG1MPgdb5wIKslvUpS0x4eTZLKRLN+JIPpGcc8BFxFpZsjlpjiRd86P22n2bfNUuFMMrqqaclNAiQoOCaqyVOtQlVQs1QfbaZZclRgS+tpcOgYmnsMuJARY4+adNXYmiLDFcbish7vBnMUSGg69DbjrLrB3rxY5D5fYlRftELJF7rwCOsUSGImnAbiAY4mPaLVtAbiGWT08lm+pEDCefNJZUja3MJhbBC2VL02Pp4qa/Lbvj2YSPO8N+qqT7VENx5NUrPyUq7Qg/eBtOc6o9x8/wvtFwF3T76MDjMZXYaMsJdj2TpdJmGNw68zF1llnHfbn4jkSl/eReL0UCFZ3SUfHmQgUSRcPuFXv3UFkw1sxEaIZCoii39/xbFc09UnLIVf4gw5LuR2+fOrV5ms3qV5RUy+93xxspnzTLcX2ff1cSG7y49if8tJDtKxLO/GfkoxHCNeLbHyu6IZjVCh+GrcMaD/w6uvuclE/+UDbrTnmPOJVCNOkaFMmZ1ElHlmmWWevmqZTd8wfeEDUmO7NIOn2fPinC/t8kXsFSK/X3HVMR8tR18nKm33WvVX7F7tYTB3yGp4jKNwiOu9X1F5I8gGo3zGm9xIzclL9aqPbmqMNjbEpwgZN5eY5u3on7F29ZyTjowm18n7krL4L0E1cZrKVSkUHEzJ1G4zMcxM9Vc0g11svZ1yXqoDFDkbLHHcK32m+funaft9+FptWUThsUecW7EU6ViWqepXeClYjF1x7OW+apml8Et8t/crFmNX8GiwMxZlfWyEB4zzD8b+DcVwjI94n54PKpjHTpMAAZoMZg/ZSUdJvld2aZCB94+ZD7+Cl2lwvfwVz1+DUy1hc9g4sU2KVsrH+NQavhbMR1+mnwPWvVFGw+t8Z+oh1agAfJ+H32AyuswP+D1++42P2GSYTGILCVwSVn926oDpxhI5L0UqkSPvJQj9vlhbXL7/iF+lrjAZvseD6EWGx7ZoePKcDFcfURfvbbwGbMaGmONVZTx0k/rtHDmfMLu3306xTx+z5V+Riw7i12LOElN0x2qE3j9yk75I9ZC2/zQ1L8RSeEQY/WkfL+XWIAOfhN8mebnA8OUtthgmRY6z2RL/bupvEaLGzcYtKl6EoVwZZqCegB+F/w4z3CaZyrOelpS/S7+7AP+DKt/mreANkqTBfiyI12jCxRO+ujzGS4U1khTwGk02ohcYLz1iOLZJH/v4EMDjuLdOKRPkQmGX/3Pi93nH+wRfYtepBQ48WVzd5jo3G7cIVmE8LAXP1ahIgELhmnjiBWFw4VCTc4V54adNLiZj1UCjCFUYKpSF6VYCfPBW43PCmyfiV9aCUdZp44O4FE7XUpIgkyPl5m40xJOsaxu6L8t8YiV2kTPkZP5VFTApwqHIIZHQjGSjIP53LZGNDlXLdFXh12MXmWIJr62+fIp9DDe2+E5RQjD2vLhjD/ZVy2QzQwIgVSWRthEOcGFhl52ZKG/n/kx+PuZjmxRnyPE/KfxfoQGP0oP0tw/w0eJUEWpjQfX5zcsCLigefM9SwmgMRIV30Js/ph4V2ZfXaBKqnlAL1yTF1u8j50s5RhxVGG+ssuhNadG5SCUapKKQ6NlyieBmHW+swKPUoAAcb4t0eqBRFFZZWRhtq75x8rEoQ/fL/I32z11xYiV8hcnyPdp+8NoNEr48lCAcPSGUEIZbNzW6suBPHdOKybwrT4KWD4bWyuyO9RD0DkWeWqgzUV6jEBWgNuPbouHzeDYmKc2rjDPdXmSGBXoXjgnMajiIFrwB2ITnVyRt8Q3fl8Q261QyjY5dQglCiRo3Wn9GsAzFsHyv5YOulPSpuL/kfAhbYxX+/OpVpsp32YqeI0SNAklJfY5W6A2LaepYToqAFwq71MPQ9p8GD2JrdQ7GoBo9Leso7Yu7KQEXBu8f0rwsrJ7v3v+K0uUgBZJi0n9ZCs30wrNkF75Wm0i7wtnFEl/NjFGP7ZAPD8o7kGG+U3hIrFDn6VSMCnEKMfiNwl0eJoZ4mo6Rf3YGdH7/bd48mkyxyhHdbu7dJKBAfYstMkiQSIFPeZdpFh3hI02WTYYdgAfCwpvjVQbYc0SPBh5TLLrQvZaW4EXGmUGScPfc2ixAgxGVYZpNT4gaR4QcmNFZWx85VZCpoAI0XJLpNItuHtZGfOzFMijurgFkDdhA7JI+5AMX6GdzSQHs9mRcJM8iU8yw4NbhKXJO/nqTW0yxxDyvcETIpdwaGGVrLSNuzLDAPn3MsODUaBa08KLfvwCZCSwp2FhiL3qB+2i7lGBJUBXQ0IIpREI8qYEUwvLroeKYZqLu2yRJgSWmmOQODxh3oBIIyBWn6MDUDUZo4+OBrmuXmOISq7qG8JzX4gF92m7CFNsm5ZSEtrXxk2HTgaKSXTDMFVZoIv7uq1xya1FTrxngVaHHSZubBNy6FToFDgMtzeveSCxyXbL2vcVNJlmmqFjQJHcwv3cLTdmnzwWcfsx7fJ8f4qPFbZWeWIKyPVvmTVlUslIP4sO3zigJ8goje/yYD/DR4nVusUfcvesM0DU2bIICi0yzwhVm+ZIBigxQ5A6TSh5aopsar/MFPVR4oGCpAdCW0psnSQOPDJvE2XPSamOz9nHAY878pcaTbwTQC6q22W5ykbgDJkLUuMQqRQYIcYQl2JgXgAEhw2wxxw2G2XQgnaHfZmBp3maAA7uE1SbodJY0CQpsMEKOMxwhAQ8GRhiV1LTrwswLuMqHRQ4bswhwAEmApktJFT15kgR5/LQZ0fSYNuJhYPLPRaZ4VVNgAbdgtYmdefIZUCIAiM8htxuMsMAM0yw6VL2htFlLKGrp+RoSb4CKMRptoDcUOsU2ARq8x8f4aDkKbjc1DomoH0EnfbaJh/j87WOmk4YwX+IBEiddcPfcEnSTFNzDfIubTpKZYQtPH7IFZphhgQVmSCq4uKXI+jqjjvkmhqdb5Ekyy7wOlg/0s0euKiTeBnvuXkmISt4NIBuMOANmkwkbYPaYNAn1gRhmi3VGXBXAvA/j7Llr+T4/JE+SQwVSzACzhc9VVCyJKE2WT3jXVXfa+Bhh3VGcLTHHmKxZPZeEAokmo+28sAPk9IHv58CFeVxiFfOo2GOAnA7gpuHv05eyDWTWV0SuLhU6u7f2LBnbcYIVikppH2fVfVZ+PsCIygQKJDRhSZ7Dbq24FEj+pX0B/ru+/Vv+LoO6ULGKToEEH/E+l9Tr0XwWioj5r4TkZMiwqcBXky+46ZidobQY2wqIXeQBlzhDjh/6vk+KHJsMM8kyn/IuAFPhJQCKXpzriQUswcrMjM3L0Z7bdUa4EZ5jhQmp7KYkbTkXTtEk4CZFReL8se8PZAKYvkOABre4iYUYFcNSmV0Pj7pEtrZOJq3aac/f57xFnCJZn5yPjQeVRIQNRqgQYYHrtMNiIL5NilvR17FU8bmY+GgsaVKaBPw8xjw1PuR7/B4/4GfpVyRJKrXFEd1sMkwj6nFEN6uMk6RAGz81/KxwhQiHbHijpMjxCe8iKdbrfHV1jBUmnAdGzidpiR+Gv8f18G1uc50RNvB0wtTNETnOcC88ocFEBU11E5+RxTSu8CEM2wYVX4TrOgFr4rl0rY3wRb4I33TM7g/5HjfDt+jjgH+X+ltuAmcTSD9tFsIvu3epTf5s0ntAH5fSD6jQQzPmCQPH5ycdzrLElLyrokVXzW7j12JUN1tkmGeW8fAqUyxSIIkljs0zy15C+kDay35tjMuTZJlrcj2MugkrwCfeu9ToZsITqb9ZWWQvy0K+EJUgqAVvhhHW+ZR3mQivOLuDYnjA2VA8UPuEmi/kin9/yvt8wIccRMW032RFR4TcWCWT826y4U5xpYH4c7XwEUlVmONVIlRYZpJb3CRAkykWWUjPsMo446zyI+93SZJnPhVy85wlpmni4fO13XhdI0iHxvft3B5zgdHGbSe1DSUOSbEt6a7VMlvhC6wwQSDWINko0OcdEKrWWUsLQBGvlqhGTzPJMv3tA7JhAdD2PEnaeym3xt/0/ww24fiyLBTjmoFYIULWS/My99hN99BMBzBG+dDdMvmrCc4WSk4qezG4A0vQfuM0VAXECy+fiB1CS8Cu86VdPov9JrVMlmQ7T2/+mKepmDLlWwxmD3megM+jrzHbM0+mvUWgfkwoWMPXahMu1qEBR5kQqeoO8+FXmG4vArDoTTHqbah6oMWjlPjvAQxmD519wcPUEKnqDm2/j0epOIe6EAUItWv4WvK+7UsdELtbd6qXCz27DK2VBbiJirded6xGbKEuLN6CsuA8WEslyY51M9rYYMK/wrpvlNH2Os9SXSKNbQN5mE3MA/A0FWOdUfEi8qDhiex3Pvoyo2xw+f4j1i7Lvdud7WGDEbGZaeeZ9806gGC2/CtKqSD9QfEZWGKaGRa4zQx/Y+3n0ICXuUc9I3Lt8faqAzmrCQE2LzR2pSCsPov9pTqnisfszEYJtWW+c/Z+iWrmNNQlWOJBbJzv5r6inVrB35b2iVTlPRIp1/kqMeYYan2tA1LlkjC/w9AdK3MQlbCXG405dmd7uNZe5qvEGC/dX6N0OSjM3LAyuxEQzEJEthIZZsNfErwL4fKJ869NlEtkolsc9XTR9h8TLEOXH2EQVyG2WWclI6Cf+QL6LrcJtWu0fD7gmLX0OcaWnsg9vw8rb18RFlKmpnPFJKnWDn11kQ77WjJXHlwSz0p7Vx+fgf5SnWbswBUO1xnhvfBP6c0fs5OSpGWSx4w2NggWIBXbpasK6fCOMLvrUmCztcCzuBQKGwS4z2WEsv7t3rpouHXspq6ZLSTQ7I3M7ihBgQaeU1jd5rojbuQ4Q4ICn/Mmv8O/d0zYGt0kybPMJE08xnmgQNsS64w6sAcEAPmCm/Rz4KSUw2xSZEDXox1CjVlU2fqqmyPHkPLTpqaML5MUGnEEcLZWts5d4DoFkm7eNcwmfRywwSjmH76t6ykJcWi6Nap5oYGwym5yixd9A8XrfoDf4Ucc0OfWgQZOGnPN5kVGgsiT4D0+1rnZActMssykC98woGqCFRaYQfwDz5Bi24V4dnOk8luZczQUCzCZs91jHy2Z61DAo8kWwxwSoYHHHK868kqOFAUSDiRsIEnExubep49Z5pnjVV5hXr3zmi7ZtokETFpYj60Nh5FAyUWmkfR4j0WmmWaRInEWmVbQMUFb54Lmj9ggwAYytwcjc8n69EhBO2MVCvnFcypGI1YZsUDWoUIGMbJOS9ekGbZYYULnjsJ8t9DFA/qc2nOeWWWTbjHFEilytPA5NVqWNItMMcoGs5oO3M8Bewzg6RpthgWHEVgWgpGDxE8y7v49ziqv8wUVIqxrsu64ZhlY4MkREoZymxnn0zjBCtdZ4BavO1ahHdOyFiybIUua3v82PfRC1PFRcUmYA2r+eJ0Fh44uMcX3+FBBpH6usYyPtosKNsNFMzzsQ0w6LfTCoptNi2zyWYluFjadgYgG+uwhHhpmEHlA/9eCIYwGu84I5sMHwgBLk3VeeAvMcBNh0TxQbT66b2Ha5RxDxvzqJigwzgMsvcdAN1tMW2iI+UkMsOeYWtBhvM0yzzBbPOAS17ntJm5m9GiAowVlLDJFv3YNq7rIw5TkPT52VF5L+Fln1Hk22BanyDBbbsElVNAMSfJ8wU3n/ZIlzaqmFV9nQRH7iNOo11QiLXRhWeS28LlBwCraGU3qMYpuniTv8gm39FgW224MPtP7xym6F0wbH1MsOQDOXgLGdJTBN8cWGZaY4gZzSqEVue41lllhAjPsjHDozFttgM+S5k0+cy+uYTaJMwlIpcZYhlMs0cLnztUqV5aEK0at4y41WYxxj0iTdRRzYzFan15lXPuLjwxbdHPECn2M88BNpGtaGTEAwhiMDTwH2AEvLCgFIC5q/WeKJcckNbapPStmSGrpSsbWlLhwkYHY4nUfCTG5zXXMcFaYsn89GHrdHBHXSdMhEmJig/UDNTi2Kqx5iKwzQkEZS2YF4EMSrVe5RIRDVhl3IKqYsR5iEfBmYrv3Qv83e4DbzJAj5ZIAzcwY+Fq/XOaaAGzq42HjEqDTDWFjWJ9c5pq75hkWXF+S8fOx6y/27NpYZEnYCfIcEnHgcx8HfMZbgCzMpQAkMjkrxCwx5camEEc0dZKzTx8ZNlllnCmWKKjX6i1uOh8TqYAuM6qeIyBj0yrjfMK7vMVnWk2TxLgXGbMgITj2HCzrc3+DOXfd3dScb6y9AyNUuM2M+r/2YwzuCj2kyQo7kDkWuM4Mtx2QLvYHcVaY4Pv8kCxpV3G3avEql5zfiMn4Td4vldxRLR5suLu3xLQrvNg7aZVLLs3MktBrhPgBvwfgnD9WmHDjdB/7JMnzOW/RxwE/5gPXb29xk2GdkNn7KUnBva/s3WPAnRVEJlhhG2HSPVA7h0WmBAij7YDSGt1fs0o4JOIYyX0csMSUew+bVGWCe+RV7mO+JlYtlp8Lcz5LmoYWO0zaYl4zS0xzoGwDe3cNs8US084MPKdSmwVmHOPdwEsDNht4LHCd6zT4trNS3rjz5+ReO+dY2uuxczJ2RPtc0NQEK2RKO9TCEoQQLMFw6wltPwTvwfOLJ6S9LHu+OMl2nhXfBOPVNfqDBwJ+PENsAArQjopX7cXcDv3BOpFYhdJY0M3jZplnqnwXYvKeLCXE13WgXeTp5RhnvRJ5L4HvcpvzpV1OnQdy8DwBFzZ3ea4stLiOi09TMfdcJMkzkt4gUj1kiiUaPk/Yz2H5e7y+BgV4fh4ulR8KUIOwcsOFE6YTS5LMmi47hmjpchAfbUrpILG8oEHJRoGNsDD+BhpFit4AWdJ48XUC9WOawdOcIUdss66hDvtEEKDxVAsow/O4gEtt/JAUMK86dprwL09Ye+MccfZY5QYvlddYS6R4eeEeD2eExbubEjluawxhL/bCQQpNlpQlhr/d5sPo3+K9xsciC63jFrk2BgRocsc36XyIJlihaxuaUY+GVydcPGE8tcrZbImDdI7q+Y6sfyN8EZCCJmW5/+HHJ4TZpXpe+pHXbrDni3MUa5LwlcRSp16WNOUzIie9GNxhZyzKbOkraEs/2IwNsUWGSZYJlg/p8uCl0ho7mSip8m5HzpyA536RUE+w4jwioUa4cMJL9TVowZfM8kp6npivDpswnVxk0zfMaHiDl9bWWBs7RzEcY282jvmpnb1fwh/Emf/nw4NEwpIsvDsjbPN6VNQUXSW5p0SVYRqGlfAE3WkB7YhL0vJZSm5OL+FmTSYbywTvwtPZGBUipFtiir87Jff4zfLPOYj2sBG94ApGiXKJSE+F4fojctFBzrd3aeNj6H6Z3csSftHINIgV6hyHRU7fzLTxtU7wGk1qnix4V33jxNnj4v0d/k7y3/NPv6lB6K/QNsNtnnJF1z/3+IR3yCBhgEaAkXVIzb3P+zjgQ77nQA8jqswzqwmqPRQUADxUoOeaAuS2pl1nVIGtbvY0rTRFjleZc3OTEDUXYHFIhC+4ySzzrCKJ1KOskydJkbiSUnwc0M8wm7QQtq/5qN3kC7bIANKHG0QY0fehMfU8Gi74Y4thx/wSH/6mA+4s3PBA15e2jjbyS0PnB+OsvsDSCjHNkiu62Xy6iefmczJXXGSJaWp0O9mnEXsOtF3Ee+8Ml9Qvb5xVpnTfnhbFD+gjxxn61V7IWGkGGpnazPY7wrqoWsg6Tz5JCF5UoOjAtbMRmipEGGVdGW2vuznuAHt8yAe08XGdBceoPKAPC9CwdXmFHsxXcIYFR4oyDGNSPXCKDLBFhm2VNkvCdcop1IQKJZ+zeb3IgGVtmCKHefZJ6GUCY+yZ7VZDwb4GAaZY5IiQW0/a/mR+fokIoiiyQJYDJJvBPPBvcdNd9xVW+G0+cmDctAJ9BnY2CNDPASk1mzLfRAmqSbgisWUveDQdwWCAPSw4xfINkuRde4OoGUMcKQB75NY/I2zwFp+xyDRmlXVPVaJbms9gBZSmM87+T2+n/78cj/5fbmOsMcI63+PHTLDiFoUFffh9tB2Yt61MhAaeow7bwklMJ5uqyw84wMweRkuHsUqCARL2IJsc9l/xDzG54wQryrradDffDB77OWCCey51yHzxFpki5/TaRfVVG3DaekAXJ34kZEColUbvNCDJbnJSKZwGvIkHQhPzHQvQJKELngQFx4jqBCr4nDedgFLDbmHyCvOYtNYGu0s8oE+ZW6tcYoIVbvKFGwAtacWMQm3xb4wiAxbkwRJQLk9CB4Hb3GDOSTevs+BAOgs5sWsqMuA8E5IUmOVLUmw7AKqNpB9PskycPV6MnLa2GOeBAiRFR/sG3OLOEo5soSVAU1616OL7YvRx60MCyAXcA5sihyROjTPHDQCG2XSL7yYB4hT5HX7EOA9cRPURIaZYdCCzSciKOohcUiabAWS2MLTrNu08CDBgVbslpigy4F7oK0yo7LfD/LEEJWPXrTDBuno0mowloW1pm3ntmRl1nCImH27p4tU8NNJkKZBglnlmWFDQ9rZbOMcpOvDREqwkFWgDSS8ecX0oRI3XucU7fPpNDD9/5bazPHHjXjdHahUgce0Gslv6mIC3IV5ljvf4mAdcYp1RVhnHpJ0AR3TzHh/zh/wRs8wzybKjdNuLb44bjPOAayyrP2PLPdc2QVhm0lWGIlRc8cRMZn20KJDEWJ0Cdr3DF7zOKuNskVFfi5b2QaGl7xF3Uok8STJsuWfWqoACwsgzsqSRsVIt3KNInFvc5IA+lpjiAeMsM6lhQXn+iD/EpOQCtJxx4Mu6VnbtXeCjRQOPETbooaIp5kl33G5qmK/jnrJib/ALzPNSqnR5N3ZWiPAFr2OeruOsKsO5zbqaBoeoscEoeww4aYPcZ88xx7KkMa+XCe7xgHG1RBD2ukz0Njiim3/FPyDEEf+Qf02EQ/bpo4Gkj9mzO0CRH/G7tPFjnp9WBFnRpDOTdlgCGghT/Aw5mgTcWA8woNA+4PqspXyZ14cx8c231ApmbXwOCBQbBJnorjJOnoQbm4bZ4pCIS3G39L2bfIEFWrXxc11lMWLQLu8VS4k7oF89SRLO67VbCzGf8SaW+m4VWR8tBthzIJ34gd7h+/zQTZTHeUCSvAsjmuMG64w60PCOPjcmz7FrMcNjeUdvuusGKZgY68KkTd0KmBqY/63fWpBs5wkXT5jjBsl23k2WfbRJVXeoEeLUsgAysU3xT+tqqH9hUvzchnJlMqUdFnxiFRIsQ6R8zFrmHF9dHmPt6jmejsUYKzzhYnaHZ8kuHscGAWFY2diWLJXpWoNfpwQQii3VKZDE12oTr0p67MXsDsnqLquxCwL4BeFObIzjGKzHzjmpcM6X4my2hEmEbFGXDZ+jQg+m2hgrPCHFtsh4q7AfCwp7rNXm7bU/I5w7YScdJe8lWLt8juXwVVa9cbx2A/NlauLx/CI8O99F+PEJ6XaW2M/qNLwALxfuMVG9R8vnIxceYs+LM9Ao8jQTYzfTQ6q6Q4UeTlXhq8QYO2OirSylJEH4ufqQrnrj1NWnLVKu8271pzxNxEhXn0AQspynN3/MQOmQ+dhLYgHRC6bgEuatLHx6i8eMs8q6N+IYZelGlmvtZTeXDDWEhWyKiCYe1cxpQu2aeFSW4PLCI56H5Vla9cbJhwepRk+zp4mgvcvHPJvs4s/Hrjo/07yX4DbXafl83GaGZSYpRGMy5gW7JJgEYUcfpyFZKrMeOwctScLNcp63N/+MwcIhtKAeFQ/QA/ooRqM8O9/F8yjUw+LR+DAxRLr6hHDhhFM5OT6WkO5H3wXKpUhAxSellJoXop6S9/A8sxQZILZWx0dbwNcijDY2aPmEWXREiEepQQY3D6nGT9P2nxZwogrVK6dFMp0YpBns4gw5RhsSRnc/fYEWPp5mYgxmDxlcE9/p37h/F1/rBGLC1hwvPaLiRTi7WRKQOnyarir0lQ9JtWVBfDZboqsEgfoxlbBIc089lvtjDMyhQpkCSZ4mYjSDp+nNHdPwAgRLIpOfbcy7otIWGZ4nYNV3+RschP7qbMeIfc0CMwoAdRiPVkyz9Z2F2zUJMMUSZidl87cicZ0nXcMUXvZOTlDginqqvxhSYQovEFDkEg9IUnCKIrPluc5tplkSqxh99xq43McBh4hSxACRJAUSFNRvTjxNfbScR98GYgOypP739t41eyHzcPfRpkKPsyA6oE8LzXu6xhtgmUmG2XQyyhUmWGKKBWYwWWyCPOZtv8yk8zVb1/EpT5KbfEGGLWaZ5y0+J6HAzCJTX2vjEDVmuM0WGXKcwWTB1o55kqqaGedFP3+/koYsSKSmxfsZFhzYaTZHYlG2SgPPefZNqV1TQFmFHg1WmHAEkXf4BLMyk/WyFMhNDXODOQc2fc6bTpll6wFbwxkuYt5zhse8xWdcesGz/3f5EWYrJTkAMp/PkWJB1Sk+WiwyRULXpFYEMFbkChOuj9qcKKT5sZZIP8wmN5hzISYTrBBC0qEtVdnsvcQCStiC1n8/4rdZ0CK6eU8mKDgQ2FQZi0zxI36Hz3mTGiHWGWGFCVaY0EBMKRonyLt22FTJeoGkk6ZbP+7jAPOpzCHqHR8tt24pkHA/M5WRSbatL4+wTg8VnnD2LzWefCOAXg+HyjQ5YoAiUywyzBbLTLJHnDf5DEkBKehFew4JTpNllnlXXTAUXxYIPdQIMcq6glK3OK+ixH4OmOQO0wqoTOitmGSZ9/iYcVZ1ISAabJsYxZG0zm4d3EzaNMyWW1SZZOvFB2JE01+vs0BDqxVpsoyzyvf5t3jKXLnJF1xj2YFSI2yQoMAEK46ZEOJIB8k9hxJbhzA/uQaSIjPOAyfB9Cvqb0wCi/62wUdMPQuYb8c8s5hXoCXDGng3wjotXdwI1i7MPJOQTrDCgPqqTbLMebKuLW6op+Dv8CMmWOE8Em2+qQw6QJlcDW3XGu/yCUldHhlzwUeb8eqa0lX9jpptBrE2aIOk4XQrOGDtan42dk22YDKt/CxfYsnG3dScaeso647KbWDVMJv8Hj9w1+ZHaObv8xF7SpM2tN2AtDxJjFpuC+xLrPKH/DMiVJRJVyOh/hDLTLKPyG5TbFOjm5vc4i0+x5hvo+ozOMUiN5jDfBOMJm2DqYWADLOpcr481xQwLKif5CzzbsJgg7RR16VKImmD46zyFp8r3V6AKGnvIydZNk88kwS86Atpm724k+Tp0WHOPDxqhBwI+23fTIJQocd5u6XJMkDRPd9WlfyQ7wECwjbwuMkttyha5hptBcvtBTbHDSpEWGFCWaJb7lkzUENeGm2WuYZJMAwctnHVZKqf8xYLXOc217/2ov1T3nfgk7yQexxjCUTCaTIEYxXPMk+SPBuMsMo4G4w4W4G3+IyO2ayPm9xyE0mrSFol1QonCWWV5vXlucgUe8SZZBk/IrG3CZcBlldYYUNNpn20XCXOfC7NpynCIbPM6xi76sZyA9oFKBc2dEY9u4rE2SKjBuohZplnlnm6qTmGYZOAS/W2yWqfPoPyHoqTJyHSTh3D7bMGog2zxevc+lrVT9i6h9zgF66AEKDJJMs0CbDIFMtqVHybGWHs0GSSO+RJsEWGL7jpwH+bZK0zyqH2lwVmWOC6a/cCSb5kVlmmcfeOqhDhh3yfJaZcPx1n1VXYkxRc2p6NtbN8yRw3+Jw3+Zj3nBTDrBzMM7Cg45ql219iVaTciDR8kSlS5JhghSOEeW4G98LaP8LkLTaRs5SzYbYw+ZGF/kSo8D5/6opmxmgQI+09LHkdRMJtfaNBQN+rwjASIFZYjgaWGouyRogR1lVu4ndpge1vZjr2V2p7PqyhAVFcaJefNuPtVQZ/ekgwq6bZ56F6/jTHMfhp4jfZTfSwm+jhUXqQAglKqSCn6vJeTJd3eB6ESrTLhU6lq0+k2Kcp1pHyManyLrFcnUo0SLfOWxoeEIfv5B5yobDL8/NweekRe15cWF9hoCzMwMu5RyIvPcT5p41ln9BXLROqntAgQDVx2lXb02R5aW1N1BflHVf0XEucY4thHqUHISHsNa/dIFw84dnFLp5mYrTxuaLDeHuV8caqkz+afPhPY2+z54tTGgvSW5SAHq/R5NeJi/ha8m9TGYTLJ8SrJbYYJnhPWH2Amw8vxq7ojGWA9dg56jGZc8+Ff1MWHtEgwbKMvSvhK+xeFYCSkni6WaGwHpWwJiu0TlW/IlkVrzZZ8G/z85mXIQVtv4+Gz3OL2D0vzgjrDLDHKBt8xpsceH305o8FEEvAw5kh9mI9LDMp79BGkfDaCW9sfomPFs8mu8j5RFL8bLILEsIaiVPkiBAjbPBe6WeahzlA9+Ex5KArCwnyNIOneRwbJEQNGjCYE88ucnDsASmohYNcyO3STY2hXJmsL00+FuUgHOVpJsZAuyj/Tsek/wA/Tf0mD8eGAJxFyk9Tv8mvxy46yxjbIo0KN7klc6kyDGXL7MeCfDU2Rrh4IgWbcpmz2RJNPPAL+Boun2BeseHyCfKrNg2fR6q8yy3vJpONZS5vPuJ8aRcfbaqJ0xCF38jd5fiMhLkQlACmU2UB4/Bgur1IqHpCPSoBK/u+PsYbqxJK1JLz7isfcmFtl7Wpc67wvMEIO4moFJTLJRa8GaqJ02RJ8zA9RLxaIlA/YYsM3dSYaS844P2vw3agRoVNAkoIWHJAyibDHNDnlD4W/DDHDQokyHEGHy0+5j337p9lnjRZfZcdMsMCGbWjsrmZySDt/wFVPDXwqNDDv+AfOUXAi1Y85oVtNilLTBOgwSV91wsbb8+tmw/o4ya3iHDINilCHDHDbYoMYJLbvHpvG5FACDHjJMl/zUPMioimLLB02FUukaDAMtdY1YJonD0NcrhDgwDv85FTMQRocoM5Da2Ik6SAhIn8P8n7/9i27zTPE3xJpEiRFPWLCmkxkSNZshWrI7fc1kQ1StkVV4LynAuVq+qu2dr50cDMoQ87WBxm7jAH7OH+WcwBd7v3x9ze3d4uZoAGerB9Oz01VdOpS7p844JTceKKu5SRSyrLLUeWZCmSQ5k0KYmiRIoUKd0fz/N8PvQubrqwQHZmEgKGLOr78/P9kp/n+37ePxJubEytYE1KA9sS5BlnQUciQhyx3DD1g81nzY1RC2IYZYlB1nmXt11ASJoMHVpfCBProZJ5spxGPP6MaWYKNwMBxcs8jMidyyov3SJOiR/wQ1evRqi44xWSSco1U62hOcwKC4xjnokFEtxXxck9lRM3P49abbrImHt2N0mq4RpWy08q6WOEVcx7/jZvaNjjLlukHdAnKgpRrdhztRBJUtzmDQc2Wv1l3rlGGDNyidWd9nxrjTQjgyUoODDNiAXrDFJBvPHOKVtViCgjjoCwol6FDYKMsMoEc6QcDuOfJ2xs45Q0W6GfXXocoGv4gMmxe9hlh25ucs0B3tYkD+pzuoVe/mWvL6SCvM+Fpi61pNVGKXONm0xyzzG5rNsvoExd6aRJvSGymnxSweSiI6xSJuIe4oxJB+iH5hHDrPIGt4noBylNhrcb77qCw+Q817hJiQ7HzJrknmPlSbrtDlPVGS5xj0HWGGWJseoiSbJMNWb4+uavnKy0m13+2vKHDLDhHpDtuPoocK742HUh7DiilJk4+LWyzYS2KWmgEcfykgemHfo0UGSyMctIY4UEeUx2dKVxh6t8wHV+ymhjCUlETSrLYMl9mIURN8M0d5lihh/wL54D1BoEudBYcDK8MhEGWdNH+3tYmlqVMOlqhnM8cg9F6eIzYWRVC6TI8R3eY5q7DlQdbQhj8iLzjlJsTJgAEv9sy7ZvS3E4wgoR/eIKUSOvsiajFCfIaxiD74AMsMlUYwYxWJWeVoWo+soJ00Q6WxGm+ISpg0+Y5i4dlDinD/EdlPRBTh7wmyfCUR7xYm6bAHX29UvNwjbyJES+wxzmd2AMyTJRBQEbDLGOmYZe54YYoyvAJ8nJu26im6zOMsUMb3Cbh0rbbhDgInMOFBxj0XUP7OHVHlgBlbrfI6Qd3YAyJ7uRNOVJZh1omCLHZGNWQLrGEkOsu2ju0cYSk8xigSNv8AF9yvozufMoSyKXYp0UORIU3HherM7zJrcYYVXA+OKf08pXI+XWQHQLZDFD2k0G3ERqMkjzh1ziHD/huyRVgjDOfa7ygTYJxPQ3QYErahlwi7fc5FrXh0FhOAvQeofLjCiIYJJrA/4aBLnODSxlq0Af9xknRdZ18MZ4yBLnlEm45cCtPvWIMGaVJTqnyDmZpFgDSIGWQsJjjN03z0WyJLUTG3d09yQ5991n5scmGSiQ4C1ucZXbjm0W0XligXH13RBm1T6WvBVnSBsYZaIOgDfvDiviljjHImOsM6Tzx5Zjf0cpM8skt3jLffZHtBiyImuBC/SppELkxFlXPMuDnARh2OS+wDirjPAub7vPEMA0H5Onjx52WWLUdfXKRLnNGwCueDLDZQOGrLFzXtmEg+rZYUXLQ9fVnacfMZP+Cd/jh/yAsqZ4lYkyypI2bkQSbZ/nWZVs9ymw0Eeet7jFawrgCrOt7ArHAA3XGTXPTwEYxQfUjkG8U3MOwBvlkZOnmJQcUHA356R50iioaAMrS4UIBfooE2WQNee3KJ59403y2rqzTtjVgkqY+H2uAWfyGasRzNtE7muRqJhXYJWQMsylsTjIuksUNP+hCyq7Ni9MkYH0EaHCCzz7n+076d/VqyUPha4uwlV4Ze0zqoEwS4wKaAOwISDKQVpCYdqqPkjrhbV9Tm8/E0P9jHjPxYuH1NpbyfT2UgrEtblUYz32MoNF9QoLi4Q00/WCC1UIUyPYaNC+Cb8Y+h1Yg2fJDsqxVj6deJkwNQar6zxLd3A4BEdnkcTiHFCFu12vkSXF44FTFGK9tOREOrYeFsaqANJ9fHr2Zb629mvudf02mwzwytpnhKiSJEu6KHLQyP4RO4Fu9lJtdG4cOW+oAA1SjSzVQJjQ4TGx3DFn157Qu3lIqpGVh6RqjnjxUJiDCqx0UCLYEIDMmr5UoT0D4wcPoEP+RgBeWNsnQtk1Z7rZZeDgCeEqDLPCIGuMbT8WRllVHmoLJLjJNVLk+OzVFwg2FMALwmbsJRpBWa5BgPYD3L9TmSIvfLpPlArbZ9spBeK8kNmngxLhRpUgDV7+9Bm/tfyYJFnnRbSdbufgdCv/OvkNZScKQ6lve5/Q4TEHZ+UxZpUR8gEJ7RprLNK5fMTj5CnGqov8ldkHrp5umYVdeqgRknT2NBwNCPBXDkd5OfOMF3PbPHulg4NEK6+sfcZfvC4Mzu10u4zFPKQOnvE4fUrA/mKRUw+KwhIPiA9qsrgNMTiz9pQ4JQklOYQoFX77wTKXi3/OueJjhlnhhQf7dBf3Kcfa2Q1388KDfS4xC+3wbKCDePFQmgsH8MLyPm1Vua/jlHg8cIqRxoqcK4scdUoYyqdDIot9YXOftjXoJ0OseMzPh/4q93vPcipXJJY55qCrFRqaUEyNPxv4Jt0HRX4x9DucBOFpuovOwpGkR8e6OOqFl3/2jN1wt9xw2xI60rYJFCFdFUB7ihm+lvm1axYWuroYZYlY7tgx0dtnBSCMU+IRo4QOj5yp/Vfh9ZgzZEnyBrcpEecu08pOCzOkzVNpRImnuIEG9swUZ18ZQkkaBLjPOBUi3GUaU2ScU09xk8CCjHc/GS7z0XPkDBCPuzwi27/JNXbpdiwxa7SaPFZUd32ODWUSSWNimUICcMcuz0h5DQy4o8+9YrO1S7eTfpaJMMksFaKu+WbnI5hCBfOBG+e+gjdCYrEaeJURN67rDLLKMObdZv6pdQIkyWIy5zJRp8oz4E3svGqUiTi2WZwS03yM+ZeH9LkrQlmVSgU31llSRJRVFqekNiAp+hC7pu/xjjYhz7nazZoWaTKId2/KPY8CTnoKvklgz6r2rBCmyl2mnZe2KUf+Jv+cKiGnEJjmrj53i/9fipwSYWpOyWOYzjgLmE1CQAFUQCW/W8wwxQCb7v4J0nAkhjEWGdZnwDBVkuQYYYU4Jd5SxZY0vvspa5hFhrSTxpoXoFzLEUBT2slwmTvs0s0S51zT/h6TDLHONHcdyGaA2jR3nRXVLd5iUNmZI6w6XGiKGaLqDxmlwjArDpi0RrWk0JaVWOQJaNJcLrk61Ygbc0w42bo8D1QcjmTH1k+GBcaxoEm7l/6y1xfioffRfzHDYGuW4BGctEIpEqFMhC72aBDgTqEqe26FRtuvAVhvP83LtWeUQrf5hCNilSotx/+K/3u4hVzwKadqWfZDUXa4Rw/b/JAX6GaTdoTRlaBApFDnIBHiiCBhakR26lR6goQO68A2lXax8T7kJ6xR5ph3yD3dY+dUB/+KLl5gnlaOecY+qzwjcnDMQaxGrPgrqMN+IkyRY14sHUErVGJ5IgdPOWmF90vwNFkjzjaxnRr5ngr7dNBFjZ4inIQ+YzvSSTuHtB/W2GvvoKcAu4kHdO+UaUTgWXsvUSp0lg6pxpbYae3mhcNtAg04iMnXaDuHNPiYUL1G29EJh5EgkYNf8NNYB52HR7SeLPMskuc23ZwrfUY+vsuHtBOiRowDNhmglWOGD58CEKjCQVeIVjb4MwJkVMZbJsqHlDlm31Gd4+TY5pf8mjY6Sp9wEoRiJMpPK3AYuc/7+WOgCC1Ae5GDWIjgcY6W4xMOgvIwHTyu03J8wnawhy7WiGTqECtSj0A1tM+Pj1sJVx6zF4twyAm9tT+jFBI2UF/ukN3kv6F7p0w9BkehPJv8iOrxZ4Qrx1QjrYQrx6zFcgwVn/Ckaw+A+XqOQjDBqUqeWriVemuOQ9pJPIXcqT3gI24S4xT/RkG4/w8fkqD/sMhW+4e0I7KHxZ196jEoh37G57zI2vEuACutT3iRJ3xIgwAHHNPKDn/GQ2rcpsERQeKsckCMZGmH3XiUGmFiVIAK4doTWo7lWqx3vUiYf8MLtTy3GgDbLEZ2aecjMjtFaC1Si7UQOjjhSVeKF46fEagf81lIqLwVIgTJ0MEyTznFcGWb45Ztcu19APQX83AMOz0dxGv7HLfmqQU/p0qYI4LMHjeotuaIV46ohXc5av0LWjhhvnTEbvwZ0XqF0MGJfH5r6HUIckQb0VqFz0IbvIB4qHQe7tMItgAQqp5wENtmhx5aOObFEjxuy38RXz//3r226WWSWRLaJbzJNaa5yxwXeYtbhJQ6L36MeQr08WO+zxSf0CDIMKs8YpScgr3CRpJunTVNBtjUrtcOabZ0UttyFHVL0lpj0KVc3VeT3zXtrIIwqESyu0Ue8fCxBPIBNhyjU9jSEd2vSMjvcYmIhvrYxFlHpIfrDLGpgEo/GS6wgKWUbzKg0oEO10XL0M86Q5T0uKqEGNLJ3IrKLEmXqB6myiSz3OItppjBDJF3EH+SR4wikseEO2bzgTN6+yT3eKTgmRR2ERpapFrS+jR3Me+PW7zJ27yn8uJRV2iZn94Qa5zTh1IDtQbYcCCjSFyWdJ0LKj2rsskA17jJOkMutXqQNce4s851gLpjGM6pF56xlU16b82Bq9xmlkvUFTw2Bs0uPVziHhn66SdDlIoD7e1c3uA2FhBhidfG+rT76DJ3yKrvrUlYzD5gkDXe5y3Mh1aCUYKMsMI5ZZ2vMswks4SoPuerZQxUAyUzpEmx6sbb/HSam2XiRSr3kI21BJKIbYY1dfaJ0yBAHgE+zG8vrFYb9gBhHekaIedrmCPl5EUgzRDbVk4LOftcj7CqBdoFJ8noZodhVrinsqAGAd7jCvAPvsivon/3r7gU7IlAkWCXmLm/wQewCQzB0yFhrBizmITYX9QIER8qEa+WiBWFKWS+aR2UnJfZi4Vtlidfku+grhIv7m2znH6JdCLDy5vP2B4Qj7z09jYtB/D0lS562OVwQryZQofH7Ia7KREnHc7wYmabX6fPMlZc5vAs7Ma6OLVZZLIq3j0r4WEaVNg7K5+90e3PJAAiWCIRzvMJU7yS+4zIkBTm1OHl5WfQDtsD7aIUCYuwfCfQTWf9GdGDQwqxPqKU2QwM8FuZx+LbdwaWel923/t/ZfkBR0lo24JgRwPrj728/Ay6JMX05eqH/Hzgr5LqbQKL91XatQ2EcZ+fqoLcIPLOcKxGJRylJQfRWBmCsuw4C7xR/AW1dgFd5bKW2Eu0EaDOeuxl8iT4+tqvxJ8uDI+6zpCnj5G0NPF7tg8Jx2qwDYV0Hy8XnhEPCgB21Cnswt9Zfsjnr/YSbIjf2nTwLvHiEWu9p9ilm5YcbL5yil16GBxa46+sPYAqPH2lwlJglMnkAwaKTyl1tRMLHjK6/RktB8Cr3sf5UG182zNQ6BIWcThVpTNzRPxgn/ZlIAcdQyVq7a3UlKlRuF5g8OAzkSBub7PS+xKDPOFra7+GIPzrgW8w0TVParvIzlA74wcPOIpBWxcMHDzh81fFa3GCeaLVMkcDIis38//Sq2Jcv6eJ8rmuXs7knvL4rPgWxosCsMWrJULhKtmA2BklyXJqr0igq8Ern37GUT9wAL+Y+B3GWGQ72e6YRE+TXZSIc3btCYRFChxvlLhav017DkaGVinHWqkS4nHylEjhGmXx6Jto+kwnlS3TBQQhljsmdrjP47OnOIoVebP4IbtdIpv8nU8fctQvTcfxgwfQJanf6aqkmbdvwu/2/n8plvlKvIQ5XlMm/wq79Lj5p0aIczzix/weI6ySod+xTcVrPejm5HM8ciz0YWVR3WXagSQW+PVd3mGLNGaJIyyhiia4phy4mCNJRD2LNzkN4NhxZmEi0tqsA3sMYHzEObVhEfBdEuQrjsBhNdY6Q4yxyCBruu+Uq70mmCdElVUkjG2SWS7zESlyzKoXd4MAI6xo4KNYe4iSTaSZBtgZSCY2VbvE2Xe1mtWTBtZIIzCiCr5FFhlzFjLSmO0hp8oVC4gMItYbJeLOYsoavIDzs9/SBp4FW4DMc2UirgbIkCaI+K+bispC7kZYoYo0C6y+N4BvhilOs+nqaQvVkMboEkmyrmYycs6q+lYvMM4k95hhSv3+6u45xK67haC8w/eY5mPWGeJ7vMMAm47daGw4IxOJ1VOeHbo1EFFITVEq3GWaSWadfNvqUQMhy0R4yBgZtVAxRmdYG/LmzZgi65rgZkXVwy4diMfeG3zAlqqIrG59XiIsIOk0d53irIw8n4MES95jkkvMsk+cClENQdkBpO5bZRjz099kwD0rVIi4+tQUJZI9IMrULCklpe3wSJ+xjCgQpuaIALNMEsZ73v/bXl8IQ++l7SzBVQHzdiMddJbkISFyUKejUBXT4qIsGziCwFM4xVOCeejZ2KdjrSqJUQVoOzrhheNnBPOQ5wVeQECFJDn6ckU6clVe2skSydfhCKIVeYhoEIBtiKzVCWxDYAs6MlUS+T1eLOXo2dknsbYHNejZ2aebHbfuMa1ESnXYgVixBsfItg6rvJjPwTqQg/ZKHSrQ8gxO4tDBAbFijUpPkBZOiFOiJ7cPB7JMorhHLF+j9UQeUGmVAumgJ0StPcip/DbxSgXqUGltp68mQEwjACe0EK/t0yBAR6ZKoH4CIGDlE+gp7dN6IibHydwO7RzCAfQdFHnh+BnJjR1iT2t0s8OLfE5gDwIN4Aja6kdE1ut0PKlyiqd0FKskSzs85BW26SV4XOfUYY7OnQrtVOh4WoUdOG6BQ9ppOUCAuRLSJS4BjyGWqREuHRPaPqFnbZ/Yeo2W4xNCT084VdomslqXpLZ1CH4GsVyN8MExVKCNI5KrOwRz0JPfpy9ThADED8vQgKAQcDhTWyNYO4YC4v9Rh0724BhaOJEPZzDEATFaahDOHRNbr8m1L6ESa0HjI0/rJDd2iOTqIm09Ejpvd61IGwLiBrehsyBsinDpmHDxmFM8JX5Ypr1WJbJcl/PkhOTODie0cGpnm0PaSeZ3oArdxTLtHBIr1Iit1QhmILAJJyEYXPucGAcct7bQUoKWY/GoGC5tALJM29EJ7Mh5Hre2EizJF2GiuEcPO0Sp0FGsMlj7jJYyBHah/yBPfyEPRah2tRI9LhPMQahyQnutSm9lj1P5bcKVYzp3KrTUIVg7puNJVT4DQPfTMqHciYDbsTBUIViFSLFOZ7FC8ABerm1wTAs9hX1OWiG0ekKocgIFaD+sOb8G1iGd//IzUgBOs+FYTzbJG+vOEsBMqvBQgwMusOAmhXUGSZJjTb1U6gRYUxnACiNIupiw+ua5iAVHgDCEVxnhCneYYoaLzAuLQPusJZ2kRLYh7K4J5rnCR44RZnYCOVL8kB8wz0VJ90MSu0y2MMAmk8xynZ+SIuvSu2/wbQLUGWZFGaKrKu8Qv7UQkshmkvRuJDV8ihkN4wiqpcKCyhVXMc/KfsRDVBhhI1znhqO559WzM4h4ZZoXTYMAj5QpCfAaM1gqZZIcw6xo13CfBHlXtEgqmky6YaraXRWpTJ96fpppdATxZl3kPBn6mdOObI4UESpsKOhpnUxjbe3SgyXnWld4lWFypJwUOalAqBWIZgEg12mDm1xjlWHXDR7Se6NAH/Nc1NAd8R8t0cEdLlMjrGzAc5L6q1dmXFPRrFAxmUKajAuiSLPlrod5xhQQ+ZwFtJi/YTc7TDHj5B/mF2QMTeG0yb0tEqO8Spvl2q0wzArDDLKm2z9NN5LKF6XsLCtE6i0ehsau3KWbDkqYObWBkhLe5WUxS4wyx4STiifVMsB88xYYJ6QMO5NU28PUab2eUjxL2FeGtCvY7jNOiQ4scXDK3XuN37gL+x/0awvOZp5IcihwYXuZ3k8P+XTqZX459NtEG2WiDREXRZAkWOnqrxCiym64m18lz1OOSZOygxKntyU98yDdCh2qftAgqqcDXeLZlzvm84FezJ8SgDCOIRqoi/S1rQrj1QX+yuYD4o0ST9Nd9FGgbQ/ai3JfPx0Q0LEaDjnfw0Bd7l+AcFXkpL25Q86zyOGrMNQQhjENoB0Oe1EZmnwHvZx5Ro4U22fbWY2dIV3NkCTHb2Ue8zh9ipMz8HHv7+hhV+lml6dnuyh1tXPUD52ZI379ylkB2IKIj51YdUpibOwlZmKviW9fh0jID862QkwYtIlikXRR5uPN2EvOB++31h7LOIW7+YuBM4SociojvoPlcJTO2SNaCuI7Z5Lg0e3P+HpGwLyDrlZhk4EyTULED/aphsVb7tmrYsr+r5PfoKUu49KWg1I4zklaHsIC9QbZ2AuUAnF2etvpaxRYZIzDAQmtKBHnE6Z4NtTBSRJOPSgyVl1krfcUm12n6M0dQpck7f5q4Dzswdn5J7y8/IxaexvrsZc5ScCl4q9FzhyIQxgB85Jw8I1Wehq7xIoiq06TId3I0L4ML85us9Z7igB17nX9Nr8aOs/ywEv8tcyHFEhIHdVoUIpJkMTnQ73U2tuINwQAeWFmn3w4Qamrne1kOx2UmNr+NQPVTWGhIqBDiBpUhQXamTmiHoBotcyd8GWngDL/pROV+Zrcl334eu5X9C4fskWaU5tFGgRIFIuc3XzC8tBLfJZ+gVc+/YzOjSNis8d8PtRLgAaxjWOnkjq1WaRz+QiC4heYONjms6EXOOkSkP7ZQAdPX+ni8cApPjv7Amdmnwp7tusFp/ihE1a7XhaJXqydX0+cpRFs5Vb4Lb4++ys+feVlDrpaWe/1Xq5f9tcmA+RJODCvjqRj1lXtZc3VMR6qVUPVyfIiKkuc4TUeMkaEMhUiri5bZdjJIU0uKFoe0/REWGDcefHG2Xcy1z7ypMg5Jn6UMnkSjPIIC7caY5G3uMUUM/RRUE/iCkPqGbzGoDP9L5Bw836JuFOUWDPOQC4PtoUdqGU2HOsMqqxW1EH9ZLjInFOGWOCbJYWKkks81ZYYxcKYSsS5wXWqhBx7z4IwzQsd5DtrkDWVEfe4dU0OahkBxuY3z79ZLmG2C1bP7CL+1AbKrTPIfcbZ1waf2STZ36/yAeZtZ2GH3uOuwrpKskUpIk3OWSapEuIm17CwJrPnSpJ1Y/uIc0Qo84hRUuRcjWVgUhzBGt7ilmOqWW21S497NlhhWOu6XSWURJ3CoqCS7eaQMpBnn+/zY5o9jIXJ1o/5z4GESVzmjlPlmf9+lLLzn7eAT2nIzzqFjimUolScL/kwqy7ozULRRljhKre5zEf6OesjRNUx8YZUMVUjzDkeUSfgpLEGjJv34CdMsc6g+742oPgqH7DOoAJz3mZKQmVEZmxKxUHWmWUS8yk0VV7jN+TefSEMPUqy5ZYitESOoSbAD8V92AFqQAJqkRZCyycQgthaDfblfY51mQK0tEM4ewxFGOr9jMCB7KKWOKbRCYHPwPl470DLDnSntb2zr2cYQYx4y0AUKn1BIoW6/D0qx9tNGQ4gEqlzkIhBRbbHga7bIaALRT02oGURiV+vi6SjI12l0QuRgzqR+h51228GiOu4AC2nIB7Zhwa0ckzsbg1GZdstWaAVulvL1GItwg7bgo5IFdqggyocQCAEtECg5I+ppV/HoQynD7bk3CtQibUTPi7D55Dq2qYWbpVjqcm6oTYBiChBZ6gCz4AuGIs/5JB2wtvH8l4QTrVuy7KHsu9Tp7dhS46ZVmAXeFHPuQTYMW3JGISenEhRu6FjWwZeQEDeOPBUxj0SqMvf9JpRBkIQUFLXyWmI7Aigipo4V0MhgqUaiQ0B9OI9Jboo0lGoEklUIK/LNvSeeQIdxSpt8WfUW4PunqMHIrk6J3Hdxy6UhuJ0LFXl/oxAkCM5hyCEe6oE9uU+sON9sZSDpwKoUoV4vCQshFa5Zzq3K7KvuN4j29CyJWMXO6wQqAJtMh4vvPzM3YctFf8Z69zRX3KQbOxAREDRk7i81xhuJZg/hh49tify+Qp/JsbHZBBQrg8wslxAryFw8qL/DDRe1nstCBxDx0ZViv42vY4huZ+CrdD9eRkOIXig4xmU6xtoQCSsuqAdPfevwOs+43yNh2Tod75clnJp3SZjNM0yyVvcIknO2QYkyJMj6SZeAQOWaCjAZIykPgrc4PpzieI2uVpSmgEaJklc00LGOr7mdWpBHWa8bFLOOgHXmZ3nIiBdqgxpFX6IEa90HAWoXGXYFRIWKpElyUMNobAIefPrG2OOBkEnf5WCb+M57w/zuQSU6TDnGGlG5bfOsIQs3CFBnnWGGGSdj5kmQIMQVSqI54Yx/TY57XxexKtEGGNi4Fzhh/yAH/BDxllwckrziAOc5HiEVcw0eIh1AtT5gKsMs8pFNbW2e8GCGHbpdh1fk+nOMYEkgEkg0UP1SxxmlUXGXCcvT59jKkoozogriPMMMsiagnOn3T1j9gANAlQJc5F5V7Ba99k6ifNMuE6tWDuk1P5BjnGdIaKUeYPbrtttYO00dzXpu484+4yy5PxjxNtqhTtcURlHnTV9qCgRd0CXsVOtCLV7ygDdBcZJUGBNgzqMyWjBFTZOVvyKj+qKk/NYh1a6/0FMwpsnwRDrzmd0lCVWGGGSWczS4n3eYpq7TePdp8yAgOvOVgkzwipmnmzy35R2z09pp/nL/Pov/hW0B4AjoA6NXmg9gWLkGScUKJJkMP851I446Tmk5RBo7FPrPiB0cEI9ckjwSEMMwp8TOjjhJAQtB9DoOCawD9XeXVqOT2g93ucwFKajcAQNqHdvE6xucxAPEdsRdnnw4DNO2qEWbiVUPaIUiRA7rHDSCsGjI6gU2e8L03bcSrB2TODoMdVYK+GnxxA+pNZ1n1wwyQvHUGx9SrIEHMNuVxtttNB++IxGsIXQ9hH7yU+5WQIqUEh20n34mMCRJKMeRoIcsUrs8JDA/mOZh0P7VGJBquzRSoTOg1+xExMf6V62iWTqVNJBIgWgHRZirYwfHEkd0wACUOkJckSDztIT9uIFbmeAMFR7pNnKERDep9EGhXZ5sGijQOdTIHhMvVPm8VzPCa0U6Fstwilp6FV/2koiB7TBk54UPewQe/qURjdSD7VBpauVXXrpf/KYwkud9Fb2aCkj6pzIU/baO2jhV1SIMnMAT2IpXspkafQWCTSgEvsLbhaO2Uqc0F/YppIICnga/BH/ZQVaakdU47NstfZzk2O6D+TY2o6PCNaestveSaIEO/EOtR3J8JNDOddkaQeOj6h0fU6kiNQzgUOqPTWOW4O0V+qUIyFOaOGYVgK0EDwuEKoe03KgzxEHdfgXT/k8niTMOj2HRQI5uR75ZIEIIWIHNeCIrVg7VSL0H+8SqB/LfXwAW//6hP7CIY0YHLYfEzuARuBYnnUaR9C6TbW3lfAO1OPbBLfhpAueRboos8JHxyWOW1upcqjgXpiOwj47iQ6ypHhlY5X6KThubQHWCBWB9m3qbRDcha3kISFqdNVgO9RD4nCHjVtR0se7tBy3UAse0bFTlVo7hBzLwTHVWCvl1go9B7AVOyFGg2htn5bjIoEKUlMmjzkJPeOorYVQ/gTisBMrsEuDocIhjdgygT2oJH/OfB52flogXjum3PhqNHvPssITQq62s+RYq3tAmvWjLGG+81EqrDJMgLoCNTkqRBxQ5hKLWcCCqEJUmWBevffSDlya5q6yynaoESarajdjTJlP2wdc5To/ZZceF2Qxzn3yyuJaU0kuCBtwh25lI2W5yJwD64z1bgFvdrx9FAhTVZbejjtGs4YZZYlFxpw6wwI17zPOCKtc4Q4hag5kSZGlr8lbzWw3AMpEnF2XBHbVNPAqyQIX3N/WGeQS9xA/SIFK0iqFBAkKM9CmTMRZQxjrL82Wk2NKI1Z4iHbdLCFYmpp9pMlQV1moNd0NJDV2pI2v1YxJtSYDqa3nmCCl8mypIx+xyohjCZos2ZJdzb/UGt7XuEmYKrd5g0HWGWXJybRBmLj3mKSPPOsMOqWL+brf4TIWdpHQaxqh4hqgktodYZZJJPxoxF1j8SScZpQlV9/JM4EA3edYcn5zW/q8UaLDga/GPrRQTgMK+/R+TpDndVVG2bU0C55HjLoGr6lyrL5MkXWhbUEaTPPx/whgi+hn0+zN4pQwaxbzxBzSOtOATQOYjeFnXtDj3Ocdvsc49wFpUJ5h+Tf6PvliAL0W+M//t8iDfqIs4Ek1D4+BNQQI6QLSJ/BXgJ8BpxFgowvxKUnrzyH9f0aXKch7n0128vKnz9DUYnnVgWXgrK73QM9QDXVZBlLA2bps70DWOfgbrcQeHgs49xCYfCQ/H+p6MeAekuAV1H91XV89WpgFflePLwd8Q9f7WPc74fdHFzBRgwfw7HsNXvjfA1f078u63reBwomAoBcRecSBbueh/jwNfKj/JnWc7O8J/TkOZMrwsm77e0D7sRxvUo/7LNCnx/amLvc1YK4GX6/J70X9Nwm8r///GgIMzSNjVwDO40HPXj2ebT2W39Vth/Uct5F7IqHXd1Lf3wCuA+8ihemQbvdjvZYZPeaYXs8NfW+i5pifpGBvsk7o8Ij2eXj6epVTfwKc0eP9hp7HEHD6GII1+IWOSQfwKnL/mOnvmTx06/IJ2H79mN7/hxzX59+K8eKDqlzXm3p/TOj2J+0+kWKGsB57Ro/DxntBj3tK13mM3EddwB+cyDWu6zU+0L9P6vl8qOtlENDwdR3v5LFs+1M932W9JjFd74/1fN7U/bc3ne+a7su+IV7X9+zz+FCPL4h8bmPIvRZrOpcE8Ev9GUPu16Kc0z/6rxAQ9yvwCtBwD+7G9rLY9wE2iLNPkqxjbJgx7QgrrDFInBLjLJAlRUo9C21C9wBZihBVvs+P2aHbSQ0rREmzhQU0GNBmXp8XWHCTKuCAPOvWVQlxgQXqCmgZDb+gnpFSmCRZZ5BxFlhgnHku8gYfMECWW7zFOAtYMqNJC6JUuMQ9zIS4qt3YfjL0KXAYZpDrGjc/xDqWMGoJZUEarDNEnBKrjLhjiCM+bwNsskM3u/Q4CYsVna8r+HKFO0Qo84n6flhIktDufXT9MKtOWnCNm9oBjjrAM0qFi8wDUijMMslVPnDFZ5IcfRS4zk/VaSXk9rfAuDu+MhHe4DaWGGfSiIr6iYSokSPpghbk/qozwRySuiaJuiLfEUDwIy7Tp+c1z0X6FGQ1z8YcKb7Du4B0xTOkHTNzkTEs8U787+LOu0/MsU9jCV1WtJsMNaueKhLaIenDJocR6YVc9wZBCvQxruFRC4w7aUVNgUwrgqxrnyVJH2J0b1JzgElmyZJiXlkBdk+aN49JcRoEWGBc5dkBxxAEkeyaf4mwEbccC1I8YgYwP9kVhl3KtMkzjL24yWnKSBq1eaacZ9EZQZuf6YayLaLWSfkyv2aAQWSuqkOgHShDd6gMz6Dnr+5L8+8JtPQg88YBhE6fwAYEd3Q7EQidO4GH0DIA5LTJeQjhrmMBZw6ho70qTbQyBLXOiL1UgwIEdd8tVQi/dAxAZ2tFGpE7sg+6oONxVRqau0AvhOOiIuAQQh0nvBTLwjokX9iR4w0Lm93m6kDhBCrajE3IthM9e9L8e0lSQSMjdSKzdalzskjd86I0FiPHdalznkEP+/Qk9+UY9yDSrQ2yEoyHlmR+fQ34FXAMkd+uE9mUZTpDov5gG8ITWgOeB1YhEIfk0I7UUtqcoyINOiqQDOzIXK9N0Y5AlY5GVeqZCjIGeWBAVDfsyHYisTqRwzwcQOLsnrsuZOTa94zvQxa6Y9JQf2kwC7+CwKEef2sdWqG/Jw8bEBmtQwgSD/fglOw73HLMYPpzGZMO6NivyrWqQyKxB4fQU9yHHojVatADyf4dOcZ9iFCX4yoCPRBuPYbSMYxDbKsmTebTyH1U03MLQqSrLrVYK7wYycm1z+gyL0Df7SJcQmqyEvQP5qVGziAN/M+ANugfEeVEoAixUA2eQSCt12FHziM8eAxP9B4uQUsEkrUdaN0RAkTwWFRFp0QazVPoad2nZ3Qf7kLwDFCTzxAdQDcEg8Aa9E/n5Zi3IFmRxvBQ/Al8DgQg1F6VsW0DohDel89KuOeYcG4fItCfyMvn5al+PvvwTegShAqiKKILeuL79DzZhygEWvU6d9fdMROBUPaEr8LrU14hSYUsSRoEFSCp0sOuMvDLjLDCDt0USLiawwCEGaZc88985/eJc4UbWAjXOoO8wW0qyljrZgcLNnvEOYZZcR61VlMCWHhTQUMcABf2YMuYxFLkplt0s+NCAsTbVupZ8wVdYhTzYcuQpqKs/xFW+THfV8AnSpx90koxFmf3cSeNbBBwTT7zHE+ToV/lm/NMMMZD1hmkTJT3eYtzLFFhV5uzMs6WYl8hyhBrxNnnbd7lA65yl2mucRNJXh5kiXPkSClzK+caqHn6HPBkFjIrGsIm10S8xM22xsK9VhhxTC4JxhTQb5Ex5pjg+/zYyYonmNeaqEqDgPpL77qGNuBq3nWGeIv3HXtNvPm7XeM5gnhFZ9Vn39iLBtya7PkSs3QreGaJvbBEgyD9ZIhQwYI/JQwy4FhlgLO1SZAnTskpZSp6PGWizmbFwGPzcE2SQ2Tdcq0uMseOgmPSpK47ixd75ZrsfMx3eoRVZVUKseATphyBwgDCBcYxj/Np7jLOAkucU32KMDZnmNLgjCEC1BnlETVC7l57xCA/4IeqXgmxzhDT3MVCbCKU6VNlmo1/mi3ucck9Pxij7w5XsABLY8WKV+Au8jD9b399MYDeLgIO/AwPeKWRCTOJB5yqyCT4EM+cSus68/ozgweBwgg4AbzMMykOc8AAHgjKIWDMtq43pPsd120WdTt1BBw6VKnmNgJ2GKCxodtIAB8hRdZZPOBo4N4GMtmf13MzUCWn+wniQT4D9iZ0mUOhzRPQv23j2EzMoYCoLMcBHkjc1PE9wINZyraCpvP4hu73EAGn0OVSsu7hNyS9zd0Fm3A4Ae3vIiDPuK67odve1/8bWFzAA6W27ZzuO9n0+zYe1DtArvHHOmZBXdZAvl/qeH6s45BsWtdYfXXd7oT+bOgx2LX5hiwbmGgQ0Ou5S7ckdmV0u3+q2z6PAFVh4BoCRtWla97yELnmOb0OazhgubfrUI6rYIlu2/Av9Vhs7Kt6ftu6jV7dRruOV67p+rX7MTh8Fdo39Dpn9ZiyyL3/ClKQqXTHjckmch9N4O/ddgSITup1LOg4TekyRV33IR7knEc+T1U91gP9/WM8WzWm13AZ+ax9hHwe2pHP25qO156udx3/OenSZQt6vl+BV5x9DnXyWWCcDQbooIQkxQadhMoKoApR3uAD4uwzyyRxStzkmgPGrJNkIREghZUVGmOa7DrFDDNMYYmvZv76fX7MLt2EVbIGYui7yrAWQ4tUCbOjbLEO7SCaZ1mcfdd5W2QMCx/oZlcn+X0KauwszCTvo2JspF26nTnuLt0sMsYl7tEgyC7dRKgwp8difhtmMCv0/h3WGHRMMpAi0xLArQNtoE2AugoG0q4Da11wS/KyKPtmk1szqX3EOUf3F9ZZmHkmsKRwuQYNV+A2CDDLpPP3EJgywQUWmGGKTQa4xKwW5lk3qY+x6MZaWJsSamJdXdsnSOLkZT7iNldd6Mqwmvxa6toIK+q/k2aVEdcdj1JhiVEF3bxfnAGk5tsyyyQ/4Ifc5JqT4UgCV9XJV5Iqb7X/V4ggifGS3p4l6fzqrLi1sAnz/bTwi00GnJTV/BsBJzGqEGWau1iy+zmWSJJjhteY4hMXjmFylKqyH+wzYw8Jxk40oNDARgPHAzQY4+FzZtCDrLFPnD4KWoDvMMIq7/MWlmo+wTyWwrfJgKYKiwdckhx3uIKkromZ92XuUCXMBHP8Mf/L/xm+jf4dv9ZwQIGbK2twUoWWNqQhpqz9k1/JKi1h+X/LS+CsZHoQkGELAXYe6vZeAZbwwFE7AsQc63479O91pMGWR+a1GAJGHMu2q38B4XZEbXCCACvHus0SAkrmEODC5tIIwoI/QOa4mqxb+BUkhnXdnO53Tdd9iszVed3unB7LCTLfH+ObmFU9l00c4EYvvrEsRDC4oftCjy2K+Bq36r4i+v8nuswT3ecznK8efbo/Bax4CifH0DKs7xV0Xy/ruR9CY0MOlWMdrwSwouf7AgIgniA11S5SG2WBRd1/C1LTt+GAT+pwdABtL8FRBtr6dBslPY42vRYf6j664OQhtPTqMp/JGFWfwFEDOpI6fvMIqLaq53sMjRwELuh77Ujdta7n36PnmdPxq+tyNpbo+MdxzwAnJQGzXPO6HbgPdEL5zyAa13VXkRqtodegXce+V/Z5sgktCv5R0OuZ1fHXY2cPGfyC/r+OfC4+0bG+CwzL3xqfQeAlPJNzRY9xWcfWpLrKpHTnv4lTtjQOdBumwNjU9bK6DeCkDi1puTfQEA/WdIx28M3pLv25DoSgsYOvkb/kr0V+i5f4c9fcCtJwTSdrMGUVbJtk1kn0u9lBkjvzbr605q7JUc0D2WrLChHuqZzv9/ljZVPtukargQ/GTDeWXJmIM/u3xp6xAU2OuqZM+E0GqCD2MlKHDlMizjwXnZWJSQmtiTzFDHH2uc4NEuR5xKizIkmSpUT8OeDHwA+Tm4q1hghMbQ42xtmb3GILCbqKqCXHEqPc4QrT3KWPPDNMcZ0bPOKcq0UtjGSGKQZZc55q0pwUi6YSHa5e2lXAdZduvss7gITsGKhjAKqpFiSkbc01VU3K2yDA3+e/pkaIXbqpE6CKJA73qKzVGrlBJAAxTYa7TDtGmdWMVneYNYo18wskuMptZphyDVLzIwxQZ5VhV9MBXOYONWULbpHmde5yn3FGeYT5ZDcIKoAaYUSVI+MsKNiJA2N/zPdd89j8oCWETlRKk8wyw2tc5bZr1Jv3nNXS9rmIsw8ImFdVgC1IgzkussgYSbXGCVDnfd5imFXHOkxQ4Md8nyxJepSpWiPEoloeiTQ9wjt8j6RKby2QL0CdLAMu5GSATTfWIEGB80yo+qWfUR65Zvw6Q1xkzqmMupEE54vMaSN6gje55Wp1QO2Ezv5G3ydfDKAXRSY+AwyMlWbAxRoykfQjk9CB/svhQTPt4FJEJgoDRgyUsI7aBjJRNANym/ozg580Arp9AyiMJbgM7QYK/hyZfBZ02QIeiDSwzd43JthjvOTXgKxY0zpWiBnwYuDLYxmLWEa6XQ60MkZXBilWX9X9ndX9Z5r22YlM3s3A3iGeJWcsxCIy0VphkZN/7Q/1epjcIAvta3gwVLvN7joWEVDG/v8AKbys0Cnq9g4R0FD3466FsfzCerzgO5aTup5d2zC+MO7Qfdk9AXL/bOrfLwI/RcCkum5nFmLfUKAWGKhu+uMxxqcBiF16HAbYJRXMW8MXnWd1maruewC5pzbh7PITD7o28CC0XQN7CDmLFNsqe6Egx0lRx1E/K+32XrZp7O3e35Ljc2BgGrkfAnqs53XfswhA9xgBYrv02O0c7B6z9+1fpmn7Mfx5FfDFvgGyBqbate3SvxmbtBcP5m7g2ZpJpNj+igB6W5yiD0kvfF8ZazIRbzkp3grDDLFOHwXWiGPpzQa2DLLukrUAB36kyJIlpZR/CcGwNDIrEGqEqBNQoKLuippB1p38T4yWAy7xUFhLwizbVymsAUsm37V051Eeqey2nwpRqoQIa9GSVS8880BLUHCy3l26ucgcBfU/kUTrqpNejLCqXiwip4io84sUOz08YpQOlUdKaId0BY0BFqDOOAsO4LO0rAnm2KUHM0xeZIzv8C53uEyKLGYmPMg6SbI0CLrEr1GWnHRUktdXHHVeQCNJFjbg0go5K3TqBBygaN5+HZTYUmbdOkNkSaoP2Bz7xFXm2oOlu5rRboOAA7gAF5ph6VsfcZn/mB8iHotr3ODbXOYjx3jL0M/3tPgUT5Yh9cKLYBJue4gw5iPAHS4zyhL3Geci84ywyh2uMMaik+yarPom17DUepMNBxQkls5pwRXRwjzdcMbAErLxMbe5SpQKlri8wrC6/0hadESDPMTnMUmckgPW1hgkQ9p5rsi5lp1cxiQQFmLR0MLcGJDiTzTlWLKWivtd3nFG0Oe0cy3M2j7XiRVPlwtORrWjULTIcTL8mN/jDW4DcJurVFRS/aV+heE/j8NJDlpiyBxloMAA8CEcVaBtGAER+oFtBWnOIs22IrRc1u1tAr8F/ArKBxB9A5n7hkD94OHr+t4EMjca0/20/r4BXAX+ULfxXTjZgM+34aX/ha5rDcckAgad1+28jG+2JpDaMYI0RHO6/yfA/0r3My/7Pvo5LqmU15G5M4bUB2ZTUsfXtkcIENKF1CW/g68XmxrkJ4+hJQGMye98DamNQGrFIVx4AS/o+QzB0UfQFkdUCA1d9nW9NuPIfG9N7DW9VnsIgLqp45jAq2GO8bV8QMe7ruf414F/ott6DQjB3vvQmdb9x/DNwQ3d7ll8U3pb/2aN1jZ4sgcv/a91+TY9xnH9/Xdk/BYzMPYt3Y7V4gZcHupYFgX4azMlhV3D1xDQsBWvHgkioKCpgLaAKdj7Q+g8h7NkIaFjGoaTNmj5LnJPWe2dw0nQj1qgUoTOLn1vEKnfrA4u4GsyGxP77KiiYu1HMPSq7jetx3+g47Gn4/MynMxDy6SefwL5vJ1F1Bvv67Xdwzdws7rsX9XrvanroGOXhCf/Dbz0Lb1GAThZhpYzukxAx3cL2hK6zs/wCp2gjO8/CsqpfxVeb3KLeb7OIGtYgquxqmxufJNbmJn/KsNMMM9NrrmgNbPGMIlfgAbv85Y2iCvUCJEjyXmVI5oaYIxFCXgh4eYw28ai2noI01wY9yOscl6bxRbuVCPMI0Y1RV6SdsXXeMjVnZboPs4Cq4wwzgKzXOKCNqgL9LFF2gWySVCH1JurDHOZO6TIss4gC4zzHd5jiXNuDJNk2eS0cwU0gAwE9KoTYJExBYumGGSdt7iFefzZOO8o626c+2RIO/uWitpqDLDplCILjHOJWWdjYoqFYVa5zVWmmNE6UGqOUZZ4j+/QoeBfNzsK5q1pzR10XtnzmrB7jZs0CDjgze6BFYZ5nbvOWsQ8jEdYccw8wIGxnzDFNHfJ00cfeQIKGhdIkCXJEOuEqJJmS2vDfUcAkACNugPerIa3mlNAt2HXHN3RJqqpNWyZBfrIkuIH/JBRlrjL61hAmfk1Ay44w9iV9vzSXF+n2aJKyMmVzVLGGrJ95BlliS3SvMYMW6SdrNzq+jtc1meNmqqfRPFh/uPv8R0uc4c3+MAxMOOUGGRdfb2l9jbllKUWW3rvDt2U6CBHilEeOcm4aIxymBf1AuMkFSBIkOf7/Jgf832muetA/hFWKfDKb/R90vqXL/I/4fU5HjBJ4wGUIAKgGCD0KfKFXkQmiBwyUf5p0zoBPPvOOqHbyKRmANcGnknWxKIiiJexvqfrFfHMIwNK3gX+KTIpriGTljHLlvGg5CwegLKJtQMp0v6ZnsvPdTkDP2LIpBvDy1P/SP++oNt5gJcKf6zHAFLYWfExo/uYx3ev7Fyt+2edrnk9z583LUPTGOd03/8C6Yh/igA/HUhBWdfff6HbMiC02vTTANUF3f9pPccuff+neJDMAFYDOK0AtWK1gMg/b+g2mkG3e3ocxqo0kCyAZ+rdwDMbt3Ws2pF77VCuS+xPjuVYepuO+QG+GN1AipgDngcTbXx/pmM4pe/beq/qWOzpuRtwm9Ox20YKvTXkHmxHHgYMUDNm6sdId/5neJm2jbcBrlU978d6Dst6jtv4wu3/osfQq+Oc1mO1cQvq+wauF5H7vogUrHa/ZvH35iyeuVpHivFZPcc/xYOPa3psBroaS9XumZ/rvreRb54DvhKvCBXMJ+Pv8EdYuMAga05CusAF1tSTYpcex6gyij/gaPyzXHKSvTx9lIhjiaKW3lcgwRwTjtVm3Z5vc8MVKvaehQhEKTs5665KVQsk3D7Mey9MzYFPQ6y7TmtKGW679Dgw0WQLg7pcVWWv5gE4yyRJ9eC7xVsA5Ek4H5S8dsTWGeQel5zBbZySMsYKjpWYJcVVbjftL8cIK8xzkQZBkmTpZsedl5mITzKLeaZ1UFJa/RI1QiwwTo6k68BalzNM1clHLXFLDHHDrnO4wjC3eQMzj65qB9A86yJUGGGVBS6QUNaX+XRkSVEhqsWtSIbFf67EoyZm3Q/5gSs4AogfyiJjvM5deth1IGaBPieXMWmwJOkO0iDIKsM0EH9EMzu2jrZR/0vEyZFknAV26KZB0DEdS8SZ5RILjHOXae5wmZyaDgNaSEmaXbO8W/wOJamsWwN97B6oESZMzR2HMeXE7zBAmi2G1afQTLfvMu1CP4zxOMksg6w75oOxHxrKJPiIy2wywAIXHJuhQZBZJl1HNkyVdWWEJiiwT5wgDQf6lYhzm6sOCLfO+Tj3HVhoHXYDxd/ifcxzJ0qZb7lJ5kv8qgBvQksQmX+s0RhG5p8GBAOgt6i8qtAyDkcfI802U3dYnfAvgS6Iduk2knibB5B5zFhuMQTkSuDBPW3UHlUhEoajfwYtXfBSGviR/v00fk6/jlcbGOCzjdQpNtf9CN9oA5SUIMvPQlsnMu+aGmQN+FiOwdm99OLruiGkPkvg69qE7rcDVxu0WB1mTbgF/ftpBEizOuIQTgo4NUnbK7K9E2vkgW/a/SlS95jKxZQnIHN/r455b9OxWRM3ia/ZDbzSOqSwoNurQzym5zgJBbsu1kQ3FUhMj+Nv6DYSuBrzpSGkfvqlgEi8qsdn9eh1vMtpQY/RbHEOENBXz6ltCF+fXdJlbkJ2Fg9qntbj+pYuu6fLtsNRXZdL6z7qeq0PFJR+gK8B63jgMyhA4l4VCo/xQHFAl5/Q42+HvZxeuy4ddxAgLqzl1za+jrd6zJqxCti22Lg+Rj43RjYw65kZ/LOD1Y7bSL1dlX3vZZDPkyp3XjLgNgCMQ8VUQ6/q9jugLdY07kl8zW3vXwDFJL70r6qyvYZYJ84+81xkl243N3az68C7KGX69YKUiLOirPgoFSfJtTRQaWg2MD9hA8lS5AioJNYYXcZ4ksCKpANKoioPlHpHQqQean1o9SDg5K+SDNtgX4EXUw1MMssYizS0mSkBXquudjK7jqrafZjvsIWuZehnkwGGWcVSXNcZcoFvF5lnklkmmCOk87Sd24qyzIxFlSTLCsNkSToVgakwPKC5z1VuOxZ/ngRXNJxBmIx5xlgkRY4r3GGIdddsTZPRWmaXHmVlhamyxChVwlpH9mFJpwtcUFVCv/P5HWCTG1xnlkvkSSBJsHny9DHIOt/jJ64GNg88uy+SZMmSdKy7NFv8Hj9mkwEaBJxsNafLRFUJE6VCjqSa8dQdSFkgwSNGucu0ylNDTupqXnk7dJMliQU+RKk4tl+KrAJf91V1kmSBcab5mB/wQ0JU9RrsUybiVD0fcZkyEZLkyJJSBp/sd5MBZV2Kv7V5VJsiw8bC1C5LjKpqYwjA1ctv8T6/z3+n4GCfezYpkOA7vIf4Q3v2al6tkvr1GcvIAyU6HPvUnssEHJTU45tcY4URB4zf5g2ilHmbd7nELKuMkKDg6n3ZS8E1fstKZfhNXl8MoGedxj3gbXzRM4sHAg6RL/0HSKFgTDClmTswyNhnVbwE1thoRWSS6cADdAYgLOg+PkQmul/gwRkrFh7ofj7U4/tQt2fbKACPdPkhPC19T5f/VH/PwNEmAq7sI5PUY7xPWh0Bah7o+zbJGYhiHWVbdh9fJBzqfkyyWcV7ES7rMYIvTq2DbMWygToNvGTXgL85PKD2AM9MzOn2jRWX03MzQBA8GLqFL3SNrXUGD/ipX4qTdmbwrLV3dZsdemx2XI91m5vItTbAyxhlDYQBaJ32AlI4nUXuKZOoNh9vGA8mGtC8oO9bx3pZ3/sZAu5Z0WXgngGAxrjMIODWgo7PvG4jiy+E7J4427TOL3TsunAScup6XsaYa0eutz28FPDAW/O9ntN9voP3tQMpxs7ruhO6/kM8K9CA7hy+yDdGon32tMtKXbcV0/dtO516fF1N6xn7dBbPRPwlHiDMICDyU74ofvC/dy+Tbpr0EMRf7A5XmOei0rKlgyMU+DpmXvuoyTh1mFW62eUH/BAz2xcz45BKRGUiNiq375iFtY/V4fwgzqnvygxTrggsKUiRIa1dwZDz/prXp4kADS5zhwz9dLNLmSgWlGAR8+YVaH4VmwwwzwRzXOQ93laPipoDckp0aPGUp6Dg4R2u0E+GFDm2SJMnQZIcs1zSAukcVZ38r3HTJYDNMMUwq65zlyHNBHOMsMIV7vB9/pXrUhpFXs5DIuaDOhkn9YNk57TOkJM/3OA6P+b7Cr52OyDNAiKsS/ptbnCOJZVv7LsCTMyMc5j5swGDNukLNX9QwTXvH5ciS46kY2tGKDv5tKUnW/fSvDlAusNlIlzmDneZZk2LowZBNhlgleHn9pkmoynLBbKk3Pb/W/5TMqQ1NEVAzareI6Ms8Tbv0UHJMQ0sVcwn9sm9b+O2S7fzMAnQoEcLmDf4wAF7In+uMMqS8za0+/Ym17jLNGUijknQT4ZK031n+1llmHUGydDPB7yB+ARGlG0qUnAz6M6QZp4JLN13iHVlc466QneFESzE5T3edp8NAXGvkiXlZDDiMRNkiVH6NM16lCXG1WzUAPdt92T+JX9ZvWVWIHVkvtMmaIuBcSbRUzVE0NhfAX3f2Pjg2V/7+JqugdhoFKFsTUUDNwwg6tXtZaGtV9hER8aMq8OJNYoLeBadAYMGqGldVd72xz1jy7RD1pjsP5ddl20dVdGc5PQYhhTsMABvW0HM5abjPdT1lvGAYBJh0zX0fA51Gylk7u/U4/yWvn8IjAugc1LQ9Wzsz+BUMScFPPDyrv4zsHRbt7um/87ipctWAxZk7JY/xdfqVTj6b+S8E5Nw8kt5ryWJY/Mnzsh+ytb4fYB/FphHarPTCEhkTC9V2/C7CiJ9DQFpN5Ga5IaChvN6/U0dYM3xV/A1bRdS76D/R7aVSgq7jF493/NIjf5Y/80Dv4DEaV0nia+l8O+dWL1ooKQpLYZkjF5KQm8XHgyN4evfSfkZt8/H63osZ3G1+tlX9dqYQiKJ3Ccf675BPidpYbvSrstMwt4ClFV58yQHZatjTenUCSf2TNYPnUl8jb8t8mg+xTXxo2lhjbrntQAUsnhFipE17DqYOuQrAugl2HYNLmumAcxx0UkSHzH6XOiWGfwDTk1gzDxTW1jT2GwmmpPd45RcwFWcfcemEsXEPOLHXOMSs1hYlNl83Gccsy4xhp2oHoQRb7VHlIqkhyt42NDaSWxZfFLpIOtEKDtvPWNqAY6RJ8mvITceVnMlyTHBPObJ1qe2F1HK3OItopSdRYjN9ylyLpHXPJIHWaNAwoFpFuKWIM8Kw4yrh/Q5Beri7HOOJRLkiaj3XaAJuDS1C8BNrrHAOLd4kzBVRlh1tXuKLJf5iDA1FhljiDVyJOlmlz/gD0mzRZCGS/C9ygeusSrA5mnHWrPnCguBWGDcyTlXGUGkv3n3HJCnTxmNZQeibajdjIWUhagywxRzXCRAg252Oc+iS3idZ8LJkxcZI0uKHnaZZ4IZptilx92L+8TdfW4N5lWG2dcaC3DNeXsOEeBTniUiet4S3LfmlitoENwmAy6YxQIt5rhITlmjCaUmmN1LkiwZ+qkRZoBNRpQ4EVY5eYGEGwd5v8ooj5ytj0mwjXhRUYn5ABs0CLhnKvPCTpPhEvccWGef9T49LmtAWy1ofnxlIuzS47wO/7LXFwPoreLDKv4YmYAf4oEsA8zOIxNPHTiHfJl/igfvrNBrRybG5k7THgKkGPBmTKakLvMQL3t8hJdnNrMBrXtVRDp/7UiRZMCXvbT7BLKfo3ndXi8yoW5D23+MB0bCeE89KwTtXxAv1z1Aiq7zeOmqLacTt+uW2lj0IgWYMa6Mzm7Lzevf7GcBKeoyeNDGgJYz+JAEYzzatj7GFzXGpDJmXFbX3+f5orhX//ZLfMFkAJNN+l0ICGgAXhgBuMCzt2xf+3reC01jYcXvYzzjL4aAcMs6NnbcZ/FjvYwUTMZWM1DN9rWNl5zO6/vvIPfMY6So7EXuZStgDUxu6DoGYposu4rvatr9bNKMXnzIi93br+jYFfGdYCukknpsDTxzr4EPsjD/QAOrB5rOw9h4JhlP4NlzRR07k5G/r9sfajrHHN7D0ABFk9basXfp/mxfJk029qABiAlgAhrWtf8KvLookidBlIpjZ/UhvhpX+eC5ZFHxeHiEGeDeZ9yBE+aNUSHKKEuOaVTWzo5NqhXt3kWpMKSF2E2uMcIqIWqkyJEiR4gqCfJkVaZoXiAhakxz13mgWCKodTA3GaBHWWdRytxj0rG4XueukwaYh595/U0yyzAr/C3+OSmy9LCrVP19Btjk29zA/CsS5JFEN9+VrqlJroFt49x38hHzL5HOaZZFxpR1NQ6ABT2YjNgKwkXGuMk19WPZcvKMDP2Iz0uOBkFlFAYd02yCeSqIObUVlXH2Xex9QKUecUrsE2edQZXTpjRZdc11ua0rWCDxnDTUQCOTiEYok1eWXo/KRZcYZUULNktONnDVwK+PmSalnc47XHEd7hxJBtikjvjDiS9MXP1o+lhXSYd5jnyH91zn3FgAUSqMc59hVkgjUptZJqmoKDZMjQpRethVZqHcn/ZwMcAmVULMMqkyBSnIlhhlgXH+OX+TAHXqyqZLkeUek0RVmhGlrJ+XGne4TJotIpQ1hCTPPBfdGPUryxFwTMiEFvwAQyp7Mm8UY4F+xGUXsmL3iyXxLjHKMCsq2NllqCmQpJ8MI6w6oHeCeQfidbOrXWzxPawSpver8IV4Acfmf7KJ1F1VZA6ZAIrwxOaJjL6nIFSLAS0HSG2wh9SZKSgb+GCNuV68ZDMjwAJFZW+ZMsIaY2eQuSoGvALR87haq0WBDgeMmBrCrFisJjmv6w3J+U19UySNRz+C1IAAJWatEe3FhVSVtxXAtLrBagStDdquyDERQwCsPTmnkzpeWWC1albPZVz/Teh2HiioMq/LxZD5/Cy0vC5jW7bazGq6IrS8qe+dxdcdKMhoNh5W/5mKw2rFsJxr2cAsO8aAshPT+Nq1qNf1EA/QZiCqNW05o0CRWaq0I0QBa8hbPTuu61ntE1PprNb3Ubt+QVyY19G8jtMMHsA18NTUOmk9x/PQ9jouoO3kJsLK+48Q4DiJtx3pwitIXseDVwc6rmf8764ONEl0WOXoVbyCYwivRrqu3nRv4lmiKb2mD2R75U09x1fwaqGi3s8KFvM13c63gL8n2+pMQ5s+/0QCUDoQObRr+mf02NrxShgjDdRhT4FCOoGfwVFO96nXo/wAEheRe3UcX59bPdwLJxnQjKMv/SuijSsBCUJUiLiGbIQy97jkpKqmfjDmldmUbDJAgT6muUucEimyrlkZoupsHqqEnMIhrzLXDP1EKTuml9SHWcfe6tE5bYBNBll3vrwGLKXIMsUMFjgWVQ9b+/8sk1hiK4gtiIWfRbUJZ2m3Iapc4Y4LvjBGmflAA65eSJGlORV4gXEkNC3FGoOsM8hdpikR5z3eVpVFD5sMOGaZBTn0UWCRMXIkGWXJ2c5EqTDNXa2VxMdQmnodPGQM88izOsuAxWa1hM3xI6y6OmOauwyzSpWQtnlFuryhwJbJggPU3fhskWaOCVU+JFnkPJPMOiXDBgMuqKRZTrvOIFWtPaJUSJLjbd6jmx0iTRYkIEFxl/kIwLFGBVjMYCm+YvMj9fcag1xknou67Tgl5rhIkqzKoAfUSkU8lUFAYxuHDGkX+meyWoA7XOH3+LHzhKwRUgarqGdqhJnjIoOaGjvDlALbp5XJuaJg8Ro7Kt1uuLpertcmp1lkjLtMA5BEwksuKxPTwiseMcoNrjvCwxKjxCkxxQzms2iAroGO5nM4pI13U8lUlDRggO48E5SR5OEf83262cW8FHMkES/tHleT/iavLwbQs0kti/cM28aDECZn/RDvl2ceEAH9/ytN22iarJ1kNoYUWpPIxPmqbtPAqQSeVdeBBxVO6/oBZBI0xt2HCJhiDCyTYpzDd/82gTNKybei5MOmZcd1+5/q7zO6/yF8Z/UsUkCYFNI6Zr/AT3DbwB/yPNNpDe8nYiCcAVr9OkZVPPBoEsgG8H/D+26gy6bwbEkD14bwE+yreOC1FymgwnjALIzv7BkIaX4eCXznFN3GNby0ALxPSgzP0DS6/hldv0PH6jxyTzSaxs4kHCZ9tS7prO5jDxf+8VzgSJduFx0TY7UZgPh1XcbGdg9fcJ3WMR5A7uttPacFfPCEgXBdyD18qOc017TdCT33b+GTiU8jXoBJ/f09BFS1B49NPFv1AH9PWpFnsgwrPueb3jcmo3WhbR0DmA08TDadR7uue1b/v4z3HbJ9HyD3mIG26LaNaHKoY4WuN6HrPIDAKdBn6y/96xkvkGbLTfiSnCoeeTbZWLdulWGilLnPOGJUu0qECm9wmzJRFhljTQE+o5QDrmM7ypIzxLUOW4EEFxVMEJZTRJluNRddb74a0lGLEKJKhjRvcNuBazmSDuQzI2bzlbDirErYUeRvcN11qypEWGLUyXI/4rJ2BJN0s8M4952MIEBdO8VJ1hhklx4nEy3RgXmfFeijTBRL2epmVzuLNZUpFLjErOt4mW+LMav6yPMmt5CQh5pmlhV4k1t8okCkFZZVQlggiElF8iQQqW5d2ZXiVTOjibl2fYx5F6bKVT5gizTrDPEJU2xp5/QtbqmkJE9Su5JmMm2TubAH81jy2SdMEVXwKUGeu0xTIMEk90iRdcw7o/8bm9EAU7tWAl7tk6Dg0rUAl8RmyWtigC2ybwP5MvSTI+XAyr4m5kCAhhZbIddVztDPJTW4lrTaFAtcIEWWR9o9zZJkgA36kZTlm1zjJtf4I/6Ok97Y5yZJTtdJ8R3eY4QVJxfqoMT3eIcEeQLUuc1VlbiGSZNx16hMhA+4yg7driNrxWKVkDN5FqNjkdsIYCnnIOEXCwSou3v8GjcZ5ZGTNA+wSY2QY75mSJMlRYZ+xlkgR5JPf0OflP+gXw9wjbyXkviaRRu+JwfwYi9eXphD5iSTjMaUITQJ/G0cMz/6KkQnkBrmOs+zv43t1K5ghAEcBV3W5kizKTGFRBWpId7EzX0ndbySwuZ3swMBmcOvAwkBINsuAX8POifEn48s8Ls45nzU6tgzepzXdV8G6DT03NO63wJk16Dluh6PSW9NaVCU8eBDhAn/PjAFLdeQ2shApF6kpvhUx69Lf7c6Cb0uD/B1idZqbf26jzUZU2swHxkzLomrQ6JJOPsNPKCVwtfyD6HlH+j4NrP8/kD+f6LKmGivgoC/1Pshq+cVQ2ooq2EHdDtn9Lq8rWNnSgbz80vqe5vQZvVOr4ztdrMFicm0rdEe1m3+oSzf8jWkTjPlxR5e5WBKkNN4j0SrM3t1WxNI7W5szwGer6df5XlfbpMz27gf4r2O7X5WFqqBcuzpPr+t42sEgtPAn8ATYz8+VrZkTFmiGQHeUq+qtyH4uhW8xcsQ8hlUUDrxpp7fN+S82+y5TuvG6Ks6rh3I/WjS5Q2cR19LGJqIWl/q17Zaf3SzyxqDrDDifFoNCMjrMsaEz5DW0Ip+GgQYZYkoZe4yzX/P3wJw3l7rDGFpoTXCDuSqKKvdpJ9iszHCIufJkCZMlQXGnbrDGqYWlJAk5+Sb3eyS19CJVYZZYNxZVVzlA226hl29tsQ57nBF66cAFSIKgoRdAqkpTUwyW1Mm4h0u0yCIeewa2GfWHn3k6WGXt7hFgoIb2126XQ1qihmrjUUOK45q6ww6eaMx9UQdI0nA4ukmibAf8AbzXFSQUNJ87zLt6posKd7gtspCq+Q1LXiJUZY4R4MgWVIkyHOZj0iTcU3gMhFNlpXjsPRWszipEHVMsSXOOTCsprJl8WCT9OQUOUZZclLqkDZZ1xnCAuXMaucOVzDfPlNnhKnSR4EMaVejZUgrQUDuk0lmyZJknPukyBFn31nIAI4xOMojzBO8m13MpsT8u6uEGOc+DZ2EDCidYQqzeJH7+z7mvT3HBBUirklrHs7SiH9EgwArDHNBQb4pZhhlyZES+igQpso9LrHOoFOLmGz5LX1GEK/AvNu+NaSllhbZbpotF9AyqEC4eHZLwIkdf4Y0O0qOGNKgjj/i7zhPy5DyXQ0U/ZyXfqPvky9G9BZGJlrtJvFLPCASwxnxMq//P4N4jpxFAJUNPDhnkj4DrIwdZF3a5uInjUxOJguw1z4etJjQ99L4ib2AgG9hPAhibDjtqpLQbRjIYd4n55vWS+CliDf1vB427c/WMVDFzqOAB7RMCtqFNxlu4Cdro6cX9Vzm8cbIszp+dXyQRgwp1M7rMtY1NFaVgT9WBBlYk9QxCej2Z/R4foGAnI2mbTQDpWndVw5fdFk31zp1xvz663iZr11Dk4wEkELomwhTblL3baBcTveJbreqv2uhSC/CDrWi713g9/XcXtdjOo0UFg/1mCd1v68ghZD9brJmYwN26brWnTzAh7u8qmPwAG8GvazH9/eAf4xPkv05Xr6inVnQZTvx4SLmwaIMAub1nKo6Jil8F/exjrsBiwt63g/xUhLz2LP7r6H7TeB9Bk2WO4EvHs/jZclWdNoxF3W8DIBM46VB4O/fNeQ7IY4YZ38FXjVC/Lf8p3yXdwgjcegmyzRgb40h50u2SzeT3KOg/hklOhhhxYF8zduYYI5PmOInfI9zLKl/njCrTL65yJgDwVZUeiiU87QDfWyCHVbwIqq+ZXeZJkmOATZct2xQ+WbW4TSAAlBgTdrrBpgsMM4wq9xlWpmFdaJUOM0m+8SdBMMSpyzBNEkWS0o1v4qcgoUVok4yYABXWuWWUcrkSGKpWfsKzISpkVeq/1U+cGw364YHaPAO31PG2SoB6tzkGn+f/5pNBphhyoE53ewSpaLeakNO6tJBiRFW6SPvuoPCXBsEfGJdkpwr3kSOLcmq7/E2U8wwx8RzXd2PmSatEuQVhqkQ5bv8hB/ze4yxiJjvCmuzRogVRrjMHaKUGdYusclpU2TdGFt31lJrjV2Zod/9v5tdVhjhkXYnrXM+xqKTssxzkVkuEaXiWIXeK9EXZ2FqKoxJONBvlCVSZJ1UpUrcmTXbene4wg/4ofPhMz88A1trhAioPMWKOQEm10iRc8nPYsItBZMV0xWijLDCJgN8omBsgAbTfMyWPlRd56fq/yeGxv1afDcIMsIKW6S5zVXHzjPg0/bhfYrCrnhd1xCNGpJ096zJ6PtL+2pD5hRrglqzKYYwxh4jYIA1tqr6+w1c/dCSQOasd/Rv/xLPlLeGsc1NMbwvbBMzztUj95D56nfxXm1/F/EANiDifVxDtmVS37OGmNUUyswzmalraht7PwFRazCHkXnaQDyrkcDXCtZAs/p0HNc4TBnwVVeGldWPpv74ka57qL+fwQOOnXimf3OT15iSnch8n8M32H+p1yKn2xtH5vFv4Gu3rIJIzY3a5nrDGuxW5xbwPoYGSIIP+ToNLff0PZPUmrrGbESWdWyn9P9BpLYDXw8biGgM0Fk9pmDTdTKg6xuQ+Me6/mm8zc2ynmsRr1T4Gt7D25r11gQ9L+Phaqv38LVQGk9o+CYCqL6u783pWHwNz/40FqM1i62GtrEzgLLedD2+BW22j1d1XWsom5LnFeBjeOk/QT4Dmyq3NkZfXY9rE7k3J5B69VW8j6LVg9/Sc3+s18qavNfx4XcD+OcU8IxUIwvcwAOg63xl1BufMkovDRYYd/NOM9N+lCVmmKJPPbUsTMwYZGMsssQ5gjRYYcT5DguAsoMFbNmcbYoAY6xvcpoh1jDPrjA1QtSoEyBElTIRolQcC21F68Uh1rAAtjBVV1OAWIPMcRFLujWfPGukGqhltixxSq55uUs3SXLaCK5iPn4myU2TIUCdDGLDYooQwHm4ZdWnt1tHEXD14YrKMbOknC1IAUmQNWsTqzVDVLnIJm9yy60zxJoDWxsEWGDcgaxmUZIjSZ0AW1qjSGBHxVmPJMiT4QI59fHzKoycqw9qSCCJLC/+fmsMaVO5pKFdYX0eqDHLJEOsE6DhJKlpMiwyRo8CmhaS0Vxz1gjTT8bVS6Zgqar1T7MEfIQVbnKN7/Aujxh1XnLmC9ggwDCrrtbNq3+dSUrXGWSDAcLUHIHgO7zHOoOkybj6MqwEgBWGyZFyzxsGbpk02qS6xoSbYYrL3HH3yqCy+uKUSLPFCiNEqVBXhtwmA2wywHVuMMOUuxcXGMeSiK9xkwpRxzS1ZyprGgOO9dkgSI4kEcrc4Nv8Xf6IdZUBX+MmM0wxz0Vnh1QnwG2uUiXk2LAXWGCFEe4y7Xy3J5nlJ1z9jb5PvhhA7xle7ppAJIYDeHp4AA/AWcFldPFX8F24cXw6WRCZMLR75H7/FB+uMIE34zVvCpNSGHB2Ft89044QIJOeMdQaCFByHl8AWJcPvFS2iEx2h7p/64YZMPZAt2n7mNdjyOFNdE3C0Tyhm2zXun0TTdud1/dsYt3A+1AYYGoA2/z/4LzN16Sux7+h25rEdz/Rbdg4pvFJrwa4/RIvbanreYab9pXBJxZ/jBSJc/hCroE3w07h5dPX4OgPtav9czw4NItPeDVwCR37Bh50s0L+Y+R+68CzQ7eQQreOB48zyD1kUtINHaOk7jONFDUJpON9VtLvWub1fJd1P7mma1lF7q89PIB1oMf8T/C+iGtIZzqr+x7Cs0V/ocdrhX6nHo+BzQ90HEx6bgzQH+k4NnQcHiKfj/fxybvGWrSCfqjpeprvoD10LOMLb/NaMUkteH9H6x4/wPkCuaRdA/lMemwPEVW+MrIKQB/yK3SzS50A81zEfPUuMq+dQ3nqssKjuQtUJsoUn/DP+ZtMMcMHvOEKG+uw1ghzgQXuKTXWjPlFZiGFnBVAcUoMs+rkqZbyJNJBCY6IqK+D/W6TkJkgh5BAA/FG2XFFQTe7rDPIGItO/rjOoPNhEZ8T3z20Sc/MiYdZpUSceS6SJuO6ewnynNMkKwNyTF7xJrccEFUjzATzrDBMnj7HJIQSM7ymcoYGGfrZZYyKMhJX1YcvQ5oxFpXJteW6qQbmGbvLQDJJZFtjXs2FmzvXu3SzxDl6tAM/wCbjLFAgwdu854qUATZdQIcVFtZZlOSsGo8YJUyNGmEFaIVqXCHqCvIQVZfqNcoSc1zkCh+xyYBjr4U0QCWhNr8LXCBMzRX9VbVytqAUWzZAg6oWgCYpSam0wh42QlSZYgYLHTHT35tcc6nAs1xSuWuBAgmVjFcdCGjhHD1ajA9pGnM3O65IHmWJWSf1rpBmi0XGSJOhT31LMsqEXGXYeRkWXJFZYIlzeq8O8Ra3uMNlB2zXFAAeZ8HJoiy9LkGefb1fLdW2ToDL3KGPPHnEjyekD0cpsswySZWQO68QNSb4xMlZmj0Pv9SvBtJcs2atyWK3gRtQyEBiHt903ETm2AK+3gjI+icLTfK/P8DbQbyP9zFWkOmkoMyfA3nvZBZafl+XLSJz4APdvll/PEBAiQXdzv9LJLLRs3p8D/CA2EM8gFEALmoyr4EtBmyAWFxY4zSGb54VkXnXwKQJPGAW1PM0Sxpjm53W8yxCeVmOrWyy0y68x50pC6wR+1DTgk0hkEGApxhS9wwgde8v8Z7B1og+g9QkH2uq7j9AapY00sgOIvWSKRiqeuwfi6S15ffxNbot045vxhugZODTjK43LnLM3Dak3kVqmYxu/82m8X0Ehfehs0PZhEEEJLO69IEul4TCHCQKSJ1iNR96zc8i918MrwyyRu4DvEd0M1C2h29aq2z8ZAFarN41sNauzSHC+DNpsO2vjn+uWANelXNKqCLpaF6ZdEpiONoWD0j3uaJpXwbgvo7U1WflehY2INHetK9evIfzAfI5Tes4/wz/7Gb3JLpfZXIebUGb1dFBpB61e9ek17NyfEdryo48DxQkICVxEQH22vQc8nzpXy/xOed5og1CmWstiXaFYQI0+A7vAX6uNVa6Mfm9N22fYxKl2WKWSSaYQ4LSZH43WeYAG+zS45p/O8rEEmuYMgX6SJBnS2shaZ1GHMBxn3Gm+IRduplgnmFWuaPhUgNscpE5d44hqsQpOaAyQcEpHkZZUqAx6prEYapc4h4VItwiRYQyU8ywziATzNMgwCrDjGkTsENBGJNVWnDF8x7CUlMlVQlwlQ9YZAwLVhhmlZtcY4oZolQIIaFxGdJuPIwFOKx1lCX3pshSJ8AjZVBao3GATXLasJeAgy0y9GtqqQSITDDngKAJ5qgQxdJPgzQYZJ0pPnHXeETtOTL0O9ApQplp7qrfsPhjW80sARNXeJt3eY0Zx3QcZ4HXmNHar+oAUgHb6oyw4mxO+smwxhBJsvxd/sgx/DKkCdLgHEuukWvS6xA1CspSG2TN1agGqlm4moDOrzHBHMOssku3C5ZIs8WI+mGLXHyNewpc7tLNOoOEqHGZjxhmlUtKggAYZI0+t78yg6whIWgRGgSJUHbKojJRrnHTgXWTzFLX61chypo+y9g1sNBBsz8yEkJUn3UC1Pn7/D8BUbmMcx/xXfbKphA18viwwkHWCFOlrp9RYx+af7UF2v1lry9GcrurP5PIJKU0cA6RYucMMuHP4wEP8zyZ0eWsiEjijZGNcm5F4NeQwsI6ug/15zWkEGkgE+UhHuxbxnf2jI1kskqjthvzr4ovOgx8NDDP/D5y+LSqgB7LBN40FwR8e4AHL23yryJA0FkdF5N5GuBzgAecYgj7DnxxZV5nVgSG8QlpM3igyECcpP6/HQFvTBra3Kk0f5igns8EvqA1Nt55fOFnEtoDONrj+RCJgu5zHF8Mgu/O2zHae4+1KNnDy4qN+bWs71nxDwLY1fFeHtbFtCJrv+n6vKL7r+uxWaETxPuTNPBhJgl8B3YZJ6tpSTadi13HGD4oxcDGs3iAuKjG18t6HL+rY2dy3wl85/nVpnExxoA9+HTg5eYLulyv/v9jPJgH3pPkVT3WlB7TK8g9Oqvrz+M98s4iRZ8xVAd03Tm8h5956yUQpmavLter6y3jO69h5HMexvvIGGvQwPCvwCvAMZcQukGVMA2CmDFxULuzARpc4Q5xSi5dE6S4M/8RYaLNUdCJF+Cf8vcwM+QoZQck2SRo6VZjLDoZap4+EhT4gDf4iMvPdWZHecQk9xjnvgOBBthUM3/xWplnglWGucvrbDLAReZd18xYghnSWKpXhYiTPQ6zyiyTWPqVdUWNKWfHLImiZWaZdN1akZKKQe13eM+xm/rJcIcrPOIcW6S5wXXnO7jAOHNKy+5m14F2DQLqD7NGRL0NB1lngjmGWHfyhqt84IJCetjlA67ST8Yx3Mxs9yLzTho7xwQSTp8kQxoLJ7nKbUZYJUvKMSZDKnsGXLG7yBhXuc0Am6TIse+o/SIhSZBnkwGCNIizz0+5zjt8lyxJ5rnIBgNOnr3OIBHtsL/L21jynRlg95F3xbetIz6KUlzMMEVdO8bWJR3lESGqrKi8Zo6L9JGnTISLzGtHNKNd2SF3XlPMcIl7XOOmkzqL0KXqOshZkiQoON8fk6tOMUNYO6OWHmaF0ggrmBfQiDLkFhnDPCHPscQ6Q9xl2nmsmNlyD7tMMeNYrMYUNXAwghhr23ofqGwXcGbSS4zyz/i7zpemQZA5JsjQ74BfAx63SBOhgvgc9pMkR44U97j0GyeZ/Qf/svn/MZ7prY3PhLGTdJ4rZxAGkQEVB0gdNAQtpjqIIcDcAt7CZBOpG7Qh2qKNufLPgA2om+rBmOQfIqDQ67KN8rwAHryPrwG7IDqJB3OG8HOnse2MGf++JpqewYVBOLsKe5m012r1s0hNO4GzZjmaV886q6FfR+bh1/EN0rfl+KJngVf1p9YTJ9ZUT+qYvK7/gpqIW0UAJWNAGiPtrF4fEFnoA13/or6nTfeWswgQuI3UGB34dNYwwkIzafJZZYFZU/cAqR1+BuVZfKNwHk4+xNf0dfh8W5Zt6YJkL54NZ81vu1YqfY20q9+dMfsCeEXJIa6RmrDrZseSaPrdmI9GGKgjddPr8rejHPKsYTYudh8fILWVPre0GCMwiIC+MTxzcVuaxK4ONvmwNaetlg7KOXFG1ml7RY9Dn0navimJs0ebSCrxBJ5EYbX8PF5lFINESs9jTc+rCHt/CNkf4WXG4D3ED2V8T0wG3FD7oU9lmTa7XjF87WpS67Csu7wpwHPQni1U5p44q9ekDkcmX/4KvEJUaRB0zaxhVrFkzSk+0QAHQTbLCqJ0s4P56N7gOpY2O81dLBl3nUFGWWKEVeoEyJIkT0Ibklv0UWCQNZXmJkmzxTmWHIhkMstzLAE8J2GUufwTRlghQcFJFUvEGWMRSZPNObbWiKbTDijHqUScR4zSIEiZKBEqrKi8NUSVHSQsy/zVSsSdqkQagNKc7tH5OkyNIA2tHfJaT/RQJcQqw67GrBFilEfcZ5xFxlxtPcojramrjnEGUi8WSGCBXhYwYl7Xd7jsbDSCNJwH2jwThKgyz0UuMcs490mQZ5Vh7jHJCsOM6rhukXY2LQtccN7BVlctMersa3IksQCUGmGCNJjmLkGt/+9wmSwp19Bf4pyrndYYdPXKAuMsMerkwgZGjaivnzXld+lxzDlJWRZ/xBmmXF1rwQ4WwLHGIBGtw77Pj909KCy0Mpf5yFmcmF3LBRbYQtJi5b7LE6KKBYTYOBXo45x6HH7MNIOs06cKi252SSEhe5PMYmEib3HL2fMAjv0XpsYwK5SJkiOpxISw85U2ibjdZyOsOll0EPGALNFBUpmg9mxVI+QayjNMAZL6e4u3GGLdhWnEKbl95UhRULWQJURf0hAKG+OX+Pw3+j75YgA9/fJ23igmkTTGmQIuJwZU1fEstTAyGbyJAEFn9f820Zn0dgMfimHsJWMsPcR7zdXxqbcpnmfymfeF/bQJ6B6+W5vGs9MeIJPXL/Q8c3iZ4ibP08Qz+ILRJmeTYRgQ12yEnMBPcFWeT6TN6ZjZfo3NldX9NDPSjNJu47is232s28viGWkP8IwpA1uy+p4Bnz/CA41dSEEX07E1xuV5Gdu2S/iO8wNZ72gNH8CR03Gya2psvyw+DXkIL4XO6bEa482YZXUdo0N8l7xftx1ETIpNJp2B8rv4BGXzD7H70jq8Z3ne/NmOIabH1IXcj5M6vl9DCiOTYSzruezJWLjQjdNyri1v4hlu7/I/vu+28YbUVjB18bznZEaPaUiPBeBj6YwemQdNrx5jDp9K97t4b8ZNvNTW5DxWkP4Mfy+aNKdLj3tWf/8QLysy1qUVzfbAUseZYnMW+czM4+XjOeAU/Ia2AP/Bv0IqSRDW2QQlOhhknTe4zRQzjLPANHepEuKemu+byWpQO1XmbWeFwwTzDLDJ/4H/km52XXCEMeNEDCj0+2vcJM6+81oxU1bzVbFC0gxmy0SU5SVF3j5xOrSwCtBgjEV21IMuzZYDKwzwk5j6BRLkHfvMQDJjy1lBkCbjGG0L7qZGwwZWHRsuRc5JBkxaEqBBCEkOMzbjDt1McxczkB5kTb3MhlyYiKW0gU8g3tJOrLEMNxlw8obXmGGSWQVjA1SIarcvqt4yPXpMOca57wC6MhIMAWhXNuHYZeuaNGvSB5FkSCKYpXZZsp0VwimyhLRgFw+ZFANsqAfHI5dm1keBUZZIkmWau8ogXCelZsVxSlzingOarEtoabGWFndaO+pmCGwga4Z+FrhAgyAbDLgHjjRbDLPiOqcg/i92zxggmNNgDDNINp8/wBU8k9zjFm9RIOEKowgSkGL3i/m9mHxHWJthJ2U2hsIQ67zNu/RR4L/j94lT4j7jzj9onUES5J002cZriVE3pt3sOK9Ck27nlV2YIutMpwv0OcPkMDWWOEeeBBPMMcAm3+E9xlhkjEXuMcki5wnQoIMSNdq+sO+gf29eETj6FB90dQMfImV1TQIBK0xyaTLGTrwE0eZ0U2IYg3wG71O8BtkP8UzxTln1aE8BkXYcCHdygMxt94BPxfutswNXR5abGeoZvG3MBr5O/Mc8H5RxWo+9U5f/Gt6rz8AjazKbFcqHeCuReT1O8PXahnrxmawxgczpXUhNZfWe7qvljLDojtbgSUa2yQMFowaEubiXa1p/U/e3iQ+32sM3KLVuObI6Ioa3R8nIuR5t430FZ2Xbe9YU7cQDPo/xNTc8p/ZoScLRA1yT/SWTL6OS67NN6yXg6Gc45hlFiH4Dr+b5Or4BazWbgWUGjG7ggVqz+9nG2/co2EQBBy639QOHsDcLRzeQOge8oucVvKex1dhWR4HU0kPaJLZXUvdltbuBl0UNU1nW69DAWwJpPds5pA1xq4OtNlYAfc2axvZ8cUl+tg3gQj06uyTNl6qm3RrLL4bUnNsK4tqYdOE+V6SRe6WIB0M3df9qyXN2SAJqWky23SyLbtfjifGVSbntZZsM/axpousMr7nAh4rKI5trIwtQCOkctMIwKXJOimpg1BiLvMYMeRKuBrOkdQO5DIi5yDxhqpiPrrGDhE0UdlJZkdVG9O87WCiG1asTzDlG1gxTjplnKpK8gmODrPNd3nH1312mXXhUkAZburzYiryjBh0FHjGKBXqVkER6AaYmHLPpLd5nnAUnSU5Q4C7ThKlqY0+CHAJap4pUMqD1XsOpaADXVAwqkLdLNxFlojUI8Ca3qKvMdI6LWMCYNe2vc4P9pkZeiBpJsi6EzaSzVm+YV1+NEBb4Zeoca5iLr+I5GgTIk2CFYafMsLE3qfEqI/igtYq75xIUWGfQ1eCmvDGGXpiaYyY2J7ZaPTbABsOscIlZJl36qUie94lzldsuIMLIBilyzDJJjTCvc5e/yx+5mq+u+2hWOzQIsoOkGa8wTIfeK2bDYgSFpG73Pb7jgMgQNcpEGdIazqS3djyLjFEl5O73KmEX3neOR5SJMs1dN6YCUiepEXbAtOx/C5AgmSVGtUGbdcD7AJtc4yaSMF11aiLzapYgjrxjfA6zyg7dBGlgVi5Wn1tYyV/2+mIAPSsEgvgv/rPIF/cyjn7d8ru6fAafSGreccY0u4cAJWn8BLmBTNIP8ICMMbEKeFlpFfiHSDFnstcDXT+HB3LSTes0T0ZhfMf3EO+PZgBGOx4QMTnHL/ByY+uAdulyv0QK0gn9WwKXrsV5fCy9UdENRDpAigWTaYA3ik7oTwNarICwjmAVz/Z6iBQCSZwk9OSGnltMr1M7z6eVWYF6HilCH+HDJ0ziYoXF1/GSUgV32qb0HF7VZdL68zEeuE3h2Wpf1/HYwnvobCNFg8lGjI03q+9rx5ls07Hd0J9VTbjbwz84qHzWFYB1fPFmndwBPc49HbMgPsU1jS/KJvX89/GJs8ZwK/A8YGrMRit27TNi16cD/xnIIfee3ZO9UMjipUCHONCv7RXp0Lpu/4L+3YrgP8HLQh7reQzhvW6a2bP2sGCfF3s4MdmwsVYNXN1u2nZQx8G63hM6jn8d/5kII+BtF3wVnl8BuimqN4SJGWuElZk0x0VHH49SYVhj7VPqxgGQI0mJDha4wEdcoUxUzYcvYCESIEbFeQVALNY9SkX9317D0klHWNFCbo5hVrAUTjumClFlZYWUnl5x3UBjC1rHC2CWSSzww/6JfCLIAhecDCLUVCiUVVqwxKgLsYhQUVgwwjR3sXAO81Yzz4wGAea4yGU+UhllwrESrRiZ4yIVIqTIaVEUea77aGa9ZsxsXVzxFKyqz0YfVcJ8oubJJeJOYhyhzDj3ETtfKaRtvOKUqBB1rLqUTtw7dJMjiXmNWFKdyWCGWaFEh5M6rDNEjRB5+lhgnDJR7nCFClHXOV/ggkuMExZb1ZlSx9l3TME4Ja5zgxJx5rjIbd5QeC/FiqbK1rQQBdwDwyVm1SBYyiwDZwfYwHz37jNORK+cPTykyNJPhn4y/HP+JmLMHVAJyGXuqzx3lx4nNRIjZulaXucG17jJG3zAlD6YSJna4yQPA2ySJYn4BornzDwT7lpOMeM+B2W9Hn+Pf+r+btIY8yQ0fzx7YFhhuKmDXWGT045FF6bKKI8Y5z4deD8VebipY6mBfco2TKkvkMmYTeIyr59/e7D40r+2ldUTROaJA8jOw5Ofy5+PrF7R+SdqgIYxv/cRMM9qHwPTwkBAgTdrDD6G1BTe/mRZgJ4ja1rZ3F9XtprNy73AdQU6vgY0JDTiaBkPXukcfVRVMHAOr9xYk/UdS97sJrLA/xEXKLE3i2+CJRVkSyKy1QBuLj6qI6y1Q0npjRoj0WqDXyJz90/xc3WX7v+bwhBrm4CXhjTVta7ntilgUuc/lPM8+kPd/yvKmIshbH6TfhqLrFneeY3na/tJDbCw+khBuEhzXWm1WDsCar2q5zSgYGWXjEubXfvrSC1hktBY0/XX2r2tF1/fga/j0XOwOssYlFZD5prOq6DXLoNnYO41rRPDB5s11UKdaQX3TNkzhFchabP2yJr9U3i7Gmvo2v1h9e0ZvFTa6i6t5csPcaoPZnDPHntr+DpbGYtHRoK4Lsc1dFbSoDEfw/Gmc5pHnjFO4zzC2+z5YVLX69LtJ/DPIUawCDaNd07Pyz5TyzgW6p4965mCw5rLA3Is5SISiHHMV+K1wcsu9d1M9DMK/liKOuAYfBYGkSJLnwY0LXGOu0xzj0ksdM2YWEEahBWQMRnmLt0aNtbtwKMEBW5yrckCo+aAofuMu7AAwKXRR9Qn1qSId7hCggJBxKf2nvqO2fE/YlQTY5NO2ml+Z+bDtkM3GWWtDbLOPSa1hsq6mmdU7TMypPmAN8jTR5iaMqB8Wqo1Qq3OXGfI1ScG1liTNUKZS8ySoZ8EeYZYV9ZfygGSoyxpM36NAA0HLpmkM0uKMDWmmAFwINI8E3zEZe4yTZx9UuSIqNHGJgNOYi3j2aM1ZYMJ5lniHOJlFyFBQWWiFa2HesiRcmCYAMFiMQM41liJDq7zUyfRrRFijEVSZN25mPqhrE1vECICSK0ToMFb3FLu4AJptsiRUvlvmgB1EhT4Lj9x92CVEOsMYv6LVs+bd3OCAiFqTlYLAlhPck+fU1YBqaHMjmeJUW5zlQssYInO49xXcC/rmrnXuEmImpMA2/5tHKVx34F5ShfUW1vk1eJBua/rGfhr11J8LHsIUHfbbqjk2n5fV3appQUPss4V7vBd3nH3zRU+IqyqqHlVES1wAfNBXGTM3etdbpL6t7++GEDPQDObkIwJZYCDTWgZXcYe9nvxaapGOx9AwB5j41nHaR+ZqGyC78XT4jvwfnD/BA9IGUgF3uvLJh4DBY3Cb39vx/vwGc3/Gs7E2XWDT+v22/Emu4Gm8wZvpmwdObtGxpYyxpvJbtX/xbHnTNJxnud8LOx1NIMHcSZwxZlzSrRjtu5qXT1ouhCgJ6U/H+I7kebFtowwuASUlgLCZL/GOHyMDw3Z1/dMWvpx09goXZ8HeB/AdgQcM/mvAWu9SAF9Fm/YfIgHja1YL/K8gfAhHowsio+JY7oZU/IQ7zfXiQdQ64jXSEbPw6QudaTAy+I75OYbdxrPqGzggUdjky4jxZzdS+f13GxdAxM/1b8beDyE3PtrkLCupsloY3jPyYzurx0fZGHAs3b2Hfsui5cap3Xc/89NxzGF91w8jxTE/xDPVvwlngEaRsDThu7DfG2W8b6GH+O71Am8z+IzvhKvDvYdbV8AuAZJcvQr+0wM+pOYkW2eBBtKrbcOZ079MUbVH8PMdAfVXyxKxcn2Uhp4YYBHiKorTkLUSFBwxxNVsM683O4yzSyTysAKsMQ51jV9bYVhVxwamJUjySrDeqQdjo1VU4+UikbW95NxKalVwkQpu8nWAEiT+QrotuO6yGUirsu2zpAyDuX/fVoUmCGyeZdc56e8wW0tKCKk2WJV5chyJqsKLlYc6+0m11xBaoy6GabI08cHXCVOidNKx68RZpURxllwhYcx+5LK/LLCe5duJxnIkHYTvnRJ+52/yxZphnTiL6tM2UyJrUM/yhJLjFKgj3kmGOe+C/3IkOZNlRiYqXGNMLNMYmlvPexymY84xxI5UgpCBtTXo+okHWGqDmCqEmaau85we5ExbnKNunbBR3nkAC3zysnTRx8FRljlP+P/quy1hOs4WqFj+wsoYNznusf9+oAh6XlDrJNmy0nR02RcKIexCcynZYELmA+Npcna+IXUi9DOMUuKKT5xLAMD3excTBptDwpjLJIn4RiI4FmFCfLMaEDND/kBDQJaUMcpE8E8F+2+SJFjmBUXnPJbCux+qV9tOGnrkw+BCYjHIKJYZlsnMr9lkbnF7EGKeCa7MpWO5vFg0yYwo8ET88icdAAF9eziIa5ZmTUZoDU5rdarN/38kfi1ubq0UyWFHQiYpo3ltk6toYxxvyz+fC68QP34ClmkwfiHyHz7NTlvx3KKQdt1fI1SlXXLB1DXhlvLaWX6v6rHZIwwaxIewN6HyHxraoHNpr+fFmDP2asY6KYMwTaV7NIO0et4VYjWirTjAxiMAWZAz6bu4121Xkk0jeWMnlsMqSkeC3BzUtAxsdrotKbtGmvObF7q+GeFA70mVv+8qfv5h/ggClUAHZlU+4/xKhp0bOt6LEYIsCZlWMdAa+ujeeQ5I4ljkLkmvo3hN+R6umb1Q6SWM0JDWO/rLr0mSa1HwXtmp/FN3QAO7DpZxvv6hdUb8TRe4XMo59Jp10i3755/DpFati7nFDVg8gD5jKR1bAwADAO9op5qu4QoXx5CxVQ7a3gLnnZ8KJzZIX0T/7nd0LFsIEqSKnSexYfzWVPb2H/GQozwlQH0upRRlCVFnBLv85ZTUMTZd5LLJFk3JxfoY5MBqoSJs886Qwxrk9a8ugykMebZOkMKxtznNWWQ50lgfnZmMTGuQAnIfBaiSo0w51TZYAx0s/yIKLgEIvGU+U1q1TQZV6daDfIe36FMlAXGnY+0SVltv+YNWNU512qooKop8iQYZpVr3CSo9WaDAFlSLhEYJLl1gXGm+RgJopBay0InrAm9zqD66YmFyyiPiFDhI65oLRVingkH7Ig8VIJFrGFnDMY4JVYZJqxNR2MhptliklnMPsa89QBXe0hDsUPbrFm62SGo7wdpsMowlgibI+Vq5AB1VW/U3PaGWGeYVbIk2ULSaa3+NWWGeQAbqGmMvlu8hSUj50nQQQnzn5MzER84Y4OWVZ9j9U2OpJOQDrDJjAaNjbHILj3O2iWhOgcD/KzRv6T1mcmfq1pvm1+1pfDeZZq8Nnatqfseb3OXaVYYpkzEKVIsqMO2I+F9u66xauw9U5dYQ9vujSphVhgmQYHv8J4uEXbKJPOXbhB0CqAaIffsYu8ZaGrgsjEZOyhRIMFF5lhnkE80Zdia0cXnvDr+/7++GEAvgPejsw4U+NSwAN7fwb7Uf4ZPc/0YP7GeR77sjblXB/4GAizZ5LSGTM6T+LAAY9lVdXvWcdzHyzdjSFGk/h4cIIlNX9PtmZRhAO9dZnLENaRoMgBmCB9OkEAm23nd7zw+gt6Azod4b7wJPBMtoz8/1HE6xHWzyj/CJ86u6XarejwHOuma5PWm/l1ltHs/wwNf4OUr30BA1CoyUZuPiRUZNvmbT1oB6IDOb0nH2PnR2csArTRe9vpAj9vAWWOY2TUyhqR1PQ2sNN+3jaZjMiBpg+dB3wM8My6n53YGx2Rs0f+fPMR71Bi4Zmy05g68LbOnx2bsMgM5m8HXBnKfvsnzXoFJnu/s/jP9+TZetrOB3EcP8elhxjKY0O1t4pl7E/hU2wycfIwH/5qlOMaItPvcGA4GbNu9l9brYd3eTTzg+woecA03jZexP2M85+PiJN1WfK/p/l7BF9O/bBofu9e+5K929acAKJBgngnWGWSei1iK1wirrDDMO3zXsbzE3LdARBk9VvyIcb+EV+QRU98Eeb7LT1xX1dI2ARoEXaeuQYB1BtnXrqpJT42qPsAmoywpK0pYeOKDsQKAxMovOLlivxaBVmQYSGfpW29yizIRVhlxkg9JPg24zt40d10heZk7rDPEOkNs6bGFqbkusHXjBllzBaDQ17PuHGpIapTR3EV87H0EJQoiQZYUFnWfoMA1brpuZDe7JMk5CYx1NO18C0gS2iPOsaueL6+pfDpH0pk9m8zCCvZLzDqq/TqDrDKi0pFzBGhQVlDKwCMLtzBAU5KRkywwziXuYd6HU3ziCu7r3KBP5SuTzHKdG6wyDIhJ7zpDDLDJG3yApXWZRFRCGgRgnOYuOVKEkcCQXbpVdlrge/xExy3vuuVicryLhaYsMcoHvMEt3gJEWmGJZlZAjbJEQjuw1jUvEWeLtGOP7tKjTLmI6/5aynOYGiOsaLmUcTKgUZb4Lu8wyT3GWCROiTkmqOn9a8WmyFHKWKiHdY2lYO2hQYCrfPBcESxpdknHxLTCvUZYQzMKXOKeSj8ijLDqZDtVBf/WGCSlkuiwSpNO89kX9yX078mrso1rEHYqCBWNQa+pGGJw9BG+WVhHagcDDc6LxQSHCpJ0iM/e3kMx1nfraM2ZuI40Gs3bDBgyeegyUo/O4FUGVoME1fvsQ7wH7StI/WjSVmtWWwMX+dlyFvhnKi3+VM63s0OPaU/+xqwu14GvdXohayyzDPAtASg7z+MZZr2IpcgeUvcokHK0JdvpHMKHyGXxzTsFdDDJqQGjHcACHL2D98y1+nmN5xuDGRnHE1MhhJXVZ43aKvANZcu9jbebCeCbe49hbx4+tya3qUJmmpb9kYwPAR3nj/W6LOBrcJOuvq+/GziljEDSCsCqXJU6FB7jAT/wHohWi03oz49xFjFHdcSTLqXn8DfwjXFrdlvt1kCeY9ZwypnCL/RapRFwbEOOoeV/07TuN5uuSRKpx6pyfXL2TGDMttN4wNPG9wB5ZjEgUZUXbd/C12zWcDalyICezwPkvo5Btuj3sbKt6+qzUuIM3rMQBIC1Wn9It23AuIGTBpQivnlt9hk8q+PVjv/czev4/z5Un4D2VL70rw72nYTVbDTy9DlQR0IQQtp4lGas1RZhqoywggRKVVw9NMS6s6mwsAsz3S8RV9/mC1jaqDRTF1xwQIosNedlPESckvu7zIH7AK4BPcojUmS5ym3XZDYbjxohZrnk6j0JL6sqgJV1thvGbALIKZBhafaLjAE4JUeYGje5plYW4tlrzD6z8gjQcP7PpjqIUuEqHzDLJFHKzktXrEs2XX1lDc4BNuhmhzA1VSGU3TJSJ9bZZMCFpTV77/Ur4y6ivnOjLGEBWSDqgCAN9pHwN9tWhahGh42wSw9JckSRcDrz711kjAnmnUTVvN5muaRKFGHNyZj2OHXMNHeJU3LWJwZC2vNDAvFMzJKijwI5kjxS5UaGNAtcUKBMUl+lVs27+1Fq4n7yJNTHekjBQp+Wm6GfQdZJUHDSarN62WSAu0yrx11Vr2PdNUFLxMlrrWVS9HtMOlAXpAlrgN8Wae7yumsCR6kgASgrWOjeCCsu2MTqVwnOCNDNDkly3GXaBeONqC2LkCpC5NTz2fZrx2DNZgk5EcbkEqM80tTfUZYYY1H98xJc4Q4l4qwpoNivQPYwqzziHAV6f6Pvk+Bfvsj/hFcVL908i0zuf4w3pF1GvugD+EQtm4gf4hOpTFKbRGR7W/hETuvuGTPJJvxJXe8MMjF/Dwd+OFaWTfJWJG7jGWlWGDR3aw2sWEYmnY/1+A14+qUeY0Hfn8dPcOYh18AzxsJN223uFu8jvhb3kEn7Bj75dErNjrNIAWDHUNDx/jp0LuAZi1bwaaeu03zVTFJgTMECvvNqd8Pf0X0XESDmFT1+A2CGZL2W80jBOqBjqF02V5z8DA/C3tDtnNF9TiBmytb5TeFDMEwCGsCnY+3hixIrfAyMi+FBq3EEZDQpRULH9OeyTsuEblM77PTiw1TsGtl9cVHHexsP4FlH1XxB9nlealAE/raeu1138445q8u8r8e71XQOTQ8svK/bm8GDgcaEzOK7r8awtMKu3vTvAO9LZNenyPNF8QYe6H6o++/U9ewYrRg39udpXcfYeR8in9dZvUZhfJfYHgxUwuGKzmWgG35Dn8//4F9FuhhQAGGBcZfmNcYi3eyyxDlXSIjJ/jm+z4+pEdb3g24Sm2CeDP1skaZMlEeMElFA5hHnGGWJD7iqk8Yj+tTHbpExQlSpIIauFv8epewknoB2eEeUnbRDN7t8f/vPaKnDz5N/1aV4lYm4YmKSe5zKFDlph0xvLwEaxKsl5sITXOYOElhQYWT7CaleL524xD1Gq0uUwnG6D4oUYr3UCfC/478i1cjSmT3icfqUK0wmq7PEisc8Tp4iVc3x28vLPH71FHH2BbQpypNapusF0sVnBBvw1+ofspdoYyUwwiBrPGKUscYinYUjJpLzjBcfUmtvJRNOczb3hBP9DmypA0n4A/6QbzdusBgYc9ct3igxffjnLMRedcXjD/ghpzaLEIYrwU9oycGvXjkvhfrBU3ZjXc58On6wT6AOlY42lgKj6ncyzLXtDyl1tdE5d8T0+T9nNXaGOgGGGuuM1RdpBANkAykHwl5szNFZOJIH+l54u+NdAOqBAMFGg86NI/8wH4RfD5wVL7viE3JdMtZ/p/j/ZrHrrAC0B0U2Yy9hCboBGkwf/DmZ2CkK9JElyZXGHTIBKcROZYocJFrJhpOkD56yHnvZecolyJMjxRiLrDPIJWbpo8BbvM8LuX2Wky9xNvOEwy7YjXURbZRZCwwyerBMKdbBC5l9fpH+HSYPfkUmdoowNeoEuMZNAOLFQxpBuB68wVJ4lL9Z/Jc86jpDADFD7mGX4YPH/HZmGdrhVwPn+Y4WXXFKvLi5zVGnXAN7vcUtdgLdjhV7jZtSxBcPSXQVnMn0SHWVG+HrBKhzjjUuMYuZhl/cfkjLAXw48BpXtj+hGoZaexv5QIKB4lMmuuaIHhzSrnPF0RC0VeFXyfOMPHr4hX8X/bt+RfqQeehNiHyK3J9T0NLAeYa1Gfhlzc6EJrKq1K/tVTzAFVZWT3OTaQAPQhnoZr5uWaQGMcZ6Upe5jtRtJsu0JqXJM8NIzTWE1A8GkGntxbt40FBlkG1/XX+/2SRR7dXEVgO4JvH1RwxS38En0G/iWfXg5apzyLz8dURmi4IlVj9ZfWD1nNWbD/EWGs1/C0PQ6oc1PSazGcnqNRjCA51ncNYabRv4mmFIx83q59NIvWHXU7BsOr8BnQamGrBqljNVfCMzg5ceG7PLAEcDGnvxAJ8BnnUZc9DfdTwS12DtBgx9E5eqe3Ko91VGJNCdJgdHth81UsJZPa95fE0IXoVh9Y7tX5uqkXYEyNvCA2Bfw3vzKbhY2NCQCrtPtJ6Nx/A1ZBW5T7dwgF95XhicncZo3PbnS9Jv31m/TOh4m+T9sY5DHV7sBd4XhmXKzmUeL3U2wJWmfUwgtft1xKv5T/C16Hnk2egAolPIvRuTY9zLKVBN0/XrkvEMBuGoo+nYv8Svp/RzjZvkSZAj5dI2pS6UMIIr3FGAp9s1vEyuOs4CF1jA0jA7EC8u89ktq31KlAo1QgRpOGBoihllnm9RooMoFd7jO3RQ4nv8xEkPC2p3McojZXoNO9MYU3oYG8p85yzQwsDABHlu8G0u85GTh4qFSY5B1hwTK0pFE1sFKFlVVpRZexhwE6Du0kWzJBnRc95VYK9MhEXGXGNNUnB3XVMypV5nHVqXrzBCg4BjCloohCXkptlyagLzlUuzxbpKl9dUkrxLN0lyzHPRWbuY3Yixyy4yj6TrStBYQAFWYbDJ+M0ySZqMG8ssSSaZddsIUCdKmTwJpvhEj20fCXDrZ5ce+sgzzn3WGQIkJXmRMXeedQIugM9CJXbp5gofEaDBjt5vnkxQ5zZX+U/4p0wy62TbpmIQSfiWA4inuctt3mCMRfWE7nvOrzlAgzoBVhnBvKyzJJ3dzk2uqVpmhUXGqBHmAgssMsYGA1xkjjrNycbSlC8R5xZvYXY4BmhaaMugggqWunyOJQeU7tLtAiluc5UGQQaVYmB2Qhn62cEHr1mY2iSzLDLGOAvMMYFYDo1rk9vbGkWpONZiVH2hTVFladQpcu5+i1ChRstv9H3yxQB6rXgmWBX5Um/uttr/1xBGnLEJrVuWxSUxuQ7UH+DZUgZGzeNDFHLIxGIdzqxuux3PPDPwymQc5/Ego8k71/Dec38bmfzu6bYH8Ib/Jlns0nNaw3mhUMUXHjZp2URohrs5vLltHVRCLdsZQoCSXrw/xQO8LPfneINiA0ZP6/E9wE/aaXwn1kAek5hYhzmo+wLv7/EAx648OVQD2w/xTLg/QYoSk6qex4NazZLiNN7Dbwop7Obw4KAVa+DBs4IerxUoyvA8uqcd1zm8p4kVeQ8QRpoBpEkkgfURAjgu470/rNOsDMHyphZtRfz9UMQnINu9u6Hv2z4NqNzX46/j73mTg9gyG3pNTEpziL9X7cHAQDWTc/QixVYH3nwbvBzZHmisK1rVYzbQsKrjbPdlAf/AY8wDY1EaYP0QuZe/gb9PrJgtIA8YD/Hy8nk8OG7A3TcRBkIzuLupf/sYMeJeBuJAD/CUr8TLKPrjLLiwC6OjWyJZRiWX5vFwl2ktyiKAUNtneA0LogBhPQ2xzhZpB2ZcZM7JHmyifIPbzh8iSoURVtlHPFkANpFwA/OUK5AgSZZ/9Y8+ZbEGwQVg78+5Y02AVFGlTU/gCJHS9QBL2/L93we7g5/SvVqG42UfhnT8a25GgTIQf8h7BeCgqJ/NbRhF1t9AjLF7n0L+KZThdgX9TD2V+zUFZJ+K504MeKLrxp/Jd8mIHmviCHgon4nAr7lZAE6AxEPe2weKx/BbTyCP3Jd2rNUH1AcesBBsJfzZryW93TjtR8BLD2h0y693lpB72bwhD4BzD0U69FjHq7eIYpn6gHYEXQ9kmZeeMLMEhI/kOzUL9D+Wn6d0e63HsPMEQk+gD27vIOdU07HqOZJj3DuSz/Yx/kEOoH0ZWpAHzPq2jNsToGtZrkc7sv0w0LHv0yNDT6H1KcQ0p+D4M3gB+Vx3HMuJ1/X9HnyTqvBMfcX+nM0Kss6hjkf7E9lnF1AtKlt4GUpAbl9+nvkV75f1eleR92I6vh16fs+Ooech74WA8mN5r/MzmQP+Qse5G9h5KOMUBl4E1vVaDh755t0joP0ZpJ/B8QPm1/UeiwCVJxB/wr0s8r1a+zNIwL3Tdt/JPfreMXINTn/C7c+R+7X1CCJPoQLUDmEQ+BWy3x7Ymuyjf/khhzt8+V+HyLX5UOdzm8vakTn6Y7wP8CEy/56GluD/YP3/CJnX3wfG4eSXUKlC9JtIbfIhMo/NI/XB93TbBvK1I3P3Gr5JW8fPk2YRcYgw8n6Gny+78E3cNeBPRZ7bcgbf+LXmYx2xaFlAAJQ6tKSRhu2nctwubfZ9BBT5qe7nbwD/Jz2m07r/OTzA98d6jufxDdhJfD1n6hdr1hkQpqDR0Rq0jQM5rfEe4IMsQOqO88jn1cDFsFyzk5yuZ/VDUY9vVtezGtHGMod875gK56we64+QujIgEuyXhpBa8CbeYgY5j6M9aPseUpfOynbqDQV4DWD7GvKdqaDV0afCsotq3TakbDSzTmkZx6XYRtr1fVOdnMUzD1N44Imm8bSG6zweULTa9SFEFMR0LLTTuv15fDN+WxmcJqM2ALMLou14j8iHOJYjXXL80S7YK+ADPraRe1Pr9/K2gmnzUMhAIqnbbkfu+QlgDVqsqR+Gti5oswZwHdbWxH/P1fMFvMIoCfxLnvPyPso1jXmz0mdbr/m8Sm/rej98S4/jP5NzCnSpl+ZX4LXMWd7k3wCilrAma5ko80y45lqfMqgC1J0nbpoMBRJEKFOg7zmQyZhnE8xxg287jzQLfBhliVVlW42zwDwTLmhNpIj9zt/tHEtOqmgsuap6793iTWqEncdcgT4sDRfgTW6xzhD3mOQic0gQmzCWrB5+xChVBRtTZFlRNYGx9wyUFK+xiwyyzgUWXE0dpUxSmW8GTl3jJhnSLgDEmIPm9Ruhwn/P32KUJcabANHL3GGVYZWEChO/QpQpZsiRZF+BI7NXkXCKPrV+EQak2a0ISBlyjfsQfcww5WSUpgTZZMCNu4WIjSrIZBJQCx9ZYpTL3HHevhLkVSdA3TH9k+oFXCaqHope/gsipTYvYAOsgso6O/f/I+//g9u80jtP9EMCBEiAv0RQgAkLMimSosgWHShimV7Jst1tb6tWmXjafdOT6cxkKrnVW5nambvZuntr59b9MamerZmazK25d1M7czep23WTyq++mWTijHujGTm227ZsxfRQLUZUKFEkRZqQIQEiKJIgAAIEyPvH8zznQLO1SWqqXDVro0pFEQTe97znPe855/k+3+f7ZdFVIlj1xiCr7CLayz/N77kx1MsWM0yTIOckgobUfK1OAHNcLhNx5atZBhwo21AwzypEMqT4CdV5BniRqwAOSLvMJf4Bv+xKbAHqCtyeZNExUOeZJEGORcaYZgbTQx5SaZM5zrhE8wIT5EiwyBi9POaauudaGXWKDK/yNmsMUiPkGJYvcpUcCRaY4AxzVAmTI0FZGXlnmGOGaaevvMCEu9/iKLzMYwWxBYRNuvtj541QYY40VUIMceuvNJ98PoCegV95fCZ0Gw/CmVaDLXb2Xhqn9eFKUG2DNYMsWgkkqhjAA29VfHllAb9QJJHMKXjXWwPyrIz0B8hCaKXA7fhyzjkEmFjSthjzyjaExmrL44VeFbRozgxyW39/AdEk2cFvVuz/c/rPNEMM8GvHb6Ru6Xu2YenDAy7va//tIZu8HnyW2UAY23z0IQCbZerieHAxo8fsk35qMXq8BT3H8SUhObxmmoF46/rvJe3XJT12Jx5UNKZiAi+AfRmvRxJF7vG3cFnbtmm8Rl1z+UA7HkAzYNiYbA2EFdgMasXxbM0gRDqRjX2i6T706L838WWqs0gW0rRLmvshLxvHNtss2jUa4Dqp/zdgK49nlabw2iwJPLCcbfpsUK/lJWSzb+zXkr6XxbMSwAcj5/XaDfizEoq3tB+svMPOaWVDWsbDHH6GsPtkZcR2fcb+M/29O3ijjZL2v4GsyvRsSeLBhC/Ba58wGeLc5aQrlYhR4G1eJcsAX1WwLU6e93jZidLGybHKoNPIyxEnQoUsA26jY+5hVj4hFO+wKxE0nZAOFd2vEmaONCdZ5BrnuMBVennMMiPUCHGDNK/zR85coEQnwYd46YRHyDh4gIBI9xGgpR0BUIIIqFJGwDx4Mgli7OqjyHh8qMd7iAAuNjc8BPr1fEX9Xi8yt+zhAaV9BCQb1vM+RACfA3wgW0RAmVb9/z4Ckl3Xdu3reUP48v+ngQUIfgbBwQNYxj9HDxFwZh0CT2n7rRyphNcAuqEDwALwNf17DQEO83qc+3jAahtZ22r6/X7gE5wWEx3IM9ym/fdIj/PjSKDXpX1UxJfk2dzdo8fcx5eLWd+24QPdA/x83go81veOaN/b8R/jA+kaMgcs4YGMDv1pQGlNj2fBXSueFV3T/rGESqv0Pwf63cOm69jUazBWfUnbsqptzCLjcxO5z8tN1wEyjh4i9/oz7fs1ZP4r6TX0a7/c02PYPFzU3y1508wiMYZ2CBlbxlRq1z7IaftmcaA3GRh4b8Oza77ory79uY0vV/0+Mg5O698siWvM8x5kDV5C2PYNZG02QmNcwLzNEkRsL6GljZzGl5LmkfXyHrIWzUJ5Vb9j472Z+aWgFVlpb+Ee9K1Dy3fwxmpD4gYaeQmvyTeOPAt5ZHxYO42xbkDbPQUBo/L/wxK0vI8AWmHgDXzlin3fnucEMues403Z1vGavpaks2R3VYwNIi/JofZvCejStid6bi3t2k9VBfqM8WcMNZsX35C+MO3lwyy0vImXqNG96+G2shCr+P2xJUd78JUXp3CVH0/bvuU2nkVpa8Y9CAZwch12/jYFEg9v6zUs4ZKf+w/UMGwbB1xxu+nco1C4LGBa2+uwf1sdVhNSKhv7Oh5EW8cz8CwRbuCtgpqFAsSMhVcV9lwkjmd4Tmp/vo8AW3mcgV2bMUUtcWsJ/FF8YjSm/fL7ePOKdui28QS+Asn2t0m9Ly9A7EP93B2gW3QMI8pyJYZnYYJnT9r4s3ihLgYfbeM4eZvyJkROSF/trEP3pIwrxvHz+2rT9dmzX9Vzv4XMAbZv1ON+GV6dWpEBAkbV1HArS5JLXGaeSScvMa7O6CZxYY6gpuVrJY+AAhRbTlg/xgYF+p1LvElkmM7XNc4xoJIQARr0a1J5kS5Ma1iESjbcsS9zyUlNDLKKmEeVnZZcgZhjh6WZo0wHi5zkLmN8gzeoE3AgSI4415niVd4mQINZpnidNxhm2em/WXK6l8csMMFPcNmZypnTa5EuTnIXMzCIq560GME9doy/Ch2uzNaAuSphV7kietOidWfglrH/Nuh3bP0VRpzcxypDrqrF2IMi/VLjgQI2ttce09JWk8jpoMwag86gxGRq6gSIUXTmceaOC7jy4126ntCsW2SMI6oPB2AGdHUCVDRmKNCvcia9rg0Wa2xxhBsqBzTEmmMLTjHrWJAxNsgwjBmgVQm7sTHBAl4vOKFGHmV+ht/l9/hpp50coko/pjEccWXKBnZmSDHMCjM8x4tcJUGODCmSZAlRY5BVVhhhRPWwe9liWXUCrWzWtPJA4qkZphlh2d1ve24C1GkQdOzNa5xzupRmymcsTNHJzjlZmqtcUMOULldGa8CuVUB16T208xlo+ipvs8AEKwzTzwY5Ejr+z7LFEUBkhtY5jqbT/8LX5wPoPUAWniR+8bRMYULP+gKSEc/gJ3cDZW7jWWs9eA0J2xhEkYxnVv++jheOzeBZcpt44Ow0Xsutigd6+vCuubN4gMUo/O/jdSLm8KxAAyz28ACYLfpL+AX7FH5jP6v9kmrqj7y29y09rmYLSTUd64Re2xAeHDKWGNoO24BZBs0W0D4ETLuEbHTrSNDWp9c5jgBaaQQ0TeFdXLP4TeEpPdcZJDPcjTdvuI0HdUbxAJRtZKP6M443BjGGYY+27Xt4bZJ5/XwdD2JOaV9EeWIz7e6NbWiNwYb2QwMv5JzUvkDbgbZ1APgJPa8Bfsaks4xyFF9OeksZgy/inNDaovjyHQPRzuABbSthsUy9gcc7+vmLeLMLK1ex+/8hykbCA8nr+A1QAm8yY+PbWAQX8fqCGbxGH3i3NmOJhpHN3i4evDPw1DamVhJiwHUzYGAsPmOu5vV49rwYCGobyC8JoCcU+QaTOrDNyt10LMz5NUeCTtWGOMMNKkTop8CqLvTDLGMuViaKLJbo4pC2yEnC1JhknlnOUiPETXU6s3II01I54jKqspiNsMyb/CQT3GaNQc1OymbGNuC/ZMD2a3phWYQR8TF+DNxB5gpj9drzaGM0hcyhP43MRwZC2zzejzwTQ8hYmsKvC3v4jH8JeZbOAM8iY/k0Mo+O67Hm8GY2fxf4lwgYE0TG4h5e3sEYzeeRsT2FMPxWgQkEiLGEzRheSiGOB6Ge1/Mfw7OijTW7h4COt7UPv4pnX/ciz0NvU78dRUCfSW2rXVMM75Z+Cl9ita1tPK4/jYkRRp7vWWSOP6n90gZc0HPZOtKDzIVxZE7+F3jmxTY+QWCAnbFww9qHrXhtqXf0fBYQWnA3oL8bk6RX+1MDdafreQK5x3f1/2H8Gj+rffesvjeDAD0mjWBjypiJH+OZO2gb+vCSAbZfSOIE9Z2EQ6u23eZdK1uzsWvj+wy+TDKKzNkdeDZzFHgZD3pYYmoJuAffnUNA5C/6aw/PVAfvVFoFpmD/XQU3knjzqtsIS+4eMr/Y+AO5ryVh2Ufss2kgDLl3IWH31tjwc0AODudEfqPDwEMDDA1E7MOtY/vviplE7DZed+15nIxMR1jfu61AVhAO31f2V06Ov78DbcaKLyFj+KJeg7LRNrMQs/3CKNy/DMem9TPG1s/jwRZjiM3iHXXPAjMCyu3sQuwVHAgTGdJrDEsJcFsVaFeW2ynt71ndy/ThE3rKJnTgGrjkhWMl3tbvvwBsQz0DbZroPbwNLVYhUZf7Xy5BxPZzzwPvNLEwVxFG5Sng13Dzf8tk071v1zGh+9QW26dYLFBQANASpUPyHl/H73e2IXZcgM62qBpyIG2uN/D7zICMqcN/rn2VwoOyVZy7bew0Piaoain4EB5c3sUDczEpc22pwuEVZTqGm0DAuB7HxktDx9K/kL7Yn9N7ZnP/LwP/HL/PtXXY4hwDCm2fmtXzjOL3kptNY+qeVq/0QczIBMj1BG1t1RglYtd9C7qfx8vm/L58ZScrJcH7m9AWwzNov6vHeQfPQswgSZNO/D71C/6qEGFDmXazTDGsuniLjJEhxU/xB9QJsEsXk8w/YTxhemgNAk5gP0SVZYZ5lnkHMOVVL3hXmWWiLRdgGZEieZn3OMIWWzx2IIQARlU26Hd6ZlJqG3LuuGluYIZrZo5mpadmMvWYXs6oDIddQxe7dLFLnrjqyeb5eX6dZUYYYZnXecMBkiuMEKLKGkOc4xp3GeMMcxTpYoxFV9r6CdPEKLiKF3OxbRCgk6IzolhhmAGyziG4oprBohU8zCCrDowJ8YCKVsiYLp8x6AygsTJoS5pv0cs4C1zlRQA+4ALPMk+ZiJpuLBIn50DKODkqRNy1rzLIs8yTZo4KHTymV0tU6864rEgXaW5wXfUAB1mlhpjP/SZ/x7HrNlRnz+53jiDLDBOh4kAlM4wA0ci20ttFTjqzlADiXPw9vsN3+B5hqgyrcVynluPWCGP62RvEqBEmSZZ5JomTU725DarK6BQmY8IxPhPkMXMMu3dXuMhrvOkMBP+YSwyzzAojTsqnSsgBbVkGnESR6WXXCPMiV6mqvvciY6SZo58NinQxzArLjFAhwkWusMyIY8iJqUwd0/G2CqYEeS5zCTN0sVLbYZa5zhQTLHCDtGpf71LU0vMIZa5ygbKyPu15uaTMxGWG6afANDPkqDhw+FGTicpf9Gr9yz/yH/FK4AON03g3zUm8k9Q9/axt3LJ4tpWVBkb9Zw6NLVXC68eBL0u1gCCOBAA9yKJhYJ4x3Yz1l8EDH+N4h6xV/X8fnq1mIIixzY7r+S2DFdW/d+r7z+PKK9jBg3rGMjuObIAu4QM1Cz4MSLLNkwVTCTzzbF2vaa+pj9rxmmuaUeYlvO6dlQqMa1vsWrbxLMNtfDbRspHH8fp1eYTh0aPXOo4vuzRavQFme/iNyLae/x38fTXAManHsGuZxZdpGEgZxoNC40iwfUk25XRr2yzwjSOA8qqWdtqmaEfPs6vHn8WbYKwiARjI/RvX872AbJC/yZMg55SCec0lGiVtV7Kp3+/hQWHbLHbitXBG9fzGygwi9/Yj/b+BAT3a7kbT71YC0YNn5zXwoOd5PLj7jh7LgM4UnpHa0D66gw/W7V5a+wyMvq3H2sRvNA1ktwC/D7+hq+NZBDE8CwIEzDvKl+LVRo1hXagBp0N3gQ+Udj7sMk79FJy+h1mxj2nG0UwLbPFaY9AJ/hfpdAYAMTY4wxyDrPEq7zDMCiuMKB39WUf1PqnmFDXCxMnxU/xr+tlQzRVh1xXpknEUwrtAW0LByoia2bKWVFhHxl4BAdMK2hk2X76JAC0x/DzcwEsSJPBaSi/hTV36EDDlQ3wgeQsPIhlgZmN3G5nHfwXPQEgjz6QxspLIM57VdtnaYckmA6WzeAOlFD44ew34WW1bHHnurR+G9LrzCAA5hHdELPBkMspArj29tlfwQc0Vvb4C/tmd1TbdwzNbDHQIIwHVG/q5kn7fEl3GmrVkkwGmBkQ2szMCeKaRsb6NZW8AmK3B9vyfxrO/dT52+l4GemWR8XMXWddsHNhcGcWX+Qf1/Rn9XkH//xEy/xqD3wJw69s0Xi81gZehGMUxV9x5u5F5M6znDOPE8V2VQR3P+jcGXydSdjaj57mHn5/X8YmtO/hk5ZLelxwe1DLA8Yv82kcAJttvfB/pq5eAd6DN9loGMti8oPvDwwL+mbX3A8DfQ2RZTuA0xhKnkH7eRu5tHBkXLyibKwvFkv7tY2Gq7et4OnwfmQMKylazPVkPMt9cwVU2tNj6/byCUqsK0Iwi99aeI9tDGQvQgL3mve64fmYJjtka3tDP2r7U1lF7ftP453kG+LqCTuAlNcCvybYfVyCy7Tx+72vvW4I9iCQpwLn9Og24qt63vv/g+KhB25D2hT3r4/rvtMqcTOmxLuONGwxwyiPVMzaXBfEs6B295nm9n0m8pvJ53BzSYmC67V9sz7+OAzYJNwGyliDtgYQl8DeR5/tXYXNbx4Lu+/Y3kSoS26PX1XRtG6/dbaztKe0r21+9Ay1T8n5LXA07qk1gXhgv12MxSVoYpYxqO2yvZ3OSJZa28UkGqxYpCZOuWR/QgeVVHIjs9qGv6T2chG5j78WlP1q+Bfez+PiooWPgvB5zHGdkuJOFbh2vbcaUnddzvYXXLO/BAer7BdDtxxf+tc4zqmPW70CWFQUULvAB57gG4Nh4i5xkjjQp1vmAF8mRoEKEHAmCiNHCEGv8BJeVMbblWF0nuctjNUIACFF1iWNzP02QZ5VBVwY7zgJ54pjhlmiFXWeQNZdYvskkC0wwoHtTM4yyqhMr182Qcnp4IAyzHAkS5F3Za5kOVhkkzQ3mSDuG3DSfMM0MW/SyQT8N1X8z9lyDAHHEqK1GCHMINYOuBHnMpCxDihphpylYJcQ0M3RQ5jlm3Dmt78xkYoteOtRAy1hbEywQoubOa3t3c6E1cw8rG01zgzg5HpB0WnEZUvwOP0OCHB2UqRHm1/l5rnKBIl1EqADQT4EUGZecBxhkjVWGMOfjByT5Kf6AC1ylgwojLGMOq8sMY865Eco0CDrmXZYBx8qcZYo0NzjHNW5wxpW4FuniO3yPkJqEmGOvSfjE2HDsuS2OYAZ+YyySIkOHMv7EMVdA1LyWJleIOGLDBjEWmHBA5Q3O8A6vcoWLJMkywzSzTJFXFuUuXU6TsV/L0g0UDDZR3FeUKLGoOpAAHZRZYdiZY4iZSKdj9wWo00/BySElyDumpAFySbLEKFAgRkF1AsUw5oEai5x0DM8yEU6y6HQjZznrwOcEOf4mv+eAeSv7NbOUv8rr8wH0jNEDslgsIRuB08hC04cH9y7jM9hpfDATxINwdVn0SCHAhoEwaWTReh4vLryHNxWYwrPG9vBGAO3IIpfCM+vQ407hgbQp/cx5JGCzzZEFki/hAT4DYyyouIwPLu7gKeRDePbfHRzlnrT2yTp+gR3CB48gAV4Cr5tm7DHLslnABJ5pVsKzInr0mgy8CiJZwbfwrLQr+jdju+VxG15u48sGwLMEbUNrpSq2MXtFP2dlJbpRbRa0dsHOKH5DkccHdkPIhuoOfsz0yPW1GFBnAHBS+6e76e9R/IZaM9IuiE3rse06byObDbsHFjxYEJvEb5hscx7Qz8SQe2730IA326zk9HtDyHgq4cdmGs/es2DXNlhBvEh1Ur/THOTU9TtWamNjPcOTwLKViejmzumwvNbUBtuUofduFc+IsHvUwDvf5vFsUwPlDWi3sooYnilroHsMKX/7fGaf/+ReAepUiPBT/IHTeTCXK3NnLdJJWF3MjFLfbFSRIsMag+RIOI2FYZZd5iism4otetnVLJnZwQOYm664gOZdOUSH6uwBTDHrBGCtDQe0SMY8gddVvIXc03Y8YNXM6LVg1UC5f9L0N5vTLAAz1p4F2wbi2zOVxZfQFRAA51vI3GvBSgrVP8Nrihqz+efw5UIGrs/ypPNiFj/vNZC5zs73vn7PysWe50nA0earj/S6pvHMVnsGSnjnZwMF30cSOlZ+ZuVVxpoGr5l6Wj9jc5UlvTbxuky7+r1/hDzHNl/cw0sN2Jx2Wq9hBr923dPjGfNE2RUusdBAAmwrh7vY9Dfrq0t4YNHA0G293ik8IHdaj30CD7hZouaE3qsCMh/2IeMtiKzrto43s/C+o/+3tWRHj7GEML/Rc+zi18Qr+p7Nx6/whKuj0/hK4wG3GAIA2loT0P7rQ8bDLP5+WzWAgQgv6fUYSGOMwwy+jPnLEMR2AdvKnmoXRhJLeHB/CunLcfzzGUXu7bSCZ8YWNwZ7EHmeriClq/eQcTyFB8RtX2bA6TSiXabJyfu3xNlzTT/fMomvBhnS5KCtyZbkKsG+gV15vIyFJm73f1+MFkgLW86Nq5L+u4E8C/oMxmJ45miPXv+eXg/ACdWum4ZCDr8fqeJL8nuQuSgOMQOU42rK0bwPsj1uGF/tsqfXiZ47Id/dNxDM5n1LSnfjy6XRvwWB16H7m3Kew72m/l9C5osqMlfo/LhvySBlwrGu99PWC3tebkkb3fyZxYPtS/h98Rw+maIsQarqgmyftaR+TIG1Wb3WTWR8WJKiDyff0meJVAUd20aRMWcAmjEFq9rWQNNx5hDta4tBbK8+j8wN4NmQLzTdVwPtTgA7qocXFwamq9wJyvUcfqxuxwUp3+aP8fu+vIKoYfycbe2wtaHEE4BnbBJ5nowZbyD8DByzuMgqbrTf738f7/pbUDBvHFk3LTaxPegqnrk9j9vTtkXxRIQv+Oub/GvMkdScL80MwfTabnCGBkFXKmkaZD/FH9DPhmpzPVYwLaFsvwpJsjwg6Ur8ZnjOCe0DhKnRQYWTLFJRkwIpmc2zQUy/289N1SS7ygUWGeMqFxzQJS7v/QAEFfR5VitRMqSYZ5KksqsK9PNDXnayLxlSzkCrQcDtTUVP7bgD1QwMMaDQ3OzF0CPrgDCTqulQZtV1rVIZZoUaIcwhuJMiZTqIUaCDMhMsUKSLEVbop+CS5TNM0yDACMuqWdfhNK+vcc4ZPCwwToiq6mNXeJtXnfZehDIv80On7SZswiCP6SVElSQPGGGF1/kjZ4ph99/6ZI40YWpkSdIgyAojlInwe/w0YaoMsUoIcYU11t0Yi4yxSIYUk9ykl8fUCFOgn8cKEkUoE6NAJ0X6FWhtZqQleUCYqsYIdbooEqOAOf/aywwu7P6nyNDPhhqTjKuOXMX93eKS3+Tv0EEZM+mQgu5+JrjNsmoJjrDCOT5SwsMaNcKEqbnS5DWG6KRIlRAhauRIMMQak8w3gYu92g/zBGhwhhukmSNGgS2O0MuWYw2GqDpGoxjLPOAa5zCzk0VOapl6RM0qQswwzQrDVAlzlQusMYh3Qm4QJ6+Ou+fc87fGECdZpJ8C80wCUFc1RAO8B1lzben/K2oQfD4hdT8eTJtDQI4pZMH/pv5cxwMap/AOWVV8aUsKnzE0kOgMHvA4jzclMEaRsckMJDQgCWQTEUM2BNPIojGp72XwDqxxPb4u5NzBmzuM4wOVab0uA/XAb6qieC0VYyrt4FkhFjjm9XMGLNpCZmzFbf3eLJ7lYoFAH17zzzLCKbwWGnqtO3hwbBsBJ9O40sdICgnQ4viAcRLPlANfKm0b5G49172m79mGIIgEn7ahNqaaZVJf0c+f0GtP4cs5h/DjoTljHMZtmkCvP4gHEgr4e7ajn7GSAtuAR2kSZcdnTY83fdYAXesr8GVWZ/AA1iy+5HQbAU1ts9cMbsR4suQ4r9dlZRtT+M2sba7Aiw5fxG9sT+n3rCQmrf9snIeRMZ7Bgxa2oTJmkoGMtoEz8GRev7uED5ZAAg67V0H9brde63F82e75pn6zje+onjuOLzG2APYIns35BX/tE+ZNfpI1hlhkjFmmVCA2ST9iFR+hwjXOscKwihzH3IQe0UVP8jWP6dDy3H4KLDLGNc6xQcxR8W3RrBFSMdY6ORKqGXGTBDk2iLGi1PstellhhGucwxyhrCQhTE3G32f4AAQ8SG0MrYt4oC6P15XbRMZURr93Gc/CS+t7xu46jcy1H+MZsV/jybGWxQeGBkbt4DWAbDyX9Pd39XOv45MI1r5v4ll24Bln1aZzGiMuizftmdP/38EnpSxQWtXj3cY/e+t4VquxXpJNx8njjTjieKDQrvEOAryfxbNoZ/HrXBzPhnsTr1W0h8y1Jfz8+FFTO8Gz6qz/jMFhc5YxbOfxCTBjCRlAEkTmxlt4cM/m7VX97Id6rRagG0vG5lzw5aubeHBuCimTsyTLEp69lQR+AQGMjSFsa4Qlr+L4JI2BeXaslLbPxmMdAQ1v4cer9ZuBobNN7Z3Rv/1W07UZS8kYigPIGvMr+Hv7vH6/jndkr+DX2i/yqwOIKmtrT4Xzbf3qw0uaWBVBHem/TTi8jH/GtbwVcGtq4X2EfWfHC+JLxq1qAzkWm5DL40rvOwIwmoTRFLI3M5BCk1KVqmikOT3lTjn+zi4yNk7jgXZlye7X5R97EPt5PZ7ulw7t+DanbeP3qmH5jFV8tNj8ZP12Rx1R2/Frrs15aT3OHTFBcOAn+GS07dW28QytUemjlnFxXHXz97iWQFu/G4PykrYvKp87tLm1jkgbaGVEizEpbY63pI3Nrx8qMNa8t7N+t3Zacsf23XY9lvg28OtduW7OK+BVhR0FoIhC7HkovIk3VEPb0LR3b+vD79+NIa2frzfw7FHwiVIDMl/A73ls77oknzm0sWNzSQyZfyaBywrm2tpkyVZb607rP5tP34G2brz8jLaxZVyZe6Pw2aa2MYuPQUbxZeUv6L8YTjfRJbLsXmmc0hLDJbdzc/r+pB5/GjFv2ZbvdNte3RLZSTzwjIK3Nv/nkOd4Xtv4dWRcneBJ7cgv8CvPUS5yhWlmHLstTo4GQW4ySZ44YyzyNq84UC9GgTwJwlQxfa4iXdwgTYIcdxnjLieZYMHpxC0zQlAZeAaGGbiQIeXE++sOXOknR4I1BumnwCxTruxSHE9Fz25AH1pzpRU9uAohapzjGhHKDqCwUtskWYZZdmy7LnYJ0FD9tA66KHKNc1rYWwUENDqi4F6MDcd0Mh3pIA0WmHDaaUmyztzgPV52zr4FYpxhziXCBSyRfbTtfZudbk0mZ5BVx2iLk2OSmwoQSbL+AUllUnVwjo9YYYRhVkhzQ0Gpa4yw7MpQjU05R5okWVfKa8CfMfFC1EgzxyTzhKjSIECKDEOscpcxbjLJIGtOdidAgzIRZ8KwyJgDU01LDsCcaQ14NE3uBDnXrgIxXuY9gjQo0K/Hrzu9vi16MTMNA1kbBLjOWcf2TJBnjSG9k0+Wa08xyxTXnbxPWt1/Fxh3jMM1BmkQpF/1/rooKulglRgb7r40CBJRcFa0GeNOby/NHOagW6SLTopkGXDsujoBaoQoEHMsPLsX5mhsrMgIFUeAeJtXqBNgkDVOssgIy3RQZoZpR6BoEHCx3gWu0kB0DAM0uM0EICxBkGqou4wxpMfrZ4MsA6wySOmvGCx/fgw9AwSG8JnWcWSx+jZe2y6N32hZaaVtDoypMIl36LKslzGvNoH/Y9Nx0vhyUQsqLMNvLIgYsjAaU+o8skk3RoRl43fwhhF1ZPFKIUHmFBI8WUCYwoMfX0c26rfx5gY9SECW0+8a2GKboDva9pfwTLUYXnPPNjMpfABiQOBJPd+UtnkbD6Ke4MkArIAHc2yDYkwOy5T26LV+HV8mYWwGK28zABR8WUSfXm836qSIBx0L+E1ZFl+mHMWDrNamIJ5xtooPztrxG9EhfDY7gC8bBg/EWZ9Z9jyNB9ji+rcbeJadAboGrhp4240X8wcPNDcHs8aks7FprLY4EsCNN7XVmHejeADbNqpBZFPzHeRe1pH7ncaXIBX089/Sc5zmSdfjJJ4FY89ZHA92TyKb1Xaci6ATtb6ED06s1MUCZRuriabrs6CppP30TXwZkJXoGTgxhIxvA3QP+FK8fsQZzjBHRLOIC0ywrIKyoi2RcBmnVQYp0kVdtTh2ddE1jZV3eNWVKAyqa9OrvM0IKy6DFqDBsjp1mR36Oa4RY8NR0K1Mw0SMTVDWsq/XmeKHvMw+baI7Z8DM+8h97kYCghnkHlvwNYoPBpL68zX8s2rB6xJeK89Awn+I11cEz2oz4MMC1CU8eJRHnuE63onSWFRVZAz+Ib7k00Blm7/teTqOzKPGOrTg8mcR9p/NrTbW38U/D8ZCsVeMJwNQ8K7tlpBa1WsYR9afOf2csbusLNQSBBaIdeNFxo1tZ3OkPW+38Lqfdg/uNLWv0NR2Ayvt/s3hdQvv6fdO4NewKf2MMfhewa8rxupO6jXlkfs+2tQOYzvO4dnrl/Gaau/i13Zj0scQQFZLwPi2tmkP+P/hzQ668QwsY9hH8axya78l5t7Ra6wjc7qtjWm83lpDP7On5/xFPOCYxpecWfIO/VynXu83ta939b7cwstKWL/3AM/gx/0X+RVWFlgP7Bi76gGesfMS/vlox5cmJ5Wdl5C/rebl90Nj2peg0pDjO43P9xWosCStAfkKApXBlXq3BQVsKGsCopxH7tVHcPiHwoyKGSBvYPc2xCxhVcI/U+1AAyJTEJvCyxRYUjeu13JGvndoyT8DbWzcn8aXyxrQ/oK2+TwOLHKGAlVkrGoFQsX2d7v692n8vKSA6v4OTiOv/L68H7O9yo4e72v46oAXtB1/iH/eTyjYdRxhMyrIdPimfPRwD3ZuS5sOt7VN7+AT9bv4qow5/P4sp/cgJW11e1FLGtrexqoQwFXPtEXlvnfb/k0JATGbSy7hY433kb1uHs+grOL31Dqu2k4jY83uSxb4ee3XcXxCdghXnrqvY7zFGOmaaLo/h5/DbY/egycEGBvuvJZ/38brRts883FTX4GXJIpCwpiBx/Exke0P6/rdFG4P3haW8thcRsc+Tceuw+oMcErLk21d2cOXLm9K2XC3xVQg+95JvIRDXMFhm4vTcpz8ZtP1ziPj4RhfileEPQrEiGgSt5+CS7IK4JJwJYmSgJXg3wCZChEmWOAIW4yoFlicPI/ppUbIVWiYS+4ga64KpJct3uYV8lquayYNIQW7Iloo2kGZn+IPOMc1foFfY4AsZSJOe22QVca4y5ruXQ1IsQTzY2WdBagzxSwJ1YwzwC1AnSwDmryuOF24GiHe46s0CGg1i5TNCiswpkBTjCxJbjLpSjuHm3TuykT4OX6dC3xAlRCdLuVdZIRlAELUXDlvjRCDrPEcM0xykyRZxllgmhle5W0mmSdFRo0f6nSxyyUuuz4xtuUwyyTJssURFhkjywAxCtQIaQmxlGvOMsUN0g7MrRHmZd5zTD5jl60x6ICgGiHOcp1hVhhhxZXEpsgwyBojLLvzTzFLjbBqwpVdH5krsBmsgEgBCfCVcJ9ZYZhZprjAB4yxyJAaXPSy5Y7R0MUpruWo5j4coqoackUtPY7zVd6jquMyRYYFJpSZmaNAjDIRHRurypDzWR5jzQWoM8yKA/jM9TmuZbfXmeIBScdyNMfnJA/UxCPPAhPOmMNKsQM0qBImQplFTmqJ8haDrLoy5TIdrjTcSuSt1Ne0985xjS16mWGaAA33XNhzO8iaYx1a/13mEmsMkSNBliRznGGGaSqqu/hXfX0+gF4XskmzzZYtvLvIgjmHD/4sU2+fM0DJSnqqyGJpLLMsntllQctv4BkZ03iGUB2vTxTDMwO/hd8cGMAXaPpsEFm0mwGa83j6vF3bGT1GEM+6sA1BA58dDurnruNZFZPI5ugMsiCewjPMLJNqbIcgsqmyjWNa22YgmbXdFtnTyMJo5QnteIaVbaAs4H6lqS8s+BpHNlKWWTWKvDH/rGTLNq938EGsvYeeK4EHsHbxm9GB0EgAAQAASURBVBbbGOeQjdNLyEZcS1yeYLKk9HhD+DJetJ1WBtUctDVn6Hvwm62ott2C0wRe9y6JLwW38WoBB03f7dHP2OdGEaDWAvfT2m8N/U4Bz+RL4s1ijBWYxZexJZs+u4rf4Bf0M7YhzOvnjQVk55rEB9EGAGTxwPguXkdvAF/ebsClMXjsXp5BxmBA+8rKSQxUbwbO7fWH+HJk27ydwGf2LZCt8aUB9J7hUzaIsUHMZe1SZLhBmi52Ocus2xxZRtXo/KsM0SDoRFo7dSMG8ENeduAfSIYnywBdFEmQd+UEphciC1iNTl3AetniJpP8MZdYYIIpZnmZ91SPJMervEM7e7JK2PhI4wMHY5blkbFowFEceaYt4FzCl6HG8ePfACV7Pm/hEys5vMvzKjLGTVrBEggx4CfxBkTGyLIAeRu/BuTxDsyn8MGbBvSuvHMI/7xcwZe6GtBnQP8v6s8onhH7ZlNfpPElYRZ0HtdjWsBkzFmbp6y/tpEAs44vBTbWh81nBvYl8YyRYNMxEviSZmPzHtfreB4PsoFPruzpMT7W99u1rww4rep1rCL31+YPmy9tLnkFr7Fo12cBezPYeUbPc1w/+6Ee19bDe3gX7t/WzyaROcr61saJAaRZZJ23+dgYiDa/GrPfrjWj37MgfpQnS4Lv4cf7DaSEN4/XiwwiAKMx/2xdNCangXbW3+8gAIJVKNh47wSVyvliv/aU8ROE7ilYuIXXbJvD6yoqA35/U8tWUaBBk2rHeoDjqoWnbPBjQ/j1XfdwbQN4tud52F/S/0/D0LSAiocFCAYFbIgoQBc5jwNmNm3diuLH4y7eICoMqx/pcY3dZH8DnxDO4EEk27/WFdwr4eeBNDJWVhX40fMffozXnrak95CWifbgHVjntD++jjxrnfjn1Bhg3eoCa9UVYTVx0OT3YR4KN+D+u3jwqiT3z+lgGoAZVu3DIflbSxJo13uTFOOMbr2mFmNxP6/HM3awAZvWntt4BqA9o7O4ZHTBqj6sz6ZxDOP9DA50K5cQw7M5/e4/1uP9ALiomom6v92382wj80oGv07YGJ3FJzj78KXJNveCT8Bsiz7hvgFrFpv0wLG/jTd1S+M1oI0VntZryGiflfCGZ5vKvrRxYMzlPm3XnBhmOGDuHf1pCaZ1PJO0iltHgkFIJHUc2PquIGAEOW/3S7i1Yv8D7ddbct6Y7Q8NtC3gKzOCen/38GtXQo6fSOFjnk0kvlrhS/Pqokingh5SOlilTAdj3HVABYhzLUBMtdRucIZl1UauElaDtQGyDHCELce8qyury7vESvJ2gQmuK918i14WmOABSdYY5BzXHLgwwYIDUpYZpqLlhCkyzmgiQ4oFJghT1TYk1Sl0hZpq0F3lRWVgTVAlTIIcr/K2k5QpqDae7W9zJJhggbiyCo21B7JPXmXQsfkiVKgTcCy+GiHAA595EuyqLlmRLgc+iQutMN9Mdy9Jlhph/oCfIkeCBySZ51nMuOEBSQfcVeggS5IEeXp5TIga/RQY4y4AWQYIaBBpOoJZZfOtMchX+SFZkojzboS3eZUGAQpacROmSoIcSbKOyWUlwyMsK5sz4Mo2F5hghmk1OBHDPWG5BVyyf4QVZXpuYI6sBsRKdY84AO9qX4ywTJCG63tjMe7q9wwElH6TEudeHrsxldeMwwb9ZBHtQCEYCKNznknHLDQtPJP9ietm2XTpAAd4B2lQI6xMxJMAJMiRIqN9FHEgnT0bDUSH8gxzyjjtZ4UREuSUldepwG6YkaZJyHQUu9h19ypJlgZBYmyoVmSIBsEndBanmSFGgW+oyYvEaEllFco9MYDUzAnNjHCQNadB2Mcmf5VX8C//yH/E6zgCcnQjQJwFPuBLFQ18saxnFc/Us2x+Es9q68MHEcaIMFq2MdbsmtN4YKnEk1m9d/SzU1BKtxJ950Da83eRspgksvDqwulEq2eQQMLKBW7oeTSDRRX2/lto/w18+chpfDmpZcMs6FnHu8taEGqAz8d6jtv4TKQx8yw4s9KPFF6LLyzXRR3ZMCW07T+HB02tbe1IljKg12hMLNvUWQBS19/T2pfGZvs5vN6blaFaoG6/2+eremxjUJzGCy2/AqWLrUT/+YGcw9g7r+HNJvIIU8YCzSDs/z11jdvEsydHEbaHAQC2Ud7DG5k08G6wBtZNIpvcF/Rvdq0JJPhqBmGXkA1HQI8b0Pfv4EtZzzddRw8+E/tt/Ab1FH68WoY1hdenMzAjpvfK/tmG10oaXtDz7GobmjeYMbx+2AAytuIIAD6v5x/CAy51fHmsjVt7aUb/iRLcITzwCPJ8jONBwyA+mDFWX4/+/SZo0uIL/3qGdY5xixmmnR5GXrOhJnxaJeRMLkD0TSyTOMYiG8QcPV6cbasU6GeEFafLt0UvdxkjSIM6AeZ5lq/yQ0JNn+1SPYsuikywwCCrjo6/zDBj3MVc06QdVdE7LCL30AKIVTxoZCDYh3rBxsiM4Z2ZwYPtswjoY8y455Fn2xgODeQ5uKTfy+nPJPLsBPBuk7ZuGENGS70c62MUnyRK4oFDY1EYMF/gSa1HY+x248f4FDK/LOn3UvhS4DqeNT2HsGYs4DXA0gAfYylOIeuItc+CdUtaGIA3hC93taA2jddXiunxRrV/tpuO9YK2Y07bakBZDEkwDeATCOeRIPr/gjBP7Ngn8FqCxr49j8wjxqDR4P1/YfBkgK4l54I45omT5JjHJ1Xa8Wu3JUEsCLTkgrFNbO+Q1375WT1eH16XzpKbt5s+D/7+2v2w5FsAL9Teh7Az03jzI9t/WLIEPAs5rue05Nme9tsQTzL/XsAL0ts+J8+XQ0OvgiRy9JltA68jnMcDopoY29mFnYZ0fcQA8Lgw79pO49n5Q3r8VTy73F5RnHlKW7cefwav8TUJxcsQsXs7hTzTmpjqaB6Ld5BnyJK6AOMwuKTntv2VMTdzsP9Let4kFD6GmILL+x+pU2kaX0I/ijcwG4JjBtYbQ3FV22JJxKyClva82/OjYCFhPf49njTG2lQwz5J/Buoj19zyPMSMOa2AXnkTIlp5sZ+X7x+uQ4vt54152o48018Dbum9+kW83twSwsQ91dRnSWjZxu8p7b7l8NUs9kzby67zLn6NCYsjMVOw/y/1vY/x+9rf1uMoS7BtwF9fmyV0DFzN4sFZY3jv4ueLqv78V8h6EEfmDqvYCci//Tq0GdAKvkLF1pppfALkEjJubiHrgAHezYmbOsSsKsRAwA/x68zz0v+RaZ7UuMsLW7LF9uidctz9OdG0jPTAjoLbEVvbSzzZ5yV1qz2uLspn5Rr2H+jvUTyJIaP/nwXS0LIrQHHLqvbVbfz+E3xFShv/S9b7F/S1SR99lLnNBDl1or1OmC6KDLPCHGmnr1clzAzTdClYMcWsk0lJkmWWs4ywgplNFIhhemxl1XPbopd5JumiyDyTnOOaK7ecZkbBpQ0ekHTaaA2CTldtjUGnSbehjCpzs42To58CVcKEqRInT1i13bboZZBV5nmWMFWnXzfIGjM8p7ysMouMEWODc1zjChdJs0wXu65MU0o3Q8So8YPv3qSbIh0sUyLKDFVKKjVzgg+U/bfMBxywTIR29ojziBYOaWOfElGOKlOunT1WKXGHEiFaCfCQKr/Cf88RQrTSyRpt7NNLiRp3WOMZBnhIO/cpESVAK/t8SiurNAjwGUkGqNHOmyxRpYMKWyyzS5QedmhTl95tuqmwzjI12vmAM780SY44w6ywyElWGeIiVwhTpUqYMh0U6Of3+Glq3/1nzLPLIS1s8ifcpkiVTdqo8+c84CGHhKixTTcDPHQlpO36cO2zQY0QLdwlQpn7PM0RPiPAn/M/UmSFCl1cJ0iDHt3UVWmlyGcc0EI3a3Szww7dVAnzFDs84l9zlwNC/Dl1hZfa2eMy/RzwNjep0McmJaJ0kGOXMvvc4zJZPuUZ/ve/NOBKWk1uyJiTNtZEMki0AHMkGGPRmYmEVIc8qCBfkgf0s8ElLmtJdsTpJFYJkSfu2HlWTgy4WGyRk0xxHYAtjjjCRZkOHpB0gOwWvaSZc9qExiw0UDxDijxxPU/DsQtnOcsWRxw70jTzlhVktBLhDzkHvP2XziefC0Nv76mAD/ZG9U3LwIziXbts45vEMy+mcCyKUrzV08bj+E33S/J3BvBshaT+biyxJE/qEVnm04AL2zRMIW19B9lEJpvOY5l9uw5bII31ZmwTpaa3v4PXTbIgK9r0GQUS6cZrslkQasCdbfItGDUg064niDeC2EM2Gn08KXjc2XRuK5OzoMFYEkE8kDeu12ZgnYFdxmLQTRzo7y/hXQDtvlg5chjnJrg0fezJzQ14PTsrMdiGSOnAb6SszbZpOotnuySR+x6HtowerxuvV2SMteNN/XWaJ93ThvDMyvPIRizZ1B+2idnEs+ti8vnPhvqeFL4fx5eDG4PJQFADAK1vLIAzEA39mcYz807od35W/2+sTSsZMSaMgXkDsJNs8y7Kp5raY20yBkMDX/pwGgFkTzW1zwAPY+Ekmq7lBfw57Ljd+DI5GxsWRFX1vGn8M7iHBwWt/V+SV5U2FjnpMnhmsy7lDxtc5ico0sVFrjjwLUOKXrYYYRlzpwVcJjOri4lltkw7xCjdSR6QIMcwK/xAa9BsYZS2bDHBAkEaTHLTueVK2ccGIWqsMUSBPhkL/XjtsGlkfL+JBGk2J1qZkgVXNs/as96O16y0ciabQy7h5yh7NYNFxrCu82TpXAGZAy/q+wl82Voa/7xdwgM8Nt+u6nuzevwreLDNGOQx/WllYkN4YHAVYWzZ9VnZurE1rOStgMwtzYzZTSTQbMc7lnfizUfexydSNvW9t/BJoY/wz9QpPecMMl+O48r+COCTAnaPdpDg8jR+Dkvjy5v/S+2nl/Q6jKW2hDBc7iFMXPBzTgGv19S8/tmaYIxea8NcU99YMsiCR5t3x7U9tl/Iar98S49n64QFf1fwbOI0Aiq049nbBqhmms71Ah6MtnXU1upbSBm2sZ9u4QGHgPbJpvZBGr/WG6PHxt4dPKiXbbrGPB5ceMyTY/+L+jrAa23uwahVbFiid4gn2GDdnTB0Cs/2yQLtUiJLFm/kpWyt8m/g54gMXjuvgNxbY5rbvR6X8yZG8SwpeILhG7E5LAllA6TspcmHllF8csEqG7rlmDe3lVG1LSymwj25vjZLsm2qicEs8lzZ2DRmYVB/78bvp1fxDF99dgqz+H1OEL9XNEaWAafKGt039rDtV2L4fZM9RwbAxyBi83NJtQH7FGS81fQ525cGpV8O17X81YAuY9PanJn0JdjuvAYuhvFxwuvSrztLwqTr0+RQ2RhdBoIa0/ktD1KRBI3J/Po0zhM6cWSR+c4qSuxe9kgf7mfwMgC39PtpvAyLrS2j+t4OMpZWdfwYYD0u51i9I9ddtrk9iWOsOa1CmxutLWGe1Oq2feQ8fs4xBnVM/2YgdB1IQct5LYl+gNMWrewpC/Xb0BVVTW1LIGmfdlm1yaq+N6emGSX5bFtagWrbbxpb8Apeuy+h7Fx7jnvwLs621wSq23gjvy/4q0qb0yezMknT7SrSySTzTLDAAGL+cJErnGSRLMknAI4QNVcOaZpgMQoK5FUcEGHaYib+b0YSZsBgZaRikFFRUK9OUPeZJ7lLmQ7MREDAuQ0ucNUZWJjL7Ff5Idc4R5w8cTW7mNDyVSsrzJDiLmNOLibGBiuM8Ee8jhkvGHOsS80PJrhNgwCdlAjQYODgAQEaPM1nnDpY5NmDeUpEaWdPQbgtTrDKcTJ0s8Oxg/tOm88+E6sXiPOIQ1oJ0KCNfbrYpUSU41rKGidHF0WO8JhnmadHMyApMgq4hThZWuXEwT1OschTPCRCmRA1GojW4RBr9LBND9v0sckhre5zx2qfESfPHGdcn/ezwXu8zB9ziTId9FNQ9uYiB7TSyS4HeowDWhmrC6szUqsQpcQmR4ixSfzxY3rY5mRxlQNaKRGlly3GS8u0ckArB/RpfNLNNiFqnGGOAR4yyBpRSnRS5Ckecoz7HCfD0N6nNAiwSydHeUTv3g5muAIwwANSBxmOlXIc4z5j3CVMlU36CFHjqdKmnm9HGYByr2qEuMEZp2Nnrq+DOvlIWW4HDYKMsciikhisCilM1Zm6yJgJ0yBAmKoDBhcZo0bYsR5jFAgrsBdjg2/wBiGq1AizwATzPEuKDA0COpoT7lqtPD2mRiByjALDrFAgRpgqGVIsMsYGMbIMOKA9yQMC1B25w7T9zAU3RkGvY/evNJ98Lgy99scNvvs7wH19IwbE4cGRfgaWNnwW9lOE+VFBmApWagVwB6rXIfwjZGP2KT6D/Ql+kdNAaOffdNC9VpFjGTBkAMhdIA+Vm0E6SnXJqG0Dlw/keF34hdQW47K2rRVYgUYfBKwsZwVZwH9Zr+0IVLtaCa8fyN/7gUU86yOBZPb2gT/FszGsbOcAeIhzsqKq57bgp4AEcxasvqt/69LvxbUPO7RtFXzQ9wAIIQvxY/17EF9+rBnd6q1Wwn+m7U8ALcCGttkYF2Vtywa+3Pc+zoWsdqyF0K1Dl+Hc+NMi/fNyf1jTdu4DfwY8wmvlLOh17GrbWpvOc0/aU73TSrhyIJsTC5iL+r2MHnsNX1YS1nNEtN0N7ZebwLK24d/jg8oSMsasXO8A+HPgKLAlfVdZ2aHD2HAhue/c034+gFpHC4d3Wgh/ciDH60H0xx5rf99CQPYRbVtcz2ulVkeQ8X9f++kuMKj/X4adf9dBd6nigMHaMy2EruzLd9fkmnd2O+ier0gf/QnwIz3XATImi3rf7FpbtQ8L+NLKN7Vd+njwr/HaPHe0fw+0XTT1k2XLgdpQC6FPDj1wZzPNgfZDB18OEXhEJyVEgZCy7vLEqRMgQtkJtdYIkyPOFkccGLfAhGPOjbDMJ0xzkkXWtNTAspkRXfCMup8lySCrpMhQpJNB1pgjzTmuOSZfRZ2mMqS4yBXmmXTU92lmCFNljEXepVfGRRXPVs3hWLGHl7XE6goyxqfxAZsFZhn9/QrCOrAgPo9PsLykx5/DM3zjeLdUC7Cbg8Iz+Od1Hg9+v4sHl8eRueK38dqXr+lxc7B/HdrO8qSbZg8S3M/h2drGsPpI+8AYz+e1LXm8dMC7eFb6Dk+yZbQUEPDaqT+HBKQv6TXP4ucxe35u4xNLYW2/ARcWRL2i98bKAUe1f57nSRMLC+QtGDV2uyULjAFXwM+N5/GM6wyyrlzS/xtryNbb7aZ7lkfmfzumzfn22WbG+Dge5MrgmYQW8E4ia9YdPAvLWHUG/vXgmfQWrFuwv4kACwm8k6Wx6zr1d2NNV/HSD8ZQaQZFgnhHcWPvbWo/r+JZl3ZvNvXnPH5MVBEw8A5e/P+L/rL9zLqUu3b/HPADAcoio8DvS4liWwzoURZeCekzY9Jnoe1r+JLALO7etAWRsRnHA9LreADH2J574hQbs/uFlrSiIJWBusebzrMjunjcQ8aVsdUtCWufNaB9E9gWObCOdintbYmJjtvhrIIbCqa1GODzNbwzsrGh7DnexMm/HL6jTKcw7nmKPQ+5y5D4FpRnYLOkZbcKwjEtZZgRZbAGA3jWdBYPpnbjS+NtrrEkRl0+F7FnzZIrVXyic0bvdVyuMfc+JGz+MfalsYKrAibFtpvO8YJeax7ZE5+WMcJp6CqIXl/LlNzbyHm8vAj6/T45T8sJ/Pz1LWT9acezK/vg/kdwbAoPVhnjE70X35f72/Z1ZD14BYlVbI4u8CSY2YMHBJvnbFszlZE4dF7aHOlDwMaAjhtj5AVFO6/lFbyualyutZyBiK0h4GUU3tJr1/m3PAcRS/R36v2c03FnSa3j0B1TJ+WcmL905KHlDE84N7fZPB6E/W1lHBpBw9Zg9Lgf6fU8r/83wDig7cvruDYG+yl82XAQwsOwl+RLUXa7T5heyk477CzXnZHZDNNMcZ0AddYYIs0NKkSY4wwjLLPABCGqLDLGNDMK8AkQNMECv8Pf4hf4VSJUyDJAngSrKu1yhC3S3CBEjTrik2tgiKj1rbDIGGsMMsgaAEEa/BHfYJVBwtQciHeXMefQaiWcF7jKPJM8xwxlOlhRPTLTzPtb/A4ZUtxkkg4qlFU3bUz75TpTrqTXGIAhalzlRS7wgQKTNY6wydOtn5EkKxp59TKNYCtFumhjnyglWjmgnYqU1x5UaTk4hFY4rgt7lTCNYIBOirSzR4ga7exRI0QvW7SzxyEtdO2V2WnvpIUDaoTpOdgm2LrPHu08VcsRCDWohVvYbJXAxsDCNvYVLG3QXt+jHOygToAQVaLs8hQPaBAkuClahwVF43vZ4iyz3GXM6QiaU+4EC1ylhziPOMojwgdVNluP0AgGOKSFRrDVMdxC1KgcCVInwOOuTnp5TJFOevd2qLfB03xGhQ72aaNKmDbqtHJAW32fePUxh61Q6wgRpEFbfZ9GMMABLVTaZZMdoC6ah+1Bp7u4L9x7AOptAnrt0c4RNtngKPu0cdgKBwqgdpaqhKI1HedzLDPCCsOYcUmImtMQNCOXBDknN/Sr/AKv8o5yQbcAqGnZ7grD7j6bnh+Amc8U6WSNQQIKoFpJumnzTbDgXITtvAEtQf4hX3W6iFVChKmRIeUYpVv0coGrFIgRJ8eLXHXaegKidxJW+aM4OdYYcmXdj+lllSEmWHDA41/2+lwAvf1u2IkeId7zWCbpENAK3ewIaHGATPBdyCLThYAOFgS0ynfutZ5gfHDZZ/i7oNqvwFk7ApZUodEpGYbSYIjo/ZrP/ISg2tdKeO8AQgjN88i2nF8DgcMItBS0DXWgFwGAosim7QDPY6zI+5WeIB31OpyA0pEQ7Xs1Nlv7GGjfkHYZMGKbIpDFsE3PUUQ+d6B906c/OxAgbVv/r9fMvn6nV/utFwG77DyH+vkIkITqcCvh+wfU+yBo/dym59yV79SfhqABOnXYb20j3F2Va69BfQj2Q0E6tuvS5g69jqC2+xiubObwOLSUYS/YTihZEXCnJLX2RPCmDJ1yvupQK+H6gYyFVj3eU9q/Zb2ODtiJdtB9tAIHUGltJ9BWJtitn61pv3RJOxpPQWtC76Xep8OTsNXRyZGHu7KJO4BGGAJB4Cjko0c42vqYlgP8ZqwDAbiaSjhAz0EAenTnsge1eAuhR4fy+1PQtn9IsaOd8NGKHKdTj2fBsgF4e8i1B6F0PET0YU3uzz6+TLwq13Z4FFoaMi72aKc9vEfoiABlrQeHVOJBWg8OCNcERNynDUIVV7K2keyhv3Ub6tDoh0BIx+BjoBsOj0GLBccJHMOznoSgBuqNAAS69F7F9f60NN27EDR6IVDDbfKLwS5iYzvymW25llpPC6HMIY0OCBzwpXG5HeIenzHBPJNMsECWJIuM8dP8HkEajLDMIGuqpCJZ0mZB5H7VTMmQQsSBc0opl+1PjA026KdKCLOnrxBhjEWnbWGuSwtMMMyKbgZr1LTU1xafGAU2iHGNc0zzCW089IBFkif1N7eb9H3OIGDFLYR51kB05ozN0gy8JfX9F/CSBh/h2R1p/X4cYaxY4sPArfamtuwhYNNlJLi4jgegXtH31/HM0GYQsV1dARP694tIssdYLwbwWQIBfDLKStX+OyToM2aLATnd2g4tN3Klp0m8A+KsfseY6lZSZomlgPanJXas7cZMMmZaGh8Izuj5p7RPZ/GlxAa2WgnXPL4UPoVnFDaXTUWRuTOML7m9pMe24DmPBykfaLuNoRhvuu54U9+WEJDl+0jgt6THCyDAzSzeaOIyfvxYqdaoXvebem0v4TXY4jgdMRr4kjljnRs73xJ/aeS+G0MmiQeDbCwb27sdX94ITjCf9/Hsp+fxpbnreJaytTuLN3/6AZ7N18YX/lVsqhwIbiLX3Q2RMDKOLqmUxi4ylrvxoJMBu8rSO7yt5YMKctGuXWisSWNoGksyJUBXR1703WKjWjKalnO32Pwyj2cjGwD1EZ6Fac+ovleYFSCx2wDHHmTsviWHSEwBAflc7DXYf0NAuv0lvdbzcr2HeWhJIGNpR9qduwXd89BtgFVezt8yqb//B0mPeB/wsQBFkTjcfwuO/SROQqZex+mmtSTxoLmx1BT0YRPHvnJGQOBBdZsfk3ofLJJ4V/pr5zJ0a8VCwu6ZMQeTeKAnJgCdA7RtToiKkUb3cSkJbQvjGIFtei22v96fgbbnEaDNylDv6T3MarvmtO0m1dAn7TmWFDCrxRIzJQU9h/T+GTN8CBl/H/r+c3tDS1IEtS8MILTET0I/Z0CfMSbX8SZtFrMkkXE2B5u3IbaHr/xINpVsb+Jctg+3oeWy3itb+25riTp4FvweniV/WTTtWuJ4J+X3FWC0tcnucdUfZ39JxhU5ZMwcx8lYFHIQ+xsIkz2Ir8q6gzDuVuWzO3ktdW9m26eb7lccSUR/CV795IlRZ440VcKkmXOso+O654tQpkGAB7pvjLFBiCppLds0YwNjCi0wQZo5XucNx34Thl+eGAVWGKZT2UVlDewMUMiTYJlhIlSIaalihpQywyI8xwyv8LZzOgUBdH7IVznDDbIkGWORH/CTjLHo9POsxHCALHkSlFkhQIMh1vhjJpxuXBdFTWhfVjsOKaGtE+As1+nlMRUijLDCMzwEJK7/2V867rQCP2GapBo7jLDMcCnPYvS4c3ONlTbZijboqtbZCveS4QgxDtTFtEyqsUnX9j7laJW3wzFerZbZCvdS5QjzPEuSLFe5wP9h+3+iESyTiR5jNL/Lv4n/uCbRZQ8/xD5lIoxm7/MweSAacdVdovkyj1IS/CwS5YV8mf/6f+qGNpxr766WWVvivUqYx/TSIOiAqBQZ2tmjlQP+T98N8YB9inyFFBk6lK2WIsMDjmEuwg8Y5vn8n/GjeCs/noHNVDt5Egxvf8pMzzAPSDKpEG+DmBiolHZpBMsUw10kNqs87jt0QFSIXSocEKAdcQmWyUJke4KMqJuxaX0bCy5Mla9k4ONUP//Dd0sEonX62KSi97yLIhv08yIfUCXMGoNsaAl5kU5yJIiruUqABhe5Ql7jpQhlVrVk1jT9hJnXwQzTnFVjlhA1EuT4A36KYdUJ3KDfkS3KRDjHNQrEuMsYaeYcSy9Ojh/wmiqjF1lmmDPMUSVEmhtOv3CQNarKCjRzizEWSSImKle5wFmua5nuA+4yRpkIIWpO/uhtXuEZ5xz4F78+F0Dv7//fwgwWHsvRdcOwNwRb0Q5CtFIjTG9pm3ZdCHZeaaM7u89S6hij2fsctkNLCT5ORZnehPW+ozzz/iNKz7eyEY7RXy0QnT+A47AZb6dre4+7PXG+kr/nF4kk7EWhGJV8Q5wcJ7IPZREch70UNIKC1FXDIYKNBt3r+3w6dJRn8o/4NH6U45uPaCnBw1QPARocXdqFHvhRfJQff/c23//aX+dFrroH5+lbcJiEXF8PT320Dcfhz1KjTGwv0QhCuAr1ALQ9wDGeHqU76d/cpRxtJVI6oGUJWXhtE6Ebuf0wVDplx18NhDl6a5fN0+30zeyxOd1O39KeYxf82fQwP5Zf4jAILbPAKHw6dJQjjS3qgQB9d/ZgF0qTrUS3D2AOHn69nafuVCWAuSR9uHk6SN+qAFh7cWjPy3GeufOI/QEINqBlHR6me4g0yswG0nzt1p9y5/QzKsBZp28Wds600X17XzY5PfBZupen39+UQLYEn53qY4OYUGiri0S3D/g0fpQ1hngp+wmH7ZDrayOE3esTpBoZuj8UithnL/WxyiDPNubpXt+XjZKVTg3tshlvp292T8492sfT725CFP7n6TNMsEB/o0D30r5nWehG07KKhzHRd3l36Mf56uaf0rIE+6egbfNQNorjyHcb8O9Sz3Fx833Rg7F+28ZnnEfh/dRzvHTnEz4+9WNMVueJlCDb18fT2U3PXonDYRCKPW2sBgb5sbkl/l36WcZZ4Jn8I+7En+FU5lN+lBqVyXHmHsThztARTmV2eJjqcfT6v7b0LjRgfwDaNENMO5CFP58+wVfu3JMxZ+UQVXg41MNTt7b9xnQV9qahfQbZOGrp2YfTsogltx/JuO5GGZs7UkqUlDGyM9kmYy+/x6N4J0ezu/xZZ5x/+j/k/6Pnmf+tvB7yFEW6WGCCV3nbOY1ZJm6aGZYZIUOKc1yjRph5nqVGiEluUiGiAJsIrJquignibnHE0cmHWCNHgmVGmGCBHHGSPNDna8K1ycDF5nKAmNL5U2SYZN6VCFBEkgbdyEbegKUYEqwY29iem1EkIL2CN6qwki5jhWXxgY0xmY3xkkHG4TY+KEoh80UWCTaM/RfF68MZYGeMk6x+tx0JGCwwuY3XP5rG6/XN6Dm28Q6Lr+kxbD6I40uvLJiJ4cXuL+PBPgPp+hBw85e1TefxbuRJBLQ8oW0zNoOxyHJ4UKJH+2wKn4C4jQcbMvig6A3tz+/gGSSr2p6hpmuwwNQC+bD+tL7UQJq4tvsNvFNsQf9un7Nr+pa24XXtD2PjfB3PmruBABcW/Bp7r4Rn3xkDxuYUTTawhLjHgndIN2AvjMzHl/HAZUY/k0VA3oD29zqe2QnebbyEAHzo54zRmNXrSOt3LElzG8/IVMAFtJ0GdibwjvXfxwneY6BKnS+FpmjXEZx5QcQYkgbYzeLBkgQyPvMI0N6HjD0DpLoVgNvDm6M1ASsO2LiDgPyn5Jj1uiYhdNy2KCC2ugRDaTxwreu3AY5P6NuN6r935JyxmLrt1nFrJR9pm42ZmVX3WAMNc6o5ZqXYDQVVrA/65LqeNha7PrP35+DYS/i5qAevKXpZGFaRSVwi4tgoHuQ/Bd1DTf1jP1fF4bftOH6O6cMDVsfxOnRLODb1zmUB3FqMqXscZ0zTbUw1A9QMRLdzJnFJlURc/2bgVZ9c604VugOqP3gc74BblzaWS5JbbIvqPUL/FkDmiVtN/W1zym38fLOHl4LpQeb6PETewSfiC8i8tYrXo7P5OIZnSCP90jKj12aAoAHAMWR+DMhxDm8LM7FjU5mp1tfGZF7VktY5/NqQU+MJ6y/ry228xqixSf8B8E/w4HMJmWes/+o6VuwZ28YnHYLI89Ip7T28rOXhde1rm1eN0XhLflYayDNhff4RMs9t4g2pqtD9vB5/p6ltU3hG4zZ+rf6Cv+I84r4CcG/wDa5ygTEWaRCgSpgAdcwE4wMuaHK2wi5driRVtL8E7BBJlhgB6loaG6JMgkHWHNsuywBBBXiMrbTCiHNAFSOFIUZYJkOKAHU6FF5LUnPSLUmybCgIZwYJN0iTJUmSLMOsOEMGAzkM0MmqRl+QBl9FXF3NNMIYgREq5IhzpEkDsJ8CWcIsM8wOJb7CAp0fV5lo7NL9y/sQg2ei/zN8HUo9rUR/4wDq8GN9S54xPw9PJbchDFE2eXpqE34NeOm+ezaoQnT8gMlTN4m+eUB0dRNG4cQ9SXBP/eItWuagbR1GV+/DNPz19FuiK2x7lyBwWoLySKLMUze2nenO0eAunIaj4z+C9yG2tgMVMbU4xzXGWKROgLuM0UGZWaYYZpkEeWaYJkiDLj7myP1d6nHo+23om7on+6pR4A70fX0J5qBv6Z7MY6PwzNIjGIUfP3Mb/hj62vfoS38K6/BC6Ufc+U6BU//yUxmclvAESB4QZVuO171HX2JP5s8XgMAevAVP5bdl7j4Pz5QeOfPTp8ObPsE8BI++LfEfvw7PX/wzxheBx/D4+U46KTLDc4SoYk7Jxuw8w5yraCrSyb/mp/gZfpc4Oa5x3gHfyww7YLVBUMdpv9MaN9DMDDS+wRs0CDLDc9zgDD/D77DGEIOscY1znGSRV3ibu4xhbsRb9HKOazQIsMaggoExtjhChIrTxExzg3mepZfH9LJFVYHWSeYJ0OAb/BEZUuSI0yBIiBorDBOiRoGYY77uuYXqL359LoDeAqfpO36TaiBMIRXjVFYGyDXOcan0bylGuyhE+whFa9SSIQCKKXH7+SzZJxNNXxcxCjzua5eJqwqNoCC8xXAXTBbl92qNYk87ZSL8efwEVcJM9NwmUIf2DGROCboNcC/5FCfSD1kaOsbI5n2Wo97auBFoQHRfCJvxXiJaB7mZanf0yM3RdneNpfOtfDv/b/hRfJwqYVYZJHRadA962eLe+adIVPP0U+Buzwni5FmLyuRX7OniFJ9y79RTBGhQD+wSzR/waeootWmp9z6V+ZT3U88xwjIdlLnGOYZYo5Miye1H7A1BpLTH4SjUCLM5Ckc292jJCr11PwwzPT/OC+kfsRlvZ40hkrufUOwJsHmqnUhpj+XwMKl4hr7TexTp4qnwNnvfgmvR/4xz0T8lT4JwMkN0+4Bs9CkqQxEGq2sc6obiRt84Z7hNlRC5QJwIZXbG29jQ3VCVEEdOLJEJpPhKzz2Iwn4fQpNNAnvw70+dVovysEzo4RTT8Rm1aw6x1wO56FH+iNcZZpmRnhXqBPggcIG/Nv4uD+M9ZElSI0w5ECEzFOMr4Xsuo/ww3iPMuuQeD5M9hKixNw3FqOhTPCBJb2CL0lCDG+E0zybmCe3t016Cz1J9VAlRoJ94X45etljte4r+qQLLgRG6eoqMlu7z2ak+ns5s8m9SX2eFYTr6KpzpuUF3bp9itBPYpZDsI7kpk/sYi+yMtonVeThCdHuXDWIsJCc4F7vmAM1nso8o9oklNj3iblQjzO/H/xopMjxKFZyb06PpTnq3xYFnJ9lGhhRTm7egDx6NinNPopGjMgmPA7KwRpJlvpK/x2FcgMOu7X2KPW3cCJxhkFUenu7hqfw29+JPcSL6UADw0QM2U+2Ej9eIlA44U51jLTzIWk+YWM8GGbUkvssY55LXAOjqKfLDwFeZYIF8PCBuRckVenYsavpiv0wE9Wf4HUCMJkZY5goXOckiG5rtNEv6DsqEqbLGIB1MqGJEmSphCsQYIEuRMcLUyBEnQoULfMAWRxAzjEkGWdPyiQprDFKgn351VIqxwc/wOy7baO1Lc4PbTFDRDNlVLnDIVbmINbzL8SQChBSQYGMWKU8aRYCVb+LZNHFkE1PAm/RM4oGTr+E1mFbxBhvGiFvHs9MMQJnCOzYbcG9BSRgBTd7Bi5gbGGcg2Un9exXPJruFBDSX9XhWUmkBpgGRyuLgtJ7zV/Q6rfTKwMdmdkgW2dzs4J38svjV14IyA8f2ECDuX+CBO/CsIGN8pPDOhVYqnGs6FkiQauDWFL7sa1uvwaQT5vDug1ZOZ+0CH7jmm/q6rsd8gGex5YDf134w0LRbj38Zr9N5Ea8RZuewMq08MgaMzWwsQgPKYsj4U2DHlcvZeMvq95WNzigCHr6CT1zs4cHDODImDEA2dmQCr4k1hwf+Ptb3raTMwGdj/xirJY0vzcvix0QVua/2PQOjrBLgi/wyUCSojB4bb/p8lzeVrWfvWcD/h7C/oyW1SeR+WqLgebx+7nkEwDLGJ3gjs7egexRfJm/sTcspGRhcl+MflqDlNf3sAO553Z+Rduw/0NLgKSGsOxA/CuUl1SI7hTxn88A/BL4n5Zv7bwkQyEtw+FvKlkvjy1WVgdtiZa+b0rbuMN7EIo08bz+PM0WofAiRNH78fh34v0I5K+Wphx8piNkMmHQrUGNzbh0/r4PIaFiCxJ6ldWENlrMQ0dJZLuPLcOM4NmUhB7GL+Hnpjt6Tl+S+clx/N1ZYRr5/7LTe35dwsi6ujdOQ+wEkbitjbBxfljon17C/A23T8v/DArQY060dn8xA2YWbuHlxf1P74zgexNdktIHPhwaefhs/Z24q2y+ML7W1uegjNaQ4L/elJQixdZ7UOo7i2cl1vLNuSe6RWzPs/oNzEXamGg1t/5v48V9tuqe27vboc/YK8FsKjr7U9Hk7b0aegZ3vK0gLjhl5OKdOxmH5bEdAgO0WA5ptfq2riUoYr1N+WftlXPQJ2y7rsXdxFTZNclxf2FcP2+yri+uzzJMkS50Ak8yTJ06nlheGqfIOr/Jf8f92rphlOlhggn42AKnUqBFiAHFpzZNgjLvMKcjWRdGBD+Ygay6dawzxx1xyrKAYG06YP6ZtEMhuF4A4eQX7GoSpcZK7/ICf5FnmiVFgnkkKxEgzRwdlhlhThliSKWa5oeZwy4wwwjJZFU2UJHSCGBuOAWhtF3fckMRDiHHcAa3wECFkvIE8JwngQ4h2HvjE8evIvGXEigC+AmEH2Q8a896Si8ch9Y8fyn4mj9eEjipR5nvIvDCOX3/W8aSQIPLdNHTn9+W5tX1nVNszjoBwn8rnuyiSIMcqgyTICzZBkEnmlTXWwTQzrDHEPAPEru0QPIHsSdb13w+0PZfx++du5PwZfCLV5vd1nITLKT6F38InKaxaxPZFMmjlZfPEPJ5pu4esYcYWXsJLBmxL3x6N7cq+6WNkbp2XvtunzQHDdo87qBCjQJo5V3qeIEeCPEkesMww/RQc+eEuY0+MtU7VdDRnWytfrRDhAy5QpItJ5glRY4QVxrirrNIBZyJoIKqNRXFFFr1Ic96tI3HtGIuuVNgklLIMqJGhuCqbPNI1zrn7miDPMsNMcpN3eJU4eeoEuMkkEcr85/xb/jF/+etzAfQe0U8ukCBDiiRZdhLCMhpkjZXoCbJKOxMhwiobaledQEATs8JeY9BZH/+dqX9Fx+4+mZ4YN5nkTHhO6uoDNRKNHNmAIP5H2CIZzUoGoEd+NxZLgDp3hoS+SR9c5hITLLBBjBFWCMSX6aLIdaZEQLRPsgOP1T3yLLNOtLEaDrEcT6kmQEMnXRG8z5IUinLY02Ul87DKJ0wTo8DDUz10scsag0R6KjR6AuzSRVkM4vn3qdMEqBOixl3GnNX0ImM86BF69QYxzkTnANggRr4vwas9b3OELWrtrSTI82n8qFplD1BrbyVS2qMQ7WMtOoQ4Kk3RkSxToJ/iUJees8pidJQHJCmGu8jExREmRYaN8BSNcMAJdC72PUOWpKowPOZmYJIjWsNepItsXx+dFPk0JYzHaz3PUaGD8Ki0u0qIq1zgOWYYZI0M0qfCKAoQrsKDaFJFXXcx6/B+Cvy7+EsMaNRszk0BGnyaPEqEistcZUnSlZhxWaHz1R/xe9FLAI7WHQmXaRBkITBBLFogEK2TLD0kFz3KAhPE2HDaFlOB60xu32a+Z5zN0+1sECOUqqmg6zDv8TKpwDozyRHJMkRlMSxHt2gEAyLyGhCR1xBViD9w4ycXjhOIN7jGOWrJ65jRwb2hp5zOWoyC0waoEmaDGBHKhDurXOMcscAGc5wh3pfjAUkqRMRNKjBNnBwRKswzyWRgHmJbhPb26c7t8+fJE3RSlPtDjQUmWIuXyZFgLS61/IuppGQOwgsshJPEVfRyjUGyJJ0rUYYUN0iTIE8oUHV05wt8oI5EIT4jzpP1a1/Mlz3XVjZrDkuP1R4ddfECWRgqRFRUdZkGQcp0qGnFrlssYrrgmRDx7/E3GWORjGZ4QWziVxhmgCyT3ETcyhqsMUQvjzEHMhFIblAhQoc64C4yxiTzvMNROHlXFnwLhPuafp5CgkplPjuh7jmedE+2krF5fNlnj36vhGwIXseX6WziAhRSCAA0j9eRAh8IXUKAtU5k0xFHjGVmEaCmG++EamyzcT3uKh4YsGB0FwEJonhXdAs67+BZZqP62Yz2wzrCTvsIr832ErK5WtV+SuDBwCAe5LESTWOAvYkHNHL4crVTeBbfPXxZqrXfWBhR/c4vN/X/CWTz2IcXrs/i9Z/mtS8TSBBvYOEJPW8JAQjCeGOBOt6FdxXZHKPXncUzIF/Ab66tPDeO39h24w0lrDTtYz1nGtkQGnvDglJj4kSRsVnFs9rn8SZPxuq8iAcEtETRGZ9U9T3b7M7jAUVjACWQ+30Sb8A1pf3xJt70wl7P6znt3szig4U5fCDQg0hYHOGLrxtVwwFw9Qa+rwEuQeQ2Hmhbh9ySlmxWlak1hDzjZ/DAhgFNryDsxzReN86CjIyconAbYnrf95fU6TUNQ8b8W9W2BBWseAsZwxawRLVMfx7aLuFdnRXAMh2+yCieQfUryBi5hWN42XkxIENBohYblwaWz8HOujLrZsWMopBTl1ObLwxQS2o5pj3P676PInXgo6ay4qyWao5Kf5dvQ+RrCDgPvuw4gMy5xq61IPTvSl9HLOAzkPo87P+GlsVGgU41sDCQK6j3QsHPwvvKOhvw/csU8uwf17LQrI6JNN7Q7TwMGRszrPep3nSfjRGZlD5sOa/H2MNLI7yPD+zX8TIMA/jAX+e4w7yCrg05fqUKxZKyTHeRefOWjpks7pnfz0ObJoVankfm53Xga7D//5RjtQXxyQ0b30PInGlrJcjc+nVtN9oXqwoUWunupjwn+++KNuzhHLScxpWpu+TTqLblnvRzxBIhcTwggQKh7yhbsg+/PqNjx8qvsxDTJH3uoyZzjRPS/rZN/dwOvnxbEyCb25Co++OwDbUKX4rXKkOMKdOtQIwUGX7IVwFIkGeeSbbo5QFJXuY98sSZYMEBBF0U6VDTC4nBtlRvrez0lKuEyWvcYLIqIBJCZTooqk7XJDdd7N2sAWYuuxL/iFHBFLMOYBFXXXEL7VRjNZOM6WVLDQ9qTg/PAL4sSe6qWVyNMNOazRANsjB3tYy4g7Jqxl0gzZwyCAdp8Bnhg6rMJTlYmvWy3rcRXPibUVgrwUQdcjNSyR1HlJA+A6bD0D0LuQzwkaw172VhMgCfNeDZUXk/l5VjTioT9dgklC/LHNDxEXRPIXPPG7CUl2F+NgkfZuGFAtAH+/895LYlKdMdlznqM51PFoDxDgE0OylyE9FU2FCDvNd5gxwJjXN31QQvyO4CdPbAn/wp/Od3xKX6ZlWw8PKcMJhHgKejsiaVl+CzElTele1MV1Q+wx1YzcInvy85hW4g0SMg/P08HFuFP8nD09q/HUAsDGuX5f+JsKxNnzVgsg9axoG8MN8Bih/Jzz7g2Dh8+I/kHB2I+tORbgi82GCArCuFNb26EFW6gDnSdFFkUjcMRbooEGsyYwk79qeRI1JkqBPgOBmWGSbJA8LUCGq5t41TM6HIkKJOgH4K5IgTpKGEiJh7ZgQAFDOYBgEucNXpTeZV4sh0/PJaIXWGG8os7GKCBX6Tn+V1/oiC4hzzTBKi5qqwRlh2DM2XeU/Pv/aXziefC6DXoYCBCDJWWQ0MOpFLK+0yTSehQJ5kkDXe5DVnAzzBAhlSpJmjQIzZvtNOH0ColwlWGBbHnEAScecpOrvuGiG26KVAPwViTlQwRUYD6ZC6jGSddsADnfzi5FlgnCGlXI6wotoDI6S5QQdlR9sM0CCvdEmjGheIufK5WaaYZsZRinvZchNejA2ucY4CMa2brhKmJkAdc6wx6WzAcyScCGqWARLklaGTIKJodIAGjwO9gibrJsDE8Av0MxOepitcJEKZDClmOcsECySp6cDLEqBOjTBhxNp5lUEiVBD3pSD9bCAuSnK+eSaJk1f9r06llYbZotfRSFOskyVJvk9s2esEnDZEF0WeQxh5Qe1LewWoc7NvlGVGKNJJhLLqgsWdNoOwlboc9fUCV519u7HrciRYDIw5+/TlvryrYTcbd9MlOMdHDjhrROXxqClIu8hJznNNFpyeEAHqVIhQoN+VRZoblE0qxn7KkIKwAI+2oJrpQYUIeRLEKFCkiwckCVNjkZMU6GeMRbboddoCzWDQVS4QoMEDkgwEsswwzeu8QY0Qv8vfopfHCm42XMarQYAIFSpE2A10EYg26IiWWWbEbRRmOcs8zzLGIr1sOWFRc1WdZ1LHZVyAXh3zMm4HAZxAaI44Q6yxzIgAx3q/up1rzhf7dZQ8ywRYYYQiXW7sJzQzu8YgnRTpZ4OwljRYGWyeBAukOcKWy9dt6CJmzl8F+hlhmXkm3QKWIuc2b0EH1kmJRVXBwxzyPE4zQ5y8G0tFOnWe3mCXqOgk1oH/BgmqtpGgywKFWTyY9gICboziQZECArgYmBHEgy8GKA00/Q7e4TCJZ2a8ggTHX8MH3nUkCxrFB2slntAKck6uc/isqbX9OB4AsFJeCy639TgZfBCSarouKxnu1utX3SsXWFrfnEACPguYjJm4ime7NRDgzo5vLAdjduURB1srs43jGS/jSJC3p+9ZieK/5EnDie8hzL/vaxtfwTML0WPfwpc1BvHOwXk8s3Bd+9PYfgYMWlBpfVdCwM0pPfaH+tlOJGD/WaQs24DDBt5xeB6fJd7Wazup12sg4h1kXHTjnWj/EG8C0o4PQI/jGTA5PW5J/9m4W0LG2zgeOMxqP13X487idSSv44PtGDLGZ5F7n8aXYc8i93UbCaAn9XvzeCfgHrzp1xf5VcCJ9ieMwWTM24/w5i1fA+rQt4Pcr+PyOwU8+3NajsPHSN8bWPEtHKuinFXGWkmO0WflfHlos4REQYC+ekOMImIvIPfveTx4UoL9Wwr2/A0o/3OIFP4D/Tgr57XryQDtsLMN3eP6HRsTCvbtrIspAT1y/rZRntDvXF2VgKu7B1gVcKxY0j6xUvRTOD010DbbWHxLz2fPw56ca/+WAikvAOsQWW/6O/iS9DReSzLY9M/mmwS+TLmBAJ1RvCt0ShlrJZ5gpR4WYHNewT4DkZIKah7Hl7yif+vTNsTx88O2sihfUgBrFJm716Uv9zPQdhE/5oLSHpcsqiPzcg/wx3gt2NmmvtVx0zKJB8V6ZExFStomkxy4CEtZGP02MtehwK3JG4Av093UsdSJZx4be3EUn3yZ0t8/xpfvjuPNhALQsok8C0t6nvPQpgF0y0t49nsQyu9DxJJO4IHE88AVZZ1GcYmolh5h/HWHcQy/wscQ0zF++KYG70HtzwQkbIzYWjeNPEu/rseP633T5E8iLZ87/FgB0S6o2nr7BX99yjNMsk4vW0wzww3S5IlToJ81hpwof4AGywy7eMZiR3PFNeBrnklyJHiVt+lCYr0sA6xr7ClmFycp0sU0n7DGEFNKVCkTIUyNCRa4xjmKdLpE8yqDzoBgWEtxc1rKu0UvI6wof6+LkIr8G4NpQ7XYLAbu0mixQYD/hv8XBfqZI81JFrnLmEt8h6g5994yHXRQ5j1epkqYMRalEq21jXBHFaIeWOqOwUQcx2zuXgJiMs7+iyzk8jLPJxCzIv4B8PchIcVFTAbEXT0WR8Yt8vlnGgK+x3SfE4mKQ3T3EN51ug9GtJwdYNpKb9uh7UXoe1dkHw5LEEtA7JQYs00cAL0C6FmMMMZdZVFKLNDLFlkGXPzfRZFoh5znxwPA16D7DryQ1XkoDqt5eSwrexDZlp99AUkI7czr+woqDsVh6DVY/Z78vrkNHWEBSQ/rco62oPTZvq41z9q+fkcSC2zrM6xzfSwsyYBnU/rMx4ECvHBJ56IkHHkIHIO+yg4jrBCmxhUucoGrSlaRcmvTwjPn2gACAM7zLJPMc5lLzhV6Q3XvDJOJUWCVITXYEPfaQdZoEGga62HqBJhSS3QD2LfoZZoZLSk/43AmA7+rCBYwxiKraq4h8fYuw6wQY8MBsTNMM8ECI6y4+xqgwWN6CWolqJluxMmzxhAVOljlKN6q/X/99bkAejd5llHyjo7Yy5YL+jeIiYaeUoYN1LtBWl0fE8qok+/OkaaDivuZJ85ZZglTdeDRG3zDCccvM0yMDSaZ5wZpJ2IYUebJlgpLPqaXGBvc1AyIAEBh51DST0HKW3ngqMpp5phhWlhHWhInLKuaazfALGc5osKWCXIsM0yCPDm83XEHZXoJOgcUy3ygbSwTYZVBl2WZ5GYTINhPlqRDsVcY5mXeY4FxJ9S4zAgxNlhV5tQGMaaZeQKcGkMsrr1NehdlXUy26CVO3t2juLpuNtOBTcS0l8cOPQdUYyHsAB3TXLAF4TpTvMwPHSiXJEsXRT7ggjuuZZoMkC3SRZAGdV28aoRZZMxZuNcJsMyI3uMjjh1mGg7G4BtkjQIxZzgwyJpzsxH3mTor2nc17lIjRKcCK2ZhfZbr3OAMawxyicvMkWaYFY6wRZy8y6SZ7oOBtysM0yDAAuOYe+kRthQcC6nGRJXHaoTQQZkZphW0iTnUH+A2EzymlxA1+tkgzRxzpB2wWaSLl3mPFdUTuMJFLnIFQPsv5Ki/NUK6aRAwV+7LGCMsE6HMHGlXypkkyzIj9PKYBkE1VRgiTJUKERoEiFFgULXcEuQoEKNTNxdrDFImwgjLTpD3i/66xwn3nM2R5hXepkLEsXkHyLpn0RaRDWKu9NWSELaoj7DiRFfFPSnPIKtUCdPLYwcUdlJkVSlzpvPZRdExaM0sY4EJl5wIU6WDCiuMUCVEkusSRFSQYMxK4EAAsjjeoXYKrxlXavqsleAauwI8G+Nb+t07SKmAsQBH9XPGRHsFCWpO40ugjKkXwJdyouf6G0i7w3jwxILl5lXvBrKzM5Ay0PT7aXy5Uhav9TWFY1nt34K2FJ6ZZgAW+p20/nxff57VfriCLxe2crd2BLgwMABt8xASHF/Hs40ySHDaji8tbuCZbc/r3y3YzCAgiQFV0zzp4mkMwHW8gURQ22/gXQxfglbFlyRb/5zWcxlQY6y+vPZ/DF9i0oMvCTGQrdR0/AASVO/oexaY9uBLvSf1GEv4chAbm83s0D69DiuJMXDhJSR4/zXtm03ASui+hQCio8g4Rz8b1DY1mq7dmHy38OMwiYwFG28ZZBwbg6q5HK8HGf9e0eOL+2pFnk9jqi4hYzCsrp4GkCrg0GZlh5taFpjWslzwJiklpP8+wt+vrwMz0FHAadeyrkwmSzbYfBFTEK+EB3osEWEAl7VrFMgpA29ODBB23ofuggJIxl41Jug2dH8TeEfZbBfxcgAl1RPT8dg2jYwXBcIIioZc7ARuvLRcgm4D19Dr31HQMK19exyYhft31OW2mUGnZaNtA2oy/1vy+cM6tMzjtdEK+PLwdXyZlYGDdSAA+x8oMJVo6q+ofn5V77GxkG9LG+7n4dgp1YizZ8GSQuC0+sqb4uZ6uCQaxiT1WEnk2Uxq8JiXwLQtB+yKS3LCWJX4azqs6/gytnhc21RHypa/j5+/+nBJmf0ZdUKfwmvB2TySxmu+3YPRpIwPolBYgthLYsQSOY2XNbiEAH42dytTd39HwbSGHMvpjmb13yU8EBfDj7E+fPmclbNaMkjBtf1NCG5LAP2EC7mxnpvBvDqU39TPKvOmO4aTB+juxK0r+U1IvISM6U1kzrcEmLHUbfxUoe2UfG5zG2IGUuq+oMWe9Sx0NYPLX+DXV/hz3YcP0K/RTj/XlDQR03hhggGyCpf5ag5h6kWcTIuZPsQVEFhjkF62OMIWESqcZJEtjiDmGRXe42WSZLWKLMQCExTp4jgZxxSzfeoKI/RTcCW2DSo0CJAkqyzAEGPcZZazJDT2j2kp8IjSzgvEXNmsEFn6HWuwly0eaJya5IEjQlhsakSAKmFe401W9do6N6rsbADvCuhcqaqc5s8hyZRfVB3SOWSNT0LX+8oetST0ugBXJgcRswTq35bP75cU4AvLPLuQhwndC7QF4eYdeBbgDVi9A4moMHcP9zTJYEmohpjOFLKavIkD31T26jbQjwOLLHYOKxPMQFxjl3WxQYIcLU/J8WNJZA6+BZyF0QDwGgy9I8/1pq43lQYcSwG/CB1/H69BWwd64M7/5xlOvfMpBU0yBIMC0LcE5RyrGfk9khT2sZXfF/4QNhsw0oc80/eE9RgMCNOPcSi+D92WzB8VR/ahvwf8Juz8CLr/CyG8GHHFjGBmmeISlx1wbcYhxh6tqS7dBAuOrCDmKgLkWd8ViFGgnxQZKkRYZlij3SoFrRJtdrI1fGGNQQaUdWeA3RqDDLPMGHdZQcxEBLMIssogQyp5VFNSkZTeJl18nCNBiCoJ8g4vMgxmXcHyXrYIUyVDirKIevylr89FtcXYb4bqX+GiMskqiE2wuPGsNDF2FphwQuw5tdeOUeAxvQ7w6meD55hxbiFZkk7c3QC1Z5knTI1PmHYPxWN6SZBjhWGCNBhj0WnkScZANMwM/NkgpjTlhAN/jEosQNJJ1hgiTk6zGlVHg7asSV2R32VGuMZ5ZYMdcZmNCBW26OU6Z92ENs+zblJdUbDHAJ0tjrDGILOcdYN9mWEWmCBJljnSJHlAL1tcZ4pFTmKiqUJZFQ2CRcbchB6gzhxnuMoFsiR5m1cBnLikATwVInzCNLt0Mc8kYWrMMM0yI44WGqLKWWapEJFSXaXDFoiRJ84AWXaVfRaj4MAfqyEXxuWItlfa3SDgrr9KSF05BSg0ANHAxwR5BXRHqBEiT4I50oiJdsQ9LLOc5Xt8hywDRCg7VlKDIFNc5wFJx7Cb5Sxv8yoF+gGZJMpEKBBjkFUHSt9kkvd4GXNzskXIxpdMJv0savZJlthenYDCTLBAUFF9Ay5DCq29yFVyxKnrMePkuMsYjxGL+Elu0qE6aY/pZYRlNhAxTWNAGjhugqCAjrdJxw4Vd6q77lk0Jm2dADkSBGlwhYusMsgIywyx5tiqljFJkWGWKTKkuMJFBzrFKDgGorXnGuf4jGOfx/Tzn9xrl04n9DvImhv7gAOzbeK2zFOKDMOs8JhehlmmQkTBbgG47d6+zHtOLDjFOhEqDLNMgAa7yoSMsUGaG47VV6SL65xlhml62eIKF3mD19mil5tMkmVAkybCFuQRslI8jy9zs4BvCe84mMEbZQSQhTuObBqOI5uW5/GsiCqiewICMClbxrlKlvDC8qtI0LKNBxJNd2obAczCeAbJEj6QeEvPkUcCuJz+/wU8Wwq8C+k2XmDcALdv6ufW8aYyL2n53UW8uLq1bwlfqnddj30JAYOm9PtWHtyJL9+8hwSNYQRU6kGcI+e13Uk9jgFcHyOMyDtNxzNQwjZP9mpou0b1/HPav1k9vl3/S/jAvIoXajdm4kX9nDH4gk3HHNK+MMZUe9M1lhDg0ZhymkEnqvdCGSekEaaM9YeVFc4iLEP0PnwfX/J1HM9sMeZdQ9v9ll7rLX3vBe3v29q+U3hm6BJSpnxZjzGn/fl1vSYrDRtFxqkBiDG9nna8I+uHer3n8WWlfXjB7BeQe2lA8xZfjpcB8ZbJVwBts7mcOo8DZMr6M9IHhAVMOzTwt4GM13vI/LOJBzeGtMxRWWnUhRFHQb9/HD+2lDnGnrDuTHuxPIMzPWk7jWenDakRRlhZHkMCyJWNPTeEHxPdeJOJe/g5LqU/LQmy7ttgDODY83osA6Fntd9G8a7UfcqYsGcB+XyflXZPIVqa9qxngYSCVEHtp3acURZ1OJzVY6XwJgzoOc/L8Q8/0mTGFK5k/tBY2JYQKSFz/Ec4NvQxmzsMEEsDk1IC3XJC+34SNnUctPTIGNi/pdf/PhTm9XNpOZdzAT6hzEtLxCi4xiVl/sXxCYBv6mc0sbKvc8yhAU3KvGmzfrsDKvXlX1oaTI/2tSWcklpKO6pgXkzbMg/8Cqz+AF+G/C0BIdsGkDkhijdHW5XrLW/i5xZjqk7r9VtyowcBd+0eB5HnYV0C6xYDUI3RZ8fRJERlT8ru7uelLM/GUuQ0MkfqWhIMIPIYO/r/PJ6FnsHrglqJsq3JxuRLKTOzimeFFpDneBt4BnTL+oV/fcpxtnQvv6xVMEW6SJDnLNeV+LHlgAcrubU4xRLzV7joyBNd7HKNcy5WMQ34Oc64arIYG3RQJk7eEVn6dX8uZbEVF8eJXlnW7WHNyTRGgRmmyStRxXTHRnT/aVVrORLMchaANDf0MyvOwEPAwEVmmHbxk5EXtjR2H2SNCRY4xzV37KM8grIssdf/gfTnDvj9GZDT0viZLC5JGunBPfOFdQRMrwN5uJ6R9xdWkf3CN2FmW9emoBwvBlz/fbiehbWqMAP/5A782/fl0YpEgW74RIG69+7Av/0VoCCg/WcNWNoWh3VnLqZAfoYUeeJc5AopMjzHDP0UmOUstzUuyyISVFXCIltwF89Ut+RCO67Soi0s5P/3tBS4oPv23La0/71bcF3X2BBVCArgmGvA7RLkSjCTx7nItwWBPbhvFSLrsKYsv5Z2uLkE72V8vmFHKxq69Zmf+SfyvZhVW9TlHtY6WkRqSkE5Izec45obF4LHxMmrOYYZnsrYmnN6d16rboAuis6IwuLPNQY1CheymRkEvshVV5WWIsNdxhBpuBo3SDPGXdYYdBiSaT8+xwxVQoqdBB0oaTiAuNjKM5TmBv1ssMURqoRoEOQmk9T0+0mymMFNF0Ue08sjjv5lUwnwOTH0vsKfU1PEvkiXZgZ6nWZTmCpxcsTYIKsT0wgrLDDBIKuY7XOzOGKOhJugfM20MFysE36Tv8PP8+sOlOhlS8Xh15hhmqqyxMy6WyjJAmwdYYs/4KeYZJ5hlpnjjAPCKnTQSZErXHSabRVtS5wcy4wQoE6DoAbnNQqEHZqcZYAAdfrZcFpjDQJMsODca1JkOMMNqoS11C5OlbADIo2dA7iSRSuBNSroMMsAbuItaLYDxDijiyI3lMXVpdkXo5+a40uYmqN6F+lihmnOcc25rlQJu/+bC6YBsD/gNTfRdOqDs8gY08yQJ8EG/U7LS1iTZffwbtHLq7ztrr+LIvNMkteSTmPuGSo/oECIjYcwVeq6EEQoEyenTjWrmH7ioGajfpbfIkCdy/wEEyywyqAT0Uwz59qd0IhCAMe4K9Eu0sUiY46dluSB2KOriOZ1zrLMCIOsOjbVmgLUq8rqBMgj1uqmQfEOr3KRK9QJ6EIbcoCzIP0xynTwmF6+ynssqIFBL48dGGrOPMYEtYnFzA9W1f7bSpIbBFnkJK8q2GNjw8advboocpZZinS5a6sTcCxI0360BcfcUy1LaPd0jUF3b26QRtCKL/brFItaxB5zGZoUGRbUdXaLXt7mVXefZph2c4EYWVS4oSUJIiAsGdELXKWmmVUD6g3kNnMSS5ycZdbNcSkyDLJGAFmF08wRY4MIFcpE6KfgmL5RSrI5CMN3fw9ZgOfwgt09yIa8qBf7Ib406SvAnyEb/g58uWZDv3MEX4Zb0WMeQwK9GrL7SCLB4l1E32kVcQOdQZToY3jQ6TKy42jHa65p5pFbeswObesSsssp6r/jiERFM9iwD1zVz32obTzQ7x4AP6btW0NEjY350MaTGoCP9dxFvd4/0uuPAJ/osQaBP9Dz5vQaD/DOtCH9/kd6ji7tjw19/wg+WGsD7uPLzLJ451oDBm7rdz7RY1mZ7X29B0f1vR8hum4tCCi3i7ALj+BZcY+1b3qQQOwh8BSepVnEB49/qp8valsrSLmb9XlJr2lb70kRAZOv6d8OtI0HQL8ew1icdq4WxJX5Y7yGWhueJVgCfoiMhSPaNz16H4v6/i1krLZp2y1INfZSUttu19aJAN8ggf+wtvt9PLMvj4B2vchzsYPXESxpv33RXxEErN3DG8jMAceV+QMeLI4qcIOWqlrpIMK0K9xTl1Cbi7rlO/u3IPgr0HIRGfuWiGhoUNHQMtk+ZdcpQGUaai0G6v+aMDkKS9D9hoL3GSRhMQUtt6U9ba8j93ZVmR8N5NkM6/udeEZrVL+/iTdxsFJ2Y/Z9C28UpIw6x7yzsv057atx+X5HO+ysQvcrOHZfBGSczupxla2cm4PEKTxDeF77bhqn6VdvQJsxTlN4IPEUUs4c9Pp7jgnXAy0mffA8XiDeGMEGnhpAuK598s/k2ja3IdGNY+oe+7q/dseo2ZF/jkWj7MvD97U9zSzDMPL8pYF3lPH3twWk7QhDSwCv17itbBotl4u8gQfqorB/R0ExAyotYfIKPihP47UJE8Ju4Q5eKzOBAzsTUWn7Tha6/7AJLF7HJ6LacczKSLLpnoMHvufwTtrKMN2pqvmLSh/s5/XaonipiToCWF7Hua13j4se2H5dDTLu4Z3pLUkypGVzbwkAGjuBZ/qt6zHf1LZbP5WQ8WX9ZOCrsvB3PhYNsv3fVvA0hIh1fQnmwxOsKk2kSo4EG8S4youc4xoRVfgu0kWKDGUiLraNKVvOYolXecftLXt5zFf5IXVl9yV54KqkJCboIEUGMyIEnH69VfwUtJquly1HKDDXTatksqSyxcmi0Sxx+xSz1AmwyEkmucl1znKOawSVeddFUat0pIoJ4Cyz7DZVDQFUCTt9MdFTExfQAjEqdEAIBjrg7FeAAHRnkTHYLf07mgKSMJ3HV07YeI2rnmpCEydxOLsnn5u4g4zP43D+nupnxmBUj5uw9VyTwSMlTYqg3+uG6U1py8u2DxuHtnZ41pLiliw5gewPW0XSyGLgMhHWGGJZ2ZHC7IoTJ8c8z1LgR8T6d4jZ/tWSCX14feAMsAdDeflHj7b5lCRWjtV1vmqX697iCKQfkghAwqoQovrdUdkamrzJkP1/Es7afDsqbMXDPV1jj2ufjOvPuCwF9IhDOg2gA5JR2Am2c5brVOggS5ILSmYRx+eQw49SZOigTIgag6xRI+zII2IYMsiaMun6tcLRzCxMC29dS5pNqs1A5VmmXMlrjA3uMubi86BWMJ1k0UlrWak4QIbjJMg5QLBGiEFWWUP8CqzM9jpTrtq0nw1GWHbVghlSji0YoqZlwuvs0PW/Pok0vT4XQK9GmBi7DoCLKB24SI15JhlmmTwJpriu5V4d7qEu0M9X+SGLyiTaopdVRVOttnyGaWfrPKTgVYwNppjlGuccwm/gS5YBGgRUj05AQHtgEuR04hnjFd5WOnGQYZapEXZW32YsYAivufzUFLjLMqDgVpwMKaaYZZYpxlgkyQPVzaq4wVIlxAdccLXZi4yRI05YJ64N1U7LEeexns9AkghlVwJpIvZjblCJAcYYd12pbZAGk8y7Cb9MByuMMMwyYbo4whYxCpj2n5XizTKlpZMymA2EsIWhSBc3mSSoD44h6IuMMcECaeYcIyiiXDkzfzAwQRYM0UMcY5F5JhX8EsdU0/QCAYs6VA9uTKmwW/RSJ0CSB456bt8zim6DACkyYkBCmQB1wtQ4ww3MoCVPwn3X2IlCdY676zaTgi6KTktwnkkmmcdMBlYYZoN+QkrjFZCkw4GXMYrABmam0stjZpkiQJ0LXHW19BUtRxVG3IoDdO25KNLlJgv7XcaLCM+K1lq/A9EmWGCNQcLUtFw7zzzPYk6oYarM8JybyMpEWGCCkzoGp5ilrPR7oyRbGae5ahlzNEKZcRYo0M97vOwmYNPTsMzis/zo85h+/pN7rTJEOyGnI7LCMCOqQ3KBD8gru9j6zxiPERU2DlDnRa4yz7MO7H+Z99hS9rKxdTOkeI0fuBLpfgqElPlnjlnDrHCGG46FOevYvIMMs4IJupo2SzdF2XAYCGMBaAeygB8gwEVSfz7Wn8eQTUuXfvYAr4vUhWzyn0JAkTJPgkoG8D2NRKUHSJA4gKxY+/r5JBIg7Or5LDsJEvwleNLVFD1WQz9fxZephvBAWSse9BrFB9AVfT+EbMCMwQeyiTrQPonhg7E2fe8ZPFAZQfr0tvbNQz1nq7bzDB4kRK+jpv83JlFHU5sPtI2t+v6i/r9Tfy809X0F2VwZC8hK6UBAKCuNM/AvhNd2i+m5jHVXxLPS7P/GNqzqZ4PAsn7mGHKPW0GrcTyjMKrvGyNTGUqE8OAx+ru9p5tBF1x/qtezhS/7fgoB7dbxphVRBFSzkuOS9osFr7bpDeJZVgYyGpvzjh57UI99gGdGGqiRREDHIjJm7TmIIIDjME+Wv8Xw4MgX9dVAAOsgSq1AAps+cX9lHum/E8DHAvK1pfDP8Nfh/q/BsV+AmLGAN2FnVoCMY1PKGgIp7W735yrcg9g/Qvr6t+Uj3QYuGcNzFXn+ruh3Y6KZtG9lsA3k+TAG0x287uQonrFpc5mWE+9vNumpWamnlT8aQ/R5KLwDsd+Q7+/koduSEnY+e24VEHLlrWiAtKTvD8HhvAaiWWGDtMSl/CpxWtpwOKesrQDe7EeZ1G2j+KTIbfxcWdJ7cRoBboxFbZIELyFJByudH8Kz1wwUSuNdFnPKTkME2oniNSyTeI3R5/FmGcbqNHD9NXWdVGacY7IltT8eCJj3WQlGMwoOt+sY6NHj/wZSbv+rykAZwmtoBqDtawIa7qw3mUOAJJaiyJy1KW+ZMUZEz1+eVR3HJI4RGFH2c3ccr5tXwOu22lyV1P4NIgDbFJ7tdkL68LCuLss6dxxL6bE2gVeg7bbcby7pdVrbjeEeQObtG9CWhrYS3qxnW4Hi49Kmw3fU+bkAbVm8juU9HFPvvjKhjl1Cxso9IAH7l/UZKGmwryB9l7It29La7hriWPAleH3GMe5xVHWPM7zBN+hi10kbDTUlwXcRGZ0aIZa12kwYSLsEqPMs8zym15X/WRWQJNkHME3lM8yRJOsYX+aa68tvw4SoMs0nLk4JO0kmKetdURkpA/wMILzCRReLDLPCT3DZ7XuDClaViTDMCgViDCvIkSXJDc44l9AuipxkkQ5NSMeUuNKrrCqRhTlk66kIvafLPPqkk6P/YNclmR99u5Pe7V3aruOlYiZxUgEcR8b/GaQU958hzOPz8n3+MfB1uJN8hlPRTx0Tmk28TusDZC27Ay2WfHgTn4h5Qc/xmhzLVQmk8Qzgi8i8egVoxfWvJd6FCVZ29ylIg2eZ5wZnxOH3JOJ6cQqZvy7jJVoMwFRQjxM4s6PSN1uJ3jqQZ9EqIUpi4kD6tpdV6NT+sv2jVcb0IXPyS03v5/X970CLJricRMMr2jdDUPp+K9HVA5ljppCk+Ri0ckBezVUmmXfGH2UiTHKTGmGnt7+rwPZJZcrFyTHHGbbo5SyzrDDCBAssM4xp7wtzr+xKdEd0DMbJucrBaWZcTFUhwjQzrKqEVZAGy4zwVX7IG7zOBa4yzAprDFEgxpSWBhj+AHCNc47QYg7NJkdVpJNVBp3uX5UQM0yT5obq6scdVjHq+I5/8etzAfRmOcs0dwDcA19RTTjThDLNpiJdvMdX+a/4l1qSG8BcY2Ns8JheduniVd5hjjQDZN1NNPAAxElykDXWGKRKmJMsCiUVHCAjZYQ11hgkRNVlFDIcJ0LZle6GqbLAhCuDXGaYChF+kh84MwBjjhlT0Aff8vkiXVzgqgPRbMCsMqRsvQLHyTjttAhl8ioyeplLPKcDC2CK63yP7/Dz/LrLyORIMMwKk8xzjXOqBZdgjEX62SBEjTIdqkdQp6rU7AgVIlRUA1AYbJbBAVhkjDQ3KBAjRNUZgdhkmiTLugKZtmgYvdUcjAxRX2HYDU6jcgujssIgqyp8WqWXxwyQJUOKAbJc5UVCVAnQcBoNCfKqKyHONUVFrCdY4Ff5BV7jBzpmjNEZ5zzXeKzIvYFPIQWV53lWGYEhzC3KjpnhOP1ssMIIYWqUiZDUdhnybuWjEywQpkqRLpI8cGCxjYcKHYywwgdcoIsiw6xgjsfzPMsM0w4sbRBU4LvLGY0cUcZhMzPSHvZlRrjABwCOlWVGFQUF8wCn8WgM2Cmus8agA2+sLL1GWMFwsUe30miQzJG0I6QbCMkOPiCpZbe7SjmusE7KPd+2AakSpkPNVSJUHHD6ZXjd52ku8jFlOtzCco1zbNHLbSYUrBfW8gzTzozHBHJtfBXpZI1BnT876GXLgbeXucT/g//OsVibDXvsOTVdEtOaNFMbK1eXLNGqM9gB+Ou/9BW+/e6yBHCXEM0lC0w6kUyoBX62oLcjG5ol4H+HbIIscDa23C8gG43LPKlFdhoBsD7Uz4/rcXtwrnj0IZsTK7Mtadtm9dhD+M1EWtuTxpdvhpENxq/qcdC/ndf330E2YO/ihdPfwgfQfU3XPKTfNybgErJJ2Wy6phQusOcHeq4XgG8gm6V39bqDeA2/Pb2eKSRonNbrSOm5xxFA5A5eKN36/rJeb1LfX8frWb2JZ57U9br6mo5d1+t5Aa/z1KfXflGv+XvIfTcCr5X2vo4E3Js4UIE03ozEABHbGBsga+Vxc/o3A0Ks/0yXZUfPV8DvXAwUMZbecbw5x7pe87vIptqAmK/pfTqB36z+C+BVPHt0Svu5hIyLj/Dj77xepwGbPXiQZhZ5Lu4hY8mAgR28Xtg94L/Ej2HN2O90wz/9P/PFfhkwFET6z8Z3HgkQOpF7dxcoqbPteeS5OQ3cgWNJvDZhFVgSRlJ3FSiIrldfD+wsKZNL73H9DnLfdvDmCD1yTBeYRBEgMIaMP73fbTZOjWFm5b5xJKjrwTM2DMwz4HxemUeres1L+OfC2tEA3ldnVmV6dFfxeplnkfGYwDOcenDPT+SSHreEJD4KTeLkMQX2MlrWqSWQLUltuz0vM9Ke/Yy61I43XZs9e0E883BTwTgDvo2Jas9Cu3wud0t11hTwIi/XamtGm84TEXtOgto/7yLPT0KP+av4OdKe+6i2sdHU31l8UkHbG+lRh8YwTq7g8LeUUVhQlsq/Up3GcdXti2u/HwfeEOZeUJmjvKTXYUAv6gg7qffE2G0pBFSweaBTnCi7p3z7d+ag+xQ+aDYwb1rvyajeg6Seb48nStVbgtKewzllF9p9MwkDWzN/A+8IbSXaNq924+dUZSxaqXr3OM5VvCWNl64Y1/aAX98/hGPGFowisghJ4HkF8yyBgbbllrb/Nr78+gqS9NjmC//6iP+MaTV4eEDSsdhMpzxEzYFyxrIzHfgudllggotcYYbnXFLdNKs3mgw0KkQY0vg4SZbrTBGj4KpljFRSJcwk8ywzTJ44G/QToM4Dks6UwGJ0kxiqElKtPYkJF5hw5AyxQJQ4zvakplVm1Vb2dyvlNeKMkESCzuF2izxnuEGIGqa918Y+vWfL/MPvhniqgWP01/7vJbLBpxmsfAZtkI8c4eBmC52U6CxXJem5ChzA8sNnGIx/ysFKC6GtQ3lmGlD5NMgWJQYMAP8UDo/C9kgEbkDvQ8EeDo9DYwn2QmE6j1bZjYZpr1VhG4L3odbTwqPfPepILeHqAY0OaHzaQvn/20FvsczhSWgE0BjhrnP8HWeBx/RynSlMH87i1Ahl6IZKLMh3N+uUflPuTVemQksRdithOrNVDo8A7VArtVIZaaf3Rpn7//QoTzdytFShfhuCJahH4c+/m+faHrR2QksZDoPKSq4gSchOaBxAY6uFUOWQnasdRGoVgjvQ6IdAFbgGpf4QwZ464eAB7MPhu5A72seRnS2K/1Tu+ZHeXUpXQ5SmosQfPyZHgh8jzwrDxCio3FfHE1V9VkE4yU0nIWRl50ZeyRFnhBWVYQtylmtc5UUlPLxJjALnucYbfIP/mv/RVSuOsYiYPna4KkWpksxTIeKIK/ZMXecsIWokyZLQsl/zGRAA/YiO3RdJklVprCF+ht9x0mUxHePDLLPGkCuvt3LfaWa4yxiRv6Kg6OcC6I2w7CYkCSaP0EWRKa4r9VHAJkEy6w6oypDCXBgnmSevN6ZGiOucZZgVB+Dl1GEkQplB1lhmmDodnGWWIA1xNmWMAHWOa/G8BbY2cRiwVqSLZ5lnjUE+4EUu8cck9eb50tAwRTqdkL+BNsZ6mSPttPASqktgvxfpZIAsK4y4hxrEDdjaZQwxYxd2UeSusgaNybNFLwtMOIZevwJGUtb4mDwJTuriYEYMUuJco6I6aWL2EFbmWpC86vkFqBMnR5Isf8wlp/Vm+m6WoemkSNDRWsTJFAQ0NQdfM4gwtpjRZGOOlgEPSPJ7/DQ/w+8SJ8cYdx070PTfwgoFHSfDBv2Ohm2gab9qvH2V94grY8wo3yDgpAGGV3lRgcp+etniAh8gzrYB7fcgg1qaPcSqc4MylqbVtedIMMECWQYcsAeCyu/q4hShrKYGMlasxNWs38t0UCNMkqxzJi0TIcaGAxbNbOQa5znJorO1N1C1Q5l/GVJusrH7EEFs4U1Qt5fH9LLFOa5pyfeAA4aEGfgBM6qR2EGFEDUtwxUQfYrrLguXJUmFDvccmfFFF7sq2Sss2iM6hs2ZqUaIAA1GWHFMyd2/Io34f+uvHrbdRitDimFWeI+X3aIt7x9njLsOQK4RUibtMMOskCVJnJwDWM01OEmWCh08xwzXOetYy/4YEefmFKLKIKtapr1FnQCv8LbTJLUS7mbqeoUIpfOtREcPZAN+AjgLhyegpQSluP4tCPtD0PYWEgANIQHcHjxKd9JV2qX9FhIs9MF+XDP8X0M27lYKaf++jQSopimEfK70WivVcIhIaY/2EjAK+93Qtop3U00jQfANXFnP3mnk8xrMsYoIoRv4Z/pofYi2UjcCAu3Cp+mjPJN8xH5Yr28cDyhYxnKu6fw9+BIDA6XqsJeG9oZc1+ElaMniXWrDSGB1CgHZjuPByIt6LCsn0+v+s9QovAY/llnymn9J4Ls4RtthD1RT0K4gwGe/3MfT39+EGOy80kZ3eF/6txMJTLV8+d7oU5woPIRJvcfrB3w6epRnZh45DS1ew2shGjPoeXxAegrPNjkt/7+XeorU9kPaHiCBm13nKq7M0tg1h0lomYP9s1L+9+n5oyRKj2g34MDYgfeAk7Az2kZ3dp+l1DFG79z3IE0Vyc6f19+jmqHePhBgIa/j4tsybg5HoWUdr/HXB/xN/Vxa22wMPOTnw2QPsdPbtF3U8Tgn3310qZOjmV0oQGm8lehHBzJOYvjMtT0rg3zxXz3Is3VHfzdWozEn7FnfwQMRM3jg9baW8/yaiJW3pfFurAqw9PWoW62WSdnYTEzjS2H3EMDkfT33npZtWqmgPWfjeOfluoI2rwHzyrzqwZW4Ht7WUtUhKC+pC6qWdhHGJyVyeCbmpBx/Z13ZWsZKi8PhPQWcjAGWxs+P+pzSjgfKpvHMOGOU3Na2dzeBVMZuiwrY1hVVxth5+V7bAF6fbxKfyNjDgz2a2GirSl/wPHBPgbFRPZeCVokhvF5cGK+/GsfLNhTwJj7zwE8gIG4VD6Ceh/0fiCZT7L9FEgs9yHxpgBk6Vkb1XH16/cfFlRhjHmabwKmwgEqHeQXD0vr8H8fpsa7K9orBPjW5+JreK9PBCuv15vU734bD70HLeRG9P7zsS8C7exC38d+X37uiyHql5bj7Cp62TSHPiY4HguraPASFDyEWlc8GA9CyKgBtJC/t5TxObmGnIKWIO1qu3v33ZMw5nb5dHWuTUv5aqarzbAEvezEN5Te0jHsOL6Fg69z7+nOcJ/VIj+t1fYSf541RverHUW5Gy5AVBNZ84hf+9aec5+/wpotvzDDOJKNibBCgToWIi9vEWDIk7pff/V1+hyINMszSRRv7xMnxI9qBNer8/8n7/+A47zy/E3uB3ehGN9AgwIa6hR6BAwggIGIFGjDggQIOKXLEGm44J93I1nj2h3ezW5mKnYurNudLzlVxKpt1cq66XNZ3W9nc3dbNZZ3d9a7HK1tzUoYuTqghRY6wggwusIQMCiAgYNmaxnSrm/jdjW50k/nj8+MBnSrvpOp0t+E8VSyCYPfz4/t8n+/z/b4/7x/NHNBCiGU6eUiFOI845mskUbF9yo95ll7W2aeV93hElRWOBvQ9oIc5HqpCqk6edWIcuG3Pn6ny7IAsFT7gu4Q4pJln+Iz3iBDiR3zAAYc008oKn/EMaf61E0ki1NhWlddXfn3K1xtlYkSp0c+qkm+EtLBLgkfcoJ1tdp6NCWEoESeVKLBPKwe00MEmO6kYrQcVNniWMA2aqXPY1exqt0c0USXKdqSdxzSROLFL8ZiQIQ5oIUeGlsQBjzhGqLPOY47xGc/QzCFtJ2QdfxCJUqSLA1o43rrNI47xWSRCCwe0JvfdqmqLDlqP7ZN4dtdVbiW6eJx4SBOPiD06IE3Bww1B1slGRtlVYtMCI4Cw+R7H4cc8yzOJz2h+dMjmsU4asRCJ0B550jRlfsxnPEObKiZDNIj21SjwDMRgL9ZGF0WaIo+pESHCIT9uEXS+JXbAJp0kYyWaeERNVUN7tNIgTEvigANa2Im009J1IH2qBZ5FjtlxbJPNRAvHeEwLBzQI89mxZ3jEMemTXQ0OaaZGhM3ONo6zrWvMbmdilom77VSFGFWiRKmSYM9lrxly3r6GQ4j3Y14ZnwP+7zX6qCswaB74FjZqycqGh0wyQ14rFd3kKCieYVZmSwySUBmvwNZhLnCDLD0UVTa7SxsDaoWWVrxhnT6KWr0xv/nXeBsQ7GxWqZVTTDsx5zOJsPoLt88F0KsQ08aOkSFHVFcXZWIOMFS0c5VIEqOs8kOh5Zq32JpSGSeZoZscZWLa4GUFCjK0qXR2l4RK1+SSLOBinDsUVMpaVPZKmAZ3GeES76okuMISQ6TIM8wi84wxypwHCBz1KrDzXmKIKabJk8KM7SV8ocokM1znkqO2aQq8zatuvlghzpu84b5WdaV3luhiiGXKSLDE/3HpP2Vw6OtEkejuJYYwny0BVGrc4jxmqmpedWnyLu3dIEOCPfdxsw5vzMk4ZffDi1EmR8bNUbfopEiSTgUZZ5lwcEjAujoZciwyrDwh8X4zSbKlqEoiqvitGWjbRYlXeYcIVeYZY4QFolRpY5de1qgRZY5Rpph2IPQmF4gpgCtR52Peb1Y1oMM8AwdY0YpTkgZhMvpAGjOpqsEZOTKefNsg5Pp3YV4K0NHQOpP5w1l/PgoQH02P6mCLIZa5rZLquoIpOTJMM0W/+tf1a9KrhZkI63NFGYQjHg+/oXBigzAp8kSVqZdhwysWEWoMsqQD1SYlulhRGXMESaAd0Je0eOCtaxVEUnjOMs0SQ36Pv8ZVLOiiAwlnaRB2VpjJQzM6e0uwyyr9WKCD9acKMTr1uTYG6wN6OMMCGwpOPe2beFA2lMkYYYS7Lpc3NnBU+8cSQ0ww68+otfUoc2zRSYoCIerc4pwzSx+opLZIFxPMOot4gBWGFAy28aKDLeYZY4UBJpkhQ445RulU5qk8u3kH/LL08L+P/p/p71nlcs81dicTXpC4fuISwywyNCFx7Vl6GPrGstPmSykxtV1iiInWWeYmJfI9eaooMvKXdpmLShL5PZ/ASp/cpIPOl7fUR0RSprZ6JLPtCt9jqfUUy18ZYpR5ZhknPlphkhniI2UWQ8OUT8WZeHmWYkji67vJsfsVScdepZ9XUtfJkWGPBPmUFIdGWMBCYgqkiGUqOl7UmU4lGGOe0DcafIdv0vviOmPMMceYjBt9SzK56Mm5n4eFmdjWTY6NyQzFyaSM1ydmZBJxqob5gJaJs/srCd7hVZKUPDQoRZ5wj1TFOSVjzwr9bNFBpSdOqKfBcHWRbLTHk8LilPU92kvXiyVnZCZ+fpdXuM40U0z+/AyLDDPPmBddrJAVvTLtqXQ9p7KsMkBlcpElhrAU8hwZxphzlsouCeqEfLKVI0PHi5sOQC8xyMXjN+E49L+wogWqCslTRcLKzI9RxsKyhr+yKM/HWXlO+ltX6Xk564ufDrZYfbHfx5xyj9h8lF+Iua9oT0/W338jLPgErpEKUf1GlF7WiFORc8mIZ1HkRJXE6J56sHY4q32BEZFr9AjIPsEs/4xvMsY8k8dnWDk+QBdFci8LU3uRYZI9JZI9Re4xTPdXhBUNkug2kbpD9oUeUuTZ32kg5npP8VZDQAqTPc0gAFoDTxV1hqvKRXmRAASqQ5PKOpuPMmTv63e+BeHfhqbTQBXK76kf2D4CFBiQOksA5ipjtMkYmxncf4yXEMbri3KMphaEGftAj/uq7uc0NN2HZgXnm5VBVb6v7LmPCMArY2flEJCsoCyoHAFLdR9+9FCkuulW9ZA7qef9N4F/iQAkZ+HxP4KmF3EvQsLqFxdWjzb1pmyyQouB5ymV324jhZocAqiMEbBZ7xNIMyGQYr6HB2rYffGUVjT99KF8/rAKzQaGKthV/jbEH+IFl8fvKWNQPZn4LxDgN0SQRJsU+XVyX/uNSfOtaGIA4T7Csv6G/nsOKVh85ch5G5u6Re4XJ+HhHCT39HhWaNmHwx9I2nC9IQEdMZPFHv07SQCk9sm9aDrCWmx6nkCWat5+9xQA/TW9HvXhO/wBxM3mwWTW92XfzWH5O6ksu+ZRAm/PfQJLgBcRoLOkAOKIyGYPZwh896I4u7tJQeFYiwLLCiQffqTJzfc1HKOFIF3agN4UAbP+E6Qv2b6NBWjnZLYYJYIgqVZI9xCA+yM86Rf4FG8/xx9xNP3S5oDmFbfIMOe45Uy2LD1KvBCLoUNVmbVw4IqgjlIZImXqUQhXodEMD1qeExCGA5o5pOtRkeqxKI9o4pn6Z6QfFShHxJ/7Z2r3KEZO0MIBe7TxTK3IMxTZjbSxTyvpykOOxR5zjEc08ZhmDklUKjxqgs9a5Hth6nyBH5Glh1b2vaD8Gc9wnG3MF/AL/Ih1emlXNP4Yj5yh9zavMsa822T1scamAoAj3OUue9RpppV9DmkmRZ5jPHJShFnNHLY08+LBPTZbjnOMRzRzyDEesUmnz4lPVHbIxVJwTOYwB7TodRwSoUbLQY3dFglXPFVZ4+PYAHuROMcrZdqKVapdgg88WynSCEHTI6i1hAXEU417Ozu+To5QcwUhQDN1ysfimL/gIsPupd7HOnVC7JGgTOwJtdSPY120s0Pzo0OWj52ih6yE4UVCHOMRAD0Hol+vt4Toqj1kN9JGis/oZJMQDT7lOXpZo7u4w35XKwl2iT6qEq08otYaoZlDPuMZnuXHNNfqxB5VqUeOUT0WJUc3H3OaSWZoZZ84ZbZpp4NNmqkTr28CsB9u5Qv7BbZa4xzQQoQq7fsVdlqh7dEeAH9+7IuuSjMyjBEh0qyygszzCqRciQSmVlzR9ZJITMxKLU+aLTqYYFaBwF0nLIhlkQBv4h1eZIUBtpAgQgn27CJOmXX66KLoCss0Bc6wQF4xhDHmKNJFQROKxfc//4S83EA8k/PGKJPUtOIsPdzgIr/AP6VIF+KL30+RJGkKdHPvJxpPPhdA7zOeYYDPkFRRAQg6Vfd+he+xzJCCLzkucNPBFMCBE5DqQZdyk6wD74IDgUZBbRBysEbkmQKkjWi0XEy153YDkxQ5w4InwRpS20XJ2X1RpVIaWGidwLzmhMU05Mi5DTTmlTfBLBFqFI4AfnEqdFFiRUGgOBXvcL2sM8QSu7R5Yu7/Yui3vMMNs+gViyJJl3YOscQwsugx7bYxA6tEHOQx7XiaPJt0KANR2m9FFz5RqvSQZZAl9khwXplb5rtnySsmBTaadi/r3OACGTZcLpqkqBrwBgn2yKoMU8xQV7WdytxhgoiawloFZk8He/MetLSbf8zf4y4jbCFprhPM+vUaoLvACOadKN5vd1y2aEk5AJYimyKPRVXbQtIGjiJJZyCavDSnckRjm66rjNwo5lt00EWRKFVP1elVMHaJQWKUGeEuJbq04lFhiUFfkFqiroVbDLNIB1v6kG9RI0qYBhIAsqnhMiXmGXXwtJMtBwJWGHD2poFtxhoVQLZIURfP/Rq4YLRiYyYaJd7Yl0lK7NJGmsIT1HuLnDepQEUF3ual2c8qUaqc5zZzjFLU/ve0b3skaAKVD9xji06Xxsu9FYZelh6meJ8sJ/3ZtLGnhyzf4ef4D/nPsYTiNHkKamdgIIWB6esafmLeD0lKZOlRk+IF8qSIUGWGSUZYIESdV3lHAzYG6VMJf0iBmRoRbnPOWaoZcgywQp4Ub/IGY8yxRh/r9JGlh0tc5wYXucR1ktrHujQEKUe3gC1RHGz+Nt/im3zHq5EF0nzIJDEFpWxcsPTwCnGKJJllXAFRYX2HQw2KOl7cCp3zZ0dSqyecnm+sWGP25jVlblU9Mtb0Bb7ACHlSvM53vTJqKc03ucA4szQIs8CIj5Pr9FFWY98QdXrIco3L/oxv0YklQmfIscSgF6JsvDCGMIzQyzqzTGBp6rskuMU54lS4zTnvZwvREa9O2jgnhspF5YXH6GeFEl18X2l/f8gvegKyhfwYS/w6l2gQYpYJznGL7/BNfpnfp0GI7/BNznELM9UOUfdqoowJ3TqqRwjT8PdYVN+bJh83G45AImEekhGf2Iaoe+FlnV5uc+4Ii3nLPV7Ni2STDop0eUHFPHcf6PvR5gnrGoZkEzoz/TZ5+i4JBWe7AQjTQPL8Cv7emWPM5wn/lF9ggFVW6XewEYT5OsEsMSq8yyX3DbL/W2QY8SAq89QDei3wOK/SxCQCXmUIALx7iNz2E/18CgGpbD5r0lAzAH9A4Cun8uympO4rCvFxBAwxJukeAhZ8mcD37YH+rF6Nj99W8KsHkWIbS858l+7I3/EWJIE0K0y98r4ymKoachCVRF7eEzZh+ACa3iMALaMEks1WAtZaAdhR6WIrQSKsMZ9+n4AZ/I4CYR/Bzj0Fb05oEvADDUcwZtpDAi+7qJ5DBg7fgmaTq5tk2KSt6L9zOOCyMwvtL+n/f6SAXRs0v6DnnhPW2Np70Peypiy+L2mTAOkFSVSNGxibV7bcPgFrrIGHW5QL2o4HCNhzQAB8GlBmtg4NOJwXzztjXjqbel7b8/4RFlwLAWtPt9IHyu68L99v7ha5djoD/Dw0/RFByIi1FQJY1hsqLVVPwnIO4meBX0JAxpeVuVeVhM1YiwZwmNdUVa+1AOXvK2PQyBl9wvbzvm6egRndd1i9GrsRcFyl/JzU+3Kg0u8TiPR8Qj+3hrOOm18I2p0DvZYolOeVjbqNWFCsqZS6Ve5B+QcCNjZ/AwEr7bPaz8pX9XnZ132Nyv/nP4K0SY0b2s/WCbxVn/LtedZY4q9ykRs+P29oIXWUeST1VFRUUXLc5hwp8tSI0MEWDzlBgj3+7q9HnXUn4RZV3uUS49zBPMQT1T3Wo71uuRKhSlqJF7bmzpEgzRdV2VQm3HjAjdBXuVS9zkx0RD/3DBaE0cEW/4I33E5HfMwrSjp5gQhVuqhyi3OMMU+OVvqJMM8JLlUPKEaTVKjSoIP/7DdqHOORFwpNPScBm0tevJ7gDl2U+NlfH2eYRQBmmHTFywyTfJk1GoSJ8qzPsaPUiKkyqIfs/9eafQwhgshnqz4PiOg8oIwwAS9wgzf5Wb7GVZ9z32WEecboY9GL8gYsSgBdnSyD7m9o55MhRxtdhHW+cZVzTDGt88Ih30eIEOt0YaGiWXr4e7+eJ8wXfG7XR4ZBjrtyUDwTOxRCrD+xBpxlnDMssMKAk0d6yDJKlyILCZ+HWZrrMHXvU4bHlDjBIkkmkBDPdXqZYJYqUScKdZNTACvmnvMCTmYcSMuTZp5RKoqnGJnBMImk9gXzcTQSVC/rjgMZgBZXYpLNaU1KG1NlowUCTnAH8bevsE4v84xilnC2jtlAAh7T5NklwYACh0ZoMY9DC7ysKOnM1IaGmQTzZLFHMoujK1ylU8lSV7jKOn2MMafq0oYUuynS8RMOhp8LoFcjQp40HWzyDq/yLb5NlShrqkteYYDz6v1lEkkDuAxQMxN9k42aTHGJISzKOqQLBVtEGPUyTpkL3GBZmQSAg0kS2NCglzVnqUjHTHr1w8IbrBMl2OU13maJIU8rTbCrXDUBicJICIExAE1/vciwXveeMxSz9PA63wWgiyIP6GGEu6wyoGw38Q14nbdY0fzUpGK8GWrMMkGBNJ16bR1salsK82yaswywQgzxBbQFiyUmVYgrv6Lhiz9hlS0pC+EMBVL0ss4gS9SIMs1ZOthE0o0q9LJOmZgCclUmuEOavAN8d5hwJp+BosZqtHMVD4eCejUknUlYI8ItztPHmiPc4ssXdQB2mSFiKi21cIwIVVboR/wYaqQpOMC7Ri8nyToryoAB066DBGPY4GhS5RANB1eSlLzfGZ3WEm4MJLAwik3E58K8yFbpp0GYMeaRZNkh3afIkE2malJy23pULj7BLJIILYOiLPLH/aVQJ8QdxpXpWFOOpuwrTINBligpsFHTQXqdPgo6MA+x7EzGBJIwPMkMRZLMa3neEoQtNcg8JqtEmGfUwe0uDRNZp4/LXFOfgBA5upnkQw2FWKXVS7dP97ZHGwWeJUSDRYaZZIaGVo9s4lKiiyhVwjqOraqkXADVusvuBTgR6bVJyntZ5//K/4Z/zN9zgBUgR8YZwBGq7JLhPLddNm5FEGOUWRVYwLIuB1S+zltUiPtLxp61tLJx7SVroLxNZjLkHCzrY40RFhyYfptXFWyXc32F65gf4AyTXpSIKvCe1XHVXuqLDHNSgb8KcVYZwOToJk3J0sMwi8Ic1ITgCDVqRLjLiE8YzW/GfDM26aCHB+5JKtVzAfcGWPVxNEWBEl0IY3uQST6kTNwn0AKMp5jmrE8OvqQhSIC/9G3MtzazzV7mXRSZZooR7lJXtrAF2bzOW+TVezWqDDILWrrFOQZY9WMZUGqJyBPMUiLJIsP0se7FCpukLjHEEEv0skaUGpd4lyVN/croJC2ti4tFRhlhQdPB83Rq/7SwJvM+NW/XBiGdAEmqsoUOmdftMsK+bBBiVQNfRpnXu7/rY16cir6/uxTgnVDW6bBPumxuYM+MJfWJzUHJwTwZu6W4aEbJ9j5fYYDrvMLrfJdR5siT8vdaPytuf7FCvwd4mV9miAa3OEeX2jPY4mmaKS5xnQFWqBPiR0ZzfJq3H0sCqHt0maQ+gwABJxCQwRhPAA+UcTaCsLaqCIBjHnrmC5YkSIGeR2SH9wmYWC8AMwpAteu+c3oO93DGUVMLrM1DX4kAWEoCV+Dx31fAMA+8pECFelDGUwRATwYH6R7n1CfugCD04QGBz9gRb8m7H8GZswRBPA9xKSZ1OU4pB8mTCAh1XyXIKWVW5XDWWlNSARML3agTMM9KiLS1RRlYxrTKymd2FjQx10A98xs8AYf3CUzTU8oa02M/3hYwNHkFKu/gHn3xPpWDIvcseRoBkVIKwI0hbLZRPZcX5P4+XpB23bkH7SpPBgX5JrS99/Q81b+yuVv7jvr8OePSpKtpaE7LPSh9ooy/kLLeHkKlQRBQsyf7TKe0j/2xnN9jZWg2pfCgoqaXofm+3stvIH6l5u/596X/cE/By1FILhz5fwNys4h0Oqoy6ChB4vcDXApefl9lv8bsS8k1N5sH6bsEfbCk3z1JAAyfOvL3tt4nA3RzPBn4ZJLukP6sEvSY+RFW9VxB+rJZN5iVwL6Ct9/jyUCOfe2bIMBsXs6nMUtgZ/CUbzW1lxKrKfHAs3Vnjm4vZqXJE6NMmxb9ZxlXb72b9JZ+xOA2NMLQsg2fZdp45uM9Qi9co7OxBUB76RC24WeOf0JPUtYUkYNDWtbgoE/tSAqw+qIEUnwh+9AB1X//xPdhH75y/E/kfrbDn2ee4Ytrn0ErvJp6B4B4o8xsaEIKdA8/pR76lNzxZ/jC/YeMnZp3y5cvFj7jXqpKIxyiq1oivv8ZTXXo24VKIuzsfwMNDZCqEFfAY94BGyuyTjDrc4cQdS8m2vv/NucZYYEMOYp0OeA0zRSvcN3nupY2bPZRVmAtkEJCLQssMkwXJSdCZOlxJiVAF0lmmHTm/xKD7OnMZYQFV8IBzrwzEKhb5ym3OMcZJWUk2GWeUXpZ4xqXOaP95SYXATwMsZc1lhlUrKDE+0xxUtekRlAxn0Vb864qBrLAiHofLrPEEAVSnOO2KiZT9LHOu1xihQG6yTlDVBiDdeq6vpPAlgHKxNhTYM7mkta3zbd7kWEAb3vDfAyXKJByKesdxn09m0FyFFYZcFJCjSijzLFBxuXqRl4CXOEmfSNy5DMFtY4SvCNOGQsmMZJEjgwlklzgpq5xGioDFrAypoqlYe45Ccbmkw0k6dlYeBb4YaD9Va74OXSwyboqnQyHkv5UYk+DQf+i7XMB9H6Gf8NnmsLzVa5RJs4K/VzkJjkyjHDXB6aSBjKb0aAhpCAP6fe4whjzVHShJGaZRV/8yQ2QGG4LVpAKRtQlXKbJNnS7hyxhXYSZr9ksE/wyv0ecijONJOm0pDdliCJJellH/OlKziiwxV1E2VzGJgg83+pa1a87qiwBHClngL3JG84mE6ZEry9IznObu4wwxLIy13LOGjAWwRhzVIk+YXg/xDJxKswyToJdveYhrxB06WLGQCdDkeOUmWLaZakp8lzkBg1CLpc0vzrzn5tmytt9mEW/P6JDT2vCqkhVJZCjlyGWiFFxqWCJpEsE86SpEvX7E6fsLJcQdYZZJEmJFQYI0fB/X+UKa/TyOt+lglDIY5RJU6BMnE0F6gzgjFLzBauBsHcYZ4ZJ/b91IiprjVL1BaZ5DIIwGy1y2qSTPTwgjEjcJL56nUlmWKVfpamSomsgBYinoiVAV4iTYcPl5etqsDTMPX8WDAA0pugo88R1ULRFcLeCm2F9Vuzc7Vlapf8JVk+KPCW6nkgLjmgbVYgzywRxyr5AriNS6hpRhlh2BlSCXUa4i3lcWiI04KnVYV3gPu3bNFPEaHYmp5kND7PIW3ydn+M7TDDrYJXdk6p6NNrvuslxla95Qm6veuWVifEGb7JCv1csZQyI+4s8TYFppigT4yzTPhkxQGbgCJgiLLA2B8MCanuKAVZYUWl1nIpLNS2pepR5f/FaUrglG88y4eC7eXKK2XGHgywiWy87wxRgjlH6WCemL1vApaxFHTMAlY8nvYJWI0pJiyz2LNSIUiZGgj1/6YJIGcaUqSZBRZ0MssQCZ8iQY5opzrBAkSRjzDPNFCWSjDFHnjSTZOmiyCwTzkYWb0kZd1/jHfKkCdPwl3tVx/kGYbc+GGKJnE6ZAJYZ0spqnUWGWWaIQZYws+kVBry4kFbLiDYFJTNs+MTBgpdsogwJZph00PRoYliObmdQm0xggRH3nbGUa2OWAz5+WN+xSeRpFrmnE7dNRLpq/Sms4HM/q5hXSqcyA3tZw4JgurVQZ8z8FHkmuONWDwbsQlAg7KJE/kjhZE0TvodZdAm6yR1mmARgnFniVKhpIW6dPq7wPQ+JmeCOT37rinRYJTxMg24kwCmjXO7rXKKHrEupzQLE3uspVRKYVUfKjdWe4k0Nx9fmoa8PSr8LyZcQ8KAKPm9VBtvO+9D+vMr9SgjoYJj3JAIQHPWRg8Cgv6S/rxIAcyehsqD+nR8hoEMdZxM9LqnvWY4guGMbARs/EH848yZjFuLqp/d4AZp+FfGF3EaAKZV/Nm0fAYAMGLNzrCNsLpX9ptFEXYQdtZODxIFKVVWuGGtBpL4/kHNu6sNlujvvC3vu8YL8O/0fHbk+EKDmAeIT+rsImHlCZJ7N5lsWhXYLnThJkDysXn7JMQRIu4Kz2PgEGFGp8wP53IlW5ILqULqnIF5YZZyjuD9h8wkEODNA1EIbPlbwCw0IuaLt2ypyYnLy8+GGMsvWcL9A7hMES2T1utr13F7S/b8ASWN7zuAhD2mTW79C0Ne29ftR2HlPJdLG7vwqIlO2AIh5grAc9FwgkDCfJPB6tX23EfgWGmtwVtvK2Kh7+plWBfNMNltAAomM5fk80vfNky4q/oBNB0c+f1z2eb8ApwxQLug56nWyj4SCfKyJvdZvF+TnhLIdCQs7tV6H9rcIApt2CCTAVTgsQPNZBXZzR9o2ifSfl6U9Qyk4DOy2n+rtC3xKmLjbOxlzR2AMKa6ZnYmtYdMUmND3yHF24D40/2NJimYbnvlkD9rgi6c+C9r4V5DxLg/tuUMZm14DZqHFgO59+Nn/+D0BrfcJkqbv48UE+uQ7X/w7n3nY1rPhbbl/p2Hk1xbYpY2mH0LzLfji+c+gAIlTu3zhBw9lfx/A6K/M0/7BIbwLO/+gmfbfPoRliA3IvGaWCaaZ4j/jf4uFvHWwpeomKXMOsOLpppPMMMGsv0ut7WpEKJLkm3wH8wQ0H/sQdS5zjSpRkhQZYIWqzg9tHmrrWEtONXb/uAKIQyzTz6pKpAd4gzfpUjVMjLKq8FK06drSinnnuO3zTwHYeqmqbixJiV/m973QbozFHrJM8iEj3GVZ13wrDIgaBVGjbGrfMUWheXZbIdQK8KZuE0WCKEZEqdMgT4oL3GSRYQZY8f0lKTmpxtR3R/34x5j3gnyBFIMs0ad4ySjzmI+6zdOtMFwnxBW+R5aTzPAln6eZ7NyIBoCn1hqZZItOMuQwv/gwDaaY9j4TpUZVlYnGbExRcB+9EA36WGeZIV+PmwLSglJNRdLBpq/5TdmTopM0BZ8Xy1pIAiuN+GX3aJw7TgBLUmKUeVX1dTLBLGJLlvc1tanbtujg4U8I1X0ugN7HvECCY75oNVRTWB1CiywoCr7EoINGDcIsM0QbuwyxTEwZe8bOMoPCXqXThqi7sX6elDeWefDZg2Kedz088AWvhXYYSvyr/K6z+YQtU/PFdJQqRZXj7JHAEnl6WWOAVQ82CGSTguzbzQEcQAkjHmJ5UvqIyYS+ky1lmGxQJs4cY76wzdLj1X0D8hLs0UOWKlFfgAlDqo2jgRgGEljHLxN32VaSImv00sMDzHQypZ1T2jrpErskRTbIKMMs5KCrAXjmvWTVFdvypFVuueKLNQPfTIY3wl2q6olk7TTAig67EviwoQwi8xiwh9zkz/ZZkSvHWaXfAwKMtWnsRJNMRanSz6rLqhpIrHu/BjcYuBVRIO8oIj/LBGny9LKuMkVhb04yg4Wo9CnVt0qELCdJsMscY/7iWeCMy8MrKmvs0EW3sSttwR7TfdpAGabh3n/W16JUeaBMoAS7nOM2IRqsqteWtR3ALBNMMuODum11QpS0kmN0ccmolRdWWv3V8lo9Ma+rUeY4ygSdYxQLY5llwvuE0ZpnmeCUlduf8m2EP2NFmUNl4g7kzzDJGPPO5rTQkQtqQ/AOrzlYBWAptINakRtmkVucwwJWuslxk4vO8jJm6hl9UZ9hgQdaJVpikAFWmWWcCe54v87SwwgLmtZU4By3nZX5Ot+lQYjXeIciSa9GmSz2Ije4xTktJAj4ViPCMIu8yyWvPhqTLk9a3SIXHOA2ANhAbktoE8apVAo3dHKTJ+0gUD8rDHOPeUYp0kWGHEOIr90oc84YtgKQyfgjVLnDBCd1f3UFpXJkKJBmkdNc4l0WlYFqlHirihp4bcUD8720YxsLTHxOU0wx7cxl8zWcYhpJxerQylyFPQW0QJ7JIUqs0k+KAvOMIV6tH7JFh1aD1x1MNHsGY26v0Usf65zj9hGwrkIHmywr491YcSMs+Dv3S8zQqQsKq0rHKCNp3t0+RiwwQpwya1p0uMS77NLGLBPeDmZYbNLoGSa9v+fo9nHQKqsNws7Mt1TsLorskiCmRQ6byG1quxlj1FLVjeEt8iIpnFmo1VGTbRsbxeOzjpk/Z8ixTh9xynRRxOwHusmxp4wKkIAaqwTbJNTGZHsWpQItgUP2Xu5kSwtSdTrYoonDz2sI+suz7cHhISRNroiESTRp6ARVgiTp+8rKugL8pwhQYQmfk8iC82UEsPkEARCM4Wd+apY+HUWkslEFIsyQ/2MEwPh5YEEBtzV47gVE3mmLWQtIOQrW5ZBFbVW81dgGCvBY2XG8i4fHNP2xnne7nmerfNbawCSx6Uk9J/UHbM8gjKc1lbr2QayOMBHNd6wVAYQ+0s/b8c1/DpzBhQVUvEvgL4cyCC2UxnzQciqPPEGwoK/qftXTsLymUkwDfD7R/X+srKwHwqZLqlce+wrgGWBgQKOFz5gP3Un9nYWnZBDfQJUJEw7ar3lc2rS8D/G6gmDGSszq50MI0PaS/h0CLkvIRrPJXdeQ/qQsPNB9ZPT+fCxt3n6WwP8wJe3+xHk+0PZNqnzW9mPS2Xm9D3afR/XazGPxgXy2nIX4JIEk1kIqRuX6S7PChOQh7PwTTc410OUT/d43EFbgCEEacFJ+x0loL+g5f5kg3VkZi+UfqEzWznufwNPvY5F6P74HTS9JH/k0C+0njlxrniA4agKaf0ggAzawqEAAuM9oO8egvsFPxfYjnuM5jZCuEiVFgUVNGnlAjwNXRZ3nR5XhUyPCLBM0cyj94iqBtF7l1ewRgMghYEY9PY1teg0pCoDcI6uvv01wj+DJwDJ7Lp5HZNtVgkTn78MzyT2eCe0JI7UVAX/34QvJh/CbctzDt+BZtqWfvA/tPzyEb8PjVfGa7GCTN3iTpFqFRKg5qNmn660qUWfjNwgpgFJ0L/oSSbrJEaXmgYuCI4gaKUc3Fmwww5cwCWmcitt/WCFOMIQeLLDBbFM2tHhnrDgrgBZV7bfIMBe46evVBIHff45u4lS8ECqA5aaH0XWwRQ9ZbnCBKDVW1CN+iGUARpmnRNKThE35FNFCubAbJabQrEWkkBh29Q3grL9VBrjADQWnwpQ1bNPmyVZ8TFIkQo1lBklRcDbaKv3k6HaCTBdFNrWQ3qaYyDRTXOEqgCvGZpmgTMyVL1aIP9oGBs6FqNPLus/DhljiTd5QYlDZ02/NQmyVfj/WLjhjsKY2MPY5m391KbPRLIuSFB1oN9JLRcljZju2Tq+zEs2/vJd1esgyw6SCzoIzTTHtgHCKPKuMkibv1nBWPE+wh6me0uTpIcuxn1DNduwn+tT/j1uDEKM6U1hi0BcmZvRoFEuRpSx7LLdN2EVaO0iObjbpcEAmrGjqhlKQo9R8kQj4jX2bV480jlTDLYgjSYklBolToYesM7DilJ11YUi2Sa3ypDmjC526YvarDDi7SlJ32lRelvJ2uMZlB+PEYDFJjAqdbDnbokGYXRKenNrBJgl2eZ236GeFNHllqwmbY08fVuvUwroa8AFkkg/Vi0/YL1mFGkXnXXRqcpwyywyRpYd1+pz6beAPQJaT3FK/IpM722YPS5wy84ySpuBVAMBZYLu0uV+AGU42CNGlUtM2dl1y2Mu6L9KNDVIi6VLYLl3wH2VI2sLMBkpbYF7nEgVdcC8yzJyWQy2YwdglJZLk6GaBMw5mWtjDAmcYYgmLpZaHcICSAgZl4lSJqJwxwQVlMRoA8rv8qgMu9lzY35ZeZWymFHmqSgU2oMwWm2t63xcZpkjSvfyOMqpilOln1X+2UJIkRQZZwrzzTPYWou7m+de47PtbPcJ4NPDJaNomPxSwZNkHpy4Fj+36SnTRpyxUGbiTjLDgfgMV4vwqv8sLR8Cqp3lLsO9s3RoRLnJTw1c2HSgukMICY2oqFTDat70kOthijHmX7abI06fsx0063I9LPFRq3OKcgi8ZLzp0In6haQpegWoQ8nTiBmGSlJxqLpJCSWg2eeZ1LrGnFUxhnn5IiS5l3QZgXgeblHWCJVLXKObvskYvIeo+Od3TMWZQ+5hVJzvY8hd9p1aoQzToZ8WZUTbRXeS097MlhpzNl6ZAPytc5xKSylxQdm8/NaKMM8sgy2TIYbYP0k4C/i8xqFLMsI8nVjG0YofR8I2xmCPjY69JlHtV1rrIsLPFzXMzTYERFlhmCAt7giCQqUZE33WbClat+0TkMtf8OAP6zsjR7SyztDK/ZviSgl17+ryGGWFBU7S73APF7BAS7DLDpErzBezsUmCxRlTH6xRVIlqAqrDMEFGqrDKgbMOMT8AjWi0dYJVJZjjDAue4RYJdt9kwVvdFbihrsYu8AqE2d9iik1X6XbKepsBJsl4BtsJLhJpLaDvYZIglNtQqwNqiSBevcJ1XeUeB2bjLadPkeYdXmWXCwcoFRmgQ9oIbyELM7nWCXepagLT3zBYd5EkzoEbLNhZUiXplV8aG5v9hBqT/EbdHjwTQaR8BGpD8m9B0BQHtoki6awlhxDX0d98mYPHMIKCLeYi9hyxOLSDDfLvu4WAb2/qZF+R7TRk5Di1ASNhLzMLhLQEonPF3H+iBQ2N4RfWcqsiCeVzZdBaKsCD7bTpJ4K0Wln0zIT56KlIIpLn2x4CjjwlCBiyAQFl9YS2/N6k/IGE5P5J6Pkm9TgPgkgSLcpP4miQ3fGQfDwmShvcRIHNUvrtrIA4IQGP+bGHZZ3xSj3eKIJRjh0ACbSy1Ef1bj72zgIBep+VaSx8QAFwGNLZqm/Xp7+3nE3o9JQJg70Xx5eOh+r7t6/GjeHpu+aHcB+p6H/+lnpN5F2pYRfNZAj9H83Ir6XFb9P8mEHAwqZ/pEekwD5DQEpXLHprP3XG9XmNB3iEARt/nSWrFSTlO/Ir+20Axk0UvAM+rz19W2iuhARbsyzW4tNUYrCavtfv8kuwr/QIupfak8pDci2ZrWwOyw3rsAp5g3pTUfY/AFwyovSfXtLNG4E9oYNEBQajGaT3WC8gzva3f7YZwCz8VW4sWUQeVmW9zqJLO80V/IQUsA1BM6TTCXZlzZ6E0B4trwEfw6Tx8+jHwMRzegcWs/Fy+D9f34e4a8qzmIH8f7qstQek+8AnMrMGnH8H9LNzNQn5ePjOTk7/z95Gx4J78+WFWjun7fQ9msrD4MTye1TF1WwoSvA//alvOkwdyXPZh5z6sVORnAeWEQDPLODky/CG/SFI7UZ2Qq0qsYFcm5uvZo5YnBjit04v4q0lx8Dv8HKJ8GWBACRxWHJ1mykG2IKykGwvHilJllzZfL1rAoHnkgvj2dyP+yOatniPDKv3qA3xeSSkSLDmgth2mELnNOeYYZYBVL15aWMSbvEGWHldL7SnpyEhFBk7d5hyLDHvxuKK9aYAV1ul1BuIY8/wCfwjgBCaTsAoLsN/n96JeEMA5RJ3rXPJ5jPlAm3omwS4xnRNaWGiZGEs6x5V5lvgS3uIcyww5yAdCdFpiyElBGTaYZMbnlBZ8KuSCPgrqcHw0e2GEBbq0oG6WKisMUKSLPtaoEmGDjN/rHN0USLk3t4SxrNMgTIku6oS8rwjwm9IrKKvsWGxaTMFmBdwyMQqkXKm4p4DdaRax1OYBZXoWSHGTCw6kVonyJ5z9icaTzwXQO6H6h9qRxrLEPUs67SHr4Iwt+mJUSFFgmEU3uDzLtAMk/azSyzop3Yen1RGmi5Kj+FFqvoiJKfIO0sGSWmnPkGOUOTLkGGNOJa1LvkAzU8Y9xCNnjV4HWorKXEupjNNYgeYTZGhuTNF+01ibMb1dv2jF2yiRZI0+xMRTmARLCvat0cvRdFqRtg1QI0KWHkzeCwIKGRhZIc4VrhKizte4qj4AacyLb4UBxrnDRW66LHaNXgfSAExOPM8oIcR0PEeGFY2BnmXcKw81Iiwwwjq9bCrjzQzvwzqLMQ29LLSEnXc0DdE0+MYQ6WeVmHokCXBWc6mU+U8FyTVyPKG2zqomXe7heW7xGu842LZLG0mVx4n5+h5v8CZxyg4o9rLOCHeBINnYEH5bqJoUzySwqwx4+5SJcYEbnGGBdXo9QQdEkm0S1YvcoJc10hSI6vV1UaJKxL3PwjQcdDavxjV6scjtLTq4yUUWGGGZIQZYxUJQBKyNskK/v6S6KHKJdxll3hlfMmHIa7uvOAUdBFRYp5e7CiyJJLHDKxYpldwKVTjvkxBj3VqCsfVVAwINtHjat5pyHK9zSYHoFJbILHL0Pr6kUj4rAhjIP8wiU0wzwoJLrNfpY5cEywxpVVFk79ZvzRN0khnMEyREHUnyLrDMkLOT7BmxwkMPWVbpp5d1GoQY0NRlq+qZL4S8bAocTZ0yCe8CI3Swqf22qpOeNWVnC+PKUqIKpFhiiDX6vCKWJ+1gY0WB+jwpHz/Ns/Qct10mYFKU25zzSV6NiPvxWShSQ1/IDW1/Y+EakFUjwve4wi3OcZUrnnYlRsxFt3vIk+YqsuKKUwGEqWWmuQbSmD+OMapHWFDWXpG6Po9mGyB+rlEHjaza2kUJCU1a9n2IDF88/zLkNLBJQkfmGNMCUhe9rCEs4SgLnPHJknnjjaqnp8njrYps7zR7d73KO87GFVlKwKa28TNEnV/ld1mjlxX6tXos/WWYRboosk6fTng2vNBjFXWQSWKIhjLHJRX+DAvOCI8gCWI2qbd3lQC/MrEyRrdV9AdZZlW9aO2zE9xhhQF/f0i/LPu723xcTGGwS4J1ehVE7HagWca1bvf1MdmGGTkbmHeOWwxqNJLwnQPZSZ8Co6Y2eJq3YwraOYjShwNzj83DrhXIijecSxeNPWYBGfPi10YrwqgykO0j3ffLBMb8rQTg1jZBGMCkfKZJpYPNLwRg2WEVATl2lFH2kp7D3yLwPVOF9KGFbbSKZ11pQYIPqOMA1eMP1KsuJfstGzPJQL8sAjy9oPs3+eUaAqJMKMDyEkFoxFWCYJAcApok4dN39PpfFIYd87r/PYIUWAP6qsJsc8AopH8Kcl7pVxFAKK3nOajtYpJMlVwS0vO38zA7yFMKtD0gABHt/4yl2SK+deWc/s7kmkiqrTEtH28DfwD8loJFFgjRIvc9qdfMKQIGZVj3pZJQZvW896Qdmw2kNYmxBXXsazt/dOTfCobu/LG2e0nu6+EPoPRHcF8ZmrwrMmD24bCu7aFgI/vAKCzOEiTT1uHTNdjZ1vtfOvId9L4cyHUdriEhE/+1XqP2maaMtpWB1UCppOdj0tw7en0FAhmwSW2vIs/WzyNSY2ub+7Bjic7Gjt0mAPn2Ea/KkMqt7XxPKBPW2I335O/HBspuE7D13kf6eJ/uK6r39Kdge44fYZ7gQyy7SmGUeb7OWwpOlDDj/gS7XOOys8lsa2+D56ICgO+AcL234eE2wknvEdn0//Q4JIC8jj+xqD4i2xLowmmYzIhcvh0YUGJQDOgFBk4oNmtp1Mfh7AmR+57pQ5KkvwWTZ6G3VSwKmibkWO1/HXgNXssgBYOT8ntaRMJ+Ssf6HBneZ8qJQBbkZjYfpjYQ2aSorGwut4so6ExGW1RZ6zCLnnTawRYXucEubWTIqbpj8d9i5veyq+u9KFW6lAiyS4L3mWKdPiqq9BhlngoxKirVHWKZKaY5z20GlGSRJ+UFwDhlvsW3ATzczXz7rnGZDV0nmd/+LgkucZ06IYp0YTLeXRKc4zanlXxh/tBWRLRQxglmfR4K+NrN1ou2jg7T8GJziAZpCnSwRUEBtdMsEqHqqbsFL6gKe88syqyYbThFijwFXVcb6GdrjwR7VHUtbEqvMeaIqAWWkV9svjnLuM+dTKWUYUND+XoBnFRlgKUBe5PMMMQy57mla1SJbZT1a8RxKJPuGtnsCledCWpy6hR5VaAs+zXOM4apQZMUGVNAVDCDZZ/n1wlxg4tqMyYhmKYGDSHKu1e47kSqRYZ/4mLv5wLo/Qz/hnX6GGLJk3qqysKYZ9TlUDNMkqObIZbcb6iHBw5WmYeXMLaqrjk3CrLdAJOZ2uJikhmvlJv8cIhlXuG6eolV3EwzS48zD6xj1xRxNlNGo6pKUEaRBc44Q8OQfztPiyO2h9d8DwBnnI0yT4YNNWGsqNZ8zZlOZubZRZFFhull3Sf7aRWfGWvF/KciKuErkMKSag19t1RTkz4Jgi8ptCZLDioQ0tGNQWmLfGE1yjWFqNPPqkuwVhjgrvoKLTDiIJ61/SBLpHQxbyw+ozMbOt1F0Q3Eq0TVwFPAij7WqRFlS1lI6/T5Q7uiIJqxjwS0kwfV2IIGAnSw5QvjMA26KDq70QZwCz0xiZmlLdqLYVQHmw5l8NhxRNZV9WpamoIzgcwI0/r9OW4/sUBcVaDPANQ8aTbIsMoAnQq4rNPrVF4D5GxRKgDKljMFZdEtKVirurCOUuN7XMF8Fo7eiwyibxATfqmCWZXFWElJShqm0sECZxAXixKDLDlQEqahssNVPfYASwy6pwCIH5qZ0D/gi5/H8POXbqvSzDCLztAxgNskkeZBkSbvVTEDm82nc4sONpHAmCGWWKeXOcbcu8vGz8tcc+o4CAAiIRV7WHrXCAts0UmVqPd/SQZN6nnJeGEszbQCvXOMkaMbC7rJ0sMMkxrOUSNFgRX61fRVihH2nBgoLv6adaaYpg3xSxXGYJ4Eexq8UXcgyCS1IMCoGf4uMqzsMZHGR9Qi4SgdflPB/yoR/hnfdIDaGN1LDPJtvqXylXFAqoI9ZLnEu/wH/N/pY93tDkwmGqFKgRSXucYCI+S0aDXDpMsMellzNh3Ad/k6SwxxgwukyRPGPHIkaMhe/NZHbHJonpjr9Hqwjr1zelkjpQxusxMwENeSlE16O8AK57jlLFlLnzXgcYEzDtiWibnU3wDEJQZ9vBjhLmPMYcE4lgC2ygCbdDgrUHxHZMwV24ouCjoWiAQ57QCiSS0WOMMMkyxwxifUiwwzzRQZNrDgD/MpFGBcZK02Dk1zlluc9+r5Lm1UibDAGbL0sMQQcco+0RWW557396iChtNMMc4dRligj3UsXVASde9yhwn3BbRC4jRTJClRIEUaSSBvEPIkaiusDLNIL+s+uR5gleM/DbGOzQjYNIos9o1xdUrCKDiBM8+ajiOAwVcQAGCMQGZ6XNlBGxrS8JFIBA+rCChgcj7zKuuRfZWMtXdA4C91XM8JPXZGgZj7R85HgRf36lNWXfOrCviNAa2QHhV5adMIgRdaj4KGqWA/JlMt3SNgsancl+MIY7Gu12KBAbaZb53tT4HFkjJenkshwNV9BdPMAaVNfzYm1V+XtqwYcGT+hFk9XognJasgzDkLxGiBHZMNv6/tukYQ8NAux0k+T8AKDAMNTeM9rt+9JxLn5rD+LqPn2KrXr7LVpjDOrjusw868AGocCEOJBk/6Exp4hQSTVKoEQGSDALQTdxk5zr62nYFo5uvXop/NQbtJENcExGoeVX9AdD8n9ecWDYtYQyStIH2xDsM98GkB8grqPdej+30o5/h4XhijzoZsyHns7Mk5eAhFFQEdjZFp8tgwnDiu13/iyN859XM0T8SotpMxOK/pvTwBnIbyNrRfIWAQflXboYegH8wi7Epj3ul9brqMgMkm6zV24kcEwGCbnPdhVq99BvgTBHD9Kdi2Oe5FH/NYzys5BGT+llcLqRoRJ7ZIiF2IQ5o5LMkznGiFT7cFSGtGgPpYFPpSwA8kAKY5Bb0nBPArvw87VbU/QENOtO8/1O/u7stnm5FgmHpD9s/bQE7A3qaUpFoTBb4PvAWEtY8aiP37BED+CYQd+0fwaQ74h0i/SUC19RhxxNu8QJouSrzBm2pLEpAAbB6dooCYzXQ7TmBz5lUGEE/ciDO57jLCHcZ9fdLBFn3KsDPVWxu7TDGtQJLMw9Z0/vU7/G3MTsPW/dNM0aZzpymmeYuvs04fZjNmRVcQRccgy1j42CjzDHPPwatz3AYCi66I0gGs+GnsLxAVnCjxzmvQWZvjAqbeE3uykM+NrK8dxSSKLn2N+xy7opJbK3TPMsE9ht1qJMEevazzOm8RokGMCn1IqES/exHG9VidhGjwdd7Ccg1EqjzkbWl4wB0mnPTRy7pbdZnKxeag9SNAX5fKgKeYxpiCpiwySWxJSTAJdp0QZmtTwadEUWEA4KCqHE2FZ0CpgXJGijA7OVNrTvE+Y8yxzBBriqv0ssYYc3qeVVcVbdLBEoPcYdxDSczSKqxrfmMNTvLhTzSefC6AXowKBWVUiM/cCpb4aQ1njCDrlBFqSjnuc0+pAVYdbd9FUlKz9Lj8aYERZhmnghhmGuuvX5P9Nsg4+mtpQXZTbQG0xJBTbDfpcFaELVJLSKR0lColuhSkKbo0V+StbXSw5YmnJlE0E8YaUfpZccCmRJJlBn3hepvzjrBbSqN1MkOJzaOnTR/yBHvOFktqRxlglU0F7ADMBN3AqThlp82aB4E9sGkKdKnMapc2ZYUIg8OYVuKptuZsF1mo1RjSJNw0BV+kbCK+TGv00ako/6oy+65xGTM5BagQI0+ay1xzjXwf6/pAZOgmRy9rmNeTgVAmWzvPbTJsUCfEXV3sWeJiiSSbej6zTKjMNOaLRXmANolRJk8K8wDs15TgCe74A1sm7l5+Bg4Ms+g06YICcRPKELTzNd8sA0wsItse4oiy18xbMUqVc9z29jPmpS2cu8kxzyjiAyGJP8aeFBZsnjHmn2CIZMipCb3Ii9fp8+Mbhd+YUGZc/4AefW7EtzFF3mnjFSToJkzDI89zZNwL0FiLfaz7YGft2EOWGGVaFCB+2rcGYTrYpJd1p98bMGrS9GmmMJPXNfVv+JBJB7XKxDipY2WVCJe5xgh3iVGhixJDLHm1yNibNaIejhKlyknEczOGhKMYmzJHhgFWSbDHNS77fduig2mmyJMmQpVlBqkR5TLXMFsFew6iVJ1xbSy4LTrZIwhbEZDkLFlOupReQi2WtUIaYYppKvoS3aKDt3idLD0+lhvQZxOXbnJYOrN5bYB4pZn0O3yk2hhMnht0UeI8t4lRcYaVpURbZTxPmnEN7DHKfg9Zppgmpf4XBsokKbnMw1Kk7RntVhmApdraC71BmD7WuXOE4j/GHCZ9WGSYMnEf1+YZZY1et41YZoglBr1ieZcRdkn4OVlYxCwT7JFwFm6GDZfYSh/odvARBGy2MCCTAU0yQw9Zt66w8I6I3nubiBhTU6q7Mqa+xevu/5mj2wM5epXV2M8q4sMawSSyKypPseqs/Swy7SgWNmUAc0JLezb5KhNnnlFKdGkFuI0vabHP+sIK/Yif6YhLIzLkuMM4/eqPa+zwLkp8nbeeKOTEqfj7pJ8VwjRIUnRm4y5Bsh3whNGxvDeiPm95lp8S46hZXK7F2wjgsUYg+zOZoMkmTRJqDLOTyOIwI79rboVSHvLmzwaBN5cBNMrMqjcQ6a5JKk0G+4Ecp3wf6FPArRUBLwwEs/TcDDCiEs4ZBJy4rz+P4omkpR9C+Y8RZtSI/r6OMARPAV/VgAv0egzgqgL/nIA19oCAKYYyuSzAoKrHLEAyDbwgHn7Gooq14NJiXtT9mA+eWtgm0wQgnnln7RBInn+o96dOAPi1Ae3QPqr356S2a0jvWR0ev6+/mxBJHeY7p76CDnyp/LJ5UtvFPAZDehzzKpzQtq5D8rJc264CpEkN38DkfAYmKPDadBxS2jdKeWWdnVZWoLEcx/RYLyJ9I0sgiX4RAX2NYZjDgWVCcq+Gf0WvL68efsb4O0Eg2e3DAdsvnFDQ7bjeo1acrdl0UkFlCJJqU5JuXJrVdjKpeVTlknmkfyL3uMlAYWPjIX226SWCsINRbS/ra/ZM7Mv+dg0wNin2DAE4Z2BoSgIvDj8mABWVtVm28zkpx7OQE17R/YwC7cIGfFySczg0gPmnYFvhFGViTDCrMsd5olRdSbGlBULzzxUp3yZlYtzgoq+hPq0KG2+XAKC/tw8llfjP5OBHes+awgLSvbMf1CfuVyFfhfIMEJJHMF+VbneI9tOoAMq7+yKnpQTrVSApDEGSBICwspN3HgAP4O77SB/6BEjBzlVJ9M4Dd95D+lgzPDp2zG2IbC5pcxybn1ih0/zPG4Qx25UuSkSoUtY15QIjWMBiQcElsNTTkFtuNQi5CsoKdOKfW3EwzRj74oEnPgTmYWdMugVGPGm1gQQXmkJwSNdpkrJ6mgVGWGKQLTpcWmrhbRbMZiCvhWlagdVCKUHWoMsMskUncSpuz2NEpAgSemZBjkeDCk09acmrMZ3Db9LBXZ37TDDriskUBUoknXBV1BK7SYQNV7F5VI2Ip7yaH52RpY7a7hj2IYoZ2d88o2zRSZsWfY18YBiAqCCKfn0ZNtikgwoxqkSpEHNCTZYeCgr03uYcU0xzkixDLLs6w2ywLBtBAN46ywzRy7oSsXLue2dKEZvHDbDi/s3dKpEGsJBJKx4vMeQEDMMtjD15nUtc5YqvuVJKdCjwzE80nnwuoRhLvODMvBR5Ysr8kWjgNf3MEGPMs4uYQ4v/nCy0LGgB5OHN0sNFbtCnnme7tDmrz9JEZKEXVgS46EhrjQjTTNHPCtOcVYAwoky4qIM6SUqKusqE3GQ4VSLc4KLLcaeZIkLNwwNilBlglTIxLEbaTA5DCgIZqm6MFKNdGgtqgllyZJRuuYal4TQQCeNtztGtgIwh62EkEKKDLb7Nt5yFaJ5YdvxbmiJpFG1hX/S7PKyslN80BSzZpUsZMGldPHdRwlJgReYn6Psocz7gmJx5T8FQY450sEmOjIc8WMeNKIi0xKCzk0SnnqSubK+oQo8LjPg5GQDcwSbmuyfIep0sJx1wNXbfJh1azQo7O8gAZJOgmv/eKgNYeo0xF0UcJfd7k5SHgliohi3mBlh1Ruk6vU5LzpMiwwYlks6AM+mxGX2OsMA9holT4TLX2CXBCv3skWBQwdIQDQd1DdSxRbT47cVcXms+eRViXmmQJKGr7ldolZSSemc19FxN/lYmzkmytLHrXgEJdgnrC6pIkrBWs0p0+eC2wBn3wrKB1wDPDBvMM+opPs88QTt4erdT3OdP+FmmmAYChpgBw5t0qFR6hQoxZS7tYaErxqKyFG8rbBjYDMIsy+j/m3+ZST8t4dOSpu4wwTluu/XAiKa3RqkywayzUW1czSvr9wI3fby0YCN7diSRV5iGd90wCZ8wxKl4QpUF9kS0CmsealtIIrWFbESpMcmMh3SYjByETWoyCJMuGlvX9meBInVCLvtOsMsNLvokxip4QpUfZIAVtV0o8TavaoAPyohbZ5qzfItv0yBMhbgyuiOMcJctOrWeKhU9C50R6bIUmczU2gobX+MqWXqYZsrv8QCrboY8yQxLDHFWK9QmOzaD5lucU5+/Ib9eAzitQtrLmo+FMQWi7DkcYpktOjjPbTfeNsaueBhucpvzT/g2VpVBDzhzV8bUqhbrNn1cvcV5LnONS1z3cbNAmklmvNiUpEinMocHWeJDJn3yvsgwlmq7wIhPqKyCbcdNsOuy7xwZRpnDQjssec3SzE1mAoGdghVVOnVyZkyATrackWwgoEmzDaQ7GqZ1gZvEKdPJloK8Re//17jMJd7lDuOsabiKPW9FutggjqyGnuKtAWSFmZTuATZwJtunfyRMJTJQfk9BtU+QVd8p/awxp8xTrUX2mXwJktvIQnJG/8+YST24tDB9isB37TjQBuV7kqJ7+LGySv5YQJ8kCNhhQJ4FbSiTLH5cPKVOvYiAjeorZ6wwUAN688070LTRLCKtvKeBE+bz9zwCKh1IG7CGgC7K4DusQ/N70G6BEcaKsfZQKXNTCpHItqMzTP2cMt3K70P8ZQLJo4WHFKQ9HxeUHWnhEy8j4J9JU0P6PWO5pfR3LXouBbmeJmORHUD7Uen0txDGzst6j35Lv2s+aui/CyiyoG1TRwAxvbfNPwfN9xEZ8h8RSGxNZm2SZ2X6NX0k+4y1CBvw8TWI/waeYOwBKnaPX0RAvZYj+zPGHgRMT7u/2v4772lAhTH8kke+k8Plqk1JaLbAliPSYkurjZ/Wz99DUmzfkX7ZbExFTSB+XIDkP9BrSOk5tyKBB2cJmKUvQMwk0QYwfhnp440j313AE4zTD6XNdnLQbkDy6SNtrPLvh9uyy+FXdH8KBMZTBHL0HKQtfOWfI6DeA9xzsUnbuPlPofGYQHL8FG8fMcwkS17km2XciRW9rHONywyzSJ0QW6R03VHjNucZYIWbJEilNhkeAlohuYEzcJ+z5+84TFof6JE/fQ+hz8bQKIwbePxl4BMYTvLk2ABwMhhj0ypNP/Mx8ILKs58nAL1ngSy0q6z+zCkEEK4D70L7a3BmTT/3Is7u3abdC83f4wpLOi/OkHPWfFXna7OMqxJKFBrDLLrNh8mRr3OJb/IdVzr0seYSS8AtYszSwwrrFoQlbDdpAAPnzOsuQ441LVxXiDlRqZ/VJ+YndaUymKWYWY7MMKlkmIiTgoK1ZY07TDhwZcXhLTookaRLV2oJJD3363wXC7Ewpd00U1gIRJyKWyLZnLybHCv0M8coZ7VAndNVQe3Iddoc2+THtuYIISq8GGUmmWGQJSzs1K7d2nmJIfpZQcIn5RrPKtHFbHHilPkSM9zkorfTXUb4Glc5xy1X2gkrr8SeFqzNf9oUMVGq7vc/wAoFUpzjlgLDch6myDyqdCzRhdnzLDPEFNO+bhljnqOqyy7NVhBNaCDNNuVomrzLuCNUPSHZmKBG5OiiyCQzvMXX3drFsh3MF3KAFf6N01v/3dvnwtBrVkmigXUh6s7QMCDK0OGS0mBF3iNmDRnEA2eas5jE1sAxARUazsQYUHbQFh0O4ti/QRhtZhwJuFdNhBp3GCdDDpPrVolq5+r0BYXRIzPkNOJZ0goBXRiNATgl1EBEY3SkybsPU0H9+UT2JAOOgR9C74z5NSVV7pmkxBTTbqLYIOwPpy2IMmwwwR1n41i4grF6xFNNEnUybDhyDNDPCn2sO2Js/lAJ9nwxYt59FthQI+IMtC06yZN2nbwBhACjzCkCLudt8qNRZaAYg00kUVGiuhQ2nb2BQWkKRJC0ok62KCmYZHTUeUbZU1aI0WHzChR06TGNEZHlpLPsLB1X5K99zg40M0oD5MyTcEtZfsbuM1ljWEEPY1J1kyNJyROJLEnZHmIbpNPkldEWVb/FFTJsMMAqA6zSplWnhPbhVQZYZuiJ868RUbZVwdmCxgyVKlGYIfWQkkEi7n3bqiwVYjQIcZIsYxpmY6BOQHXec6lonAoV4vpsVZhnlDxpOtnC/NxqRDzQRu6lGPGPM+v3d0MrcU/7Ns0Uo8z5S0tkpvJMLOn9TKp8/TSLHsRiIJOFQ0gYywYJdpUlVXQZ3wr9DvKKxFZeUqPMcUbZmwXty/aSXtFULAPt5XfSx97kDZ+02Muzoc8+4LYI9rMx3NLkPTDlJIHvWZ4UA6xiPqp1HbuEOl96glltY0OEKkMsYezUNXrVxU4AvBtcZIkh76txhZHGmKOixgdVBTCjVBllnn5WeYM36dC+Os6sSynf4E2XcDYI8TWuuiz1dd7yAkuBlAJNBVYYIEWBVfVjMz9Q8cm44MUUk8PbZOp7XGGSD72y+3W+yyBLdBGEddhzKgC6gOY2KbBthAWGWeQCN5z5asUwCeGQNLciSX8+zaDZAi52SXhRZ4hlzGDZWOkTzHrR6Tbn1bxYwLPf5Vfcs6+TLQdUzSdwkhmf7BoLfZIZOtjy8coS3o31VtRAIBsnDQyNUPV7av17hkkWGXZvwF7WGNIU8LImkiUpkSbvRSGzdCgT1/dWyv0JQcbpIZbZI+GA6Bjz5Em5NNkYAT1k2SDDu1xyfx4rTkaoskGGdfX2FYPrTfcDmmaKHBn2kNS7kK+cnuKtDVCJ1qdZZNF+AHwAz43iAQzxDLKgXENABgu5uE/gv2Xg2esImmCMqTqycH2obDVbuFrghpn1n0BAr18DXoLmdlyS2d6m+ynJfhx0U4ko78l3TxlgV5V/k0QAoKiGFkAAlmWPyIrf1/2l4fEn+rlPCPzw1giAveNyvnWTVZr34KicNwWRlLpc9yUCwO1FlVgWEDlcq0rrXgRCcPhQz/usnneP+F7RigRgROVc8x+rGf4nR87vCp7sy05wvmU1wXcvu/f1vFXyevhzej/eR4BSA8seEABFllZ8X9qI6JFj2f1/T/dpAKqBD3XYuYcARtsCDjvz7gHEfwWaf039Eg38TROw20w2mpO2OSzA4R9o+0EQtmGMOvv5Lfm7fZSgj63B4fvavsf1ms3bDgIguKHX/FU9bhUBMl/Qe62egsZMdE+/4xrCYgEnEIC8LxPIyrflWpuMEdjQfd4jAEoL6ltpgLcC1+WceJzpVE7O+Z7+rM9XLArDfQSgooKbhw/1WO9qAIcC6Yd6PRRUMm++jlngET812xX+lRaUZJ5v7wtbG1kqaEXnFeZtnKRIgxAtHEg/+1UkjOUKwmT9KiKp/6r++7eBX0GeiZeBV4Hf0N+9pN/76/D41xD27C8hfor/K2R8vQKMIx6iE/D4H+lnfgUBAV+RY338t77In37jtPzfy0jK8s/DJ/+HZ2W8mpDP/+tfe5Gd32yWz/0DPc+fgQNibt8yzCIj3PU14NF2MXAlqWmqFsQmqgdZt1WIuXevJeWK6qDXWVtZJIV1hQGWGGKEBWfYG6hifvwG4Nj8aoUBXX/nfA4LgVpFAhj6ybChyoYYSwyqKq7OmSPpph2Kk1jY2y4JXuUdMmw4mGe2IIBjHEYsMc/pDp1LWVHbwDNbx48y7+oJI39YQRhgkhm69PolUKSLBUaIUFN/7ih5UnpfNp3RZ310hklfn1sB3dYcNWVJGj6xwoCrkYy4ZWSEKFUvOJvtjs19FxlWdl+DC9wAwNQShi2kVHnXoXPSDTIuo7Z7Z+1kPtOyNt9DQiMb3OAieVIu+bXkWyMFWaE2RoUJZpGQlLC3uTFsbZ1nShOz/7ICuwGuOTKc4xaSkPslFhlmnDv0s8oXNSfhL9o+F4aeMZeGWXTvrBpRysScZXW0Y9rDtUUnJkvNkWGeUZfpWDqLNcpdRlwWJhPtEX8QZYFcxGSiIpXq8lhhYR2tUFQz9BhllhgEZEFg7DhjCuZJc51LDuh9SVkjHzLp5wN4GIH5RpWJscoAEWpedagToo3A309ipJMeb2wefHaTlxh0rzJL/7FBpkGYXtacZWBy27gGSRRI62Kz32WXXcpeM8lriS5H1k2iuU4vwyyyxBAmFZUqiOi/a0QV4OpklzbMNNSAiUu8q9rwCWdi5OhmQAe8Th2ghb0mQKn4GWyyygAxypwkywNd1Nli0SRqKfIU9bxFyl13BNyk1ZsKwo0z6xUFexF060BlFYQJZp0hY2EVeyTUZ6/kDMOvMcOK3k/rp0b3riO+SMIiEmDYwDGTc9eIODPEmCkRotzmnIMnFv2dpYchlimQ8gHCpFkmG5cX0F1yZJyhU1K2h3h4ScXH0nWEXl71+5wjwxDLzDPqlQMDZcyvUK6pwgJn/MUoL7CiG53GKFPWl1WVCGll8fwzvkmUGikFLoX12EecMkMs8cdcBp2wPM3bKVbYo91fIMaIHGKJCFUHCdbp4yRZuslRIc51LqknmrCKrEiSpMgU09rH5pX1VnKgNE+aC9zgHsOU6KKfVYp0YalcgAM7tznnrFEJzkkpyHUS8x5LKZhs0gELhFmj1ytRZWWr9bLuL/UhlpHUqLR7aRhrVAKA5D1hhRhjnwHOrqopG7iswLeEbIQdGBtmkZtc4IwaAIcQT0Ebt83X0oA3qYYKo/DoyxVwMMbYxm/yhj5z8rI1AMjkDvOMOmvQjjOggTIWbiPvpZJW3h5gkg8DzqzIYXJ6AcOjzDLOG6xznVfooqSg05ID8rc5zyQzmMSiQIrTLPp4+SZv8B/wX1Ihzh3GGWaRNfq4ziUucMMNk0M0vKhl44wxpItq2GtyjLuM0MkW3eTYpIMzLDjjzJK1V+nnHLeRoKdeAOYY84mUHRPwYCTxb5SfDbi0SqyNWzaJsuKbydZD1H3yaIFEo8xhKeFW8cyQU5+YGGdY4Dt8k2/yHUDS6C9zzSv/FWLEtF1tASHn0ud9Y44xZV2X/bzmGGOcO17csveyse9HmfN9AG6WbUBijM8+tzHoL81WAUoikcznkEVeAwEeTsDj94TtkzSGSAoHRnbuQfsrCBtMgw52FqD9IQJG7RD4wOl3m+riR9b0MpBRdlzfkc9kECDnnn5Xwb9mC3v4JURGVkAWow/E76u5W46XL0DamDANhN10NOwiiTCaPtHrmCVgV6nfXJN57aUQdpMBSpY6i+yz3bz2SnqsEp6AWm+I9NglyxYCckJN6Q1M6lEA6AfA8+KN5WCWpaYe1zZ6T8/h70L6dzW05LTs//AjaN4WYKZ5FAEFP5bvxjP6vbSep0l5M8ABNP8SnqLLfd1ni/7uj/Uao3Luax9Bn6XL1gkkuy/xZFJwisB/blsDGTSMIW6BKsa+e0sO8WlOWUz7cP8jOHVW7q97yz3UNkoRsO0gkLraPbJAEwNqU/rzQ23HrH7vBYSd+C/1/zRplnmkf/Tg/WOnpCCaMSANQOvRvlfV9iwRMClH9TPW744wWcv3hYX6eBuaTGe5jUjeXwyuq8kASpNdRzXJuErA0DQpu3oK8lBZo6eQ/nsg96u8puDxqF6XsT7vq+eaBos0d8t+yvt6rM+ATgK25lO8WciTzNuTPtewYKiTZH3e+CZvYBZUogLb4E+pwzj8r1fbaBCifizEfGSMc49vc/jjMPu0USFGx3+zRdfuNjuJGPu00iBE+/d2aKkfcBBuIf6wQqgBn/3fOjnGIyLU+HNO8hw/YpvjdD/aoH4YJvxxnfCjR9R/6xhNjx6zG05wTBHYh4snePgbwj47QZgDWgj9WMgqjX/dRJzjRKgBsP8bP+bEowaPjoXJ/T8yPMuPiSdqzjCzYIUMG0T8/RusYUxxViHOh0xiXnln1GopTsWVJwb0hZVBZzYbCXbdf9y8gy0d1wIS45S5ziUvLg6x7ICSWHkINjHDJFNME6VKG6JkG2RJvdD73Qtfgh0mmGCWus7FS3TRIMw8Y64iNAsaCasrssQguwTefRlyLDDCmlpoWfFwnDtUiLnCoJsc4huX5x7DnFbcxcBHCX8QT+5v8y0GWNVQyZqDbpe47h7O3Ygl2DJD9LNKH+vMMuFzSAPQFhn2OdWwzkvzpBB7lgpdqiaxOaNdr1kAxSizwBkvoNcR66HXeIcyMb7/G7Os8BlbdNDKAwUNHxPmGBtkeYYiB7QAYQ75Uw5oIUOYHf4NOyRo5wHfI8xjmnnEMY7xCc/wGU08Riym/pxDmjFPflMq7dLFCyzxiGMcUuEYjwjR4G2i7NJgV+PXmnjMPq1EqdLODot8zJ/xCXu0EWeVD4DPOEaSElGqbHOTIklGf10YmABnWGCVfhLsEpGYm79w+1wYelWizqAKUdeHI6XsoZr7aFnnFC37mlfXiyR9gWQL1QR7SMJjr8tVxXcvQ5wKEarOXjET9jhlCtqJOth0ZsMGGU+cs4YzdsAkH7p80HT1wmwTsOMy15jgDtNMcZ1LdLBJP6v++RCSFDPPqApGI76IaUM07QKa9Tk6C7i2fosOT0s1/fYsE9SI0q0UUTPHLCFegll6iFPma1z1B6eHLEWSzDBJigJTvI95CGbpIU2em1ygRFJ9siQ1x5iFAKbBX2bIF0Z1QnyHb2rKTcr/zxZa6/RSIEWUGkWSzGnyiwF4M0xyi/PMM8owixwNj7jK17y9hLFXczaSgXrDLNKnCzyL65YBUVh4aQpuLBr4CEga0m3OeR8tKUhpDD2TsC0xxCLDFBXwM2nsGPOYYX6UKte5RJ4UIeqYp1KSEg+Q9N07jPM+U6wy4GxSCNh6o8wRPlI5yZNmjjEFYfOkyDsNf40+pXZ3kKLAGPOkKdDDA8JIKk5N282AZMD7blFBnS6KlOjiKlc4mhIsFN81zPNgjlFPlrQq1ir9VIn6Z9bp8/awl9GGStbWdSFvPn4F0iwxhBn7iqR4gAkz8XnKN/FCKHhV5w7jzKg/nnmOLTHELOMU9eUeofZEVceYjlGqpCkQok6fmsfGKVPRkJMiXVSJcI9h7VfSm85xyz/bzwqWaGovFDER7vdnsqLFCAPqZcwo+Et7jlGucZk1erUO1uEvPQvuMHDdgOgeHjDKPJZ0ap5rBkhbFL0xW01ebN5mCXadidvBFuPKRDSPyggSSmC+cSWSDpImKTLDl3ysskJKlShLDLHCAN/ldX1eRfZ81iXSm1igzQCrmCQiRZ4ppqkinpHf5lu8z5QWrO65N8gYc8Qpq5dpkVX6MV89qyZaKqy14wR3APzvqk4y7b5ZwcXG/gg1t3zIkeFV3nF/VGH27bFKP5e47tVue68ZqzBCjXlGfdyV613xCfZrvKPFqQIlurBkcps0WsjPbc5RJ+TMb/MUjCIG3yv0OxiXpOQsyOtc8nHMWOqvqFRX5MxiwpAnRZUIIywwxjx1JBH935ZOmOeiSZSnmHaf1po+T3tI8FOYhj+TRbpchm3+vTKpqvq97lIJrsnSzV+lTIwFzrCmoTX2mSmmvd9bKIkB1uZJaGD7U70dIiw9S8F8Hlm4K4jQlFI/tJOaagoCGtSh/atACPLvIKDSfWUr/ZCAifRAgxpAgIrTykqy8IAMQRKryXchMPgHHmtQxeE+AngkQQmggAJYyopKZxD2lR3vFAJgjOr51xHAxsCZrxKAHmHYsQACA1A09ZGHBD5w+wTS2wfw6cd6Ha/ofk8qQPI8AbMKbdPjBMBZXT9jyaTGftvWUAJjMhqrMUqQFjsBTd/Q/baqxO6PNFnV7tOLkvjqHmqjsr/Hdj/sfBoIwGNAWxUBQq9qG1ogRhL6+gjYkV8l8CI8q78zSWsOAcweCrjZFNZ9ntLjZhGA0pifUXjudW3fh3DK2IZfJpBWn0BCQIy1hrbZPT3PHrlXOw8ENKYVYSUpwHy4hoCcECTDziIgX7u2RUnP/Xn9+458t/0Unqpr7Dza8X6ev4/0K2ubP0YYhPcI+tdDkVfzMJB2V6oI8zKvn4kiycUF3XeBwDPv4Mi/TxOk5c7jDLzyQ/1cn/7ffdyjMX5awWQDHY/IlesWkNEC5azc01hU7+2zcERE9FRvdznjNh+ikqhzjtukyKucscIMk0SoMsW0M8JMurhFJ4/D0MwhMSo0U+dZfkzLQY3HHOOQZnoeZXnEMfYTEY7xiAS7tLPDQ05QC8v6sxg5waMm2KeVA1rYooNOtjigReaptUe07teIVB8RqsLGsW4+CT/PMR7xGc/QxCOfmzYIcUALTTxin1bilDmkmSpRDmmmpX7AQ06wd6yNY48e0SBEc/2Qg1hY5zJVQtTJsKEsvQV/39oaWRRfRQfFlhj0tZx9v5d15hnjqGeweT6bnNbez1b82yDjDLkZvuTEDVNqWfFtiGXe4E36WXFyRoJdbnEeS3C1NdIWYiVirMrLXHNm/5IGQ1hh2RRiJt8V/KLGGPMk2OMGF329HqPsyaoJdvkSMyojrdDJlrPVsvSo1/mqry2SKqe1+VieNGPMM84sUWUxZshxnltetJfC6AYXuEE/q27bMskMpj6ZYJZdJK12lgk2yJBhQ+dQQdJNSNet5p8vGQTLTiAStV/MyTIZNphiGpNTt7FHgl1O8JDjbGMy2CJdnGAT8yTuokicCsPc4zFNVGjhi/w5e7RyjEds0kGdEJ08JMwhlvb7iGP0sc4xHhPVeZ9YUEmFzdbtIRqc4CGmIvprfEiz7idJkWf5Mcd4RAsHuh5vE1Yt8AyfEVbkyKzOlhhklgn1EY86ccfsXf6i7XNh6CXYY4bJI4tFMf62Dtuvnlx7CqRAkFpjRpJJSgrcNPyChTG2yRYdziqZY5QOtpjkQ0fbE+y69MfANEGcTz8B+NWI0Ms6KQqY7lkW14POAjFz8m5yrDJAnRAWeGwLyiw9TDLDDJPUCTHHKJe5RoI9f1A72HIku6LHMqotBCadxqIxGuvXecsHCElxDWN6ewNUJOgh7ot6ENQfUMAriUk9zRNujV5SFLzTjLBAiS6mmfJKRU6Zjt26INtAzPN/id8jrRp3a9u8gniDLHn4RYYNypqWY4DlFa6SV9ZZgl2+w88xqQORGL4Kw9C8EEHCGHZJ8IPfmOYRx2hjn1na+Sv8GWVitLBOM4fskuCOLkar/JA8bWR5RJKH7Cmx+pAwH7BLiT3+3zRo579jARTg+lM+4xmO8Zh2tmkwy2+zxcu/XnYmWpSaJ+wMsIp570m/iumCM80VrjrAKEbvYZdVplV+LsBMw+VWfVrBsUWesWLiVOjhAQn2nMFniz9hoNbJkCNPSvvEA2eCGGizTi/vM0Wf0sh7FKqrESWpoM2GLuq7lFFkLxW5BwXvczEqmN+lAYFRBeBNGmAAyyr9jCqLzMAdAwmPaR9/2jcJp/gC3eRUnl7w4sIiw5gf5AR3MEl/L+tPSGeN6Qrwe/wSv8gfOpNpUH3QcnTTQ5YCKd5nijP6TKcpEKVGkiI3ucgavZ4mdY5bDhxv0elM4iQlUuSdLdrPCkPq9SIppCPUFHTPkVC6+7xPhixBd4x5l0MaGDikycghGowzSwdb3OQiPWTpZ4U/5Bd4gzfZoke9S1OsMkC/MrQN+FphgCmm2aWNaaa4wE0ucR0zGZYAhowDcGdYcGB0F0nWHmKJBbV8GGTJZZZilbDKaRYd0FyjjxHu0ss6q+pDuqDp3nEqWHLtNS77dRvIGqdMSVmSlpwugG2MEkmXG9u7ztJZ1+l1qa35DNq4b36G6wqqAs7SziGyfEt8X2KIcWapEnXPGAOXVhhghLtEdcJh7x953gXcNP9D87FZYojXeYs5LcwIsFjRSZdMxgukmGWCEkkuc40sPe5jCiLRmGWcLCd5jbe5xTlns0ua34rLQoJKpUiX90gwxDIp8swx6u1sUuBeBRONgWjVdvNm+SbfcQbduBYWLKVe2Iy9zn59kzf83dvDAywh2BKUAZ8TWGK6LT4CM+oOelnju7yuQSCrTDPl77ZdErTx6f8wA9L/mFtGJKb1BsR7EJBlG5mJlpAF/Zh+9hP5/eP7CtCcRHzwJuQ7ze0CKDS3ETCGtpXZZKyvOf3eKOLbdgUHWR7PQtNrBEwj9XhrSsp5NocIWHVJoAfKH0H8rH7+JUR+uA3lAsQtiEO91ppMLmtpvUeCKNjRc+3TfWePfPcBgUfeVwhAklPAAjxnDLh5vc77KpON6r+V9fXpfXjuryMySLSd57StP0GAmAeyr+YXpW0JKftO/QVpQOm3JYyB4/qd53V/6r/lQOAYwvyz36s8t96A5pMEwK1JiQ3oAWfbHb4FzX16fQpqPS5pmMJxOPy+mP63f0OvYz64b4/fl8CHZnMkeI9AomzybmM8GoNvVs9hkieDVyz4Ik3gNWh9zMJBkPZqH9Hv7ROw90J6HQcKfhpD7RMcRGUZAdOMFadsvMM1Za0ZCGx+kA9xlmHKQE9jg7YTyJHzCMDWqj6UBwSeii8i/f8k8CJ8+jvwhYL6171EIME1D0fruyUEMM0SpCSHdP9f1mNkESnnHT0vAytTBIChskybX8SlvvFtoBsq9yB+D/gR0vd+CrYEe8wy4f5v57jt718L3LLN5uzi3V4hT4q/8+sNhslLMbaxSD1U40Tu33DYClvHoUyNBimfe1vBy9aNk8w4KBbmBL/O3+dv8h1fN9RoRYIFWojvH5BtfY5T2U/573p+Rm0kROn2WuNt7oa+4HZAwyxqyuizPr9ZUipohg2ucZk4Zb7OW6zzDL3sqQd4BJS1KFZIvQ6cGAt/UCWZaVVLvMo7rGqR0NhNBhKd4xZlfS9f5por1cwuyArZti6xuZMojQqs0fsEccLUCLZt0al2HGkn4QjDr+JzaQMCr3FZ18jLasMz7/OTfg0ONXBP+sIt+lX1F6HKNS57UX6DjNss9bJGAfH3f413WGIQC5bcJcF1LhGiwQh3MX9kO85RMNEATesr3eTYohOz0QrR0KCKDkZYcCzD7MRkzrhJkiJjzPv62JRw5kNt1mAg6rVLXCdHhhJJqsqyNAXGOHc8PKOHrGJDRf5YyS0tHNDEIzrYpG27ytDxJQeTLYh1m3b6dx8Qjea5FznNaT4GBecM1G2u1TmIiBroWX4sONT+HslWwZna2KWFA5o5pIUDYmqZdpxtDmihgy0OaeYYj9klQTs7xBHg2sC/HdrposTxR9t0PNqiFA6sgpo5ZJMOLJDPEorNpu1HPPcTjSefC6BX4Bl6WSevUr8hlty3xlhDgEs6TXJrCXYxfdC2VIpjUsUuirSxyx0mXDb4Bm+qNjvlYJih3raZ95OYUC6TJs8cY4wxh3iNncaCCwQ+FBnn67zFmg4oFiRgsqwUeTJs6CBTY5UBZVwJGpzlpFcDTJ89wSxXueLBBwL4yS24wQV6yLJJh/tRGYNFwiK6tPNtOog4zyhjzHnSbgGJxK4rKBSl6mmmI7qY7WDTWVlJ7jDLuC/aRCYnMkAzxDQmR4+2VZUhXfgXHKgz0GedXqWNi59BF0VWGGCYRUSPLx14imkWGCHBHlO8T42o+4CVidOnXnbzjJKi4D6GXZQokiRPijR5mjkkzS6f8Qw/5lmaqXNMAdwTbNIgzB6tbHOcQ5qdGbHNcR2sOmjhwB/ILX2gnucTiiQ5zo4zaOYZI8EuFhhhzAyR29UcBLDF5wgLmAedhREYs0mYeFJ5sQVoSmWu5usXUQCmgzBdCqp2IFHrpunvY90DSNIUWGDEqdQFUpRIemqW7E+eiUu8ywAr1Ak5aFtVeblJBFfpZ5w77OrMynz2cnQ/cX8s1EAAazGptftrTC277wuMMM4s5jPZ8Nn1T8dmVP6kyrgBD7sxpu0U0z4OjWoAi7G75NkVL8kZJolR5iI3dQzqdgZQPytc5hoWPlAm7qCdFR9sfJbkpzBRat53VtTHwnxBTL5vrKIeHmBSxyJJTpIlpeNBg5CH3xgLdIw5lhhytp9VCOOUHUQJ0eBN3uBV3maKaSzpzBidHQqo9LPCKgNs0sFrvE0dYYGnKGCJqrc4xxkWSKn3yQoDzmKT4k3Mz2+YRQfcjKWVpYdXuO6eaWPMuVTEwoPMTLdXJ02zjDPIssssJPE55hM6mwSWiflEw5iRNpGUyWS3UvzrRKlhAU550lTUn3OVfl7hOr2sscAZSiT9PEr6vlyln8tc03dokklm3FbAQkfEdmFTi1Y1n5CuKEvxIje1ui3myWtqxTCk7PYqEvwRpsE6fV5RDhLOe71P2fVt0cEAq8wycYRhX1aAVQoP5tc3wCq/xy9ppXbPJ5JWIFyl38Exez9/k+8wzRTr9HKZa/Szwm3O+/lYsIjJbTJaqDM5jY3nck3yfutnhbsazATosyDvV0mia7BH4gl5i42RN7joz0W/2mrcYZwkJQ88qRDXAskzPPUWBH8OTVPQnEXkrCb5S8LhP4HmJAJIrGm4Q6sw7MoFDaxoRQC0nMjz4grmHN6H5ioCHhwA7+rxLIjh+/rze/r755W5Z+CZscoOgB7I/0BDO7YJPNNm1cfO0mVLuPdX/EUC8OOIGT0hBDwx4AgCGWUUAfYywAtQ/oEGIdj5tABX4fG+JpMeELDRjL33CYHU82Vc8vm4pIb02l4oILrzgRjSE0ZAnjzkswqSZpG02eMaSnJW7s2JEpQeSBhDuzL7HtcVZDX/wDCwDM3ndT8W8pGC5n3Ef+v7eu3WDnN6PfdwIKw5RRC8sQa8Dk3z2pazAgQ1t8p93FlQGfIDOX6TAbMt4nvXfEX7gQGJLThrkwwCdKpvoPv0tek9KfGkb+JpAl9D+/4D/d6OnO/j+9CkctTDAjSP6/W9j7ASgcMNaG7oMS1EBT3OtpxfszECT8j9IUnQt7JyL5Iv6ffsHLb1/n+i9/w+gfS3RZ+PF+Sadh5Aewb4Muz8Djx3GgG85wkktZbyDAIOzus90rbmONL/XtfvWOjCKwigVydgZPao5NdYoSYH7yPwDtyQ53vHjvPn/FRsx9mmptK8iM7jLGhgmEW38TDApYYENqUpMMu4hi/JHP1G6KKQUjIJJwNEqbFCPwOssqFAzRKDLDHIGPPqKRtxksAgS66MM/a/WWeUWrsEROvpoUAKC5/sZY23Qq+raFjWjTHKlFxpV3EFmITyJcnR7cz4DjZZVi9kIyLYOvs8t70AaYXQAmkybDixxxRl48y6DdYU01iIgnniW2CGKTQKR8g2VljrZ1XXYDHiVPg23+IX+KfOtFthgG/yHeYZxfyro8oIrBHljMp886R8vmAha2kkpdgsViDwom4gwW03uKDzo3EkVyCrrLVuV64IqUnSam0/AqCuIKm0d3xeZV7Ra/RykRtU1KPQ1h9ZetxGyeTCNm8WIkI/U0wTUSXcUYDZ1Gs2/7S17xDLro4wa5wEu7qG2fJ7sMAIKST47zqvEKbBCAve1oK7JHmDf+FrcxCF5T51DmkmUd/lb/yfXiBJkZMPy5RbH3Ej+iWGWSQIOWsQ4hTzjDEA9HOGecb45cbvMRs6RT8rdDa2aM9Vud/zjJPA4tVjTEeFZTnKHPf4aywyzBWusksPI/sfsdR6yiXPsjboZZ5Rt2tJkVd1SpVNxKf6VPYRROGz1AEFUvzWbzRzgoeOc5h/+lGf/yGnev+7t88F0NujjRaliVpqSoJd7iqDroMtrnKFKaYdvZ5TwMSks7OMM8Y8PWTdPH2RYUaZd+bPHcZ5lXewgIkCKYp0eVCGeCjVXFY0zKKb+WcU0FliiFd5mw0yzDHG67zF+0xxiXcxo/8SXYSoE0E054B2yC4shADw4wHc5hyWCGMsm17WGWSJCDVMDrdLgpOIp2CJLl0kdDiLzVh3eVJsKNvEjpmk5OaOQnOdZ10XUWnyHo8MODPmaGKvhT3UCfnAu8SQm2tWidBBB0M6yJtxfh9r5Ek9wSopaBUIUCZg1VN9JYZd0npNat2nvk/LDJGiQJwKP8d3qCpjTCKxu7z96ogBrAV6HGOHbdo5xiO6KFImxgEtNHPIGr20sU+XGlge0swjmghzSJNq3us0E6VGhTh7tLJLgkHuKzVcWBfNHGJpu7boPJqQZIypIZa4xmVnyxjYbGCm3Muw+y6YH5oBLHa99oLtZ4UFRphiGvP5koV61OnYVSLMMaYySXkxDSrzycxzZZEobJgBVhwktv47ywQDrGgf33UGjsnalxjkPLeZY5R+Vt0ctUYUidPe9efXKloiWUv6C9gYrsJsjZNgj2nO6kv8NG5o8xRvu7QyywRv8CZGTV+n1xlhm3S4XM9CCgzQAkniOio9B54YZ46GJJi1gcnYQzT05dbNqvqLWXHBjHDt/6eZYpxZKsTdAuEmF1lkmBhlBey7uKjAxTJD/Aq/q+lRg5jf3WWu+URglgnOq9FrWcMRbLw8Wtzp0gAem8yt00uZuMsEBlhxLzZj87bp82NM1FkmvMDQphM4G5MsQKiXNU/tLiLhTCWSVIgxzZSDicaStYnBUQDSCiAg1War/mbpYVml5RFq7tU5wax7qJjUU4ytSy7Bt2MYUz2BBCyc0URcSzsWKcW8Tkil2iznIb4r6/SyyDAXuPlE1TVMg5iClpvK8utgExAG9A0uMMU0aQpc5xJjzPkErIsiwyxS0PdhJ1ssMcSmPvvCIBYWoRlXW9sY28CsALL0uFTcUpVX6NdiQYYIVWaZ8Gpwhg0qykg0prGNf1WimI+d3ecOJGVOCoXC5suR4SI3SKuNQU4nxxly1HXS3CDk0qcKMeqEWFHm9Xluu+dtH+suHV6l3xcDHWwxoQUy844EPEk5AC2LXvyxcdJAzxaOxKM+rVsS9zpzeek8EFbZaDvQUK8vSzY9DnGTgkYl5CHeigAZHwCnoPkEDto8/kTBwDFEjnsakWu+rxJEIH4KZ4A5G2xNzoMJSMwQABV2rkk4NGbWC0igwiSUPoDkK7KvwzUFnL6By0pLvw/JCdnXzprKKZMKAI3qdTxQyeF/DPymttFJ+X69oaDYfTnPwzUFL/fk+ICAI/dwWWbTBLTXEb825PzL8wrkFBCgKAw8D+njeu1npY2oq0RT/dGafh6S7+o5nQY+UvntewgYk9L7uI/IXL8s18PvEzDhfiBtX68rg9KA0Xk9PwNHX9B230eAIUuBzREwvPSz7aO6748RoM3AoX2VAn+ivmyjODOMgrZTjmD18xDpRxuIHNUkx3bsKziTtPQA2jdgZ0/uSyyqoOKEgHnl+xC/ImnEoMcypifQbBLVLxMEvExqX7HQiQltl6yEkaQnCbwRw+ovqbJWA3gP96FZwcHDDQFGHysb1FmLBaAP2pNwOA/N/xBOW8qyeQd+pOfwAtL/tqE8o952BQm5aDaJuEnSJwhYpG8jYKUBlMpsjBuzMSP9MJ4hAHbv4UEy7aeAhN7HgJPx1G4FnuGUvpf6WPe5uwUirtPr7zoLdizpe6OHrM6BTvp7cJcE00wpMLChv694MJMFDZiEVN5fZU/NHWLZCS0GBln43hadtCmxwrxlr3GZXtYR3+BOV+iYp7cEDNRZpw9Low1RZ5IP6WCTIkn3YzNLGlsbLXCGPl3HJCnqOqyiliub3GGcFAVf69cJ+VrW1sDmBSfzh6KueWNPXEc/qy5hDjydK8Sp8E2+wwJnmGQGS3q1kK84Zfo0rCBMgw8ZZYppJxylKTCtFiwlks68mmUcsU25xzRT9LLGO7ymwI34pkuBcYkiXdxhnDZMbVgnTQGTr84xxkVuKNNwgCQlelljiUE6EUXVJDOu2LA/Ieo+1zYwqkSSJYaYYJb3maJTgVlbk0aUGGKAFeB4hYG/YvEkoRg2BzemaZkYN7ng87MSSYa5R4kk57n9RBHfcA47HwFjZS0bV0nxicoOTcvwV6/ek+LRHLQef8S/1/oDAJ4/9eOAXZ+Dv9J3nx9M/E/48v0/ZSLzp7S8B18Z/RMZ8wpIyNX+p3z2QhvPZPfgACafn6H9h4fQCl9Mv0e5J84LuT+X8bkF/kr7fR4/D0069j6b26bnirA9v7L2J15M2z91jJ8pPeLHmeMefPVMdY9n+vb4wgM5x8PWZl9PF0l6yvE4szzW9d5ftH0ugJ7QEUNajV8hRN1pvVFlJS0wQi/rvMbbOohJGMUQy4hp/jJzjGLedjaYzDPqmnoztsyRORLisImkAibZpY1lhpTptAUEoJvJxyaYZZ0+Z6dZQqskvVTI0U2NCD3knVZrMqgouy7TjVCllzWi1NwLUBYwJ5lh0hepF7iJedVFlEF3hrefqPIb1dckqLYZc85Q9SGWvOJiC2ZjtBgynlJA72hohsiTko4AZyjqwlgkwpYEFNO2z5PGIpUNGB1kmWUGiVFmhkn6WHPasLF6hHmQUjZfn0t8zSsrRYEYFTrYJMtJjKotx4lpGnDZGY5bdNDMIT/76xPUiCi4dooEu774StLKHhIVLqmgOaVfb5JQ3X2ObjrY0n8JSCeD9Liz6uZ/43vUleEnUui8+33ZsJgn5W1m/c8CMywMxioiSYoePhGhxpwO/l/nLd7lkoNhFiSTIedSR5CqhPiTRX0gfpdLnGbRgZEYZbbo9EqOGLzHj1SlBERYYMTB2DoS2CEv3V5WGKBBiPPcxuTpBqJa0MASQ37/MuRYZBjxGyx6Bc0W+rbItwpOgZSD1D+pL8D/v2/bdHjK7SLDiKekeKQIi6mioNWqMzYvcMMriVJ4EBsACzsRo9whVujnEu86cJ5U8AWgQZjbnPNkYfP3BJjkQ/pZcaZtgTRTTDPOLPOMYebMkta85N5+r/E2W4jxcZoCd5ggr0xAYzQZS+ldLjHCgvYv6YN9rDPNlJvgWlhKigLf4tsUSXrlVeq9ScaYo0oUCwCSviMWAAucoaIS8pCyqoZZdAPkdXrpZ5UR7jLNWVYZ4AI3XFYp0smSP3shxCTYpLo28TGJxwr9ykjM0yDMKv2Yr8dR4MksB0p0scgwIyywwAh5UpxhAQnWkDa5wlUFCVMk2PUAJHvP2HjYqxJfM3DeIOP+IitHZCMGrhWRYAobDzZJ0afPoY3Dkqq94uE/M0wyyYwXBsRKQVKuo9QwC4yUyknEv1SYd/KelPNdVt+PBHtk6XHmmwGUNS1IGDgrPkE1LaAEVhnm4bdBxhmNQyxhPrDCdu3WgljyCWnwFh3c5CJ9rPk707w7Zbys0KXsZAOGc2RchiQFRgF+7d0RhDGFXDZjspUQDTrZ8j5j706At3mNCWY9pGmOMe/PAKPMU3VDt6d4ixBIH38IpR+qZ14U7j2EYZXTNt0jkDG2Ekgi6xqaod/ZyUF7FQcODjfU4+4A+ET89NotYCMscs2k1UoMlEgh4NwpBMQpQPxl2T91BKx4HshDckT24wBYFpLmA4gyzPYRTzMFI5NpXKKbMGZdq4ZT7OCy3KYMUt+ya47KOTWb/DYEPFBAZR9hk72Hs/B21pRB18AZeYAAJs/L3+UC0uMMYClJQm6TscV6gDsaGNEgAD1VfktB2XkNAhDvYz23Fv3MfW3/U3qt7wFfVVAoDPnvCxAWa1G2Wp+CPAp6EcYluI9/U9plR/0SmxW0LWchroAnPXJvSCEeewbWZSH+LWTx9QECnO7puRYQNtk9BDxK6v8dPX5G7+vvy68f70NSwdjmWUlCbu4jSMSNKtD8gd47PUb52xDfQcDCr8Kn/0TDOEJy7byLg7d8pPfmNOy8DSeO6/9Z2AqyD/dcHJH72JzT77YqM/GeMhZN+mxAqMq6m0/I75pUHg7AGpS35d40offwhErj9V43K0v2MCvXXvoEkvf03EN6r186cu/tHE7o7wrK1NvW9pnXc7J2zOv/tfBTsZ1ihShB8Jet94xRdptzjOg70ySSEiQw4POOJEXMD7xMjMtc82K9WIesaEGvwi5tlEgyxTQ3uUhIVRaiKBI/8AoxLLxrReWRPWTpUgskK8KaosQ8s0PUXSEitisRLGTPVCdWZBRW15pfh/jor7PIMHHKNAjxLb5NL2v8C97gNue5wvdY1bXRFp0kKTlp4xLXWVGVnAFBBkqGqCvAlXJ1iMl57VqqSpYIvPmFQRinzBTTDgKOcBfzM15iyBUwxm6sI37XDQUWf4nf87aKUNUgOSncLXIakJDIV3mbPRKq5pD1gKhhxNvdgr8MgLM112u87WCfyUBNCdOpgKzJekskXT2RYQNTgVjfsnu1iVj8GHGjQJo4Fe6oqkI8i1fYIOMWMma1Y3NpI3YkPYQz5gSvGhFilF0lN88o57iNhX2IVVXeMRBrOytgi+T8xzQtIOPuHyBji1p0uDUEyPvIGMvH4Sv/xZ/Ab0HLaQTs2yawiZAHkmfG92RMmoX2iUMRTZxC7AF+vixM8/dwBnLTFeR9H5b9Fa6kpFj++8gYGIbWVx9BDp5Nb8M/12PZeH5X9t9y+sB9EM2SyKyLXvKI9X/39rkAerJglRtrbIcMOS7xLrvaaf93/CdYSibg/mElkoi3nTBEBJATpsl3+TrdykiwThVRjziRLW06owpQSWzN/ZcEFV8kTV4ZZivEqWDJseYZZVr7CFVqR6ijMlAMOuIvaPuEylkjLlMN0eAmF3Vga6OfVYZZ1MV83XX+xvyzQQVQ6WsXnWxRJ0SMMnskeIdXdWCJs0YvIjsSEHSeMR+ILC13lX4iykAz8GZPF1KSAiR+Z2LILhKrCe4wwoIzFGRhXaRHpWCySM25r8ESQyp5WnFU2VJ6d0k4xXiVAVLkydHNL/KHzDDpg5AZxNtDbgtDEMrvlrKXEuzyiGP01v7c5aL/3toP+LO+U3RR4nLjGu3fO/QH+uOzXyRGmS++9ZlMzI7Dzqlm8qE0//7b3+fPXjvlVYT0/mfstrbxzMd7kIPf/sr/nN5Pf8Snz6VdLprlJBPMej+oqQxRZLD9DLLETS7Sy7qm9vYTo3zEq0HkgpYQasEldt+EVi0MTWN2SqhLWusiUTrY4kMm3VfhMtfY1HtkbWyMOKuqGSvP2E/LDDKoYDZItWNZX0yLDFMmpuacQw6uSgVLDPAt2MK8yJYYIkc3Y8yzqolIBr7OMk4PWV/cm6QtSYkBVoge6fdP8/YcP6KNJgej8ipTBpyWb2Mf4ACGVcF2aXMWlE12LIUzqI4GzEypIsYJUfGQiyUGGVDm5yWuO3uzQJpZJkiTdx9NSxqzl/IMk5xRzwxL6TafRUumEgsBuaY7jLNGn0vRzROuD4mxv8FFUhQ4rQBakhLv8CoXuEGYhoKfnZinBqDFnqDiZ54efayxRh8AU0x7MaFK1J8xkQEseYXTQFIBmKVYUSXKPKMOyNl30+SZYdIBpj6tnpu8NU2eXtbI0U1ZwfMyMXJ0U9GxwhhxFo5TJ+RMcgMRE+zRRYlZJrB0N2PuGhvTJnTmyWnp5BaW8SGTxDTdzSZnA6ySpccLZmZvYdub/A31XRliVMM7xGVVbC4ksTrqQLNNMhPsOhgaouH2CmViT9gwHJ3Ex1T6YT4hgEtK7F1iMu28FgWKR45r1X9jbOd1bIyqRMb8P4sq6VlWBmq3AoZdlBhm0ZnVUaq8xevuM1gkSZQqFgLUz6pPVA34FhZ2Hz1kGWDFGYgJdplminmNmjTJlLEuLnHdPQFBmISWhJfQQmWnPu9P9bYFfAFheh1XtpHKXYePpnmewMMAPv0YnhtBgJLnFeRoB06qf1mIAFDrIzD039dU3E8QsGMWkhkELPgIAXEsrfS4HtvYZhYmkSII7jCPNEvltUCLl/Xf9/XfId2n+eaBh0vs7msiaFZZVeP6OQ2/OLyq/mkpZKFhAQoqb328D01nVZ77Vd23hiC0H8cTVR+XFNBJBeccnyDwNDNA7yP40UN47m8ReMWdUCZiXa67PKuMvVZECn0cD0Z4PKv+a5asehYBn04S+NdZ2qoSUMPqO1e+pwBRXRlcdk4GprVC4S1JEW4/K9/PfyS5Ks99Vdv0qraRyaJVsf74gXohIvvZKUD4IcS/Aoe3tK+UFAB+qOdmjM4JggRb85Pb1zTi49KeiXt63T14uq97B44QSEs/0LazoI26SqE1gIVtHOgC5Ll4ANzTflInkGs39NxM7hpFADCVgH+ak9Ti9Mu6vxf1XN7V/YzovTF5OYjU9p7ub1L7iD2HDaQ/Gcsyh6f9NiuImXxez+1jBYG/igdycJZAqnscYVyaz+MCQdCLekOSlv5NJy5Rftq3Mi1AswMVSZ17W6HpaAquSUuHWFL7qCW11xjwgpkV+mpElGXej6WxbtJBnIoqHUpO7sgzQIOws8oT7LkNiRUmE+yxzKCTEwBXvllhPk3B1XQSwjXgxTVbTzcIcZ1XuMhNFhghy0mmeJ8ZJr0gbcEIZkn1Cte5ytfYIIPZEe3S9oTiaJFhT7K1dhKJaCdDWoAzld8kM/SwpcyzVULUfU5k7TjMPVfwiXIh72ENFkxiqbXm92YBXBe54SqtgsptLfXeQC1jX5qaxBiNiwwzxbTPJ+OIb7vIsTMKlEYpE8MCMIQdOMkKAyQp8jWuul3PCAvc5AKDLLmsOa1+6KsMUCXiXtC2WVDZDKOc5zYRqkpe2fU1oZBy+rjIDWpEkbANKfxav5F26cTUPKa4NI9k6f8xB7BGWGCJQbrJ0cmWKydMdmrF1iWGJFn5U9i7S+DxOQ+HVbi/DRVkmAP5+dRxfa9+De4rczkGPPd95P1xH9YK8q6Jn0L8Rf9Ahte/ekIZ/y9D/8+vCqA3C2v3oe9FZPx7D0r3pMjzM69/4gFId96BU1HY+U14rg9ursn059QpsT6oVGWa094E5dMxD2VJsOvqjg62+Jgh+Anmh58LoGd6fAlMEEqmeISlfIFnbAabDKfIO1ovXjudXulOk6cNSXExk3bx0pHZkkkXLchhjV4GWNVqufgiGWNohX56WQOSPrm2RU6agvsM1IB1XSiav0GGDXpZI06FbnLO/rOQinVNIx1g1cHCLToJ02CMOcz83qSxxgaMqZQLcKDEJGurDDijyphZQyy7v1yJJBMaM20ebnOaVCjJog8wD6coNY07D3z9qkSURdnAQh1s8BADzjgNwpifX46MytJSTDLDGr30skaZuLedVX16WddlvCxAzTzUWGcCohY8OMEGjQ62uM4rxKlgFN4oNVr4Y8Ifws/+o/dcQvFX6vdl8nE0MS0KL/zRnwdmvGH5014/pL31UzgOf+XhfZkIh+R7LY09eXqPw9+999/yGyvwXD1PqLcB/DX10RJI3V4iQoeecJN/87ESdmPZKd03ucgIC8peEsaKJWgaQHj02k1abqDKKPMsMajgatYHcgOAzL+qRtQlXUZPNo88o7rPMs55bjPGvNOkzfQzphRykznbsyWTibpWzyoOQFr1pEQS8xMzZqIwLJedpm4vNOFcFSmS5DOV5j3t20NOUOcxgPcRe/4M0LGqpTDR1t2TLknJWTwmGZRcpLADZeZBKZMyk+Vvsk6f09WNcWey0X5WlTm8yQSzPv7YvTTGJSTpZIu7jJBg14MlzO/M/DbM9N+YUSb1t8raLONc5hp7JHidt2gQYk+ruHcYZ5xZFjTxTRizMnEzlmeWnieAsUWGSevYYcUBKwYlKbmUIUqNmIJ8kqAqoOISg5g5dI6MJ2NbsaZTxyCTAhT1fWEAaeKIibOFwRjYliPDbc5xmWteIbXnw4Asez8Os+hybDu2VU0t8bWuoJhNgmwynqObERYwz8tucs7EFFAx45PNac5ymWu6GPiSA31jzNOBJKIBDqCat63J6q3wYhJWA12tTx01rbaCmiXHdbBJCAm72qSDPha0WFXB/GPsHTavAReAvxfKbLntwS3Os04vbeyyQYZbnOMS7zLBLElNubeCV4Yca/RhMuYqEcaYd4DWim9HzaHt3xYyYioAkcMsue9vhRiDLJHlJAVSjLCABalYH8ywoQzJJZ0HdXKNywBc4jo9PKBAmrxSZCQ8xsq3T+nWgizoLcFzEvcgcxDsIQKGtAgw81wKWFO23Qg0nUaAkB8SyGUNlLAgigf6mQe6/w90/yMETDSTkD5AQLltAv8w+34KWSwY4GSecS9A6aoChD/E/eLW3of2ECQvE/iNZSTNtv1laDcPuRMQntefLTBhFCpX1UcQPLWVB3qNE9D0ibRRXKWvZAiSXG0+8zw0mRxzVPdvLIUXtO23lZl3Fp6LIuy1h/D4A2Hr9Y3KOVJVZp0BSCPIPEmBnibzdzPXB5NemuRyQb97GQfdkrqAqpucuaDtHMKZeazJ7tIa7sCOtGXqhICidj3OFizoPQwr2+9bej73ZF/tr+BAYfMVYE9B0dYjx61qe36kbaogMSeB91S+q8Bvk3kzril4qsBceU3DUUJyv/iX2mboNWVgpwrt9xAgsAS8JiBjc7f+u4BLhx9vK5D4on5/Tvel/Yo7UMqLpPu5PpHEcl+OX35f2Zjq80hKv9ei//7rcl206PEaet52L+2Y2wgo2EoAVqaQhXAWf+6eI2iP3X1o/zt6LVXkOf8+0h/fQ0C/Fv3zQNmlYfWKnEdW2z8F20OSRCn7XHqQJQekYlT4Ft9mhi+5NdJ5bntxDfD3r7DpRWVRo0SRLirEndRSJeoSVGPMWxifecybl65RVa2wtk4vU0x7SMI0Z9mljTf4F+wi4R3vcokoNYZZpFPJCeIJXmWFAQe8olSfCMi0eZMVXgdZAqAPsVDZpY0Ee6TJ060F5ducw7zGrJBtc05RQFWdISfrlaqTL8xCa1c/I8XGNlYYoJd1X1MVSDHKvEttzQs5Sw8TzDooaqCTzUkqxJ3daMpBwyasoCcqrH5lr0VZp89JQyDzJrN0sWAv8zjuZwXzwbeANFPPgRRIjaxhhWkDhaVP9egatU8LvBFXhNWI+PlOM+VMS0DZfhXW6GWEu4rB3HU24oB+dp4xL+iapYz1CyOpmMfgkIaD2DFt/dMgRJiGqg+HXM1jYJ6rFuvyWnhcgqYTAublt4M6jH5E7D23Ia0eqRWgNwqfmm3BvoztD4H2A4irH+gJZf3v7kP7DrAj62FTDuxCwDTehp2G+J82F5Cx9KGcw2FdbS2QYfNQv1dRht4xgKoQmOz6jLhhz3fiJ1RvfC6AXhcF5niZKaaJKsXVUj6NnWKVbzN9/7cXIpK+N+wMtnHuMMmH/A5/m2EWHeww4KmbnDPQotQQD7N+otTck8x8vwygkgYQGVqBtD9UJs2xRaktEkReFNLFo0hvzNtsnT6VUdV9AZphw+U95h0YpDUK4HGULWGAWUFBLwnfKPi5mgzIQhkahJSWuuHsjV0SZDlJDw8Y0sFR/ADKPsAa8y1O2Qc48y4II6m1NqAA7o+VpOjVmCAlUdhn9pIx/6T4EcCpphUFS4TsIYslQg4oc9JM+w187WDLJYjG1NiiAwYeBFKYn0cmbJfhxy8cd4BqkWG+8Qf/L+iB/+blv8UrXJdK0PaHNN+B/+or/zP+l//k/ykVRKtiL8Dh34Pd4y2c+K0Ddi7EaL9ToaX3wBeAFvaxxKDKz+q+wE2wywArLB2pgkjbiQdAnRAzfIk4FSyafIlB9yubZgqJo8/wCtdpEHZ5eUEHvyhVlQ8uuNeaMLI2Hdk3I9wEu/5CKhNz5uMAq85+2UWkyRKcUdNFb9S984z2L6nU4n1l6TsGzhVJ+ov/qC9DSb3EzD/PpOLGJlxkmLP8q//ex56/jFuBFE2Utb+vOnDewZZOJNYUdBUJvnlYWkK0yXRNljjMIncY9wkNyNgxpGm3u7QRpaqyxlHSFFyubd5u4p+yqRYBUmkMGGYysVihn/PcJstJr5rFqPBAx7kkJZ/sGGNrmikdQ6Ral6Pbpa17iMzRJAtVHTc72CRNgXd4zSueAvyseR/tZZ2IPme/zy/xJWZIk39iMhPS8bOXdZfN9qrnmYXTiCFzxos5Rue3pFvAn6EuBQbNC8+Ad6H8l5lkhgVG6FMg28C3KFUucV3ZrRLiIQUhCZLpVr6rVR97yDLPqAN2gIYLVZxpt8gwWXo4o+w7a/OGHq+K+L5Y8MQwi86MtQnzAiNEqWJhJv06vgqjvqAJZp1k9R1wtNJaRrxnDXg2mwpjBYsvacjZ1Dm63QdULBEkwCJED4sMc47bWPCEsPzEG6ZN3wXCvhcZj/WRYe7RwSY1Im5P8Xf4HTZ1Um/M5/+c/5Dz3GaKaUa4S4kuf86sX4tXkHjmPKDHGQl2rTZ+W/jHBhkPOrLn8ihb0X7epQ3zOo1SZYBVQjT4Dt9kgllGuMu/4A0mmGVIpdVxZVX2c2jqvqd3M3miVdUtxRMC4KaALPzD0GQSyh6ZbDMPnFAwahsOd5SV9/KRfaXwFNKd++rLZYCGAme8h7PwSsbcq+uxGwiIZvMMZZHZPskADyE5RmDuH5L9pS1IwPzDNFygfQTxF2vVfWe06v8RQTGyBcJhBEx6CQ7/PjR/AwHQNhDQzUCnhgYdGDPMPARV9uNSx3u49xopeDyvzLLnVW7Z0Gv7I+DVI+f0grT1zn2RCTcZoPmBfv552Wc5pww0YzRaMEmBAADaJ2CS7eNgansKAcvmZV+Hd6D5qwSsLjv3PgRYehHqCvQZwNj0EsLANEDwhJ7Pff29yZosPCSrn3soPm6PS1DfgOajct8M0jeVrcg8cBbi9xG25H3gW3qNa+JXSCsSKPLRkXOxEBML5dB79dzruFchVWnT5hdxFqdLruu6mFRGZGlWJb9p3ffLch1JZTNyCprvK6PyRYhbarIWrY3xCtrueRzAO9yB5q8B39M+YX6K5v9350j7QMAArOrPr+q/35P+1a5AnbNn5/UcNHTGgDy2JUAkZhLbVni8CVr/fOq3bY7TyyYRLTyGFfSw+bmFZOXIMMQy17isa6MVlygCzuYTRpfMicxuyRQ7GXJEqPK3+a+xVHpjsG3RwQR3PICiSwMvjhJFykrCMZVDF0VydLNFB1NMaxEyigWVSfidBFZu0cE4s+5BbwF6IMVgs+YyRVLfEV8+wDGEYe5hfsgmM+5ljRJdAL7mtLmeWUKNKWPN1nG7JDy8z9aytk63ebj58OVJu3IpwR5LDDLCXbboJKJrMpsHBnNAAeAiSgZKU+BDJqkSZYgl5hlz1Yj5M9t1inf0CgOsKmNzEAvIEEDxjuMGMcrMMcYlrlMiyaz6ronaJunAZo2oMxYtVCNNnnHFMIwklSfNGr1Y0GKIhtv9WKBfgzAWInadV5wEMso817h8hIQyxN/gTV/vGXYh8/NlBWCLbq1mgK8x8kwhGPgcWhJulB2uQydkMlDIQTondhrP9cBzSaAucwSQd9qdj4ECpGfhzGvA34Lh/wvwHwF/IIWdM2FonkQKMWvivRp/Dcr/EHkH7cGz2W2oQj4HZ17Uhzgs42dfCkpWkDkLVGH8RWQ8/0+AOzAcwm010hnYKUH0EZAQ8sMU07zF1+nTvIVdJBuhSPNPNJ58bgw9EFDnNufc88bMHmPK8tmiQ833JbwhQ44qERYZdomXJRKa2bZUtgVtntMFiBxLHggDFvrV4HqS2yo9FUPuYCDroEqEk7ovW9QKih7xGGyL315hgChVetUDypJLb3KBV7iuFYi6g29VIljU8gr9DgoZk61C3IG0dfoYYIV/yi/SpT5kFWWiyAMvhqCzTJBhA5HglTEtfE2PZcw8894L6+LcpHtr6osn6be9SjeWAXaFAUfZLaVolQEmuIP5IZTo8gdsiSFKJJ09YpUV8zQyZpCFMQAKllb9c1JJCVNGUv5S5J0eDSgoIADRmprDfvxsP39nb5sGIUr/1QliHLBJh7I/mgnTRhPr/AEvUl6Ns3mzyFWSVDkkys8Qpcr27Y94hzGaBSvnkGaOs0N5WZJcLUFpeHiZfVqJaxsZM+YoaDnCgkuEE+xyjtu6SJWXkbExDUg2b0BbEJrpe1pZSQl2HQAVplZeaeR1qgqqiuQupP6N4olhgEEv6266agtrebl0YXHkXRQpkOIGF5Bo9Yqz//KkmeCOyufkfCzEwJ47C5AxwH6YRW5xjvPcxgzrjX5u52/XskWnMzS/wKf//Qw4f8m3JCX63OMkrqDuhlOrK8QpkHYgbYZJvx91QrzCdWfOFkg7Ld2A1ZBWs+Rey72y53KGSSaYpUSXJ5TeVcbeLgnOMM2SAj9Hpd5Vokxwh0WGaSi7yvwhJXG85Iw0Y2ymKKicf4sHmqxmLLgGYfdR7aLoDDQz820QxmStVaIe5GBemOYTs0kH57jtgN0Deojq8UsKUpkfmgE0Nu6ajHKBEbbo4AI3fAyuEsW8Nbso8Tav0qWTK2PW9bNCiS5mmCREnTMsMMo8ayp+DhKlNzDD6TtMOLBXQwT1y5pMHUH8MHvIMsMk4nFZ9PHS2kjYXjkHZM2jM0sPV/geiwyzRScDrHjBZYEz1IjQzyrzjPmk3OQeNuGzYsowi1i4iplE27EMrAIBOwdYJUqV25zjNItYKJWM+3dYoZ89ErzBm8wxioW0iKx2jZACv8aQMw9Wk9Ve5hohGrp42aSgDLZ5RtV/cMufJateJ9j198Av8/uYD6NJksXTVsYzAWLPkKTIAKtUiXCVK/wyv+fMemMx2LMVpcbbvEqFOBe46YWvEHXilF26E6fiYKGEzNwhRF37j31GYLsiXXxJ/QrlmbW68lO8HSIL/AwCctgiX9l6h++oT9o3gG/rZ0YJPM+uyfebMkAVmp9HwIEFBIgwD7t7wGvQbgykCf2dSToNeLqnst+HBOBcliCgIImAQQ31n3tZP/Oe/p/KUknKceN9CFgyAbqeln2fIkgsXdM/pxD23AkERMvp93PAP9dU0jwBkJcikGC2qQ/agYKb6P9nj7RtHQFxDNB7UT73+AE07et+VVqZz0G6gKfN0pDraN8HTitzb5/Al68k7Rg3ABNthy9re9X1Z5U3aRBnwIY7Ifs6fP//Q97/x8aVpvm92IcqkiWWSIlSsauGtU0t2aTIEW9TJiHe5kQaqaVpZZRo0o3pdXtnf1wvvMEE62vn3gSIAwcIkoUNJPC9uEASx06ywCJrrO0dj93enjvtUaCBelsjbdPNvlTIFXupIUU2uWJvcaqGJVIiVaUqka388Tzf51AO4J0/bvuuewoQRIlVp855zznveZ/v8/3hsuNm9x/UtTBn37ufrVl61xh6h3VOXvVxEWvshz4G4yTMsZMeAOHptpXfM8l2k4OoTS9By0MSxpiuzZx/731ngPh5flaEphMkAJXktI/tvS09PjZZkryv0yQybXgewG6Gpz92IBPgA5diOyGj2c8bD6C258cqv7oVElBcUtzHfo2+5/vm4C0P/f1fJgkSKYP69i0PiEAa+2KSMBj5S4rpdwge3YVmXa89JD5Up0lAVLHzHnvq75sYIHwEeJT48LV0+/e6VLjpCHwmluAX/GXPEFNoyOt2mnHkd71GD83ecBOBQBZKCnES826BQZboZ9G9vLNssOclvvmypaL5ubev9JcHd46yP4ONHjnHCG1OtlHNN8cIF7gB2DoVrA7SKZdNUBvVYP+1+zPXvObsApNHW51WZhnzputR5AN4nUv0sxShWRmqLNMf+ysyT46Sh2gpLGI7nvMW/HE0ArDmGGGQxQjW0vHUaY31DZj91zoFfsAVgCBTSI2i8eliI/zaV9wnXOGAkscCAdKqmd1GlUtcp8NZiA1an2vu97AW/u57ToYQwNXMHrJcsdqsERJW1YTzDGN+5jsofG+KCZRGu8Ag3+K7rNFDjQwNWlGIZoYq3+AqS66WVI267MFl7DvPk5wJ9ucy/RQpcJppbnARhXrkKdO1j3x03Budpho5AxDWXEUKDLLINu1BLhE5Suv/NXqShvwhoGFLintr9vfhNXixADwxIO9ZGTgIJw85I/we9vwWk/8uzE/bdN2W9mfBLDx6Dw4rWR6MeXwXysfhU4xAnH8A7MLU37dHQA2zPKj97+HFK/DpNLz4NezZvoLNfW/a8+T/+8Cm3sNpOHAAaCXuz1Oe9AvE/dAwHt9f+PpcAL09UkzwkSdwzrPfHBpwMGkpqLFbZAIdrpGY8MsbqNPRWZktShIj2aABQha+YJI2uyC2aWeeYU47Q0px1u9xKVhDH3CGPlbJY95gk5zhMtc4zTTLDCBDckvWMQbchiPfklF17ZPF1UlznUtBIz3KVmjM90hxhg9okPaOy0LIrNqoBatjP+NEvgdtzthRsXqL88GqyVOiQdpvLvPya/jTeItObnM6zoNozYMsRALPUbYYZ5o6rcEwEytizpOJl/xcisEgM3N1StYpUKeVVXqZY4QuKtRJR6qvbsReVmhghuwDLAXTEHguIXKXVNCxVz04oEGabdp5wkHk73WQJ7TwlBR7PHEn3TxlnnCQdh6Tpk6VNtI0+IwmdjjEER7ykCMc8DbgMw7whIMc4BkPXMt7gGdst7XxkCO8AMj4VH5P8ryYYCrOEViHyEBok3p1sM0f/b3J+GyGGn/CZxR5RjPL5gUANLjPZzT5g/gBZV6ghT9l0gvWJj6jQpaDzuPd5s8pUOQx7VRp4wV+yhFP/t3jz/mMJoZ/OxfswWHmQ04nU9g3+V4AGfu9IPZI8fHf+2+54SyhpzRzkD9xNmaKhxzmEH/KXZ9sDvGYg/wLHjjos0Q/L3DVjVkfkKHKER7xKb/AIdY5wGekucPHT55+HtPPX7pXnnWqtLsPhwFICwyGVNoCW+zOX2AIJVzLs9JizxvBgpX0VZO+/LsExJjPW5oSeZZcKrlLit/nr/MW/5oKXXSxEIC9wBHzaulik86Qs4oVLCBIkm35nFRjlrZFTt1BOgGN9huTpF7jMt/gasjy1+gJyankBOe5FQCTUse36GSOU9Eg6WeJDWfMCZzR+GlxowVq0flw8p0Rq80aB80hjx9iweUqrTHHXuB9tjjKNpa+ZnNc2iUXoyjdG+Ay1wBrMk3wUSwgBXaK0aptSd6ySScN36YCeWSNsMAgZV+wC9zbpmNfo8MYlusUQmqfZSMWUDkH/CVFEaAqn0VLrusM78wBlrnjYVVrHKdGW1g9ZLzBozR2+frVyHCcNTboYpzbrNLLKeZcLtPhC7Vu9mgmTd2l1AYciyGnBbJYq2qk6VkhhqFdX+lorMi+wxoRuWh6KbVei+BOtoLxPu3RFABbDNDDGr2s8Hf5B1E8mRSlzoYf5zYdsZZReIgkJP+cX4tOdj9LYclhDcO0X0/90RgxVrXRjFQo7dHMFBMcYBO4+R9gRvof8PUI6MIWuDmCmSZArKXb3/cjDBTS+45hAEG7y/OyLm/sA54Yu+vRDmT/PvBPMDBizhlkklHuYiveHcKHrFL0cANJfh/6dymF1b3Vnl0ztlTmJCZ7dDLto7twuI8kpMA9dZ7+36DldQyoqGDgVIlI0yNFYgfyEolSYMX39WUMyPwhVoT8b4D/GgNIjvs2PZSjqYCBRfLvE6tQ8kuBe6O2/aZR38Z7dgxPH7vvWp2EFeeyXA7ZODYdJ0mbfY3E6zC9L61XQFXRj3uG8OV79qHJnlqaPdzit4BZZ8bV/Zj7MKBJROWHfpzOgMyPk3gSug/i0xVnVQi0dMD06YqBa09nHSx7YuOffY1EmrzfF05j5GnGVIjk16YRDNR61cNavoJ59aUxIO2MBH0MAAEAAElEQVQDe9/TqX0ejmJN7vpnD/n4z/K8XPWQJRhXr9rYtJxwUHDWxjAjafhx+IW7ybg/ugeHv23br1Qg+zUST0cZvvdhQOoTP87D2DX68b7jk4fdYxs3ekgk8Cf9s/tDQtzr7/AbJMnDYtelSADklL//LPBHDlB+6O8t2xi3fJlEYr8/OfcAHGgnJGtf5JcakUsMcIZJNrzxuuFkiQZpMmxx0us3+dau0cMSAywwGEBgjQxXucI8w/wf+PvhP9/BNmVyKCRSqaMFiij4S161WTZCDSCSiyxAAAd52r3mbWPUPeEMtDK7oIbz0s4wyVW+EWo1edilXZWwzADr/ixdpZf79EQC71Wu8F/zv3WX6D6ybESibIo9lugH3yer8Uw5dZlrrNLH+1zgNuPuR2fs/RxlbnM6Gol6Hitsod8DuMycpcEYs04aMr9lBWGowVklE77nv84fUCLPLGNc5hrL9JOjHApFhXT0ssIezSEBzrLhDWI7D/L93aGDDbpi3aDMgDQWWKk1rUA/WRvtD1aRoitDjTFmWKGXRYai0d7nISSy0drwelY1/Sq9oQiSHYlCHosUGGCJ61zyBvEd1r3WvMw1b6bmonGbpUKOEhW6mGacKpmwKpEnn+EYraFUFC5wi3N8k3do9RpoiAXW90lQD3vj4TAeOiUf3F1vdB0xsK4GSRCGgrSO2+eOuSRWLP62g9i8OOI2C4eg9tCmwcPYI0LPjKeYtcFhfzY92rPftekZ84gk9ChrNhVtD0yG23IYUo9toyXyQXKbY4RRZul1cPmn0WH8978+F0DP0uMeMc9wJJsqhnuSM/x1/mlIf+axBNIZRgN1loeOFuOS5XayFQCeEjyrDgbmvbCSH90Ay1iSi0m9BCiJnaDtCulXgXOGySiUZeCoGx6MyaYAj00vPGYYo8vNPFX8qjCU/GaWUdrZZpKz++K89xhkASXxyJBcRTAo7cjYBEqtqWBOZFkHzXLemQCc7ViOomTdoTfJglppsOMsPEWHC4wEA1HNXHwjik9Jj4GgEAuI0+So+PER5oIJUvW0pAatjDgAofOoBKR2TL6s/a2Tjv3Ujd7mXYPvcoSf8gIv8FOe0sJBnnCQJyEhe8YBDmPsPQs9+YQNujjIEx5xhIM8oYPtuB4l0TrCQx75xNjOYw7wjKe0UCbHDodY9BRhwclA/K3wEIWnaFIeZTbG7ADPOMKmgwJf4hkH2OFQUJgBDvKEFHs84kiwTpr4LKSBzzhAi1PdBWA+pYXPaMLM+cvBFNyik89oCuA6Tzlo3/IaU7cJcBZWM/IpkHzwp7wAwC9ynw2yPOQwW3TyU3K8xDIPOUI7j8nxU2ocDJlgFxWecDDODcBDDvOII3zm4OkRHtLkIOgX/dXsna4MVW5xLgJ6RPXf4mjCCnUgQ4EtkseLtaWk7BnGSFMPL1GxmLXYKHs66Rkmg7WWp4y8GQoU+RbfDeBJPmvDzHPc5R5KXO5yL4xdUkwwhcIujDXaGh3ESc4wwlwwmeXdKb82BVmYp2oZWQcIiNumg7d5i3PcorwP1JSM1YJe0sw701qJrfKa6/UAAjHYNMYCoi9xnVV6kU9p4vG2FR4eekac55azoTt8zN8nTzm60kB482mBukovDdJMcgbJzw24q4fZsUKZ5hiJJsE8w7zmzZwl+qn5/7fS8PRTe5acdqnFW7zNLGOUyAWgqpTtZQbiOaGXfCuXGQgJB4DCbcTMLpFjhw7mGMHCMFpRevpHTDDMPDnKzHlHFojG1Zl9TE/JhMWCT9NgyZ+FYM80ed5MMIUS3YydnLCd9UwDk63LDLuDHWfzp+M9eWcXVJ35LklKzjvPZkGxyDYdDHio0PtcBIiAFzFBt+mIpqLWILqPN7CgFoGjslpooxaLdCAY05J9C8S158XR6DxLgbDIIBf5b/97mG3+kr9ewECOYxjg8EMSRtmse4adxYCLURJwqQdbjKecoZW2RXr1AwNCalrf/1NnAx2CT6fgxXFsBf4EA/LuYgBa2babdXkNe9gCXy+XXj6bg917xh7L4dspE2mvh0+SAHazBAj1dNfkj7BP0lvAwJ2XMSClCFzBWIdfIZJMnz721FI9orOYXDfl43SfJGFW8uKHJCCkMwfImfxy+7GN1eF3sYrkpB9z3XyHWk4Dx+HZ9x0c1DZdphtgowOFz77vDDcHgprw73xi41t9AJm/7WPt0t+mk5CVx/F9DHzKkYCGCiZ5iLG81kgKrz4/3uMY620XeAO46uBXzrf5Nf/MPSuUqPt52CVkvXwFA5kqJNLkB84Wk+z2ru9T1v/+EB49dN+7Zuw6VNDHDwkPw5a078sDePaJ+wsWjCXSBIknnwJfJOUeh8ysJcy2VLBr3X2dMl/DQM4d99J7bPt1WAEnzZD9qp9PyYmv2feSJ/G+8+KVQ/D0hz5uB+HeLJw4iV3/syTpyh+TgH3Tfh5eIxJ/EYOuz899ymW7L5MkPoo5mQYOw8ofQd9ZO4Znn0DTr9p+V1dM2qZr9tkmwmq+8K8dOvhF1uimSAc7UYMKfOlllWVvCElxpQaXlD8ZqpTIhyXEt/iu17fNpNhFHnO9rLLrRIgk7KkUTCrZTU3wUZBHJItVwIKtY2u0UY3QjVX6giVYpQ3zPd7hu/xKhGV1+TrP1kOVUJx0sM1ppn09YwFlp5gLAoeS7tVA1rO6z4/lIyZ4halotJV9XTrrCiJ9TmvobToY9OO9ypVY+4E9683TtznWEmddSlykO9RRr3GdOU6FXQsQoOq3+C7yxhbLbZVeZlxdMM8wfaxScu9ceeLvkWKMWWRf0sMat515KIuaKSY4y2SAbJIDmyprnFV6wwtax6PQrduMh6JM7EnVrlqfNEhzxw0/Fxhy0kzXPqDTjjWFeQYCAWzOcYo+99IXRiEGpcBAC3FJO3M0HzXAMPOhjlGNXaDozMs9V3NajSTg8SnN0dg6/BIcVrPBmd9hn/EEs7c4ZsDck78NB9WseBU464FQev6PY9YFX8UacH1YqvjLkGmGr76BNQzv+vek4avHsTkyDTyE7BvAVyB7ksRq4QRm0/Ay8AYM67lXwebdA3CMBxQcNFa2gIXIXOLLTP1M88nnAujVaKPEUYaZp0wOGbsLJV+llxHmkOm2JJ4q/sEuKOnLxVQYYgFJTQXMqAt/nUtc4Spl8nS5LFQg24b73AHPdRD2aKaXFQZZ4D0uMcFUMATSNKIQFfKtIjfFHnOMeNG2wxgzobOHDgfbTM4j/yv57WWcadfHClNMuOlmlxuJZlFKjGRJ9n27vMclBlmIJNhX/AQLpbeSLUuZXMSL40DmMPO0UXvOwF6GkzIMn2eYOq0RZPAKU/xr3mKDLtrcmB5wHXsXtzjPhEcsSyolWaW6TjWXWSvK+xLXWaafEvnwp7KbuRCg5xkmkYdWhWz8vkqGX/ttCykpcMCN/k0q18Mak5wJtoYYSRmnVAto3cNSgyWzG6TOP+E3Oc10eLzlKNPFRoQAmBntVEzC8jIQmGmAZToYKO1+zdoDziTFL/BTnnCQv/7bx5ln2CdhO/8XucF1LoUHgrwIBNqKOVX3zoXkkuZf8RUPOalT4RXqpPm3f++POMgTDrETk20nW6xT8Ae/hW8YZNzmD5SF6MDZtV/nAccCtHzlt//HyPOrRN4f6sMB4HX4xGOJpRsRWGAx9kfjgXyNCyFBv//3/ikPOfx5TD9/6V5/zoucwNKkjcXaxwh3yFCNor9Mjjrp8DlpkA5fs01n8fRwnyUGGGXWmXu2kOtkkwJFNuhyxpN1Di0Btpdl+qliUkbd5wJQ5hlmkjNc4SrbdNDFBht0BegFJv087bJd+V8CATyv0usL0m2meIUJPsKSw44z5smpQLB4N+hCgRDm67gUTQCFVyhQacmlu+oiLtEfi8MOdth14EsmzHpWnGYa2TEI8LM5e8/vnUIw89r8frrDSKS9yutQfiRr9PARE3RT5AYXUAiNQL6cs6TF3ipQZIZRGrRGQ6CTrfDq03iJnbXIECvObmujRpFu2lyyItbzoKfa6Vlmsul2nx/SsWAuuXxbiyPNVZe5xjTjAcLtB64u8H6YaC/TH2x0AcRLDDDCHFNMePdwhnNuZzHIQgC8thi2/dM53fI5rOHsugrZ8AEFokC5yTlOOXvAUoCXY+EojxexjMXwtme7NQszVOlig1V6WaOHNmoBGmq+u81pcpSRd+GIL7LVYJNXUcnXGznKzHMygFMVQc3shaLgJufd93IzmmcbWJiMvDCBSJLTgj9NPdIKR5nlz0LP+AV+1eHZNjTlgRVnF3l3/OkDZ+j9GAMuvkKS6Jknkf65CX9TETJZ+PQevPhle2+AeMCDIrwoVpIzAFEHX+DKQ/i0DG0VX4DrlQV6zKevxYMzmsS2cqAm5LJKRJWn2IqnhZbsd7t7yf/TY//36PvO7Hvsx1jAioSsMbYE3HCS5xJigcS7LufjodcDB+hewoCUe7YfbXMOLhUJVt+n0yYLarnn3nV1aPprGED1wMf+Pd/vr2NAmjMSmpSiKlDnCpHSW5qFKtC3gklu/5Fv49skANbHJGyyI56UK+DwJZLU15NYQSVG2UsYOFvHCrWv23kJkLROwpLMAn/siYUHsevnvp8T+fD5dVARcw8SwPYEiX9esxmYt6359dlHIsl2eRd1e/+zaZPkNp0gGJblB5Af8eMv+D7K09FZgOT8fI4DnziYl3MJ+sv+GcmxuwkZV/Uh1O5D9q6Bjm0HfR8PJt/x7J4Bqk8/gJZfcRahB5kMuGy7MgNZhVjoev4RzwfFGAndwE8ZyqtkO+KS6Q9ICuoPSeTL0+YxFUA2RBr1g8fue/iBjWvTl0iYfF/wV5U2JjkTSaqANxfNE26BwQDVlhiItZrIAFLXjDHjIWfWzFMDWB7kWoNJptnq/HGprKaYYJSZeP63OcAj4DDFHrOMRr2tNHr534rMYNYuNymTZ5xpSuQcWNuMGguSsL4tjrJKH5OciTpBwZhidJXIRdNTDLYNZ6TtYuFq61gYnI7zTd5hhDm+z+vskHj1N2hliglOeTikAL1z3AqAT4y+NPVQUHSyxQ0uhkpGKgGx1PZjFylvxu9vtsvv+hqXucR7nHMmvsgsWqNLJSVrJpGCct5gnWGMCllO7wvCnGHU4zhX4/PTjJOlwiAL0XBW7dGBBYqt+zWSYje+WyEbPayxQi+dbLKD+TGKqKImp2r2fpaY8oav1opigCooROqSJfpjzWlWQFn3VL4Zxy0yw/5au0Fr2LdVyfCYduqFA6Q/+wx+HZsb72NzygiJ523Zf/dV+79bh77KhW//MXvNcPAKPHj1IMd4Ys+vQ/ben5w4QufEQw4+hHuFFznx7U/hEDw+eYD30xf4n/1nf5TYCaR9+69iNhBH4M/PHmObDr78q38Wz4bHowdIvfwZW4eO8KXHD5PUDrGZj9l6vshLAFzk/ZC8v8677LiS7y96fS6A3k/o5pDf4ncYYWwfW2mMGTbch0jAiwy7R5nlFufCz00TR/7fmdkld931YscMPS2pUaCOxWnXAvEW7VMyn2b2yDno0MEOw8xTIh+FnoqjKSbczNvOQIkc49wOuext76JICiWaKpj87HW+zxZH44btZ4kdOgIwKlJglV7ylIIlVcakkgaYVMMcUdK7rMM9rdQDsNufbCMT91FmaGApNvslt+ocCDh4j3O8xnXWKbBNux9DPejKmgzSNOKGAjMXP84a04wzzjQbdLFOgTZqlMjze3u/yd9J/TfILFwgnORgl7nmgNx9tjjKoPtiiSWhCbEXi9VW2q08k9QxWPbEoALF53y3Zl06V6DIEv3IVHSZAUaZYZkBJphCvl1tVLE49G4KnphYpQ1Fj5fIh2G7XVe7AUqmqTPjRqcjzAUVu0aGpw7qtZPmNLdZZJBeVp9Lms2ywQXe5z0uUaMtGB39ziap+qQ4xmwUw90UQ9p40tM37/KYFp7ykCMB2oKxZoHo/Ix4F+y2+3WAGcmaH1cnn/Hf0cMaTzhI2q8zY0HZatjMVbeCwVPxwvoUc5TJe7F8h9uMO/VcUE2dLir82c/oCfBFeLXQ8NRjAxtk4qvAAcWxJ4CMyQfBFgdKyVrjOL/J7wWbTHPg9/gmV7jKoMtIzej3Pu2+eNsgG95m1mU9wzUuP+d7KRnwBFPUMC/Jt3mL00yjYAJLs1r2ebKbRYbCT0X+aB3skGKXZvboY4U6aQfdbD6Z5GxcC2JIax7Uw77NgfqEOZWNTnSB9TCE3p+KpXCOMWZjvpvjFAAymDa542qw8sAWdAK58pQZYiHSqTfIsj9ta4MuLnCDW5znDJPMM8wQCz7Hd1IixxgzVMlQdznrAMsu67Q5bJsO2vx+l4m0wLNkHFcjyVzy2V5WA+Cq7/M8MXbcB/EcUNNBQTxgaXUC+MDYbOsUyFNG/iTqqr/L6w5O2t0qL1mb06zTPcRCyF/mGGGcaa5xOZopc5ziHDdRiJQaKuY9O4P8dHUerMM7wlG2uMk5xrlNmRzTjMd8M8hCFB/mN9oWC/rv8is+j++Gd+Rpbgf7XtLxPGVWHHxe9bQ2mWIDAXJrMQrE/l/kfW5yPo43hfmCyks352N5nUv8bf5xAHv9fs4kBU+7lLeNGjXaYj2Up0Sen3yOs9BfjtdnD6Cpi/Asy8qHrgwt57EV6QM39nfG09OPPfyhwPPSyhP294s9GID1wBNxnUl2qo+QfPKSf/YyZvwP4THWloKsQCowMEtgxTjGnBPQkSbYhE0v2Xc+J0NV+qmHQDx9BPmXfRvjvh//FA4Lu/0RBvzMuT9bHwnryeXEPMZAKklaCz42j/1Y7xM+ac0KIjhJMPeaJGvF928NXjxByFdb+kiCLvqgOmWG4IwTQB2HSWRDu/7zMSysY8r38w1o/r9C35h/1+85ayuHgTtF349REmnnywbMUvbxE2szi8laRzFA6BMizAL87x47nsqPIOtjyBHfv7skicrYOHCShDWG//tHzp487vun8I8nJJ6MzZaQWF0zjyTuAmP7tuvSWX4Zmr5DIiFdA06Y/Bf8mCR1fik5l9y3caDsx/CSA1y4T2LB9pO0/9zuP5+AzGP7wzE4/LH/v8uOATjrCbzNzsr7oR+fS2KbnNGZlU/jip8DMfrEnDzi5yDrcmZdkyvJeD2rAJXE3xJIALyCj+ddqNx3iZszAV/8GnauH5hJPF8CX/584V/d/IQDmNe1wCitZS5zjQ0HPNbocW2U2UK9yTuUyLPGceStO804b/B9wIBCPYOAWGde5lqs28GAtQWGkDd6xskb5jtvTCvJAHOU43km39dOtuhjNeSQGaphgdLLKqv0kqbBu7zBBFPcYYRf4bts0BWMsileIctGBEAa0aQ9ACaxtJr3KaQAyuT5BldZcaZiN2ZP00qdHTpYYIijmN1JN0U6XREiUomsYGTrJCKGAXrrAVBqDS4Qc4GhIG+I4djuINky/bSzzVEHJmW5Ijbi3+R32CDLGon3s3nUWwqx+aE3oo41X+rBCCGzus3qwTV66HLlntaVQIB+vazyERMMOjBo1mKlaFLvkWKGMXYcW9ggyxCLsTbtokIb1VBZjjIbah6tV0eZJcUu511VA0YykgeykYmqpGkwwyir9PEROQadONRNkTa3KNmjOWodXVtS67VSj4C3JQboZIvagYPUjsNv3jrKkVvWoTvIEx7+d4c5yBM2OcZRHpC+03DmZYq2f7vCH3KMIgVe4hNq/zbDA46Tp8QhHvPg3x7jGU20coBtOmjhKa0c49juJvebe3jKff6YZn7KCxziMQf4jKe0UCLHycYCD1qP0nK9wUN2adDHMR7wGQeoXDcA+gkH6WSPztoOT1ua+GnzC7T0PeUJB4PIZWvEbMjZV+nlMInH47/v9bkAen18QjOHqHhBpNALmf6roNOFYwVQOkAvIf+6aWQKWqTAONOs0hsGjhNuKq1kFE1+QvrlDbbEABd5H6XsCjzrpBpgxQZddLHhRaJNH2KuyFD9BhfiYlYIgei0Sg+Vl5UApP2mlvr3GLPIW7CNakRHazzMQ2ko2FpHvRsgyXHdWSdL9Lt8dJ0yOSQxLlDkLsPIs6eVeiD3w8xjSZj21LQCp49eVlCEtrEXV/cZgWZoZi9AJJu4TTY2ykzQZGV038Mafzf1DxhjFhnSTzHBFa7SzzLrFMh5YSZjTz28LvI+w8xzx4s86e8FmpbIM8ASK+6tN8x8UNRFRxaTop9lsmxQp5UaGZY9nlyMkXmG6fV0orKz1+SBJGP0XlZDCi3j+5qzNYp0M8Kd8PTaw/TvRis29tAL/JQvTT/gqx+XoQiv3v3IipEP4Ctf/xPeGvk3NP0IKMP//Mp3eNBzkMzjJxy8Z12B7XQHX/onDxOPnzKcePnTRBrzFWyReQ9yHwInNpnNHgkwW0EJKpzPMBn7JskvJMzNAZaYo4NBX/n+L4p/Gt3TYBS8REigyPvv7tm+5L78B7zwOzvwCbx0/N9YYVCAVM8e/+nKxzw63sL/5U+e8iRv69Qv+ivFLusu5Sz4/SOG3Qq93hktOoW/Ee8VG1nXqhh9MpSdYIo1euhnmatc4Zt8jwatmK/mXgBio8yQdTBRgMw045xijjqWfiXgd8/ZtAIX85TJUeKuNwxW6fVGSl8wsHWv7dDBCHfCN1Qv3ZdiYV3kRjBBU850UqCCAPQNLEG1i4p3CrdoJwnNmOY0Wxyli41Ig94/PusUsPTcJCFW88Iy/XyTd5jkLGBAjvxI9RwpkQvjZrHEFEAxxIL7B7b532MUKTDPSQZYZph5jjoj7hbnAZN+brhNQoYaU0xQI8MoswyxwEnm+chTjG0BZ4tdSV2UbDvoyajyYrzCD2iQpoNVSuQicEdhICv00ccKWSrOVt5kiglnia8ywhyr9AY4qmtKQGzOF7iyYJCPocAvsK7/hDPGK3QFALtD4vcHeKCUjfkMY+4nY53z3+XbnOPmcwyDXla8eVGL52bW5d97pDjJPHs0e+JcpzMCrCl3jpus7wPQ+jyM4yI36GQrJD5qHNa9GVEnTY02b3rtMsYsOw68WhjMhpuHt2MKAguxWqOHy1yL4kfWEzoXcprMUaKNKmVy5Chznx7GmGGJAV7mk895Jvof/nXgMIkXW90ZejLvf+S/+8R9734IPHRAaBoDcNb3bSxLgA/PZo1FlflV7KHiktDqByaV4a59H/8SAxbk2VV2QGcF88N55BLNPAkDTSyj21gn/jvYM/B+8v3BDsgBX4Zn/8rM/Vu6SaSw0yQSxHaXHR4iGEuSaIL/38v+XfvlwM0krL2D9u9K0diFpVlLzuMRJi/OQuVDO76nj6Dlih/nqI/lD12e/G3/HgfdMgJOx218mPWxFrNR3nzNDkKO+n4tQvYlH9sP4dlj90kTq1LVhgdSUE6OAZmUCxxLu/RYa5w9f58AxV1sTYInvx7yc6bAjT0PsxBzo0DiGyc2np+LR0U4fN/H5RDGRtS5XwEmgDeg7Xd9PyYIGSyvQumqeTdlHhIBFhR9Wz+GXxAop0AI91Wsfuy+eYcxoNGlq6Qx1qP8FCskwRuSVh8kWIEcJwm02M8w1DX5yPaTZnj0uy5Pu+f/lwVm4NkTB+Ku+fEJLE75nx0ijKP2xBmoAv/S9rPSkyt/7Ofll7BrXvtyxN6fFeA3S8I69G0fPg78FH6O+r2scZwe7rPq65w211koJVVrKTHoFTDQwbbLGA3ku8j7AaxpzTXvQI6axlIpyKcvjQU7FViPGkwSX7NGSgcRJkuFW5yLulbgUCsNbnGOKhkmmGKBQUaZIUONfpZjLSJlgLxvLdjMQvu6vEFYpEDNwcgG6ZAcq/Hb4WtAebp3ssUwd1mllxoZFhlyjlrC9ANCATHMPEAAknr2S2GgmimxHUkj73Mx3gRQSXFYIk8rDfpZZoHBWFObRNeAumX6SbNKG1XymA/iu7xOKw3e4m0UhialBxCYRx+rvM1brsYymyez22oN8pDVqGkWGGKLTr7N78Y45ylTocuP/27U7QI3FZqp3AML+NyjlxXWXa7dRSUA2llG+S1+Jwgu3+JfUCMTKjn5BarelxJIishOthjhTlh/VegiTYMpxjAf8UH6/Lt63UXRfCb7Q/n11H0Ic/uuwXSjwcPWw7Tz2NUn1v15SguDD1fYOZLmY17mJT4hT5nHtAd7Ur6APbtrPG4+5DhMG7/IT+mo1dhqayfFHp9xgDqtHOAzpGh6wkHylNlqPRJswl0sFfggT6iT5iBP2CBLhS7KvMAvtv0ZHexwjAcc+OwzGgdaHaNoY5NO7ngOgYhLul7/otfnAug1aGWdHoZciiNqbStmAq6k1jV6UBJOGvNPU3KjUV+7o8sg3XcrDdrZZokBMlR5hzf5W/xjT421IrDZJ6wSeSpkGXTEWHRaIIrpLipMMcFbvO1m4D1xQUoCW/PE0W3aQ8qVph437SXeo4uNKAgXGMRSeyyVZppx7zwMkqUSiPoeKRYYdImWAXJKZtSEJ5pwYj5vHQuBnErb26Y9jtm860y2quJvkSEGWXD/vjqdbIXnnYF4u4xwhzTmj5d4UnWz7GOd84mhQStt+5iQnVgyJBjD5D49HGctQjT0cHiTd9jEIsrBJlMVf90UgSyXuI5SUo96J0lMDQVxaMIFA0vEagEY2Jfcm2WDsoMFKkDl19XMHmln723TTiebpDBJazN7nOY2aercdzaUjs3CQ8Tms+jzNY7TxUZ0FpKACQMcDvDMFkTfIZHoTGHyl2nv6maxBc/fh2OpJ7ZgewKHDn7GobTrgx6SgGdFEs+eD7AF4wlsIXSASPAVaGxsmM1g4J3jlp+7zX1+Fib3FiDetfkQPsI0NOp8H/F9d7+T6ODj+1CHF/7RThiKUsQ8VXbgP+Vj2IPD6ae26FQX+Qv+6uAxVb7EIIvB/m1n27tyZQ9r2AGMkVd0lqso9VkqASpVyTDEQiyqJIG1B+VmdP0kTcxRQknKYhNJrqAGhtLSBlgKtpskAXVaA2iyQIRsdLtkJ9DPEpOc4RRzTHKGMWZRirk5hZgPKdj9KfPlDbIxHgNUg5mofbfF2RQZasgK4RqXOc8tTwY2n8AcZZTu3OvS+DV66KbokmSbb5cYiOeB5AZm1fADrnE5QjGUVqqu8iALvM1b9LNEJ5vskWKWsQCQalhC8Di3A6CUx6qAJgv06UBeimLuSVJbI0M/y5TJMcFH3OACCq1Qk0uyUzAD3Twljvqiu0yOG1zkmy41mWE05PknmWeOEVbp5TS3WWaA00yToRasTOu6tscztkAxwp1Mbt8c3Vjzx/kWb/IOnWzFnKnFdisNlr2LmqbBCr3kKcd5NSuMzWBzb9LJb/D7tFFlkrOMc5ucA8QFipS9CTfPMB1sc51LYX7dySaSDitFXXP9OtasWmBoHyC5FwCwksQN5C6GMXjG3XnVOBObvbRPIlwjw+/y7fAALLDOJGdQQFXJn+XbdATTvpU6s4xFsZOmzhiz5Cg5w+9LWAX/BX5Vgb+KgWNFN5/OE8EJTe5hwz2XlR4C/gYGDAjsGcXAETGx7PFsrCY1mUrAEw8VyNvPT39sfnHPZqHJTbGrDyBz3H7PcWgR2HHYt3EQe07JM03eb4f8e5pJmE3HCDCnaYQkMRUM0IAIBOCwySCf3XUgJA+VOcg+9s+MYMBk3o+zYMEJmTdtM49+6Cl8KQfRjkNe8tuHDtQ58+rTNTMEP/EeBuJUgD8mYVEp5GOaWF88+j4cdv8h7mNNQ5c68wADjx77cf6YJFFVDENdxg9JANasf7fYb2Jn6t/yQdy197UobKRIEmCxj1lYXXGZqrzsvmwS1MzX7FiaXvZj8uCGTz+GFyUhhUhVbTtIsqaaJgEOH2PgX8X+3SSj9BUbk+pjyDxKxr36u369OruORzZeTff9u6Z9m6P28/ZjS+2ljrH2dP6afV/uOag5jq256n5+PvD3fuL79xi7n/S9x+yzITs7hjHg8n6sBZJkZgdmm1zO/PQRtHzfz/fXge/A/BoMC5i9B9kx/2757R23ceQB8H+CtssGVHKERH7bDo9m3XOyQOL76ExD1kgYsEBji5+L1zB/yn1eRhYeIqUouEI2ORlqDLIQNk4N0uGVW6UtQIkUe6FOS1PnG1x10sVs1KeqMcFqlT5W3Z9uI9aJ+m41nsRgk0XMKLP+O0kxZ4KwM8AyiwwhuyAxjzbIxjomy4bbRx2N+u89D1gwskaf+98OIt812TC1+0qqRob3uciYE0rqDgCqfpEazMIrjBQzy1iw7rVfp7lNjbZQMW3RSZZKNJAFXg65fLWPVa5xOXAJBVQoVEsWLaqVZQmiNU3aG4Bae6zSG03KfpYZYAklzGpNlWIP+RrX3XZF51+WVPsboUD4GgJh1bJMP0MsIOuT13mXZfqZZ5hONulhLZiKrTRYZAjzWV5mgSEUdqIGccZZjiv0BhPQ0oU7GWNmnxd2OwWKXOUKgx7It/88iYEKJss9xVx4f0udM8ZsBNu10uAwDznAM/Ywj+VDrVaIzvJX6OXPIqTjEI+pHWkmxR7HeMA2HRzjAT/hS3SwzWPXk27TwVZzJ+t8iSM8Yo9mHnGYaltbYD4bjldUyfCQw6Fg07atoWthZ1/iJ3zGAR5xmB3vyHWyRROf8YwDMTbZAxVaafCUFrJO/hrze7CDbe7Tw5eCVv7vf30ugN463XS7RFEXZSebrHGcbdoZYzZor5e4HvRRsThS7FHBklbHmaaf5QBV9LeQ9ioZl4p2+KTRxQRTwTwq0h2yxIS5ZyDiAMvUURBAf3jqzDBKB2n2vOApUGSTXKDtmgjkiTTMfNxQaeosMMgl3gsgTib0Rg/ui86HuhDLDJB3Xx+9t+7MkP2mnWLXdblPmYrU1/k+dxlmmvEw3FcRI0N4AW8F1qnSxh7NQdOu+ES733tLE07ZUX5NpubBthM+cJqQrbBtCzCx4Ky/bToYYyZSG2Vear6KbeEtuEpfFLYq3nX9GPBrEj6DJIeC7bDF0QDShGYrSEA3qQpsTQRiOcrbCBIJqZiTKu4qdKHwDDGmdh1S7WeZbdqDzajuiKRnRQqUyLPICTIX/gT+8zqPjxxgKj1BP0u8yxtcufIDXlr5CU9ykK57itpxoASPxlpoffKUg/8Mfvpb7bywssMnfV9C4TFfmn7Is5d8wXgI7p14ka35B/7QqAfbaJrTvMXbbNMRTBr5iskPoUErN7gQHZWDWl33Av9L+JOeE8G+ef3xv6F66GDQxnvqNv630uf4n6z8CM7CP3v5r7JNO5d4j4EHn9JUAdbgw6/9Fb4y/Sc8+kEbzQ9r7FPjf2FfYq2uOrABuHTU5NTXuOz3ji3EFNqjLlEHO3FPyTvsDiPs0cx5bjLDGJJvijGsDuxFbsSCUEBzmgZn+CCYeeaduUDdpRvbdDDLmHtyDpOjRA+Jua2Akww1JDvfo5kZxlCojuaxZFFn3z/qMvNFhjjN7WiKpKkH69AAlRrLDDDHKTrZDDa30tJ6WGOXVDSMzMTXHqSyILAO2lwkaM37sch/1VjjbQGC2nzTzjlucYtzYWkgP9cMtWCd9bAWC29LB86yQp/Pe73RXdyfsrZDB20ubchQC3+bJU9TV8iRFuby5mt3hlud1pAlL9PPBW6w7SnX04zHIreT5fApEZvc5MSLmE9oyTuFqQh4kgVGBzvIv0YMugUG3ajaFshlcsiQuUI2JMqtNCiTC6DSkpeXfD5qsEdz2BOYX6Q19rY4ygJDvM73eYPv+wJpl1ucx6wOcsEAn2GMCaY8pdiYonYdmvm0hbAscYvzwaQcYoFuiiw7C16m2CVnlxYoskIvR70xpaafGAUF1rnNOKPMMsUrLDDEBFNhbTHPsD8jDBRX8aPntZpI+pzY3wo4WXQv2xf50//wk9N/6JckeF8G0p4g58mdTccxsMSlhZmT8OhHcLhIIrVtduDvJff9umzba5Js8i4hzX26ZuEYnAD6oGXN3luru2Q169+fheqPXLp4DwPs1knCIx47UCQ570Ngz9N2x0n8cMokzKYHGCjYhz3jRoEPPPRDMtlj+9Jjdx2Ye+Kfq5AAL322T5mv+f5lHcz7hAg6YA5jVk3bfrdMO3Pvq/Dirn/HZQzIw49tF1ocWEU+adh7D2fteJ59AE1fIWEpSnrcg4Ewo75PdT9mPx/kTM75dN1Ziu0YQKr3pf3nT2x7T9c9lEJ+dF+Gpzf9/xxcq047ezBl/854sANHfL/WPIW4bucn5LCngZfgRY2pAL379n0tp/0YHtv7OET4u8UYvwf8NYIVyDEH73Qtzzqg/Jpt/9PvuPz7rG/nX2KhHX/k+/Uy5LxPGyzVFah84tc0tp0Wl3fzGLuO79pnwcG3advfZ59AU9r2i5IfwxGskfwIu6YOuYTXP8O/8m0e9/N525Kiaw8h/8gkutUHcOIIeD/OzsUT/+49H7ev+ricBX7k99Su/07ns+JgYsXPvYOkfJnEj1FG9F+C1jv8XHjoyS8YCGunKm2xfgDc5sTqT4FhYtFbqMBd9kjxLq+7NcX6PuuPdLDQjrIVDKllBqL5tYfZUex6jWRroVzUOrOMconrIeXU2k6JrZIFyhd4G/Ncm2eY67zGZa6F1YYktaoPgWjKXuAGRbqZZ5gM1bA7WaWPGhluM06dVlboC2IKmGVMClMCSkmldaga4UMsBgAH5lfW6qQcnYMFBpHs8zLXYq0ktp+AvVYa4b0LcIYPkH+yHX97NL4NnJlBQWFFCtFUPMctznGT7/Irrsi4SYYqM4xGTStbmytcpcvPu9a+U0xwgRuUyDPo63eBgRt0RW2q/RKwqCbxMv0MsoDC5PKU2R/+OcBSsOO0ZpGCY5IzyHtQDdUkxM/yEyTfFmZToMgF3ucW5wOcTBqetubPU6KHNdq8XlAIpzAX1dav//YGs4xTJsdrXOcWZ1CAyve5zARTkd8g/ENe8QrrW8NSlXVu6rRym29wmrW4B4a5y6KzLqu00UMHl3iPVXrjPhCe00Gn106jmOXOUTrZ5Bcw+XSXX6dgYKvIWVk2qLj/eR0jYcjKa4U+yuQ4zKc/03zyuQB6KXaZZ5guNkg5Yr3AIPIIMFbHcqCzYq8dZ+05Bt8Id+hnOba77YVBlQyzjHKa6WB7zTAWyS8ZqizTH8XpEIsxkNe5xG/ye871KjDKDIsMYf42Dcrkg33Ry2qAX6c8pVVAUZ4SKcyHb4OuuGnuewEgM0xJaCVLExPMaJmpoARrkmujyg4m5TTAygCiOun/v88pfEPU1V1S3OI857i5b6IusUIfiwxSpJu3+NcRqd3LCnOcijSgJInGJjh7X4llBoJpaMe95RK+Ph/rAfpZIsUum3SSdy+ERYbo8XO6RSdznAqadJFu1jjOGT5g0YEwBWC0UaXXuwTdzsjLU6KNGh9wBrDJQemhSkasOTC838y1SoY+VtglRY0MPdyn5udRgIPM9MeYDRCw2RmCafeLus4lelllk04WGaKfZWq0BfOmSiZkcjJlF4NHHnS/+v985oXvNlsM8ZCf8M/5T+jlEAq9OMgTHnKYNp7w6AcdPOMAKXZp+XsGQm+Q5QV+SguHeEIvLeySYpc/4xc5yBPayfOZZapRJscmnYxzG/nlqeNjoTAG5tkCwh6urdSZYZQai/zk6DG2jh7ll//fKR5ymDSP+Ywqf0g/8hncootWOjjAM+o84p/zixZ68K/tvvz/cIyDZDjAZ6TYo3wrzR7/IzrYZi+9i7X3v9ivKm20U+W/4e8wyiwXeT8epvK6+G/4O7zF28h0V75yJmvYiQ5slbag/GcdNO5hLQDBWUY5y2Qwdff7Jarbq1CKOUZCcqlFUY02elhjigkPtKgFa8so/nWMVp6OOVH2BHVaKZN/7r6TZUKFLLuk/J6qRwc6ywaLDAWz6wdcYYhFhlhgnGk32D1KxrunJq88irG6rQGUpk4/y9EkMhmGNXzU9BhgKfxfLJRkjhtc4DTT8ZC3gJjFYIKddmbdNOOMub+k2HUVuujGAkz0HLjJ+ZDOXOFqeM4tMMgUr3jgjwV1FCiiEBx9tyStYD4kK/Sy54/of86v8ev8AVtOx4fEa8eaC0sxj67SyxIDZNngOBYYpC7nHCPRoVVIkBomSl2eYoLX2KVMnknO8BrXw+dkwSUteu8qvcHUzlF2xrI1oHqcpW0MUuucl8kxyAILDNHPkocprdCgFRlEm33BJgMsUSEbzxfJYFU0VGlzS4QVMtRC8qEGm/mOGkDa7Asnjal5pO7EGCx76EevJ7XJV1SSJBUoerbrWgCCrTDOdJzHBq10sRGWDTbv16NZJRZ8nTQzjDLEIm1BUfoCv6oYWPaYBNBRomfaZZIvEay3w/IPO4iBEIcdBEs5C2gXHt11YC0Nn65A/oHJAjsOYSDXQQwU+TLwyAEHbFv6/l1nwQEG0hzHgJce+ztzxKWZv0oi34VEXvkVD+R41bb36TS8eAyefQeafsk/k/Z9f4wBJN0OmL2GgSxZDJBRkINkpQIZB7HHpbPMnj3GGmV6/2Pf7wf2f1kHUsiRsKKcWQcESFNdg8zXMQDlIUlgyEFnTM767yQtliffIeD7LtfEzgkf+ue9smjp9vcLYKv7/sh7zT3xWgRiCgza2+e95+EombvG2gSXfErG+YlvM+fHNEOSYJvycZ0lURjoc7oG98uBH/s5r5AAjw9JpMoOvAUgWSQ8Gxn3zw3Ci5LefkwScPLAtvVs2s55rW7XXTZPBK203CcBsgQsyg+wm8TbbtrHrOwJvAU/hrKPtRQUO76vzlJF4Sjygnzox3XfjufYEduvlh5nNE74+H9AIvd95ED5YRLW5WNndX4dPi0aI3Rg1/0bc+67d8y/s9m/c83HRGCyQL4GuMDkC/9qZi8Yc2adYQy3m5xjxJlAVvelQ6mg2rKMWSCVyfnzvhL+1Xc4zX7P87xbPSwy5H5yW07EyDHHqbBdUvCdGpM5t1xZoTe+Z8A9xMv0c9IbVq8wRQ3zVs9QZZYxRpgLgND2u5kG6QBWEpZfOfzXjNxSin00YslK1FlHfb/N237F9zdpzG3RGZ5vFoyVhIFYbKSxEFfpjbXCAoN0sMO6r6W1tulnOVhoWiOpTtffUst1UGGEO6xTYJKzHqhlISd9rPIDriCfu2UGuMCNWK90skmHy5+1tvp9/jrnuRWN423aAbhPDyeZ5wYXOcMky/RjAZQZjrLFCr2RlisPPDG90tSxcIp2b9qWKZMPBUQr9QB1O7AQuV1SPkZDvkYzUk+eMiPMkaMUdig1MtH8Vm2u60hNy2b2OMdNFKKpOmeOU1ziOg2XP4vYtUdz2GSl2PWau5VlBsJibIoJsmwE7jDBlI91zc+7hcds0ckPuOJkqzQTfETa12QC6OQ7bbZsxiwUULjr990WnUECU+jIEgMRwKnrwqSyR6M5LfWgwDyRirbpI02dRYZC+djl1jKnmKOTTWr7yEf/vtfn4lTw5+49VnUKrijC8puZZTSAMZmai6FmctT2mByU9ilmwop70ij4YBOTlooVICBrhjGW6fdSc5dW6uQpcYnrrNGD0oHU9VDQQpUMb/JOsK+UVCcpnE523fXqYvvt19pLKrVCbxTlDVpZcICr7ot8faeBZLts0ck8w5hnkU3OAup0w63Rg+TLJo1a530usuDy2Yu8H4VRJ1vcp4dVejnDJM3OYuj2ic+08RvhhaAbv51txpiJYk/AZJ/LXiueGpxilyUG2HA2pfZNUlcVMjUydFFhgil6WcGCJwrBBBQVPEcJpQOLsWnXhXVwbmApqQMsR0T7XffAE116lT6Ujikfsl1SLr0toKTYvIOlAyyRoRo+E1Zcb5KjHBNCnTQjzJGm7ts3IEGU7AatAVI0aA2auYIsupx58xO+xKf8As84wCEeYym9dq3IFLNBK49pp0SeBmma+IwWdvkpL9DEZyHlfkpLFJ4KKWnQShOf0cE2T2lhw9mF2u5ppl3Ebg/LTSxV6F3eoJMtlxym6cOCAyzmvT26eyn2eOK+YQAPOUyJHE9poYnPOMBnVDjmPZU0n3GAu5ykRI4dDlHmBY6yRTc/oeH3/c/Da8dFAn+LfxwydDFFV5zNJcaPvNIkixUQAwSjVJ3KAuvUaQ1PDEkLgOjoyu9MHTaTQm4GYAU2n4EBwFpAyltD9P1rXI553JKis9HI6GGNHCWGWEQyRaVa3eAiuxizz5K8LUE3R4kpJuI5oAfhWSZR+nI3RYZY4AwfBLNact9uivSwxjjT5Cg72N2FQjTMh9Vk8Bd5n07vTucoMcoMHWxzhkmmmKDu92zeWYjv8jqWmmvMsT4fgxS7KJDoHDeZYIouKrHQGfJQklFmw59mkjPRtdx/LsW8s9Sz6/SyQopd5jgVkhaBkjUyDLGIDIJlRWDPMbteCqwzyizdFMOOIk8ZSUjNl7ArFvg5Ss5874r5rEqGdrYZZIGPmAhG2XHWKJOLBWiWjQCuFKyiNPYF96oRQDjlpszyPxWrTcbVAttylFillz/g1yiTY42eAJ6zVGj2RZUAzlUH5jQeKXZRdl+rFzLq6tq5s4W3GUAb07CLDXpZpUaG3+J3kIet2MsLDDLEQhRJPdzHAm1sPbLr16Eal9N+Xw6ywCALwZK1RVsHaxwPfyLJNAxgXXSW5enPdyL6y/B6EQMZiv73SQyscSlnTUDZyxjjR95oAuEky1uDw69i8tJdkoCMnLG6DnvSLYdIQhCcMfSoYt5v4Qd70BlpFQxc2MUSS2cxQMYZeIdf9e3U7XsPy/fN2Wsv9tjfHEuSdpucgVj5kMQ7Tn/WXG77xI/Vvd8CtLvr29O+L/p7H9m4Nf2Sf/+PMeBLiX5f82M7BvyvfGwEbkECQH1oYNz2Y5JUVIErBQwM1c8VCIvHr9v3PHX2YlPBv1fJpEp0FYC2R5Lmeoxg8AWz0UG9qhiO7QRIVyn6MTvIGGAsGCg0Co/KBAgogFb7yFcJkLK0hsmJ71nQCn/N9+MIxqyTnYkSD48Rvm8hIxao5SBgtYgBfAJMH/nvL9vYBuPyLgbavmxSazH6Dh/348DG+LAzJ0lhwOIVPycnMNntQYxlKQmzgEj5COYIBh8PgZeMFRpA7ct+jB5Iwijwr6D6Q/veXWUOHHRQcsR+H2NxhIR5iu/rrB1nxyE7xpJvPpKVy9Ay4e9/5GP/gCTlt+zjJ/bnCglg/gV/VTjGBd6PhpNYS7ImAbjFORSe13DOUoaae7l2oJC0JSexNEiz6MDKCr00aI3nbN2BwTI5OtmimT3mOcltxqOxmPam/oYn7Q6xGLWoFHNV2iiRD2uNdQpeC3ahgDDzjTPZ5m1sQpSVk9ajkvbK5zjvjDjV5ebLbmo11aEKsbQ0+hyr9IXfmAATAXCLDDHg+5v2tYIajpZgP4x5VLcGHgHG+ltgMBrCBjCZf7AapPI2s9p/kwy1YJal2Iuaen+wpyS5Wmd8wBm6qPAtvrvvmsjSIM2KKw4atNLHKgMskabBXQ9mtCAJY4nZOiND3tfCYo0pVE1hEj2s0ccqy55Eu+Bei8bYGwDgv+J/F+PTx+pzTedpxr3JuRcN64aTjeY86HPE8wS2aQ8ijMC7Vldq9LAWa9F+lmK9DhacOstoWAAt0c9tTvM93sQCRswn8jS3I0xQtcd3+RYpdklT99rd1nJ9ngcwwUdxfQLc5FzUFfMM+zp2D/kTygqpRJ51CpTJR/psgXUqdPmY1Bllhk7HqFbppYMdBlgK2xop/KTONFWMwjcTubqYrBN8hPwY/5T/5GeaTz4XQO8XWUUpsGInyaNLEiNIWApXuQJYwdpKgy4qUTAIeMpQC5lZlg0uciOAhi4q9LESTCkbkM0oKgB2/MbMUGWJfg9lKAUqK4nQPMN0Y5HVzVEM7AZoYp5UxZgUamScmmmdCnnpTXKGNI1IZBS10ibQYSpesOuPCn3RXo1KPc+eg1GSfxrTbSQu2C2nee6RYpkBZ/LtxuRznDUmmKKHtQBzJH/bo5k2qtENUQdinmE2sdSZZhJj0RJ5pphAKbgCXY/7hLhHcxRdmmhUdGoin+QsezRz3AExAXCiNJsnlDHu5AmgCbfbWXmiUe+RYpBFlPp4mtvBRlLxfI3LyNC8gLkyvsn36MYMTTd9/KT913in2HUWod3oci4QC3Sek2SoOQ13LTyt5HumDoP8DR5wlKM84GWXVT2lhQ62OcIjmviMMnk+40AidcXYcj/lBR5wlBaeBphyhEdsYwk8u6Q4wGf+QNvhMEZ77sRCVFTUl7wToyCUmjOryuSjkyaKet0Fu49pp4VdDvCMHQ5RIodSavOUOciTkAU840BILR9wjDR1ntJCFxueBvSMA3xGnVY2na3yyBcsX/TXi/w5Yhdv00EPa8hDzKjWJkstk2eIBTrZ4jhrKBTAoIQeOtjhlHfFtEBQOIvmpSEWAWiQZo6RuGczVJlm3BO67DzVyLDkqdfGIrN7e4Alfo0/iP1XUyTtD9IG6QDRBA7rnj/DJGD3prqdCgERA9ji7scYYClYUlq0tlHjMtcAY0eZF59R1wWMCSDZ2jeDTnta8w0uUKTADKNMMRFsuw2yTHKWZl+caLGsBc45bsUi7RWmyFPiFucYYIk2aqzQy7qDZw1aWaUvfPgsxbcR84eNyzq9rHKB98myEYEPWmDs72ZXyUTwgtkT3IlngTqYPawxwyiTLi3YpgP5u9m1ZXetmglaQNg41p2BaRW0ySi6YszNfsK67nOcYp0CvaxymWvRLLGGS5nT3AaIdNhlBmIhrUVimkYwRM2r1K43YwCYl8k4t6MbLQbCaaY5w2Q069SUSrHLfUz6fItzSLotCcsdRqjQRT/L5B0YrNManW1Jgjb8XhOQ+/v8hvMP8vwOvxWgs4DxmoPkCwwxx6lopug5sEofs4zxAWfIUaJKG1NMuDVBFyXyIX1WMJjA6206orDRs/NnXbT9R/2qYUCEQg7uAW8A/xmW2ikApRkDQI6AEx0M/HuAgRpuxM9Dl/J9DNyFpwLk0u7vpjCNx8Zo47GBfcECfAzVu5gs86B919NHQNmBl8e+r0DlPeAPSZJsXcpL3Y9D7Lf7JCy1Q0DBgZLXSJh/9x0QU/pnkYQ99Qk8+z4Je0xg0Y/tGJ49wQCfh+YLKC9AjmGgz5SP13GMWSW/3ZPGgHzmIR3PXKqcO4YBdmLm7ZqEk+8TgR0B7B3C/Njuemqq2H+j/nPFv6tE4uGmbeeeP37ks3bIjuuBANYek+By0tNQFTZy0v7O9GCg0sd2fAECJzlMiSexGIO70Jyy83q44MzBsv9J+T4eIsBa7vm+gjFExd6s81wwR0aMSu3nfd/WjAOdh2xfHun4H/l7v+bbP/H8+Q322iHsupglJOgrZT9u/HNv2lgdPo559J0gYR1qnFN+rXt6dARZHPb3/sjek3GQueU8ZF7192TteCo6lxO+T2N+jO2+n832/U1fAUbgdA5OSy6e99/rfPc4s1DjJomzEnr9uvbH4xf+JebVrq8ZxD6XjUeDVt7i7fBH36TTyRIrmB3LNjnKHq61yABLLDDEZa6Ro8QAyxQocoMLng66Gc+wZfojKEE16B4p2h0AEVlF9hACZQoUWfQQtWlO831ed2bRfcwCJMN5btHmjbM6rW4fZf7DNzmHyX77kb2WakQBgkrpLZFnlJlg+FcdNlMTepzbZNkIeyb55Gt99zrvskYPO75eEkAHUKONIbd8kvKgjxX6WGELC56TCuE6l+hgByXb5ynR5/Y2Wk+apZSBUva5PhRsIXaeammdA51vyUArDsxd4H2GWCRDjQJFdrEgFAVxqo4T09GOqz/ITg1aw0pE4WoCOu+4MidNPdQRQDAcDWgz8oAIPfp51KXcy/STocY6FraicTfFzaBfJ+txLq1hXg5Sl7IQSuRYdLajLIPqpOn25uoWnezQEded1ppGIurl9/kNVuljmX4W3R5Nih+pAqu0cYcRinSjUI8iBdbooUaGW5ynwxvZ+zEVKaV0vbSTWFQtux93kQJl9ww0azdbY3f7g1PfoyBCsGa0qZ/sfH+XbzHFRFz7Yhrqu0Rc+Flen4vktpWntPnCVYi3gU7NAXzd4hxv8TbynqnS5umIrQHEKYnTWEhtQUXcopM+XwzXHayRpEWTgslu2qKz0EYNSV+PYlHbMmqHhKUywVSYeAvES9NgllEGWeB7vBmgjuRdFvHd5pK2fOjr874SNT15NYAjGR6KTivjbyW5CmHeH+qhDsQso+ySisAOBYpojC25d4uGgzOaDCR3M+ZDNrzh9P6yA1LyTlBQwiizvM1bnGEyJGJCtJcZ4E3eQQb4VTL8Dr/FONPxna8wFaxDY8V8EAClFTUrLDMQ9GTdzBlqTHOaYeajc7BHM2kvpiTdqpPmXd7gnNOTU+xiRunGGHwlDN87vBhPhzQw8Ugq7gNC96IbVCPDIAtuzm6hJe/Gw2uNNfey62AnUHV5dVXJMMASI8wx/Nunnc25Rw/3kY/hHKeQt98CQ/xPvbN21FlLF3ifRZdHCxhPOZtFBrQCsEVJXuS8iy9r7HkHSWaslno1zARTtPm1Kp8MPbz10PnPfzvL9/kb/DLfDTad+XdUGGUmDEf/Bd/ir7CK5PPvc5FR1jiHJXnaJN4eJrklcrzJ90ixy4ePhpn8Bx9+HlPQX6rXEbbcq6E7pJQCq1od9JdnpmjbYjBZeqolq4oRm6YeBrQdWHrYVb7BGT4gT4nf4zcZZp4R5vaxejv9GkmSv4GQzbZSj6aC5p1ZRpERsposRQd71uhhiX6OsxbJaee4xRad7o83HQsZ7bOlZpdQQm4rdZYZYJMkVUvmwGK6XsMMhcxbz3wzFxmizxeXs4wh3w/JCNQ4UXfS7B8qTHKGdQq8zrvOgM7R54D0Fp3RkZacP0uFYeb3NWdmWaKfAusBkmnxnadEmjor9IZkQIbO1vVuxENfyWXyrbnGZaq0cZlr7JJii6NBsZfpNViCrMAgLV6B6DZOcsaBxTxn+IBJzsZzKk+Ja1zmLJNMcoYe1iKxrp8lbnKeGm2MurRYDRsxSXtZwaQur4Rn7QhzwcbVQqaNKkMsxvN3DlvUJAzg1thvbTvvYHQHO6zQywDLKEVO11aFLgZY4pu8A9izbopXyFNmi6P0hT1GKjxW5Q2apo48ZJXaqwbbP+S/5ALvM8pM+BbJ+qJBmiX6g9FXoMgHPnZp6nQxjQJr7PpYjnMzyyiv8y5lctxmnAatIU/ZIMsp5oLd3ssqG3Rxlg/4l5/bLPSX5PUT4K94GMRBjJl2DWM73YOMfMLE3iqSGP8LIMoRBv3gYEQ3cBBaFAZwj0SGurIvYEOpqf6ZR9POLFonWGUtdYIFWH0MmVGMkfcY+F9jIIhksPeAgvv6KXBgAip/H7LHMXDlPuTHMRBjzmTBL16BllkS5pVYch600XTQWH27e9BcgtqeyXmbvoYBanu2jy3ngbKP27rLj3MkKajHMVDLgyfKD3xfDkHTb9rYNwlU8oTYZ/ecWajwizdsv0kDX4Wn/2cHZV6yY+OB/y0pLRhwpcAHB+3id5KSfuLbyNn3vagAjhI8eAj5ey5HFiDU59vwMK6nZWgRG00ga86/80PftkDjccjmMODohB/LVT/uNf9/JcaWPSxF6cQO/PIYA7LGCeaZPOVY878VbLG377gfOIt0BJ79ocuTFZJyBAPtjvu2d0hCWE5C9V85ezUNfeMY6Kdz9Ymf5/3+hgpRcV9K2n3cPrDvqE57EnQZnt52j8Kv+++nfDtp/7x7F2Zf8n0S63LXv6dEErrxsh/Ld/x7xTAsY5LdD0mC2wRePoans+4TeNz/fwUDEn8O/PMANshR4SW2OMoAy6xTCJ8z1ax6RliwVZ+Hk3UFu2y/TFahCAZMHKXgdfKo+9anqQfQskIvGWrBwio5a69CV0h0RWi4wtWoizrY5hy3WKOHfpaijtbvTI5ovvBzjNDPctSwC3QFmUMBGEUK/Ba/w7u8zq6v1wbdI69KG5OccdbiErKfko/8KLPMMcIUE4wywynmKFJgnOk4pknO0EaVEeb4fX4DedDJcz7vdbeaq2JKDrAcjfIqFsImwA6sVm12Eowade1s8xZvB4tLoIxsmKTWKpELgErr5Ma+tZTOUZo6xX3XhDyPq2TociCzm2KAiwIBgWh2p2nQoDVsbqTs6t239tX+qxGvhrNUibKrObXPvkfXkJSR5o/c4CNXzenYJznrzL07oZhrZo+rfAPZwPS7n7jUQVLgdbJF1msPMFJRr6+dE+uz3ZBZT3M6mrIKuFulj2Zna7ZS52/we1T2qT+kJppnmLd4m7IzT/dIUaTbiTElJzE0I0s5gW1FumnFwt9EEBBL0WTtebc12ojaa5IzYXvTzxLvcSmAWWNT9geIaTXMl3+m+eRzYehVORhePZYYWA2kuUFrSJ4UezzCHWeLDNBKg042kUE8GNvjFHMhBZQZej9LgeRLUlNztosBFM1BixVja4XeYOSVnLEks8IzTIb8SEVSg1YUJ71HM+e88yDwRtTRdix9T8BG3iVVdxiJG3V/yMOSp7zIjNEQ5aNehDYHrbROOijHe1hc9XHWKLAeDJhz3OIKV136Vg75qkxAC6yz4+zFlBe6ktlmqbBOgWnGkcZdzDMVxAY42nh0sUGBdSySfMlp15b+t007b/F2GMVLSz/EYtyQ23SwQm9QfbuoBBgnZpzJPbuZZYw8ZSaYYpSZACVylOl2JN5YnXVqtLFNO/MMBwAoqq3kXtLHC+RVdwSIm3ObDpdbW8iKjOwV591NkQk+CmZUgXXATC5vczoeap1shtehsfSsKDc/sKrLuO7TiZlvmomnTQCjzNLPEmv0MMgCc4z4w3PZWY5nfLIpBACi1GgLQ6nEfVGnNbosWZdXL9FPg7R7MFYYYpFm9oKWrvdP8FFce/JYU+KlTZ7mySdGnyajXlZYpY+KAyQKK1hgMCTsezTHg+eL/lJqqK6ZLiohLxcLVWMug1s1FGYYDSBglT5uc5oihXjgLjkrapj5AM/kt9dKPaQUeoi/xdu0UWN/ileFLOsUUCKWGhF10gwzzzTjMXfLB3SNHvpYpZVGXBvaH8k7BITkKbFLkuYKNg+oyzvMPBd4nz5WA5TUfdPJJuNMo/StCl3RLBDbTouFEe64B2iSQr3EgDeMMvwm/4TXeZdW6rzNW5iRrXW4G7QyxgzXeY33uMQSA4xwhyUGfE6t088S49yOBoHJmu35cJNzlLxJIKml6PtjzAboKBZliTyt1BlgmSFf7Cq5XMmt9x38EcvrDJNhBq3nU4UsAyzTxyrf4KqPbbs3Tdrj/A6yyBCLLhneCECuGwvrUEq6FlEN0m6YvBLJ2GqGVckEq3f/Akfs72X32DSwdR2ZVwMx72oRu8BgdKvnGGGOU7zDm2y456L2c4Q7AYSr0LDAlC0ucy2kvx1s8wbfD5uK/SEuzy9u7zDujG6xm6tkKNJNlgrLLk+RVFrPcAHDdxgh8ei1c5KwDVs5xy2KdLOJ+eWpCSObjTpp3uYt+jDTacmrv/Cvg4AAo2MYSDIOvAqZl3lOzoh8wX6EAQzuffbsLlbwpwngg/Xk9xwH8sZGwz28Mi6FBUKey5qxtZq+jQEpYogJ+HnobLC6fV/LYYy19sckctI5jAXVjAEnzobLymfusB9DigBuXsxhUkql5ApodP+zR+7L9mgP8qOQPWnExqezvg0BHisYMOKSzGefeFgGBNMvgEKAa85Sk+z1X5LIbPcx5pqagV/yfZS0UvLOPzZ2W/UBiaxVAM2ahYdwyFmEV0hCUP6mAXDVIgbi9vh5et3HUpLR4/Zd+f3A7l0MbJJs9IGfD/eAy4/65+/7fj4hoSr0OTPzrn9OHn1icp4FxhPWIg/t78wxkhCWh8n/00x46j2V/5s86wQqCgCUhDjtPnnT7qH40H8nRuMOdp2cxEDIEhH2kTmZfB8vY9fMYfu+Z/cMoKtOY7JYgXxKgD5BJAbzZftcBFaMOktRvoWjlqgb15UHZVRKfh+l9+3zh36uDtp5rq7YsXHf92ECkzrv+T7/MYl3npish0zS3pyy745wjnESIPTn4CW7jyEWmORMBGCpLpG3bIPWSImVvcQoMwFG9LESgFSFLt7mLRYYZIZR1ujxgC1rIBbpxkIGzVJF9a7WIAVXL9Uw+5QzTEZDv9WJJvKjk1eaPOg72MECADa4xblYYzVIc5NzAGxiMk01G+ecPbXrtWbW/cNU49q6cJJeVp1Es8n7XKTXwa1+lrjMtVDU1WkNduBRthhlllMOZp3jJh1ss8xAYAa7+whDw8xzlC3kESfFmGpr1TgGqmY5xy1GuEMaC4mbZYySW4YUWEehGqYA2Qlgctzloga2WmDILqaUEHtR4JdSZ+XBZjWusSt7WWGSM8jLWrW6gF6w4NBdBwFLXmMDbLhMW3ZhWldd4zIFirHW05pmiAWKFKJJ3upNTElMtWYHAsDUdxXp9nOTZp5hNhw0LlDkb/B7yFpsf5ColCZV2lhiwHGfHLc4h6x1tCYr0h31pdZrAuAEfL/GdZckN0c9LjB2hLkIBhTAKcBVlmC3OEeXMwxVcxfpjoZtmgY3uMgGWeYZZtL9/ot0h7Jp3sNL7zsBqI0qE0wxwRTDzIc6cYhFzjBJiRwVsnzCSz/TfPK5AHppnsbk0sOaF6glL1DH2PHJqsNBsFucp0Axwhn2e9ypQ9DOdvhDCb2uuM+Rkndkgikgqez6+hHmkLTW0v3y/rMl0QiMkORw1lMjlWgneawMIbuouEQzH/IegVEy6JQ/wToFNjEdvVJmAOY5GTTbHQePNNEKFGr14kOyuGtcxnzX0nHMxoq6EHRbJQSKiZahFtu1yT5LKw12nY21R4q3eSsYijZp5rwstYtSgGM/yw4w2sPERHaWqCPPJjF67Lx0xfvtJjbN/XtcCtBT+ySAMEPNDcdrYYquNOA3nZ0hFpA6THnKz5nni8qa+AxaET3GbEw45rM3EDR2Y0ed8i7BbhSDYNRsnZcuP39iaay6Wew8w/R7pLzSj4Te97LqjKk7dLIZQNv+Yj5PiSyVYFUVWA/gptfl5BWyiMosUDuZZM2XQIi+knBrZMhQC1ZVJ1uMMAfggPsek5xhxZOk7P4yTwaxB+X5ZGk8WWTGL9p5J5vhsQeWIGVMSQO3ZxkNgFBMz206+IWfMbnnP/ZXhWMs0x9NAKWMLjPAFBP72KqrnOMmDWc1J+dpkW4sVcyCFTqRTLGVOvMMowRdY1laguoQi7TS4Bw3AUJWrmukQhczjAbrS/eMpA1Z9waTF5rmJe0fEIxCk1/208lmhC7cD/Zra8iNgQDHxRj9Lt+K0B01MxTf3ueLOKXWdrLFeW5RJs8/59eje6dEbSA6zRZgsRTM7Q62nUlnbLkMVa5ziTV66KbIJp28xdshLRHgr0WJgPUk9bsrmJXat0WGXLZs3XaT4dedsbscdg57pCIhvdMXnQZYZtniKCXyHGeNNA1mGAtQzXw+j7JNB9d5LQA7zekGupYjZcxk8tYc0jxiCcu2cCywThs1PmKCXlZjjtIcNs8w57npAHyVNm/MqXkw5r4h6hybHUMjvEaqtMVzQU2GVhoB5NV8sblGD2eYdF/CjVicTzAV41tgnRR7lMkzxSu+iLZn2CxjYbRs56gWoKcFctXiOgBCBizfRGOf77LFUa7zGnuk+F2+TYNWXuM6Sk62Z8kCE3zEMv0B6K7S582yDTa98SS5sTH6E7+jvAPIlu4ne4ZdXtjX/f/Cvp4QrKJnRQxoOYGBTCcdHHgV8+56jAEYJ+2j1Y+BbpNYlmb9c69hAMcTDLARMNNtLC8KwFkDX54JrBB4dAQDGhRS8Zq9typZ4jGM4XQYSmUMpKi4F9sx27dnZQykEFBSIQGPXCr56QcYS+ljDBDpI5JyA/QpAyVYKbqfXwH+HAwQOQH5tCWQVj9OxvGZAC9PDW0ahWjkj/u43fffv2H7dOyIj0HZved0ThT08DEGvMxgII3eM+1/AOoWOsI9H7cTvp8P/f+POVtx1o6Jk5g09on/ftq/bxdQyq7Yl9p3yVhnfazf9O3o0fOqj6XkrwJjPQzj6ce+f3cdRPslAsgKtl0fBha79PjZY+y6+BqRSsyOS6/lE/h1jI2XdkDskL0HhY9Iar1LwlBbwa7RMuHJtyLfuCNEAExc7wpa8fCS6mMfB8l9s/b9qw8szCRzwj7/7EOXYJ9w2biOU9JmsSav+ja+6r6F/y/gQ2freRouKduH7HEPRtkvDVe67xPzyas9sWN7enPf+O7aNfH05r79Lvk5ednGqynn50aekvJp/CkJQ/cL/hrnNns0B4M9TSNYS6rb5F0mVUIC9qUDZNpf62zTwRu8S4EiecrxXM9TYph5amT4f/C3mORMWEAVKbBB1pU7uVjzdFGJukKATYNWbnGetK/T+lkKNlHNGXWdbHnibqICk13KHs1UyMYxSgkn5qE1/XYCzNykk1ucRzZXYk/JA04vrYF6WGOdQvxOKiQReAZYIksF+dgauGgN9HmGucl5tuhkmf7w5zeyg6UCSzXQy2rUrPIeTLFLha5oMCqosUI2EmLf5yJKft0lFVYuIocMsBzn02zE2pjxGirFHjc5F01zsxtbJU+JMWaQD2CVtlAamle8+Qh2sM0iQ5FJ0EWFXlZQuOamkwME/inpVmQWAwBbnRSinISdqGF0naj5rCb9GLN0sEPFG9SqIY3FeNSJX7VgtVXJhNpFysI8Za+pC1HHWCJuNQgGrzDFpquPbN9X4vxX3GNbCcoNWiPIrEI2JLUiNuQoI/susR2nmHDp8SzD3KXmzW0pQFS7TzERtX7GCRQiPlzmWtiUNSO7mdsUKHKRG1FnAVEP/VX+8GeaTz4XQO8TXnqO+SEdsqiZ/SxzgRts0ckVrjLMfEhXZNYJZmRtFGErIDSBmOeMxWnnMXNvm1iWKbCOklKUTjLLKClnP2hyUue/SAF5FxTpdk+BeZSEJ3YLgBIFS+SdWdNNnXQAQXnKLks00/A7jHCGSbpcmiUJUNVBFk2EG3SF/Et+SHOMUCbHJa4j/ylRYsW8EzOxEzMlFWBoDLpqoPQ1ktQ+ME8lUWcHWeB13kXBHtKsD7Dsk3xXgIO3OR0Xt7y/JMdSUSaquElLrXiVN4BYWRNMYckzyf4D0elpZo8l+vkm32OF3kDTf5/fIE09Ojtioq1i4SOzjLLAIK002HAgUKmdumZUqCrptkg3acz3TnLvZsz7Tn6IJfLMMhpMnS42aKPKBl0o0XOCKQoUHZAz4885RsIfQOzHLY5GV03XlnzHLGbcPPxUmBvgdpacA0E2XpsB1G5gZvx5Z5BqwpP/lEB1eVjOM8wsYyx42pU8PPpYoQ0L6dgfPy/A1oJSZlFwSAfbdGPStJp3cfazztI0OMMH8WASM0dSz38XGPoiv56Spp1thlhggyxznGKNHqY5jcxzVdRrfEXBtzCEdn8IdkXwQZFCPJT1AOz1TqZZERjQ0MtKLCommGIdM2MVsD3GbMgQl+inRC6SxXecQSU/0l1fRAnU2KLTk2AtOauDbY6yxQXeD4P/LBUmORv7J4m7ZLX9LDHM3Vj05ClhyaYmD1FoEuBwUltc09rOFp2McAdjfZsnxzom89ygKyQl8kfNUeIKV8m5xYDMj/U6xy2fD9IRaqHFUwMLIbnNeDQbsmxE9y3nvndAgF/2QN9A1gTTjAeDUCD4Kr2+kLbrYZSZsJMYYwbzSO33IIcVBlhmgo/IUeI+PVjia5oNuuhniTlGGGXGAXcD25cZQOFQeh6l2GWZfr7Fd1HStp5Nq/ShECAxyc2LzqwXsmzs80FtsInJ+wXoWme/mRI5t4tOur0dbKOE5zWOx36IKS9/EyDY3gWKDLgZdAc7vOJmYW/zVlyfOo+a5/dI8ev8ASPO8NczcYGhYMmbHYjN/F2e3r5Bln5fzN7iPG3UUFCTMfQ3Y5EmIDbF7nPM0QVPdjPptd2PV7ga3jyjzMY9skYPn/ILn9sc9Jfm1U4wlJoENDzGQIx7UBJLqgcDOV7CAJ66s+Uem3S2TY+OXYydJxZVlvD/yhYwdtB3TJraNEri+SVZ7h7wQxIgbmVfSITYUfcg/3V/TxHyfbZfz2ZdrureYNWPfV/bMeDkK8Br8OJZDBwS22wP+KfOYtsPyl2GF+Wv9nX46hUiIONwH2Rf9eMuAyccNOsjYTQeBKYsRZUP/f8/xJhPj4EJBzmxzx1+jQg6qNz3fU+TyCLly3ffmHVVSXBzzjj7EANg9rGqsvI5PMtzgR6Vf2TS5qwkrmd9n97bN851kqTcHAnQ88jHAb8exN4TGCQATODZY09U3fFt9mBMSl0jYoeO+WedpdaUJfG4W7Pz8szHOgIxLvtnR/3nl/187/l3HfPvcxCwWvRjeomEUXoc+r5Och3K/67s2xgn8eM74ezStB8Dvo0c9ClJ11mlTSPQ8mXbl5YeqM6SeAMKsN21/WKOhAW3679PkQTQPPJjGvf9LMLTeySJvUXC/y77KnAQSvIJVGLthy41PgYezG7nTPeuJPGzPrYnSRiQn0tl+pfvJVLFNh2sunJJq5wKXWSpMM3pqCktYM5qaNXAWjNIRaWE1Q52kBXVOLej0Sa2lpRIe6Q4yyRbHGWWsSCiqJ6TTUQvqxxnjXd4M5ryq/RiHuXrQRrpY5Xve9BeiVww5Hu47zXfLnXSLjlsDrLEUbYYYsGbjZtYWEObe9GVUPpsiTyXuB5KASmwzBfOwJgtOpn1YA+rmXeiptklxTluukyzNUAzyS5tDdCLAka26WCZAbopMupqC/nfiT1pYXDpqDWlgJLir5UG05xG4Qd7pPgBV6LprnWjPOyNUGShcea53xXkoovcCLBoyferTpr3uYisRrYwD3w1vFWzKXhii6PIQqlCFze4GBkFai53sM2mN5E36GIdC+tcZiBAxy42QqGn5v8FbpBiL+pDhWbI466NGkMs0M9yMDXlF71Hyv2IM6z7tZKlwhgz9LNEM2bNI/xBdaTqpo+YYIKPaNvHVpUaSAGlxi2160Le/cbIW48GvnwEq07mERHmNNNkfC0o6yPV13ukwtPRFKE1JAvepiPuTzEoc5TYdKDQpMF2/y/TzxwjTHImlJkv/IweBJ/LtHmELTc3bI2udJlcDHqJXCCnQCx8wRDr/Qm3utnL5FligIbTaY2xsspVrkR0s15isCn58QPOxO+VoHgUkwZ2skUXG0GTFPtlildYpt+TC1P8E34TxX9LGy5mS5Fu7rufgKQzBmzUgvGicIw2qpTJ8SbvoCjyEe7Q7zeIWFRmnL/l9OVKAHlKblWwxTzDHGeNfpZpRxHQIzFuS/TT478fY4ZtOtggG6xB88LrZ5zp8G3SZCX2w34Go4rkd3kdUVsFGEgKpglUIRvJxGGofD/LgfzrZZ5E5lmlJNs0dT9TRwNIEDOkShvy9mqjGqaR49zmv+LvetdkEyAAjw3v/kh+NccIF7lBhqrnkNrx3GGEAZbYcGNzhV6UyQXYJwm50HkBmtZVM9lwjUwUgvMMB915yY3kDRg1JtwSA+Ezp4JT2xlnmjWOe8pODjNczzHGLBlqbNIZ17weNrpeJHXV/WWGqvUAGcFYMClnk2xxlHmGqTlDS16QiwyxSyoeaGAArMIZihTYoYNTzNFGNZg0a/Qwwh1GmQ3QOEM15AA/D69PPEDBAOA+9rAoeBkWd7BNLysRbS4w+hqXKZMjTSMeXiUH/k0iOhvAkNirtnibdvlmCUvCTQd1fpsObnEu5irJr1O+iLvFeWZdptFGLYAfsYzMG24oOmkCnWu+oNFc/RETAXJp7i1611S+GJJj9HCfEeboZIv3uUiWSoDIw8zzJu8Etd1MoXPeiCmGDGOKCcrk6WOV17hOL6sxN88w6veNMa1nGYvmzAhzHGeNZn+wr3HcF6J5phmnlxVK5DjN7ZALbNPBaaYjPGON4yzRTx8rdLHBoIOduhetSdNg22eZy1wjTYMaGd7mLQCW6EchRdOcpkwesc7VIdWCWeDnLKMsMsRx1sLjsEEr6xSC1QwE6KlmzVWuMM04nWxxm/FgCU55si0YyxYIAKzNu5oZqlziPcaZjueXzJaPsuWNhkLsNxCLcGOy5zx5Lx1+ujoXAJ2+xKmSYZpxin4sQMhSjFlYDJm52TXYfSIgWUxXXZMqQATCWrfdJMmjzDLKLAMskaPMGSZDwqywkTwlznGTLTrDM2iZ/gBabSFv9hhtVJnkDLLUqGHBGgMsISmHwNobXAzmwYvGyfpiv+oOcshrTMDFJxjQ0YOBBT/EwJJ7wDWX/ckT7ZCngT7CGFZ9wJ4HYhzGwAnJb8FAiln7brKYPNGloZwgSVH9xL6vQwwkhW9IRinfsysYgJIjYdwdghYFD3STAIvyHlPCaDMBNG0/JmGiuRyxOUUwyxgniQz9ZdtWkwdDcBxLaVX4gHzsmj0k4jgJKFYkPAWzL2GAYZZggHEEsln/jLMhOeif9dTVzKuQ+Zr/7hAWInLCGWHvkfji/eq+/f+hj/0TCy5pEpiqcwQJQ/I+CQsMkgCOg/7+kr/3of98ws9XEQPQchhIOGrMz6cPMMBN8ukpH+cH/854pQh5a1V+cAdtnxl1wHaWJLzi/0gCHF4jYawd2vf/VzHATCAWJEzJOsZQvOvv+xgDMAW4YftX0jn7BAP8JD8/gQGI7fu279fxszk/rnEbixYFbBTNnzI89io+znedXZfdtx2BsCkbj6c/TM5Ny/4k3RyJp+ADG68Xf8vH6kiyzYzCTCrYdawxeM2PRQCzWK3N4Kqzn4vXQ46gpHoD3HLBNlJopPkHG8tHtkALDAJEozZDlWHm6WWVDFXWKTDkPsvrFEICWfJn17f4LvKez1EOCeQ2HcwwRiuNsDeSX7qsIi7wPgrdmvTaWrWWGllSB+Upe4N2APnMph0IMvZ+iTN8EM3IFKbUWKUvEuAHWOIC7z+nLlEd0cE2O74G2KadBYZYZIicS2bV+JXP/BL9Qa7Ypt3X1m1YkFU22HuSRCpAU6QLEWWkMqmQ9dCsEQdHm3390sb7XAjwppU68q03i45GnF/59orYsuYNWuEjkDQ19V4FuTVoDeB1iIUA/dI0GGIhanix9Vbpi3BMrSulvspQo8t93hSU0fBxHmaeFQc5JU8V4AfEOmiOEW5wwVV/OywzwDbmKbxCHz/gCjVnD9q4Z59Tg5m82K4ZrfWUP/Aub8QYCwuY5nQogPbLhrXmUjCrgDf5Mes+S5q5KQdDN2NbaQd0O9mMIA0lLO+RCsXoHilucJEFBw0TOy67R3a93mujGvtiOM2pIPUUWI/aRsxWrYm36eAnLln+i16fC6CX46cMscAl3mOYeZrZC5+0PCUsqdQKW12o2nHFBMt3S2l6Jk2578yVdHTRv8k7DPqFrJtWyHivq7sv8V4UNWK01Em7R5uxU3SRDHjn402+xxkmg3L7ClO0ukSm11kPtp+GynZRYdH9y+YZDoadgCcgWB9ZKi4r24hjt5uwHl0EFeCdbIXZoqiw6po0aI0CWRru/UCcWFoCdjY8CdBCPsa4wQXMQ8oYb/f9Ahc41u8svTSNAHa26KSLDVboBYguQQc7Do5WYjIQar1Hc6RbtlGN4y7STc098NbowQzzewMQEqKudEAZna76eGxjnmMqNDXZX+BGFFK7pNh0qmzNe19bHEVGo9pXRZG3O0jRSoMi3WHunnVW3opfdyZxLEVyMtjDopk9LvFeAIOWztnKJd5D6bzqMGiMbOLaZNDB4zaq9HvqpK6xHq8mFhiKrlTW6dIqPJXEa8axrR52YSDOVb7h7MUkUXiVPuSfkXJWiaXv1AKIEJumg20+YoJJzrDhXQ9LVTazd3nBLTDEFkfjfrMHRHNsY7/fxqloOX+xXy+xEt2sHtYCbLrEdUaY866MJc3+Ab/GAMtUyNLPMpt0suTjrIe8PEIGWWCZAS5xPc5pmTwbZFEqqt0HbSHNBvg1/iAWHXYPWUp3N0XGmUaUb0nhlTJlUnFj8Y4zzQcOWuxPBldS1Ne5hrzaTjMdC5msN0/kM1IjE8CkFitqCljnrTsWuArImWeYNXoibEjzyTYdyKhY93fNO8Y5LDnqPS4FM26b9pDQy4sjOW57+Fr4zXGfGdoZZZYrXCVPOUDATjY5yyQzjIUZtGj717nELKNY2NAOFWf1anGtoIbz3EKG1EDsY500G2QZZYYe1sIs9xWmEGtNNhWaA+WVo2dU3u9PBWaI+S6QS1KaVQ8SyrIRoFcvK7Fgkl2EJEBqYOxnGVggUBtr9LDIYPiINGgNvxUl2LbSIOVzd8YXYuq8nmEyvHuUKlz35lGvM+0WfcG2f+5cZiC6ydOM+7zYQOnC9+mJZ+n+862xnmME+SoaCJl0f2cZiw6ypBCarxPzaOsiT/j5kaVDnVbv29fpZCuCR77Fd+lky9cdPwe0lJSnaIo5dIWEmSSgQT52jzDwadyZZQIR5EMmNtBd4Ng+wAEMKBl3eexhEp+zJw6WlEH9pKqSc08AJ923zAMscMkuRZKk0ywGysg/zRlwLX3+HV/BgIsf+Z9mDMx7YH+elW0bhyXllESxZADSyhTcexcDjA5iAOBVKK2QMJjKmD/cVd/2LsHcy5y0bXHXx/Chj+2P/BjXfN8FZM5ivmczJAmvu3au+CE8UwjIPaj+iCQN9gi0HPLtKFn3d82L7VmRxD+v2f0R6+4PWPDPH9w3NgI1i3YOuEsClAlM+yN4+gFU5KkoVtxDjKX5IxuDpjecofehj+2hfX8wSfUjeTLu+Vgdc4AVP++PMcBMMtNPfHx3bdzJYQCzgFGBjQJvHwN/DBkHe3nsx7Dr6cbyOjzhib5p3x8HBvPylHO/uQCGxUZMY9d1MTm/sf8OdLZ82/d5zYG1Q+a3V3G57LNp93p8THIv7fr4l40N2vJl/14PLyG773wIhJXcOE/i13jIfvdMY7JLAuSK7XjXvQt1bzy0/eIACcj4BX/d4RSyp1H4gvywVT+t0keGKqv0IruNOU4xxwinmQ4/szuMcJUrQTQpkQsl0RwjbNEZzyULcMyhoMge1gDz6R1jhmX6UTItEGxyqxFmY/8FVBRYj+8ViKY/YKQKKUOMVGH+6bv7yB/btJPzek9Kvfe5EDVDgXU2fM0CxBrLyBZ5JxiUoulqoWsmm32fi5TIud1FmiUGGOc2GVcYAcwwymluo4C4PSfT9Lt3XYUu3uHNWIOXfG9lUaO1hNhxw8xz0utHNdgBphmnlXqMo4g0Ui/pbxu3nQgCFTlq/7pERIw0FmApL8Alt/ipurBVxAsRcErkwkbHQtOsWS+ij2xuBPLuXytPc5q3eSvAq07MZ1BMQCloRFYpkXOFhHVxlOgsoo9qIlMuVgOcbHZSiNbJIol1eaxnzu1z0g4+dzsI1qCVLcdtJpgKtt827c6CG3yOuSji1yyjdLBDkQLXuYTZDpm6Umtc2e7I6kgS3VFmkV2X7Hz0e8svMAWNpL/Cwkzq3cYNLnAc82m08BgDxSeY4i3e5kh0Pv79r89lBdnO9nP6ddEb5QkAkGLXO/CGPEruaD51JmkVa6MTS2HVZNbvlNyzTIaOWQECAiDkiSbK4n566u/zG5TIuSVob9CAxd6S9KzkjI9h5rntjIYyliZkXI61KJYkgxVTIe1IttIspxnHPO2s6BK7Qmi6ZGUqUq0Aq4fUS0wJyX4qZFliIC4go8sayiwWR40Mq/SxQm8U/PINEFvFjPbHHTwrRzFvxVMbAy4Lfou3aaXBEv0BGil4QzKoOU558qEVRrrZE0lpR0zGdQdlFfph4RoDrNLrxXl7sHCSAqgRx588DLaDpZNztpAA0f1FrTFt8gHQZqkwwRQ5yvF/Cs2Q4fsl3nOEv8F5blHD4rqbnSmTYi+M5DvYZohFB7TMQ2mIRWcQ1pDkV4EdAinlA9lFJZhYAgqOOmW9RJ49mtl0dquYcWK27HrHSiDNLKPs0exmqW3ORDJJorwHWzH/KXlPrdIbRazuxxoZcpS8IDaWlzF5XmHGQQo9fFQQC1yWBM8YUaPxf2JrdbD9c+Oh94Bj7qXWCLAjxS7XuBxNCM0hkntKvtxwJk+fSxMFmmSocZdhLvA+gyz4AmiTOq0sMuQR6AZcS0KrwIYR7mABLDv+ALTvOMMkHWxzmWv0e6dSRrFtmB+d0rclzzSPNus+rtHDe1yK7+pgO5i3Ag/3aGaN41jK1C5KhNY+SIqubto2HUxyhk1f0IjdN8JcyFTNUsACkJSaLlBugin6WabLpeC6hvdIMcWEA6W2oLM+3W4wsNU4kZxdHjZAgDVFChwl8SDU/Zd0ANtpo0ofq6zSG+C/+duUQro8zThKSt+fIjbBFDv7jnt/w2uQBWTtIO/OGcYQc1LPVHmDCFQX4xIIabYWD/J+7WKDOumQKmzRyRL9mGH1yQDFZDKczIELwSBUOrNY3ZOcQUnKauJsYyFJWliJua9nWTdFuimigBd1VIFgCw+xGEWBkuPv04OS8PZIsbNv4aoCYcTZxDYG3ZjMpx72C6tu9rzloLo6xXpei0XfwU6A1zUydFNkiokAqc8yyRCLFCg6u9wWrmIFmO9OlnY/t1/o15N9P2cxEEZSSGWn9PkfBTV87FJOMajkHqKEVQxAqrpk9tmcAwU5yCsR1Fl8PHYGnvzWUg6APcHArydQmSEBgO6TAF6eqsu0f+/LGHjyQ/B62N77Q5PjPv3YmYUCzq4AFUuu5cv++Y9JWICv2nb6CnCiz0IP8PCIp/cg/zJJ8MOHwAfOepOE9JjvT8qOtVrGmHRZf08PCRjogMvTR/7zFEnK6WlY+RjcjcOAIvc+rAm8u+vnq88BSrHLTjjIh48Z9jlGzIfwUR0Dh3b8fJ7AmGryHBSjUP6GJQKoo2JBGIfbSXz3XrZtU8KYafh58oTW+P5mItQhMwqHX/XxTREgWrNCSh4AX4Vnv0cCED/y7/tlH88V/x6BfD6e7GFgnf9cXXHAToDeCLQ4kxBIwlYEdN7zsda15/dGVVLhN+19j75DEuLhwPLhI/7Ze9h1dZfEl8896jJHHMTD2Z57vi++P89+hF1bRzy4Zl8YCgUf56u+v31QmvJxlweejssl7X/+ALsnNDZ9LjV3r8amrP+s9Nw6CYvv5+B1wj3Y5BMrayIxlXpZJevWPyIdANEQA0IimqHGKDOseECBsYTWUchk1uWRspLSs7BCltvOdALzDjPiRSXsLFS/KKxPNZepLHYirE31ukAu/Vu1r/zoFJSmNVInmywyRI0MF7jBCHPIB3qQBXZ8XdjlddsCgwGE9bDGHCPc4nzgDg1aA2ScZSzUaRaWad8rJRskwZsGwQ0HOCfyxCKDsd8G2NRQmMk403S5v3g/y+QchhLxaJU+LAStwTu8GTWu/PsFqs4ySpUM57jlDDpbC1XJMMos40wjmbUaj/uZbQB5yhEMKcnuBB8xxwglZwuu0cNVrgQzrUpbWOdI+qq1ssYyjdlYqTFrbNAVb6K3RkPdiCYbvMk7QVxSjd7ONuPcjiwAWdFI1qx1mTITdExaf8lqpoc1utggT5lxplmllxS7rGPeellX+onp2MkW/SyT96a+/J6F+0jpcd8b1BmqobbRdmcZY5RZFCpZoYtm9niPS8HWlG+1vBxFcrF7tMIoszT7GvUal2PchpnnMtcClzH8YAX5X1v9/7NBdZ8LoKdOtBbrZe8EKNVwgSFu+9M37dRT0RK1UBYKWqBIP0vBOpFHFJhPziKDMTAAkhapYMpQxUIcZgFo9sKjj1UucINh5plgiprvnzyEOtgmxW5osXN+g26Qje5FO9shr5piIhJzpD9PsReMKLtczcNMN5r58dR8ojTJ7J4zypQguj9VRjpsTdbGTNmhzYMhcpQjAVVMmiEWSDvbzKjaQ1EYq4tzhavIp07MOKHmBshmA+jrcxnVKeaQt0LVASHp+i3l7yaS6y7TzwbZYDaokBllJlh1AliHmWeVPjrZclnmGKv0YpHs3VzmmgNxJeRHJzBEx2i6+40oYMuYsabMQU3SOsgCg5TJBRjXRQWLrLYbVCb/ArlyWOKumavW47su8r6PsRW+BuFaMtIWneE7tb+rIM+EXlap0cYMY3HulhigGfMgADP3HGWGow4ov8vrSLqeYpdbnI8HTYUuH+cU57nl7NENamQYZp4cJbqcuaTCUh01i0s3AHXQaeGS7QlskCT6LsNc5AZdVJDhvBg/Yu70sRqyyiUHMntYY4MsdVr58c8Yxf0f+2uXVPiODTOPEm/bqDHDmCdgGZB2jlssMIR5cHTFAkjpZOqQ7vfCWGTIO2IWtCHw7QYX/JpfYpVe5Gcp9pdeBtqaDL2f5ZhfBYpJmqmmgP2uC0sZa36uUWDBORYSJA+JpCHTGezhcab5df6A00wzzWkmOcMUE2Sd0blEPzXaGGaeXSytLEsl0tMFhBqomPcH412UxnXa2bzdLiu5yXmqZBxgMk/AAZZjjhDQ1oxF2c8wShs1bjMeXToxreYZ5hqX2SPFGSbZcMaZ2NBahKlJUqELC4Oox/NpiQFf8NTD1NhsAQzgUadboGbGmwImH2mQYjdSzzQGo8xymWuY74eZWguQUqBD1buz8hntY9XDK8xOokSOTUzem6S4L7JBNoymE/Ayw5In2qapc5+eeH6ru2neKUPBZBvmLkpnt+vXkmeVHC85uca84fOHpEW3OBeL0AUGoyhQI3CYeWSm3e+LPwGbVsTY3Gj+qeYJo5CrW5yP5qCaYCPMMejSlVH3EP0Dfg0FbKzSyyRnngvKKrAeEpYabSgVcMMB304sBKWVujsL1qiS4aehd/vivnYbJGb9D/f9/AAr+tMYWHLE//0jksALgUH15H0lMZRwiWHOgIqmHAYgCGh6zVJgK/edrXSEBPh4YtutTsPTP4LVPf/dQwdjTgB5B79GsACAx5iv20kS6eBZDMRKQdNlC01oEsi05u856OyxKQwUURBEmggLoQeTe2YJ2W+Lp/WGv50z5PgqBtyI4ZbzbYipJz8z7PsrH5Ikm67tC3bo820/trE4nLLjYBQO/zULjHi6AtkRlzaP+7ilHfiBhJH3qocd/JgkpOMJ5HvgxR6MefjAElQpejjHQwzQyZFImx/Y/lTX4KlYhTgAdogIhwgvRPkLPsbATYUxPHFg9RAGeDoI2jRCwrp8YLJg7mNMsvvu8Zh2cFig2z0bv8p9S+0F/449H9cnJEBi0dioLRMkPoM7GANQ4SMPeQ4AjOvewUce2nszR0jA5XtweJQI1XgmEFcyVkiYn5Iu/02SJNs6CYA6it1v0wbmNb1GsO6e7pNxh9fdIxv3Z0VgzEFmse4+ILme67adNoHvReDLFuTS5J6THMPOeTN23whE3wKe8XPxqnKQqvsCTzPO67zrNBMDSzYc4JNCaZ7haLSa1YTVJnuk3B6iEQ1BkQeMZbbEUW+sqR7uYPu5elqs/CptIXXtcwmvALqjTq4wZvwWI9yhRpuHhGXjGd3PEjlKLDCI+eouhu9fBzssMcAcpzD1mPm5LTAUTe9BFjjDJCPcYX+4Ypuv07T2meIVZGMxzDyt1MlSiWbnEv2cYRKFSCjI0Y7T1G5GlMjzClM0+7pQ6y81EIsUKLu6QSoEMCzjFaYYdE84awxuscAQdVp9bbCBgtDOcZO3eJstjjLFBJJVTnImQCClB6tOVkqqmt2WGWDrf63pbP9ygQt8k3cYYgEFf8qLfZAFXuM6F7kRjLdOtvghlwNAk3Q0TZ0V+qImkA2L1oVAYATymOvEEoKlrpSfeoWsH1OWKSa8iW/Ki21nsMnapJdVyuQZZSbUPbKSSRhzZu2i2lwy2XFuk6YeYJ2YcLKsERbTy2pI2UvkGPD7o0w+WIMbXk+BAei3Oc02HRF21+1qGAWsCLxbdhWNwPgV+gIH6HYymO1XGYWiLTFAgWIwCoe5G+y9WUZ56PfoX/T6XAC9B/tYdqv0hbRRqY1gRWQiS8k5m6Q7LqpznmQo+cwAy+Qp8Q7fDNnVBl3cYYQOdlCyqthWKuQ26Qyz7A62+T5vMMpM3AB5N8ZUUSNAythYAwHWmT+QgR+tDt7s0cw6BSwe2YA8AV4CzJYZoEg3E0xFqugw8+EjV6Tb01ZzofuWHFlhFjnKDLjR+StMhTS3iwoj3GGbdi+IX3E02hiMG3SFNEqeRUKBCxT5Ju8Ec6SZvQAqIYlNFwAhNk7OacMlL9iVrDnCXIA/17lEM3u00uAoW95N2IkHh1D9ilPBW2lwhklylF3yWmKOU3yDq6TYZX96E1ja5B7NUSwJvNymg15WOMtk+DekabDAEAseTjHBFCYrvo3SYhP/LAMoZVqepcIWRymT445T1rsx34NuLE57nULEdpth/apf3+UAbZVk28tq0KcFSPSyEuEUvaxGKIvozHqY3XVAd5AFSg6OyIer4vusB/lRZ+DkKNPPUoQZLLscsEQ+ZGsCH1p9W5K4lVHwS+G594g6rPtLYG/ewU6xZxrO1hPrzBIuu2MOMNnAfpOZL+6rm5/QRYXrvEYNMwjepoM+VpAkWyBuxYFfSVLVVctQ4zy3aPbFyzIDyG8RjBUtE/8JPqKTLa5wlQ2y0ckFKJNn1R8ws4wy5kCxXpo3yuRppc5NzlOk2/ehGud0jZ7oYgoEMxbZBosO+kiemGUjLBeyVMJPVPezJb3Z4/aoMzx36GCacbY4yhu868FJG1zmGj/gCjc5z6YDVcYazLFNO5vO9NJiaI5TmCfnUiyI1DgSsCoW7zYddFOMef4i7/NN3qHmUmeNW5EC57jJBlmGmSdNPeYXMbINBD0dcmYxK+VLkyxiGiwxwGtcd/8Tg5gGXZ58m9PIg1bNApP820Joiolgas8yyiRnfAHVFYlvaRqxwNW8IZ87NVrKLs/JU2aWsegc2zPRFqmtWAKfGldp6sFO1DU2xQTmC2uLuxS7sbit0MVtTofkXBIZPcvylGJRLyZvhSw1MlzivefsLjQ3Hsf8aRRiJE+8qsvMO7CEM7EAN8hyh5EA/8TolBegmTZXOcVcMPVqZJAPTydbfJPvRZFVIs8Id1BwSNqZh0MsouRyW8z1USaxh5A/kILA5MfyRX81H8dYVQL0RkkAkGkSKeF3MLCsbhLUSN68RpI+O+6sqoMGILV0Y8DZfQz4S7nk7wQRKHC4nfDhe+rsvmBGYds7LUlou4NvX7F9DSbVrrOsHBiqSlYrRtQe8J4z1z72ffIkUL6OATUv27aeKp31IEk4hoC8gv9RyIaYZ5L2Fv24HtnvKndJ5LL72F0B9ukS6/PPHvbP5vz77vuxVjwN9yEG1vwQyg8sZZddHwclCK84E9DBLwFo9DjTsbxv379KBCk8euhMxYIDaRO+fy972uwPMWbiI/Pua07BI0lSD8IjefCpLzVq56wyQxIQIqnnIdt/AYQxbl/3c/PAxiAjcO+g7fMzZ40FsPqSH9ua7fujHeyavG9jRpkE6BSwVSHALaZ9vPO23aePbRx4QvjeCaQLBqXAa0l57/u+3fP3jUPTqz52HtoSbE+lLj/G7pt70DJKApxJdv3EgOumr9iY85ptr2WCuK6fKRU4bee2qRnzTpSc+wQJQLdCsPXEBqRu41Z+4Me0tu/8PMRSmHP+fW0E8/bn4aUG7RgzyJJqljGqtNFFJZ6F7ZjiYchrgDwlTrtFSrsTSMTaAoLkosa8kuYnORPEkve5wAhz5ChzlK0gh0gBtl82qzA/rTuNyWbMeK0XZey/40z2mlclnWwx4Z7De6QYYMkVHw1nou3QzxIWMdUV5AMpORYYpO5NbkmFTYnRhYITRpjjDJP0shKMPjA/e6kEDIDZiOf1PMM0s8dF3meP5vCXG2KRTTpjLIeZp4751ckiQ3X6mtt4ABFO2c8SezTzFm+HPZWYczb2rwBJGJpkujpmEXlsnbrux2Gj08sK57nFHim6SaxspExZpS/WcEuOYVzhaoCnAuB0LFt0skJf7Ieuo2Hm6WPFpajbwQS06yjDR0w4o62GFDoKS5NfvNJ+l9xLL8Ue/yX/d+RlLNXDHKeiea2G8LoTZHZJMcRCNG8FBg6xEPY7WmP2shLN8qOYAvGO+xve4lwAo1pHS8rdzjajHhAo7/gtb+BLzdfBNjOMMspsqOZ6WfFrIx3qObES6854PM/NAEVrZLjFOWR1Nc+w41vGfJ1iAnnvKdCwg22+5NfAX/T6XAC9bdqDslmlLQ5UEdeAG7IPeGFrRv2zzsaS6XmnQ3JTTCCvO13YY8wi/zNtb4Cl55LxzOh6OcCJPcyrLEMtkOlpTgedcj+zoE7aQbhFergfUh6j0PYGqCLgUkBOByY3lqfQNh2s0kfFWUkC9Up+jJqgGqRdi23U4FFmkFfRMv3USdPPcjC35D8EJr8aYiEkkhlqweLoYoPTTDujzaic6ibseEG932B+lBlylFhmYJ/8Mu0ehVa0KXVXk3IJS2XVBWrCNdOb33edfI22OM8NWiPoo0AxgFVIYtLFVLNjqYcQbZIz9LIaRaY6AwBDLNIgHcyWPVJc55LLDOdQsu4Cg3E92JiVUUJhFxUucAN5HMrkXrHfMhW1ybzZJ0mbdNr8ijdGkrEt5OEEBDDQTZEV99ESUCffr5qz5rKYpNiu2S2uc4kOLGm2lxX6WQoJ1x4pJpjyh4KxM/XwsRSmdHQSOrAQArHoxG5qdSmlABG9RpmJ+8lo9830s4T8EOXfkHIAV/eAzqEWIwrwUCBED2s/c9fhP/aXyfit05Oj7Isf8yRbpY9pT0wVmGTyyB2/N/LMMhZM4hR7vM/FeCj/u56IAhQkiRQwMcosNzkf50QBC/Jbk4fGVb5Bhaz7jzUCjLCHfi8y81e3S/sk8FFssWtcZo4RZMRrFggjTPEK9/29k5xhmQHmGGGXVDCWBQIbm3QjQJ53eSM6Wp1s0uzsPwOXbNGqBbDkC9rXuktGNE52LkrkKHOdS0hma/6u5lWj/d91kDvFLhlqvMH3kWnuNKef606KpSvPD4WGKNHNQkUG2aadvDOq1cyRzYIsHt7jEin26GWVEeaik6wOshozAlh3nbm2hiUJr9KHfC0z1ChjYVRgxstjzEZHVYm0DV8U1Zx9J9BxlT5GmAsptZ4dK/TRIE2VtmgkSFps1+LxYN4VKEayrJh3asDp/pAEGEB2Azc5Fybg5mPa6+OZ8oaeeQmKhT/CnfDn3O+jKEmsUs3F8LMCyZiJ7WwjzxTNZxr/Dbq8gdbhiby7McfOM+xBRnvBRFUj0exD7pBiL2whDGitO9sw440eUZ2+wK8mEpkpGOsnizF2FFCQJUkF1ZDsJy8+wsCFuy7FfQMoG5OLHkza+sS23SS55a6BMM0pghXYIk8wDyTIFDwE4VUDcx7NYaCiQg7EqDrk+5YD3oOMgIwi8ACeztp7m1619z6r+Gd/iIE6Yl49cIBlF9iBp//M902yyXGCkRVAXw8WhnEEnn1IkgybdWDsEXDbt9ODseQ01lcc0IRgcFUfmjyYexiY44zHpoLtX2na9j3/NyD7bWfKySfN5ZgZyaCbSYCtk5aEW/rYx/ehH3sJaDf/wGMeUtEiieURTEac9TGe9vPl5/HwEYKdefi4f2eRJFTjMWS/6ufNfd2ePrD9zOv6UgjJcTt3lZIfi2TRI769dWd5ekDG0xXf94f2/fmcg1UHHfjDz9cHBDBJ2oG3CgnrUCnCH9j1d7gAj36IgcFzHkIxS/jmtRz29/s5pmh/byshWPLvMuHRiPwDKyThIwcxQLXi7DqFuczamLbkMIDzsB+/koSP2bE0FUhk1vLc03G/ROLhKJampw1X9wN3T2zcWk77OPzYWa8nMCbuj6EyBzR8P34OXhuYf7WUFWp0KtBshtEAixYZoo2q+6NtxrpHtWfdQQogPLi6XKmk+mec217PWPN3jFkk8zOLqHqsV2QL1EaVEubNPMgCI9xh0FUSagQOuZ8zWCCV+Qn3A/g6rz9UZiLcyOs7Qw1Tky1SIbuPUFALEEQ1nHnSG7ihgDYDP61mqXjwobHMuiOEo4NtvsW/IEOVKSbCLkM+c2YB1UuNjK+N24KMYkyrSqx9WmlwnUuk2KWfJd7mLQ/9sLWblA9ilklKakm/a6F0UriEJNZdbLBOgSptbhWz5Os9s79ZZJBpxlGAiGryOq0MM88oM/SzzGWusU0HN7jIMv0eGJfzNWGvq0426He8ZJmB8M1fcnXaPMPUSTPIInUncAABpkoRIVKOSEZijUryrHCTLrckkYWNrkewejHFbigh90j5dVWLa1/fteyhJsJdLvI+57jl6+Eu3uOSEx76ueMMwWHmQ16do8wKvbHelGJmnQKSu+/RTN3XtLK2KpGnm2LIfAVyp2lwjcuk2HXPPyNi7NHMMgMokOQdvkmOUtQ58saU3Zi8/rWP17jMKn3kfKwELP9Fr88F0KvR5h5qbYxzmyEWMZnnZphaS7olf64OthllJoz8Fxik6otvsBNq0st1al609LPEGLMBlGw45fcd3kQpgQI49HMHOwGgKF1EyUBafN/iXACI05wODbzQbNF+xb4QINJKEsqxxEAU1ZJnCryRaaNAv2Yv2tSp6GLD5YoGWMpnQAwTFe4y7UyxG+h5wyemLTqDJTfHKXawZKR1CtFFULLrCHPIF2+PZq7yDQCK3q+wtEab6Bs+lmI2KHa5SIHz3GKIhTi/KfY46p0ZofqKPwew1F9LaTWQb4Mll+de4SqStApckxefWCdK/E2x6/K/FPJmEvV6nOkAPkST1iQo2ZikupIIFpx9t8XRABJV2Ormv83pOO40DSY5yxrHAXuAyc+une3oBgBskA1pb4l8MDJzlAN8EOtohw5y3kVSYqYYRuriSAom9ozASU1+/5D/gn6WXHbbFg9U+WgpgUnBB0fZCmBbAMcaPSzRHyk9mrgbpEOaWKWN67wWE53AbBXjuv/0QMlQ46vc+jymn790r4cc4QYXUKrYnoMI1s2phz/kbcbDC1NdWD1op5iIbpQWIZoPbnGOWca8aZCmiw1ucY4iBSSz17WvOa6TTWeOtXObcebch02g1ABLAdzKh66DHWq0PSevn2Ii7j1JRHpZCZmGOrkK8niDd4GEwdnPUshOZfy84gDgWSaDWl+k4GnPJo2URKFA0RPLV+N4tQi4xmVng1ma2S4pNzjepd1BsArZAN+vciWYdGVy3PQxrLk0I48lvpkNQF90PJX8laEazLY9f46B+cUqLXWG0TBD3qKT00y7Ya8xGo+7xHp/YIaCc4Bg+5lNQT6eeee5Ffv4Xb7FBllM6t7/XGd90ROKdX0NsejSzyrXeQ0zebZ5TH4lrdQZYAnJaXdJxVzcx0pcWx3OElWitdi9+8OMUlEF2muc28HIK1KIAkPgm4F168HAl0WHJA0NLNyq5OdQKWV10sFEUMf2Au/HHGprgmZ2nCmsUKxbnA8zZslj5eGqABiTovQGcN7BNnOMxH25RSfXuMwEH0VjqkIX17jMAoPBeJ1iIu6BJfr5KS/89z/5/GV7mcLI2GvNmCRTqbBZDCioeGLnXSDl8s8CBkoI8BKzrUAEZGRe9u/4MRFA8KnAhXZo6YGmUQxAUGqqpJMKL8gCf2yASUngBf53HwZoyDNNbLxmqD4GxrAwgjTGOHPJY5OYccf8vX/k+3fMj9f991qUuItv/wkRlhHMvDIG5DzxY/kyxqh66MDaq7DioM9zia6e1NtyGGOIOYMsM+qg52GSsIcfE/LXfA9JgmvZj03HOkvCLlQ4grb9sZ273DHbh2ca45d8n5s9RKTb//8BiV9dKvm7SZLRL9t5qz6ER/d8P8XiEug7Z+95umvjwH33/DvkDLMsBtgd8/0VCLo/jOM9Ep9GSZgPejhEM3YtvZqcS77sXnS6LsVYO27f0VRwAO0eCdCldN0+4CwcPuHHIqAUDAy8b+eMFZ6XWpf8GB+R+CfKM93DKapTJOxFB6Kf/aHtZ9MIIVl/ptAQgHf8nC7a7z5dw67Nj/0YcEZploT9KeD9BIl8tuDH/5JfkwrVcFl0dYrwP2w5ZjJc1uw+PHYENrfg52EqhKSBJWmkwuxMzbDBFkfpZCvY51ITWOOyKzzj5IXccLWS2EViGqmRK5smY7tln2MUbZD10KpsPNNl5WK2Gg2WnWSx7oQbAWm7TirYL8FsxiwrJEmVDVKKPeY4FfZD17gc7HYxx9bo4QYXWHDP7wZpJ4NY6qj8za7wA85xk15WWKY/6hM1yfrdbsZsioyddtzJOZOccTXbVjRhFTaxSl80vW9zmgUGaZCOdYDGUX7FqndK3oA3r/EJPnDf4NNMh9Rywa29ihTophjr7U3M57iPVU4yT4N0rNO0vhbWcZ3XGGCJKSaouIoRjGyj86o1z35SSZU2vsu3wgpGqocl91Yc5zYXeT9IKYsM0qA11vlpGtzgQjAiFd4otY2l2fbGms4s05ajMX2Za84c7Pf1oq3H92hmllHylJliIkgCavqrgT3PcKwhlxgIBZxCI1Xrt9JgjFnkz636X0F/2sY5bvr6y9aIRgbaZYAlCqwzyyjzDAd5TCEhYL7nCv7IUKOdRMo7ykxgT8Pc5SI3UICHyG7nuBlAeoN0qEAbjk30skInW1TI8mf84s80n3wugN4O7Y6+26ShDro637OMuvzP2mMyVDQ01EAVmXrL9FGLcLCT1sE2s4wFbRJwdDsTLDjFOVvRkYmkkrJ3/iUJkmG4wTbGsBLdWJRgFVCGMJfpcg27CtcMNQqsR0fDLvJ29kgFRbPdGQkCKs2nbsXHpt2nh/Yo2kS7NeDNGDv7g0REP+1jNUBGIG6exC9rF6U4qvsyw1hIJwWEqSiZYMq7B4vIrHydQiS83GEkmCDyfxphDrHiChRZZAilDC8wFCxNGWpKriavNcnU5GEkH8SjDjDc4KIzRjJc57UAsAwwbQSQBATzUefVZKTpABHkK1glwwhzdFGhwHqM1QKDLDIU51a0bBWnkkxD4o9mwOFmMOsEuKzS59ddM/MMA4SkV2wcTcJ1WpHH3Ip7NHZRQWEy8tASGC25sq4F6/T1I1+z0+5TJvlwjjJLLva27lHaz1lzMPXsgdbNCHfck8K23+c8K2NjmtlrlTbGmKWLDQqsR3E7yAIpdiOd2SLiTWYtc9g0dbp/Rhrxf+yvQ/uaCIkZ614wc8/wAZ1sIp9O3Ysj3GGDLuRPqM6StgHE2LZS9+ynLO1sh8RQfzLUYh6U3BJgjlOs0ePs0lrMgwJsutgIjztJGOqkGWA5gBWxTo1lVmOSs7zOu1zmWhg0A8GcPctkMLU72ME8JY1BPMoMAyxRJx1SU0lks1SYZYwJprjIjeiWtrlccotOFOKih3ORbmYZw+SqRotfZMgZqgakneNWeBwqJEns7gpZ5KdhgUAWJqOQjXGmHdjvDrBIDQGBoQXWUWDMRW5QpMApTzdW4qs1imrux7fDEAtUyVAmH9YBE0z5Ai4boLyYZyXyz7GbM9QCtG9nO66Xy1xjhDvRQNJiyuaEdYZYCN9Cne8ub8ZoQaX5R6EWAsD0XjUflFSra+Qy155rQA24xEYed2JNiz1vMn+bI+cZDtAvTznCRNRQ62An5ustLF271ef4IQ/LkofeZa7t8yjqQkFUaV8cCpDVGGoxp7l1kAXe5HsUWI9j0/pmmw4k21VQl1iRb/D9uOckodZCfYBlXvx5CAn6c0yy9xoGaAxioMGHGEMoDez5791jLys54Zwn0go0UbJoCQMyBLJVMFBqDV58mYTxVifSWjmOgTvNLp2EACmePoLDvwS98p9T8MQKFjKRg6fv+r9ztq0WByoZxZhaL/nvn/hxOsBDn4McH2PAyF0Sb7w0BojtZ7qlSSTBKxjg4gw4Vvxn//uRB0f0vYoBZc2+LwKo7vn+lXy/VngenJwmvNs+Fah3HAPT7vrvz9r5Y863e9jfp6ReseCw79/dMwZbk5hb9/e914M2gsF31xmA+LaP+74d9/E/CZmzcFjSVIFu+FgeAn4E2ZcI77fDf82OqeklP/YPsWtj2saj5vJg8n4szZi/oX8f930/r5BcBw98n0765+Q/KABQ19kR/+4j/h5IwiN+2Y9h3Mdg1Mag5RghvW065D8/xsC7UZer7vkxavz/XcbcMfeJ3PXv8H1qOus/F7F7ruiM1DJU5UX5sR/fDhwTs+6EH0PdGaWf+PG+RiKn/pGDts5g5KGPtcJIlMR8xJJ/n677/zf7caZt201ZOJoDxJz8gr9Ug77GdWoOPnRRYZNObjMeLLkNurytue7qq72obzrYpkYb8j+vkmHQbX4ECKiOkxJgm3b6WcL8aje8LjZLCLBnVCeWvDvMPJd4jywVD8baoI0aFpA1jHzRjYgz5KYhG6HAq5GJYK9WGkxyJjAAJdEL6Fuhl2tcDtWTfHTFeFfoVo4yzewFw2zH6+UVt48SI/4alwNfsGbsqEuQ5at7NNYh8oyWB3orjfAtVIruBFNR55RdWTHKTBBJOrEgw6tcoZcVl2ruxDO+QDGCNtJYmJx844ZY9GCGAu/yRmAWnWyx6uqYboqBN2gNL6WgaoFXmOIMH0TIWRs1bnGOOUYok+e/4B8iC5EMNYZYIE/ZlXKmWklTZ5NOcq7cUSJwq6vlFCpy1NUpprpoJUcpfOqFB8gz2ixwRpAfodZ7YEDZGSZjXKTOVDqwGrinmea7/Ao12pDiRhgIWILwe1xCYagiJth6c5kM5i8OUMMCKNcpBAnBbITsWh5nmgmmIkm6TD7IAlt0MsMo3RTDakr2cZ1sxTpR15au7xI590g3FqrW/nukmHGZdJECF7hBBzvMMcIdRn5me6rPBdB7kU9RwuguqfC9+chZJnU/8Vlf3Gdc3mImkSmUOCv/J2mnVQh0sB0XmhbTYntl3cdMMs12tsOjbsDNJAdZ4Bw3yewrYlVsSvoqZph9xw6K09ZEKtBRJuEqGuouSxR7Q4WpNNLqoAggbJB2hlrauwHjbISGvjmkU/K3u8D7WBBGNSZHeRmIuaG482b2AvCS/5q8/RThLLCnQhetNEIyK4lcL6sBAmrit1SmPoaZj/MksE9S5G6KAScIDReAu0ovaxxngUEKrLNCbxSlbZhH0xwjUUhr28Y2GgzQr9WPa4EhrvtNLAaoYtkF/KXYi4fBLpLzVuM8F+mmQJG3eYs1jgcQWaeVfpYjzjtLhW5/yJnWvUazb9sAhALHnX0hw9MGaZfJLjPkFGajqS/ShkksL3GdMWZJsRsTh4rTIRYDpBZlt0CR13k3gAP5ZRiYuxLXn427yZmX6UcBGBq3/feQJhd9Tgww0fDFxLMHg2U5CUBpYKmndjxHmeQsdz0taoU+lhhwVqIFeQis/nl4rfASb/F2MEr1INJ100UlDPkNULM5aR3zBZP35TIDdLFBiVw8JOYZpg1Lcx1gOdhE/z/y/jU4rvTM88R+IBJIIHFHgpmFrAILIECAhApsQEQXNKDIIlWUOGZPlUc9amtavd3RPSHH2DOzDm/Exjo8Hzwx/jB2bDhiwrGejh5buz0jTXePWtpWb9WINmtZVbwU0QV1QoAICiRuTBTBSlQmkbgjEwkgCX94Lidr1nbLDldYLmUEgySQec573nPynOf9P/+L2Qq0k/b9GoX9DhcA9H1iF2DedYuaZGppU8YMs4CXava5ywUvJkFk5dOcZVDZVVe5gYVMiNwxxQYtTDHEFINs00ALkjQrwTMb2gBYct/SCc6xShvvcxlLnpJ0qShLdDrbbFaTwo2xHaHANvVkiPEmbzFHn3uZjTLGPuEyED9NlFWVqK5wlRt+XzFDXQuy6GCZFjYYKmOfZYh7h3qCYfJqK2D3hU5SiHdlNzd5nT5mPZ2smn0sadaS0boUZLJgmjQJZw0aBf9N3nLA3L7L1s07p+CigWgBo13OgbGEC8pKXkaS0C20yth3+w65i2x/lSg3uUJKnwlpEkRZ5VU18LUwFGvivc8lX0RYoluOKIeIp6J5xVpKuYFaRX32NrDjjMw2lWXMqezazmVGPXsi5F1eY9LiFJ0cajE3xKR3udsQy4Fa8uzQoElpIoOw9N1BpiiXxNp1LnYhi5hUwoJHMsRJ0emyo2kGWKCHsN4TQUDrDDGSDNPChgep1Ot1sKPn3BqWn+uXATjmBzdJwEq7RxCIoUDNwTIwqLLQovqcGaPqBEGC6QP9Y6ykjEpdD3HPMnb1M5aguymJm63lIE1IU1rTKkM0UE8DGY7uydirjA2o8t1QJQJyTSFg0QfK/DMmkyXyGgur3OdOk2x5QgB4KcDFph5TEQGQQrA1pcesgBEZoFHTew3EWdawhLQefxxyf06Q4rqMgDHGeiwhIKRKNQsgINmwnqtriLR5Tbc5IH8OJnAG2MEKHDzSMStLsOqcBmToe/IGglqC6jwBGzGlzLMv6XvmCcIdkgjrsUggeQaXCIMep82dBUwY8y+mv/uSzrcmwkZP6nErY4+EXjdRHVOTykKn/h+clxzwlp4X86Tb1eCRXeR6NFl3VsekfnVk9Fz/SI/hdQJ/xWXdn/ke1uHflyoLDbFAmRrd/yEixT4B3FPvyBP680Ed8xrCLqzUObDPN8LhocqKN5UxB0QsubdVt3cNAeYe6bYMsGsC6hX0U4n00ROCBOAiIqm16+BLep4hSMUdlnEQ1nkP+Amf69cK7W5fMcA0Is3c98ZqjIw/Q2fpo6AeeOatHCfjZI7/OGwqT8TZUatECWvT19hosi5ZYpqzuq6TNaWEWIj3mTU+DXQbZYyQroFn6VXwQoC2otqSmHIrS8xJCuZzbk1CG2OCNBdUqZMgzTRnnTV4lmmXVK7S5o1YwCWUIpetdlzBPMeX1BNuTm0w2kk78WCKQV8HlwcYxMi4l74RRBrY5nVuOiBjIZgFrZdiSkIqb8yeVXuOBCufIpYkOUc1RTqVwGL1czcLmFWLNWgj5LGk3DBFulmkmXXFMEQO3U6aS8qmsxp4URNYreFbzggTr70cc/RRJOyst2ZElWVNSIHS5NxMMejN9ikGmVMpt60ztxHf+hhZeplzNZsp3SwzwLwT7WWKv4yuI+282pwaKGaZBeWhdQb8WbPVGIkz9DPAfbeXmmSIP+F3PD0Z8OZ2GzlfA/8xf8CKkiyE0lXrAHA1+2RVErtBM/+eb/r3R1iFQyxoorD5Oic5p+sz8ZecVv/9aQbcX9yO1eTbts4Z0vrTAhCN1TfKX/1C95PPBNA7wRM3/+9hUanEYfcU6mMO0Vd3YtRgKZrFvDKussF9wt4hkItCTvQ6zS67tcQUAx7MrF22I35yV7hJeaKIMR5M3lhuwN3NApUcckKplwLY1Xvn4go3MWNIA/DshjLGqC+ejH03xCSDTLKuX1ZjF0qKaNEXT+ZBFVPqsXQCnhAjyyj3iJHxG15EGV9hXdBUUqJArbMSQpR8Xoy2bPsxOvWQegYaCGhGjJXq3DapHlTCbKn2G6AwJDKYv98qUf6Sr7uk1m4eQh8VhoMg4wVlwMnDpUOvEVk0tfA2b2C+grX6ObsRWoDDBi18g//Wx2KSOZNzxsg4U838Bs3jal8Xp/ZFsqQe8yxYpIdKSpxlWsMKNhwUNSZIngjjjPh1aUCueQGUCPmDtE+jOOzBYN5cS3TSxyxnVRdfIuQdDqM9C2grN3tLd7LxWFz6It1kiDHElDL1ig7OGhPRUnNBOhci610pMwMV/0KT44EY38bJsILIzY3FtKGApjEmLeDAwGJjH4JI7jtJ8QZvOxOn3EMBRHp8yK8GoAcCtAJOXR9g2o9/mQ4GmfQ5HWPUixpADYZFQj7OCKOMeRruOiKzNA+IOBnOM0YPC5xnjAmG/XtrSUz9zPh1bSnT5qdnReEqUc4yjXnTmUxwn2re4K1PPaiEDffEgV9LtZ5kCGMYmy+HhdhY4VrOlBOrAvHIMCq+NEqCZ4clTZu8vIMniOdpNWH2FSw9QZvOlfiCTpEgzRijDryLn+SO++kJqCQGU6Pc89TSOfroZtE7pPYwLiqTcolO77Ba8I3JMu5y0Zmpl7nl91MDu8KIp4qZEXcre3mcEUYY5wo3OdTmigGX1hE3X8MMcbpZ/FTn3pLAzMfOJPnWxRRGWoE2ctTqPJrXjrHOSlS6xGaZE1zm/U89v3K08VDlPJbUbc8hS6AzJup9ZX4bk688QMO+F4B3yc2Lxrxic0T5Nt+hixRiITHAIt20kWOBHme03+SKM8E3aGGBHg4JmPV3uOAg5jrNzCqIbPfLQb2XNrPuSW92nzKpiygDBJSO6/X3UO99eSK8wVtefxSpZo4+Zuj3a04A0EPiZHiHq+SppZp9MsQ5y/3P+C70S/QKIYv/kwiooN5lR2kCkC+hjKAwrBlA8RUE9BgkkKT+JgJOmfxwV7Zf8bsIs8lkqV2yTQfNciKJdMmkAQomYexAQAmVFR5tqlyxSfZ/ZBLLVg14MFlsq/y+yhhfBl6dQkAQSzwNEaT2PtSfh/TYjL0FzpJiWsbZeAIO7unYojh4VWFsqEkZb0UNbD3E01mjA5Li6ww5ZA6wMIis7icBp07p7/4CuIoAOMrwO9hCAKl5BTJfQ/zeBpVhZl5vOQScMg84BDjy/Rk7sEvknbmMJvOi8/MmAYuwBPxrAun1PALgdSgAZ0zILv3sQ53LKYLQCgNcjTGnrDdncO4iElpjhCpbsqpd97mmnnxhBEQz7ziTxipQGI0j14BJb81j8ZT8qRqBrR/ofD+BrRzw58B76rlnib/GajvUbewh138dPDX2pjFOU8C/kePeeqggqgFyxjis03kpyTnaMlCyCI0DAhaWh5VwAr8mD0sI4N5EkPhbT8A8tKCXXuBrZWm5RYIQl10dc1JZqvZdjerfy2XXRgW/Ei8jYhSUXtKmpImwPhOyxEmQdtud+ww4ScNY5z9hxMknlqhqJAAjeJi1lFkmWd1jjSh7Vga+sKIYWqUNwGu2BgVEDNAYZawMdClgSjJjB1rQHlBGUJh1ppvsu5tV2qhVf+Lf54+dQVekmiwxV2WJkmiHOBky6oJsvulxsgwyyRSD7FNNAzucI+k2J7ZuHGDa15YxMuTLGukgwGKMLIt0OxvOPOTiSEClAXsmyTTsYV8JIMbYspRSS8/N0eakpXrFPMy+xchIth5f1XrP5s3Wnc2ss0EzOzS4NYiRkkxRJmuyMw7UXuPH1OrxDWr+gDEipxhELFG6vB6TsMwu8kS4q97b5jW4jdgzWQCchVeMMarYTASzWAHcs7Co50lsVdrIK3PTMAhRtHVSUKuTQJ247Wt4A0ItoPEMM2SUPTnAND0s0kmKYZIMMem1oXkO7ui+asnTyywWzmr4yyI97m0oyiax0TEs4zxjHpbSxqqDe1e5Qa9e17atfcWFTB0n7M04YYrezDW8ap9qrvAukwyqeqOFvLIQhQ36i3kQfCaA3jOlHQpym2GbeqYYpJqis7SEGVVkiS73EDqrXzS7AZnsxtBVQ2nn6MOkoZY+YxecpfcsKEBjF0k1EroBuBzSQB4DTyyV1SiilgxrUlrzcpqlV02xS5iZvGnxZ+gnpek3hmSH2adHJZq2oNyghR1lpZk3gi0WhdVWwtKGSoR8gW8sM0OoLXZ8nWZ6mWNaE13OqXdct7J2LOHokEq/qdSSZ5qzvM8lv7mZT5SxR0wmbYnF1eyTotOBgEV6+Ef8obMOzWfJFmJmwF+NJEFad8PAL/GLeOIdoyxxFukmyTmuc40oq27g2s8MBWrpZsETDKvZV0+vAHA0kM+YR+9zmVWVIpq/nIVAWIqyGWl2s+hMJjMbNYALcICznG01ramJadoxPyULDTCZrHWQMsSxyHHrypghex9z5KnFIssLep3a9+AJHczSS5gi55hgkR4/dklPlYWymZSOMsYTOkgyrHO8jnlhmBfATa4obbnWz4d9F9rIOTss7ZWWJFC3k8aYlxs0+zVXIuTyAJMEmgw9So7f4DoRCrSwQbO31j//L0nlijngbH6FJneNk9VOz6t0s+CJYCbjW6WNDp7wLf5UU8PWMfm1PfiMYbuuD5l6tlUKf8gq4uspxYCAHZ0qwW1mw8E56/KZJ0QD234PNFDOGhCWoGzd4qSuQGvJO9u0m0WX+ovHinid2MPSOol2TzYATdhnK5hfSVqBdwvvMTmIAf/WbaumSBurdLPoLFtjullHeVm/R9MMcIE7avocY5kTiHxFxtLPDL2apDXFIBHy3OCqstmeuL9kJSXMNzVDDJN+XuZ9v483IAlZdi3Y+TGmpW3HQimsi2w+lyOMOyvQpCHGVrRnmLGQRZ68yiGVvMWbgIBldn1MqgQ5RkY7hvV+/5zhjIdOLCh70vxa5VikpzrFoHvpGRMtQ5wnehwSPtKpxWgLGeKMM+LFi7HjzVwZ4BK3/HzZtVigllXEG3KVNn+eBx68RV8wvMlbJFihiyWGmCSiTDzzuu1nhiTDfp+0zrYYPdf6dWlBJuZ3avsytqIV88bsPKPPSksaz1OLBCrl3PNliiEHvEEaGl/jBhMMYyEi1jT8XL9KyMJ/EwE0RhBwRCWna8auWkMAF5UERo0FVQrYekwpm2iKALz4tm5PQwm2csB7CMPrEJgX37ADS3c9pWP5CgLgDBD4laWRpNwb8p4KA7maZJ8G4h0l1f/OPrOLACxxPi0DNhmtsQrDwG/rZx7pdisR0CWFe//RxP8gVKHKfM9MujoAfC3wOuPLQKuGR5jEdlfBqQ6C9FxjgAEH8wSMPfMLDOl8fICDa1VhyP8IDn6gYOhDTbpNIwBQTqWhTcJSzP2FbqcEjTEEYDLAqAl4AC+dh+hrwI7uJ4kks3YhrLpDyBs4mYUZSz4uKpAZCn7HoB6XAYbq/0ep7PyU9H33ZP+Yp+ImPDWQzABbYwXGVKILAsx+QJBI/Eowj4T12Cjbt3kxKoOx8Yx+zgI+puQcVwzzafk4emyazGz/fuk8QZKugYW7MtZGTSp2Ca0B4Gf0nGtASU5Zp3Tp70/LuKpeQUDa/wIH7KoG9b3TeCqwBZccaAAGa3rODNxOI+f5Gv5dspARSgRS61bc/5CUzOlzk8F/zl89zHvTybx8k5zTQK7ARqQcnCj36M0TeNLP0ssM/fQyx6IGUoi9ygkW6XZ1gElXi1SrO23CWVoGaj1Bwp6s0Sdp70KiMRnlKGPquxtDVAvCKppkUEkbEky5qn7eG7R4w9Eacw1sayM05Ww5a36tEnUrD2tGWiBakmHiZJ3FZao7W7vGyJKm3W1IbA1jYzdbKiO5mGqmmQ0mFRDMqFIqp3VAM+ss0cmqrs1qFYY1UMeUARKCNa2AjEgvLdjNmqXWOG0jp3kBtUxz1rMDajUQJLDokbXWNANMMOzHY2o3a4pb8xkgQsGtlEzpMMWgg7U2jpjamwGk6PQ6xerOUcac8GG+woYLGJA5yKSr3ERSXO+S605SSv4oKigbY5gki3S7tZn4tgvScEilA6UhSsSUQBRTPCRBWr8bLSzS4ypCW0ss0cWCBom2qfe+2eDUKrHI/JPtegPIam0tahtpvtt3QlKQBdu4y0WvCc2H3BKMzZ7MlI7mFZglRpiih+et6LXYSYpRxhhkisu8T442Bplimwa+x+8BAjCf5tEvdD/5TAA9W7hIMEWILHGNpA5io+2L2sEy6zSrn0+JBbqZ5qxrhs2oPZBX9gK41MfkaSbfMSBK3lOLBVKUCGFJJLb4yRNhSJNhrHMQdNNXfbFoC0djGlkghPHzpjnLBMPe5bcTaTJai6Y2tB1wD74oq5jv0RBTzjKxm44xBvuYUwquyXi2nSJrPmhzmt5ajcSF243W0nbMxDPKKvd1AR/XRZ2EmEQcke5jjjZWnW4LAkZ2aUyzdQW6WXCvPAMqqlUDb+dQQAL54lnS6pLe/MxboVO9+Cy9dZgJTV0KqMnGRpQkmkCuZdIzgFHGiClovE2DpilJNWwL9bd5g2VOsEyHU8mb2aCXWcw4M6+BLu2kWaeZVQVBo8o0M1anPDgSzm7pZ4YL3PVFaZ4Ik9oBGeEnDkrbOSxRyRx9LNLDIt1MMcQsfZgPUwdPfJHeRs7lxuYRYEDGgqaF2nfqPgPKBBEWSQM7zNHnDBlbkEbI+7k3uXM5m2qcESLk6WaBCc45aC4PeblFL9D9qU6VxdEbDdxe5oORJuGsl1+Fl12jJUJUs69AWq0nfHax5KwjSyU2qwExnl1UUGnI70XSJBDgzwoFk0xaqI2lju4TduDPJKlRDd4RUMK2WfRiCHD5wgDTNCg42K0+FHJcIbpYUi+IHcyQViT5nVgCsnn2RcjTxRKXuOUssoQCwyUksKKbRQ9VKlHJBe46KyzBihe5eWpJcs7vH5ZqmqPNr61mNhhikiwxB5OtydPCBpd5nzn6uMhdLQyfYDJ5OU9LhBDGocku7Pkiz5MSJicFAbatcCpvZKRJsEA3FuRjzZDr/IYDXvY9tDTcJ9qVNZ8NK+BHGCfJMN3KfI+pv8gsvd4l7WZRpcaS0FWg1n1RTJ4j98E3dTwCnLbpM89YtTbf1ew7SC9FcLXeg7ooUq3Pb/n5CUSqeon36WeGNlbdl688HRmCBHArxMYYxXxNLbVdJMBhstrxbGadbhawNGQQqZKESIUxT1wDLQ2YlSbQHADNrDszdIEeNmhhhn4PpDGPwj7mkDCuLk9FKxFSj5iQN+BatKFinf991QMaO/OsHo8llklHu8XZ1u9zmUqEVf+5f5nc0iST7yHgyA1gGaKJMqlsHXBdWEsOVN3QEAeVrx6WEE+vZQ3SWENAwhDwA/VbsyAHlb9WxKDq93V7D1TWe7LsPeZPVg/ENZihDGwwmWhVWEICKmr0/WGCYIC0jj9d9m+Taj7RMQ8Q+NadRmSJCZGx5ncRCWYHAfssgXiqXdOx1+l+QQCpezqWYQSg+Se4f9rBsv7b2FcxAg829cGrUj+0rSkCFmNY5pGovv8d+XykS0HFU8AJkUIfGHh1QpNM94T1FY3reK4h4NweAjgpM/KgqOPJ6pxAwFzcRcCuM2WsrjqIV+LswlxOxxtGgFlNHD54oO9/XX629UTHYb57EIRTRHV/ZutrQJ0mJPMu5OehsYvgGjlJwFbLIgC0nY9xPb49XCrt10datkU7Apx1QC6t7zmBg4gHEwRpscYgfIeA7WZy4jRsXSfwSjSJuILhLs1+FwFMY7KvaFi/VykJzDi4Q+Df+O+Af4Fck0mdNwviaCVgJJqEfBP5XtTg/oS+rWWCsBRjTtr3PyvnkEfymaMcUIBjlsb8OX+9wCdYwJ2tNYzV80QbdTe4igVglXvUGhHEJJglQqwjCgBblyzSTQ8LzkSzwD5ZG4b4E76FhXYViJDknLMCl1WvMaVqLfNpMyulbeppI8eiSg7DalVylRv+eSN5TDKkYGStgzIZ4txnwKWy1mwNCDyFT7HqrO4UxV811RQZ0vAB8aUVTKGTJSz8oF3XkpUcuqqqXWW+Zt9xh4tqf1Xt7EIDVK3ZuEA3K9pQ3aberUnuMerMfQs+MKCmh0UucMdVTFlivm437+IUnc7cq+SQfh7SwDZjjBInyzn1bJ/mLJMM8oQO92jvZlG9nhe8WWt2WeYbDdJotaTZgTLvZvOZLmf4hdl3n24JZxMg6gJ3uMoNV08OMYkltG4rsvAmbztDs485hkkivnQ7THDOGYIR9YoGlKwQdZ/5u1woA5fzrq4wmyEDWM1jz6TphtXI+U85JtDJEpJZIMF7piQxaxTzWLSwjnbSxJT9aaByXuvnM8y4Oi1NwtcrRhASwlc717jOWaYpEuasrp0MwzILGLNKW6KLGc5onkACUw9e5A5/wB9TzzY3ueJN6L/p9ZkAesd55l0EY0qZqbcBUjEyDDPhTAxLEjRZl0mS0rR7Z788dtsAN4BlTrjcqESIK9wkgZi0my/NFIP+f0PkRcMdd4aLoejml2RRz1ZoL9DDPUbJIlHSBn6IbDhIlwVIsOIAXi0FLF7cOv92odkCsoFtZSLI/GzTwF0u0MCOLxAs1WWVqBs7ptRPypB9Q5u3aaCLJWfC2KtEyJlXtu/XVUZs2zI/IZNmdanktVvjsyMUyBJXhkMbOzRwi0tk1bMuW0YrNbaGaeit82HgwhM62KFBQaNFCkQ0W1cqeDN5tevGgk3Mr8CSAu3mZN2IDST9M6c3DmMY2U3evmQxshQJM8gUXSy5R8GOPnys4yPeZUFwRF4Zcct00McsN7hKgVpMktzBE++q2HVqScVv86ZeE0VnCpaopJdZrnLDw0zMiLVeF/Rm2mmR9OJfKN4NYYpc4Sb7VP8PgggMlLCbqAGN1RRpV7BXjjGH+fv1sEAHT+jgCds0sEKCdZqdEWMPBDMW/RZ/6kwj++4b09XmwJg0ciPeYc2r38/3a5MmB9YHuO8Gq23aqZylz+XiDUgy6V0u8DZvskA3WWIK3BUxRmiahBd6cTKMcd4900a5h2Sqhh1QtS5ljiiXuUWWuDL2hAYeI8MgU0T1u2PXmrGpQK4bAcM7lLMrgGyMDGnaseTbRbo5RBjAJrc1iew9RpnWOPki1d4JNsa0pY3bfNk9xr7P2zSQZNgtDiQ4IkZKAe4GJCVMPBtjypAqKQtLrkuTeuaJuFw+rOL2K9xUX5S831dM0mr3HmuymKdmXu9ZPSyQopNxRjjU82TAT0jBPcC/v9vUs0rUv7NWRKVpp0SIBbq5wF3tci4503eYJOZnAzg4m9HnlTGIrfA14El85UTKHCHv99iIsmclXEQS2wzUK2cig8gnYmQ4xwR9zDqrbIFun9tZ+px1b1KVRe2YCvs+7SxzYyVaoTPCuIOh5antVsC2sOGNKUnka/PmiTDdCg4YGlC4TAcTDJMm4UCh+U0amGyJvqtEuc8AUwx6oW4ArLCVxYbD7meLLhFf8MaLMMllvKOMYb5ES3RhicOWGtzNAtf4saoXfgVCgtbh6Dtl/0/i7C06gGEFpYoIGDAipvkVUQQ8sfdtynurBoEpTd8EAS1+hIAIykDamkfACJPWmiRUZb9VYYRtZcw1DeYgI793ueIZPg1EoJ5mbxCAPOqp5zLDKGyldSxNn/4sOR1vnSR/5hV8qWqHSAfwZ3B0W2WYUQTcGZfPHO3p2LY0DOMEASusrmz7MZGJHpQHXJjPnQE9U/K+3BOZ78bfhNw8pLKQeqTzntNxXCNIeD2HADdJJLFU38drOoZ6na+Y7sOYgnZu/kJA2CoLCTEwFH3foG7/tOwzZ/O4qUEp6q0XNbZbFgGgpmTMoUo9zkkZT6PJns2nLatjjRH40OXgpYT6Dx7q5zX9OBJD0n2v6jE/1PHEkOsmgzPrDuZ1Lq7pMVhCsfo4Zuw6UebgxyXIPdZt6LVS1aH7yEkaMctyzo/MN9CCONZEMntk82OMPrvuW4G0/n4Nl3w3DmpYyLBIdKsuIiCjJddu4gnM3JBzTJqASapeiVUmt31FxpSZL5u/Ov1sJUGAiLEn0bFN4eDjYQnxz6vmV+L1jOMMMO3hCStIYNa+2nRYjb2gzd5mNrwOsbV1QZvDEVVGSFOw0p+hRtAwSWdgz3GoTLEdb0aZT12ONq8LYmT9uV1LgRhZRLK64w1Fe9YKESTn6rYlJBjv9/guFxXcspC3QSYZYop9wkwzwCSDpFTmaYEKViMUy+rQBnY4wTLmUdar1kYLdHsggzHCLJnW1lJC4hBwxBqyQ0wCeGMcAsKQyTyX6NI8gBRDTBGhwCBTXNSG8wz93OUCZsdlqa052lQb0I+FSTzU5rwpuopUa2jFWf6Sv6vgUDsZYrzLFd7iDfapZoRxRhjnonoOWr01yJSqE9LeEDUfdTmHYsVlFjimXLEa35hqxr6zOlrINEKVNXAXUC/0OJ1ac67qdSlMz3Xfj60lJjjnbDkDaG29C7itj6Uk2zVozXLDVMrltrL+byFH1ENWrJlruQfmA76kihM5RvFvHmSSOBkH3oqEHRvZocG9vK2BO8Ugy3Rwg6u6Nl7W66va6/ptGhzTMslxtV7vprRLqXXPt/hTzP/P5LVFlUEb3jSoBK9mNvhEg1D/ptdnAuiFlQFkE1p+YzEq4xJd5IgySy83eR1LtDFQwRDNYSZcqmYUVEHBQ5/6mTAerhEn47JL+wI3sE0fsxxSyTivuozLLnaRMbVh8jYzQTTwzSSS5slnvkH2xR1ljEoOfSFkfma2YGhm3RkMYYrEtXsC4lmWJaaGpxEHuSxp0Uwp07RjoRwjjPu+Wthwn6kBpj1Vz26GRiO2VFYzvTemoiW+2gIG4BaXAVkAZon5jW9DhZKAL3L29Zza+aouY7yZ1K6aoj8UvsvvOfBoi2+Qm2uadnp1kWjdpzy1WMqNsB27FMgSUPQCdxygNQmjLS4H1KcuYAKVlGUo+2xjtYzpVu+m8QY+tCl4uU+YQ0QzH0ESNS2d0YBUAWJ6XBZnng7LClg2aB/D2G5trHKOCZrZ4Jt8nwGm1a+qg4vqjzbANDnaGGOUVQXQJFhj1gG+sN5M7Ia7QI8uxheV4WOeUgbQ5v0hYg/iQY33TjLsD7xyGfg6zdSSd7aXLfBzRBlnxP01rHtnN11jmJnxqRjz7uv1387bvPFZ3H5+6V7HecY0A/wp33JTVHuomXS2jzmXGkwz4PNdIOLsqBAlxhj1Isq8JUEsDKwTZTJBswVYUtP+Zta9GDRmnIE7K0rfN+amse0qKZFkGJN3tiMx9HYvNLkwCGgridvynUmQZkcLskEmncE1Sy+zyiAzSfs3+T7ma7JKm8tITJZhQJLZDsTJcpV3XMZeUIC6SLVLQX/MNRboYYEeRvgJ1RRZoJtBJskQd6/C61xzqfkGYvYsaVS9LkdJ006ONsxTZYMWOllilDFlwUW0synMvbCy2iCIuje/E5M6X+YWXeqsaSEhcxrsIF3QKU38rfbCxtKt7buzQQsJVtS0t8WZxPZsM6lumnbm6FMPj32VzAvAK+FTRfflFNmoNCyskWKp6Qbs9TFLN4sOVgL+nbcmTC15cupd8hZvIrL+FpboZJApRN4sMgvzlVykmxHGMa9Bk5EAXlCaRLU81beTJWcz2HzJYkSu0xKVzNLrNYN9zpirZjvRps9GawSaJ42FX7Uok3WWXr83yvch69+XWfr8PNnLZBsL+p20umKKIV/UtPMrEO14CBWDCChyFQHROggYWiAADsoqO1R5bBh4oEBWCfFXm8bZSIU9lV5OEaR+xoBHAlzwCgK6DOo+7hGY9Ftwwb8D/hgJOhgmCIGYR4CNDEGwhnm91SEsQ9tOjXqTFXXMdVAwppkBehAwlpStFDmvcs4pPb4teVvFlxTgNKnoHpBUj7SojKlBpY9oii4pBCj8UJhbVXUQeQUBT1IIQGfSx11NDs6Kxx7jwA401sNLTdCVkHHn1xRsMUAnROBvd6jHjm73z2Teadf5CyHMwhIOyG19KEBrxUkC+aad04wc/9Ft/d2E7CN6kkBmnZCAjSMFKg/M63BAAxxQENj8CxN63Ek8FfjosR6vgcdZPa8Jlb6+S+ArmCOQYt8Ozi0PdBvTuHQ6vys+eQ7uVup8pJWNmIOuU/qze8Ar8GIlRE8gHnSVCDtzV5maAwTM1pPCMAUC4BA57xV2fYXLAG6bP/N/TOmxZAgAzdsEydD1uLT3aFO3H5LzQUrHZvuvl8/l0wQgbRLir6g8vZUAxNsCvi7nivPBPoxBiib6VtUBLQSg9Of8VVDGGkCads4x4cn0ILWDBdYlOedrZGPoFdRGSaSbZmlUy4LaR1iSqoXWRchjAVLi67ZAmna+y+9Rr03CC9x1VYYpK6y2l/VEPWY9ZAEMYYq+Tk+T4BxJtmlwixCAWn3aTzGktk0rTszIEOM8Y1zhptekpqawNad5qzewrUGS1Zgllb3XLKH2lW1libXCtO/EJMvb1Pvz2daJOcSWKUZGLWq6ialdivgT5nxtnFaAJUqOEca5rwGSgDb81ulljll6HVw15t06zQwwrWyztjIwK4X5zHWpJ/M5Vao1sM0iPe6Pb8rDf8l/Rpp2VpFQyx4WfJ1mnsyXucUI45jlljHbTIJcSYn3uaz2SIe+rjBpq2QrJ1zdYYEpsgYO+9o8ryLkEpUUlZSVVOWirU3n6PVG/SI9HhZq0vIBpl0NYwoma1xn1ZqqX33zKjmknbSr8gzvEO9rqc8szNSa19K8XSBLnBn6eZVxT6I1okKRMN06jxaaZynGo4yRopNuFtyXTwIFZV1seJQRBczz2mpXUeD1Yookm2NTvBhBzNi0plB9you/0P3kMwH0bOJMJmvsLCmMe7EoYkt57dIFjcmRDAE1X68GdjCDQJFDRpQRsuEnPI/ERx8quFfNPoNMYb5glmQnnnti7GhF+qICQOUhE+Jz18wKCQrKEJMvoqSoiBdPEUklFfqyAUIWjzzIJF0sKRqfcCTYFkmrRH3RF1WvApNZ2WK2mqKbXxYJM0svJjM24KuBbZVineMuF1mii3UkbOQcScx/apoBT0gUL6xq99uyG1ezAoQR8oxxngV61BewkzZWqUV8pGxBaF/m2H/0pTE5mIR15DCPgARpLvO+v8/2vUA3BSIkWCFKTo9TwAJh+0hMt4SlyIPE/OZWaXPfRANSAZ/DJbqcEbKslGX78krSpXgdrZBwDycDHSxCO0SJc0wAgsQbkGVhIiUqNWl0gTy1zKhh/ADTrNPsD1+T8VmyrlFuz5H0ReAsfQ5UGqhm5vlTGrtuoQIWP15JyZOJjA00zVlE8ivekWnaMbmw3YQmGKafGWf5DZMkpR4MOdpYpIc4WYaUwWiMH6Oi2/fVGDgZ4iQZJkOMECX9/aI/FE3CHaHA/4jrn9Xt55fq9QV+jvlEXOM6ZmgsPpNt/qD8Fn9KB0/4On/pyZcpBdm+y+9SJEy9guCT6kkq95kpB1VWVW5h0tBFurGYeADz/GxmgwmGvZFhDyDrNpkkI6pJoAa2nWfM7+cG0NzgKiVCWPDQAPe98WJJunGymGzDfE8lkEiO3/ztzBs1yio3ueLssg5EJG/HWF7odpLyB+KKU+Lbvdgwtqx1AjdoIUtMfR1XqaXAWW2GGGvaZAQWFJQlziy97nvXo9YA4kcSdpDILBnOkWScV3VO991Dsjy8wkAy8c1bcm/AbRo8zOQGV5mjj1ryzuYz6YLZFBjYaH58xiQu9+AsB34rKWGJrxe4y7tccSm/bcf8ENe10GpgmymVzdh2zafHjquSEle54QWS+aQWqOUCd3x+jHE9yRBibiwy/pu8jtlniJfuvjaGpPlmHfo+Zv2eeFlT3kzKO8UgYSRB2FLZjFkO0qRKqTGUebac0zTdOBK4co4JetQTN0OMTpYY1gVKNfuekhxllTD7njo4wbAXaNY4sURca2xayv0IPyFOlmtcdxbClKNNn+OXeYFZUukpAgmuAkvsCthSdQ0oKfOrCEQVaLHAgV1l36E+ZOr3lTdpH+qhl0DAiHsEAQZdCFBnPmJTAoIcGRiY1ve+IuPb+lD27zLCjI59WLdvktom9Ucr6vEA8REETDIfPAPB4gjLaUuOO3qVIPEVOT4eEvjqmcSxhiDNdgCy5mmGHpPJereUlVaWwHqwrOMyQGlX2IAHRTmWo8cyF6DMK+Tzh4cKOD7Ufdk5yeLAKQOQMrmlJbOix2Py15DspzEKjcN6Hk4iQNo9AhAsJsxMThCw6WISnLGmzLDIGfXwy0LVaT0vIQVQiwSebQZy1pRtP63AsoF1dk0+1jmw1FsDdU/oNp4QBJacQsCpDoLwky6IjOjxDuq4l/U9Z3ScUR2TgXQhBfO+RCDFnhdmZeSajm9K5+9x8Ble0e1ZMIW9mqCqC/hdPMAlb8DiaQSIMyakybbr9HcWIHJNpemnCViNNndrMgdHN2QTkS79/AkCT8osQSKyArK8o9u/jVzzTQQhGBAE5dTyGa5Mf7lea7R6E3GRHtqURWfeaqaiaCPHRe46KGWNtT/hd7Spl3ZLjaLW9Ut00qtWTau0McmQhi4ICaVWVVFt5GhjlR0aSNHpYJWBigt0K7OomjtcAKQeWyjz6Zulz3+eIUaBiDftQGy4xhj1JpzVwLP00cEyFzXJVpqMbV4HWW20o2u3beq5xSVKhLjBVTpYpkAt47xKH3NsU+9BC3/IP+Yeo1Sz76CQse4jFOhmgW0aNAhLaohFeohQIIQEJPaw4J+5z4CvH8Psf6oBfpG7dKtqbpxXmeYsS3QypIFko9wjTYLXuckwE95cNCygg2WyxBlh3Nf1UXIa8CDEj35mfL3eyyxpElzmfbLEmaNXa8O8q/zMfssarGZb08ccA9xnnBEyqqozNVpW1WLGgmtmw7dnvzN2nxFlelhgiU7MekrCIFecTGXkhIzCa1ZPVura3dZGi6qqMWuiBCu8z2WW6PL1ruBEq9ziEne5CAib0ohWogaUlNs2Vr0Jb+rGdtIehiFefw3c4YIDaFMMutWXHc+qElcM2CsQ0T+1mE+42Y9liHs9a3iFqWFsbQ/4Nu28WBihEaNMIVRNkSirNP2CfvOfyW2ziU3Voq/6wUTJKZU4rOb+fb4AMYmh0A4FJFlUgMeYdLYgscWARA+vYt501l0vEXLdtYFq/TzETCPFNDvFNGcxU+uEchgaFJ23i7WdtKPugHrhzDHEpCfghChxSKUn25opunmMmUmm+WjZAtCAumbWMdlxmgRRclzjOgNMM8C0b98Wfld418EbWyTYorlECDNLt1jmECVncV3hJg3skCXOJW7puJd8wW7eBb2aehQnwzBJKimxooBkghVn9Nj56NEboyxmsszQT5JhB8gqKamnU8bRemNAGpvkBJKCk1WtvLEkoqy6geQGzbSwQTuBGb6BWCbBjpFxwKyTJc4x4WazwkXJYb58HUhUt8WZmy7fKMcGUC7RyQI9DvLJgkxAhyW6OEeSdv3CLtCDmMnmnEIrN69Dv44yxB24BXyRnNXFo1GHTfrXx5z7zUnyo3hU2SLW0iCNPWJBHxbA8g1+6IvQSp0bY1UaIJsj6jdNu5mFKXrqkj0UWrCUS1n0m58D4Ne3JBVFvAsUyHDFT7NPvQr39HOf91eJkHZ9FjHvzSg5ZYH1OXhjf8yDUs6BFD7C1pTvRZJhzjLNMie4yRVucFXl8rWYV4dt61U1tbX7kZ3nVaK0k3Ypg5gBD1EgQpwMEwxToJYbXHU2sT2MrAgzWwJhYAqT912uOIO5qMWYpSobG9Zk2nafF7+PFrpZ9Pv7nAZcZLXrmyFGO2kH8Z8gQS7WtbzELae6TzDMBMN0sKwdwBNMMYT5rphPhyWox8kglgkC/LexiiXrpuh0f9SL3GWYCWcPWlfPgKZmNnhCB1e5QZh9zjKtMoN14mo8bMEKxswWD5E2MsS5zjWWtHHSwTJ/yreoR3z7JhimjzkW6KaNVS5xiwiS1DVHH+XeNZV67ywSdsq+dbGlOGonyTBJhnmbNzDrgCg5kpzDpBo5ZdTO0eehIJ0seaFt9/IeFtxs2dh/lurVwTL1+my255U1zazYMfB5nzDib3LWi8g8tV5I27FZA8ue6eYfWMkh3+T7WMAKWKJb2DutAENMIknkc4hioMVB2TQJ9ql21sGwgnvG8ItrWSrXTdbT1Mzw28zATfZrsg27L97lAgt0M8YoaRLc5HXf56/EawsBOAz4WUYW8gngP0HAhBJUnEdYT1kEPLHHpwEAt5EAAJO2GiCzJwDVkabUNg6X7cMknZvBn6OcbD+via0VTTKugynET+0kMAIhA/I0fdf9yyxpN4sAKOcQIGcYTz115lcdnwYxKpVhVkngjxcSRuKBMfpCBH5u6sl2YBLbrOw7/orMBdN8iilIGpF8HmpwQU5DMQywBFIpme+qV4CHAnLl0vo+ELBH/bgLBuDdVn83A2XXcA+7rtf4VNKw/96CLh4ioM+gHsOuXgdPdEyWaFuJAFx6nqkTZl70pDL1Tsh5cTn0Mp4OG7FADwOg3tH3v0LwqtNza6m5JtlNKECa0vnewb0EjxQw9P2lCBJ1yyWwj/T8zet+w3gAhvsqbhKEspgc2sBnleIeqATYGWxrcLBCECZiwGxRt1nUz0/p/7+HB7hEYjrmJt23gcAf6NhKyPVe1Pf9BYFvJLrdzbLPF4U9CnwaAO8iCINR4HpLPTGPpsvmrQv5fqSR71CdAIRHu6D9+F+J1yNO08A2cbJ0s0BR5af2/DIrImPH/wF/rA2qVSopqXVSpTebxH9vlTd4mwRpZypZqIWtW40sAFK3v8HbAJxgGQt2muYsJr0cYoqsKo9MsmqJr2GKdLOAJehaIw9kzTXOCC3amLNaMgCaJPTK6oJlOnifS15PCDNNyAJxMvQo68zWkgv0UE8QbGBhbpZgv6KgjDHaRrUhbTLINpWj2trQfHdl7ZljHbF6sTVsPzPk1OYoQ4w4GccfjCxhhBvDFITgcsJtumyOrN7pZIlq9rnGdWeCVVLiOtecuGK1haW0RijwDX7IG7zt4zWPw33CbksjTXNROgwz4aoqywoQeXS1rxea2SBC3tcSC3QTJ0utWpmYcstsq2rJOwHEPA9lDSnXRLeSs6YZoI85B5SNDNXMuo6/2slXVlNu0MxF7rBINxa2Uc0+Uwwpk/SOMu3OINZXcwwy5TYoAGYpZMQrI2nZdXaXi/q5Sd7gLbrVkqYBCbc0Fc+3+Q59zHGXi8RUKWk1XpoEMbU9kkZ0ketcw5Q6pniKekDHiiv9RN1ZcsWqfW/sezLCT8gS52U++oXuJ58JoLdJky8Yu1lgnBHGGCXJsLNztmlQ0/9ll6AaM21VabwmD6qmyATDvvAUMC/nHW9LbTF5TJaY8h0EQb/J63Qpym/b6GGBy7xfhoTuu/TWpLSLKqEEAWFqyZNUPbjQeUWWY0meQ8qUsbAKS+OzFBnroEhqYIhaCm60CQE7BtAbkCTFdCBRz5KkIlaMKyTcyyBH1INFTEo0oCbxT3T/gN/YFzSAoYEdUnSSUT+8bRqwFNSwgg5ym4ti8qxxXuUCdynqzdvklSa/21AJkoFhps1PaWfJaLD7embv68OrHTEsNUNz0/LLdgtYRLn9TuSm+/Qx5/82hol4K0V9Hl/nJuOMqIFrNzEy9DHLj/g6P1FmX4S8p+pYsnKEPEmGfZFmc2207hYkyRnAYtrDKre2ObXEUGO1SPej6GCOPWiEpj6hQKXI6Jb03ADuRWdA6qIalzazwQ4NykIqIQm9TzhEZJVjjPoNxRgvxk61wsEWumZMb2nUlvbbwbJ3Btf1phsjQwfLzNCPxbzbA9gKDaHB12vHo+iLYQuw2fiUBunz+/q5sjWlcMt4d7OPOQeWbcFvJsPGVraHfRdLfIMf8nf5kTORDXC1cIwT+oAW8C6wNzBPUmtOSBhOFvFJCTzHJHBAvMUsnSxCAQn/EVaZpGRHvZHQTpo3eZt20n6dGSC8zAm/D0lRVq0szawfn0i+JwkreGfAxquM8xtcpx6RhxeIMMEwi8oYLhDxVKl2ZcmaFKCPWWevDjJFG6vuGbpMB8Mk6dQwj+v8Bqta8OSIOp3fjKfbyLnE3UAfC2aq1S6vsSJzRDnPGO9z2cdVDtRKx3PdZdeV2gUWs2HxMLRz1MkSr3PzU2a5/cyQJa4Mu1XMuiJNgin1LbGO+A2uMsE5Z8QWkORVwAuaZtYZ0C60gW8Xuet+POZxYgxDA/Kj5JypOMK4MwLtGbFCwlmTJqewRkeMDOtatLRgQRgiETKmtDUxZuh3v9eYMrUBN9K2eTUjaksSH2KSEca5xC0sQGWDFlUGiGeqhVJ18IR9qt0vUL6bYvL9x/yBM60PEXluik73V2lmQ5nw0oQsUk2WOHe58KmmkBXU95UJ0MAOnaSUVbHvxeeLPP1M7j+/VK9jBOEATxAQxUC26wQ+dSYZNGkeCMhj4AUEQEkMAQWKSADCSZWppggYa+rldrCMAE6aBFrRJH9HXtHwi7DIS9c2NVX1j4FxBUS24ODRfzTmXQIA67ruM40Efai89L7+7GCFAOALyd8VFrxQhwAxr0PVG1B1HpFdGovLWGZn1FvtMcKSiwX72ZrX//fK3B5kdWwnlLEVR8BBG/ewyGpBt5GSv6sMYNUwkJnbkk4bPwVPzefPfOMMUIvp5/dkfxwiTLMuYdVxjiBR14A7CADRkI4pgchAS/o7S9lF5uogqwzMtJwXDvXcWp7MFIH0+Koca97CTooyLw7oPpYwCOZBby2wrBLmxwjg9EDPlzH6dnU8lQRMSzuuqPz8aE+YbfkHiGzXfOwGCZh8Udn20YdIUuyUpCU7wBmDyGs6pjo9ppymKRuAaHPwROc+IfvJ5ZDvkZ7/rWnd9x4CYsZ0/GWSbyp1OzY/a3w6rbZIACTacdvYTBKf1feNAK+rZ98ubCkgubap5+WUBpbYd2kYtt4SILVQVDD+E34lXmeVuGGspn1VLogH7glSdPJ9von44YZ9jSphZDFv/gFuQ2EvY9jFyGKqKQmEuIPJPbPEKE+5NaAGpGYzLzmric4qqFIOfHWyRJd6/BpZIaP2Iisk/PltfrwWtGBrNLP4MFBvSJl9/cw4qcbWmTZWU6gs0s1DrRMsEMIYfuYzbwSgbhbdV/kuFx1DiJBXd7pX6VYgyTyrp3S9WaCWb/GnxMj4Ot7CHYzJNsUQM/QTV+uMBbq5yRXGGHVSkoFmF7jj9YapuqxB3K5sS1MitJHz4K92rWn/mD/A7Fu69fMWUGYkGyPMTDLkVmMWaFkgQp+y/AaZ4grvqoXVXRbo8bC5JfU0fJs3MMXZKGOskPCgkCW6VLlwnwxxbnGJDHEW6XGF4wjjgLAXrb4ztYpZs1gt18Yqh0gApXn6J1hhm3qv88cZcSZjPw+xFFtp7JbcJiVHlG4FUkGAsloKlAjRzIavN0qECLOv4YQ9vp1tGnz9niDNVW74etgCVOzzdh1lifMGb7nFVXkYzQjjNLNOlFXucsHxpQ6WMRusMEX/dxbx/n6X13+h+8lnAui9yFMSrOhBFpyB18cszWwwwH01AbX0j6LTX+1LaRImO7AlOrnDRQcQjPpp/nmW0nmFm37RJRlmiS4HFwyE2qCZaQaoREItTI5jySqAd+vtBmKLXkumiysDwRa5AozJ5C/TQS+zCnC1UEIkoyKfa8G89STVVfyBljTtZoNmbnCVVZUsSdiEGHqOMI4ZnYtvlCzSOllCkiW7HFQpUUlWJc05ou4x1ckSfcy6cWWEAtGyh0ILGy4PS9POMicYZMoXuOa7YN5OBl5aCEmOqC/mMsQRw/IWzjKNaOfX3StOnNWy2uHYoZ8ZZ4sYFdUo0RGVxeWIMs0A3SzSqaEfRdWvi0xb2D/W/TEA2WS+9xnwrk0nKS6UGYz2qi9USVlnGeKMMuYsnGEmuMJNRhjnLNPOoLrFZZ8Dk9vJQq4NC5+wcJASlZxlmhIhZ8dZ+tItLiFR66sO/lgio7FsDHQTUFRAm0Pt+BizposlJRxHnYG1QTOLdDszyQI5BplyOZnRusUcvk0XovXkiGrqbYwVEt7Fs3GK6e6se5w1s84dLmBpywLeFzCDX3noZV06+KvwMsAoQ9w7ePtUM0wS8YqMOHvSwALrHFoXc5Ih/04bcG6vu1zkiQIoAjQtqlxgh4zK9d/mDcyfVDqJeZboVFbUgDOJ/oRvAUFE/TInFBybVFlt1psGc3oPBvGDMWDDfD+SnGOasy4DNoAYhHbeq0VLpwZZWBPB2MJdLLFEl3uORBWcO0eSa1z3DnK1SiBiKi/pJMUGwmIWxnE3eWr5On9JlJyDkgBmdWBMQCtol+lgkClSWrCM8ypi+9DmbF4DMGfoZ0GDZ8waYoMW7jNAnCx9zDpL1jxbDIA3sNek8/YMiVBgkR5/3o0zwjWuO5hl1HwrDH/MNWdRDnDfv1/mWSJBRutc4K77iBjAZoWtMbWtyLLmh9k4WCFvRfgM/QDOaKvXrq15MlowkQHXFkixRKcX7IDPgTE6RcYt19UY5xELiFFvUIwz4ow9eyaWCBGixCRD3oiyjnQlh4wy5oXUfQYcUCsv3vJEGGLSO+IDTFOv19hVbvjCIaPtCSvkLAzDQo5qyfMdvu2M/1ryJFjhErfoJMU+YvthXXzzO/3cv+oJWE11CAMqrD+LEchga8BVJg8RoMNSRS1g4jwiiXydgGGF/J3fREATAw8fIAb+dQrKfUAQIjFOACDWC3gXH9EggpqybSSUyVbO0koizCaTuZpf2zzue3c2JuBOVYfuo64sNMBkmykE9LFj7tDx1SHy3rD+fh4ByuL6viLOcGq0OdyUcVfFEIZbFwKymJzYpJEJYSUeZAlkvigzbAtnh/Xre4nBSyaphCAwIocARl0EIJAeJ7vqzfegbL/A1m09liH9mXm11ej/TWZ7GgGblmX/VadFamtBDw4KJ/XYDnG5NQBfUzDWQin+AAG7FPCqMJZhFo5UEh3p0OO4LWPOK/OPLQI2nTE+LfXWwkW2FKQFIjZvlsr8HkFirQKmFVHZl3tA3is79j39XJfO7ykCv0fzoRvUbZ3Ta2oe1koyB3kF/JxZGUKCSN5Cvj8lAlmsMfZGECajAX2nCfwWzeLTQODDYHwHKt8mo+f6MVT8ljBQXxoEvgytxjh9Ta6xrWlcmp0rQnwQIl+B3QJB+Mzn/JWnhlWtCwu6XskQZ5xX6eCJ2ze1KInhLheYpZcxRgE8eHCMUfVJ3vCaYUfrbltnv8o4+4SdASb7D+wzaimQYMXVNOdIunrLQBarTweYJsqqKz7q2ebHXMN8mUFADksNNelmA9vqsywNwzhZJbhUOissquqycUbUkqifbRpcJWCNVlHUZb1utgbfBe742uSCNihNKWT1iSW7WoDIvio0LCBkiU5+wgh5alWeXCBLTNfHBbUiymAhWQu6thK7qD5m6OcWl12B0MEykwxRq8SROQ1GW6KTaQa8sReixI4SLup1DWiN1FryLksd5R5LdLGjzUDAMRVrIBrWkSWG+bmbMmGUMSepCJPvjCoExTImRad6nkuj3Wrogq8JOuhiiRhZrvFjhpj0ui4gCIjqRwLX8n7uRXra6+8x+xIJhEtwiPjhl/soGwhp69QBpp1pepPXvSlq3pFm32NsSDt2CzazkJEBprGUZ1O0LdPBJENUUnJmqeFBZj1j59RAN/Ml72eGWl2DW83bSQoJy8z6uYpQ4O/xQ18LCW4jASRPEOXnLL1OzKn3AuX/9Sv0N7/l//3XW/+7eRprihwSYpcIjSzzMSs8ZJcDlllklV2eckgltzlgnQMa2OZAD7hEJfXsskUD+4Sp4oAK7lNinwybzNPAh/wtLnLHKZVZ8lRxwBiVPKSJBGkO+B6PqeQhe4Q4YIsm9QrYoMRDltlhmwaqOKCGNbq4zUNO00aOp2yxxyJRVpnjgDCP+BmVVPAR6ecpHh87wJIEBXxa4D4VhNnnKS/SxRJVHLDJAjXs+Q0rzxyPeUYFR9SQ5JAQB1SRJ8IDMqzzjFpuMqmstAiPeJsNAP2ifQzAHnM81TbWAVUcUMUeNZzmIVnibNJIjlvUsct9DmhmgwNCPOcYtXzCDjP8d5SoUwCzQA0lHvEBdbxEhiOyrBLlI17mfUq8QIomNjmgiu3dFCt1W2RIMcMmf8XfYpQxQhyySZOyUb7HKlFeJM0cp5TVscs6zRzjOS/xNjfJs8gzJGZ7k1aWeMZxNlkmzM94oF/gKmYosKVf7g95h33+W2X1rbJPBc8Js88mjdQzTxObzHGKCQoUqaaJLeJkdJ5T3KYCgH1WWOMxu9RxQBVVeh1+rCy2F8gQ4pAdfsZddihQS7sCdfs84wU+YZY+iixxQBULfETP+kcstLzMAVVUcMQM/bxHkXp+TpF5HrBLCxvUcJ9nHKeBbZrY5JAQm4zx57xMH7N8yB55stSwxzGe84AvENf/F5lmky0yxKhjl1r2XMoZSK//LUWescADPuKAOnaZZYOfsUyMn1JknBz1PEckvCt8whYNnGCZKg54wCqNbLJLvV53T9ghTYEasuxiJqgxrvNHdPAyTwhTZJOnrDNNPbs8o8ghlbxHDcf5OSEOWeEFYJlpNsjtLX0Wt59fulcTmzyjkhhZZunlBJI8LHLLgKJvVO8r3GSbekplt+cOBVGtaEmTYJgJIoi3WjcL/hABAaPiCvqa5YHJ2wGM5v4GbxFSUMTkB/+YPwTwEIwZ+l0WkVMQboNmLxbrdVRt5Hify4gZ874XFVe5wQTnqOTQ/UqkMxZ0x3IE5scbtDBDP1/nRwoO3scSvMLsc44kDex48WBJagIM7oNKQixgZ4Z+99+zjp10TQXwirLq47IEb5sjS2RtY9UT1Cy9rZp9Zwn2sECSYbLEnFU3S69Ko8UrxZLNjQ18nwGu8C7m09HHHJZ8dpUbLmuVjl2YAe67ObEZ55qM2Vif1mk3t1YrPizJ21i9Nv4VZbvnqWWJTsYYdZ/PfRVPWGNlX7dhgRtp2t0EeYEe8tQq63QHSwy2BNptGrxjbgCWLV5KhDjLNDP0u9TCAC/r/DazwVVuYB5/KWXg23kHHDirVpmwgavVFF1CLcfZxRJdZIkzyBS9zCJ+od0OEs7QzyhjzrRbQewwmtlgnBEPk0qr4Tigi50WqimyRBfdLLhMx4rBTlIOplsH3Txput107HP+MuDuJAJkpfRncZwNRQz4MgJsmezPUlIhkBaqTNJ9wBRoiZiHm8kBjUXXBVXG1jJAxsINDgnCK5r0cx24Fx47ZWNv1G2uIYCOsdrs+Mwbbk+2FVF/PULys4qEsAWrBgiCPJYRZth/LAON4xLbVAoOU3DK5KMpApZUeWqtzckaASD6JTi4riwvDdioOANVBqIOys+jpxBg57puy0IvQpLEGk2AEwZSIhGuMiabpaM26bH8gczbxH8O517RY0oqaAjwY0nUjX5Zx7uMpNKGCCS3dh5MqmqsPTuPJmM20MrAoIz8P5/V+Q8hjDnzbLTPvybHUXESCfKwgIcYcFo/a+EYGQQMTiDA17/Tn3fpfJ3CQUs2ETByl0A62wURZYJSqcdcA41fIvD8SwY/91AW+14Y8+5d5PtRdo2aBPZUjXw+khWZcNyATr2mK8xT8bRsO5fWc/qbCLPUpLwJfd8DAkm7eROmgGHxXlz6AZxSb8vM2xA3ZmEaKq4h19CHynBsknMaOQ8H48i1vQZR89MMQ/0g7BVBSdSf69evMc1TNc63oKUeFqhGwuOW6KSBbZ4gPm2TDPpzyMLH/jX/kG0aXF1hTTYLQIhQQBJqJdwiR5Q4klWaJeaetSltss3QT1hrdyPB3OQKHSyzjwTgJUhjQQYgZv87NDBHnzP7jf0nfnBCERC7kbA30Cx5XpJv2xxANADMapxrXMesrMRbft8bvSUqmWIQS12dYBgLl+tjVhmGgae3Mf4OqWSMSwwwjQVugDSmrXbtZIm7XHBVUZEwtRS4yRWi5FxxAzj7rZMUS3T53AAOSPUzwzYNHFKpRBUB/MxzPkucdZq5pAQUa+4aQzJPhG4WmaVPmXFFIhToVBsxs9eBwKP+ErfY1nWcrQGW6XDvt1WiLgk28ojVZzGyFKh1NZZZxMg85B3c6y5r0i7TwRijRFnlMu9jNkAxsuqX3efz0u3hjXGdR/G5TtGJhZPWIyGPlQpy2fUBeH1ugK69LEC0nbQDjYNMurJR1DYtmO+gkbM6SZElzo/4OoNMOtlC7KhMfRcjRSe1FDxLIU8tY5xnhHHm9Pj6mSGp1j8jjJMgzRKd5ImwoiD4Mh3urV9uK9bBMus0M8wE44zQpNfm3/T6TBh6Be0C7FBPlDWO8wyAPWro0oE3sUk9uxznGXXssks9WzRh6XrlSaytrBEhzwEhOgtPqSPPizylhTXa06scEGKTRhLPZeH6AitU8JzjPCPGM0f8m1lnhzo2aeJlPqKKQ17h5zSww0t8TP22fDka2WKISVpZo5ISTWzRu5uihj1O5xYJp5/TwhqxnCRUtrKmgRF7tLLGC3zCGq085xjPqaDruVSkNezRxBbPOcZxnhEhzyEh6tiljl3q2aaJLbZooI4dBX72qGGPMEVa99d9GzY2AyRtUdecztN5KEuWKKv0MUsVBxSp5oAqCkRoZJOX+Bgzv9wlwnOO0coanXxEK2uc2HtKE1u8zEdYeuQeNTznGCxBI1vUs0Nn4Skn+Ig2VnlpO8NxnvGcCl7mI6ejfpGfcsQxLPijgW1ObK4QLWzSwgYv8Anm9WTnrPnneWJ7qxxQRR27NO9tcUAVluwaIU8Ne37sxkQ7yWOXKLawxkt8TDVFatjTTtIOL/NEAbtPiC1J8mcVB8TI0vBcwkZiCtiFOKSBHZ7Rxj5VNBXy1LFDI1u0pHeoYU8THx/Ts/0RPIUKjmhmg1N7i7zMRxznmQMy3Tymjl09qzVEyOt53+SIYypfzdBRWKGeHdqfr3BAFS/z5FPHC1DFAd08ppU1aijwMh+5x10Ne7Qs7vh3r4Y9XuHnvMxHNLJFG89USFlN86o8KPuYpX1TQJ0i1S53P6KCs0xzgie0sk4ra9SzQ4xnPOcYXSxxnGe8tJ3R78smNezRTtrB6ga2aWGdVtappMQuEfK/IlFmch/MYd6IZv5rFHPAJRdJziE+cmHvHF3mFktu5B9x8Mw6rQYAnSNJjCwznMFSvIy9ZA/bVWXwmvR6iiH1cJP4eZPGCmAnUnZLhTZWWx9z1FKgQK1KL9vc59Ik50kNCDDmWbvKNSztfFUp9lmVaKRJcIE7pGmnkxTX+LFLa9vIYUmtBq4YS0vuoQIodbNIjAwLdGvQy44bGMeUCVzNvjPHreCZoV/hoRSdpDDT3mGSjDPCZd53Jq35o+WVe16kmmbWWVW5bjX7KqeexewCJFSoyyXuGeJ0s8h5xny+LOHK2GiVHJJk2H9vYKN0BXec2VZJiQGmyVPrRYN51VmBIGztmMtHA3+RdVbVNNjCh85owWkgbR4JNRpiUoG7bh2nMATMey9LjC6WVN4iBlxmqXGBu3SRciDSjIPbSXOFm+7TailslVp49zFLlpjKfKTgty6q+e4BjDLGvhaYZheRJsGcBist0eVAeJY4PSz4tTBDP+OM+IImqteaWFeE/LqzwCVjWZcn/hpLukCt+/yIz99P3BPGvgtZZa2n6GRWu/TGOqjXDu3n+lUWFsGHBKyehwTSy0Zkcf8h4n9mzK00Am4YmGXyRfPQayWQQhqw04qwmSzkwBrdYQQE0/TO3BMCYOhNAn+0kwRpnRD46JUImGrKXgPEx+4H+rvbwBQ8va0yyE09Vk1+rTJw0PzmdNxHU5A3Bps9Ip9A/roAH40QAGbm3WYyUpPn7uoY7b1RmeOqQTn2g3sIcPUEAbTMy22QgBkYBjo0tfeMvO+wBFsGGj6RuTgw+XQMlzI7APTnwHtwKoxILBVYqwrpZ4ztlSFIEoZAevoKwkj8bQI5tnoWbhmAaDJn+1y9Hs+y7C+irMQjlepuvQv5dwikrPd0HBk9LmN3LuOg8IGlG6u8mSkCoGsKDxLB/O5yCOCWJQjNsHMURq7rmrIx2HxtEoDPdZCbJvDJQ48zTJCybOd5E7n2NnV7J+UYKgYJvj8hPZd2vaTlvVED73Jlsl+Tcj9Un8cwcl11wZF5AyqAfSom53Lrtp6+TQKg3kDWHOTH9TOV8p4qY2LuQuNvISDyI6CZTzFGP8+vDZq0rjqkREiD5wJ6YqfKLIe0GQcwSy9LdGH+Y33M8g1+CEjolWjipLlm1kZJDUCzYAxjo4t/dpuzqkKUGOUe3SxykbtsU0+MjId2iWpjXVVhebXCKlDu4ZslToIVFtSyygAuU08ZW29BE+0B9xheRZJmF+ihixTNrPMt/gSQoDard/uYpZMUi3S7B5zVNhZUKMwmefL3qA8hSKN6kR7MS90kteIdfc5VgKbkkOCGFZY5wRijTDPABe6wTb1baI0zwjYN2uAMMUySUcaoZ5s3eNvVTzbvlooaI8sqbQqi7rtasKCgj6nFJEQ0Rh+z3kC8zPtYVoEl1N7ikoN0MTLkqeW/4j9FQjmrMUWjBPJJPW/1iqwTROUnygKp8dMkHCS2lyiOZNzm7w+iurFaR+x0phw8NfXYIJPKghvk+3yTPLW6dgmCNa3Gt+vpR3ydMUYJUfLrynwkBcyrJ06WK7zr6sgOJU5MMejA46o2YI2plyfi17Ck/orX9Nf5Eaags0BWUw1Jgz7s/pRLdFEi5N9B8+Y31WYlJZ9D8yW0MNQcUZ7Q4TX7GWboZhFTwYg12rbL5/+m12fC0Gthg7/1z0ZpYJtLvM/L40V+PrLKHS7we8VJZsKCRj+ki9HSGOOVQtvNEeUCd5mlnyukuatyz32qqWeNOfr46r+Bx79f5BZR/sGjNXgLbv8XYWY4w//80c8gt8M/P3+Vb/BDJvl1mlnnYukuf1J5hcvcIsZHTDDMVx+t8vPTjXwhVWDrxBOq9w6omYefDlbyxdQWFGHt9ByR3T1yda28+Bb8397s5m9/5ymkYfd/tUHd9+DRt+soccgXljN83HFAc3GD74e/inkmRcnxP0494L/vitGtCwn5wq/SXNxgO/wc8TGL8ZXsIpDn38YucIU0hxSZIkqJGDEyfPke/Px80f37ZunjFpdoZoNpBvg/p/9T+A4weATxTT4ZWeKFqU3+7eBXXWbXyRJfuS4V9dq1Aq3je/z1iJpmlhY4rKyk9cEeTMNPf7uGEiW2KbHMKaXjrvDF/yXwrX0+PNXMl976iL9+M8/wWpGKJ/DzwRZmOc5v3ivyH86/RB9zQIQkLzHCx/xLfp+L3OW3/t0sxGD3tY94K3yWDop8+UcpGMny3yRe5x/8kwX4Avyf/pML/JP0fw1vwyf/MEOSc4SQFOJqqrjFWaWlrniS0YTSeTtZwgzH//ajB/w3p7/Kt3bvUZOGvzjVzNfX/oqKP4Kf/dMoWeJ8deopHMLHw9IafDFb5CCcYanpJdKE2SbK3/nXDzn4+2vkmpp44X8L/+F/E+fvZH/Oo1gDp38A7MHH/2yHF1NrkIb/y3kZ39f5S97mIv/T7Id8EmsiqSh+AwleSz9lrwn+Zd1XAfjPdu9T8w7Mf72KU2895/GbwjpapIda8jxU9sh9Ovntez+DpiJ/8UqCEZZpLj4jE44RZp8X/wW8909fZBkx6n8htemLn6Oaff6k9SRfL/6Mun8CH/2z5yQ281Q9gtsjA0T4Et/gh0xzkn72GFr7iIXWl9igmeG1j/n3rZcYYZxKSmSJ8+upp5CE934rxvtc4uv8JV+8nefnr+WZpYPffG8LHsPPvx2iSIn/8p8fEPWV3ef7VdJOaQsbdLHEoXb+9lU6P82Ay5qNxp0h7gt+MVctkuQcf5/vYwlY47yKRdQvqtembccA8gxxLnDHH9QmubBOmgHAJqEG2KGBGFlnsZUHGF3jukuxt5XRaV6LgBctBshManJnmH2PnA8Ay5ICnUFwzzRnucAdtwgw7xTxAWxRY9wid7moBrPSdbzDBfa1YOliSYMiJO3ZrBmssQPwTb7v9848ksJqfil9zDGGPL/iZMqo+iVMQj/ANOY32sGyB1OUCFEgwjgj2tEWWbUBYEt0Yum05YV7PzOY15156Fzlhne4Kzn0Lum0ykWX6HS2XR+zCti1uEzfJLkp9WY0GfISnXSzQJwsbaxyhZvkiLJAD23kyNFGD4vKKtvBEmd7mS1LbBf5zCBTpGnnAncdeDQZj0mDE6wwQz+Dmvhm3n4hSr5t6z5bkq55wNj5X0FCecxWQfxOzvr5KE9Vs+/NKGMa/CKG2mOMYkliEhAlYJolL/cxq6wEsRAwb1GR4dzHJOhmrGwpyRs0IxYjlb4wimqwSg+LZIipqfShMiOL7pO5QA8jjLNKG/+Kf4ygWJ/jV6P+bWyf/xnwR0gl2qp/thAG0iACqryrPzcGWlpAhUIRIga+GBPKADsLpJjSz5YQIMOkmbsIKDIF8/PQacBgCGGIJYA3EODFQDUFH452oaJSmU3/EwSkGkHSPC2MQQMuSMNWCl6KEiTC1hP42ClrkF0EADkNFacgsoYANOZ5l1Cp6SY0HhKAd9GyfZq/2nkCsDGMg4VbHyoTLAtbOxBtRICftI5NgwwOJqCqCffAaxwE3pbfx4cRsMrCSNIKzp3SsVzXfRrAFgIea9qugYab0FAWMBEd0PfXKNvPQil+CwFHTYpsTE7126utIfB1y+ocNOr4ytmZQ/L/pTUJ7WgsY0pSxlb08TYR+Oc9kv1Xtev8DBOw1IoEAHRRUmkPsmVS7Yf69yuIrNuCTE4BazB/Wz4a/32ZI4r63jf1GO4pc878BLsIJLLfRkIvFKhNpSACtG6JrBz0GIqIF+M7BMzFEoE8uUQAghprchNPkSYKFYcII/OEjLPCpOy74ovXUAeRVpnXAQvyMIalAYybEFHw3CX1Jku3sJh3dP8FjLz/uX99QjsWBCUAjzQTrZknFjkrTDNAA9sMMeWNK2PDmcQ1TJEZ+l0OaADCAPd97bdEJ2/xBv3M0EwtfcyyTjM7ul61Bp1ZYFh6aIyM1y4AE5xz1pr42rd7DZiiE/OlLa9xDGRc1HRcqXMl9MzCtPYJu9+ZyWlDlFjURmKcLObnvK/2Md0sckb9hc0D2cBPa9xu0EyXApnVKvE1hr8lmFrDdkHXWcbUN4BwiElnl4lljsh0i4R1LXTIKu3kNLnVrJ+sIR4l57VRnAw5olgQovncSyKxRHSAAD62P2MMmrehNavF4mtO69Uss/QpczGE+SKaRZRhEubdVskhGeJeG5oaZFZ9nkcZ84CRfaoZY1T9/FJu0TLBMN/gh1g4YpJhzArFQM6wkkQ6WCal1jgJ0toIlfp6RRudDewwyJT7cluoRoFaIuTJEtNruo0SgX1QWgFQW38YwHuoqhrA6/8oq2xrCN4l3iesLDvzPY6R4RaXqUR8lxfoJqTrlRF+wgbNzv5sYFvHLSorYcI2M84IV7nh4KYBqSVCtLHKBMOI1dIh+4TpZoFFesgRdXn8It3Us80pVbf8Ta/PhKHXwjphiowwTlsxB7fhCz96zO8Vv0fd954zuPmAl+eFtdR444AEYtTZzwy/vvyAISaRRMJ9Tk09pX/tMS8nnzFaHIOHcPKtT8Q/6jbwAZgXHE+Ah3CJW/SvPWaCc/SwSOMHB84Wa32gT+7H0Flcgg+h8TsH1Ggk/RfnH0rC03eg9a09au5JIAYPhMLMA2Ac6h4+hwdwOvUR3buP4UP5fSlUyTmSXOUG/yD7ZyIzeigLtpPpT9w89MX0GnWp57yQ2uTU8lMubP6VFAAfwu+t/TkvpteI7z5zkHOJLtiFjtIyre/s8cKDTQrU0s8Mf1D6Y65yQ4queWSMt+GF8U24B4NMMsgkvcwyuvtXUnS9B61Te1AHfaVZvjL/VzROHtB6b0/WFLfhi8sP+fUHD/jK1F9xgTs0sEOUVSmS34PB3Z/BhMx/MQxchy+kHgt1+V34O+n3OLX8lFPLT+lhkZPJT/jP+T/wW8v/Qc7dbZnHAhG+nP2pbPe23PhIAkmh1KJG2C882KRHaeUxslj6jwVSHE/ucPzRDn/73m2urt0mRoZBJvnb2dswKdutuSfjHGWMiu/IOT+7Ni8LsX8D3IPY5hovjq/BE6gal87QxbWfyDU2DaGSLMx5T4AKrsPp6x/JMSXhxak1KUSTck10IcBqN4vwEF5Y3qSDZQaY5rVHP4HrUHNPfK8i5Kl5CNyAU+NPYQJOLn/CyT/7hK8uf8AODfw9fsgXHj0WavV14M9ggGleTK1Rd/s5Jx98wovX16QgZJUBpuVaeBdnDVT8haQ91n34nIMfwMvvPWO/5hjkcI9Lu/F8MfWQipw8VPpKs1R8AAlWOLn8CSfWnvHryw+ky31PPBFaEJ8+3kFNXCflmpqCLyw/dpZmBUefxe3nl+4l3bA2DRPJElIJgCQEy0OkljwDTDsFXRKgNpR9FXEPuvKU1IJ2V60wuqkJswlW6GSJbhbcz9L8GCwYIUOcv8/3OceEM7Fm6fMiap9qlVWKh2inApGWdmzecdXsa8p1PQVlWA0y5cVLH3POprNkqTTtLlcwCUAtBaYYYkhp8SYPMTlILXkvOsCAw3ovzJbp0C60hNZYl3KCYUCKzPLQmmbWATHJDVHyomKOPiy5t6gelRliCgz2MskgG7Rgabvi1dbmnVWTKohEtZrv801AnknGpLQxTDHIKlEvMMV/c8KL5Fl6HYg031FL0Zqlj2oFEy085zrXsKRxM1tuJ42lzuVow9KnN2jxpNhlOkiTYJoBlTEfskA3Uwx+ar5LhBhljH5mGGLK2aUgLDXraO9r9138W9uYZoB6tr2r2okEVLWrvLWZdR+HpXLbYsEAMvGBrGaWXszk2jwVV0jwPX6XbpWMmIylnbRLXqPklLW57ePtZIkndDDKmBejwgKcc9C2jVXGGHWgdkET9wxcNIapmXynaSdHlP+K/4Uz/0xivEQXY4zykH5GGEeSoQ8V4E9x6ldBcltAQA0DTT4gaCsXEbDjNA4WkcEBEJespkVe6GmmJpM0IKiGACAbRICIVqS+GAa+rcb787KfF82wH2ATUm/rfv9L3cYjglTbLqjQdNbGeuC2eq+l8YCHo0MEKNPwgv7fRoAak1Hu6Z9KJIXW0kljiB/fAwJPOQMyi8H+GSw7xkMdYyMBiJbEQcP5BwhweQIaT0Hqtsgwo/9CtnM0jcuPj57IPqq6dHwpnbN6AuZjq4zr4D0d5y5UXURAWAO3zJuwFQGqdvWcanorCaj4bQIg82t67Dmoss936BwoKHUwrnOY03NzWscZJQBoDXAzv7wzBKEdm9AVQ8Ay86KzOQ/rvtD3GyB4WvdVRBiaaQKgq54glAQ8QTii484/RNYjINdOWLZ1VHadvVgHsdYyTzs7/3+k53BXz/MH+hll8mVSBKErw/LZrhjEvwZVf19DSMx/Lyvn6UivzUZjqWaRa3RTmY7KTqw4QcDOMz/G13U+PgDFbGQbH0JtWP5YGnR2TUJlttIIMN6ES2m3cjp/TTI+GxObwI9k/+wBH/EZrUx/+V4rvEAlJS5yx0GYGFkucAcLsUvTjoVolahkmrPOMDfbkLvqWT3MBBYoabWlNPOWyBH1tWkXS26R0kYOC6A04EE8d2MMk9T6JOTNUwMOI+qLLb7fOQdxbK1tAKE1N83aJaUe+cZYN8adBbDZ8zTJOSxYS7zIlrS+lRud1Y7dCnZMM+AM+AV66GeGMEXM29zmxNhmq0Q5gyTmmnWNAV0Frfv6mPVwCmND7lPNHH10s0CEvMtKraluaoMOln1sJUIeOGg+0lbfz9LHFIOYp/9PNOHHbHny1AKQoosbXOWQSoZUDtrLLINMcZcLLHPCAcA8tcpeDDPMBOWheLbNBlXXFKj18AoLfutjlh4WmKUXS1JuYNtrKFuDG/hlIN4+YfqZYZikA7OdLHnNWKRaDU+WqFULoVn63B/vOr/hNjJCitrx2uwStzC/aFOP5amlmiKrWmfK/lIkGXabG4CbXOFt3nDZ9g4NVHJIVNmNFj5qasQNWoiQx0LgbO0lfotiY2TN9vsKtt/lAgUirjjqZpFVor72WaaDu1wAJFBvQS1eRhljgGn1jOx0YNsa9nGybP6CAZKfyW2zYWuPTpboKC5Td++5AAl/AXVvPYdHUDUB/AC+kHwMb8EXHjymgR3R3ifhC1OPefnBM0mLSUG+7hi8DXXJ5/JAeQAX134i4MSKyNWirMpD8Lqc0IrrwsLo3P0IpgTAiZGBd2XRxTLUTT2XztkN5GFyD+kSjSMPrykE2Lr9EB5Ikik5pEi5rX//GdS8I597+fozGv/ogDhZTj/6CJII2Lcpi3qS0L/2WACQLZ2sD2U7VW8jD8lxqLgBZGG7rp5+Zjg+tSNdmCZofHggD+OHMMkQ14rXabx9wOvchB8jD/EHut0PcIPglx89Y3j3pwJc3kO6v/8KeAsaPziQz2wRpMg90M/eA96FrrVPFHAqyMM/CTV/JO85t/kzaq7rZ5LSZTBAjmlgUmioTMk4+EDH91C2fZUbMteTMucJ0nKMm3COpIBW78q5PZ38iGr2OZ7a4dem5hlgmmvF68LweYAUUXVQkYSGzT0iu3tO/e8kJce2DC9kN+UcAhUPBfjiITAPVbd13Fk5r1/O/pSKG3KTpAgVPxCginm5WXFdPsc9PadWnCyjD6l9eCgPOMbl2Ps35wXs/g5iljwlTJA+ZmVbEzpH+t3hOvA9McFtXd6DD+DvZN+T36fhVPapjHla9/0QqMQfxKT15/P65xF8If0YivBQFzd1D5/DGoSLElP/xfce8irjMo5leOFHm3L9rcA29fABVOj+7Vz3FSX4Jr62KXKX3T3aSrkgkS0Np1JPKU+a/Ly/PuEFRhjHAnLEADlCghXiZGlAZN7mB2IAoPi2SQJpiUrv+BmDr58ZZ6GGkORTS/fqJEWLymob2KFLfdEKKnWcpc87mQYM9WtxYyEKbUgSrbGXRvgJIN4o8vCvds+TGfqxkIQlOv3YrTi0h7BIcMVYWUyWJUTAgKP7DGAJWau0EaKkKbj7WDiQeb4BagZdoIslrnBTPTp6FTDMMsC0yi8kQc7Yie9yxdOwB5nCDHbN7kE6azve/V6kx/e9RKez6GyO48o462RJC49VZ4iZj1waCYowkNSCbqx7KYlxKQ6pZJt6Z3elaWeKQbZp0MJNCosL3AGkk50h5mz28gRYSQiTbqUBtJLwGyPJMCOMY16ODWyzTjNt5FjRYsVANSvA96n2ojFGxuW6llBs8hFhZst9f5ikS0LEb2XBvUhn6WOOPmdB2jXTwyKTDPr1tE81cbJMKyO7mwUs+KmDZV7nJj0sUs0+h1R6kWjb/CHf8AS7DZrpYYE07e4pdItLWMLuIt0KcrZTS4EJzvn8t5GjgycuN7LvoS1erFFjLAlZhLRwi0t+rkwabgu4RXo0LORXANAzwkYOtu4h9UYr7j128O+R59RJgoCFw7LPVyIAwyAQhUwaqZu+jsgyY0ii6iaB1DGFsIWMvWWhCTGgTkCY+Hk89KDrNIFc1eSHOQRceYSnr1adEvCkYDLiLjmGiihSI9Xo8SX192uQm9SxmGSySY/pFd1PqzAG5+24Srpdledu3SbwrwvjwRMoAy6/i9dwRzk49XWkRngg2+lKQMUwUvPWaMrvHgKyxfT4DCAzUPVdXLKJBphUNRJ42S0rgHWIyzQ/FYzRpMevUuqD9/DQk1wSqX+UaXlkwFxRjpffBIah6houVXYws0PHE4VMtmy+0wSprmWptlubei4S+tnzOtaHehx2vVnoxZSeqwTkkwT1XRi5xuwcWkjKmr4/JCEXDOp1oLLqI2W0MaBMvlbx7as4r/uM6bjs+F/R/5f0ZxOynZB62OWzBCEaNo55iF6Vc0KjfC6T1GsS/ZkxUfUaa4ziXnZbDyGf0mM070X7Dm0RyIETAk42nlLvwYT8Ph4ToL3xhDBTraZmDRoTBAzDM3rtmdTYPDBrgF+HQnmwyef4NcMX1MergHnm7ivocYWbapkRIkzRfW+HNXTPfN7MHxbER3adZvappo85bnGprFEndinSMBXmWp/6IZvHnoEsJvMzBtUE50iV1S7XuO6gVZa4Ng6llgS8zo2TcYaaNSTN8sQ8oSXAr40IeQpEXKK4ok07U0Zs00CKTg84W6eZ+wywRBdzykozv2NjjJn/XFG9gMPKkDLrkimGSOnchCi5LBVwNuChaiSMiACoykJav3YMA0wjgWnrTDHETa54HVZQ8kmcrNdBMfV5i5PhHElnx8W0IWtN4j5l3w2T1BpdPOCW6FL2W9EDMazJmWCFQfUBCEL3Dv0cGgnAAjInGWKAafbVnkfIBhGv1S3Y0JqwFl4pDf1FLEwiyTki5FVa2kNO7XzsPBS0kVrNPmOM0sMig0xykyvkkTRcSwneQWTU+1TTq4Gqt7jk1i2m8LCAFFNINLPBm7xFlJyrlQq6XjBwMAiMW/G6PMEKG7ToWiPm36cSlczQ7+swA2NNgdNSZttTJEyYfUYYZ5gkG7QAOOjYzQID3FcLpIeulLHk3171Zl6iU1UuYaop8jEv/UL3k89EcksOvpr9QECITQQYMb8MBVx8gX8PGIDj6R3ahnfk/2p+2/vKLLwFdY+fC9hTh4BoYajYRcCLBLw4vsbhyLTs6wG8nBTQ6EvDP5MHShpeXF7jqA5IIjRg62ZO6f7Mp8JAqHqk0PgK8hB6In5FHlTyAHnQ6sPq6C+gQk2IX0gKM44U1OzKPo5/aQceQUUvgfFxkeBBmdQxpJGzEoLjdTtUnpqFNLQN5uT49hBA7KRo6OvefS5ssK8gxZh5q4A8HDPCQCMJNZXAX8BBCqqsS2fGyTrnFJFiIKc/UwVQRRIaRvZEDmEdR31flVHn08A78IWBxzKWH+Ed8hcebQaU+kf6txZtL76zJsc/JcfdV5r1guPl955J8YleO7ehZ2hBxnVGvih1t58z8Np0ULwdyvnJfq1VmHZaUPVvzsNbOv57Ok+aHNdxfjno1Fo3vAkxwp6SnydYkaJrEgHjGuHUlAJpIZ3Xi3p+tCvczAZfefBXsIwAuY/ld1X3oKrmuYCK2ql8beonPB58AR5JYlnFMt5hNTDsy7/9U/gzHVOJwCz5HZ2fJ0iXNyfX1RfTD+V91jG24nMSYXQ2SgofwEEXVD2EjXAzL6bX4M+h9XBP9mWSoT3gBvT8w0X5fg/oz/U6qbv9nG+8/kMqpmWea74DNcMHgWdLh4z1OM9YpR5+QW+A/39+JRkmQhViXCxSQvFIkAeTpYxOMaheE5I8vUobKTpdXmkBAG0qiRhkkqwyl8wo1jpN5slgRvwgZr8iXxUJ4jIdDDANwDa93lHLEGeKQfGUZNslkGOMcoG7mD2CpVgt0k0vs5gHRYZmfyjnkMTSS9zCUszMt26EcVZoIKNBEkKdF885eRg2q4y4zen7VoCWCPm2LNDCCrjLvO9zZeBTmKKHZOSI0k6aBXqwdNcf8g1lt0lScycpCkTclHqVKCeQ9GcLxShS7V1pwMHNnDIDr/CuF2NTDH7KeNnknpUckiNKl3afTXpxg6tE+Es3xq5n27ulGQWxlujCfBZNHmMyazmPMU6wTIYYA0xrV9JSYaUDOMQkZkocVQDXZArdLNDChgdlGEMgT8QZd5KOXKndTZH4niPJNGcdGJbrq0EBN+nut7BBvXZ6hYUgRaZJi0AKWQtxEbmuFK5RVjUdb18T5nroJOWpbLP0EtFApAw9iBS6kne54izNcUbc52ZV5UjVFJlkiA2aGWKSPBHGOMvXuOEm4uLN10eUHINM+fWRJsFVbvg1+To3XT7Rxiq9zNGpnkAbtDgr0kJWilR/KrHuc/sq4B50jaeQZ9ET5Jn9PUkxdbBnEqIn9P8mEYwiNdMp4DHEOwjklnWyXZYRYGWeIDRjXrazNQUHSYiewSW3tAL/FPhnyPP+pO7vHs5I4xryvAwjrKgd2XZVSNNM55Fax8C62zqmVj3enABKVSpBZUvHNafjHscBtBfrdJvKaDqYUr+x82Vy2zQCBK5JCmskJ/MYMfbZIVQYQDWI1BBTBEw7m68oXn84cFQnc5yfh4gFSHTp70s6rjPw9B14ScHPiJ3L8wQSXgODQgjgelveW9WocxBV2awBTEDFQNn1YNLdjI7T2JpW95gXXFJknyRAH2d+DICzHRtP6DzX4QzEgwkByCpO6vZyfDpJGRlDxBh9xh5MEoDRm8g1Cs4yjbbCwR31SUzr+Tih4/tznYMich2ZdDonYzt4T+vzVj0GA8LC8pnoSQlUiXwFqfXOINd8Vs/vFsG6Ja3psk0IE1IDPg529ZpK6/YPITOvgRYmJ47q7z/AJbYsC7OuoklDONLI9fZEx5/AJcyNKhF3MFzB/IOUpkXbtZUum+9DOV/P+dV4XeJ9TrKq0JA8t8+RZJsG90A+xwRtrHqye54I50gyp1YiGWW5JUhjYRoFIlznGp0s0cwGZ5RhNM0ARcI0s06WGNXsO9s9R5QprSdn6OcqN5ijj3WaeZVxWthglTbe5zJ9zPImb2Mpqre4zDYNXnv2McsCPf68i5NxQMQUCubllybhgVmdLGG+zw1s080iadpZpoNBptwapI859zSzZ6j8fNYblpWUlE1fS5aYgpDCrC9SzTgjKoGsZJBJGthmnBFPWO1m0ZunMTLqzhuk09vzu1kVSdvK+upjjiTnaNHa5yZXPDxjSb1zxbtugaw21ROsUFRfvQHuE9am/gI9jDLmIJoBqtagtZA1s2GxhmGWGEXCZIg5G+8uF0mT4KJ6VW/TQBdLjDDuDDIDNE35Y0EdHSwzSx8XWGYb6GKJt3hTt5Ginm3aWKWfGd7iTZcpR1klrGuObeppYEf5kgn3Tk6wQph9Jhmkh0X3UhQQUWToZhUjPuBtjHHeyQ4Z4q7KAPxc2LmPssrr3GSDFm9Km3ekhbBJOFmv/86Yd3Gy9DLnoJuFAVrQ2SGVagO0TzcLDDLJn/I7XNZQk6vc4C4XlG1ZD+DrrBHGdX+1WLKwrW32qaabRWVa9jjA+De9Phti8woiV1AZ3swUHKwQ3LgNXJhHHq7KLKo4RIAGNVRt/c6evGecTxnqGoCwpZIJpuHl5WeB18Q9pJtl9PYHCJtIqfTDJIMHVY6Anm7spaJ2Ug+Rh6NKKn596oFsrx5/MKLU8m1l15HR8RtL7glSBFghtkMA0ISDzzOv71X2nYFKrf9mD96CC7sfBD4i8/KeL039TIqkB9C6vMeRHcsuZB7hHhUVxnAbB5JSwBxkpRv3KUPhHCJf2dTj/gGBEXUKqv69zq16tWz9EQEgaYXzY/2zp8dp8zBNIOOwbu5j/X+SAOg9hMbpAylCN/U91hlOy3XQ+PBAxjEFv3Z7Hj6EuifPg0S3e7K9xNqaFEVJ2W7VezqvyjCkXs/7uyrFNiDvMUFRWqPb24WhtYfynkcQ2X0u8zCPXHcfQlVrMFcGrjazIcBXGjGITuk8P0CYdxk1a1bQ++T8J5CBCit0N5Fz3KTbfkfn0+Y0LL4zPNZtzOs1ZiDrFAHb0Lrujwi+h7vIYuUtkRJTFBki7+Fz7Iy/SR1LSMHtNT2n80hBqQukxtvK+DTpijIkM3YtJaFxt0Bi5xm/Ci8BsyL0McvbvEmWGKsKiEHgOzfIFCP8hARpzNx/jj7GGWFBJZdF9d3rJKWyi6JL+szzraAms/Zwtg6WUf33qZbgFe2q3eR1VkgwwDSSFLvEHS4wzqsOVqVJ0FsmPQBcGmzyWJNOAM66i5KjnTSWMiZenm10knL5Yg+L7NDgTMGv8yNqle5+j1Fy6iliARhJhslrPxlwBpnJVuvZ9rmxzqz5zlgBKd1F6XrbZwW4a2NWwU1LUt3Xs2HFYIYYkhoc8g5rnIxKmnPe4TZfmTwRsTvgHpWUdB99LNNBVr0STc6cJcYiPewTZoxRL7ZB2L6DTHkwRHkoQ4pOhklSRMJULKF2lTaX4IIUEQZyViIGw5IkPK0+IhGVObewSA+TDDmQZyBuOchq3nomRYiSo485ZunVazXmQRcWbJFgxSUqPSxQq8WYdClnHew2IM4SyApavE4wzF0uMM0AbawywH1ClFiii1oKtCGJzsucIE07I/yEb/BDv04Al1JkiPu1EKJEFyl6WCBGlpJKW/qYY5BJkgxj5tYDTBNl1RmmGeJMMuQefAbmidy9D/Pw6WKJNO1EKKjHkIQ5+660SgABAABJREFUhSjxBX7+2d+M/n/9CiN1wil97lnwhHmwlZDnc0LBvCbkGQ4BoKLWKpxCwDWrPRLSCHN/OgtQqENAmF1hCUVPITXFDdn+wQpSG1UiNYHJPXd1v2kCcCiGN/AoKUgUIpBwmixT5ZGUkOdkCUIhaBxGno0m5VzR/Vj9g3rlJfDU2aoRHZsBlFkB8RgARuDwEGFYDSC+c28iz/Tf0vlL4sDR0S4BA+2RMuvUR+4op8eocuhIh45jWLdvoGpR3m9gHof6uymdewMGTYabRuqJXf3zGh7uEPkaAdPOQDyba2vamx/dGYJmZRNBffObKvu0Rnm9ztUZAqCtA7mOuhDATqWnVR0aHLFJwBCLEqwdrGaJybEcKbPRQx8gAICNbTkv/646rdtUZiJ1EB3S952RoJSnj5DwjBu41LqqS89RiuDaMHDxieyjql0AQ1r1/MT0HCuYRgonPFRZTa/kBhIK5tl12iqfjytLljMEdWpUz+MJPW+byuQ0ZqgRA0yWfF63cQKeTunPz+DgM+h4HonE++ARAeh8KCAyaair51fi1eQXGt4YWqSHac56HTFHrz93rB5b1GCAdW0+DXDfwwmMjSepoOIn+5B+JhjGZKoWFGUp6yUqeZVxlzQWFVSJkXWAEESdIVLMPiZVJmpghrDpDukkhVll7KsSx/xzLVDK7DlE8pjijkoRARbopodFDQeoJ0vc69WYPm0NgLIm7qo2zixQwGSQwyR1mz1MM+A1o/ntdfCEK9xkThn9LWwoK0qYhsa2t8a5NaPt99ZMr6ZIJYe0kSNMkWEm3C9tkEnaFWw1hpg1pleJOlvM1CMgJIA4GQ+yS5Nwpp/ZmoTZZ5FuZumjg2VVypwhTTsWAhFWWbZ5/HaSwhKCzyqjsZoiUVZdbWHN+Sg59lWCa2xLa6wfUsll3vcm5j5hB6QHuE8/M5wj6Sy7BbqZUy/uWXpJq3ekKT5snWJsTFtP5DQ8Yp1mbnCVPBH1HUwxwrinw3az6DWsSdLtuyI+iiHEj1matlZXWnO7W9cgljVgwRcdLLufdjtpUnSxSDeTysDcoEVDY4QAkCXOMElnJOaQsLwYWa5qY9hshEwibNYs5oUeVaWV1doz9HOWn/1C95PPhqFnIITS8qOUdaQSyEM4hzy8DRQrETw8rVOjskuaYOuJmvO2lr0X/bc9vMyz4R04mIeqJ/JvdhGALyRmyqezH3mhcJSGigRBkaieHIUUUhhpx4hdgvSyJzp2Ky53ofE8Ac3dZIhp3W8j8qAzMMWAyHaCoiBDQDvPIUyyNPJw3lJZbxJ5OCquyG15T24SojcUBDpD0LHc1G2+iwBAMRnjYUnApyoDdQxwbCIw7j3UcZSQQsGkKmfwq+ZpEfrDBCxMUww9kPN8NA8VjXhH+eAOVEV1TFY8Gp0fgqJAwayDR1ClElnvGlqBmEaKs3s6p39G4G+yK/usMCAtiRQ993SccQKpgh2rgmN8CQF6jQ2J/u4MVHyo73kCFU8IzLvtmaxF3dFD7cbuCFjDB7rPd3RfcdkGU+pfAjTuIdfXHxD4qdjiZxPIyHsbkzK/uTREVSZd1RjMuUtVssi1ZKC5FV1FHWv5Obsuc3lYCVWH8OvZB3K9GPPOzs8y7rdzKv00YHE+IgAfp3W+B/Uza/r/tBaMJf3/SaCCX4nXcZ7xBZ5iiaRxMtQqK6yTFHe5iKQldSoMU6SPWf493+Qyt7yws1TbJbqUCh4iS9w97cYZwdJ0Reo4QZYY44z4A8wkHcbUEge4HM1aCDWwTYFavs5fklEZZYQ83+Hb/C7fZZwRl+YaSNbDoqefdrNAH3MuQ12ljbNMc49RDVyIaue02tl/5pdhCdYNbDPAND3aIbX0rQT3KOnNZ4UE55hwKr2BlVli7CBJYhaSM8YoMTJkiHOXCy4zjWinrVZ9UFY1RTVCnnFGSJOgnTTjjBCmyAXu0EbOpQILdDujbFsBSQNnr3EdS14TLzw5V5amu6JeLQllCgJesHdr59E6wSUqucoNssSVFTnIRe4CUpiOMM4M/RS1ODKfFmGLrbPMCcIUqaVAQo9HUnOl4yjGx73O2EyQ5gZXyRJzptkCPTpHUS8US1Tye3wX81VcoIdrXCdNO5e5RTcL/EQ73raAsO6pefpMMshvcN2BNfEMkSCSBCuY5Pl9LrFPmKvc4FAXBQIyzzHFIO9zmUEmqeSQ17np8mxLdRtnhEpEEj1LL7UUHGQuEXKgOUOMBGkste0MM3yHb3ORu/SwwBSDDDDNLS7RyZKzI9o0cU2+PxEGmSSnSc61KkFJMkw/M3ydvwSEtXiRu2SI08w6H2tB/Ll+HYN/PgsUIL8OkcfAJ8gzahUxw69Ens/6rOUT5Jm+jzw/CghAlAdakGdPEqiBnTWo/6TsM8+BnwIL+jl0HyqbpRpJ1fwzfX8twXP6OfLsCyHPwXr9fxj4ObCh73+s23m3bB+1yHN8XT+/oz9bAqpkHpgnkCDXAIs6B+j7gVIaKrf12EP6OWVykdTjrNV52iaQE9fq+Df07+dIvfQceJ+gMf4CMA5H61Dxgm7jOtCGPO/bgFkEpKnAAaNSEiqjwFPd90n9twF+BuDU4VJQJdsGDMMC0Kv7SQDP9PgPdVyquKEKjtagYp0A2JrReayR8R0VoGIeATXTevwfwNFTqGjR7S3oWJZ0GyHdns37yzo/7yLn8xPxQ6wI6XsO4agIFX+m769A/N7CuBrGfeA+0X1YHXZM/1i9WYSDY3AsBJX/NRx9BBVVem4L+vnn+u+XCZr9p3QeG4Aj5Lr8edm8GAnBviuz+u8WgnXDlo79SPdn9WtBt/dct2PjQI8rg5x/U+6E9b11OoZjOrd1+vM2grrwGBxt61zmkfq2GkrrUFkApqE4D8eOQfGAz2pl+kv3amWNZfoZ4zxz9PKP+EMW6KaPOZfdmfpgjFG35RDf3lXMm87CpkylYR5rF7hDRtn3nSyRopM4WZLqLw84Ow4EVDKGfJa4W2XkiXCfAXpYJEeUAe4zRx9dLOkzc4U+Zr22sOCpu1zwusaayga0GNPMnptFwmp90sabvO3NY2PyZYlhIR0GVJrvGQjoY8CbNbktMMt87pqJsEqUWfrYp5prXPfgi2r2PYgBxCf9nIIzCdKs0ubMQqtVTGpbrjJYpY1KDrGk3WUkxdRYlNs0ENMaJ6+S2XbS7Cgrc1b9+dZpJqM+u3GyLnutpOShHQauDTDNKlE2aCHBivtsW01vMthuFrCU1wYkTdgCPqwmNEUOSNPXpL92vgzYayPnzDFLkpVQlx0mGeQyt7DQuw6WdXwile1hEfMalJC8ambpcz/jjMq47Zo4q3XpPmHakcCRGFmmGSBaNg47N2ZjFKbodfA0Z+lnxtVG9WzTxRJDTPo8lXseG1g5wrgmS3fSpWB1lhjiJbjODP2q/GkjTy1h9j0ELU3CGZCmPjrLNOWhcFd4l0oOmaVPZcWXucJNOnhCQeem3gqCv+H12dw295CHs4I58dcIqPzGbIsRgC9G4/+RplyZ9PMB/kBoNCDQOqHL+rNKvGvpJrLT4gt29iGBAfEHOJOuUeWB7MLCGvSgEl7z5tiDeBMBeDeAFEPWLfxtOPg3Uk9Qr2PdEtZblXVgTW5gYNgDAlr9PO5bwjRBNzNLAJ6c1mNXqaUDLLtaZNTgHb2tEkSXka73u5KSVlvecXwIR1nxiiMBVXvSla5qxcEzHuoxgqdU5R+o5MJkuVkCsKkV+g18NUm1+WuotPOwpHN0KL9b24S4AVrLBJ3dx3oNhHXf6m13cCjSg6PHKsXI6Gd+oOOZ0jlII9daE7IQSOixaBF09FC7sPNyTo8ea+LZMEEHv07P5XXdTxMBi82uQwWzvIts5y2m+9PfVxi4m4Xj7+1IV1k9SuhCCvFKGXdjVLcXw71eyOr7jMGgzLpG60qfgGhRrqH8pnb0k7jMl6h+zoC+mP7+FT0eAz6tO39CwNeqRwRyaAOtD4P9s0uwCEnq8dTreQ8TdG0NLI0RSJdC+ru3ZF/UoBfH5/+1SRNbNHCWaa7xYwr6IF+mgwIRrnGdv+TvUlQQoaBpmle5oVR1YcSZ1PB9LhEn650gA0qsaNhXPzbzsrMiz0A9S8HqY5YiYWd6WWhBRMGOs0xTr0DiJW4hqajvk1Hj4Vn6GGJSk04FoDKZqwFSt7hEN4sUiHCTK/we32WVKIuaqBphgyTDjDJGNUUKSABIUVmEC3TTwbIzs97gbZrZIMqqS30vcseLJisqO1h2U+UEKyzRxQXu+PFf4aabzs5pIWEdNZPiApxQNpp14Da0kDDfwvK0YgscGSZJiUp2FNSMkKdItSf3FohIQA54gpgE0OSc7r9Ijx+/JYDVIglfZ5XinyDtBVOJSt7mTfqZYZqz9GjHXEI7onSoQ3tKZQsmlTXpSZgi55hwKYkVtyJ7EWBulj73xDGGobFCRTqRZpxX/Vo17xzx7UshLjXCROxjlowWYW/xJsMkGWeEK9z08JZmNigQ8eLwLd5giU4iFHzu55QJeJn3OdTrWCDqKOs008IGN7lCG6vKCuwmzD5DTDrTMEHaGarmGVhLHvM47FLgLkLeWaSAs25zKg+5wF2+y++692SMrLMhh5jyAlxk0vvOQrRUwJyyBz/Xrxqc2R5pwJlSHCCgywYS19mofzcgz7IE0rB9AXgJGNPPNuj/t4FjUP8aQbO4FTiOADlF/axJ+0xCiHyOPd1nDQKA2N+FsvenEJCiAQHqWsvGiP6sDQEzjhEAG4dln3um24wiIIuBjs3IszSmx1IAzkDlFoHk9ZGOsVrfV9DtbgP9Oj4Db1b1390EVio1Oq6wzkslUvzuQ8V94Ku4moEahNV2HAHHKgmAqSxUtum8H9O/93R+63T/OQJvxEe6jUP9cxn4v+px9wAf6/Hs6zit7jilx3hKa9coUjNsE7AFj8m8V7yEgFTbOpcAIQUpj+m+XtDtRfS9VuM3II3sTfkM3fq+F6Air+/XGsi3V6vjbSgbxws6Rgi0T2367yY9Jy/p+/ehqluP97mSCl7QuXsi554nCJDYRkByGAX+Gvm+nAzGRR8BMF7Q48gQ1FkHej4McH6OAHpF3WetnFe1fAr290WdUwMam5FzbeeplqB+teuxSbdvcut1GWuFyW6zOvYlqDRA+wyEtfFcdQB7DQQEgc/x6wQfUaMKgKvcUC+vwKfMbB0sDd7CyEQNMed1z1lVVxgYtUwHS3TSxqr6Aks43iLd2mzNMsUgV7mhssyIW3h0aoJprya99/OQcV51zzgB36qJKdsIcO/eEca5wwUi5MlTS6cGDlRyqABHOxu0uNTR7ExAWPMZZQAakLlItzf5jOkujKglzKKjnxk2aFFJ5zZFZbR1sMxD+qml4E1CY0JZzWJ1JqDNvxArJLjAXa/hzJ8tojWBefxFWXVlwnWu8ff4oXoAikeePfPz1BInQy+ztCEBC0llS5pqoFnr4GpVSVi910ZOa2KRnQYpr9MKXobpYYEJztFOmggFTyM2rzfznJMQj4Kfvxtc9ea8rQ1qKdDBMglWsDC9iP5MfAe3HVy9y0VfLxioWaRaCQLrvs1qiuzQ4FLmEiFf/0xwjnNMqP91wRVGzWzQwA4lKt3Kpo0cteQdTLXgOQOJjZ1pNTNIdkGSYfXhFnBvll46WWKVKDe5omqbQIEi3tptjDLGn/Atn48f8g31LU85yDlLL2Oc5zLve+0MYIm3puxZoJsrvOs+z3GyvM0b9DLnQHCRsPuiN7DNu1yhg2X3QvxFXp8NoHeAPFhOEIBXGeAkZMYhPkzQwVNwiDUC7zcD+szzS6nhW0n1EDmh7zNWmYFk5mkRhrMGfowj4NgDMZFtPIEALFngFTh1SscXJgCVNlXmMK3bV4CJFRwcKexBIQmNMWVOvQZVGQJ6vIFVlB3bI6RISuOsqYMtqDqBs6cyacGIXtxUMM0AHmOXvangVgcevNA1ovObVuAqraDSCg54ZtcgvkUgR0GONf9QpRVZPfYp/X0XRGz+QwRMRfNdSRH41OQImF+H+rtDlQ7U4GBg/BX9fEbHZWNZ1jn7Mu4bQxNEhmWTFScJUtxKCEBpIJ2BgcZAe4UA5NPi/bCkniQqx6moQ6COtI5jj8Afx4pZZfnZOYmfRkDhQf39hzh7lC6CjncTwsq0rq2xNRvL5vAMcp2+onNV7gv0RP9Ecfnv0W4Z+/IJzDyAfpUoRZT5uTUtAGh0WOe7VferMoeDLFTVBOfz6SO5HqoU+K04SQB+K+v1aFd9eA71HLXqMUaBccg9hmhG5yGBA7u5nADMR0+kbj6Yh6ebEA1D47ScDzL8ygB6TWw6CJZHUkatu5onwi0uYSa9AIsqRbWQDJBipxZJaBpiyjtp5rEyzQAxsu5PcpcLnCPJCgnuKWU8TJH3ueTyiW4WuckVf2gmSPuYjP4+xBQ7NLgMozwdylKe8kToYYE7XHSKOaCssTCWSrZEJ6tENRAk7Uw0K9QkZEM843Iq95hg2JmJImXsdt+MKDkiFLjPABEKpGknribFZuRbDtQYs7GWPAt0e4EwyJRLMa1wM2mtpaWNMO6BFiYn7mHBfdUqOXQJgxWq3SywRBd5ahlmAvGwOYslGA8yxSGV3sX9Pt/k6/xIfT9yKrfpI06WdtL8Kb/D7/FdLAG3jRzdLHiAxQjj3rkFkW0s0+HmvJKuHHc5DkhKtyX+FjQZzZh8AHP0acKwhK/M0M8A90mQpo9ZUnT69bRINxniOi9CPTbZhBViJvkW7xcJMzGAzNgEZj79UKUtXerfd4V3mWbAu+3mKSQF+rJLJSytLUyRCAWGSTr71ZLPwvrAEo+hdSYY9u+QXAMFLzptYVNN0a+vBXoww2YLIzEPSAMDc+rNN8mgy2Lse9vMOkt0OfCZopOPaf+M7kC/PK//9Y+hsQAU4dlIPcff2ZFnahb2uqDGGn17yDO4icDPFjgKKTtepaPzHS+5lKZ1fo+DmD7rQ7AVrWKhsocvZh9yEIYqrUuOTsJ6aw2t2T326iBX18qL6TXWEjWESiUacweyH3sWAs866mnY3aFmDfZaoSYNbMLeGag81G1vypiOmsQ+Zi0W7ANgo66JF5Y3Ra1wWsPhrP7VJvd84iXipQy1Owdkm1pJrK1xWAkzTaf4tXfmpWnbpGx6k59uAqfgvz/1Zb6a+oC1rhoKRIjuysO/xkAfrZ+ejQTp4Oc2f0ahvorG7x1w9CZkWpsoUs2JtWeicGgEhpA6yWqVQ9g9dYy6D59DCda+UiNBXZu6nwQBU8w+1wVrp2pond+TuuiKzJWf81Y4CCNjmT+QRrgpR/QcEIZPYk288GCTZ6/Uc3xqh08Gm2goblO3+VzqJmuwPgaG4eeJkx7+tdZVQ+v4XsDOjAI7sDtwjOq951Rt4b+b73pJgsYO4b9LfI1hksQ216gqynXVmDkImIWPy8ZoTcyiXJunHj2V69cUJrZGsdr6Cey9LtdGkWoSm8/YrzlGXe45zxL1HL+9w8evtVJLntbbe3zyWhMvpDZ51PUyteR5Of2MgzqZt8rDEtvhBvGr1vUWGSAOu7Fj8rupTZnTetjrgBpt+O7FoEY99w5Oy3fooE5UPEchtUNKExAxypVUJ+Q7+lHsOG3FHHXZ53K81sQNA2vw6JWXAYiS43h6R66LGEHtm9a/p2BrF/73v8nn/vVdfp/zTDtzv6CMJQMYzL8tq8/tDpYZZ4RBJrFE9yD0SsLCRCIaY4RxAG+O5WhTEOmQIW3C1rPNCgkHcFZIYKb85mFsoEmb1ltWUy3QzSI9hChxhwv0MccF7njtEFbgQtjp54iTZZkTdJEir0w5sZwoqGRVvkTmNdeAhHJUs8+qgn0WQmbNUQOtJNRrh2bWHcAyn2WrUQ08s+e6NT/7mWGKQffRfZVxLOCjmQ0HdXpYZI5eH3+EAnGyWDCWSYMLCqoWdd6yxDhkw2sKA3tEwRL1QJFBJhnjPJUcOnBm4WGmOlmghzZWydFGkWrCFOlmkZI2QQGvMw14usnrlAgxxCRFJB92TusRY/iJ55xYpJiSJk6GRbppY5UCtSzpVVqr9bFcWzne55LX0taUTqjNDgizb4cG6tnWoLc429S7t7edb5Njx8qumWEm2KbBpeBJzrFEF8Mk2abeWXxRcuox/bCszgwjoXeTLNHlknBx8BMWo+1bVE7CtjPvxBSd9DHHj/i7XOQunaToY5Y8EQemc0T5Hf5EwViRYcfIkKNNQeRa9z8Xz8oi+y7T3lebnGrGVMFkftdz9FEkzKECxj/nCwSpTP/PX8f+xnf8f/IySUAOAS3MsyOnBq3GRDJgyW7885rgZGBMGagCAlg4iytH4LtiPg57BMwqkIe7eY+FYc0eLubLBgKMfUn/f5pPyydDZWNNSVqUyT0bv6Sy1mH5NwkdiwIpqfGycZgnS0bmJZ8OtlNlIFIR2JGUqM4mScAyev7RngBY7CImypsIUGnAprEZdwlYU0btV9ZUvEuTutLASfEOoQQRK772CHwEQ3JcnJAkK5vz+6lge7l3CcDaLIGZ8EmCYqVJt2PSGWOxGVhlQGGr/v0uAZC7ifve0EgAOIbh4IECUIcEncg1pIiY0PNp3jFJ2NrR+QnpeY1L6lcqDall9dCZ1rkME7DLVPJ9oHN8oHLp+SmCgmZe97dZds0MEqSsPcRB1YMU5KaD68DlPBmCV5qANfkISZ8zhsATePpApu/Azu8JmePGJv1uGauvpOdiU3xJqhp1PhR4bK3TebHu6h5uMM0f4wxLC/EAOW9Hh3IcpNRYfFmMpd24PATRuJzTihr9/aGk6zV2yVyFKpEOrklwPuevZjaJknOvNvFKk+AJ85ErEnb5qEkJtql3gMgYXRH1HzHPjBiSmjWoPiqWQmUdJDFUzmk657IDDjaOi9yhkhLrNJOiU8GHXga1uzjJoG9rgmEmGULSoJq90zdHL5bM2sEylpAlSbmrDoR0s0CONiYZIkaWfcJkVWa4QbMnnJnv2j7VXOUG1/kNOknRhvjx2XYtAVYSZwUgnaWPhDLLYmQ+JaGwMXdp8mglJVZIYClcWfXG62eGaopc5C7VFBE/tg5+zDV/CFdTdL80kcWGqFUPuKJ6yUkBLNLoWXqdQdnDIv+Kf6RS6JB7qVh6sfmwxMnyOje9APkm3ydPxBNcS1SyQoJulS8YaGbhHiLv/JEX+je46kXzIJMkSNPJEj0samdSKNpp2qmmiHk83uUizWwwTNILOUs5M4ZojIwWVqt+Dc/QT0ELWMALxJSmBAtILBSNbk1KM7AzR5t78wgbtJcSlQyTpFa7zCbVNslNjCwhBTYb2GawDPiWa7KWbhZpZp0iYcY4zy0uMaHeeNXs08csUwxylwvKlBDJr4XRmHyljVWirLrEI0Pcj2mfsHdqzTtvgPukafcit4EdzEOxSJg+5niBlf/v3nh+CV+7rRXsnQK6pEnx6GsvMx97iYMOCBfh8ekXOOgA1uBgEIjCo1MCBKzFasjXHWNroIrH519graOGRbpd7r974hgbTfXMJ14CoHrvgL7iLB/FjpNuOs5BF/z18CsUw7BEF0chAePM1yhc3Kdh84CtaBUVh/BR4ji3O17lo47jhEtFSqFjfNLRRK6ulYMYfDR8XMAyYO8UfPTacagTsPCvY6+wSA9rsRq21RBsg2b2WgUwmWk6xSdfaWLtlRrYhbXBGj5JNBEvZchXRsg1NXGHC2w3VZFrapLvndZP6601FOqr2O06xtr5GvZek5/3MgthCJVKRHfXWK57iaW6l9mrg48TreydgQ9GvkjD7g6RkjSH0k3HaUwf8MnvN5FsfUVZIErjegWoEWBqK14lwE8HHHRA9d5ziMMnX2lin7DUDmF4NljPVrSKrXgVRzGgDj75WhN7CWjN7vHsVL3UGmdkO/s1Vfz09Bk+iH2RbFMry5UdsCeg61a0it3oMT7uaOWoDnabjgkgWif3qMeDL8i8hpvdG+7ZV+qZf+UlOCnH3L/2mIM6AUEBdgeP8ey1ekjAbtcxiEIxXE0pBB90fJFnp+p51PUy8VKGgzA8SrxMmCJjjFKor+KTWBOrlVHWEjWywRw8e62eta/USL3aBD+PneSoTlhLH59u5ZOOJrbiVcx3vcRehxzH1lAVa4M1rL1ZQ6buONXaiJtpOkUpVMleE4RLRT5+rdWfU89eq6d5d5P5rpf8GbDXJKBb48MDNsISyPT49AscDcDHHa0Qh4NGSIaHhS2sNdpfn36Fmboz/HTkDFsnpLP6cUcrAHNNJ9lrgnTTcR7HXiDV+gIHxmjdgt0Tx/jo2nGpPUuyvd2mY9LsO3wuaxZt5B81wV4TsCf30DQJGnZ3+A+Jr/Dx+Vb2EnLe9mLw7Lx8T2iCJ68b1fHz/TrFPNMMqEi1xe03zPJDvHJlsdrMOtXs87t8l2VO+LM3RMlBnWVOKPO7pDqQPHP0Mcaoe9xGKHidsELCG1bmmwYC1BgwZsEFCdIa7pVXxrowswaYxjx9xftshzwRispcEy/aKW+WvqphAC1sOJt9hn7+kH9EG+JB3M8Mh1TSz0OdmQ33ApbAqzDTnKWaffV3y6r9iTxXxVO3k1UFvpbopKDP/wRp+pkhSg4LvRC1g6TD2vyYp/BVbtDHnAI5CWdQWcBXnIzX9yskKCIpxWb50axjF79dCevo0kTUDpaJk2WWPleYWGCY1RLG4jemmjU828gRU/nrDP2MMcoEw1g4SYIVckTJqvJknWbe5g33FzSbmIg2cHtY5C4XXdVhbMhetdABqdMkMGOHXuaQhOQVb9wK+BxD/LtDLNGlIRdt7KsaaJt6QgSeyGZX0skSS3RpM77e5clp2lWGG/hwG6tzXwFKk6ff5YIDoIDbAsXJsKR157tcwYLoRDlSqYxCqcX7mOUs08zQD0iIhdWp5hEu10nek22N0Smeii006zk0sLpEiPsMUCDCKm00s8E3+CHm3TzMBL3M0s9DJzcY8FpLgXqtof+m12cD6NUjYMMKAiDIc4Kn45r6tEnQvevCE7cOHilQozLPLaPZa1fQ05qacFNiT+ia0v0Oy7aIARlIJfXzp+ClDoJkrCYCjw9j+sUJEqeuEZgaq3dFqJKg44Qy5XYJwMU6XHZ5CAHAhv69CyQFRMvbdkwW26jjf0WZbQlcIloR1dANA4HSMj9H7woo5aw4hBUFBOllK7i8pMrYdmHkYWznwiQtClw6s7CoUgD1PDmbCE5xlQGiZawvagjCJAyQM7DtpO6jHFA12cQmMAIHawTSzhDSATWA9RQifS4KEHUwj3sxHmzpfpYF/LR5s223mkxYj8nkIF2D0NUFVXUqAw0hIFpN2TZ24aUR+eiBrO3oNCDPAGY7N8bQm0cAxPM6H78t26yK6byZTLmLIEVPr3HSBFKDXYS1mMClzmsIOFvVjgCfJg9GgT8IAHUbHwSedl3yJ9IkaWms8WlgHLwTW2Ws1Tr8+3BY0nlQWTaP9f+P9ZgUWD1QluJBVo/5lBxH/v+o6WgG1v8KvNZopYFt8tpVNF+vPBHOMu0yRTH+r6WokgBj7IkPSNqBApP4Cfizyj5hfsIIlkwlD9eoGie3e7FVr51BS0obY5QZ+rnCTeIKhgjotEOeWvap9rTcJboYYNqLxLjKYs2s1+LZS1QyxihmpNvPDDP0k9YusFD082xT7wW+lA85lzWKgW+IpBYnV7nhUoEW9ZOZpU9T4E44uLmi1PVa8hQJM8GwPkClu2tJawBtrLKghsIGOG1rF3SJTqY5yyRD3gW3rl+JShboZoRxBat2aGaDHhZ4mzcdmDNWYbUy4KSTG6ONVfqYZZgJAC9mQ5ToZ8bPzTYNfIdvY0bZ17nmYzQ5bYPOoiWZLdHloJMVpBkkRa2POb7Fn/rnrEA16cnbvOlF0QYtjHHez6GwNmtdVtvAjha0+xSIuGTYFibmF1dL3sNJwuyzQI97+FhKmElSDfyzLqXJS6wTbde+dbPXEe+/Uca4yF0vdC2URDrxwnb4Pt+kjRxxssqkE4+bbeopEvaFSwPbJDnnbNolOgmzT5Y4c/R5F3Zd39uiLDzpAHe6tMhYAQJQCoBqHisgxuJz9PpCaJFuSlTS5RKFz++rbuWIqbpfY68O/u/k/X9wm3ee54m9yAcEQIAgQIAESEiQCJEUJVqUSYtt9tCWbdna1sY99qxnvNu3PbdTu1VTuVTuclWpVOWS/JFUV21Su6lL1dWmUpdUJtmr2WzvdcWb7mlf+0azcstttdlND9WkRZkSRVIkBQkkQAAECAIkQIDMH5/v50s5VdntVNazPT1Plcu2RALP832e5/v9fN+f94+B0gbxZpqh9FPadqHmgXPpLWG7JQVQ+FXiIolaCtLCPPBnj0g7wiLZx8cV7nK5uSDSFo+PnuU9MkTZigZxGuBfOyJFgu5aHleTr8irbod/h3LQS6LylIMg+PNHlINtBEqHHHogVtmmmxzx0jbuAwFMHJo0cEgHezi7vM1upI3F4BBlfwd1PHwRHeIOr6HSbVezSXdhD29J5nFvCdpSMFxZpvdhSZjBFQMm1sq07x0CEKiVeY07BEqH+Jqm8+WCwgUvvsqBBXDWSfID/9+jMtTKKoOwBp1zh9S9bcSaGfnONJzKFsj7w1xuLuDNQvveIS+kHtPVLLKd6GCREb6Rvk+ilsLTrLEUPkthzAthcGgII60mLK7V4Fnq3lZwIFIqEaqUOI4L0JMiQdkJsOiMsBQ+C/chVCkJ+6sh444fKvFW2rLgNOT96DZAQqKZEqnsAXQ+OcRpHHFqvkDLrAERgY1kDy/OLHPu4ZZsOksFKhdboQI96T2G0k/ZvdhGtFSg5YkAXrlwB+sk8ZeO8DRrPEyeJe2RgtZXOaDq99JFEU0b7cwc0nTJPXur9DPGmKdz+RCHJneZIE83B5fg+Iy8z5vE2T3XxrFpfraUoL+2zr/ku5QJECgdEqDMkn+IGc8ka04/84zjqxxwdnabcPrAMmYCpUOK/iApJ8FNbhArlJCEyz5SfmEOXq/dIkKeureNYxcsXzptFQBFutgJeyUUriHXP8wS7VQ59gp4PFJb5KW1B8TIcNu5RtEfJEOM7ckOXkg/xjsP8dK23byXg16evRIWkBbxVzvshMMrwlhtukQ+mPeH2UoGSYfD/PTC7/CT8Juk/KchLkydqcov8BZggrvECwUy/h52L7bhLUHP7B7Hpj7+Ba98zTPRb8bxlFNMMoOPKqsMECHHICtW/jfPmFVPgLDoP2eSceaYZMbaqehaN8KiXVMbpuYbYREXEoClYF+GGB5qpEiQNLYhg6ywwoBtPI4zjyaFlungHqNIsv1ly1hX8OY17jDJjG1MjxqGxBTTpIlTJGTYdjU2jaVHO/uWfXeGFCMsWmacSixXGTCNMGmY5YiYpt+O9YFrms9NkGKfdpKsW4XDu/yYOJu24QjSjHyLW7ipcY3bDLCCBkDM8DJp+mytokCrhxrd5Gg3thsLjOKhznVu2breTZ2a8aJzaLJHgGmmbPN8lUH2DEA1YLwIywS4zRt2XEIUDe9RGvgZ4xtYN3WKpqfOcoUabsPcbFjATfzoPNzlChomp0nHXRR5m49o4qKfdaJkDGjZznmWiJPmKp9SpIt+1m0dqvdugVE0zMJjaAhVfNzlChpAkiXGjmnOFwnhQYLpFhmxjVWV8CprErB1ttZt4pUoqbSSgluz965KO0W6UP9EBb67zRWr0kjDBVV9M8YcPva5yCJFQsYvehO1QtEGsTb4upD04rf5iCXOG9/sQTzU7D7mRIbcQR03mmarXpAKdKbps0EpGmoyzJKta2NkeMQwi1wkTzcJUlZt08T5SnjOv+34egA9NTXdwyZ84TL2DQbcI26YUTHzsweGMaQsrgnoHEUAiT5OGEMqx13GpnNZQ9qo+fkx4IyACskkX2UsDXECWnnM96uH2gU5Ly6an4+bP78kfxaZML93kRMvvzVzvmPmn3n5nSGVFSs4ox5/y3JtbcpKfIWToA+VKZsOdSYLeQWWdOwUIKxAy0VIvmLOBxm7FgVy1JvQI4BXtSKAUkbZj+r7BsLKUtDoASegaeK572ua8Xko99XeG2XCqT8K5nwiZmybZvzgJJnMxQnoqs/HZ8bTr/bc53VywuS7z4kvC4ZheAYLlCm42xLH+hMupkRm3WK8C5+qF57HXO8kJ5JZzPX+feA9TpLOLiDPTc3cs5phu7nM762Zz4qZn/MYBmZY7nX1PuT/D1jmX+cEkhb2xKSUKTD6hJOUZQUIQXyDXj+5F5cV7I2ILyLqFzjByXNuxvlwRj6/UEGeS5XFeoA3OWG7BrEhHaTMtb+LTT+zzE0jo/b5OfF5AXxJc/16Pi4DfntM+IpKToImkU+Zgn+DDilMBNRaZMRK+9STS7tlaeLMM0aGGHXczDNGijOsmN/XYkFlGWooPMAqqwzwEd+2nVulmk8zhUOTB4zgY/8r8tQds9j1m0zXKaZZp5/PmWSWCTRtVzxQmkwxbYG2LkOlbxh5iC54ap5bpsMCaBkkmUoX2jzdxg9NPEHquC2rq26ktcMsEaBMP2t4TMGkXTMJ53hgALJHJFnnZWZspzFBihvcJE6aJOsGgPQYmYdQ9OcZp2pGRBO6tKOqx/t8QM4AMcM8Mn4dZ6wPohrfggCy4gsyYU1+pfu7SZo41/mYBg4ZYjZ8o0o7U0zbggpggVGucocpplGPt2GWyBpQ0jFdynb2uckNPuY6SSMd1SJM5Rqe5wBkTd5dp58ZXiZByhSaA9bvpt0Atq/xKQlS9LNmC5V1+o1x746VHKuHoLIkPcbbr0o700yRI8KmKeizRjIj4HY7afroZ50+0gbIdptR3eeHvGfel7RlOmp3dInztlhSCbH64wUo23FXyc0Co4i59tpXOt3aZd03EpwlhlllkAFWbFGoGwZlEPqo2kCT8yxZpoLeL5Wq54lYRmTVPitNy7YA7P3uZx0fVV76/8Er5a/rkev3c54l1v1ncTVh0Rnhz+OvgwNpfy9b8SBE4ZdDL1pmwaJnBFwCCChg0sAhUinQc3+PhuOYTVMfeGVcQ5WSAIOdAj5kPFGehHvYI8C6/yxuakw0Z/FVDlj0X8RT40Q2CQJYASOFx6SDPXjTEKoVCZX2yNPN2ew2AJ2PD3kxLUVe1Wy2Y2QYLmzIhs0JCLCVFrDywNRWXtNMPpfeYne0jaInJABd8LRI/T0DnMoWqPpbqTo+ugoHbCWDuJpN+7tLDFMmwHvNHwKSyKhyz4bj0PnLQ879xZY0yz1wKl2gM39IIellPXiagzBknBg9y3vCrE2Dr3JExpHk7TzdbE90kOIMX8SHIAq78TZ5fz0+toaCFIMdNF2tNBxhur2UfkCgWeaby18I28cP3geItDQo6wA1+dnlodP4S0do8I+CWZWhVnZjbWwke8j4e6QmHJJ7spUI4qFOZawVShBvplkNnqXq8XEYhUpEgL0dR9huRIXZ2ZMWOd7jaC+B0iGJWoqh9FMKSS9OA7oKB4Qo0l9bJ0YG0vI8OjRpuyuyxY0LPTRxuModhlJP8dQEeOyvrTNSeMyKM0hLFs6XHnMYBn/piD/iX1DHzWfhlwhVSnio82b2F8ZnqoijNXMKwxZyUfW3UiTE+dJjrnKHmgeGsk8tO5gG+JeP6Mnu0b53SM00bSPkGCvdJ8QOrmaTqr+VZ8kw3BfgtUgXLXlhtaQ8CXbPtOHQZIw5MkSt7xUpOL4owPNE4T6+WpVVBmmnSsvPwf/kiCYO+WCQmeBLOA3IORGiZJhlQj6rJj63GuREBTtmx35h5+bCHXTX8qw4g8Loi8Nn4ZfYuhD8G8FWBrFjed6z9TIL7BhZaD9r5OhmhUFyZr17mRlGWSBKFrXq0AAAhwZ3ucI9RrnFdcPid5Ez4GA/a1+pc6KG8SaKCWH0a5BBmQBrRgYpa6uAURJ6JrXKPj7a2SdrLEiq+HjEeSs93EP8zJQlr8AUYOvALFG+zx/yGVNc4S41PNb3Tz9TAagb3DSgnc8CXmn6aOJYFYeGPGSM2kIbzj720VR6BU8C7HGVO+Tptky9JOtWLinMLDcODcuS0jpIfZb183UM0vThommb1H2kbQMwRoYOA/Ascd54t7lQ/2RNAXZokCFKjgh3mSBAmSvM2ppTgVsNcvBQp5ucnVPc1KzPs1rtqBpC6ikZhxEeIMESl9k3daMkwkqN6qZm1CwhBlm1oRseaswxhvr3DZi6v4GEj2m9p8oJhwbv8UN8VJk3TXIJaVlDwyAClLnFdQtOak3kMzKuKFk2iVM3tjwhdnDRtJ6EoqoRifcAK9TwIKEVRft3ytTzsc8Aq6YB0k4ThxEWGWOe7/J98kYGrYqXOcbQlFwFSVcZtLV2mjgpEjTMO6XPz01u2OdDm7zKjK0app4015cs2Czv6TqbxI1KpUbeyMl/nePrAfTUMDWOgDJjQBSGopxEvKcNgKMedruGMTRk/n6eE7mrYVW1XeAkzQnzs175mV2VIEaw8slDNdYNy+/zBAFHathgDYLmM86YP1OgL2zONYiAbu8gQIuCYQrMhM3vxcGkEMs5qIcEnCTy+uU6mTXXDie+dPBVKXBcUkHbvcBbBkCLmut5Xc7l6WecJNkaGYs9FwXD0hJR70vKdcXUA+MMJ2Efyk40cloec+KFkuBEIqvstoL58yH5uUO9VxFzjstG3utH7m2aEz8cBWTVT0QByzNYafbhJiesybS5HxexJsYRIyXVhOHjPDZhlosIm6wEI3EDPiXFu/F0/OQ7OIOAVpPAN6HldTPuP0ek6soCzQJ/V86nrc9c89vmGs4ZRmCSE/+5tAH+ojK+DyoQGRL/R3v874E1w4DTe6E+QQqKPQeCsWzG1khWGZMxaTnHCUOyAUzI+VSX5TPaDAAcU+nzkHzX8Tzwlvnd7MnvWk9LDwK6KdDHydgTNONmOu67WblO+jhhBsZhvybjw5i5nteBG88BmjucsAd/y48iQcaYZ9JIDf5z/hnq5Zamj0FWUV+NBClGDd07Q8wsGh3G5yRtwaZ1+vk7/NCCDBFyjDHPMEsMssI7/JisAQXd1FGT4Qg51OdugFXOIF5xdxHDSpeBQjKmENckrEFW+YA/sLKAiCm6FEwBkQNPMMtr3CFKhjibNHCMrGLTUNq70PAJvRa93gnkJVG/sSo+IuQZZ94mh2kaqozFjsjMgBzdeKgTMRIO9dlTucAwS0hi1eeAMC9UmrlmjKj7SLPEsC2mB1mhjseyt7SbqWOigI+Gb3hMATTFtGX9VWm3iVj9rBFn0/oAXucWAfbsQq/soREWUSNl9SlU1pgCWCK5yFlPGQWL1FhanrsuNNxCk15VarzAZTRA5R6jvMYdYmRIkCJCzsopxKdPjHxXDGD2CdfsecVJ08CxYN0AKywxDIj/nqaSKaNSN6Uf8W1ixvNxnnHD19wjQp5RFvhf8E/wUbXeKm7qTDPFTW4wwySrhl2p6WMRIxRR4+sR24W9x3f4gZV7J1knR7ctYHXshFH3xBaACVIsMsI6/babvsqAYXvGaDfBHGrOrMloArrvWLPuO1w173KUERbRNLxFRqjSbqXNbups/g3w0FNP0EQtRUsJRppSSB97xXOphptKpBWHJt/46X2uVn7ON9buAwJEpMNhBkob8ux62yAsUs6BymPxbfRArJYl5T8tksa4lzHmmGfcMiSr+Eg219lxQngLIgVfC/fyONFL5/IhuXAHK54BvCkJY+hqFqmcacVfOqIY7GC4tiS+eFqrzUDP/T1cNHmbj4iQp2VePJTihQIX0huy1q5B1e/lWUJkmABb8SCdy4cEmsLEbeKQNT6SAClPglClRDnYRu9aic78IT9N/A4Pk2epGw+lquPjjucqWaIcR6DwirD4iACX5DvuBl+EmkgjHzEsTSN/DyGKHEZlg304JCzJiJGTayL6CIsM1lbZigapOR5OpQpUaac3W6Intce6p5+2mjDdmIXOBWHzNXH42Ssvsz3RweEl8crrJg8NkQW7qVGIinS13WzcdsJe3AdHpJwEjxgW8DwJ5KHsCeBrCouj6AmBH2qONGl60nu0rUHaE2drKEiAMllifBEfInxfzuvc/S2ShS1mwi/iPjji0C/MSBCPuEilQNojc+zhkDxH8rDCj3iPeGmb3nSJ3s9K8ASq/lYO/eA0jqj6W3FoQBjywSCfBF9lN9JmAIEmr87/Cu+8MKx3I22cShekkRf0WrXKprLvPWIjcDf4IkucJ+3vhQo0cXFquWCDzrajHbTdB+8aJCpPmWec1eBZzt3fsu/bqeUCx2PisbfICAdxAfeq+AiUDulNlTj7cBsf+2ig1ePJXlbCp6XGPJAxHW4uEV47gFHYPdfGaE1CGCYqv2K/o400cfbxcZVPeTG9jD99xOXCsjQ5Cnt8OXROQPtwmFy4gxeyj+lJ7+GrHLHAKDthL9txkdyGKiWGnkte/W0+1PNYfYUF1HExyj187DPOnG12xgz48mPeQU30AVvrCItrn2t8whTTtFNF09ozxNgzbKu6tQlxrI9YzARcCCNKLDvqeBhgxdZVISORBQGflUG4yIhhdLVbNp4yuZq4jKyzaj3TQGrFOm5WGOQGN5lkxjYsNWijhocx5ghQZp92NCk0Q4w4aUa5R4A92qmacfKgwRUumixxHlWsqHVNExczTHKba8BJU0T9+lSqfIVZ62WWp5uPeBtJMRVFwrv8mDwSvtFtag+5JpmP5hljnX4kaVXsSXJ0EyOLBrypR2KMjPFrE+mzyFTl3r7PB/Ya9NyiZAy45TGsQDd9pFlhkDIdtv7R+ub5uv8211hkBPEabrfNclXRhEwNp8/kLBMMsIJKfAOUTQNWlCwNHIZNJabybA3i0DXskZETp0gwzJINZdvHh8eAvwImyhogNW2HVTNpSrKbOg0c+7yu0c8Pec/WxqrQWGWQWa7YZ7thKrx2s+fSGlTDyaLG7zlL1LI9RR7sMs3dTZKsWVm6NpOjSOCdKmBiZJEkZlEIXeM2MTLEyHCZBTyIf95trjHKAvu0G3mtsGDVa1ABT0nTFa/wH/F7v9Z88vUAehi/sfsIiJBAgJYh4Aon7DZlaXkleZQk8C1OfNSS5ve+iYAevw/8QwQ4UW+vvPx8wI8ABOrRphLLiwj44DV/PsqJif/Bc+egYKMCYhEEFHM4Ya+5zJ+9Jb9b+E+8Vh58aOSzh2p6q758F+Xf1QecAHcOAmqMcsLuOjDgiEooDcjiiyOAomHDZTSgo2YAKi/SWVZgUVmL5zkBZwzQeagAZicnQOtF8xlJTthrQ/LdCpby3NgeKuij4FnQAEfnzM+NmeTV4HPj+4STlLSauZdZhAlnGF08Rph8fgPExs35Nc04KTCb4gRkbMjvtJwx39FEADplGXaac41Au15Xpxm/KGy/3SHXmUAAZL1fCioreKuMTBcnHoOTcn4tb/1//F3BMAYNgHbFPEudr5jx9BsQ0Jy7fR5U/uw3/9b7es5c90VO/O6SMoaZWU7Ym0bC3aLPWP7ku9qUZZcH9oxUPM6JbNZlxi9t7oneY8wYXJBxO3yIPIt6LzzQOcSJAXMcjhfknHxvms/4h+bnm8+d/xMkOW6XvxGHQ5NZrlCl3dL4VxgwEkDxHZOixWdBEi3EIkYq2M+6BaXSxJlimqShxa8wSJYYMyaJVNKfhNMmC0PDBlV8yLsAzDOOpjKp4a7KJeU3T8xbtTM1wV3bOXvEMJKMOmtZVysMkkY8RNTnbtNsUrWAU2q+egLq+FxhliWGiRg/jZyRI2iQRogdU1jm8FAzia8xw0bswKFhO4IyHlFbCInfyqhlxS0wyl0mmGXCetRoyhtgO246HqMsWDnTOknLUNN7NM68lZgoO1J9DtdJoinEe6ZoURNiBRJDFFHvFpVprjJouooia8kbKa8GLYj0d5Cr3OEf8c8tC6+Kz3p+aAJbF5I+pkVVhBzXucWs8Y7TZK0RFi34quOoh0pwVL7QTc70RUd4ZAC8MeYZZ956zrzDhxZIq+PmO/zAAnYKuOnzpow/DXrRtLWcKZoBm+z2Lh/SR9o8H0lTyAasPEQ9caq0m0582W5Wa7hJkbAdXJVri5xcvlOLTO3AVmnnBje5wl0r4dANxjhzLDJi5MmSFthFkasW1E7jo2o3GCqHGmOeAHtkiVnQUv36fpuPjlqZQOmApks2bZ1zhwRqZWoeAR9ilW2qHvHLoRNS/tNsJHs4TGBl320FCC8fsOOE+CI+RCXYivcB9M6X2I520HQ5DK09td95LrXF7//Ff283bRFyOI0mXc0iLIsctUiXADh+6MnuiWddGKhA2omz5BlmO9pBlXb82SO8JYT9BJYd/8LDx6bJ0cDYdgo7bxeeXQpDVAAkN3V675egBLFCicIFLylHJP0XshtM1aZJFrY4dsEtrotkEdg908ZfRi8ZBoIYrn8z/QW+ZpU3Kj8Txkg4zAKXWfBfYvnCaZbjp/E1qwywSiUu5b7KzM+ubdOztkcx2EE4dUA+GKToD7JJnC6K9KT2hAU5u0fN46Z3rUSZDpYTpzlT2Obn0ZegIQy1Z9Ew3hJSd5p6eYUB9mlnkRHywSBbF4KsMMjuuTbmnHH+BX9kQfBYLUuEPOHsAW0FeCH9mL/18OecZ4lfRS+KN2+pRM3xkKilbBOpZ3aPVwq/sszHoftPbYMkQp6R0jLHcaQ+ccFi+BxjlS8oBjtYDZ7FaZgwjJIwCau0M8gKqWAv7oMj4qVtHg6d5R+U/hWupoRsaC1e9ISoe1tJ+3vJeSK8mF5mN9JGb6rEFWbJORG6awKE6B7jG8v36Uwf8iweJkuU8OyBNMXD4k91hVl60yUSpS1GawtMMc259BaHYegvPZXwiW/18NPo78j6E0Qkqyl4wyTQH8cF6Ex5EnwxNETNIwy6YZaoe9uoe1sZLzwgF+7gIAw40uDax0cHZWI1AR1UHTOUfUqgdMivkhfBD4GSSKEdGjRdraw5kjyu69pfxi+xe6aNlhIMFzZoqUAHZQ6C8q71ZPekEW9sCCPk6CocUKWd8do83iw0vr6t6W/cETI2Is8n077GHdQ+BISVDlg2kq5B6iUGWPligLJtGjo0GbQm/0k7bzRwmGXCyCvXiJNmlUEDTiyxwqC1bRGm0w5lAuSIcJs3AGzNqCmcCkpqrTFtwtiE1SQeajEjfZ1hkj/ljyy4MsoCA6waaedl6rjpJseeYdbn6MZHlQ94n0FWrJ2HpKJK3ayS3BXDnlI/PgWLPNS5xVsnTFfE51IZ+C7TnO4jzY94jz/lj5himn7WeJuPrA1I1qzzWjPtmFpQgynydNvP0fCsdfrJEmWGSQPg+FAprsif65YNqSm5H/IuAcomJK7b1qAAT0gY0FXUE0W6GGfO3EOXbSArkzFvYEcQZYHLzJFFuhhglSo+FhhFLXOqBmzSmkuDLrTp28866pesv3+H1+zfZYnxMdf5lNds7aXSXQ1yWWHQSqMVSNaGs3oWax0+zxgRcsTIUiTEDJPUjbx5lHvUcNv9whTTTHBX1kFGbQ2uvn2q4pDwkFH2TZ14j1H73CiDsImLaaZYI8kwS5YMoQB7kZD1VJTgwn3jY94gR4R7Rh1Sw8NNbhAla0LqQnSYJrAGwLip8YSEAboHmGDW7iPGf031xtcza3qEFUYSuIEUPHkEwPgmssF/kxNGnLIJK/Jn1WVJ2GQIWYgTWIDn+Pc5STs1pruZeWPADydsqbgBwzThaxmYFINfCyiqbNL8f2WsVf77FU4CJZS9p1JGr5wHFaHpoyEGyGe0DSG+ZwoUmcW/YPzJdvOIV14N+FfmOyblOw4bCHCj4I3HjNnb5nwnjB/cW8AFAwxdMD+X4oQ5eMGMr4IyJgWtrdNc7zlzTcrcUu+2LCdAVgIpaJW5Z8a6zQCwXDTnNiGyVhwz7kMGzBs6GePjrBk/BfKC5hzhREb7FjZAw6d+ea8i4I8HkcKOm3P9prmOV829SEImxQnYGjHn97o57zED+JrELx2XPBFhm73OiZ9hHgtwHi/INRwksLIPy1B7C44nOAl30eesE3l+XuWEMVlDwCvDwmsZM+OhrLvYc5+RNWPjN9/XZ8ZCmaWGUcgrEEtwEiiD+fkx8F3CMixbFJx1OAmaCcP2tzpk7BpmPIwMmBQnwJsLdktYOW1bn/l+BVQx/1Yma01Yg8dpTvwo1dNS2bVnzHl0m3/+BhxDLLNJHB/7jLDIp1y1/y0ssT18VLnNNRyaLDHMeZYMVf6JlfDd4jogYEqOCHOMWTAkR8R2gBYZIW+6UxomocEOmhAq3iAhK/tLkOI8S4QomkIpyxjztFM1YKSPq9yxcoMyAXYIsWcWK5X/apdyjwBLDDPGPCGK+Kgyw6QJghDwSTt6dQMAJkgZU+WylUAouCbJpW7r2fY+H9giNEGKecap4+Ej3maRERrmeucZMzwuAUMXGLX+FKPcI0SRJg79rJmiT7xBlF0oHV9hXC0ZZosw3yQU47/hHzHACk0crphELu2I6nWpTEILYvXrWDXFXt4INDJE+VP+AVUjP1UZLEghrxtxCQIYtHKBNPGvpNsCjDNnMsnW2TGb5nf4Me/xQ1RGWsfNHOMkDUCo7LOqSbst02HkBQO2m6zPihbJAr5JcazP1BLD1vfHQ50RFnmZGTTwRHwZG/SzzgqDtLNPijNWuq0px43n7r+OmQKnSTMugGFHipzCQ40x5u2fKdOzicsUjwLWDLKCQ8MykLJEbaDKCgMm2XeNKFm7UdmnnQwiR8zRTYYYfaS5xm3ipHHRZJw5a2BcNxKXdqp0UKaJixQJ2wGf4WVyRIz02seXRk7+23z4C8e0ZWHWmaCQ9HJ8TqSJs/6XqJxpper3UiTEBHfZmghSJMQjhmkrGCPqZtUmyJ+9vy1FtSdk13VPsyYMsawwmgB+mXjxxB6Cfc7Ob+NPH5FzIuy+3sZy9DT9rOHPH7GREIlneO0AliXQIUKel1IPCJX2OJvdZjfeBgV53peHhMl0EIatC0G6C3vU8fB4qNduMP7swrdYox+Ccq3dBSl4Ny71sBP20lU4IEc3RUIc+IWJ1tKAljT8o9o/Z2j5KU6jyY4jc4UyXftr61QircbvrZUL6Q1OpQpImEvTvuOdc4d0F/ZY9IzgNI4Yb84xzjyPk71sJHvoLuxx7DcJ38av74Xlx5CHT/yvQ9yMZQPrjVT1t/LqzK84NJjmIiMS7nHBKz5oFQEW/nb6Z7w++7kw25ZLjDfnSDkJ29jJEmO88AB/9oiemT2xCgmbIAXTrPRQgzjCZkO89C6sbdgG8Ur4NEv+IZ4lwxwkoUwHWWK8tPaAtoqw/h5f6uWwTzz6vBXw1aosMWyTXTWcQdmydTyUg15cTbmOtk1JFj5fegwV8azLELO+fmfXtvkyfo6a42E33kY4dcC5h1v4l4/IE+Fh/Cy759o4iMMXiSFqphlEHB5P9NJ0yTzW1SxCAVxN8KePCJQO2I53MB+8RDnoZSPeAwirdJERCAvgfJCAcPqA1+c/F5k27ZQJECNL1e+luyk1wIozSNoTZzZ8STbL/iBfDp2jqymsmj0C+J8c4dDkcbyXrWiQSrCVTDhIlqgExiyAd14YjEVPiJHSMsO1Jc5mt/FQl0R0J85hGO6FhygkvJyd3cZpSGLuw+hZKvFW0uEwLU/knaz6Wzmb2sb/5Aj80PFrSsz+uh8KgqoMD8QnTOWuGralnsXqt3yL61TxMcwj26wVP96Lkl7NLOskLTCjHnB5ullglI/4Nhr6tMCo9X4LmeYfiMwxSoZbXOcRw2jQl9iOJOz3hNhhhQHipK2M0EWT8yxRpR2JzkpxkxuWfac1oQaZaXBZknUDCnos8+pjrj+nyhBG/CIj1otPG3YBs8aKKqVmG8zr9JsmnhsPdZOkmiFPBLXCqBsmbb+xZ+lnnevcomkUJtp40O/WWkvXJ62JVbWh36VWJ8pW62eNLFFTf4gXXYgdWwMoEy5qgLMlk3aaJm5ByCwSnKYhXBHythmq986hSZepQ9XiBLDn88Q0PFIGQKoa724FgONsWoa2sJ2jlAlwj1HUymQTlRtHbd2rDVUBo/fpZ836C/YbOfM9Ru34rZpaSxu5VdqJkmGVQaaZAmSfHiFvLThA/PCU0f45k7aWVhsfbZCumSr4Kp/aOjxAmUFWrB2A2zwTarOi9jCSStxu/Srd1LnCXXxUrTy6n3Vrp7TEMEVCLHCZRya0KEaWKj48Zr/wfGANyLo5wiKPGCbOJjGyVoqtIXurDFD6ijT1//vx9QB6fQiAMAbksd0zJsSbwQJ1mg770LCsorA1FMQXNAb/XgTsmcDKPjPhoIA2Y+bPZgWD2TVMPRumoKy71zlh7L0r7AsuIsBL0pzLRTkPf/YIzkHlrVYrHSQs32vBuTBsDEnCUyYctOBPKtjL8RgCciUQUMcAVIzB6f8YyBoJrQF6dpUhhZxD5KL8DN9EwCtz3l8mz8n5vwVtb5prchlg6Jz5OQ8C/IwBN8w1xDgJFTE+gIxhGXiHF+Qz7d81sLLh3fE2+Z4LnKT1KginjLLz8rs+Bfk0xCKJAD9D8uMNZWcp8w2s3Pdw14xB2pyHMvAmYXuyQ777ImLGe/DcPZkAXjO/OypBEVyEZ2PhE5DroowFY+I3yDlOPPGGYI4x/jJ6ieMz5tw0sGIPOGPOe0iS8HjCCTsuKff3SbjnJO32QH6HIbmOx2/28nioVxipF8w5hzkBT0HYqO9ywmBzmbCUiPnZjznxdNRnewIO9B4azz6bdjvKibTWa/47/tw1K8vUKwUtcCL3vWjOxW++34BvnUlzX8bM51eQZ0Z9/vSeTpqfaxjPwgn5/2fx8Ml7ZgBgwkA7J2zJvwGHeuaBSMuUIr5GP8Bzi0wUiTiPmc5WN93k0EQshwazRh6rQQPiPbbPW9xilAULsFj/GoTSrgDJFWYZZskmbg2wSpkAnxhAsYbHyj418VD9LJQF56bOOknp6JPhU16zi5YEBcwb0ErApyhZ1LC2nX2iJhmsjpsdU0pWaTcefDtM8jlFQqwyQJdZdPN0m8ALt6Xgtxv2k6aWTTJjwbIIua94nCglX9PMJrjLOv1oIpemai0yYsGqRUb4kHctvV4lvT72meYV68Gi8sxRFsgTsR3QQVbQdFeVC3eTZ41+26VVICxrOrU+I+d83s9Eixf1EBw0Uhj1+cjTjYcaN7hJO/vc5hplOqjiY5ERuiiyTpImjmWgSUc0xCwTJlXYwye8wTzj5Ijwmrk2wMq/5bkQcLLdJCYDXOWOlSR4qH0FuEwbeYjKfmeYNNcpEm0tvh4ZIHuYJfsdZ4wEXX3v1BNQZTchdoiQs6C2SllnmSBqNr0hitzhKuqjJ0bekpLXQEJOosaXRRiDEoShTEXtGLeb+/HH/ImVa4vVdIh2qpxniTX62SPAHGNoWnOSdWNzPYDbfPYPec/e5wwxPuQdnnD265yCfjOOJjwbCjNV+QV1PCyFz7IdldQ7//IRnlqd/tJT/pR/wEe8TZkAb5R+znayg5418QyjBpVoKzSEWZQjwuNEL4d+KDsBacJdEu+edZI0cFhOSGhAovLUWlQkC1t0PjlkifPCMt0V5vJBWEAlbVoFKnuQEdnidrSDjBNj+5LIAwcLT9mIStptb6pEzYNpErj4dvMj/nb2Z/xe9i8YYZGfRn+Hx9Feqv5WKkOtPDBG4blwB4NG1pT3hwnUynwZPcf2JWEbHkfEcy5W2eat0s/Eo8eAKbOeCXZjbdQ8bvEfBLuBbKfKSOExnIFysA0N5eh8cmg2NhJu03IAa+FeGjjUHA9lApJkOtZDA4eNeI+MQRMGKo/5Rvo+/oUjiMNC8CLf93xXWDqmyd1SAQ5gsLYqnnZAIe7lOAKdmUMr0f/b6Z/RzzotjwUQ3Z1o42AImi4o+oP82eS32ESCcLajHQRKB4CptYPwy+SLMARDa08ZKS1zKltg1v8SHur8rezPqcRbOfZiNvt7tFUk+fhZNIw/f8QEs2wnOiAO6/6z7MbaaOLQk9qjv7JBOHtAywM49fAkXKItBfixDai6t1WYnVmMtUUHVcfHbryNQ+P9nWimuJDaoOZ4rOzYY+wqKpFW6njwVmCiOUvn3CEERZqKH9qywhgdrdzH1WwSq2zb+WaERSttdhrGP7Ah4S66bmeIssBlOucOrT2Fjypp4ryUfUCkVGKWCXKOwDUvPHzMcURkr3U89KZLLHhGLXiQduI8ez3M4SVhKJ5aK9B0wbqnX9iJD0WGfSG7Qd3bykhpmXDqgMMhuZaWtNyPBc8op+4XoCCsyLInIBYu59r4WfRl1jj3VzMf/Qc+JrhrrU0UXFhkBA9142MZIUaWMgFri6JrvTZpP+B9NH1+gru0m0ABDbxwU+cP+MCEiwkYMc4cRULGwa2J+O+2W7+9a9xmnX42idsGaJV22g0Ip83CJi6ztg3yqQkDEm+2jG3myfrvZoZJNGArQo73+cA2dZu4yBK1DVdt+q7Rb2uMdvaZ4jP6SLNOEk3kPWGM5RnlnlVdDLKCWNHMESfNhNFleEwtqez7dfqtZ5w2LwdYsU1btfYYZomr3LHBZ4Cth8tIMq82nj3UmWXCSpBHWeAnvG1CLJoW4JKm/udWshsnbUCoJG5qtnGqclAdrwwx5hi3Ddg1o2RRixhN+M0SY5YJY7MwbmvfMwZk9SHs7Wt8YoFhZemprYqGoznmWXlkqrQ1ktZ/WBvwCiC6qTPICmdI8Yhhuw9JkLKS1X7WmGaKz5m090/88cRH7g0+oZ91HJpc5xYZYjwxUu9N4jg0LNvOTc1+9w4hyzg+Y94L3U8pE04VIBK8JnOfy1zrPUYtuLhHwDZotfEfIc8ML9tnIE2cGSaZYhqxqthhjjE0LE898lTmHqDMTW7QxMUNbgLqnbdmAVEJSxOQUvJu67/WfPL1AHoqlf17Eume94cFWPgm/Lfh3xOQ5RWs5HJX5bVnjMdKgq8AT7ujbQIGnJHOBL8P/M/N73hh5ILx5moigJILAcQ0TAD57y+/dU7kEB4swGEBRgW0HsCiZ0RAHuOThh+OVa57Az7hGiRNV3JMznGdJLlwhwUQHybPCkCSNddiQKY29cAbg85vccKQm5Dx4S1JjuISNuxgjnG4iBSRZxBA5G1OADozdlyE41HYei/IrGdCrv2M+ay3OEmKHYOtZJBUsJeNCz1yPo653v9YxqXhOPK5+j3nOGHlnZN///LCi/J5mvCqfnB/lxPPuyC0vYaVYTz9jJN04zPQpmCRHyqjYnRMCp5NhIVmbrwY58IX7VgTlLHaeLfnBNz9feAfyMTKheeewQk40OCQIfNcTAJR0eqvMMBPwm8Ko07ZiR1yT9ouyP1eDZ6V6/59+bzKmVYKQ155Vl1w8DxA/Srw7skEwn/23LOs/pEdz/2ZAQf1GbTsOvVjHIIDBUcT8Kuhi3zif51jBW/PnNyPwyvmPr9tnpFJ86z9PfOzOg5j4ovC7yOA4xAcv2vu7RAy5hFOxvtdTsJN1GvwkrmOhNyPylutcs5h83fvyHnc5pp9d3fPtcnn3UDA4F+v6fDX/rjHi5aCfZMb9LNOmQ5+yHto6AEIwKKGvmUkJGOUBes5t8KA/XmViWrncpglFrhsF4OoKQI1FCNAmSTrJEixSZwc3SxwmVtcN1HvEaaZIkuUa9xmlivW52OYR/RxksaaIMUwS7zLjwFsN7GGxxZKaeJ0UOaHvMcEs5aqHyNjGRQjLOLQZJhHhgW1ySAr+NhnmCXe4DZRsuwYIEcWx0esk0QDEya4i0ba3+QG6pd3lTtomqomZN3hKmn6UD88EObbIKuWoVXFxzt8iKbtqml40kieE8ZzME6aOGkGTKf1LW7Z4kPApW4rK9aiUBdzwHb/ygQMKCtd2DHmbKc3Qo4yAVtcJkhZzzztcDdx2W7zHOPc5g3bZazjsUX5CftskBQJZpj8SgrtHiJhm2LadFpF+hBAAle0M64yCynMIuwZAEylu6Ms2C5ohBw5uinTQZ4IUbJ0G9DVR5VbXLeFbYwsavB8i+uoF0wHJ8m1VXzsGLmFbkrjbPKHfN9uiDTlcYppK7tbp5/rBuwGle5GeZcfk2SdT7hGlXY81K2UZpgl4yvTR5V2Zpi075qmJYukSXwdVf7tMZ6FAcrMM04TFzXcxMgwxjxJ1qjh4SqfMs0UDRzW6SdBinN/A1Juj30CfHizasyeOXkvwgISLAaHmGKa71b+FW5qFIMdltXmMo0vp3FE5aKEB8TI0t3MUwx2cCpdoBJspegP2g2Mvg9x0tS9bRwkAb94oO2eaWOCu/SRhryAHRl/D66mMPPTxLnjf1WaW5lDApU9sSGo7JGjW5hF6W3b9Kx72whVSsRraUmGzQIF8UeTkJ89yp4AZY8AxCDjcCpb4NRygQYO/vwRA5XH9Mzv0Zk/ZDF8jiLi99e2C2/zEf61I049LDDKPaqOJBtWaedh4iyBWpl4TZ7BlqywohqOQ7K5zq/iQlV0aBAq7UmNUoNEaYuz6W0cGtQQuWaAMr+b/ilns9sSTtEAbxoO/XB8DgoJLw4N3uATqav9AgxuJHo4GBL/v5QnwZ9PvG7ZkmRPGk2P4xI6URltZdF/kWlniqJfioJYoWR9oHyVAzzNGjPBl5jhZTQ4oo+0eBmWoG1Zwi/USH8rGiTniXAvPEQdj8g8m0iABw40pVZ0aHDYKRuqHUc2yzTAm+XEa7sTCpe8HHrg4aWzHA5hHFf7WPEMiHzcNKpjtSyxQomUk6CtAs8uhGk4DluJID2pPQ4SJ1LFEEX8+SPrJZhzIvJ9T6SB8iwaBnP/7vhftUzMJi5CFDn1sMBGsocXsjJvlD0BChNeDoLCfBkr3TcWCmkOhxTYLBOqFYmRYSPaQz4YtGyZOm4OEsJEzPvDwhqOn2O0tsC1wi94IS3fc4vrLAaHOJUucBwUb8QGDmknDnl4lgjLuSMgeCXayqPgOWFBRkFN7wnC8ZiswUsMg0dCcgZZ4ULt4dcw+/zmHQtcZpUB5hhjnjH2aWeJ8+SI2GaXWk4oaKceb1GyXOVT3uOHlpULouAIsUM/aywyYiw7uo2nsPgfD7BqrS80hVRDNB4wYiWWGl4xwgOyZp1zme9J08c8Y/ioEiPDBLMMskKIHQZZtYFR2qz4I/6UJi7b7DxJ051jmin6jb/tPGOAYQyzb21OVD4JwtpVT19VnKiVyjRTtgG4/xzrUYMy4qR5hx+jXnsCHTa4w2vWlmSdJD72LcsuTzcrJo1ea6Qq7WwSZ4x53uXHdCA+d9JcztFtEou1Hvo2H1k2ptjiiH/xKgPW/kUlwh5qjLDIBLMkSNFnWIsDrFClnREWGWfOjH3W+Afu29pXwMV2PuUqd7hq2HLrjPDA7i3U6kPD99S6po8046YOdRsF0BhzDLDCGPOm3omSps8yJK9zixpuPuEas0zQRFJx1XtRlQ/K+FOyQoQ8b3EL9QhUMFZrL/X1U8muAl5r9BNgjwFWeIcPydNtQlgGDTgsz7oG2ilo7tA0Eu0GNdzWK1z9qjXN9ip3AIz/tAsJBmwyb2pswDTB3VZppanDPvaZ5HMTMrdvZcUAayZYTn37tMkfoMxdJogZH+0FRpk16cEBylzm3q81n3w9gN5p4HUBIlYZYIZJuCReDy6aPL7Uy8NLZ9kY62E72nEiNX1bBsky8oxcsuwEYAL+H4k/4C5XBOSYMB4mYwhAoGCT8ffaHWo7AZ/8wLsymPOMy0JtvPEWw+d4lgzz+ILID6jJgnM7/DscTMDBewLgtFTM53/LXOOYkWwOwfHrshhmiQpoEpXNI14Zh93fbxOwR+W1CrSMIz+f5YTZd0lMdZlAwB71RBsSI3zehP9X9H/A4d8F/pgTJuB/CluJIDWPMAr03BSUqQy1CkPybXj4rbO2c7eP7yS04BwcmHFMkRB2lYYwXDLjbJh1ldFWVhikcMF7EorQCb/81osc/LEBiPwIwPSqXPNBGMImyff4m0gxpp8/BDOeSQsgKeuEi3B4SZ6j7dc7ZPzPABeQjpX6yw3B1mRQxshIio8nhCm34L8kINcEbL0ZhHfl+ekjTZeZ1HnFjKVe6+vY0JN1+uFVOJyU+5/yJIyssRteAe+MPEv6e1tDQestpePOGAJyxRAQ7T3YeL2HrYkglYlWASHVr+/vGhDyDBQmvCJHirbCN+Vc5hgXduAkJwEovw8zwZeoTLRyfAPxVvl2G7wCf3bhW3Jtb5tnLyzPK2G5n4dJ4/VjgEHTCJTrn5BilivA35MucCHqlWdBAeMgzHnGTlh8E+I1sx2XjfzBW7AVDQqz4YIBvdv4G5N0e4oUAfaY4C6vccdKYSaYNYXEVdqp8sSwzsaZZ4JZfFQNoLLCCIvW9FeZb/OMWRadjyrd5IiSxce+7Yb6qNrulvpRKNNvglm+ww+QuHpJ6RTG0qCVKo6yYGW4KRIm4OC8lSDMM846ST7hDcp02ISpLFFcNHmPH7LIiEmy2qOKzzLPVK6pQEyIIjNMWuZgHY+RiuRpIP5wC4xSJMQZUiwwakQhUT7hmuk2ruCmzg/4ji0AlCnWzr6VcHzA+9b77PlOG5ywGSeYZZIZm/ymIRKSYibFmnYbxc9jB8BKD+5w1fqWaNH5PLhw2QBMCZ5QNx4gHlN4VvFZRmKWGE1cppC/a6SqA6yRtF32ftZt4TzDy1zjNhHyDLDCpEnGKxLiFm8BGJmwy6TYemyBKff8Hj6q/IDvGMNr6RzWcLNpmKXnWaKJY1kf4tHTbyUPm4hJ+nVuWfDLQ80Cfjm6rdmxx3Sib3LDdrNjZK1Hn0ODKBncRgqt4GIVH4PGT0w+v84kM8CJ5ES6xnk0tOL7/KHtKC8ZqYzI24U1q6B2mvhXuv3aLa/iY44xHBpWNqFdeB/7VoLzbT5Ck3kHWTWyYnm/u8kxbkJyApStT6CanP+2H6HSHgfR51I9jSE0axJM8GJ2WTaoDbjcXKCJY8G3FsNwr3vbSHkSnFvbooabtBMnVNrj0C9sIX3XzhS2OVPYZrRy38pPPTUgCyueAZyGJBl2NYvggcnmDAuM8s/Dfx9vSjbP/ayzEe2BJiz6L+KjijcL4805fJUjtuJBthJBDsIC+q37JXWVmqm7OuV5jFQKhEp7hqFRY6I2y9nUNoFama1okOWh02SJ8TB+VnzzXMADYXdnifFl4hy78TbquDnsg+0LHYgxunieJgtbXEhv4DSO8C8ciSWMqR/D2QMajsj7cGEB0DzdHAcFKKQpUuN92hkobdBVOJC02WgP00yxcalHGrS7wvhb4DJ5uhlae0oWSc/UDc26/6xh9YikrSe7R8MoO5QVXqRLLBw8koT5t9M/kwAQfwc3w69TpZ2xyhek/KepOR4uNxcMc2FAAjLYl9rO+FD7Kgf8buqnljUj64yLNHEeRs9y7BemY55uqZWNhUPbJvR+ViJe2qaOxwaB7cbbeJYMU4m0EigdUA56yRDD1YQX08uMlJZ5Mb1MZ+aQ46AwBWseNzthr7A6KhL24Wo26Z0v8W8Sr1L3thFrZhgpPKZKuwU1fZUD7vAah8beRtOCCcoepUyAjXgPRY+sV12FA+iE7lqe7WgH+x1tZIjiqdVZ9F9kgFWywTDxQoFYM0NbAbt5L3sCjNYWrCTzDwv/2oJBnprsP3LGYqGPNHOeMVoeAAVs02m4sgwuSaX9+YWX7Ly8/MppoqUCbur4S0c0HIecJ8JA5THeFFCBN9O/IEOUv0xcoiUvHpevr30OTanJA80ye57AX81k9B/4eGyYiJLOuUoNj/X6UlN/sQBJEyVDN3m7TtzhKnumuafr91XuWPmneh5r/RMxSajK+FPwXuWYyjqNkrXA1ACrdj+p36NqkX181spEpbTqlVfDbUMeFhlhlglqeAx4OW6fFwVaRrnHAqNMMmNlvxKolmOYJcaNdYt65qlXsNYO2rhJkeA8S7ZRqDVLjIzZU0b4ibFlWadfWNvG6kXThgdYNfW2Gw1T0Ga7eBzmDQizZ+q0CGrr4abGNK9YBmGHaTRqo32UBWqmrtWmq0owFVzqRgIRRlkwKccDlv0FmEZz4ysSV202ahBKDTc5umni4n0+wEMN9bHWpnS7+U6tUbVRoIEcEXI0cVnbHI/xh5Ums8hy0ybIS32Co2QYZcHakiwxTD/rYidgnh8NwdM9iI99ljhP1jTKH3GeJGsscBnxoe5n1oBdSdZtaJ4qnh5x3hIItHYdYZEmLj7kHWKm4f0B79sG7DRTtrns0DTeuiInX2GARcOeV5mvNl5nmOQuEwyyan0N1dN61SQfzzMmjTbaWeSiBT+HeUTSeJAL6aHP2rvo3qyDsn0mJ7gLiBfttpU2/tuPr2VL/aSjj//10ibZ/7KbGjm2gYUsZOc6WOMZf04LnWzToA0XR4TOATnY/UU7u79o5fQWcAS1+VaYh3Jrk85GC0/+9SxH/Ir/IVF26eSIVl44KsgC3CpXk/3XXURLO2z+4yCd7PLs0SnOb6/BR7Bw5xnruMk/AP5rIA/z32vHQyvt7FOiixe/3OaL7xVp0MYPCVp/qAh5/Dt1Nje6KXGXjznDJlkW0/Dl//E8rTwjQIUWorRyxBxbrDdacC8ek/3HHURXd+AISMPmT7pxaBLN7cD/HShCvthJJL1L8c98VP7MQ0+jBXfxGNrhl4/WWS3Dwi8OOX/UyqO5x/z3xPBToYabNhpESrtkb7VySJQDvFR5zIKOixty/yRAd6nE/MYLtCGyhwO26cBDnA5aPjki1KiS/S+7iK7usP69Ksf46OKA0E6VYy8U/rKTyNou7EP2nwQ5YJqfcIoL9VVh5zWh9r9Z4AetPo5p5QAvfdmcMM7q0PjfgesUMAtPc3L+Xbk92AdKMP+9Xe40gF/CF9+r84wj5suQ/6862eIRf06AxP4eLXV4+osYOzxmYQ2KSZnct78X4Bn7zBhfu6dbMWq4KdLKlZKMxc5qk0PDPtlnlxo1DvDy6VEr1VYfXVt7sAbNJXCyUPy/+tjlETNb8Oy/ipoFpMmOkcZd2AH+n3J9tUor5cUAGWLco06STf6cGGcqm1CBbLSL6NqOyHMX4WffGyRMgSA+zqQ3YUvOm5/D+twp+luesfU9Hy5W+egIPAX4cmOVAjv8gj6uVLbF12bVRYYY++zSaxaYwdIGT/5xN34qHPxkns8bLZRdASKlXTiEh99rIUYHof09Cr/oZBsXZ3HRXmnANuzc66Dl3hG+xj5b3+siRJHduU5cHNLExanVA+tlxB483XrGx1lgEyjDo+8d04mbNNPMcZo2DjkEasTo5Yi2/gZO49ejEf91P0qEuMZt25VPE2eAFZKsM8eY7YQucJl1+nFTJ8QOSdYtgHSba0wxbRM2R1lgnX67qC8YXwqlzYMkeDk0aOIiQQq38RkTsOqu7XqBdDwj5FhlkDHm2aedOm4+4H3c1HiFaeYYJ03cmrXmiXCN23zGFP+AP+UOr/E5k9zgpu0Gq0HvDJPWD22SGVsEXmaBj3gbNTI/zxKSiCvSXelMuinShRqhi5Qib30somR5g9sAFlTxUGOOMVtITDHNFJ+JzM8UG9ql08OhQZJ1I2toUDQgWooEaroMGKmwhwFWWWDUygnuMsEVMzbqZ6IdVy047zJhAdN7jH6F3aYShzPm70SaJcW8+rZ8xNv85/wzyzRcYYBu0wWVQks2ABli3OGqlVTosxJnk/MskTWF3DU+4UPesc8WYIuuGBlWGLTMzyTrnDdF+gKj5OhmmCXDhMrzNj+xHfSTDmTUFq36/AcoM8sEDk26yTHHGNe4TYgdaga0dhsgV5iI+9zhKiMscpMbjHIPTbQtE+Ajvo2YE4tfZBUfddy0s29kTLLBr+NmlHu0U+UNPuEmN6jSzgR3bRH1CW9YoHScORuWoWCrFpjK/nrEsDU5Fn9DMRPXAIYqPtL02c/IEEWT9t7jh+SIMMU0d3iNswbg/W0/VoNnCVG08vwLqQ1pWA1JCEbIX+RcaovthDDz3J6SADdAPJrmVLpAzfEQb6ahJv5lh2Fh75WDbQxUHpPynyZeS5MJB/E1q+Qck6qtFa9LpI9pT5z+0lPaNoFdqDo++zwcJGCgtAFA3dvKsR/GCw/IhIMiAX64JyEB/jKzngkmXLMc+o+4kNrg2A+FpKTNFuICBIX8RSKlEmJ+3kGMLIWEl3D2gGLUsYzPFGcIUOaXl17kmw+/IE0fDRwaOHQ+OYQzZdqWoTkh4/fCzGOWJ08zHT5vg2te8D6mJQt0ypg4jabZsO1ARWS3x8FDCKeYCb/IN0tfSJ3mko193dsKB0d0Zg7JxD1cZoEzhW3xx3PBkjOMjyqjlfs8S4al6TkEOSJ8c+0LlpLneTW7gScqDA4qIlndjbfx5sNfULjg5aX5Bzwe66W7mRc2YwEIigfejcLPaDhQDEraYZ6ItTrQuQ6EHb4d7bCbu1itZCR1Efpr67y09oBnF8Ks0c+As4Gr2aTuuFlglDHm8dWqHCTA25DnZyj7VKxbomGipQKBZkFA5AJ0NQ8ohzvsuDZdkI0LE82hSTMsady6OTvr2iacOqmT3NTJOMa3yXNIkS7S9DHOPBl/D8MssR48zZCRhZedAJ0UGKg85nzjMTeDb/K7D3/K1oUmNY+wCGtxIRK8kHnMiyxTiHsZqTwg4+8hXtqmHGwD4L9Lvsk488RqWXKeCDWPjGd3M08mHORD3uW7/EtJU54vkRpLkCHKN2bv45moCzlg2ciC84fyrNSwkk71WA1RpBz0ssoAPY0vAEmJbrrkeTrsk3dpsLaKv3Qk9W4BHk/28sh47s44k0xu/vxrnIF+c45vcRM/DvOM08+abTxFyaBG/lGyFnwa5R7qX6bSy3smUV1ZV9qAHWSVYZZQf74mLlYYwGMkfAH2uMsVBlm169o6/cTIkKPbMoeUCXedj7nJDbMH6sDHPlnjI7tHwK7xKufXhg2AhqQpEKV1TTv7llE3yCo+Y12xj08k7XhsvXHF1KzK8FyyBh3DVtY7yQzrJMkSJUqWKu3ESaOpvDU8DPMItejQgAPxO96xDSYPdWMNELO13ygLpp4Tz8EyHVwxPqDqARghh6TxVu24a7PQbWTUCnSOco8dQtbORsdZrHQGbI0/bOo1H/vsmyZmxvjoFQmxRr8F+2ROiVvrF7W+GWOeT3iDWSYYZ840lrtQGxTxDVyzKcabxI2Xm0MNN/OMM8acrbmmmEZCIKrkETxjkhkyxBhmiU94g7f5ifXB00Ntb5SlGKDMIiPESZu6aoxRFphh0lrC6B6nz8z/gGEUSpNcJa0+9q3dSZ4IHZT5X/G/tQ1rqemlIaLS7pph2D3P/CvSZcdhhUFh9uMhSobr3LLhIW5qVmq8Yz63nzUDrnvMd+3hNlhBHUkjzhEhyRpZYpZQlCGGek3OM06MDOpDOMgqZY5+rfnka2HoPeEMZa90GA7wckA7jZBQzXcJskMIjYDeJA7fhGJcaOh7dFC/2ALn4HHrOaqtPjEOdQV4xBB7+GniUCKIhxq1F1rZf9FF7YVW6DWS3TNwgJcsUfxU4BTkA51s0yMbuH7YPdMO5zBlUpMGLvGwOSed4yNaKBC2jJhdOsl3dbJJL00cCnTRoI16tAWHJi0cUyZABT8V/ATYo+LywwAUCNM8hWWO1czNXo2eoRJxQxQOcdHolo7NMkM8cZ0h1x3kkV+6aLuBdvJ087T1tGU4qPZ7ifM8CiZ5yilyRDimRW5EFzSisBntZpNe1oKnyRjAr0Ebh7TxmHOWacOg3CN6wcu+Oc8udro6yLSH2aaH3YF2Kn7ZBGtRVRz1CVsrCenWOJtGkLbCILvRdopxHzv9HZTdHfAi0ANZetjgLHtJD/loJ/tDLpFtnJa/95gFhzMSJ31IG2UCLLcnqQVaOaKVQ9ogJPcrRzdHtNLHFpWgm2JcpsljWghSohj0sRo4wxMSVPCzQxcAe/g5wMt2q5zPbm87zW7Y9XaQ7+9kgcts0kuuN8gxLRzgtX4CGaJwHvZ6PdTjLWy0nuUJCQ7wEjOMkkVGKPp97EddFAnRSEB9uIVnwSgpzlBAxjUXD8ILwCg89ceEQdcPG5wlQ4xCa5hcd5CnnOIIeeae+mPkgkEOaaOVI2p4OKSNBi44A0e0CkMOL1VXOwd4eRLso9It9++IVtLtUYqEOMRFBT/7fhdb/WHyRHjMOVKuBDkiVPCTJ8ye6SzUz7awc7qDvW4PxzF5FvaiHjgHtdOttHJEnm4qdJiCL2yfzX18HODl15yj/tofEfOmAmjymMt0A33sc9EwlTSYQhb8M2ja5wyTNrQhQJl92rnDVSLkLWik4QmS/uRmis/oJoePfWJkrAdHiCJqaKwyBAUZ83Rzxchjq/h4mRnDRBOG0ThzxIxEzkfVFlNx0gyyynVucYW71rcsziZZw7ZTHxDdjDk07WZAvSXucoUiXRaczBAzstkHDLJiv79mFugQRcNgEwPbVQZt0u8Y89YX4y1uGcmri3X6+Yi3eZ8PcBkWoLKjJrjLGPNIAIKsR4uMMMMk6tchXU1hcCnINsMkC4wSJUOWGIOs2KStBCkus0DSlMsR8rxmDHq7jW+KSgFU6qljo911N3Uipni7zi3bga/j5oFhGd4zwOK68ebLE7Egqpgi++zvLDJCxPg4SQH9yMheNcFszRYfU0xbtlOEPAuM4qJpWIMOGaJGcv2EOh66yVHFxyxXaOKwj48VBlhhAIemfdZmeJlppphlwj4PcTa5yxWWGLZsPQWca8gmfIJZ68enwR913NzkBlliZJ7zStFudIoz7BimphZ9CtjV8dDPmn0uxbhZgiqUORojQz9r9rOjZKjSbryHikaSJEB6FZ+VT8eMb6YWaG/zE7rMZuvkXfXQRZE/5k8IU/grn5v+qo+H4X4r45FNaA0aUPX4WI6elntX2cNMl7RUxN9stHIfgECzzPaYML87M4c2yKptU1jmOSfCD/x/j8HCU4qeEKFKiR0nZDdolYutPAn38G8uvQrAUOopbSbM4fCKqC7EP8zNh/7fZT14mrYs+Gdlsar6ReYbKgmYhwdyngivZz+n6XJYD57m2A8teXA1m3hTksj7eupz4YC4sCmm/idH+CoHNvyhjptYLcvr6c8Zri0xxxg0hA0mbOU6z5Jh2vcO2ZoQhtlA5TE0pI4d5hFr9AvbKirndhCEOWec73u+S6i0JxuVTmyQVk/aJPp6EFsNP4zWFkh74rRV4Iv4kHhKVR7T8ljuRznYRg0338jeJ+PvQXxZ73IhtcHvrv0UXCKj3IqKnHPo4VMOooCDeCDmJTBmeUwYiYHSIQdBOEwIQ6y7mRdFDNj3302NquNjaO0p/azjpkaIImfXtgGR6OrzUiZAf22dFc8Au0NtREsFXk3/SuTaCGtusjlDz9oeOU+EvD/Ml5fOkQkH2Y20ceCX7y0HvbSo33EDcuEOAYU9Ijuue6UmDdWK9D4scSpbsMzdOm7ww+NELxTgsA+GWWKJ85TpkGAOJN3TTZ1YZZvJwhcEKLMba4OszCUHSQG5695W2VMkWy2bbuNCDwtc5oWHEtRBTZiYaX8vd5kgFexlxRmk4UjFkSOCP31kGP37Al4iHnaTzBDOHuA0RHKcICVzWgxGK/f5VfQixxclLZcKbMc7wCXJ1D1r4pk3zRTxQoEm0mCmIve588EhNY+b3VFJ2E15EpQ9AVHoAMdDcC67xVRzmkipxHmWOPT9/z/X/HU4hAXmMqBCl2EQRW26rARCiV+n1ID73OUKHUhS6yIj1PFwh9cM48tNmQ7DEPLZ9QiwoJYGPM3wsjEOOallNERr3wRuScBV1vjADjDDy5aVlyFKznj8JUgxwyQhinzAH5Alav3QxDrmnllLs5w3AIzaf4wzxwiLFnDzGY/lLiSUQd/1RSMFDlFklQHredbPGg4NE2QlDKg3+MRIXlfpJm8Arm7ucNUqKSSAYxMfVbEZIMFVPiVvAooeMWz9bRcZIUPU1hiDrLCPjwfGb1mlkpoarEqRMeZswxfgQ94BZL4GbANyhUGu8zExssLe5i5LnDcqnqYNe9PwCGX0qbea/J40T+JGRXOdW/a+R8jxFrcYN6BclzmnAGU2DRgaYM/6A/aZmnyWCTymRq/jIUKOa9y2YN6eqSlzxlLFTc3uTbrJc52P6SZnWXKq9NEAGFEriZ921ARITDNlgUG15BCbn0dIumzGelqPskCKBJJIK8SrYR4RosgekpS7woC93xq6d4Oblmm5xDC3uWbA1kcMsgKIjZr6MOaJ2HA0fRYXGeEtboldB6Ke+4RrFijUfY8qmlYYJEuMYR5ZKxjAgMxLtmGltbZ6pbupcUZp4/+O42th6L37vzzPaKcAHxFyLDLCBC1kiPIGHlJcsR5BYmC7wp9FX0Xiege5bjTVt3idftYsHfYtWlk1D4sirglSJFm3nf11+jnPEo8YIEc3afqYYpqP+Da9DPBtZnmfXuvB9AgxA17gMv208w4bxIniGBqqJu6IHOxl+p6TKdVxc4UCd00KpEp7ygRY4jyv4GGqOc0Hzsu8QYVYLcuPPe/Qj8R3f8YUk8wwzCMjx6nh4ZpljfjYJw70EQFu8F2WaBh2h3ZoioTMZu8l1G9JzbqnKFmPhreM1OuPWGWVy2ZCFkbGJC3MMcb/mC9Y5BTdeKz30SqDjLLAPGNEyTJsfJ/KBLjFW+Tp5h3+hInmLCknYRMmFXUeNJtv6Tpl+b37f8GXl85xngH28RHiDIuMMMYcv0sRFy8SJcNdLprRCLNo7lfd0Ii1O1DDzQ1W+Kf8fSaZsR2JDINW1neL67YLk0Fiw/+Q7zPHmPUDa6dKAC+3eItv8xEByia620c/kt45TKcBGDJo6mIVH9ep2g4lYMC+BjGyLJjPGDVgbxsjXOdjQuxwh9co8AajLBAnzRR7ZEwXaJ4hlhjmP8v+3/jH0TdxU2OKaQKUGeYcao4aJ00/60TJMM2UpcDPM877fGA9AVw06TMgxXmWKJJghpetjFOYQQ3buZLNdZpbXCdOmgxRhnlElXZiZJFkJOmYaVfrJq/bNNG7TNBkkkFWWGSEq9yxwJE+Fz6qXN39Cf/k+7tfxxT0G3U4HLHKABpQoP5e6yRxaPK58ecaY952j0LsGFlSyLznXdxkmFEWLHgnC/ewBRzyRFCvNQEq1r/yrI4xxxxjaMppE4dPuEaMH5AxAE2RkPXaAxjmEQuMGraWLIx9pMkQ4wY3TeLingW5y3RY8FK7aAlSjDFv5815cw5VfPb8Nf2pjBjkzzNmiwBl89TNwifMtpr5jnHTGYzSb8571YBHN7jJEuetAa0aOU8wa2n0yuBSDyplBgK2e6hgns7vKVzc4i2SBqDTtDiR4uZZYdACdS4D+EXJmEJ9gBvcJE2cKBmTfizFmRbwUeP/8iHv8B1+YN91lbVKZ7bLCFvq5IjQTZ59I53Rc73GbRuEojT/KabtNWqYhLCCTiQb8sw2bedVC4x1+lHvkzX6+Y/4ATm6iZvO+YJhCtSMT4okN7+BGkbruh2iyGUWrPxWwz5kTLKorEMLcfWJcYykQwFLNdiOk+Y7/ACQDZI8Mzvsm+IQhD3ppk6SNWaZIE6aK8yataTbbo6GjVwnawIttHhu4NjN+vPFvdYHjzhv6oQd1KNRn3EFZgdZZZ4xBlmxEiXtTktwycbXPRX9Bz/8lPHRYB8fd5ngPEv8Mvkio7UFAo096t42iv4gvd4SnmYNDuBCdgOW4RsRAfUO+w7p2d3jIAxlfwc9y3tQE7ZWeO2AmWSNlgqkwgmqfh8RcjaRr+7xMLT8lEdDw5QJ8EVC3p1As4yrCS/cfwxhOO8XYH3oMwE9cEHLL6H2tls2e0GH8zymrSZ1Gg0Bq9aD/WTCURLhFAHKbF8w/m0lASO9Js0+Hw/SWyhJ4JZfpIwjtUXSnjjuuDw7r3GHwiUvTVy8mf0F29EOPM0abbvQDEqNte4/S/sr8s4mKk8J+Yv4alW2owJ6XkhvMOIXBkLbQwiNFcXiJQItBwJMnVorgAvLnsp5ItzhKv3+fwXIfOKtGDsWc1xuLvBl9Bxu6hQJ4atV2Y0LE7DmESlrqFYUf7kG9rpT8V7OJbdsI6qKj5Y8rA+dJUKenrU9HH+TLxPneGH+MYGxEzuEfXz05kusJAd4NfsrdiNtwpT86R7/5s1XcWjS6/yCodRTOIDuoTxlJ0A6GCAazNBVOBDpbmFZLiIPrqQE3qzRL1I4p4bbXzfKHBfPLoVp4FCMhkg213k18ytoCDtvyRm2a7EGfGka6ACrfBEdQgOI2nbBCUqCZHczD1no92+Q94fx1apU/V68qQN6KyW+SAxRv+SRvYS/Q0CNgyPynghpT5w7XOV97weWlYhfmI+djw85dsnz+Aa3DRvRQ3j2gOujt0h5EvxZ8ltca95mzhlnMLpiJNENhptL/Dz6Eq9mf8WvJi7Sz5o068JbeEuQ90eYC18UJlAaehp7HEahrQIPhyTMZ4ppdsJeelJ7DCZWeDYUJlKRZyucOmA70UHVaSdCnjR99GYFhG04kA9LonUoWOQOr3Eh+DmYGuS3+fCxTwphu3abEC/1r11lkHbEJ1drBGWu6XOm++gf8R6asPotbvOAEXJ0c5MbIsc3teDzjWUQIEjAhoGvBIrNM8Y/5J8zzJL1rJVwgo8p0mWTOQW8jdrU+W5yXGaBHBEbbKap3GLwX7PMP7Wp6ibHGv0WbFH2Wpq43SvI/i2GBq/1kSZGllWzj5T6TQBMbQQmSPHf8h0TFCYNulEWqBtZ8xjzFlQRdtyeYRo2rHeb27Dyx5inTEDCf5AaWD3gtI7U89NgM5XCKpCqLL8ZJlFfPW2wX+VT1I9Nw1D0nLJEOc+S8Rlcs2Pho8q+aSyu029UC+0smefJxz7dpsbTfXwdN58xxXU+Zt00f3RsQLzbppgGRGWhftrd5MkQZZBV+lknRJEFRlkkwWvGb26BUTQ4ZZAVu+ePmHRllclmjHx0lAV+xN+xXtOK3yg4Osf4V/yb0/Sxj8/uJbvJs8R5O8dqMIVaoUTIS1MMzB6/TI5uG4iRN3WzHmrPo4FD/w3/CPVuVOKBAORuqzxSlmqAMglm2DTNagW508RZ4LIFApVtOsa8lbdrwI1iGkoyU0VKmQ6SzAMP/p3zydfC0PuYt6wc6hOuWVRWaYhqtr1Okttc4x9H/2fMcoU5xnFosMSwKfdHLSKtG78BVq08xmfSfP45/4glzrPCAJ8xxUd8mzX6qRuPjE3iDBofKjUfrCv7jJCh1TboosgS5+kzfgWzTJAhZlgNF60nj2ryG4iXVcPQL/NEDJnZbSeYOWecJg6PGBafMSRyXl7+OtO8YoCxCKsmsVI2tOOWCSMpQOIBlaebfXy0s28R+xUGrGG7mtL7qDLNK9RxG8+lQQCmmWKHkNmgNO15J1lnnX72aWeOcdbpN4h83jIK+lmjZjomqpkXmd4Ac844P+Zd7hkGR82g+ffMy6Av5eNLvTYJUBeSjDFtrZvpcIHL5IiwygC3uWZReZVSzfAys0zgosldJixA0cDh+3yXR+b5qVrathThMbJo+lDSGNirb9YqA1w2AQTKltJDJq4ROzm7OTFP1wnjI942Hgg7qOG9pi55kERQF00+4Q1r3DrFNAOs0mfoxykS/IDv2I3zn0W/hY8qjxgmS4yP+LYFYhYZoWa29EW6ntPvixTsFtdtWpZDk5vcIEXCgkfqDaWb7zRSKK7Tb0x0I3ZT6mOfNH0GjIvaRSNPhB/xnumoiO+XJl0OskIHZdONc1u6uKYyLTHMj/i9r2P6+Y077jHKT3gbDbvQbugCoxawEl+7JnXT2XHR5EPeIUWCVcRjqN2w4rQgSpt5SFO1xGMkS84UAwuM2qKojARkFOmyMo5ZJniHH5MhatlnOn9o6laVdss0BXiLW+zjw0fV0t0V9CgT4EPexaFJ1nxmzsh6+1njDq+h/nhqKhygTM1IMgOUrfxD3780cVYZsMDXiomzn2OceSNX1vdY/emkgNqx7LgmLlOk9VEkxMvM2A6hFJUxC3zKZiNOFZ/1KNRz0cV4lQGSrNNhWhtx0mSJsWZ4dSJzls3WnJnHteiUgmGfAGU+5F3bpVbJgfituIiQ5wY3+Qlv23deJKrii3eXK9TwcJ1bqKT6+U6w+h+tMkiaPiufyBBjh5BlZObotmCZ+vGp75QaEw+yYruf6rWo8ycIw6Nm1rtZJrjGJ8TIkiZOknVucJOiYURL4ZOyBbCyHZXtPcEsID4xY8x/BfTVNX/YMASKhNg0Uhbx2ZlD/Xf+hD/mFtctO2GBUWZ4WczXkWJylUEjtRHWoIylQ4InTDHNXSZsOu4eATsuY8zxHj9Cg2D0czWsRlmVKgvyUeVf8l2mmbL3SO+3zr8f8g5POfW1zD+/SceT57rS6ofZzzoZT5Syv0OM/3E4SEDGifHF0BA0THiZI/+01eCwU0AihwZbbwYpvOIlvCwpqP9R4c/4eeIlomQYmn1KeO2AF9KP+ebaF5QJsDx0WqT9TbE6aODQvndISxqO47AR7yFPt9yrIPzylRc5HgLOYP2b1ugXWeoTkxjfFHnoZHPGSMfEzL1MB5VgK6QF8PtV9CKHUWECbiR7BBCJn2WktkjTJe/52dQ2nprM5/sGvKYAPX+xR6B0SCHhtdLOC9kNuppFEqUtPDXoSUl4SKCyx4WZDUiJZ+Hvpf+C3Yk2SRP1Ag25zrYCkEfSXhGm5JnCtjBVg0FeXF6mv7ZOJdhKyn+aoj9IzolQdgKoafoY8/jzR3SmD/Hnj9g3jauMJ0rV8UEUtqMdHEfEp+kgKPNA3kjetoeE+ZYlCi5wHxzRQZnCmJcq7Tg0GWyu8MLyYwgKaHbsgs78IQ4NNt7sIUqGieYsG/EeCgkvlTOtnEqLl1uUDI8YpqUCPWsyPovhc0Yt46adKq8179DPGppGP9hcoWd+j3ihQFezyGBtlc70obAYg+Bdg2+k7lOlnaInRCEuoRmjtQUcGvSXnpJsrtv3/bBT7nm8mabhOBzHhY14KlsQX7zSgfgLN+DFtWVquIk30/Sk92RNcInv6VDqKd+p/YAdJ0SRLlFghAVcrJxppepvZZ1+Vhkk5ciaxhkoekJcSG9IndFoMlX6nFBNvU3rVB0fg6xy4Bf/vvDaASF28N6HYy/GS3eHPN3C/gwiz45f7qXaGoCEYryQeiyrVgO2LgSt96MGKvjY55fJFy1rL1IqMVyQhkaMDF6zKf9tPx5yAcCsBR67d6sa/Yb4qTVYo58FRskQ420+IkrGMsMXGeG7fB84qWdWGLR7JvXMU79bVVAog0hB6U2z5g+zxDt8iIc6n/KaANqEkITUtG2waaPORdN4JJeZY9yyxjRMSkOkhD23j6qbIqZht8IgLiT59TbX6DbWL9oMruLjnpFI6r5Z/cvU2sRNjRleZpERrjBLmQCf8hrX+Zh9fMbvM2KfVQWI3NQsI/IT3sBNnREe4NBEpLc1rnLHglUKoqmXsNZADxhBfZDV/0586kdRL74abqaYtiCsptzrHk9DN/RQexJNPO0mz/f5Q9bo5w5XucX1rwCPddx2b5ciYdUsKudV/0O1lckQRTwa6wb+a6eONBI+N6qTMgHibFLDY0InBizDXplu6i+ooJU2YjXMT9SY7cbtOmvnflUMqbw0jQRHjbJAmjhNHD7kHVSCrntZ9ddX7z8FulV9IgQctYYR8tI0rzBrsALxYWznx7zDEsPMMU43OQvw5unmI75NP+sU6WKNfru3iBnmaIInvMUto3SqsU4SD3Wr9FHlyIwhtsSRoJErzHKVO2QNAUEbxACzTLDAZQLs4dAgS5RR7nGNT35tD72vBdB7h/+OPBFuc828IIu2eFMACbAb06ZhX8h/u0jTR854ZjxiGKX3KjMsQNlQ1wMmpa/OqqEzihA1Z0Alt/nOOppKGKLICoOsMoAmAKo/UDtVuskbKm8XMTJ2U7xqADHxv1pFTTEBg4TLRitCnjUDyAgw02F00908Ypi7RmKksp5hlqzpu16bML9u2UUyTZyXmSFFggFLB+1nkhkGWCVAmU95jVtcR03kFfRRADVFgh1CDJikyAQpk5KzTwficfVj3jGb/w476T6ffLPAqN3Y1HCzY7ogHZTNZnQHF01mmWCeMSuX0ImkmxzzjOOiaRmNimQrsPfIbICyxOyGSCcupdjKZ3aQJs46/XZM8nQzy4SlquoGWYsqYYqKpFAm9Ljd2AvTTTo+KRKsMGglcqMsECVLnDQ7ZiKEE9r0J4aFIt2oy6RIcJcJsobFoYlRA6ySM7RjTYD0GDq5TvzKPFID1gYO6jkl4IeYxWrHQTcNjtn264KQJs5NblB7bpLXa1UD93X67ULdZRaPGh7LTFHmoRqlRk2aknpmyUIqwP0kM9Rxc5cJs1jEmGecPN0iqzfXVCREF0UmmbHX+tt+vMyMleTFjYeCgulu4yUyxjw+w/ZUTwYFkCPkDbPsri1KFKSLkGeceaaZssxeDVFQtpWOs1LJ242fgwIQ3abT+3zibjc5+kizSZwuitzmDfbxkSWGJlfNMcY9RrnLFfvsDbNEHbcFymOGRr+JBAdoh3mBUeYZN4XemgUBo6Y7p13DftZNgyVLH2kGWeF9/jUTzBIlwxVmqdLOXSYsmKbd7VUGSBPnKp/aZo6Ojz7XWmD4qDLIKlXaGWDVJpBeNh5qWrCuMGCNjjWMpGaknVpgd5M3DOeALYoGWCVCzqxVwtbUa82Z4lTvt5gst9vvqJnxVPNlXYs0xEIBtwwxU6CM0c+6TThs4iJFghEWyZpu+rARTOv6GzHsAGXMxcgwxTQjLFpQfpUB7nCVBUZtaq8yTfXzdG5VeUwfabrJk2SNOGl7Hdqh1HW/SIgsUTTxVbuWkj58HoB92ikiKbdFQvyA7zBr5hud26JkTBjLj3iD24gR9T3+C/4p/yP+L/YZ1XVB5RKAZQCqJFl9iUQiPGk9gBT8BfHM0blVWeTyWeLPuG/u8zCPUAlTjgia9Oljnwwx/if8M/u7v83HGbN5DFDmf1r4r9nHh5saaeL0rO3xl/FLUqn5e+3PHXsFgFkeOs3Phl7m8LnskCYuetdKTDPF1lCQL5PnmA1fwkOdc+ktqImXHQANCLFDrJmhq1nEaTQJlA5kwxe8CFGRyp5Nb1PHTYQc25ckbbnmEbCvnSpvrv2C303/FH/2CLzgLx2xG28jTR+d6UN675foSe+Zjc4eS55hGBI2U4wMdW8riWaKs/e3oSDSSn/+CPfBIRcebrCR6GHWM4F6dwI8vtALl6ClhK3r9HAaTbLBMOlwmMeJXmoeN4v+ixCHylgr2aAEO3Q+PmSBUZYvnGY72UF3Lc9WMogRapAPBlllgJY8vPnwF0RKJXbPteHPH1H0hOgvPbWbYZXyNXGESVkR0KoQ99Ju6rRz2S2WGGYrGqTn4R5VfytD6aeU/R2E0wfESVtPwVihJHVaRViCAIGSALQ96T06lw85jsBBHMaYp6Uh6a+rDPKIYUZKy3Q+OOTs2jaB0gFOQ/zZugt7hNMHfDP1BaSBPMyGL9FHmmPjF9hdEw8/X0W+r4qP9r1DKhdbackKcOhPH3HYCbrfPo5Lyq+GgfgqB8KcdDk2cMR9cEigVubLC+dYDUpIiNOQxkmLkVkf+DU4Q4BXGnKOMbJknBgHQbnfq/5zdJNnN96Gv3RkWcAjLFL3thElw4pnAH/2iCgZvpG9zwqDfGPtvoSYIYFmL6Ue4DSOaLsv51qmgwwxy1RqulqhCV8mzwnz1AOZsEinYzWpgamBnTY92IC4gcpjwqkDTj0sgCNNpUfBcwbYaxIvFFhhkJ6UbFjPs0TOiZDyJEgHe2gpga9ZJUGKvtIJc+a3+cjSY4GXVaOASJAiRpZBVsgZQEQZX6Pcs/562gQ9Y5jqCVJc4a5dn9LEuWa8hXUtUoBcGWzKlLts9jiagOujauWXPtOAzNONm5ptoPazbhlzCnZ1k2OBUUtC0MANEEB7ifPsG6WP1kwRcrY2G2bJ+JiFmGaKVZOMmjdppVpHKwNM/co8SJhc07TDR1gkaaxDRBWwY9fodZJGVuzjkZEUX+UOAcp8wPuU6bB7K933yX553rCoPEY2qoqOblYYxE0d8R++R4AySdbxUGeHEDU8qG+cNm0VTNWwtn18/IDvWKWFy4CKOk5jzBMhZ/GDYQPQagDJIiM0cVHHbYlP6hUHgreIV3aeecYYYRENHNOGrfgIX7NEGFVvqRpS5LkCPP+A7zBt3KmXDE4jwSCiGlEFiM+yTPdZZcA2y5Y4b1lsO0aFEiFv5LsZu1dqmHuqUl0N+9MQD00HHkUCtE6eSWFBdiEe1Te4ab9vjX5eYZpRpAEToEyWqD3fJc4zxxhNHAtQRsjzGVP0kbaqSiV4uakZAD5nPytCnj/mT+x+rYHDA6NEWSNJlAwOTd7gE8TfecFIz3foomgCTmSN1Ub3v+v4WgC9TXoNILLGvnkgxZRd5GBTTDPHmGV6qfGhJr94qFu2VogiA6ziMdT+D/gD1L9GgZWkMSLUFzxrtOX7iA+UbgIA0yEQSc8cYzTM5nmOcbsR0RsFWLbgACuo3nuaKcsc0XPPEWGBy8xyBZDCzaFpTcIdGlaeBWKQq34na/TTRZFBVoiZSVWpvTkjH8oa9pcCdJPM0DAMvpiRKY1yjxoeyzLTyOy6eeFVYlqlnXWSdsMvMc5NNFlQaagB9izzR4BPF5/yGne4yiOGGTRgohp+p4nTwGGERa4wyzzjJuHyvF2sygT4zEhRtTvioW4CADw8MYuRSpJE1pZDZXe6iOnL2WE2g/q9U0xb031htTT41KRNJkixYwBe3bimSPDImKoqAKgsMtkottufkzGRCUIZigH2WGGQKj5bFOmz2G7Q9yIhy3hTH4DXuMMUn5EjwiZxcmaSq+IzE5iDplpFyZLgiQXeuijyPh+gRqg/4j2GWbKL8L6ZyP4T/s8WzFQGn4Co4qkm7JA9sgYcEsljgAUu2+6dAjMZYjzivF18VQIIGOGfxwICIYoW2ImQY8e8I8pq1PHXe/zbfhRMUbZp2HLX+RiP8clwmfd/1TDqVhlA488vskiEnJVJZpAUKG0YAGgiZztVe991vq3jsRJ47eTd5Qr7hj0q800GMW2tWgauAtcf8W37zEzyOedZYsXMefOM2blNZRxaaOo/ChZryuogK6wwyAoDxmOkZpsvVdoNwF3/SsHpMd2vLFGmmWKFQUZYtM2ZecbZI8B/wT8168k+N7iJjyr3DEtXPYNENhCznUGd61VCoOcMIh9SqXqIovUNGeYRXaYppHJONW4uGuabbraWGMZjFnqRa4qf4Rr9jLDIGUP7198rErJStDRxcmbOyNNNP+sMsMqgWYcSpBhgReRY1K00WKTX3ZZ1psWchoRMmvVQ5diaEqtA64ppdN1jlA9437CdL7PKoO3K5ogwYIyZx5lDPRB1PZ7lCmrwr53UEEXucNV27SMGHGvi2A5vO/u2SSTMt0krf9BGgwKCoyzYjYebGvvGCmKRESPHyRgWQQfqFajG1MoOFeAyaxsQwjTdt8WsdNrv2SaKyCAeMM+4/Z11knQb8E+9YPSZ/Yhvc4erfMI1mqZh1886C1y278wt3jJpzTF62P4rm5P+Qx2JQt42M1rS8M3sF4SzByRIsXumjW+k71sWr96DlgUBPSR1zyEd7KFtDShIY48KjDNPpFRioPKYkdoio5X7wpq6JMmtlUgrhSEvKc4QKB3iNJqkPAnaKpCopRgvPKASbOU4As/iYUYKjwlnDwhU9vjb93+GNy3ARnhekmOfxcMC7oRhN9JG1ZH3pxJtldArsPUHiJfd43ivAGEeNz9wviM/FITh2hK7sTYy/h4O+8S7p2k2JFXauZDeIF7ZYiseBA8mwc9hpLnIoQdmPSIn11AWVZxwADOeSVnbG0ccRuFvpX6OhnI4jSOaOCwnTuPQoDdVIkqGwpCXSrKVVLCXtBPny7hIa9vWRDo5XBHJqiYJZpwYG0M9LAQvcofX8NTqREolNqI9TFY+Z51+Ni70cMtznULcywwvcxCERDNFMdhBpFSi6m8V6W8J0p44ewRYD54WUMl4+7VUIO3vJcQOu5E2Go6w1t4o/Zz9jjZwwcOkyD89NaicaWUn7BU5cSdsTEpK73BziSIhVsKncTWb+BeOrPnQXa7wUvYBbSnw54+EHeqCgyjsd7RRibTyMHqWcrDNNkrLBCQ5uQI7TogdR7zMqn4vVY/Pvuse6vgqR8QrW4Dx+/N3EM4esBP24mrCs6EwxGEoLVJvb0mazf21deKFgvhGNsSX8YW1x8SbaTofHLLKoNR6B3Dusy0OPfB7qb8wz6GLaKmAf02ux5uCjVd6yDkRzj3csk0YhyYZT5RnibCdox+P9drn2J89YpERjuPwbEzCQPgl/K30z/FRxbsm44wfO57a7AdIh8OMN+d4mDjLufSWDRzQBvPumTZyToSB0gZ1b8u/34nnN/Q4x2OKhCwQECeNBj8ARtaZw0ONPtJ8zHU+4Zpl7soMIUEBSlJREEbBo6/6FW/aWlzrDpVd6p5HlVG6V+5nze4bVxk0zb8+4wk5bEgFsp/WJrOGMgQom3CJqKlnhL2XQkJX2hEAd41+u594jTuob7BKWrWqXDUMsQ4zVlpvLRkJchOHH/J3WDSSYwlPq7FqGIsKUnU9Vx8pceYqdxhnzoJ1Wp9MM/UVLzclF62TxEfVNoeVUVfHw4e8Q85IKOXMOyzpZ51+PNSs4iZGhqvcIUSRl5mx4NYY82wSN2o3ISoN84gYWd7mIwZYYZIZRD8gzEMB6Zq2Ptb6Psk6WaKozVaUDAH2SBo7kLgh7Oj+WvevNQOmqlWS1C+jtm5WOzRtdiseoiSO8yzZZrXWcydqyT0GWKWJwx7CTAUBMpV09Bp30HTdNfpp4tCF+EAqpqHrYT/rjDFHDQ+fM0mIHduQ1vNyaNh9fodpZp8hRbvxMp9kBhBQ/Rqf4KbGFWbxULM1vAZzZInZZvJJDSxS6JcNBiEkrFUbHqeEKQ1KS9Nn2XoxMnSbZGEHSbruZ50ZJllh6NeaT74WQG+bHhwaxEnzMjN2o6myOzVMFJ+xUYtAqwdS1FAw1VtJDd3vMco487arrUi8xj0rC0JNc/tZl8KAflT/XCZAl/lZ8ajbtKi2MtsUBIuTtsaSgEV9VWKkRo56oxVQFE+0acNschuNe/IrVGf11BFEWeQTSwxbsHKRi8TZNOCRJAEpwCaTVcSAZcPGbyprEHqHQVZoNxsYjWBWj6t/zfuoJ1OebpQKHDMCqBBFA4C+bF9qjwEfxV9rzYBNWdupUaDTRdPIliVWepIZ4mySNBtmfalBQC/1tVG5niYzKRNQ2QwpztDEsbRp9UBQ5mSZAPuItl3BP7fpRKiMTBN9RP7aT4YoY8xbtgZgQTRl6yh9XUCqHStxzhBjjX7pnDKAGJ5/hJs6g6zQzxojLNoF9fmumP6dmmruI/IdpdifdDOqz/kV7JDiDC6aPDFdijoePuY6AJPMoP4Eg6zaZ9JF0wCCGUNj7rMLvkrRnvfMUw81BSFAJmRNYbrJDdO1ElDbY2B3XdD1nU0T51OuGtqxBw1uqeNGQ2b2aec0z76O6ec37igQpp81C9I/z1wVBpHQ06Wz1W26XDWyxHjEsG2E1E2DQxcwZUGtG1+1qJElNk0BpH5xdTwMskKaON/l+5bVW0MSX3Wh97GPhzpzjNviSgvLJpKG9Xxq2Sj3kBCFdXNv9xlgVTZZ3DZAdMoUff1EyTLFZ1Z++m0+woVExp8xawBgi44f8h5PnpPP7uPDQ80wuLttcSjns2OLCvXHe5cP7dyichXduMQRD5YMUQu6lwnwMddto+Zt46eZJ2JlsWUC7Jj79x4/JGoAIfUtKZt5S7vfDk3GmGMfCYoQZmqdWa4wxTRjzOMxjS29x9qd1GJFmlRRy7R0aHKVO6Q4gybbVU2pUaTLFpkZoojVhds2PDRQKUOUPlMQ3+E1xGNxnm7DMNff+5SrVpqiaXv7+GzH1G0A2DVTJGkRo2uJFmkOTeYY5xOu2YJwkRGUkS7P+BN87HOTG/yA71g5j8jRG3adVgPta+YZU7mO+unq2hAxxZFYOwwaOUWEFQaFUcIqbmrWdxawBbmur/tIgromuKXpY5IZy7zUDb1eo0rjVWbxXb7PDW6i7L8yHUwyY8HF9/gRE8yaNSX5dUw/v1FHOeiiu7DH2bVtHl/qFUZSCeKlbTKOGOnfKP2Us+ltcoaVcTgm85CvcsCbD39BE4dnY2EeXjhLkS52L7aRIcZHwW8x638Jf/YITw08tTqpYC8HUZGShrMHAqiHhcU2UNqAijDsah5wGke0lOQ+roV7OfRIIMfuxTY2hnr4iLchAg+jAhp9ER+CJnQ+PkQ9Ff3ZIx5P9FKIezmVKliz+qar1daITVz8HX4EYcCRwI2cE+Hs/W1cTWFxv7n8C95M/YJzywL+eEsyB1cirfgqBwwXNujMHAqzEEjTRzh7wPXCzykj6Zi759p4M/sLLtzfoO5tIx3sYSMh8tRYLUvKf9o+s0VCAgbNb5lwhCMcmtIIbaYIVPZ4PNYr0lF/mDIBerJ7loETq2wzXFvi7dJfkPNEaNuU5rk3LTLUdZL83uxfEJ49YIppFv0XCZQO8dWqpIM9ADxLCkgUa2YYqDxmKPUUX7PKdqKDrUSQx4leJC3QQ6B0aJl8TRd0PjjksE8MxJsuCe5oukzD8InIoc9mtykMeWk4DonSFj6qBEqH0CHPYN3bxkUWWY6e5jgu/oKVoVbuhYdY8g8RKEm4Q4CyDZrIEOVCaoN0OMyzC2E7jyjDyNOsESmVuJDekLrLA940VOKt7MbbKBLicVQSXjPhIKd+WuDYC7iE+VaIe4mQwz9/RC7cweN4r5zXmVa+TJ6j5njAD2PMsU6SwpCXgzFoSwFp2EoGBagJdnDYB7tn2jAYM01cHPbBqXSBv3X/53QX9lCroAFWCa8dsMgI0VKBLDH+TeJVUiRoacg7Ukh6efZumGOveIo9uyT3bysRZDvaYa1WEqRIeRKy/jqy/m7Fg0TIkyXGeZYkCAd5z/PBIP7N43/fU89v5KFgmgBLdcvS0TpljDmGecR5HiGiyH37s6o2A2kqPp82LKGCZUtMyRDjE95ALXEEAKozwCrqCVY3FX2AMiMsMs0Ul1mwMmmNYUyRIEuMOcasOmqYR8TZpM805xxEhrvIiF3DQe5vh3lH6nhYZZDPmbR7yKZp2pUR70g9tzhpZo1XfRMXm4Y88Aa3KRLiGrcZZIUUCQtSKQFGlQrKtp/iM2N3tGLXeA1sm2XCNJBjjBvfvFkmbFNRGf0K7Gnd4dCwmIGPKgOsWqKEhoMoWamBpM7K3rUDtWo6zxKrDOIxTD8FofRz83QzyAp5IvSzzk1uWDm0hEg8slJTrVlVWqzAqFh4NRjhAWn6jHevKFWkLoqQMWQC9YlTViAIeSNKxjYzzrNkmX0AGri3YhrAC4xyh6uGbPMZSaO4UfC6icMU00SNhFutZTRIYo1+fsh7bBLnMgtUabfEkY94G4cmM7yMeuJ5qBMhx6e8hsq71ae4SIj6c/Y+IsUWELOJY63CoqYZXKXdBpV8ylXydDPKPZTgo89qPxKukidi2bZqO1GmA01jdmha2fkwj1APPwHTfRanqZrmdIIUWaJMMf0Vpuu/7fhaAD3J+kxZs0A42cRmDKrpNpIalYOKCXfEDqzGFivbZIRFVhm0iK9Dk3HmbIJKghSLjDDCAzThRKWXUTI8IcEVY4b+hAQODQYNwyHEjpFu+XBTp4bbbrAVKZfkGwGFdFOtTCf1shg18izxPWiywgA1wzSUh8ltJ11lYRQRGWzOyN10MgKhKEe/Qr0WxF9Q/iRdSKrheZao0s64AQxWTCiEmxrjzCO01CdMMsN5g2qDmNa7qVmUHcQnr4HDBHctKOQ2Ml4FeWp4viKpXWUANQIeYJVucuwRMLytmqXJqrG4THA7qCdUzSwi68YbQEECPZKsoWlISl+9xyjiQ1A1SHecH/EeIgdpt+h5HQ/nWbKfoaCfjoFuQJXmLBIpkQnuELKm7M+D0gqcOWYjOcKi3UQLG68bN3W7kGlykRYwuoh3Id4HAF1mM6zMGgWftXvpo8oc4/bn1BNDQFeRBKpfzD7tRj4o96ubvPmNPQu89bP2nO9axn533shBdQHU63Vo0mHADZ14ATNJrdlzUvp3jKwdXy1QGgYUUl9GBYd+248wBeJsol518hx6WKefNSP714UXBJya4K5tUuwRIELOMjLzdFvPMAUj4qTts5qjm1UGkLStVcuQm2bK9BHFu1IXTfWrcGhyniWaONw1c6cmUyk4op59jumibRInxI5hXbajSU1NXHhMZ3SaKXJ0s8Aom8R5g08oE2CFQT7lNfLGqHaVAWaZsMWCSmV97PMpV23X9ZEBIVeMHMNNnQUuA+rnI00PNWMOsWMl6powq9T6vBmrkJlLQxRtM0RZWyplbWcfTfu6zi37O+p1qsAmCAM7QNmM/+e4qRMjyw4h60+qvjBRsqiflEpKtGmVMx36JyS4xyjTTNFNjjpuXuNT2wCTHFlpQiijUwtZbVho+MNrfGo8Wl2miXICaClrt5s8U0wTZ9NKsnXO1vWkhts2OXzsW+bya9yxjTPtqPqoorYX7/FDfOwzyKpdG1eNjw6I3Ow/5f9EP2tcZNF41mZZ4jxR03HW0KIiIZ5wkvqm939NJWQ4hq3fTj/rnGfJshcecZ51ktTxIEnJVdQPUsdMwUrxrpV1RdYQGdt92qnhtgX7CoOoByJgWcn6mep7Kd6qta88K/v89kc7PnNOU/MAftnQ/SougFTbrnguHYsbCwdB7Lu2GJRwAW8J6IRYLcupbIHhwoaA7E7ANgMClNmNt9FSEeYagDcLPbN7/DL6Iu1UOZfdIlA6wNWE3XOSatp0tZLxC7AUqpRwaNJWkfs/7UxxlwmpSSoQb6ZtoxMEXHHRZKC0QSEhIRZdhQPIw++t/QVjzOGrHNGbKlmGhvVKasLBGCQLWxK8kRd2VuVMK8d+2BjqgRr8Kn6RDDFqHjdOQwArDPgnjIouaEDNI6BWopniU+cqG9Eedi+20XAcfOxzNruNryKAXcg0X2VD4wIvfDE2xG6kjXX/WSv168wf4jRk/qh7W8mZGuBX0Yv42Gco9RSnAf7sEfsdwlwjAz0/kyTgoifEa4XPIQ7EITx/YGtc98ERWWLc9NyQGjQqEmKvCXzuTB8iFigDVup1YW1D5JmVI1lnavDsUphsMEyslsVbgc6FQzqfHFIkxOGQ8RYsSfJwOHvAelASlVsOgLBIeTufHLJOUtijDQEBQeqnF7PLtDyRZzZeKOCrHNiG75eJc7ZJHygdEKts00eadZJ05g/Z72hjI94jAIurFbwCHnemD9GU03bE54ohCSsB8RNd4DI3ucHxkHg1npvfom1XkpV1I7qVDBIoSZJyV+GAlP8025c6OLwg1ivx0jarDNBWg6rjY/diG2d/ts3Q7FPaHooU9zgucu54U56nUe6xlQzyu2s/ZSb4EheyGxZw2o1IynF4/oB2qrSkRXKcIcZ+R5tZiQYIsIevJiyfC9kNYmSIlgoMpZ/i0KQnvcdwc0nAGb+XQOmQF1PLwpj6m1Ea8oSz1pYkQJkf8B0+4H0cGoZ4sWma7oLCSmhTzdbbafoo08FNbjDFNA0cG5zWzzqfctXut3W/OcU0GbPePS9/HWHRhkINs8QYc6iVjzLmyxgLAqPIkSbzjqmhREmmnm2y1v8IDQpLkDIkikf2GhTkUJ82XUfVc1fnWAXy1FZG5f5NXDQQuWiZgG3CimJp3+6hckSMYihvVQPrJLnBTZRFqL7nN7hp60A3Nd7nA8vK+pxJK8Gc4K4dV7UkUgWS1juDrKIJqdJIjTFilDfPp9bm6bb7U23YC4YwSIYYKwwwyxUaOLZm8hgwUUkjCoDWcBsDlGFDshArKd0TZomxwCjd5C3BaJ92rnOLKBKwp2Cg/oykxy6ZVFvPV2pVBfF0fyD3eY4yAcaZtxiP1vwSZjFs8QfH7JNVPTPLBF2GRapyWa3BB1m19zpOmmmmqOPhM6bsnipLjOvcIkLO2qqpTYSbmq21qvhoNw3YOm7WDPFLAmdyTHDXAmk+9gkhoY4DRtmUMc0Ita5Sm50yAT7lKiDEh0kk4V6DCxVQ1LV306g9ywQMLuayPyPfXbX15L/r+FoAvSAl+yAo0pij23gtSBpenE3T9c9YgECZVWoonSPCHOPWRFyL7AlmLQtNvN4kuKJIyMhBxXNHEW5Nr1k10kjtup/4jrlo4mKJ84ih/ypq1Fg1rBDxSXpiJDUntGGVR4LIPwKULXtLGFZrZIkyxpydPOYYJ2sMKXUToR5rKsN9ZMzvxYvHwx/xLwhQNixClwXIIuS/0gFZMR5wKmXNmA2Ij33bjVCwqAMNPBB/OpGKCYijfobq96OdBx2PERYZZMWOhXodKMh3m2us00+76f4KayOLGtQryKVjpywyBR5UGqpSLN1ka1LhJnE+5rod6wg5C6gqK+NE/LdHmjhzjFkGB2BfrgFWjc+B23o3ivy7ixkmqeGxKLoa+euzqh4NSne+xygqP1OGYNU8b7poqxG6ApxdFI1fX45ppigbu30t/NVrUjfn2h0S9pu8T+rltGcWSWWayjMh5u/KXNJFRLwrhYKuXROlB+tnCEjnwWMYYyEkoVKp3Spx1826shDGmGPFeIXps6nvg2zMs38jGCkgckdZgDatnE/TYGWhjzDBrJWSnqRW5ehnjSeIuavLzleOlQGuMkiAMjsGqNMmRjtV5hlnifMWhGk37EjtWn3MdduNlbvXZ5lq+n5f4S4JUgbUeWKLQpWjO2b2XEdSytSYV5NsA5R5nw/s8weYa8/ZokebOedNZLx0O6V7u0mcecbwsc8kM5YdrYC5Fk/qsxZn03a4ZpmwBYxufHdM1/AzA276qNrCRMd/lUGmmDZWAYN8zFt2Qe1nzXZJdc7sZ51JZlhhQNgGlO3aIwXCecsyXyfJW9yycjXtJCuDbZYJYxlRs35yRboYRBKPR1kwHeGmLaRUZq1MdJ1vy6apIuujB01vc5vST7vSavirTOdR7jHJDD6qvMcPqeIznqAxrjBrgWWVrajX3Rr9tLNvmxQqDe+gbIFJbZaoB4wmDo+yYIEtBWlXGeQuE/yYd1lhwKzSMudkiFkD5B/wHcv4u801ZrlCkdBXCmZtEuk8WqXd2Dt0sMAoHZSt4XPD3CcBA6Upps3FOcbI0003OethowbZymAPICnpqjBQOcjzUhJlpuSJMM8Yafo4xdO/uknpP9ARY5N1/1kOPdLcjZERiV5emj9z4Yukgr1k/D3EmhnDHpNG6s/jL3HsFTADoCUrgFuaOKFKiSmmqeOh87EER4CAUA+TZ8EFA6yyj49KsJXV4Fmqfil/P/G/jj97xCOGeZYMk/Kf5uzaNlvxoF0Tp5iW++1AzfFYpjppWPf088LaY2GGERDAONgGfjgOQvihIDSFhJfw7IFlUR8EAY+AibfCr3LYh8hLa+CfP6Llycm4vbT2QNaGZpO2rIBeG4keetdKjJYeMN6coxJpxVsRAKozfWgZrp86VyVUqFa14RZOA3ru7xlJVo1YM0Ml2moTYPsrG4yWHhBih41oD4+C55go3MdpHLHKIK+nPmdVTdwPTECCR87rcnOBwzE4kKWIU2sFqv5WtuMdHPqBuPGSDXfwSfBVomS4UbtJ73IJaiK5/VXiIoedcOyHkcoDy2ToLz2V58UvEk5frUpLA+Py5JDyJKgEWzlMytify27RVgEckbNmnBgHfmEBRslIiEbUS9nfwRfJIV7Pfs7Z9DaFqJc0ffizRzRwWI6eZmssiJsauXAHq/5zAKh/phrzt/1M7md4+YD3+CHPomE684d01/IkKk/x54/4y8Qlyv4OvkycEzZv4SlFukiQ4iAMy/HTUIFTnxWYqM1yjU+YCb9I0RMCRNbaXcubvY/I0/c72uBAZOEBynQX9rgbfNE2DdqpshHtoXemRMNxKLzuhQhQgpRH2PiUoDNzSG+2xCZxelMl8EjdVoh6eT31uf08kPuYIgEHkPKfJkaGFWfQNr9DpT1qHjfxkoynBslsxAU4x4UErBAg/PCAcrCNQsLLPj6enI78e5htfvOPE79qYemfZ4kr3EWDClTJ84hh63kbI2v3Rrp/U4sbYdkJo0v2lZuAyAO/y/ftejjDpA2I0j8TH/OYTWFVxdfzXuQKtA0auadKA5WgoM2u14wnnRJZ1K7EQ81QdM7YetBNDQ0qUJaS7nXipM1eSiw6PEgCfZw084yRJUoXRbsX12azKh4ihgrjMiSKYZYsu17r2LRhf4kP35xt0GpohQalqcWT7ttPyBs1Q3To4DZvoDYiquJTv2QFYBVQu2rkpGp9s0mcERZpNww/Ufp9ZveISda5y4T1D1RygFinrJo6utsCpd3m2kHef2WQqQpNfdDhJKQqwJ71FlRW4gNGWKff+OLJWKg0XH0ZFTAVFUMc9TRU4LVKO3m6bQ0qu400D8zzvcCoxYvipK2MXElVGsgi1mAZY9lT5wqz1HDb5rGGO0qtt8cAK8+RcuQc1L8/RNGoWqRWV48+xUFOfCd99n1bo98q0tTyR6xbMrxmCAj7tDPMIyLkrF/3GHOGPShhg2In0sBH1dq+qW1PGRNQhYRItpvm969zfC2A3rJBlZWaWyTEOHNMMkOUjJEnRBnmERPcRZOl2qkSZ5MyYiwZZ9NuhHKG7rhpHobnNzTqS6RMo9tco91uAH1W7qXfGyFvEd+inarEu0c/Wz3W1OzwjJW87aCxylHDQlI5sKa+6qSn4Q4hipapUsfNEud5g0/MZBWzGztFaX1UrTecMBlWUEP1e4wCAlbGjGGnvsiaKtjEsSbwDg0jkXIMnVP88hRR91ElSoYds6FTXyuV7elE+MRMHD/kPcviUS8cLWp0UzjHOErVvczCcz4CwjRaZdB0D/ZsN0LPRRkW+wY4U38AZZuALEBvcctsOvfpZw2lZavvwZjpDPy/yfvb2DbPNM8X/NmkSIkUTYqUSIk2bdF6s5XIkWJ11KMqp5KOz3g2PampnKmDwkxjGtPAAAOcg/14FgsssMAusMACu58WOAsMMEDPdqMbXXtqkTqVqcx4xpmk4oq6lZEjxXLJ1pspmw5lUiJFmiIpUqS9H677uqzsYvcUcCbTNVUPEHQqbUvk89zPfV/X//q/aFLj/ommsYnfNaay2SXI24aeIsuKS67V5lKBS20ufLTsu6osRdkVacfG6KdoDWKDHhco4bPPJOCHH02aVJmxsON2GXF+YypfU21+Ex91eoxJco3btn7zxHnsNoWf8y4tfKw6gNFHyzFucmjIhQIDIivsN5mdMvFWmTLAuUqIa9y27wuQd+/muvMgVFaMfOeASyx9bIfjjgNfdcKzy+C3sf38xl0PuUiEA0A8Oe8yRdEJGEbYZpL7dkCEqDq5YJGWo25PsmYJXFVCXGXJyU9brDJFxiUoLzJnRVjRrSlNFlfgVcGzEFXe4RbjrJsRq6ZrK2CtXiz65yOuYNNppUr3tWjZJ2Zrp8etG5WfeuhYOJCstfMsuYCgHEN08Dg/EDETVrY2SGiEsshG2bZ7GaHsAMCXXqUBd4b8IR+Z750Cmsq0lUn0hjGt9btkGGaYHd7jZ3jc+znMDm/xKaNsoQnWem/WmbABTK8rAsr04aFjYUorTLPviggFkxRckvsjQKSePRrKs4v4kYo3XC+3uUaIQ3y0+Jx52wul+N1F/fd6EB/Nm9ywAilBngnWmeS+eXL4afEv+WcGDIukuccAyTgF1OtSZCoLqAy7TJ95MyqTQKTRZQPW1M8wRJVdkjToQfx7Doz9+HPeZdndHz2FxTuw35qBKiHe5hP63JRYUnmlIFVA4b/n/+r+/gGSJrbC23xK/4niaY1JJHn5EGUq97vhnK7pfvfOqXfQtLP3mGLV1rlebTdJVra1nG1FG+JMscoB4lWorGWV7ArzUuQh06zQ4373GJvf9lb0t35VCAMSfJAgT6RZ5qvkGLXLp2nhZ7SzRX9HBh1bnlEkHOeAydJD0uzQ9IvHzrNYF8dDMLB5yO9l7wGS7DrMDg/HBolmhbE0W7rHpXuP+HL6Mh08XMo8YtUvDV2w8pwzxWPeqv0CgPnmAiD7Cn453wZzFRvelYlAN0QqhwyTIXrvCFLSDH2VHmMl+BoA/Z0ivqNj9sZ6WY5e5sGlC5zKiY/t3myvSbXqwW4exQfoeD1cq/2Srl0XfuEkkaXpbvo6ZWErBcWb8kxRklY97efyeZqInyDCWFP21PEZbIgzyx1pJGrP8R09F2ZWE4jDpewjaXI8AQmSQOSr+eAAXc+EDanBTPlomNXgq7zFJ9DG1dQJ9sZ6wQ+18GkJCgEWwm+wGHxDALN0t5Pwtml1n+bYLzXcOuNEKEvwnT/Ei5gkoiY6eSZr9ymEo6xFL1IN9tp5Ug1383U8Cm1peHb8w3wZv0x/s2jgRsfrYTH8Orei35WE4WeS6NvjRrLdOUlQDtSOuJAV30ox9W9ADdgUJp6XDr9KXcSPBFUNrlSIFo4YKByi3kggwTh+WvR3inBRns0vx143wgBN+W/VYC/PEl38XuEeA5uHDDd3pPYPd9Ggh0NC1IPdtPBRSnfz7Pe7CBaeM1io2FCUMGyEL5LzJxkrPOG17CYDi4firdcNH/EuK0xz6khksD5aLITfYKK2KWzFS8KmixaOeBEGvHBp8xHVcBcvzsNespe9uNxvPMLey5E0JuJwc0cYsZU9nsbDRCjzYPYCAeqcXSoxWbvvjOZlaL5Dmq4SRHNHfLfwJYHac+4zyUD2kGO/MLDmSl+BXxiSyvo7/+R3IxQjzh6LzNHCzy2uo7626vmq0kkNqNB9SIdJAtIUmGYF9TXLkuK/5//ipH7jaEDTInOod/AEG6ivuyia4txh1moiBQW3nDdjv1OIDJNhljsGJuUYYopVU5Z18LLKlAOAxNJJWWRqDdLBw5t8ZtZaWifIPtuygZuy43WY2SDACFuIjcu4qbjU/7xBwCnDmgbY6c8GDLy5zi1SZJl1qjyQvSRLigzD/Iz38NCxflytOvRSTECHxF46/EN+giadCl4hQHWRGPPIuTLBOm/zqbOFkfpcP7+PltXiXje0l2HtIXecakVJL3qfpljlU962Ibp62HnpGGCm7LEku/TQcMP2GeLk+Uv+sSlQVpkiTp4Vpg0jUMXQVe6gdjNFYubjfIAoEkZdxoE+wwY9hj806OEqS8yzQIx9dt2aFtC14eqoq6gqTPzohcKjFlA+mqTd0FxSZaXvUfutDl7UJk1VRgXn57zKFWPhyX2WEMJPeAu1yAEMGG3QY+QWtX5RyxodnK8yZaEfk6wx5MBz9eVTZaICv0Vi1tvrM9ffu+96ISUnJNk1xmyIKtMOYH7g+oT/uetbAfTU6FMP0KyTC6l/SJodo7ie9NWSplNAgm33YJVeqYypk/TYAA2WmGWffiZZI+PYCrqolAH20ltumylWUbrjOuPfYEFJOIQ0sMp00zABLV6UGQdwUpM9wQZtJK03TcbkY/pyqFfbXab4Ph9a46OsrwVHGVXdeoIC73CLFaZtQlMgbqm8uqEqG6WFj2mWjdmmzJ8ku+bRJSCpNILKtPPRop8iE2ygJt8KVCXIM0SOhgM03+cD/oi/QDX7IADWOhNEkMTAKiGGXaJhmT56aJB2zAiVQitDTZiPcv+UTdJDnTkWzT9PDyX1iigQN9ZNL1VmWSLJrjX22ggqwAXysqqZqIJhfndwqBF8L1WT0Sg9t4MwIEWCsOpQ/QPb3FXCpqwR/UcnS9930e+q79fpRYIC+/SjcvJ1xo1JM8wOHtrcYdbkyh46pMmQcSyoBAVucJNhdrjNNTed86Om7sowASnqFJwrE2GFGWtw5X0UsE+NS5VJov8dhLmkvl5qACsx6UK7f4+f4afJFVaNVaSfW/2sdBIxyZoFzJjs6Lf8GuIpHbw2fPgOCwaS+Z0oX2XIynTUJlIZd5q6mSdufpw3ucEUq861btSAiCkHoivtXGWzU6yaUW+CAn3ufZT9tcXJSHml7geQoAKdugVo8CHvcZUlEm5PBJEJy1BC9kuNbldQTaaw8vOFXSoTKgFnGt+YUOm60yAClZt8zjz/N/7XxjarEmKROTSNGzDDYUl4lvUJmFffywlc03moCWilYKoOogRAlWejMlrd67WYUrq8pmOpLYLePx1QKKOvjYctRvgp7xvQruAoyJ7sc3P2GEXe56cMkXPBQLKvrzNOkX4Lmul3BtXCYvKSoICfFuNskCeOGlprqI1MQg+4xm1+xI/dZNNLkRh3nbfdCjOADDpyDCHy+ybTrNhwqN+xS8tEiFGkj7KTxuadfLVhTLu7jgEnAxK/MTPTSHLzH/EXeGhb0nfD1QUKfMadVFnZh7rPt93ATfcSteI4yYTWM1vX0x2ucot3mGSNYXbIk2CXJP2O4awBHtoQ6BBCi9nrfIxKNjTdGXASM1nbeq5oI7HhBofqM6v+qOJ11LTAKB/H39IO9JtzpZ8UBPT0R7j0+SOCxedMVjYJ5kQCCgK2aOMafXAkQE00KmdkcICzmRI5T1LAnbEoR1EJQejOCftX0zmPopKOi1+CJ0C8y65WvmKisw5N+DoepRwMwxFs+UcIdari59WUgR4dsSbZJckrhYf8Teo1FsOvUyABYQFANJjs93Nf2fvcfQ975utMgB+maveMNbPDMIHaEX5atD0eloKvg0ekPS9icHwJA9pAghlCHPI0HuarS2N0V5Bwiig8m+rizOYx+WiYM/ljkrWndBUEuPE3W7b/nlp1TDovkIPN+DloQ7KZYzBboRiMSvqqV777XqqX4OZzZmtfOma02L30lY74Oh3lzdIXRDighY9niS6q/hDPkl1kPaI4mW0uceHeHrd5k2IwSqB2RNPvkyAM975NdGSAUCXEUvRV1pgEwONAzcnSQwYyh6ZC8XYEQP9V8iLK/q3TQ7D4nB03XMl6XgaY+Y6ewxHc5k05X0sl6BaGXsd7mlKqG3+zRX9TTOfximejKizUI3S49giAUryboyD8vc1fGMNZn/ldzxT//tXvkg8OoCECTXxQkyCKQFP8RB/FB/h6LIrv6Dk+muQ9CTSY6Q6zvJKVQJa2x0Mp1c0LL5wtlDibK0Fbarqx3BPIAHkgCA+S4us4zQqXWeMoLACGeIkL4nvSc/aFSlqDwlz0tDs8jg4wkDtkh2FWmOGXydfZ98dsL4tQpu4P8AlvsxJ+FZWvKYBBDLpLIlnX5F6/k88+TYaphU9zqu1CtNzzTZZKwkQNyprcmxZJ53HoP8Vu85t/DVBgkjUjlOjwfJwN8yj20DHGnp7VykJbY9JAAx36PyZlio/zTl2RZscGe2kyiL9cn/UMMYoGCqrs10/LPL+VgHFIiJvcMCKKhiXEKXCVO4AMVRWYayJSRpVTqu2MkHZWWWXKSXnlvPXTtGGo9LXC8EqyyyRrqAegSHR9VsOpl3HbDbNvcR21QFLwpImPLUatP4pTQFVnyuibYYVJ1lyibNFUgBPOqkM8+dNsMcIka4YHBGgwzbLVO0KwGXJssH1jvC1xlT/iL5li1Yli12k64oXWVJ9xzQ26JaVW1WG6B+ZJmFxViTW3uM6HfJ8mkpaaIO+IIdv2/Tp4uMV1NATkXT4ytmeAupFRRGK7zwLfIUvKnlHB9afqv77rBv7KQPQ5huMQOX7GewZeqVfdISGmWTGgUbAeL3/IR0bgaeFjh7QBfPMs0EfZKQ39bDFqiqdx1t1gVmzXVA2m78oOww6c9qMqyDvMov7kIapc5xajbPMGi4yybQCl+lBOsoaPluEuARqWq7BDGlUyAqwyxYd83+zIvG7QLx54Ajhq8u846+6zNplg3ZHZhHWq4XFiz9ZvKpFf5/pWAL0ejqg7bb42CWo0PcqWY3h5+ZjrZlatAEHT+WR0HDgmTAkpzCMc8NKPzm8voSaDJNllmmXEF08ajL/gHzuALI963CgFWFMn9dAGLBhjgg00VOJkou0GE3gRzXmEMnHybDGCJvoF3AagvjkTrDvQTmj52hwpkNnPPgEazLNAlV6jfbbwscEEPdSt2ZUXp2DItUwRRi1dSBFknRzK1EQmwgnybDvmpHoMTLNCjiGajqatn8lLh094i2Vm3EvbMf3/FKuAbNqq73+bT1BPAGXRqC5eG22dHKmnlDADC64h3DfWDchk2UPHUH7JdY3Q6xruFC9TkQSMGrKNXtMhlS2iPnCy8Qile5iMsYMEWBEz4DUmWXDslzIRM5G/y5RjlvlsWq1sQ72fSvWuE2CLUQNBFpjnM950G2/bWE869QlQ5/t8aN9fQ1R6HHNSX/Y6AWu088SNkQmC9u87SruYse8ywzJNfI63ErFpkgIRKlX3IYEs/ex/IxZdmT26FtWHL06eQ0IOLNgxU9zH7l6f9J5SeYaK2zUMQeTv4onzu3CdpmPgqYJHmsi1zIzJ0zt4jb00xV2u8zE3uGmgsHpiqBeJThn1ABc5+KF5fQm9W8Ay8XjL2OGjE1A1KNbpXN79PT3w9KDXS4EwTfoeJmOMT/V3VIAeYIlZbnGdbWe4q6AG4PyKWqgXkQJ0kgDWcAzPLB28XGYNPy2u87Hdq5fSgiLX+ZiiM9GvEiLDMLd4x1hfIMwyTXWtE2CRN5xcvWgTcB06/YAPuOIGIXUkuEYZq3Wb+fXwDrccK7Hf3smb3DAWmw4EtNgV5rJIHfTgV3ZXiscmd225oUcHL/MsuAln0d5x8R2s2zunsoZ1JuwsAAEhFWRS2cjHXGeRNxhhmyohZllCZdURRP6/zQjrTFjokEohTv5sZVDr4EElCeOskyfOlpODq4z5Q97DZ0Bq0/ZwubdXEEZ5x87jRebIMYTfsf3iSNCG7j1pduhz+41+vhYS8LRPDGVt6zvXcIBpH2X87tyIcGCJucp6v8kN1LdU2dj6Xsi6HWaInJ2FIQ6dDLxpa1gYgS9T0LRuUWWBAqg5klznFk387Dpw/Lf68kN/SQzwX1wWIKIc7v0G6Kagztulv4YoDFeecDZXYiB3SH+zyLPzXVwqPKKvdES8UuJm8O+yGH2Nr8eipCpPZZDXFO+8GEU2x86ZTHffH2M7fIFQ5ZhHqQFitRKDuQp0w2sPNsl5knjasJfulbOsgp33z2JdeNxePlx7BG0YyB0KeytbgRLG7ieFDR3+Qe7f8exiF901+W/+TpOp2j26N+Wc1CE3HQFDMtFBFsOvG8P+QeoCmegg3yt8wRYjjDa3ISdBGVSE2fRsrEs+A9CdgRcxqAe7CRaeM0ROAMjzWAjJcRpGS094ERYfu+MzIss6jsKzsS5ClSMKxKmNnabjPc3FB0/pb4r/1Fb0HG08nNqEycqm1H2VY2HUeMQQPdnMEaxIeuwoW+KNGjxHCz8DBam3LuT2hBnowAkNZ9v3xNgJnyNeKXGqIMEOoU7VGkR/s8UQYqi+6wZNR2GYrtxDvX8TFITVFx7kOC02Pd8pfUnTL6ENyki8wyw5fxLfkWM8FiVQIkWWJj6GK08INOt014CgSBdXg69C5SWrZ4dhG1KPs25swQIJLmT3eBGH4yEI5oQRqgEGXQUJgxmuPGG49ohIs8w+MWrx0zyMDxItHAnzWsskL8IgRJhztenTkJDnGaFMLX6a1wv36euUqQe7iVCmr1PmwuYe5WBYwjtcAEk9eJqmHx7ODRJplul4PVzI7MEz+L3Ne2gSaH9TGFxnsyU3/vcxyxKS+uk1uWWKLDRxsmsJSakHT5PqZDk+I+t8zT/JC6/c26M4VMPdIrOd7uar+Bicl3CXHdJ0fkc89A6dTZP+M8cXxswbdeFlagWiABXAPhLuJDW49Huqbhplmx4H9ulwVNNEQ1SdF/AuU9xlixFEztqxOv1P+FOTMnbwWk0POMBM+qsiMYZc16U2LROsf8MzFqTuinBggORJiWOZCAXiNBFlkPZ+AedXrKCxh7b1lpo4K8BND9f4DJUrJxxAqj9Ha7o6AdLskOIxu468cBJw0yGq1g3a3+sz0D1Fv5OGGeaJo6Ea+jlnWDGPPYCPuc4yM0b2UKKTKg7S7LDE7Al8QoJp1GJGwx1AWNoNephjES8dAwaVKFGm7xtMSPVu22KE21yzelT7uRxJq/le1l5t5vjCfn+VkLEspQ+dNvmtEGB6rTdt4meDCVOsab++wYQjOPXYnqE9QhsPPTQMkIuxb6Ea6hvYwscdrpIkx12mHMFJAiQ0pE7PEcAwHqnhXtoEJMmxS5JZlqieAKcVu9G13OOUGdILxZ26SIB0JV75He2h4z6/svh0rH/XeYb/xAWRCvjecD73ImvWXrzPEQri5JlnwYWjNKnTQwcvz39N8su3AugJG6+PKiHzjJlilQ5etlyDMEzGkk2usmR0UVF46+RL0uKUEaco/gLfsaZNX15tPiWJZJUtRllmhrf5lClWuckNWyTwkvHyLh8ZU6TpkFxNrhlhiwk26Gcf9RwDOch7aBhie5Lmqn5r+25iIrLjuNHW1SvjKktEKNt3U2RZtdpN/IywTYKChWzI51lHffFUD69ml2tMcovrxmhTOrFuEAG3kSgwoJ5JyjAZORH0oNM8bWLUiF2LbW2S1xm3Jibt2GXCzGg64LHP7puCSicvXbDKwlQfLqFop43hojJnPfh00q1F3QERRtlyfkYiqdINXDcjSbgV5pr6xymoJy9/wyR4OjVJuPurklJle/gcDCoAgZ8Qh/YcRVNfMAZm4oSkeYq7di90CuWhY9OPKVZRA39lnBw6gHuORR6TMgp2Bw/jjvnZwm8bubA1lU0jSdD79BvLTo1Z5dBr2+GisfXaACsIpUE2Koc8IEKaHdTc/zZvunTjcfaJGQuw1xUPOqHTQ0vZe4PO3+O3/XrMeaODK9tLWcIqd1D56pYLsyjSz0e8S5WQgck5hgz49zvGVK8Dk7WhUPboNW6z5SSJd5g1ltGbfOZ8HfqteBGD2hkDp7UQ2iH9DcBami6/FRP6Hmratu7DyhhWGUDcvbu63iOUuc4trvEZHtrmF6JFYYgqH/EuHTzGKGu4KaAWjOrpqYXhhJt4qZfSm9xmhhXHJts3eWiOpLHMdP8QWUKfyeqVjaCFzD/mL5lgA8ANZXZNXquyzRj71OkxRtybfMYUq1QRI+AV572mydC7JJl2hV+BBP1IOnfByTJ7qbLEVfw02WKUgrOL0IGNpoWvM07D7e0ygOgxhrCaNivjWNnZ06y4PbfXfO40UVQnmWo3oVLbk89SjZulkXtsz63HnYUBx8pWdqiktk8aAzrCAX2UXTKemMfrQKZKiHkW2CdGnDx97oxUFn2SHH3u+6knngYyBVxR2EPdWSiIL5HfnUVN/KjJsbKHZT4t7AGd2GstIY3HASMuPCtHEk2qB8wXp0EPKcTwTFUA+gyUwbLDsGOTJgyYVNPuXqouPf63v4s9CsDj6ABlIpwqwKXMIwZyhxw5YCnjGeZG7d9xMfeUg2i3eJmFJRiiFjttYQJk4NRD6KoJk3SqKXYad8KvEaHM8RnAK/VFqvaEBgEitYqtkVNFYdDdCv4B5ITN9yKO1Uyh2iFlIrxIwuu5+yLDqRwToM6bndsSbuCXz3SL67wIAkcwwhZncsd8nYyiFgUvuuHAE+FZrAuAM8VjC0cYyB4yUDgU9pVfQDp9f14pPCRJjjUmJTTjMVzprOJpP+fR7AA8A8KA89SjhvwTheWohI08Sg3g7XS4lHsEFfn/P/tuFzvhc5w6gkx0kI4XCuEo0dwRjd4uzjw8phgOM9zcoen3se6foJY+TXDlOWObT4QZ3CxCUkCZYXY4dST3bLS5LTIhr4d/Hf8D8AhA66dJqvaEOj08i3UJ8OmFwWyF38vcY50J7jDrfF69JDp5vB341SVh4vUcHuN1gOGSf5Zo7ogY+1YPrgZfpRgOs844L+WKL5PQL2Ueceq+MMgGCxU6eCgGo2hCZTEcRoNB8EL03hEXcnt0PZMU5IfxQR6ODVqjzHmYbK5ZrdTXKTuJVYOm32f7cC1+muXoZQGti8LOU9XS3lgvHS9shy/Q8Z4mmHnO23zKkn+WDl6exbrkrA5G5bk+BirC+AVY9U+xmTrHi8tOwuyf4NgvwRfKnvYdHfMiJlYfL4JwSIjuEuT9cbLBc6RLTwluPufMprCDn4118SImqozxykOCj59zobDHXqqXdOkpZzMlq6XLRDibLZGqPMXb6bB56RxUZE2Ug2G2/CPUPQGK4bA757c4VZHP6m8Kg9R3dIy/Kf3GURSulDbp4KESPPOfZT/6274qhM0cXwahwl5VlYYGLqksM0HeEm9F2bHPNiPGaGrhs57qTWeRo6wmNfD30yTHELsknb1JPyd9v7cYoZ+iU1u0yTurlpvcYJtRs6CYY5E+1ydsO8CojPjYq2+tn5b1VkrAUSLBNqOol5mupxEHoA07tzI93wskOCDi/N8aqHdklhT3mWSJWTTAUYfX+ne1ttT0Ub0fIPv9KNsEqDPDMl43sFG//3Um8NPkFtfp4LGzXz2qtQ6uO4BGA8Q6ePiAH7DDMCNs8yP+CvU9V8a++gs28TPP5w4jiLt+ME6Pq+lG2WKeBdRjuBdRJ0Qom4e8fP4V+65av4hfcT8f8n3yJMymaolZdw/bBn6qSkvVgP4TzDBJfhUmn2I5qiZSRpsCtMo0VYxg3OnsrrmaXEIo/EyzYmrCfvZpOC++Sdbw03TnRsvscQ7cz27hN7DtCqtOir1t4G3ekQMmWTPJutbhGlKmFmwy1JZ+qtfVfUtcpYoM9Lac8kLszXYRBYDcWx2mi6XPAWqVJf5+Td7mUwvWHHFhHjqk1zDNOHkk2FQSiquEHO6Tt/wCIf9Ef6395FsLxVCKp0Qki0eTgj8hqhQQQ2RNUtWFKLTPhoFdKgdTpFi9laqEbDNRlF9plurrliRnaStarGvjl3BFtcqANAjhgAjrTKARyPryxh3y/1Lm04t6joU4NBCmhRg0KoNQH3yCPG3EPHGVK3TwssSsmzA2zUtJCwZh03hco5E3bb1uyCGqbDFKggIx9plngTQ79LPPDmlj7MhG5nMyML81uCFeTjxVTiy5SEKFnWSNfmd+DtIAHbjvohT8GZa5wipxCpx3bZ/eszIRpys/MMZOB0k5LRJzgNaQyC5c8q7K325xHZXkjbpm/yTtXFk0+gx0yp0jaS+2h7bbAA/tWcbJc51bqGmvsh61AFTg9sD9fGVUxCgywzJiPJ9Gk3PqBGxipQwZwEm5ZEOcZQkQtqRKsfy0jMqtm3eIqgGAfsciUS8xwCLHlXk16zwA1bRVN4AiMU7G0o+y5STV6zaFODk9KzgGkoDlfWgK477bCAEDoZTSXiXkGCuyPpLkzE8SsKZ42wHoDVf0amqpArxpHv4n3nl+My99d7T4Vx/CCGUSFBgix01uUKfHgfoCBiuIrdO5FFkDR/TQ3mCC8w6w7uBlhWm2GGXdHRERyjZtbeFniVmWmUYtCDy0TWod4cD2BJEbNQ2sS1CwA18HAgpqT7Ns8hDd95eZsYmbhoGEqPIJb5NxwLMCOerlogEP6r2iw5UCCW5xnTkW0UAHlRoEqPMGi8ae07CJGEUDyD9nHsCGOUrf1/1nixEroJSR1cJvwJ6HNiuOBa3eHcrg9dFimWm8CFOwiqQ5q5elSDszjDgf1JPWBGproO+PF/GMUSC+n6ILPhmhh4YNnCJI87jGpDHcfsb3UbsGBU09dMzLUk2jdRorbOwG32HBmgEQMOFD3iOC+L7qOkyyi/hgptl2vjoi45GzY8vJRnWirZ+1x02Xb3AT9TrRyewwGQOPdV8aZYs6PXjp2PCg4AYQARosMO9mvHW7D0lyFJyMWwMn7jLFB7zPGyyiSfPq5RmjyDrjjhUp55bWEUlyLiFPJsgbDuzWJPYqvYiFQj9exGcnR9IkKX/KnwDCNMmTYIQt4k4dMM66yTXqBFjiqp0lbTx8zdn/DLvR3+7VXYcLhT0mSw8t3OBXyYvUg92shceIUJaE0xJECyIZvVDYEwN9f4z14Bi1+Gn5uwl4mBxknHWCuef4O9K0Xsjt4e0ImHUx95TujNRwnjYMrBzyevY+pbFu239fXITumqSLTjTX6cqKfDfRLHAQ7eYoLAPAU0dSK+17YtT9AahB1S/estVwF/RKWu1RVIBxfU/WohfFysQjtWwtfJqm38fxEHyZusyD+AW+So7xZfoyv0pexEeTs4USZOCV3EOud25x6iGUZiXoo9XdJd56Z0QyTBKW/dOULnVDt8gbJ2v3iT6QxNV1zwSU4GgM6IYtzyiJTp7j4MuzxUeL46CAjaWxbhnG+iPGovcdPac0Jz9/YOmQYOU5tfhpU2WUkt10ZyFYfE6itofvSJhox3EZILxT+QWt7i4uFp6S9aQYIse/jX+PX6UuchwVH7o5FgFhZDY9fk4VsDqj44W/V/gFrz3YJEmOZ4kuN+Qp2HcIdKTZPJst8b3cF6bKqYa7hZkYlkCJB/ELnM2VOLtYEv84V5uO/eIJbACHQFzAWvKwF+/lYvap1Y0RylAToE/OqxhnHh7TVzoy9ilIYqzv6LnVoy8uwoWcePa9XrhPqHZId0nO2uDmc76+FCVSq9BwdWTb42EISVTGC8dj8h08dAjmnvP72a8YW3rCZ9E3UM+zXFiCUvIkWGaaerCbU0X4XvYLTrUh1cmCS2+OUOZUDWpjp/mbS69RSneT8yTJRAeZr/01jd4uSmMCqrfwsRa9KMzVWoXBxQox9mWthwdNGk5YALtAR4Y3eeJEahXEW+2KeVOeKgqDtB7sFllvM4u/KSD9FKu/M/7KUUpIYEDMAK8UWT7hbTe099ogb5gMB0RcvSTqIPVIFm/2CRu69zsfdB2C/Rl/bMQOBbs/Z97OYmXFFYhzmzcNpBIAahz17dMzU4P0Mk5ppP9NGVlaK+qlXm5aEwnQtcUqUw4qEi9g/e/aS5/0Ge7gZdv5ik9yH1WTKRAjXnBXzKcbMMsqTRdv4jeVoBCO1tlihM+45gI46/Yc4uRtYD3Klv27gjL6PTUsq+k4W8K0GzGSR8EBef2uxtW+M0eST3jbSCNKAtLff995rat6QIlDBRImQz3v6mrtVVXSrGDwqPvemkqrBAFVuRTpZ51xNKxE8Zm/4kdsOVWNhzYq/VbGZ5Ve+y7qkz3PAqo+eotPrWdt4SdxQllYps8NcofdzwoZAUtDXK465ZF+J11L64xbn/0pbxkApgBeryMANfHTS5XH7h3y0zIgeoQtp84oo57+yp5TlmiVEH/KP7UBoILWeo/E3myfQ/f+eN1+2neiLm7h4zxZeyYaBCisy7qpNrR+FWuqhjECdXicJEeJXy8k6FsB9CqEZQLmGCAqGf0OC6TIcscxdRT5BAEWNBVTvSc0blgBugk2eINF5lhk1En9FpkzOejLm9RnLC81GVUwQX6eMDHUc083Km1ikuQsCUc3jQgHXGUJv2swlRat7Ik1JskwzDoTaOqqNhySHlO1pkmBTjWulIlByyX8xE0mqswplQ8IXVo+dwevNdEhDtl2m1KKLHMsGtvD79h2QpftcfTWujW3aij60vdOEO59YgYuJt3GXabPqMjTDrmXOPM38NHiJjfo4DG/uwR51ph01G3x2Zhj0X4HyLRRmRkJh1ard10HL8tuQ9aG/w5XAZhjEU3K1YZpixEWmMdPkz7E/LVBD2/xqZM5+41erZ4l17lFjqQFgygwUjwxKajSywER+ihbA67MRX3GHTwn2IUHHBKyww8w34Yd0jLhdv8/NViVEASfrU9lCmwxaofGMDsGmiirRKKyJTFVgZ15FtA0Up2uqexcwRKdXCj4plLONDsO5Gw4SbbMYVQ2LrH0DQcst+zzqAfVjPOeWHfR3y3Ed0dlc8qmkUI4/m1sP79xV5gKaXZQqUGeOLPcYZI1bnONJLu8xacOKI3zY35kzB1l3Sl466PFDW6eALY9ji0sGbjv8pGxs5QFet4BELe4zghbXOdjZ/hfN08v9amTZKY4RTcdeptP0BQvnfAV3d6wwYS9ew2EITzOujG8AKPkK519lC37s1okaYiQsmM7bo9Stuk1bjNMBjU4lsCZUbMw0ISsOAVu86axV9XjqN/duw5eNOlMp7FJcrzJbX7IT+jgtXdCn9UwGcpEeItPmGCdhivE1Dj3NteEleEAH4ArrJJwjaaCPzqFzpLiC+ZMjgoCEigw10cZ9TcdZx01Q1YWeYQDGwCU6eM6H5OgwB/xF7Z/vGSEvcH/wH/HErMMk6FBwJ2eb7if2XGAadwKcL2PanmgMothMia3eo+fWQCKJtT1O2mCMOF8FIibfYXHTc4TrnTXIlA980bYssJlyJ2RKnlTxuhNbgAyPFhn3IqhKiEDDlU+rlKQG9xkhRnHao9bPVAlZLJvNebW80gl1jGKdj9UxlGnR4IZXKOh/q8RyjZ5fpef22QapK4puCZnkjXnZdrnEn7vMM66SZt/JzxF28JSehwdEMaY89TSkJ++TpmvU1GO0i5kIfOcWvg0j1IDJGp7TNQ2yfvjEIVa/DRl+vA3W+ylewlVjolmjqAp3nm7JMELL5LCiO56BtSEjRe9d8SFzT2G2WEreo5nsS7+Q/LvsOifo/SqAFfBzHOimSO6N6WZpAaRyiFirdHD07Ewg4UKr//iPlueUZ6NdZGLRqkGe53OROwpXrn3kFG2WHbJ3+L3lqYYDhPhQOSWlC1t2dvpsBfvFfZdTSS19DoWlmeCM/ljziwdSxJqtsSLoADxHbz869QfUCRGdw5L0I2xz4uk/PuzsS5eL9wHhN14SIhWd5cMf8MCGDYQe5hIs8zgvYqwKHq75B4cIUBqfJBA7bnsyU3xlPzy0mWeJsPiZ1iAG82bFMMSgpIND7LkmYWa+OJ9N/Mlb9V+wXjlIdVwt6hWKl8R4pC18JisFY/IrqObR/ib4vl3lBL/uzPFY8YrD23vH2aHpscvA+U8vOgWEFf3k9JYN7Wx02yEL1InwNfJKITh2UX5XmcL4q13/D2M9dj0+3COMdTip11LLf9QgafxMAnypNmhNNbNqSNo+mVt7ZAm4xmmGu5mbOUJ0YKkuO4le2WvyUky7NNUmIHcIXiFRbcUfJ35zgItBwxc2NxjlySPUpI0rB5zL8LAEuCFmc6yATOHhNhLy9DhH23+T2wzynEcniW74DGEKsdwCBcye0QqhzxMCXCWIktf6YgYRdKlp3Tfg4xHFBjeToezhRKpTpYcQ5SDYX41d5FQRZ6LMt4D1HnhhQvZPc7kjqkT4LXMJvVgNwPZQ763+QXHQfhu9kvoFg8ub6fDheweHa+Hn0f/AM4Lg3J6Y+Pb3Yd+Q64KEfpdL6GSVJWbviRFyJrbdQ3/HWa5wyzTLBMnzzVu0+PY3gvMm2XFGpNc4zPq9BiYESfvrDvW3ZDNQ44h60dzJLnBTTx0eJ8PUDHwybRQSf/sYZtRVrnCMjNWi82zwFXuMM0KkvwaMr85tXa6zTV33u+aj1yVXgrE0UC9Xdd3pF2fpj3KInNoIq5II2VIp9Y/yuzTgXkTH8smB/UZa0/fF03fVR9MVWn1uDNfk4U1/GyYHW5yw2qdMhFHBpH+bZtRMgyzwQQpHjPMDupR3sRn0lapr+N8n58ZuWKGFefDJ4QdTT9Vaxat15LkjA2nbD214Ek7CfYqUyaDVSnndW6xzYipG/LEmWYZTXJVSfYtrpN2FllxCsywQtFhLGoX0k/RBvYKdGlAWt354b3EDaQ3X2eCA8RX9iPeNQxi3PkTJsmRII/a16gCQn3t0+zgdyQd7cEVYNR7okScdcbZZpQ+159fZclSfz/mOkl2aeFHg8m0z1pgngIJRtnmBjcdGUyS4EUZJIBjyyEr2lurwkV9ustIyF6vq9MjiF952b3vWnf6kaRe7Tdi7BOnwIYD59XaqPS3ydC7wirD7DDuJt0rzOCnxWXWqCIJSs0TN0Opi5LwIc2BIvlNfHzMdUOVlTlx2aGx+sKpRDHFY1QmqE0gyKGjv2+VKdp4vsGoUImR3GRhpqgH2l2mCNBgl6RtbJpuMsE6U6xaTLd6H6Ud360HSSIV6q8shgji5zPsPIDE9yxnTDyd2EgS77ixZkS+WTCQ6KVnVds2KG3ydYFowqw03n22USorY5YlayzzJEzC18JvmyTgqK/rPHYUZ40912eifg3qSVAgYayTk4WQ6tlFmus3GZSaaorH3qI1fzptKBNxorOC0YxFpt1nB8MkayadVt29/N4DYw6uOC8DwDVycZuAqLQsQR4xSO+nid+AuCZ+Ms7vMeLAvR3SrDPxjeZTPVJ0GqIbgVLElWGlTBT9HLKB9Rr7ZJE5hslY86oSSgXzlBau4N1jN41TJqvK5OClRFr8yeonqOlyYG4xwqe8ZUC7BllEODDgUYNndKqgDegBEe4yxSpXuMkNo2KrV0KSXYaQ5CrdxDt4iFL6Fnaf37xLpzy6V+n7u8y0JAaCYyk1XNy5gL0bTBhbKk+cJn6KTtKsxZf4PwgzU71tNL27iZ9plk2iqn50IPvEspPZ9lBnhzRXWDXGrU68dpwkEzCjZfWKVCntKlfsYP2Y6/QgkgfA9vV9YoyzwTA7RrUPUeU6HzPLEhMOCFQD4knWuMFNmsaebtmAJU7BZUMXrXAVcKfXBhB6j3UfVL/OVa5wjdsmA1fGqQL0Gq4AwrJZYYaPuU6EMktOuqyTuRj7aNAJYNP1AyJIApePD/gBi8zZFHWROWIUeZefox5ZOwy76V2Dd7iFprVrAa8yA2WiiESnjRpI69rQfV8T3BMU+BF/ZQzbiDtrZNARoEEPMfbpoUGEAz7iXef/F7EJsoKEh471JwzuhDUhCsZmGOYuU6gX7hSr1hiIn0k/06yY1ECk1YfUCfDn/DE77nkoO1HW2x3S7DDh5BoK9HoRf06VE/kcaKzPr0GPpQAq6DfDCmUiXOMz5lh0hbYEbWnwknrmii1B3FLn9HzYYIIhxFhZAU8F/vRdmOUOVeeLBNiz7+GlPFz36HkW7D7GyRub+7f5euGHvo6c57969SK/TL6OJCI6fxqP1BK54KD43rUFWPHSoRrspXtF1vFxEDpeD6/n7lP2R/B3mqxFL/IwLSmxqU6WcdZ5FB9gP9pLCz9fp6IQg3IwzFFawJyBlUNStSdUPSH+oPDXTLEq7A4P1NKnqSVP86vpi1KD1aCrgE3lA526mfvrQMRDh4HCoRXwdYTJlyyV+PvZ/8DZz0s8TYZRe4VU5SndFalPq4S4sLnHmaVjIhXH9KphvwOE/V6LnRa2WRz+JvUaS9FXbSijUkm84gPoO3pOoilD86o/JEyqCux7YvxN8jWGmzvkPMLYiWaPKMW7OfugxMWVpwQfP2fv1V5itRJNj5w9R0lhFXbwsh69IHuVX+qc17P3KRNhLXqRr9NRyn7ZB1O1JzYcqSVPC5hbgHxwAG8HohlJXe3KCGD62oNNBrICcmWig2yOneMg2i2soWA3WU+KY79IVdWPWhvcDh6owam2PItQ5YgV5wUNoAmE+8QkWTV/zOv37ouc9UgSgx+ODfIiKc/k2VgXLXxs+Uc4WyhZn/DivDyPLUZJlkpEC0fgFWYnR/C9whck2aWvdARhCaFoevzWNP9i+g1A9qsvk5d5eGnQws3OFI95pfBQGn0vjFceEqDhmN29DLMjjNBZICwgne4/IHveQObQwk3sSkAuGuXZTJf4AYajbDBB3i8kglMVYbCeKsqae62wKSDC0TFHQTizeUw/RQaXKrySeUhXE045/75QR5jhp9pAEbgvbNen6bAk6gaBblgNX7b1PF55yJnVY2rx0+Q8SZP3vfACL4mOv9VXkaizsfCzxFV7jxX0eUluENVDjiEDT1WlJj1eL0lybkD0MhFTfav9NGnjIc2OqRF06Cg2LgI2TDvZpgYK6jBZ5OtNN9AV8EL7ACXKqGT0p/zAeq8kOf6Ef4VKiNt4jJig6aF6ZUgzwQbqZwe4HjNtaoYOHnoRNdM+MRoE7N3PEzcAp58it7gOYKo1HTBqD6qhfjsMG2lCCCICqGwwgY+mDQi1i1UAThNTQYA/qbnFD3qORZLsUibCDW7aYFclq+onL2CW9IAKWvVT5CY3EHVZv+1r6uPfxuP60mGTRitDV2XX6qW8T4wRthllmyY+bnCTqywRoG7+w4CrIQVw/Of8C97iU4QUJF7IMfbNdmvfDah9zg5GveNCHNqz1QRzlf5LH3/AHRfyp8BX29WsUgv2uPUuv0eTbbVmEk9wIQYsMUuKrAO8hmwQL4qbUeZYNIZbjiHuO3zCQ5uMsz/xOVaihzZDDkDXNaAqwAgHqO0ZyPmbI8mSS4RWSW6IKne4igYW5kiywYSrhe9yh6vkSLLMDMtMu9pA4GiVJ+fdEFz9zUMcGktRQen/uetbAfRUxy8pp3XzElK0Ub1zFMXVFC6dSoEYTR845odq6bVZqzv+2iEhk/qpfFEQ6i3boBaZQwMp1NdCACL5bAVH56wT4A6ztrmqEWkPdfNiqhKiQMJNKOQzFImhyS9l+kxapy9pkX67H7oZqy+STv51orLKFcr0scoVY2Xo71PmVAcJ7CgSI8MwOYZo4bdGR8MYlJmVcFJj2egeM866+RpOs8II22j8t4c2anSrTErdcMVwM2ISTRA2jwI7LXx2z3QjyzFEiCobTLDNCKtcYZtR9pG46TxxAtRtIgPSFGv4xb6jmUYo03Isv1G2uOKmTQ1e+kKpT+M1bttneJeP0KSYfSeTE8+ELfv3gmN2Kv1YvQh1bcbY5yY33CHbZo5F1LtFN5gUWRqO1aGMDg8dRtkyJqPEu99Fk6ZUDqespoQDP1XaqB5hgPt3mcArCNtxB+N7fGjv3UuJWtwA2z638WqSriYxB2hwlSWjTU+wYZMKuecHBiypN2WeOHMsGliih+F597/F+2KHT3jbNmtJuZX4c007CrjJ+e+Kh95pRCqvMsgWfv6cf4KXDqNsWziDArnX+Mwo7kNuDQp438sI2zaxDFA3iwGVVwRomJQxQR4/LZr4jNXccMOCJa46m4IeBzgKjV2LIJXqb7kp18mQF/XSUB85ncRedYCfn5YB+VOskmMIlUsOs2OAlRSKMdRUXINllIXXwUPaMeRAzhUF23rd1LGJz3ETJURB77PuweuuKNPiM03G9vwAdXZJGktWC2WdRFYJcZtr9NAw+ZzIVf3kHftZzzZNZBe7Axm69CBpppOsmYmyPueCY4QNs2OJ6mKwnrZCbIlZEuTdNFCKtNu8SROfAZwy1SywzjgHbgimki2QPWGKVStIYhT5I/6SNh4ypK1Qb+Hn73KTd/k5Ppp8yHsn1lTdSX59Zkavnrc5Z4vdwcsci6g3jTLWdX9u4TMAcptR/gX/3KREN7jJPAsWAKTgmj5DwH6PWhcIG37cQgh0f/wJP2TLSSjUd1YZgnr2/4z3TAGg4TxXWLV1Bhi7PUaRUeeJ0oN4X02zQgsfP+GHTHEXTQYv0s8WIzbx12m8rE4vH/J9IoiZuNY9WnxeYdWAot/m65TLvtJ3dK7yJSNsc6W0Kc+ocshcR5rGLCkIQjR7hCTED/H1d6JEl47oeubkocluzuZKnLl/TJYUf8kf8exiF02PSK5CVBlYOSRRqtDEB2eEqVEOhjnwRCAo0j8AMrJOF5inFjtNsPKcsl9sRv7rwr8RBlcck7qdeXjMi254+r0wCQp85rmGj6bIYMH2suNLIud9lBrgaBpilQo7DHOlsyreal55L2dZ4jgOX89FaXWfhijm6fb0Utikyll/yrHvMEZ0iCqhyhEhDsmGB3maDsvAsCPAZz4aZnCpQqJU4dgR44fIESw8J9kRgJmisKa+viTsNZD05u7KS8AyHxQPuFTtiTRiHRlixihy7O6t2omc3SwJ+zh4Tlh2vExZfTbbJcPJaJhSWmSdBlyeERalPD/xQ45uHjFYqOBvyjvZtSvPdq7yJep1Olp6QoZhar9/Gh7LELrVfZoQVV7JPSRYfM5Y4QkjtYcmySOHJAXPdPFiSsJCQhxy6kgYfvuel6nwT+Nhk399Ev07Jq87lYP/Q/x/w5fxy9TOn+Z4TKTQAw8OOYh28zQd5lQbBjKHDGYrLDBv93CLURu0nc2UhKXeBu6Dt9PhOApdTRkuqdfcWO4Jocoxe6lenp3vYj/aS4hDBnMVXsk+NCuU46gbUIUHxHeyDWfvlTjz8Bg2sd+tSaIAxJBwi5h8h1Wm6K5ANdjLo0sDkhLs2J+leDe15GnyJDizfCxBMTWRdj/6uwPs+IcZXKnwwisAK20ZKP8qfZGjqDBEj9Mi5x6pPBK2qRdO5dy6/x24lKGnw8A8CRb4jmOiT9i+t8akDTZVDnuHWfbpZ4UZss70SP3ClQDxMohRBm2qFvPSYZ1xIxkoqKCDVpBaUGvNNSYdoJg0FlGEsllYeenYQErPPA2+Up84JfcUiXGTG4i/fMKGvu/yc2O+Ad+oc9eYZNUNDH/K+26/FIa79tnS64hnn/QiGRIUeINFAtRdkMgIBVffSV8eMLKCMO8S3OEqJ8MoFWRaZpoWPr7Pz+zM1zCwHsfsUyXVFqPc4h3Eg1DqbCUSFYlxlTtO/dHHNiPsE2PVBYgqs6tBD34HMKpt2BSrBhgpCUYDHpScVCdgASW7jpihNaOqAZWA0k+Rq+7v97k+O0sKP03e5hMOkOThj/hDU1Yp2UgTcnXtfsS79p0+5W0LmFTwWGvRdRcsChgZSAFg9XTWRFv1MVQV3zgbCFNSbGyu8RlJdtlihDwJ1riMKj+1T1UST5GYhZqmyZAlxT4SjqoEpC+YI0CDZaaNfa3p6fqu3OQGfpqmUtMz4eR6VSuwOj0k2SVC2Sk8mwY6qp8/YL6CPdTZZpRPeMvUkEly/Df8P3+t/eRbAfSadFGmD01+VQbFrqOmemjbZrXOhAPsDplgnbtMoX52ZcQkU6dPyoAS1DVpX1alXGkyZBi2REVJgblLjiReJFxghWn8Tv6zwYSFdKiMSX+3AjNJdo3aqemEIvERpHiZGT7lLfPwGWXbGDKK/krM9IxtAGrUqRtziix1AvwRf4GGOKhHjzRtu+RIWvPyKW9ZQ6nR40XHJlPDTd2EPXSYZgXRxh+i/lxbjFgzXUWiuAXIe8wUqwbOnCzC1LxVmqMDAjQsbOGlPDX0DebXgWMKtfEww7KxWUBkLE0kwVhTZ7cZQf3whI0pozqV3DYd+22WJQMiG/Sg5qhKgVapV5kIC8y7nFxh1bUdC0dDJALUmWPRvJOmWLXN4JAQcyyi/g16WOr31D87zYrdU7nvbfZdU9LBI9IW/Mb4VG+8k5H1V7ljUu8tRlDPPtXdi6+Dm7bzUlqXdoD3MDtsMEGGND4n2dPNVJ87CBuk44A9fY+UWTrsfPtECi2JY8rW22DCQEX1jhkix2NSXGGVUbYQc1CZEqkUUQ4tSUTWaeMuSZ46oO+3/XrMeTuQBLQZZt55l6m/hbIiNaH2DlcNsLnDrJN4Hlpjpeau73DL3pEMaZvyRDgwAKngwH3de+ZYNH828WB8yXbTybCuf50QK8CoYUIK3BaIG2izyhULHuqhYUVTmT7UU/IW7/AB71MnYAOeLUad/HXXpqc+Wuax0cRHxr37VUJ8xLvsunWrEnaQBu4dblnxq1NNBcmEqxtxct9tK4JG2abghgvjrJuXk06vNVQhxj5TrLqp7b6BnzpN1kmxJrJdcfuoghfnyfK/5/8IwF/yjx0QKKxrNabW6foqV5hmmQ94nzIR9ulnns+ZdlJhPYd0OqrecRI+0SBBng/4AR/wvhXY8DKYxE+LN106nDKMhZGZRr1Kk+R4h1vuHGi6fcJPxu0JyvSTyXLG1rsyrlTmLWnIO+4s8DlGokg2isT4xJ1n6peogOkdrpIlxQLz5scpFg4id0hQQGQ4b5AnzgrTTsq6hIcOK0yzyhXUeFktQK44FpYWWXpWXOMzNJhKE7yLxLjFdfy0XNCG+PnOs2D3K0+cT3gb9dzTy++GlE38FIg7c+QthtkxlnbLASB5Ejw48Xd/W6/MSJyew2PKRJgt3aNrE/ydJk0/XHiwR6v7NPueGDH2+W7uS2gLuDNZu89kZZNIswxJKKW6OQpCqCISW45gvrPANW6T9yQY+PyQ6MoR24xCXFI9q4Q4DgqzpEiMC9k9no6FaRDg7EoJUsKk+68z/4aOV5hekWaZJa6yF+/lKCWsMA8dhitPICwSSx1GtPATqB0R6khDrA3an4f/EQ+SF0jU9iSZFpgrfUXWkzImXp0eeqjT9Ux+nu/oOXtxAVGene9iMFcxsOPSoiTsdleE3XY2W+LsUomurHgbpUtPSZTkF52qCbMqVqnwcHaQUxUBUrYZ5TZv8svU6xx4IsZo1b0Kv4CXU81VHiQvWLCGAgrFYJQqIc4sHxOqHRoj+7UHm1zMPGWwIKm/A5lDxjafcBwXVoan/dzANB1wRXNHRHNHkICuZ/As0UU2eI5H6QEGsvKza+cFpPMdPaeJj9KlbmK1El27kGpKsMVa9CIAS/5Z6Ja9LlB7zu/l7lk6LCW5b03HWn40O8BespczuWPaHgFJB3KHL/884osYqVWI1CqyBim74Y+wp59d7uKf8qdSE/ljdGXh7IMSRGWtDW5WqIVPQ1vW7QhbTNXuUQ32Ml/5ApU8HkddwvMzOJoVRt9i+HUowWhni6w/RaxWghKsRy8wsHlI3pNwdWwPm8lzcCSS31ryNMVw2CTHtF/+Uzt/mtJ3uvle9gviFBiuPWJwpcKxqrrigHtPhslATtbn+ZL4/5GQdOq+0hFb/hEmmuscjwnYS0GCR1QySBjy0TDHfkkrHqk95JUHzju5Azvhc+TCwtR8EYSDaDcvkpCZ/N2wY5nhS6sf0m7YOc/nZElxlSUDaxRIs0RhXhIdtFdV5pfW2tqnLDBvah6fA3U02VMDNBoO2FpjkjYe62vUOmCKu6is0Xw1aVpNpuqltjtL1f6inyJNXg5XQBQ9CjJqaqpYJbX4K37EJ04ppNZbHTymFhNv+IADeYaMvTfJGle5wzYjNnw+6eeu+9so26jfm2IJanfxx/wZMYrkSZiHr9aWKbLsknQ2Iy1j9UlQWAH1qP+COcpEmGPRencd1L3FJ+yQZotRJljH736Oer1f4zbrTJBmhze5bXZcC8yjFjLqt/c2n5Aia8qEmGMk7pBG1Y0BB0rKs+832y6tey+zZtiBYhBShzVdIm2AfiT510+TP+OfWC0n4GrT1oSCjXeYZZsRrnML9QdXOyAlGbXwMc8CU6zacF/r8AANVrli9bpa88QouqHuEB/ynuu/Gy6PwOM+/0sATNdPGQmluMods/G5wU16aNBP0VmovLTLUcakhqMofqAya1FWfM67fISGTHbwogGlymy9wc1vSLuH2UHVLGtMGjnJ71Qi24yyyJwN6iOUXfhN3cg4v871rQB6IWqoiWGRGA2nqe7lZbKqem7pTVcJmDaaOm0Qz5mIMTpyJLnDVer02CQ+QN3MDMv0mcy06aQ/o2yRJ8FjUqZpV+lPBw/nnbxSN1aNAld0WsGbHEN20zt4aeMx6a0iy9MsowEdEkBRNNRWNz8B0MRvT403cwyRYRivQ5+LxPjcTfK08VWvNo9rwnX6oiwxDcsYcak91/iMMhHbfDSgQic9+t/VjF4AtVG32QoCvYYkCAG8y88ZZQtN7NVGbhJJgXvJRhAarUijWqR4bBtoDw1muUOIqrEjprhrlGUNdohwYPcJsMYHcF4LLVdGN+lx3loZ0kgq1IErsCUJOMY+S8yyzgTLTLumUejF/ezbYRej6BIghYGi8j4fTTQNSIznDzkZ3a6G+X2uQAVso5HAE3GKUC8J3SzUy1AToTecN1SEA27zJurB1cTHX/JHrDKF37GJVL6lkzUfLTpuOpMmwwQbFEi4pCphaykDU4FiXetK19cC20eLjJPWyftcddOMfpuY+GjxJrcBOE+Wn/Ougcx+xG9gliUrPpSVoht7hmEecf7b2H5+465zfG3gXcAdKqCS7wQdvMa6vOuawAhlplmmSD/zLBgTDrANXydCOYYsEesGNxlmhwYBVphhlSkD6fQdz5F00opdQlQN8PLRYp4FVpmyQq/HAT4NAu7w7XXmtTl+xF/hoeMsCWQtqyejJoxqSm4HL/v0s8EEU9wlS8p86QLUuev81D7iD92QpRcNE9GwB5WZqOfpBhMsMmdBRUrdD1E1xpp63SmLcNslXSlDV8NfPHTc2TKLyFumUSuAORbRhNZtRhw41G8+ruI/ussK05z0TtV1rvKDcTbIkWSfft5wBZ/63CTI8xafoPJ0LUoUSFWLApEBiC+gMnfLREi4gmqWO8zzOU0HeMXJW3DDvnsH4+SNxa0FuLDVRh0oX3Zp2w02XBKzDsqWmWaHYZNHqSGxBEn1c0CEYXaYYAMNWApRdYW5F03dnmaZWZZo4+H7fEiBOJ/ylk30PbTtfD/p49N2wKreY2GeblOmjzoBrnLHmHYqMQ5R5S5TNB1DQZuiLCkLN8o464gqIT7jTfLEWeWKsfwSTsouVgUNO5dCVO0srNPDCNs2HFHAVsFU9U9RtoAyZ1eYoYOHAfb+821Kf0tXvLlH164wKk9V4OHsIDlPku6apMwGas+5mHtKollgL9kLHejOQPc9aPR2iX+eS8hsdXcZG+3ZTBeedofv5b4QZvt5+Ho6Sp64sO1WnjNR26Qc7iXd2bGGU5UXtOFvkq+xHr3AXrqXnsNjfpW+SLDynD7KBJp1uhfhUuERw2ToasJRUMChC5k9Yz1035PvGagdMc8Cb1V+aWzd7gIcB+V7tD0iOexqihfbISGulDbBAxezT+lqCtDZ3yzS9Pg5DkpgABU4ehVexORnHcUl6IEM4IeLuac0/XBKM6oq8t9Xwq9SJcSLMHyVHDMGS5odLqzsEalVeDQ9QBsPqdoTjsIiyVz2TzNSeSQpqM8g1Kxy9l4JHxIytjl7jmzwHAUSNHq72LvUy1Fc7g0e+DJ9GYLQVRJvtWzwHHninCkeU6SfUO2QZ4kuHiUHeJC6AH6RA2vgUinVLfuLfwLOC+DX3yzSV5LnfzwEZb9T8jR3+G7hS2abS9TGTuOhLWm/z+DrsSj/Nvk99i7JmhplmyOHGYVqh1ARJlx3Qfz36Ia+0hEXs08FDA72shJ8jUI4yoXCHuOsM7B5KECbJ0V/s8hY4QnJyh61MUlAPvZDsvZU/PH8E9DBaqpqUEzlu5oCFiRrT/F2BCTBDzvBC4CAPM/GJB25iY+d4AWOUwJiPhobYLjyhAB1ErU9UrUn1M6f5sGrF1j0Swq6gi+b6XM8u9jF0+kw+345875KjUkn1N0FbfE5fJaU3/Us2cUrmw+5mHsK5+V9bfqhGu7i6VyYLUb4efQP2GCCYOY53o7shXtzvXyditJXOmKitsmLMAxmKmyHLxiIShFywUGepsKM5Z5wIbPHqSPYip4junJELhr9nRn2vsIaOYasx226AegK01Y7g+xTXzBnygGxqhLbiSq9vMUnNpjVnleVRNe4jYc2t7huqqMtRlhh2mqrKVadyFQCClX91MLvpKJiXbXAPGrxIintvSaF/cLZS2hgV5UQw07iq72JWCkVUDVEkhxNxNs8S4o3uc2sO8NXuULBWcKAAIExilznlg22lVygCr9eqjaklnA4sR7R3kTJI7uO4aZWKDo4XGCeWZbYcn1T44TS6Af8lA5eF8wgdkJpdlhxNdG2I2EoM1/sc/ZZZ4KAA5CGyRi4qMSTj3iXbUb4hLfYYgSf+5xVRyb5IT9hCAlOU5VLE58j7/QZ9gCY2kXDRkRJJkq6grNqyhNnlG2zISsSM893HVJ28LDEVWOji9/3m4ywRQePsTEjlI3FBhhhA0SGrAnneRJsM8IE64yw7bzhhzggwhXnzajYBoi0dZE5yzlQRZBavxTpZ5sRJGxVas9+iqxyhX1ixB27boRtN+Btm2pI8QJlOFYJMeRwlFWuEOFA2NnEiLv8AsWz1Ctf/fpknfeiYW9zfIGHzjcsVFaYZpsRqvTio2Vrb59+lpkx70iVvoeomr+lfu81Xvm19pNvBdB7xHlWmWKUbdpIUpM2mTH2yThZlPpJaHSvFsInk0NmWXJhA34D/kbYJkfSbpgYR864NmjIGmRtMpeZIUuKPieZ8tG0BNerrqkYJmOLWeWZ286fR6WyyiIRquq+kwNnHEJbYIQtWvj5b/m/o/51as55MklPKMt5YwDW6TEqqGrKdTNRFFuZVCdlXwL6tI0Jo0Ckh7axEmPss8gcEcrmQ6ja7ZNeAGqw2uPouVlSqMx5mxFjHoywjZcOPa65fsnEEY8VTbdU6q/HgUdayCwiiVwqaxXA8juOWp40aZiEoAidW6WswtyTTaBKyBmRihxNTc3VNBMwfyXV9k+yxgwrxlQ6SZNVxpserMpSUTmuggIq/dXvL4yYujHrlMqc4jGAm3IIeK2bphrKq6RLD0iZGoiXlq4f8cpq8S4fWWOqm7ambcqUaYRlZ56qDbDeY6UMp9lBqPAtY5/o5EDM4HvM4PRP+Feo54D4VfSTY4gqIWMgtd2UuoeGvdsAn/GmTdF0valsXnxifEyw8TtTtBWJGpipBdm4897Ug1jZv35Efq/vlO4dfpqoV2KEA4rEuM01NhzYVqTfwBOVUWuojvhdtND0bsAKL2ULD7PDIm+wzrjtr+prl+KxAcaADUK0yNMiUtebpormHWNMWc9zLpJBpRqylsRoOM0Oi8wxz+eof6CmeIu3jASqqAdkCx+fcc1SnNPsmB+hyogk3XmDORaR4B8pPHRI9D4fMMGGAdYKcDXd+hR/y0Nr/gGzVJhg3YYYq0zZ1FfCIRI2Ie+jzAozBm5Ns8wci/wJ/4q3+IRJ1lhhxkkurtDPPivMkCBPgYQFOkjUfdP8VNeZYIRtZty+rbYVK0zTcPuWhg2o5YSfl4bKIqMXuUGRGOOsox43KnVWbxFlJ4OcyfMsoP4jCogMs2MA2RYjbi1NWNiLng+rTBkjX9eOpsVJGnyBt/jUQmOmWbHCW4FM8SYRZoKEAoUYZYsp7lKl186ea9ymid/50VStgdCiXBkCEcqOPd9jA6kkuw4OjaMp3QKOSspezCkNVpg2w+kNF/QBoN470ywbAB+iap6mAnimv8FeOMmG/229fEcv4Izcn6fpMC38jFQecRQUv7RcNMqDpIAZAyuH7F3q5UUSNufOseYRTxxqUAxGCVWOjXlZ9wQI5p5TSnYTaZbZS0mRPcMKweJzCApYM1A4JFQ5luRcIFYrkWpmIYatQ4CuXXil8JCn8TA3Sr+g7I/w6A8G+GX8dfqbRWrh03SXJFF2My0gVYosD+cGqXpCZIPnAGF8aT2BF4rhMOueCcrhXktfVabIqRpQAvySxBqqHFP1yyi81X0ankHpO90SYhE8TdcdSefNhgfhMvzN2GuWGFxLi9QUr/w8ldk1/fBadpPff/AVKbKczUkYxE7wAh/xrpxPQWF9nL1XIs0OXRl4cOkCTy+FBVANCxv5tYKTSbta/sATIVQ7pNXdRcd7GhIwU7rPw+QgtaQEm4wVnpAiy178pc/kvkcsWHw0eRC/QIQyFx7I81FrndcL93kaD0NRJMSnipD3JMiGB63GBEmkDa4+p+oPGXiOR2TSl13o0sPUIIFOnfWghG90Z+EoLff8KA43o9+z9fowNciaXwa+HjrkSXDsF2Du6zGhtMUpkPfHeeEVUDDnT7KX7mU7fAF/E16EBXhgFS7lHtHnhrGzpXsuQdZPd02YbC38PDvfxUTpEf6OeP1VPeJ9qPV6ISz+hH5abIQv4qHDdlDYiYt+8YYaYYtAR7yS+5tFRktPOFM8Jk+cCw/2HBgjoQJNj59nM10EaHDm4TGb8XNkPMMizc7i1mibVncXW55RIypMssY1bnM8hLAbXSKrKkG2gxc51Rbprw6NssFzPPzOIIlmgUSpQinZLWzIgmNwJYXd+HeefPWfbM/5Tb7qyPNXxlqAhrHh7zPJba6RJcUkayw7lZeCHv0U8dFkgg1UAac9i4+W1UEAb3LbAXti8zLDCv+Qn7g/K8CgElHE1zzgAtskhKpMBB9NfsSPXc8QsaFvB5GRjjiQaI5Fvs+HeOmwwLydfWpLooGUSnKIsc8MKywxi/qReejQz77VohtM2PmoHnkdvDaw1MGmJvlOcp8Uj0mTccwzUWD0s28svwLiPz3JGrMsmfKr1wEqWkOJB3S/9f0zzmewSD9D5Aw4A4wZt+MGufps1xln34GgigEMs8NP+CHD7JBhmAQFvsMComyMod68LyWcbfNRVPsODTSTYaEkG0uIplR+ykBUT2QPHRtI+mgZgw1glC000baDh+t8bLVLGw8/4q/YdSBk2/HYFMtRsol6/Ck5RHMKIpQZImcKSbUOU5/1HEk+4xpqbSUgs4R+qiWZqML6STiwTN+DeT7/BilA7bsilFlnHFVGAVzjMzYYR2Xa6kWtWICqOQokmOUOGgAiVluiYnpMikXm+Ck/cASDDXw0zdv5JI6kdl8+Wmw7ZuY8C4gntnzXHurc4KbhLT6ahreoz/mvO+z9VgC9MTYdiv7SD0l8utYtbVBZEv0U2XVsgSlWjSWnD2vfAR0qS1NJU4CGNU1F+m3zUcqlTt3VI00bBmVSgdArtxllgwk0eU8fqMoPlcGSJWWpk0vMssyMgVv6EvS7pjxP3DHj0m4xH1gTmCSHhiyoZDJAg3EnN/bTQs0z/4Q/NX36tmOMqReBSGkloabXLXSlnmp6ozaJSv89iXQr8KMbvIJuakguYKDQpU+y+lSSMco2L3XkTbYYwUOHG9xE/fQUWFKdfJEYmmqssrYQEjO9zjgJ8mQci8lPi7uOXbTDsEv29bgirUEHj7FrAAOD1SBW15vGwTfoYZ1xYm5K4qdJEx/q2ac0WGl/hUWlAKiY9N9HNf76bJe4yhyLBrxqU7bvJloq+dW1fJU7RChbapACgNe4jTCnhlBKsnpngTA7dMJ10ntAZWFqhttHmUnWOHBMKW1O8s5TT6ZTV+05qIxZn4MeUHoAJ53MU+ZWn5N2Emc9vHZJOiCzl0nW+Ig/ZJlpprjLKlMmXUuzY2ytOgEz3h1AaQS/3dehY5v1OF8tPWQBC6W5zTUrWNTsXyZWbZaZlgaAJXZI46XDj/kRw4ivpvrqfcY1/pw/Rr3OrrKEpmmp1F1ZY1lSNJz5qrLqlPZeRVJAF5lDvKzOM8E6vQ4E7OAxTxNlBxeJMcVdRpx8VdJf606u7nHgSQ9Dbuo7zI7b9+P2jsyxSIAGS1ylh4Z5/CmgucG4FRIHRBhlGw0YUJq8ApZbjBhbd4sR5lkwA9se6rzDLfPoVOBRCj4pFNW7ZI3LLDBvQNZ5ssYWzpIySbNKH9SPVX36PuOa8/nI8RN+aBJhZQxqSE6IQ8dM6/A2n+ChY/YCGkikxfIIW8y6ZKwlZvnYyVq/YO4bU1z1iLnOLRtQqJHyMDsMuek44NhoYpFxcgimhYcyIMdZN5lAgoID59eNlavTbPXEkSlq2eTKP+LHNiyKUTTG3Ht8aA2rAmt6f5QpuoEkyEuQi7ADdP35aDHKtjEKIhzwKW8BmA+sBgGtM24ePgJ4H9j+JwWxpOhpyq/aLOh6i7FvDPQmfkbZtqmsDCgL7Drmu3oLSmq8yOmXmTHZiDJnpR4Kf/ub0d/ytRfu42kyLGdtR0aLO+FzFINRIkgQ1BYjBFefc5wWAC4THWQs80T2qtoRD169QLJU4lRR9kqt647iwozztJ9LPdHJs0+MR8kBjlPCUvoqPkY13MXD+CBuWRB8LICfeqK18EEQyMiaOXUka2iDCfopEiw+J5h5Dm0YXKmgIWBpdthmVLwzS084u1miOyNSq8FsBfwvjdQHcod08PIwOUjLDX7/bUqApFK8W/zIkHchVXkqH/RViBaOOPBE8LSfwyUJEKgS4kVS2PZ33X4U3HTS1igcheHSg0eS/xi8IOEgD+HC5h5sQulStzUVGoS0Hhzj61ejUrvINslgoUKEMr9IvUGBOGTgQmGPgQeHvJJ7yIXMHrngIE2PX3z+asIUvJh7SqAmn+dZrIv+ZtFYCR2vJBWnak/o70jD9AVzEJR728bDPv18FR8jUarwq+mLrHkm+dXYRVaYNguBfWIEc88ZyBzy9WyUwUyFHuqMVB5BUzyB/bRoIf7Xn3kkXf7C0h60BSC+lHuEvylDa/ySlKw1bIwiv5e5x+tZSQjOE5cgl7bUaxcLT8lHw+zFexFPVtnDHkcHONUWlhpxoIlJ3049FH+nW1xnL95r9XvP4TH70V4WPXOU6eNspsTgf6hwobBHspMj0nypBBlu7hgAkg2eI8Y+6dJTGXMfHQMShpKPhsEFWBylxP/6O6UvnY2Kh0XPnJydHWyAVAhHeTGGe1+9nCkeM9rZIlYrMc46Yg5/le3wBYrhMGoNEaPIUvRV9unnaTxMIRxFEzCHK08EavAHqAdPE31wxHEKiMFgriKy4DNQOuf/z7Ab/e1fK7z+DVZSHUlvHXFkGDmz0/ho8T4fMM46aoeh/uAnCRJ1ehxwJH51C8yTJ+4krU3yziJF+q5tYhRRiyaVZ/+UH7DAvHmZp53Eso8yMYo2lFKVgoY0qHroA95nixG2nEWRDrELJIxcEKJqtlfaEyqoIV5sO479L71cj+vLQlS5yQ0C1N1g2Wv1m8oSb3ONFj5mXAiXBjdq7d3Eh3riLjONWs208FlgQQeP3Q+RWvZSd9ZOgOEMGjiiLOx1pxrJkrJABxlgb7DBBLd4x6kDRJ10jdv4aaIpuTGKFqSohBUNC0tQcEoeL+/zAZoc/CHf5zbX2GKUSdbcEFIsHBRLEN+7uK0xtePRvnLLpfNKX9rrAKgR82NW1uaBI1RlDZlIMe4UM2tMsu08CheZQ1U/JyXlbTz2/DT0pUCCccdaVDagyKjvGzhXIM5nXCPHEDGKLst42K1/vw2sRthinHU6eFlkzgbWShR6KZuWoYeXDu9wiwANthmxwfQSs0aiusZt4uRZZhrNcRCF0o/tu4H06X/BP3Yy5pj16mo5pH6CqkJRGxfFx9R/GjAChUpzf12/+W8F0NtkzLyHtNiVBS+eWtrMNF3DUSfAFHfRcIU8CZu+f8QfOoprj6GXqllWpFbBHZUeKXUzQMNNPV56namH2YGbaOiE0es+40kzbo1fvsZnRCib7Ewpxh7a9DrAUk3AW/i54/zg1NdIde1VxNhylSmTNKk/gPgtHaIsGJ063uK6NaEK+sjnaxtD5pCQgXwiFx018CfFY+Lk8dMkya5NXyZYd69Exl4GNc7XTUjQ+7s22VEAMsa+YyYUDFRQQ0cPbZr4DfwRnX/ITFWV2aWbTxthu00gMfXKUtQXIMfQN1gnaiqq32+CdWNazLLEjIvvhpcsiRxJ2m5yAfJS6xRRNjWvm5pIQTlEzgBUZYDo7xTWj6DsIOb8ytYYYZt9B6Dknaei+hcqU0+NaJWppFNNAVslrl5kXmKm38Jv7K1Zlgxsi7spU4hDkzKkyJIkZ8DyH/NnZrapvpMhDr8hY9P7rNRrlZdriuS2S8coXl8AAFPiSURBVNZV0BJATPglgjxP3CS8KbKEOKTfAYUqJVeas06uVphmnQm7h7/tV9rR7CMc8CHvocazOkQAmGaFa9x2TOYeEuSJUGaDCZdk5meROTPWVZbaLEuMskWKLO/zUzS9e5Rte9bKVJX9eIvvsMAIW07UJGtHCyB952Xt+WxN5Ymz40IUVKqvYIoCLyEO2XagmbI2thmxKd4hITcV69hBKNLUuA1J1plggg3SZEiRJUGBSdbooSGJguza5/LRNMnoLa6jHnYKIokPR595efhp0UODPndfJQjnZaGjUkiZRotXVIEEKufcYsSFcRTs7+v3V4BebRi0GNCkMuAbITRqCJ0iyyRrfMpbhNxgoe7etQY93OYa6uOhhau+u9Ms08THO9ziuvO6k70nwW2uMcE6Giah91qHDDLA8BqYpN9Vn2mMfVeQieWEFkSHrkhbZ9wVxnK+xt25KynJL0NTxGdWvOzyxBEXQ5mc5okTo8ghGu6RR0OSNG1Wp+oTzgz5LT5hirusMM0ak8TdeyJpbCPWFHfwcpU7BJBAKC2O9+lngg1WuWKDpG1Gjbnvo0UTv7HAs6RouobJR5N3uGV+rDpoVGsFecOUwd2wvVTvr9hp7OChbWdG0w1vPHS4eMKH8Lf1kvsrlij7nhgFx25o48HbkeGClw6l2W6KYfHeCnFIKd3NZHMNfxMmSo84VUAkh7VHDFeeMJZ7Qi44SPc9SRoN0ODAIzVeiCq5sIQ5vFbYJOMZpr8j63kneIEXMdiMn6Po/IAtedFJMtX/7nrpl1zKiPH/s7EuCQdIvmxCzmZLTLGKv9mi7ZEUXbzgb7Yk5KGN7QWlZLcMKDviJQkyYH6RlD9TDEbJRAcFzu8+LQBeBrgvKcG3g9/lV8mLbEXPkaAgaaO1ijEJ8MPggwr/Mf4queAgz8a6+MPSf5DhbKkESfFSe/q9sIE6Ace01/0MHBAFjFQeUYp342+Kx+QI2zyb7eJZTBJTa7HTEBRG3cDKITGK/MdLr/L0UphHyQFO1WAsK2nCO37ZA72dDoHac1Jk6b4PZx4fSwPVvC2pqDX5rv3sM9rc5iDaTZyCU6F0iFPgu5kvCVDnuw++5Ot0FLwQr5Qopbu5wyxdGXj06gD9HWGKhDpVXsk+ZJRtisQk8dXh6C+6JbW1hQ9y8EruoYW17DAMfvF563gxmX1w9bn45aHy7V4uZEWCnUWkuF/Ho5TS3dR+/zRfp6MvfTbDMM0yN7hJmQjxSolEJ0/XMxjYPOR66ZfiYRcEgiLNPvPwmLo/wOBKhcHFCsGPn9v7pMFWbY/Uvt0VUAZVlpR9z2IwSpmIpNmCG3yVeaXwEPyggVR1AuSjYWKVCqHaIcd+CaLRVOYADeZZ4FL2EYMPKozlnjDTWUbDDb/34AuypOz+xChSDQt4vMgbbPlHOBJ8hFKqm0fJAb5KjvHvk9/lmN8NQO8hF/mAH1jK9wQbxMmb8kaJAh085uUd4cAYYwqi9VM0exIdDMfYZ5I1ivQbI67f9UMqywQZQvpoEuLQDdgkWE3UTDL0VSWbemOflHmKr9gCPTTwOSXGF8xxi3dk73XMMPEJX2LChQBmSfGG64OU8CFetretzvHT4o/4S0JUeexAD1WtaD+s/67fZcgNeVVCm3BeZ3qWK4lIwTlVPmTcsFPra79TKOn+rHuigoBq+eSjxU1uMMOKs5ZqGyAXoG6JqKqYWHUe6goOqQ/yPAs2oFD2rBJmJDgxb0STT3gbtci5wU3e4lOmWTaWp4+Wqaa0b+tzZJwQVQnfAZfqLtZdn/I260gyqwaUKeNQ++IZVthmxAI0pMaOmC0NCBt5kjU+4S06eNx36rVz5R1uAZh6UT0L+yk6Bp/U3tuMcIObzp9OfKbVUgdkEJ8gzxKzqJ/0JPfRUE71Kx5ng31iLDKHB8lSKJDgQ75PhmF23T1vO0JPEz9v84kp0lJkTYKu91f9+1UFquzBAA0jBw25vknVerqmAjRkaATWv4Q4tB5dQWK101Jg9Ne5vhVA75BeS2LJuYIKsOm3mgWuMGMbVwu/M+f2WzNxm2u2GL2O4aKopwKBytKbYIN912wqm6DgKjL1FdNGUFloanbd44CidcaJIymkOwwb4yPNjiHwKpXTpNuT0kxJkZHEmgmXvrPvXtyrDozRJlwZY+pPlSPJDMu2UatEDmThChj30mBewcU6AYbImWmoBpAo2quyMQ1o8NBmirsmX/uUt9l3LAH1Lmwg3lJihtmyBqSXqr3E4yfYb3nHABI6cR8J8o65IP5F7/MB7/IRKbKuYe5zrY8kLwmHa5gPeN9FakuqpPoPjrCNJqfpYaXUbP3M2oyLmfqsSxJr2KEngSByUDbxW/qsTmYUtVefrSHHcJR73IOYgWasOMoxxHmy3OQGkqmbdFOHfqO659x0QCdnatSqAIIeQhoMALDInLEMmyc2TAUjFSzZIW0sIPW4UDmgbMINO8A1BlzkvELDXmDeCsAqIf6Uf+qYgF6UIaabsB7ICsQo27OFnxlW6KXKMtM2QdMJogad6Oc+GQQjE7uBb2P7+Y27LvIQ9QT6J/y58ytZt3uqjC2RvmZYY5IYReLkmXb3N8KBUfCL9PM2n6JeG4vM2cGpktctRpBk5VVUEqGsKJ9rNlSasU/MACiV/Kv/qAIk6pdSJWTAvHrCqXWCFj+LzBlbWk15PbR57CZXKnHNuaJK0mLvIqlOB2iQgALNK05moGB2xrFKBYBqGEtPpQ891PmOk7/q+6q/7/v8jKvcQY1wNZlbC4t+N7H+lLdsmjrDMj6aHBJilSsEkJRmAZrWjVmm3ijbNsGOMc/n9j5JSJOcZ1uMundIiilNGlM2rt73EbbwOWb0qPNy00TtVa4wwwrKVm/i4yp3HNOxbkbFymzXAB6VMKjni+6la0yi3nJqzLzrrBsUZMy44dQqUwYESCEiPkDiyZq2s7mNSDcWmLezXjzpCg4o7WHRGUnr4MNDhxlWiLGPSoD8NI3hnyNpDO/GCTBEw5SEBdBmkTdcsyLTzknWzGrjj/kzW9cjbBGgbkOogBswhahyh1nuMGs2FwUS7CNm4ne4ito06EDoZaHb685Bn0lvdKo/wQaTrHGFVatn1hlnkblvfS/62776d2pcyO7Z82/iI9QUdmTOI3vQNCs0CDCYqbASfpWB3CE/5X22/CPcjY7R9MPepV7Ol/boeE/TlQVq4j33aG4AmjBVuY+mUAOcL+1xdlMCBXZI03N4DDU5l+rB04w9eMJkc82MuXF+dSAhUtngOQFAgnCUdF+m/fLPAHAkLDZP+zldGTiTO+ZFHOr+AN2Cadh6jK4cMbhZ4UzxWIDGzCYXV55yqgjDlSckSyVjsjT94p32YgxIwJn8MT1uD0o2JQ3z63SUjvc0ogxoUxrr5ngIRtiiQYAFzzy5aJQ6PbQ98OI85P3ibaW2G2UinM2WmK/9Ndcqf00Tn/jMFUXmuUOanF+G4GPZJ+Q8SfKeBEdRhJHXFMCWuDArNSwpRFUAzYrIeMVgpEjdE2A9ekGG2L2AFwayhwSXnnOqAoyJHPeVwkM87edEC0c2SI+TF7DLC5Fmma8ujbHGJI9SAzR6u9ghzX9175cAJGoiV4pQpuoJsZcSFt1E6RFZj3jJ5UmI76DiSN1AQdJZJ1ljhC0eJgdp+iX84R1uMcEGX85ehiPxyzubKwkrsi2+ST008B09NxZ21R8y/04Pbf5m7DUbroxlnuDtQNaT4lmyi9r505x6KD3Tw/ggpOTfn44JE+5fT/8BR68CF2UPVFDjDrM0eruIZo94kLwgw/lm2Z7FhcKe7POO9fn7ha9o4ef3Nu9BSeSxl7KPWHI+5UtcJRceoBrsxduBL+OXATj7ixKvP7hPCz+lVLe8F2GRQSvznTZM1e5RS5/m4uZTpiv3yJLiYuYps9wR5VPwHN4T3oKjzW23l3v+F+40/2VcK0zzHRZQr3Otl0/6273NJzaYlXNtzu6PDvtXnbpLU1V7qBuwoOoqH03rl2/zpqvB4wRo8ClvG4DxJp+RoGAg2ElfcFH6xLlyIjhQz79F3jBG2DQr/An/6hukG2X25UmwyhTTrDDKtklF1cpoxA2oV5jG5/rzWe5wxYV+6GCyTo8FAqoiSWswVdgpMUh7wylWUZsXAUq9lOkjRpE3ue2G0KMEHAHBTwv1rxf/4QJJdlE/ciXTjLNu9afW4fpuC6HlMre4TpwC+26o/QE/MIBUsYIAdd7ktvXh6rmsA2NR5UnfJoz/uA0UtRaKsW8AqgRP+o14oyqBftf/50lY/z/Lkg2EFIRcZsbuVwevAY2qDEpQsOF5ggKaTzDPAml2bCjbQLyEJ1ydppd67uWdv5/mLKh1FcBd5+k9wTrbjLDInPkRqsWYgrEF4vw5/4R1JviCOdfT99paXWcClQgHqLNL0gHAvag8VgFMec5SJzdd/aa9lJ+msfgAwzCUga/vmQYQKkgbomprWwhsfrObU4xDcQo9K2To3ftr7SffCqD3NefIkWSZafLEzdtLryQ50g4cAaF4gyDlyvIBKaQmWaOPMr2uCVx2EcQtfGw7mecI25ZS+hafGHMr5eRR2jTLxrDENT6jQYD3+cAm57qBAfYCK5KsSD4ISq96aQ8dC6xQaqlunllSJMjTT9GKqpOTil6qnHdMiCVm2WLUwKkIZQNHlH2TJkPAeazNsWjIfhOfY5FETFI2TAYxLS7wCW+jHgxFB9BlSVnzoAABCHNNmYwt/Jwna+wvlZnu02/BDk18jqkj/lZ1etAkpRWmUVm1Hiw6FVAGpTZ4w2SYYtV5XaUpErMplT4XZckkyZkcUeWv2gh6HTgXQjwQNNTjc+Zp4XMsPSkE9fsvMcsak/RRNvaQAhSaoqhG9Ap49NBglG0nc/YSoM4yM+YHscgcGmahaz9AA/U60ORYAVTfMtAg7zws5PceGrgWoM4wGfv9ClIMkTM2jYJz2gT73caiB4rK9+qIbE+BQUlAbdNPkXEXTKIhKQUSJ5iEHpMgi/xMzPNf+hgI226YjP0+XcMSSDJu7COZzBxQ+R2QmIFMYQM0DORXPwkFm2W9FxADfS8/4sdMcZci/YywZZ6iCgIkyHPVSXWlIBBQXYuAIjGX3OVlnQkDbE6CxrskjU0Ksg/on9WGQ9O6la2pBYPuPwo6A/b+yURs3UA0NbJVkEgKniE7rCVpTfYJPXQlVW3VQD1lEetan2CDJLu2p5WJcI3PXJEnrFUtLOr04HODC/UO1b05S4otV7z5aDHNMhHKzLOAeqeUiXCL6+6wFymnAvgCoglwf5Mbbp/eIeamvMruFVuImP1vlfHvO0as7At9dnhXCbHIHCq3vcZn5lEYp2BDiATinafJuFdYtSm3FlnnybLOBPvOYxGwiWKIqgH7ZSL8iB+j/ijq/6oDI5XPq6/JH/IRmnY8zI5ZNIywzbBjV46yZdLyaZZJsmsSCW1c/Ii5fsf9Tn0f1p3hs67FvOPGa+FYJ0AfIjOvIkFbJz1RlUGiE0718xxh2wZB4vVygBexI/gf+O/s/hSI0+sAX53GdvDwM96zvXiaFcSg2s9dpiyARv1cM47RuusYESr/WXFnwiJzrqDu5wvmuMLvgG9UXQz3I7UKHtqk2aHuF0Ai1czy+7mvGPy8gocOpXQ3IOwvkfJLMmM+OMA2I5wqQvC+yGUfjg1yfEae3bPLXbS6T5ukN7p5JGBcBzYvnRP5em8XFASACtSeczwEnvZzGWxUDiEBxLF1Olp6wt5YL5vxc5SDYc78zbGAPkGpF+OVEnhfBmWUpruhKIyvSOUQ/JLeOl/7a0lRjQFeYV2dzZSEXRaXZNlGbxe5qIQvnF0p0Vc6kvcx2svepV72kr00EFVEx+thvvIFZzdLBIvPCTWlXsmSohzuJVQ5oteNYs5mS0Qo01WSdN7+TpFQp0qiVHFS8iLkhOHo7ch3b3ULA0+8JiWo7GL2KQ9SF6wm8rTFG0691o7CQEYSgwfvVYjeO6IelPRSKsIc9Lj6MUSVWKXC00thjqKyNh59Z0DYj46w+izWxXpwjBdetR/xEs0dkazscRQVT710R86d/maRM/ePef2eSGOfTofxOyVToFm3AVSi+dLuQxr6fZ5eCvOiW5rMWvo0j6YHDLBdY9Ld79McOp5Iwfkm0oRyuJd/n/wuyU6OvXQvfy/7C+YrX9DxCjNDrSw6eBmpSdjE7+e+okBC+g4vnCqK4qPqCVH1h3hxURrF/k6R/zH599knxmCuwg7D8vOCvTwb62K4uUOiVGGSNcZZZ8szylEUhmuPUF9jDx3xIKwJyLsTPsdxXOTdZSI8GLvAw0uDNHq7eJC6wPf5kNcym85ap0WodsipmtR3j5IDILgeiVKFKiG+TF2m+568J3N8QQcPX756mXIwzI5/GIKwEb4o4G5cPs/15i3q9HDqMVzafESitkfeHydR26PoEiF/268Eu0Zouc011hm3fk3D6tpuuLfGpDHr9Zy7xXW8dFxogZyFGtoorKkG+8RQgeS68w+bY9EUcurXVkbSZ1X90OPY0go6RThwih2v+QproqzWd6rsUmBCbS0kFnAD9UHfYsR68wM3QIaXwK4qyNT2Y4mrfMY1PuNNUxIpsKckIR2WJMmZH6gSMXZIE6Bu71scSYtVS5g8cdaZIEbRPJcXmbOQDLU/WuIqMfa5w6ypIcRzWPzJVWGiWEYTv+UAvMlnNlRUX/sIZVOqrTADyOBhhWmWmEWsvPbJE+cmN5wSrkGMfQPrJlg3ppcwLas2rC8TYYVpYykGnKpA5dwyRBd/4KvcQVUJyqab4q4D86RWKjpCToiXabkNAmwzYmCWkn40G6GDx1Jt15lghWkDyKqEzIpsyslP9WfWCfAJb1MgwaHrKced93aKrPWfE2xwg5vmmfwP+QnXuYVY9Yh3nbL+FAfooW4A7ypTptgL0LD+Q/CbfZr4UQ/8HYatJpxj0VRz64yjlj3qxSf36aVXtDLtIhxYf1Ikxl3HDhU7ngP3PAoEaDDHIgnyv3aA5LcC6I2ySYA6CQrOc0heBgH5ZlBZbYwiy0zjdQtRNfQFJ1cMIUEEIoEcpUqIGZatAZYJe93YTgI4pPmEt1liFg8dNNlvi1FbJLrJqKHlCNsO5W6hCagiQZSoZ/GGiJ1I+Ok36YhOBYadibim+G05VFcbNJ1anTSqHHeNaYA6o2w5YGzf6LgpssQdAq4+WZo6o2BMn2ss+inyNp8ywTr9FK3pm2AdjVtWDbds+k0+4W1CiIn+Pv30nmBRNfERd6wwbcD+Jf+MJDlLmtEUH2HnCLCjLylgiLU2tYvMGYgZswXeNCBNdfVq6HrgDgY5LKSp99EyppxKjkGArAhi/j/OOkrNzRPnBjcN+DzptTXKtgG/Gj3udzJdnSLoZ1HGo27IusHpd57iLi38BGjwQ37yDWbnOOvMsWhg7gzLSEpSw+6DpjCJgeoEDddkK83XS8eYHmtMkiCPesK08LN7AixUMEbYjVtug+41MGXVNZ8qdasiKT9qDK8edydBlRhFZllCTeSVyaWS2z7KbDGCH5HkjLJlFPICcf5f/NDeg4YDri44KvJv+7XGKxSJGQtYwkdG+Yh3bR/Rw1Il9Q0CrDPOF8wxzgZVxFdF2VU6CdUwmSoSDPAOt4yWH+FAWAzu0uSkVabYpx8vHUsHDyEmtLsk+ZS3CdDgNtdsj9S075NstwYBNIpdWWgieRXvlKsutOgyayQooKlRSkvvoY4GZqjUfpRtthllgXmbxmkys4LMVXrNI0RAtrL5nIqUNc4K0zbAKNPHFKu8yW2zS5h05bGeIfLfvXaW6EF6lTsANmRR/1XAGMqzLDmKfpKPeJcqIdLsOO/NNeZZ4Bq3SZKzARBg7G7xyxTZ03v8DHjp9+ajxX0mzSqi7uTYMkAYNWnFEldtmipDEvG9WWYGtZpQnxmZPuasmFQwzockcvdRZoHvoF53IIzCT3kLDexRuamyjYUd3GN7UMN5H46wxQrT9nMkOS2OpIYfoGFZeRImRdNCp0DcJDYJ8ibRnWTNptCz3GGFaWPC+5wESc54McCuomFE4jcUY5/REwCRBhMJkLvvzskGH3PdhkgqjxepXr8xssvue6fI2vRfgzckgW0ctf9Qf0dNUBthy87NFFnO8vW3sv/8Jl3HZ6HqCeFpQ9L5wrTwMbB5SLDwHApw/Cq21wAs+WfxI5430yzT15Hh7NdjUb6aHuOr9BiJZoGuZ/Ketj0eyv4IZ3LH9JWOqJ0/TWlMADaQ+7/mmTRG2Fr0Ij8J/wOqwV5hmYYHwC+MowuFPaKFI061BRAa23zC4GYFkggbsCD+bB0v0JSQiuMgeDsd6MZAyaOg/O5s8Bx0RLpZSovslqB8JjrQlYWcR4Ytz2JdlKa7+Sz6BunODv2lQwLNOv2lQ67VfkmgUyfnSbIQfgPCIg0O3n+Ov9NklSt08NBVk9+7zah9/2fnu/C0Yckzy74nxlb0nLEEns6FoVtkm6NNkQU9HBskVXtCkX6GyfAi+HLIXSSGtyNgJW2sJqtNn+bUEZRe7earV8fwdjqcOgLS4tmXIktfp8zZzRJdzh6oGuzlzONjLizuQVL+LAhLL0SVUw44HFg65OtklLXwGPVgN552h1DlmERtT/wQHRuQMAwuCiJX9wQIFp4jyYZNAW+jUfbptyF8rFLhVAVilQrBzHPOl/b4eizKLhLWlmpmCeaeM155SJwCcQos8ga16dOouX7b4yHQrPPCJft62qKS0eF1gTjdNSSsxIs1qHspYWD4aRGvlAh06ixHL1MlxJmcSJFB7vMwO4xUHlGllzPFY8r+CPXgaQK1IzfsylEPdnM7+F3Zn/wyiKsS4mF6EFUKbYcvGNFCa96mRyx5zmZKkINLK48YzFQoB8Pgh2juiAu5PV54JZX6ICqA4DAZ8AhQ3MLHZdaYqtwnVqkwRI7/mHyVAyJcXHlKMRjF32kSLDyXXsELFGAteJn+TpHuGkztPfxfuNP8l3G9y79BJaQ/4scGWA+zY+ywBgE3QD+gg5cJNzCVgCkJfbjMGm+waMGPHtoO9Pe5vkn6l7f51Lze1J5IhpqSKjrk+o0sKbYZ5RPeRn3UExTMUkT9ZgFmWGGULWcv1Gt+xAqY7DDMn/HH5FwIXoAG3+dDF4YwZGECIaom+dQgCz2/VUGSIG+Me/V5XmIWwCw7JrnPPAusMenGsEUjMWgdrioCrYPU+gXkPdGzXf3SVG0k/U3B/p5eEgIXN1LLoavX1fJKJaspsq5f3+c8WQNrR9kmQd7qpPf40OpCtZpRpZfaUugwXwDAGdQ6TC2PxG84bs9JJJ8StLPryEWiptn9Ru2sNWadHla5YmSMfqfu0YwCDa9QizRVT/zcpfZqP66MPu3x1fteVJnjBiaL0nLdLEgUrF1liseIurAPCdRTb0l9D/y0jAGnAapXuWP9ap64ZTQU6Tc2a48D4b7Ph0ZUUHxDU5L1d+w76boSU5RRmCeOnxZv8al9D/l+vm9IggE2XEiHeopqHoH63wdo8HPeZYF5q3HLRAh/Qwrw//v6VgC9HieDAhgiZ6yhIjFSPGbLedZEOOAKq0yzwiRrrrAXpon6sqlpol6ySJoGumkjAhhj4RqfMUzGsUtkcyoSI8MwOYY4RLT3epOVQabeAuotpcaGOkFRv5w6PYyyRZF+myRo2Id6r81yB5W1SaMonjpqNq6eZduMmK/Sba45iWSRLUbNj2eDcdYZdzLVpk1ERIJXIIBo1/WzK3i4T8wYd8pk23bApm4cargqkr9dY0KIZHPcwLwOHqa4S50eYyQoaHVSR65Jhjo9UXaRGrnrRCfHEAny5r/W7wA5kSStO0bThtGCVX6i31XZNx28THHXpHJqNtlwn1NBWm2i1SdPzGV7bMIC4mOm9GNN/tTNbJ/YN4BpYaltW6M5xaodDPvEDIxUb0CdDMvL3LH7L8wpAS60mdSpiE461MuvhZ+EY62qd5QCzpospIeSejeJob58hp/xHnMsOjCxbu9T0cmxM6QN0BaKupir6mdXuUuRGHeYRf3XtGGeZ4FPeMtNZyQqfptR5ljkn/MviFE0ltYwmV976vBf+jXFV6i8XNejenfKxt5nYHOCgnnU9VOkhzq3eMem3uuMkyPJInPmNanMvhhF7rsi5jq3bJKbJMcHvG/v7jA7fMw7DqRqmLedyFUFbMuS4gY3+YI5PuJd8iRsyqug8wLzFIjTdnunplyNOKm9MGzzFpCjEpK8a4e8dLjJDTKuuNImVHwkfGiamp8mnzPPigsHWeWKTavFS7RuU+f3+cCYbloUqPRf5ciTrLFPjCWuAkLDzzDMNiOOLT1iYJaydRuO8q8swhhF8iRsKjzNCgvMG7Cl02+Afuc5qvYDMyyTI4naHihbbIsR7jBrk/EsKW7xDv9n/rcG4Ptp0UYkFikeo553Ir2tGzNX9h6ZfDbo4Uf8lZ2zWtwK6Fs2I/xF5lhj0uTIu66c3XBMTW1IBaSSYm6bURaZI82O7SOf8hZbjKIWA5ou7qHNBBtoAjFgE3oPbSZZ47Ernpon9lot+LyuwFPZiLKNVVqiKbRab/S5gjLHEP3sM8sSWVJsIGnPPYi3roKderYoS3uORZT5niNphaYOsdTcWHxQE6TJkCBvfjcgabYvP6OHAyJm1ZFk196pfWJ8zdn/rPvS38bVdSD398Pw/4oCcZKlEqFOVfzcUmGICTtsiatWD/azz+8XvuLiylM5y500N9Isu/1ol3X/BJupcyRqe0TvHbHGJLX4aZonrbjSAkSdL+2J4XkK8MMr2Ye8yW3q9Dg1QETAuQI8ijtbiAoEV56LD9kmPEwP0iBAabrb2P6PLg3wN/HXAPGDow3R7BHFcJhccBDf0TFrTPKvU3/AQbSbQO2INh6OgvBjfsT/lPq7UIFL9x4RosqZ/LGxJDKeYfLRMHW/+JppQutw7REpHvNl/DKXMo/4ejrKmdyx2/89vOgWH7ob3ISg/HvT4+dO+DVi7HOx8JQIZWPnrzANFciFB1j3T+A7OpYBTPCy3ZtTBannBjcleKIa7uLM6jEPxi6IkUp3F572c150Y6b3bY8HHNipYMCZvIQ2EBWpcp0eYSom4Wk6DE2RUUco098RL7q9ZK8koW6WCNDA32yR9af4LPqG/KymMDo3v3NOpKAu3KKDxwBHb6djS+J7mS8Yy0ngykb4Ii/C0FWAh5cG2Y/2cjZbMvZLMPecZ+eF/akN2yx36Hg9JDs5Qp0qfaUjgoXnNP3yHbLhQV7ZfMilB48I1Q65yxRP42H+x/jf52F8kEDtiNHOFgMPDqFb1mer+zT7npgbPGxxfEaAvyulTZY9MwxXntBVgHTpKbTFh2nBPy/3nTaDSxWypLhe+iUBGsZSr9NDsvYU9WWOUOZi5im/94t7DGQOGa48AeD1B/ehDUfTIs3GC4FOnaMgfJ2M8jA5yEG0m3rwNJoADnA8Bh3vaXqoc+HzPbruyb0EYd1/t/AlhEUifeCJgEf2xwevXmDvOxIKsu8RIPv+wPB/uk3nN/hK8xBVbagaSCXlJ3sWEDKBsMV8RmAQ65WmMd+F+dO080k82A+NKaQ97TwLrLtz0EObeRaYccQQIYJsUCTGLEvW34EMYVSu2MSHBj9KLSb9jtalqsR6w4VDaC+pn118bLeNbQUy2NpmhDUum+VSjH3S7NhwVAJ1WiwzTQuf2U3p4E17+xBV/iE/+QZjrU6ABead3ZUk3RechZX295K2qqGc/U6meWBqhG1GGEGk4UoGEQbcrtWZ6nnWT5E7zJp9ktjS9HCXKT53YWt673QQr0DjtANchWEo6oI1Jr9h56VrR/tPVR/EXYBGv1NNtPFYrbbBBGrjMswOOYYMENOeQMDTAjH27Rnf4ro9Iz9NVphBPNslJEx9p/+YP2ecDRvuFOnnI97lZ7zHARGS7DLHomP07dJ293yffmPK6RoeQgIfNRRE77mSnm5zjVG22HEhH9rv6HqV4AwhkSjOosEsc3yBhkPmSNLj1ogAeeNGggFhnvezz5/wr1xoh2QFfMj3WXGD9CwSEKLsOw3rmmYZDYd8TIpDRGWia0z7ErXb0TyDDacqUbLPr3N9K4CeyvMUKFHz8JNfIEGeFFmWmeEj3qVMnyWJzbNggARgzW+Kx3Qcuq7eH/qwVE8do2iNs4IeWqh7kURXBQvL9BnKfeBQVTXrzDBsckwAlX+28RggFmOfJj5uuw1AdfvqA6gFov59D20S5FlkjgJxt6gWbcPWBaA0VZ0iaMO8zgTqkSK/R7wTFMRRqVC/E4glHOtMAZke6sTYN1NhlZhpCHULH0tcNQZfP0WT3alxo9+Bf363YFUrLp87zTjrxlbR76QHlbAZN+hzG88+/eY70ERCNTRxVv3hlpiln32XwCMmmpo0qUzFDl5jMCoVWM3adYKhB0eWFBry4KXDLEuWpqSsPw1G8dN0hukZspw3ZpWaearf3RyL3OZN8sRRHwqVvawwzW1HEw9QN2q4MhB+wg+RBKaMUdZDHLpn9bLhr9Jr7MdxZyqbIM+hY71NsMEhkk664mTp+v7pPbrCqt0zYbnIulPGyozbeEAmxQpe6BRGkoa9jDvDVP0cq0w5Q3qvMbE0QUmo/VJo9LPvGJY7zrsg/21sP79xV5w9Wvj+vzwxRUp66Bg9HmPLTrNiTB+lyG8zQpkIfbw0SlYvDN1P1YNUJazqt6Y+dtuMUnDBBJcdO62FjwMiVhR28FjyloIN8yyw7UAuBZkFhOjnwO2LHtrmL6qea3oIabHgd4OYNSaNGSjBF8KaG3VBHW/ziSs0xPpA/28bj1HhYxT5ps9LmyohPuFtF/Uet4mvTns1fbbpQH/xBOm1Q7TpAPM0O2gSYctJJdXLZN+NXETm38NNbtCghzxx4uSZZ8HCQ8QXMIB6yeqeuE8//exTIE6cAneYRT0yNSlVQbUZVvjf8X9ihG3ecum3Cr5KsyaFaAgJytmn3wJCMk46r/vRElfdsEymvNe4jUp0dTqsxdIoW0yxyjwLvMWnqBeKFEy7jp2bsOm5AmLC9Fy1/U3Ns/XPapiG7PEJisT42Emaq4SY5Q4TrBvoqXuFFqCrTPEh3zfAUs8E9QNUA2P1z/HQJsku6hWpgVH6jsgEfOQEc10Ysx465kGoFh53mWKdcRqOXa0Fp1pE1Ak4YFjUBBtM2HsrkmK/AffCahcQc51xu++/7dfGsAxR3639G/bpZzH6GmfuHxNcfc4WIxxFoR48bdJ19aJ9Gg9DXJrbZCdHsiK+aGo3kiBPqvaE7grgx2rN7ppIaRsEwCsm4I+jAyRqexwHRc5JDkKdKhtM2FCFKFAUG5Kv4mO8cI/mKAhcFDAl7s6v63xMd0mUDCNsi6dfEJ5dFvlioFMnVXlKdw3+Qe7fEeKQaE5kqInaHuvBMRIUhOXkl78XocxeUlKco4tH9FNEgomGCXTqpDs71D0BuivyWYbJsJcWltej1MDLsyYaxtOWKT9B6Dk8poOH6dpXvFbYhJz43XXw4qMljOSoq5U7W+SCg44Zu8/ZByWStadwKMm1ZGVvX/LM8nQ6TJUQt3mTu54ploKvsxa9aHuvt9PhOC5grUAOPmgibEUvfBUfw0+LDMP8x9SrBDp1SeP1Q/TeEXlPglCnyqe8xdfJKDTFqsd39Jzh2iPmK19QDEY5SoufnzKdnk11oT5yD9IXKBBnzTPJdvCiDL79gBf6S2JKfuoxlMa6hU3SrLOX6iVBgVTtCXgRYNUfZ5gMbTwM5ipkPSnO5I85kz+m6Yda/DT1YDeBjuyX1GRNrgUvc4ObaBLpbd6kOwuedgf8sJk6x2zpHnV/gIvZp1zI7TFSe0hXSZ7HqYoMh7bDF6Ajcm4NDtG6bYMJOC+MzLZHgkguZPbwdjqkO/JnRAXTNLuMF1NADrpehixCDfxN2Iqe4+tUFE+7QzEYFaZOp4i306Hsj9DER19H6suuZxDMuHTl84hk2gWlbDOK410QLD7nQmEPmjCQO+RSQRKdfy9zj2TtKT2Hx/bZftuvO86HS/q4BHV6mOUO6q0F2JBzm1E+4H16aAijlH0bmmmtruqoMn1kSdkZmSRnNiHa0ynrXIkK8ywIqEo/2y4ATNNH1ZtdA92a+OhzvfUOw7y0xpDwNK8biuWJU6SfaZbJk3DqO7/r3zPfAAvzTn2hA+q4YzdtOyWChjpoH6d1qDDDhlhmhkXmDITp4DGpptge1e3viHefMPPzJPDRYtcNWWdYsXq8g4dbXHfKEfEA3Kef21xjgwkC1M1eKknOhtIthwtknERTWXBivyLBXLOOQZZjiJ/wQ1PHaU3mp2n1tYJ4IP2crgdV+PSzbywy6fFEPfYePyNEFbWZiTvcZZplAohfYR9lA6Q8dOh3A8tJ1vhn/EsmWDeFmnrBN/HbAHzJeQwry7JMhDtcdWo38W9Xb3zx3DswJpx678+xSIE4I2yTOUFwClGlz/UJU6yiPnda/yneohZP6vOt61FCSjoWzKeVuACgB/a9W/jMRkHJZWl2WGCeaZZJs4MyDOsE2GAC9UmWWvoz5lkw5ZRKudVWQgHIQ0KOXThsxB2tU3cYponP+nIAVT/+up6i3wqgd1L2owkiOwwzTMYABT1wlU2hgRWAIcWa4KM+XzpZEjCtaGBVCDGv3mEYMQPPo4aDI2wx5NBuZZ+pDHSeBUeLzdrUQmVSalY97ryOdFPdcFJGYXaJLFObypcGpE12SNNH2Si1HjqWAKjpKyqF1eJLJxqqDW/ho0GPNcZK57zDLHV6LIWog9fAFjHTL5gMTyW74juounVZ9IeIASrgmAaSkBmg7iiuHTN+D1Bng3FrhnTDEfPGxjeARfXTUyCxTsCkVgqQ6vfR35sgz09531ghIIzLYXZQufCB+/7qP+ajafLXMhFrxNSrUJljdecToJOcBeZZZcp+jrAk0+azFKHMTW7wCW/bmpziLpoC2SDAZ1wzABGEEacTKPU61LWoNGP9c1dZMrD3PX6GSvmW3BouOkq0ymEBk9cK07Ufla/7HAVcwUJN6FOqcZy8bVgC7Hnc8/bbs2g5AFpp7T3UHbu0YfdfzPt3zXRWfcz0XVJvjGF2zENCP1PSNb2acJ0gzxA57rqUrd/269CBHrqHTLDOOuMkKJisVJ9zE79NkVSOucvL4Alh2Y6QcBNc3b9U2qysU33nJVVMWEJFYieAMNE5ZUnRT9Ho8jG3bvX9V/+MHuosO5aZMJXavM0nBnr1ud9Xd1JY3QsfuyLGT9MkuX7HVpxj0dJZVZqu/qJyfmTwIEESSkvfYdhMs1v4DHxTkMvjijvA1q1IYf/QTa3TtlcDNgxQxrgOVZQ9qKnaynQT30C/27MKvMtHiHHuqJPZbhChTNZN4hRo07ClIcdAFvn1BGqGu8qUMcbV5+Uqd+wd3mGYDSZYZ9z53kmwzCJzBpppYf42n5hfqbJ31dJhjUk2mOCuY1Erk1FYf3LO5EnQ4ybwLXx2TsUpsMUo4l87inrWXXdeswoIvsMt5llgkTmTKFfppYUfLx1nsdGyPfQ9PvwGM34IschIkaVOD0NO3qJAoDYp6lcnBeMdxFPGZ42DyvuldvCx4sJclPWn3nlpdrjOx8TYJ0/CpEpqAbFPvzGyI5RZZprbXCNAw4pgrQXK9CHW03VG2LbvohYa7/EhU6wac1/Ptut8zBBPv+2t6G/96uWQwXsVisGoNTC1sdPQlHdxO3iR2/5rNqC7xm03OIzzLCEMpKonRFdTwINLK4+swckGz/Es0cWjsQFpOvw+joIYm+1pPMxA7pALK3t0rzivOk+Svble1jyTzDdfpq4/ig/wdDbM7xe+EhZF9CLHl4S196tLF8lHw3g78twHMocC4jiT8meXuyjFu6l7AsKM8gTougcUQP3AazEpvevBbhoErGH7cvYyP/e8SzRzZEoVosJqUisVEGCuTITN5DlO5eTeqZG2mqyrGiBYfM5I5ZF9t0SpQj4o/nAvzsOD+AX8nabt33vJXmHYesQf+UppU5QWhwJK7c32ik+eSwGOsc/gvYqxt690VpmtfclI7aFr8PrwHR3T6j5NPSjfO0ADvHAsWzXpzo4b6mxLeIInRaxW4qv4GHuviozvTO6YN1iUlN6ogFeFcJS14GWq4W7hxgR7zUx8hWlyHqklc36pCXupMtVcpccNJ+gANTh1BGczJWqXT7PKFfo6ZYK55wzkDhksVOjOAUVhp1zMPjXjfAow3NwRybFX/BM97ecEakf0HB6zS5Kvp6M8O98lgyO3Zv5Z5f8h+6Yf1vyTEBTiwn60l4HsoXgIlmS9vQhLT6WAbY4kL+JQS57mRUzCV4YrT6h7pC7/Oh7lGrdFylyEr9NR1jyTND1+PG3x6dMa+EUYMtFBGJNgj0CzDkdAEk7VsHpw2T9NvFLivyr8kqonxF3PFGdz4smogPGLoMhwPXSoxU/z7B91sZk8ZzK9Z8kujqPyvI+CEsDxdTJKLSyMx710L+VgmGq4G2WU/bZfA+zbMGyFaUtfVhBEwbd9V7vJUO3A+gwNGVtlyv7sIeJL9ia3GWH7BCGjygrTZscRoM48C8TJc5cpFplji1E2GGff2UpoTaASU2X1C+mgYSoArWFaSBiiDMTyRgCZ4wsn9xQP+rbrNXXApsSbFmLxoz3gNMvWgx24wZh6D1cdOLLl/KK1RvYi1kZKXFF1QdOpPtSnXX/OBOuoNPkj3mWVKcfYkv5HVVhi29WD2D9sW9DXDW6ioRxKLOp15B4F7XaMo5U2H38dZOtQ/jOuoVLOHYZp4zH/Xa3nJlkzbEUH8lqHqLJFVY3rTFiya4CGsdnV41fYdUU0nVhrYpVg1wnw77hhw80Eeeb4wpGF8vyIHxuWcHJIuk/MBrBq56KWOaKW7DcVm/g095j33CpTlOmzWmvXEZm0z9BeP+fAaSVrqQx4m1HUtmuHtPUE6rEco+hUgkMU6Tcyiv53qSkFWFTJuGIcCp7qd1W7lvf40Hp/7bMlwDRiwPM0K/TQ4Cp3ULu5Iv1OQi7kKQHSRw141hp8hmV6TtiL/f+7vhVAb8wFOahxPwjAsOhSR9TUXzXq6pOjqLxKGgGG2WGaFTp4kcS7l8CETv2V5aUAhfoxKYDTwUvDyWSFintoL4iaqg+Rs5d6iasmZWzhJ8t51zTGGHfNWAcP24yg/nD6Miggp83NISE2nGm5LjIt5JV5N8E6mtqlD9ND2wIYtMFUdF0beKXb6ndcZ5wiMdYQ7w2NJVePH9WXa3qLLkyVFX/Gm4ZgT7L2jalAmYhRU4XKu28bsfol9VGmQcAZnvrN38FD26ZOBceU8dNijkXiLnhC/N627f6Ns4EkOQqNVtk4eeJsMIF6hy0zwwhbBmz+f0p/leUpG0GfrbV3+chouMrGmeIu4jHV/oZMquFe3h7q5nsnDB/PN5g1b/GJTcuE9SSyqhG2ucKqgW0bTBhrKc0OQ2h6kjQ4i8zxc941M9ub3ACkEFOgRBlNklwVt01CWaJlIvyM91jlCnV6bMNfZ8Lkfno4i5GpTDh+zI9coILHJI46fSoQRwMBFMwtE+GH/IQEea7zMUnEQL+PsrFeO3iII6asTXz8nHdZ5crvjIdeiagB3lroKHtWPSFViqoSfH2GGYZtLdUJEKfAgfvvI45qruCGyKb6DDg8OamUPabACFtWxKiMVoujW7yDJuZdcQm3KildZI5Z7thazZKiB0kGbeInwzCrXKFBgBVmiLFPL1Um2DC5wQzLgIRqCOMtRg8NCq5Y0vdWD2IFOZUZpibJWmTqGg7QcNMxKW5nuUPSmU1LmnCbH/FXqMfGFecNqYm6KqVMn5gypsjyFp+ivpZVQmjSlybbqhxCi90mfhoOqBf/ULF7EM/Lgp0VS8yyyJzt+2X67Geqf4zsZ1K8rDBjQFULSR/OO5/ZYTK2H64wjfpUKttNWbQHbnii+4OfFne4ygLzLkzpJVNUC+gyfQbyj7DFElf5KT8w/zf1HlxlCk1P1nvUoMfWn4ZCafqePmuVOfaz76awj1FvFJ2cf8EcDQJ86qT8ekboWa/rRPcj/Z36Oe4yZcyEKece2nIFsrJAx905p6xnZR1qSm+OIfsz523As8qWO/+nuMsoW07yO0KehCkUhC3eNCbeKlMUiHOXKXIMuUm2nAVdnKTI/HZeD7kIfjhbEDCglyqr/ilqs6eZr3xB07Hcqi7KIVI5RENWeg6PaRAgWSqxGT/Ho0sDIuGrHDLR+X+3d26/cZ53fv+Q7wyHc+KQcyI5PB8kSpQoUzFtNUq0sWN33TpIghS7KJqiQS8KLNC7ovsv9G6BXhVo0YsCi3YXbQPktHE3iZPIViKv1pRJixLF8/A4HHI4h3fOp5fsxXOQAhStk9pZ2/t8AV1JFGfmfed5n+f7+x7E9VE2VaUU6E49y3U7YIRMIkBrAohD0G5x5WAP5Xjw2+e6sOSUfgY2bVoeuJbc4dpPd3BcgkQ5oZ+IbdO2LHrtMvW4KGZ44cGmiDyxIgjFW4MCfdznNvJ8yoULptmi6lGRMi5WmWWqsoOPGjMN0eScm+hGWOfbZC4F8J+eP3MzWB5cjtiTbTNF+noIFYfhaTTxNcShf7yyRzRXph4SLbUgMvo62iIbEBesh5/lqAUpMbacIZYs6z2Zz6nS8IjhSF0WIbzFmyz7XyB9PST3AH2wDwObNq/m3iNotyj4Q5z4Y9Jdk8dqQ1f9nBNPnF4KxDbLFBNusqEQHTvQs9liaDHHQMqmEAqI4ap/TNjTnQbfPP0pIK5l2wJc8EfOdxlK5YhwhipsWmGOICUGlm2d3SSGFm25262x6FkgUUkzmhOlGnsTMXKJbjYnhkl5EvSSp2F5wI8g1vYBvyg6cTkOZMV+b4U50vMh1j0zrFszoo32QOTmrfqv4m7AtdSO2FFbQmWet3rpd4SyM+g8K4j4IH6VsbUMJQJCNRiGv7n+gibxGnRpNfIIB3TYQonYYYsiEfcx9FZsvXadEidzJSCamIG5hlj33EW02GGWVTrq4uzwq/gXcB8jciwjgvxu9UAsWcblCNWquwjY6AM2DvTl6tzz3GGbKar+TpbCV1lmnhXPHFbb0fdlhCx5S+RTFvvdeBpCEZjI5XjL8yaqZEsNh6t0f2Jr0KcJNiF95glIkcIiC3yPbyEC/af08ElZcZWN+kS6Df6c78jn/aLes6lICUVoiAFXVEbueLV9VMVDKdeUcs71S5JvnRlNVKjhkyIfV7mqCx2DlInK4f0U25wRYUOeNbxUucsrUi3VJkuUPnmGV4MzFQM0xZY+T2eJ6jwzlXH8TGiQ1M/+ICVd3gewxE1ZMjDOiyxqpaNShKmzq8oMVwPRKbaZZ5k5VnQkURCVK19mhH0aePQ5Tjlp1N5A7T3UGVU4uqa0WEmJhRTxdEYE1T7ro8pNlgHZFA7c5VVKBDlGOMZ+whv4qPFDvs4DbunBpFKkiYxFS5P1SoAknGcitukBt9hmilM5tFV7VCWIUe+3S+4PLXnfqd4CJcxQZ5Hb3NcWVAV1DldEchcNHkkCWTjiBC+TlV7CBTm47qXALR7gkWKQb/E9fa5VWfOqrO55B4mwUze0Y3KcXR7yIj4pTFF2ZRBRHg4urbhTETVqTVSksth/Cq4iSpZl5vFIF5P4N11SvLKuB/HqOxLhjLK8JqosUjmThNMur8lNVVSoBv6KRxI8mcgOz9NLmoGPtJ58Qhl64kaZYkvn3iiSCMRBTNzYgu2+zLrOZFL+4bjskFEKKkV8KfZdbYhVrpy66Kq8QrXcHcudlCLG+jnRioNVrmLhaDZVSTdf5+fsMsEtHmiGPsEx8yzTS4ENZlCB7jNsaLn7isyVUzeveq9TbEt1h5iA7jKOap8KUtKqJx81PWU4YISnzOoDogpM7OeENsIa2paE0glxSaSIQ6OyLymLk7I2qQOMh4aWioovprCwTch2XCXDTjKOl5pe1MWhM08VHyqrQW0wIpxpG6cicbJEUflG6oAakId2xXSrA7QI/hTlC9Ns6eYZpSIBJFnh4oR+qcYUUwd16D2Vtjehblnkdd7WX9AtptiQmQmK5FPKFHWYFcrQPH2I0OA5HvEii3ipolqalNpILUpKsafuN0U2q9BNZQcEtNJqkBTPy3eXuamv8xbTTLPFLR4g7NWOVk8pBaaa0sc5RbX3qMO/ek1xaR0sEdQ5J8oOpwoYXuWXmtBuICyh3+J79FLQD5U4J9xkSZM6IotyQtq/n6lM1KahRFDLhpUUXi3uqh1aKZhKH7GK+7OOfo51+KyPqg6k9crvsyqWOCahbX5qTSgR1JZK9eCeYJcoWX1dVcGDKnVQP6fuHbWmqE3R8zl1qglLFM8Icu5EEg5Jmd9wQpwbrDDLqsyjHCRKlmNJGoqslYecEmecXe5wDxfOc8UBfZIU2tYNqrOsssqs3jSoTROgJ5QehG1+nRne5jVNRAu12IlWISqlWp5evflU67wiwU7l+xgnSR4RTTDBLqvMssQ8SnmniEOlgFMt1YoIV9dC5XAAOjfvHncIIKIY/iX/hRQJ9uXDXuV6rHADDw2t9N5mmgUWaeARjZ9ybODg0uukmNgLFa1QTSb1JkipwHvJI3KR8iQ41sq6YxLaeq2UEoosS8rU+bL8zJ4n79VQSW1SVe7Ht/kLfXheZZYH3ELYRsTvWZa5Noos9iKa5abY1veE2kB65b2hfl7l6gHaciVaYCN6OKbiKF5kURamiJDuAqKd+wYrLLColdHf4Ef67xUEEburLUkqt1JNeRVpqCIYvsR9aRUpyAGWmKJ/ifskONbTVNFIfI9tpnSpik/mCZ9Ie7xFmyQTsqDlVNuT73GHH/P1T2T9+TTBS5VWXBBbTWnXC0pSD2C28lSrDlIkKIQCupjCfSqUaqlwmEvJQ1zPqZZ69lt00eCi+9meykeN3KVuIpzpjbbHaeDOwYeXLvHvwv+WSlyUCTToouVB72FmnHWoIOyNfiAh2l99lXOClDgNhQVBHwrQnYP71m1aV8R7VBaaU/rl+t5LcdStG1Mb8rvmc0Q+6hwrdFcg2Cjht8/5482/IvygzkDS1goTFsV9O507JLZcpiP17HdV8TKQtPUAxJ89F4cqv2iRX/WLAe9aYoyd6wPiddiiHEPd04uWcH3QDWyK9eqMCAfWCCv+60TIct//RT0UmGIbn1Ml4aSYZovcm92ieARRqLHODNtM88KDTbJEKYTEdWriIW7nuIiIsosSQWHP9EB6QbzeYKWs7cxzjRWqlo+9eIzMSEDsLV1AG/JWL0eJMKO5DAV6Ue2Evkod4rBQ+YAvJJ8yV3nMZCpN3M4RzZXx0KD7QLzOgj+EClEPUmI6d8gLqU2yRLhwQf2q+LOXiLHCDUCoGhN2hq+m3tN7fvFMmKB+XRBVX9h8ys/iXwbE86yXAhHbFi28my3cB9Bz0qLZ7ZZaIXEe0EVv3cId5HEa/CT8FbaZJuGkGFrMcSl5CB6Yye2BH0E+WlIdKA/QXQhil1GIVHI4LuH+oQ6Tv0jzT5L/ixJBWn70Nc1cEWRiJd7JwKmNe02oA5OWGBoWE27qCbhdeY8buU3k2RPVbF/w9DJnP9VlP/7Fc66c7omBi9PQ5ELe6iUZHuCv4l+lFHLr/etkKi33xN6PHAL/ecAd3tXPh1MpUlHZ5y+ySBtLZ49NsMtf8G2ZdS1K+G6yJONKuvRwsYqPe/wBb/GmJroATeAAbDHFllQ0xaWtsyEjDlSLp4oKUs4nVfToyHPTLKvMs6Qzy9XZbJptPUDzSRGEysFV6jtF9q0yS4pBVM48wLf5b5r8yhLRyjUVo1SWxK9ycqj2WVXel+CYOCcsc1OLf4TDYEoX4Sg1X59cA6t4Nfms9jjiPONB5KmJ/akH0VavyNJlbur9ovr+Vp/7edUoKz7/BsqRpmJQVMSTIvZWZPmZIlCVTVq9zzJB6bioalGTsuaqAazav8EzZ99dXiH6HO8g2l8FebbLBNNs45O8hloTRAmkEIo06eJtXkcU94nyD1GU0aCPgh7YqvVOWZ1F9NRNuTY9yw5W8Tlqj19CxLTMsqrvtQUWeZMfo+JzlEpviZv6/Kh+TpQP9WlFoXrvQUravlzDx21+jbJ3T7H9nMBJuAqVcEicVfMkGdeFGqq7QBWsKUJOCZ6EyvAGSnGaJap7EZSrSsW6qKzuBMeIuKoTPRjvo8ADRC7sXV7l13zpI60lnwihJ3KDxBdUyRhB3ETiSxvQrTH7UoIprF9nKBvNOpdJcIxqHRUkn8ipUT78Z0SCkJCq0Gtlt/RR1YcddYMqNZ6wOI3qTbeyzKisgFPpJ1DhmioIXOU/qd+jQrOV8ka1AKmg80VpjxVEm8g6m2VV26NExoho21O12eKAe8ybvKVfg7LtPj+hUF/IUQ50jsHzh39xiOzTi4pogxGyZxVGfsAI01KWPUhKv/8gIqNLEZFqEqIk1CkSWn2oVI+qqKJAn7bPKaKpQK8+lCkFiIL6zNTvUBMQ8fmIKYfIjopoW6CyfmWJsMxNVP7QQxbksi4aae5xR7cgCbLysiZAVPOtKgGISuXdASO0sbQKRE2J1FTESw3VXKakuCf0azWhUrlEpaJxm2lERmCNglxUqnj1/aYeXH/Od5iX2VFKAVjFx9f5ERHOWOcy97ijreV3eYUDRuijgApqV9dK0DZC5iya3QQB+zwJFyFLgJK2qChrIKAfjuozcLDk4pdihH0sHFkU0sWSfGgqu6NHkkTqHhDW0VO2mf4NJVb57wmhZxPiX/MfdPHLf+RPKBHQ09d+TshrguOZykhkY2R1+2eUs+eUSlv6AXdGlCperfKaZ0mS5FN0IUoUFHGnhhi95KXKdZAIWe5wT0/HVGmBmsY25VRSEbWKEFFWSNFuJu6nn/AGB4ywz4guVtllnCXmtYJsgxlpSa/pYYjY2AzqjdEJ/dziASvMaaJGqQ/UGphiUK/pKqvMR5Uk46wzQ16uzbe5rx+Sb/E1VEmOKggRU7wJlEJAkVLwjFDtoqEtpup1NOligxlqiEyNCFnuc1sWxnhQmZvK3u6jyjhJLrPOP+W/M0hKKiAbpBiUw4hj/R1uSDW1+t4t8FAPCZQCMIBQuqmNnCIC1TqqNlZeqjpOIE8v02yhcvPUM1cMF+ap4uUYoShRFmQAj9yMio2YyJMVSs+4LpZQG3c1sHHhSFJPBFk/Yk6uZTO8xdf0+74lg7Mdue7e5r68i0Thh9qgKdItSJkUg/qwo9YvC4dH0r78vN1GKLLFJlTZVtQBwUK0vf0n/kRm27Z/Q6mpDhUqxuI291GxG6p5bZcJVImVGmY84BYjHOCjppXgCzxkjkeopjd1LWdYZ0G2Qn+e4aOGuwE/Dn+VJeZ517pDhCz/IPUhbpnbdS0lGi4XKh/QlERbMeIWP185x0uV9ESIodMcWSLCWugSDZwn4RDKueBg8X2+JUgk+Vxbt2YEGVLZ5N80/j2Oy6I7J3LI3NJiGM2VCdotiIvSiXfiL7N3PQYNoW6bbazqoarHaUBW5CrdD71MFS/hX9cJb9bZkplL/8L+S1EAEREkklKceMst/tnBD5irPCYdD7HrGedn8S+LvD4LbdN8izdhXuyFOmyoCwcxs86qHkK0wiKwftUzCxVQ+VVVfyezlacoN0WBPpT4KWi3WGYeC4cFRxyC6yNQfM1NsCH2EgG5p7i0dqjDvV933ia2WSZlJTiwRD7dKf14Gk1+Ev4Kze5OlNKDkFDoKiK1QReOS+Qk9jdOuXR6SDHiZm8ixkDKph6C7hzcbCxTxUfD00UVL31OQXx3K0+p+rvJJAJ6D9bwoAc9Tbqw2qINtrsC9bggYqlAIRRgPxwjQpbWoFAtDqRssV+z0wwc2HQsi3bjK6d7rIYn6U6KHMYDRFnPidXPflgUpVQinUyxpcmBV3PviQzHHOAXRNeTxKQcgDdwXFDyBNm5MkDuurgIPakWQUr0OQXwiGtMDuph0ZR8YI3wmv2OcKFYghTYm4iBS9yLIA6TmUsBqMBCQ2RVBSnRVT9nMz7MgX+YrnqLiG0Lcvq6IOpu5DZpdndy2d7h+dZSf/JckL6yZXiEA160P6Rnp8W6/xIn/hipsCgo6Wg/O9cFHbFvGbHTvHT6GLKQiQdERJDl40UWmUyl6a9kOGCUXSZ423qdNhZDyRzFfjcq39ZH/WNddz6tUHEhSmW0yixzrOi4kZssa0eCsokq4uAWD+RguKrV7IoQuM9tAF7hl9ppNU5Sngpc+hykLKxv85o+d4PKuRcCERUXlCDFbe4zzxJv8pbOWlPrrWjW9eq1RwllVNlfg2cFi15qUkFY1ucP0bQt8rbf4ms84BbKnaHOF6LMUOTKj5PU59MoIvvuDu/q4ZwHEdWgCn8ALYpRA3Wl4BV75mfKZPV59ZKnn2dZ/OqclZBnZVXiqfgGNWS9zX29bypLwilIiafyfL0ly7uyMk9ZOECSOo4jS5RX+CV5uX9Ruc1RuVd/kYeoHLlVZjXJqIRNIAovLRz+jD8VKnBZ5OGlRgMRRXOf2ywxr6+RcFE2tdjlbV7nPrdRJWUqjsxHTT/fQLjHVDHlASOMk0QV5nlo8g1+SBcNlNpPNRuriKFVZqXbrF9fk+/yR3ogryLIxFmmwS0eSPek+OxrUjEY5YxtpvQ1bGNJu6sgKu9wTw+Ul2VBqSI1VYxMXLo0LsvzVBkRc7TCnG7CVQN0sX8W+d0PeZE73JM23ml+whta5KKig56dq2o63swjv/fCnbBFiQBdNH8jt2+Sj9b67fr/XI/+jzgqBulnkzNc5OgBmpwDBTxc4oAHfBkHizA5uiiQxeIVfqCJgTH2CXDMBv0EKRPijAZt8lgsMckQR0SlhNLGyxCHpIljkyDGNjnCXGKLIwI4VPglCzh0MkiaKjBMnk7ybDLJAD5C2LhoMcAxq1yjRos4mzSpUSbANTYJk+R9bhKQ2VMVvJwxyBj7uMjSxEWOACIPsE6WMHEylDjnfWY4Ypg77BAjTZJJKviIS2IrR5gDRhniiFM81LA4oo8+9ghhUyNKkghdZHiPV5lhjSotPJziUGGIQ7rIUCbIJnOMsU+DMH4KhBC10W0sXLTIMMCveF1Krx2G2WefHmwsLDpxkSVOlg+lAq6ChyxuBjjGoYKLOi7Ah0OYU55wjX3GmOUxXjrxYhMghUWeGhGauHmPq0yS5AYrxHDwkeOYAXykOSZEDR9lLoiyw6+5ziRJOrA5ZoAQNilidJNglBXWuEI3Ta5K6biLHHl6GWCDJwwToMwaIvvFS5Xr/Io6Phq4aVMmxSR97FPkgn36GOYxdXysMUOFNgWgjodusoSw2aCfMj5iBDjGzyxPOCJImBwtennIFB5a+EmxIx98o+zhIccmYwSkIqbIGMOs49BijyHGeMIFbbycsEOEOBkmWcIizzCPKRMgQz9hcjRwsU8vvRzjposAR6QZwE0Whyo1HDqxOSBKgGP59z4G2SNHhAwxanhxkSVIBj8OIWz8pDlkhgGpzHzMlxhhFbCx5VE3wg6/4EViZOikQJAcN3jEn/GnDHHIEEcMkGWTQXl/5GlRo4LDIyZwY7PFKD7S2MBN3pHS+hCl4sUnsfx86rBSHOc2TygQIscgIQ5pUaODAkMc8lPeIEKWYWrE2CKND4tu1hnkCutUaFOlxTQPuccNbrFDFjfTfECAMmUCdNImxCkZxolQYpUEN1lmjQTf55v8Mf+DHBZxOUFc4Ro1vFgM4NBJnE0eMUYXLc6xuMYTnnCNQXbox6GEnzUS3GRJ6q/rZPGzzxiDpBliDxc5HjFHiBINOsnjwk2TMVak4smhA7ggwB69jLFPiXM2iRNmF4s8P+cNhjgkziE/5Ra7hBlljzBJDgkywQ57jPI+M4TJMUySQ4aYpMApMU7oZoJlznFoEOINvssTJlgjwTwnDLJGL3s0qdGmQg8H9HBAAw8ZvHg5x8YiSBGoEmObAh7C7BIlzTqDPGKcSZa5y02+yQ+o4WWCZQ4Z5ue8xDf5AWl89LHLIA51GtxkSbY6X3DMAFdY45heUviY54gYHnaIco1V3IwzzhZPmGWBRXaI8DNe5Rt8nwNCXOOIE8a4SoYnXMOin0dM8BV28VDllG5KBLBock6LJ5Lc8pPiQ8YJkcWhwhGD9FLQNtJR9mlRpQJ8hR+SIc59XmKWJ3ho4KeMTZB3mCeETZMaRwSJsY3FCG0q2HTgUMaNwylDZLlEgAp3eJd9RpnnHm4KjFHSJN0aCa7xhEHWqdJNjk66OCNPlE36meBDCnTTwwHDPAGEqiTMLof0MMwRR/jpk8+yAMdcZo27vMIV1ukkz0OZf7PAQ7aYok2AHSJY9DLMEWGSeEkzwzohDrHpZJsoYbL4SFMgRJoIAbq4xhMOGSItnzfKurPOdZkr9JRtYoQ4IMQ+RwxTxeKCFkcESBIlQIk0vVRw6OYEG3ih+OD3vjb9vmEVCxTT8LLzC2x/D6FKkZy/D7cDze4OrMYFjrsDMkWKbThzXASP4GTYy0m/l2MGqBXFns+3D7XuFh8m4kz86hTG4cJdJOsJM2hn8eXh2vh7+DZs6kMQ3UsTGRDPoY6n0Oo/x31yTrEP6qctKu4OWsUKv3Bd56Xjx+QGPYQPG1wOv48/c0E2BO4juKie0ww32CPBfGaDpckEQ8VVerCZ2k1RtAELhvrXOMNFZ7ODciBI/04RamD11Qk26nwwOE4slCGUq+DN2BTCEXykKBYhf9lDeKlB19QZb1j/k2IJasU2x4EONp1LzHdu8LAyzSCbpPDTe94mXexjZvcxxTQ0+muESPOUIS5vHxAf3+Si7TDctvlR6CXmQo+wCTFYfEoDBzItPO0WzVVYeU0oeDoaBQJ2huuuDMUUPE0k8FFnMmfzo/6XqBW9/KONd0lejuBqFHnMKJ7GKSd4md5+Sm7Yg90NF8Ui28TIRcK0ixYTx0D1nPoAnPj9RHcrNGMNdgJ+bCfE1HYKmuccxQKI+plOHLwktvdoOtAeEmRPoAFnYRfrxPnr4pv8c+e/cmaF6Wx20Kh0stx9GZ9TYzRwwKk/Qr3o4/LuARc9sB3uI7Gdo5iHRGGPg2E/naE2rpsOTcdDl7uBt3jC5mgPDdwkiuuc0UX/xiEPL1+l1tEmnMsTzaQpjrjIWyGCG7A/G2G0lmU/EOGoGCFACRdZXBt13rn8AkPFQ0aP09R7oHgCleEO7KKXU2IMR46IrqYpAjyF7csx3NicnLvYKUYZJI0P6N3NkLXgSegy89sb9JcO4QDxc/Y58eghDQ+s+uOcF88JYbNFBF9HnWqgmxMGmSBJ9LjCmcuLt1ll4dF75MY97HZ7qCd8hBoF/OsXotzFdYGVh45zWC8OUmOSYY4YZR9PCYKrOQiIe77mAQ6hFgN6oGu3zET4Q3wbNtTBHoYdJ8HlzPu4PGf4qAs1eTdsVka4VNnhrv8PmD979/e9NP2dwC52EqBIF+c0CTLBh4DNISFOmcZDEy8FZtlijQkmSNKND4cSawxSo0WRDnzYxNgmLU97flLc4BFpBsmQwEudJm5CZHiZFUQxVo0qLerEmWSZv+EqvRwTYp8kYdIEaVJnjMe65G4UuMcCHpqEyREmSxMoEOMUHy6a9LHLGNt4qWITwotDmwrQ4sv8mCN5Ak8SpY3FK9xln1EK+BDiW4s4G7Tw8IhZQuyzxghxMuwzQQibbjI8YZJB0ljk2WGEDK/yMg+o0SRJHwEO6cKmikUnBQp0sMgl5lkixglbTLHMJD7SuOnFpodH3CDGEBli3OaMB8xxjSd4qZEnRI4evJwQYp8LbLqwcdHJd/mHjLHPKPssMU8XTeKcMsg6ZQJscJ0zuniNn3NClA5sfsoX+UNElMCXeYpNiKdMcE6NQfZY5Dpl/PSzyRhHpBnEi42bEh3YDPOEfUYZ4inbRMnTSRSbMufM8LfkCDPIJt9hBweLEAXaVBnlMSWgRpMaFiUumGeJD7hEnQZ97IpnA+v0ckCGKHf5AkMccoV1YtjSHj5MkQtsOqkywBlRRtlnAB8lYJb7rHKdSVY4ZoAqXRwyxKvc5Ze8wjBHnBIkwzDXeI9jfLzPDP+YHRrUmeIhi9zU5/oKbZrUOSZAiAJrXGGBh/TI4fc7zNNLlhpwQZF9wvRwxDF+jhmQApdztuinjJ8uMqTxUSZGiAJ/ydf4V/xn9gjTpoabLGGyhHBhEwICnNFFmAM6yfMWf8ht7uOlTYQdTonxK+YYYhWLPBvE+SJ/TZ4Au5L89JCjkzxrXCJLgBnWSBKhh0M26OdVnhLkiCR9TLLEKtdwU6Zd9H6k9aTj4uLjO1R3dHQMAYcf239oYGDw9wHDFxcXR3/XL+LjhlkPDQwMfgd87tZDsxYaGBj8DvjcrYVg1kMDA4PfCf/X9fDjJvQ6EPG/pY/tPzUwMPg8IwikLj7OhehTArMeGhgY/Jb4XK6HZi00MDD4LfG5XAvBrIcGBga/Nf6f6+HHSugZGBgYGBgYGBgYGBgYGBgYGBgYfLL4REoxDAwMDAwMDAwMDAwMDAwMDAwMDD4ZGELPwMDAwMDAwMDAwMDAwMDAwMDgMwRD6BkYGBgYGBgYGBgYGBgYGBgYGHyGYAg9AwMDAwMDAwMDAwMDAwMDAwODzxAMoWdgYGBgYGBgYGBgYGBgYGBgYPAZgiH0DAwMDAwMDAwMDAwMDAwMDAwMPkMwhJ6BgYGBgYGBgYGBgYGBgYGBgcFnCP8bqkSatyG2ih4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABVQAAALfCAYAAACO1EmxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9fXxj113n/z4jWbJkayxbHjlW4okde8aJ2wmTJjQlpSUtBXYLP2CBXXa3y1KWXZ4fuiwsz1BgeVx2l4fy/LBdngvsUspTCy2kLYSmTMiQSZ14xo6dcUYeaSxbHtmSJUu+vz++3++RxvHMeCYzkzi9n9dLL9lX59577tHVued8zuf7+bogCAgRIkSIECFChAgRIkSIECFChAgRIkSIEFfHgZe6AiFChAgRIkSIECFChAgRIkSIECFChAixXxASqiFChAgRIkSIECFChAgRIkSIECFChAixR4SEaogQIUKECBEiRIgQIUKECBEiRIgQIULsESGhGiJEiBAhQoQIESJEiBAhQoQIESJEiBB7REiohggRIkSIECFChAgRIkSIECFChAgRIsQeERKqIUKECBEiRIgQIUKECBEiRIgQIUKECLFHhIRqiBAhQoQIESJEiBAhQoQIESJEiBAhQuwRIaEaIkSIECFChAgRIkSIECFChAgRIkSIEHtESKiGCBEiRIgQIUKECBEiRIgQIUKECBEixB5xTYSqc+7dzrlAX0/drErdCjjnHtbr+JKXui4hQrzS4Jx7p/6+Bl/qulwOzrkvc84945zbcs6Vr1J2wTn37ltTs5cXnHMnO/r9P70F53slPWfertfxwEtdlxAvDZxzUefcTzjnFp1z28659+5xv+u+d5xz5Y7f0LuuudIhPinwSuprQ+xfOOfe0XEfvqzHjSFC3EzcjD7ZOTfknPtD51xJj/uOK5S1ccfojTj3foJz7gt39EPhuD3EnnE9CtVl4MuA7+jcqITDOzv+zznnfss5N+Ocq+gA/+POuS93zrkd+36Rc+49zrlnnXNV3ed/OOfS11G/GwrrXK5z31H9UT7csW3YOfdjzrm/0Xa55POOcknn3Nc75/7SObekZZ9wzn2tcy6yS/lh59wvO+fmnXM159ycc+5/Oucy11P3ENeHDqJ+9Dr3D5xzb9+x7Yhz7vecc8/r7+MZ59z3OeeSN6LOLyV08PDIde77Yn6bdwPvBuaA/wR81fUc52ZgxwO987Wzz510zv0v59yjzrnNy913zrmMc+7bnHMfcc5d0L74Y865L92l7G5t+l1In798I6/zKtjTc0a3fbdz7n3OuYK2wSWf74Rz7kudc3/vnNvQtnjUOffmG30B1wInCxAL17nvZfuca71W59yn76dJrXPuEXedCx27tblz7oBz7mucLCKs6z31F865h15ENf8D8G3AHwJfDvyvF3GsF+Ay985XIb+fECGuhj33tbp93Dn3O865oo41zzjnfvhyB3fOdTnnprVP+dYbXvsbjJsw5v9M59yvO+dO6/jtWefcrzrnhnfZ/5HLPPvff5nzvUaffSt67Kecc990PXW/ldhlnPt+5B78o5emRiFCvKzwgj75cv3xHvG/gM8BflSPu2t/cqvh2sKbna/NXcp+rXPuD5xzZ7XMuy9zzGvpb3e26QmkfX75Bl1iiE8iRK9jn40gCH5rD+UGgTuQScRZoAv4LITEmEQm6YZfBvLAb2nZY8A3AG91zr0mCILaddTz5YpJ4NuBM8Ap4NMuU+4u4GeBDwH/E7iIdIg/D7wOmZgB4JzrBf4e6NHPF4FPQdrwTc65+4Mg2L4ZFxPi5sI5NwJ8HFgD3gWsIPfMDwD3A1/w0tVuX+NhZEHpm4MgmH2J67Ib/gr4jR3bntjx/6cB3wRMA08Dxy9zrE8Dfhj4c+C/AU3gi4Hfc85NBUHw/VeqSBAEfw7gnPtv11D/F4u9PmdAruk80j6fc6WCOnj6PuS59G7kufRq4PbrrejLFdd6rc65A8gzZwN5lnwy4r8D34KMRX4eSANfDXzYOff6IAg+fh3HfDNwLgiC/3zDankVBEHw+wDOud+8VecMsW+x577WOXcceAQ4B/wPoAQcBkausNs3aplPVvw4MAD8ATLuvwsZm3+ec+54EATnd5R/HvjOHdvyOw/qnPts4E+Q594PAevAODLv2lcIguAZ4Bnn3ATwL17q+oQI8RLjWsa/e8GbgT8OguAnb+AxbyS+Fum/DK1dynw7kELmwy8gRztwrf2tRxAEzwO/5ZyL8jIS2YTYH7geQnVPCILgSYS06MS7nHN/AnyTc+57gyCwH82XBEHwSGdB59zjwP8B3gb86s2q50uAx4FMEAQrTuwG/uAy5c4Dx4Ig+ETHtl9yzv068BXOuR/qIII+H7gT+LwgCP7MCjvnVpAJ9afwQjLmFQ/nXE8QBBsvdT1eJL4MmdR/ese98MtKfvx751x/EASrL1nt9i+y+l5+KStxBZzew4DqfUA6CIKKKn+OX6bcJ4AjQRA8Zxuccz8PfBD4dufcT+zz38lYEAQLqqi8cLlCzrnXIf3hfwmC4IaqBF9uuM5r/SqEGPlV4JtvVt1ertBB9NcCfxgEwZd1bP8D4FlkLHI9hGqWl28/EyLEnqBjjt8EngHetBehg3Mui/RDPw784M2t4csW3wL8baeoQRWnH0Ym+t+zo/za1Z79zrmDyILrnyHzp1AwESJEiMvh5T4G+cMgCK4WAfcZwNkgCALn3PoVyl1rfxsixA3BS5GUagFIAjHbsJNMVVjoxz2dG51z36phiyUNN3rc7eKD6pz7LOfc3zoJc1x3YiPwI1eqmHMu7pz7U+fc2osM8bssgiCoBEGwsodyyzvIVMNu7XJQ3ws7yi7pux/4OsH3uHb4+N84517ldnhEOucGnHM/6Zw7pe130Uno46d0nsC1w03/lXPu+51z55zYE/yhc65P2/SnnISHrTvn/rdzLn61698J59zdzrnfdxKyXNPv84c7PrfQgSkn4WirwN/qZ1Hn3Pc6sUGo67X+yM56OOcecM59wDm3rOeYVwK7s8y/1nuuom1yyjl3M8mHK32320Cjo24J59zPaP0rTkLBbnc7wqA72uqoE1uONW3XH9L7Y8Q598d6feedc/9lZ6Wcc9/onPuE3kOrzrkTzrl/e6ULcc7d6ZybdRKWNnTdLXIVOOe+TutWd87lnXM/5zrsQ5yEx/6A/nuhs30u9/vY5RzmM/Tp2uYWSv9LzrmYcy7tnPsNbZtVJx6KbudxrnIdCedc9+U+D4JgJQiCytWOEwTBfCeZqtsC4L1AHFnB3bcIgmBhj0XfgSxU/bR+z727FdLv7wf1d77mJFz+o865N+1S9pr7A+dcvxP7m+edc5N7rPu14h3s4Vo76jSAKH2/jysMvJ1zX6X9aE2v4Q1OwlQf6Sizp/Zz7fDYb3Vib2OWP3+pfZBz0m8/r+f7Y63nzUIXkOCFfW0R6WsvIZCcPPtOOLHbmHPOfbXTvrXz+oA3Aa9y7XC2h/Xzl+u9EyLEbvhsROH+A0EQ1JzYUr3AfmoHfgyYQRTfL0DHc/SN+uws6W/hN5xz/TvKfoFz7s+cPNPr+pv73p110P7oKefcvc65D2ufMut0nuCc+wzn3GOuPY58y3W3yB4QBMFHdhKeQRB8BIk2ume3fZyMWa/UZ/9bYAj47iAItp1zPU4I792OFXdiDXTBtceFd7gXjgvvdM79vLZJTb+LP3A7rGTcLRj7hAgR4upwzt2lv1Gz/PiYc+5zOz43+xIHfL2NQTo+f5Vz7q/19/68c+572IUXcjJn/tOOMU9NxysP6+dfpP9v6pjmvmu/FHfwSv1EEATP6bzlirie/jZEiBuBm06oOiEFBnVy8eXAVwB/v4fV7dv0feeqxTcjasvvQ2wDmsAf7OhEXgX8KUIWfB/wXxA11+uvVE8kfOYh4C1BEDy6x0u81ditXT6CTPh+2jn3Oh0svRX4buC9Gk5j+EEkPOifEF+3Z4G/5IUhnncBX4i047cgoZDHkNDH3C71+k4k3PbHgF8Hvgj4Rf37KPBO4P8Bb0ek+3uGc+5e4DEkbOFXkHvgvcD/t0vxP0AI++/SsiCKqx8E/hH4z8hK1XcCv9dxjizSDqN6Dd8I/DZir2BlPgv4XWBVr+E7kPC3y95XNwCP6PuvOeeOOyEavhRRUv3MDmXhu7Xef671qyEKhsvhPUgf8B1I+34PQsT8FRLS9+3ALPCTzrk32k7Ouf8E/AwSav4O4PuBk8CDlzuRc24cuU8rwMNBEOwkLW4IdILwc0iI3H8B/i8SsvuXzrkuLfYO2gsTX4uogP+f/r/X34fhZ4EjSBu8D1H5/RDSl0SQ+/Bv9VjX4mn4diT0uubEf+6KZPV14nJ97CsVnwn8A2KTcAGoOPGn/oYd5Q4C/xH57X070ncdAj7gJOQVuL7+wImK9q+RyfBnBEEw8+Iva1fs9VoNP4QQsL90uQM6575SPz8P/Ffg75B7fme4757arwNvA74O+S39D0SJ8PsIwfvPEHXbLyP9/U0LWdMxyWPA251zb3POHdZnz7uR79j7aumE4f1ABvnt/xoy1vjCjkNeQH7zzyBhvF+mr6df5vdOiBC7wYjHunPuBPJ8qjrxd3/BQodz7rWINdU7gKtNhN+FTHbfiSgv3wa8d8cE++1IWOj/RMaAjyPP6x/b5Xj9yNj1MaSvqiMWN1+KjPv+HPnN9QB/6JxLXaV+NxRKlvay+7P3KNK2FScL2j/UMXYxvAWxAbvdOTeDtMtF59wvuBcuwv4q8h38JXLNW+w+LvxUZP7ze8hz4xeR58gjbne//ps19gkRIsRV4ESU8ihtK8DvBrqB9znnzDbjI7R/e39FewyCc+424G+QyLYfA34K+PdcPjppAvgd5Pf9nUgf+yfOubchHq2/hfQF48DvX26B5zJ4FrG1qzgR+dxQwc1V+tsQIW4MgiDY8wuZWCxc4z7fgQym7PVBYGQP+/0qQpYe2bE9seP/LsSL9EMd296h5xq8wvEf1jJfgvzQHkEmQMev5fpezEvPHSAE017Kx5Dw3WeB6I7PvhKZnHW29bs7yyGT2joy0HQd23/YyndsiwMHdpxjFNgEvneXdjwFdHVs/x2E5P3zHcd49DruoQ8jg8fDO7Z3XsM7tR6/s6PMp+j2X9mx/b/r9jfp/1+o/z9whXr8FNLpR27VPaLn/R6guuO7/W87yrxGt/+vHdv/t25/5y5t9Usd2yKI9+428O0d29N67s57473AU1eps51jELgbIWg/DvTfxHay+/sDnfcu8PVal6/YrX7X+ft4u257/46yj2ob/sIubfvIHq/j75BBzecDX6O/rQD42ivs861aZnSP5xhAlHgfuYb2XQD+9Bbc7+/mGvsI3W9w573e8Vm/fraMkPrfCvwr4C90+1fv+L5iO/ZPI0Tir3Vs+ymu0h903CcPIAT2U0gitDtvYvvt+Vq1/L3Is/azr/Db6NL75YnOtkESugWd9/Y1tN+o7lsE+jq2/4huP8mlz6/fQX6f8ZvYdhMIUdPZ184BkzvKvQ8hPXI79t1CBeAd2x9hR395q+4d3f9dN6u9wtf+fnENfS3wxx39ym8hPtw/qPf833Hpc9AhZObv6P/2W//WHce0e/wEl44fv023f37HtsQudfpF/R3GO7Y9ovv+m45tk7qtBTzYsf2zdfvbb3G7f4+e9807tv8aQkp8EUJ8WJu/Z0e5f9Lr3kAWt79I3wPgdzvK2fj353bs/9u8cFy4W/u+Tst92S7f2c0Y+7yTq8zdwlf4eiW/9tonIyRmgNjB2bZehB+Y59I50AvGAR37v7Zj2yEkQumSuQQy9g+AT+vYZn1nlY65ObKwErAHXgOZ5/wsorj/YmRctAWcBg5eYb91OuZjezjPrv3tFcpbH3dZPiB8ha+dr1sR8v+7SDKqf4tMiEDC6i4LVWN9JfA/giA40/lZ0KFsdRIS1Ad8FCGUDGV9/4I9rJL0ISu3dyMdwMmrlH8p8S5gCviGIAiaOz4zwuodiKn7/0RW+TtX79+CkLI/GwRB0LH9p3aeKAiCeqCyeedcxDmXQTqxGS5ta8NvBEGw1fH/Y8ig+td3lHsMGHHiV3dVOOcOAW8Efj0IgrM76hjssssv7vj/rfr+P3ds/x/6bsrmsr5/3i5qADrK9CD3863EArLS+FXIQ+fXge/aoTb7Z/r+8zv2/dkrHNd7EwfiZ3wC+c5+rWN7GfnOO8PCy8AdzrlP3UPdX40Q4guI8nt1D/tcL+z+/qng0pCPX0EI+c/dda8X7n/V30cHfm1HWbvvO9vQ2nZPofVBELw+CIKfDoLgfUEQ/CKSfOwp4EdUSf+ioH3ibyMk1ze+2OPtE1j4ZAb4j0EQ/GQgiXs+F1Fae1+lIAhaQRA0wGd9H0D8xk/wwufMXvuDO5DfQRfwxmCHBcMNxp6vVfEzwF8EQfCXVzjmA4gP1y9a2yjejRCDHtfQfoY/CIKg8xiP6ftv7XjOPYb8Pm9mArEKsmj5cwhJ8XVI3d+rClGchBi/BYn+8MliAvE0/4s9nqfMy/PeCRHicrB+5R+CIPh3QRD83yAIvg/4XkTZ+JkdZd+ORDTtNRrpl3eMH38BWeSx8dvOsX9Kf48fRSKS7t5xvHU6IpACUXOXgaeDIHiso5z9fctsbzTa5/uB3w+C4K87PwuC4CuDIPiBIAj+XxAEvxkEwRcg45d/5cQX29CLXPdvBEHwTVr+m5AIgn/tnDui5az9fmZHNX5qZ712tG+XjvlnkXbbrd++4WOfECFC7BlvBT4eBMHf2oYgCNaRSJpRhCu42v4fCzoSbQZBcAGZG+yG6SAI/r7jf+s7/3rH3HzPfarOc74xCILf0efJO5CohiPI2OtF40r9bYgQNxI3nVANxPfig0EQ/G4QBG9DVk8+eDliwDn3BuSB/AFEwr7z889Tn5BNxBPjAhK229dR7D3IivmvAgUNSfpXlyFXfwoJdXlLsLtn6csCzrlvQ9RA3xto1u2Oz16PqOq+Wzuo9wZB8F+QkMlvcc5Zx3qnvu8kqS8g6tbOYx5wzv1n59wZRBW0jLT1vVza1oazO/63CfLiLtsPXOYYu8E65af2WH5+x/93Iqvml2RyDyTTX5l2m3wYCQ//fmDZiV/fV7hLfVZ/Hlk5+wsnfjO/7pz7Z9xEOOf+NfKA/I9BEPyKDpy/EknY9uM66IX2de68/itlsN/tO9sMXmgOvoao3gw/jkxYPu6cO+PEo/Ryoap/gpAUnxMEwcUr1OVGwL7LS0Jhldx5tuPzq+1/1d9HB67lvvdt6Jw75Jy7reN1Wb80rf+7EAL0/itewd7wswgB/x+DIPinG3C8/QCbLG4hWe8BUOL9PcgCgc9E7Zz7cufck4giv4T0fZ/Lpf3WtfQHv4kQkp8RBMG5G3RNl8Oer1VDYB9C7DGuhMv9NraQ39Yl2GP7Ga7lNwSX9kU3DLrI90EkKcw3BEHwR0EQ/AJCno4jqjmQ7zHB7n3rlfrbTrxc750QIS4H61d+d8d2E0o8BD5h0o8C/z0Igp2/4cthZ7+yjvjEj9o2J35/f+ScW0MWSC/Q9mbd2a88v8uC+xo7+pSOhZyb0qfshHPubsRu6CnEFmUvsMX/Tq/Xq30Xn6bvNi6c21HuBXYhTuzZftA5t8ilY/40L77fviXtGyLEJxHuZJffMfB0x+dX2//MLtsvZyW0U9C0p3Ga9iudc53buAKCIPgdJJrpRXtbX2d/GyLEdeGlSEr1h4jn2ht3fuAk4dH7kJv/S3aqMJVsfR8ySfs6ZIXls5BBhPda0pXWNyI/yN9ESMD3AH/lXmii/8e673dco+fHLYNz7u0IifWLQRD8t12KfDVQCILgxI7t70Ou7XoSbH0Xour8CPDvEJ+Wz0LUO7u1U+syx7nc9ptlUn85b97d1KztDwVfggxE34WooH4deNzIriAIiojfzOcjbfsmZEL8f25M1XfF1wFPBEHw/I7t70MUCtdq/t2J3b6bq35fQRA8jYTQ/WvEI+uLgb91zv3ALvv9X4SMeNuLqOfLGddy33fe8/+ATBjt9a1XOY8NWl5UUh7n3Pcj99R3BEHwmy/mWPsMKyi5p6qZThT13QaA/w5RXs4hkRL/DOn7/pqOvu8a+4P/h0xMv/lGXMxVsOdrRaxP/gBoOPE5H9V6gkQS7OaXfUXstf068HJ5drwRUdS/r3OjRsk8zQ30yn4Z3zshQlwOpsbeLWkbtPuUb0WU5O/p6FPusDK6LcY1wElSyQ8jIezfh/gpfxZtBezOfuXl0qe0T+DcCBINtwa8NdhDQknFbs/+vX4X14KfRUQsv49YxHw20sYlXny/HSalChFif+N6+9Qv5dK5ztJlyndikRc/17ne/jZEiOvCnsKubzBMmXrJiqeTpDXvRwYEb9UV6p34YmSi+DlBENQ79v2KnQVVjfMhfX2Lc+67EC/ENyEqFMN7kR/duxEl3ddez0XdLDjnvgBR2v4/xAtyNwwhXkU7YaHr9j1bqOAROlRFGla/cwD2JcDfqBqysz5pbq2xs9Xz1de5/3PIYPAI7ZU7M/RO024TAIIg+BjwMeC71XritxHi8Ff18waiuvwTJeB/Hvhq59wPacjnjcYQu6sjd/tuDwBjXLrqOHET6kQgybDeg0yaYsj9+d3OuR8NgmCzo+i3IaF7P++cq+jq482CfZeTXHp/x5B2+eBuO+2y/15+Hy8Wb+NS65MXqPx2wJTaF673hM65r0c8yn4qCIIfv97j7EcEkgn5JPCpzrnYjrB1Iw2tbb8E+T6+qFPltNuCwTX0Bz+LqBd/0Dm3FgTBbolUbgiu8VpHEDue3ZKe/SPi1XecS38bPmxK7VHGtJxhz+33MoMlQrjcs9T62iIyDtmtb91zf/tyvHdChLgCHkeipHZabuzsUw4jz8vdIr6+S1/3IR7JhiNIghTAJxEZRpJHgXj1Z5A+5SMd5cau/TJuPTSS6C+R3ASfGQTBXkgFw27P/scRsvN2LlWU7fwubFw4vqPc5C7n+RLg/2h0m9W7m/YCW4gQIV4+eI7df8d3d3x+tf2P7LJ9t2O+GHyAa7DJc845JDLhies94Yvsb0OEuC7cNEWmkhC74SsRteA/dpS9Dbn5txGy9HKkQUv3jXTsO8qlmXVxu2QcpT14i+/8IAiC30CyWn6Nc+5lQzSo98fvISrRtwWX+kJ24jQw5Jx7eMf2f6Pv1jF9EAkD/UbttAzv2OWYLXasKjvn/iU317/uBdB74SPAf+gMydX67GXV2wbk79ix/Vv0/c/0WP27HO+kvse1TKbzQ/0+nuwscxNwGrjPOXd0x/Z/g/xe7Pwf0PedvjM33CNzl3ZoIN6MjjbR6z9GvF//EPg/zrnPv9H16cAHgQbwTTu+y69EFnB2y2y7c/+9/j5eFIIg+Du1QrHXs7B7v+kkA/E7kIWMx6/nfBra/TPIAsG3XKX4KxXvQZ4dX24bdML4NsQfylQ/tuLuOso9SDuM0rZdU38QBMEPIVnqf9Q5d7MX7vZ6rf9il9d79LN/D/xn/fsEMkn/mh3qsrfzwgn3ntrvZYjT+v6vOzc6516DTDKeAO8L+EHgCzsVvM65CeCf7+VEL/N7J0SI3fDHSCj4V+yI5rJQyr/S95/hhX3KV+tn79b/d1oTfZW71Lv+a5EFDPMk3q1PiXGDfPZuJpxzPcg49HZELLJbmC3OuYPuUospG+Oa5/UHOj76fX2/RPCAfBdNJDEXtNvvm3aUe8cuVXjBmB8ZP+62wBQiRIiXFn8OvNY558dV2td8FZKzYnoP+7/OOffajv0PcYOjCYMgWNox1/HClsvwRF+LJMd6//Wcb6/9bYgQNxo3U6H63U58Fd+PeG8MIArTT0WSvnQqMN6PrML+BPDpzrlP7/isEASBDdT+DCED3u+c+x3EV+zrEfXGvR37fJ+SkX+GrMJkkYHX80iI8gsQBMG7nHg//bCqQH7kchemIfj/G8ka/u6rNcQu+9sA6VX6/mV2zRbS75y7EwkFDBAy6l/u4PueDILAJmDvAr4CUbr8LHLNn4GQbn8VqAl/EAQXnHM/CXwn8KfOuT9HlAL/nBeqTv8Uacf/jWTvPIZ0tFdT0t0MfBPyvf2jc+6XkcH4KOLJd/xKOwZB8E8aRvlVHWFjr0WIhvcGQWCqiC8Hvs4590dIqGoKUWNcpE3K/qqS9X+N3Et3IgPOk3SoX3dCie6/AX4gCIJ37vWiFf8d+X4+6px7FxJ+9Xm67VeNGAmC4HHn3P8F3qGT9Y8h94ARsVe0PLhG/KVz7jziU1wA7gG+Afiz3cIqVDH37xA1+O87594aXMEc3Dn3buT7GAuCYGGvldL7+0cRH9z3O+fehxAhX4eE2P/WHvbf6+/jZuHrnXNfiCjXziIqnf+AqH6+rFNt6Jzro02YWzjyNzjnykA5CIJ3abnXAr+B3DsfAt62oy951Ajd/Qjn3Jchv8WkbnpjRx/7m0E7ic8vIRPOn9MFirNIJuU7kRBSw58iCYn+yDn3Z4gC82uQAWqn1+019wdBEHybfm8/p4rty96Tzrl3Ivfym4IgeOQqzbATe7rWIAjeu8t5j+uff2F+ykEQbGmb/hLw18659yDt8hW88Jmw1/a7KXDOPYL4jV5TmKn2oX8FfLmOBf4S+f19I2Il81Mdxd+JhMT+nXPuFxDS4RsQu6LjezjdTb13QoS40QiC4Lxz7oeBH0Ser+9FQvD/E5JZ/h+03D/SIZgAL3wA+MRufQ5iEfAh59zv035m/y1t+41HkUid/+Ocs2z2X8YtCiV/kWP+30bGnL8O3OOcu6fjs/WO9ngN8LvOud9F5jQJhHx+PZK0y7dpEARPOOd+HREaRJFx7cPAvwR+tGNceFKP93XadzyKJA/bTUn/p8hcZA3pqz8NsU0rXeP1hggR4ubjx5A5/l9on7iCzpuAL76CAMvwE0gf+n7n3E8DGwgZ+xyX8ik3E8/pWPIUEvXz6ciC9klkrOnhnPv/kOcNiHDn3o5x/vs6+JC99rchQtxYBEGw5xeyurywx7KfhZAC5xDV2EVkgPR2wO0oG1zh9ciOsv8BUZJsIhOPtyOTm6CjzJsR8uYcsqJ+DvFZPdJR5mE9/pfsOP6P6/avv8K1fYOW+Zxrab+9XO8u9bvc6507jjmJeOGd1fZeQMi45I5yBxAPqjxQRYi+V2n5d3eUiyOKGCv3t8DrkJXvR3ap5852fLtuf2DH9nfq9sFrbLNXIWHlq8jk9hngB/dyXGTh4PuQiX9D2+hHgHhHmfv0HnlO760Ccv/e31HmixGVQEHvq+eAXwRuu0rdP0/r9tXXeb+8FiF1l7T+M0jYXHRHuSRCrpcQ+4o/QgjVAPj2q7UV8vte3+X8jwBPdfz/VcgAflnbahZ5OB+80jmQCcIjWrcHr3C9f6j3XPo62+vrkb6hgZib//zOY12hDfb6+7im+/tybbtL3T8LIXLsu17Ve+7Nu5Qd5fL9w8Iudb3c6+17bNcF4E+v5zu5xu/v3ezxOdNxf17u2h7eUTarxy/pvfsxdvTjyCT9O/V6NxFy4HN31os99Ae73Sd6j/0Ooob+gitc108iKvS7r7Mdr3qtl9lv13tYP/tapB/dRBYp3sALnwl7bT+7f791xzke5hqeKbvU8QSwdJ1tlkCyln8C+f2XkefA8V3KvlmvrY70gV+p31ltl/vzqR3bbuq901E+AN51M36n4Wv/v3b+JvdQ3iHj3xnaY6kfArqust/lfut2j78RmUCvIOOD3wIGdpR9CPh7/V2eQ8bqn82Ofn6335tuX2CX59defiO8iDG/nncvz+kxRHk6j4xxN7Qv+2p2zJm0fBey4Lag38UZ4B27lOsGfhoZr60jJPUd7JhHIJEGv45EIlQQocskt2jsc6VjhK/w9cnyupY+GRGi/QHtefFjwOfuUm7XPg4RSj2i+z6PqOH/g5Yf7Si3576Ty/T1l6n/ryBjrYsdfdiPAanLtMtV5zB77W+vUq9d+7jwFb6u9HJBELBXqHLszchKajMIgvKed34FQVfRR4MgeO1VC+8TOOcWkEnx21/iqrzi4Jz7CWQlcSLo8P69Rec+joSq/rsgCH77Vp77euGcKwC/EQTBt121cIibDlV2RxHy6MkgCD7vJp/v3YTPGZxzHweeC4LgX77UdbkSVBFKEAQPv7Q18fYYKwix8HMvwfnfC7wqCILdvMluZT0GEPL1AvBzQRB8w0tZnxAvT7zUfW2H8vNTgxcmVX3Z4BU65g+4vqipm1GXbiR64b8ivvuHAo2OCBHikwkvdZ/8yQy1kTmIqGR/lpf5cynEywvX46E6ggzSdw2df6VDPY0epu1rFCLE1fAm4IduNpnqnEvssvkdiMrtI7t89rKDc+5ViErsZeNlHIJHkD5/5Bae85P9OXOQdkbrEHvHGxH12q/c7BPt7G+dc0eAt9L2L3wp8SwvIoFdiE8qfFL3tVdDOOa/Jfga5B4MF9FDhAj75JcKb0Xa/Wdf6oqE2H+4Vg/Vn6DtQ7h+g+uyLxCIpDf7UtfjlQD1dNqNBPQIguD8LarOTUMQBJ96i071X51z9yNh6k3E+/OfI/5bi7eoDi8KQRB8AlkhDPHywVcjnsJwa0ia8DkTBBe5eYnuXrEIguDPuHryuRuFZ1VN8izigfq1SNjaT9yi818JX0A7QeC+6PtDvCT4pO9rr4ZwzH9L8H8R/2nD2ktVkRAhXmKEffJLh79DbNcMMy9VRULsP1wToRoEwTRXzxwXIsRe8dN0ZKG+DG5J0oFXCB5FHgbfi4RPnUU8qX74JaxTiH2OQJPa3cLzhc+ZEPsB70esXG5DfFD/Hviu4GWQVTYIgg+/1HUI8fJH2NeGeDlAF/zDhZ8Qn/QI++SXDkEQXAA++FLXI8T+xDV5qIYIcSPhnJsCclcqEwRB2LmFCBEiRIgQIUKECBEiRIgQIUKEeNkgJFRDhAgRIkSIECFChAgRIkSIECFChAgRYo+4nqRUIUKECBEiRIgQIUKECBEiRIgQIUKECPFJiWtNShXiFQbNYJoDKi91XUK84pAC8kEogw+xDxD2hSFuMsL+MMS+QdgfhriJCPvCEPsGYV8Y4iYj7A9fAQgJ1RA54PmXuhIhXrG4Azj3UlciRIg9IOwLQ9xshP1hiP2CsD8McTMR9oUh9gvCvjDEzUbYH+5zhIRqiArA4t9B7dUHGVq6yOZB6F4FIrAyHCe5Uaf7PFCHjXFHz8WAzaTsbOX8Ps8DMSTHfBFIAlmgCSujcea5ixUGaBAHIEGVFOuU6aNFhBoJ+lhjgjNcIMt5hgGo0s0KGY5whhhbrNBPjSR38SwHaHGBQ6yQoY81f2ENugAoMUAfa6RYp0GMOjGitFgnxRSfIEKLGgk+wRQZVuhlnRoJ6sRIsU6MBgAtIqyQIUGVIocAWCPNXTwLwAArnGeYBFUOcYELHOIQF1inlxgNWkRoESFCS/fto5d1GsSp0s0WcSr0ci9Pcp7baBDnNpZoEKNBnBh1rWuSXiqsMECRLAOUiNNgjTQxGvRRZo20HruLdVL0UWaJYe7gHEsM0ccao5xlidtYI00fZVYYYIx5f61nOcwEc6zQzzDnASjTx3mGffke1tkmSo1ubuM8MRpcIEvPxTxvGznh768QIfYBKgC/t/gaNg8e4jhPsE2UFe0/imSJ0OQ2lkixwTxjVEmwRh+HuECCGlvEOECLNfqokSRGnbuYp8ghLnCIMZ7lAlnu4BzPczsRWvSyToQWSWq0iFDkEMOc5xNMcZ5helnnNpYYYIUkNSK0fLkI2wyzxBkmuJOznGGCAVZJUOU8w7Q4wHGeoMAwTSLEaLBOL1ku8CT3cruO3yI0SbOm/XCUPlZJskmZPraJcIAWKa3nGSboY401+uhjjRZR4tTposEKA8TYIkuRNfoYYEXrmiVLkQq9rNNLhG0iNInSopsqK2RoEeECWSY4Q4p1Sgz4L8b60AYxbmOJdVKkWaPJAaJsA9L/PsMkA5RYJ+XbG6BFlFPcyxSfAGCFAe7gHCUyXGCQCc4AsEmSQYrMcDeHuABAgxgt7eMitOhjjQgtznEHvVQY5jxr9AHQyzpNDnCOO7iPkxQZpEGcxy8e5dtG/tjfYyFC7ANUAP5g8Tjxg10UOcSrmaZOjDNMkGTT/6ZjbNGgizX6SFDzv53zDJOlyAFazHA3RzhDN1VaRDnHHSSo0iLCHZyjyQHmuYsI29zGEucZpkEXA6xQ5BAZVvzYr06MUc5SJUGEbRp0kaDm+4SzjJKgSo0kt/O8jt0G6GUdkN/0CgNEaBGjwW2cJ06DEhnW6PPX1ceaH4P2scY5bmeAEr2s8zy3k+UCKwzQJMIGvX4MdAfnWKOPJW4DYIxnaRFlnZSva4soLQ7450eLKLOMc5izJKhxgUPczjmeZYxRzlKhlwQ11ukFIEaDMZ5lgxRVEmwToaKfneMOAKb4BA1iANRIMMx5nmGSw5z1/XeNJCv0c4gLrJAhS5EqCRrE6GWdNfqI0eA8wxzmrLZfF3dwjk8wxb2c4nluJ0mNbqqs0U8fq1wg668T5BmzQobg4sVwbBhiv6EC8MOLX0L9oIzPnud2P045wiwx6iSoUaGXbaIcoMksR7iXU1TpZoNe1kkxxjxnmCBBjaT+nntZp48yNZI8yxjr9HKEM0wwxymOUWKASZ5hmSyDFAHYoJcyaXqpkGFFf6db3MYSJQaI0yBBDYAILUoMkNY+rEiWu3mGx3iQh3mECC0dL0ZYo49uqn6MCpBigxrdlEmTYeWSOi8x7K9D5r7LrNHHGn08x2Hu54Sf2w5QIqpzWOur4tSJsUUXdU5yHw/yGAlqNIhzgUFu5xznuJ0I234MGKNBgipnOMIdnOMATTbopUmEOFvEaPA8t5Oh5Pcvk+YBHmeNPu23nmSNNBV6WCdFhhVaHGBMx+sz3M1dOh9u0EUP67yev2dgY5W1noMMrF2k0e2oxZP0rW3Q6HZEmgGN7iiRZoti/BDbROljjQM0GbhQJ3+onzX6GGKJLeIMLV3k3T3/nG8e+Qt/j4XYvwgJ1RCAkKmjwUW4DSLdB6gMpyiTJkGV7p4yB5tbnBsZILOxQvcmNIe7qZEkG1lho+8A2fw2G+MH6OnaJshApa+Lg4Uttnqg1NdHjDqOFF0kiNJDgwQpKkCSbaL006Kh0+stulgiSoYSTaUTiySJU8VxkG4qTHGOPMNESbLAKEmqJOiinxa9VKiRZIEcTSIc5zQNYjSJcpAtKnSTYoMRLhKQpkqMVdIcpUCUFjG2OcgmFbqIESWKY5U0KSqk2SZCF0cp0CBOiwoRDlAnxiEaHOI5UlSYZYJRlllihBQVeqlRI65kqqNKggp3kCLPJAssMEqa81RIcYgGmwTEWSNCnB5aQI0qCX0YpeihxhYHSLFMjDotojToIscFImwTZ5MUNQqkeDVnKZOmwgGGqNGiQYM+oiSJ0EOMbhoc4i4KRElSYEjbM8YWGSIk6KdFmTQNBknQRYNDbDBELwWOMsciI6xxmF4qHGOBDSWNQ4TYb8gerLF8sIsKd9AgzgSzlEnTQ4QkdUqMs0SMZQaZZIY1DnOeATIsM0SRFFX6gDKOBjHOcTdxGkAfCeIM0mCDYbYYZJA8SaBCmn/g05jkNN1EOEAvaQIiVBiioBPTFJ/gOOPM0SJCFzGaRAiocpg1DtDLIFvkOco4cwxRI0adBlm2SdNFi4Ak/dTp5QCjrJAgoEGcCBG66aKHCOv0UiXBMLOcZYQceSLAKBc4yX30s02EJDnWWSfNBim2aChBCgdoEVDnNqoscwdDFNjQa7qLZRZIEadJigoneIAceQ5ToMgQ/ZxnkSly5Dmgi08FsgxSosIgh1mkRYoukqySJkOJBUbJUCKgj4M4VhklToMRLlIlB0CBIY5ynjpZYjToZ5stBthgmAhxVhmlxCCjLDDH/TgiNNkmTZkSaW4nT4kYEbaBFE0ipIAoSS5yB0vkSLPKbVRZJc1BHAUmaBGlSYypUNwSYp/iNQfPMBSXiXkrGqEeiXMHFxlslahH4kRoUiZNkSFexfOkKVMkS5oyd7JKUvuhoxSokiRFhVS9wqvjMi6J06BKkqFWgd5IhBEWibZaFCIVWkQAeB1PU1UKYoAmxzf+ie4NeCZ7JwAj9UWq8SRFsmQocQcVv0CVqleoxpOUqTCy8TyFnkMcXrlAYaCPOjHiusye3NhkoScgyyeItlo0IxFaRLmHPBVSJKnyKs7qGLHBbVRpEOcIz/hFrhYR0pSpE+NOFribvG5tscAoWZZJUybZqrIaSdPfKlOPxDmUX2cjc4C74suAECCv0X7+HvK0iJDZWKHS00uJDBlKxFt16pE4yfoq5XiaCikyLFAlwRGKZCipKKBCiyhVEvS3ytwRuagigUUvMIgrcVChDECKPHViRGhRpkqcBvcx54UQEZqkWKeXZ5hcyTMwsEWDOBmWKdIiRYUEcVJUPAHSIMZdlFgJp50h9im6D3Zx+8ESLbp5DXMkqbJIkyb9JFhnnQEaxEhTpkWCz+Lj8rtjgwgXmWGSOHH6kFHECOdp6UJ3gSzjFGnSzxCnKZFhhVHuYpkjFMiR5wkOcZAD1IkTRQRJCRoscg8pKmTJs8UgDTK8ipMsMkKZNKukmeQ0FW6jD+ijSINDDLLFOreTYZk7VIyU4iyP8VpaVBmlTIkM9/A8j/MAn8Y0VZK02JC+lS0iXKTIELdRJqf9RosDZFjmNTp2rtDNKKtU6ZW+li3u4BzJjnltLxXu5Y9ZZIQ6PSSpad8X5Q7kWVAlSYYKEVo06OZTWKBEhhpxNkgxyjxFhuilzKtZJE8OR4U7qBCQ5p94A1NM8yks0KSfKkMcY5oWEfI6VtxikCi9vJGT1EhSJ06DCCkOkGutc/BZyOYuQhwoBwSZDRxAIRBGLdJko+8Aw2eLnDsyQHZtg0pfNwfXoXpwm7uLC7AGbNTZGoOSG731N3KIm4LwyRYCgCKD0HeQNGXyDJOmTIYSEZpUI0maI3XmGWW+Z5RcjwwS+1tlLmR7SW2s89zYIeI0WD4iasoGMcjJwPAJjvNGPkqDOKc45gfYcRrMMMkU036wDJCmTEzVAnly2knHKZMmohSrDGCjzDGu5es0iVDRya6oPpNEaJEnR4Qm66SokmSERVZJe9WnDRKjlKmS5AnuI6eD2BYRhsnTT5kmEa11TJUVUWokGGFRH6wjOpiO60Mk5Y+zrvUq06/q17gOdCOc4pg+ZKo0iGkbVQH8tlXSRGkxzyiTnCaig9a6qqdAFAt14lSUwm0xwhAFKvRSIcUQRRrESFIlR54SGUoM6sNf6hah6c8dURK1SoIZjlIj6RUlFVJMMCsDe617iwhxGhQYYpko8NStv5FDhHiROMftDFIhSotFJQYqpEizSosoGZaVhGwRo84kMxTIssgILaKkdVJqfVqCqv+9xqkTp06FFKMs6O83or/LGkmqfvJ5nCdYYIwWEfop63GkH7ufxymTZoFRKqSokSCmi09TTJOlQIQWc0ywyAhRXeCI0GKcWSqkfB82pETHSe6jQYy38udMM0WeHEMUKJBljAVOcS9VEuRYIs0qeXIUGPKEr02eE1SpaF9bIgPg+4gyaQCyFLRNy9qvt8hSoEWUSWaokCKmJG1KB9A58sSos8gIE8xR1WWfLEU/IE5T9s8XG6wvMEaRLJPMUCLjr7eshGyVBHEajLJAnLoSyC2qJH09onr+MmmWyZCm7JVfBbI0iDHGgu//o7SoE2eIAtNM8TFeCzx+q2/lECFeNH7l6zfoTkJzEKIr29CzBU1VeqaaxFYC6DlPK3KeZuwA8bVt6n1V4hVRjgcxcGtAbROyKzS7IHoOGNiErfOwCfSvQAOK/ctklzflxE4WIQKNhnKb6zR7ILrxHB+IgYivnqM2GCWxvA3VdWqHN0lUmrLDNjJxTQHb69Qym8Q2IbJxAbqh2bVGtI6k5t3W983nCJLgNgC3Bd1QTxwgvrYmZaLQikNkBUidgQYQgyAKrgHUgQhwEegBErCRitFTadDqkvHQgQDcNtC8IG2zvQUXIBjaxjWfoxmHaBHog1aXlm+gs7V1aKzTSkAr6ojVtqQdulYo92+SPluF5DrNgxeIlvULjOu16XdW679IYqPJRk+MnrV1n5q4GYftA6vEKoFca03qDxdgC2jqcVLW9kCX1OVAcAHXBBrQ6nmOyAqUck0OsM23fX9Mnnf1BerxGCuq2g0RYr8hwwrjXCBFhUVGVDgzz2kmGaJIjjyAkp/H/dixoXPCFhEylIhRp8gQEVosMsJRZujXsjKfrFEnpgtOdU7wAA/yGIOUyFKkqAvDVRK6EDzPkI6DHuUh6sSZYM4v5iSpUdJxy2M8yCQzjLBIjjxNIiwwxgSzOofu5Y18lDw58uTIsKwRQWU/FltkhFEWqOnYqUqSHHkWVUDUIMYgy2QosciInyfmyTHOLEvk/Bh0hEXWSVFkyM9FAUpkmGCWGSYZYZEyaUZYZJYJJY+LOl6u+3bLM8yUEqQjLDLKAtNMMckMdWL0U2ZYSdqTHCdDiVEWmOEoIyyyTMa3mUSYNZhmigop3sBHSaxvsXHPAWKb8mzrakF+YIDb11bYOHKAnuI2W3GoxpP01Ne5vbgCT8HA3ZsQhRh1zmTvYChT4ODZLWq9XTy08ehLdj+HuLEICdUQAKpwhAq9LOlKTU3VBE3tYkZYpEGcEoPkyHOwtMVz2TQzPUf9MVpEGGUelPSskGKMBSqI4tUmu0YGjrDIIiOUyKgCtKwPgCoVehn16s0yEZosMMYQBTKU6AyfbxFVAmSELEUiNBllQVfg4yQ1hMBCIIoMqbppjPt4wj+cshQ8iWjEiEye49RJEafuSdQWUR7nfj85twejEbXSprJauciIb+teKoyywCzjfjIfp0GenD/OFNP+odlJJogyqkKZNGXS/jwpKuTIUyBLiwhRWgxRpKQWBfbgmWGSLAVmOMogJUaZZ1AfelKu5tvMvgsbFBiGyZOg35MhC4z6ciAk8JZaIoQIsd9wO+dIqKoGuKR/GtYB8zop6sRZIqeD11lqJFXRKCSi9Rv2SlFhVX+3RrhVSWAh80MUAMgz7BeXaiRoEuFJjtGvZF2SKtNMkaTKMhkGKVHXRSEjGZfJ+HPaQLtFhFXSvn9vEmGMBeYZJap9ri3oNFVpVdVrArEBsb5CdBFCGPZSUYK5SZMEZfqJU6fEIHViLKrK1cLTimR9W3cSzDHqnGZSDU7qvl3jNJhjnGHylJgkR54ZJmno86PIkD9ekqpXGhipOkSBNKv+OWILZjEapFmlyohX5WcpkKTGHON+0UsUVtLPFslqZAXMMElSyXJbBLRtNgi389zG0k25V0OEuOkoAwFEt4ENhFiLApu0ybdtiDQgktqGIsQXtmEIqIPrAlaBbmANogeALsQeKokQfvp5Nr/aJu4uyOcuipB4qxAd1HOXtC7dkHBNWJdjJ+pNITK1fvRIHahAYqspBGtMrik6INuNKKUi53VZ3bcbuZbt7TbhGodIRY/Z0PapgxtESNQG0K/bl+QYPf0NWIOIEpccAKp6bZtAH7AMri7XGT3f3hYZQMhLq+MBYB0i5yHSE/g2ZRPS56ty3DREjdy9qG2caLdxYkPaoSfTkG390p7RDLTSAazo9Wfabezb087XlHuCLqkLCf2sARF5RJKJXyRIQnYNYn0NqvEkqY117rmwsOttFiLEyx2ivA9oEWWBMQBOch8pKlRIebFJhRTrpJjhKIuMeLIO4DQyX17VxeUYDT7OgwyTJ0qLChnmGeVeThFVQZCoMxMskfOEoihb68xwlIdYpkLKi6FSVDjFMQoMkWGZQUrMM8oU04wyzwyT1HVBGPBzvjnGWWaQMeZVmBTjUR5iUqM8y6SZZYIITYpkmWHSL0zb4rOJemaZ8Ns659SnuNcLchYY86KeMmny5LxIqsAQMRoMsswMkxTJMkzei6pkjCbz6ygtZjjqidUy/SSoEVH24m94E0MagbrMvX5MWiPBIzzsiV9bqI9T99zECIvMM0qeYRrdB+hZ2+YT2bvIUiTeW+cUx6iMLYj4aiTPAmPCgWThTPYO0m8uE2/VOVjaIrmxSbS7QDWS5GDPGpFmy88zQux/hIRqCEA85WaYIEvRE2hLpIjQYpQFWjQpMkRBV5GqJPnj7AOXTLZtMtsiSp4cMRrq25QnT46qBihEaHGKe5lkhqoSB0bgPckxDrMIwLISt1USJKnST5mWdnLWgUvovIRj1ZUEqdCrdZTVOxBiojN81AjaSWaYYdI/CI00Ea9Buf7T+tAwxZQ9TIUUjjPNlFdYAaoTk7pI+EKcBFVOcS9x6owqwSztFqWlaijAk5h2viEKNFXFmqLiQ0OMFMlQIqMPUyMq6hp6ZWrdFlGSVL1it6bKqyJDjDPHkloj1BhhmLwni5JUKTDECIu+/UoMepVZhCY1krSI+MGCkTIhQuxXnON2oE8XKZZ04Ub6vyYj9FP2akhTnp7gATJIuKYpLvPkSFIlo/3Ngg5oAa+Qz7DMKe71ZB7AHBMc5yR14sRo0NRFl6bWA6Q/O8lxX2fzVgXpU6SfkhApU5wvM6gLVSlVyzaYZ9SraAES1FglTb8uAsWok6bMDJNeCVAlQUqV+r26uCPnHfKhr+I322KMBT9ITlCjoOSnDIrjfgBcYIgaSd+vC6G7yjIZHuX1TDKj19Xy/lmLjLyg3a0N60qCVkVi5RW67fO3VLnfS5EhvxA4xwQ58n6CZMTxHBNkWCZFharaohznJDUS+qyrc5LjJLT/MzVFhBZFssTZvLE3aYgQtwjf+dlwcBW4CyHSjKTMg4qJ4HUIydkCzgBHEALuIjCgZbu1bAQ4jHjsj2j5OkLejWmZPuBpLXdWt6/g/fjpBo1Sl+Nv6N89CBE4gBB/RYSw7dMyRdqE7D16jLP6+ZiW6dN9mh316tHt88Ddut1IXfSYRjT2af0O6uemVu3RetW1baJ67YeBZ5G8AwN6DDtnt/5t7fQ64KQeu67XelbbN6vXl+kof6zjOzur58zp3ytablG3H9TP5vX6jwGn9Dw9ui2q15fv+D6sHcb08w09xr+BH/gJ6FqCwdY6Twzcw331p2mogDhEiP2GdXqpUOUUx1TAMuTfAb9AntUomCpJtYGqMMlpP56oquVdSxWhFtdpYpplMqrvFBuirFrM2TitRMarYUdYZFptksr0XzLXi1HnXk6pPdVpalqfmsZDZdWPNcU6JznO/ZxglTQzTJKgyhTT1In7he8nuI8HOMEpjpEnzniHkKBOjKWOqKVlMrq8L9GLJiyyue8iIzSVN4hTJ8MyLaL0qjjoGKeoqrWTLZ6XSauidNLPcU9xLw1iZChpRGiUQR0TlhhkhEVSVMgzTJ0MLaK6EJ/VWE4Rdx3jFDUlUzsX/S3qqUaSU/FjHM3OMFpfoBJPUYmkOKpj05H6IvW4RICeZpJjfafI1fNEmtuUe/qI9FWINLepRFKk62W24tBT2ibVu37L7t8QNxchoRoCENP821knS4ElJUPHWPAEqsnw46ouzbDMJDMkqLJEztsDWAhlQglQCyuFZZIkmWOCMlFGmfcPohmOMsW0JwtMgTmixOoQRaokaRJhiII+piT8NU1UKcWMD0XtNME31WyEFpPMeNVsnDrLZPRTeR1lhkFK/kFg9Un6+CY8qWl1nGCWJznGGAvqzVcmToMMJa9OrROjqMRkmlXvywL4azSV1giLPlRWEtZUvNKsqsSHkCELnrhpqAJXjiPJr7IUmeYeTxxXkQQ5U0xTIkOVpBLLqz6stky/kjwlv9p6jCcBPMkwwyQVehmiqGrY6CWDBXvoVf3sKUSI/YVhzjPBP/E0U4xwlqIOEE0NOcIiCVU+LpNhQr206sRpEeENfJQSGa9wjNBkkJJXoEqIf1xVoTU+hw94hUCNBOPMAtIn2IBcfucx9a+KkKDGOLNe3ZqhRJIq84ySYp0hCt4f0JQIVZJMMOv7lAopHwbW0BCxMmkKDDFMntNMat8fVUV+RBesUkwy45Xpce0Pm2pNUCVJloJX2UZo8Voeo0aSx3hQQ+tlAmFkb4ZlaiQZZV7VFff6/tyuv9TRLw/q4LlMPykqFMgyRJE4Db/IN8o8FVJEabGqfWWdGEMUvUIhRoMJ5siT64jAyHhbmEFKfhAfo86SkuRmmzDKgta/5C0MLOwto9/5IiMsdCTYChFiX+ECcB9CGJZA868JcRZHyNM1hGDbQMjCD2u5rH5WR4g7IypByNdnEIJ1DSHtTgKvBj4EHNfjrejnLYSoy+k55juO16P/348QsVH9DP2/p6OeeT3GSdpEYY9+FkXIzRyisF1C1K9NfWWBP0GIyG5tj7MI+WiEa5E20WjKTlWRktHtPXptGYS0fEDLnNFz/53Wt6fje9gAPqZtCUK+PqHbh/Q9R5s43tDj2TGe1Tqu6DUXO479rJZ/oOOzD+u77R9BSF875rpui2qbHtHr39RjPY0oduPgmnBs7WmaEdhKEiLEvsQw50mzxpAu1I4yz72cYoZJZpjUKEsZh0wywzKDVOjVZe2kX6DujPo7yXG+lPcQocUs4zrHSjFIiSmmKZDlNJOMM0eKCiMsUmLQK1eP8wRl+hlh0YexAywwyhBFbyFlBK7M1VsdC8BxshS8DdN9nKREhhkmKTHow/wtsXKEFiMsqoVd2tsT7Bx/HWWGFOveCq+lEVFZPu7JzGmmfH0t4inNKpZAukKKCE0fqWnzUiGuZSHcRAojLHKao16ABfiIUiN0l8iRoMogy6RZ1fFcTdSnSnRPctrbMohdwGmmmGZI26hFlOV4iqENSbwYr0v/xgZUxuLcPf8cK2MFWtEIBwtbcBFuO7jGZh90r0CzJ0JPflueA71Q6h0A5QFC7G+EhGoIAM5yJz1EWWCUceaI0OQUxwCZ7C4wRhzJYvhR3uBXhIoMeU+5RUa8MrNKQiejEv9kK3I58iyT8X6D5s0Zp+HVRabsMtKyRIYKKYbJs8AoZ3XCmqTW4XUaVWWUrBRaKOyyhuq2iDLNFEMUmFGiwNRUFo7aIkqZNHNMMK5m2g0lSWIdD4oqCe+RKobjEp4wwSwFhlTd1EuZfqaZIkuBEoNMMEudOE9wH4Msk6BKnmHMd7FFhA/yFo7xpH94lMj4kAkjK2vqV2PXY8SLkDgxBvUBBXhFqRHHsnLZ9GGr9lCv6f73c4I5Jsirx02EFhmW/cPXfFirJInS8uHGcVWDzTOKmKCHXUuI/Yle1qnpCn+RIa8UzbDMErmOBRdRbIuNiYTtWN9nXlGyem/q+ToLjHklpVmqWDiU/W4luVNLV9VzXgVrFgFD6h0lffASceoaHiWD9UFKXnV/PyeokPLh7nXiNNUSJEKTo8x4S4MceYY1AUtOQ9TjSqC2EP9oI3YrqmIfouA/MxLXCGPJuNpghEWvvsiR90rPTgWtRT2ALGCJWkH6c2tLm4SY2tQsVUpk6KfMqlqgHFNPrDkmVHm6QJSWxkdUdcGpQIIqJ7mPh3hUQ/vb17PICEn1hbU+fZZxH91g/XCZlg9xs6iINGXvxZqgyigLbOkAP0SIfYcobaUiCMloYf9x2grTCELWgRB7JX1ltPy6vjK0yUsj9epaxtSOdT2uqUVztC3ZbXhj54giRN5BhKDttCUwVeUGYmH8LG3VZ7Tj2Gv6svM9hhC7pxAFaZ02aRyhrXjt0+sxkraAkJu9ug3aofKm5r2n49pOaD2ieux1bRMjrbv1OKbK7VTmntHtA3peU8uuISSvfV89CLkZ79jnmNbHyGcjtE3F2gRaHccztW5c62AKXat7C/gjRKX6atrq1W0tV4doFlwJutr6hBAh9hXMTs3C9R9ggSe4z9vAidWRzFdtvNMgzgke8GRombS3hqrrPHqWcRrEeYhH+RBv8SpXmQMOMs6cJwqjtPwYxIQwj3M/eYa9sKXEIBlNgGdWcnVi1Egyyzg58oyyoPlLkpzkuPcatXHWKAsq5EmosGqVJFUvyAGZX5YQeyVL1mfXeJpJhjWsfk7PmaBGTeeJQxQ5xikfYVomzUd4I1NMq+J2CcvpAnjOYZlBHasVqZDiJMdpEWGGo0wwxzpiL2g2B9Ze48wBMr4saDRVghozHCVOgyJDJKgyx7iP9rKx9gKjnOQ4/7n1v4g0WzTiMeJ1WB3optIjCf8G65IEMOiDaKtFPRKH6BYMwGYPlHv6SHZLgr8LY73MjWn+l4thyP8rBSHrEQJASYGY73SsM1siRxxJdBJv1alGkv6BMcIio2vPc7rvLnKtPNVI0q8uWSdo6qkY9Y4HQNqvKj3IYywywhgL1InTr0SnefcZcSGJP0Q92UvFr5zZA8k6TCMnMqositPQDNHi0ZelSFMnzHlyvJ5HSVDDEl5lVQ1liVHMi1DaqKqEREL9+SLEqTPOHA0k47YpcpfI0aukpZG/CWrUiXMfT/hQejMsB5QQWQUkzEASwgx5MtWI6zgNEko6yKqnkD3y8I75MP8hipRJeyLUHrRGZrTVw0KaG6mcpMoQBSaY9WXMs9bUboMse6WbwVZOJznNbOihGmKf4lnuYoIiIyyywChVkn5AKEb6Naq6+GLkIsiAz9TuIN5aIOpuGwAnNLRflORijWLqdJB+2JIXyGJGSUO4EhTJMsoCi4x4YtNCwKpq799WCxSoE/cJqTKUKJD1v+dp7vEEboaSJw5lAafOAqNIUoRoR1h7w5Om00xRJcEiIwyyTJ04RbI+hMx8ZNvJCIZJUiOOJHg6xTGv2FgixygLWGIDUb3WfTsAPM4D5NQ6xkhiCzFLqDWJtaEt/plS1uxIorpIlaBKiUGK6psqEwbxnp5lgjSr3u/VFuRsAbCgC4ii0j3NNFP6vTeZY9xHHMQQT+wSGUZZ4Lw+D0OE2HewkPUSokIsIiRhEyHgNhA16RHgIwhpie5zBiHbLMTdwtJNKWnqRiMDM7QVnvNaxtSnaB3WaZOgRuBGEaLvY/pZn35uBKepaXN6/Jz+H9fz23l7aKtRF7X+FlZvZQYQInJFr/kIQvaq4oiD+rnVyyI6u/W4J2iH/Te1Lmg5I3uP6zWb+nYJIUDNCuAEba9YI49btNXARvbWEVK4RdsOIa/X0dT3MS1b6mgfU9Nm9bOztBXGWT1mjnbo/wBtkvkvaROtW7otD86sGcII1xD7FL1qBWTRNe/hS/kX/JFXldrCukVTJqjq/EzGWi0iapMmAh8jIi0a0izi0qwyzRTigS9CowUlB218aeOlWSaokqTIkI+OLJD1UUB1YswyoepPWXDP+05Hxo4x6jzACZpEfDIqm38Duqi/7hfG05RZRhJ8RmixTIYnOaYCm5gXJU0z5cnNVdI8yTHu46Sf91o0jwl3IjT9PDTPMP1qkSBRnklvcWf7WN4Ty9ViEVaDLDOvi+8moKqS9DYBlgj2SY4xRNHXe5opBilphO68F3SNssAqaaqRpF8Ymxm4E2h79Zfjwm9Uew5wML/F+ZEkW3GY7jviyeZYpK6Whcveyq/OJu0HRoj9jJBQDQHAYc5SZcgTb6mNddLNdb9SHqFJJSKZm+/nhA8xr/V2iatMJMlr8k+zkuv2xGmKdYqWJKnVIhVZ94SmdfRGdiaoYUk8zP/FvOhGWaBEhkGdbJvXik2gbfIsnXTMk3wPqB/Mac0SCPjPU6zzRj7qrQpGWfCK1YyqLk0dZl54lozF2qhB3Hu85ljyBEOLKJb1WjrkQR/GO6Sdv4QdlKiRpJ8Coyyo8q1GinXNnigSAwtN7UzWUqGXCeY8OWBqrV7EEv00k0DbUgBQQkNkE7ZKamG5RYY4ymkNWVnlUR4io6QP4H0KG8RZV4/DTiuCmvfHbVIhRa+fIYUIsb+wRh8LassxyLL3HW0S8YkDChpuZN5MDeKegLWQ/LbXsHgi26DasqKab+dpJr1K3ZLlWYhSS8OqbOUf2gs7FqpvHqC26JLnXiaYxfy5bBFF3JqjPkyrM8FdnRirOpBdYBQQ9brtZ9YlMoiWJFemKrDBuvWf9rJQMyNGk9S8KtWuP0qL+3nc72MTAVOQGmF6lBlqJBlnjigtTjOKJX84zknmGPc+Y2ZxYrDEYZbM0KwKrA5L5Eix7utpzyPpm8s+SqEzEZcp9RvEyJH3lgKzTPgss5aIcZERzjBxS+/hECFuGC4iBNthRAE6hpBrm4ivah0h/5Zoe6WWaCs+O71GFzv+z9IOUT+ChOBvAp9Bm7ws6bY+2sRht9ZjHVF7mqerqV1XaHun5mgrNU1Feg9tz1LbvqjHaSET5jGETLXPexBytoe2WjZOW3Xao+c8rO0V7fjsLoSQNMJzQ18H9XMjNo1M3URC/ntoh9QX9Dh0tGWdNnFpKlb0HBE952HaFgC2vY82ORvtuPa7tO1MeVrXeozpvnfTVrMaOWztDKJMNWVsj+7naCe1OoFYCnyEECH2JZq60G0L5Md5wqs5LXeEWaPl1A5IElmVvUXb/TxOhV7M371MPzmWNES/4MPbk4hXqwlvRlnw0TynOOZth+LUyeqYJE7dRyCa7ZBEy0jEUYQm00zxII9R1KimY5yiTJqTHGeUBXIs+TnnIMuasLjmrfbM9k4s6CRK1Oo4ziwf4i1MMd0hHIj4sesJHuCoqmCNMD7GKWY4quPKqPeyNyWs2eCZwKihkVKDLGvoftnPnQtqJWD7WMRsCkkEXSSr82CZRz/Eo34OfB8n6Vd1ruSSWSWiHrkRjcYskGWstUBqbYuZAZnH35m/ACfhwlt7idcl+V7s4DqpeoV83yE+5Rl5kJy7e4DU2iaf+vhTMAJ3dZ+H+D/yJ92fegvv4BA3EyGhGgKAOl2kqLDAKDEaJHtk8nuS+0hS5RinaBKhREZVUzXJQh9p+NW1Z3J3eiJ1kRFqJOmlwu3FFc5k7/CqJcskf5L7GGeWonaSGc3mF0ey2YMoZW1FTEJlixRVjWShCZLY5ZhXlkZoMc0UeXIdK1nSaUp5UcyCZNTuVIkaeVskS56cV2QKeRFjXUlcUzsZqQLoxDuKJcgyrxybVNvKoD2UOvFR3sAweZJqA2BJYcC8YCO6TtfwDwrAkx8Wqmv16MwcKOENTV2vjHniwx7wLSI++3aKCkWGvIdNk4gPIZbvQ8I2rL3y5PwKqnjQJGkQ53lSSIxdiBD7C4c5ywbD5MhTUoWiLWdENcTbPKnSlBkmz5L+Dux32STiFeNmiWGflRjUQe86Zfp9P7bUoQqQFfmstxqxvkBC5k0tHvchWE0i/rdqv3+zGkmpJMhUn6bWN78r69NsUJyk6gfAJQbVK3bQD6iNiDSle5Yi5qtcIsOwLoqJRUzVWxdYPcdY8BOHGHVvr3CMU159ayv6i4zwxfwhc0z4EDpTgiSoMs4cOe03jfgWIrOfQZa9OtdC8SM0fZiZKGdzniyO0dCFNVFJ5FgiQlPD2tpeufYMmeEoacok1PLBElIAul3asU6MV7F9S+/hECFuGFYR8rFOOyHRADJ7sCRSH6OduGlM/16kbQVgiZaMFAUR5ZxAiLxNxP/07xBS70NIWLr5nxrpOoAQnQdpE6HrtNWvdmxTS67QJk8PIsrKe2iH0g8gfqgrCGFYRIjPi7TD+dF6m/cotEPkzQPW/FPtui0Uv5NQ7tG6HNa/TbWb13Y6TDuBF3rcM4hadYh2OH5cy0a0nnb8Ta2jKUfvou13OkabcDb17RHaJKwpeJ+gTdyajYARuCe13UZoq4RbtBWx87R9Wudp+72aureJfJ+DhAixL7FFnBI99FJhnFlvKycimqrawLWtnGyOVdcFd7Nxy+iowuZTFmYuUY4iJppUOyZDUtWulvBTLPUkGXJUw9drJDQK8qSfJ5pF3QRzPuJSyFSZI36Qz2SCOaaY9ovgeXJkWKZExm+v0OtFUmnKnOB+RplngVFGWfD17Uy6XCfmF+8tkZeNQT+HD3CS415danPjdcSj3/xVrb06bQ5aRPgIb2SEs36MmqFElJaPGJ1jHBAvVxOAmWesedvKWLTox6GjLLDAKCXVwlpysYged6y1wMFTW9CE9IBYPJldzaGT6wSHIba5TtdF6FraJpm9wJm772B07Xlun19hawC4GzYyB+jJb7M5AHe0zt3SezjEzUNIqIYAIM4WcQKOb/wTMz1HiFGnoRN2m5CaItGUPNbBLZNjlHmW1RMGpPM3L72VbDeWpMU6Y7MMAEv0VKfEoCcqUtSZZ5R+ymQo6US7ySIjWGIsaGeLNq8Y64Q7Q+eNELHJs6m2LOy9TNonvsozTJwGs0xwjCf14ZMlw7K3A7BrHGWeFlGKZD2ha9dtoRH9apvQ9lisd4T/1qiqEs5CZQsMEaeu3qtF7xFbJu29D6UeknXcHl5zqoCy4xcZYopp/2Azv8ZFRtRcu+i/g4rqWpuID02KCjVVm7Y6uggLmzA1WYO4Phx7varMQnQjIYEQYp8iQZUe/Y2ZSnRcybSmhgolqNJLxdtr1Ikzy4RXlR/jFAuMUdVBmi1O2Cr6AmOMMs+ghtubGqBJhNOa3MAWO2xwl6bMPKNMMOdJXfPpNF9RS4xgkQHWH9WJe3LTBqm9VNQ7KulD/UGIVfEHTfvfvHiKyrPABu3WVw3qwBvAkliZ36wp9c1XK0bDqzyEtBT2wBIsdCY+APhMPuh9Z41w7dUwONunQooCWcr0M8o8nQmirO62UCaheEUfDWH1Kqq1yoM8por7pB5j1SfkA/x1m8+sTZDMp9tC5BYY5X5OeM+ycyGLEGK/Yh0hziy834YERiTmEdLvLEIImj/qmv5/Ucsa4Wph+r366qNN3pka05I8NWknorLw8g2tj4Xr27FNHWvh/pYQyhJBGQG4QTtJlCkxTWG6QlvBacSo2QuYH2snMRlFSMuo7tf5meXl7Kat6rVQfGj7tmZpKz7ROh7Rdlihna+kM5S/Sdvb1M5/ZEfbZml7pz6lnz8LHNVrN3uEeS27oufOI0pSI2PN37Zbz3mQturW2tiSYEHbJsEUtHEtY8rdMClViH2KQxQ5iGOBUR9dGacBGmpfpuYXfkGsj2wcYHk9shQ4yX0kqDLNlE82laDKQzyKJJwa9vMzm8NaouJOD1SLiKqrHd4c40jS4jpDFJjXepoVVI0kn8MH/CJ9XpMymW98ghppVvWc66RZ9HZQceqc1kXkCr1McpoU617U1FROYIRFZpnwY08TRw3qSHaIAmMskKDKPUyzyIhX+y4w5q3zjnOSBjE/prKFdIv0SlBljAU+whtoInZ0U0z7OftDPKqWTesdAiIRJ01ojhQTWpm9Vot2FJpFkpo2d4JZliMZDnIeDsNt+TUorrE1Bl33AZvgTkFXFDaPQyPXxcHCFkfmn2czC11r0KULaz1Py/x4euweti6GptKvFISEaggAVhggrWHdn1I8w8VMF61Ii1FdOTKiwFbf6sRIgZpVi8rJCFJbgTKSc6hVYCSy6P1hzEtwVD1PWqryqWgMliVCsUzLgCdIzWPQyluWefFfaXlCb0w9+SwZVkGTVRlxKyEU89RIaihsxIdTWObAGknvUVgmzRI5hsl7dZc82JY01HaQNKvU1NM0QtMn4BICIYJlQgTpwI2obaiCbVU9GUWRu+rD6Mv0I5kiawyx6JVrGUo0kCQw9nfnA8LI3xbiizPFNFNM++u0a5UBQcUnYimqsliUbnUNV1722bFNnWbJcgDGmWVdH0AAAz7OLkSI/YULHGKMFSyxQIoKwx2kWlz9Mc3nqcQgxzjF49zPFNNEaLHAGGlWvULAwu0tjP4YT/qBbF2tQ8QdKuOTMBnpaOFKeXI+PMqyzy8wesniSZqy93+eYZJB9VmWRZKkV8uPM6eJ6IToy+pvW6xLpA9JaA9UUw9Z698tOZ8lqZph0of/A14ZYeTrEAWWyHmLgSwFFhgjSdUrMGzAO8oClryrM1kBoLRyySt5bSGupSSp2ZH062fLqgM5zhNYVlw596hX9M8y7rO6At4HbJw5JJnXmHpDZ0hQ88RzHUmGZQp9a9cRFr1CIkLLT1iMIA4RYt9hAAgQoi2LEHwHEdLsadrqTbPlM8/SgY73MwipaOScEZ0btMnUeYR8G9LP/5Z2YiQLx9/UMuu0/T2LyEzmfsR24ARtL9Ajun+0o65ngftoE5qGIm1VaA5RYq7p8examlrvgwhpuYaQv51h98e17s8Cn4+oWM2XNUtbYWu+sD20/VCf1XNb6LwpYge0bmaDYNYBfdpeRvaazUAEIUytjdH9zI4hiqhcN2mrjNdok8d/S9uOwdSvnYm1jGDupu07W0e+S/vOmlreCNsRPWYY8h9inyLBJi16aepCrqkuE9T4CG8gSstH0YiVUpxHeciHqSepscCYjifaitMYDUpkeDdf4RfviwxhPvMtIiwzSI0ESbXHe4SHmWVCHU/znOB+r5CdZ1THHU3WSdGrQiiAR3nIj63GmeNx7idHHku+WtSIxjh1igz5BW0bbwE8wpv8/HGRERXqiODIxn4neMAvmi8wysM8omlPh30EknEFnUme4zT4KG8kwzJjLDDLBOYlG6PBb/BlNIjzVv6caaYAiyCNc5pJb5lgUVHTpOlXjiFJlWUyPmrTIpoWGeFf8F4A5hgnoXNk4Rv6/QJ+gip39Z3nfLaPzNoaXTnI9x2i2KfWAEdaJFtVKhEhfzcyLfJx9dI/vuAjpWxeEafOmlo/hNj/CAnVEAD0sUaeYVI9FYaiRaoR6cjNi8U8T7IURHFUL1OIZznGKfIMk1VfvToxJupz1OMxoq0WuWae2OY2y30xplrTNCMR1kmx3OH7KQqms5TpZ5ERYqwTU9+Xkoa4W+c9yjyWud5UppLAqegVQqZwsvobyWqEiHXw1mE2lZC0FUArZ/uah6oZkq8jfjZjHb6rOfJ+ZdIUTjGWSLGuKqh+Bin5hFhGpsiDre1naF6M4otT9CpRe0hb+IOp1iwUwlbX2mbiNf8QHNR6WjhxQmt4kuNkKXKS43wmH/Q+sHEa6kWzRE07eyOnxRB8nYoOKjq9Ve0eqJDiQIflQIgQ+w1Cbg56BWOLqPcNzrCsCxVRJjlNRBPsmSLSVtRtZbtCimOcokDWq9ZtcGfG+ubPnKTmPUGPcYo0ZbJK2AH+92nErCVcMgVBhmWWyfgFrqImojJSdZw5b1GQpUiMBqc5ylFOe1+pBjFNEiVJ7HLkeZhHfFi/1dnsCOy48Vad+YgQvJaIq0BW/cREsWFZaS3k3sLiTZUrA95L7QXafWpCk/GVfB8ttitRBjUpX0L7twwlHxpXpp8YkjxQkiZWvAK1QdwnzJpkhjw5zON1iAKWtVcUvjX//VrSKVMfi21AXO+BhI+qkGRedW7n+Vt8B4cIcYPQoK02NILUCFRTdzYR4jCHEK6vRoi+gh7jGEKCGuFmKstXI6HkK/q/+ZrOI2SgkXoWfr9GWwVq4fifgVgEnKTtgWrqWFN9Wmb6uO5/tqPeRhT26OdGCK5ofS2JFlo/8yXdpE1uZvUYlgTK1KnP6LnMBsFUvuafau8biOrzadq+pFnaBKypQY/Ttle4R88PQuY+reWNQLW2sORUQx3lm7STjC12XL99vxe1jPnHmnfsCKJ2te8kr3W9hzYR/RRin3AY+R7Nj7Zb39OECLEvUaOb55nkDXzUC4NMgTmkiUxt3mVjAttmiaDKpH3y5xEWOcUxYtSZYppV0iwwxhAFP++0caIRcRIxNcsSOR7kMR9Gb5GWGfU9fZCPs8gIRbKcZpJRFnSuKgmnT3OUCinu53GyFCiQJUdeyUY5n81LhXAVhWudOG/hgxQYIkWFBziBJQCdY0LHq/1YPg5RyFa9NVOTCEWGLrGDsmiwKYrMaL0e4lHi1HkLH9QkqXGaRJhgzts3mWjpcR7gGKd8mX6N5qqRZFDnyJZ/xcZmQ8plFBhinRQzHGWMBTX3ktcMR73gKkOJT80/BcBtxTXvi52LX+DO+gV4CjZef4BWVPiHQ/Pr0ANH1p5n6K6CWAVk13gud8jfE1Mrz/JsNPRQfaUgJFRDAHCO2zkIVIBWPMpQq+CTUFkiEfMoWSZDPS4h9P1I1nnLCp0jz2x8nCQ1qpEEqUiFWjxJnhzFyBA1kl4pNMeEVyVZ6CzgCdCTHPekgWXCNuJhgjn1eBnkFMfIsOxVo6YsNY9AURU11AN2UENnxy7x8DNysqHehZYR0B4gptI0j1EQFWiBIWokfDi+EY+dIfoVUv4ashRJqtLJktdYWD7gQ4Pj1P3D09rE/rZMhkb42kqp+LzMcpqjfnJfIsOSJtcqkFWvnar30LGwXvN4taRapkhOU+ZxHmCSGQoMeTWWJZuxEBEL+TU7iBJdhB6qIfYjhDgUw3uQjO1J7U+sj7LETCP1RWbjolSP86j3k0qoF9QyGUaZ71g4WiSqq+dgBGNaB8/9PpQqzSpx9QldZIQGcY4y432nzY6ll4rPag/4UCqxG0iQoMrnrP01td4uqpEkBbJMbpxhkjN8tOfTKTDEOHNMMEueHCc5zkM86lWfpkoXg/4mnVlpU+RVpZsj3qpTiaQoMUiMhh/k9+vizkRrlnwkp5ENFb8QIxOBfkZZ8GH5I5xljgkylLwq1sL6zV/aiE2buJgiNE6Dmvbd1n/bYNieDTaINtK2c8BtiR7kOTdIVhM9NIlQpp8JZr3NygiLJKkyzyhDFH2iQUn6JaT6G/gISWr8Dfff0ns4RIgbhiXaGeItUVI3QvxZOL0pMy37vCU6MlLuKEJQmqq1DyHinkZIuDht782n9Zi2La/7naLtk2pKyadpKz27EYLybuAx2uH5PXo881WNdrzb50YQHu7YbrYApog9jBCTJT1nBCEtLby9RdtaYFPr9Kx+9pT+b2H3Z2h7t6L/m99svKPOeYQINf/VDdpE5SnaIfVGLhshbV6spuzdAE7TJrxtH/NONQsBa5cB2smk1hBS9KRe11n9Hs7SJmbtmnv0ujb0u9lC7h8jc1u0Se4QIfYZaiQ4zkkAPwbIsYRkspew92OcoqQqyGOcAvBiFsBHMeUZJsMyk8xgyZciNH3CqM5xXIp1Px4d1ejLmC6sC5lZ1KjFZT9GHWGRhobBg4210pqJI8b9PM4c4yyT4ST3cYxTNIgxyLKP6BTydZUy/RTJMsU0y2QYYZGETzKaYIpp6sT8PFwsCea93Z3lB7GIJssFMMe4T/xqBPIUT/toLhNIiXAr5xfSJ5jzkUyTnOZeTnlxkSWnfoDHvUjKti3pIvh9PEEvFZY0+vZLeQ+zaptnFk8mmjDB0giL0u9GITgi+fZoQpclbYxDz99tQ2Sbg3ettb2xm3Awv+UjN+788AXog9TYeao9B+itr9/cmzbELUNIqIYARKG6ySHfYQE+rMHCxgH1Gc1xjCd9Ry2h/DH6KWu4gKiC4jr5tvD+kxz3Bt4lVSFlKbCuOlhTf1mIg/nKDOlq2TKDjLLAKY75sFJ7SMU1BL6u60ud4QfmNWOq1RIZJpnxiiab1OfVC3ZWw1tFRdrOcm8T+Rh1780XoUmSGkdZwLxE7bozujLXJMJxNR4/yXEkKZY8dCyk3jJxt5PBZLAEKJbMxsJGbaXNVHMJbUeAFlF6qXCPfjediagsmYpZK4j/rKiraiSZx/xWExryISpTswcw+4U8w6RY92TDKmk/qFhglCYRejh/E+7SECFuPo4wy1EKPkGSqdCNDCwy1FauRoV4jLfqtCIRtf/IgPZzYyywrKb5hhEWvaL8UtsN8V5dV9VljApzGu5kPp8RmkoYlrxadZR5JpgjT84PCk0lkaTG6b67WFVys0WUSk8vFXrJUPJKVFOwHuOUX2iyBZgWET8QTVGhSpJhln24VJIqq5E066SIaMibDciN9FyMjKjP17KSwTVfT+vrppnCMqqahYEl0LKBck2jFWLaz5rlTIKqX0SKUSfaavFk5Ngli0Pik53Qv8VH2vrPMmmGyVNi0JcZ4Szm24VONCyULMOyVw03iFMi4xelEkqy5lhisFViPjLqrVBChNh3iNP267wLWSe1cHtTenYjJNxx2lngjWg7q681LlVI9tFWclryohxte4BSx2eWeKmo5zBf0fsQorCTGDTF5TxCsGZ1HyNe79H3DT2fkcIbyCTY/m5qWUuotaLHLdFOKmWk5YCe66CWi9IO87ey1hYPIMpVa4dOFaiRqeYTa8SzheKf0c+yHd/JCG3S2Yjmp2jbCHSSuVG9pjWtiyl2zfrAvGeN0AYhac3/9aS+jyHKYEvE9SxtcjmubXAYOKdt0knEh11hiH2KGA1qGlFU9jOjtE8CVSXNNFN+AT1Ck1McY4I5shRZYJQhzTVRI8nHedAToyaaMXGRKE4LRGgxxzhpVv381VSWi4wwyQzmmz/HBOZj/zj3U2CISWa8wMf8RG1B3+aF93KKCr1+fNX2Le1lmnt0FtnwiaP+jLfqPpJ7Y5opSmSwnAEmvCkwxITaV0nE11laRJhlgiZiYyCL8xVmGdfz1D0pbfyDJYaqkvR2fp0Jqmx8Nce4v06JLIoxoj6wJlwya6w5JvwYN6vqYouCahAjSosHeUyvI0uBLJ93+K8BcGtABs6P9YmXqiVNNJW+JSHMwmYOulfg/EgfMeoMrGxCDzS6D1CNJzlSPXMrb+EQNxEhoRoCgG6q3MlpT95NR6awJEYZlsm18hQikoxjglkWOUyZft/xGgHZ6dtZ9Z1zjSoJTdQyyippn1k6qo+RMmniNBiiSN2rH6ueaKjr6C6uoRG2MmfeqUmqXjVpK0zmoWeeKiUyl6x0JahySj3zLLxUQk/XvUrJOmvxL21nu5bkJgWf2fEkx5lkxpOeprbKsMwCYyyS8Eooy/wo4fmr5FiiQZwCWaCdWGqIAgWGPJkj19/w20yhO8mMKqjSWJKuEoPElV6WxFfygLAQVjEOH/eZJu3hZ+g05Y7QYpERorR8eEunkneKaU5ynPs5QYkM84yy4ePmQoTYf7CVfENMlY+28FHXRYpHIw/Jwkmk6hegbOGlhdiE1IljHlgTqoA0zyj7Ddpvd10HqEY8GhErlhoySF1Wxb0p7yv0UtVFkAjNS3y8Rlj0Htj2+7aEdsc56UnBOcZ9ojrAe4qajYENZkGSAZxmkiYRBikhifkkqZNNDmxBxsLEAJ+0TqwNqhQYYpCSDzFLUWGGo4yw6BeyTLlhfeb9nPCq2IYqIiwp1BzjlMjIQlWkocdpJ8BKqDTKFu/Mi9YmAZ2KiDJp5phghkkyLHtFxLxaxZQ6QuiGNBOsHWuyPkMqLrYCixFR/J/hCBKrGyLEPsMAMjnsRSaKwwhhZr6aKwjBdxIh1OZpZ7i3DO/mmWoqS1O1mkryMOLbCe3w8hKXJqEyxetfd3xuKlabwBpparAkS9AOmT/DpYTkqxEFqilCdSIMWl+zBDAC1lStaLk4QjSvaV1MsdRLm4xF9ysiZKol7zLLAUt+9bRu76VNKrcQNeoxpAvJ0iZd34wQ3N2IPYEpVa2uZn3QSzvE/0NaT2u3Tf072tEuZoF/lDbZ2oN8T0dofzcW8n9UPz+jn2X0mg4gyixrh03aNgchQuwzHOICAzT9gu4EsyqQEbskC4+38UqKCpOcVpFQ1I/nbAEXJC+IiZI6/zdicoFRHuQxn/TJvFGP8STHeBKzzstS5HHup0XEJznOkffjxklO+7HXUWaYY4JxZj0p2SLKFNN+nGdjLxD7qggtjvMEixzmPk6SpcAqUxrJVPBJWS0p6FFmfH4RGYc1vd//CR6gM/+JjVfNAs8EVSAJPo0ItrGlRU5NMgO0ieFeKlhegAgt+imTI+/zEhiJmtbtJlqy+iWoUSPBMHkfzSQ5EUYB2DoIXc/gF/Bui66xkT1Asnsb9yHazyh7XmWgWy1qbntsTfpkVej3nNymZ2Odi2G+0lcMQkI1BAArZCirwtI63KISd0MUWY2kiVFnkSm/4mNeLSChq8l6lVY84pVELSIU1Fh7hEVmyHnVl8noAU92Jqh6v7p5RplimoROcE9zlF4qPMaDZCloKKmErptiqaFJn2LUmWaKCC0mmWGWcV/GklTlGSZC0z9kyvRTI+HVZBUy/iGSoe47VCNBrdMGKDFIhpJXwNrKoZEQFlpqWaybSjaLcrRJS8OHB7U9SgxS1FXEaaaY1AeTkc628mkrkfOM+oeqrcQ1iGk27KKvU6YjHNVC+y3BjNUd8A8Z8VecpEyao8wwSMlnjey0C0hQZZxZTcRT5vU8SsFLT0KE2F8wNX6DOFUSPit8mlXmGfWDUgsxKpAl3rFoU9MFjBZRryY3n6gCQzSI6cCwxQRzXlVvg0JLhmS/Q0vGZP7Ky2SY4SgTzHnfZvMStWyyY6o8Na9SScInpKGFk1lCLenLxe5kWVUGkvG1SkPJYEvC1CDm+wmzellmkAc4AbQXg04z6ReiTOXbIM6f81aOc5Kk9vX2LIlTZ4ZJ9Y9uUNWlNlsAAlHOm3+2+cIaWWpZbi2pX6+qcwGvODVi11S0mY0V8j23sazq0mzHZMd8wN7AR5hjwoeXCRnezwiLdHrMWuRGgiqz8fEOQjjBGAu8SiMGQoTYd/h74FNoJ2Iq6LupQDuTEuURgnIeIQ+NgDR/VAsjByHkTBE5gCgnzyIE3McQktIUngN6nM5cl3V93UVb6WpEaA4heI14NQVrnUsTOh1ESMBWx35GIM4j6s8mQpKav6r5lK7puTNaXyNeTSlr3qGmUEW3LXYcw3xhs3q+NYS0XKOtlu3Vur6Pdqj+mp7rGYTgPKV1Oal1HqbtJWvtkgX+nHY4f5a2Hy0IqWxr6mYNYIEV1vZ53X9R3y0x1Vmt46aeM6P7XNBth2kTrSFC7FOkWaPEnZq4qMayhpTbmLGps9u6erM/wXHGWPDkqY3vLKGnRcfkGfbzP5vTFrUzW1Wxi9njNfQoltA0zaonM20+Z1E5RbIsMEaCGh/kMxnUqKSP8kYWGOUYpzCf+r/hTT7iUBIMi1JTfF7vJUWF00zyJMe4l1OqSh30UZBVEnrN95FmFfOTt4SdVRL0U/ZtUSTrFb6myJXxZUO9/2teHFUmTZUEc0wwxTQzOi/9IG/hLXzQz7nb/vbDtIgywSynuJfOpNKTqu5tHzfp27JKghZR/7fNccukeROPyE0wAFt3Q9cZYBN6TmxLf/962OqBVhQiTejSZ9WFkV4OnVmXfjkKm8ehFT1AT2sbcvB43z3ISlqI/Y6QUA0ByKrYee7wPiai4JkE8DJ/U+MAXg3a0olvmX7y8ZwnFiyZlamiWohRdJ24n+AbwRmlxTB5igyRpKaKIAkzNaKwqSESSapK1kaJ0PQT/SRV/yCwB5x1lEISSxIYI1cltdS6v/YU6ywwygOc8CSF1U/CQJPMcPQSArJGwodpxKn7UF8jVOTYVT/RtuQppjyrkmSWcU9qWAZA26euYaZVPU+dGBXNXDhMnhxL1PSBLCRHjBlN7rLMoH8g1tSmIEfeP/htFbLAkFfJTWhm67aPawNL4lJkyJMHBYZoqvLLsiuahYO1+XpIqIbYx7AFoxgp9U6Ok2vliUZk5m0J47IUfDh6nRjHOenDqUY57Y9nieVKZPwihJGqDfVoPsoMDeJe5Wmr42LB0dKEffI7ttAoI/OqJBlnVs+7QIQmGUoMtQosRkY6iMeYX7HPaXIqI0hPM0lNQ6rMN9aC0LIUPGlrffxka4blSIZx5jAvU1mwqXGUGZ/JVa5fVJ9TTJPUyID7eVz7E0kelVWbBUCHx0JanuQ+MpQ4yoxGOyS1P5c+/djGU1R6erGsrWY7E1drln71R7VQrwopMhsrLPbcgSUdtIG9eNyKqneQZa8IkcnMvF+wsggGU3DEqfMgj1EhRY6lS+6lPMMsdaj/Q4TYV7iNNgHY4tKQ/ijthFUW6m3/Q1sxOoAQa8d1vzrtBEhGfmZpK0oLCEFYp53AKttxXhAy1AhSU0pa+TP6buHoFv5+GiE1W7p9k3YYvCkoN7Ter0aIwzHaStqzWueoHsMSUxVpJ3Mao63ONRUoeg1GHj9NW4lrZGscUaGe6jgf2hZGKht5acSxXXe3ljlOm4iNIvYCj+n5olo3U8Y+i5C1pl49Q1tda9dmHrZFPecm8GHaCbbq+j1cpB3af4Q28W0WDCsdx3uOECH2Jf6R4yTpwnKK2CJ0jiWKZP3cy8LNx1igrkZwKSpeOVqhlwVG6aXCuo4lLOLHvFDNDgnwkURFsn6hvUqCBcZ8AtBOj9EZJjnGKT+vlrHX037BuUSmw7N+kQVGOc4Tfq7aJOIX6vPkvB+rXatF5ORYYoFRYjToV+s4gBTrPq9HnLoaBkiUqQmV5hn1Y805xv381HxPAS9MsigkG+9GVOaZZpUFRv34TMjoVd/+Jg4QJe46cRo8zv2MqxhBxoO9Knaq+4Sq00wxyjw5lnwuk1McI91X5rb6Gl0bsHUESn19xI7UGchvspLr9gvpyXqVaGsbp77fK0e6ibZaFCJDTKw8j9vY9otvd3DuVty6IW4BQkI1BAAlBnz2P0lYVCdJ1Xe6FoZvnnRmjG0TZVCVqhKbEo5Z0iRJkxTJ0qtT0apK6i10wTIum+epqSjFNzCrxGCcQUo+fHaOcY4yg2WcX2bQm3YbQdnOINjyxxxhkSVyJKgxzT1+VRCEJDYiM0bcJ5YZVl8/8WytedWWhcOa8rOiZetaru2HE/ETccs8aA8Iuy6gI6FKSeuPV0rZhH+MBUAesCc5Tl09UK1eIyxSIsOEkiuz6sEIMMNRhtTHx5RuC4x6okTUdpJ4yqwYbCBgD7hlMuQZ9p61J3iAHHkf5lIjQZw6fUo8hwix35BmzRN7Uf0NAOQjOW95UaGXwVaJSKTl+5mM+ooCPuzJFPGDGpq+TIYmEb/wA/hBc0lDo+rEmGTGh5BZ/1UlSZwGDfUKtbCxBnFf3yFPfMpxZiKTXtG5roTiLBMMUWCRw/Rqv7SuBK75u84x7i0BzAbG+mtTS+Qj7WR3GZZZIkedOMtk6KdMLxUiOkCO0cCS8MVokFVV/izjNIgzyQzLZMhS8PYnppw1MtkI2RHO+oE7QLmnz4dxWVukqHCUGfLksKRURvqmKVPoOeQX3eRZVyNPjjL9mC+2LRyJT+0CeYYv8ShbZpA0qywpgW7eszY4X2DMk7whQuxbWIZ7CwW3JEw52oTpJm2/UVOtWub4AdrkoB3PQvRLtP1QTf1pfqObtAlL8yQ1legAbYVqp/o03nGuAYScLGrdirQVolY3y0hvbhyWlX5Er/dIR53M43WNNnHY1ONaG40h5OUx2qrXOG0/UvNi3dT9N2gT1Vk93gpCkOZpk8hW7gHE8sBUoH9HO8nTAG1f1Lv0HPO0vVyhrc69qP9301aW3qN/m/KVjuu076vesZ99D2YF0dJXEVGkFpGkVJasCoS0DXOwhNin2CTJ7VzwdnA2XrHcGCa4sYVaEZ0I6WcRimYZB/ikzjYGM3u8KiPetq1Xx0EVejmr47ymHt8ipGaYZIiCn8OKT+qwH5vYHNWsnRJqkZfQBepRnVdatKbZUNk82pIoR7VTM8s9+3yOcb+toKSvJZOqdIx1E9RoEvHRpFWS3sc+prSrzZVtTm37W9RX5wK4La63eYsGi4z4JFk1kmQpUGKQaaaYYtq3xd/wMA/wOG3XWrEOnGGSNGWNuFz1nIUoiXMkM1XqkTiHFtep9omfbiMnD7H0xhrdG3Ax0wVsExwTcjXS3Kba082Rk88THIbnsoeIZ+V7f+biMPAPt+YGDnFTERKqIQA0DDXuVYYFpnxHZiqpOA2yLPI4D1wS5mASfAtxN1LUwsjN83RZQ0ZPM+mTNllIvBECppxKU/b+dWasbWGelkm7xCCWUGmBsUvUQrbyZwShkRKAD7kAVFWKN91uECOu/oSdyZxmOMrreVRDYWt+5WyQZVZVlRXT4IdBDSkw1IlTpp8WEZLUiNJiVR8GZlBuK3+Avz6Q8A8jFpbJcIIHGGXBe8sCSmQKuW1hJCAEt12TkTbmqyjEdBRLMpNhmUd5yCvsLOw1SY1ZJjAjdCHVxQYizzBmnF4nRp24J1S2L5lBhQixf/AsY9zOupKP45eoLEEUoHOMU4mkWFIbk14NwSqT9uSdDWxb1DA/alN4tqhRoZc5xn3oepEs48wxw1HfB1nm+bYa3Az6m1q3uldeLpHzyv+chlXZoNT6ZlsYOsUxxpkjzWpHvWS2bP2jeTqbHYENiq0dykgCBiNi2/7KcWY1NEsI2TgFhtQXNqaeWBVf7zgNnuA4lsk2T87bhwDqy7XsF5Es2Z9hmQxL5DjGKZ7guE5MLENuUp9DEgZWJ8Y0UwBMctq3/ygLLDLCEAXSqgCxMDM7B0Bd63+UGU5xL6c5SowGllzM7gELc0tQJcU6BYZvzs0aIsTNxh201ZXmWfq0bovo9iJCSt6DkG4DCCl3N0K2dSNk2hnaiavMEsDITVNimsrU/FmhnaypBzhBm2SN0/Y9Ler/h2krMocQ8tAUpPO0EzcNIcSpnec4bfLRfE1PAa/Tc1jY+hhtRSa80E7AQvJN1WmJtoxYNJsDI4NbWo+ntKwRq5YMzOrSp9c+QNuPNqt1vxs0+bjsV6Ct5jUy1q7Lkl/Zd3pG97f26ySmTSlr5W37Gm07h8MISRrt2Me+hw3dXkCI2SXQnKghQuw7tDigkUINhigwr/6eneOKOcapqyDHfFNtUbugUUZGAlq4/QyTrJLWXBj9PhLUFuYlGmmJIYrMMs6QKl3bOUNEWJToWDwu0+/nbDbeGtYQektMnGaVOA1OccwrOad42ufHMDsqE8zYmMYIzAq9pFgnRgNLOmqL/UZ8mhI1QssvTKeUQjZVr40FbY5uZaskeIwHGdRrWiZDhV7lD5ZJq62WjcHsOMsaKWpWVw3i9Gtkak3n9G/hQ1ieEfGsnfflayTIsKyJqoRzmGeM45zk4NktNrNb4p1KjQgFkq0qsc0tFnru5O615ziYl89b0QirkTR3rl2ge22TjXsOUI6n/bw+RYU+78sSYr8jJFRDAJDlAt10eSXnoKqtZLI5T5KaV5lOMa0JRqJ+cj3Cog9pHWktMh2ZwpJSGcnXrwolW1kD6dArpBhnzoeam2dhjrw3kjaizsLSY9QZZZkaScaZY4RFbxRuyllT0VZJMsGsf0AU1Bi7U5lpnognOU5SHxim9qyQ4vU8qu0kZtjHOAXYA00y3FtSKguVNXLartUm2sPkGdVQByM6LQTfiBDbx0J/LTTDrr9GgqOc9qop65xz5GkqcZtEMl/PMe6/IyO5TTEmYSgFvbaCbwuhgUQR9xCPcpLjXi1rD0SAQUo+HNi8XZPUWPKShBAh9hfW6WWW27x63jxHTT1eJck099AiSoZlevW3YNYoeXIUyF5CRKaosEqaIVVmWsjSMoPUSHjSVkzxkz68f5U0s4yTYwnzTS6TpaADspPc51WseYYZY4EiWdKsUmRI1fbiQyrezUMd5YXwlbD/hvd6bRHxpvw2ebC2sIU0mzDkyTHJDKc45p8HolCo8QgPX9KunYNmI3nNf9YWhUzJMURBTVlkn3klYesdalwLJ8uTI0uBx3jQL4JZe7SIkqTKNFMMaoJA81a1CRDYotSl1goWlWGJ92ShsN9Pjuw77LwWawO7DyQ8r0JXxwJYiBD7CnO0w+7N/9OIQXvMj2iZHEL0FWmrPPv0/zcjhKARikbIWUKkboSEO4OQhGc6jmuE4Jp+dkz/NpLSPFGbCIlox3kzQoBaiLolnGrq5920Q+AtkVOddmKtB2gn0IJLCUZLxgVt1akRxEY2P91RfqPjbyNd1/QazZO0RFtduqJ1txB8U/Me59JEURaSb162ph41v1MjP01xa4pXI7Hjelwju6O0Z4Yf0n0y+nmU9vdqhLglHivSJlONHG5wKfk6DGGEa4j9its5R4+SeMtkGKSkY6UEOZZIUuU4J9UCbpBR5mkR9XZOeV30trwaMieN8wAnmGUCyy5/jFNeKSnK11VqquZMU/bh6sc4RZw64vW5eol1gHn9G0xwVCXJg3xc/06wTor7OcExTpGkyrDO42UsFcESM1uEkBGYZR3PJqlq5FGdJXK8lscuiSDKseRFQZb8SubYq55stnmq+dubd6nlGTAxAaD63UXfnubXOkiJBUa9WKqfsle8mlWAiRSszBTT5Mn5qMw0ZerEGGcOQKNkhxgmz0M8ytTKs1DSRFO5bXqaa/K80Ofg3RvP+UXAVi7CwfwWB7ngkxv2tLapj1T51JNPSV89BEHvRUK8MhASqiEA6GONFI5loEw/k60ZKpGUD+8E6KXiO7rBVonVSFo9/8QMO72xRqa5RqWv24dC+Kx89SLERW1k/nizTFwSVj6sBGlSwxEmmWGVtM+mPMo8NZJMMnOJx1+VhD5gqt4PZlXrLKtTMW8CPsKiJmxJesVVQynGFBXGNQu3hWHEkGzRCare1No8Uy0kt06MY5zyK22ShVuus0JKk21JMhXzG0xSZVnD/hNUqROjXx8aaVY1HKPqVyrNczGqtGyMunq4RhlnVg25I/SqEk5WB/u9UniKaZ+FXFSpUd824x3fFVxK5lrohqnZcix5b50Ydfops0qaqK762UO722czCBFif+FuZugioYMvI0BF2WlKR7PesDBvUWIKaWZWKXmGaRCnRoI5xklRYYgCM0wyqX6gNjCUEK2cX9gB6ZcGKfEQj/rV9joxhsmT0AUTU4jmyGNJAhuqiO9UJ0jSP8lgWifuF7As/D5C8xKv6U67lIz6Pps1iYTmF+mnzBv4KBGa3surQooJXeA6xTGg3Z+YgtP66HuY9hOATm9qW6Qzv20Lx8qx5BPjJVX1awtvRlhn1MHMjhOjwSjzZCkQp8EyGT+gt2fZrH43Df02bVFqiKL3vJ1nlHUkQZh5qc4xwZj2+00iLDJCnmGOcYoSg4ywyDizlBhkha5bdPeGCHGDcQhJLpSlHdq+iZBnnVmN1xB/TRD1p/mTrtAm5ODS0HDz3TQy05I5nURUk3Y+I0sBPgMhC9cQ8i6qn5f0WCu0FZ1ntC49+p6l7f1pvrCmui3Szl5/BCFE8wjJ+DRt0tJmTWf1Gk1he5C2LcIYQupaSH6nyrMHUfI+q+eK0iY/LyIkp6lEN2mrStF2NDL4Adp2AnY987QTP1mofq5jX1OMRmiH/lu9RjraJ6JtYsTpmH5mRPJB2qpjs2GIaH0LHcfZpv39ZvV8YfBSiH2KBJuMqrWcWDOd1jnUnPfgjND0ETuWhEnUnCnvJ5qmzBAFnxukQoohCmQokdc8GTb2MSu7ZTI+MlHGN1FPtNoceVUXpi1a0pIxA96GSBbOh5nQuajMR4UQfVqTOY8z6wncGkmGKF6yoN4i4i0Cy6TppcIYC9zHSSK0eISHfZ2sPSRSM02cOrOM+3Fer86HLcrHFrCbujA9yYwf32WJMs09THKaSc1RYImoZP4+xwKjJKh6D3+zXYrQ9EIgiWAa1TFjyQuZHuNB7ucEloBrgjksr0uGEpW+Lg7Wt9g8Dt152gt9A7AVh64VoAhb98PB/BY8gfS7Q7A5AvE69K9sEhwG9zTwBBzM2YMtxH5HSKiG8Ei1KiQiVQYRstQ6W+voMmtrDHaXqMRTLEcyflLbIsqhxXU2sgdodEdYYAwQ8jTNKmMr53GbEOm7QKKn6n1YcuQZouATV1k2ZQtVt5Ukq4d54VlHnCeHZeFuESWrxzKSFvCJTRYYo0GM4zyhGQyFoDQyw0LYJUSjiGUotAm/wbwGLexhWUPhxbtGvEVTrFPW8A1oeyOaF4utlln75ckxwZy3PzA/wLr60FoGbMl+LYrXAlmGKDLBLHXiDFHEshYamWpKKcCrVgGvnrWHmz047WFjRIP9X1eioUKKOSY4xiksWU2VpCdR1/WhVSPJefqBf7pp92qIEDcLv/Cj66S6V9lkhQQ1Vun3qscNekhwlm5qrOsCxCAXWCdFkyhRmkTZokGcbs7TxZZXZjaIsUUXLf6Rv2KLTfVX3aSbbjZpcZYWEbpZYJNuqiTpY40oW6xzgG0aHGCbKFvUqOEIaPAPvr/sYomLnNN+rYshCgRcAKBHle0b9DCgS+iSzK7BBis4AgIcADW6SeLo4xk26cbsAgZZZp1eGlz0A9gtxE+0i3mvsrcFsQgfI0bDK3BXGNDFojgXuMgjVDjEBW8Tc5CLtIjQxRZbmvjhANukqLDCRVJU6GaTDc7h2OYAAZt0c4Bt1ugjwyn6uMgaB4nSoodnOM9tZFhjU+0MYvpddbPJFufZoosDXGCLLiIalmYTBikj5Owmq74um3SzSTcJHucA22xzQCdJH2eTJ5lmiyjPUCOpff4yZzdLO2+zECH2B2K0EzlZ2LyRa3kkhNv+bnb8bWrNzpD1e3T/zhDyJpIAyghNENIuh5CgpxHVZl4/i9JWPVqiIwsvz3SUtYRKpqZdp01QQpukvIjPwEwPbXK2m3aCpaMIqWrXb6H9Riqf0GPdRds3to6Qwt0IyXiRNrlpxx/Wum/q51ndr4kQuUXaytAB2gT2q2nbE2zQtloYpp1QCz12AVGMjuk5zfbAknZZ+zyg57P2uQg8iHzv1lammjWl74DuYyTrXVrOjvce2oTqmh6rLZoLEWJfwQQrJjKyhEgWuh+hxTRTWHKieUZ5gvt8aPwQBcaZo0rCq1UXGfELvtNMUVfbuREWKZKlSNbPscyCTkLREz7axxJorpNS1WZZRUvj3l4AUCnTCJYYOseSX0SeZgpLWmWJU5fI+QTEdm7Azw+tDpYoy169KjRaIkdGc5+c5LhXnQ5q/g3xOpWFc8vVEtdFcIlYyvl5ZkkX8m1On2dYI4OGsLwBi4x4Syyb2yeoMslpimR9wljx2D/t+QuLFDObhjkmWCVNRBNSmbXXA5HHOXh4jemee3jN2tPQgs1Xi2K1C3zf36XRCFufAV0XYesgLPbcQaqnwm3FNViB4B44O3CI/pkLt+4GDnFTERKqITxWI2lZ1aqXqcRTWEKS1MY6pZ4Byn2SSdnCITNra5T7JEPecyOHOLxygdmBnFcNSajpIKsDZeL1BpV4Csm0V1d15roPPc+R95n+LPGUJX4aZNl7tArhKCH7o8xTph+ACV1RA1SVtMAQBaokWdcHzlFm/AqcJY4qk/ZegRa6b5kG7SGUoMocE95/BvCErXnkiM/qpL8Oy/hsJIP5v6ZUzQb4h4t5v1hIgxG99lA0T0BLgiLtUPP+ifYQOsUxsnrNBrMKiNBiiALLSu5am4MQK1kK5FhimilvmTDCIouMeGLYVvKsbex7WVclby8VHz6cUPI2RIj9hm/+zhjZg9tE2KROnKQmBBDtZjcjXCBCixlVmKfpocghMixTo8eHgy8yxgRzQJU6vQzWS0Sa21R6eskzzCAlmsRZ5A71VZXVebET2eQx7vUWH6Ms8Dj3e/9QS0ogTlQH1eg/7hebZEFG7ErubZ0itrlFvqePNEuaCbVMlbpXsYsSPmCZQa92FQMVxzopKvSSZYPcxjnyPbep13VLF3nk128K+Chi8ZJjidTGOq3oOsvxDA3qNDS8C7bIsE6UGBHqLJIlpf19Zm2dWm8X85FB/UZ6NWLgdvWW3qSqnt6zDPuFqSoZUhqWn6RKljoloMGw+IrVK1TiKR7jU4hTZ5i8t2AoMACIitZU/BaS12lrM68TFElIUSXJJo9zP1mKZNQbzcLKRjaeZ7HnDkbXnudLfixDiBD7ET86C92rCHmX0vez+m5DjXXgAO3kUT0IEWoKyANABSEUa4jitZu2D+lZ/fwwkgW+glgNzAGDiD/rip6/ocd4FlFAbiCk4wZCTNZ1+4Kedx0h8g6AWiLDqp6/Qdv71K5vm7Z3a5NLicszegy7njN6DRu638dpk8SxjmsHSdBkgTsxPXcPQnCagnUNcNquJzqubxshYRPaxinaJGUUIXvtetaAf9QyT2pdEsAM7WRXCT2f1bGldS9r+Zoea13bpx8hQreAWYS4XdN2tJx7BW2PmNY3r+VatEnwbuhwWgkRYl9hhQFqqhS18HRL4mnRklHEbqjEIOPMMsgyD3DCK09lDFfzC64RHUdVNPS+TL+3acuqUCbPsE+EVSHFJDPe09R85y0pVp24JxXNkq5Iljh13sIHeYLjfgxTI6EWVjIvlnFMyQubktSYY5wMyxQZYpopT+7avNfmsJbouE6MrIbQV5TgrWOJTSVpdZwGU0x74VKMhrexsuifqip3xc+0REKtCJNUOclx7mGaBUa9QrhExvuuRmmR1cSrEZress4EYpazoNOeL0KTXio+efMIi16datzCbSfXoAj39TwNQHAEGt1ddK9tsZmF7kVkgUn9qBtjB+ha2QbgyMnn2RrTG0mGm0RpcXY4Q3slMcR+RkiohgAshEATkcTb2+vEmek5oqRfxkvpAWq9XcRbovy5rbDGudyAJwUbxJQgkBWsSLzl5f+SKClOi5rvoCsaTllgCElCIh4wdWK6uifJk2aYVH+6YU86SiKpOpZ1UOotXqnmI5qmzGklZc3/RcIsij4LoHnEQtvvFGSSXdeVOyMZJURUCIxHeYgceSaY9QpRs0pIUtWENZL0pdM2YZop/8CdZsqHdBjR2dAVvnlG6aeMefYtMuJJTbEfkIeRGKUXseyGgKpzJclVU9u/RoImEe/NWCatAQ2DPuzViOvObOWnOEaGZa+UtcQt9h2YTYF4S9qMJESI/YUDHZnZY9SJt+qcjBxHbEnyXkEuvtJDLDLCBHPUaHtG58npwDrn+6RCPEs6XiZZrzIUF5/oEhlvm2F+xEWymD1JVsPAZjjqFykslD+5sUk82iAeb6iLVcv3XzWSXhkPUOoZoEZS/aIklN08p8eZZbBeohqXPsP6tlhHuH2VpKjee6K+bcr0E6Hp+5CEerz6c5Jhuke8S6u+P5JEfDHqDG1cYKbniM+u2iJCslWl0tdNvN5gKFL0liVJquRaeSqRlE+MYN5cNtEQ2xKI0CRBlSJDTK48B0Clr4tWNOK/O/PuTlFhqF6kGZcMtra4ZH27hb+Zl6z5cjV0Qa5Kgl61HuiM6Ei2qv65We7r5aB+LyFC7DtsI6TgOEK0HUDItgxCovXp36u0/UFXdb/baBNx/Xo8Iy5jQIAQiDVE6XoIId66aIf41/XzLmQiagRjDCFQQdSSRgImELIzqvvEgGWEzN3WOjY6rsMUpSt6jA1EwWlEaIw2QWp+rtv6MmWrzaQsxP4MQooakXtAz7GNeIia1+kWbR/Sbj2vKVQb2ma3I8Q02m6bHdeXo514ylSidh6zbbaEXhXdN63XEtW2T+l1B3ocp9dZ0ToZ+VvXtt1GiFY7dhz53uw7r+k+Ed3vrNbzMG07gRAh9iniGp0D+HncUWY0xLzOfZrYd4iPAiKmueuZ89TvjqlnvMyZx5n1VkkP8pgmXBLxT0OjE9s2REt+bjnFNCd4gBQVn0wzpoSsqU1tLjzJaR8Sb773IyxiSasaanXXmddE7OOqesw6D/MIR+af5x/G4jzEoz483zxVS2TIk+MhzTNiYyCzCjDyNkmNo8wwxwSAjza1MeM4s/SruKhMmod4lCJZKqTIUiBPjjw5Rlngs/mAP5flQjGRgdU/SY2cWvQtqizelLf9lP2CuQiNMr59JdFUy48rT3Kft2jYGoOup8CdBAbk/WBuC5oQsYW3HGyOQfeHoWd+G56Grj5gHbrMZuZpcHW4/XUr9LZu+i0b4hYhJFRDAJKIZZgNGsS9+mewVaIc6SfHEi0i9LfK5CPiqwfQjER8gpCJzJxfjTJvzrKSBCnWPSkJUCTLAqPcz+O+nHWsgPfuK5G5JJFLgSGf+KlG0ofdmyII8ESgJSUBMH9Qm9gnlGS1ug9R1PDXOk0lKEsMkmGZFlHE3FvIjDkmaBHx12XhGHUNic+T85P9zoyF5pdaYvCSB1an6XWaMnly3v+1X/8vMahE6xILjBKhxTB5LFOjqXwtoYr9bRN8aKts236GUZ8ExvxlzHvQQnyl7WJeEZvUh5URHHZcS1LTUH/HOSaosI3EmYUIsb9wjhFexydYYEz6nYgkFZAFmSGyFHSQuOrDssbXniPfd4hlMoy1FohEmky1ZmlGIpQQpeXYynnqcVjoudMP5BYY1d+ykJSmfDdfagtlMi+uBnHSG2tUexLM9dzlF54qpOS8zRb5uIQ1jTPLaSZZjIwwz6j3j7aFlTL9Gmo1SDze8BYA5hdbYhDzBzVVgth/ZJhi2g+M86oSNe+uNGXmGPeKAEOGZXI0qBOjxf/P3v/FuJXleZ7YJ+KSvAwyGKTIECkxk8oISSGl1Klq5VT2qKaqerp3urfG6MUO4MFigVl4jH3zi2HAb9MvNhY2MG0Dhh8MG4Zf1rDXXmB3MWPPeBuu9vRM1XRXTWlH2RldypYUGZIiMqikRCrIIINBBi/JG+GHc77n3Oh58IO7pieq+QMERZD3z7mXwd895/v7fr+/FE/zRpe6TosPmj1eN67RCszYozDjGhzEpBiyShRU2OZTx1aAf3NxY5izLUqjAdNsmoPy1QRQ2nETcFmknJLjZXjLeY1p/0bcZCe4S0SGVBxze/6KL8KHNGhirGeG5KIxVw9OCLcMcmFy45z66B3TbJp1ukRk+CnfZczLX9wf7CIW8QuM3/0U1jIYObfARknDJ3hZ/FMMcNbE+JxKDh7ZA61h2JiSmrfwIJsk5SmMpLyOZ12qG30XA9YGeOl5C7+KKeP9Q+Wvij2/7ALUOOspRpL+zzFg7D17PjXaytv9UnifVuuVx57dvmNfqyaOr0ZVD+zvktYLJN1M3JM1vI1CEwNOf4oBYz+255ENgRpHyUrgNcYOIbGI5wADSq9hANgTe/90fwJ8M6zQvtfFg8QjjFWAvGz1uXXtmB/gm4Cl8H6sLTteNfnS+a7j/0YmdrsocdxFLOKSRZEBc1LUaXFEiWfcp0KXFN6eToXoFcbss0mDJrsff0iHGldQg80T1CtDfqsFayegfhsP2XbrPbMWNauzFnXrvW/WzhW6POCpk+wbCzhTFK5wyCtus8G+81s9tXZzsnwDXNOpQyqOMPWKW2ywT5cK7c0qm+yzx4brARAT8JhHlDiixXU3Dy0w5MTK/nOML9j6Aa6hdccqQ4cU+Os85i111+skw5Q/4tfd3G5OwCb7fMFDdrjDprVnMvO/lm2gHPGM+5yywnVazhIwZdfChujzlq710S9x5NSXKWJqdACjdn1pGz2LrCU27v+9+B/z3/97/5jCYGY8UNdwioR0hMnB9yCrpoEinuYxOfLYbOusYnah85kS9iIueywA1UW4kEeJKPh7wQYhEVefnMANOK6kqdDlKQ94FD0mCjNsxvscBSXGYc51i7/de8Oz8k0yTGlETcZhzgFxV6zIdNXKCeT7ucKYKaGTrEdkuMNXDFllSmi7Ht6hQ4077FxgYFZp84rb1Gk5VqoqTAIWT8lRpcOUjAVNI9vsZYUabddApWs7M9ZoO2apAEd19TYga876sOzQoWYXz2b8hrEZOuBxg30Heg4pcJ9nAE52oA6Fh5gmWgFzuqyzypCMe0RO2WcDgHUOL4DL5gEROCNxPUhMc5kT1i0AIWarmtiI8dqg6V6PCF1Tlre2g3ebGvJQVTVR/9ctQBESIa+ZHGPKvPu3+8e7iEX8BUWFLvtsEhJRpcPQyvVPQ8MYDaMp/dA05NtnnS4VDotGKt+hRi44JSZFK6jzcetrhvWIFDFLI5gW0wZ0tTlBRZUKXeSnrAmoikSmIJVyY2rnq2zG+7QCwyJ9yS3W6RoAMMhwQoE77NgSh5pOxagR39jmCDHhxZSVFEv50zSb8hN6FbJMR9bbDji9xzPWoy6tsO4YvdWg7XL0nwcrbzbfwQReb80dwyPTmLqilYDcDfYd0KyGCAJ21cVWBaCYgEI0JAzNAuFJ/q9RtxPtFWuXomZfVzANFIN87Fi2AKXBCbeKL904Nth3djftoEZoPyvXnCuskKm+59regFkZukWD5gRzU2zUZ3ubl+QWnVgWcVmjjFk4CoyUzFzA2C5mgfgdPKs0wMvor2OAviCxn0BT8IBgF9/cSE2M5I3awQC34P1TIwwoKu/WkR3jJt7HtYhvRiUQVk2nisC37dhO7DZ6fYQHL9XsSl6oWbvtxB77Ob7pVdG+F+PBxxhvgyAAWL6lKfv+t4HP7b5te703MMCpGmQN7Pu79vpv2nPId3WUOHbFjuuhPVYZD05X7b9tewx52eoe6XjypxWgHGBA1df2mBN773RPK3asHTtW+eDewIOpYmgtYhGXMAYUOaPg5Olg1qAC7saWIKPCbYbIEWjUF0PzG6MCMgXht9QZk3Myeali5C8voFaWbHfZcfM4KYIqHLrifZMGESEb1tteJBvAMUCTTYR/yncBnBS/7Wyhcg4AbdLg1I7nKQ8cmUbNTL/iLvtsOBaoGpSK6HOLl07Rdd0C0jlOuU6LbT51pKZkw1GRsFKU3HwyZY8n8pN6mmh+a+aMde6wg2/+fEKL684/tkuFU1Z4xn1+kx8hez7N+QVuN2nw6/yR7WES8Z8M/iu6xSLjMlyrDhjdWCY/ODP5bheT6/KYZoTyms5jWKt5iCvL5HfPYBNmeQPCjsmyAFR/OWLp/Pz8L3sMi/hLjKWlpTVgsD2oEq9VqHDomjapigW4pCzGlEDBQjxkGBTc8fS+uh7XeUtI5ADTJg1kxH2fZy7Rt6m5ClyGKR2q3OeZY3dusm9BBjNjVxUN4IgSJxQsGGkW1zLjLjCkTZUCJ9znmX1IGcap7AkkWxcjLCJzIWnXeWutAzKOLSuLArFrK3Rp0mCfDXdvBFDrgaf/1XVR/jn7bJA09dZ9EetT1/+S29RoI8+asTUESxFzaB/S+rz0ADZgp3/oiIEsmUTAnE32ecZ9Z6q+w13UkdzI/g2I3LWWDwJ3q3ScmbnOp+1Kx1/znxZ/CFA8Pz9fPC0W8e98KBcO/rewtoqXUU4wE6UiZhE6wSwUv4dhEdXxC2Ut5n+CX6BOgLf4Ri7fsdu3MAtQMZD+uT2nwIsmZqLWwCxG9/BNTsTqyuI7Yb+255AlU2z33U5sO7Dn/YF9v2vHrw7RYeL1CPgN4xO19D+2Y93CgwoNzDzwwJ6/CnzfjuOJvZYte84H9vef2P1v4LtTqxt13h7rb2MW+X9ox7Ztt9EC/XvAP8KzvrIYxpmAhJTdRs1i1ERHgEMb+Hv4TtoCSv45HhCZ4Lt6q+nNx8Dv4xu8FO31NOxnemDvhzp+6/PLw+++gt/7fwOLfLiISxIuH/6fYG0d852IMQvHMua7p+/1awy4+SXeDzTCfBc27c/6rqjZk2TjHXxDKUnvxfBJsi/V8Om5PZ7yolhA+u4HmO+ecuk9vBxe4KzARew+J/a9G/Z4N/ANncRwFXCoMaqxlBpUnWByQjZx/WLzDvCM0k37v/JLFpPj5pgmUH+e6QkmJ83tcQQuF+22+l0Nt1p4sHcTx5q60DxLfqbJ67+JZ8JexwOfyp+x/X/ARcAVu1+SFSt2shphYcc1guMTKP4DYJELF3FJQrnwnwx+jeyasZCr02KHu2SI6Ni+HiuMred84YJ6yBBmKg4olGf+Bvu0qPOUB04+n1TSiMGqNbO8UUOrBFIhvEGTGh1H/jHeql1nPyfvVrFCVzhlgz1OML0/wBBrMrZKNrU+rK+4xX2eufVtnZa7jqd8yzbZMkoorWtL1p4uqfLU2n6OaVpdYEiFQ27zyjbxMvdihzvUecsrbtGgSYu6s2FSc60+vmG2aUi1anm3RvXZoMkOd7jNK/bZsJZ/phmqUdDuAaZIL9VXl4rDONRIdYVTvuIO3+WnzC1Fa4M9YlJc3Tsx+SzEFJXmmHxoC1qTOmR7+FycBUYw+t4ywfzMeK3aZ8DxNSj+CrDIh5c+FgzVRQAwI+TYNqES0xRwTMRDKkwJne+IqPL/Mvh17vKVl52yzyEV6ryly7rzJ2lyg67VY5kq1NiBlzlOnQdqZKtxpsp1SpPGBVsARYeaY4mqcdOhbcC0j3F+VnMsJfJn3LdMSuNnOiXjvGXMv4w7v8y2r9MiZVmgVTrss0GBofNcMeyryHnd3LLSzjE5y3AN7PuhY1NJFqEHg+4pGFaUTM4FIJv72EGdFSNCt68+l4ytuhkPRlMF1AM0IOYuO656ucMda1lgGHFisAZWGmssH4z9gcYeW0mKPHT1YCtx5Cq15jNKuerrIhZxKWMfs1AcYBbNNzELUS3W1Sm5wsUF6iPMwliLc8lG5TWoeIJnNm3Z4x5gJmdiZnXw3aYP7DFe2/3FbhJjqY5v/vLC/n/DHj/ZrGUP3535hd1f4EAbMzF8jvdBtEDJ0md4BpWA1jIGxCziu2nvYkBJAcQjzOK8iweUAzwAXcFMKp/bfzfsvfh9e53P7dgie2wxAH5ojzGyx67hmVNiW/3X9hh1O75O4r3YnkPehwIGGvZ8T7jIxnti/93AS4I1pnzieGW735o9TsuO7/uY5jqLWMRljLd4P84tTI4LMN+Hp/Z1fVc6eF9RMUabeFl4Fu9Zqu/HJiYfzTHfqTkmF4X2fTFg53i/0CLmeyepfcq+VsYzWEcYYFBd5pUjK/Z/2zjENUy6mfhdsnoVSFSskQ2ACmgCX1XYEbtzjsmpYoxW7X0QIKmGUsrFjzD5ObLjOLDjU3FNOWrLnruHz2nfs9uruZZk/G18ftfi/wW+ECYbA92PMgYQb9jXenYbAdU38OB3HQ/a7uIBWoHGakR1jH/u1PHPmkUs4hLGKiek7TqpTdU2FjXNRGXfdEqOl9x2jaLEjKzzlqd8y3qkTjFd7UNOWXGM0yEFjmwjKTBrKvUNAazq5YrzSQ2sVP2UnFsTtqnRoMlX3OWQils7Tm1fEaM2mnNiz6X12zYPuWVBSKmDpPAU+UgNkPtccaCmbP603h6TI2c97L/iLmNyfMYTfs4DptaO4JB1u+ZfcbZypsFU6BisAjirtLnPM07JUaFLSMQeG5btW3Hjm5KhRJ9tHhKR4V/wm0wJecRj+pSc+nJIgQ41yyCeOnyhQZOX1tJP6/5TVjiiRIqYl9zmweA56Y79Y5Ddis3/vXqW8pcTZlXI2rnp5BMY5le5+uKE2ceQf37GuRj7IdCAUWkJY2C9iMseC0B1EQBkGXNuZZYtrnM7ekU/LFGIhxwGhiEJJqELGF2PuvzN1B9xGFRcUj6kwv3BLq3iVdddfp0usf1TG7JKTMpVhiTHF4jZoEnIlDkBXSoMWXXSAyVzyeIlARBQ2aHGJvsUGLLOISu24/IKY2p0nOT9Dl8R2MYzDZpssEeXdcasuOuQ9GGfDe7wlWN36gETENumTi0Hhgpc7XOFEkcOXKxwyFvqTt6hbt5q3KXjmc6KJwwtOLzBHiFT5wFrHlqrNGjymL9OjrHzROxbuW7I1ApQxtYnpu8+BwHQqvTpnGpmBYbZKoatpK1iKreo84jHvLTeOm2qdKjxgKcExLzilu3E2GWUYBAvYhGXKgQGAPwdzCLwP8QsNp9jFoZPMAvuOgZc+Ft42WUes0DWxCtvjyG2ljWltxbP5nwf48G/Cqar9cD+foBZCItVKfbk93CVbx5iFrFFDMghwPK1fS+FYVHmMUyyPAYYeY1vZLKL8dDTwl1Ab90e4zt2XLsYxhP4bt/38OwmMXolmRXYet0e++/bbf6xHceWvRYBpnv2+n7H/v5jvP9fHg9eSE4a2nH/h/b82PMkAYOq/cwO7L3+ib0PA/uZaCaUStwD/R38hh2DJLwV+1odA57v4jt1q2nOIwwLeM+eY51FLOJyxgf4ru5iQ6qoA54VeQPznf0ZHtwE8/36GHiM+Q7dxOe8f4oHHDuYfHTPHq+O9zYVO1NgnrxXk/6g8gZVESbEgMHyQe1g8lgXD8Aqyhigbyux3xoeCNzFF1WeJ/a5Z8e0iwEiV/FAb9LPtIf3dP0cX/QSizPCWyCI6fRtu98NTJ5p4Zn/kupv2XOrOZRei+31iOG7a4+5hbcf0D3UAl8WCSp4Je/NLp69P8AD6wf2NX0GYt0qF+oey+7gHqZ51SIWcUlDHeT7XHGNhG/z8kJT4DmmSWZI5MBA834b0w+k6hoN38L3H5lj/PLrtOhSIceYkMh2r885Is42DzENM02lVv1AImckFXKdFjlO+Zxv84CnRITcZQeApzxgg30i2/CqSYOHbDsffcBaxg3Z4a5jr4q5GjCnQZPP+bZdl07d2NrUqNkmUo94zA532WODdbq0qLNqCVM6v2z6CgwdIUjEKG1jbKnWOaLEbV4REbLPhgVKDS4gawEpJ1vU3Tp3TI4Kh65BVpd1HvKFZQGHDjy+zUv22HCNWJP2BQ/4OdPsMunemc+zyv1VKAwmMID0U0xhKYBsC7LZE0aby8SpgHR9xtLAvKfnwSAssUiKvxyxkPz/FQ9JGZq9FKdXrlHhkA41Vhjz1ppfS74QMCc3mjDMrzrwsTCYkO7B+81VTKOTkuuSt947YWkAxzfSDAPjUSImqzzx5B9Yp+VYqGNypgu0BUErHDovPMAef84z7ju25B4b3OaVleaHFqSc0+SG63yoxG1k/C322aTCoXtIJC0Hcna0bWquqtWnRJ2WA5UjmxELDG2lLXQPEsAxfSVHEGs0JnAPqWRDLjFpU8ROYpBjzFMeOB8bebwkfXnMA2MFdW40466Ssgzb0DaCEYAtK4C31J0lgeQdj3jsfAv3rH2BPi+xYeu0nFTllBUaNJ0fzpQMY3LMjsf894p/CgsZwyIuSSgXvhrkCdZydhIcuXy4Ttd9N+qxWXEan+mp88e6EvcJ5jHD0FiftKynsJoOnFrmujrEh5jurDnGVAc9Pi/+KoDLtwVO6FOiFrc5Cko85z4b7FOPWzSDhrMdWWFMl3U38cuNJnTzZQJiHvOIh3xBjlM6VJ0ESl6hSSsX45fada9XBgO+Kt50Ba0GTWqj90yzaXaCu+75MCXDrdFr+vmiqfZb7+wW1x0jf50uGaaucZ78u+SdNbUqgc14n53gLgGxK3bFBNTjFsOgQCnq0w6rxKTMc2L0nn6+SJcKG9E+++GGk9s1Bu+M55W1R1mPu6y1ZjCA43tpWww8IYwjjoKSLUkZ12oVwmQHo+sahgXHBpFSI7YLKBXcjCfXCl3WyRDxv/vd9/xXv9eERT5cxCWJCxYoJTw7W7J3FZ0kk69gwMBjDJCogpIaOKk408U0XxLIKlAuxjPbxRxXUyPwIOmePf9NPBNTvqiS8Y/wxRyxiJLHBg82DvANnUL7mppPyXdVtgLyQ1UhRn6rAnvBg7WyPkjeNwHRaq4V4Rn04IFHsXiT+6mQpyZXAoYFXGuBLxuCDl66n7SMkfdtEV8UJLFvyMUGV/pcevZ4L/C2BTUM2PulvcdqGKZjkrhOWwg7HkPxf2BGsMiFi7gMoVz4zwf3WF0LHHAo4FOklQqHPOVbPODnAG7uI/95eYTK3g1M8yd5dv51HjuiUJU2X1k5fsU2DFYTZDV5MorHVUeeia3VXs32ItF6UyrIMSuux0eOMc+4z0O2adDkj/h17rJDZCXwAiX32eCeJdkAzkv+DjtMrVqyT8kCvMb7tUONCl0rw48cYUmWeUm1ZmhXp1J8PuUBdVoOoL1j1ZVisUoF2qHmPFbrvKXCIX3rtbrBvjvePhs85pGbb4rlquZe6kOi3iyy2BNpSgraQ9a5yw7XngwMiCrSQQf/vFIOtsWp2SeQfgHHn6VZ+8OZuYE3YLS5TL51Bl3o1mD9BrDIh5c+FgzVRQCw1plTW35DKoa43LU+Lfvk4jGled8BBHE+xXrvhHF+TL5zxvvGKrns2ICWvRPKk3fs1j80cvTyKrn8mCgIqYx6BHkD/AlM1UJ1hzsu8QLuQSNJgRb+JjluOmuBGh1rOr3ufEKHFGhTpWRNwksc0eeK61St5lha6GoRb8CL4QWfGsnxBbRWaTtQV42tMkwZs0JMihptdrjrQEjTvGqFjm0wo+qfmjvp+lRlu2I9XL3XaYqAmIdsO99X2R5ssOe8XwTChtb7JcA0exETNSZgxUowFH2usGpBZ8k5HvHYWSCos7jApBjTZVGsXmNqvur8WwVAi5nbW6SWRVzSGJKnwTEdamzQdWBavdfjWdkUgNZaM/6scRMwE7TS4IRhMcs4yFE5GZAJIyeBUpGpyzoNmuTiMfMgcOBrFGYoRX3iFI65vzF4w7CYNQWMqEWcMt/xezwjxynzwMiSrvQmFPJDcqMzbvCeYTHNWnvGqLJMQExEhkc8pjQa8DT/CVXaTpaWi8eMg5zzwVZODpiTig3DPN2Djew+/dCAtuXOhPMUtPIVN7F9xiNu85LsAAqpIXEYMA5zXG2dQP0tTTvZL0V9WmGdT3vP+aJ8j4CYMI7IBMaGJRd12A83aAVmohsTEEZTSqHxChsHBtSNUwG1qEMUmrzVzl811i9xk9zojDuT17SKV1mPuzwu/jUaNKmP3hFGMA9gVF3msGEa+Rlmw5yjwHxG61GXdlhl1SoVqrRpDN4xLGYJiGmFdfN5hAGFeOhAWIBG1ORleIuAOVudN+xWP+RbvX/FsJhmwkf/tv+MF7GIv5j4CN/1Xb6oMR7sVJMk8GBrFsMA38N4Id/AgKYCGw/svgIw5Tkq8FDA6EHi2AISU3jfuucYZmgLbzcgSbxk7GKaz/ELXx1z246zh7cEwR7rHr7ZiKwAYnyzqBjDdBcoK7B2i4tgp0DTOHHsbOKYAoxDvFqgiWevCpzds2OSKiDEKxrmGLBVzb/kny1bAzVLEcirsYkZDB4sTngButcEmL/FsHwHdoyyTZFX9h6+4ZisAHQ+AdqHLGIRlzJ+ZfScr9c+4SHbAI5F2qbGbV7S54ptcmz8RWV/pnWT6SESsRnv0w9MUfbX+SNa1DlknTpv6VDln/Hb/Db/jOuWzPNg9CX9fJEabeYEHLLOp/EXREFoyT0Z7g92aRavAWZ9WIs6fBE+dMBonZaz2OtSoUTfXdeYFdez5CW32eYh3+WnjMnxA37IiV2Ti+gjko0A4yEFvjv6V+znPyJlLeZEjBLRSOfbs82VM0ScWiKQUXqu8Ipb3GXHkY9W7NpfoDTg8AA17xImYCz3jCerwFI1rd5g317fnH02HZD6klt8yjZTMq6Z2LfipxwFJUeMkpVeiSNKo4FXDcRwfhOWisA/weRSWcFYW7D0NpCHtfnMs/VPIP/DM6P4SkGvKBnDIi57LBiqf8VDlbdWZ4nO1dvOu0W+JhkiJ1eXD4vxGT2hNDghPYJJEfr5Irl4TGYyo5W/dqHDcynqkx+ccVxJ80XwqauiNWg6bxiAl9zmLju0qDuwUscYs8IV+hxhFrBirQrQ1Gs5TnnGfbpUyFjZPkBI5GQRQ0wX7H02rWdsh5Kl3JsugL5alrGQq0DLFcacknM+L3f5isf8dQrWilzMUcD5y8jXRl4vOp8SuzojylRbfrJijUmOoI6FkmgIhFZzKXOdU2dBoAeKPFZlDr7Bnju3AF+NNSC27F1j5v0pXzhGW5MbBMyJSXHKivt82lS5y1cOHN7hLlvHn/Od4j4sqm6LuCShXPjfDr7NB2vH7vsypEDNss3FSm/QdBNZFUfMd/LU2YkAjg3wR/y6Y3YbRnvOFjNC97tpRJdxDAZ918asULdAa5U2bxP0nxXLUh9S4HM+o0rbMWaVw/W9TNqmRGQsY9SwB8R212RXPtYnFBzz9Bn3qXBIg6bl3Js8k2NMZdQDcAxV02iw6u6Hxi57F20TE3BEiXW63O19zU75I8fG3+GOs4pZ59AVeu7GOzQDk8uTz6Uv7CLgD/ltrtOiRsdZvhQYWu6pURe0qJMhsvKxDCcUHHNYn2to85sppnWc7ck6h8wJqNFxSoAjSlyh7xjDZrFgJGMt6vze7475R7/3Ghb5cBGXJC40pbqDYSaqeZF8nSXzruNZiGJAym9aoGjSIkDvCySt40FCMT2beHBQ0naBhHN8I6uPMYvcn+GBQ4GEAvJkLaIGemq8Jz9WMWfFgpV9i1hIbbwkXv7aYn6qIVQncb4qZo2s8d6w41djrC8xwGSyqYlYr5/jmaUCqDv2Wtfs9gJ6u3gLhhjvwS0GsRixkT12y95/+bPK21o+2J/YsUnGL59A+aBm8U2/BHpvJq59ZH/fxHvnzu3xPzHXdry6YKgu4nKFcuF/M/ge+bUUVUvmadLgDjucUOCnfNcxLzVfrNKhQ9UBqmKmbrDv1nNd1p0q5jYv3WsVDl1/C4BtPr3Q8FgWAi3q1k90nfs8c2s5rflObYtpKRmv0GduCTJHlJwCqEGTJ3zbknBSCVJRktDk/VXXOXQEJLOWNHPaLut0qfCAp/QpcWgtAsEwSZ9xz6mVOlR5YI24pQJVY+V7PLNKoBNkjQdSNE0doUdNrW/zkgpdnvKACl0aHFwgEVXo8iN+k1u8ciQiwKktAUeiAjO33OGOsxOo0+Lj5tfuOXBehcgW4LLbeP9s8A1pD8y2vUdZyk8m3ts7Bd9slvlgr8eXlQoPil1Y5MNLHwtA9a946EHxx4ObBGsF69ViGJe3e29olctEZBwjKCZFy5r/iQE5ZNUlnUI0pB1WnedJnZYDIeUbWmDIESU61JwEosKh9UzZ45Sck/AbJmSBKm0+5zPussOKZWpqIS2vFLE4xQyTT0yOMRW67LPBCmO+sl3sAQc4yEhb9H/jGWPYpOqMaOTyxsRaTDLgglTfyG9PUTMqPRgFWuicMgiXnYCqb/KmadJwkn3TTGvqbAtaXHcPPVX3WtTdOQWYCHit0bavZtzDSPfKgDVv2WfDPYAFGJj7+NZde5MGBYbss+GsDxTGFsJ0dGzSoHy8z39Q/BwWD4lFXJJQLvx7/6BOPhuzypCv+Yhjik4uFBIxIWsbB7QcEFfkmG/4gFWGzrLjBGN6n2Xi8suELDEBJ+Sd/CkmIMuEE1Y5ZYUr9OhzhXOWXIU+JGJEnhULUB5TJM2MHmXOWOIme/QpscwZATFnLJNi7r6jZywBMGGFNEZ6pFz8lmusMiLLxLENZqSZkOWMZWefImXBhCxleswJKHLMjDRjVkgzJySiR5ksE/KMGJEH4Jg11jhmTI5lzpiQpUSfGWnecc3lVnPNY5Y5xzT2O2GJc7pUSDNjTI4abQYUCYhZ5owzliky4IxlADpUOSFPlgkrdhzKuXNSDFhjlZGTnhUYMiHLkIIbsxn/Cef2+gcUyTGmT4k8I4pnA3rLZXtPs24sM9LkGTEjfQHQfju5spD8L+JSxQXJ/318QyI1SJIf9JcYAE+gqiTwaqqXxQCxWleLJVnEe5uKMVmxvw/wTZ8EuKrJlJpCCTys2TH1Esf+DON7rEWugL6kDP/PM0U/wTNBxdzcwjeXgouAoqT5knkeJK6pgveaLmOYsAIWBcaq8R/2OO3EPZL0Xw2zbthtTzAN+Lr4JltixKqpYBXfOE/H+AQPFsvzWTYCEzvOPftzhPfElieqzid7AYHJuiZ53ib3EQA9sWNrmH2OgeLfBRa5cBGXJJQL/2RQZ2Ut7eYTIpuItVmn5QrFAgaTikutd0ujAfv5j9xxtP6LLftUEn1ZHqm58p8/Xp8Sv9J5zYvqRxzaBk33B7vsFz908xWRmpqhYX0WRifEqWXynTP+pHEPNaJW8b5klYkChnUM2fNp7FKUqmnxRrTPYWjAYK3jNd6kJYDW9zU6jFmhzxWr6lx172m+Lau/dbqUoj5fhA+5YolOssQassorbru5630LxMr/NBXHHAUeOJayqss6JYz6SfO0ymBAnIJW/hpTQm4NvqZbLDrG69XtE6MEkNpAOVR5MMTkehXxVjF5XQWvht3vGGePcnwVir8OLPLhpY/lv+wBLOLfjehR4RavjMTfysTH+WXHgArmZ+yzCXgpvliR8kyNyPAylOfI1DVp+qjz3iW7iJA2NeeJIv9ANYEyvp5trtDnCd8msoxYJfgmDaZkqNF27CM9bMQSVaMo+cccUmGfDVrUnV9q23b5k89pSOSqUPKoMey0VSeDX7UM0xZ1vuIu+2zQpOE8WyNCx2BTRU0gasXqnMT6rdDlFi+d0bikI+pyKDlFnytssu+YcoYNd0Joq5MhkZWuRs5mQIw1yTHMta5aIDVnr3fqGla1uI5MwZNx6raNeMoDd48kDUmyZ6eW0VXiiDot58O4iEVctjhjmQxTYlIUOWaLr0gzIyQiy4QMU4pWomMAuFXec9V+D0LOWCbLhCodW6QIKDKgbQszGaasMGGZM5Y4Y4VTIkKGrJJlQkzKganLnBESMSPNEudMyHJswcQlzinRp0aHmfVXPmOZGWkHNJ6xlAA1iy5fyOs4IuQjDljjmCwT1A01zYw0M4oMCO3EeYlzzlimQpcBRU4oOCAyZMrq2QkRITPSnLFEFyOrH5EnZa1FzlliSoYsE2akyTGmRptlzlzOTDNnRtrlmxF5coxZ45gyPc5YJs2MFHMHoqoZg+5bjQ5Xee+KWzPSDgwucswyZ2SZWA/tjPssU5aVkeeElJ01K6fLN3tIgaNlz7BNMyPLhDkpTsgTEzgAWQsjMSAWsYhLFx/iPUQbGIAuwoCKIwxDtIpvGCWQUc2mPsb7eqpxkpiTAjUFmM4Tx5jD+d/HMDmT/qQ6r+TuB3ig87o9p2T9Kft6Fc+2TCXeU0OoPL6xXGivN7C/d/DgoZo3BRiQcoIHIgUgg19gH2BsAdRISpYGavCE3fdj+77uo2Sjc+C3EucS0CmP1Yf2HvTw4KnAX4HfmxgQVbFljydmrRiroR2DQNYB5vNOetDKSiFppzDHs2IFrH5ix9Ww5xHLtgW8YRGLuLSRIWKHO3zBpwBOTWQ80yvWX7XKM+67vh1J5uWYFdr5q07xkmFKPTZyfKkX1SDphIJrptyiTos6Y3JUabti+c+qv2pIT3T4irtsFz+xQGWJJg1a1HkcPqJFnS4VnuVNR9EXjY+ICajQpUMN0yQ55YgzUm1Gds2sa/1h/gdUbIMpAZFVOhyGFTrUCK06B4yCSo2n1MTY3JNTZxsgsk599I6X3GaTfTrUeEvdrSNXGNMK61yhzzPu23uy7shfY+t9Wrfd9JKs3i+CTzmh4K7nKd8iJsXG4I2xnCJinw1zrBT8NP83eMwjc73FLGNro9enZPLdPUxOe4jJa43E/2rQWoPz79vXH9g/HD3javjiYx3OP/wL+bNcxL8DsTA6XASAYy02gwZ1Ws7vpEnDNGPJF7gdm8rOMFgFDCgnduoKY8d6bFOlRocVxrziNjejd8wJnM+mqj2m4nVIhilPecADnjrmZ8VKAvpWSrnCqZNRSr4qyYW8WCVryDF2i3mZVo/JcYuXxKRc0gXTsVHMTzE4Zfjdp8Rb6jzgqZNrAK56JuYtYNlbnl1qrvXUeP4R2EpmHzUvEStW7FU9AMw5vJF511IWJDGRwbiRBgfOlkBgsABoI/u47sy6p7aSmuG6Y9h2qBmPQJqETJGnYIYp+1b62+I6IVPXHVLAuSTBqjxep4Ua+JgH/le/iD/TRSziFx6/+7tTTtduOFN9sboNHyGgTZFTcsxZ5wp9rtt8ogr/lDxtNtm0UqIqbaaUGLJMiXMagw794iqlwQmpGH5e3rIFpzPecosN9jlkjbu8Y8gq6/GAfxn8OnXeWhb9zIKAKZsjK7YIVHEWA2NWWadrmyZFdGxzrAxZpmRszjimxYfc5hUt6q7hgelqesXeDZPTG6M3DPOr5KIx4zDHkCm1qEMwP6Obz/DB3gmj+jJROGWfPDnLNH3FFn1K3OIlNTrAhC4VrnNkGz7NiViiRYUcpxQ4wzTxOidkxj63DCvCsjHMZ3DGE+5Rom875cY0oj6ZyRn7xQ8d63eFc2523nFcMQ20DHvk0BXmShyxHs/YC9ZcMcowQsp82nvOYXmVPgWkUS7YfNfiAzbYc40XDBA84yUfUOKIGjNeskbNXmtAzM+PK/zx7/0l/DEvYhH//8Yr4A6emVnEyMXlDSrpfBbDkOziPVPV2KmIb2KkhaWAwzIGoBPr5zVmwdqBpT+0+163x2riZelq2tTCg5PHePakgFaBm+ABVdkPJJmrGu/AHjvGsIvEVq1gmK/yf63Ya4ntz7qWbOIc2q5rj7XGRXl+Hs8a7eCBVoHAuh8CYYv2HufxTF35nQrMlDetvFO79nWxej+2Y3pt39+z769hbB0mGBDgwI4r6d+6Zn8W+/Rj+1loDGoM9qW9hsd4GwZdwwJQXcQljZ/yXVZZdiSSH/GbNGiiBpVedZSyTM+qs1PKENHkhmNias23zwY7wR0KnFjVprF9e8Z9YgJu89J6rJp5XseSfQoMHZs1ZOrIPVJsrnNIiT5NGq6Yr6JwJ6wmiEDG/knNTY2lnbHT03pdCqUHPOUxj5xScZ9NPuMJBYY8575bI1fpOIu7pzwgw5QKhxcaG2uN2aDJF3xKnPfX1KDJ/43/hGfc59t8zud8xgOeYpp95hw2kCHicz5znqgiCYTWu3WHO2yyz7/g33NEMINPtOkXS86yyRTHUzzNGzA6ZW0ERJp6wFOe8i2mn2T4lSevYQsmecjqeaEiYx3Os3BYXuXq7on3/L4B5zfgqJwljKbk9844/8x4+r9dugIW7F3E5Y4FoLoIAD7gDevREYVwSBhNCeZnZFuwvtV1SXblZMbpahp1M66M3tHPFylEpinKsGxmxJvxPmsHM/5k8x4b7PG+seok+huDN5SKfXa4S0zgfPyqFoDVuYYUyBBxlx0H3G2wxytukyHiCn1WGfLWVskqHFK3SVbVtFu8ZEiBlE20b6nzt+MfchhUUHftwAr2lWgFLH+Xn6JOznp4rnNo2a1VPmWbxzxyzE5JPEL7EBLzdd02tVHVLySyTNeQb/V2GRbT/Dx4QMNKeyUZSTJAk9JUjanK2EmLIys1MZVE45FTo0OLOnfZoU2VU2LqvEU9rE0365AGTV5x21bw+u6e3SWiT4l7POOEAlU67LPhrldAaoGh60DZpOEaaMWu08IiFnG5wrDIp7Spcp9nzAmsdUdEZTBgXFxhna7zPW3ScNYYJxSY28muGOEndiqnTq/DYtbkqaLpPF/nLS2uGx/R0S7dfNkdV1X1+zwjZEohHrJyMqNTLNOiztzmBk0C99mkxJFjuldsfr0b7zAPAr7iLhvs06TBBvus02WHu9RoU6HLRrTvmj0Zu5MaG+zTzZdNwSo0TIxa1GEnvEsuNDn7m02jBU0WW9QpdoM9YlJ0qdCmRs3Kyxpxk8Og4gpMwAUZmXJ7PWpxGFbMeeM24yDHbV5Rok9Ehn02icIMm6l9NgZv6BTL1l4mpFc1E9j782fEqYCfBw/YtDYwp+SYB33ujnbZzv8qt3nFmBVCIvbK15xdy6lVO5jnTNed1/ytzC0bpMEDfo4aUFyxxbM5ARmmFDj5t/cHvIhF/EWHmDc9PBg54aLk+waefQoemBQYGdjXZAcg8FAd6MsYAC+LZ1T27P+RPX4ncdzjxHtNDEOoiAcBxcys4cE81dIlXx/gwcFkU6p64tiaygQYEFLS+QMMMKpjt/FM3HridTF1mxhgWFJ9AaYCnTfxtgXgQVM1uErZbR/YMTXt72KDCjQVuPkcz4rV/RdzWF5/4JthvcA30RJTuAL8ceJ49/Ay16I99vcwAKpsBEhcrwXGCex51GRrEYu4hHGVDr/CG6dUkT2cmjztcMeRWALmZKzKJmDOOl2nernNK0e06dq+GEnLuQpd5zkv27caHdfjo07Lzv3mruifY8wjHjMlw53BazrFsiPb5BhzRInrlufaos4tXgE4UpJ87zfYd2Cl8Xvd460lQT3jviUD+TWyV3t2nLoTjLLxweA5haJRSTZoUovbtALj+SqS0pgcn/KFA5hlU/ctnjpf1g2r0pySccShGm0HzlZps8+mIxYVGJKLx9wPnlOnxS1eOcu/+zxLrK1TZi5qm6D2rZ9/iVe85Bab7LPHBs+4z3f5qfFQtc+obLKoFeGaMC6lIPwsMvlyBHwfmMDSNpTDicnn92Bpbna/OlqAqb8ssQBUFwHA//4fToiz65yzxBnLlO1MdmXSY5LNMGPCOatMyLLGW7KTKcEpnF4ZYZwjlomtn96MVevT13T+gaXJO/rZNWCNKcsssUNMiiwTzlliwtcEnLPCmAkxU/aZkKVKm2XOGZIiS8SIfWakqXDInDQRb513XQaYMyJLlwEjigyYcWST8iEF/ox/zRJDpqSZE3PsmKLL7POeER/wDSPe8S9Is8wRMcekmDElJMeYJQ5J84r/lhViPgfglBUrwT2yfnwdAuYsc06PkCIjYnbtGKe2OnlKmRQroxkn+T/jhLxtenVKhyp5RtbL8NTZBhgPwXPKvHJ2CecsOemHvHjSzJgTcOXsCf/5cp012naMWbJ0mZFmRIolDlhlyoTXnLBKijkVTog55YAGH/Jz/ikAR8zIkeYbzlgixyk95ixzxhrvmJDlhBJX+IYsU2JijiYr+JXBIhZxeWLmfLEMm7w+eA9F2GeTV8XbVDhkm9tUbRfXU3Js89A1P1qnyyEV6+FswMS5LSip8CAAtm+bAoREFOIhzfyHZIhsN1XDdGgGDdRQaj3oEhcDrtPiFi/pU8I0HshRpUObGk0afMo2e2ywz4Y5UmCsOmQHssG+KyRFVv5/N95hJ7zrrEq6tuAiuVObmvNcboWG8fqSWzRoUuctQ1YdkFulTc7K7TvUmNvimSb2QwpUgq5TNQiIVLFGDQBznPI0NAyHBk3WujOiamyvO3BsjiEFvgg+pVE8oBZ1KKSGtAKDimiskpr9M36b3+H3ecUt4xiWx/llVzikyQ3XlbbPFeq0nGRPDcjASOH6XHFdYOX3rcaAbarctouWN3zwl/PHvIhF/EVEhAET5xjQ7SZmwRhjQMTv45mM8tzMAt/Ge6A+wXeEx24jOX0KA7TFeCasQEmxPRt479HI/h9iAEU1sxJYKMm+Gj6FGMAz5EJjEJrADzCyfDCAn0DBF/imWNftcVcxIKK63leAL/DS+RQeBJYnbNJKoGaPEdhtD/AA7E3MYn2Vi+DvTbw3qdipm3Z8uidzcDWbqh3LFt4e4QAP4AoUL9oxVPEAtoDp53hmrT6DA/tPjbjUlKqFt3IQ2CuWsIBXebPuAe9YxCIuZVToJQDSQ15xy80HcpzSsX0xxqw4Mo3mBWamknGMVc2TNH8pccQ2n7qCt2nqdMWSi0zvDuMPeoU2NUsiavEVd7lue3GogeqwmGWPDb4VP2UYmCbMXdYB+Iq7AGyy78hIss/T/K1FnUc8Rk1FY7umrdDlP+K/4Rn3na3eK24xZNXOAQuucemUkGbxGhWrlGpRpxXUHSArZasK51KYlui7Js7GW7XAurWR61A18n/qzgLvAU/5oNMjrE5pRE2GoWHJ7gUblqmaYU5AlbYFazuo34gA2xxjvuChIymBYc6uMuQ2rxww7Vj+XXwjwj0c0//8ISwdwNrPZua1ASYvxhg2v1QWMRDCUgTT7y8Bi15GvwyxAFQXAcDv/Y9GnGyYRe3G6GuyA9yXnmgK8ym9zSxXeofMA0jFsPQcZp+YWVU6AphzXDlj7eAEQpjlIf0WKB8zycMwf+aYVIV4yDAoUBkZmkEzX2BjYFid3WKaNqt0WeeW7fBnGJs54Jyv2OTb9JgSEBCxzUMniQcoMANOGKJuyylKnAApCvE5R0HAetRnGBbIxUvMgyld1slwwpX4nL1gnSEFPo227TZjjoKAj1oDRpVl8t0zXtdNmd2MK7LQR0whPmXl5JivijcBOKJInREFTnjKAyudH7LCmPLunHdbRTJEvKVEI25a9tmYD5pHfNMwstncaMI0m+YwqBBwSsF2ES9wzJACTTb5bPQn9PNF80CNBxwGFRqDM4bFQwvgDih3JpaxNWYYnvGSW3wr7nAYrNAYvKJbLJJhTpcSMUMqzJzEF2aUBidWUltwZt0ReWqj97zKl6iwxLXmlPM8fJ064z9fSFwXcQnjLddZ4dCx1kupASliA3paRrbYAiX63I5spT80jvNq5iYWeIGha1gne5KAObnRhG6+QokjuqwzDwJXna/ZrvKZxDnBMEDfUmeVAvXBe06LUyqjd86T67P4CcE8ph+aSnuVZxQGE54Vt2jSuFCJn1rPrtvRK1qhAR87VG3DOWMe0oiaRGGGxuAdjVUxSjN2kh3wKduUoj6tsE6fElXafJsnhNGUOBUwDwI+7nzNcSXNF8Gnlp0aOLB0zIpj+EdkHOgsz+3a6D2F/JBn3Od2/JJJ3rBCb/GKJg1WGXKHHTrU2OEuAXM6Ye2CnUotbnMYVBz7XwsINWKoxW3zLOKQIQUe8HO3ADINAI+oxy12grvGszseEgWhUxz8du+PGRbTDIMCU+uH1gwa/HvRj2iGDXs9i+LSIi5pXMODoGJKdvEyfTFLixigsI0BzwaJ17H/1zGgXBIAFbhYwwN7kr0nfU+/xDdvwh5/Cy9Zv4EHHLWIvY5vkiQ2rIDgFgaY3LbHEXv2pn1PrwV27C/wjarkTyrP1BReai8Lg7f4RiURnhHbsdfwW3ibgIZ9Xc2btDLr4hfxa4n7Ij9asUTVVVrnytr33uK9YEd4JqwYwvKaTd6jCZ5ZCnI88Qzkqh2/2LdJRq3A1d3E/w/t6xMMO3eNRSziUsZbrvGahxxR4hH/nesnIdC0QdMW10+ZkqFipfQqLKtobBoWV5yiJ8OUbevJOmaFJ3zbWeepv4YUSUnQtkONPiWecR+Ah2yzwx0aNHlLnVTglYOad0kS/5LbGA/VQ2d590P+Nt/lpw4k1pyxg2k0fZ0WXcwccIc7qDF1wJxn3KdLhfs8o2Pl8rd4hfqkaH7X4rqzV3prpQABc2eVV6XNW+ru3JL4A3zBp5yywgqnZr7LEwD+n9Uf0KDJ4/ARY1YcoAtwaJtkycIvZMpLbpEi5h7PHKkgZMqhtWjaYd3OATPO+iAkYqv4Br4P7z9e5eqTE5MPv4Mr+M0DSFeAIny9eZWPmu/5unGVj1rvncf4+T1YmuCKVEYRlpQMLOKyxtL5+QIZ/6sc6l7Y7KX44HxOq1ymTY2/9uI5lOG4kuYoMA8EwDB0BhOGxSyFwYQ4BcP8qjF3nsyYZtOstWeQMh4jwRyaxWuoK/2UDIcYyX0Fz1Aas0Jt9J79/EduoasEu2IlDZLvZ2zzo1pkZnzjMEeXCmNyPBg8Jz2C1/Vr7uEF0KHmFvEGDEhZSWuVCl3XyEoG2epoWKPtjMUl/5csI0NELerQD0sAzjNWfjlTQucrqkql2E7uXsZmfOMgZ8GFE8asuM9H9wZMoyt55YzJObaUmoMZDx5vW5Cz7NYxOW733rA0gG82y//GNRh5ru94qPuwMXjjukW2qPNrnS+Z5GGczzo57Fv7kC/RN02pRgN28lsExz0eFLuw6Fy4iEsSyoWtzhJXcudkR/Cn1S1CVafBTPgGPeKUyW3pYxhVl4lTAcOgQCEekpnMyA5gVFlmHOZchdx7JxvJfL51Bnl4X12lMDohmEOreJUrcZ+17ozX1Wvuu7n14g2U4XX1GrWoQ5wKWDmZsV/8kK3OG4hgtgZxynw/p9ZLK2DO3dEu2Q6M6ssMw4JhmY7eEafM+AqjE4Z544ttJsGmE2t10KNVvEpt9J5sD75plPmg1eNdopi03jshCqGbL7sJcyqOWXs9gxi++dhYAdR7PQ7Lxvrl2pMB1ODrxlVnQVIYTGgWr5mcFY/JTGbuudIOjGfYrcHXTLPLDqh9a73CPmj2oAuje8schhXLeDWs23rUoh1WXS6+2XrH+/qqA3JzownD/CpDzPXr3uoZ9qL6kQHBRwOCOXSL5toL0dB1zb26d8LXm1edtcO3B3/KsJglFcfMA/PcjN5H1KvnsMiHi7gkoXw4+D/A2l0MiPYAA47JlzOPB0HlgSo5vDrWDzAgnsDYER5EFZtzzb7ewoCKAvfUvCoprxSo+Ry/mD0AfgPj2SkmUMeOUfvfsNcgv7sQz7yUxF8sziweHATfcOuxvXadV9eRstsOMABtFgOU3rP7txLbyENVHqvH9nrEMF31nwEtvF+t7kXFjlMM1ueYzyVv33ueON8P7Hj0eena5Muq4/Yw4LM+E90bnVPgeQMvcQXvoSv/1oq97wJNI7w/bcf8fHwGxf+J2XuRCxdxGUK5cHtQJbW26orpK4yp0XGFbknP1Ry5OujxefFXOaTCkAKf8Tltqm4tbLrOv6JN1c0zc4wZUuCP+HVuWWujkvWcX2VITIqvuMNv8iO39mtyA/mqCpDUOnDd+rybPian7LNBlbZbH2stvM6hVUalrHXeCretGrJrxz8m53qISOHU5woxgbPAAiyAeYUabfbYcJ6kD/g5MSn22aBCl5CItgWFN9gntOqsKaEbc4EhHWrc5xlNGo6xmyzEy5O2Y+0GNth3827jZ3tEnyuUOCJkyg53XTPrZHF/G1P0lyLsU7YdM3ZMjl978qXJcy8wea+KKQR+Be/+TpFcPGbtYOafHVm8ZUsIsy1Iy9bGPpf+8OYn/HbxS1jkw0sfC4bqIgBY68wZ3k7zQadHqdiHEM5TOCZOTIrC6IRW/hq51DvKrQl0ID2H8OYJ88As5o+CElH9lKt7J2TtxKxU7FPenUAW3jWKlsH1Feu9E56UN9hgn48673lXLRITuIdBgSG1uE07qDEl5LPRn/Asf8+m2Zg4FdAOfNWvwiH94irNYoOYgA32MU1duoTB1Pq29qlbeUSFQyvtTdGibhJ6HLER7DtgcUyOGm3mBM53UA8XKFAIT9jhLrd4SRhNITTAp3FmGbtkPWTVNlsJaMRNxkHOSHuDgNxowjwfURoN2M9/xJjcBd9BGZ6r4paxjaNUXUzFZiUzDAqsMKbLunuw7WPu70H5KmF5Sr3XY6f8ESuM3YNC4Kjua4kjTslxupo293UwoF2s8XX1KjEB9dE7+vl5onlY5BvGRFDK9y2MvYhFXL54HW5SysMtXrMZ79MMGq5aPiegWyw6z6xM0UixSlGfw6DCPAhI5WM+GPTID87IhCc0i9fY7L3jsLxKhyol+uQHZ+xufugKRu38VXKcmkq2BSZqUYcoNN/2bz4uOznUTniXB4PnfFW8yZyAb6plKqMew/wq670T4pTJQ2NW+DTaNmqDPCZfUiXHKc38h1Q4JIwj9vMfObCR+j4AlVGPr4o3qdJhnM+yn69xSIWV+phCNKQVGunW0gSyEyOFG+ZXudKbsDSBWdWoGOYErEddhsU0YEBYagacvRL3CeYxwfyMaXbZ5pUiURAS5W2um8zYmL+hWbzGq6LpSntr9Jq10YxUpckwKPC6cQ0asB53mRJygsmDGSKGYYH6yGhMh/lV3tWLyJ+6/OWE95+s0qXCxuhr+vki++EGVTqQmtGrZs0CJx47MDVDxCtusxHuszH6mji1zDebZVL2s6nSoVMsU4r6AKy9njG6scxu+BGw/2/vj3gRi/iLiqsYsO8mvnO95O1icu7iGw8BfIpnqhbxbNQeZkEqufgnGKBNIOd3MAtQeaa27D7aL8SAlAJJD+yxBWRW8Z2Y1bVe24ww4KWAWrFoP7PvPcEDp5Knf4xvOrJtxyy/VDCL6QAP+KYw9ge7eM/XEZ6BKsbtPQyoedMe5wRvZaAFeIABXMt4dmnAxQZTVQwAu2fPsZu4vrI99hzfGCriYrOrIt7mQK8X8YxV7PV/B882Prbjy+JBWrFUxXjVNei9gX2tBovJ4SIua/SosEyBBzylOujxtHjPMTEF6FU4NI2cKdAq1l3DpLt8hRojRWTY5lPusmObDafIJdQ5AH+f/ytTMk7+nrP2QV0qPGTbWAdYdZCASDUgftT7U8b5ZaeaEonGe5CGVj81ZcUCtlo3miaixuNVICqYniTqn1KL23wRfEqfK+QY2+bSBXK2F0iBE4YU6FNyqqgxOb7irplfARUOAbOerdG2zVANaSpHn302eMi2s0aYEzjfVTXSalEnRcwDntrzGjWYmMF3e1/zsvwhXSo84OfWA7Zlm4+uU6PNS27zkC8oMHQNqJ/ywJCKRl/Tyl9jTmCaWbfwjQ5lVWOfV9c6A28HI0A1hX++bUH6Mf4ZcAzU4cbNg1/Y3+si/u3GAlBdhIkUprIChjlVN/T1MI4oDGYsPQduQC3VITuCd/Ui144HEMDSazj9NE1mMuOjF+9593GR4xtp1r6YQQhXehPIw9d1Q33P1J8ZZlDRAHYtrhNXOxSiIZkwIjea8CpvZppRYBotNWkQ5I1cUw+ctYMZK+U3jg1UGMxol4t0qHKLV85TdB4Yy4BfH/wr4hQOTOhQY2P0NdNsmq3Xbzi+mXagZD1uMQ88iFmK+hTCIYXBhNzqmHGQc146D3hKGJvFe4VDB4SUWxO+rl81vopxl73AAL8rJzOC7JBgfkYYwbCYJjeakB1APduiFdTJjSaM81lK9MnFY1ZOZjwrbhEQO/lCyJSvuEsjaLoxjsOcYf+OesSpZaZh6KwQDICLa5iVG03Yz284luopORqjNwRzOF0196IU9RkWs04u2+I602yXxuAdqRgOyle51hpQyL9jWMwyzi9b78QF830RlzM+4Bs+GERMs8sG0EvtUwoNGyEmZb7rgWk+VR2c0C0WjTUIp6Qw3saMerzfWrX+TKcszSEXjWmkmhwFJb6plinRZ0rGSqJOKYxOmBQ9438c5ChEQ6qh93wyRYxDmsVr1tcpoE2ND0Y9grlhiw7DgvlO1oe8DG9Rr78lwBRAUpYB4RgVQccx6md2Ad1lnW4eNqJ9gvkZ+3kDZH4abdMPS5RbE7bCN4wqy7yof8StwdeAAXAPy3C1c0K/aK4hxylRmKEwmJBJzejni/zrxic8GH1JtgfvG6usj05o5wsEoQEvh4HxwBJ7/6viTdO1Nu5aABZGxWUAK2EzlgQqAAXEFEaG7hVGVobVg+Emjs1Qj1uMtpaJMZYEzKGQMs+fVBxznoJUHBMEc8ZBjp1ig19rfmkmwpsvTXOv/D5gfHDv914zzhuGbIGhYybHN02+Hy951cEiFnHp4hgD+LXwMm8BjQLT5OUpKbkYk0k/0GQ3+teJffR+Fc9sfW63a2B85yS91/kE6O1hQN0aBugUwzKLWcx2MIDiawzYOceAo0mG6gO7TRXPWFVTqwf2uLruPF4GL//RFt7/VX55TXusz/CepRq7WL1izMZ4r1idR8ea2/PJsiAJhHbsuV7gfVrVGOyt3U/3UzJ8+b/etNv27Pbyv5X/6ghvDSCAV03BJP1v2Wu8kbgfo8T7X9px6hrAs3YXsYhLFu+5yl3eGprM6hD5uO+zQQtTZG7QZI8NM1e0Pp2SvaugDYbF+ZJbhLaZsmyOVPA1Hu9jWlxnnw3u84x9NsgwdY2VHoePHFNWxKAUMZly5NaIgPMKLdF3MvvISeIrbjv5nf6I3+Sv8xg1giowdE2fCgzpBhUaHDg2roDQFnVKHJFjbBWmp46M8JAvXHNmwP28zyZ1WqxaMDTD1BEWDLHJsGylhoxJOUXpS+the50Wr7hNjbbzw29To1puO2DY+Mt2GFLgK+6SYUqLOuvWGqpOy41b/qo/yv+G87sNeQo3e97uRYz8NiZfqoGhmu+tcrHxYRmTQ7P43Kqi1SJ+KWIh+f8rHk7W9WewtgznVbsAHRnJar51BiOYbEKcMovYKMwYJtIusGmYrHNDiCROme3iVOAA2vebq+SiMYdhxfj+raadLPY8C+O82b4ZNC4YUgNOxtDGyD7F6JKhdYcaATGN0RsA9vMfGSmBBYJ3yh85CXs9ahGFGZ7yLR6N/jvGeQPEChzV+dTdUPKIHGPHCBUDVI1bANrUuBvt0A+NLcHHra+Z5WFYNNLbPiUH0J6S44O9Hr3NrGOgZoisFUHsrA+GeSMDnmbTFAYzhsU0URAa828r181MzugXjYw2IL4AwuQ7Z7xvXGRfRWQ4sUbehXjIy+A2JY642XrHN/WyY8He7r0xjFb7YNoYvOF0NU07qLnqKpiO5sZTZx01k4nIcHe0SzNe407xGBYyhkVckkjan+SupLjSm3BUzlJuTTjPwlE566RegGElJvxDY1tBn1uG+ktu84CfOwa5ZPwhU+YEfNR6z3HNeCPnOKXWGzAsmt9V+VfU45YrLu2z6ZomKSfFpJzdR4k+uWjMfmhkVcarK3Tyq5plCIgxvx51aYV1pvZ7fWi/zyWOnPTqyDINNPHOxWMOA7NSVzEGcLL/MJpyGFZYj7r0w5L1Cjtx55BliXxlY6sAMP6t039j/GLCv0o0A5PkX8dS/gMjyW+HVeeLpXOtO9NDw9ooRENn2TK3lipj22RQTFcjeTM+XICVyBldbsiUPbvYOSVHvddjHsB+8UMnx8txyvPjOn+r+BwW+XARlyTc3PC/gLUcnpkacBEoLeOBuJ9hAMR8Yvs9e8BvYwDCNp7l89xuL0C1lvi5hfHfVJd4WQzUMKBiFt/sqIhZuGKPK2n8ARcZsvfw1gK7mIVwGQMqljHA4S7e69V2bqaMAUgFjIb4JlNtvN9oKnEc7OvVxP/qTbCGZ8sm5PAOcN202yYZq0U8iDmy59mzY1TIm7Zp97thX7uB+WzEpBU4G+LBat3PYuKezu19+NuYz6pjP5PXeBbrMYZprHt9w/58054zZa/X+roed6H4HwCLXLiISxLKhf/gfwjhdVjqAjPM9+cUKMComiHfmcIZMIJ5A1KvgCsYVvYycA3iAIK+PfDEnyO6scx8OUU4nZI6tvsU7JsDYAVz7JT9f2rfj4A5xFWYZDNkJ2aOFvTtNhl77sBue4r5nqbtz2f29SBxbNmTYLaJri0Tnp7BET63Lpvr5Mz+vGTHYxno8zqkevhCURemf22JzOk5vLSvzzF54ggDQC7hGwaqEd9VM9Y4tNek/eb2vKfAuj0GQA4PeqbMe9PCEpnonHkaUjOIVpYJvz5jtGk+s3gNgkO7/UriXKdwfg2Wxva6dvC5194bKvbcet4o316B/9n/Cpbsc+ndZtGwWAW82ufAv1y9w28Uv4JFPrz0sWCoLsLHxHSoS9uqSb55xvtHBtiLU8vkO2ec5yHfnRiwNX8GPTj8eNX58K33TlganHFcC8xf11PI1cfkB2dQ7DqPwOwIvqkbGWtlMKBTLLFq2UXyaNnmIQ94SoaImIAHoy8Z5g3rq9yc8KJhpOun5Ojni5RGAxpR05wLmIWm4lahy9WWYSzt1Df5NP4CgDCaMgxNRfAVt3g4+lPnJSgfw6D60oGr6nYNRlpQiAzLtJAdEqcCJ8k9z0K/aAHRfOgAzVw8pjLpMaovMyWkNBrQzRswJbJ+OjlO6ebLVAc92+hrxtIAhuUClVGPaT7jwNR0BKXBifOoDeYxUZAhlwp41zCyiCEFnuY/4W68QxQYk/RcPKYwmHE/fE43X4ZjqGd7LFnm11E5y0et90yKcG00YFRcZh4EDkhShbXLOmE0JRcaGfC1zoDjetqAt8eL1LKIyxknQYGQGYflVfbZYFg3Heuvtk54W/fNpQ6pkAmnrnlAwNzlIzECmjQoBENqUYfjSppa1KEdVgmIGVWWKQxmZMJ3TLNpdsofUY9bhEytLCtDffCefnHV2p4YMLLBAQVOKIxOyA5MHo3IsMKYzd472mUjXZ/bQktEyO34JcPANNobhznHWJ0TMA5NA6dTxLqPL+TMF/WPqNHhlJwrssRB4BijccoUvYJ5TL51xp9t3iQTGmC3GTZYscCwbEjUxGHMCiX67jztepUPOj1jNRPCajik1htQY8BROUtuNGEjv+9yXoWuAUVjc+5xmKMyGJCKsX6tKfrW80sdbp9xn6pt+lUaDejnixxSYZ0uN3rvGeeXiUIvxxOAvMEe+2wSErHCmPW463yv7/IVV3oTnpa/RatsjGJ+pfOaP61uOTuVgjNIXMQiLlmsYQCzZNOhELMA3+IiQPqZ/f/HGE9TechFiX/3MMzFKqYx0zaebfkUA2ZKfi4wNYUBDyVZV3MmeYWK7SNg8xizYM3iGzVJBv8Uz/AUO/YBvrlWhFkYpzAgovat2mPJp3QrcWzwbKPjxHabGN/VKh70XbNjm9h/g8T1RvZ+RBigIbDX3U0cU5+DJP9inHbx1gCf4e0U1Lgrj/eUFcisplYCT8UuLdvXvrTnatlzid27Zs8pb9WOvYcH+CZiAnB1T7DHf8YiFnEp43e/A2sFPNgodncAbE1NcUIWKAPgEea1TQzItps4mJrnqZCSP4PK1OTTFxggUXlK2ygXqQGg8ohY5BZM5dieu4P5ToLPHbt4xrmKJ2K66/svqXodkws6Z76AEgJ38E3nfowpslTwxSw1zHuBtyDpAlvn/nwCTDtACZPvqphcJaWD8q6sTMAXmdQQUblMIOXA/v4JvmHfyBIHHZB5Zu5P3n5mYHLaKp5df2A/O9maAPwjO76CvUdX7ViuYADqFTPm/2wX+Mw2n7LFxWsM/LNzgsmpJ3B6Z6Fe+mWJBUP1r3g4FsK/hrUs3oReHleSGs1hUjSNWOIUZDWhG+DlPpJKSaakCaT9f7IJrfw1bu69Y1Y2nnRtqob5FE3Jjc44Khvm5nrvhHF+mXzXMGSPbxqm5tIEx/5MxTFrT2bQMKBCZdSjlb9GffSOrH0AHd8wzE4xVvfKBnwsdyawB5NPcM1ZYgIqgwHpDrzeuuZYo7loTGZyxqviR5YNZnxEs8+BVTjeMuzNCocUBhPSskToDHhfXTWAgSatlsnrShkDc49HVQ+SHleM3L4y6tHPF7nWGnBcM9c/zi875lW9Zzo6jPOGSdzbzBrm8Mg3qMmODLAc2/OFEe4epo/hdeOaY4598KJnmuQ0Vrn6+ITRQwMupOLYNRzTGIahKZ3m4rFp4BKbc74qfsTHna/Zz4ZsFiNYVN0WcUnC5cIfwpo87mqGtb/UwfjcaUILZgL5FLOQ1KJYPnnWW+n8ASxpsgcwgvMbsKSuxy3gBsw2Ib2NyZ15fKdlO3k8v2n3UbU/Kbu8gZnkDfBsK3kJakEteW45sX/P7lvGL5i38R6F8onSRNayvI5vGjuXyT1cDnTXp+eGGE4ajxbv4EECMM8LMQkkPy2b+84c70dlO0xP7kH2Sy52ztaiQtdVtNfcxPsd3vD34LxuJ7ryUMzaz9Z6WkHiWJ/gAZKkxNmed3bdqDnc9UUml+efnjF6YCwArsR9+Nczin8DWOTDRVyScPnw/wxr38bL/cUEFZNIHeHbmO+PvsNFPFjaw+enG8AfYBbhE7uvAFkxkyLMAreIXyRLTi6v1h5+zikgYI7Jy1vAT/DNkcSiVG7UMeSvqgX+qj2XGKVdvM9pF99cS754Yn1N8P6ryeOJ4drCg8b1xPEreOsD5UCNo4EBY8HnVYHNP7HXOMF7ze7hmbUVPHO1ba/pjn1PnqwCesRO09gju8+ePbby88huH2Py5Zf2/TXMM/AJF58zMR7slZ/tV3B8BMX/FFjkwkVckrjA1r+KL7boO9zCAJJFPGiqeQX4ootY4WDyT5OLwOoWPm9+jLcRkTenwMUtjKVHsnnfHt4qZGC3ERv9GJ9DNffTvDQ5v5Py4ICL80Yxzp/iPaAf2LF08dYgr/FzVAGedXuvxOyXSmDPnl8s1ip+3qusoMZ9sm1R0ayN8ek+wSslKvjnwCAxPmER2LE+xIO6z+14lK/1GQV2PPLTlhXLf42f2z6x7+t+R3YMu/CfTc1x/+f/C5zX6ruP/Vp+rTVzFiq7Nxdqzl+WWNDIFgFA705IEM7Id894/3DVsYaSHlnZJ0Ae0nV8RUwT4SJwEyZlyHaAMkzykA2MrH8pNGDeZvQOUqabdZ8Sm/E+8yCgFdappdqE0ZR2WGJcXmFKyEb+Dae1NGvtGe/qRSqDges8HwQxha0B4/wyz7jPv9/7Y9azXcsyPaFdvcqN3nvm5YBWUKdabtPnClNCcvmvmX6W5ueBMZ++Hb0iTgV0imU+OO5RH70jjAxYGczPOF1NO4bmtc6AXjVL87N1coyd19+V3sRYH9hv1btq0bCw8ifmGrozv9jAAKdBMeZleIvb0SuGxayVDqfM9c2NAXlcD6iMDIM0CjP0ucIGe8wDmGYN6El9Sm404WX5QyrlQ8qdCd1ikcp84JqpAMSpKZnAWAUExTmh9auJCch8POVq54Qwjhg9XOZleIu7o136+SJH+QwhU6Jy7O6BwINRxWwr8/XjSppcRzOIRSziksWPMJVoO7FbkkddHjMZ+xKz2P19zCTsS8yEShPFhGxySd56E5x30tJj/AK7BXwOaU2af4D3AdzDMYuWPsdMBuWvJ2A3wCy+W3iAVcCk5FTqgi0fO1XwHwJ/jG+mIvbRE3sfsphF+Y/xi+MRrH1iCihZTf3+AA8uaFGgxTj4Bi6SrHbwzIVtu59kvGI5qBP1PXvex+aas9/DT8JVsKtiJsbJ+C+Bv2vHHtr/rfx1aWS3130AD+ToPra46P34xI5pzY7VMlDSH9v3I1yzmHzxDPYg/5Mz8sX3EMJxn0Us4nKG2IZbmFwX8m8yg8DL/sVOSrKQxHrM4htMbWG+h9/HLNQDPCtzF5PXVLwSmJqyr32JX/QqJya/r8nC1hzfnV6+qup6L3BUILFk+Nft+eVLmmyydIDP6TG+MdQqHvwVm1RgqiwDGvY9Mba6eNKC8vBrex69Lj9Y7aOcJ5BVbNoGHjh4islVApD12iYeSBVIM8JbLSi3iRihewu+qHTTjnELbx2QzKVbmLxu1wTk7fa6x5ZEt4hFXLrQ3K6IL/Zu4+eGj/FF6yTzUwCs9lUBWExv+UorTwZ4Fn8eUwx6jskDq/iihZX7O6BWOfKmPXeEt2lRHsD+ru9zbPc7sWM5wReVtJ79zB5HRIAIP0dW7lWx6609R7JQfxMzD5zb6xK5SKBy0me5h7cWkde28uyBPX8FX/QWK/jAbiMLmj+25xXge2LHuIsvkim3N/DM1zX7vprrvbDbal59YscghUQdX4xXUQ8MW1V+qVW49o8HUIW1piGBqQBWe7/AUH9ZYgGoLgKAAz5iLTyAypQwjvimbjoVt8MqNzvvXNVtcg8jM60az8364D1gGKMxKeMbVzUz7G6+bBpJDQakR8Ye5XX1GsOy8fGs85aVkxkwo1MMeBw8YiUY8/29P+H95iohU/aLpoHUu7qRV1I0zZUOqbAZ73NUztJlnfs84zxvukIf5iv08yUqHLI0wXWj1/gaUZNsB7LhjHq9ZXz4whxNGtwfPafXyJpOzrbpyDhcIWTqfEoneSgMJvSLcw6p0A5qRlJbNADtOl0n/Y0JSPdgmo3NPasG1hf2hCGrlIK+8fcLS1RGPU7zUyKMYXdUzDgPv3b+Kql8zApjxqzQoUa/aJpJ7bPJp6PnRCHOt69XzZIh4o+Kf4NH0WMykzPnb3u6mnbbje0Yb41e08x/yLC6Ss6Kltcx4PS11oDd+odWDJyiRJ/jigG5+2GJ6qBHI2xSGEy4Er/hZflDDvIlzJNzEYu4ZPEE+Ai/qN9NvK5JsYBIFZPEKniKAQGT4CX4BbYaoaiyL1YRmAnkP8FX9pNeSyFeXqYJ+RYG6BBjYWCPl2zeouOLWZYokPH7+MKYPP3Emr1nz/+zxDjU5Rl8c5S6fV0L9RGGPSVWgu5RLfFeBd/BuoXvUi3mhIBW8GoHscV+ggdeB/a88jgU8PAzzIT8J/hJ/cBen5gce4lr0UJCYIyAVbHjung2WBUDzmqho2sWcKSfxWj4CUZaVmIRi7iccQU4x3zn5e0pVqmaL4H5rj23/39p/7eMp8knVtUkEA/MAniA+T4JnNMCXIt3gY8CdR9gvmOP7DG28flXQIbyqXKoPF979nUxOlOJ7XVOFVPEVhJgKKZ+CwMY6JhieD7H51gdSwquFCb/iSUv0PWGHf+WPVcXD5Yo94b45k7K23m8PFey/107no69F9+x24aJ4w0w4MCavfcdex8P8AW+1/j8JUZcI3Fu8Cw0HVeMMLFSVTg7sOcScPLUjvEai1jE5YwsZh54D/N9eYD5Pug7INBN0u41zHdHxZEsBhyV7P4GnrWu+ZqYkTfxhfBte9zr9pgqegjEy9vXNfdU3ruD+d5pbqR8VMGrCwaYfLKNz79SSSmnqaBGYp97eMuQjr2uE/xcSfdLYG8Kzn8LlnSeZEMmXYcKceDRqQoeDK7gm+zNE/uIsADYdigmlwrwPcDMr+8AX+GB1C28d7RypbVGmK1B+jW+eKj7rOefiGXKjQNMrkxh5P85fAGsaN+r4+e2mP4yPzu+B/xrFnH5YwGoLgKAh2++YuUD6BTLjnGZH5yxmXrHcSXNSmgaTI3zWcJowgfNnmcnZKH8duIfInYRXKmaTvPpt7jJ7mbqHcNilygITYfropGp1+MWdVqstWecF03H6JApOcZs86lppGTdrq/EfXLBqWvS0hi9MSzKcpYwmnKz9Y7d+oeE0dT4FFqv02F+lRodDsMK0eaQVByT45QpIdc6A0rhc05X05yS49c6X/K+ukofA8zG9qtiAGAvoa/zln02mAcGbFTDl/WoSxSa8c7K0A9LzuuvH5YoDU6giGtyUxn1GOZXHYD6IHrqPoNZaOwRAmLKexPubz4zdgcHM5jD6VabeWCYwbV6xzBWMR6xt8KXHIYVpmFIPWrRDqt0WeduvMPKyYxy9IbjSprsABq8IbDVtdPVNPWeYcX26lkKDLnWGjCqGBlrPyixlnrDnMB5uPaLq1zdOyFTjii71csiFnG54h/2INvFmO2v4J+SqszLeF+MgKx9rYtpAPAz+9p7jGm9JosZu33BHkusSnkM/imeEXSGaXogCWsBMwkdJvbfwUzslvET+pzdZh1jlB8Db4BDzAR7OTHeCb5hwZH9f8Ue64n9/cxuP8Q3I9i24zyz5+kA+3i219SO9RSzeJ7asZ7Z8+7iGwkIuPjGju/M/r6c+D9lj5Gy+4XA13b7A3xzBPAT3ynw/8I8d87sfnP7s2S9aXwTBuwxNK4ks2sO/Jnd9k/sZ6Xrndt7m8f/XazY4+zY+/t/gYmkx4tYxGWLHN6jEzzzs4EH8sTWkmpJkngr88x+icl3D/GAQXLhD34R30r8LBZSFgNgtO35mvhmUFqYy0YkyRDdtT+LvaQ56yZ+0a8mIgEmt83xvoViXirXS2arwpZYr5Ksip2k/QXQzvHMeuU8gZdreNBWHn66dyoyBfZ+Y7fbTbwvqS6Jc+UxuV+gsYAfbT/Cs3YllT3AF9jyeI9YAQh5vIJAAqQynsG1ii8s6e8gxnzWWfzfiT7vRSzissUx1qsU72scYXLPQzwop6K5cpOskR7hPZX1PVHxVcCbilGy0BDjX/lK0nfZBQiITdogJY9fxxStJLm/aY+l3CQWah4DkmpeGuMLJvfwnqlijP6O3c5K1x3x4Bhvj6JijM1XS9sY0FUF/AHeNmVgx5MsMMn/VaCn5tuB3X+OV0SJIWvVQ4wwBAWxeecYcBl84amJL8wf49m5RUj/F/jmUzfw+VFSfykl5CurMT3EzOWP8OCwxq1CvmU4X909IVc7ZRG/HLEAVBcBwD/838D5jRRwTDCPyYx6ZnGYAdIzs7ifwPnVifGf0wI1B/EqBCNMkk37Y55cCVk9iji9kjLHjIxf7zw9Y5gJyZ31OVteZoYxZc5PTjnNmtlmZn5Iema27638GVn7NJmSIcMSudMTBis55kwJWDX96c+mnC0bL9LT7Huy0zNSI4hXYJRdYcYyaabkpgMmmZAlloBTpmRIE5KZTxmn0qQYsUQGmDLhmNWzKcPl0DSdOoXxiumkeJw9IXc25mi5RZE5EctAj9z8lPPlJU6WM2SZMCMHTJiySpYJuWmP1AxO8xMiviFFTP4U4uCESSYkfTYkWg7JTU+JU8ucLRvEID2dM8mEZKcT4tQyqSm8z5YpcELMCssWGVjijBkpcvNzls/ec7a8xDBVICDLlIg0+8xYJc2MgJj85JR5Zplo2dz7NDMi0qRYZnUQMc1HTFPnrExgkk2RO33PLL3ELJVhxJwMI85JEROwPoTz1HvaS8ny4yIWcYliGTPhOcLkP4GJZ/gKeh6sA8jFyv8UM/G7ipmcneJZpsv2/SEezMzbbbD/Z+yxBKZm7T7v8CDmMt5LKrTvFew+Z/bYb/BA6xGGZXZm/51gJn8ze4xr+ElhhAd+JX/VonoOjDEASwoDGE8xC36Z9KcwgOIbzAJ6aF8TEHKcGMc0cS/fYSavy1zofEvF3pcTe960HWM6cY90HyM7ppn9PY1nmgrc0GQ8wAChYrElAQLdx6n9v2avv2+v/9yOccX+PLfjH+PB5zP7ew3/+S9iEZcxjjDyoiam0ZQ87QT2iWVVxbM4tdAP8d99sX+eYr4nYrZL+rqHBxK1AMX+LOaUFv679vca3stQC2uxh5K+hWJJzfFMdQGb4MFZSTg/B76N9zuVrUtSgq9rU2El6QudzCkqNMkfVWzXbbttEw8Ay8tU9egkc173RR7RHbzXoeTA38F72e7hwc8WF+W/YviLpb+FAXywx+pxEVTWdO4Er5gQwCugVZYv+ry37Hl1PN1Lgb+LWMRli3uY74m+2ypOqJCQ/K7Ia1MFj008Kz/pW6qc9RDPyJeMXN8h8KCfQsWmTzGAaRLN2cWz/L/EA4AtPKgIJncnWfhizh7Y96yNkbMF+L7dZg2jcEoWkTqJn4UHaEwpDECqHAi+qPYJF3zpXZFHOU3y+CJerSDwNLB9CqQG0mfxCb5xn55PP8EUlqRYAmOxNbDvKe7hvVv1+XXwnt26hiy+R4A+U1lBKOr4Oab1gZ2tQbpnrnF0Y5kPom9YxC9HLADVRQDwP/1fwtn1vOuSvPQUuAHvNo3/ZvnFxFVyetUsb6nzK63X5i/I+oK+q5rZWa034Fn5JtdpkRsBzIlTywxDQ9MZs0KXdUoYuXthdMKrvDE1UUfoDjXTkZ6xk/cfBhX6XKFOiwzL7PMRG+wxpECBIa+4T0BMjTZNGswJ2GSfCOP/2aLufs4xZk5AjlMyRIQEjLnCKTkqdInIcCXucxSExLb7dUxAizuuC3efEoesEzDnNq9cF+sMy0zJ0KdElQ5hHDEPAoakqI1OCeYmof7p5qa7rhyn1HrGeGcewH6x4pixr7hFhik12m7MYRxxGFRpcoN1DlllyNQ+qXKW5drlmv0MJkyzpxwFJaaE7n4B9hyrNGkQExCRYZN9hhSo0AXSlAYntIprnFCw1zdNsHZnxKR5wrf5lG2gzJAC0fEp/8ffS+rEFrGIyxG/O4e1Pp49AAY804RRUizJLdN4b2QxDQS+ylupiQdCsxjAUYb9Oocmoxt4eVcSVHiNARDa9tjy1VvGgKKndlySxQ4wQKcWziFmYtqw4/kE7xs1wgCTZ/ZY23A+MDgKH+MXACkMwDIFbmEYWyP8JDRvx34Fzt/Afg82N+H4ENb+ffzE9SHeEiDCS4dDez2yPRAjVcClfBhlN9CE8xYs1fEssw4cb8Pa9+yxr9lzHWMYIlX8BL2F8Qf7iR3LNeBzGA8gt44Hlw/ssR7iFwRNe+9+x9wvKjD+MeQ2MaBsGQOunsLvDlnEIi5nqNjxMZ5Nn/Rp1uJWr4FnPYqtKpBV8lhZlmwBX+AZ4QImtTAWG1QrlRt2X7GwJJGFixJ7FYBInE9Se7Fik97WAhVGifdlayDpOniWK1yU72vRLAmsngfaRmCGGPQCRqtcZIjO8eDHQeL6xZSSj6psWORXqueOrjPp/yofwt/CgCFip4n9pgKWmPubePsS5XR5q+pzEJAQJo5RwzcCFMAgD+zv4BuIvWIRi7ic8QT4NczfeRlvdSQfY9lvKHcJjPsEN0dwLHLlKrHB5Wuqor2sm1J4VuRrfCNRzbmeY4o/mo/07HZiqwqc/A3770v8d16sUhWcY7z3ssDAlj2eVAMaq3JJjJf5K4cq78gCS8UWsUplwRTimbYiCMT4plnKt118DtQ9teNfuomfD48w82aBqcqlJ/hcrhz7BJ/D5lz07AbvKx3Z/ez8dNaEtK5Tzxh9NhW8v3cG75MtRQOQ7sCkblQb+ednZG+OWcQvRyz//95kEX8VIphDIRpyupqmXS46n5RrnQFhNIU8nNvXUnFMI2765FiGUXGZWm9gQLkQqnTIjSYM86vEKdPYKSJDhJGjV2lbL9AqcWrZNXyKSRGTImMB0LnhnpoxEtOhypACqTimwiH7bNJl3f5fIWBuAb8uDZpkmDIlpE+JEn1qdKhwSIYpfa7Qok6fEo955EBEeZQ+C+7Tp0SOU95SpxZ17BgDPtjrWcAR91pATESGDlUqI7OyeMZ9osCc/yvu8tP83+BV8SNeb16jwJBWUHf775Q/4ovyPbrFIjEBb6mzzUMCYvqUaFHnhAJTMkSBuSfr9lr22aRFnSkZ2tQYs8IRJfbZZDv/qwyDggGCo5YFpCMC5hZgNdSEDBHrdGnhx9SnxLPiFk0aVOgyJ2DMCkMKdKnQpEGbKuv2XkRkGFIgWFCyFnFZQ3J4VZUledzCe1SJ2SOWgMAELUS1IAc/YZQ8NOlFqglZFs960kJ2G9/URMb6WoBLIiWA4MfQ/QIvTTrAL/KPYfwEz4hKSqMk1dWxbCX/fGCr/prodhLnFHOpiQc3BDjKIzGCpXuwaVllaw/wk3cBCpKRCdxI+rMW/9zvmoSLrRbhpKZLFTPJBQzA24GZ5Gwq+IFnQohdEsO5mAt5DND81myX+w3cAuX4Z7DbhK4kaNv23PJB1HUFkLPgz7iVOE8WAwgvYhGXMe7iJaZielq2Dffw3ZmVy5Tr5Hu8+edef4uXjqswokKMcpvY5MrDktJu4hlcTTxbSJ6dRXwzEYEVkp8fYBbJc3zuk6z9OT4HBvhmSmJXKj+JadXFN5wp4hmZVTxQqWJRPXEvJWuNMIUcMPmzi5fG/8Retzz6VPDS8QQYjzDyYeVm5ZsGxifwN/CFNIEbApArift4z16flAsCZnX/KvZzmuAbZol1q2dkbM8poFgs1KTtgT6Lhf3JIi5r6O9dwNsLzPdC+ULf+yymeJvHzDs28blDcxuBkPIsTc4ZosT2LXyOEDv8rd1unthP86gTPICnnHXDbvsH+DmQcprmrA/xViENzHf4v8TkzXt4v/xtPANWzHTlgDIXizHY3/fw89sIU/Rfw9snyA81yfzdwnie7mHythHQeqBaaoIW3hpgK7GNCnRdu7/uc5J9ih2TngsB3rN2zR6/gQFbLbic/gRfOKvZ7T6x2wb4z/oEP5fVZ7lr9st2cP7/RwvK/i9NLADVRQAwzS6RPzijMJhR6w3o1bOuap+ZnEGA62C/1p0ZL1HL1OlVs+RbRm7+QadHNmGfud47Id86I9uDHKf8lO86sC1kypgcrdAApwbkLFlg85BP4y9o0mCDfdpBjZiAKh0aozcUBjN3jhxjB+K9pc4+G5ZBGdCkQdUyVg2AmCEmRYVDQiIaHFDnLXfZocCQXDymwImR99MnRUzXJrxhaJidATGj+jIZu/8V+gTExqsV0ziqmy8TEFOnxQ53KHDCfZ6x4XRh5n6U6HNqGbARGQLmDpydE1BgeAGsHVJgTkCXCgVOKNEnx5gN9vg0/oIKXWq0GVJwQPSYHHtsMKRAPyzRpkqK2IGi+2wyJcM6XcdcVeyzwZSQHKcGyLaQ9yk5Cgxp0KTLuvv8QqZssE9v8ZBYxGWN93jGVR0zWdrCM4OstP18DueWrXSuyaOVd83+JV4OJjBQ0kubN88lJe3h/QJ7eIBTlXX9LKaXBTjffIlnKhWhctOca9bEN0ux589pQtzGTHztpPd4G8hCV+e0AMWSJuRJwFXMzBc40ON4F8ZNfEMXsS4EhGzBTMCy/PNS9pg/8dciVkf3ubmXs118R1lJ3rIwE5A5h/MJnFvT//QmBvwIYdaDSgUz2RU7QOdsYZgJlqmwdBOz2BjB+ba9P3vANszsZ7tWhS0LioybuEXN+QDOn5vtx1/ipMbHzyGdwixQyngGxCIWcVmjjvciBS/V1yI4i1l0Ko8J5Cza17Wo/BTfVEVsKi2ABXRu4X3vspjFvApOKjApr0oaq6KGCmBZfLMp8KxSLaR7+AZ121xstBXjGylV8b6vWuzDRbBCVgY9O44b/JvN/3bteDbxzakE+uq8Ytj/Ft5GRuoCFdUC6P1O9iJbS9ct4FR5fw//zNH9WMXnQoHXsgYo4lmmX+LzrgpTn2GYproGgbHyPNRnlmQaCzTRc2wTo25YxCIuY5TxnqBJ39IJfn5Utr8nvVLl67mJkZmrIKRCCYn/H2MKFy27TfI7XbbHKmNyhYo4B/Y8m/hcqQKycpkY+crLykFte94XibHXuGhtIl/nB/jieYjPYWv4YpnUQoPEPxXnwTNYpQyQnYByXdJj+Wf4opny0RxfrNP22k5z0CwG5K7hC2yS5q9igGUx6zv2fifZuvKy7dnPYBOvONNcTkDu28TYmph56ByTXwUwq2goq5TnOIZvfOGCF3GZYyH5XwQAwfwcUhCFkLUs1PMsDItpoiBkv7hBnRYrxTG50cQ0GShCb9M0lRrVTbOiG733LI0gF42JU8sstc6YVY3EPWBOjQ4dakQWfssxdrL+U/eb8VQNgyk5TnnFLeYErNNlSoZn+XuQ5wL4uMEeb6mTYcorbtmjjIkJeMVtVjilyzqB7VX/ljrXafGc+zxkm4ydLT8OHrl7MmbFgKycMibHDnfpUiHHmP1wg0PWyTGmwJAhBZphgwwRQwrU6DAmB0DK2gVkmDInoETfgbQdanzBQ0r0ndR+SIGcvRun5BhSYIUxIVMiMjRpUGBI05pYDSmwwR5RENKlQoYpHWpUadPnChki23xLgG2KPTY4JeesCwJiN17duyEFxtYCQRYGATFNGoREXLdPkbr9f8gqOU6JCShfMJJZxCIuUYzxE08BnGJZyfdv08rhJ0AelgTeWQZo+nfwTUAGmMlVA89Y6sKSPLVWMZNaMbK0WNfkUF5UFczkbAJ8Gz7Evr6KmVT2DOCYbuDBBwEbJI4RwvFTWLsHa1ZhUBEzVl6k4GW4dTvOTS4uIjZhTcxdTazFgBUY+wNIa6IKZkL6CWZCqYYFAmBDqHzHXHNar/8WBpCwk/LZ3Mqt5rCksUmKatlh6b+Jt2eQRFYLA/0sSRs4wHXpM7wtwhzSa5iFAeZ4FTCMtC/NMZbqOLluTmyyEaxt2XP/Pp4lnPRrXMQiLlO8wrAb9X3T4lFMyQf4wosAPgEJkrKLDSmbjzy+AdMBvgAjoFAh5pa+x2oEo8W5QARZl2zhWUjPE+Ps4kHRKj6fg5eWysJA3n6S6B9gFuddTE5X7lCxR/nreeL+KAcoPwrU0Hhu4EGSLv4ZAF4mqxwqQMKOsbw98flNHotreJ/azxPXp7X6CZ71Kv9ZfX7JhjdtLjKztL0+x+T+2l6g7RqM/vYy+b0zr2LA3rvndrvniXMtYhGXMVTMkS2HfE1VABrgfT93MQXcCl6+/r+2P9tCLh3M93PVbq/cU8EXsJLFq5Q9doABDA/wAKXyhZjwdcz8McaAjluYHCYvZbFLJVkXwFi0vwd4cLSTOOY2HizUtajgludiQb9mx/vY3pei/VlWJjq2cobmkl/iG2Gp8CSGvfLdCR50HtlrJLGP2PBSNwg0TuHzWA9vmSA1GXgweo5h6j405581Ia2c3oX2C6gp13+Mtx7QZ7ibuBblbflu1+HOe8mrFnHZY8FQXQRgJP/MDRV9ljcs1CU7cY4tCFiK+sSkGOezRv6PAV6j0LA3a6P37JQ/YlaGfPeMOBVAFtJvbad7K7sv0eeK/b9Clz026FCjwJAabWp0GFLgGUZyP7ezwgJDbvHKbtOmRJ86LbpUmBI65usddqjQdVJ5MOBrlwohESuMObIjiaynaEzKSd3H5IgJ6LJOl3ULkJpzFhiyalmcNdpULRt0hzvUaRkvVDrss0GBISWOAJy1QJ+SsQFIeJn+Nn/IFfoObDXHaBMT8Iz73OcZAHfjHaaEnGDk+10q1Gizbq0PpmQciNygSYqYdQ4d4KvrBBzwOSbHQ75gnUNa1BmzQkRo7+fcWTFcp2W9Wefc5iUb7Fsv2bcOiB1SIBcb/9Y2139hf6uLWMQvNDL4iWsdMwndxEwMP8YDBWLiiCVwA8/ceo1vlPI7XOwMnQQYJMWq4SfIWjxXMbLNBp75Iz+7HvA9zIRRUq+HFsjVAlky1E2Mr9QarinL2gN7/u/jvVg/wTDItJiX75VASAGuKXvct4ltVzHACvY8WjS/wPuOapEe2WuoGIYr2PsgcEIMiiJm4t7ASYtzm/b979mx61g/SHwOKcwiPsLLkhv4RcdD+zmKLSwJn9hm2HumY4i9tYb3CFzjYkOGrr3mNcznL4BVTI9VFrGIyxnr+M7Sye+IJJNP8DLKAC+DF1iXZEZ28BYc4MGAh1zMjzruNhc706vgc2z3qeMX2gJf5VGoBT14oFW5bIuLOT5rtxNIIr+/F/b/13ZsMeZ7/xgPpAhYFcgacFGGW8XkEhLjkR/0CA9YCKi+l7gHKXvOih2LrGVUaOva+60FegeT62XFksVLZWWRAB7EsM+fyW/hbQNi+7qKcrrvuh9hYixiF1sGV/7pmXn/S/v6C0zDHAE9EbYSuIhFXOKo4v0+5SNcwTz/t/Cg6xzzfda85dj+/Fv2OGJJymc5wuQK2SGJESqGpIocEzwzXFYpDcz3TUzSR5gc0MA3u0sWsMEXmJQn9nBF9wtzVs139Rz4W3Z//a4ikuZt2vcmPjc/wltegVdkgWfTyqt1Ez9fk83WFn4uqaJ/B58jxSDt2Z/Vo+BB4t6KEfsxhnGfzG2yRxGRQQW45Ot1SF/H28LEUKvjGcPHdt+M/f0pfj6uueQWvPtBEeow+QwmORbxSxILhuoiACP53218QGP0hqyd9B3fSzMOchQiA8dFYYYhq4RMSRVj1kYz1tozGEGlOiB9DIX8kGfFLerFt4xZYS18D4EBVeupd+Typ7zklpOXx1bWfoU+ESEFhqwwJkPBSeFNcycj248s0JezrbGnZLhOixMK5BjTpEGLOlXa1HlLnxIZpu4cLeoExGSISFlZf4s6BYaOSfqAn/OK29Roc4hpDtWkQYm+A1pznNKlQp2Wa+SUYWqtBYzsP8eYpzxgTI4SfcascEKBEn0C5oRMCYiZkqFBkzY1J60Xk9SwTEukiGkHNXKMbTOsivFd5a5loI7ZY8OyaVc4JUeDJs+4T4UufUo0MJWwV9wiIKZC18kNBIqekmPFnsM08IroU3KfU5Tws91ng8BaBzRoGgA4uA9Af4EgLOKyhtgFYqZqAZuc+HbwjJ3H9r17+EmTwIc5vjotxoEmfgd4MFPsSYF8KfzCXAvbSuL1AWYSJ2P/UeI9SUSTC155ZQlkEPtJjLEQ30xFDAWBlbIzEIMKPFgiC4E1PIMs2XilbcctwvoIs5jYNudZEygpPypdv5Wonv/QMlHFrEgy057ggZuf4BcwAjEDfOfwDp6ttW3/10R9hGE6PMdIWsUGEftLjR3A/G1IiqemB2JpiUF8Ey8pFjN1MdNaxGUNMUcHmL/tEA8AbuLl7DW7vaSlYi81udi8SN+FE/xi/svE9iqEaCEa4gsVYsEqZ4GXi1bxi/cBvgDyCSYPqIAlYDUpJdU+KvjonA17Pcp9YrWDyR/KBQI3lP9ke6DF+FN7ju/bY+3inxFP7L75xGt1/DNHigPZowjIEfs9xoMIydwvr0H5oAZ4hYRk/yNz7OyP8c8aMeeS1jMCoF/jbRUe2rHrM1Uel8WL8p/yp1hji1y4iMsa+r6Jgaliq4oqKoa38POZj+2+I3yhW0qn5/i5gqT8mnPo+/sZfm6j761USyG+iJ/H5Kxs4hjKTbt4CbrGNsHkc0nwZTkikFjz3l38fo3E8gABAABJREFUvFHMUeXFiR3fH3Ax52XxjbTEylRRrI5n8mvuemB/VyFHTFEVjR7an+V3/7cw4HGyWVYKU2jfxuceed4O7DGv41m7A7yHtq6vnvg8wBcE5/himj4rNbSSJYPmyjcwjWpL+GKYivY3zH7XRgPYg2wMR5UlFib7vxyxeLQtAoBuWGYzMiXyWQipGDKTGUFqyGFYoTZ6T8iU09CAnJnJjF4jy5SQQjQkv3vGeR0qox7jfI4wjugGFZ+sgW6+7JpSjck5eXqBIaH1T+1Tomal6uscckSJOi3G5Jy/qhibESErFkQVC3PVslhPbeOkBk1WGDMldMCmQEQDYI7JMCUmYEiB67Q4JUeVNjEpQju+vgU6wTBTA+asMAbgxL4OkGFKYGkALeqU6LPKkFMr4q/QpUqbEwpEZOy4K6wwdk23AE5ZYYVT5zNrQOaIQyoMHSgbO1ZulTZTQpo0iAmo0HXXN2TVXbMAaNkt6LqHFpAeUiBjTa4aNHnFbXuWgEMqhPa9sW0c1qfEbV7yiluAYSGvWPbrIhZxKUNSJsn9a/a1OYaVKXBAi2UxEkeJnwWeyqdOrAJV0kf253liO0nCJF+t4CeL8oESm0nAg8CBEWbRLu8mna+Il4dV8cCCgIekxD/CgA8CRMVQXcVM1JNgsibwPfueFvKS8x7YsapBgkDKe/Zc1cQ5engZV1JuO4Cl7yS2vYdnN6TwwKlkW5oYzzGghSb2o8RrW3jbggEG4Ph9PMhwkvhZYHcLP8mWX6T+Rk7sOE7wUl59jgN7LvAMuEUs4rLFEV7uL/sSsX228YBCElQr43MP+M7xAhwErAmAFFMp6Tn9kIsM1ZQ972/hC1qSdYrZPsc3EPnz3zmBqGI1FTH5pIGX+mtFpO95Hs9Kr9pjd/HFKTFB9VoVz/BSISppIyCvPgEZYqwq16vIpoKVcvwqJjeLuVpMHFtA8C4XmcE/SdzrE0z+FiAscFqAkMDUSeK+6jNQHhPr9mN7LhXjBKxr7LIDiHB5c/IJZAXgJr1oF7GIyxQBBigT2/sevmihYofmWOBzyoiLHeUb+MKJvi9f4q1SYrwl0sQeU76emxgl0WsuNmeSIkbF5wjvbSr1VHL+Aj6/gM/dkuI38HPEFj6/alwq3kty/zF+bjWy45CdgNj6SXsUFay38DYqmvsKfFRhC0weuo4HpMv4Yo1y0QE+5wlcFkEgjwF/BRTv2Xvypd3vN/D5tIjJmSR+Vyhvq2ilwtwNzBz8EfBHGOswESkEworIoDliG/L9BZj6yxILQHURAOSYMA5zXO2cMFuDpYnWp2dcSfVp5a+x2XtHI9WkFdQZ5lcpjE4IU1N2wrt8Wn9Ou1ykMhiwtfuG11vXjC+prRDNPjZg605+y4KEK2ywz5gVJ9ev0WZOwB4blOg7STyY7vEZplTpOJbqmBXbNGodgCsWvNxn00KAcyJCK69fZZ2uAwxDO6sz3qHGs3WFsbMeAAOIZoh4xW0OqThGa4MmO9x1+zRockSJL/iUu+wQE1h5vGG8tqlZxuopofUzbdJgn0022LOvT7nNS9rU6FLhkAoRIQ2aCZA1R8iUHGMnxZ+ScWMT0ArGpuGUFTc2gJCItqWRmGZS5jzYBlcFhmSYssMdxwCu0Xb2BCGRuzf7GA/ZB/ycQwsId1ln1TJ9FwjCIi5tqDquRb+YPQIABQ7KL0lAWydxDP0sqZQW3Elfpip+gaxK9w2MRFJ+UpqEidm6iWdY7poGTGkBmvI83cNMUmXOLzn6PTyrQfJLuCj/SrIJ5GuVbBogQEHsiU0801NMBjHZwE9c5VuliWXX7qf7FOJlV2JBqcmJ7kEPs8Dfwy/8xWRT4W6C8dG6gWcMJJlsSQ+rrL3XAhZIbC+wVkyHJv6zh4tyviix7xwPnCf/Rp6xiEVczpB8USydAzzjXAvuJsbapINZQA4wxSctzsWg1HdFC+kK5rsmJpIKNRMMIChmbB2/cFdRRdJ0FZRe4JnydTvmLB7k6+HZ+W2MFFTFG+Wr5BiTSgHJdV/gc4IYsfKwFmCxl9hf0nwVp4p4AKGMl/KKoaVxKKcKoCnic10Pzw5TMUfPBgESEzwIrv21+FeOFgsOfEFwzY5hgH9mkfhctL2VuzqgW0Ux8AVE5dI8ZLftmCZ4oGIRi7hsIfaniiddfKGijM9jmjuBb1wku6gD/HxOuUbMx8f4Yv0WZn7y3P5ewecKFXOknBGTVAWOz/FzNMn5f2yPKcvOkR3zFgZUXMPkN1kaxXY7+UHDRf9sFe6fYHLTTzCApQpnXUzuEeNdai/ZnQiAFqFA0v0neFUB9jp7eEuDImYeqPMkSQli63YS+8nO6gk+PyZVVSP8PE4qAM2P39pj/iF+PnlgGpIu6dkjBcGJ3Vc2KbpPX+ELhpE9XhPfdFXKjkVc+lgAqosADDAHM87zkD6G87wBVbMHEN+LKQQnjPPLrL2e0d6KKQ1O7HZn3GWHpS5UggHDYpYr8YQcp1zbG3BehaU1w3idZpeZErrmRm2q1GnRsh6k63RZYcy69T8NbEf5iNABfAIlh9ZHNGNBvpRtqiRgdmybOdVpOYBT78urVdtMCV3jJsCNQUzNqWWSAhxS4ad8lyodx6w9JcdtXjmLghxj2tQoceRsDaaErNO151zlNq+o0aFJg5QdU8aCpWLhysd0lSExKceIFRvXHDfjxlqwXFPdX4GpYqNuRPvMw4CanSWPWaFh2bvymu1QZZ2uA7tNU6pDAuZMCTmkwjpdVhk69q+5R6EDpjfZIXXBKG0Ri7hEISYUmEmPWIvHmAp5E886kJxVDCRV6CX3EhNUQIMmbaqmpxKvAzyB8wNY0gIWPEO1xUUJu/ZJLl7FmBLY+Byz+G1hJtyaXGviLXN/MWIn9jq7mEnoW3uObuI8Sc8/scy28dV3TTwncN6FJYHTu/iJucCFpC+iZGaSXonNpUlz1Rz3/MBOZsX2eIpj/s7emsZVuRt2f/B+Wkl7gTqugcFsBGkBveBB34R0djaC9By6XVhbhbQWQ5p827+H2Z4FuOUfJu/CD4E/YxGLuHzRwHxnxCaf46X/koXLCgM8wCawUPLWbTxzVNLKEN+8L8b7eLbxBRixLgVafomXriqXHeOLNm8xOUrMJOVPMTCf4prJMcKDEh1887oBJu+37Pu6tjneh1WsJSkHBLYIaBHbSUUssc90PhWK9vAFPPDee9hj6pwkrksFrBgDLhzgAYqHeHBFC3s9h8TskspC4xNTFXwhSSwqvadjqbAmIENFMBUXBYzLw/Am8I/w8uWvWcQiLmf8TeBHeO9jzWnElDzAFGqkAkqyG8VUTKpwPsYzTAVcKg+8xnyXt7ioeholtntuj/nAHifAF2pUzGriVUQR3tbkE7xiR3kLe11SRO3i57dJ4FEMVOU+FZ0E9ErpJKa78oK2+TaetYsd07a9rs/wxR7NRb9t9/sBvmCjglMFr3ySukp+rk/xtiotfMM/FefkWau5+idcZBIf22ur4Nn6x7YhaQcz100qMX6AB6wLcP4ZLKnAD/6ZMAH+jr2/H7GIX5JYAKqLALBemKtQhlJwwjS7TCY4g02IwgxXd0/4ZqvM4Zbx0oxTkLYsgzgVQPGMYTHLkALl7oRSOIA8RCGMy1lSsbEJKIRDBxoK+KvRYd3OGFcYkyLmkHXX0El+o2JqBsydd2fJAqgVunSpOGBwTkCDA4YJL9aQyEnj92zTqCkZ52n6ituWGWsaLKlR1ApzuqxfaEJljjl3cvyAmDot21KrSoUuHWrEpKjQJSRynqV9rliObMYBvVXa/IjfZIN9Cgzpsu6usUbbjdewVg84JecA3y4VCgzZZ4M+JVYtsFqha++j8W99Gj5wQHRMwFvqRIRssEeDprM86LJuvWcjIjIMKZAiZgoO/C0w5CkPWOGUEkdMLZu2SYMd7pJ3SMwiFnHJYgx8g59gpoAmzDqQ1iRZi3OxLJ/jGVNJMDSG421IpSzIp4q8/KG0wBbLqwXz2AJ8I+geQOWeOdcsgrRYoB8DRQPyOdYk+MV/Cu/tCR5YaGMmiPIElAWBQN4XeGbXnt1/C784mMP5U1iywOx4F3I6fwjnI1iy7M1xE9IpSNdwoMH5LiyJhfUE9vZgU2zcCZ5BpQly0nvVTtaXUonXtbDIm2vqDaD2MZ6FJXmamFRi107MdZ0/gZS8VvVZi+Wg66pC2i5CKtqmhQeQZYkwNw0LjvdgTYwSSerOWMQiLmes4ZmKAi1f4xeJyhsNTA57aF+XxD3AgwZipj/He7NGGEBAPqPJQpLyQQMPCFQT+w3wEk7lgjU8G115Vt/9PcyiWZJ18PlAtiCKGl7uL3BAEld5poqp/hqz+JZ9gJhhYm3qmlRIEyiCvY/yij3AN0uR9F8+2Vrki+F0E+9RKNAEDFNMxTQVk5SzNIYI/5mI3aVrzHJRFaCCoFycVODStiqi6X7ocxnYsf4Yb4ciMGERi7iM8f8A3mO8OgXoCQjV33sM/DHm7122R8cYwHATX+xQIVkM0SpegXMD71eqYpCKF0/wje4aGP/SESavyV91gmdbqpCiPKjz/VM7/kf473/PvidVgBQBKgjpey0PVhWdZQe1icmhSXsPFc/e4ptzPsYXd/KY3KLiuawQZKsQ4RsAiun/NHHsZIHsOd72qpXYN8TL/fN4trCeHZrrq5AuQLaauO7X9tpUSCxiPPd/aLY//zEsHdjPZR0YYhp7ayyaewrItc/Gr67qwbmIyx4LQHURAJQHx6ydm6yVfgHTh5AewSwPhcEERvBBq8csD2l5C2KYVEE+5ptqmQ/2epTzE2ZVaOWvkcufcu3FgPHHEMyNfiAmILKAZp23NGlQo0M9bpGZzOjmy8wJuM8zxqzQp0SBITlOucMOnQQ/PiCmxBF9rrDNQ8fS1HsxKWp0yMVj5kFAk4ZjlG6yzwpjnnGf6xxSYEiJvmN/dlnniJJrliX2ZZd1KhzSoMk2n1Jgj5ApLa4TMmWDPbqsk7HgbUyKgDkVugTMmVu2bESGOm8pjIz+qZn/kN/kR87GQCzXmIDrtKjQpUWdKRkHpqqxltijBYbMLRs2sqzTnGWQhkwp0SdjPVllrzC17N+YwLF31+kS2fM0aPKUB9TokCGizxUOqTgP1w32uBL32QmMBUKDpr3Hs1/0n+wiFvGLiRO8D5RYOmVID2DWTDAQJ3jAchUz2XqIWdAKuMzC2kPMZLiNX2BrISp2aMses2HBVOt1VdETOoZ0GcYdyH2Gr9xrfGI9da0cqYKZlFfwE0GBC8kJsQA/VfwtG+28C0uSmYqFZqVb3/RgLTQNpXKbeM+qXctGtYvtXN0cxy2g79kJpmU8nbdgU1K3KDFWeQmKFZFk067iWBXd51C5iWdYxQZMHTftuB7igYHQgKedHtQEmN6w16jFjUCOL/GNBAIcI+x8ZLfXtkmAYc9/BmtJea7A3D6LWMTljPeY75wkl2JD6rublPN/gsmdKmokWZKSyO9i8o/YQ7L1uIlnN6ootYuXayqfJUE7FWKS50juL/mnJP8a743EceaYfKyFr4ABHSdp+dHC5CDlzqa9H5/gZawCQMDnVdkgSGYrJlUq8bNsQrbxct4JRhUhABQ8wKvPQ8+pFt7eRP6HsiSQHFU+hlIGgAGzwTPuld8EKCSB3yeJMeg8krtKlSFw+WN7TZ9hgA4BF1dZxCIuZ7zBs/H1vfhDTL4Qg1Te7QcYsPMRvhiif/KO1vyian//5/gcAH7+8GP7ex7fOE4scM1/VPR6ivdwVZ4USJlkw7ftmFfxuUzFoB4X7VuSxRtJ+J/jPepDjOJHhe5ju98n+KJXgMkTN/BgqADSF5hcUcPM87a52MBQx02SGSLM86GKVz3IUzahLnJzdP3cwzOL8/ZcIjVomxv4QtNBYmx7f25bkRZ27dxQ8/khsGHv188S9/8BXjFhmcHrnya9whZxmWP5L3sAi/h3I05XU5yupplml6EI+YMzJkUj/z9dTXNuK2adYpmJvJluwPGNNMH8jA86PWZlmORhWMwSEHPtxQDKUN41/qyt/DXnX/otnpJj7Bo6zYOA/bzhvq9bJqfekxcpcKGBUkhEkxsEzG07qz5V2tRpWQl9ZHxCg4pt1pQiIsPcNmISWNunRJd1Qqa84rb1ADWerAGxk9VH1ut1SIFX3KZLhVNyHFJxoKSOGzJlSkhIRI0OY1Zc8yxdS0xAO3+VcT5LkwZDVpkS8pQHRGQocUSGKfts2mNG7vxjVuhQc8BnPW7RoMmJbcRV4ZCIDFXalDhy9gYljtwYY1LUaZFj7GwQdI/kNSugeUyOlGX59rnCCQVWGPMVd2kGDWe9EJOiHrdYsfYJi1jEpQvJ4sXqlJdeCGnJIQViakKshTh4GdJNzKRNsqxVzMRbC9gUvpmRPAo1gR7A+Wt7LElXU5ATYKBJmbyeJv6YS1v4xf0Twwp1E98GBhx5hAMhZj+x55/gpFBz+WftGhm789PahA+rUNCEsmK2YduAvRfYT1g2qRbyAj8sICCWq2vigr03WswLIPgYv5A4wEzWe5a5q8WBWA7HBsilgpmwCsR5DsORBVMFSOh9AaOf4H3BksyuORxrzquFyncwn29S/naCb0ADXuY2YTHTWsTlDTEwd/ELWXmKVjB/92v470sRs0Dew/z9azG8Z/dR4SKL+d48xxeVOnYbMYPE1kyyU6t2H7Gm7mHyqnKbFv9aYEcYkGGTiwBviLcyeW2PJXmtPEE/sduKxX4TX8Q6SOyj6xO4ofvxGi+NF0tJXtdJZqw8S+XvKsZVKrG9GKsCSY7xhTLlVklTdS+TfoD6fJJAsVQLP8OD0GIK6zOp4O0MosSxk6CIGGT3MMDDJh74+FniWkZghVWLWMTlizv4Qo0KJN/BNLdU4eQe5vv6dzFzF7Hna3groM8w349kkSePVxdpjnLP7r+GyW/gZe8tDOvzb9ntsphisAhPWXxBRDlUKoE23nf5j/GWSpojCuDtJo4hf1AVwVbx8+DY3gfN0wRoSuUzx3hsr+LZnppXf8f+/AleqfUIn1ulYNK90XxQ90jXN8fkosDeIzFu1/BNEXfxOV85bNMeU/dYLGDNS2VH9RzfKKsHs8cY8oQsAe7h1wEa14n9rB/Z697movqgCt/wAYv45YjFNH8RAKz15rQCuxK0i9vsAHgKa09mLLXguJLmkArTbNpNjtZaM2M43zE+qXFqmfKLCR/tvudci/8UXH1xQi0yvqPXaXFr9NoxJkv0iUlRpU0hHrqGTxW6ztd0TsArbpNhyl2+cmDfbV5S5y2Pen9KgyZX4j6VUc/5qoLx9+zYjvd9rrhmV6fkiEk5P1JzzkPng3rIOi+5RYk+D6KnlDgiYM5mvE9ExrJoc/xqZ9fZGEhqL3l/y66uDbg6dddiZP0VQqb0KVHhkCY3qHDIHXZcoyr5sEZkuDV6zWfxEx6O/pSYFHfjHdeE6igoUYr63OOZY6yeknM2BnfZ4f7oubMmOKJEwJxDKrSoU4iHtKg7wDpkyj4bvKXuQFdZCdxlB4C7fEXJ2iKkrOftBnsUBjO6XPkF/rUuYhG/wJjDsarcmvhoMqfqOvgFax0Pph7g/bEke7K58vx14vWy3X5krATG8iZM+O4tZQ0jVgxLB/xt4SfN4MFIba/J4sTss7TFxYnuC+AnhslKYGTqzj/QTmodCzcP6U3jIep8WO/BqYDEXT+m3CemSRahv75nHWjr2OD9BOvQFYs3KYXqWPDyS39/BCDsbcMb2Stg7kH3hzjWwnEHzq01wflTmO3C8Y9h9sKcd+0zM772NnSfwPGBBZtHeKBjzV5nG78YuAHHkWendp9jFgS6/wcw/gm8eYH3NwRvmZBnwVBdxOWNGL/4V7HgHh6Q28L7OnfxskuxIVXM2bT7VjGgncDUGM+ylGRfOVb5M7bne2pfu4nJYxNMzpWiQHL1P8Q3ARTDVOwsASJvE2OT/QqYRe82XsquItf38CCoAAdJVnUeMdR0TZXE+5KISvYPBoj80v6fx4MMKswof4D39DtI/C5W62u893QTn4ey9nMQI1fHVyFLQPWm/SxGeHBUUtkn9pzb9vXVxDXoORTa+36A97rVvU7qIOdAjkUs4nKG5j0quGxiclIXD3Iq9+zimy3dwzPik5J/ze26wD+x59AcUKDcHFNovonJN3t4j3yBiXV8c7qAi3L1euL8slLS2JOAropKmuNqviurgGQu+glest+2/6sgpGhhclHT7vcH+Dwloamk9mKLdvG5aBdfPJJHdZJxWsaw93UfOon3Psf3MwCfg2TRpYKS2LtZzPPgBd77O3kugeQHOMuu9HW7bc3eg228+mCIt7Ip4y0UJvh8GgI34QO+YRG/HLGQ/C8CgMOreaq0icIM8Y2YlZMZp6tp1rZmTOqQ7cHa7oz1j7uMgxyF/IClCczWIG29tCKbvI630ub3IOTq5ITjWpqjwLBBW9TpUKWaN+BqnZZliFbYYJ9uYBoySaaPbRpVou+AwA5V2hYgjWzGbJZN86hK0GWcN/L8U3L0KbHCqf1/zKn1K91jw127AVb7DCnQpkrD+pkYkHSVxzyiHdYImJMiphXUbYOmdTbY4/9T/b5t33RKgRNynDK1TNgCQ9pUmRK6az0l58DViAx9rvCKW2yw75i0aoR1Ss75t7by1+hzBfIG+N0J7lJgyB4bxtogPOXUMlHB+NHuscHnfMYddtjJbzlrgBQxTRqOefs4eESJvvO1ld/smJzzs00RWyA2tozagm30ZSwEmjToss5GeY/ecQnfFWYRi7hcsXYDzwiQ15wW3JJXalKclDeBZzhp0lYHyrBkJ+PjPcuitAWn9Bakm3i/zxi3KE1rwqfFe9LLsIqXZVnmbFrjlbeXQIT/L3v/99tWuub5Yh97UVwiKYo0KZM2q6iSbKtc9rF3u3pXuja6ZrLn9A56gA7OIDNAkEyQ3OQiCHKVALlIIxedBgLM+QcCBLk6QA4wOJmDTDJBBpkGus/pObN7dvV4n/Juu+1yybZUZhVt0iJFiiLFRXHJuXje73qXdl8F6e4ZFdYDCKLI9eNdL7We9bzf5/t8H7FcP8MYQzW4JBBCDEuVKwkIEChyxzVhEls2hOLv4AHDeyTB68qP8WW0Jbgr5qzAYEiaKdR3gE8535W1BOt1vA6iWBs7FrsOBu58q3aO+jpJWda6rmFqUjQrU1gRE8yxtFY+geYYD3REeEC3jWdgVLBA2QXDH/4nJABD/Yad//0uXHpg33UxTOEEObz0QwmvNZnJZGV2Ee0aVooqWZFXGNtI920auGzhE1ElbJF6HV86mWaiyyekZT8CzP8JXJX26XW3bbqEPyCRRqHpjv8Y768FOErCRWComFrH2AK6ht37z/Ago8p6wYMEfcwJqSRXuq833PGP8NqHSioN8bqFXcwnKDmm8n+Vrd7BA5pK4u3gff5rfDMordzE0hUQ3cXrJyrxFuB1Ddfc8QXEgAcNNL/XU9cgZusRnokLSRUFj901D/Alw2Kiit3acmP70s3ld2SW2cW0H2H3lyQ10tIeQ7yMk0DSBp4RGeJlgO5wPp67j2eyCsxs40FZAauSbRLTVH6lyfkEiUrbG1gsosSRWOzbeFBWVUabeJkVST3p3v0Y8yEd97l8gUrhf4b5NpfEp4aXf1GiS9fxAPO1aemTJh5clgzTfXxjKVUc1LAElIDKtI/ewcvJzPEJMD1HlJy7jk/wpZNsP8YD0UO8H32A19Z+gG+SqGdLx51T8/fMnedDt08d3t9w+qry52OY/wxWn8E4aWKQ2UW3DFDNDIAJJcrMCOOIbtCiXJnwQXfIdPMyUZhndWo6qgVmXBnOmVRW6NUM1MxXFixcmThAnihphPR9K88H/SF7jeqvnc/K1lVSrjL0/+J//W1CsV+Ul7y/3OXs8mWCZUw+esUivEQ+ek8cvCI4gZMruQQsrZzM+L7Q5B//QZs2Hb7h9rnGU7HjUUq3NXANrQ6oM6PIzIGXACOqrsR94ca3xl2esiDkBTeT409Yo8gJGwyYUKZPgw5tCpxQZsJzPnZarr2EAdp0ja0i8tzmG/4vf/iOdV7yZ+RYpGQFQiJipgTEXF0cMMmvMeESeSJWWHJKlwpHTBkxpsL/4Q/W6NJiRoFt9gmIk2ZfYqpKV1X6qZJTUDOvyIkytOg6hm+UNM7q0KZPkxwx1+k67dgWd3nqrnnm5u4Ka07LNrPMLpwdAXn8YjLEM4HAl6ru4RelO3gwFDwbIMCDqy3brigNqi6e6SXWgxgGAigUXIvVqgDzCF/ypAVtupRz023TwgJQBY0K7nX++/jAXGxNsakEhmrBL00rsWkVdD/EM9d28cGutAolBSDGp8qixP597N7/MR4IeIUFqQ0sYHXzt66FQlqvUMw5MbwEBCug1/ejmDW9QOli5V4CMQRUD1NzpPmcuuO27XuZTGFdoK9YaCpv/pd4wH0X06HMLLOLaN/hG3oE2EL1IR7YnKe2lU7mKj5J0sGAVbFZx+54T/BA4BG+U/wOtthPy4WA94/pZkliTD3CAw4NfIf5CCu33MWXtMtvyUdIL08L+hK+fFd+K8aXscrPP3TX9AoDVcVKneIX6uCZTUrCreN9ovy3kyVJZGTEypKv7OKB213OAzNpORJ9VnfzqGfFDp5xWseX3Io9Bh5EXcWDFfpMf6+m3jvCA8xp3UjwwMjc7buJZ7iKlZZZZhfN3mFAmeK1e3h2pKqO5lgc8FN8Mygx8Z/g9U/FBE/HjIq9xEQVK/QJHsSVb1FJ/xPON78TkAqe0R+SlKoTYeBnBbtfH+Dlm77iPPP1MT7m09hUeVrHx3m/wPyDyvY1nif4+Pbv4ONFPUuUrJJf1md9LC4T81e/d91+r/GM2J+78e7iSRBpYLjktt91rz/DYsul2/5fY/5RCamf42N3fZe/xD/n/hSvgUrqfeGiFaz2+9BtuwmX0vHqwMaz6p4H20EGpv5QLANUMwO8Tun64JSoMaAYzeAI8qUzguWco/oKy0bAleGcSwNrRLXT/Y7TdVisXmYWFmhHHaLQALnidA4la2g1bKxyd7zLyhRGrSpLAm7znC4t9tnmPn/BFvvs/Ml3sAt/UANuAfffwx+/h9aZ10DZew8FPBOisIR/cADfwB/+Z/DhjR5Vaswo0KZzrnzf2jgZWBiRp0mfiDwhCwd09pNGT29oUWbCjCItunRpJXNU5hgwSQJrzrRMznNIlTwLApYJYFzkhDYdZhQ4cTymmWuM1Yx7XH97Cm/gD/43C4hn5tzDI6aVy5S6ZxxtrrD+fwVyx/D5sQc43IP4D/+LMfPKKiNqVBnRpUWXBXkWtOiyxoQObWYU2GKfmIATim5sMwbUKTjQ9DbPCYiZUSDPggl1IkJu8YIX3CLv6Aw5Yg6oU2dAnoj7PE4kDyaUmZP/W/vfzSyzv1a7hl+wpptqiGWlIDDNJn2den0Hjh47sG0T35W5hQ9QxQ547T5XuVjXnU8LbpVzaZGOyRGsN2D2CIpinwYkrM0kgNTCWKCHAjoxkgTUzrEytRt4gHj8a8cZp86hce3iF+DK/jfxpWACpFXOLzZBzc2V5ALAgtk/xYLpbdcASmwMBao1WGnB+1+45la4JmFiDItZJlavriFdrvYKX1IrwFMyBSoxc0zd92On89rCA9Vi8+5BYRVfYryeGmsPr/WlkrU0CyyzzC6a6R65ge9SrwQGeOBs6P5OJ2bC1PZ72L0nfdUStlj9BCuHl+aoQET5r5/jWadp9uQTfHmmStrle5budRr8FTD6CmNrfo6XaRG7K3bXM8YnmpQQAw845PBJNS3Wp9j9fw+v6yfwJc2KVyJIrDEt/Pfc32KcqURfyR75MyVuwDPh9vCgavoZo+tvubFprGKUCuTWM6KJZ9bKr4p9nPZ3qtqQhqDYskrwCaQRuCFdWCUmM8vsotkbTL5H+qJi6O9g93UFL50hnyUGvnyQpKBU1r+Tem8bA1q7GCCr2EGJdbD7qIfFiX+Kb44kLdMWXtdYCXrFl2lm6yu8r3yNj1vC1HGeuTF1U8fquuvYBf6nGPNc8c4TzKfi3leiW0kcJablXzbx/kgs0D5Jc9SkCus1BnKuu++A1PXdwXyXElqK9VRRoUZW6l+wh4+9x+59+VYln0Q8EHi8npoX+XnFm9JY1TPuDvCXeNkW9/t0G1a0dpfPBYY39TDL7KJbBqhmBsDmdwPWC0AEG7ljLglAAFZ3YbVxCtEppzU4uWEl/UzPWAlhUCnzUfcd8wrEYY76eMykskoujlnpQ7i6IM7BSg5avOH2dNeVn+dp0WUjHrAXbJnzfo1vfPBLvEP/U5JS0ST7puBS2fPXQB6qHLqGS28YUHcNqhYJwDlggxwxeaJETqDhWKML8ok+qwBZNbfq0OYKI5r0XDOrKyzI03CNnnLErkw/pk2HHs2kUdNzPuYWLwGTGGg5dGH9F6d2nQfYA2jgrrUHpc0zGML675zCf4Y5dTG61vAAx3eQryxo0qPgmnXlnaRATEDIgib9hJ0bE9BwT68JZRr0k2ZVdQYELKlDwvxt02FENRlznogiJ3QwJrAA6ZggYeu+dEzfzDK7cHYEs69NEzRZEGtxeQ/PlGpj998z91uL3yewrhIvMXa0sFe5kPRMK9jCVuyGe/gy1tfYPd+zMampyLqLv4piB7ky0PfuXJekN6hxKnB1ZaSnfVgpATumNXrpBh6MUKMFgbwKgFUqpoghDY7q2rF9kuNDwiZ9/ws3NoEaA5iNHSC84477CgtGB3Cpjmd/qfxtanN1SYAGsJLW9XLzk7BFBO5E+IYLLbxeoRY14NkOaX1DTDt2RTII4Mtyd53O7Ni0YOvr+AUHNm9HfwTrFTjV+Q/ILLOLZ4dYElsgnrQ85e9Uci/NTt130hqd4svjwS90BYSqZP0RXndVPjDkfOm4ElK/rgvaxLOYjvALf/kvNaFT2f99/D29iy+1VfJHoJ/KcAPMF6dZSOmGLUrOTPFKRxGebSsgVcfUPIgFWsEDyNL4S/sz6SqmqyIUBwtsEcBZcten1wJ7wIMGet4M8M+hOh5A0HfXxSfGOu69YzyAvYM9/8So1bMSDFy54+ZDSUiBO5lldhEtAi6512+w2GuOMTQr2H1X57xGp/xJhI9NlpxvSCdAEMzPrGP3T5rV/wwDURUP/gleukRAopjhadkTaSTvYGvLNPO0hfkngbYNPBuzgY93wWuSqhqrhOmizvG+R2xdyZkISBYzfg8ruRfzU+NL+x1VDilWlv/5Eg92go9RNRbF1Ur4C8AFL/XyCKuweIZPymmuVPWQjgv7GLD9S85XeHXdax1DCTgl7bvYM9NhGe9zDkzV9ySgWLrimf0gLANUMzM7gvfX4NLStFBHX1SoTses7mJOygVTsfuPWQYBLE8BuPb1mO8/qSWAXC6GMFpQGpzx/Y5FboVwxup0zoA6L0s3k5LzBXkmgTEbWWJiziqBeuJYQmnNQjlLZQVXMUcrR1WGARvUOaBPgzwLCszo0WRE1TRIgS32CFmwIGRGgYg8x278A+qOnVmmQY+YHG06vODWOWByQZ6AJWWOnVRARJM+I6pMKFPlMAFdW7whT0TghAcmlAmI7VonbvwPsTlQZk46LnLce8A/xT80xeBawGXOiChQYEbDjcGaU+V5wc3kay4yI8+CHDERoR8H0HH1Ei3e0OU6OWIn3VAkImSPLYqcOJ7vgrp7sul69XeXFifnRBMzy+wC2cKBlQL1xCTQ/ZbDl79rEa7PAs6XngswKKX+bmP+9NidT1p/usdVjv6P8Ekk+T/wTU9UOnrd/r4kRmmE79T6BvMfKsXC6bI+sH0vfYEP8nOcZ+OCL70Ve0tlokt3zCZWJpZKsq8oKIVk0X9Ji3oBBqsOsIZzTNwE4FXQng5W7+DZpW1sUbGOBcnpfTY5r8XYcdd0IzWGPTzzCjwLuOHe34VLn8HKQ/e5KiS27TM+JylrrjfxeoViJYxh/YGNZWUXJ26bWWYX0MRaAg9uzvGLQbF02niwUWXuacBNshtD91kLi90aeB2/63gAU8eTf1V5vADENFO1h2elrnKeNbTrzp0GAsD8oiRZfgcPwD7hPCtLUioqRVWybJg6n/x9iIEs6cV5Ew9Myr8oPBJQKTBh3e0n5lhafuWXeL8u1qr8Y1pepYQBJqpYeIKBAo/c/i62PgeqCvj5IzeGVXc8ldC+wTNNZdv8lWQdIfZ9t9370j587K5zm8wXZnZxrYEBZdIAVWJ5G7u/Gti9rUogJSxq7kdJcCUV0tUvf4KPNdfxLM49PFA4x/yL2OjX8ZIfkpbKYbGOJFSUEJbfW+LjGPk1XZuSNBqHEv4CifVZWjKp5baRrMCe22aAxWzSFK1hMa98hhLXkqUSQUhEKf1I4mUbX14vyYQjfJWXvo83ePLRGItTJdk1xpjDqjTbxoO+AeefNzn3+T91f1/Ha6S67WaPXD8E+cmhO9dl/PpgCJf+7/jnXw5PnmoZVpLZD8MyQDUzwIGpzlnFuctc2x0ngN77Tbh0DO+21+xzAq7tjWEMw3ur1J7M+WA+ZL4zZFZa5XXtKs3pO947HZUJZT7oDzmqrxA4kK7AjDe0qHPAkoDW9K05wwk+sxRZN+ninrGeemP48BM8e+AZPuMugek7Nr4FIUsClhSoA7ej54xCkxsA2IgGRGGegAIBMQM2aNOhGM2oLsfc5BWT0poDJUMG1GnTSSQBRlS5y1PK8YQoME5omw7laEIQxkxYI3CM1RkFipwkc70V7TMLi3S5bg5+ArN38N0/gw/vuTLWHfwDZg0fXOvBuoTefw7NbeAjSTbkKE7njEqVcw2mmvRZkOc6XfqONfuY+1QZUWfAjAIBS27znFbcZX1wCo03TFhzJfzQZsT98TMeVe7RostXPEh0Whv0WKNMnyZb7DOiyo1EYCazzC6W/ZMqrEbACywwUpniCSYHoEV4CVgAZ2473HYFt23gPlPQHWIB5SS13zy1Tcntl8MWnf8KL9oPMHOvLwOnbj8F3BO81uc7d5w+xi47A/5b9572n7jxfe9eTzCtxEJqPLrmKVDGB9Al4CP3+lt3DdLMmmGBrebthPMNvLpYydyKO1fezeUMuOJ+3rntVtzfYm58h3V+0jXjtr2Mly0ou/EX8CDFmTvOoRuPFg0zd91pCYCH7vN14Dlw1W134rb9t/gFUNmNKQReuu9kxZ3vCPtf+ZU7boHMMruYJpa+AEKVqKd1A8X40baS/Zjjm9mtp44hn6DSzl18mWq65F/ae9LWExAAHjAV2NvA/NBX+ASVktOvMWBTrDGxiaRDKBBAcdfSva9ziOmk+dAYVvEJn3v4clUBqAIN0qWi4FlbIZ6VFWNNssT2kgmckI/S2CW3IhBCcyiGVTrx3nP7d/CsYlLzWU/9ncO+K9z7AkTEOksD10q4yYb4kuI3eJBinDp2ZpldVOvgfYZiwNfYva81aFoOpI2BmwIuYywG/BmeQPMEK5dXQkZl7WKxysf+GPOP1/H35Jf4Jp077vMpPimipJRkQpTEFiC86T7bxetHg/e9u26be3hZpF0s8a7r1DPhE3yiWhVFAit7WBJazwf5xxiv63oPnyTSOeQfJbeiOFLJcPlRaUGLkf8a33yLX9teycChm3v5eQHPInDtuH0lZ3KET+Y5Jn7xDvZ96n35XMWBT9z3pooB+U7ZY4g/CH7tzcwuqmWPt8wAmFRy5IpnlLpnlPpnngWljNAaXH1yzO69D6lzwGnNSvhzcewDSUh0NFf7cFqDajTig/GQ0xCiwIDJHk0+58uErRkTsF/6iE+G33pgwpVhFV15xMp1+FCOdAynQzg6tjEArNewRWsOlq7JkkrVi9M5j0q/QYNeUp6+H5ZZc3qfGwwoMiMmoBu2GIVW3r505fIBMWtM2GMrYZ5GDrA9DKqMqCZM1zgMaIyHUIF9tigyY4OBa/qUp86Ag7DOCUXTUx0Dl6G4Bh9+4K61RMJgeP/YMXR7JMHx7CEUfw/KJei5MjbJFHRKHxITUHDXE5GnyEnScKvgGKoAZSbUGdB1T6s8EeXxKUf1FYrRjFFYZcAGrahLN2wxqxSSBmKf8+dMWCMmZ3MYDRiEG3zJbxGTY8EMr7qeWWYXx37/78G69OQU4D3AArB1fDMplTSKefDEbbuO1+pTgwEtQGv4RbWCVgF60psSi7KLL62VTpQ0u0qp/VTulA4G17AAcRO/qO6nzvl38SVcYsEqW6/ETbocntT7ac29O9jC4CepY6u8U6Wuv4nX3RJbSYxXsa8UfEtaQVpfm24/BdngJQK+wssQCChR4qnljn2MBduf4UtPVd2wh4GeJTdfmvMcvgRNTI8dDOyQ9IGSfmLr6bsVq0Lfpzve0W34T/8tmWV28Uylobo3wRbMKg2VTqaYTroXS9g9A94H6p6v4ReoKiPt4f2myjkB/g1+wSxdULGSwEubqFpAPkgLfpmYVfex+zcN2kq39Gs3BgEDHfwiWHIgdbweaFqfT34oLXmQw9ih/wrPOhMLV9sKzJQfl6/sY37rtZsvMcokmyJmqgBc+UIxZ6d4XyjgQc8bzYXmWJrhKjFW+S7u+gK3zxqeeSVfKXaw5BLkOwXySltaoIgAoswyu2j2KT7+2ub8vZGWINnF/t/v4xMULewefYjX8dzF7t8K8A/x/nIHDwCqdF/Jk9fAP3bvyR8pDgRfuSQ27AO8n5I8SprvMscz37tue8nubeKbdkrSQ/e5iAXgdfHl39MSADvuvS/xzNbPUp+lk0+RO+5P3PgrbtwV97l8m5Li8uev3XauWisBSQV0KmklrELVCMdu/1JqW/Bxs/zYwG33FZ4N+wYPWPexKgdXfZU8X35q1/O+ApcivL7sLhZbluD/GfwPgP+SzC6+ZYBqZgCs7y+Jf7TCq+0GzajP8/A2vzl+BpvwsHaP/870CfRga/wd+5UPqUXfndeHqRmzNSZgwAaT7Yjm9J2Bs6FJBcwo0KHNdbp0aCfl5ycUOaQK298a60clAU8w5y89LD1kKrByA+oCGMAHjDlcS6aQrmss1S1dY0aRL/mcW7ykzoFr3NTigDq3eJkAhTFB0thp5ho3jahym+e06XBCkSojwLRQu7TYck+nIic85j6zyj5PuZtosC4JWGPCG1p0aCf7A+acr0Dcx4LVY87rH4KVKLRJyoqLrrykuA1FFxSvzhc85cdOI9bYtEsCJpQZsMHANZCSNqyYpD2a9GjwGb+07WobAOSDiNi5h07YdoAwyTxJvmDAhsklhGVmFJJry3H2/98/ZGaZ/fuyCAt2VAYOFqRJL/QzzB/9Lj5wrLj3tSjV4lGf6Uk7SO0PXrtOunsNLHjVecSeUuAokFPMLC1yFcBtumMP8WyENPCQXki38IysB+54T/AB6iec1wZUMJsGfdNSCJucByXVrESB/gM3Nx/jA+J56nMBAGJcDPDs1LSuoY7938eDFJIE0HckjbAdEo1ZdlLzU8froapEL5c6vqQJXrtxT91vaWht4+UElHTUXKQXVwJuf5PMMruQ9k/+b7BaxzPBD/E+bQG8xwOOZxijO4+xwnV/NTGW98xtE2EsHgGqf4oH+nJYzCO/s0ztU8BY4ivAf+XGtMDu8RX3t9ieZ+4z3PkvY771/+PGP8HizZn7TPuuY/d5AWOdzzCm+pl7X9cdYQmZsbtesdA1P7E7x0vMl/xb95kqBAoY437FnfMyXt5JYMu/cOe4jLHxK+615KCU0Mm5a8njtWQ1f2W87qMqB3Rtl93rJ8Bbd/1fuXGW8b5N1Q0a7yH2/ebctagqALzPdsmyP/hfYX5ULOUXZJbZxbTb+CQM+ISB1qFijqvsXkl5MRwVf21iMYoSM4rdjrC44iE+yfHaHesZXh7lWWpMiiXFoldSV2NUkllryhgPQP569QHu90/wVQeP3D5K2rexJIr2r2Cx1GM881PnD934JDM1dNcmmRDFsxHn1vCJXrQkslbxDfeU+JfsAal5VeIthwd0lbSPOR8L/xTzdXN3rUs3z/LBkqf5MV5ne82dQyX+AtZVvTXEVyyJIFGBS7+wY89bsPoI37hvAL+7+Udk9sOwDFDNDICjrRwb81PKpeOEoSnAtMqI79s1qo0RwfKMrfF3AJy2TUv1qGns0wV5p4p6DBjASngGUwhcWZZAPWN0FqkzICJvOp4qGavjgy9l5MUA2sMzgVS2pIx4HShY+XtEntgxVesMiAlo8YaAmBFXEoBQjaIWThlUTFWAgCUtukwos8eWY17muQ6OXzqjzgELQk4oUh+PaVc6DKgTutS/6Y/myRE7fdNeAvbOKCSLkEDB6Bq+XK3r2KnSBNMDDLw24zPgCixWc+SJ6DmkosCMBSEjcgyo8zHPk+96QpkZRcA0VX/EY8pM6NEgR0yXFlVGlJlQZZSAsX/Gb1N3nVWs0Zdd4xtaxOQIWDKiyi1e8ooNYP//h//AzDL7D8R+hC2YayRNlZKFP/gOonfw3YzTQOoy9Z7YPmBB2Lo71h18yanAwDT7SwEw+Ps+DdyJaSQ2wBzPiI1Sx05n6VWKFeP1tQRm1lPXqwy8QOQ6nj0gH53WuRIbVOW1AkvTQOkmXsJEpWkDfMmvIpEWPqgt4YGanJuj9BgUlKvMSiCorktz+0VqfkJ3fR28rtkUD/yKravvU6wQLSQ0h2MsyH7gjiHNMTHbNEdN9/oNmWV2Me0SHnQ8xccjYjcqdpngS03192U8c+kYu9clHyKgdOmOW0gdL3L7StZkgt1nZxiAe4JP6kzwSZP3GOA3BDbw4OUbvN8s40HAAQZCggGE3wFVt5+uD+z+Lrh9V918lPGMLJWS4sY7wu7/AAuDTtz5SlhzOoGfZTzIOsUYVt/i2a5neFBZ819wx7nktllggO8YT0jQ8TWH6fHi3l/BANIZ3jfKV5Xdea+4azlx5w3x4PM4NSZSY1x183vJfS9d7PmhRGKPzDK7mPb/Aj7AN1kCXyqu0vVS6n0xVVWFI9BwgN0b0hwV6Ai+QiaHB/MepvZ/gE/Ui1EOHlCs4RO56UpyMS4l06GYZhvfSIrUWMT0T0ujiE3axAPLS6wpl+LMAV73XyCvKhiC1PWLNTtIHX8HS6ZpH8Vnu/gKrCM8K3TsxqIY9Qb+2bSOb0AqHVtJOkkGZtN9D4qV5ceVMJQWfxMvqfIK/13pO8fNvTRj85jPrKS2G8LqOh5kdrF6bZxVcv5QLANUMwPgbXCdSyXzqDOKBCxhc8yrxrVkm1FYJR8urDSeFm0MPGwvOxSXMxahRaZdrhOyYBYWeNGoJo2cjjEWYx1rZHRAPQE28yz4ZPdbr/8yxzvwHL68QlkflV2o/GnT7XMZHnPfNYqqE5FPQM3AaZ8OqDOjSItucq26JgGJI6rEBDznNhPWEubliCovucWMQiIHoGuIKiH7bCUl9x3a1BnQokuPJlVGdGhT5pgeDTYYMK24iPcKvrnDdTzIIBBZAtpPUnPQIGGbTSiTI6bIiUkosJ2co86AfbYNJMeadlkTqYPk9VPusiTghCKf8yURIY94wBaebVvngBFXqHJIjyahY6nmWTCgTkDMjAI9miwS7YbMMrtg9rvYovYTPEB37D5z5abDz1apPZzb/anGAiV8QxPHBji97poSreEX2MqiNzgfaN7BMwZUmqWFrpJGEb77qsqgwILsrzlfivYa32VbYLCSNQ+wwO8BVooFHP2dFda7pwx/zxCRK8M5l8Qi+CmemSomroLNpZunTdtmunOZ0mPHUBfLd4gtpG9wrnHTdPMypYdnvkwefEmZxpxmxSqoFitVDIU5vPtsjY3hMZdcsPq+BJcGGMOi6cYtcLoF059cJj8/s+8nwmtv3SHR8zptwMobfPfWn6XGPTjj/SosA1isXuYgrPNR/d35cuMQOIaDv5emgGSW2cWx3//fwvprPBt7B7+IVOLhAZ5RBOe19VS2KX+hRbhYPXW3jZIo0h5U8qTlzi02/Rvs3g/wi3iVqqqS6Uu3r3QCVS4qptgnbpwCfyUhkL5Fx/jy0V/gWeylX9tXDNFn+FJRJcd+XepAQMU2ngQg6RVpAH6Kj2e18K6n5qeLVRE8wzPcSG2/jfkwUteshI9AF4Gnd1Ln13fxU8xnag4+cX8fYQCPKhXEstNcKCGl+azBHz7G+2/9f6yTWWYX0/YxprhkNvT/Psf+r6XFDD5R28HfQ0oOK176Gn8/7OEBScmMpBPnET6Rq3sarJHcAF/NqXtSsaLuO/kn3fsi6zzC68HWMC16lcHrXgevq38DqyhQbCd5EgHIkkBQ3CfJpmf4GO7IbackdANfkSRAV5IGemYI8PzCva9qAbFbFV+vYjIxsk7q9QP3WwC31te6RvlLzZnmcOnOl9aIfWLHGexCfRNmfShKV3zhjv8VHuRuAP/cjb/h5r0GKxMy+4FYBqhmBsAKEXkWBCz5oDu0hlJjCBpxAr6Vx3PiHLws3aDIjPL0mDLHjEoVivGM1nDIpLJCdTliEpaNrRi9tEWrc0zb7LN0ZfVlJkSExAQUmXkNqCN84PpTzIml9VWURZLOnpz6IbA0Rm2OmPs8ZkDd6Z7a+Z5ylyZ9GvQJiRL5gTwLqowIiBOmZoETTlwZu8BKgYhtOvRocOLA2pajIN3mOT3X+OkWLxlRpcCMW7ygR5OYHFUOOaGQALH0scy+Atop5x+oYmKkg/0u9uBwpSBnXCIgps4BOWIH3E7YYt/AcUgA4H22WDht1Rw9CsyoMiJKqBpmkgW4xQvqDBLN2+t0icnRoc0WezTpnQOjQyLKSd1XZpldLOtdXWfvZpM+TR60HjFhzRJEFKlzQNzI0eU6uU/3mQV2/4eNBT0alFuTpBldnyYA5c8mHDg6wwYDJq0ydQaEccRhUKXMhFwc8zy4TZ7ItsG2qV4/plu5mty7VzvHfN82EboPOkOOPl0hPz9lVlpl1Kpyo/+Wd401BtR58clN/uPovybOGeP+RXArYdx3abG1bVIlzd99x6hUMcb53zl1d3nAi9oG+VrER913fNu4Su73YsrxhE7Q5pAqn0aP6IbWWHBCmROKFJhxQpH2fYti1QhwQUgz7vEiuMWt+AWdoE29MeBaZ8zuFx/SjHt8FXzKZ9FD4lxAsIwpDc5417JrGVElIuTT+CsOgjob9QFREDLC5q8Yz1iQ56C2RlwLGFCnyoherUl7p0N1fMzjyh1XVTCAbatKqDLi5NOA/PyUxeoKvUaTrfF3/Fnlt9hoHJivq+To0yDfNp1qGqY3HbVM9uWD/pAvKw8IWRDfM93tJQEb0YBS94y3/6DC8GidDFDN7EJaBw8SChQU8xB8kkiM8CPOS3+o9FULYMligGehi/GlRMQafjGuMlgttCXboXPX3ftP8PqFSkCpHLeOxYuPsIS1xrnO+YYlusaSG/cjPFixioECSvZ03TZqWjLHJ84aqWMJFBCwOMSXxUsXtYWvSJDmn5hROrbACDFtxfBSQqvtxnOMb7YioEAgtmJo3PGfcZ7Rj7tmMbrAg8ECNtLa2k33W1IrYvXn3LzM3Gev8ayvGZlldjHtCp6ZusRXMNXxFT3yJeA1hcFrzyvB1MNLuT3Cl7Tr/t7mfFL5Oj6BlNaalj+SxmkdnwTSuW/gWa+vUmOVT7qB3aNTDEwV4JjWKgVPAtjGJ32UAO+6z0X60fq1hTFD23j2bQ3fYkNEIYGO/wCTOtHzoMV5UhHunPfwySHNk6zlxvcLDERNr6E1XvnTHXyfgAfuXP3UfPU4r4uvpJxLKtadTm6xlNruMvAhngwWwfu/A5f+JZbs+wIPSGcE1R+MZYBqZgBcn/YpBxA4x3nJZcY+6r9jozKg1D9j2LaI6+PxK1Zc8DdtXSZPxPpXp9CC9ekpLCHajmhHHUqDs4St9UF/yKxRpMqMEVWuO63TRzywkn9p6KksQJmnAJ8FE7VfmXpl7lYxmv0ZNOlbgygC7sZP2Qu2kpL7Fm8cY7RBgRlX4hG5IKZHkzxR0izqY54nGqJFThwIaqzWDu0ETAQDcKUHK43SF9wiJiDPgib9hCHboc0JRQJir6Vaxcqm9LB5hM/k38Bnygb4TJ4WK66cZI0pgQN9ZxQocMItXiQM2rprjFVmQoFZAgrPKPCSWxSZccUBygJ6i8y4y1MAnnKXgJiAmL4DjO/zF67J14I8C2YUaNIjT8QsqQPLLLOLZWvRhDoLWrwhdmBga/qWQslWgmEcEQYLekGTVtSFsEwxnhEGC7q0aNJnQJgkaMCSGQVmLN1dtCDPIrCkRoc2t+e7lEsmoyF5kYCYRSXPiCo5YmYUmbQP6LDJLV5ACPn5KZPSGl2u06TP940aEXnaUYdG2CM/PyPOnTEqVRIwNWCZ+IZyZI3spIk8bK86Zv0BAUuKnEAONiKLOONckCRgJmGZIjNycUwYLJLkUUBMNzT9asmvLMgzC4o06TEJysn704Yx2aMg5LPoIcHyjCjM0w1aVFsjZhRoRx1auS7doMXD4DO22GMSlN1RI0ZU6QatFGPeIl0ltvo0KOeOKbrnzgF1ttmnwIxJWLbGfaUTFthcf1PJ89P+nzOtXCZYntEtXaMdd5gFxUQnekHIl3zOXZ7yq4bpcHdpEbLgQGBu2GBj0yRtIlb+PfwnZ5bZX4NNsJirhS0u1aRD2sNqUKRFsljxMb550jE+SSzAIM2wF5tbWnvpmE+SIeBLKMFYX9ISFdDbSh2nkTqXwFzJSalcNsAW0HX8Yl0A7RLfGOWx+33PXVOABxeP8XGorruFr1wQ0CimmQgBfYwhqvfG+MaHfQwskPzKEZ79JsZXGlRRhcOT1Pkf4hn8Akc0z5oXMdOkC9jAM7r0mXRtJQMjQFVgC3hdRr2f1mPscF7K5dfBj8wyuyh2gEllSPZnHY+iSO9UPlEMUGl5Sioqfd+B3dsxnr2q+0dscvkh+YgKvmS9gpcV0HZDvE8TG/9P8YmetJTJXuq1klXpaxljgKP05vt4puwrLKHSwSejGm4MPc5LAIgoFeArE8D8qaqNwCekvsDYuwJAQ7xUyA4eVJZfFkgqOauI8w3x5MOFFexxHm9o4lm8e/jk4BOMla8eJ1qH78J3XaiVoOiA0fdduKTvPsQIXkO3/T24tOvGv441KXTjmn9EZj8QywDVzAA4LpXIlWJqnfm57oJH9RVmQZFSOGZByLXOmNN1GG6vkotjDoI6IQuOPo1ZH5zytmVMp+J0zqBUo9fK0y69Tc4Tu0ZJB2xwwAZtXhMRmp7oPwT+H3g9FQVzD7AyBFdSCpgT3MQc/SPM2TaAvJW/AzzmNvkgIkfMU+46cLOXsKnadHgYfJYwyp5xl4/5hpu8JGRBlw3qHFDkxCmmFlljkhz/hCIHbFBMMTwjpyNbdjDjCQUi8jziU5r0EpBF7NFe2ICP35qz14Pnd/HB8Cf4DGY9de3gy+Qi041dpBimE9Z4yt2EPXtAnQWhNelyUfaIKlvsU+eAN66B14wi1+k6eQYDEMTwFdAqZvGADQJiQiKnnFvmCiNicgyTzg6ZZXaxbBDW2IyPiIMc1emYSamcgI4nFAmC2GkON+mE1mRuFhTJE3HFJVcmlBOAsTl9R1wyvzehTJMeM4oUmSW608HSWI8Tys5/mO5zz7Fc23To0zRwl66Bn41VwmhBl+uJ/9E9/DD8jNs8p1ux4w2oU3DUoKfcZZt9tqJ9noZ3mVHk0/grukErASMB+o5RX6zYfsHyjElYZiMecBCYM4rJEQRx4vf0M6BOjwZVRmzEA3pBLvH9gFOsXvA4vE+ZiSWowj06YZucA6F7NBhxhZOwSDvunNPbnmBAqORkIsc21fE1/xPKlkArXU22yTuI94QiE8qmFe0YrAKB3zXWAJiFJu2yDIJE93rEleQ7yRMZaxXT3F4SGAiN+eTDoEqfJuMMRcjsotpVUDFNspiXVqA09R7g5VFwfy+xBaoWv65BR/L7E2zxLU0/6RiLqdVyn4mhqQZMNbffEZ7JlW5W0nTbCZB8lDq2jqtzSJt5jAdvBahqcaxjruN1+dr4xf8Uz/IU+KvFuqQNtGBXVVUDD4K8cnPWxnf13sXLEqhJyzrnQcwHbv67bh+BJhWMzfY7nG/s0kodT6XEAnDEFP4lXutbTGAl9AWQaD7q+KoqlS0HGIhw3Y2jjGfPqdlqxsjK7KLaXex/f4j9T0suQ/5Cv6WdX3KvJVMHCWMxSb4EeJm7zzEQ7zM8wLmbOs8X2D0aY0xSMSDF5NcaURZgiQzJCWgsae1Psfxv4O/fEN8cVPIG8h8NvH49mN8IMH+lZkvSdYXzJfk6xi6e1S7/IH+o6gKxewVG69iSvJtyXsZJbNIHmCyMJAzSOrB38Gx+JbJ28c2gc26Oc27OvnDbShtVrNt1+HDbjWdp472kpJx8/yb2fS6x78bJypzeg5UpzCuwOoY3JWUOM7volgGqmQFwmSULVpk2FpTGZwlwOQls4Tovjbm2N2a4bYv4MFoQLM+4MbUS0ygIITqlGM9YHzh2Ygla07esRPC2UaE6HVNgxoANRlQJWDJggy32bJF6A3OW0s96gNfXkjZWhA/ARa+fY471W1hsXEqAv+t0E43QJQEfs0fOLcZv8oKBA0zLDiS9z2PqDBJ2q5WvL5JGVWUmnGAsqzWnsxoSMaNIjyYD6gkDFKwxVETIPtsJINmgnxxvQJ0lAdx+aw+k/whzwnpA/gzeb8Kl18D/Gf9A6OHZCi3gDFYWy4SFCrAgdOBNnyY9nnLXgB9XtnzFsWPVgOtjntNhk5OkM4QBGhOMhQawzxafS3DRfX6Ll0woc50uSwcA5YkYJ6hvZpldLAs5ZRYUKcYzgiU04x7LIKDWmTNsr1piqTvmg9wQInjbrhAnMibHhHFEEMRUp2NmpVVWh3CtO6a8OaETtvmgP4TxECrwfaNGO+owqqzRjPrEYS7xO9XImgAuVlcoj08pB9+yEsG04rQ/hzBvQCt8w0tucj96zH64xXW6tKffESzhZM0SYlVG1KdDVqcwaxRYY0KcC7gdPyc/P2V1DOXVb1kGcCOyBFi5YUBhfn7Gy8pHPA3v8mMeEgcBN/pveduo0ByOeV27mjD96+Mxk8oqN6eviHNeZzSqjShPj+3acyTz2KZDNRrxPLzNhDK/0d3l/Srs1a4RsuD2dJdZaZUoCJmwRpN+wkrdZ9skZcKIG3tvOdpcoRBYM76bvGTCGjE5tsbfsXIEG42BgcKlNcrTYwalGjfH37Jf+ZDF6ojf3H1mmqlH9p2Wownl5TGrHSCAWuUZR/UV1gen/LvGPRr0+GjvHcPtVWJy/Gi4y2FtlZHTop5Q5nb8nNbxO76/lAGqmV1Qe4yxdJ5hcWGMxR9iZ03xmptaDAscVFWRkr/SGgTPBFKjlT/C4h+Bsird13FUYisTEFnBN/Ubut8CPTt44EAl72IiabxikA6xBbT06/8FnvkqQEGxmfRLxUjbxS/qxRqt4VllOv9Xbmwq+W1xvnFJ3x3DVXUl5x/jdVfVlEUatU08o1b7CyCVTmuaQatct5ioYvhqjgU+q8xWZbU1PEix667zE/z3L63XT/AsrQke5BVw5OS1M8vswtkR8JeYv9L9qaZ7S/e+khS6nwSuPcHuDWkgi8UpIE++TUkTldFL+zjdfAoMBKzhtUvFxE/f53W8H83hNf7FIFe1wR4G/nXcuCTbIn8iUFPXJTb/HM/C1zwImFUzqV13vQF+7d52+z9yx1TCZ9cdU2z3Y3yCC7zsS+TmVL5d1zzHniPbWFJHYLe0TfVM+BKvia1+BbvuGn+JPQfAa9C2MJD2GV6KxcmbvHfM00vy4zngDJYb+CoMfWdjWPkT+PYfXuWj3XdQgu03GZj6Q7EMUM0MgFxsDYWuPR57jZc9+GB3yPs7WHOSCGq7c45u2AL/khO/vvr6ONFHWn98aiDgFOpT94SI4NqTMZSgvD0hR+zK4c0bDtiw0vIQuAF/OMIc5xXgDN6vwqXn4BrM+86v77DOoweYw/oIJrlywn5q0SUiT48Gn/HLhE1UpUh9OiQumQ7ogjApzS0yI2BJmWP22SIgZunGGhDzhlYiVSD2k0pAF+S5ycuEMdWcvuNl6UaiGVvEykolDVBgRp8mx+WQta2IP/weeIs9sE+gf3yFxuEhJ1dyFN4ufUfVFbxulWNHnF02ILnlgE0rLF6ywYACMxr0nA7sjK1on/1wKwFAt9ijT5M2rxM26jFlttlPgOPteJ9qMEpkEg6COnkWpvPIiGI8YxRUeeMYeKWk5W1mmV0sK8QzZmyQDyImlSBhjc5rczoYg7Jcn9ALGyxcaX+eRSIRItZ+sITa3pzTGkzaq9S6c+ot14iuApOwTDmeECzPmIUFystjyqHdb0VOCJZnxLnL5OenHNZWqfXnfN+oJQ31qJ3xsnSDm9NX/Hj5K3Ix3Fy+4nlph3apQ60/52SNJMk1LxkYW2ZCa/yOk7UV1nunvGut8bTU5nb0HICVozPel0g0sxerl9mafktr1eq0ukGLbxsBH/Xf8d7JAUShNf/rV6AcO8bm8syy8LuwwTGTygqT7ZCre8eJpEFEnv1wiyY9WkMDqGf1ywmgvDqG1emceQkWpXwiW7LBgCZ9DsI6JxRhu8eADSfBYMzZ7eFbHtbucbLWI86dEoV5crmYPg2KuRkfdIacrhuzdBYWKdaPGVXWCNfsuTQJyxRzM2afBLyhxZpjolIfUeeAb7hNcfuELtfZYEC3VqODMZYbrhohPz+lX6nx+mgD+OZv9x85s8z+OmyJ18VT0xOxVAVcPsQW0lqoa4EvdqUac4i9o27OOs4etkBOMzZv4BfP4FmuAiHUqEmLd5WclvAad1okh/jyWYEDOWxBfwcP4qqkU3p9AjVaeJYVeCBUC2Zp+qtZE/iFeDd1zDduvNJa1LVIPkBsqhoe6BQbTvMglq6YVsvUdgJge+6axN56iAeOtfBPa6q+cdebw3e/lv5hz23zJVY9JcmEdOlyPTUmSUGkm/PMsRLeGjiCf2aZXTy7jpeveI39r0uerYP5qG3Mvz3BMylfY4ClpE7WMbDwyP0tsFT34zT149bF3Mf8yM/w97ySKCXgJ9h9+Mq9v4fdb2qCdQcv96FEWForVAxWaZlq/DqXmqNK9/N3MVa82KWqWBB4KF1ZMf3v4f2cpFe0n3yV9jvCP2+U4Cq5a5fkneZMjage4xvlCdxtcR6QlSTN3H1PHTyrdwcvpZCuAlXS7F7q3Goi2IBLAqKXWNVCH8hDTuNW1UMN5ndgtQMf7b2DVWOpPl67gX/oZXaRLQNUM0vshCLffnbVQYMRV0pzohB6patslAZJs5BlEHBpeQo5R18/gqOWNUcZbNuCv1npsT445dQJRh/dsc87tHlDizoDTijSoEfIgg5t4kbA/+Q/L7qy+GUCWk4o85v9Z7zPWUflUWWNMI6IgpA+Df6jJ6+gAV83PiImIGBAj6brNp9PNFWfcpcWXSvFdXqIC/IJADqi6oARAySfcpf7PGZGI2HSWjMq0+aTJmGfpmtm1UzYrx02iUsBM4oJ4PomqXeAiJAqhwD84z+4wYwCZSZJ06oBG5SZkCckJseCfLKgH7BBmw5drtOmQy6OeRHcIgYOqDNgI7mmARvc5AU5Yrq0KDDjIPwMsNL9Ogfss5000ZlRZEFIkZnTUrQy2y+Dz7nJC0ZUGQQbiR6hZAYKgc1nmw4RIe8o44VyMsvs4tjz4BNuYQBdkRnHlCnSp1e6SkyOJn32wy3qDIjJmXZw1CdYnrG6B/G9gGvdMd+2rrKxOqA0OKMWzZnWL3O1c5wEydF2ROH4lJO1FZMQKF0FoB0ZdahT+pD29Dvi3GX6NJk0ZpSZ8EFnyNt2hfp8bKzzkjEki9GMx+F97sZPmQVFTsM5hWMD9CYNS3Dl52ds5AYMKraqDurmU+5On7HaN01slnCpCysNmFRWuTKc87R2g+fc5i5PE1b7t42rxI6NuRXtc2v6HZPKClEQ0im1KTCjPX4LdTiorRGwJCbg3fYaxcj0S5vTd4xKVfOftQpxLaA+HVLOTZiFRaLWkpgcVzvH1Bl6QAOoTsfslz5yys7mIx+Gn/HTzp9z1FphVrrMFvscBHVavCUXx6z3Tmk3HTVrDishbMQDlkHAXu0aZY5t++lbJqU1DoMqC8IkkbTeO2W39SG3ht/RLPX5KnzAbb5Jnldb7FtCL3LSB6Ua9emQXyWUjswyu2D2KfASr4MKns2pxbyaPkm2aJvzgKmYQpt47c/r+Aak9zBm0D18cykBsuv4BkliRGmhDx4gVMfnlhvfrjuONPMeuPNK01MVPmquNMUW4wKB1ThqB98RWk1oxKwVU1dMzusYSKuGLSp/7bhtBTaClxzQ33U3x5IEkLagPhdYscP5xk9ixlbwjU7AA8cDvHajrlvgidhxkicQICogWl29BaroOJrnn+PLasG+v0epY4L/zlVqvCCzzC6mvcR820P3t0rUBagpofEv8Y3klMSR9ugYAyLBJ3CG2P0osG6KNWQWe/QTd0yw+0iazLpvleB47cYitqqY6Y/xTFU1rFOz5008WKjGc1q6iRG/je/bUcP81D/Hg6j6TLqqNcw/PMPLH+y57T7D67OqFL7BeeBziCVylLwZAv8Jpj36Bs/8TQO08tdHbhxi0ioJN05d42t8lX26YZWY+lKrE6C9m3pvCEe7sN5KfdZ01yZphkN33l/gWb5jWF1z4/iFzfvqA1irH5PZD8MyQDUzANaHSz48fsXpuul7AHAEq3P4qPHO/o7OeLe9ZqCAc+IrzpmsPz6FKeS/MGYRGBuqNDiDGArHp+RiyJViHvDINFMxJlHDqU2X4wmToEyfBmtMEkZnkRlH9RWCZUwU5nnJTR7Mf8WsVATgL+/d4Lp7AhywQZVDWnRpxr2kE3SeKGkC1aCXgIZN+lQZsc+WG0+QMFE/4yFrjp+mMtwRVZr0XGl9nphcogHY1HVwnOgcWhOYOGlWFZFn4vRJ1ZDGSoUN0KwzcO8Xk2PMKJAHjt2xTCqhzogrVBmxOX5Huea1UZv0OKSayAy85BYzCmyzT0SYzG/A0phgGOPqhCJ5FoRErDHhPo9dt/EoUUfcYJBquBUlzF7pHkaEDmTx0gGZZXaR7Hb8NQs2CFhSjUaUcwY6Vo+PKVZOmLBmWpnxjHwQEZNjFFb5YGCAX3U65qi5wogqV3Ij3rWKTg+1QbU94qO9d/y323eoc8DLyq0kMfNJ/1tOQ8jFriJgG0alChF560yP6ZqGjQ4BMS8rH1ljJacJPQsLJr0RBOZfK1jZejzhMKjSKX2YyHfkWRDGEfn5GbPQzrO/vcVPdn/FaQO621edRvKSRc185N/jvzJws2sB4FFzhcOgyla0T5wLuLQ8YxKU6dDmOt1ES/Rde42N4THdWi2pWggjiHMzVrtQ3RlRjmyOR2GVMIL9kiV/TiiyNf2Wr9sfWQJoOiTOXSYK84xKFW4Pv+V5zUDVdtyhEfQ5XTeW8I3uW/Lrx4wqVeLcZQ6COr1WznRdx8ecNox9u9475agJ7eO3dCtXE5B6RJWR86NFTugFTWj22Ol8x9AxjjdaA/o0uE43SWLVx2P6lRof9IdMGjEvSzf4/ugDDDHKLLMLZgGewZTu/NzBWFd/hAcS1FQzzYQU21Il6Fr8g1+oD/GLZJVgrrv3VYIu8GANDxaO8eX2Yol2U8dRaW2IX/DW3LHFaJK+p/T6BFSqvFRMzHU3F2pWohLSR/gyX7GsBBik50Xl9GLd3sPAhkcYQLHpfkuPVSXAYmm9wpfwgpfCCjAQQeCGuneP3TwG7jwCScVUFUOsjgcCPnfH2MWAVDWVEeigzuHXOf+/UHfnkYyAwJwVd9w9N6YauEdQZpldPPsMu3fEhpd+8ifut4A5/b8vMVblQ3yCR4kNaZU2Oa8PCl4iJd1ELn3vKwEk2RGxyyuYzxOgKBMTVPd7Cc7leJuYPxSbfx2f8PkCL2MSYz4qrYl9x207dueWRuw9vK7ptpuLlpubQervT/C+bI6XfZHGrHS26+4zgZK63jGe8T/E5GmURJMfVDIvcGPbwfs1MYT1XcB5PWolA/Xc2YF1JZHSTb70+rrb9zqe/atrXYfhJ6vUtudJA6ztSVby/0OxDFDNzGwKnOCD2BpekF5lPQO4ujxm3jLaeqKnEpCUH1x9dOyz6wqqpw543YF6bUAxtnZHwTKmOD3jsLZKlRGHgXWjX5BPAEfpfoIttgNi6gx4WbpBgz7LlLZpnoj/7vDP6dUqBloGxaQxyd3oKeVwQi42hq1pg54QsEwaVAn4FBC7IE99OmRQMnqElcMfmrZhGCflpwC/Hf+ZgRa06dOgziDRZQWs0zQTNuIB1WAEGDu2zoGVBxPzMc8T8Pc+f5E0XmlN3zIqVZKmLkVOaE+/o16yuTqsrTopg8NE8zRHzBb7lKfHdEvX6NNMSvQBZhSScuUeTUL3VFDTLjFkq4yoj8d0KtcSXcCia1dVdxoMG/Eg+S6XAXQq18hnItuZXVArj5dcWrf/6dLDM2hZImlZsXRGyIKNeJ9e0EwSQ206MITv79UInKRJlRHBMmYRWCOlFm9YkOf77RqBo1cFjl9ZYMZpaJqnyyDgCnOqjLi6e8zRjRUOAmOe342eMgutWVydAcVoxvPwNi26lKNJIhNQDE8oxsYCLUcTmvN3dEvXAJi5xEnh+JSVCMI44iCoc50u083LxLmAPk3Xkm5GdWq0gTh3mUkY8nXrIz75+besR6fkG+8YlGrkWbDbMP3kpWOthixYrF5mQZ5ercIH3SFzB7JEIeYvdyy59NHgHd+3aqYpDXzS/zZhwIYRzEoGrAIchHWKnBAT8K9qP01877XeGKJTvt+uEbKAKSwal933cEYQxjSjPvn5GZe60L1n2q+npTPWB6d83fiIVtwlPz9lUlozkJaOa0Rlz55lEPC+dGoyA8yTJmB9mtwefmtl/5VrbMQDTkMDtPfDLWpZg77MLqqJkagySwGbYGXgAjeXeC1NAXjwVztJi+0JXtPvNQY8iJVUxxa1Kq1Xc6sSFm+GqfPqR6wsgRbSSlVpZ7rZ6RHGWF11+4hlKxBVjbDU5XodW1CDAQrpRjNaqIuJVcEDA2KgpsFPaSv28U2dVvGLe8kR1PDgqxpBqaxeQKaOo9J+sbXSC/nYfU+4zyL3edfN+4DzOn8dDAxRsxk17ZL0wbPUuCVbIPbsZ+4YAoPO8P8HObdvWgc3s8wukv0RsIVvllfCJ3Qa+P/1e27bMV43VH4zxu7Zz9x7zzBf4bTaExa4/JKOKz8H5l8kvZJOIN3gr7JLS5ivU2JIAKN80wD4127/Aeeb6glI1XJOmEAOAwx1Twt4bLmx7QH/Bg+I7nJeNkVs0PRn8pG/wDeuq+H7hfwzfMILvLZ2gMmJCBRV8kdzFuMTPV/jWbukrleyM0/w4GsOD573MeC3D+8fw6UWvH8Gl8T61dh17gm+MaI0t10Tq9rUyeFpH2mKZ3bhLQNUMzMrwbc3r5q2Rw2vYVKzhlLXumOow7ttK91cDebmXFxG7VIMrMHpdVjpwPDeKrW9uWc2RNaIpEcDAis3PwmKXA+79GkmHapjAg6okyNOGix1aUGABylYMqFOlJIEEIP0sLaalO93aRGwtGOFVWseFTS44kDaPBH7bNOi6xishywIWR+c8rZhYGy+tCByZe19F8WOwivJORfkWRIQO5D2Lk+tCZXrDv6Uu5xQ4Mf80hhPgV2T5A4EXMbk6NNM9BPFlB1RZVEKk0ZXYky9LN0gICZPlHTY3mDAgA2AZGz7pY+YUE7YsZobwEAHSMr2X3CLOgeJLuyIKi+4SbdyQtE12AJj+L6hxaEDlCdBmXIwoRweU55m5QuZXWzr1OoMgpvcDZ4S/yRiEhjoJwZiizeUx6cUgu9YrF5mFhbJxTHUDKzc6XzH23aFA+r0wyY3eWHN7IZjLs1xTZryiZZ0OZrwZfjfo1z51wCE0YJlABvDY6ablzkMLCkUE3AQ1lkQstP5jmnjMgC3o+cGGC5hUKlQH48Jwpj1wSmFcMw3lRs0wj7NqJ80fyoyY1RxzNHAnHgrtkh8FphvEiN+dQin6zAoVRMZlaOfdCmPT9kvfeT8kDXvK8cTjoMyt4ffsle7RhDGfNAZQgDT+mUmYdkx960J1+b0Hd2aoSuN8ZDF6mUmlRV6QTNh7gNJ8mZUqvANt/m703/Dy9IN/m7035Cfn7GsTDgtwaJ+mTwLA6wDeBHeZIMBce4yx5T5aPyO3caH1CsHJoMStChXJok0Sy9oMipVichzi5cU4xmDoM7N6StWp/Ys3KuZDx62jI7Wnn7HpLRGt1ZL/PNBUIeKJZuu0+UFv/G39w+cWWZ/nfYn2OJZoJoW5TvYAlUNqMQQEnOxjy1mv8FAgh08eNDHg6QCGqWzOsQWumucb9Qkls8TfJmr9le37DV8ibsYTyrLD/GNtVSyLuBvEw/2qomJrkN6sDq+dPbUOXsdz0xdTR2nhDHFxMoCDwL38Hp7cL6xV8XNt/bp4AFrLe5VKixm7K9r/gn81L7T1H5qSiVw5iF+JSjgVRL4KhGuYaW2AmtiPIvsNR4I/tPUHG4CeTzjVo2tdJ2ZZXbR7EO8RIl8iJIMIh7Jh1Ww+/8Onk2fw2tDg91n97B7RKxQ+SUxTXfwzfZ0X4ohWXfbCcgVsKvGd013rEfuGG0M2FNFgJJH6xjo+iWmxfoVnsEqtulrPDDbwzP7BU6+xgOKS3fd6nAvNmkO81Xyt3/sxqsqh1U8qKxrFHu+48apJnx9fOJHJf1i7R6582uOP3fnfoBPdj1ycwc+IXQPz8zV/AiQdqSw5ZewUnJNqMQM7rp9JScQYckksW/v4X1rDl85sQnffKxOWZlddMsA1cwAmBfho+47r0MlanxkLCp1IZxRICagVnrL+7ppmq64rPz7EsQ5OLmzQhgtEu2s9yW4hJX3j7jidEvtX+8NLfbYSjV2miRl9DE5xxJ6nTQx2WfL6dQtHLu0QMNFpXmiRKfUGsVEibaeQNFt9unRJMZYWGUmiTboY37ELV7wbeNqMi9ikg2op8DccsLQHLBBgaUxuRglWqu90tVEn7XOgMfc5z6Pec7HbDAgIqRLy5hlHCcMqJjAjdc0VrfYZ0SVHDEzipSx0v48kWPYGqvWZAQK5IkSmYHrdDlw4x5RTbRfF+SpMqJFlx5NGo6VWmSWsGU1Fpt3u74RVacbaaB32z0ETLPVvttWqUsz6vOGLchYqpldQCsyp8hrNobHPKzdI0/E3fEu31RuJP/zs9JlRmHVJYKOmQRlCqUheSKmjcvUx2OuRWP+tPFbvKFFgz7dmjE5q2NLOoyo0qDnGjoVEs1WQsjP5xzUTGvUxnRCkz4D6iwJeNuu0KPBdrxPFISUl9ZQKSJPp3LNJE0qM6IwTzvusN495ai1kvhTJWgOa6u0YpMJOAjq9APzEWt4kHFeMyDTGO4GRJr8Cnyy9y3zhrFXy8tjRqUKBWbs1a45DWzotxtJI77n3OY+f2HCImGeWZgjIs/bVoVyNCHOBcyCIq2oy4vwJkVOyFV6xvwvNRMN7F7pqjF0p2fJPI0qa5SnxxSZEecC/nLnBgBLAkZhFYBXjWsmtcAtbsfPKTNhGQRW6RBNGIXVxM9LzqTAzOQSnO62GPmd0FrV5ksLZhTIEVNl5JJWV0znOmg5PyrEI7PMLpYd/ZewXoX3S1jG0HNgwIct6HWh6bpGH40h51YUyyUUVk2jeDa1v8HeO5n736fumAAFy9eSy0HxF3DqmIzafjiGcsn+Xl9zv+twOoVcAJdc8n7Qg5WcP3atYq9Xcn48k6m9nwvsdblk++uzXGDnyAVwEtn4T5f+vLmc/a7XbZ9CaOfSWI9+La9cWPXHXcnZ3+lrywV2fSs5PwfLpf+t7TWelZy9XsY2ruEUPqjZNbxf2rlOImi4947Gfs71HRUb8H4Ml0pw5EK109T3pO/kJLLfk6l/f2UdiOFokDpeBd7PbTuA9f8lUMYDtyqJzkr+M7uodh37/1UyCAwAvY8lJsQgV+JEJfDaXjIo0uoEn+jQmluM1jleC1rsdb3XwoBIgZ7SWk5ri6o0X5Ih4EvhnwH/AM/I30kd908x4DXCM2sfpa5NoG46OfUAn+zCHU+apQ8wgFN6o9v4SoF7eLBZ2qhioXawhN0cA6HFjFUCTlI0Y3zSBre9tsVdV8ddk0DdPgay7rqxqaLiT/DAboiXL3hFkjBcWYf3u+bn1sWKlaa1vidVDjzCSwFI+mWAZ/nfge1xBqb+UCwDVDMDYFYKGa5fSkrKr+4eJxnxq8Fx0o2wObUST44MJF1xGfD3ObjUh3j7MuXxKZPKCpTOmNYvEyzPWGyucLV7TLv1mhOKFJglbMq7PE3eO3GFpkVmSSn6koAiJwyoJwCjWKUCXW3BOrHFM1f4fPrnTEprzCgkXahHGEvVStrr1BnQxsZT5CQp34ycvmpAzIANejTYYECHNh3ajhPbTVi0W+xxTJmRWzS3ogWT0EBdXWeXVqLF16CXAJTfcJubvASgyIz7PKY+HfKo9BvG0BrPGVTqRA6czbNIylBD10BrRiFh6t7muV1zPKAbtGjSNxacK9+XjMCMIl1a7LPFxzynzoAyEw6p8oYW6sBdZMYGAw6on9NF/Jw/5yU3uU6XNh1GVI2ZyyGDsM48Kv6t/w9nltlfh1XGU87WL3FpDi26NMZD9isfcnP6isXqCgCl8RlPG5YQudo55lX7GovVy2xEBvL1agYQfj7980Tzs4A1WDpZWyFkQTOyLvW17pz/uPVfM6NAYzwkzhnTNCZgY3pMGC7YHL7jRe1DwNjtATG/0d3l/Sr0ak3C1YiApdN47luTqukZsCBYnnk2a/wcIPHRD4PPaAY9bk5fQWlk4DBrtMbvKFZOjM1eItF4JTrmqLViUgJMeF85s6aFkZW0l6MJ+dAoC29oEZOjwCwBIW+FLxKplNrenF9t7/Ab/V3e50wGAKC8nPBV+CB5LoAlwiaUAbjJS1rjd3QrV3lau2HyMOGMrWif1Smm9d0u0o4tUJ0EZdNuLeFg0hz3p0+YlVYpTufkOSUu5SgNzqi2RgTEFKMZpddnsArddsjW9NtEBgBMfqbMxAD16TFxSerWATd233LaeEu/UksSarf+Rv9jM8vsb87W//f2+1IfVipG0hJ7sylt0TqsS5NT2nROPqqorvduYb8SADdcIn6MZ56qqckq8AWs/At7veJAg6ZrKFJ0515xklIrKiN1Cfz6HrZ4jrHFddOd05XOF3ehWCPRJFyXvukmFJ9AUQv6B3adRTFDx8BPXcz7GoqOHVp0i/qVCqw47dC6ABEBKXfccZZ4Bu5P3PZrwLHbR5+rkZfYrSG26M9BUeohfVi5ByuPDByVJMKlHKwP3Pfhyv/XXROWlVLqmG24NLTrXldjHDWxemDbM4aiA0fWBRroO2vAusAM19jrUs9t13DbfYln9w4wVtYlMsvsYtoHeP1nSduB+YdN7L6SDqqAwj08IChmqnQ/ZQLd6u5vgY9fYAAr+DL2EPNtD9yx7+DB1T28pmsO7ztUbh/gtUF38SxQyYaU8L4z5QMTAFTgsK7nIV7qpI/pl8Z4/WgBvPKpP8awBEkU5PAMec2PZAMkBaP5VGm89Jo38drZcepcaWC5gQGnHXz5vt7Xtqpq0Hl7qc/TVRW41y24VId1lfh38U0K5Q9VOXADD9a23Paq8HBz+q5yBVyD6swutmWAamYAnBLyDdtJh+h3O1YOeqkL8wqMWhXyRKZBSpCUaL3fsQ7OMQH1YEwvbLCRG5Cfn/J9u0Y5nhCFxg6d1o2KsMcWGwxcp/oWPZrUOWBByIwiTfqMqPKIB/zYtVNs0iNgSZeWlbKzxRoTFoQ06XHABhO2EwbZl6XfIiQiIuRxeJ9t9lkS0OINPRrEBHRoJ8CpHT8+x0QFK4tfECYgQN6BmCOu0HcK1vtsU2SWNLt6HN537UxGBmwwo0nPsXtzDNhItF3BWL8bDPgzfpuPec5BqZ6U+3cqZXLE9GkmerExuURyYEA9YZttcMCIKgfUGQVXAIhcmynJJfRockIhYaDe5CU5Yno0yDl4WgxXzQng2HMnHLsxCyzu0OYKIw6djMCCkB5NZokgV2aZXSw7WcuRI+AvWyarcVAxzc790kfUGTCiymEjSho8fd823dT9cIslAdXQStU7YZtqaIzFPk3uT5/QK11lFFTZZ4ub4QuqjHjXWiPv6qZeVqyE3iQ28ryofciEMqOaSZhssceSgOd8zC9bZa5jkinlYEIxnrERDOjRIGTB09oN8iwYhVXuRk+JgpAB5lsOa1EiK7LHFlEpPOdTTiqW4JJGbJ6It40KxXjGYVAlJmAQ1jkIjVU7CDeIw4C70VNycUwvaBIRsiRgwAZPg7t8FvySgruuGUWG2zZ/v2rs0KRPMZ4xC4p2HQw4ocgeW9wKXlJwflqNor6p3HDN9AZJouggrDNqWHptRiHRrp1RhBJOl3tGwDJp0NUvNRMGPy1jDccEBGFMfidKfG2n9GHip2dBMQHZR1SJS7nkOXJAncHORtLkzxJ8Vd5yHUOLMsvsglkRqOLLMX9dL06ln+DZQVM8I0ufaUEPHiQIMZYSeLBBZeYPsIWwANII0x3cw9hXQ2whHeHZXirBlaaoylmf4NlJYjJJb1WlsGO3reSuHuFLeFXWupvaX6DhjhtPuhGX9FebqWN08U1mxODSOHUdAjs+SY1Z5f7gy/5LGJCi17hjPsR3CBfLC3wprICKIX7hr/J/ARxpUHeIscQEMODGtI6XE9hxx5X0gDRvHwD/Dt/U5YG7pu/JLLOLaY/x3eQlbyJATz5P/+8lPDNSsiHXMQBPGqICG5XIkD8QCPcQr6kqCZAKvvmVutVLy1WJHMluCCC8wXkfIhDUJZIS5ugAr18q9muAZ59GeE1t+UXpjsrvS1taPjUNOqvZ1iae6SpwV+/N8T59DZMfaGE+7U9SY1CJP5ifrbixlPCSJ3v4Z5D0TtPNqQZ4OZS0lnUf83H/DK+v/Qov5SAWcBowFiu1hvWjmWPPhV3880tjGWCM3BBaQQam/lAsA1QzA6AyPWKxbuWP1emYYAmXXPOATulDWlHXMZ5gVlvwdse0+mQTyuQrVoZeHp9yaQmFkjWeKo9POayt8iK8mWh9ggdW1bF+iz0OqNOMewTBkt/mz2jR5Tm36dGkyiExOaoc0qdJgRmhK0Hf4IDIAZ8ReQbUuc1z9tiixRsmlHnBLU4ocoURbTrss22arlhp/xZ7dGgnjZtGVB2gmk+aNWnhLAbtCQVr8OLel17pC26RJ0oW6JIc0DZijbbo0qVFhzYNxyzbZ4s6A1osqNKhQzsBAzq0HaSguRhRZMZ1ugzYcMfOmfaqkw5o0WVJkDTVKjNJyo07bCZyA1cYOd1ZA1N7NGnSY0lAnYMEgPFarFcSPVYwncPH3CcgppJpwmR2QW0UVChzmTUmtMbvOFlbIQoMFRAguREN2GDAJCwnUhjGnH/DhLWEmSlJjgVhwnCsMuIuTwG4MpzTq1WYUeANLT7mOR3a5IloRv2ECSkw1RJIfXLEHLtqArDECYH5YSs3f50kUgJia1YVBhRcwzo1jrrL06Tp0paL2G/FLxJgMwwW5FmwzxYBPYIgJsR0pfMs2GKP1vgdX1Z+05ixuYBgGZMPIlrOz9zkBW9oUYxnFI5PoTJyyawiMTladK39VVDgRuct7x0AsSRIzhUQU52O2S9tcZ/HDByVoxjPyM9PWZYMuNxwz4MiJ4m/rjKiT4MZRRbkecpd7vOYPBHleMIsKCbPDOlSD9hwV+i/d32fXVruWTdLGgsO2GBr/B1U7LlhjN0BB6HpgReS1UNmmV0wU+mngIHY/agkUiDjfWxRKaBtE9PISzePUldm6a4KtAvxi1qBkgN8QxRXHskethhuup9H+A7P0jG9lzq2wEHpsKrJS4xnaDlpq2QxrEU6GPAAnjl13V2fym/VAKuJARdaYEv/UGCImpOICZUuX9XCvp6aqydu3GndP4E2Gr9YX/cxAPOhG0fXnU8AToxvxPIzt5/AkjZev1FNaMRY+8R9rrJfNbMRSKP5TTO0foxn6cWcL+/XdxCSWWYX025iSYISdh8ssXtXiQ8ldpRUEHCnBm8CWKVhKsakSvilnSpfKEZ4hNcsBgMWxXJUQ6eHeLZ4momp+066x6tu7Gq0pzyvpAX8st7G+jV2z4Z41qlkBKbuOC08c/3XgVIxStMsUgG46YaD0ugWW1a+te5+vsQnbEI39k1MokBAchsDmTWWCgZqgvn2bXzjRGlig9fK3sGX+ffdd/HY7ZNzr3fsHJKkWaml5r3mrjPvft5gPljXtYP3j2rq9YbMfiCWAaqZAbBYzSWMz5NSkdZwCHM4urFCM+5R6p5BzhpLAdTHY3IuU1eMZkzCNYrTOYPSBvlaRHk8p9adc1qCS668QSXyXVrc5SmPuc+IKrd4yYQyb2hxTJm9YIsmfU6YORBwRJfr9DEtPsCxlUyP1RbtLxNW14wibTocUuU23xASMaPIFnuJLmCfJhuu0UmZCSducX+FES+5SZ4FN3lBkRO6tHjK3UR3NCIkIObEsbdsIb5M9POsvP/QSQlYM6eme9JK67RP08kLWHMaKx8NWZB3AEOR59ymzoFvIkOVbfaT4w1cYy6w8loByirBn1Fk5sqDTQvVQIZvuM0DHhGTIyRKNFMF1i6dtEDZSSgUOeHEzZuYtQM2DORgxIZjif0Zv+3YvTH1TD81swtqpqF6yf7XK6uUx3O6lRY3x98yqNS5NfyOKIQwgklo7E1LuvQJ44g4MHCvGfdY750ybK0mDffUcK4cT1h/fcppDa51x3zfsvov3WdFTpiFxUQCIF+KKE7nSWOkj8evaK91WAZBktxp00mSPe3xWzqVa4QsaMVdFqsrTkrlJKk0KAcTav053zYKtHjDxvCYKITVLuRbY1anMGmQ+KRqNGIUVhOm/AkxH3w9ZPjJKttOimUWFLk2GFPinZX77sxYH5xy0ijSC5q0c98RRgvK4YT6dEh51ZpOzYICrelb3rYtUSe2f4suH/Qtcv268RH3o8fEuYDb4295XvuISVDmdvQti1JIizdUx6YlO2GN9vQ7RqUKV7vHxK2Au8NXzEqXqYYjrvXHfNu4SnP+jvXhmGvBmLetCs3hmIe1e9zkBftsM6DOfR7b8xCYVFaIg4Da13NefVJlK9qn9OyMyQOjsF3rj9lvbHFz/i2Tymqif13JSroyu6imjtNreNBUgKLYPV+4bcTgETCpMs5l6rXAU4Grr91nYqK+xnexx51nJzWOn2CLaIEQYhClQcFVd5w0+yrCs0gFNgT4hXu6Q3Tg9tEiXwvwJ3iAUdp+asilRlhiiwkEVZOWCM9YTTeF2km9FqtVjbIEUGheNfcCWwXWqPmrWLlqThOn3gMDBDQGleXqe4jxrK5P3HWpjFjHdBICyb7STPwMz24T+NzAAyNi2TbA9RnMLLOLZ2Ja6/67gfdJYH5JJe8t7P5xxKQEbXmGv+c38Wxu3c/ylzLdO+tYwgL8PSoJDzFZQ4zJKZ86xRJRkTuPSuiVFAswn/WpO778ic4hpmYdz+j/At8I8AHet4EHLCVL8gXeLwlwVsMqjV0+eomXElCZf4hnx4sZ+8qde93t+wDP7m/gG/PJz+GuU2OQBIIaUTXde5qneWq/JebDPnPbCBitw4pkAJRUFNA7xBJJalqVlmhQYguSpFT3H2Ul/z8UywDVzAA4CYpUOaE8PWZ1CO/aa1ydHxO4jgHD7VVicswo0Bq/Y2UKw5a9V4xMI291CoNSnVbUpV+pEVXyNKM+ucoZxemcaskKNsEYVWomdUA9aYZkZfAtipzQo0lATEhEizcMqCcszS32yBPxkluuwdN1WrxxDLBDco5pBNCjSZ6IDQZJQyrTHi06BtMhj/kRYDqma0xcoyUDRsSGyrNISjhnFJKyd4A+Td7Q4gojIsJEi1ZlweoS3qKbaJ2+4FbCqFoSJExY6e4Zc+xKUoY7o0ieBV1arix/yYLQmFZORTVg6SQNDCyVVAEYMAKwxb5jbFkjlRfcZJt9CpwkoOlzPiZHTIM+j3hAgx5dWgkoc+yAbjBw28Bfe4qGRByfa2GbWWYXx/JxRHW8ZFCx+35lCo1KjzhnyZfD2qrpBZcOz/mzD7pDhq3VRJ85WMZM66ZdWh+P6VSusT18y+vaVfJBxNfbLUtaVKxB3t3YyvLzkGh1ditX+WjvHau5eSLC36MBFbvvru4ec9qYU88NWayu0KTHrfF3dGsG0M4oMguKBCwTzeURVcqBpe2HjVVa43csVi8zK12mNDhjunnZfZZnQplW3HVNqPIuoWVNBevTIdPty44NH9KOO0yCMu8aBmguGiENekwrceJz49xlOmGbBj0GpRoFZnzDbbbYT0DfOuOkYWCBGa8a19iILWmTn58xqhTJh6de8zqEVtQlWJ6xX/kQNQ58VGry+fBXMIXmcEyvVqE6HfM8vE3QeErIgllplTi3IM4F5Im45NgV33CbwPm/gDhpQlaOJ9yNnjJvQ2v61jZuWEKLCnz06B0PSr9iZQhX4jnUjKmfd743s8wunIndlGZgqVS8ge+qrIXwHGOmqrnHJ9gisoEt6vcwYFadm/X5PXz55C620BUja+rGsImVgAqUFFCKO5aYqq/wTMsd9/oRnrmaZoSphFdAKZwv4d3EFu+51DEFcmhxPsYzXgUiCiiI3TjfpI6f0tBLAOROal61MtNiXKWwki2o4WUTBEYIuNjGl/erfFc6pum5UQdtfWdDvMwC+MW/wFMBDwJnc+5cc6xLtxhXU3esPQxYEBtPEgO+52tmmV0sE8t9iN2zYrA/dr91j9aw+0iaqB18M6YcXlpkG8+S1z3ZwzMzleRJA3y6n+S3nmD3pvRR5Vt2sfsZ9949zCf1Md/xOT6Bo4oBMSynbvshXs5D5fqSHhDDXpUHqiy4gwG88vnyTdJovoM9B8SW7eITNjU3pgAvabCKb7Al/7fpjv/QjfsB5scEuqbB1PSzIi3DErhre4BnyP4idc2/h/eP0sKVvEnTjU0+VM+hPQz0/ncYRqpkknyfqjG6JBUJrW8yMPWHYhmgmhkAze+O6N39kKtTa0Z1tX8MQygNz5juXCaMFnRCK7OfVFYpO15/dXzMydoK691TGMNPlr/itATl3IQPuqecrsMygNUpVHMjojDvtEUD+jQSZqlAxY957krSryRapqFjpRaZUWbCgXtKVRnZQpw8PZr0aXCdbnJNdozDBFhVySdARMhdnp6TG8gRJyxRsb0WhPwWXyYA61Puche3GKeYlNe+5FYCrsoWroy0TYcJZeocJMDqmgM5paNaZsIDHjnJgQOuxCM6QZsqhw5sXtrcU04YrJqfE9dIq4vvKJ1nwYgqn/MlXVpJOettnrsS5QM2GCRyBdboZmnaj7QJHUPVg7GhExCwjtZpeYMRVTq0adFNJALmnP1N/atmltnfqJXHS/pbNeoMjDnfsnT5QWmDKodOICNgQcg+2zTpcUKRb1tXyREnuqa9sEGVESELRpUcI65wUDtOytHFvq9GIwihFzQJWCYAo3zFYjukGfdYBnZOJVgiQoKdPYrTOZPSGi+5abqitYHzTXafg5caMYZ8Mbmvy0x4U8knwHC3JZ3R2Ml6VBkFVbaC/eS+P6ZMO+7QK10ldtIBDfp0A2u8p+0i8nRo0w47rDEhZEEvNP3qfba9HIFkRII8IQu+qdwwCRkinnLXdKUD07Z+WfnIfGnpgDLH5FkwKRmAexLKJ9oxc8Q8r31EvTagGM1cEmzMA77iDS3qDBiwQTPX43lwmxZdhi1o0CN0MgfyhzfDFxSY8RfBfW4H31CdGyAdO1bJxzznz/kcHjwlR0y1NTINXTevX/EbwL/+W/wvziyzvybTKkGhVbpTdQdbZLbx5eYCMdMgQQeviXcHz27dxoOqv8Q3FBGQF+DLX2NsEeuaMyXlowIdVcYuVqe0XjV2V6p57roEAN5xn4mddB0DPLr47tbatoWBkuoWLR1VgaUax7PU+PTZa2wBv4ZniamcV2WxKq+/j2et1fFAjoBesVV/gtdOLWHA8WbqnGKEibV2HwNbxBbbxYMx6c7dKv2tYMBIWg5A5b8hvrFN7D4TKH4fK9NtAT93v0POlxRnltlFso+wJIE0Qx9j96SaF+n+HeLZnwJeXZO+hG0p9ruYlaE7xhO3743UPnPMZwh4lE5oDw9oRqltwctwCHw8wje7SzfIWmL3qbSdpXUtuRLJfrx2+wswlQyM7vfQzYeuT9IlYu/rOVLCfOAuBpQG7uc1vsHWGzxTVlIjAlfb/FVfJDa9klPpxJWY9Xo2/Qz4N9jzSqxcJbGabj8lCdVI6hnm536eOq4qBsbu3GLr/9J9B6up9+7gn0vyrZ/ZefYq0mXI7KLb5X/fA8jsPww7up5jp/sd75WBkzZMDYrTM4LlGbeH31p5+njOytdQ+3rOyhCWQeADpci6oK53TxPaf79S49vGVSahgYcRedbc8r5D2+nWLZLS95BFwsAU+Jp3pekGKL5JdASrHFJnwBZ7CQAikNJKVd/QpkObDmUm/JiHXKfLFnsJAOFBy5j742cUnDaeNaGKErDRdP9OEtaoleOv0aXFfR5zxS3mdS6V4x9Qp0U30TSUxECTHnmiBLgI44gZBfbZphO02Yr2yREn4E0Oa7ZySJUiM15ykxFXnARAjwX5pIlMi24CLjTp8WMecgvrsP2CW+SwBipPuUuZCXtsJcC1tF17NFPsXJsHYwmfUGdA3bFrAf4+/8o13rKu3LtZX+vMLqgtA/NRE9YoM6HKiI/Hr7jFC5r0k3s/cP5nQtnpOS9oDYfUuvNUU7qAGQWecpdb8YvkPpccCEAU5hMmuRotBcTcjp4nSaT1wSm52JrmlTmmQT9p5AeW2Prx+FcJoKnxhSzYiAdciUfcHH/L/ekTiszYYo82HfJErDlpjwIzWpHpLQMUOeE6XW7ykuZwnPi9JQGToMzm8B0BMTenr5KETzmaJH789nTXSZNssBHZNbXHb7k7fEWZSTKOgJjN4TsWhNSnQxr0k/lr0HM61LlExiTCAODnfEyX64A1D1zDZAQ0lzenrxx4uwVAlxajUoUTilynyz5bLMgTLE0moRz7ZFJMwHW6lJlwf/qEK8M5udh0psM4olO5BsCoVGF32xqH3eQlAzbsfycsszX9NklwZZbZhbUjbJEqppLYmGJOCYD7BbbAP8brhKpRB/hyUrE3BT6I1akGRwLoBBiqRF+dnQVEgF84q4S25carxfZneI3BHp5hKe3BTWzxrAZRkhr41/gFuMDHaeq4YIvoJcb0yrnfYsOmG5as4hltAhfXscV/6K5L4Iaal9z4tesTG6ztxtty26xi4EZal3UHD5o0MMBVYx5icfk9NzcP8CXAq+6a2u4aVN4vkEMsLl2fAGk4T81pYWDqHAOfJBmgjthZrj2zi2pv8QCdWKS69yLgd7D743N8ibf0PZ9gPmgd7yPFknyG+Zk9LJlTT723xADGMV5PWo3h1Eiph2fQS3M0zd4XcCum/yO8trQSIyXMh++67R/hWaRPMCmBbQw0ld6z/Jx83Jd43Wf53Zw75i/ccdU86zM3vnQ1wB6ekV/Ds+enbnv50wZenkUJvofu+AJ19TwQwCuG7DP3vpjBPTcPHfdaUg3gJWrE4B2m3m/hGad77twa95nb5g4me6AGWh3O+/cBbA0zMPWHYhlDNTPASv7fti7RHI5hCaclWHFaTQf31ihPj+nWatSnQ9NObdt+p+lShE04aq2w/uqUaeMyxdIZi9XLfNAZ8qp9jep0TLd0jQEbgJWeq2uzgZN11ywlTpikfVeib6cwYFFaqScUE91Pa5p0wsK1ElmQZ4t9JonqtJXRvuRW0oFZjWTUfAmgU7mGmj3ts82MgtM/zCVsTy3qTyhym2+SsQbE/Bm/zY95SJET+i7dtcHANXtacoVRwi4FaPGG55TJs+Cr4NME3M0TEYV2XEkTiKE64gp5FtzhKQtCnvOxAQi8oO9kEiaUWbrFfESYgLoTynzKV8kxm06r8C5PE73YAjMO2KBJLwGFJm6MVgK7RM3BAqzBjYE4gwQg3zxHBckss4tjrystapzyhhZdWiYVUrF7OXQA5IRy4hdiAo4p06FKvmZd7uvjMSdrKxwGVU5ckgGgQ5tu0ELNqeyuLljTKsrgmOx9msRhkPiJV41r52QBnnKXJj3KTHhaupOw/Hs0E1aq/u4GLVp0OayYHxVjPkfstJCN5T5iRhhKFiBI5EhmFNirGbgsXdEyEw5qayZqUlpNkkWdsO18Y5vrpW7iO16EN60RYOVDwDf3ysUxiyDP/7v2O2wwYFYqJOeV/80ltW2+SuEltyhykvi/RM6gZODrN9wmX1pQ5ZADNngc3ueYcpIgEui6JCDO2TxPAkvWdbmeNPsKmdAtXSMu5RK5k17QNEmXykkC1s5cgkz2lLu0S52ECbzHDTKGamYX0n4KfIMtZKX3J6ZTD7/AT3dSVlwosGGIX5ymwTgxu/TZL7BFqHRH01qrWsTXMTBSYGwHz0DdwzeLEkNVYKlK8b/GQFcBtDq+Fthi0UpndRNbpEtHVazMN+4ajvDNplT+qW7dD/DNTDQmMWzBs7ek7adye2nQqgxXgHYHr+PYwEAP3N+v8ZIB4BvlzDnfzCVKHVvAgsDyG27O3mCgj95vpeZX51MzLxGsVNqr7/cIKOLBmsCNLa0PmVlmF8me4pmikjCp4xMuAiPVnC/N3tQ9PnTHmOP9wBCvaar7cju1/w7ma4/wMgPyWwILb7jzt9y2YnbqvCqhV3JE7Nm03nKa3TpN7aNGVzGeHS8/oiqFMDVmMffvp8ZyH6/JvIuXH7mfOpYSdjmM6alniRikn+DB4Vd4/605l8TCAF/h0MGA7inm07pYkmmemgNdR/vXjvHEXdsr7Dm4696rYQBuDd/MSs+6MXDq5kPPBbFoJdeicQCXfkRmPxDLGKqZATCkRn085tIY3q+SNJwCCFiyOoX61HT6DmuuneqRsU/BA6vrvVOmm5cJlpaGLk7POGqtUHat9vo02WIvadIyoUxEPikxL3JirCdeJO/lWdCh7RipI/Ju8VxgRptO0sm56ADHmIC/4H4CdC4IkzJQu56YQ7egnjn2qbrVv+RWwvIsM2GDASOuACQl9S26CSOqyIx8qiR/i30r8aVKiy4NegljVixYu4YokQhQ2XyfBvsuNbYgpEObyDVm0bY5Ytq8dlIFVWICPuVRMgfGjM27dlQnCQhrTb6KdB1ItM9W0rRK5+s6JfAcMbewEtc8Ee24Q8Fpzaq8WVIJx44R/Iy7POa+scQYME7ShplldrFsSI2NaJDc/wUH4hVdoqHIidMrjs/dH7d4ac3mgiLdylW6QSu5B4vMmAVFPosf8ln0MAE1+zSpMuJ2/DyR2IjJUWdAK+5Sju1+tkZvpstqjfxe0Iq7pt0JiV+UDzxxjfkWrkkeWMOrjcjAyiux13/ejvfJs+CEIi8ca79Jn/p0mCStLIkTOSbmC9rjt1THx+a7o0XiPwEGbCRAcN81y5JPbMY9ApbcjZ/SpsMsKCbn22I/0bkGEjC17premaazgZZi3mu+5CPLTLgVv0ieBwtC1HhPFQyHVKkzoOF8Yi9osscWI6qmB87AecYZL7hJnyYvucmAjQQgBZw8yyDx6aoUGHElAVfL0YRiPOM2X/+N/s9mltnfmH2FAQDbeGapyuBbGHMora+qBXuanbTrPhPDSBVNWmRqUS+dO+nlSXcwwhah6r4s5tURnvGaBvW0aE1riwpEuI7XtVP57ABbSNfccXVtYkE1sMV8WpO05MYn0DbdTGsdz64VgChZAmmcCnQUkKu5k3ahSmpVyitwVECKmsQ0MNbrKr4juOQEBE4oHDtKzVN6LqVlKHaXSnkjDGjQeCQNIABDf+uYx6k51HXfwwDqnJvTj8gss4trn+EbGEm2BMw/6O+S+1v/+2KSqgJUDakEAn6B3Utig1fc59v40n8xP0mdew2vbfwKL82xii/zV0NB+cAG5/1cuip1Fc+6/QTfWC+t/5lOwoh5L98shjsYyPgYn3wbu32u45tSqcmhfC14bWZJGbTxCTr5si7e5wdu/7QsipJvkRtH7MaYTqApMQXnG4elpRgElP4E/51pbHfcdpJm0bj07AKvg6sKDJ2viYG8bTi9QmY/EMsYqpkBsMqMfqVGdXXELCyyMTzm3YM1rnaOGbDBldx3zEqr1oU6GvlsGtiCurLGoOKasbCEECYlY28V4xlX+8eJnMAJRSaUOaDOBoMEXHjhwMxt9hMAVIzTBn0iQvIseMnNZBELJICDtEKtZP0NSwIGbDCiem7bR3xKmQkvuEnOaQKuMaGLMblecIsBG7ToEiQl93lmFNlijwEbCUhRZkKfRrJgb9LjKXe5zXMiQkaJ4uLynI4hGGBwQpHn3E4AmhZdDtw1qMR2z7GgBByMuMIBdYpOE7bhypBHVB3YnKNLix4NfsRjV4pfSACJY1einCfiDa0ECFBTK+mxBsR02GQUXOE5HzuAJkzAbCDRUe3Q5thd14QyNceSyyyzi2YT1ngc3mdGkfs8ZkGeYydTssEBC/IGqkYTDsI63aBFOzJq0Sis8pj73ORFch8P2DDwkAJBYIxMa1o3o4WBotXAmsE16LMgT50Bh0E1AUxnFLnJC2ZhMWFZVpcjZkHR+bdDRlRp00mY/PI6t3kOmDboJDSm+UFQ58RpqR4GVZr0eM5tQqep3KFNp9ROtEhfcpOQiJCIPk1GlStJ0qYbqkmelzEIiJPjzygkki2doG2+1rF0AycP0KWVVBsELFk61u8ak0S3eo0Jb1xDvshVKpgO7SF5FrR4w4wCy8AkYrq0aNNJ5qFPkxbdRL96ny0+5jkd2myzb8+R5ZmxVcNy4o+BRFN7RJUCM+5Ov+N5aQfpToudr+9AlReLMO+eW6d/q//DmWX212X/5N/BagkoYwvGArZAP8Y6thewePASkAf+0u14GTjBFpXHWBlk5LY5A1bcdleAA2zhWcQDhctfO08ZY/6suO1m7vgCaAUanAEL95nOIeamzn0FW9xfxRbTeeAv3D5quvSlO8fPgXfu/TMM3Ji7MYzceSf4pk+rbj+xS1fdfl8D/yo1Ho1lmZrXptsXPACiBja4cwqI1ertxP0+wwMjFeC9G/dl9/ccD5r8G6DqzrV0Y1FzmKt4plrRzf8jt23s5vQ0NYf/0m2rcU7cOS6597oYyHHPbfcVmWV2Me1H2P2wh9cmnmK+RQCcWKK7GFD6z/HJFQGPUzw7UrrKauSmJMwAY0U+c+cWW1Ml6i0MnFSTJcmZSLdZzbEERjY5z0Ctu/MpgVJy2x+5c25yHqiUxADu2u5j9/SXeA3YCsbcTCd3xsCn7pqUZFFyKC0H8wDPpo/cmFRxAJ7lKcb81I2p5MZ8jE/oSI+1i2fspysDBngmvZilHfdaOt1qZDhObZtuJggGdvfdWMX2reAbVq27YwzceF65cwz8cYaVtIPP7CJbBqhmBsD2uz5BaITlmIBLLhg8XYet8XdcmkNxOmdRCq3ZSntEbXfOB50hp+tQ6h+zUTpmUrEy1yInScOqWVCkEI7Zr3xIngV5FiwJKHNMQMxT7tKgR5MeEWECfqr5VJmIQ6rkiOnQZov9hPmZcyClwFQDLoqERMTkEnmAANMf/JjnLBzrU6CGNbra4CYvrOGKW4TLpFVoC+orCUhaZpIwkaSNas2nBgkgaU1ponPNrl5wixMKicbpTV4kx88TscU++2wRElHl0LFgowSgaMY9JkE50SwtpsDNPItEKzVPRM8xgn+9iVTRySOI6VVIsbma9HnKXaqMOKFAkx6f8yUvuUWPJvf5CzouDbnBgGPKLAgdY/eEkIjjTCgrswtqn/CcPGFSDh+xxt3hK6IQcqWY1nDIQW2NYHnGcWgJktvTb1kG0Ah7SfO2W7wkIs+t+AX5+SlVxjwt3aHpfFeLLh90hhTas6SxU8CSNcfel9an/IrK7z/mOScUiXMBt+PnFI5P6VaucpMXzqcZgzYXx9wOvgEgjCPWH55Ca86wvcqN/lveNUzKZVSqcK0zZtk2P7QgpEmf59xmgwN+s/OMRrtHmWMKzJJ5mVDmdvzcSuWjrgNrIw6oM6NAm45rmJenzDHFaMZH43d836hRYMZH/Xcc1VfIz09plbqJDq2SQ6bxan/fGn6XzL+xQc13NeglDa5mFJJnAkCTfiKtkGfBBgPq0yEvSzfcE8N0rW9Pd1kdw/etGnHuMvn5GfX5mEHF9FaXBGzE+6z3TinXJ3TDFvulj/iN/i7Dxir7bPNJ/1uq4TMGlYqbU0vidWhzl6ecktEQMruY9vv/Y1gv4xe/SqaPU693sDXhOrYIVjn/AK87t4OV9K/iy8+1UA0x8AG8Fp6aqUj77wG2INV7HTwjSwvsNr4hjFY3Yirl8OCEzgW+iVYJ+Bd40CB9DdL9E5trHc/gFItVmqXSJoTzYCj4UtEb7rXmRkxZlfcOOV/GqmYm0nFV0xPNd7qplRb8e+4ce5imo5hi4BlYq6ljq/nKz/AsLc3TLv77FvtW8g5DPMtWGqti6ortJj3IGFIKOJlldrHsO6x7u0rwVVou1mMXz+qOsGSMGPsC28Dfh+pqLzBvjtfrbGD+qIVvzCdAUp3nd/Fap7oHH2Bl6QISdZ/r/j1y2/wxvpnSLl5LWv5VPn6IB0O/xjNCj9z1qWGVdFSl5azrk05pHe/vVDZ/D+8r5dPAy5fspF6rIaBkCB5gvk1jkkZ3HXt2pIHUI7wW+APMB4tZn264pe9S49zGN/xTQkrVFmK7Sn/1x/gqiDN8Q8F008I7eF1cB6gfs0YGqP4w7NL79+//fY8hs3+PdunSpXVg3Bnm+PB06TvepZoNnNasm/GktEYYGy+/cHzKyi68vwHdWo0P+sPEGR3VVzgI6mzEA9a7pxy1VgiWMU/DuwlbSOAgGHB6m28SCYCYIGGtSgcwT8QGAx7yGSERH/M8YX/9unbgCcVEFkA6hTniVDf7ONHQE5hqDK8rVDlMdFutLNSaouQcY1ZjUim9QNuYgAY9OmxS5ZBHfMpdnibArBio0jSdUWBEldt8kzDadDxplBrAnE/OYWOtE7JIOnUPsO7XYr1KxgBIGFwRebZd1/B9thIwWFILacmFHs2kIZcAXumlvuSWAUS8TDqQ6/oKzHjJrQT4XT3q8Q8q/w6g8v79++xpkdl/8CZf+L/7X8CqSkwVoJ1gDKJ3buMPsADrPcbYUcClMtcpxpJaYkye2P1dwBobrGCsIDGqLmMMgjfu+Hl33jcYG6iAZ2xJG2rNnet7t722eU9SPUDkxiSWFKnryLvziqEEvjRLgWKAb4xSwlhNczzr6dBdV9H9Fjssh2dzhW7+Bm6/0H2+cH9rHop4UEDgwpk7xxILwC+561u4MV1239MaxmA7cfvM3PhO3bYV9/sQz3K7mtpe85J3c5Nzfxfd32K1iQ0GHogI8Kw1/Z9obAWbz/kq/Kf/FMj8YWYXxOQPx/8C1sXa2cWXgwtIO8KDAJtu54d4hpQ6WoPv0ryDMZu0EN7DSkyHeN3RXbzG6DFeLgA8MCEmkMr2JVWVBlS1nZovSXtPmn2SFJBeoYAF+b05XidxjgdOxYz9uTuePsul9h27zwRsbuI1CZt4Zpe228UDn3V8LK75buDlCaSPqO9BDC6VykZ4nUYB2B08GHzDzYXGqzGLSaXrk/SA9F3b2HfXxp5PAkUkLyBgRACRzLFjj46g8j8EMl+Y2QWxxBf+H2H9CCsBB/Njj/DsUMVvKmN/jd2rana0ideMVlJFjaZ28ABshCVBOvimTGmtULFYm+63zvPAbfsI3zRPQOQTfMO5J24Mn7vXAny3Oe87wMeQ8rUyJbIE8g4xH/5z4O+79/4YD4IqsSXJgZ+6Y/zSnVeJrV13LjWVGmI+62vgd90+e5jfeYb5dOmbljCZgc/cOH6amoNc6hzP8IknAbTS636AT8rt4X2tNL3nbsxgCSclCefu2H34wz3gR/AH/yP3nnxjWn7GPRu/+yhHu7aEzB9eeMsYqpkB8H/6ny9ZVWAXYotBZbS0+J8fe0cuDak6MB7aQlLOaXIKhbd+YXl6av9pK08Y/UaR/9kffETs/vXqDFyzky3adJKSewF2h46p1KPBhHICUgrgBAGyz8k7EZYBG2yxT4d2why1wtVcUioKEBHSoMcGB8ySBleHCXvV2KULipwkTWhU9n8lHnEYVHnJraSMP3Jpx5gct7EO3TOKCcO1l2qwJb3TGQVadInJJcyqIicJoPuUuyzIOyA278DNvrvOOgUH5nZoc5vnvOBmokc4YY08eRoOmJVMQZqtK3Zviy55Ipr06NKiQS8BcvfYokWX+zym56gHKrWVLIFpu1rX8BZvGGXyzJldVHuMB9nOsEBNi/ZDvOi+FrMlfFfPTcx3HuJLXl/ifaHAwikpv4qBfG/dcYpY2eRzfDntOgacFtw2G24M2v+KO4+YD2d48GGBb+SiRfIAAxQHnAdsxThTee3CjVWfv3X7HbprW+BLP1fxAKeA5gO3TYQHb8vu98id6wrnm85M8AHnmRuTyoUP8WwzMIA1csdcuDGX3Lleutcrbr8BHhBVkK/y1DN3DSMs0BY43HTb6zsXUBu5415OHUeMhNdu30133kOsNC+zzC6qfY4tLktY8mKN8/ehgMAdvM6cQFUt6F2CngjP0lGZpMpFVQ55hGcEqcmKFsQCDNfxTEiBqSrFnLpj/I4bR4wBhemGSAILh27/Hfz9K//QxTejku6gNPoEUEhb9D727NC14s43d9vqPY1ZzbM6qW0Fpool1sODvBq7mFFqmqKxqru3dFErqWMKWFUp6zfuWGK26nhR6prlg6XJOnfnksahwBXpp+r7lbbhrju2gGEHNmRkrMwurE3w9+9DDJhT8lfs9S4WN4iNDnaPr+HZjrvYvScW5Rj4U3zTt00MQFziwb8hPolbcZ/jzqty/keY/1ASSGt4reu77ke+TOeTBqukCsbYffoFBh7+Lp6l2sHf65JSWcPHnmKvf+7+FgP1E0wepIf54j3M10reZezmR7Fgj/OJKc2bKhr+BIurdvH6p6/c9X2ZOocYpZ9gseljN/evMQD8c7zGaR8DYkM3pwLFlSBSkq/mvpfHtk9vD5qf274zAbOKv+WD1aTsgTvXl/b3yY0imVP8YVgGqGYGwO8fwXoFWwi+xTutAFsUN/D0eAV9U8zxd/GaUHls0XoZcyjSkzmDP9yFwv25086z6LBHgyInCaN05hoeiV0aOirSCcUEqJTeXoET06lz+qZg4OqIKjOK9Glwna51XHZR64I8IRF110laDaesjH9Jn6ZrImPH7tFw5wiTpiwxAcVgloC+DXpUGbEgzwtuJc1g8o5JChsUmXFCgYYrQwVr2KIy/C7XE3ZqmQnP+TiRMag6Rb6cg4U7tBPwOOe0YwNiZhTZcA1cOrQJWLIg5JgySzfnMQUmrNF3SMF1uhSdZqIA45iALi3XECwi52QZZOly3pCIAXUaTn7Amms1KdIle0hkdhHt97dhXaxJlXVqUX0Z+BgLzD5227Sx4FYNQr7GAi4taNX8JN0gRcGWFtQCDsRIkp9VB9I+sOV+q7GJOj7fwYI7Cei/xpc3ge88mmaMqdlBN/WZWARiSChI1aKhiQW5Kl/6Gg96aDEvbaxdPAtM2f0xniWmCggxtTTXAhNa+M7aU3dOBaav3XUpCNZivo/vpqt5Bgv2cWMXqKH9BRqI+SGA5Z77W127S1igrSRiDQ+EzFNzucRAHC2YHMvj99fJLLOLaSrlF2Cq0koxbgQqCoDU/a5tdA9rwa17Pf2jBb6Az0fu74CErTn/Ala/xHyvQE9p9qVZYAIfVVYpX6PSUTE0wS/+xRTTiijEA7YNPGDccsfcxRbou3j/sEwdM3KfS3cP91pM2y8wAEVl+x9jTKdNd81Ddz0CLdKNpcQGjd14xLSS9qz8rOZfnbY33TkqeLBF8gF9zOcJ6NbcS6vxFf4Z8Cy1r+YqwMCJ6/jnDnh2XZT6WSWzzC6mjfG6mNJFDbF7uY7d86t44DKtyfkKu2cf4NfTuod0jyhm+goP4mkbJZYUayiWkb9RWb9iymP3ehfzDbrvlYi5h4+BBGLKd2+6a3zkzvkIu8cVq0qaRIksJZKeYL5r6vYL3bEkK6BYb89t9zk+xpQvTWuvzjE2cPr5oUoFERN+D++3InycKimaT/CEAs2XSvwf4GNTxY16fshnNt18P3TXka6KOLLfTfn6ChSFjxy67X6JT2jV8DIRc/uOmv88Wyf/UCwDVDMz+9D9qORATkRsgFXMCYryrgz2H7v9lbXexRawWqQqUO4DZ7C8bP9yC0KuOP3RQwdmiuV5l6d0aVHlkAnlpNlSwJIZhaRz9U1eJuDkgHoC0m4w4LrTyHvIj7nP4wQsBWOHiskpHdKy0y3s0aRJjw0GHFDnjTuPzvEp/w0jqkwoJ41c1ChqwpprXrKkwJKQiBmF5LgN+g7sLSQ6sQKOB65Bl5pKNekzocznfEmX1jmpgLLTKh1xhRlFCswci7eZMEy7XKfpmlXlWQD5RAqhQEyZY2LXqEX7H1Cn6ZriHFCnQ5sWbzhx9DqB0FVGxOQ4cJq1AKH7fgICBtS5wrd/Pf+XmWX2t20LjIlww/2txeMNvBD+sfs9xIOXrzH/t4Pv1CoNqobbTuX6Cjg/xneJVeYbvBaegu4SvixK5Uk5/GJfoGmEBzi0oNaiu+uOK8aYmA9iDknPC8zHq9yslDqXgJUjdx0/cfsqeFdwmksdV+W3aTBTHVYFPA/xgPQb/AJDx1BibhsPwpbcPioPU4C9mboOMbbSEgghvpRM85bWJhMwJDZXjIHHLTzIrYRiulGEQPcjzrNCNvHga2aZXTRTMyIld9KAmRaJDzEg9DWe6a57S74xrUsnUFZl4WLG694TcCmAoQ+rf4TdY0d4RmWIxaY77tjSXa3jy0elXYcbjxIv9/GVVpLukB/pYH5UjCQlUkqYz5Mv3XHnF6DwAN9l+wmevXkHDz58lpqfAT7hJh+vRixHePBCOnxi6GpRrxJ7fRe5XzvuHN/EZhVPgBCjVQw5ARkNjDn1wF33EP8MkQyOfKsA5iO8H9/EM4mVnGrhgRvINFQzu7imhIViGb2+4z7bw8dB6dhkjvebYl5+ht0f6XJzxXx1vD8V412Jn27qHHVw3BoPOCpWkUxADe8Lj/G+9yEW0ypOvY9PxvTd+Ut4fegxPslewXyGYjsl1hV7KTbLYX7wx5ifuOH2+Tk+cST/Kx8hoPKBm0/FbOCZ+3pGiHGqhNY6PlZV0kljESgrEoLi5md4v6pEmsYq6ZOaO6Z8swgN6coGHV8Va0om6bkpH6/xKYl3k8x+IJYBqpmZLbHstW74rns/Hdi13es1fFZMGac+5rzW8AwEab0oUHsB77nEjKJrLBIyoJ40VmrRTZiWRWaMuELsADo1seqwmeiJis0pQFQMzjyLRFt14Ur8tU3eaYYK0JxRZEHedamOk47RKo9v0KfIjC4tCswSkDUiPNf4KSAmZMGCPC0OeMGtZGqtC/coOUfIgisp9q10TZcEjGhw6BixRWYcUk3GucU+PRoM2OAlVYrMzgGzAUuec5syE6648wlwlt6pGr8ACSs1R8wB1vW7Q5smvWSc6uz9glvJd2YyAznKHLt/nYARVY5dQ64mPd5SIUMRMruQdo3zTVf+DubLAizIUnAX47U9FaTdwALmXSzYbWA+VML+KlUVEKEAeowvLxcLFM6Xamn/n2BBahffIGQHCyxVGiWtvvQxwAfhWgTs4oNOBbUCFZpYN2iBs4/dMZr4jtZibGjhLyBUgb9YHKtYECo2Angw45n7vIEviyphATXu9SZeYkFaZGABrdi8Yljl3Byp3E5M4Ttu/3T32IY7v1h0+p5UiqxzaAGl30d4MGiZ+ixw1y2QHDfWV2SW2cU0SXqkS1qVrJniF5XyT2JEwnlQTQkfLYa/wGv5qbRc9/ojPLvrDh5wBX9/igXexi9kwQOMOo8SMg/cWO+59xSjgr+XxcASWNnA/KVYTz03lop7LX9Zx7PyBTTizlfDa0mrxPYVnu2Z9i0DDCSI8aCJGGoCcAXQKAbXvmLC6fy7bvwxXsd1N7XPMR5IUBKM1HkFnAiclQ6hAALwuo4Ci/QdCzxIg0tKJl4ls8wupt3H7rOfYaxU3QsD/L2f9omx+5F/EMCp2Emx42d4n1TCx1RwvrroCM/oF2j4DPgUnzQP8AnjR+5cdbzmqMDHKV73UyDoK3xzPyX9NzG/teR8jCoG/Tae1alEdNe918aTsXRtSjhJikQM93bqWuX/xI5v4Fn36+4YGpt8tatkSOLeyF2vwOUc9izpu7mppN6XP11116g4soRvEqg4PMKS/mlWq4gWe26sb7FK3VrqWnJ4n/yAJDHVvX4Fo7NmdtEtA1QzM3uM6d79ul6Tss1TjDr/Cd45VvBgwByf+VbAGuMz4F3gGNYOoqSJU5URRWZEjj1ZYMbSRc1LChTcIAqc0OY1VUb0XYMqNWgCK+MHY7rmiJlRYMOd+DMeEpFPytJDFkwoM2CDNh2qjAhYsqRNREhA7DRNDYC8niDLuML7K9zhqWNvWpfoAjOOneZqlxZrTLjLU57zMU363OaXTqJglpw/IkzYnZI6EPNUTaMKDlQGuM1zANp0yBFzl6fumvqOnRuz4fRocw6c3WBAlxZ5IhaEbLFPl1ai1brFPgHLRDagzIQlAQ0neiM5hYiQ3+bnLAh5zm1CIvIsaPOaEVdYEFLmgDyLRC926ZpkZZbZhbOrmA98iAWLChJrWGC1jQWqYm1pIS0AUQwplRbtYH70Ed6vNvCLVLkYlSyBBWxiA6xigaDOoaBYwKwYkgrSxciSDIB89APOl+SqXE1l9uDLPxt4YHeI1/vS4l5BcY7zAIPKx7QQF/Ni243nDp4JoWSdrkFgptgbx/iO2QJjxZoaYIFyBw/mDDnfpGHbjfEYry22igdNpvxVRgkYGDvGl6Xdw5KN/whfNizAIMBLJKjU7oa7tia2GHjMee3GzDK7SFbDa4GKHSXQTve5Fov6WzJQdfxCU4vX9G8x4MHu1xi/KtGiXKWgq3jtT/lkMbdUKv8In4hpYICtZAP0nn5KeKkW+Swt7tNyAVo4r+LZ9FqAKzYO8ZUEmh/5dbG2Bm4unmF+L8Q3idEiX8zOIDVuVSbIx0kGQEkznTeH+R8xbQWw1N04VPIr3VSV84/xCcE/xvxWhNc+bLgxCEASoKFyYgESe/jElwDeT/GJPjHt3pJZZhfTJvjO80pkj/H+SRIaKm+PMAkgVQApnlN5/zM8Q/+B204MSTFVdS+38f5GQG4XA3dL+Pv1jjvXG/y92MfkOD7F7mOxTuWvfw8PvoIHPxUrKmEVuLGqKkC+PnbjUxVCy30uWSj5wBZed1V+dQfPRE37MrHqxZBXfIi7fsm3kJpf+U9VK0meSbGxknZpZil436+qBMV4Al01ViX5PnfzJdaqfK0SVwfu3HFqX1VbyI878Ls2zcDUH4plgGpmZkW8k1RpgajuosYrE6QFrLLUD/BlVCojkoPKcW4hPthYT3RS99liScA2+xSYsc920pk+IOaNYzyGRPRp8pgfERKxxxZljtnggEOqCUt1QN11rw85cXVFJh1gmqJ1BkwI6dB2TZvK/Bm/TZ0DykwYpRpgjagSsuCQKgM2EtA2z4JvuM2MYsIC/cpF8AI01e1+w5XIf8lvoSZaBWZOY3RGnwZ5x2pt0OcNLfIskusJiJmwRo6YP+O3ecpdttinSY8DNpiwxsQBlzOKzCiQI2bi5k3jLnDCPls06VHghD22GFHlLs8YUE8YvGCsVQHHW+zxjLvc5zG/5LOEFSwJhn22qDJi5kQDTLrgttN01ZM1s8wumM2whakWxdLZk/97zfkyHvlCifqnQUeVsYo1+hW+wUeEZ/9IWyldsq5s+LE7rgJh6Usp+H2FZ0YoqH2Ez9Z38CVP0rETM0kBI6mxCKzYS12vylLreOaAQNZNPLtLi4Y0s6rmxqPgu4nvdK3ziwkmJsBj/KJF49X4PnH7pDVMH2FApr4zlRUP8OC1GKsqcxOD4uvUcXDHEqtYAfTU7a/50TMxwi9gpF0rcOIrPEMui7Qyu6j2F9hCfI4lOsQwF9NJpd57+AVxjPc1D7DKJbGfxLAUiCk5FAF8r/FgpoCEJR5MlbTGEn8f/gLPjAff7ET+uIv3VSWsrH07tX06yRTg/ZySKqpEWMNrSEveAPfZHp5FtubOs4d/dkgaRkwo6RCKtSSfFeKBEyV2xA7rcV6bUWBoGlxtY0CygFjwzHkxbO+5bdIVC5Jt6OO7f0uW4RHnmXh1vLa3GKmqRhOIo+dUWicyzXLLLLOLZkdYM0r5CyWHwO6fn+ArWtYxf/A1vqJHMdADPLioCpkxFtuoMgo8+KeqAN1PSk6Aj9+U5BAYqW11f4rduo6PnXKYL3jM+ZL1Or4iQBWqkkIJ8BU+d9zn1/F+UomZHff+1/gklq7jZ/j48o/dWO/hJUbAV2+BSQRobpUQf4BPQgk01hwr7lJSS0m/x/jnkWLmLzAfrJ87mO/8hbtGxYdpWRhhJPKZAoNf4SvC5th3K5kqJe4fpLYRoJvZD8KyMD8zM5W0ygEd4W/2Op5J8AjPThA7RyUIWgy3MGeZLgUaAmUoMuMWL6hymAB+E8oOJJ1Q54CIkA0O+AvuJzqpYnHmiWjToU2HCeVzDM0qI0ZUXUl6wCFVurQoMmOLPdeUSc2uIqf5uaRFNwFz+zSYUHbsUGtuZQBmnZBFArrGBK7xU0yLN04vtXgO0I0JaNNJmJ8GpJ4kTNkiM15wiy322GBAkRkBcQJySlc1IGaLfcBYpRH5pGxfY61zwBYTHvMjGvQJWCY6rHaNeTeLS6cd23dAbi9htaohVZ0BOWLXqCtONFYnSXOrmGIC4ZpAg2QAwNi0i6SddmaZXTC7jG/elF4MphNELbfNL7EAVSX7UxKhehpuW4n0q4xex1aZaQsLoI/xOnhaeCrwkmapgmeVk2mxLlkVlacK6F11xw+x4E/BdQMvT7CKBYJaWOt67+CbmKjUKsADzEt3jGep6xljbAeV8T/GB5Lgy8qWwN937z3CywhooaBqh0384mDTzefXeDCnltpW7NG0Dmr6O7uDX/C/xsAhMVRlCrzT2rNj4Kep70DzfwcDHcAvNLS9/nf23Lw+J7PMLqZpsSo/doRv7CR/8ZqELfTtzlU+evLO636mJQKkOarkEXh2kxp+HLn3xQZNl/uLPS+gYAfPMP0lHsTUgnqKLWDl33bd9irFr+N9rACIeWp8JTzQqQSXwAXwDKUKBh6Ab0Bzg/OLawHJ8klafUmvMM10kmRAmgn8DC+rJXZcH98texOfOFO1g541kqcRQ07zKEBVjNtSah+NU2sDVSMIwNC1iHH1GX+VfTbH60BKnkE+M7PMLpoJJN3By6AM8Jqnx/h7SqXrqtJUgrbBefkPOK8//8a9d4wnNm2790MsbnqM12NWQmaIb8aUjlsfcJ5JWsPHW2K199x71/Hxllj5YqWLsSrfo2qkNr5BauDGVsPHRIrHhAXgtr2Or+JS0lu+WaSCHAa+vsITFCQzkH7+KNYVC7aL97lB6tgiIUguS6xW+TolghS37WAxsOLoTuq4qsB4ho9Tf4rFs3mgkLrmNFM1XdVwD16vagIzu+iWAaqZmZ3hgy5lTpZ4If0AC1gVsJH6rXJNBc4yBWwq7SpYefseW66JUew269Ggx4LQlZDnz4F4sjwR2+zToZ2UrQsA1Os2HSLyvKHFFUZs818lIOeADQbUqTMgcqvoHDEDNlzzqBxFd97AAYoqy68yosyEHk1CIhr0qXLoANsTqhwSsqDADCClsWrA55ICeQei1jmgTzO5tg0GzCgyoZyArxsMKDAj5wDNkAV3ecqMIiOqrimVabjGBJxQ5CSRDZi5RljmzUdU2WCQAM45N0Ydf0nAgdOc/dit/CeU+Zg9QtckKyKkzsBJF9hxrtN1Wqo2ZskqxOQYZiX/mV1U00JemWXpcz7hfLnrABPbF9AAPsjTgnYNXw6qMnSBoFN8ebgW3UM8QNvGAl2xqMRO1f5iYKoRiNikO3i9rLRO1Q4+yF3FgwsKdlUO1cSX7CoI1fVpgZ1LfT7Ag7jpElJp8IlNm9YWnGKB5xf4Ltl65ug4KkvTAkVgpeZb5f/S0lJ1hOZE8wS+odXXeCBWQfj/l73/+20sPfM8wU/EoXhEUgxRIpNM0WZYCilCGVEpl7IdXVljt9vV40YXUAs0MH2xwAAziwX2X1hgMVeFupq9WWDvZi/2ooHFYoFt7DbQF71ThfrRbpe9zpp0Z5SVHWFFSCk5aFMmk5SooESKFE/EXrzP932P3Hc7tntknAcISCEenvOeQ57nvO/3+T7fr9qZBdpG9lOasbnU+76DA6bvE0CELwhsMLHKviCYkV2BKbdkkcXtizxBvy7duigpDgEK1lr+tWdfhpZLMRhVYFKxRA0sYkSJaar8+jEhdywR7vtF+//nhHvvBMfsUmvtGxwYoQW2pE/UAirG6ivCQlss8vu4fCKNPS3Ap6nXIICeWtC/IYAMYlV9wU1zrg1Cy76uj8BYPR9iO05ao/Zz3LPAcvSX/2yJ9/71hWPZRnbumns3ccz4xwTW2dPU/vV8EgALAUTW5yOgBDtfzeHXUtuLQZwQcp5kDRqEz/Hcrrn2GYNNP7PI4vaF5l/pThhw988eoeirOWQXl68U9wit4gLzJEMUEdbRHxO0n5dx8w+Bhd8j3MevCEx5rdWrto8egbWuXPbC9q2uqde4OegDQtfQBkGKSbmhTShkwU39UJPzY5UAOkoypWXbayzCB04J+qLK8yqWQ+g2kpxIulD2ikDiUp5SrlSBS0zZKQG/EGCt1n11bomVKta/xtTEfabSjX5BmINP8bIt41MoirQgIsI+cE3Ii9Nw3DcfLXDvR9fuGD+C+/8wA1N/VyIDVLNwUSRUmsQGyBGqaBuERfkPCFUwaelpQibNJrVNQWibvXQGRhOKNOgxpujB0BFlb2p0bGzVmYGeK2aGlJDzoKNr8a8BsMUBzrRqxMzA1ApD8uY8X2FInyodmnzEZ970qmut91PyNDlhTMHvU0zQPlU2TB7gOU9MPdTpkR6zQUJEzgyc5maCJeCyzMhrk+p8hlRo02JKnhZtGnS9UZbGlBB52YNjNgzgnfvrETOjQZcZedZMxzUx5miLNmMKxpB1t7ekCMRmlWaqwF69VuHM76tKnz2+7lmsTTo8Y5c6PRJyOCOqFUYsscMeL3hChSET464WzCwriyxuXYiZPyCwTcUeUhVbE9V0lTzNRBK4t0SYRIrJI2mVF4QKdloW4IjQWr5EYGD+cWo7LZAFEAgk1CR9mtpvLvXvHjdBVmwsnxJaMdUGr8mzAAIxl56lXtMYxXBSp0KVMEHVdg8IwCkEswJV7dUqJ10vsXAf2DFJnesDAhNKk3YBsppAS+NLn9GUYEil6163bV9xs+VW4IPYECXc5/VXdmx9pmp/fsXNdld9T+7bdRDrJIssbltsEtojxWpfImhpCmw8J2gmQ5gjpos1YvKfctMIxVrIr57C4r/F3e9/Qmg7v0/IvyqGzAkyIz0CC0hzVbGmHhBYSFoUi9H1gpBz0vlb56GcNEidj4BCgbTKqwJSdnD5dDW1LxWlpB0dcxPIFbseAoBRwoGYavU38OK9ZxfhGghQ0Fxb3ROXBE1HaUoLkFGB6hWOvSbWsYCCDdznK3DmipBv9fwZEJinOt6PCCH9RwFLKrxlgGoWtznOcS3/eu6rMKQ50qeEDs0coRDyCncffU4wS1KRGMJ84pX9FCCqAk0HVzhRkfcp4X5VsUJz0r9KjVeF7EFqjM8I80vNa/ReyXuoMN4j5FqFpJFOCCCn8uInBDLBPQJArKLbOa6I/oyQT5TD9Z4OIV99x65ZunNL89Cc7T8930pjk5/bvsTiVcFOXbjKzSpuCfhUcUqSTSoQiVzQJvjEDKCoTqSHdsxVu0YLhIKdPvMO3Ht17Y5vpIVFzV+zuPWRAapZuEjT4kWZV5JVC6Oq5mpl0MNEiVnbws22LrUMnetQzjiqQdeDmc9oUKdHkw5V+iTkPINVJk0An/Ax6xzzkkesc0ySYlcWaTOmaMqiIw+oyuiqQZcuDQ8SAl4uoEmHCmdcGJC5zyPP3jxgC4AqA4ZUvJlWhzWanHjWbc5a8+cmN5AjISEy7dMjNjhmn20SG8+MmDU6jFhiRkyfGg26NvqyZ7OKcToxoFXmV1UGHmQVC/eQTSoGQDfoeuC0T83r0+ZIqNtxZsbcTQyQbiYd2lGLhBxV+gZ8F/z5TyjQok2Nvu3TtfbnmTGmSIs2faoU7PPKIovbFv/938KiWkAVY1x+m+By4AKOuTUj6Cdp4lnGGW8o96nNqoebjFVwk94j4LltP8JJDRzicuUSrur/zv7/Fvi/2/GubdszAuNrTJjkFwlAwFv7N0kdp2x/0+/7qf3+3PZbIDjT52z7c9sO+71vxy3a3yIb/6WNr2DbFewapU0FpEf7JcGUJbb35WxcYrLpHARGYGNWK6vO81cZZBf2u/QMtViZ2XneTY1vhGORzu2aLxA+60OgZq/9kmDImrP/l4H3CQuWAuFz/9L+tk4WWdzOGOO+6wIST3D3uhaqG7jvu5hBKkyoM0ksyy6B1SmdPYGtxhJa/B4hNyhfpEE8yY20CIUSsY0E2GmsAg4vCMBqQgAhBPAKEP6C0H6flihRASshAJtq9UwIhnvfsZ9i7k+5qZ+s4pLAVS3mI/v9qb2uoo7mzZqTLxKKUGKdSQ5G7fW6Fqt23mLHCUAWY/Shvb7HTfb/FUGv9rGN8yMcK07nJFmU3dT/BSRLc3aXUDwUiKvz1vMiiyxuW/we7r7p4r7vrwmEIjEZn+IAw6e2Xbq4kNa+FygnPdKHtt0HwCNcPhIzVGvvjwhrdd1b4DqlBDpKAkCFDt23LW7qeUIw4RNAm9Zdzdn2yjNihu4SjEHFCn1GKB6/tmOJrXufkCvu4fLVU0JuVzdSz7bd4SZ7V7JOyvkJQS7rWwRS14ZdSxXZVRxS8Us5bwn429S1U6Ep3VkW4zRbVbRatbF9Tugs0LXcJcxfBY5eE8z/1IWh8et7kLjr8S7rXvqdiQxQzcJFkVCtV/XnIWHyrAmcwNOIm8YfamVSu8CAm5Uhqy6Vr8aMKRCxwoCqtaznPFN1n23KjHzLepkLDyIOqLLLZxyzQUTC1IyiwLW1N+iaLukmORK6NLzh1Illzzwz6vS8cZTA12M2yBt1SkzXEWXW6BAbWLjPI7Y45Jh1LiibbMGcgdEDpuS9LECRsdcbfcJzRpTp2/k606g+bVocsMkKQ5bM8EnvzTNN6bYGYDnPjAFVCh7InDJkhSl5BtRY54gRZWr0DTDN06POmCITChSYkCPhGR+xzrGBs2s06DGhyKfRUyISZuQNpJ7Qo041xXI9Yp0tDv2569r1aLDOETNiRjcEc7LI4vbEf/e/h3v38ayA0+Yiq8+uAngpaRQxMjWJK+EW7XBTuH+JsKi85OaiHIJBlSbYpwRzKQn/T3GL3zYuL6d1q9KtWGpDe0VgFaWBgysCE/UcNxn8kRvju13ori7z/ifnN/XBluznjr2vy00QGUKbmdqkdgksK7WNaeIrhoG0xSSLoPYuUu8r4av+7x7AHelZRQR2nLXJXj69S/HyLfMIFtqpYz6wnzpujzCBruJYJVpgCGjRBFmaZz043V1k9adXDmxILx46uAWQGLNzu1YCdS7h1eN7/B//pcQhs8jiFoUYhquEfKJWcLU5CmS7JLRzai75OYHlKCkQtdvnCGwptfUL3BNrU7lNC17tu00wxDol5M85rotKLaVq4XyBm5OKqar7f5lg1iS2V4MAUKbb+NWtINb6EsHp+98SHMDTLfuSh1Erf9pIRUCvWm7FcBIzS226YgenNVvFqL3gpk6jPpeEwCLVWCBICwicUEeacrmuV4+QQ68IpIgcDvTR5zKwcV4Q5Af0+ULI7do+zXbLIovbFGNCrpA0kKR+pBet+18/f7W9XRJ5Krj3cG34ui9UlKjj7qmYm672KlYpH1/g8p3ybYubrvaSZmly00RO80ZJhWit/tC2+cL23cHNQTV/k76o5q893HxHTFy1vyvUHdQh5J0rQkeBijhpuZE9O+ZrXC5eJBSkJKF1ZPvdsbGqmzYiME41rlPcPFe5S11mG4SingpjmtfpmkOYi2t+KDBWoLXO85Sb+q+Sx9H8s0p47jxwx/tiVQy2LG57ZIBqFi5G3NQjgWA+oPbJV9yk76t1MyG0fEJI0Ppdk7NriPrwhOcMqFnrfsEbRc3IEzE3YM613EvXFBzQKbOnXZ55tqjMpWSa1OSEIRWq9AGnf6r3OzumOi3anFlb/oAaHZo06VCnZ4ZVie078e34H/OJB39n5HnEPgNqN7RSJScgTdRt9v3fEnLMiD3zc0KRimm1LjGy192xmnS8tmrMlCoDOjRp0OWHfJNH7Hvt1DIjhlTso8ixYuer8+5SJ8+UAhMSIj/WCmdeHsGd44QKQ7OucrPsibFOnQZt1WvKjijTo8EmB5wYC3abfXo0KDNiwX85ssjidsWbf5iju/I+zY0O3bhOjwb1XWckx0OnPRxPZyS5iKNondzDhEfnX3C8/FXAFTlq0wH9h1VmxFZkcWZ3jgk/JCFHmxZFxs6M7/KUYWmZcnXEcbwOuOOUuWBG3pnXtY58DhxSYe1hx4oXTgblU77BRx8+I8+M4cMKMvPr0uAJzzlg02spl6cjRnHZaUD/c2cuNyMmYs7l7ohuXKcx7ZG/ektveZWCsdsH1Gh84GigczPm2+YlPerkP5i5nP5BgSErbN93esxJLqITNYl2E68fLekRgObpKUer7zOgZhrMrpCTEDGkwrwZkZBjSIXNPznwDH/312CeF5Gwdflzfrz8+1SWh6xf/ozjp19jTJHKh2c0L3/JsLTsP+fy1F3ramvgPptph3FcpDgdE83fMiotMaZA8/xLFupwyBZ8cMDq6hXXMewtP2Z7eZ/x06J/3gyo0br8Ocelr7lzJ2KNDr03NYLbThZZ3LJQS6aKLNLkE+uwhCu+7xKYRtLDWyPMFR8TCkjfJZjibdjf1TovBpKOrSKWQFgxr8TuPMe1m0qzTgZN2H4EZmoBr5Z+7UdzXYGd89S5dAgtnZKyekToCHhBkBWAAFJIY/S1ncPr1OuPCSAoOABhEQeGVAndXwI9JSEjjecLQsuvwBz9LS1JkyY9COzUOei909T+q/aZVG2M6XZgydSIEfuJ/Q3bRoAOBEMbAQsCmAVEZ5HFbYwVXDeMgFJpqoO7N9/wn+roC0hT4UHAqoq7uwQSk0C8DRxIqk6pjdR+m6nXcnZMabkK4JP83lNCG/8lYS0v8LaLAyylnSowV+CnCjfS5pcsVURorxeJSnqvynVpeaeEIP2nfPiPCNJKKgIt236f4gvZfswCqFXA0jPinn0OytVi9CYEslc6F57Y/tUBJU1ZFejvEXKwnlc9gpcBhKKerrlkAmK7puJ6VeFqFxb/gvBclG6tSSy8l/TI4ncj7v7nHkAW/wuJiJsUd+k8JfZ3aVc1CVp4qoDpb2IbKGF/SqjI7QJlmDbvegDTMRxrvrV/TNGBF3QZU/CL5RFlEiLzlXcA34w8M/LETL3u6SjFGs0z44QmE4q8ZJtjNnjJNm1adGjSp+bNrWbkqVlrfZsWZ1Q88KjFPcBLttkzmpZjzDozqzIjKgyp0mdKnrkt7510gWvT71InZkrRgARJDRQZs2PCOGmwU4ZVA6re8MkBzgmP2PegqYyuysZwFag8t+Mes86IsplWFWxkc7bZZ0ZMnhkbHFNjwIAqQypmfLXCCU26NLykQsGkB9w4pzTpcMiWZ7Tus83YAN7XfO3X/AXNIovfTgyjZZdDrt56hvzECiRHrHNCk35c9dsvMWK4vETEnDYt9tihHbvcEtnM1RWGJiTkfN6ocGYGeXk6pfc5YJMkF5nh3ZAyFyZpUmWHnxAz8wWcKgMO2aKYjA3Iq1LmgiPWrQNg7u/ZGXmOWfcFk8rlOe245YHJIRUG1DhmnYQc/bjqZEByEZOlBW+Ed0HZ578CY3o0WLHOAXA5q3LpqnJjChzEmzyPnzCPIl+oOfGVtsC4768uMbGi0wVlhubg1KbFEiOanNCgyxOekxDRockhW/RoMLdzVP7tri6zRocPOj9zADUjnly+oMiETul98lYsO8CNTec/pEI7dv1axcu3DEqrdFgjIWKwvMzPmu+RZ0qbFn9ff8jx8lcd0B1v0qblge4BVYalZSISqgxYYsSPecqRpy5nkcUtC7FOxereILgZS99ZbaRidIs5L4CtTtDR1OsDwsJdUgJLhJZ5sUS1SBeoKgYkhAW6Ftotgq6nxirGlZiamqfGuAWzaixa2G8QOg+kVfoxoVNrjgNABTR8QjAvEbNdjwcBiAJaxEyVad1jQgtvndAmm9YR7BLYUV8QwBcBxmrvzxG6JQRmSoN2iaCruoNj2UsSQZJeDQLYqvOX3EKPABwNCMY6c3ufdGkFVFdT11MgT1p2JYssbmMIlHxt//4NwWwN3H1YJRRUlLfSIGe6aKTWfL1fbPAfEVrqdV8v4opUPyWAmwIU4abGv5iir4D/ByFvNGxfn6fGdUkofilfS8ZF63dS24pJL3D3iJD/dwnGTj37XUz3dBFJ0i3apk5gbq7icuOz1Fj/36mxdVLbvbLXVfgRs3dux3xjx1Lulh52mrH/14T8tGzX4h5BX/ZZavuHuE6IVwStWex40snv4eSwzoA9A1Nj3DNTeVHj/QLufZZR9n9XImOoZuFiRKi4Q2h/UtX5C4Ij8iVwAW+O4J6YBapE7eEmbOn3XuKSTwwXd5f4v/zZgLw5xF/yiiJjlhjxhoRFfkGZEefcY5FfMOM1eaZcssQqP2VKngXmvOMOF5RM53TIO+4SkVA/P2Oy7L7WWugXmPC/+9OGN4xq06LCmWeLPecJa3SY2lNtRsyEInW6VIwdK3mBJh1r2R/QnHZoxy2GVDyLVvqn/+7P/pYcCdcsMOaCEhfMWSCixx3e8o67XLHowciI17zlLgs4weqIhJgpcxPhW2DuGblXxnSa8YZFrrhmgbsMmdPhX/zpEwbUqDBkbHqnMsmaEhs7uMqEooELRQ8I6LiAgcRn5EjoU6NJhy4NzqgQ45hoMTMDxp0ZVp6pB552+Mn/3G9kFln8Z4klLligxGzxrmMoGnO9R52Pps9IchH5q2u6pfcYskKLNsXLK5KS0yFu0PWs8QJjGqfndFfrnkmqIs2MPLXTC+JllzyjKCGaJ1QuLugtr3rwsEWb1d4V/7He9CBkMRmzzT75q2vOShVj5ndIiIjN5K7KgDEFHlnxZGyAX740pZl06EdVGnT9PS95FGkq9yOXPxtJl3FUZI+v06RDx1jtT6bPmcZ5Vk6vmNqCYLa4QIemNxLsUvddBK1pm2Fc8QzfYVzhgE2KTLyZXm064CDeZEreSZJcnhPNYWEK1zFMl/M0zYgvz9SuZ44BVao4pmnr8udcLWPXfZlu6T0G1KjSJ57OaMcNn+MrvjA1taJdgbPVOdXLUyq5IdPY5f1j1k0n2n0fip7tP+VB55dcVl1tOh/PfNdFQkTj8ktOSk2uMsZ+Frc11LptJhzkcPO5NCNRLZx7tt0DQvuppEAEJn5CaJ2/hwPqSoRF7EXqmPcJc0vtR2wt6dGpFVX6yWIuqd1V5yC5KrHCJDMQEUzwIADIAoU175XciwDhdJzafpoEdikEx2sZmqQX8pcEsxqxOGWyAm7xrZb9KUFK65/bdS4RTG3USiut11Lqd7FQBXjn7O9wE2RYxgEu5wSzQK31HxM0qaUVK31ctc2KeSYNRn0n0kDsA0JrbhZZ3LbYIzDuBXYuEkwppRv8hiA1JOb3AJd7XuDyzzMCKUnMfwgmcTKJyhEY7GJKig0qiSgI8kySNtJ6XsZyGovyxGuC8eoqQaJJckqntj8BxpJHEZsTwr0uYPEZAczV/S5g8rFto+6BV4SuA5l4CdhUkUdsXV2bKQ7w1LPnO4T8pmvwwraJcPlHeqqvcDk+JrT/C5yVxMFDgpmVQGEx/+/ZPsxQ7N0LuKNC2CuCDETaLPBzgjHZJwTTLWlbP4DrwDHI4pZHBqhm4WKTMGmLCJV8Ve+VSJXsduDeRwTjElWfpD8SOivD729hRp67vGUB51q/yBV3eEfOGD0jljwQOichz5QrFrli0WuHnrFKiUsmFFnkioiEBa44Z5neMh5kvGaBRa4YUKVnwoF1uhQYM2SFYzZY54h1jj3YUeGMIStEJCTk2GeDCkOadKz934Gyz9jlOF734KoW9DJ+atNi2YDPMiPu8o6xgZgX9p47vOWaBfLMuGbBs9lOWfU6rgJc33LXL/oju3Zvucs5yyxxwR3ekdjtLNAXoG8M17TZlkBPadMKANW4W7S94dUMx+D6S/6pAySM+bvJoT837WPs9V9nnNrxs8jitsURD1hlzjh27hljivw7/ogKQ5biETNiklLEpzz1Mhf5Uigm1On6AsYaHQ5Wv2pM+JjW5c/plN5nn0fEzDhaXffgY5kRw7jCNM5787giYwZUSequvV4M9iiaM6FIoTRmQpEmJxSnY99e7yRC1sgZANulQYOu1zpu0mHICjKji/wK2+kkq8X/kC12o89oc9+Dr9JSnsZ52rQ4Xs15dvwKQy5M2mBKzDYvvbRBFCeeFduLXT52ALQzvjtmg1kck7NWfoBO6X2GrNAwtOSEJnUzMxxSwZkXup4AJ1xQYFRys9VByXULqAA0oMZJ3PSMVhn/5ZmxzyOanPi897LktLwlhdCiTZsWMTMPpsoc8BfNmZNkMP1o7SsholNqMifi9Ea/WBZZ3KIY43rZxEgSMHqJayM/xy0QX9tPKVuIsai2VDE4ZfIBYTGeNrGSaYfaRrG/fYvQQv4poRPqD3GAgxb3AxwwWMItrFsEAPA+QbsPgqzADoHlKUdnAadiTmn+W8cBBX9rY5CcwBEB6ICgn6cWWembqhVWc+0qgYn1oe1fAES6fXiZsHifEli20kXEzkGdZAJMpPcc2XZdgsbgfQL54ZTArBVjTGZfTwmGLpIV0HvU7ipta2mNd+y6SmrgyMYarA+yyOJ2xdeAbdy9KR3UDW6y76VvGhNylvLeLiH3SF9ZOeYh7n6LbD8/JbTJ79p7pK0vs6gjguHTFSEniCW7SgAXVTCS1uulnUePUHi6TzC70pp+YO9fTY39IQETEIsfG3cDJ+fyAwIrVy3yYuiqOKbzuyBougrgVF4q2biWCRrezdT/pe+qopjyr4BmFd3E2L3E5aU0KCyzPpmAYdfkW9wkjMn/YBnuSA9VhSqN/RUuxzVwua9KkF1IcMZi0rEuwafLvw/8PVnc/sgA1SxcHOF0oSBUiqQ5Ip0V6SCljDq80QCEB0e6st3EV3Q4hxKXfMl7/Nd/6logG3SZElOk4PVC+2auNDGGl9MJLJFwzy/+j/k9RpT5mE94zu9Z0+aQPDmGfJUmJ7Qp8y//7I1bzBs4e2xiM26BXeWEJmOKnt0UWWt8nR4DqrbwXuKQTeZEHLBJkxOvkbrJITFTZuTpUufEGGVFJixyxf/2T7/C2BigLdp0WANgxjoVhnSp06RDmQsO2fTaggXuMmGJKgOGLFrz8JJBnHj2W8/0Ef/Pf3bpjbRGlL2kguQKdH7SO5WB1pgC2+xzyBZPeM4+2xQY82O+QZ4ZEYmBLxXTjz1hascpM3Ltyqz5ll6ZjC17K+wssrhdUeaCBm88SJdmXzuTOKe9/E/4G6qXp3xa+geUrTW9To+EiBxD5kSsdq4YWAV6nSOiudv/15M9+pFr04+Yk0sSyufXHKx+lSJjGtNDRnHZTOcq5Jny7en3GcVlpuQ94FhLBnSjHMXp2G/fTDrc61zz3tUrruvQXn6fdY6ImVG5PHct6fOESnTmz7d2esG4dJdxXGQrOWAUlU3D1eXbdY5YSYbMo4jVoytONxY9E75x+SXPS4+pGY3gm8kPGUXOeO/+6ZcUV8dek/mYDYqMWbPZbJUBCRHN8y8pLk8YscQafVZOrxiX7pKPpyk26IwWbQrWDVBj4PdbYUg8nUHs5AZWkiFEUL28YFhappF0KUZjM/1zOVFa19XLU/5X07/mJ6sPGVNwurImjwDQo0GFIY/YZ0TZt/4XmdCgS/38lOnya2rTAdM4zw5TYmZefqXMiFXk/JJFFrcs1CraITCG5FIsDVUZgQgwFKupSWBoym16l6AveEqYUwooVEF+2V6/RwBm1U5at38/JoCaYnde2fE/JJil7hIYWwIh1WorpugctzgX4CnjQM11GzgCgTQQ1Yqr+fArboKrUxxQ8B3CArpFmF+rHfgcJylwTmC0ikEm7cC05IHa9NOtxmpHTZ+fwGoxi2W8skhgGncJoLWYumrbb9u13yH4JwhsEPCaNhyUeZlYxTs2XhlUCYhOa8dmkcVtiq8SQL4pwVtEGtMqMKXvMW0vYzzlUN0TKhIJmBTLVZrNENbZiwQAUGvt+wS2+CIuR8mY6gKXB8WQl2mmmOk5HPj5gsCy12sle2+CyxNpczvlJemeKveVgP+aAJAKHMZe+4AAWqo9P03akmnpnMBw/cKO/SEOpFUBTpIsXxB0YL/lxnL5396l9H99G9iiMv96QNCbjew66TpKOkEFqc9Tx1Qul3yJnnMqACap93VwRch7OPA0gjcPFri3fO0KgfcI3QA5qPwn7Q5Z3NbIANUsXEh7SpNZJUe1HD0kPDQ0AVM1fzX1uyrqmqzlcBOrCHgLb7njtUPHFD0Ds2IAXJ8qNfqc0DTQcOIBUWeAsu/BPKdN2vAAoWvld+ZWz9hlRJmfA8u8YUDVt7YvMWKfR16vNSHHlDwrDD2L9Jh1AM9imhIbqBh5ADFH4rdzbKU1A0Pdgv0N97yR1DHrXjfV6R066DNHwogyM2I/vkfs21m7dnztPyLhkC3fnt/HaR1OyfMlL/kFTbrU7doWSMiRI2GPHcqM2OSQNWuXPWadJzwnosg+2zTo0sbpKgooyTPjmHUP1IotlyNhQoGJHWNIxek5ml6j01y9INCXs8jidsWAKuvTY5I4opiMaUQ9r4ecIyFm5pjupWVqDFi//BmD0ipDKrSStm+Xf9NYICFifXoMQGf5PVaSIaOobJqoVdYvf8Ze6UOqq30i5syJ6MdVu3e/7nNeEk+8AdOAMuscMYrKrJ//nMPlr3l5gGrU5z+2Wjw6/4KFN1BevvDnNS65XlpvtmUmUP1V1xnQTDqMo6LlwRllLnivc8GXzSVGUZlyMoISxNMZg7jKGh32Sh9SZEydLsds0I5a1OlRYE5n1VHRctYEv8tnlksceCrws7P8HhdeN7rGP7z6nNLVW4bNonUUVPhK55TL6l2GcYUyF55NPzO2aiUeAlBkQv7qmnapxbBUIWLOMHKgtIwKY2aUp858a1ha5v3OOY3VHuXpiKJdZ+lBr3PstaybJpRVZOI/q8Nlpxfdj6vEzGjT4qPpMzpxkwpn7PF1FjIUIYvbGu8RDJCk3TclgAFiCsW4Re6VbSe2ltyaxTwSYJcjmEpJ5+5V6rUrwlxSLfjnBPap2jC7qZ9ihVYJ+qECb7H9rNnvaYBwA8dyPbe/yzxEYKt0CSMblwymNL5nOGDiJUFn9cjOfc+2VfungFHNp8Xi0jlfEnRlr2xsMn5VSykERi4EFqjeK5kCseemhJZktfwKpBWrSnII4KZuApcForTstSUC66xHkGqQQ7fkGGJusrsky/ALssji9oby0BXu+/zPgO/h7oMfEIycXgF/grtHdE8ojx7h7qd0C740j7UOXySwTrsEpqWOrw5S6ZRObZ9HBD1VtbV/QAByBX6+sH3L4Eqt/mqTV46TPvUnBEmPy9TPTwmSBa8JeQyCvEjapEs5QftSYUjXpPcr/x7i8tYPCDlGOUl5RmDyD9yxSn/+1u1LuqZiAQ9Sx9P10HNExSzJCohBDC4fir1bJ+Q07JzbNk4BvtKaxb12r3QdciYEQL0LpeaILH43IgNUswjxgjBxbBGYBqrEC2yVBpSSDITq9wuCC1+HUD26cO+LmREzpcLQs5Sm5Gle/pJByekGdmmwzpExIGNiphQY88RA2CEV6nT9YlpanzKTesS+8VVXWOYNVyxSYejbWLc49AZWYlaKjdSlQUSREUs06JG3zCk5gDIXBmo49meeGTPytGgzMpDjwsDHt9xliwMAnvCcrrXaVul7JqnMo0Zg417xGoROu9EBnXMia6HdT7Fp3cz6+/xjzumyxCVNTnwraoExfXPOXjEdVYXaZnvUTd4g8u28XRpUOCNmxjrHAJ4BPKTCE57znCde51VgrzQf1znmBV/5NX0ps8jitxvnLPMeXX4Yf5MmHfLRlOc8sZb5GXMib5YHcMAm+dKUMhd0aTCKysFcLnImS0nsGJYDqgwiZ0olHdXjEma455JpkTGbHHgTvYg5NQb+/lUxRjlssrTA1ORBZF43psjL5QesLx4zpGKsy7G/T8uM6NhsMd0W34+cvvIBW+zwE2bEPG8+sfLOmE7UpFh3zfVzIg7Z8vs7ZIs8Uy8ZEBvD/Zh16nS9jmsRJ1PQp+ryYtRApoNd6mxxyM+a73nAV8cYNldMSiBPhybHrFNm5I2mnvPEm0M9LznDqRp9IO/Z/MrBCRHTOGZAlV0+4/ThlA5N4tg9a1xubNCiTZcGNfr0aHBCk2/wY18o61uXQ92QiBp9VhjSjlv0rPsgZsrfs4Oj02WRxS0LLbZlVCQdOoGfdfu7wEyBalrkJ9zUFVURXsYiif1NsgAyapFrsxhRAiavbJsrQiv+57YPMa2kBShGp5yaxVYSw/UVgeX5kCBXIGBAzM4Yx1bSa2rVVXs+wGf2M7F/GwTmbtqsqWevydBFgIsW6WJACTz4FCdr8ALHeFKbKQRAW4yyN6lxpQFSSQRAYI6d2HWRFELTzkGsXGmdtgjA8DR1PAHmkmsQY1nAwTMCuNSz7RMcQJ9FFrcxpoRiyRWOff6vCfcjhELGOQ5ordr/7xEKOODuP8ll1FM/xfI+x62bpUWs3KoxiPCk9XidcM+VCHlVIKHY9MpFU2623ot1Lra+Cj1TG4/AWhWlTuy8HttxTwna1OnijqReZL53STAflCZsWgv7c0IhidS+coRcjF0bPX/0rDDWJ3OcTIm6GSThon1h56RnVtvG8TmBPCZQWV0HP+Um6ayX+lyElYiJfI2TyZG8jZ5JAztHYwtfPYX7P8uK7b8rkQGqWbh4Q0hWEaEKJtFrPQhOCVUz6bSo6vSp/f9HuISpSvoLPJshmifkczPKvPWMqgpDorlzjo5IWJ8esx871uSQCktm5OJAgzllRtQYEJHQoUmZEW3uU6NPgTEDajSSLkmUo8IZCTlazOlTZUaMc2B2zthiygqE/Kf8JQBHrDutRCLqdDmhyZIxSvUeGTU5I5gpH/OJN535c66c9l7SBuAsqniAwhlj5Xhy+YJu6T2vKzgj9ov9KgOOWadFmzIjti9f0Sm9b0BqGAPAH/PnfM6VmWOtUGHIDnt0qXv9P4HAYtDq2tbp0aJNj7rJCzhQusbAXxPpK1Y4Y0wB4IbubMScYzY8uJEj4T4/+7V/RbPI4rcRy5xzQZlNK4acpMDILnVWrBjkSkN5tnnJkBUmFB1r1IDWIhMzgHP3jBiVRWNc5g3ETBcpKpyxNT1kGLvXn/DcF5QKBkS6IlCOGXn22CEfzYxJeeQZ7MoPnbhpWsxzD3yCa7V/wnPAGdGNcFICKiAVLY8WGdOmxROesz495iDeZH16zGfxrr9eAiArDO24EwZWyFFuFZiaLgQ5nejYy6qMaDKhyDHrPOY5RcacWGEoZuafAcppAmklweBy84Q8U28SqOjRYE5Eg67XTR1ToMKZz3EDqjxi39i0QyZWvJN27CYH9GgwYokmHQ7ZJG9M5Rp9llJA94mB1c/YpcKQr/Dz39C3NYssfguhtv05bp7XJCzozwmtr+pUEpinNlcxprQw1rxSZqcbBF3AcxzTJw1ACFT9KYFt+Ziw+E+36bcIJjBHtt+SbS+CAAS2kjT5FJ3U+SwTGK0DwsJYi3KBG5IniFM/mzaOPW629+vaSMYAAvBwZWPW+3cJwOoOQc5AzT8f4dhr6gbbIGj1pc1dHhJMcLDr2rXxqXX1zwktymKpNQhu2wIWPrfjyLhKjK5Vu8ZNgmbilMBMFhtXrLEssrhtcY/AcBTbUMZ7i7iWczHQdwgGUosE6RLJoDzE3Xdt+1uXcJ+k5VLUEbqIAwm1rlYxaQ+XJwSW6rV0R+nU3ivDKBWUdKw39vcvCLrPAg1LNjbJEMhET2Z00lt9TTD+S5/PAxuLzOkeEjRHpXm9TJAsUUFGhli/+p5/a+/7FwRZBem+zu16Kj9J07mU2r86LXI4wFug7ADXZaBimWRt9OzS86qKA3N37e8ys9KzTh29X01dU1LjWMVrx0ZzePHVdTDiUha3OzJANQsXMqKSZlW6EpNO6M+42WqkKpSq1PcJbnpKSGo9eAvR/B2LuStGrHmjpwlFhstLPGPXMZDioFrvwMeW1/IcUaZBz7Ejkynr0REDat5UaUKROl3OIsepnFjvwZS8aYAO2OcRT3hO3fbjgNE6HdaImBMzY0ZMlT5FJnSps0aHYzao0qdNi3WOvTyBY7Um1i5f5YwKE+P7H0RbfnEvFqgDdee0S18FnIt24eKa2eJdipdvGZecY3Q17vt24/3SQ99uKqaaA0lydKkzpk/fWvXdeByDdkLRa57WzX38kC3PyE2IvPmV9ls1YHpKnk0O+Ds+ts/CMXQP2KTMhWPXse5lG0aUaTIyoPfd/99fxSyy+M8Zy5wD92he/pJ/V/oOgJfhUEu32sGbSYdO1LyhM+zuudgDq3V6nFFhnSMScowoc8Q6ZS4oMqZKnyEVtjigQ5Pn8RPPYN/iwJveyQAvlyQkUY49dnwRRMWSbfZx5nl50wt1LPWGtfarfX6fR6ww5IyKSam8pEfDa7MKeAV4yqcuH8QOzOzEDn2QREqXOjUG/jy61Lmg7K+R8tSMPFsceGC1whkjygypsM4xTa+r2qc2HUAMZ1T8mLo0DPh1RbE8UzMqHNOY9hjEYv46aZJvT79PP3a0C12TIhPPzp2RJ28mU5I5mViRSlrZMVP/7HCFp4bXVF1iZCz+I9rcZ0yRHg2fPx3Q6gp/r2+4NGaRxS0KFdghGIv0cPM+LUw/52Y7puaHKsprcS5NOy3ktdhWO7rAxBJuvvnC3iPdvGXcYvkKV7iv2vZa+LZx4MAPCCBtbH/ftbHv4hbPGzggULqFAkie4hb/q7bPJQKooPmttlWrvlhSYpq1U+cr9pUkEs4J4IdAYZlGpbX5pFE4tdea9ncBvZd2HgJPFTLh0pikT5vWShVr6zGBYSugVwCC9Gzr9lPghIDdI/uMBFbEOIBCwLXIFtKzFYgspmwWWdy2WEz9lOZxmnV6iWuN/5DAsKziDOz+BaELFAJbspHal8zdxP4WMLpIACwFbAo8XcTd3yI7CRyUSbTM4z7Hre11X4oY+cD29RmhcKJCjMDGtIHTEa7INLXzUfElDdpO7bwkXaIcIyM+5fn7BKD1Dwk57UNcQ4+0TS+Bv7btdH7/NzvGNwgg7guCgdc5zhfmMzv/T1PX9AXh8/kR8McELeh0oU3PJo3/iCDx8t+kjiMdWQhFL3UL6FqqeCWpghws9OArtazY/rsSGaCahYsYmBEq7KosvyG4BmritAxmuhzMq14QkscHBGHtemr/b+HN4pI3O5qS96YiatcExwhTq7/aUsGxIlvTNsO4wpgCg6jqwTw5MCdETCgyoMaYIgkR1yzwjI88O+wJzw18LVCjT8f0WuXE7fT9nPlIhaFnHVWt7XOdYxIimnTo0HTO0gaA5JkyI+YtdylxQcwUGaqIHTuiTM8uTJUBo6hMcXnsWKlx3TN1E3J0oqaBnSseqGnS8SY5Wuy/5Q4xU4a8b8dY8m36F8ZqBadPKEbX3Ni3An/WOabCGQNqZgRW9m2vVQaekXXIFpsc0KLN1Cxby3atpibB8DZLLVnc0jjhfb7GGcPSMjvs+fb9mBlnKdmMNi2SKPIFFZnqyUFeuWBMgaeX/4Fu6T0O2QKcBEjilUVzdGiSGINSrM48U5bM+G1qrMw8M+ZRZMx518Suws+AKlMrBJ1YXmrTYpdn/rUCY1q0+SHfpEGPGgNatImZ0aMepAoo83HyCT+JdmjQI2cFlzYthlQ8ezcioU6XATXAsewH1LxW6ZgCNQYcGDt3n202OaBoeXps/yQLMKLs+KHxChFzVqzws882EXNGlNlmnzYtL4miqNLnh3yLf8LfsEaHflylR8PM94r+WqfB4og5FYZei7oM1uLvVhtnVMyg6owRSzxJnjOKZDaV54QmFYZmouhkDFxh6YQedd9FIF3tLLK4daH2eTlKPyAAbXpd2ndqY8/h5opauMYER2d1N4kFmm7Db+EW/mLxyBBJoKE0A9U+L7BSjNE49U8F/te23z3bXgzLVwT2qtrsLwn6f3VCmycE0xKdy0MCI3TProvaTUup/YlUcGRjXiK4eacB2WcEp2oB0m/suKah+u4B3MHenxA0F9P7kn6qGGgCTtQCnAY11V4rz4S01qNMWCAYTc1tnF3cZ6PPLrJ9i7X2msCOkzGV1hBDssjidoY0g9V2LvBtlQBANnHrXxUnJL8h7dK2vTfGAYLSZl7GsRkl6dEhrL1fEDQ9laPUDXCP0Lr+lFBA0j7TGqkytxKTUkURSbKISKX93ydIf0xxBZOPcblE44NQMLtKHeuSkIPSplvShu0RWuxPCaBllQDSqshG6joK9FUXwjM7pweEtvq57eMlLocOCDIzApQFSH+LUFRT/oUACP8AB/CKkf+CwDaGUGTUPmS0eJXaT0QwThy4c7l6DIvnMIwkQp7FbY8M9cgihFgIaWc8JUa1MZziEq7amkq4pCg6u7bvECbSagWbwMrogrPyEo2ky73uNT9rvkcz6VCJhlTPzxktL1Kgwktzm1/n2LeRA97lOmZG6/yX7C0/pkqfYzZo0OXJ6RecrS6yzhE9GpS49EzLFYZMiUnIUWPgGa/SUXWsrrpvGRU4EDOlaS2+Am3nRBSZ0KTDhbGsxPbMM2OBa3IktJK2mbwUqNInIUee6Y0FeIUhMTM6rBEz40Hvl/x9/aExavusJEOK0dhLHKTbWd14Eq4osMC11wpUm+2QChWGtOwpvsLQQJiBdw8vMuFTvkFs+ocCgPNMPQttYOOs0/XXC2DIChXOUiB5bNqJd35DX9IssvjNxhq/ZMKKZ5QXmHvAMGZGg0Nalz+nW3qPGTGbHBAbELnPI7Y49NrDPerU6fK89NjlJ55TvTxlUFqlnAzoR1XKXNC6/Dmj0hIjlgDYvPyCaA7DZWfc1KTDAGcCNaFI/fyUg2VX4KheutnwqORYoTkSWrTZvfx7hqVlhlToWx6LmTGhyEc8AzAQ2LFu6/SsA8Dd4/MoYoNjIhIql+cMSqt8m+/TpmUMz5h1jqhNByRxxEu2WeeYb/JDz5oV47PJCWVGPOcJmxxQYOxziJi8K8mQb0f/3utfAz5PFVPPgpgZzaTDKCrzld4pVyWYLS4A8E/5S4rJ2BWMooicAd0Vzry8QHk64sncya3EzOx4FdPJHpqG9NDLMSzZzwY9xpE7nxkxORI2OfSa2BEJX0/2GEXufFQY07MhiyxuZbRxjCTp2wmsk5ao2vgXCSzSK2624guM08I6RzCBUmeUQERpBm4Q1plNwkJZAMAFWLp08079+5yw+JaLvcanRa4A0CoBBNXCW2DhCaE1Xtp8r7i5sD8ngJHLODKBji9GpvQU67attFnVki9NxocEUPMBgQW6igN2X8Cd7xCYwLEdTwCqxqG2WwHHaWmBNNNVEgQtAoNVYK7YszLBEYtulwCOShexQ2C5kfrMJN8gjUT9XZ9BFlnctjgEvkaQvXtIKJQ8ILSLa30M7v5Ywn3/2wSzvccENqPAxl17b2LvTXAgq/KAilICE6X1vGTbJbhcfY6791/D9X8DC//WXpMOcouQe9M6q+fclOgQUKi81CJ0ql5xM0co9yym9ndKeF4I7FR3g8DN5dR1gcDG1Ximdl0b9vqcUATas5/CJyB0KgjQxq7rTwkmVOnnkkwQnxKIYon9/gAHuJ7bZ3AJ73pw57uEzoGEUJzT2EZAxX1m1y1Y+Dx1Tvfhy9YS7/3LC67/K7L4HYoMUM3ChfSq1GoVpX6ectPJFVwi1YTJKi5+UtoiJC5pm+SAv4d3ObhmgW5U4XnTOSdPIudmX1gem/7fhHWOvcbqSjKkH1Xp0PTMzDwzouWwWI2Y06VBfnWKnOfLxu6aETOhyDM+8vqCMpNyTDKnhqgWVYEnEXNmxqJNyNGmxQ57/n1tsz29oEydnt/3kApXLDqmaJRjTsQxG6xzxJAVnvOEJzynwhknNH077JyIGTNe1b9KEec0fcwGw+iMBj2vISvTKLW9XlDmnHvkSBhQ8yxYgB/yTb7LXzKgSkLEkpm2qO12nNJ3VEincUSZATU6rLHFoX+PWmad6/mS11YVaNChyRl3ceXBLLK4XfEFG7yhRZWBLyrofvLGUCUnnTGmcKPIUubCg2jNaYdRXKZPjTIjjlinxoB+ybEYG5FbgbZpUS6NbjDHpZfcoGfFlqY1kbsW+8ZyjwvKzpipNLJ70ZlBqegyL0VcmPFdi9ce9JNkQdFAzTYtXyQRk3NKnkO2HJjKGdNS3heAHIt/DExd8SZ2DM85EZ/yDYpMPEO1yIRj1n2OLTPimA2vd92h6bVb96Ntf32bdDgz468CY68pnWdGjT6jyHJXHcvPkRWQVogiB+R+4/zvOVzeYkSZLnW2ecmUPJ24STPueLa+Y+D3GbLCMetMKHggt4B7Jp3Q5IBNk5uZc8gm6xwzw12XGTH7PIII8kxps+k1XmfE/ISv43rLssjiloUAPLWhinGoVtK0uYnAyWnq5wC3eNZCW+ChOpik33eEW/Rq4Z3W4ZS2n8yopGvaJgCTcp8vEdiQAj21zQZBJ3RAYLampQC0Klqz96u19T7BxGnZzuUxgUQgwFnAgtryZXSlY/6qBmsOt3j/VVmFewTgQyD1pzZOtQ3nuOl5IP1TLewFXrwhAKYywZrjzWLp2bFEptA+00C0iBICJHQeYho37dh6Xdf5DQ6cFmM3U4PK4raGwMcEd49Ix/Q18I9w94EYqMp/9wjFHzFAlWPSRnkbuBb1jm2je6xDYEie4vLQM4Kh3mPCfauiVg9vgLTwLwlGdB0bp2RSjrjZfn+Bu183uKkv+qmN5b7t9wJ334sV/69wRSjlK0mV/BVBv1mFJVLnv0vQTBVrXjiDrrVymxim93F5tpq65h9y08yvl3p/bPv+gNDtsGHv7+CeOd+y/X9BAFovCKxidUbk4M4DgqFhx66/tGUFEhugel0yMHWQuq5A7fQCdl3L/3Uj7WiWxW2ODFDNwsXMfopxIB2VcwL9X4L8G4SkDzfdBlWhg6AJJafVRTgt3ONL3gPGjCj79vsqAw9GygxkTW7MUewNYJp06AM5EvbYocKQJ9Pn7MfbxEZx6FL37bRvuOuBgx32GFKhR92DC1UGboFO2Wv4Ad7FWRquXRo06HqmJnADuNXfBDjc5S3X5DygK6C2YgxRwLfTO7aW00I9YJOvs+e1A7fZ9+3DxWRMEjngAJy+rECWPFf0qXktxbkBDN/gx0yMtRaRcGHAUJc6ZS5IyHHIJmt0PBhbtM9mSt4zWx1j1bUFCwCJzfE8R0KfGk06/jM8zTQDs7il8RV+zkMzIpJ5lNrtPaA6HbEd77PPduoemXLMhmfUd+M6ZUZUGdC6/DnPS4+9LECDnt2Rkd3DBc/Cb9Emns4oxhPGFOjRYI0OFSJ6NCgyISJhhz1f4HDHn7HPIy/RMaTCmCJV+kwoOv3Q6YhiPGaTA/9eaU87jdGxgao5RiYfUGHoW9un5MmlTLmkgar4iGeedX9BmRl51jmmkXQZR0VXQKPIEes06PGE5/SpUmZEY9qjEzc9wDu3Qpn206Ltiza6Xsqv0iwdU2QjOWYcFfnx8u8D0KBLgy51eh7o7sRNK6K5glKRCRvJsTMPnO5xEG96Rms8nbEWu06EhIgOTer0qDLgvc4Fp81Fjlhng2PGFPg+3+aP+Bufp+t0M1OqLG5vzIAV3EJ0QAAel3BzPLWPSk9fbfoyM90ltHNKA/UVwbVaeqTS9VQBP0do51fxXgCk3JVl3jIg6BOWuLmAXyU4WWsOq/+LDAABTF0lMI9ytq0AAoXGovOKcfPkh7iFcxVXP3lqx5SZzGscuKi20hxhHn1FYKaqnVZgAIT2+TSbq5raj8CXBkH/r40DG6S72uamPqIAVrXmCtye276e4lpeJRcggOiUoKmK7UdAkjRYBWYIXH5o16RIFlnczkhrFd8ntNWrwCJ9YumXSv5kGZcXIXiUKM99lwBkviSAplo71wn5cJeQ0x7a62KAp1vePyDID/QIgKi0jgep/yt3QNDCXrUxQCiaqBNB7HvlBBW6dnGFoV0CK3eOyyED+5uYtXMb7yUBED4i6C8rJ6Y9XJQ/dbzXdizJrshsq4fTVX2WGvMyIR8qP4md/4aQc/U5nhI6JKQT/R1Cd650waURLq1tcM+EO24/C6fc1PnG/X5nz433zYMFhpfSrcnitkcGqGbhQnpJqvJo0iXmqZKuwNMlQkKRJpZafqS7pMq8mAk1x/p0RiXvSIjoU/XaoJFxjZ6xazqlOX7Itygypk7X6/hJF0//juN1BlSt7dwBimr1LPJL5sYuXeeYAY4VKxCzyJgpzoHaaYLGzMh7FuaZyQ/IQEvgr9MujXxb8JAKMVNzpZ5QYELEnAFNDzq0aDOgSpUBPepUGdCnRo0+Z1RYYehB3Y65Wx+z7hlWuSihzMi/Z0DNs6YKnFHigiFfYWa6ps40yzG7WrSN9bvGhckcnBgw8ITnzIkY2GfwnCe0aNOg6zUfAW+MU2TMPttss0+LNjLkEtutwJglLn4DX9IssvjNh+7pATVGlL0O6sQY2i3a7MfbHlx7wnMA72B/zAZFxqaDOnNs9tJXvV6nCkYdmqxz5N3uBRa2adGOWzToUUwxJKVXqsJI9fIUSngd4yp9anaPAgYCT/24y4zoxE0rvCT0qZIjocKQAmP6VCkyQeZ6kjnp0WCJkWexr9Fhj69bjlxjg2PL6UW6NLwetWRRhlTIR1NfLAMnnSBt09iMoTpx01/7ruX4NvdNgmTKvuVhncuQIg26HLPOOsf+vPtR1TFVDXCVkRU4LdZhXAGc/muNATPyVBhyFK2TIyGJI8qMSJi4c44dgDswpnGFM9NdrdJr1r3OqjocdthjQtGfR4vXmaZ0Frc3xLTSmu8UtxgW81RMHS26ZSS1hgMPpa0qkFItsnK+TreraoHeIui05my7eziwcI//tFW2afuTC7MAxSlBbxSCxp+MpXZwIIA0ANXynjYRGeAW+gI/1UK/wU3pK4EM89T7RUgQ22vV/l3YeGPbl4AFXYeWvSbWrdiiAp+lo6jPRXIBywQH8hP72bPz7BBIDmLqqgX4Q9seAltVv+v6twigLTbO13aeYn9BaKN9ldpO+1km01DN4vbGVwmMyhcE8zZ9/yUFoMd9i5tgq5jcMpAS70TaxfdweUD3mVr9H+HykO7BdNu/GPwyf5ZJlVrk1TmQEO5ZGf4JFBbzfEowoVK7/n1Ct0AOZxYldr5a/FVcekaQEhFY+yk3QUwIeVJ5UzqpEHSdJe/yHVxRZ4DLU2LAq6glcFPXUMCsNJ6v7BzBgdc/smuirtuuvW+NIM0g0qg+KwiSC5d2Tv8HnNmYAHCZa83dtZ9t3AHeueM37FwGNr5Pgadwb3rN6v1MP/V3JbJZfhYh0uL1ShyqSMktUJW3RcLESu1LamdQG0QXB6rKKe/nUHh7Re5uQpFF/oBPvFZqna4HSv+If8eQClX6fMwnHoSUJp+2V6t83hbnLdp0jEklA6k7vCPHnDU6nuEqLdJt9gHH7JIDtwNb1UTqgNJHth3ANvus2Yk7QKDAiunuRST8AZ8woEZCRNE09FoOIvFssJFJBMiABrCW+oIHS8TGEiBTtEb9hMgv6NdSpizvzKyqaeBt20xgnvCcPF/3hlxbHHLAJlUG1A0Bl7ahAOoiE3rUWaNDgQmHbHrdVjFxv833GVPw1z4h8kBzjoTlDFDN4pbGV897XN1b9VIiKrY453eXR9q0vCZql7rXUHX32cQzKNVa35x22I+3mRF7sBDwshqSIZFesSIywFMFJ3eHj8iRcFh6wJyIGgNGlHnGR5YX+lxQZo+vU6OP04Ede0MttbRLW3SPr/Mxn7DBMZXpkON43ee5l2z7gsmciJgZtemASezylsu1Axqn5/xg9R8woMY2++SNzjWh6E38GvR4zhOadCgw9lrYug4z8j4nSdpgYOzVSUqiIM/UG2OJRZpnSp2xBzJn5IlIvFzDR8lnHEXrflxV+jzo/JKfNd+jZysPGXstMSJm5pn4Qyqsc+xzcJcGL9n2Gqs6v751IBQZc8AW2+wTmzHZcoYiZHFbI220JNAy3dYtJ2oZeogNeZp6n9ifWszHhIW7tpdztHQ/pUUoqYFF3JzyMQEQlU4fBH1TAXc9O55ASOn1CVyF0Ka5SJjvpoFACMzOVQIzVnICMpDRSuqcwC6VbFbJ3n+Pm47QDwhgrK6fpBJ+tbUeglmMHMZFXJCJlM5R10RyXRqfjlvlptHMnKCHqs/wpwRwW237jdT7ZIaj831NAEAE2H6PANy+wIEhJbD6XxZZ3L4QW/MeIU9AuE9VjJE0iAA5GS0J0BO7u01goUpW5XvAPyPct6c44E4SG7rfBa5CyKW6D9NA7TNczlTrvsaraabAyMepY6Zz2j3bVrIkH+DyQ5ebbHTJA6SNAr+DyylipW7gwMdXdg4yyZMe6wD3HEgIrNEv7G8qDgmg3rGfLQITWNdCxltp/df7BAZ+TDDXU1ftSWp75XV13Uqm4cjG9ScEI+4vCKZ8TbtebyA/fcf1KizYd+IXH67ylc6pA4d38AW3A98mkMVtjwxQzcJFAuYD4kJJRQ6DmnBe4iZWch1sEcSjNfnqEtql6riJVAeYwPxujnOW2Wfdsxr7VNkwhpHT1Vv3QCS4lskhK5QZWYPnjDb3afGaPk3fDppn5gG/Ni1yJLzjDhcseedpARaOHeoYnHvs0KLtW2SbdPzC2F2ayLfC9qnStQX4S2uvdTquOW/oNKLMXd5yyioVzjwI/Ixd1ugQ49y7tf3cQIIJRd/qXzEzKEWFM9NGdIv6Oc4ERqZTCUPesExC5EEfAREjnNnNkAoz8lwYQOtafQssMWJm7b4VhsaOnfBjngJ4wFQgkcbmTLuq/u8DkzuYENGmiStlZpHF7YrXy03mrBL5FvzXDKgSM6NLgyJjrxHaoOuBwTFF9tjx7fx1Y08mRIziMvtsOxMn+sztPhWw2qJNjwYxUxIiax939/8BmxSZMCNmw8yuNI4KQ19AWaPj85ETAhnTNi3YiMSZWdGlRZsRS55N6/RDK65bIC76wpTyMTh5kxWG9KnRjes0kw7dyMkPdKkzXi1QY0CLtme1SlalwNib1z3hueVIV/g6Zt0Xcro0GNsYJUMgHex/nHyfbtQwrWbXg9Ch6dn2YhKvW9t9mRGf8RHf5AdO+zkqkyOhyMTLBJw2F31ud1qpF3zKN0wKpk+b+9To06dmea7oNburDIiZmixBYtco8oDxFgcecC0zYslXHbPI4pbFFfAPcWs+MZLUgiqtUwGNMkip4haXn9o2aUbrYxwzUq2Wek1t+M8IepxaoPcIAO0SoX1TYMAFgU2VZlAu4+anYp5qMS7W6isCc+jD1LhiQgcWtk26A0tGKdKRVcu/AEYxWtWmL3Dzys5JDK20RqBYZ6u27WMbp8gL9wnu0h/gAAAxWXt2LEkGqNVfWo9fAH9IkDlo2v6kp6rzhKDFKs1USQ+IJavrLWBXTLkqQYrgkmA+JoMryScckEUWtzN0HwgslWbzJ/b6Lu6++wEuR4iNL9bjXxA6P6Wdqn1IakR6xU3bT5NQLErLc+ifWJ4C9OY4wDNKvW+OywEqVr0m6E+L9SnpAEkFvE5tJx3RB7ic3iIUssSKV7FMgOyAm7rVApt7hEJTj5BLsf+/wOVr4Yyf2+8qrom0pZz6gvAcEGZxj5Bfj1LX7iq13zVCfhZjVQB3zz7Ltp2vdGDVFSD8Y5EA7CYEwDoHTGDhBIeHTOErq6fuvbsEFu8z+L2d52TxuxEZoJqFC+ljaVKkireq8Jqk5nCJWdX0c4JBlTRImrgk8powKTQDgMWrGSzC/+fP/gMJEUMqLHLFW+5ylwHXLHDNBYtc8f/iLkXeWAtpl7u84y13mJFwxSV13pDj7z2oeM0CY2aUjB35jrtAibu8pUqfJidej9SZizgm0yYHTIyFBk4LscbAuz1r/0uMuDCjmC51pqYhKBAD8EZPeWZMifk//Zl76pW45A3/kbwZ2LhLfslb03hd5IorJoy5IGLOO+6yyIAFrnnLiYGWh1yxyD3ecM0CCa+5NvfsRe5xh3fGPHOs2QIT+gYEJeS81mvMlAJj2iaSEzP17b8JEescEzH3UgdzIs+SG1OgTpeYGc954lttZdRVZEyfGl/lF7/2r2gWWfw2YkaeVWO5uyJEbCWJkWdMrtGhef4lC1P4Wf09r9/pAMOcL3oIbHPs8APH5ky6nEUVLoxNLgBS8gFjiqzRoWcA44zYA4djikTMiZlywCYf8cxY9RPfkg7Q5j4VzrxGc4+G16uWdEqRCTm6Pq/JyR7g2+f/X9rL7zOgxozY68LWTI91FM08Cx7gJdssMaJorFfJHci0qciYmBkDqt7oKcLZss6N3dmgS54ZK8mQYeRA4S0OnTxC5AwJR5SpMaDDmmfpi6XqTPzW/Vif8JwJRbaTfeZR5EwLmXpZgx4NjlmnwIQdfgLAN/mh17ouc0GPOg26NzofnJzAnDwzciReT7pD05S+HdA6ouz1Yc8zTeksbmuMCe2tYgjd56Z+aYlgZCRnaIGFJUJLqkxNBKrKxKOKAwFkjFrnZhfUQ9u+DnxGAFXFAGsRWK0ai1hOEJhJAgjFWq2m3iPDEoGp89RPsVUFFrzGLdo1vhcEEsFGaju18T6wa7BEADnF7Eq36l4Q2vLFhuvazypBOiDtzn2Z2pfMaKSdKMCA1P/P7VrLJCVtsiUGqgCVpn1WXbvOav0VI0vXT0CN2pU/T72mtmIBE/JryCKL2xb/E64w8YzQSi8pDhUn/oKwFlaRJW1i1MTdL5/bPkU4esrN+0bHGBDyphirH+Dup8SOLaByl8D8lA5oGnQ8IhRSdgkAZs6OpxZ6OdLbut237fdsuw/tPSc2ZgHAYp+Cy3mvgX9txxIhC9vXF/a7CFpq0ZeZtVj60k4Vo/Ypzuyqa/+XPvMLQsFIGtXY+evZpc8o3XXxBaHrdpDa51/b7yo4qSPjhY1Z6Fls10e6t2+Agl0baayWcN+LD+HdfbjTg198vMpXXp/y3vkZWfxuRAaoZhFClR1N9qRjItH+NKVeIKtYClWcU54mrDlCUhNrdQHeLC5xzYJpmea4YpEc19zlHX1rfRVztcCYKxY5o8IqZyxwxSX3eEOZhgGs1yxQ4tKAB7e0vWKRBa65y1vectezs8ambpqQY48dmnSo02Nq2nsCRfM24xMrSUZLgAdRc8ZiKthrLdr0qTFiiRwJX/Ie77jDO+4QkfBL3ichSoHHb0mIuGNasgJKrllgRp4Sl3zJe9zlLfdMjNaBzQu8tf1eUvK6rm+5yzULHLJJRMI6xzzniWdfjSn483AMrgsGVD0ba0ZMzMiu/NyDM0spw5uIuYEROdoGTlQ4M5B6Zsy3MjX6dM3sJYssblssc06ViTdyEus9ns7YjA9JcEZsL5cfsEaHiemANpIu8yjikC0DFDGN1AvKlxcsXsL/VP+QauTYra2kzfPoCVX6xMyo0qfMiF0+Y0LR6z4rJ45NC7XCGVNiLykgSRHHcJ0Z877P5uUXLPbgzf0FBlHNM06lcQqutb5D0yRJLryESG95lZ7podbpMaHIk+Q5R9G6Z+oKoE2I2OUZx6x7A6wuDUYs+SLWlJhj1nlkJnszYiKTAxhT8C32a8b81TWfkqfA2JvpxZbld9izfThL1QvTVZ2ZBIlA5DIjplFM+fKCcmnk2fYJkR2v44tDOZxGdYMuJzS93MoaHZp0qDIwpvLUywKoOCZ5AFewcmPYZ5uPeMaYIu97gcIssrhlIdBOrBq1p6cXoDJfSgOgR7gFfYJbtGrB3CM4NovxlRDAxAS3KJW2nUC+x/a7GE4f4UxcxJzUovoIt4BvErQOxdaCYEbyOQEUlrYhhHntOW7hLEORcxujNPHeEMBFASuvCBIHaeOpEwJQotb4Lwgs2D/EAcYN3By8TWDkJgTAVyzVFwTpA7F2sdewvwuMfWDvEzu2SSBFrNl5yBBMHgp1gnmYOs469nd5I8ztOkuyQS7k+h5I6xEcCHOfAJZkkcVtDMmS6H66T5C3EOC3gQMcBeSl5fOe2jYqOum+070hGROx3C8IDNMrAgOzB/wLHJAnH5PHqX1IV1lMfgiMShWsWoTii3SOJb2iLoQOoVil8/jnNi5w+Urt/NgYN2y7z3C5R2xT5RYx/JcImrEqBs1x7fQq/ER2zfTMELgpJq1AXhG/xAZW/pMutsDTxwT2fJtQ5Nuw/0sOQJ+xzlMYCLjn2BWBXfuKIJcgIHsOvGfH2iA8w17DHcNR6uencB8+Wf4GWTfn70ZkgGoWLu5x08lPEz5NCu8TKPURN0X7pZeqKo+qSapWiQ3wwoGC3/zTf2Ku8U5fTm2dju3jWExqhZfu3g57rHPEkBUO2bT3xMRMadG2BldnHJJ2zJZRSRsHhvaoUzC21JSYNi0PnG5xYDp4Zzxj1+9XbZ7OBdsZlQiodOyoLm1aZuxUY0aef/an/9Av3tUSrBbYGn0/9jkRLdocsuWNsD7mEzp8wHOeEDFng2PTVyxwQtODAA4MWUOu3xFzCoz4hI+trdWJVYmBKuObKgN+zDc8Y9Wdj2Nt7ZuMgM79JdueVSupBLHMtjjk+/xjr2W4xw4FxtQY8DO+9hv7qmaRxW8yzllmxFdo0qFNi4SINToMYidx0aHJDnuMKdKjQZ8qB2yyER1TYMyIMvs8omyg2zE1qqU+k1LRs/ITchxEW1RN/zRiwjYv2ecRX0/26EYNvjn9Ifvxtpfm6Js+qUDeJh261JkZEtChySYHDKjRpMOz0u/z5P5zupHTd1aeVeGqkJIMSAONMgkUy7JOjwpDulGDBj3yTNnj656Ruc82H/MJO9M9prFrp6/RZ8t6OyMSqufnPF92D5MiE98BoFwqpmubFsNohY+Szxgai7dvxR3pyW6c/pLu6jJlRp5lmmdGgy5VBgypsMcOj3nOkIrTmS0NqNKneHlFkrvLJ/HHNExawF1LxzKV7EtEQpsWFYbkSGgmHX4YfRNwplwXlJnYM2ZCkQM22eYlQyoGIDsJlRFlDtjkhCWCJXgWWdyiOAMW7PcNggyU5oTgADOtJrSAjbkJjP4q02dAYGuqdfWB7aNH0OJXe/xrAkg3wIEY9wjahWq3VNvrEQEsENNJZiOLqe2S1HZq5f3VVv0eASiQdID2BYFZVScAl2J06qfOS3qmGwTna+nSviawRo8IZlNdwpz6ggCgiv2Z1nAVGw4CyyxHABBkUCNwdI77PKsEEPXUzvWN/X6OAzZe2d/lZv63di4/IMiEaZ2gNl+1+vdwpItgSZBFFrcrtnHf5wh3P0njE9y9eE4ozig36v5TjlB7/yru/lI+yKX28xlBAuCZ/U1yJmLiiyGb4BirAipfEApcanNPS3y8tvf8gMCq1Bhk3qRzjAisTgiGVxEuNwlAhJsdAz0c8CjZvzpBUkBargIxBQqrWyEmsF4fc/M5I+lBgaXPCB0OYs2qwIaN5cK2F2AqwFV5SpIrEaGodk4wK/yQwMCVRnhap7tFKDSKHSxmsozE0g1KBuguGIP1iacqZ3HbIwNUswgher9aFTT5WsZVz1XdUstURBC6FxW+jkuAOULbP/aeSXDQzjOlyQmzFANJLfZNOn6RPKbANvtUGDIjTjEuHSNV7ZhabKt1X0YxalNvckLMlHVzpB5T9Pp50h0FaNIhIeKP+Bu/oB6YbqqMqyoM2eLAHO1dqy3gpQFmpl9aYMKIJc8Ak0P1WYohVk65Z4OTGzhmnR/wTf4x32dM0YMEI8pUGTgwhhY1Bl6vcUSZRxwRM+NjPmHICrs882Bx2aQEZNKyyaE3gelRJ22+44CgKWVG1I2tBXjwQUzgxMBg6Rm66+70Zb/Cz3/tX88ssvhtxJBlrqlSp0uZEQfG+pZxlMA/AZA5Y8B3aN7QRZ1Q5DlP2OYlbe4zpOJzgLtn1thgaqWjOSOWnMZn5FrYO3GTDmtsceiNrCISytMRn8ZPqdH3BZ4OTdY58rIbBTNPOorWqTCkxyYVznyu0vgA+lQ5Mi3TISsUrTzVo06Lts8NCRFd6tQYUOGMHAlnlvPmRHwW73qDrDpdKtMh+7GTDRksL3sd2A6ufX+LQyLm9GjwY55Stf0m5JhHkdeebtD1BaNDtohW5x40VsFsbKqxMv1r0SY2lecxBQ+sUsK/t0uDFq9pXH5Jp/Q+Y4rMiWizSYEJmxx4BupZVEHmXBM7jti+ANu8JGLuny0jyqb13aLJCV+w89v6+maRxa83vopjg2pBKnMRyUKpW0n6qDJhKeEWy1qIQtAAFatyTgAdse1XcYvxFziANW3aojZWaXk2cAtm7fMhjg0qfUG1W8a4eeougQEmgONDO7YYqNJdlQFUnDqm2m+PcCCGxp0257okmEKpFVdgbEQwOBEo0iMAywKS3+AMbMRoJTVmgdJinkV2vT4l6Km2CLIA2mds539EMMPSddQ4pD34msCeE0NN2+vzSHCfoVhfkni4tOuU1mIUQCMzmiyyuI2xD3ydcG9NcfeeOjMh5AkVZj4gFIXqhHWy7h/JYrzG3TtfEPJojMsDX+DymgozGwS2uboCxArXul25TLlYBR+BkVrj6//Sun6R2o8k+9q4+1egpbAC6Z8ag1bt7P7cJQuolvu0N4t0T9/YGASWigkrSRHlVhWbVKARWHtu41b+FCiaEFi69p7rh7AwT71f57FIAHSVL9WpIP1YgaSSs5HOtRjG6koQY38Zrv4ExqVFVntX0IR3y3DnCt40FihcXLNwD679FymL2x53/3MPIIv/BYUS0YAguixQVO6datFS0lOrgJI13NRKiXGJ3R42BcY8shK1A/Qcu/Mxz3lijCLp70XMvdFJmxYHbDQN+wIAAQAASURBVDK29tq8tV2KZeVMRFrUjUHV5IQxRdY5YotDKpx5gHBqQGyTjjeyatFmTsQ6R94MRpqiAg8rDFnniCp9zqh4jUDHEh178GHNFvo96pS5oEnHa+7V6VJjQJmRZzDFzJB5S40BU2K+xQ+NSesA1jFFaubMHTFni0NvQtOizSP2mRjokZDz7DqAXT6jRp8cCQVjs8ZMqdOjRt9rAe6w58cakVCnS0KOOj3KjNhhjwZdHrHvPyuxYMEx5OQqXufLX+93M4ssfkvhLI8SnvERAA16DKn4PLDOMVX6bHLo5S7WOeab0x+adnKesYGBRSbGon/NOke+MOTAtwvyzKy9/z6f8DEjynRYM3DVGUK1pm1q9BmbjMZxvO7BVUl5xAZQDqiRNkkaUGNCkUfsI+O8ImOmpnkMUGPAhCI5ywsJziSvTs+bUoldP7NE3uSEiIQeDf/zwkDGPFNWkiH9uOrfq+OqELbBMVPyVBh6EyqNp0mHIRWqNq5m4pi4x2wwoswxG4xNEiHPlE0OadH2cgUy4RpQZUiFl2z7Qs+AmjfgKlqHwaelf0BCjoi5Z+cGxq67ZivJkApDHllxD+CCMlsc2n6rtg8nwbLC0J+b+6ze/ua+sFlk8ZuMU5zpihbvclQW0Keiu17rEFrvqwS24xFuYa55o1pFZdYkY6QqN1stBQouEoDJ+/a6mGJiakmvXyyhmNAWukuYt6p9PSKYrmqRL3aSFtwCa9XiLhqKDFgEcA7s+Gr9FbgoNmsJB76IrSWQWYt+tevKuVoABDjgOK03i41RzFWRHE4J5i8CWrQfMb2k0Srd1A8J2qi6/ti2HxKYVnLNFlO2Y/v6nNAiLPBEjGCBKiUca04mWllkcRtjhwAggvtev+CmtrC+600c0CfwtQqnDxddcUoFFAgt7xBa5Eu44oYY5m+AD+DN/3rByYNIp1harbovxVxPs2I3cMdMt+Ubm/Td09Q2T+2Y6ZyrroJVAgN3w36X9N+FnUPTwNRV2ya2c1HR5gFB8mAXlzO0nwcEBqt0rCEQsiCAqXrWiA2vcb2xayCJhG7qGhqIuiCc4gje6fP5mABOC8S+sL83U9ejTQBbd4Dv4PKZzlXPg4e4jo6SA1MB/v5bD2Hqrs9l9S75q2tGy4tcl/BF+yxuf2QM1SxcXOIStDSslgkTLE14nxIqbaoEfUCoaKvFS1oiqgQl9q8AC8yJmbHFIVPyXrvuxFyl1zm2NtY8Vd8yH9Og601H1Da7zrE3dXHMV8fyatNiRJknPDcjlBpQZkCVvOnb5Ui8PqgWz0UmdGjSoMuAGkess8MeRWNJAZzQ9G3vcyJmxDQ58SzRhIiaMUqd43XeszxbtE2SoEiPujeDqTJgSt4g2xUPok4NeADosObZqNIGdBp/sbFsc0zJ02XL65qKZXrIlgcrZqb15wCfCQdsMSNv7K9Naxs+vAGUJkScUfEsvSEr3oRKbNYGXc807tCkRx6n4J5FFrcrljnnFZvGxBx6ZqLY5HKmF2gq06bP4l2AFNNzwjpHXpO5ZkCf03IumoRJxeeKmCldGsRmqpSQY4tDnsdPmJLnKT92zFXWvAxJkw6V6SHTODYWp7tHxfhs0PXAqhj5m8au30iOGUdF3+JeYEwtGfA8euJz7gFbFBlTo28SLC4PSmpkl888ax9crpCxVY6ECmcehJ3bNWzSYUyBZ3zEH0//nFkcU6fr2fM9GlQZkDfzvB9G36SQkjnIM6VDkwJjvn76in+/+gf0qLPDHmt0KDLhmHWvGS1gs3H5JcPSMm1aRCQM7bxj64RwxSN3fjPyDFkxwHrCT6IdGiZ9MKHoJQbKjHjCc+PCVu37Mr/x3dD2WWRxK0PMTy1u7xE04eoEo1Itjl/gFvQNgiuzWJoCUrVfsZB6uMXtHkGDX0Co2svVei5ZqZL9TRr+uwQtPbX5S35K7MkmQYOvZ+NIcIvvRmqcYqimtfO0GJcu3hWB0SnmVY+wIG/gHZ49UCpGlBb+mnOn233l/H2ees8DO9aG/U2tvXpdEgwtbpquKAR+ihAhQFoggMxcVlPb79r49LdTAnij74JMceS5kBBAGR3jMcHodoNgJpNFFrctzgisUrWsSxd6irtHlJfEipez+2tYfW0ueQJfLwg5Qmz+Ju4+kwarGJlHcI/rcA8qTwwIRRQBvmLSf0Eooug+P8eBgT2488rO4xkhNywRCjAiVtUJBZPv4UDd1zhM4JJgYiVAtE3Qci3Z668JBbCPCdIBdYKxIQTAF4J2qkzxJMUiIFndBGLAX+KeId+1feo9q3Y8fU4DuJMmhqWvzTIuj0oL9Uc2FhWhpCsNQdpBOuDKgYdAFVbbV/AFrDZfuXFtQOn1WyjB4tEV75rw3mVmSvW7EhmgmkWIAS4hS3PkipAQVYlWG9QqLon8G0LrlVqQ/iuCY2qPMBm+ghFLHBtQmZirtNrqHQss702fpLEKmCLozAOJXeq+BVcO1mKWfszfcYxrdZW7vcxG5kTeTETgqFrZZdKktvYNjj04KnOUKbH9PiFizku2PZggkKVPlRZtv28HuMw4ZoPYqP1TYoNShr5tOGbGNvscsMmm6Q+Kvdq3FuR1jj1gLAC5zIgRSwzMKVsM33RbaoUhx6zTok2emOe0KDPy5yzzGQf6Vr20gDOoqpqWZM6bdE3Js8mh8WNbXovR6Tuekb8xm88ii9sTKq7oXnPO7o6RrlbxtB4ylqdkRpQ2slOxxuUBV6SQM/2Fz0xla9k/5jN2vZYzOLamijzggMyJAYFOq3Wb9fiIFq8ZU/D6zCowNZMO7ahlIG+FNi2mxpA9itZ5ybZn2sZM6UfBlG9ORIUzAxZdblV+cTZNTc/c1+95pjzjI+pRlx4Nb+b0nCdsceA1qYuMnZRJ7IDhbV4CTjYlZsYzdnFqrFPrIgjA7HOe0KDHiDJHq+/77gBJMIxY4jlPvGZsjQEFxny/tGWsYScQ8JJtAOp0GbJCxNxfX8msjCmyyYEH0/fYocLQfx7PeeK/E9pezOJnfGSs3lCcyiKLWxdarKpAfsRNUE7biBWlVn6ZmkqnTuCbFqOPCfPKD22/DQKrKa3/qcUttl+ReuTwrHZRHSvN3Eq3tasFVYQBgZ3SPkwv0O8T2mwFYh4Ruq/U8i+zGLGnBOKWUj/VtbVK6PZKs6/Uji+NRBnHiLV7iTOLUSu9DGQkgyBGrsYgKYUlO44+N10j6aaCm/NLm7ZB+GzTRjUCdtKag3XC+qCHA0mkfSgW2+ep8xAInPnzZXFbo4+7n2S6J+KQ1rlWcLn81l1KP3rLu+/CnX+LA+WUC+CmRAAEWZQmQVO5R8ixA1y+PMfdQ2LJ7hBY/h07jvKD1uOruPtQbf5i4v/gV8Ygp3oVvaRhfUXoJpBR398S2PA6pwtcJ0MJB0i+xuWfC0J3gdj+Krrt4J4HSzZ+Gd41CPn+hZ2LGKo/smslSZfv2t9ULBOAu5g63ud2rsrv6UJfnaALruuqPPm5nUsJ+GnqWgmEzRG6Jj4lGFQpItv3rxb6LHffWYWfLD8m09f/3YgMUM3CRQzcIbQJNXHJ8RI3UdKkTRPnnxImvjKfKtn7fkBwgVXF6hyYwBKX3uRIi/SZBysdK0g6ngIj9m3hK/ZPkYl/Lc/Mg4ZjijfaRRNyfnEL+BZ7gAM2aXLigY+IxDOotJ1AQoGaF/Y3gEM2KTAmIvFMsI5pJiTkvCxB04ym1O66Zq34cvQ+o8JTfuyNnmbEbHHoweSp6bF+kz4JOXrG3pXWYJkLjlkHMMmBhOc88edcZWCs1Bm7PPMstthAE9fin3gW7dQW/zLvEuj7Ec/oUzXAqOBBZ8kxSFuwzAUzYmaZmkgWtzRWOeX3L/+CJHeXKJ7TmPYoxs60rZyMKERjr2m8ZHkoZuDzR5uWl//IJQnl82tnojQdMYwrFBiTI6F6ecriOXzZfOnByI945k2g9tmmSp8qfR6xz8z0oNfokCNhSp4BNWrJgHuDa65KUC6NODGWeUJEJ2r6+1jGVHKoLyZjytGImbFRpWENeABWrvXSRXV5tkCFMxp06VP1kgjSxn7Cc18k2uSQMQWe8ilzIg9UNpMOo8jl4jpdz0ptTju04xY77Pncp1xcZMKP+YYvwklaYBY5hnCb+1Zkm3r5EnUlNJIucTRj+/RndFZXyTNja3rIcbzuzxFgA2cslksSnkdPqJo8y8SeLU06FEx3OzYJF+nqOuZtke3pPt04FPzyTBly5z/X1zmLLP7nxddw87hnBBZUnQBGyrVdgKTa16UfKiOSVwQneVLv04IXQrurmF3S2ZPpqQBMLXgXCc7xcqRuEoxiBOw27N8XBGbTEYHxKdBVeqAyb1HIwEmGKGI/CXgQYCiAYf4r/7Rwl9yBFvRVu65ipi2m3i8nbGmRzgkmUWprFRutTQA+BbKuEvRZ5Sqebt99Rmjd37Dz1OsCPASqbBBAbTG1BCpIbuANgdkrMPYejpklxuwDnPt1FlncxtghaH7+CPfd/w7hvjfALslF0HzL2eoiq9+6ctuK7a7ChAC+Z/Z3Sapc4pifU9y9I3kQSXukpTmucDmiSWB1ivkvXWvsPd/ihtu8L2Jd4fKA3vOQgAO0cHlTOTeHu6dXCdrIMQEIvrD3ylelatsvwVULFp8RctmU4MOi94q8Je3lKuE5o6LUU3vPCxxT1iRerj+EhTf2/zoOo5CMIaljqeAmxnyP0E0xJRgjvsQVuXQ9xdL9DuE5krPjqICEvX6Gf75dbcDs8QL3/vaa048XmVDkK0enXO3CYhu+uvQLsvjdiAxQzcLFPyJU5mUqoMmtkiYEYW2JTqt9KaUT41sE1D6lB8AUvuQ9xhQ8SCr2Vo+6c9KmysRAgyIVz1x1DM91v+B3rLEVasYeE5uyS+MGiPqcJ4wp0KBHhzVqDLzjfYc1IiuDqX09IuGIdXLGLHLL4bx3u68asDk1kFLsTjE9dS5jivxT/pJDtjz4IhZXx+QN9HT7S77r3aQL1r6vlnqBDVPyxMy88c0JTWKOvSRCYK0mvvXeGWa5J2qTDt/n2xQYUzZunMYjV+oRZQbUHFONGlscGECa90Y6I8qMKZh0QcHvq2taigOqTMmzTP/X+OXMIovfXvyQ/wJKy96obi/+Og26zmwocvf3I14SM/VmeuAKNocUGVDlmA0nTRJVeLTq9I2ncd5LenRpUC312Sgdez1QaaTKAGpsplZDKjznic8l2+x7uZARZdpRi0HdscpV3BlSYZ9HgDNMGlH2LerP+IgqfS6iss+XFYY854lnxg/Y8UWdTQ7IkTCgRo86x9be7nKJk005NGmAMcUbQGiHJgOqHgQWsHsQbdGh6XN7QsRn7LISD32OnxIzsgyj4x+xzoiyZ9SPojLrHFFk4uUT3Hg2PfN2SIVG5IytWHVaz13qlGM3xi0OOWCTLQ69weEkKtCnxoglL9XgQN0xn/LUSymsc+ylXrq2YqrGfdrc98zUMiP+jm3g//kb/+5mkcVvJNLt8mq3F3Cp9nUBaVPcIjrN4lkkaOlrcapF9ymhI2oPtzA9TW0rNqoK9C0cy1GGUWJL5nDArJyZ1fKvsXcJTvMCOMUwS2vxCYTV+NXGvpoat1y6pZMqJpeYsvcIDNjkV95Xtd+xbXftZzu1P0kJzAmMp7SJi0BNMW4/IMzHXxFYV9qf2v0Fdu8RWHE6Rwgsqg3c9FQtrSJGLNt1/FXGrwxqpCGpOb8YW7pGczu3LLK4jRETWPMlnDap3W/vmnDnGSFfncLqq6twHwlwtQLLuwemOaq2+VeEdnYhMzI9+tz+KQcLQJ3afvYIhas0E71EYNJWCXmQsP27HbgjZusiQWpAOqoNbupOv7LzVieCijamZnD1XVhUQUzEqp/C4gW+0Pbqw6/y8PznLueJqAWhQPSaUDB6RciZ9ky42oBFmSE2gfuw8D0cGNqzbZtw+q1F9xmo0NMjsIMFpj5Onedrgi71CcEcTM8qSQco15ZwOVTyKzq+CkiWV+91ryGB1e9dwf0riGHxFLgHX7AB/D1Z3P7IANUsXEj/RVUuJQi1e8WEpFnFJR1Nms4JbU+KDu5BoTaCObAA1yxQZOKdmLUQPaNCgQl1ulxQZsgKA2rMyBvQWqNO17d99mjQpsWEAhsc06HJ1PRT5TS9zrFnUU4oMiPmmHXOqPCE5x4kHJuvtfRBY9MYPWKdLWN6VU34K7Cx5l7/tMMaORL22WaXZ76df59tEiL6VH1Lq9y4Z2Z84li5zjjFMbtyKRbtlje+kqnLwMxUCkyYkueQLdPwcyzfE5qs0TF917xnpHZo8oh9ikzIM+XE2ogP2KLMyJvLxEy9OdeciAkFzqh4HUCx1i4oU2TChAIjU0Jv0LvR8ppFFrcx3ueXLHLmWdoxU896T5sdzUz2QqBinqlvB983KRDJjhQYe/MlMfDnNvMeU2CHPfZ5xMTu7iITAC8lUGPAhb03z9QDtt/m3xORsMcOQ7NC6rBmEifOoE/3tQo+Ah4bdL0MijPwO/bHzdH1kh4XlKnTs0b5ouVhBxa6HOD+lrPZY52u6ZgGc6fYCmJiww9Z8WCkilo5M/5Sq3+VAV3qFJgwpmimd+4zEPO1Rp+YGc954p8nYwrehKtGn6aZBKqQJ4mAE5ps85IyI1rWH5dnyopJGKgbQkWzFm261NnigC4Nz+qdUDBN1Z7PyQ6kdtpY7vO/+i19e7PI4tccGwQQQYCpWD7Sp1P7p5ier3AgnwDVq9TrEBiVCQ4g1e0hkPQKt1AWQAoOiPuAoPdni2awv1UJQKrMQx7bdgJov5M6L5EF5NIt46yH9k+arfIGEKtUmqEyyhLzSZqsEaEFV6xTCOClAMgSDpAWaAk3DakeEFptNRcXiNmw1zo4cOMze/8DG6fYuPf5TxlhYvTquh8RtAE/tPc85KYfwqVtf0Ro5e8QNFgFTD/EzfnFiJWBzGMCqJHV2rO4rfET4B3uOy2WppnDjR/epbT6Fi7h3l9dB31jFZ+kNZoDjuCOijBp1vsO0ILT5iKrn16FXNbDrcklswG+iHMHgoyJ/q4ikVrtlUNUyFGuqjvXeX8Pf4jrTP2QAGqKcapuhDep1xZx6/zv4QHQxU+4mWckmSJjwxI8/Fc/D2xUdTMoT0q7VV0EOpc53hRwUeaDAwJpS1rZ2D47sNq7CsUzFd4kmyLtU3UbCFht2eu7uDxXIuT/dNeBZGlUTJIcygv7/8xtt9jGPbuugIfw5cYSEXNW21dcLcN/8csMTP1diawvNwsXX+ISS4JjEsg1MMYlh1+dlFVxCVCOpWpT0u8NXJLSBNwmr6uckhjY9wl/wCGbxNYk3qRDz/QJB1QNJJzQMwaYXiszMtOSGQdscWYap9IwFOMywfnVD1mhT9WzOZ3ztnO277BmvK6qmSnVmRvIK5MUCEza7/Ntz64VkAFwZnqJE1vka3vHDHNPLzG3jtlgn23PCJ0Re7BlSIUafQOCX9NhjSMz4pJ5jBixYnx9xq75ibvXcyQeeBBDFZzDtdhzI8r8hB1/PRUCXRJyDKgxJ2KPr9trc2Pizr2UgAMUiiTkaNMyh/IyP+Sbv7avZhZZ/DbjgiVvsgZYoccZwtXo8w0+Nfb2iA5r5E0XeUZMlwZ9amyz7w2YisYYH1Fmm5fWGj/z+sw1M7krM2KdY2+StMWBbxs/Zp1NDtnkwABWJwUwomzt6CfETD2YKUMtMTenZpw1J+JjPqFKnzo9lnAGfU7aZMo6R1Tp3zBRUj5Oa4s+4TnrHBt/f8aKGT9tmut9xJxNDqjT5QnPqTDkG/zYF6YmFKjSp2HjbdJhl2dss+8N/yLmXu86b+rVFYZsckDTdGglc1LhzF+TLRtD0wpLMhV0mTHyDP5H7Bt47bKngPK56cLWbKwRCd/khybhcuKlHSoM2WbfM2q3k31WjMWqzze2gtjQr3ayyOKWhZyS7+MAzTUcMPnHuHldB7dYlKtzZO8Ro1Qaf3K+hsCGWiOwS0uE1nKBD5e4+eiGbf85YV6qRbI0R+8RWJTS+ZRZirRIc4TF+tT29wWBFKC2/HPb34cEUEDgpmQNdgjzXYGwAifqBFBWhIQYB76IKfoYB4BqbGopvU+Q0WoTgGyxviSBIAaaAIcl24/YazK3EahzBTwidJiJeaaWVrFTXxNcyNPgTWLnLIayQJg6AVhtE9YFanFOazE+A1bIIovbGfdw95Rc3cU+rULp2Vt/T1x/jLu3dV8IaBPb+ymhQCITqybuHjmFldMrrh/icp9MmtRW/iGh9XwHlxPaOMBSQK8KNhtwtWu/vyDkIssdl394N8j3Ldn5tOBKGqXKWyJSYccXqNjE3dOPCfe8xjcg5OENQl7SPrH37abOb4DL5zuE7oMmIc/sEfSnn+GAzh7w14QCzwa8+xO7pt8jMFYVKnI1uakNLWkVFbzS4921976xsR3Z+1oEI0V1JOwAb4FruF6FNw8X3LYP4arpCBRtWjCHJHeXZ+89IovfjcgYqlm4kHbIFWGyeUGo0E9xCVVs0yohYUr7RT+ntk9NsuXqahNHAZ4OOHA6qkXGHLPumU5zIo7ZYJ0jEgr+PTIjAYiZem0+gYsjY04CN3RYHWha80ykPlWKTGjQo8jYGyvNiejRoGaArcBLMdWk3ScgpEXbt5lWGDKmSIUhSzhtQumwjijT5ISJtfU+4bnBvUXPltW/AVWvB1vmhIg2x2yww0/8OHMk9KnRpW4wgSvNrXPs9Q/FIhODStqwkhFo0POt/85xfIWIhG1eMiPvkr5dR0kc9KmxRocLyhywxRYHzImoMbAW3SUDkDS7zyKL2xUTm/Ak5FjnyMyfHtE0N409dvg232edY2NkTzg0pvdznjAl7+/pMiMPbh6w5dvunbanS5RiX+aZepbnkBVGBl4esEWLthlH5enQJGbqtU2f02KLQzY59FqmQ2P8Byapy3HKjRsc06fGIZteG7ROl+c8SVlB5Y2tfuxzXMyUEUtWqKpYzit4mZMqA59npHWtQlXBgEuxdDUeFZJatOmbdEqPBolNT45Zp0vdPy/GFImZUmTMPtvW/t/lzHJy38DfiMSPweVNpzs9pEKOhBNr72/T8jm6Rdt3MqhoJONA1zXhVhV5phywyQbHpg3bpxM16dJgTIEW7RtFvTIXv7XvbxZZ/FpDrEkxbU5xC8sBbqHZxi3UFwksIBmDKMS02sCzhzxDCdw88QFBb/M+bh66wU1jEzEh9R4thrExCbyAm0xZgY9ibUJYLAt8SJmFeAmDcxzY0CUwqPQetbef2mvGQPJaq7pub1LnLUBZXgRzgqt2QgAqLgkai2I+rdkx9FmItCB5LnWTCRSQ+ZVMoxIck1UmKWlWcJNgCCOpAAEMMsp6TJj7a3zSkZXGrYBtMXRFuJB8gsDzLLK4jbEGN+TQP7CfTdw9aSzSBd17X+Durw9wsnpfEMA6mfapWPHQfv8C7gxg4RQHTpJ6PSLoHqc1lGMckCd5EWlXH1n7/X0CaJjD3a8nUPqrt2FN37V9Na0dXbqmr3HFM0ma/IigP/qFjek1QYf5hY0jzabvEdio0irt2LanwC68ebDAvWfXQfJEHQ3Sydb5pnOJCmAf2Gvm13KnBHyDUJzb4SaoesFNaZQfEfKhrtcFgYUqoDoiaLSqk0Adu2lyWQ5mG3foLNf42tGXHoCfLS7wtU+/5GvLX0Ibpht5zqdZsf13JbJHWxYuzDTKt/WrpWmDUKV+ikug0mWBoJsFN6vZqszrYWH7jEjYYY8xhdQi3RlLTaztdJ9H1Bj4xf+KAZRqS3cmIlPPvKowRsZRcqFu07rB0BSTSVqIYr9Kl7XC0IMgE4psckiHNXbY8/quORLGFOlSZ2atqXW61L0ojQNCJhS8/qJcohNy1h5f9pIAahl17tJNY4ZNPcgbkdCl7hmuZS48sCL4tUHXX5MedW+MJWBjSsw2+x40kHN5mRF1ky/YYc9+/oQhK/So48y2+gbqOlA6ImFCgW1eeiBG1y4YeDko5uGNp1cWWdyeWOKCNht8kx/yKU+ZGbNcLPElRvSpekZ8lzqbHHhjpbIpfzpTvIlnljtWpQNE1WZ+QpOxFVW61JkSe9MnFZvEdI2ZcmbAo8yWcgYaRiTI5V6M84i595dXizrg5UPA5Yk+NSYUkJFUQsIGxwBelkCGeXPjwOesdX9G7PPix3zitZxdF0Gfv+NjL3FQYUiBMU06dGnQo84Tnt/QoAYH/jqzK6cFu8mhl25RtlHxq0/Ns2l7NCgy8YWsBl16JidTNw3tJh2m5D2QK8BTHQ8OFO6zwx59qt7cS1qz2+ybCeIKHda85mqPoh+fClZOT7thBbkvfxtf3Syy+PXHIVAmgI5iLglEECgqFqTMUMROTQOhavsWo0kGUBC0AwUIRrb/7+AWsWpBTxsfSaJKLZx7OJB3F7cw3iCYjIghBm7BnD4XAaQyZRKjcsfeJ9mCuh23YeMRQ1SaetJQ/QbBYVqL8R5u4S9WbRpc1LVRW672IzmCKkFuQIQFtd0K2NXfZdwlUKdBYHj9KwLTTEytZRxLTTWfHkHWQNcnh2vl/5BAnpDG4qUdI0dojQW3Xvir1Lj2cODxGVlkcTvjEPh9eGMmQ94MT5IhAkohrH2l4/wYB7yJlS5TKUl7/AiXlx4Q2vuVH+u4e0c6qmKcPsaNQUWiOfBvcPlPxSGx/XWvS0v0W7h7WsWdBoEB/4W9R/t9TWiX1zmKLCVGutrzBQSrwPYZgaS1hGOWLhLkYj5y53Lv31y7fd6HNzsL3Nu7dtuovf8hLjf2COz7T/GGXe+qcOdv7XyUn3VeyuvKYxv2NxXZVHyDoKWaEMzDJGuTEMDTNkHO5Fv22Qh8HUP+l+/4WvtL3i07gJw2FO5dB8+ZD2H1kyvuP/4ZWfxuRAaoZuFiEScA0SRUdTYI+isSmNZDAIJ2lCZt0hJRwaWES6Ci/X8Jd3jrAbu04ZGMWPbY8UxPcPT45zzxAGNsrZ8d1gC8pqpaUc/sn1ps1UovMxSBsBFzetQZUfb6ozI8qdOlwhkjlvxrf8fHrNHxQG/MjAFV6nSJmdGnyglNKgypMrihFzigRpNOMFJhiUM2mZH3hjTSNHTMWKfhKtBkYCZaL3nEY54zoEafGhXOPDgzpOJBEkkqtGkxtesjttmMvGnFutbWFYYGKcw5ZoMKQ+/crbHoulUYeuOwPDO22eeALY5YJzana7HQtlMgcxZZ3KaISGjR9kxQFRVkriTzugpnDKgBrpBSN/ZpmZE3LhJDVIZ2P+ap/T7gxzxlTJGP+Mwz2H/MN7zhVZ6ZlxSQLEmXBjvsUWVgbNEysb1esPt6Sp6J5U8ZPul3nd9znlBgzBYHzmzL8qBa7edEtGmRI2GdYy4os8SIl2z7tv4BNQ/krnPMc574IpA6ClQAEqNV71PuU/5Su32Pus//MspLy7hoH0GDO2fvXfGs1yp9Liizxw5LjIjtvJuc+Lw8Y8Qx636MZS6oMGRA1a7FzAOzAqATIo5SxohizEqaYGqftTNITLyUS5UBL3n/N/ulzSKL32QIKJPZhpyfqwSwUK3jAj6lhdcisEZJvUdsUoGk1o56/TEsPMMtWOcEPf9dHOjwmLDgFUNLC3wxW9XK2bBtXtgYtdCXVh4EHdNf1cVTC74kq6q4uXEdNy/+KwKo+xmhwwsb+xWhRVdGKKepfZ3gwAAxeaXRJ9ZthDfyuv4GLIh1KqBUhrBNO58TG8t9Oyd9Hpc4EONPgO8SgITT1DURqGLgBqcE0EGmXGLRyoxL0gdi+Io517Pjfkpgx0Z2rg0w38Mssrh9cQ+I4d6r63Avq/2/gbtnXphBlXLBY8J9eWG/P8MVS0oEfeoUQ9XL5t0jaDVDyAsiLf2IoOMsNGcXd5/+iCA7IDmUKzh9usiqEtUugeEvGQ8xSGXOJ3JVWqNVx2sQCjrpdT8E3Wxjqr77rplnCWhVbhXbVl0Ei3Cvcx0KMdqfpF3i1N+aeID6jowFewRZEsnDDLipzdoAXhJyr+QUBH6rCCWt8O8QAOMHBIMsdTFAKEi1gGMcnjKHOx0z0VqG2eJdhhtF3ju64PoeLLSg7ynFWdz2yADVLFyMCZUcaUiVcFUX0dg7qe01sZSTqiawcgddxU2sxV61ap3aOJ3By9z0NyPPhEozHWVYss0+MoaSE7ZYYCOWaHLCjDzrHHFsfQcNM1FxbbF4kEGGJ0uMGKS0Dp0BU5GJAb0v2WZMkTxTyoz4Nt/37fZO029mbCe1h/Zp8mOOWafMyDtkF81mZmqto2JiqRVW7E4BxkMqtGl5aQLJGzTpeMDkGbt8m+8TM2OXZ8aqLfgxielVNXMuXbMBNcqM2OSQT/gDagx4xL5ndg2pcGhu12K6acxO6kAttzmq9JkRs8tnHrzWsQdU+QUrZM6FWdzGcN/zFW+I51ikBcsfNc8CV5FE4OYJTW+gNKZAh6YvuLj7ombaykvehR7giHVmxEQkrNGhR91MoIo4j3uX5wDPRO9bkQbwTE3HMHdMf92PYsdKauDY9JhVYEqDmsobjole9NIrXeocskWe6Q0AtG4MUuUYGUM1ObEWeddaL0Z+Wlfa6chO/fnnSDxIGtlxlYPVsi99Z7Ff+6aznWdKQsQx66wbs1aFoRWG9O26SzbA6dEeUGXgr9GAKi955AtzytH7PPIGgnmTWZBRl5MHyDOnQJEex2z4fa1z7AFWgC9577fy3c0ii197vIeb+0ljX23pEHQ21SbewS0spdVXJbT3i+koZ2i516s93jTtFn5s+3pKmFuKSSUpAbFexQzV3DRthKQFtgybpPUpEFdt62KwviawyLTgV1uoiAPSQHyR2l8dB66qHbWe+imAVoyqcwJQ8TGBZarWVpmhPCO06U5h4aeEFtcpNxmkWsXJSEYMUl1Xtaj+CC7/+V1Ke2/DdUq7XjfcNjdIFIr7BLBHn6HYx3BzzSBw9gN7XbqIPdvPV8gii9sZMm+WFrKY+rqvTfLuzjmuqLIGl398l9KP3rptzJDKE5Qk5/GIIKH3gNBafkUoSkiiRLmuRdCvbtjxNwhMy124egyLn9v7T4Fv4VzvxZ5VsWmZkHvmuLV7lVDokvRA2ghQ0ig9OydpSX+Oy6PK+wD3HbDoi0GrBH+VtI6pvfYuZ8oKMhPU80QFM13rRRv/DoEde27jVe5WgUzA9SUhf4thq3Nq29i6dg66Bp/b+4RrqIj4gPA8EJt4FbjG58grk0L4sr7EiCUqDHm18VWa0w6d5Sq9N6L0Z3HbIwNUs3DxFVwiUOVFCUyFEyW9DwlsBE2e7tu2Ak+VxO4RJtoRcBeuyVn7fv3GQl4L8Ig5h2xSp0fEnIQceUYMWeGQzRuL8z2+zhOee4ZnizZV+pyYKuCIJRr0WGHIEeuUuWBK7FlIzkW64Vs/3XI5T5WBMbUSz9Jy7btOs09aqnMiD5DKlCkh8vqsQyokRJ7pJuaVWGwFxvRoeMbaMess2fXoWquomFECNbvUkdu40+srWttxw18X/b9G32scggNUD9nyTNQhFY7Z8G3IVbNfVTvziLLXI0yH07917cdi6qrdtWAyDeeZCUsWtzQuWGJGwWum7rBnOqANA/WWSMh5w6kJBWbkvW7ymAJlLhhQtaKGY4nnmXpTpiJjDtlkTJGGsRjHFMgZO1ZMUTHwy1zQo256xjEJkc+T0uyUREqdHnV6NOhywCZDVhhToMCYKgN6qRwizecafdq0mBPM737CDisMKbNPizZ5pmxx6IFLJ2NS9Dqx/4R/R5ExcyKvxZpnamWqyBe46nS5MEbslDw1Bv5ZAE6eIA3wFiwHJkTssEfEnDYtD0KXccZa2q5Gnz41YmZ+X9K3XefIF6v0mQisrZs+t54bAoSbHPOMXfJM2ealN6sqmGxAkxMGVG18P+El23Ro2mfiimCL1j2QRRa3Lr5KYEGm531NAuApXbscTitQ4KoMScSoUmv6PQLgKXATbrbCviQwIjcImn6nqe31fukAXqWOo4XxG8J8Vq2fPftd71slOGgLZBUrS+CxWv/lN3CBAxLSWqPBAzSAllq4v7L3y5BKLaQCnQVSvuCm78AlQSLhe/a7CA6Lqc9AsUxoG5b3gZ1jqfPWHVemM2LFarvd1GcgQPgCJwkgnVzpOIoBu+Su++nuIqvfuwqv6TshvcUjO+dTssjidobWxqe47/bnuPtELFVJYaSAztJf2T3XJhRFdM+JZf6p7V8eJDKOk6TGOUHHWcWiD3D38V/bdg9x+eEUV6w5hcW/wuWdj3A5Y48A/D0kAIFpHxQVqGQSJY3o1wR5gnrqGqQBUYG5AnCVG/8Cl/cauHxyYturM0C56kN3Le6IsIW9/gzHEn1l/8TUlczMBa7Y0wP+BC6X71L6/K37fPSs0bPrlPCs0DX+lGA2JmD2FUE3ejF13COCYeJjO7auac7Geo43Q1wsub8t7lzwXvfCmXMv/xxeQ+n+lyTVT8jidyMyQDULF18SJswCSaUPotYuTQobuEmUKtjpybYmWXIZVQJqAnfhioJnkQocmFDwi9MCK2xySMTcm4bIqGmdY98qmscZUo0pekaXe63g2Z/SN8wZ6zRtrCKHboAtDpkSE6eYTjI+KVvLqFpiJxSYUGBK7BmZDmBxwKnYtJIKUHuoZA1mZlSihb60CSsMjW01M5OphA5rbHLAhGJKqXTFXwfpHgq40TUVq1V6rRFzNjj2+rAAFc68fqNj0+Y5ocmauWc7R/J938IrYEdAgQN1HNScZ8YZlRsARzWbNWdxi6Nohk5VYyauc8SAKmVGrHNssiNNb9jkWu9nxNba3+SEDmveZCrNKJUMh4A9AYlibLq2/p8A0Oa+z495k9WYE3FCkykxRcsxkksR41LapE1OGLLCCkMuKFNgwpqNQ+DmjJguddOEHvoc+JQfe+1YmfT1qLPOMXW63rTO6Uw3fFu+GJ01jjlgy8uRuOLYhTcQXGLEirXUt2j79votDnxxyx0/xw57VjQ6I2ds3xFlGibp0qRj0gg1A06PWeeIv+Njr8kaMfegc9qASkx8tf+PKfjtxhS4oOzBZOVjx1idUaPPEk7LWtrUmxzSpsXYtLRd0UsIUBZZ3LJ4g6MLiWX6OaEdvI6bE0oOSiYtOdwc8REOCBBoqcWsTJC0wP2QALSphVzgXXqxmmaFQQA/BTLIMCllDsIRwbRF7bRN+7sIBGq37RAkA8Qojex9AlevCEYwsY1D3V0CEkmdp1ZZq3ZNBCB3CO32YpIKTNacWnID0j2sp96/iGOpqe00JsghyBBKIdBD+oMCP3Qd1cLbIcz9sZ/37PpcETRzVwnMLAM/Vj+5gg682zE2mlph1Q4s8ORmfT6LLG5P/JJgPreBAwpV7PmUoJWqYoLANrX2n+P1ny+/e9cVOF4QtJE/xN1jlwSgU3lFpKWHBOA1h8u5J4QClUBAxUOChrIYsGLG1rnJKI1sf2LOJ7giizoKpKk8JUi56N6G0H3wyt53CnyC0xh9QQB9H6bGNyB0I9wHfmD7Vj6K3DW++hAWnxGYsOnCkwpkTXc+pddvw2cU2z7f4EzFBLCCy6Eyldq1cSuXqvtBzN893DND+MjnBNbxQ8LzStIEBbh+CMPlJd47vQgdGz3bl30O+STdCpDFbY4MUM3CRYvQxqCJl4BQuX+KrarJnyrRe/Z3aUiJuj/HJZ0IN5Hs4ZlGXeregbnABLnU1+gbsDqnysAv0Cte6zOyoTTMjGVOwRhQcyKO2eAJz9nlGR3WWOfY6ws62YA+E2NlqWUfHKhRZOzBDZlP9WiY+ZJT0ndApwNSnBmJOw+ZQwl4FZA6psgeO2xycGPhLjaoWFjPeYzMuQAzk3ppLfc1b24lAFdASp+qOYS7xb0AkCEVz1SdkeeCsrHKhsaYnVFg4pmvBWPUKjQutekCXkcV8NqQat+dUKRP1QO3cwMkssjitsUvWeOrvKFvrEPnYt/wxYIxBdq0WOcIGVV1aHpZkpE16udIOKNCQo51jjzju2bsUN2zbVqe2S3ZDeXDnDHRd9hjQoF9tqnTpcDEG2B1aHot6r7pLX/Cx2yzT4c1RizRok1s2syHbLLOMTlj4Au0VP5S7tB9v273tBuXa9Uf2fkVGLPHjgGhhwypkDf90TlRylzPMeZlNAVwzAY5y2li7IYC1BIy/eqbvqrTvW74z0BSAM7kqs6J5WV9BrrGYqA6zVUHDkt65lfPNUdCjwbrHHv5lj41rw/do8Fznni5B3VXrNFhRNna/h1jeUjdyy8Ms6lWFrc51K00xy1IxUAV+1Gt9AIABBBcEMymxHo092mveyqgVeZW0vsTKFDCzU8FgspY5b7b7y9aq1RXT50z9TluYa5F/zLBXfqVvW8ZNx/t4BbCmq8KwNDCWC2xXRwYC0EPVPNkMVkvbIxaoAswvbS/X6b2qWv2HdtGRjNytp6ntpHEgBbpjwhgpzrBdI2mdnxjjPrF/Y6dQ5XgyC1mb5cAHsvZW+C3GGtiW4n1q/WBQG8ZaBlT+I6YXNIuFGtXUgwnZJHF7YyP8PfK1TIs7hLuQbFKVWRSzgN3fzwg5IJTY4tD0PqU3rT+PyAUcZ7acbpWsNhz27xrWmu8CjcqWIkh+l+aWdMXBGa9MU1/8eEqX3l2GnKk8mRi5/CAsMZ/SJBeOceBj69tnCqYSCMaAjP9HiGvP4TL+l1KH7+FDnz5nSXe+/QidA4ox37Lxi9ZFCumLZ6mxtOBN//tgtOyvSJIrCy5a8QGXH8ICz07nz8kPE92Ur/rWaXnlbxgntr7ZGolHdu0xMNj+zlIXYsrXF7/C+AMcomtlWWamIPrD2DBCmNf1N/nZ29W7MPP4rZHNsvPwsXfAzOCiHPMTdaAqmGqkqvNKz3pFZN1TqjkKNEMgLvwjjseTJyR9wyjiIQd9iiYM73YjtLAk+FShSF1uhyzQY86a+Z+LUOYmBkz8rZIdyCFjJImjO31mDFFmmawtGSAAuDbcCsMadFmm5d+f1pQA97deU5Ei+4N8xdwLLN1jqjZ4l7HBccMO6HpDVPKjJhQ9LqyPd/yOmdIhXWOmVBgbmB0kQlTY29hOoE69pSYPDMqDL3MgK5d3q5NlYGXBgis3gvWOaJBz7evOkmBgskSTI3NdeLZtI6Zt+Svc4OeZ+W+NWA6iyxuW+zyH3hHhcRA1AY9/x2XDMlLk+Nw9+EFTTokROyz7dmhTvu0zApDVhhS9Pqqzkk+Z8WZiMTrP8dMWeeYDdMC7VNjTMGDd3mmNOh5dqgbU8Ij9pkSezBQhZAyF3zEsxRLNLrx+jHr7LBHYm36MVPW6Hg2bNqoyY3z2PLSite9HrIC4GVUlC9XGHr9WLXSD6kwpsgx6zTpMMdJrZQZUadHkTEjyjdkABJyyHzL5b7Yn5OA6oQcsYGpKhK1aVFkfON5oH062YO+Z8XmmXrmrBtjgSJj6nTp0mDIigHQFar0GVP0eq/g2MWSMciR0KfKE15wbCZWCQu/xW9wFln8mkNsJoGWxuJ8twt3ZH4ibbo0WwncYlb7gMCk+gLH/NFcUgBeev4o06nE/j3F6XziXr9s3uUr7dPAKurgFsACBdTWD0H3v4qbl37LjqN5rAgBR7ZdCd49gDuv3fbX34LJ4wXufXodtPXEglU7rrHPiAlapOCAEhmwiFEq5lPkzvO6BAttAjCxzE2G7wPcwv8K3t03E5auMd1evb05H09wRAi1C2suLrBGf2+mtpfJVGJjEoNY5jqSVtD+xEKNCaxeXQNpswp8KKX28Y/IIotbGf/9/wCLI9xa+T4wxH3fi8AC7h6vgU3f3P1QINyPDZzru1r4iwQUZgH8sumtvTYEm145Xc4x7l7TPXxGYFIWCLm0ZNv/DVDGdaB+Bd6VLW9cAZenbn9VO24Od6++T9AbNbPq2dfukO+/c8f4Ascy/TmhODXD3dvvCOZM79nfsTFdAcW3gZC1dUGyCtG+naMkA4VDRMD/SJBswc5laMf6H69hYr/fda+9y9n5DWyfd+3cy0DefpcMYcFev0ztI0/Qrl1KXduxXaOhjUOdvDrvqf1exrFha+7azCP4SufUAcmv3bkvXMGrh05D9UH7l5wv3yWL343IANUsXCzikvgVbiK0S2AWgEuS6cmXhPdVpU+bAaiSrQkc+Mlezoyo1C7fpkWXOhvG+GzTQu7JRcZ0vW5hmSpTDwyUGXnGUZkLZsT0KHrjKP0DPCNVbK6iwRoyl5HRSYemN4+S6ZV0C/fZpsiYR+wbkBLfMI/SwlkAbZUBRSYcsAXgtQXVXltkQs0MUIaseGZsjqAnW2DMMRs3DKoK1jrrnLJjWrTJ4bQQ5cwtTVMB0VNb5L/kkW/3XWLknbTFsD1g01i/AVjIkfi24LJ/UgZmapEJFYZ0WENu2n2qjLlHZkqVxW2MK4qU/OwOz3DsUWdORJMT1jlmTIEBNXo02OUZPeqMWPJays9pUeaCFm2e84QxRdY55pBNILC/Bcr17b6NSNhnmzIjhlR8bhTj8pDNGxICbVq+EKQijPRRI+bsscM2+wyoehM9MdnzzNhnO6WfXKNOjy51VhgyJfZdA2m2OmAM1Ylvnz9ky+ukDqh6WQS1wctwTwZ3YrJKa1qasFX6TIk961fXCvDA6pAKB2zRoOulVARWFxlzzDoFxuQtJ4nVemxiALt8Zs8MVyCr0+VTnrLFAX1qFCx3S8sWYJ9tNjmgwpBDtjy4rnxdp+tZyWUu+IQ/YINjutTZ42vAv/lNfWWzyOI3F2+AOVzvwoIYqragv/MpcB/ePF6gcHHNgthCVQLrCm62UIoJemEgolinAlVVlBc4IGaQ2jubeHZQ6cXbME4BtdIXFSOrA2+eLnDvxXU4Tt2OPSeAp4sGnn5MYMLqeK9hYQoLJ9fBHCYH78yZ+o615F63DBRNm1IlcPpwkdUfXLm/vcaxpDo4JpuZliwI3C2Fv3n2WJXADF6GO7oWOSidv+XN4wXK59cOTBCoKQBcsgQ2F3/30M7zETeduPXeLqHF18bP1K6tmK76TGVeY2zaqw8dk+zdA7gjRnOauVwHe9RkkcWti3F9gcXqNRelmLfc5W71LVcsUn47on+3xlfOel6PePLVHNdWSL13OfGs7XEhz6RQoBa7CtN0+S5ndyu+aB+/nRIfWV57BP3Ssu9gKk5m3LkiAIl1mC3f4Tq3wML8GoD88B3vSjAsLLFydsHlSp6F96+5zJWISLg3mzC/B3fewmixSOHtFfHpW7f+rwGLMH8fcpdwsWL6//MZF+87ItLq750xyi9R+uolC9fvAJjFd8lP37qxrcKsdIdxrkBCjgWuXdfm7JxRfgmAyuSCO2PoLdaob/cZLRYpXzniT5TAz0sNFrmiwIRSMuOsvsQd3jKhyHulPrkh9OvL1PrnLscUDEydw1ltiXtLF8wWc468sPCGafku87s5knpEcTaBVchd487ZngnvlqFbWKW2esowv0xlds5F3pmzFq6mRFNcN+41UMGBr2f2fpl3GQBN3f1McrCQQOnP3/LuH8GdZ0ATHnZ+7nSpgaWnYV2dxe2ODFDNwsUVoUVhGZf8/5BAp09wE7oGbmL7McGJdEAAXz/GtfRc4FuyPMh67hbGagGNmOPc4l37+Kd8w5tIjSjzGbueITolT8QKEXOvi6o21yPW2eLQwIk5A6o3FtkRcwP9mhRSQGqRMUvWNvqE596d24EGa2xwfGORfsAWEQlV+gyp0KXu9V2dHmzes0+rxrASwCAmp2sHjb2m65yInukXxkyZE3kw88c8NVB13bfFRimAIcFpKYJjpjbo+usLTid1yAp77LDOEWUuOKFJlwbb7APO7GZAlS51GqZDK2bqhCKbHFJgzgllM8ya85JHZsjlQJ1P+NhLJkzJM6HIRQqQyiKL2xQ96jSMBd40rUwBiY7p7tjiNQY84Tk/5in7PKLJCdu8pEOTBl2fX8Qal86x2ONnVGjSoUWbPXY8iz0i8UzOshU+xKQUqLnOEReWe2r0yTPzBkg6jqQ9nprjwT7bNOnwDT41tqbLcc7Ar+xlBSRtkBARW3u/WuClbb1Gx5s4Ob3ZmKoBrxXaftxhLGueTeokXM68NIqKZFUrMMVMWWLEOkc0OfEFL7H3weW7dY4omvSBcqTMrJw29Mzy3sg/K/6Iv7HjSSPVaWWrGOSu9RkJEU94zogyGxzTpkWdLkUmFJnwhOdMydOgxzHrvjAlY7Gy6ao6XdoeX+Nz/off3lc4iyx+ffEe0IAFaz+/rsNoeZGV0ytfZL/XuXbMJWuZf2fg3Z2HBCBN7etyra7Cwgm82VngXvfazRfT7smrdvzL1P/FcjWJgOsNtw9sIe9BWzOEeWdgZzRPuNqAxSO4fHiXUu8tC1Nrn7X57Z1LgqOzgFJpjkryQFqkp8AA7jTgqmXGI7G7RtctWLDW2+tV9/vqs6ugY7ho+7Br8m4RxqW7lHJvnZnKwIEpv2iu8pVXp1zX3cJ8trjAPIpY7Vxx2XTnoHbjey+ug+GVwN2SG88vHy7zfvvcnfertw5MlazBa9w8/wVB+sCkDi6bdxnHRd6LL4IRWPoztM/g8qFjX109hHFpkW6pzNd++iXcg8vqXQd6T/EmLZ5xl0UWtywa/93/ho17fd9VCHhDZLc2dFrt6jaSgWiXOlscMqbo14vSw3/Jtt9/gTHbvLQC9SZ9qhz+CikH4Jv8kCErtGnxY77BN/mhn6dWOKPCkD12jGwUSELqIppQoE/tRoeoJOlktNyh6dfGEXPfbdWnxg4/YUKRA7aQc72bZ8XU6TKgBjgNenCkJq1xd3nGM/6IKgMvOaUOobl1YGo+t86xJz/NyHt9fKfb7wgOZS6YUGCTQ7rUGRiR6Jh15kRsmJa/zFddR9LMk5jkQTKgyn2TvHpCxwgNK0gqsMkJ/+DoBcxNRmEOVyWIp8Y4Vu604uG7HIwWFxi2irwfn7uiWxO++OB9ylxQW7zgTi+QBbK4/ZEBqlm4+Ag3QZJovgwAIlwVXYwDCK57EtpeJmhoHdnvDfyk1Ffl83i2qViez/jIM6XShiEJER/xzD8EPuFjGnSpMPSMzMhaK1cMLC0y9ov2dEusGK9qkxcbtUPTWnVz/uGo1v904pVO4g4/ISFHjwZ9qtYKPGZsJlXHbLDDngcXZ8bDcoZUDT9+sZpcK2nFP8yWcE7UOdtChjfSQhWI2qdGmZHXgN3nESsMOWLdn68DU6bWsuwecGLq5lPMsYLXjXXtv5IYUEuutAB1LQ5ppCQDjumwhlOvnXsQ5YwKX1H5LYssblmI2Rgz40nynFFU9hqkMtHTvQ+YVEfiJUgqnHmZEQGnWxwYc3HkAT4Z2+meE4AqXdAlRmaYl+eQLc+KnVtuqzLgyfQ5+/G2l/CoMqBLnRoD1jnyUiJtWmyz74HZmYGBAntliCUwcp0jhqz4CTjw/2Pvz8PbyNL7XvxTKhCFlQABEhAhQSJFSpQ4zW71tDzt9LhnjycZJ74/J06cOHFiO46z3CzO4thJ7rXnJraT3OS5iRMnvnZukrmxbxI7y0y8TDzOLD1bezRWT8vNHkqUSJESJJAAARAg1gJRrN8fZwEkq7vVM63uZs/5Pg8fkkCh6lQBeOuc7/t9vy85irzAErNsaqW8Ig43mdGPbzIrFfodnXiZlPsYvW7KT1ZNbJ+QxO+EV2fDnmGCOrZMnImyfVv/P+p3XZIxSVkiBGTySVi6TI4ksZoscI0mMR37VUMvQZ4XyVCSftMb5NrblKJT0vKkzzQVrahNU5FpPlePQzS5Cmo7gCI57Re7JRcYBgaHDbU5h/GeK+aHUeiHjghf4FSS2do2t1JTTCTqjLMv5owbYOUBD/ZOSOWqKj9X6skA9DIQKsL4rX1oC2Iu2DtgLCMWqsXoUU4VtmEgScvropP8RK2H1YNaLsQWOd5WuyES+CHYyYkGodl0g0oqRrLRYsyBYE+QlL1ZoejspaAeTZCtNbiRP0qELkevNyABX33yFG+7fkMoLvNgD2BMNoSp5UN4BIT33ynxf5M4k7kqTSdOutHQ1237tJC4Hq01hv56yhtW2mopsrTpxHEzInllJ3boh8Y4Vq5BW5CiYx6U8kmR+Kn1iHoHmsy0BweE9JuFVkp5AaGqVWOKLh/QXhLlpZH2AQMbxqKwlx4jfH6fMRf2HeH75zriOkXdFrShdlacd3K6hRcAL3CEKAcQhaKTYyZzm1ADQu0eqY0eRAWZGuwd0D4nfvczYqz89kP7qBoYPFQs8QKnKVMkR1euQWOyglGtqxS5qIQtLg4XeI7P8zQ2nk7GqqpHEHPOSTlPW2GRVc6QpUyOLbpECNPRpGSOopzPCbHRGSmOmWGDMllWWZAVSZOoPiVDS7igTN4LP/1R6zcx9wvrcxWNRStybdciSxnVfPnLPElQ2jmpZqxdWSEKyL4h65JoHuh5WIU0yyxh47HCoq4yVcixpatCFSJ0mGeNDWYkuSteq+Z4A7kmVk2Y1bo2T4ECeVTTUiW0itPU1ZxqTa7mvS5BMpT1GhwgSwkQvMT2bEKcs+cy/vw+nBNl/f3cEaIbIib3MuJetXtexMxsrQENcT9IRhs49JkqttjLjmFHPYJuH4O3BgyhaiAQRShLFTHakz/KdH7AsHxLlWOByDqPZu5h2AVVlfsrdcIBjLGvCUdFLox2aw7ian9RdSOI0GGRFTyp3lRqTVf6eKqsnbo5zbOuFVhLLGv1kSoPDctAXGESRy6IlTI0TYWIbHKlGqHAcLGsGmGJm8mAAB5PclEvuiepaOJEKKQEOalIC9Wgps4E86zpsavO0Y+yrP3/8hQ0QSAuY0kqwar6XBdYvevmOFTSdXQzGdG5OqJvLHkKI95+4vhJ6iywyq5sPLXEMq4kB2bYxJUq4jQVTdiqm61QbXX0sRTxa2BwGJGgQVl+P16wl/AIaO9h1VROKdMVXKksBaFirZNkQpa2ZymzyhnqTMhGVgG6hElT4TO8VzfKUz7QamIsrAMCOmlTJ4lLkDJZ7b287CzpGKi+cy2p6PQIUCBPXWoWcmyxyYyOT5MyMdIkppv8KZuBTVlzqibBk1QJ0pfKC6G2zVLCJUiBPEWpWq3KiW2SulTfZzWJ2yROiSzzskGfR4DnOa+tAzoyqVWw81yRSgR1Ts/zOBe4pBcwBfKkqeJIIriJIFI2mWVSeqNG6GjrBEUAKzsGlRiL02SXJF0iMk4Lr+h15ilEhfni6H0gSZ1NZqiS1o2o4lKFvMmMrowA9LUXlg+PAB9/yJ9cA4PXHgcEaCf2iQRESac9OKDlxMlQxupBtr1DMxoDZ59aJoSXCTBVbNFLQdHOMRO4SSF/lGS+Tmqjx95p0UykHxqjfwo6doSjxQZ1J0muXeNmZopse4dce5teSpB3XsAmlNkn4IkYW8uJxWqGMnsnxnBnHZqIctJce5tiKsWxYg0/BJwQJHC0cUA9EaMaFakQjwDNVJyZxm28gCzL3+iRpsrvnD4tzJi8OgPbxgn16Tjiu51061r9Gmn3iA96VBMJIRSIdXBth0hI+FUfK9SGSs/LLfZOjeHmHSJuRzxWbBEIQSTUYby0TzMXx3GhHo2wmwmSje4QKotF+sniDnvZMdGIpo1YkA88mtEYoUxLqFsbB9rXtBg9ymxum7EaggjIi9atXSK4TodIu8dYANbseTqJMI+7l2k6cY6WG9om4Kv5U8y1b2ihgSJTvYDNzVyaE7Udsl6JfugIY+4B25kEkbQ8FyeO64g5c7TaopkI0nTiTIR2Xv8PsYHBa4AWcUpYes4l1qNi7aX862F471drtU1myEhCUq3TVC+K0QbGYTq62afycX+BJZ0MthloInaVM9LaLa0JSOXH7xJkiWU6hAnToY8j19llndwGdNNn0Yukj0uQIjnSVPTaUjVWtRnIRP1Q6KMS6EHpb98hQp0kT3AJ1VAZhAozIMlXJRBS5Og1eR4gKpkmqWrlaV+OJ06TayzwBM8hmiPvopqwBuQ5A/TlPKxPUPcSUTjHCi3iuuJLNWhW9oAdwnpu3pUiKVWhtcgKA2yCuKSKPWq5EKT3CZWBKnjnDrR/dUhWX6TKPfYdWfnQEImtsTYca9dop48wXtxnJx+j4zoIgsTgsMMQqgYCymBf+T7BsNPeeUQp0YsMuw4qLyr1vzKqVx1YlapVmdtngHVkoBIKow2palIqHpcgQVytslKl8+rGk6GMg6vl+wp9HOZYIyAzV+JmJuwBCuRpEafCJJNUtLpTNVbJUiJMR3qSCtVYFXTQn5R+fsss8RTP6pJX1eApT4GSLENVZRGqM7Q6r74kHdTNtittBZrEdNOqklzcV0mzxDKALocAocJyCWo/RaUyW2FRkjyOJn1UyUZVdsdW5Ia6sQ8VwkFakoB1CbJLkhZxVkjeRdyqkhCl9FJks8pmOrrUpE6JDAA3dScIA4PDBeXxPJolV6XhgIxHDshvsSBKN3UyQ01Y4zRZY143h3PoMyGTJTGaZCnzAT6pv1uidD5ImA5b5MixpRvEqSZVNh5PcEknYFRXeTUhDdLnDKu69CtDWavfJ6izS1JPNB1cSmTpEuEMq2Sld6r63it1/rCCoMN7+YxWucdpaUuTRVb05NSTmnWHPnOsscks86wRlmX9jpzGg1AkALoMri8tQ0Qyqa+Tb0r1KRpNdclQ0h6vqkzsAs+xzBJpqXpVXtnDBoEVSprgFeSLsj8Jy5I9lbRTjfhybKGaeSnbGJV4Ur6xnqysUPcM5W2bpM4ca9SZ4KxR7BscUnQIseqcwHOEQjxPgV1pSVLNNXWCGyDgeazb89i5NTwChOkQKoJ92hPJlllXqJzOOrqipUOYbEioKJ9PnRNzpahokBl3m6w5c9SZYDG3QpMYg1T9rkSNZ9s6WewSpBSdIoDHTi5GlbRIoDcEiWczIO65YMcZIKxVNhOiQYhHgP2UaDCn5pe7dpIqkziOS5gOBU4w76zRzAti18Pm2Is14qEmTSfOhi38qetOkpxb5E5e+BYMsCHTomCLRFDTiQurldwu+cY2ru2wJ6aRPJ86R4cwC1yjED1OelZUS7Wi4v4SSzWJp5o4bp9I+4CCk8bLiMV+JRMnkBGls7O1bZqJMQYpEcOVck2p87eiORbdG7ohYsnJkKTO9cxxYR8TFXNHL3BEX0eiIsGkmvB9MSWqKSJ2l0pGxG5sKOaGTRTLZIgnWngEmPDqVBaVL4OBweFCixh1AtozXVXvKAFKnQnZtDKsBUOf52nd+NPGY4MZSdyJ+ZCKXZc5r9WmEboEpQXck1ykyiSLrFAiQ5ksTWJaNRqhS4mstm5SXu6icqciyVBPe9WrtWuHCIusUCDPJrPShsmRYqeWrvzZYIauJI3rJCmTJU+BNea4wHO6EkqpPZdZ0vNdVd2pVKqALv1XVk8q1tp4PM/jPM7zxGmxyQxZ2RR0jjWe4lk2mGGdeS3sWeZR4jRZZEVa3nk6Ca+qQ5V1QJksJTJ6nRqhyxlWNSGcpSz98edwcbTSuMIku1IgkboqOvR5OXGvGLsKpISVDIhy/lx7G4DQFRjLSduZGNQTMZyYy/iVfaLuAe3MESJuhwYZGCG5DQ4vDKFqIKC6/YEwxC8Cp+X/SrF6euTvqtw+hSjzT4OOC1GGZvpKpZoF4tCWGawIXe3f52HzPOeZpKqVUUl2gWHzI9Go5QyzbJKlREUONiM7XreI60yaUnSKrsx5JqWaSqlKBdF6QnsPKmL1k3wAEKpPMane1VlID1uTGwNsdiXhqxYTymumyDRJqfpSZRR5CoQlMSmygI4ma5R1gbpxqFJRQQRk6BPUjVECiGY1IG4+aSpsyZuozYBFrtzV2bpPUHs4VkkzI70AbTydiVS+ORnK2Axw6GvSVd3oVJmH8qIdtVPwCEgPQUferkry8SEZZWBw2KBU3UVy5LmFjafLmABdll8gTwCPNebIS+9Q1WRugxlNHibp4MoysDBdHncv4wVsinZOq9HV9xjQyRdF/KlSJZsBOba4yDu0ctIjQIu4Vnkm2SXHFqucQfgui8lsS5ZEqaSNijt9gkzKJJZQHrS0FYDygb3CovYtrZAmQpeLPMk86wRxqZNnICfcKqmjEmc5itq7OiATPapCAISVgKoMUJNgQfQKhYZSQ6jYpewKRHwdaFWqImVVEqhJnGmKLLGsS7xAkCqKoB5VsaqKCHUO6m8Yen/3Cepmf0IlKxYsSXYpywRcmgrXWOAMq3qhsYf/On1yDQxeW+zLJCogE8Mb5CnQIq6VV0Fc9tJjvGAvabJTKMZn8E6v3ndBL3zoRSL5UkpYaYiki/hO1UlSd8QCPkyHFRa1YgjQXvrKlmSDGQJ4pKlyTTbeU16Hy4lzeg5YtSdZZ04vtDuEed45j0MfO+Fpa5c0FcqyKWqMJuvM63ih5mt9gqw+0pf3i7AufW0Sp+4MfbBzFPmN3LsBdBI8SZ3LPE4hIRJYSVuopIpM8yRfpk6Sdea0/dIuSbbI8QSX2GQW2xkQcDytClNJqjQV1pknkPL0tcq7BWacDV12HMQVBHcqrrdR8zzVjFRVXGw4M+LaoMyqBjzLUyyyQoSurEpwmZR9AzaZ0Qm+KpMi7kZl81e7SZd9DKFqcBjRJUSBKZQFmrKTe5an+C5+iSR1tuQ8R93/z3NZz9M8hPd+hbT2ZFdrtRk2JdUY1HYCynM1iEuBPB1pJjUvm2OuMcekTIDHEZZxi6ywRU43RG7hMi0FAqpKUpGtKnaKiqtJnZwvk9FzUoe+ro4CQfZuMqPnjGqsav6n4u6WXNvPsybncyLptimt6cS8r0pYVkaJJNKq3o8SIs2xroU/ar2qrP8UiavWq2qephJ1i1yhS5gVzqGaKqtEf50J7ckv5qXiWjzN53WMF9YOop+IQx9f6IWYKrbYl5aG7ROy3D/KcM0cOAIcgLRPCUXFa/yQsJ0JlRGvAXq5yEP+1Bq8XjCEqsEQbUTjqeuIBgFtBCl6GtFwQClRTyNIVNWwalb+vsGwI6siVZXitQEEISrVoGpBOyQe+pK8KGgScrRZU4wmaRnwlb+JCrzK3xBE93oQigDVcbkpZf5CpaTUS92R7N1Adu8uavJW+AO2NMkoFLLClmBL+ue8g4tydKI0QHS2VvYCZa0AHcipqCIBlLr0DKvaN0d1+FYWB4D0zxHnOykbtiiyYoZNTcqqG5oiDFQjLVGSIewLFEGQk81klJpWEaLCBmGLorwxuSOLqAG2LlVW1wOUN20AZW+g1LDCAuDIa/vZNDB4nbDDJKsjPp1q0qUmeWqCq0qHRDlVWsaFus5y23hS7ZghQ1mWFAlf1ZKT0d9ZRTZG6LDOHEH6LLBKhpIuHVMkqPIjFbFClLDPsyYW8AhvzyqTxBGKoCYOQUlezLDJAJs51jXBUSEtidw8Syxrfy0XhwJ5PUGcpkidCdaZZ441AB5lWattt8gxw6b2qYrIqf9ALtIBVNMmtU9FSCsCdEs2QZhhE5uB9sV6gkvaizWNaAihyOcyWb2AV9UHriRay9KjGlYpk+UMq1xjQb+foypkpTwFkaSrk9REcFfG0yLT1JkQiiw6KN/ZPkHi0q9aVQ+ohl0gvGI3mMWYBxocRvQJcoM5mQCf5hN8kHnZAKRLRKp3MjTtoed8gTwlMsyyyUWelHO0vvbNU6p8Nd+py2Wyih3C3658V5XAZc7rRNMMG3qbOklWWSBPQc7u4qywqOOvUpeLuN3XC/o4TS7xBICOCUsypqnGoyq5rFTpE9QpkaVJXM9P01RGlGPiO688teM0OcM11pjTJEyHCANswnT0PUDFGzVvW+UMWzLhrXzzlcXMs7wTD5s8BU1Sp6nyPOcBkQzsEqEi70kbzBB3WmSlpUyFSVZYpIVoNNrH0cl2QBIsMUngRFA+/zmKBHGZoM4kVW3NBWh7GlUVBcN56DD5JEp5rzMDknA1MDhMiNIiS4UVFinLBHSOIvOs4WHftR5sycSwjccWOc6wSp0JvR506OuKPuUB3yGiq5hUlY/wOW1pAcwMG9oeqY9DiayOoYr0HEgiUzRiFhU0qllUlpKeJ6o4LWKnaDKsfPcH2HQIk6ZKh4hQ58u5plori3WpJ+efEzq2lslqgZOaR17mPEnquppJ2UXNsKHHIqo0xTjmWEc0Sc7I+ktXzz/VmhfQySFlt6fiYZU0K5wDxFp69F5zjQUWWaFMhkkqgEjQCX/Wc6hmqR0inGNFzj2rrKROaRHX28tX6M1CxUnjnRbWMB4B7AE47gE7F2JMlVvYA8AWFi0X7SdZZIVMqiZ8xXvDxl0Ghx+GUDUQOI5oTNVGzHVUQyrVcConnzuBUKPWGPqmugiSdSCfU5YAIAjVDfn/AURpk5Zl9IoEFeRp9q4mIarbNCCDeZ4SWZZY1hPTGYqUyOryAZVpE4FTEKa7sjxJlWaoEoSSnOwq31ZRDpDVRIZavItOhnM49LVxuFJLKUToaA+aJnG6RGTuUqhLVcMrhUVW7jovVxpWqW6GSeraUzbJLqI5TExnGJXfiyNvJOrxLfnaOdZ0tlF4CwZ0BtTGY505XRbbIaDLJ5rEqEqrggVWWWGROdYpMi1VFlu64YtQOfR1hrMo7RmEV2uMPazX5GNpYPB64yyrhBiTk8SMXnSe4Rqq+2mWkl5gRuhyiSf0YhnEglr5kQqqYBdlFxKmS196rirfZqWoVN9R5ZU6xxpxWqxyRk9MlZogTwHlKa2SMaosXflM1ZlggrpsvmfrTrNpKmwyS44tOtT1916RiEpllmSXaUl8CuVrUZ7fMLFi42lvqphUhI02qRMEbVArHfqynEpMkOckETnQiRmlhFpglQ4RymS1GmGaolakDuTE+Q/yK3clexTRqeKh8IoVije1GFCNupTnmGoioexhOoS1+i5NhZxXJGnvomwB1OJh1J5FLYpEvGzpaoscRWalx5eBwWHDRd5Bm5yeIz3De1lkRc+3AArSXkl55CkLIjUPqTKp1feiPHUaYT3U1arGDCWUZ7RSZDWJ60qmIC6XOa8JR7WoVqqrSzxBnJa2dlJJbkVabjLDE1ySiSZBkio16SoLOk5tMovNQCu0TkirkUtcIEKHjGxKo6CqFZSV0i3yzMomg6KL9xkGkmwZtYe6xgIZSmwyS5W0nlfVSbLMEh0izLKBi6OFBAAVeS1FFYBIfKv5GggFbB+HS1xgQZI4HgFZsdDVicIKk2zIcy2So0NYn2tFVhFsMiPnqMILVcV0Zc+iPBzVdYjT5JacG6+yoNV0Sokcp0kNG/j06/LZNTB4LaHEPKJhVJEiOdZksmmFRZ0AUWpx5eU+SYU15plhQ4tOZtiU/uqLem7iSfGKgprPKZGNiokq6S6UlklWWMQjwIJMHsdpabW+J4nZUWGASpSo77JQyjb1HBJE9WFZrrmF8nNAmqq2YhomtkVcUsn0NBXSVMlR5DO8V1tenecyIOaLQgEqkvyf5116DauSXqOJmDBdmjjY0qJAzQ9dafUXocs86/p+IlJPglCtkJaNSIXxVZYyT3JRz7eFV60QRuQpMCH5ByV+SrLLJrO6WmqONVkhVcIPiIaFJ2o7uA6Ml/dhIBSrgfYBEbcDA+gnjjDWPiDY2+f31r7AXm5MeE63DyAhejYYvDVgCFUDgeMMPw1RhKJUkahKleohSvqXEeRrEd2tlBcRBKxqZBWV29bk8wMgCA0SxGlRJ0mWEjYe0xR11z5lgq28SEEE6iR13QREKZrUYn2oeBBkhvL96+OwwDWd2Y/ITJ0owyyjSjhVMB0qRLuU5U2oj6O7TSsiNUeRBa7RIcyWvKEo9YW6garSUOUv0yGsyz5A3FTWmNOZs65WAgz0BDeCMCgX2cO0zj4CujGNuHkPCWWV7bLlTV+UwbbkfsWVmWOdMhm92FDes0sss8gKq5zRRKlaWIDIpCkvW4B15piWqgpAn7PwP+y+Fp9KA4PXHS5Bjkh1uVJrg4gryoNJJUOESmgC5RmlLDFGG8Qpj+YFb5VJu8oqC7gE2ZKNnDaZJU9Blk+mdYxTBOoWOV1eKVRRrrQlGZZieVJtqlRdisRYZIU15gjToYXw7VtmiQwl5qV9gfJDVuqCGTb1gkDFBkVeeNS1ul01OhD+qKJZX0ASzjOSUCgyTVYSEDMIX0TljbVLkiWW9fWp4mAzIEuJZ3mKaYp0CWsfa/Ue2AxwcShLv1dHJsRUjEZOlmM0JdFygSwlBoSZY43nuKAbXinbFChqElkRDg4uKyxSJU3arup7lmhwJdT7YiEjYvCmLDOeZ504TX3uKvlkYHAY8cv8UWrM6rJKG4/P8bReVAO6NFRZItWZAIR9kqrKGVU2ATppFKZDoZFnMbFCmSwZStSZQHnai9eImKNIxThNnq8+Ti5d1ISq8p9W3spZSpqoUM0/P8EHxXjdOOedy1rhOTqHSVLXjfhG43ilkWY2samTWh0iWt200l4kEy0zzxprzKOamI76SgP6d0dagQCEZV2DIlbSVPVcSo0tzy36OGQoscyjzLOG8iasMyG7eqfZleX6iuiou0mCTh9loaXeoyZxbV/TJKZV+KrMVSXml3kU1YymIiuw1OegQ1gokN0nmXPW6ONoqxylUo3T5Bnec1ezHpsa8LOv8afUwOD1wa6sBFphUSdgJqWYpCjnasL6rc486yyzpOd0W+RYYZHHucxFnqRMhl2SnKCgk9HrzFMlTZEc7+EZOb+zUY1P1dxTVSR1iegEjopNqvReKM1P6BhUIK/njVlK2iZJxWeVzFcJ/2WW2GBGVwKohquqP8kGMzzOZYJy/dshzAwbLLOkyeE6EzzPeW2J9SxP8SQX9TpeCaI2mdFCn9E1v2o0JcRKYXblOHIUKZPhnJzjquSYus/USWqP2ACeFCbFNQGubAFU9ec861ziCT0vvsQFqcKtSEWt6Cuy1LjCxcTbydg1mokQIKxN4rNN0o0G0eIBeyfGCLf22ckJ678oNQB6KYg39llLHcfODci1t+l6RqH6VoEhVA0A+PD/AKcLHAA+ghz1gKR47OC34Ugb6MufFxAkaVxu15R/N4EjDMnVIIJgbSN8lHpj2Hu7eIxRIsQ2WXz2mGKdKW4xRos+IYI0KUuZawePIPv4DGhwBJsxgjToMOAqc1whxwWeY4tZPMDFwsHlOlkSNEhQIkWVbY7Sx6dOAAePbXIscJUtpoXhPpCiwjWO47HPLcZJ0iDMPh42L0jFUYusLtsQJIcIqpPc4DbHmKZBgh0maBOjSIIDusyyzxGpWMhylG169GlgMcs6d4hzkySnuQ4ccJ08j/ICEbbZYJYWUUKSYE1RIkyET/ItJGgQwWeXABb77ANHaEjC1ZKUcYsyKaZp0uKAPiFgjzoJUjToEuMMv02HAFscpUuffTwGdOgjTLhjtBCNrlIcyPN12GGLCAE8WsAYFuPcxmaX23tHH8bH1MDgoWN1L0edPAfYxGhpMkzEkBQhOtzhOGG6XOMoDRKc4CZB+jQ4RZcQW0xLgq9FihQeNtuEuc48EXp4HKNFjN9hlgQNrsj/JylzIJu5lJliGmhxhOtkaJCgTIYSIY7jEKPFi5ygxDRjsthsihs8zxx9xmiQYA+f65wmQ5kUNSokiLBNH5dbJOjj0CBBjRQd9mUzg7M0SGBzQIgOBwQ4woAS0yxwFQ+bMF1uyTGXCRHE5Q7HWeAqfXp8iUXCsrwqRpY4bSqcpkECh32qPEZKKjo9EmxzlC6iy+01PojDPnscxaHPHc5SIcM81wkSk2TrFjYHFEhQJ0GSBse4Q4UUNh7bTAMQokOEHjsE2WaaE9wkxQYbpEhT45Ic0zWytIhzgpskaLDC2wA4xm326bLCMRI0eJ5TbDHNKW6wLQ3CtzhKkD4BPMaYYA9fLnz22eUIX2WJrb0o8DtvxMfZwODrQndvQIRtTrBMjRQJGgSoMUaf49wBkPFDLAw9bMa5wxE8grQYEOZtvMgGs3RwSFDnGHfY5ihHWaVGmoBV4+jeDWxJ/O0TIstNdknQRTTiu8VJHPo6NTw7dpn4nvDFG8iYFJM+ebc4wYAOPkcI0sMlxiOscINTeBwROlh3nwYWx7jFCeo47HObY6SocVrak7SIEZMeh8etrxLc69MmRow9IM6YTKTN0ePk3i0AHmOLMlMM2CfCFjFqXOUsF7hElzANEkxTo0OYfYL4tDhKiRYxpilxBI8jBJmmQoI6G5wiyTYJGriMMcdX6BDmNnEe4wXexm9xh+Oc4EWaLBKjRYPjnOEqTWIcuKJ097S0anEJUiPFgD4Nkti0CdLmGDsEcRmjQpguYzTIcJ0YLbqEGadHggZH8bQ4oUWMx/gcXTdMiwybTMjnGgTwiLLDPF+hRYwmMc7yZSp7Q2GAgcFhwmCvywlu0SVCA5jmluzE0eMAjyJHmaNHmg1e4FGCVPBo49AjRgObAV367OFzgzQeyO9HnJZcm8ZoM8Uut4lzRc47vsQFEtIYJct1HuGLVEmxj0OEPfY4IM42FnWaRLnIY/x+foMMawTYpY5Fgwj7dDnNVwkzxQEBIlikKQMep1mT31OHFmN4hFjgtykzRZc+4xSY5TKf4v1kaFInwhTrlAlxgls4lJjjDh2QM7sAYSDIDk9Ib9RtjnJAkzIhLvJunuZzwB4R9vgWvsodjjElk1RbZDlJmTFsWuSZ4yuE6RIkRoMEW0Q5y2WKpPBkDIvQJsI2vqyG2CJGkB0OCPBOvkyDBHc4TogSOVm51CLOFlmOECPALpukOMKACW6SokaMJlOsYeNxiwTzz8Ojia/QdSBwpQcTkHVvU5mJ4vctWuk4ifIePWDDmuRsbZPNlMOBF2Byp832lEN5L8g0u+y1IebdeUM+ywavPSzfN80SvpFhWdYx4PYbPQ6DtyyO+75v7hgGb3qYWGjwOsDEQ4NDARMPDR4yTCw0OBQwsdDgdYCJh4cchlD9BodlWRaiuN+0ZTd4rREHir4JMgaHACYWGjxkmHhocGhg4qHBQ4SJhQaHBiYWGjxkmHj4FoAhVA0MDAwMDAwMDAwMDAwMDAwMDAwMHhBH3ugBGBgYGBgYGBgYGBgYGBgYGBgYGBgcFhhC1cDAwMDAwMDAwMDAwMDAwMDAwMDgAWEIVQMDAwMDAwMDAwMDAwMDAwMDAwODB4QhVA0MDAwMDAwMDAwMDAwMDAwMDAwMHhCGUDUwMDAwMDAwMDAwMDAwMDAwMDAweEAYQtXggWFZ1kcsy/Llz4uvsO33yu0uvF7jk8f9iGVZrdfzmIcBlmV9WL4fk6/ydcmR99y3LOtvPqwxGhgYvHZ4NfH6NT7uzNcaKyzL+tgbMWYDg290vFHx4mHgjZp/vhpYlvX7LMu6bFlWT441+TLbPmNZ1jOv3+geLizL+qF75pWval5qYGDw6vCw4rtlWT9sWdYNy7I8y7IuP+Br3iPH8Z1fw/Euj5zHr73qARsYPCQYQtXg1aICfA/wo6MPWpa1aVnWh9+QEX0NkBPUj3yNr/2wZVmb9zz2dyzL+pJlWTtygnzdsqx/ZlnW1D3bnbUs6/+UN4WmZVlblmX9+ptl4i9vus+MPNRGvN9/7Y0ZkYGBwdeB3xWv3yyxemRSPTPy8D9FjPfqGzMqA4NvaDzw/M6yrL9rWdavWJZVkt/ju56/F5ZlfZdlWb9lWVbbsqy6ZVnPWpb1vtf6BF4N7jeXexWvvV/8etDXpoFfBrrA/4q45u2vZRwPA5ZlxeU8dcOyLNeyrDuWZf0Xy7IiL/Oaf/1SJId8/HtHHvoNxDl/9LUfvYGBwUvggeaDlmVNW5b18/L737Usa92yrP9Lxq3R7b4V+D+BLwLfB/yd13KwKjF2z8N/R55D5bU8loHB14vAGz0Ag0OHtu/7v/hGD+JNiCeAy8B/AprAOeDPAt9mWdZ53/fVZPkHgD8D/FfgXwEJ4M8BX7Is6/f5vv/J13vgLwff9/eBX5SLhn/6Bg/HwMDg1eFQxWvf9z8LYFnWDwBGtWRg8Pri1cSLnwC2geeBD77chnLB/mPAfwE+AowBjwDHvtaBHnJ8ExAH/vc325zPsqwE8FngOPDzwBowBTwNOEDnPq+5AHwv0HuQY/i+fxW4alnWPPAdr8nADQwMXgmvGN8ty4oBvwVEEWvUAvAY8JeA91qW9YTv+wdy8/cBB8Cf8X2///CGPYTv+x+X4/yJ1+N4BgYPCkOoGhi8BvB9/w/f+5hlWb+FWED8QQTRCvAfgQ/7vt8a2e7fAleADwNvqsm1gYGBgYGBgcE9mPV9f1OWa++81EaWZX0zgkz9G77vm6SsQEb+rr+Rg3gJ/APgJPB23/c3Rh7/R/fb2LIsC/jnwL8H3v/wh2dgYPAQ8e2I7/8f8H3/19WDlmXVEHH8MUQSDUQc675eZKqBwZsZpuTf4GEjYlnWz1mWVbUsa8+yrH9vWdbE6Aay5ODXLMv61hFPqRXLsv7QPduNWZb147Kcvif3+QXLsn7vyw3AsqzzshT/GZl9e72wKX8n1QO+7z83SqbKx6rA5xGqVg053hcty3pClsd1ZQnGn7/3QJZl/WXLsr5qWVbHsqxdy7IuWZb13S83OMuyTlqWtSaPkf0az9HAwOCQw7KsU5Zl/WfLsmoyhnzJsqxvu892Gcuy/o0s8+1ZlvU7lmX96QfYvyVLyPr3xnUDA4PDB9/3Nx9w0x9CKFl/WsaB+87BLMsKWpb19yzLes6yrIa0Bvi8ZVnvvc+2f0xu15TzymXLsv7qyw3CsqwJy7K+bFnWbcuyFh5w7K8almX9ETm2rmVZFcuyftGyrGMjzz8D/L/y39+W5fAfGXn+B2WJbVeO9+n7HEPZDfxROSe+I6/Ff7EsK2FZlmMJy6myZVkty7L+nWVZzgOMPYko3f153/c35HvySq/7HoTa+O++0v4NDAze9BiXv0v3PL4lf3dB2HggYkXUGnqafq987vfKtXldxp9Vy7J+6uUOKmPWr8nY/9RrdzoGBq8PDKFq8LDxMwii8MOIDPafAD5mWZZ1z3angV8C/gfwt4EB8J/vIUs/DPw48BlE+cFPAreAt7/UwS3L+ibg04iM2u+/l8x8LSEXC5OWZR2Vk+B/DnjAMw/w8qPc3xNmAvg48Bzwt4DbwM9alvX9I8f9s/JYK4jFy48j7AeefJmxzgGfQ9gTvMf3/XtvngYGBt8AkMmUZxFlu/8KsTAOAb9iWdZ3jGwXRsSy7wH+P+CHgQbwkZcjMyzLshFlvn8K+A7f9//bQzkRAwODNyPeD/w28FcQSlblHf+X7tluHGGJ9AzwI4j53hTwCcuyzquN5JzwPwK7crsfla9550sNwBIq2k8DWeDdvu+vfv2ndd/jfC/CG9VDzGP/NfCHgC9Yw6ZTP4kopQeh+Poe4Ofk6/+M/HsbMd/7IvArQP4lDvm3EXH7HwL/Vh7r/5Z/n0Fcw/+GKMf/kQc4hW9BxP41y7L+C6K8v2tZ1hdH34OR840jlKs/5fv+9gPs38DA4M2NzyHK+H/asqxvtizruGVZH0LMCz8m7TpAxK3PA678+3uAz1mW9Tbg1xD2ID8G/A1EDHu5+BwGfhV4CviA7/vPPpQzMzB4mPB93/yYnwf6QSyKNx9w2+8FfOASMDby+A/Lx7995LFN+dgfGnlsHCgCXxl57DLwaw8wxpb8+52IBf+vAc7rcH2OyvNQPwXgjz7A655G3MD+3j2PPyP389dHHgsiyOGSuq7Ax4AXX+EYH5b7mgTOAneALwMTD3huM/L1f/ON/hyaH/Njfl7550HjNcIb2Qe+ZeSxGHAD2ACOyMf+qtzuT4xsN4YgY5tAXD6mYwXCVug/IRbm3/oqxv7MK8U082N+zM9r9/Nq5nf3vG5Sft8/fJ/nJuRzFRkj/ibwRxGJcx/4cyPb2kDwntcnEeTivxl57J/JeZ39MmP6Xrn/C3Je9iKwDpx8iNdvTM7LloHQyOPfJsfyf9xvfPd5/fOj1wHhxe8Dz4w89h752DJ3z6//A2Iu+fF7xvbsA94L/trI+3UR+G7gL8j3oAZM37P9P5b3CUf+v8krzNHvef2H5fEm3+jPv/kxP2/ln1cT3xF9Pna5ez37ESBwn3227nnsh17pOz0Sv74TMdd8BpFsO/8qzudVxRrzY34e9o9RqBo8bPy8LxobKfwsQn36oXu2KzLS8dP3/T2EovVxy7KOyofrwNssyzr9SgeVZWKfAD6FIGrdr/kMHhw14PciPFN/DDEpfVmLAcuyMohJ8AaiW+K9GCDVCwC+8Kr5OYR3zRPy4TpwXKpxXwmPIBoObCIygbsP8BoDA4O3Lj4EfNn3/S+oB3yh5P95BDm6OLLdNkIdprbbR6jjY8C779lvEPjPwB8APuT7/m8+pPEbGBi8OaHmP2ngB3zf/ye+7/8ygmRcAf43taHv+56c32BZ1hHLslKIhMwl7q5CqiMaprys1ZPEccR8Zwx4l+/7N7++03lZXEDMy/6V7/u6OZMvfAivIs75QV7/f/t3exJ+BEEg3w///p759UXAQihUuefxvGVZr9Q3Q71fPvB+3/f/g+/7Pwv8/xDk+P+qNrQs6wwiyfbDr9P82sDA4PWBEtz8EKJp3P+FqC79hw/w2rr8/b9YlvVKHFMC+E2EyOc9vu9f/hrGamDwpoAhVA0eNq6P/iMX6luIhfoo1nzf9+957Jr8rbb9MYRi4Zr0zPrHlmU9ep9jhoBfR2T6/6j/+nUf7Pu+/0nf93/N9/2/j5h8/hvLsv7A/ba3LCuKUM/Ggf/Fv78dQdH3/fY9j917Xf4R0AK+bAl/2X9pWdZLlVf8KkIp8kFJWhsYGHxj4yRwvxLYKyPPq9/X/WGH15faTuFvIxbi3+n7/jNf/zANDAwOGbry9z6iQScAMob8EiIRfEI9blnWn7Ys6wVEt/gqQrX0bYiFt8K/QsyB/of0Q/23lmX9vpc4/i8gSMp3+75/5zU6p5eCin/3i6VX+d3x8aVef++ceR+hAr0fbt3zvyJeC/d5/AjyOlqWlZLWVOpHXV/1fv3q6HzU9/0vIZL+o96GPw086/v+f3350zIwMDgskGvHXwP+ru/7P+37/sd83/8bwE8Af92yrMWX3wO/hLAq+X+AkmVZ/0l6Pd+Pb/pnwDchxD1ffe3OwsDg9YchVA0ODXzf/xwwB3w/ooTrB4CvWJb1A/ds6iII1SeBl5poP3T4wgdmC5HZuwuWZQUR3laPIsjUF7+O41wBFoA/BnwB+MMIz67/4z6b/1fENfxdYzIwMDB4DfEJoA38LcuyQm/0YAwMDF531JDkqO/73j3PleXvCQDLsv4kQo25jig5/X0IFeqnGVmr+L5fBs4julH/CvBeBLmqGj2N4r8hkvAv27DqEOPea/pKj6veBf8NMTdVPz8tHy/K3/fz1C8zfK/eh3h/ftqyrBn1g1AUh+X/4/fZh4GBwZsbfw4o+b5/6Z7HfwURP162YZTv+13gXcAHEAmtRxEk6/+Ufvqj+O9ynz/6AGpWA4M3NcwH2OBh467yfEt0eJ1GlJyPYv4+jarOyN96W9/3a77v/zvf9/84wqj/BYQP0yh8BGH4KURjq/d8zaP/+hHibnUF8sbx7xHNGr7b9/3Pvszrc1LJOor7XZe27/u/5Pv+9wEnEITy370PkfHDwL8B/pVlWd/9ak/GwMDgLYebiITMvTg78rz6ffo+E997t1P4EkKh+hQiDr9SuamBgcFbCFKJehmYkknkUeTk7x35+zsRSsw/5Pv+L/i+/wnf9z+JmEPdu9++7/u/6vv+X0QkiH8O+FOWZc3fs+m/QFQ2/ahlWT/6mpzUS0PFv/vF0gV+d3x8qdffO2ceA2a/vqH9LvwNBFmtfpTd1HPy97H7vCbH8L1SquL/hlCuqp9jwPvk399/7w4MDAze9Mgi/KzvxZj8/YrzON/3D3zf/5Tv+3/d9/1FREOr9yGSX6P4GCJOfDfwL7/mERsYvAlgCFWDh40flBNChb+ACMj/457tcgivFgBkdvtPAZd92T3Usqz06AtkSdIaopsg9zzXR3Q8/W3gVy3LesfXfyr3h2VZUcuyIvd5/A8jMvr3Zvr+BfBdwF/0X7njdQCRMVT7DMr/d5CT3/tclz7Cn8xieBPUTwM/iCi/+38ty/r2Vzi+gYHBWxsfB95hWdbvUQ/IJM4PIpI2KyPbHUXELrVdAPjLCMuR35UYkoTIH0OomX7BqBAMDL7h8EuIBfqfVg/IRO+fAFZ831eqSKWqtEa2exLQcUk+du985wCRWIf7zwX/PvBPgH9gWdZf+LrO5OVxCaHi/POWZelxWJb1+4FziCT3K71+R75+lHz+XoTK9jWD7/vPSXsq9bMiH18Ffgfhfziptrcs61sRAob/KR/6NGK+fu/PjjyP70DYSxkYGBwuXAOy9xEi/XH5+/mXe7H0vr4Xl+Xv+8Xnfw/8FUTc+0evZqAGBm8mGMWIwcNGEPiUZVm/jMjS/0VEWfqv3LPdNYTf6Dchyo2+H5Ep+76RbVYsy3oGQSTWECb+3wn8zP0O7Pt+V/qXfhpREvbulyutl/t+t+/79yplXwmngU9alvVLCK+sAzm2P4kgJFQ5FZZl/RDiGvwW0JFlbqP46D2eqUXgR2Q51TUEmXEe+MGRZgS/aVnWNsK3poSYvP8l4Nd932/eO1jf9w/kcT8G/LJlWR/yff/Tr/KcDQwM3hr4h4jJ8v+wLOufI2Lrn0aoov7wiGfqzyOSOR+xLOsJRGz7TuCdwA/dL9YA+L7/Mcuyvg+hyt9jJEFkYGBwOGFZ1vcgfD9VMvldlmWpJlO/MNIA6ucQ9kz/UjYyugWo1/7BkV3+GiIJ/lHLsn4dEX/+PCKhM9rc8/+Ri/ZPA7flfv4yYtF+hfvA9/0flj6h/9KyrKbv+7/4Muf1YeDHgfe+Gu9n3/f3Lcv6EeDfAZ+1LOs/IuawfxURK//pA7z+f0Ncr0/L+eQsYg78Uh6qDwN/DUGcfsGyrJ9DVFj9dcT882flWG/xu/1bsSzrnyHKhT/2eg3WwMDgNcXPIGLOr1qW9S8Qyvl3I+aI/9P3/Yuv8PofsyzrXYgE0k2Eh/VfRMTqL9zvBb7v/4wUUf2kZVkN3/d/6rU5FQOD1w+GUDV42PhLCCXC30OoJf8j8Ffu04DqOmJS/I8RxOsG8F2+739iZJt/jvDN+lZEpusmokvsP36pg/u+v2dZ1geBzyE8XJ72fX/tJTaPIbpYv1rcRniTvg9BRIzJsf0M8JO+71dHtj0vf/8e7lFeSMwifAcVduU+/wXwZxGE6V/yff9fj2zzc4hr/NflOdxGXKufeKkBy8n7dyKUwv/dsqwPPMCN0sDA4C0G3/dLlmU9hWhu95cRJbYvAH9QdqhW23WlauEfImLSOKIBy/f5vv+RVzjGL1qWFUdYjez5vv/DD+NcDAwMXjf8GcRCW+G9DEs6v4AsYZdx432IsvLvB6II8vPb7pnffQShgP9zwAcRROqfBP4I8J6R7X4RoZ7/iwjl5jZCBfvh+zTMG8WfR8yP/p0kVf/7S2wXQ1TyvOq5oO/7H7EsqwP8KCKetoGPAj/i+379AV7/89Jn8IcR89plxJz377/asXyt8H3/M7LJ198HfgroIJLvf+slGqcaGBi8ReD7/qpMmP8EIv4eRQh7/gki0fRK+BVEw+TvByaBCqJ66cd932+81It83/8pmfRSpKqxADA4VLB+N69lYHB/WJb1EQRp+HZg8CATxAfc7ybwou/7f+C12N/XOIY4Qpn1Q2+WQC4Vs5O+7z/yBo7BAtKIcq+vAD/s+/4/eaPGY2Bg8GB4WPH6YULGYQfRrCDxRsY+A4NvJBzGePEwYFnWl4Gbvu//kTd6LG9VSMuHGPC3EOTxlO/7lTd2VAYGb128VeK7ZVlJhBjwK8ALbyRvYGAwCuNnZvBqkUf4JN1Xun+I8S7gDvCvX2nDbzAkEO/3V97ogRgYGLxqHLZ4/QuI8b5sJ1kDA4OHgsMWL15TyLLTxxCNrAweHv484nNmKhUMDF4/vBXi+zOIc8i/weMwMLgLRqFq8MCwLGuRYWfWlu/7X3qN9rvJG6xQfTPiTaJQDXB3ud016Z9lYGDwJsbDitcPE5ZlPYrw3IJDMmYDg7cCDmO8MDicsCwrj7D2UvjsSE8AAwOD1xhvlfguGxXG5b87vu//zhs5HgMDBUOoGrzhMITq/fFmIFQNDAwMDAwMDAwMDAwMDAwMDO6GIVQNDAwMDAwMDAwMDAwMDAwMDAwMDB4QxkPVwMDAwMDAwMDAwMDAwMDAwMDAwOABYQhVAwMDAwMDAwMDAwMDAwMDAwMDA4MHROCNHoDBGwvLsiyEUXXzjR6LwVsOcaDoG18Rg0MAEwsNHjJMPDQ4NDDx0OAhwsRCg0MDEwsNHjJMPHwLwBCqBjng9hs9CIO3LI4Dd97oQRgYPABMLDR42DDx0OCwwMRDg4cJEwsNDgtMLDR42DDx8JDDEKoGTYDVdUiPQTPhEG+4dGMBxjcHlObG6RBiul3GC1hEaz61aQcAx+3jOkFaxABIuzVcJ0hqy6U27ZC67bI3LT5idTvBic0qpZlxUo09bicyTLfLtKJRwm6HYM/nq4kznPJu8IL9GGe5ym2OMc02LWKM4XJip0p73MIL2IRbAxqJKBvMMssGiUabfsjCHogETzmapkeEo94WAH3bYfJ2G2woTY/jYeMyho3HidtV9uPi3CNtF4BOVJzjPg42HmG3Q9eJiH0MgA74R8F1oB8KcNM+QZpdclu77GUCtOw4ITqkNl1w4NZ0mhM7VUpT48Tcph6nPYC1xAzHvNvcsY8TpE+MFh1CAGTcHYI9X59bOZomRguAXdLM7RSpTYlr7UdgM5VhplbGdeBONEeCBh42MbdJpO3TTATYtqf1dbEHHlUnRdJrYA88XCdIpO1iD8T1CHgeO3aGGC0S7T2ejz5GjCZLOzfoRaARHSe7tcdeJkDfdtgiS5pdjlR2WZgbfr4MDA4BmgBfKcQZGw8S4ICvssjjXGZys01vSnzeW8Q4woAeEbJskVp36R0V37cYLfF985p07Qg3mOUUGzRIYOMRo0XY6xDsDXg2+s3McoPZ22X8CBRSIkbspQKMbw0oHRdxKkgfgLDboeqkyNeqAJRTIpbcck4SpM/cehHaQApwoDblcECAWLtNJ+qwzKO8e/O32cuLmGwPPLadaWK0uMUJLtRexHUgtAP0oXRmnOzOHr2IiFNjFSjNjRP2OvRthw4hkl6DHTtDhxAO+5zZLIAHV+ZmmGKHGimaxDjrXiXY8+nGAgR7A25F88RoEaRPgwRjuDjsM4ZLat2lNCfuE41EFIBYuw1ALTqhr8cRBr/rXrNtTzOGi41H0muwbU/jMkaCBiu8jce5jI3H5E6bjakMEXp42HQJ0ydIkD4TiOvbI4KNp9+Dr7LI21ihQ4gAB/r+0SPCbKPAWmIGlyAJ6iRoEG+4bCTyJGjwzN7b+cH8M/ozZmBwCNAE+FThBO3xLDYHnGCTNnESNOgSJkYLG48jDKiQoUyGBLsc4w4HBOgTpMoEfRymKHOLGWLyK5CiSo8ItzlGnBYhOngEaBHnNNcJex127Axhuvr76RIkQhcPmw5h3ta+QjmaZh+HOgm9zzoJAjLeTrGj5yUDjtAmzjHvNvHGgN2UQ4UMk5QpMU2VNMcosM00SRp0CHPau86OnaFGihPcwsbjBZaY5QarnOUYt3HYZ5IyAAcEuM0xGiSYZpsOYRz6vMCjLHCV49zBwybV2GMnMcGAI+yQYZptykzRIk6LKEfZ5jh36BBig1Nk2GHAEWqkaRHnBJs0mCBMR293vFGmlhjnFic4xh2mGrtcTjzCETySNIjRokGCScqsc5pj3GHAERokcNinQ5h9gsTk+xGhxxguDRLsI+bENh51EvQJkqRBihqpxh5biTQO+8TcJlUnpa/zTfuE/kCdbdzgy9YcH8qv68+XgcEhQBPg7xW+i8S4WLvVSZKkznkuc5nzABzjDnc4RpkMZ7nKMe4Qp0WVFDtM6fVYmC5rnCZBHZcgGTlXsvFIsYvNgAYJwjLWdYkQo8kdjhOjic0BDRIAhOkQZJ/bHAPQsaBHhBQ1bAa8wKM8xW/JeegAG48aaQBOcBOPADYDdpgixS5XOcNJblEnQY8IQfqkqOJh05Tr/dOs0SBBS94PvsoiSRp0CbHEMl0i7DCpx+4S5Dh3uM0xAngAVEmxj0OYDilq+mK3iDNFmSB9gvTZYYobnOIsV+kSJsi+nId5BNkniEsfhz5jnGWVF3iUMB1qpDgmOco6CdLUuMNxEtT1MWqkOcFNfY/xCJCiSp8gLeL05fyxSgpHzj3FObWI0WSbaVJUucQFAC5wCQ+bbY7i4nCcO/QZY5tpjrKl1+9dwjRI8sLeDD+f/yf6M2ZweGEIVQMAIhMB0jcHjOUOCNpQix7lePc28cEeK6lJpgZlrKoP+zDecNkfh4ANzegBKfYYv74PUaDlwgQEbZf+whjHi/vQhuOpKntvGyM3aBF1IF0twxXInGuzd2KM8eI+58aLTJUHeBO3OFlsc6p8DTJQy/VJlXvi2HUf2gP2Z6E1HmGeEicLYrHt2z7WPuxlx3ikWqUXrRLqAQ3YO2XBwhhNO04cj7jboORkOHW9DJNim1BmH3c8ROpyD1wXZoGiS+80ODZYjbbY9grsn4cxF/YdGKsNOD64Ic6/DuPxAe10g+iVAwD2j8LbBlWsLoT9PfrjR/ACAcKtfcb2IN3YpJeC8dAdxq/vc+dsiggD4l6T8YYvCNyeDyXIZKvgQDtxhKODIqEgDMYt4kfBKsNjxTLbZwV5c65dxAscIdI+oDIVI9FrMe4PyPoFvCCELgOnYdKvMtYCqkDaBRv8KLTGxzlW2+F4q4gfAqsFH7R/h30H+seP0HIyxOky3oPORJRso8GpvRv0UrAbtwBTvWBw+DAV7dIYn8LFZoIDNnkU79ECHcJUmcTDJk2VNknG2GP18dNE6NAmSYZNKqSxieJhE8LBJsIUPeoksTmgT4QqcQ6YoMs0G4sJktRpkWNl/DgZSjQn+sTxqDNOkhJ1ktxmFhuPrfEYHSJ42ECdXU7SIULw8RBpqjSJ0ycIQIkskfEOcZpYxLEXjrDuvJ0mMeZZJ4hNhygTeDw3/ntIUic3XaRITux/vE6EDjXi5DMFks4BHSZokuQaCyyxjE+EJhkusUD40U8CMIZDHIt1BNlbZp4qk8RpMsMmYcZocowcRaZpUyJDByiQ58nHv0yaPt3xFMtcIEcRb7zOOnPMsEnWLWAPDrgUfTs74308bPYXq1TlAmGPCAusUucECfo0cYhzhABRCryNIC7V8T4ROlSZxsajSpokdQZ4RNmjSYwOE0ToEKZDAIsoAXLtNtCmHk2wKV97ofYizdwYu/ZJCuRZYpkkPrVxB58EOfcOjI+/MR9mA4OvE08MblEd71PgBB4pYnhUmOVbrn6FXh7q0QQ2FhY97pAmTYUQIZrEyVAhTIA+fSL49OmQp0iVNHF8Ovi0OSAC5BHf4Tk2qDNJkCYxjmDjYHOEAtMkqeMwRoYyTWKM27ATTeASZ5o6YXwiVIAKVdIEcTlVaHNqcIOd2RgeNpPsUuUEL07kOccKJ9mlylHOeXe4ZE+TxaWPR4cMGSq0OEZFfq9F/HY4QQOPNI9ykw4R8pTxCJFuNNhMTDFNh2k6VElzkiIOfY7zBQbYOAQokcEbF2RonCaz7ioAC+1dLqUe4SS7FMnRxyWCyzFa5NjFxmOTCB0sOuQ4RokcW6ywiM2A6+PTuDjMswEEiNrweHSNLXIMiBKnTYcQKe+AqcGKmBumYjj0yblFOk6EiNth05lhmj0i7R7F6FHy1AFBIhU4wTlWSbYbbEZPUmWWyHiBCGPAGDUmcehTJ0ULn3c0blBMTBHAY388QXAv/AZ9kg0Mvj50xo8yOV5nkipHiJPGZZV34BORc7hj7JEnikeTY1QI4dKkQB4XhzgFonQossARwoBPhAEWcbL0ZPIoxhE8AkSpcZQkdQIEidLlEUl+XuY8TeJ6LirmVbty7jfJBE3qjNFnkjXm+GYuckCCKrOkqeDQxSZKmio3OE9WJoMcbPZJMyBNAzjAJoxHEJ8uR2kSo84EOYpscF4nnO+Q45wkLlc4wTZniNMkiU+TFHVS2AzY4wgnqFMiyypncOiTp0AQlxZHCdMVc0AucoknWOAaR+jQZ4oQQboclYmcMnF6AFSZpEWQGE1m2KJHhgw9IvSYYY115uU1jGExYJo2MAYcocUxXOKMsUMUly0mAZvrzNIkzgUuUWSSED0sEniSCIYgm5wiS4k0deqcIITDGVZpcYwsJRzqbDKDg0MAmyg2faZokaBKmkVWKDNFjZnX90Ns8NBgCFUDAAa2Te18QJCJaTjdvg0uWHuwyA2sHhACrgMBGJsVv8ev7MMJoAW9PIQawAaEMhBq77N3bozxL+3DOIxX96EBvRyEbgFpIArjpX32xyHZaEEbTl7egRqQEWOLtHuCVKwCOdhbGiPY2xfbRcX+7AGM7SGIyVv7+AkIleHG7FHimRZTGy2IQjBaI1QU53Kqui0UXZfEuUTbB6ydz5OKXhfkaA24BaE24hwRRGZk6YBqIsHRqw3GrgGnxOt7CSABpegUJ4s74Irx1hMxHM8lbO8zVoYxDiB0ALfEOfppCL0IIWef3mk4dr3G9ukE40VxvWhD7xEILcs3KwDR8gFkxPkCWDfEdeccHP1iQ3yzE4B9ACGYqoqsmAWMDWCsKvbLZdj81uMEEy658R3G2gjytA0n2BE7L4Mlr3PoCoyFYCxwwKnGtiCda3C00UDda0INiFYMmWpwOHHHPs4UHapMssQyjudSsdOsM0+aKnkEuZqkzioLAARxmaRKkRw2HisskqROnyBxWhTIUyfJFjkylElTESpKqVBoEZcT7iYeAVxgk1kicsFt49EkToSOVGdFsBnQJM4c61RJY+PJibvYX1orCsS+s5QpOjlsBgTwcAmyRY4gffoEsfGI0MElSJYSLkGWeZQZNojQ5TPOe8hTIE+BMlkWWSHnFSnYeWbYJEmdGE1O1HZYSZ2iTIY4TcJ0SCIWIcfKNb6UeYwwHSJ06BChRIZ51lljjjwFAPo4FMjTJ0iGEn1ZKdAhwoqzyNLgRUAs8Osk6RAhTpMMJbbIUSKrlWFJSQakpfJ0gjoDqTpdY54nuajH4mFTJkOYDo5UunaJUCRHhzDr0VPsktTXoUKaF1Kn9f7DdLHxCOCxSY4L7iU2nRkSbv11/QwbGLxWsFzIumUiTpeLPMk8ayyywo2zR/EI0CFMAI8wHWbYYKZ9k1J0Sn9nHPos1G7STIxRsrNUSROmQ4U0EbossIqNh+O5uLZQoYbpUCZLhA5pmlqRmqUkScUZmsQpRE8Qp0mdJGmqTHh1wq19urEx0rZQGe3kY5LAbVIkR54Caaq4OEy6VTpORMeGHEXibpMZZ5Mi00xT5DKPk6NIst2gHxqjbwdJskudCQDSVFiVBEIw4ZJv32YzepK6jBPHijXu5FLEvSYD26ZOkjhN+jiUyTLh1fECNh07ghfokKGEh80iKxTIk6Qu7wu2jvNxmuQoArDOHPOs0SFCnyAzbAIQ8Tp0oiF9HwnToUOYSapU7DRdO0LMadJFnH/JyeDQp+xk9HvvBY6QdctsOjPMtW8QH2wTSXTZZIZwtCNJnYAkz0sEPI/P2OKeUSeJR4Bkok6dpBgTXa3QMjA4bDjFBmHGdCzp45CmyhmuUWSaAB4LrFIhLT778rvr4rDJjJ7P5SlQJU2JLHkKTFKlTpImMTwCOIhKSTEPc/Tx4jSJ0GGGTVk549Ikrr9fLkHyFOjK6po+QRZZAcScKkmdPAXqJNlgBlsu2tT8skqaPAUWuEaVtIgLZMhRZIAt48sGk1T1a5vEAXCkmjTHFn0c6gTwsPV8ucokIOZsVdJkKZNEJOxtPCapUiCv41qWMnWS+pp52HjYZOTrVjjHPOskqevYWJV1DKPzuTwF1pnDxqNMhgE2k1RJsguAh4jJOYrYeATps06SLCVWWWCGDU0cq/0NpMo4ya5MHiUZyP3Ms46Hjc2APAVd4aTeS5sBGcoUyeHikKDx+nx4DR46LOOB+40Ny7LGgUbjK8CjY9gDj2j5AD8KVhWowf5ZGCuLv0kADtBGkKXP7wsiLQH704LUlIkjsc2S3CYhiEPrltxHW/4k5La9kb8bCDKyB70LEFKVAFfkNjn5fxGYhZ1MjGSjRTMRInWpB2VgCdqZIwBEGwfD7aMIYlieg58Qyk5SI/8P5LlWgROwk48xVW6JcUVhPwpjNajNyuOdEERrycmQdcu4jlCHpco9qMHe6THGl/fFcccR4yvK8z8B2NA7B6HfBB6R55aQY2ghiGdXjieKIJc9eR0G8rHR/ZXkPrLy8bwgSTvRI0RvCYIV5Gtdce576THGr+8LUryMIGRLcn+30OQwUfk/clwBqOVDpL4oiHhZFUbDguSsOBPf9/cwMHiTQ8XC5UaaWWdXPx6tHlDLhfAIEHE7WtVTJU2TOEvtF0XSxZXfhUIPbHSCgTbiOy7jVug64vst41ctFyJV7uEHRMzdz4gkTIcwEbpMbbRErLncG37HHWAgX3u9J76fCXSSBg8Yh6u5k8y0b4qEUxu2cwmS7YaIqT3YPp2gQJ4MJU6+uCO+9y0gAJ89/w6ebH8ZEAvrjhMRcdAV50MNerNCoeYS5GR5RyR18uL4vZR47mixATW480iKY1drkBLxEqDpxFllgXcXvywSObcYxqeevH+URJUDRWh/s4izpwrb2t6glgmRKvagIK4nAC8Cj8gKAldcq/2ouK42Axy3L2JhQF7LDdj75jEAUTmwIY5tDzyi1QPa6SPiPlKDm2enOHl9h71TorJiJx/T5X+O54rXNA7wA8ISphSdorl3wFKiCiYeGhwSjMbDK+O/hyWWWWGROdakGitOk7hcGAbJsUWOol7cl8gwyyYujrRYCuLQZ5MZMpTpyqRUmipJ6hSZxqFPiSxlMkxTZII6L7DEPOs8y1N8n/fvWLPneY4neD+f5BoLkhwNykXxFgvuKpecC8Rp0iHMZR7naT6nF74qyXONBYL0aRLXpOwSy2xKosHD5gyrFMgzSZU15lhkhToTFJkmS1med5FNZimS43Ge14kfdSxlU7DMEnOskaVMnyAdIoKYpEOcFpvMCOKWuk6Y1UlqFZcrqw62yBGmq8+vTFYTwkl2CcjE2hlWWWGRJnGylGWpcUcnp5rEWGKZKyxK0iNCmgoXeVJvrwihIjlNOChlnCDGhR3DNEWqTFIgT5YSSeqaRCiSo0qaGE0mqXJp7zTfk/gkmFhocEigYuFvNB7j1vgSABnKmhz1sCmQJ0ifLmEyUvFpM9AJDZUsVt+nNeYI4HGGVfo4mhwtk8UlyKRMiHeIsMgKJbI4uGQoUSarido+QZ3ItxmwwDU2mZGknkh0KRL1GgvkKVAiqy2ObAaSlAxo0rAk928zYIscc6yTpUSFSU26xmnqMakqH6HWL+gqKUW6qtjl0CdDiS4RKrKiKE4LB5c6STKUKZDHwSVJnaYUBmwyI6uvYsRlQqZKGpcg7+LzVEjruKaO6xKkS4QOEaqkyVGUCe8BZbLUSXKey/peI8YsrmeFSSap4OJocnaUEO1KGwQV3xTZvcgKRXJ0CWPjMccaRXJE5HHjNFlhERDJpSAuv773NP8w8dNg4uGhhyFUv8GhCdVfhPHH5IM3EIvmNoJAO49YrI4jSDpFqLURC1JbbpdGkIU9+RvgmxGqVkUMOnLfRfl8VO5ngCDsCghCICC3OY0mMlFkrCICGwhyISr3W5SvK8vXqbG9KLe7DrxTHvdLI/uKyucH8rVR+aPGoIiKrDyPmjxeaOTYUUCRyYo4TSNI0Jh8fRFB3HpyuxqCfEC+piePWZPbXZfXXpGliZHXKNJBvScDeYyGPF4VWJKPqXMMyJ+GvNY9ud/CyHVuyOtfHBk/CBVuiSGh05CPVeU+Fdkr35e9PiT+JGBuEgaHBCoWbjQcZlouV3MnOVu8qb8zXz19immKevIbafdoRoX6XFueDMSPn4ZbqSlOXt2hlxeEZLB3wJgLfgAGNqwkTuPQ14vuJHXijR5jV6F9XhCYfYIMsInTFMQpgpjth8bo2BGOlhsiZqUQsUH+7Z8QCZSSkyFOi6lyCz8AlVSMiNuh40S0FxZArr1NqAE3ckeJ0yLZaFFNJEg3GnRjgtTcy45RsdOcur4NHrRnJcnYQFyjKNzJpDh2vcbOaXEcL2ADULHT5NrbNKPimFPXRcWAUsNzBRHr1D1FJoKu544LhYIn7KXGq/uCJN0T2+5PQz8kr+2eSKLZgwP6oTHGb+2zn4JyIiVdw2xObWzTzolx7zsiUbh3aox4Yx+rDLWzISZqPayGqG44Vd7mauYkYTpMeHUANuwZJqkS95oEe/sUosfJt4f9KqrRFLlaDWsAvSgUo0fZ2JvkA4kXwcRDg0MCFQ+/0DhFczzPCoucYVWW3QtycpUFchR1mWZnRBnVIQKAg0uYrlYBlchoZbxapC/xAmWylMhKgnJGL6jrJFlkhYs8yYf4OFXSWrnpEtSqfpuB9rgrkWWJF3iWp1himb4kdeM0CdJnhUVyFInQ4SJP8gSX6BKR+2uxzhwdIkTo8ASX2JJqojQVXU0wqupfY14v2gfYLHJFE8SAJjv6Iwt0RQIvcI0Cef14krpU3FZYZ54FVimSI02VDmEm5HURVioZgvTvUsXZDIhIwvUTfJAllslSYoVFTXioBJCoABDk9q4kbxURDHCGVV2l0CJOiSxBefaqAkLZpYySOh4BVjnDt/FxiuRoEpefG5e9PZ/vSnwOTCw0OCRQsfAXGh/AG0/pkm1hr7HGGvNSdS7IzTAdcmzRRdhbKGJujTkWuEZQEoh1JphnjTpJHV82maVJjAAeeQqE6VJkmi4RchTJyGSHsDTpa9V6iQx9HGbY1HEhS0nHMUGeiu9nlUk2mbkrOZahzDpzmqjNUmKDGQJ4TFMkTlPHQZWEUurQDmG6RBhgE5E0ZoksM2ywySx1kpTIiHkTTV1tBTAtyYBRpWuaqvRKFdVTMZo4CJumAWJOuS5jrrK5SlLX9w4QhHdE2q6o14AgcBVRLOycvLsSRwqqSkIR3QE8qSydJi6TQ8JPOinVykGmKWpaWsXRXalaVee8yoJMhgmi19nb4S8kPgomHh56mJJ/A4EJwJEq0jJIf2VRDt9GEHcgyNbTYiE8kDFqrAD7khgciyIW2J78/TyCCMwyJCH3EJ+8R6B2OkTqoz3IwN63CMUPbQR59yRDQjPPkLBw5b725PM29L5dKlkdBLlwC3hcjvlDCHLyEfm8VNQyK/elFKkOQ3XXntgvIblNDTgFN953lFOXt8X4b6DVuL0LENqQ1yonj5eVx4kC5+T+FTl7Tu43L49VlePOAZflOKJyLIqoXJLHVERwSP5dkvt4RKq1vtgTBKktn7flWL4gX5OTYzjBUEVXkttm5DanR67T6H5q8r1TBGsW8RlR709aXhMLA4NDiYAnvhRBXL6QeztZygQzLkH6XGOBIjkylMhHC+QaO4LcGwjfYaVIVKQrLfF/lUmSjigPUovmpCyKEovlCpF2j3IiRfqRGtHyAZV8mJPFHfyQ2C8u7DwSEzYCXpN0Q5YKJRDfVdmMyk8LMrXipJn0qowX90XFwQBNrAZ7LeqJJFmvxIY9gxcow94Bs6FtKqkY9USMZLuBFxCKTVwI9vbJD7bx0/BC6jRZykQCDawQXM2f1CopPNhkhrxTEOWp7RZ21BN+zpJkvXlaqDwJietmnRaxyyMgSmVTt8X2shysY0eIeB2uZ45jM2AyViXc2qeaSJCtNSilEkRiHZp2nGPlGvb4Pl+afYxp6V94rFijlgvBAKLFA4iCFwAvB/HGPp3oEYLTB2yRw0uVKacypKlyMzOlVRurtlB3CGVBn/GisKrJuUWa0ZhWhHSIMLBrdBOC9O4SYZMTiMyegcHhQoMJUtRZYlkrjdQiNU1FqxsVmZqlpBfHqoFcl7AmVOO0WOSTOJLYnJTEoY3HB/gkLkHmWKNFHFvGxywlzvO8LoVXC9aneFarnUQZ/BarnGGSirb7mKCOK0tnFKmqforkeIJLUnmalIrOmFZj2ng49LUySRCOtjwPodCqy/LQLCVNMhTI8yjLVJjkGmdYYlkv0M+wKmPCDDm2sBkwxxoeASap8AJL0pagQh+HmBwroOOP8GJVJbZFXBzqTJBkV5cPi4Y5z7PCorZwucAlPT5FhsRpssEMC1wjTYUrLGovwzoTfIBParJ4hk3iNPX1VhYKA2ye4llAxP6gJD8EIdQhQpcqaekj7t37ETMwOBQI05VU5KaOE03iWrGpEh3Cq7lChwhrzOHIx0RyQxCiWzKuCRVpV5NxsEGXCE3i8njCDzpClzBdXbmkvkdB+qSpSKX/LlvyO2njUZGl9U3iFMgzLRXwi6zoxArAOWkvkpFpLUGACjuCZ3lKx0sV3yN0dPKoKxNns2yOKFs9XYA/SUUmk4LaMkuV8qvxe9hkpeJXKVQj8q4yShoLK6Y+z/IUaarMsSYTYSIaRuiQocwkFQrkaRLTFlUuQWbZ1OcZp0mMJhPUmZZJwThNpilKz2mbzEhMb8lqDGXFokjlOdZYlcrfAB4VJkmyy3ku0yFMTJ6Tuk8qklv4/CepyHuqweGHIVQNBDIIz9QbCPJUKRkDCPXQEoIsdIENsTgfKyMW8z0YSzAsyR8gCLYegmCzwT8lCNixy8jmVcCLiPLYFBCSHqu3GPqXphmqMosI8m5ZjiEjx3lL7D+kVKwDBFF4mSFpqNSvbYYKVFnyr5WeDcQ4GHnMGbk+p4FZhB9fSByTHNrrNVSQ+1PepI7cpiz/TjNU2mbl4wFxLbVCNy33p2wJFJFdZWi1cFqO50W5fwe4Crwb+BSkvJ54jSxj5bT8jTxujyEZq9So75RWB6N2DAF5reX7d9ccOCHH5IGfASsjX+ONPG+E7waHFC07zn50l1NXt4mc7dIkzoRXJ9jbF97S/I62B3Ed4UmMJCz7iTFOFnfYyYnS8r3Hxzh5cYfJ81UqjrAIUOWkE16dgp0XTZKY5FRxm2OFGrX3heiHPE5uiBL8jdRR8o1t/BxMbbR0E7+93BhjW/vsnJUq2dI+BMQ4mo4oyyzaOYKpm/RDY2zYMwDMept07IhUxO4zmaoSrR7gZ4SCFSDidgg14GZOkMOnC7cJlcU5V1IxHrt+HUKirN+LHiFDSSg7B0I1+k2FF7meP85M4zb90BGy7R28gCB5VSkpUYQ3N0BbENkBPGx7oJWsx8o1tjMJTR6fbt/WybyxGhx1GzCAuNsk2jigkglyJ5/SJa+O2xcE6gAmaj3aJ47gOkHtMZZuNLDaEOGA3VRIq7bSVEk3GuIexw5fPX2KRXeFpiMm0VMFUXbmBcAL2ETcDtENQdQmx1uMudCNCR/Do8UGdWVnY2BwCLHkLuM6QRy3jz04oBA9TokMC1yjQ5in+Rx1krp78zcVXmQ7L763XgAK0eO8g4ukij3u5FIcK9TkHEr4+zWJUyHN0UIDeiIptJGyyTe2iSeGPswVSeQusUyVNBNenVxrBy8hytmnyi2SzldYT5wkTpMP8CmtyFLKz3z7Nv2oKHedY40CeVKFHpHUNvFoiyYxTl3fpn1CVAk4nkvQFjF6hk0ylMg1dmgmRBPAeLsl5p+gvVKXBstE2gespjwuuJcoORkmvSpJWyihWtL7+nThNjfyR0Xi68Y+N09P8S4+zxrz5NjS5Mvj7mWijQN2MiLWZ+0SJUnOinLjE8yzxhzrOJ5Lyc5iM2CJZfIUmPU2ydsFrao/27jJ1dxJKqTJUGaaImWyOPSZY504TR73nsceeNiDA6pRoX7NeUXGS/vUc0m6RFjgGhG3gz04oBkV97x15nhX7cvCOgtoZuKcvn6b/ukgS+4yO4y9AZ9gA4OvH13CLHOWJHXdBLPKJDmKOFLJKBItGZrEGUiisEQGV1YbTVJlhUXCdHS5uPI9DdPRSlTlIa9IyE1mtJJ8kqomPMW4IqywSBCXCzynFZDCl1UoI8+xwhUWCeDhEaBLmBUWOc9l1pnXftfK21p404dlAmWS2EiySFmdqNJ5Vaq/S5I+QXZJkqWs96lUoHkKJNnV6n61P+XdX2IOgDXOM8um9kFVFQtBponTkkRkmnmpPF1imWWWqDBJmQxlMtL/NX8XcVwgT4VJrWhVPq2XeVw2u6pTZVJ7zAbwOM9lLvO47nvQJE6XCHUmdGpO2B4MGGAzwwbXWCDHFgVZgqosAcKSIE5S14rdX+EPAJ9+fT/IBg8FpuT/Gxy65P8/wriDIOJy6GZImqB0GXpzBri75F6Vqrfl8z2GxB8I8jCDIP5KDMnFD8n93GJI7ZcRZGwDQcy5cl/KKkD5NytLggbDMvuofM6Rj9cYEqpqf7fk+Smi8CJDZagqZVclqKr030UrainLH6XaVIrUF+U5qmPJhlv63NoIRaw3MoZbDAnPUe/TKEIB2pDHaiDKYVXJ/o2R6zVAkM3nRo4VkP9fYWgtcJqh5+p1hkpS5YeoyvuV0u008FF5jBzaT1b72+blcS/I/WUYqleBvTIk/jhgyhgMDglULLzWGIfxcZ0dV42dVMnmTPum7GwtSltztRquI/xCI14H1xZqplShx04+Rrzd0gpG5Tk4KRUFygMvT4F0u0aoDHsnxIKzacd1GSfAYvsKpegUZbJ8U/FF7uRSpNs1LkXfTkQa5KsGTAHPo2DnidEkQhfHcynYQpUUpqOVQqo5CgxJyX2ZSAp4COWn12Fg26Q2euDAXlYQujfzU1JxG+ZUcZu9rPAcLTo5ocBttBirwZ3ZlFZMZRo1xvZgO58giMtErcet1JRYRMgGV8qPL+cWCfYOdFO/8eI+7cwRmk5cjzfYO6AfEmX+pegUl3mcJ7mo39O429QEapgOkXYPewCbieOAUCGrRjblRIpMo0Y1Ica2RY63Xb8BCeHTrbxsy2TZZIan3c/TcUS7F9XcZqrc4mZmilxjh2oiocf4G9Y38e2J3wYTDw0OCVQ8/KXGu5gf39FKR6U4LJDX8WuRFd0QDkS5pSrHVH6jaSos8+hQqeWVeN5+nAgd7bmniD1FIAB64a1UQH3ZeKVCWjeummGTIjltEyAW7aJKwBvRjSi/vD4OLkFBEkobAo8AcZqsM8c0RZ5sCGLWJUgAjzXmUQ391PGUkjVJHeV5Ko6T1cdUJbcV0uTYwsHVdghFcjrBlKVEgTxzsqlJgTxpqpTJaK9ZtW2RHJ/naZ7m87qUWPnVCh/GjFZd5djSDXPC8lqLxjFB7dWqbAcArYxVHcSVJ2CeAnmvQMHO87ws/xJKOMGcTlJlmSWtmJuQXrBFcjzJRZZZwsPmYK/FtyWeAxMLDQ4JVCz82cZ3UBk/hY1HjqJuTqq+Wx4BikyTY4sZNlhhUft4qsZwk9ITVDR5cphjDUCSdMm7Ej1xmrqKSe1fKC4zZCjLBMa8JhgfZZkMZW3npLw+PUk8qsZMuzJORehqxaSy5niSi5rEHGBr5aV6vYrrGRmvQKhTR9Wqz3OeLGV9nYrkWGeOJURnZaWMV/7aiqhUTUiT1LnGglbRZ6Tv9GiMV0SsajLYJUyJrKxqmNYl+VlKOl4pZGXjvznW9TWpkyRMF4AmMW3XUiHNAtd0TA7iEqfFKmfIUmaeNUpkKZCnSponeA6bATm22GRGktItbWEQxCUrCegIHT639xg/k/hJMPHw0MMoVA2GiCJIwg2Gpd/jDEnGGIL0O82wQZWN+BSlGCpEC+gmRn4CrBqiJD2HIBUVEakI0hqCMET+r/xaQTcj0T6dCfn3QI7jBoIEVH8r0jQgj6WIw1E/WFmiCwybQI2ORRHCV+W1uCDPryy3U56r10bOS/mv9hgSu2qMGwwVsqqpVlH+lk2hNCmN3Kc6h9TIe3GLocI2w7BhVA1B6J5GEJ2XEArgBEPVrTpf9VoXQdoW5XV9ceS8PQTRnGForaC8biXJ7i/J91W9R8+J1/rnpersKAYGhxKpxh7WeJ/U1Z72frZnPabKLfYd6MbGRGMnFcPaEBqH9ECoscY39vHld3yq0YIUhAridzAjukCHlPq/0eBUY5veOXHs/RTCj9WG8XKNY4naMJ4E4GR7h5ODHfAg6dYJFeHRU8vCKkX6t+KJ38lH6hwr1tjJxQi39nlb+YawdFkG3l0n0u7huGD1ekNlPEL5qZTsR3sNCMBeGq28H7+1j5+ASbdK3UlyqrwNIJoxXT/gdOb2sBpgAMeocWwwPI/tfIKj1xs6OXayuqNtXN4WvUE7fYSgI7rcjpUhEuoQ7AmVaccRpf/jl/a1cn7MPoAEnEjvcLL9myKeKb/uMkTpQaA3vFc1IH2+guP2ibRFw0KrB+FEh7EtqXqtwbWzcXG92jB1tcXe6TEmaj1S5ZucHb/JTk4QvVMl0agrmGrBAE6Wd9jOyGZcAeGjesK7+Vp+RA0MXjcscJW67FAdpqMXz6Pd6m2pelIJG9WgSqisHC5znjnZkblPUCSW7Jxs7CeK2udZB5AqHtHoRKh5dqkzwSQV3fEZ0GSEIkcjsou9KqVU/qtzrBGnRZFp6cnnaEXUJBXpRzgpPVp/HdF5ukvAQx4rziUu6ITVOvOkR7pc16Uqa5oik16Voi2ICVUuepnHsfHuKvtsEpedr9O6EVacJu8YSQZ1iNyl5BJKW1HcO8sm57kMoK+d8mQVxEBH2xLEaZKlxDJL0m5hhQInmGONdeY14SKaYYUJ4LFOnjnWqJLmce95CrYgTjq28Em0GTBBXb8fGUos86j2tW1JywflBasa2XjY3JbPGRgcNsRokmZVVxmp7xBSnarITk+SpcBdZKpHQKsaRUMrEZuU52meAmvMUyZLi7i0ChCkZFA29IOh36hKkKSpMsMmIFSYXcLaW1Q1pfIIcI0zDLB5lGU2pOpTWRU8xbOytF4sFpX/Z5ymboIlVJ8Zgrj6O97HQXW57xKRtgFlgrj0cegQ1mp55TndkUSviIPi+kxSYY15vc8MJWZl4ipCRxKSrhAxUNQEZUQKBFQsqpPkAs8BaBJU3CGEdYDw3LaJ0eQiTxKho/1wFbkr/Fi3tF+3sn3KSb/XuvRFDeJqElfZ0ahjKSsYRRarhoHq/Vckdwq1kDY47DCEqoFAG0EeqHJ21RhENTXKMLQAUE2S9hiqGVV5+XWG5GIVLKVgVUrLEwwbGV2Xr0khmkQFGHqHbjBs8qSaYMFQ3apK9uWinShD5aUqse8hSv8bCKKxLfeflsdT1gJKgXmOYWOXgHy9XJRrEliRrkop20aQj9MMPV3fjSBjowzL5QdyLEoxOwt8UZ5/m2HDrdMMG20pJarLUBWrtlV2BVfl2ENy+xsMCWh1HXsMSdECghRX70NLnuP0yPkUGZLpZTn+aYZ+rlfA+hJD71llR9AC6zpDFauBwSHEWAXGlTlyVnh8NokxVWsx1oKxE9KaJARkRNl76CJU35fg6MUGFMG6gogzOdl4aQ9wpcVJkWFiIwSUpf+yTNrszwp1qLUh/38fjF1HfM+KUHsyRLzREyRjFMav7IuxqjjQE+PuEIG9Gsloi7EtwJG2HgGhXEgVe8MYAUMP7Tb08tJGZQ92zsaY+mJr2HguIPYTjR4QrdVEHAhIb1JZVdDOHSHqHohzLYrHeARB9LYbw4TSaLM9mbiL1g6IDna0N2y0eIAv4+9UsSW8UKP7Yh8nEAmkWbBUckqdT41hcz7l/5yH3mnxPuzlxrBuHIixuTAR6glV/2lxDTOUsNqwPw5jVXmd23Jf0o9W37PKMBaQn4XrCMJY2t80z8eY3lJdGg0MDhcOCEgv44Es44zoBWaYDk/xLBd5UvueDrBpEtNNnjzpr1lhEgeXrCzFSbIrbEnI8V4+w0D6Ck5SpY+j1VzKg3COdd29WjVw6eNQJc0ZVslSlu6GM8yxrhvAOLKTtSOVX8My2K72Rk1S54N8ggWu6QYwz6fOaY/ECB2trgrgEcSV3qVB8lIxtc48GbskyI32TS5G30FAVgHYDPgOPkZdNn4a7Qqdp0CBPDYe11ggQ0mro8KSiFFjVs22VljUxIAgk23dDOUJLgGClAjg0SXCNEXOEGRLqtBE85ZZTaQcLTT4Uv4xAniS7HCpM8ECqwC8rXiDq7mTmgxQClflBf4cFzjPZZZZYpZNVlnQ5c0ZSlSZJKNLsAyhanA4UWaKjPxuCoW3KJXPUtIqytEGR1nZndmR5KF4fpcllqmQlt9H4bE5y6Ym2TLS81gRhKucIS4bMwn1o/BNViX3yoLAJcg687yHzxBANKpSCSjVPE75UneJMEmVaYo6povtJrV3fYQuH+fbeC+fYZoidWk3EKErFa0xInTZJcmEtFQZYLPGnPbLrjJJmgrS0EnWZk0ywwYDmcgpk6FEljQV+b9oBlWRtVwdIjo5pMhdRRZvMKPjpUroiORRU/s+q3g7I/1pAal23QXQFWjqfXWl92qdpLZ5ucKirqAQCbOyvv6K8Fa+26pSQTXUEoRvV1dMlGQFg1LWGrw1YAhVA4EQEGSo7HQZqkFPM1RCKn/PmPw7hl5QapLxEYY+nIpETcttlBWA8u/05HMZhgSqapykmlipsv4sw/Jy5YuqyF4X+BaGKi2pkNW+nlvAE/J/D6E6bTNsDuUw9Ay9gFhYK2uAFMOu9z0E0agUm+9mSPAq8kCdY0HuX6lj1Zo6J6/tefm86tLtwv47YewqQ8JULt45hyA/1ftTlseSJAUbchxq3+fk/7MMyeGc/Pus3Oa6PMaozYPyqVXvfUw+78jnVJOwhrxOymc2N3K84si5GhgcNjSAMdFob2xPeJieur4tvsNVRGyoIb6zDQilgbNw9MWG2CbHUBmOIFf3H5Hfa5XYUckcZbchPaXJyQ72y+B/M1iX5f+I1/UeEV6gVhXaJ44wtnEwtP1QTfBsaM8eYb52G8YFOUsVeuchJD2ej322Jr7fKs62oZeDUBEoSBvpjDiPqYutYUJJkcHSWsQ/PSRpdx4R9gahAkSXhfJz791jjC/vwwnRdKorS8u+6fSLIu6G0Or5mxemOPnZHXG/UPeTHOw7I4Syh2i6l4b2u48QLR+IGKwSf0U57rZ4TzT20D7PocvACRj/0v7QjuW0IJK5IAnUmvTLHshjB+SYWghlv/QOJzpyzD0IqXEoqxpXqCSa0XE5CAODw4XrzJOlJwmEMLPeJiVb+HcqdWaSXVrEiUl/UIc+WbfMtCMabihFToYSXSJsMKPLTedYY4VFPGzOsKoX1E82vsJy4hyLrBCnpcmKPAUuc142ixK+hKfK23wh83biNHmsfJ2rmZPSg09Qkh5ZRDfqiCR0q1QQntbLLPFBPiGIBLfDpFOlglBoVUmzxhzzrBOhywqL2Ay0x2CRnG4+IhbLtjiXqE1fNhtRC/p0QyRZlllihg3dvEWRs2UyWrm1yYxudKMUtDNsav+9xwrX+Ur+3F0qqApp3eBL7bNEniWWWWFR+jxuorpyK3uYEhmSqQYZSqywyCIr0q/QpUqajh3GzbVEcxa3TsTpaGWZUoblKeB4Lgv2qiYWVAMZG49Jr8qKvQjAbY4Bv/P6f5ANDL5ONEhqlXmQPuvMMce69uaM02SNeSLS8xmGBGVYNllSiY84TbpEcOjLxNE8SXaZZ40AHi3itBBNrlT5fJFp8kR0yb5ozLSuVf4g/EQFmZolSZ0BNtdkZ3mlaFXNo4b/ZzQZmKZClwglsuQokqbCBjOcYVVagQRk/Ni9S/k52nD1hGxU52ETxCWAxyazOLhkKNOSihvVrC5PgQ1m8AjwCT6oiehFVrQSVhGeqvHn9IhaVMVMVY6v7FEqTOLJagpAH1/ZFihbBeEJK6xRICibDyblOyYqCTKU2WRWN+3qyhiqrA/UMRTZ6+ByizyTVCUhLH33pd2BisOrd01UDQ4zDKFqIHAMOGCoSlUNjFRTpVFVaGLksdMIIkD9n2GoSErLv19EEAmSgNDeqErJOsuw071STirPVOX/eUOOR/mregiVqVI5KQJYLbyXEYRlC7GwrsnnvoWhTUCOocJV+cUqD9T2yG/VOKXHkJBVhEiDoRWBKse/LMczjiAMrjMkmG2GzamkMooSuhHW2GflsdQ3U5EviuwNjDynjp1lSIqeYqj4VWreGkMSVr1HiiBR+1fE6iWG/qh7CMJWeciq65aRx1c2CV9gSEwrT1lTxWBwSPEPfgGO5CyCFZ/+pEWwsS0+z3GGSaJJ+XdX/h8HdoEw4rtUBaYQMWNfbt9EqzkBEW+j8vcRxDGOyOeiwH+Qf6uGRgPwJ8Sf1jaQPBCv7TJM+ESBO8D4AUwAO3JsR6D/GxbBDR86iOcSQEUe0xbH81Jg7yG2CQFjiLgxJc8PGJyEgIpdBwzjWbCFFwNbxQGA7r6IR0eAbg/GeuDW+PgBeJNgt0fOfbADQXBPHsFpHtCPWuwHxohW+ndbouzKsXEgrncX6CMSguPyenfBPyqvk7I7GZPXYh1hSaLiWli+Xr0nafleOb1hs709uf8JhgmqXbk/D0hyd0JwTL5/B8DRBkVbedgYGBwunGYNlyldxnrRfpIcRTy5UFfEWZGcLtEvkqPkZPVrPFnquMmsVkqJzvMOuyR5nvPk2OIMq1zmcWbY4NnEOyR52aEjVT8lOfnIUMbBpUSGCF2+kjknS2ybfCHzdrpyYS9K+x0K5LWvqCKBlTpK+fUF6bPsLOmSfJsBs7KrvWoyo9SdQsXkSO/Bad3deYscrrQUSMvmM3OsE6HDeuIkRXK40vJAlMeWeI4Lupw2SJ8yGZ7kIqvSQzBJXRK5wr+wTpL1fJMgLmkqunRWqeCylNiVilYbjxUWdZfwDmFaxNklyXt5RitfN6MnpUXCBHUmsBlgM6AjyRtxzRwWnRWUF3hQBk3hK9jnkn2B8zzPMo9qJZjyYi3Yee1Z2LurwYKBweHBBS5xSvoKq1LvCB3tcxynyRIvMEmV5zlPlbQm/vIUmJDfZZUYmWWTCpNSjZlmkqpuADVNUXqzdmkSI0tZxoUz5NiSCZiw9lld4JpOsIhY7MqI1cLBlfYbVW1NICwHClSZ1M0FHfq6AeAMm9RJ4kkfVUeW1yv7kThNnuOCLqNXvtcdIjzFs5SkklP5mWalBcpo7O8SJkyHATaLXCFCR1c/KJVvhwjv4CIBGcvUedlEWGdOl+ur/SsS1CMgPVnLupS/TEZ7R6uklhp3kxjzrLPKApNUqDDJwoi9w0WeZBHRRFHF9DRVVjlDQBLR89L/WihWXUlQC6OWSXntVTMqFesHetJvcNhhCFWDIZQSs4xYFCYQCsUWQ9JOLZ7bcvsb8rUBhqRiCrHIVCpG9RpF6ClllCIJi/I4s3JfaQSx906GTbFUmXyBYVl/g7vJzyrwuHxOKcWUWkiVhyqFlSu3V82hkGNQRGgC+Gb5nFLA3mCoAlP7r8rXKvXthhyfKg29gvYeJM2QyCzL32qfbTn2SwgiWJX1w1AR1pPPKXsFVZ7qMCRqlV+sIl6VOriKIFvLCPJCqXMVia3OYbTRVmjk2qn/1XuvlFnqOiifWEVSH8fA4FDib78Pxt/mS+Wh/F1gSIam5O+0fEw1d1PqdFVyrvycVbJDeTer+KGsSpSyX31nHYbWKkptOZqwaTBspPeI3O43GTaeu4H4Tqv4gfx/3BfJnQ1EHFF2JRmGfslRhgkj1SBQKWk9RHxyGKpCpbpTK+ZzDGODInhV/N+Qv/MMfa9V7H2RoY929UDGGR9qfXgPQyWpSnApH21ldaIsThIMG+UpUtsdeS4nX19gGOeuy+t5nrstXVSFgHqfR/21lWK1xzDBp+51V+R5KK/tHvzN54061eBwYgyXtlyQVqWq0yXIPOtMUyRCV5OVogRygi5hzrGi/fUueJe4ZF8gOKIQUmWmigwQxERWUpV9+gQJM9AedsoHUDVrUuWnotx+Tjf8EN6uLV3aGqZDlhJLvCAbAgr10gvSU/RRlrVSq6AVRWJBDqLEf1cq01S3bhBluX1ZYpuRTU5EV++SXoQrpZRSaqkGLYrUBHSpLaCVTcssjZTmhrU/oIct1WQD7WGriBxFBExTZJUFqkxygUtUZDfyPkH6OJxhlc/zLu3pajOgK0tqZ9igyDRN4ixwTY83xxY2AypSiaYUrOL96uvzCHgenm3rslhAeybOS7uFEJ3X66NrYPCa4hney21pXeER0ORlWi4En+Up8hRoEmdWeprGaLJFjnXm71LJV0nTJaw9NnNsaTLzGgs6zih7kk1mWWCVMlk8AtIKZIJNZrDxWGUB1ShVlZ2LMvuAtCUoa7WmSr5cY4ESWa3+V37KBfKSqBS+zEq9rvavmjApq4MOEVZZYJEVTTYLb9cKaSoE8PT5uDisM6evRZqq9G2e4wyrOtatSlVtkzif511aCV8kx+d4mgWuEaSvmwVOyvdglQVNdk5T1NYzKm6F6VAlLdW+BVZYxMGV13hGJ9/SsorBkfcVZRejlLyK2O4T1A1m1TmqmLvJLDNs0Je+0sqmQDVUdAmSNuqjtwwMoWogcAl4FLEQVgtrtbhUqlBF1sFwkTzawb4hX69UqIr0U+WRqmGK2keZoV2Aajp1HqHwVOWbMCRMFcFwVT6ekfs9hVj8FhFqT2khUMuHSL3YEwvuNrrBlH9aNmZRhEcBsbAuIRbfs4gFdlXuX3nGIs+5xNBq4BZDj1R1/Lx8rbJOUERlQD6vSBlFCivSd1SZC4LwVGpfB0H0vsiQUJUlpdreoC2fl4TP/llZZnxFXtcU2tfvriZcSi2cvud9HNwzzlES6Ip8XF1v5WGrbBp2MDA4nHge2EZ8Vz6L+B4qEk4pVAOIOKWIvevAkwzjn1LfK8X6dUTCpIqIG6oRnGocpxrVXZfHA6EyV+pUFUulbyvOyH6Vgl4lY8oIixPlhf1ueTzlbz2Q5xVAxJRbiJilEjC/yJC0VAk2h6HVh4rVNYZVCyqenJDj2mBIDCsSUyXY2vJaXmJIVMKw8kERkt7I61STPmW1oLy51bEVoaqsRlSiTSUHleVMlWE8VXFMKfbLckwqRl6WrzstX6fuX+o93mBIEqt7EQzviQPgU+LvsTUMDA4llnmMC7LLcYeIbpwCkJW+gYpYzVOQi1cxiSmRIU+BgW3LRh9Frf7sEOGCe4lVZ0F3hQe00vUMqzj0KZHRDV6UH6Ao3Szp5i4wJCYd+iywyiYznOeyJgCqTJKnQJeIJFnLd5WAbpFjkRXtsReWxN/7G5+lmRB2JR/gU5TJ4OIw6VapOpM8wSU2mdWKWKFozUqy0iNPgVUWtG+hamyimp8o5asgMVe1r6siQt7BRe1DWJY+g+vMS5WwWMLVSbLA6l3K13nWibtN6k6SpxpfZiVxWqqihh6EHSJMUtEKL9VIRjUIq5AmQ0mX63oEyFBgwqtjDzxyg20uRx8jLRVori3eJ6VuU02upinKRjNlAoZAMDikOMtVwozp8vOATHpUSTPHGi4OTWLYeAxksmiTWTxsNplhSSZvbIS/6RLLuowekN/5gFRnLhDE1erQNea0xUhZKuaT7BKhi42nidUOETZlib5KRm0yQ5YyqoGdIlwVubsmm9Op5MccawRxCeKyLsvV47JJk/IM7RNkjnWtki0yTZFpFrhGlbSuXFAkpEiuiSSaIDUnpdo9xry8dlUmKZAnQ1nbu6iyehW3lbIXIDtyDxhIP2nlOxuX3rQLXKNPUNvMeNgsscwlntCJrQhdAH1/W2aJATYXeI4VFklSp8i0bralknJ9ebwNZijLmJ+mSpwWEXn+Qfoypnu4OPI805KYHWBz8IZ8lg1eexhC1UDgPYjF6rdD7axoegKy47PqVl9j2DwJtHJHef2RRyyYFSnrIEgGVTY5ahtgAx9iqBwNIJqHlORvpSJVRENOEIQAY8oyQJGxqqGU8guVC95UY9hYhgyaRLAUCat8SpVydFzuVzWIWZLPXZOPp+S4YwzJyHNyH4ooVWX55xj6vDoMS+IVWXBC7iMtX6u8T2GoylVEhiImVMOsaTRJ0TsPoSsMS/kH8txsGFOkxnl5Da6I53vvhNAX5Xt5gqEqVRGtSomnbBvaYjs/IZtOSa9BrstroQghpbzLglzjGBgcPhQQ33OlYrzEkDxUnsEphgkE9R3fQDeO4gT6+6YV3ErVeAkRW24gvj/jDJvnpREk3DmG1igwVKBKD1QNB0HMKhV8Ro5bjbPKkLhcYliSrvah1LYvMlSctxn6uioVvSIsVfLkOYb2KKryQFUWqDivmm6pxFgREZuuy9eoJJLymf5lue9T8vWKTB1N5pxmSLAqJb4ad2rk+sXkuFUFhEomqXgbQqh71VgvMyS3YZiouoGI/+cQ7+cZhkQrDElcdd2+KPenqloV+dzFwOBQQnlp1kkyTZGYbPahPAJdgnyed5FkVzZWCVCRZf1KTbXJDGmq2AhTe1WOWXHS5ChSlV+oCpM0iXORd5Bjixk2mHfX6TgRvZAH4W+smk6prtpKjaTUVBE6uplLmgoAW1KxKhqS1CmQl96GXcLySypIkTiuDKLBRF8rVmfY0EougCLTROiwwKouT1UlvmqxvcKiVreG6Wif2YxUtyWpazWrKgWujHTbFuX1rlRSCU/SDCUyUgmryvaFJUKWRakMLpGh4wgF3HLiHDYD8hT4PE/rJirCEiEoydWwLEUVXrBiHMLXUBEUIDwhq/YkSXuXqiO8XSNeh44doSwJdFBWAK5WwyllcfsutYSBweHBDlNMyUmZUp+rpmtd2a1eeCuLLr8eNhGpSAxKz+f4yOJoS6o5QfiFXuIJJmWczFFkQyomHfpaESvIStEISin2S2SYZ12qT13d9Ep5lGYoscoZrURXHe1LZJmkQpYSXcKsckaXrW8yCQirgou8g8e5rMljoVot67h4iSd4lGXtLQ0ijqp7xDpzOr5G6Mj4WdG+28pDW3mwqiTPKme0bYhqLKUUnko52sfRdgldSdgGcdlgRjflA0GWtnA1CTzPulbRK1UuwDRFzvM8W+Tuam7VJIaHUN8rSxnlD6uaZanmWSCagOUo6rEts8QTXOIZ3stTPMslLtAlzA1dmmtw2GEIVQOBVYQfXA9Sn+6JRb5S+JznriYhWiUlE83WMmJ7D0FE2OgF6d6pMeyBR7R6IBamijhVi2FF5I0qk2KIBexlhuRrFMaeY6ikUqWxSnF0neGCX3V6HlVUqWZOygdVqi97UQipZiuKxET+viK3V824kPtRRKQqvVXNm0bniFJVu/8kjDkItZkicdV8Uo1/ibsbQRXl9VSqqCxDj1NFdlbFdiFVynpdvjfI159lSNwoqwN5PUKKaJXEK4yMSalflRWAKp1FdtGWKjQ/AdYomaCa4vTk9qaRq8FhhVLev8iwuds7EWQZiBhTQxBy6n9F6ikPZ4dhjFhimJA6x9AeQ8UUpcBXpeVKMXkC4U98Xr5eEZI2Q0WlSt6My+dDDMv5VcJJKe+R+0nIc1Gl+oosVNsrMlVZrWQYWr848hzPIuKoSpCpsQwQVik3Rvb/JCIWzTIkmEMMLUyuy+eUOn/Uh1t6S5OV16iEUPoqklcpftV1rI1cf9mgiwzDe9c4Q4XvVYaN9C4wVN0mRrZX8dED3s/Q81tVLqTkeaYY2sFsMPT+VjFZ+s8aGBw2dAnT4YA8BXZJUpbNSjaZAWCDGSapSL88sejtS1JSePQJm4CBJB86soRdlfhf4gnp6deiSYwgrvb0K5AHRxAPyvO0yiSi07UoQ4/RJEifOhO6YYhqgtUhQoQu11iQZZnDhljKC1ARvkVyuvzdlapWmwErnGOWTdJUpRJVfJnrjrABqMjGVUpN1SXCAJt15iVBsEuBvFSU1bkiPRQ9qahS9gBBBHErbAkqkgAQTbOS1Onj6FJ65df3Gd6jS3kVyasUW4rQBqEUrjLJZR7XJcFKnSuOKXwOC5KQiNOkQpo+Di3pyxqUajMHl9jIe7zMEnm7oInfVZY0qaq6eS/zKJNUqJImytbr/yE2MHgNMMUO07Sk2rqkCbw8Ba2iV/6i6jtoM9AK7ZL0WvUIMElVk44zbBChS4QuGUraZuQDfAqbAVsyrhbJkZExbpKqbDyX1aX2wnokoBWhQVye4llNhKapSsX8GW0dohoBdqU6UyWE1pnXXqwTUi06qmLNUtKErCIdO0RwcLnIk/r6bDLD+/mkjNseHcJskSNCV1oBOCyygo3HGnME8IhJBf0Sy4CoOlhkRcfRBa7h4FJhki4e7+EzbI4Qk5vMkGOLeda04rVPUF8H8b9I9DzJl7V366jPrGomlaZCnSRJ6TCtLBqEKlko+Z/iWfIUKJDX12ZDNsnKUtZerXFaPM3nWWSFIC5dIoxR4XOv8+fY4OHAEKoGAtMMPT9Hmy4pskApcka7y6tSeOVvqohLpUi9AeOX90XJaVE+plQ/amGqGoYotZLyu1NKyR5iMa+8SO2RYyqyT/l2KoVpaWSsyMdvMCRHvoRufhVSZMYF+bgiT4vyXPJy/0phq8jf1sg+l0HOW8XzaoxtGPvoyPkpZZjD7yZw1XM2Q0+/JXnepeF4tYWAIhEUCb3FkESpIcjonHxeHeMcQwWWIpgvMfRoVASPGs+VkceUPYJU4Fk9ht6vJcR7pHxc9zAKVYPDjWXEZ1slgS4x9NO8LJ/LMyzRb488HkCQasqi5FOI790ewk5AJSYSiDgySiI2EN+lEsM4+JsMycP3I2LMRxFxZFYeS5XAf4qhWvyziNiXHTmHK/I1qplgSx5HkYnK6uQ6IgZcZtjcr8bQl1r5webl8duI+Kl8l0sMvUgV6XoKEUM25Pm+Xx7HluNOyMevy+t8kaHnak+OZZwhaa2a39mIGKf+V1Yt6n1QSamC/EHuR6nwVWy/zt3NDtV94HH5W9mcKPWvUqXekj+quV+PYVWBSkSGMTA4lAjT1SXiOUkMKH861T36HVykL0sZn+dx7XenlKcd2aCoTpIAHnVZ+l4iwwLXSMtFeZEcHgHdXEkt6NUYsnJyp8rWl3mUBVZlg5EWlzkvCccqSXYpk2WFRSbloniONZLU6RCmLCdRomy2wxNcIlXu0YvCJ6LfygUuEaajy92V56tQWlY0YaIIkj6iGVWRHDNskKaqCY515qSqV5Cr3+F+lGedp3QJ6iIrVEnLXt1NTc4oVa8gfrs83fgtLiceYYVFAGbZlGXAz6MagylvQNVQJk4Thz5LLJNkl2vSfiBOk3OsAJMEpOp13l3neec8Ebp6wX+Z83yIjzPXuMnlxCOkqRLxOgxsMbK8W6DjRAji6v2qxixKeZvn17U6eEMq3wwMDhtSVOkzrr9XCkqxmKQuv7ODkcc70o7ElbFPkKFJ6tRJcoZV+lJv+QE+SQeh9FZKcxUPspS0KrYjE0Jp2SArQod51thgRvqllkhTkXFgQluPAKSp8LgsnVekplKBKq9o1ZhPld0DOq5lKelkmvKLtvEIyqx9kRxP83mteFdkc4kMDn3yFHSiJ0hflsiLsvkFrvH/Z+//ftvasjxP8CMdioc/RJEiJdI+99KWbMmyHVaEbl5nOituZEVWRnVmdwDTmBmgHqoH8w/MXzD5MGgM5qEK/dAP8zQzGKAbqH7qAqoa2UB2Z01GZkVmRmTcaN+4ipBDvrIkSzZ9aZMiKVL8IR6KR5qHvdbeVFQ/DSoiUzlcgCGLPGeffQ51Fs/+ru/6fj3GxIgsg/SQ+1SE9RrwnttUabJElQCfkBUxLfAY23MyZoAH3BYmvmHcn9IQAy016dLvEzXaK9CkRpFz0XZVoBiw11I7D/TzH5BkRGDZrmUq1iBLwde45F8wcjVBWKXrZ4TRPDWl+ocSU0B1GibeY1yM05iFdgfXtqimG9pWrgtF1dZ8gjNZSsi2Czj24mucpl4LxxiqYBa/EYbFBI5VBG6B6uEAzq+4bjileneT7tnawn5PtlUjFWWxKqCpmn8xmdMRDgDQ1tIKjkml7a0Puc7IVJBYTWm0FVZZYWruooCsas6qsZdu35froS2ufyPz8+UcEr8yrwBnVqXO2gpMK1t3krFVmzh3be8Hx+bSuSqQrdcYDLiRx+nBTn7eyhZWjcY+8BHTmMbNjCLmfu1jQLSK/D6PAVi1qJLGgKnK9tb7H5w5n+YoLc4UMPfJa5zJm+ZJcMUN1U9WuYBHmPt3W15TI6l9rucAZYmCy1v6u+aLfZysQVbGzOMKXCGOXapsdWVtnuFyF7Ivsv93ccUyPbcsBpxWORctBkW4YpAyazW0q+BTXJHuc8x3yh1c94HmKZVt0Q4BLf4pSKxyAVqwUtB3XsZW8FwBYy1W6TmoNuqkuSIy5neB/wZXkNJcr9voNZ0+aU3jhsYt3oMABqaFdEnaRudpUGCTHd4LFfuUHGsckKHLNlvEGbHFl6xwbMFVbWdVY6UyFWJE3Kt/IFU0baHqFq0toyXROS30W2QSXbqeARKNY3OSDD0GJNliWxzp48wLkKi6ro87+1SytwQwSPJjvm2NTDJiHBMV63iMRcvULJwfs2u1QNW8qieSAAZcbthFOsB9DojwWKJhdRRV6y9Hm2d8zrG/YmUTKpRJRQOaXkHMWdZsK7GCKRutNzTy88yFBhB5ynM80SZ9INqpXZERUIMsNbeZl4W/AghbbPNA3KtVRqFOkbXwkHTnkqVik1JUo+tluE2V7/On5GhzmL1rDHKiARWvzG2qRg9yfEnXnxcdR2PCkhQpAWX/Po52KXhNuT77v6k/3WlM4z9qeEQsCQh3yBopBtymeo1BCggL37S/NyiwwSvGJBnj2TZ9MIDiDt+0jH2VVRmQ4qc84z6HNg9VCWw7vdNANUZIRl7DMC4VhK1QZluKW6G8pgCfYY6uWua5T0hccuVf8XtWK1TNsJZoUJMi1oCU1YhuUmCMx3sCbovEQI42ezyw+qkxIju3iHNh/huG/B4bDEixwR6A1dc+J8UBawxI0iNDknM8xlS5jRrzVSgTiMyLXpeR5OQVjjhkjS4ZK1UwoMh7AhYFyPYJbd68TdWCpNtsscKxBVl3+KYooTbl+sbt+QDUKV4zWnRSOL7Vl61TtOcZZ8Sxb4DvHTZp2wr9NG56zFxdXf1dz2Eaf4cxMzOzAHQ6fwYLb3EtqQ+5blZUxACt6vaszCplXKrD+wtcS2iIAzcVYNRFcQzDBHqEa7FVwHbS9VoBPG29V71CZdBq26Xq3OsCWIEJASCvNkX/s4Zj4OrCXVvp78g4PQxwkMe5XpdxOocayipdx2kuKjv1zsR2edyCXcFOBYtjGGDhkRxXGU3r8r6yb8G19eriXc9D2btbMFyHxLZsr63FTcxn+DcyrmrKqj6hthorI0vn9xUGEJg0D/NxQIs6bqtTdhqrL3sWQvafA5C9urqaWlxP4+992Fz4X8DCFQZoS+CANG0LH2O0NF9h7kXdRoEzda/XAoea0+l9/loOWMJpLytAqXlwC9cB0J/43cfcY28xeWVe9psED1UWpYmTEFHm//8R+De4+7ogY+ncte1+PLGPgsKbmPz2HJcfNf9HOLMtzS9qzKV5QmUD9JgK8KpxVwzHAv5VYFjlZPQ7QK9lf+Kfh2PnqtZsCZM3WxPja2FMWf8KZkeyr3Y4aDFPjahU77WAK7wl5FzA6eaqfqzmxUfwx1/Dv/wfgGk+nMYNCc2H/0unzNNehdfBLZaiJguvL+jfmSXdvOTrIG/Nm5ShqowgjXJYIdW/ZKYD/WCWtp8jzohMv0cUm6XiGx3Tu5UTzoI5FpoXfChmSUUDFpoXnBTnSYXmGF0/w616h5PiPJl+D4BEFS6KUMneIuh/MNul5+kyz73KB/ChVUyQ/2ponxW/fpgnaLWo5bMGfAzbZo59OCmb4w38FMv1HifFeTzG+KFpqU/XLzkpz7PU6jEzhGEWqulbZOixfNTjw2oWj4jl7R6k4c36smWiggENSlGNgZfi1lGHsztzJHsXjBKzxIeX1LN5q8V3a79jC2X91VnSR5e8fmiOtdTqMdOHYR4G6QQRMVLhgHTzkispUNXyWbbZ4gF7lMI6Az9Fpt8j0cJo8AcQxWY59lf4Rt18MV34MCdFvg9BllKrw8w+nD01n02rmGAkJivL9Z6TfAmgX5wl9OPEoogvvU+EOdwl0xlyPj/HwssLOvOQM92501w4jRsRmgv/Veef0l34iCoB32QHNYFKSQ7UolFRDKAA2xqfEnd5wLaz77FhzNwEVBsRx5g2ndsCDRhdzx/zbQsQKkh6yH1uU7XFHjOGgUfb5ERTus45SSvZEvCeY1Z4zqfkaF9jsOu4WpTaY4NAwEYwhadTAUnVgOucFJvsMCBlz091WnOcUqLODpu2oFSiRoUy82IeBUYT+72wPAOqtu0+xcACtmM8fEascMwh9620yX0OydFml0cs0aRGiYGcr8+IJgWqBJSpiMyKL4W4lDUOjPAsiKpGioessccGaxywwjEVylY2QZmtKkFg2LvHFkzVDgHVttbX9Th6bbtkaJzF+a+z/xVM8+GNjylvYhombuFaysG1UCqoqaCetn7P4wBTdbpXgPWhvK4gZxOjq6csTAUz1dgowCxU38rvyga7J9s1AR+G/ztp0d+fOOYQs/B+KHPcxyxm9Xgy5xllXirDSh2tddFfxi2aVT9PgVFlnwYTc9ZzUOkBXUQ/wukW6jH02KpVqC22Z3KMJxPjKTNMtVpVgw9ce6oCsQqgpN3+iX+L01tUB2/VQXw6cZ2HcPEE5vZlHp68rgZdY7neP8Ax4VTqQVtzFQTSn9pyq2zXaUzjJsYJMMDkiQgHPmpbdwyTEwJM0UEZjMoEV0kRcGCksjEVaFXwUVmlf4hrcddWfr3HtICh7HJl68cwAOV72X7SSCqcGOsergD2r3DFJnA5OYtjfSZwAKsWncYyd5Uu0dyj0iDauTAv10Nz4BnXC24vMYDsZF4rTPz+kuuAqIK8/1yuTyTbreKKdH2MZM09eS+PYwu3cG3/WhibzMtajFPNatVC7eEA76GcnwLI+7hOgeLEGEUcuKrfmaG8NjWlmsYNjSwdToJ5lqImp16OTOGEhl8gHTshF7bp+sZw6GnrBansgPjwgkr6Y1Y676hkb9H2c3jjFl4evPElcX/EiDhgwMmH/hvow0UeGl6BsNijTY7QizMudukyz8iPkwvbAPyyeM9oiibmiA8vLLu9S4a9dIYU55SiGrlej/3yx6xX3xljkvwQxgZMrVFikE/hMTbAhw8N32MxazQPu77RA/26aDSSkoxJNy95HdyivPCBXKfHID1LJW/A4Aw9s8hfrVlwINrySEUDemRYjNpmrkA8HTLwTIv8VRa8ccT5vPEaqGfzZKIucc+wuyrrZTaiPRqecYWuPEyJnmqc03yCdj5HKaxb4ys/FtIvQNU3erAV7nAkjt9t37DlYumIajrg2+GPSR9d8vXDHPN0+ap4lwYFFmkzn+2yGLUJiXOUv0X0LEaKAUm/RUSMkDg9MlSLt01bbPEDo4QBXL8sPibmReLcbYCdw+ySaR1+NKDS12Q7jWncrDgnxRJNSrIgNhrIYwuqqv5okyXLPlcwUsFL3U8BwQplc3+yKF0AA5KcT0iStK1MgG+N5Hyry6ma0AZADGmKXMo5KQLe21yb5JyxFHWMHmpIRIxzkqJNXbBFnxxtfEJuU7XyKqEwM1VD2/jVh4xlfkW5Jtp6D4YVHxJni232eECMiAPW2GCPCmXU6C9DzzJ61chLtWLNXEaiYb2CT8gD9qzGqUdEigGfsE1cuKR6vVTHe4VjkZ2Jk2SAGu2pxm2bRZoUhDk7svqzG+xxnwNSnFvQdFLSwRhYGcC4QBNf5GnUCMzIwpzSZtFezyWa7LHBY3YB+BO++2v9m53Gby6mgOo0THzAtduXcQDpGNeemseBjcpaVHaj6gI+Mb+ffTLHwg8vzGJUgQZwGp4KKox/ZawtHFBak9eEKZTYluOofmsas7CNcAykBK7NNJLx1CjpJY4NNmmIpQwqBRWUuaRzm8ctmH+IWcwrGPI9DICiOoEKOky22qtJ1g6OQavt+8oeU6aXmk9p22oMpxv4iby2PzGGMtMUAB7iQGllsdZxuoXall+Cuf8WpxV4B8cMe21+T3yOc8YWEy9iOFBDpSAUtFUm8h2Q7/BpTONmRgzX6q8sS09e35bf/xDHYFyQ/XRbvadXcUz51sTYyjJ/Idt+Lu+pTvEL+V21Vv81FnS82oEZNVhSg0DVDD3DMfTVoKop81JGu7LL9Zy0aKSSLJqL8jiA8BHu+0D1nydb9Sdb7hXQ1C4CZYUqC/4OJoe/mLhebzEFn3WMYdaCbFuSsT6XOSqbtIUzuPIxn9V7DLD6GlfkOQLprnPgsQLEk/quOneVcnkv10vN+bIyrn5uKqdSkXG0oOdP7Dcv5zRkako1jRsb82GXLiUizzOtmPmPjVpg0bVz5mhTzeeNXlw6NL9nl9nlMRl6jNNHRHg0WSLFgAed11SzyzTT5ndtR83QY0Sch5U3tMoJYlEEnmlxTfUvafiGWRRnBB4UaHEWzNHwzAOTOsp3vQxe1mjxvQ4Mo7NVTJDqD/GkBR8gE3UJhh+opD+2unY1igS8lzbWqmVR9QsjzknxRfZb5GhTE2AhxTkj4jxgj0PWRLO1yTxdPC+igAGio7QBK1ZbH4Ahu/l71PORBQRUk7TtlSlHFXJem5qAKqor+4oNtthml8eUqNGgwKG/xrGAKiPPJ/I8DrhvTbuMS/czVjm2jtMhcfb8DQYPk/jy+TUoEMmSsEKZRTHCMhqBhrXWzWbs++FEs/Bius08XXrFjAWXJtuaCzSM1qM34G/5FvAnv6G/3mlM4z9efJNfkMV09cYJJWd12eYTW+iIM+ITtq1ep2NczlPufKCbTfCKDZJyjyhg95QvbPv+Bq9Y4QifkQH5opBfeJuUhPk6Is59DmlSsBqnynL9ff6Sl1JgUR3QCI9jVsjQY40D4owoUeQ2VXZ5zCsB+DQXhWI4t8kv6JFhhWPWWu9o5OfJ0LXu9l/yiZUNWKIhgOLAGkc1KRBE5uHK84wBYIEmBRokGbBI224/Ka3SJkeVgID3BFR52v8Zn6d/h9/jr6ykQS5s440vqaZvMcKnSiAGW6dk6BHhsceG6Kwe0yZHkoFl8yqD9JWwUB+wZ1myOWs+NS/62HGe8lykWOq2hX+JJnFCe05g5Gk22JPc3SWDb+UPvhntsNC8oFBsMpJi0zN++pv/Q57GryWmgOo0TLwHvoFZkE/q+YFZUE609dg2/vWJbXRBKeDowp9dOOMQ1dXT1s40Bmj4SsZSAPItbuGtrek1HNNUnZ3VqbmDY2tlMQt5BRbUvElBQNUB1JZ6NYFRSQE9R2179yaOpW7W4DRSszimrN5FCkh4E9cQHENUgQ2w5k7X2mwVTOFXtlUZBjXI0eOrq3hBxlBQOIZzxVYARa/jpPlUQvb/nvyuQK0y02o4HdU65jOryO8qJ6AA6hgnETDEmb9MYxo3LTZwreAVXBu9suWVnZjGsCIVZFT5jDs4Yzm9R9/KGJMGVCp9oqDgGJMflT2p996PcAxOD2YeTRyjyHUTPdVFvYcxwNqeOI/PZDxlx+dxeU1zmMqD5DH54SmuWKUt+J/Ja5oXAxwj/j0OhFZJlyImN2gu1byt3x1DnAatAsnaHSGtqZYFrBq0mse0g+Ip5vuhhesW0E4CuG4YdYTT4dbvJWWk9uX/WjzUYpVKuehYegwtDOr3TST7BvLaUMbpMY1p3Mj4v/9frphb/IB3AfQ7jPMQ674zRXgtPl8Bl8C45XbM9OD8LxiXIabPj/4HV3y5PAFOzH05A8wC53B1B2a6QG1oihKXH8w9FQdOTyA8gSSMlyDWAsYXEPsAow9mDrMQFcGryJhp7OucAsmOuU+X5LU+cPnOGGlmOhDrmHPK9BjdmiHe/+Du5fhrrrIw8wpYeON05bWg7b0wbPQLTF44xxAMbiVZ6J+7In4NuP3a/D6HOXYWWJRrdwrMXkD4M37QBpbfcfrxPF16PPgv51nhSNzBj8WA5dBqGibFEGw1OmahdsFVAv4y/4+umeY8EM3CCmW+Vd1nP/iYDV7ZFt5F2nzuPeM/qf4NJ8E8A5JixNOz/9/gldWMHBEXZteIT/mCOkXijPhrfo8ttm27rWmV/sX/73+M05jG32HUWWbIDCVq7PKYFOekGBAXk6MyFXtPGPZpkjY5PGGh/Dj7O1YewGdEjIieSAPsscE5SZKcc8h9Af0MszHumWJOjaI1vzvkvm2Nj/DYZIcjVnjFBmMxmGpQ4BO2xdbOsyCjtv9XKJOjTUDVtvCbgovPLo8AGOMxIs7z/BOK1KhRFGA3brVP2xiW+xErHPPUygSM8PnS+8SyTuMY2RRjUHdOA1dQ03OOiFmZBGXNhmnD0OmSsezftp9j3u9yTooKZaup2sBoUR+xwpIAyq4w5VndVJVdUEarygqoVq2266/yYxosCaPWFMUOWKMu0gCTxoR1iizSpkpgGa8ZuiQZUKPEL7xNomLMMnHvc8CIud/En+40fgMxBVSnYeIujpmkbehHuHZOZTJqK3ofZ4yk7f3KqlSQ7TWOuah6o8pKPcM5UINhb+pCPsIsrD+TsSs47cBVHNMri1ugK/upPzFXbafNyrnk5fjajqs6pSr3pSCm6vgp+2oMV49g5ie4dtG3GE1BeZ+xzFdB0A5wD1rlBPnK0OkmPsKBMgqEKCtqFQeA3MGBKHU51oT8gQUS1nGgjLJV1YCqIOdyJuMruDzGsWq/PzFfJq5dJPur0YpqpyqQocxlBYWGONkCuA4oT2MaNy0U8HuEY5KrnrQWlF7g2s1Vf1r1NbVlfx5zL2oLvepxaiv8As5c6QhjzqdgbgeXH9dxBlDrGIDyNo6RqgCoAoRF4DsT56GAcIjrQNAilKo26fmq9qrKlkyCrZO6ycrKVbBTW+r/AlNg28SxOdWcSTscVGu0IMdX/VFtr9dijxapNAeGuELOvowLjn0a4UBcla9RuQO99h7OQCuP+X5R8z8Fh7WrIC/zUqkDNeeaxxUIP5N99btTc6R2MWwCSdznN41p3KD442/Bwn2cJJHKZ/wQc59rAVafxbTwquzuZ5i//UkzOS02TcqMiFzU8Ckkfsj1gpF2xWhu1GdKLayPcex6lV7aweWSNE7SSBn82nWkMksB8Ge4LqEi0L8y+6iESUneU+mQDnAfU9B5jitqxWR/PUbs3J2Pnkck89Z8rBrRKnmixXkpXP1f3/RYpMdqNEfoGb1an5G0lbbpMm+ZVWCkBIZZOE7fFbZag4gYHmPqlKzGYytIMCBJHMMsPicFGPDhTbDMYtQm1+vRzSZMK23U5FPPgKYb7HGr3uGr4l2SDNiIDMAy73VZCpt8z/9zFqM2Ay9FKhqw4h3xmuX/lb+yaUzj738YJmaXGiVjJsc5JWo8YI8mSzQp0GXeGh6ZIscSADV5mDvkvm1DL9AkwuOIFVY5tuZ1gNX/DKhKMaMrDMs2p+QsUFikJvd/xrLKl2iS4pwBSQDZvidzG1GjKMZMI8bCujRcypEcOySDkV6pU7RzUkAxwqNNjpRoGcUZWTmEY1alvd60zdco2u0mNWJL1MSKKwkCXpo2/0WOWKFAA58RA1Icsibs2XPaRByzYkFhZfEmOadCmS22GZBkQEpMrkxHwik5VjkGTCFJ5RnWOKDBEg2WLMjZZIkCTRoUbHu+arqq5mqROnFG7LHBBnsccN+afgFWPiVOSJyQJRpWimCNA8Z41CnRtG2707jpMQVUp2HiOcZoRdmOP8A8PE5q7elDqS7EO5gHviPZxsMsHnVhC+YhdX3iGBrKaNrGPTTq4lbZpLpI1mOBW7B+iQM2JoFH3aaKAymUHZT/lfdVl7CIM5wq4TRKFQgZw8wPMAuFKgaM3McsypXhpdp/+mDfMeeSZ+gWGRGuHbiCAa1b8vtrmY8CyjpnBQEUBFbmp+q7amutGrdoW6p+bl/JcfRaKttUjXPAAQ/arqoyBMqsVeMrZY29lXk/wenp1nCA7RHI9/I0pnHz4hiTk9T8TrWV9W/7Ga5AouzydZyetOasOxjQVeXiFFAsyT8FNSNc4UoLOU0cWKg6nS9whYp1eV/zTgFzDz7B5Ui9f1WSpYljsIY4TVBtpdf8poxzLdpoQU0LJzEc41TBwy1MDlXAtiKvgQMo78nxFJjV42tOvIfTpq3jgFFlpa5iQBK9ljovZaPq90xR9n+J0dLWfKZxR66VFovA6c8u4Bj9Ov9JlmtWzlPZ+5/icmQBBwprnlUjswbTmMbNjEVM3pt8hpg0HFUQUIHOI8w9sIW51z7HMTg1VINZAU3V0n8BiXDifdWZ104elUm5g9N913wWw+SePq4jR2VOFnD5ZRuXs19g8sN3cTleiQWVid8TmHykYKfmhD/AFJB2cHrVvpyP5pYjXMeCFp6LuC6l97hn6T7uuVKf7wLs8+komKHqBdcMYFLSMpuhaxmqADW/aFuE1RVcW+8jYgRUqVC2zLpzUvjhiKJfp8ptblOlyRI73ibPsj+91rK8w6Z1/M6lO6a1uN8jUYevV/NmXN9IQpSGJ5AY0PUyNCjgXftDmMY0bk58xDvmmRW5j/cUaNBkyRjCCdgW4gucd25BVb3HIjwKNOTeSdr2+m+yQ5WA+xzSJsdtAVHLVChS46c8Y4zHIm1+v/9D2ukse2wIQBmjQplv82Phy6ZEXqVgwcUSdfZ4YPVIFQyNE1rZEjWpUjOpHKdSgDEsy8fsEhFjLGzXET4RMSnCJEVj9IgSNQo0aVJgjCe6sEYT9nQChG2TE9GQkdWX1TzmE1KjJECk0yw1gKR5mDIyMSnLcA2oUiUQPdMGI+KsccBACkRLApC+l+tc5bbM/9RKwBhmqQFWDXjetKxWbe2vElhwWyVS9tgAEPDULH5VI3WEzzErtjvAI7K6uDnaXLD2G/rrncavO6aA6jRMPMYxpwK4+D7MaRt6H9dCfg+zsH3utrWMgLc4gFHbyyPMA6UvYyjzSh+wVbdTWaLrOCkBBT3ViEnZWmPMQ+fZxPzAtcgm5J8eQ8d8iwNHNPoyjrIUlGXbxDlEz+PYRjpuHtcCq6yDKm6BoOCJsiP0n7IfVGNRGRaqm6gP7T05bgezSDjDLBLKOIZWgGu5U4BVDVIeyTXV4ynwrO36dRwLbFXGnp84JwW0dbGiYIVeuz+QfUMMEO/jQJw0rnVtGtO4aTHAMdx3MMCAsrKUMRlhgNWXOB1QLWIoM+kFrphyhFmgezimq7a+KyNdAYq3uAW3spommffKovwRLm/2f2U81bTOyxiaiz7DLM7VWE5fnwQc93E5eRUnW6A5QXOZ5v8q8O9wwAhyHAV5VY9WJWG+i8kf27LPc7nO9+S66hiTLE8teumxtYizjSsE1TG6tlr0iWFkUh7IT73mdZmzalyr6Rg4Fn4on4nKFuj3lgLZVZzOuILQ27hOhX3M38APcHqr05jGTYxtnDyIPl/pc5J22Oj9oYVvfX7SIozmJnC5RfMm8v7nuPtciyIhJv++xeRQ1aWe7Ep6Cvwpjk0fk7E0V/2ujKnPsJqny7jc8QOcGZ+ej3blaD4dYnKVPg8pSKrSVh1MvtA8qbrZKjGlWtKqZ7/KNc16wOS1F7iV2XNc/j+B0Z04DQqsckyKgV2Y+4QUaPCeAI+IOiXKVOj6xjU7zsiAOZ0O7eyiAXj67whi5kMJ/TiFfotaepkIj7XwkF3/MQUabISGder5Y6IYpPpDCukGq9ExP/a+TTc9Tyoc0Eznqa4GRAL8lKMKX3qfcDttjpFkgE+GqUPfNG5qHHGPOQHotG28TpHH7FIlsM7x+t45KXxCdqSd0bSGe7Sl6KHaxA/YY0CKKrdpUCDOiF0e02WeTXYs4NigwE76iSh2LlES46YIj20+wSOyLNA4I7bZsgDeMausccC5sJ1SDCyT9JhV3hPwig3+t/xbuhijQZ8RZSpy746oUKJHhgZLnJOUQoxhwUb2YRT+kt9njUMes0uKAVUCvuQTHrNrgdMqgfBTB7Yl34DQ5mH0mBUrHaCasyXqUhDy2GGTMd5EW3+JgrBAB5Rt23/Ae37BJjFl7hNxyH0aFAh4L9fVMXAnAU8jkxCTpv4cx6ziMeaQNYrUrIZ4ldukOBd2a8GyWU/JsSggdQGjm6qSAqrRum8X19O46TEFVKdh4hT3YNiHua8wD5fKClDQLoZp9Zo0rFJmVhEDMDzCMRm0xRKcdt0Q045ak9eVudnCPKAq+8HHPICe4R6elSWhLaTaWrUKwwASz3HVfnAtqspI2pT3XuIA3R5ucdyR7Us4tumvgqBlzIPvl7gWYG211xZ4cK3xaRwLV6+LApc6diD/V8BXxwQHyuSh/2iW9Pala5stybx8HKAbyjlVceDqEAciKGtKZRoU8F6YmLseU9uRlVGmJjHPcYBwT35WZAxlnE1jGjcxtH1eW0ofyet6f4JjTyZwOUkX1b+Lub9e4AoNRcz9ryCm5k9lWvVxBZB1HPiXxtynJVzxSsHTh7hugA7m3i3g7kFtqVft0JIcYwuX1yKc/Iiyu1Qm5SnXAUGdu+ZGzaeqPar54g4OgFA9Z/0O+T4u596R1/X6ar7U66WMd/1eUHAiwHwHqUyKsnfHGLaXStOo9qmy9yeZxAq86HeIFvGUgaZFsu/jvhdiOLBZdW51vEk2sMos/CEmR98DDuT/05jGTYtZ3N95FcfALOPuWdVIVS19BRU1pylACo51WcBJR93GFKhUi13v8zHuvglk/KcYkz5lgf+Q63JGMQxTH1yRCjmHlxPbvsdp28/juoRiOPa85lTNvT/E5ZU7mGfT78u4ytRVsLcj89DuA9VYfirzUQD3nlzHGi6XaD7Zmrjubw2IEyNil8eExFnl2JqxNFmS5X/ERrTHqZfjFRt0ybDFl0TEGGST0vrv0UznOWLFmseE6Tgl6jQpsONvWnOWml+kTokGBXJpwzbL0MUbR9z2qnSZp+4XbbtrlwwFmow9D5/QtkYrmDSeagZO44ZGizxlzgQsTdIlwxiPbbaIM2JEXLRVDWAaJ2SPDeKM8BhbvdMcbcCYzYXEOWaVEjWOpS2pS8ayJk2be442ZZITRRQwzMgVjgTQcwDevICWgHAmjamS3tMH3OeYFebpyjgPANhkx5rqqbO9YbybClqMiLEwZxUcVIC0QINdHjMgxWN2WRQZAi38lKlYNqmyZVWqQFmgHhH3OeCcFLs8BoxcgTHHS7HGITna/Ht+n012LPhsDKyqFmA9YoURvmUHAwxIkaFLgSYVysIYjtGUMSI8QuL22Bm5NmrYd06KB+xRp0RBrk+GLlUC0Y+O817A0iTnhMSpU6JEnTUOLMjtMbYarREeJ1MJlH8wMQVUp2FiEacZqrp6Ctppq7y2Smr7lYKH25iHRAUb6piH1E0cwyjAAQ59GOYhsY/TjdLjKtNysu2/M/GemoRs41rkfeAIEsq6VC2tddwDLbgH1SrmAVrZtJPGLD5mcf4aA/oqA1YBCd32S/mZNse+5pyt4KWCrQpMKyNUGa66wDiTOaqOmLJlFSD1ZZuHkN6/dGMo00PPS5kQWcyiJC3nX8J8bspUBQcqKPurgpMK0HOKTWyr101ZcmPcZ6rgjIIQk0y1aUzjpoUujFUHWotEk/p9HqbVUzWIqxhw70z2UXO/Mc7NXs30dIGs961qDe7LNncwC3dlo6rkhrafasGiitPx03ZWZV/VcWZSWUwOGOLYqD0MK1Tn2OQ/BFJ1Dm8x+epHGBBFWepNXJEmLe/7wL/CgbdPcbIC7zF5pjbxekLmodIwRa4XlRQQqeLym5oXruNYoaq/jXwOmp+V+aWFPP2sYhimrBbWdOy/wWnJKpvtJddZv9pmrAVFZbBqkUoLVApYaxFtGtO4iaGt6lpUVyBUwUZwBdgAVzhXpr6PyyVaQFI9+M8w95XeM/pTgVF9ztB8V8fk3S2clIc+I67jpJSOcM9ITGyvWqnK3NdnooRsU+F6d4BKR+kzneYlvfe35Oc+17XxtdBVxeTmt5hc9Z/jAFct2A9xz8H6XKo5Y/L/F3D7tEGGBQak2GSHQ9ZIMqBHhrjoDdYoEXkGtCmKvuNIXLsBcpziEVGhTIk6HmOS0q6szLeUGFuBYdGBAXZUnzHCY9c3oMMXPLUsuj02KImmY4Uyj6Ndul6GHTYpUifFgCY53MPvNKZxc2KVI4qEtqX+PoeUqBHiE1ClLUZPG+zZ9vYMXXbYJE7IMUs85bkFVCelOjwifELLMi3QvGbitCL6nwo8fsKXHLGCz8hqg5r7OWKEz21hdyoAaOQGmgxIWsBUwc5P2LYSH21yHLECwApHrHIsLNgYi5JT2tKCGGfEIfct87RGicf8lW2Fj/BEJzVFQNXKjDzmJa94YAHaVY5JMuCQNXxGRMT4I/6MgCpJBvx7/sk1IPl3+NyCw4u0WbG6g4hG60Ba+w9EWiDkXADVKgFrHFjAVCUBmhTI0CMmEgcKkHtErHHAqUDAyhZ+wB6HrBFQpUaRiBg1SniMifBY4UjKW56VNzAmVklGxmqMFOcsc/Lr+nOdxm84poDqNFz86oLzNc59WRlbuvhcx5lP6T4KkCoT6zWutVyZpDJ2YhvzkKhsqvTE+GoCog/tyNgK2vVwi1VlR4xxpk5qGvAWx5D4CvMgXcExmMYTYygwsY956FXNQV1IBHLcMxxrVscpyxyf4wwG9EE/mLgOKgWgwLO2vY3l/woIKJCq8ypjQJm/kPdVEyyYGEsfvhUkUSbtGU6rURc6CoyOcWyzMuaz3sexIyZ1a/UzUm1cBcmVifYDzOKiINfrkGlM42bGHsZRWttUn2LAwiGOmZjFtYAqO+snsn8Fx9hX1qMa3Skw2sEVStI47dB9nIayskA1J+YxC27k/UmDJJUuqeIYn6qRrLnkBS4HjzEFr7c4tqwCtS0M+KlMLm179XCt/1mcgV9FxnyIM5nSYo2ec8B1k6sK7rukLD9f4LoW5nGmUMrWBWccqDIE+jq4FtyXONMXXbdPthAr0POv5T1l3GlO03y9islrFXl9iJMD0GulAIsWEUO5/nq+Ndn2PdOYxs2M25jnJ9X/rOAK3KrFrB0yysqPYWRAVmWbGk42aLLY+he41nq9xx7icoHea1l5vYV5xtN7UfcrAF/gwM/JYrAWgBS8VMYoOMkCZborqPtcxt3E6VSrrqtqTvflumgOVza65u0xRnoAmbvORYtd+rwNTgJgW875+7L9T3ASAUkIs7MUBTTJ0OXb/b+lnc6S63dI1KEfzAKQ6l8S+tBOZ63Zi8eY1dYHBulZMr4xnAnCKqEfl3besugiGgOckDgxIm5TZaX/Bm8MlewtzkkZzVQBJG5TNYytcMCGv8fD+huGadhgnyg2S8MrUKROhi4pBjxnHaPBMo1p3KzokeFrHol+qtH2bFAgxTkeY3Z5TE5Mo84FsvQYU6BpXeHV1GiMR40iPqNrpkdjPKs5Ogmuagt6kgFNCkR4AhL2KPOWKoEUTualFT3kC55SpGZ1lgELCg5IWVmA3+cv7TmOiNs2dWWOKoir+rA6TpeM/V0Bzh2+SYmafd3MM0mIz5dsEfAejzEPeMWIuEgdBAAUaAqzs8h9DinQtK3/qt1qjr1Il3lWOSbEtxIEOdp8zjM22CPE5xUbljkfyGJZ2cO/YJPH7FrJBE8+FTCyAMqmbZOjIcZiCuqaa/KU+xxQp8Qqx+zIeDWKjPDpTZhTLQmQbYpYNRosUaZCjwz5axqE07jJMQVUp2Hia2AJ87D8EPNgdwf34KosIzAPiz/BtZMqoLmOe2BVYFUXsWBAAGUD1HHmHS2cDp3qtoY44X9lX2rFX3UGta1f21GfT4yN7PMjeU0X2sq4+u7EcRQUVNOR5zjgMSvXJMKBJGAevNXk5Q6OiaHA5RMcsKLnpyw1BT4WcABIHQd4arGtL8dQkFOdp3XhoSwwPVcFDfqYRZC2pyrLQ8fsyzhlHFCjCxd1llX2xzaOjayLJmUuK+CruoZHsv+UjTWNmxz3cWBgFbMo1oJCHQeGajFDdZIVbNTXYpi8oW3rep+onMoTeW+SaarHmAd6cPYDWLiDubc3sQz/wUtInQELcLEPczXge5h89xKT36Ql9uonMFPAgamPMIUXzeFvccUh1Rjt4VzsVTNUOwU6cPEC5j7FMfLLsv9PuK4LDSZ36DHmcXlfmbmaU/Zx4KnqRyujXvMY7rzsNZ4EVbVApcw5ZbGq/rUUui72YU4BlKFckwpOjiGBAXUKuO+hCUD24nOY25J9NedtwsWPMA2tChopM/iSaUzjZkYLV9RVyY8Croj7FU5begtzP5dxeWAL91yxzfUCugKzz+S9BO4ZR5/79F8dJwsQTvzUArQWzyUv2udSlT/RHKU6qE1cF5Ey0dcn9tPnskmJkDwu70926+hz8mtMzldTLi0IHXGdbR/JHPW5S70GtKtrHZPLi7hnrF+C37lkRJxyWCGKeUSxWSI8EhUzj1T/km52jkbeADlNCjzovGaUmKVEndCH9NElrA5YbvYggnbZsFqfdX4GwFwLWqsJzklxwBrfqLymVU6Qrw/xhFGWigYkexdEMfioZVrMWuUEHhH/S/EJG9Ee8eEFx/4KSzQJWi3GHpzPz5Hn9D/4E5vGNG5CRMyS4tyCd5OAYIau1U9V3U39XZmVZSrCTRxxwGMLHB6xwnsCPuULxiQZEbcMScMqTVGjSMB7eiKpUaFMgQZd5mmzSIUyETEydDkX1qUpfPQYkCKUlnQ1phqQZIUjylTY5TGP2eWYFZoUKNCkSM0yVuOMKIokgerGql6sT2iB1b/kjwioWsBWAUg10bvPIdtssSIa0A0KZOgyIs4Yz4KnRerUKbLHA2v4FSdkhI8a7LXJkaFHldv4jAio0qDA7/HXFgQ1IO+plTlREBkQeZMlitSsUdcYz8ogxBnZ89xgjxola2RlDLHGFmjukmFezsNnRI8MReokOafLPBGeyb8ikxBnRJMlmhToWZbENG56TAHVaZj4BfBtrgNxfZx78iOcWcCkXlVN9lHTqRrOaCrCsShVG6+OeeBt4sxAAvmprezgGJ6qA/iJ7HOEWzDrg6i2RemDs8oQqC4puId/1Wf9Addb+JV5lMcsrFflGArO6iIAeV+PqYt+ZcxqS6iCm2rIoAtrffgG99CtjN4h1+UTJtvRlCm2LnNT5oMCMn2cC7i2qykAow/zky37McxCSCUDtjAP8GqOpfq1abkOm8B/jzOZuMN1nbPJFjUwn/E0pnET45vABY75qffCU1zhQ83hwP39K/NyHZMT+5hFcx7T2hrDMbUUiMviNPoUGFSjpBAWQkyBCxmnacZMPcGwoYC5dZwen2oYVrBMyZkAp3OtnQWruJypXQZ6/E9xBZWnuNytbbx9mNM8c0fmfxsHGiuYqqYr4NpvVcLkhYw9lPPa4jrwvCr/dnAAZ132/578X3ONAtVNnCb1Oq7Q9kzOfYzNrXMq1fBWjqOFsKxsDy6fq86hfhftCJiqAK8C1XWY+8e4TogirrPiGfA/MI1p3Lj4Fz+CRAJoY/LiENOBMsAVenuY+09NmQ4x984A85zRxxTtVzD3s3awvJTtMph8e4nRbB1iZKhG8pp2Ev0p0MC1zM/ipEoucc8hSTlOBqJV8NrAzzFM8Yxsd4orbGsh+key7yLwP8u2HzC55Jdc725KyvG7OIBYNfj1u0AYr9ESeG+An8p1ysi+KZmHAs5nwDGu6HYA3ALumnn2Fn2KnRaxCGb6l5wFcwxIsf/QtLNGeFQoc5sqS2GTcqxCNbtsTaoi32PwMMWIOGHgi65fyCH3GWSNyUwqe06m3yNfHdJeb7Bf/pgcbV4Xb3HMKvc5oOEVWI0+UM0uM0obYx111t7sv6CS/phU2pjejPFo5A1LyziYT+n607iZ4XHJMjVqlJinS0SSx+wyIGlNjwx4FxPAs2nNmnpkGIiBU4jPiDjzdGX7kgVJ1zigRoljVkiKoVOckDIVaSAf29b1DD1bOFGtVT1GgabVcx2QxGdkgUyARdpSNLnPBq94xYZlnivrto7HFtt2rmq+VaBpcgxNGhSIEVGgyVOeC6vVsEcrlElyTkCVLhkrbZARjmeFMhm65GiTZEBEjHOSHLPCFl/yiF12JgylcrTxGJPjFJ8RXTIs0uYRu2K6dWjBWyN3UCRD10oL6HmE+FZHFbB5KiYsXAOAN4wWNJ6YSjU4ZoWQuDUD8wWcDYnbz7xInU/5Ao+xMIPnCfFpUpD5R/Zv4j6HjK61KkzjJscUUJ2GiTRmEVrFLVAjXDvmT3CL2g7mAVBNjJTFqYxOreqrFhY4swE1Pnkr403qXIFrUw1wZk2q55nGABPKltJFvraA+hNzVhaAmg5o6JxKOPMZBUBV5kBb7/Py3kPMwnie64ylKuYBWM2YCnLMR7jFuZ6LMiy0VVjND5Sx8Gji+qmWawGnL7aFc67Wz0gB7MlWOt1fr4eyREIcSKws2yc4nbAfyfye4jRnVWJB2V4lGUuvQY3rbWvKXHkJUxLCNG5sHHP971fBxwQml2guA3N/KBv9Hs68bVJPOiG/r2PyhbIuhzg9aAVcd2QszbVqYKLs8THG9GofB+Rp0Ui7BVSDWvMiMvZ3cAUeYTRZMDcN/AkO2NQ8olrQPUyO0jb7TUyu1PbW97jvD70uygJTmRPNJZPtwvM4B+8C/6Gz9vdwLFRl46u2bBXLmLV6zpNaploQVJmGgoyhGopHE/vr94lKtihgo9evJz9rch0eYXRa1fDPw/xN/DOMDqs/Mb4Ww6YxjRsYf/x/gIUyLico2xwMA/4pzAxxXTz6/KKM8wXob86Srl46/WbVYtXnBy1A3MHde9I59PXTPB/VW67TB5yRqOpZw3XzQNWE1uc6LWBpkT7AFHX0WS/CdVXp85oWi/V5S9mkPrz5bJmgc8LcF+a9/tas0bfXLiQ9turrv8UxVfM46YSHXH/u68j89bnuR8AqXN2DmSp8eJLgmGXTjprt0vAKHLNijWAKNChSo9Q/oZ3Ocqva4SBYokADMG26p+SsEdUB98nR5gF7xGSh/wWfcj99SLRuNBe1VdhnxNPoOV0vw53WCXv5uwxwTFjVHWym89Z4RUOBlyZLnDI78UFOYxo3J77mI5Z5TYTH+wlDpkPus8IxcUKawozUdvkID58RTXxytK0J0mN2ORVt0iQD4a36xBlZjdUYEUs0OCVHkyVWOKJLhldssESDJRoCIC7ZfRTQnWRPGrDSE0Zojy7zjPBZ4ZjHvOScpG1D17mBARr3eMAah7RFxsAAtClG+FbioE6OUEygvmSLNamYqekUwAZ7VCjzjM+JpMG+Rok2Ob7NjxnI2F3mLeh7PsFyLVEnoMouj6lRJEbEY3YlZz0lEobrCscUaNKkwCY7VAnwiKhRAkw7v7JnTUv/IktSDDL5LKJMhaYAxUsCILRZFCAYMbRy5mJ78nmoXMMuj62mboEm5yTZZIeamPuVqYiZVchzngL/9tf/xzuNX3tMAdVpmPgI1x5/G/Pw9wKzwDzCuViPub7YfIEDRas4g6nexNiruAWush4f4dpmlQ01aQaioIU+eCtTtopp2dJWzi3MQ6wCtZOaW2ocoKYsaoyghiFqBKWgo7KuFOQMcLpWEQ4sVAaVArYKfjZxgHAo12Rh4lxUA0xBZwUcFBxQBuo+DsDRVjU950nJA30AV13X/sRYapSSkPNWMOErnIt2C/NQr/IBCjLotW7KsWtyfGUnK5ij+roqdaAGXpMs3GlM46ZFDAe6KUsRTC7RlkxlgCojU9tJwdzXm5j75BN5TXVU1ZhKc2kLkxcUQFCt0m0MUJue2PYF5n7Wos8q7j7V3Kvg3ZYcV8EAf+L3e1wDB6z8iZ7PS5BnT3Ns7QQAA3joNlmcCaDe88rqL8mxVIPwd7muNa2AgwKeWuhK4Nr+lb2rTFqVVghwsixZHJCtLbsKjuRxzFMtcmlRSIFvZRYruHNn4njKkC3hGMn7cjzNmVlcW6+OvSnneYTJnXdA1gfTmMaNi9p3FwgXLsn0eySqcPUIavms1fz7qN6CM+ivztIu5yh2WsyFcLY5x6mXYylsUvOLnK+muN9/jSdF9mY2SybsUvUDVtbfcZi9S5IBKc7xo5CBlyIuMMNXxbvc999QfyjgKvB1MU+SASN8bh11OLszR+g5tuQ5KTJRl7Hn2VbRpVaPQXqWhl/gbvqEs9IcDc+wppbCJqn+JYP0LKn+JXv5u2bRHXRp+zmr31fqn+Az4jB7l4cP3/AmWOaQNVaeHLHa+gDA2/wyd49O4A70s7Okg0u+DvLkgjbpt5d8WM9SWy/SZpHvRj/ldfkWS1GTZO+CV9l73H5YJSLG8nqPN1vLLIVNKk/K4lLdoEKZhmcq3UnR+ivQIBZFBMMPbKe/RZWAzWCHHKekxHV6QIqYtMxWKJMS9liTJXy6RMT4XueHNLNZjllho/WGgtdhJ/uICI+yV6FGiXHeXIvfqr/kQzFLmQoVysJCM8DPOSluU+WYVWG7lQRU8JnGNG5i3OI9TQqE0tp9KoDZbapEeNbALUebNQ7YY8OyMVc4smZEytac1Pb0GREj4nOescKRLVAUaNJgyRpMRXhssmPBWwNuxi3bUw2scrQp0CBDl2NWqVC0hZSImD3uuWTdNQ4sMxUQwPVITKLMuY1Fa1TZn2AA3AFJNthjQFLa4Q2AWRI2b4WymOTV7bGOWOH3+CsrTwAG7IwR8YA9ImIcUCYmAGeXDJ/zDF80BAekqFAmlNyeYmBByxFxC6De59DqQuv3gn5GJgcO7DlVRRJBo0pgc5saVAVUGUhuA4iIiSRAkRTnlKjZAtaAJF3m6ZKRb7I4/7T/FzxP/xYRHqfkphqq/4BiCqhOw4W2MykYeRunm1fGsbK0FV0XvMqG0oXwU5wTszJMdfGexmnuvcC1R6le4duJMXUxrwCntrPekX3WccxaZSQoIOrhFvqqb7iAWfQ2cYxRdWBVjSzdXhfvqoG4idPnUy2+vOz/5cQ8dc7KhtDfVWNMW+T0GE/kuhZlHk0cuKAsXh/D1NJrWsAAFAr0LOC0vFTyYEeOt44zbVDgWUGivLyvRlYeBkRQjcIYBqxVV2u9xtoCrMC6foYKsgJcMY1p3MwYYgpMev9ocaCPYzypcdSXOFmMJq41XM2VtNjQw9xTqq83xLEWtYAS4XIwOG1VzRsKuGqxRvdTlr5qJWtBSlvqlWX6Ja4IMwka/gAnvaLSIEM51zMcM1WZVDsT+2sRTHWVVT7gOU5XUA1c0hipkhYOBFaGmBbiwLFGleWmgLPOTT8LlUbJyrmVcJrPOmfViFWAXI+5j5OY+QxXCFImsUoEaPHqNQ7c/TMM21fzn865iTPDUm1W1Xr8wDSmcSOjxzyl6IRBOsHxeskCeOvVDl8Fd9kvpigVapx6Oe5+fgKrcOHDqZcDoOKXKYcVvPElfgin+QSZzpBb9Q6tYoJy/x31bB6PiHNS3Gmd0M3O0aTAbap0RWMuikGx04IOvF6/hUfEIWvGQ/rOgIXmBYwviAIPPxyZllA/Q5XAGox0swZADfofuEqANzYAZEK6eK6y0PALpPxzitTMot6/z0bfiCI/T/8WpGExalP1Aj4EWZbCJqXxCdX0LY7yt7hX/8Bi1Obr1TwfHbUI/ThRKXIXNGuMWr5VN2MO83Dv6ANvVpdh3qgDRsTwo5D9rY9JMaDqByQZsMcGBRqUqBMnZJfHYiRlrgUebI1f8Kz1c97mq+J0fUim36Odztp2/PXqO9YS72jk51mu9lhNfDD/r/f4uphnl8d8O/wx3awBqdeiA7pehkzY5bc6L+lnZxn457SKCXL9Dj9O/yMydAmossYhhU6HbjZBfn9IUDyhmc3y7fDHxIeXpBq/yb/eaUzjP16MiLPAudXhHBEHTDv/bar4jAiJs0STKoFt7U4yYIkmX7KFz4jMBOPIEwOpc2FHZuiyRJMU55blGlClSsAKR2JU5RMRE/blmMfsEuJT5Tb3qXDIfeKMyNCV43UFEBxb8FFb2w3w2rSMTC1IBVQ5YsUaZ+Vok+LcMk7nxem+TokMPZoUOJXxlJ0+TxefkBWOaVKgTY4VjjhixRrg6XhFaozwmRcA2MzhPSPiHLMqqqltC6hussMYz5o/Dcw3ATlOGRFniy8Z4TMgadmixqxrxANhywKscMweG5Sp2Jb8LhnLdvWIWOMAj4hjVia0bY2Oap0SAwFpjd6sEXQoUqNLhhiRBakHpPDGhnlbkkVCNIXh/sHE9JOchgtlNm7j2rqVhakmRKrBp6YEaQyg9xTXYvkjeT2PYWgpY0jNnbZwLfG6SFZGqLSIWVfs15hF6WcyRx8DTkyaLPkT76m2noK72sblTeyj56UtYj3cwrcic1rAtV09wSzW+xjApCPXSMEJ1fjTRbyCETE5rrbgq6mCuoeXZB7rOPZUMDGmAhFgJBf0vCZ1XxWkHuNMrWKYFlzVPNzGMcwUKFUzCWWZNXFtuqpfG+AYuApwKMCjruQFnMQCcs30c53GNG5i6H0Apg3+EY7hrcCibqOyJQp+Iq9r8UnvTZXj0Hu6grkXtdVfGd6TTHllsv4pTnZjH5OPtAiixSjN18rsDGXuavSnOUVzxlDGUSBW79kOBiz8oZzbEJP7Vb9UjVy2ZD4/wrX+q1GfMm+fyHXZwkmwvMV8VxzJflWco/UPcEUpbYkFU3ir4Npnla36Fqye/zzOSGYH54w9Wch7KXP/CxmnjDPe089GpU/2ca3BKo8QwzFyqzL/ybbipoyn+tJ9uQYRBqD/OdOYxo2LOULiwws+Tz/jWfQ5C28v6AeznJXmWOm/IYrN0vUznJNi+ARq6WWaLDEibheuOb9NYdjhIP8xBRo0s1m7oL2fPgBgrfWOmTFcxSD0fG4LcxIw+qCxWarpon22MG3txjDlF94mT9M/wxtjWa852pRaHar5AHXV3vM2SDGgll6mxIlhnvoed8ITToME7wkYC5tJ23UzdI0mKAO+U/0ZrSBBpnNBLn/KrXqHr4t5Qt+06z6sv4ExDLwUe2wwWK2w0nlHM2sYvTW/RLNY4Nvhj2EMXwcGSA5X49ytnvA6uMU5KaOd6N2mRN2yvgqdDqnsubQMh2zzibTohrwnoIZhvFayZT7ludUNjPCopZfJ0KWZzlOgwYcgS0icu/UTPgTmgub6HRgbt+5NdvDGl1R9A0a3vRzr++84uzcHXBrzK99jQJJ8Z0gubYAO09K8RDdrHL/frC/TJkfAe9KdS74q3qU54+EcbqcxjZsT5yTp4pPi3LaGm5Z6B5gt0uaYFaufusIxAAeskeLcmMpJK6NhOxp90wMxWcrJ/kkBVHU7wBpeeYwJeM8KR9SFiWmKRkZTtUjdmiEpU1QlBTJ0CQWkDKhSosaptOyXqLHCMVUCzkVKYCQAcZEaFcpWgkDBWk+yqwLIt6kSo82pSASYuRiTpjY5UpyzRJM9NqwUwWN28YisOZbOU02xFOwcEadInT0eUKNkTb3ihFaXNhQw9AGv8IhYlJyUoWt1VI10wTm/z1/yig3WOKBIXaRKTGv/9/lTapRY4YhYFBF6Pl3Rwd3gFW1yjPB5wB6HrFkWb2YCEC5T4ZA1PCIrmXI+P0eBpoDacd7x0W/4r3gav66YAqrWVJN6AAEAAElEQVTTMDHAMa22ue5KPclIVx1QZfKkgX+DAU5V4F8BP9XF07ZwXZSqy6qOD2bh2sS1m9dwLFgFA/TYqkPYxzHBtO3zrfz/h7iFeUfG1VZ9bXNXcFg1+5RplZU5qlmWOrDqdtr6rnpZaiJTnfj/mOtgtBqkaGs/8v8mjh2l7C4Fr3WBnscxobTlV0HRhBxPF/BVGUcLoOqYq62tKumggI8COCp7oHqAOubzic9BgRKVC1AN10kjMuT6tpnGNG5maEFHWdvKEk/gnJmV+b2N0y3VQskdnHmcauJ9DwNwbnJdA7SMYzZu4ZivES7XPcWBos9wBRjNCR7XTfOU7d7C5MIiLveprMhkvtHiUw/Hnn04cV6a69T4SgHhZ3I+CxjQs4TrDOhjcocy+5V5v44DL+/JnJBtHsl2WowpYHJLgGO7KjNX9Z9VP1pZ//2J67Mg732f6wDrZzgAOIvTjH4r+yhgrp/fOu7vYBvzmSnorR0SCo5v4zoi9PMJgDdMYxo3Mm53mkTFWULiBrgs/oyub/T5BukUt6od2oHRk9tOf4tPOz8nlo2su/UibXL9DnMhrHRMa//D6hu8IGJE3LaxFvwW7by5+QudDlEMDtM5y1RV9lCKcwYkSbTgW619flm+R4Yug3TCzjnFgFQ44Bf5dbsIBqN95xGRCgckOhBPj4A4b/PLjPApiHFSlwx3j064yBtn+q6XMaw0ecap5vOM8BmmEVZZjwERFz40iwas3GSHOkV2so8MUNF/YwHNdOcSwLb/+owYZg1bqUaJx+xSCuv2Okd4zPWhni1a85Y4obSonko7rXHlDqiSC9vs+JuWmbXResPMEE6CmOg0hnhEDNOIE3ab3fQjvPTYsuwA4oQkGdAlI2Aq7Bc/pkKZLb4kFQ0ghsgGFK6ZzETErKv4gCSt4piH1Tf8fL7INKZxE2OLLykRkun3qKQ/ZkCSzXCHil+2EijlqELRM4WQHG3K/Xe001mWaHDEChl69h6L28o9bPCKY1Y4J2lBzQxdHoe7hH6cLvMsSSt5wHuOWSFD1+p5eqK36hHx7c5PqWaXRbvVSBR8M9oBoOtlOJLjFGR7NYwr0CRuCyMF0UCdZ0AKnxFlKmToAjDGo0rAAfd5xuf2nNos2pw2IEWV21b/VKUSumSIE0p+WqRGiS4ZRsQFdDUdBeek7DVKCQdVWcHHrFCkZtm9alSVFB3WEjUaFJinayUTwFhNJRngMWaET5KB+e5ii5A4Ae/xGFtzqxyndD1TMAzxyXHKNlsUqZHinFdsEGdktVpH+GzxJRm6HLJm/kbYoU2OYq/Fbnbdyj34hHyDX/7G/n6n8euNKaA6DQD+xb+ChIdhQylweIFxMh1h/lIuca2ncdmxJ/9XwDEHnOPcYP/NxLZgFr5tYE7Gu8AxORMY59N/j2kZ92SsODCDc0Q95zpLswssyVhgFvJt2WcWA05cyng6LwVNVYM0wLCTznGspjgOIBjh2vTzcsxIjtGVuQ3ktbmJYyLHS8mY5/J7hHFvvZSx47h23knGrL52iXGGrWDYWLNyjh9NfB5d+T2OA1hHMoeYvK7XfRbnipuS7WbleOfyszsx51kcqKTn9GO5nmP5XOblGgQwVGbtNKZx06KPuVeULVnHsB6/h2E3arv6I0x+UO3Ovmxbx4Bxk4UUZaGqOYrKB7zHtfQrO1RZ7gUMa/N3McBiHQf0fobJVzFM7gVXPNLiyTrX71kwAGcLp608BP4I08au5llqhKUt61pMGcp5vcfkTh8n0aLgswK7mrdey373ZHw1fFJAUvcPMWBmH1cE0m12cMx9ZQS3cMWvvpzXn+AKQ9qZ8BrXJaBdBsq2fyLH3eE6k1ZZp8rMfz1x3DxOZ1Xff45r89dio4LB+jn8lGlM40bG8+y3yPuGjVWnxCCdYECSCnfYYI+vA6PbMSBp2k6zyxyzallYOdp00/M00+ZBsEGBnwQ57nNIhTJjPNY4FDMj00oTi0yLf0CVDF0OuE/gvzeOzVGET8gwD930PA2W8BjzBU+toUoubJNuXuIHI9Y4IBe2qfqGQRUnpOtnCIMQPwrxvDHHrLLZeUk7O0+RGnVKnKzOu5bbsMrATzFMQ52SbRGNYrOkogFdL8MOm5DdYTFqE3kedYpWdxVgkE4QtFrMdODN6rJd4GtL7l+nvyO6iSEVyni+AaVXOLLjJEXvL8IjoMpS1CT0fDzGpPpDuukMA1J81GmRK7YBA/ie5s2XQIWybfNNMcBPhARhla6f4XH/JZX0x5SiGmPPYzf9yBrcZOjijSMGfooMXX6v87c0s1neewUoGlD2d6s/53VgpBjeE1COKjzw9vDDEXv+BncrJ7TKCbyzCfmDaUzjBkWHLDtsUk6bXKi5JMW5LcQ0PMPqjDOiTY5m2rQXqbanttVrIaNBgfcEFIVpMy/seDVP2vE3GePxig2aLFkd0DEeA0r4UhxRgyuAvewGER4DUqJpOibyYjQpUKNEQJVTckYmBNNuHyPiUEzqKpRJMqAmxa5zkRsp85Y/449Y49Aw9ykTEWOXx/Ya1CgS8B6fkAJNYtIqr7m0S4YyFVKcs80nxAmJSd4P8UUXNW4N9CJilIQdm2LAGI82i5Sp0CPDX/OPreZsmxhVbhMRY48NRsRZlPNR6QE1ymqyZCVjlGmbwnQAlKU9ygCtnxigXIpxXUyuL1JiicY19q3JradUKBMntIZWh6wxIk4ya4phoeixekTXNFuncbNjCqhOA4A/XoWFJE5vTs2hFNhTXU41W9EF9BKu7bsir4U4/bs7E/vrIvtbmEXqd2TMSWdVXZDuAxsyOW3R72MA3rSM+xoD4lUxYKMymNS9uo8zq9Jjv5QxtnAGUXdwOqFbmAVySeYGZuENzokWGV+BBmVDKfCsr+sxFWxBtl2deE8X98rwXJjYriifgzK8wLXhq+ZiD3ggc83hWGefyX7aFjuW/RQsfwn8E5zO4CQAWsSZeWnLsl7zUK63Aha6rX5+S+a1s1n4l58zjWncvFAWpDK69zG54kc4duIj4BXuvtUc8xSXH/U1NexTdiaYeyUmY4C5t1rAf4O5l+7gNElrmHtNpTXOgH/HdTBV2ZSaQ7Nc1z3V9vUjGXNHXte2/y0ZV+f4CnOvr2JyiLLvWziXb2291/xewoCnymxVM8ImTofWmzh3/X7Ruf0EB0CC06rWa/wA5xCuBlF3ZHyVQNDcqBIDaTlnNZFCxgoxeq5qQKaGXvr9oaC4dlJMSq2oRndW5vQTnJ54euLaqvnXfw+CnUxjGjcu7nFEihgf1Vtc+PscZz+m3H/HUqJpdEu1cwg4LxsN1MVsm0zngkZ+nhFxcp0eUQya6TxlKsJeMqzRVY4ptTqEPkbfs/KOiwUDliYZELRaFPM1Mp0hUQyimDGV8tPGLCXHKTEiqyua6/SYq8NF0QAF+fqQs8Ic5f47BukEP+UZn/IF7wmIewbMLFFjlJhlQJIYkWndl/wdFT1CP04qHHCcvkuRGgWaZPo9jtN3ifAoRxVKXp0mSyzSpthpEWbj1/RQk70LZl7D2SdzLEZtTr0cq60PzPThYgFyiR/zuf+Mb/f/lm56nlQ4MMCvgAt3EifcO/rA2R3DFC30Osy14CJvmARz7yF6GGNAkrPCnAUIUtGAhf0LGENq9SXtdNYwS4Fd7zFjzwDa3hgLHC/v96isj3lPwLOW0SqZGUIYjBkRp5nNWvaqz4hyVIEqlNMfqGfzfKPymmEexmkDBK9FB/SLswAccY/rbW/TmMbNiAKneBzTJsdA2JPKwi9TYZfH/B5/zSH3aVCgRI2M2BLFxZLqlBwr4THH/goAKc7J0BVgL7Rs821xNH3AngVcjQRJT2QGBoY9KSClgqCLAu1VKFOmQomaMCedqdIxK2zwyh6vTc6aN1Uos8KxLfhUCWhSYEScz3lGTIDAASk+Ydu+r9srcPqYXcsqrVESdq6RG5gEVz1SlKmwRIOGMOyPWbEmViPijPGIM7KapeckSYlcgB73XI5mANxVU/jhrxjhs8kvOGSNLhkOuc8mO/iEVgMWsMDmSLoGdNwmBT7lOeek6JLhOZ+yRJPH7F4rTj1m12qmxqTwpcxeNRJrUKBAA19y5y6Pf1N/utP4DcQUUJ2GiTcYpqLqo2q7OThmlBp8DDHA3xlOa7Qmv/sYFo8uVNUgRfX4zjCLYmWI+riF6jaOGfQQxx6d1AlVsCKGAQpfYxbgarqkAO4LXCutMsTUeOUIA44qCKE6gfM446Ufyv+/i1tkKwNtUgZBQRMFRSeNpLKY1vofYIDojrwPZsGvYLXKIuj8dMGueqdZma/PdX1TBWm+xOkTKnD9FzgDqjwGPFANwo68/jmORZWAq9cw88/kc9B22lVc+6rOUVl2+pnMy2vK4vIx7NVpTOMmho8Bw7Yx94BqOKvsiOqZqoO8Ao0qW7KK09rUVnfNcXlMrjnDsf21BV9Zqf8Opxmt7eeaI85wJnmvMHniEY7hqt/oyr7XdvQhJoeoxMDvyjxCTOv+D3GMUx/H2tccr4zLPi6/dyZeV01TBXUDruekH2LA5oLM7Ym8fgfH6tWimcoRuG44B6K+xcm96PVRlqjqmML1wlYTx95V/djPgT+UY9QwIKgaha3LPus48FXZqPo9pmB2CwfqPsfJNnTkc+njOgymMY0bGG+5wxKhZSJGeIwScxx4a2z6L3n15B7lqII3jlgJj+lm5xh4KbriBN8lQ2a+y6lnGDxLNG3L56edn3OYvctRPm4dqykbYO+YFULirOUPyfWNyVGFshiV+PQEVFBAAuBzntHLHhDPjgzzkgx+dsTY8/BiZqH9iF08xtymyiFrtm2+62cIoirx4QUnxXmrXQqQPxpysjpv2VPfbO0z9gxg+4oN9rwNfrv+gqsY7OXv4mWNrmCTJdMK6o2JsjGCp1XLAM3QpZrPQ96AFr9df8FK8YhK+mOzUPfb1zQFB+lZ4t4lR94K56QoZJt42bE1hBlkU6xwJEzVecvoKno1Gg/hXv0Do8Qce2yQ8gbSLjuiygol6hTocOyvGJD0XmjAWM55m19mMWrTyBfwhXXXYInH7FrH7LZXxnsakcQAtSfleeoUGZCi7ef4lOcMvJSYtoz+V/7KpjGNv//xnlvcFed6ba9Xfc+QOP80+nOqnjGQC6RolJMCy3nWaCPP08UbXxL6vm1tz9A1sifSeh+LIuJeyCrH5KtDXgUZ1jggFI3OHKdWS1Xb9QOq1ChRoME3W/v8Zd6jRI0cbf6a32OTHet0n6HLfQ4sSKjMS6NRatiqCipGeHzKc2ll32aHTTzRM6oSiKRKik/5giYFq/eq+bNI3eQB0YjdFKaSsnTXOJiQWjGi+AWalKmwwyYrHFk5AZ8Rn4TbVPyylS0xqqkmT9+mSo+M1a0thXVC37XIBrwnR5sqt/mEbcsSLmIKdtvZJyQZECMiiKo0vAKf8gUjYc4C/FN+YCRmSFKmYtnIcWHAahxyn5A4T/mCAUniYuzVI8NYAOUSdf7KGhJM46bHFFCdhokNTLv2Ombhrdqa4Jg6TRxLSsG+KgZQ8zALbzUvUadobedUplARAzI+xDk760J50tle56ELeF0c6wJVF8f6/76Mp69p22xJ/n80cSxtJVWQtQVXdZhRwyWdbxGnVajsUS2ua+v/eOJ4Wcwi+i1OKkDBRzU5yU7so+ZXeh110Z7FmTs9x7GFfRxg3IKLbZhTRtakiZVek0lWqprJKLig+6n5zXuY2cK1IyNz24aLFzC3ZbaR7xTHXvVxBlvKfH0LYvI4jWncvGgBy7g8dhsHVipYWsO1litwpmCe3r8ejqn5Fa6YojngJQZ8UyZpGgPIPcK1nasupxZsWnJcdbVXRr8yXLX4o+3w/1yO8Te4IsxkvlWN5JcYkFPZmO9xsgK/i5GCAZdjlM3al+2V6apGXWp0F3Bdj1oLNZqjFJxUQFllVcY4fWz9HtJrpMBnTOanxk935D01qgJXNFO2qoKuW7h2/3uyb0LORQtwWhAMZC7PMaDwNgbQzrvzuHoOM9o98JmMq59bmuuyN9OYxg2Kj/iajdYpjfw8Odrc2u9AHT559JKZJoyzHmPPo+EVuFf9AFxCacDY86RF1TBZw6IxWclEXT5qtqADrfUE5bBC289ZQHKmD8M8/HbnBQD97Cx+CIn+kG6xzVKrx/Kw5+RDpGDfKicoUzGGH9GAdP2S9PCE/p1Z8l8Nef3w1n/grHyfA9uevlC9oFVOEKZNC32pf8IoMUdu3IY0LFd6BOUqtwUwqGfzfLTf4tPiz6lkb3Hhw9wRZPJdkgysW7Yyn3KdHqPELPHhJXP9Cy7S0Mwu0aTAZrgDfURf0FTfSlENzzOapiudd5zPz3E+b4DYjf4+iQ5cpI3Ga+R5rEUHlhWcCgfk/DZr0QFdL0Ox04IxxIcXPI0950t/ix02iYjxjM+JM2LuDL4RvuZDMUvVC2hQIMU5j/vvSBzB4IkY8YhG5HKlR1T2bGtuiTo9MhRokuv08OdNRWzgpYhFEZleh1ysw7nV5prGNG5WfOA2YwqW2amAXJxQ2v0LVMX9uEmBTXYYkOJV1pg+aa47Tt/FF2mPFY6JE1KnZIG60POJiPGcpxSy/477HFLltrT5J6lymyWaVAnYYI+C/F8Z8W/zy6QYMCBFjRIP2LMt6QNSLImUh+pcH7HCMz6nzaLNjSqPomZLmscURAzxLeiqLFc1vkoJKHnMCrep2gJaiZo1cwqoUqdEKJrODQqscUiVwF6bkuiU7mD0oEf4xH2jzRphZFUKE2x3BT3VnqrilxmQEjar6RRY44CC1xAd2RT3ORCw9wMpKQg1WCLnta3EwgifASnWOLDgs+mOaBt2cTSg5pUEnB4TI6LBkh2vyRKrrQ8c5HNWA9vosNbpXXtgncZNjimgOg0XCkyqrt0TzMJZ20e1nTyBWTSqbuptHCigOny6MFYJAXWT1lbNI5yx0iTrVH+q9p6CqdqCq0wxZSllcS7NMQy7q4xb7Gur6SPZ5ocTr2krawFmFEioYlipr3GMrY5sP9kaX5BzUM09bWVtwuAFpNQIRllYaRzbTI2rWphFwaTOogLPyhDry/mNYVCH1KbMKYQ5PceKnK9qEKrByw4OuFAdRv2MVWuwiGtXVVBI574PzMPcbTnnh7Ltv5O5eRiml4I6CZw8gxqyTGMaNy12MDnkLU4aRNvbszgpjTzmPv0RDmhUJrfe++BYkfs4xuekHIC2yCsTVZmuVdlfWbFjOb7KmLzF5IonXNdnVaO9IvDfyU9lqCoAqgx55DyQ999icslDTCv7W+Bf47RbEzJnlXfR43yOk1hRuRTVGVUjriGOSavHvifb/qo+aoTLI5M6rh0cK1TN+fZlLnr+ysRV2QQtyu3j5FuGcm5PcYWnysTnVMDJCGghULsbfhfHmD0z+8x8D6c5q9+VWtzSz3Aa07iBMR91menA8tue+XsWWdAZeU78Vn0fQkjlP0AMhmmoeGWK1FmvvOMqbV5bPuoxWE2y0Lww4GMH8vUhrWKCOCPOCqaVfeHtBQlh9A/TEB9e0s3O4Y0jgs4J3ewcC/ULztbnjOSARL4+xM/uEfpxFl5fcFWARtksVgcPTWvtrecdPjzNMiDJ3foJFz7kz17TL85yIXJLXQxwrCZXC80LhmmIsrM86LxmlJhlZgwffdXi5OE8y1/1KCXqdLMJFu8MSTIgXxkSC5osvL3gKguN/Dxz2zAXuzR5YwxzLUhlDUMtXb+ktZqg2GnhZQ07aqF6Qa0cIxfW7Tz62VnOvRTNdJ5MwrCy4sMLbqerZDoXzAxhud6jVUyw2XnJ3BmMywPm+nASzLNc6YF3yVpg2ns/qrS4WDBz0efqW50O0bonkMmIhEim3Kp3aBUTLOxfcFW8AA9uVTvcijp8XTYg8mLLPFw38ua6NykYJpkXkYku6GYTZM/0gXoa07hZUaTOmuh5xkV3s0LZAqslatZ8aUNAzAYFmiwZ4yjfmb61WSQkzoAkI+JUCahRZI1D2uQoUeOcJLX0MjEiMnQZ4Yth1W2rxbnHBn8U/hmRbxKzgo0KppapEMOwxxsULLNWGeQ1SiwKOKzyADtsAqYNfl40rBXs1Bb3jGi9qoGdAq0jYI8NVjimQJMKZbuPaoYesibnbjReFUxWAFYjlOKSsmk9IlOYytb4ki0y9ChSo0fGAphtKe4YXVdzzjEiVjim5pXwGFvtWD2HHG2a2SweEVUCCjRIMqBAgxTn1nAsyYBjVmlSoE2OLbbxiCh4DY5ZIS562K/YMLrWDKhRJMLjKH8LgKD/ge30t0gy4Jwk89ZBeho3PaaA6jRMqA6WMiF9eU0X2UUMy+keDkCr4lrZszhmkbIiwSw+1aQjP/G+gqktTMvpF7iF/RizqJ90mM/jFttgHuqVHaYmTwsT2yrAqhqtb2WuT3CggoKLQ5w2qWoGnmGAgaLMRzUMlZ2lTFodLy1zq0OqzHWW1IKMvyDjeDjGbF7235fflYmm12hVxnoOKWVMgX0ot6CoarKGmMV8DPNZ6eepjLR7OFaYsmkr8hko+KDXWPVlla1cwQFAPk5TtijzV9arumKre/Y0pnGTYhFXaFDm9w7mXlBmNrj7QAtNCrLqNlL4sDIhm7KdAn8Kzq7imPCav/QZq4Njqd7B5NN9TB7JYoDPMSY3/y7u/tSugtcyjrJby7i8rjm1Kv8vAX+AK6KphIq29HcwAKRKCOi9Pnmf7+NA1xhO/1TzlnYBqMxBDyehoECqzlGLT8p21Wum12VSM3sTV7DScbTwtjVxbV9gzMV+IMfVzgEwuXxSNkHzus5dtWmRa6JmZHrMe5jP/KVcJwV0tVNhGtO4gfHBu83H6YrV7kz2Lqhkb5HiHDAt/QAFGgzS8GO+DZiF/bL/gpmxucU+rGZ5T0CsGPFRtcWFaCW/YoPbVNn1HnPIfba2ti2zMhN1LVty1TvG8yOaFPAemoV5PN0his1y4N8X8xXjstxdNy3rFcr8VuUlb8rLlPonfHiapU2OXR4T+P8TzWyWTKLLgX+fJb9JLmxTHn5glJhl13+MR0Sz2LXsrJo/bxb2xYhisUaEx5uHy4BhITXzXWoU2Si/MqDGqmltDaKqya++MaRaCpvs+o+5zwGp/pB+cVZAhTem3X/YoV+cZUScdOeSC9+Aywf+fZZocsQKT4c/I9GH18Vbpmk43ybCY7X1gSZL+Ikq9axhpO0GRaOtuGBYsoVOh2Y2yzCP0YHNenyj8pqT8rzVXgTIhW2uAqjm8wxIMSLO7kPTXuxL67628I/wGXtD5kKocpsRvh2nyzyp9IB8fUgloQ+K05jGzQpTYvDZ4BUDkngYgDTFgNtUWWwNOcobjdAGBUb4rHJsdTRjRIRiTDXZuu+LmZ6ySOOMqFMkR1vYjgVytCnQwGNMwHsOBeQMqHLg3zeALZEFLgsCnBZo2DFK1AXIM1Id9zngcbjLnr9hGashcWvAVKNIinNiAoTGCTlmlRynAPYcjlkFsO3/KxwzIGk1TjN0OZf8EScUtdNznvL82nH0fEN8aw4VEucVG9znkAFJ2tl5GhPGUecCCj9mlzihNZFSIymVUsjRZr36jg9Blgfs8YoNGhTI4POegNtUabIkhlnmGjWtrRQ8ZpckA1Y4YoUjRiK/UKHMewI8jFmiHu8xu9yqdvgquEubReqUyNHmOH3XyDoQcZsqJ/xnv/G/42n8emIKqE7DRIRZ/AU4MPAFbtH9Q9xi8jVO706Zl+AW0bpgX8C1dTa5bkIyj1nMPpRtmximq+jPDf4tpJ7IsXVMBTCU+aOaqvq76rkqU+yM6637OzjjkAUcg3OMc3hWF2idu7KhwGkiqiSB6v6pnqguvH1cK5oCkdoaWoUZfZ4UEPTiCOYWcKYuyFh5HPMzj2PFapu9ggR6LGX7aqttAcsmsQwwBVb1/30c4+zMbHd2BAsFuSZFDJiTljlsYwCPcGJOz+Ua6dzSmJbpaUzjJobKcCjQqSZU+jevgKDKamgRZhWXAyfb1ycBRTB5Q9vUwZlGqcRAIK8rAFvFgYmaE55wXWJFpQP03ldjJmQuq/Ke5qRnE3OKcLnnK0zO2Mdps6pEgI8zjfoSB95OGjZFuO+HSdd7bZ2/J+9r7tLCjALQyhqNyRxDDFNWr1MRJ1uiufoprrCkmrVDXC7SbZRZ/1bODZmLgrEKyP6qBIuyYVUfGtn/CFeQiyauh8rK6HmXcQWzaUzjBsaFb4DUdnaeSrYsraUen/OMT3lOT0xRdKGuxlNfFe8SEifFOXFpCG1QIAziZOiRCgcUaNIjQ5XbJBkwIMmu95hPOz+3rKFvRjvUPOM4PcZjXrT9dtOPKFOhQpnH7Nr56uI1oMqb8jJ1SvTSGWry+gZ77GQfGR1TP6DKbVajY7p+hqZf4H7/NZHvUaPIY07xGDPC55yUde8GrCFV6Pk0gZXOO1LZAVVuUxJWwR4bVLwywcMqDZaM3p+PmK+skkoPDCOWFPVsnpA4x+m75GgzxuMviv+IHG1GxEW7sckibXbSTyBtWGTHrBJQJcWAL/OPeNx/yW76kf0sjAN2jv8x+5+xwjFlv8IeG+TSp5yTIsTnl2UDGKUYUKHMiDj40PCNdAMY0LxI3Wgl9o0ma+j5BC1ThVe9VQM0LFrdwxTnVPwymWKXizOfaUzjJsZjXvCBh5IXdqlj2rxVx7SbjzgnxbywLlWnWLU+Aft6BlN8UbBVtzGGU2O+Hf2YPW+DLhmrdarHMaBm2wKbZSoC/hWIMyKgKm3sXZosUaLGMau2fb0m8wZ4MHxNxu8a80DaBrRkEcC25ytIGxGTtv1F295umLNxe+wkA7pkWJScFpP9JgsvKolSo2RBac3Z5ajCnrdhv2N8RhRoMiJOhbJA2oYJusMmRepW61V1ow9Yo0iNLhluU7WSBD8LHhHhkWJAQJWBXNd5Yf8+Cz+n4RdoUJA5m8/DF+5tkyX7XZOjLXrVGcsUfswuAVXGeEYDPKhywH26ZAh4b6UP7nMomrU+3+Gv+G9/83/K0/g1xBRQnYYJ1TvNwuCHkNLFqzKs1jGLSQ/XguljQFhd4IMD555wXct0sqVVgbwnGKBA9Te/wC70U6tyzCMZ5wkG4B3imGM9HINMGZr63le4BXiIa6dXULeOc5HWtlFlJyUmrovqhDKxj5qmBDiQRdlcysaN4cAXZLtHotNaxTHIfJhTl+unE+coxlrNJhTUHEXZunoOqxPzrOJYUR6ujVjb+dWkBjkfBXPUCEs1b4GFVflMOhgAVUEcjSIGfFW2rl4fNXOZZNJOYxo3LVTCQzVJFSxVrei3ONZmE5MDlXGvxRz9Zk1j7qEtHKioDNb9iX3uYHKcSps8wBWHNLekMXlN2bMvMGCdFsBe49izyopVLdY08EcYeYIeToqkJb9XJ8ZVEPk5BgA9wuW6HiZPaBu/GtYpqKvnsy77bONyoMqJ9GVblYLx5Foq+/Y5TkZAc8uZ/NTvGgWutVBUwJl9reNy/fzEPPXaTJppKZDcw31XINu+wACnaRxIrdf2Dg6wfSRzVumCTdx3jM552tU1jRsat6L37C6uExGzQGFSFtj3OeCYVXwx5AgF9AMsgDDJbBqQBLCL7K4/b9snl2hKS6rhBM31YZBNUqNIzSuywSsOuU+cERXK9GSxPCDJGof4jAxIKAt51boDAwS2WbQOzwY0yHEu45WocerlbGvuj9P/iMfsUqZi3ah9RswLI6knTK4U51Q9UwELqFoAWBfQy0c9/smdv+Rz75ltffUJLUCiOofalqrtp+pSbYBUkwRD0TH8U77Pp3xhjVhqwmQrij6sJw93OU7xGXHMigVwfo+/5n/kf2O1D9ssWiOZI1ZYoimKqG173spaU2BFtQM/T/+OZaA186Yt+Clf4I0jYzzmGSBoMWpbMFwdvqcxjZsY+fchd8c/Z+zBKDFL2TfFnAxd2w6/EprCjLIcg84J/vwBFa9MQxiQClx+Em4TxTxCz6fLvM03I3wqXtmyTHMYgzo1YirQoESdkDiFvnnAOkznDEs2anPkrbAWHtLwDUtWW9EdY7NBiZoBKhOzltEJcK/6gbNSk+feU8nTHkVqlnF6So5Pwm0ABr4xm7rPIQApBjZXzNO1Zk0mX/qmAEWFKoEFQX1C4qJJm6NNfHhBId1gKWrS8Aq2ZX6MZ5nBKc4Nk180TAck7feOASvnbY4LoipVL7Bg9FjyV0jcShKAyd9dP0MMk7/ijMj0exym7wmYWrCmXiZPR0SxWYrUiIjJP6MpXY4q1L0SKc7Z4JUxDZTvpBJ1MSszYHifx7/JP+Fp/Bpj5urq6u96DtP4O4yZmZkFoNP5FBbu4LTxOpjFpi5gW1iTIrsQfopbeCqouSrb1HFaoe9x+pv9iX/KxtSFri6awbWUBpiF8qa8dibz08W0Gr48nNi3IqxP1QlVZq2204MBIlT/c1LbVVmXynjSxXcTp42Xxzk5q/aeMq7eYoABBUXrOCBF9RPPMAts1ZvNyjlpC6uyV1X3r49b+Ct7TQEcbWtVwFPb7RW0AMfQeo3TF5xs4X+CYSBPMusUsNUWXgUUFBRRoxcFQxTYEVDnLA7Z/xmA7NXV1eQnO41p/L0MzYX/529gNPw84AIYARmc6Z3eo2N5PQ2cYqQCFJCbwbm7q+P8CQ4I9IFzYBZjBhgD2sASjonfxbFcBzLusuw3kO3zMsci8EHmqkDqpYwfA+Yw9+tAXuvjjJI0R+p5ZmVfPa8uLjerxIEWhapyfGXIX8q4ur8CtJ7MW7Vgq8A35Rw6ct7INpdAA7glr81hvkNysu09DBh6LtcmgwPAP5Y5Z3BFnUuZ4xwInuP0WTuybQOT4+ZkTsr6R66t/h0ApDCfbxfTVaFzScp7l3J9RZORGAy34F/+P4FpPpzGDQn7bPgzSN6DmDxPzEju+7CaJRN2SfUvzetv4WIV5lQ+KuTa881VAU7zplqdrwxtt8+wDKPEHF3PAHf3qh+M3uePelZ65GrLHPdiwRg/aYHnKg1jz8xtpgr7Tz62zKX/pP43EMIvy/f4xlev6a/OApDev+TNk2WzuO98YE6LVvr8ti56o897tkPp64d5Pqq0aJUTxKKIZO+CuRfAKgyzkGhhnlO35OKN4Sph5nRRhnZ2nuV6j2EaEnJN+tlZUv1LZupwcRvmVMO5AMOiuSaqm3rg3zdGVBXYf/gx61+9c50UY2gFCUb4xjBMiv5fr5o526KUfn/Js+qFD3M/whXr1PRVnuVbQcJq3Kb6QxId+CowzNlM2CXdvOQqYa5/N5sg0xmazyYBrYcJ2uSMbu2POlw8kb+LNHRGkDNkgGkunMaNCM2FP+sEzC6kxZQoRoYuJWoUOy2q2WW2+YQVjsTcyeM+B2JolOScFElpdTf3xoCxyACckmNNQEktkKg8QIYeTQqExE2hgowt2qjmaSoa8Atv04KMqxyTZMAujykJg9MAooZ1eU6KXR5ToGl1RMu8NYBf/4RmOk+VwICMcjwQ+RKqVChTpIbPSKDYpNWGXRKQ8rawZHO0ecljq406wrfzV+O+JZpScPEpUaNKQJyQEb4thgVUbTFmQIpjVihT4X7nDV9kjSbpSAyuFJQGU2Ba44AapqizwrHpbhCN1VBa9ws0iHBs/K3OC2IR7OXvWrkT1cwtTBSemizhE3JKzrJyQ+L281ZDrxWO2OYTRsS5TdUCsP/vs3/G/yv7X8I0H974mP27nsA0/p6EApRqKtTCPAw/xDxsqonJOs50ZR8DnooWFs/ld9XtVLfoDga8VJdnZUVOAohqdrCAAwR0XG0pbWEW8Qo2tnBt5grWnpltrGHTHYzJlLa568NlAsOGVfBRdQQLGFBQpQDAsLpaGKA0b87p7Ac45u4WTsvvicyxL+d8DwOGKkurglmAq/nMd+WntokycVyVOyhNjKlsWpU78DBg5h9MfAYv5P+qM6tMYmT+MZkbuFZbZafFzHGvOnItQxl/FfPZFOWcFaRWdusLuPozHIgyjWnc1BhgALNzDDgXx+UnZXvmcMWVNNfByRHmPlrEgXZ9DHD3MQZ4U7Azi7m/L7kO4C3Lz1sYkG8FlyMUfMzjcvY7GXdF5rKIyXF6POfdYrbPyDnkMPe3J/toHovLv1lMoWQDuC//LmXeDRnXk3newQCKSRygomPcA74h5/Cx/OziQOm4zFe7GNIT1yiBAS6TODO8ZRlHr08k172D+dy6Mta5HGNG9tcik57Dx7hi4Jwcbx3DOr2FA1tVKiEl213J9dIx01x/msrINgVcEW8a07iBcbYSo5tNEPowM4YP5Sxfr+bxiBj4KWbGxoTo9dYt5vpwdm/OGkxRhv7qLMNA2sFbQxZbQ2MAJfeFmj+1yRERo1+YpUKZN58tM1yF4TOYacJX5bs0s1m+3spzFYOhaO6PErNU83k+PMlSimrk+h0CqjCG1+VbRqfu4Tzpo0u88SUXZdOqXwrrzJ0BLTjZmrfPrK0gwXK9x9dP8ybf5CFoGfOmTGdI18sYEFa23U5/i6s0vP5DUwEaihzJaT7ByZN5DrN3qVOkn51lL71O/84sjCHdNGZbwzJGz1Q7g3xsK/3XxTzpziUbfdEM8WB9/x1XRdgPPma/+DGtIGEYrWEXYgZkPrszx4AUb8rLrrA0hNertxgGcBWDuRB4CmeP5hgW4fX6LX6y9S2GARBBvjrkwhdt2HSek2DeMpOjmAchdLNzjBKzLLaGBnAvGjA1FkWkOCfC4+KJAVwvivAmWKabnTZGTuNmxi+FTbjKMSVhbYbEaWfnqVOy7fAp0dpsskSNIjt8U+Q0zi0z84A1umRYCY9ZoklInOd8yjmG9VmhTIU7Vnd0hM8BaxRostJ5J0Cj2a7hFayucUSMJAPeE4i+aBHAgqkKOsYJKQlzfUlAywiPbnrego8qDaCt6o/DXaoEjPF4xQa7PKbcf0eMyEiWUOKIFUJ8YkSsRsf0yFCkbtv6AUbE6TIv18LMa4xHFyPLMhD90ioBETGjqU2GBgUK/RZVArttJXuLuJz3Zt8sflXmoETNMuN9YcF2mefHfJsCDaoEjIhbCZe6HHuPDXayjzjIf8wxK9ZwKiTOfQ6sbqxh65/av48Q37JvP+U5ZSrECalQtn8fKxw7TW6KnNsq/zRueky/2aZhQplTytx5hAPfshigUBmd6uaupkei2nw1NhV5ihhG5CQTVcdVd3sFB9VUCq4bmqgZlJqYaPu+AoAlmdNbmUcf14KrjEkFXndw7tiqCfo3csynOCaF6vKV5D3VRtW5HGEW9guw8Jns9xy3IFcgeZvrmn55+f8OzoxFW2O1+2kSWFbQUlmnalzly3h3fuVaqp7tqhxXWSHgdF4T8k81D7+HM6HycECoyAnMbMl7j7huRKaSBZ2J/b5rfp9RWYdpi+s0bnD88f8NFj7GMN97mL/9AFNY+R6Gza3GbsrK38cZwr3GgYIKUAaY+/8e7v4XzWKymCLLHZwT/TZOq/k15j7Ue++tzEPBWs0HypJvYe7D55j8pqHmej1MoUu1X9V4TnNOFpNnlBWfwEkcqE6zyMPwWo6lhRWVUOnjTPy0k0EB4dcytp5zH5NbH8rvP5RjqE7tJo49pQW0P5y4Ri9xxSiVmvFxXRSq/63Me5WKAaeTK4Ukex1U6kE/C70u+vokmN7CdTes47ooKlhZgLN7lqE6jWncqPDGEfn6mAsxt7wlCN2FD3P7wBmkPhsw8uNcJWChesGHcpYFOpwE8+Q6PWIRlDhhpg7kYW4sbFOR0djzNvjtulkMnxTnWYsOiA8v8MbiQN/BtlbWKOLljd5goj+k7ef4qNLiQzlrmKN98NIRVwm4V/kAQ2itJ+ivzhL6cesWHcU8WuU4+eEQPwohhNaTBE2WaBfHlDsfIAtfFe/y8MUbYoEBSdvk+Egq5E2W2Ax3CH2sSVeiBYQGwADDkLrfecNcC77l79MKEoQBxKKIhdoFxCBKe/ghtMoJ8p8PiWcvWKheMAxgv/gxpajGQu2CN+vL3K2fUM3nKfffcZi+Z0BqXtLIzxPdCVl4fcFC/4LTsmm17d9pEsU8xkWPiBjNdJ4gbPGhmKXQMZ+lH5pWX2/dtLEO85ckOhDFjC7s+fwcCy8voNmDR+YzuspeUPUCCl6TKBaS7F1QD/IErRa1vBk7ihkw9ZwU+f0hpUcnjCq/oT/caUzjP3IkORfA9NyaTil7s0iNumiCOpZk3OaFEjVGxIV9OaJMhTpFDvz7tFmkzFsC3gtQa7SoB6SoEpASXdIyFVLhgGp2mRTnFgBEHO5ztKkSUKdEgyVytPGE6aqt90XqjIgT8N7qrGrrexXTGq/mSirxcUqOAtD1M5adqrqju+lHVpN0RJwMXU7JERKn4a2ImVaTJgUes0so16BMxbI3AZaELdtkyeq5BiLpMvBSHHKfT/mCavoWOU5F1TROm0UGJFkUGRKPMSscEeKLUEBkQc6BMIPb5DhkjQ32hGGb4pyUgLrzlg27xwPaLMq8TAVQDcUKNMjQYyRs1HNS1tCqQYFjVilRI0ZkpRaOWOEZP7VzL1PhKc/5V7/pP+Rp/FpiCqhOw8RjTKujaokqgKbAgLJKAxywqUxJWYjPqN6cPHjbVvgAZ9ii+qlqnact7BXMIvs1BnRQE6oFzMJ8LPuqfqgaSM3jwEZlvRYxRibakh7hgNuvuO7arA7MChwf4fQENbTNNy3vT4KdvwogqBTAvYn9a/Lznpx3Qc5vUmuVietax2klMnG91BxrHwdSvMcB0jEZc1Ou45H8rq7ZarQyaWKlZjvqSK5M1TFO6kAZdmq0ckfOU+et8g66nY9htP1/mMY0bl5sYPLCH+CAUjVJGgL/XH7q372yTFXf+fvyfwXh1AipiQENExiQThnfY8w9GmByS4hjvd+R15RFrtrSgRyjItse4bRRdYzPcCCmMvhVZ/qVzH9LzlULYH+Ea1V/Yc7h6vsw81yOrax8zV0eLtdJ7n3zdJm7f3LidGAV7ASTN4oy3/+9/FRAVsHo78t1P8LkJwU9n8k8NXfpeWpngRSnWt9NkD8aOt3U/xynV6uFJi08PZXPLpC5/oG08Cr7XwFh1X4NMcB4ZObb+ixBfntomWwUoB/Mkt6/NJ+zMIiHaoI1jWncsGj6eUYLs2ToUn9asm2rVW7zrWAf7kDoxwlaLRr5eZabPQYk2S8bZtNy/SUXRaikP2a9884WftrFeZbPerwnYECKVjFB/sUQirDQvLBA4ufZTb4z/hn5umFMLrf2IWaYsvSHfLTfon9n1oAY2QSpmHkgGqRniXuXsGDYllcJ8MZDUgytxIBHxFfrpoIerpqH0pXOO2KR2X+UMEDJ2aM5FvYvyHeGHK6mIAYnD+eNxuHYSB6ExK+dQ67To5tNEOERxWAubZihfjjCG1+SeAlEsP/sY4KwSi2fJRUNuFo3DNVE5YJEGnLpNqdeDkptFqM2Z4U544ydXuYbR69ta//y2EgUXBVhpgN3Wie8zZvPxrTue5T776imb9HIG+HtUWKWgZdiYWgeikf4HPj3WfKbjNMed6snAMy9uDA58B6cFeYMqJPPE0RVMp0LQh+q2WWWwiYzQ7hV7/B1Mc9YTGWSDKAEiTp8WFGtqmlM42bFGvssMWaMR0BVGJQedYo0WGJJ2sZjRIxFezRDjxWOxIyqTpd52+7tEfGKDW7LWK/YYJMdwOQTwMoDqOlc289ZRmVcgM+tzgvO501Om9QqNj9j9vgAfhRy7BnW5SY7xAlFvTRHGVftUD3Uc1JExIgJcHyfA+qU7DyVwbnCMUVp19d9lmhyxAo+I2oUydDDY0xPjLaK1KxR1jErFGjiEVGkxmp0jDeO8MaXHKfvir6syVsZulZuQLVh1UivS4EU5+Q4pc0iHmNWOaZLRgDviBWOSTGgRslq2hrhggE90d1uk2OVYxD5hGNW8eRzbbBkpQ9ynDIQVvEI35qHARywJiqycdY45JwUVW5fM+kaTzWl/8HEFFCdBgD/4gtIfMAsCueAY8xiVDXtlJXexLRTXsp7aeBvMe2Wi7KvMhm1XfZY3g9xuoJNee9/knGvMA/aqnenDMj3mMXyrPzTdk5lr/Zl7AHwRvbfw+kSKsPslzK3Fq7lNsSwm7KyvY770cQ5akvtSMZKY8CQLo4ROiPnc4Jp9eziDK7m5DjnOH0+BWNVI/Fc9jvHaSdmgEOcDuul/BzJdTiUYyTl+G9wOljv5Fi+zEk7EjwMCPNuYkyVNhjLttmJazInc/kZrh15Vs51RsbV+S3iDHV8GGoL9DSmccPiagm4YxaOC7EL93d9D64CARcVzBvD1R0M82qMuTfWTTtqIoHTQM6a/a2B1Hdl2xADxul9FOBMoZQZqm3jCoaCY2AWobUqAOId2UeNA5Uhq8zKwsS+OqYWtNSUroPLvQIizrzEseHHcLUJMzsyvsp/1OX8fLj7wxNzzlpImue69MEQA+QqSJzHsTrBMUvX5Vp0MEC0Pq1kje5iQjsllDEvgG6+PnQM1zEMA0hotwQ4Vq+CyMqql/NN6PeUbq/GXKtwURQTQSns5atDJ1PQMXNPNy/N8bUAuQrRzAzmS24a07hZced9k4OFR2To8vCrN7YzxQvc4jtfGYIHHmOIGbYjMWl/Txjg7pD7rKffMVyFKDaLx5irNBSpsxIekz66ZLiKARyKxuwoPrzgm4kdvl7PMyBFgQb5+pBhEXL9jgET91uk316Sjg0tWPuw/4ZfFu+R89t8VG/xJlgGYCls0vUz3Kp2WKDFSWAScpscG603HOVvsdzvcZWA+PCSuX2IPjGaqeSBMaxwzFXMnGtEjCg2S9UPWOm8Y5SYpfUkgR+OaPs5kmI6FcVm6Weh6gcEYdXoqFaBR5hWVt8k57aXo5ivkekMudoyUgoDkpT6J4atK8XvhaBDK0jwZnWZu0cn5rwlT3ezc3TzGQr9FinOiUURXxfzZKIuiTpkVnssV3rgY1mq/cIs6eiSCI9vVffZDwyY/Tq4Rbnzge5nCZPr6rDgX8BbaDz16HoZkl6LRAdi6Yiun4FCF298SbHT4lX2HhVyfKfyM/OHkob8uymYOo2bGZfESHLGOSlSnLNEUzRRF+kyT45Tkgy4339NLb0sfvRxUY2KW03Rz/kdC14+ZhcwbNSAqmh5xiwwZ/Ke0RgdkGKl845cos2ub+QHapSoZpdZjNocsAZgmaklYaPWKVnWbM0rWfA0FLCvyRIP2MNnhEfELo/xxQArxLf/bwpY+SwymnGnXg5PGJgKMG/wigplttniNlUrBxARI8VAttmzJlIVyvgCLg5I4jE2plDDC5rpPHHfQJJNlpgXIFVb8As0AKhTtCZ9SQb4UrDxCa0OLGDlFuKEJAVAbVKgIMCvgsbGVNAApvc5ZCTarmoaqJ9HKapR88y1VbOtpQkpgSJ1vuBTNtkhFNatMmGXaPIlWwyFjTyNmx9TQHUaAPzxH8HCVzjd0hDHTtQWeGVMauukGoGAM2kp4MyTtjGL1pfyurbVqwmTMj6V7foIp3XawxmY6AJYNVj1OMqQHAOf4Fo/Ve9OjQaKOMfltxh2kTI+J5mfujBWDVU1j1Gmk5o7xXDtu2k53yPZp4NjTDUxrbnbcu7awqqsKg1l0r7AMcqqmHZTlTHQa9DHtB4/nNhWW/4VfFEwJQC+lHnqfJWlqmC0ft7KGNbPRK/9UMZTwGDS0VvlE34fw3hT4OYzOGvDv/wZ05jGjYuZ54AHC+ULd08D+DCjIKUyK4di0qJyKVngJwLKZTH3bA9zf+m/R2asqzsws2/GGAaQ2MEu2u09q0x8zZtNeb2PbW/PV4cOGK3htJd9uLonYO8LGfuOOR5vcbklhgNzNY83ZQ7PMGCnMvfHMFORa1KeuBZ6jd7Kz3s4iQLNt1qUeSTHUZ3u78j7wcQ8lDGvLPqf4KQJzsTYZUH2O8LlfJ2DGs10BEzVYtJrHLisutItuTavcaC0grSPjCbhjGhWz+n321c48FslF5Sd/wJnqigdC+elFA6hncY0bk40bqfZCPdo+zmG5SG1tAEnz0nRDQZ2wby+/45MZ+ju2z78dfE7rKSNZtx/Wv8hJ0/mSYUDQt8wpwbpWY5ZwfMjyg8Ny0jZVDVKRGmPDfYsm6dLhp31b7LGgWU/koaz0hynntETXOOQW5UOK+Exx/4KYTFOKawTH14SxaDU7/BVcJf7nTcsV3r4QUjkeXyZf4THmK+DkWV2xZ+GBoTNmlb81rMEuU6P5/kngNHAK/l1PCLmzuA4a5y+B75hIKnpigKm69V3tjB29R0DmP5W5SUXC0ZHNeicMHcGZ4Fhm6l24SBtjKGq2WX84ohSq0NTWnp/vrrOt7b3YcsApLeqHbxCm0r6Y9rk+O3mCwbFCG8c0Q/M9c7kX1BJGwOvWCR+e54BYs5Kc8Yh2+uSocdcH86zKWAIBZF6KGDbh+vZPINsinL/nczzkpk+9IuzrITH3B9fchbMUfUCapQoJA5xD5zTmMbNiRFxKpStSZIaKxWpkWJgQcud9BMLkB6xQoYu56SoUGYVo5mqreMKEk7muDolC9oBVAko0DBO89mudZMv0GRA0siUeIZlusYBcUJynFIloE2OTX6BJ8dTxvgeGzxmlyI1DlnjkDUKNPhCdKIMW9SxOwckrabqn3vfY5Vj5kUDFQwYClim6H0x2crQxWPMOUlSDCww6TGmzaKYeOWoiVzCJjuM8RikE1bLNUebkLg1mjLXvE6FMinOzXURtde6ABU52ixFTU69HDWK9rwVDI8RXZu/7jPG4z6HdMlwKhq1ysY9JWelAJoskfPaeIzxJdffpmoNrMDIPDxilzamuFYQUzGVBQh4z+CawcE0bnJMAdVpmPggP19gWi6bmAW8traqyQjyu+p6qnanmj0pkLgt29Qxradf4YykdMEsjqq2TVXb5pVlpXp64BipW/K7grMJGXcBq1dnwU1tUVX5AAUltD00LT/Xce276kCdxSzk38r4iYnz1PdUP1aBk6a8X8SBry9x7akK3iqoqsCmzkmNsVQTVg2otF1Xmb963meYlt8nuLb/tzi5BjBgRQcHEmzhWHMKBldwbLYIo0/4Qj4LddRVDUIFfJBtlLV7ByfrEGEYs9OYxk2MT4A/x9wrqotcwt3fCg6+xhjV7eAATW2XV9am6paqhrQWNH4EM6Ix2nombaLzmHyhPp8qC1LB5NAf4bSrtQ1ec3RfXhdDEZrmWDMvMLlK56O6ngpe1mX/p3KuAS7nDDH5N4EDIrU1X9iYPMTkO9WDBVeI0iKS5iTNG3oc1cPWQs1LHLCqeqmaZ8/kPT2OaqX25XN6wXXwW/Ohsu9VnzuBk0vQIpXOrYorvAUw/ENI/Hcwo3NtYXRpt3DfU8ou7k/8VN1bZf/XcUXJaUzjhkW20yfdgXTeMDqbLLHCEUuhAcXS1UtOVkeQhcPsXYJ50wY+E8Hvd/7GGFWV5uhnDSs13XRs0laQIEeb9aN3DIuQSXeJRRE5r02ER4EmqWjAwusL+ncME3SJBrmwjTe+ZJSY4yfBt/CICKiSocutow70IT28pLBuFrADPwUYILeWzth2Ws0Tj1uvAajls7TJ0SXDb3/1gtcPb9HwC9Qp4W/tck6K91mT7JUFFuFRogZNiMoGABmQJEOXoP+BRB++LhqGbStI2AX8ctUwRT+UDUs01+/QzSaIzUcs7F/grbbp+hky9GiTI5YwIEwqGtDIz7PWesfMGCrFGGShnxVXvAgGvmGy7WaTXPhQanXoZueoeSW2Oi+YC6GQbtAlw0H+Y1Y677hKQKHTYa4Om8WXRh+3ZLRuB6QgMsZcc/Lser9vrpkfwthrMXcGieqQs3tzkIWxZ0CfjN9jud4jnn6Dl46mzf7TuLEREmeeMVVuMyLOCsccch+AzXCHY9+wHLvEKVGTNvcuJeocyHZdMqxwTJMCuzxmhWMLRoLRXjbu8QW7/QZ7toCiLfpFaozw2eAVvsCNG+wBSGt9RJtFa5RVwNzvrwh4wJ5lyy6FTVb8Y+tUn6PNJjs0KVAlsJqvpbBO018iQ9fqkIb4ZOjSJidbVvlz/ikrHJFkLOxdo9Oa5JxTcixK3iwQ0mbRaqY+ZpcBSV6xYfVoCzSoU6IperUZulQoMy/H9IioUxTzp5Ex6GKJInUaFNjzNgiossErdtikIExSZawes2oBX23TjxGJdECGgPeck6ROkQEpemTwGVk27BJNC9JGGI1qZbauiFRAjMiC5bpfhMcIX+Y7Zaj+Q4mZq6tpG9r/P8fMzMwC0On8G1hQwO42RofzJ7hF4VPMolWZmgqqKnC3iTPraOJYP8rgSWPYU6oLCGaRq7qhSt4p4sDG1sRYyj5axzwEl+S157jFrQILYmJgI5Axn+BaZZVZ+xpnqAJmsZzAgCQlmY8ajuhCX3VmFfiN4RyqdWEuelOWaaVAiwKo2qK6L9fjJQ680bZg/V0Zodqq6+EMYLI46YEXOFBaQVhlahVxZl8+BuDeBz7FtcdWcIZi2zLneblGCg79rlz3H+AMdhRwn2CsnV1C9v8EQPbq6kohomlM4+9taC582Vnk4atTp4esOWlVZAD2L7i4DXM/wuQLZWGWZSBleE+0kV/TUwXb/t7/bJaGX+Du9okrWvlwJa39Myod0sHkCM3FaRy4qPqfBWwL+zANiW1scae/OUt659Lso7lsjLnn9Ry1iKPA56RxlhoVqsFgYN7/upgnzojlo57J1fM4LVewHQtn9+ZYqF6YeWouEWbnxTrMfYFjmerxtdDWmhhTc57qm2bhIg9z23KNg4njbmNy2APM3CY7LETG4eqRyBc8EubVV7JNVvb9yvy8WIe5v5DjnmGA5Lo73sUqxCIIfWim83z0ouUKZ+vwbj5GOT+GaT6cxg0JzYeNt1D4EihBf2uWdOfS3CsiAUIHPjzNEp+AylL9odEhrmOfT4aPIPES9p9+zPpX7/jwMEtInKBzQjNrmJXEJMc2L8wxQtyxtAgsHTzDdUjIM8/Zd+dYeHvhcog+M3ag/2jWaJa2AM+AuxoLLy/Mve67474u3iIiRrn/zuyjBqId+HorT7HTopk1IOjctkigjM08AXayjyw77DG7RoKkb7SVU/1LZt7KddNcXBAzqhdDrgKTQxJCGPgQZLm13THnqs+0dWhtJQDI7w95vX6Le59/4GpdmPTy3HcVwNv8MndfGB1UWzSXebaKov/MxLUsm2t38mSe5RdGFqB/Z5aBnzLGXUB8eEE7LecfGl3YGbk+amT7oWjmPekD0Fo3sgHNCJbMGmCaC6dxI0Jz4d907nG1kLNmVOoirwxKgDaL1pwpycCaVp2TkhbzJZsfDlnj9/lL3hNwmyo7bLLGoWU0tllkiQbzdK3JUUicGBEFmlbjNC4t+QpGqqZokyXL8E+FA4590yrfpECbHCscE+FZXew9NgDEwClpW+AVyI2IMSBpmaIRnmGz02Uz3KHqB9QoWqkCjzEB76lTpEqAR0SKASscExJnm08A05qv8gA1SvyT1t+yl79rjwFYyRcDFOcAA35+o/6aVjFh9VErlK3ZVEquf6nV4c/z3+Exu4yF3aut96YQ1wNgjwcWuI0TivZriXOSNFjiE768poNr5mWu0wFrBryN9tjzNqy+a45T+VzqRHhsRHsciVnXCJ//x9l/wX+d/a9gmg9vfEwZqtMw0cIxNSOctp8uftWkQ8G5sWxzD7Pw1Bb5obymIIS2jPoY5peaSwU4cG/yAVhjzHW36zTmYU+BT3VgViOsyfb0LQy4WMNoFepCexvzcA/OfEkXvQGOCSV6ibbddhXXzq7sLAU5V2UuyjzLynwjHDtVmagKeGhLvhq9TLLCgokxH8p18XHMMmQsZcyp5qFegyfYh39rHPOZtBT/SMaNybX0cI7dCpx3MACqhwOp07LNbbm2zzHAqjJoFdBVMGOIa6edxjRuWAS/ODWaysqa72CBvYWXF1CHOWUz6j+5p/vrYkikOqRaEOpg7osFXNHJg/QPL0n3T67fw49EdkAKT1fromOqkiEduZ+Vofkal58wC/vES5wRXR3SpUuXr/ReB9dJoFqoWhTbxhWo/ghTQNEikJ7LPgRbLWZec92kSkFYNZ/qwELrwhVfVI9VWuTnvsBIk2ziZA20QPUWJ6+g56tarFLMmpuUd4nJPts4jdfnct21I2Kis2FGZWTqMLc6MbaP+f4Q4GNue+L6a6FKz6cPMfmsEs/ho5ZU69SIah8y9/SCT2MaNyveZgPS36tSSRsmY6uYoEKZcrZigFPZTl3rT4J5Y6pUvIAE7K+b/Twpoqx0DJiaigbEvZC50JgYETOO9hm6LNQ7UDZg3VxowMiGX+CQNX6v87fMBcbgqL81S7p6yULtgqGAd7X0MkH6hGp2mTutE6p+QMbvcqvSob86S6ZzwSA9S/rokrNHczS8Ahl6+FHISXHeAiAAX5fzhOLU7RERtFrM9KGZLRBlPT5abzHTBCKIyoatGVDl1lcdRg+NQUmeIa1Vs+AvUyFduOSkPM9ytccwawyoYlHEyZN5mhR4WHnDL9fv8Y36a3L9Didb8yxXevys/IjH/ZfyeBmjyzyZ4gfjIl6Gg/zHlPvvqBWXpfW1RI42/fVZowf7AqejPTZgLIHo3AJnT+dI9i6Y6xvjmg9PsobZ6hs214G3Ztqa0yHnpChFHfpZAxJ/KGfJ5Tsk+vBV8S5BVOVs0xl/5fod2uTIxz4wcXmnMY0bFQ87r+ktLPOKDWGaHlnzJzDAY0SMlc47ohjspdeJEXGbKj5GqiOWj6xGZ0DVgoMAT/nC/t+Aj+eU++8YJeZY5EvGnkeqP2SQTjDC5279hGEa2uksNYpEeMKqNG3tATsMSJJkTOjHuS0yBcpQvVf9YPSSQ9Oa80nsSxpegaD/ge30t3gc7XLkrVjGqOqA9shYSZNPec57AtLNS4JClYLfsAZYq9ExAy9FXNrtS9ICFGE0slc4AiDgPV3mGeHzLPycWj5LEJnF/p63wW9XXnBSnsePQhaaF1DEdA3Q5UMxa0z6KPGPWz9lxXtHPZsnTshYjL8a+XlWOGaMZ9v9u4wIoiqnXs4YLO7vkyv+jFfZexSp40chVS/gWf+n7KSfsMIxQVQl9HzL/B3jUaBBLIqoegEhccae+Xso89Zor4Z1lmJNxp5hsC7sX8BDeE9AgSb/X/b+LraRNM33xH5SkAyKIYpMUiKVkUWlpEzlV6e6Vd05U7VdPad2uwc9wBge+Az8gQN4jQUWvjOwV77yxWDubPhiAV+vYcO7wNpnF97jc3DamPGZ2a2Zrp6qOdldqs7szFQp9ZFiFlOkRCYpfohBMiRfPO8Tb2jgy+1e6wwfIKEUGR9vBBUP3/f//J///wlPf+t/t9P43cQUUJ2GxABZWKr+6RdY5qgCnkMsiFbg6uLzJdaNXltOtfU9QAC8Zwgw+E/Ma8rgiuvmxXVAlUmqQN2XXKmC89zsv2/eV/MX1dvTlnUFhBX07SGL/i2shquazMQ18OIgo4ss+PU6Mdf5BcLKSmNbR+Otn6r5qscjdp41cz90RaJ6rfvmtYb5qWCrMSSgYM6pYI5+Pmlsi/ADpF3XaM+mf4Zlumn0sa2oa1iw4pfm3lUR0KJsfh5gwSPMOPS6quZ+LJj/KyN3GtO4bvEGKR58gS207CJ/39qirvIX8WJMRwBSwD4jQywbUyVPvsDqJp+ZbVaQ56uO1Wbeld9nFLjTokUL0gfYvKA5zhRAkp+ZY55h29u/IGJiAQIyFsz5hoicgItIC/wlwoLdNdtqQUo7GGpIHkwbDVgFTg+wus+7WJ1WD2vApbIqdfPexOwH8v2gEgQK3Haw3QQqZbIGl58a0LkQ+2zUPFq3T5v9F5DcptImZ9jCEtiCkQLBer0BAsyqzrQCqaEZp7J5n8DMZ9jc+hDJ4arD6sJuQRPqNKZxveLOXo10Hja8t/RzsxQaQ85LTbKdIQnzLCzT4Xgjh1Ps0mWepd2esPgTsNF4y9iFMCEs7mYux3Kjw9iFc2NYd1YWduhq5y3Jd4DZ9n1BmJte4wKvcAI+ome6LXqeXudCWJTFWdqutICW+8LIzNJlpgEbk7dyIQtmeyMHQA8WjsYscMzJ2jxdJ0s27LJU73Hiz5Pugx9IMpmZCKNz5udAGb7j7luyQQ4IpSPg+BPDtO3Bg4M3AvL2obA9pLEFYcJhvHDBUq0nRlC1C9KeaHWf+fCg9gYmol9IHxwXlnZ7DH24H+zQ9eape3Pc3j3BXQ+o5pbJ04YD2AjeQgduJ06gBG5O8k1qeEHyDFiDE180bLtulmzQxetc0PZyEftsoSF6fnO9McwPGHizLDcEOK24VbL9HukOvPGXmOnIfRx7sFztSM5bl/ue7YyZGcLEHwhDF8h7bZjI38E0pnEd4ze5ewSUIn3TKhWyhj2qhkN52vwi9/tkGBDiUMOnS1b0TgtzEQNyQIYd7kVanlUqVKjSQEyj7rHDSx7hJ2q8du6Spcsv+CGPPDGxCnH4V6VN7rDHKgcRm7RtdD5fc4cyjYgpqsDu3/NRNP6s3yNLl5ori2yVKKh6CbJ0qTtlEob16TKiS5Z3+Nxhj0MEaG2yyHvyvPJvXzG0ukmNr5wPKVOnFi3ihdGZIuAb7keM1UNWcQipcRPHDcV0yhlRpk6TIp9Vfh+XgKzTxSmFEYN3h/vcZycqgqmJn2hwW6asMnZBgOoRKQZkmHOkJd9lxLcbBdrkqeET4DJw5shwTtebj8y0Bk4mYuU2KUbt/QlHxtQmHxmVVVnBMUD2O3wqVJmny9mGLA6UBfxuqgf170xMW/7/kUfU8v+vYSGuM1pDFpnKumwgi+gEskDdxOqrFpEFquqcbkJUdFGNUl2cK/AIMgHTlk4F9JS9qkxOZc2WkEW/MYK54lptFtkcmP0/Nq8py1IBEDViMmYjERi7i7BnFbAomHOpZmAP28ZbQcAPBZwVtGhiGbbPsS2j6+b/n5lr0UV//JgKzujYwLJYi2acT7Fg9Y8RQPUZFuhWKQA161Iwtm7G2OOq9qsCIwpoa2uWaYuLGLAHsc9GzcBUTzXe5gVWviABZ+8g978Epm0M07gmEeXC/xQWbpkX/2E7vJrxaY5SAz19JrbN/5Utqc+zj9VcVbkO3X4DYWgmiBjlfIk8d57ZVjVBNSc842r+cZAcUcaCqC1sgeMnZpyvzHGVOatdBRux4+0igLICiKpHncYCkfrMq1TIYyQnbiK5TiUFDLv3ct2wbJX1/xBbGHuG5Bn9TsHclz8143yJFL+Upa95S4tOymRVYBsEEK6aMawh+XyC1W5VmRP9vLTjQv+v3xcT83loQU71cpVBmzOs5O0LK8VSxbJTn8r2Zz7kfgJM8+E0rklE+fCvYKGELSC5MPYgWcVKCy3AMGdkRnTO6CHzlbpIjgRuisLnQ5HZMABl4XNhSZ6tJFl4No6kUoaPjZmcmYdeejCjsimmwHX2J0mcSYh3cCHPqQtvNsT1flgyLfJVYbGmhheczydZ+Gpsc5EabdaR5zVh5EOq0i4/MzQt97sdSIuWaPIA+f9NIw/iwJsnS7zD5+PPv7bjU7mUB+ZeqTZzAjuPUzb+ihlDTtrib7SG0kI/gW/XRD5kXDGyBwlzL54i+UuLUQtAA4afmtZ9F3a3PmCj8TbSlh6uCYN2poGVTNH5vuZRYzyID5dp2Cnc5sHzN7x5vMRi0MTrXNDPiewDE9nmfUHYcsu7Hfv3YDqk9ivLrO8eWwPEnBiW5r4PTHPhNK5JaC78prNAfuGCJkXqlPkw/Ir3Tj4yaGtSxA9rLLwcM65AOzePwyQCD1c5pEqFR31p4et681HLuENIsdOhmltmMWxy6hRpssjvbT+HIpxU5mmTZ6P6luNKji7ZCDTUln0FClMEkbZplyz3+7u4gSlQVYec+UleO3epUCXEYbnR4TeldQJcYdhXO/RL0hXQZDECSM/JCEDZf0vdW2KES4jDav8NzkRy56vHt1ntv8ENYODNRmaAbiAseoBttrjHDj7vcMNACjjI/QIx/1Jm+yidZOI4EUO2ySIfBV8ycDM0KZIiYP35McePRYaknZunyzwuI241Wlwm4NeFDdN+3zZg6CID5kR/NgwIHJcu85SDBoGbiljDGc4BaFIkwOVu+JqJ41CoDXnjL1Hun0hHROeE7dxjUgR8t7VLrVBgh/tk6Ub3OMWILtIBcU4mklz4m7Pv8b/I/Q1M8+G1jymg+o88oknzfwYL38MyR1vIBMtBJn8KYoJtg9c2/VzsgKqvitlX35tggVNln3pYiQBtL93lKujXQCaOC0ST84iJqnpQafNTwb8jLFiwgHWs1+2UaaUs0mfY9naj68cKshhWMPbM/NTFu5phebHja7tsnM2rxzStoZFcggKaCsKqmZe2tipzS1tx+whgkTbX+NDsr8CJRomrLbNqXKOgj7J0HQRMAMvm1XEHseMfIWDGGZYJXMQa9miLrbJsv5LjnYWQ+2fA9EtiGtckolz4f4SFLvJsPsAWb2pEZk9sIMCash61YKQ5IaavGYGn6lj/GRYsjUsGaL6Nm9BpblFpjYcI2Ao2lyl4qTlVgVktdqSRPLiNZVtqi7xqVWteO0NkWpR9pcf5CfAXSCHHgBeUsPIATQTMVdCjYN7TwlYVq7G8a473hTmGSiLouJvm+v8E+BlWp3qCNTGsmXuh4M22Oafq3up1a65TLW+VLVBTxCLWvFDlZzRPah5VzVYFrOOGWD0s0FyMHUeLT6ZjofPvQV7kZqb5cBrXIqJ8+BuTD7WwNBENz0JtKCDqU2DdAH1HcLkCtUJB2uNVax+j62zAtnEJajlZiCYb8O1GQVpo+28IE6J5eujd5kH1TcSq7+dm8T6/sHPSNeT5Vh18LTxpMVgllkz+2F9bZn37GDzRdE4NxwIC7Mo+w4LRLjX5veXLpOacDNmwa8HYIdFiOkzM4jUvhG367EIKVpofPAQIDcy1PyXS3R9vWBmRlm/vZdMrRNp/tw5aEcBL38gbHFzIHFjzoGqxAm8eSKv/jdZQwOeSSCbsFG5TCap4tQtbJDPGhPulZdZax6LVrUVDU5T69qMCxX4r0p4lMMD30TjyBTjx54W1uivX29pIi/TD0ZhxAaq5ZdYPjiUvVgRcPv8Scn8ETHPhNK5JaC78150fsLFgGZc+NQbM4TKiRJ02+chNPiRBjZt0yVKhSpNFKlTZ4V4EfgJUqDLHINJlVYbpgAx53gNEbvUKBCYIydOOnOXV/CnDIJIfWGsd86KwDhCBvUWaUSt7aNrh5xiwGDR57d4hNNCuShE45jxistdjRIp80Aag6laYY0CWLudkIpboDvepcITLiBq+4W22o3F3yfKMTbJ0KdG4oleqQOaADCNSFGmSpRvdjwwDBsYAKks30m+d4JAgjHRWM/0he5607iv7tUtWNEzZEaNCc39VzsVhQkjCXPcEl5G5lmo0voAUPbKRvq1LQCWsUnN8/g1/yCbPcAl4zV3K1BmQYZNf84zv4lPDIeRu+Jquk43u1fBsxP8o90uY5sNrH9Pmi2lI7GLF92uIWVG85R3sX4syrJzY9srsURAzwDrFe1gW5nNkMqhAgB4jbkSiY8khTCkFMXShrG2dutBOEBkV0EAWuar/qu2mIVZvUJkJugAexn6PmRlEi3xtVd0296WFbd894ApzI2LyKvjaAN6ZMSkQvBLbFqw5jAIzer/jLNEJFiCNX+tHWEaEMoW1VV+vTz8X4yoegTfKyD3Cumsru1avXVtlVRt2aI79MyyIsoUFQQIzxhtMYxrXM3JAEnlO55EFrL6uBaAWwqjUPAQ2zzWwxnuGvcU8VitZmZRaZAHJc1oYibetayFKAYPnSAGoaI6rBZmHWMalar4uYPNjAwExt7HPtT7TyoJtYQtVzdg1N7A6rSAgc9VcixaJ9PvAMdeihRb9TlGpAbB5BCxj1izQI73tFWzhTserRbUAW4A6wJpXKWtfjQRBPivN8cos1m6CJ+bnKyw7K8RK1iiwrd8hCkxrwU4/wxUkv2v3hDJhFfB+DDPvmcY0rmVcZoAs9Euz1N0SIQmKnNIvin5m/+NZqq60vvq0eF34QJydc10GhQyvucNd9siEA9xgzMHGcqRjdz6fJBGOKfZbtL08L7yHOEz4XmeXvNdmv7JMOWhQc30GzOH/WLT2MpyTIhCGVMXBb7XEzKkhwG7XTxI4Lku1Hr/yH7LZeUmGc1pbaTL9IXO9MaP0LDWvRP5Jm0x/yCidJFwJyRQvotZRQIAOJ2TyJOCdAQhCHGreMi4jwnJXdFif9Og+mWf94JhhCareB1Gr6B1es/NphXMyFGmyUX0LZZE6KDSGjD3Y89Yj9+ouWVJrI7L9HtXHy6zXjmm7edoPIHgggMn6l8eMH8A3/jp3+vv0yMq+hTa3mydcJgTYBgjcFLU1cQnP9nt0vXlCHFxGTBxorwkzbMActxsnjF1pHe56WfCkvbhEgxEp6msCdtzp79MmzwvvEU8ePsXrXJAIQ147dymunXK7ccJi2KS1lma05pLvd6h7S3Q/vsB+wUxjGtcnbvKOFGN8aqQI2ENa8V1GjHDZ4y4l6iTIE+CSYcB3W7/idUFygRsG3HDE5d4l4MCAfQqOpggiYFAc7MtMcBg5MoHa4w5/wN/yJR8xx4BTipTMBLVLlh3uRSZQbmEkciAQHTvE4dQpUsPHp0ZAihCHhBvS5kbkQh+QipzpD1kFIEuPA1ZZcw/pko3uiTJH18JDXjiPWOXASCC8J8OANnmaFCMQc4uvuEmNJov41CJTrHem1T7DQIBbA8SqKVWKgIFhdip4+5o7bPIsYtG+Jy9FpWBIJV3lwFmNgNgMA/K0meBwp/OGRk6KeIthk7pTpsgpbhjgOBO6ZHGQz2mPOzzkBQPmKAcNmu4iNfzIcKrm+AzIcJ8dytSFEWw0ah/xgj3uUuMmRU7J0uWF8yj6TAZkOCQPMe3caVzfmAKq05BIIQtAbVtUYFEZjcrsaWJBOtXAU9alabGiYl5TtpTqCbawC2yQRe8CFsRTpkHZHCsuXq/MrRDLkIofV0PbQ5VpFGckqf6dvu5gQdc4i1WZVQoqarurarrq9U5i22jLqDI1QwRIVWC4h5UoeIks5pVdodIDn2A1FOvmnzK8FBhR4GEbKyWgC38FHvQex1u7VN9W74uawoTm/Mq268SOp3EUu9fazqxAhoIGqjOpzLRpnW0a1zVuI8+KgmObyPOmjHY1mVPGqoKaCeS5biDPpT7vWtz4Alu4UFZjGXlmtKC0hZVPiYOQWhTRbTpYFnoReR61MKXMzU2EMd43+yhrX5nwBbPtv8RKi6yY958gTNi0+f9zs28OASB75nfNpwr86vv6mnYy+Eg+LJjzvMLqz25iGf4JrPyIAtlgc/RLrhbLPsYW3DRPthBw9SZWXgXs94CCxtrar/lSi0L6vaWg7Zq5fu2C0K4JBc2H2BZ//T5UVq4r9+jgjlbXpjGN6xUTR0BKwLB0wA1GeLsXjCuiCyosIwHnNqpvufTe0s0lKbc6LE9+JU7wRlt+vXEMC9IuDvJ6ugH3bu4zSouuKAF0S1kBHieQWZNFdrbfw01Li+aN1pCBNyI1FAC0xk3u+nsiLVAbQmMME7hbfg1Avt8hbYrNQx+cyQWhm6DwaggupL0xYxdm9mHpWQ9yvaiI8m/9x2z2n3OHfZpegXLQEEZqGVqVtFxTH5aaPchBugUV3tL0Cvze8+ecPUyy6DTxW1LpGS9AsgPZzjgyhXrU2memD7fdE45LOZZ2exDA4sMmYw/yQZuBK07h52RgTXRmizSpect8p7HP2DWMVmCmD9lcl1v7LY43cmw03jL0xARrqdbj2M8xx4DkLmQf9hilk2QmA6jB6OGscfYWUGXpqUmiZRgvtEgGYn5YDutsNEWjdrf0ARvVt3y/8xJy8jcjhjQBxU6HMAErrRNOdC45jWlcsxiR4hkPuM83tMmTp41LEAGMJeos0qRN3oCC7zktzEeg4VfOh/jUKHJKlQplGqL7HNbJOINIR/WUxahwtMoBNXwWafJDfkGdEnd5bVzjE4QkGJFiRMqYUQ0oGhmAczIRkKlg6QiXLb7iGd/lnDnusMcpRVwCXALyBkh8yg9Y45AsXW5SIxGG4ECdcgSUpsy1hzgMnAx32GOPO2TpkiAkxYh5w2A9pUiGAQ3KvMPnJjV+wQ+jceVpR+zaVQ4jIDUTDvjS+YhNnpEw+qcgAPIiTSNDMEeGASByAqVCA4eJFJDokuGcAXMcssYqB5G0QJ0ylUmVjCP71p0yVSqsckC5f0LTWyTPe1xGDJij5vqMSLHKIQ4TsvTY5m6kkVulQpGmea9LkyIDMjziJT41RriRTm6RJiNS/Io//h399U7jtx1TQHUaErexi3EFLbW1Vf+vLKkSsshWZiXYFteW+af6p9r6foBtgS0AP0UWx3pcZavqAjgO1h6A0ZOWsamBizKatHVe26C0+K1tXwqUrsW2VwAjbkalJlFObF/XvOYjgOdLLFhQM+8rw1XZXMqYHXK1BTduVqVM04cIEKmstzQWAN2MHWfb3Atd1KsBlWoJxrVXc+Z1/RxVxkDPqXqr61jDludYLVYdo4LFQ3MPfoo1bQELfChLTcfVAVMYncY0rl+cIc9QFav/XENykGoq1xAwtIGAlQo2ajHqMVZjVVvJH5qfqr+s+VQ7Adawz9aQq0CrAWEvt4wR1GdYJifI8/wAm0/1GArq6vWUzHUoO1bZrGmsNIGCo4/NPluxe6Msfw8re6Is0qI5hprTPUTypZpMPcRKthD7qdIlabO9jkelA7RjQaUHVId1xZy7ji3+/Qk2vxvjLD5G8ttTM8Y4a7eKzZnr5t5oIU+Z/31sLvf/wT3diF3HAfK9qN8DjxEAtwerrSmYOo3rGWFCzD4A5hhQp0zebZPxh4zSs8z1xszREo1PF878JAv1sbgZ+5bZ6hDSZJHvV0U/cGKY/QngxQNhZ97ePQFEo9RhAhPo+7PRQrvpiZTAoJBhpgYZ/4KJI9uuhYcEbooGZTK5NzgePMs9NE7SY5pegWKlxSht3Oyfw+rjt1AQcLCbS1M4GEb54c3WErerJ1ym4feqz+mXZum6WW5VW3xbKeA8bJHuIyw19znt0jwZf4DXuBCAtgG3vBatx2kKjSEpTyr/M+od4AqDtNg3r3dEM3VARoBkRDIgNRyTPINarkiGcwrVIUrxPy3NU26ZdqoDSJouiuFD0WfMd3p8vbFBmQaXCXEDz/c7nPjz5PsdwsQsl+uib5iujjl+kIOHXV67d3AZsdp/Q9ebF4mCPnAGyabIOjRzOQbMEZQEbB0wx5vKEjf8NgtfjZlswPKXHViT+5s28lNunCgxjWlco/Do8t60hyvbvEuWzf5z0g3JVc7kgmfepmii0mSHe9ygTYMyed5TpxSxNvO0KXKKMwkpDlsMPGVgClhXNlXlD4NtTt1i1BIfmGq7S2Da8QX0DHA5ZJUf8Eu2+ZBNntElS0AqAi7nGESt8h/1/562l2O185ZqbpkaPk95wg/5RaSXGuKwGoxou3nDKBUAV5mxIQ43qVHsdEiewahSpUtWGKb9DjveBiNc7rInAKZpoR/hmvs3zyNekKVHmzx+UKPrZvFbLU4L85w6wsKt4eMSkDLgJsA9dhjhcmq0VLN0KdOI7mGGc5oUcU1h6KPgS7puNjLUyvOetpsnH7R54T4yYPQpVVZoeGXqlIWZaorhd1tvCQsOTYq85i732YnuQ573jHCpUuEPg39D4Ka40RryvpDmr/jDiBGcCEN8M9E/cFa5zdHv4C93Gr+LmAKq05DoApfYltQaFtxTsyHV+9OF/gTbRhl3on6CZXHpon4ba/jURxhKHbOfAn+qwTePXVgfYNmoCtztmuNWEPBDDamUtaTt9HEWq4KZPrIAV2M9XagrCKvt72q6ROw6lJGlrMy0GcsWliGqrDI1ktKWeWVDxc1rfLPPFpYxeoQ1iHkKfIo1RFHQo/EPjqcg55oZp7YEf2SOqcwuuCozgDn2j7Fu2grMHmG1BeMaiyqNAJadpve5g3wmAVOG6jSub+wh+c7Dmj8p4PevscZGmtuUqR4gf/+7CLh5hjzLr7gqaZJG2JqPsWCtgo4T856G6leb53NmHwt8Kku8g2WCqgbgptm/ZrZ7ji1yETvX58izrWz6l1gzK322/8LsEy9O5czvWlDT3LGGMEMx19bAMj3BdgZgjr0A/BzJx8ZYhfnY/Y6zXDVXD7E58CWS41RaxkHyewLLEFW5gCq200BZwMXY/W2afd9hZUw0/ykLf4WrBTUFWx9ivy80H6uWYgNmRkxjGtcyXnn3SDHHDzpf082l+X7tJZdpOCoscbtxEunMn6zNs9jqceoU+Rv/Eff9b1jtCDCYpRctcMcLAs6N0rPsuKJRd6+zz2HuA3Y3PmCj9pbz+SQOIcdrVqDfIYyA1Uw44OTxPEu1Hnv+be633jDTh34ppOTWGXhpumRxCbjRGlIriIPznCdgQipxwvnHSWqOad0M2uJGbwgDZ+UkGc4jZu63FavxiistsVXvA7Jel83+c/Zyt0U30XUIKgEhCZaqPXZL0uq7X8rj949F27Qs1x76FwDUPDGhCf2QW40WZ8UubypL3K6dUM2JrEA+IS3BfueE3coHFDkFBMR8USgxx4C1jWNmmtB6IsDw3lqJvdwdNoNnBK7ct2zQxQ0gTAx45j0WVpcrGotLkx75focvvd/nES+oUmGUTrLNFn+Q+DlJI8cyvinM2DolXEY4tLnRGrLU3KW1kWahNqb1JE2TRYofnVJoDOnm0oxyLuVWh/eJ+MR8GtO4PjHG5R477HHXaHC2WeUAZwLHaznJTy7cYS/S8sx7bWrcNDIBI/ZMO/8W2zTNYmrgZghdhx3u8UN+QYkGVSoRa7PmiubpayMx8FHwJYfuarRdlyxdI/nhMDF6oA5d5qlT4j7fCJs2DAgdx5g7Fel68wJRpmfJcI5PLdL6LNIkT5sRKb5yt/io8yvCBBx6twHJxwqKgmhi35hvR5IlRZq4AWS8c6pUonGorIFLlzu8ptAYsl9aJsQhgxSkDitF6gUx3MrTpoZPxUw2lWUKom8dkOIGbTKcU2WFDOdsdZ7zIrdBgxKBATmzdMm6PcqtDq8Ldzgng8uIU4pMXFFRDXApckqCkMAweQ9ZIxt0CV2HF4V1Uoy4aTRmS9QZ4ZJixDkZUox4xAucyQVNd5FuQWRi/n3+O0ZGXuG9k+dG2KbqVCJwehr/bsTUlOofeUTGA/8nWFDdSzVyUobqZ9j2TG291xZ31RMtYtlHIbKonse2UTbN9qqNp8YCWwjj6SGy2H3K1ZZ+NRrRdnJlQGorvuqyKpNUGaGY1xTYVU3UD8359HqG5udfYnXv1mNjUKBAzVM0FGDVMeo5ElhdUr2GNaxZwRGWAaVssETs9xUzPjWNIXavlW0aZ4kqiBufo6p+oY9lsH1lrksBhgQCFmm7bS62X9zAy8MCE17sHGqGpaZZTazZzDacpSH3HwFToe1pXJOIcuF/CgtvzYs3EbBPNT99rKaxAqiqR9pCnt0O8EdYg5Sn2MLHY6zRnYJ7ajq1guReZTpqcWYXKyWiY1BgUfWN9bid2HF7WA1Y1UrVnKNjrplzvcQWa0pIzgLrVq2AsOYOxxzrZ1hWpuYizR+7WFARLHC8iZV4qWJ1aR2udiboe8r4VABUIy63okC2HtsB/tocR/OaFsaeYCVRmsjnpiZ8WihU9r6eF2wOLmO/V55hZQcUcNXvoCbRd8TZdyH3PWCaD6dxTULzYb0GJQdapbS0+nfE3Og3a+s4hDx4+obhQyI35kJtyIk/TyYYkOkLg1TBOJWSuvSIDKv6OTF2IhEzb1rHym/sAwnoP5kV9udQzI/cYIR3dAEeHPs5lp936G/MSst/Y8hZMclCU9r4k1/KscaPLRO174tb/WVC2LJJo3V/uW7Zs0kzpzxey7HcMNXmPlzm4KCwTJsbPOq/JP1cTJyyYVeYuab4c7kCgSts0cVWj5mGBSRnnsGbT5eEtdt4yWVCXLG9xgVnvrBoD3MfcLcl8gl1p8zGU9Fe1XnjmZ9koTbmuCJs0fXqseS4EE4emHPuw9mHsl1EmHAtAN7NCbDshzVSwzFhQpy5kwGwC99+UuDWtpn8al4GLjfk2tIHyDnn4bIEM+pZcAQnP51nqdFj7AqIDDBsXLAo89JpLpzGtQjNhV90Vvn+5SGjtOSZEW7kRL9wNOYyB18VHjIiJW3yhOSDNpn+BU8LjxmQYZUDEsZ86iY1Co0hJ6X5SEKgyzyVzjEg3QHpPpyUJJ+23Ty3avIs/sp/yN3wNc4k5LV7J2qBV+OpwHHJ9nvseBtGmmAUmTtl6ZrW9kPJEU3or8xy6hbxOyd0c2kOWeN+sMOpW2QxaEpOaAmLXiPFCIcJe9wlY5ivDiFZujxovJHc3rng35YeXzGRiptZ3Wq0+Lq0EbFAl2sdLtPQzUnO+rYi5zs1jN5vuM8W27hhwMRxCEnINfRhv7IMSAEPrHasGoKNSHFK0QDBp9Tw+W74jNRwTPoAvn1cIMWIfKdH8gy+rmxc2VYlGKpUWAsPOXWkayATDqg75ajNv2RYsikCzsmw2n9D3VsCoNw/EXNG5Dv1vzj7E/6T3D+HaT689jFlqE5D4gSYw+pwvkMWpcoyKiELczUFUR1AbZfvIZPlLbNPFbuAjRuXDM02yphUtvtz7EJfzUjWsQvhLayTs+oQagu7Go1g9n2CNYE6MK8XsUBnHEQom/GWsCZLDhZAUb3Bp9gW3TVsy+k+FgBxsJICKmOgwKhjzqf6rCXzu7K+lAWqAAFYcysQ4FIBhrjEQA8L7ur1fxK7r2rcooY6KlOgTNRt4I9j9xksC1eZZSqt4GHBGW0r/hz4J2bfFQRg0PFPYxrXNRR8XMcCgZ9jCwjKYFftUi38PMQy9XeRvNZAGKvKNq8jQOcRkte+QJ79nnm/hzWM01zoI5qmBSwrczc2Di1+GfAhYtG+xOqGqtyHFmQUmNXW+ARXizWF2PZDJAcsmPeUrf+x2b9kzqF5WYtuyrRXzVi93nVsIU2BXQWEJ0heAitXotIEOlbdVnN6J3YuF8tyVRZpvPiln5myUhPmMylguxziRn3rZjxaBNQuCB3LNrbgpt0V2j2g3RfxYtw0pnGNwpnApQuF3SFn60lOShkcJuLQ3O9xuY5ZII7pell2/UXKYR3v6IKzdWn/75dmCRMOC4hm6KF3mwfDNzARdlbdn2e9dixu8WJMTX9tloGbEV3SNHi7F1z6MCjNUqgNOfZzhOsDFppjumRZLnVIDS8IEyH0IZuQc6WN/MbYE2D3RihMVK9zARMBdruP01RzFb5X22XmJSQN6Hj2MMnCy3Gk53dWTDLnjkm+g2yhR562AIol8FstAWLVDDDmu5Tv9KL/K0h7uQkZzin3X0INZory+rCAgJ+uGLHMDCHljrkbvOVyXZjBDco8Cl4wcRzGC2MAykEjmnv95sE632nsSzHnwyTOJKRfmsUpXMhn1Rc9yMAVSYEHLfksvl0riNO4Kyyz32s851ajBWkYVsy9LMGwBOkOjHJJ0pNxBKZOHASINd83+U4POjBaEQOzwIVOLt7+NY1pXJ/oMU8jV+BWrUXXd9nhPh+mvwKkyFIrFNjsvCR5BicVMbbzahfQgPtPdhg4wk4dMGed50sJmhR5wSO2+EpM+HJLuPKEku4MyfZ7ItcRtDnxpUiR5z07zn1wIEuXNglp7e/3cAMYFDKEiVnOyeDzTowC6ZIioNzq0C6I7ZNTmHCDoZUUyMGNsE3ROaXt5sU8aihSLN+uFYze6igydgqYp0I16h5Qk61vSyJfsuq+jZicWbo8OHjDsCQyI91ClpPSPHeDPU5dASeHOfnOee/kOa04lIMGXTdLBZES2GKbEIdsZ8zAC3EmQ2aa8PXGRmTCle33CBOzNN1idF5h7GYj3doRKT5p/QqQQtbJY/ls3FAYAMMCxnBMEvkN2hFQek6GF86jCKiuOyINkCLgXmefam6ZDAMmOPhhjaYnHRIhCVaCE4YeUReFw8Xv8C94Gr/NmDJU/5FHxMr638OCsn+UeaVGJMpMVaaSaubBVXMWMyGM2iD1WIV/8FOBVdXMy5ljqtmRGloNEdBA20Hjmntax1Emlbaz7nOVxaQshwZWh1XbcxVAUPal6gAqcKws1bS5PpU92DLjUtBSNVPjTE81iFFW6S62Hf5jhDGqjCeVM6ggC+/4Qr5uzqnajJ+YMb0y16sAQB9rwjLBSiF0YsfXe66gqo63ZM71LHYtG1hgBazcgwKzep0d5HN9hZVzcOHsHuT+BJhW3aZxTeIKQ3UeeQ7KWAkNZYFr+7g+K2DNqj7H5r51bNFE9aEn/+B3kOdMWabKts8hZlGbWLBSC0F/hX0OtUCjRkmqQX2GALjKUlVgUVmjyrycIKzyg9j7mlMVOExgpQC0mKT6ps+xpnZaDFJZljhjU0FFLUg9M/dH5WJeYqVmMPs9BP4vWCO8Xazpl3Y+qKyJyrlsY/OaAtKJ2GvaKaGdAbrNhnnvM3Pev0RAcB1/gGWzVmLH1M8/xBaptGCl4Dpw9vuQ+w4wzYfTuCah+fD0CIrakVKBb/0Ct6otxgtwPi8sUIDjkrTU6MI9IMV67dg+g55oaX6TW4/clm9vn0AO3qwtkSCk1GlxPp/k1Cni949pegVuHbQisCLFKGqRnOBwu3oicyRfANPD3Adk6bLc6NDPzVJzfQEQ+ic4E2jn5kWfsDOknZsn2++R7hCBFP2csDOVxXqZg5mhSABkO2NmTMHnzcYSGc5pUKISVuk6WSY4rLROmOnDcSVHl2w01jv9/YihdLtxIsBsb8yz3ENhuKpEVQJ+VXpImTr5oI13dMG3GwJyLtc6Ago3gBCOH+Qit2s3DIRlpYUbV+71Xu42laBKzfUjMKXQkC+os2ISgK6TFdZbX8y69rx1Alx8aiwfdMAlYow5Ezmf17yg5Ys2rHZXXHpiMHaZEOZq28uRCQcs1Me0/DSZ/pCn3vdZPDvgYe49THPhNK5JaC78zzt/yA8XnuP3j+l6ApiW+wI2ait8QIoyDQ5Z5VH4glOnSKVzzF7udtQmvhg2mTgO70yTfYk6LiORFTGGRyNcY7YkhkpVVnjECxqUSDEiw4Ad7kfP9SJN6ohb/Qg3Yowq0LlIkwNW6ZFlk2dMcNjjLo94QZOiSJaQiFryFTgV1qxICmQYMDBGV3nec06Gm9R4Z1rya/iRBmmbPBWquGaiO0832k7Nm0C+L4qcRszWLtkrDN5vuI9DyB1eixkfUKXCBEe+M8y9qxsdvwwDY6gX8IzvkqUbGVSFOJF8QIjDORnu9Pepeh9QDut0HTEXU6OteWOuVey3CBOzUR6tIRIMedqRQZfq2hY5pUGZJkXusEel/5Y9b5335LnPN+b48xHQ+y/Ofsz/JvdfwzQfXvuYMlSnIbGALGYVONBFqrIwtQVcdVXV1MNFgMWHWIapsj0TyGQLZPF/hCxAz7BsTGWX6oJaWUMuskiNMzyrZowFLPioTKAjRItPgT7MsbbMfs+w2n7afqbXqC2lYIGG+CL8FVYeYB+rm6ogxwqWydrB6r4qsKuarwpaJLDg7r8y9/6duYdnCADyHCufoGy5dOx4quGnrFptOVVwcw3bhq8Aqe5Xwmr8qT5gwry+DfzI3IcDrNyBghGeOY4CQNrGR+y4IbDDNKZxPUOfuz4WBNT2b9U0BQErNac8w7JX40ZwE6yhkbIiNV/BVTO5bSRnaJ78Y3O+bQQ41GP4yPP9mRnfClZDumLG2kLy4bo55gKSuxS8VAOpLWxeqpvz6JieI/kkXnCaIEDtU6xpl+q0emb7v8QaZj03Y1UZgKdYUystSqWxuUcZsQrKKmh9gAVzwX4vYd5TyQPMNltITu1hv7v0nhfNvj/B5rIvsN9HWjTTYx0g4KoaMmq+c7Dfdyp3o/IBT7CgMkwlA6dxbSPZBS4AH4Y5yIZdmEg7atfJ0i3BAHFzD3G403nD+XwSvyNAa2vDmD09h6QH9x7sk2zAtxvSytn3hUUV4uCHLRbqY7r+iHQNboUtYZFOwCmELFV7XHrC0tR49UQ0VEV3dUKVCpQg3+9wt/+W14UPopb7JkVxfU4Mxbm+DHQgm+uxX1qmQZk77h4OE85WklFLaZs83cKAWx15+G+EbbKdMRRgYX/MgteCBgw3oFsQoGWj9lbA51qLsQcuI7JBl7GLtIrmziNzEgVu6cP3ay/pFwXY7a/MCkP0AMYPRCqAtLCnlnc79FfEBGfPW+feZB9caSMtbA9JFuF++IbAhY2Dt4xvGjDWyKo4uRBnckE+0eYyDTMI6/Q7nX2+9QsUOyZ5vYKdH9+OmGVpzXO+gLZJk5frlRzZoCuSC7UhxYnZP0TcyBOzPOn/itHeb/OvdRrT+O3FJr8mJMW29z1K1NnjLg2vTIl6ZLQkYFyCOQacOkW6ZKnmJEcWaRKSoOb4nFIkEem/wQseGRbmPFl6VKkQkIpAzbu85l/wPyFPm0e8ELMoDtjjLgEp3pm2QdUiVeMkl4Af8gsmOGTpRjmnySJFTumSjcyX8rQp06Bp9FgVnFQzrKpZuMbfU+1QkGs85AkihhAYUPE1DcqkDGBcw+c1dwlwcZiQIKRBmVUOeYcfAbhgDP+MRIAbjGi4ZQZk2OE+W3xFSIIXCFNUTbdOKRKQ4hzppHjBo8hMS7d5hx/djzAxK98bToUAlyZFBmS4y2t65t6UvXoEyL7gEQ4hqxwYozEpDh6yGplapQh4T54RKQ6925yyyIgUO9xjkSavuRMZZT3lCfBf/3b/cKfxO4kpoDoNiT4yubwJ/BJZLD7EAqPKaKwhC1MFD017VgQidpBFs4J1CnAWkUWwMlrBMjk9s23I/28w9hUCCITIQrWJNUbRY7Ww7Ms01jBGpQRyWFaZttSCONcreJngauu8a463YI73CqtzqgypDhYgUPOpghmPtqr6WFByG9s+nDPHVkBBF+AF80/1qlSTSsFL/X8Jy4RVFpV+Vpjf/wgBexrIZ9XAtu1uY0HaBgJYmAVG9Bk8NtsoYOIiTtqT2NiKwA8QAENbgadOrtO4ruFhGYdasNFnexsLnFa52gb/GZbZrgDiBlYGpI88g8q2VPa4Ms1VB3rN7KOFJWW+bmH1lRVs1JysxawGFsxVjU/NVQoIqp5rCQESVa9VtVzj+tUtQLtVQyQfHMSOp4xaZZr+EgvoqlHdgtluA8kVW2Zc+2bs97At9vp9sI0Aniqz0jT7fW6Op/lOiz5VLEs3rpe6ji1yOdgcXzTXboCB6LtIc76CyJoHXyFgtbKB9W/kn5hr1g6Gj2L35QDblfEZ05jG9YwzIt3OdAfStTGkpWWx1GnxTW5dTI0OepytJDmfFyBy5mgMPuJKr4Ug1+ipBnCr2ormW6v9N9LunwAKsmC/RSvqElKWJjWYqUir/FJDwNU2ebq5Gl3HOEvTJhGGpI2MSDlXZ+HlGHLg52TCmO7AeEOMVG5PTki3YL1/zHpwzHhBgMuDwjJ52izt9ljKmSRoTEMnjsPM7pglv8e4ZIBK0wafbvRYmohMQanTol8UbUJdzL/IbfC9p7tyP85kjENTnE4fADXwzkQrNpm7gED0Ss/nRX6AIQwqaUbrli1aSVdJ/hKoQKE/ZLwmmrAzE9umnzTcpzM/ycL+GO/gwuSni0in8NZBC5pwq9+CXbj8GGZ8aeMlIW26BNDfmOVGa8iMys+sQbnV4bQwLyfZhe6nabKdIThXJQ+Gy//9/WlOYxq/y+iQJ897StQjPVCfGrcaLfq5Wepuie+GzwB44TzC5x3norJJkVNuhG0Cx6VNnkWaYpTHgAZlijRxCFkMmziTkIw7oE6JTZ7RI0uTIj/kFxFrUl3mK1QRS6VJxL7MBl0GboY77EV6qjVWDc+0xw73AKKx7jj3uM83jEix2nnLKD3LC/cRgDGoOuUb7pNixCbPIvDQDyWfnjrCcH3EC1wCMckLD8l2xgQuuN6IW40Wg9Ic52SoUOU+O5G+qXY0zNOl1GnRzuWZpysas9Uhryq3CdwUedoGmBbjqEWarHIg+rFBk0N3NWKBZvs99rx1Pgz+GwZuJiqmicnVTbJ0OWSNRbdJhnNCEszTjTosJjhkOCdFQImGMRZ7FwHMVSp80voVMzVoPz4nw4BVDmmTx2XEP+FvyQdtaq5Pnve4jDhklTINEoQGYJ7nFm9/13/G0/gtxRRQnYZEADzCMjSHyKI3xGpCKYNVhe3PsMxRZZEqw7WBNfoAq0u3iyx6DxDAoWL2Dcy2Dlaz1ccytraQRXb8eHUseKBt6GBBvm0EAPgC29qpWoU+ssgtxbZXIACsll8JCyYqwGzMFCLHe2VNKYNzBVmAKMChYLMu9gvmnqn+rLanKoPqAOtSrZp/yqoqIoCLajM6WPaVAp4KlqjBlIK6+2Zcysj1sfqxel797HYRcP2duS89rHSAXr+C6kcI600lDRLAC6YxjesZh+ZnBfn7V9M51WfuI3/z2jqvz4W2hyujP9723olto6z4JvbZ1/8rYKcgpQKkCpqqdnHHjE31UeOmU0/NNjVzDZpvVcIkrj0Kos16E8vSV9C1jzz7WpBysMxQLeIoyOgjEgVFrN6yam1rE9NLrH52gDDxf2LG+zEWrFWA+b9Ecp3mqiNsZ0ELAS/1e0TvD1hmrJ6zhZUneIwFP1ViBq7mTo0zs5+C4/pZlJHvnqL5DDS3b2K7Bt7F7kHdvDeNaVzD6N+ZgUKCbGfM08Jjfq/xHI4guyBU/UooLkXjAiw8E+ByWBoz3BDQNRGGpApj0qaANF6AhGdMqTzwnl5w/EmO5WInKmDMMYiMpwI3FTGUKElrfyYYcFaUNvyPq18zXoBuDgq1oeTqlmiwes0LFvbHjCsCkqaGY9JV0ftM9iGRC2EiDNH3hTQ3WkOSfWHirrWOmWnCuCRGVudkKLktkmdynssNYcre3j6Rc+ak3X3iGSYpoie6l6vw4PmbKE9+L7crplH+PHmvR7JngFQt9kywHU99GFcgeQALjXH0vZAIQ6pOhe9si07qAmN4INIEC0djAYrfndBaS1NIDLn0jL5pUxi1/RUx1dG49apl57x9GD4EpyRGUqmbF2zsvoUEInngIuZgRprqN2ui1zozFBAjba7TDUYkG0Q6uiCfS/r0t/jHOo1p/BYjwzl/z0f8gKfGgGiRgBRDj8ik6m+cP+A+3xDg8oJHZOkyYI4JDj0ny01qEag3MW3nIMzSEIcXziNuOjUcQso0GOEyT5cDVinSpEc2kuTokmVAhgwDRoYX+po7LLpNBoah2XQWyRgTKJBn9NwTtqyaKpVpUKdEhnNe5MQgSlv/u8xHIOicYb7W8HnCUw6cVe4Ge5QnDepuibXWMe1Ckxo+VSekWGhGrNSdklxfhaope+U5ZNUAtk3yvCdLj2e5hwCG9dplv7LMKUUOWeUOe/jUqFKJwNdvcuucskjPzV4xgwo9MeBqu3kCUpFh1siwfrWtf4f75GnjU4v0X5sUqVLBZUTRAN8JQva4g0NIaOQG3hfSNAplTinynjxdNsnSpUSDKhVS7ogKRzQo41OLpBZU6xWgEBfbnsa1jimgOg2J98jCWgFBNSJRhpa210+QxeMQaYPUNlMFExSQ1HZ6XaAWkIWoAm6l2E9dMCtY+cTsp8DClvm/Mk8DLBjQMNueIeBvAmtSsmF+zpv3FKxwYj9Vv1D1Q3WfNSzLKsCylfR3ZYv6Zn81ZtGxmQn2FRap0ZoigdURXMFqKirgoXIHTXPfQEAMBTkOEKBDAV0PC7RUseBx2vzumH2U3drHGmQpmD3kqoahjk/ZXAp8K+Bex37WPhawUHaX7cibxjSuV2wiBYQt5Nn6EpujbmILSetY7eEStvi0js2TyubXUN1Pza0Vc7wtMBJQ1r3eRZ77TbOdttiDNV3SZ13zhuqD6th6WEblGsLwVF3UH5njx597ZZ62sOx01TtVI6i0+X3XHOMLcxzV1ta8V8RqZG+Z8TawbDUtzmxhTbMemt//CgFZta1+hauA56fYYpZ2M2xiTbY0V+o9VhkALX4dId8zf0zkWh0BzVvmeEVsx4Oajum1qTmg6rt2zH1S3WqVgiib7aasrGlc0/DeXAogVoL74U7Ufj5KC2CZbIytBJSRPEm3pC39RktAV9UhBQO6Fo0j/F8AK7Bc7UTP8lkxSTlo4B1diBkVQ4YFYX/iCbiYbF2AcwEduPyRsDdvVVtXTDe94UU0h0ya/JY289SZBjCEWy1hYs5swQ2GAjrWoOkX8ANh0CYPoLA9hI+HnG0kSW6P5Rg5WPSaNr+/lNeSHtYkMAEPDsTwafgJAjaaMSqjN5kY286puPZ9Wv4l38HlirBNaYkbd7Yz5jvDfWsmaPTsF47GMIHbtRNYQBii+2ZcAZJPW9DeyJNixFK1x7CAzf9GimrgiebpwM2QGvaunCOSQDEdEPcKRnulBmntsKgZ0DUNC/Uxr/zb5Gmz/KpjJXOmMY1rFiEOmzzD7x+L7qbR76x6HzBgji5Z7vMNflCj62ajdvOMYWzWnTLv8CnRICRBhWrUqu8QkiKIdEZTBDgGFB3hRsZSASkSBtQLcXCYGB3SZsSSfM0dmizyiBcsskPNaLVWqPKl9/uGDTuhzQ0alOmSpUSdBiJfEJCizQ26zPOEX17RGtV2d5UsiHSqgwanRu4kxKFOmTmjL3rOHClGBKQigz8FOeMarXneGy3Wm5TDOhPHwWXEXfYiViyI9ILLiFpuiSJNijQZMMc2WziE3GeHZ2zyyDB7HMLI1EoB0jgYDZANurx271DjJnfZI0VAmxsANCmKwRQ12twgRSCfOxUShGQ4B6QQOE+XBiVKNIwEzQpzDKiEVX7tSGVdTLISpBhxcmWBMI3rHFNTqn/kERmx/K9h4SaWYbWCBQ4nyGLVw7a+O1gXY50IbnHVYEQZTwrKvkQWzKojqBM8uNpyXzHH0dZSBSvUrEkBBwXxFIyNt7v/yOyrhjLqrK0TR9UtdbAMLtXrA9vCqudQZpSPXYCrkZYartRj19VHFv01BHDQbRXoVOMrvad6f8E6bSsgoICJgqVxsyw9vwIpYN1lPfMZfGJ+1/vZwjJjn5jxrZhxhFhGlU6eFYwJsJqsanAFMrlWplZH7tfZfcj9b4Gp0PY0rklEufB/BQuzyHO0js0rAfK3rs/4F0huiecebR/fxj67Woz4SyT/edj2cx/JLwrO1bCFqycIi14LMjkznj5XF6UJbG7VXKu5Y9+8v4XVkv4YC7JqccmPvaZSB5rnFCRWJr8CsJqbtVW3Z8YclweJF6BUk7Vm9ps3x9Zi0DaSU/5nWNmRXax+quozK4CpjPgmVmLFx7bjx++pFst0HK45ZojtYIizfVV/WwtICq4+QQwFtcDnYw2tFFAaxu7Livz/rAi5PwWm+XAa1ySifPg1LMwBOaOZqcV1nQ9UANNCnwhhxsyxxhVIqv68YcurudFcb8woLSzJwtNh9JyOt8RYaqP2NjIobW2kKewO5XnTvBnXJi4YZuYXY/uM6nyyIADtws/HsAEtX1ioMzrXUckUF84+TLKwO45MrqKi/gZcFmHmSDRS08pq1yK35pwa9Ddnee3e4VFnl+Q7w5LtXDD0IL0du28VMffKB228gwtOHsyzVOvZgpbpjvrWL3Dry1ZUWL8syv0DCBwXNwwEoEZA18AlMvJ6tXY70rN97+S5Ebbl+obm+GUBvdNVGdeZL6ZTqeGFgK86n9QcOy9GWOVWR5iq+p4WB0Hy8BA7l9fiXUGYxck+nO1D7g+AaS6cxjUJzYWfde5RXJgwxyAyicp3eoQJqHnL+P1j9jxhTCqQmg27nDpFGqZivhk8o+sKO/I1d1nlgJ5hT1aCKlW3Qt0wGoHIqCnEMSBrGDnWu4wYkIna7M/JMMeALD32uAPAo/AFVadCJaxSd8qkCEyLu0O51SFwYdv7XtTKftOcV481whXpk1c9jh/kIlC00jmmm0vTJo9DyI2wfUUbdkCGHzf+jt+U1hmQISDFIs0oJ7127hLiRECuXu+ATGTGVQ7rvHbkHm3zYdSyr4ZcZeoAlGjQZT4y8AJoUOYmtUjnVAHbkER0/AwD8kGbwE0RkmCPO5FWKkBgjMHKNChyStNooarWaok636vt8htfjPxcAqpUonuoTFhl17oEDMhE19Aly//z7A/53+X+zzDNh9c+pgzVaUgUkElRCZlIPcYyVpVNpECCMpXWsOzKd8iC2EEmqrqdThA/wbbPgzUfif8F7mKNRxRY8JCJ9BF24a+T0i+RRW8TYQLpIl8nw9tcBRzj0gS6aC5hNUx1EtjDttAfxO6JH9tH5Qx0Yhlv6VVA9SUWCDFtaIBlkCm4W8a28yewAMECVqsxzhZWMLMXG18TAUp0Yf/QHCvAmmqVsG3AJXP/fmZ+V3kAZcnVzHkcLAiin0cB2/avEhAKeGub77StaxrXNW4BSSyDUlnxJayec4A8i5+Z3+e5yhDVooaywxWI/AbJEdsIENdHnmNtI9dnTMFNLZqsIMBfHXkWdXt9Xrdi42+YYyorX19TsHRoXv8IyVHazq5SK/qzhwVSFSR8Z46ni3KVF9DOAL1+BXTL5v48Ne99ZN5X870+AnAeITlvA8lJCiq3sHlRWbN6XX+NANw6/oK5Vy5Xv2f0WJqrVTtW5U60kLaO7URQnduGOacWGX9uzq9FuGfYIh5clR7Qv5+XwH/MNKZxPcOFk415QhxhGKp8k87djG560hRq+xuzADiTC5I5Ae0GlTSFVwKKLuyOOdtIcuoU8fvHjDfMvmVhgzpbk0h//7KIgKktIvmP4RrgGcaqKdo7xdAWZhIyBq95waWO0QC2N9JSibpMmxb4gEjGZKE5BkdAXYBEEWZaQAdmEkDaGDKVsMZ+mqOBXz15yIetl3yvs8txKcdy0MGrXQCQnsj4j/2cYZWF5IM2dbdE5sE5y42OzPMqRCZ6Z8UkdcrcclsRY3WmacbpwWV6LMCwKfbMHEE6B8FairOVJA8abyCA5O6Y4Mm5mGiptrYpcqUb8O0DAXbnemOSSlBwZawD5qh0joXhWxRW2YwWmYwcysnWPEvVHv3SLJ53YUkDE3seEkYGoY/tuprGNK5ZnDPHqXFnP2eOPe5wM1cjwzlZenS9eeoGwFOwDqA8adB2b4hBlVuJjJbUXOpGWKXrZBm4mQiw/Df8hI/4ezIGYqzh4xjwNE+bxfCQgZPhGZv8gKfC2DSmTk2KpBiRYYAzEXmQvNO+ov+ZpUvR6dD2ctxhj2y/x7aXp8kiLgG/4IdssY1PjSZFlgo9cw8EaG3mctHvRTPhlXb3Or/kCQEpPiv9Pj41ijSj1vq93G2jnVpklUMynEdsVRA2qcsIx0yksnTJ9IdseV/xDfeNiVaJFIFhjb4jEwzouvMRs1avv0qFES5VKhG7uEuWgBQveMR3eRZps9a4GZlrzRnW6jxdXLIR+FnDj8BsZbx+7W/QoBwB3XOcR/coT5sizUg+IcWI71T3+azy+1Q4oobPcx79zv5+p/HbjSmgOg2JLDLxUSOU57H/a3u4TqJ1wXyGbfXCbK/MRgVSFazUNnadTHnmuAUsaKCahM+x7ZcO1hBEW861Au5iQVht0VR9UgU0Gkj7pRs7dxXbCq8Apv5UjdcyAijoQlwr8EYbK2I2PMCaWinQ2zPHUMaqsqR0sR8gC3NlaOmxXnGVfTrEMq/03quJjS7iC9i2WAViE1gTFgWMlfWq+yjrNTT76HV3sFIHcXBHQVpltOl9TGNlHDwsSFRnGtO4nqEMx4+wQKS6tL9EctwEa5IHNsfpAnID++woI1+fp8cIe/0pUmg6iG1TNMdToyUtID3APqMrWDakLsBV09QAEVHLuYttSQ2RoksBAXQb2Lb/M6T9XXWgtWVftaxVR/SBGZfKvWj+VrbtJ0iuqmHZqUUkd2hBbtPse4TtWPgTrAnhhrmuf2Xu05E5xz/FSsmYRX8EVOv9VR3tENtFsYD9/tL3VQ/8phn7QyzTVj83kM+qj5j7VRCwN4eVN9B8rdev3xUGgNHvnfEdpjGNaxkHN0s86jRo5Aq2mKQsUe0w0rliBzE70mfAMOkLu0NwhF258FdjFpwxC7lj3pSWWAyaJJsXkQzAeuMYSnBSmhcG5mQsea0Fl74BUp+bFnpTMB+4GbxmLwIX25U8XthiZgILtXFUzJ/5DC4/hdcFw4I1LerDJ5D+S6LCc/IM0S/9SFruoyKLEgV8bFHNaPl/v/oyYt8v73bsHGoCZytJFppjlrc7wvQtCFtzvX8sxytjDeyMxvNCfczd8mvbFeTL9c/URNc1+Uu55/0ns3iTCy5zMNMXnceF2ljynemMygQD0YhlKOxS7Xpowi23xVDzog+ttTRNFtl4+hbmO4xvEhXjy6UTfvXgId//2csIaF/a7kEOYeLmwE0blrJ2SJguj4krdcqDD7RqN41pXK8YkSJHwIA55uniEFKlwhqHkUlVhgENStLEnuhy4KzSJWtMlE45ZJUf8MsrIFzgpKhSoWeAuvvs0DYu8ar92SYfjSPFiNfOXRY55Qc8JSRBnRu4jHjKE4qcsohombbdPD8MfwHAr51Nzg1DcoRLNbfMCJcd7rPp/ZosXd6TZ8Acedocssohq9ykxqsSpAwDUyUDEoScsiiDcuAFj+iSxadGCpdVDkgQ8pQfAFClQpcsKQKydNnhXqQTq5IHIY4xhoLXzl2aFBl5Ke7096l41QgMbrLIO8PS3XPvRLqkbfLkafPf8u/zQ35hZBAOqLLCMzat+RdNUowY4YqpFU0OWKVByUgIiJGVyC8IOH3OnDGo8mmTp0KVJkUDpIq5mOrVKsAtgPg5I1K0yfN1ZS6SWxgwRyua9E/juscUUJ2GhLKXlJ2UxpqJ6CIWLItTGUla8VaQThetygQltp8Cf6r9+QQLYoZYrTtlU2rblotlAkywTvXKnlox/99HwE2d+II1UzrCGqT45p+yuOLg4Sa2nVafDmUi7GMZYU+xBjOPkYm5gpRxY5MqAsKouYrqp86bn8rMUuaYArPKeFOg9GNzvAYyade2Wsy9WjOvKcjhYQHm52Y7Zdlpe+8GFiBW5q22uirIrPPeEpYRF8//EwSM2EY+E2XxTTPLNK5rKBAY/13zmj4jPpalpIWaNPa51IW3aYflEyTPHWHlRfoIyzK+vxZdthH26xaSF94hz7i2mR9gF/UBV9vsS7HfVZbFxUq11LHGU8rE97AyJPFcUDD71pA8VTKvaSu+aqaqTMsuVnNb2f5a3PoCa0QIV+VbXmLlSPTa9rHM/HhRaILkXsw9+gQLEGhoHi6bMan+7FPkM1sh0hMErNGiFguViQa2cLSL7dT4EguoJsx5VHNaP0/VyPbhXU61IaYxjesVaycNmndyoonnDygcDHmztcTtVydcmmdkZlNaxrOdMTNHMF4zrvRPxzS9AmzArWoLZxJa+ZEE3K6e8KayBJtNum6W5eed6LnLd3rCgioOcHIhXu1CANmJMDSdiTBRw4RDjZsspXe5LEFQMa70jpEoOAL60P94lq6bpU0eP6xJ+39adFMB+n88i/fygmRV5ApYEDOqG+GQGX10j2C4BV1vnkNWeRS8ILVwQbIlxlZsiF4sE3jzeImEAVw2g2cwkfuSNN8tZ+UkqeGYcGWWTP+CwOSNtJl3tR4L9bX/JyHeywvGa9DOzbM07DFKz9L4cZ580ObQXaW0Ji2vFeeYfL/Dm8oSt/sngICvXuMCbzjk240CqcKIbEnYdNlcj7q3RIMyW53nHK/lqFNiLTzkcl3GkzQ5783GUuRqzoocN8ThZGtezKhM8XHGFAf7pVk8BOitFeTi5nIDiu816U5jGtcrMpyzShXHGBSlDFu01GkxlxtwozXktFCMWImp4Zi818ZlRBgzIxowR2DMkYo0WWz1uJFrc+CsAlDqtAhzkphCHLLGff6H/II5w5ZUJ/qQBJX+W5pegVOKrHLAoplr5GlLm7mTodzq4BdqEeinQK1IBwRk6ZHhPNIZ1TFv9b+m7i1FY1nlEIcJWXpRe/1qcEjdLRm5ATG/cg0rMxt2KTsNukjuvccO52QiENOnxq1Gi1YpHckYZOlyv/WGg8IyGQbCaPUK0TWlCGhQZpVDQhxuUjP3qUeWLgEp/gP+OwZkIt1Tl4AttkkRMDIs4zZ5StQZ4QpTGPms7oc7DJyMuT/z7HFX5B3M5/dDPqdmWiJUkqFHllXjaJvnPYthk/eOmFkFpLjJKW3ykQnYgDl8anyHJ/zFb/Wvdhq/q5jCHtOQ0NZKZZb24c93gAEwa/6tIIvKC4TR2kfMrHQh6sXeu4Q/+zGW8aOMShcLCmo7vBpHKZs13ioU1wRUVsQD81ONkb4gAnH//AuzbcqMZYIYsZyb4+nrSfP/WTOuC3n/z/5jZN2rjCzVGdTFf+8fXFMDWRyYlq7IHEUX/WrCosCBsq9K2Pb5Kvz5/wM4BubM/VP27Ngc6/9jrkHHOjbXsAS8hD/7j7BaZWUEkFFAXJkia1jgGzOGMzNmN/ZPGbUgi58gdq/LWLBBWWaqbZZDgB8f+buYxjSuY3wFdJHnRcFRbWP0sK3g+8jzoXIda0ju6GAZrNp6/l9gdZC1WLGJgG7fmN9XkOfzCOto/xIpFlWRZ3DdvB7XEkxjZTh2kQLKAvKsaqFMAcYvzbVsYIsgIM/uQzPeCfDfYPOzFs6q5jx63p+Y974hcrDm/8pVCZK+Oafmyjjo6WONqpTRhrk2ZXoqs1TbRRU4dbHAsGqrtsx5lT3aQgBUZV/tctWIUL/P9H39HtkwY3qGlZtRPVYF1/tYFuxTLGNWtXXTyN+F+bmyMgVTp3E9Y5yCTDjg0fCl6ICW4EbY5mwjaTU5MYZIMVZqtjMGV4BUAGrgFC7s/MEVjVC/c0KyCl6uY+eJgQCPy42OZd53YKEzjp7XMGHYsM0LvreyG0lCpauQr3REV7U2jp5bb/sCz++w7HRk3jMR7dGkK6DhyVYGr9iDXQjXBLDtkiXjDknr3HgN3ACcSY/f6z+3eaYuxk9REaYFt1+dcPJgnh90viZpCjYJk6fON4SxKh1XFzAPaS2gm7l0IgztPS2JLMJSv8cwJ9ftLbQYe3DTrXGjNSTv9EhWIeHDjXQ76jbo5tJkEkPSLfksxgsCdmeCAW0vFwEIAMsHHbJ+V+6rif7aLN7uhXzurSG1QgYmoo+77HU4eTxPmJgF74K2lyO1JoBFsdPhzZqAyhMcyv0TnAkkpuTUaVzTaFBihTZ1SpyTYYLDIk32crcJSFEtEGmOuoyoe0sRe7FHlhQjHEJe8oiHvGCbD3nEC0aFFNmwS4Uqe9yllltii21CHPywxlfOh1So0ibPBId3+KQY0WSRKnO0PXG2V6A1IEXTMEdLNNhmi27hMNJgHZiW9Jc8okSDP2p9xlFhiW+4zybPDAv1lDY3+FvvRxHoWOQ0ao/XtvYUI+puifXGMdlSj0NWpaCFsEVrjh+xRuuUruiQZumSD9ocl3I85QfcZQ8/rOE4Ia8LHxgjrSP8/jGH3m1K1CNNWhC91SKnLAZNXriPGOEalmuCARlWOSDDOa4xxDo3JlRt5hgwZ66pSSYcMHHkc3qHT83xydKNWvwrVJngRNIGGc5JGFC9RIOAFCPz5eUwYZsPKTl1A8AfMMGJrnutdUzgQh6RW8gZkHYa1z+mgOo0JAbADJEzKV8AJ8hk9AJZ4B4igF/XbD/CLq5vYIHRcwToC837Cs6tmN8V6HtstlfTD20n28AylnTRumb22TLH05ZXbasEC0AmYmNTkFKBVJULODfXkYm9XsYCqTfNOJXhOkSAUNUKVcOWjdh4FKjcxy7KtQ1eWas6AVeWqLJJF8x45szYddtZrKP0LBbITmJ1VNVMLEQAFwfbyqpu4wqqNLCyDApax+UQNhAm238I/HMsEHyG1RdUrTL9qaD4EwRciBtWTWMa1y0C4KdYAO8hko+0nV7b3D9FnqcVLND6EKsluoBZuJtt6gibUpmL2uav+0wQkPMhFlzV4o0ywVvmdWWhKlt8iH3OS2Z/15z/Yeza4rIpKmmiGsmaU5XVqYCn7vMRViNZj6Fs3Zo5f1w/VfODslI1P+bM2JX5qgCz5hFl88c1qn9ktlMDqBpWN1bZssYAig1zj5XlquAp5jwqxaJj0e8EZcFqLletVL2XNSyzOI01r9HzriH5T5n//9Tchy+BZaYxjWsZyRE4k1Ba7UviMp8ajvk//BnQF2bmzFtsF9Is8H9H5jKzQAdGyzOk9i5hEZnnpM17/ZYtfGexcyAP0WG/gTXLxBy/iMzrNF+cIfPNOaQQNEJyRHZsu6mSQBvIY+eIXez85wi42ZN9+8D/zYxp9gSyMMlD4pzIdOly1TAx57AgqJpcKbGgD+R6Mtc8Q74P8mbMxbGVh9ICnBIXbphrC8byu2vGajDOP/tPiHSwkwtQyA1pbaTJ9IckczDTgIXGmLOPBbQt/PVQjr8F/Zxh4TIWeYb1ji1ydeQ+eJMLLkswsyuft/fyAtJwe/cEOnBrvwUhDB+L/MLSQS/Kq6lSIFq5juje3l474TIhUgSa/8+n+vrTuKbxIV+RIhGxKO8Ge6SGF9RzZbJ0cZjQxOWcDD3jYD/CZY+7lKjTJk9AKmJpqqlSsd/CDWCmMSaxscOpI971am60ya85J0OdMvN0uYcUQJosRsCgzzt+ic8ah5FBVZ0yv+QHlGKmSupw3yXLFl+RIKRWKHBORlieQZe8247Yqps8I8RhgkPCMDZ9I6ZfpWKueRGnFDLCpU6JRZqUqEcM2DxtHEKy9HAN8FvhSKQK3BIZzrnLHlm6DBwZR8ZozDpMqHof4Ic13jt5eo4cT9mgt6snfF3ZIMShTpkKR6QI2OTXEfPUITRmUwlOKUbAq0oMKJNU9FXFiGq1/4Y5byCgMD4JA2bf55tIuuAOe/hBjbz7nj3uRuxckTwYRX83yvatcodBQVizXbK84BEjUr+rP99p/JZjCqhOQ2IBaxBSQiaObfizdeAILvswoxqoqq+nIJ1qzy0ANw2zNYVlEikgoGDAGgJQbJvjHJj3PDOGA+wiXxe2K1hdV2WLattmiGUTHQNJ+LPvY52iDfNq/A6SFayD9QbCdt0GRvDnI3OOx8AvsRPlOBtTTQxUP0wX83qtqi3bwgIMqkuobf2vEHBCdVxjxk5/psCxMuOOkAWAtharnIJh0f75LrKwV6mDGEPiChijr/XNfd3HttIqmKCSASrdUMQyUMECJ/qagir63nNzTf8MYdROYxrXMeIswyMs4DfBynKUkb/5ltlm0+wb1+lUfWFlhoPV4lPd5CKSC1XaJECeTcyxXexzp+Dftjmfynco6zQXe00lCZ4jOW4Fm2sVEN4F/hQrXdBHiiL7SM58zlWgVAFFsIx31T19aPbrm+M9RsDFCZa9r1IyavCnuVUZqQUEpFbWqRZmlPWrRSyVaOkjufQrrHZzxVyj5kkfW2R6iZU/0O8PNUkxgAM1rJyLdkfEGVUVc//Bmmopq3hozqU59qUZfz92n6YxjWsWtaUbFN0xgT+hUBty6hblGTo9gTbMvAK+RcDCFDZHZJHn6hxSby9tQbeJgIZNs80YAQtVd/M9tpjfQ0DFwGzzHslVOSQ/heYYOjdzEVD0LDaekTnut2bbRXOcNLZ4/R7bDZTFmu8BVCGhRfgEMAczmutmsWBnDiEl1LFdUvux/WaAS6S4cmrOpUTQrnl9gsxhj81xilhywByE3zGGW50Ljks5skEXr3nBjdaQwJX9xzdFA9aZhLRKabI/GJII4aCwzGLY5GQrw1KjB4ExDPPSZDtDEjmYMfIvM2bO2PdnSRUuCBPwwnvIZuelSAAYgHvfXyYkIXq0OXCD0dWuB+yxGMLZZhLOx0xjGtcxxM2+xztHzJ9O3SJtN0+e9/j9Y555j1nlULQ3wyoHzip3gz0GrrTGj0hRoUoiDKk7Ze6xIxqm3gb32WW0kaTulNmovaXpL3JOhoQjD5u2ry9XOxxXcpF5lcsoMptSAPZGa4jrHYIrY77TeUMjV6DSf0vGGzAgExklBQbQSxFwhz1O3SLlsM57Jw8IS19lB1KMOGCVu+wBUDagaZNFboRtnElI1pVW+sWwSeC4bAbPaLsCSt43QLBokp5Tp8QIlxFdUgSUOi1G6VmcyQVV7wPhfQYjHHfCr51NPur8imrOiQDhDANOKvPkaUesYL0vI1zROQ1k4njorpJiRJcs9/mGESnqlI3Ewalh38v1lmlw6N2ONG5v0KZk2vRDo2X4A57SoMwL95GxDctQpUKZOikDuKtuasa0l95jhzY3qFOO5BMuI4bZNK57TAHVaUgsIYvZbWRh6QF/j0xQPzXVeGVvKqMUZCKrbai6yNXF6EfIolMX2Npe6ZvflVWki3F1gfaQhbJqmk5i73WwTACwoMNPkIX4IsJGmGD1Pk3LVxJsa6YeV4GKIsI2+KfmtcdYEFT18TbMOD7GgqeqRaiapWoMpcCGAiimbYvA3N9d4AdYrUYFUFsIu1QB2i0s2Kx6fSpBUEMYtmoeo2YpB9h25bT5/3MEDNjFMubU/Erb/NUUzMGaTDzBss42sW7XL812ZWzbbsFc0xHTmMb1jU+xuWkD6/geZ1Hqs6jAoYKjP8C2+at0hgKEKh/yBAto+ohBHVgzq6dEZiKRQZKCtE+w7vR9JF8rWKlmI1rsMi2wrJvjqh6pYVlFBlX6/BeQ576ILX5px8IaVsNUmbOqnQyWtfnAnENzTYjVVP0niPyKMuT1mMqu9bFgpGpsa9GuhmXIai7sY1mqqsuquXZiPpsNs//PsGCnFtlMsTBiwWouVkavfv7KuNWi4CfYLouauW79PtECk8o/qCZulmlM41qG/+49pwsCxp2Vk2Q4Z6nWkwJHCH/2GPgPsMUlnXOpfvsdJBetIc9SFskTqh2vhZYvsMWPeA6NyQBEBaAOkk+0Q0jnIDo3VQ1rlRLROZMaSX0fq0W9C3zPjLcT21fzZzyfzZv/e8Bfmp8jZP45xBp8LmNXVzonPsJ2LsXPpYXrx1iWvBaYlMQA/Pnfg/MATt0iQUnaekM3D8U2dbfEYtiE0pgwMUvy3UWkF9vOBZSDBuuvjhlWYOFANGiHj0XWINsZ8re5f487vKZXyFIJq8z1xiQL4EwuqOWWeIdPkSaNXIEgl6IcNGi7AhTU8CEhmqqnbpGw3KbryLkdQh403rBfWSZfaVOoDtm9o60b05jG9YqnPOG+844JDnvcNWZHFR7xgmfeY6PtWeI9efJOm3f4ZNxzqlQiVmebPE1n0RgzudbIyXuHGwY4TNj1P4jMl9QASlvu31SWyHBOjyxzDGiyyGr/Ddve98jTZkCGLwsVStSpU2aVA77JrQuY6IkkQJUK99khH7T5W/cPuMcODiHloEHdLfHCeWSAUjFlCoyMQY2b9MiSCQccOKsRUzdLl7pTJut0qVPCNaZZIQ6Bm4qMsJRNW6eMS0CbPAMy3OE1dco0cmXRpHWFuTtgDjcRUGUFhwmHuQ9IETDHQJil5EkxYsAcbW5E9+k+O5Hx1cDN0GWe9+TJ0iUkwS+NSVaJBlUqNCkyKGSMAZUwV5ssRgZbDiEveAQQmWmFODQpXjEN0/b+ESle8MgwcyfRMRKE+NTYZgvH/P9bbv0P88c8jf/eYwqoTkNCWxlzyIL+r5Hquy7UA2Tiqm7IL5FFpOr3KYin7aDK3tE22QPz+xfYxaeafMSBS9XD0zE1sEYrndjxdDwr/2Af1Rn1zfG+wrIuK1hn+xrWITtEFut/hwAEJTO2ItbVWhlcRQRcbWANZ7QtWFtUS1gNxPh9VTBTtQH1Xj1FgNElLCituo26L1zVclXDry5E+bhPZPZAE6sr6CKTfQVA49qImHM+x7LhXOTzqmDB3BABQ5Q1VsQuZgyrIdIw9JjOl6dxvWMFy1TUttA+8rxqrtHnU4sK+1iWKUQ6gVfa1zeR56iJgAfE9u+Yc5bMzx+Z/ZTl6iD5qYmVGsghxkxFbBHomdlHQYzPsCxLzRsKPgyxuVmlSIbAHyN5/a+xoLK296smtLIzO9h8cYbVUlZ5kV0suBEC/xmSV9VMy0Hylub0PlEhLwJOj7AmfCvmGhWw1tyqQI4yUTXPr5ljn5nP6GNzXpWoUakG1TxVgKMf+xnX/G4g+VKLWg6WTfbYHFfzqepxq9zBNKZxzeLoZpG1oIEzETrlwMvYOcp7bEdTnEWvc0UtMOSwHTkBwqpXprwCnk+Q3KgFmyHyXM0j87MvkeKTsvlB8uEDpACvjPMF5PmuA/eQAsjn2EL3kRnb51iTPQUxdU7z0Lyn3QMvsXM3Zczr86/baQu/g50PxbXy62b7+BxUu380r8Tnk3FA+DGwA1zAYtCk6hqwpS/6tBn3XEDQFlzmLhjfJAI21hvHtEppnMqQplfgVk50VMPELOnOBSTgo+BLwoTDSueEmSGc+PM4uQmJUBhaH7W+ZuJA8jmwJu8HpFivHdP1s9CHUU4MCQLH5VajxVxpQLYzpJ+bpdI5JhnApQcdckwniNO4jvGAV9ymxblhIzqEfMTfs9TosR4cc1zJccgqFaqEODzkBQCPeBGxJ/O0I4AR4MeNv+PbUoGlWo/LNJwWYA9xrf8o+FJYsOQpIloZCUKWqj0GlbloXHVvSfRF6dGkGLXDfxR8ide84Df+ugH8xFAqxBHHe7fJD8NfRJqhbVeYpaGToMhppLXaNRXhFzziBlIwcQ29v045AlWbFAVM5Q4+77jDa87JcEqRDOeEJAhIscmvyXaGfJNbxyE0cgDdSCKhSzZqxxdzqIkwe43JVeC4JEwbf4oRRU4jxmuIw4CMuWeieSoFoBtk6XJumL51085Z5DSSP1CzrAZl6pTMeOQzu89OJB9QocqIFCkCHtLmG+5fYclWqfBDfkGIw3Kjw1kxSdeRe1hudVgtHNIlS4kGuSsu1tO4zjEFVKchocCdMlA9rpqofIplCz1BgNE+wqZMI5PLpwg4oDpaG8jCUifV2kKpeqXakq9gqjK5dIKtrabajl7BahMqY8hDJtTKPML8PMMyPjHn1FakWmzfoRn7Lta4CqzmnrKs1GhFWaC6yFYGk7LN4sePs8X62Mm6gpx6HG1/PQS+ExtPH1lIKCir7cTaPqr762enQE4dC/pUzP56TAUXmma/jxEgQfUGdfI+QUCRAlYXEKyEQQO7GHDM/XmHZdXNM41pXM84wbIbwTLitYDSw7bV/0tsTlC2oy60P8eChGVsESXOyuqYc4VY9v0CsqBWhpQySBWwUC1RZWmpJAHYHKBg6xo2B6kequYpZflvYtvgSwhIsY1lgOq5NWfodh0sm1XBk5eI/myAZbrrvdKizgMsSDvBfscocK3AqeZeZf4r6LBt3o9/B2ixysfmIC2a6XcZyHeX3p99bD5WwFk1VpXlqqD0EPk8Mb/r38dTbIfDGrYAVTTXqi3/N5nGNK5lzNMTtqMrC9Q2eYqljszxtHtbiys1pFCkhVtlc9e5Kg+kz5zKHcU7kPR51S4j1UP2kdwb147Wc2vhYt+cXwvgHeA/x84jVcbpM67KRykA+swcU98rm/f+Cmt2F5hzvMR2Cug/ncu1zPYKnKo80j1zDV+ZMWonUhpLLAiwEjEq6ZRD7vc5hAmH1f4b0rEizXK/Qz83y8iH1PCCam6ZLF1pNZ1ASIKmV2COAa1KOjKJ8RJDWqU0bjAiNRwzM4RhDpYaPY5LOUInFLfqgjhwv/vE5yY1/M4Jo1yKr/0NKlQZlmRct2snfOsXou+W5CtIVi6ijoduMclarco0pnEdY5ZJBC6WqEfamH1TTGhSpEiTcv+EdAu+rRQiYC8TDsgCqeGYktdgRIomRcKSmCEd+zmjHXpOiQaP+i/pevMsBk1wxezqnAy3Gi36pVluPz3h2ycFMgwAyNOOWK0aYcLha1/ATWVvZvs9fK/GgAwl6gSOy2r/DTVvmQZlio4spLtkuctrHEIDxIb8Tzv/L17kNghIib5q/zl73jqr/TdmDB0GXpoUQSRDAFCmEd23+31ZwLZz8xGzU02fCrUhhENOKvMsHfQ4W0niTEIeuS8iEDvviKXUIWumvV7OtdF4S6Y0YI4BbjDitXtHJFE6F5yUZEHqEHKPHUISjEjhEFKizjkZCo0hxyVhAZf7JzwJ4NeFDZF2MEzdES6ZcMDAEeB1LTwU48MKvOQRh6xF7NgGJYo0+bZUoNhv8dq7yya/BmC1/4auN8+AOV7xAPiL394f7TR+ZzEFVKchcYbV0lMTKW1TVyCzgGU2KejZwup1prEL7QvsRBmzr24H1hn5CbJA1nZTBfuUrar7J7BtYGoA4GIZD8r6nEEm+doGptegi1xlHKjuXQmra6qLbmVNqX7fBhbsDcx4Fdg8wwK6CrLqeCcIoyKNZTho23wH0WnVuDDjVg1ZBQ9C87ve1yOuaiBi9tNxaovtK3N/q2a/h9hFxSssC0T1UJVZp229k9hryuDAHF9ZtNoa2+AqoOwizt/TmMZ1jH+LBfA0Lyn7aQXr4K6MRZXKUIAU5HmtYs2Z1NTpFdaY7jFWk1X1ksFqr8bB1FJsmzMs6/5vsEUjXZRjjqudAyUkN+xjCzWqtfwNkpMSSM5VYEQlQjTnOQiIoGCxyhD8c2ybrrbTNrAM+7hUDAhA+xexcbXMvjksIKF5SM/7MPZ5lBCmmgIraaxESw4BRBSY0HMqkBKYY/2XWGBVW/iH5r4qa0ylFhSo0WvTrokiArD6Zkw/M5+NFhQdLKNZdSGnMY1rGGNcVmsdskVZqC81evJ8HWPnK2BlP3SeosWNeOFCJYm0OKRs0yNssTZAijLK/kwD/9r8fGLOo8WLPtY8tGP+/wW2CPQQC5bq87iALXgrgKqySXrOV+ZfDytHEiL5P0AA0RaWmapSVVrYeYjkKe0I0Fz0cyTfqsazgrITbEGuieQW3aaPzJeP5feF/TGXRtZgWBBjKALwGhdc+jAzhPXdY8YbkDTF+6VGT67d5NzCwjFv/CUKnSGFg6G8bubmjrk3y1XzZfYS6IwpPBmykhMG62UasmEXv9MS5uo7SHtjqMOtRgsmUAiHnD1JslAfR2uG1HDMcLrqnMY1jZv9BucLS/TIMsGhhs8N2jRd0Uz9zqt9cODbjQJz3oAJjmnLLxI4KbJ0ee3dpWIE4dVk6h1+5BYvUhkTDr3b4nLvVsnT5iWP+IPgbzkrJqk5PqUndXYMM7JIky5Z04Lfo8s8TRapOHKeJkVhkYZd0i2Y8wZRC3omGFD3lmhzg5vUOCcTFWxapXQkV5Dv9GjkCkabNEGXLHVviffkGXhpzsmQDbuMcFkMm0wcJ2KcDpgjRcA5GdJ9eFW6LXIAuBRpUuq0SIRw7OdwCGlQor2WF7DYESB0jgGbwTO6rrTY3+U1+aBNmHDIdsYcl3KUOi3auXkCF9bCQ1LDC16VbhvphFMDgCdYbPWoFiq4BGQ7Q17kHuGUQgbMcU6G250T+sXZiEWsBl0JQmMYtsgdXjNxHIaFMTfCNquOmIEpqJ0ioEqFDAPaXp4ydRJhSDeXNKxbMfEqRBP4aVz3mH61TcOGVv110Qi21bKPBTFdLMiq773E6vSBVNOVbaUTWWVETbAO17tYQA4sYFEw4/krc56KOZYChbpg/RKZDG4irINLc25ts4q3W9ZhfADJB+acCa52HiXNTzV/0rEqaNxEJtw+VkNQ27jirfwlM5YQu2D42Ozfw4KaKmWg+XTObK/3xuMq603/6dgVtNV7XTVj97AMNgVGh+Y+PsUy1h5g2SP62StbTu9L0VyTSi8kzNgD5DPzsAuRKhbE1nbmaUzjusX3Ebb6HyPPnwIA+izrs6mAgIKPCuqBlTJRQBUsIxNkAf4UYXKnsSz/LeT5AgsMahu85mRdgKsGsxa2HOT5W0HywCss23zTjFFBYR3fPSxYqfp+61iGvj7/2jqvMgGq7/c/x7bLKhiqMgcekp8r5jg+AjwWsMzZmhnbEGtitY6VElEGbDw+wRbhFMDRgt6n2NZZ7SDQnyptsIUFe7TQVEEY9trx8NeIud4XyHeQ6qlijvcpIl2wYe6fAj2q97qCZcl5MJXJmsZ1jULnDCbg1S7kb10LFBdY07kqMj9TRqbmD33etYtGwU0t/Kiee4jkKriaczvYOeQQW+D4GfLsanfQY+x8dGiO8QSbO7XLp4nonSrzXPWalRH6pfmpTHll/89jCQWfE80vxy1odaCsc7EnSB57jrDS35nzgGXe/hyZD8YBZB2HygRoztPCkhbXbsgYZgzQmtbOA5P/ZhSQnYfz+STJYGzz87y5LwZovv3qhNaDNIVXQzs/L5n77QpTNa1EgRU5x8wQxh50c2lCEiw0xySV9BCL1hMxuuo6WRbCFmebSRZqY9IN+HplFUxL8jSmcZ2i5d0gz4h3ZLnHDokwJDUU3eLATXHyQFg5yswc4ZJhYH6KHt39YIdTt8ged8kwEFYopxHoOcGhbLQ9MwxY7bzlfD5J3mlTc30yDLjTeUMtt8Qmz2hQ4gWP8Kmxw33K1KlQJYvoLL/DZ4ttXvCIonNKvtImS49t7nKH1wSumDhtdl7SzaVZaZ1wUFjG8ULTjJ+gQYlMekA27FJxqrSNHmmPLD2y/D0fcY8dsogsQMURLdIbYZuGI4ZUqxwwx4Dd0geRoVSe9wJWmnwSIKDzPALMKtC6U7jNav8NdW+JcwSMHDBH2xUN1aDQJsThMPcBz9jEIeQPnL+hnXMpUWeEi0NInRIJQpzChDzvaXODZi7Hfb6JrrVKhTlfPjNt8e+SjUDwKiusckCTRXnfCxmRIsClho9DyKPgBTXXp0I1AlhDHHac+5HEgL72IJrwT+O6xxRQnYbEENsSqoYg/8r8X9vH4wvlV8jESw1LdLLZR0wI5rBszQcIG3MDu6hXQwBtf1fQYYjVAfWQxa8CvMosdbBt+GA1CnViN8C2/29hW0TTkPwxluWkx1NWwTxXmVVmEhmxHRLmGlQjVJmyDWTyrJqJunhwzDEUZI6bvejioWPuSQrRQ/WwrbK6CNAxPccyYX9ixjSHmCLoYuU5ln26iWWOKftYwewNs43KIKhmoS5ANrA6sGAXHMo+03ZbsCCz/v1sxz6LaUzjukUVuI0snI+w35KqZ6eMywny3PeQfHATm4eGWOBA99HFrzKOVOtYt3WwshxVc7wD7HOmoKEWXRpYyRHtAACbi11sbjvDFqGUIa+sK9VF1kX1LgL4KjOzHhuzsrcwr29iW/8VbFHGmouY/MX1ozXv7SK5qoMtvqzHxqDyMgpQNhE2WRVrfKXgjbK7PjXHVYBawWZl6iqAu4uVntF9tRND24GV7drCatnqZ1tHpB6U1fWl2e9jbAvwM6ze+KdMW/6ncW0j2YX+nVnChMNCMJbnoI6YS+WRv/MVpPiQxs7ZmtjuIGX7a8fLNleL1mClkTyuMje1g2YBeR4DZP5zEDumstrjkk1a0DpDcsUGtjNJz/0hktf+EmvCpwDlmjley5x7wYxJZZM2IbkC5SPs3EeL2CVzbO3K6sW2Uf36gKs+AdvYriD93tiIva/3oQj93CxecGHPtSs/z8pJBmsZlj/vwAbsl5ZZ7x9DGs42pH3WOxMt3OheOdh5ubJYz8BNEwHT/dIsbTcPCANVAJFzua8q2/WECHhuskih8ZZbjRbjEtIWa/T1H749ZBrTuI6RYkQmHHHH2SMkAQ4sdMYQXuAxpF+aZeBmKNGgy7y0owdtbjVbUqCoiXkbLmzyjGy/x8BLR7qhIXnu93dJ9yFVCgTMzBXE+Cp8gTMJyfQveF9Ik6VLIgz5TnOf1dwhzuSC0BNKfKnTIpUTOQJ1p1/lAIeQxaBJ3S0ZJ/qetNn7bZJ9KDSG4IHfP46ueeS5VIIqXvMCwgveV1KcUuSjzq8YpWeZd4VhO8JloTbmDxb+jmZOEuzC0ZhU6Q2rvKHpFeiSZYf7fMSXMpZWj9PCPHvcNSDkTfzOCW56hNe4iKRX7rfecFqYZ6V1wowpXO+WPsAPBGTwmhf0iwJq+9S4wx6JMOTcyZDCsO1dyObEpMoNRmTdHiEJlqsdLj0pRgVrKYo0ydMmEYbCrg/hVeU2AMuNDk7pBS94xJPgKc7kgqZXYEQKgApVBsxRd0ui69ofkk10I+C3yzzr1WOGhWNG6SSB47LP4u/qz3cav+WYAqrTkNCWJG3FVAaqVvFVU+pT7CL3AMvQKiEL4h7SmqRA4XOkSq/sggWsWYm293tmXwUblAWlk+S+eV/ZorqY1jFPsCykOSxQsIHVu9IWUdWFLWBdnlV/NIudaHvIBPEz7ERYWRUqAaWttPq6AqDKEJ1gJ/3KLvMRQOLT2LXrNaewYKYuKPTz8P/BeZSJpjqtCkrrfVPmiJq3KLCrray7WH1VXQSo0dQX5r0nss/lj2Dmr7CTbW37B9sOrecrmf1OmcY0rmcoo+oMy870EBBBWe9b2HZRLaC8wi5MMfuoznECq0uqAIPuq62wTSRfbmAX1vpcqh60jzXTq2CdtROxfZTtpK3rTSyL6wlWG1S3S5j//zEWONSuA2WaqdSIFtdq5vehOUYPy6Taxmqk6vfEthnLR1hQmNg2eg83Ysd2zWegrcRbsX1UI7UeO942FpxVc5gzbPeDStXoNTUQMOgT83+VMQCbRxV0LSF5UU259J49NePUvxMFjjdj16Ug+TSmcQ1jnIWFowuG/gWtB2kylaG0hf9XwBtsztB2eG1TV1kokOdI2e/asq/zBtUpBfuc6PEKSMFC2ajKDtdC+DxSrFDwUaUA9P118091n1XnVeWRlFWqBnJa/JpHCk8geXYDSyIw86IILN007+v3waY591fm9S2saZeD5EvtoNJ79nMsC3WCzJmV2Z8z+2eBS7gsQdvNU6+kGOHihzUWGmOGOQEwFjqdiGyQpce4AM21HCkCXjt3cX484W6wB8A5GYa+fJ6H/geMNsSAJZUbsdjqcfxEEuLyQYfTNYdf8oQ7pdd8r7bLWTnJ2UaS9w/ykQN5oS8mVAPm6K/Mkhpe8Ivc75PNdclX3rMYNuFQhXenMY3rFcVWn5QDKcY0vQJ1KuAfiGxGAjL9C2punkr/LXgwIiVMxdxb6t4S7saIfL9DhnMywYCmVyAftEkkQvJOm8WgSZiYpZ8jauFXdmS2M2bGdBNl+kPSHTGHG7tjAjeFyyjSak02oJ0TmySfGsV+C2cirPUwIa34e9xlRIpv/QKnFGn652wcvAVg4Emrf562eN67KTyGXHpiipWlSzW3TIZzRriscki+3+FNZYkQhwZlAFJrO8JUz4lu873OPv58jYnjkOkL06jLPBkGhAn5smjmcnTJUqycUhgOOS7lqFIRk6zCHNlClzZ5XvCIu/23dHNJjn3RZ81wzk3D5Bo4GUqdFtXcMkv9HkzgtFSk3D+h7i3RoMwdXgMw0xSgezFo4roiCzByXBbCDvRFciDEYehBiEOFI+puifXOMaVJi0nO4ZRFXAJcRtF92fPuUqJOlQo/qv2KkZ8SPdx0klNH2kIPWOOq/t80rmtMAdVpSOgiWx2btbXqM2wlW4EFnSz7yKJ7DcvYOkAmfnFmYxNZtLawjKs6toVe29U3kAXqFnZxquf7OTKpVpaCaoYqw6mOLPq7ENaw7V5g28WUEaBaV7vYSb0yHV7GzvkvsYtwXezHW9gUTFAm19PYdtqqpQCuag/WYten7KgDLDtV29zAMi9AJvcKznhmH2UyDMy5m1iThxDbPqaA+Jm5fwoK6D3XRYSOX7VbDUti5i+w7DcFqtW4RVtrVZssptM1jWlcy7iNLGjTyDOuTHg1esK8Po8FPFeQ50mfG5Xm0N+VFVnGFqdqCNNqG9uCXsayNBVAVTapaitrXtT8oxIk+uyptIDm5AnwY7PfHyEt7EexsWnB5zNzbT/FghG6v4vVTC5h8+kTrAu2mmqVENDjS3ONn2CBDM2Fu+Z4Cuh+hGXgq/mLFso8c19aseMqCK3tugpwNmLbg4AcH2NN/fTeqxGNAjnp2L3TQpaLZYhNEMbZTWxxTI28lNmfM9egIHYOyZMPsQz/aUzjmkUn55H0Ryw0x4As5GkBb7FsTrBdQX+F7XRSTWGV2+hwtdvFwUob7SK5IsAWy2tYkFGZ6w1krqLgqRaxXIRpqtJEWoTSAofqyatEgR6/gp1TaT5/jgVY17BdNz2z3xOz/XOsmZbmnhySY7RgHmfE17DkgQA75y6be6DdCToHVY37GjLPG8JMA24dtSAHwxKkd+X95uMCtzotueYiBI7LHnf4uP81+USHdB/c3A51tyR6qx5Am/S2XPfG+lvGC5DUMaUh63XxDi64LMHt2gkZ/2+lnfkMFhiz7y+z1jpmpg+XHlwWBez93u4uJxvznLpzlKkDAko4k5BQGcnTmMY1i91ChYI3xu8fM8eAkTFnypSGDDwxblO24lK1x7eVQqTDeU6GLF3q3hIJQkLXwW+1OC3M84xNYTS651Hr/wg3Mphqk6dW8LlTeE2hMaTuLbGYaJLv9Gjn5mlSpO6W8anRdbJ0NwZ0yUbmcwMvQ4ZBJA1QooFDyMRUvN7h8/t8yf7aMothEzcYkXHPo/2bLJIo15nrjckHbRw3jMalLfFdL4sf1Hjt3iHApcIR52Ro5hYZMEeDMvlcmwkOVSpUvCo9L0udsozNeRQZPQVOiioVuhvtCJx1CKN7mOGcR7zgtDBPtt8j8EK6zNOgLMxdo7nayBVYDJucPJgHBDBVRnD0mVY+4G7rLaP0LDXXp2jYQG3yZPwBB84qFapk+kP2vHUCXBqUmOOcRqnMKoccsmYkFtyolV/b+m+EbTLOOSf+PG3yDEoZQhzqlLnLa4JIa3Aa1z2mgOo0JCoIu7OETBJdhDGpzEdd4Go7lgIGATKxVKZmDgEHP8ACBF+Z/59hTQbiRkY5c54yltmkTM0+siD+C6wzs7abt5DJqU58A2ARHGVqYY5bR0DMBpbFqS2yCiBqW5fqoqpBizLTdMGu7DBlh06wAEacSaps1bicQdx8Ra+9bLadNeO4gW3BVaaaXitYELNo7sV7s89m7PPR1lcdm0oRNLBajToOBW/1Xqne65F5TY+h4M4Rlomh7F8fWWD8HLuYWWAa07ie8QZh2asesgJoyox8ijVieo4wP3+GLV74yKK4h2VgtmLHURZmDgExd7HAm4OVF1FQAWx7+T6W7V8H/hTL4gfL9AzNthtmPP+V+fkZ8vzqdpqHVRpE8/9PzT7KYnURCQRtP1WWpwKP+nrdvPccyR1/gu1g0Nx1ZO7HPpJrWub+aUv+N+b+6v0Ozb3sYb8fFGxVsxlloep5FIhR5qqPLXzNYzXBD7AsOv0uK2G/PxRMPTLj+wZbaNR2ZpWGUD1WlVbQ63/FlKE6jWsbxVafhZ5oZ6YbBsQDyABt5NnTNv4nWI1VsECjFsL7yBxqGzu/0ud1zRxLma0KxGqL/BnyHNfNsbWgfIZ91jU35LCt6GtY6Y+n2C6DD7Ea+GDN5rSApGxalUtpIHOrDtaQTotdT7EMWu1+whzvaeyYei0aKuE0xBIThuaYOg8HyS3/b0Tz+oho/pnW74oWFPstCwDXYWnYYyn4WrYzALLnXFDebHDmJ1k4GuP1L2AN+sVZvOYFyVdmrKZ47x1dCIhrANOl5z2WvB4syD4uI+qFHEWnQzKAywTc+rIFHrhhwGKnx8wQXvm3uRG2CdwUZzcvmWpCTeM6RohDm3lqnuhj3qRGgpCq9wFZhDmZ4ZxROkmzkiUbdpnrjenm0gQGaG2yaE2pCjkGzOGbJKQAJUCKgGd8lwwDAlKcC68VJsOIZYkLWbrMMWCR00i39IXziBQjBogbvbBcj4xj/aIwWRkQ4pClFznY+/1jwsQsVbfCKUVcRvTIUgmrwqjMiRzAwJ0jwzkp8xw7hPQQlmieNneDPU7dYnQdI6SVfkCGclgn63R5xne5zw4lMzEeMIdDmYGTwe+ccDs4gQDCisMIV5iw/TeRWVeKAIcJjjfhEAE9hZMreqpNFnGYMHDK+EGNgZth4GYYkZL9CGmTJ0XAaWGeESlWO29p5+ZZqvYIK20WmmOypS5NFvnGK5KnzSoHDJgzBlcOASlWOeAX/JCyuZY97nCPHbpkqTl+dK4ipyyGTbqOgN3P2Izu2zSuf8z+Dz2Aafz/SUywGkrxxd+n2EkfyOIwjSxG1egkvr9qVzWRyfBTLGi4j9Uc1dbRl1i35p9jq/rKwBqa15UVCZbF1McuhlViYBYL6ClLaxPb/lo31+BhNfN023MsI+ApFjwOsQwKZR1pC1lcv0vb6b8wY1J2gpoCKNNAGQzKqlU2q7Jn57GsuF0si0EXAnrsJ4gJl5qEwdX2uzjD7p05fglheCkI7iIMixVzjpdYcHiCZdIpaKMArWrE6mdQwwJABaaA6jSub1QQIEzb4yvIc9TDtsErk18Z3tqirjp6yjpSBv2aOaYWMzxsMWMLWXirducWNg+2kPylxRkPYXF9ylUDu4L5p+yxSWxs21w1lJo3731qrm3NjFWNlECYXlq4WTNjKiD6pQ+xC30ttikrNMS2qep3wg+wxbccwsr9H5vzqX7pOrYd/6E59xaW8fkhFuCoxO6Fgho5rCmY5i8tHjXNv7I5ZtxYLA5+qAaqghKeOeZKbFwBwvL9CCtv4iM6qw/Na6pB/jGSv+MFvmlM45rFzCFwBsk+XOag6n0gcwhleyqYqXM/LSzXY++nkbylXUm++beCHEtzg3YL6RzJQ57ZJ8hzrx1AD7HFnCMsy9U3229hGfo6r+mb99eRZ1iL+GCfcdVH1XmOjgfsvFg7AZrmPEdYuYECVus0gRSvFHTVcyng2zD7V8yY0tjifTq2TxErbQIReWFcga83NuScnwjYffYwGXUKtDbSDNfg5KN5KMDZkyT9TQFOF3bHUfGn5adpu3lafjr6fjrx5yGAoQ/9h7MCqirD33SVpYYX3Houlf5kAOzCTM3et4XamJmaHGuOAQv7Ywq7Qwpvp8lwGtcz3rFMjZsG2jzHZcQEh43GWzLhAJ93VKngTEJKnRaB4xImEL1VoGHYmCEOi60eDiGusTTK0qVLliZFiv0WIQ4ZBmTpcpc9AlI8Y5N+cZamV2CPu1Sp8IzvRhqsz9jkqfOEr9hiRMoAjO8BOGSNNnke8QKHUBigZGlQYkCGNnn2vHV23PsEpMhwHoHAr527EUO0683jEBIgMgM1fM7JkGJEmHBIEDJwhYWpxx2QAQQ0Feb8XWmbp0SVClUqnCP7ZIMu27nHHJdynPnC3pwz9yzdhxJ1MgxYpGl0ZxNUqBKQomRAgnzQFrkDowUbuCncMKBKhQNWGeHiErDWOuZ244RDVhmQ4UVugxo32a18QIMSx6VcdG+VLRzpRyNg9h53CXG4zzcRwAzymcs/hyxdHEIalHnt3CUgZcbscou3v+0/22n8jmLKUJ2GjSYyKVTA00ySotYkbVs6w4JtujDVFioFXhXAbJjjKpiq7ecPY9ucIRNPBRMPzDFUkzAOHKhWoG6jzMm0GcMFFuTUSauaxRTMuXSBraCAAr7vY+P/sRmvLtyVoVRDFspx3SsFh1UvVdtv17AatJj9G+YcJaz+aR8BII/NuBRcUEaVgpk+XG7DTBrLUM1jGb8FrrItFJB+hQVB97FgqLK6trHs1nUETPbNPi+xDFVlpQWx4ysbTdv3dOzvmMY0rmcsYvMNyHOhoKYWFzawDu+q8VxHQNdNrPO8z1WHeZXb+AgBEnzk2X+HsEKVja6AXgUrRwLyzKqsx3rsdWVyKlv8wPzeR8CDl0huTWAdsbVlVgHEV1hgWNnrH2PbTwOzr0oddLDSK9qdoFIxYHVEwbb26ndIvK3XRYDav8HmRT3nn2ABUG2xV+mBBBaQ1W4D/a4Aaxb2x1gAfMts8xNs4StevNJiXstcl97bh1hQOofkvZfmff1MG9jvAC1+Kev3BtOYxvUNUxyZqcHG8K08zxeIIWYRa2D5FMvy3MBq3isrX/ObSinpe/ps63MUYHPOBFtY6SF5Vgs98QLWJsIc3cKyxotYBqt2+3xlrkmfXy1OJZDcpPlG5z5xiaS49FELO6d9x9VuJdVPVqD5AGviB5bR/jNsrlcZKtV29ZE8ouMcIoQBIw2VfAbfS+/awtLQmD95QBoK1SG4kG70+HajQIoRS7WeZe4+hKEH2c6Qwruh3FtTBFz6rAcbRk7Av4jkYcZrkGzJPTqfT5LsjFk+6ER/H5cPoZtLCmBrvguWqj1alUkkMXW2qJPbaUzjekWKMd/nl6JvGga8d/IkCLlMwEJ9TL8YsuVKgkm2YMk8exMcXEY4hGQYRKzILvOUgwZdN0u+3yGb7hI4LnVviSximrTReMtZMUnFqVKmgde8oO6n2OIrC9gFYnz0EX9PgxIOISlGgEgNrHJAj6wArJ0ev8x9j3vsRGBkmzxANJY48xKEVaut6zrm1PCCUXqWjGuZqgfOqhmRyADkafO92i67/ge84BH32aFhJlx+/5hDz6VNhjvsRVIJbTdPQEq2d3ZEG7bfYuClOSnNkwkG3HRlYumHteizyTBgrjemmstHAKYzgSKnHLLGyElxhz0ywYCqW6FEg8B8L6hGaoKQ9+RZCw/NsZYpUadNnpAEflDj0F2lxk3KNCjR4CY1mpF+asB78qxyCECe94xwSRFwP9jhtXsH15iBLTV6pEq/4F/w49/q3+w0fncxBVSnIXEbOMROFJV9oK2LccF/bVnSdqptZEGsLeU9bIuVtoPmkAlkvMqti2x9XRfEuv1H2ImpshwaWIMCnTA3sEYDYA0QHpsxKnDhYZ1b+7HzgEyqf4ltDVV5AGUqKBC8hWU75BBQY9+MW9ldYBcINWRCr4w0vWdpcx0qDXAh/8ZnkNTzL2CZuQa4nfkYC2SkkfbkohmjtiI/iF2L6nHphF1bmHXxUouNQxlY+lkp2B1nxhYQ4MXlKvjiY5loCtROYxrXMb4ClrAay7ow1ny4huSAdaz5k0po6HNYRAo5PvK8KEioeXWbq5rJpm3zim6oaiD3kRzmmOMpEKhFjQALumprvoK+qjfYRxbzdazpnZ63gzVlUYaUttZr8WkbW5A6wJqpDLF6g5j3v8C6ZSurv2SOsYXky1dYwOA5thPgJpad+8xc90dYvWcXq+u9bo6nQKgy1gygcKWlN4cAzV+Y+6AgRZ+rBaV4x4G2KWs3wpZ5TwGZkrkWzZkdc18UYFZphc+R3DiNaVzDaH3fJTuRBfOMgpzzSJFggjxL2v2iYKAys7Wo0sQWUbTYrADnFlZaw8eaSj1E9FgV2HSxczFlfWuOTHBVH3kfq9+qc8QQyzY9Qp5NBSx/iuSKAFsQ0y4gJRWoVJSCuQtYw7kqVgJEdZ21O2mCzEWVYACSJ3R+p4X6EClgqd79CpI7foKdYxoSQP/hLPWtkrTfemm+4T4ftb7mfSEtTt0KXudk7Pmgjde5iNysh0/ADaDuLXEjbHO+ARPHobA9jIqJYw+SRbmG/tos3vYFSUOC6OdmcSZhJL91sjHPUr8XmeacPJhn6ZVIA3zrFyh1Wpx9Kmyzhb8bM41pXMeYM+33I1J0nSw9srwnT1BIRa365f4J6Y6w+euFXAQsHrJGmTqnFMka8PCcDHW3hMuIUTpJajim6lWYY0AmGNB287wq3QbANQDpMCf7LYZNQifBgDleu3c4J8MedyjS5D47DJiLzi16ry4BKRo5AXgbiP6nblOlQsMtc0qRNQ6NK32Wcv+ERLrOQnPMScllMWwycDN0XYfX3GGRJg4htxsnHJfO2eE+I1JssY3DhLEnbf+rHOCHNQZOhgEZnnmPI+DXDQMykwGOG0aMznMDygIEXoosPQbM0Xbz0TZdJ8sEhzYCopbTog27494X3dmc6NXKGQdk+z0Ovdv4YY0d5z6r3iEOE4qckjBt+ff5hq6TpZ4TxmyhMaTAMW9KS2T6F6TcEYtGvmDAHE0WKXLKiBSvuQsQaeAWOSVPm0QorN0M5+a9FP+29DiSepjGvxsxBVSnIfEN1pleJ65ZbMtqH7vg14q7iyxGtXKvzCetpGsrv4ISulCOg5TKCNU2pwUsOypuSNJEJsHKXBhigTwFDDuI7msI/DOs7IAuxANsK7+yv5RxsI9ov+pEvoNl3Wpb/Cvzuy6gVU9R78ma2e85V92gFWhMm/PpcbS1rYkAOEVIfhA7Z4DVXVVWqI5dQe0cAsYqMOqZ4zfNvsrw9czvCsYq4KOfjR43MK/pxF8XEAow3DPnTJsxlLEOtirnoPq705jGdQ1tIw3M/xVQVRb4AbYQtIuwIFXbVPdXAxMfW2AJsPp42pauupvxZ14B0j7ChFeWeBErD6LM/E1sC+oBkre03VYLN7tYoyRtSe/HznuGZbtq3mpitZ7jcgYedoGv8i4qo7LBVR1u1VVVQFIX+T+NnUsBhDWkEFTA5iQ1kNFzhuYcZ1hdbT2mXo/mqx7y/ZRAvg8+x+ZOZchtYgtNWtwqYQtOyjINETBWGcjEjgf2OzMw1/MVVpt7DTGUmcY0rmG4wYidpdvkabPc6diiUgeZe4BllG9g85zO/ybIHPIAa8RXwJpAqfSSFrDixVtl/uscaAObMxS8LWPnlSvIc6osdh0bSC4oIaCldiCodvQ2FnDVYr12OKmEVLwY3eSqrr3O5TS/qM60Sl3pnBZsYUY7lPR617Cazipl8HHsOpJyvLEL3rML1ovHDEswwuXj2td87W+wFh5G3zFDc907lQ183uFNenSLSRxPFvfpag/fOaGbExD2rAjDDRhspcl2hiRCGBYEeB24GTIbBjAFvJcXjNfgcgUmDiy2egLCFoSpR2vMpQ+nhXkGZEi2WtRyefzOCYMPmMY0rmXc5Jhy/z09z+qFdsniGvCxSJOmV2DOGxCSEJakAVrvs0OdEj7vTDv8HA4hWXp0mSeLcX9nkQwDcKVFHsS9vk5JmKNeijkGOJOQrjPPCJdFmgTGrAmgSsVol7o4hBQOhhR4S9+f5dQtUqZBiIPDRADH/pBHk126uTQp1qLrarJImRO6TpaFoMXSqx79tVnajmiPZjjnNXfweYdbGkUyBffZoYtIA7jpEQlCyjR47+Qjk6kUQcQIBai6FSN90GORJq+5EUkTDJhjjUNWg0OcyUX0eah2bZ62AKxulm0+pEIVnxrnZChRNyC4yyidxCHk1ClGpl2im5pnMWgycR1q3GQtPKTrZAlI8ZvSOqvBoYC2hS4OEyY4PAmeGjA8iEyunvCUNnkmOKxySCYYMHAzVJ0KjjHKygZdvOYFbV+ue38qsP/vTEw1VKchkcVW7Ivm3wUyMY23cYIssFVb7kdYHb5+bDvV0HSRCaX+rmDkOrKo38JOPhVM7SMsS23nd7g6yVb21kOutpeB6KA6WGZXBTuh7sOl6ncpM/anWG2uIpbJqaYpDxE2xgqiAbaC1c4rxv6vjIuiGbtvXjML9f5/OCtj1In5GtbhesPc61ksYxYsg0wn5np/VpBW2BWshuwKFpBRTdQt8562s+n9e4yAqWmsTpi28CqDQyf1eu9U2qCHBVaU1VbCmnm55v+LTGMa1zN+D6trqqYfulgPsEx3LZL8KQIgqu7dx2Z/lQLRxXMOCx48wWp4qhmKypHoc6k55R4C2D42268gzzhYs6YvzPl0Ub+JZdt3kNwFlkWvzDJlj2H2e2D+r8UbZemrPmjBnEdlRxSI/Kk5h2o5b5hrXDfbbyM5RUFLBZZ9hEkazzcPzb4rSOeAyivod4RKmSi7Vj8f1XPdxwI2mwiA81dYBpt2QkywhacWtt0XrupaqySASiocYfUS69hilI7jCKu5qnqSU0B1Gtc0vLNLHrx6Q7HTsXMJLZynYv8PkGfvAMlVD7HzNu2y0Ty0jTWGixfV41rtz83+H5v/qxZqAgFRK1hwc4IUtz9HCjDKhlUd6AK2qLNvxqvPLEi+q5t9v+Cq3FIPm1tUrmoX2ykwxIKrSkjQwrIaeCrLfcMc9yW2YL9vjldD8puOV03wnpnjnctxkp8TAc/pzyATDrhMCysqNRxHuoPpjphW3Q32cMMA+rDwUtihbhhAAZKvRBrgMgFzvTHpBhQ+FzC1m0vS9eaZaQhg+qKwDh58WylI8b8PMw3RT31fSNP3Z0nod54LM0PId3rSsrySxGVENbfMROes05jGNYse89S8Zd6Tp06ZARlpozeanTVuUuy3eMEj9rhDtt9jtfOWECcCENUBfr1xTECK0LBFA0cmH3d5jU8t0mhdpEmeNgBFmriMyHDOwM1EgG2JeqTFWg7r+NQISUTyAsMS9P1ZUsML0Thljho+I1zmGFD3lmjmRC/0bviaW9UWc2bSUvv/sve/v23lWZon+JEvxUuRokiTEmkzgraksMI/0q50VHja2RlZHTOZgypsLrqwvUAPMFgsFgvM23m96FeNerXzLywwi2lgF2hgZ9G1qN6uRRW6ciaqM7IyapwZzrTLDodsSzYjaJESaVIUKV6KV9oX5/vcL509u1hgN2tauTyAYZu6vL+oe3i+z3me5+Qu8QX3GZeMqR6FxpYJmbDLOnmOuB49Ixvb9iOyNKi74x+T65wywMDJi3Ev8SLtOcB0g11+FnyfMh1iUgxYBkiYnHf5kvv8LUV6NMMardwajdz7vMhtGru03+eYLKXmmEs7fX7c/0tqNDmgnPiWaoDWXwd/kAzi+oDnlDmgV1g2wDqsUB3uEzLhILABVB1WjZUcpkkR02GVJjVqNN+5/+mEtzzhO+2X1Gmw1j7iICwTxlHiIdujSDOscVhdZIkRB5Tpv7Pon8d5jjmgOg+LCX4a/QZWxAmo3MQK3B3elUD28QtKAXOScYH31tJ7tegt4FkHMb5wTrn/zy7KZ0NyKvnSSbalgv4msOS2+ws8u2CKgRWvYUHy9szM9WiRMMB7uE7xcrWmO8cHeC9EyUzB+8TKAwv3fjEy2m5aaod3mawCsMUeEyCdwoO6TWzx0ccPOxDTtAYuT/uhUFp0iGHbdec3e6+0f1kl/CEeyP585l6DZ5iI9XXo7sNrzDdM8loxNsRSXWMe8zifEeJZkZ9iv/s38c+uQAAt5v8Kb58hBtMGfoCT5OTgpZh6Rrcxv2blTjWrP3c/E9NVEvkIy51i3stqRMzIwB1XjM0NDJBQA0rAgPxQ72HgxBYGdoi9msM3j8APkBGIqkFYkrUqz+gaJfkvYfn89sx+BGQ+xb5nlPvUSBMDTY07qQ8ESFTwg68kqRW4IbXAV1heCvDgqxpTuL838YC57Be0jRj84cwxVvC+r2qE/cCdx6G7byGeVVZw97QEXGIe8ziXcZKGlzcuJd6ZlLDnKo89W3WsKaJ89I/xXvF6XppYrtjB1woCHVWHzQJts3WdfJJVp4BvztzBN9jFFP3EHe81fqCo9vWXeAsQqRBmmybwrr+z/n+IB3eVQ6QaUJ7Sd0LsjvUUn7MK+JwMvomt2uoyfiDqEO9TLS/7IbZac4qDMzVvbsKXwUf8d6V/yGrcITOEKAj5tlJiu/a+eaeOTxkFWWO31o1tGgUh3UoGNqBbt4tdbBvoQtm8clc6J6x9cWTgaBO+03zJsHyB9x532a8vc1hdhMCYsKk4Jk4FLIxhr1ZIGMWL7jthpXXCpe0+m409FgfMYx7nMvoY6JgidqCnDUsahHk+4AVV2kwyi1ykx5SAQW45eQYG5Plg+JIOZapxi71KIWFf3oqfMGCZZlDjgDJpJskwJ/PvDKjSJk2UMFs7lEm5rn1MijQRMQErrZPkPU1qDMiT6RsD9FHhJsWoR5EeVVqU6fCGGkfkk/0G05iX9Utu8JaBpBFpOrkSUZi2YU9Rk5iAOg1u8YQoTBMFIVPHepUcXuDoEiPeUCMKzE+0zAFVWqSJeMZ1ynTIRiPHwrUEaz+fJEA1kLBiyxwwIM8LrtErLFOkx7gA+xvLfF3YJB9ZkhmxRC1u0qLCgDwb7FKmQ354RI8ib6jR5DIRaWrDPQY5G6AXMrHXHMu11B5Toc0LPiDLsdktEHBMNpH316ImPYq8qqzRo8hnlX9AngHNoOZg14AeFxO7CDBQeYnx39vv7zx+uzGX/M/D4gVWsL3Gy5fy8Cf/N/f6CQa6ZoBvSORH9N3PnmGFZB7zY9XiHqxglgRektYGvtgVGCvW4w5ePvoL3u34d92+U/jp8rNMykU7xp/8xF3DMtbZT2GF/wD4O/wQKjEeJImXlF5MJ0lRJT3t4gv2l/gi+RHvDlTZxjMwAH7Cu4X9PTwQcQcDIIfwJ792Pz/GD31ou+vKufPfdp/RG3dNGqYlybGAWclxZxlUOzPnqfv2GR6grWCATX/mvRm81O4lHtiRf2KIlwa3MVDigHnM43zGGzyL/YH79wOMFapmkZiRYqqm8M0lWZmoaXQTe+70/KtRNJz5WwBpBT8QSU0SyVAFGizjZaUFDHwV40oyeQGS4H1Z72HPr8CDDH4woGwN+rw7CFD5uo8Bx3fx/s563jfxU711TFmyKLcKMFnGD6sRACvVgkK+qtt4CbHY98pL2r6A5eUVfANQ0uMxln/lzwoeLK/hv0fECv5jrHmlz/Oy23/T7UsgS8dtN8YDM1U8OKv8rM9JLN55zOMcxiSzwObne5brZn3rh1h9BFb/FLDffdmZqG772L3nKd6SSDlQtZJY3cqJqlP6+Jpi1gqKmddKWH5edq+Lga4aZ+zeoxp0C98g/gx7dsd4aynZD+j9W+CGR79bh2peQAPLB7ex3PnQbatrfOjeI4sCqXge4kFV3PntzLx2B/8dchv4tb83C8o9Q/iUv+WsAAtTu/drK0cM71zgvZ1uQnC49FWfsy1IxcY2XVDjL4DSgzFn37PrybVPzS/156c+N77Gat4Icp+fwgqsbR8l30+ZCDK5k4QkcGm77xvxUnWEMK5B5imezTuPeZyz+I++eczgVsm8Rbt9XpfWWI92OQjLXIx7gHkRf9h/SZyCzBDOyvDeV132bywTTOGyS2Dlfp/7hb9lrWHeUEsre0wyJskPmHJj+xVfbZnViiwCysBq3GGleUJcD8jGI1pBlWrcIgimdFjl72qbBMR8wPNkINJerUCaiICYXPOU3HQfcvvs15a5TJMJIZeaffZry8SpgNW4QxSEXO++Mt/s+he817QHd1CLaYUVivSo0aTYt/NfjIDoiFQ9ZkSWADufoBZTHe6TzR2z1jxijSPOMsZqf0ONe/EDRkGW7PCUW+GT5JwBat0uUQjPcnnSTHhv54iTErQLJcp0uDv8FZkuHNYWaeTeZ2vnG9iwPHZ/5ZekYsuV1wvbDHL2BbHWPOKwukjeWSRkY7NPiFMXCOOIdlChTIfysGt2J7kLHJYXCZjy/fhnREHISuuEfKbPpWkfInhVDxiF2QTo3WzvsTncc2SzFhVapOKYIIj5oP+KZmEtsVX4PX719/XrO4/fcszL/HlYfA84w3tK3YZ/fpN3vey0oJX3VBtbYD/ADxKo8u7AgLt4QBWsOFvGM5Ek+5R3HfjiU8Xr05mfrbj3NvC+nockU6//+f8GK1Rn/VqjmfOvYaDCLFD4FD8xdjjzb/kUClTYwhbZYsfKa1TF70v3Wh9bNATu9bvAn+FBmhKebeoWJ//8Jt7/r+SuT4DDd9xrAj10zx7b55SwxXD39sjdv0czn4dsENp4n9TUzB8BFJHdxyRmfSIFoIjdKz9FbSc7AgEn85jHeYwcsIBnX4rJ9Of4wSACSZszr32IPR8CQ7t4KwA1k8ADo+B9lWtYHhLzXb6efTyT9S6elQneczDgXY8+eSQ38bmvgLE4BdYKIHw0c75tvI2KWO2beEC2C/wL4J/iZava5qE7XzHfZxm5ulYB07JD0X2T/6IYog/cucUYo6yMB0o1oOapu9/gh4VJ7fCbjNOHGJis+1LBpLS6/8p/DXBDbf0QLfAg+AO8v3Yfy6061g18cymFn0p+xf0tK4F5zOOcRRSmoRL5PBXjc41qGOWIu3jfYuWgf82/byUioG4TD1rK8qSMZ8Lq2cngmyxqAsn646Hbtxr4n7ltxBpN4UFVWayogSzWbRM/PHTLbaOaCrzSSY0i8ENKpdCq4BVMymmZmf/H+AFWbfwcgQ/deVTdtW/jAeimu442lqNG/l6eZWBh285t4QF+KBYGKAC+dm3BQg326gUuPexDDk7cfhYLEIUwKSyydHRC7uGpnXfLrm9cgDh1gVGYZbVwZMCtPrttktrxZAMWG1gdrM9ToPpryEjZkGce8ziX0Xp/hTyxyc9LJbIc82V411iVwQ5Xm/uMCyfJMKRa1GUaQO/GsjFAC1PCaEJ2eMo0wCbbO9u04+VFgmlsXp9MeLlVTKwCYlLUaZCKY/L9E76qX+WD/isGBevyHgRlqlGbIDSO6PXuK56X3nc+qTG1qEmeAbvhOv/Dxm0qrkOU5ZhSe8x2ZZV0LSIbjcxjdbhPkIoZ5S4wKtkwJRw4fDHuEQVhwiQdFDIMyJNnQL4/NuCz0eXbeol1dllrHvGydinxdyUFzVKJJUaU6bDy8oTgyoBR7gJhNKEXFnnOB9RpEOYmDMI8v9fdZlBY5KQEcQoCN2gq476HpkFAffgN5CAbjRiXSIZPrQxP2M1d5UbjFWc56NYyBm4SeyZrmCUbjRgEedajXUZhlklmkUe569RoEpHmmCwfjF9ykCvTrlVYYsRGd48ohxuilaXngIphoUPu9WnicT1iic3tPYKNBpPMBa5099kpXWJAnvf59u/vF3gev9WYA6rzsFjHS/TFvhJDSZ16mfZLxqrC9A4eTH3kfl7AsxlVjAok1TCVZezLpI8H5MRiiDCwNMb8A2O3P9xxxDJSwajhTptuP3fxwK8KYLGUJBf7Hl6eesX9rD2zT8l7BRBuYMW7BtLM3hftRyCtFhktt91td0ztX/cIrEi/i2fFNty/5SPbn7keyV07GBtCg1D051O8XYMA6f7M+/ruWjvuWJ/iP29JzGYHPsxuD97D8N7Ma+ALcIHW+8xjHuczShjru45na0pO2sTnp0+wZ0w5Tc+ZGEZXsOdei+Qt7PkRu2sDv6DXAl+vzTYrCjPHbOA9q7/A+7HODoJRU0z5UVYgVSw/jvHNHQ1CkW92CcvB4H1kxZqS5/QUD5wI2NjC273oO0MerGKgCkSQ37beJ9ZsCZ9vBD7fwYDMT7B884n7LMTe3Xb7E4DyGG8d0MEaYD/GFvfKlfpOmvX9HmKNKDXuBLIKpPgIn9u1vTykxU4N8Z+rGMJq2P2SeczjXMYJIdtbawzIcy1+TiOoU6z34L/ueuCxjx/2VMHqim0sZ4iRqKa61DKycFJD+4r7txijbXyNppwjr1bZJm1i+WMZqz90LsqpV/B59SHeukSWS2pOK9/onEt4eyTwTZUI32DLYPl8Ge+Dre8K+TLX8DWZaiY15+9iue0pfmCfmkzKPyV8E30X4gq8qq2xGnXIDk85vLdIK6iyvvINx8uL5PsnLAxNxv+I3+Ne9ID0+JS4Bq2c+TCNt2zQVK+wbOy4DGS60KtnWTnsQwCHHy2y0jzhZe0S1ajNIMzbQJwQRqUMjUqdIj1WKx1aYYWN7h6LDRhvQCaEk5xjrE3t92H79vtsNb7hl/WbHB/KbHce8zhfsegKKrFGO5QTT9Ar3X1IWfNhQsjFuGXPSy5DTMAReS7GPUZhlmZYZKv9DWkmkLOmRSuostX6hvXcNyxG8HeVMkuMOMa8OkcsQQAHpYAKLTqFAuV+n7BggKsxW2MG5Pm89PsAiU1AnAqIgpAiPSq02WXd+b++ZVCx858QUuqMCQr7DHLLJovPFZIBV8GWnYOud8QStf4+nULB2QYMCDM2iOmwtkg+Nk/nb2ul5LyqmT6DwiJPuMX9+AtSjKAA2eEpr0triYS+RpMj8rwJazZUKuyT758QhZa7ivR5kdtkVMtSi5q0qTLKZfn97lOiME0nXCUizTQIOMudUKTHfn3ZXae9DvBleJcUMfe7v+JtKWO+uKH56KWDiOvxM3aCdVbp2GeQy5DniGrUJk4FvC5ZLp4Q0qNImQ5NarTCCs17tWRY2Qc853BrkVGQ5VK7z0locv8qbbbdkK55nP+YA6rzsNjFF7kPsIKvimeiip34EisOa3imliRZr/n3h1g9xDMODt3PtSDWYnWIZ4OJATvEWJ51O9ZZ2cmcylgRuzXzPg21EjN2g3e9PbWInpVSibEgf72auy4BHuAX3JLwik0lD8QKBjyK1SCQQx6KAovBLyoKeDaH5GwanKD9z3r9ZWbuh449xoOfOxjIIdnrSzwoowUDM/dL7FItZrr4aeMaoCCGWmbmHum9kh/LPkBAk/zFfu7+LyngPOZx3uJv8D6B4AcWiVUuJrb8ocHykGxBNCxFzPvyzL4FXiovKI+K8Z6Zef8DPMtLDZgdPDtfUvrHbl9i5TexHPdXbp8CFSSDlXz1oTuW8oQaWlrUS1orYPeeO/as1YfyxGs80ADv+kHXMdBBAGoTs1UYYzlHOXuMZzWV8PYlK3h7FGaOOZy5ZrG4ZHfQxze4Gu59XXd9U8z7VOBPDsvbyvWzQIZTPvASLxG+ibemAT9ETEB42/172X0GfeAi85jHuYxFIhaICJ33W5kOxWHfmk7gAdLQ/bmDPccxNrDvJZYv5MncxJ7ROzPvV232qfu5fKAFpkp+Dr5eKeDrLtWo4K0AlFvUGInx/s8reDBXtY2aPV2sgdLCN8rv4XPHTXccKZn+Eht8p4aRcqma/Nsz75HvaxP4qTu/O/ihnrqO5sx1qSE/gEHGAIdc/5Rh4QIrnRMGFfM5DKYxz0pXWQ9fEUYT2qF1h5qFNSaEtKgYYJEbkOmPCeOIV3Vj0uXjAU1qNOs1qvWWDZapp5kSsJqyz7uTK/Eit0lESJYRV5v7fFsrkeeIt6UMndIq6/1vOCtDp1AgXYi42B3z69IWHVYp1w8ImBJywjzmcR5jTJZTwmSg04gl6jR4Q416qcHA0a8H5MkGI4JcTE9T7KknQN4xWYqVHgCHm4s0gro1rDLf0C6UkmFXB5Q5JiZyEpeYgKwDWZcZ0CkUWHYAZ54BPYqkiRLAV8eaBCEN6uQZcK/7GEq77LLu9pmiSI82FYJaTMCUXdaJc4ENrKLCdb5mxJLzAS0yIE+NN/QKy8QEyQCo5+EHycT7dXZJc8IBZVbp0KACJQiYcodHNIMaI7KUKwcJKJkm4oAyWY6pxw3S4xNauTUGuWUGOXvvKEcCXmbjEaMwmzBkX9aN9blKh2d8SIdV1ks7hEwYscQxWcp0mLrrAPiAF0wDuNgd0yu9JSDmyO2vFVS5Ptx23qrGLh6EIU/CW8kgsIOwTI8iu2wkzNnVuEM+OEoA95AJo8DOs5rq0ykUyDKizAEPEqnVPM57zAHVeVi8AXpY8ShZl7wxNZRjiC1Ob+MXtFpET/Eg2hW8HHYWlJAfnlhesgmQlYCAz9JvvPcLWCi5fe5gheiyO7+WO1cxCCRNF4tzFvzTsQSOShIrEEIy/zIerJ1lS4nxKXmtJPQCQMTylL/WG7zUVrLbpzP7H+IlcAVIvKlnJasCW8R4mvUz/XzmmnU/9R6dtxi/n+OB4gIeDJllwkWY16tYyLMSf11bauY9YgLL4kCy5gaeFTyPeZy3eB/LL5LDf4Y9C2KZanEtRr/Y3Go2KHcc4hny8n6Gd9lRAuwEwM0qA8ADk2I4Ke8IGOjjGaUf/sbfUhLM+vSJvQq2YFceHOPlu5LI3sOsSraAP3Ln8sDt4xDPqtf5pfDM/Rgv8VeeVAPmKR44Vgj4lD/qa7d/gaGfu33fw6wXZIcg9vzn+KbaFXc/JbeXzUsKD6xo/2CfQQoDWQSQlzAwtOau9yv32m0MfBV4IgBEvxvyfwX/eX+PeYNpHuc2SvsRK619xrV9JplFVlon9lz28H6jFexZ1zM2O7RO1htNvB3RV/gcIOBUzxAYSPk97NmT2kY1jprPG9izdhmfe7UP2R2p/pFMXc0kqQYEsupZle1SBz+0U0Pnxvj6F/ezBj6HKjdL5SUwuePeq7wkKwLwuUk1nSxPVKMFeG//PhSHI44p8bJSZPPxHgCVsMtiBJOMTdgOI1hon/KPK/93AFJhTMiAgCkTQsJowsvaJVbjjnkIRiPS41MGhTzXeUaLCteiF2SHp4xy5qe692mBFlWyjKjRJCCmW8sQELPaPeJ56X0bylJYJmBKTMCEkIX+mGu5F2ykdlnpnBBX3jCN5sXhPM5nFKIeE1bZYJdH3KFNlRpv+Ad8wbGbbn+RHj2KVF2ySROxGnc4CGyI1If9l0wyFwimpzzMfZfLQdNtN6FZKrHDOlmOmZCmSA8gAVdt1NOIFDEN6iwxIiZFmQPCaEIQxu94gx4E1s2vxi3iIKBBnS9LN6nRNNCXIGGcLjGi44DRPANiDFDdYNf2Mdy3wVSkGZCnibEsazTZYJf1aJdBmKdFhV9wj5iAYq5H1S08U8TOgsAA2yI9dllnQppeWASgxpsErK7SopF7Pxn+lCZK2PJg4PKD4B5/0P8b/qPoMXuVQsKE7VHkOl+786xxiyf0KLLDOm8pUqVNyIQqLxiwzNrhEYe1RUImAKxHu+T6p3QqZXZzVxOgvBK2EuB3QsgReSpuX22qyT1rBVVqUZNJmKZBnQotGtRZpcPbklkkjMjSpsrP+IfYwnse5z3mgOo8LLJ4dqYkjAIcM/hBHZKIzy7S7+GLZRWvOfyC9SFeHlnA+6qKaSmgU0VxEyu0JdGv49lSkm22sEJTjFdJvCTRlVefZGG33XmI8QTeIyvC2wXoPAUeajtdswaZiHWWw4OL4BlnGYxlIeanPFbv4YHMWf89MUWr7vzE2pJ9gBhtWnzo52KDCjhWYS7QU4X5Nt5vVaDvBh5QLuEnZ7d41zIgwA9zKWNF/9i9R8MjPsEDE3PPwHmc5xBT/K77v3xFBc7p2YV3B7TJxuQu/tkTOCoWt2w/5AuqJkgJ/5zedfsL8JYjYtyLTd/A5+YalruUm5SrZGMi9uxN3vWL1rElgZVNSd3t/wp+4NRLLM/cxzNdr7htJY2VTFX5+OnM62KKSbr7Bp+z5N9axvKIwOdDvMReuffP8B7PIX4wlFitQ3eOD7C8e9dtW8YDybPfX2oYij2npqFsZGYbcLqXytkaJCaW7Ev85yr1gBirag7OYx7nLLprIflpRBhBMD1hv+ak4gE2NFPNIQGcijL2TFTxoKUY6LLkkAKqjH+myvhBoKpjZId0H8sPUtnoWU5hvshqnisvh1hj5Mf4mk1NrzHehmqM97ZWE+sQb1Ui+bpUS7MeqVI/PcZqN+Xqx/gc8OnMfmfZ/fJk/j9hLNfP8bYGD7C6UQqoA3v/e4+7vsbGBk0NCxfItU+p1xu8Lq2RKsWkmbDWPuK9Zpf9rWVW4w7BNCY9PiUMJwTTmLW/OKL74wy5p2M+Tf0t5KBa6LMwhW7F/BlzW2MuNftcos+4AL1cgbX2ESchLB6Ok9yW65yS44ivalfpUaRIj3KpT3Z4ykL7NKm7c2/OmMc8zmN8Fd6gxJQXXCPPgAotJs5f82d8nzIddhxYuMM6KWKWGNEManRY5Yg8S4WRMULDKkuM+NpNuW9QZ8QSR+Sp0qZJjSkBIRMCYo4dAFemQ4cyaSaMEoh1iaMwT4M6l2mS54hmUEuYm38d/AGrdIhIs8t6ws6MCGlTpcEVsowIHFB7h1/zNdcBA3MDYgY5AxWfcIsqLaq0OSZLiwp5BhyElmAbrlOufT3gHrd4wgFldlhng10CYr7gPnUaHFDmOh1iAgZu+EaDOrWgmYDKT7hl4HGYImBKm6oDjkf894UfGJuUKmUOOMJUFM+4zjq7xKQ4JkuTGjEpNtilR5GAmBYVUsRs19+nQZ06DbufYZZBJU8bG1BlvN2ANlUi0tRoEpMiIuRnfD+5nwKnpwQ8CW+RZcQUA7JjUrQc6PqQuxTpcYdH7HH57+vXdx6/5ZgDqvPwoQWmClh16lX8iQ0k0FNFphbQYhYFeDZSZWbf8p8S+CnpOzPvnWIFuNiOd7Eis4RnPIBnGqloVrEKXiY1O9RgB1tgix2qQv0uHqzM4QcByAvvEVZoT7GidhM/jOUe3iO16f5dxfsTggdffoov5CXPF3CgQQkKMdpu4Cfgys5AgInAg1mv01mQVF6KYm3l8AME5PMokPw3wYXMzGti0wmg2eZd4Puu288jvFfjazzbdh7zOG+hRbbYnP8E+Gt8w0W+pTv4BslL97e8A7XonpXrt/Hgm2SdGmiihsxdfH68iT1LXTw4K7DzH2ELfjEvA4zR9eA3zkFAnti0G3hQA7xPtH6uXJjCs2K/xIOiYp+BZ6oqNx+6fdzBs+8FYkgSn8LA1MszxxRIrWZYB59LKvgcptzdwjP6ZUMi/9cHeAarGG26v52ZfWzgmz9dfP5VQ1C2Vsqvs6oBWbLIvkD7ExjOzLZqsM0l//M4p1F6EbHwHklNtbZ9xLf3S5Dtwrf4IXJgv/cBvm5Qg1b1XguvnlFz+CNMxaN6QjlBDFExx1UXSjnwl9izLfumO3jbqBzGglWuVQMfrOk1dMe8hzXaZTEgJqtynDynn2J5V0otxaz1ixr0bbwaS36oD92/pf6Sh/MD/GyCl3iSwZd4RYLA3r/DBjq5JtXh5iIrL0+YBjZUpVVfpjbcY23nCPpw+L3FpGG+1j56Rxnw3rDLdu19tu5+Q6kxTobCdjcyxKSSyeOltrtpMZzlINM2wHW/smzTvZ2C6lrmG7q1DKXtMTcevmK89YpM37xUFzqwf8OkwZfafQ4PmMc8zmXYYKVF1tllxFLCIB2R5QNeMGKJLCNGZKnToEWFAXneUCMgdsCpdboH5EkT8SHPjDlORJbjhHGaZUSPIhFpUo5d9Izr3OcLKrTMN5QsE9Lc52+T84lJ8YwP6VGkxhtGZLnHL2hSo8YbYgLqNPgZ3+c6z4gIGZAnYEqeAUV6fM11nnONOo1EHn+Xh8QENB0A2KOYsGTzDMgzSFiYWY5pUOc/jf8traBqUn2WABI7gg94TpuqswaI6LBKPWqQD4+o0mZAnnrc4NfBHQ4oc83d6w6rgAG2aSbUaDIiyzWes8wgAbtrNHnCLa7zzKwF6LDEiAF5nnCLPAPW2SUiTeCYugPyhEQOfA2o0KaYeNuYz2xAlh4XKfLWMfHTVGnxliItqkSETEhTpsOBO9eYlHnO0iRkYuxdeiwx4g/4a/6vv+1f3Hn8vcQcUJ2HhfyhVDBuYcWqJJzyh5MXaoAVejfxMnMt1OV71Z75GVjRWcP7e8rzTh34z/ELVLGQvsAW2pKix3hZ2FOsoJXc9DZ+GrUAxhtY4azBKgJL5MO6jRWZYlP8HC97FWAMXtIlcFnXluHdCbId4GOsmBdbS+ylaGafAmYEcDYw5oJAHPkA3sP70kqq2sSYXLpXXTyAu40HrrfccTaBv8CDOpL0aiBOFy+/lU+hJHpaPIilO8azSGZZbnqfgF+dzzzmcd5iBXgPW+w28U0H2W4ICCjhBzPNMlLVfNnBQE4BpBU88zH1G/uTbFa5U89QFd80Wnbbv+ZdH9UMlht+7n5+l2SyMhXs2Rbg2HbHE0DxEv+sfoLlrct4ia1yXMr9XDlM7FM1bQJ87lE+nB3qJKaqzuEjPDP1njtXNfDKWM6S4kGghJiiER6Mrv/GMW+6e6NrUlMIfM4Si1/3ThY1sp4pufM+mjluhG8q6ntLoGyI/R6IsS8fcP3eVIAPmMc8zmWcXcSezyFMahfY3aqx1f7GJs6H2O/2Eb4GUK4bYs/jA3yuqmF1zqf4wVM/xTeqxVqX1Ydq0Ba+zrmLb6zPKpeUG1RfNvFDAWUdoFyhWu4hnvEf4G2owHKqbK02sfpWYOkOlns+m7lWed2LJQueta/4Cu+vj7seXavq6tgdTwohAblSbK3YfldaJ8m9Nv5UzCC3TCZ3BDnI90+8dcFtGH7vArnOaeLzXcYhm2N49ckaWY4JkoLXwNSzFIwKF4xl6j7DhdewNj3i20qJSr/LIrDwEvLB2H8XuWtdvAF7WwUufda3+xbD+CbzmMe5jDQTigw5Ik+HMjWaiRy9yDQBJQfkE+ZmnYaT0Kcc+GfAonxSj8myPnxFkLNnL3aMxizHLDv/TTBJ/j/hTykPu/RyBaq0ec4HiXeqAYAtBuS56PZbo0mTWsJijUkREyTer1MHrtZpJABpkR4Dlvkj/oKAKcdkuUjPydSXkuuZEHKZJqt0HJyaZyPe5W1QTBik0yCgzEECghadHcKHPOMyTVLETEjTYZUeRZ6F1ynylpZjYsVBQJU2VdpmoxC3CAK7TxNCaskXgAGsKWdXkGfAI+4kP5+QJsuIkIgexQTE1WCukEnCEl5ixP3h39LLFXjOB+Z76uwbZL1wkR4vuEaFFh/zwN2LNFmOaVKjTMeB02/JckznnUEKcCt+whfBfcp0WGPeYfpdiTmgOg+LS8AAP7laTErJSO9ixaYW0K/d++Qjp2nMYAXzTaxw3cQvbjtYUfUQKxQ1/bSPFaB38T6qYimJfaqOP3jQVz56GrgiDz8NERV7TCCsvLdmGZYF9/rP3b//2J2fFux3sUK/4/4tRhb4Qr3prkXss7bbZrZQ3+LdCa6P8cOxHrr9CQDtYNK2prunAmwEXIjdJrbVx3h2hYBc3a8ythip4NliYhMLYH2JX4TIgzDE2y6I9TG7CJi1fLiCDXnRYBqYAwjzOL+hpkYGP5hPrFQ9YwLTxAD9lHenzm/P7C/CDyWRTFRWJDeAX+CZjWrkyHYjxJ7dO1iuFACqZxu8TF9qgKd44FKgqbyuZ+1RCni5v3JGjC3Y72B5acXt9y6Wo9Vo0fOuJpkA0Qg/FEZggpisYv3mMCBCPojKRZLRbrvj33HXIv9tMYD7eHmx7oXyqyoaWRzoO0vAqPKkGlYFDAzSkBopL27j/RgP8d8VCtkBiIn3h3gWrLxb9d1Zgeb3LsIM02Ee8zgvsRCT5MFBmKfMgZODj2EVeya/who+UjTF2PMrtuns872BZ70LjGxi+fCO28es7+osY1RqI1mwqHHfxzeZ7rp9/Od4JZCaIWLhfw97fgN3Dl+4/auZrrzyCP8s38Xngbtu+wr2vaBhnFIVlHi3YaTzK9lte4dNq5wkOwGpABr4+trVbMfrKQ6rC0RByFrziPFNmGQWyffHpJZjVjonMIXulmOavj7i8EeLNIMa17uvbJ+uEZ7PGfv0rAxXv9pn/8YybarcaL9KVFHRTcj1T82fsBQzYJlN9qALo0rWduTsFRaliAghmMLwkwukx6dcaveT77+zDGReMY95nMv4NXeoMSRyUvQXXONjHhBGE3bDdb7mOnd4xAuuUcYGLb3gGi0q3OER1W6f5yXLofL6DIhp5i4BJEON3rrBTzEpbvGEmIAOqwTE1KIu+dSA3XCdkEkCgoZM6Dm/zmXHNAWo00hYpbFjYq7GHXrBxWRY0xF5AmLHWE3TocwTblHmIGGtZjkmTUSbKhMmpIm4SI+RA5RjAtLjEy5mehwF5i0KxiiNCTginzBCH/F7hERUaPE11ynSo0Yz8Ymt00isAySj15CoMgf0HBtUvs4AH/AcIPGH/ZBnrM4MoBqQZ4kRlx0IbsCngb1pxysdsWSga878WFfpGNM3bvLr4A6RA02Xnd1DlXYy7C8gZuLYqSOWGJCnyFs6rFKkR8WBwgNCDgIbZGUWAxnm8bsRc0B1HhYj3u2857AC7yl+oIhYilv4AUtTDBQQ40eMogwe3BQLtYwtgmflsCn8grUJ/GOMqQp+oEttZr/beGBvy+1PBagKz8+wInZ2gY3blwAJsa60KN7AT32dHXYi4EL3RswG+Z6GeM/ZWbaoWKfyf23ivcS+4F3pqhYTR3gG21f44QcCdyRxzbl/L+M9yAru/+C9/HJYYaxr1T2Y9RkT80FMKnkG1vGDGMS4E3vuj7AFhJhekjILxAB4wjzmcT5jH1jCFuN17JnWojiHNZ0e4YHALn4QmxiOy3i/P7HBW25/8hksYGDqFHv2lYvu4AG7WeY5+GFIsu0Q21ysoCHey0/yWE2wVhNG+Uj5Q/lQDa9tfBOqguWKz/CyVjWBCljelL+q2LkCOpRP5NsqEFpepmW8V6xAi6OZ48h/dIpXISjPzLJVM3hmmoa/9N05KkeN8T6OV2Y+L4GsYugX3PUKzMDdy5+6fW3hm0Z67x18/h9jefXQXa/L2xGLzGMe5zGGKwsEKwtEoS20K7RN7n0R8/VUzRNgOU5M1A7+edOz/aHbRvUJ+OfoNt5CSc++mr8b7rXY/fsKfuCUntMaVpep4XyIb15tuP1tYrlEz2rB7VMqoOHMn7tYLv3Y7auG5YkqXgFUxyxMZE2iRnYVY+F/hrdq+iEeVFajeop9T2i4XYSvtWRn8D0SIHipPWXlJXS3Ar6tlZIJ2ivDLs1CkaVwn1QZ3jj/xd7dY7Z2vmGwYaDEr+5vGeOr2ycVw35tmQHLxKUUaSKud1/xbaUEFWPQrfe/YVi4kEwMBwxcrRgTbFDIJGD3hJCINFcb+zQLxnj9WXiX/7j/U+IUhBH8urRFNtViPqVvHucxPuYBVQcemoTewLtOGFKmw10e0qJChRZ5Btzqb9MoXEqYosclAx9BA5gu8wbzOpUv54hsIvEHY1cKaAyI+aL03YThCVChxRt3LhFpNyjqjQNSa9waPmU1ZzL8EUvsskHNDcLKM2DqpO0CAWUJYGDlMTXeMCFNm4pj6PZsQv2wSydXIiBOPJMnmUWiIExYrkV6TEizxIgKbdJEydCsDmVqwz2qqTZPwlvU4ib5YGD3NW7SC4qJRL8+/CaxG2mWSmQ55hrPE5ZvGNs9bQY16lGDdDghYJrYLYwcW1cgtlisx2STYxRpEDpgOR8NiFMBS4HZGTQCGza2xIh6f49eYZmn3EoGVBXpme8rzRk7hpRZDwy36eRKxAQ21K/b5aC0nDCPD5IvsHmc95gDqvOwUKdeknLJTAUQpPA+WfLiFJtA/nh3scWo2AhgBayKZLDCVTJz+azWsWJShaaYTWI+qeDWEBCBgofu2Ft4kFHSLCkBcniPvRoGBEYz28/6wIIHGTWkpIlnpmmAgADLWRBZQKskofIU1L4EkOCuVwCpWGQq+AU8axExyyqTtynuPkkyLPuBTTyz6srMzyXbDfF+qvItFCP4Nn7A1Kx8TZ+5ZLBdDFwo470dy7wzJCEZoDCPeZzHKOF/t8UY0iK/MPO3mj2zNimP8NOucf/XNlq8g5fCSxYbYE2UH2H5BbyfH/jncAsPGAq0/B6WS8TCXMFyz2X8Yl9g6aF7v/KUGjKyNPkEL7VXo6SL5ZRP8H7Wd9x5buPz0xSvAjh07xNI0McAXLG35Buofes8BWR8juU/3buGuwdNdx0Cojv45pmafmLLSlqr74oMnikrlYLOR7l67K5dQHTbnaOsF5Sj6+7f8qzW+zr4qeBqjOVg48WsSfY85nF+Ik4F5Lan5FJjjm/0WO0emfx7D1/7RBiY2cA3wPXcq4ZTw3oWSBXYCfb8qkmiHCWWp4DVLSy/qlFcxvLnQ6z+UvA7kwABAABJREFUaWINa9WJT92+X+PrrxSWuzbxjaQfYZ6sTh7PQ7wFk5ivqhO/wH8PqBmtGugv3bn+HJ9LZz1dRVbo4Bvk4If4FbDhWhn8sD1ZFBwDF2B/a5kwjlgKRhQJyMcDzjIGjkwyF5hgTDcx1Iig0u+y8BS+W9hm//YyC1MbZLXWOGItOIIunNQhCqEY9cg9PeVko8viISx2T8nlurADe/chG49Y2T5huGGTyjNDOEtBqxRSHe7DEFajDqMwy/34C3qFZfLDI0a5C3y3sZ3wIeYxj/MWQ/J0WKZFlR5FOpQdEzWdsDRXndx7RJZBIeNAPGtYGAP12IF6R6zSocMqVSfVL3OQgI614R67uasODHzDAGOQX6aZ+ITKXzUipEmNDXZpUWVC2rFfp4QRjHLGyJyQZp0dWlT5BR/zD/iCY7IAXKbpriGVMFkNgF0nICYkSqbdB0xp5dbcICl77Q01oiBMQEtZikSERIRkGdGkRuhA2YCYVm6NlMtVrcBsAsoc8DYoJvYAb6gR5wLSG5G7hpAPeM6RO26Ty9SDBh1WyTPgQXjPrtuxaJec4UFAnFyXzkFDvIr0OCLPiKwBqGGdtPNSPSbLHR4lwPHXBfMjXGeXA8pEpDkmJiDmLUVGZKk4i4AUMb2cdZzkEzsoWHPrgDJvqLGYfDHN47zHHFCdh4UkSmIBSWIlwE4gpn5jHmMd9xTeQ1MLTIGLy1jxq4JT8siH7ucrvOu12cZPpJbMVkwsFbQCC5vu3/fxoOhHWDFaIvGZShbBX7hzk3RUA6TErpVcUyxSscjKWKG/ghW5AlEE+MpfD/wEby0mxO7SdQgU7eMXA8zsF/zCo/8bn4f8vMTmkvRMx4nxAx8EoGg/lZljCCg5nNl+6j6nWWleg3f9FYUHVNy9kJfi2N1T3c9tbKpulnnM43zGRTwzW8+hG+aRgIw1/PNfmNlO4OoVLA9tzryfmffJ81Peo2ruyLdV20kJ8MbtT42WCFu0KydP8aymPr4BpudTi3Xla9mWzPo8a6F/iAd+lc8FBpdmtpc1iBpd0cy1lPBNlhx+EJUYsAKTV/CgpkDqKQaqin2rHKR7IVuCLpbjxCY9wnuqijmv+yFgfAefR+UjK6sGfddIZnsDD+LKEkDgSIQBJtsYUDKr3lBelIKhA7xgHvM4l7EfVKjWm3QKBYpRj2kAix3gFGucKt+BZ3rLw17sdwGiypFS/QiMlbXTJr6RDpZ/ujPbPcJqsy18U1jP9ku8NdFsI1o5Ug3sktuXPI9TwL90+5hl0IN/5md9sMVUlYJHSiDwXtqv8Ux/HU8WUGrUKzdKLXRl5v8awKW6sIxZci3agKnD8iLZ4ZhJLiQKQg5KZfIc0QirVGixxIg0E57xIe+VunQKBS5t9RnnIIwjzlLQC4uM6jYgJV0zsGQ16vAsvM7vl5+yeAgnKyblf1m5xGZ/jw5lqv0+L29cosdFfr//FCJYAC41+nTrGQY3Uqx2j4jCKdPA/CDDXESZDq36EvHhiDlDdR7nMd6Lv+GI97g//Ft+lvuHrLPDhJCYgKvNfYihW8/Qo0jWMR9TxHRY5TrPeK/Z5SwDC1Mb7BaR5gOeEzJJgEgBic9yeWq8IRuNyHVOyReO2M1Z9+l6/IyV1yfsbyzTpsI6OwmAWKXFAWWqtGlSY6d0iTwDrvGcKQFXuvu8Lq3xIV8zwdikeQakmbDaPaJZKtGkxgc85wm3KNJjvf8NixF8WykRkWazucd+bZkRS25QU8xGvMsgyDMh7Y73giY1AIq8TYBXY4P2uB4/YxDkSTOxBtCwz27uqlkJxD0OAmPfC+w04LltoCkfs8EuRXoUox7p8SmTwoCOY/JmGXGr+5K3pQzZ4Zg4dYFBmDdmajTgy/AuR+48Um641cW4RzqwfBi5axD4KmVGj2LCPk7FMTWaPA+uUaPJQ+4mPrUGGJv/bIUW2aHZq5S637BXL5CNR6wGHaq0ecP3/6f5ZZ7H/89jDqjOw2INK0QFlgnYe4lfwGpxKu9QLU7FCMphgEAZKzjlp6UFcQrPUJBUv+a2eYxnOWkbHVdDCjL4Rax8XRt4T0N5aUmyL3Bz7P6EM+8VUPkZXpp1DwMGBZ7Ifw+s/pOHoIbICJDcwTNZa3h56A6+uG+6//8Qz55g5jpfu3MSMKMCXICuQBPZILRn9iPwI3L3UYv+l/jCXABqFS871n1ou3v5BR7E1b2r4oFb+dFqIaDPTF6GbzBQo4qxV+Yxj/MYIbDOu957U7zdhuSsV7A8sMm/P6wtg19kq4kjX+IcXsL/KcZqAj9USUCD2OWS+MtrT/sVmLDi/i9W+uwz+j13rHv4ZpSGr3yMPbPK6Xrmb7h/i236PTzTVIzVlHtN4GMB//0h32aByfIHrLljl/AyfcnvZ8EKNXQ28INjttx5CDwR+3QbyzfyuJVkNoMxzdRsU47+GO9hnXLnUnd/6/6AbzwJPK7N3GMxenNYXt3C/37oOxH8AEPtfx7zOIfxwU+bTH50gYg0l9qnnKkZcgHvYdrBW4s08PlOwOUGvpEuWynwbP4b2DP5GKvxysC/cvtXc2kbzzw/wtdZ2xhjvoWvXTN45rlyi8DUrjsX1Ysb+Pps6Pbdxnvcz1pUPcD7Sws0nuIVWlewpr68Spv4Qa2h2/es5UGM92puu/1uu22Vf69gQ0XBbJibsLJzAgFUN/ss/BTWOIIqZO+OiFMBV/r7LAwhX/oltCGuBJyEkNmBTOqEk8tQHnbJdA00PV5e5GprH7pw7eZzznI2aGrR1Zsb3T0ONxf5zlcv4Qg2h3vQ3/M51EUYTcjtjOneyDAh5NJOn1L/KWdXMFZzqj9nqM7j3Ma/Cv6X/IBHjHIZqrQIiFkfvmKUy/CydolqZKAbGHBojMsOTWocUKZc6AKQ6dgzWY3a7Ibr4JiZMSmuNvZZrXRohPVkmNJZBjq5EuvscDHu8TYokq7sU+wf0S5UmBCSIjbgLgcTV7Dc6T8lTsEoZ0zZi3GPg9JyMoCuRYWAmAotwsgk6FO36D0mS9ZxL5uFNS7GxioF+GXtpgNhIzdwy96TZsI6u4xYSn621f6G7cr7pIgTQBQgCoxVK6ZtkX7CkB0FWWdd0KTW7dIsxXwwNOlWpg21jTeU6ZCNR4zCLF+GHyYA6wADaaeB2ZBMcqEdjzQh5nX7UfSQOBUwDQLaVAmI2Xr9DUGtSRSmE5auLA/COCIKwoR5e0yWpWBEaWdMfaORXH+RHlXayZDACi2OyTLJWS4kBZeafcYF+GD6iq8Lm8n9nsf5jzmgOg+LB9hiU2yBWWDzHvAT/NABAQ1imG7imQCSMu3gu/UqOlWUatErNlfKHeMRvrjtuvMSsyrAA4c33evyBARvTSCpruRjYldV8MCrZPMCMH6KZw1oES1mljxGh1jR35/ZLocfGoPb9ks8o7fs/hzhJaC6F5KWHeKnSYP3FdzAAE7t+whbJHyFFe43sOJbA1/ukwwEYAW/qKniB349wgMMAkD6eOaGFg4Cfg6x3wstfpj52Rd437RZptoYA3LHzGMe5zPEwnyNl3lKSvqJ26aM9+KT9HzWmkNAqFj18jFuYLlL2z50+/tNqw1JabV/5YOb+GaJouH2JTuVCM9gb2NM1k13jNv4PHzo9iMLAeVOyd/7+IFOyluzdi4dfGNnivczlcWLzklsMclnYwwgeeDOR2oEsbce4i0UZFWQwpjvY3f/wpntV/AM+oK7TyV33Ifu+uTfKlBFjOB/CvwLvKXLrDojhZ8w/ti9T0PKBHbr3klSrOZTBz/0Jgdnm8xjHucyxh/BaWjsom49Q6k99t/5IZYTlbOUC3/zdYGEAkh/gOUlPXPymy+7bcX2lmXSEKsRlUv07L12r98B/gzLUyt4KxMBlYE7VgWr9z7GcmJ75liq9zJYoyvG6i7wFgPyUX6Jt1jRecni4Aq+nvuROx+BrgF+IJVqsR/jiQBqKM2y6MeYb/3PYFqD8RZkGrb7hSmc/QBjDbcht3MK01PIwbB2gVz/FEoG7gwKeW5EryCCZsFJbVM9gukpoyDLtBZRiseMgixRKWatYxc/vHIBgOfBNT6qPCWqQy9X4NJ2H24ba63S77I4NXuIvRv5xPewu5GhQd0mgZfy1OImNE/+/V+yeczjHMR3eEKWET2KiZR9NdVJhhIB9LhIhzIxAQescp8vEl/Neq7BgDyTrdBAtzBmPdrlICzT4yIxAd26DayS1H4pHBGGE2M6ckwrqNpArJwVFS2qxATmoZpLJ0BuhzK7hXXSGOtynV2iIOQZHxIy4SEfUadBSMQTbrEadkiHEatxhzgIOKCcDFhqcJc/Cv6CBnUi0vxe/IidYJ00ESOyBBgbfUKaR9zhMk1CzMf020qJDmWWGNFk3Q2fWqVGMwFlR2QZ5TJ03OvG9Az4Gd8nKqWp8Yb/LlfnP+XfUi30CZjy3/EfsxHsJgB2i6rzkQ1pUSFdiNhlg3V2WI06tMIP2Ih3aQR1BmGeEUscOz5rkR4vNy4xISTPgB5F0m70Vo8iu8E6ZTosuQFYUwJecI0XG9CkxoilxLrgBR9Qp0GaCTBIhmtFG7onMY+4Qx1L4ntuYNg8zn/MAdV5WNzBS1hf471HwQo/AZGSiAq8XIYkH2hBKRBCwGEdKzof4IcKjDF2lKS1ktKL+VSbeU0d/mVssR/M/FwssaE7H7GaLrtjjd17xJbS++T9KumqFvC/yRjVghl8Aa1r6uIXAiqQU9hCQmCvGLplPNOthDFiBVIs460VxFyQ/EzsL4HIAl5mwdybM+/5Cr+gqbt7JXaa/Ai1SNF1iUmhIVjgGWtiaNzBgzwCesSQfYQBtnfxC48M85jH+Qw94xk8c1u5IXTbiMkuiw2w50vSbzVFZv1WxWy/PfP/Msa8lC+zPP+u4AFOSVO33H5XMFb9a3fMuxiDadZupI7PAX/Eu1L9KcaUlyS+4I6vxonYrQHeouQ2XlUgwFbHEngqQAB3bpL86rtArHtJcz9x57CMty4By9XyM9W9ELibwb5Hcu6cYnccDaUK8WCqrE4CPGiivPype8+f4UEMsf8FFg1nzuGPsc98GQ+g6j7Ju1tg7BAvVXYKi4VvmMc8zmXs5NbZZ5M7PALML3NBtc6sx3oTazhsup/F+Gd+iD3vX7ntX+MZ6WL8q/ZSzpDFh/KsQFI1K5RbldNqvJun5UOqmlZ+qWqKPMRqo/v4RsgYy9ENrGndxA+66+IHRClXz16/2POzjNYWXhkkaxjtT3UvWD76DM/k/RRvzTJ0/74Ag/QyT3J1Pqo8ZWEK+5Vl1ppHpDLQ3cpwsTtm4TXJ91S3YkzRgRu28qvKlmOUpcjSI9c55bC6yC7r1Gnwk/pHDMiTZcT3r/yM7PCU5+EHNsiKFq1SgR42LObw00VGQZZ8PKBXWCabGfE2KHK1vU9QiRnlMoTRhE64So03VGjRCOqUMjvAGfOYx3mLKm8oumFHNlxpxJPwFnUa1Lpdnpfep0orkfsD1KImcSpgEORpUGcj3qUVVBNgrRq2ElAvYMobaiwx4g6PeM41qq5bvMsGH8Vf0gkM6JQPqXmvdhixRJuqA/ImRIRu4NTbZIK9WJcBU6q0KNJz3qkGfk4IaQY1AsfRlB+rBjiliVhnly+Dj6jz2rbnMvf4BQPs+uTdPCJLLWpyEJap0GJCSI0mywwST9WINB1WKXNAj2Iy2GlCSJmDZF8T0oREdCgTlWzwVp4BFccSHpEldF4teQYETPma6wlDtBlaQhwEea7HzwimMY/CO9zhEZEbLNVhlYApkGeJERNCGtRJMyEinfiyapCVHXeJgCnXeMFzPuAZ17nDI0ZkWWbALhtcpskxWY7JcjHu8UVwnwF5frjzN/zdxiZbPP/7/BWex28x5oDqPCxeuD8CymS4L7/PDn6AiiSiNWzBuM27E6/FREphwOYh8H/GileBo2L4lPAFsmTy8hJUMX4DPwRKzKx45m95nL6e2cdvAocCAeV3JW8vMchqWIEcYQBFCy+xB8+2FdtBkjYNPNHPxZwVM6Lg9vcQbzmw4+6TGBKz7IhH7nX9XwW9AAwxfVt4r8QUHugAvzDgN85PsjMwIEG+hdpnhAdNY/cZbOEXCTqHWc9GnT/u3N9gn9d8KNU8zmto4XuEt8/4FGNUyedPIfZRHQ+2LeOfnztuf8pnelYkRZ26fYi12cYW+LOMUbFfX2MLc1mnKB9/jvcI1LMqn0LliZq7nh13/M/xPs6h2+9dfHNKti5qkj3GM/sFNMrjdYjPRVIH1Nw1vsb7Tc96u856Faq59WNMCTHGviskyxdIKtuRK/iBLgIclI9mc+IhBhw38IDr0F3jXTyILd9Uga4l93l8iWeRyQpADTLJkgWqvMZbAWiYzA8xML6PWUjMYx7nMAr0WWaXkAmpOOagZCAeaWCEPQ9dvAfoGMt7ykVqMMhz9ArGDP9v8YobWaCocRTiWeXgbUpi7HlWM3fWSkPNLCmPVKMpP4Fv2K/grUIeuO1Vw6pB3cQ3znUsNbWr+IaWjifrEuUU/Wz2GkREwJ3fa3c/HuCH5qlxpjyk7Yc2bCpgyqCwyCDI06JKvvCUMIIeRXolCEsTKn17U4dVBuS5M3zMILfMMz5MgJJq3IIhpMcnXM41KQ+7/CfR37BTukTIhF5YpBUaO2xt54iXG5c4Jsut7kuaJbvxDeoQOBAjtC+Iv6vYF2RESD1s8J90/4YohElmkToNnoZXgV3mMY/zFv/H/32PbOqUswsDRheyLHDKmCYpIM0SJxxyxgIRx1xgSIZd/oIM2ekx26kjcg5qgyEnLHLsAMYpQ065QJE+E44TX9E3tFily4SQE3b5b6hSpM0Ji6SJuMAZIxqkiEnR5ZACATEnLHKBHmlaXOCMHEMOWaF02mZ6ocuAZY55SJkO/31/TJRvcnrhAh3KrHDoGjAj4IE79iJ/QcwSrzhmiRENMkSccMoFfs2fkmWNfUZEHLNkzFpGZKdnxKm3nHKBfdYIGbLAKbEraheJyPCCMRkyjGnwgn/NEoscc4FTytMWw1SOUy5wgTZjMo4JvM0pC/w/OOOENouccIFTAmIybDMmA7zhlAucscASx5yxQJ8CiyxzgVPesM9lYIFv6VGk4NitGcackOKMKRl+QUSa0vQtP7uwQPNCjZiAFSIKp89oXaiyxq855QIDBwT/W9IsccwJaQoYIznjPKPznDHkEQuc8eUE9tOHvBi//n/16zaPcxZzQHUeFmvAdfwCVQt2MQM2scW5pKdPsUJ4GS+RHOKHguTczwI886iCLVLlOypwrgv8Ie8ODLmDX9zX8GzOH2FF8p9jRe0R7w7CclKohBUhMEEF9ezCX0X3IR4cZeba5RsocEIsziZ+YS6P0iO89FaysNht/+d4wBK8lKuNZ42G7h7L01BMr/t44KSJZz0su3skawNJ1wQIS1Z8EwMONKTqNlbE38XLg8WGlbWCrvcenm08K/MVu67Ou4Ml7rhtCswJCPM43yHwUMzFp/g8okaQwEYBeCHe37SDPXvKEx/hBzbF2HNzhAf6xAQPscW12Fc6lxL2nKq5oiEvYjiV3TG0oF/B55Ya3qJDgO4VvL+pGPTb7pxTWM4So/PH+EX9rHeyBrJ8iWfWy6Kl6rYXM/amuzfKv7qPYtmXMXBFufSpe6/ymthcYugq5ytXyhf1R1he2sazYlewhpZYuy2MDbaFbyj18Y01NeTEPhPDvzPzczWY1EBqu2N/if/u0edYgYfvf4iZK85jHucrSsO3HK+kqHb7LLRhXD/xUvQB9typmS3LItVeqsvaWBNHMv7PsOcH7Nns4D1QX2L1zU/wNgBHePZqBcsPG9gz+hSff9pu/3/ujvvIHUPnJSsrZt7TxTdGlHdlpfQS33ypzlyTZiqJ4f8aXxflsOab9j3G8p9sQzQETxZNLbxKSExd8EowNfXGsPL6mO9+sW3/v2lDU4IpiV/gjeYr2IHxXcg9OqV+8xsyTRjXICbgB1/9ElbgO/HLxAs3M8QG6jhCxAZ7RCGEESy476QTB1zLm/C9RhdCuF42tlcwPSWM4CJjXpfg6uN9mJo9wcIQRiVjq0Zhmo3hLvOYx3mM/9U/q7G4kqHHRQCyjEgTkeWYR24BVHcgWpkD2k6O/w/4gl9QoUyHkJAKbeCEf8fH7rXIuW7WWeWAA1bJMmJEluv0eM4GNZo0qRBSTBiVaSJqNMlyTJOr9CgyYok8R4mvZ5kDUlxM2JMALSq84Bq3eEKNJkuOUdtjhSKnvOCDhAHaY9lda560Y6sOSNPhkpttHxARci9q8SS8QouKY8CP+JBnpIiZEtAjyy7foUgveZ+uPSCmzAk/Y52YwP3/gCxrCWMeoEOZZSfJz3JMkR5NLrNKx8nsY3pcokUlYblqaFiZDhPSHLBKlRZfcoNV1ogJWGZA3jH5L9JL7scxWWs+0SJy+8kyogjUoz7Pw2WKTGlQp0eRGm8AWKfFz/g+H/GQprN/qNOgxRYBU2JSTNhgSsCf/LPTv79f4Hn8VmMOqM7DYg3PapRJfkzC0Dz8wSIr//LEM6n0J8L8sOTFp0W1GKDy6azjmUddrBCVVF6sSAF4GiIAfkiWgAEBg2Ke3nT/FxNKEv8NvAQrhRXzN/CsL0lVcechOwPwvrFihkUYECkZcNsdV+cniWkDP5xBbAcBAwKEdV2xOx94dwr4P5o5/yZ+ordA6k+wBb3O9Q/x4KmGvEzxDA4BtWJqDPFAtIbsSCosYFeLlgBb2AjQKbvj/xyTvj3FAN/P8LLZT935ZZnHPM5n/BqI4ex/CwsC5tT80KATPcvyRFUu7OAn1JfxgIK8iPUsg/cAFMgob1A9S2rCSDor30A1mEp4JpfeI7anAD81OzawvC6prJ55gZVi2GcwUDDn9ilZvsBkgbICSit4Zu4n7lyV8wUyz/on3sQ3yjbcfZi697XwOe4R78r2mbkPAh+uYHnsobvX8khs4MFUAapizipv6jPo40EL5U6BJGKNPXD7r+ItBAS6bOPztPKuq6oO/7NFVv7CwKfv9Odg6jzOZwRTyHLMKHeB6Eaai90xe/UCXOjb9/wGvvHU4d8fjLeJNUt+hGeTP8DXgqrtwOejPlYfNbCa4oHbz6wN1E288keTjtQY/8dYzSf2PficXMDnXv1fyp0KlidUH9XctdzEW4pUZ7aXrcls/SkrldzMPqUs0CwA+aT+CGt2qQYVG36KtymQTUoBjq+k+Pb+CsWox8rrE/Y2CizRZ7EBxUKPvVqBuGZFe2WryySzSKZwQpy6QLXbhwC+ql1lffiKzEPY/8QmdYeVCS0qVCsmL85HAxa6p4xLNtAmOxxTjdpEYZrFQxhWLtALizzhFvWgQTqM2Bzu0a1kyHLM9u33mZBmiRGrmY4Nq+qf0qoUKUd7zGMe5zEyjDim4KThONl6mAwhuscDGtQTMFWT4r/muvMQvcx1vmatfcR25X3KdAiYErmEssoBb50nKMA1ntt+h79kN3eVNlU+4LmxznlEm4qJyeMR+WDAhDS3eMIzrgOQJkosA67zjA5lDihTpU2dBj2KDiDN06PIgDw13iQDshrUOSabgJEaGhUycSzWqfm6UqUXFqnQMo9Y0s6fdUKaiDfUKNLjDr92dyRPlTYN6tRpMCFNhzLX3LUtMUoGQxmYmaZNlbK7AkWRt1Qxy4QeRZadDYOufZcNqrQSa4AWFVY5IM+AWzwhy3FyD2ICQiZcpkmbqjt6nFgjNKnRo5iAs6Mwy0Zs9gcBU2dDcERIxIA8G3h/Vw3esvfa74Z+bw5Y/W3/2s7j7ynmgOo8LPaBRd5lA3VJFpwr/+bEFrnq4IutM8azADSYQ0zKH2EgwebM65KuCnSs4P32xBDS0AF5QQ3da2IuCLjcnDnHX+DZDwIJxYDamdkPeBaAJJ9d3gUvJYV/ii+Y5dsH3gNWTKWyO6cV9/MAYyPM+rT28dYEAqoFkgqYCIF/jYG3Aj+G7u/L7pq6GPCg+yQm3dQdT9I4ASxioZVn7ivuWJId6zMVo03skjd4YPUx3mogwkv0HuCH7QgIn2K/T/OYx3mM7wGRDfxImiFNvDeyFsOSgebce5QTZH3yEu+LrAaUfJHl1SeAD7ydippAapIEM8cRyLiJLfq/wgOoT2f293NsYS4A9RP3+mssf4nJNSufl7/oJh4YLWH5XUDijnt9w+1LvssbeO/pm+49AiN+5N7XdP8v4UFJse91T2QjovdqSNVNd75qdAnQXMY3d5RDj/ADAX8+c2/vuvMS0CtAFzxTVWzTnZmfv8Ez8bfx9gpDjBUsv1d5R7t8uNI64eQTm6C9+OUJ85jHeYzFCQTRiPT4lDgV86S0yXceOO+lIl5VJGsh8PlKTSY1GmbrHm33FD8ASj9TQ3iIPYtSSMk2IIPlBUn4JZ2X0mb2z308i1ZNcVmWPMVyWB8DPWUpVcXXWVt471fl01mbk4f4fCCGf9VdxyHegkn5qo9vvG+77aQgkAWW7KKUF+8Bv4TFyZR8PGAUZslxZKzhIWzffp+H3OVDnjmAIuRh4TZNatytfMlq1GFhaj6rI7JMMosEt08YscTFuEd6fEIjV08W/aYcGJAdnjLJxLzIbfKWIh9FDwHINU9pbmQToGLz8R70ocQYItitr7POLvmhDbbq5EpElRH1/h7Hb5nHPM5lVIYd3qyU+IDnfM11ynRIE9GgznWekY8HLAUjUsT8wfCnNHLvU41bDAIDLCfYpPhhoUk1bjEKlgCISVGjmbAlQyb0KCYWH51ciTQRd/mSLMdUaRMTJD6qzaBGmogKLcr9PvnCIBmU1HOMVvNKXU38VtOk2WCXEVm22t+wX+nQ5DIDlqnxhhd8wCqdBL6MCPlO8yUva5cYkGeVA0ZkWWcnYZmKzVmhTZtKAkCmmVhTjiU24l3SY2vydMIyLQcK5xmw5ADqLMfEBAzIU6THLjZcq06DmIBbPKFBPfGHNsDSPGs/GL50uSzkDr+mSY0sxzzgY+7xC8r9Pv+68D/jYx4koHdAzPXuK56UNolJkSaijfncKsfVaLLOTgIIAzSDGnVe0+MidRqscsCO83fKM2DqmKkjlqj39xgU8mQ5BkiGm+UT+ew8znvMAdV5WAhsk7RTha0knurqCxCd/dsN3kjAR8lRv8TLOwUyCCTYwhaqO/gBLwJzl/GyWp2bCtryzGtioI6xhbC87CTtmvXVkweeFs7y4mrgZe4qYhv4wTTg5WV9dx5imkm+pfPv4gHeDH4arO6d/BVn/WnFIJO34RQvqdWgFzFHI3d8AbchJosDzx77yh1XEjy9vjOzLzHWtF8BR/p5FwNBmvgp5LPDwWK8PE2fp8CMWZB3HvM4j6Gmwp/jn9sQYzwN8ax5NTcOsVwn+akaGGKTgs99jzFvzQd4ADIzc0x4d0p9Fw9e6llTA0n+1Dn8YD01nwQC1HjXaqA2s80Qs+l4iAdl5Zssxvqf4odniX12Bd+U+tOZ19WgkX+pcikYmDl01yEpf+y2eYRnbclDWzlEwLKYoAIzZwcHVmbO/8/dvw/xoLGsWf7S7fPI/V8yXwEXYtuqEVd196bl/i5hwMa/nDk3Ad5SPtSwAWGbdm8Wb8NifJIohOcxj/MWzbWLjMJLyfCUgJjhnQuQPvXszjqWb+7hWfezipm72DMk5VIT/+zMeixLraPnGryXaYAfGPcYX3eU8HWN7E4a7vUqltMKGNNV/thiosrvVEqcLXxtp2tQXSigt4nVm6mZPwXM0UP1cOC2V52l9wu0rWM5Sl6ualALmK3jv3vEzE/DSTrFQVCmTZXmxsiAlVJA2rGiBuSJSTFiiaK5qpIi5ll4nWxl5IapTHkS3KJc6BgrK5iQpk+RHsdkOaDMLZ6wG64ThSEjllilY9LZVMC4dEozZ6BKk8vc4kkCXv+88l3STPiA58SkyPThV7Ut3lCjToPdQkjpg5d4icA85nF+op+zxdcjfo8sI1pUqPGGHhe5zjOeBLcIiMnSY5JZZEKaaWDAYJoJRXqUOSA9PqVRqJBnkAB3mhZfpc2RY2mKPdmjmDAZTfpf4w6/Jt8f0yysJecXk6JdKFHmgNAdM8uIKQETQjqUuUwzYU4+4RYf8oy/q2ySZsKqm2Qfk2JAnss0uUaPBnVGZPll7SahsziYkE6Gb6WZ0KFMk8sJ4/QyTXvu4wYHQTkZmhUHAZ3cKh3KLHHMsbvmJjWqtChzwJEDLAUYAwxYdvYCadJMCN2wqCptsvEInO1JM3cJgDv8mg6rpIjJRwM+Ch/SpEZcMIZpj6JrIBkzN1sasR7tMgqzyTUBNKkltgUX3ZAssXuzjDgmyws+cJYDE67zNSOWOGD1HQC2U1ilQovV7hFxyYDhCi0uzeWcvzMxB1TnYXERKyq1QBfQJunn3Zn/P8Szi+RpB37hD1a8ykJAk1nF7LqJFYkCBAR2agCAiuR7wF/hi2v5l1awglbszr9y26pGExjRxBa2AizEcpI/nthm3ZltVJxLUioJqPYnea08CGu8C9zWMaBYBTF4cOJHbpsVvIx1A8+glfRN0mJ4d6gB2OegadzxzD2/hy38BWiKKRG5z+IxfkEiD1j5KUr6LysEAabyGBQjGfz02QgPLCt0L/rA7zGPeZzPECtVDYY2fvjUDRjeuUDu56ceKFATZBM/Kd75Bp59CguPsFzYwS/8wTdpxHqUnUAJDwhcxvuxPuDdSfaS6It59Slmv6GGlgb6qQFed9vL57mBz6+4c0yRNEpOfmiiBRp4wOMjvBxW/qZbvDu4RRLgqds25Y7dwjd57mHA8QYelL6N92tWI6jprksgqxi4Bbyndxs/2EYsUdnOVHh3SN9lvN/z1xig8hD/nSeWrpqAAkQE7mzj87qA4bq7P2LxC3TZ9Pv6yZ3v4emy85jH+QlbWI5oUCfPgHrsuiR5YA+vQGphz0cLnw9k7aFa8SX27KtZ/xI/5E8D59Qo13MX4XOQmKWyf1IDB/wzLFas6s0Ung0qkHIHX0eJEXrTHUd5UFYDqgXBN1u67v3Kl6qTY3esGK+4kr+qjlvG56yHeILBa3xzrIBPFwJ4s8ZQ3WzuManZZOo0ES+4RpqI/wV/6gDVgM3tPYZXLvAkvJVIYMuuiKv193lS2GJAnrrreD3MfZdb8ROeBde53/8li9sQ32sbIETA1Z19KhstRkGWlWafeMsYdVVavNfuslcvkI8GCdBggMwya6kjvtvcZqNqrLTMNrzcFHV5HvM4X/GaK6xg7MLnfECVNk+4xUc8pEOZMp3Ef/RJcIs8gwRU3AnWaXLZno9CwC+4lzAfBZxmOaZDmYA4AfUa1FlixDFLzukzYpUDdtlgUMgn7NCIMrvOa7VOgyI9Wo4vKhC2R9GGRTFil3WK9GhTZUSWazynSY0mNQKmHJPl3/GPCJhS4w3HGJvWjjelzMCBwNnkGkImdFhlQkiegZ1DUKVDObmeEVeSvDJgmTxH7LKenOM6Oxyw6pitdqw0E1LE7LBOTIpjlogICYnocZH1YIdj1+xrU2VKwAuuJaBpK6xwTJZd1mlToUI7YQsX6SV5qxnWEgA0zwCACWnKdBJ/VYAmlxMLAgOMV0ljtilH5Pkz/pgf82/YZSNhEscEtKnSLlXJMjJwl4C3zCn7vysxB1TnYREBx9iCEwxcFfNS0qgM3kvzJsbEkT+p/LA0AETF7I7bVt6AfTyjR4ysMZ45qkWtpLGx2+4+XjYqNqwWtFfcdg/xQ7Nq7jgtPCiic2rPHFPyTzFd5dF32+3vK8zXNMbL5meHdsnr6q772dHM/RTg0MQPJtA9eI0t6h/jmawpt5/P3LE0kEFS4rK7ps/xQ14EnAhoBi+/17n+OV7mNuVdZoXOR0Dq0N2zFsacEAAS/49cl0LsC3mIDYFnzGMe5zP+BvMG1ML2Mp7N2YHc9qnPi3oG72L54gjP8KzBws/xDZcf4Z/JIV66foXEqxrwDFM1jMRg19C3Dp7RPtv4OsKDtGBgqsCJLtbo0TCtr9wxy7w7+ESA62NY/Ak+T0q9IMCxipe6b+HZoMt4X0N5jm7h7Q0K7t86R+XlQ/c+NWzUcFrG26psunOVTHjZ/Snjc9wKPjeLsS9JbwUPqsijVbYFO+74Gbz1i9QQyqsCT1t4OwUxfgXcSJ2g152dzdU76jTOYx7nK0ZkyBLxcf9XNAqXaAR1Pjxy2ng1u58CH+Kb1XpO1RyWtF2MfT0fy/i66y5e/q/6DnxDVw2VhzPvl5XTLLBamfm5vF01VAp8LhD7Xz6uAnnV5Na+1IAW4LmFtzgYY3lCtazqY7Fav8Q3ga6413+I5Svwtk6PZq5HtbBsEXRdU+inV9irLVCkRz4a0AorlDlgNe4wCIzVlY1HnFRgEOYJHLMqj0mAsxzTKRRYpUNEOmGqFekxCrIU6TEoZCilxoRxRCcoE5HmKvvEpGhSo1jrU4uatMIKteEee5UCMQGtsELIhCkBu6ybX2G5wygwxlc10yK+GfMquoKfDDaPeZyfeI9vqXDMgDzr7DIhTUBM0QFtPYpUaJMmSliQeQZMg4Aab6jTIDscM8gt831+xgFlaryhQ5l61KAR1pNBSgFT8hwRMCXlfFQf5H6fy26avKT71ahNdnjK89L7icfqC66xzg5lDtxYrJgeFynSS0DbCm2u8ZypKz4FIhoY+5bYJZ5q3GInWHd+pWY1sOQabHf6T+kVlp1NQDMZJhUTcEyWiDRlDgiY8gEvaLvBXGBD8p5zjSotlhhxMe4xDQJiUtyLHtALi0wJaFCnSptbw6dMMoscBFaYhUxoOcl+yIQUvYQF3HHFW48i1/magJglRnyfn9Gikkj27/ELsvGIldcnDGsXaIR11tllrXnEfm2ZCWmnypiSZUSFNrusU6FFipg0E6IgpEoLILlvf8yfUaZDlhEfDF8yyJlX9WrUIQrTZIdjlnIjAmIW5x6qvzMxB1Tn4UMAWwNfPIZYp1zgo5hJGkSkAR5gRaGYkSo2tc02HnAFKy4lc5JfawrPboqxIjhw71HRfBNfVDNzjiv4abLgQVvwsi5Ng01hhXyEZ2vhrlmsgocz74/xoAB4loKAUdkj6JpW3P+38SwLLfLluyq2bAfPWBX4KhbFtrsfb/CAxgYe4FDRrQXBIzwQIPBUgMgKBgxJkibGnFhgZTwoq0WDWK3yfJ1lw+VmjiPJrOTC86wyj/Mcl/Hgn9iSN/HPidiOkosLxPwh9izKa7SEX7jfwxir34MFMTT1zKv5k8FLUQXayeszgnHdTV52zZev/slVbuy88pJ+SWVdrj7bhAWXD89+BAsdOCs7xuysjyB479cyvvmla5E0P3T35goMb14g9+jUs+pl6SKAVznyEzzz/SWeTY/bJnDX9yEeVH6Jt1VYmbn3Amceu+1uz5zvJ9h3TgfvqaoG1kveHc4nRq2sGep4OwT5PcrSpIIHvjfc8XU+sh+Q36PA9S13P2VNEMLFhOI/j3mcr7jypsOK8w3dHO55C44O1oR/iM9jX+MVLnfdDv4SDw7Km76MPd8/xJoeqivEZA2wemY6874a9lwFbpsKlgta+OFSai6PseddQKw8Up/iyZFqDoO3O5H1itinr931KGe28Y0TNZqlaupiuUENFtwxX7tz+i/c33/m3vfnvDvIUE2pEKtPBRarhtyHcuWQbLzIys9PIILN0h6U4SwHFAasvD6hu5FhcXjCpWGfaqbP69IaWzvfMHaNoTCy76Bh7QK59iknKzDJ2L+rOdu+FI15G5iH463+NqRg7cERa9FTZ6twSrXcJtOFS9t9SMHhzUXy/RPeG1rh/G29xDQIuNQ2T8dc+xT68HuFOZg6j/MZl7tvmawsJz6Y733VZXpjh+LQOsS9XJEaTbLxiLeBsR+vdb9hYQpnKVhwtWOmfcS4YtsX+0cEhSm90Mv7R2QT79AKLbIck+nCD4a/BGC/smzH4yKb/T32K8tU4xZBMKU63CeVi3mv3WWcg17O2OPXUs8ZBVmq3T750oAWFd7btmf15dYlAmLyDGxgXRMowF6lwErnhOu5bTJDO25MwMXumLj0huPlRWKC5H5UaZGPBwyCPPX+HotdOClBmGkzCPOOGZqmPOwyymXIM6AWN80WIcgn/qq9XCGR+q/SsUZPbpli/4hswQDhkAk1mlxq9+3eOuLU/u1llhgxIeT70c/IdU75qnYVINmnwN9L7T5M4axAcv/DOGJcMMB3hDWDsoy4TDP592rU4SjMc637Da9La1Ro0WE1AaE/5BmbzT26tQy9XIE0ERfjHrnmKfGVmFEuw2Z7z53Txd/ib+w8/j5jDn3Mw2KMFXAN9/ddvBdWFSv6xNgJ3c8q+EnIdWwhOwR+zLssKnXra9giWLJUSTJlxi9rgE38NNcIzu45ppfAiTK2gBbI+hQDHe+48/oYLyEVG1VMy2jmuJLHuy8PqngmpmTwOs5TPBNLxbaYVboWFeLyAqy49zzAmFdDPENKoIzed4iXoAmA2XY/u40Hrp/iPWFnwdC7GDO3wLtM1Zv4wS5iet13xxPQ+xj4p/jPvDtzH3TPNdW2ip+QK99DAQtifJXBDZmcxzzOX4jhBPZMqTmxg/cI1HN2EwPsHgB/hD3DDXyT4S7+W3bbQE36+OddXnpTOKvBgoC8eyTT5Q+/t8jK9gkZDS4J7Oc3dl55ZpOe1w07DmVYeEDS+Fhw0tUFAaMxXpqLOw+BGWKAaoDLDbeN7kkTcpwaUCLJ/GzjrI+3IpEnoUABBzAmr2lIjRQJFXdM5aoCfvDdBl79IEsBNfxid68r7vg/sp+NK5B5iffFlixXrNyq+1zFVBUgLH9G5ewMfgBXm3d9VtW4mvXhDvBs1QK85iqGNs1jHucrmpcv0lrJ0aOYsHeG9y7A6anzBMF7JKuhoDpnBavL5EOtBvhs7bCBtwUQ03RKoghImsxq9IrsPcQA2S/wjScNkBtjuU1yefB5TMd4SlJjcgM/CDTEWwSoqfaHeM9m2XvIi1lNZTVRRApoYDlWCoafuP3Ib3kLX3+28fVqAcv/Am233bYHwCk0gjpLn4yoDfeYZBaJgpDV7hFPglvcqT2iwypf18rcHf6KFznzU/h2wzwaAWq5JuWwy6PwDvV6g6kDRJp1G14D8O39Eh1WGbHEqLDE78XbvL63xhtqiRR2mQHZ3D6Ru7+toMqoNGC3tE6dBpFj7w0LEx6Fd8jXByzVRyztt4Az5jGP8xYLe5BfOyIzhG8rJQ63FjkiTztX5Vb0hDQREWkutfo8r62SZcRO6RL1/h5xClqlNY7JcqPxikFumYCYTqGQSPyL9Piw/5JeYZmOm2kvT9Lt+vsETJ2v6JSGWzAOCxcI44gngfmhtnJrXG3vc1g2Nqfk94PAeSyXAlpUKXPA8MoFcv1TasM9Wrk1svGITq5E8UqP56FZF5yl+gRTGOeg2D+iUbjEk9ImESHrwQ4jlohJkWVEMeqR65zypFZnUMiTLwzIxwPy/RN6YZBYDjzLbVHjDVVaTIOADqukiXgQ3ONu7ktGLHFMlnrcoDw28BWs8VPu9wkKMWEcMQjyvKqsMSFkl3U+rjxgxJKzQEiTHp+yXzOANc+AVBwnsv30+IRh4QLZ4SmvS2tkOSaMI5aOTnhUuGnD+YA0kXlRxzH5wNiwUZjmOzsvGdYukCJml42ESbzMgNWow1kGssMxcS5lw7OCNNGGt3SgckCbKun50JHfmZgDqvOwuIwHztr4xa28ozQkaQVbxP8AWzR2eHcafWHmbwGwK1ihKzuA/sx71O0XE0wL1D5WnLYdy0r+gmM8E1MgrezpHuAHTDFzLiriJbcF3/nXcWcHK4l9+RAPJD7FCl/5v75x24vxOvbnmzB2dR9x79HxNRhBjIsCBnJuzxzvEV72Kxmq2LMlt5+MO74kapLwbmNeh7rOL9y1atEyndmHXheTQ9I8XccQA5V1LWJraaGyjWfwyq4BcAqIeczj/MXfAEt45qGk88oVyk9ilIul2cHA1TtYPipji+ojPCv9c/xiuos9mwAVB7bKv1ODVFKw8tMT22YFy4Hb2AJdDCn5Tg/d8WfZkbLgEBu+NnMdYEDqNv653cZL67vu2sXoEgDy0r2/7H4uZpWaTAU86PwLLC8pl43xHszyelbedsBywoYF3zAT67ODB36VT+W72J55j2OJZeSZfde9V0oIMV4/w38PCLhQnlNzj9847xqWM+U3/rk7h6+wPP7SHf8jEv/E7/TnYOo8zmdc7r7laGWBCWka1GnWpua9mR/DAHsWbmK54CfuTbInkYxdjfPZ+kpERa1ClEPBszPVWKngmyKq79RIEmDZwUDJqdtWDa/XeDXBQ3yeuocBo/LFF4gqlqqA2QjfQFYjWoqoGr7uuTFznC13D/4Mr4BSA3vDnV/O/f+O+6P8o/pM90fqMIC0AZnHZJlkFmkEdd5SZFRqcCu2QVJPuGWy11yJMh2+4D5Fesacc959g1yeKQFfcD8BDOy2T0yeT4s8g8Q393VpjX/HP+IeDzhwhf1binRKq8nE72dc5w6PAHjGdXoUDVgNzVrgGddZZ5fT8CJzyf88zmVchMzQmJvvNbuQgsuVJqk4Jk4FbHT3mAZAGz7KPDU1UgQEENds8nutv89ZDvMmjZsE05hc55Ri7ojFN0Af1mpHZCsj0mFENh6xdHTCJGNg5bBsIGhpuA1t2LtfSJ7hi90xYW7COAejIMtGd8+Ym11IX+4yLQTUul2WSiOywzGZh0BoaetqdR/GkC93WRhDvdag9HjM3u0CxWGfUS5DGE3Ickw1ahvjvAP5jT0WI+hWMuR2ThluXOB77V8BcFheZKVzAk14r99leyPL1Yf7XI327X6WYHjlAuvjb1jswpXCPgsdKKX2vPoygEzbGEhnNw0PWDs8gimsTB0joADlygH5/pg8YxYjWC10WHwD4XLEWufI5/DAtj8rw0LXruHq033ObsI0gMUG3OEpnUKBS82+sVVTF8g9PIXghLPNsX2uKci9PiXeNLA6Is0SI1LE5NqndOsZJoTJgMBLjT68hrXKEYebdl9K01dkEp/FeZz3mAOq87AQYyCDl5xHGLBXs9fOrji5qZgHQ4wJpM79axKm0kkJFsUGAu8FKNaWAIoafirrhtu3WAsqipfxjCQBgVewAvoIK3rl4Qq+eBdwKWBQBbuktRpGoGMeuW0k+fwY7ylYwvuOdoBPHKNsDGcZeFvKUGqOPTNV0rCXWBH+Ej/5W1JbFeTy7NNgLTGCJeEFDxZU8AyNmvt86iQTas/uwMIWXq4qgGCMBx7EsniNl8WKKavFi+7ZEV4eW8IP3xLL5M7MOR65/W3hLRnmMY/zFivANfx0aTWa9FypUaQF/xWSZsX+xjJrPzmyZ/gIyweyA8lgz8cYv8i/4aT5D/Gs1hT2bF3BwLoVYBO6tzOU/nxs5yEP0E08aDrGnsdld97KfwJ99awO8az8Q7xMtYOxbMVSl8WL/Azld/gpHtzcxDPav8Suu4WX3m64eyW2phph8jEViCBLE33vKL8LiJa0v4MHMD7CS3/7+KFQYrvOWgRouI2UEAJ1athgrjtYod3Ag79SSvzA3c+n7voqxtbIyGpBPoyzNg4R3hbgLiyOmMc8zmW8LYWsuInTHcqkmfDdnW37HZeS5wF++JJqJFlqiFWq5yGFl/zLWkrPjXzcBWrCu7J6MfTb+Gd2jDWwNNxJOU9A5BjP9IzwzRw1x6a862mqprxsX0QuEGD6V+7nUuqIFNDB8kMOPyBUzR014PTdIUsX2TepDpTC5zO8kkEqoT5wChfjHhfpMQjyyVCbFDGDwIa+3OGRjVWJB7SCKtd5Rp4BS4woNcb06kVqcZN8YBPGb/GEHheddHdEmogKbQYsEzqgptbf5w8Kf03KFfQ9Nxl71fkEBsRUaJm3KyYnThNxZ2j+LI9yt9lglyVGbCdmtvOYx/mKYWmBYGWBcr/PSQ5SMXzNde73DUCcBrDYBTKuQe5mdHQ3MvQoshp3iFOwOIRSe8x+ZZlRsATlDnEqYHHlhO6NDKXGmFz/lHalSm28R6+wzFr7CHYg99WpX+NuGIOy1B6Tzb3ibSnDxe6YhSFc6vtBF90bGRrU2Yh3mQYk0nQpNV9uXKJIj9Jn44QkdEyW8cbYvJadbL0RGis2HUZkc2MGtUXeBkWutvcptccMNwzs7VYyDMhT6+8zzkGwAU8KW1Rp+3w/hcPNRQZBnvfaXRjCgqtPTzbs3kZ1A7DVBEsUXFW7plJ7zN9VNll2PqqJ9LMP6dDA3ZXmCWc5eHvPtmcK+7VlstGI3PSUwzuLrDw9YaENvRvLrDWOWGzApWEfImjk3mdAnt8vPIWpfcbtjVIyjK847FPOmZ/thJABIUy7hNGEUn/MWapPFMJ+fZm18MjA7fEJZyl4VrlKinlx+LsSc0B1HhYBfnhHhOWlu1g3bOeUcR0yDWwhXcMzM4Hh9y6Q65xaQZiybRZVXIpdpAWsBgw4KehJDhZVuKoIHsL4JmRc0qXrzucjrHDfwBeuknOBLZwFFqbcNd3BsySmBji2SgXzTgHPclAxKzC07P6/7H4+65t3z74IVh6dQB8WMlCajmED9j9ZZu3zI8+ympXBgwcyIQFBu3czZIdjRrkMpe3xuwwtAZ0CO90XdAJy3MUPiQnMR+akDqmak/nquCrsUzDe8j5aicS1gGe8VsxTZsEx0ca3IdPHT9qdXQBJnsfMvma9cucxj/MWzic0AeVSTjr+FLp/nKH0346TJlPCYOoCOVjtHtnCuwGU4PB/7jr0Q/Osi1MB+f6JeWk14fCjRaZBQKk09ov7u/gF9AoJCFF6ODbQboqBtWUsl2qQ0zJJTmHs2AHNE3v/bP5ynqfj25Dp4tmYaqopf/ZhvAGTm4usvD6BnMnc3mt0323C1PDqAtkCCNAVMCIP6w0gA4e1RVbCE8vnUj986hpx23ZfVh6deABGgGzZb8sKnFWcgsEBN2c3YUHgsOT6AlwDu697f1gw37/ZYTFi3uv7pOrevwKvbqyRZ0ApN4YYTmbZs2Kw6rut6V4TgO6A7xc3hTDPYx7nK15zlWUHtgkwe2egpZq2XSx3Lrs3Kjc+xZ7z/wzv2y4gtY1vdAg4ldpJzSrVLrLUmGXjxySL8yR3qZ4Zu22+h1cqiYHq6qWERV/B6l+BrrJ9eYhnv29iDa7czP5mjyXGaQXflBaYXMMP8wx5lwDwm4CwQGOptGbuSbwIK80TDmuLpJlQcVKgR/weRd7y3eY2+7Vlm24dpG3S9rDPIGcfSreeoUiPJ4GxWO/zBfl4QC+4SJZRMs16wDJPuEXIhKvNfQMWCvVkEjnAXR4yYJkeF6nScsBsEcDJlC1RNnLvE5HmXvcxC1O4kHnLPOZxHuM4zDIJsxyHWWpxkygIzVuzsEgrsPFPB4UyG+wyIkvWgWXPuE6ZA/LBEc1cjaXcKJGYN4PLpEIbHve8ZtPtd+sxIZFNq89tUqRnfqifFBKJ/YQ0aSYAtCsBaSID9EojwtIkYUYOyLPLBqsc0Aqq1DJNG1CXGnFSOaVdKNHjIg2ucOfTX5OKrWnynGs0chHr7CZDpmICDljlgDLVUps8A2ICuhUDK+NUwNDVVXkGdAp2vvX+npPGrxNvNRLp/2psw/G+ql8lXx8QEJOuR7yhlvigXo9e8XbD2J7FXJ/e7QID8gRMCQttDlglzYTVqEOvYEBpZytPiwpZjgnqU6pRmzZV8uErjsuLDFhmN1xnUDFP1Fs3nxBMYyakeXn7EnmOkoFjsjjZv7HMMz5kg10bNla213dzVwmIiQkSpvD+hg20issD3gZF2lTJMqJdqVCs9GhRZZKz/HxM9u/5t3gev61YODube9n8/3MsLCysAP3+n8HKFtY5nwESEv/N2emlWlBKstnEilq3YKWFBwBnZfWb+OJyVkYKvvgW+2gTL816gBWg2kbeoUMYfmpm+uC2u48V2T/FilMxTBVtGN4z35SF7Zlz1vAS5214dgf7uRYAYCCJfK4EbAowkGRMnli6P1fwE2ZVgIMHN8B78R25fTTxFgez9zLAD4sR+0PshzrJIINh7QK5p6eeBSwWmP5dgJPbsPgYA8hX8GCMrBFSbtv72CJBwOkVDLiu45m9Lbz0zgETh0tQuAZA4ezs7JB5zOM/8FAu7O1A4QB7/oCTj41RQOSerb849cPxXtt2L394ic3He4w3XOOpA2zAYXWRlX9zYo2d0Drja9tH/jnfgO3K+2w1v/ELbvnyOS/UBEAYkvgjnzi/5VRsTIjDzUVWvjzx8n9IZLKH934DnAQvqdVxNvGSfHiXLZtzbPxZoFLWBMHMDdQAFvBs+Jd41pgDmRMFwrbbVvkzN/OabE7UjJJVypHbt74/BISCb/A49vy4jvnOKifftf0ebrn7oXwtT9exfZYnH8Px8iIrL09MFiYGsP7MNqBaeCBHIFAJy6tNf+0vP8rxQWEI83w4j3MSyocP+xWuhQcAyeTlqzv7/Mn/DngB//z3eRfQVGNcjEzlATWgZJ0k6w09/2N87lPjXs+29qnjyE9Z9ifykt/CGKSzHqRX8H6oarTreReIq/eLUf+UZJBgorbRuaiR9GO8n/KsRF+++rPHSuHzQgqrI1XHKa+oGdXCq5Su+L//5C+Aa/Bf/h8ypOKYKAh5yF0+4Dm14R7N3CUAdtngfvQFcSpgGgSE0YRgespu7mrCVB2QJ+V8BgNi3lBjRJbrPCMibWw1x+YaF6wBP8pdIJie0smViEhTjWzQzHM+YINdBuSNxcYVPoq/tEZhc8y4gPk6NvchhjeZBWqVM5jnwnmck0jWyf8VrBTxz6ZULTm8f76e9cf4vCZlkizeVDtewdcgO3gf6A2sGSvvaFmxSfHZxzPmcT+TQkf+8DexnHTozjNHUtNK9ZTk3z5eFapr0jaqJ0WSkn3UbJ5TrtV6WyQmWVvJbkqKgR237WX8sGPVVhksr67gh6dq3a85IjV3fbILjPAqAa1VZV3VcOcvZVcTvx6X4mzMu+SjWcwCt5+/cscRcSx05xPjP2d9TrJKFIagPH6IV3J2gTr8s38B/9W/AOb58NzHnKE6DwstOtX1lzRUAzfkoSkgL4clKklaJeOcYl5yGlCixCOpuqwBxIb6KZ4NpOKzhJeIiV30L7GEeN/tPwQeQW771LOhQuBfY0lazIcU3p7Ayb1ynVPPnhWooEEk2HEXxGDYxsvzx9iXVjBzHctu/2Jb7OC/ZDoYyFvDsy0kNZMkVF9Akr+JYdHFy4IleZBPoSSt+vKL8bLeK5D77NQDt2U82zaDfUE8gsWpO1cBAPrcZQ0gEHrH/bmJZ5mN8X5kjsXF4cx97uK/UOYxj3MWC2+BjJPit2FxB/vdX4bczqk9o0/xxW0JNht7gJOBq6mUg5WHJ7aNWzSvHR6ZNF4g42PYKn3jwYIr+GdZAMXXeL/or22bRQF2d+w8Vl664+i5azqLlhKsPDjxTY9ZD2anJiCFFZr3eBfAgKTwXwAPXmoBoLzWwluVtPFezsqDKmiVU8ROA896F3gs0KWNscHUyBMQu2IM0UXZmMTufGJ8XnVAbAbe9Ycu2HFWOiceyFBTLAd7twtcetBn8TEsbp3AUzfES2z8KR7c1veKFjv6rhNL1d2fb++WeO8nXSak8Rrmeczj/MTGmzasX6AZ2kCi977q2rOwhz2Dksj38fJ0gQNSKKm5rnzzFF9vpWa2Ux36IyxP6rmfuuO8JmlWJXZN8i0FnzvBy/yX8ZZJAjue4kGO7sx7VfNGwJ/yLqirBfQUy5f/Nd5/9XN8E3oDn3ekfpLioIP3jVaDTEQDLerLWG7p4HPJa+AEOIYJIaVmHzjhVv0JB5Rp5FKs979hcRuCe+bh96pe5kp3n0FhESCxAWgE9cTrL8sxl5p9srVj1h4esXe3YPtvj9mr2HRwAKJTDsIyVzv7FFM9ojBNM6xR5oD7/V8yyVzgeXiNKi2u8RxwkubaMmvNI6529wF4VV/j4ot95jGPcxl/BbyHPZufu9cEjn4PD8aJoNPCcl4Dz7CfBQbBz+6I8GuqCvbsb/MuaCrgUUQjNZS03p4CH2L5o4CtV9WoFzjbdOeVmdlnCsu5ylmz69YmtuaWZZ6s6VT71PCMes3XEOj5GZ488Km7JwpZ1glQnW2Mq8YGXw+CX8uqId/FN9RE7lEduDWzv03gL/DfJWpmvcaUr4/cNvoeU336EP/dpe+TpntfFT/AUPWw6lLwSocd/DBVfZ5DzG9cTbt5/E7EHFCdh4U6R0reQ+xh12JZbNUhliC28EVtgC9SxSSSB+dlPGtheeYY+s2r4TvzOvYYD+hW8V534L+YtEDuYmCeErm6aof4Ly79/RIPSgockMS/i7EGdtxxnuJBDMnbNvFfNEq44BOi2Lr38AwHFfACpEN3H7T4vokfxCCZmMDPT91xvuJdEGQ6cwzJ6zMYsCx2sQBqAddixz7FdxD7bj/g2VQq+MX2koehgGL5LQ7xHT+BDvqi32T+JTGPcxvNDy6ycvTWpOQr8NWNq3zQf0Uq9qb1erbPUiRM91e311iNOuR2Tj2rtQwnK7AY2bYHpWXWgiNOKvYaQzi8YtL8vXs27XWtf2RgaN8xYqfmmXUS2lDtvRsFYgKKN3u2yG3v88vKTWo0ubTdp7uVIdwwVtJkc5F07YTgBjbwwLFQxxvYlNkbU/N+BrNgKUGcgkwEhzdtgnSxfgSYNcvJivv50IYQdFhl/fI3LEZmMTD6J1nK/T6NwiVqwz2oOFuBph37bMs1q46cVQynic/oWRkWXpvdS3zHvLiIYFyyc81GI7LDUxYjO//QATILsgpzefksA9OK+5yaWF7PONuGqTuOQJMQhoULAFS7fb66d9UGCLT79hk3oXvPPM3GJXctzv/xJAfNwhr5+iDxLSOw1ycZU0H0KPLeVpdfcwf469/OL+w85vFbjK8v1zkIN6nT4CF3+fDGMza6e1DE8skdvNe+Guh33d8/wlspqeke4OvI/zXWLK9g9aTUSUd4P9UMXvp/xf1pYLVIbuZ1/S2g9gfu3DpYDhDTqur2eR+riSTjl1+pGkbgGzVSGgn0nbU8koS/j7FWX+JZqF/gF9wCVlXL9jEQRseSGkpWCrfxtZYAjAoExPxdfZMRWWo0mRDSoE5cCKjca5HlmO36+zaAqmQeJo2gTpkO0yBgRJYDVgGo0SRdi+hQJr4b0KBORJpXlREdVrnOMxphnV5YBGBSC8kyokXVWQPkqRWaNKhzjecmkY0GtMIKO5U8MSke1Yqss8MLrjEgT7QW4aeXzWMe5yi0PhOhZpYpqcb3bWyd2MX7NUtZI2Cu5fbXxM/UmLVV28bygkgzyoNa16l+2cCvtZU3/y/unD7DqwA23DHV2EmR2FQl4ONrd94CZ7ew/LftzvHI/fsmlt8fuNea2Lryrtv357y7ZtS8kof4dfNdzOZETX3NKujg/ft1jWMSIlByrV28tYwso57isYUMfi3PzH7EINaaWcC0mnX6TMQ4PcSYwLpXsoGRNZRA31n1qTAKWbbItiXGq5gEan+NHxA7j3Mfc0B1HhaSeyq5K/Gp+NSXiKSYR3imQBNv5l/CkmOGxPD6nYnxks2rKE3hGadbeFaTumpiEakT9BpvDRBjyQ588V3CD3KR9OEIL0m447YXWWjszifGg6vyKNW9aGKJVfIwsTIEXAoknfXAmvXT6uAHRM0yukL3s8fuOgT+zsretE2LdxcQktNJfjY7QGE487o6na/xMmUxgCXLkzfhl9gXl7qNkAAhib9YgB+qo46izkP3vQNcZB7zOJdR230LS3By2UDPetQwRmgZFiX/bsLZPZODd+9nKD0cU8vtG4gq0LUD3U8zlL4as39jmWL/yAYLxI5h6QDXlY6Z5gOsNcwOYMGxpXKcclK3QQeDiu3r0p/2zZZkE6629yGAa/FzoiCEbccM+sSGGGS2T6DmDPy7YwhgXDNbggxHnFXMJzuYnpLpGvN10bHkV1onnORO7FxdTCoXiMI0meGYUnNMqfENZ1sGFq98ecJKoQ8xbO7smdn/S7MhOLmBDVbYPkoYrLnXp5Z7Stg1u8I9mMIkE4CbwJoZ2rlqINX4phtUIJYpgAOAVzonLAxhURLh2+7nQ+cDnZmxLsiYp2CpPeZXlS3qYYN61LDzkpQLKD0eQ9/1+7SYacHiClRT+2TEYHZ2C4tDWMydcpKD77RfcpaDckKDm8c8zlcMWCYiZIkRdRp0WGVzugdnwCm+hhCDW2zuJh6QVDM+h9U1kph+iWdgqt6TXYgUSmqCi3mkWqmN90j9HPgEe64vY/WamsZdrPbaxueLEp6ZmsEzUR9iddJM8ynxPRVDqY1fUAsMfejOVYyrAl4KLEDiCt4ySr7bqp0rWI331F2HGLy6N1Xg2P40MC/TKUHiobjBbvJ5ZaMRYSpi6eiExa415R6E97hMMxk8JX/HPAMG5AHoUKZGkyVGvOAadRpkh6csheadK3/UiDQT0lzjeQKsZhkl9gHPw7tcpMcxWXoUKdOhSI/vRz9jFGZ5NS8O53FeYwc/jE+qnEf49WgXz0JUDbKCrXFjrPHyb/AWayls/RRjzFLlCqlEa1heKOMJLjtYHim7n/0ZfqidjqnckcOvpz/EM2S1xtV6V3lRzSOpM3+Ot0FZxpNotK2aPWLYCvhVzTjbPFI+f+32oRpO4KnyewW//hWArDXubMNJ+xVZ6c7Me2QBMIsbyCf7MV72/xK/fv0Qy7tSNOk7LZ65vjG+8aV1vM5n252TWLsR9h0g7ESYQDjzvjfA3FL6dybmgOo8LMQKlWRUQKESIfgEDt6DRDR/AbBK1Ho9NbOdvkTa+Mn28pkSA/M1xiyQtEqWA+oMhngPLiX+FB7MVNGua1ByV8dJiXkD+7LQwnnsBmRpGxX8FTw7QABrjPc21ZeJCvjLvNuF0vG0oFDXTX6jbQyAruLlCpKx6otRXzjyE5zdxxgvN9jGJ2rwX5xalOhzUAdQXTVJFG7irQh0/+p4b5mbGONCbA/d3+2ZfYmtmmYe8zif0QVH4OEs5WxFKsBjB6I6FsFC07xMY1Ic3lkkmMak4lMD7FzumxDC0diARElCayTTUBOfrQrGivzNZsUUFg+BHTf4Tg0d150/rJkf6Er7BAonns0Fll9KBgyXmmMbNDd1tgSusF4AcmNjiZ7UnRXIkKRZtNjG9nlkf+d2TskFY/NsfW3S+YUpPvfMsOhXWicG3sbGjl2Ljuz/D2zbs3sOOFbTxklqF4eQik/Yv7HM2uOjdwfnDWGUyzDIpVh7aMxZvb6yfeL348DXJJ8KgIkM3F10Py81x/AVfLe+7T3KZN8isMbdr5Pb7rNwQHiijFAud9K3k4p5sAIsRjaA7M7C4//Pf//mMY//gCIgJmDKhJApAQExe5UC5PowwDe8y1juVK0m9lQLD1aW8Iqd7wF/iW+8S/Lexw/c1LMFvhlc5X98sSxLqg08K1SsVCmutrHnVo3yOl5V8xkeXNjAM4y28HVVFZ9fBQKXMDWR3hvi/QxDrF6aVYCJPFBy+/0Eb1/QxsCXMn54q1RMp8CSHXrEEg3qvOAa3+dnPOEWd3jELhuUwwOOyBMVQtYLRtMqc0BMwC+4x8c8oEaTHsVkcM3XXKdOgymB7cNt/6x0lR5F7g5/RZCL6VEkJkWFFpV+l6XCyAZgkadCm5/xfcC+E7OMWGeXCi122SAbGoD7FdfxPjDzmMc5iw2s/rqBJ5t8hl8naU3lFC5k3J+XeEsQIS938evCPp4VGuBJSEMsL9zEcoZk/V/jiUu4c/kRvg7TPu9jQOMDPDNTQOpN/FpWa/T7WL5puPMDrwAQQJvi3Vrp3sw1VvBA8BQ/xLqJt0nSeWu9Lss+rXnVnOsCP3T3V2vxu/g1ag6fq0M80Utg9CwQK8sZqSVEjEq5+/D1zPZb7po+413va30XQDKgGvBWfVJIKPcP3flecdf+n+OtHFbc/v4OeME8fgdiDqjOw0LJUR4lfTxFX8noJZbgAryPypAE8Dy7CQtiZcojSlKoWaq/uvoB3j9GUkqxSvUegak5PHNB5yR/EnWrKvDtD0u897hr75G5thJiGc++lAWB89VjAxY/m7mmCp7l2cf7u4K3JtBiWkl6wx1Pi/n/Ai/9mGUiyCdQAKUYo13sC2ET3+HK4c3AA7yxtfxK5R2jL22B0AIT1A3T/1P44Vcq1HUP9BnJw0YdxdkOZh37EniMLYhmO256v7qk85jHeQznuTfZugDjUxbH8G2txHtx1wYU3bBBHZmhSbvXHh4x3oJM22Tlk83FZCBHPhpwsgWDQobscEzGPSfB9DRhbu3fWGbtJ0e8+uEa+cqAUmbs800OXlXWWK10bNBcDciY9H5QyFDaHtszeogBpu45z5eOONkwZuviGyAwP1hZt+zdLXCp2feSq6YDU6fGfI1Cx+gsG2i7dOSYqi4HrnROfPEpEENgSotEQjapLhJcNqZUt5Ih3x8ntiELU/zQGue7fFaxIVsLEaxy9O6QPIERQH545P3AlKczWF5twfhTiFMXyD045cSxVBfb5isbp8y+IJFo1bHvv0OgA3ufFCgW+mTUXHPeWAKXxRg+Kxi4m3k8htDOfVAwYH3lwQkv719ipb3Hy9uXeHOY5V0DsXnM43xETECNNwTEXItecBCWKff7BvAdwZ/8JcayyQEXsGbqMfAKA1xPgV9iz9h72DM7AL7BDwWZAhPsGdwA8u7nx3hgYQSsYVYDx+61AQYyXnTv77n/h5jn6ASfG1Znzidyx5At0r/Cq3kuuG2WsY5Txu1H9ZOYYnnMg+UzfC3Yd+/fdeeqPF5w+zh1x1t024WYE8hF9/+OO++Su8amu7cR8D7Ei1ClxZSALMeMWGKXdUYsEbiEVuvv83XBWKcTQgLnlZrlmDs8YkCeVTr2d9zhICiTZmJWJ40+7Xo12bcYps3cJapR25iooXXLm4U1dtmgyFtCIgKmrLNDnQal5phXtTUmhLSpUqVFmgkT0vyAf/f/5rdtHvP4DzjEPAfv0fkUv+7axuoJrVNF8lFD97bbvozVQSFWf/0U8/LcxDMgtbZWM6eNX1uFvAuq9rE1meqVJn6AqFQDAiR/hDWyRKSRIlLH/GzmWnHv3cHW7jngF27f8n6O8WpKNcBUB8bYGlegb2rmeFo7i9EvSbwaVl/PnNNNPJFoGz8se6ZRTsOdU4wnX+3gGbayRbiNt1fQscScDdw2BeDPZ46ntXsbb4snrEA2BbKPEXlJaox7GCNXwLHwlAZeeTCP34mYA6rzsGhjEi4lhkMs2cgcOse7fp2i2ZdIGEQLP8fL++XnItaAALdtt98NzOAbfNdHHp+S34v1oy8M8B0vyRG2sMT6MbAD7+10/VAUSSeU6GXorevdwE/g+woPUurLaxYIFmgqSUYGb1Egi4S+28cGVqA38ADkw5n9KtlG7v4dumOoYzXGvhB1zQJVwQPaY+wLLsCzWwtuX/ICmwU8HuMHICzj2Rf6sizMbI+7zhLeF02gbBUvYwAPTotdIYB3xDzmcT4jDfs/XCY/PCIVm4cmwF69wKV2n7MUZFxhmx6fcrJh4OqJk4GmxyfkoxNOcjAI82RTI77mOh/kXtC5kWZElvX+N3y1dZWAmDIHUIeLcQ+As5x5tZIzRuTVh/v86u4W126+ID0+5Ulliypt0kR8u1XivUaXX964ye/vPE2mqnZyJUZkKRcOyPfHtAslKv0ui0PzGB2xxF4N8tGA7NYp0W14krvJtfg5K60TCGF7y3z4pgSsRPsMr1ywgX6xgaNxJUWA82B1uePbeolixa4jVz0lmMZmgxBiYCrwsnLJhnip2HfvPavYJOlc/5TuhgHQYdkA1sPNRUZBlmxsieVFbpP1K7sEtVOT/6uScSyBUS7Dxe6YvU/Mb7ZFlVupp4nvqrxiO7kSaSY0qHOn/5TOjQLlfp9eYZnJR042GwG34dutEg3qfMgzSm/GLHSgNDRAe1wxQP1tqcjV1j4nNyDLMcOtC46tpdXLPOZxvmKDl6xFJzTCOrnOKaPasTGwcyceDM1gYGkL34BNAe/jQc89DPAEq0EmJM0gwLM5ZSNwitU+q1g9sY4tPk/cvh1bk7z7/wS4igG5YngW3PZX3d8X8VZVkuUuYnUUM9uvYkDmidvuGH+tYryvAAdun2N3nRfwi+a8O6e0e11g8yLvAsKr7v+nGAg7dMdVozry9+TsAk5wb98XB0GZa5HRm0Zhlt9vmKnfemaXXlgkIGa1e8Sz0hIBMRFpQiYMyBMS2XdV7ohrPLfcGsKt6AmN0GwFbsVPmAYBMSmiMM3F7pj02L5PVqMO2fDY5dcKT7iV/M6c5MyO5iwFz0vvW12egmHlAl9zCU8xm8c8zlE8wZ5XgakpjDSTm9mmgWdByvrkEfYct7H1lhifbbz35zaWPzdnttNasY/lST02HcyGeIt31Y9q+ogBKYuALff6G/czqR3HeEuUv3LnUXXH6bpz23DbyV91C1t7aw0sD9KuO94d/PpwyrvDBpvu+rTOL2HEHNkI6H0CQQO8T2kBrypQg13EKgGdD/E2AgJoM3i2f4QfLC3Aderep/V+x51HG1Me6DtNPtoCkrvu/DfxuMkYTt7A4hb+e+C1e68sZuKZeyDm7Tx+J2IOqM7D4i0mV29gyeMynqYvmb4SMliyFrtI7EiBpXU8mPgV3lNrA+8P9a/cfpToZREAJqUQSLeD9ygRkDp2+9vED2MSO6qEl0wJTAUvH5MMf+q23ebdyX6SAtx15ymJ5yd4s2rJvHbwXUB1uiT/l92BvkTFENXrui4Bvbp2dScFuPZn9g3WAZPMoIufyKgv0Tvu3B7jrQL0JSg5mjxiZIXQxXvJ1PA+tV28PI6Z85dtQAH/RfJyZl9i985jHucwzlbs74zrumfDMeQwNug2LFwheW5TmzYUqbthAF4qNiboyWUD7C591edwa5G7w18Rpy4QhFPKQ6us1oev6ORKlD4bQxmmQUB2aEDdohpQjhH13Z3t5Py+O9zmLAPNUon3truQMQ9VMST2P1kmIGar8Q0nK5CKMTDVFbzTOmy293x+GUJmA/K5gfmwNk7IPIT6p9+QacPLjUvsV5ZZ+/zIcvgUSo0x+/VlszRoj5Ou/HufdWEL9moFcq0+udZpIuNadE2zWmrPN4V2SGTAC23IhafQhouFMQtjYwJTg5XXJ6zQd425E1K1BlGYJj8eJ42nw81F8v0TotA+q3HN/P6uNvd5b9hNBgtkhjYca3EI7zXss1ibWtV+adiHHVirHfnvHPdZvPd5l9rNrk3NPsLbv6RgklkkMzzh6s4+TCEuwKVGn5MVG/zyU+4wBxHmcR7jgAql1B5LjOjWrLm0dHTCf/nfZMxf+CEmE3XNirOaNUESYEG2TmJtqY7qYvlEHqFNGN92zHjVTUO8aukmli9mPQUFOgb4oS+R204qoEdw9gPn0Sy2lhb2YpDKA3Fl5tglO8a3GyXe+8o16mUxcAVfW6oOVA3piAgnISw+dlYhQ6wmu20NrYWXGKicw2qnKzPXI1BhiK+PnwIFeHn3EgE9Su0x25X32frqG8Z1aOYuUaQHgeXeardPrtNlr1ZgYRt+794jlo5OCJd3yfdPGOUu8Dz8gGAKAVPSwCDIs0KXYHpKK6xSpEd6fMLK8IRuJUOPIhfZo1lYM8br8JTs8IhBYZFscEyDOlVnnrj4FXx735p4RYeij0vQC4usjWSwOI95nLO4hV9HbuKtTmR7InZoGb8+mlXudfBWAFqHylYELPe8xLNSlT/F9hRQ18TWycpVIgc53/dEMfk53lt1A8thslsRUUqMzjuYp7XsWsQinV0bt/GS/sBtN8Tbrkj2v+nOOYVf05bxg4/v4POzCFha8/fduQmLqOG/L2YJR450kAyBSrnzkS1gBPxT/IAt4Qxv3L1r44HV7Zn73XXntYFhCzcwTEHArnxvxYyVIsvVoYv6borcdisz91J4iawRylhTbh6/EzEHVOdh8T4Jg/GsAgsPsCQp8335kWzM/K1EK2m5kr3k4xms0H6K90+VJ6isAOSZNcUS7V08QClQQZKBFH6SvYBJ+V85iSlTDAzewk/56/Au43MDn6T1hSGPq+/hi+O7eCmDvvzuun2pmK7ijbNTM+clGb+SuIyvx/jCuY+f8hrD2V2bcp10zNR9e41n/N52+1Z3EbyEAfzndQXG9401lXxO+vKVJEULm7tYsY87/xren0xfNgIXxGL9MX6h5Ir9xFuwhO/GzWMe5zCykTEhD518H/DSTTU/UsYkXcQ843ZKNtk+EzipvXv+V0JjfJ7kTsntjDmrmKS+kyvxXrsLORuoVGqPbeJ84TTB3vbry3TqZcp0WO0eGVDRgYN7ywbMOmA3XTpJmhxrjaNkyNWik9MvhjbdXh6l+zXnT+pAjq8qV7nRfGXNmQ+BDQco5zA2qTr0hwYW9wrLjFgidENRqOK9qKbmB7t/b5nV7hFvSzb46SQ0kDkjlr5jKJxU3BAvSfBrbnBUAJmnJI2h/XvLBEy52B0TBSHZaERKbLEuHARlVjp75lF75QKtsELIhFe1Na4+3vcLm4KB4ETw7Y0S733R9cwENes6Zn2gc5eH60Ib86st45kmU1hpnsDYwKRBYZH0+AQ6kMoB41PSC5P/L34b5zGP/+kiIKYR1IkIOeb/yd67x7eV5vX97ydH1rEly1IkR0o0o8SOnXjGxDsZJuzAsDd2t0AXCqWl9EJpty2lhbY/KJcWKAUKvVDavriWcu8WthQWymWBLUuX3Rl2dzrZzWyy41nPOLFjT5RRItmypciSfWSdnN8fz/N9juJ1ZpKZzMWZ83m9/HJyfHSuOt/zPJ/v5/v5JgDopIc4Ulth7cQg2fwWT+QfoESZlN+i7JTIZ2uM5vSzX6ZEhgYpWiTaW3SOaXJukwQ9HMZzy9oixd3Cj+1jK32dTnKQK+NFjjcvUktnSfktOk4CJ++Tam/o2Lm0xrXDA3iOy+jaBk9lj1HkCi2Gcce7OPgcrDS59lUDAMRPbNMd1PHcvb+L07uOH9tHy02R8lo4ves0kmky7SZ+UROOk94ixbU121TwfPoonVKCPFU2SJGjTirdYtXN6euR14RzdmmLRn6YzIkN5tLHKKXLtIopEmzSIEMi27HnRElf4y5x7qmtcfWUPoZWchgfh1yzyeZbdLLIpUuNAuV8nDqj5O5bpYtLgk1SzS22k1AlTz2r3xkVingPx9nvN4j5unriqewxSpRpkWI5fS9xPDZI0SEBeci115hmjtG1DRay9+Ike9QocJx5AFK0tJdq1qHDEF1cMjR4d/ujlJP30iJF4+EMLVKspnOMUufi+EF9jH6LWUekXhEi7DGsE3o4i1WQeDUX0ErLMiExKhYhI33bEFWkR1jSL76pMo/LETY5EnVnGj13PUc4Xy2i51sifIpxoyBGEkiyjVrfOmK1JCXqbaw3P9cIx7tSeThI2PRZxFRifyAEsgh5ZD8yLxYRjpzPGpqIFG/YGHoeu2TOW+bcQpiKilNEQCLsWiNUt8qcdpyQIBWu4AzaUkE8YmVbYqtwom9ZllB8JCrhLULrPbEAbBPOh8Uy4U8JuQohtUWZK2zbJUJBVRJtbRPhrkBEqEbQkIDVM5l8CcDGL2r77TrrTJWw07FP+AKQCbGQhy4heShBqEdY5ml8Cm3GJhnuy0r1XXRwk0ycvDQkA9ivdhClwkbf52Wfub7PXEK/CEEH4nFzfFJS/wwh0Sn7O0xIsp4hNMaeIVTMCgksHjryAvS50UBbVKOS5XoM2/xJXSQ0ID+FfnHOmGMS8lQaP7QJ1atC4lYIX9Y5Q4hAWJ6QJixtk5IJIZOLhA2uREEr13iQ0L8W45XbNOd6P6GSWJTCNcIyvggR9hiUD8nZ61YZHvN9qk4B91iFZO06z5dM+XxPNx9qpF1S7Q0qyUNUklAsXtXPnlEdXSsO0HJS2stuuKMn0cA9lTVWisP4eYfCWlOXwleu8mzxCBPuc2wOD+DQo0KRHHWq2TTxrJaBNchQT+Zwkj7HepepJ7NkTjYA8Nw42doWF0t6EptJNykn7+VY7TJP5B/gEBWOXDBkyBkdWBx8TTzOrHDt8ADrToZY3rd/83FI+VrB2mLYdoEe9eq6odWIVqBuJTVR7OBrn0W0mvVi6SBHl64yUIerp7R1wvP3ZRky3iDZC1usnBpmnuO8pfwZrhUHWHLGeMC/QJDURGbC6+DHHM5kT3Bq7WmrYPWT+2jkMxS8GqT1/nPtNUZjdYY2tmmkhwmKmhx1va62LUB7oMbpcvHhgzj4HLmwEr6Pho3tAtreIFvbgjSslQbxieHjcDDZZCU/TMLr0HETJPIdkvXrVLMFCoNVOLYNaPuBKB5G2KtoMUyHQ4yZTvI+DoX2ClfzaVqkqOUdGmSI06XlpExjozEWsw4tUuSp8gzT5KiTS65SbF9lObmfFilStJhzpjVJl++QYgPfdaiTo0WKufQxWqSIOb5WTOLRSGbIscpz4wcA3fW+lm1QomzsNTapUCRFi05xiGXGieNRSNY02UeGk+5Z6u4oDj3qjJJxGzTcDADzySlKXNKEoJsj4Wo/UXfYI2cGigk2qTNKnRyOq+Pk5/JHGaKjjyGvZ8nl9EFi+JxnCoAcdaMI7ZJqbrOa1YQk6Dj7fB46JPCScWoUAE1eLzLJ8ey8iTw+vpm6XaGIh8ukv0AjrdmQGD5xupzhIeqMEsfjlPMkS9khfGJ0GGKWN1GgSosUOTyGaWninBKtpL5nnqvJ2Q1SlCgzy5twsx4ZGpzlJC5dilTokGCeKcaSS9QZDe0E6FKiTIMMS4yRYJOSU2bLkPIRIuw5HCGcKwlZJwTazqZEYpdXQVc4ypwLQqL1BKG9HIRz4SR6PpUn7Ikh81op8RcrOyl5h9DDtL9K0CFsqvR2c0wydwU9hxMv+oe4Uc0qlZyyrXHCpsnyW6oafULBlQilXPRcWY77MXN8I+ZHtiHbF5VohbDacslscwQ9v+8R2vqJ0EdsCkXscIqQDxABl8y/m4QVm8+Y47tGKKjaMPdBqlFFkCQ9WE703Ys1cx3TaJ7i7ebYj/Udo1SJFtAkexYtSBLv1YiFu2sQ3coIGlcIyxCEcBRDZgcGfpPQTLlCKKOXl8FRNEEpmRnPbCdNSNxJqZQpAbUvhcNoohY0YSkG1BD6nciLA8Js2LOEPqBnCGX9PqE8X5Sg4p3qmc/J357lRpJRMmDnzI9DGDClRKBsfl8jVHDKC0+UnZjlg2Z9UZGKqjaH9qHBbFfKX0+YYxVSW7x3XDQJLSqqEUJzcsn2ydMsJuGXCL1vJVt4xfxIM4aK2d5R9P2S7KZHqDxNmuOo6M+o0+iXxzVz7JJ9FWWyR5R1i7BncS0bY2i0RyutmygN1OCpY3kct8fRylWqpQKZwQat8TgNMhTbV2klh0mZSelgUzcuAq3IrDhF8lS1D53jWjUUMdNcCUP20eVaYYA8VTaHBxipb7OSdylS0YSm1yJZu85KSe+rTIkxltlOanKWGLTT+9i/tgVr0M27HF26ynPjB0jQYS0/yEPNz+LHtB/oEB227tcl8GPNyyyn74WYVjEVWKE7OMBIZZu1kml+BWznt0kMdnBcnyNPrxAUYWscff7tDSrJg4BuhiKD24NbTa0UHT/Akd4KBy80IaaP+WrRrJTbooOe8G+PQNkp0SLFtaJu8tS4L8MQHbJLW+TGV1nPao9VpwfLyRJxPPyYQxC7Ts8E9PjWNnPpY6RocaC5wX62bNlvkNaEaYMMRa/CWfcksWOarLD3B608TrW1knc7q8/r4IUmQQ6u5rXfqh+DinuI8dgyXLtOrqhruJyeVvLOMsMS+wlfShEi7B3cy/P4dLRa0hCK1eQBfBwyNHB9D99xKPll4lvbDFa0Gr6VHrAJmOnmY9TT+ll3PXjQe0ar0A2eKx0wDZR6lCmRY5VhWkbRuUmCDvnmGk+mdUIo5vsknE1aDHOq/RkGK1rpXkkfYIMURSp4xBn16pS2rnI+fZSiV6Hlpuw+x5qXtVcyrlbP0iFOl0UmAE2aFpsr1NPah3ndyVBsrtBJD2kVLJpcbBlZV5wudUbpkKDEZRpkOFa7rOMEdVJeizl3mgYZHvZPs5rV+55ae07HovQwdXKUPG1nUmivMLgGF0r38hBnrBd2wa/ScYaYYIEN9PnMOdPMeLMk2tc50NwgSEMuu8osb2KMJZ5hmjGWGaJBka62Qqmt8Nn8MRpkAChyBR+HeUP+koSSkaB1cWmgVadTzPM2Ps4Q2ht8hlnq5Ijj0SLFDEsk2GSWGXtdpOy/QpFsNDiMsFeRQBNiooqU3hFrhNYjWcIGmVIqP0uoBhW7ECERZc4l5eVPEs6Ll/q2J+SmJH2fQc+VC+gqTrG8E6JX5psFsx+xA3hL3/nIXF1sBHxu7Jsh8/c0oe/pSULfVBHyyHbE8kTEUiKyqaPnu2mw7kdyfQbR83whIQcJCeo1QnXoV2Abh9p+ICKE8tFk5UmzjnigJtEkr3ipQnivRNwl3rRbhIT2FqH1isz9hUQXcZaocL/OXOtBwvnwM2gSV2wKQfMJ0sNEBFVtomT7XYSIUI2g8Tm0JF78pXJmuRBvh9APvviUSDCRl4SUyAt5JxmvNcKMkPh8niRUvw6jg7OoHR8kbEglfi39pCDm90VuDL4S9ERtKT6h19AS/3OExGSe8IX2p4TNluT8hOgVvxYIVar3E5a+HyJUq0pGUjJaogg91/f5fq+Zo2b9x7ix3EB8dirobFeesCtkm7ALorygxdRbIFnRet/1EmWqNMG6hO70eLrvesn+QRPAI4TZPLkGMjgAfd+WCNW84iMmL/UJIkTYs6ils8wxzXR6DietNYmbJHji4QcArQJdZpwxlugODtA1zT7OcpLzxS4+DmMsU/LKFP0Kc840cbpM+gt4bpxNN0Ev6VCmxIPeOaMcSuA5cV1C6TRYzQ9xjgfxiFOgRs5dpVDSKqsWKcqS+UrD1PA8HSdBHI+qm8HNdlklx7XDFRpkcOkSp8u59Anihgg4zxRO0iee9JhqXyBDgydKD5CnikuXBhnG8svUGaV7rEWu2eRc+gQOPi1SbJ5I4ODTYYgULTK9DeqMGgI4ZtVg9WKOHg5dXPxjmoRZZpxlxniY06ySozWeMgTNOsvpe40arctHnHfzFb0P0yJFlQJXxj2qFJhinkZSN11pkGEMXTZczSZw6TLYhOeKB6hRIIbPZ8eP8aa1C2zfpy/Z+fRR1sloFZgLX7r2GarZNHVyVN08Mde36tkUmqCop9PMMU3n2BLF9lUAez0WmcB1upy9r4BDD9fpkkhrgmaMJVybMYwQYW+hS5yOUZOm2hvMJe9nkQny1ChQJeXo5E7GaZCJNfjssQkyhgbNUcelSzmtEy0N9pNKtui4Ceay0xSpkKFhSb0ULi4eCTapmQy6NJUbSnfsdhPOJpnmBrV0nsXkUTLHGqT8li0/T/gdfMdh2R0j7nbp4VBxi5QpUaRCF5e5dMkqNjM0yLXXaCTTNulEUvtPx/GoUMTFI+avkGKDOjnWyTBMuM+WIXIrFCkn79XNBoEWKbrEqbp54niMsUzL0UToEB1aaV3BMERHN45y4/jEcHpa+Z+gw5Oc4q2xT+hqBWcVn5iuDnCh5JeZc6apunl8NwZZbGWDj8MGKYbYxCPO1NpzVLJZQ8SuMN3Us/3l9L10GGLOKImrFChxiUUmSZg4eJKz1uIljkcXlzxVusRx8Pk4b6NIhVG/TstJMcYyDj0cfKY4j+t7zDtTrNka5QgR9him0fNVUSF+kHDu198nQ1SWX46eT4nfZj9BKOvJHFaEQl9KKKiR5kxp83+pQEwSql4vmX9LubyUkvc/Yg56nioVkaDJTpnTuYQNpCGsomyaY5T5tsONVoBPEKoyZY77Z4TzwH6rPyEhpYq1ZP4ulZni6Sp2dqLAFVs9OQYRPsl8XojTw9zY1+XLudFmQBSjIggTb1fQ5KcInMRmqkRY1Sq2DIJ+bkLm5dL8Siz/6uh5eglNGN9PKEoTr12Zfz9HhLsAEaEaQeNL0AShqEXXCMu/BwlNskfQxKO8BCQDJETkYbNMzLo3CMvnxwkJOSHxzqDJxaOEfqw1wq71EtgfQgc0yUhJOYCoKOVlcJjQZ2bNnNMSoTeoBDLx/LzfbE+6FZ4kDMIjZjs5dPA8ZY7zw4RBXewLpJlAm7BplFgfSHm+eN70zHFnzednzDEeJzQfN6UMQRqUKFOlSUHbbGeG0Nag0HdvhPSm7zNCMMtLR2wExBhb1j1p1hF1q6iLBwm9Z+UFJi8IubZSwiDrRIiwB1F3sky1azyUPEOdUUArax7iDDnqlCmRaG/hJx0+ztuYcuYt+TbNHICddDfcDClfd0tedzKUHU2C5qiT8lv4jqO9+0y5KeiSz1VylChzkrPUGdUKLfNQFfwqOWfVTti7uJSdEuuGlBilTp1RRqkzUtlmeuQCAx6s5IeJ4+HSxaXLBIs49LSlQVI3GukZ1VnM90nR0kopv6oVo+kUHnGKZqQeN8SHQ4+CV6OWzmqCxGuw6uYoUKPUvkwjmaZKHgefOqM02E+XuL1WBWosMME4y7QoUqKM63Xx3DhjLBPfus5Y7zkaybQhT7WXSbF9lU5ykGVcEn6Hkco22yNbbA4P0M7tY7/fYMaZ1d2rgdWsVtE2krpUeZo5S+isZweJ45GnhkOPBhlG/TqrTo7BJlwrDHCw3ORjpTxjLOnGOUlN9hSpGHVyj1PeGQBabooKRXo4JNjkKoeIfAMj7EUcaK5zfWSbLnEayTQOPUqUGaLDKjk6hjjNN9cYaEOpWCZb2eLZ4hF8HCoUbcwYY4mKW7RKx0y7SSOZZrp5gZivn1GACoeMalR3ke+Q4ApF4nTpEqdOjkr6kEkUeZzmYd7hfIwcq3o9RyeEhmkBoe9nhgYLTODSZYxlq04vU8JPauuCTnqIUvMqXVwuZQ9QaK/gJHsM09INmLwObkyrcmPoxEvC73DwUpNrhwfIO1Vz3DHW8oN0GCLBJh0y5KlyZGmF58ezmoD19XXpkKBBhjw1XK9L2S3QSg9TbF/V9inUeTT5dnLUabCfDkOUXa3irzujeLik2KDCITI06OIySp0MDerkGGWVL6hcZK04SJwuOeqs5QeZ5U28/cKnSKVbeMR5M6e5YuwSfGL6HUDcer++ae0CrfQAZ5xTnPLP4DlxqhTIscrfrXyArbRukJVg0xxHnJTfYt3JkNraIJ70GLyBmYgQYQ/hE2gfVSkfl/moCICkTF5IT9O0Evp+P0toByf9QWQO+8Vokla2JX0sRMEKoWgnTyhQGiT09dzo+4zkLoTgewYt4NnZ20O8QsVnVYhCqf6U9YYJ1aoeNxK30v9DuICkWe9Y37akDB+z7qA+h2sXYOQkoc0f5piMzz6XCC34ZG7bP7cW+zvhLEroubvYEJTNOkJsXiAkn0+ih2Y9dFOuY4RVmjVChal4p8p9FHsHsdaT6yCEtQjOsoS9RqSCt2COLUf4HYqw5xERqhE0XHSpwQlCaXye0DxZiDvJJt1PGDik/L+/uRSEAXCWkGyVb9wZdLA5af6/YbZ9DIIZUL+NDjqSiXIIM2CSCRQlqBCaQuTV+87BdJa2wVEC7iVCleqWOUZpqAVhibz8XZpa9QdNMaSWEoskmtCUcysREtKz6OA5jn6hSlOrIuGLadbswzfbfgKUlFw8Tdg1UohdET1Jpqti9tm/bWmmNYN+WUiTLSnLkEHBYLhPnkZnHeUcxTD9GtouQBTDW+ac5P4823cem0SIsCfh4LOcPKI9/8wE/a18nFR7g+XkEcZYZrAJMzyNn3QYoqMbjbBJDtMkxOtQdkuMtXXquZMcJEWLDaMuHfOWSTav08lv4sf2ab8/9ER+3L/Kpaz2B6xQZJxlMl6DlpuyBEQcjyNPr7Bd0qWiDTI86J2j4urJcBwPB58gqf/u0GORCbP3FoW1JqqnLQI6boJRr06yeR03N8sZ5xQP907TclPkmk26g/soUbYK2Bg+GdY5+vRVrp5IU6NAgRoecVqkcFyfSW+RRPs6Z7P3M91+Bi8ZJ4ZPlYItx3XpaiK0uo1XLNPDIUWL7NIWz40fYNSv03VcBjxopQdJ+B3ijkcDTVKLL+wj7qcAaOf3sermtIrKwRIB604GgE0S1JJ5jjcvctD7LM/lD7BJwqpNW8lhlhnThC5d1p0MFYokitpDccS9ytc3/4Dl9L18png/HYYYZxmPODlWifk+DTfDPZU1KsUUCToU/QpDG9vUVPzV/yJHiHAHsDkc497aBhfzBy3JNmoaHr3Jn2Xd0UrvATMedL0utDHqRZccq8TpkvA6VNwidXKGsHPoJAdZYIIcn2Ehey9d4uSo22e3wxB1RnXDK69lExUJOtQZ1QpZNphh1hKuE+2LtJLDhuir4+OQ8DuUnRINMswwyyYJJtcuo3owmq9b1b2HS8kvs5y+l/tqz3Exf5DBJjzQvqCb2JWy9BwHHx33h+jQIsW6k2FuvMhx5nHpGqdTB49hppsXaKR1MutIeYWtPBTX1ljKxuk5DpuGTE3QwaHHqpsjQ0PH06S2AUjQsY29in6FqqNJzAwNUl6LhpuhxbBOhuGzbBS1Pg4T7Yt0koNspbUfuNvr4sccOk4CH4eLx7R397XCABWnaEhUl2Fa5Fi1RG0Xl0o2aywNyjg9n8LWConkJhUOESvqagGJ8foK9MhvbDOEtk54oHKBC8MjL/yFixDh9YoHuLHh8DcRzqlEMdnXbwLQ8ytRiF4itAOQOeZhQmHPRbONdxLO60QBKySsCJ5E9Vkw2zmOngvL+lK5KdWhzxCqWmXe2kSTuifRBKR4koqPa49wnpje8X+x75PGV5h9fdL87SKhclcaToloSq5BHvgrMHKRkICW+aQ0dRLPWBHxzBIS2ktoP1IRQYlgq0AonjqGvmc+YdPRLyX0a+2Z7UovkqS5TyJEOklodXjKHL+QqHX0XFmI03bfv0VEJuT1F5vfwp0IQR4VL901UEEQvNbHEOE1hFJqBGg2PwgjVXSAOU5YknCOMEA76GAqJOd96MyPlMZLtqaHLrN/ltCQec0sk8BXQQfcYTSZmkaThBJwJPMlHePPEJbqF9HBUV5qsg/x8JRsmnin5s15SHCXYH6UUA2LOZdi32ey5pyEIE4TvhSEjBVj7P5snZRx1AmJ5jXCTtLHuNELRsr0h9EZUFGVyku0Tuj50kQH6WHCUvz+F5R434yYz8ty8X29YK5d2qwjWbYe4ctQXkCnCb1ad3ZoPGHO5wLhd+FZ9EuiDNcGIf3X9FULgiByiYnwuofEwl9vvpvRkW3uZ44yJfbToIKeLEtTkCp5q07K0MAnpok+WlTJs4kuh4/jWW9VWb+LSxxPl9Kbckmt3swx481Sdkt4aALOJ8aUp7srr7o5urgsM8Y0c+Taa1ST2ntQNxdZpUaBFC1daut7rDsZfBxG/Tplp0SVAnE8xk2DGYAlxihQs4pTUXKJpYD2TlylQpH9NCzhceTZFS7ed7Cv9NPVTVosndDDpUvGa3DWPcl+GvRwuEKRITbJsG4b05zjQR7mtLU3cJCGWL0byk5l2z4Oq+SY4rzdJ2hP1C+qPQ0eXC3pEv7ptYt8JPsWQzR3NaHsV1l3MlaB7NCzJcopWoZKH+VB/ywAHSdh72+cLhW0Oi5PlSsUOUSFVHPL+i32TOOeueT9FKnwmWuTfFX6SYjiYYQ9AomHn26W6I1oz+USZRtjAFJ+i4pTpEOCDkNMskjC14335phmggVi+Pa5z5tGSOeZ4q183BCZw7h0SfktnnJmcOnSIUGCDh5xypQYpW5JugpF4njGWTXBW/lzUs0tW7ZuVaNsssAEo9RtzB5nmSXGbFMn8U5tkNFd7tGl7anmFq30oFaRNldYTB/RySJ8ClTpkKDgVxna2GY5fS/LjDHGMgmj2h2lzhJjbJBi2CTS7mfObkuST0UqlDlMiUtskqCHQ5ErJLwOnhtnjmmr7q0ziof27X6YT1EnZ+0QSpSZ5zgpk7IDmPQXWHAmbeOtLnEe4kk6DAFQaK/Y9wdgo7YQyxnW7Xm4Jm6maNnrN8oqOep2e8X2VRrJNAt9ibs5phmlrpOILGvF7LUB7k+vQxQLI+wR2HnyX4CRDHpOdg1dASlNmMRjU9SdMv96hlCNWUXPOyGcg0r/C5njVdEkndgHPE1I9ElX+sOEZOEltGBGutxLJaSQjp80/5c5Wt18XuaPInbqn6fK58+h57r3E1aDyrxc5rz9jZO/glDlKqKnU4Ql+x5hmfsF2L4AA4cIrQFEmNRPOJ4x106Uq/3rDBI2ppZlZwk9ZKV6Ujxd++0JpVITc4zCMRT6tllF3+esWf+CWeaZa/8M8FeADxF6tTro+/oJwn4xokIWbqFPYfx9m/Bj/0+fWRQP9zYihWoEjf3ogCsvAFGlSlCTIHyMkCQUkk7K0fOExtKY30LESrBENw8YaBN6trro7I34oWS1cirZvh4aZd+PJvfWzH4l6MuxpQnNtsUvVHxNJOsmHQohbJIlJfhJWPubYRMaK88XP5RrZv8nCRs+SWl+v1p03Px/izAbJmXxOcKSfvqWrXFjtk+I5i1CElc6LZ7U57R9CAaeJjQON6bgQRHdeEWUruIZO0xYQiLErmT9XHN+sn2xXThhjv80+oUjSl0pGZFrJ1lFUduK0XeECHsQ41wkIMMikxSossAkvvEAHfUqrLo508m4S4sUurN0h1L7MrPJE3Zy3mHIEH6jdlK8yCSAUbLGidPFMcZVh6gw705ZlVbBr7Lq5DjrniRFixi+Ju6MAnUueT8Z1rX/H6vWSzTT3CDmw1NZ3ZCpRYqUs0GLlG280iNURomPYIch2xjG9T1yzip1RilTsl2zRckVx+PCffdSpmRJTn0tHDN5XjLGAi4NN0ORivZPpMUh42E46S2y6uZokGGaOdspfI5pppjHwcf1PRzHp4NWUwmZ2SLFg8agWjexqdMlTp4qF/MH2SRBC+1LqLY0WZCiZTuQ42DI7J4hvx2m/TlajvamTdGiYIJ6y0kRN6qzKgUWmWCCRVLU+8iIGK30oG3MAtAdHLClxj77XsVvcIQIdxY9HNvpvcQlrVJsX6aaPECKFmPt56gns8TxtJcxeRpk6OLimrgx483ScROMr13FzXZtEmiOad7mf9zua4xl6uRsubpLly8qP83VUtomqYR0LfhVnJ5PKz1IhgYOPeuz6hHX3s6mIVLBrzJS3Wa1mMMnRpc4BaomBvvkqVLwtK2KH4NsZYtu0bVJEp0sK/Dg2jMsZeNUnQKZdIPJtcsksh2biBLSeZo5Yr6P57i6RJ8StXSBmfbTtJLDfJxJ3lL+DK2Sjhclv4zn6OZPjqutWDacFMX2VQZrkBjXyS5NUGoF7gxPcch4Vk8zR8J4pW6QwnNcprx5Km6RBGXieObdpD2v68ksZUpMM2d8Xl1y1I0lgFbcOz2fhLtJgSpDxstVYq0ktlJsMM9xCjGdCBulzio5EmzyIOfIN9e0J63BZYrouukIEfYYVoEMev5zjJB4c9FzKpkTrRHOoaRR7zH0HFsEMEKsibeoCGe+mJAcfJqwyzyEQiEhNsWaLUnYbyOLnjOeJBT4yDxN5oNyrKI0FbUrhIKket/6wgdcMvuWsnkp4b+fsKn1RUL1ba/vGKW8Xao+XRiQhlsOYWWliHtEMDVMKN4aIZxzb6AJ4iahgEisBuV4+v1Vz5p9HTb35xph9aVsM09YcTpO2KukTdj3pL9XiihxRfi1geY1LqCJWSGle4TEtXATF8z5DRHhLkFEqEbQWIGtB2HwAjqgGIIvKIJ6glC2LsToGjoQFfTy4F2gJAMlJs1pws55kg3yDBHY3+VQPFlEPboESfd6SPhV0EFVXlJCUsYIA6g0e6oQEpoQ2g7IS8Hnxm70YiFwDrLtrTATKBm7AjpgJs2++31c5bMbhM2imoQvRvGS6feyOWM+WyI8vyVCf1lpkCXBV7KNWcKyikswIC+bKiEx/SyoM4Sm1+L38rQ5JnlhQthpUHxe6oRG3TXCgYEcq+xbfHHEKkDIailFEe9U6SwZIcIewxo57mGDMiW6xjN0gQlapPiY+w4K1LhCkWnmWGASD5cCVbxknDgeoLsjO/SsGrW4tsal7AE84jzDtJ14a8IzR5wuNT2lZ4ZZfBzOOg+SokWNgm180sXlNA9ToGpUpId50D9L1SlYIm8uPU3GTFhneROAVRiVKXGceTZIcbx5kdl0wiiqdFdt8TwsO4etL2jolepb0rNLTvubmuYkj/IOThqCs0ucGgXidK1yq9/7UNRPVTfPeaa435Cpo9TpkMDFY4kxAGqOVtSWKFPkCo/ziL2+LVKskmOCBWoUcEzjsJwpRy5QI8cqF4sHrf+slCw79Bgz5HgXlwQd5pxp610rRPGQoztZj7HMsCFktSWAZxtlOfRYJ2P3XaBKgwwbTsoQuOPUrAdNhAh7C03SjJrYkTJNmCoUqSbzPOido+rmWU4esc2lyhy26sVZZniIMzTIsOBOUKBGItmxCtSY7zPu6CZNHRJMsghAlQLzTJmS8xbPl7K2yVKeKhmvwZDbYWhjm0Z6mA5DtvmeVAdUKZCgwzxTjLLKsjNGqtjiiqk2AO1dusQYdUZ1ozs3o+OhW2cpOWYSKzXGvGXm3GlcPOazRyj6FVadHBUO0chqn1dp0Dfq1cm5dR7ly8g5dZPE8vCJ4aE9Rn1i5KnyROkBPFwa7Md3YiwywbuajzGXPsayM06RCvVklnt6axwsN0nlW8Y2Qdsd1CjQIMMQHTZJkKFhvG1HGfOWKbslVsmxn4Z+D3kVKq5WIvRwmGaOZcbJsG4SanF6OMAoccdjw0lRI4+LxxAd8mh/WEmegVb3v6X8Ga6W0n0qfs824+qkE8xznEkWiePxmWsniZpSRdiTmAEeQZNzbfS87Bih8vSCWfZ2whLwcfO5LcJ+HtKXI09Y5SnVhyIYgnD+WyD0DpWyexHvCDw0kSiEpMzBThI2iTbCG0uMCkH7pei56UzffrfMOYiyUshXOW4RCl1CzzWlRH6Q0GZu1ixfM8tlnyJSEqJRmliZubi1KpC+HXINxDcVs70SmrQWBegSoThLCGapqBShVxldLStzczkXESE9bNZ5xpzvoFkmwql+8ZgQ4TmzjzXC6laZC4+bdWX+LZaF0qPkKSLcJYgI1QgaHRiUjI4LnNeLlTReetasN0KY6WpilZtK/F7KZj1puPRJQkKuPxhK6btky0TlmEMTmKYx0tbXwGCO8CVyHyFZ+ww60J402xRvTykPqBCqZEcIzbUlcyYdCyXrJIGxRyj1lxcAhCURWXOu4qciKtoNbiRw+xWqkikTK4Q1wjIPh9CHRywMemY/nyT0rHm7OS65lkfNtTL36oYyDcliXug7noK5ZpIVlftAeL3tPZASFbmGch70fVZKXYRkluybeP1EiLAHMWxc80/xJEWvQstNWdVUDJ8EHU5yzvieJqyv3aqTs804Jv0FOo5WSc4xDVlIsEkM35a6asWlZ5q6rFKkYspKdWfkMZaYZYY8VUqU2SDFMmO29FX2v+rk7GTYJ0adHF3iDNGxSs8cq5xnikNU2CTBMC0a6WGKVKiRJ266N4M+zi5xpjxNMDTYj2tITYBce41K8iAVimwg3Zx9PLRPqlZvak/Yh1glZoJBwnSxrhsCeZFJctQ5vLZCLOsTp0uVglX2znOcIhUOUWGZcVv22yBjyodruEatJgpSB59lxojhW8uCLnEyrBuipUeGDg32g4u9XtJkp0KRmvEAPGQm/RMs4ODzJKcsCd4zo3Mhrru4LDJp76GHa/89yQID7H91vrwRItxhpGnS4oApnd8kRYs8VeaYNupHbWNSJc908wKp9AYthplkgRmeYplx6/fZIEPFLZJjlWXGwdGd7k/zMHE8CtRMo7h1ClStfYYo4DM0GPXrzLnTlCjjx7asMlSsCCTpU6RChSKbDOnkCB3KlLifOY7UVriYP4g02JLu9R0SjPvLpJrbVLMFk+QZouWmmPbmmHOndcx2EiTYZJlxuiYRJb6wy+4YPRze7X+EsqPV8/NM4dBjwyS9xBoGYJMhjps4PcYyi+kjJNhk0sSdVXLEj3U5Zwa6x5m3FivLjFkbk56pDpAKgYpbvMFqBsDpXSfl6thco8Ay4xSo4uDTxaVmCFGXLs8wTZ4aJcocomKtF1qkKFClik7iLTHGVOk8Cb9D1cnjmGqCAjWjht0gxQZVCkyyQMp2pYkQYY+hB/wuoeepEJ7SjEnmm1ISL5V80rBX7O9EIeqaz0pT4xhhsyQpUb+f0LNTlolX5xej57X9XqYidLpA2AxpmHCe2jT72SKsMD3Djf1C5Nykt4YQiJjjLBMKh5KEvqlZ9Lz4Ut/fhfz1+tYXEdHTfdt/pu/8/L79SSWmHCuEQifM33x02X2OcB4swimxQ4BQGCSirkFz7F/ad86fNP8W31ipnE2bc1sinKdDKBZzCL1pRSwlc/WK2adU/Mp1yAPXiXCXICJUI2gcML/l4ZcAOEiYCfIJS9Il2yTBRjxjJFCJMbcoQ9fQLwYh7SDMfInPiKhDC+H2BqV8HbNPeSEI8ScvK2MVgEtY8i+qzy2zPcnYCekn+68TvgDFs1TMviUrJ8dQM8ch/qbSdKq/hL4HHIXtERj4JKESVLJ844RZROliKC9mzxzvDPqF8KWE5uQ9QjLzGASDoE4S+tAOm+OUshJpKlUnzDyKL8wIN5Kk6HsVzICSbo3XCI27hfTu91OVF/cWYdmJdEi8QoQIexIZmhz3rlJ18yy4ExS5YptteLgM0WGOacZZZoIFypQoOyXidLXytH3ZlHS+VXeSpsK4v0zH0R592j4gbgkGXRLuWFJwjGWe5CGGRR3FMi2GcfBtY5IWKc5yklM8iY+DS52yIQwf4XHq5OihG6eIp16eKsX2VarJA5xnCggbNy0zRo46NfK2RPase9Ie7yo566EoZOo4y5psMFYCLVI0GKKHwywzlvj1iNsmNmMskaNOwu/gOD18Yixk7zUKs/0UqeDj8HHeyjRzdEhYNZZcH/FwdQ0Z3SCDQ89aEYD2Up1gkcd5hHfwMTaRa69VYqK0k07gZUr2sxkazDGN+LJKqewMs5QpWWKnRYo3+bOUnRLLRrE8TMsqvioUybDOEse5yCi662OECHsLg3TIGq9PF4+x5mX+LP12Jli03sY56jzOI/jpGGMsGU/pBLn2GomkXmfUq5NwN63NxhTz1hpgjGUdW4ydhy3pp8oqOcqUdBUALkvOmI1p3cEBEnRM86qcfXanmcPBZ8qbp+WmTIzscj9zbJJgK6kTR/KMTntzNNwMHnHtCZtNMOkv0HJS1IxHqR9zrF+2xGuJlWVKnOSsSUa5rDJKzykTp0uZko1Vx5ln1K9TcbSCvm4GdGKHkqHBPFP4OOa8Eibp1mCCBcSrG6DIFVqkmGABD5dR6uSoc2Bpg4vjmiyWxl6usXkBHc9SXgvH1fHtCkW7n7xRvR5nnllm8HCZ4SnqjOITo2eSgBWKeKbiIE9VN/NzytbmpUjFxs0WMM0cqfYGleRBcnYAGSHCHsNV9HxQSM8qev4nCk8hTWWdGnruLGX9Mt8Tok36kTxLOH/L9v2IilLm1FU0mSkNnmV+XSEs0RdiV3qO9HufijIWwsZWVwjL2PuVsTIfFqs4IX3rZh9fbP7/SUILPqnCHCf0jpWeIhB6mCbRXMH9ZntioSe9UIaBx9ANp4QAhtAqAcK5aP+8O4nmJ0YIeYYRc1xCKJ8gFByJ96v0fslyI1GMWV+ETW8nJLTlOkkF6zChd2uWUBjlcyOhK7yJrBcVL901iAjVCBryYIuvivFRaef3kbx0PSQ+L6IDRL83aL+Z9n3m8zVC9achJ7dHoP6laQ4uNcPmUuI7ItJ7KaMQslK2ISULotbcIHw5HEOrMn1C4lD8ViXYin+LeIkKuSlZKAmEEHbhk9L2E4SZuv5Mm2TyBrEEKsBAWf+7O7iPgaPXw5cn3Cj1l4AvRLIobI/BVh4GpcmXWAZAaGTeNl6pogqtEHYqlGzfYfMZIZilDEKCvPjggM3WKcn6yfUXYlauj7wkhHiWUhfxlBHi+BARIuxJrJGl6l7nHA/SIUEMn2FauHi6BJNRUsYSoIXuOq2L9Wuc5s2MJ5fttsqUmGCBp5wZOxGXximrjJJhnQYZ8lRpsF93rW5vkElqwq5upsnS1EMm06JarRgjaU0q+swxjWvUWXNMA1CgZknYcvIwmwyRp2Y6S28yxhKnedhMflMcomI7Zmu1lzSr2m/JV2kWI027qhRMU5ZN6oyahjKasBQ1E2gP2QwNxpxlGuy3hMKQ6XAt11R+HHxL8kqDmWXGWGaMK7SYYNEqpbRCLGa9DuWaLDNuFWTzTPEgZ6lQtJYM0vymQ8LaBxyiQocEXdMcTJPBy1ZZ5/d5sZYok2OVDgk+zttw8axSDrR6VZRpESLsNTRJ4xqvZw+X0+kvtP6mY83LzKZ14zWdANHKxzxVHucRVpO66VuBKhVXWwWMGrVqYa3JQnbCqs0lOdMw/qZDJknzQOUC20k4nz5KhnWr7q+To+WkrJXJDLMsMYZnm/TV8WMOLh6e8YaO4+nS/OQgZUqMsYyPQ9kNEyXiFV1xdFwHnXjCSVElT4qWJhApU6TCPFOWyB03jZeG6HCFIuvGhkAUpBWK+E7MkpIuXR4yiRaJF5sMscAkpzhDlTxTnMc1xOwEC6RwSfgdFpxJTnIWnxhlSmRY14mg8Z71MZXYL4mz7uAA55ki40rMXuKMUd7nWGWSRavWnWHWxNpxUrSYYMFeI8DeZyGRHVO9IUrZBhnGvGUS7etcyh7gQHMDJ+nTsK24I0TYYxDhkDQrljnkOUKyzCdUObpoAtQjFAK55veHCEnRJnoeW0bPbYWAK6LnfGvoubfMUWUu9hghweegRTAuet4owiifsHK0jZ5DXyAkXEUsJcIdOVYRQIlNXsHsa9hs6xKhclbI3hp67ifzSrGIk7J5UXDK34UIFgs56Ysi53fOrCP9XOTzZq5tVbgiUBIiVJbHzDWS+b5YBdYIe8DIdh4yy3LmupwhvLfiSyskMYScgIjOpDG3VG5W0PfjEpp8ls9JFbCIseQYIux5RIRqBADaRxQjW0GYxTkPHIdk87oOEifRgSBP2CRJgoaUJwgpKoHKBOx2UZOyA1U4GGuG6z5t1qsRKi/F3Bl4vpTlnmfWQrm9/EhjpLJeN8iBEpWkBGLpeC+ZN6Ow3D4EA89iOzAGRVDP9G1bMo+iBhUidISwbOMwoZLXRb/ocn2+pnkYuAYDV66HLwtRlPZ3GpTPS8dG0CUFZ2Fwi7DzYYkbyjCuFQf0IdW2Q1JWsmAVsz3xle3rnLiVB9cDJUTpRUKCVJqJ9b88MdfiGcIXkZC44lnb76kqXkJRVImwh1EjzzirzDBLlzjDtEyTE9d2eM6wbifq08zhEWeZMR7kHKvkjEdejYLpau3SZYzznOMko9QZY9n6fG6SsFYBDTLUk1mr7MzQYNSQdTJJPc68LVWfZo4lxm5QVwp5OsV5SypKub0QEjUKTLDAIpNGAaoNnxx8Q5OW8YmxzJglPcdYsg23ypQoUWbUqEU1xakbUdXJ2W7QOVbxcHHxOESFWWZI0KFG3lobSPOnHg4NtMLtilFA6XJV3YxlkwSraDVcDu1NKMRlhyHT6MulTIlJFhg2KjbQZEWFIiW0amySBa1Go2jtE3q2QNaxPqoJs29NgBzSZDBLVqHaxeUKReNRqLf7Mb7Meu+KevcAK6/ulzhChDuENE1giFFTbylxqdhcoZI+YJrreZTaTerJLNKJ/hRPssyYVXprxWSHHHUd31ytEp1g0diUuExxnkUmKFBlrP0cACvFYWrkGaJjiNxR6yctx5OixT3lNeKlLqPUrTqy6uhkzETzORrpYerkKPoVeo5jj0sfm2+sS7RqPk6XhNch0b7OWHYZz3iLirJdSNeE3+FBzrLg6AaGFYrMM8XDnMbBZ5o5nuQUU/48w462BBA1Kmj1f4tha7NSWGtSypYZMu+DNzFrVaEdEsxhrA4chxyr7PcbeI5rY+kU8+SaTWrprLYbWbvManYY19fNwlpOyjSe0snBZcaZYZZp5qhwiGXG7Hk6+DziP07FKVKlQMz3OVJZ4bnSAZu4EtWrWLlUKZhqAu0Z23AzQIMEm9DWKuWMZYUiRNhjGCEkA0WkI2X2V9BzNSHdRIDTJrS+WyPsOt+vBpUGT5i/P0FI0Ob7tuubbUovkRohySpkoqgfZe6XBmNvryGq0cOE89zzhN3s6duPzO2S3FhdunM/NUKOYNhcp6fNNppozkCUqnLNcoTWfGXz9/OElgiiOpXqTCGGRdkpitY2er5fJrTok94t0telSCgwqpvPyXaf5UbrBrFgONq3HyFBRUgmfrn9Yilp5iVWgiLEl7m1KJKFJC+j72uUa79rELWejQBA8nNBSJxJU6YKOhDuzO70N3eC0PvkmFl/g7A8HEg+cV1vyzScstJ66YZ4kvAlsRbu956ltZCcEw8V8SqRF4prVJWHCYOeEIrihSqZoTwMPEnohXrJeMRKxz0hRC8RGkqLMvNZQjWrg1XMbh8j7PYoTbLaZnv93Q59UHVCElMI5DXgDLTv3xdmuSTrVTf7K5vraV4KIxe3Gals30gWu2ZbohwtQXCK0CA8DYNLoGYJLQ7k3GQ7a+FxB/2G4/KSlBcG5t/StCvft1wyq3LNI0TYY/DZx3lTdpmjzjketKWh0vip36uuTMlOkh/nET7Fw2RYN16ADXKsMu3N4dCzhGSDDDlW7f+LXoX9fsOWxmufupotZc+xyhhL9HAsyefjMM+UVRW5dNlAl6j2TMnoGEuMsWSdRhvsp0wJjzjnmbqBuJWSz/NMMcc0dXK2pFeavgCGLDljCQ1NvjrU+jrRiUpsmXHGWLJK3ynOs25IXpcuCdNAJVSk9qwKqkjFkLarTLBo7As2rNpUlFeHqDDJIj4xWqR4iCcNOav30yFBnio5VhllFb+PBJBrKfewSIWTnMPHYdM0yJphlgI1Guw3y7qmrL9BlzglyvSM8tgjzoOcZdqfs6riQ8bGIEKEvYict2YbH4nXpvgiQ9ggrjs4wJDxJ24Yz2B5jot+BZcuM+2nbbO/TlLXOvo4FKkYsjJOzjSnayTTVJMH8HFYN82ulhmnSt6q5Kvk2SDFKqNsj+ht3XfuOVJskDfJrBQtYj4cKG8Qx+MpR5cxFanYbvWiupxjmpqpKW24Gdazg7RIETOplklv0ZKhcTxSzW3mnSnz7Lu2cmCOaaNwd8lRZ93J2HgpjZse9M5xiApdXDoMMUSHj2TfYptpyX5qFKhRYNQ06ErRIt/Us/WKU6TFMKXmVYrNFVJei3L6IGVKTHtztNID1MgzUtlm/9qWUeIPWcWxxMN5juPSpUSZaebIePq95fR8az8w50xzoXQvVyjSJc4qo9ZjNsM6Pg5TzDNEx6pcG2RouSlmmeH5Y1kaboZC5AcVYa8iiZ6rZglLxZvAabQyUwg98Q5NE85BhfjcIqx0lHmsEJlvJ7QIkEZG1wjtA4T0E3JQ7NikV4aDVpbGzOcqffsQAlCO6xnz+UuEVn0xs/8t9JxXPnvK/N0ltKiT6yHkKoT2gCJGOoeuGpUeJo8REsUb6Dln0vxdRFBiuSfCK6nclGpJzHr3meMTZW7PfPYioSJX5qyiBB4hbHgl27qP0E/VIyTD5Z4J39DvPyskLoQkuQiyhDs4YbabNtdAGmw9xOeTxRHuCkRasggaw+hgIv6lQhqKF4kE8xOE/if9ptqDEMRASec7IeQk2EHoswJW0Xjt8AAjn9gO/ybBVjJGG4RBX373+58uEQbMk6ZU/mmzjzRslUyzrbb5rPjSSPZOlK0mM/X8O7PcU1kLg2YTtu432+x/cZiuggPnYPskDDiEmbP+pk0yj5YMW9L8rppjL+ltJi9cD5W1bzdqViE0pSREXioebJ+AAQn+4+YaywvJ3KvWgwOMFLdtFjEogpLjXyIkbA3p+tyJAxw5sxI2+RJrA3mRXiLM/hXNvRHj7zyhKbd4t0aIsAehidSrnOEUU8xTMz5/Uq46xjJdo4qqUWDINGWxyqu+LvdzTGs1o6tVqofQxIJWp1at6uqMewrAdkiuM8Yc08wwa7tWS/OXRSaoUOQr+DAVinaCPm98UcXz9IpRX57kLBnWKXPYNBzxWDeErPj7HaLCfhosMQbAJgmrYi1R5jQPW7WoEBAeceNrqkt055limjnbFEYUsnVGzQRcq9BcuiwwQYYGG6SstUDP+BxKOS1gFVA1CkwzxxzTtvS0To4iFT7Fw1ZRJcSIkCBS1ir3aYFJS1SkaHGGh5hkkSE22WSIOaZtcxnplg0YD9Wn2CTBPFN2f3G6LDFGgwxFrvAoX0aJMvPOFHE8o3LtkLXdFCJE2FuYc78A1ZdIcvB10iedss2OGmRYdCaZZs6SmJKoWWaMQ06FGD7dwQFbRh/zfZadMZsg6eFwjgetyl5IVt04Sc9SO0YpW0Y3eyoab1cfh3PpE/rZPemQa6/RHRxgw9HHvZQ9iJP1ja1KDZ8YVfJWaenjUPLK7HcbeLjUyLNOhlPtz7CYzBirlgRDbscSvl1cLmUPkKJFyVQXVE1jrDhdW1GwyIT1M22RYoZZ6uSYc6cpUqFKgQzrjPvLlB3tU1umRAXd8Esn3+q4eIxSx/W6PJ5+syV+Z5ilnk6zwIR5D63Sw2HBnaBFilHqXCsOUHUKzHMc0P6rpeZVTqe/EID9NFglZ98lq+4oJS5R7F2l5abo4bBh7mvcvL8A4ia5JNUJcZMkm2fK2qOIXYpcn/089yp9cyNEeAVQI6zWlG71/V3cZV4mDZ5y6PmWCGYGCXt+yDxbBEjStKhslstcVaz02oRqTmmwPEM4N5eeFj303F28W6WnifTwEKXkBXM8xwjn5lIFeh/hHFGs8/qbDcvc+7DZ5yU08do3T7WCHiE2peoyhlZ5yjlJtWsZPf+U/WGOd5ywMlbEReI5i7kO/V6vYtvnmu1UCbmDS4SNryEUhom9Xw2YJbQ+hNCu4DFubLQVQxPFoAlqESpJU2exK/wEoVBKCNpj5vjDfrAR9jhUEASv9TFEeA2hlBoBms1nYSRFGOBMlq2d30dy6XroSQqaqMzCYJ9h9nP5AxxeW6GaTZNpN+kkB6lRYGrtOSrZLLn2Gq3kMKn2BvVkliE6ZGtbXM2nyTWbbA4P0HO0ymmi+Rz1dJqD5ab1VbmWG2BoY5vN4QFG6tuavN2CrTQMmqZYV0+kSXktks3rbLvay3RrHAYNGfn8iSz31NbYSupl20ldmr89Ar5JLTg97X2arF3nWnGAkSe2ufbFAzg9n46bINPcwI/B4Jq5Ns3rljzczkIjPUyLYY7WrupjMOTidh42hwdYd7SnVqbd1MdtCM6rxTQtUhS9Ck7vOoNtTVB7bnhMibZuB+i5unS/ks3qDq/tDX0vmtA+vE+Ts+hzdz3oOZp8DWJ6YjG+dhWAajbNwaeb+hq10cdrMobP5w2xbM7ts8eOMektEt+6rs+/P9MZ04pW1TaNuNbg2nVIT+pvSxAEQqlHiPC6hcTCjzbv5+jIKoD1j5OGJ9I5OkPDem9maHCFIjlDmvnGK093utcqx4n2RWaTJ3DwyRml0SYJUn4Lp+fbya+QkKC702t7gQZFr0LDzXCGU5ZwEG/SKW+eVTfHk5yiSIUlxihyxZB+PdNIxbEWA3E8Cu0V/Ng+qq4mFWTCL+pVwHqjvrP2/7iQv9eSmFIaW6FoPyuEx1jzMo30sFWQvcmfpeWkLJnq4zDBIjXy5KlxjpOGkChb8hl0t22AKeZvUK5Oeov4MYd1J3ND9+pNY4kwRIf9foMFZ5IM67Y0f7/foOKE90TIimXGOM68VY/lWGXUr3PWeZBp5ugSt82uhJD2TQlukSvUyNsS2gYZnrR+hHVyrJJobzGbPMH8tYN8U/ojEMXDCHsEEg8/0TzK+siYUVImjCJVG+nFTFJBVKo+ji35n+K8bTYnCaghOoxSZ9aY3Yudx5TpXH8FXV4uyQiJh6GtivYv7hqbEQefeY7bZ1GXq29YYrBL3D7fq+SoUUCa5MlzLVYG4rsqcWGITQpUEW/qIhWbLAKM1YH+tzTaOs48myQsSRrDt1YiEq+7xFlijAI1ukZhX2fU2qhoFbDetlaRaj/UDaN4d/BpkDHerev2+Hs4PMM0b+Y00ryqwxAJNk0lQM5amUyyaGLWfnwcquSN2jRh72OCjrEeWLc2CxKLNwwxLB7i/aRvh4S1mOlvGphgkzge3rUu704/DVEsjLBHYOfJXw0j96DVmxfR858imtQUgYmUxV9CE5xC0gmZ1+PGhk9wYz8PUaHejybpaoSEqti1iRROrODyhCRrjbBRkqhlIaxi7FeXtvv+NkxoP7CF9v2so8VTQrj+GaGHrHiUSiOpk2hyuYQmGds71sUcn1yjEqEatIgmU8WOAPPvMpq4FMWp2NKJDcLThKIfaVAtRGmSUEEsSteS2ZasLxWz0sBalL5LhFWYRfN3uRYu8C5CCzzp+yKWg6DvncyRxZZA7AqkKbUh4r/vMvzYnwBRPNzziBSqETRihpw0petbSejmNHkpf+/vbNdIpknFWiQrWlk56tXpOdjJuOt1ua/2HGulQfLNNQauwWB7g3Z6Hx5x7qmtgaeVDQfbTQba28A2sUKFgWtA2jR2ymtXCiFRLZnaNmXpYEsVCmtNlGn6tDk8QOuEHshWksMcvXaVe8prtPP78GMOfsyn6uY5+vRVWl86SKq5hR+DcvogGRpUSxmO1q6CB6nmtvH76jBQg82jAzRKCQ6Wm7Y0vuegSeClJp3xIehBPZ+mkx6i1LxKzIdVJ2f/3UoPUB3PsN9vEN/a5mClyUGveYNFQCcdEraN8QTJ5gb09OmuZ/V1jfl631tJnfxKXrrOyolhDpQ3LElaT6cprDVZzQ5TbF+11y7X1H62g21Yyw+SaG/RLe7Dc+Pcc24N8rBV1J1037R2gUvZAxy5tMLm0QEGm9uQM8T6M6DMS2zgAgRHYSmWJ6x9iBBh70AaEUkJu3SebpFijmnro9o1ZKqQeaJOrTNqfTmlU/Pp5Js5z3GOc55lxiwxe9I5y6aTsMStEJExfJ1gocIiE9TdHA6+VW0N0WGWGa0Uc7VPp6hDtYeqJjx8HEP+buLSZZ7j+MSYSs5bMjjFBo/zCGMsWbK4wiFcoxz9g/yXWwJ5jmlrhdAgY/wKu0Yxtsrj6TfTNd6kpzhzQzOuOB4bpKhwiBi+vQ5neZAWKTxbfrtOyxAns8xYUrlLnFG3zhzTDNGx6jJp8jVkCO4rxvNPiJYp5ll1cswzZXxg99vrE6dLzTSwihvlbMpp4dJllhmKplx/EZ0dkntUoWi7Y4uHoy4zrlGmZD0FW8kUZUpssv0afJMjRHj56OKSoUGNAg9zmoJfpeyU8EyCJEFHe6jSsM/VhkkOL7gTAKbre9cmdU5yzsYM8Yh2vS4dN8EU88wzxRTnGWMJnxgJr0PDLTHDU6YBk/ZQbZFimjnKHLbe0kWvQtXNW7LwaOUqa0VtL7CfhlW95/qI1BmewifGgdoGrEHuPq2CBYzvq06C5alaVX2CDqd52DanWmKMQnuFxeRRS56WuEQXl7zxpBaf1VM8SY5VPs7biOFzyj9D0amQp6pVps0mc+ljgG5seJJzOKY2NOb7HLtwmdJ9ZTziLKKbU4kdCcB0+xkG1+DTpRM2oebhkmCTUzxJwu8Q39pmM5lgon0RP/kAY2iv2FlmeITHbTKp6FdIOJsU/CpLzpgla/PNNXKxNeJJj00SjHnLNtl1pLbCWn4wbFbldfBjDhWnSBP1Kn1zI0S4swg+CQwBJdi+BgNSjn4GuBgu6zSh1YaCkJbGmq3zNAy5po9FfyMpqei8SGjd1obgEqikWScPwZ+Z//f3BxF1p1j2DcLlczDiwkhOH0viBJogFbVqE7gEwQVYXoOxrKkuLaLVnMNY5WZ9FnJCfIqICv17+0mIOaaaco2wQnIJgiYoaVqVRJOMRt0Z1EFVIWiba/E0YfWoqGJ92F6Cgbo+J0tWjkPnMUgc0+tuX4OBk2a/bbTNQIzQVvCS2c9RfYzBLCghnjH7k/0aBen2Gqwt6XPLiUpYep7EzLU+BWxB5wwk8oQEuCiAnyBs4OVhLQCDx8w5HzPr30OEuwQRoRoBgNUDSeaSD/PVyY8CWhVZdkqUcmVSsW0uZQ9QSGpVU6J9nZTXwnPjOHmtwEnRIuVqw/56MkuFIl/E07hel5gPV0tpquRttryd1sSdg8/F4kHdmXptjfjWNp8rHWWifZFWetD64DnJFSrJg9RMSdVYUg/eeo5DI6m7nnqOC1mtFti/tsVctsTx5kUOXNuwZetO7zrxreu00oO6GcupGq7XZTl9r21qIt5/5OFoSROQ5ey9+Dg4x3Tp7RJjpPLnqLp5Rv26aQzgQ0yTyytF3QBhzFumkR62g2FR4ibaW4zG6nTcBOVkiXiySxyPw2srLGUP2rK5QrpGI6+7b9fzOYboWPKglR5kkwT55hpzyfsZSy6RcrcoU8IvVcg1m/YaZtym9nBMpjnYbNJztJo2cbJD1c3j4FNLagLJwSc2U6XqFEwpa4VeVpcbk9bfi+nBi3iuJluXT2liIccqqVKL/Wtb9Dd8iBBhL2GBYxyga4ky3USpwKhphlTiEnVG7d+kGzXAeaasBcAU80bFqUtaH+JJ5phmkQndAdk0ptog7JysmyyViNOlaOQHcbq2YVWHhPXj9AzRId2rRSXp0iVP1RICQs5WKNoYV6WANGCBVdtE5QpFNhliivMk6JAwlgSiinLwWTKNS7Q61b+B4JDjFQsCTUjGrBJMyu2l+/UZThHHY8gQzzXydBgytgejpnmU3q6cA8AV02BKvGTD0uP9uHhMssACk1Q4ZM9jinkaZHi4/SkayTTnOIn42o6xbO697jp+yPi39qvZ9PYz1tqhTo4JFq36bokxqzIWb8acUZf5RJVAEfYmLjLOYa4Z+44cjtNjiTGrvpSE0nHmqTOqx0n4lkxtMUyGdYboscyYVacXqJrkhn62Zt0ZVslRJU8Mn0UmrOKx4eoxUJmSVa+DJmrrjJIwCZYOQ5TdEo/ziCVbHyu+GRfPJr0kyaQb0vVw6XKFIk8xQzF/hUxeK0v1vnQsBP3sLzNGjjof4d1MsGCtDaomKXMu+QAlyqyaWtEP8xU8wuN8nLdZ6xHANvoTgnXJGbN2Jz0cptLnKVMixQZFKjzJQzYOe04c7kNXOhmy9ElTuZBjlRoFZpMnyCerVMlTJ2dtVVoMs0mCuNNlLKnZjnLyXmO3cJIMDWL4Jg4bdamjk1+zzgxjLFMnxyYJzqVP2Hvt4/Ah9z22wVgtX7BKW4COm7DX/TJpMPE2QoS9BPUXgf1ADQbyaJKyjS0BHzCKzEQFEj20alMaNTchIapPCNWkEHa4F6s7Q5aq+wmVl2lQ7yH0En0XNzQr7hc83SuenpjjKBJauW2hyT9ANWH8fn3sFMy232K2ZVSxuWOEvq0nCK0D2jAg6tuTaFVnDF0eL82epffKOJqsNMSlQi9Tsm1Bv2/qCV1lasvjn8CqURNfg1XTDghZm0STqOfMtmTfBbM/o0pV44S9WkQJLNaFvt7GwBko5NCKVrFLOGfW3UATpcf0NU6IBeEx4J1m39IUOtd37kaRrMT6TyweniHCXYKIUI0AQIskM8zSzmmi0/X0YG1oYxvVhER2E4Az7ike2foUTu86ZbdEJtkAYIgO91TWWCt2iPk+X1R5GrYg0b5ONZu2BOwmCXo4OL3rxGI+xV6Flntjm7uJ9kVcD5zeFtn2VbaTsJg+Ykq0ugzTMqRonDmmGTeDMxncdXFRvS06JJhN308hXSXX1n4FnaRWo2aXttgc12W0+eYahViVkfo2fr6Oj8Mp/wye47JVhMGyLgXdv7ZFz4GYD/GsVlN0cRmpb7PtbtMd3Mf2iD6HA5UN3ILXp9C4YgmHmO8z2Iar+ZRVe2XaTZaTR1BbML52Fc+9SndwgLKrvcLEYyzBJnVyeMQ5WrnK80U9uShRpovL+XQR6fKdGmzZewOQfXoL8lsQ0xYCo2sbeC6UtoyCNjuMdLQ+6zzIGEt8Uflpm0nNJi+znYTptYt0kmJBsM19a8/xfClrS2ur2XTomxshwh7DDE8xxiVLSGp1lWe7O5c5bCeK0tFeE4wOb+a07TS/wATLjPMwpy3BlqLFW/m4Lrs3TaeEJOyapiYtUib5pIlA8dkTb1EhH8Vn1MWjZ0r6QZfLi1ppyHjwiVerNK7SZF/LNpRyjGJUSnAFeWq2zLNKgUd4nEUmeJhP2WtQpGJL+kVtJp2eu7iWYK6SNyT0pmmOVaBIxZ7zGEuc40F7jj4xPFxLREhsyhvv2bghjkWJFnb91r8zNKzCbYkxppkD4HTyzUhX7BJl63sofoNFrjDKKvNM2W7VKVpUKbDIBCXKHDLfiQYZMjQ4RAUPl4bp1i0KtmXGjIp28BX+1kaI8MogxQYA7+BjuHR5nEfIm9iVomWTG9IdXmLdMuNMM0eKDft8SQm9JFx0gkeX5V8xzfjGTVn7EJvWo1iSMdqSRMeEOqM0yOAR5+O8jUd4nGnmmOc4D3PaKlEBppsXOJc+YZXoPg4Pc9rGzGFavJs/40ke0gl5GszwFItMWrWpxMk5pilRJsEmOVZZRHvHFrlCixRLaBXnJkO0SBk7GJ3IapC5ocRfLEckEQY6AaYrDTZs6byoe8VbVntf60SPEK0VDtnknRxvhgbnmeIk5+x9KVOy17OLyywzNs55RlG6yigunm38NcYyy4zZ5FGKFjlWrb+3/p7o/U4zZxOJUvEA2N9ikxAhwp7De4AH0OrNNGw9DIOfRBOeMUI/0UE0oSZNkvOEDXylrLxt/n8U7dk5iCYEn0arH3toVeNw3zalZPwZQu9U8TgdMfuAsGxfOt0b8o+ThFYAZbPfNGFvkAJaoZpGk5fiWSr9OUSlKaRnntCKAPP3PJrAFVJXfESl50qJsE8KEHyxIV+lKbSUzt9vlq2Za/h2CE5qqz+umeP0+9Z3CRW7bzfnNoMmYkVlKmX84nU6aK7l/WiVsZCzp8x1Xuu7BuNYgrR9/z6Sl67r5Tmzzkk0+SvXTa4DZt/PEvYeaWPJ29ZVMdeNsNcReai+wSHeMOeaeVIj+6xCs0qeB01ZligIZphlmTE7IFpmjDGWKVNijCUKfZPvBJt4xNkgZbuWysRZlA1SSlY1pikxM9AepsUGKTxcm8FP0bINQ6T8tkjFdH5uWRWW7i49TJEruHj2s9JpWdQMw7Q4b5qLAHa7/RNsgZSqZmgYikM3RlhgklFWWTelr0JcxPAZpkUD3dm1Ts6Wl4nia9Vk+bXKbN2WURWo0sNhmXFcPIZpMUrdEiNyLzZNGWwczxTU+nZgK0RHzjRv6JCwpasTzeeopHXnXPH66jDEJIt4xEmwSYchzjOliV5T6rtKjgSb1itMfBABu29p8uDQI3XtMifTNYh8YSLsEfTHwvqIJs4yNBhd22Ape9ASlLqkX6fVU2xQ4RAAPjH7zNYZpUTZJj+6uEywQI2CLeHsGl2peNOdN4rOVUatCtbBxzUKzkUmbUOXBJtm/y0SfoezzoPoJlla/TXPcTbQHe/HWDKl+nrUW6RChyGtovV1OTxgFaoTLNJiGNc0VombGi8hR7Wf3rr1JZxkkZTXYs6dJk+V80yRp2q9Zaf9OWvVMpc9SpwudXL2XGoUyFO1+xMvRc+8i8T2QLwQZaKep6rLgelQ8sqsujnb8EvuT39pcJe49SgUUkQU+LqJzDApNuxnJXaL5YDE3gzrlsT1iDNuSmXFIgE0QRPD5zQPM8YyZ6+N883pD0EUDyPsEUg8/HSzxANBmVZ6kGxti4v5g2ySYIgOy4wzwQKF9gqDNVgbH7QkW50cJb9Mx9G2GIfXVngqewyfGGMscYWiVbN3GCLFhiX3xlmmh8N+v0HZKTHmLeskfvJeip5Owqe8li0jX2aMDgke4XHto1+/bn3p43h27JJob9EdHLDnOHJhm4v3HSTFhm2cl2CTUvsyneQg55nioeZnAaikD9j4ImNAaYQnVQPiGSsxVsZkWm2qx5ST3iItV6tttVVCmUUmrd1JjQI5Q5Ym6HBf+Tkulg7aqog4niWlAc7xIICJbbrqQOLdGMvMMmMb+YmHbIkyU+0LVJIHqVDEpWtJ0wkWWGSSmbbu7rqcPEKOOgcqGxDT/QxGLm3z3PgBCu0Vysl7LZGb8ltUnYJ9L0mVkyTuAFrXAu5Pr0MUCyPsEfSPDRlJkzCJUw+XEmU6DLHMuE2CS8WezIcksRKna5NBUoU4xjLzHKdEmRi+8aDej0PPCmXq5GzCSlTu0pgvx6pNxjTIkKdqY0WHBNIDQCqpRJSTp8omCQ5RsXPxDkP2nGW/4uXs0rVxXSqWpHJK7KiG6FhLFO3AnLDXosF+AOtFLecvVV563FjDxbMJnQkWzbw9R954Ti+h/bxlTjtM64bGeACLTNjE+hTz1opQuAfQY+j+agW9rGPtvPR9TdhE/hWzzknO0WGICkXrR50woqUeDi1SbJKwntLS5PAQFcb9ZapOwVjo5GmR4t98X48/+bHPQRQP9zwihWoEAFbJUycc5NUZ5Yrpzildq8umFHWMJRJskqfKLDPkWDWlrHpQKFl1KQUSw3vPZOjlBeMapYAu29T+Ui1S/DHvIYbPNHPUyLPKqFU+CeknZIUM6mWbmyQs4SslVHlqVG3qDhv8pAureADmqVl/PhmgO/QsYRnHY5FJSpRtae8yYzbz7hOzA3LPZP6liYmQtWc4dQOJW6WgvfbMy6VjVA2iWBCvxHGWTYftHo/yZbZrqmdUc0IMrJKzL9eEUXHJuS4yQSOdAbCfm+e4IbI3KFOy90A3FNDHIi+dOqOmhHbTEu0yISoYcqRBRls6cIjIQzXCXsQljnCYVfvd72SH0J3ptY9mlzhFKnYivWlKUMuUDBmpuyI79OiQsHGqQYYFJojhW+JAx0A96JYyfWnQBFiCT4hE2dcVijaRk3eqnOe4fRa1Z2eC45y3iaiNvmd1jmnb6GXemaJBhgkWOM8ULVIcosImCWZ5EwmTsCpT4iHOsGFiU4Z1FpgwxGIMx+1ZBZaok84zpb1MnSmKeX295pmiYBSmy4xbT1ghOK9QZIEJe01KlDnHSTxce1zSfKrOKBMs4ONQdkuWEJbBvpQDu4YQnmfKTu418ZG5oVxXd9Tej/ikSszfMCSv1FFIV/ESZSoUmWMaB58xluih/ValoYt4zT7GO4APvZpf4wgR7gg8BphLH9NJ57xvEzPnmbJqy/2DDarjGTaMQlOSURWnaJsUtdID+MRsAtnD5SwP8iBnzUTdtQpK0H6nTzq6yduqm+O8O4WDT8vVavaKW7RJDhlrnuZhfNdhrLhs47c0fkrRopHUx/0QT2oS476ybg7IhrVWAfjD5FdziArPME0rnbIJHyEzpMFSF9cm+kWNftxM4CVWgU6Ab5rE9rI7ZhPQLl1LzM4xzSirNq6IMGCtNEixfZXNpB7/SkIpR92SDdPMUSVvqyh0skmPO3PUzba1KvWkSYafSX4hJcq4xt5mnuPUGbX2J4vJo5Z8eJKHcIqaPM7Q4KlxnTwvJ0sUqFkbhgVnkkUmNNHjrDJuLAI6DFGjwFlOcoSngSdfja9uhAh3FM9TYh/DvJnTbJKw1h4+Dq6pnolZxfaGncedN8+rnh9v4psErY+D63tMOosANoErBOAVigzTYtVYqUjz0wYZ3sxpAGtHJXGzzGE7XxaCVyprUkZIJAr2PDV8HAp+lZaTMrFQJ0ZWnRyeSaKL0l08+kUQJbFO5vIJNm1S/ljtMk/kH7Bzde2NnzL2LI6pLtJkbI2CTT6BrroS3/yeIU0lrsTwcWlZMdUc0zf4Xfs4PMSTLDNGnRxlSrYZYocE0+1nqCQPUuYwuuFezhKfMnaVOa9UXo2xSsEQqVVDhMbwbVWCzL0TbFqSWchWh561kALsvFpbdXXpRtVLdw0iQjUCAB/myxlBmWy1zpovM8a6UVlK0KyStyRimZItPxJVUH/HUelOqv2wJPOWoUDNlq/OM2UzfUI+Vkzplw42+sUyz3Gb9XHoUWeURSaYQL+IpGRJOmPn0F26E2xyhlNUKDLGElNobyrxzROVkSidRBEmGTLJtIEmaOvo5iZS9jTHtFZoGHWuNGQB3aBL/PQqpiyuTAkfx3ZrlWxfgaq9rqJymmfKvmRqFMyAf50OCR7nEaOCSFhVwiwzSBdt6QIrzW8mjULhKWY4bMrz6oxyhoe0D6vxNMtTJcEmi0yYc3DRPoP7meEpGuy3SlrQBGqVAjlWKVCziuAag8BnX/kvboQIdxhpmtQZpcMQRa6wSs6qR6WLc8cotGoUGDJF9vNM2UFfhyEe5xHbgKXDEFcoGv/jTUZZtf6DCTp2gJszTZ7EB1WUDRLnxL6jZ55zSUhNsEiOVUtSunh0TYOR0GM0bmPUu/kIC0wyywynOGOJRJkQ5Knh4dJhyBIGoO0EhCQQb1EXz5IoVyhykrOUKPMhvooZZsmwbq+ZNJWRAau8R4A+NUOdCocoUDPXoUaLYaT0XrqKC1EsHq6iwMjQYIZZo3tI2GTVDLPUybFOhkkWWSVHkQqneZj9NChQNd23HVtpoCdANatK1st6SMOWEpeQBlZiVyDnlWPVEOSXOMUZfv3V/ypHiPCyEeM6dQpcoWjHddL1Xib8Z50HaTHMKHV8YlyhaC1MHFM9VHGKxoU6R4aGGR/N23FehganeZhTnEH8UnNmEjzLjB2DFEzjN53QygDY51+qnCQuZWiwzBibJJhjmgc5R3/TPRlHSqWOKJ+0Ssll2Ki8hBAVqxVJ3svEOMM6J4269BwPMs2cTfwICSJxU8hHXfE1fsP4uYdj7UJStKx6NZ7U5K2M6TI0WGSCMZZtEk+U+B2G7DFKvNfxqI54Rg+jK8Ek+WbVsyyYv6RYYII3MXuD5ULczAG65t0Qw6dAjTo5Jv0FfCcklhx8cu01GskMi0ySocHb+DgXbBvvCBH2Fg5xhWvcq/tv+FXiTpdUewOS2Jjg43DImJsWvQodV8+vACb9BZyej+9qW7mKU6TqaFHNIWPtJE1Pp5gn5bWoutoqKcO6rYKReaIQeOKRLHYoHi7T7WdoJLVKf4ZZq9YvUSZO1zYxHfXrpJrblLOZkMx1tB/9KKtWcKRtPuo3qEQL7RVGY3Xm3SkASxImvI5tXiVWKXJ9Vskx7i/jOS5SNTrBIq7vUXa0aEuqk4Ab7LYkts0zhUect9Q+w3h+mXHTj0C8+lsMmyT3sq0uEpsnP7bP2qQsMskMs9amKUXLkqqi5PdxqFHQpGjzKufSo7YqSapM9TvMtQpgGSue5SSneJKCr+fL607GVpdJUn+I9VfzKxzhFUREqEYA4Df5mxyizSqjNPwM3a04G40UD9xzzk56u8S1MsgfJeM0rDxeAr0MgBfbEzgxnwlXl7g22hmGkpu2VFJUkFIC6xGn7o9ScnQmq+WlKLoVHucRS3LKYLdDwgb5CkX+nLfZCbuHy2Z7iKGkDlji47dJgqpfoOvEOc8UZUqsm5dRua4bbwGWOJTBpZQmLLfH2Gik+MJ7zuDStSUBoAfHZ3gInxhFKpxrn8SJhZm2vKuVDboxScy+LOX4ANMNtkyNfFgy4CVIuS2rmJBGNj0c6v4oCadDo50hl9RZTyGlM6wzyaIt9c+wToWivZZVCjZ76eBz8bnjZO+t4Tg+m+0h4oNdHMen1RzGHezixHxmnFkWmeBD/nvIOatMssiTPMQ6Ger+KAWnyrohyqvk2U8DJ3pJRNijcOkSoJVY2rZDJ2l6OBTbV1lOHrFZ9UNU+FO+gjdzmnfwMRaZtBPOaebMoG3CkoBShrXKKAVTsi5JEb1vz06ktRdpjRJl9vsNuk7cPmdd3BvsVzI0KFCz8VQaVkljJZ8Y08yZ0lqxN7lEiUssMsmC8UV16ZJrrzGfPEbXVANkaDDNHKN+nZpTsGTmFOdt6Zb8W3e8voJPjEnTtGW9r+RzmXFb7uaa0tW8SSa1zIBWl73mmWKeJcZs0k6/A+K2hE1sEaQUboiOVfULYeLi2bKw482LLKaPWD/ar6w8xhPFB5jivFGz6hgdN1YxDj1TJVGw5bAZGiZRiE3o1ckxxrIlxcVKQNvLbDLLm7hibCEiRNhrEPXncebthPFho46ScYQknVO0ED/mQ1QY9XTjTb2dnlUKeaYcvUbeJpBXGeUkZxHrJtmeTKy/xv8gnuPSJU4M3yrBRPmzYFRYuiQ/YYnHHHVtC2JiqpC5Ehv1c+/wIOc4zcPGwmoZhx5TnLfKKkmyaQsBx6qXNLGrE/LipaxtswqMsUSJMk8xg0uXAlXbOEqsUTZNWWmRChMs2hgtFi4+DpPeIh03QZW8VeXH0Y229htyJUWLCRaYZcY215MS2k0SNqZ1cYnjMcV5Yvg2CSSJJ/G6LlIx6qsrALb0d4MUQ6ZKTNAhQdkp9VVM6eaAG8mUJYmlyiFuSn8jRNhreJb7cE1sqjs5VsmRSTasQlOLjK5whSJnOMWMqxO7i0wyhbZXKjuHGWOJJWfMEowFajzKl9n5nqgmpZmbVEPKfDhHnXmO28R7lbwlGmP4OlGUPGqrmKQKRyqTxN8ddJPhTLZh/Y6F+JTx3CwzSHPOOF1GjcXAKHVmkyes2EonkHTjwl9w/xHvKD1qKyn1mG3MVKnu54wzing6O6Ziq+5oe4EiFTYZwsWznIKMFyVxVKbEFPM8lg8bDkpDPbEY1OP2IeO7HTexvMFZ9yT7DacxZOwP5pmyYzchbjdJcJ4p+77QPVlmAG5Q/0I4P5cKL0nGrTLKh3gPU868TZS10M1V5bNNrr+6X+IIrxgiD9U3OMQb5tub30tj5PAN3h9lSiZX3bLZeVGWirn+hilvLZjSAd311KXCIatgmmHWqk6lREnKlfJUqVGw2bMaBTtJLVJhwZTYbzLEISqcZ4oJFhljyZYu6EnuKktGiSCloZKlT9CxikzJBIqPjHRtnmLelm+I4kgyfy6ePV8J2DlWEX8+Ka1yjHpJJgAN8zITAnaYsNQ/tBHQmcUaeXJmouH2ZcqkXE08yzZJWOXqJAtGZXUFhx5XKHI/c7YMTUomRBG7Ss6UdGnLBvE81ZOgnvUHk5d2ipYlgoVcBshTZYOUbdpSoGazpnIt1q45fCT9TRD5wkTYI5BY+MHmF3F1ZIq38nEWmCBDwz6zqyaGiHK8QJVVclbBM2xU9mUO21Lz/sy5TOodeoyvXbWeojKAA6zNCmAn8fI3ORYpwxcv0TIlHuScnWRLDNLlVtrzVOKVWBCM+nWWnDFLBsgzLASK9bwjtAEAPZjUcXPVKgdElSuTddDxzydmE0VTnCdBhyUzkO/3IUvQsWX/4oUl6lLx0Zbyr2nm8InZMjZJQp1qf4bF5FE6JNANo/ZT4hJlDlOgStGvsOrkEP/T/vK8imkcI/dVSvWKfoV5Z8pOaqRkTt4hXeLkqNtYOsc0kyzYBoKSdHz+2jBfk/40RPEwwh6BxMOlposaGbGWHpKkljghpZH7adzgbSzWGhLD9KR6FMASp1p1eZyCUXD1k3QyTqySp8gVKhyiyBXrEy0l8jL+bJCh6FfoOAlrnSI2TZqEWLVqTAefhN9hzpnWXq1G4TrHNAk2bcyR4xHf0iO1Fa7mdfvsOaaZYRaHnla/eufouAkOVDZo5/ax6uZsw65VctRMwmWGWUBXGcTwrdp3nQz7abDKqPUH9HH6km/ODZVcY+3nqCezrJJjkUkmWKBrylYf5jQ+jk3e6yaHm7TQdgliAaNjtMO0P8eSoxNGdUZt4kpsT0rNq3w4/c6+8aLPqImX8q6RZKGQHzI/8PrucYYG69cc3p1+GqJYGGGPQGLh7zW/mOsj+22yoUPCjvPE/kSs1kSJ7+NYlfdJzrHIBI6p2NwkYZKxeTuXljnmDLO2Akmso6QJp+xfSDkhWLtmLKV9Wadw6PEIj6M1nGN2/Cgkr8QimQfLmE/6mjzIOWt/BNj5KWAJ5Lx5rqU/yDlOhpYvpmKxQtEKCyZZsHNfIVXFvzWGtnwRUlLmnBL7QI+5PZNUk7GjvH/idMmxasfqoG0AdC8D14xvdVJI/GWlSWHVJPf0OLprLVyE8J1mDvHalx4m/Q0Bxcc1YRq7SsJQJ6K0P7ZgjmmbrP/+73M482OPQRQP9zwiQvUNDnlR/HLzPcRGhonjsZ8G62SoGbJSm/WP2sFrig1rqCzqICn1lwGYdGBN0GGaORvcAFuqJAPGS8Y6oECND/EevoIPs0qOZcaZZMGaTgO2fGmCBVuCJuSg/rtrB/zSbVqrlzZpMWxL5yWoC4EoA2exA5DGUPrFsE6KDVoMUzeDXQng8tIQkiTBJuJpKgF7lhnyVG2JhVal6ZeHvHjluokaShSr8rKR0nrxb1w3WT+BlO2LAkFUdUKw6L9XbRneHNPWpkCX3emJhwyKxVC9Rp4FJq1dwiITiGeMZALluvWr8LrXtviW9AcheklE2COQWPiZZpH7nQqVpG5WMrq2QSWbtYOpfkLuSG2Fz+aPATDuL9NzHPavbbGQvdcSjr5RM7mGPtwkwZi3rCfftQ22ktBJDhLzfUYq22yPQCM9zOjaBpeyB2wsm/LmqbhFjtUu83w+i/g0lSjbZE2sb6DaMeVnonpokbJeWfdU1vh08YRNOskxArYJ3pHaCu30PjxXK/vFckSXNPkkvA4LrrYGedPaBVazwyS8Dk7vOo1k+gbCYpS6bYjXxSXHKvvXtugk99FyTbOndpNK8iCjfp2RC9swAttJWEwfsWVjKVpkvIb1T5SGXaXmVbqDmsToGpsS8XrO0OBY7TLXcgOsOjn7/srQ4J7KGu2cPkefGAmvg+dqMlvsHI6UV8CBa4UB4lvbnE6+mUean6I7uI8Fd0Kreo1NgShkC+0V6kn9nZljmvPXDkbxMMKegsTDTzSPMjTimgT3hFGRN6wFVIqWVShJ8lg8S32TOtaKzbyNLdqXuGb/JmWddXI81Pws9XTaErZijSTNpVJei3l3ChePLyhf5LOlY5aYEPuQDA2KXgU/5uD0fJZdrY5y8Zheu8hqdthWH0y0L9JIpu1+fBwm2hdZTh4BoOhXmHO0t/4DtQus5HXBvDTuTNBhzFsGsM2yqq4eu0niXsbEcbwbyl3l/IWUlFhcokzRr1BxtCf0WPMy3cF9VN08peZVBtrwuaL2OJ30Fqm4Omm3QYpVRpnhKQDbXwB0M6xE+zqd5D6W3TFapCz5XfCr1u9WqpoSbDLdfganB5vDOnZKjwJJbkn5atGrMOdOM+3NWT9ree8IaSsEUHCtyUy6DlEsjLBHILHwI80TfGrk3UyygIdrqyVFqCMNNmsUrEpeJx2G7fMg/vBS1SlVl3lqloATslLES6IclRgImP4ldVtxKHM90MnqRSaslZvEUpnvdtBq90kWeYgzLDJpq4CKXPk8olPU7mK3J/Z1QqJWKFKgaqt0pFoIwpJ9iWuSQHIMcVwnxxTz1htWfJ9lrC1VW9KDZYp5GmRYYswmrQ+ZKiYRF/XzD+L56hMjxyrnmbI+0RJ75fpXOESZkinpl+oDh8d5hGnmAOx9lDF23nAMf8jXkEP7Rotl4Co5TvGkTWjppn/aVzVFiysU+f7vczj7Yx+FKB7ueUSE6hsc8qL4UHmCAyNd6mSNGvQqFznKYZZZIU+aJuJTusIBO6iK0yVryNSrHGKYDUCXB20wzAYppnma68RYI8s+fC5xmPuYB6BBmiZpcqzpkn0GydBkHz4rHCDHGsNs4BFnjSxNs36WNca5yBYJWgwDcIRLDOCxwDGjzIzhs48DrBCnS5M0aZo8zz0cM4Sqg88FJhlik3t5niscoknafq5LnDwrXGCSQ1ylQZoDrLDCAQ6wwhpZOzD2iXEPlwHYJs5FjrLJIFPMs8Ew9/I8l7nHlAM/zQbDJNjCx+E5DgMwzAbDtNgiwWXu4YDxgnXxqJPFJ8ZhlsmxzhUO0iXOBsMcZYl99JjjBE3SzPBZVgwhu0GKg1yhSZohNm1mr0maY1ygxTDaTPyguYctTpmmAReYRBo75Fiz2TmffaRpkmCTAbqscMDsYz9dBhi5VuFdpUsQvSQi7BFILHyqHOdwr8vFbJHDzQqttMsGw2wbSnS8vcxGMsmQ1yG5FnDpkJ6EXyfGfupkr3icP1Ti2FqZVjrGyJUeQQIuZotc4RBHucgmQ+wzw7xDzTqbwzHqTpbrxEjTZIUDDNIhRZsWSXL+GgA9x2GDYWJcJ+01eN69lyxrdBhkG5cGaQ5xlWG/xVXnEFnWaJHEZZtBOrhel0Q7QPmwHYcr6ZyNQR0GyXsrxLcC1tIjAAz5HUZqPdYOaXXAOR7kADWOektsuCk6DOLgs2WUUOPNMgvpMRs7PQZw2bYKh2zzGq20S8z3GdrosZLeT499rJDnPu9ZrrqHuKddYXAFtg6A04OBLrRHFBtuiiFfJ3BSzR6dpKLpZhikwyp5e65pmmQve1w7FKNriIthr8UF9xgpNkjTZPRyG1xYPaDvox9z6Dou++ixRQKPAa4T43CzQndQ2e+I58a5TozhdpvBa9DOKi64x8gadUeKtibb165RzyYZXW5zaSzH2WuT/J3SaYjiYYQ9AomHf1g+TmPkMIe5RIJNDrfLfC55PweoMccXkKbJPVzmee4F9ETzGAs0CUnRA6zwHIdZI4uDz708T50seVb4HNPM8BTbRoE0So11cjRIk6EJwBpZBumwQp4UG3QYIs8KaZp4DLBFgnv8y1xwNLkqCSbHPM/78LmOQ5Y1jq5VeDY7RoM0cTN2kXNYM0mlBJs0STNAl6scJG2O4zL3cC/Ps8kQK+SZ4lmO+hfpOi6XuYdDXOUKB0mbSXcT3ahrk0GyrHGIqzRJ02MfVznEFM/yUd7FJgkOc4kHOcuzaD/CcS6yjcvnmCZNkyNcMiWq+0mwxZAZsx2gxjZ6/wk2OcwlNhjmKWYYYpOjLNFhyJLYoBuNxbhuSOSsHXPuw+cqh3DocYon7TYljg/SocohCmY8qWOla33E0zR5jsPkWTEk6rCN/V/QPM/mcIxPtt/E3yh9BqJYGGGPQGLh1/zzI6y7efKs2jHXFi7DbKC4zjYDAIywwQBdAhRbuDTRfScC9tFhiEE8WiRx8FlnP0Wu0mGIHg49BhihiU+MQTy2jWp0mwH2EViiUttOHSBNgxjXucaIbeA0hMcKowyZasMtBhk047xhOmyQYJsBBsyodh8BigCffWwxSJe4EVANoAgIUDj4bOKyyij7WWcfAddI4XCdQbbs+bcYQXHd2I1s4zHAqlHuAuzjOnG6xPDZIGkJZWl2qLhOig16DLBNzIySHfYR4BFnmDZxuqyxH5cuiut9fx9kHz2us49t4qS4xhAeHXRj2Q0SbDDMqBE7bDBs57GbuGRoUqHIdfYxyBbXUaRo45nzStBmG9fsQx/vftYNWX2QYTYYZIseA2yZZlNJ2lzlIPtZA/YxTIsRrnGVAh6D1LwRnvmJiFC9GxARqm9wKKXuAcMCRohw53FvEATPv9YHESHCiyGKhRFeBUTxMMKeQBQPI7zCiGJhhD2BKBZGeBUQxcM9johQfYNDKaWAIvTVj0eIcGeQAipBFGQi7AFEsTDCK4woHkbYM4jiYYRXEFEsjLBnEMXCCK8wonh4FyAiVCNEiBAhQoQIESJEiBAhQoQIESJEiBDhFrHvtT6ACBEiRIgQIUKECBEiRIgQIUKECBEiRNgriAjVCBEiRIgQIUKECBEiRIgQIUKECBEiRLhFRIRqhAgRIkSIECFChAgRIkSIECFChAgRItwiIkI1QoQIESJEiBAhQoQIESJEiBAhQoQIEW4REaEaIUKECBEiRIgQIUKECBEiRIgQIUKECLeIiFCNECFChAgRIkSIECFChAgRIkSIECFChFtERKhGeFWglHqfUiowP0/foW0WlFK/o5Sqm+1+xwus+16zztid2PdeglLqL/dd+0Apdeq1PqYIEV5pvBIx5/WGvrj2un2mlVJfqZQ6p5TaMseaeYF1H1VKPfrqHd3rB+Yayff1j17r44lw9+GNEBMjvH7wct5PSqlG33f1Z1+J43u94W56PvfC2CRChDcKIr7k1vBy+JKIUI3wamIV+Cbge2WBUmpZKfXDL3F7PwF8BfAfzHb/5OUe4J2AUuqHdzyQ8rO1y7rfqpT6baXUJbPO+26yzXcppX5VKXVeKdVRSl1USv2yUurQLuvuvKZn0NfnF+/QKUaIsFfweTEHXjzuKKW+0TyPG6/w8b0qMDFp+SV+9h0vdXCllMoBHwA2gX+Cvhftl3IcdxpKqb+ulHq/UuqCOb9HX2DdY0qp31RKXTbx91ml1A8qpRK7rPuIUuoTZr2rSqmfVkoN71jnvUqpYMdHvx99fVbvxPlFiHAT3FJMVErdp5T6cUP0t5RSV5RSf7zbBON2xjxm/YJS6heUUs+bRMuyUupX7vB53nGYhM/7XuJnPy8GK6W+XCn1K0qpp5VS/ovFaKXUhFLqN5RSNaXUpold/+6lHM/rCTd5P30L+nv6RsMtj1mUUv9KKfVBpVTVPG83/H0nzDvv/yml2oawflwp9c47fQK3gzs9NlFK/RWl1G+ZOVJHKTWvlPovapdErrmmu8Wtn7/J/t6tlPqoUqppYuKTSqm//lKO/dWCUmrMnNM7XuLnX9b3Til1j1LqA+b7dk0p9QdKqaM71ikppX5IKfUppdS6UmrVxNp338Lx/ZLaI0noV+Je3AZer3zJlFLqJ0wsEtHF2C7r5ZRS36OU+nOl1Ir5Pj1xs+dP3eKYfZdr+pL5ktjtfiBChJeBdhAE77+D23sn8AdBEPznO7jNO4lvBfoJGX+Xdf4lkAI+BXweOdqH/whkgd8GLgBHgX8KfLVS6mQQBFdv9sEgCC4D71dKxdCD1AgR3ii47ZijNPn147xOiL89ji9Cx7d/HQTBR17rg9mBbwUeAj4N5G62klKqhI7PTeBngTXgS4B/Yz7/tX3rngT+DHgG+E7gXuC7gWPAX3yhgwmC4ENmG//2JZ5PhAi3gluNid8M/APgfwM/B6SBfwQ8oZT6yps8zy865jHP0yfNf38eeB4oAm++5TO4e/C3gL8OfAaovNCKJrY8ir5e/wWoA4eB0it6hK8RgiD4AIBS6tdf62N5lXE7Y5Z/C1wFzqLJkpvCkAY/CPwO8D5gADgB3PNSD/R1il9EP0vvBy4BM+i50nuUUl8YBMHmjvXPoZ+nfpzfuVGl1N8DfgX4v+jkpw9McZc+fy+CW/rembH0x9Dvjn8PbAP/HHjMzFvrZtWvRc+Ffx/4H2hu6u8A/1cp9feDIPjvN9n+KeC9wK6Juwg34PXKl3wJ8P8Bc+hx88kXWO/fAR9Cf/96wF8FflMpNR0EwQ/JirczZt+Jl8OXRIRqhL2MPNB4rQ/iBfA7QRC8mNro7cClIAheTA33ncAngiC4LguUUn8CPIYeLPzAyz7aCBEigH6WWuiB4F9+bQ9lzyNvfjdey4O4Cb4JeD4IguvqhcsrvwnIAG8JguBzZtkvKqX2AX9HKbU/CIJ1s/zfA+vAO4IguAY6Aw78klLqy4Mg+NNX4kQiRHgF8L+AHw6CwI5LlFK/ip70/DCwG6F6K2OeX0BPhr6ob0L9RsX3A/8wCIJto7A6sdtKJtb8OvAs8GW7kEIR3pgYD4JgWSk1CqzcbCWl1BejydTvCoLgJ161o3tt8PVBEDzav0Ap9SSaqPtG4Jd3rP/8ixHYRjH3X4GfCYLg2+/coe5Z3NL3Dvg2dDL5zUEQfBpAKfV/gKeB70LHP9Bj7cP97w6jEj4H/AjweYSqUkoBPw38GvCul3tCbwC8XvmSDwKZIAhaSqnv5uaE6ueAY0EQPCcLlFI/hx6H/Eul1I8HQSAimNsZs98xRCX/EV53UEodVboMfs1ItZ9QSn1V39+lXFIB/0TKNPr+/gWmLGPTyL1/gF2+60bq/UdKl42cMevPihxf6dKRWSNDf1Ip9eDtn4oaMYF/VwRB8FwQBDtLP3db78/7yVRZhs683H+bxxUhQoRdoJQ6hs6gfyd60r/bOvuULlOrmPj0MaXUtIkn7+tbT3yI3qJ02beUqfyCUiqulMoopX5N6RKndaXLa9WOff0NE3taSpdLzSqlXnBAr5Tar3Tp1GWl1NTLvyo33c9fM8e2qXSJ1vuVUvf0/f1R9CQG4NNqh6WJUupblFKL5vOfUkq9dZd9SEnfNyhdEva8uRa/o5RKK6VcpdRPKl0Cu6GU+u9KKfdWjj8IgvLOmHoTjJjf1R3LrwDXga451hHgLwDvFzLV4NfQqr1vuJXjihDh9YAgCJ7sJ1PNsjrwcW4+5njBMY9S6j60Uvs/BUFQV0oNKqUGbnYMu8UItcNn2cTSHzGxqKl0OfPHlVJftmNbUm753Uqpf6LCkuA/VbrkVCml/rWJm5tKl6Zmb+1qvTQEQVAJgmD7Flb9cjTZ+m+CINhUSiWUUs5uK0bvpzcOgiBYvsVVvwOtKPwp8z0f3m2lW32WzLqvy3u/k0w1+D3ze9e4Zc47+QKb/ceAgyalUUoNv0CMyyjthds0z9P/UEqdNM/ae/vWe5NZ76LSc8yrStu65XZsT+xUjis9xmqaZ/VHzb0smVh1zWzju17gPO4IbuN79/XAp4VMNZ99Fl3F8w19yz63MxEXBIGHViPeq5RK7bLtb0LHxH91s52/Ee6F2uN8SRAEa0EQtG5hvaV+MtUsC9CqZhddtSu4pTH7nUZEqEZ4XUEpVQAeR5cR/Bw6WA4CH1RKfZ1Z7c8JvZX+r/n3N5nPH0Rnu04CPwb8JLp04GYv+kngN4A/BL4P2A/8oVLqG9GeI+8HfgiYAD6gdIbjVnERLTlvmeBbuI3PviiUHhQNE3nuRYhwp/CTwMek/Pom+A/omHAG+B60BceHgZsNyH8GnaX/IXQ29luAH0XHHAedpf+E2Zb1jFNK/QW0SmwdXQ71veiSzy+92YEprRj4KFAA3h4EwfwLnMdLhhmMfgBd9vZ9wC8BfwX4hAq9yv4doQ/RD6LP7RfM5/+B+fdV4F+gS4A/yM3L574P/U74MeBXzb5+3vz7OFox97vo8q9/eQdOsR+Pmt+/YgbjJaV9m74V+Om+rPgMuurnTP+HgyDoopUWt5uQixDh9YiD3HzM8WJjHvHEqyql/gztrbyplPo/aodv2m3EiBG0PcGj6Gf/h4EDwIeVLpPfiW9EK6d+Bl3q+3Z0LPu3wFei7ZV+EfhLwOulPFKum6eUOoO2o+ko7RG3k/R9w7+fInwe3oW2tvn/0IpC8UT+pzvWu6VnaQ/e+4Pm925x651AB9gwpNFuc8V3o9Xh71FKXUZXMNUNkWbnhEopBfwB+jl5P7ra6V7CxHI//gKaBPrvwD8DfhP4G8CHzHZ24rfQnM33AqfNtr8DPQd+Hn0fFoD/rJR62+6X4dWDuS5vYsd4yOBTwMRNiNJ+HETfm86ObafQcfrf38zu7o1wL+4yvuSlYrdn+1Hz+8XG7HcWQRBEP9HPK/6D9uxZvoX1fgII0FJtWTaMHqgvAfv6lgfAz97k82/uW3YALXUPgLG+5ctm2Zf0Lftys6yDLkGQ5d9ilr/jFs7h29GD1L+F9vj4SbR3zHlg5AU+twG87zau6Q+YY3rnLa7/XrP+qdf6+xD9RD+v9M+txpy+9b/KPKfTfZ/f2LFOwazzezuW/5B5tt7Xt0yetz8BVN/yx9FZ0v/Wt8wBysCjfct+Ek1OOC9wzPaZRg8sngYWgSOv4HUdQGd+Z4HBHdcvQKuoPu/4dvn8WSDet/wfmnX7r8E7zLJZYKBv+W+Ya/ihHcf2+O3c877PPd2/313+/gPmnRD0/fzbHet8vVn+1l0+/wHgyi0eyzLwR6/08xH9vPF+bjcm7vL5t5rn7kd2LL+lMQ/wU+YZWQX+D1ql9N1ogmIBSJj1bidGOP3rmGUZNBH7K33Lxsxna0C6b/m/N8vPAbG+5b8BeID7Kt2bP7rZvUETA3Ld3m+u8Y+Ya/xJzPuFu/D9xC7j/Lv156U+n8CouU4/vMvf9vd9d1rmefsG8/wFwD/acZ9v5Vl6Ve79Hbyuv4yuODq2Y/kH0cmarwX+Ppp8CoD/uGO9JroacMs8d38V+J9m3f/Qt97XmmXfs+Oaynbf27d8aJfj/BvsGEOgSe0A+IUd2yyb5/Rf7rhXHW5jHvkyr+sLfe/kb/96l799m/nb1AtsexKdcPu1Xf72n9CcgGv+v8yOMdMb4V5wF/AlO47nu3fu90XWz6LHCX++y99edMz+Itt+L7fJl0QK1QivN7wH+FQQBJ+QBYEuO/tF9IB4+hY+/0QQBJ/q+/wK+uW3G+aCIPh/ff8/bX5/NAiCS7ssv6E74W4IguCngiD4Z0EQ/EYQBP87CILvAP4uWgXwbS/2+VuByXr9EPCBIAg+eie2GSHCGxVKqTh6cPHzQRDMvcCq70KrEH9ux/KfeYHP/Epg3tAGp9HlN7ardRAEPjqT3x9fGmhV0V94seNHZ94fQxMRbwt2lMbcYZxC+zH9XBAEthlAEAR/jFZxfNXNPrjj8z8faPWm4H3oictu+LXgxtJYuYa/umO900BJaUP5O4ll9ED8W9CTqV8Fvn+HwmfI/PZ2+fxW398jRNhzUErl0STjErppn8VtjHmk1Pgq8FVBEHwg0E0y/iFa1fK3zN9vOUYEQeDLOkqXu2cJleJfuMup/HYQBP3bkLHd+4Mg6O1YHuf10bRHrtungyD42+Ya/yDwr4FHCD0Eo/dThJ2Q704O+OYgCP5zoBt+fRW6EYztv3Abz1KDPXLvlVJ/C91c778EQXCh/29BEHxNEAQ/HgTBHwRB8KtotfqHge9USt3bt+owmpj+oSAIftA8f9+ITkZ8e5/S8j1o4va/9e3DZ5fnL+jzQVba+mQUeMIs2i1uWe/Xvudx53PaAOa5hXnqq4AXGw/1r3MDlO7E/ttoQvV7d/ztODqB9z2BtgW4Gd4I92LP8yUvFUb9+j/RxPU/22WVZV58zH5HERGqEV5vOIIOQjvxTN/fX+zzF3ZZfrPykv4gQN9Au7xjPVm+H0ApNaSUOtj/80IHFQTBb6AnEe9+ofVuBUr7kP0eOuP7zS93exEiROCfozPqP/Qi60n8WehfGATBGrr8bTdc2vH/F4ox+/v+/3Nohdf/Md5Gv6qU+sqb7OPX0QTE24MgeP4Fjv9OQK7BbjH1WW4tRsOOOG0I04s3+cztXMN96K6yKKWyO+J0+kWO7fOglPob6AHqNwdB8EtBEPxuEAT/AF069h9V6LMlg/LdPFwH+/4eIcKegtL+gn8EpICvDXZ4q+6Gm4x55Bn4QHCjf/Fvoye/j5j/31aMUEr9XaXUU+iJeh1d1vxVmDiwA7cTS+DGmPxaQa7b/9qx/DfM753X7Y38fopwI+S7sw38jiw0z99voT0qD8vyW3yW9sS9V9qX/VfQJOlNvTYFJrHwE2gS+R19f7rZ8/e/0KSg2PkcQVei7IyPnzdWMmOTn1JKVc32V9DJKrj1uLUVfH4TwJ3P6WuFFxsP9a9jobQ39G+iycCvD4KgsmOVnwIeD4Lgf7/I/t8I9+Ku5EtuET+Dtuj55iAIPtv/h9sYs99RRIRqhDc6/NtcLn4qfx1tcNz/82IooyXqLxlKqRLwp+iA9Z7gFsycI0SIcHMYku0H0D6gI0o3LxlDqxKU+X/+hbbxIridGGP9moIgqKG9jb4GXZr2ZegJzG4eUL+LztR++8s4ztczXmqc/l1ujNE/9RL2/W3A2SAILu9Y/kEgQTiZknfAoV22cQjYOTGIEOF1D6Pe/120H97XBkHw9G18fOeYR56BG5pFGJVPnZcw+VRK/W20cnURrUT7SrRy7qPsPsd5qbHktcSu1w1tXwAvb9IevZ/ubkipet08Z/244ftzq8/SXrj3SqkH0Mf2NJqY27XJ6C4QcuhF4xYv7/n7AFqZ//NoT/gvR19vuPW49XqOWWtoderNxkOw+5jol4CvRpfk31B9qZR6J/oa/ZSM081YPQYMmf+PfN4WXxx3+724U3g1+ZKbQin1Q+hx+fcGQfDru6xyq2P2O4o7XRYXIcLLxXPAbt0f7+v7+4t9/tguy+90R8kPc2vlLoA1yB5De4K9JJisyp+iM37vCoLgZQWlCBEiAHowPIz20voXu/x9Ce1h95cJ488kYQZbns07nok25Xd/iDZ+34dWhvwjpdSPBkHQr0L6GbQq6UeUUs0gCH7sTh9LH+QaTKEnWv2Y4tZiNOg4bT+vdLfvceCzu33oJeK7uPG+vBRSs8Du6i7pTi7jqKfRKrtT6AE6YAmpk/3LIkTYCzAx59fQpeTfEATBY7fx2d3GPE+a3/fsWDeOrhBYMYtuJ0Z8PVq1+lf6S9eVUv/mVo91D+BJ9IR/p/1A0fzeed3eyO+nCH0IguC6Uuoc8EVKqfgOC42d359bfpZez/deKTWBLsevoYUnL6qo74OUKa/0LXsSHYvu4UaF/G7P37uUUsM79nnD/FMptR8dU38oCIIf6Vu+29x1T8J872bR46GdeBi4uFMQpJT6T8DfA74jCIKdamAAUVL/7i5/uwcd8/452uP3jXAv7kq+5IWglPonaC/bnwyC4D/eZLVbHbPfUUQK1QivN3wIeLNS6ktkgSk3+xa0J8YL+RvK579YKfXmvs8fQHd2vWMIguBKEAQf6f/Zsb+d+Fa02fOfvJT9mWvwIfRL4z07vYAiRIjwklEDvm6Xn4+hlR1fh+6cDPBnaNLsW3ds44778uwsSzElek+Z/35eGVUQBD+K7kr9H5RSO4/vTuIM+pr9Y6WUPQ6l1F8E7gf++BY+v2I+H+9b/l60kuWOIQiCJ3fE6Rd7f+yG88CDxrurH38T3YjgKbOvJvAR4G+rG7vXfhOasP/tl7DvCBFeS/wMWl3ybUEQ7DaJBW5rzPMoOnZ8o1JqsG/5e9HNPf6v+f/txAhRx1glkFLqYeBLuHvwB2i1199TN3ZOFssnuW7R+ynCbvgt9PP1d2WBef6+Ee2LKInGW3qWXs/33pQT/yn63fwVxhNyt/Wypry8f9kA2rOzix7/CX7L/P4HfevuQ5N/a4SJog+hyZpv7VvP4fM9Hj/vOht8xwuc2l7E76CJfEuqKqWmgHeyYzyklPoedFOifx8Ewc0qiT7K7mP1FfQ74+vQJD+8Me7FnudLbgdKqb8O/DTaO/U7X2DVWxqz32lECtUIrzf8GPpL/3+UUj+Nfln9XbQq4a/u8N3aDT+OnsD+iVLqp4A2Org8hy5ZezXwnFLqt9CdqbeAt6A7Bp4DfqF/RaXUXwIeMP8dAN6klBKT+A8GQSAP/v8E3ow2Vr5fKXV/32Y2giD4/VfgPCJEuOsRBEEH+P2dy5VSfxnd/fL3+9atmrjyXUqpD6LJggeAv4juohvs3M7LwC8r3RTio8BltN/RP0PHkWd2+0AQBN9jLAz+q1KqFQTB+2+2caXUD6M9Y78sCIJHb/WggiDYVkr9S+C/A48ppf4XOiP87ehB3E/cwud/AB0LP2pi5Th6cnIzD9U7DqUb+73N/PcAkOyLvX8eBMGfm3//J/T9/bhS6mfRpclfbZb98g6Pr3+F7pL9mFLqF9ENOb4L+NMgCF5SMi1ChNcCSqnvQJfO/T+gY8qB+/F7QRC0zb9vacwTBIFnJs7/A/hzpdSvo1VH3w58HKM8us0Y8UfoMs3fU0r9sVnvH6Mnk8O8wlBKPYr2h7zt0k6l1JvQZdOgVaXpvhj02SAI/hAgCIKrSql/h+4w/idKqd9Hv3f+IfC/giD4tFnvrnk/RXhxKKW+CX3dE2bR2/q+P78ehA2gfgFNvv9XQzJcQs+TjgB/qW+Tt/osvS7HJgZ/glaZ/jjwFqXUW/r+Vg2CQJIPXwP8gFLqd9DKxiy6Kd4J4PuDILja97k/QCcrvk/phkWfRVcsvQX4R0HYHOkPgU8CP6Z0Kfoc+nre4MMZBME1pdSfA//CkLjPo8vMx2/zXF8SzLEtAf8jCIL3voTP3+r37ufQMeqPlVL/Ge3j+51o64T/0re9r0PfrwvAM7u8a/5vEATVQDc+2ulfilLqJ9H39vf7Fr8R7sWe50tMTBCS+0vN73+qlGoAjSAIftas92Z0tUwd/Sx+o1I3vHIfD4JAxga3M2a/cwiCIPqJfl7xH7Qvz/ItrnsUnb1aRxtEn0Z3hN25XgD87C7LZ9BKiE30y/4HgL9v1h/rW28Z+KNb2S66dC0AvvsWjv+XgM8B19CZzgvowJe6yXUJbvLz3h3HerP1bvW6vtesf+q1/j5EP9HPK/1zOzHnBT6/sctyBz2xvQJ00C/3+9AT1v/Wt96uzxu6XCUARl9of+jOlB9GDz499CDn54GDL7QPdOXJb6AHr1/7Auf3n9HZ2vte4vX5BuAzhM0r3g/cs2Odm8YctHLgovn8p4G3mrj9aN867zCf//pb2e7Nru1Njl/W3e3nh3es+2Z0Nv8KOqbPA98PxHbZ7lvQA/lNtBrvZ9kl9r/AcS2zy3sp+ol+Xu7P7cREXnhssnMsdctjHrO+kK1b6MZVP7PburcYIxTwfea52TIx6at2nis3GcPdbozZ5RjPoJufvJT7IfvY7ed9O9ZVaKXpvLnGl4AfBQZ2rHdXvJ/61t91nH83/uz8zt7C+o++wPfnHTvWzZvt181z8gRawbnzO3Yrz9LrdmzyAtcj4Ma48RDaU/GyOYcWOqnz126y3WF0KfkVs/5TwDfusl4WTfw0gYb590k+f053DzqBtG7W+wDaW/SG8Qe3+Dzu+E48/SLX6ITZ5n94id/T2/ne3YuezzfNNf5DYHLHOj/8Atv7vG3ucjzL7D6XfyPci73Ol8i6u/30x5z3vsh35L07tnvLY/abHJfs75b5EmU+GCHCKwql1PvQMv8vBHpBEDRe0wN6A8GUzI2gJzE/A3xREARnXtujihDhlcWrGXOUUhn0gOYHgiD4d6/Ufu4klFKfAp4LguCvvdbHEsF+h2LoSexTQRB89Wt7RBHuNtwN4zCjCCUIgne8tkcCxtpjDe35919f6+O5Gfbo+ymLJuBWgP8aBMEdty14veFueD7vBO62sUmfCvHvBUHwvtf2aEAp9W1odeJEEAQ7G23d1YjuRYQXwsvhSyIP1QivJkrowdEnXusDeYPhPejr/jOv9YFEiPAq447HHKXU0C6Lv8P8fvRO7eeVhNKdUB8AfvC1PpYIFo+iv6ul1/g4ItzdiMZhdw5vQ5eI/tJrfSCCu+H9ZHCRGxsDvVHwhn4+o7HJq4IvA346IvBeF4juxesLL5kviRSqEV4VKKWmCTsibgRB8MRreTxvJBiT6Qf6Fp0OdnRXjBDhbsMrFXOUUu9Fl4N8CNhAl3j/TbRP5lfciX1EeOPBNP+QZlYrQRB89oXWjxDhdnE3jMNeTwrV1yPulveTUurthF2Zy0EQzL+Wx/Nq4G54PiN8Pl5vqsg3MqJ7EeGF8HL4kqgpVYRXBYHurvxSOixHeJkIdJfLl9RVL0KEvYpXMOY8he6k/C/QpSFV4KfQ3kMRIrwkBEFw+rU+hgh3N6Jx2BsCd8X7KQiCx17rY3i1ET2fESJEiPDa4eXwJZFCNUKECBEiRIgQIUKECBEiRIgQIUKECBFuEZGHaoQIESJEiBAhQoQIESJEiBAhQoQIESLcIiJCNUKECBEiRIgQIUKECBEiRIgQIUKECBFuEZGH6hscSimFNkGPmhRFuNNIAZUg8hWJsAcQxcIIrzCieBhhzyCKhxFeQUSxMMKeQRQLI7zCiOLhXYCIUI1QBC6/1gcR4a7FvcDz/z97/xfb2LqeeWI/aVFc/FukSIkssYq1pZKqtLe8dVy7zx5v97F9PHYb7cRIO+l0OsEEGWAG6OQmCZLLyU0OOjcJkqu5y0UDM0ECDBIM3EEGY8CG7fbx6XPG272Pd52jfVRbVVKJVaxNFSmSIsW/i+JS5eJ932+p3MkgCGx36wxfoFASuf58a1H81vs97/M+z7/pQSxiEf8/xGIuXMTfdCzmw0XclljMh4v4m4zFXLiI2xKLuXARf9OxmA9veSwA1UUMAP7j+n+b9TsBP2OPD/maHH0mJOmTZ50Wr3nADif4BIxJArht4syYkOKcNe7yljfcI0+fb7hHjj73+YYEY84p4RHSJ0ec2Y39rwA4Z40WJT7gFV2K5OjjMadIl7/kE+7zDX1ybPGSn7FHiikeIQ94xYw433CfAh1CYoQsMyFFjp67Bo+QEI8OBTZouhvQJ4fHnHu8oc8qAEPSZBgxIYFHSIcCm7ymRw6APH16eh1v2aBAhzgzvuQTHnFMyDIFLjhnjQxDPEKyDAHokWNCkhCPOR55+sSZ0SdHQJwYIa/4wH0OMr6QLkWWmVPiHI9rd88AJqQACPFIMKZIlyEZJqTI6HmTjBmSocAFHnMmJJmQokuBdVokmTAhyTrnTEjhMWdGnBlxeuS4wifJmBx9QjxCPAZkmJIizowMQ+IE9MixfnnKf7f6zP19LWIRtyAGAH9Wv8u9OwNmxOmT414oefTc8xiSIcWUEI8VAq7w3f8hHi3W+YX+c2aJJYZ+loAVrvBZZs41MVbp0CeHzxU/ZZ//1ps/Y7S+xFt/gx45vn32jMtSjBfeI7Z4SZMN7oVveOk9pECHFFPGJCgGXTp+AZ8rPEIGpJmSIiDOw/Al516JDEOGZABosQ5AiXPuBmd483cM02lCPLoU3Db7/JRYGNLxCkxJUaALyLxSGF1wli5xykMKdPGYk2HIFb7bLh4GzDyfzGhEP32HTDAgjHmceyVCPHL0ARiSYZWOO1eXItd43NNnxYXNdcE5r/0P3D73+IY5y/hcEbBCiIdHSIxrMuGAjlfgmhhjEpxTYp0WRS7k82OZEVmGZMgwJMGYUnDOW38DgDEJ7ukz5huqbHDmPrf1sEXPy9FkgxVm+Mx4wQ4bvHX7FOgSsEKfHDN8sgxpUaJEi/RFg73N0P2NLWIRtyAGAL9f32b9juQny4SkmDAmSZyAFFNmxN38kmFInxwhHp/wlC4FAlbIMOSaGF0K5OiTYcgP+bts8poEY4ZkAUgywWNOiik9zXs2eMsZdzVnipFkzDnr5OgzJMNLHvIhX7v37/FGc9ccAzI84lhznSRHfMiv8mdMSTHH4yGnBKxwzCM+5IghGc3DfEq06JOjp9fzAa9pse5yr5BlUkxIMHbz4Bl32eAtAGPN8Ty9ZzZHfM5nPOIFAT4ec5evFujozBKnSJc3mj93KZBhSJEuP2OPu7wlyYS33OUeb0gxpUuBMUnu8w0hHmOSvOYBAFu85Bvu8wGviTPjDffwuHY5oOT3m5RocY9vaLHOFXHmeGQYuJy4SIceOUqc84oHfMBrBmQI8eiTY4cXvGaTIh1A8txz1t39WCZkQorYZYffrtbc39ciFnELYgDwtJ6ifechHQrc4w0xrhmTZEacu5zpvLLscq8UU5JMOOMu17o2s/xxTJIcPY55xAe8JsOQOcv0ybFBkxlxJiRJMqHDKm/ZIM6MEufk6JMLerT8da6JubXbCgF9cnwQvuaV94APwteceyWSTFzeY99vgBVmusa+oE+OMUmuNU+zsZ5RJlSoKMUEj5B7owaJA+AMmAMbQAG4BE0FBV26o/8u9d99BJb2dZs0kNLX5vq7r/vG9bWY/hvrsYbATF87BX5Bz3mu228Db/VcAAmgBVzouXLAVF//AN55sHSg+0yBTd3X0zG/Be7q/v5fuZ49oKY/37kxbvR++HqPBsAI+ESvA319DJerUP2t6G9sEbc3FoDqIgC4e2fE5M5drlllxjrXLOMD25wzw+dj6vQo0SVFhQZHPGaJOmt0aFJlRpwKPQKKlJmyxpA0TZqUeUWBxxyRJkaRPneZMCDLjDxpQsbcYUackCxF5qxxxR26DMhSpEONfUoElJkQI8UVRbbpMCbJKn2WybKCx0d8Q4MN1ugwJkWKKwJWSRIjRooYIVekiJFhmRFzPFJM6LJKCLxjyLUCph2qLNGhTRFA9x2xQ4M6VXzi+PiAT5Er4vj0uMsyWbJAlktC4oQI6BES4w0PyNMjTcCMNHkG1LhPmSkTVskyI8U7YJl1Au6wxIgKS3j4jMmwRIcNhqwo4BmSYkySMROuGJOiTJM8PQZkGZIjjoev713jMyPPHbrEgCtSrBISY0rAOqs06XKXU+5RoklfFzl7HJLiFU1KnLBDnxzbHDMhxYQMj2kwJgXE6LFGDNx9XMQiblvE7ySY3EmRZMw6Uybc1eJBliJtJuTI06PHGh4h5bDBqVdmJzihEhsyvpPjTjDA92e0WKVCk5AYHnNgic1Wi24pwRpXjPds2y4lpmTncLz6iIe0mbHOO3KkeEucJBM2SNFmwhpLzNkZdWik72qS+46QKR0y3AmXWJ2/pe5XeUeKIm2S9AjxyHDF3e472usZPJJMyJIBGlT4BY4ZcY8xKcZaUIE5HnOyTFi6kyHLMh9yRjWoU/erFBnTIkPIKh2KbFIjJM71nRghebqs8bj/kjWvwSCdYUCGPD02+w3qubuEhKSIk2KAx5wed4ExOQJmJOnzgGUyFGlzlxExlhiQoRw2GHtLNCmQ0tku358zvJOkTpVv8wUZPPIMqLPFDJ89DnnDB2QYcJcRlf45rfUCcRK0WWOPQ2ak2eu32Em0OfT3aFKiSp0h91jCY4s2NbbYoM4O58QJ+ZLvUqWOx5QlUmR0vh6Q4yFtPN5xxjbw/N/o3/UiFvH/T7Tu7PDZne9zgBQeztkgT4/XPGaPQ+7S4x05sgyY47HBGT3y+PiM2MAnwCekxiYAKwR4vMMnyTV53hEnQYwUYxpsssMxRUZ6zDFNdmhTZpcjADxC2tzhBY/Y45AnnJIkZIUlHnPIhJRmWENgyIwi6/TwGPMJ/yUd1ogDNaqMGXPCjuaZ38IjdLlNnhGX3MfHZ4saSaYk6BEj5II8E3yu8Tlll9/ij6ixQZoYcwr0yOMRMtZ8+QIpKCUZ8BHf4BHH5x0zUhQYEBAnTor7NDmjwpwCj5QEUCIA4IJ1siyzTJYiA+Zc0WCPJzylSZEHNIiRoEiHAe/Y4Gt65EkBAVeskCQgx5QyJVp4vOMuHUJ8KgzJE1DnF/AIWaXHgBQD8lzjUeGMkAz3GRBnmUe0yHBFiTY98nzMVwAMmbNCkiwD7lOnDpyyzRodPuSQAVn6LP3t/gEvYhF/TZG7E8KdgHu8Yqy51ZBlxnjEyJABBmRZo0eZDg0qZJkSMGeNps4LK/TIk2FGj0226CrUmsEnwCNLig55Jsy4dnPDDi16rJJhmZBVlrimwpgxSWo8osprysEFYeySbH9O545Hhy2Wge1+g05OjpXjHS2dn+5zSo9VAtZYxieJxzYn1KkSkiDLGR2dwwZkCVkhyRWTO+uUhufwAGgi4GQBAQu3gGf6+wgBMH0EaCwDAdAHMrrvrwIhEaAa6M1O6/5poKHnyCGoVQkBMdP67xIBdVsIwPmp7iMpt+y7iwCvfQQ4fYC4CL1DwFAPeISAtHkdQ1uvIw+s6HjnOsYCAoEWZb93RVh6qe8VgZd6jL6ef4cIWC3qNYSg9adF/BzEwpRqEYAwAwD2+Sl5eoxJ0iPPgCwXOvnm6ZFFmFtlndwbVOiRJ8BnQBafGQOyHLNDWwGHEk06rDEmxQnbNClRp0qcGQ0qDMgyx6NIh5JW5japsUnNgapV6sQJKNKhTIsqdSqcvXcNPfKs0iMgriDAAJ8ZM+J0WKOtYyjTpEiHFBOamuiWaTLTa4gRskaHOR4TUqzp+T1CTtghJEaPvGOcWkV+QpLv8CMABmTwCEkypqMs0goNUoxpUmaNDmt02NQHWp2q8lWFRVulDuDu1QHfIiRGnh4pJuTpOfDUZ0aAr+DqhAYVBTghy4A8PSo0KNF019CkDMCYlNvX2BQBcXqskmVAmRYHfItD9uiRZ5MaeXoMydKkTJYBIR4VGnjMGZDFI2TmynSLWMTtCo8QQAsGKcfGztNzTHD73iQZ0/ak6BKfXhOfXtGhyMDPMtCCRCwMaVFitTvFD2aclzIMyPKEL4kTcODvc8C3GJPitHBX51ifIm1KNImFIVXqbj4LiMscN4dq/60Wp3wO+BYAgefT9os6Z1/QYc3NAzFCxullZsS1vNKjSVnm1UAW8D3yrNFmlR6PGm/cnHDInrs/x/42SU3mMwzoUNTnQJy1oEM2kHkBoJFbp5fO0aEoYwhDOrkcPjNiOt8NyNKizBGP2Ry9IsWEJGOyCja0KJPSZ1STMmNPPhcrLIV4rHShGtR5rMBLj1VihOzynF2O6FAkyYQYITN8VgKUfz/j0+ALZd3NCGPQ8Cvufg/IEicgyZgUE74z+q+YEadOlQFZvsUBZVq63Yw1OmQZuGKXgAuLTq5F3M6Y4fMH/DZZBnwSfunmEZuTzqi4ubDDGk3KmkOm6JFnrt/vKnXNF1eJE5DnggoN1uhQoUFAnCJtinR4yhPXHdNhjU1q7rtqc/F3+JEWi8bECNnmhJAYTcqkGPPp6C8ByYEEDIgR4pFiTECcDRr4zOjp6rlIh+8EP9LxzZgri6xKnSZlDtljhs8cjxghR+ySZKwEg12O2KVIW/eT50SDDQVeOlqEy5NiTIsyq/Qo0na5Xoqxy7kHZMnTo0HF5dI+Mzy973/GrzEj/t798G/k0wOyNCm58dgzzPLsGXH3nOmRp8EGVeqaVzcc6+4jDsky5IjH1NikSdnl625+p0KNTQ7Zo0iHEI84AUfs4hGywwnbHNOmqIW68G//j3gRi/hriG+4R5YBScbkuWAt6LjvJKCdiAPGpGhScnOP5Qe2Jt6gQZkmOxwzIMtEy8J2DE/Z3ID7ng3IkmJMW9eTTUq09By7HNFjlaZf4sLL82XhI1JM8JlR4YxOLudyu46OIa7IZZaBOxcIsz7FmIlmMCWaHLFLoGu6kBgxwgicBAE6DcCcAx8joKEBniMECO0goGUOATAfEoGbD/X14K9s39LfQYDJBvA5AtLOiUDXKQJyfqTHuclurej/H+l5Y3rcAz1fTsfb0v06CLA61PN29NgJHedHN86JjGnJ9kkjwKsds6zbxYAf6zFe6rY+AgYv4uciFgzVRQDS9r7LEWNSbHJKjS1tPRKw0NhZVeoOWDtkjxJNBVIDB3rm6QHQUXantXHtccgZFQDKtAjxyDJgm2NSTJgR54K8srkk6TLgMCDOTPsEQjw2qXHCtkuQe+QdYNlmzb1ux7GHHECJFnkuiBPceAAmtU1TWBaWpO9wwiF7VKkzJsUehyQ1IU4xVmAicOwsATzHbkGxxwVnVEgyYY02gEuCk8qjNWB1qID0Lkcuod6g4QARYTwkWaVH5sZCxtcHY4kmKSZUaFBjk01OmWg7vk9AnSoVGspgyFJW2YMjdtnklCwDNmi4h6sxeLMMiBPociSkymsGZEkyYUCGxzreLWqsqfTBhSYBi1jEbYsxSTZokw0H/JH3W1RoOIAsy4C7rT7TNIzTCUJiDBCAtJUrEBB3AGOGAW2KJD2Zkwa5OoHn44cBda/KhBQfNl5RrAgAlw0G1P2qm6sMLAw8WfQW6VCnqovyCWsJa63Ms80xn/IFcWYMyJBlSHl0zkH6Y0I8GlTYH31FGFsmjHm0KTLD599pfcWgJMWWul91BZEkYwZkGRWXCfHwmbHJqZuLyrRIhWMuvDw+M/ec8JkRxjzudK7IlAb0yDvAokVZknKdGrbCGg1PAIAORfY5IMuAevo+jxpv6FYS1NiiSt0l91LIkkVKJWgQ92eMSVLu9nm1tc6QLBs0iIUhm94pY12oxPUJsschT3nCBg3elnLcbfRJFcek+9ccldaYMZCEGNjuv8LL2fNjqAzaPHldRWxzQo1N96zJ0yNOwIAsR+yyz085YJ9PeMqyy7wXsYjbFd/ip0wpAXDqbboiwzbHbm7JardinIAtLYTb96JKnRQTGtqymueCFmV3nCRjl9tNSFFj0+VbScaUadJggwq4/M4jVDZXiK9gpeVwm5wSEqORvqtMy6xrTQ/xaFJSxqnkh/scOFAy8OMOUOiRZ5fnHLCvIOGMOAETBUi/w49cQVmKUm0mpEgxcWQAK7BvhTVOvU16rJJiTIkmx+zodSYdAyxPzxXsba4z4GNAll2OXEG+Sp0L3aZBhTw9ktpPOibJGh2Xy1luLszbnsthq9T5Ad9VgkSeJGOes0uVOkWe02CDCUn2OFQSRMARj9miRp0qexzSoKIgbIoGFXwCTtghpWORYn2MkBgVGpzZBLuIRdyyGCp7tMYmJZr0/DwAx2yzqutekcoImBGnxibbHCvLNHDrPIAYY9oU8bVYu80JRzxmlR4NNpjhuyJ0UYu0A7Luu9bU9dwZFZqUdQ03dPOJrVtnKt9h60t7rc0aPVYp6xp+Jzx2eWmRjnY+plzu6zPT8YpMAB7CsEwQAYtbCCgZIkCnj4CROf0/oe89QoDM10i+ZUBkgICY1pb/EAFQHyDnM8ZrS1+3iCGM1zv6HggD9FSP85IIRA15j8H6rgRLr4lAWwOGizeuZ4SAxzH9v4SAtFMiiYO+bp++8Zpd90M9ZunGsY3pupgOf25iAaguAhCQL8BnTJLnWlnOMKBJSVvok5QV0GtScq1MbYqkGLOhk7wtyAdk2OMQEKYQwI/51D0QAiKQQBicbZf8DchwyB4+gQMlDOwECPA5ZA+PuVtk5+k5ANcAjphLoUPHdJqp1mGDCkNlv4Z49Mi7pF7OEdc2J8+xUwdkXdtahoEDcePMSDJ212njk/cEwB2Q5ZRNyrQQjTB5QKUYKxsi6SqIN8cQEiNOQIhHnaoAH1RJMqFHnjJNxxaI6f5ZXULY9ct9bpPRSuQhe+5e2vVZAryh19OipNo9RWU0+EzwnO7XCTuUtZX5hB0CZbwV6ejnkvmb+lNdxCL+RmNCkjkex94OJZUtKdIhIE6WIS9K90kx5l6ryyi3zNgXTek5Hj1W9fst/NY9DomFIb53RNuTZHTmxd139JtKwYEPgR/XYkfGJeI+Mw7ZUwZC9N0GCGMeF16eEk1O2HEscSu8+ImAveCQgZ8VrmQ6oUWVM1co+UnpkRyzPyWWadDwKlIY6g95mluj7cvc26LMfnDAB41zulsJsv0pk8yKMF5JOiZDKhwz8LKMSxELyRLxm797hLS9ogNdirTds8NjDjG07UxeKdLBDwM63hp5Lqj239LIrbMa9vAJaBaE8XpGlgv2qHp113Eg5/Acc16KcXK/iuk+Yz9FrSSAUYci5bApi4xcgqK2+GcZsF4fUvDe8peVj/Q+z9nliIYWtqTLQJ41+/zUXescj2tiRL1si1jE7Ymv2OMTLbhaPgjQUc37PD3XkZJl4L4HPWRuAhwD0mfGWFn/lrNZ/lam5Rb/c50XUkz4kidsUWOTU0DAiy1qlHT7HnmXl0nr/pYrQBuDVTqoMoxJkmXIBXlO2Z8ZQ8MAAQAASURBVIxY+wo0Ggu/TpVNaoy16+iIXQZkiGnHVZ0H5FWb2Yonn/MZWYbKXuu9xyw79PZIMqbKazxC6lSpUqelHVIdpKNgK6yBBx5zLrTjyoBJA4AFWJH86iaz13LrHqvsccgheyoHMwfgB3yXfQ7wCFntTqkVrGgn7/vM+Bf8BnkuNC8v0mNVoV0Besvu86yQUrkEA4975F23UpkmGzQc4zZQEMm0xxexiNsYcWW0P+aI5+wyIEuWASfs8ClfOPZ3QNwBoR2KxJlRHb2hkb5LXLsmRSM1pXmJ79imHqEyySMC04w42WBA3A9oUaat84XMyVLMEa+PoiMRSUenrKvrVB1LtqJIpDHZq9TJc0HTE/b5fnBAGPMIPU8VnQNXOLKunTy9CGQsIwBiGgErDSw0ZmofSX0S+rNppMaIWuwrCLgaIGBnnQiULCCgprX7Q8RADfXnAwR0NcCzqL/Xdd8nCBO0grBHDbz1YenPdVt7z1izIOBqX98zJqwPvNBz+Truh0SyBSZpYHDCSPfv6v8lBGQ1KYD5f+2f3CJuUSwA1UUAsM45PV3AQuBYmmVaDjQ0JkKLMmVaNClR4cwxA2zxa22PVmm31wAHCFgrpFTKiqRIOUakAZsmJWCtTSltKTNGpkfIFjVtv407QFVaSXsK7snDpcEGWYY0NPGTyr8k9wYa1lh7T4PUEs2sgqfW0p5kTI0tBQ6FUWEPnJLKEXQoMscD4tq+keSMirRKAD19OFniLe2oY3fPD9gnIM4WNTxCGgjQYSzTI3bJc6HnkIWEVBzzbHLqHsp2LTW22OTULQg6rDEgQ5mWLjIGjmUmDD3TzEm6+9+k5MZvYE+WAcdsk2WojBExWbD23EUs4rZFkS5nyvix+SrFWFtXM644802poPPShDIthmTJc0GDCrujF/gBNAoFxp4UmmbE2Q8OCPw4Tcqu0LEbSIt6fHpNL5dxDP8sQ/wwYOZJe/mYFJ+EXwIIs9PL3mATtd3i1ebbuecReD7Ffp9eLu8Wvy1K7HVf8rqwrt/hIa1cwTFTD9hnO3es+mBZAi1mtf0i7S2EcZ8TsKMSNBj7KQWSBSRNqUY2CCu1RJNdnlNj8z2m1o5qFcoCw3eLE4+Qn5Ue6vNB3hsTkpqPmXlSuJklRK2o6ZVdJ4LNkcbgTSmv1cAdY7zd7Exo5QrUqbJBgzkeT0bPSHThZfWuzmNjNjnlL/iM/eoB2XCAr6U5kEVLiaYDjSs0WAs7nHqbnFFhQ9nNP3HCYotYxO2KjzmkwUN2bxRpSyqR1KLkmPsGFGYZ0qFIlTohMZ7yCXl6mhNKriPs1pj+fOKKMmVaPOUJGQbSGRAM+K7/A47Y5YwKF+RdzveUJ06Gw4pMKWXWV2io9MCFky86YZvHHFGlzlM+oUyTMSnWtMBvRZ+ZfsMtdzWGaoUz5ni0KDNRFmuMkH1+ikl/SHdUjBk+YtC5qgUdASRblN0zw2NOlbrm2hN5dngVLfBLcT7KXyt4hK5oZmMRPVjpHvKVqWrs1rIWAz8LPqfmb/Lb/IFj1DcKBTzmxJmxpZ1VY2WjGVvVGPc9VoWtGxzxuf+Zk5AyNqwxT40FZ/uazMIMnyN9ToV4vCXJQjhwEbcx8vTxWGaGT0nnD+vYLNLhhG0aVPg2X2A69MImLUMaN9/1yLvilK2HT9ghT48jHivxpudystWwR92vumKNtd83KeucIPOEkYVSSrjpkacctMDHFWYa2iV6sxvR8i+Apl9CdGBF9i4gTjWsc+QJ0SpPS/e70XVT1f9PEZD0GQIc+kQMTANN0wjQaTIBVXiXg6WPdH8DYXP6s7FSQRCrop76FN79ury8lNZ9Rgi4OUIATNNFTei+5kX9jEieIHHjAzZQ2CcCgj0ieQMPAV/TCBvVxoe+bxIIW0SA6QP92YDTDrx7CMFHkHhBBLwu4tbHAlBdBADrtPhAK+4eIX/BZw4ws0TLwILP+BzTVDWg4YSd916TZvYxHnM6rDEjzhOeukW/r1UvSXaHDMhSoslWWOPQ2yPAd0zWUKt1eX3AmFEISNXeHioGfoiOVslV7wFa+vsmpzxn98aCeOYYqk/4Utvzhan5jD3V5RJ2k7FEP+Gpq+7ZIt6uE3BSCVvUmONRY4vHHClvVhYlxhY13TFjihpD1eQXbupxSVvsT+mxyianpJRBus0xdR64ewpQpO0erKJL1naLoTVtkVsNezS8CnlC1w4WEFddQ9HJecJTAuIMtX3NZAYgekBvUQOk4tlSNt+K3t9FLOK2RY4+IcuY/EeDiia48j2Z4TstU0+LSKkbi0uAZnqd1USPY3b4bvcvaBZyNClx6O/xpP8VqZxs7xFy4O9ToknoCxv9QfeczYLMKXdeXPGdrR8R+KIjGp9e0UvnnPHSE546VkKbNdZou06BIm1alPAzAW2K0qYfjMn4A9oFYVtVwgZtr8iEFG3WqNAgT48WZUI8HnOEH8yo+ZusBR3aftGx0ENiHPp7en8kU/WZOQA3T49tjumximlKj70UvrbeG7stGw448nadxmKJJmtBh4EvCb6xowZ+1s1vTb8kjKmwyZG36163qFMVoNqHE7bdHLoTHhN4Pjscu8/TtBTz9Oilc6QSAsIesueAoG1OKI66zBIrZLSoKAw7YcwaiLwWdph7nj4djrRtb43CAkBYxC2NIRn39z7UokeKMUPEKq9E02lNW25hYGWeC1eYPmXTtZyanql0xAQ0Kbn2fAPmnrPLib9DG5mfPucztjnBzDhNE7TsunbGfMGnDuSN5h5p+bfv8hkVZsQdOAHSlbDPAXWqxBjToOJYnjucaJdUnCpNLYELG8xAE2PtGisVcKCiSUqlmCh4KoDoCduO8SWtvZJ/i5dAiw5FB5BYEdyA6oA4T/kE02+scMbn/BITUi7PNgC24VewTq24dgeYrMKAjHanCWNuj0M85jxnl2/zY2bakTTDp+ZvqrzABp/wlAYVOhTZoMG/4N9VcPnAdX0ZcCNM47Gbo3MOdVjEIm5XtFjnQtnsphVsxZuxlndsHWdGpEWVejOiygnb2kcUc8SeP+U3KCmZp0qdM2WAz9TfYuBllekdeVOUaVFjkwYVx/g3bWT7rvVYZeBHMgHlsMnAkznJ1p8DMlTCBl96nzhw1lj7QhJqus6lBhs0qMg1mTZpKP/elWCpjoCk1upf1t/TCKDYB74mAhcVGF2CCJy8yew0ndQ5Aoz+UN+ryHtLIwQcfUCkmdpEQNebEgM65Vw9gZWnegxjmNpY+wg71gDdEhGQ2kVA3ZBIAsDAWNN6NfZqQMSeHel4Kjeu6xSWvoaEyQYsULifm1h8lIsAoKuy+XkulGUw0Ab5GXWqytSp4TPjAtHNs/bzm3qnpvNiQKxU1ueuTUk05ioOpDS9KmsnaHuyYI8TUGPrPTYQ4Kr3tsiusUWKsVv8+sxc+5c9EExMX3Rmam6Mpn1qyaTpS01IKcNAWJm+gq4BPmYsYK0S9oCrUtcW1ZgDfudIy8SatmOZrECZpjIVAseisPaoloLDpiVria+xzhpUnMaNMYJFjyxw1wtQ5wGAS/q3OVbmhe/0tuae52QFygpMV3ntgNeZsn4jo6kISLXrts/eTB48ymrEMGfhar2I2xiZYEBfGUIxXbbnR30G6YyyJZPCygkaBH6cWBjS9Mq6gBbWd4c1sp4UoY4L9x3Y4BFSy913DC/gXyveHBU+ULA2z+zDCR4hfhhQ9DrU0/fJMnAL7ErQcMwFjzkl1aYu9vt0cjk2aHDh5YkhkiU9X9j5HdbY7L+hlrvv5hZrBbP5+BiRPJCE/IyxnyJGyBlFx64fkOV3u38IwGHhISUVsEoypk7VMXCbfskVeWxhIHImMxpeRZvkAswoZeJHrXBP+cSZ93nMOdWOgN3RCwbpDEXaVEZvaabXXddEiEfbL7Ia9tj2TlxrsBmIGRh74eUdQO5MIDyPMwVUTtihRygs3bTo3K7Sozw95zAtrf89Vh3zLPDk78OOZSB3VsGSRSzitkWZM3Y0Z/F1DsuGAwaeMPLXwg7HXtQabrIllifZPGe6+SGeY4PGdPE+IcWQLPscUGOLIm1M0z3LgP3ggCN/1+WNnn4nrTBjLPpNTvmMz9VsNKbzbps12o6FaoZ3pue/QYNtTlye0yPPJ4j51j4HDMkyJOu04s10K86MHY4VTBEJrC954ubFlEITkiu+dsxZM8JKMuaCvGro19gKa/zU23f5KUhObXmkATdmBmqt9nkuSAVjsv6QHU6ojt5QT0u3meXigbJEdzkixNPrzWgePHOgd0rB5CIdDth3AM+YJC09b0CcI3Y5YZtf4nN6rFLhjInKbwGOBAE4CQbT7b/Qa1vEIm5bxAi1CCKrxpsycxZGWokz48d8G7RIbYUJk02r6JqvRIsiHS0oSf6YZcBTDOCcY74i1vknRnBb7HLkWPotSsSZ0dZOUmv3Nz+QUyqEnufkBkAK4KlwzKG35wo61gUJUoy2XM3MoQ0foIholsaAL9ThvkLU6m8qT6YTahqkd3jfSMoATPT/Aqhkt7TWm7lVAzGDGiFMV2udf3Dj+CYn0EeYqo+IjKa+gBWfSGKgcuO8AJ/oWGN6LjOxsnO8IGr/7+g4Ggio+oiIFWvgsV1j+cZ9SAD7RJIIPu9rwS7iVsfSu3fv/k2PYRH/BmNpaekO0P9P+7/N5p0L1fSUNh/RyPRccpdlQFvZptaObo6nGUQ7y7RO4wSOrWiLTmsdl/awudOxE6BwAwAzVWpTdBU+X4FNc7g3MLRNkSxDx4aosck+By6RN7Bvou7NKcYcs4OZWuW5wLRWAZdM28/GvDLmrQmEm55qmSY1NkmqoZaBjHscMlF2qSTWEyeLIKYKRXYUPLGHK+Dus4mWG0vBxMHtnl+Qd9uYTIKZKAQK2AJOLsEYHcaytVaxTU7dYuem5pcJjxsz1djC9pkaoGOLJWMp2+c9JsnV5YTfzD0DyL17927hY7iIf+vD5sJ/1a9SuHPFTAsoxgAwU6eGLxX6QmvKT0qP8Jm59kdrdwSo9M+ZZFaIT6+YJVZIDq84zD3CWskBKqEAnikmrHWHzD0cyGlmSiLTIXqBN3VGt7pvaRcybrFbovmeLrTNRx3W3KLY9EttXrH51NgWKSYYY9+Y6B5z9vovCGOQ6MJlZcWxQks0We1K69cXhY/pkXc6fTU22R99RSddYI7HWtDh2N92QIeZ6KWCMTV/U2VghqrfLC1wScZsUZM5Mzih6ZdcO9vm6BWJBvyrRx87Robdt5LO2yCLoC/41LmSe8z1M42xw7GTsrnJcrVnQVsZYXWqbs72CEmFYyddYIseM3kZk8JMHzzmlGnx5jK7mA8Xcavi5nw4vbOOtXZb7iOu1UW2qNGg4orP1j5uAIKxo8zhvkeeOZ7rbDli1zHjB2QZk8JX2ak1NUcJFZy0OfBmQafGpivCW7HoplmUAL3S+i9agk3M4M8jdGZ7BgJay/9OcMIX/qeYaUyPVdZoI8Z/IuFi+deArGO0lmm6ubVDkRqbYpRH6ABUkHz6kD221el75uZbAW0qgbBLTcbAWvB/wHfZ49B1Sxjg0qTkpLealNnj0MljVcM6h96eM8Ja0+KWGam21BfBNP3r2sNrDDxfSQ0BcWpsOTkBy48D4pyw42SjGmywy3NmqiVpmqslmpxervFbua9gMRcu4paEzYXNBiRKKwSeryQeASFt3rm5jjKDSsu5bP0bJ+CMiluTVsIGda9KnSrbnLi5K9C5LqbMclvD1VT72fJAA01NJmRv9IxZYoWfevuO7WpdBNZtanOHdSTOifRRbX0IcMgen/AlGe2sNA3ZOAEffP880kK1VnpjcRobs4K05j+BJdMj7RBR+YoI8PiI91vrzczJtFJvtv5bi/2WnstAXQNOXxPps7b0Z2scyBCxY1/q+c0Ay7Y1eQEzwRrxftu+2QMUiNr6jdFqQK6ZYBm4arqqxoo14HYO/ceQ35K7t5gPb3csGKqLAKBAl01NcAEHAma1jt2irCZVZU1mQ5c4N1Tbylg+wmD03QK2R54djgFc6+mYJLscOZ1Tc361CrgYYaWc6ZKBA1YdTGpyZsmnifwb06miD43IFTHp2s2segfCVBqT1IdFwCY1OhRpUOFTvqBNkQ5rTvTbFsum1VfUcUr7VJZD9hwwalqioSbdq8o2yLtHoecevqEuMA7YxzTKTHLBHn5ZBqTCMZ4XusW/tZ3aIqGj7LEmoi1olUZ78BpQYJIBFc6cno85t1rrXYc1nvAlQwVxQjz2OHStrXmv5x68A4quZSWLT3cxtSziloYxoMakaKtpyg4neHPopPPO7fisJKBcUpnxxX6fWE6KLUnGDHIizjRPe6JRlZO2rA++PufthzmO2abodRxD8qKQcCBqlgHVoE7bLxLjZoumzC1F2jQKBTdmS5hLtPDDgLknrNP10yHhlkgJZIMBDb9CJWjg+SEnbFOlTnX0hlr6A07Y4bPwc+LTKxrpijtPSIwwBoN0hlpaaAe2cGhRJuW/opG+6xb8x2y7gkwjfReAtVBa+AVwaXHELiDyKLLQbrHeGnJeyjhwWrRhO86UK92/JlsacoCwuOrp+5QfNsky4MP6K35Wfah9FiIjMPZSZIMBYz+FuYAXaTvdWdNJNBDFOiZm+O+NwWfGLs/dMyQgzsDLMiHFgIwDx22sm9QcY85YIubUvYhF3LYYk+SdPs/jai/UQFjlHdbY41A1BNv8mE9dgSLF2Jl37oWHnHqbxAidTrx0B/l8my+ASLu0ymvXct9DtJ8Bl1eaSV02lI6mTdVUzdPjhB32OXAAoedWv1KwtrzHOobE8dp3hZaQmMs1j/1tPg2+cPIif8FnWLeVAZU9ZcJaW3+eC1cEq1OlRYkMkS6pSDAJg3eOxxOeOumTGltUaChgckHdr2JyMqZRCziN/k1qqts95oBd8vTYU9kqk4IJ8bggz9hLKeg8c0QCO06dKvscqInV2BESrDBoGrRNpY3tIprfX/Cpy++TjB2YWuU1VV47du7m6BWVRINTbxOA5RufySIWcZvim3SFpLdCoHmLkH3Kbg4oh03XBSPr4dCx4vNcYL4ixpbf5TlH3q5bbzZVasm+fyExfCITK+t4kXl4yIDMDRO8mGOeApiO/AYNKv1zTnIfuNy2w5or1Bj7XtbCMs9bUWhv9Ix6+r5bYzbYYEBWimHWVp9DWuVPEUTpJZGB1GtgDktPdVAdBAhVMJERERA50veNvWnGUSbV+ggBXE0KoEEEeH5EJC3wUM/v4cDUdw8V0G3ceD2DAL4BEUhq+13qeRM6PgNFCzqGm8Bt7MbvD3RspvM6JwJq03p8A1arcs+WFs1LPzex/G96AIv4tyNKnLuW86d8QpMSNbak/fKGtmZKlWKalJxG0kRbYMVVtePcmQHHOKhTxTQ2a2zSoswpm4xJcsRjxx4Yk3JJt+mUDl3yt0adKm3W1BggxXN2econdNSQqcYWLcouKbbKuumdminCH/NbLnGEyKHbdHCsNcpnxq/xZ3RYc1XGsd4FQIHWuUveN6mpnlhkyGXbWEJsIPVNMwWrRpZoOQaEvWYshAYVLry8gqUTJjdYH3KfZewX+tpcmWZxArcoaapDJJh8Qt4BOAeIlqMxa82Upqn3s6SLAgMUOqw5ANnYwwaw3tT6WcQiblPcDc44o4Kv7JxPeCo6Url11w4lpiKhY2ENyNLJ5VwxZC3ouDnPDwSEu9fqkmLCaGvZsUHX60MqQcOxFqz91RhCIR7ZUGbCBhWnFW0t5lYgedA9F5BhNCTwfJ2v5kxLUA6FPtD0S8QJGPsp1utDfrn+E5KMGacTNKhQp8qht+dA0N3w6L2FdYhHJYwcYpOM+bD1ikQXnrPLEY9ZoyNaeqOvBIRWpv+X3icAruC1xyFDRC+x5m/SI8/bUg5pFV6lHLRkXhoNqfKaVDjmsriCx5x9DqRoFshYkoy5rKw4F+xSv4s3l4XDF/6nZEfSxbCrEiTWursV1rSz4oFjhdi8e6KdDDEtJKWCMWuBAAYPuueMtb11nwMAiqMuA12YQGS+aMfccBSORSzidkWKCZucsskpa0HHsUR7rJJCDDr9MOpeMYa6qO2JJt+xt0OHNcfQtIV9WQtB1iVUpkVLeyStu0fm27EWoy9cgXzgiRSJgLB1WpTfy4NKNJ1uvkkgmcb1CdtubJarWkFFAAyfNTrU/SotynjMHYurwpkWbi60DfY1M+L8BZ/hzPkoOn3RLS3Sb45eUaHBDNHDrlPlhG0AfsynjvWbZUCNLdfeH81J2/TIO28B65gyCacBVuSJCvvSsdRyea9p/VunQ5GOSpuInms1rGsxP+DT4As3j6UYs8tzV2w/YtcV181gTIDhCwekyv32GKQzBJ7PVlhT4Gn4t/r3u4hF/HWFaTHL3CTdnPI3L8/5pldW2bktiqMuczx2OHFrtBCPrbDmgMkjHpNlwB6HNCnToeiKr2OSLt+THKLBmhJ7jAgkZsAztw7M08Obw9gTYlOLElkGzBLLBMTfMxE0Sb+bJnlyPWJ6dcC3mCVWiBNwxGOXk2YZcK/RFcCwjoCGBnROiRie6RuvgwCVRQSsBGmFN6ammVWZQVSJiDlaJjJ8miLAKsBTBBD9VH82DVUQxuypbl+EpT7wBRE7NkCYrdZun9NzW5o2JwJoWzhgmNf6/uivjEtb+6+24J1JBti1lxCgNdTXWsBQxwMs1KB+fmIBqC4CkGQyMlqZuwqWuMcXWaVHW9tEra0rIP6eKZMliyVaCjqmHLBmoKoI7jfpaWIdEmOLGj6Bc5Y3wLRMk7i2fpmGlLWvmzNiSbex8eS5cOzOGb7qp5bc4jZ0SbG0YHVUWmBN2Z3WLlbUVrOUam0ZK8ESTEtyGzfek/bOqNU0TuAW5zN8mpRp3fh3wD6H7NHRFnthhQrYaXqr9hCekKJD0YGrluDPtNJpYLUBsHFmrGpbyJlqYt1kxN5kZBnwYw9qiJhZtkCZ4VMXPpsa2Mg4jQHbpqgtZ3GalJwkwSIWcdsi8ONOu+5h4y3ZUIoeMV2ASuFmk5smfE1K7js0w8ebX1PhjEr/nPj0mg9Ozx0gmBpdc0aFnfCYqzvwuf8ZJ+xQDaVdvBqI4Z43v+Zh/S1tr/heO6zNd6KPnKTCGUsjSAVjGum7+GGgsi15vDl4c2FLrYUd1xI6Ki3DPDKS2+aYb/OFY3iWaBJ4vjK44nTSBTxCLrz8ey3y3ZJkwNuc8N3wB8SZyfNg/j4gYgWq5+ziBzOyo6HoDvbPnf4r4MywwpgsUMLYsjyXPJ+6JxrVfhjI4jzmEXjCLqt7Var9t6QCYQaHMY/11lCA6PRdV9wCWRBsUuNO48oxRxpUyIYD1pz1S5uMPmPGpAhjnujA9vsMcitshdIq+4w9aWdO50ipNIsVv8wsTDoMFgWmRdzOeMEj99xv+sKm3OWIPBd8J/iR5D5zaRvdUPBTdJhjjsmaYkyZpppaysK+rfr1AXFtv5874CFGyFBzj0rYcPlpjNAVlE3mybqpAuJ8hx85zXuDC/xAWJnGzDR2ZpMyRdrKrmzTI8+EFMdsu/bam51Qn/EX+Mw4YZsmJZcjGwAMws48YYcaW3iErrjfoMLT9C+6a7X2WrELXWOXI3ferBuldCeZPIlJogCqRZoHJM9saoHNSAk+gTNuNQkUwIGd1pkwJkmTkubYgQOENqnR9qPCuxUPTVphk1Oq1NnmmCxDvtP/C5ezipLuqis6HfFYjHi8CLhexCJuY2zwlriKqVXDOlvdt64zcptjzF/i0/ALmul1WSuP+lTCBhXOhCjkZfkWB3yXH7BFTQpCozeUabrihJFpxiTJB5KPhcT4hcZLNkevMJ32fH/omO9Jxi5XLfb75OmxYR2K82v3vbbOynLYpESTfQ5knh29dWvitbDDDsfEp1dU+uf8Bn/qTKN3Ry84r2QEHDRN0ikRo7SLgJPGNG0h4GUOARobus+zG7939fcpArj+EAEcDXxs6etfE7FfH+hxviBiuR4goGddx2IGUs90LM90+9c6xgbw5Y1xhAg4WyLSaLXXW/rPgN0SUbu/nmfl91VLtn9jPzt2Sf/f1/1MY3bh0fdzEwsN1f+Gh2nD/FH/Y9buSIv8M/ZoUuYzPtcqVuBa3TdoyOJc24fGJFmj46rkUmGbORH+Dmuu4mZupmaA0qTMhKSTDggRR/sKDX2AeM693nSaBCy80QLPWBmZE9f2b/ozHdbwCZzmaJW6usK2nNEWSIL3Wfg5x94OPfIOMLXkts0aE5J4msxbldDEuk2jywBQc1g17T3TNJXWqAkNNtz9M9dUM7uyJL2KMAVayig1pm3JLUp8Z9Rizq8324EtyTdDAo+5M6YRQHvVgQw3NVFTqgdrWjkz4mQYOH0vk0eY47HPAT/gu46FW6bl5Bq+vtzgH+b+HBa6MIu4JWFzYf9rYGeFtlfk4VdvGT1apuZvstd9ydyDH+d+UXX9Yk4Da+AJ2/JB95xmIUc2GODNr+mkC9z7YTdqS5oCXeh+lqDQmsJXcP6bYmiwXh/SrSYwjVFjn3rMpWXey3Kv3uVdGr4sfMRucETgC9tpc/QKbw69XMZpsa6MgABGlWWafsk50PfIUw5apJ9d85Mnj5zsx2b/DSsteFeEdiHj5lHASZeEeNyrd3lbzVHu9lnSdqxuJUHhiylKBHNV+68rHzAgy254xJ1nV4weLROfXrPShfOtDPn+kOe5h1TDOoHnY+YOZr5wt9XnZ6WHwvQITki/vubtoxx3v+pDH0afyvE6uRx3TyUznZZglljhTueKbilBtj/lJPcB1aAuC4sA5h4McglWu1PahYy7z3beOAF+MOPY36ZMi7utPu9iEPiQOIVvPhaAuU6VDkXmeFQ4c87Zpr8LMmeeXyb45VwNFvPhIm5J2Hz4l/0K7+7kMAMkMbFsEiBGnuZCb23rPgEB8l22Qrh0vHRcjmL7r4Ud/sD7bcfsPtM80iRMTEs5riCpddMYIHnKJqv6PYtrof+Afafb6hOQYcCZmuGVaLquoB6rFGmzGvYYeMK4/wHfZYdjJ/lhrbQDMk479GY++SWf4BNQouXywiRjnrHHRxzyjD2nFztW9miKMY854jm7rihepE2eHg+653xR+Nid2zrFTH7KjFOt5V9kS1ad6Zblu0ISaHOBGBJu0HB694fsKTg7cLquQpiQfNm6zKrU3yMMRHILbcxjwcBiy7utndi2r1LniMfO6DTLAC4v+Sh3AYu5cBG3JGwu/I9+FRIGhL0FssA1kCLS6QyAFQQ0u77x/oVuc4WAaUOE0rYKnAAzBHS7Au4DEwSUnBKxIOtIq3jmxntxImamsR194J0ec5moLT2pv8+Ab4APEDAwC5zrWJb1GpJ6/CvgLgIGJm9c61M93/0b11zU1+Y6role/30954ioDT5B1FafBAZ6ngsdTx9YR9rszSSqrb/XEekAM7WK6TjnRG31HwFnep/vIIDsko4podeQvrFfH9hFQFozxQIBezN6nAwCkhpYnNQx9ZHct6bnX5Xr/d7/Vu/JAwS4NQOrFs5I6/IO5P4usJgPb30sANX/hoc9KA76RSZ3NhwYaKL/IpQt+qfmTA+45MyAUDNOspYla+kK8dxxTE8OcBU3AzDjBDxnl2/zY7cgNQ1UkOQypiCm6YZ2KDoTJBPMDvE4ZI8qdfL0XIs+oAlthhihe810pEz024BE0w60BNVcn60d3sYnY5JE05J4wJlsmfaejMV3RgiWcJZ1ITIg65LYE7YVlK679rpN1Tc13T8DOGyRsKbMuZuA901jBBCmgSXYBsjWqbrffb3f8nlOHJPXWA82FvvsDKQFMcCKWkkCXl2uLkxYFnGrwiXNvwOJdX3xFbCDVKr7SHV5Gal07yNJaAdJmtq6j48khzMk+X1NlOBNkeTwMZIUXgLbSNLZQpKtOJJUxvRcPSTxXUKSPdOXsvalGZLc30WSXdOciunrSaQ96TmS2OX0XA3gl25c20Pgje6/jiSQRf35Z0jCvAP8CEkYt0FxEDnuM/25gCStdsxrvR+WjD/T69nQ4z5AEtQBktC+lfsy34dYF0mKV/WYcR3fQK/hF5DE+ETvb023K+k+P9N7+Av6Oazr9b9EkvYkriXt3UNY+olecwX4iV6vjzi8ruq1PINvfrfE/+57AUeIOZdpV29zwhGPKauJmJmJnV2m+XdydVjMh4u4JWHz4b/sPyRzR3KNNWWwG2hp7e0g3SpWELbOpTiBM0MBnHGoGZXuhMcMvKyTM2lSdvmXtaqbdJF11RigagYtJsNiIGGNLarUXRfBZ8HnHPjiWJ9UjdAKZ6SCMW2/6PIpyxVN09/MBs1AxmNOjS1nYmV5rZkteYQcsM8nPHX5khk3WceD6ekbS9Xy1xriSlLltSMhiPbyzOVZbdacOehTPmGPQ8YknSZ0nh5H7OIjXgCmxz0gyw4njvE2UTmESDtWcjiT6irSoRI0GPuSLxuIa/qOHWXVfocfAlL8ygYDjn2RL/CZUaLpAOjIa0BICeHlmO3cCBZz4SJuSbhi+/8U7mwguUSOqC09DXxFBMQZaPjr+nofye0KRK3qpt/Z0NeNTWlO9QYUGqCY1t8Tuk1L/99C8sKACNQ1Aycbh5kv+UTmStb6XtJzvCBif/pEgKc52ff1OCXgD+Dqx9Dsw/1HREZLfbhSufgVY40SvQaw8gjevYQlu7aunPNqBCtq4tTpQLGC5K1zePcaltJw2YJkAlZkec24DqkqDuS86kLM02ObgZWO47IBMQWeUxW9B2ZQlYOrOqxUcUZT7zpyTkIdmx8dc9yHwQjKn/IeE/ddByaBHP+fDuB7/yfgQz2HfQ4mjYCM7XIKuV+TUSzmw9sdi5b/RQBQDLrk6TnNlqI2I1WpawtP3rWEx7TVNaOVfnNjNWaBiWTvhMeOaWqao9KiP3OMS2N4AXzEIS0V+QcxPjB5gbWg485vup9FOhyw7zRXPeY01e3aTAIymjAWaWvr6XP2OWCbYyqq8fWd8EdUqbOhbs1ZBs5cq0iHMi2nlbcV1lijwyanlGlp++ipaBPqPlkG7PKcLU1qTeu0R54nfMkmp3qPLhyAacZaoTI/TU8ro4v0jprjlGmRp+cYrEU6pJg45oav97ZNkTPVjLVWZPu8QBgilf45WQZOmyxPj30OKNJhlyPGJOlQVG2eC7Y5ZpOaaqBFbK4kY5foF+m4z3YRi7iV0UCA0jMk2TPx+YCojchASKuaZ5Ck6hpJApcRsDSNJLxpBCQdESW0KT1fAgEBZ3quCwTMqyGJ6qWOZ6Bjs2r6qf6cQarsI2CMALUDIn2quI7LGANv9HhLCEvhtW4PkugldfuRjsXA4QdE7IEOkTj/sh4vpuOy67oiYkMcIQDq9Y3xGxiNjm3pxvZA7EQ/g1d6LSN931gYdoyBvneu29lxR/reCrxb1f2aes1ZInbETP4tHRMtJt4in/PPbnxmX+v+eq/+gN/mhG0GZPk2X7guA3O3BjEDrFPlDfdYxCJuY5xTIkbIDieUaL7XETMmxR6HrCo71dynn/CUAVmes0uNTXwCfAJ+jR+4FvYsYirVI8+YlAPstjkWeQHXii4afwFxJzHUI0+DDTxCdjniS57Qosxa2JGcMmi43Aok76wGdXesARkHppZpuU4nk5QyndFYKHmTSUOVtZhcofGepvWElNNdbao+qoGqJhtyRoUWZY5Vr1Q6oTIcsK8SCXKtZpJnZIMqddWebWtOJhIBllvuc8AB+05H0cBU66Aq0wKkW8kYwHUeOJksExio0GCOJ1mxXyEViHO4gcFlmlSp8xGH/Bp/xnN2qYzeEuK9B6YKlSJ2I7fsUWOTGlv0yHPO+v/nP7RFLOLf9vjv6f9mUFQiAjnN6b2I5GSPEPC0QGSe1ELywwSSPxnz0lRDTB/0tW5bAp4ghemy/u4j+Y3lL8b6NHAwg+iKWjwkKuwHeo4HRMX1Lf2/iJAEXhDlrg/1eK/1vCWkrT4t4Of9qm73y3KdP23Bmz5cDgVcpCDvXw7hRV9BySosPblx77bk2Csfw7spNFtQfABv6ghA3IclHdudkoKpORlbyvRadRwrHwqgSY6IeBCD5ilczWElBqktBOQ0gFRlCmLGWH0o/y+V4N1IrmFlQ8b5riNjSqUVTDWTrTRcvoalB5D05WcKOq4uAvgqI9XpsJp51sK/+ecmFh/lIgDo+AV8YIMGJ4iBgAGb5shapc4ZFcbaimVhSW4lFCdPYxa0vaImiB0FOFO0KJNUnRlzCG16ZZqUKNNyZk3OWZtQEjs/z1xbvjqsMVMjAgNoTRsqz4XTjjrgWwBscgrg2K4eIRXO8MOAsZdy73lqrmVMU2Nj5hGt0RZl7nSuiKdfUU/fJ8Qjg2izlmkpGCsaVyJXIKxcAxgD4iJWru1dLQV/Dfzc58CN0Uy5hAks+jhPeMqYJFXqyiCOOWZqj1V3HebAfRMIBxiSfW8sjdy6guhnDngVULRNh6IDbzuqnZtlSDlo4c2v+XD0irelHPmRlCB7aXmyzYgz19avRSziNsb/5i7c+V2kTegPgX+MJEW/D/wHSML5GEla+0ji9B8izMvfA/6HSAL1xwhrsgD8Z8C/r9v8IcJcaOjv/3Pd9jXvi+z7SBKdBv4nSGL7/0AS7AfAfwp8rOf4PhE74qYY/h8Dfw/4DPg/Ar+jr3+l5/9N3f4PgX+oY3gB/C6iNdUH/j3gn+v7daR16Wv9/YWOOYboXs2Bv6+vf4Uk71MEZP1f6n3o6z2d675/H0nm/xPgt/R+fR/4RM8V13Od6n357+g1/DPgHyGJ6T/T+/jnwJ8Av0K0+HgCb/9XOe7+h31Jfn9Z789LuPonsPJf6Bh/WT/juY7vnyELls+A/5HeSx/+6YWAE2bKYtqQ1VCeO196n7DDMWby6BFy/l4P2SIWcbvCDDOfs+sYhz3yfJsfM8Mno9JIBmACDiQ0lmmFM9a6QyYF0e20PMbMrcRkZeAYjnUeECPkgE3XCXPInpPSsNb9FGO+w494yic0PGlRP/a33fs/8r8jeaQ/cR0+BraWaNKg4jRUDbgVs61N8l6PoRakT9impOCkx5xNTp2UgDE4OxT5NX5Angues0uRjmOcWteX5WUH7LNBgzItJQ8E74G0IMDxCdtsc6KSB7P35GDMrGafAwe+GmvYjiHF/qRKM7RcbmZyAqZvbXOasW+9+TW+L1rch+zxHX7ktKH3OZAOqoSYAcbIc8Qum9QAYSLH1VfA9G6NJDBZFNwXcUvjf/8fQaKMFGePkMLsmIjN+ftI0fhKX99Ecrxr/X0dKZRbq39M9/sRUth9h4CIWSRH+T7wl0gR3GTYDfgzfU5js5q8gLWw+3qem91BI+DPdLxabOZfEhlI/Ujf+xnwYz3HBbCG5IZ/iXRCvYB3FzCaQGak41vW90wmACRfTBK53k+AH0LYB89Hctq23Jt3b2HJByr6c0n3NwC5AVczWInrPod6L6YI+HwN4QQ8kw8wgsFYxzWS+3t1BCtv9R4l9P558G4CSyc6RmPcJuW84Qi8GJDHkReufgIr94F/oZ9NUe5LOAdvjYhhXCTSSfVxILOTcuiyiJ+TWACqiwAgw5A7jETA3+9RCRp482vq6fsAlGgRC0Pi3sy1MWbDAeXpOfX0feaEDLysA2GLoy7jtOgEflMqkA96jH1pYSrTotjvM8msCDPAyzs35Ur/nFgIvUKeVDgmPr3iJP2QixvMHwNwAVbpubYl00S1dnSPuZMHMKmCB91z2oUMqUC39Ty+9D5RPdK8O5ZV++U1cVLMMuBF6b4zXTD2hAGOITFmxMXxOZ1RtuqQFiXMwAZwkgM3tWU/4tAtGkBYv0Vtrpop79RT2YBy2KThVVxibK1sAoQXnVaZvS/XNGczaFD3q8Lg7U9p5NYpj84JY6KxaAuDLEP3OdqCqEGFz/p/SSeXI/Q9Bmk5/iCdpTp6Q4jHZv8NnVyOgDg5vdZFLOLWxQXCpvwTIiH6DgKwjvR/Y6xCpKnU1/eNeYDu9wIB/Z4hQKi2NVFCktSXCKj4Y6TNPqbH2EDA05fA13D1D2Dlibz/7gEsfaZj+3M9dhf4NgI8jpAqvLU2PdWffw8Bf43hUNdxf0jEPuDG9YR6vJzej3+o48np8f5Qr/V3cI6q7r0fErEztvRa/wGRQL+xKqw1y9gWdh89fe13iQDSZ7pPiLApKnpeX8fyBFmEGDtXjQDu1vty3y91+wP5TFa+0usxNoNH1P7W0uOf6msx/RyLODkb0xEckCXuGdgx54jd9zS67/ENi1jEbYz7fMOcAi1KrtALIvNjuc+ElCuadyg6XU1rLRdAb4OjQpYkE7aouUKyGbeJfFQMM3Oq8tqxPi3Hmek548xccf2A/RumS55axsQp0XS68U3KHLKnUk5RwdfMtmaq/W4AoMecxxzRoCI5nY5hTJIBopfdosxjjphT1bxpwBO+pMMaRdrOAMZkCjqsadu/sDcfc4TPTAv8wqg1tu5NKa0NGtTYZJtjTthxxf4djvEQ8642RSdXICZgE7bCGj/19inTwoy+8krv/yT8kiNvlzw9B+JGmtACjPfSeQWbxdD0lE1XIBqT5BcaLxkVl6l7VSdR1SLKI+X6V93fxlyvp+istBexiFsW2wi4+JBILxMEDL2jPxuwaS33MaLOnGskb8kheeYEAV3PdN9VHNAX5sFTENDJALSJmKVTBMQc6XhiSHeOabZmkXzyHQIMmg7rA93va2APyX9Kuk9axzG+MZYckaHSCgIq/qq0w2cGuLZ8ZkQgsUk4mQxBRY/7Tq7be6v3ERyzd8mufwhLHxLlX+CA55URAmj2EZB0hUiPda73K6fn/kDvsbFDB3IfV7p6b9DXNddcWkYIAG1E8/VC79Nr8EzTdgvJnROwcq3jfav3fRd4pYBukghds1y6qPfwYyS/rOv1Rdy0RdzyWACqiwAgFoa0uMf29BWP+m8ggG41QZYBd1t9pmnwA4j7b/ADMUVJemPuPLviUe4NxKC7leDvNJ5xXskwTov78zQtbMumX6IcNvG8OWOS3L3s08v5Amx64hLtMaeXE6OSIm3i0yu8OVTDOtvTlzTSd8kyJN8fshLAZXGFgZflbqPvJvFRUUxKBrkEW9S41+jyTaXAvRddphU4LdzlYf2tTKIFSM+7JCs/pVCfkqpKC/uADHECqmHdOZP2yLPbfcU4vUxqdE2zkONeo8t5JcMGDVa7IooyTi8TxpYdi8MPAza8Bn4wY+BLoukHM7KxgTu2z4y7jb4YuzSmXJZXuNOQEt/VHYApRS1xzXID5/qdDQbOiXW1OyVVGLM9ekliBNP0G8LYMsf+tmqx+gR+nN3uKxqFAoXWFD834yT90LXp7QZH9Pw89+pd1tJDLgoJp+NVoUEjt+7MViwR9wkIY8viXpu7i7hm9xi7J/MiFnHLwhiMBSTBqhDpYZn2UQ5JjJ4iifRLBDA0sNQYoqYjFerPHpIc+0QtYHUkKf1zhE1qCeklUWu/gX8K5C41dN9P9f2PiCQJnuq4X+jvfwz893Xcj3WMOQSArfB+O5qNu0LEKjCQs0qkyfVaz1sFPifSiP0CYaYOb9wnY8xCBPZam5pJKJiRwGs9jp0zhzAotvQ+faT3cqrX+Zs3rruqn8mv67kqeg8+1XFViFi/N1v0buqGQQTuVm4c5xkR0NsRJr6ZKRpjq0femXjtcuQMY8o0iZFgEYu4jfGSLXY5c0BZhQZt1ihrd42vnS1lmu77ECdwzEpjZwKqd3rGEbuUVXdUNOVnrNF2eqjS1TQEhoxVMgkih/g8F9SpssMJWQbMiLPNsQNTB4jJVIkWJVpO5x5wHUxH7AKwx6Fjfg7Ius4hk42akGIvPORL7xMAfK2kiUJ9iphKSqVGUxIj6JTgObsKPKYwk1MLM/sM1IzqW+EBda/qOos85q6Q7jF3+9bYIsmYNkV2OUIMR2UeMvkp0+P3mFP3qmqGlXTs1h/xK+zzUzxP7vuADCkmtCk6Q1Er/Bu4m6fnCAUzvY9Zhrys3KVF2Y27xqZjwBbVqDbF2N2HY7aZkGKdY+Bf/Y39vS5iEX9T8Y/+L1Uyd5YdQaaj3xsjw1TDOk2v7Pw4TFvdCitmNCes7aSTCwGZ22ps8hGHrAUdav6m0x5eCzs0vAp1quxxSJOykw1pUnLzK+A0j3vknSGfGRF7zNkKa85E1Vj51k25E5wQxqS71DxRTBrEpP6y4YDk8IqVFvACrn4FVr6PsE0LSJ7U198NxLUGnQABJOdEQOwp0gV0SlSUHxHlqWkxVg1jHnf+/EryRStwo8coIq/f0X2eIfliQbexYr2n5/UQcPMBkaSX5fnmdWCSC+i2D29sa0QBYxi/0GONkDz05nXmiPRpK0j+OkJy9BEsFFB+fmKhoboIAOLTOZWwQSwUEJQppEZT7rb6jHLLjNMJxulleukcgS9t/hNSnH+agRy8y0GhMeVl5S4hHoXGlFgYMkiLa3OeHhde3pkz/aT6SBJYP+uSSNMQ7eUyUq3XNnJvHjJOJySpGw3dGLP9K/L0uErDKLcMIwhjsr8fzIgzY1SUh99UF8drYYdvqgVefnhXrvMSCi+mMI3YmMIhkAdkajR1jNelPqRfXHNRSJAKx0xzAr76wYxGoeDA1nTnms3+G7LBgAsvT4c1er7AkPbwBMj2p6RGgtB0Kwn8YMY0B3c6V4xKy7yqrtPKFRjkErRyBeq5u/oQHgoLYXTNB61z0b0qFNgevQTgZekuvXSO+PSaFBN3zlgY8rqwjkfI5cMV4upOawyKdP+aUr9Lt5pg7sm1l/pdl9Abixig2O+z339GiRZNv6SsjpByt4+4n09ZxCJuZfwOkVu9gX2WYFmdwMA104GqELVhGXPVfn+IMCIbCEhaRJI9Y0TOb7z/SP+fIkmbmQBYm5exPv9cj3GKAIFfEBlVWeK2T2QMZTpZxkwt6nGm+lqLqP0od+O4MQSktKTwKZJU/j29fgNzz4gASpBk+qMb19jSY5nxVnBjvC/0Hmwh4Ke1Ylni+4CIrfAFkfZV6cb/H+u9ts/FANoXCGP1JRFD2Bitj2D0YFnuk5kjmCOrsZEN3Lb70gF6sMQ1AXE2OaVKnYA4cQLy9NSIMEWNLQVO4qw6sdhFLOJ2RVxbtE/ZpKGMUtMItjbzOlU+5zNnYppiwobS9IdkSYXS0l/hDF9b0APVCa1SV+ZixwGyHnOyo+F7YGCPvJMP8AjZUqPOMUkO2ZPzqIa9MUZ/wK9RYxMxjDsmT49jdmgqEGjf1QYVByD2yFNjiwYVdnkuQK3ns89PyXPh9FBTjPmSJ+4+/efpf8T3S79EOWw6EMIAlRQTB9KWVabKfAWaXpkAny95ovfW54yKA15MAiFOoJJUQmcz2S2PkG2OiRMocCOGX23WHOvXXt/np4TE+DGfMiPOZ/yFGqHu8Kf8Bm2KrIYic3Cm7Nweecc0Fj+ElH4WMfe5mK7/jnoTpBhTVbHAPD3l3E74Dj+i61CORSzidkWLktN6rrFJNai/x74ee6kbc9TcFVhBvqeiA32mcigxJ9VmRYdtTkRiw99TpnoSnxlH3i5jUq77MKtSc+YrYuDnIXs3jJUl57CuS5OQu/DyFEddxHT4zM3hM3wGfpa6V5XttGPTjmPz7oWXp5fLuBxu5QWoL2GUE1rBukKkz9olymM/QvLIBhGQWQAyMH2C5HRmdjWC9Otr7nSuXCfR6JeX5T1lAE+39PxdPVaA5JNlosK4j+SXBT2/gazWNZbT8T0jysED6Qbjof7+5MYfQ0CUG5b0/RyRz8G+Hv81UUfWFrwznV2TKzj///rntohbFguG6iIAYZ/WvSqZglS0qo/qlPpdvikVSDIWx06/STYc4M0hFY4ZeFmOeEyn1HGMyToP2OWIt5WcS7SyoyFH6Ue0KPNZ+DmeJ4BlKhwTeD6+PgAMlBuTdK6rz3MP3RjHpBinU5AW8JO0PIgGOXUifdRz7fpjX5LV0PdoUqKTLrIZ1Ag8nzgz15bvl4a0CxnWukNtNSu5BUTTK0Mal/R3txLuYRafXuEH4KVDxn6KNsIaPS6IREKcwDEMQjyy4YC4J46tDb9CJWjQyck9qgZ1wpjHob9HxW8QT88YIKBylToT1ayVxFbkFipdYZCmRlN3/5LpsQOATSP1poRB6HnOmKDhiWHVbnhEfHrFIJ3h69IHyki4gFzPuep6zF1rmmnDjnNtUkx08WM2BCHHhfsCIYQX//of2SIWcRviT4DvEoGBL4hMBEIEyGwQAXbBjdc/RBInDwHy/hcIWPoIASH/kMjMCiThMwDUJ2KXGkhrDqtdPY+5r36kr1V1G3Ouf6TnLv2V4xrIa4mnjySJD/UaDDg0PdQCklgas9TGbPuYsZYxTb+tx/mSiGFgUgZm2FXVe/FMx3lJxIZtEDnVzvX9ud5TM4AwzTDT+yohACv6/+8i7FgzVEjo9YY6hl8mYiWU5F6n09cy5gyRtqyBz2kkga4ierX/RK/Js4+uRYc1SjQptKa8KN0XwKN/zjgnjtZV6hyxS5FrUP3FRSziNkWWIR3W+C4/kLxCdUMNODDjo4A4W9Q4YpddjmgiTK0GFdcWXlbTUgEKAwc61thkg4Yr2AKcpB+SZEyVuhpUJfX3sWs9r1MlTuD0PQdkHag7w3eyA3WqpLSwPCNOA7GJ3uOCFGN2wyNOvU3VcA3Y5oQBGbKjIfV0lRpbjhFmUh7bHLOtrf8typRpCljsiZzTKj0HZprskrFfhVXadCzOJiX2OHS5nmjONpy8gfgKrLqxNr0yEwVLa2w6ZipACs9JYxlb1XLaGT4NKmxSo6wGY8YK3uYYnxn/ufc/YJsTAnxKtNw4V5WJesgem5ziM6PBBlmGjkFcp+r+JozJa5qxBjLf5e3fyt/tIhbx1x2PeMFYHaRKNGn7RbIMtdgQc+uhDmv0yLNGh1Mt6Hi6dhKN5KFbV900JrbiRYc1x+4+ZZObhsTGUhWpoQwz4tIpSMyZSIMUMlbDHnWvSpGOkwjxCKmlPyAg7vxOymGTpldyWtkmlyes/QxiTndBjzx1qjzhqRSXK0guliYyDgXJFa1gDpK/WYHeAFRjdFp95RlQhsQL/b0LNOHdPixZLqqAavr1teR3l3KshMlHpYnyTwNIb4K9Vph/jeR1CSRvNY3TjI6zL2OhI9IG+EQ5qhXrTQf1EVF3muqxOsB4X7ex9cKpdpehr32oY1jEz0UsANVFADD34HH/JbEQ1tLSbpDMjSmOuiQaUEg/g0sYbS2LjiYe91pd5iXRPV3pwvlWRqrT4RhvHlIe9bkoJEiMYG/+gkrujDuNK7LpNyz1kUkqFDZm2y86wA5gvTVkmoZ7/S7vEnBRSFD4asq7CnxR+JhNao5RGhDnF+oveVVdV2dTeX0t7BB4Pr9Yf8HVHejlMk7j1A8gjI1pFyRpXhrBoJBhjscGbfxgRuDHSY2mpNLyYFvtTlllyiC3ooxdYW16zNkdvSDRhWK17Sr5H9TfMC2IYdPAy1Lqd+nkclSCBm2/yIPuuXuY3HlxReXDBpVul6URrPtD6L+FELofii5sNazjzUOy8yHj9LIk0Gm4e9onX5InQuIZPKq8kYMGMC3BOJ2gOnqDN4dWrqALlxj5vrB9Qe4FPq7FJBaG4AUCrlPHD2akRteEBbnfPjP8MCDvyUN3vSEtYJWgQbp/zeVCMnARtzVOEMZjjCgB9BCws4MkYk+JWsWn+u8zBJAzXS1jNTYQYDCHzHnW1p4mapECSayaRNqhLTj/xxnWf28YuZJCBGROiVqIfOBXiVrwX/B+AtnSYwdIkveaCNBEx/YASRhVI4oSzgHV4RwGpL5GZAQMjM0Rgblbeh9MjN9YsT8kAkdBWKABUXL6HxC1ab1AWvf/XH83LdMSUfLe1fvo68+vEbAXPY59ftZyZixe9H4Y0GyMhrmea07E9DVQ+jMd098H/u+wwpye9mqdUeGklHJO2fXcXQZk8QmoU2WXIy5EIWwRi7h1kaPPKZu0KRLTIoG1mLYoO/ZleXTOF+m/w5gkTcrO6MljTpU6DSpkGFDpn5PP9Vz7v+ltfth6xVop0n83KYBsMOCP/N8ixZg1OoR4rqXVmJNz3cNATxBjpAwDN+YzxLDKwMUsA1oKjpx6m07rM44UtJ/yCdn0D3S7UtSdoyyxOlXVtxcW2piUA29LNJ32qLDJYq4TaKBMWgNXBmQZklVwdeL0+HusOoDmCV9iRqPH3o47hv2zMJDbZJzs3kv3lyz3Njl1ZqZNyg6EMSknY8mZOZa0C0dasGbGF6PHml6jvR+oWWyLsjJmVzlkjz0OncbuXffAW8QibleYobGRhHaCE5q+JFF5epywzWOOGCjDu4HPUJmhxjCX765Io02U7b1JjTiBm1cAxwav0GCVnjNsjhPQpOTk2Ip0KIdNJyF3wg4lLVw1PCmEGFN2jseElNN9n6nsiOel2KLm5lE/DAg9+T6LjnWbODOalCjRZK07lFzKCtyWk5lubJUorzUNU8sTbTsjAjwj0oD1YPpI1rE8B8qwZJ1CJgP1EZJf3iECTNMw/RQSP7xxfGWYEiL5rBmHfUEEuBppQq/h6gms/AlRvvtQrueqpEzcLSIA2YrzBSKA2Fr7+0QkhjoRQcDyzCKSry5q7D9XsWj5XwQAKxcQC6FRKDDws1xoepUYweXDFa508T/wo2R3lFumPDpnkEtw+WDFHcubh4Qxj6UOFFpTLosrNHLrhHi8S8OSLmbfJeBtNUcY84gRUh4J9/2DhvzvB3BZXmGQWyEWhnzzcYG5B/ujr1yCK66ja4xKy45FuRnU1I0+dOeEyIG+kb7LOL3Mkb9LnSqJrmiVPqy/5RdPX+AHM9p+UTSxXkA2HJAdDRnkVuT+ePIgAij1u6x2p4SxZS4rK2T70urepEy3mmCcTuARyoMss0IqHNP2i7Qo87qwTrnbJ925ZrS1TKmvdn8edEsJuo8SvP0wJ60YZGh7RQI/ThiTr+0HrXMmpBhVlumkCyS60P00ASFcpUXTtpMuEBIjMZLP916jS2o0ZUCGWu4+jUKBZiFHanQt9zwM+KB1TtMr02GNjC46xn6K48J912bWI0/TK7sK6qi4LIpio2uYw+ttKwsuYhG3MLaIkrgqUcuSgaV9IgmAHJKshcC/r+8XiFrEDVh8qtuZNmmAJJOWABrIakZSVVh/OhQA1BLSMlE7vgGmN3WjvtJjm8vrFsK2NYanVdBBEsIRAqxWb1xbRn9+StS+VCQygOrqNhU9vo2lSdTWb8n0iMggysDpUMfzAPj3EMOpJ3pd1u5f0nsXEiXAz3RcnxABqTHdxu6BgbM3tW/tc1OpgKlJGLQQrVe7DpM3eEDUqvZS90/o/l8B67iWugHZG61xbUzjsUxLgZksY1Ic8gssYhG3Mfo6MfRYdcZJ4taecoXtIVm+SP8dANaUlnRGhR/xHc6UOZpkTIc1nuceUqfqGJVPecKALKPcMsfsuKL4gCynbBL4cX6bP2CfA2c+1VBwtErdOdNbLiLAxg5zPDqsccomIECogaki0TFzgIQxXk3XNMvwPU3TbU6cbnxcYYYqdSo0SCo44jHngG/RpITPjPyof4M1KnlTnh4HfItAja4O2aOGaCXucYhPwIQUa7Tx9TwnbNOirBIjwiw1DdVqWHdATKC6rGYqdVO/dY0OPgF7wSEVzogzI6kMuLbKEgAcsscOx+xxyG54RJ2quzcDhasrNFij42QTfGaurT9GyIl+hj1WndnVEbs0KfMF3+aID/8W/moXsYi//uiTo06Vo/QjQmLU/aqbi8y0D8QXI9BvcJKJk0Gx7y3gCgwGpk7UVK5C473vXIuyO+6MOCfsEBJjQwseHnPGXgo/mNHSQhbId7lH3s15HdbosKY62Ges0XEGdk1K9MirYXKSU2+TMUnHrjd5li1qUkQxDVLrprICvhXjR0S53k0gsY/kalawtv9NhqkPiadEBXEQ4LGp2xqoWuB949EMJL7S8Zi+aVl/fqnH93Q8N4FUa9Pfl31XXhBJSuW0Pb8PK9Y9ZTIFIVE+/RTJH1/cGGNaX2sQdbl9H8ll7ThpPe+C1vhzEwtAdREAtDfTNAvi0O4RsstzHjbe8i4GYy/FIJfgXUxa/UFa2r35tUgFUCXwBPSzKn58eiX6dHO407hiLeiQH/VZ6gAFOK9keF1Yp8Ymc0/0Zxrpu3J8NUdZGkHbE2DOm4eU+l1WAkj0JTkO1Mm1grjXWyKe7l+TfnFNun8t55zDLLEcLXaDFm2/SJkmRdqMSsu0cgWm2paQGl0LqyC2zOijZeLTKzppAVKTjEkyJkDYq61cgcAHb37N2EtRz4mGbAppv8/2p0479U7jykkc7AWHPOieszQV/dSav0k9d5eLQoJRcZlCY8pAzR5AtF8ftt6KNuxUwM9uKUE+6JFuXTPHA190bJnDSiCaqfYgfhcTFvJleYVmWphVj1pvyIYDin35XNa6Q5LDK658qI7eUAkawiahx3pryKP6G8fo+LD1iuroDalgzLfCAzEd6/blQbuIRdzmmBNpKBloZ3qpBwgA+RHvg4mevvd/RpK4um7fItKJaiAAnrUmlZCk758QaTddEjElzxCQ8ZmOa6T7G1jb1WN2iVrjTey/grS4PwB+rP9/rP8e6/GsZamPSBEYc/YFksA+0u1tvFZ1txYoa80yEwJLrE3XlBvbmwRAU//VkeTy9xGQ0tqpzMhrSgSglvXYBkZb0mps1z7CzjXDrA4RmGzXCc5kIGHgNkSmXCbjUJfjXH2s4zB2hUfEtn0Jy1yrTM2YIVlKNKlSJ6VO5AOy7ITHruj3iGMWsYjbGGXO+O3wD5zplEkRbdBwraEbNJwxkkhESZvrJjWq1JnjscOJK0CkmBASo8EGjzkCoO0X2VGd04m63Ius0BqpYEw5bDpw1sCI1VBAzjJNdsMj1jQv3EV+fsKXrNLjGXtOs3RCki1q+AQUaRPisa3tsDVtr833h1QRsLJFmRO2nXySSFPNXXv+Dsfsdl+xRY1NTtXkKuCP0r/JFjUHQpsW7Gd87lp69zhknwPGpByIcsie03mt0OAjDmlra/5TnnDIHkcIGSA+vXqvsyvLwMkEZJX7+pRPHBu14YsuqhnddLQfdjOokWTspBqOeMyFJ2CKeRuY0U6cGW2KqvA4dgBOkzJxBVd3eU6V1y5/rVJnTJLf4E8p0v3b/hNexCL+WmKmDOw1OrQouYKJFSd8ZpywwxG7TkN4jTYtNZHqUHT7SFG2TRzpBPySJ44l/oQvKdLW79DMEYeM1X6TlQ5SYGr6yh4NO+58ZtLnM9Pj1d35zYSuR54zKsy1iGVznBW1RBpA1sqBaioDkoudEhWtrePHcqqved+MFCIzU5OKskK9MUkhMm21vMs09D9FcrIEUZdUB8nbDDRFj236qpZ727Gt8F5Ccl1jzL7U8V4SdVt1YOmlbmvyWmZWaucwE9qbhlomVfUVkSFtASENWIeVAcNfwg1blUXc8lgAqosAIhaCJVlr3SGX5RWW5jijoaU5BJ7vJlqAZiHn2q8mpNjtvgIgMYKen+cnlUecVzMRszItpkmpQKrZlrDVqUpLUf+Kqy1x9busrFAOhBPf9Es0cuu8i8E3lYLo0+iDo60PKTFNitEtJXhXgW9KBXrpHC9K9xn7qmsV9mj4UeuXz0yc7U+7JEYwzcE4LV+LMOYR+HFmiRXXIuEHMyaayHfSBb7kCX4AR+lHAFT7byn1uxTpUE/f5zD3yLWivajeJxUIGNvz8yxN4W0lRywM1WU2RkiMQ3+Py/IKH7TO1VwroO5V+aZUYOyn6ORyNHxZWHjza95Wc/jM+FnpId1Kgm+2Crwt5Wh7RWcscFy4Ty+XIfB8Z5IwTcORtytgcgWOCh/QyKkRVjpDGPOYJZbJj/p8XfqA82oGU0u9LK7gzeUezT1PQITcCrPEMm8ruYUp1SJub6QQMC9D5ERqAN6vI+3fxg61lnozNKrqzxAlW+ZaXyKKSySh+hABFetEVfQyktBtEbVT2TGN6XnTTbSFtKJvIcmnJZHPkJb5NAJ0tohMpSyhNaZnnwhEfkRkpvU5kVnV9MZ+ZixgTFSryNvYHuh7v0LU7lQkavsyxixEwv4dff+Znreox7SWKl/fe6rbDvW1D4nkCe4QMSSMNWGMhBbCEvha753d1/SN91U3daWr2xqb4of6/h8CA9jot51BzxOecsieY915hDQpceptss0JDTYYkGERi7iNccwj2p60nm9zTJkWNbZoUWaGT4oxE4XXQmKs0WGXI2VPCjvKdN5N29MAwN8I/hTAtYnfBA5Mr3RMkrpf5dATIDHAp6XO1hdeHpB2+4ZXIc6MIVmO2SHOjBpbtFkDhDWeUk3WIh1XbK4GdfL02AmPecKXpJjwx7lfp0GFGlt63SckGZPnggP2mZCihsgEHLLHYeEhY1IihYQwxbYQkLLCGZtBzblpD8g6LdkkY6exaAYwm9ScG/hMdQ5X6Tmjr01qzIgLQJMucMA+WQbs8pwWJUq05J5RZUCGMUknAyAmXimRGPAq7HFIjJBDf48aW85MJ8uQGltO3sHY9gYKzZSxBjj2sbH0POaAgDwtyuxwzIw4KSZ/S3+xi1jE30wExDlhm4A4GzSo6D8QUNX0kUFk2lZvfOfsdWP6d1hjQooZPgG+KziZfIZ1AlRoMMOnQ9GZX+UR4zhZe4u+qX0nG17FzXM+gZPkGKqecjlsMiOuBa2KjrulY/acIbNHSJkWM3wpxlChzgOZf3MFydWsiO8Taare9N+sAI/g3RP93UBYY6ea1n0ByX0rSO44J8oPp/qaeRgcwPQjJD81EyrLRU1GwEBPM6QqIOO1vDsg8icwQHeoYwiQHNEK8dalFSMyLLVOMjuWT1T4N0KEgaYQFfvN3NVHctYHcPUBi/g5iQXZeBEArIctBtxl7CVFo6WQE7boHOY+ZEdDzksZaS8gKeL9AcTTAR6hmELR46KQIBaGdEui2VKlTqExdTqo8fSUCSkafoU8PeZ4rNHhmB0qnDH3hE0qLMxrBrkE2f6UbG4ICNhpibCBg0U6+GGgr8VZ7QqYl9REH8BjTqExpVtJMCaJR57K6C2DdIZsMHD3wQ/gOF2hSJuxJ4sEPHm4JBkz9lPu/MVRl0/ST3ldWHespGxiQBizpHRAOWxy6m2yOeqqadQ1WX8g0gAhFPt9YiF46Qbe/JpOukCJprTT5xqM/RR+GDh9nAEZRPS8yCY1EiMI0nHVupKHX3HUJdGFr6t5l1wXaTMhJRqtc5imp8wSK+wFhzT9EoN0hkCT9IA49xpdpjkBxq982O6/YuUSwqpoqM49jzB2Rdsr4jNjt/uKi0KCO40rvEKfsXsaLWIRtyzeAL+EJEWmpWpGUy0k2TI90wQChhpb1RKtL5BE7GOk+v0hkQ6oVfMvkeTqt5Ek7deJAFwDaEtIZdsUNE6R5LGjPz9EQEZ1SHXszWdETFKIqvcGno5ubJvQ46QR4LCkr39JJDNQ1206RK1bfSJR/98F/rleR5WIofvHRK6v5q76hwgo+hnC6h3p6y0isLai23+txzHdVbseA7JNB9aS+oqOZ44kvx/KvpefrnAndhVJHoRELrJmJubrcZWlanpZV49gpaGfwQukDH0FeS6chuMOJ84cxtgdwjVZZZfnlMKXLGIRtzE2eEuPVXwCsgx4zq7T6IwTODfqHqus0eYLPqVMk4GXZYdjx3Ky1vKt7luahRw1Njnw9wEcODcmxW+Ff4TvBSTVfKpHngwDhsqM3QsOOfD3aWqFalWBCmullSJGRWEKOY4AtUWSjMkgDtkd1sTgyS+JiulwSpW3nOQ+4JgdvsOPmGkXVIc11/IOOB3ROAGb1Dhgn4A43+LAFfg/Hf0ltfQHVIM6bb/IUPfPMqDNGhfk8ZlRpkVDV/7CAg0USDnjgjyr9BzjdCLCSo4R9yO+wyY1LvT+WRtwA8lhB2TZoubGv8kpPfIEDtiOccom3+KAFGNWwx4pb8K3ui84LDx00gRHPGaHE8YklW2a4ojHCpL7rpXYtHIbbHDAPr/FHwOi3bhNnQEZypz9bfzZLmIRf+2RUxmQCSkqnOExd8/5LANOKLNJzUmDgHRTAgqsJpmpEV+RjhSNwjEdT9ZzZkZc4czpM5uesekjy9p7Rs3fBGRta7IAJZpOG9U0ps24LsuA7dGUo/QjMYtm4ObdMk0n4dGm6OZ76y4AYeeu0iOpTHUgyvUMcDQJpQaSP72W15ZMCiqH5IgGeB4gzFPrPkK3M2QqQaTT+honS5U4RfJqy/kaRMV864pqIHmjFdjTem7zMzApLiMgGHHAGKoviRisMX3furj68E//D0ju+Vav/xrJlQMkxxzB9/5nSO5tplxNJO9t6HYJWFn4jfzcxIKhuggAJl4Kj7nTxmpSYuBleVvJ0cnJLJbvD3WS9/GDGUt90UhNBWMHjobEiE+vmOGTDQdOazTwpZLdyK2zQUMm9NHQifDvcEyPPJ1cjnT/mjAmJlIDsnRyOdZbAqiGMc+1smdHQyphg1Qg4ts/9fZpUWaQW+G0cJdsf0qbomPUjopi5LQV1sgyxJNCOsf+NudbGbqlBM1Cjg5FVrtTiv0+KSaUg5amsRNSwZjV7lTA1nTCJciiuzUg8OMMvKzcBwQIzTIgMYrudbY/pZfLOC3DdkHYoAD3WkJFyzKg5m+S7w+507liK6xxr97lYeutM4Eo9vtc+USVSTYYk6SRvsuL6n33mU1I0WFNWrUKcp0JrZy1/aK0mfSH7AQnrt1jVFzGDwRMnWRWCGPQrSYcyxfEbOuAbzHHY+5BjS3Oqxkx4VoAqou4zVFEErtTBPwzZ/oKkhTdTA6bREzIr/V3E+c3VmaXCOQ04yMDVS2R+zGR0RRErVQNBMizfadI4rZF1MbfItJ3Mpd600Q9IEoMrZLf1WNAxNBMIMmtgZUPiLRMT3U/0xc11m3rxmsPbrxmLfwJIhYDCPN0qvtfEjEE5gigbI6nHxGJ+n+l12auqTZm049t6XHRY470WC39vQh3fu9KrsUAWbs3N5nACb3GZ0TOrJ/Byo9x7N5xAy6UTZxXF+8Qj2wwYI7H7/M7dBQ4MtaWx5xvvPssYhG3Mayl3FpPN6mxSc0xU82teqIt9XkFAHvkOWCfI3aJEbLDCRs0OC3cpYawt7c5Ic6MTWps0OAzPufCy3OhQF2eHkkmZBmwz4FofmrOYmBegC+McNVKzTKgQoMxKdqs0aJMjS0H0JoRjEdI0xNTrRlxDnOPXEeRnGvOWDO/DkV17W6zzwGH7PEFn+r9EeOnLWqu5X1IlsP0R6Kh7Kd4rszaFGPKNKnymh1OHABijF1juVZoUOW101WU+x8Q4IsBGC08Qop0hF3LCZtBDRAGnOkh2mfRpKTyBjHyaiaVRXLqPQ5du37g+ay3hrwurFOi5VjDVeoAzr08T0/7qaRnaUySR403TnNxjQ57qlVjrDd5b0iTjb+tP91FLOKvNaaknPTFjDh1qs7IyWQx1htDdjliSGQwZRrDWQZsc8w2J9SpiuncPFQJE5k/K5wR4jmzO1u/etqBCVD3q+TpaUu/7zSeW5SdnIjPzJlhlWiyQYNG+q4rzHg6cl/n9SJiqFymRZmmk1X5Cz670Xkjxwdk/VonYpbmkHzL9EZH8G6fyH/AJKYCIpZqBZEGNEAUhIxgZqLGYlXw0WmuponyV4gAzwc6nhKS2xm4Odd/lzd+Nm3X6Y1tSggofKDXZrqoRh6owNSu9QJnHst95Br6wDFwDoz12CZRYOZYJnlg3Wbn/zV/cIu4VbEAVBcBQPn80lXL48xYo8O9RlceEuGYXjrHSiDt/yBA3KiyzLuYAJLFft8xBADuNvrcaV65RNEPJNEN8cj2BYTtpAuuilfpdp1Gyzelgmw/GhIj5G6jz7uYPFiSwyvuNK7I9qckRpDtXxHGPNV/es5jjvDmoWuv2AprVEKp2g98SVzvdK7ww4BeLkMqGDuX09XulIA4jzlinF5mpQV3X/Tx5tfMiJPvD0k3rsV1EGnpMIZSliH5UV+cYsOIAXHCDlmGoj87EprYJLNCKhi7loYQj8Dz6aQLvCjdZ0KKVChtGDEV9Z57HqPSMm9LOdbrQ7IMaeUKrHRxZglbobSKlYMWlUCuORbCh/VXVIKGtuTJ5zEqLnOneUWKiTPSGvjSbpINBqQ71ywpCOLNQ3rpHKnRlNRoSnJ4RaE1JT/qs8MxNbaYZFakxSQMyI/6FMOFTtYibmls6v8xpEptrfGfI0nTp0Q6SF/hQDun2/Q1kXaSAacHSDKVI2pFMuZlhah6PUIM/ky/9TUC8BmzNEC0Va3Cbe1OIZJM/r0b43ik7/0ywi41BmaCiL3aIQJN7ZwluNpAgGSfSBfqNe/rlHpEwv52HDPPMkZuhcgEq0ik/2r7NoiYqadEYv1bRInnZ0jybDqulozuE7F9f4UIEDVNWZDk+Cbj4YEeq6Gf3RdEBmNTInA5o/f3+/q5IP+n0pBZAQbSxgzy7DKn3+/yA8dOHWiLXY9Vt1haxCJuW4TaLj4mSYWGaK+Phu71GT5jUmzQIMMAn0DyJXWmrlJX53oxr5qoN7218xdps91/5eSbOgqCmlSSx5ytsObYWSYPZaYqvuaQZsZkOU6KMRUaBOpS3aL83jHMcKpD0Rk42VhNgzWlLfkfcaiM3Jm2tYdOpsCMpZLK1a1TVWD1QgrjbCprLO50R1NMGJN0kkyivRwnzwVjUhTpuPwyyZgxKceCM8Bkk1Oq1Pmczzhgn6ZfosYWdarscehA57FqxobEqNBwLfotSpTDJikmIro1esOADOeljDqTC2BkGoyAOoyLpuymuoJXqbPDCW8rOXdf5wouHbKn+82osckhe47xtohF3LYYk3Q6oqdsEhJzpmxZBuTp8baSw0zhyi55kMKUsEJXpfWeJgE+R/4uY1KcqUSGMVgv1PjS2Oh2jjpVp7VapE2eHkc81vksfE+SLyDOUOXwACaqgS2azjEn4ZFSw0DrQB3fEPbc41AKWqOv2OUIMcvKRBJRZSRfSiP51hCXCy4ZC3WI5IgPifJCLWKn//hatm8SFeYbRO37dSIjKni/MG6mTh0dh5EdjGBggCZInu4TkQGs88zYs2ZwZa37RqCwbqmpvJ54gctNv/ct+N4d+N7fhe/9Hfje/xi+9zvwvf81MNHxD/V8N7usivqaGa4u4uciFi3/iwDgnSdtOfdaXbySpERXaV0s/pX2fxO1z/oDer60PrRyBfUk9SEN4/ScbF+MlboVMWiyybyWi1EJGsSZMVetp3pBAFdfBe/z6R51vyqAa0y0WgdkIQepzFjMnbQV/owK26OXzBIrNLwKRV8kAFYuYWV0xavKOiEeldFbUokx35QK1KkKU3Y6pOfLw+OoIGImWQaM/RQ8GLs2/Eq3qxqhIWFMjEZ2wmMCzyc/6hPGlhmkRScvObxikPPY7L8hFr7hopBgaQ5hepmAa2HwJlZ4VS3yQeOcICeVyNWwB560v409YUVk/SH1wn2KtOn5efJBj1FpmQEZ1sIOU9VlLNNi4GUdIyLPBSkmNAoF7s1lwe8zIxWOxTzLr7KbeyELipx8viZr0PRLPOQtl8UVsv0ren5KHGvTGQWKi1TDOsnhFUnG7PNTBl6WOR41b5NKukH8cgGoLuKWxie87wBaQZ6U1hpklWyrVBdubFtFkjwDA18gwNzv6LFfIMnUbyOJ5gsi5upHwAO48+xKQNN9+Z0/13MYAOvjWoqc7meBCOS1RDRAwMU58JxIx7VExCooErXn7yMJXhpWnup4+0QGT8o6IKbXt6/nssTwjCg57OqYXuu1/8e6LUSV+TTCrvX09yYCjI6ItFrvEJlfGbtgi0iSwLSxDHDeAn6PqD3MDAfsOk6J2Ak+shAwaQXTBLOWsY8RoLqon40n/6/8v+TemWZkKj3mKZ84EOOYbXxmbFHTno2QXPiaRSziNobp+eXpUez3eVm661hKGQaqtdd0baABPnkuOGbHHeNzPmOPQ3qsOiD2lE1W6dFmjVnO5wlPOeIxMUJKNMkwoK19oIfeHnFmjg1qgEVKwYYKDVYVwDVt4zFJ6TD6q6BGOCDvyffUXrN21xQTp3FYp0qMkH0OVG7gtQMW9zjkbqvPX5Y+YpfnNCmxRocD9h34YSZTm9S09dbDnLsniKa/aOd7avzSos4DQjw35gpnHLInOZcayhhY3VCDrom6cQ/I8mv8Gf9P/iEpJhT7fRq5iiM6mFnYfnAgWvysceHlHROunr7PAftUaHDErnMkr1KnRJMWZcq0OGDfGZRZy/OMOMfsOEDZzucxdxIGVeq0KfJTvgX85G/qz3URi/gbi2s8YgRkVU6jSp06VXqs6hwYuK7MOAHVsM6pt+lM6UDW2SfsvDcf7HPAjLgrNsxVVsD2MzLMmKRjeycZO5b+FjUn2VYOm259jIdjwPdUYmRMykkBmK6yzSMhHiWaTns1ICtrT/J00rLGB4TdnkHyXevOek2UO6G/P0Byp1Mkj7pDBMQaS9Vy64cIGQEkN8sRAalGRniIM61mSiRPBZF+6y8jOaMxVqd/ZRuQIv0lEQGgL8efViDxlR7X9E8NrDVA1Ni0dv6P9NqMgfoayR2vdN8Hup9pq7Z0W9vfOrEWcetjwVBdBCAt+T4zLosrrHWHZPtTVi5hqSM6nwB0YeUSSrT4xdMXFJ5Oudfo4jGn1O/SYU1Uoka6v7JSC60pfiDtTL/YeMGjr984bdAJKdboCDs2aFEcdalSJ9255sOvX7EWdrjyiSp0wYD4VBimgecTC6XtqZOW2e7DF6/I94fEp1d8Uy0wzcFa0OFh6y1+AHc6V+SDnj40ZnRyOUr9Lnl6bPdfUaJJ4XTKen2opkwr72m2Bn4cbx4Km9bzGZOkky7Q9ovOcCqMwb3TLitncl8LjSndUoKen8cPpFXem4eUR+e8rUjvaXl0zthLce+0y/boJXECHvdfkujDo/ob/GAm3Iv5NW2/SGX0lmz/isSI95gPu91XfNJ9RrX/VkBwpG0/yxAz/Sr2+/xi/QWJrkg2lLt9ksMr8v0hH5ye87DxFgJh/w5yK45NbJIQ26OXBJ7PShcqo7cqbzBzVcwkY87SpX/9j2wRi7gN8ZZIN8nAuiaSKL1Akr4AAREVXH35O3cjQNO0Oa06fqr/fhNJ6O4A/xJJ2IpELqYtPf73iVrcjR17hgCfJj8XEgGrMR3LS6J2KwM70fOY1ihIYlomAlttuy+QBNAYsJZsGpugo9dmGqexGz8/ADaI2v37CGhsuqx2Ha/1PQM1c7rv95FkWXVLnS5sQMTqvYPoyQb6viWiaf1MGnqNRYRNbGYDxjCwz8XYuft6/+xeV4ha/V/rMQs6pn8I/KpeQwwuc0lntDPwszzhSzxlgaS0RdlaAZOMiU9N82ARi7hdYUzRDkVauQJ1HlBRrc4ZPjU2OWIXEI33Kq8dO9InIM8FW9QAXJspwBodx4QakKVFyRmVitmVaHnGCGlTpMGGazKP5AAkx5mQIlAtTwF/L5wpS0CcOAFtinjMJY/D5xOeEhB/D6QN8SjS1nEMyTDggH1nIjMgywnbfM5njHLLatAUZ0d1W+PMJB+lKMQAes5AywxobrJojWFmGol5LgjxHBhtQMomNWkP1rGOUa8DSiSZsEmNrVBYqKbv2situ2uxVl6QjjKRPJgzJMtY752B5mNS7HGo7NiJM5w1CZN9Dhyj19fW5wDfGfRsq3yXGZSBgEs1NvGZ8Rv86d/K3+0iFvHXHTlF2ap9WffYvFCm6cDRMSnXoXjk7Tp2qJlJ7XCiDPMaVeoqTyJFkRQTzGB5TEq1mX1CYhyxK5J2CpCa5MYAIbNIp0DSAbiyPpVugIzOqU3KmCmxx5x8f0hKuwcAVwA2M70UY9aCDmt0VN5uqNIA8UhuKUbEBjXg0lrcXxMZmpo3gBXErVOpRJSL+kjOtY/k3GYEpaT27sdKN/WR3Nq8AYpIfmrM1qG+/wDJ40x66jVMq0RSW1a8TwMHkLC80a7BzKYgkh6wjqY4EehrOS16vEtEEiDk/bVEmQhgtXMs1KB+bmIBqC4CgMQY7tb7jL0US3NYCeBtNcflQ9HPbHgVXnx8n8vKCiEe75S5Nc0JYLgyghJNSv0uiZa0tV8WV7jX6vIuJjqh1dEbzisZKEhifadzRYkm2VDk/tOtaxrpu4C0pF8+WmHueU5D1YynEn24c3DF+tdDksMrV+nP9q+4KkEYk23utbqEsWVSo2s3hmkaen6eh623ZANZJKx0Yb0xpJa7T0iMV1vrvKjeZ+BJ20RIjOOCzHp1qmIspfIFq2GPey+6fHB6zthPUQ4kab18sMK7EoSxZd4lwA+UveEjLFE/RS+d4269zwcvzgljy8QJGFWWCWPLAkh34bK8wovqfbz5tfussgxoptcZp5dhLuZYxVHXmXEtzUV/Ntu/otTvMkssk+8PuftFn6WRgOJXd+An1UeMcsssNSAWwkoL3uXknNOStGskh1ekX187PdwUYxJ9AXGJQaIlOq2pYEyhIcC5H8y4XpDfF3Fb44goObKWo0+QJM8YqkZ6Up3Vh7//VhI3Y1OmEWmALQQEvAnOXiJJXx1JAg+IgD6rWhsAaC3oBSRJNMAvh1Tiza3Uzrmh+xmL9jVRH4qBnU09ziMiJqiBppe67SWR2P8f6nWZK2pa960iLAVr17/Ucf2OXvN/cuO4ICByGpEliOm+zxDjqoL+/EMkUTemaAyRHvgIrn6HSI/VmKxmSPWFnrOv7z25cT8tsX6q2z5DEt0Xek/Qz+JUX/82EWP2GQLOBkRyBcAVK449IoDTkHIoDJUKDZqU3UIqxYTT9CaLWMRtjDQDDtkjwKet7aGAY3gKiNjmc34JT8E7c3c33VVbxIfEKNNkNzhyx89z4dr25womVmiQHQ05Ltx3IF6VOnkuqPOAI3aVOSVsUgMgRX21x4SUArFrTv5JgIyJAnsBDSquoJ9SsMMYWEltqc8yIKat/nHEgHWbE2Fb+mIsIyBKEtM99JizzwG7PHcapiExJ3uQYqIas8LWrbHJhJTe2wnbHJNS9hnggOHMDabpVihgTJU6n/E5WQYce3IPttUt/IB9xyQek3Kfg4HHKSZsBsJsa6iuaZyAIm3nLG5MNQNsOupJUKHhxhfgu33i6rLw7/KnTr6gx6rrCDPt2kUs4jaGaUnPEssUaZNiwi5H9MgTJyBGSIqxk8Ko0Hjv790jdAZ0TUpOCshMpTpahMmoDvSGFlo2OQVgkxpFOm4ujjNjm2Mnd2IeJ/8F/4Aam4R4HPHYmUbvcMxYNaFrbNHIrbtCymNlpBuD3hi0Yz+lLNy8kynJBz0BQQ1gVIan06Y3WSvLTx8SaaAa6HqHSMbpN+HKuqBacFVFcswOkrdpflb4Yhp1GqWJZLWmepz0jePnEJJBFdnnM3j3qYKmQ902R5Rz//KNsaPj7+p7HxIBw39P31sm0mW1PNfYrgDJG6/fBFtjRDluAvgpi/g5iQWgughAWv6nhej3aRrHcBykM2KCRJts/4psMCDwYZQT8G+qINwHrXNiIYwqy8w9j7ZX5F0MlvqQCsZ4c6m4XxZXaFFmmoZYKKzJJGNeVu+y1X3rND2PvR0mymB4W8ox8LJ482umOXj3AN6VBLgdkCXfH7I0hRWdDC/LK5yXMnjzawLVWwnxGKcTVLpdpmmcEVR3S6pej756I8CtJs/GnsiOhs64yar8M3yKfWF2XpUEiPTDgDDmkegLm3XuQeDHGaeXGfhZ7rW6jkmbHQ252+rzLg1XJfDm1xQaUwI/7sZ1+UBa7itBQ4DhcCys0tMpH7w4J9265rK8Qj19nzC2zEUhQaNQgDmst4bMPQFJHRhrlTcEdF6jQ3x6zVUVlqbwroiM1cviB/AuLffXHpLlbp8kY94lRArivJqBtICxgR+nW5H7mBpdu0ruIhZx62JV/5/qvxaR1maAgHM5ItOq10hidIBUoE1PtE6UQLUQYNJa9E37c3Rjmw5ipmTfU2N6/oluYxqhlRvvWUJbvDE2S24fAf8YAXULSHI5IhLb/2fAf4YkrH+CgId/rtfxfQTcjAG/r2MH+C91+38O/N8Q0NGMu76vP/9f9b0EApY+RcDmz3Wb/zd7/xbjWLrld2K/iE1yM7iDQSYZQUYyi5ERWRmVl1OpzupKTx3r9Kg0fYRuoDFoQLIFe4AZwIBlwG/z4Adh4Ac/GB7Nq+EL9CBgbMiDhiWgBfSMD6DjOT1zpK6eU1Kerjwns/NSkZkRmcxiJhlBJhm8xN4kN8MPa639MVsaaOzpaSmOuYBAMMh9+fbH2Guv77/+67/+U0QC4Cd6zkP93PS2fq6/f4JjwI4WmkPNEDB2f+G7MZZDrMfs6PdyTX+bZIKxEiwAT+lndd3Hjg2u+cHdhWvQRUJhIsizyNaIDMrAE7bKmLWkmzaIhEsnaWG7tKVdPNvliCLvARLd+894gDSkkr99JrSpaim4a1Z0Ro73FGlSI6dVNLnRPNECjEmxzoAIX0HTHhki7ge/ngAO33IjYYO94GOu85wcZ/jK0jR2Z5EeH/OcetxImFwN6uQ4o6Xap8aete7ZLapEZLjefQPAkDxNaqINTy659uvRC8qc8JA7iZZpmZMENL5MkzIdUsSJVqs1qrFO4GOVvSpzQpPLNNjRUvjNpKTfSokfczuRRzAQJkXMpbhH5Pm84DpV2sk2Y9ZoU6GtpQgWx0pTqddMyHDILm2lXLWocOKXuc4LPuMBOcakEG3aE8qJ9muOM21qKk2xBuSJyPBMvxOPGZuR9FwAEn8oILqU/Zvmo+jObv0F/dcubWl/vpbV/+fn/sdM8FXSQqoH36rUiElcHLFLgzr1qJFolDao42tiBkjkSURDWRrOWdxQocWmNp3rsMnHPAdcLxJbGwMJw9Q+u0yT5wgT/TovkoSKJX+MUZ5noEmQCGt4dcRuwrIFiV9mWmljTPV/wapI7GXgYYTEhgZalhCWqQGuVjlkklhtSB+QsFfTP9Xjma6pNYC1cnkr7zeprRQSA9t2pvs/gvCeHuMRrLR1HOs41qxVQJkua6D7Z3Ex+qOFax0hseMqEoeX9Lf1GcgiJf+rOLDZgFbb7hQXk07+xelc2sW0JY1saYAwJ4dBiTXGjAqCs7/3ilxtHnNck+CtToOVUciglKcc9mkGosu55o8ptUPoQ3Nf9EbjVMxe/500NkpBJpwTp0QndKM1harQqjLhlFapwPajPvn6OwaFNBudKenunPpegwkZYjyuHHblv9UT9uphUJHSymiA701Ij4Qtm+0KK/TEKwujMjVm4OfZ7vfJRwPRPy0JqGklWak4TthO7yqqF+tJk4Oxt8b11AuK/aE0iEKYrjEek+wqccpj5smDp9QOOS2nGZVXk6ZX+dGQ7AgC+pyW01r+KaX6ZnFKxj2qrJIbhYyDLM1CkatPj2EDckiDqO8qRagN2OhMOU8J+JnvTzkpzfBmc3p+UQ6oWbX0qYCk3gw6hQLFVF+kF4JVen5RmBPqASZlYfJmwjlFesw8aBa2uBT3OE8h+qwlYTrk/DeMgyweMw4qH1GLmuRGIdk+nGf1obUA3i5taRfKTBP0KRIU3iIB9RKdKMu0d5AA6vdxzEcrOXqkr5/gNDzbuGZQpp16iASWMQJwpnTfCBIc7qc6hkME3PT0dQkJDi1YM5alAaMP9Hhf62csvLeHK8HXMvfDr2BvH1dS78u2bw61MukP4bQDpxFUC5Dex+mcvobzGay8RjSqnsD0ENI3YdqG1E9gZQdOD2HtrSR7GMnxNr6PA5of6Dgf6d8WkB4gQfBLBOx9gGOYWhOCz/Rayggw+1KP+w91DiyYtmZjFvj/tu53APxdvW5jYHR1+2sIWJwGL0ZBo1nCRLXyYQMh1pXtYdrUS1vaRbQuZW7RSMrYLykgac1SjJX6sTaoFE3AX2JNTy7RY0CeG3xLmwpflX5dutJzpGWu46SUtUqL2zzm53zOx7ygpeXyd3iYgAG/w4+IVMd/l6OkFF30R0USIPIytKkmDUdN13jMWlI2D8Ku9IlosMNZyYEFEwV3W1QSZie+sM0F4ChrOe0adRp4ylYXgCJKtA1rNPmGu9zmMR4zrkcv6PlFXiij1ra38vsH3OUv88fSo4ABeYY0uczHPOchf4l/m3/CwMsn4/SYkWdAREZlA1LJOGo0aVLTEv01ivT4mi+4zgttjlMEBIx5zG16FPVaYnqaVSzSo0qLGR7fciNpqDXRRl8APS5JU76agDHGCM6Q4SF3qNDmNo9pq07tdqJbs7SlXSyTxlLjBMy0Mn2AT3im0GSGz6IHfO1/Iax3P0OLKmVO2KTDIbuJLAeg8cKYDFECWA61jL9Ij2HS3LKoDf3WPmDnF5mpbICU91syp05DtJQ5SZrDnVBO/HKZE3KjkHww0AaBOayhXJkTWlST+MaOJefu0PDr3Ey9cmXxMyROM935FgJU2ucmn2RrQ2s6asSEAAEXH+BA2RYC1M6QhHcDV+00QmI5a3RqLTtM3mqDhGma/VrHYNJdtp2BsdYbIdL3PJx26x2c/JTppjYXrtkksxb7AuwjceQqTrbqNU5yyxrGvtTjXf2X/68t7eLZkqG6NADR9qQogJ6fI2jOpUlSStiUOcZJY6rtdp9BIStNCkZdAVOB02tp8vGAZqmUlMtPfQEK06cwyaYZezne1QrMPI9sV4DEarcPBWGXrg2n/PPKp5wX5LzWRGBqzVhS0o1+M+4kmqLFUZ9pIEza80AYkib6P/Dz5OIx72oFTvwyGy+nXHkqJfKiEXPGRmcKAZyW0xRHfU68MuV+nxvRM273pYY3TkGzVBJQFo8rB12C13NpIIPIHhxXhNoU9OdsvJ6y1R7K5M5IQMlUHOMrq2zqw6CQlmZWM2j5FSbZNKk45mr7GErQrWWJfBnblUaXmecx9WUsQX/OSWmdPALamg4tgQDD9KVsPxXLHGe183VuNE8C8ji1moC7kQ+T7CpBe86gkOVq+5iZ57EyE7Cg0penVjPYVl3cCbWoSXAwJzuSsc48+Z66iYL30pZ2wSyFBFqmx/l9XMb7S6Sk3DLYZVzn0GtIELeHBJU7uNJ7y3pb51BrQmWA6ZckTamSjPweTovVXn+KlKTfQYK1W0iwGSJMynu4kiPTfqrpNvt6bZ/igt144f0DBVPruOx8Sq7pI9O9msHGHfjoJqQ8OH8J5w9I9EtXbO4UTD4dAg2YzmBFda429uT98w6ch7BmQv6vcUBuQc//A1xZf6DXvU+iZcoX+vM5HyZxKnqdWRzo6uv81vV413QOfwNX5mVzWsUF7da867WeG+ivSSfuKm08YiLthL0Zi2aglc0ZYyXPkKUt7SKadX4+ocwNvuUyzQRYa1D/oGFSnQZ3+GXCCL0xOtByeenyfpKUoK8loOFzrifMTWFQVvicn+MxS8rmDRCMSdGkxltqSfMXgCP2EikCECBQmmAVARL2FaDAQE7BiPccsgsIs7LHJdYV5BROaS9pyhKTSkp7i/S4wbMEXEwR06ZKk1rCpo3xyMcCbDR1vEf+bgLQmr4oSLXQDI/bPKYWN2lTVRD1Dr4yYMucJNIA1q/giD0iBS6b1Bizlpw70m7h8nfqA+CmpWM1HzUgz2UtMRaQ+HXSTCsiwxNuJ7INIMy6XY64M3pEjWbSgOsTnjEmxxG7dNjkDg+TZj0xHl/zBX39Tpa2tItm65rgMPkNY5paEsUSKZGfUX8liQhjl4KwzBvUaVOVPh6anOlx6QN5AGtKtc6A69GLROLDfI4lUwzcNdkSY5ybvvERe4n8AECHcnLv94JC0n/DmO6faUa7yHuO2MMjTipvUsT4cSRVCiZFtdjs9IkOXuPL82s4UPSJ/B7trzrtVQMgwcVpJtOUxemoxkgMzMI+NWQdbfr+RigAAV9DHDhrzauMRWvVXYvS9i+ROM/0XI0wgb5nTUttX2Oo2ntWOdbWvycL57MY0irLXupnbZZNqX6FbMlQXRoAL0s1PqJNnFplqzEkrCBMUmVPXg6azDyPsDJlEAjzchxkpcFSEJMfDdloTQkLsBaMKR2GEMHRzY/IMSbwBYzLEGnZw4RLwSsAXpe2uDo7hj6ksiLUvzJTBn4gLFZjUqbfQlzx8GYxsefhqV7oVnvIZncoDNfmlE+8lzws3AIg9jzKoy7NYJupMjc7ysad4MNMwEA/mpDtQzXVplOwZlF94tlcNFlHXQEqgeN9mQM/glIj5LSWZkImKX8DYCbs0POsXOMEn4w3ISr55H1ZYEeen5RWXHv6jqc3r7I7knk5LacBATA34w6nNQFbJ9lVIjJMfZFSCJpzCEiu8RqiDzvaFyZqedSlEXzEdd4w86BdKFGMepz4eQb+OpvljoDKEZzWPEYVWYAcVD6iSE/kEUgRp6Aatxh4ec5TiORALQ0pkRSISZGOREJh+/2ShbC0C2r/SyQIeoAwQy3jHCDgqmXZ+wiY9yMEvOvrdl/o57+PgJxdPYYBtF8hwKBpO9VwzNa/ghPJjxBwb4QApfsI0/I3kIBsXbf5gY7VwFwLEi/jytv/um7TxYG1Nv4n+tuy/11EJ+q+brsoMXBLt/8hrBzouP6BXs+ejs+0WSMoK1Mgdw2nfVWDcoeEnZsu6bz+CNfc6ivg3wP+xsJ8G8P3Dk5n9pq+vo8rD7Nj+0gjsEP9fp7ocW7hAuB9hPFbAP59XDMtZdzymW7zj/XYNWAui6IOWwnTy2fCIbvkvLOkvN/X0r8cY95SBmXFLW1pF8l8plyKe7zwrrPVHnJaTtPzLrEZd/hB/094VrqKR4x1jZ4oe7RKm2awTX30hkbwERmipCx2M+5w5uWIyFDmhNs8pkGdPINEAzXHGW0qSZw20PHciJ4x9nNsHQx5tb9Fj0vscsjPucdlmnwWPaDh1zmhzJ6yYC8rmGDgQwKYxj3+Cv8UgIYncenV5jG9moAjz7iRaJSekeN7zZf8SU3KZ6vaDVvKfknG7hFTi5pkwrlUKTFISvNFBiFHLW6y5gnTrU2VCi3qUYOGXwdEYiHGYy8+4r1XpEaUSAbUeJuA0dac5jovqMVNMuFUQJJ4TMOrc5vHiTarNY2y7+qGgp9lOtzgGWU63OdzbvOYa413dOsi4dSgToU2VVo0qRGRYZdDAXmDTvKdm8b+HX7Jt9xgl6NEsiFFzGWafMIzmsmDZmlLu1jW4jJbSYOnCpt0En1SgDKdpBzfmj15xImms+mV5hkwJseETHKfWHMrSYb4iebwt9zgzG8kyVlpYHWJTU4SdvuYHC/4mM/5eRJ/SLM50YTO6X0+USZ7g51Er3qXQ47YS6pBBwgD3ioGrALAjtXw6gIoz3CVO5aQzgJDAVJXQlj5I5xEliaxg5/OXYPTCAjgfB9WHuIkAg5wCXKLP2t6/BESO2slV/pA37c4vYrEaiEO0BzpOBabZ1lj1TJONuslLllv5fnWQMtYqOj7c5Kq2UQrdobTfZ3q6/7C+NZ1TMaCvQf8k3/lv93SLogtAdWlAbAdvWWrfQ6RaKn6hgu+BtZFt9P0RibZSLrLZ2P82YDcaM5haZtccMZ2s884gFAbMlXjFhsvp3T3s+T7Ib2Cz43RAX4kDpcR5EpnSZZmZQQ1/x2jwipBc07R7xOnVvFmcym599Cy+TnlsE8qFu1SIhgXpAT+u3pJSzOkZGqzK3qie913rHQEDF1jzKVuyEo7hA1ppJQbzaENwWhOUFCaVwSeJ5qsY10AXIp7ZMIp4yDLJBuzEU6JPJ8rza5ky14DO8JATStzE2C/+Sa5zu6ezMdWYyiBqzafuXn4CiLRh82EUzbaU0rBu+RYr2pbXO0ck6uckR5BOlJ9VBXkLtLj3V6B7baMv1XJkO3C9Uj0wZqFLTajjmi14rEZd9hoThNW29rGlF5hnQ5lbjZf0a1lyY6gmm2RbUDWn5KpdHld2mKHYwZeno2NLqflNGPWeFfxyMVjzrwcrsPN0pZ2gez/BPxPcBpQfSQYMhZlH2Fg/hYOcDXdJGNF/gDHGr2v+1mgeIAAnI/0sx/qeQ1wvIVgb1ZO9AXuSd3FSQVs4EBaY3S29fUtJHjbwwGITVyHUSuz+iESMJYRMLet5/4UJ8L/JQJwVvS6/pFe1w90LL+NBLg/12Pu8KGw/zd67rt6LQbk7iNaq8Z02Nc5BQk6/309l5VXdXVbb+E9a7BVRmQW7Poe6Tm+JtHPSrSvOguvRzo/FVzp1h/hNK+s9Gsx8EZKhSMyDBQg8pixxxEN6mSYUOQ97ymSZ8AMDw/XVHBpS7tI9sn9Bhsz+M2d/waAje6UX+8/kfslQEo/A9ia6Xt7yKPfGEJd2K9L7HO1ciw+4xS+572Ue0oX0aXCgWOpl6XqaftWXxa5BVSC5B2kIBhJQvpqcCzVPH24NvovxN9UdEyvX0EXrgRdd7+rn7waHTt2FUATvrf/Uvb/Q/i1uwfgw27lDalY+gBwX8bw6/Unie4fv4VrhvIV4n+MFfUatg6HbN0ZynVpZ+rtoA8BbDw5Fr+TlQQ6Fbj5+hWsw0alL/OwDxvtY3ku+O/EV4VAPCT8Ar7345fK8OrKPKX0+GX43uglhEIEIKvzqmz/7Z2+jPUlcAhbtSFU4N+d/aE8N76BUlVi/lLhQHxmDa5ku+LPgWu1d3LcGWwFQ/dcrMD37/1CQIWCXGtSArwPqafWmntpS7tYVqBPTECPIpt0VC9ayvHLdOiwqcrFfsL4lM9O8IgZapl/jyINBJhM6VrVmrpFZCjyPnnfdJWNgTokz3WeMyCfaFZXaVGkR5sKA/Lcjh8nPUhiPHwmysjvfaDZOmCdM3Jcj5/zzLuRJFhM93iCT4N6Ih/yl+KH5Lwztp4OHQhpcasxTbOwYgzMdSRuK+FiN0uGl0nkl1asj0BZPzepphaOYWo+pAk8gPPvw4qHAzqNiPAQV+k1Q+JZIwMYEcLiO6sAMx3UKg68RY9pYzUGa0t/W0gXI7FnX/dv6/n/Gz1PduGabYyvcXG5K7RY2gW3JaC6NAByo3PCLci+hqwPryoCvAWjuXMqI2lEZQDcmj/lbD3NSUlLDuIx39VKVPpd0hGMCpDvSzl9qRlyXFtnqzHkPFCdvRlM92HrYOjEqjvgbUC2PRcwcwYwZ5JNM8nCRjjlUjcUJurBlNP9NJHn86pepNY/JvKlYVKrVKAat1RjdB2PGaV2KJqizJJjzEoe+b40g8qNQr67W6I86uJHJGzX9CGkdqZEpZjNqEOc8ohTq/jRhKAv49xqD2EEZ9U0Z5/BRmfKoJAVABqfq+1jzrWMYeZBbhRytp4mfTAlVYsFQO7PP3CuD4Jf4/bOYxmDPnCuto+Z+rB92Oe8AO9LwqwNmlJ270chg0IsD5IUXGu/AxAt2xnsdI9ZGUHgh/iFNt5sznQDJpVVMuGcdAOKDPHXI45r68qeDfFmMfjwbk/YD74qaV9py2JlbThlXJhQ7fbl4Tie/g/+P7u0pf0PYr+DW3xbUyIrA7KypDKubMkW6zHSSOk/xDVaKuj76HGeIEFlA9c13gBQA/R8nID/PT3WYjlUGwEzrXz/JRKgfbpwDAtgR7q9NXDqIwxXX8cT4oLLdYRt0ESCQA8+IBMd4oLUsn7+CAeIomP+LUQL9j7wu3qslzrm+8B/jtOmeo2wU6/p+zbPIMxR9WPskAAMCUt2Z2FeTOTf9jX26tf63o7ua827FvWsWgj4auVaBu7aHNn3vKd/b8OUFDnOtHO5aSdO+IRn5EYh9wPRiXzGDV28pFna0i6i/Z3/AyILtI34sgkwQEoe0wij/CXSzG+C3F9niH/IAWMgg9xDE1DSomu0t6Lbr+kxIz3uuW43178t8TPR7SeI77FFsOkjp4H3OtZVoKjneaPHmuhYp8j9n9Zxvte/cwtjt4YhJ7gGJgag+sD/Xcd9qvuAW1Up4Mzv4VhKNxB/E+mxzR/Z+azEdaLHvI0DALp6LbaAN1mWSD9/r+NbwzVZsXk9w/nSNb32QF/PkO9zS/eb6Pf1RufPvq9AtzvT+TNcdIok1AYLc3pJ59q2OQPycqzwO5a2tAtpQ9a5ynvVdkaZpiKHkmGSyIOAEH9SxNzhYaJNKvqkneTzDpsJ0Jkh4r/mr/IJzzgjJ7rNwB5HqsHaoUNZAc+YetRg4EvzKyA5RpkOYy+XNIUzbVSTAvkYaa7nM+E6L0TGxBPJgk94lqztehTxiPG16dZtHhN5vrDON1TCyBLYVkFkvmoP8X/ml33E1x2SJJaS6imL2cq4+NZ86DUcW1SJSmwAAazcRxI9xh61CiT0fSMYGGDaQuI60+oHJwPwQI+t/nR0a5XgcO4Ysx1czItswxy3Rqjqcf6KbnMXeTYYu7Wi+1hy3uwJqJz20n4FbAmoLg0QkG9DO++dltPU+sfCrtzPUjoMeVXZ4mrzmOD1HFKigxJ05qQPp1CbMqlk8GYxnqfowUwaUa3oAvW0nMZjlrBfj+9qw6buwiA049UrrLPVHUJJXueiMTNPgE9SwhbY6EyhpLIE8RR8KUVreVWq2RbbzT6hgrSbXXH+U1/K/S8RsjKCWcmj1AxhBKWRHLs86pJVcGSjP3VZM0S8P2jPoTmHurBWw2CO50NatVu8WUyc8nhV2RLwMgQIeVcrUO73mWRXafkVaqN3ZMIp7EjZv+fNCGYhp9W0vA98//AXMtcVAVvDQFi/R/4un/CSs/U0fjSh5xcJgi5TBWM3nkwTUMUajAX9ubBbD48TACXjC+t3HAgDuF0ocWXUJd2FODVlbTYlfSrfZcCc4711yv0+6RF45QGRD3GwCgX5rjNErHQgrMEou4JbES1taRfIXgC/hgCiVlr0DS5wmyFZcAuOTAvqEFf6AxIA/k3cAlzL4CkgIEQBAQ1N/6mLgIUHCNvzCyQgfIgEluj+pqdaQxbdFaQ83sDYDd3fdE+NdVrWz6zcCBy71dhkf4CAnejfMQ7g3dBzPgH+XwhYauVYWVwnVyvXMraWAaKW+d/AZejtekYI4GrXdYAEv09wjbysaZclnSKclux9HYPpVY30GAY41HGAcAlp2mX6tWUd4+/hWLY/1e3/rn4vB/o9/UheV7/ogup0m87YM25QpUUrqCaa4zlvTIsKhWUjlqVdVPsOAT0BldB0JZNtxAfNENDRADgDVtMIOHfGh4DcSI+5q/tYw5H3OJ+6gQNijS2/qH831/NPgSPkPj5HANy+7ru68Dc4vbq8vo+OqafHX9Xj2bbWqXmu26HvvUf8jQG0BgT7+l5mYd/swv4v9XduYc4seRfpfuDY+E90rAZkW8IptTCXNi9GSvhTBNAs6zbv/8z4znQ8LeQ5NMGVts5xTV1YeC9cuOaU7pvRc9r3N9D9TnVbm4MQp1do393SlnYBTTSKp0nJvq9SHDf4lmrcwpvFNPw6m3RoUaXIezJEpOKYsZdjk47qKcuNXqGl/NMBLarSKJgUM7xEa9maREVkOGKXz/k5A9aJfe8DFuwMjz2OVNLDS+QGcto80Mr2TYbDtN/H5HjAZ5TpaFPBdYr02ONI5ULGCaN2k440Jqz22GAq/sw0+lVHP/HX5sMsaR/ipJZaSPIrxFU0WXm8xdMGZD7Bxd0gvrCPS5Rbo9g9XCxnEl0pJM60iiyTvAqR+PIQJxEQ6H4lCA7mrmopImGghj8UCURe61gCPoyfTRPViBJm1oDLmmGhv+/g1gtLu/C2BFSXBkB6AOPKKq1Shc24Ix2YU1B6IHf/1fYx0wDSDaAGQWfOu1qB7W5fyqoi1UjdENAwPZqLtklKGjJtvJ7S3fOkMVJJSqHOCyIvkNUS1vOaNEYaswapIbQRYHUDglHo9FBm0r1+pQPEUh6/8ho2RlM2gjdJJitrQbgypNKqR7gykn1KzdDdATrOrJYskYLzgpZ6zWDFh3K/L84vBA7lfIlQtR4jeD2H7Jyofib7+lLyXxyJPEH6YM5e7Z0wRpVdtTUa0t3LclpNszackrbjaRmFN3PlokF7zvdmLwkrAt4G/TlxecBpOc3Gy2ny4Dr9TBi8g0qe7UZfytyaxyIKXhM5hVQMrVKB4khkFWZ4nGdhJYJsH8ICpK2TYR+2+sOEDRHEOqbZHPqS0Ss1Q+iDV4HgeAmmLu2C2iGivTlDAM9r+rOoxWmaqNqpPindqSMB2k9xWfMGrlQ/xgGhpohxBwkM7+OCUsviW0Z8D8eGtbL+NpIJN+3WAMfCnOH80j39/RoBE7O4rqbG1LRS+K7+ruuYFlm0+zqOrM5FX8fQ1nGO9P17uv1IjzfECfAXdP+GvmddU9HzpviwuZT9XdC5t/KvRzpG9DoafKg9awG8gQ9dXIm/HfMU+a5+jANpKyRB//TnyHOwpPNs1xjBygDVDcywyYlqRrbIaJOJIj1+6d0hz4A9jjhPEJ2lLe1i2X90CzZi5N62ksw+4rdsYWkJCh/xG/eQ5AO4Dstd4CNEQuQBct8XSFjfNIF/Vz+zhbYtsNdwTPo7uEYgZjdwgGFH/zZ/sNjJ2e7/NvDv4IDckp7X4kHzvyXEt9piuI1bfGd1WwMjZ4h/PEB82wzXKfpneuzfRZ4NJlNiY1wcp/lJH7eo7+KaGdqC/BSngX0Pp6P96/q5lZ5alYHtl8XpC/o4X23fr1VfZJAO1F3k+zHNwYc4ZtY9EgkHijitRGMN9xE/bddUg9Ms/Cd/ytKWduFsqk2eQNipa4ypauv4x95tbvM40Usu8j7Rg8YjSbhOyHCZZgJ49ihSi5tEXkbfmyVN9Oo0+JovEjkA02iVRlcvGJDHJ2KsOq4N6lymyZA8Y2vMTJ4q7USWYKgaqZHqHoMAu7d5TJsqVVoJ2JrjjAxRUovTosouh1J5ar7JYkErYbc1tPnVJs6f2vtmM33fwFeTVaos7GeEhMLCPjXEh3UR31WV44xqWum5OI6uHuse4ode6lif4pisEa75q/lb+9uqyWLIHiA+dQdJtv9Et/8RrhlrH/h7OK3XWPd/gnuO2NrBKiKW9ithS0B1aQB0P/KZ+luMWWOTDtOKdHzPlObEKZJO8Of7wmgEYWyGezDJCqvSjyAdQaNQoVpuE3SFzboSiqZqKo45uPkR9dEbCGAcZMmNwiRQky7zaVLEMBKAdaUPdOH403U2u0NWZsLYjPwMqULMzPMotUNO76SZeR6pOMYrxPJ5LGzZmeeR35ASe5MpeO8VqY6OyXZhtLPKwM+z3ew7RlokrN10BGwI0zNOeZzdE3B4VJMS+UFBGLwM4XwHnpc+Yr/9Bj+OOC9IMyqfCTnCBGAdB8o4lecycWqV3CiUBl/ZgeiiRhB+IfPhzWK6lQyXuhIRv9srMFAtnnrwJpn7qYIj6ZQydwMFgT0Idb5LjVDOrdvGePSCAhkiqqNjnpWuki8JFSMfD/BKMl8AY08640rX6oE0qsKj2u0TpzwYzaEMqRjOlw+JpV1U+xhZNHaQgMfAyhEuW25MGwPi7iF6n10ce9X0Sw1Y3UcWnk9wi9sf6O8nerwdBGCwxI1l3NH39nFAYRvR7bNjWEDa0L9LerwQ14zJGiv9dGGfEAfQhkigaeCIyRZY6ZKBwFZqb2Vbp3/mvQN9/SkObGjimJ4GFNcWPv8a0XQ17dKKXt8fLZyngwOS/0D3N23b38KV8Ndw5bQmuWC6qylckAsOdPjbfNCELP2NjuGujt2aCTyFs0qKMh3pdgs85C8xYJ0qbW7zmDXGlDlhSJ4ME4ZLoaylXVQLEfbhPm4Ba6ycEo5Zb34xBG0ULffrDrLovovcQ/dxi+QUktD4gR73Ia7h3kJyO2HE2oK3gbAhY1wH53u6rd6/ia+K9SeLK8NfZE22cP63rsfeRxJB9gwwRtQejpnr41hNMz2fsWu1+R7GZrJEz1c4Te4A8XkHuASWSQlYQqyp13YXx9Y3HUJL+BlQYJIIHu5ZcogDbNt6HktcGYhglRPgqhx8nDZ4hHv+GZBqYPDXuJLeFA58MKD4AJe0M3/8c5a2tAtpq8SsLTA+8wxpkifHGUV6tLwqQFIqfynu8di7zd3RL6gFkjnOq27qBJ8JPs+4wczziEmxyQm70RHP/BvUadCgzg2ekWGSvG5R4S4PkjVghE+VljJZB3TYJMeYOg06lNmkw0Pu4GljuBxj8vGAsSeNswwYHpCnTIcG9aSh1hG7XKaZbLPGmEtxT9ayKaRpp2pLn6e0UekenN5Js3F/6vyt+VD72UF8Ywqnl2oxofkZY79qIoaHuKqpB3KepEpME19Bau4SQzMY3VsluD93iSB7lmhFKRXEby9WkFmiboSTO7REETj/mdd9zVfa9ewtvDafONNx2+cj/X2IsPmX9ithS0B1aQDMSXG9+wYQ7VCAyM8Q+dLF/rgupfcDP0OpERKWIJ8aaHMqaAVbDIM8u9GRNH8KRRYgN5rzvpSl9DQkuzElqvWYZNNSsq+owqgsJeeTbJpDb5ccZ1DqEvkw2Ftnqz2k2B8mJeYDPy8dBz3ReSlxIHIDszjprLrVHNKtib7o2nBKp1DQ0ospa8MpUUFq147r68kcHNec1ioIoBzX5wwC0xIVAHK2NyYVx6SjOR02ifd6+DsRJ16ZCRlOyzJ/70tZJvjy2IzgeE9kDsZ+jlZlXeZpBmhjqXxqwMDPc1LJUOsfA6JNOihkKbVD3lUK5Apj8tGAsb8mpR6BMExtvD2/yJVRl1HZAb65VCgNtPAZVSY0/HrS8fGEMnvxkYClQT7Jlra8KsVZj05BpAo6hQL5aAA+FEd9Jtk0Z16OfDzgeekj6XKZnXIeyHWfj5aNB5Z2Qa2OlDnWkMDtJU6D9MfIU9OaTI2QoPHvIwHTwcIxvkICO9N+SuFKmPZwi9Mf4YC+n+jnIwTMbOC0oQ6Rxb/piZpG1O/peYzpaXpTLR1PX997giyQv9TXt/T6DEg1FoCWPXGo1/FAfw5xwWIb0Tz1dXtjFkTIInuo53ii12yLeh8JQhv6O9Jr/ZGe8yGO9fCHOAaclXXZvl/pnP2+HndPvxsFPKkufBcBEvR3F348PabN2wx4q+N9JPucK/t2xcpsfR3rGNbaMyIy0umaE+7wSx5zO+nQC7AbHXG1c8zL2jZS+7q0pV1As+TDYuMRSzQZE7yKS/Qs6tNFyL33A9zCEpz2Xgu5Fx8g96Ex/I1Jb/fcHh+Wi+8jvsJYorYYf4hbCH+hxywj93RHt7GSUtXxp4FjTnWRMni7PmNFma/fQfxbX8dk+qcjBODVZlQJOGrAwwgnzzLSbWI9hlVRtXGNV67pNjauR7rfPq5c1kDRjl7Dn9UwNB1V871WlgtOqsVAzoLOuVVa2PiNaWqA8GudIwOyjYFmjDKTo7EKAgNyAxw4fVW/p6Ut7YJZhogK7/G1PqVNhTNlh7o1YoojdqnTYOzlyDDhYfApIIzTAXlmum1Eho95To0mZ+TwiDnydwHTMJ0xIP8BaJpnwHM+5kwbSBV1PAAzPHwyRGTIRwNi36MY9fD8ONF2BTjxyuQZkmHCmDXWGHNGjofcYY8jynTIj4asBaKLUh0dMwiGNLlM06sx2Btw5WnXySrta18UuSiplmwh/uMRkhCSyRFfYz5yhiTdHyE+qYHzp9cQn2oVYCbRVNf9TNPangHmg4zpHyJgqsWm1h/gGhLTZ3H+7QBXAWUxYRXnY+24MU5PdQT8T5HE/jUd+xc6lnvAH+t1LkodGHnA5sGSZ0v7lbAloLo0ANZHIwYV6WTvERMVpAPgZtxhVFllwDr4JDqo2T7EqZjzFLz3inTYpMh7eRj4Irhd77/jfulTAdtunlA6CNlqDgkLwvjs+UXy8SBhWHaCPDXTmrOsOKJ92ilIM6RMOKU469MJSmSYsNOVMvbIz9Bhk/rsDW0qUIOt5pBpAINClu12n5eVbRqlPJt0KEY9msE2eYZsHQ7Bh/MsnJTWoS/asRN8ORflJCN5pdGlW8+y0ZlyniLRzYn8TFLe0fRqFOmx3exTSr3htJzmdWmLPIPknBN8Zh5MFCA23ZtqV8DRlRDigoCkIAxTkDJ/kEZXfjQhH4YMClkGQYoeReqjNxzXBCTOjYbkRiGDQP6O8ej5IjQOkGEizVTCKfmozzhYJe8P9LOIll/hWvMdRFBM9cl2IZj1mZZg4OW50uzSrWWpj96Q7QtzGCQQ+GVhF6lzW9rSLpg9Q8DGW8jiOcYxNW1haWWRxrQyMLWNyAWYXmdzYZvXuHLzGMdeMu3PuwhQaCXtFZyWnQGgTRxAaYt8Y8r2dZyLzFZbXJdxwa8Fp1Ze+qmOZwNZqFuwaqyjGR92ajbgAxzgCY6pNVsYw1M+1M4zZptl5w3ksLJZm99FzcMdnSMDEx4ubKeVEwmIs4MAImYWLH8fp+9nY6zgSr4e4ErWavL+yl0+bIhlrIMCxBvi53aV6jAgT41m0hm3SY2Bn4fyAI+YAz5hKZa1tAtrxmB/jWNYmrRGFkmgjJB7qooDzyzZYeWetjhWmaeEuG0MIGPBGxPWyjuNVf5a9zFfZDp7WRwDyWLHQ1zyx4DZrP709XPzOzWcPvS6/v4NXNMT0zmdIb6vhCvpt89MTsAAYEsCGcDrLRzjFPdcuIsrMfV0XKmF981teDjGqsm2GChs/szYvaZrvajpbWC4yRGYX/tUz7dYqmuyLMbA6i78ruP8bR+naWjPG/vO4cNy/0VphKUt7YLaGTliUgzIc5kmRXLM8JIGlSfkpTklZ3jMKPKeDptJw6oyHR5wlzIdqrTwmch6UEFWj5g6DXrIurpGE4+YFhXWVPi5SpscYxrUk7L9DptSaajl/Q2/ToaIyBcpgQwRQ/K8pyikJTWrNDRWLUCDOtWglVTYtIIt3lIjw4QIWMNzvtjiKKtQKOBYosZ2Nz9oiRxjr4OLye7jkndtXLKnD3yCS1CZ7zGfYuCs+fgCSeOqJBY1mZMnON/n46q+fD3/Hf38Dk6Oaob4VIv/repijpO/CZFnoPVF+C2kyd9nyLPKkom2/f7CXFkF1dIuvC0B1aUBMA58+t5W8neOMdWoLZ3fu1CttRn4eSZkuBSF4gTL0j1+M+pQnR2LFmoWwj1hrL4oXOVu/xHtQokzcpxei8n3BTxd6c7JbHQ5W09zFFylFVS5zWOaXJYHUX1Ggzo13nK2npZyfEiaNrWocqf/hEEhTVTy8eOIKi0GwTrvKVKhDV0Y1ERWYFRYpUiPev9dwuTcjDtEnp846pWULJIn+yIYHpGBAG42XvFdvUSLCrnamLfUoCIZxSvtLszAK4QcBVepqH6ORywas+0+J54AsqV2SKrcoenV+Lj/CoCeXyQikzzMBoU0kSf5T4+Y7XafYBTS3cvSokLGj4R1yxhvJjqoqTim1Axp1i+LfEA0puVX8EozzsixxjjR5LnyqMu03iUdCVCdTw3xI2iWBKDOj4Y0g218JrSpkq8N2WoM6QUFxsFakpktRr3kQeDNBIyOUx6ZcMqZn2Mrqf9d2tIumOWQxeziYrCDBExfIsGiBYdWev8lLrj8Pk7o3som/y5Ot3ORMfQVsnC/B/wDXBd7AxdMsP8HelwL5vaAf4gshu21gQIGMhqDqq3nMEaZaZR2kcAz0nOWcM2r/iaiA2ULfhtDASmLL+MAzr+h11LDdXO9r/v8TZ2vPwJ+R8di5fh3keDzN/mwTLYv1zX9n0O6gwOmTbbgmp7nK73+fURuwb6zlzgWQ4ToFu4hoGlB5/orRF6gsvB6UXP1S50jY2o91PP8deA/hrOsT5sqHTa5w0PeUkuaQxTpUaXFQ+5Q9xvEeOzznKUt7UJajIBtMxzIV0Xux69wvqGKay5iEh23cOBmCceEX0zWLDYZMTa4+TBrVPJ9HNvSytvvIvfl4oLUgETTSVXtu6QxipW9231uzUyM6ekjwOUtnCzLokagvU7p3x5uFbWoSW0VDObrfwNXJRAtHMsSSuYXT/VaWzjpFGM47QMNmLal11ciKXAZlzgz8MLm7iaObeUhftd0wJuIf7NnhAEQIxyDqsOHiSvz71Wcbq4BxjeRBNpQ97mLk12w+d/BNfda2tIumA3JU1Ed0zG5BPRsUqNGkxvxM8ZejiF51Tl9Tkwq0TIdkCfPgE94xpA8TWqamD0iz4AXXFfWaI4i77nN42SfiWqajlkjz4BcPOay1yRFTD4e0PB2hBW7wDhNNFyBGm/pUeQSPQbkOUuA4DENdqjzmjs8VNBXmmA58FXA45Rqq7apcrUgVZSsI/7KEjcmpTLCAaOWbLMkUgnHbrdyf5MsMV+4j8SRKZheRnqyWOLKEnHWBArcc8A0VT2c/JX50B/iQFJ9BpwHsFLG+btAtjm/K/1EeIlLKG7gdLcHOM7QoZ7fNFV/jDT7M5KB6cbaeU1yAODKv+w/bWkX0ZZ1aEsDICTHhAxlTth/+oYrjS650Zx0RKK3WRz1udLsSkl3BXIj0foc+yqYWQBSMAjWyTNgd/SKOAW1blcYoV6N96UsKzPo1rO0CyJiV4ub1GiSi0T3pRq3GCBM0h5FZp6XZL/z/SmDYJ3r8XN6hXUy4RRPU95jT8bxG40/AUSDNRXHqkM6JxXHnK2nOfHLtKiy0ZnixxFTH06vpZn6cL37RsS/R5IGe8xtXtW3qHW7/NrBAZlwSpkOpXbIlcMux5V1XtW2aAVbVGix1RhSHPUp9odSIh8hQt+jY95VCmTCKfWoQSqGs/U0ERl8ZYqW+30iT5jBLUSL57tKifOCXMevPT2gdBgS+RmutkX/FSATSql9VUHMoD3nWuMduVEosuPRhK2DIfl4QLgHaVu0AL2gwElpnSsPuvhxJBIC9Mgw4c7oEcX+EDzYbvbJI8eYkBHh7xm8pZY00Zp5Ht4MynTwk1a5S1vaBbPLSPD1hzhh/C6uMVOdf7EplYEBHRzzybTmPFxTKWNc3cQBCwESmDVxi9surilVAVeObiygA5ze6idIRt2YXDammu6/2FjJAlob4139+4/4UAPRwIHFgNXAB8v2W6OBP1p47xAJOn29RmOkGdhrgIoxTG2fLi7ITMlcpJ/q+Z8igESEADsbON1YA2LsuN/HNcWpIuDBIihrgbNdK/r5Q2RhUNJ9jMlrf99ZuHZgivjuGI8B61S0MUWbKkfsUet2dTHlkWHC2w9os0tb2gUzA8MsIWPSIHdwC+WHiB8z/WNjKxqzO4sD6ozpbowfAwItgbOP3Hs1XHMqY7aaDwtxZfLXdJ8Z8PnC5yZFsKPn9HCsT2M0VfU4Nl5bsJs/NgBgiGNf/lC3aSDg6YGO4xGSjDEW7KnOyVDHZ42gzCctAsQtnD82Rv4Qx6jSsvz0p8gz6KFeT7ww7ixO5sUYqjUc4DFCQHBrrmWAtfn9LuIjW7hyVP/PvDY5mXt6/sv6/qH+Nl9pFRgVnM89ACXZLW1pF872eU6ZEwbkVWc0lTR0qtPgvVckx5ixluODNFn2mfCWGm+p0aBOjJc0pirSA1yVyy6H5BjT4xLP+ZgWFSIyzPAYs8aAvEjPeR4vuE6TGi2vSo0mR+zygut02GRMjm+5wXOuE+Ox2R1SjVtE+OQZ8J4idRq0qJJjTI4zOpTZHb3ijBwNdhiSx2PGmDVSxDSoc4ZoryaJlBDxQdcQn7CPS0Qbq97MZEKMlGDEA6t2KOGSUg/0dxbSb3FSKfYssaSYPY9MD9pb+MziQmPFv0Z8Z0SS0Fp5gsSUJkOjx1ixZ0QZJzdQReLaso7hno73N/W4X+p4vtDP6zh5L/Oh5vOb+nP8L/9fW9rFsyVDdWkA1N6+Jz97z4oGWKf7aWlsBGQPgcI8cZ6lbgglmAbABvhxJE2r9L8pPxoK2BfCeVk0NfP9kIrfIt8PmfpQehpCEPKuXqDa7bPRecO0AsGTEEawsXcMI5hWutJpWctFV0awFQ5hBKfXINsGKiHZNmxEukL2ECAQ2PjZNGEKZPtTqMHG6JirHEMHNmZTiCEVT1mZwWk5zdbTIWxAffaOYqGXiH+fl+V82/QJK5CdIY2y+kNe7W2RimPOA9fAa5KVMvjP+78AYPt+H9bhdN9j5eWcjeyUjcK7xOlPAxn3VjRkVBBwNDeasxLCRjhNslz5fiiOuQMrHmSbQEkaUKUjEkmGSTZNsT+UJlFlbVS1cMcPClly8ZiN11NCLQfLEFFqhC7DmILzCqx05FoHhTQZJiJA7sPHo5fuYYg08do+6HNePGVpS7uQ9hYRnH+CBF1f4ro9my9q4lipVvpk4IF1jD5EmEi2WC/jgMP/AMl8m65qjCuvtKATPedrXIfnJgImmlap6dRZxr6CawBjQvkVHNi7p589QhbRBiYsBr1WgqUASvgD9bMGQGwggILpCe7oOA5wzZtYuG5jrFnpbErHdICAmBZ8GyvXw4HJVoZvjC1laZHFldh2gd/W7X6mx/kRTkPx+zqeSOfV5tjGZNqIxpoz7VgDWGw/kyQAVpiTZ0iNJhN8GtS5zWMqtGQRU/ooWTRd6oYUojcsbWkX0kwntIPTHTa24wzHvgR3vzzANaEyQK6ycEwrjV9fOI4xPg3INDkTcD7BmD7Gpt/HlY/amA51nMbot/3MX9ii3LSjS3ru17jqgBGu87T5vVMc4/UlbpFteqKaCEoATRv7YlnnS5zPNd+8gwCnb3ESMKaZbYt8G4Nd+2IZvT0rHuAAX/v8APHVBzqGy7iknY98R18vnOMO4kP3cf5xhgO/TxH/n8Vpci8yxqxC4hQBHoz9G+q1XwMyLG1pF9K6lDgjnTRpivEYqsaph1QEVpTYUuaEDpsiq0bEx7ygRYUKLTzipHpQtFMF8YvwWWeQJGutgZU0AfYUzDxjQJ5D1WldtDVtRmWybs+4QR6RHXpcusZlmkkVaJkT2lQTUPcxt8kx5o+D/zG7HFKlRS1u8kvvDjf4lgmZBPyN8Zy/XdRqNr9j7P8CTn7KktRZxK+ZTzd5rBSSPLf3F/1KS4+3rtv6OD9rcXGw8HoH1wzQyBDGgF1M9Nhzwc5bRvzpI1zyPcABt6al6vNhouktLnFoCcVjnJ/1dOyWtLJmWoDCC0v7FbAlQ3VpYhrwnZch/FTAt6kFrxpUnZvTq8j26VNoF0rCILXgMSusRzw51kooTa1SsQCB6S6kRxBq2dV2u8+KBm7pCKbaRbVbEypQu1Di5f425zWYbsC5Ngk43l8n359CRwFMX4452luFSFiYK4tO04fRrVVH97fxKlth5SUuYEVK2NNdKLVDrraPWZlBpA+NP9m7haelauNgFQISTZpBIS3H7EPQmRO8npN+C73CesLQ2mhOk8V6qMHwd7USg0KWs3Vhygb9uYCpbQgLMh58KU+YZFfl+zJGmv6kVBvL05KCteGUs/U0Kx2RZggL0olxVFvlu1qJ0qOQfH/KtARxapWNn00ptUNGlVWO99aZKlgzU5bbykz+L/KjIe9LWbq1LNmufC+DQho/miTzF3TP/3/6N1za0v6122UkIPs+koFe1Ak1vVJbnFv22gItW8xaANlAAIc+ElQNkaDqvh7LWFumwWRBaArHajrFNaqybL5ZV89hZfjGlv0aYdjaGK3UtIkEsFZKOtK/LSnyGqeH2JFryX6l29s2gZ6vhQCPFpD+kVz/6e+m5ZwxLhC1INYYDG0EvADHBrO/rYlApMe/iwNa2/rb9AYNiP0pjhEW4JrJ3NHfVnoFTpfLmMEmVWAgR0n3s++1o3Mc6Tyuwow0OcZMyCTdcXsUk/K6DmViPNpUaZZKTLLL3PXSLqjZotYANmPeG6PoJQKyWVLI7nljC5nv+JoPG0Pd09fGcAoRULCMKxH/Qs+3gwNR7V40sM4Au2sLxzaNV2u2dB+5l+/iGkAZe/MRbhG+WOa/mAzK6nFswW2AYh/XjKq/sK/5GJNweYIkea7hFtwFPX8JWWxf1nM9RHyltzD/JotQBmszQFnnpoHT47uF892WoGohz7IAB9oaq6urry2293VerZrA5sV0rE179oGey5iowcKPgbCWPLTv3Pz+kpG1tAtqEWlmeMT64zMhwqfIe9U5rUpyNXoMQE1ZqDGeyOXRk8ZT7CUSADMFSlPE1Ggy1OpM2TfFCZu0qeIRc5kmE81I5BkIU1TNyvh7FGlR4Rk32OQkAV0j/KQxVZkTarzFI+Yu35BjzMc8Z4aXMHAzRDS9WgL4FqNecuWXLYNm93aAS5hZzLQoq2IM9kVJF0tEbSC+5jVMP8c1eg1x/tukVgyUPcTpctvz6FT2DX+oOIKt561aC1wMaCzXdRzbtb8wLrueGR82DLTtusAlnG+0XgcWm7dxjH57vwTdu1mXFPTh3Q8KSw3VXyFbAqpLA+D0corIF9CsGWwzDSBOwbtagdNamu/2SrRKBQHZZgIETjegGPWISRGW4NXeFu/qBZ5xI2mMBIAvLNVUDKc7aXkrgmlJdDyn6ozOFRQ0iYFpRY6/133HzBMA930pS1gQJudKH9iRsviwAOMgizebQwWO99b5xd19whoc7H3EcW2dsZ/j3d0C3+2XmF6G6T50PxUHF96S83qzmNHeKq1SgeO9dcJAx+g75unt0RMahW3pItif86oi2rMzzxPZgUCaWp1nSRb2uWjMcW2d6Z6AotTgp3v/Fs1gm5f726wxloesl6dXkPOOg1XOKwKQvi9lk8ZUIMcIjQ2ir9+XsnxXK9EpFAjvyvc38zxOr6VhJlIMrVKByM9Q6XcZ7a8yKKSJUyrboHqNudGcGI9mYYtRZZW0ZfaA49o62S6UDmTlMaqsclT4iBOvTORneFnZJqzBi8s1lra0C2mPkeDJFpTBn/m8vfDj40pKLVDcQcrErWzTSi2f4kpejanp4xbqpvv0ANdJ2crQdxbOaQwrY1uGCFBgOqMvdZwhDhCo4VhftmiuIuCpLe4DBEi8pddvQaU1YDFdQCvFN1baLb3OdRlX5PnCThrqvtZwxddrs8YAFjQbsNHElc1acDtCgAjbxspmwZX4BrgGMIv7G2PMrs1YsQbW2Dw+wZXdLoKxpk14Dwccj4A1yBJS0a67xgbZjY640uhqo4oeY3KJnvaBpyUAS1vaRbMGLjlizO5F6RDzA6Y/Z6CkLURt0WvHGuEY//f/zHlsf2PJ26L4AVKqfhPnO77C3ZfGQg8W9rN7Hx3Da5x2qJVmWpLqpo7JGKmm8WdhrPkTAxBe4mRcDJw1n2w6eV/oto9wC2sPpxdojZsMgFzHAZEF3PPDni2BjuOy7mvVACYhYIkmA759ZKFv/tqSUFaq38bprNri38BqIx0Y46qD878znXerzqjpfva/4OMqC+w4BZ0H229pS7uAliNkgq8F8jma1JiobBuQlOvHKY+31OjowmlAnudcp6W66xMyjMmRZ8AeRzSpJWDlWAvwAW5Ez9jkhBM9zrfcoKnoYJU2+VgEicesAVCnwQmbpIjxiVhnQJPLHLFLrI2zqrQp0tOGVtLM2cDYFLEcl0FyTR/znDZVBr5IDdj1JExTEF/+Y1zcZkmu1/reaxyT3ggKltw/JWnemn6Ki9VUxuXcpK2MKboozwIfVollZb2cPtD9C7i4z3xigPihEPFPlrg6xT0jFptf2XZGTggWjmV58kUJGUssneOed5Gs0Uv3Q5d4y8L2Yf8DItfSLrYtAdWlAbDxdial/V1hW/YK66KnOerT8OpJdiqtTsabCaO05xeZkJFmSJyJfijvpRS+KazIqS/s1Mela3izmLAAh6Vt0qcCkqa7wAhW+sJo7QUFYlLC6kSYoSldRPvRhEGwLqBhBY4r61T6XbIjkm6H5ynYag+TzFw1bkmGrT/EI2aNMelIAMcJPlSkbD7bFf3RoDOn2u0zZo1G8BHtQikBOZ9WruJHUI3ahDUYFVbZ6R6z1RiSG8lK4l29wIA8K6F8TiBs1WJ/yKCQZaUNf1K5RZ3X5DijNhK90yLvqfS7bD0aJt/Ls9JV4hSUmiFxapWVNgz8PCt9KcM1hus4yFJqh+RjKe8YBDJ3A/IJ23irOWS72edSNyTdlmvdeDkl25cH8qgiY12ZiXzA1eYxQWfuMnYz2GrI2EY7q5SaYTK/RXrk+yHX2u8YB1kGyUpkaUu7YGalO7YIzeKy2Cx89lJ/Z3EBozExuwig+ARhT1pZvJWnGrPJQFWPD8s6LTs/w3VLXdTxXAQcA2TRbEBGhCySryHlnqZxB64MtMKHZe8eAkYaAGuZ+y9xrDMNekGv/VB/Qn3/N2U+tv7R8MNMvY8sumO9BgMvDYB5ra+tSQF6ncY8ANf85T4ukI5wJVwBop1opfvGhhoB3+C0EA3QNoaWaWHZ+fo40Pprff2Huv+XJKy4MTl8JvhMKPKeKi1O/DL4aM9c6dT78eglHcoUk4lb2tIumC0mbwwgNd3NNuJnHuB0OK2JlZVElnFMpH19beyiuziA1spBu8h9dgdXCbDY2MN8l93j4HyI6dI1EH92X4/X1XEag920rI2FFOOSWFphxCHOJ5iPvoXrTt1FfKst9Pt6XgMULXHmIf7DwrodHYeN/T6u6aFp9D3BNfz6Cpf8MXAgwCW9rEqphtP1u4fTn75MktQ7P8CVvlqS6uc4cNaecac4Nq4BxgY0mByAqTqFC+d+q/NmbC7TNjQd7QNQrGhpS7twNiZLjjF5BpywSYUWdRr0KCpj9IwMEe+9IpdpssaYNcYMyHOd53ysGqxWOl/jrbJCO7So0uQyZU6E0EKNb/y7nLBJjrNkfVumw2Nu06PI194XCur6VGkxJsd1nrOmYzQQ1Rpm9igmEnYyMmGf1uImZTrkVW7giD1aVJNtTyjT1MabBugmyZsQ8Qmf6iTdgtMvtUrJktGWzLcEi6/vW5WRgZ8W/1mCfSZyc0kTVEtohYgvMT+0EDenDxA/agky+6wJ7+4V3N8mvWIJ+k8R/+otjMV6GVgiyaQHWsA7HLh7iw+la2JcTK9Jwqz5ex/3bGji/OjSLrwt69CWJuYjWh4jKcOfKoi5MoJ6tkHQn+MFQ84LUgJ+tp6mXchTjHoEB3MogVcYkh3Brx0eQAVOb6XZ+GYKXZh+AZdpEjSlmVG98g48AVxBAM3j/XW2Dofk4jH5/lRK7BGgE0+YrMHBnAAHOPq1IeNglXQkrMpBsM44mFFqhpQOQ6Yl2Hg9ZVqakh6Bvx7hzWLeVQp4xJT7fc5TcKLnBsSJx3B1dixaoRpkditZbh6+gkBATXyZqzAQPVU/gjjwuNLoclpLc1pNM/DyBL6g0INCVjo2Xg6p0aQ46gswrQ712ugdB5WP2G+8IU6t4s3mfBy+EoboIWSCuZzzoA9ZeFXfojo6ZrqhmrQb0PKq1Eei1zcOsuQZQCySA5vxkJVQyvO9ICYTzolLC44eIBL2a6+wjr8ekQmnSVk/QKdQIB8NGPs5oprMM9GcsDIlHQnAvdkd8r3Rt3/e/6FLW9pfjL1CQNCvcJqaljX/IyTIeoIs+i2T/Q1u8f/3cV2TNVmUALCWWb+PgA6h7vsJThO1hiygLbgc6fmMAWBSH6GO8SuY/hjSM1xw+f9AgkADUh/oddixbVx1HCDZxjW+Mh1Dy8ybhun/cWEMX+Gy9z/VayoDv4djmRk7NwX8XT7scmrXaKViFo3s6Pv3EWC3g9OeMp1Um8ff133W9Zrt+/h7etwGTlfWAJl/qH+bZlYK+Ee4xlWmDWisg4dIAGzH7EDl3Xs81onx+Al/jc/5OQBnlRwnlIXpEbdoBB9Roc23HwhILm1pF8iyyOLVgFErPQ9x94zpgRrYdhm5v23B+RCXvAC5t42pCbL4tUWm6eCFyKLXfJBV5OzhGmRZ8qOJLMrtPUviLLKJTAvW2JnGvDSpAAMLzWcaiHqNDxsFGsAc86HeaR3nNzq4ZlnmC+21uQKTW7HzxrrvPRzIaseNFn7uIL7XfL0BrDZ3WVxnalu8N2T+Vwq4aoebC9etlWcJuKC9FLiLa1RlUjAxjqmV1W2jhblb9K0GaJgv/rPVHktb2gWyFHN2o9cc+bv4RDzhNrd4zBpjJvjkowEDP0+eIbE2kTJpAGOdlulQocWQPA3q5BhT5D1F3jPBp0iPt9QWJAXAY0aPIhkm5Bhzg2dkiKjQShK4DeoASUMrjxkD8kzw8YjJMCEik1TU1GiqxuuQb7zPqPOaNcZ02MQjTjRTY1LSNJoznvMxAJfinviVNuI7DnENpV7CxrdTmTDzKca4T/2Z34vapyA+xBJ1JcTPmZ/ZwAGtVmllLNFPcWz9A9lm+qXIC/IpSWy6/VXf+UnbvoVj1IN75iwyUE0b1p593+j7f6DjMTmbxSooM9PQPsAlxRaT9yv/kn+0pV1IWwKqSwMgzEFGgUEQwNSbxQSzOS2vyqxyIqCdB+kCxKkp+eyA4HDOeU30SrOql3J6K02+PyUTTglvSal8r7BOLhK9l2lFWakReKoJOq0IIIovXetXQoiDVekmP5ImWQMvz5VRl+PaOn4csXEwTRpeAVxpdpkGMvZ3NWHXDoJ1ctmxHKcNmcKUOLWaNHAaFVZp+BVqo3ec7qSZeZ6AhKdACCtZARM7hQK5eJw4we1Zn1FZCN6DYB1vJuzTK0+74It+KcAaXejCq5tbXG0fkyrHpN/C9qjPeVbA2umGzEFuNCfPgPOaSAn8aeUa32u/ZFReJRPM5eGwUEJ1tX0MbZEtKEUh5yl58E6y0lAs2w+TTNlmd8jKTLRY14bT5Noz4ZywosfS734lFImCTDjnbD1N1nPbbzf6jCqrbHaHoq060mZdhzCtixTDzIP04C/k33ZpS/vzt9vIotUW55/r60fIojjGNX3qIAvO/w0CyplOqIGo+0gQ+DMkELupxzFmlJU41fW9v43rbnoHVyb/KbIQ/r/pMb+vx1TGafoujtV1X7e/h2NO1RAg0UCPnyAB6/dxIOpdHIvIjg/wt5DAMdK5+LEep7wwhk9x7IHf0Gv7Az2OjwTG38cxbz/X8/0REsxGur9JJNRx3b1/jANQUsD/Wrf/CfCZnuuJXnsNAXdNm7CBMGfv6PXX9NxPcew5Az4MGKjpmH4fYfjO9Du4rNfQgt62aJUdsssnfKtMkDFFekSqq9r0pKNvnQYp5ixtaRfS7iFg2ksccHqI+Li7uAYf8OG9+FTfM/bkDq4s3GKZFE4LtYAr3fwB4sde635lXPO+KuIXfor4TmNjBriy0kUG6wHiAx7pNh09x6f6mfktcP7c9KhN69nKQk26xMrhTfqkhms68iUO6H2oY97Qc3+q8wMfSozYfFj5vrGrbDvTOrXt93AAt+07QvxdHSd1YCBsScd7U38f4BqqGDBs5fum020yNcYOtpJXkxd4iANDFlnEdtzRwt/gKjJMb3BpS7tgVqLLkb8LwAyPdQYMyZNhQpMabb/CLkccacMoj/gD3dIzckRkeEuNOg3G5JiQSbTXZ3gMyHOizazyDBiQT0DWHOPkmGNy5BhzyC57HFGmQ5kTehR5wcfc5QE9isR4ZJgkeq45xgzJC6GIE8asUeQ9MSmVAChToUWbKmU65Bhzn3vc5RtqNOlxSWSdRlMnv2I+w0BWi90snlQ5OTp8mDgzX2r+22I804S2aoYDxG9UcFVh/YW/DWhFz7GDNLM2H744JpPAMp+3gzxrUrgGqYaMtXS7xUq1JuIHV3E+z8Ppase4RKFprloSbx/BSyzh1Qe++1f91y3totiy5H9pAGSPpTHRd7USzGCjMyXyMzCD/cM3AjL6ENaAJ1Lyvzacgg+tUgECYSdON2TflZnTHB0VBIDLjeZ8t1ciTol+Ksp0zY3mpCNp5EFKGZMjhM2qwaA3iylGPbq1LMX+UM49FGamSQacZ+FxYZ9MOGW70Sc7EmBw7OeSEi8/EpZrWgPh4PWcev8d3kzYnR02eVnbloGnpHwfoNrts/FyKhqo+6ItO/ZzHFfWKfaHpB8pS1SDyVQskgjptwIGV0fHHFekkVb3ZpbTappxsMpxZT2Zg5UD2G72WdESqU/6L+lWskR+hnREUno/2l9lquLc4Z7IINCV0ggpvZ+6B9OIRGJh6gvjOH0q30luNCfdhayxuiIBd6eB6Ki+KFzFm8WJBkxuJOzigZ9nUEgzKGRFIkC/5zglLNw4hVuALG1pF81u47pHh0iQtY/Tx7MSzi8RIM70SSs48KCGBGNWOmQsoAgBFazxlGk7mVbpSxxLNdBzgNM5NRaQaYWOcHqANZymqjGnTF6ghgSkWkbFHd3Gwwn2VxBwoobT2ruJ69C9p+/d1bFYw5gRAnJUcWDJzxbGsMg4sAy9zZuV2/91JEi9psdp8GFTloKed6bXfR8HFPxAv6O7un1NX/8NnRtjas1wQLCVW93V7e2zxe97HQFSC3rdNs95OCNHhogqbTY5IUPEDI//ir/KgLwySzJJ2V016SSztKVdMHuBWxjOcE2QLInyfT5kbdoi+1Nceb0xI2vI/fc5rlszODa8LVB/jAMsjY1ketLmO2/hmjyZ39tH7tUI8S0PdR8DMdFxNBA/YiWfxqDSOChh6BtjapHlekePs8g27eMW3/dxZfCWOLNyUGOUmtyBMbw29PhV/kXQwcr49xeOYU2vRrjn0ikOYD3Qv42N2sVppHq6j8V9i1rWts0i0JtaOJ99P8aKteedPfusYsGeKQe4JlYmA2PahEtb2gWziDTrDBJGKqAl+WNiBVjHGhuAxAk+E8qcJCzVM3Lcjh+TYUKLCidsEimLNEXMW2pscpI0vGxToUGdO9FDgIQ5mmNMhgn3+DkZJgyU8TrB5zaPyRBpkX8PnwiPGRkiPGLWtbQ/JsW33CBFTIcyHnEC4pbp4DHjGTcocwLAZizNNydkXKNAA0Q7JPr44b5OmFU/mW+/g9PUt8pI85Gmu2ryTiC+L0D8ySmu6snD9SkItFm1ybWkcHG3aWlb1YPFyW3k2TDDga0pJG7tI3G4K4R1UjI2lhKCnv2Ojv83dL8vET/9Q5x/tHFvkEgbJoDwDq4Z69IuvC0ZqksDYHR5hYlfFoZkVrvXI93nATJMhP2Iz/aOsDunqg8SI42PPKU4HldEPzM/GjIOpMYrE4bCsETA2LP1NGcqs9kqCZv0k/5LRoVVxhXJ1kkWbo3r0QtAy+yBOBUyDrJcuhYS+dJE61rjHQB78RGN4COKQY/N7pBMOCc3GiZsUm82Z3IrTeT55EdDjoKrfNx/xSS7SqxaNgDHN0UCoEOZ7VEfYgWTEbZqRIbq6FhA4xmEdz+cz+xI5mdwM4sfTfBmMh8nJSkTnXiw3emLfEEXvrtZovxpl2xfgOEVoF0ocaXRZVRZZVRYJXg9l/lOeUyyENfmol07EsmFdxWZx5kn5b/nKVgpCVBejdoiLdCRh13Tr1GjSVTKyIBrEJOi2B/SK6yTHw2p0CITznm3X6Dc73O2noYCokM7nHK2DqPyKi2/QrHeY4JPud+nV1hnNTdkaUu7kPYV8DECGBoT6T4SsFkzFWPZmOacNRgx3SjLVNuie5GBFSKLzM91P1uoo8c2/T30vAZG2MJ3H1cCaywgKze183u4gNL0UReBUyszreI0nHzd1xgFds3gSroMDLAAc7F01sCHu3r9xnJq6nUaW8BA1v7CMW4hi24LvsGxFhbZYNYsZogDSwoLP6bp1UHKskzKwBgST3DlrQZiWxnr5wtj8xEw2cq/vtL97gHr0mH3DEm8yWJIno1/iYdkmDAhQ4TPGmP9PIf7kpe2tAtmiyWMHZy/s0WmlVqWEdZ4B7nvbDsD6TZwnd+NkWmLZQNJ7yP33Q5yy7xEfMtrHKBnC3ADW23xmtXPNnCMc3AsI2OUWomoMVK7yP39BNdkyRJJi7IhT3E+11j1nl6ngQo1vYYsjm3bxpX3G1MKxGc9QPxKQfezBJ1tY4kxY3gaQG360iZ3YOClMVav4XS27yHPAPPhlnDf0+vL4ti9BmgYgBrqXPVxzQyNhRXgAPY6Trbglh7zAa6Sw+bFzrO0pV0wO6bCGR53+4+ICynGrJHjjBNldQK0qVKnIaAjKDgZkY8H3OAZkefz3iuSIibHGR4zqrQZs8ZA2a5lOrynyIAyt3jMW2o89z+mSI8zpDpmtqCPWo1bdLwydVr0KLKuiVyPGY+5zRd8TYcyY3IUkbVajjNaVFhT1muDevK5hye9URQi8plwxB6X+IY7PJReGi9xCRtr/Km+KdtcmLQCLkllDNASnF9TpqYl3Js44kKI+GiLEUMcWqVJrHf7Bbb/oA87ehxwrH6Ljw1YtTGYX7ex7uCSSQUEED3AJYXKuGasbXk//FJlCMFJZ9m5dpDy/z5wCYmFbR3QwMWbxu4v42L9pV14WwKqSwMg6J5z+fw4cR7ByznBTghdYV1OS0ahD5NgNq2BdHnUZRCss/V0CB5svZXfxJANZP/TcppBwePKoy7MIF2Ycl6Q8vKNVD9ZqKcLc4KDIdRgyx9KAFuD6WXRK7WAuhXkKY1CsiOoptqEJaTUvTllo/Um6YyaBuhCUJpzWk0THMzJMgWkJP/m7BUAaeZ8vPeKOCXl6wZEfI+XiVZL9lDG2AnKfO/wpQvWvYV9CnB6L403E83W0tuQ84pcZ7oL2WDoNKW6MNoTWYMrh91kAbKiC4FiuQchieyBgRMbkTCD5UExd81rkAdZWBPtmBX7LkfK9NXGOdlHsF9/AykI+qEDLDSDVmRIOoLsKIQD2N7vy/fdmGqJxVTEv8tTwgpcO3ynbIoQRrBVG9JeepalXVQzQG4Hx9C8hivfLOH0Acs45ulDXFOk17gu0HrfJbpNtlC1Bh4GRMZ6HiuBX9Qg/AlOf/Al4gvsuAc4wMJ0CcsIOLCo63Sg+xuAYAyxkY71E6QBE7hA1gBVcLpPf4hj6YLL7pu0wUO9BtMRXAQKfIQZtlj22UQAy7vIwr+DW/QbYGvaVbZ9G+e3fqbnOcBpOH6NsF6NlWAg7Qxhui2+d4ADMRaZw02c/MEMmX/Vfh3fE61UKeePec51irxnNzqi5Veo0OMBdxO2R35Z17W0i2o5nO+pkVS+cIowjgKcfnIKlyC6hfggK1G3RI2VmRtLskESeyRs0MuIH7F70oBTW8AbQ7Ks293F+QUf52d/C9cgywDaLo4dNdJzG0BYxlUbWDmpLXgDJMlmzM4SzvfZuE2yoEwSAydAKzgGakPnx54LJmdg25vMwU091xe4hflrXElpAVcNcRnX0Mv8/kOYHkD6U/2+Ip2Pu7iE3BcL520gQMY/xvlb8+0GBlgJq6/HNJZXQbe5p+ewazYwxNiuBnosbWkXzHKcAescFT5iQD5pSDUgT5W2ltdH+HFE7HmJXmmHTfLekCN2k2MZAGsNqtpUKdJjTIoWFa7zQqo2kQRuiyp78RFDL89lmrylRp4BTS5T9doU6ZFhwhpjXnAdj5gqraTR1HOuU6PJEbt8EX/NiVdOxg/S4yTHGUfsUqNJhgkAVVqaGK5x4pXxmTCqrBKEKmO0KBcCLkHfgvPf1vWslclbIu1Umk1nFzWv93G+ooz0JjGfbqzTkCSO3j7ouxjRKgiGuGeM+XsDVI0MUNb37iC+7FT3O+XDykqT77JYtCbHyTbk2gDn057o65/iYucBDnB9jXs2WkUXOh9HLO1XxJawx9LEvsMFzjHOOWqpV7oPo1uiuQnaSW9DPss+Ae4N3SK5jcvsaznSRnMK4TT5jzsvwIpmfD4ondJF/6i2Ks2uFLSNUyowPQQC2Okey4Yt8Epzsn3wZlNxZprdn1ak7P70VpqNzpSNh1NH/d/RMZiWSVMAz7iiGifGDgBxiubMZ/C9By/dnWMlV1a2O4KNl3Kd05ICm7aAMGDaNMdmWkZvTIvFTN2OMFFJyXx397KUHoRQ1XF3EKfsuzFWs30I1OEHEN4SdmrwYO4Ew429AO5BY+yzECgLezjdncpYDUQJ4N2nBbaf6sTURBogaw1caji2xgiyBt4sbWkXzbIIaLiHBEq2OH6K+DRbQP5j5N79Ka7L9Y9wzagCHGPIQ5oy2aL5AJel/gmue/Q/QJo6adZ7+hWkf4Boje4DBTj/e6LtTAlZuJZwZVT3dYw/gvMZrFjA+VKvyzL22YXzGjPg7+EaPhnDtI80onqELLy/RoJD86NdXDBpjDDTD2zgZAGe6nHMV/7nOF2pRzrfIc4/PdLjp3Ddu9s6D8YOa+rcl/R3V78TA1b/QOf6Gx2jMR3+Po7p9rdxfveJfl+LpWzGNijjNGjfQWHeZ4LPC66zyyG7HHJGjjglrJFcNCbviwbaZZoMJLW3tKVdPHsL/FVcjHIXJyViC+R7uESRMeMtUWNayzGOnVnFMU7LyL1ovqyCK608WDhvGYkxH+o2sR7fGEYG1JmURxtJ1Bhz/xEurr3Lhwx7842vcawhA133cb7usr63h/Mn5j+tpPWhbmOApI3dgEZjl9ZxMVMVByq/1vEZoGvPkhoS/xoL1Fhh4MADky+weUhB+nMcG3iGMPEPgN/mQ3DY5tKSc5ZEMpb/nh7/JS4m9nEsZJOPsZgYvb5HOj4DXJcM1aVdUPOISRORY0yDOk0us0mHmBQD8uQYA/DeKwIkGqaijbrOmBx1XtNhk7fUiHQBZ2X8ppc6IJ8AnWfKGl1nwIlXZobHEK3WVKGAfDSg6dcYk0u0V2M8BVkj8gzwiaQqkQzPvevUaaim6pnKB0R02ORz7iu7NaY6OuYouEpbEcAmNTbpgA9B1HX+rIqQAV7iqhmuLUycEQ0aJMns7Fe4xoMgvsJ0Ske6jgUnRWKJqxSc39F1tYGiBspWcQm4Q1zDKfvcdFflYsRn7et2ppu9p/vauc0XdnCg6D6u8suee4vMV4D3uFjUKjHsOteRZJklE5f2K2FLQHVpYlcAX8BEUEDRwMimMCJbfoWi3yM3CklXoVvLirbqLSnjJ4ZuPculbEizVCJTmySOOT8a4s2kXN6s7PVJxUiJupZdhnehE5SY4dH7VDoTxnhst/uM9qS8/X0py6VuyHF9neLGkGwfjmvr9ChSXW+x0ZnyriJl+RN8MkRElTM2U0PpcL8TE/TnzDwY3MsSk2KrMKRbkes5rq2T94dkuxCWpOmUH0fkgymtUoFcdUzk+RT7UtZu11Tt9hlcS5MJp2T70CxssRMf874kZf9jP0eDOje+/4yWX4GKZCcvEcq4ZjGZcE6sAerYyxHtiQB5ngHhfogfwUlpnXFpjRQxtW6XSINam4dcWXVjkQcudwdEfoZUHCff5XeVElEtw2bcYcOfEhagF4hkgJ13qznku7sl+f6iAflowPSyfFfdWpZUHJOuTZkGIk8Q1eV43iyGyfwv4r92aUv787f/GR+yIg1I3ECamwTAz5EF6U+QMqEvcIv3LxHg7xQXYB3oNmXdznRKD5GSUCtZLSALbS0pSr/EMUuzwCNY+T7CkjyEXAm4Ba1/CFVb9CsjbGWk2xxA5yWUr+Eak/yujmNfx2DSA8Yu+1zOlZTGB8DfRALAn+FYtVkkWP0CAZN3cM1efoqACGVkIW46e9/q3HX0M2OVPtTz15FFdw0JkP8xjjlaQ/SpjHH7t3Q/YxFYee2XOtaXun1Wx7Ohf/9Ej72HK8+tk1QZJGBFgAMMjA32HIar63jEFHlPj0sMyHOHX9L0ZFFT85tUaPGAz8gzYBOrSVva0i6YfYxjehubEly3ZtM/BfF55kuG+nkVd4+b3udrXAm5MpL4TcQXPdHtGzhfaMyhLuI7TM7DFtRdJKl1CwEjbSFswKXJeNii9wHOr1npfh3XOMu07Txcyb8l0oxpZfqxP9DrNkBgh6S8/fy1+uuOXjM4fdWf4nyigdMB4j9NCsCA2geI372mYzJd5wc6h4EeX8GIpEzfSvvbOIAYnbeKjJHRwjmN3NDS/TwcWGDsWnCdtZu450cXeaaY7za27B0d2xD3vFna0i6gtalwhdME7Nykw2WafKs6o6afLkBqijE5fCIu0aNNlQ5lqkpvNPDzRvSMpl9LwFQDYUHkAqQRVJEKbXoUqfGWAetamh8Lq9UXGYAqLTqIdJ+wSqVs/y01PuEZGSbscUSTGgPW6XFJJOjIMCbH7egx3mxOK9giRcw4yCZa8BE+VZUUqHW7jhlawUks1RC/UwdSsNLEyaj0EZ9qJfIWq4JLgpmfsIQ5uMqmAkkSfsXK8i3ps4HTiVbQlRGSDKwhfsgSdE0cQGpJqKaOWb5kN04fR1iwhJKN/VzHnMLpcu8gsaXJfIGL60031WJwk5lZ+2//f1vaxbIloLo0AFqXN9gYnjIop1kbTjna+4j9wzfk+1PCklDvr83e0a1lGQdZst2QUiNkVFnFm82l5L87pPQohBJcaXcTtui0Lk2aTkrrbLf7nKeE7j/JrhLP5sJy3HFjudLuclpOM/M8zsiJ855JMykqUj5xiTf4cUT6VEDcrfYQKpAJp0x9kQeY+tIk6VJXUmYrfRiXclT7Moa0Lp7zoyFTHwFpa+s0ucz11AvC0pxJNp2AwSszKTM4vZaWRlSq8bcdiRTBcU20R7MKDvtMGBTSxKRo+FXWGHN79AQ/gs1Uh43OlFeVLUqzkI0nIkEQ7on+6nkKvCBmszvEL0RstJTd24StcEi3NkvmK9sWRm+3lklA3kw4ZJJdJeiI1EG+H4oGqi+lFBkmlEdd4tQqpKRZ1/aoTxhAcdSXxmARlAuC7NiYZlrG5kcT0VetFcjFY64cyHbnZXhWukrh8mvkibO0pV0we4GUv1vwtVjyWEEWz/sL29vre8gC1RiVtT+z3W8gC9XXyCLcSvor8EHPImP3byBBmDHLX+LA2UDB1B05zpox1e23lqDm6nDehvKOjGX8U8j9Jg6AvItjlN7FlWSW9XrXSYJjDnBBoQHBluU3vUGrEFjU+TNG65c4Rpiv8/GzhevLLsyXlb0aQ95YbPs6ngDHhMgC/8HCd3EXCX5Nw3AHAXx/itOf1fmw+UuA068X5vCpvv5thDWc0nOr7HSVFhkiZW2cJE0qOpS5PXpCFGTY5QiPGT5nLG1pF9H+zjPIRogm3AxRS3qPLAStOuU+UuE0w5VDGrPIALRVZHFtIOYq4ufSuv+Gvreq+6wCf6LniYEx4lOe4GQD/s84JuclxPe+158MrkoAnN8a48o+J4iPKwD/TK8tD/wpUoo5A+agVblyvGdAUbf7mW7zHifvonFaoht6oOdZRXzOEXCi+8z1OgwwPtO5eaPbpJHnzRriI1v6e6A/eeDxwhjKwDt9bfOxyJrK6H5WCbWm4zWm2VjHkNNz5fR8c+C/0uPO9Lw/RsT+rZnMTK+xrfM4Wdge/bsLoekPLm1pF8xes8M2TzkjR50GGSIm+OxyREyKoTZzGrNGh02qtPCIyalOqZX3j8lRpcWAPEf+Lh4xEzJMkJjhBR9To0kuHvPeK9JUNmuR94xZkz4WjLnUFTJOJpxyL3ufhldnlyNaCQ2ThK06Jkd+NGSSTRN7Hj0uMSHDTGUK8gw48cvEvkebKhVa3Oced/ilAsURY3LM8Hhe+oj9yhu5161CwKoSDIA0NugeEmc9Qfyj6W5bgtr+NnDTEmkpXBM+K+MHV1W5+Lmdpwnf3S1x5addxz41KRNL3llFgYG2M1xD0yc4iSw7zwwnYXWAa/pqWtMqxZfEo39Dt7+k5/l24dqsMuqpztMhHya6lnahbQmoLg2ASveU7q6AjzNPnDApYTllD4CSNCCyxkPW5CQTzukUCuSjQbKIPq2m2WhNCWuia5rvTxkU0uSisTRK6kA2gLAwF3Hnquql9OVnGqAA4pSpH7Iyk/cIpBw9x1jG2J9yXF9nzBqlWciEDK1gi0txj3RjSroiwN/Mk3J+UlKysRLKtQSzuTBs9UHw7m6BDBG3+wfSwAlo1YvkgjM2u0MZ4wi8WUyvIAAyXRjtixRCLhqTbcDpfpqNl1O2D/ucFyDji9RALhonDNP8aAh9uPro2OmS+QJs0pdS3UFpHa80o3QYcry3zoB1rkXvIEbYpp0pzOB0RyQNmpVN4kKPreaQsKAAdIlk/jdaU7nu/hxvNky+t3PLJPowKadFGqEgurXeDNINAcXTp5BWlkfQFwZqPhow8POsVaRR2cyD3dErJm9Z2tIupv0YWcgaUGhgoYGQHq6rcwFZVJvOZpcPyzrtCWu6Sk+QzqCmR2f3vjGMfhtXenoLx/zpw3kTVu6SaN+dtrVaKIC8BaSmdWh6nwU4i8T/pTuQM+aXBa123rsI++kQV0YaIawkK/8v4/QJQ31tJf9WcmpMqwZOt8rDadHuI+CJAaZmxvja0X1Me9FHAA8r+z3Aacw+0M8uL8xnB9f86iauJPkQAVVv6d9WutXENUu4husCa2VcBuga8N0G8iQdePNI4izCJyJDSxtSNINtmtTIccYLrlPAR9CFpS3tYtl/9NdgYwPxBZrMoYPTlyvgkivG5CksbGuAnjE7TfPdmOT7iJxGDfFFxuwxvTtjE50izHk7D3qMHyDJkgJyf/eR5FMV8T2ms2psWkvudHBSKcYSRY/T50O9WBZ+m1SJXZv5wzaurDO1cFxjOpkW6lNcg6mUjvXWwrFMNkH9PCWcVmmkf5sUivlzkw0AqY64tbC/jdt0Xn3k+bDIOja2l0kjbPyZfQ0ct/1NJsB8pfl+Fj4zWYY+DvSYyaX8J/87lra0C2dXeJOUyjep0aNOnQYeM47YTfRKY1KUOaFIjwZ1GtTxiNnlkAk+PtHCe0dJeX6PIj2K7KqwZtOr0aPIhEzCbJ3hMcHnLXkaJSn5rwYtMkx4T5H3FKUsH9FlzRCRUgB2EMg60rRdAVLEbNIh0kxxj0vcHf2CF8G1RMqoSI8UMS2qossaD2Rn6xVQwVX1WKzbR3zgLRwACs6nd5GYy4bSQtipFmtfw8mNgKtAsNisj7DfQz1WLL+vPO0mEntJrwADXjdwMgOL+vomP2g+yyoDrKrgQI/3fZzPXsURKMzXGknCpKuMWJBd2M5ICSqllzzLlnbhbQmoLi2x3CiU5kmnCBioC96Viuh2Amw3+5xW06RTwqhMv4XtRj8JSKc3YeP1FPowrmWZ4LMx6wtIl0Wcpi7Ys5Fog+b7oTAitQQ0LkBanaN1ZE53gQ1IR1M26DL1BZjd6gyhP4QyVPpdztaFYftBVh53zmJ/6AL21zDdd0zV7bYwNA18PQ/gUtxj5nms9CE7k4ZPAFsHwyTwDp7MoQzpxhxCATAtEB3XVhn4eXLxmNxozspMgNVJNg21KVlz/FqmtbKQvbt28I7Ta2le7W1x9fBYrlUfRhv3p4SfCnN44OXZGHXZP3yTgABZC8Tb8PruFlebxzACrzBnVFglaM/JrY9l7Mgxp3XYOJgS7stx0wfIgyeUORpVhPHKU5h+Lqzj4HBOEPQTDZq0flenW/99/hOXtrR/jWY6fRYY/SPc4tsWpQdIUBUjC9g24t9eLmz7FS7QOkQCQgMkjc1p2p3gFtE/02P8DKZ/CCkPBiPY2EcCup/IdqkmjLtyrlwdp0Fq59QSqbMQctdwQaOVSxmY+HTh/fu6n5X7G1BhGlTWAOUlsjLuI0HkP8T5MQumKziNQdOI7eq1PUGA67u4ZjUN4D/FaRtadHKIW/gfINqoKZ3HnyKAqs1pRcc+0uM/QQL+dd3Xynpt3q1szTRbX+u12fdRBv5jXNlaCTiDy4MT6kzxiInIkCImzyDRUKtGbSa+zxpjYjyGH3T3WtrSLpB9ifzfN5GyfNNB3UHAzD7C7L6LxFZ16N7LUvpx6IDFCnIf/yYf6qeC3H//nr42sNYSPmZZXFMRA3KNST9Dmk/d1209HYsxzctIebqNu4ss3E1D1BI5M1wix8aV1W2NhWsyLgYkLpasGoPeEm9DPfcOzqcUcCx8S1z9dRwAYAt/A3gtobRYNmvAaqBzcQeXhJsB/1uctt8O7pnQJokJP5A4CXS+W7r9jl7PIhBhZav2f9AGvg9hHbL3cUCvld2aVvcIp0HeRyo/5sASUF3aBbSP+I6Ggqg3omc0/LpWoEzIEHFCmTwZelxil0MFQ32K9IiRisuMitHVaTBGZODG5JLjSAMqYZj2uESOMXd4yGNuc5dv6LDJmLUEBD1STSJfWaYxqUSHVeDWmCY1yqr12qGMh0jJGWP2hDI5zpLzPwv2qfGW/GjI4+AWYwVVjWk78zzoCPGGWPqrBD+Zf9gsz3yXVSWlFj5bZLXexFURWALG4j1L1oRIMsp8j/laY5DathbXqgTA+ZewshhfL4KbHuIzTd/1JQ6gtVjZ/HsWB7yO9NwDxLc9xcWTxoD9FKkGeI3zhcbKneE0uBfj3KVdeFt+lUsDYOUEstZBbwPwtWmU6mCtgHT1ixFnWpsKs7EN5zu6bV8AVnyY7iHsz2YoTtWy+aabZ7+RxlFhBbKHSDn5gpbT2Xqas3UY1PKUR10BCkeyT5Lh72oTq/acVDwl8rWZEhD5GYLDMMm4p9VhB515cv53+wW2H/QFiGySBKsrM2XKxlJu/25PNEaD1zIPo8IqudRcrt0jaeo0KKTZKE8hlKZTY1/YpKcqpyAA7JzTWhrq0yRruNd9x4pl2zSjv/FySr58zHd7Ja7QlbFtAAVpOEV2TjHquXIzC5z34GntKvnagEtxL3Hc3gyy/TnTDYg8HwrafOrQfXdZK79d1IBpQy475zwLK8pWPa2l2ZgJS/b8GgkLlhFk538u/5ZLW9pfvG0gwKUBo7+D6IPeRxbqFhR9H1fqY4tzD9HoHCELayvriZAgysCEHyK+tYsDQL/SY9aRpk0VTe74sGGN7FIk+k65CAlGDfw0ram3OG2rn0P5nvx9fh9W9hHwwgLRHyDBYRand9pBQBTTxjMpA3ClW209zu/peH+oc3Ffr+EQCVD/FgJsHiAarD/Wa72D0501du9v4bpbG/OsAPy+jidCwGZjX73W7+YO0vCqot/DIRLQVnGgQ6jfa023/wM9119HGmIZa+33db+bCAAe6zj+sc7RXeD/KvInA/JJN95cPOaxd5sKLSb4NP0aawquFukxX4ZaS7ugdvJlwGDDZ4ZHrX/MJLvKkb/LOgOGumjP3xswIE+GiDZVPuEZr35rixxntKmwxpjivZ50u2ZAph7xlhpFejzjBrsc0qZKmQ6ZvYjcPWns1vIrVKM2Lb/C5q0O+f6UX5b28felm/UEP2ngUvvdJmuM2Yw6NH3JfDeoU+aEI/a4zWPtil1Lzteriz79DCmBvb3/mA5lIjIJSAJyD8e/m2LMGpfiHi2vSpkTYW9FPZ59cYOcJk/YE0mlatzisXebFlV264fkOEu0ETNE9LhEmZPk/QF5JmSo0KZBnevxcyLP5wUfU7kp5cGbdLjS7vKqssVm1CETzhkUspyRo3mzRpkTfCbMbnoJO61KOykdnuBTVnmSXDzmxCvT4xLe/oy9+Ij3XpEheTJMGLNGTIpfP3jCwf5HSQfz4t0epXbId5USY3Jcv/OGQSHNe6/IW2pcpkmbKrW7TSr9LpPsKmM/xzM+4RI9ZqdDlnWuS7uItsYZeUL8OKLp17RUfsgRUrZ/iR4V2gzI02GTIu+p0CKlCdUTytoIapyU7ecZ8oxPEj9gQOeYXMIQbVHBI+YttcTfpZAeIx3K1GhSi5u0vGpyn04o4xPhEfM59+mwqZ9NEkZshzKf8IwYjzxDOpRpUaVGkzFr5FJjqrSYKRjcoyj3fPzcJYcOIHg4d6CjJaiM4f8EiYNjXEImhSMVfKuTu8iWt9+mYWrNrGJc+b25EJMOeIIr3Y+BkTZvtqRSASELfYUDOu08Brbab6ukMFkB22ZPx/MQud6SHuOJ/m1r8BoCmlhirCZks/QD3NraKhI2/jv/+y3t33BbRvlLcxZIE6ZsAyhpN3lzJCm3TW4kZfIrEVDTbYwNoFnutJabnl+DFSu/sky3gaEzpHN9doFRGQlL87wmOqsbHWG7rlW6Ai50dF9zZprFz43m0IGVFmSrJOW4vUoRf68tAKplvjwEyEgJy7JHke1y3znZEgIMVPW1Pii2D/riANVJ50ZzVkZwXkGAUJ2fjc400cSaebDVGIInzN1zAzpGCGu3AtnRkFxhLJm0RcZDQbYb76yKJq1l5pDxBE/mnO9A0JxzXoDxvVWC5jxpFHOz+8o1QNA5Tx8iTNIRbJ0O5b2unsuaMyjYffzpOjEe5Y0+6UNlz0JS9rzREb3adFP+F9ZuTt2D4uS/83/d0pb2b5ZZ9tv8XogEUn0E/LNS8TquEUlN/36CAHA/0u3v4QKo38ZlwjX5kjRAMQbXog5VCfgPEdDxhzqGn+jYanyYLT9AGk2Vgb+HK+ePEKBwD1YsQ27bl5GyqgNcAwDL9AeID4txzaE2dKwP9LiWXS/jWLvmP43tdcCHrKp7CDhppU+RXruV/X6q53mKK2sNcKVYZRwTrqZz+lrPaWMAxzpYLN81GRILwPdw2qwWNK/rdWf1fJeRAP4rnLTAGbxb26Sp9b09ijz3PmaTTlJK16RGkfdUaZMi5k1Sj7u0pV0sGxAwYY08A87W0zz3rifg4brq8z1H3hvogn+NMQ/4jL/Gf6nsq5gBeVmkM+btwr1TU+fTokqGCQ1uA1D3G0zI4PkxZ+RoeDmiko/HjPvc4wbPaFFJylvzDHjOdYZ+nudcp0dRy25T3EaA0gZ1nvGJyHLoWGd41GgyIM9jbtOhrDqEl8gzoEqLVBwz8PL8M74g7w34t6N/SsOvCxCRGlDkfcIGs/M+9m5TpsMhu9KJW5ln1qzGY5aAnmfkqNDikE8o0sMnoukJYFOnwZV2l19U8pxQJqpkaFIj9j0mvk+LKtd5rhIkA15wnTXGnJFTwGbAc+9jYlLkGNNRJoHnxQmjvk2VjreZsOwb1BUUKlPcF93GM3KU6UgP8Uo+Yd89LonUyQQZ1wyPS/RoUuOkIIBtndfSU4A8k6RL1tKWdrFMKlJyPPc+E41Tzhirb5QEq/iwS/SI8OmpDzF2is+EijZ2smRQjjM26ajf6CSl/wA5zqQ5FFV2OaRBnSF51W+d0KLCLkei2+rlPmC3esR4xIy165HppXrMqNOgRxFPywRkLAL4+kRJ0uXELycAryWD8gyEVBVNncxJE1lzX8M1qvNx/QdmfNiUSde2BAhr/Wf62wgG3YX9m4jevlyUWBZXIVVAAE4FURPJgRqOFKC4Qda0rXWN/IGGfoSTNjGw15r7mXTMaGG7GU5uxeQH+nrsJwiD1aq7Og4TSeL2ysKcLO1XwpaA6tLELiHMwhmM9laJ/Az5fki8B4NP19lqCvg29aUbfGYvIibFVnMorEWAfQFhI1/K+aclaTwV1OaEBdVirfNBR/k4tQoIk7T0KEyyQishxMEqYTB3IGJJy/MDEgDXdFo3OiJBYOvW6b6ApfX+O9JvRQ80ZSzKzlQc9kzOk2eQLL6nFWFqnv+Gsm/L8L4kwoSldkgYwGRfmJgzD1IBtEqiRRpXPdaGU1KxgMxhTTRhQa4524RmqcSVhmi8TPeE6XmehZ5fJNjpEpZER3WlAMf1dbYY4s20TD+YQwVOy3IN0z1h6o5qUoofzObCNo1I9F6PK+sAbGaHRL4wVJuFLaqjY9FrVVuZyXc32E+z0RTW6VZ7yGk5TaOwzbXaO6Y+8rrxTnaawVHlI6p3RNsnE04529H903+e/5xLW9pfnP2dfw7ZEyQgsgRQiDQq+c+QgOhYfxtg+P/U7R4D/3v9/A3Sl62nrzeRQO8ZroHInyLJh1UkU58C/imu2cjXeo5fQ4K0F0gQVwaeI/7SmqjYeNsIaPuRnue/AHb1/ffA39VjBEjA+ad64U0d96mO6TWwBrMZpH6p5ykD/1zH+5/pPiUdo12jNUVpIozUjr73E1wg+kr36SBsUZN8eYMEsEf6+VC37ennLeDv6/mfAf8XxNc80XNc0mvP4hpXvUMCdtN1famv7wNbes2+nusXeowG0hDHR8DdZzq/+3LcGI8bPOOI3WRxZOV+VdqMyXFGTvXUbBWwtKVdPPuOOltErCEsR9P5A6jTAKDIezbp0KKaLODv8DBhZD3kjpacCuw4IE+d1wkIeUKZu3yjjNdZcty6NnWZMGGi91KR99zgGRVaRGQS0KBBPWmccpdveMgdqrRpUyHG44QydRrUFCiUkts11TSccJ0XfM0X/LX4v2Ts5XjOxzzjE9pUKHsCeOQZMCbHiV9mTE7KZz2R/ajS5jG3pSRWm8CsMeYv88eJXmKOMxrUk2Y1HTa5QZMZPd5So0o72X83OlKme49XlS3OyDEmxwSfGk1ecJ0KLWI81hgn3cDH5JRhKgCoAaweM52rXAKs5hkIaE1MlRaXadJhkxpNPOJEf9HTEuImNW7wjMfcVnBcWHVVWpywSZkOeQZcpkmDuh7fJ8cZPWJaVBgzw9HSlra0i2NpIkbKsi/SY6K6oxVayX1l91ONZvL8l3tgTI+ixgmyf5kOHrMkUSH+KEOkTHLTavWIk0ZYPYpkmJBjzCYdxuQYs5bEIVaeb+fxmXBGjhO9r0UOYD2JS4w926SmjTUjUnFM2yuyxpgUMRN86nGDb7zPmJDBjyaJjv7ptTQb7aljmFoC3JpJWZL7rmzPgX5mQCRIXGWa09HC/gZUWsLfx8k0mXSKSW/t6b5dPuxN0NZtf4prKGWar+AkCCxMM9KA6fLHCNhrEjWzhdc/4ENtV40PKSDJ+TIOpEXHZhVulvB/xNJ+RWwJqC5N7BWJEHOcEs+SPoR0CrLhUJxQQcC67VGfqWmNAisL8nArLyGrWZe0D+mZ1H5nR0q3bwtgWI36rPQBf063lqXUVopnpMzYJgSP5rAjOk2TbJqN+1OXSVK9qWawTY4zKI+l/FxL9tOq35IukWiA0oSNHZUqMMYZcOWwm+ijpPskZft5BKQtHYZJo5PsBvjXpKw9rc4/VxgLINwOnbP3RcJgqjpg2QMgK1lDY2xNsqukYpEMuPK6y+kdBXtVv6rYHwqo+nQI/jwR2d5AMoNnt9KkD6cEI2GorrQhreUDBuRuPR3KCw+8inx/1dGxaNaa5qFex4oP70tFZvUBpYMQnsBGdspG5Z3o2BbgWlNejyoCuu8fvnFZwgioC6M46Yq7tKVdNKsBVxAA7wjpTmx6SecImBcgnYwruM7UQwR09BCQbxMXwFm5kvpRcghwt4vL4huTs4KAfDPdZg2USCT3bKDHX0USSL5uY+NA98sggOFMx2WfX9HfbxauZZVEAiVp2KTNT1IjPZ+PZM4KSCfoQK8xq5UIprd3VT8v6BhyOo4+wj7NAts6r2e6TV6vYa4/Nq8lnftQ/76k45/p+If63iXge7gO1RM9znOd2yIOcE4jviqvY0wvvF+S8US1Vfw/mcvncz3/R7rPJVjhnGfcwGOWAKfWNMIjTsqBexTpsMkn8T9naUu7iLbOgBonjPX/Oc9A2U+zpLz0Bdd5S41djrjNYyb4eJxRpMeP+B1u85gxuYRFKWzWfMLMMmCgrCxvA20H5GlT5TaPmWmZ6odgRYqYmCptrJP1LlJeX6ehoN6QOg12OaLJZeo0WFNwo8Zbmlxmhkd51GU3OOQb7zMdoxzjLTX+Lb6mTTVhtPpaNluhRYsqHjNujA7IBwO+5gv+bf4JH/McsOTLtzS5TJFeAuTKvAoIavIgHjFH7BLh88y/QZPLpPiYOo2EvWbzGOOR0rkwXxPhc53nzPCo8zoBXU0r0ddSfgNWrfTXGGgGmnrMSBEnEibVuEXOEzC4SY2Pec4/5a8wIM9f4iED8lRpUVWA9wHC4JOGfRn9HoVNHDP41/WvvLSl/feyUJMV6wzwmDFQeRBjjRqwKWX/0vxJgFef+3ye+LuayWLQZKCapq78PkWDesKaH5OjRpOJnsdspokU8z9n5JKEj/lP00SNyFCjSYYoaZ5lJkzVOGHDZpjwS+8O13mhIGuGIj2aXo06rwW09XMEhaH08zAt1de4Uv4RnH8fWePv4SqfrFrS/l5krYJr1mRg5h0kid5CAEpwAOiBnnMRPDUtZyNhGaO0jQM37yEJeCNn7S+M/RGu+inCaf+bFJ9VM1lMbNdrgO0+Qhyo6Plf6vZW1l/DNU5t6ji2/9v+25Z20WwJqC5NzG7wGmw0p5wHU6cxovog7+oFyv2+AKmBMiP7c5ipVIBlkUKSBgDTumpzegKkJqzVn82TTE6+HwrIaQ1bQBySZruyffCjqdMIfE3inK8dvHNZqCxODsCuZwjhLWV9rov2XbNUojzq4isTFuusGpEwZDPhlJW+gLuhOsesiv6P74heK5HMyXa7T7fi8a5SYHvU5zyAlZ8BZWHJrrRJumRvH/TpfioAcnA4F/BlZvMwdZmvCNJt2EoNHfBp2i4zGeNGSyQDTqtp2TfEPYwMMK3CdEPGkdbmON6nJHd+WFO5BQWyrx4eM6qtyvs2j5CAz2FNwOFgNieIQjffWiacbej3X/r/5p9vaUv7N8f+V78XsDcbMfNEw9mbxXizOdkR/KIiYv1bjSGntTQDL0+l36VTUN84gu9qJdYYU3oayv3dBPbhuKZMfw0oz1Oq8ZSCg72PyBBxtXnMd7US+XjAxssp/+/93+AuDwAYs0atf8ygkKVHkWvtd6LlWUgz9qS5wf+o+QhSqu88mjMO3O+gOXcM0RLwFM7vKhDahe7NLKk45r1X5FLc471XZDPqcOTvktHA3BhdVtq+33zDqLxKJpyLX+/PeVnZ5trBO87LMA5WeezfZpcjttpDnlauUoubZMIpvUDmrFnY4mrjmLAEnaDElcMupztpZp6XLAqKUQ9vNseP4HVpi53uMSttON2X7+BKs0tYgFYgDfysqSDIGDxN7PmRVBRst/sJ079byXKpGwpLPwUnpXUmZLjyv+iCr9UFXTleqySVFc+CAj6tRAsRBHjymZCLxuBDh00mZBizxteeCcYubWkXy96xzUzZTj2K3OYxLapJ1+c6r7nNY04oJ1qCBgY0qHOXb8hxRoaITU4o0+E5HxPj4dHmPUUO2U0YXx+PXvIi8JJFf0rBvw5l7vCQ53zMDWU4tqkkIOVzPmZPu2NbAxjTcN3kJOl+fURNtFDpJSWvPYp0gk3aVLjDQxraESsmxce8oMNmUtae44xn3OA6zxMWWI4xjeAjBuS5yzcfABa+smsHCob4TOhxSZmqUvpuDWR8LfFvcpkB+QTgGJNL5BVONPO1rkzQt9QSVmpRS+1j1YS19xrUlTM/TsBTnygBbKzEd1H+IMajwQ5F3nPo7SblzTEp2lS4x30a1HmvbOUTylRpK4MuUqBHdCU7lFlXrdoWl3Fdupa2tItjbbb4mBNmeByxR5UWY6qim87lpLGTyWrEeFyKe+TCPp8FDxQofZv4Akm+dtjsDvFKs0Smo06DFhXOyHGd54lsikdMizoT9QUmSQJOTmBMjhQxdRqckcNnQosqOca09be0xfITmYEazURLOqUMeWHWZigrCDwgT5kTNulIjGOl9tbEzkr7jaBjjUvrOOaoyUnZWt6aiVrjKmNyfg3aa0u2OSVpkJwQqgysTeF0UlnYxuQBjTm7gQNlDQg1qb5rerwfLIzjNUm/kmTcr3Fr8XOkyskasC6yUK3J4S1csyoDdg2UPdS5yf7L/9eWdvFsCaguTewqwr4ZSXl8p1DAK8VsdoeslOHVp1vEeGy/7Utnzz6crXtM/Tln5TQbr6d097Pk+yHpNnTrWQb1PFefHsvxR0JuOruWJhNOYR+mgYKrHWl2REDCfD0vwLgmdCvTKg1LsrBV+S1I6XuPVPDZSt27C9dVlkX0OFgl3vfYaE25cthlWhJ907OqNlLKIs5ZdVtawRa5vTPyoyHZhswJtwQQ9mZzcbSnsH3YJ6yIrmxpJN55UEgz+x2P0tOQ96UspVHIu5siC+DN5pyR47QcC6N2JOf8k71b5BlQ5oRSHEII3btZSochpzsyxtNqWtipAJ4Aqe+9IjEeG+E7xzALYfqpMIzPA5mX48o6W4dDbWYFbIjcQLapMgeBzFHGmxP5GXKzEHwHSqyop8gai850cMA94FT78bwCrZRO0NKWdsFsTJbIHyWAX6z/+6PCKm2qiWbf2JOGJL2CMBHO1tO0C/kk+O3elP38nQlHvgAGx7V1ctGYoDlnXFslmM35rlKiFjU58cu8qm2J1pyXZyPu8gnPmJDhGTe4F98nFcOZMpQOKqmEPWAln/ZED/pzupWsMLhSEY+92+T3Bqwxphq1iVMeG0gDv0FpnXFljRQxVzpdNjjmtJwWloNf5FtucJvHNKhLUxJ6nJFjd/QqSYCl30LzZplWRRhP3X2JEo01YbbGmIGXJwoydNikUygT4bNZ6XDil9npHvN072qyfZ4BDeoiQeMPgSGbUYf7pU+54z+SY5HhtCoN/zajDucFeF76iBzjpAxv7Oeoj97wrHSVNcb8aeUaGSY8rmjZa0m+U9MLs0qC7t0sfjThtOYx8zwpk00Jew1kQWTlyQaeRn6Gt9So0OKIPeo0OEyc89KWdrHMkictKlr+7RjYRd4n2pr1qMEz/wbP+CQpRR+zRp0zBuSpaRl4kV7Cqvxj/nJy/wzJE5NiFniJjqBJaXzGAzqUE9DUY0aPCp/wDJDmUzY26Yx9RqSJn12OElap6Rd6xLynyDoDNukkmqNj1jihzAxp6pRXFukiw8ukBIThKT7YfNzHPOeMXLJvhK/l8GU+ix4kzbLqvGZAHp8JQMIUNckE69KdYZKU39f6x/QK61zSz3qIb84gDbpMG9YaU5nMgIGpBsBY8zBh7NbIMOGIPa7znAhfdFP1HEXeA9KUK0VMnoEw7nlGj0t8zn1lw12iQzkpd7ayY9NeneElkhBbHP+F/v8ubWl/XuYz0Xsm0oSDyFpk9D72mCWSJ0V65DjjxCtTn71LwFMDU+0eA4nBcpwl8hyX9K7qsClxCtLwsk5DdVfHSRKmHjXo+UVayqA31rtps+bjAQMvn/g9kLgq1himyPsEYPWYMcFP2P7m11xlwRmRyhwkQOYDnO5oE9cHoIBUED1CtPFnCMHAGijfQgBJA0BLuJJ4K+d/op/XcZr+1uDKSusjnKyAVYSZRj84ueYuskZ+TQLITj+F9FOEAVvGaeobS9UabWlPlqRRVR3XCHaEYAem21/HSRkc4ABjn6TZNuBYtMtl8q+Mrf6rN1na/1+YsqSml+XPGI+t5pBxsMp5DTajDpuxLDqzT4BTZVQC3ixmWhKN0ZSWtZaaIVcPjpOOfaFpiyDl+zSFMZkbzUUzVZ2waYICBK/nZEJhFv2ivk8j+EicquqOAoyDbAKwhoEAhGEJ3n1aYHoTTnfSRD4E7TkDL8/T2lXwBbRNd2FtOOVdTZHBQI7NoYh0F/tDsofy/tl6mvOCsEZ9y7ZtCMDaCD6iFxQIA+juZRl7onP17mYhkQvYbvaJUx7NYJsZHgMvzzSA0c4qZOFO/wn77TcMyHMeCBO01A6hL/Nr8x1qGS5ZYdH6TKQM3x5ifSCGdEO2WWkDM3nQ40P30yy9oECcgtNamvOySjfMIPjpnPQplBoh2RG8qmzpHK86Jm0M7Mi80hdN3T+p35LzjmBUXmUcrLIWW43y0pZ2saze7eDNSBinvaDAJJum5xe5ywMiMoQlARpafoU2FRrUee5dTwLkHkVKjVCC05Q0b7nS7oo+lp9hVBNW56iwygyPpl9jM+qQ44wWFe5zD0qo9pwwfrxZTLNU4jnXKdLjevcNl2km3a5neIwKq7yqbPGnlWv8M76Q8s5ZzGWawkQYvRP9Py/HeRYGgbAxrzaOKUY9/rRyjVeVrcS3p4j5q/zXvKeYAB/fcoMKLZrBNucBDPw8v7i5nwTxppEYk6IY9dgdvSI/EukRpzU6/AAIHvgCLgwK6WThX6HFlUaXO5GUlBb7Q3pBgSN/1wX1CIss35/SLGxx4pdZmZGAqR3KZHQRNAiEnuAzSZozAMl21kwnIkNEhpd3t2lQZ+zniDyf3CikHjcY+HmO2P2gyY3pGBbp8c/4ggifB3xGTtkml3n3F/b/u7Sl/XnaGiE5xtzj50kzpw6bRGTwmSRdoyM/o/qm3xKTok4jASCe8Ql/zF8GhMk4wU/uFwPw1jjDV83Oh9whJkWGiD2OiMjwCc84I8chuwmQeKa8ywwTpGFMJrmvP4u/SZpF9bjEmBw/5x5lOpQ5YY8j2lqo/pjbHLLLJQVBqrS5w0Pu8oAMER02E99+g2/JMaYWNbkePyejDNQiPZ5wm4zqzY7J4RNxQpkcZwSdOc/4JNE1tOZULRX+j8iwy2GiOWqsXivpPSp8BAgQYyCOSQXY8TbpKKs1SgDtxWcIwBG7yvpdI8ajTYXrPE90VtcYJ6CRSQWkiHnGDXpcSoCgBnXeUtME1IyPec6J/l+YFiSQ6KgKy209AZGXtrSLZiaXsUlnQT+6p00opbS/TRWfCUPyDFjniD0eF/aTJnjmKzxmZIioxi16XFpgqU94r7HUhEwis9Ljkuost1wCHem/Ycf9lhs853qiVz0gT8OTxIrEgCdJcimn6qvGYO9RVF8aqQTAONFn9VT/uEVFdVb5UNf0KbL+NADS1591XHn+Dq7kvY+AlrZmLeAaSO3rvmUccccAStNWreGaSBcQgtMGjo1qbFlr7moyVtb4dUeOnz5YOFdl4bVWjRLimkgFJM20WccBuiUENO4jLFojGp3ptZhUQB/HkLVK1C4s80u/OrZkqC4NgPOclG/azX8l6kITgtM5YV0ASUZz1zX+AFaGkF6Hwc0MmTCUju9vEcfWxXXInkG2A0Sw0ZUydcpAQ8v8LeuTElA0N5qz0lfm5KkApHvxEe+9ogy2pB3nfSiNQgE6I+2iF0E2htz+mFQMG0+mCahbjHqilwoCEEYC6m43+uLkrRFzDa5334gcgJbZb9yfJuUFM0+AVXR8u7wRAPP/w97f/TaWbmme2E/aJLdIiiJFMsgInmQkFVKETqhT50RWRld2Z/WZmu4qTAEFdMOAYY/tK/8F9q0HMNwowMD4ooG58K19ZcDAwIYHrvY0XEZNV1edrtMnzkRWqlLZilSEFFKKmVSQIUqk+LlJbskXa613M6p6xheurh4dcAGCJJL73R8k137fZz3reXxYGYwhPY4S8Ipqwg5g7c2UTOmdgJxpPQYEMI4PgG/g4433zrl76kO8FDFiZyqbQEOuqZ+G+91uVA1U8JQGUbLPynXON6Q9P8+YaXpM/BxW2lN5H9Z02zyRKVYbyun3LHUh4d1E7RS+vo+NqVy/L+E3fvzKaUOm39zo+3jz/9fncRGL+A8V9XyBzNqytJtnxSIg4QUEOrlNMqSZvkdMJ7/loMXQFz06A+YKXDDOS2W/0O9ymC2TKfW4oEAOj4k/oedn3KKzQYUKDUI8Uoz4nBdMffiSz/iMLynQZt/fJUOPKmfECDnL39N9FqlxKvpaPg7c+01e0KZIanAj2l1+jpUB9NMZMjS4yq/QY1VYpJUegecT4MuCORt3GoQtSnNMqhg1TjlmiyYlUvmRY1SJIUKSctDC82ecUyHhT0j5QwF9V0IHdhyzqS1mwuawdtKEJ5P5XNAhjHl8WxWJgBEpwpgsaEq0uKBILy3M4AQBZ/l70f7T7wWsCToc+DtUqVOm6dqRq0Gd3KzLQfopD/SaZ+jLtoP3vEz/Bp93/4JG9h4b4SkgbORheoUeGT5uvKdRaVNWU5wcHQ7YccDBEw45p8Iu+0xIsM9P2Az/4m//g7yIRfwNxA/8iI/5hjYFrkyCQ4HQHhlO2eBTvqJBhVNqfMZLp+m5wwENKnzOC07ZcOz9hDIdZdGedOzHCuccsEOFc8o0Xev9qjKlhGG6zgan2gqfpEjbteCOSGnba5KX3mfuubLKcxj7CmQ9n2KI55iXwkwt6L5CPPxQ2P3GYDUJkiRDDvwddfoWULNDjhqn2uI/IaXM3BxXdFjnbeU+27xmSNKB0gUu8JhRp8oDNYxpUtI8L/m3rYDsIduA3CtqnLBKjxZlZfIKGGvHYAWnCueAgD5lWjQpOZaaXc8eGaed2iNDjVOXy/bZdUWyAheASJlkVEPS9FwrnDNRHWkxB5u4NuEdDhxIK8WsBY9nEXc37HvQU91U4AOTt5Lmmh4ZjrX4vRGecuHZ3FDyy4gUD2gw80R+I8WQXfZp8EC3X6VEiwkJdsIDt71JfsQICRTcDEiQYEKBNjLbSjpA1YyvzudAX2Oc9shQDUMqXsPpQ5+y4Vj5BS7osE6NE/o6FkgHFBBJ5Vl7fhtZ35/gjJ95hKwf+8ga+xJhrBqYuUIkVzfQbR7PPW9aqy0dK62P7+prYkTM12vd/xvEBOsboo7Wrj6fRtbIYz2eGdw+haV9orW0SWNdIozTGOhbHbXsB3O/s7rtW93GjKZULtGBtdf6vDFVW6CKUYv4NYjFnW0RgIB1DIg0RV7q76bqYr7VtveSskMDnE5J/psx8W8F1HSAnlWVQiI90zRR+ESuem3db1v0OZcawJlWj2ZiZLX2y6kwXvU5kP2PS3rsZ0QgZV8A0KU2kYlLQ0Hhtp5HiCTdvB5zl0iftAtLL/U1psPyGFctiwdIkr0UADJu7NDY3A9IIm2oRuFYfpaM+t+W5+Lnco2BqIrVkOsQv5ZjWBkAdWnVXzKRa2Xo3ppurFXRKnqsD4lcrpXVS1peE5+/aaHPZWXblZbuI6bt/a/0fWjo+WaJ3BnNrdBaKuxmmof4DyxiEXcyUoy1JSrmWFSnOmO8oEiLsrqmFih1Lwn8BMdsOrA1xZDK4B319EeUwyatrAgKtykSI6QYqGQASXYu35JkyBMO8WY3NClRCRrSKrka55m2uh6y7Y6lMnjnmAzFsC36fVS5oKhspHXaFB3ouaRGg0mGvCtlXdtZSytIPTKuWCXaezmuvJyyitZZ1UWCaSOaW7QtJkJixLQNuEeGQ3+bFmU2B29d+3ybIj0vwwSfjfCUTY4d06rDugM7rX043ZYJ+xGbBJ7PAxr8Ufo/EWAVjy+6v5IOCgVkzSQmRog3g1gY0vArbvGToUeNU6c31kwLGP3xt+8pBy2nedZO56U1OXtf9Mz6U5F2GHSpUyXE47ocp8AFFxQcyGLtcNLqHHMMETHSueIH76N/3x/bRSzi30v8fdX+DfCd3EiCgAc0WKdDjRMCZSCaS/yVgmkmE2LgQ5UzUnMMSCvgmCmKSAScsdt9RZOyW8Dvs6v6f8JiNbaj5eFQNf9MsmMe7BA2Z6BFEwF0G1RIMZLuAF1xG3PWWmM75Ag8YdIes0WVOhlENsVXXdMkQ+dsbyBFZNw1I0PPSSMY40zYZGIeVabFOh0FfVv6+DFNSuyzy0SlBupU2eKIJiWqnKk8gqf8saHLpSa1MNKW+xxXNHhAgwc0tTBW4IITau44nvEVJZrUOHXgiwDlNZULEMBYwNt1PEK93jGalDinQocc++ySZEhJc2ySkZOK+ZLnTPAp0CblFhmLWMTdigx9d1+3vNakTI1TqkGdgITa5MmcyJikyf5UvzGha6sfKg89FobOjK/HKhN8LcqIXMgqPepelddsO0BUjDB9Nxcr00LK4aLBbDl43mzOupkMLDVTq0Nvm5QaCJoetMfMFVKq1N3xHrFJkxI/lPKyBrbW+xiCGVitxkPWl1mitf8KkS4pyDr4of6YYatpjWpnqGu7N5DzDMdsHTxblrWngZimfWoeIgaAGr6wMjdmG5Ec0PXr0j4RcGtkqAJyjka0gsg49pdEmqmPcdJ9zvtljEgomgGXAatjIkxiQCTTt4hfi1gwVBcBwD/7X8BKAklsPkKcNHq7gWfWZXmDODIHGMEy2sYeMxfseQe/GyJHatNKmeg2ccSdGaJK1juiSo4luZ4eR0KfSyBJ6Rqh2NsxZ4Ar3ecyUTKL6T7R19/TY+rhNEBZ1uvQ199xIj2WZR1zpucx1eftPO0Y7bWzuevmI0LWY33djW4/I3Lgns1tO3/duojLtOnNzIgcvGd6Lst6TLG516Vx8gTcIjc6u06mSZMkcsA2l+3Z3P9Jvb43en3myadTvZ52fZIy/nihC7OIOxo90oxY5ZQaNU4cO6dNkTJNZ6o0TK8wWVnGDybsss+Bv0MKae/vpLOyMPUEVDCH6hCPI3/TLcCXxtJCPyTFTvpAnGJ9SYRmCpWKDamNv6OTzgpLNi2mSoPsMkf+JhXO2eOZW0yb7pUthN+UPnItoKb9aeYHBgz0ydDXlrMkQ2KE5AZdqukzbesN5lrCJo6JZKDJ8/AlgeczwWcnOODI36SZvkdfdQAN7CjQZuilaFJStusJG5fvOMnfpxi0afolZniMs32OvC3Xriq6gIG2pYZ8mf0pD7INJ0PjzUR+oUyL19lHDhAp0qZyeclVfsWBQZ4vYHSGHpc/lsQlIPOqA7s7vjDRRqtxaflNCygeEnNgc5mWuuZu0KbAM/ZcS6/HTBnN6/o+TP/WPr+LWMTfZEzxaVIlyYhNjpgg3/Ny2AQPSrQI8Ryj0jT8TtVoSjT/RlQH33OcfuQW9mJ6EjFGJyQU6Bwyykb6rKIt33YM053wgJfecxIETifQTJSMHW6aocYmNcZkRvmYIR6HbFPkgm0OHUuzwjmn1ERjNDjlwJcW/l32aVJ2zPpn7FFWducxW5RpkuMKM3kCOGKLL/gFLTWXMfM6A1qHpFwh7HNeOMOnieYNySMh1bDOn3j/kITKIQDOhGqmMM0FBfpkyCkbtENOCn402WWfPhlKahjVI8O6timb5us+P+E5LxmRFHkBavyMn2vm91WPNZJIqVJXjUh5Hz1mFGg7MKjGqXtfO+RUC9ynQoPzD5gVi1jE3YkWJbJaNLXCg81tev4qITFW6bkCTFGB0kZW5NMeaG4EKfQ0KYMHJ9Tc98PmhoCWiWZOVgBEpzkkRoMHbvxQ550tygT4yvbvuVwkRlgC1pZo4pPhnAoPaHDMFqfUKNCmrTnDik5FZbxqnxZV6sq8X5U1oac/Sn5ynZEFIoKWT7SebCPMUjNyMjLOjIjlGpt73ta6TWTtaUzQV2KMzIbuq6uvsfGUIPSBxMA8wahCpGtaQUBflQUY/NYy6f0b0YatIG36pnu6r3/bsZlkAcgauKDjthHTGO3QdaCsgs/jZ0KaYgZ8/e/4oC3iTsYCUF2ExF8ioNsysvYzcM7Yl3GEGj/VNv2EPjbQv5f1fwPY7JM1QSjtLX0eJPEMiYDLJf2d07Ha8lw4guVlWDKw1bZJQdAEP0VE/7fqkoUdwwzCAXh2PAqOTttixKSeBnLcJUTPJEQS4YhIL2VOEvQ2UJOmDBE4ayBjCVR2SsZYhtsRLBUR0LIAtw1YyhABmRki4Nf2aaEC2WEXvBOccZgDYeNEYKzdNNBzMDC0BdMJxO/ptZ7KtQma4Jsb4TwgazeKnI6lYwAR6LuMvFcDfV6lANznIvKhWcQi7lRMVWGqog7Kf6f1lm9LBW1tv+LCKzBJS3k66UtiKAZtdoIDGn5lboHd4YKCAylPqRHiObOiHB0GhWVqnAr7M2gQ+AmnsdWmSNMvsXH5jqUxFGZd/lX2H5BkSKJ0gB9MXKuqsIusFU10tjJhjysv51ryhySlJXTwHcN00gGvmxzRpqjsMGE35Liilxa9u0zQ48IvuNZ2M0aocUom6FHwL0iMp9TTYtDgzW7w/Yljm5oEgRgsiB6hALkxjtkilR8S4POo+45UaURu0KWRvu/OJ0eH1GDMbnrfLTAKtDmnQt9TAMPDGd6s0mM97DD0pP23mc86LdXa4DuO04/YHLylMOtynP1YWpPDA/BgVVImAAEAAElEQVTg0N8WRglDvuQ5Ga/nFiyzObB6n1122adHBTMT7JCjTZEqdVqUVYPwihghnUUz0CLuaNhi3QoqAAkCDr1tPEJayoAyWQ2TLlmlR4MKOxxwQYHT9McMSZEajNlP/8SxVa34ITqoMvlpUnayAvNGLgkmNDxpXfUJHEiYZOjA3kDZVAZAxhQcyNCjOvieMLZMzo/AQGOkVjjHY0aNU07ZIOWPtP2+77hlNU4dezQgwTavnc4oSOttkxLP+VJa3MOApDfEzGJAWvbNBGZIiiIXVALRkTawJaVMsgsKcr9R4yvTSgWRTTGH7h4ZYoR8yXN+xs8VVOlrHpKrcsym62ww0MXkVXb8A04UALfi3x7P2OQYjxk+AV+Ev+DI23LnW1aDrwJtWpSZ4XHIE7Y45gWfs62T6yp1Z3ZVoeFkbhaxiLsWwrAeckGBNkWXc4wp3lFeeIqhK7aGeFxQpMqZFpBiWlARbdITahRpq/5z6IriVtjukKNBRQHPoiuMm+HU0BOWvs/E5Zihak1XqbMedjjwxNQqUIa8SQRE8ifCzP+s+5e8zj4iUHA3Rwc/mNDyy+xwwGvtlEoxEtZliagrEmTtbh2XBmpeIiDmGQI4niDgaJ2I+FNBmKYQtegXiLpdrc3eOkAfI231Gzp2HlmLlohYrsZYnW+xzxKxUFsIO3aeNOarbN0bIkC2q+O/ImLaGtbQJWLHDpDtxnp8XxN16NqaviDjrGzodiVg57/nA7eIOxULQHURAPxvYpC9hyTEHPJlvwE2kQSolZz2LyGfhKU8krS2kIRWRmQBvoX4GhDCdKCgpQlFt5AE2EASUoWIfWoJcAA8hes9WHsmj12fwFoWbmOwVEKSYAluzxRszSAAX4Boj+7pMTzU8dpE7emqKUqNiLJvrfIQyQAYsGwA5TpRBe4yevx2DEsPiUS2TUhbwdxpHeIfwbSl1+IGhsuq+VrRfYx0H1kce3c4gJRpoK4QtRr4RPoyxjDt6uvzRExcjwjkzBM5F9q2Jo9gYt1WQTOh77iObW0dCSJQ1TRhjB27SiQDcCn7u/bg/6BytYtYxF2KFYZsBD9Q9wUg/IvSUzfxtAlvcm4xDjDxhbHVpMQzvqJFmSFiTlelruYgLdH8C9tMPJ9DtvF9aXvdCo/o+Dl1a97mefiShBfgM+Eo/5EDTqvU3X6r43eEvhibbIVHDL2UW7S2EeOpDD3HMvCZ8HHrPW9L90XndHZDM31P+WaBsG8vL2nni4TEFIQUI5OJNqGJHmmLP+Z3Acj4wu06T0dts8m0tH0es0UlbND0ROfPQJkCFxyzRUCCMi3EDTvBu5IAn6ShGLY58rYcOAPwo9Ylb0v3aSJM1JQuYApcsM9PKNCmTpVtXnPl5SjTdEzcBBNxoU4nuKDI3xm85X1ple3L77jKN7nwCpSDFlW/LgBCMOEz/yXnupDJDbocpx8xIsUqPXbZVwZcQJ0qmxw5PUiAGqfss6vtconIyGERi7hjEScgT4MUI1bpESOkSZkUQ20yFe3MAm3nHN8hx/PwJS89+dyXaTnG6nH6ETVOeM02VeoOELUW9DIt9njGLvtUqbtc0qbAKj2XE8x0ScBcKWxJ4Sjliis1Tlyu7pHhOP1IRVnEMOqKHGLmdEGFBvvsUqHhikb2u02BJxySoccBO2xy9EGByViwI0K2OOYQAZsBJ3lSpa5GgSnXTVCgTZUzGn7F3UtEA1byVhEpFBmonKOjhRu5Fk1KytSV67fNIcds0qRMlbprLzatRQN2Te+7gM+Rv0mMkHWVXrC2ZQN1QmI8oMGFJ9IKxjq2otqQpMozXFCkzZ/wH7v38Pf5F9IVoIhCgwpf8wg4/dv8CC9iEX8j4Wnuy3FFWZn5IzzMXC6lheMyTVqUnc66ff475Nz8bUiKAhdscew0TzP0qFNlJzjg1K85NviV00k+pUeGIzaFme+J/EqFc/luDrq003nqVCnT5JwKoec5A79zKgrSWucMbo5yRY569r4711M2pMDuCymgTpUhKWqcyrzQ1pdnyFr7DNE47SMmVcb6XCMynAqRdfEGxAvI2jwgwgGayFp0nmna1nH/NZHZlMnuGeHLXrem2xv7dYMPzaq+0uMqE7FaAyImbR4Bdo2oZevklp6L4QQ+Qr4aEEkX2vEWiNiwJgFgknwmIfjLuWv21X/nx20RdywWtIlFALBU0z8KwEO4NfAuQBJSCWhD4REsmUZnjAgMPUPc5fP63BrEzenP3P/MjMp0Q6w931oDKjgK/9pzGe+2BWu78tyS6aic6DGvzI21gatWxT9B9FEsUVorvgGdawJwuv1bYmvNvcaqYgZqFvT47Lz176Xn+jr7sQSvbQBxTfrxqm4TCPAZT+v12Jg7NtNGfQypil73NHKDeqyvv0QSvi/Xx6qAqercGLofd6OKIaBnQR+z8yvw4c2gj9xQ7L1YI3I/NMmFvD5ujGCr4FlpZoEbLOKOR4ox3uyGjDKsClwQkGBdW/ZblOmToc5DUoyocE6bAoEn4On65RgzOjEdvw7rHLHJiBRrr6aEeGxzyAMa7AxecehtOyORbQ459MSAxCbZpoElbtgyEW5k7zFR44ArT5gRxjRIaJNWiEcmFH3P3KDLZWmFY7ao+1X20584/bsrneAP08va1iX7KActen6Gcth0TFdpgf1az0vco0VntcUGp661PsSj52VIMeQlz/V8YmS6Y3J0HNBbvuw6wAMgFQ4ZeimnHdghx8v0b/Bt6WPVW91wTBADK6zltkKD4mVfjFNCAXBjYeica4ekKNPkL0uPSQVDvso/JSQm4/o12f9gzJG/Ke39yg4ZplcI8B1rZELCmUNsc0hfW323OKZPxmk5NqiwSo97boWwiEXcrZiqZp/HjBih0/Y0s6cyLaeJau2hHqFjkppciGhR12hQcYBnQMJpbppeZ2SkElJSUMBAzjZF971PqM6gmSO1KLPHM2fwYpIA0gabIMcVm4O3lGiSoSdmMZwyIimmeSTYZZ9NjmlTkAKMMrWsFXdEyrXJi5TB0LXRX1Bw5kvCor/gK+9TKSxpLlulx2dqUGB6hi0FYqyFvkVZC2hFxwDd5tB1LaQYUeOUIm0+ZQ+ASthghwMC1SkV8PqKcyocsKOmXBPRuGbb6Sv2tPX3kG2Xa4u0KdHkiC1es01T+13t3I2xattvXL5jm0N33BXOqXHqnhdguK0aunU+XSAIi7jDIUadZcest7nLhASh5sQL7cYBVCl1RJ2HLu8Y+Gq67Mb6LnS7UhTyUw5wlTFbCsImaVJii2NXlAmJccwmQ5K003kyYU9lOELnBVClTkLNBIeay0333SQFQmLUeagyIt4HLFo7D5N1AT5kgAZ6cc6I1oUGpq7q/2Uc8SZ+QiQTMCYi+VSI9EYNkDUvEzOTgmitbUQhIzTVES3Xge57hkgT2H5MBq9KxKq1/T7U8QMc8Ov8X2zNbOCtyeH5en7PiEDZM70m6GOmxWp4gkkO2H43/92fs0XcvVgAqosAYGit7wqALj1GEmCTyHDJdE/riL6IVZSsymRhSe8pkR5KX/8+A8YwDYi0V8ZAC4Yv5fnpn+vjXQVR+7rPeeDRWJgGYJpwtSVfS7bXRC0AMZh+A9NzPT5z/TN6v4GowPQN3Hbn9meyApdEuixviCpppvVibQnwoUFVCXiAJHljhe7J8XywXVquwW2biJl6redjQt3KSmUsx0la3ysV0h5+MzeW3Qz6ehzzzonoWBW9ngPcezz9VsBs9oluZnZ9V2HY0veyQQSaG/hsVb1FLOIOxjIz2um8m5CmGPFpsEeJFh4hTzh0i+GULsTNXfXj1nuG6WU65GhSIiDB/VYXjxlbHIsx1CdZNzbAQfqpW5j6gWiI1DhlPVT9wXDozAgSBJSDljPG8gidYRbgwIZy2HTMz6ZXZkKCdjrv2vANbBUjBNFPLYdNhn6Ke42+Y2Ic+DvUqXLi1Thmi/8Pv6cgw7k7TjNjKV72KQwuqYSNaHF9eUku6PA5L/i49d6ZdJVDYW5UOKeZl+vxuPU9ZpAl+xdH6hwd1tUwwYCNDD2qYZ0CbWVpTZQhluIsf0/YWTNxwV1rT1kPOwA8636jzXptXvrPaVGiwQOn0xjiyaJEmWgxQso0iYUhNU6cIRhAUQ1zLIzdVqBNJWhQpunccWMfCE8vYhF3J3qsUgtOHcu6TlXz3zmB6p4aeGZFpBonTjN6ou3l5mL9hEM1bvGcHqvpKUu7ftIBcq/ZFpBwcCmSHZw4dqiBnqJbmnQt7EmGjkkfkHCdAiExTtMfsx5KCcmKMuJqL4ZVxjJPqMaytch6hPyCLzhk27X5z/+YCVSdh1Sp671hhJjhnbhrucEpPhOKqjfapMQRW4BoyA5VauZCz22IdB3ss0udquRxCq6YY63+R57oIJqMwe/xR7SUpbrNISfUAHjOS2dcI0DOFTVOqah1lUWODtsckmTk9F8fKPg7IsWT7lsKXJChx0n+PhfazWAauAUu+E1e4BEyUQ3WE5W8CZz21yIWcfeioN9Ok2Yydr3NC+y702GdyHgzhz+3SJ6QIEHAFsdzRd8JB9nHmhel0GTfnUoQFZRADE3rVLUQnozyb9ij52VckcoKWqZzbNrHNpeUnOJrgeuKGidOiqTABTHCDwpKxpJPDcYRW9S6E429adJz87qpXYQIFCBr1RfImjPU/+cBT2N1QtRpaanpIbLmNkKPraW7CGhZQoBS27e1+zeQNepj3cc3CHBrxKN5M6qKjlmY265NRPiaEXVy1vX/l7q/F0SdsLpWpk0E0PrAI7h9RCQHsGj5/7WJBaC6CABSPyICLLtIMjkDyjC9JnJwt8RlbMVHuo0JNW8QMVEhEpI2wLIErEDcqkOWVB5CXAHImCct7C6xXRJVkyzRGbjrK/Bpic/C1rprwI9xEgHxB8IWjRuj1CNKvl1cpSvmKZg702OcZ7SaY6AxN+3HxjHWqYle+0jifSOvuzVpg5gyetUN8bYNt1qdW3qES8pTq5JtEIGWj+U6xB/rc029XnlIPdZzNrZqFRECt+s30+tn7ovX0b7I63Gt6THYTWn+xjXWfZgguH1umDvvRSzijoexp1qUCGOea8tKDca0KeIxcwvVAheshx3Gaej5GV2wxuiT4YdSnp3uG0Cq/IdsO/bCSFtPARr5PKnBjWjYdfuceDJ2w6twSo19dsXd1U/whEN+3PqOahCxSc08BeDEq0kra9ie01bNKIjZcGyDEk3HHLrycvhhwHeVew7wtfauGCGf8ZLf4Y9pKghZ44TMoO8YGwf5RwzTKwy9lGOaneXv0fArHLHJZWmFxHhKqXtJsj9le/AGPxSn3A45mMEmx25BYQYs5jZt4PKOGq8kxlM65NjimBonzkzhlA3utfokxjd8evmKH0p5rrwcJZrsZ5/S4AFDUuzyNU85cBqLQ5IEJMiEPWWgzBxIkxhPyXTHtNN5UuGQGR7VoM4qPY7YUqDlkIAEqXDIhV9wQPUqPUYqBbCIRdy1mJDgD/1/7MDTJ7ymTZEWJY7ZIscVBS40i1Q5YosQjyYlxzYVNqqwJ31lSs4zsIYkaVPklBplWso6TSrztMQwvUKbAilGHLPFMZs80OKFHKOwx5sK+IGADudUyHGFGcWdUuPA23Ggwaq2tQ9Jsjv4hh4ZRqqIGJ2/7/RjTXrFwEhrZ08y5DXSVdCmQIsydaout19QYESKP+EfiqyJvq5Miy/4c3UNn6iMQsJdoyM1wXqgOduMqOz4jalrcgF2rZPKeF3VHG7tyUNl1pq2aod1B0Ib6zapLNkQjy2OtKh15XShA3z2sp9wwA5tCnRYp0zLgS1PlLE/wXcmfdaRYKziRSziLoZIN40+eEwYoGeuQC1FnCRmfmf60lZAN+a9mdQ9oEHPk4K2MVUtjw21AH7hF5jhyTxTmeq+SjBFgO2EulflkG03d0owIaZF8zZFLhAt/M+DF/hMlIsa8mCuGyhBQJUzANeVk2DCKTXXEdVLr9rJSzSQNa6PrL339PEWESvU8OT5zkxrjS8TrUkh0jg13dKsPm7yfUbceUWkT2odq9ZtWkDWswU9rlcIKcmkBn9H922Ar+3XOkWNgZsGniPr9zd6Ho8Q9Mw6QHU9zjP9/VtE/irmSWLM1gEsmdxAA/iORfyaxAJQXYREiHy5jRlp0dfW/VAevzVg1YBTA+f2dXtLsNZub4nqoY5dJ6pgGauzgrTq5+X/pUeQ2kCSUEiUpK214EzHVMBzyapWb4kSrlWb0H0OYGmeMbumz1lSbxDJA3RhZvtt6eMGDCsL1IBFawu4HcPtgIjybwzReSdBTapLJSJd0wJyM8kKgLsUg2Fjbmxfr0uWSPwa/dvX89jQ62KVO5+ImWvnZtesovuc6TGUiG5iBnoPiIBSu4Y2dn7u2pvkg7VXzF1r5ky8FrGIuxaisTfhlA0STBh6Kfb4lD0+pZ3OK6goLqil7iWZ7phkf8pkJU6TEqcKtB6xJQvYbJ4hSY7YZJtD2hQdq6FJmRonstjNxpngM1qNu4Uo4IyremQ4ZYM6VaY+pLs31DglxcgZFgBOmzDwfPL1MZlQxqoM3gHSWja/cK6Gdfpk1ADFdyYoqUC+yFfa1goop0wW8fX0R2xxTKAs3Qk+PQUR/17rLwEBcu1aAtSz92lnsxynH3HgiYt2kTbjLK59ttS91Bb9pJvw24IkxBOANb1KTnX/DthxgHGOK25j0M5mWZpB5fKSGKGwcGmyPXij7XkxZaH5bHNIOWjRJ0PTKztm8pAU/yX/KcP0CmFMFjozTwCNhl9hn10OeAqgpjrS6mw6u3aN1/8Km3URi7gr8XfCf+tYlwI4Jp2xkLGdpG19REiMFiV8Xcg3KdGixAE7CpoW6JCjgrSoG9AqLamBmtYVVLHZZ5MjnnLABJ+d8IAEgWOonlNhQoK+MmOluHJEgTZX5Fz+NNkWATJaTvO0rVz1FmXOqXCcfuTyremHWmttjg47HDgGaI4OxTACczP0SDChypljyE5IqJSA78bb5Wt2Lt+So8P/qPv/AgSQOafidFENuCzQdnIKRWXEgTDjNzly8gpNSs6Fu8cqDSqcU3HgsLFbAxJUArnuQwWHfWWvxRRUNQ3HU2o0KdOgouZ7GW1vjmH6tcKwLTuJBdNxNKdxMyQzAFkkdB5ws2hfWsQdDjNrsuLEKTXHcA9IkKHPRHXxT6hxwA5mlDfTuYu12nfI4QcTxzgHqA2+o8AFTdVg7Wguk+9XzOlINzVvWaHHjABtTgNSjPbcohwtxCT5yn/m2OQJAvpk2OCUCucUaTvGPcCxFsiSDKlxymu2RRM2C3yCsDCrRH4bIIQeWx+aRNy8V8q84RPIutLk9IzJWSLSU503uOrqY/a6FSJjKfNnyRN5jBgA+xz4nGgt29B9FhBA1EDPhj7/eG78PT22FSLGbAL+4AX8wX8Nf/B/gj/4b+AP/kv4g1P4g/+nHv+avvYNsgYvIUDqn+qx2dp9Eb8WsTClWoSEh2N8OnFnE5E2BmNfwcB5oDNN1GI/r4XaUjf7R0giMT1WnyhpGTU/JNIVMae+tzqWVqbar6Dw2/q8D9dvYM2S6l9tNTDG5FsiJukl8EBa7OPGoJ1PZAY+1oFnEL8kAh1jSOJ9o9fkz/W1q7gbwJIl7Usc49YdjzFnn+k+L+VaukK9GUwV5LUp28YMuCzBmwC2XXf0vTEZATPNsoRv4GeZqNL3XMf5XK/7WLe3tgS72ZkMgRp73e6rEdlj5OZiFUO7dmXkfTa3xTzwA4tYxJ2LG2IMSVIdfE87XeCQJ/xH4c/Z8o4cA8EcVVuUOdbvQo+M6gWuk6HnqvmibZpwzAabIJvmoGnzDUmR8kRXK+P1XDtsAnFottbRHhkO2KGYlQV9QII2RYak2OMZn/GlA1cPeUIm/xfMPGGBBWkBIJrZD42dLjwxvDplgww9Zngcs0nHF42wIm2nt1ql7hzvPUYkCBxoaqBvCo/vSvcoD97zOr3NJkf0yPDH6X9EjJBNjt2Coa9AbTNdVn2+CZ3sqjNiSTHkKz7l9/gjGl7FLQSMTWFML2M+VTjnLH9PwOKShzlqm3N4L71KoG1u1p66xzN2/X3HeDtk27XgfsEvADhNf+yYeE5agRY5OnJNKTEixSk1nrGHmdp0yHHDAxZGLIu4i/HC+5wiU8z06JBtbd32XS47UqZqixI/4+dcKHMxxYiv2cWc6UdqyHROBTM6KdHkV3zOJseUaZFgQgMpSqSUdVrggrYnDFYzhDMQU3JJye3DNP5CYk6OwApAJhEwIskDGoTEXN6uU3WMLSseNajgqxu2GUI19Nh/4X3hWufrPMTX3A+Sk5vKArXtjN3253nNd9kex2yxzSF1qjygIYUaKtreW3DAjbFRJyRUZkZy3ZUy01CtxBd8rrkw4VhnotkoBcCYH6qxjLT2/hk/o0ibXfZVE3KdE2paUptobl9FnMzFhKvAhdt/iMcf87t8xktCZdlOSFCnirmcF7jgz/gZGfpsc0iP1b+1z+4iFvE3GSOS7t5vOvFV6uzxzOmotimK3JOXUP1UMbarccKIlJsvCaP7igN/hxRDZp5HmyL9dIYAH5+AobLtTfqkx6qTGjLmvRxHzEmVzBv2FWnzgs8d4JpgMpcfPdcpYJrYgX7zrWDVosRMCyB2LAE+51TID96KUTRE61Tz2HiIsEFnRKShBtHaUlvmx89gpYWsgR8jMoHWCZnVMUp68StzY4RErfolGDxbJv3qhvFjWDkhImC15vYZ4kDM6904me6UpbdyzNM8xM0w6rdl7HFauWXz+zc27AAxw57obyNbrRAZQy/ruRuIayQkiIDUh6CXdRG/BrEAVBchsQl8j+h8KpP0tq0AqoGs5qQXEIk3Kzg5rEOqRFRFuoTeADJv5xikAzG7Wnqm+xzLr+kbiFuLuiWsAvAGmi0o5WFkbfczoAxrVqlS8NZVw+pIpcyMmWZEiX2sbM/5aBNpgBpg2YXbt/K0A4TTIhmwpN+YYUuNo0x02piqbT1fY6lCpGNq1a4GXHchk1ZTqzPRK11SM7ClFdkf3+BA0e/fQD4thlYuORsD9kwkEgyIve3qceo1GL4UOYV4jKgVozR3fSAS7vZh+EYZwl24fglrD3U8q+qhwHRa5AhiHsxOVH7AtHMWbQyLuKPxnnvEiRHGllmlJ4weL0WCieiMeuK8ai1XMzz62u5oAv99MmwHhwx9aVl9QIN8Y0yu0iEz6HOa/pgeGX767Rv8H0tv0AMadMi5tv1qUKfpl5wZSY8MRW3pNMaTLWw91bqakBBWqQ+5bp9hNkU7LUkkJEaKET5tGlS43+qSKgy58KSVNhaGlL0muaDDhV9wTC7AMTAe0ODv1N/ypvoRCSYc8oQYIUXazlSrwAUft97zpvQR7XSeZ+whzrbr7LLvFgGm59WmwI/3vmO6AV9mf6qyCE/cufbIsMXRB0ynAhdOy6uTzjkDGjGfmjnjliFJimGboZdyTI0eq06i4cITltoqPS4oOKZWiiHPg5f0fAFK2xSdIZU5YG+FRxx4O4j+46l73pzOdzigTlXHXTBUF3E34yN+YJVlxHhJosap0472mPEFf66g20gX77k5yYyZ01yekKBMy7HNrYBh3+mJtsuamZ/HjG0OudA2+9/hj1UPVcCAK211789pGAqLNMYhT1wrujFUPUK2ONJiTsvtw3J5hxxbwTFtX3LiSDVNBeR98IG26jOdTO0MXvEi/ZtcKLO2Sp0GFZ7z0skfGKt+m9cK4q46ZpkxWk0PWvLHA8e+TxBgBokG6Dyg4Yp6PTJshw3+0PsnrkA0IqWGiQ2Gyjaze9ZMweFjtnjOl64rYN4Ap8YJGRXeP1bZgbLTZbxygFCfDD/j5664NSHBpupCbnKMx0zYxbyiypmC14uW/0XczTAmuHW3GLha49QZTCUIeM6XLq+AsFqN5WkyJpb7EmrwJsruBTxCtjlkn12XbxIEvNZWfpvricncqmvvt1ybYEKbgjOtqnFCnSobnNKkTJELB9jO8Jyu/iFP2OY1x2w6Rrp1B1U4n2PBi4wLb3Rd+GOEsGMEHTOUmiHrTHO41/U+Axj81jLp1g2TlTgr3am81vxArJvS2KsrQB+maYivEkkI2Pi2hr2ElToMHi+Tbt9ERCVb45vEXwBrjSl8hWOcxk1W7yGCIWRhZU/Hte0NcFV5wX/6nyLg8SUCwprsoOEJJpVn5zFD1vTM/f8GLnbnWVeLuMuxAFQXIfEeAQbrOPbpkhkgPURo6qatauCqJbKWAn3GMFXDqLUSojXiyWtIw5K10cf090PVM20g1al5Aeg3UH4OVOGjb4g0SyFijmoump7IOLdjWKojVaG6bvMNUXu9AacGCPt8aB41k8eXDJBt4oygluxc8gqm2uvNbGtFt9tAbjAmgm3mVra/NKzlERDzEliNAMslG9d0Y/Q4Pno8d80V+HUA7wakAr1uG7BkDoMqyJ2qyrE5+QE77j5Ri7/JEgApO886rJkOTRa5eZzI33E9l3hFxokby9jaOnaAP2MRi7hz8fT8lIQHvfQqLcrsDr5Rk6oZB96OW+yb3tx62GHkpdzEt02REi0u/ALFoM3m7C3eDH6o5MkFwpA0/UDSoq+3FRyTGN9Qz2ZIMeJ+owvXUH0gLfp/9/wb3v941TGlnvGVABjhkMysR9svUg6brDWnvK+sSrN5NslWeETPy1AYXEIa7re6vC+tUqbJ1AdvFuJ5smj/yvtUWsD8CeXBe8K050DLXlq2aVIGoBw2+doTYeYqdQfCZuiJsdYMat3vOc5+LK7agz45unTSWTrkmOATkKA6+J5JOsHtQ4h/A58//UuWBhBWRaP01K85YDrX7dPK5hVgkMV+GFsmR4cYIffqfX6oJgQEubzkT/J/n20OSYynBOmQStCg4Qu7dYbHzPMUEui7hVAsDJl5nmgY+hkaVCjTpEeGh5fvucqvyLZ4fO3tsqWarxfaylxFNG13OKBDjpSCJcc8RG4Ki1jE3Yoy56SJc0XOsaOO2XR6nfsq0G4mVB1ynFBzLaNbHAO4oodoUceoBA16fsYBAraAB8mtDR6wwaljfdY4pUPO6YEGJDhik3UFC42BLoz6CycvsMkRbYpOAiBQlqcxU1OMXDt9ipHLYxMSmJO3hYGOxjid4HOcfuS0Ro/YJKE8L8sdAT45rnhAw7XS+gQOFD1ikyJtzRcjfAJ2OCAkJoY1DpKdUaLluhp6iBHeDI+C12aHA071uvtMGJJkRMq18jcps8vXTjbGGK9OqkTb+227BvLeyPMzp/EaEqNMyxWWhKH3qUobXNCixGd86Uz6TC88Q1+7GC5ZxCLuYnzED2S4cR1ACQKalKggJpTGJrfvqDG2LYeY8d1TDggVzDQ5gInq21+o8VSODjuDV64g/pQDzqmojnHC5cuAyPRvpqx+kFwmkicPVC9f2P92HGIuaAUwz8mKzPCozXXTTPA5ZlNlTHwx3ux2ZU3bJAIrTX8UZH1tBKt5EyntZk2/uQEf1prTyPQa3LqfrG73W4jRk6+EIJO0M63ULBCI9BVtIA/p/ZuILGQyhBUin5EGslYt6zGXgW/njt+2s27La932se7zERGe4BMZN5vvS5vI0MrW/oZ3zBs4P5R9Ff/1Akz9dYkFoLoIiRWkRX4X2Bcdz1QVAeXstwJuty0FWy2JmsaqtdBrknPP5xGQ0Via81qtBsDNa3bGEDD0EyTRjfXnjY5vOqANXJKK/z7wEpaquu0eEZgJkcZKBeZMVyMavum92v9WAWsROQOuIcm1rteghLT9m+aomTG9INKIOdHXKMhMwIfaMQBNMf6Kfz53rFbhM82Zqu6nG42z9BRJ8JbIrTqYJTLYUhMwJ19gbQvK6J1+KyZdt20FZ+29tmuSJpJMMEZyA4ZdSD1FGM3nem1MCDwGSkBZxCLuXPzn/wWsJCBM9wlj/5Z/0YF+ccBq75J2ZohPwFRbq4pXXcIkeOF30IXg/jKxyfd4fWgV46SIszKRxLh0c4nXB/w+DF5JLkzAdfp7QlKkZwOWb97ghbA0Qb5zGSItqKW+MNDvwdKgLwWRBPIdXf6G/3OmyIN3F9DrQ6bPbRaW3gNcMrsPYazD0s0S09iE9EVfvt+JGwalLunWhFZJtEV/NOqzNIB+8YrVbgA3QKLPIJ1gmWv++ffAyhS8v5Dv+g2SgxLvma3B0g1474B78EN6xI9aY4LiMn7vhtCXxORNoZ/x8Yjhza7wZuD9ANwHutCuXFG4uAH/rdwrUn2YwOT+FdNYnNRowtINzOIQ670nWF/GHwEzWazfJmDp5t/wJ3GIdfSaLwN8z63OesbJGN4sID69ZWkI14UkK7MZid6USUYen8aviU9v6SVHrDWAyZjr2hJjZvzP/6nopxlj4wENAgVhAlYdoNohx0+UdbyIRdy1OONjCswo0nYmfDM8doIDGr60p3uEhIhpipkT1amypdIevmqCAqpLHZDwpUW+QoMSLbYHb3iZ/g22OGafXT5ljxNqCm76jnnepqBSAS3HYr+g6IC7GqfKQm9TpulYpgZq+Ex4zbYDKED0j7/iU9fCv8kRMZUkMAZZXzVJ7fVm4lTggoYCHet0OGXDFd0SBFxQcGzekhZnSnpcwraNubxhIMk84GuAswCZTRqqj9oj49j/IlcwY5MjQDoWMvTY6b5hP/uUkrYdd8i5wk9Sc5PJt5hEjLF6KzT4BV98AASL9MCMJiIZU1cwuEJDGXWBmuYU9H0pOED9gB0qNOiSIHKNXcQi7k4sM6NDgd3BNzTS9933LCTGEVtUqTMiSY4rRirTIfrSQzWw3KTCOdWgzoVfoETLmT3l6DDDo0FF8mt4wH76E1cMKXLxQTG/Fpxy5G+SUj3oU2p8xktihO576ocBMS/kihyp4JiOn3MdQs/YI1AN6oJ2GHXIsU7HGbDa3KZHxjHbTaefxwjQeKm/HxG15HtExtG2rjZTa/M3aRN1b5oRlMnlGfgZEknlmdcH+nwbwQiM2VpC1sPXROvcNLKmXUGAz3mdVDuOt0SgrnbG0kXm16tE8nr2GkPNmkTm2/ac/TZpQ1ubz6/JH8+9Zt6XZBF3PhaA6iIkxghDVEG01Lwx1TUCiF4CeWVq9pEkZ4nCkkIfqfg81f+NCWoC0pbEAt0mT6Sx2tJ9zIOqBio+/CvbGtPyE93eKmLWgnBN1GqgYtlOWsBe1yASv7Z927GafquZNlmyV43YJWtL6OvvLBFr1kyvjHk7b5BlFTwDbTUpx+35N/pcXre1Y7SivlXnPARsNhDaQNC3+vdDIu2XMZHToFX11GQsruZiS+m518zLCkAkBG5i3zFIhUSAuTFT5yuIi8yyiDsa/9n/FAHPHgP+rRALPw3kc753Ld+Lp0E0kbO89i+A/4m2GrWA376KiiMPke/hGVK0OkMmWt8AT0dcP46TGN+K/pPpTv0p8n1bQfKJuahaS1UXycsFdEJ7Icf2SyK2/x8hE90x8PRGC0STDwo2t789YemXwO5VlFd/CZSDqPD1BvhsEjmxzutJgStwXf+TOGv7U9d9MK62WOkClzeiPf0YbD5OOogKQK+QCe/v6e/n1/CS6P5yiRzL7i1UJ5LfXwG/r7+f3USv0fvUBznJnF3NLBEgnEm+NMmW7ChygV27ld97tyIB83sjlt7I+H/wr0Z46dBpK5pBRFlb7HwmNCk50OE5X/JLnvLhimARi7gb8Th4w7GCjT4Zbf9ucerXAGE7VTmjgegbWyvs57wAIEcMMWBZV/MiKTy01IzP9FSP049oU2SDUxJMaFJ2Le0BCeo8VEOlpGOyGmt1HrCNgNOAJEPOqZBkqK25sj9jYJlm4A4HTgPRWv87rLsxi0Gbyvg9r7OP8AgpqvjBV3wqXQzsO/Mnk14xaRZpxQ3VPEsMayqDd9TTH9Gm4DRR23wosxKoPIKxdc1wyjQYBThJkqPDVnhEYjzlMP3YMV09Ql5nH+ETOKMr02I0zquZGZoJYU/NsRIqDfCMPRpUqNDglA0aPFDLq4aTEUgqM65Amww9LiiywwElmvyCL6hTdQzgCQnGC9HARdzRyDAgRUAnncVnwoVKF52r5rMxz01+KKaFpgCfJEOKKpGSGN9Qnr3nMP2YHJ0PdIkrqqUMwog3Fvt8x8uQFE2/RAzR9H9Ag5rqo3ZYV7mBgAOvrAWaEQ2/gseMU2rM8FzRoxrWufJyTgO/SclpPxsz3oo9lstiIRGI2tLfEM1N571LIFqjz/jQ+Mk0R7tEczNjhRqwaqBkn2gOBzLHvSbSLjVik4UBpC19/hERmcjjQzA0AP4RMse2LlNbLzf1dUYYMkaukcbMS8Uwk6xsd/s7sNSF2zQs2XrCum+v4bag3aRGxFrEnY8F7LEIiQlRK/xjokX6KhFI+gmy4HwKtGH6QoFAa02fD6O354nYqyX9W9v/HYA5z3adjwpcn8GaMTqtfcBYqAZWzBtQPda/DRw04NJXjU87LkvKAwSYNBattdQzt0+TITDJgI255w1ENZAhTXSjMMAzMlmUsEX7MyRhX/IhaGqVLTO5KiDvgS38rbhvBlUhEQPXWvStwqdjT+sKJg+I2MgGXBuIfann9g0RQKzXyxmMXep+N4jAWfT8rVpo2y5iEXcx/gXyfTNmuMmgrCHgXYEPGeBWzNgnYsXXiUC9M30O5Pt0TpRnlWG+9q+nosN0RiTaf4Z8120SaDmyoOOppIfLFdZWdEYk5n/Ch0L+zI3zUsZeUnkPlxPnCzAnRJPdElH13pxWH+q1+gfy/9pXUxnrJfAJrLzS8/yjubEMjLXcqRNQvtFz29Pj+JYoz5wQmRA0iEDY57ovK3yd6HUxoz471xN9L00axSbGdf0ByWtmjrCiY2tRbskm1t/K9mltfzXDhm0OmalObDFsk/M6jgnSoOIAhUUs4q7FO/8Bvi7WTT80RqhmR2VyXBES4yehJLkTr8YWx/hMOKFGUTWbfQUCrb30Jc8JSLDNaxo8AKBMU7SqaWJGfmLONyEkZJ9dUgx5xh4tSo7R2dAJaIccTzmgryxQELbmKRsiX8KQzcFbfpH++2xyRKiMsCp1KlrwMOBiiyNyQYehn+KP/N+j4jcce9RYncZAD0iQZMgTDvk02OPUrznNwddsu/Z+Ay4b6fsANCk71lmSEU3KzlBqMmec5ykLdYJPlTpbHHOA6DefsoHvBczSnjPTMvDaDBQF5F5nlZ5jnIG0FUsLse+kSgxQNSMvY6qVaVLjhGLQZt/fdUZgJVr4TFQOIeauoUkH2GfGDMiKCwRhEXc0zinzhBYNHrgcaAWbKnUSTFjVwoUxurc4cnqnAT4lmpxmP8JjppIaAedUlA0/cYVZkxTa45krzhRpUxhc0kzfI8XIfY9HpIgRulwywXcSLabd6hGyHnZoe0USTBiSEmkqr+C6BkzfukPOabCaNrzIEkxIMqSXjbNWnkYdkzYXfobMy8ZEpJxX+pwxR0tzz5kRNkTr2sf89bn13l8Zy+Z2r/VvW9tXEMKCkq5unyKFcJsjd4k6L42YZXPB1ty5GJO2QLTGNaziRMcw/dY+UdepnUsalv4bOa4l04c1fEAlCJfsOD7+//25W8TdiAWguggJ0/i0dn1b2Js7nockgjGSQAYQf0DEvtwnSlK2YDWQz7Q/W0SLe4gYnBDpow7mxkzD2m8RMU0tMY7ntoeoXWBMtNi2/1UP1lHtrdUgJGo1yCOLatNVsW/F/Lfjof5uI4DIA5xZlQMy5zVZlcnqtFhMN9aO50wZs4913AICAtj1NVOpClFb/zXCvkX3abIETQTkjs2NZQCLtj3EjUU3HyHR+23v1aX+XUVuHAo+L80zkQ1QMjDd9G+viSqFcRaxiLsZ7xGDPptIGbMUnIg9L5Dv4p8hn/81oglfHfkOm0zHS6Q6nieaWH2F5JISUtyoI9+nPycCQq2SbpPHULd5qn9b29Mj5Dvc0u0HOsZzoomiOZw29Hwst9s2VigzYNLX7bt6zLv6uAGq84AwCAid1t9lvQ5t3a4FfElkFrin2z3WfTaQvFPSa9XS1xhD/69qW32i53Cpr6sjbN4T+ECqtETkPtsiYqPu6RhWuDIDQWP/muZ2Xq/rS33uGz2G72F2X9qeK5xzzKYumAQsanplbX9uEyo77ye8YxGLuKuRYuiYihuX7/g6/1jBTKGph3g0PGGa9tRyKkNPgba2axM1fcGEmjcVVHPT14X6ATvOgKnGqZPUSDBhiyMO2XbHdEWOPhk+40vHuHzCIRPVJLyg6BQNDdRrUiaRFoBxj095xlckCOR7S9kxsMzs6sIvsBGesukd0WGdUIFUj5ARKQfEBspsHZHiK/+ZmNYFx85UEHAt/CB6ogfs0KbAM76ir+zYEk0m+Byx6a5JUnVLNzh1rLEjNvGUoWrt/7Z9h3VVqBaX8FBZbADrdDhiC48Zu8E+p37NsYAvKDiNxww9x2Qzk62ABIdss+t/TYIJYpW1qj8Zp4ttnxUzaDxikwx9x7a9YYkFLWsRdzFW6TvTPGHGTzimzJAkn/MrZZJnVHZEwE777qUYOWb7vFFeiMcqPTY5VjOpFi1Kkh+7XXLZDgE+B+xQpE01HYGmJkViEgLHbGHme3aMYhTYF73k8ZREOnAyKhMStCmqbMvMAbNoThRJgz4pRiKxctnnKr9Csj+V+VGXyFPF5p3zxB74UP7Oupps7msdRMYYtXVoQEQwMpbpPBBrIGgZmZ/NdzOVYPoA4muwtKfbGWZgxlKFaKzpY4iPidbLJ0TF/j5O6xSQeaGBqSZDYHNMA4HtHB7y4Xr6cm6cAhEYvPbv/Kgt4g7GAlBdhIS1rhvgqM56Trg5JALZ9ohYqSGSPB4RLd5nSJKwBHuNfNLmQVOj29s4JlxtIB3IQtda/QM1nDJg01ptDSSw5G6ApiU1o+NbMm4QAZFWTbLjmuFMpxzL1MBaE5d+ioAK8wwruwYeUcK8JgIgV+T4HRtLnQHjELVA2HYGBFeIWKsBAj4YoGEgrMkmXBOBosZgNRaYVfsMYLXzslYFOy7TfLGb4x4fVubUHOv2DSzZ+aLH+ltE+rYbyGfEPk+LWMRdixSSz+rId8Wq4sbOBvkuGsvbRO4N1Bwj+e2FvvZbou+YscLLfKiTHBAxM41xbrInBvQxN0aDaFL4mmgy2UCAXmObnhDJmdixv5p7/qmexxj57o/1eSuwmXzBLxGA1ZjvAQIwbhCBnP+VjndClPOModrWba0AY2Bui0jexEBkYxPU9VzUbM8ZB3SJ8vsrfe2f6vkYI/UV8Pd0PMuZJj/jIRPwGAL4GrM3PffbwG+7Dt/qddL/Y1Nhd7UokWTIL/iCz3nh9CMNaDKX6xlTFrGIuxgt7nFP4bIJPof5jymq5l6LsgJ+nmM5iqN1zDlaN3jgGJIFLsgoEGAM7gc0aFGmTpVNjgnwKdBmSJIapw54rHJGgQs6rCtzc0SZFn4YUPIEiJT22IeOCWoO9gkCirTpabt7iiFlmvRVKzQkRo4rUozYZ5dtDumpvMHXnpgr+crqMtDYABFje3VYdwY0ZVqEMWGsmwO4gcR+GNDzpI3/d/hjXrOtZlApNcgbsc1r2hSY4anOqsemGuDl6NAjo3qnTTWK8vCYcU7FMVBf8pzf5Y8R07wiZZpO87HABT0/47RgAecCHs61AxsjN0OPc2Xan7LBJkfOrK/OQ3qsOi1dQGVQSo5JbC3DSYaMF7lwEXc0PEJ8d2+Xz3qTkrLwHzijNoA2BcT4zafOQ2qcMFQTqgoNDthR4PMMnwnrYYeEF9CiRIDPAxrUs/fVWKrijOoy9LQJX4o7I1KkuzeEhQ59L+PM4wzwnZBwBaNhOsVIc9UWRzRV3xVE29qkB0qaGy0PH7MlIGy+IUZbK8vEv7mRueCnyBxNDYtd8d2IUTp3nf4jiF/q48/0d5NofR4j6nq8JppvzXc8mleHkbwqyNzzFY7scFuAuLX5t5F54idE0nUQSWKlIV4navtPz+3D1vfzHU/WgWm+LyYH8GNkjjhvPNVE5vnGsjWfEwOhV5F57OS/9yO3iDsUy/+hD2AR/wOJCR9qXxqQ+BZJXOO51z4m0uG0pGY0+QrR4t9YlZZArOVzRbczUNRATks6eSLAs63PPYYl0/C0Nn9rlTeafpmoVdUSlrJBSetvAxBtf2YqZe2kZo5lDDBj0Jox1h6R672BwgZymCGTP/d4TMdZQ0AB2xb929fnDaCAaGFv1+sTorZUY9+GRAyqPlEbwwoCQlv1zG4+1lphYCy6nQET10SALHPXaF7Xpg8jAyQM2AABW3wiEMjObxGLuItheaiP5BErbJjsxmMk19h3xczgfOS7YAWMNwhz/7eJKt9W1NlDvlurRLnzJVHBydipEOU5Y5buERVvbPJZ0LF+S49tXh/qGVIMs+1W9RjOkFZ8Y+WfEBVGWsD/Q1+3ocdqbfeWM02WwM7V13OwfD5AQGUDJu11lpf+qhTChm73QB+zXFmZ22eXiFFaJQKzV/Q6nCCT67T+tr+tWGemBQbcGlPCcpkV20IiuQSImA2PgaG8F+uhMEd6ZHjOSwBOqdGi5ACiDus0KbOIRdzV+BHfU+BiDsjbJhP2eM02PTK0KDPDo+VE24XRek6FT8OvnKnSkCRtNY9q8IADdmioImedKlXqDpA1dqtHyDaHbHKkbC5hfNepEuIxIcGFV8Bnwik1kgzZ5WtqnDIkRY1Tnocv8Zk4lmVbk6MZu3RYB4RRm6PDLvtckeOCAquqF+vrqjfFkD2eORCzRJMWJXpk8JhR45RtXjMkyYUn+zGG2jaHtCiRGE+Z4bGu7DIzhBHWWMKBptZqm6PDTnhAOWwqQG16jQLkmqaq6DOGDgj+GX9GjwxXyiQ2o5oqdbGmGnSZqBmWgacFLoQ9HNadE7g5g1epU+OUMk0y9Ny+q5yxwSm+svRTDDml5gy/LijSoMIFBQ7YYbZYdi7ijoavxYBzKvTJMCTJOh2ecIivuqOSo0JqnJIgoEmZLY7UWC8kxxUBCZ6HLylyQYqRMM29DMWgrXzvD4tBP+v+G3a6byjTpEmZ9bADQCwUNuqb0kf0PGHEtimo5Ibw8+2xHFe0KThdZ5MTuVJ5DmPYGxgLqFyR78z6OuRoU6Dpl2R+ZmtvY5MO+FDSL4wej78g6jpqzD1v62RbgxsxwMhcMyJi1CoRASmcG8c0W7Mqz2Rzuw0ifOKMaI3fJfJ5scL+eO5Y8rr/EpHsl5G9bF3wVsexeaKnr4VovmsSgmaQpUzb26f6vxHEFvFrEQuG6iIkEkgCsDZvYwmZaLSxqEwv1Bb9ZrYCkizmTD+mddFYvR3Dks61h5eQekikI2r6qW/U6R5gpn/7Or4lbV+3A4ayfiV5JiBfSitY0xOIl4ja7A0U3JPjnV5D3GQBrG20gSRO03DJwu1bcb0fDiBVhem5jjsPJs63KJj8gEkSWNXNWFcQ3XhMk1QBkek1xO2GYmY1xroNEYmBKh+yqGZE7LVr/TGDrTP9rUy24QBSf9U0yxL8JQy7kLJ2BTtmY5IF+ry2LKSqOLBnOoB4iNzk9HMz/XM910XL/yLuahizchWZkJ0jkyirgoPkgXPk+2ksep+o8m1mePb3KtHE7hXRd7VJxIy3yZ4xTk2/2fKBtdfvIt9la6FaQ3KXR9QSZUxT02O1770Vj6zoY0ZONvnr6jlt6GOW1wygjOnxmX6qTX4v58ZEj69NlIdtom2t/VYoM1avAZx2HVR/ysmUvEaA1nOiYg96zAbSWkHrt/QcrIBmAG9p7v2x62TXwBj9dg+w8a3gB1GxsAv0YOilnN5igbZjdYlxzMQtljrkOKM2N/giFnG3QppDIxO2Ky9HQQE8e36Xfb7imTNE+nzwK3rpVecQbazWNkUAapwQEqOJtMXXqarRS4ENBUQn2qZvTG8DA8y45ZQaQ1Lssk+Ix7l+90zvNUOPuld1WqFybDNa2t7f8Cvs8YwqdQF0gxaH/hP6ZNjmNR1yxNSYJVQd02fskaPDL/iCUFvira3/JZ/xnC95yWds89ptU6FBOWjR8XPspX9Knapj8IZ4vGabCg2GpBxLbKTgaY1T/sz7GRucKlP1yLXpVsIGh962+9vzRAbAwFXTMb1SLdQDdtz7M0qnnM7iPBia4YIrL6egdsApNQdeGzvugB22OKZOle3wkJ43ca3GpruYYILHjCIXjtnbpkhJ254XsYi7FslwSCa4oe0XHLuzxqka7J2yzy5lmkxIsEqPkBgp/S6I7rJEhxx4uPkCQI4rhn7K5cccV+To0CHHaLVN4PmuOGPFGsDJfmxx7EDUAm0uKJLjyn0PR6TY5JgOOVfktcKOacGXaDp5gPlCcIjHAy10dciJadYKkf+Gkangw3XmGJkHvyHqjLQOUvPzCIjWpBDNI+c7JPeR+V2VaG0KUau9mqK6blNrxbd1rrFl4UMykJHGKkTGUtbNaUSsa32tEcMMs5ifP8pFkmN9RES+MPksiMgHLZXQ85G5+1sW8WsSi1LhIgCYKhtzqtWUW11c37aJAFRbtAdI8iggycAW9gYwxuS1UwUKlmK4tvRUBUmucwzK2z05hrhpiaR1Wx9JTFaJKiBJ0hcAMlUS1mpvgFSTziBmRk0GGhjYqYvweEken5p+igEhJunUAl7BpQK4KWOBMnfu1vJqN4EYNL8VMNcBFo3ovJyEQIhL7ksFAZzpQtxASjPxsvZ7E/Fu4iQRht/M/T8WYJY0f501aq0VeUj9I6KkbsDpnC5MyphhlzjA2m5Aw65eXwOIr3FsrZgB3WacM5BzmdpnYBGLuIthOtBniL6otchbK7i1iz8jYlq2iYpQT4lywzyz9CXyPbUWIGtBNyMl9DV1HWcfKQQZMPmQiGluWtS/TaRbbDrQKilCG2nTt4luBWlLOiNi739ONCE28LKtY5WIuhGso8BytIGa85Iq2bn9GSvV7glrwGdEoLIBmOam+pTIDKqt52rMWIiAVGOvrhABqTbecyLWrum1GkPBuggMNLX7xBui1rJHRFpgtiB4Q8QUbur7swIkZCFj7bBtClypkUONUzL0KKlmYJkmDzhnEYu4i7Gq+j3WwlqhwS/4wumTWkv3kBRF2o5l2kuv0uABmxwD8BXPnHu16PtJi7w5YgPud5IhTWV+zpsdGbAHODOpZ3xFOZTvnUAQOedAb8Blm4LTNDSDqmeDv6SpWoW77HPEJhd+gTItB8DGCJ35E0BBiyIhHtscfqCPCvCcL/EIWVfZjxCPPhlGpAhjHkdsEeDzhEN22adCg53wgCcccsCOG8tMYXY44Of8jH1+4jRhO+S0aBMw9FK0KQiw7KWoBCKf0CNDbtBFXLvLmBv4Dgfk6FDkQgHUEQEJt88mZceuD13iQ2UC2uoOXiQkRoMKBQVfc4FchxRDemQcCN2i7ICnLY4ck38Ri7iLMfM8Gn6FnkqFJPX+L7IhnmN4NymLtiln9MhwSo2RMsRNFqhNkYCEY+SPVB7F9EwF2JQOmENv25nSfXr5ig7rosPs7eAzYZvXgACiIkUyc+NK10yZK3IcsONY+GZul2BCTCU5MvTpsUqCiQK6VwCOnWos2wRBVOA36TmbIwJTAz5t3WvrwT2i9fkAmRcGcz/WTv+MD+dsj4mIBfPzviwi7TQjMmE2DVYjJ2Xnxp7vjrW5aJrIg8TWtB5CXLA5r80LrTPVzkfXye+eZ6O5pxG2zojW2xCtCUzuKoZ0pRpJYxF3PhaA6iIABceAuIJrSzEgpr+B9lthlzomUhqGr+DagEgTcDb2j4J102sikNCHYQOmuki+VV3SJa34TK0SNIDkvG7gGbRVg+92XxmdVgWbQcaEomda+THzEqtKGchoiTKU822beYltEyjAmoWZVZv0d9xkALTCBAqIXsp5xDwBhNuqCXM7k2v3vbX52vUxttZYx0RA0bYZplhrq92gjBWWhXZDmayPcJouS8ZGC4WJ2jaNF9WXHdYREMWSeBem30TbT61KaHIEJqqdluOKx6BcUuA2wAEn00v9bBgAb+O0FIS+xyIWcTdjnnl6QgSuGtBmEzRrF7equLG7DWA1EoGJ0ZeIKtZWALFJ2CdErHJjsYJMJDUXO91m07g2LVCT+4BIjxqiNipr1d9FvvcGZtrk0MDTeW0o61KwgtpDIikU61QwwNj2ozneAaIGxFrV3mRLTI96voL/mqj9q4JoUtn/AcI6LRBNZv81EaPgUsf+ikiWxa75TB+71uvyjY5n9xo756b+FIh0oE0L9yGRVvVbGXNWFGfdZ4O/ZHPwlgQTKjQ+aB/2mDnX8mVHv1jEIu5W3Ojq0bSBT6g5RuMpNXJ0OOSJYzEZk6lNgVChtZAYOxxQp0qLkvttZkoVzinSZoLvWl1tS9FKbZKjQ1OBgZAYz/jKSW4MvZSCrb4DN4ckKdF0x2pmVxl6oimoTtklmuzxDJ8J51TokGM32Ofh5XuGajxlZjHG4rTrUaXOJkeuJdbYZpscO1bvEw5Fv9BLUeOEzwe/AqCvRlB1T/pEd9mnQ446VYakaKme6RMO+Sf8ISOSrOo5GCAakOA3eeGYbkNfWnw9QvbSP9XW3yQXFATU1fcyUGBbNFhHTlfWAB9zC/cIKdGkGtYdkF2hweeDX6kebl8AXr/CkCQn1CipVqvJLJikwAUFB0gvYhF3MTLdAI8ZCSYkCKhwLozQwSUBCaehajqqITF22ScgobrRfarU1VDqihEp14ZfC071O/PA/faY4TOhRJMcV1JoymdVf3qVJEM8Qo7ZJCDBBF/Mr0LRPgWcXMoWx1Q5c5InYlqXxGNGgbabs0zwXW4uBy3XgdOizD67Tg7AdRXJiUbFelQrNYvMnWw+PG/UvEZkntxH5lzz63TrRjVyzjfI/G7eK8T2f0Ykp2UF+g2igryxWa1LybxDzoj8CQwvMLDWOm1b+phpn86QeaJJCc6AV3D/ZTeStDJCg5HOBkQyYUamMBJXGnTKuIhfg1jwyBYBwFJR2KgOJIvxgftcwVfQzKo8KHCmTKXpCcR/LNvedgUkTVkCu8Tpoqa0WnOrzMc100NdgfgDXBJaagr4mvSFhVp4jrjNx4RdGusK6Blfg6Ql1xDHAp0GKhkwr2kKkkwLsNTVQwqRZKmAQVxbWMuPETDgIU43dXoeAc6WpIddOc+8asoWtP23dQmlPPzIQEpto79tCfu1UMa1RiyVoDBvOmOg7ECOLzaDpQAKZvx1Nvda06h5BKkzolZWbSVOGXt1BddCHE8DdQWEEWA8ZW0MAwHJ15BziHlQKMESep0eyz4MDJYPByyZyU4FhtbesYhF3MXYJppAmVsnCKhnzG8j7xgA+lz/NzakTdxM1/gMV/hwgKVpJFtrv/2dRiaDr4ikBCCSP3lBVAR6Q6SZXEWAS2urNxZpnkgA30DiH+vrfqljbOg+DEg2wy0ros3m9mH3BzOtUo1rNwEt6D73iEDiMyLZEtOwMoAZooKTsWxNk5q5cW0cYws8J2IhNBEgfEbU1v9Uj2FDxzepBWvvOsPlsw8KcKt6/Da2TeLX9BxeQqwjjuW99Cp1qpRpEpBwRg8G4HTIMcOjT4KFs/Ui7mKcsMGS6gXm6FCh4ZifNU4BtMU7cOBcQIIjNhlpC7sBrBUazPDIccUxmyQZ4aumqmgJim7nLvvk6HDADjVOnEZqgokDRNsUmZCgzqYDUQHHGq/zkLK6hpQQ06pPw69oeBWSDEkx4lQZ5DOX0KHABfv+Lkl/qEZRom06JOmMtAw8eUCDHhles02GHgkmtCkQkMBn4thmHXK84HO2OCKWDmlRZpMjGlRci+8zvlIJgBg+ATVOaFHmz/gZO7yiRItzKg4UNWOvkJgDKjvkHNgj12JEhXNtOw4cwL3HM/4x/5xCt8tBVti7nwZ7NP0SPQTsNbCmQ46Ol1PjHWEFt9N5XrNNkiHbvOaUGoAz0DJAKSBBnwx/yD/m9/gjTqlRcG1Qi1jE3Yp/9s9glO+TmbzDC2EaX+I65lHsQZBuM1weqTTKMRMSrDAmfjOluXzOGlOWuSU1GdNJ9IgxZcSMOFNiTEneQH/5Cp/A6RMvc8tg7jW3LOMRcuNamq5J3ow5X74ly4jUTZub5WUCEiRvjhktr3DLMgku6bFKjBFLDCn0+gTpIdPlOAE+qzd9vFmXccIH3jFmhRXGJGa3XMdC0gwY8rVjra8wZu0VIhW4TARyJpG51RS4ISrMf0Q0x13nw/Z5gH+ujyWQeWAK8XVJ6JgGtsYQDftlZD52ra8d6z7XiTw/1omAyyQRCWFK1K7f1uO80dcH+to/REhBIbL4XdYxM0Rz8lt9bh34l/qcjafkg3/6v9T92DzXAF9j9cLCwPnXKBaA6iIAuL2A0QRozLW5WyupApOzUEDK27MIzLxuKEMUnIbqKICUsTRNw2ROW5UV2X6qjKvbFizZc1YBUhbrUkw1WE90vKeQKgBnMBpA/LcEHOWED5y2YwaGGsBo2ndz5iOtS8nNhTGsbeAS23UX1uwaWOuqApHf78FHP5bjntYFIJ5eipTAbRuWPPi+JRKil11YWxWd0eEA4t/K9SsUiFhtRMdDW8dS3cGlCsQsERvBSVsohl1lq6KvfysAbMpaDpQFdjsWMNZVysAZ6lz3BdiNM/c6H9ZU17WUh6VHMH0zB3YryPN9Cz4qEVUckevc3pfzux7+tY/YIhZxN+II+DvI5OgxMgkysyYD+2JIzrECyxvku+Dp41VksvcJEVBnEiR9Itd5M3MbI4Cgie6/0PFCBCS1O3WfCIA1cPDx3PjoeI+IWtQjr5ioWv4IJ5DvtKleEbVMlYkmfQZ85om+7wa2mkGeGXNZtPT1xph/TjSBXNF97SGs2SaSq1eImLwPkfZ+Ox5jvz79K+dn70mo53VGdB8wBq0B1SbbYAx+Yx6vzr0fMT1Wu0+EOt41kaarMgrEpGf1A8OXGR6/4As+5wUhHrXglKZfwnfaBYtYxN2Kh5xxyHN8BTP3+JT/iJ8L47DbZT/7lLYyIFuUtZ1fHKZ3OKBNUUA5RJczqQzPJxwyIuUMkQyw3OGV0xTd5pAQj312+Qwxl6pTdcwta5/P0OOYLedKbWZJHdbxlUnWIUdiPIW0AI8j1WjN0GODU1a1AJJi5EBdOY+AHB1es02NUwVMfQVZhRFqJi8lWhS4oE5VjbGSTmc1xKOnQKUAreEH254re9YYYHt8SoUGn7IHQIsSqwpUJpjQIedYrA9o0FcDqgkJTtlQdnxAgYAWZTw1nBFn8bowjLM1amoo9Qv/CwcUJ5ioVEnDgaSm37jPT/AJKGkCNnOuvhaRzJTHrq0xhEFy5r9lB6nkLWIRdyv+V//bJWL3YEKeHzUuIbwFr8t1OU7g+fhhQMOrUAkbzLxbOqzzqPWO70ozMtwQEmNCnkzY48IrUAzbXHk5IEGKZTIDaZ05Td93ebHFGgXa5AZD/ABmHvSyK7QoU6DNvdYN70p9ApKajSAVDPFmN0xWpiT7U8IY7KcrriBkuak8eE87ncZT86tYGHLhFSgHLRLjG8IY1NMZqoMuw/SENkXKYZO1s2lkLlpFpLGMQGXzwWtEUsq6Wm1eDFG3ks3RrEhu0oFt3d6K9S+Jiv7m82It/vPjWEeskQ/mpbCss6pE5HNiWq5l3X5Pt78EfgchFlwiBATzQ7B6UEXHeUokBWVz49+CP/g/EhEQTMqKueM0cPXo3/VJW8RdjEXL/yIAuFKALqUtkNddAU6nLWUy+qr12RL2acwDHgmYuvRYQT2k5d0MomYhEbvJdE2Q/+NrytIcwA+X2qp+jQMOhwOYGRiLHM/SPJMrqyDovjw27AoIeKts1ZbpgQ70+Md8SNvvyrFvlNS53n5WYM32o2xbPBl7OoCPNnCsrZRKGcTXgLzsc3otrNRSHgoVZe02hAE6VW3aqYHLPn/NCXGqN5ShnuMsjCQRGANlZcVW5P2IbyA3CGXvkicSzV7T98B0aExA3APaCuwqULGU1vb/gRxfzFMjMX2v2m+IAJE0lLXCd3tGxIYzkDfLhyDOIhZx18La6DeQyVls7jfIBOkpEaBpn/kVBES1sKKDaTaVicyenumYz5DcY+CsSaTkiZivTSKmqU1cTWvKAEcDVR8j1fv03Bg/RvRWzVjP/jdwMabHZppTvw/8z/R8dona7S2nPyWSOzAd16yOkSYy43uq16NPBNiO9ZgeERnvmWmeAbgPiFi4D/W4SnqNykQTYpMW+JwIiLXHsnotwrlt7bhNcgC9hnbtDTTN63n/WF9b0dfpgmCWw8UE3zmY98nwOS9c629qcEM5aDHS9rtFLOKuRYjHDgeyqFdtURDJi59n/z4+ARl6DqQ7ZJsJPgVlNIIAaTVOSTLkJ+G+01LN0KMSNqgEDWKqz7rFkQNdm5RpUOEBDddCnmTIORUH8AHOZMrMV/pktP11SIBPm4JojaY/pkGFimoaP+GQCwpUQ9FbbVOkSYlnCmJucUSJpjNaMi3RbQ4dkHuoTE1rmzWzqhRDJvgOUC7RJKmPCT82xQanfDH4NzznpZMvSBDgETrw1YDoBzScVmOTkmOBPqDhdGPX6ZBgwoikgjFlzH08Q8+ZYJVoMSTJJsc0KdFUIDzFiAJtqtQJ8Dlmy5mGVbvv6JFhpCY4PhMA6lRZDzsfsHn3eKZMvRhV6nzBLxiRcqzXRSziLkbgJyheCvNmmoZxHgYFgVFSwZC19pQQjysvx/rlmI3LdzCAj1vvWb8ck+v2pbPFkwJDsj+lGLRJMeJeS8btpVf58cl3pMIhuW6faih5tZPO0sxn6WVX6JBj+/I7MoM+l6UVMkGPj1vvpdAUBoQxj5WWjN/LrtBLr7IdHlIN6iKDEgaEeKx0pbsgE/RYvxwLKMyEjp+jnc2ycgm17vcM0yv4wcRpJrs1pckoPSbqlDJtU+v+MQamhwCW3xLNxyxsPmbM0TQypwPn2eHATwNMAx1TOzpdF5PJ4H2JAJ2v9DnTzrfuKmvnLxMZus7Ld73Sc2sTabDac4+J5q4DZG5opLC0nqdJd5kEYQluHyJzYOvGCoD7LOLXJBYM1UUAkN+ca5EfaLd/DOLGuoKI3dSGpRDRLH1EtAgfQMHAgi7EnxElGWuVtaRU0O3ewke2iDUdvybEryNgdukRrM3T4sfIYtwSdwFSLaIWAKBsC/DZnNmVMjPtOFIbSHu/7ber0gVruLbRJW0zjRvL1phSqhEzPIHUY3mu/JyIERXTazXDGaik8nKs8Q0kmZrYtrHfgNRT4IF0McwzP52xjAG5z4m0XeyYHhHpujyU9ym+JvqnSxUil2qr2D2E631hpLIBcZUriJ3p61dwgFBhXjQ8q5+VAGaXc6AusNZCbkyLOfMi7mpsATUEvOwigCHIpOmMCMS09v7fBv4rJGdY0WEX+L/oc1bQsUgjIOM3RPqc1g1gYv5m5mSaqD6RvqcVRUz0/ymRHMcKkdP9HxIJ67/RcX5bt7kmmsBaK70xaT/XsS6JWvk35o6nT5SrjVGQRyr6f0gEVM6AT4mMneZztjFEf0eP+ce6zXMi4NpMA0KiCWtMr6flWTuHPBGDwCbzpmm1ovv+Vq+75d+HwH9NZI7w+/paYxXUkXtGqNfnKU4L7GZ5yWlHggBDMUKSDB2zJCDBV/mnVGhExcRFLOKORZt1SspOBSirlqjFqra6v+Bzapw6cM9AtwkJp2U6w2PmeSQIVBbjgp6XIeEJONegQo4rMvR4yXMnMVChwZAUJZq0KDNTvVRjY1ZoOJ3CmBpkdchRoUGBCyb4anRVdmxYM17yCOl5YtA0375epsUpNa4U0BRAUmQPhiQd0PkP+ROOFHj0CNnhAIAjtkhpPkgxxGdCixQpRuS4YoLPCTUS6QmryhwzKYJy2GTf2+VXfM4DGgT4+MqLDfGoIOZTgDuOQ7YpcEGRC0q0nBZrgwo+AUdsscURCWWMnlOhTMsx3QISlGmKFispclypOU6PgAQ/z/79ueuQcg7kAFdejt3BN0xW4u699Jg5k6oGFXU/98k6+v8iFnG3os8qF/k4SYbEQuhkVxmSFFa3N2FYgp3Lt8oijZMYT1nx4bK0QkiM4mWfAhf4wYTE+IZOdpU9nrHDAdeFOMn+lFQwZJqHtbMpt1kYeiKbEgtDhl6KfGNMq+LLPtLSIVP3q/w4+I58Y8y7SpYEAdcPwZuFznwOoOELS3Xoyfd3nIXUYMxkJU4v6znW6soApj68r65y76RPJ5ujMntHZjxmlE3J3MsIOrY2fYvM0/aIfFRMfsm6JK+JSE227rUu0nnDpjZRIbxBxGw1aTmIpJ6siG+kgnlt17L+NpIRRF1h8z4HJr9VIFr3zs9/jSGb1deW5s7xhAhQti6tN/pcmUg+8RslKRmQbICrHcMi7nwsANVFSKwQVZLm9DSd8YothC1ZVYA32obfJjI6McDSPlmBsBhHgbAqXavoGHglLe4xD5ZUI9USoTOd8vlQY8SqSGOiBbMl6GttXX+OgBUGENjxhkSUfDMhAefMN2xBylp1z/R4bHGvOq/DN3oeyGOpEpFOjDFg7Xru6z67ypxFAVprWTANGUvwps3q4W4ODuR+I/u47kIsBqmXODBj+q1ew6ZIMKxZW66ZRaGgquk5zt1s1h6qVIE93lI5h0thrMat1Rec8df0JNJQve5DYU/Gbb9VnVerHi5iEXcw/vM3sPKeKHfUgR+QlvxL4IJI1/MGbt/D0lvkez1EdJ9eAx24+r+ust7ry/fRtJpWIByBd4zoRJko/S2RdEBLx2oBPSSPtPjQyGpKlHuGwDUMMgnS308k/50DP9Ltr3X7ZT2GGMzyELtE8qA9fqPjfUkEUMb1+My8ySrrKzp2TLf7DjhEtKfaemwvgSsi86gzZJJ5rcf/xzrmmV4H1Xe26+TyqRWglonybKDbxCEsgdfX69lFdLCyenzovpvAfwu338LS90S6sH+JTHjj+vp1fe57eQ+ZAe8RgLwHfARhzKPBAyo0tL3Vd0BLoHqLvoJGQ5J8x0OilcAiFnF34owaOU65Isc6HQIStBVo3OFAdVKFndmiRFJ1VHuqT5pkSEwZlxl67PMT1RsN6LDujFDM/MkeSzGkQoMqdRIEjpHapESZFkds8il7zjXbNFwB1WkVUPeILSo0yNHhlA2nwZpUkDNBwDFbbHOo/yXw1BDrgX5n9/jUmckMVVf0Ndv8Ji9IKFNzQ/VkQ2K0KPEZX9KmgMeMCyo0KTs92R4ZQjxGpDjkCdu8VlZogh4Zml7ZsXILXCjTNOBCDWxGpGhSpqxAdYOKOnGvU1ZGrWmwDkkxU8asMUQnarLVpESBNj0yzjTMzt+0WkNC1sMOm94RHXJq/pXggB0mJFjVtv6D9FO2wiMHOpvW7ARfikoaWTp/S5/cRSzibzZ8BPBMN264zUKu2yfMehS6XUarcTLdKUsNCDcECL1KJ/h48J58fcxtWtr11y/HXORXSXf7+GHArrfPkCQ/ak+hC2Hlhl52hfz1mKU2hHlhNCX7U5J0eV9ZdZrJuW6f+DXEKg0GpWV6foZM0KPj58CDUv+SmB+S6/ZpZ7PUut8Tv4bbNFzkV+mlV+mxSmXwjmF6hfWww8oA3pdWudfo42VnXG6s8Kj1Dlrw7pMsHXL8qHUZyUBpFychMk+zVnxbG8/J7OEh4Og3+rd1Pp0QdYRZmM5qTMdbI2rBV1k8x1B9rNtYO75JRxkJyCTv1oA/RQr3xlLtEoGoEJlHmeS9p8/V+RBgXSGSK+gic/c8MrctIesAw03s3EySr42QDep8KP23iDsdC0B1ERIfIwvfLvLFN/BxDkykhSQiD1e9WfKRpBAjcp/2EVBNGZRLJUgFfKgbugKUIV5AANP03P7UOMq1ohqIaot4A3jPdLtrHKC7BJF+n+3PKPcBwlA6l33T199aQUsaC6yi52Ttoch5cKkM0jSRIYrR/lf0NXW9fmf6+Gd6Dn+qgKZdT7vhKGB9+0akE/iG6AZUJrqhZOV41t6IWZer6PVFv9Va+tdME9GTY1pS3djvTwRbWTJh7l2cMcySXas9eU/jbRkrbtfZTL902/iD6NgKwPASUp9AwdpA1nQf+yxiEXcvcggoaHqpU6AAo2KMZHwm34n7wAhu16GbTJErDCEJtwkIPYhdwOB5ggQTfsiUKG+0iKmkySwPsRHcPoKlAVwXpT0zdjPDv7ihk0mRGw2hCINsgnRiwsRfYhhLsjqRVtjYFHgH1w+TZEYCIrxLFqVV9mbCpLhEIn7LbUryTvgjGK8kSA9k8c9IjmFSXCLBrYCJIRCHznqKZW7xMiGp0YQlBVVH2RjxyYxYAWYV5Hx0QjlLQixAmKDGYA0Rof4kBOvL+Bc38nxctmEC4Rp4ZlAFkqMzsq9kbwZxuF2Bib+M371htC7HsFQCr4VQ+ZMwWYmRHM3oV3xWk0FklGBM3xtERsDX96dIZBBmZgpqVhBkpIXPj90wKS2RGN3KPWGE3JtWxWylqEDEBQWKtDlik21e00EMXBLaCp1iRN6JfS1iEXcrEgQkGSr3sUiVM+fuXlC3+SFJdhFgoEGFOlU2OaJNkWpQ58IXGk5DdUINUO2ToUmZXfZpUWJISlrPwyF1r0qCgDpVKjQ4YEeVWKW9vEibr3jm9ElfsUOAT01X1VXqNClpK/uQPZ7xhENi2j4zwWedjpMyMLZlTPU/T9WxPsRzWq5JhtrOP6JEiz0+5TkvHXhZ4MIBzHJ92nzJZ2xyrJIEIQ0eMMHHU61SnwnHbDpgUxi+R1QRGQJjrh6x5Ri7pu06Q9i+ZVruWiUZEpCgTlXzj8gGzJtM7QYyOav7VTxGbAeHNHwBZT/nV7QoEeBT4II+Gb72dlmnQ5uikx/I0CMWhrzwPifQytVL7zkTEqplm3IMVwPXX/A5m3z5t/wJXsQi/mYiO7hmuLZKetanmc9yv9V1EigzzwOmjDdgmJY2/KFf4rvSPcqD9wJYKpga4vGulCU36LLW7TJNd7kuxKEgrNLUYMygtMzQTznpjPgAfqjkKXUvGa1KlTuMQaN6j2LQpuPnqFxecpFfJcGE4mWfq/wKP2pdMvUlj49W48TPpyz5wiD3gwmeL2yf1EDaqN6XVrlX7zPOi6zLDI9YIcTLhqJNHdYjfxIjXc3J1rnW+3kPEvMAMVKP6Y/Ch3qmVjg3oBIibMGIWtm5cU3m6ZLINHV+/xB1bvpzxzmPEdT50CTVCvk2/28R4QJtog4n64wq6PiGVRgobMdvklzGZp0R4SszZF66iF+LWACqi5AwUNIqLUatTxO5XJuwdHpuu0uiRGPbtHBi0bftOe1TcKYmt2cKMFpb/AvRBk36+vo+Eehoa1Gr9igrdThQd/oYEdXfND2tzcAS6Kqe47e4lv1hV8yzDAReMqMWkx94i1Dy59mWXZx+zO0rWNolAnYN7DXwVtvib/9c9U1Nu0W1X9ovobArxzIKYPbnsFaY29+ZMk4f6lj7c8+1IzMsM7TCV3BT2/1dZOGjCpL8TWagoe/DTNsQrC1X2V/DbqQRS1av3xiu38Darl6XCrAGqTUFhO0afMuHBjWLWMQdiv/sfwfNnY94XP+ed9WsiPh3v+d19iEzPNfy+rjxvXy/s0PO8vfokxG9Ky/jdOLa2s9TCy5IN26Y5qGRvcfHrfe8Kck+/qJaU5OPFvfqfb6t3mP78jsO8o+Y4fHT+hveVstqLBJS45QJCXWPl32uNad8V1kixTL3voF/+8kGteCUhl+hHDbJdKfMvAmvs4+csUkxaNPwKzyuf8/76irFyz5LA3hXjeMRUrwc0cjn3YJ+gk+GHrlBl2FaTBE2u98B8K+y/4AdDvhR45LrsjA1Ah/8QFrf1hpT3lQ/ojr4nslKnAuvwKPGOwaFZdKtGy6rK2S6Y46zH7sW0wx9MoM+w/QKE9UXDPHY7H5HO5ulfNnlq/xTbU0VFlXPS9PkEdvBIYGfIBZKO2+PDJWwwVpjyqC0zKlfo0RLFvzdMZ3sKiCMj3q2JNp/g+85TT+kGtSp+1W2L7/jKr/i2GEXzDjXfrcNTqlTZY9nCsLE6JDDI6RJyekNLmIRdy3u8V7b4Q9pUOGAHSqcK4fTcwzRV+xQouX0U8tBC9+X1tby7D2N9H1C1RJtUSZHx7W6D1Vj2JiNda/KBF/B1HPXCt8n4/KX6ZDGCDlghwJtHigTdYLPPrs8Y48GD/iKZ9pyXybBhBxXTvPVQNeW6rUauFqiyUh1QTusszN4xV76pzygQZ2HeMyo0HDn36YgoIVaw8i1WeUZe05GYEjSaYm2KVLjhGr3HaPVOC+8z6lSZ0iSY7bwCHnNE77gF3iE7PK106QVkyifGqekGNGmwJAk63Toa4u9nV9OQWOANkVOqRHzBcw1ZmvPzzjjPAOWO2pwlaHntFlN39Vngh9MGPopJwVhrGJjAPsE1DilSYk2BUI8CrQ54BPEFnsRi7h7EeLx9vF9KoN3jNOIAVy2SeXykqUZNPL3KQcten6GDutUaFBPf0Q5bDJMLzvzvRZlvHTIZCUgMZ5y6G3zd+vfcFldYeSnXPEmQYAfTCCAHzUu+aGSJ8GETDgFYD3skG7ckPYvuV2R72FIjLP8PS0ejellV2hTJOd1GFdluxEpWn5ZNFRnY8KYAMHFyz7MoJ3OUxhc0klnufAK5DzJzQ+77+VCmMwSRCxOW/cWiLqIbD3+CiHyjImMn4zwNC+lZwDrNZHmqa27rdXeZALnjaCM6GWolnVvvdHt9nX/ZhRrRKg8UdeTr+NZl5iRl1QijzMiMNWYsUYcqhJ16AZIAd6YqKbDaga0nyBYShYWtfZfn1iYUi1C4j2SQKzt/pUAlkDUOm/OyibyDJIo3uh2psNXQjTxDKRUwyjawEsxPVoy+YBv1dgINcSCCBw1eQGPSL/PNFtiooF6O5M2f1q6f5BEaexWY1eeIQnPWJRV1VCdD9MjNTMXA0g9YE33Y7qJM2V7gmvXv32r/6smqYlyLxW05d/YUOqAWDCgeSzHsrYbjX/bBR5q+76dQyySDmAG8U+ITFNU+yVl19VuFlbRMzB1gNwk9KbVG8D1CRE7WKtxKZNmMBfvvvy9VhDdVWeSdQm3LQGMb+29z7Ooui3izkbzozUKXHBdiZMJxOikk12lRIut4JjyZZcJCd5W7vN+Y5Vhehkf0cGre1VnzGIL01V6BH6CX278lHr2vgPXJiS4rK6QYkg1FJbVOC9GLFf5FYakaFMED1KMlKngOf0/nwlJhhx4O7yt3OfhpZgSvP3kvmj6+SVSCNPr6/xj6llRvze3bm92Qzls8pfVx9Kq7sOgtEyHHEOSHOY/5ogtTqmxHnZoUCFBQBhb5jXbAJxmPyKMQYE2HiHvKlmuvBxLb+E4/YiT/H2uvByD0rK0pKazeLOQESneVu6TGN/wrpplj09pZfMkCMgFHUakSAVDeulVQmKqAzZ0bBADYKz9FWCtMVXgZUhqcMMv+II/8f6hssIqDL0Ul9UVLvwCm4O3tClwToVG9h4NHtDgAZ3sqjLHAnrpVQISHPmbgLTI5Vtjdck9EaMW6gLQBNIKbcCJsbTs+FbUZGcRi7hr0VdOaZMSIZ5rbTd9zAw92hQo0NbP/QU5ruj4wopsZ7P8PP0PmOBTokmHnLb255jgk2BCihF1qgI66LcYIr1Wk9QQFVEfTylPX/ALqtSdzmqGHqdKETKgNkao+VNyR5UzimqY5RMQI+Rcc5uZQZmhk7FKKzRopu9R45SWttqXaZGhR5MyAQllysbI0KNOlQsKysUVFrtouooZVkiMHQ6k8JJdJfB8NjkiIMHzwV9QpY5PwG/ygivVpE0xokrdadQamHuE5Kc6Va7IsUqPTY44ZFsMcPQYUpqDckgu75BzRSoQgPqUGh4zDthxoHKBNk+6b5UbLC3/bQqc+jW3rbGONzmmRJOafkaGJAmJUaCterJXfM6Lf8+f2EUs4t9PDNO+k8PwZuDNYGfwisLgkqUB3MZkfhX4It3xG61X5AZdKkEkeVEevCcWhmx2vyMVDLnwCoSxZUo0wRemqLFSAxKkBmPSZzeojx9Jho592smuMvRSMBP26ln+HiAGWRl6/KghaN0En+rge9F+TmdZ6cKPXlzy49Z3tCnSzmbZT3/C+uWYpRlMVeatmb5HKoyM5IqBMnVszW1eJWkigyYzprK19ApRC34fWWuar4AxQ30i7VQzYu3OjaNm2W6fBog+RjpJCzhfE2cQa9KFhh/Y3+cIWGvEsHltVTO0sv+NTXuO4B6rRADsIyLJQZO0ml9vdxGS2WsibMLISdaFamv7RfxaxAJQXYRECgeITq+jh6eXRGzHV/rbwMIGklTWcGxMl2xU85MxEKoWqDrOx82JXqtSS49xxldL1iq6QgSsGjBo4K0lpxYsPRV251DvV7ddHNBHm0j31appPgyN4l/Q58ZErQob+ty3ur3ppaLM2TGSEAMEzMzrPkIBTqcmbm3HrUl8yf62G4625LsKnF0r1aJZsusDkXPhQLVonyt4eSbnefuWqFJoMgKe/L59S9S2HxDpFyqrd60Eaxt63sHcsfh6blZ1i+G0bNfMJVv1aUZalVwyQDzAmYMtYhF3LfLda1keehle+J8785MWJbzZDVf5FXYu3zIixT67nPo1hiSZ4LOqC8vPB7+iQJsLirQoO9BvpEp270urzsF5SIqhlyIT9OilV6lyxkgXwjk6YvbX7TIkSY1TRmo0Ygv/TY5JMeIw/zEjUlQG76hxQo8MhcGl0+IbkeJJ9y0/52fUqeLNcK6uLcrU0x8R+MJIMhDFY0aAT8OrUOWMY7YIYx4PaKjJS4l6+iNyXDmwd0SKH57nqQUCPtSpcuhvc6FO2xd+gRkePhPq2fuEeDwPX/Kj1iXloEXHz/GABunWDS1KHLNJmwIBCYFNsvdoUeYg/8gZpEzwRUOMDAXazDzY4tixtEyf0Bilw7RUw8xwpqwVQmMUH7PFv+D3KdJmgk9AAj8M+IvSU0I8WpTdNUoxxJvdsMMB/2P+785855hNZ3qTWQhlLeKOxkNOOaXGATvu+3asIJ59r4aIccoDGqQY0SPDVzxzOppmhGSMUmvdr3W/dyDdEw658nL4TKjQoESTFEOKXFCn6lrXG1Qo0maHA/mu47ETHrjvLgiQt80hLcqcUGNLW+h32cfXYylyQTWsk2TIqprK1TihQkOKXNTxCNnjGU1KLienGDqgMsmQMk0nXdCmQJOyPt6iSJshSbY4FhCSGg9o0KJEj4wDLj1mLkc30vcd6/OUDce2PdJ8shMckKOj0gOynwJtyrTwFZw+ZYMQj12+VkMs0V/1mFFFnL4DEmxzyCbHmuECd6+YNx1rU+BF9jeUJbsvwA9wQZEhSZIMqfOQNkValDin4kDeUzY4ZpMyTTxCyrQYLtqXFnFHY6qLskrQIBZCK5snjC3TSN/n2+rHLLWhMBAQM0OP70r3CGOibbrWnnLkb7p5Vyub19f13et/KOW1iOxxr9UX+ZGVOJePV3hXyXK7gptLzhdDxrpOLQZt8q0xgZ8gJMZlZYX3pVUHiMYISYVDbleADfihlCfHFblBl+eX3/Ai/1OuC3FGq3FKXTmPE6/Gx2/eO03lYXo5YoyOEbAxJPL+sPZ8kwlsI+vBFSKAcp5g9CURGFkm6kTdQBilEGmQPuTDNf0rPlw7W4dpgKzTIWKpVvQ4PsEZZ7tuWjOPNkwAojWwydgZGclMsEw2wDRSmRvvGpGZaup4j4jW0h7RWjtA5MUW8WsRS7e3t/+hj2ER/wFjaWlpDeh2PwbewXQGhccwlUI68Q0xYhqNIbmiOqO2rTE48wgAuUak+6lM12EX4jEZF2T71iWUN3BU/mkQmS8Nu3NMVdPw1Nc1W1B+RiRGHcyZPcVUAkAdpKeXqvW5ovICmiSngRxLStsTrtvaUj+GdgMKZSJwWCtswxMddy06rw9eExMgd8n0Y63VwHRVLfT17YayU2MKWKPnb/IG1g6hFbbrVwpiZsVcahaKCRUIyDut6znloVmHTFrb9S1CNZgy1q5Vz+YfB6fLetudkygwMNeqhcr6HQ7kM5HX92rpEUzfRBIE19eQFcZu9vb2dgGvLuJ/8GG58LibZrQWOUlvh4esNab8t9VPhKlEmRYlvgh/wVfepxS5UFOUCblun05WhP4z9Nln14F60iJ67vTyAGrd7/ky+1MF3XpuofwVz/icX7lxWpTUWGREdfA9++lPHFi3Exxw4Rfok6FE6wONvhon7PEpOxyQCXpc+AUnHTAhIZqrCBNMGnjFIAZEc6tN0U3aAxL4TCjRpE2RiZrEFGg7M5NPgz0u/IIzXJEWzx1neJJiSC04JdQE1vMyzPAc8+HCF9OVCT6pcMiVlxMHXXULP2KLDD0KXJBixDGbVKmTCzo0/AptCm7Bb621PhMKg0sO0k9paXuvsOKGNKg4pl2CiVv4m/5hixJNysKACxvUvSp1qjygQYd1qpyxx6fUOFV3cnmv5PpNqAQNhn6K767X+bvZOizy4SLuSFg+/H93f8pgTb4nmxyTUFYnwAUF5zxfoM0+u1Y2Efa3tp7n6HDADl/wCzrkSDFkhkedKuva5p+jQ5OyAxfte3xOxeUp0QXtO8BxQoILCpRpEeKRoSeaf5ozhiTpkWGb19Sp0uABGfoUuQDkO9qkRJ+M287yg7XvW/6z/f/Hgz+lkb7vgOPoOIoUueBrdnnOlxzyhJy24O+yT5IhLWWznrLhWuKN5Wr3CIAKDUakWNXWYIACF9R5SI2TD1i6OToO7K2EDS48AZZ9Ji5fvuA3+YJfUFYjqjZFlUZI8IRDd407rGv+TXBFTu8LM77kuQNiAZfTX7PNEw55zTY9MmxyDECZJg0q7AQHTpu1Q44ap3x/vbbIhYu4U+HWyd/CWkZ03YfpZVKDGycDlAs6pNs3XFZWiIUhM8/jXCVECoNLwtgyifENrWxevgvBKR0/5+Y2ICzxFEN+1JD2/ZkH8QFM01DPSs4xyaWQGB4z1i9lkbk0g0F22c2tAs+XnBhIh5QY6gljvBw2mXkefjDhwi9Q6b5nsrLMob+Nb4WVYELPz7h54YgUhcElK0Y4eoOAhLrmdqxTAxtNeq5A5JGSJSJGmVzeHPHIMUe7OrattwMiANfWo1aX+THw50SaqkYeMmDWdFLn2/mNvfoSYcS2dPt5uUFju/aJzK4ezp0fRH4pDxH/kwc4w+4/+L/BP/1fE5HBAr0W6JjaWXpdhOwWsMiHdz4WZONFSKRgzaj2eYg/xLX6p9KQOkEARaOrG+hpSTA/95hVepqQ8oAKxM1Fvgvlx9HYlOSGYTqsKdP6bBExR5/KY+WHRBWjkux3ydwFH+gxqmZL3Oj7K8os1YpcvAtxc6vOakt9X/ZfsMqTtRkogzRlwKLpn8aIdGVVa2Vp3rzJmKg+UTUupvvchUIbd8OJ23bzGrNjhAHclrHWnuNuWEsFiJvGzAbwLcR/rNewAGWr8M23PJzo9bAbk2na/D2Im3lWGwfkOqDcBLjV/MoZxzyF1BmkDPxVoDheJaoW3kM0aBexiDsWyWBIUbVQh6QIPJ/LqucYSSmG1DjlyNtihwOKl31mnrAVjrMfKyga3Vo75EgQsBUckxjf8CR7SGow5jD9mFgIm8pesoW7R8gOB9yr98nk+zTS953b9ASfZvoeh2yzzSEdcmosIoqGp9TYDg+pewL6tSlS4EJax2ICOMQIyYS9D8DKFiXVDiyxqhp44uZdkPbSsEHPy+hry2pwIuCrte/WOCXwE4xIYYYrIEBAJuhR8C/osM6Bv+NaZI3ZVRnLhD7E40ue8xkvufJyCsKO6JCjTFPOj0NSjMgM+uysHNDwKs70JlAgeT3sMPRGjh1XT3/kzFFKtBxDzCPkihyfBnv0/IzTLHPtwWGdVa9HMWjjzW44SdfY4JRV1VUMibHJET4T2hRJMaJAm4CEMHb9lAO+F7GIuxgGMlqLeIGABhVKNDmnwm/yQljo2mIu4GdRtUqlQDQhoSx++V5YO7wVfk6o8Sl75LjinApVDpjgz7nXS4Hjdwf/knr6I06pUeOUtgK6CQKnsxzgs8WRslClUGOFlH122eDUgYfzTvdDUvhqwGVarsa8bVF23+NG+r4UwIIeh75In5ierGloT0jwOb/imE1KtAgUMJFiUCRxYHqtIR45ruiRYZ2OChtMGJJSmYES5aDFxPcZkeKITXJ0KNKmTdEZd3mzkNfetss3Nv4Gp4TEGJIkxYiRslZNOuWKnGOnHrKNmekNSeIzYZNjDnnCTCUfRJJgwhMOHRhepU5BzfkKg0tO0jUu/IIDcTL0tLNiEYu4mzFeg4wPV3kBNJv+KhuX70j5Y1Ya8P6x0iI9BOjMi4GcsM77NP1VKoN3VIJLGvk8MzyaVKlxQv5kzDQvDJv3lVVSgUgXjbPQS0th3WNGJ50lE/RIt8aMlTgT+DDMi9Z8odullZWx5bkCDy/fE/hj7ne7vK/IMbYoU5t9R8bv0c5muf+my27pldOTH/oppy+db4x5V5G558eX7wULsPZ9GcwZJ/MNrqPSSew1kDXsKyLGZmvudQZy7hN1luqa1johjQTk1rCXc/s3/VbTUzW8wQDWtbn9mBTBIyIdUxvnjKhlX/EKfofISFq9Stz62Bixho/Y62JAgqi1HyIj6RKRTuwZzDUDLOKOxwJQXYTEjCiJGHCYh+G/hFQVqQJZtcja0U/mtnuk47zlrydDkGRTIWrXt4qTaaJYojmP9k2dCEC1xwpExlfzn95zBOR8q/t4xIfGTPPtAApUOqCzoPs2PZQSESB5Mref2dx48zcBkGqatTgYIHpCVJ2zxPpKx1klcvkz4NPW3F2kemdAq4GWM+SGtc+HN6mujmemUjN9rK2P2xh2fc0F0d5rC9NNnWes+npdTH5BTcUc+9bAdWO92o1tjUUs4k5Gy79HykvQpMQOB6QGYyYrcba9Q9oUHevKYyZ6c/lHzrQJYI9n5OjgMWOTI2FbMiTdumGcl1atelocmHvZuAMMHqgm3pAkRdq8r67ih4EanhQdcwtgiyOnG1jqXtLI3qOj7etNr8yQFK/ZdkBsiMcL73MqNMRN2stQ6b7nNPsRPTJuQX3ADs/Yc9qDAgZPuPAKtCmKxqmavnjMnJv1DgdcUKASTKjEGhx4YhLT1CpMGPM4YIdd9hV8iJFi5ADdMCbsVI+QAm3OqdCkTI0TBRaSeIRsc0ig13mYXnFtb6Jb+NDpKBo7I8UIc5o2t25rDTaQtkqdpl+iwzog7DBj3XmzkL6XAR/Ks/f87uBf0ksbA1m0I5PKcK1S55Qamxw7Q50CF2qqM/pb/QwvYhF/UzHD45AtdvnafUcMZEyoOVHKH/GabQq0tWV+5PKRaX5uccwBO9Q4pcI5Q2VvJhlSVA3m7cEb6ukqIKzPEUmSjHjCIR3WOU1/7MDVAhdMSNAhJ8YwNJ2R1JAUCQItbMTosE6dKjVOKdHilBpDUk7nWgyukuS4AkTHsJ0u4hN8oKVaosmxsj5T/kgfn2k+GzL0pJjUUMandR6Y4dXvhn9M4PkkCBzL1oym2po7VlVWoY3kQwM1L/wCFxSIEVKkTZU6R2yR44odDkRb25dz7CD6tSNS7LLvdLfNEMcKXnZspvVszH0DP8s03d8bnCrrV1qOTbIGcGMaiH2Yfqyasp6alF3QI8M/5x/zCX/+t/XRXcQi/kbjv/jfw20pxgCfJW5ZvWmxdLPEJJYgOQ5or8QpjK8Yrfis9mCUmTGlyzI3ANzQ5YYUqdkIuGIYSzJhRmEctTJer6yyxA2Z8Q3jlQTx2ZR2bIXS+IIwtsTyzZggkSB2M6O/vMrqTR9vdsMwsUScASsjCL1LYlMYpCWHxki5Oc2QOGkmxGdntGNFlriRAvUIpvElrmMeMW6IMwG+45YlVibQTdySnbxnmEiSHo/w9oAJssYdI2vCEbCu/98gUoITojXvEFl3ruvfa8g69ef6emu9t7D/3wNJ/X+ZiNV6A3xNJEkXAHH9nQCOgZ4eRx/poK3r/+vAFfBH+n9Cj3tC1H26jADEp3o8HwH/SrfzgFtgSa/BFZFvSw4BSgtErNx5XMS6WU+A7/87PmyLuHOx0FBdhMQE2ENAPQM9ryH123yoq2ms0S4CrhkI20aAtpDIqc+qRS0ix7wGkkTMrW+m+9tDElefKIkqu9VR5hsIy3NAVLFqEoGIdtx2vPbbBKzR11bmHu/rcVjFy473DZEOrLFIxwho+5/o4/tIy8BbPac3RMCtnfsb/VuPeVrnQ9Fuq6qd6Dk2kYT7SyKNljf6vIG3D3G6stNL5Cbhze1nQ89lFWlBsNaFOhE4bdd/3mXx27l92OsMfLVr2Z67zgUEuB7IttO6HkOX6Aa0iEXcsUgxphw22eY1sTAkjC0TeD4/alzSpuBYVtbyaXqm25ffkaPDZ3zJBQW3UG1ToE6Vv6g+5UX6N/m4Ja7ZPhMy3Sn3W10HyNqCNxP2yHX7eLNwzuE+5hbf1mbfpMxB9jGhtqvm6FAOm46NaXp4wlRtUw3rgCyG69n7TEhwwI6yllI8Y48OOVqUuaBAkpHTDDVTExDmE4AfBk7fdCs4pumXCLxIF8aYTgDP+ZL1UNhXxlgzJlUjfd+1EQ9JkqPDM74iQ9+1BYd47Ab7usAXWYO+lvdDYtp2LK281g7rh4Frh53hcUqNplrKfDH4N+TocErNASIphpQvu+QCOb+mL+w10zI7SD/lgB3aCNhi2oWeapMJY2tV36MLB+QuGKqLuKuRZMRzXjrwcEiSDusMSbHNIYf+NhMS/CYvnLHTkKQYu5FhkyPqVJ2+sY1hecFkAgAO04/J0HdO9av0qNCgRdkxOc0AqYXIshi4OiTFlzx3BZceGYphW3VGm64dHSR/lWk6zecMPWqckmLEHp86RrsVpKw9HmCTI5p6PC1KtCi7vLPHM17yGRUahMScy72d+9AT/dmYgrOpUIz2UsqKzdATnWpl8Q5JUaYlZoAqo3JBgUO2aVBhorrQdap0WHcgboE2p2zgEXLIEyb4rNNxOqt2faJr0eKQbVqUSDAhIKFFQclbCQJOqNEjo5INIyeTMsFnhueeAxwj1Y6hzkN6ZPiCX7BqYvyLWMQdi97aCu+5xw3LrN70mS7HSQS39EnTWVkjxZD3K3luWGaQSTAgzZQ4HiFT4ixzQ2o2YhJL8D52jxghK3wIpg5JMWCV6xUp3N4uL7HCmMFKkmEsSS+xyjVrTJfjbttOIotHSPJqRuhBkEgwSCe042bi5lZL3EqX0s0Mb3br5JUA2sksrViJNAOSN2Pis6nb5iKRx2NGNzHHlIkhRKIUstZMIOvKHLJmTCEIUwZZry7pNnEECF3Wx5JEpKWy/u0DRSKAMqnj5+ceuwGmul1c92cgaFnHvprb9ypCKEoha9YfdJwfIZiAHUdK/17Tsb5H1sI3wIWe4319zmT0Rjq+EbSMDGW4ybfIuniA4AUNIq+TBIv4NYkFQ3UREnkkwbwl0iIx93cDTY3RWECSgdLbp4G20ccQZiZExlBzDvUOuDOA1BiQZhCVRgDFGQIi5pFk2Ij25QShfQQ4/AZJhic4AyzHojRpATO6MmaqOtk7TdQW8EL1RM3lL4YAkB5RC0Fdj/lMXtOsQ2mgBlLGuL2Wv9tnUDAJBWOXBqox6hExR+cZn8YaHSC6Lm3dpz0OAuI+QhjD19rqP9Nrg16Ta5zJFyERSG2yA2V9zmQRzvRaXRNV0Ox9uSRioWaJQGePD0Dx2zZc96HwbO79WsQi7mCc8ZCt7jckvSmtbJ66Jy317UqPJEMHCrQpUqJJTls0Ax/XKm4mR7aoNpDBjAfaFEgQ0Mjn3aLUWI7lwXtZ0Gd7bmHta5ttlTMFacUxu85Dp/s503Z1wLXUn1Jz7KEcHY68LcfCOmVD2Usp56w9JKV6sAEdcmxz6MxoLihSVg09EGZVx1vnCYdM8DnyBSioDN5RSjcpBy3qvmirJvtTelmPmSfnk6GHz8Tpc4ke2Oj/y97fxbiRpvme2E96mQwySIpMkiKVLFHFVKaUpezKalWXTmtO9fZ8nBmcscde2Avs9QJ74UvDgK+8NozxGLB3L3zlC9/5yr48CwMGdowB5syc+aodzapaqsqaVKeUqWSJaqZIkUxS/AwmI+WL533eoGbGH/D29Nls8wEESUwyGBFJPhHv//l/kAmHtE2Zj9o9XpRu8pT7zoNxgk/DEx/WgDi58YB+KkfLpm7XOJGkcCuxPaVCzvSdfLdLjZ+O/1qsFixAaqycObR+jiVaDLNrdIwA4iKZXSfHGUkjslyfCU+4z+/w7zCEHLPFAsPEyHkshl0C4zkPxZ/0fkY/tv4r/hSvalW/nHrDDRac2/41Yi68VGqcOM9T9XdWsA1wzEplqCaZ0KUIQI4zvuYLG4g0d4BklwJFOsSZU6ArMvrxa/qpHBWafMWXPOQRh9x1fWE97POt2XN9S0KjkjL0MHPXb2LWN7pNicD2W8OCHH3XAfvkHKMToM4eFZoWsMy5XrptQeINy4hXixTxZJ5SDRu0TNlalDxnTtyFVnWQUL51+oRGbtTiNohrTtzaAnRdD+uTo0SLA3YxhFQ4ZYfntChxn6eAgNJlWg54vssh4tndJLC/r2/Z4yGPmBO314Mz5giTX20OFhjnQ12xiok+Oab4POQRPlOaVDhmy13X9JqTo+/UG1uD7+ln08QJaFNiYpmyB+yytmLrr+qS1v/kP7uGf83gc4VMaGiZ6+7z7yFpygEGH0PfjnruckiDTTbDOmYRYhbv6acSBLxnPbwgMGt44RpDk3H3MlJx6+ucc0z7FiXH5i8wos0NaxfSZ0KJ7d5rnuTvUaBj72lu4SNDm82wTnw2p5/KWn96UeqMSIIdbotv9C3XzyEaTvcpsx0eWfVPlht/MZD15YxIQQoRYaeJrCUNEjzlIWSgZ0Tepqml570gyk3Rv5XsVCBSWioR65bd5jtkjRva5xhEpv/UPvcBEekqIPJ1fWq3d4d/jGs8RdbYCaJwan3tsi+rEqN0HX6bCDPBbkvDrkMiRW9zaburvNJfm1oxVFclNSJKq9MUd30sIKLhq/9ITMKSyMLaNaS56VRmGZRdlrFrs9okmuZoM7mGNJk00mQUrBsgDa+EyN21NElvE3gqgJ6bDC0nECrbVYeAai6tjFc1v/ZgTdmZal+QJ/JKXfIYpSfvVb4DV0p2/zZxvrFcg8I9+1q1SVgGj2P2eFXWryBrnki2r5YGCu7eJ5IPKFi6uXROBkRgqvrDGOR3UUCaP3afrhEBpdeIft9VImsClffrOcjaY4PowqX7npYQq8JyQuOyPcKqVnWJKs2Io/xNYiFLi2RJdt4M6xgWtCm7dPl/0f5OgkZSH9O24SJxAgp0liSlScrjt45JpbLJj9o9DAtq1PkslATqZuqG8w5cYNgdvODu4CWeDYkC2O69xmfKDodkGHJKhRghbcouKTtpQYKWDaFqUnHSTkPIfZ7ghYFNgRbW0pw4h9xlaiViQzLUOCEgzi4HlGyitWHBg/HPKNMi35hZFpL1BExlxefPk1TqKg262Sxx5vxbfk88GQdvyAQSflIdvKE2eM2EJE0j+9grJcjR56f8lbNCqI5fO29SnymJsfjNzolTp4YhxGNOnZoLtSnRYkiGMi1hASfWXHr3whibUJ4URrAFXr81e47RW6JlFycxpvgSPkGfGCEtSrSt/2LVNtjK+A0dU2BImgqnkvKdWt1mrery1o955BiUgJX0i5y8QpMybfvdSdsU96RjZ3etV2qcwPmZVmygW42682LVPqkMSzEz2QCEteozIcTwkEfEmVO0rPEpPkOTIcOQMi0+C2VAFBKjTIs4AetL/p7xpT4nIXJiSdBBQv3+Hb9DnRoxQrZ7rwkt81IC/upu+FKgyxZH9FmnzzpTfHymrl+cmJqzNwAspzZDgypFuoTEeMLn9Fl3QLSqDyo0qVOjzqa1TSk7mwEZni14yn3WbdDX3PbmDft7iTNnis82x0zwecRDJ8Xf7L3h7uAlOc7oUmRr8L0LX5T3PnVM3a/40oHlGYZ8xU/YZ89eE+S4QgyeZcDVqZHjjHJvwDS9RtfaE9zjgC2O8JlQoOMAmlWt6rJVhrELwpsYseXQ4M4JSXLjgdzDsUGIoUSLOR4xQoYmI+FQCflunFKhaSRIs2XKTkFzQo0mFdvHDC3K1sYkGlAZFtTZ5IgtJvgsMBgWHObFEqWP3AM+CB67HtwwVRqpmwTEOTLb9m5myt3Byw+sPI7YdmonVddUxm/wCFgYGYHnxoMIE9hDQEurmnQkoQHRWhZkHanr+H9FtGYGwRpSyDo3S7TWXSZoKcFqWTGpBKrQbu+O3Z8mkRp1327jnX1d2W7/AbI+1yBqxT4GiLJzjKx5lRClpWvkO0Q2hPeB3yBa/6aISGKWzPT+PpHfquIjAcJ2XdWvRa3u9FcltYEAcNoU/5YIDLW09fMGAnhaFum1O0hTifGhn6dOkwA+RZraAGkePYQRWSVKkFeQcmG3rVJ0TdRrEk2HukSgpPqO5iWsyUkF9A9IU32xdJzLnqwKdvbse3pEHqwppEHHiBqq+seqmbZZ2o423ArSoBNEfql6rAHRRErZvwoAl5fOT8y+Vj1YN+1rlMmqFgFPiRi0anCtptlqzaC/wzaRvYEmGOqFT20HBkuv1UREZchquqIhYq6qTUFqaXt6EdIJ3apWdckqYQOXDvMfA7DLAWnrd9cw4u+nQJ5hwZtSlgqnFOiSZMKIDHU2baxInAZVWZin0sTCkOr4tZPCj7NXOWab6+0RyZGwwJ7bUJCkdfYDmKbXyDDkkB2e8jnf5u+QGw/kZrfXY4MmGzQxhNzqvaUaNMgwpEj3g5AlBYa1zEIcTXVB0ECO75Adx770mbJJHS8MqLMJIOwv67/cqyZoLzEnRMYqR6+hKLnxgMx4RJUGP2i+ZJhNMPF8MuGQtbEk2AKOyTa1HoJqZQDwOPUjBwbn6DPOyu1LhSa/O/gLyuO3LhxFjzcWhs6rsGglt/nGjErYdCDpkAxNU3GA0S4H7I2/c/seI1wChuY0qLLLgTs+TT2fkCSMXbWskKljv008n4FLbFzVqi5XXRBz341tjvhB+6Vdssv3o0XJ9qyR+64ds80cjz32qXAKiE+p+myC2IHscMjUAqDFoCvfUXyKdNjhuZPBpxlyZkHHrmV4HrLDEVscsY0ELvk0jQy/FAgU/04JblKG6cIyutSGYI99x5b/KX+FIaRDkSf5e2zQpGStAboUaFFmLxAG6zPL3J9bJtkhdynTdkFRuxy4/g9QpMM9DmxoF/wOf06fHHPi7HDowJMOBao0HBM/w9AFUKmaQQc4ZVp0KHDEluuNVV6Ro0+HAj4TPuepDdfqcpC/TT+bduBuPXvTAjShBbrFVqFPzoKgU2eHoAC0KAoE/Ans8alX7CkVWvksgfH4K35qPVmn5OjzhPuMyHCHo1/lx3dVq/ql1feWYRMSc/7p4uO8ToYR/VTWWS0BzhM/jjDl++Q4NDuc2e/cPnvuewq4AdUEn0PuArAdHpG0Q+/AekbrgEX7gHxPR+ToU7E2JYaQoZexTH+xizIseMYuZTvE6pNz/UDG96Fj/tepufvZbkoWdNorGqmbERtU7f10Dalrd83nuIUAjpv2/xpkHfChrd81IkCyS5QvcofICkBxBN32zG7DLG1P16oKvioekYLzT+xjI2SNqtiErrlfwOwnRNjDMgZhiBScShyzIczvNdtlRkQkU/m/xS6uvCDCJmJEJKX5P/lRW9UlrBWguiqpU3jfJgIsVZ7ftOzPsU1xHxE1qgEC4sWQZqNyeW1o2mDbMOkRsRp7iFRfgUuPCJBcakC8QpqcsluDpW215M/kmd1eFVqPRYbvANoB0riR133gO6qJfOqNqkxc+9z3trm641O6vpUdTB4TpQ+qNF8lCi3oPiEClZfDqrrRe50/XdrGYun5y0mAXeAE3v2N/B4mz5CLiz0n539JxLpN2221cYFh7xWEBs5P7ev0z4ulY9bfH0SgdxveKzCr7F1l2i6ILiwa/jUiAuUjG8VVrepS1cwu8HXhWwnlBlUZmD5TatQd21M8BYU1MMejRdmlRZ/ZRbwmtJ6ZHMNU2jJfN4jPLogT8Pel23SzwuxM2gToOpuycM3epGVEfr7DITVOBKhLJbjeGNHKyxd3n89oUuHb/B0ankhUJ5Y5dcy2u2lXsDEkhllckGHoErm1qgggW7L0ghZlDswuPhM27ML7KH/TyliLLpgpEwyJzwQYrgZys59hRD31MfXUx2xxzNtKmj45uhRomgq9SoLK+A3VwRs0+TvJhEoogVvKXhMvQWGeGhaYxYXb32l6jUkqQd2yO5RV1jGyiDmhRmip/e8qa5yZnPN5VFarWjJM8TlM3cGwcNsxhNTG3zvWiXoiKujdpEKdTQ69HaYk8cOJkwIroLKqVV3Gest1OhTYpE4mHDJLCRh6Qs19fwLiTs7+NQ/Y4siyv33mxPGZUgmaFG04EeCYqyfU6JPjwNt1P1NP1Tlx2z3lcQXufKbWVzTmmJsC7pYdqzRHn4A4h+y47bYp2b4mYXTr9jnKxNJtRV7ZMRd2B+AR8JX3JSDesgru9llnjkdgwVXf2ge0KFOl4YBHn6lj6urzJshgKWmvJoCzSVAAU8FV9ZAVoMantGTBAnDEFg1u0aXgAFLxshXQJMDjj/kDZ0VToEOZNkPSDqxWT9rNsM6QDG17Th/wNUkmrNvrRI06MUJ2OXDbFg9pOde/y59S4wQNOAyJUaXB0N1MrmpVl6sk6M4jxxk5+kzxLQB5Rp0agLMP0cEvgAZx9lknxFC037EadYo22DPmepv0APVm1yG+ArIl2o5Zr97vXQp8xZcE1pDTZ8oRWxyy49j9MuCR76gCs2KFVHD3rnM8yrQojHv41tffEBIQp0CXOR5dCnJcHtE6G2TtpwFVXWQNmyUi+2gmyS0EzNQ1otryQSSXTxDZzGWXXjdDGK6fELFNx0t/K+HomX3egCisykBMLQpuESk/IQJVA0j8BZGqFLuft2Xb73+XKK9FSWBZuKK5Imn7mAK7z4iIXoozKPlLwWPFKFZ16WvldLgqV1dUtq9THYCE+Dm7hDyPCJzURqcNQ1+bRgDLO3D+nfiG+lWihqdTKWV7KsNSqfLA+TtY+9T+f7kpZcFXmn0A/h1c4yur54kyUNP2GBSAbAKfwppuKyTyJx0QsT2BK3kikFVl93lc+p+vU6zH0Xl4/8z6qW5CQSdZCjCXlt6rbc/PciAU/+AcppCGvQl04VpFzpmvQVehbHNt+fegoKyJHrtyByfNWKvK/r9/BVc8Is+YxdI2tKzk4sqYyCJALyAqx1jY19+yr9VjUqbrqlZ1CWtCkpt2gR7gYUxIlyI5+sJQGjyjkb3hAlH22XPBKyoJl0Xw1N34lmgRC0N8M6XYG2HyB7JQjUEM8T/Vm+EaJxyzzd7gGfPEVQIv7kCLCk1OrC9qhiF4UYiTRyA390GffW8vYofa/amETTKDc4K8MGun+HRTeQEvabrtKEv0K75kh0PHYFX5mjK9CnQceKkA8qG3Q9mTRX4Yi+SywoD1aVGmQhPDwi72JSV8mEpzwK6FJOaUwxZDk2GYhTNyLmFaWWUNqhRTXQeaDE3GedA2rf2BcX/6zj4hxHBgdpng8zB4xMTz3c8BNntvOMx/TJk2czwyDGlRklCaxJpjbsSZuwCXOXF2gwOGXsYCECU6puA8dvUztapVXcYakeaG7SV/aX7K76f+BA0rqrNJnIAKp87nr0qDkfXeVMbqnDh44ru8zG4NMVQ4dT5/Kr3vUmCLI4aWBXZGzoGq6vP5m+Ff8cR87gAI7UlDMtZuoOj+XePE2bRowN/c8sgWiIeogpUKRoIAsGoF0qLMFsekLRNTny9y2eQHdgChZdA22UA9oqs0nLer9t8adRpUWVgv1Rp151saJ5C+g0eTCi1Kju0rntw+dTbt8Rgn1TUs6FCkSIcGVZJMqYjAmCYVvuQr1AP8ax5wl0P6rAsrNphgFhf4sQlDL2ISP+YBOxw6Jq+CKlHQWEiRDsWwS9NUrOQ5RpeiAMb2d1OizWuWgm1WtapLVBu0mFJ23vX6HUg6Owu51xmRIc2QBlUqNB0jfmIB2CEZfHvPERCnaK09JiQtGzVSFTWocsgO/zH/xg4u4hQsM75F2dqX9NnjWzxr96FWHDWeE2I4oea+h7q/YpEUUKdmGfF9nnKfPfZppKr2eJuMyJBh9EEvBGRNq5Z6EK0Dx0ReomNESanrfRAw0q6jSRAFQt8lUm1eQ4BGDWa+huAAd4lUmEqGUjBU5frqh/qSCFOwNoBXXhGRvZpEwKpaCGigc0AUnq3WASd23axqU+zjL4nYrHrM+p4aSqW5JQrU6nodIkuEVV36WjFUVyWlAc7KIFVPU4jA1DxRwrsaMSuFvYAAmJpgb5vE2rK0Xxtv2m67x4eTKPUw2YQ1NZ8egLWWkqoSgat6X6ZhWQmi6ZbutwKiWSIPVDWK7gq46HxOdHJUsMcbEk2RtOGqF2sMATa1oWs4lbJZFXyGD8O51BM2sJ6tAyJZ/c+trUKTKFhKLw7LLNYSkY3AJ/Y8KNM3S+RxWiAK41LJxMLuZ9puX8FnBcp1O+pJmyBiJKudgdomKHsXoiAx/Z1GgeCrWtWlqgFZy76ak+NMWDjjZ4QYmmxQz97EY86mDeWo0mCKT5GuWxBrkn2FU3L0OWabiRG2VuDhQqiepn4IiNT9Vu+tk8pnGHKQvUPLKzn5WDHouoCROR4NqvRKCcpBG388o6ago1d1PqF9chQQ4LFjCrTyWTZ7bwRoDSTFOTOYSdhB2HUg5IgMD3nkArjUZ1VDWSb4ZAYzfCY8CB5TouUWzZVej896L0iOzh3rqxo2KNCxAO2CPutscUyOMx57D8SXizNq1JmQZGEMuaDvFhvq0VrjhPL4LT/p/czJ7ZVdFidgYYFfTZ3WAB0QYCAgzhbH7LFPyyvRZIOnfO6kyCf5GyLLs6w2Q+jsB74yX9K1ctzt8IgzhOW6wDhGcDlscQ8BywPijMjgMyHvaPyrWtXlqo/4BSXaBFZqrtLyTepsccQ6fboUHBNb2KkeRbqcWt/mhQUPtjhyIKuCqzrqUJ/PJFM6FCyIKAz4dfrc5ZC7HEroEw3MIqRs2eJNKnQoIN6pbettKoCtz4RjtjGEbFm5uSbYF+g4WxX1LYwzZy/YJ0efLY5dL9EgquV9VxZpzAIpy8OjMi322KdKgxonLm1bj79FmQN23f7p8E0DCxUcUUatMNYWDkAp03IhVrscsM0RceY8YxfAsvnbeERBXWoxoNcUZarpzwMvznHqNgfeLiGGY7bYoEmNE6camFvm8ZAMGzRpIX30jBxnRs6KsnAD4ngEzInzWbhPkw3aXP9VfGxXtapfep2wySE7jmn/GEke1vu5JhsE9vspzO4YHnP8cMIWR3YoIWBpibYDW8UOZcG6VUCpCkbtTn6PPwVwQ3cFZzVIrkCXDCMgus8JrLd8QJxtji1BIM4REh66Exy6e8Ot8Uu6FNi1liR6H6VqIWX9yxDHqn16RKFUCyJijq4nNVzqAdGaXdeVuhZXAFVl+y8QIFNxBF1fJojW25twrrkqyo5VgFOxCH2dBj+rn6la7Z3YbapFXRYBgU+WtvMJkT+r4gAJ+xwLDr8v2dcpWKwWgZpj8pCIfavA7ABhz+oxrDxUf21qxVBdlZTK328hcnz1FAX54lsZ+aQBvk6mFCAMgX8Fk/8r+AqMNpBpjwZEZe2/leqvzMzv5D3f78OVClHyXYoIGFXmZEAEPirYqibYEDFIlQGrAKSCnyWilMDlT75OynQfVbKgLF1lXRaIAEOl8KsPqZ4PBV51kvVKjm/yFPzNpcf0vfQ8nMq+rS2I7AWyIvH3FcxUoFQBZA2n0ouVMoAh8nsxRBc9PV82POv8HaxtEl2YsghgauwxKXj+zG7/DtFFUIFr3a5eTJfNwle1qktY12lzzwYhzfE44hbx1IHzqzIsSNpFsDIWN2jy0UmPd7fW+K3u3/GuIEnxJ9RYt4v3IRkqQZNuKk9p0COeFcnqIXcp0aaTTzuJq1laeIu36S2KXoc0Q7Y4YmT9PA/Ypeo18L0oWfuILR7ydyww/JhHeMGczGJEMyWJsCf5G0hQk0jK1sZQzrY5Mtsu0XpZ/j/HI26ZSTfaA74vXadMi2b2OjXqBJ7c5HvMBXTO58U7L5Ab8TiBeLWaiNlU44SQGJu9N/j5KSGG7eCYwIuzw3NOqZD2RH5foOtYsG3KkIJMauRYXMWwy6HZ4V+cfMe4cpUjb8vtSzlscWIk4KXGiZPXiSR3HcAxwZQ9pu8XIh6MJVouOKZgXx+YuIW1xRttSiisj0XIyGSsTM5zwM37YKXrWtXlrAFZ+mQd2zrJhKd87r7DCwx3OZTvJhJs9Kf8Lr/HvxVrELasN2oSn6ntJwEPeeQC5JRRZQjZtgFGT7nv+qsmyKuXYIUmZnHhWJSGkDJtWpTke2/3ddkWQMHHLkWbPJ90jFQdFEmQ1AmB96ENgLKyVD67x74DbNXz9NSGFyatPD8OZAicbFY9C9XqwLfKAAGNC471q0oI9SzVodEWRw6kGZLhgF1ynFHhlEN22OaI+zwBYEjaWb4YFs43W39nnSUW7mZY58hsO2uFb9nDZ+p8V7sUXa+71jxnUTVuX7VHxgjZ4bk7x31yznIAsD3TIyRGgd4/8yd2Vav656k15m5Y3aDKNkcfDFAAx+A2li0eEAcT3dMtXK+TKCn1RY4RkmaIH044Mltsc4w/nkEKAjtA1xA/Zbxuc8SuHeCqRZEOS9Ytm1R94mVYlKHCKRN8Ol4BDR5tpG6ywNCkwsPwEcVFl5ZXYk6ctEUrN2hySgWDBHLeMANZ45/gwqGdBd4JQvppEq21NRuliazHN4nCrAtEjNAKHwKyqgR9aLfxDNY0KPnW0nu1ZZt/9H8kWn+/BtaBKZAhUk8OidbKall4bv++CoTwh/8JQmxSxyYPAV+VCLWwjNel/X/3W2tce3keAcIKrioxSglMyl5dwPva/1cfvVVdgloxVFclpYFJTfu3Bi2NkOZngUZfWZgapqSTn++slB6k0elURh9LIVMZBd1m0ePvX8IVO9l6r/6fygZNLL3Pp/LYufUHpYA0OfVc7REBiy+JgqtsYNL7VwhIqMBuFhahfX1eHj/XBD4FddXTVcHSPFEIl07SbiNgo07pFDDu2Z+NLZiq50InaLeIgEdl06aI2KcJC17rOb1GBPxeI2Kt6oQti4SL5YmmZnocKtlf+n2sVYmavu5Hy76HNn9l16aRC5ayY/XCdJ8PL5gKYke5N6ta1aWqj8NXzPGcrHOXA8d06lJgis8+nzkJVZohHnPGlat8a/b4WekeHVNwyc/qo+czIT67wBDSzF4Xn7/BCJ8pQ9I84sds0KQctshxRjHsUgy7Ts4POJlpLahjWJBh6OS1Ldt099h3jLE5Ho+9BzRTN2hwyy7UhQVx6O0A0KsknLxsnz3HPmpS4UZ74P5tCPlvSp9yzLZLnv2HIIGyJHKDES1P/ApjYUjgxa0Evk1AnHx7hh9M6OTTFnSdM/Tk5n9O3KVxl2g7VljJAsAKwBhCfKb8pfkpQzJ8v3mdI2+LMm1qY0mvPjE1dgcvnFxVbQNUeqchEF0KVMZvLMs3cPK9cthCPcR2et8DUKBDg1s2OGKHdctkyzDkT73fcyEtO9ZPsEmFA+8Hv7oP8KpW9UusPlk3vMkw5CmfO8aSAo0qX48T4IUBuxy4UDkFK/f5jAN2aVF2PUuB0jiBA+k6dujyYx7xBY/5bf7cMSS9JduPZuqGY3eFiA1AnxxJxL+4GjRsb824HuVZD2axDSgCAoAok1M9jw/YpRbUhbmPhGU94XPq1BwbTfd3RIZn7NKk4mxFQPxWj9imQdX1HJHrdhwzLW79m9OWhVrjxFklqH+rvnZ50CZAatMNiDwCnnCfY7ZdT9sNDijTImaZuBIktYnPxEl3c/RZGGPTysUPVi0YFGieWxZrQJy31bT1ED9BfSHVVxuEFasWAPvsAcLEFY/ttEs/X9WqLmPl6Tp/6Ijl3rVBeCFxe29SCyTELSTm7h9CC1hqL5rjub5lWDjf6COzzaZV6gxTaYp0ncVTgS6b1DlmiwpN53Gvyij1/tfATB2MK7NVwVZl1VfCJlUalMMWm9Tle2oytLwSfdbd/VZAnCm+VQEYyrRdpgmfIKSbnxBZACgZ67b9W0lYupb+CbLGtFkdbu2o6/cFUYjVC/t/JfLo++pa3MDMWuJpdghDBANoA0fIuvbIPq5hyi2ioOsx8BZ4g8tBcfujitYK0Tr7HhFQOsblwVx7cR5hJ2odgN2G7o/+35KernT+yY/aqi5hrQDVVUltEDE1lb6uSXVpHNPz/VLTe6/hRl3gBaxtECW9l4gmUreRhqN0fAVILYB4RT1FjP23NjFNn48hDS6wrMoqkflzmQiMVPl8QGRIPQb25d9X9D21KQ6stYACggNYU7NrBQxVFr9JJG3o2nOj6YQviWT+EEnvR3xgCeCqaY/HyheAyJpAQdwTIpNvZbO+W9oH9ZcZ2PMb2HOsYLSyZk+ILA/0IqfeLbqvysg1RAxT3Y56yS6/5udEnrcaZAYCKlvwekVCWNVlrUPzCV0KHLDrFs2GkBObelqgS40TxyDVG06zuODz4KnzyKoFdcq0LLOoxAk16tmbTGz8SIMqa++E8dqlyJd8RduGP3nMOTOSCKu+rOK7JYFVB94u1cEbt7hXJlCXIsWgSzWQUCk/nFhWVYxtjvAIlvz5zhiSJjOYOf9RkeH3Kdn9flPKUg5bVHnlGF0qNRVfwRJtypRp0+AWx2wRZ87X2R86C4HH5gF1NpmQZJ89mlT4+9JtJ5NXOXBuPBAwIRw6Ke6yHNgLA8d+8sOJZYaIN6kCphqg0k9JwNcUn2FWAGMNGatxwiF38YOJZZ12yNGnm8rTJ+dkyiEGswiZ47mFSJ+cDaJ4RY4zCnQ4Yps2JULrYCiyZHkvBZQ2nZZsVau6XFWgh2dZ3OKZ2XHSe+1dgPPNbJiqs9k4YNcxwVWeX+XVB37IaieibHYNnJJBR5EpvusxfXLssY+EPN2yg5WFAziE0bopAyav5Gw/1LNVAY1TKuxy4AZJh9x1oOUOzwmJMfF81q2kVhloaYY0qdhhlUjfJ/gsMOxw6KTuDaqkEe9WlfXvIioH9T2dE7cs074FRtc5tSzcHGdMSLJjz7NvQWIFoT3m7HDIwrJxN2iSYeQYszn6PPYeULeBXw2qlGhToMM+e/wdD91xhMSo0OSMHM/ZcWCphP+FbNB0igwFV9uUaVF2gLoyfevUnK+q2sCol+sU37LjVn7Sq7qcdcgntO0wWYdKYlfUd5YaAENPfEfVK14HO/J9kB6RCaSXAFTGUSCnfPd96528AeAGyMr61kFSnZrtsTn6rLt7UvVaVRf5bY4p03Js9z45NmiKtRJ9WqZs3ycKY90JZCCsYVsKpOqwG5C1X5vIl/QWwiRNEakcdW2aRsBXJfgoi1SZnzEiMHZpTe4wiGVSj2IGz2QbCQVk1QJAlZyqHF0H4vb/VxDCjxKgDJAE1ux7rwEXRGxZPb4F0XpXiWfLhKUuEWgaEOWmnMD4/lX4nIiE1EXW8LoPq/q1qJXkf1VSHyOy8xTSYBR8W24oCbjyAMdKvfK3RPLuW0Sent8RScCXg6tiRCn3Om26ZbevhtbKwFTGqQ150ua89ikRk3OTDyc+2pw1eVD/rTL2E4TlmkUkBCECAjaJwN6svA8JsApfeR8FmkMiNqfaIijjVs+dGk/fs9suEYVlqR2AsftYJgIgFdA0S/ul2+zax9TvVf1gVNbP0nG27XGqtYGGXKnn7DsiFm0FAWT/ggh4bRHJHJo4z1cHrm4S/Q71gqAgfN7+vZL8r+qS1i1e4RPjS77Ct8yaDCNihBTpcqM94Oelj50UtEBHgM1UGj+YkBuMMNkGZnHBxPPxmXDALj/lr5wHajVoUPC69KoJNsM6HVNwgJwunKthg77JWXaPpChPSMpievyCWIhjYh15W7Qpi0R0dkE3K0l9LVPGZ0LLplsD9Flnd/yMSSpBSIx+Ns3I3swfs+WCUE7JyILdtF2CddEm26etPFQBieXtf80XJJm6997iiGLQdRKzQ3bEEsDeuBfGPRL2RniS8mmYKru9l5zkbzivQEPI0EiYgs+UwHjO3/U3w78iPjtnkkrwe72/5tv8HYp0qdIgEw5pmshfsWp9TDKMCGPCGDlglz32HeiyQdN5hwVe3AXmDLNrdJ0PjCxaGohfrfgsFnjIIwDKQZtDb4cqDboUmLhEwlWt6nJVkTbf80MySMjKT/lLTi0Yt0ASqwWwa1GmRZIJz60HscQTCXuxZfuThr2VaNGmzB77LuhN5fhJplR55eS06q2svXBCkqIdhDSpUKBje4Mw3JsWMD3iFm1KVGk4JlmHIlvWU1BD7QC3rTlxHgSP6XgF4tbHVBmbMUK2OaBpj6xMmz32HbActxLaMm3alClZH1UQ0LZo90HO5S3mxK2EtuyuJ8GShN7YyKw/5ff4kq+o0uAp94mLGzcNqpRpW7CyaVmoNbY5pkiHJ3zOAx7TokzdhhkCrsepPLlJhXX61KgDsMWxBYyTFBAbBw3661LgPk8dI7hit3XIjrMXMCzYDo6pezUO2XFMOZ8Jby3otKpVXbba4ecE5G1Pq7h7taG1YCrQcUCn+h6reigkRokGDapshnUaniyyMgxppa4zt31oYcNBTy3jPUOTPut4lsWfZkjFWlJJLxk5BrgOK9TDVe+zMsGQfU/CUxVQLdngVVUVqS2IevQ3vcoHA5y+BWd3OMQPJ9HaT+3iBsi6+j8gAgk1T+UBsq7+hCirQ8lSqojNI2tT9WBdttzT9XII4z+4SurpRbTG1zwWSwj7w//QbuOOfW33H7zHC7u/PaL1qioxdd2uJKFlsFixCwVqFUzW9bWiaeqTqlk0dyC1fxGtxVXZuhSCvapfj1oBqquSiiMNzCCToGV/T4i8ThTQA2kcOi1SEFOBUmUwKov0JR/S/j8hClAq2cc0JV5BxRjSFJWFWbGPv1vav2v2b5UCQOTtqQ31OwQEfGiPA6RpKgNT90vT+e4QTcp06qbm1i37+mtEAKWCpQUiRqrHh6mHCvYqKKsTLgVMCwij9Z39910E5PzUvl7Zvr+BNPJlG4KEPZ/KclVP2WVPU2Wo3kKmenohKBABt78FPCdi3qrlgrKKsce5DLAuTwEVMwjAklJWtapLVz3y9EkzJMN9nthFcpokEzoUoAQlWnQpkqPP9faIt6U0hoXI3L2R+HGmis4z9C6HwsBMZeXm1JOb8ErYpGXKjmEAoKFNSTMhhjAkK2GT0BgnH2ulrjNPeXQoEPcChmTY4ghDSD+bdqykz3nqvLX6rLPHt2JZkPoUg4Rt9VNZK5+fODaoyjZLtKlTswnNLXeTrotxZTMoG1Qem7LDIV0KwtTlhI5XYD0Ueaky1ZQF2kpdJ5aKPPkAnuTvuYV6YdzjIHXPetjGLeAyYYovQSmzN4Sxq8Jmy0+ocMr1FyPe3MnSMQUriRVOLUCbMtscERgJ2ckwZELSsWEVOIgRWpAkIBaGXHtxTuGTLgU6LoSsTNsC1pIg3qEg/oOeT44zt9iaoql/q1rV5aoWG1R5RZOK81gW/75j6tRoUHXMq8c8YJsjqjSst7AwrR7xkG2OKNB1QUcecweQxq03oSZJdyigwVKqEmhb65Q6m2xzxAG7/8jvGXDb7FBwfqwK/HUoOJa+BjGpJ+uQDA94TJIJE8/n1PoVKjssIE7SApZ9clRpcMy2uxYse6MCHLFlbVCGzhpF2LcCHG9z5FiicQK2OaJDwSV3y/MK7jpUG7zmOPsxfXIW8PT4nKfuuWrBoMFYZ+TY5YAWZSo0OWbLMejVwiXHmdvHZcWFso5FxZCxHo2hGzg95T73OLDgS3zpvUpUaNKlSOjF2KDp9i2wEudVreqy1hF3+Iy6Y+AnmVBnUzydrQVRlyKhtc5QkNS3944NqhTp0jTy/ZtYpVKfnL3jHOIzZYrPBk33vVtWCKhiyRDSoeDeQwfh6hmtwVZxAhpeFQ0c1Xsn8YvvcGoD9pRte8gOZVpig2SPq0mFLgXxzCdOaXQe+YKCrCnvIWvb5/bfSpTStXQFISnp+lh9UhW87BGtlTUXRNe4qmodQ2pwERF/lhmrPT5c/yphyK5939+CK0pMegdswvt7cOUlUdZLhciOULNTYkvb1WwY9Xv9lAjM1X199U9sByIik669S/ZnK8L+r02tANVVSZ0BHxHJyNtEknQFHDXJXRueeofEEBq7Bj/pp+oa0nRfIA0XPgxjaiBMyGf2dcoUVeA2a/dBmapqAK2goO6HNiZtxmo58MK+5x1E9n8HAVfV7FotBZSp2ravuUU0JQuXjlnDthQUVWBZTarV/+Wd/YN9jjZdbdDK3hwQeZbqNmeIubdeFJ4RgaFjuy/aoD2iC5Se92XgU5mvCor3lp6j00C9oHn2HOkxPSXyugmIwOrvlo5ZzzNEoC/I70kfX9WqLlnFmfOe0IUMDElb836I2ZtLwC30w5JIz6uDN9Sz606+ClClEUlOU1m74DyVCb+Ba/vnNO8bWpZFFXMWAwt343zjZEBvM8GGlXtpcux62Mc3AhYU6ToWqd4o7/CcXNCn4xXYDQ+YGGEgBMQp0WI97NNKSeKysj0VlAX4uP3WAsUhX/OA+zwlacEJYSIlHWsVhPW03ptxlL9JYTCgnhWWhvr2eUbSbuMm+OD8AeLdN3iLycr5VT/DSq9nmapnLgRmSIZq2ODMSDDEPCXHrcBFgEf7TmAZp+sOCC7SJRMOqcze0E9lmZB0vrPKDJ7gUwmbNI0sMsQ7d8rQZMiUeviWfRe3Z1tZZRXLWTtkx31GatQp0KFLgRJv/9k+r6ta1T9nLbjq5KYhMeb2O69J1Ukr/V8gftMFOm6QEBKjTo2f8peEGDZ7bwjzIkvPWA9QBQK7FDgj58AKnwlVGnZYkUQDkIakaVClQtP5WFfCJkdmmzo1/mD8/yBMxVzoXoahgKQW3I0zd0z8EEPSBs6pp6h6QwvYcYsyLSpB0wVgiY2LMDgbVGlb9qeyPnP0GZGhSNeBLQU61KjTtYAuwCMekqNPga5j1ebos2MBT2Xnah/7N9n/kYWyG64/qmejArZx5vTJ8YT7bFv7FgWNAfccBUKrvOKAXfFEBNcrlf2mA7Q6NfbYdwOjAl2es0OSCUW6DpAWtvItjL2RVEsAtXNYAaqrusx1k184NnfcWgyp37oOZrWPKNCpA22AMm3HIjUs8JnQtGF2FQugTvEJ8CjTwmfCyA5JlIkPkSfqOn1CYkzx2eE5x2xhCOW7HbbwzdQNpZbvZzzLXI2FIWkzdAPu5crRXwJfCySXlE797IjrsZGsTV8CAfzR/wFZ++WBHJEVH0RBUOtEa8w5UR5LDlHIXgV24A//x2Cp8RGTVcHNv+GDbBRHVNLMEl3PqvXdp8DP4UqA4A0JHHv0SptIYausU90/xSp+g0idCRHByCo1x3tXSf3JRcSCXV7DK8irWMayslYZsRes6tekVh6qq5JSSn3W/ttS1YGoIbzjQ3r7JjKJAmlSyly8Zl+jHqzKjFQq/D377zwR7V6bmAKPyuJU31CPCDhVqb1K9Bf2+cu0ewVeU0RsVT2Wkn3ttaXjadn9+AmRD6z6pCrI/MI+R1m62szVt1VZuRtEgGPT/nzBhyFby2CsnnvdN7U8UH9VBWs/IQK2m3Zbefu8Zb9ZZYkO7LY1iKtp/wQIa3h5WqaSB+xx3yYK/Gou/Ux9UvX41Ec3tPuiv+uVlGFVl7SEXSCG/+JjVSEX9KlwysIuDHP0nZ+VLvSn6TV2gkMy4ZA+6y6VtWPDPQDLOI0zMRJQMrsjUqtdDvCYuwV0lQZxJEH+7zdvCyg5nqFp80dsMTTCwkrakJEWZXuzHFAevxXA0CsRI6RhhAXhj2dUxm/cAtu33NIQgxfIY7d6b/GZ8raUZk6cGieULBMzw5A77ddo6nOF0yVWVIxWPkuOPmsB/Eb7Gwea6oIiOTp3zDTxLUy691xri6+YBrYExHmVv05om7pvmWeG0CZGGwcaeMypjN9YUCNOYCX7FZpUB28o0KVDgRNT4yB1zwHPm9Q/kO3lOAP4YL/r1jtXH5dwiA4tysIQtquGCUl2OXBejgqKF+jyvZNGrGpVl6tiXFC3NyN9cpxZlqKEPAWOtXrMNoYFsTDkOTv4TB3rUoECwA0/VGpa44RdDqiETT4LxXpjk7qoAYAtjtygRFhTpySZsLDM0cc84MDsMiFJiRaN1E3HrFSAo0uRBlUKdGiyQcGCgFUaNNmgZeX5gQU2Q2LO57RPjqYnQx5ln3qhsFx/J/h3DlBRkELZ+5ryrZYwdWqW6epxxDaAVTCccZdDJNQmcIxS/TtO4IZ6I9tHDaHzno4zd0CHBhWWaTswtUuRE2oU6FoQqESTCkmmFMMuvxP8O7Y4Im37oPY4DQrLcWavRwFTfJpsOClwlQb77OEzpUybJBPKtFxYll4Dj9giJGaVDqvh0qouZ30UvHaDbgmH6xMjZELSfdfUU1VD6lSSr+F8dTad9ZMOjWrUnQeqIaRIh53e945tX6fmfKIVQF3+fur9lQ560wxpmKrb7wlJZy8yRKyTckGfM5NzDPlDdqjQpMbJB/6r+vxtjp1iyg8m0bpc136qUpwiLFUNW7qCrDOH4L76ijwFyBr/DOwhyOuryJpcbe10na7gqTJKm0R5LKWl/SgTqVHVuk+Dol7an2m4syosbxOt4e/a7ZeJAqjVG3Vkn/dCHks9vhBLAyVh3SYKbr6HKH57CF6g63clo7VgtlJz/trUiqG6KqkQYUOOEbZpAmEj6pRGPT9APjU6eYFoSqXg59dEoKQ+Z0bEpmwDv480KQX9tCmy9F4q/c/axxp2v14Rea+WlvYlQSSH18alTNENIoBXJ13qMVpZ+vcLIjCyTWQboADiraVjUnBSQ6h0Gy0iKcQtotAqiABelQYo8Kj+sQowh0QXjQAJgsoubSO19Hq1A1DgU1+j1gcJIisFTUjU/W4jF5UR8AXyO9cLkPrNaMLhK+SzoeevSiRzWH5vvdCtalWXsALWLCNK2Fg+Uw68XQugrjvJepyAnfCQjhFZ/8SI117DVC0TQBbfmtisrNQJSdqU2Q0PmCfW8JlQDLscmF0KdDlgF4hsBbY44oyc9dnyPggeqHDqGEoVmlSCJi2vRCt13cm6VP61zx5hyrDbe4lJCSip8vkuRQpeR4CE7JqT+c/xWGDwCByY+a4gUrU4AROSdChQRIBojzm58YC3JfHz8pmyHh5xZnLkxgPWTiGZndCg6kDdOHPO8gli2ZBvzR4akrIsZVU7AmVZaPiDAiYVThmmxOrgYe8bOvk0z9nhLod8nf2hY1oU6FIJmpjFBaepit33LpthnaapkGHEmck58GNO3AHrR/mihUgEQN/iyIEnLUp4zJlbEFxZd+r/GiP8R5+zVa3qMpQswtN0KTpZq4IG+tjv8ydOnnpgdinRRsOiyjYM6fbJG36++bFliQZugX9KRbz+zMQxYQP73W/anylrVdmmx2xbf9MkD3js9tNn4sCKgDjlsEXfCKs/TkCdTTapk2boPKdFReDRpYjPhAIdinQJMY4Rpn6ndzkkIM6R+Zw9vnXnqGCfH9h+EBB3/oaSjl20oHCcGCEFOkiQU5EuRXddeYZcAxTQ/JoHfMFj8d2m4RhtMqQboaGEGUZM8KnScNcC7Zt6HapT4wsei50MU3Kc0TJlqrPX9L0ckdmJYTs84shsW3a9KDWEjdd1wVZ6LCXadCnYYxe7Gn3/GieO0RdiKIZd5qR/lR/fVa3ql1YvvDvc5RAQhmmIoUXZMdvnFoicWN9lvVfRPtKlSJUGai8E0jukXxh335hmyMKI372y2CckXYgcYAdEXTvEwQ33AWc9oOFUsr/Saws67PCqzmJAgvOmADZwK8Z2cEzfy1nX+qRT3QAEXpxUdhaRsDwEOPUQsFTXqlcRBmYeWYfO7f/niM3gFFlT1omCps+QdbCu+5VtaolD7ytwZZ/Inu8V0Vr9KbJWVVWpksHuEIVJLUv2dZ2asq9RfEAZsA2iTJnY0nbUAlD9VTVztI2s/W8jYOoLIoVsm8iz9b79WRMSq/nSr02tANVVSR0D15GmpsCmgomabpdCmsTfEjFRra+Je56yUEdEjUsnMjoxuoaAtxtEDU8/iUqN10aqUyKV728Qea0qtX+DSL6uAVLKDP3E/n1KBNKGSBPWhq1BUerDEiPyQ90nApIVNFUmrLIz9eKhLM6E/bk2zzJRE9b3b9lzqczRO0uPK6PVEHmVbvIhg3SxtK1bRFILBX5TS++p+6fMY/Wx1WncKVHz18AvBc2x21UZv3re6nnQC4lOJ5ctDVa1qktYaUaEVs5ZpUGJNkPSHNmUY0k7bQnzypTZDQ4IPLuIN55b2G/Q5Dk7gKRd75hDx4Ss0uBa9xzGcLY5YWJ8x2Ko0GRr/JJG6iZdoBh0ee7t0KXITnAorKXZBf1smmJvxLf5O8QQb6y+p36hcwp0ucshcyTM6ku+csdY7I04yyeoBXWGXgaPJkdsU+UVLVPm/uA7DrJ3HHibtEBFnIAjI+dBfVZVKp9hKOxcK6f3mGNYcGZyrId9uqk8pY2e81wMLTt2SJpjttk1By7gZvn1XQqO+VUOWxyaHbY4wgvEi7YyfkE/lcUPJ0xMkr/J/wiPOXc55JQKLcqUaTnbg0Nvh4wnx5VhSGHco5/KUrDWBVN87nLoknwFkki6hZFIV2NusRQFc5UdgKQs3BEZqkGDbPD+V/gJXtWqfnkVsOYk4WJhId7Rx2zTouQAVmWFA85jdI7nrALO87jgN58pAXFqg9c0sjdoU3bSV/V2nqQSHLNFnRp3OeQpn1PllQyjOOCAXTTtGnDsTNnnOCExTkyNHH2esUuaoQtSus8T9/oHPHZS+BBDh6IDWxW8+M3e33GY/9iCowUn9495whSdWg/m+9aT+pAdfCZoYneVV5RpMcFnJzjkwNt115ed8QvmiTUmxne2ASDhMNqHqjTsOd8ibVlsGYYuaGqXA/rkOGaLTerWMztnQ2eESafnLCRGmZazKxmm0uzzGTscss8eNer838x/5Jj2czxOqLFOny2OHQN2gu9YtOqvm2HIFJ9D7jo2HUCHIgW6HJltrjAAqwRY1aouU43I0LX2QMom3eHQ+R0bQgp03SBCvUnneI4h7zPFDye0TNmpmypBk6bnufuoEMM0vUaBDjE7oPGYu/A/tf04s99vkIG2WnZoX5CQrKpVE8zdvimY6zMlw9B5tKqXa5yAlleyXvEda7GUs2x5G0aqxCOrQv3Df42sdXWdqmFUAyJWaAHel+DKX/Bhtoiut9X2bnn9q1J5q8q8outozSFRmztdu6tf64iIgKVr9zwRYShBpD4FIQjpulafn7XbuWWfN0YwEs2P0aAqDYPW/dknsu1TspGqbzdhVoKEhlNd+f/4sVvVJakr79+vbvT//7muXLlyDRgM/ntwrUjk7VEmYjf+w8a1QJrJz5FJi05r9vkQojdLP/s5AuYpiDlDmqg2sDERUHqbiO2oP1eZuwYmKcirjVgp/9rklVmrjVhZn8vgqRpdL29bw6VeEYHAHtHES71BtTleI7IbUCbvst+KskfVh1Y9TRV8Hi/9XH+mjVw9VtTHpUl0EXpGBFAr4BssbYul5yjTVAFUiGwFlgFhTUbU9EIFUNVbpmy39QwBsO8T+dq+I/LMBd55kP0zeaf3798rT3hVq/rvbGkvfDookbl21bFDj9l2slbnGdfrMcyu0TJltnuv+TZ/h82wzrdmjz45fjP8K1qmTIsSOzynbb+UdwcvGWYTbtF848WA3p2EW8AvMIzIULIARpsSPzh5ydvNNF4Y0DJl670lIEZh3KOZugFAkwoPBz/j6+wPqVHnRmNAr5rglAoBHjVOmOK791BA1A8mND1Ju9fn5OjziIdsceR8Dku03M19n3Vqdprij2c0UjfJMHTef1Ua3GgPeFG6ic+Ej5o93lSy7ma+Q4Eybcfi/Kjd430Mmvm88wpTUFLZqBlGdCkQYqgFdQ69HQp0HGj924O/5o+z/5odDsnRJ07Ac5swXaLlErGVwZaxAEuBLplgSOCJDcAxW2xZK4Eh4iGr50SB3iYVB5RoONZzdrjHAaeWQbbDcyY2sffoXZnfy34Hq364qktS2g+PBynCa+s21k3ChbY54s/5HQv0nTmGVgvpT23KPOQRh+y4sKeJHVD0ybHAsE6fjpXIDsk4UFAZlWr7IZ7K8w+CkwLitCmTZOIAQrE8kYA4tfFQWxbtrQoGl23CdYuyZaJ23XdbgQkBeKcOqNXv99c8oELTWa1oGF+LEtscEydwbF093iQTZ+mi76PgiR5vgS5NNohZJv4Bu2zZ4Co9V8ugsb6vgtwKpkwsCBK35if6PGEFy7jtW/bY5tiFbmnYjUj22xyx5d5nM6xzZoT9lmFkh1xFWpQsQ7VlJchzFwBWDRtMjM8+e9aORq6DXQrk3r3iXvYMVr1wVZektBf+2eAed69Jr/k//9EbElaueM4aCWbELhZcXL1KQNx973RINCNBghmJ6YIrFzBOxRmTYk6c//0fjp1PtLMPCSd8a/YAKNp7Ne0dOsTO0ed/8UcCcMpQfcqUJFd4z1UuuMIFI+vpes4aY1IkmXKVCzLzEYP4NbLzd1y5gLNElv/0DyuWeRsjx5nzgAbc/Y8yWW88Hci6Uj1Fl3NPdC2qgOmybB+iXBSISD+GCJBtLm1PlbObRIpIVWgq6Wd5bW7X0u8rNnBK19gFuy8ndrtKeHqBAL9dopDnV0SWd7p2b9jt3CECUBNEwK/a3SnrtYtgGTOirBZ9roKtMXj3HrL/Elj1w0tfK4bqqqTOEBq+fp1Veq4AZJMo6W6GNCVDxF58ZV+n0yN9jUrftUkuhzUt+3xq89IQqDwRgJi1f3SipOBlj4gpq9tXEFLDnjSAaZltGRJR+EdL50A9Qf/h/mn63wsiEPYe8Nf2eZpWmEeab4OIdYo9vpk99srSNhSUXSBS+yqRD6oe4wK5kLTsH7UGuEMEFmeJpnAzu58V+x7KUlUJhV4YFKTOLz1/2cbhHXJx+Fu7HWPPVWvp96GhZXqhidnXLZa2s6pVXcJ6yufssU+bMjvhIYHx3MI8E4ocS9lPgSdsooapsssBITEmRuRfurBXJs80vUb+ZMbbzRhNNriRHbDem1HP+47l5TPBDyZ0vAJb45e8u7VGn5xlOCXpI6ZLn4dPOE7dZmv8ksPUHUJiHGc/pkadFiWCapz1sE9gPBcUM8UnbZlJ6vPX9kpOTp9hyByPAl3+gD9mQpL1sO88XzX0xLcSepGqvaEctjALYWvUPUnBDkpxKwHNsahYOwD6LDB8HjSoezVA2K+zFDRTN5yvokjWIiaFISQ3GDHMCsBZ98SSYGSB3mO2aWav85BHhBhutAf8WelfUuPEskljzmJAFyR1NslxJpI4L+N8w+5ySIaRtSUI3D7ceDHg+ztx93+PgAa3qHHCiAxJG/awxTEa3JWjTzHo8l/ye0SJfqta1eWpJ9znFgM3CNlj33ll6md8judSpXeDA554950EHWTYswyaZhjSsUnywqJKUg5bxE3AMdsMyVCgQ4Umnu05Gv6mTNbd8ICWKbuflWlxQg2IQuZalJ2PqwABIr0Vf1WfMi1n4aH94YvBN+xn71GlwVM+p2yD9SqWPVqyTFPAARtzyyDT8JYSLfLNGX9d+ZGTyocYd/xil3LLgaHLoVsQ0LEJ21N8fKY84XNynLFJ3QKvFTZo8nc8xGfCAbt0KbjzPbFgjnieVhw4agip0mDTSne1DyobdzOskxydc5TFgb5PzOf2uiCsX037VnBHfL3X3bVrgeHM5NygS34fMQfIJ1n75/y4rmpV/2yVd5H0cMEVvIuA/93/7IIr7Wm0DkxdQHYBi8kHJKD3Mbm3uaLqysSc//X/Zc4s7tHgthtMaUBf3+ScCYf6pYrdxmfOUzpOwBrnXJ/1+J/+52mut+fwas547yp9L8dHJz3oTmzuRQDhiHeVNa69OLfZHe+gDH/0X0AyMXXD+i4FuhSZE6cSNjkz4tt/zDa7HLA3/i5SSap60QKgs08h8YhIav+ECNDUta16kzbta6tE68gZUVaKgqxqV6fEHQVtDcIYfUlESrIqySu6ri0TEYdGRN6pqox9heAZefu8EyJ8oETEwl0AD4lA3pj9PWqgdQHO87CmhKTbROCqkrQgCr2GKMh5Vb8WtQJUVyWlYUZ3iKZDy16fJaQRxJCGc4eIuanMTM8+/oJIyv8P5eXaWCFipIZEzFW1B8C+5wnRNEob4PLPNcxJG+4y2KqMU51GjZceX2bGKmNVwUnd55I9nr8lMrGeIU182SNUJ2D6bVJgNFz6WWD/tIh8Vt/Z/VLAV5+7zBiFyDZBLRd6RGDzpj03saXnqxzivj1O9VrVc+PZ5+lFY5MIZNZ9ztt9VIaufiZ0vwyRv4xOEj2i8LAVoLqqS1oe5x9M5c0i5NhsOdZoy5TJZIcUrffV49SPKNMmxDg/QA1s0VRXTUztmALx0hvnh/VDXjDMrmFYkLb+gCExOp4EuXipuWMQZcwQj7nzcD0zwnyapBKExJy/4ISkhRBDx2itDN4SC+FV/jrFoAseDmCNW4DRZ+K8AnXRXwy6HHo7dCnw0/FfM0klWFgHsJLKe1PCPMXIgn2DJl2KjMjYYC0BTvoYinSJEdL3ck6Kn2/PeFm6wWbvDQf523LexwNI4UAGQ8hx9mPiBC4Q5ePGW35RFcasANmGQ3bY5ohflPKO5RpnxJA0cQLrAFh04VOADdMRkLRMywbIFJ2HbI4+R2zRu9OyJgWavJ2zx5Wja49xQpIMI/bYdz+fex6/G/zbf94P7apW9c9UyqY3LNikzjN2uceBk7QqEKnf00feQzfIUJa3gKY+LUsj0oCqCk0naz0y29Q4cT7Jyniv0HQsL/X4DPBoGmHD16lRoy7DC8umr9Lgr/ipAx81dbtI1wGoGo6lfsdbHLmhVIYhx2yzzRGH7HCfJ/b4Fs6uZG6Z+sraErZ7x/mitiviT7jLARmGHLDLoQUZ5XgWzkvaZ/oBwKzeqCr13eGQiQVH1dNabRU6FB0DeEjGHd9y2riyZuPMecp9a+HiWcB2goYPAnyd/aGzNFGLG/VifcRD9vhWJMn4VDh1x7PT+54n+XsYFozs+RQP3MCFbH0ZfMXXbLNCElZ1WUuZ9jOSBFen/G//N1Pe+3BlBosUXLkA8w7m+SvEx+9ZJCGIx0nM5oSxK8QH71lkwIRw5Qok5oH9Pq+7XpBhyKn1LNWgOL0vMVZTX7QD5XOmmDH8n/7nI/EnvQrvsh7eRZ/YHIyShjxgCtPSe9bmEAvgvV2zXvGwbFnPqnvmzG0Illo29U2On/KX0ltSabzbI64ECMj4DudRmmgRZZ/omnoPWcM+RdawDSKWZhf4MyLLOl2jVmC2CQldeyp56R0RgKpEIF3L67pT1/UDZB2r6ktd/zeJSGO69tZA6JBIeaps1TSOwNS7kyD/t7PoMbX3y8LaUz5UrKoSVxWpAZGqto2svTWMa1WXvlaA6qqklH2qX3z18lTWpbJDFTDTpqdTp2dETU2bUx4B5P6G6JN2h4gFqsCdeqR+av9OEJlLY99HPT6NfbxBBEhWkKasE65rSKMa2Ocou7VBNGkqLP39igggzS89R9mbKhXQP227XWXiKmsUBPzctI/phUXPC0RNOkD8XfVc6DEoaNkm8o5ZtihQ1uotohREb2k7Ok0rIL+Te0RM3ALRBU5B2xP+saWD/k71mPT9y0QXJ4guGlm7nR7yO8wTJTyualWXrBLW/3SEpERPvCQ16k4qXqDj2JkqR9WbXGFxCnsxbb2wykGbrlfEZyqsngCepyQF+5vSHccOilnAoBy2+K/MH/Cb/BW58YBW6roLN1IPq53wkInxKfcGvMpfJ8eZS5jVhXQmHPLYPBBZalpYQSGGvpfj4/Zbnpd2+ILHjnW0LKlV0HLoZdAAhX4qS5zAASghMTR5FiBt2a2AAykUDBmS4S6HrPdmNPN5FhgehI8JjMc4K5GvgQfVsMGJqTFMRcElCnyo5DQkJqCwLd+mVSdH58yznmPRqu/j9ZMRB5sSKiZyuoAfPn3B39+/jcfcsbr0d6ihMgrMNKgyWpLEPmeHCT4PeMwJNRf0oJLbLkUbrCPJ3lsc4TtpxqpWdflK5fPikyqBJx4BI8sprwV1Drxdx1Lt2oFEbjDi6+wX3OMAj4AMQ8eCbGRvEBJzbPkyLbxgDh4O3GxTdt/vjikQEqNKgzo1sTgJHtHx5L3Ee9nHsOBP+H1CDHvsEyfgK36Cz4Tf5s8tiCiWIDr0qVnfUQVYFbhdOB5/DEPoBk577JMbD3ia+iHr9EkvyfDVYzCgwMj2vSfcZ5cDhmSIEXJmfWQnJIkT4DPlKfe5yyEhMY7YYorP7/Knrr9oSNUx2+xYb2wQYKVDkRonH/TfNiUmJGlRZo99yjY8Stm5yq5V0LpNmaHJsBfsU/dqbjBoCB0r+Kf8JX1yzvKkTs36RbZ5lP8hAAuS1pdRDAZ0aFelwZ97v83aUu9e1aouU124IVGG/+UfXgF736T2FxN8F8imA1UN2htamyU/kEH0xPM5Zstam8jwQgMtxUv/1FkctZesSebE+WLwDc3sdUZk+F/94Xv63HP3SIALohL/fJ8dDt09md7vHLDrfI8BhqQwduFmWNC0g6oQQ9NU3DkIiOOFAVd0vfgOWV8q6Wd5LRran+k6WbECVVWmECanBkRpqLQlBSXG8O7BGtf++lzWsoF9ra6p1fZPX3uLyN5O7QN019V2oIQAskpCytt9UDsBVctifxYAd3Hh0vk/nkUZKrqWTiFrY7VKfIWsn/U29jZiiahYgvqyAq+uq5R0VZe9VoDqqqQSSONRyfZt+9iCSHaulPVlzxRlhd5Dmo8CmAqm9pAGpsxSbXTLIKCHTLkGdh88hOWpcviGfX+1GyjYbej+YLd7n0hCENjnFIiYrveIAEudem3a1/2tfX9l4erFoII0UogmYo2l448h0zcduFfs4z0iqYFeLB7YfS4Dz4kmeHv2WJdDqHRf9JzqMWoIlYKq5aXtYB9XxjDI73B5uqds1OXHHtjX/wbweOl3sOwLo0Du7aXzvljajtog6MXrKqta1aWsfD3A7AiLs22l+gHir6mS+BZld+PboOoYVBmGVMZveJz6kWNUJb0JNepODtrKZ6nQ5IwcRbouEVbBSb15PaFGJjFkPezTMQXnG2gIGRq5OTb50IG2oRezwIT1wDNDB8Q2TJWOBUEKdPlFCXuzHHPerMpQ0oXBhCQgHnoZM3RS3UrYpGkq7LPHHvvCqLVp3wCnVt4L2PAqCWJoUybMd8kFfSaeT8NIWELJE1ZoK3XdsWa9MKBjCtxuvqFVKTsbAmVMxWcXvKzecMxcgHniKupZWAmaLlQhvhmwzZHzWIwzZ3zvqgsbU29B2V/PLWYMCxvK0HXSuz456zsY4//Of8jv8ydM8R1AohYPE3w8AvbYx2dCmzSsQNVVXcK6wSk3rd9wyYYZ6WdcYcdDbwdNsVc2Y0iMdjZPwX5/Fhie8jm75oAgG3dAm3S2gAWGoZdxVh7VsEHXFDhg1/Uf7ZsbFgh44t139iM+E8eE1OHJkAwttihahuzXPOALHkuglO1XX/Ele+yzzRGZcMjc2rvoAG2PfZpUBPC1bMsJSSappPUHLdsgqxIb1rNVmLdde32QlbP2RGWHFugQUrYA8SZ77FOl4XpgyXpMK2O3QZU99ulSsH6w4v98xDYZhsQIGRHnjBwhMRdIGCOkRdkljataos86vg1CTDKhjdgnqCJBw280FXxCkmLQZeRlyNFyfVNTzwVEWmePbwFJIdfrpoC9ccvAG/6qP8KrWtUvrULLEAesZ3OJ7eCYA2/XWlqIj3OJFn3WXTBdQFx6mSfQZjlssbfY58jbwmPOc3bYsAu5GCFdCs6WZMMG+zXZAKCdzVMZvOU463+wbxqEqX1HmfDal7sUaFDFsKBIx9kLKOir/voxQgemgnyXKzSdvUt8dh6pLnVtWCHyJ9V1OsgaUdeVurZdDpD2sBYIfKiCtL6q1x6fR/jBcuaHkrvUIlDVs7omXQ65ahMFPz+2rx8ja1YlgSmpSfNZfkKkqNX1vqppN5fea4a4OS2/XtmrGtC1nIeiylAbvnXrr1dg6q9LrWCPVUkpcKkJe+qP6SHg4AtkPZgm8ioN7b+fErE8XyIM0VP7miYRcJonko8/I/I1PSGyDpjZv5XFGVt6TA2l28i0Z2HfVwOjnhKBizOk2aq8/Z597G+RpqeBWa+Av1jal6bdtoZzaQMP7Pa/Wzom/dNFplPqo/qMyNPVs68JgH+LNPPH/+D4XhKxQCEy9NYLQspuQ8/xE7uPeoF5trQP6pmqPjX6uAK+L+xjL+3x6DHm7eNq7P2UqDRsTH9Put/LNg568Xi2dP5XtapLWK9qBRpeNUpIDvoA7oa0MBgI+4ozhmR4yCMCPMdIeJr6IZqsPCRDLAwj/1UkQVVTlxcYquPXSEBS0QUZFOniM+XA7BIYjwwjx3AIrCS/QRWA2+03+OMLJ0c9sknPXiDMqwxDCcMi7W7kAeer+q3Zc6nPxUAAz64NjSrQITAiH62EcsMdGI9K2KRKwzJi0xgWxC1Yq6EvOc4o0SYkRrk3IMmEBlX2vT3mxElaJrAyP5UJVkDYaFN8vq9cp02JatDADyaOXaXVovQBgyJHnzuN1wBW7j+nS5G4Y9UaCnQYehmKPeHXKbCiXLQFhglJOd/jHrmgjyHEDyeUaNtE8g22OXZ+jxWaHHKXQ3aoWX/CM+ujCpD+wKx7Vau6PKVDDF2kK2uxQZW5BcyabFjXPWFSNqiSo+961MK+fpcDDtmhTRnAgq/iwTkiw2O+cGBt01ScP6n2U/VIrXBKhhFl2pSsD+oCQ2AHOOoVGidgh+fc5ZBdDqjS4O94SJ1Nzuz77HDowAQNFVz2GQ0xLuhuYZlkvvVLjhNQpsU2R+yxj8fcAQ8NqnYAtqDCKZ/1Xjim65w4dTYxhJxScVxYtUTY4hj1n+5YYEX8TmucUCMk5qTHBTrscgDg7FsMCzRgK7BWBeqfnVSrFqtC0BCcDENq1B1Y1GedatCgS8EFZ/W9nAV3jB08qcfturOjaVOmQVX6Pm0qNNkdvODMhnPN+BAEWtWqLkut2wBL7X99O0gNvLgDLU/t8EWDnfqs217pufsiw4KGqdLy5Puu3tRTfDSMM2mHHSK/jzz8tzgmyYT97D06FNwwuE+OyuAtBWd78sr1QcD2xq7zaq0FdXKcoeGcC8SyamL7RJuSIxBscUQa9Z3vM09YH2QlPi3b1SkZZ0BEcLLkptkDBEP4LXtC2/bPM/u8AhEgqwrTF/a5CnSeIOtXXeuqpUCJSLZfILLEU1KVYgwK2paI1sUeLuTq/R5RILYqTfV9lEGrXq0Q5ZMovqEercsKXl2r6z4rAeodrNrhr0+tANVVSb0jAsEU0PsbIuk5RA1Bn//M/ruCAH+n9m9Nqx8sbU9NpJ8STbMUvNPEvLR97SlRWFXDblOBwxQfgobKelU26yu7bWXXJuzrNExJZQNqDK6NUf1De0SS+Rf/4DnLEnhlsb5ceo0m3mu4FvZ9RvZYsMeoAKh6n76z/14+v2N77C+JEgd1wqUNWd9PAe4E2HVKJDt4hlyAusAj++/v7N+BfY0C3+2l1ywQIHVAxMh9RQQ06wVBj8EQGXq/Anv/vapVXbo64AfWA3XOITs88e4zxXdpzWsBjsVYocmN9oAGVTbs4rJKwzGNSrRoGlkwF8Y9/PGMfHsm3KdgzjHbHKduO5+sE2qOGdonxxbHZMYjrrdHH/gAasALwLvCGk/y95jjORbtEdsEXpzCYEAlbNLO5vmSr5wnrErL5sR5MP4ZO73vyQxmxGcXTDyRrTap0CdH3YIYgJOpAsQJOGDX+X6JRLckYTRBg896LxwY8yp/3SZsn7mQrvkSCD3H43bzjQVoClTGbyjQZYrPXQ5JDS4IvLj1bRT/UwUBhOXW5cjb4oht3lXWCGMCrigoUacmgEFQpzJ4S4sS/1X+X9Gm5AJzQgyVQBhmbcqMyNBI3WTi+VTCJhPj06bEFkfs8JyH4SOqNAisX2GVBnPiHFkZn8ecNmValBm4admqVnW56g5HwpynwpSkC8j7wlJ9qjQo07bsb2EtphlyyF0yDAmI84xdBwI+4LEDN2vj76lTw2dChyIVTh3oKAOaDl/wtWN7Zhg5G462HaacUmEzrAO4EKctjhzTs06NPuvECagGDUq0mRN3A6M4c2fdoqzZE2qUaBO3PNUWJfpWUbDAuMHLMdtsDb53aoSAuA21E/D4twd/zTp92pQ4yN9mQpI5ngM159Y2ZmoZ7T5Tx6SXgVWMOpsuEGpIhm2OmRN315mRPTPKoM/Rp0qDIRnOyJHjjDJtdz6m+MQIuc8TACdZroRNHvGQAI8KTcq0iM8uHHtYvKS3BXAevGFq4fAkE2qcWOZt3AFBP2o+45gt4gTsZ+85ZvOtD6Rlq1rV5akBWfzxhbM5WmA4YJcGVdtPZAHXJ+c83Cck2eLI8valP6nf9Nz6GK/TJ0efL4OvyDBkis/I3p9p6J48Y50haceC16BPnwk5+nSzWQ7ZcQMN9WkWy4CYZcWLvVR8dgHIEKZEm/L4LQEeoWWpKjNe/ZJDDDVOZNhsMrKmVHBT196v+BB8XCAEIvt44jv72N/Ia2cPkbXjbWQdvayCBVk73yECbFW9GiNSTkKUxXKLD1WTml+ilnaqPC3Y587sNjV4ugJX1AJPj03zRyDCNZQdqxJ+kLWxEo1O4HzTbl/xkxIRI7ZEhGGsCPu/NrWS/K8KgP+8C4n3wPfIFz1p/74KzIl8Qg+RT80cMVM+AuL2/xD5lWpokmf/f2Zfd4H4a76y/9ZP4Dnw2r7+AmmIb4H3wBpRoy3ax0f2sXP7/trIi8DPkOZ81b4WpDnOl/Y1gTS6N0uP9YjMtDUg6409Fwuk8Z0SNVc9nmfA1L72T4lo/kpKGtrzOrT7o2FeV4nA4DX776HdF53wtYEryBRLwdaMfd/X9s+UyDt1bn8Wt8+d23N0dWk7b+3fyaV9VBAce8zX7D78zD4+sdt/a98zCfy9fZ8pkLPvOwbOYPaaVa3qUtYdjshywWbvDfF84G4mVSpJD8JSzMmn7vCa+zzhlAoPe9/Qyafda9RHLiDOPLFGYDzMYoRhwWPvgbMK6JOjRp0bzQHjwlVCL4ZnQ5RMaoEXzJysUxeupUGPMAb7qU8dcDEkwzp9apyw3ptxmP+YatCgaSr8i8Z3vKzm6HvCqlCpej+VpZUqOasAvZlWRpqkXNeYmsh3LzTGPUfTZ+d4bNDEH89opa4z9XzHkNJFts/UJkRHTNwWZe4OXvI+IcysR/zY+bW2ECuCN6Ws8wAr0KGfTTvLBQURyrSZ4nNianaRMSU3HtBOlV3IwpG3xWasjs/UBoaJVPjMLlo8T0DuKg0XPGVYcGZyPGOXJhX22JeQHePTsR5qRbo84T6AlRsv3GcmIE4pPP33+6Fe1ar+f6weeeAcQ0idGn/AHzv7EWGAF5Zk6bdckv0xWxTpun6iKe9q0VGgwx+n/vtscUQ1aDD0Ms5rUBniMdsb9fs0Jenk/SDMrgpNTkzN9dlD7jqfZ5XX16mxx5B/4/3H8n40MCx4zg4S/uThWX9q8RMtOXZtnMB+77/lOTuu38zxKNHiIHvHbi/ks3DfMv7bVMevaWfzTCxIm2TCCTXHiK9x4sCTFmWS1mtaGf8VAiYkKVsGbpOaZcLLPu/xrWPTVsev+Sr1L6nSEJBlPKCZumFZo23r1SoDKGW1LTDECEnbHnpgdvmSv8EQcsw2PhOeZ40Lu9rhkCId8VrNZpzMOcRYVvItQoxVBAT4FfltnVJhw3q0lmnzmo9Y2Z+s6rLWq/x1x9Ce4rPHt47lrQqaHH3qbLpeBziP04A4E3y2wyM7bA/ddz/w4jSosssBcebOF3r5/jPDkK95QI266ztxAkJixAlcX5ji07aWInECO/SR5/TJUQl7bihSpUE3lWeHQ/xwwtDIgKZDgU17v6bDHRnArPNRqSfras1Y0bwQiEKnFDwsEOV9LBGSEj0i4FMB0iaRl6luDyJFZIDY1Cnb9DuEMFWwfz8gUtDO4PwOrDXsz9tERK6/JVKFPrPbv0dEiqoQsU1VBat+qdj91GyZ1NK2rdJzTYlb+vMTopwaXW97wPX/d5+2VV2mWgGqqwLgP/svIbkHaz8nYkIaGO9dJfXiIpo6zYAEvLdNKfAgYan07/dgkrLPz0KvmiB/MuN9FhYG1jRNT9mqNljp/W07FVLwVYHY5eanP9emG1t6HkReKcuP65RKn289WdwkSdmuZXifgitPkeaZJvIXDT58Houl7YdL75OAWR4Sf4M0zZicoysDeJ+FKy+JDKohkjTcQhrtNaLmrmCvBlnF4LwKa9/ZfVEP65g9FvVt1eO33qbvE/a8srStQbRNqvYY8nYfqnCegrVTe57sRe19Aq5YRu/5JsRCOS53odALm7J6U/AuA//FD1jVqi5drRHQp8RJHsfM0tCOAl3ON3BhAX1yvCus4TN1HnnCypmzExzS8ET6OsXnzITiyZqVL2WIYYMmp1Qo0WJCkm8qJYZkKNKlQJcDdgGI2deoF1eGIV9nf8j98TeODVuk69hdMUIO8rdlgW6Bim+qsvD3xzMWKUMx6JLxhjaZPrrxV8CzRYkiHZpUnFQ0zZAWZZpU2OGQ+4PvaGavi6+WBSTygxn9lPj4AZYtlaYctjg0O86vC6BODUPIfvae83DdY9+xN8q0iBHasK+AkJyT2WUYkgllvyfG50ZzQLci0uBKr8dZPkErdd2+QgCfDgXOjICne+PvSIzhL0o/ZtsySEqDHl9kHyNBYyEdiuToW0bXUyfnn+J/wJY7oUaGkfWUNQ6k0YXMofkEufNf1aouV/2cHfYQFuZdntOg6nwCtznCIyAg7sDPPjlCDFuWSVmjToEuTTY4Ytt9v3WxX6RLw6sSYnjEQ+lRTHjMA7Y5whDaRf8r59c5xXfS9zJt5njs8xlFOhZy7RPg4TMlZvuNsrrUd7lNmQk+X/CYNmVy9J1P88bS80ZkHNg6wefHPHIBgPL+LctsDXhsHggTdvyaVuo662GfimnSoeD8mBd20DbF5xm71KhjWPAVP6FKw4VX+UwpWouXGCFx5nRs2FeNE8eKK9Gilbpu5blx9tkjl+rbYzXO6xqgSUXYqJYJrMCqWBe0KQwG9LNpZ08DuMHZBN+FX4UY6l6NOjXu89SdK8AFHKoqYE7c9kuxFHjNtX8/H+RVreq/Zc3w6bPm2J4NbrkAPglqSxISc/cJE5ICVlJ0QyENHz0xNSqcstP7nk4+TYMqHqLCaVGmTMtZI7Ups8CwvTTIiduBS4YRdTbtULtC3Fp9LDAu3E/vxSYk8ZkyIkMnn3ZDat/e2w3JYIzcb3UosMNz5sSdKknv2zIMP1RGQsS4VHZpiLBLF8j6Uq3l7iCsVbX/07V0GwFEbxGt0bNEHqm6ztRwbF17V4myXnT9r4HVwNq7pX1TUFTBUOz/Y/a9H9v3UVB2hKy1NTtEpfu6fxokvUlkEaBrbVW2avZKwm6jBPzcnoc0Qkha1a9FrQDVVUldt6Een17gBUJm/MUndrr+acDHL97y8s4NykEbs7igm8q7BNTyPXksjF0ljBkoXTBLiYxzXJnT8Qqsh33WgnPe3VpjYQyZwYx+Ns11M2KSusrkUzES8YMJda9GLajjZy84yt8kR5/rwYhvPrnDZljnWnAOHry7tUZmcM6VBcxSYBYwzCaIhSHx2TmJngClrzavuxvS3GBE/f5N7jRf86aSpZwdsDACEnIHJ80/TyH71x7xppTlRmxAr5qQG8NwyLVX58wqkLAeLL1qgpAYx/+6xNb4JcOUsAzCfIzrzRG9B7JfmcE5YIHnwQXj7FVM6YJ5Yo1rrXPeVLJ0KVAL6gReHH88Y5JK4AVz1rIXjO9cZehluOENOPdgzZpxvyvIedX9ywzOOcnfIJfvk2/MoATnHkzTa1zrnstrxwKWtvJZCt6AtUA+A/NN8McXAoIHcJZP4HszyONYdn5qgp+9YJhdY2jEa7CRukmhKkbnydO3v+pP8KpW9Uspnxme3lwSsmkToCX1OE2YNVbS1eUuh3RMgQwjatRp5bMEdsoz8XyXet1yC/YOC9tkKjT5uPmWSuot9exNF1pVoSkJrGETzwQfeIZWgiZNr+IkocNUmkwwBE/8RNWLT5mTAB2KZMIhfZMjM5jRzWa51XvLn+b/AwEfaVIY92z/bNtAGUOOMxeCVaFJMexyrXvOeqHPiakJgJpNWMZVQAwJgZll5YbbY84T7jsWbsuUnYfshCTFsEvLlK1kuIU/ntFM3aDPOuvhEWdGbBA0UVqDZgS8TlMMu67PtSlDpW4DF0KujHsM8xnalNkNDhh6AnYr6w2gkbpJJhV5hQ3JcJi9ywO+BiA3GLGTlXTc2uA1w2zCSf26FGiygcecXQ7ceVJguU+OuWXxCftkeZq2qlVdnnrA18TxnOQ8sMFtNU4cOHhGjrI1uOhSsGDmxDHv69TQgBP1SFWbjRNqDmgUhqV4TP+Uv2SOxyF3rVBdVp4axnTmhkjCFlOvwCYbrudMSNJnHcD5sMYJHFs+boFN9bv2LVPs/vgbGqmb+EyYkCTJhOfsAFjvxHUrpZf+riFPqjY4SN3DsODUCMCxHFqoHofHbDlP7CJdqjTY5ogTarQpOzuV3wv/lKapOJCyQJcybRceKIF/JTdoU0BWge8SLfbZo0ITnwnbHLshYZMKGXChiWHWuACrRzxkm2NKtPCYU6dG0QZb7fMZHgEbNF3CuYDmMhwECVV8wNdMSFKw3rpip6Kx3Kta1eWq13zEJ5wyxadJxbHMG1RtT5lYiX7aee7PbS8EiDFhgXFM/EPu4qee4gcTfG9i2aYyaNbvlwTUtVzYZ4uS80fWUNHQGGslEHd2AyHGhWyqh/wcYcAW6HDMFlUaTKyd1Rk5p4DqUqRoh0t6bDn6DpBtUuHGrYEAhj0i1uY7BBxV4pQSkxbApwiw2iQiLYEj81Cwr1kOjFYGrNrcZYkCprv2NQp2KgtUQ6c0NFkJYiDre82IUfC3ZX+WJiJQqcXfKyK1amjfS9msd5aO/SkRQUkDozXEeUFk65cgCrPSIOpV3sivTa08VFcFwLkPQy/DJJUg8OD7T66TCYfuQvDyjiQqx2cCuJYGPQkwoU8YMwxTaZpehYUxvC2lmaQSFAYDJp6YbA9NhncF0d/P8ehn03hhwCwLqeaFeAQORoQxI4nJ4ws6+TQhhjYlzjck+TA5OudtNQ1jGBqZsp170Ezd4Dj7MV4wFwZSKs3fV28zzK6Jr2AoRv3trIyt3lbS5MYCpk7Ta1zR5h8DQgESuxT4RSnPhCRvqllJaAyHXGud8z4LrdR1vt+8zvsC5Nsz/EBCVuqpj7neHjHHo8kG48JVpkugyDC7Rt2r8fPSxwRenDB2FbMImWVlwX938BIAL5iTGCOss8UFpCA+u8AQ8otSnrUefF+5Tq+UYGgk/GaB4czkOMsnqIzfMMfjb6s/ZJy9Sjub58zk6JUStLN5XlZu0MoLgNvO5nkfg1RbPBQDT8DVc09+X/XUxyTaYBYSqDDxfFr5LPHZuUhYUgn3u/248ZbEm1/ZR3dVq/qlVs+OtvWm9aOTHtWgQYGOkzNu0GS799redHofyFIBWZBTxQvmfNx4i8+Ej170PnifatDgTSXLPHGVCUknG1OZ5pmRAJAcZ0yMzykVWl6JlvX9VCaCWVw4oLBIF8OCzbDOFN+yGo4AKNFmrSfhBK181qbQClvzOHWbYTbhWJwKMCSZkOOMkBiB8Rhnr9qQLLEDqLPpfPWaVAgxNFM3HJCocjGQfqp+hpXxGzKDc+7zhL3BM2G2pbIOZGmYqsjywxY5+hTp0KLEnDiVQNhjEyN9KmNdBAPipBlSCZu8rcq1o0rD+QDGrb+tgtbqdyoAhSR47/AckAVNM3sdP5zIIiUrgKixYKwGNGQYcsw2LcocchcNg1GfRAVu5s6DZVWrunyljPCiZUcaOzzpUgRwvs4bNt1e/EAn3OUQnwkFOhToOhBPmKsnlu0o3qrbHLuBU2C9lw0LfKaOAdayHs065NG+I70zwLBg3XoKNqg6NliOM2fjEbODD2XTGsuAn1jpfYkWzdQNJ5Of4nPArpPydik6QCRpAZQuRctGe+W8rZW1WaVBgS51atb1tEp1/NpZh4CAj7rPU3wKdNnlgC94zMT4aBq3MsQC4o5ZqgD2LgcOzPzk5Hvr6exRDLsu5KZB1YGpGsInv5MNZyUjoMw6ZeshK0zepFMojKztyh77FOk6/0dhzLacj+1DHqGhfApi98kxWg2XVnVJK8eAAl3uj7+hQtMNYjWMrxo02KBJZfzG9hXPBb8Nl3xJW5TpUMBnKgGoXs6pcCYkxWM6bDjbEZ+pC8v0HDgq92EtI/da6nWvXtMditTG3zuA1wuDJe9mzw7H4s7rXwdS+p6GkH32kDvONgsMfftt95kIMKiKSA1MHhExNEtE8vlNBHzUtPs79rG8/aOAqWaP6MxF/VBTS/8GAS9v2ee9JAIlfwtRkpbtdpsI8KoA6m0iZWWAgKnLsv2YfU7K/myBqEcLRCxZzUPR16t6V9mxGnalNoXqo6p2AmobYJmu736w4jX+utQKUF0VAGtDkaDGwpB5Yk2Sl0fnlAY9G/4xojYQY8yFESYowHpvxrVX51w/GVGgQ/6FAIv5xoy1d5AZjzCEkpS8CLnWPefGyYDrzRET45NQ+XxTGJNnJicT9uwamfGIT37+PT9oCMBYC+qsjeH60xGM5aYyMx4RC+F24w07ve8JY8JWyIxH/KD9kmutc37UfkZmcE5mMKMw7nGn+VqkGbGlj/9YpPkz27R/UcrzSeN7uViGXQqDATs8Jz47h3dyDj5uv6UYdLkyhnFWGKf+eEY1aPA+BjeaA3eRqvR6TIzPq/x1JsZngyY7ve/xgjmp7gVmcUGihwWohSEaxgwERIvxhXjB5AYjlzxeHr9ljsdHJz2uNYX9uh5aViqyD/fH39DxCnzU7vHxyVv88YyP2j1uN9+QGw/I0eejdo+Fnd75wYREG1KDC6bpNXfjjSePfdTsSahDb0CiKed+vTcTH8PeQCZ4Hqta1aWsLAMB4wIJBfnFZp5DbwefqZOMftx+K5Jye2OsXqIg3niN1E3alOh4Bcalq9zlkN4dYbirXHTiiUzULC6QRNi+89ysUedW760DaOvUXNqrLnQNC8q9Aa3UdRdKMLFS9IX1OJVQBOnlXhgwK0nf6pPjs94L7nLoZF+6DyExjtheksueOuZFGBOQI2c5DR4BNU7cMZVo2wCYOfkXMxdyAFCgawNmOgxTaRZG2GrPs7cdG3hn/IKAOAE2Q9vI69X/r0adfW/PBluVeJz6EV/zBRs0udV7K2yM2bllncq1Z5peIxaGNNmwQQ8eE5KUaLNJnfs8oWNTbgt0uNEecJdDPOY0TJU4cxmmDWZcPxHTafXIPaFGQJwqr6hw6sAHDTUDLGvs7/89fJJXtar/9vWIHzvJZ5MKXYoMEfa3b0E4tTtZD/tObppkwj57bqCiAKYON/rkaHALELb+hKQVp4aMyLgAJf0+Kdv0iC2O2WJqWa41Tjhgl332nEdznDkVmpY5K8nzTTbswEhA4GXmv7JrNZBuik+ZNsdsSV/iufNO/Vft/5oQwzbHAE6RINYr6x8wYgPba4akqVEnbVUDzdQN1/N8pnjMrYRYrA80cEY8SUVDu8e+BXiTwsgHF3oH0KXobAx+vvkx6jfdNBXW6XPALgu7vQJdJiTJccbCMnzneO56oX0dZF1QZ1PCc0IJplKWv/bqCb4L2Fos7fPXPHD7uc9nGEIeho9+iZ/OVa3qV1dr1jO6m8rTpcgpFacEmuITn10wIsNh6g5HbFGm5bxTvxh8Y+1QxCYEwLODBu0D6jfdoMqZyXFKhcCu/7TfqLWSstC7FD4IxCrQpUGVHGc0UzecP3x8dm6HPwVrn6TmUBJCJYOSLtsciwcyE2qI37z25jlxZ43iLOaUjKRhUQpwqgS+Yv8N/9ieTv1SEwjQWEHAy8f2Zz37mLI728B/RMSCTSEAZhoBKPeJQq/f2Z+HRPL8NhH4WSEKsbpt/3+HyPv1Hc6+zwVaeUTWfXkiC0JlsV6z72HsfmkWCUQh13pOLMB67U8UJV7VZa8VoLoqAMbXr8gUe3TOtdY5lVAm4dO0sEqFPQphTIDPOR4dr8BJ/gZvN9O8z8pEXidM7ypr/KKaF2P8MCDVvSDVlVRBBdsMIece/KKSd00uwxAvmNMyZRLPgLx4k3azYjD6ppKFCnzz6R2Z+qWku83yIl2/1jzHH8+opz7mRekmM+tLOkldJYxZE+x3UBm8JfXqgnlCGFe/uJPnLJ9gmErzZjNLJhzyPiWhBiemRhgTcHieWAMj5+DcA7O44Pya/D1LiZ9s4MU5yyccM3Xi+TTzeW40B6yHfW6cDMTH0Igs+BeVPP1Ull9U87IUWYjMfmEM49JVKr0eXgBv76TpfZogFkLqRM5lI3UTP5wwK8k5n+JjFqE95gS9SoIwdpUMQ8bZq7AQa4T3MSBAfhYOmaXkd/395nX6Xo5x5Wo0DURA3V4lwSxlfwcIqDyrwPdVcdUOMSwMnD+E2fov9/O5qlX9qipgzYGHPhOXAt8nZ6f0OX5WusepZWSq3+Ycz038lXE6xxMwdjxzk/8MQ4phl2O2yDekV+niF3DJ1K/y12lSAeA3mt8AOLmoJD97vMpfZ4rPITt0KLDdk2HR1zwgycSlY88TV+mYAome2INUgwZXZsL671KgRMvtX4Um2xxRDlvUgjqAC3VqmKrl0HqOcTFHUqHF66vE7vgZZVqMb12lxgkFOmgC+DLDop3NW9nbDlscY1hQT33sJHK6YBDpWtwxnIQF16HCKUW67LHPem/Gq/x1YYMm1qgFdYakGZImPjunZQR00G1mGJEZj1zYwu7ghbN2mKUgM5gJ6G29EbXe3VpDgyVq1KnQZNP6peU44/74GzKM7P413cLH4/yf90O7qlX9M9VNfkGDW0hQUtMNb2rU2Q0PqNIgIM4xWzRM1bEyQ2L83vjPJESOdesVKiz8GidO3u9ZWE6BWh0sNak4GSrI/WWRjn0/z3kEZhixzRE/RoC6CLQNWLdeqiVabhCV4+wfeRSC9AZllyaZcMSWszeQhGuRxf916Ue0KKMe2iD3R12KzInj2X5xzBYegZPq6nOEqb/5AaCrgTFiASAg7CE7HLBLjr7rz9oXl5mqyhhT4FmvGQAH7DIk4ywZqjS4yyFtKxue4jO3N+QhhiYVp0o7Zps+61RpUKFJjj4tU2Zu2bEdCpxSoUCHDENKtGlQZWSZuw1uuaGVgO5p5sR5a0qsalWXsW6HLzGEzrbJEDqboTgBx9mP3SBb1EIh5d6AAI9uNsuZHcoArFvm6iE7DjSd2IH70AKcuxw4D2MFQLcDAVYr9j5IA60MCzoU7eDn7ANVZEiMfipLmzIPw0eW9S8KU1XtGAuYBhY07VBwSoE6m5YRL4OwffZkzf6SCIjU/JMSAjRW7L8f4/xHZ3fsc0IEXEwg60wFGjU75A5w1z6uwq4sAkI2gedELFLNdrmDgJ+v7J88cB8XEkUW+MQ+rj6qBfvHEEn5lxmxKvMvEAGjmneyTCydIUBrwr5XmSicW+0G8sCePS/KqL3Finz0a1QrrvGqAOh6eW6F78SQPiYsnDAmEu+uKRBk4/hMbaroa7oU2KBpwwD2KOQ7FOny9hO5aRKJvQAKKmdvpa5zq/eWICVgX4MqYbZJizLBZtxNwjxvTosSmQdDd6GJEWIWFxgv5EXpJp/1Xoi353jGMLvGxAhj6PuqBAEYQsqhmPXHUiK3yHhDJinfMSXuZ58yJC0SVLv41aRGDCzy0kHLtOmnshgLPrTuiBdWJhhS92rWl0sSGXP3z4TRGw4JvLiThYUYzlMQGI/vN3MUgy79VMZN8tUzFXDJsABxL8D3pg6I8MKAo/xNMnm9wBoC49FJyXYC4vS9HEfVAtvBMUMvw9wT8KPgdejfkeCVk/wNyItcdkgaLyUptOXxW+opsSLYTLxhYYSRdnfwknY2jxebuwlpPys+sXM8WvksmWAoMlmm9K6sAWe/yo/wqlb1S6kZvgsVKIx7xFNz65lZocorJ0VdXviHGKrj127AA5rqKrLPr1L/kjIt55n3rdkjw5B3lTV3A/ycHcdy9Zk4SVeGET+vfOwW8DnOMCyc3FNl8jFCmvm8qAusD5aAGTlyiwFzz+Nl9Qa32294U8rSrGQcUKCgaG48IIxdpeFVaZoKJdNa8ujz+NHJM362ec95aak9gIf07A2aDFMSdhD3xHdP7AM8K5k9c8d4yA5lWhTpUuyJl3bO6ztGq4IVakugATVTfHfTXwmbHJltOvmCVVIMOTLb5MyZBXGEZdWg6mSnBbpkxiOaqRv4TPBCWQh1KBASYz3R58zkHANPU8XXxtDOZtzzNGyrMO5xkLpH2YbDSBDNqTtnc+K84RarUKpVXca6SuiAPPXYE1bVgvjsnDMbQFdApOWZcIhZhOx7e5BiyUv1hG2OaFClRMuFq0zxiYUhJSMM0YACx2y7cKo5Hjs85yn3XTieeJj2WQ/7dEyBatjgWuuc/6byqZO2a5VpOx/WEOPCnDQQT8Oh9P5ui2O6FB0/tmX7QJEOceslWqLFITvWRuCMOZ6V3scdYAKwQZMjfpMKTWtsMHH9LcRwSoWkBUMNC6o02GePkBi+tSbpUFC+vvNQPbGBTx5zKhawVI9Z6UsZ9/MuBao0OKHm1AYqVdZBGUss4wCPLY5d72oh3tdNy8ZTD0jt43OrQjAseMBjWpQt721h48FyADYIy3CVFSNrVZez3poScafZkz9FuvTJ0bGWHB1k7dX0KhgWtPJZDAvXP/1gQtcrEGdu76PUs77vGP8aChcNbcTDtEWZJ9599/1NMrG2JjHbC2TgpQoBtY8yLJxNSNPIwKVEy6kJ1NZki+MPeocogWKOaavM+Ps8EWAwIAIaQWT8Cj6qr2kJF7ScUDuAFi50avYpJJ4iwOeAiBWqNssDRMr/jkiGr3L/AWI9kEAYoDH7uIZDte3PAgTkbAINBJjFPkdl/8sA8Tv7/xECtD7AhVw5Nupf2GNTsFZtA5ZDpZV9qxYDJaKQ7Gf/rz9nq7qctWKorgqANCPis3MyYwFTF8ZgFtDxCqQZUgzEoLpAh34qy27vpYAFwZCfDv5rdsYvyIRDcoORM8AuDAZOhn+cui3y+AV4QeT/YgjZCQ653XjDjeaAyvgNlV6Ph4OfcaM54OPmW8rjt+SCPsNUmuuNEdu91wyza+SbMxJjAX0zgdxo+0yZGJ9y2GJhjHutyiEUCNnlAC8MmOKzO37mAInceEAlaBInsKmLc/xQbtAz45HzzMoEQ1LNC0q0qfR6GBZiLWBlpsnRObFQMqk/br7ldvsN88RVrr8YOYmIpnzfHbwk1b3AC+aExCScYfxaXtt+S24wcjetQ5NxbK8kE2rj7/HCgHLQpjJ+w+7ghb2wnwIsJUEK8zfOnGE2IUA3IV4YUBm/sVE2MRID3O/lygz88Yz13oxYKL65gRcnM5hRDOR85hszt4BoenKhbrLB1EoEV7Wqy1ZpRhQGAxqmSjeVd2xTBee2Bt8D2OWxT4EOE5IkesJUEhbkLSf91O9HNWyQCYZ8zQM3uLnWPHeyqvvjb9gNDuz3W8BBvQFXllF1/Jpy0MZjznpv5vZD+5smbO/wnHLYcuyjRuomSSbc/u4NsxROvqoshSQTcmOxD+h7Eri1Gxw44KRDEZ8J32zeoUuBB+OfOZBFAYI5HvnmTEISEL+v3UAYX7Xx90xI2vMiDN4aJ1RDYbcNs2sMvQxxAsd+qlnGaIWmZbp2nZxNJarKPFXfQfVJvX3yRvolGZ6mfugka9p7W6nrzv/x0Ow4MCHDkOTo3AHMhtC+b4e/r9wmIE6ZttuOz5RHqR/boBrxUjwy205Wq56RV1W6sapVXbISexH5/KrUv0HVfbemdlCSYchzdjg0O/S9HHc5lMF4OHSvTTN0QSuSBi8s8W/NHlN8t93lAD9hTm6Qo0+bMl/zwCkGHpsHZBjx2DxgXLhKgY6V77etT7JHkwqb1CmHLcdUVa9RYwHiAl1q1MnRdwOc0IISZVoOjNB7IwU0JiQp03aszk3qjjGqQEWGIQfs0qTCLgfc44AdDt11QZlkPlPnrapgzcLelwqoO6VkWaY+UwfGKlCjAO0RW+IBTYW7HFKiTYDHJnXU0/QrvuSILboU0ICwCRJ+s80RfXJsh0fEre6iS8GBQjs8JyTGX/GbDnSZ4LtgvowFvWPI/e8JNdatd2ScgB4FVrWqy1hJ+x0EHJGmSYXa+Ht8phyzjcecx94Ddx/YpGLZ3tJXHnkP0XApvY+AKKyvGHZpUXJ2KerjPMF3A2hVz8hw2UM95MUWRVj9niX5DK19SoixPSB0veeILQAWGO7z1NmeBHji9WyHWmoFpX1J75cA8OD8UyJ63isEiEwhIKP6mY4R8HNA5JXaRpSo6in6OQKIqu+pZ3/WtP9PELE/ldWqtgMxIk/Wkn2d+raqz2vDPv7EPqa2AnZfHPCp710m8m5tEIHHal2gpe+hNgfPiDxWjX2ftv07sbSd2NK5WNWlrxWguioABoiMO4xddRLUMCaL5PL4LYEX56N2D0167eSFidr0KgyzCbqpPAtjWAvEg/PIbNPPphlm1zALuWntezknIw8x3Gm/ptgbkWpf8D4F48JVEmOR568FkkD/rrxGGLvKxPPxgwnjknxk47NzvqncoVdK0PJKEu5ETLzzAkm5zzdn4gXavHDyzgwjuVkf91gYw93BS+elWhiLtD6MGbxg7ibqmcG5gCapBOXxW3bCQ5pehTebWYakaeWz7qa42Btxoz1wVgKGUBq2ncydlwSkDGNys54ZzFg7keM0iwu8MKAYdEk8g+vtEb1SwvqYLtxE8qO2XAG8YM4wJZLWVPOCSSrBPHGVKg2ut0fO03Wz94YJSRtotSAkhiHkVu8t17rnzBNrzvvsbSXtFjHEIDEQ+wGQoK4hGdYC8VL1woBx6SpeGOCHsqD4uP2Wz3ovWLcAz6pWddnqF3xEO5vn7uAlmVBk5gU6MpyhTzN7/YN06WLYxWPON9U7ADZ25BUFOm4Bq55ZIMyAgDjr9HlTzbpF6H7qU+peDYhAjB80XxJ4cQcUNFM3APkenuUTTPDZY/+DG3NjF9cHZpeAuAX3OhSDLu/urXGQuie9Zzyi2Bs5BpEXYDlJ4t039MRv9GseOGapgpJeICBplQaVsYCXWxzx88rHADaYZs6hJ8nY/VSWMm1ynFEdv7Y3+BIslaMv4DUF+uTYHbwgZqVyy357qlYoLPWWFiUKdPiNxjc02aBNiQZVepsJF8rSocA2x5aBVqQcCjPDZ8IR245ZVrThVNP0mmNkVYMGxd7IvZ8m3SojS1nCms6dYUiZlpXuFRBf2RY3+cUv5bO5qlX9quvnfAII4KcWFioHn1i7EV1qxy0jEkRu3qXIn5vfcSzVZ+yiAVcqMa3ScIDb/6D3Z2xzzA6HH0jXgaUBj0CNRTvoUHZXyysxJOOAwkc8BKBIh2/Zo2XKboii92tqs6J/A84PVL0FldkeI+QxX7hwK5+J8wUNbAjdkIzzzVfmWpUGNeokrX3MKRXnu71Bk8B6l4J4q6plwV0ORXIfyvWkSQXPDvpznPFjHrFuh2JJC3p8GX7lUsH1mLoUyHHmhmeS8i1WKVUaH7BONaxrQpJDs4Nh4WTKZdpWgnxGnIBtjjhiizgBBTpsWSBWpcnKdPuSrxwAo76xq1rVZawFst7JMHIBbj4Tmqkb1DhhlwPEX/mIHGc8CB6TYch9njjpvtiOyPdJwyun+C50c2gybFof6LkNqhI/fwmzalF2PUbZ7RrA6TFngeGx9S7OMCTHmevbqnxUtrn2XV3r6kBaLYv0+wxwyF3izB3ByknVe7B2gqxxlempX/FNBFxNwPlPELAzQEBGzU/BvqZsn2vDmhzbVBmvCo6+Qpikgd3Gpn2NhkGliNiuypDN2ve6b9/vd+32DcJWVdZom8hGQNmyHsJ+rSCA6Nj+bI8IgMX+PSIK0xrhWLjcAT6F97eImLdqL3Dzn/qkreoy1gpQXRUAG+M2iZ6kvGcYUhm8JYxdlUWuTV9+W0o7gMAPJu6mMBaGfHTSIxaG9EoJwpihxglD0piFSPUr4zd81O5xnhLvzdKgx9uSAK4s5DGzuOB9TDxIZyl4lb9OZnAuUn8WTDyfvpcTNlMqzWZYJyRGnU3ybQnDAhh6Ajac29S+t5tpzALKYYvMWLzzEgM4pcI0vUbdq9GiTD+V5Sh/k4apEsaEYVUa9Gjls1TGElvfT2UJjFwFbpwM8Jk6lsPL0g06+bR4lSJs2Mx4RO/TBL3NBP74gn42TT31MQ0jkrS1MZxvRoxgPV/vb4vXYZciZybHZu+NY2W9t5PAiedzvT3CC+Q4/fGMjlfAC+acq0+tnltC+tm0C02pDV4zSV1lnL3KmcmRHJ3L5HIwcjf335eu8/OKeBqe5cU/NUboQHE9D2YRcmZybPde8z4Gh/mP6bDyyVrV5azALirb2Twnpua+D/1UlpAYmgwdJ6BFiW/NnlswqseqQYJVPOY84sfEmZMcndP3cjwc/IwdnpNm6G6iAcf4DPDEC5kFbytp51napSALXpsIm2/O2OKICUnnpXWGsEuXWVYb1s6k4xWIz87ZGzzDY848seZ8Wk+p8Df5H5EbD+iT44gt/FBu1u9y6HwMf9B+yV6wz1H+Jgepe4QYPDtoGZJha/A9gfHwQ/Hk8plQDlvWZ0zUAXIeha3khxMqAwGq1UcwjMFdDjnLJ6QXYywXY8qcOGVaNLjlVAUxQn5RzYtHYNigTIvn1n8QhDW20/veLWjOTM6x4Mq02KDJuv0ZQNNEnrktr8ST/D3H6vDHM/qsI2ExEkqhAMv/sP1nbvHhEXBmTSFCYgSs/Uo/w6ta1S+rfsRTB+QlLS9fhzgFOtQ44bFljRbo8NvjvwBgRIb7PLHPqTuvae1VVRocsc0hO0zw6VDkL/M/RnmkqmLS+8yOtwySRkOVI7bc9wwib8IGVeZWoPs5T62HqfDNn3AfTd4GeMrntCg5FmqHogUWus5eIM2QbY7xmXBKhRx9HvDYARqb1FkglgJiMSI2SnMbWqf2L8pcbVDllAplWuyEEg7YpEKcwLJep65f9VmnSIczO/zSAKrlQKkuBc5Mjvs8JUefqWWNZhjyiIc85gs85pRosce+HRR2aVKhSJd99jCEnJGzQEzfSXzVM1bB0hEZjth273FKhWLYpUTLsXw1rOw5Oy64a50+b7n+K/ncrmpVv+wakLWDmYLrZ6rIDInRkdG1CxBteFU08HNOnA2azjqva/uaAp3q4d6hQIOqC9UbkaHpVRwztEhH1KCcMbL3KQrKir2cSPQVIPWZOrBVrVC2wyP2+YwWZYqh9NIkEw6s9ckUnwWGI7ZdP5PQuoA+OVLtCyym+4+Zmgo4hmDbB3Qt6KrApfqu6vPVCiBEAMj7RD6jz5e2r+DlAn7xMM/7+0RerLF/sC8BEpQ1RsDYHsIcvSUh0qSIfFsV2I0RBVWpM0lIJOHH/rsguS32QyHvX0V8VFOI/6uemx7wVJ53ZRlsvWePdVW/NrXyUF0VIMDbu8oa8dk5SSasvYO18QXVinTNyCdJFtZNryI3vMEQs7gAT4C1I7NNxTTJBEM8b44/vqCTT4sHaEouPAFxPm6/ZUKSptmgsnlqJ3FzwtgEL5jTT2XxmTp2pBfMmXgih2+ZspP0+8GE+94TXpRust177bwPh16Gg2yVYrZLadAjFsr+iW/elCAlN3tNU3GG3C1KlK2xfmA8uhSJZeXG/G7qEH88o52SK8QEn3e31hxbYjmgxR9fCFAM1k8wLeyofJE4gchfU5L4PcvOaKRuUg5brAUQxi54nPoRm6m6ZdSKj863+Tv8sP0CFkjQFDGGpLnOiE4+Tc6MCGNXRYLl5Zh4IuPaDo+Iz85dQiNAMehSz95Es7RDDLFQQrfUA7UyfkM3lbdejAVZGKSmLDC8K68RGA8vDBh6siCZ4hN48jnaGnzPu3e/ms/tqlb1yy7PskMz4ZCkkSFNnc0P2AWFwYB+VhbxmshcG/fopvJ8xZc84GvOLLC6w3NalMhl++Jbl50zJI0GDKjXsiFkw7ICAJvw6rE7fsbj1BcuPEDZlD+vfMxO73v6+Rx/x0PHWoCIBeszFV/A8UsSY7mRnKQEZBiajGOWzm0QynHqNoaQdfrEZ+fMUx5xAppU+ILHfF+6zlM+5z5PMCSZ4/GX+R9TpsV62GeaXpNjM4bceEAjJWm1AmaOaLLh7EhGZFinL77d4ZDAxCmGXQ5TwvRtUybJhBEZtjimyYaTkf5W4+8Yl67S8soOOK4FdY68LYp0beK2AAMNqhzlbzInTtp6g5VpO1m+BEPctV6vGecZqD6Pc+I0qBIjZJISoDvAoxbU6Xs5l6L7tjQnIE7SXie3OWZiE7mnZGHF2l/VJazXfMRHjNhjH0BUQBZwU49kGQbJvY6fmlrQdMp62KdtonumAl2O2bYDlAXbHDmPUL3/KtrgPcD6Vjc4ZpsSLefRObHenOrBWqbh5Osa5PIlXzlfUQUE4wQumAnkvuWYbSo0KdEiw4g6NT7nCV/xJVsc4xFQZxPP9n69B1Z4UX1C69TY4tjZqUxIkuOMBRJcqAOzke31CqYsMBRMF8PC3o9FQzuQ64Bay6xbCb1v71lz9F1wzALDHI9n7JJkStGGAXYoErP9KE5Aka6zpjH2mtEnxx8Ef0zgxd1+Dsmwxz5NKrQpuf0phy2apuICwlQRofYrDarUqFOgg8fcWQpUkHXBdBXQt6pLWlkG1LnnQjh16CPf1z5Fq8yZkHQgZ4Mq2xwBOIWPeiEbQjap24FSwVkaqRdqhiFn5Fz/yHFGh6JkfNjhbZUGI2unAnr/KjZNyphVX9YyLQwLFkYY6eWwxaHZcfc6RctqV5/sIl030IoTUKLNkDTj0lVSry6EHfqCCBRVVmYBYZKq32kTYYPGkNsgZajChxJ7BTLHCBg7I5LdD+zPSvDu3hoffdeTx5QBqtvTwKkY8HP7Xil4fx+uvJB/p7oXAnTGiHxQH9nnDuz+p+0x3EFYq2UEkLWAceKVfb9bROCrBk69sq9Xn9mZfW2BKOxK2a5RdtiqLnmtGKqrAuAkW8UsQvqpLHM8etUE78prLnBFb6DneM4zME7AkbdFP5XlfQJaeiIhwgABAABJREFUXsl5SU08CT+apK6SG4wk2CMU8+0pvmM7Vmm4m7U2JcKYSE31/0/5XCRQswv8QHyZymHLggExvvK+ZI5Hjj6dfJowZmh4VXfDmgkl4fosn6Dv5ZjjccgOxUA8s6pBw90oqg9VjTptStQ4IWn9DOtsMkylUbPwKg0BHIiz3ps5dpMfTmjls3RMwU0h53iMrN+Wx5zj1G3WezOR1seuit+WMbwpZemm8u4C26XwAfuiV5LfCSDWAGGXtyVrvZC9TseT91xgKIctMUg3BeYJBX7lj047RxaIyDCilZf3jhEyIck8sUaSCcWg6xgVh4h8t2XK7LPHodlxTLZPGgISd7NZGtkbvMpW/olP2apW9d/9WrMBIB0jTIHMYIYm1YNIXw+yAvrpdzogTjN1gyEZF3hSpUGJlgQfLd1ki9/mOtu919LvyFBn04YdGRf8skFTfEdTN3nI31Hh1EnlQST3nXwan6ldwHbZ4bkV7cuNvoIMjdRN/r50m74nPp8iK52LZ/XgrZPNxtGc1zndVN4t7CMwpezkrwo6alBXciQLZR3SKINVX9OmxCkVFwazYbVPTTYIjEeGERMjKbc5+uyxzzbHbpGhfmEg7IAwZtgOBZDZ7b1k4vmu5yeZUA0bxAl40PvOght9BzBr8u6EpAttaVF28l4JhDklyYTd8IAybfFTDFsOsO14BTLhkM+Dp4BKa/ucWpaZXMPKH7DnVrWqy1Yl3mJYUKf2/2Tv38Pbys77XvyzuEFsECAIECABETOUSFEajpjRWGOrHseO4yROkx6nl5MmadrTpkkvJ01vp2lP08uvOa2bXpP2eZK0aZqmaevTJE3b5CRpmrpN4rixk0w8jtxRRmPNUCJFSpRAAiRIgLgQG8Tm/v3xrrUAyRqP7JE8w/H6Pg8EcWNf1t7AXvtd3/V9v69VSck9LOZANfJc4DKLXLPe0KYivVF7S8HPQBd5KhDiUQyq4hlIzcaXpsifSbs3qfkeIdcQr+M51qhSsIpOwMZleXbsBNA862SHCmOa9HZRXZ1ECnIKcVsnywYneY53M8c6c8E67+XXyWqducEOedaZY4cpey1MzPheft1GWR2SfJJnqTMpKfpBXXtldxjjgHdwibhWuJmiWUYVb7wURV3bZ4c8cQJCYlYlu8YcTdJMhnVO7m5bX+krnGeGsiZRfHaYssSnKSZqPG3nWecKTwOSlbHji1VDX08IGbK2Rt5W966Rp+ml9e+iaieTKhQpU6JCwRZ4lf3KE2WONdaZ45J/kSntQengcBxRoGLvXaMmNWpss9yM+SQmW7bkZ5kSZUpayb2H8ec3cZK5VzxCypSsSl0mfKo2hX9PxxQidIoxRofJUJThcv9LUbsNZrVXq1g7SW82SZ0sZUo2A2gyrAPYcXNL39PLLFqVOkjaf5mSiKhqDMhC410aImrNNnerVU1hKoY+ByEYCwi5eWuw3eFT3O1natLkS7LOxK1DSc83L5MQuYv4tBpbAQ9bvEq9rNtyS7dznkHxq33gKQZKV+OvmpHjt8+PyLY1pECVUcpWERLZZ+DFmmBgF4DexihvGwysCgwZfPs+PzKHYwlHqDoAQgxs+LP2/0a9ucCK9k71bLq46cRNJcA4AX1PBtIm3dSjz3rmcV7wL7CROcGYJiNMenwlNU2HJH7QsympWaS6cpmSHZxeDC/J8WKDokd7Xlbvq09+SM2QbbTw+lJEJBl0KLW3GGsd2kJKj1V3mWvfZJFlAl/Umk0/bdttUhxMmmyuKjkHRSrMsaZJ5B7ZoE663WIjJeYn5VyOWBhK6kXrkDIlSu0tikFVm3l78mBtX8cj5CpLYmeAqHtNQSiPkGwgQaz4UtVsGutS+2XSjS4dT5Jfy16JvucxtdvSaR5SgOvJ6k0ZXDQObVqq1xc/wmy7QZO0NRmfoawD4Rn7nffxOLm7DUha2bK/yBQ1xvWD3BCuzwbP28FAxSvysdl3WqLGI2Scge+gg8NxwoEmSUvtLZIcEAvh1IYUt0tyQLrdsoNsn572WZ3kgKSksdOxBfJkoD6rSboDiu1tWxl6JzdO4Inyv06WIlXbDxyQZJ156xNoiD+Z4Amsj2iIp1Pz5ajrzFn11lQoRZqy1CkFZTo6JcyjL1Wvgw6dVML2z4YMAPEKHaPDEyxbwjjdEIuBWTbIt3epMTXoe6lTy2Toe0ImSCHAHT18KBMQZy5Y5zxXbMpvrtqVLAOtIksGuh/TfrPGBzFNkyWuWm+vJmkhr700O55U1m1mRm0hlmVvkZAYG94sV1niau40xtPPoy9WC7kMWfaoM0mcgJbuF6fCmq2SbRRjTU/+HyNkx8tLHxrI9/tx773i4a1paJMKLP6SYyywynmu0CKNg8NxRJ8R27eVdSEkY20Coma6gtieLGjvQLG5kArxJT0xFOiJb4BlFu1kUkVPOhzoPmwxXLYKsIA4n+IiHqEusFTRx1m1xAWAKaRSYpN15llghXTYtPFmUrcxRkiRCs+EL1ihgCFzfQKKVLjCedb9OaTAyySBTtk3XswLrNqq1yU90p9t37bEirESeSfPa5V8i2VfLEjEo/CWnjTa037LY/Y8stStTQJIDDbPOk+HVzQpOS8T3drDu+yV+KXc+yhQtUT0piY2fQLd9/o2e6GHT+D5BMTZIU9SWy+YWHGdea6xKMQpaTsxZ1T6G0ifalSxB1p9WqRCj/jgerBBnUkb129Sst78hsR1cDhuaCCCoziBndw2inSfHn4oRYArFKyftFGyAtoLv2JtRHy9jlHvG/EKSJ/WI858KFYiHV3o14y75Z7NU6QiUZZXIqZjR5OZU6UgBapCKfZZpGr7Fo++7cvj3UNWWbB9iPFv9Qhtn2vEAkkOaKbGRbE5gbzHGBCRXUTRWUJI1gbiedpHiMeTCMG4qz8zr7Ogw09GDSE7j5COJpU/ZFDcCr3/EkKSzur9l4B36c8TQ8e9pT+rImrRGgMitowobU3qf6CPrYnS1C3JwiWhlxli9KR+N6n8DYRgzev3YGi/Cb3cKHkLum0n7vtTcziGcISqA4Ct1mkqryY5wFQN3S0k7IxZkSrGaN/MrIXE6CVGyLd3rYm28WoxlZJDPDpeUshGrYjqEWfHzxMLQx1wx21qAwj5uuwtUqHIeuoUSYQ4EFIvadOw0jRJt1vUMhmu+ktsMMuOn+dq6hwg/n4H46PsFhK2qMs685r2GLNEgvEtvMoSITHuFHKkG12rYK0xZdtcS+UI8Sg0dsUY3JPqjNWMGKs0U+N0fBmEBIinYD2VYWq3xfv5CFWKchxdEGuZJzBFvupMEiNkriFTV00vTS8xysH4qFUveIT4QY9yLmcH8bVUju3COLlql2ZmFFMpvO5nKedy9BKjdqBiBiOzbNjAwCjPOqkROp6QMsYzxww+zEO57mcpUtFKrL79Pse0Gm9MF6lycDhuGNe/cz8QwnItd4Ld2YS2OYnb5VnqdqCaZ4e5YJ1Se8sGvB596kzaitI18mykHifdblGlSJNxW+DgDCs6CA9Y3L1pla2zwYadqMhrJZfxEg1jI0IkeD5nwhXdb3coBdLn7nlZ5hq3ybNDxS+Ij1YgtisX+RQdXwbfkoRqir1Iddjpaotku8umpkR9eqxmTtlq9s+lvpQFVjggyemNLatgqlIkS51U44hSY9uqrg5I2qwFkwbXTQ2sFPwwINk+sn5kkmLW4zwv0iHJJd5hnw9m0iYb1O13tubNscAKi1wjzw7T5RYL7RsUdYVrwJI5MUKt/J/U6XqT9rhGfSX9mfaI1mqtcX2NdshT9kVpW6TKFZ621X0DbY1j9mEUZyYdz8HhuMHXKdriWe/Z/u2ApCbtNu0Ez1RYs36eaZo8E76glfcxS8CW2OTdPMeaN2e9lUV5us4UNfqex4lyQ6eoVjnPFbLsMUXNkg1GqQqirhQ1V4dVFiQjIOix4Rnfvx4lyiyyjPFNFV9SUWwZayVDaiywYpVcvlaGGusWAFM0StoufWYzNc4c60xSt7ZTMT15foYVHQf3RRXGSUwtAuOXXdLeisssssGsVb96OtYFyQ6QczzDHOtWZSYFAANihDzL82Sps8RVClRJ0mGONSo63pQ2zLDBybuKVxU1aSKF9nqWFI4TMMc6F7isyXLJYihqlekc65Qos8yiTLAHVRsvz7FmLRK+ZOMGAAus8CVcfZQ/VweHRwYz8bqpJ5ZKlHX2jSi0m55MQkzqWMNMbne0J6mZnJ7SE8MdklT0fW2KwoGMB9NIps2L3nl8ekyG9buU32YyxFh9BMSFHNX2KSXKNu7Y8fI2S6rGFMWgaq2qkhzg9bFjejOBkqdm+9gYoS1gJRNAcSEQ1xgoVauIL2geeIaBj+q8fjdFnW4gBOM8g9T883o7U8zqFWT/ZQaFqGr6vczATiCBkLdt4CXgtN7eY0CmNhDS9yxEJYR4zen2lnXba7p9Md02Q5oa31dzLucQgjSHVa/S1vu4xYA4hbvVs2W9rimUVWJQrNp4sTocezhC1QGAOD1bibRH3KanZqkTC8O7BomlsIwfBtYMu0pBfENT43RIkuRAip7o1FMzayZG3gHNTILZxpY17u54SUpsssFJG6yadK5ZNjjPi3YgG+KRDpuUgjJzrDEbbpBtN0joLKK8tgXv4Ysxd0xSdPuehx/0rLeVj6TMH9gH3hgzlJln3T5EKhSpZ8T/NFftUqJMNhDbA0Ms1DPjtkJjxZMiAWdC8cupUmCdefGk8tKiJEuNkGzLvpa4StkvUWxv2zT/PDukafJYdZd6Ztymj3W8JH1Pwve4zjcw/qV7ZEm2u2SDOss8wScKbyPePSQZdChQYQwpIBbvHpIOmqwzb2cfDTGUZ4eAOFc4T90XAnWBFWYsIS4pqzFC8o0G+fYuhcYuU0GNNC0bOA8Uy94X8ufr4PDQkKSLT88Wc0tywCpnAOkTruZOs8oZqZQaNIl3D23KVDM1LhModKxSfyqsERCnFErw3UyN2/RzU9gtTo8YIevMs5Y7wSpnxB7An8UUU+ppBWSIJ5Mi/SNMpWyznw5JNvxZe/xaJkMslEF/QJww5jEV1jhRbtgsAEP6mWC+QpFXCqfopLR/NQHrzFkfLpDBcrrRpRSW2S+NUmaGHfKyTrvFpwun7QSQeY5kGy2amQQ7TIltQuocs2zIQMDzUG2xMjGkR1o7Di4Gy8yzzjVtORLgU2psk2oc6eeMZEzUmMIPA6oUuV56nE4qQZkSc6xR0mmwTdK2Am6eHeYat0UVG1Zsyp4ZzFQo8BG+mmUW8YOeVX0YQtsUo5pjjQXtkWa8DItULPk7G25wNrj+BfjlOjg8fDTIEKfHi955auS5zDNcZYk17Z9qvEJBsodMX1Okyp6XtUTkBV7gKkskdYzZw+cCLwDSz1YosKOVkXdKOUzxNzP5K4WVLnKFpwk1ObHIMrPcYomrjNFhjnWJAP287Rul0F+cHaZ00aeetSZYZ972p3OskaRDjSlb9GqHKTz6HJCUfjhoUgyl6F2aJss8QYjHOnNUKdhUfaN6NYICQzAbBWeNKa6xiEffTmb5BMyxJipabYdgCOyKV7TEr/F6XtLEpBEgFLRK1DxLmoyzQ15PmHvW39H46Q/7vwb4zLFmi2QBXGXJZlgss2gtukSB7Nl+0yNkiask6RD4cdaZkzhSP1Nq5Pn07GlKlIkR0nCVWByOKU6wybgmOk0qvLHTAGRsqonMCmKBJ5ZMa9YD3xQyrjFltzP2GkY0ZGyFDvT/4wSUvRLrzFvSM06PAlVqTNkigeIJvcAZVgEZr5nCVCZ+M7U0rulJEI8+1UyOFc6wxFXbpmJYIUbIFDUbwxkP5ji9uz1LMwgxeHnoYj2BkIjG2t8Qp0apmUFIVaNGNUTpPkI6bsg23XPAl+lt5YLL50b9Guh9pvSrqpfpotQEiCI1Acq4jZSH1jfq1+EiVCZl30fI1hiiKq0MrZ9joDhtM7APGCZ7Pb2f83q/RgGb0eeRYUAiOxx7OGMvBwB6xKkzamfqTRpDn5C+57GjB98eIV4/pOKLVr7GlCircj2dirrDVZYoIjPVeXZ0KldSD1KLLLRvEOpfXpY6qyyQp8YUO5a4lTSxpE4JW2CWDVFl4dH00vQ9SXEPYyNSwOpkB+MHaoqRXGWJ2dTGwNfOlzSJgk65uORdZIEVTEXsEpuW0BXT8B2qOnWDglghhL6nlboVVlhgjnXxpPKEFKlSoOoVrZozyx4bnJT9e2UCL07ab7HMovZlPGAj9bh9iIGkYtwonLBeN8YbLBaGxL2eEAe6jeZh2UklqJOlRFnOLfV2prTpuUktWU2dZlwnbzRJU9AG5R6hnXF9gmU2mGWGsp11nWMNU+l8jA4bmRMUgyrNVJIm46RpkWeHFmnSQZPAj7PGaeQp5uBwvDBOi3xjn43MCXt/mEFskQp9PC5wWT7rH9FLjFL2Sto7bpwse5gKsGbCaIoa8e4hGylJAVthgSWuMhXWWPHOkKRj+yXj7Wf6KsCSnQVdTAlgNrbBBrNc4AWrDm2S1tWzFwApupL2mjbDIOsJOdsvSV8bEGeVBc5zRdtOhfR0GplJ1xQLDyFSjcoMYD3zuJ3w8XXavE+PXmLUeoY9gRTz8/pwMD5KrtwlWerYiSMz2I+FElVueLP2uoFkTnT8JAWqLGsPxTOsEMbgauYs8+E6HS+pCRoZKBgPwRpTzLFmLRcOSDIbblD0KkI8M8vkuBTU6XjyrPkU76BJmnndr2e9ulgb+GmbmQHYDIwCVYphhY4n+zNkhPhuz4l6y1vkVP+lR/JbdXB41JhnDY8kdc7Ygm3GZx6kjzkgyRzr1jt1ihorLFh1aJY9mqTJs2MV5gCTYZ2YF7LMoi6ANCM2RfTpMEZMk3V1stZKxVTNDjQ1Kv2PxEV5dogR0iJNgG/b+A4+RYkyl7mA8ZZeZ44m41zmgp1YMkrSHfJMIoWzNjhJjTyLLDPmdyhTsvERSJ84RY0A3woBjJerKQ4Y4LMYLNP0B/16iTJrzFk1247OgAqJUfZL1nrEFN8yKb9lZkjT0jF71tpKgUw2+bp4TIcx5sN1Wyyqgkz4GzLGpPWb51DZk2yEcaQYjWRJHNhnWYBPOmzygncBgDzy7PIJbJqw2C2sEuKxwUmmtL3LOvMscZUKBTLWENHB4XhhixliOkvI3HfG5gNkQqmlrdOM4rRCgUnqtnCUjLENtSpxxxXO84T2WjVF/lY4Q5NxYnr6Ik7AIssc6CxNUwjQJ8APA5subyakQfoDk2E4Rc2OwwNf2rzMIj4Bazq29cOAjicZkH1PJqDH6Fj7jiWuUsMn22jdXfUehIR8H0IaGv/UEqLojDEgGn1EpQpCSBqbAO2Pelc6fAkRS8UgyoDyGRCz1xDStsJAyXpS7+sSA7sAGJCrl/T/Z5GiUWXdBhACNKPbYIjWAFGlBkAO9p8ZFf/WFHRTkFhDPFWNanWXQXEtY2NgLAZS+rxeAq7o7drgusO3Dhyh6gDAudV1eFqIgSfLN2nny3T8JH4YEO8e8ra162w/Nc709RbbZ8c5Xd5it1QX1acvM1c1ppgM6yx61/Do4wc9UuUjSHV5jF3286PkvRphbIRU7Yh8aoeQGE+wTKgfGyfKDW6UTtgK2ybInQzrnKpts10YJxl0SDWOdMX7OCfKDQ5TkA6lCFbdz5IMO6Q9mc2f3mgxXWuxf17O74CkHRj79Hhb9Tp3Cjk6jDHbljT7k8E2e7mEDtJrWknQwqPPl+9+ksAXQgOkGJeQIOOscIZned5e1xMbDUq5LSqpaZu222ScBVYotrfxA6jkMniETAU1ku0jJtmiksvg0yPLnn1AnqptM9G+ze58gly1SxSDwAevj1XSFtvblNiSa9w44k4hx9RuiylarOQe51R5m8MUrGZOkbve1ekHOyTbXTqpBCExTpe3OExBLZOx1R+TYUcKxzS69DIHpGpHhMWAZL9DvHtEOtayM3chMd5x25GpDscTLcapZmK2srQJnM+EKyx7i3cNYC+n5q06aseT1FZDsK2wQEwTB3mk35sNpZidn+rddUzjMW0qtJqCA7FQJrBC3+MqS9pTVVL/zaSWIVNFsVAhHTRZ9K9ZQiLf3rV2H8veIqssEOLxROMGzUzCZiYYdZhRJNTJUmxv00uMEnhCVkq6b82ua4ofGNTJsuPJ5Jso6mN4ffHEqmd82vmQC42XqGZyYsWifV0BdmcT2gdRIswQj3TQvIuE8Oizxhz9lAwQLnkXrfqjg6j4J0M59jUWeYJlakyxwUkWWaaiJ7vy1Jht36aSmmYuWKfpy2DBI7SK3TGvY+1UOoyJOiyos+NL+lwfjyoF8l6NdNDE8+W7zlLXE3GBzQJopCYQ6YWDw/HCNtO8vbFOLyP35g55WqR5gmUqFK2K0mTP7DBFkQrP8yyzbLDMovjWa8uOLHWb1ZP3dmwm0mUu6EmlLACLLLPMIuvMAQz8SYNV1v05238IqbhHEqmqbYrdGfI1Sccq7MWHWdSnpgiW6cvjmvo07ZTJ5HVNe3Rs6r0hU3o6EwGExNhglh1d4A4kDno6vELg+VTxCPy49lUWNXtTm6209CSYWB/kOc8VO2ED8uxIcqBV9jHO6LYU9bPJFAEzJG2NKSsE2POydnLOZEX4OkG4SMVmFXS8Mavwvdj+X2ykHtc+rys20yLJARWvSIlNakyRZEP7zGatak6ukzx3TDr0Cgv22n6Ki3wFv/Bof7AODo8IPZ1Wv6Enoa9wnhKb2h6jx6oW2aywQJWi9ieOaeGLFIk6H1wh9D18AmaDDVtE+YAkVYrkqVlFexKZfB4o6udsxpK5r43lXEDcTvKIGEoyZcz40ahR93RBP4lrZDLaWO1VPOnPjYDKFCbG10X92i02UrpvMmUyjNJ0HglxzNCvj4wJTyIEqlFxNhDyssRACWpS6o368waSvm8KOnmgjHLULM8wsBswxOl1Bt6rMEixryFkqlGFNhh4vlZ0G68P7Wde79cQuA1gFyZeOhSS9DIkSnrbDLLsE0AB9t+lSVfDrhlVbKDb8C79XtXHTb7Kj83h2MERqg4ARJPgdw8ZS3W4U8pZf7qKV5QO6SlZL3myQzLo0M2Ip1PWl3TxDWalYIiX5rHqLt0UXEk9xfnCS9RTGZu6ZarMN0tpm+40nI5woyTqx4pfoIdvDb33vCzxlHivbvizjBU6VnV0p5QkHTatyihOwIYn7fHoc2c2R3m2ZAfdcQJrkJ8Omtwp5MTXJqxZgrOTGmMqrDHnrVu1k0mR3cjFtel+VvuuhjTBKjDQ/+8RpzM7hjH3N2n1ZUTNVk6dIJuqUyMvygFfPMN2/LxNTzUpGx3GSBeaeoBwwO8UzvL07nU6qQSxMLSqtfXUKQmcww7bBempd3LjNqDeL47S9ORhun96lD0vK+qO1BRJ7a26W0rYFP+QmFR19Postq9zMD4KwJ1STq6gF7LjjzEV1Ci2t4Xc9ePUHp+EoQq7Dg7HBR0S7JCSwia0qDEl/Ub3kPO8xKXU25ln3XrNmeB0g1k7mAapoizFnmJ8inew4K+K4jOm1ZjM8oS3bK1Qxugwrv24TKpo3/Pw+iEFqtbnsxSUCWMeHW+MC7xAD58Z7cH3Ed5Pyd9kutri0G9RzeTopBJ8kme5wGUuNF7iU5m3iQo0MWIJQz/ogY8ujOXZIiK1lBTd2mDWBt3GBsGcc4EKByQ5x1WxWgmqeP0jwtgIV/xF5jLrJMeFeGj6aTxf+rTSbotbuWnphxuHVHJJm0paaOyykTnBuj9HX/eFSa2FqzGl0+x6Nl0WsH2vIbbnWCcWhuQ9eQ4kww54g366nDpBjSlONbbxUg02Uo9bBZ2xjTEptmVKLAbLXPHPD/9ULGlzotagWBI1mkdoFWymkOHoUAaCg8Nxw3OZd1r/dZ80ST1KNKp9k010haeZZYNSWObd3nM25V4Ix5MyaKfIeV7URY7ET9Rk4lxjkSWu2qJXpqCdsQCJ02PdF1LBqDufYJlrLDLHus30kQmmwPqAygRVnD1N1hoCeIFVqyyvUKSnPU3zuuiTUfyLxrRnyQbTNxSoUGMKEOLTFGWtkZf+2kOn/h7wYb7OFrMSNeu4zSJaY44YIRd4QSt0hQQRCy1RxXr0rUVBXqcEm7i5QIWQGP/y7+6h2CVC2e2z3NHPqD2S/QN6sTiBVgxneYUuCUboc4SizR1+mhwhPSJu4BGRYJMuCRRHRIzg0SbJDTaYZZpVa5WSoItPwCESI45ySB+PUV7igDESRHT5MJe7h1/4H7CDw0OAqbUxy4ZYPtHCJ9AF3g4oUKFCgRZpq9Q29SUkrV8yb4zXadNP2wnkuC4iZzxQZ3W/6tNjRVtOAbZPMmPZkBgdxsTaTitRTbHmNE3dTiFnTTuLVEiHTauoNT7UdbIssEpP/x3iUfOn9LnvQUoyKGuZDCdON0QNGiDp+X39f8Mq+fpvQ5ga39E14Czsnxxl4mOH8pmxAKjo7TcRZajxLz2JkKJFBqn5Zt9thAwtDS0zFgA1va5J8TeEaQkhamuI36uv23d9aH10WzL6c0MUG6/YGqJy3dX71krXiZ89HKheryNK1JcZFMwaVtKal8NbAo5QdQCgk1LUUkWKQZXAFzWSqVBoikABLPuLMtj3QxtMppEZMeMjeL3wOGmaMuveh+Jug2ZmlDVvDsBWKEVvFxKzKVsAXv+Ipp+2PlY+TZJhh3LqBGladtBa1W0qhWUmKoeUS1lbFGky3GDHy5Ordtkq+HrmPo+p7Dyrw/kX/AtWmbTmzVHKbVIjT54aFa+IqfQ8nPpr0trNbH+hsUs1kyPNJtPV62wXxikFZa76S3oruc0M8TJJnTQtm+o67jVtumzdl4GFH/SYitVs+kUxrFhfUo++pLqlRpjc7dL3IJuRa2+C+cCLEyO0RuUgBE7JK9tr3vc8poIaZV+C9YA4pfaW9sIdExN0L23VGaaAlkeovSOPqGXkCdX002T7Da5lTtMkjaKBI1QdjiuKumqyeHPmKVBhPXWKufZN5nXREUO8SWEjSUmtUiDu9azlh6nyXKBKKSgLGeDXqWglgVExmD5tMqyDh6Tnsyf3uZ+0KbMefS75F3URE/H7u8J5QjxmKIvHXaPFbxeeokae9wa/TtkvMcYBAOXMtKhYaVH3s/R1yprpd5IccJUlTV6Il7UpaADi0TpDmXXd709S5xqLNotgx8uTbB+xkxvHFGMwnsrJoEPTT2MKAfZycWpMsdR+mXIuZ0mVOlm8jJCkhlgQT+yqJUNNn2xS93v4LLBiFcGScjpLwZO01TpZ9rwsSQ5sOlwpkOfYViFDMuxIxdywIso4T8pbneMq+UaDeiZLGPMsGZJnh1XOECOkQpF4KSBE7GAWucamrpbb1IOSuDX2cnA4XqgyzSF5zrDCC1zQ6e0SIxprEBMfXuQSHZIse4vECeykywazTOkJjw5Jm/lTpWAnaAwBMEbnrsJNU9S0U3KPMjOYwkg+PfLUrBfgOnOYIk4147dPkydYpsOYnaDuERd1rI5D8zotHbB9wzJPMM86BarWJsAouowyv6izd4zf8turL3O98Li1vqpSpE6WGCFZ9jjPi6wzbwkUQyRL0a06PeJscJIQjwu8INlAiRFrNzJ8vU0mg+l/zP7GugHf807Y/foEPQ6p4PO28j53SjHy7Q69xCgTLwdsPZUg5IAdHsPX9iTnuEpIj9Nru1yffxyAPA2S7S71lMcKC9oGISTLEWVGmSWkSpymZhAutH+HRDuANmzNZwiIc3J3G/VjPbb+mvSzq+1p/vk/dnmuDscPkomYJU6PpeAq6/6c9To2k75Z9tgEO7lj+qQQsQEI/LiebE0yxQ4zlImFIRWvaCdkjOWRKbYn/c8eppCmScXv4duMJtPf5alZe5DK0OS8uX8X29cJYyNU/IK1STEZSSb+Equkk3ZCqkyJpfbLVFLTJHUsic8ghb3MQM15ESFNPYRoNMWXMnBYgNGX5POJtUMhGE0xJ+NVWmTgx3qSgZIUJFX+PAPv1AZsXxxnut0aKE81Ybs7nyBX6w5IUd2Gu0jWfUQNawpJnWVQqKqgX5d0O4xXrDknQ9L6CLFaRc4HBt6qnrQpugiqrNcxqtkCQrga6wSHYw9HqDoA0PCzeMTY8WX2PevX7ezWAivWc8mkEBhfOlPJ2AyaxSEmrY3u49QyEoDFdRVS4+kiA+MasTDkwJNg3AS9vVScA5KUdUpVgap4FIZlKl6RKZ1yarydrnpLdEpJmwrRYcyqMLcKGZvCaZRO5oEzFdSI+eIfasjSDmPWf8qki5UpWf+ZJmkCP841FllgRY6fOUuRKj3i3CxMy7n4Y8QJbFqYCdh72mdrLlhn3Z9jw5ulRJnZcIOKJ6qKKzzNrH+LqbBmVbHL3hP2QWZS65p+muf88zbdShQZVU2qTmEKRZg2xPTAZZMSc8E6G/4sHT9plcJ1Juml/IGCyyvZFLgiFXb8vFZzVKn6BcZ98VU8ICnnlUpbdVYd9YX+CTs4PBTk2WOdOeZYt0TnVFhj2VukmRqn0NilmUlgfElLjW0+lZHKy7PBBsv+oq3uXKCqSYM+YcyzygTTT5k+x6Sa+15PE4BS+brEJnPtm6ymTtuA3BQFmN5o8cpsmnfzHMbLdLZ9m15ixFZsLfslOoxxMbjEsi9Fnc6EK5Q9USM8u/s77OTGRS0VyiTSIstWVTbbvs2V1FNkqdv/bzDLmXDFTvYYX7ANb5YCVQJ/UAk7r6vZblJix8/z5eGvU/PyFKjqgYBHJ5W4S/VlCjQAdpCwwKpNL53Ufoei0rplFapVipYsntrd4lLuKWpMcTDU98Y0QVukwoovPrNT1Ag8XzwLvTTZoM6Ct0KHJJuUOMgIKVzxiozRYY8saXybxlykwiYlClQ06TtuiWAzsVix1QgcHI4XxmkxSqhT969ZT8BxmnYS3BTBM/7NkqLetMWcClQ0qSqj2Uu8gzRNO3ElqfWSEnugiYY9TSykdf9iFKktPcFiCuQZMhXgnTzPJiXOc4UOY9YXP4t4IS/xgk2LTWoSU+JYUXkNF3Aap4l4xJt7uGjP8TIXqFJgXE9C5dnhRuGEkB9h0/avee2tWmcSgPO8SI0pGw/WybJDnhihTiWe5d38Jj18qpkkK5xhih0qFK16vo9HXqcAG8sFU1jUuwkcQu3rpzj7ym1OvCwqssdKu1CFxLlD+HEIvjfOqbVtHru1y6ffd5o51jn109tCFPwGlH6szHP+uzn7sdvQhuADcb7slf8FZTh8B4xWIVtqkNiFjVlJY069fCREwYeA63DiBxrslhJSCOZH4MQHpC2jT7iJJYfjiZPcIq2tLiq+2GoE+IPYTMeJJiYxytAQjwqSdZmlrq0APDu5dNVb0stvWUXrDnnmWLNjRhEeBXQYo4fPDnmmqJGkQ4CQp6YfNtYARV2UONnuEktJm66mzt2lVvXpyaSwtihK637dRyaJp8IaB16ScuoEITE8+lQocKLaGBRUMqn9bQaqUqParCAp9H3pN0ghRGOAkJLnGHiZagKScYRwNORnW69/UvZjmatxmP5oa7DOmt5/GXJ0pX1m36bIlNnXBPCkPp451gYDG4I+oiyt6m2M6tQQqWafOb3MnPtJBjYEGflM1fRn6G26DIpxGZsDh2OPkTe6AQ5vDjTIWE8nY3ZtKnyucoYNZq3xtik84OlBf6hVmGbA6hOQ1qmrY0NkYh+POdbsw6ZMiTVvjh3yNpBOcsC4nmWTB4Vv27HsLVqzbkPodhjTAeYOc6xZ0rNCgSbjOuUysMG7eZD18K0PVx9Pp+Z6tEhzlSUpsKQDeZN2ZmYGr7FIgJC+ZtllLtDRZuEtrXJIcsAsG1YhWtNVZmcQpVpFEwBjdNjwZq0SCyTVvuml2dPnbpRXWfa4zDNsMEuFAqbKtCGph9PjQsQH0lgKZKmzwgIVitZ/0XyHZqbTFKsqU5IHdlgjpokjc05pmsxory7j4VMKyvY7PSCJj0vrcjie6DNiJyjWtRlTunGo+7QCB+OjkuZdbcjEQ2baEoFNP237DNOnxOlRYhOvLxMaJmAWtaOoNI0foFijyH349O510u0WvcQoO7oirJmsSgYdohR2ssp4dDVT49T9LNl2w6ryp6hR8aXibJEKXl+2WWCVwAcpbNAjrlMxA+K6YEuaSmpavLNo2uJ5U9SsWr5H3PZ3Rl2xkZIMhR4+8+E6AEvhVZ7lk6Qbh+JZyjghMRbD5SFv2B2y1G1lammLzx5ZVlmgh49Pz6oppsstq5ytMWX75DIzrOREYWUms0Ji0l8GdRZZtipcm0as1W1mwiwWhsyxZovKHJDkzO5tTle3dLqdkOA9fPpaHVympL+fSfuMM88jz448HByOFzwd02Sps86c7etqTHGVJWt7UiNPmRldCV5iDRNvtEhTpEqFIqssUGKTEps6ZVUm5a+yxAUua4ujpE5/DXieZ1lmkaK2PTGD/yZp8cqnyTt5XhfKKtr01ZCYVntJtk6aJps6jjHkpfEuBGxKv7lfZTImaT2me3pyLUudd/McYxwQEtOFQLM6LV/uc5OWawoVmgJQhlwusYlPj6Ku0m3IY5MtVaZk42xTrMrYS6VpUaSir2nFKtCu8DQcMVBz/Szwm/q1hqihfkneT1W3xfPvN2E23ODJ6k34ZeBHZFnqx4/43Wu/AR+VbU9d3qY7C0zA6PPAxyBxSd7PhCsk20dCpCb0cfRxcz/XFVIiA/wQ8FEotA1L4uBwvLBLjmxbmDF5zvfx6LPAqsQPnoyfznNFa+hlPDdD2QqAlnkCgB3N0Jm4bEpPPlco8gTLAPqe79til0Y0lKZphUXi0x6z4h9Ae0Xv2AzJ9dQp4lrRD9Knm0xRM8Fvxv5GDW/W3/HEvqTOJDXy1Jm0cRc+Qg6a9HofIQ67DEjPGNyVoBODrfdlBgrQWwyKMxlisqLX7QMX9P77CHmpi1VRQPokQ9AaeAipuav/NkTqLkKwGq/WfQYWAH3dxrJuu6c/29XHPMvA3uC0qGIp6PUv6zYXGFgStPQ+WohdolHAntTLEnA4q7c5gcNbBI5QdQBEHeoTMM7Ak84jZIEV24kHeuhu0t9NdfcxbZzt6Vn2vFZzLrKMVCP1tS/gpiX7Fli1flJJDlhglaXwqh2ge/SZC9b1wFw8Swva+HuJq3ZfMR0QG+WRSbNombSsoGpTwwDy7V1b3CRPjfe2f8M+TMzDz5yfXBfxsDkTrJJnhyQdSpR5N89ZxavxwYoTsMGsECiNbcTzau6uti2yjLE7SOqUjWS7awvNmGrVJmWjRJk51qVatvbreweX+PLw1zHeWVd4miWu8nR4hZdZwhRKCPF4gmWbGtIhyTzr5JFiYIZ0NZ5nRapWdZzkgHmkgrYhhibDOr6+vj09K2sI9bovAxczQLrJyS/QL9fB4eEixhEBPtdYtOn+ezlRUcaHiMdPF05T1WTBHOtkGy17T2SpM7+7ZT2T62RJto9sP7pHlmssYgqe+ATM6KrPsTDkDKv0PdhIPU7HE8WWpLpKH93xk6zlTmCKAXYYk/SwoCN+dg1Ihh36eDbgNn1gsn0kVZ2ZoZ7KcIWnKVNiNXVaD+RPMkOZEmXtrxW318aoYzcpWVJjhjKbSIVoUeXHCfFsgT+jJJtea7GcO0XZF7IDoO95FKmSb+/e5VOdp0YxqHK+8TJSQsVnnTlWWGCDkzRJ086PaCL5QH9voqKbosZc47Z8J9Q5dX2bmlaBdfwk6UDSgNO6qoJH356LuUYdL2kHRKYgxE5unO2CkM9mktEQ4lNBzfpqSwEXeSZKhfM6XVd5wOGY4kBn7WTZs7GLmdiRQkmizjLFoExs4OtYTWK3KsZP8B1c0umrWaaoYapNG8sUiX9kIsKnZ+1N4gSssmDjtYA4L3rn7YRHiTJ5dqy1AGBjoYA4Se1RDVhCQKp0+yzzBB2SLLDKAqtc3H3J+jTXyHOVJe2iGudTvMMq030C6mRZ5YxYNpG12VEbzLKMFDFcYIUkHX6Vr6bFIIPLiBRiWmVbZkYLCzo27ppjDeOfbZS8K5zBI+QFnmFZP6d8AhnRZeDs9dsy0P+EvhAvMSAVYggxoAf/Ey8fCgHaRkiDPwL8FEKQGnLkkq5oXUaI16re56/CxE8don5Er6sLs5DT+/sEA0JiHLgOid98nT9IB4c3CB4hy6mzOp7asRMsq7oIlcm0EeIxq8eDga6FEVjxUU2rQ83kubm/0zR5NnieqbBmY6TBu/g3VynaLB4j9okT0NETLlmdwTM8WSSCooqO6mYwNi1mAj9NU+JKknp8bSyl8nayzIyLzbjdpumbivZr+iKFDDxMJ5D1fAap8h6cuN6Q/7+M9EctBhNBJu3/NNKHvKSXpxh4pvblPTGsHjXE6jhC0raQvqui1zHp+abeX0EvT+j1UwyI4H19TvOw9fsztM+N3KW+nX6pJW3PweGzepuzer8mtX9Dt8XYB5zWyxNy3UYD/X831/6WgUv5d7Awak2ZgZIO2pCZxiOriVRDXmYRj76tLl1nkiZpqhSY0QNxowKI65l/0znXyfIEy3Ymfgo9uPcmdTqBVGKu+VN2Rq9I1aYjmIrLgB7E97Q606fDmE1LL1Oip/1g+zp1dDV12q6bpMNyahHjo7VHlk1t4O3rQNp4W/V9GSBsahVShSLDRahMAG0ekuuZxy0pah6YhgCW6tBFu29DZBh/Pkn/nbTXNsveXQ9GwKaVNElb9fCUt2MVHHl2rFq2ziSblNgjqwcA8l2ZhyZgU9SMakN8c2ZI0+KAMcY4oOxJoRqTXmeqWW7q78Ccg5DcY1+YH62Dw0NGwCjG7uQ8V4hpQvIMq4AUfjMz+03SOvU1TzohakcToPY9mAzrxLwVmqR5IXfuLnWBT490uwUprC3JAUnWvDlm2WC0DV6mT5mSDYZNESZDCJQa21QzOZ16FsfrH1H3syTzHcpeSZ+P9IHpdovEGrTPjhB4kka21LjOhcwLrDPPZS7wfj6iaQPZ/0L7BpXUtO23xf9UJmFy1S5hoUay3SWbqtttjGrzSuopZtkgGYoCf2a+jPEozLNDttHiU5m3SZ+eSljlp7kOTX+c2e6WrYqd5IBlnmCVM6Lk6h9R9me0e1iftCY3skGdWiaD8Zztlhpc4DIdxrjCedLaqgSgQIVYGJL2mvb7CGMjthBDmqZOvVvHVK8eVpyaZ0XFL9i0WzPBZp4Fz/NOUmw+0t+sg8OjhCgtBxMOZtJomGBdZ55Fli1JGBC35IFPwB5ZFlnmBS6QpsUca4xpovQMK4zRYVlbKYkPYclmwhhvv3GdOWAmUkzq6pQuErjGHL6OmaaoUdGF4TxC9nS6vBS2E2VXhSI18jzBMld4mjRNzoQrUpiUMUxRLeOFaiaPjDDA9MdGyR7obKtZNmxhOjNRb5SkMmUeWPsAgz4ek0gBvIvhJS55F4kTsKn7fxN7mTRiUzTGHD9LnefjiCIqQPwGA/13DXgPoh4tAL+AkAtlRLVaRAiFZxBF2M8i3oLGe/A6QqTO6/2m9HpG1VVFRpOXGfgMvoQQFGvA+xEC4n04K2mHY4sbzPMl3La2J6bA8PngCjt+nsmwzop3RtuNlG3/VydkjA4FrSwX6yf4FBdtgTkjdNnwZ/UkuCj3ZyhbL/od8syzbu/9UBfqNGPYPDt2fNzS/fVwkc0eceZZt/GLT8A1PekzSd2O2Y1QSuwAJJvRFOMyvqxsIORkDCE0A4QkNQrSLgOf0trQOmZCx9gCGBI0x0DJGtPbmiJWKSABUQJUnkGfU0X6sy4Qwv4fGmXi+iFcY0BmppB+q4r4oRb0/hu6rXpb8nq5z11eqid+syHtuMhgginU25Zh1ChgX9E/koZud0mf242h8z0JUQmxQTEEtPNQfcvAEaoOgKT8n9KKHuOTYjpPEINtE8AaZYJJqzIpAyb9SIJPMfA3wbUhQk0wbFL8TUAd4tmZL+MLZdJun+aKLTRQ1OrSJAfMtm8zlurYwBvAI8vTXLFpngZ5mnYgXNem4rNscIXzVkVkKkMLYSE2AWbgYLwU4/RsVWvjJ9vRaRmG8D0gqZW+fYpUWWEBD4+poeIHWepc4TxFqpjK2eZ4JlA3ighznXqabH2ZJVvFsaTnHEUd2tM+W5MkOcBUlgSsl2Ogvcfke5zU1SpnMKmvT7DMAUlLDMWsriS0QYRRpXqELHGVVc7QJM0ZTXyM0SHtpt0cjil8DplrVIlnZOQX6HtrnTkbZM6GG+x5EuyKcmAKzw9Z3L1JL6eLAmRE+V9qb1FPZXXKaJ9su0EzJfdQJ5XAFGl6W/U6W4WqJRXDUstOmhgfLoB15ljiqqSoxuR+k/6oSjM1TojHii8p8lPUNCHcZzl1luxTdYrtbfCloFQ9M04PnznWmOWWTeXd0NP4Myk5vx5xaRMe57kCwCcKb5NnhC5UYOwJSv0yO35eW7bEqXtZ5oJ1rvqSZr/OnKjKMklrt5JsdzlIJXXqmihOD0hSzUixqqXGdXqJEfDhAi9IIZXUKebDdVa8M8yyYYkR851ZPzFNgAdIccIOSfLs0CJNlSI1b4q3l1/m06XTXEmd5xxXAewgJCRm+zzTNz/L8wTEWeWM9TkzxbHMhKBRn5xhFc8V6HM4pjjLCiu68Jz0D3mbkm8ma5J0yLLHMou8l4/be8FYCBlboQ1mOcMqAXGussQsGzZ1tarjvoFV1IH2Z5d1l7hq4w9zTKOEvcJ5Fli1abU9fJZZtPdrhyRXOM+7ec6m50us19f2UGme4QUKVKl44pVaoWA9YM+warOfrmoi9IAke9rT2fjUp2myyhlLQHe0LdQ1Fu3xzER7ljqblKytFYgPYk9fU6N8y1JnTGcnGWGDiSONRUBMn3M4o780owI11bPNIH8XIQY+jBAYr+jlMWRgP4+kpZ5GSIMAGfjXEGLkWYSgMCm6XYQwMIRqQR/3NKIQM2TBLPAbCAlh0nkdHI4ZesT1pI6IhC5wWYRCvvRJxgrJ9JVmmyx1Hqvucr3wOBWKto8yXvdmgiVL3cZ8eXZEFKTHbAFxFrlGbcgqwBTYM+PhZmrcjgVDPJJhh443hilaVdA3nxHVZNnTFioyCQXg6f7MTNrXmbSWA2ZsDMi9HjLwBj2J9BMJBve9+duoWQ3MZE0L6TtOMlCy7jJQtOb09iXEi9SoUwtI32ZI2XHYPzvKROVw0FcVsYrTwxSMGjWsUecz9Lchc2FABK/pY5lJpZheD31MMwn1sr4OBb3+BANbgev6vA3B2gd1iYHa1vShDm8JOELVAYAW4zqgjekQVP6+V5XQ0qSkmUELiOMT8Bzv5gIvWKWmIQFMAZDLXNAqn6QdoId41tPKpK2W2KRKgTE9A2+KmxhiT5Shknb5fOpZq9wyqkzj62lm/k2qfYUCvvbmMsuvsoRU065r364xrQqVNFpz3A1m6eg0rAIV7dMlQe8sG2wwi/GwSdKxQbRphxTjktTfWTZYZcGSn8Yna0WTkkkkTfd5ntU+jAdWDWcUvjtMad8yIU862jfQPDTN7OMqC+R1Sp057w5JDrRiI0/NEsrrzHOF89Z6YJYN3Z4DG+wbdZohfS9zgRLlIT9bM4NZoDmUJuzgcJzgEdLMJOwERw+fdHuLmVRZPPXaN6mnMpyqbhPFoJLLUKRCgQqVnJgyGZ+pkBj1VIYKRb6q+lt0U+AHUE6VONDFBaRgQZFSvkwy7BB4caYC8T1tkuaZ8AWrSB/Tky875Hlb+TrtvLj2mGwCYzlglOxz7Zs0U+NW1ZoOm/QSo/hhQNNL234cJPAvtbfopeS8jd80yOB+T6fomsmqOD2uskSJMmmaXE2do0iFwItbYqOqBw+p2hHZUt2myVV0JkOcHlWKFGNVHivvslWSz2KELLRvsJ46RZY6lzNP2cmqSU0wrHKGvFcjyx7pdotOaowWaTq+kCdnWLWKMvle+3ZAsKn7/QIVTlW3rX2AIVMNeSxlpqQi+AVesGqzOlnG6FglWZEKxrPxPFfsxJ14t06S5QCJ8h0cjhd2yek01ikKVKxayvibfjUf0ZlEi2TZo0qRSU0m7Gh1qVHzd0hav+EpahyQpM4kPeLWb98opa6xyBMsE+BzkUt3TdCbonZXWbL3JGDjEBOjxvW0NPR4hss6e8azilfjrw+wR5YVTYaWKA/FMmmWWbSWHmdYpa+JXCne0rNx2wpnAOxzw6jFAnxbSNWk0pp2+gSaSOmzyhmxpOqHtnhfXevHTD9bY4rLPMN7+TggdgE7Ou4NY3cgHwk58AexqbFUEbWUSX2tIQP5AkJKPI8QrW2ENLiIKFFNCmyIkKLnEMKjhJC2zyCEgi4EY9WxzyIK1V197K9B/FgzwK+8/t+kg8Mbgce4Q0tnJfW0DZGZZAKJC4xq3RQH7uiJl0qhaD9bZJkKBYz1mrnHYTBRZCyJjEK0w5hVo5rj5NlhnXnqhNRSecbo2LH0ItdY8c7oieWYFi7F7OS48bn36OMjBammghodP2nrdsyxzhJixSfjXI+l3Rvs5MYH93wBucczSN+xgfQ1+wyI0ob+u4v0CWchOgvqEwwmc8wrg5CoGWjPj5BqHMk2BYSgbDAoZGW2KcHE9UOiAqiTSNtMm4DRy7IOu3pZTX/eRYjR6mA/tvhUjMFkkzfYl33vYtW4UQmUUc32kT6wwoBINW3v6/33GUwumUkoh2MPR6g6AFK90CNu1UOmMzf+fuIlGtDHY5ymJdaWuGqJw01KxAjt7LyQnKKknNEFBoxK1KSLmbRx4x+apPMZXlxxAkpsau+XcU3SrtLRys2LXCLAx9cEaIBv0yeMb6jxtjEPEhDiZI51rrLEIss2dX1Kp2CId1/ckqpG7WAeSiBerSU2rWq2w5hNszBKij4eZ1jF+MXaWU1NWjRJ89V8hA5J1pmjQMUqZc13UGZGqlEj1aVNqon5fFiR6mkCd4FVO+t4wKA4irm+pgiOUV4YHzQZ5JjAQPwFxZahpK9IYP0czSCnp/18anrQMGMdwR0cjhdGtS2G8cmKEVJOiXN8nSxhTCZrDn1oZsRtXixNpqxVQJIOhcYulzMl8uywyDJbhQz5RgNVhjAn/sYnNhrcmB3jPC/awnRPsEwY8zhd3uJmKaTveUMZAR4LrDAV1NgvjlL2xLfUo6/L84VW2d8hiR9ALxHQ96R9njeYCJtjnQAhb+u+eH8+n3qnDfDFM/oAPwzY8STVTPqoedsOQ+DmtUKr0NilnpFigGN0KIVl8ZyNST+1idiGGO9rwKpKb5ROaHV9hyx1Eg0IU6JYq1AgTsCY/izf3iWWCq0tSyeVoNTYppmRYojPcFlUaO2bZFODPrHGlE6LS9rnwCuFU5aoMf1onh1LChtivcYUZ8u3IQadgrZz8WTCcDbcoOyVbModaHuc9susp06BK9LncEwRMIpYWHSYDOv0PMnWOSDJBV6wk7WzbNiJ5kAP1EuUWWWBDlLcydeT1Ta9lVnmWLO+f6bQVYGqVZyarKcOSZsxJQWwSja93mQ9mRjEFNIzcdinuMgc6yywiqnMbYpeTel4bdhr3tirhMRsnFSlwAKreuqsIF7NrNlYOE7AHGvECBmnqfvJGAuscE0X1TLPB0Mym4n3PDU9ISbZYXU/a89zjnWKVHRm2CbrzHOBF6jpiXWz3gIreP1I1F8FJCW/jJClAUTnQc0zqD7tI4P9lxAC4j0Mqk6fRQgAUzCmhKhOS2Dt8Y0f4Q29zVMMfBLNsbWa7HdKZ3nbO67L+q6qtcMxRY4aHZ3pZwqLGgLUqPHN5FNVFw02GYR7SIw1yy2SYYcDL6ktSETZPkVN94frtj/wdR8BWMGMmdAqUCGmx9Ig6ftG2ZrGZ5UFK2I6E65Q8YpD8dqOjb+MpV+Az2SsTpkZ5lm33szjuo9aYJV15ngxd5bF9vUBOWnUmdcYeJLmGCg22ww8ShPYSRdl0vU3kH7FqE3RywNI1Y5k+2v6WF297zKiBIWBN2oDFFKoKmGUrg29viFHDana1a8MA2I2xUDNX9H7jCHkqyE9G9KuuwjWKihDGpviWaaPvI5MThmlLoO26kQvN8/+FoIjVB0AIQZHiIBBtVOT2j/sTWpUoCAzZjXyd6Wx72lVjkmpNwFjB5n1MkVNTAqlqFV9nRYZ2gIDJvU0IG4fLmdY5SpLNhDPUtfeqn2tfhizCgCpcC9K0BXOcMCY9amRggZS6MSoQk0ahkmv6g19ZgptGcWtecCZgbME7pOUmaFo8wawAwCPUCsphPA0Pl6AJZONyrSjFRvmIdlECt709QNtmSfsrKiQ1gV9LUUha1I9jKo1JGbXN4Mis19zjqtaVSGFI2LskEfsD9bs9y0FeQKrtjBG6FnqNuUk0Omuc6yRdISqwzFFhRkeZ590KMr8wIvzPM8yzzrngysk20c0fahlMiTDDle9Beuvt8ICJcoUgyphTDw6jVIRIE+D9tkRFljBp8fWbMaqtMrMsMRVIQm8DfaLA2/VEpuauJhijnU2fCmIdJln+AAfpkrB9isFKvhBj7Tf4uO5dwJYUsIUitpIPU6+0aCeGeeKL+my2aCO54dMhnVe9M7rdFufilewQXeeHZZ5gjQtSZfX5IVRhF3JiE/s2epttgoZPu69l/nUOnOxdUtaGKVbX2cq1Jgi7Qt58fbqy2wVdKQag3GaFKiyFFxl2ReVWF+rZvt4lMIyG94sO0yxmFkmHTSp+1ny1CQzITXNqeo2+/lRQs+zpFDdy9qMgR1deCzU19ooOdBZAcYbdp05sqU6gFXFmQnDNW/OVuGOE1BqbJPOtGimximFZS4zDy7t3+EYIsYRHeLsMMWeJwRlXxOMJgMHsIork7WSpa77o6pVQJnK1otcu2udGOI5vIrcu0WthDWTU308nUkzR5weqyxwnivaVsRnllvUmLrLl9Rk1hzoyZMsdaoU2GGKJB3ttV+5K4NnuKCLiWuXeYJnuGwJhknqmAJUfR2/mkKe4pk4RZmStmURNbzEVJ62UgrJsseMFh60SHOZC3Zy2vTVS1wlIE6Voq5ZIBlaw76rgPXjrzNJLxGDk33IQfv8CKlfPZIB/nvghdw53l54WdSjt5DRXx+rON3++nH8MJC02QKD6th5hLz4AEIizOvlt/TfpxGC4ZsQtdfHNHlrPAlbur80ZGwOB4djiTRt6vr+DYmRRQjIJAfWTqhGnrSOW4xgJU3T1s4w9+/OUOw0PJFssmNA+lTpIzs6Fgl0lFLX/0ox6TE6dxWrMoKbUBO2Za9EQNyOX7M6rT/PDvO7WyznTgEw1joklpF+ZpFlskGdsi+ZomZya4NZOqkECb87IB13EWL1NNKnVJHPTiKEpc+gOJMhWBOI0tQQpIbQvMWAgDXkpknRb+h9z+v9dRGC9pY+RhcSlxmoQl+WzbrvgcSuPrYhQ42X8ywDUtf4SgcMCmCZCaY1Bl6oCQbWA+jPTjIogJXX7+cQ39b3DI4XndbWBQ29Xvqz/uQcjhEcoeoAQMgIIcoOHpuMW++rDkmquucwM+jG16VCEVMYYJ51qoj/1BzrhHhW2Slk5DiATXcyKaqmOFWPuB0sG1uAmCYBA62eXWfOprEPG/N3GKNIlQoF0rSsH41RA3RI2oqre2RtKrupctjXBUd6xK2vFQxIU8CqR0GC9QOSFKhyoB+ipt1m0GAUuXOscY1FQAbgxjNrRwfnfTyWeYIYIVPs0GScA8asgmGFBUJifIp36O9Gilwl6VBik6tDD2Pj+VqloNPD8lY5YjxxzMBDqkRuEuJZAneVBfFi1L38VZb0/oo2jcWse41FPViSIgurLNjlIxQYGHk5OBwfZGiwzJPkvR3mQ/GV/rrww6x5c3j9I5qZUavq/rj3Xp7hMoC9X5ukqflCEhpyzgzu1zOSem4I1K/b/Si1nAy2l7hKmpadIDnwhAiY390i8OGZxAt0vCR+GOB5IUWqUvU56FDwB96rAJ4f6vR6Uc4bBZUfQDMzahX2ZkKsyTg1X9Se8e4hpVQZKaokKfjrzDOlVWVpWhSpMKbJjEtc5Kv5iO2T+3hcLzwOoNX7IfHuEbOxDXa8vO2nTDbBCmf4yvB/su7NUcpohVm4wSuFUxjf0mV/0RINAXHqKbEfMIW35lgj32iwmjllU3MNkdJNQeCJf2Mfj6Y3UJJk2w2eiV22JKw4NybtJF5c5ykYgsd4OY7R4VR5m61SRpOxMZu67NHnYHzUelaXvDJXeBqRWTg4HC8k6JCgYrNpTMHOJ1i2ikspBFXnALHbMFZRxnvPWEH18MXCgwvaWuiW7gvlPjbegyZ2klhxzKpIDdGwwCo75GmRZkz3b4YkNZ7SZUr6nk7aDKgXeIZFlvXkc2Anvc3nY3RshlVLx1mmIOoSV21RKDAT6RLrbjCrFbZ5zmvPf0O4TlLnIp+yMWIfT8eMU9SQtP4lruqCsFlAFL5ScDWwyrdP8qz1rzZxnajVeladNlbtyyDeh4pfoP6BSd6+8TL7f3pUYtn3w82z05z6I9sDj7/fDzTE8qXpjTOxv8X214yTfbbF6D4cTsDoGmxdyJBtN0jUNClgFGbvB27BKxdPyaT9HxPv6p3cFEtcZXqjRUBcSNYy6DDRweHYYZtpRrTK06TfJzmw47QiVTvufHf7t7iSeoqXWWKGMkWqbFLigCQ7Xp46kzat3mQgmX7J+DObuiV9PUbbpESBqrUSASNskklqkyV5gRfE/oik7RefYJkkB7aQslGo7uUSzAYbLPuLXM2ctWP7HfJ4fqiNWJKkwyZ9z7OTSJS7QgjOMvBfziMkZ4CoMgMGiviXGagxtY9pVAB1g4ES1GxjXj4DG4AaQnKa+aQ8AwIUBh6ow0ToSaABCUPwmmPE9CuhtzM2KDf0fg1ha9T51xmk/+f0soABcRxjoNQ/qa9BW3/mAb+KkLJ5UEblaiwRVl/rV+dwXOAIVQcAqvtjNIiTY487PMY0VTbI0mKcM1xnkxQn2NQKUikutUmOaapsMk2HBHHG8dhjjIBrnOAEm8SpsUaRLCPc4DF8pjjBFkZzf8gBoxywp6d84nSoMs0o0KdDj1G2dNGWFqPs4mlLkxTjRGxToE6GU9zkRa2zH6FBixFGCNkkxTpZTnELj5A2IdCkzigHHDLOLi2SjOgCTKP02WKaMTpMs0OIeBTukqMO9MhQ0dp9MfROsM1JMtSpMk2GDSokyLNLhwRj7LNCgRqjSC3qArd5jBk28WjSJaDFOHH2yLHLbR6z/lxxIiLQyWFxbnKSU9xkjAoBfTaZ5pADdvFokCIgIOSIgASwT5cePeKsc5oMdf29HRIywgGjxOnSJsSnwwvMk6RLSJeXmOUEW6yTY5MZciQ4IsZJ/eTaI84uOVokiEhoxcgpmoyT00VwevujX8ifr4PDQ0Pi9h5zj7/IWNDhlp9jnBZ7TLPJBDNtYP+Q6ynxTT7BdaJwny1vhie2d2G6QYtxoEMVnyRHNBlnmxxLfJpMu0YYU9z0Jxmjys2Yz+39tE4zb+LfbuM/vsNNJqmR4xS3aG7BzuMp4vsS4d3yMmTDLaJ+SNZf51d4J48Hd/AI2WSKGTYZJaBGnDLjPKYnQHr4LMcmyVX3yCRu8UnvNE+t32Ajl+e2tuo4IMXLlJjerzJCFz/o0fZDsuxSZ4QWUySo0kARp8MCn6KrQ/5DDjlkhBYJesToMEaOGh5dOnuwoSZYYY6nuQL08DhkYXePXO4Gt5jgVPAin/LP0ggyxNkB9smETV7yTlNgi01STLLFeBjyovc2klS4SZYC2+wySqR8ZtZv8kpujhy7nAru8KL/NB0OGd9v0eOANC1CPMba2zRTeT7JE6TDFr0gTl/39T18DnSK/gEBeySJaDC7exty+7zELFka3Bx/gpn9LXKNLRqZFPvMaF3rCCFjxNmhzhSr5Dm3/8kv/A/ZweEhYH9/BCm6FKfFKLfIMEaLLoccMcIouxwQJ0kDxSg5+jzDLS5xkU2SLPMk83oC5xbTnKTD8yzxLM+zy2N49NllnG2mmGeNOzxOlgYBPlOs0mKcK5ziBJskqbHBCTzGWeIlDskTI8CjQYs0U9zgiJAeiiLLOoV/nHH2SFIjxwHLnKBFmpPcokWKm5xihk1m2GKNWTz6TLNNC58jkoxSY1cPlSa5yQGwi5SCyrBBnB1iJGmQocg1XuQU47Tx8agxTootXmGecVqcYJNd8tSBO+QYo4Oiwf9igRm2CDnkDkV8AsZp6ShZHFhPsMwWY6QJGaFOiyNuMM0pbiFF+JqsTBT5th8OmWCfffr43CFXh53vTrFFi58kRe8X+6SIE5DAp0uLcSajPTq/GHDACB6TxOmxyywdxugR56no0xz8px4RKbL7bdYmHifDPj5dbnKSLA2OfrGLR0iER4w9erQ5Is1jhy32Rm/wE3pSrxdEOAsUh+OI9v4RKX1f7pJmmgNCeuwySUCPG+TpESdDjb1AcRD2mOIGDcYoBPvM+C+zQ4xdYpzkClucIOCAHWIc0QJadBgBGqSRoqS3dW57hgY9xvgl3sVj3GGaKg3i+HQ5QNHhkB4jVJmgwDZbJMnQoM4oR7S4TpFT3KIT9rnpnWSbAhfDS1z3HudkcJOGDxDjcW6xSw44ZJU8d5ghQ4NriO1VQI+RdoP9aaCDEJx9hDisQDQFqgJsM7AA2ESG/AqYAp5EVK2XEXJxG1HB7+jPpxmk12f0dh6wro+1DJwCtvT6ewhBuaD3YQjYMjAH9BBrE0/ac3gORi8xIFYXgJtDbWkjRHESUZ92gBWEMA1leXtakXo5kvVnIVoCFerr0dP7req2K93uy3ofy7pdVdhPPvDPz+FNDhVF0RvdBoc3EEqpx4Dbb3Q7HN6yeDyKojtvdCMcHF4Lri90+ALA9YcOxwKuP3R4xHB9ocOxgOsLHb4AcP3hMYcjVL/IoZRSiIC9+Ua3xeEthzRQjlwn43AM4PpCh0cM1x86HBu4/tDhEcL1hQ7HBq4vdHjEcP3hWwCOUHVwcHBwcHBwcHBwcHBwcHBwcHBweECMvNENcHBwcHBwcHBwcHBwcHBwcHBwcHA4LnCEqoODg4ODg4ODg4ODg4ODg4ODg4PDA8IRqg4ODg4ODg4ODg4ODg4ODg4ODg4ODwhHqDo4ODg4ODg4ODg4ODg4ODg4ODg4PCAcoerg4ODg4ODg4ODg4ODg4ODg4ODg8IBwhKqDg4ODg4ODg4ODg4ODg4ODg4ODwwPCEapvciilPqSUivTrpYe436JS6meUUjW97+/8LOt+m15n7mEd/4sFSqnfo5S6rJTq6muY/Szr/ppS6te+cK07flBK/e9D90OklLr4RrfJ4fjiUfWvbwSG+uk37T3xxdwfKqW+856+a+qNbpODwxcD3qh+Xik1p4/5Vz+PbX/+rfJscnBweDA8ir7KjfcfDG586fB64AjV44Ed4FuAvzG8UCm1rpT64Oe5z+8Hvhb4R3rf/+P1NPBhQZ9T9Cqv60PrzSql/o5S6pNKqT2l1I4egH/1ffb5QaXU+ufZnq/4fB8uSqk88J+BA+DPI9e5/fm042FCKZVXSn2XUurjSqltpVRdKfUJpdQ3v8r6vlLqe5VSZaXUgVLqeaXU736NY2SVUlV97b7xPp+fVUr9R6XUbaVURyn1ilLqbyulkvesd+9v/BJyHX/0cz9zB4f74oH7V6XU31JK/YJSqqJ/23d9fi+UUt+slPotpVRb32fPKaW+6mGfwOcC1x/eH0qptFLq+5RSa0qpQCl1Rw9Ckp9lm3+tr8cv3uezSCn1bUOL/gdyzj/38Fvv4ODwGviMfv51xtAPDa/Sr34/0t5X3phWOTg4vEF42H3Vm3W8/8FXGet377Pun1VK/bRS6pZe50Ovss/3K6X+rVLqmh5b3lBK/ZhSauY+67rxpcNDQ+yNboDDA6EdRdFPPOR9fhXwX6Io+qcPeb+vF98JjN+z7BTw94FfHlr2B4C/Dvw88P8iv+U/DvyKUupPRlH07x55S18bvwtIA/9PFEUfeaMbM4QvBf4B8GHkuvaBbwD+o1JqKYqiv3PP+h8CvhH4AeA68G3Ah5VSXxlF0W+8yjG+B7gvEaGUmgU+CTSAHwJ2dZv+LvAO5Lu9L6Ioug38hFIqBnz7a5yng8OD4HPpX/8+sAW8gASorwodqP1t4GeQe2gUeAp47PNt6DHHm7U/RCmVAT4GPI4E0yvANPBewAc699nmItIXfkbwfz9EUfQK8IpS6gzw9Q+l4Q4ODg+KRxFHPzJEUfQxAKXUnwacmt3B4YsHD7uverOO9w3+LNAa+ju8zzp/HYkfPwl8Bjk6hO8FcsBPI+PV08BfAH6vUupCFEVbr7ahG186vB44QvWLFwWg/kY34l5EUfTz9y5TSn23/u9PDi3+n8DJKIp2htb7EeAyQua9GQjVgn6vv5GNuA8+DZyNouimWaCU+mHgI8BfV0p9XxRFbb38ncAfBr7LPIyVUv8eeAn4PuDd9+5cKfUU8oD8Hv26F98CZIEvi6Lo03rZjyqlRoA/rpSajKJo76GcqYPDw8V8FEXrStK1t19tJaXUuxAy9f+Oouj7v2Cte3Pjzdofgig3TgFvj6JobWj5995vZaWUAv4Z8O+B9z/65jk4ODg4ODg4fM54U473h/Azw2P5V8H7gFtRFEVKqdZnWe+vAL8RRdGRWaCU+h/IhPlfAL771TZ0cHg9cCn/bzEopU5rWfyulrt/Qin1dUOff5tSKgIU8OeNxH7o8y9RSn1Up3bf1mTmZ/xOtFT+F3Wq0iW9/hWl1Ffoz/+g/rurlPqUUuqZ13Fa/wewFkXRc2ZBFEWfvrcDjqIoQFSXjyul0q/jeK8JpdQ36fM6UGI38BNKqceGPv81RDkL8Nv3pigopb5dKbWqt/+kUuq99zmGSQP7Q0rsDe4opZo6DTWjJBX/B5Sk1reUUv9OKeW/VtujKFobJlP1sghR+/rIjJ7BNyKzhT86tG4X+DfAl2q16b34QSSt9ddfpQkT+r1yz/JN4AjovdY5ODi8EYiiaP0BV/1ORMn6g0pwr+oeAKVUXCn1PbovaSixBvh1pdRX3mfdP6zXayql9nX/+pc+WyOUUpO6f7mtlFp8wLZ/zjjO/aESH9c/AfxoFEVr+jt5re2+BVEb/63X2r+Dg8PxwWvF0EPrFZRS/0aJ/UtXKfU7SqlvfYD9K6XUjyqlekqpP/hozsLBweGtjtfqq9TxGe8rpdSEUkq92gpRFN3U49TPiiiKPj5MppplSCbkuc+xXQ4ODwynUH0LQSlVBJ5DUq3/GVADvhX4BaXUN0ZR9HPAx5HB4I8Dv4IobMz2JxDlZwz4x4i/3bcjnnf3wxngPwD/CvgJ4K8C/1Up9R3APwR+WK/3N4H/rJRavLeje4BzegbpBP/BA25yAknP/IwUzYcFJb54/w74beTcisBfAt6jlHomiqI60t5l5Pr9bWANWNXb/ynkmj2HpNGfBn4B6fA37nPIv4l8B/8YueZ/EThEyMdJ4IPAu5D00zXurwp9EJzQ78NE9TPAtSiK9u9Z95P6/cJwm5VS34SoVs8Bc69ynF9D0jf+jVLq7yC/03cjqtZ/ZtSxDg7HGO9H7u//C5kRzyultoB/EEXRDw2tNwH8aeCngH+NpDT9KeCXlFLvjKLoMoASz+KfAn4VuXdA7rH3IBMYnwElKtpfQdKf3hdF0erDPMGh43wbx7s//DIgAawopX4G+N+BEaXUbwF/3nwHQ+ebRpSr/zCKoq3PMgZwcHA4RnjAGBql1BgSx5xBbIvWgG8CPqSUykZR9Gp9sgf8W+Cbga+Poui/PdozcnBweCviLTbev4FY/bWVUj+PZHbdK7j5vKFE0DDO3WNbB4eHiyiK3OtN/EK899YfcN3vByIkldosG0c6qzVgZGh5BPzQq2z/zqFl00iqQATMDS1f18u+dGjZ1+hlHSQd3yz/dr38Kz6P8/+nettzD7DuGeRh8O8f4fcxiigrrwCJoeVfp9v5d4eWfZtedvE+278AxIeW/5963V8bWvYVetkVYHRo+X9AyIMP39O25x70t3Kf88rpdn38nuUvAb96n/WXdNv+zNCyMeAmQjQMt/8b77P9d+vfSTT0+vufQ3s/49q6l3t9rq/PpX+9Z7sp/fv74H0+m9Sf7QBNJPD8Q8B/v8894w33A3pZFlG3/puhZT+AeA57n6VN9p5AJkdeQkjLU4/w+h37/hD4y0Pf1/NIRsSf1d/BLjBzz/r/BHmm+vrvdeAXP4dr9kF9vKk3+vfvXu71xfB60H6eB4yhkQmjCPijQ+uN6j6nCaT1sjm93l9FiIv/iMQ9X/M5tP3XgJfe6GvoXu7lXo/+9bD7Kr38TTne1/3oP9cx1zcgce4hcA2Y+CzbtYAPfQ7X9Lt1m77qAdf/Ntz40r0+x5dL+X9r4QPAJ6OhQkFRFLWQdO05hAR7re0/EUWRUR8SRdE2d3uXDuNqFEW/NfT38/r9o1EU3brP8uFU8teEEk/NPwy8EEXRy6+xbhIxoT7gnmrdDxkXET+aH44k9R2ASJQGryBEwoNs/yNRFA2ntn8IIUzuh38fRdHh0N/PIykc//ae9Z4HZpUYaj8w9HX+SYTI+Yv3fDwGBPfZrDv0ucHfQAYV//ABDruOzJ5+O/Ig/bfA/08p9RcetN0ODm9SmPT+PPCnoyj6p1EU/Wekb7jKkIdTFEWh6QeUUiNKqRwy8L4EvH1on3UgBfzuBzj+44hf1Cjw5dE99h4PGW+F/tB8XxHw/iiK/kMURf8SUapOAn/erKiUegIZBHxXJBYzDg4Obx08aAz9AWTC5aeG1jtElGLjiN/fMOJIfPp7gQ9EUfTLODg4OHz+OPbj/SiKfjCKor+oY67/L4qi70RUtmeBP/da2z8IlFJfDvwd4D9HUfTRh7FPB4f7wRGqby2cQtIq78XLQ5+/1vbX77P8fvsEGO5EiaLIDIDvTdM0yydB0qWUUieGX6+y//chFbFfrYNH789DZv6XEDVk+bOt/zphruH9rskrPNg1hnuusw7Gb7zKNrfu+fuzXecRIAOglMrdc50zr7L/fw78HoT8+Z17PjtAfFXvRWLoc5RSc8B3AX9LP9RfFUqpP4w89P90FEX/Ooqin42i6E8hHovfq5TKf7btHRze5DApU4fAz5iFkaQ//SfE4/mkWa6U+lal1IvIJEUNKXb1dej7WOOHkVn7/669rv6tUur3vMrxfxwhKd8XRdGdh3ROr4a3Qn9ovq//Otx3RVH0CUTpMVx47weB56Io+v8++2k5ODgcQzxoDH0KuB59Zkrrq8XafxOZoPnGKIp+7fU308HB4Yscb7Xxvtnvf0Amq776s633IFBKPYnU83gJsdZycHhkcISqw+tB+DkuN2Zz34wUIBp+3Q9/FEnl/KlX+dzgXyMz/9/2Fp2B+nyv889y9zX+DF8v7WH654C/EUXRj99nX5vAzH2Wm2WGvP4e4A7wa0qpOU2wmgfntF5m+ps/h6iOb9+zz19A/IBeTwEzB4c3GrtocjSKonvv0ap+N8HmH0PUmKuId+rvQVSoH2Xo+RxFURXxK/79yH3ylQi5ago9DeNnEbX5X3oYJ/MmxMPuD00fdj/PriqD7+qrkO/nB00fp/u5GDCm/564zz4cHBy+uPFLiEfhX1NKJV5rZQcHB4c3GR71eH8YG4gN3ecNJQWTfxkheD8QRVHz9ezPweG14IpSvbVwE7hfJecnhz5/re3P3mf5w64O/Uu8RuqqkirL34B46L2q4lQp9U+QCs3fGUXRaxGvDwPmGi4ipMcwFnmwawxyne32SqlRYB64VyH6evB/o8kAjbuuo1LqzyN+fj8QRdH3vso+LgNfqZSaiO4uTPXs0OcAJxEP2/upyoxZ+SSSulwE9u6z3qh+d/2Sw7FFFEVHSqnLwO9SSsXvSWUv6fdt/f6NyD3zB6MoisxKSqm/e5/99oD/ihQCGEHuqz+jlPp7URStDK36z4EV4HuUUo0oiv7xwzq3++Ct0B9+Sr8/dp9tSojSFqSPAyFm78VjiJr1LyM+YA4ODscPDxpD3wSeVkqN3KNSfbVY+xPAjwC/CPy0UurroyjqP6Q2Ozg4fPHhLTPeH4aSKp9ziK/+5wWd5fjLSHbl+6MoehAS18HhdcEpVN9a+DDwTqXUl5oFSqkU4lO5jvj3vdb271JKvXNo+2lEKfrQEEXRZhRFHxl+3We1DyAqq1dN91dKfRdi9v8Po1epqvoIcAlRLX2HJn1NW/43pOr2a1VtvYSQKd+hlIoPLf825HwfGqIo+tQ919l+/0qpb0b8vn4S+CufZTc/gxTO+fahbX2ExH4+iiKT7vHdwNff8/p/9Gffp/9u67+vAc9oP8Jh/BFEkfzi53quDg5vMvwn5L75VrNAK5P+KOJFZcg8M7uvhtZ7FrB9uF52lw2GHsSb++QzLDmiKPp7SEG/f6SU+rOv60w+O459fxhF0TJC3P4BpdSUWV8p9TXALFIdF4TwvbeP+3rd/kv6///1YbbZwcHhC4oHjaE/jGTgfPPQejHEg76FeFjfBR3n/mFE5f7jQxk7Dg4ODp8rjv14Xx/vXvxZpDjW//h8jqevwYeRSe4PRFF0P1sDB4eHDqcEe2vhHyOk1H9XSv0zJPX0WxGlzzfcx+/pXnwf8C3A/1BK/SBCgH07ejb+kbX6/vijSDGk+3rVKaW+HmnvdeBlnTo7jF+Jouh+KZxm+w8iRtVf+bl4WkVRdKiU+uvAvwM+ppT6KURx+ZeQh9j3P8D23w38K+CjSqn/hHw/f4JX9wx8qNAP0H+P+DX+KvBHZVLQ4rkoim7o9j6vlPpphJgpIMq3b0VmEP+U2WDYGH3oOHX939+Ooujnhz76J8D/Bvy6UuqHdDt+r172Y4/YA9fB4fOGUupbEO+ppF705fp+BvjxoQJQ/wrxbPoXeuLgFtK3ngJ+39AufxH4g8DPKaX+G9IXfAcSDI8PrfdjumDVR4Hbej9/EVGI37dgXxRF36V9Qv+FUqoZRdFPfJbz+iBfpP2hxl9GiNPfUEr9K8R39a8gkz//Urf1Fp/p34pS6geAyj19nIODw/HDg8bQPwr8GeBDSql3IH3dNwLvQbKl7pteGkXRzyul/gQSf+3rfTg4ODh8rngrjPdv6pjvCmKT9WXIpNNlJCa0UEr9PuBt+s9RJEPAxN6/EEWRERj8JPBOpEjpOaXUuaHdtFyc5vCo4AjVtxCiKKoopd4NfC8y2E4gKqbfp6suv9b2m0qpr0RSRv8GQnT9CJIa+W8eWcPvgfah+zrgvw0ZX98L07GeRYqw3Iuv5P6eeAbjSFXnrc+1fVEUfUgp1UGu0fciD6KfA/56FEX1B9j+R5UU0vouhFy8gngj/r3PtS2fJ5aQqrPTfGZlbPhMMuOPI237FiRl9kXg90ZR9PHP5+BRFH1c/04/iPip5pF02b+FPOQdHN6s+FPcXcH5K/UL4DfQaVZRFB1oz83vA/4kkEKCxK+LouiXhrb/EKJ0+jPA1yJE6h8Dvgn4iqH1fgIJdv8cotzcQlSwH3yNwPk7kL7u32lS9b+8ynpfzP0hURT9TyVFvv4e8A+BDvDzwF97rSJ7Dg4Obw08aAyt+/evQEiNbwUmkGIufyKKog+9xjF+QimVBn5YKbUfRdF3PYpzcXBweOviLTLe/0mk6Oc3IO2/icTM/yCKos49634DQxlfSK0NU2/jNoOMrQv6/U/q1zBuInGdg8NDhxqybXN4E0Ip9SHgq4C3A/0HGaA6vDaUUp8EbkZR9E1vdFscHhw6LXgCmcX858DviqLo0hvbKofjCte/Clx/+OihLR/Ggb+GkMfTURTtvLGtcnB46+M49vOadPWB/wJkoih66g1ukoODwyPGceyr3ipw40uH1wOnUD0emEV82j4NuKDqdUIrYN/G3bNdDscDH0DUbw4ODwtf1P2r6w+/YPgOXsMCwcHB4ZHhuPXzPw78Af3/T7+RDXFwcPiC4rj1VW8VuPGlw+cNp1B9k0MptcSgMnQriqJPvJHtcXB4I6FNzN82tOj5V/Mrc3B4Lbj+1eELBaXULHdX0P1YFEWHb1R7HBy+WHAc+3ml1NNAQf95LNrs4ODw+nAc+6q3Ctz40uH1wBGqDg4ODg4ODg4ODg4ODg4ODg4ODg4PiJE3ugEODg4ODg4ODg4ODg4ODg4ODg4ODscFjlB1cHBwcHBwcHBwcHBwcHBwcHBwcHhAuKJUX+RQSinEr8X5hDg8bKSBcuR8RRyOAVxf6PCI4fpDh2MD1x86PEK4vtDh2MD1hQ6PGK4/fAvAEaoOJeD2G90Ih7csHgfuvNGNcHB4ALi+0OFRw/WHDscFrj90eJRwfaHDcYHrCx0eNVx/eMzhCFWHJsDGl8PEIhAAHaALPA6f+t5zHJBknCZJDpiiSotxANqkucFpxmmSo8Y4Le4wS49RpqmSZ487PMYUVQ7x8Qj1Acc5YMw2IE4PAI8Qjz559ggYxeeQKtP49EjQocU42xTwCJlhiybjZGlwm8fI0MCjT4s0AOM0eYUnOcsKPj1y7LJLjoA4Gep4hNxijgx7dEmSoEOXJBkaNMgQ4DNOkxZpNilSYJt5btAgwzgtDvHtegWq3GCeMQ44YIzHuE2GBrvkCfFI06JKgTE6NMjQI06cHmMc0CNOhgaHxOnj8Ri3OcSnR9xeL4+QKtOM0yQkRoiHR0iaFk3GSXJgl1UpMMOmPn6Om5zkBJvk2aPKNIfEaTJOiMc022xxgjy79nwbZPA4widgZOgYR3j08djiBCfYIkuDl1hijluM06Kjv884AeO0ONg/5Etn9+zvy8HhGED6wv8JEz249a48J1+sQR840mtsInXaJ4Ft2FlK0SPOzO4eah3Y0p/7svr+TIyJX+1z+CyMXge6sPZlBeZfrEIHuuchcQfYBSb0a19vn4TKzATFS/uQBD6N1B/dhcNzcDAeY+KX+lCA7jlIvKC3fRpY1+24CZwCrsLa+wrMf6wq+34cdh/3yf2vAGaAPX1uM8j5bsnxAcjJ/w8nYfSO3rePPCsmgAW9bUf/3dfbxIBVvc9dfa5mv6t63wt6u029/gl9LZq6DQtyzewx0OslgGXgMaCnjzutP9/T+2jrY/tAQ2+3r9um2xWdBtXRbb6K1NRO6vXiQAYZRi3pZav68wR3Gybt6Pe2bse+Ppee7Gc/DrPvAVx/6HB80AT44Mb/QXoi4hCfMTockGSMDmN0GaEPQIyQLWaYokqMkAYZbvM4F7lEgywHJIhzyDhNAuLsUKDDGKe5QR/PxoehjgIlPuoQp0ePOC3S5KjRZJwGGQ7xGSUgzy4HJKkyTYgHwJfwaTxClnkSgD4ep7hJnEM6JDjEp8o0p7jJFjOM0eEEW2Ro0GKcOzqePCDJi5znFLcIiJOlzmPc4QaneZJXuMUpGmQYpUeSAwJGASiwrWNNiRHnucEKZ4nT07FjnGm9To5dAB1DJWiQIUODNU6ToUGaFqME3OIUX86v8wpPkqADgE+PXXLUyZKljscRAaPMUKFAlRo5e03N9Rilh0efBllm2CJHjR5xqkzTJclJbhKnR6iHhj1G+TRfYtv7a//ot3nv33wXANsUmKbKWVb4NEvMsMUoAcs8SYYGPeIU2KbDGHF6xAi5zWOM7tf4Z7P/wv6+HByOASQ2/FqYaCHxwu9CYqEZJDZZAEIkbukD55C4oIHEAZNILLKFxAarSAxV0EeoInFMgMQdIwi99i4k5thC4gsTKx4hsV1btyOBxDibenlKf9ZBYpkYsK2Xx/QykBjxGQbx3CaD+K6njz0NvIjElCd0W27rvzd1m/oM4i30cc3/GTr3Sb3NhF5nUn8e6nZ/Qh/PH1ovofe/oK+bOaeOPqdnGMTN27rt0/p1E6Eq+/r76Otjhnr7EX09erod3aHjndLrtfVrTx+jr8891NfeLDcxPPq6BXq9ZX0uXwr89tD+u/DBa/D9NwDXHx57OELVAYCJx2HiDnABKANZoA8zEx3qxPGIM07Abb6EIlUA6uR4mnWapBnDI0mcx9inSZoOJTzSPEadOCPUGWeGMjXyPMUtAK6yBMAkgd5Hhx5JPHr0yOLTJEOET0SWgDQjFLhNnSxdpglIEydgkpA0EQekmaanA0ifRbbokWeBZXYoMoLPU6ywSYk9suTosxRusOPlyVKnh0+FAo/R1D1bnKf4NFeJmKQOZPBIc6DbGiPJEXGm6TLKJj18ktQI8LnGO0nTJEudLtOcoEOIx9u4TJ0sZUoUqdEkTZZ9AK7wNDHq9Egygsd1FphlgyWuss/jFKhRJ0lSB9RxRsiwzxWeJs8OZ7lKnxxxEkyF2+Ad0qdFlpAmjzFDnR59pgjo4TNHmRk6dBgjJKTHGNP06OMxSUcPbSJy7LHBSR6jQgZokmaEkCn63GaJWTZ0ewKyBMSJ68HMx78Av1wHh4eLiSOYOAuLUY3YEqhbSFCcR4LfLhxOwWgTJm60od+WAGkcCar2ET3DLkyM9uFJiFKgShAV4G2NqqyrYCwJo7vIk7gjRGlvYQSvf0SiDWPRPuGzsJw6y9vUdWlgF3gZoot9lA+0YOIGcFbvpwqcRgLup3TbJ2A+tcfEU8Aa0ISJSgAKCTjPIedggvB3IIFtXr+qwJhe54w+TgB4wIGcCwHsflmC3FpXniE+8KxcB8b1QOQx/XdKX+wImNLbxxiQqgqYh92n9P76cPgMjO4Dv6HbOwPbXzHO9EstS3ofFmB0S+8npfezh92+mUmQK3flnK4jwW0JonOgegwGIPPABhIwP4kE3Vl97oFue06/7yKBe0PaZLetARf1Pq/f/7fm4PBmx5dPvMDpiR02KVmCM06PJmmm2GGHKYpUGON/4evlTdL4XKJJmjS3KVOiQIUePk3SfB2/yVWWmGMNgDIlkhzgE9DRMc4eWZIckGeHHj5lSpRoEbJDkQodknQYo0iVCgVL9D4TXKbsl3iGVZqkCYmRpENAnCQH1MkC14kTMMVvUyfLOE0OSFIHHmOZMTr49Hgvv2MntjskybODYoJJQhJscZ5foUaeQDMHeXbw6bHCAkkOKDPDM1xmh+u2LSEeRSrskcXXo/g0TQpUWGeeDmN8CXfokGSBFUI85nc/zF4uwQk69PGYooZHSECcGlOkaRLiUSfLDGV6+DymvwnT7vfwEhUKhMToEWeHPF8e/hYVr0iHm8QI6ZCkQMWS0x4hS9yhTpZl4hwlkmxOPMkSV5niNiExshzxDDf0NfbpsE+dSd0F73KWdTaYZZYyE4Ci8QX9/To4PCxMKJi4gMQ3N5D45w42LrQkXQ2JlzwkxtnTnyX08it6hwEwisQqCb1fs14CqOtlZSSmnEVikbPAx5CYpIaQgaN63xf0fu8gsccF3bYyEhdW9THi+nOAjwBFJF6c1ucW6GOe039PIbGiP3R+d5C4p4OQwBUkLmro9j+NxJu7DLSXCb3+23W7rutjzet1swhpehJJhI/rNt3SbX9cb9PSbZvSx00A1xiQuHf0tQ/15yUk7rusr5ev2xwgBGtZ72NXn5vS7VvTx0nqV1u3o4p8v+b7iyHf87i+lh/T16LFgIx9Rbe3ptt4AnzzW3A49nCEqoMghXTUKdB8KRTgyfJNPlYqEuKRpW6DsXFNOQ6IUJ8sddI06eFTJ0uBDjvk8emRpqmD5g5ViuyQZ5I6O0zRIUmAb4P0EI8ZyrR0ANrUyoie7injOuge44A+Hr5WCNSZZIYyn+RZZiiTpkmJa1R1EFmmRJ4d+jrwLLHJsrdIjTxzmhiOE1ChSJY9YoQk213SKTnXCkWSdMhSJ05AkgM8+lQpAhJM15nUKtuaDXIBQjyapLnKEmdY1cHrGE3S1MnaIDtN0x7/Ip+iRp5NSnj0aZLGI2SFM8yxxh4F0jTJs0OaJnWyjOmgds2bo8QmdSZpkiZJhzw7rDOPR58SZZqMUyOvr4v08AeMEeBTpIpHnyQHxAm4wtMUqVAnS14TwSADgTiB/g46jNOkSpExDr4gP1sHh4eOXWAWRjcQos4EXTkkkDsNsVB/BhI8lZHgqg/di5B4WX+WARqguvK56kK7MELq1hGUtGo1hpB2AYQxSK0dSQCYgtEARgvwtsx12f9JJCg7CYEPiXOyfxqaTGzrv3NyHlEelCYAJ24dSv8+K/vmY8D79P5qsH1hnOlXWuxeSJB7pSvnNYEEpOY66PNvz4+Qun4kbb+BBKun5XmQ87uWMI1iCOlb1cd8CQkw0ec9gQSsPhLsAt0cJDy5HrmPdSXIbcNoQp/bucF3NP18C3yITsJeLoEf9BhtH0EKogugqvq7uQCjlyFX6kpbTurv9KycV9+D0XEGaoSU/j4z+lWG/fOjcg2vMyCEq/raVPV6KYRM9RiQtkYZ4uBwDJGlQYyQWTaEzAtqpBpHvFI4xQ55ptghS518o0EtkyFLXVOdHcZJU2OKJ1imRZoYHUqUAbgYXqLvSVx0RkvWk2GHvufhBz08f5YxOkyGdQCKVFjz5ogRUgrL9D1Px04xSpRtpk68e0SJMqnGEbuFOn7Qo+5ndcQCFQrMs84YHR3z9ejhk6fGbLDBhj/LXPsmldQ0p8rb3CyJ+rVAhQOSPMvzmpSVuC7AZ5YN/DBgw5slSZVZNpgKaiyyTBjzKDV2UX34dOE0HZJkqTMbblDxisQJOFXdppuCfGqHt1e32SpkCLSEzJCuITFmww32PInzhCg+YJM4Z6u32SpkmGvf5JdSX8Mcazy9ex3Vh/18kxe98yxxlTPBKmHMY88TVWvgSUw9RY06WRufe4QUqeDp7z3PDlc4T4o2iyzj0WeKGjvkaZJmjTmmkPMFyULz6VEnyxpzHJCkTIkmaSacEMvhuGICiT1M7GAmoMsISRYwIClr2NiDCSRGMJPyJYSsKyHxQV9vl9f/v673fx74VSS26CJk4Fm9rzYyuZxHyMhXhj67pY/zpN7XU9yttDwLXNLvZ4fObxeJPUMkhuzr9WJIjOYjpKWJkdpIfHZe/7+i3wO9j+eRSfWqbn8Gib0awMt6fxu6/ZeRCWhD/Nb0cef1uvv6nC7pfc8ziCWvY+NH8vpYG3p985009PFi+rpX9HXa1dfHxLJmviejt+sz+H5Dve9zet+7et2qvl5dBhPu6G0buq0l3U5zHRpIjB3H4S0CR6g6CHJIh2E6Of3Q2C+OMsUOcZ0qZAg3gHXmeZbntcqyDkCNPCXKlmSbYp0yJRtMmRn8KWrECShR1ilLe/TwSdPU6oYedU1GdkhSJ0sP3xKZhlxNckCaJh4hPgEHJMlTI8kBTdIskyZNE5+AOdZI0+KAJGdYJcRjg1neHT7HjpenzKIEwJqkXWaR8VTTEqeiCPAphWVWvDOEeMyxDgiRcEBSE6IFS6ausMAi12iSZoEVWqS5zAV7XnI+Ha2WEFJTyM60va4BcSF3tTJ1kWXiWmXaw2eSOntkNak6aYnZZZ6gpNUKHZIckKRHHIjTpEeZEnECSyanaTLFDuM0qTHFBrOc50U2mOW9fJxNSsyyQYBPjTwLrEq6s/4OjS1EnICTlpV3cDhmyDFQBZyD/ZOjTDQOGf5JV3IZTrQb0IDdWa16zAAlSJSR/vMsErAVGRBuZUi1jySo9BGlglF7tiExHNC2kfViSCBWQIKwr5I2JEww1wWeEjI1SoAyx02BajBQTgS6HSbITAAfxapppz/WgirkWl1JhU8hz4SG3t60YQIhhKt62wtYlcGp7jZUoXsBEhugrmOvCxXd3jYSMHv6Ohk1w67sPwG0T46QunQkwXFDr9uVc9qd14SvSY2rgLoBuStdovNyrMNZIacTfQYEsiG+27A9O850vyXXtiIiA2q6nWWE+EW3aUPWmVg7lMFBn4EKooQQwuf18po+N0Myh9w9SengcAxRJ8vS7g2ZoKjA/peNkqXOGB1KjW16iYH/RYhHOmyy4+WpUmSOdQIdJ+Sud2XiZxeuzz/O2ept/EyPePeIg/FRvH5IvHtIPZWhQIVctctWIcOJtQZRBpa861zOPGXXI1Un2e5KG1MZHtvYpZuDjp8k1W5JvwzEU7usZk5RCss8zRX6nkcsDDlV2aadHyGMeUyUD6ELc6Wb+AGc2timPT8iMWa7RaINUaxLJZdhzE6s9zjfeJleYoR494h8psZ0tcV+PpB9Vg7ZL3p0UiOkakdWPeoRMnHrkGC+znS5xX5xlL7nsUmJkr9tJ+J9egTE2cslyDZajO7DhC/kayeVICRGnhrtzAj5RoPRDTjz1AoLbckh3S0kSDe6LGaukbssE13tk3Cqss1WKQOIECBX7ZLOC9EZeD7JoEOqIT43NwvTzO9u8bW5X+K/ULKEuJlYr1DkGS5TocAyizZGr1CwRPxVllhnjix1qjbH2cHhmGGLQSr7Zb3MR57xGSRWMBOrZvLXEKwma8bELUadWUUmtgsMFKqxoc9m9TZGxXpJ7/ssEh+9zID4u6HXyyOxi8lWCvU2fSRWKSPk5fND7TdEZJEBMWpIvy4DcrCkz8coaU02UlufF9wd8/wmg/irwiDeizGY/H9Zb3tlaN/ms8tIjPWkfjeEsK//Lulrd16v29XrFBiQ3Kmhl2kjuh2G72joNs8zEFH09bs5xxSDuN5MpJvzNtdrjQEBvY/ErkbVWmEwHkghZLkRZjgcezhC1UHQ1e8ZpGNNIYojL02HJHtaCeBpZaVHnzOsUCNvZ/qTeJQp4RHagCpOQFrPSOfZsSlP8orRJM0KC8yzrhWwogTYYJYaec5zhVCnOF1liSx1zgSrrPtzVlVZZ5K6JhQl7bxOhzFihOyQ18qFGB3G6FGzPmBC8NZY8+Y4E6xy4K9YYtGQv5v66ZGmyRxrbFJi2VvUJGjPeqOKGjRLk7QlOuMELHHVntc68zZQzlKnr/8PcEASTz+BPPpsMEtS2wQMqyM6ut2zbFjP2Y42O/QINfkdaI9Vue4dTfT2NS0sfl/xu76PtKZwDZEr241Z1a65VhvM2hQ4nwBfT8eldcrcVFAj6R9QZRzHIjgcS0wwSD8vwMTLhxIomaDzBpxoNKSv7MPkbleC3st6HZPSboImo0QwpGqCQcCaRwKvspCQAAkz038WCc5SSJBnAjyG9l3BKke7FyGMjRBmPCZShwMfUXNOPhLc3dLb5PTLBK+aQCbQys7hYNSQzAXYLSWIhSET1UPZ964+j1vIdfAhscYgJaoL0XlQMQbkpvE1BasSNcHp4QSkatq01rTLpGfFIHe9KwOHhL62p/X7WU3gzmsy9bpcF0rAL+tzSMh+pj8qylZK+hrtw+E7RHmszPfUZpDWf1ZfC53+tTsv16DveeQaXQ5nYPQVBqqNDTnW4ZPa0sEoWh0cjhlG6FOgKip7M6BEJpHPlm9DCKO7R9ycn6bU2Bb1PkCmxunyFrTF6iTQA9IwJsr72fZt2IW4f8ToJozmDqV/ewWS7+sIYVqFE7sN8EVF3kuMMMc6qcYRWwUZGec2ujCBTHDpe9ajz2EORvXgdhR4cu2m9SvcKiVpenHGUttCHPaPaBeEFE0YVbkv/VCqqmVQuv8/cb1B+2STVPXIKpLWnxKi8US1wZ2CePV7hEzsbzMRHrI1myG13yDX7nJY6FLOTEPQwg8lfvL6IRO1Q97h/w6jAZR2d1E16JaglxhlrHVIPTNOlpYlnnNrQpBO91to1yi2nsowF6yT2JD259pd8GB6t2X7z9QtUfCfuN4YkDseTLxwSPccTLQP2c+Pwq0jotNw6vo27EL/2UGcWKbEGB3ewSWqFLVNwwHzenIeYJ51+njECDnDqogXeI7LzD2Kn6mDw6NHE1FFmpiugMQUBQYTrVVk4tXEQDnkPjMq0Uv689Og3e8GKkoT770LySBqMCBL80hMNkzQmmOb+CKFeHWaiWH0tsa2yhB9DcTSyWRHjTMg+1J6+0t6/yZDyaTMm9izPLQ/E5vqGNESjfNIDHZOrxsicbKJq4Kh/d5CBAQvMyA6X4LDAEZnkZjKkJnDpKUhaLvYSXfyuv3v0W0KGAgXQOJSo+gdtroy8bm5ZieH9n+Sgaq1PbT9raHtMvocTUq/UcSuDX1nKQZK3BRSG8HhLQFHqDoILiEdhuk4Aa5DobFLPZOlRh6PkDlNfJpiSDXyrHKGJB3r+WQIOIAaUzZFHiRt6wrnLVlqPLD6lh6Ud0Mmmn3GwhA8IQ3X/Tnt8yQ/X7EZiJPUtgB5djgT1ln2FpmiRpY9QAjA53mWNE0ucJk1JH0sTo/Qj1Eni0dIlj18eoRkdTrXLWpMMU7zLg8xoywV37BxfY6iRK1StMFnnSyL4bJNV+vjUaVIibIlPjeYpU6WDklKlMlSt+1ZYMX6g4lSOKRH3JKtRslqCnIZ0hu4S/VbomnTtAAmqYvtAU9olW/ffh9CkEvafp1JfJ0WZ9TARtXqEXKVJWYoEyMk7QuJu00BYT0cHI4ZjAdqHwhlkHri+mCwboKlKCXKSPUyEkSaiagMEhSe1PurIsGWCY4NOacHuCbgTjQYWAtUsLPx3QuQMKnlhrAdnj3X/XWiDfSP4JJWwBYQpaUeMNPHqkCpyrGjC6AuIYGvCfJmoZuBRA0JUI06FGADkue6MmA3QbX57AKDoNSkNJ2V46qyLNudTwCQu9QdpGgZpYJOR7OesmYAMeRdC0P7Pqk/N4WwrgNFsRlIXGJAbLexhCsh7J8dJd04FPXuLWya3eguHOaAJzU5amwcTFqeIZcbiELWB3whgUavMyjEVcMSy9aCwRRecHA4ZpjbrVKfmIawZQesEy8fMpG7PVBk1eDUrW0ZOGsV+ET+0KaNqjJ4s3A4NPBPaPX66EtAXtSUuY0uPAkTnziU/uIprf4P5F4a3Twi1Whx+CRWkUkGuddvACdlMifR17YjZmA8rDQ6CSdeaRAVxCYk91IX2jpzwKjATOEZvb5V6ueF5EyVj6R/Lsi5ni3ftv18KbZryV8APDix1rDPjdENKL1jG3JyHbeeylDcbbBdEMuV9vwIqctH0IBECAlkQm86I9d/FE08nxw6p5Kc54mXGkQlOJyBWibDiaomTa8zmJSqYtOVuyXJJDCTW4k2HPoQ7x5yeBbKmWn5XodUVB4hBSpsUqJOllk27KR8ljpzrLPMovW+NSKFJB3KlJixqQoODscMJgZLMcjaKTIgPHcZpObriXKTAcTzDCZqP6a3N2QkDJSpMQakoyEDTT9mJoDN5G6JAfnaBb4Wub9Nv2gm0EEI3BYSm+YYEIRG92LiSh/px4sMlJ5rDNLVjd1BW7fVY0AODqs/zTUJdBvMxH1Bt0/bUlmi18SlJmYrAQmIXWGgnjWTXYZkNsczAoA2olQ1/zcK3DyDuDyjl5nra9TEJpvLTODvMvCyNdfRiOtjej2zP+Mba2J60y4jjjAkrRZhUNbfhVHCOrwl4AhVBwD+URUSR0ghk+eQX8YhtH8gDtxmj7YusJTQusqWJjxD4mzQIs04TX4FNBl5QJMDFJEmHncZIeKQUeAF9pngp/HpcERRq1A9pDpsSJwk+xzRwqPPOBF9Rtln1RKUcXqMcESXBAm6HFJlggYjRJrwjBGyrj8bJdHv0omNUdcp9j9NkgNWidOjQ5IMDTy2OGSUUQ45ZJQkNUI8jhghc3SVzkiSQ7YASNFmnwlCRvAYBfp6mzItxklyhwoFchyQ4Q67TDGiZQQtxgmpkqdOn1HiRMAtesSJ0QQ80lymS4Ieccbo0CVkhAgIGKFJjEPajANwyB5Tusy00ud/xAijNNhnghiH1EhSBDxq3CLJKW5SZ5IMcMgaoxySoEvIHgE+2/ikuayvn4wEMuyzS06v17Yk+qF+Ih8wxiR9Qtr0uq886p+sg8OjwQQS7OhiSideaQxSvI36KqaLVZlZchMA3qv+1DPp7cIIqU8cDQz9TSBtBvuJwX63CprABUmBN36seQaBpwmqq8AlOHyPVmNp4tIGpyaoN0FsDAkCdeCujBfWMDm6CwmteLIKBUMs6mZ1Z8E3SlaTvm/UoIE+Rp67A9YcJNtdOZ+YpOWPbsg1OLyg/2+2D4a+hz4DgtVc72cGX9d+cZSJ3UO0lTXqshw3+gCoj+lzP4kN1iduHBIZK4HT3DWoGb2OVXtFH9DXx5ClJog3A4CcPrfxQVvsZwnZ51YpQz7VEGsFB4djiMAXlWKUlzodd5EG2nLj8IK+d2CgYtLK+egcqJrun/IwaiZ3wBIUUQEhNo0vXR64gvgxm/7H9G8pGO0i93RO3//lw4EgwPRnZhJqHKta6ua0eh7xs/aD3t1+gLvI5BL6mGaCJANcEmI4cY6B+t70Ca/o976ur1eA0ctHd3v3mYmZl0Whu10YZ/pWixOXGjAO05dacFar801/rElidPFBirK/rQsZTrykO+O2fr74R3BZX+uSVqCaiTxDZJs0Wk04JMxzxzzf1uT7GdXEzan97bssTqbZwaNIkSo9fFtcy1hwBdrOIKmzwIwVV5yezShruxxXh+OKCQZe+iUGak6jZjzLgCgzilOj5IRB/1RDiD/TN+wz8Lc3ZJ0hbc0ku4kn34HEcnriihoDv9FL3D0RfRb4MIMYzGcw2V9GlLLXkf7LHKOKpOn7DLKOdLp9dAvUaQbFT016/BUGk1YmNT4AfgGxMzC2UaaPNccxE+Pz+vOXGBC6erJbndfXfR4hjgPkOZEZ7Kd2BfJfi/R3xhfV9HmGgC1LG6MroC4ysDMw/fiwbYGHWGtlkLR8Ewc3GChln9LtNX18W69jiluZuLOMPIO6DMYHRthg6gc4vCUw8tqrOHzRoMyg49MY7R9ywJglJuP0LOHYJcERI4wQ0SdGV6si27onm2CfJB1GObQp9gm6jHBEnhojHJGmidLEqOIIn8Ca4fsEhMQYPRLy0KhWTcCmOMIj1CStKCkNydphjDYpEgdSzGk/NqHJ1wPapLRf6LYupNQiQZcOSSIZMlBmxqbSj3BEYyTDIaM2jX6PSTxCjhjBI6RNilEO6eOR0axDhn0ilD3vcZqMcUCGBrNsECMkRZsjFCEeh4wyQoRPjy4JDvT1jBixHqomnX+UPkk6pGiRoUGTNEeMsM8Eoxyyx6QlUyNGKFGmgRQ6mKROD58cuxwxQpuU9altkdJ+qC1GOcQnoMYULdJsM61VsxIQt0hRoUCXBClaTLCvCWhFT38nDg7HDkk41Ob+kU6nioZVl2CLRtFmQKhpxRVgVQn7F0ehAKlf1X6gF/X6JsA2qUItLNl64hV9EKOINHYBVSQYvsVgFv0cRO/SikpNPLbfNSIBeplBqlGegZLTkIhnsYHwnbM5CU4zQnRaD1Ct2CTUfxfFIzZRloG7ne1/WV8boy41qU36VA5Nuhvy3j2r1ZsxTcbsMyiCYJQC1xkQ1S1Rj+6XRgeqLJ3SNvExbT1gAtYSUgDsCoNBiVFWaJWuMiTzLeDnuLvogLYlUCZtCwYBcg723zU6UCoYXzJTgVYTqSYd8ES1IQq8YeWGg8MxQmJPitsBAw88k5raAF7RZGmRgYrJFF25pW04zCTDdWRAavoOnd6pPobcg1UGfaGp+mwmt0wK6zmEzNUTWhM3DqVdxuLETGrA3YVLuloVe0sf//oQeTls82HqCJgB/75+/zKkHzWDc01uWrVTAVtRW13Sx5zQ65prYM6hCtOvtAYEg0lXvYQM0o2K9CwDcsUQN2U48ZuNgQqrAamXjwYEMgyImGEywTxrAuykkfVdLDNQcRki6GUGfoQbECMkQ4MiFZt1VqFIiU1dN0GytkyhL1NkdlwXTgVs8TAHh2OJXQZKzhhyf7yA3J+fQMg34396HSETjSrRYzChcZZBn2AmbbrIfddAyFbT52qlpp3EMd6oZjLH9L3zDLKoEvr/lxhUoDcercNe+hsMCEqjpDX7NUpUo4bta3/+YRWnnkTiXdyt1DRtNT6nQ7GgnSA35wUDf3vjP2tiP+PdWmWgEDWWXGDjqrxJvTfp+MPkbpdBP30O1LsYFM2qMCBFzT5NHHhZtwO97cz/n73/CW4r3/I8sQ8IgAABAmACIighE0xREl9K2VIXXz+5M6ezZl5PvYiqiIqYXkxE2+GdF95447Vr4+300mvHhGfC9sIex9jhcrjC3eGq7my/7HnZrRepKmWlUo9KUUlkQiIkQARBgBcEQHhxzvf+Ll857InwdHfxzT0RCpL4c/9BOPf8vuf7/R7CcC2JL8uYrUCDy82rLJcBY4G7slQUM7hJyMVpXPlIGappAPAn/wiqMrdWwqoB/7Ml37Y2Ymn61EG+l+xwh+ccUeecazTom3SeVTY45jd8RMMnhzY54iU7XOMtWdZiab+GPZXI8w23uM1ztwjI8Rs+Yp2RD2i67ZJ282s11qZ5pB6xQYsu3/Cx+7WWfGhVmSkFKuTd19SYnh+N93lZrjDlA1q8YsIqcEGfNhu8o88mU1Z9smqTBm/pc42+391u813s13rM9fi62GNmUdDgLSMqLMjxkps+ROqcEdcpMXEv0pu06DLxaagjBzKzvm3zeS2yIMsauXjYlOT8BS9WX3KTm7ykQZ9z1jhikwYZfkObn/CMBatuF5CjyzVyvMeUQjzgyrY/4dylWxoeVnDv2xHbTJ2JUGHKERssuMUGx5yzyoQ8FSJG3KLBWzpsc84q7ZO/5n/7T/7d/z9OI43/v+MHyF8AVZP004LMrwg+T5KFLggF4CmxxHRWNQYSp+ZLF0827WMF7AusUK0TDzxSzHYg/4oAOGjAkzruSWD30HxTiwNCV72X8B9VIY8Bw5kqVjyqiD8Mv7//7SBmYeY1RKCAFXz7Ydvf39+0Kd9fXNh9QqBy0c/nJOwzXjAMzMPw9W6NxtCsE4qfEzO28klLBNkkqMCdhwFV+QPId2cBsBSzTECp2K1ZQoErIBQug7wCQufEtgTx59IlgM667mKVLKBSnAWWb/I6b9sxLXeN1VeYuh3EHA4eijKcRhpXLH6A+fuQf0yYSK3vzBBbyGsRKU/BfWCQYHlrsfsQy0Fa8Ca/u2OIdqD451ySsZMjeC8rz32KfQe34PXdmvmsyktQUkzlA3ka63jF2pc9gRb1yZwg4FPMpR6BaaScLxAEAiiqr7iAANXRBb8m3ixaPnSFg4BZ+S3qHHSsOoYFjBsrZksguxjdk+TXKKWDAAIBo2JTiQ0lcEeghoAh5UWx7mVhswDqcIMuMx9KO6HEexzToM+UVSo+3LRLKwZczfBqnWv0qTCixxYjKuQ5J400rmTI+mdMUAAVidmPtAg2S2UM0Iy4PDFenqT6fqu+UD0jwNYb3My57HUvCbxqmd8GSw8I7EkN2twi+Hoqx3QI+c39Srnvj91LHJ/Yr2JvSqK+TcjPiWY183Auyx5kdD+4mzgPEtcri4HSypmqOWVPIqB4mrjWylld36c+G7E9VbtGGKj9mNC8qhLq613//WvsHtMk+PbLI1eNPdX7+LbEpt0nBrAn+1DaJQC5uo9oDZAkSSwIFgcj0vgdiBRQTcNiTkgcEBfO/6Z1HzDg7ZgNbvKSc1a5Gb/QQMYR6+RYuBfoe9zmOza7p/x1a5USZ3zEMwCmrPKKFjfomq/SOKJT/oA2HUqcccqUM0r8fb70IU45cizoc41jNmjwlgLnfMeduOudfHzKKq1pl2eFj2j59PkCU59uD93ydQB6bFHiLPZ5yjKPZUsy0JdfaIO37tlqQ7dUIDbo06fBWxps0aPBW47ZoMQZx7zHncVzutkbdH0yapa5g5TrBiQvJhxn7fVvadDnGv/x4p/TzbYoccYrH/DVoI8GghlQGwZb7fGYKauMWOeY92jTAeABT1j1a1nijBEVPuYbzilwzAZrTHhFi5/wjCf8XQpMKS0mVLIGYj/jI/dv/Q6ADm26tGjTcX/VCcdsACRA5ffIMucmXQbUwL1r00jjyoV7jEqmFP3cpaK+SJ/9zIFAZ1VG90yaP9tx5mUHK6gkDxXzX8zQYmJfkh2dQF6FooYDDJ1V1SawjrTob7jv6hOCd9MtWBah26rz/j8bxL6omT/3/f4hgd1Q8P28wEBdSbx+QvCXws/hwJ77sPwm2BaI2dUimO9D8OaC4OM6h+sM7TW7wC8JVgFDbPJ3zs9lndhvankPGxqj4QNlP54kG/gpdp4qTnPYwqATts+UMLBAYLJA2TlWZO8SGBryRUuCK77wyejviODttUfMcsu8gOJ64j0t2PkmBVPTuKLRIehN1CTRUBEx9LW4HBCYR5HnHTGFagTvQMlXwfLPLaALxX9GAPa+JTBMDwg5RwvqbeCfwvXu0F4zxvLHAwLAqEV+cqCLe6HGz+kxDWWBwBoTMJn8e5cALAwS75FPnlidAgNyBNY99p7MnyWu75GffwuT5wrs/JQgR30C5ScXATxwBQUFzCdQ7NQdAmDymDCcJsm0EljSJ+Q2EtsQqKPm3dxeW/86YsXrxy2OfETqhNs85xs+ZuJkCQ2abfGKCqdxzarhrDOvxdNI48qFmhFqIqlJUePy8KNs4mdS4j3Eao0xQeaetA5RQ9fl4LMDyP8My1dPCbl07MejphAEFqQaRgJApeYpJh6T8mfs+3pByBll35fYqKqrvI6a9SC/QxiIKibpws8pYWGV2SXcL7Tvrwlg7M8JbHxZnHQJHq0Rlt/qBMautinbJl1jEQXE6MePSYxe3Z9k6SJf7D1C/ap8r+v52P/+T/18XxAYpQKA1eACSp8QGLaymdJr9Rnr/J5g944auJNgGlc8UkA1DYtnQIXQJfOkrQFLa0zosWXm84sRq9GMSbnIiArHbMTFkrFDV5mwxqx8yg26nFPgemfIX7Z3KXFGmw6VxYh5Nst35Vs0PetMWKNBnyyLuGhrjAdk5/Cy9gEVRjGY+BHPmFBia3HEUdY8na73hnzf3GRSKCWkR1MqnPowJ6NOTVllj8eMWGdBjiOatOlwzAa3OaI0jigVJzzLfsQGx/FU+yxzri36vM1aZu/RpEmPDY4pLWwqbb+ci03432U3uMN3tKcdnhdus0WPKavc6r3mdfOMabYQn9MWPVp0eZttxAOi9sZ/ySK3wqhQ4c7gByblFaaFUIxuDYZMyiuUclk62TYPhma2mHfmx79p36fBW0qcxQyBpiMdL9mJr9FHPGNExa7jwp7fyh7Fn8k5BT6aPuNJ4QElJn5N5qwyJeeAc4c256zGA7Xqw4g00riSoU63pFMCP/vERVJeIKmzVosAXchLVtnE2KoFyMsHT96mhz5s5dsoAATZxD7ErNJXSIwAB+eW7gc4qtm05/Kti8CYOjXA7/1oYMXjI8xv9IQgVxUDQAWqmEoattV0VplbDZw08lS/mIUFwZjgiyU/xKRP2Avf9j6hoFTB2scAmAdYQennkv+1HXs8AMAL0EwPvr37IXen31uRLxBXAGuLeOr4yb28yX9zBipnmr7PFwRWiACXn5oPbPEL3942gW039GPpOzvYC+/ZXc+tzlBe7rktwIJ4oMSyBhlJ1ATaiOmRRhpXMCb/c8iZExJnkTc+gNkc6jX7ni17cDa153JZmC/s59kU5nOo+ndhOYdMzn4CDIawVoRSDfpHvj1//mxq+6uuQ74Ms7HtczSGrRac9O3vfM5+NrZsG3p90vuTRXg92HvWiuF1s6k9p/3p/Ep1mAxsn5UyrBUgU7bHSnU48fPeato2BkNo1u0xvZZp2P587j8Xdq65bNg2hGv4cgg3a3Z8yyg8l/wMqmLeT2EytscBGrp/5OyaJbcxGkO15pOz5XUITHrhs8skV4W5cH3y/ytY4yxWSmVZsO515U+nj3leuB2TGKRg2uAdORY06cWkjIzbaqWRxpWLD4AJQTavxq3qPknu3coE/LV7BDbnt1he2sY8pvuQUW0oZn0R84puE2wGINRRbaymUx0qEPahbTMG/W4R++IzxmorMU4h2EmtEzxcxVxVo0m14TbmsSwLKLFG7xPqPLFpXZkU10FJsFd1pJpqke8XAqj5wo+piNV3ul6PCU0fB42XQ/f2FqNV7FDZCLh3N0e+jaQaqo/VyC3C/UJNf1kvvCBYJ4g5rPMpE9i/+gxeJa5rjeCDLfayfGvV2JIlTRpXPlJANQ2LI4yGINmW+6nWv4zof7Lgw+4bzltWna5GM4pDOC8ueJD9K+rdiDctm3J/Z/Gcd9kNAI5r6xQWU3JMeNNep02HHltUFoHfPqXAtcEpR/UaH3bfAPCmtU7Fh14dlTf5cP8N2dqcAuc0xgOOypu83x0wKw/o1eqcs8pLbrJR/ks+7L1hVoDN6Sk/NuvGnhyfcm16yjxrQMi/2TW2627vB6Iy7BRfMs0GZ+jiAIrzGa2dbszmLHBuHfisIR+twYBGYcAit0K5d8GP7ToNBmwtjqgMZ4xqebrZFu1ph0mhRJsOhek5q4VVmBOzR9eYUJieU8mNqAxn8TFMyisUh/Ci1WRn8Jq3dbuWZ5ScLZuzxXyZGODVVNeoDOeNfAwGlxYT1k5nLGrZWHZ1k4PYDxZggwWFxZRqd8agXaTJEecU2BgPKY4NVLnNd2SZ23lEF+ysv2SezVKYnnOH71iNLljkYFIucl7MAMv/jv+TppHGv4N4D1gjFIc9m34cN5rE5B9jhas63vewgslZSdGOD5T6CcEjzwvMetdXuPLekzeTs4FilqaKukfEEqlRzabUV7uzYHKvoQgC79S17xEPUIjq5n3KgriYj6VIBWKma0bsJV9MV/98FgrMMmFq7Bwr2LXvlh+nmKNbXBpkxdD3uYDZfwL5PkFa/+d+npLX3iIGQO/2v4/9S9nyASyHztZKgAJgXo+Zvls19DDgV8X9jv0ct2yKdrHr23xMYLE+heXvu8VD0+0UHETNP/aduHVARtYGQ5uqnZ87wCoZnjxrB+AOK2mkceWi9L+E0j1gAaWn2OJULClfmGbqUJLv3X1ntHagJJaoL+wzzmjPjIE+NF5hYEMbGgmf0QxQymEu9mN7Pj+0hlXJ5bFV30csjS1DQ4tYsb4SoGNVsn0xqMQyK5jNSn7u+3OQNe+AQakAJQEMns9K3oSqDqG6Y9vNL2Cr4O+RhP6e/Z3P2vNAkJN6VBPM2JJLhHdzwP8EOIHMV3a8pb7/zPp2n/oGGvZcqYexWsUWewr5OrBunw9lqHb8Wg4IjF8d77q/N4flTtksyJZlD8bfl+O6cpWpq8oqTAolzijFCqZVzil4J3DVa2c19E8vyTPSSOMKxQ8YACa1kSTuCvnA72E1ojP140Y0/pyz8Jd9H7okT35npgrQXHa9CbJDkIyrRlpgA6qkOJKtikJN9iEs972508LqrH1C/hALfUjwgT5MHLNYp2pQ49sVM/MEy++PCPZPVUIuGRIsEHSsTcLwwl9gQ7AEsuqYar4NbVuqLfk9O4CdSVq7aD8RAYSFwCIWQ1jMWpEJkscWhesW1+eqIeeJ/YCB4wt//64fRwOzY1FdLWWZmL4dAqgr5VoavxORAqppWHSAGcH/qoYVbcBu9wdYQIO3nFHivJin2J2xdjoDZgxaRZOzDyPyJ5Bt9s3Hb2qDRBY5WGXGcbnGR4PvmZRXWI0uyE9n0Dwg07fhHS/uXudW9zWV8SmTcpFrg1Pe1tehDBVOyTKnOIbt6RuWRSuC358OaJQHnBfzZOcYmFjM06+VeL83YFaAbm2Ts3KJVaZs1I75ePoNq9GFefn1oFifMW4sqMxPyfrNMWpCczigsh6AzswhfL+3SY4F04JJgE/uZSG64P3HA2jBpJwlE82ozmdkax1K4wuyie2uRhEnW3lyiwXN04EVtnMYe+LPODPruL7BanlAiTPe1YtsDE/p12yoFEBhMYUavC00jCHLGZXpiHFthUmhxLXBKdXhD7zZWaebbXF3+r1fjwFn63mOslvUHcCOaomJ3XWodyIvFiJmN7DFyNGMky2oHs6ImjCqFakfRFCYxcDGYNdYd5O7sBqlYGoaVzOi61BdYuDoIWFS9H3LL0UNLUnIIeOhKwL3xg5eSjqufo0KP4GmOcuReRVeke9XHXOxScfuR/jEh7Co4Gxy2VC/CePaig3B8iEBJ7+fp/rVzLwJZZD/lOBn9cKPXX5/WiCILarntgnyMmdhzvYceFC3/+dcHi4jtmnLwc6hbS/2Y5TNwDaXGRryu5KES4sIYNIuUWqckukYazTXsCEw1aczA7FVwD707WjYip9b+fOLmNVKF/hjgjw453mwQfAs03UWu1XA8iBcw9zC2anyKcsSvLXAkZo00riCof+7New7BWFhKcbRLvYdzmHfezGWfk5gIU2BPwJ+Q/heLggL1hy2mBcDqUHwytMgqi4GGvawXPGH2IJ/n2AHosEkuwSprL7DEKsHYiaYFsdiRwkEcE/keGL2NkHuK79TAQhgQ0vkJ5i0FZD6wIFXyjD+xyuUDy7g/47lFDH89wh+igJttvznL7BcrZwk2esuBsjIcuBrLC/pHrLjvz/B2GS61mCgaS+xPeXBPySsBZy1NdgrMv6/lpmySo8tsiy4yQETSvQxZdVLdqgworXo8lfZB2zRY5WpkSHcXqse0+3SSOOKxYTwfRdo1yCAbXX/3SXfy6fGLC/dI+S0L4lJSxmBblpvf+HPbQFPjLlaVdNZTSw1i+Cy9zIEH9Q94E+JGyYZsUQ7idffI1Y1xYNVH2M5oebnIJ9rKbWSDX+xObsEiyfVjrI+EKNzQbAIkMpHJIV9Qp5cJF7T88eeEJinijEGjCqfHRDqMvlk61j02ADzcdV+p4Qhi//IPpvZn0E+mdflSVsj5HeBtlJJiZEsVmoTlmMCD1+fjRpyL9xbtowNOvwlafyOxMq/7wNI429JbGJffFHXH2NdFiXuobGqGuMBq5HJKvNjk0BWhhH1LyPyU5OjlvsXcWE6qhUpTGGRW6G0mNhiFTgvrrDM2XuXDSALW9MeLAzcK40jMkPY7J7CADb3TymNI6KyLVpHtbwl1CFk5zDKVsiPbT+jrEn9l95Z3xq/oUGfW73XlMYR5cML8vKU8uMs9y4oDlzSWTDfwvwJVIYzMkN4Vy8y24EKI97vDDgu1zi5Z5LbF7vXOXmQt2t0EBkDqwDl7gWH9U0AztbzLHI2jbv6wthl+Sns73wAwCKX5W19naWDF43xgPwUrneG5BYL8mPzCvu9zj6lcUT1iQGZH/beUH8cscqUaWGV0viCyvg0PrfN7intaSeWhuTHkJ0vuDP4gUgLCRzoqPI3hivknTn3ulWj2p/BHIodeG/gDLsTeHN/nfH2CqVxBHXILRbOUE0jjasXxdcE6dY9bAHfwqT9YmE1jJUYe1Ql/efKicd+heXUuTVpYhbCACtkh5D/nOD3ucAKWsn9t4mnwmaeEtie8lLt2HGdPMzHIMcilw3shLI1QWK5P4TBUSqKbxFAERWMnpOBABI/xQpQsQN2LZ/FEqspLLUoVxHpPolvdteNNbqNLfBrdnyvm7VwXGKDjrF8qgK66cecs+uzuX8a56v8Y78X7MGsbZ/PyW4+DKASsKvjLxIsFfBrJAAmyW5Q8Zu0YMj551kkADqP7DplnnoOdTuA2S6XfVjT1nUaVzX+DoFt8xT7vjzFvq/ycBbj6Yk/3sEWu18Q5KOSP06x77Ry2yH2vXKGOA0u++ONCbYoBd/XrzDppECCx/74Y0KjZkDIAWUuL9Ylz40wgHdB8B2EYE/iDE12sPx4L7HNOSFPg+Woe4Tvu5hQC0LOrQFtKD+6CN7Xh4QGjxpuTSzXCtD8uR/PgMBokkfjI4J/oSS4D20//MJfK/ZYnzBMS/Lerj9/RGAdP8X8XPVZ96Dei8gzY4NjfsIzbvM8ttWSLVaBKW9pMMmW+LuLJ36YCyrTESMqAAxJFJ5ppHGV4gPCd1V1kRrmEfH3W96YmVtQaibeXyUM19tObGOBfd8kJ1edVyA0WQRojhO/6zVT2+dSihg1mAReqpYqw9FBYvvYscz2CXVPg9AUIvHzKSGPa98tPz41fyAAzWqGqSb8qb/ubuJ1LwjD+sRA7ft1EhO4QwCjwfKbN/Tj/NXGcqaac2p4V7Ec2SIM4NslsEb9mvDE9puvE9RdYqnqM/Xm22Tf96Oa0EkCDIhZxBm39orvQQKTXeqfUYPuSeJapnHlIwVU07DIYX4uQ+gfmt8UEMyx28DUGJ2L3IqBA1NsgrNkAUC3XrficQjMof4oYlI2iWb1yYzxzgrl/gXlwwsyXQPs5ENXPjAgdlpwia130pfOJMjOg2S12nV5/NDkS63BwIDRQ2OLHrNhC23sfZu9UxvwouSnjpwf91JJr+uggMsN3tbXoWBAaf6VA8BlH4SA7e+MksnuEwXreXGFWR22B29MNurHEXfrsnbtbg5/YLy9wjRbYGN4yrt6EQr+2h5waBYLYL6A9BPncGTbmO0YwFnfj8hEdo0yPWIAonx4QbQDJ7fyRDUDjzN9H7KTs9e/3qkZwKqbosAFH05wvTtkXFuBhXkszhNG6psHp5QPLuwzmxtgXH6VMlTTuKLxBpjC+MHKJTk5RcIglSHkO8Ts1OgzQkNKcskCtsB25mrxawK44D5T43srjP9oJRSIVUIBOScs8ssEBtjUmJmx/OshphZw9kB2vgisTLBBMPLAOiQGeMkSplerEO9aMygGJPD9iIXbIgCiEIZlOVsqI0l/m1BstyxHyFN1JlZbDRrDIZTh5NN8YByMnYWbBF+TjCt5fK3bY2unM/s83LtK+ZJDLEcKgBhiBbxYHmKpCehe2Dkvt/19LrEFYuB59scEeZeK9A5BNja1c88fOODu97GZS3rTSOPKxSqX/fByBN+4dYL/nhbvbhcVf+/aWNMGwmK3RvC0axLsPpJ5TwxvsZnkCyhG5YIgjxXb1Gu4GFR9RPh+K7+oYXWP4AOoXDDFvtsCNgqEoXsvMMB2QWwFE7P2Bf5+QZgeLe/DQuL1c8xjT6xZMUMFpN4gMJ30+qmfh/bhDTb2CACoJLRjvyZTgvogmd+V0wVGiGG3S5An49v5GZe9AnuQYUmPLc4occwGbTqxzP8dG6wzYoseL7nJJGvU5rc0eFb4CMXtN13SSONKhqyRIEychzCQSrZGqgXbhMGVY+w7t4t9n/YI31XlPl9Tx0DkHxEavpL5J/OVnnMf1cwuwbKvZuv5+Pvtea2u2k2S/rGzMsUm7XN5iF2fy40Y5T/8WnT9XO5heX7bz1O2ADr2OZbfFoR7Q9G3JUBaTSh5QKuhlARFpRy4R/Brle3AK99Gl6AI0H1D11f3lCyhYaYcvo3dz9xeKgaPE//WChjL+DHx/WMmFqv20UjsR/crAc2/ZflyqSmXxpWOFFBNA4DJd0DZzPKr61D9lAA6zt1zyUG67PzCwLiknMkXy43x4LJ3Sc4Zq95hK+9fBFBBnfwp8MKGhFAwBiRz88pj4ODdockqZ/LSm2OJ8sTen+kS30Rowc7gtTGzymY5EJVhvL1ioKRkqFOTx0KQolIzab9AjM3OaUjIVTuGjB93dd+YujenL7m1/9puhC7jLY0vGNWKBhYXDCDI92yfyybMysQ3pfLwgo3hKfmeM1yndswqdosHwMKBZ70369c4gvx+QmqqG+Epl6VjGFOtqG6g9u838MbQvFLjbqeuQSFsc5HLxt2049p6YKLNia0BGMPr3RrR5t/8P5ZGGlcivMAr/9mFfVcEouYIi/DHhG7+Q2/0JIs15Ti4LJMfYnnU5UTlwwt7TkXnt4RO+jYBuBRroWnP53/tj0seD7Ev1LSwGvuQLm8RGKfe5R8/XGH2c6zovQfRfd+3g6b5X2PSsSxhim2ZIK9yudVgr2ivU4ddRefY85cA6Mf+/E9tH/m/8L+3DHhkANVfzUJhDAY47BMYAGIu6PfE4/lXwMLvHz23ZGgSFh9aeIiBW05sQ1Gzc5rd9XuJwIk2BtL8CvgN5L+wz3NcWwn3sMjP8Wu/fh079rzke004W08pqmlc0XhHWFjfJUjMd7EcUcWARC2gtTjex3KGmKeq29QsHxDy3iGWW9f9NYeEQSJiJgmIrft28f2f+rYe+/OFxD7mWA76ksBmkoz1V4QcILbRDYJCR4CJPK7VUILLntJjbDEvJqvAhm0u17hJQBMCoPGZv05NMh2Pclc28X4dk5QPsiwY+jUTKzVHGPSi4/EmFo/9fXcJwMKAYG2Q8/MZ+P5lfZIzhdZtnlMhME7PKPmIqhx9rgHQ8AmHGxyTY0GbDucUaPCW32zqwNJI4wqGmqn6PvUwRrjyzi1/TZOQc4oEibjAVbB8oXwj73ox8nPYd3VAqMP03qSPqhohapAnWKYZNYXKxL6o+b3fOn4pBQQGTmGmZpGsCPRagb3uD7vUsSrHSPEjIFL2IlVCfSsgU0022QlATALSOeRvJLYhYsGXBHVBkTDk6ghOBPBCqHtFVtA9LElUeEAAp93yLs6HEGYbyIIAZ5fe9dc6oJrTOXWx+9Fh4rhkN9Mi1PNq6APpjL7fnUgB1TQAKN22n/kdnxYaESRPrcRPbOhQDAzknDnpiTvroEGkzvZvq3vUeWsSPEqaMP7Fim23gE8bgPJTAxvy+8RApybYx4VnHd7cXY8TfgyQdrGk3zGAtvi1SfDBj9eL0HL3wgp/MbDktQJh0raAx7ExVse1leALJjmES3VnN4yhNC1A/esoyGC1iI+MxZV3BkL+FeDntZTUYu7DUJKNfO2r4+8dmGdfXGCLqbHl21iHN+31eKpjMSFHJeegrDpzNWcZzwkG2zsEtqqDrNW+gR6ZsQPNDWebTf2YsO1f7w4p/kgaaVzN+EugCNEfEjz+upg0VN/JhwRmwCGBdS7GURJULZtlBhCKSS1kx1B+cmHfNzGplG+eEvybxB4owuv7tVAkO+Cb33f5/NRUAbSwXKMm0xNidmr58MIaZG6ZclyuMX7opUBEKPROYPkQfrnz9+JLE+0SA7fvDaIwgKngSgJnYxUls9XglxzwlR/vJwQVg/LOGMvDWX/tpwS2hMARsNzcxIrWOrbgOLJzKQqgOfHz2MEK5l8l9uU5OAaQTwgss57nwR6BGfut/3wAbMHJH+VZ7rqa4i4GAPnnNv5sJcj/BMi6PUB1kOq60rii8QGXmZQHhEW2AEYxOdXobhDY9gL6vKFMg8sLzm1CHaP6S6DEmGAzIBBCTSTZlnR8X3cJ7Cc19ZWX58Re1ESEIXrKK3qNgFkdWw74Z75/1UMCSJTj5zD7A8J3fuDbOyTkNldCxSysW34tdjAFwRDLNfh1ErArNrATBWgTJMe6N9X9Goi5JpauFBFTAjiif2V/T4fLYI8W/33C/ceB7GUTFmQZUeEtDVrY0NYuLQdUs1QY0aXFiAoLshyzwTs26HKDCSW+4WNecZ000riSIXXMEfbd0PdKICKE744k76pXlEMlUX/qvw+wBtEt/9dObMuVnrQI61KpHMXuzGK5Z90ZqWo872G5o4flPlmp9BOPKX8UE/upQf4zYtZrnEfUzBpiOagAmc/82A8IeIGARTXC5BErZZYTpjgl5CudqxipynFF/135W8Bo2/+WtZYDpNV7/j59Jt3E9XA1F4eE5liyQV/DlACqDav8zbqz5ed7YtebnwE7kFHzTjlUdk91Z9meED7Tmv8tlnIavzORAqppAM5Qdcl6RQlRC00lC0nagdef1cx0u+aDlLzDk98HBuaDKk/BZdFBzFNjTC1rBP9OB+TK3QsbhnRCkDvJI6pli/Xltm2bI2Kgc3xvhRHrzAq23ez8IngZqut2Suy/lekGr7tILActno8IJv6+sI5BzrKxYze7p5TGF6HwbDggUsWGrfSMzVtI+LNktEgQW1QyhbIVqbEnH4nrrJubWKAOkgJEftPLPPb3fEq8OBjvrNj2q2ZzsJT0V51L72TmB+G8wAFW7Br8uFM3IFhF/BYBkHDAZdxcYVY1j9yTe3ljDsNlaV4aaVzFOMeaEB1MMqloJH4eEWThW9j3whk9SxW/DeLv+vX9YRiSoibMFgGkUFEnQFGeUHWXz6u4HcL1L4bBL09WAB24/uUw5C6xDQTu3sNAQTynSa4bwfWDoXn64a9RY6lluesjfhPn96IADhX3vk16Dt5C8OBTAdwiqAe8wJ/dIADQYs8mgWPMyiQuaMW6aBH8EpUnixhrAYLflRgSAj2K9v6T38+b15ikXWIvCGD5mrAoUDz1n3Vj+csHnBOChKvgIKt8xrIEYELMlTTSuIqhe/8UY6IeYd8Z5QDlIEkbbxDyWZXQjBfzVIxSV7fE4KUaVNqmGFdiPwngVM6UxLZOyA2KHGFQiOwEJLXVwn7gr9H3PenVJ8bYLsE/VUxQgQo6p1Zgrl9iP6nOk+rnBuEeEPnr1MDWvgQk1DBwRWQGCHYlSRC07++5QbBDuUVQCyRBnq6fr96n66xezy2/5gJ5xG67a6/JjGFGHjCmap9rnFNwH1UbOtWa2k2g5Z3HCiN6bFHgnDs854wS67GpdRppXLEoEjcvZj0MSDwi1FlSM6kxq5yWBNMWvg2x6dVAF3vyhMteztr2DYL3c5XQBJF65wgyDwl15z6hqbPgsq2JGKfKoYeEBo9sQpQb2gS/bOUr1ZiunozZuGr+VP2YtHaVYnXq20tK49f9MbFmlUPVnE7Wenqf7hO6Pk0us//LsHxMmBGgJlyPoKpSban6VDVoIfGYwFfldOVGxxNiItM2geTQ9M8Kezy/B8sXWOPskHBPK2IA7gZp/I5ECqimAUDpPThxBkGmBbMTWD4hFLE4+Fez4VTXe0M4DF6d+80PQnK8G0DLcW2FzKHL5IvG3Mz0XSJbNe/O2DZA3n1KmpJtYtvLqPj1DrtYsNcWffJjK/hi71EHgmdt4i7iTDcIL3An5SLj1ooxsRr+um1Csdx2KX0WoroNlloW/ZxPCUwIBydft2vxTeigfh3mcLKdhymc3MuH1yekHdOCvX7WtuNftuDN3no4z7kzXP36L3eNiRW14eTneftMsGsV7UC5dxEYqD3/HCAsBsp+3D2suPYbcV7SlBq83x1A2f1jdZMaJ/71DETOn0C9E1H9ambMrqFdl2UT811LI42rGJ9h/8+17lOhK2DAi7TB/7hoRVGfwPw5dIuSe1w26Vch7ADbuLUSVABiRknmrwW4A5v5V8TA4VKWAwNCDhoShqF0CICmGiDtBIjaIgyHegHRPd+X8oMYVA2ga/mrNJ1YISggYQvrygtAdXnbsmXDmJYPCCBG8tq4/J1WYOjHDSTfX8xSe2xs0eU9v+aSV9Vt38s/IjBEBIgIRMCtYfYxZu4viD0Qq38+M68xZw8IFBk3ExL+PlboYttd/j4BMJfcrm/Xf7BT5M0/Wg8LjmHis7tFWBB8RRppXN3Yx4C1zwgNVjWs1SQSMKhFNwTfuyn2fVDDp4oxMqeEqfRqsMhvTnJTWakIBFCT4gUBrChgua9JYHaqThPoWCBurMSM00/8/bKCOiAAHPLgK2B1rSTwCtWpAknriXM8IICpYt8LbBGTCUKe1mJdOVHv7fp5qvZ97O9T7l34dr9NXB8t6vW6FsbMkgxZDSyB1jk/9rafp6S4AlwcKF+W4YIMC7KcUyDLgjUmPFw8Isuccwq8LNwE4Dm3mTubtUGfYzY4YosGfW7wmjTSuJKxSsy4zO9hueZTbA33awJI5/J6dogHFQHBbk41hCsfL9l6iNgj9qYIQWoAQ2j4yFqpCJMBIa99S2iaqHZtclmF+QtisHTS8338OcHqSA0fsUKTMn6pcO4RKyfjAXmyVdF9QczTpCw+Wf+VCSQcKZeSx6x7iawG2tg9SKBz149D9fTUjiejtW5EGAqluk/5duzHLPaw1BIDe+9Mn48AWzUAk3kaDEB9Raj/pHzypmJGdeoWATNQ3k8l/78zkQKqaQAweQdrRTgZwrIL+YIBq0lPqszYgICTLetSUzam0bi2Qnv8w9/0eOnA20KDH/eM8fjm/nr8Pk1VrUxHxl4VcNj3xb93lE528wxaRb7f2QyTT8v2muzcAMTq4SwuVvMdYx/N7tv+cgIcBraIX6pThvmVlrsXcErsdRrLS8XCUIIEOtm2LcTnQMNA1hh87cH1x0NLpF3zcGUK82yW2Q3zW102ucS0Gu+ucF60a5l3r5ZM11iwQJy8Mw4kZPbhsL5JVId+uU61OyMzhjfNdZg7mJy1zyOvzwDim8XrvZqxW6v2OnZhtheej2+eDixsfnsKWSukl7phNbEiYT3xn0cLJl8MZXrA5P/b/7Y00vhbHJL/jLFFqBdV8eR5/7v+FxEnD/P2nVCBNoW8JJwN7Du1BYN2MTAhi85q7yTeVyNIoATsabEutmPO89QOl1kP3vSJgYkWJiUS+33fAcR1Yi+q180aNH1QllhLnxKAAF9sV/dn1qQRy11AygFhyNMT+zszNOZ7RmxaMUMhgBJjTIKvcx/4OcpqIHn8Bz7kKkeQlLldS0Zd/iQLV8fUcQa+25vEkrKHBE9Cnbdf//KjiyDlhSAHboVmYMxIE2MVayht/sVpYJoI/JVEbR34OZz8oxxppHEl4x2hrhPQ+IDQzIHARFJDQnXCib+ulXjtLYI3qQBKMcSlLBJIKelmwbcngKJM8C2VlUCy/kwywpUHpon9CiB9TJCq/pzQTNsBfsJlFpeYU/LdE+vLazdyWG6TTL7oxyjGkoBMCHJPNfxVX0maqjr0kAAe9Aj5SbnT7bHie8JdwgCrhwQf10eJ49ojgNWqE5We5IF4RPCK9MZQZg6nVDijxIQSXW7wHXc4yN5kQS4GWD/iGRVGFDhnRIVzVplSIMucLHOmznJNI40rF3Xs+6JcAHETOL9DAMukOtwnKCDFym/AUt/Rhr/WiUOxjdBDf3+SAHPorxGwpzzo3+GSatYTLK9MCTXPGMt1TwnNlt8AX8LsayiJTV/E8k3H9rsUGaCVeJ8f0+wLLKf0CF7Xql219tTrBe4OYanrIl9U5VZZ7Ok8xD6tX37t8nMCQCp7wmQ9rHqw5ddTwPPTxOsEriaZwFV/jWxVsoaDxPtJgrI6NgHj+7bP2SsCKUAMV6mepgTrh1PC56/7YhpXPlJANQ0ASu9b8qi2ICOpt4Op49pK7D1XPnQA0zssixyUhz6kSkmjiyX1JnzYfcPG9BgKBtAVlcCcBVUaX5CJ4PvdTVuIbzlo4N4n1a9m1DsRHx68gQU2eRuYlFdsoIkKzQZB1h8Zu6k0nZAZukS+aSBsZp6wGyhDpK6+bmp9LFFK6r9t+yhM4fb4xaVkGsv6lVi1GGhA5pE9Vu9GHNfWidrO+BRD48TOvbo/C4sRFeg5v+ZTY5qOmyuxJOHDb99Q7Njwr0HbqusscxuG0rNzmxZWg7G3blhPYMoqo/K6WTC4LCwGHgRm6HrIeyxHYBiv27Zmfq5LLQ78uGfynCnAMrXJSuOqhuxPnB0V7QGfQfXI2I1EoCFN1e7M3uMSqL/+g1sx23MmWVbBfU3H3jRqYnnlPoGFn1zUjj1n4UzzJDCo77ReG/lxFoE/JjAD9u0YqPr2VcBj773+xTAsziMCuCgGw45v54Vva58gsz0kAAiSU4nh6oDAUtLVNpelvmK4Kl/OCRIzgTTelIp9ZcWk9xjsFM3aRMC3ilT8usoPsU2QVsm+Riw1MUgKBCZBUmq2IDSexIwV21asBb9fRJ8QwJ8GMbshZoA9hcpQ1JI00rhi8T3h+6VF5RHGuh4QWPYCDSHUUGpU/8ofW8e+7z8nsFq1aM0RFsc9f528CcViesrlpr2sUQTgyqKq78ezjuVHfXeTzaA+gT3WxXKkaroeBjgIuBCI8oBgeZL17R0RAJGkbFXnpbwqlpOYYgWM1aR8KhatmjnK1xF2rxAgq3uFAB3Zv8iHVgywrwlWCtuEBpusGSRnFTirhtfX/ruAEs+JPzbrZFnQoU2FERscx2zV77hNgSl9rjGiQoc2RzQZUaHCiDPWADinQESJNNK4kiG/UtkziUhyC8tFBX9cbHsn28SWHgOY7Lvn5gMCg/4pTLoYkAkGfqphDOF7K6BQRCewOmWceJ3ykeqr/cRzEGrHV7aN/H+EsVVrBM97Vx+cTTFQUnUYdg4cQr5JYJ2uE1RIxcTxKVepZipDRvlax61askAAbSEwX2XFsgd86tcOQs4TgLpNyKEFvwb7DuDqmBIN/pm8XO8RE6j6kuTvE+4XPUJTcOqv12ejHL1u28jvEIaE6doLoxAZQ2q0HS5buqRx5SOlTaRhsY4lRxVlWiCPzZd0VoZ8zgCBjArEuQ8CERgnlgDGXM3vYx6j+xeWVFqE5L4Ns7oBsue1PCXOAAPpMklwoQwnjTzZ+YJy98IYpQUo9y+M9bq3zubBKfSNzbp2OjNgseWvycGovE6xcGrHHfnAFD+eohbGWu+KMTFIHK8vEgpTeNNaZ3NhzM3YS69q53teXGE1urD+u6QQB7A5OIUcFMun8U1D13HZdA/amgGn5YMLZgUDRctE5AeQz10EK4KygabFHhSHEeSgXojior3YgWI5Cp9lRDyJvMKI+kEUf3bLhlkOFKYOYmNS2XxyUeE3iEGzyHu5iEzBQNioaYOulmU/fi0oyn5u7/5b/r9LI42/bXFC6Hwv3J5EbCEtwiH4LrnlBzfg7/zqhT3/JeT7BJ9N75JnqsCv7bUxI+CIsMh3+Vbxc9tmXr5529iCv0VYQAv4fEwACrsYY7SReF6LahV2YlomWLXxorrl79fCXxLYIlZQb/tPASxNwuTWPWI2aUbg6heE4TL4NSxiRbre/5TAbnvsj+1jctx9LjMj+lD/MgqSOB2LAFEIBas+s54f2zbwSwLTS9dDP7U46BGkdwo1ncQ6UBF+AsWnmC9rzhtpAlQi3+Y+ZN6QRhpXMyoE4G2MAZ33CMACGDDQwxhRyil9f90+lgPEStrFQDs1lr7CvvefEWrPJHNol9A07/t7BTjuEvxaVWPKhkUg4RADD1yVE9uLJEFP2RXUCfm0RgAoxaCFMPBF1+MXWG4Wy6qVeK/+ltRVMfBttn1/Oo8aYaK32FADAhNNdixlf0/dtyumqhqBTQI76iHB9kCNJIHD+HGIxKBrOieW185+ZjXh+50BG5zToM+ICn2u8THfMGGNm7xkSoENjjmiSYtX5LwoXOWcVc7pc41jNpgyBV6SRhpXLs4J4Ng6QWYusPP3Cc2jCE4eQ1X1i9sGlVQ7KR84mFi67685JdSGDULdsUuwDVHdKfm+yDAHBLupDiEnT7G8XSQQn9q+rTmWJ478+L/C8sgWrPUJNaC8mVUzCVDuYfnniJgNuzyEzAM/PjWeVHPqnBKknViqnwRUIagO8ONoEgZLqbZWvdgiNLY7xD6uGTFVP0/su+ngp2pIZwo3pEhTo72Lfc6nhJqxSwBcIdTdY0Itqjwq9dqJX4Onfp0ectkHNo3fiUg/yjQAmDyDtbx1nY56UJ863R0HID3pZTDpa/XJDGomey/2wlCjnP/M+yJ7WYN5HY5r61TGpxRlet+F/BHki1BkBrXZ5U7NEAZ7RUrjiHnWTFbHLWN1zrMukW/Z4KVZHfJlWI1mnK3ngRnFMZxs5al2Z1TGp5bQsjDYLVLvRixb5nWYd++WeLgWWOIW06KBmX0XjBm1+fgUWtatf783iBNop3adM0o0Cz0DUMXA0kJfi30vujO+4MjsEHfwyt0LqJtnYgx86pp48l0mJV/JTt0Uu4HMHeR0+f+bvXU2e6ecNPJh+jf+uQ2hODcv2qLf3HIuL1m2YPSpXb9lEyrDiEl5JQapi0MDds+LearDGbMbBo4vcnBU3mSZOyG0V9NI4+rEf/a/geIMyAMjLAeouzzCvpPvYd/l18AFpvW4jn1P32Hfs3+OfU/P/fU54L/E7DAq/u/Mt/tnvp2SP38MXPPtTv21WX/NzN937n+rsCv44yv+7z2seDvDvL+yBDasFv9iaW4S5FBvsCKx4r8vCYyLnm83449/gBW3577PNd9X5D9X/bWDxHNjv7Y6t7xf0//ary/+2j8jWKroPRe+jZXEPgVeqHl0BtwEnvs5jIH/I1bcvvPXv+XykANZlCwTx7aK5dR97LMt+eM/+DZe+XVTnm/6dst+3bb8mC4gSjBs00jjSsUE+38+xoBE+d1JnlnGFuvb2HdF7HCxj8RA2sIW62UCe6pPGAL1OZdrGtlobPnzj7AGUY4AanR8+w8I7K0WYTK1pKifERawh77vWwQbliPf7j6Xm1MCNgQqyCvwKWGAjBbNAgwOMWBCDP8HBDBZuapAkAOLtSSAWuCuru3U9y0W6wkBpH1KWPDj10qP5wiSfzG0dD4vML9ENdx0PQt+vE+Ipbb5/xJ4aEqNN2wyocRHPAOgQ5stjviONk2OKDClwDldbrDBMRu8o8QZBaZkWbDFEcekkcYVDX3/1awWA3EbeAHL/zNknIlKC6pqxDYJjaCf+fMiDqmBdEBgdv5j4P+EfZcPbb5JdQ5HHdgS8AqhYaScqlpQKkNXSsa5r0ZoUn9JADq3sPzziFDPZB2MVE68RchBXxBAZTV/tonVURnVQ2K4i8UqABoCAAnBVkB5su2/J5U+spqbE9bnSQm+AFc186sENcAjgiWBMIgtgp/1XuJ3rdUFtKpWhuC/fSvx+B4x+zYmGCi/6z1uCRBbwTjbdyLgN43fiUgB1TQAKG1CfhUoQKUMecmlxgSfuppNgG8OB8ayLLrsvWASewYOxNXy8JCYLZprwObBKYOdIsflAtcXw5jZeLKVp/piFhek06Yzwsrw3sBAvPp+BAt4fbfGtDAlt1gAM3ILY3nmnWFVPIBiyyS4s6pLdMdQECg5hXovsoFUjRVK4ws7jr4xNYsq/F1ytSzDtA7FgnnHvjeIiHYNQH7/YGCvqdn5bnBMe/ia49o6TA18LUzPjZ0bEW4ESsJlGyxVmDrj16/jSSNPdT6zQVjOoB00DUWtd+wuWhzaEKu8WF0D4pvysuHAsN8ACospUdmmU9Oy6z3JlmyomN8Evinf4++VnxLVYZFboVy4ILMP2b2FWSiM7fM92xWiY1HsQbE8g74B3MefrLP57Skflt8wXJBGGlcy/uSnXuOIYfQRVuDlsEVosrBUQa3u+k1/X9L3SYzFLvA/IDRDxKh6jO3Qmz6xBUgTW+iCFZM6Ji26Jb3VIv2PMHYEBJ+oPoGh2iWwElT0vyAU33k/ngphsrYAS3XoV/y9OoZd36dykRYXECS8YteLiaBCWoW+WAt9DEgVQCEWhv5+4ccnNlfH3y/2mIp4ea2eEti4amytcnm4TYMwoVYyLak18OdPsEXQqV+nC8xe4T/37ewRFk0dwtADAcE5+JP/NWmkcXVDOaIHPLD6Kt8jDD3aIyw6p1xmjuv9Q0zq38G+V1XC1GSBp/KVE+Nny+qkoqyY5onXKjeo0VNIvE/fR/mjSgYPxlbq+THeIx5AGrOtHmESeyl8ZC8wxnymBagIKCgSQI1bhCEsu4SFt9QHYvuLRaXrJ2lpi8COUp7UNSonXi9Q5BZhof4rLEe9IAwLE/AyxkBSHetDDODRfSLnzysflxPn4Pl3VF6nzoACVY5oMmGNDY4ZUaFFl9t8x4Q1vuQT2nTIseCMEmeU2OCY59xmQY5qrGtOI40rFknV3yvC99iZkRkpY5IqFT0mks0rLN8k1TtTWM4ho7rxPyesRbeg6orHLTVEDrEcoaZW8rt64M8dEiwH7mF56zHBNkSq0h177aQDJTXClIv1vPKq6jexU5P5RQ2tQ5iModQlAKXK3boeUj+qmaZaULXiAXa/0b53CMxYKZAERHexfCbQ0pvwy8eQuUWQ64slqvtNRGAB/xmh6SbCgZRnuh6HhJzcIuT0x4nr9dg/B9k3SCkgtZQf86xnDNm8auQ0ficiBVTTAGD2DiYLkyOUtJBVEYcX0K/g/c8H1tnBWZZdGwCV86SVmcM0W6AyPiU/TUjI5+YnGtUiTlouzXdZ16zpE52LBiAuW9Ct12mMByxyDuLVYUGWyjCyQl4gqQps/TsCth3g3YfBz42RShX+srVLmw71TmRApzr3ztaMAQ0VsWUHd4HywQWUYVIvcr5taGG1PyMzh8pwRqY/gwVcW5wyuFuk3ovMa1T78GNdNogZtoWpg8otszSwc8VuAEViX9rC9Jzy8MKYst4RzIvB4cDLj00Duhc5yGYNG1mq+4fZK+SnBnJXXw3NasD9Cj+uPWVZdvsDLuKCv9y1azRrur9u187xx137bIqPYfxwhecPb/N7B/ts7hsz9017neWrU9JI40rG9xirMocVoi/8cS3qI4JsPEfoWu9jBaE6zvuEISePCcWhy/pjyZcW53UMmHhMWPh2MQBA3W4VsypEqwR506/8OA6wok55TF18gQd/juWYXQIbSUDoAaH4lM+gfEMlX9W5qaiW7YsYWwJEWn6tDv09YhGA5S4V0pKuQWjetXwbp4RcLxD6MQEEaBK8HMXGEltV7A0xvwQuy9dR72lgixt5iGmxIsCoTZDEtghWBPf9uAQk7xN7f8cgj+S7oQ+VRhpXK5KL4n3MP08LUknsTwgggQDIRCOeHJZz1gmsUzWRJP2UTUmfwMDMeh2kHKZGiha5sg6Q7dBdLD9I9iqpvBb7WtArBw+A/4rgk/oTgsXAjm9TktoWYeCWziWLAbBNQp2nZs0+ttAHy+tFLk+UVu6WhH9u1zb2Z+0RFu8tYgbbbNcVYFrwt+BkO0+1MQvMrRPfphphAh8igq2JPBgFoor5JfBCYISDAQsfKwWQY8E1+rylwTEbPOAJE9bIsaBNhyZHvKLFBsesMeEtDSqc0o8PMI00rmC8hylfBKqWYTZ2ezuw77nqDyfOxHWY/usL9FM943k00+RvNsyHhPwmIPAGwX9UNk2qJ28RbEucvDPpwdoQMvcIuVzM9xoxUFhqEWqiBeG7PyVe81MDdmH55w4eTxP/5hg7swWlzwjAqUBfsUVV62l/UeI1+ql1ffJeUiQ0xfR4i2AblYOTz6HqNV2mQbBUUfP/CcGTWkpUMVIl0z8kNNIjYhXBrAN5Pa+aWJ9fk3BfkDLA8Y1Lfqy+fsi7tUFeCoHUIu93Ilb+fR9AGn87Ir/qk/4KMFMhrCJR0vgysI0NBFF3q2VAXSYyoHCZMzZq0Wn3+Q4xMLssQnHfAMjcwt5f7c9ihqkk95khvN8dsMitGHu1ZizNxnhA/mvCzQD7fdxYseFSfnxJL6vKMIKBWRJ8PNyPWZ7xAJGqD4rJmZ9pXGxO7Xwi3XxOgchYotXDmTE+wfwCPclHbWOrlsYRjP2aiZVQteuQicyD9ORWnuf1D2BhICc42PkrY3zOBMqUzcM2BjySUjl//vvmJq3BgJz7PR7X1s2v0cHe4tDAcPCfcx+Q5XKPSblonod+U1xKYuFSjryD6xpC9X53QHYO7NhAsjYdBjvFuPO5IMsil/lv+18vjTT+dsUrghSq6X8/Ikykl8zzBZd9+AQIqIMuSZg3RmIJUw8ryv6Rv+4hBgQ0CLIvCENXpv5eFZtiJKgwPSVMrW5hIKlYUgIVVAA+BX5K6LAL9FOx/oAwKEr+VmJ4yt9KwAFYgZpkORUI7E6xwg4IQGPWz6lLAH+zfk21gOj6/quJfQmULfp5HBBM/yWrm/vxJCVaRd/vV77t/ymXWXNdDIgWaDHEFg9JmW2STVwA/m8ESa43FWOfLIEQh/7ckR9r8pqlkcZViy72vaphOaRDWPj7wnYpwOAe4Tsj1qZAht8QJJlfYLlAViSHhCbVIYENJWbQLUJefYjlqrsEGwAx+tWAgQDCagF+i9DA0SJfC3hJUrVAzhEPZ9F0br4m5J4jArB7j8ACU04SA1f+gEnrJwEnYqgl2a4Q/AAFBP9ZeG/+S0Jjy4+9+mgWmFVi3eu6quEj5rx8B1VHJ3OmQFa9Xrn9UxhRIc+cKQUmlFiQ5Skfk2PBK1rxQKrbPGdEhREVVjkH4Bp9jtlgg2MGsfwhjTSuWFSx78Wu/xM4ViVmZ17yfxZ4KvuOMpY3Bonnfp/g9Q6WE7cIgOkLYj9jpjD7l4Qhxj/DAFaxPcXI11esBqV7kNkjkI5UizYJtgNe2yy1tqz66+4S8qPk8I/c1kC1YRMmqkWbWD0qOykpG8ScVU6HYMsiYFW5O0vIYz1Cg17npnpWjFUBu22o7hCAWeVVAdV+/5qd+N+fJLaFX5OnBG9W1eSeK/NSialOFLM05+9RA171oBRK/v8krnlVf+peo2uXxpWPFFBNw6JM7CmSyxI6P2UvlOU7MnfmohIUxDeR/CCxLY8399fj7lomCs+Nanki784slRAX2HR7j+zcaD2zggGZRXmkSEKReF3RQcplzsBTAax5Z0/lO86i1TGPDbTcb31AZu7HgIG+S5eA5U9syBMLvzZaJCRBgjq8ubsOAyg+gur+jOJ+gh1adn9Z3VR0kwW2Fkcx+FDuXRiw7De3hS8QorJ72ErOFhljlC0siU/hw0dvyAx9sNQYY4r6DSrzlFAo94hvgJu9U6KyWQfUuxHkzFd1Vnb/1YUft2RwkT0+3lnhZCtvoK2zN+qdiPoXUTyd+3pnSPnNkjTSuJJRwf7P5whyfDGyIHjs6TsuoLFOYEGKjdknsCy3MPDuiW//lxjAcMRltsC+b2udUEyqgIUgdd33fz2s6G4TGE0/JTS9xCwTuNAlWAWAsWgfYt9n93biFoGtpAI9CXb8ISZ/1aJAoKsK1HsYC8AZDTEb7IDQsVfxXCQs8MVg2PPz+oTL07IhsHmTUirtd4vANIgI3o6/8GP63Pe1ntinjl2yM+VanW+TwFwYEOTNQ4Kv4lNC4d4m+DLq3NJI46rGh1zOd9vYd3uPMPl4CJnHhOnNYlYJEJCX6TZhEF8Na1QVCY2jHQLbR1Ygsu2Qz6lAiyd+PGKhC7CUZ2kPy2ladCeb4/i+BChAYIFtQfSQwACFoBj4Q8IiWBJb5RzJROsEy4AqYcq3GitiK2mfEGybBOau++Nj//dHxL6G8QJcwMOAsIiPCENipUJoJM6zkbhWSRmy2PdqCN7H7gFix0Wwe/ADZ6xRYMqEEiMqrDNijTNWOeeYDSaU+I47lDjjJ+6zWmEUg6lZFtTRQiGNNK5YfId9P04Ig0TnWP10BCdiqu4SGlDeaF8+tZ+TDmEdqgaV57wjKYSUq2pYzlCj4z7kxf489WP5lvD9V50l2xAIjemuH+8hQTkkUHNox56RBF5gqRr3UeIYtL7/GfGQqJLYl30sd4nwc4jlKZEKbvk5/ZwwrErNnwgmXxKa02M730vDqoa+DakYeth9IIvVYbIh6GGAaJEg04/sfXnJ8z/390qxtIeB220CQKqaUA2wqr+uTsil48Q+xRaGoPbStdDrk2DzeuK6pnHlIwVU07BYJS5M5wIee9jgpL6Dayq4VMBGDlyqC9V3AG9orFEWsNk5DQwi4M3uOpmhsTGLfhOYlFegJum7ayNPoPiYMD0+gsH9YpBgYe9d5gz0XJah+tWMzNDkUEVZFrg/DWM4qvuKwBPYeXGF3d4PBvb27DwP6td5Vy8Gzz7dTLx4XTYJnlsOAJyzan8vbNvLbduemJ75DqG75kzQan9m7NsTB30la/AFStEB0ezc5FzxwmAMo1oxZotGkqJBAE9cShypWyd2hEAMZ7wVps6izRm4LHuDWQE4NVuCZRlm3qk7aeSZFEqsnc7Y7J7G4MOsit3w6rC85cekgiGNNK5aTAhAm5ohAkQ7WF7UvyJW0IoFpG7+EaEYxLchtqOAx3WCJFZFnRhBPd+GOvXJBbj2tZPYtoCNpH/gNPHeJKgnJpQW55Kqw2Vpa1LqL2aTrkkNK8Yh+Ij1CY2mKPGepKRLTAqBzg0uLxyc+R4DzGLPqhkkcFpWKmJb6dj1+CHB1/ApYTGhhljZ96PiXWA0hKEx+oynvj011QpYYS15FwRlhAptB2Zi4OKcNNK4mlEi5BwBBcobUgypvpHsUYzHOfbdkARStZsWnfqOtLDv44DggSzA82vC4BR9v93aKc5RVex7JnDTc+z4s5XQZFKzSgoD1YYCMEQSyLoFlJpjYt+rflonTHqW2kDgq1RSU4J0Vu//zM/pxW/t1+vRSLYKyrOyaMGOKbZd0MI+2WTqY/ehDoEZJcmsAIF9Qs5fEOwVxPzV9UhG5MfRNZJAn7oDo3OyLNjhJSUmZJmzwTHHbMSsVIACU77jDgAln/x3zipppHElI+dsTOVAX/OpAVuVrYhILGKN1oJEvqT6TttI2B3lstiwKOUUsU9Vm/SIbVcuDVlSTaU1ZocAZuKvUx0rtv2JP9fwY3fFZjwbQICfXqP6TTXpt4TGltdkE+XvXX/fDpZfpn5MWoceOLCcvIcAZxFhAKDyoGq8PT+eJ4Tcr1pWzS0Ia1ztT/chNbR0LgMC4Jrzv9UE17WWAqlMaOAXuIRLLGUDU/br58BtfCz3fJ97fj1Uy6uBqAZfGlc+UkA1DQCWb4k77/m7XO6gTZ3dqeQsxuq2D6XyAm+2a5NAyUH58CL4vKg7nnOAde4ep0X71ym0IWsgY9GZYcumbX92w2XqOWdSAtThRfs6FJ2VGflPARQQFsVNYuDh+rfDsKgGVqMLS5papE/h1sFr6geRHdstiO7DeHsl9pTN9A1kHG+vxAn9/YMBdCD6xLab6RuTMzNOMF4lR1PSxo71zd11mBozd1aFcXOFcXPFANOagb6r0YxBuwg7BtYuyDF3SX5R0juwQj2yz2e8Y1/tWZtQsNcNAB83V6CBAcdHBkp3atdjyV5uQQx0ZJ4GQLj6qxmbX57Gfrdgw7d6tXp8jd7W1+PPMI00rmTIr0kAGQT/qyxhoJIW6Sqw1KFuEQo2FX7KnW0CUACBwbiN5aZ7BFC24duXXErHJJlozd+3Q5gcKonsL/39R4ThI9qfZFNiekoCpcK+4z+1PcmVDghMr/+db1sLAqkPVPxrUSCgVwyBdQJjFQJwKcmbQMovCE29KgFAENMfDLDWMS/8+CKCLcMtf07A7EFin3PCVHEx6WS3oNx16p+HFiqSN4u5Wif41epYGhjrTqA6fu1KpJHG1Q3lNLFGJTmVTYdYS0Xse/Ep4buZbK7IyighP19+Sqy2oe3vrWK57RG2EBV7Xwx6fS89xw4eFoO/dRljthddTTWGH+/Wg9Q/2WBSU2Xh2xRB4Evsey2gt4p9n7X/IjEDdPaHMPuEkKNe+DZ/Q2hUiRGW8/PJ+r4k7a+bV+zrz2qMH6xcluc+Tmwn5+cmwoBku5Igq6mlxpryse5DycYbfq11T5GUGdvfoF0kkn3DPSMkrDOm4WhBlgUVRgCcU6BPgwZvAbjJASXOmJONX3fMBh/zDbkYjUgjjSsWVSiJQa86bIvAOhd4NiawD3MEP2Qpdu4TvpNi5Veh8SmWA5UvJWtX/dmDo33CIE4IQKlCoOqY0DiKEo+JfZrFcomavmoqPyLOEcsXhFwk1vvvYzlO5zYkVlOtJZmx+zD7FstfSb9mr7/mAlf3iH1aGy3fj5pRatapuS3A84iQZ/26xM07gdlNf6+ur7N+ly8IdawAVz/euCYWSWiYOJ89327HH79v28mITSwgG0ITXoCx7LU6BMWZavLUAeV3JlLYIw0AMp9gxshKunvEPiA/Nm0I0ai+zubiNB6i1C20aPCWUiGyjj7QKX8AO9CadlnkskxbBUasszN4zVG9xipTcosF1aOZMRnrVpgNWkV7fDzjdbtGlgWb81O6tU0+nL6xxLewwrgxNppDVLdBSq93bbuF6bnts10w4NYT96wM3U82+bD3hjfNdUrTCdn5BefFPLRn5F/ZIKXN7CkvWtfZGbwG4LC+SYURC3Jkd04ZldepjE85LtfYGA85aeQ5yN5kZ/GS6nRmvqJ+k1nkssyqF+RPDIA92cpTXcw4uZen2p0xaBYpjSOyzBnctXPv1AKNbKNwTH1sAPJ5Mc97g4ioZr8DfFPbpVQ7oz3+gcIUnu98wNb2Ee+yGxScITAqVGjwlle1FlkWtBZdjrJbNHhLth1xRonZbsRxbZ0Kp7ytr1NYTMnOFxzXN8iy4Pp0yLJmQGlpOuG4sMH73QGjWp4KMwBWOWdUqDC6C1uDYbhhp5HGVYxN4oYRL7gsR3/BZUmWGJQCD+TZpMXzLaxo/ZLAdhUo2/PX/pm/V55+YkuVE9vcIUw9VUEt2b8YErsEm4EHxDIqtrGiVqxVb7rERe4elz2yxGwVEFImeEkpx8mCoIkV4Or6d7BFxQ6B6SDGgArYLpdlr7ouKtrriX3h+5EvrIDkceKcVBwLbBUIKzmtFjN14uEF4Mcnqe1TAuCgfUq+J7bZU6yIrhOGLRSwhcgA+6wfEZjDu36MY0gHW6dxVeM/+y+geIb9f1/FLFFGQBOWJcgcYQ2DMfa904J2lTDAow9nv5dj7dC/1CVC/vmvAd/+4jpkT4A1jO4xBv4ZsPRtn8G0tULh/3FxiSE2bl1QFsAK9h39wfeTB/50AC+x3H4GXIezSo7853MyF3BezLE29GN7DeRg3rY/cyd+vhk/nor/mwJfGHMz886P+a0/l8OGG65jA+m2YZ6H3MjP6y3wTzE1hFhsY2BryLS+wmylwPrh1M4vD/zat9+HRdOv0RyW70HmJTYsJ2e1ZuYbLjNNfxtY8abacgUyX9rxndVyrI3ntgZQ3v3fR3bsNb/uzRGFlSIT1tiix4Q11piwxoQuLdaYsMExHdr8az6h7UnvnFXWGdGmQ5cb1FLTwDSuaggwlMrFlXl/wx9UTfDHXG7SZokH280eQ/4GQTUjtr3AwR2sHnlsr1kObdBSvUZgqW77/gVwqhFfxBrCB4SGsWob9yWdHEBJdYxYnDrOPwC+dq/ULkGdowa6ajA1ydvAU8j8gliFyTbk+1g9KGWBLKQ+d7/TPuEekcXyndi2c9+2iFLK7aqfb9k+l0Nn/9aMLZp54K8TyHmQeN8CMrrOUkSUYfK5A+UQBmWpQa6G4YCgFIgwhq5qah13jzB8ak5QekFQbi2AP8aGwz7B7kdp/E5EZrlc/vs+hjT+PUYmk6kCw+EuVPrQG0DTF7qZHPBfEDxLmlhSjMxXNaMEsU6QEilZ1eF1q0ZlOqJ8YDL+ZROmBTgu17jesaJqWYaMEqpi7ts/5PKiWp5Uks+WsRuNd+8yPWN8bnZPw6LdbyQnrTxrpwaexp1/3UwaxtwsDs1T9c7gB+ZZ4mFZMQNNsvwxYXGujpjOXUlcxwzBF+uEy/I4EseY5TIQOYZo12X4usm23T8VY5FqiBcDY8FmusZIjS0EBol9FLCbsLqqyRu8ZL0uSf7xfp33u4MwXKdssv7cwgaGSf4w2zVbAMnFBveLxu4FTo6g9h/Y3pfLpcQlaaTxtzaUC/8XfwTFCZZDVgisnTK2SD/HiqcVbJGesDShgS1ClZ9m/rhyR56QB7L+/LlvY4IBB/pei6mq3CPJ52FiW2IvnPt+BWZIDn+OFWxTf17y+tf+/mMMKLiD5aVVAqiaIWhYptiC/nsCK6oIbPhjOubNxLEoKr6/LazIXyFIZwVUrPo+zv33kR/fO39dPnEtK/6emR/T3F+ve8Qksc9NLB+vEBQT7/l7fvBrUfLjf+fP6fqs+HaO/Bi039dY3v8rP/8tf3w9sW8BK3P7Fx3BPzF2W5oP07gSoXx41IWmarEeYSEqZuNT/+kLdeRRJxm5AAex1DFroIxYO2ogFWDmzYjcwlVHT7H6U2wmSVHr/vstjAmqhsuQMJH6lNgmafkpZH6JfW//P9VbEOxH+oQGUNJb2W2tYn9Y9/CLds2aCVzN0yQMJ0k2riB4lY79WLTg9sX7rAq9mpEGio98n6fAT4xM8P7jQcjh+zD4rEj9cRSaUnBpER/tQFHNIt0TdFz7XFZL6HG/juNPVyj3LmIFwv7DD1iQZcoqZ5Q4ZoM1znz8lDFVV5mSY8Fz7tDlBju8pEGfLPN4UNW1kwPu1d5BmgvTuCIRr5P/I6guCAMnHxBYjWq66nsGYdDefazZCgYwdrDv9QPCd1L5RTlHyp4xwRJKQKCAW63lBECKjS4g9hTzK5X8XY165UnliibBWgUCCLtHUC8p1z/AZgH8MUYGuEVQainnbxNq4A4BHJZNlOxV4PKaVCogCEO6Ij/WKkGGLzWC1qMPCJ62+GN7iXNWbtNzTwmNflm1qFEu6wOB0QK7nWAWe/YLZBXLVtuU1cPnXPaqFrA+xOxfBvaeP/ke/omlzzQfXvFIGappWLjt0VbTJv1lEhKCZRMyWWJm1LLlg4vKWFI7BYoQ3YOi5KUHcP1kGCRep7bmLNZtaNHshsnZy90LaIXhS4OdIvVeFMBCJTKBgvJ+irBEvQuZF8Tgw+bBaejSJYDT6tEsSC/2zCc0r8791KXzZdjt/GADtgR6emG6LNsgrepXs8sTtYHv727y4cGbcMHEAoDL4KpkFjVnNejmUCX4ueSIhy8U9wkS3fv2/tzCz7cBs7oX8GVfnAzh7F6e/MCRB3mT6ear6zw3yX63XmeNCfX9KEiAm/D+lwPI+ufZsyI/33GwFrMnKJ9c2PXTfupuySDrhfdII40rGX/y96C6gXX9i9jAAbAu/JcEj88CJk1XAVUnFHsCFZS3Hvu2BB5AGMgk1qS63W3Cgv4JVkyq6x0ROuhFAgNUrNksgT3RIJ7KSpHA3Ex6ZKmjfotgvP8VodDPEQpS2RLME9uHIL1NFpNimyrnatGgAlbMjhO/zmqoyWvwc0Le0nUVICPWrIpwvXeP4GsoEOQXfv4qhve5XCRLelwk3FfEGNM98BXBO3Lsr5MUuIEtWP7cr2GVMMxMjJA+nPwQA6pppHGloviawHRXrlFzO2mToe/9gMDs9/xy8mme6uezWD6aeUFYaB/ZNpdl87+P/eruYXmoB8tdr7+GXsdJou/7Xdbg3U6RyjAyX3i3RBo8NMBxUl6h3Lr4myyicmims09gu8uGpOYgb9Ma1bP7kBfjycHR4mM/j5zVxs/qH3J3+L2BuC/8tar53IZlec8eHrXyVPuzMMAEmFCiOfdueBvLN1V4/+sB43srlB9fMGva1Ol6J7K8lPQnFCBR8Ib8OsG/VlJYKSVyic+BxOfocdLKUy3Y8Y2osME7wGynfsav6WA03q3FEQfZmxyzwUtucpOX/JTHZFlQYsJbGrR4xWO2+J5t8O2kkcaVijcEZZAaIaqjBNpV/fkiZqnxNYHc0iAMrnNWZ1ynqUbR7xBk55LVLwggnnJLjtDQEoDoSqLlC8h87c+J2bkgWLMcETzpd/xY7/rPncQ2x4Q6UjL4rwnAqdsAzr6FvK7PHqE+1XHh+z31454SVFaqxwTC6l5z4O//1q8Z/E2vZ5G7RIDSPUT3CinKOgSLF2f5xxiD3ptsmomleurX+AW2Fv828d77XPa1dfJTPBtBFolJuwUp22TTMiKN34FIGar/PY+483YNqh8QEu8UZlPI/1eEhfI6UDUwLqOko8WtFrVaLA+NTZl/5c87SLjcdmaloHyxHrQNZ4C+vlujtJhQfTKL5QLjXQdg1WVzwHBZ9G2ObZ+jmsnpi+qsLQjyUjEIINwQleQS3bk3LZP3x9sQ2Alxwn7dtGOsDGeManmm2YKxY51BG7VMol/9ahZukM72HewVeW8QkTk0hgNY8btsBObGeG+F8lNfBDiIGgMJ2O/LmjN5tXifehH81K7bbMcHT+k9ulH0nSUy9tcfzcJNSl019+FabtvC4OSneaq/Ek0scR0X2M2kTjzh8aQHtf/UrnLadUvjKkScC/8cqvJ6EiC4i+VFeevJFkX5Q8zRMQF8E/tKnfYsYdJ8gTBARcWcij5niI4/W6H8pxeX2FAxKKhi94Aw/CpLWFhvY/lNLK0iIVdH/t5Psbz8mACGaHEgdqy+0y98HyrcXxAGzcjiIMnM0OPbGOh8lzBY75TgvwiB8fqnWH4UoCxQ+SsCA0ugs+4/RUKRjZ/H48Tfsg5o+nVfT+xP9xx9BkMCsNwk2B4ITNaiSSCszr9N8HwVsK3FlTP0Tlag9ntAmg/TuCJxiaE6ND/7Ua1oDVjMaun6wTAw2sXu3MI8OD8xMHO57TVNn9CUkcQUoGUN7twCMmp4uGJmfG+F8v6FDc684bVM1wBWsPqFrtVKpfGF/S3VTZIhO4fI803cqFazX353nn+XRQdvn8xMndMM5/16t8b1L4dE921+QKaLgSL34PV9s4Iq7ofrsWx5raz89QK45cos1ZwnBFBCtVfCPgrM5z4z9ub2vtVi02yBwmJqtV7BznW2Y0SBWdkIC9n5hR2n6scCDFquJMr5ZyLGrhizXkuOG85Q9c/3ZDfPX2UfUOA8ZqRmWfANH3OH5zTo85zb5FiwxoRj3qPNIVkWbI3f0C/XecZHvD3J8z+q/UtIc2EaVySSSs6qGrveHGEdy2my/kl+f+UDqr9Vh2UJLH81ylWfbRFATVkxiaCjdVwhsZ8Glr8eYrVP1l8joLBIWJ9NsXpR37p9gupzDpMelHa4nIcSDZbYWkr13b4/rmPM+vU4IlZvnjyB6jbGaB36sZwQlAs6H9W5+4Smthj6whWSlk85f27dgeNbBPapbAZEaFIt+pTAzvXnl11/rwBSESnu+3ufEhpQt/xYH/k2/HOYPPLrJjYqBOD7KLE/z9NA7J/9J/8a/sl39oml+fBqx8r/75ek8d+L2ITloU0wnAwcTG0TphbXIPKF61QJQz4mAhsFOHpHLd+zIvhNe53ZLjD14tKZSieNfOiIK/E5s6AyHTHPZoM3XuSDrrQfLYYXMCn7f+OFsQfq30YUdWOTx0zS80YdN0+gJ7t5wJkILStGN4anLHIrBlC45HaphbhLL64fDFk7nZF5CtWnMzb3T61od6+W4tCZseu2XS00aEJ9P7JrUTQWaPGx/Z7x4xx8UiQ7vwhTYP2Gp4mty5aBqXPdPMfYjWgI1e7sMtNgbtePqm1r5uyMzKE9Xn3iDAkHaMfbK4xbK7GFQcbBnrXTGSef5u2aCiyA4CUoy4NtUoZqGlc3rmGA5T3/5wXk+MGKgah1QgNDAKS8oh4Svgv3CF3vJsE6QGCdWJwPMZ/VHQMGJI+aFErGfkyyMQU4iCnqzHV2sPyyS5AVqXElMNh/Lh9gzC/gLx7+B3ZOkjAJRJ0De3bOUZvA1O36tj7lMoB4z3+qyeI5elnDFgcqtiNiv6zBHxQD+DjFzlVs4Ka9783ddcsnYszKg+uhv15sK/lY4Y+LibttxzJ+sAJ/BPyMwMj9muCNe8vfFxFYA2o+JfMovk1dU8m+PiVMmtX9UEzWOSQGX6eRxpWKwtTquN/UblEZRlA0kPF6Z2iN5d0a+/c/4PudzfAdbEO9F3HyIM9B/TrkTPEiv8BZG2hYY3lcWzEwdWz5byaWUtEGh0Y7NmSzV/OueNMAz0wf+w62odwzMHXQLsIJ/PXOLb5vb0I51JnZuXnuzxwwONnKM2gVQzOoZo9l5lB9MTN2qpMC6p2IZcNqvvHeCsflGu/qRaIdLDfVoDEcmvRfjbGm12fu/7cse+7FgdipNe45tab6TOz2ObzeqfGmtU7kstTMC2BoICnr8DbbYHP/lOq++fKr2XRcW+f71iZg1y4792NoWd23LEJpHDHYKQbQpA7sGlOXLQNcZ2W//zjQM7hbNACXc1aZ0uSIDm36NMgyJ8uCYzbIsWBOlmPe44w1vuMOx2zwrLzLhBKrTGnEdL000rhisU5QFqkR3iSAfE0M5NNjEYGss4UpjrJYTSGlU4TVDw8IMvy/wOrKou1zJuARrM4oJ55vYt/jJwRAVuSbKXCD4MFfw9a0Usvc9Z++ziw1/X2qVQXvzQlD+/S32KsN4H+I1bBamydssKqqn55i9euAwPgUlqCG06PEdesRhlAlFFfLpwRw8pa9PXOPwPoVoUG13Z7/lCVAy8/bVWSZml+jAsEjVYxaWTioBpdCbC/xOURQuu/XuE1cc1763GWtkKyzZRuRxu9MpIBqGhZvILMN+RyUym6WDXYDiaywLD7G5PFd4m7auLkSkk3f37MIP/M9bDL8AYEF5B2zan/GUt05SVIdgCj3L6j3ojgBLm8R2FfqBDmLalpYtanz8sg7JYCPU/dYrZmnayzj1I1BoGfdGBKDZpH81H4v9y8sQTqgMC2EbUZ1AwvOiyu8+Ww97j4Wh1a0jndWeN2yohgIMjN5puo4CoTkPzTQepmzAr6o64Wfm0uGZ5/YsWTGztiQlEuMrxe2AGLufqrepXzTWoec+57Kl3WA3ai2zQ4AoDy8YDW6CNv0wjs/herhLNzMIPYtXD6w63zSyofH00jjKoZsRfYJ3tAFyzOXBijtY0Ws8tHcFs0ATH1x3yYUVvtAF2Z7BE+7AVZUecOk/OjCCr8sbH57Gry1JNGCOIdGD22/S++uj5srYYr1nr/2wPaJWOpFZ0YdAU/hDw7+mzAVWsAilmOWOcuBxQ7MfkZg0Tr4EAOoYwJDtkYYYIXvy1mhkQpyLzjrB1GQrWkbAjcGxijb/Po0NG90n5FHoWS/sjXRIkBsLLFL+5hM1kGcWHq2SzwlPJYAQ5CJ6bNUQ6qc+KxziWuqe02LwEhoEdh46xC9TxppXMnITK3O+TvdFyw8z+U8B5408oyw4ZfbgzexX/2PrTpvmus8z95hRIWTVp7zYp6T7TzjhyuMakW+bX/IOQVGhQpgNVV5eGHS+qo3sLF6822hwRoTyzFzWI1mLBtWaw1aRct9ERSm50RtuD1+wTkFxs0V1k5nRGXo1K7zprlux56zxnN9P2L5AE4e5pl5TROVram8v/MBj2v3WTbtnOZZq/mOCxtsDYZUhhGj8jpR257PnxiTFTAwtmB/v9lZZ9Y2EPigfh2yprYCy/GvH1rh9qR2j2XZgM/r3SEj1ikO7bq8ebjOi/vXmRRKvL5bY2vag5oBne+yG0Rt+LFVZ8IaC7Lkx1avHdfW6dXqRDWrFb+q3+O4XKP+tbGMox0Dc1+0rpP1e4hk/JXxaQzU5hYLRqyzwTF9rtFjy71RF5Q4Y4Nj3tJgQokSZ5yzygbHbHBMjgUbHHPOKgXOuRZLNtJI4wqGQNAbBMWOgDLVLwJL1fg+IAyRku9qjzCDRGzUKsGTU3VFBHmtHfH3qiehOlUS8znBrugWVp+84rIViOylutiaWjYnEIaLiiyzR6hrpNwR+1/bO8Lq4J6xPeN5K/jv9xPvg6BEPUgci2ysxPbVcanmUgO7BRk18e/7NR0mXvstgXkP1njvENfwsW1Ch+CX2vT3CfAUUOyNMHYJRIUeweLqNPFZOPDNAGMJDwk2KgJND7HPSucNVkO+JY3fkUgB1TQAWC6MoZqvwoko8WPiZHC2nrcEoeTVADpWAJ9sO9N0ncDgFAAgWYP8+1wWurxnhWsm6asiidYJAfDz5JbpETpxSo5YgVs/iOLtRHvEN4/BnnXhMxGc3Mtz/euhSd23naXp9gJKcJk5MYgrf9OoRfA1hdj3ZVIuknkB5YMLNvdPgyRgYfsr9y/YGgzZ7J1elk3M7Vhi6YLfEDSMAZw56l6Iy4Z5lpJYwOR7UJSvzJFfV3nI+GeTH2A3lQQ79drgNJYoLP0msdwN7y0ewNv6OnRtwbSUx40YvUOMuaqbjZ8PWZP0ZSIDXMfNlSBRSSONqxZvCF3kAwy0GxrzPfYMLGM56x7Bb++JM4kWwG+g/he2aGWXICefe0Ojjn0/vVBeym/QmUvj7ZUgGxcgq6LRj2dSLkINjuo16GJ2KE3465/fYr/5QZC6q8PuElSwYxn/3G//D4Ed8wdUMZ7/wuW3B8BTyD+2czq5lye6j+UdNXtUgEIYGChJmrrwU2O6xQNjxAJwJsePn9QvMzayLs0V+zfybT8lniAbs3D7ie0JeBWLdBj2mX/sr/154poeERYPjwlFf93PQQshtx+I9vw55WixUpM2BcqZWZjdteMpviGNNK5kvL1R5mXhJq9bNUbldfZ3PqBbr/Nt80PWTmdsLY4oTM+ZZ+H79iadbJs1JhQWUwpM+Xi4z1HWvoQH2Zssctl4qJEiM4Sj8iYnjTy/2vk9OrXrPK9/wCIHP+7WKXDOGSVOtvLs735w6fjOKbAaXXByK88il40fLzGhW2ixyMEit8IGx4Dly9d3a5y08rzerfG2vk4322JUK/I222CRW+FtoUGDt9zmOZPyCqNshZe1D3hXL3LEFs/rH3BeXKEyPjW2anaDN+11XrLDj806J608L2sfcMwGPZqMakXm2Sxb0x7jxgpfFfas+VY32fwit8Lf6z7lXb1oTfrWOt9xhzetdYpjOGeVEmd0aDOiwrSwyn7zA0rjiBwLjss15mRjcHO/9QGDZpEFWTamx/TLdZZl+Hj8lNJiwuB+kZPtvN1D/Bp2a5scFzbY4Jj82IZZjXdWGNdWeJfdYEGOLi1eYl6pE9aoMKJNhwVZciyoMGJBlts8J8uCBm8ZUaHEGVMKTCgxuzSlK400rlZMZOmhf7IMymG1xg5WS6gWgQDG6XXJ5wSCqt6pEbxHI2JpeKx2micezxLAwzHMOg5q9jCQs0VgXw4JAKXqNYG2R74PJ+LETXxZtQjwFAgMVs/uYvWoX4fMnu1j+ZR40GA8TMubYfH5SGJ/SFBhnib21QJ+SgA2Oxg2IDBXgKhk9F/DTBYEwhAeEys3Y7umLMFfVecS+eu+JtTMNYINygFhDd8n9n5ddv04275NnbM+b5HFBEpr3VDEGv+n2GDVNH4nIgVU0wAgc+23BlE9gaXA07EzE6cEKn/Cm6r61SxMvvOEsmxhSVCMpHsEmcTCgNSiJJVlTKaUAOpe79TC9MEClnjqiX0PDPCbu0XArG1S/eKA+EZX70UxmJudL4h23Df0qXXvqRKMr8UGPSCAl9t5RuV1AxYXzsx1UOO9QcTgYdGYoEnwULWiZFpTArPMPVWqR7NgNA6w5YyPYYL9C/GwqfLBhcmBWytmgyBgZYoNp9pNbF/n5EDCskF8I8j07PhnOp4CZJ6Ebc3amAdsy65Rpk+QKrgnWHZ+wWC3GHzQxORyLzOmbs1QIY00rm6IuS1D+Zz//MytTwQWioHgLO/YK8mZnjzGirsigRmpAlzSqI57DEom1nZwtO4yUG++vNlZt1zlDaV6J4I+XP92GFgDPfg7vRfsHvxgDS497oyETMKztfzFhR1PAWhB/ks/7xMCk7OJMQG8A199NKP4Jfa933KZqLyvxNzVPueY/6lfu8xjQp6VzcsAqMOcrLEExACuEQa1uF0M2DHECwo1w3p2zWJJl6RaHX/vXYLPqlgZKnS9wRfbz6hYbxDYCInPuTD1BleNsBhQ7lPe9mbdyS1jrQFBOpdGGlcsFmTZ4JgsC7LMKTFhyipvaXBeNAbocWGDUa0YsxE7tDnI3gSMGdqnwTfZjwF4lv2IKavc5CVbgyELsoxbK5xTYJ7N0qBPa/yaBVn+n+U/oEuLPg2mrPI8e4etxRGj8jpH9Zox4DEm5ihboZNtc1TeZFIuMqFEhRH/tPyHHBWa9LnGhDWmrNqZZLNUpiOTpPORy9Pf45vCx7SGb+hzjZfs8KzwEXOyHNHkJTsUmHLOKt8UPqZbvs4RTXIs6Dkta8oq02yBERUW5GjQ54wSC3I8KTzgbaHBFj0O6tf56+YtJqzxsnCTX7b+Hi/Z4ajQZIFdhx5N3jTXmVDiem/Ix+OnBl4uTAb2svwhR2yxIMsrWizI8h13yDJnRIU+DRa5LJXFiEf1+0zKRbrZFpVhxDxr7+mWr7PBsYOkJQqcs9/6gL9+eItOoc0il+WUSsxcbdGlwoj3/D19LzBXOWdCiREVWuPX3OY5C3KsMWFBlnNWGbHOMKbapZHGFYuey+JbBKZpRADT1IQXOCkl0l1/Tx/zctfaT4OLvEabfE0APpNSeTVwJSdPrNVpEK95823IPEi8Zo6BhPIlLYf3TroYuPr7BLBx4ccp66okY9PXj/E/Z6XGylGtSQcuo98m+MxDqOs+J/hce+0ZDzxUM1oA8gvMnx4C8CzwVY81ia1f8ncxcLjpP+f2OA2CvdQ4cR1V24mVKzLYLgHoFeYhayqIm/iZh76vDsFH3C27YlygQCAFOAi9fGHWirFdVRq/E5ECqmkAsHwLsxPMc2oKmRycKeEJsJsamDDYLQYP045LTpuEoQMQhgNoAa/klMVAP3XIBibb+vDgTZCrZk3yFAn4g5iqH3t7Ng0MzPuiOr/vE+8lCfUbzMx/Lw8vWORWyPRh/ND/258Q/Aj7tv144d03S4Isc2OA1QiL7bmxWd8bRLysfWBMg6QR9dS9AwXUqlMVJV6jfw4yZ6Jw7WJmlBbzkS34s/ML6t0o/izkw5Kfupx2xwYJLGthO+/qxXBscwNAcgsHoh2QFRCTVwdVNxbsMxbb7XWrxnkxb0AOtr+lX9+lmLx+TJEGPqSRxhWL5U+Igc24QPYmDo+h2CF8P4rYd6jtz39OKPIgAK4qTlWwqrDL+Xv7GCNdEiUHM/OSHI3dAkCAZM7A1vG9lVDM/tKeW4o9rpyr4h1Cs0WFbB/Lg08Tz6lwzfqxqLFVxopULSKqfi264X1LScumhGFOEMDkrh9zHwOfPX98+NjkwuwYq3PZwJpw5QRTPtksUp5PFvJtgj8qzr4vY4PEtMiRZ6AA8rmde/XRzK6z2LWS52lx4ceZeYINyVEBnrB4iBmzfl+p7s/CvSW1QEnjisaEInOyTFiLWaXXFn0KnDMqVPhN7RbHbFAZRvZzMYqZi1Pku2mDjI55z+XfBbq0OKxvMqLCN4WP6dMgt7Cp8EflTY7Z4A7f2dR7ehQ4J8ucg+xNOrT5ho/5N837POMjnvET3tKgSY8eW3Ros8ExU1bZ4ogFOfo06HONPtfYmB5zRoluocURTSqMGFGhh4GZv679Hkc0/chXAehzjQJTpp78NzimxJmf1wZHbNGi6+d2g6wXuV1avKVBlxvcoGuMUjZ4yQ7rjDij5L6jG1QYUeKMBdn4mL7hYxZk+cvmLkflTaasMsmWOGeVLAu+5O8zoRSf75RVemxxSoUGfQOwswU+nn7j9gx9Y9cOI9Z9f8+5zbl/Usds0KHNKudscEw32yLLglWmbPCOBn3WGXF7/ALjIBfIOsKxxREPeEKnbCzic1bJsYi3d40+W7z6d/w/OI00/jsKn0PBEVbrqS7SelhuFlmCtZuk3odYDSJlE4SaxEG4ktc8sX8oWJ0kRQ6mJI0b/VKCquYc+H60vta6tYjVIV2sFtqF0h/4vp74898SQNLfEGaQCBDV+vAzAoFqgNVdAlt3CJYFqntkxyd/0vuEmSBfc0nRo0FWSJGquq+fOA4IrFEIjN8FgRAlFqm2UfN95Ry0fuH/msR1JrsE8FRrdSmV6gRGsMDqjl+HX2Gfr+wIt3zbbpk3kcRfjN8HkClCSZ/bBmn8jkQKqKYRx5kbLr9fh+XcO3H4gtal9sUhLMhdkhBkBA7IjF8yfwcXf7xbt2FG7nu6FAjRAapwUL9uC/Fte894ewVyJkEfb6/YoKeCe2ztX0DX/T5vYTeImoO6ZfMOjcrEE1zzryC6b35W08Iq1Jz9NTcwcKnkuE0AECSh6EH9ccT1fb+TCRRwGWwmgt39H0wa2/fz8kSc8bfMbhAvujUMgQhL0DKx7hu7FhxIWCf2IhQDttqfmafqI8JkxgQbtuCdwfKTCwNL3duw3olCB6xgAEimD/lvE+BHPbEtgaINeLO7Dn3Y7f0Ac7i+PzR2rSQlPR8INk5YN/g2iu9II40rGZnX2PfvxO055NlUcMBTBa+KXDHX68AfEvxAlaNeYN/ZgkvAO4SCsk74PhXgsL4Z5OhdAvNBth6SSc1tAF+5dxHAWjEC8MaTivy6/72TODZtU1IsuDzsD4Lv1hQbYhKF7cUD9uSb6vkg88K9XdXZHxD8Rl0aVe46M3YMNLwZI3AUY7Rl5Mk9TDSFTggMhaHvc4/ANthPHF/ZFQIq/Fv+uApssSB0z1LDy5m8s88IDAeBpE+JbRsuybpU6Av43cXydPJY0wZTGlc0Kow5dclJlgXP+Ijn2Tsc0WTVAcYpBZ7U7rHBMaOsMTMld/+ST6gwYkqBEhP67rWZZc45BZ7xESMqVBhxkL3JV+zxipa/xlixXW5wwE3OnHVaYmL7osIWR86WfI8R62RZxODrMSZhf8lN5mS5s3hOg7e8LTTo0KZDmxJnfMQztjhikgA323Ro0KfCiBwLPuYburQ4ZsMY9cCENbIseMs1NjjmiCZTBxHPKHFEk5FfOwHJU1Zp8JYNjvmOO0wdsP0pjzlnla3BkI3pMRPWmFDiDs9ZkHVQ+BoAq0zJOlD5x/wZC7LOiA2y/3VGrCboT28LjfhzPCo0+U3tFguyfMPH7PCShpv5jaiwypRjNsiyYEKJBVkKDrAuyNJji2flXVp048+0wVsmlGIAuhOzE4hB5ykFjrjxb/O/axpp/NsLrV0bBKshCDWGgEzZN6neguDr7nL12ZeEYU+Sp2eBffhhH1sH/pTg375u78sImNO/b337dei7vRIiuIDVSDWCamofq2de2e8T2cfpPHqENeYhQTmlOun/QpDhy9tVilSBmQJYweom962OJfinhLpIxKnkfu8SpPpSJQm8nv7W9nuE+u6+PyZ/fTW697G6rAWlJCNWnqcPuDzISiD5CTEQG89/EVmigNXBUoCp/nua+H0Mc9XzauQ/IgwmSwLWaVz5SAHVNADIXIeqJ5xMzin77ouaUbembYNCNoansffKj/frwe9ErEstjn2h3BwOmGezsW9pZoglFF/c3uq+Njk62ECqg4u401fevzBrgJxbBHhSKh4QZJtjX3QD/VrNJq26/HTZNBuAs/U85xRM2ulJOTN3v9KcMUCjlg0niLt6ECfSpawHgOUeYYK3/FEavoAvG/hwsm0+qXl1zlr+uyfsmctYNZE1L6/YQ8JQLdyaQB4xslwoOACbZMzKCHwB3dqmgbsChv16RC2XK9cM2Mkk2F3Lewbmvt6pwdjA1o3hqb1fEhS3PohtGHJQfnoRwAX58VRh8EHqk5XGFY0JMXhZfTELhWTNbDOWXmzFDHpJq3A5uP7rSw7/E2Kpfl7dcgjAXjH8/PDrN/YeFb81wuCDU2/KyDrlt/27HLzLPIbyr8xP9eSeNbLKPQMx3+ysB4sOsTanBO8vFchzrNhr2KCS+tcRbPlArYcYk0FeYiqo2xhYDIEFW00wRV/4eaiAP7XH5FfNC2BgwANZYgZC/S8iuyZSNpz48ba5XIyK9SGg9hZhIXDgx/YtsU9ZtEPwA9f1XrfH8gK9F76/+1jRfUjwOJMljgDWgn3esyqXLQNkbZBGGlcwvuUuWRY85qe8okWDtzR4y4Icj/kpJSaMqNDlBs/4yIcTrdFhmxt0adNhlWksFb9BlwZvYx/VFl1uchAzP3d4yRoTtjhilSltOrR4FQOFFU5jBucqU9rTDu98OwJgDdgruNQ+S5MjdnjJUXaLM0o84QFzsjR4G7MyR1S4yUvu8B1tOjH42KHNEx7E0vYWXY55jw5t/gX/MX2uccYafRpscMw1+nRoX/IXXZCjwigGVQ30NVC0gjF6G+MBWRYc1K/zvHCbBTn+wfi/sWFcGHhrx/oePbZi1qhA47Yn3xITJpR4RYseW0xdaq/XPeMnFDgHoMdWvI1zCrzlGn3MkkCP92jS9IJcPqkd2pw7QL4gyxoTzilQYRSzVWX/cIMuUx9SdYfnTFLTwDSuaoiFqDopOWDIGYm0CAzLhb12KVsgiL1C81o3iVFaI163fvCZv1aWQkcE4FE1oIg3Vd/XCTQeEPz5H2J167a/Rr/r+VPbX2kPq1FkZVWASQerl74m1Iv4TzXgtf52OftMLFytn2UBOLfHZ19yCaicdbjclG7CbIzVYg/8PFX3ST5f9uMsYJYKIiMcYkBmz14zGxOGfMmeUNJ7KWelvGoAn8NyP3EsUrtqOweJ7fQINTsEH33ZNHj9KQyk+hmBoao1surGI2CTNH5HIgVU0wCg99Q7VZKHSsauLpsnj8LUmFEAbMH73w5CNyxLDC5ELVuIv96pkT+A+n5k8lW4DFaOjdmpqfQxK6qWYC65v6gYr99/skm0Yx51en193/wEN8YJNuk4eAZWhjM2xkPWTmdhcXtoP2Z1e77Yc39TCB5/BWDbwMflLdt/pmfAyevdmr1GMoAtY9SWxlHYj0BU918Z14w5lj8wYObD7pvL3S0leE+4M8lnZUa+C9xyYMblv7N64v012B68MYbXti/uhwb+LHIrZOfwprluQ8ZkKYAxTDM9Y6DQsL/zr2y7ywZQNE9ZcLbbNgFIXWA3LmfxMbBpu2mkcSWjRJBRQfBOcsbh3FkEl6T/7jNc7l6EomqeeJ88lQZYvtD7xljheMt/V3e7EFj3UZkYmO3V6vadXmD5S0Wt8rYkVc5Yrz6axZL8QbPI5henoej3xki0Y/l30CxCywaRkMOKyFNvmniXXY2f3x52FTNSx1hDa5sYpMwkGZzq1gvcTPquYvurDCN7XoVvNfH8uj9+SrB0OU1sQ/mq7PsVqF1OXHe/ZsUhQZqlz1jFrmT/cwJbQhI297SN2a0aOOD3qPyv/bU7/nlvwfID0kjjSsa6swsrjAA45j2e8jFbHJF10KxHkzt8R4kJFUacU2CLIxug5J6lkr4LvBNQmGURMy9zDj8uyPGWa7yixW9c0j+i4h6d6z5NfmJqKXCp/ap7dRbo0KZLizUmMVPygJtMWKNBnwc8YYeXNtCKc+buE9unEdsJ6Odtvovl7x/zDS+5yZf8fUpM+IQv6XIjZrN2aPPWgdUsC17RYpUpWxzxihZPeMCEEi/ZYU6WNocUOOfaos835XuMqPCvMDSlwohu+Tr/lD8C4Dvu0KFNnwYVRrzkptsD5PiST9zP9BoTSrGf64QSORYu5zc2cIFzurTczOCcNh3eco0pq7Q5pEmPrcUR5xTo0+Dv82XM/O1gA8dadBlRiYHpM7ccAOjTYESFt1zjOXf4BvPO7dHkiC3u8uzfwf/aNNL4txC+noprBNWJDYx5mMNqCnmnOmloIFKKGJwNbDhmhDWCtaYWCUbqH9UX8s6XlL2M1XllQoM9S1hvjoE/9e18Dvw6sX153N8irCtFmPFasiQbqjbWUBZTVa+77+d4RNycz0sBFBEAy2HYX/4GwarpPuT/0Pe3Q6xwymUJLF7VzwJlu1z2HO34tfvHfn30+A7kd4nZpxPZde0nXiMP/CFWP9Z8hozsrsYYs1esV6nAcr5PgbyqfXN+DL6tGIwVU9mt+2J27c/9OBakzfbfoUgB1TQAaF53ib+6MOoInfrvvpDMzIklnGJqySN0JubiwsCG8oFNul9Kkuk+e+PmSlhcO+trkXOgTiEZuft5ztrEN6ftwRsDP/sz3rTXQ+L1Y17Iy0XMToxlW+w5GFw3BubyFgz2iuRfheFWsQG3OpFKwFNjgb6+WzMW7ZMLrneHAcicG3hZPryg2PMhU+pm6YZQcOYYGBO4T8zoWtYIUxTdGuFkOx8mgpN4XdIfp5mQ78unBi57J64bEF4aX5DvwWbnlMpwZsncpcbkbP+b357CEYx3V2L7grd1k/5XhjOIjDUc+TWMgQrdKLBtlX9YkkYaVzI2ucQAXW4TCsip55calwslNYNUlKlI1Xd/31/3K8JQpoLlzKVyYwTsOXNyaIDgsuHT7jHQ8/3ewBodAvFUoEsd8NQBWGdQzO4Sd8XrjyN7nzPpwX4Wn0L+xJtSX0P5n17EfqYQzifa8f11CB5easKp6dVy0DXpJ7rPZZ+xIVaU3iWAlU+wAn/Lm0WSwuUITb0xYUHj4HNednzyfuchkZwAAQAASURBVD2EzCOC16yK1YgwZKvm7GIxdJ31H+fVPiYD098HBFaxPLd1/XVeYwIjBGLLFuXuSTlDGmlcxahwGvuDVhjRokuDPhscs8URL7kZsyPXmNCl5azICgXOY9CvwVtKnAHGthTYusE7siw4ZzUGJL/jNguX3ouNesYaXW5wzHtMKDFl1dixhQpZFm4pcBazITV5XgBtn2tUGDFhjVe0mJN16wDzJ8q6rH+DY+ZkuclLbnIQWwyADV4aUeHv8oRVzjliiw2OWWPChDUKnLMgx233fhVobEOtjA06osJZ4rXPucOz7EcsyDKhxDVn/37Dx3Rp8THfsMo5H/GMj/mGm7zkOXdigFsAq9iuxiDu+2f0jjlZ95c9YsIaTWf+yiN2e/CGDd4xosJLdviGj/mX2f+QYzZY5Zw+1+ixFds29NhiQskZxOfkWMTnL5sCHdNHPOM9jlmQY50RBabsx0MZ0kjjikWJ4HGvn1q7NbB6RqQg+aeWoXELqwVkVTRO/HxKUHWqGZ303FStJhJNhNVMv/Ltq57U7AvVPQNC3XKXQBJqJl43dmamXqc6dotAAjgl+P5DwAN0jAKDnUwjz/+4Phb5RnZMUjVJuaQ17hwy235dvyR4828RFK9a68sG4Anw58TDsGNmqFSeRSipHtbcgBMC0PuQUMfdSpzXXWJSQgyi7hLqxJY/9oLYApB9jNErUNYB6EmHAKbKP/eAsHZO43cmUkA1DYvbwNy7OWOn70sKqsWpWFcO6mUOsQ7V0Niii1xiIEpkAEBm6CBsH37cq7PcNmCPAUEmGdmivrx/Ye8vuDS9YKDdSSNvQKg8WyAeEpNlDuvOZq1BsWvAKWCJU36qPQcAx8bEyswhs088YCl/Am9a65cHs0wTP7MGfqwyDTJR7Lwkm8+LkYrbJNQg2iMYWucIpttzZ1J5Qs3IPkAMqKSvIRhgUYZRLc+sHq7zuGHeiBn51iz8c3Ew9Ww9bxO25zAt+D7n9rks5Y2TAI2p27mVDy9i0GBz/5Tltu1bgEjRwfVIAEMBol0C0PIDaaRxNeN7AjB64I2dE+JmS1ZMcUmPtuBky9nbmgD/AgatIic/zzP+dIXZJ27zcc9eL0Z3/gu3CvGiLWrBeTFvue7IcpRkUflOYLjHzAZ1yMVWyEHxc+JcmR8T5PwCbstY8adi+FtC915Fqbyq1v1fC4pf+37bBD8pMQfUaHOXkHgfKmbxfU0JRa98tZSHIOResT7EwHClQAyAHhAkXC3b1sm9vFkS3Cd4dEGwZbnn/76G4p8RQG8du85DCxNnPUR7hAagPG3FDhabwUHV2R7MfkZgb/i9svx92mBK42rGhGI88OidS+PFwBSIt8aEtzRiaX4hHkK1EQ9VMg/Od1QYUXAgrs81fs1D+jScsdlhix5TCrTpcJvvWHfGa4c2LV6RZc413tKl5ezWBv+Kf0CfBk94QA4bbHWTl6xyTsNpXy26nFGix1bMXJ1Q4jvusCDHiAoH2MCrf8C/YsoqZ5SYsEaFEQuyvOQmDfrccO/QPb4yJimtGHg9Z5Vn/IQscyqMOKXCKZXYWxSgQZ+v2KNPgyxzmhzR4C1Z5tygGw//OqMEGFu16VNqtB+xdG/zPAaKJcdX9LkWWxfoM+hzjRJnvHIG7zf1Wzzmp+RYMGEtBo9bbtdgHrbmHXuNtxxwM2agLsjyjI/4DR/FzOM+DdaYUGAaM1pLTGLgtZDwdU0jjSsVb7F6ZkyQyGvdU8Mm0k8xybqYrE5Wia2ZxDZNWhZpnbdNaPwmJecdH0alfYsEs4XVNE8IUvMaYT6HGv6q1Rpc9nadQ8brp/hYxDJVk1z1mo5TdY8TqQADJnexmk8zVCS5l398jTDI6TEGCIuRqwZ1ch4Lfh59wmBs2f4JwN7z/em8I9/2LjGRoO/7WLo1wFHXQeQsgYzgsxBmCVKQPPwvgbsdf/09wucr1q0+G+EGjpuU3BIwVn25LUHsQ5vG70ykgGoaFicwOwmGzbM5IeHMjSH6eq9mwEEE1OHN3nq8iMzOFxSfGtv0pJWHIpwXVwJzsQjvdwZkxpB5SliI6ibjCScT2c+ig4PTAiafb5gUdVZwz70xvLm7DsDgbjF+jJwxOyNfKI9bK/HCPeNDR+q9yI5JwEDWXrv59akBjrsw2C1eYp8qKsOIQbsYpgoqKYqt5fsfN+zcxS6LBBiU4fX9GsuiA58OzI6bK3bjURdvEF7/Y7MeJ/7qixmjWtFAnoLLcYewv/tBuNlpX/ikaf8Mit0E2Np3EFfM3Lr5x0ZlB0mTIPrQGLzV7ix0IKf2r+iS1lnZPrOZ2M2pxDWNqxry6qwB9+DN/XWIzGeYmrMiDwjDqE6h+tUMDr0R4d+J+qOI6i9nlPcvyA+MSR77b6pwrGFg7Rx4asz+6i9n9t07IRRqWA4ujS/i6a8nrXyw3HBfUO5jOaVJLKPiN1iRKYaEZFZZgvepN53iArHr/9wfi31juy6TBX8t8VMDmLa8abNIPC/fqCZxAR0rDsRmlXy+gBWt2wRrgaZ7x8pvrE48FTdueEX2GeQH7i8tNkeBMC0Xf7+Kc0n8Xdo//sUK44croZHojbTi2D7jSIuGT4lB3JiF8Zjge/2KsIgRe+MlaaRxZUOsSUm9j2i6xLwRsxgX5HjJzZg5+Q0f06Ibsx9HVOhzjX/KH8UDp+7wnCa9eHDT3GHaT/gSMD/QHlt8w8c06dGnQY4FGhylAVFtOjzgSQw62sCq9ZgJW2DKgiwd2kxZpcKILXrx0CX5k/a5xhZHnFHiN3zEDadlTSlwgy4bHMfS+qbL+DUo687UrAGAGDQ2D9MCE0o06XHmDNQsC7bocZOXMejapUXBJfi3ee5+sSOOeY8jmrHvqc6v5CD2glw8YOuAm+RYxOeaZcFPeEaOhfulnjNhjWM22ONxDIx/xDMmLtv/mG8ocM6EEt/wMecUYn/ad2xwh+84ZoMSk/hYbzhYrWFhBc654e8ZUeE5t5lQokuLfOI80kjjSsV7WH1XJMjPO1hd04eJFI6/JFjGCZSUVFwNWLE3wRrASTshKRG19my6JF1gqRrMEcaS3LLXxGzXBHEH/PFDgufrNsHCSGtOKTRVF0FQWTYNH2Do7+1h9eM6Vg8dEg9ejZvUSZBWyqRyYjuqe1uEQa1qwAuQHCSucRLA3PHz/ppgCZX084dYBdb4ub0307DtbbX89zE23wBiQDd/gwD8CuQVTqBzAQODBSbvJD4vHXst8bzPLeGpX7MuBoD3uawGTuPKRwqopmExh3yV2E+upAEfLl84rq1TmY6oHs7iBfPm/iksjN1Z7l/Em6r2Z+a917sIgJ1LFWbOzBp8VgxJUN4sdcIC1QHdRW4leK/ii9U5jPdWKCym1DuRee7JV8+9CYs9W7SXuxcGVjo7dby9Al1jtC4Tw2DAjuNtfZ1l0ZirJ618kAOMbd/5ATagRUNpdgg3ybt2jtWjGeWDCztX94DN6gbRg+uPhjG4e7KdZ7BbZFSocLKV53W7FtsDVPsz6MH7+wNe79Xi5FvvRKEb5oDGzeEPJtNP3oQdENBrZk0DRJbb9hmMmythaMrYwNqiZB0NAnO1FaS1sxvwulmzcxPgHplMd1Y3j8elvILSSOMqxhwrUL0g3jw4hQYc1jetKPLhQ3FjoUvMglw2MAmSALUEQHnyMB8Kzi0HCXuJ7eDMfEmkqoSGTQ7yXzsT3aVb1f4Msj70SQ2qBcHDSt12BwJPtvLxdNPx9kqQrC2IWahAMNdPsuRdip9xCdZMQG8OAyzV5X/hjF7PYTGjU7Iyl77lX3F5WquAUS0oukFRwNxtTSTLUiNLwwF0z0j4PMeMBd/eya28fXZgBW7Dr/OubW98b4Vy98LuWbr3zYkB3/GDFYpPsQL+KUH+9gtXR3xq28n/2l4fPQzHHu83jTSuYBxyk3dskGXOY35KgSnvORAHNrTJhjHZsCpNibehUeecOXiq14n1OKHEO/dmbdOhwHk87EnT6d/S4DbP4wn0Dfq8dQn6Fj0W7n1a4owjmjzh7zKiwmP2YsuBBdkY0J3Gg6pyMYi6xREVRrG/61uu0aDPP+RfxIzWBm/513zCEc14e2KPapjWUaHJEU1GVChxxoQSN+jyEc9ocsQxG7EovkWXFl26tMi5XUGFER9Pv4n9ZCuMYoDZPGXN31Xs1Rt0Y5BVFgw7vGRONmbuvnQ2qYDnBVnu8B0bHMesU11rWTKsMuU2z31Q13rMBC4xiQdbPeBJ/HfBP+Nga3BOh3YMkp9TiIHi93yoWBppXNnQQKcjTGn4BKs/FlASQCaATQxWNbPXE8994dtSg1asT63t5v562SoVCVL+dQxQlH+q7JW2sRpF4GYOKMNSAKkk678N3EoCP0/sS2tjZ1PmdW6yOUgCr7LcEzlKHv05TAGl180h/wd+nDvOGt0nDN1yQlcsiZd9QNKX9MDfs0Woj0UC+tqff+XbTDb3df6Ec4o9TwUQn/hxlH07qqUh1NRHxGpQmjD7tf994sck/1z/rCdiuO7aYydStZ748QXoJI0rHimgmoZFibD4h9Bhck/UzW9POS5s2LCPXuL5XSwRLbAkknVG5bYDdmUs4TkDaVQrQhlK48gWojK1ltfoOmHASM0ZWWJeQuynuhpdsHY6Y9xcMVkrxEzJ6v4McsaQjZpQHl7ErNly74LlNryrO4pas2N+s7MOU/MXfVc3Bmq1P7PXuKXBsumvw65VUTc37NzHjRXYdqA2Mr/WqAYnu/l4wNPJPTsOgQfTbIF6J4oHZl0/GIbhKpKLjDG/1p4D0mNnYRXgdasWL+7L3YvQmXTrhGXDBlvNXHbxrl5k6qB5+fFFkJr453lyK09BwEZSllDFPAsPoLSYxOcDto+ThgEZ73cGzLMw/jD1DEzjioZYBTWCTP0QPvziTQz8LVWEzWH5+8QMzIwKpxqhuHRWQfXRLGZMLssGkHKfS4zPonKZ/JxUaIrJ38MK7y3iwjLjPl1iis72/HkBh15QVg9n8STU8pOLwHRQMS9QVoW2GjZicQpMPLTcOt5esff8hMveqBrWIAsUz0UAfEUo4p9w2Tca/1nFBgHqcbcsyPRg0C4y+KTI7D5hkqy8qHJQfTIjL8YIGHP0S6g+nYWCXPe1PjEAXe5f2PWUL1nWP4OGnXP58MIAaIHICUlY5oWDvacQfWKvKR44gC7vrdQrK40rGgPqMXgoGf2UAl1uAMaWlK9qgXOe8RNe0WJCiSOa3ORlDAJmmdPilU+6n6Op8atMnbV5lJgiv8or7/K0eMVNDjh3dmmFUcyOLXFGjybf8DHHbHCTl/xD/kX83pscxN6sdgwLjtmI963BTTkWrDLlnNWYfSv/VvmJnjoo26bDc+5wxBYjrCYcubRfgHGWOd9xh5duI9CmwzX69NjiGR8xcWbrO782L9nhm8LH9B3Y3eKInDM8ezYqKmaRiiVrMnsDhc0qwWwFKox4wBMe8ISX7PCAJz6Aa8pLbtKnwRY2eEqA92/4yK+7AaAtZ+SKnfoln8SAqwDaVQeszff2Tmw70KDPbzBf2Ns8j8HjKQWOkxKqNNK4SuEkoGVCGp65h9UFVaxmkEpQNZEaqkmGY47gyw+hwZvFwMA5ZhsgJZPUOmJAnhKUkQI5I1i+8OfV5Pb6KHOPAI4m1UCSqOv4VE/tucWAq7Li/cv7dDtxjk/8OAQ+fp44bimJav4eAbVlTCW559v91I9hmzAMdIEN+monnkvW5m3fb93fI4WWXiPAtZu4FjtcsqCa/R8IlgQLf/+Bg+Tb/r5PidWqJ30CAesI6EBe1oWJ82Lon8WBg+yf2PuXL6AqiwhZPyQVVGlc6UgB1TQs3hF31E66nkzV4TrFhhItRkHG0PXHtUBVkhvD+90BURmy8wtmZXjzybq95wTqB5FJxb/2/d6CwY5nKLGipsRm1Zm5M0EXDgJgi/n8ibFFV6OLeLATuGfgESa/PbigUzbtebU7i6cgZp5CvRsxKa/E0tZrg9N4qvSISki6foOpDGdk+j60SXYIYt96rEYXsT+rruWkXKTanfH6bo1Bu0h2vjBQNWdA5Ob+6SVLgZmbds/qblEQEUDpMuT3gaoPfsk50Fo2lrCSeuTDZKKWATznxRXyU7s29UeRTSd3mcdsx45Dk7Erw5mx0CR7rjoDq0csJ16NZgzuFs1WoWHWAdX+zK5933xbyyepZ2AaVzT0f/8FwcC/QSh6y5D5U+IprhmxEB9hhR3Y9+uUwGTsYPnikb0v40Xyya28FWCHwMA9UpVTEqz2WHKkZonbdsSm/vLKeuo5An+dvKL8/bPPCIMB9BrJzXKwfOjbfEEYSqB9yl8ay63lYYLNqWJbMq3HhEmye37dXNp/su1M3QeJa94ntl7hxB/LYrn8hV+fp1D/NqI0jgyMbvn+xAaIEtc7aTNQJcji7vm2XA6GCuTPYblH8N468X27V9esSVgAibEgawSCD27xEfZZNw3cped/b5JGGlcy7rAfM0273GBEJQYIVznnnFVKi0kMsml40RZHLMjF4OeEtZgVKYanDVOac8x78XCon/gU+CwLNjjmjFLsuzl1j84RFW7zHS26fMPHzMmyw0se8CQG/DQo65j3uM133OG7mA07cYB4zWXr9vtZ/Nz/i/+Ql9xknRFvucYZJUZU+AnP+IhnbPAuBjOv0Y+HXjWdNStfVk24hzA8qslRzHLVY/JFFXB7Z/odAE2O2OCYm7ykQZ+mDwE7dsawLBjWmDgAnPPrZMDqKlMe8ohVzmMmr6wEgPi9Lbr8hGc0eMszB1Zl0WCgcYUSE1aZxqCxrAU0eGuLI1q8YkSFLHOO2GJBlh5b/v/oOSMq/Mj7/5b+p6aRxr/l+AH4zIFAWRqpTpIEX8Oo1Ey+j9Vhyaa1QFAwANLByJkYkmPfRnL7PS43qcV6zWK1zbYDp7ewOqdNUP70YXaAAYr7BJ9SAYED3777xtOFzKe/9bwro3ji/+RnKoukcWK/qvf2wftuQSav2lOgtMDXbuL6yYZAw7BeEGauCJjVNf8pASCWR79A2DmmHNW2kvVsG/I/w/CLn3GJuZu5RSA6PCZe81dkZ6Bj1BwF2RVkw3Yy277fh1izvgkZ1Y+yohoTAN00rnykgGoaFgWYuD9m9SFkmsRT7qJ72AKxO4uTM9smgwRCElQHburDob5OTGEWSCq2adZBhQK8N4iC74q24c9FZZtQHyefQpgyT8EnbsuPRvvRojiCO4MfYun7m5Z5IUZ7Jn8t9y8sKa77RG2XLHx48CbQ+4fGMtWQKQommT/Zytuiuwt8a36u+bFP0hbTNmdMXIZwvTOk3oko71/QybYt4cqo3GORc6AUG0DDlPgmsFRX0a0KTm7lg8G1mFdTYN98GJnaoK9lCxa5bLgpJgGUBeQWBrpmHIieZ20/s7LvI+fPyatxbMzcei8yf1i/sc4EArWcCZcAidNI40rFd4SCqeFNDpewn9zLGxvxPsG4fwr8PlZMTrkM1IlV4NYftOy9s6rJwqu/nNnrHgBVKH9xEdj6st1Qh1+NmgSDPHoIs0/gzWfr9rpbfg5iC8irCntP/oBYqrTMJZ6PbNuZR1jh6xYGfOXvLWDF4z1CkTsmsC9kE6CiuEEw9RcgvANsWX54sXvdFgxFLF+rQJ76PnWeEAz9d4BDKH5JuFc0fbienx8N3/8usf9qvACZE4ZZSeImpkAj2CmMf7ES7lXy1nrFZeuCOQYUl+Hkp94g2/ZrK0+vFoG5khbNaVzRWOOMAlPWmLDDS9ocUmHEiApdbrDGhG62FUvLS/76DY45Z5WFe5zu8JISZ/Fj2Zh9uUWLLiXOYml+iTNecjP2RDUmZI5rvKVNJ2a9dmizxRHXnJIuX9XkIKUtjtjgXQxOdmkxYp05WV6yE0vTb3JAiTPu8Jyf8IwpBV75NuSlKsCywzYFpqw7G1P7LjHhnUv7K4wSXrBnTCkwd6r6gix9Gj7c6owJa7z1YU4AnUKbrvuzlnyAFsCpA6DyOX3GR7Gf7NRZv2069LkW2wOsck6XGzFr9i0N3rHBhBIf8YwKp2RZxIPCPuIZIyrx89d4ywP+igc8YUGOLAvOWY1B12v02aLHbfdWtcFWZzFQnNzfFkdkU41rGlc5vsaapLI1kmpIAJzWWTgx6QCry6bAzwl2Tk66mQkonbqHpyyTBLypjlIdqbWWpP/445qP4VYEUlBJjp+/4cey7ftXLaN6JksMcs6+9P1+TiAX7WN10U8TxyGFEwRQdZtYlTQRECsVlWT5ssTa5/LgLNV88lZVTVvE6lT56Pv6nilWg8o+SkSwTuJ1rwi1uMDksr+m49v5luB1Gvn1cQbvUtcVyMjWQMcqYpgwCD2vmr2VOD63+aNG+D+StOhL48pHCqimAcDJd1BqEoaRSIJZdRmqL+KXShRDG4j04u518+esE/w6lcRd+rnZOzUQQrJHLTZ9wZ/pO2tJoJ8zM6OWeY/GvoFb/t4XDrLmbCL2UgtX71At1bkqmhx25gvczY55NxXFMCKxrzpMyiuMd1Yu+8no9X7DG7dWyAwNFFjKm/RnUBmfBonv3Bb5g7tFio+5PEG6CbfHL0I3zQerFIc+wCphyj3YKQZvQohZZpkxHGW3wg3KbQeWSuBHxAbeo1rehnq572C0i92YhraPzGO/bgKMMaAlPzYvWARmz/0cCm7lIH+gPXssP/DtDghyjTTSuIpRxb5bYNYdPc97U2MdZlQUFoGnljsGdxMWIjWYuex/pk75U+Lv2JvWOvmes/RrxowcN1fCgKgc1pH3rvbMi9bZJwSpeQvYgn65Tv7XsPnFafBMhgAk7hDUA0lvrKHbE0wT5yvG60PfxpAYfKWW8Jx+SgBVtwmLiTIGuOb8OO4RM2hnnxEG3RWgNX4dCkn5yorB8PtcZjEoL8o+Abc18DyZcUZutGfbGjz0z0L3sAcEoLVLYK66lUNc1A4JALIYD77P8c5KLIVDA7K+sH1VD81OINMH7sLylg8MO/TjF8idRhpXMCR773ONv+IBXVrxBPiP+A3nFHjObSqM6LFFiUkMeLbpxB6j7xxsa9Jjg2M6tJmTjVmnR1hn5JwCIyqsM2JBjgb9GIRddyB34X6g8v/UcKUsc7cA2CLr3qTHbFDhNB44dc39WAWkGnvWvFLFrm3RjVmkn/ClWxissXDwssSEPR7HVgYbvHM7hCk5FjFwPGWVpqMUBaa8ZIdj3oul8sdsxAOnxKDVsKkpq872NKbuhDXWGVHijK6jGCUmMUN2QZYurdhXVoBmz31dcw6abtFjh5fx9f+Gj5mwxhoTmm65oOFaz7nNX/GAb/g4/twXZJlQok2HDY55S4M2nXhIlawUPuYbVjmPAdcuLZ7xUXw90kjjyoUDj8s+AcRTw3ZMUCIJLPvt936NNXsTKpz8nr13KQuipCJoG6sf5MvpSqYYINS+tP0ioQEtz9WIYP8km4CvYdnFahl5yUvu34X8LsFiSuof1UQvCL71STBZ3rKPiRVOpbr/nTyun/nxJpVf3xIrrOIhX18SBjkJvJ3CxIlVzLHaEALbVnU7BPBSte3XiWsmSygBoWLTypf/W3t82fdhYDr2OsETt05MuogB732CekzKsxMCYzZpbaWmfULlmsbVjhRQTQOAtSLBq0XMJTfFjjwhLZvuawcxo7Q1fm2dtROTRUY1l49rgXoIPE68r2CSdHmA0sGm1z+ahYTVw/wEh87U1E1BrKRbvr2hTXaeFrBENvBjVPKv2nZyCwMbozoM9gykrO7PQpeobKzLcv+C8tOLwGxSt0mL+6G9ZtyyxfWkvAKR+cKeF/Ph+hVtcf3eIArggvsbLnPGIP1+Z9PAydpKmNJdNNAicnZcPHwq54t1sbj6sPvoB5YtbCq13yAyTwhSDmearkYzY716N/W8mLfkrpt23YBrsG2fredNwiwQPfLtqetWMF/bSHKXqb9fn6eYWKlnYBpXNV55fmoBA8trGXW/8QbNPez/+o59n+udyBisP88HC47IhxRNsaJ1G+h5Y0ffLc8j5YMLKyDLDsLK1xT3Wn1iwO6Pf1CPpWWv79Z4vzOw42i4j6e+/26/cUmWtU0YKODHQtUAwH/z8L41rASqanEgJq43cmhhAGUffvysbtckAX7OJPeSx1bBfuYP7BhlX1IUyHqXy8OpvBEz3lmxv5sYiCkgtGyP5V9xWZkwtG3Gli3ygh3Y+c/uErzDfhrOPW78SXLm94F4MTS3zz07v4At+L61GVgOn0Bheh4WHl+bp3WmD9XPZ4Hl2wde//Z/sjTSuBrxhk3eco0NjrnDd1yjH8vBgRjAe87tmFEqebwYo2tMeM+nv4ud+Q/55xQ45wF/FbNVV5kyYS2Ws2eZx8OZ5EXaossqU6YUuMb/m72/+20sT/M7wY90SB6+iBIlKsgUqxgphRShDDlViHQGOmurujttt+EG2pjB7mKv92ov9nr3ZgwsYMzV+C/Yq70bLDC7HqwxbcCD7p2yXe6u2koj0im3chSpCCmlClZRSQYpUaJI8ZA80l48z/P7Ue1dzE1XY5RzHkCQQiLPGxXU93x/35cukWaeWllSiwoVWo7kM0WqqWqH5MlzQ1WJ3QxjpE5KrPh5ho7ENEVrQMxnfEFA7DJBG9SJSTEm44jMNtV75+yvz4US0IfkGfKGZ66oC0TdWqZDl1UyRGxw6mIGAqZ0KVOjyTZv1E5foUPZqVMDpuxw4J4Xa0HUmJAOq1xTpEyXQHNiLb/VCGFTF5sCd/YamBrWIgosAqBBnSJ9xoQudkFI5JCxRg70KNGkRouKks4nTqWbTDIPbn6IWOs/h4mKXe6+xQtwLOaogjgfzSljRJ/dE3f1sRYtZATfCg5vcY44AC2HdDb//Zr/tHy4hovnc997qs8708+f+m04W/tfyueukYGPEVxmWNGyVE1MZd83F5eNkY5LCGaL4c7uic0Kb90DFrkE7l7VfVjkgV2zWdVqAfKf4aOUTIDwGh+l8GN8h4EKllxJlsZOuftyc8ymEPz7MYIL6/LYuYqegy3Ab+i2/1yPwbCyLda39foxc54FRBxhkViG/c21myOZ78kkhGoyAKSfwyTSVSt7U9UsldAyUsCpMq3QI07NO5tBWq3+00CUkOefZ8Uy+xm+QQ95TNrKXvRNevQxnuTTG9/REvz640d895m8a08sE6aNvCGdCxmQVZLV4bQYr7SNRIk1DdSq3hz5she4ZzO4s1W/WO2w+kdgsgLvP15wK3GFk1sGS/OSIVgW4rR4OROHoCtlc3ZTn4LJmpxXfykNTfjw1Xu4kviCwca8U0F1VhbkeutKISfcJ7nN1lqWYy60b71tw84lq69XLNeaFIz0j8liayKEt6muKvKY3z5dYbKoRPNMXuPg8bwnJ+z7yLWcaMZu9q3/Plf6+lz8//1VSyaZ/3lPQVrliYAlaC7J4gcVyRxOn8vXtOFqN+2zUt/C4q9mVN0NBBxaFqfZ3k1x/ljI2sK7W686bev2zYpewZOTl/CDL86d0vSDLy5l26ocnbOc0CvcwtPopZzHyGILUEL4HS57a1iYZyc6kPecBTnuyaf4jGwDzeoguNOV9R80zr3dS1fp03vItTpHQO45Ak5tUWwFUS90Ne/6HM4/zvpFLH3fLuzpNblCcmdN+X6pGdEtfLyAEbeXwFP48O17t/BEBfi5HpflTIMjUSef6nucgfAf45t0TSmB/J27K0gczN1LfR3R0kS7YfhMM60bOEvfSH9PXHlhMsk8sDGLd0wg7fSxEJp5huS1tX6VLltI7qeVJlnOqhB3y66JvkKLZxzSZdUpQ2V7NxoXIEVTDR7TY5khOULG7HDgsj9X4y41mnQ0NzSjhJ+pYm+0vAl8XIAcad6VX5nStM+CK3gKVPsaMtYIgCEhkVOzllXdesI6AGMy5BhyzJbLlLUc2T0+YUxIRIY8N051mmPoroVdswotbtQSb9fF1KI35MkwJmRMjxJn1FilO5P9KpEAR2ySYUyOIUPylOmoynaBnEYoZIjossoBO2SIXHGU5dnGBByxxXZ8yDonVGlrdq6oU4v0WefElV4ZEbzOCSlipgS84RknrHPADodsk2dIlbaqdkN+wG/+tn51k0nmb3aGCM44gRu1qc9ZTnsbj2EsI7OAYDLLOa3o589xbkbDmXOGP3bx5UmmSjVRTAG5v32u29EFY4vnI57Zj5K8dxYdoIvZTrkZIEpMgBSUP9fvG7YqIxjwHT7vdaA5r5cwsdgDu/czYtSisAZqkTf+oIInEs01tTHzfBs1GFFDsG9Fj+WE+yWmpvqsA3+COKtGiNPJ8v6beq0GM8en52ucBmWEaLaf2fHY66uZuHcjfDEreu4bONGAU53adbf79s/webeWu2qv5aVe42S+F5MQqskAMHkN6YKGWhfg6pX/2VxTlZ920z7FBT8XXt86FeOdvqGkz0S1tXw+ApSc0NDmuxTyxmjqzwC4FnXR3cxK3kRVo4/P3/PB3qWoYL/GhTjfPZbnDgvzfsXH3gjNBmCrTyuivCTAWejvdvHZMUoQz1l24UjJULUzpE+0jGpJzyNQEkSzS+e6WkwDnthUa+7V0zR3Sz4btROU5Y+vrcBVRBE1qsjN+aP2Na2VJVGp2mqljdoMJnqzPmdh3RafoJbhO1WLTtZwb/CBvWax5qSGeg7nojD9wTd6xx/q8S/J65Ef3LrsWispm3st1yltZO/sSqLZh4ckk8zDnAioKHE3lfcgW9SIZxYn7h7D4p9O5P0swCso2wh5pwTs3RP8AtVbvD3qUhah3KKJgV6LB3kK7MH7+oJTb949Rez/a7rPE93mt/hFF1ONDnyMSPbnelyh7tMsWEjZX+Gt/j9XJWf6La7ldGSRKrr9uV8h73Nf4ZWeLTnfu138+7Duz5GhlvVscSADOfaVL0aODOWlnovdBGzoxwtcw27WAO2CHMdkDa8WaCOAV9WmrtXWQPpTfMYr4l5wpOgAXyrWwseyFKBwecucZmnNmRIiUjdEhNwIzSopyvKY48ITOfZPSCaZBzk/5Lesc8orPqVPkaNgi1At4aKQXObf8PdoUmNMSIkeZbWhmzW9xAUtKnQp02VV1Y8XWkhVokhfqceIJjWK9Fmlw5iM21eDOn/BH9KkxlfBJ45cBajRZEiOG/KcssGQPKdKepa4cHb0Ki224iOmBKqaFFVrmQ6rGi0gSs3AkauAU9DeKO0bMnbxAAA/4ZcMydGnyDZv2OTIZcgC9wjjG80mzRBxyrojGkU9KuVRMQEhYwIlKbc55IR1upQp02WNJm1VivYpssMBx2zxL/nP6LFMjSY3Sh4XuZYc1Ghf7fo56jSo03BxCms0iUnRokpIxGGw7crDLEu1RpMpAV/ykpbGCESqzjXyekzI7/GFiwOw35EuZUr06FLmt/zwd/r7mkwyv7Mx10wBFi3G6PHMZ42Q4wRPeL5F3EcWS9dEskntnsoEMk/xEUcAlzB8i7vndEIiI29NGankJXA/n1UdRXMF7uMbI/1+H8F7L2ayXjfwopwK3qFp5OQA0nX5edoWiy3f3rCWqTavEaLyJR4HpvAqVhNVDfDkqMVClWfO4y2CxzSDn5cISZnFW/UHiJrX3EJdfW4X+DM84WzXqQn8FO+s/BrnpgW9piYGWAKew9zLmW2qyvXu53i8t6GPfyE/m7P4Q1OufoMTYtg9Nk9JLP/fo0kI1WQASAX4G/QIJqa6UQXQnOWKLiBvNCE+JLoqJU2tlSVPbi6qTV0l/5M1ec7cSJqk33+0INuPNW9woMpWJSvSAyEG50w2byrMp/KcyIg/G1VSzb1D3tRsZUxJxMXXE2/vLMwQw5d40lJXEUc17gdIK1F893hm20bGmj1BScf3TxeEEBgImQJ6Dm05nift7+SPwlPure5l3ypRocRrtqH7sFU0VWuNClrEZaOqNmfFsCy/tpAFE10x7C6pzCwUwvvOiN+pkq2hkr62apYS4uBiRS9yE6f6Gr3AZ+Xqebk/7nYt8iSTzMMcJdKyDeT/gVqiGEH2T5Fc5HPNH36BB54NfFTKNc7yP/cW3lcWPChW1cKdEpZOlT+rBm3DN5UPIQWPmtfegmSg9ht81nUFeKbPq+CVrWZlsnxTs13p/2/3/mNWLSMQL/Hv81PInujjWrpty5CqauSIEbmah01T3+839Hx/NfN1A6fudNYwVXw4IvkT/f4C95wGVHTfdq1DeV56D6/SGMi1GLxQaDNAFApm+/pG9jdakX/PXepiWFsfZ39nPserR4wIt5sBe68z4tZuFrrqclCwPdiY5++8/ZarJ2laa5aFkkwyD2ssO/QP+QsyRMRqBepT5IwaJS6o0iZDRIWWs4abqtNyTvPcUKZLniEpJSp3OACgTdXZ0Nc5IWDKVEnNnhYaVWizzolTlp6yrqTjlNLgkiptp4it0XT7L9HjFS85E30t/aDo9p8hYkxIaobMtHNoO/AlpOwNeWfRtwzXVTpOGdtllS0lUk/Z4AVfscs+NZp8qcHUQ3IU6XNBiTEhmxwTMOWAHSUvc46YNVIXcPECFmMQ6rFu88YR1/+76L/l7/FvAGhSc8VYVS3jOgy36VPkmqIruirTcerXWRWqnJu8VoArl8pzwzMOqdJ2EQeiJq67zFcjnEMiVzZWoeXiABKFajIPdor4RXEQYg+EgLMs0cd414oRe5aXafdplsv5Er8gfaKf6zD8BRBBvoDPFbX4I7PNm5DlGo/pUvgcT8Ulkyu8Rb+AOH6MaFQCd84W/V/j7+2MfN3AL4JbnIAVZJXxMX1NhJA0bLmg/27JcQz38EIidXy5AlG773yMV7lGcPcKf49pJLJd/yZOqMWefm3364ZpLX/W1KnPZ67/Pp7gtPthWyAHL4IAj4tNhaqYf+6p/vydHpcRs8/xUX62sK8CCRcN2JrZfjLfi0n9Tz8kmf8lzD+bSGbpsA/5PNxlgA7M/UskL6SPvOGkkTeKEZL9kYI4hOBmws3ygGA6R6Z354s+cvisEJA3pXlg6Vpk8VlV/NjjlyBOQ3CjP5stZFqdOeB5YAKEt3CDWxWLSxAMIC5A0AGWgbEc511Kbp5viily3ak8JgJugQyegDCiwewVlnGi25+/02POwd38zDHOw13xmrmhbm+KHOQ83CzJPrmB8QdzZG7u5Hj6sp1xbo5M/05iFBYuCa7kWk8LEMQwd6vncYtfBpmXaw8QXEO8IMeTutJjnuo1SsP1fzdiwVbnzIpgnwfymLsszF3AdBVSkbwOd/MjAv1jOtfX/edgmtP9BHKMqYHuawQUYTT5//lrlkwy//OfDJJluqhZnTPqgbs/1gUSUwkYCDxBQNRzicKIU1o6paDtUeHaAb7Jx2Lrn7PV+Bk1gSM8y/DRL37tg+6rshA1Z4qE2fcoU7e2uF88ZeqG2szjR/hmUwP13+o5rOh52L+78vnqeZri5USIx9d4QA8UmrfyHqK5qkRyrdJXCBBv6LZifFsseiyv8OD6Y1xmLVO5hmkDsJb1VdHnGmlsqnwjSy2bbEMUpQZ671LQ/3Gaxe7ELQxlTTFSQ0CuqT/sZsiUDz/GN9oqmc25nlsFr0zROIS5BT3GV1B4KrEFxfIE9pI3xGQe5qzxHRktihJLvicrrbl+hwN6lDhmizEZMmqZP1OFasiYA3ao0aREjz5FanFTyjURFeMzDgFRORbpU798S3PpEdcUHRkn1nGxtGcY06VMkT6vCn9XVapimzfb/VDJvV3+ijZVl5m6QJ8aZ7q/DGMyrvDpgBfsss8p6648K8PYZbeG+nxT2oaMaVOlRpMWVQKmjMlwygYhETmGjuA94DN+wi/4UbzPNAg4UzXuNoduX5JLKiRqiR6rdNlnlwxjIjJq5+86YnuVDg3qNMOavkZDmqyxwwERGYr0CYgp0+E1O+S4ISLDKl2O2GSHA7qUNf7AX2spDMuwyZHLV5XIgDLrnLLHixklbqgfGeo03O+HxRKEjOlQZp0TRuTxoZHJJPOAxhSlET5a7q/b1+0+ywg+9PNrBEd+jOCs1/hF7KyoROeU/Mv/b/QxhhFN+Wn7rSD45R3eObmBx3yfINizrQVT5jK0XHnDjRaD9AleeXmFX+g3DGbY7SkeB4HHrUZQ2r28Pe8xTsWat8cFepxP8YWjswvXtuA+hTlT/drxWPas9QAYhv0Kut9COfDP5RJPxoLPNDXH0jk+ZtDiGox0ti6Br/X6WOTCbISTPaes18TIVXOZ2TUzsYJdcyPYLcbglmS+J5MQqskA8E/qsGjZHnajDvB/koy5zEj+1/eWFlg9vyYKoVdYcmUA1rC60p7yXUX+ihSjPnEqoBVUHRAtX17SW1qQ8P94yEVQcjaxgCk35InIqO1JA/KjIfnBLc2VFcqDcxqFHxIwVfg25lHzmm9qH5JjyI1mT4XRmGGYd+A+YEoqjmkFVcp0SMVzdIKy7k8AvGROpShdXtNcekTt8j3jrLCXrbDCatzlJFgnRcwaTVJxzDQIOGaLMh1K9Fg+H9FfShMFIaXLa/pLovAcE3qlxmBEv7DAKetsx4f0A7FOtamyRpMeJWqcEcYRnaDsrk8x6hOFGW7I06PkbF85hqxGAlCbYY364De0Co9YjbpEoWxXAHiW0uCSODVPLyzRoeysazmGjAnvvT5DcjSpOfC/fD5iWJinE5adDa8Y9TkKN6nSJiLD4/P3TAM4nlvmn/1fkyDVZB7eDP7OHIvXd6LYfo0P/E9Bc2WFH3TPIZb81MX9iQNPd49FIZ++VBBbR35muakbYtkfZ+dJT28FDD/WnzcRQPoSIWYv8QDvHTASVX52Dw84P8EDasuEGuHLCrJ6DLHklK40RrKfGeeBI1Yt/9ns7G3u5VvNvdJ/WxaoLci8xd80GFBfEQVo9pVEAMx9O3tx8eH+4JXvA73WeixpA/EDfP6UgXiLOakggNRUuAsIsWvZp08kcmVxf8Li0sQv7HXxNw/MXP8qXl1QAP5IssCHhayo8Wo1fnzyH/12lnSRro2oRF7o8Zh6I5w5/8QLlMwDnRtyZLhVMlIwTI8SERm2OSQgduSeYQlTeEaEmmEaO5w4JEeKmEZQdwVFMSmO2SJDRI9lUTwuHdFjmSotLiixwwH5aMhhuO1wZ44h65yyzy6nbLDOCSB4C6DPglN7WslUm4rLGDVbfI4hb9h2VvVAMV6XMjEBVS2s6rLKzuA1+4WPaVFhhwMCYiVbx674aUyGL/iMP47+jEZY12MpssURRa6ZBpJbClCN2jTCunt+y60c4cqtLPe1wWPqvHPnJKg7oE6DLmWXnxoy5oY869EpnbDsVLQV2kqwyh+Jqq6MDcmzzilDcowJyTNkqirVDoJBm9So0iLDmHw8JBfcOFLaCrSecaj5tRcujuBLPmWXfUCiE9bik9/dL2syyfwu5zs8HgFfaFnG28WfIKTkAoItjBidzZY3S30X58CcM6ekWfjtXryC4BIrDf0YwV1G0tn9upGYNQRLvsXnoBpW+xiP7doIXpqNmQIRC7zV7TRhOBA8lraiKsOZs6VMRoyCJyUt2mpW6QmedTJHl6k+R4gz6Ge6D8vBt0iBy5l9G1YN5Gd3fwblp/6YHeG6BKwhziRzjll3y6yj0hb2bZtGXH+k53mt26rgBQ0f4clSZs7FlLR2vGV9/Qz7oq+Dub4SFu57M8lLmYzMCnIjuY+8Eb0AmmJhP2WdfCigLiJDuHTqSFJpIY1d+2q/IsRcnyL5cOhsXLG2kQ6XcvRY5pR1ykHXAS+zGxmgszKCVbr0whKtsMIyPYaFPK/4lG3e0KbCAn2ovXFqhBZVIQPDvMviqilJmQuG5LnhjBrloEuPZWKCezcJPZZhSUoN9peesxUfcRKsE5MiDlKkiIkI6bJKMeirFUtuCn7JT9hd2adNVc55SZpphaztuuvyplB2pQQnwTptPWYBxavaGrtGGIydmiMiA6FY6ewG4JgtBcktxqHQy0dskSno+YQlWmpbM0D9rHDoSgjEKrbKLvtq3etxs5DmlHUhpRkLkA6k5ba3MnXKAyOu+6FYvFpUGBMSrkg5xNlVkaSZKpmHOIXDOw/ozP6kAOkHJ+cOTC++nsjPHmuuMZJDzRKc17Ks7I18NpSucs+1obBy65tGLfzfVAaq+naWK1uNfwdZI2BNJWF5n+AJwnME/FmelWZB5+sjLwoyQImc090TteobMWoRBi3Zz2JrAgO4K2seVyzPI0L+TphSdyb6JKvnNQ2UHLV82Rl1K2aPnyVpszDYnadwcuuJ3nM9V3u8zc/xStWKXjcDty8k7mTx24kvrTKga5YtjWXgHfBHeND7cxypmm1ANhix8vMRH37+3p+zxhTM2f5DVdWO8PEATVUhJ7auZB7wxASMSRNpvqipPLusUqdBTECTGtu8oUeJUzYo0ncZmkbgVWm5Re8jNslz4+z7FdrOTr/NoeaqXpPnhhYVVYFWyIViQS/RI8+QMh1OWXeEqUUEdFglz5ANTmlRcW30RkRaLMEu+24Bv07DPd/UqWNCR0J2VMXZKywpVdinwWNW1TYfMOWUdZe9us2hW7iOSREwpaOK2r9il5d8SZkuR+GmK68yu7xFHDRZ44wa65wS6huJbQsySt6KzM0wMPgohSjM6OJ43r0WIjLA4dYeyw7DB0yp0+AN2+48yqqAtaKxABEmbHPoMmJBYgbsnkAUxBFDcrxgj3VOAYk8eB9Yc08yyTywOcN1STjr+BNcjwgNYADDS8h/pP+2BW9ztFgZlZGCC3hMV+B+gaUtYltUgC1yW8anqWMNV9kC9Du8erKL4FnDd4YLRwgJvAJ3bxXLWIzekh77x5A3lWZ55ucxntBdQbDXQB5/j2Q0gtG+Z4Qv+AX0Nj464V/pvq1ENYvDsndvYc4yXS1CYRH45zBnqmFmzs1UpRZXYE6nJX1MCp99/5d6nQyHr+CUuldvYbE2c/6Gzwcz2zJ8a0S7vc4W+WBOKstPrej1rQK/JZnvySS6iWRklpEbQctA1dzPITmXo9SnKCAyqDsg1aME4BpFb8hzyDPKdJxywQL2hVy8JlY7Vp6hkpopBYNCpg51tbtK25GtgFMVrNJ127+mSIM6LarOtnRBiQwRdRoucysidJYlA/pD9fILuRg48GiZXSERwTSmyypN1gBURdBxq+99imQY02OZl3zJmNCdc5ey9uDmRa2r5G2ZLn2KlOlQpU1ZmY4LSu6YrBW2S5kUMcdsOTCbIaLINUdsUlNgamC6SotjtlwzrBU31GlQoUWbKqdsMNVjzDOkS5lDtmlQV/I4cDcfZlUTG1vo2nNzDF07r11PU7X2KHHp/nonk8wDG8tfNnsOeDu5WXUu8ZaermSapr/G5X2ufDPyYDISknAyo/jka/1cAVqaaVzHN6qaVUnzkHmBX+m/0uI5I0bL+GZ6gBRMKsgKekU+slYqMIWrH6f57YsVB27n2pob/Xrm+KxhtgKjJVzeKCDA+DFicTIQa6Kquh7Pgl4Xa4LV0oK7Mr54wc7TbGNq7ypc3vrm09kSgDre7v8YiVd4Ied790TPf08f/+caOzBLZi4h6lZwKty7x3hy2rJa7d9tfNnY78t+3n+8IIqThm7LSNiC5tqW/TUni8/6StaWknmgI8VGfdpUnbF7SI4aTa4pcsoGy/ToUWJMhhpNIjJKqOUdyWaE4ZA8XVYddnjOgbOqB4pMnilZZzEDZTos0NcCJFmEt3+v0eQZhy5b1I63TEecRMTO7QSwRpNNjqjToKUZoDGBU9auc0qGiIApFVoOY5mb55BtOpSdnV62IVgWoEILgBxDTlhnlS435KjSpkSPJjVHRA/JOXI4pccti9lirV/VGq+QiL9i1xHBgGLjNYdEL5ScjgnYZ5cjttjnR0rSyrVuqQjB4gXqNBiTocSFI2xF0GDFXOIaM7xu+HdIjhYVR7QGxGxxxBk1d61X6ZIiZkieNhX6LHBNkXSywpTMQ50Qn1ka4vHhYObnTcg/RzCCWc+NOEzNfJh6sYVgr8d4ktYWqS1bfoDgOct1r+OzR8ErTCt4BawpKa0wylxJhi0X/PbmNEN08hYfBfdUPxRrOQyMPuY5HuO+xWPQAQz/tex/eKKFV9OZfRvms23/9fgsU71a1MFIvp57PnONrcNEF+cndk5GmNo1sr4Xy7S1ome7Pd3D4z4jyZv4YrAVyGX963ovhmGWnFWSd2IurRf6/A38Yn4VJg0YvsZl7rsehGS+F5MQqsnI5JE3nI/xStUQluMeUwLWo1PNgNqhRZUWVdpUHTBM6Qr3EZuklOgMmDqgus8uESGHPKNIn2ccKjnaocQFNdcyWnGKBk/GRnRZVat+TIWW2Jk4dav4EuYvhKu1plp2lKkHbDsRGZe9FZGhQotANKjkuWGPF9RpMCXgKNxUu5WA4SE52kregiglivTpKYl7yromco25UFB6yjqNUEL7DayO9ebiiE0F7m1qNFmlS0RIwJRrvWlY0POo03DbiAnY5g0X2sRq180Acl+JZlNjGElqagwhgiPWaBIQ8ymvAEgRO6LYQLXlYHU0OwsELJutb0ieFLEjimMC1vjub/s3OJlk/kbm+JkuoRtwUkKRZwhYnQ29b8BvX6ww+Qjfjjq7cv8YeAeFt7ekLbczxitNYyEFp8HMNu2jhrdkpRAQpgTs1LKirIRgBQH6msmVHmhBktmqIhwIXfzZhB/8+bkHglPIWkaVbTPCWZ+yRrSaVd8A+mxQv1najMScJUSvEOD4Dub28eqDGtw9x6suTIVqK/9fy+Oufj8t1yyFANqsWO05kdIvKjD3Gp/LZQqHtwiQtQbbEV41sAQ8gbmf6zXdQP7uKdB//ycL99Ui18A+PHp7LY/9WL9v+apf4G9EZnO4jfC2G59kknlg02dBHDI6lqcpi8JdqrSUJBVMtM8uMSltoV/gjBrHbJHnhoCYPEPFjSl2OGA57gGiqqzToEeJG/K84iVNaooDU3RZdWVS9rg6Dc6oaZRA3qkkzZ4vuFGa7Ie6cH6txUklelSV/OxpSVTAlEOeueMXwnjd4Zp9dmmrYrZEj1AX7juUKXHBJsccs8Uxm/QpumikXfbpUmaDU6eGjci4QieQPNoyXaqD9w5DgogVcgx5yZfkGN67/n8Y/4USsjeOyLSF9xIXrHPClIBDtp3rqEeJPgvOuWX7seMCT6IbToxJscu+iwoQ11mKiJAOq5yyzpA8OaXMIzJ0VFAQMHXK5Axj3s9EGiSTzIOaCoITLIvT8tONWDWS0wi82UzOrnzv7ls8LlnR59iCdnnm8RbZZG4mI+u0jPNewZEpRy0CyVSgsxF+BeCVko8jnF3eFVZdQ3oNj+eQfQxf40s7awgBagSj7cO2/0Ken9e4pvyKtt2bFT/U8zay2CKrbDb0nC2PX6ObnMDBSFXDo0pqpv9Qn5ud2Z7FRhk5bG6vAbIYbtfB8k8fIyS3KUo1uzVthaemNt3Q16mK/D5EuDiHtEUTvMWXXT/B4dF0HfJPEX7lHIk4KJHM92QSQjUZmTFy02qqGl2xmgZClp6G65ol1XbqBFMeWI7TAn1W6ZJhrITcMhVapJD8rB0O2OLYkXWWc1WlTZMaoQK3MRm2OHZk4FDBb0DMUeCBuRGTIWNW1UIP0GSNCi2O2eRUw/ry3DBVclbUn6uEjIlJ0WOZMRmmBLSpuHIEI1gBVZvmHCnpFbUCfa3x1FpmAQfa12i6llbAqVQP2aZK24HcLqvEBNRockOeF+y5vNQSFwzJOQVGkxoBU9pUtXE1RaTnYISpxQNYY25MwDI9PebQ3aSYqgEE1Fc0L0xKCUSpWo3aeq3kdWtRpUJLCd4MOVW6tqneA+nJJPPQZolLGEjuqIHIyQZeoWrZSwAh/ODVueSt1mFkGVUjJTQHMPoTPOFodiKz5Hch/XPk+UbAGUg2gtPC9e3rWJWf4AG22uUxNUAb5vYks9UBdFvZt4xPcFasOyNtAb5CwP0CaPQdLEoeKbGe1x7e+mSqVCvYmiUWzbI1myeVQkjWt5I5S6jKTyMnX+OI2rsnGq1gBLKqC+b+cuaa2o3GR/iiAcu7Ag94DVA/x9/wqDVtYseox18cKCNsmWEDJN/WiN9LYBe+e7okzzHAfi3Zuk5ZYjdNySTzgMeinUyZWaXFJkfOTp5nSEsXV9c5VTVj5PDKOqeMyfCKT4lUxWqYJgpCtjlUJaO4Xg7YASBgSpOakpORwyOG+641gqjLKpscKZZJkWfocNCQnCupCnTBOCIkp8vw++xqXFRFI5dC9nihxGPRLZg3qFOhzS777A6+ZjXqusV6K2Wy6IFNjl30QYaIKYFTc4KoQLusOgzYpKZlUBni1Dx5hqxz4jCtuaiK9B05W6FFIxARQ0sVoGW67LLPJkeMCTUWapkyXZcXe8qG5v53GZJ3eLBFVcqtqCm2C7mmyD4/YkgOK+Cy4x+SczEBpso1F9Y2b4hJOXXvKRtK8vb4Tt1eySTzIOcEyeU8wWMdczXZYuoUIdKMDLWvI7XWF5BFWSs8jfFkocUnzdrWDc+YGtQITPCL+LPdJyM9RiNozXGT0nx/U5baIr0d4xKimDUceqJlUkt4QtHO1RbqXyJYkZnj/XzmekV4e7+VelZ0m4YH7WuLM8hyzynr8PKJPjbAE8FGahqRbYSq7cuOwSKp7OdWlmrCCVMd288M236MJ1tNPTxCXrfXeNLWPtt5WkSA8SnWG2BK3ABZqG+RzPdkEkI1GZk8Pu/PFFgVK1MStaWRhSV6RGSUcBRQWqTPsisJOHGr932KnGge1ZCcU0iaEjKjgDtU0BkSOcVoREiNprM0gdj0ZwuTAmJ2OFBzfMflblkDa8DUPddKrI7YZEtvBkKie+qFC0q6Mr+gVv4SIZFTSggAFTCeUu0EQJmusz4ZcLZG2xpNLS+YMlTrV8CUTY6cFc7yqqRUQGz/ts8b8o6QtVIH4F4+LEgW1jFbTv1bpuuiD6wAAcSSlp/Zj5G5Hcocs+lUp3luqNKiSc0R6h3K7iajy6oqkWNX7pVjyBpNhm7JNJlkHtas/mwAdVh5O3Kr4OkzBLhV8SDMbEszpUzZS1wZ1dzPkTzREzyAtMzQX+EB8AI+k8qIQwPMl3D3EliByad44DaSbd4V8O2ib/H5TAr6plaolcW3txrYU7UrTS1OuoT3ny8IsF/Rn+nCGllY/H9N4HqmPAG9Hle6TcsSM8LZyNEWjPQcHFn8ER4UN+FR4/o+eNbMsbm/xIPcKZz/Sdbl1lLTx9tNS0P3sTjzvRoCiCPkpsKI09caP6AFYC4e4DnQlexUUvjyADsmU9AqQP/g5FKuZSCv+/nLLFEQynZMyZDFK1iSSeaBjcQ0pajSok6D7cFbVyZ1wjoRGdajU2ICWlRcE7wtIEvBqGAnWSiXxV+LD2iyRouKw2rHbFFRH9SyOoDEYi558DfkWcCXXxm2nI1EsvgkiTRaBXBlVIYLU3HMG7adEjNkzCZHSkges8s+JXocsg3AJsfkFeueFj7kKNx0mK+mTp+e4sexLrp3KFON2qQU2xmp2KOksQPvaFFxGDpkTDOs8YqX9CipgylmqkRlj2W3WG1FUCFjJ1owkUOTmsuCvSFHnXeqiB2yy19Rpsue+lLXVBwRMNXIgxNXErtGk7Fm5zaou4Iqw7l5VZ6uqhdYSr/kdRqSo6KvoUWENVnjsbqckknmwc083vq9gccYZrc3RxMINjEcsQIq4JeFYotyaiNOnC6ykN3F53Ca5T6FJxfP8ZmgTYTMTOEX0gt4peaVHid4d9EUIVqNoB3hbez2UUZwzwqeqDV7+snMNu28f4bHR4avvkYw3gs8malZr3d2LkbQ2s9bcPUzfERCTY95NLPfaz2Oc/38j3FKUic6+BYflQV+8dxcYdYDYPhzNhNVXx9+gV9AZ+b6miiijGBbxdSTE9nf3bd4Utuum2Jsd42sEKyGfy2T+V5MQqgmI3OFt1XaG6tGHQmpOHYr+lUtEBBiNXTZmiBKAVOVXijRl1KQOyZkOe5xwI5TCogCYY0SPWfP6rGsqoGcay0dkmOPT1jWFXvJWG05q9cBO4wJOWCHTY4o03EWehBwd8g2Q3LscOByVe04rLRAGk5vKHKtWaV9V5hlalwD6VZWEOkdv1nkx0qQGnA2cCvqzWUiMjSpKek7JUVMnXc0qHPMFiFjKrSd6iMidDcNJXqs0nWEssUW9CixSodNjtjnRwDO3tZl1akm7PUq0+WaIiUupLVV88d2OOCz+AuNYAhoUXVkd58iy2qTyxCRV/K0S5kMY6dGSBGLyi+ZZB7iRAg5acH1NUSp2UbAkWUwzaopbSXcrPZVPIi2HK3XeBD3WB9vxOa3wCv8Sj66L1WaEiupG+KVlyjh+Oczx2nZnapCTX+BV03UcWrKq1oaIpg8xWeZLsGjb65hCUbP8eSsHZMCwUF53isKrDl1Ubevas7By3kPWiMlmt/ph1nlsvgCJ83JcqoBG1PNPpH9rZyMfOyCXm+6eOsc+nzbt9n9rS3WyNld/VyQ47gr6PFrEZdr8v0F3hZmStjHM9ux34sr+bzSHIm6dUXjDEJ9fhIbmMwDnXmmLj/zhjyvCn+X1+xwo1E/eW7ohKKYXNXyTSPijPQUwk6wWo+Si44ye78UZIoy0go712iyoApPEDyzqtn5Zuc3MtScPl3KvFZ1qy3a5xmy7Iq0ys7CfhKsu0Vsy9q3rHrLE7Uc+TJdAqbOyh6RwTL5Le6qRYVDtmlRQYpLy1xT5DDc1tLWM0fmVmg5bJjnxh1rV6UBq3RcZm2XVaq0ecO2KywFHMa0/NQ2Vfb5kbPrP+PQkcLSZ5By1xtw6lSJZiiSQmKvfslPaFPlS14qyXxMkWtqNNng1OHlDU4p06Wjy/dCCEdarirZ/2NCl9lqCuTE8p/Mg50hggHsb7tlrJsq0QjRCp5Mm+JJS8WNc7sIRrHG+ggpSJolU88QbGE2fCu2MsfLc/25kYSmnjRVpJGntiD8Fp+3b7msV7ots9nbwu8rPFazWACLERjNnK+pMsGXYaHnoZjIxV8prrW8Vme/N8IxC4tGRlssk+X0W2asKW439Nr/HEdkXr2WzFaHH8OZ44vwWM0y7i2+YFevpSle7blGyBoZPcAv2rf0eBQnphfl2s0tweRLPLkNngS3vH275qY5ypHM92QSQjUZGZPY7yNvZtqAbOUCFVqMCTllgx4l1yJq5VA5BdwG2IR8TJHnhkitRxEZjoItB4Jniw7Mqm52c1GiprAiACP7pgT0KNGjRJmuKzJYpQNASMSNqkgtKgCkGXWdE27Ic0bN5ZRaNqllnQKcss4hz+iyirStthwgtYZbUSRMKdN15yPK0C6bHFPigiY1dwPRYZUKLdY5wUoSDHR2WKVN1Sk5xHa1pmBb7PimEGhT4YgtrjU2oU/RgdwWVc0qG6rNq0NE6DKtzJ6VIXKEuFnNTC08JaAVVJ2q13LSjMAu02WK5LEayWoq3VrUdHEK5245NplkHth8gC+AstV2s4Y/xSkR3tZ+6NWlAfL+mYW5XyEE6WMl6rJ4wlNbQu/M5mWgz6xf1vhqz3sKfATv6wteJfCNHp9Zper4ooRZtYE2u55XspJXquTtpACLzQmMNIP0iW6vggN92bf67xhnqXr/cgHKUNi79Q21A7wFzFbzC1B4fSsh/Z/jywjKsp+rJ2m5pjPXjIEew6waYgqcw+DxvFe9vtXjNWL5p3gr2AhfBGGKAy0FuPrHaQ/I1Zo/9yvZPikp5nIAV1W0d8/xmWhVPaYRfLex5G6G7n5f9z9TOhEqIT9nKonZ+IZkknlg81vNYgcj4eTN0Cz1Y8UW1k5vmMuIvSot8twgxUgXVDUGKmDKEVuaxynbHyteAThmi30tYkoh2fk5jRIw/Fimq+Sm4KY+RXLcaEyS4MkGdec8AosvmHKmC9IhY96w7Rw9fY0ROGHdFVCJ62iZreiYGmeEjO9Z5SNCt9hs51yi55xLPXzhaJuqI5HPqFGlxVTdP4BSql3WOXXuLItNMFLbFtOP2CQiw6pa/bc09qBPkTdsu3O5UfJ0qqjX1MCWmyoOpVWXwz8kzy77DMlzyjoBU0eAWzyCRSFIm0Jb4w3GDi83qDMkxxk1OpQVBye4MJkHPLMlpd/gszIHcPcar/yMgQ24Mzv5Cl41afFOLTyxaCVHtvAa6XZX9OdGpoJf6J9x8hi2YlGPbbYwS8nPyRn3YgG6r/HqTXUhOfwJ3l1jStUsTmV791rP0TCtEbTWIwCCSRt4d5btL5z5nhGklhW7gS9b1cgBp5I1d9NsDIJGGcyVYbGs+aRLwH+un41cNaI6BVd/PrPNJ3jcarjTFufNzXWCvM52fKaqNdVsNHMtKpBSEYG7joo3qSLK3wCvii1Ako73/ZkE5icjY5ZWy9gDmOLs6yWFhcdsUuJCbVsC1HKq2AyIXXaTqRol6ypSkk/C9C34vkSPfXYpaxtoiQvXPJrRrFNThw7V9l6m40hNA4stqsQErHPCJseaHSqA8ZR1Ryqa7SoidEDVclovKLnnisUsT42mZruOqdMgRcwRW9R5x42utg/JU9Um2FM2qNNwSgNTedZ55wCmKRFM8WDkrO23zjt6LCu5mqJMh2O22GWfY7ZcFtg6JzSoO7BtGWSW4WUZtqYWMDWHZKAaIRwzJkNGSWuv/MBl5AKaEZvSa12hT5FVutRoaqas3Kg0w5ru/4JL5v7WfnWTSeZvdKw0adYSVIdJBeIUpPeALOQZMvlU8kwndc1BtfwrVSjMTXHA+bvPlyhGffKDWylnivEAzkBtE7FKfY0AZFW/Dms5KFx7otVKDbKyH1esZKvxS3Bez7LSHLHyxQgKyP9I+4v/LY4svavB3CsERBoIN4tSEwHpwKMvrv3xWhtrCq/KsGsFTn2Q3sMTjlO4epmWTFSNLKCKgM0F4I3+e1ePrwK8hMK7WwG3dbzaNtBrUMeTsUbO2v7/EpeFVbyceKK1i89zBXgLb//RD3na/I3PFhvAnCkzLEdV1Sgf7F262IG5fX+9rThizixopj4uA/+RZJJ5kLPGGRd84AqVTL15yrqLWrJs9ZiAJjW2OKJFFWt5z2i0UokeZ9pyP0twGvbqUHaL9ZbZL9tfBiTWyIhJy7U/ZksXpsts8wYr1bRIKMGTY40pkpz3VSUsbUFYsI/s27YVaj6qRDTJnXkjrCtRmGedE6f6tEgDczydUeRTvmSPF2S0wMpI0BxDmir3yjHkkG1XLAWCt2o06VBmquICK4RdpUNMQFmdV1XarNKlQV1rWYd0KLNKlx4xh2zzGV84NesFJU7Z0HgscV/ZgnmZjjuHbQ4dEfwpr5z7q62sjri0ivyEX9LVGCjD46esU6HFmmutEbWwYffDJEM1mQc6dx0gDZzDb5rwQ1NQRjBXQAjEGoLNUjA3GxNkEUWG68q4RVoXF2B2cOT5fIO31htmtBz/14gtHdC3A09oWq7qGYKvriAd4guTnkO5hmBTw6xW2GkYs4Xgso8Q4vBb2Q6LQmAyQso4ZzP5azPbsKx8O3fwHIMRsEZmqvLz7q2WWBnZaIS0uZmMSI31saYqtc/2lmPEteXk2/UeQc5w9qyJ0rC74eMGXpVq2/8IcSyZMyvA5/7buTT0NWfmexZ1ZQS69Q0k7qXv3SQK1WRk1pA3lQ3kTVtDpnc4cEB5SI41mmzEsnK+xycExPcs/GaxMsKyTNc1ye+y77I7e5TYZ1dIxMFvXAmBWfoNqBoJCLDJEdbyaiDeLFIGbo/ZVGB548oArCBhSN6RqPZhljQrBsgxdPlgXcpahJDhjBpHbNFngVM2KNFTlecFJ6wrMdzRPNYcZbp8pdfHVL1G6Pptj2lR0WZaoSaLXLtVfYshsDKqqqotAFfIMFQ1sJVDgcQbvOJTAJej1abCKev3IgLGZKjHDeqD3zh1xjonrHNCRMYVekWEbHHkMmGtaOIN2+54rJgrIsMxWwSOmUkmmQc2lpGaVVWn2tjTJ5D9GgeGfvD2nPQJUJCfOUL0p/gMKAOOwAdNQXBTa3+1hasT5P12JJ9HFgkwxUUKfNh+L4+11fmKPsYUlE8QMGhArQ0r32jYaQ0PegeQ/kYfr4TxnKlNDRg28VZ/9Ni6enwvcWUEdxZ7MFsEYOSjlWAZsFdb3OLriS8SsJsAJTYnn+NvHAr43FPN27qqpr2qFT2nLN7S3xZiG/Tff6T7rsGcKWlnSgkGtXkmqr542v6NRDVYMVWIAHjLXbUxEvZLPJFsUQMj5ObFisKsMKsNGsOYTDIPbs71jeqEdb7kUyJCLig5Wz8IXrNF6CJ9p4K0RVvDCeYsshgjK7Dsqo2+SJ9ULFjS3ErHbGmO5zIBU6x0KqMhTdscOmVloPEEVn5q5K8QgGVesMeuNu0ZAXjADuucUqNJC3HnSEzVmB9pAVRZicwWVXIMdbE85fCeEbhWuFWmS5uKKkol3zVD5JScVc2xl4iEjMvqP2CHC0qcqFtqTOgW4f+Af6e+pabDpSYIsAV4EAxti/ZlOnzFC/oUOWITkKKvZXpOLdpWtakJCfoU+SU/4ZBtt8huZPAmx7xgT9W3HZqsuVx9gBIXDreGSiRbdqyRqskk81Bnbh3BLgH80BrpVSU6ucKTnS8QVai10xu+asOdFX0aFjGV5myO6WM8hprFV7ML/eFf246Vjlp80qztvIbDQo78tDxQw0YWXWVZ+OcICfgFboF4OEs6WoTSCY5A5h2CAe0xijldMZOpa690Hxt4PBjDnGXGmuOnyf3YLHAFWXOP9esIT6BaTMCJvja2wG7FrDVImyPMOgUsc9WcVoav7fpbpMNb3ZZl9Gdnnmevg8VZGYlqOB691rPEtymVMyTzPZmEUE1G5hyfyQLyZhdD8XLEp7yaAUw9poEQjmYzl2woeddY1qykiJA3bPOKTx3BZqv8RupZ5mar8EgVmzFr2nBvq9kleq6MAHCPa1NlnRNnMeqySo8SOYacssEh2xywQ5U2GY0BsNbZvKoCjDit06Ckdi0L1DcV7XAmb6pKi5Ax65rKbcVMeW4o01VFadeRtp/w1T2bv1nkcwyp0+CUdWdxM7LSyhzsZqJBnQ1OVY0h4f8hEfl4yDMO711TU0LkuWGbNzMkp9jSAmKa1Filq/TrmJNgncPC03s5sqZuNfA7JkOLKqds0KZKmY5r0d3kiC6rbh+rdPmML1jg+m/4FzSZZP4WR1elXQGTWdr1+4OX+qfzHEYVBMD9CniqjfGWRf0Ur57cg/zglpS1mFp26AsEpC3A4KfzYhm3xlIrJniNJ/cs49VWuE3pYGDXChPA5zbF3Mt5dSoCI23t8Rb9AkKMWnGBbeMrnKp0zghHI3Gncg5uJd7218CTma/lsd+9XPLKVX1u2sCsgfQm93JhF/cn921ldmNglrkypL8WUvW7F0uy/0iuO28R4DyFO82vLby9Jf0NXP1+Gvb0tf4c18YLej2r8tzJU3y2lhZOTT7HN/KqWmVUQ25KzoHHMPkIeEQyyTzIySo+yXOjCsapi3aygiRboK7HEp+0zy4hY0famY08pQRriQunmhySo6O454Y8R8EWZ9SUgOtSp+Hs5mNCV5o0W6o5JWBVlZZ5hlTUci/EbuwWzy0mydSXATE/4RdY7n+eIa94SUmLlC4osUDf5bJKZEFbM/DLrNGkSptNjrA8fMva77DqiN8KbT5hz2Xnm0vK8k0NxwEuU9V+fqH5+Clid02P2HIFVR3KLkt1qK/JuhY/bXBKyNh1ClRps80bDtlmg1Oa1JyTzPJi1zlxn03VK3FPHUday/Vb5oyaixPoUuaYLXWBCTl+oFm7ZbpcaGzVgiqTk0nmQU5t5rNhnEtVgH6Od/p8DOmP8OWUA+AFzGle551lltpCdhZPyJlDyMi8b+W5GImoUUW8xUcFNLlPqhbwkUgjvGXdSEQrWjJi0MjXpu7np3iiVsug8kZ4Wia/Leo/xZOl9mGL/RZLZRb5f4VfbDfi9RIhik2xapmtKRxBO5xxfrmF+ud4wnpJv97Tc7PYKivzWkKwqNnxC7rPAn6h3FxTM4vok3Pdp/YqXFlnQQsf92Wzhlf8ZvFEs6ldL5F8WiNkl0CplWS+B5MQqsnIWFaLvTmdy9dxCpbjHmPNQQXY4xMHRq2kyZrrDRz2KFGnQZU2sQO7InvNc4M1rwYKErtIe+iXzsOAU7yaXapNlVd86pSrp44FwJGFPZZZVcJvhwOnqDQwf8SW5lGdMFbSt0HdKS1K9EgREyn9GmteaI2ms9hbgYL/uVcYWKaU3UCYMuOCEteaKxuTYp9dLiiRZ6hWqxxTtctVabkohbwWgWUUFBuhHAWhu85NajR47Gx0Q3K85BXratF7wVe84Kt76hEjRe21aFDnlA3NRAtpsqblV/l7UQIVWqzGXacovlHrm/w+SEvslCDJUE3m4Y5mdf62vgJtGNl7oxGXS1C4VBt6RRvh6/rzSIlBA09vEUCnFvO5rpZMGVh+iYC7CFiEOBVwsZIVAJzC56yaZWnKfWIVGLyYhzpc7aa5q+mxGCFo5QlGBrfw+U0RXD1OSw5oCvhCyb8netytmfOw5z7Hg/M6vmDLrG0f47OurJQBPWazw53AB+1LT4qalesc3n++IPt/irNvnT/N8v4fLPj80w3dXownc1M45UC6Afl46K/hj/HkbQxzBt6bsq3FX01cdtdVNc37jxc84N7Qc0jJdp1KQYF++gRPun6tvw+v8EqSa8mpvTM1STLJPLAJmTjnTJ2Gs6YbcTib6dkKqtpe33CqScvWN9JSsu9vNBpplWuK3ChRe8AOIREdpOgyVkK0SN8tOo8JHQa0xWkjGpfpcaTFUrPHaGpWU2IaERww5Q3bLtYKcLjRFurz3LDLvnuuLYBXaLHPrlNfdll12xUy9IIMEbvsExNwok4hcUuJavWIzXuxUJabao4vKRvtklMr/ynrxKSQ3P4FTlnnTMldUwIfs0mTNcZkOGHdlagaXjxl3b0+IRFtquS4ceQp4GK4Io2EGpJnKzp2r6N0J0zd855x6AjrWQyd50aLbKWDQe4Tbv+Wf4OTSeZvaM4QLFHG56daRvpj4E+RReM9PJkG0IThF/o9dbbMmZXfCD8jQVvaGm86oin380xNrWo5q7bAq04qK3iiihSWWhyRLUYbAWgKU8OfFh11iZC3b+HqrR6bkb22iP985vmGNc2xY9jWCGNzab3EF0K18cWfRr4awVpGCF8jlWdLQC+B/yOCMyvIAn+IL6nSkq6JLmZzju8psH1+pNu5nNmnHasRn5E+v6ykuBWmVmDRCmUf6zX5Bh+TYDm1f6Tbe47PhA2QqAIrKdPS2UR79P2ZhFBNRmYTeQPYBf4B7k03mEIjqDs7uK2cC90YOdLTAKIpFSyj07KiepQcEWugL1KlgmVCmWUqJqBNlYCpy3Ct0qJOgzGeSCzS1xD+G47ZxFpGjdY1u7xZrE5Yp8SFWt6XaVJjTfNZpZ216nJDX7PjrPubHJFTYtOKo4r0WVUVbY4hWxzJ9SJmSM6dyw15B8oFxF6wzgllutQ4o0yXUzY4YIc9PiEm4IhNFuhzreTkmFBJ39DZ+3uahSXlXWKvO+QZLSpOSWLZVlYYAXKD0abKtW4nr5Qp4AqwajR5yZeuvCqjza0gmbr9oMi6NrwuqKrVbiosS/adqzFPJpkHNmov+sEX59BWm/81ApSNTFQrvgO3GpFCFwHTtvKvq+CjOpx/lvWZpLZwZYtXCuIWv5pI5unXui8jIj/R/RrBOlPaVPjVLZzIc/tLaVE/WINpSo/nW/2w1fcF2UZmNGHuUh8fKkFoq+uzxQfovmP994KQjxPLGTUb22u8wvMpnsi03DAre9IShjvNHTWA++jra2+50rytPkUevbr218OiDSxntTzzfSWfF/9s4q/rK3w8gL2+FsnwGl+w1YTF1oQwjmS7dqNkGalThOwFr0I5x2fgvkRusqozr7/awOZOSSaZBzltKgzJkefGtdN/orZvW9At03Gk3pm6YAR/LNBSKflstulf8AcuymmqhGfKKVbFiXOqUUqAWyy2gs4MEcdscUOer/iEDmVuyHPCukYn9XWx/0YJwZxzG4kqdOowS0UzUjNESr4KrhVBQEtLQiUf/o3iREAX2OVu2PoDYgJCxlxQok3VZb4KXpTc1l/yE641u7XItS7MpzjUXBDDdHY9DMt2WVWBwYUrvTIbfkDsugLWVZU6JeBMM1LbVDhmyy3Km0DArkeJC0CIVIuDalFV7DqkxAUH4Y5zqoGoX6u02OTYiQ1yDGlQZ00X7+08puq26lHi+l6GSjLJPKApIiSl4ZtZS/8izk0zY6qUx6QgrwvQkzPuqxjNkfQYwQ9ZSJsbxshKW0Q2B6nFRaWAzxC8aIRoCiFE3+HdReAzUvV4HEloxKBFFkyBfyFfLz7GZcdzKY+bnOn+zRVlX5ubyPZnuCnUbRvhaQWthmUDPe8Aj6tmc0W10Cu/otd1D8F0tq0FfDyAqlrT9hZjJHUZ52S628PjNouIMlzbxAsO7Jjs9enq40xVDN6dZNfCCrci5DV7jSeQVWE7l4U7c5bNlqEm8+AnIVSTkTlH/vPbG5OVipxLcL60mob3Qvw3OWabQwdua5yR0XzNBnVaVNhWW7oBTis72uFAidAtLQ+YckOOVbquVAnQAqrIaTU3OXK5WD1KHLKtK/wNepSoaMtqRaVRNxqyL+VWZ9RpEJOixAV13tFllVU6amd6x5iQDqtMFbiPNUu0y6pTYhix2mGVQ7YZE1KhTUdjB9pUnXXfCE1TwIpOInTEreVzVWmzxZEqIG44o+YUCvK8DDnNnzWLVY0mn/HvXWsu4Cx1QryGdCk761yGiBpN9xratRFQ7knjHiWqsTS1bnFEyJgDdihx4bK36oPf3Lu5aVOhQ5kmNUpcsKGxCMkk8+BmVq0/k4FKHbcy/+3nH7gsrfOPsvKcDbwNPQujDRwxmX0LK3vqpT+XgivAA1Ij+SJ8/lUKWeCyn9uxWYD+JYw+RkCmqlmDaQzvYO6dPPyuAoM/mRegaVmqZYQgXoLsnux37jVeAWrqSssDM3LRGkpTMFmDYZAn/eXMcRuItW3MWqkswL8A/aU0758ucP5ZVmIDkGOnzv3ogpQ878Nv3vvIgSd6/rt40H0p3/915ZGs/Jui4yk+b0zztyYfyfXnXPNW7WbCLHQNWPzZRPJUFyRnlQq8/2zBKYR/+49W7mWx3qn1blCZF1JVSeiR5ZFPSZpck3nQ80ZxluXpT5V4tDLQZTWBW4t8k5qLg7LFWIt4GpPhBXvkGbLNIXluiAk4ZNst7h6yzTqnrNGkRYVjNp1q0x6TIUKy+f/KlV+taqq+2eVnMz2NVLXF+HVO6LBKiQtuyHHKBgv0XUZ8V3GgKVb7FJ1qFnD5p0NyjmQ1rLrFsVORSjp+xilMf8IvWefU5bZWadGlzC5/xaZiQCtdFRxdpeNs913G+FJVe3yHslPwVmhpUasUwIqaNMbKvQw3C04WhuaYLacaHhO6eKrZ4tYGdVX8pjhmS69HRJ8F9/MaZ4AIEuy8rW/A7gPKziedTDIPbBYQK3wFr9I0F4/9WhuJeI4vorIYpUuYKJa7M5xnEQIjfLHnR3jisanbivGLyrMknOWFqgMH/HPuDE9ZgaeRmEZGNnV77/CKUVO+nujxmMIVoAHpOqLKtOglU9ia5d/OyeKk7Os97ufTG6l8CZOGbtNKpQxLaoHVnR3vCFlI39VzsYgqy4f9KV6RuoQneAeIUCwF/QHwjxDs18DnswY4l5krljVX2NLM/l/OnK/1F9gxm5sMPUfDnpqzyzs5zrmXeGydCPa/N5MQqsnI2GrSX+KDoFX1Y6pIyUbNEBJxRo28tpXekHer+QayJSP1jCJ9djjQ58mq+VZ0zDMOOWVdLUVyZ5xTBUQxloIBA3BSbtUhJuWsSwYgAWeLB9jnRzSVjJzNpjI7l9na+2ozs5X4kDE9lokJ2OZQFRHXTPWGwdpTjaA8YpOq5qMa8WoqWlMOmPrTbFyREqljMiyr3SrDmCptKrRYoM86p9RpOLu+WO2E+Gxra26PEuvRqZK960RqgQsVhAuYDpy9P8eQL/mUUzbctbYbgH12qdCmQV0VBMsC4IMy13rtQVQTFtMQk6JVeOQUHn2K7LLvMszk2uZ+17+xySTzO5nz9ZDzP8kKQHoB1OD9ywWvVryEJ3vfOUC68ucjnw91glt1z36hGwzh/YsFTwoWIH2GVzYoQXpVTnswa22oAfBOiT1bzX6KWIrKSoi+wxGHhbe3Xi17AlGo8QQG7FQZ+v7lggDKAZL9apZ+sz6ZkjXW49A81ZEqTtNfwAcnlwJuXyFkslm+7G/JCb5Ey/K92kJYPmpes/L1SL73UzyZim7jV3jVhJHLi9wneCvwXWXJAdna5XtP5Fo+Fnq9NGss/RZ345D+F/jFQ1MgtOTnc/vy70L3FlLw6O21uzH5wdtzr+RQgpgaFH5xy8QscSmNgrCblM3/5NcsmWQexFyy5LLqf8lPAJxNXhbPHzucYZFGhtukfOmGVY0qkkqlmiM8zcEUEPMpr9jkmJ3ogBd8hUVFHbNFiypDclRoKal6wwan7GnhUouqFp6KClW+V3EK0TIdXcQXTFaN2vRYBtCyq9jlxFrBZ4M6eW5oqUI3o8WgRmJa2ZLhpDoNF11g18b2cY0Un67RpE7D4TDAlbbKsciC/JAcOS13BVHoHrHl1KsV2lRpsxp376lGrcTLjuc5B+zxiXNEmQJ3TIaA2OXNWgZsmQ777DImpEyHDJF7Xbc5dMe4zqnD3D2WyXPjslpXtYjW1KkdjfMyHJ9OVpeSeaiTxxOUe5qDarZyc6WYwnJJHkOXe9gxr/FCc5Z1GiCL1SZmWsDhNJpADMNXyCL4LGlp+7M8UnMBmesngDnLMK0g5VKGzwoIIWylTujn2Zx9c0Kd4DM/A1DTwP1i0ZlC0ztrtI9mHmtksRG+BY01QL6frug+jNwdIJhQ1aJzM1n6NBF8uIJ3HlnUwc91vxFC5lqcVBfXLbC4i2BWU6PaWLaqFpU6cUSEx8F27Q2DGilsP2/jlcCpmecYtrW8WpDXa1aJm8yDn9T/9EOS+V/E2Ara/xn5IxAAT+B9fcFZusdkqHBBkWsqtDXPKaBDWZtPzyhdXtNbkvxUy+A8ZZ0dDgCIKdEMhfBc59RZ3E1NEJPiMJB2UQPhb9jmU16RIXIWKNteTS37VQXaIWOa1JzFXdpnc/p14BSsQ3IsKMlZp0GOIWfUaFNxIL+qxVBF+hyzxSfsAdCk5kC0Nas2qFN275QQEbr2WUDzwsrkuKHPAhtKmJ5qxpVlfRnxaxYqU5Tati1KoRGKV8HUGlM9zrJm1c42voptf8ymxhJY+dVUoxbaGhOwrAUIdrMTavaZlDXc3LtJ2eGAITmqtCnpjUWZrsYLREycJyKZZB7WrJxGLPbxAGkFsZw38JakMh6cWqvnL+Q5kxeSm+nypmyMvDML1YxykktY/PkEnsJdQRWmBt6ewWm4zt+5/JbBi3kK3976XKYC/HrjER++eu9VrAbyriFrCgVTqJ4DC2Ktv6vB3DU+G9YA4KzN34qkngANyLbxrayW62qNtJZ7uoKAYrt+Ab7t1GxOpgLQG4O7MsxZS+q3uj/L+zK1xIyigYZc3w+4lGO50ozTpwhYfoZX8n6Lz3o1ID2rcI0R4L2Cv67WXNtFFAl/jrfR2cLjE7kWi+8mcr1WlLCt6mto5V/o8SaTzAOcCm2KuqBrpKQsLq865aY13keEVF1wMo5Yjciwzsk9LDYkzyZHXCshek2RV7zkH4b/g2I5IQs31SVjSlPBcNcOI6VUpbrHJ3zGFxyyTY0+MTcETB3ZZ8WlAJlwrLb+dxS5JiTilHVnea/SYkqgBGaKNlVqNDlhnQvdxo2qXddoEhJxTdE5oyx335ShAVNO2WCdE82JFXxq+K1InzZVrLQUcASlLf6HRFRoU+KCNhXKdMldTwiXIgKmDtMNyVPiwl1rKw4V11TAgmpKrQhsTEjImGrUphOW2eGAjMYmiONIBAJCpJ5oF4C4k1JKyhbpsx0d8svwJ04MsBz3OAy26bHMJkf0KKkQI1GoJvNA5xzBP0+BX8GcLXwbfpris9tXEGzSwKsobazs08o7K7rNBh4TdiVvcy6E/AsEz1g0APiMUVNhvsPjMiM2mcEhFvWk2+bbmX+viJU//TH/acmolUXVESxoY/EDpkgtw+QXSo5aZFQTn/Fqj38CxJA215IRkoaJDY9aJIKpUI3I3uU+kWvZ/uYysgKwpm7fVL7v/KHftZVsNoz5MR5j1vCqVsOvhZnre4Iv27LrHuPjFNDHfKTXb5Z4NYyuSlWuQc2ryXwPJiFUk5FJIXrl/xvyJvUE+BSarDlb+Cs+deH+kb4LdCg7+35MQHPpEW2q7LLv1JMZfbwoAaR3tUrrXqbVqlrSDaRaMH9Ehmcc0mOZkIi8NoiOCZ31fkieUtSjFjapDb6jVmjSUjVnXkF1kTMOecaZAkQjHIWQzTniMCLkmE12OOCITbZ5Q5dVynToUCbUBlWzQsWkKNNlSI5T1qnQosYZlsllx5p3DbML7ibE2lktyzQipEyXmIAWVcp0aFJz19bIViNgTaFbjPsQwJC8U+bKdb0gIGCXffoUuaaomacZZ5+7Ie9UH2U6LuvKsrqsMMyiFzJELlbAyN6uFkhYVliLKnckTa7JPNA5B0r4HE8DVz9FiDez9cySh7aiPYW0AUcLqgceta+FkNPCgNHHSnYaMfuJbudSALRTjOrq+99pfAvPodC+9cB4INb72uV7rzbt4nNdwZG4d1mYBpAGea//Bcyh2ynA5GM97iwe2E4RJcBLsbMXBupNSuFBZF3PPUYsW3aDYMdj7a77CMmJXKdRRS/Nazk2wKtLP9FjmL1BsGuuCl8q8lx3LEbUGiD/SwSwWlFDJCVjP+Dc54qZwsKKFMxmZq2uVUQVu4e0t2ru6l0F5sr44qpQH2+APgVzUz1na+R9RDLJPMgZkiNUDNimimTXHzsbd4meOogkY3SWRDVXE+Ds5EbQGSaRMlFx+diib8iYlu5LFpbP3GPK9GlTYayFSZZFanjRCkdLXOg+Zf9WcDUkxyHPKHHhFs9X6fKMQ3d+Q/LuGEMiV9ZU5FqdUmUnCLCMUFPmzmK4U9YZapSVWe6rjllAceAq2xw6snc2714w3QIhY4cbuy5aqUd9qeFI47Fi7FXFcV1WsUx826bhSYtq2uaQL/iMLY5ohjWXFZthTJEuVXVOWZaqvX4RGWpxk1YgbqgDdiCECi3KdMTuH4TsRAcchtvcKNaX1yuRZSXzQOc9gmneIjgjwGem1hGsYASrLvRSQzCHrSOoEvOuLXma7nFm57dipCWYU7XlcE+VrUsI7rE+ZltwNpWq4bYlJQxjfewKPq8f/D0+OEVmepbwMwxp+OYKUbhW4O7PFP98LMfGK318VgucZlSovNPrYmrSbxBcO9LnGtlsfQNWEKXRUvewn7FV+3gV7gpCsH6Lzy014tRimQyTBnIe3RaUP8EvoNsCveXPfq0/s1xVw4GP8d0F9rGEJ2Bn1clGQp/jSdZFPBFrkVYDYEIy35NJCNVkZMYIiWA3lingS/lRT9voq7SJlXCzBvodDhgTcqPGe7P4SOZmzykWDMjKrsYcsu2KnMwqZRmtgMviynPjrEpm5bdVfctwqtKiHwpY7xWWOGSbOg1aVAi1oVSyqtquvGqo/bBV2vQoYY2koYJMuSm4phq3aAY1l316yoZTDYBY1YxYNcB7rBEI0r666qIRTGV6yDN+wi/dDUaXkHVOWKPpLF8lLuiy6kD9shKaRsJa6+sxW+wG+yzMEJhW8HWjjboZpXVPWScg1mIJiTfIc0OVNjfkaej1sOvdZdXd5JTo8YZtcgxZo8kqXYpxn3zglavLSviW6XDt/qomk8wDmw7CNhowihDwfI7PlAoQENfAg9tZ67gC7cma2vubMNlQFWUdsj9DCMZrPCGnVqxRAbKvEUBXxZO3I/n31SdpUUU2YbwxT+FXt7z/fIFH31y73FFAQKG2xc51IW0FCkYGWgRAAdKaoTqpAIuQ3tNtKHAtvL6V47VIgBQ+P8tI2CmisujiLU9GNKcQ4K3lTVnLOi2ovd72ZapfU4xa46rlkerfprsnqrww29wlXj3wVD8GM9+PtGTMFAgr+Ewsa9g1dWqoPzOhnR2XguX+UprFysQXDdiNSxdRSlR0m09wythRUjyQzAOdBa7JI26fjBKddd65rNIuZaeuLNNVIrXKKh0XE2Q4JiAmJHKRQ7PEpEUvWQyUEbNSfLXmsueH5Jiq28gWu7uU2eIIK92s0OKUdXK6oB4ydlmuRrSaw8gW6VtU3WJzmQ4N6twosWqL16t0yDDW3FXBVxVa7rjPlByOdMG5opi3SY1NjjhmCytuLWsGa1WPdZNjjtl02wuIOWBHF+innFFzmaey4N3Tazp1BPQu+3Qp64J+nwaPXRwCiIBA9t0hzw0N6rzklSNqazQp06FNlam+JlZwagv6hsWDIHbX6wV7HPKMNlXOqDmivRT23P1DTIoaTd5QhRlSOZlkHsws4gswzWH0GCE5jXwcwSSCtNnTzR5uuEkzR+fK+HKpGn6xPsZHBqjtPL+BV64WENyh0QG08SpMw1rIY+4GMPev8fmgpp4t62NfzRyfLUqDJ3lTf+17bckgXbRIJ8sutfPb1fP4dub7mk3vCEQrPv1Yvz/r2jKsbUVPhsGXEGx1IteOpwg5Cz4PtoKQoVaEarj0FX7R/GMoWzzVFCF7rZS0MLMdU9WmEAK3O7NfOycje3dxYgiuZp6/MPNage8osCiIAR7jJvO9mIRQTcaPBTmb1fES8kq1tahQp0GeIQfsUKHFDXlnDe9qelKVFtu8oUHd2fg7lIGyKk+vqXEK4ILvTY15Ro3f4wsa1EkRs6AqUMvvbFPRdKvINZRucOqsX6aSXNdCJMv0PGXdZUr9Hl+wz48AdMVd6EYD15b9ZIrSZiAKBgOwBibNAh8wZYNTp0RFVQUZxiyoyraj6oaQiCkBn7BHj5JryX2m2VQ35N0NiN0U5LmhSN/lz5qy9pgtnnHoFLZdyg6IN6lRp6HJrBUXvWCg+pQNiprXesAOLSozxPfU5WxlVDlrDbOBKn5jUnIDEmxR1QiFU9aFZFVlynf3ai6TSeYBzSK+CdVWym1lWt8f736sGVi20nyJALjXM18/lVI/3snXqRhvi7c8KrNUNXS/TVWuZuHuqVr/C3h15gosfjsR4FiXjM/RS834NOuT2ZTMemWB+wakL+G//G/wRUlZhEBe1n/fIuBxiM/oArEmmbozg4DHWJ9nmaL/nT7/VveX1ufe6XNzwH+PJ3Qtw6uLNOgW9LkTOVf6SG7ZhT5/WfdZQdQiywh4n9frlwb+W93GI932WLfzCA/8i/rxnX6/pdsK9VgvZo5vrMfw/9B9/9cTfzNl60bzuu//jz7/GrjR88nAaDb6IZlkHtB8yDu6bCjGaFOk77JCzaL+hm122XdYykoxQchUw1OGn6QsSRaYTUUaErHOKcds8mLwH2kW+m7heqw58UKwLrvPoiQNnaK0Rd2VU1luZ04xjBUxGZlqGK5InyNesEqXOu+wbPg2Vaq06VImImSdU81TLTkXkBVU2dcVWlqAVeWAHTY4dW4lw6xGhLaosMWxu1ZtKvQpsoYs1B+zSZ6hy9qfqtq0RYUXfMXP+If8hF+SY8gxW1Ro0abCgr4+FtlkGLFI3x3TKl23OG8lsmW6tFT5a64rkAVyc5N1KNPXaIMUMREhIRFN1limx5iQBnWecUiDuiNiTQjRonLvmiWTzIMaW+Su4FWqRsJZrE8K0ot4q/isUtIy1V/iHTamTLWFXM0NBQQvtme2EeEXgzX2yCkhTQlrC+dZmF5B2pw/uiA8OVOyd0/3MZjZhh1fc2bfG/iCpQ1Y/AhvqX+CYM6f6bV4jc8ctVItK+mKEIyGHk9j5mvw6tnrmXO1a5JCyNSmbtPKtSwmSs/tbqrOK1OFBnp8b/FKVRMvLABnM6/NaOY1AW/tt5iHGj4b1s7pRLdh52WveaDX7RKfH2txUY/1eSt6/V6RzPdkEkI1GZlz5Ab5j5A3Dc0AkYD9ZWo0uSFPNW5RC2S1PsOYa4rss+4IUAOsdRpqte/PgOFrZxM3MnGHA96wTYqYHDeMCZ3tyoBoSsHlC/bcirgpSwNi6jSUxIycimGfXbY4JiLjFKVdyli76xu2XdZXiliJyFXNF5XPmxy5Y7evA6Y0qHNNkU2OCfQv3zFb99psx2RcOUCVNmMydFStaqSpWdRes6OxBiX3/RpNFlSdYSTpWG9QtqNDbsIGx2wRqN3M8manClaF0L5wz+1TZIeDe8paK3SwDCzA2cQ24lMOgh0NaIgd0WpRB3l9rVqqprUYhH12KdFLSqmSebAz2oVFs9tfI++Hj/EW9JSqKi0MH/2ZFTkp8HxfWxCrvxKycxb0v4AAwlfAj4EIRp+pavMKR6DOaQbo3S7MGaFroKwGo+eQvdTnmTXeAPdbvI2srl+vwPvKAo9G1/J9U0SYevIEIQ/Hel7zeELVwGtRzt8J4qd6fTJ4IvUWIRX7CIG6rF+b6ncGAHOIEJETPHk5r+di+xrNfP0b/bqFEJaH+KKGVd1uX7fX1ONI6/eOERdGZubYTEWSA0513/N6zEbEmrphpNu90Mf/Bvm9aAM/xJdGLOmxhcD/qNcjUagm80DnkiXKdFwmaFdJNcsbDYmo03C4wDCC5chPCdjjE7Y4IqN45JBt/mH0P5APhzSoE5EhJkVOS5KOC08YahyROWdsQdsI2Nm8VrP1CxbMOReVtc9XaLlM/Kla1ANiZ7WXRXFxSNkCtOXz/x5f8K/4x44ItIVpi5sCHOlqJPNYz0ecWYJNV1W9ayTnIdscsckyPfoscEOOOg16lJyooEGdP+AvlIxOKSGZcucqauEGNZpMCeiwSp+iU5daAZZhQMll7aoCeF1jBXIzCuIpF5TUmj+lSosGjzlmk095pXWn8b1IBiFjRblbp+FKV8eExAQuEzanZWCtBBsm81BnF1mE3cPjom+RpvozSP8hgrUifBEReAu9FUm9wtvbtUn+7q08ZK781x7fRTCjlTY9QfCPKWItr9VIxCYO16XNZv6JPuctpAL9+TWCWT9HypysTMmy9ht4h1AZn29/ghCGv6/bMKHBrMrT4gDecV9BmoW7dzD3GE/UgmArIx5N6WlFpRbxVMWTrbMZtCP9fgxzz/FxTS3d7xfAp/icVlO9Luq1NIfULPHMzLkYS/YxrtyUDXyprH2kVBFsKtR3+KKvLBL5ZZ0EJtqw1yGZ78UkhGoyMpvIjaZZ/l8CU9wqtylAL4ISC/Q5o8YaTdd6b+rJjuY7hURKrOVdNiiI3T1FzCbHAOzxCUNyHLHFKh1VS2YIyDMl4JqiWqx67jiswMkApSlUAwV7Qy1ZMiu+AWTLBjWC8IhNapw5i3xGM1qH5JCQ/1WGmukKYqU/ZYOAKRXaLm/KgP6QPC0qFOlzwrrbnmWedikz1lyxGk1tkZVCJyFul11xQJ0GJ6wD8hrECpa3OOIw3CZgSokehzwjJoVk3L5klQ6AZmiJMtbaXO14rfW2R4mc2t2keKFCjhtW6XAYiJrDChgsKzZg6jLPLEYAjRKwbUZkeO/SzpNJ5mHNSWGdyuUpRPD+swWxVEZjCqlbr+JX4DUoz1N4dwsvYVKAm4U0i90JkxAefXPN1dM0i4sTGMD5x1mWz0dCxj6ByUcQp5QQBX798SM+/Pl7CGDw+TxxKmBxOhGL+WAiRUdTjQQoCJlqdqzzSpaV5ojzepaVtyPJTa2I1f/XtUdUl96TbSvxoGD9n1rellmbAgQwbiKg0dQXBvqNZLYYBFuxf+yPgxBfCmB5YDECIo3YNeWDgex9fcwicuNwjZCmFbwS4QXwp8A6XvVxg5Cof0f39RwPys8R8P9cj3kfb6ezmIAIb89awZO81vR6jhCqK3hLXUHPoSivoRNb/a/02tm1spyzp7Kdf/IXJJPMg5w0EQ02HXnZYZWQiAN2XM67LcgGxDSp0WSNOg0O2GFInjYVtjnkgB2qmrPZCitOtSo4UzCa5aUe8oxd9l0BaEoRnSclz+go/rRpUVH1bOzUs6bgLKsCtceyli5dO1xopaZWgro+oywdK3HbpOYEAbb9vKpzLe90hwNqNF3GqRG7hsVyuqDeo0SLKn0W+EP+ghI9tjhWjBi6a5ln6IpLxS6/TWVGTCBW+kBRpqiGBS8PtZxLhBCrdDjSuIEeJY7YdFmuVtplLqs+kmtbpaXqXukxOGaLPEMnYJB82DzrnCh2XXXRCCfqWIo0Dsy6FqIww68j80gnk8wDm98Cv4dghql+VqIwbQvs5g6yxeDn+lwrWjJy8jlCrCpROvfc74ZFBKs8x2MSIxutSLSKj1YyTPQEvwhu1nqLXlKidM5IQ8tvNdVnCx9pZUWjtt0WXmVqlnoro/oaH7FkpO8UISCfIriohVPWzj3BW93/D/gyqNkogzPuu7ks33UXX/z1RLf9FG+/NwJ4EU86lxFcGc68Xna8xnXY/i3+aTbKaWPm3EO87f85PsIAuV5zP8aT4XZtP5s5fsPFdg1NuJDM92ISQjUZmQbecmlvzG0cqVem4wBVhrGzUZXpsqbkoAXnb3PIUFtJO6zySfwVB8EORfps88aRe7KtiLy2yJu13VpXA2JulKjr6sq7kX+mLFjnRBUOAkKranv6Pb5wwLVI3wXlW+EA4Kz9MYEL8u9R4pqiRh3I8YGocfMM2eKIjuZ21Wk4G9caTVLExKSc4qJEjyY1pgSERNRoUqLHATvkGbLJETEptXRFrNJhm0O6lJ06VQofuhyzSZ0GazS5psiFqiosD0wyaDMs0OdaFcAGzCV3TM7ZFK8Azzh0JQOnrFOnQUTICets80ZteGNnmxNF7JQSF8SkGKqiwvJnS1w4NW7B+YSTSeZhTYaxvB8WhBTlWjI7AfgFAsD2gI+hcHLrsqvSbUg3J5JJqsTb4nQimad/NmFlbyTArQzv6ws8entNWts/syP4sPYeve+WzNLyLVzC4s9lm3N1OK9lScUxYTTx2aNVWDkZQRbZh+Z5zWkh1ePye4aFeeCWHzTOfXaqKW5/hS8oyCLn/i1e4Wrg8hzfWGo3C2Z9s4Imiz2Ycl8RUMPnrb7T51T1sbZ9yzO1YimzmT0H/oUekz3W1BhXeKvYa3wTbgEB+mYtGyDAtqHHZOVdmh1LGymesm3O5puNdFuh7suun90A2c3LHgK2v8YpJvhCj8HiBZJJ5oGN4aNT1nnGIVVaLgMVcDioT5GX6l+0DHhb9LaF8DIdyhrF1GWVDGP+IPoLWqEoLy1vs8kaL/nSEbVm8a/RJMeQZXrOmWOLu+ZEMuzWo0SdBocaR2AL203WqHFGnyJVWqxzos6dmsZU9ajS4oR1Qs37t6IpI4nNrWPFqPWowVG46Rb7Lf7IIpBMdLCsBaxD8g5DTwlchr0dc14Vvs84dETulIA1mhTps0p3RnAQ0VMVrl1nI3vlZyXtImhyyjotqmzzxqlHreC1T9GpZ4F7ObbrnLqM/CkBJS7YxYpZA3cOQ82VFZFAhjrv3DmCOKd+yw9ICNVkHuTMI3/nDevESNfIT/ElTAU8EWhZo4aTrCCqjfwXGCGkqtnojcRDf7aHYB2zqK/M/Pslnrwc6OO7+twYwSBWrGpFS1ayBB6rVRB8VkPwrRHFppx8jG+pX0HwkS2+mzrTCpssButcz8sWxGcVrC18Zup/o/szpW2MjwI4wTvDqvrZYhOyeJLXFustgmnKfRxpWNccYoY1TUE8e80uZ14Ls/qj/7a82SuEsP1X+HJTvV+451prI69TFp/92tRYAlPWphAHUzLfi0kI1WQA+K8akL0D/gNidfwrIAUX/+UbLlniv+eODhfMc8s8t8wxJsuILCPaVCjxBiuemueKDO/JT2/opS74f7JAljdcsUhl2maUytLVptcJaQaMSdFhVQFxxG9Z4JopAWnekWXEiBYTUgxYIMuIASu6/ynzHNOjxCJX9CmS5TX/b+YYMSDPz5njjpiAc1a4ZJEFLsjiQ+3GZHjEd3RYZYE2EaFatgIWuWDENfPccs0yWUYsccCENDFZJvTIM+SWecZkmHBAhjFpJkxIk2XEDTlumWeR77hiiXn+A/+WG7KMnGI0zZR5ronIcMcVaSZk+RXXFFjiikuGjggdME+KHvPcMWIOuCZDlwsGfKnAP82EOe64IUeKiV7DLFneckOeAgMF2m3+i38q2V8Rodr/r50CAqRQYZd91jlx6o+SKnS/5FP+M/4l1gzbZM1Z0pJJ5iHO5vumgKOnwBvgMcx9i1comi2qiYCm5/icUQNgEXAlqtSVVyMBnwZas1AcXHu1gj3e7E8W3m8WLLWEMYDl8xGdlQUWuxOfj2rKgnMEDJrSEjmuuT0o1G9lm1/rYyzj1LKuDJiDB6KW3WqLbLPAPKvP0ygB13BvwLKiz9nDt6Bu6M+72nBr5zrCK2WvEOJ0d+YF+QU+m8pUqyd465epJQzI2rk/1c92U/EWr7h9jLd4FfAWLFPmtvV7dhNhb2kWvVDXY/rXOGva3TuYe6rn8Wrmmj4H5SKSSebBzYg88+Q133RLI5daumBeZlkJSFOPluiRJ09Mj47GLIWaIWo591vxEYfBtuhHwzyWzz4kRy1uEgUZ58yJSTk7uihYm3RYdYvJGcVFs632ERkXFzDWLPgOZc6QTPxQycIjttjmkGuNQgIc8XrKBp/xhStpMpeR9AZELqs1IKYXluhTJKUCACFWS+688twAQk4HxI74NDLXsldNsRsQs8MBJ6y7zHvbRknJZFH1ikPKIhcs/zWvuaXXFDmjxoKKFaxgysrELKffF5IKcStK2BanbLDLXwGiTN7mkBYV2lpWVadBh7LrUyhxwSkbbHLEmcZUGcEs559yr1cyyTy0+a8aEPZhbhnnTom7ELxC7psnSBzQDZ5stKimHIIx/jniBjUicYCAoczMY/oIeWu3qYbR0nis9St81iiIs+hYn6elqHyHRBlNENXnBJ8hP9H9XgC/1ud0dd9TPZ6a7ieDd/jM63PGCI4cA7/U7VneqzmVbPF5Nhc/1g+LlrKvjew07HuKj3+61cel8WWhsR5/Csmuz+lHb+a45oEP9PWY4OcW6QgY6v6ugA/1el3gs/T7CHY00rOt1yiHj3Z6q9dzoF/f6nGm9LU50+Ow3w2Lo7LHJArV780kL2UyMi38m4XlxhUFAM5zy5A889wSEPPo9j2Ppu8JiQjHY6VVsw78xgRcscRVapE8Qyr9C/LjG8p0SU/ulMB874i+DGNWOKdBnYCYtdszVgeXLHFFniGp2ykBU5Zve9pOKgSmKQAmpFnlPaWpAPsC16SZkGfoyNSYgCw3bPItIREjsixxyQejNrXbJhEhWW5Y7Vw6ojOjgD5DRI4bHvGeFc4pTAcU6ZNlRG18Rml8yYS0kqZXDqwPKJBlRGXa5oPpdxRHQ2rjMx7dyrUTAjatZKq8Y+e5oTztsjy6JH07YYEB87e3WgAgcQFG1N4yR0zAI95TvTlnc3pMQEyaCcXbPsVpn1v9Lz4lTcj4nj0uIHbXX/49VfVDx5VY5Rm6xlvLX21R5ZR1QiJesEdERl8Jsfmfsu4yzZJJ5sFNhCcSd/EKSysjsNVls61b02ob/sPT5/JzVUquvB35DKpzuCvDxALsL2Fi5GSk26/pz1aAr/AZTo+BgVj+H7269uSukZhGxoIoGabw/qcL8jzLqjIC8QpXmoUWIEwaeoxGUpotyixgbxES00jKAl7Baed7jm9N/RoP9LP6YSkgKZj7qX69pOc92zwLAuLRbS7q457iiwleIpYyUz4YiH+hx2DFDN/AnbW8mnrBzqE28zwrHsviSwVSyN9FU1ZYscFLPZdX3Is0mNvFZ6im8CRvF2bW75JJ5kHNCufOVm4FUxEhGXUTBcS0qBKR4YY8b9h2Ge5jLS2SSKCuqi9vOAq22I4P+VG8z6PGNSldjO9TpBHURVEZN3UffVcyVaJHTouarOxIcOOUITkXDWVFmqaYbFIjRcyaypKEhHzHDTn2eAHgXE4gTp5P+IqAKWNVim7qwn1ec14trumD9qVTy0oxVJUxIQvqhhprlWqZDhEZTlmnQZ0tjlwe6Y3mrO6yzzMOqdDiiC1SxLzkFWNd7M5zw2t2GBO6XH2LIGhRZTXqOvWwxS+8YM8pZXfZd2VR9lpY9q0pUttUyShW3FaFbDHqs8WRy5gtqwJ3jxfO9TUkTzVq3yN/7fui6L12uDqZZB7kpGGuOPPvFAQ1vMXfst4fI3FEId75eY4UaRpROo+UXRb0M3iMYsrFAkJmFhEyzj6n9Tk3+rwSQrjeInjJopn6eFxnlvWCPm4OKeS0x07wBaO2UI0+1/Yd6r5v9PhrCBGZQ/DgvD7eCkwryIKyXY95fDFoRs9T8SpZhMT863nzj/CYLKv7NtI51s+P9bF3ug/LXF3S88ogWM0imlb0utzo5w/1+x8g+NBeF3vtpvozuw523QOEyEavqV1fO7dwZjvzeHXsom6rT5Kh+j2aREqWDAD/ZBEW7U1Ebam8hN/+04AT1ggZs84pYRyRu77leOlDts9/zTSA3tJ3nLJOkT4dyoSM2eSIHiX+jP81//vov6Zwcsv7j4R0/aB9yfvKAmEc0QjqWj4wpcEiRebIU3AW/er5JdMAUvGQ1sqS2Mwvv2NvaZ2iqgW6LJIhS33wG5qFZc00zdJkzQFAA50lLgDoE1IlS2kQ0SsUKUZ9OmGZD5vwP9ZWWaBPm6qLJijTpUyHFClKUUThcspVOWKxJdmJf7G06eIQRDkhgH6Tay1pkP9qpctr0tEtv64Iq9KgzganLs5gIz4lM7ojmEJvSf7Kjinwg+Y5g/I8vbBEjwWm/EDIVzrcsMgPmuec10KKl1c0lx6xHMtfjpNggRQ5Z+0KiPmCz/iML/i//xe/4TKX55hNd+Niio0KbQ555mISTO1hSoYcQxbUjpdSMO9tfV3m3F+cZJJ5YGP5T5d4i1EKIeq+xjd8Ksk52Jin8HNZEPm7f/5aHl9BiDQjZj+S50WhZKamalI2lT5ByMgQAVlWaKDlVXcvhESdhJC2gH8rKLDygRAhfi1361vZ/6Pmtbe7P8W1rg7K8/B/ufXZo2VIL+CBYwpZVZ/qNg2Ymu3L7Pgv8LmhG7qtMz02C+9/otsI9OemDj3DZ30V9LOdzxNc+dbdq5lsMbNy1XQ71pC6pOe/p9u41OMZAQ1VjZpNrYyQsi/1tbS810hI5fRTfMaVna+1vdqNhsUGfCbPu/pTWPypXnvLSTOiF33sGckk8yDnnBVaVJ0K1UqPtnlDW1dA8mrDlwImoRDfsC3EZdygHxTVmi+rLFtxi8Ngm4gMP6rtawmSqDkNS2SCiCE5FxFlStFjNrWAqczfj/4tzbDmirJK9KjQ4g3b5GbKNo1ozTNkg1OKcZ9GsOMeD6Jataz6Gk2qcYuDYMepRnuUXHSSLea3qPCq8imfsMf2+a/5dyu/xyodAmJO2aDEBfW4QSOoq1rWClr7LtP+K16wzRtympf6nAMlOlMcsMNnfIEVYsnxtulSvpcna5FPvbDEy/gVraCq8UxD5zS6IU8KKXEt44nXEhc0WaNL2cVSWTauKx8NK25Bfawq5DEZdjhQvJ3ikGcchZvuWpfpun6DEj2O2aRInxu3apZMMg9r/sk/hcUfIDjMFrXhfou7ZXqaNdwWV23h2XCILXC/xpdGnePdTra4btFHFhVgpOvH+LZ429cZQtA9RvDZFwgOspgkI35f46ObzBH1kT7mhW7XFLTov61saYC3xrf1OF8hJVWvue8Ayupx7ul2rAT1Eo81DVPZ/itIXr4t6L/S7dkC/hnesWTX9Kme96zYQfPrHW6s451i5izTuC6eAj9DSmJXkJKuJwiWtusTzlxni0VcRF7LfcRJ9WPd1r4+74Weq+XZWq5qVp97DldL8M/+tyTzPZhEoZqMzCY+3Pop8qbSgvLg3OVUdSkTTAWc5RhysvIBvSWRHe1EB9SjhiPfYlKMCXnJl7TCCoONeR61r+lTlKbp9jXTIFB72NC1mqY0aD8Vx5QvL2murJCOoLmyQmlwKTB2KetsXREZOqyKWmAKRa5ZPh9Juzbwo3hfs1ZPAZAG1pAzapQvLwnU5pof3LIc9+AK6nGDG/JOhbDOqWuINXA6CZFrEUN/KcsOB0wJaGsLa5U2L+NXFJWYjQkYkyEVS9P2ctyjOnjPFsd6DmW6rPLvgj+gV1iiufSI0uU1pctrinGf97UF+mGRDmUyjJ2FqkGdJjUmBVhpj0hfwWrUJTOaULycqI0uz2rcdTcXL3nF+uVvOM8tMhadsbO5gRQ7NDVQsESPDBE35NnmDT9in02OXAOt3QiFeqO0w4HebCTLbsk80BnjCUQj/F7jM5UMEFfk68LerYCzJbh7iYBCA9qW76kgMvsWGIkNH/AgK0ZAp4FsLQlorUjCffobvCI1UFI0wq+CW/5oS/evwHf0MQLc2no+bSi8upUV9td4RaYd7xU+w8oiASwT1XK6RvgG1jo+aN8UnWXkb0gZJnu6PVPxZvV5gT7XFvD0XO728IAzBXNGnl7psRjpGyOgF3yWmJG2BvhP8ODXCgreqhr3FwjYHcFwTx6TXkRAue3rCq/YrcNdU4/Fsrv0eiz+GH8jZOqDRYTUNfL5r6sukknmgUyXMuucEBA7Im9Zc9fLig3XOXULrIc8o0+RZxySY0grqNKh7HI0ARpB3eGRZlCjzwKlwSU1LTo1AjPPDQfs6PdSBEih6Qan7LJPP5SMzymBU3beqBXdogJK9BiSo0uZoVrTT4J1p7INiOkhC/EdVqnSYkyGw2Db5dgDLv+1rm+QViZq7qGjlR+qEjSkpZgvJkUrqJJjyEZ8qurWtrsW65zyGf8ewB23qU7LdPgJv1Bla8gh2/wZf0yfous2OKPGRnzqck6nBPy74A+cAlUEB2UXlQCSeWtOpCot9vkRbao849Bln96Qd5mpdr5Grn7FJ5xoIVWLKr/kJ1Rp8SP2XSzVUOvA1jkhJuAVL3nGIRnGPL1np0gmmQc0ywj+eIzgjs+R/NQN/be5miyD3eKTzA20hsMdjuS0yKgUHjM80c8WCWUL4mXgHyD40MqQanhXTkGfm0IwkFnsyzPHl9Jj/COE7JzqMdV0/xZT8BRZTB/gF7/r+tiP9BpU9LNFVn2s+zHBgZ2jLua7QteCHpOd98f6vccINrPSLcOyFd2uEbBG7hrp+y0+CsGumWFm9JpZ+daP9ZoXdJsbeq2MaG3Itu+M0P0xHu8ZwWz7sGzVFPDHePXtY3wMlxViFfCE+6K+Bv8In5mbzIOfhFBNRsaUTufIG/WZfB2n5t0Kc0BMFGboLS0QE/Ck/R2PvrkmjIVM64RlBz67lF2OVW3wHYV3t5xXREX6qClkW34wcqBM8qCkdb5FlWGQJ6VvNO8rC0RkaBUeEZPihjxHbDlb15gMlctz0kpeXKxkmYRQpc1id0KFllM6VGlTi5s854B0BKkYPmhfcrLyAf2gCAXoB0VaVLkhT40mPUo0qGNFTL2wxM1CmmB6y2QRVhojV/b0jEO1QOWIAmk43T7/tcYGDAGx1gO0Co+0AmHZAfdt3jhiEyB9DtMgoM+CU4cAdPSm44a8lB7EwAC+qy8xDPPEqXkuVrLOxtUJyvQouQbX06UfktZQmTrvXPmAZKONHbltqlOAPV4wJO9Kr641U6xHiYpmqrWpMCbDt2z8Ln5Lk0nmdz+zSshLfBFRF3mPbCCk2iUC0ka4Ffc5W523oHtrEzWizyz0oT52CnePdbvWON/Fkbcf/OtLr2A9weVHFd7deuL1OV4RCwJ4pcCZcTbtyxHAE5K3eLWEEYFK1rrvRXi7+ywQt6+n+GB/U4lW9TgbwAqk6/qztnyeWFB/EwGaVgRQl3OYm1WtWgmBKXZHeMvWLLD9Qrf3Y91/Fk9iLujzYxzAT1fwIPwS8hU5Vh7rea3ovkK8EvgM5v4IH81g+4jwvwvm7DAi+q1sa2hAP5lkHuBUaHND3uWV3pAjIKZCy+V/DsnxJS91gVzqibqsAlJu1KbKMj3esE2K2JVugizOB8QcFJ7TpOaI0Y34lAzRPWKwTEdVnZ/wF/whMYFTfpp13vLfrZSpS5kxIRXa9ClywA49lqnSoqaFqsWZgiVxC4XUaLoSKJtVOtTjBhkiUdHqQrIs1Gdm8lOlwMoiCY7Z4ijYcse1xfG9RWwhdeW4a5FgzjNq3JAnjISkLNKnRpOAKbPFoo2gTosqUuKaZ4tjSnqtx6pgrWo3wFSv16kSokX6TmVqExBzwI7Lu7U8WRBcv80hNb0uFntwyDZTAg7ZJmDKbI6+FdWesqHFqcliezIPdExVqVFJRAhWMxePNb8bhrNyJ1Nyxgh2MBu+KS0LCLGXxTuDBghGMTv7Y3zsUYCQkHbP3tR9m619ZWY/RgYayRqK88nhxx8jbhsrT/paH/tWHw+CLw1DmpLWYpS+RYjJp3jSMMLHHL2b+ZnhVFOczjqALHZpgF+w/0yfc44soJf1HI2oniUujfA1QvojPK5u4Aljy4q1bNtLfNb/NU55PGciirfI6/tj/Xii+1zUxz7W51o0leFCFUXwl3jHl0WE6WtxZ3g3me/FJIRqMn7sD8EGspI2gl5YoqNAFnAZqdWozZ1ipsxoQpwK6LLqQLIF1ccEjLNprp6khUAtZBktwagAp4UPiQnY5Igakpd1wI4Dac2VFQGg0ZDVuEt18J4qLWfditRc9imvOF76kLslCOOIlW9GpNtQvrzkvJJ1gNDsWtNA7sp/W1mhv5SGAWycf0ftXBhZU1wGxOQYOpA9JsOT5ndULs/JjCZkB9BeWtHrEjgVxZAcRa4dmJ27hDAaE5OSiAS9RrEWCoCQv3UEqNeiJstxj1jffJfPRzxpfkdxcM0Gp4587egyWY0mUQhXj9OUBpcUB9fkB7esNEauJGE17rKg5Kjt55Y5bpmjy6q7YTFrmdn6YgKqtOkoQW7Xwq5TQOzUtdbummPIDbnfya9oMsn8zseyn0yx3wQ+EYv+6DkClBbwtqGn8P7jBRcBQAsBp6ZonSXZugi4q+Ca4ueMqC3ji6ssKD/EA/e67Ou3T1eYWM5pCO+fLnhlqZUm6XMWv5pACgZP56EAoxpynDl9jOV91vAr67ZS/w4BmKb2bOEVnBEe2C7pc94hoDLUn9kH+r0A0mv4G4h3CJC1ZldT2y7peViWrdn0GwigNcdoZWbbS0jZw2u8CuQpXkFrSgI73hSiYNjVYzQC3cq27ObDtj/CK1+NQDVLXhWvhLC5xKmc85/p9U4mmQc4WY0yAsEaF5RoUtOs0owWD6UcrtjiyC3Ad1mlTZVNjgDUUl92pUYpYt6wDQgu2meXLquC/wLJPRULuihD25rfXqPJNoeAEI0BMdZab66nPEN+FO87stIW1S0/1TJYLY+0RI8WFVeANVRqWL5fdZFJURBS5PpehqktVH/JS80kHapK9J1zNxmmtIVx+/zJ+Wt3PBEZjsJNNjmiTJc1mjTCOnXeKTGc4Uteuut5ygYN6uQZMiRHTOBiAHIalTBFegCMiC3Sp0zX7S8k4jO+ALwjqULbWfSH5Mgg8Qtlugy1mNTyUWs0xX1FTI2mU9ca7u5TZEieBnUuFPsmk8yDHCPKbKHc8NZXeMLQiMaRPvYJflE3QAhIy5k/18+GhS4RDLaAYBcjMffwC9imzjT8aeWghiOreGJyhCc3v0KwVFNipDjR502RRel3evxrup02fqHdFKLf4LsEDN8amRzo9gw3G0bcwGPYSK+HZdSbataEXAD/OV61uTezvSd6XnZurxEsNtJ92LV4g3c+mTvKrt2V7ueFnt8+97sQFM8DXg081Wv7Tl87E1GAKJRtX7aGZPjWCrqW8Fi5rl/r/ubMfZXM92ISQjUZGftPXdWvF4AnuHymHstOjViM+sSpgObKCt99tESvsMQ0CLRN9YZrVTtGCrSHQZ5pENAqPCKMxgRTCKZQjxquyMAaT+vI94oDWcUOiGmFFYqXE+LUvGZp+XKDKQEH7BCRYRpA8XICoZAO6QEUL0eu0dSKlRrUAQnMD6YxhGKtvVjJwhQHzOU5jxmSJ6c3Fee1LAdLT4lT89ylZBtcQpmuA4tFrulRItJiprsliFMBpctrxtl5Ns6/U8XosgP6RfrkI8k5jcIMwTQm1FKX/lJaLP+FBZe7ZUqPnML+7DnkruUaAfzVylN+XX/k7Gx/FexyTZFVOkLaXr6nOBoy0iKH8UwrbkxAhRardMloeVaVNtu8oUSPdU4197ZFmc49C1yGiFW6PFXAn0wyD27Unj9ZQVabNY9zbgBZy0QFAZ3qXnz0i2sPrs/xIO9XwDVMPsOD2xoOcI4MjC3g1Z4Vfe4LuHuOB8RXwDe4hZ+Rgu1H7WshOj/CFz+Z5UwzpfKDWyYVyJpC1MhLA5JTPIlqeVrPEQJzNlz/LUKarvlzd8RiFyZf6td2Hcp67Ja9ZTYwU07UEFDdwpc8DfTYP9Kff6wfHyF2MFN8dvGAFT2uF3o+e/gMW41mcFY2s9v9lPvK3dnMUwPBBvLLCJg20tuI2QhflmBZW7PWMIt8SDr6knmgM6BIiQvymvG5wSl1JBbpQom7Gk3Nc8/T0YV1Iw2H5GlrXqct6trirVnuzWlUpkORPsdsucVdsBiiGjmGXOiCeo0mh2yL40YVl0bgmcr0MNh2GfiA4qWhWPGpzCwOT+lQZlXLltpU3c8kD7Tj3D5DcuyzS4bIHZNlqppi1fZ1o0RijhuNAqhQ4sIVORXp81crT7khz5qSkZaz2qLCHp8AQpxGhKzRZJd9VzIVMKVMl4iQY7a4UMdThjFbSEmplUSFWrIq5aY553Cy1+SMGi0qSpAHukwu1+1H8T5V2uT1XE19bHgww5gLzcg9YIczzV+1vFgrDAM444Pf4W9rMsn8DsdyTF8hi7GGoUyZ2tTHrCAWcHMxmcLTyNAsgqHMzm4KVvAYq4G3tFtGqy2W2zT1sZ8iJOQ3ePJyFueAXyRuIiSuuY8sb95irAwHvZjZz4l+WK68HccSgotCPIlsZKl9/By/AG3no8Tr4Pm8J1UtV/VaH7sys5+u7gcY/NG8kJ7mFrLIAXM+GY41XFvQY7cc2iUEH9pxmvXflKqWf2pkpxHK5tiywq42QkS/Ql4zLaKlrNuyGKzZ/oGf67FYBu8JHiMm8+AnIVSTkYnwN7v6xsUARySGRDzjUBSKoQDNH7TPyWiQfyqOtZAgoh43WKXr1KRiSZclp0JXylvSAyhc3jrSrhY3CVSNkOeGcTZNhjEN6gJul9I0wjqbHKllqwRAl1WW6bFKl+7SEp2VBegK6XCnuXWrcZcXfOVKBwCWYzHbR2GGQXmefDwkPxhxvpHV5CshK6u0WOeEkDG1qCmt3QhB2lpZokSPq+dpWlTIc4O13VuOaEDM3MhUvFBo3zINJI+qSJ+veEGbqhCrYV7tYrLUFYVSeJMZTQjjSK1UAREhZbpsckyfIvvsclVLk4qFOAHJvaoO3uv1q3CjqgK7Zs2lR4yzKWd1szywWVAPMCbkQvNzh3o7csQmx2yqMkJaYiUaYEHNfnlHJieTzIObM+BS4jau/jjt1QVm/0/hAuWd5esxDsQNPp8XoGfffwzj7LwAQbP3a/h+1lbH3+j3LHhfQeTcHh4YL8rXc01If6nPfSt5zizo/rQoYLShhKsSwHMjuFlI+/KnJeQYjXRs6H4s6/Mt961RKbwSYSD7m5zh4w1ey/fSf6jHGstx8BpPME7133Z+V9wP6f9YzuHuNdy9xQN+K6uq4jNKTRFgxKVZxowwXtJ9VZGbHVPmmnrAbn7e6blaRmwXAdd1XJHBXRt/8xDoua3gCV0jVe3mKqXn8xy5KWmAdiEmk8yDmwxjaXqnz4Xa0ltUXBN8m6o2x6/Sp0heo41kgV3cKh3xybCsUUGmbAyYakHTGuuai2rlVab6NILTMlU3NA+/RZU8Q8ZkCJBMd3PGWAZrkxotqnS1LNVI3hYVznRx2qz0lpvfp0iOIT1KWn616iKQLD6gSN/l/YeKU3NaeGUkpmW75rhxKs4eJb7gM3X+SFRCSpWqN+RdX0EKyanNawRWjSZbHJHnhjoNZ8Evcu0wp9nwSzNvNmMyHLNFkxoBMVMCNjglZKzEat45yXJKNNtrY+RwjSatoOpcS6GqVc2V1aPkorHaVPmML+hQdtegQ5kqbdZ1dep2hihPJpkHNUbugWAHa223xVXwhOk7hKw0NavZ9x8jWMcKmAznWL7ox/jMe1uoXUQUmlPdpuEaU15aLFR95hgihLDbw7uO1BV1Ly/1BB8r8A2eEJzNQbWFaNt+jHcIGdEYyLm+f7ng3FMuN996CExdqs8t/PNb515yhHJT80sfIxjxXI/5iey/8M9vfdnrABdvhXUbfK7bskzaKfdzV+31MoK3itjyp/p8I8ovEXJVj8nFPLz127/7HP86dnE5tpPPEIxox1jGv8b2e2OYOE8y35NJCNVkZMwyYG/ui8BHOCuVqQ6K9MVWfjlxdvocQzqBLxKYBgH/jj9wpOeH7fcsvptwQ55JQW3yEQyW5h151wjkndpKlqZBwOr5NbuXr1nnlKNAFAunbLi2WQGzohLIMCYfD1k9v4bHoibrL6VpLH2gGaRFVwRQpM9BsCNfX44oXN6y2BUL/xk1p24A1NYmK/ZfhJ/x66eP2Ll8SycoU4z6hHHERSAZVRaLYAD1lHX6FDmvZcm2oVtYYbIoua0BMfvsAqi6o8sp65S4kBuRwS1hBMMwz7CQZRoEDvCXuKDEBUO9eSjTZbE1YViY52TlA+LUPKk4JphKfpm0sAau1dVaay3rq0/RWcRCxpJ5df5rZxm70Xd8O68ifTY5ZocDDtlmnx85IjgiZEjOZXwlk8yDmxABcG9hsSk5ww4Y2fuj2Z00n+rOVrmXdNGoiZCbSgh2wjKFt7cekE+BS/jtxgoTs8XbCnkDWfU2ixjI+/NjBFS2EQCnq/dpK5EKEUD8VJS03cKKB7QRLP584vOqLhBgZ6vkzJwfCPg0ktZynjbwmVUBpFfk8+Qb/A3EAK/QNYD7U32eZV6t6PbNWvYtHpy3Ye65llHZ+c8221qsQjTzMcA34Zq6dwUBytcIKNaFwuEvZp5jN0B2fkZcv9btKQCeq+AVDjZNvdahEMAM8HYxK/Hak+fddUHjqpNJ5sFNTpWGDeru77oRf1Ml1Yywm80bfcahs9KHjAmYuvKoTY5YoE+VNjEBOxxwwI7LHs1zQ44hFVocsEOdhrPIG0ZsU3Ek4d/n36jtPU+eIYdss86J2ts77HBATOCIwhpN6jSo0HJK1RxDzvQ8DM9ZgRMIgZvjhld86hS4Zp+v09BzjFml49xKb9jGslmL9PmEPXY4oOPI5xsXKWB5sGW6nLDOBSVaVGmyplb8MWMyjqgUf5NoUmuc0UE6DCRTVsjbTY7Z5pBQnUZ5bsioUtWyboX0XHWxVnasb9imowSyFEt96jCeLbjXaLr4B3MwgURY2f2CCQ1AIsOWXJZKMsk8sLGFaFMVaoERU3y80Gt89JFFDRmRaQu4plg8QfBRFcFE+3glKFpy+hbBfxY7ZArM1wixZ8VRRvRaxquRppYPP8UXVr3DZ+ibs6alz3kxs83X+Ax+I0Ztod1w3vOZfV/Co71rn11qx2CChKpel3e6PyMobQG6Iuc6Zwv9G/jCLXNRfY6QzjW88nc21/8LPR77fkO3YTZ9u0YppJgLvJBgqq/BHt691URwXRa/MC8JKcy9RXD+JwgRey3XLf2NPras+7YF+YZeC/udsSzdZL4XkxCqycjYG4qt3jSAPVwxkc0h2xwXntBcWaF4OaJ2+d5lS/0k+iV5bmhT5Sf80mVZXZXTTFZgffBr2ksrRGS4eiyK09lMqRQxP4r3WeeElfaIuTbEKSmN2oqPqMcNtiNpIj1ghyJ9PuVLNjmiz4IQp0tpBkvz0ILF7sSpB1LE7HBARuFgQExxcE2cktIrANpCTpbpkGdInYbL5LJCqTw39JYWRBkQFsmMJnzYeE8+FnWC5b8esEOZDuuckopj7pZE0TvOzjMNoHR5TUWbUc0SVaTvjm1OC25Wz69ZPh+RH4w0G2uZjfiUMSGrUdeXWKk69cnJdxTaQhDfLKQp0WOXfTY5pkqLNZpKRt9QaV84hbGVFXQ0GqG5skKXVdY5cZauoUYzvGGbMh2n1LAPU6fEpOi6GsRkknlgEyHAbbZQqokQf7MFRAbYLkU1OrL8LF2F/21txa3uf/iL9x4QG6E3gB/8Qsv0ynhCbgN4pseiisrJp3g7mQHaGJfbdFeBq99P+1X0Nvzg7bkDr3dmYTeAaxZ+A3xmKwMP1Ft67l1/Tu56NPS5EaSf6nGZ2tQyZLN6rEvITUKEB+JG2NoNiYF3A8hlfawRpXbNLafsY+BP9Hjf6uPNHmavwU9luxPLZy1D3hTApjY14tuUrYWZz6ZizeKVDhaH8FSP450SrgPgT/FWs3e434+5n5KoEJJ5sHPJEp+wx1QJSVs4t0XUEj22NOKnjxRWFuk7Iq5HiXVOyXMDWA5/in/L35fyTsWPZbrOah8wJUXMGTVXLBUjsVK77LOtjfFCjp4xJM+UwGW3ZohcpFKfovYAdDVKIMUxW/cy4s9UHlWm6wjQPkXaVLE8VYk5yFHjzLmphlqCZSrTU9YJVLXbY9nFIVn5ao/S/Z4AanzBZy4CwFxR5tQq0ne2+zxDR2AbZpNiVvm3kZkbnLLOqYu2OmSbHEON4ArcvltKSEdkHPlshLSVXHlFb5VVuo50LdNxdK65vhrUOWIT61kwocCQHE3WBLPS4YP47G/tdzeZZP4mZ/IU/7ffMJGVT32BYA8j4WYLO812bkrFAd5SbwRqC99A3wA2YO4VHvOZEtPIRsvoNIx1BcSq7jRLuWHE/Zl9g4+kMqxTwbfP/wIfF2U2eVOPWknorh7/JX7h3FxJhoEsgxWEaNTopcGu0k7myErJ40YriLigptfE8Kbhxq91/6/0a4ugMjVtU7+2fbb0GD7CR0Pp4vzdC3webRevwrVYBrt9nbX3W/mskcezhLllq2Z1v9aVMHtcFtUQyPWYfI4vP03mezEJoZqMjP1nt8ZAbR8sD8415zRHTMo1n/6gfU56AOkIV1aUGd1yzKYrcjpgh0O26QRlsZvqmMphtlk1p6qCTlBmNerK8axIS/V5Jctia0JmNKERSsbnOieahpWjx7KE7V+OWGxN6IUlJk/hvJJlis+JqkZt/ow/5oiteyRxTAAnYpMFyA9G7LMrDavadFrjTEDn4Jo+C5Qur0X1WXjEoCL/jWwVvkWVz+Iv1EafoR8UmRtIXmKcCjhd+iG9pQV3HRboOxDa1L9co4KUzfSX5Lpl22LVzzPkJFgnQ0QjFMC8SodBZZ5I35jP65IFGwWhUwmPyZBDMlpdodfKHCliPjv/j+S5IUXMFsdscuTUBRIVMCVgSpOae/2t5KuqOapCBkvpQo8SS4nHNZmHOgauzJpjGUplhAQ0hekIb/++hKzZ2WOgDqWoJypGs6Y3Z7ZpmVKmuKzhydDX+hhrLF2S91ne6UcZX4Sk1qO5fVj81UT+/Qvd58nMzy1U30D4BJ/nagDWVtgNGFtrrVmlXuFB47d4cD6d2VcVDyrtxsFuNArcVwIg+xvaDYVFChh4nSWY28jfJvv4FaIiMLuYFUHMRjB05XlpU/POFiws+msD3M9AtZw0izqw80jhSXYrqIrwJQYG8NX6f7c/c82tZCGZZB7YRGSc0hQkBiqnC86B0pJ9ilRpkSFyeafHbLqiSsMHhqfyihFvNEe0TZUqLUf6WZGRKDflP2lZVbGmCi3T4ZgtQDJQazSd7X2HA9pUyKt13zoAAqUiJb5KiN0ifXIqBDC7O+Dy5Pf5ETGBywEV5eeRU4RK5nyboRZYCUF56hS8VVouluArPnH5qOL+kYX0QOMEivT5JT8BxEk0q6JtIiVdlhsbk6KnEQx5hiyrOtVcQuuc0qTGJkeEjGfOX4pKjQTe50fckOdMlaYLusCfZ8gWxyoueEedBn0W6FOUCCy9TjmGPONQr/8ZPUpUaLlzEFHGNV3KZBjzKnj5t/nrm0wyf2OT/gL522+k6sd46/0iPsboJR5XmRoVvA3cRNqf4xewDb/8DI9pQvzi9GuEpFvAZ4yi+zS8UhAs6DJUzXljikhrtX+sn20hHLybyaz6LfxCtS3Ao8/9Fh+ptDezL3uMlU8ZYWtFpmUo/PxWcJIVtWo2ffatRFnxrR6XEZ67ug3DWUZo2gK64m+Xyx/howJq+m8rAFPCdW4fT85O8VFOLd3GKzxWnlX2Wv+AFccGiMrVHFrgBQR1vBIWfc5PEdL8MaRNLLBMMt+TSQjVZPyYZdIUQkCj8EMANjl2oK7Lqqg6NaPl8fl7qlGb3tICFV3tb1Nlm0NHXGZGEymvIqAU9YT4VLLPipWkHClkP9zlLiuk4uLbCWE0hliOxcLyx4SO9CzTYUie5tIjfl17RDHuk46EGDWF7T67dMIy/5CfKYAeMixkiVPzBMRQx5VADQtZ1mhywI7kP0Vt8pHY4cNIgvhvFtLUzs95fP6eYHpL8XLC5uWvKdNlnRMyownXaiMbkoepbD+Yxq7oyY6jy6rLJ7U802wbHr29ZhoEzOkbe5kOFVrEpPglP6VIX8Frm2B6S7+wwNVjJa5TQqKu0qVLmSkBZ9Q4YpOIDNXBe+JUwC3zvFt5RMCUjILuJjWnPAiICRmzEZ86tYVkZVVUHyIJu6Wo5wob7HHJJPMg5wpvbzI7ehtGP0UAtP3MFAhWBGWgVUFcoXnrrUcpBJSBB38GJkc48o8mAlhbeBIuO/N9A+ZTeczV47RfWTeizwC+ZXq28IVQ6H6W9VzseVbAZUStgUHwNwGzmVWWs7Wn37dtW9HUE7xN3hQUVl5gxOW17C+vUQmEeh3W8ESmxR/YcSzqtbD8V7PgLen2jMh8jI83mL02NrZtU3Z08RY0I13t5mIw8z0rdhjAnVnSLL8MfORATaILKOt+rkkmmQc51xQ5YtMRaCV6VGkTEtHTfHXJGi3r98VlAzgLuykqO5plCvD3+Des0eSYTUCI2z4LlLUYqkFdCcMpa0qWrukx7LOr9vXIqWKb1FQluUVAzBpNSpqvPxtt1KbKHp9o3mjPWdzrNBhrrqgpX019W6LnCMgxGVey1VXla5M1Qo1XsvKnTVXtWnxUXtWnO7zmE/ao0WSBPhnG3KhS90ZVqub6klxYKfUynFuj6eKuQHDhGk06rLpC2B7LWhKWc3EGFVoaiyBRUVamVaNJh7KLcepRImTs8CCIqjhDxBbHqjqVTH57/L/XXNg671xMwyteOjVsjabS6Rl+yG9/57+zySTzO5kAwTHWCH+Jwx0AbMD5i6xfAH6KxzYtpJToNYILTvR7L/ELzJZvbxjU4pjAu4tG+BKkJvCVHpcVY1ksVQqPUWdcUU4VmsWXoZql3+KR2kiXwLcIDrXnNpG8UYAXMPkIcQoZ4dvEE5vm5jrX47NCKMNtpn4t4+OiCgh2tEx9uy6Wd2pYdoRf9LceAossrAH/ACGr7dyf4vGrvS62yG9Zs0YoL+m+LW7A8vinCLn7MR4/nuNFEBZLkJ15ngknTHVs+NlemybwnmS+J5MQqsnIbOLffK1ERP9IlOi5Veld9qkPfsOjk2vuluQNtbOyQCcsa6bV1IHpiJAaTapRm2wbipFYw/ODWyYFeHb5LX2KvGZHSwMEINZpEIWSAzjYmCeY3jJagfrgNwCcsk6NJi/4io7aneqD3/Bh+z0fnsi7028rK4yzacqDc3cOKWJqUdORvD1KFNq3xAR8V5NCq9LgklQs2oUaTTY4pXB5S6F7K7apEFJxTBSEYssfSVZhc2WFdCRW/urgPaeFD6nHDVew8O3GB8yNRKH64df+HdSA8jI9tuND1jnl0atrKMCoJvuarAFTXD5WjxKf8BVD8qKAZYF+YYE+Cy6LlrYo5CIymn+77Kz5q3Q5LDwlJuCcFVcmYTcTVvIlNzhil3sVvCRgygE7rNJljaZTIcQERKGoWOymJUxCA5N5qGOWLQNnEVCH7B6+adXKBbQoCvAgywhSLfobmW3ISgbMWt+Vf4+eqw3qMf9f9v7tt600TfMFf/IiuShSFClSJm1G0qFjKKxtZTsqjIrcmdWdvbuALmADPcBgY18MsK/n3xjM1cyfMfc92A30RQFV2NV7siszJ6PHUeFORcohW7IUZgZt0iJFiiLFRXJJc/G+7/dR2Rd9U1EziuYLGDqR60SZetbzPQdGz/TxafwKvK26W7h9GweKl7+eQB4u9pIeXJp60lbHN/AWpja+9b6FkJURAqxtf9Y6e4JvKo3xatYqnoz9YuZ6mQrgDQLMzXoGnqgs4fNfL/TcrADAAK2pXS0r1ojNhG5/XffXwSswRvqcBiw8Qm44BjPbMFUBMPkSUQ435XWlgVdAdPS8PsNnXFV1P9/MXIsiLBgoLiOA2ax94BUMl0gD79zyP587OiERO7xSrNKmzSoveEqKscMClpNplvZQl1otv9PiASSDUwor++RcPqrY+lfZ4pi2Kj8LdHnK105hChK5ZIVHMQE7vALgP6ltflFLqk5Zp8uKs9F3KbjtWclqwNTZ1hs85IySe6yQtOfss8chO9SpMdQMe7PGX6kitcFDYhI8pHFrX4JrVxnr+QpmfUFI5Kz7ok4VxWxIxJd8QYYrVf0uucxYITdX3XUr0WZRycoCXfb5KQFTSirfCpjyjipL9LnUwisLZ2pRYUyoXQEphwlFQRrpAn/GkaF1auyz555jkQwBsYtQWOSKcwqcsq7WflEQ2z5SSr5/zWf8lv/+n/pXeD7z+ccZUym2EJeMRuM5nNSD4pej2zgli0Q4Pea2q8dUqRYnVERs9NsIIWilRVn92YU+1vJGbTH5MwSLzrhjbmXWm1LW9qm4aPIptzNdDZMZhjSrv5VeWSzAX+CcUMlvcVnyLl8/i19oNpWtibRC3cYv8Bmjpta1HFfLVTWBl2HVol6vpzM/ezuzzTKe4DRl8Eu82rc281grltrGl3I9xdv67XgNNxoONdWskb+24J7X55fxkVcWj2WRBWUEFzf1fO1az+dHM3NCdT4y3+FDne3GNSGr6pfkaFEmJuAFT4kT9yCEhak0R1tTq2RIrVOj7uxgZVpkW9eMypDtXRNGY06KD0jWpZwpo3YhKxcQa1WGZvY+N2khIMMIutm8V5Mitvp9fkpCvw6mcswXj5JEQUi51yE1mjBOJ1lkSEKt6AfhLi94SpcCG633AGTioQeJUzgPpKDJwOBNAj5Ul4hJkH4t2awBU4jgopIkF/f5qN6BSDJf0/oHItebkFNpUo5LPlSX6Ac5SEC51yEm4KG2o5Zp0QykmIAKEEG6I6U4cUJWPd+pzatGXa10UvKQ41JLCFaoxXVWOiMoSqaqWfGMrM5wRUSKKu9IXk9IMiEkYkUVHnazINlgK2oQk5y0HV655teYBKesu8KqV+xQo86KWt6SrvFlPvO5Y7ODs9vfaMbojVnCrd10NidzADePca3w5PVxSvalTZVgpF0e3jx54FfNkfdG2vJ/Pv0r2ceNAWEj+YwUzQMv4OYRDtzlehOnDr2x1XfNE51oKP6ojIC+E+BMy5TscZY9auQvCFlsRKsBXSub0kKDm9/oYw1cmq0/Rm44LHe0jYDWFvAGbixXykjPdT2vZX2cWeWN4P2F7jdEgOi2notludqNQlH/mb1/ndt5YwNImprUlLyBHrOBaoC/1nOxqAR7zlt9/Am3LWCmOnik37PraiS3XdP5zOcOToFzUoydmtSIO1NDjklxqSWXmxwpLumT0hggI+ispMiUoit0qVEnoTb0iJRbOJZC1ISztltpVYKYTY7dwrjl3YeMncIzYOq+b1FVMYFTx1qWvEUFJJDc04Ta50W5mmCNU/bYJ6UW95gES/RdbNIpa1RoOWGAZcCeskZZi60sj/SAXVqUXR6/Hb8oWmW7f8XfUKFJVdW1VgC6xZFT0RpGs5iElbjr3F4gZGrI2JWQlmlxpn88jICtU2NVM2vtPFKMNcppceYaSD6qFGmVaGqMQkIjCgRLmmJ27PoApoob5XW/4h1VVecesMXxD/zbOp/5/EBjhJ2pLT9FFqwtR3WKkG7r3FaLNvDWfhtb+G7hLfiW0/8lQtSCxw9P8KSqlYQ28SSglTe1dD95hDgEwVA/032m5fHJFoJvjIQNZ7ZheMzGSEmztVs2q8VUmQDAFJ+/wVv0LTbgNYKr7LwtIskcXBarZTmqFj1lx4l+3zCmubzMGWbxAkbcTpF7acOHhtHezByD4TTDj+hjHiPkp2FjuxZWNjrF4/eGXjcVSLhtWFSAKWNNUBHhSewI5rfKP56ZE6rzkbGcFQ2Ipg1s46zca5xqw3yXOBEwysNNQsjFlc6Ilc6IKdLW2qBKadDhp53X5AaXEEgW6k1CGrDXO++5qcJ5Mc3m4A0bJ++pUddV7TbVqEGbVRrFIv0gRxTCg297ZAbXlGmq5T9FhqGqDca083lYhn6Q437rknY+L2Tq5cSpMwFXNPWOqpRXBUJG2Gr61VKSmECBpliwFvSN9v7JJVRhkL9HGI25ycI0CDgLBKwOyvfoZvNwIWA5CiE3uGQ1arPaueT+60s+OukweSjEq+RgBaoAXiKlyoWLapKLapJREf6h9phxOunUAVuxAOsDdnnFjmtTNUXFcmPislQXVDkXqfL0jFUaVNmKBNAmxtdMkIiAI7ao0mComWaSGytfW0Os3TxMCYRQRlTIn3Do7HWB3gKdOH/zfOZzt6b5yTKjKrx/kmeYvScZpL/GKyvT8H2tKOBWicGpAU4DWGahNxvQI3yEwFuo9d67PKd0XYvxDOxty2MWjGjMIip1mxbwWP9/p4E2LLzBAb8FLSO40eyppCkrwb+/92DBirAMVFqkQB5vVTOAXMErDkwxCixY3mx55vmmOjWisYGPRbiU7S2kdR8Ggs023+H2jceFXhOzoIFXBE//5PNYt2VZZOt40tOUBHajYf8sk2yE3AR05Nq751omWh2v1LBc3Cd4Na+99lm8WsUAf4y3rs1nPndwRNWYUjWqEIKGV3Y5cPZ5czIBSr5duUXdiBRS8CT5np9w6DJJFxm6zPo+OVZpU+MtIRF7/F6JybLLa40JOGSHU9ZcRFGfnNr2Q1folFIlqpGQfbXEX5Ghrc6dKy2cms0EXY2kgKlNiTEparx12MgUpOt6Dn1yXLHICWu0KdGkotmvASsaGRBpPJKVr7ZZdSVcgFu4XlRMawRpga5qPUuOFLXzn2p2az/IscMhK3SdwnT2PEMi1jkFJAZK4gwa7jHvqBIQs9eTEHArVxVl6djl4hvxa/EJfXKsaK6u5cKucaoUeExI5CIGIsWvUizm+xTmM587NUa+faNft/CFS0a6hRrFZMpMy+m0RXfDO6Y8tez9JTxRuY7gow0kEsAySEN9/KzbadaREyCL0ooznaLVyNfXM8fa0n2Y68nI1pmFfqdQnbGq35hq1LLmi3g3j0UiGRZ8jM+BNYLVYgB+p8dihHBDj8PUtLYdc3sZ3v5Gv/drbpPIJ7otEzx0+C9LnywuwZ7zDb6/wFS2WQQLWoRCA+8Ua+AxpMUOGBFrMQyPdHuv8VwKeAewPf8JEm+1w3x+JDMnVOcjk0b+80/hwqyXr0XlaMAXRA0QTEUVujCC/1zeplnM0yzmnfIAoJ9dYhpIHimRZKga0dcoFpkGUKyPRFk6EJVoijEP6j2yvWsqNPmo1ZGCK1XENot5tV5JOUB1Btxn4iHfV4t81Oq4VbRmUHFlWE0qHLHFKWvUqLNEn25Y4CaNEJ+9ERmuaAaVWxlgABfVJKudS//HAgim10QhHLMlKtSBqGkrnR5kBfSO00nSLeiHORrFolsF7OaXCCNY45S25l69YkdtagWmQcBye0K6BbuDlyy3J07NOgwyHLGJNNnKjYsogSVb9UNtiXa2yHfV+xCjZRBjZy3L0acZlulS4Codktbm3RJnTAkIiVzhBMjzG1SdvczA+JjQlVG9c8rWRQf0U3PL/3zu6FTeXZB+CQ9e9Mj+5loAbAJZmVbQ99FJh8m/QcDTM0gakYg+1ixFReATGDy+5wudtMyPOtxsAE24/+8uPQBFn/tGHkMTkr9BQN0bPMg0gGnEn31flaILf6fbUoVonLjnwfEqvmDJVJZWcmXKUQOuBgpNJRvo/mYBs4X3698Qp1itIrlTtg2zbBURQB3i1R5GeJbwVnpTGRi5bIC3h48GsIxTGzuPfX2MAXqLBwjwza9WfmD7v8SXNTTwINpupMwmpqQ31ZmPpjIxu5fddHyKJ5TnM587Ni3Nzge09EhKSN9Rdbmjllmao89udECGK5evCTib/5U6X+rUHF6UqABZ9LYCpkO9yxySoUGVDFc84yu3MN4n5wqo1jhhlwOO2KRBlRQRBc45YJeX7HLKOkdsuexQK3Ky7NSAmHMtUrJYpNNwjQpN1jh1OfcFujS1wSXDkDO14GcY8jlf8YyviAhVHHCGFUBNCahRZ51Tt781TvRYBcNJLm2TU9apU3OlUxYXMCYU7EZ5Jkf1ymXvmwp2rGELIIT3z6PfAoJ/qzRYU2K1jkRDlWlSpkWKMf18WmnbNp/03pBASlXXOHUL5obvpgSsceoIVzs/I08tnzVHnxW67PF7Njkiw5D7c5/rfO7q2CIx3CYm9/A5pANY/rXe/+iCuMMXAYJnDC8t4VWLtohdxZOmAK/wCs+X+FIsJeomNfl68gv92c/wqtApflEbvFoyxOeG9pBFYlOZWta9LSRX8eTtM1gwZ5bFShn+auvxvdRjfYvHTo/0o6ls23qMlr9v+zAX01uEMB3p9SriceZsdEICv4Bt/QavEULUiEzLNzVH14a+DubYejZznFZ6CoJPrQfAXLvqTBtZjqph4gqS2Vqd2YZ9HuNJbTuHZfzi/zxD9Uczc0J1PjIZ3B+K5ae4N4th9h4xCY7Y5BU7LDLkLCyR1jfR3d5rclGfUq9HhSaxZkP1WaKVLxKTgIEUMoURdKppSoMOcQLe1/K8yD+h8yTNcnsiuaxZKaMaqpV8pTNiGGYgIRmsRg5a2ZOtlgfT2FmpPjxbotTrETAlCkIFkiescaJA/B1VGqQYszAVoiE5EAXqduuPlAYdLXQ6Y5EhjaDKwkBVafpG3s8uESfuKbmY4g+fbjAMMkwD+FBbokyTxcsJr9d/QmHQkyzXKUyycL91ST+fZEzKNa8u0WdMipgEmcGIN+UHvF7/CcFUFLHlXoeQMQ2qVGg5hWhD1QVhNKYSNyVHa9BhJe5CKBb/RYaUOKNKgxJnTm2ywA1JpgzJcKnKiSYVViMp/TrkE6diEPXpVJUHY8o0WdXyCLOQjQk5p8AKXT6L/uGf8Jd3PvP5R5xzbjfAzxYymd3ILFNvRalPDHSg8yzt7VhFv8ns/rVknT5L8uF/XBLwtq5to6YUAA/+vuW2ZeoZHlwu4/OmtKX14pdJHw1gqlhTDKgNPXty7QuxVvC2KCNB38LNv8cTombBMkuV2ZTMwm+tqUbkWl5YQo99tgTLVA92TWy7beCdxg9YMy34m491/doAr2WnmvrCCg8ifM6Y2fIvZl7HS+TmxYqiLPfLSFyzu+Vh2NFzneKVG7MFXyMEaNtNRkkf8xK5AXmGJ4kbwN/CfH1pPnd1NngDyOJqhZZTVQK3cjVXYlGo1sOaKhFDt/DdZYUWFRcFILmfexq1FPOCpzTVLl+jzs/57UxcUt/hvCGLLu6oqZmuMQnq1AQ7MWRdF6o3OaKs5Vk16lRoccoaJc60sT7Hcz7nlDV3HoGqRy0P1qKsyjQ5ZY0MV05ta+dvPytofIHg0ytHKNrj1qJTFyM1u48+OedWWlWctsWRWwC3uIKYhItYShGxxgl1ahyzSYFzAmJHPgfEXJHhKNx0pVgxCdqUqPOIsoL9YyWaA6acsu6Kvvbzj5kS0KDKPnvueCNSGotw5dTGdWqcUZL8/bhLSERMgqa+3gExiVieA8zz9edzd2cZv1BsAhuLAbhE/uYbLjpBcEQd77Ix5aYpHi8RrPIcwRqmLK3qY2oIbmkhasbHeAVmFvgGkv9OHps06/gLPF490WM23JfV/ZlNPY1XaC4juOUzBGeW8epZe4yVMxmpbDjTzqk8sx9bCL/QbRv5WsMvTM8qPO24qnqee7o9w16z3QMRftHcxGC2iD9FiNKnM6/Dsh67WfJt8dtcYXkEEzbwZKstktt+esjieFVcZbc6AEzo8Aqf55/H3we08VEC1ZlrM58f1ST+6w+Zz38z8wh5k/sd8ubzCJphmbECsoeaIbXeec+H8hIxAZlYCMe16XdMCdwKfSVqkW1fM8rDaF1Iy25YcIrTfijgdSc+ZLk58WQF0Mg+oBo1oAWNJ0XKvQ6dWppia0S11OA8KDAmdPlOOfp8HT5llwM+lJcImDJO36PWe0+cUPJTf9Vr1NlnjwpNVuM2g/w9sj0pyWpX8xQGsiy4xikRKa7IUKLN97UiX/IFu9UDdjrfEYVTojDFlIDK4ANkhdzs53NOAdHKlyWrayqq1KB8yUF+mxp13qlNzZSg65xq1tgiwRSqg/eM00mSEdTzZYIwpjL4QDdboBI3OQ42+YRDTlmnwLlch96EYTYmPYB0feKOaUzKNa9WVI2wRJ9sf8xVblHNaGOO2GKVM5phWTPIvG2uS0FvWK6Y6s1SS9Unkst1zpgxNbXwfR3+GfDVD/87O5/5/GPPEAale2QH1wKWYgQAPRIr13JjIqBJidWFNziAXXwx8uH4pvxUxehkGZb3J5CfOILwZg8Wnst2WEdaYM12n/DbdflPCUQ52kJW5FXNuZydCKhL40nNEUIAVvDKU1tVP8erMU3NMICFZzP7WkduCLaRFf/Zn9l2QvwNgOVGxchNhBUSmELiF/hmUysu0JuShbIeTxEBv1PE4h/gVRt15KbCYggMvZi9q6w/N+ualRY81eN4MbNva+e1TFwrw3oEmcd4hXGML3cwG5rdUJiCpKHXyM71OT4HzJQJr5jPfO7kRKR4ytdOJSllRJtscswhOy6z8ywoKQYUBWugCsc+OQAXCSRRTREFus5hZJmox2zpom/ZKTsjUi5GwIhMyTc9YZ891jmlFtc5DracXd7iik5Zc8dhCtSYhMZYnbDDIV0KNKhyyrrLgC3Q5RU7ztVk+7dJKOZJaM5rjbqLBwCo0HREZUKJzjgMxIGk+KlCkxpvHSHdpkSZJkv0SWi0QUGz7U3xaarXKzLu9ajScEVTFZru9TAS2o73S75w5HKVBqesYcVelo07WzplxKy5tTIMWaXtCGY7jgpNJ2ZoBhKVFTAlRaTZuG2iIHTnczUPlJ7PXZ0hglEM2xjRZ8RdCcEgRhRacadhMvtYQ3CcLTAvIzimrF+bc8jcUbb4+4lY7hfM7WSq1BGCdUr6+QvdxwZC5v0Fgg+N/BwgeCrAq2u/RTDlJb4fQDuOHVE5RfJdjWAt423xT/Aksy2Om2vrOV7l+Sken9rCtV0Xy1K12CyLi3qGjyt4hO8keITHfnZeRjabeys/85g6Pld/HSFFrZj0F3rdOnrNNvDuKvR4bBHdjm3W3QWeNLYcW+sDMCzYnLk2Roz/mvn8SGauUJ2PTIfbwckmT0dA1juqDmgtTCWLKRf1WX4zkWyo7BJtVlnljDNKdMMCRHCa/ZhxOskwzFAadEjEMWdhiSGL3P/2kuU3ExcsPcrDwkDIxGxPyIyPGh26+SW6FOiU05wHBQCGLHJGSaxKav8CySztUiAzuGacll9vaaSNZkLyhw5o1kP5i5EciAI2PRDyN9KSJ4ADdmlQZZMjAmKiEDIDeZf9uPWBfnZpptBpkUjzXR/SYJU24/Q97rcuaeWLorDtjVhkyBbHLkMMoO1aZyRzth7U6JTTrHfeSwyB5vDVg5orW6hoZWA3LHBeTBOFKd6UH/D9p0UIxMoPOFIchID+uP6BaQg98g6Ir3LmGnvbrLpCiS4rZLhyFrkEMbXBH/0116wu+12xrLT5zOdOTg+yb689AWm2LWD57YRB+R6k4SYLN9Z4qjaem0fI+9lsu2lbvk5afpZmOI2eSdyIA6HfIuTnU3zOFnjr01s8+FyH0TY+p8lW7C3Xs4oAwkf4jKpZEAgC/G0132xOIZ6A/BVeLWs3DXYtNvCB+gZiv0FuKhp4tYMBUMsaNdXmzOMnX+HBq90oGLCe3S54ctbyTE1ha/Y7s1vt45WydfnejV27PKIUWNLrpOdwY6VcdjNhNz4NBAi/wJdipfF2sVnFyGxRwXM9Nv+2Pp/53Ln5np/wih1XcpSjzy4HLuKnQstFDtWoa/FlyJBFzbiPKHHmyFMrlqpTc9inxlsKnLPJEVdkWFLiM+XerAQfdbVJPiZw2adTAg6DHSV9U2rvz7gc+CoNpvp4KxuNZ74u0GWTI/b4PbscOKyTUlLS8vUzDIlVtSlk8JXLk++T4yENNjmmTPPWcTepsMoZB+zykAYrdJ19voVETIWM2eSIVdpOKPCQBosMXXfBFRmuyBCRYknJVbkuksdqrisjjId6fULGFDTLtUSbTY5pUuaMEkv0We1cOtJ5r/eSKg2H9y3SASRb1iIQKrRYibu3orGuyGiGa8lhximBqofl4xFb5N1K1Hzmc8dmGY8xjMg0TGSZm0aMWrGTEWyW22m//pa7bzivh49S6uCxxiwR24CFl/qz1/gIpwqCZ4w0NNLXFpftsW/wJKMuJA+273lVaUO3ZVFHe3g8Zln6RkiW9Pgs2ug1XiVqEQPmMDJxQBm/8P5CH/8MwXezCtMRPgvfcmMtF99waF6Pzz5v6DGV9TFVPH43YUQNRk9xi/CjL/BK1TKCn6t6Le36fanb+QRf0Pp3eIyrC/vfle+718hND+/wMhK4qMdi1+VfM58fycwJ1fnI2JvDFLnRjnAZJF1VUppCkZ4QnQDkYT0+JYwj+uRY0sykQtQFoBo3SI0mDFkkPRBCojL4IJms9mYUQKecJpjCqCi5q+/LeQaP7jEo3SNgymrcJjMYcaU2/y4rbHHsSL7q4D2ZwYhhNs1G6z0LbRiGGbrZvAP5IZGzmy0yZBoIcO2U09ykJS929s2wxluXd2Wr7dWoQT+7RDCFYmMEUyFxyzQ5ZpM2q846f8yWgMlEwJvyA9nW4DviBC6Py0hhK466IsM4fY/UaMJadApI7EJh0KObF+LWGnaNGK5ELUqDDmEkKoqNxntKgw6D0j130yGgvu0Up5NlSAxkGyXOnGq1ywpHbEoBFseuBEuyymYsa9miI6czDF12WYkzQsaUHEMzn/ncsQnxpKPlKtnK8lskV7UnWVILU1kI+rC9BAMlSG3V3T5aJqgpK3tAAOmOWofAKwt01fxiLymPe45vjrfsrbb8S7/Q527gC50MmI4QQnSm/GBkJGEWuJH9UJJz4gm+ffQtvjzBMkctQ9SsS/b9LAJqFZAObWXeyhUs09ViBV4Cf4UHq3lImiWqhVcnGJEJXrWRxccaFPGWNctVtZsWmyIeVE9h4WcI4Wk3NA/x4D+EBcvjeqT7VEsdU72uZb0+drwXco2HJ3otYuSGxVphp/js3WvmM587OXl6qhZ9S1kXcAFWafMsfq7qylWlCQsaYzSly4qWIAlheE6BEmdakFnS4qOQM0q0NAP0HVWGZKhTIyQiEcf8J76gSZk+OdbjU6eatMVeUUGeORWpqU7HhI5cXaVNRMhv+Tl9cs6ObpmjB+yKRV6xz5iQNU4o0CVkTIUmKcZkGEp00qCDLxTNccoax2xxyCcuEsHiEawQa4dDt7AdE7jcVouuqg7eu6z6LgVeavHoO6q0Na/1jBKhqnBTRFzptfotP6epUU7WLdCmxDuqZBjSpeBI3K/4XIvCWoJVi3kljts08vdpUFU3WnArHsHIb1OuNgJ5rQp0SRC7aIFFvUYFzqlRp0WZIYuOkL6cB0rP567Oe/yirMUPPcUTaeZiqSL4wNw12ZmfgWCfd3j3i1nRP9XPP9XvL+MVkrbw3uZ2/BIIxrBCJ8OZadC1GRmLCyjhVbNA9sW1PM5s+M/xC+V/x+3secN/eSUmL+WxNz/DO5qqevzb+Bx6cwBZLIDhtr/Ux490v4Y7K8BbuPhZkkkRv2D9cubnPTzesggqOz6LGjBFrmHWEqRPEAxXhPTs4/4W59Sipo8x11R65trbsRjhqxFQjzof5Fz39DmmWjXC+zEe044QonbKbcw6nzs9c8v/fGQukDc8syqq4ikmwSZHGsovOU0TvcENptdclJKcBwUqgw/sZA+JSAkwC6vUyn8kmMZ0s3l5s9E3q2E2zUpHyMiRbmtMyEG+xiptpgR83PrASN+Qir0RNwlY6EG8HlDnERWalGi7DKoom2K9856hZrCOS0mxLUVDhqHkPFmelWRcBW61PxELqASo0KMZlh1IvCJDoLYuK+aqUyOTPiROXLv4gktylGlR4ow6NWq8ZZUzIkKmQcB65z0LI7hJw3kx7YC15VFJM+2QOjVS4Zja9I9kW9dkQzn3fj5JJhoShFIMNSSj5U9jhmGG1cEl0+k1cUKWvsIIIkTlG5His/hrmkHFZZC18kW412GBazJcUadGQpfNVugy1JuLStBiyCIH7JIiImRMjbqLATjTbC2LLhAFyRpnJAFji+Yznzs0a8Af8JYgy7CyxnYtUropyXtSugPp9iVk5b0tvT5iUL1HtnXNZFk2mSxLFnL29bUALgNbJuQ2clID9hcfTgSov8CXFGzgM1yb+AxRA3qW9Tprh2/gAHnaLFVK6JJAgPVrvEoir+dofwuMqDSVg6lf3+rjzFaloDXzGK/iMPLWbhZMTbGPJyzLM8duCgMQsLmtx/knJQy3yFNTgCrJ7FTBI26DV3t+AlFENLkdS2C2/TwC0k1xYduaLV8wNYOqfjOmfujhgf5b/dxy0I6Zz3zu5CwyJMmNxvxUPAFIg7OgRJUGz/mcHJcOIxkRKSVWoVuQPmaLCk0lV8U+vs4pDaqKJ0pYm3ydGru9N+wWD1hkKORnEFLjLV1WOGXN5ekLsfiIMSkKdGlT4nMtsSrRpsFDAKfYDIip0KJNiTNWWeeUcwp8xguHKYW0nRKomnaqatwpAbl035GpMQlKtMkwJAccsamK3cCRjKtKJH/JF6xxws/5rXMnlTijzSoH2cc0eEiNOru910zzAevxKVEQcsCuUwMHTJ0jarZA1IpLjegt06RLwT3mjJKLDchoBwGIg8uUpkYag+BcuU5NXYgfO7XqKWvss8fnPCfSax4RcqnOrxSRYNrBiFR2zAG7Es1AnW9urZbNZz53aB7gM/Itq94WVC331NSkIL/mn+IdNiE+b96wT4TYzX+DW9Ad/Ey0btl/e+2xWgnBVubiMUeMqVwtYsAW88sISfgLfOu8kZeGhSz/82d4B47h0BI+h7SDEIJN/fwXkDbs91ZwsFPVfoMnV2N/To7c/RYfH2BZ+XbtjKhWYnh5f+IxV4DPoJ29nhsIpqzh8aOJAcxx9dd6zfZgUL4noohLveZ2Xtt67PYa/VK3ZYpa60rIzhyvXaceLPxuZv9mCLU81UskAa+MVx2b4OB75vMjmblCdT4yD5E3ntmVtwvUwrOq5QLvGLJIPy93yMEUUqMJH7c+kO6hqgJRCfTJsZ99wlG4SZMy00DIRMqQiGOmAbyv5jnNfsxxdsOBQGsfNaKhn5XV7GkAkyKUaTlitMFDB/4CZJtXZAimkuUkgO6aKzJKBks/aUSKau8DXQrsDF6z/HrCg0aPSqfH2+J9R3CeUaJPzpGIXQpkW9dUaJJtXRNMhVTORX2mBGQYutKmgJgUY1ELDEYs6E15s5in+GJERIoWFXcjIYoDUYnm6DPMpvlDbYNJKDEIy+0JzbBMSORUB9YC22eJhZ7EFpwEa7yv5hlm79HPLrkssH6QY0yKOjX6LAk4zi64rC7LNLtUq5iVShiA3kSUqm29Jq/YIdIML7uJms2p3eboB/tVnc98ftAx4Ka5SxfbSW+DtwWnjvy/BPn+5AncbEDxZAT7kH19zagoxVXJF8BUvgcICNPipEkND4gt2zOrz/kdHsyV9bgMqJm93dQS2wh4K848RkuWnGWLmY8f4TOtGjPbsJV4A+BWSmDbNrBtgDg98/Wsk3Mw8/hLPAi15lMrz7LSpz+1tgUIyL3Alz7YPk5mPjd1Ql5fMwO8S8hrFun3WjjrP2/xrbolfBatvTZ2fbfxFrWiXoM9fKus3QD8Ek8KK9nuCFYjzpeZz3zu5NiCcpcCX/PU2d6N/DxikyrvXG5mjr7DQA2qAC4SCHCK1dnSJmutF5v/2BGhvy9uS+4+CXXCPCQgJkffKR6tMKmqFnkQnGiFn1boFDBVQjJWpeyiIzynBA67LjJkJz6kSZkDdqnS0NzRdwzJ0CfHUbClSlbBR6ZCjUhR5R0hY6YEFDinwLmz7j/la9Y5daStEY9yzSLWOeWKDK/yG1Ro0Q8kZmuHQ712EV1WqNDimC1aVJySdEjGlWgBfBa94CENCrpAnuHKPWZIRstaT9nkmBJtUqrEFfdUhRyXt9S8/vWLaCKiA9ufZaku0ZeYK0Lq1GhkH5DT702RDNm5QnU+d3aMzHuBXwxv4xeNwbt8Anz2p5U2mXLULPcWCWDk5GMkcupvrsm+vBY7uEVKGU40F9BTfF6pKWBf4snaLJ5kNBu/FXt+g19I39ZtBAg+sixUw6mmvH2LJ257eGy4gcd7tl8jPC1v/gQf0WQRAdabohFYaLGry+k3rGU2ebtGPXwJlV33xMx1N+VuA7/w/1TP/7kWxFrWvy2MRzPbR/dtYgXrQzBCujGzL4sjsOtvTizrFijNbKOs19pKUH+hx59iPj+SmROq85Hp6T+zpm4Dy7AaiSyoS4EWZVpUKLZGJC/kae1sESJ4U33grE9WVJDRfKoCXcbpewyz95iEQg4mYslBNSLxTO9oZYX8ik5VIgDCOKJTTtPO5+nn0y5o36xnQ81tuiJDIkZLr3zG6zB7z90QyE2B5KK+ym8IgZv9ibPDDrP3nJnMxkoRHNEbQLXTYaRh4sEU4kRw6+YgRcQrdhiTokmZYColN5NQclrJ4koDhHiNnNphlwMysdwU7Hbe0M+nuagmIRLCcqq08BFbDpSHjKX0Jgv/7OQ1D1o9UqNr7rckT3ZIhn32CIjVglWR5yZyjEizzx5Xat4v0OWUNZcTZsD7lHVCzasdI2VcLcpOVXLEJjEBq3GbhzRI643NfOZz5+Z7fOD+FJafTzyoslX13szHt7j3Q14gIKkN6Z6oWF3+lK1yG5D+RghX1vU5pjwwu5WVAsT6fQOb4JpNO+tpAXG/AUq6aGVKT4sCWNev1/GNr3a8b/F5UW3Zpmsi3UZuCGx/dr5G5M6qCkwZ2tRz/BSv/LTtGwFqRKuRleHM83p6jCU9DlPdtuBGr9XEsliLeGL2BN+4atv5Bq/8zeox2dcGys2qv6zXZx2feWZ5sEaKbutx2mtq+/5GrwX4iAh0H3bTcsV85nMnx/BQgS4/Zd+RmW1WaVLhJbv0yTmrO8ji+j57rpSqGku+qMQvDR2Os4b7Q3ac0yUkImBKlQYhY05ZZ0yKc7XxAwRMqVFnif6MTT/lculBsu9PWVO7+7mStGeUOHORAPb9UJWZUmS1zlkgas4KLY7YdPFLFZpOhdmmxDkFJwawsfz4S1WvJogZE/JSYwWaVLgi42z4fXIcs8mUwBHCZ6zSpMzXPOWUddqUiEhxyjoBU9qqNjUM2aJCRRWpBbqCycJNMlypC2ro8GWKiDJNmlT4G/7Kvb5tvToNXbBf5Yyf9/4Ta5zwkl1alImUDq9RdwVfCWIWGRKRcpENbUru3NqUWNRAq4CYLV7/YL+r85nPDzpGnJmtPI8Qar/BE4GPEOz1GFF/VhDsUcKTiY/5LxfHwbtwjCT9BsGUtpC/gXcIWS6qkbfovq1c2sjBJrcLSw2LlhF8V8cvbFu2qeFUU9waUWo48QU+0sCwsG3bSFcjDh8hJO2efl7Rx1m+v43a8B2ebCKxCLYA/nhmP0biBkjhp+XoD/RaNfHRAPv6/dLMYwy/beu+rWPAIqxmCWwTBORn/pmYwkQAn+i/vB7vC92fPda21+D2vUMe1Dwxnx/BzAnV+chYTsls6cdAckhLnDmrUJ8coyx0amnihBCY72t5qoP3WlSQocZbyVpFiMNHnQ9k29dkW9ckW2LJnwY+i8kAqagdz6VVNRqTjITMCKMxpV6PmASVTo8MQ95RpUZdyw6uBEQWlyi2RqQ78N813gBCdsYEDFl0jfd9chyxpeAwxXfl+8SJe8SJgI2T95qtlSJHnzNKXCoozHDFr6p/zmHxY9IDIUOulqT1O2RMU+1wLSpqixclxtVSktTomn4+LWVbaXjQ6lGm5Wz0BbpUaMqqflAlMxjRzycBKaEiENXvKm1WabtzNwB+UUqSiEXF+6G8RLIDNwlRlzzla8q06JND2mmF5E4yIc2In/Nb17JbQgjRNU4Zk9KCrSvG2tz7Oc8p0GWXA5a0hKtKgz32KdPkLCgxJiRk8k/+Kzyf+fyjTAZvczfw+RavhFQS8cbKiBTYLZg13RrvG7BgNnQtPOp8kRagpdvobKf9Pswmb8WARqBqhtXIlJRmZwKKX47cAthoXfdnoNGKAzoIKDSiEOQv/2we6qwF6/XMsbzw+7qVEzZ7bJYZFiAA1lSmpkS9RBQC24i1zFwQdkOxgc+QNSsUyM0EuEyrBb1ZSH6OL2UwovZS9/cIb3fL4xUCRgRbUZXdxBjoN4WE3RAZgLabJyPF7bpm9ZxMYWzEsCk1TCn8CLkRmKsQ5nNHZ6wlk2YRt0XWL6IvGbLImiouAc24T7jnGa44DwoMWaSppFyZJiGRIwTN/m4EZ4LYqSJr1J0qNSDmkpxbGM/R51/w97rwHdKgyhGbzvpvmaRtVnnFDsdsEROQ4cqpPccaUwVCHq9x4haqBZdechquuQVsI33LNBkTuszTkIgMVy7X1Czyphjd5Ni5lszd06XAGic85YUrnhqq2jNBzCpt6tRYZMgKXafkLdAlxdjFGkz1OgIub9ZKUo/Y4kTjEZqU6bLCpZZs/XP+I0My+hpLJm2bkmagdvky/2e809x+i10QsvsdVRouI9eisUxdHBHqdt7xlBd0WXHE7Qkb/zS/uPOZzz/2GME4QP6+v0AWjC2P3YjKlv6sgScrl/HxUVYkampVW5w2MnIPbz+37Pg33MYaRthZHilguh9XrFnFY8A8YrcP9ftWmGoL25bPb2Vblu9axStMH+nz4DY5afjJlKmmdt3AW/gNJ47wxKi6Vm+du5GdJYSITiAEqWWfWuxWoN+r4xWtRjKbcvW1HrMRxMZxTGdeD1twt2sEHsM9mnm+uaEMuy7hCdlZFe8smf1r3Y4R3qb6NWWuubDm86OYOaE6H5mv8W+u4FrxxkoLpog0H/WMdrYoGVNTse+DhDsbOG6zSoMqTSrss8fb4n2+rxa5ycL320WCKbTzeSUVm872ZP8CYqIwxSB/D6rSYB8nIBMNeVu879rnW1r8ZCrPMSkmFqCdkOedBSVXMiCr/CGrtNnlgDGhs9jHiYAoCLl4lHTZUVdkHLAv0aYaNdjj96wNvoMpTMowDDIQSJOrNcHm6Kvq4hPKNJkGAXECKY3S3L9B/p5auV4REHPKmo8XiOqEkW4b+KT3BmIocO5yY61Z1kD+4uWEfj7p4hgG1XucFZcImDrr/mzzbEzgCNUuBY7ZdK29K3RdlEKbVY7YlJsiCq651W6cKrSISThLX45LpL32/g/+Kzuf+fwgkwGmSphavhP49tUpvr0UBDRaa6eRiXkcUJqYtfy1RAJcVJPOelX8duSt8E/1o5URrONBYCyKVzdGWBoJmtZMqzqeoC1qXIFZj+p4+9cEDzrX8STpL5H3fms/jfQ8lvHFWHYtrF31EZ5kfIJXovYQMtEL17xVakO3Z0pT8ED5LbT38TcophB9jLdXWaaYAWVTCpi7Ipp5noFks2L9Sq+zqSEsRuB3yE2M3Zw81GOvISD8NbeLIUyVYvau6sy29vAkMdwuh5jPfO7YmOU/InTE2GG4Q5UGfXIU6LLGKUMy/G/8JdEMkdii7Eqrxkp6dllxpKK5mSxeKlDFY5tVyprfOVS8YbFFBc6pxVKUKirONYdfxoSuGGlFY6SM7Ctx5hShFgNQo06dGiUt7bSxyKdVzgDYYx+AE9Y4V9wlC/qClczSbkrTQz4hIqREWxemh+xwqAWki8459Y6qs81b3FKM5OMb8dxlRaMPAkfSjkmxz55blLfrbRFVV2Ros8qqFnZlNEvVnh/pKk+bknN6dWeKsuz1sjzZV+zQoOoI44casdClQIMql+SUeF90at8xKV7wlIpmysLt+If5zOdOzQreOTRLYlobvS1Cf4p32Bj5abZyiwqwaCXwCsu/QHDEc/yi7qOZ5wQ44vH7L4pSBmVxQrbgbZ9b9uprvPOmOrPdJl6FabFPG/pYy+t/CxPDofZcU1za+U7xePEpnvQs4otGTVjQQTBWYuZ7hkOzep2K3G73GSDYtajXZarH9BjBm0Ya22O/1OtpzqOXuq99vPvpJUIuG8ZNIK9jFe9OWtLr8qX+vI4ngk0FbIvyPeR1N7xsZLOJB6yXxu4TDK8aoTufH8XMCdX5yJhlc7Y1OYQjtjhljSvNYLKV8ZW4SzcvWUiFQQ9CHDHYpMwqZ04hEBNQ7nWkARtIxELodcpp3lHlFTuA2OGtifSYLc7CEpNlyMV9+tklsu1rWmqXkuOIqFOjTUlKp2IBw++387wu/8TZjCxfa4dDKjQ1F6pMjj4rcdcpKoYsSoGUttk3qShUlZuIYZghjMb0s0vcpOU8+uT4rnrfZWkdsqOEp6gLLN/rMLtNMPUlNamRL4M65BOO2OKITdGOhgUWpjiAnLyAURFX8tBXhUaFFqu0SRE5y3GuNyJgSrZ3zf2TS8aEmu0VupsYy8CSxtUsh+yQ0iKIJhXKtBRgj9niyJVVdSnwN/yVahOqLjPNoh7q1KhT44wSHceSzGc+d2xi4DEsmE3KQKGBxyVRfy+YHdxC/t8iIOqVfq3AMnmBJxxfa4SAKhMmD/FE30C28f2nRZ/halmcVkCFPG70FE8eWsZnFm6ecivnark5EdBpgBzd1yK+tVUJWcoI2Rgi4NFs/b/Q59Xw4LiIgFKzm1Xl3Hiux3OBkIo9BLh/M3MNqgh5Cd66puTpzQs5npIpI6zUKUZW+01J8RoPbC3iIERA81s8kfli5tzNpoce+1fcLmewbVgR1on+/Ft8QZfdSNj23s5cuy/xN1a/xgPtFswF+/O5q7PIFTn6LkfeooC6FHjFjkYuLToybYdXXJK75XoZsuhcSG1WGbLoLPgJdSnNxibt81NAFuyHLLp4KICHNOiywkmw5haWpRRKXFEFuq7EaajKySGLVGhypQ4iO5aYBIsMGSLFpQ0lN/+ef6ExUYEjRbtq77ci0ZCxy6B/zueOuLVzWOeUAue0KdGiwtc8pU1Jw6di2pSUwJQ3Jbu2a1rSlSLSrNpVtc6vOpwVKO0qz1uhqkyKRSiYE6lCk0W1+wcaPWDPrahryeIKLMe1Rp02JaemTTF2i/lVGkxVxZuIRTxRo05MwBJ9rsg4taoVYT3lBXVqHLBLg+ocG87n7s4YHzH075G/+1bGFCP30GZ9B1mQTSB44wVCOL7T5xuWAcEYDQQ3WJmSLdRarJKVgI6AnrhDo1D3UcI7S81hNEvgtvGN9QlE7WoEX1a/ziM4J8arSPcgaerSN/iMUlPXvtZtP9drYY4lw09TvGvrBMHGs8eYQPCpXTMjNO24Y26Xlv5Svp98gXdJqZV+UL0Hf4n8s4Vwc3SZmtSu96z9P48ncC8VQ08R3DoF/g2CV//1zDkaTjR3l4kiLBvXFtpNgRzptX+i19hUrvbY+fwoZk6ozkcmg/znNut/CWhBjbfOvm6lU4XeJcvtCaudS4JpTD+7xLfVjxmySI06/yL+e7eCbvlU4/S9Wwqrj+odp25d41RsSmGOffb+C3AdBRJw/321SIrIAcQ6j7Cm0wotll9P6OaXyMRDqlGDYn1EYSAq2EhzPyNSdClQo85HrQ6p0UTUAKMJjzofHLlqYNQAqhQsPCTbvuZ+/ZKFkRRMVWJRUDyk4SxpDarUeOuaX0Fsa+mOkCs3JRin77nChh1escURO7yS8477MIXtxh+5IkOnliaMoEGVBg/1fCVD9oQ1AmJusnAeFAAoNkZ0ymlu8lCNG4REVGg60H3KOjuD10xIktTCgwLntCirGqLAVnzk8m1NSfKMr3jK15RoE+hNgd3ElGnxjqqz0+VvNdTMZz53aD7AyACSKSIrwBO4eJxk8hAW9rnd0tpB3jMHwGcweoYn1EzZWEXAlKnogeS3+vO0FFtRhI9aHQ/IdGHrQ3nJW9eLEFqpkoHllhzDwku8pesb/Wd2rSd4q9m5/mxp5rjN0l5BAJ/dFNixv0YISwOOBoAvEEAd44H9CJ8fegHDlwhJa9Z7Uznk9TGR/Fv4GdzYzxJyXdwq/h6iSrDjsbG/WxZx8Bm+PKCGJ5wtI8yO/wnebmXXMYEQoxrRwDa+rBF8PIApdKszj7V8rSW8AsMytbw5YD7zuVPToehyQa2EaIhEQU01rqlA12Wopog4p0BF3Ufm2rnSqABrte+T44BdmlrOGZNwWfoFugRMOQh2ncOoS4ESbc0kTWEFoFY0ZfszrAI4zGO4TsqW+pxo1n9J1aehkoemuN1jn4Cp+/khO87GX6MOwBGbNPWcZ7Nb12MpljpjlTo1p1it0KJJhSYVzRyVlZk+Sxyw67JHY3VEWXHXDodkGFKnxhqnPKShOGvIHvu0KHPEFg0eMiakogrTIRnOKfAVzyjQ1bOrOkJVxAjyOsTqOpKop5Dd+IADdkWoQN+51OSVXnHRVEaKm3p3jVOnOjY1cZ0aVcXHfXI85R9+uF/W+cznh5wMfsG1hPxtf4r8zTdi0JxD1hb/Ao/J3iDq1TYeO5oLx3BNFSEOH+Oxkm0PZBE5DcXnI9KmmnyOdwzV8AvEtphc0e2aGnRPj9uISssnNexmhaHmzLFi0wGSu/o5Xg37F/Jv8OyeXA9zOhm+MwLWXF0BPppgHy9YAE9iruOz+EFw2DvdzjM8AWoOpzJkf3ct236Jx3vmcpoVCSxzmwwFL2hAMbQpUjfwytNf6bE+xpO9FhNgdv+RPsZ6Cy5nXgcjcE3wYEVX8/nRzJxQnY+MrVxZU522FY8Jnc3LrOztfJ5B/h4LA+iHOXIDsXmb1agZVCjTdCrNaqdDnAgY5UXFelJ8wE1WiNKUJnWGjJ0FqaxNo4k4JhnB/ReXDsT2Nei/SZkKTdY4dRapi+0kucElURAyDDMMyvcYZtPOnl6nxpiQhzS4JMeNvinHBIzTSYbZe9w/uQSEvIy0tMBsUjn6vK/qnXUdLX+SjNcrtTcVOGeTY1bjtlMgfNwSonakb/Jvi/c5DHduAfYcfaf2BNx+CpEoaBd6KES+csUGx2zyGS8EqOaThIxJvpMCrDarLEwlf9UyuMxyVeKMevYnrPQvSTJx1rNNjp2CtR7UnCLF7P6H7DibnG1L8m/PCZiyyJUWJ6zNVQjzubuTUfu8EWcAX8Pg0T0WLydSJGV2L7NWlRGg1sTZuOz9hSoCDM1KpADz5imeUJxCso5XpmZVhdoE3sJq51J+1pafL7zFN7Wq9X1Sw1vt27qt2UwqJYdvygihWkSAn6k9DdQ/RSxctgrf1m2i16Sux2jK1RFyQ/FLvAq1oSTqE2AbMpZbao2tlm1qeafI42jAwrZ+/gKfQWY3Jy/xMQfWOmvHZXaq5p+8duCVGI9nnmOZXiVE1WBZqUZ8x/hsLyNLwdv3jCg18lhvRi72YWj72NPnXTOf+dzJ2eK1koFlhwMDpqqMfMcKXUfQGfFZ5R0H7HLMFgfs3iJQuxTY4dARdabMDIlIaB6pxAZVXPmokZXP+ZwDdimr8jIgdpmnUqZ05cquAA2silyp6JBFAFpUeMUnLoqgoNEAZl23qCtzJ5mwoEuBI7YAUaBWadCkzAG7LhM1CiRywDJVx4SafTqkpM6tVdpYMdepMg1rnLhzArHim4K0Rp09LQSLSdAn54pBa9Tps+TiEh7S4JhNvuQLl9ca62MtXqHEGZHmphqWs9dnyCKNoEqJM8qW60+VNqvuehpBC3KPkImHGiwVccaqe70sG7dEW9W3FrI4n/nc0YnwuZ+2YNqAi42kYIVtBDvY436GL+a0vM8qPnPUlJxW4nmBRNeZVR99zjo+kz3Q7RveMoKvgRzD7PfMNWOEqWGuOp68nM2GfTGzXcO2lm//MzxpbHnxTeA5ZP/62rt83uCLpQw7WUa9YSIjeJ/jc00HMx8twgo9nk/12H+FV3xO8YSlEaZTvaa6SO+yYrNybjcbegzAzTP9vv3cIp1GCJ6/1Oc/xS/im0jBVL22z58hi/mmhG3iRRnRzH56+hjDtGPm8yOZOaE6H5kh/o1iprzEAJFZp6yhNdu75iYLlU6PdAuW6GsO1ZkSbglKnHFGifNi2ilZH7R6bNTfc1ZcosFD2pQkM1UbTNfUbl/q9SRDdAo3jyA3uCQgZoWuA8WS8ZRyyobzoEAYSe7r/cYl2cY1K50RKca0KVHREqgxIWes0ihKnutUFar9MMf360UaVJ39SQDtuVMTWLwBVaADwRQyg2v3nFXaAuCDmmZ2teGtqBDixD0+fLpEtfeBrfiIdU551PlAm5KzS0WEnAVyTb6tfkwUapuJFkzZa2JqWEDzbGMqnR5kIQpTbHX+yE1CiOFNjlmNpFSgwDlXZBwYvsc11to7JuUUHQ2qHLPJJkfObieq2zOsnKxLwWWdhfpXYUUjIe7z4Qf+hZ3PfH6gWYZvtz8W4GP5oEuQPbkm+RUCuk4QIKjvBTdmVVqS7wdTKd5jHQFnHTxIVYv5QgMBXQbAQiVhNScrrepOSrDwXB9r2VYvuA0ALyG2XNE0XokQ4Jtl9fsLDfxffgPKBqaLwL/FA1wrb3qHV2Q+RUCiKV/t5sKiD2I5zsz/iFexmgK0N7PtR3gVLnhFgxGj/wuiZBjo/oygLiE3FUu6HVOZmm0swisdOjiVyMQIaGtzjfGWur/TbSzjc1DB2/6tKdZUD7PttnZjoCrV5SpkTGliipS5QnU+d3QsG/+KDFMCzSpNUKFJRg35R2zyOc8dJrFSqCoNnvJixuIvClNbPE8pOWeLyaZWrVF3JUiAixcKFVOFjF02vJGnMQFtVbjGBJpzusSQDLsccMYqFVrk6PM5z1njlDYlfssv3PFGupdNjnS/YuE/ZsspLS3aQOKaZJF5h0N3PiCE7VQJU9uORTXZQrsJAaxgtM0qAId8QosyX/OZU3Va7qpFEoxJ8YodjthiSIYdXjlxQZtVFrlijRNaVFjjxBHTx2xxyA6nrN9S5W5ypPb+iCsy/O/8S0feiv1fYqIAF9tg+L5JmfNAclRf8Bl9lnhHlYeaYVugy9/zzwFUVTzPP5nPHZ1j/WhYxYi8T2H5dxOfB99AMMtg5msQ3GIunWX8orZlbKbl6+Q7vMNFxU0s6fMa+AXi13oMv9DHbeCJWVuILiNY1SIB7HgM+5mC1NSV5rZ5hl+QB2/3b+lj/xXeubSOz2y13NAyvhCrqecwq961xnvrGNiGW+stZuefzX0N9BoWEb4ircf4CK8AtYiBULfXQRS6Sk4v/Fq3vwQLv8LheydmmC0oBV+Kldft2f1/hFfEpvWavEGwojm4jDzPwsVnUjLtHGGGu3/CfH4kMydU5yNzH1ElmUpV/xDkIsnOWuOEIYtEpChEXb4r3+eo+BP6+SR/WN+gravSZs+SlXCxg5+yTpwIuP/6kvflPBdVUZImiCnT5B1VZ1VK2ap++h6VTo9JFk6KDxinky5j1eIAIg3Mt+dUex/o55MsMuSikhTSYoA2qZ46sH/IJwRMiUgxTt8TdW0EmXhIadDR9taUlkxdUecRV5oBFkyhU04zKkr+YZyAYfaeIxobCiSNgI0JoAobJ+/d1+P0PZYbE8q9Do1ikRJtXrFDk4rLYrWbGJv3tTxlmpQ4c2H/KcZ0KbASd+mHORrFIv+f2hO6FDgvpjkvpp0yoBFWXXlAQCw3ANeQvJ6470WEnLKmqtMumxy713OdUwDeqYKjSsMpNjIMOaNESOQUDz/h+x/6N3Y+8/lBZrICn/7mOzpP054Mm11ZPsHnl4IoRg1AanNoIkaUrC/xuUobausHAVkG2CyfNYIFte6TxdutsnDxl0nJbjU158/wdqWpPDc9a3H6GgF7lq91gc9+miIA0MqiTNlqtnkjItFzNeVtC59DWkQAtmVAWfupqThN2fqW202ys+UBVk5l6ot/PXOMoV67OkLgbuDzXjUz6xah3NLtWYaX3pg4sP45JI24tqywS7zSeHtme2V8mYR9btYyA+6B7iPUa2vXrYSPFPgGr0BeYj7zuZMTMnEOnUtyzsZtuOFYFZtGLD7jK+cyOmWNYzY5ZsvFLRXokuGKL/nCuZpiEkSq5ARpqh8rHqlTo8sKIMVQQ03HHyrBG5NglTNOWGNRI5ZSRLSouCxWwSZTzTt9BkCJNiXaVGg6IrfNKhWaLmcVBD8aNouRjP0VzTrd4/dsceQy6K3gKiLFO6qEmoOaIOaENXL0XURCoPj3gF0uySkhmqBFhZSWSNnC9Ursca/FL2xyTIWmyzC1iKwMQwKmhIxZ1LiFd/paZTQuyhbRZ4tKpwRUND+/QssRvHYNVjVHtqSigZgEl1qm9ZJdF5Wwy4Ejoe08h2Tca/Ode9Odz3zu2DzEKy6rwCcIPjGiEwQbZBGMsYdXPw4QzGGYxbLbTR1qtvB9fC79FME+hgkVo43+te7Lnm8YFTwhaBFMRsyCYDlTWpoa1O75jUR9rMdhUVW2cG6unEd4otScXLM5oKaitRxUcwH1EOLXopwe43FSk9slq0aemlChp/s211BJr7vFLYEnbFu6PWau+wghle3c3+Bz9g3nGfEbzmzrAnk90niCGrix6CnrnDGlqnUe2GONgG3DckMXkowgtoJYi3KYz52fOaE6HxmzitobjtpT+2HOkXygGVqhEI2VuElqNKFAl6346FbbaKhkn61kHwY7fNhe4sG3YpMHiAhZRZSTKdUGgKgR4kTAwlQyR6uD9zSCKqnRtVNKjAm5YvEWgE5eQDCNaVGhH+S40VUjyxuNCeiywqoWGGS4IpheUx28ZxrIc/ezTxgTumywYzadymJMSCtfJBHHjNNJErEo0VKja9bjUz5tfMfe4Bu38r8VH9GkwvfVIoRQDwVop0bXXFST7OcfayFU5MD7Jkesxm1ykWRT5Xoj+iw55YCQvEM2danUnveg3qM06LATH1Kg60hqUT6UOGaTOjVWaTvFwyCf4uzeqrNhhZo/FpNwioZX7DAmxZFa96wNNyDmnIJTpoaMXStujj6/N0/FfOZzxyZ5DjyCMBp7MFZCwFYTsbHXJAvZ2cTzMDKQfQkLpl40QNuDyTIkX+PUih8+XRJQ2dZ9aKuqy3ZqAv9HeXyuN4Gm5jvlYWTNsgbMNQrAgVKz+xtQf4XPeyohFnQjVs2V0MMD74fcBrgWrj/Sn8U4lb5ToVoBgOWWRjPbsOKGEb791q6NqWqf40umBnhS11Smdu9vlqymXOsbu352o2PHbDb8AK9MNfXEb/TzN7rtC7yVzbJqjQw1otVuQNKyjRuz/D+c2a7F5Vj0wwu9VqYYns987tikGDuHUoEuW0rkWaZmjj7/gr93OLEw6DmSr0yLFGN2OJT8fSXYcvTZ4ogCXdq6GGsLsjXqrNBllwOGZFhVpiDDFQ3FNYLlCqzHp7Qou4zSKzLOKVSjToEue+xzxJZmvg/Z5EgLVs9dtvwe+y5+CQSbZtTRk6OvgoIM4N1Ycv4rNKkQEjknj2y3xRqnzuZuDiZTpw4Vy3VZYYdDZ9tf44R/zt/rPk+51DKpfiDRAH1yJIhZUkJ0UbNVLVN1U8ndGnV1kyV4R9UVTD3mgKkqeYdk+IpnTGcs/3VqvOApNeouwsAKrEq0ydHnkB2e84yYwJ2jKWJNSGHXzzDhJkdOXfwxb/+Jf4PnM59/pDGnjZFxb/Et8ma37yEknOEzW2z9Bbdx2ew2v8GTokbOGeb400z6IpKdarnytj9zN60jxOl0Zh+2vTSwrQv7e7rPR/p5Al/waXEBhn9sodhwTAl4A5N/ze3FfVPC2mK5xRDMuqD0+t2UESxo8UrmVkrjSUe7rq8RjNYAvoRB+Z7fjmHG9My1fjRz7Ot4dxgz52U2fMPwf6PHV8arT98Cf6XHYfEI1RmVq8Z7sY9XC8eIo8tcS4Zl3+AVvW/182V97Hx+FDMnVOcjs4zPVDGbQVYyp37PHsdssUqbOo940OiRiYb0gxzdbF7C7wMh12ICZ9+KCajQJEEsRF/vUnJZ00nCCHYHL2lQVUCYcCvepkaY6OpbugW1qE5ygFMntCmxyTFV3tGiwhUZCCHbuHZ2+PNimpsS1OI6R2wCQhrWqFOhSZcCx9kNKYvqQPbttbN67fCKLgWnEBiyKIqCXofl5oTUaMLCSMqlrpaSLL+Z8L6aJ07cc+rS80DA9Uf1DheVJJ9++x0f1z8QJ2AaSKZVhiGXSkJmGHLMFqnRhMzgmj45WvmiRB10Ru5mY0iGA3ZZ5UwKuoIcF9Uk7WyRKAgptkb0yfGg1bsV17DOKYszNxTJ6YQbFnjFjlOl7sZeXZCjT5kmf86XbHHkbHiWkyplZRFDMkSkqPLO7S92f2nmM5+7NRN5+yHbuObD9pKoF82+ZKDzBSwYGah29/SXeKIuiyhcTZmZlcUhBwrrcP8/XLqsp5tH+OZXA3pK3JFV5WpVgfBI4wDsv9gAr4C0RbEeXPxV0hG1g7+65wGi2Y1CGP413pZmSgMjFi1XexsBkgY0TVkxwJdEWRvrIzwANwLWLP5GnFpm60t8Nqtlgr3BqxmmeNVGjC9RMPVFGtiAhQ38a2QEcxH4P+i2O0i2lRGxs1asSF8Tu2EJ8ETu85nnv8GD/jawBwvWDpueuVYt/dpiCbYRlbNtcz7zuWPToeicKNY+v8kRLS14AjhTPNalQDN7Xxdz25Q4c26WMy1cEsXiIk0qupAui7Ipxhyz6RSNp6yxxikpxjR4SEWdQ0/52uHL58EzHtIg0OxVw2pWFrXKGX2WKHE2QzReqTZVcl3PWHWFTuZ8MtWqLWKvaI7pOQXq1JyFv03JlbZaJmyLCk3KWPmTxQys0maPfWICLZg6cYv9Z6xyRYYXfEaKSFxTSjCvavnXmBRDMk7hazFZbUpa6hUoZpU/BlMC9tljqmSrLbS3WXWEqX20cq8dDtnk2OFR6ymw6IISZ8QEVGnQpkSTCgfsAlCnxgG7DmubateUtaessc/eXKE6n7s9nyFYoIzgHcs2LSOL7Y+Qv/t5PNE5mw9qThdbpDbiDTy+/A23yyxLyD26NccbXmnjI54GeIWk5cC/RIhNK9jUPNFkHb/Y/DsEtxgZ+nf4OKTZRnvLLDW7/ie6HXMOvcaXdMbIorJlkRrZvI/DgQtmjzesWdLnDRC89Zl+voe3+ZeBzyH78toVZS0Y4fw3+DzYt3iXkWHVC7yrzBb+weed2utmhHes18vUs4bL0fMsA9/iIwBsysgi+xTv2ioiatQ0XpFspOom8/mRzJxQnY/MIb4ZeaZ1L8clK6oiqFOjQpNONU0wlZaNUq/HWu+Pmv8p8NhUiucUOGNV8p+CDFdLST6Ul1huTpgGECfukSKiyjtqvNUV7VXGpDgLSiQjmBThw7qyBbEcz88H/2+xO8VNhiySUuA5CeEmDx81OqLkHIxYGMFBsEuFFhmGUhowk7u123nj30ATUGzJ0mOLMmWaPOWF2Lw67wmYkhwgylf8x9RowuDRPRpU6YYFAKdEWO+8hyn0gxyjGnRqacIIErGoDB7SYEmVAEYED7NpFgawEnf56JsOH9c/0CzmCYhp6/WZtYPVqdEPchQiyZftlNP8rPGf6ZTTLq6hrM2vx6rUiAm4d33DIleUaDub2jAQsrrEmd5ESamCKSNmVSAW6WB5rENVDNd4O89Qnc+dneT3uGKj3ODydnmSrXTnEfXhCJ85XdPvv5bHFRsjBvl7XOxpdlKIt6HX8IToVAjT0RcIIF/HFxUYiGvKdpNf4htXrYHe2mZBQOGJfFx+PnGWrezfXXvg3QSScsyZpwjYi/Bt9gZC03iVZQtZcBvpRyNMl/V5BpqNLL3E2+3Nfo/uq4onX0sIkP8WXwB1ic8rneo2l7mtQCjqMb7Aq0QsZ9WOzSz3ZfyNR0m/foxfPDTCtqrHZOrfbTxBbKqROt6O9ki3sY/PfX2MB9cv9LWow3x9aT53dZa4pKullEaqWrap4IZQicclrEyqSZkhiy6vPSJ05VXSWP+IIYuuBMmcRpZdX6DLkIxGHC3yBV8SKeE5JqSpqlQrpDIl5xqnZLiiRdkt7tqC+zGbLrtUnDiB4s+GLMhjma7nHLCLlUY9pMEZq+RUmZqjzyJDWlR0gVvyVK1Ey7DlWCMOvuQLGlQp0OUFTwFcKdcRmy4T1YIM2qyyzx6/Z89hwgQxUwICDTkocE6fHLscUKPOJkcuAqtFhZCxI077em3OKBFpHJe5wuz1GpKRLFRVpBqmXmRIg4dk9PU5YNcRxREha5xQpcEOh1RosaKdC1Z+VaXBKWuEjCnTYpEhi07eN5/53LGZLW42C3wW+TsfA/8B7/YZIRjBMOKs68aIxg4euz3R7X+GYIwlBOcYCWiLtbZ9wzPqmHJRRJU/eZxFJ/X0cSoIcBjPYo3Kur8neLK4ji8+tXNoIxjtEt9Yn0VKSY3MLOJJZ1POgleEvsG7l6yg67k+7yk+TskiEwzX2aK1lYFl8Yvw5q6azau3BfNf6tev9XEbul8TF5g1H3x0wzbc/FKvgZG5L5BSrBPkNbRIsNnfiwQSBQHe4WbFWEY+22L8c9C31vn8CGZOqM7Hj7ZAuzfYKdyvXyrAErvO2uA7UUtO4aPXHbr5JRr5+6wNvlMbfoYEMbm4zw6vqNIgZMyDRo/lxoT7rUv3hncQ7pIgxkqsmlTIMGQv2mejIZmj3byUVzXCKjdZKXf6MvvnjElxHhQAXKZXIpY8U2LYbvyRdAc61bSCcCFRl2aIwE9PvqOfFxWXkbGDvJC85xpXYErL58UnvGKHi0qSZjFP+hs5h2z7mnQHGmHVtaR2KWim6Jh+PsmoDNVOh/SJELYLSrCuc8oVGdfO2qRClQaJOGZUhOWmhJwPyvec+sKKoNZUbSoZsmPKvQ6ZgRZMDUbuGtepObWp3aAcskOXAolISqnq1Ny2DtlxN0gltdq1KbHGKWValNXqB5Kr9RXPHHC2Nlux9F29g/XuAACcZUlEQVT+wL+s85nPDzRTBMyOIG228ccwKcPFXyQ9uDOQOZOfNPoFAt7UqhVMr+X/8QUCBBtwYy2wlqWlbarpOgKwIt0O3C4r2AO2ZVHGEZsRAmyt/GqW/AvxQPOp7hf9mT3O7Pdm37dV9Qt84ZIRwJbRtayfFxElxe/wSoKsPjeBgNcaXvEaIGC0gScj7TjKWhpl+3ys5/wUbxV7rc/7Bd7GhZ7nEl7ZaqDVAKwtEhqBakrYwczjyzP7eK3bfT1zTS27a4RX+VpOrKkyLCLgBT4fzI5/3uQ6nzs6Le6zyJDPeU6ZlotzsqzMjDbTjwkd4WiPaVBVbJBy8URnlNjhkF0OWKGrC/aCtUTJKovGNeq3Fm8bPHTPl9gBWdytaKzAHr/njBIH7LKkBVhWqgqSmZrSJnqJPQqJSXDMpsu8N8XtHvvscMgiQxcV0CfHT9mnyjtnX49IEao6taDnIQWedRpUaVJxhVVdCjykQYGuqnUTrqCrQJcxoapPhzzmgH/B31OizZCM4FtiJT8XVZGacMdl1zsmQUBMXeVXs8VSV1rOleNSC71CwY40ecFTh9+FBF1XXWmOZ3zFCWsMWWSdU0IiMgwpccYp66pEFZxcpkWVd6r8FRHGHvuUaXLKGquqDZ7PfO7kfIdgh6cIrvjTjE/DO2Y5t5b5DXyRpcUsma3cBNsX+nwjY/+0RMrI2NliT/BZpi38wrARmJYNP8CTi5YTb7mnacWGpo4daMmqKWJn1bPmUjIlqcU42TmU9Ocnei6GpywOanYB29ZVLvFkphG4bTxZa7gqrwSnYVQTMhg2yyNkclmvgaXOtfHFWUZ8hsCXMz9PzGzXyOi2lsGaCOBEz2MPH2P1Wr/fxGei2utmZLG5zgyPG5631/GQ+fxIZk6ozkdmjPyHt/BrLTMZFQVcWhnUcXaDKISkrkoVepdkuKKZvU9J8zm7FKgHNdqUpMwg7nOTlmIlezO7WkqyEx+6LKk2JQqck2HIMMwwysOHsihTf9p5zXbrjyz0fNO9Bf2/Yoccl2QYcl5Mk21fMyriSqmKJyOGZFjSlf4qDb7kC2ICLh4l6Qc5qIp1/zfFP6MRVnmlhGOOvss3Lam9fhoEVDo9CKXFe6RqpTEpZ4u3a1WizeLlhH52SYheIxamsKhq2RTRrTyyiBTTQEqyTPUUhaL8HbKozbpXDmCvqq0uEdvLKH+Zvlu/71SlZZqEjFnlTLPDuux0vmMa4ooiZptyGzykScXlhJ2xSp0ap6xxiWR5iRUvchlaVkqW45I2q3Rc3eV85nM358bUiQouk3VYfjNxFv6LXyYZPL7H5CFM1uV7YYTPYSpB+kSV7CECxBNq359tJjVQfokrIkjX9SCM9At0G/tQ/NsRnMCHL5YYVO/dLhl4A6wj39cc1kkNeK7gsI2Qj33d7gt8iP8bfMOrkYdGMhrBmkDewwwQ2g1DC19EYNaxKfCVbreFL7WaLWGYAp/LtpJW2GXFAlM9PiMtrXDqOQJirbm1ggevVgilx3nxAg/ms/p8s+db6UKEV2eg26ghNyN2s/RQ928WfwPNefzNxVPdjr5OlPUaBjATQz6f+dypmZCiSoPK4AN/1npJpL/MZ5RIMZZceMVJjznQ70czhVOiq7QF4yoNuhQYE3KuhU8WORQRUuMtESFdCjznGVdq/6/yzpGgFiu0qMRegS4xCcaELgu+RZk+OS3YPHI2dU/evnWRA2M9hy4rushdIiJFhitycd8Rxw9pcMAukZZ0rcdih1/jlDVOGbLIGqdUaDlSVuIGIncsTSokNPbgMQdugT9SS/8iQ1boUqfGkEVAsvIf0mCXA2JtMwxniGGz3bcou4gnw5VWmmU/D5hyPOMzPWWdqdr4jdC1axWT4JQ1JZXlOPvkWNR81gxDhixyxBZ9cjR4SIkzKrSISbjF9680c7VA1x3LfOZz5+ZjhFCbzWo3ojHE5XPemH3ccEITIVx7+rkRmEZwglc3mnXfFob39WMNX7ZkRJ1FKlkuaFsfU5/Zn+E7U5ZaBID9K8LC3+Dv+xOw8Du8S8oWp63AypSgVla1ge8LCPDEsWHCquzDKXTNom82fFOdruOdW4axbL9PEAz7K7x61QjdLD6q6pXu+0LP3+Kp7BjBOchc6Zc9xvCpHcfsz1/jC8BGSG6sEa3LeKLU1Lo9RKVqbjNTwZpgzY7tZ6DmiPn8CGZOqM5HxlawLCD6JTCVvFMLvLeSgbQqg0Z5IUYLvUtW4i4guUmLXLmMq4CY5eaEfj5JqSdPvKgkOQtKTIPA5XmWadJm1RF5zex9coNLCr1LmsU8b8oP6KynqfY+KBAea27XkVrU28QkuKgkCaZQDzQgJYtrqhcgv0JMwDkFToI1IWh7kO1ds84p240/ssvBrUuzyJBK1HKr/Y1ikYu9JO18nnRHrsNU7WFNKvS1+fRL/px6/gH3X6taU9sDLypJxoQSEaClBrNK3cxAVKyEMMkKKfzPGq+p8o4zpVBB9pkiotr7QKNYpFnMk4mH9LNLJIgJGbtsLxD1gBGnka4IJpm63FhrqV3V5lt7DWu8pazNsKKIjWhSpqU3QhmGlGlSoelI9JZb1pzPfO7YXCAFUFYQYJmdDVGpdmppbrKw/HcTUqNruvkl+vk09GDhBb4dVO0+CwZKK3il5zL+PTfGlxWYgtIIR1Wvfni25FWgAOuQiYYSvWKqBFsh70D2xbU79qQqOwe/vMfgZ5qlmvuTc97W5xq5aJmkCXxRlGVwmdXfVAYWZWD5WAZOewhZ+ljP266DvTVYHpWpGLL4rKyabvspvijKroepJCzHyooHGvo4ixf4JSw/nXmeqQS02IENfMnEa/357GMtZxW8qiCPv4mq6M8aur023rY2qz4GlBeZz3zu3ESqnGxm7/Ofy9tOkflZ9IKqSqhMBWmRQrNYyMorc/Qd8beoeNIs4hJJtMgpaxTouvJNIzGnatPP0adKQ8k7H1zXouys/GucklD7vx1fyJhT1pgSMGTR5ZDGamC3oizLKZX80Z9yyhq/D/bcvurUdOH/ihJnnAVSurTPnuaejmlS5pQ1R0xekXElWwndz5AMIWMuFWOliFilzZiUix+wc25R5oySe54tlC8y1EzVc0dUf8IhVRoOq4soQIpia9SZqgr4z/nSOZWGLAo+jhuUaXLEFhEpV0Jl27BoAyNe7VrNqlbldyFw11IUs1OnPh6y6NSs85nPnZsPiCvHFqeN9DNspBhk4SWeiLQFXYsasnzS2eQLU1t28JiqOrPdJ/ozc/a8REjSE7yK1eKkbDH6E7zFfg9P1L7Sx7zEq0eN4DWStaPb+0vdp5VE9Wb+2eN/p9t6rs/bxrt2wBOcFk+QwCt2LTvfFKqGEcEraDe4HbXVntnPCZ50NQx8gRDHbXwEwv+KJ4B/gSc/TWGb1f1k8Q6lt3gnmjnFbLH/BZ70nXVbzTjOnJPJIrSq8OHJkl/cR6/bfH40MydU5yNjLXyWuTKSz1OjCblYCLkuBcI44kNVlKPpAZwHBZLaQm35VFsc8YnapRpU+b5aZPnthHH6HjdptbLjrfqWpRUTUOKMDEOntEyqdT3HJQfs0s7nXY5ohRaVqMUmR/TJcb9+yXJ7QvJCyMNRFt6X83wRfelAuoFPK1TIRX3+sL0BiC1/ULrnCpzKWqj1cesDUZiiErVcOdXymwkRKb6r3WecTkqrbFRniyO3Ep/hSgjbrBRe/aG64VS3bQXIgFMLrHMqTalT+IfyYy5KSRr5+wyqct0KvUuX3xUTsEqbDFckYigNOgxZZBoEFHqXfHTSodTrUafmFKjHbDpVQz37ExIDmJBwYDtg6jK+IkJWOaPNKl/yBS0lugFW9NxMdSGtsasu6qBAl233V2k+87ljo2VHjlibyYU6zf9E8gLzSciLavX+t5cUvxkJuFxGcpWKeHD2KzyAsvxRIxwHeHAeAftivxqU70mRlNq67r++5MP6Eh/Wl5h8IceYbVwTJ+75Ff0pAiQNyL4Gfi37mqyL0j2YXsu+7+GJxzQCQm2131bwt/E2KCsiMHu82c8e6XPRa/QQb3/P41fuQW4mHs1839pVjUC28iez/u/hVReWURbh88Dsb1UTn586wCsBjBC3XNmmbs+ywSyj1XiZ2WIpKw0o4UF0oD+3G6hlbt9gvMNnvtp17ei+7IZhPvO5Y9MjzzFbtFlV632VIRmeh8/oUnAK0iUlO/fZo0/OkZkAQzJ0KVDizGXB70X7/Dlf8pSv1UHT5uf8lhYVuhQ4YY2IlJKeIuPK0adJmQLn1KjTZYV3VDnTgilz+QSaE98n53JNH2r8lC3gN6i6Qk4hb6/Y5YBNjjQvvuniBqTBPuaKDBmuCIn4imf0yTkl6P/Ov6SsDqIUY1eMZXmjsuRc0VxY6RxYmiGIp6q4PWWNlF6PFhV33KesU6FJSMSUwJGzMQn33DGhK6A65BMO2GVMyuE+Ib5XabPKU75WvH3FM54zDDLuGq+q2wxwJV2W57o0kyVbockZJXe9rcTLclsDpowJNef1WPc/dy/N547OOzxJZ4urj3ALvJ3/Je2xTYjPagfv5DHXUxohGAP8grGpIDt4N4wRd+aQmSUPn+o/9Pvf4HPfgZu/wC9gP8IrR83Kbwu/SmqO1vXzZQTH/C3epfSt/mw2M9QIxDKCJ4t49af1CZjq0whgw8JpvKtoA++eMow1S7JW8O4iW8j/nf68jic5LW8/MbOtJj7aaoqPXOBPrrHl4oLPq7XiLnMwGalr5VfmLrNjtscY4fsNPnKhCvdfXPrrtayvyTxD9Uczif/6Q+bz38Tcx7f4mWVyA9rZogJCsXkdBjuUafKhCvdPLvm49YH35TxHbAqpSN1tckzIDodMCSAB9bBGNdGgWRRQCVDnEQFTZ2kSK5Q0mXazechCpdPjrLjEFseuPdWaR7thwVnsQTJQg+k1AVPq2Z+IejVsuxytDAGbHFOgy3rnPefFNCnGXJSSREFIJhrS1L9Alkf1fbkoRVth31m1LjaGfPztBwjgYiPJkIz7A1CgS4Mqa5wwJuR9Nc+DRo+16JRhmKEZVCjTUpVCxJ/zpeaoTnlHlXFeruPi5YRcLIVUzXCR1bjtrpXlqQbEDIuLbDTeU8h2KZ6MeL+eJ5fu0w0LbHJEyJgWFT7hkK94RpWGKI4X5RxXaZMgpqBNtkMyt9QEWxwTELPJEaesu3KIgCm7HDDU4gkjuVNEvGYNZn4X5jOfOzNTbpcI2Qp6BNvf/FG+NwtIzebzFiEXqwiQssykqljws6+v5TG2gm/WKVM8qo1roQfZN1L6R0N/FgsY+/5pkaQ1jk5loYYYISJNSdDBA/NfyveSERS/HMl7vDXLghCgZr0KZH8XJ7C8hFchGAAuIaBzW39meVMBnqjs4JWbZnOyc6zoY63IyaxaBsZnywTAE5UVfClAC18g0MPfJBg5OkLUrbE+7lOEZB7hVRN2TT/Fq18tR8sUtGb3eqmPOwG+hZs2LFTxBV0bCGCfzUezaxv4a6p/nuYznzs3KSJOWeMTDgmYupz0Vc4o03QFTQBNLWoytWVIRI06Lcpq56/TosKavjF0Vb1qWaSnrDm1aIYhNepOSZoi4h1VhwOHLBISaQxAQFsjCIR8HWMFWJbnWaHlclmP2CJgykMlM+1YSrQ54ROO2WKPfcYad2DxR2X13EZq3w8ZSxQUAT9l353bl3zBz/ktJ1rIlGHo8lRzcZ96ELuseimHSnCpRORUCV57bouKU4tawVebEgmk28AIVivmOqPknmOzF+1zGq7R4CE5LokRd9iVYu2IkFPW6FJwhWCGqcekeKiq17Fea9u3LPAHvKNKivGtfNgMQ0LGLqO/hMfh85nPnZwVfJ6puWjQ72Wh+KuR4IEYTwhaBrv2btz8Ui31s1ZyI1mN4DPC8iVexZnH55V2kP2MkBKrbXzG/d/g7uEXDPdYJqlFEViJpqlq1dqe/ka3a24p8Bb1f4VgnA63iz7zM58bFrbyJ3VlMsW5vFzUk+Fqw3K2MG+s1OziuOFtK7wyYtOyTe0amnPore5rAyFWmXk9mniCFwTXvpz5eUk/GvF8gnc0JYCv8cpUK3Nt6OeGfWcdZhsikMj+r9ceQ6fx6uWHzOdHMnOF6nxk7E3OVoGqwFtvKwccYKoMPhDGEZMi3CTgweseFSUILfOppXavE9ZoUeFN7YGQf0GGaiTKhUrUosA5FVrOoh6Roho1RI0Z9XnQ6LGgiquAmK3o2GWPGqEYE5CIY/eG2M8ukeuNqEZiYXrO5wq2I4aaj9UnRz+fJBHHVGJ5Z7XSg4p6DY7ZZEjGZWYdskMu7rPRes9ZUIIQ3m/n6Qc5Z0GzXDHJhV0FIBf13R+JMI6oDf5IbiDwOSJkJe46axXAg2975AaXJGLJaQXYaL2nEVRdxpfZsKwAapSH4usRN3kYsshZWFKwPXZ2q3dU3T4DYoIYkkw0J7XEGGvRTTlblpSRnblyMVHoTtWKJu2wgIsDqFNjnz2+5yf/yL+g85nPP9FY3qURbAZoDcRZu3wb39aqofmzlqGbxwhwG0A3LMjnz/CEm2Vkmfozj7djLeGLqwycleGj5x0uHiUZ1RDQGCHAcHYhzMoFIgSwWYRLE2/pHyIk7AW+6VXtTYtpfawpFwxcv0TA9P9jZn8G4i1bFQQgXurPP8UD1V/rY6KZf/Z3x5QMWT2Oul7jPeTv0R5eTWFKDbNgpfFq2whRkbzR56W5HamwjVcc1GeumeXZzpYzmIrY1oVqsPBU9/VEj7UIk3fcLoOYLViw12COtOZzR2eREZ9w6EqTUkSUOCNCSqguFfvUqdHgIZ9w6Ei5cwpkoqGziB+zRawE3Gm4RkyCE9ZoUHXK1hx9NjWP3jBHrIQhQJMyVd4Rk9A4gnNKnLHJMRWaFDh3Fv1Fhk5lak6dRYZUaDoyt0KLqeoprdhpjVOXh28ZsWNCuqxwyrqzsQsZGigxOmaNU3Jc8lP2neLVSFCz7B8FW1qOOtQs1ktWVbUqi91XnFHiUrsFbPHa8G6FppaECm5NMeaKDP9d641zDZnbyzL0u2EBEGxb4NyphFNq1bcYqUWunApYyqnWeKiZt11WXF6+uZXE+bTlCHDLzh2Tok7N5cau0tbrkCLh2Jz5zOeOzUMk9/IJgtGMkDR3p7lvwJOXhnMU6y38e3xZaE1/vq14scbt6KcWgtFscRv9nhGpS3j8Z8VQVszUmnm8LbK/xhOFSwhOMxLS4gaMFDR1pWG1Op4otmJWez6IE8sUqxbdZOWiz/GRB+Yass4WcxoF+nURwVi2qG0FpCV8VMBrvPq3NnN+T2D0BB9jYNjSXqNlPVY7DiOb7XXbwy/6W/Z/Ax8X8ArvujKS+q/x7jBzdL3llho3TgT+fsJIVYvHesB8fiQzh/nzkdlB3vBMYaNvjFdq1RoTulyrYTZNrie2/QVVV9UGotwaK1lnVitTLNZ679lu/VEUptNrwmhM9uSamAQFuq6kqUCX5+EzDvLbZHuivhqV0bymRbphQUm/8BbQtcmeXHO/fkk3v0S2d0118J4q75zlv0mZBlVOWeM8KLB4OWEYZAimMf+s8Zo4EajyQUjRIYsCSFlhj31SowmTUFSoZOFBo0e5J0xCoCrPPkukiJzlKZheM8jLf7Vcb8I4naSfXXJgfPFy4lbzy7SgKNm1Cz1o5Ytk4iGjLKogfavE5SPXopsbXBJGopQ9Ky6R45LK4INT2+6z566tkLBTAd0BFMeSBzYmlMgAAlKMec4zrFQiVOJ2EbsxkuttauSxFjRYzuqYkF3+8MP/zs5nPj/EFBEw9EK/tvs/s6QrAHaB+t/g7eIBApSM4OsJwEsxlvcyy8Qyos8Ul8sICDNyM0DA3iP4/pdFAV5KAC7vT0jbsRkYzOvzX+LbZ7N4G1SMkLno4670e8HMNkbAFJL/Bq90fYhXkprFLdBtGog3YGq5VV/pfr7WxxnQ39brZPY1U4Nm8SH/pj4ownCAz/l6rudi5KZdo0u84sKsWHazYzYyO/4pQra+nvm6ib9BMFBtRPIjPLlqdr0T/fccpzpJPsUD/iVcdq47tyzzDNX53Nm5Iu1s3G1WydHnSt01Viy1xgk5xMFzwK4jQSu0aIRVpgSscaqYSGzjtlifIGaFLiXaLhs/QcyRkq9jQkq0nXW+oIVNFZrOUm4RRFPNQ63ScBb4KQGhLqYbjh2SIUFMk4pzOJmiFaDAOS3KlGhzyrorqrISJpDIqpiEIxqHLNKizAueEimeqlNz/QNVGoxJuWiCPjlWZ1Sba5yyGkvJ6BUZHtLgMQdYEavto0HVXXuLNSjQ5Q/lDRpUiUm4/NTd+IA6j1yWLaAFUxItIDn7kcOGq0qUV2k4leo7qlyRcSRqhiGfcEhGVadjUjSpcMKaOphSSiz3KXHmiOAWZXZ49U/7yzuf+fxjzjlebWl/3y0mqINgq9nioRMEDwwQjPcUwTpTfY4VYEaw8GvEVm9K1RK+HDOP4EyLY7LF5SrcbOixzbp5zLbfwBN9VhqVwGe4GnZ7gyeErVxrHcFQyzD6n/FOIIthMjWtOXSe4nP43+rnhte07OriWdKfg6lZjfw0tWtVj9uik7Qoe2KL80Y423Ww52zIc9Iv9NxiPIk60u0Y9rYCMFtU/5TbqlVzjJlbKcKXxg70Grd024/xwoTGzPNN4fsGln818VjQYgfQxxwynx/JzAnV+cjU9V8buYnVTJeAmDqPaFNyNvPMYMRJ8QHH+Y8ZqZw/mIoy0jKgTIUAsNt7zdVSEgZSDhCoVbXzadoB1Bp1V1pwyhqrtPmufJ8PtSXCSBplK4MP5GIh7gKmZLiizSoRKaIghAF8+HSJ72tF7jcuIZLW7VXOKKmt3Wz8mxyzGrXp5pd4UO+RbV9zkxbC08hDyYhqKQhfEvVC4h7j9D1WOiM65TTvq3m6+SW14p8DOIBvZVhW4hUnAs6KS2LlH1zSoCqWtLy8u+6zR4OHvC/nWW5MuMlL8+vi5YQ4cY9MPOSUdRpUnW0/g5RQnRWXCKai1i30hGAdhhmXZdUnxyE7jkxtUubeDQxTiy4PK0Hscrl2OCRH34H9A3Z5wWdOpfIlX7h8M8sKM4XxHvuE8ybX+dzVMTBr5UtmJ7rE2/M172pQvefzmU7wKs2GFlTVId2A+19ewrK8TzoreIgAuSre7mTlSqZCeAsffdnxdvgsAsayiKrBSqoMVBtYBGe7mnyOAEMrSTD7mJGXZmMq6ePMzmQFTqaQsPyvDeAv8BYuA9m2GGc5V/bzfT0e+55FCNTw9nuz4hsgLUHmKR5sg1cDW3aVKSOMIB3g1QTLSMaWXdd/hVfAPoMbu4EwApuZ43is+7JiCSNWTVFg19kyz5r4nCwrdYjxyoi3gCY4zGc+d23u88HZ7o0QbGq2p6k/M1y5IiiQKKdZAhBw6skUEZfkWI9PXdTQWnTqFozl+TUXb2QL07YA3aJCwJQhGYeHQPDHzuA1XQo0qbhFYnE0jV3Gv+V8SvTTOZloyHosZG+DKquaK2pRAGapt5KoXQ6oUefn/NZFVxUUHZsC1sqljIiOVLFpCtMcfRfdNFZLxD57nAcFt5CdIHYZr6G6w8zJZDEHESnnuEqp2vaUNVqUOWCX86DgrukqbVHexnVHXk8JHA6VWIMxDR66wlErBAuI2eFQoxYyxCQ06qFMmRYlzljnlKd8zYq+7kagp5S0LdHmt/xcIsDmM5+7OB/wVnWLPFIsxuf6GMsYNVLNlJolPG7o4aOSbJbweapm5zcCLo8sbpvN/K0+56USsd/oP10Ud/jVFtHNCWS2/D2EAB3gF/KtOHQ2r7WNYNgXuu1LPYY9/drIzRM8AaluKneMb/z1Wv71xKt6N2b2h5674VErRTXcm4bkv8Uv5Jt7yLCsObbMifTlzLaMtNWeaqrw/XZRtv9En3/Bbdv+VI/B8GcNH2Flr9m6Pk/7ZlxWrsVTmSq2iiedjaw2d9ssuTqfOz9zQnU+MkO84sje/EFX0c9oUKVFmUWGpAewUX9PLZLlp5sSNPL32eKYS1WxTglc8H83v0QUhEyKQhAmWzB4dI9EHFOLJNMqjCSLKsMVOxzyUavjCL23xfvOht8Iqryj6ooBCpwTk2BMiklRipvOKLlQ8JPiA5oKwGtag7XPHi3KNMIqXQpMluGikuT3RblzN2tZnRoH7LqQ/zEp4kRAtn3NwlTyRx/UexR6lxToOhDapeBsWkMyXFSSRKESowS083m62TxbHLOkCoAuBR5zoDa2FB9qSzSLeSpRi2RLlLeLlxM2OaJCkwxDzrUdF0QlGoWi4k1GEIXSAr6uSoFNjlUhEbJKW65ZeI/M+EoLqWKmBC4OoEqDA3YdEVuhSZWG2/caJyRUbSJFE3bDk9Bbizzzmc+dnAu85d2C+LMI4C0jAPE10Ibsy2tPKG4j751lPJBeh5HlpcaQfIFfnT9BQLCpBSwzFPxK/CPZz42StiMjefPyvrvQ1udP9TFvgGe6zyeyneQJt4FbCVFaRHoMZd3Pc7xN3TKw0vi20k9nrpGF9JulzZSiFnvwBK/a1RuJodm+niJg+kSvqRHIRkYbkJ+9Lk28IuIRUpYA3sLfw9vPTBEym89l9iu15i1s4G8u7PVo4BW9dnOwjVcbW2auWfvt/KKZ45y1l5llLQKSzGc+d3IyXFHg3GWFJoip8dZF/gRMHbG4xqnLDDWbeDgTjrzDISFjR/aZy6gfyiJvyFgJOSl/MoVngS5f8YxT1jhlzWFDKf8ccswmMQFfZv9cc0fLtLUsaT0+dQVKIC30UjI1JUHMYbgjEU6goVVDF3P1W37OAbuOOC5EXQBOWeeQHU5ZZ8gip6wxJnREbok2QzJckmNH4xJKtDlT8jNk7LL6QaIJdjlwC9RGkC7q8Vi8gBGqQxY5Yc1hsDJNxqQ4ZY1/zn90WbFGIEektExskSgIaVEmw5AXfEaVBiXahETUqTlCt0zTYWEjbXc5cIVjXQosqiBilbYjSk1N3KXAJVIE+5Jd1jjln/Mfxa0xn/ncxflYPxomvMQv5saIDd9yQ2vIYvIsHjFlpC1wmwrzJYJ5jMyzmCJVdjry0lStVqRprqEqLuffOYJiPLaxoiqz0JuzyiztILj3BO+wmiV0v0Gw0CPgLdzYwrFhXdvni5njAU/Ahno97Hhscf8xnry162iL67Z4PdLPDb/aovcAF6lFA1/2WkTwp5WoPsITpxXZ1kd/2xG828Fn71s8U1uvnUYgjMr4ErJ1PC6MdF+2DduOYT47RiWbJ08QfG2ZuraP+8znRzJzQnU+MtaMZ/kh+iYcaLpUlQZrnNKgykUpCT3I7l+TPhHbvwXmW6ZmyJgclw5Y369fcpz/mJAxf9jeEGt9kOEo3HSWpjEhIRG78QGTEEdMmh0rmEI1FiB3xCaRKkGHLNInR/IEp/YcadPexsl7RxiesIYVKZklaqvzR5IX0A9yVHnHwgjKtHhHlTIt9vg9Daqs0AVEwXqThg/lJQ75hJuskMmX5Fjj1AHnHH33nNRoItrPBA5omvWtzSpNKqQ0vL/AuagXepc8aPVIja65KcH7T0UJ+07zuPrkSBBL7ungkoCYMBpTHbynU5ZrECcCB8gbPOS3/JxYFQlbHBGeS0v4UB8Val7qGicMNRMsVnWCxRlEhByx6XLHUkROiREy5kqtfvOcrPnc2TnF25+a+MZRs/uYdWgDiJA8U7U+TZYRAGXEHpA+0e3t41WsA4RY7MHgL++5/FKWgEfw/lme90/zTGqyn4UGfP+kSDtbdCB4wTKcloDfwMLf4Ei8wFbxEzP725fjvSkDE7zl6zke5IIQmbayb5Z4A/NWMGAuhhB/I6AkMxsz52fh+z3IGBn9GzxJO1sWFczsxyz8Mf7amBokwt9UnCAgdSA/v7BjyM/s20CtEcUGhK00oI78/RvgQb9Z1UIcYc1Lfa6pau3nv0SUIEYyWx7rYz3GbeTGYj7zuYMTEHPKOmNCEureMadPRhfBW1SkdFPdRmWaLl7I1KFdCi6Lfo1TYgIyXJHjkkN2WFE1KuAy8q1QqkuBp7zgKS8ozeRxbnFEpLZ+KUMSzPOJlqFmuOIkWKNJ+ZYyUhaxVwCUSBRb/BJ9Z/E3y3pJF6BTRERhysUtWW5ogpgSberU2OGQHQ5pUyIk4l8OfsWSbkey6RM0KTv1a4OqKzE1R9MVi0Sq6zQiNyB2pVOGiau8c0pXyXUVYjUm4c61zSqLGicVKF5s8FCVoxGhqoYP2FUSeBEroW1RYUrAKesu8zWMxi7CwOIOMly5a12n5lTB9lquKsF6ypqWV/1p++B85nNHxsizGp4ItHimWaLQXDh7eEWrkmg3lt8+u4BurfHmnJni8+nhdhP9W3zMUwjf/5+KHkfZMS7j2+aN7DSLvWWBvkVwygY+qiCLV84aXjLFqO0zq6VapZnHjBB8OcITtgCf6LbNURQj5OY2XPyV2v/tWm3jlKw3e/jFbDt34ygs97SMYLIpgj/fyHP5Vrdn+At8bJQtsNs+R/h4LyObN/BkcVnVuSawqONf997M40wRvIEnxWdjn1qQ/JWeg33PjuUD8/mRzJxQnY+MvUEkELm8yvgtS/ShZlIBLF5OuKkCabipwqjoyU/AgbWuKii7FPiudt+ttEeEzp5uqs6jcNO1rPaDHI38fXJ6F1psjVjtSElTM6iwxz4rdKnQdMQiACVIxDG7vdcMs2m+/7QIAyhxRo4+MQltJ5Xm2Uw85KT4AAL4qNEhjCM+VJecSqBKA8t4BYgIOS+mmQZe/XlWXKLa+0CZliOUxeCUYom+a7ONCehnlyj0LqnGDfos0abEkEVy9GlTcsCz2BrRzue5SUCcgLfF+6oweOhAvCkYxqQYp5OUej36YY602hH62SWW2xOXfxuTYJcDV2RlxPflvSUlv/su28tAsZUXWCzDKWtUaLLOKU3KjAldu68A9SoPaRARkndIYT7zuWPzEyTnynKgTAWAfv0FviypqoSp/izZQsC2AaY8UNb8J/Dkoa3Cl2VhirKG6Wvj/IOTHg9+0yPZgclD+f5Hzzt89G1HwOUssWeZXeYuSEDSQLzZ4w0MP4aFKaKYtPgCU6o+RVSoBijNyvYIAZodPGlqboa6/sxIV8vjsgIoa2c1K5hlkRrILuOLqvT4uMSrP0d4hYKpQRTc3vwdXhmg+1g2EG3X4rFu27LDtvH5qTNFEe7YLSvWFBEWaRAhpKkpNkyNCv7Gx4hgA9x2sxCAcjfzmc+dmyFp1jhhkyPOVXVqOaIW+xMQEycCXmqBpxVcZri6ZV9vs+qKra7IkIv6HLOpBU2hloeOyXBFFSkVDe3rqEFVYwZiEryjypEWIlmuapWGK0m61JLMkLErCG1QZUkfb06qc8WudWq8VDUqwFp0qjZ5eYNf55QrMhQ4p07NRQuAOISe8rVENDF0hPJvs/+9/lwWwVuKm0CKWxtUnVV/dqG9QJcpAVXeucIuy4C1jFlfMDplrArUFhXNer1SPH3myOGQiN/yc4fVVmmzyTFdVqhRp8QZNepscuTUrVYSZgvo9bDmrmOOPjvRIRWa1KlxzKaLPbAIhIc0OGSHRSTP/4xVevM3w/nc5TGbuuV4zhZTmSLV8Az4OCDFYwv/HsEre/jyKSMg6wj+2tPnvMIrTK1p3uKXNO/zo5ZiQsMxlgPam/ncbP1mpZ89rkC3b0SulX328Dn7djtnC/QlBDM2EdzYQRb2NXt/UL0n+9FFfCJ814BmvS7/auK7ARr6/Y6c40IbIUAN/wUIOWtlTjYmXDBRwyyJ+QofB6Xq0w/rSz7mwHJbn+BduYZNT/DFXWV8Fu627tNECBYpZWIAc1ZZp4GtHRnhmkZIYCO7f4FX4s7nzk/iv/6Q+fw3McdAAWjAZABJVe9IuZKQb1YwdbWUJDWaMHySptga0S3mqQ7e083maatKYEzIO6rUqFOlQYMqu9EBmfCKgCndsKBr8GL/kTbXDA2qbHLEx60PjLIQJ+5xkxCF1sXjJE3KLu/za57SJ8dnvGCz9x0Eogbt59OMCUkx5rsn911RQlW9DaKoXGIYaFNIQhStJ4GE9HcpKPkYuZItUWxG5Hojd8lKgw6N7ANyiUvalLQkIXZANCIl6oIprnn1fueSZGfCcvie76tFR1g2qFKNGwRTIYf32SMovqDQu+Tjbz7QeZJ2NjFTKRjxmQrGbMV/JCLFxaMkxcaIUR5el3/iMryMRAbJuh2TolvKMCDLkMCVb71kV238bXdjYWoKKw+rU9OShlWGLLKujbOWmVulQbnzxx/wl3U+8/kB5wIPuEwRqQpIlsV2n66L0mAaQNLaSc3SZRb7EnTW0xS/HZFU8pUB3n5v9q8OEEPaCMQ83ORhQTOouvkl7mcvfWaUqSJmm+XNevQCAccaC+CAWxFfJFBFFKqWibqNv0EwS5Llq77GZ4PaGKA3EbqBSiOdY70G/w6vBLCGVgO8th1byHuq37MyAduWqYGNGLbXoyPOiMk7SJoiYtZaZ82xVSR7zJQlNicIEWylBC09RiN5IzzxPbtfa5TN44nUDj5ntoqAcFNQgJDwx8xnPnd2AiVELWMTJAoAxJ20xin1oCalmoizyQqsGjwkJsEmx7RV8+ky1kO0+GmNgJhdDm4tMk8J6Ou+fhv+nBx9TlijRt1Z/o0stO+Z3d2UsQ0eEjLmlHVWOXPZo4BbkI8JKHHmXEVnlCAU4nBHW0MaVCnT5IoMX/Cly1s9YosuBaYETvkaMCUmQZUGbVZdlv0mxw5PiWI0xTGbgOCrA3YFH+tCuJVvbXHEEVuuxMuI2GfRc74Mv2BIhh0ONd80IMOQPfY1Gkuy7Qt0ecZzUmrpP2SHVRUbWN5tm1X32tg+Mgw55BNCxmxyxEMatKhIgFZYc8cUEbqYhwotV2RlUVA5LulSYMl5jOcznzs2ReTvu1nXDU9ZpqdFPYG301v+ZlmimNJGHrbxmfaGNWczVsFn0jd1W7/Uz42kNOLPMl3NBv8aTxBqqZPb5glCIg7Ehp78a3zm6wWCH58hhKSVLRlWNVWm4R+zvj/Vx7SAPci+uPZOoSxMipA0PPRCr9lTPRbDnrFu741eg9kcWss3NRLYsJa5r6zcy0jlKUKSzuas9uD+f7j0r5Ndn2/xODXAdwhYJENej+Mx3llljw/xGNkws7msZseun4kc7PdmzsD9qGb+cs5HJqMf85A0O2UI6533NIpjV05Up8YKXdIDGKdjvivf5x1V9hL71KnxkIYrOSrR5iENEnFMJhgShSlyg0vSAyAa8br2EwWeAWcKvqv6/I97H+iW82TiIY1igVy+zzDI8IvOP/B18TFX2tKaoy+W+XzE6pL3SESkCBmT0GxQU2ACSgo+0uyoMzrlNJnBiK3omDgRQCA3BKa+NNAekaKfT1N8PiKZv4Y8bAzeM8jfI0UkIBx/oxGq5e1qKSlqjXhIZz1NIo45DwpOOWAg+CjYIg4CnobfsMkRYRyRiKHzJK2Wu5TePIxdMVWTiiM+Q8ZEQcigFNMIxUpW4ow2q7Qp0WYVK/OqxXWSLBAQ09QbnpgEJdo0KdPgIQltubUZkqDNKiXdmrTlLqr5K2Y3PiAK5CagVdxA/jLOZz53bNbA7vcvNpIsv5w4C8/kIaQVoC5MIWk28E/xK/olnKoyEcfeimQqzzIeKM9mSg0Q8i0LCy9h8LN7ZAbX3K9f+lX5Kt6GZaDWiEK1cN2UZQHqlrNytoApkI//1z/Cze9hISf75LcI0VpFyMhz5O/CVD8HX8iVQtpJDaiv63a/0a9Xgff6eQpfONCAOIIghb8RSOk5jXXbV7qvMR6wTnWbppjo6s8W9bzv6b9rPdb3ej3PgB29Th3gj3pORi6PELVuSs8ZJPKhgrfp14EFwJTIpmzNzRxrEbn5MBBu53FPz9tI5/nM545NTMKRcpKPKWShKULNzm3RUIIfJCZpUd00li0fETImpMo72pQ4p8ArdtjlwC0SR4pzDNdMCajQcpmoRtb9T/w/OWbLbX82LuA5n/NTbcMzt9Ee+0SkeMFnLsrJiMArLc+ShNYTCnT5mqdOIZoiok3JxR4ZmXvGqridNDhJirAyTqErIoGH7PDKFXqBOLpCIp7ygjYlPuGQKzJkGBIQc8wWVRrUqLsFeiuXsvMtcM5+uOeIaMtkNQwt2K7CKmfUqTEl4Of8lmMlgCs0KdClTYlDPiHDlSv+ekhDyXPBkc/5nCrvuCKjIWBCQFt3QIkzLD/fIrrsdydHnyu9wShxxsVckjWfuzrfITmqFo1n+MQWptMI3rOF2imCOzT2KF3HE64XSOZqG8EapoY0pag93xaeI8Q9aoSg5cLbmDXeXDZawMmv8A4hcwbponjSsl/t8YZHO/gM0AaimLXSUDseyzzdnjlHIxQN82r2f9Js+Gm8g6ilP7cSrTa3s/INvxpLZbh0gHdcGWH6GiFoY32Mna85xiyXXxfMR+tIWXQLER/E+hoY6WwlUui5GX41t5ot3H+j36/hSW6Lk+rNPM/it+xcivrcNoIt5/OjmDmhOh+ZFfwb2Myb48JUlJgn2TVXcBQFIZNwwjQQovLjk//MoHqPDEParLLFseaaSjt8IhCyrR/kqGdrrGaFpKsN/kgqKyrQCk2O2CRU1epNCXJRn36oCstA8jybxTwVmkSaAGWZoyFj+kGOXNx3lqrCoEc3m3f2pKkqZwt0xXYf5DhlnRp1htm0FHBFbXJB31niU0RkGHKERBJscUwx/517kxytQyOscswmS3ocYGRqTCKOWbycsDzowQVMHk44zn/sgGeDKjvxIakgIsMVh3zCq/yGpJpeTjgrLpGJhvxZ7yUfykvUqTEm5UoizP7/oN2jEMpfg3QPKpUm00AKCWZVvUMylJGf3XDDDQsO9FZpMGSRDEO9UXjrrGFDMoR6U1Gi7Zpp7WdDMpwEa8QkWOWM7ykxJ1Tnc6dnAMMgQ2q9R/oF3DySCI6kgq6bKiwYSKojICytX6vFP5jGsA2d7TTFxsgH0mcl7D5tJQK2brEMN2lYyEJmcM2ClRH0Zj6arbwETHU7Myv1C7M2eQPmBrwTCND9II9ZKCNk4oI+/kqPpYQH2NcI0Rro59dAXz+avT1GyM3LmcfdQ4DtFV458BMIjGg01a8VAhj4jPEg25QIY93OGCFEk3iF7lT3916fn9JtFnW7pgi2+/iBPmag20vjic+knusHpCzgUs/LrktFn5PSf1cI0TtBboiudHvX+v1r5MZpXko1nzs6AVNtghd3kTTOt9jiiBPWHEkYEtGkzJUSiqYQLdBVI3vAkAybHPGOKn/Ol+qyyWhOqfzcLOYAR2yyQlfLq8b6WCHvTPXZoswnHFLnkSN7f8q+ttDLgrPlsC5qwZUttteoO9VtmRb/G39Jjj4pIkc22uMfqrKywDktJWlDIs5YpcA5bVbFicUBgOsPiEncckh9MfhPABxkH7sM0xYVPlElrMRHPdSSqzItKhqTkHKK0yW9Ri94Skpjuao0eMWOI3OnSjIPybhj/y0/13Po0qXGPnvUqNNmlRWOpLRK3WVnrNLgIc/4imd8RUDsIhZ2OHTX18hsEwhU4wYHwa4TMexwqOWmnzAmZIXTf5pf3PnM5x97Qnzsjy1kW4u8WeVLeILukT4uwC+iG7nWQ+KjLoCv8YvFxsoYWVhDyNNZ0rM8s81Iv/4GTyIq4ThZ1+xOWwg3JWsN32Jv52XxA1ndnxGQRgjaucxiNcNURkTauQ0QRxJ6XIbTjJB9M/M8i62ybVhkgu3XFKZt4C9xuamTJ+qknSWbDecasVvGZ+1b9moI6ed4F1JVj8tipgYI0f1Kt2X5sfYcI2DtNU8g2M/UxaZqfYxXKRvGNwxpfQTmxJrPj2LmhOp8ZEzJYzaCbSAW27i1r56wxiptCj0pmCrQ5cFJj+/W77tgesvhNMJwRb8KpjGlUYdcus/y64moqKaQyMYcU6NGnS2Onbp1QRsGI1Js9r6jlS8qcFxin5+yw6HLFB2r6kFaUGWuyNDPLjl7vBUgJDRw//fBHlscU6HJ/dYl35Xv83HrgztfA9VXZGgQskLXkbEA76t5HsQ90ieQe9Jnib4QzrEQzm1KNClTnTbo59OE6THDaobc4JJPG9/xuhq7cP5GUJWYgfiAreBYQfAiyQtYjS/p55NclALGpByhaQUAVg4xeHSPfijKhY86HZYbEybLExJLMeMgJNQbFrP/5+gzIs019wiJKHEmauCgSoFzKjTpssIOr9yNjsUxhJrdagoSQEsYxtQVYGdmfjaf+dy5qcJNAh582xNy7jUsRJCu4RpXFxKSjZqs45UFT/X5z4E8ZBvXEEPxy9HtVfOeWr8ewU0WFgLECrWtC9Z5WNjHg/UyXhFguZz6HplWsrXzS4lgcUSlKSnta3A5Vf+X/7N+ncWDSFMM/FrPo4IncZ8jNrE6twsQlBx22yrjbVGPZh5rILOFt8iNEOWDXiveIoqKWdBuoNWywDaAf4vciHQQZayBVVPuDhDQOwvKDchO5RrzG/2Z5b/a9TGbWkv/fYEvtGogRLmpQ7b18aYKGelj/gqvbn0H7MPFMvzf/2/MZz53bgRbBQ6vZBiSIpJYIsVXZZq0WaXLykyR6JRT1okJ+JznbrF5kSEJ6pyyzjGb7HBIhiFNKm6xuEGVCk0SmidqjpwGVVXLogWgZ4RErmDKCMwYKWXyxzfkK55RoOss/CXaHLHl1JZDFvkp+6qmXXGq2jJNzii5CKsuBTY55phN9tjnXPcp0QKRFnRGjtSs0tCF+StiAg6z207NaX0DESHHbCFFpSVZ3FcXkH1vql6gKg0qtAiIWeSKKxYJmPIVz3hIw5G3Qh6fMyYkIsUVGSpaxhqRYlVjnVL6CDvW/xf/g1PHFjh3WP5rnqqyVXDkCWtc6QK9uaBy9GkGFa5YZI1ThmScu22PfY7Z+qf95Z3PfP4x5zEwxNvNXyN/6/8Sr1R9g+CYlwhmMsv91/jiJyvzPOF2JqjFJT3jNoYyC3qIJzZN0WqlmZb9XsWJo5IvEIz1Bk8uJhCsuT6zXyODEeHAAnhrOnqMX+Njkeznhu3MAWWxViU86WqfAy7twzDgIzzJa3n6LxFsBa6ngISe53PdpvUVxHhcvK7bMXHCz/SYH+HjEAwfbuNx5kv9/jfI62u2f4uBMiK0g4tKcPt4jC9oDfCRWYY7wRPw5sjKIq8peHXvfH4UMydU5yNjjccmgQcIcSC6T44KTVmVzhdZVFBNKGrMTDQkFwqJ1qTCGid0KdBmlTItsu1rJllYbkwY1aCdLVLudRiS0ZwpAWO7HDAloFNNU3w9or8tILw0kHedVraMNMdG7HKgK+0Fl+86DQIKgx6ZtBRoLTcnDKuLLtc1IKZPjhUtRgAhTh51PjAJYavzR2rhHznObmjRQYZT1thjH2s/JQ2VTg9CUagCXJJjSIYokCZXy+gCsf1mBtdE4ZRhNk0YjTTsH85YZY/fS3NtINayjfp7BuUhN1nJaFx+O+EmD8NizJqu7lv21wpdub69a7LTHh+qSxDARUVybk1FbEUB1vQ6JmRCkowqNsaEHAVb2kYbOsuWWcGGCpDbanGbEjCkQExAirFmcGXczdZm9Icf5Nd0PvP5waeFqBAfIe+JbQTYmeJRs54GpXtkX1/DCAb5e2Sz11KWVIKFPTyxWNHP3yLg1uz6WeClqkRNCaCB/Td5Uak6sHWix2MKUAu4N8tWUeyVVqQ1Wtd2UiMwwYNAs0qtw2RbQXcaAYcGYA2gf41vsq/q8dt2TMlgx2mlWmn8TYKpFGZVuOt469Q6XjlQxNvc7AbCbFiWd9VAyF47pxC5WZjNgjVg/Rme0DVAvawfP9V9zDbFmrXrKfI6W76ZRRpsAzV9fe262g2T5dH+FYy+kKKywfY9sq1rOcYnwJxQnc8dnAI9Iu5rnqfgrAZVpgQszdi7LT8+JHI4IyTiXHGgfT4loM0qTcpuEV2s/iFlmrxihyX6/Jafk1JlaFvfUIycM9J1lTP65Bx5GBKxqE4pIyytZNSs6FMCV7oUE6hCU7YfEd4q/FzjlAJdrsgo/pHSrJiAMi3OKNGiou4tWUURElRUvWNSjoRNaeBBnRoNqmxxpLFJUmRap8YuB0SkWNFypyZlKrQUvw1dPJQcR0SBc7edMi1WVE1ri+fmwBIP0RVtVeraOVo8gBG6cl5NFjXLZDaWqso7gFsEcZtVYhIMWaREm2M2KdNyJLgdr9n+NzniD652fD7zuWPzHr94bphwGSHjjDCz4ssS8Dt8kZQtbhuRBz4b1FSUNXz2p1nHZ0tRLW/UnDdWgGSE4y8Q0hH84vBT/OK6RTKt6/FZQZIpSrOw8Nd4EreH5wUGCIm7jCdDbewYqvgegQbeZWQEopW9Gp5t6DXr4GOWNvBOr0t8pr7FAxhO/g0enz3T7WfxJK2pfp/jF9/tXI3krOEjmkwwYNfdXFohPufWiHDwr9cv9LoaYftIf5ZAhAAlfe5zPTcj3osweHwPjq+Zz49j7v3/+gDm8/8nY63EZjFVS0NMoGvPZ7oSH1CIunzc+kCuN+JN9YEEz4+uiUlQoaWAb9WB7y4FIfqAi2qSZvY+1U6HOIFriy3RZkrAIkPeUSUmwU3JE7rpgdpakXKsOo9ck6tlPxVbI3K9EemeELe53oRJFtUrWPFAW1tYWyTimFxvxEIbohCulpIs9ETxNSXgTNWgZsUKmLISd7nJwtvifZgipVRRn084JHDpUlPGhGS4IgpTLDcnLAyE8MgM5C+L5WlJ+cKqs76NCenU0qJsQ9q6J0VR88oNwtQpgJtUBGj3BMj/obrBaueSi0pSiORs2lne5BpLAYHldGUZMCGpwHeRIYu84DNn4TPVsEUdiDr2zCkWLCd3yCKLam+zm4c34ezy53zmc4dGszwXNPfKBdKbilELoLJvrwWQNpDsZS0zWtjHt5GashG8CtPUpQ0ExJWkFI+05KZyqftWS/vNBi6LihK3SwaMcB3A/d9cuuzrtK3k2+q+EZd2HHkYPVZ1rRGb1si6LNtgH9iA0S/152/wZVSPEAD8GDnvL/T6XOhj1/GWJosneMZ/qbS14iez5TfxljC7BmYJq+o2A9x5umOwa/sYAa/b+JsYKygo4pt10e3+Ld6uVdPt/gduq0ee4RtmbX6Gz0bN6/425NjSqkDOnlzTqaW9ymQ+87mD09X/MDu8uqUatQJPwBGYpsocaiGRkXx1apzrY/f5KRmGVHmnRGBTscwSXVZYUmxhi8fHbLHI1cyi8FTdQufO1m4RABGhI/gWGboizrHmv1ZpuPLMqSpTG1R5SMMpSEu0afDQNda3qFCmSawEckUVqxKBtKqZrc+4YpEab6nx1pU2BcT8e/4NKcYO54Fgqz45zpQYjQjJMCRUvCvnIbIuW6ReZMgaJywy5CENukgO/wlrAK4gq06NAl0yXFGlQYsyZ5RcjiqISlheNyGSc/TZY581TpXAXeKQHaYE1OI6Y1K0KJPhijJNpER2kRJnnLKm0Q7npLQ3ICKkRZlVzmhScUT1mJCeewOez3zu2HzQjxX9GCF/99fxi9tGpk71Z5YtajighRCFFhnQ1J8/xeeUWkkTM98zJ9Cy7O/mZ3gsU0OwTQvBM2YrbyMY9aU+5v/b3rv1tpWm+50/eZFcPIgSJcpkiVVUSZZslRWrRzXtdHW6904H6SABNjAB5mLu5jvM9VzNzQDzMeYD5CJALjLInvQOOn1Ie7Z7l9Lylku2ZKnEKsqkRYkSJZ6XNBfP87wvFQRIA0nthirrAQzZIrlOlKn/+r//gy3EGyH7VP/YwrdhMctVtcViw3BGSNb0+yU9r1k8tvs9fgHaSORL/EK9Nd4Hur+v9DnHeDWrHbeRqRZpFUqMgcN9M/jyTxMvWOSCRSwYFrUF+4ruI8Rb95f0qzmbbCG+otvJ6ftUQ3gS8EICuz4ryEL9M7y4wLApeHyLfq8Mwfgmztf/Hk1MqMYjk8JngdgvgWucqtFKoIaEpPo3MIDObJqVs/dsXr+iM5tmjycuGL/AOflBh3XeyMp8NGCYfkD+YkT5+gOd2STDdJImZQakyGqgv+VFAdTn5wkHQ4Zp/TG9hhRD1qM99/waVUcA3ibUBlCD65K8pjb7EWMCDc5vOSWsEbnD9ANui3CU+5RaUOXDyjSjHC4eoK7gu0HZlU2dzk9TufjAKIdTJbRYAISANhLTFLq3abH1dsnQzaUZaLMtyPcsj3RIShpTowhCUacyQIqpSmnNTBXy2BTDA0Lqsw9hINlb3Zyc9ygH2eu+Uwd0yerNQYlzCuSvrwiIGJF0+apztNniSy2yKmoObl6LGERB0WaOLlmn9DXl7xErZOk6MB9PPPd2zCJfB+0Bke+9wTfIb4tS0Yi0mbcjpzh1JOY7BKiZ+lSbXh3JZyC8D+lXspvcoUQEuOKBa5h6i88qNUsXeMUmeHXAGbJabs2odrxmC1vBAfx0TR67/vkDH6hfR4hEA5HvlCC0kgL09TsIONzGv7aFAFJTqdp5WG7WIV4poSrbvl6b680Hd/JludBr18AB9tst3e4jvKqjLxmyl5tJ2d6KHpMpGVb0uN8i9ntTDVim2HO9Rn0EjEcT75HZziZzWFGyexJ4H+u/7WbjUL/XgPmXGvVgN2LxxHPPZkiKRepKAC5g5VNFWg4fFmhToa5YThwtRq4B1FkkS0+ijbSAqknJEX8F2qxxQDihfLSCJMNIVWqUaVBRMjEiQY8sA1J0ybjFYtuHFVmJOlQUpw1KimMKStvmHXHZJcMPeUmXDOu8cSRnlRoLUcvhGnlNgowuTFc4oUCbaXUCBURssc0a+6xHe2yyQ4uiw3lGnGboss4bh7uWOWJMoAKAMacUKdOkq1Z92/cJFU6oSKyVkpS23yxdl0cLOBLYsGtEghINqtQIGDtiNSCiTYGuKnGtLyEiwZfB5zQo80NeUlRFsBWH2eI+QJs5V+AaMmCVA/fzc8Syi1b4nC+/+x/aeOL5LsYKpa7wuZym8lzBRwq9mXiNqSlNMWqq0zJeqWoYYxqfN/8OwV1p/WpkrLqkpoxkvUZIyTcIzjE8Y8VNb/U4FWNSlWPtW6yALcobTgvx0VVV/VrDqzNtAd5KVefxef19POYzd5fmlrrcWMNWCb2Gz/BRAUaiWnwUCLYyzItmwrYkbouy7t8EDJP5ss8RrGjbthin17pfy2y1Y3uHz6yN9N8mfNjGd8vYgn1fz/mXen3O9PX/Wv9u184KqlbwxHVDvp9+oa+P53sxMaEaj0wJ/yFoKzcXMHfWZ0jKgbAuWdqzojY1tWU4kOdtskOBtjaTJuiGWQLGLAxazLRGAHRmk3Ry04yDQC3uQ1eWFBG4ltchKT5untENs5yGRS6LSW5L0KDEb4OfuFxPA/pGaNoK1GlYZH/+E1bO3tNiwQHnFANqLNEjy36wRq5+w9Q7T3CG0YCd2adO7SDAXzKh8nTIXI14WLuiNTvLMP2Ah/Urcq0bipw6gNsh75phIwLO59Mczn/k1KgAlUHd5bqK2sNb1QBICGHNWIjlNgUOWOOIZZcdVqXmGlwJYOHsiigREIwjkgNo52ZdTEGWLj0tf5ijTSc3TZ80afpUqHOuNxjSNCs3Pm9Yd4RsmwKb2pprBQymQqlQp8A5BY0fyNJj2oUIxhPPPZszPHAGGMP7rVlvxToDSjBlq/kKQkcGbmfxAMwUqSVk9drsXgb+XiHgzqz27/DWoYmm0NsiApjL+HwnUwFY46xFDGg0we2PRYXqiNBrPa5Zv6/bp1J+dVvS51kI0DG+NRbdhwHpnD7X8qLGetxGpJr9DDxwtlKBMh78ziipewy5X954lYYpPy23Si1WU6ZsHU9sqyL2+pmXI25/DOnf+P1ZHIvLvAoQILuJV09U8AoF8HE3FlnQ1/fOFLKvlAQ+1MftWF7g1QyB7sOuHcAi8cRzLyfFkCNWWNYf+iKn7LJBlwwHrNGiSIuicyYdsApwx8qf58qVh9p0NU6pziJNSuyz6khBKZsqK/k4dIRfnQp1Ks72XqTlCqZs8VdUk5LP2iHPspKDVjS6xTYphixo8qdhvCw9TrTAVGKSplmkzhHLdAJRk1qO/jKH7vjaFJylvs2cO+8iLU6D4h31LkCdCv+eP6dH1kUDyMJ0igSRy2Qt03TE7wGrikOzpBiqurblMO1AMXqRFgFjWTSn4+IKwMQR44kSsaEukGdcLFSWrr63WXcNOkw7IjUiQZaeqnkTVDhhi23FseeKFec0AkpECyUltrtkecM6Lc27jSeeezfryP2xqRRNmfgCIdIsBsmKkraBCPr/88TzcwgeMkeMkWyWe2+5nqZQfYnglgGCI2zhe3tiXzMIGZvD96DM6H5sUd/KlbaAM8VKIPjFbPklBPvYQrxFOk3mr5r13RbNTX1r2HEF32hvJV1WhlrGF29N4sLHCG41MtTUrBa79BafUXoJXEPyX+r+phG8FchxXD9+IPj0d4jt3/L/7TpY1NNTfHFYgCdfrQQr0v1dI+TsFj6yy4jwJbxS1hxZhpEf4QvC7F4hRN73R3q9r5Boqni+FxMTqvHIdPGBzaqa4lpWwYwky0fSBL9wdsVoRiz4g1BI0qk+VC4+kKUnBUd0efj2SnJQwzwfStPkLm6YaY0oXFwxv91n+fprljl06oGx5llZ1tX17AOGpPi0/oFUf8QglCKCJ+xpttU5K9GRW42fGsMolFgBENJyqoUjH3fYZIcfsMEuAdLwOpoXS+3DV1esXr8j1R9R5JQKRniKQmFR/528BAL4qHlBrn7DWSXNbVoUrdWoplYoyRJdoOUiC6oX75mv93l8+A1R4gGp/s0dJWdXicxljugEebEAgyhVCXjUfE+VGsscUaHOD6Idl9MaMhQyB1HK5Vo33CZw6gwrabA21jGBvAe9S0YkneJkI9olQ9epGirUOdVyrYiEI34jEgxJUWdRydS2U5RUqWlRxOg7/oGNJ57vaP4BPrPpEbAE+UGHbx/Pc/l5Uj4ntRCKNM7qlLTipUnFgoGsV3i7vCkZLMTfQuzHui1bmQcBgrMwZcfzpf+eA5xNfIGA7e9aPg/T/xLfMmqZsEa8VmS7U2ONKTBVp5U5zeJX4Q3sm82rjl+pr+ixWU5qRYhayxo7+2naN8YqYL+tSLGfUzRsITcIZvOv4nPJwD/PzvMQ2BFXgil/p67h9rnu5wICU8O+Bv4MV7ToFCDXej2PJ67hLL6sQVUjoype7VtSNXELnxFWBr6A0QxCmqcnHm/q9v+aeOK5l5Olxxue0GLB2e0trmiTHWfZP2WBCnWWOWJIyAKnLNBinT3ydHjBFxRpqQVdnpulS54rFqmTcAyCxCutsk+XrFO/GtkaamZ7aiJywKzsRyw7lWTKPU8w2FDVs3UqTmU5IEWFOiX1YqY0Yd5I4SEhY82JX+GILF0GpDhgjRRD9zrDigFjdXKl+Hf8I3bZ0O6BHl2lXaVcNe+yXFNKbG5Eu+56tylo6agURT1hT2lrIVETSjCvcuCs/SdIuak5ySyf1fDokJSStHNKbwuBus4bWhRZ5pASDYZ6XcYErHHgcGqbORdJsMe6e6+k+CqlzylQZ9H9fJgC9ke8oExDc2VD4onnXs5/xJOYYwRbXCN45X+Dyx8n7yyyMw/8VAtII0RJCoILXuKLSg2PmDPpKYLzJsnMEkIe9vEL3I8RvBLhizDNBv9EH7NSTcOZX8nx9386cR62QDxZMtrExwQYOWpKzwRcbz3w2fOv9ftpPBlbwuNUc/tYvMEx3oYPQphaTqwRmpMup3l8IZYpUi2v1RbKX8lx5N7ecPkoKfs3p5Vl8IN3Ef1Gr7NFRxkGtK+f6fOr+IgAOw4r0Pq1Hp9FE9j5TLrHrEjM4sPUGcZbfV2WeL4nExOq8cicITe188gHgd3sv4PsoMtHby8kl3TQoT4/T286yWgGhmkpP2IAyWvIX18J+TZoMyrBqASF6wse1q/gTLICe9NJ+o+hlvvEAUdbNTeb0YAUwfiGj5tnXJaTHOU+BWCdPTrk2WOdDnlqgeRUdcnAWOzxIKA0SgRcLz3QwqgMi9RZ5tDZr8JoQHt2msb8LCRE6ZR+La81sN2grPmgYnW/VVtqX5W88/U+U2NRzr4MnpOhyxr7bES7dMjTZo4eWZK6qng7C7nmDb3ppFMliJrhVJ9fIB91iBIPmDsTBXDlQvyill/aoEwnyLsbgw552rPTdGaTfPvZPP1ZiSWoRjU2ol2XJwY4FUlvWkjwJCNn7d8PpJRgh03e6PWtUNeigwH7rHJOgS4ZTimyzhtXsGCq5F02aLHAgOTfyY9tPPH8t56zT+SGb2TWqWPIvb7h47dnzLwceYBrAPg1fkW7CuRg9IWSikZEVvHFRYf6x6zv1pQKbvXdLW69BV5JZIgDrHV81rUpEMxuhH4N9LX/VP9+jCdJJyMIWlKo5R6r40sH3sk5fXg8LY9N6/YtUsAI3dcT+1V1w5RFB4zlM/KO/WwsatPixYWPKrAcqlnkd5CRvxXcvkcGcK/9Y1N9vRYJOY4pa3lNQPL3emyTBLVd67dImYCpLkwRUdPzUFXq++ezJO290mxU5hHFwqSlrQ7Jf6HXz87HbpYG3FU8xxPPPZoxD9wC9oJr5MApLCMSLHNIgXMalFxMkpGeVsC0zCEV6m6xNsWQVQ4cCWkFVwXaRCTY5nPnHGpQJiL4T8jSc6xEqUnZZbpm6XHEMnk6rLKvCtcxm+zQpESLolvw7pHllCJHrDAkpfmfkrd6xAq7bDjy8pBlLaRKaMHUwJV0giyKNynToKzuoRYd8o4EFfK4w5AU/5BfETJ0ubJdMvwh2OSUBYak+C0/YYNdzXOtOMu+LVoH6uqSQtaGw8STlv8mJQ5YdY8bTm5TYJ81zT1t09DohRYL/Ip/yAa7LNBihSOnVJ1Tdeup0rqGoyeLZy1XdYNdsuq22mWDPB122WCfNUfYxhPPvZwbvCLTxrDUKylBdipHs7e/1n+v4Ik5cJFOo2f4hXRTn1pEky0gm8pxkrAzS7nhvklsc4jgot/gcYqVmF5JfFJ6W49pGp8BD94FVMIvQNt5Wsv9tbqK7HiNRLZC0c/xGMiiqiyD1TJUjWCsIISolZmae8tKvgZ6HoazE9wlRy2SyvZzATO/HPmYAHu+XTuLvlrS7b7kbnGWHXMRH4lwOfHeGLa1/NgQL1K41tdZzIHl0B7q3+04JuOt3hPP92RiQjUemY+A13D7En8jXweeS+HKt4/nIZCMvxRDGkGZKAHBOOIg98h/OCK2+XpYoTU7S3t2mm4u7RSU3VyazNWIYVoa5o1IXeaIdd444Fy5+CAlVMeIqpU2wViAdY+ss507EpIODEQxOwhChqQ4Dwp0wywZVTWYJcwI3FR/RMCYFAPefzbL9eMHjB7L8VtxQciAoRYEdMgzCEWJ1Mg95KyS5rKc5DaBK+46ocKAkPNAwOqQFPmow21Cbs6P5x/ybXXeEaIptbPJjcQ5XTIE44jc4Q2DEM4qaRIRXBaTJKLIXS9TtJrFLWBMNxA1QjCGh4dXDIKQvUCUBCdUXCHCkBSDIISUEKo9vREwi1aFOqscUNQbgmlVGoQMXeNslZpr87VtGgGbp8PpHRYjnnjuz8z/zQDSkHyFACUrOErjLUqRPmYN9GZ5HwCXkDyBKfvepT7fLFdGGM4AZbhcSso2tKG+/wynhuw/B34KU691WwYSp/EkqjkKTOkwj6y8DxDy04oSXuJJWVPENiH3ixuvLHisj1tUQA4evlDpQ4AngGfhdgluN2U/I1OtGt8yeTw17uZILQFXENmNwiXy+0YLt/oVWXhygFRvApInQlTTxwHt66KqJL7Uc6rL80cren2fyP7PPkvL9i2TdQkPyqv4sgAjk1Wl8NHLC39TYzdOTT3eKnz7fF5uRGaBv9As2ABfSrGp27cCinjiuWdzRZ6MZtZ3yWo50hFtCpxQcarRIaErpQQpVgIo03CN8kcsEzKkMqjzefQlWbpcKdmX18KnHTYFN2kWp+R6HmpaZ9sVQoUMydDlDevi7CHPBrsOD04SnFbeZG6cgIiXPGesuK7DtJr2s85ltcY+XTI8YY8UA4eRumQIGWqRlWhA66oOXWWfCnUalOmSZY0DUgzYZEdLqsbk6bCo8qUaVXpkeM2GcxJl6PKP+HcATp1r+fdDQk6VyFzm0F3rHlkXywUSYbVInU12GBC67oAsPecCG5Bih015P1Slu8yhI5RNwWqL9mWafMH/5xbnN9h1xV1DUq68VHL+h3fycp/ze57zUmMILognnns5ef1qGaUlfGv7ZInTT/FkpKkXX+OLSmdxTe/JbX3NDr481HLfDfONEQfPse5jCcFp27rd/1zE0hm+wNRw65Ucz9SF7nMbwTxWAjqDX9A3gvQrPGG4jc8cbcnxO7xUmnjdMQ6L0cdb55fwPQPosZlS0zCSKUaNgM3hMfgOXq1rMQPWC2CuKSOnjbw08YPFMRkJG+IX1Rt4hawRyHbtLUf1Qo9rUtFr293EY+rJ62fE6lM9R1v8R49xHtggnu/JxIRqPDIfEGvpJvIholL/6+IDDoNl9lnj28o8/So8/OqK6vU3hAMYhCmeXLzjdgnel2Y5yn1KI5D2+W22OGKZEypSnBRCIoqIEgjZSZaQIUVOAdSeLtat5DW8q34EkSioCtcXJCIB54FCz4iABmVCBvTIcraSJhyICrN0ccbS2Qce1q+c4rRKzWVgdcnSyD1k/qs+2es+XTLUwwpRAsl3pUKTsitfEgXpNLXcJ9RmP3KXbRDIp2+XrGabtmhTcPvJ02EQhEz14aP6BeXrD45ELetdvIFgydLST9sZyaYFOJz/iJnWiMzVSMnXMQ1KFFUvYCTnR/ULqtffkIikqMXI4hpVp/7wlrwUUSCEakBEkRZDQrb5nIBIiWRRElyRp8YSWbrssMmVgutzCnwRvaCpqpQ6iw64xxmq8dzbGSKAcAUoqhq9qCpRuxcMcACqv4UHkxYHYHafJQQ0tYDf6TZM3TmQ/cy8HEnuUyhEYtrsQjuQfsvdUqTJ/T8GqjCyfE7L5zIybwaf7TRGPtdX9PgG+KIpy3Myx60VN5lKYLKUuai2es3fGms+bPIrvPLVcmHB3zzY/l7hml7TtmgHonyYkf2mX+r3tuS5l8+TAshfK8ltaopjyL28ke1v6nlrq2pkoHUs5z//ou/VA/N4cnsWrpceMNrSxy6hb6StEdZ246Q3UbdGVl/Cx/Uzb/1PQG5bW1u1dMvZ51aJJ557Oe/5iANVNK4P9rjShdMn7HGqzfW2yHpChRINh32MPAwYc8CaKyo6DYt0gyyFQZsMPbJ0aWp19ir7rLLvskJ7ZGhSZu3sG82lT7iF3LbmcVqskyk8TQVrZOAYKc804lDy7IssKH6yDNY8HYdHF6lT4YRdNjhihS2+JGTozsvKrepUXE6rlWTtsKlpr3W130/zhD2XB2vb+FzzXH/OvyVCcGdPVaFHLLPDJhm6mtsqpPGcWvAnI5yKtFjjwKlWm5RYUKXqMoc8ReKcumQIGFOhzhe8cBFNIKRsmSZNyo6olZgnyb21HoKIBFcamRAycNmwGbpKJGecGrfNHOWo4RbrTV0cTzz3cs4RTPEWT34W8UWUhhsHCMZYwufbl3Ub5j5KA3+F4CzDCVq4xBjBOEq6Omxm1v0GQo6GCDl4jcMhH/6XaZ8F/xmeIGziM1GPJ77/e3yh6TWCxZr4hectPScjMdN463taH7fIJ3AlouTwBKL9/SV3Iw7GuIV7rvX8QuAXeAx6gS+ussKrMyQjNYeQvODJ2QuEIDZs2dLX15GsWy175q3++xoRKBT1Om/r61/pth4hxKtl4lsebQmPj+35Z3rcT/EEck7P22LCwOFSiqDrU/F8DybxX35KPP9djFlKLb9FP5CjhBQnWebUMJ0knRuRvoZvS/Pkow7t2WnCSNg/sxYFjKlSY0Ao7fNkuK48IBhHRIkHspo9OIAQdnV1PkuXFAMalPmMr+UAdCVrmE5Sy0kJgJULGGi3VXKQG/zixQXJSyEv/rryjICIHTbZ4kunNi3TYGHQYrQoWbCPLt7zvjJLMBZit6Kfxlm6lGi6/K0ip3Ksgy65ixvel2aZ6qOZolIuYIrRljabZAddvq3MUxi0SfVvaFMgYEyN6h3LVUIJz+z1Dd9W5p0SYCFqcVlM0g2yjnCeo83CoMVRuExRrWujnJCwx/MPHbBPELHGASUatFhgh02m6Uh5wRUM0vJb1dQEu2wo8LasryIDQkKtCrObkR025diDMoua31XhxGVsXTl/cDzx3LMxa1ANWNLipCZMzeOt65Z19bl8NqUvRwLcLFQ/ktc6RcEjoK5ZqLaCfSzPGz2DYHwDRZjaRj6LDXyDgDUjYafxZU0NoIKEa5it3IoEEDXnMP2A3MUN/BhvB5ud2F4DTzK+wq/Ia5OsI1ftmF7DlIb6T11AcqzPsxV+szNNqkvnuRv+bxmjdiMwiwDOTd1HTj7HkwN5zcyvR57UncylsvKD5sRxqyIg/RIP8GfxkQehbsNuTNKQa93I87Q0IH2o51SSgoPcoT6uhPaUqTXeIdZ/U2lMFmY9wsc41GEUFw/Ec0/n77HLPCOalPlt+BOWOXIqTVsUNoVmQMSKEn+AK0GyxVyx1fus1HZYYIFTTlkgImCXDVeSWeWYFgsMFXd0cw/okWWBU40FCNyCN+AWc61wyhxJIFb5LE2HnxqU2GLbuWo22WGfNaa1ONS2ucY+O2w6Injy2LP0tNaqyA95SZOyRhF0XWzVHusOMxo2siKrU4qs6XbzXDkb/ZiAJmWH04aETiW8zyqb7KhDaMgq+wB3IrPsfG2MBLViUoAEkVOm5qMOp0HRXRvDpIb77fuWgbrMITWq7nwt0uGANVdKe8QKBdoMSLEfrLmfkyZlpmKFajz3dZ4igGuFO04WVwpVx1u7DaeZ3T3QbRgRZ8rIJuKkMVxopKcRlvbfpYgInb6a2P81Qpp+hSuzeji+EvxhWNPGMNRT3a/lrn6h+5y0yB/qvoxQtAxYy5k38cAV3m5vKtXf4S3zEYLpjAgd6P5/gXdDmVNoHl+EavuwxX6LWzIn11O8AtbiCe354OOnigi2vMTj44Gem8UiGLY1jGikpy2MN/AKYIsGmDzGd/i82ASC+6aR2IMr3c7MxDFaZMAz5Gfkb4nnezKxQjUemUt8CPMYd+OauRo5QHbECo2gzHXpgeTuAadBkSYlUv2RA7CWg9olq6vui1yRZz9cZT9cZRCmxLoVFh2RZ8B7QRWe31bmedR8z2UlSa5548jEBmVXhFSjyqk2vVaoiyFsdprm7Dxn1TSH8x/RJUudRarUOGCNBiVOKVKnwlG4TGc2DdfwoTJNQERt9iNnpQfu2JnaFEhEEWE04DQs8relR3TIc1mWvFCzNFmpljWnpvo3ZOiyE26yPfvMkbNmx0ogjbZVarQo0pifdaTxkJBukOU0kHKoEg1HKjfCkss0LdDmYPZTjucfsnT2gYCIBVqM1UJWo0qXjDbuSntreyFLk5J731oUWWXfnWuHvLO1lTSHy4C4FSvI9RGrn+WiAU6REE88926ucKrE25wqQOdxmaCEcPtYn3ehhB/ymg/Ppu+uvhuI1UyqkTavfvtMreIlSF5q4+oFHsRa5pXatq6fPvCN90ZUmpXfmkYr+GiBFcmTzu3ceNBvwPypKGH7P8Xnbb1SZablfs1OHIftz2JdTEFhVn8bs8tbq6vlx77WY1TV53Xpgb/RMPI6jc+FBZK/ROxdF4h69DN8lAF4G53dwFiuqqlGbKnYrFqThQ+mVNX36DatBVmmPLH8WCD3uxtPaE+C7RAhUy1CwbLFBviW3s9wtrFkrEKI557OLBeu5Mh+v0ckOKXolJPPeenItMKg7aKYjIA0QhBwalTLYp+mQ5Yu03RcU71hSCsIbVKmFlZpUOZcVaGWo28KSzmWQ2dnt/iADnlCJf5AyF+LE7DjExXoOT2yNChpZECGXTZIaTZomzmGukhtr1vmUF1Jc5RosBbty1f2mdM4pgJtyjTcInVJi6Faqu491YX3gIif8Fuq1NhkB5D4pXLUYFGVrj2ytFgAoHRx5mIX8nSoDOp0yWhea8/FM1Qv3lPkdKKkS4pTa8j1tH0bqV2i4SKsAiIX8TAgxTKHTkEr71HgcnHtPRCn1ikZupxQce+PYdEmD7/Dn9Z44vkOp4OQZ0Z+mkI1jRBvM8jv/km7vuI8l/HZxDlc3DZM3foZd/P5J0tCQdSTP8VjGlODzuBx11sEowUIRrX9W1zTS4SAtYX/Jp7sLWvckilGjXw9m7gGdqx9eb6LCAxwhVWM8S4qw1RFBJ9Z0ZURnHZuj/ClUIbnLEffohIsNuqtHlsJ2NJorIEe6xs8djUBwRVeMPZYz2cFLyQznGv/zgF/gc+nfarnVUUKTiv4fNcEXnyQQHDhjr7O8LK5sybjBkwRHAv2vzcTE6rxyDzBZ5XM4xRKvemkI+DMLlQLq5yGspKe50oUorlpVSKIHb1LhhZFtbY3KdF0atKIBAkiWgrghqSc3cvIvEOW+bY0z2lQpD+PK1aqUnME4jp7lFX9CtBigSYlAt12mzmydKlw4sA+WN5pi4ECVOZxCtvyoOlA7piARc3Dsjyp06BILai6/K4OeepBhbGSvZJ1VaZJmUOWAdiefUYiitRaL2oMgIHmhBn5+oIvOKfAgBRrZ98QDoZO9WrTYsHlzBqwHRLSoOS+1809YO3sG0oX8ltQVLkJZ1eTNlgB9CmGtCjeAcVgVq+B5n5FtJmjjcQ0WOHDJjvOajcmcOVWbQp85dj5eOK5Z9MBzgRYTtWRRRfLc5qVzNMps08ZaJ4B+vDwN1fOiu/yQ1fk77cViTLhGj7+ShFqAr6uPry7wm0WfbNJhUqMmn0IBHj3kdcd4gGa5TgNtLBp0sa/iQDDCzmvdA0BsZ/J8acNyMLdZlZTJ8xLmYFrYEWLn0L59+0jPVdrma3jlRZW7DRWW7wlgqR1P1/grzFy/DySY+1NJ+Xmw5StsxNfl0RF6n5n2WvNamdxCQbejYAN/L6mXsNHLy7kHC2vTKMDLEbguvTA30RNZpQZCLf8rhV8blekr58mtnXFc2+nS5qASAueBmrfX2WBFqvsa7SQqB0zdIkSAVVqrHKg+E5cMFYAdap4IyJBiwWOWGGZIxJErtm+xYLDExYnYEVL67yhTMORrT2yjlQ0zNTUDNMiLSURB/SUwM3S481ES73lqBpRmqVHjeodq3uWHhXqVKlRjWq6pJyixYKQnjRccZSUVg0VH4vidTJrvknJFUIBioWLDmvZ1yo1OuT5MvicDnm6ZFnlgC4Z9lmlNvsRCaI7MQpZemToEjDGCsPqsw9pUqbOonMYdclqDEKKbiDXr8oxi0pe2/tV1viGgIghocukNXLdcHVE4L6aM+pKF+SPWKFG1eHQeOK5t/MpgumMuHyHj1qqIL/r3+LJtmOEXOtzF3/kkIb4MzzhaBjQcAT4bFArSC3p9owENRw1i5CJFjVk37PFXSNxS7r9Gc2/tyxVw1YNmPrX+ncjczfxGaaGs6wc1aIDFvGuKcORVuL0GF8uas4di1S6xpO/trhvJGtdv2/k6AqudMrFFVwD/0YLtir6mgQ+hsDyVp/g1aW/nNjHLH4R/i2eRC5PvI/qzHLvxb/W17+deK+sQMvcUE+5K2L4mV477UZwOPsMn8sbz72fmFCNR2aOuzeH4GTubQqEDJ2Va6AE6JUSqKJmnNYW+jlChmqPb7km1l/x5wxVjVmjSuniTEFf5P4UOeVcW0vLNMlHQvAd5T51oNzUsm0KDtAJeSpk3yHLbpU+YMwyRwSMVZ2ZcqpNEDvaLhv8rvQ/0AjKhNGA3MWNA9dX+hVw5GmTMl/yOXUqhAwJGVCk5XLE7FxSWppgNvl6UHHAdFk9uZbZJQA4cnatEyr8Zv5/ZDfccNawPFdOVVFWUDxNhwVanFIkQcSAkCOWOQqX2Z//hJ3Zp862ZVlfVWpKWZ+Tpk+OK0qawbrN506ZajczIFY6UyLk6bDMkVMeNymzz6oDy2UanFLkE779zn9k44nnOxldGZ/SrKf5el+UpdfAseQ/n32WZvRPgcdwa6SZkXhmQ7rGg7w+TO3gMzkNnOXg07cfoCjEYL+Et3nZqv6sf65rX72E0V/A6DHQgFvLbs3Bh8fTAt7M5jSGs1Kar6qfclvBg2UDsoe6HwPHRuy2EDCNPmYkreWxvtbHLFwfhESs44saLIjf1AtGElsiiILR66JCESOSt/T6XaoC+Et9vt2QPMaVROXqN/StxMqUr+8kG5WqPKf/VPdpWa52E2HA2nLJ7Hzs3wqUc9s3XrVhhRR2/Rp4Ahm8QsNKy0xNEk8893A+uWhSGdRZiFrqWPGlQ7ZwvcsG+UgyRGtBlSOW2WaLLD2GpBgTOJu4FYSaK2mNfY5YpkSDiARfskWVmlZE9dT5IpFDyxwRRgNxCynOMldUhzyNUBw3G+xSvf6GBU6ps0hEghJNp7w0ErJNgRpVWixIDunZNwSMnSunpMTtkJRT1I6DQMo/NcYgxYAxAS2KnAcFDlilpZgsZEiBc7JR10UZGMF7wCp5OlSpOQLVohQkB7WMFXVl6REyYH2w5xxBEQlWr9+5BfdIF7UN69lC+5U6kJqUOaHiiNyenoNhvg55WizwWfNrIgKXo9pUSYSpVUEW6a3z4IhlaiwJuTqoaea+5PYbRm5QJmDs7gfiiedeznt8Zvpj5Pf6YzymqgI/18crCH5awqtRlcykiVukZgnBCBYZYGTsNZLxaS32S3grOfpvs6rXdR+TLhpb0DXnTwsfjfRW8ajl3rdke9c/fiBum038QnQdj8u0jNNhv2NQnZJX45ryM4FfuDasZMVTS3pMVtr1RK/Lil6Lkm7LCkBNofoIHydgeMzUoS08LgSvSLX9GHFqxHUav0Bu5Ck4vE4A/X+Od2xZTv/MxDZMbGAL6G8mtmsL8E8REtdIbTt+U9u+J57vycTLhfEA8H/tQzqPfDh2kP/kK3D1fz5gwCkj2vTJcMsUSUaMSZBQT+sNPUakKHLKNVMEjEnqJ2ePDDeEPOBv+EsiIpIUeMf/rUEzI5Lc8IA0f8sDbkjyt5yyQJIRaTIMGXPDDQ+4Icc1l8yQVmv5NTmSjIAOF8yS5R190ow0FL9DkgJpAk7p0iXBmBFJ0vTpk6ZAmxsajEiQpccNSW4J6XLANTkeKGQc0yCp4B8gyQkvGJC/6XD6IEGSJB32uWWKaTokGfOAG0YksdZWuKZHliluyNKjTYE0p1wyw5gZZrngghOmuaJPmhRDskq02rleEjJNmyRjRiS4ZJY0feDEZYdd854RST3/iJyyEg+oaYnAUM++T5IkD7hxwNkKFEz1agRvlx5dMixrycGAFFkF1pGLABi4TDMhbb/+u/rRjSee/7aTRQDVIY5U620mSRZHEMKntQ/ePn4Mgy0VbJq13mw9ZpvXrE5nlddSJrf6rtvKtW6gApdPk8wkRj4jagb6P4e05j9dFpPMDEa0Z6d5+OLKZ6+GwFt4mLty5OWoBMkm5C/6zJ99Tb8EaSN+jaCdRVQPk7HHLQQgXuq/H8PXKw/59MUHD3rt/J7JtqaO9byu8Cv0dQRsmjqiiCcfLStsFsl5NYLTgG0g5+4AqG3ftmvFDxeQ/k9iBRhA7vjGKXTTdkOh2eC3T5Uw19ys24o235Z12yXdjil8Q+7ekFhumClnI3wurYFpu0Y5UA4jnnju3UQJ6ISCfYaE/J7nlGhwygJVjinTkGb7oKyd9xmq1NiI2nSDrItpesKeLrgPGJCiQ97lcVr5kbmYjPQrXFyxM/vUEY0F2qT6I1K5IUcsu5zOacUspiqtU6Geq7DKPgP9QClyysKgRT2s0CVDng5bfMkBay4zvzE/ywItBlo6JUTmUB1NUtJ54sIGpYy0QNu5do5YoUWRlJatNpQUHQShU7o2NN5JFsFTlOhySlFzXnuEGl8V6ONGlJrKNU+HCifOmXXEMhm6lGmyx7rLnrVF+gxd8oMOG+GuWywva7RCHWk0rFKjEtXpBlkui0lXYppiyEBzb+0al2lQo8qiXjMjZfdZpRUusMkf6JLlgDW2+JIOeco06JFlkXq82B7P/R11Irmm+scIXjDyr44QnkbiTSpL+7qNWaQIyhxAZvGfwS9wG86whWrDa0V8IZaRpbboXkOwiBG0IOTnMT5f1DL2y7i8en6NK3zKvbzxxaplEQtMnemxWk6q5ss7/PcYj9ms0f61bmMJ75wykYDFJV0ghHEJLh8nmamP7jqQpvEZrvN63mPdZgufz2/Xz5xDX+l5G2abhdG8PHeYfkBufCPY0az+23iXmUUiaCRU+jd67EYM13X/RiibGtiw6xJi7Q/wBLrhSXM/NZDYgF/rMXxKPN+TiQnVeAD439dg5iHyQdJCPjDS8O3/kaNGlVUO6CigfKN27io1B4aLtGjwGWWatHU1u8A5B6xRpEXIgN/yE/6cXxHxMeeqMDBwKdb3sbPpN/jY5U4FjFUpOkNARINPlfRLuebTI20gKdFgSEiKhJKCOU4pEpGgwLlreg3osM8TZ1OKyDIkRYau5JaSZkiKKh0HisHsX10ChcwDQj3eMgXOabPGMoeEDNlnhQVa1HlMioHuN2JI0QFmO7cOH9MlS5lb3VabkIza1k4Zqvp0TMAaBxRpsctDhgq4J1ttpU13n5AhERln5b8iz7mqjSfzbjua8WXA+YA18nQ41ePcZMcFN4A06xY4p0yTHTYp0kJKGORGZuP6NZFbJownnns4k1mbhzBT0ZxUyxF9h6yqz2oBkuVZGZC1QqQS3upl1nfL05pHVq4t+0ot6sE4EtD1GAHD10IYjh5DchZmXo5gHiFTTVFqZUgaL2AqzKQSlskXSOGS2eJn8GpNXa2//FmSmd+NhFy1oipbnU/Apy8/eBJ4gPzdSp7svNIIUN+ZOE8jhivQn5cSwNtHMFXGF14ZCbmFV+ZaSYAVDBjYHk+8xhQPpsww65ttD3yhwRghQMdK/hr6KcLUO/wNigFnjVtw1yEnGbjJOt7KZqVeplw90+uiCpWRte0miSeeezlXuRwReY5YFsu7YqYyTepU+OLibzia/cQVGJmVf4422ahLMTh1qkyA6sV7fjv7I8BUlVlXLGp5oy2KVKI6vemk21fAWBSwuU9oU6Co7pyIBBXqLlu0wLmz7bdYcIVIljtvWf2G5SZLtuqa+dlmzqlHDatl6dGkzEq0x3lQcHEGB6wyJqCi2a0hAwqcO3LX4gHM5VSiwQkVAiIiEmqtb7p9hxoXYATwUbjMG9bZYJe9UKIKwmggSuDcCguaV9qi6DC3KHy7HLAK1BmGIZVIHEanQdHh7QSR4MBBh9OwyBV5UsHAFUzVqJLXjNsaVcX3BcX0Q1de1aYgxC0dFqIWwyB06t9ljmhRZJcNumQZxvkn8dznsUzTHeT3fgmvPCzhccs7BHNEE6+zzFIj2KycyQjLM4SQnIg0AoT0s8XZKwRnvUaIQ8N0lk1qDhrL/c/hM0CtUPMZ3JaQ6KrP8arYsb5e8dOUnaOpMc29Y4pc2685ksydpZFQbntWPGVrUUZIzsg1mXkpYgVe6XE/1r8bnjP7/Ay+7BN89EEf3z9QlUzVtNry+1vy91EOXzA6Wf41r9s1onQWee/supgoIpTrxld6fOa+MtLcYg4s47Wi+zBMPgv8Rq/hL3WfF/ifj3ju/cSW/3hk7Ia0hV9ZWYHitWT9SerogsvdtHynDD0WqYsljBYpBrqCXnc2IAvE32KbNgUGhMxpOH7AmJABRyy70oAGZZfdlKXrgvSnFbBa7mqGLg1KpBhQpebIUMt7yurKv5GvPXyxVUuBuNme8nQYq8LSyE9TJZgFDIRQNTXBmICyljUZiK9yzJVa7F0pFQPKNMnSkxsCzQnL0yGhNiqLCrCShQLnLjssIKJLlmWOqFIjxcBZuywnTGIQ5lyWmOVgZbTZ9Yo8AyWT7T0KGTjV7SHLDAk5oUJZrW4A67wBcOqMgSoUFmhpTEOLLF1X1tCkxEHuEW9Z+zv5sY0nnu9iPjyepm8r71tiqR+JmIe+qQPe6R8D2LZaravzH6oq+TQlpVmSLOfpN/r1M1zBFS8hGN/4z2JrNJ2F5DYC/pTgu33MnQIlVxJltvp5BJRaJqhtUy1i/RUE3DWBCsz8QkljO48EQo5aRphZlqwQaiJX1lnrqxPnN1luoDcd6brkkU718TcNdbm+15UH3j5mdigDsgrYRyt4m5aF/IMnYI/V3j+PB+0Geg3kGxlr6oaWELzXKw98eYPFE4yRmx694UhamYNZ4cyaZ1EMlpXWkq/JM31NLMqK557OISuSFU+FFAOXw1mgzQ+iHeqzUjIUMKZEgyrHjrgbBGL6Llxf0DM15+wndJh26knAKVazdDlkWXBWUKQTSCxSmwJDQko01X0jzw21MKpLhiEpUgwYqmfGXifFpJJFX2OJFkWXMwq4vFTDZQesKSZdYe6sT0SCX/HnLtt0P1jD8upTDDilyJwqZXuaTQqwzypdMk7laYv5PbJaUDVwGNVwptnlh2qW74ZZRzh3ydKmQIU6e8E6IQPqLOqyu5RQNSlTpEWGrovFMoxbC6qMg8DltNrjKQbshJsa4RXxhnXF3eeUaBAQ8e/4R0oCjzlXqz/gVMWWoRsRUA8qd/Bsm4JTKccTz70es3CX9OsKnvh8jmCB1xPPbSKEoBGT9gcEt+XwxVJjJEveiNAad+3qZrk/weM+IxfNyXOBkK99BB+18BhvR7f9M3nd1Et93DCsqT5tofkCIXjT+lrLPjVsZuf3r7hL9tr5W5mVkbsreHdREe/yMe7BCFO7PlW9Dqb+RK/VPJ7MNZXwGFG7ai5ruq7/PoT0L4GXKiqo63Xd0X09xmetmrtoHi+aONbHrCC2puf4e3yBlpHExYnrtDVxfczef4y8vxW9Fml9b86J53sysUI1HpkB8mFhq1PaPhiMRfVp+ZuiVt3nirwSedIoehQuO2sVSInUAqfu+SdKLFoJU4+sy4w6ZcHlZ1nOkjWfdrXIICLBkJRrcj1gzRGo1kBrpQCiFJ3jlAUCxjQpO+Bugfxdso5QFHAcOduZfU8AupRY7bOmNwFXJIg4YoWQAYeasxqRIEvX3XQMCAkZkFVSGKBByQX927UTW1nXtecWaTEk5VSiu2xQpUaZBocsk6XnVL9Zui6ntqC5sgXa2qQqKlfL0zJius0cRU45YsVZ66wk4ogVhqR4wp6ml4lqt05Fs8gqmlt77o7Fzq1EgxpLrvjLzieeeO7jPDy84nYWLj8XK9LUsZBjjCFthU2mfJxslF+5uw1ayOdqgM9YLao6oI7P0wIBWFtaDmUgzFrta/raV7Kd0YpY+W+fw9Svcbay5CWyzzR+hfwVHgCbSuEppK3MagVvyQdPgJraclJ9m0PyTD/X47EML+TxtJGvRqpW8PlWWuSUKt1wWU4y82okj1dgEELu7Y0H05bj+lbPJVSF7gBfwvUMzrbSzB/25fi1WCB9iMu86q9AetKaZjb8ycKugSg1cjM3oj4w8nUarxS2XCwD8qZIUHvaqApJKzWwGyv0Gpn1LJ547uF0mCZHjw122eZzR4zVqZAJhNS0rPoTKk6F2WYOEBXqr3J/ps+Rxet13hAROAJUsF/kcuot7qhLhiw9V5wp5FxJy03FJxSRYIcfuAKoiEDVqwuETr4l2E8iiyz/M0GdiltkrlJjX3NNRZHaZX/+E1oU2eJL6lSU0Dxx59Yly3N+T5fMBKYVYrNNgXXeuAV3I3AjXYg/ZYEsXbpkASkC7ZElS9dlzhpxKbg1o+9H3mHUdd5IsSo4BbBcsyzWS9Aj616zrwvdVWo0tVzqJT9khSN3PrZobseUIOKfcUqTMi0WHPlsri2ATf7gnn9KkbL+UmtTYE5VxyIKOKQeu5fiua9zgrfZVxFcdIxgks/wVv3J1vglRJFoC9r2evDk4Ft8wdQZngQFh5E4RBrtH2vEkd2r5/DkpGFQU5uazd4wnWHBRxPfO9bnriD4x0hY2z540rOJqDQt/9XOzxaW0/q6L4Ef4wnequ7zpV4XIyIDPfax5LfmfnHjz+MRvsRpCcFib/ExAOCjtSxj1UhRU8xatv4xvqTrmR6TlWJZIZWVRRn2TOj5WDTAYGIbhqc1guH2KUz9AsF+NXwmqymVzWkV6fdtAb4JfEQ835OJFarx+KnibxhD4I3kZ0UkXEmAlTV1yNNQa7+UPmUpcM6AlCNDAyUpWyy4Zntrlz+lSJ1FQoass6elAKfOsl51mZ8CEjtMU6DtSMmS5jh1VXVqANuUtAFjKtT5QbRDQMQCLZf5JCvqAy1Y6LqChbmoTZ2KK7BapI412Br5aqqKISkaWrBQUotalywVLW3I0uWcggPHFvwvmV+hU8oWOaVEgzINljl0gD8zAartOptNrUCbOouOVLX3oMgpYyW45boXqWsJQVFfW+SULD3W2CciYJ81hoTUWGKLLynScm28XbJMq93LbpLW2dMogYRGLSy7Qi670erqFYgnnns5qmicOoZxEAjoG+AtVWfAtuRu9rfwq+sgoHcJzh6nuVxK+nyrst/82Rdpppow+iECsCxjNcRnb2rkCuAJS7Wf96uqVr3QHFALy89NbGNGLE48x6sp4U72q1NLvMLb/K0J1c7HFBmv8blbS6rWLenXC3wov23fQP0xd+1QbyH5e401mMVlXqUPJ6692ensmDV7NvkKaEo0gYHV+bd9ea7FEFjMAPLc9Fs8wWwEr4FmvWG4taIIm4peswa+XMxytIwcreFVJUX5PQlybTiceM/OcJmu8cRzHydDz2GWLb6UTFDNWDcF6JAUNZac7duIwZ46aVIMXVnTHuscscwuG7RYcDgvYEyDEnUqTCv5aW4fcye11HFkOaW2cC/FTV1XgGSOmrxSiVm6DBSzVanhi7Eih18alEgQOeJ2QIoDVqlS44gVIhIkiBy5GzJgmSNHCp+y4JSwpiq1Qs+IBHmunAvLKkstFzVkyAFrjtC0xW7bjqlQK9RpKBFaUndUQ4lOczSFDB0uO2KFhpK7kcYImKJ3mSNKNNhglzGBOrTGzt7fZs7h1oBI8XCE1cjWqbDHOv+Wf8KJks0RARvsOmeWZeFaXmubAv0YG8ZzX2cV52rhDHHXmMLxBR4jGp6zqCEjUy/xmNBIO8vRt+igHd2XWcIvEUyhOChdw7uiBgiOsXzWz/S4bCG7gqglDfdU8Pn9toBenNjWjB7bi4lthHjCEj2ePvCXeFLZXD9mb5/GZ8FW9DmmpjWy1hSe6orNbd94AlMLYIl0v+/wbqvHE+drqlbL5rfF/zO8MymBZJYaPv2lbtMeq+lra7qd13ghgcU7gSeo7VyNHE/AlC2k5/CxCBYbZvFThpvt5+OtPvYN8XxPJlaoxiPTRT6w7IZUP6BauXmnPBgTsEDLgaRpOsxFbfaCdSICdviBUyga+Wjg1+xAMFQC9FzVmjWnEjCbepaus1RZG6sA2CHr0R71oOJIuzxXDtAX9dg65MVmRpv9YE1Pz6sAOuQJGfKGdUeQlmiwH6wRMNbogqE22IqSoUTDKRtEJXvkypysPKBOhVAtcZK/WnPZUnUqbLJDiyLDCbBvCk8joXtq4V+L9qkHFbL0HICVlX+vbjWFh2VVlWmSIHLZsk1KFDklIsEBqxRVJuUzv+ouS8vUIR3ySOlUjyo1XrNBhp6LNMhGXepBRW+AIqdksOORG4IUS6p4iCeeezcGgAYQDlRpPZkxpW3y5/PCeKb7/bsKzjHMv+rTXxEbe25ww2hRFa5AIoqgDkmz5W/rNsv4TFArLGjgV8QPEZLQ2l1zYpWfMmWkqWMVWCYvkRIqbXAFvFLTVtrf4sucDPib5R/cTYNrR9VigIQC3eQZMK3lBc/xCgJTBrxGFAG2rQC40lgD8JYqy2I1FcCsbuuxbsMiBHYgtTKSDFaLOkjjs10Tsn2XY2b5rY//k22aKmRFc8QMoM/gi8UsU9Vyz2YRhcVYztnZ5CqQ3ubuYuRnCEBvIGqKFPHEcy+nyBnTPHDKS8NSspidoEkJa6PP0HX5m20KVKnxhD1XTBQRsMyhw15mk5dF+2MSujgcqe9Hsvkl1mmXDRZoaYZ729nJBbtMkyByGMmw2S4bbLDLOQVOddH+9/zQKWXN9QQiHDCsZhjRXFlWuNlVorhFkYCIOot01KZfpuke75BnjQbnehxWHGXCAXEInbvop8Gd4whoKiks28w4bDVU8rnIKQtRi6NgRV1i4rsyR1KFujv2ReokiNziupV7bbMFwCJ1alRZ0UgpI52FwF5w2NqutymATczwOV+6n4kGZU4pklCi+glv2FeiOM8VLRa059CyXeKJ5x7NAbCIK3EiAVOv8Vn5Rvq9BX6I/Jj/EucKcvFAthhrC+DmYLESqrr+3Ra5jXBN43Ha0sT3XyHE6SV+QdpEAJYHb5nzlrFqqlLNGqWCt7LP4wlIO14jYY1gtaz+EE8yv9XHLCrK4qaMfKzilax2XmaZN/xsi+Oah0of79QyItqO3Risl8A/ndjGZ3os03iC1grF7L0zjGrXFAQ72jGk8cKAyTGXl0UjVhDC10jreXw81hZeZftW8/ctd9+cVqvE8z2ZWKEaj8wlXoFjH7zXPl/KVr8HpMhGXfZZ40pzrgxoilJVLFoGSEs0nWrBckUHhPR0Jb5BiVBzqOpUKNPkKbuOxKyz6IB7hzy1oAqIxXyVA0cITsYNmIqzxYJarXzqc2HQdsSiZYFZTqmVHoxdAlSgliyxWpla1ghf8OB3jQNna+qRZY91uaGIakQk2GSH/EByWgu02WfNlUwNNH/UbG91KnSDrIsdqFPhlCILWsKwywZ5Oo4sNatYRKDag65TXZgty4q/ytcfSDHUIiwhUBNqrTtRde5Qr6VkdIndv6f5XXvBuotPCIg40ryzASEDUqqrKHDM8nfzcxpPPN/1LOIaW1P9m7tWohwCNJ+KOnL+sC+g0trpc8BrtZq/htyOEIdJW42+hpmdEbdbuq+JjFT6CAA0NWUT39p6hoC7p/r9PvBOSwPqenzbCLA2ULmjagaEWGWAU72OQjirpmWbDTzQr8Dfbj1y5zv6IV6p8BbYhNHP9CbiWI6BQI9DbxBGVg6gVi4HoJ8iQPvHqhztq7ojkGvmcsJe4xUYCYSQXNHtLkmp1ZRtc4DPIGPi/bEbjhICao3sNFWuqUatTMoaeotw+Sgp3zcg/gxfnmXHZNubyAQ720rL+zcLl+WknE9ZH49VCPHc0/F57RnG6gICnNrSYooATpS0M1Kvq3bzEypONXmlWNLcPCBY44A1xgRuUR5wOMvcUWafN3LPFqQPWNMczxNHttaosskOhyw7YrBJWWOL2kryCZnZ1Fz9SWdNiQanFJ2S087b8OMLvmBIqIvYHn9m6FJVoYBl5BsZPVSMBJBXj6/hMIsE6JBnj3Wk3EscV12ytChqfr8EXdWCKhXqVKhzTsERl2a731PSWlxOZedYMmdRg7IGFfQcGfzv+XO6ZGhQ5oiVOw4uKaDquvMT5bFg4hZFzilQnnCOlWjSYVqdUKtOQJCM46Diua/TRH7HGzFpylNTX/YRXNFAyNR5BBc+1a8geMCs75q1Tkmfa6VUlu35GVCF2x/ji0ft+UbKWjaqZZza4n+Ad9I8le04zHTBXReQ4kkCRGk5GeVkeOcEj4Xf6GMWDRXh1bbovgxzWuzA4cT+jLicxUcvGcH5U319Bb+Q/da/dlTFk8oWQzAD/E63YxjPYgJK+BJWw21N/WPErxGolpVq0VmP8GRrhM+ELeEFBkYAo9svIq4xOz/7Y0RuWV9rAohJd1Q893piQjUeGcv4u8SVezCAjWiXBmWesMeVEnTnQYE19hkTONKuTIMyTUIFX2WaNBRAZumxzdadVW1rJe2QV1t5z5GjojoYa4HAglM7GNkIArADxuTpsEBLS6SkTTZgzB5PCBg7K/qQFF2y7ISbtChSpOWA+w4/cOH6YwJChs7aZITjkNABaSMrWxQZaH5rno5TAJxToESDA9ac6rVFkWB8Q48sDc0I22SHuaiNFGEJyJQsL/lNtsc6NaouCuEFXyiBeq6WMSGkTzTfVkoL5hyRDBKxEDBmrAqHdm5Wc2uLFGizwCnnFJzy2Fpcu2Qo0uIJe84OlqfDMkcTDbUBW2w78lnUFy3WecP0RL5WPPHcqzlAPv/mJaeUHFxvPvAr+yUEEB4qUTnGWb/PHqeF9Ksh5OYr3aa21N9WZBtT29wtKNAcqNEi3h5vq+/WPGqKgRAPBmeBZ9D/CwSEGyi3DNVj+XuUeCDgUhWvyROY/6u+bDuSffcrQA3+3lfvXGNt8ivurtC3NMfUMqXM7mYWrcd6zSyuYBNv/be21n+pxwhM/RJPXIJvuzVFqd0o1CFZw5cxWJmCWa+a8vdRFfrP8LlZdl6mVg30NTN4chR9/pIcx0x95Eu8ynglxDs93yU5575F5GjZwnytDzkh02fejrz6woq54onnHo6pI68US1nJ0xr7arEvOQLTsEOkMUc1qjQpc8gy52rdP2WBX/Hn7LPGHk94yXOHR8o0dTFeFKm7bNAhT5eMW9Q3YnI4sYC7yQ4NSm57Quyeq6ozvKPyjAjYY90Vi55QcYVTpxRpUXQ2eisRtWKnASm3EL7KPkcsO1VqjSo7bNJT8rOoC+AiShg4kjFkSI+MIxsBrshjHQK2kG6FVZaX2tWM1ixSxmo49JQFhoSsse+wsokgdtlwWfhm6bdCVxM5vOSHAK4My1xOIBmoVuI1h2DVNnN63iI0GBCyzJFzpBmpLT87CfceNTXc6n0cGhjPfZ1zhLibRYjVdwh+MhWn2ca39PkJBOuYzf8KT3Ya/jNbfx0hEg1fWRbnV+pCOtRtHSKqV8OFlrlvpU+GkywC6ZC7atAxPj/0Md4VNA38HK63HshxGmZ5jeDYyQVlWyA/1GOetMNbIdZf6evt+0b0qquJR7qNyVx7ezyt19UW2S/032/VFWURBabwjfCRVLZAPqlgVYzrHFemwq3jsKhzLlkZqZHlcLeoFd33IYIjTUxgbqiWFK+S0PfJisouYPSPJ55b0fN/Tzzfk4kt//HIfIKX8ZsMPgenQZGQASdUXOPn5Cr+CRUy9Fjm0AHLSYWB5V+VaLrcKxBre0WtRm1d2a6z6MqvriaKoYxQtHwqWaUfkNClLQOOgeZfJYicSmGBFnUq9Mhgma6Wj2UEapkGKbWwZ+m5nNaMFjn58quU2wfgrPGSS5V1INiIXLsObeaoUKeVm6dIyykU2hSIgsApd0Xj6cncDXZpU6BIiyOWqVKjyjE9sg4wm3J0mSNHJgOudMpAeULtc10yzup/pWS27a8a1TgMlh253aDEGgfssU6VY1dGYPldpqiVeISiI93tGOKJ515OCiHNWgjIOoYcNwKgfga3s9CZTZK5GpG2le2SPH++3vd2rRXZzuVSkpkvR3Cpykr772H5UnXdTx2G6Qck+zfyGRzg7UgNPKFaQVSTqgi4LYpq0+U3JfAKCLVI5eo3ntgzS1oOAf4GDMGTw3YTYM2tdiwg4HAaD5DV9u4et+wpK2VoAZtwm9PzX8QH9T/C28gSeo5GQmrMweh/0vzUS92+RTJYLm0JRiVtcUWvBbiShfQ1XkFiqhC7YTCwPqlUsOdaVtdLfZ41zs7L9UgbYH+lz30L1z99QO74BuVJfGSDXZt44rlnc8EsZyxTosEb1h2pWqNKiSaHLHPAmsseNdLP7O4ShSQL7YZDLF80T4dN/kCbOYaay5qn44oy91inRMOVoJraM2DMG9Yp0Hb7NcLPFKcBEU1KtCiySF3z5b27qKeq0RQDt7ifYqDbGWOlWOKiGrqcV8BZ/Fc5oM6iy8Ov0OEPbBKRYECKHX5AWZ1QeTo0tVBLMmITWPlVli5NSvyGn/AP+ZVzAYUMGeg1HJLiiBUCxqxxQI0qe6xT4JwEEecUaFJ2i/tdMk55OqmKLdDmkGXydDQbVrJqhewdOIWpRRsYrjPhgLm+5mgzVoxu74f1DezxhAVajAlY5ogaVc4psMYBl0z/Xf8IxxPPf5v5gX61eKJNBCNsI/ihiuCOX+LzRBN4AnUyl9TUq+ZweorgBcNChgtNmTrpipnHE7JbeIxhcX1GYhqGe6vbN0JXj+22CFPP8GQgkGve+HIlW2h+i1jqf4fgIDs3w7K2L5sWglEnc1SN+H098RwjRSedTBZfdYxgPsN5Obyd3q5rU19ratQyd2OnDINu4wlns+Bbeak917Zr8QaTiltzKM3jsauKKFwWrnUT1CGXvpGfC3NfKa+StGtm52SL/PF8LyZWqMYj8/eR//gm89cP75aWSUluZ4IsPZavv6ZIizJNtthmgVOGhJRoKKkXuRVsAWZCOm5Eu1iD6ikLpBi6EqQuWdcMCrDPGuvskaHnMqwKnFOiyTpvnIrUVtKr1Cjr/q1F1sBkmQZbbFOhzrLmRFmWVJaes6VZWL/fdui+mq09S5ddNtRuJnY1Kyoo0VSLfMuRvRYTcKQWeMvisnZXIXSbZOmRoUs5ajhrm52XgXFRFPjm3DwdnrDHBrtUqWlW7QkVTvjJ9X8gZECGrrsBalEkZMiQkCZlF+dgkQ3ngRC7psy16Aa5YZlzDbEV6izQItT81pCBK0MYE7DN5zGpGs/9nRsEKFn7pwE3bYmf2oaZ45GAoyYC1NLymg9fTHP9Fw8EMCkZO/O7kRCFJSmxuvyzpICq1/r6JRzYzO3ceEIRYBZuf44n/OZxIO82oYBYQRxjBCSOuVumBB40Pte/W7zLJS6/NG3tsgnEanaMgN5pPDC37C0rBwjUtm83Bdt4tcYAbpeAp3BZSUpW6RJyE/Izvb62vTR37WAXuFX85Ct8GZQBd7PqB7KNRCTfS9b865z1325WHuPjDQz8G5C37FT0/ZzBl5Gt6POf4TPOmty16qmK1yIeOIMPj6e9zewh8cRzL+e9FmCaCtWwkpQeLauyVPJTlzly8UvmaLIF2yFStikL2pJxn2KojpcxRyyzz6pbMB4rVpLiKinFesO6lhvNUaLpMj/zqnxtU+CANYd79lh35KWpJS3SyWzxHfKsamQTSO7qUPPy7XwnCzxf8AVvWGeHTTrk2eEHd+IL5mgTMnBuohINljlypO2XbCnuGrPHOttsuWuywpHLI7U4pSZl9niii+untFjgS7bUsRRwxAq7bPAL/glHLLtIA4uBMhGBkaQvee4woDi7Wq407FyPw4QOyxxJtJeWXr3gC4cJu2R5wzr/in/Ob/kJAREhA/ZZcwKIEyWCu2SYo60q4s/+ND/I8cTzXztmybeGdi1UckrUCCEd5xFCModgCS0rBXwG+wWCPQyLWVGofX8Fj3vqePxl+fqWXWrknmFAI1oTiDXfRFK/w6tXX8t2powgtSiAKxwOu9VFfpd9asWhJhbY1m0f4nHnlf4xxaoRwkYOG5kZIgvRFoNgx21iAfTf/1jPv4hXkL7UY93Wa/rPdTu2TmM402z2du0s/sBIZytc/TEeW9pCflGPyeIIrENggGBo27YpasFb/9PqRKvjo6+W8HECzxEcqlFR8Xx/JiZU45Exef/n+Gy5FmxdvCKjq/rSNj+mlvuEASkGqtg0QrJGlTGBIxzzdFhlny4ZDljjMFjmiGW3Cm6KTmtrNdWkqVcns08HuvZd5NRZvQIi1/7aJcuhkrglmm7bQz3ODnnO1Y42IEWNKqdaEGV2sCZlZ32XEqqUs5y1KTAkRYOSy8ey4P9Tig4EG9BcpM6AFOdKOFojq+3T4hJOqOh1jdjhB9SDChlVlZpVysjVLF1n9+9qTuvVxHlZ1tWQFPXcR3TIc0XeEcNb1//RXasvohc8YY8WRbX3n7oCruqg5ixbgMv3KnBOW8sdTDlbGYiu2Jp1pVwiLhyI5/7O6DHclhCy0fKkbTU6wtuyjEQ0IjCAh/UrgrGUULmczomyqnRT7eBLmotljacJvFWpiVeIXms8gClT7SPxEsaBZpkm4OyLtFc+vEJAqbWMXum2LLvLSq0mQ/mnEUBvSldTE9j5KQk7MjCt5DKzWs4VKgDP4YsKcjD1azm+mZ2RXFO7FhGMthAgO4O7IbnNweXnSTlHA5sJfNmCEZgWM6Dq06kLPWdTWlgmuJVthfI8Ptf3eB7fCmvqBHuvjHC9RG48zjRGoDix/UM82W4tt5bTlZCfkYf1K3is1yWeeO7pnPARLcUjFnVUQ7Lsh6Q4YI1zVZ9G6vg5ldokQgY0KbHHOqcUOWJFicVpWhTZYZNpOk7tmaVHiiH7rDqi1ZSmhnmsxd5wZIMS+6wyVFxnOKZBmRKyQL3HE5cbKgrMjBaXnnOlDqc/sMkJFZcJO9Rse8tHNYHAOm9c1NELfuSwqOHIjC5Ed8mwQIsaVbbZIkPXLY3bteyRoUDbYVJ7TsjQ5Z52yTJH25VLdcnQYoFV9l0Rap4OJS0s3WHTEcd7rLPLU5etus2WOqHEkWWkuBVPbfM5TZeVKmKGXTZc0VaeDidU+Lf8EwCN3Dq9g/9N0bvKPhtIZBjAoYoKZp3sK5547tlEwJd4fGFKw3mEKKtMPO+Lib+bUjKNJxnN0l7DYzdbXLc8/ll85qZFBiTwUUpwt8jT3zJ7HGnEnWEmIy9b+CzQEI8FH8trp451mxqF5BaqrUDUFuuL+IXmSJ//dOLxFoItTalpZKYpZ03dycT5WQa+ZacaxjaSeozP/3+l12Be9zWPV/Xu6DnZ9TdF66RooKHX02IZrKPArmVav2dT08eMADbla6TXZkULU5fwQgRb1O8DFqO1gs/hjed7MTGhGo/MAXezQ54BS9CZTTt7+RxtalSdilEUjNOaq1RwlvAqxyxzxJCQFgs0KRMROCt+VwnTBmU65Bkq4Wn28ZJa8AekWGMfEBXoYCLXaUDILhsAd3JbAZqUGKsCwQBgRMA6b5iL2g4g2z6l7TV0SgorHxBF66Frgi3RYEGVGpYjNlQSMTUBaiMCeqrMlVX5MrtsOJWq2Kbaznp/QoU6i6yz5246Qncdhu75BdruWmbpUuTUHX9dM8NqVCkM2u4YTS1S4Jyd3DPazIklK1inSZkxATWq7n3qkOe34U+os4hlv9aoqr4jcnY+u3FphCUA1th3xQ/xxHOfJ/laicoZGD3DW6mO8ZlNRqzpSvatgbU6dHNpetNJD9yKeHDbQoD4jIKuOm51v2+r4Eri3hrInMHbwAyUt1S5qeUI+Yu+bz9NSOmU5VL1n8JoBr7+2UN57Vu8vd0ApgLBOyRrgFjyrW12WvNRrWxKgeb8v+jDAKYsb8pW7lvAE93OBUy9nHgs1ONHr0FDnjfVF/UvhwgAN0A9j7f6v8Lbw+p4BbHlhK0gwNyKECyTtirfv30O7dlpAbN/hSeSrQDBSHTLfM0h0Q6TygdTK/znVCGWiaa5aFMv8Tcc8cRzz2aaKyUZQ84p8CWfkyCiRJNzChot1HM40BaXh6R4yXOq1Fhlnwp1RyhGJNxrIxLs8cTFEQl5O0egmMPy4FsUCRhTpMU+qwwUs83Rps0cHfLOYh4prrEMVDu+LF3FqUtK1Japa2FWmzmHpcDjQyM/E+q8qlGlTsXl54NgzhpV/sAm22y5gs5JbAlgWfMvlG1JKbY2otkw9h7rDElxygJSQNpyqtk8V247lhOb0dIu7y7qUuGEVfaxQtc9npBS5W+LBVdQlVK5QoOSw6RyHRbZY50uWb50oZAyRrRarEOVmhMlzKlL7Pc8d8IJuUZlfs9zOrHlP577OmbXDhFs9AbBBdt4teUjfJHSBUKshshituGfOj4n1cjDAWIn38SXZL7GYx9b5B7D+6qCQ1vsDoHHWiK6hCf57DHDa6YQtYxSi1iyxWRzO5lzyIheIw6NWFyS/VHSf5sK1hSkmmnviMkEogS1GKU6vgvAzlUdS31beEevq1rwR1X9nmGxTTwutzxUw9yTBVMl7qp6H00cV1+fZwvpRqii5/IZPt7BsKaJAJ7p+wW+pGxan3OIJ1Mf6x+L1Xo7ce0GSNlXPN+LiTNU45E5RT5oQD4IXgGfwe957gDWLhssc0SDEkNCjrSmrkGJH7BDjSqrHDgQag3zA1KOHAQ00L9Bm4LLYw1VpVqmQYsFEkScaLu9qSVDTTKN6LKouVlWKNAhzzp7Lh4gIGKDXQ5ZduTrBrsur2SOtrOR5elwwBoFzYR6wzo/4gUtFty5WOSBPWeNfXdz0CPjVJknVFRTkVA1bcgyhxyxoiUGcs2EbBbC1yxaUrYQ0iNLkRYtFlzmVyWq0wjKWgBw6CICAiL2WWWdN+TpiB0s3FLis0cKac8VUH7qwH1KLWc1lkgoKTsgRZ1FqtQ0z+zEFW1JOVbL3WSsckCKgbshsWw0Uxy/06iIeOK5d2Mrz8eQtCwrI/Ne4lf01dZ1+bMkM40R5MSCn7/okzwUu/uUgbwlxHL1FA+owKsSLrQ4anDjigKmjEx8Jvvuz2tuZ4Bb1b5++oDc2xsSEZw9SzP/l324UOu7nkv6UPbzae2DgLpphHDU3E+nTtjm7g2DKULBA1z7anlTZv03cncyx9WKBiwrS63xoxlIWvnhJlw/1tzRQzwxatarr+Rr/zGkLaPKFAimvDX17iy+VFEjFvgpvH88y0f1C0d8Tr2Gh7NXkIb+/wrpbTyJ+kq3NY/8Pnysx7Ct522ZqKbCMIvcAK9aaOhrLSYCiNeZ4rnP06TkHCjr7AHimAEcqWjZm/usqZumzZ5mrkqBZhkrRZIs+TlnS09pCdU6b9hhkxJNt8CdQGovbT91Fqlwwgt+xAa7Whg1dovwEYHm23fZd9inxTZbWgzVcLmrA0KalCjpXXSdiiM5/8Cmw0Id8pRpOBL1BT+iTNPhvI46gWyxXqKkMuyzpsckuf2WtRqRYJvPFfeV3Pmao2mZI/4N/4wtvqRNgToVd7139LisJyBgzAt+RAERC5iadEDKiSHsGO0aPOclIARvnQpt5lwZqrilNinSYoVDrKwrq3jTsPYuG1hZ1oCQBU4BHOFtogn53qnm4sbsQTz3eBYRzPQMwQm/Q7DDFkKOWvZmA++weYEnMi0q4OcILrJMd8OJdg9u5KwtuCv2GT2TUqaPti/ksS3/GF9B8h9LsWnS4gdsTO06xqtdtxGc8xof02S290MEu53hy69sO+gxW6a9ZZde6T4f4QnKHLKQ/UqP0YqnQrxqNqePa6Fq2ohNEJz1DPhLSP4lPrfWrs2KfO0/hfRb3aYWwLqYAItNKOFVrxbXdKLnYcdhRagmgniFvKf2uBadAn4h3Y61hPwMXOHvEZ7iyV702oT4oq9nen3i+V5MTKjGA8BlD/iA3HDPIs1zO3Bz2eFv+Zhn7LLCf9ScpB5nfESRA/b4jCV2aBIyRZsLphiQJ6LHmCveU2I9+gP/T/AXrPMVICUHIaecEvJAc0wTDHnJFkXO+FQ/eYckeMg7BqQYkaLACa+pcENAkhkStIgYs8ABZSLGXJGgxQ0pEgw5Z4oGGXrcADeO5AsZMNA8r4AExzzjjHn+nHfM0uIpZ3xNkZArpoi4Zp4FLjhR1ekpKfJckeaUK/IsckSGa77iM04os6zANMUNCa759/wDHrPPB9IkOOWWC04oUuKYr1miyDe0meI9GaZpExIxYshb1pjnnAwNzpkhYsgUbYLonG+CEhl6DEgypssJWY4pMKbLNSlGLPCQJt9Q4pYOh8xzRkCRMy4oMM0VTRb1/WxxxQ1Jzthgjw88JM0FdbKcE7DICVNkuCIgyxX72iSTocsK7zhjkRRDmqQocckJc9xexraueO7nXGZhNAtsQnKIAKJLJAczi28sHSGA7K9HXH4DLCPgMg29MwSMLuPJvx/BKA/JHgLosrrdDrKglbnh8kS3PQf0dJ+W07UDw6w+t4YUJBzccHkF/AYST/pcPFHl6yFc/lmCmdEYktCfhnQL+YxflePpT0H6E9nWqAjJb4Gf6nHf4hUO6PGbwiFAwOAqPg5hHiENb/X4vkF+lxwBn8Dl308wczBmBCS/hl4Ioz+DKAGc3RDV9FwzwAMYzel1upbrdPsBBlMwpaqG/qb2POXx1v428CnwtWyDprw2mb7g8hx4r6/Tv9OX6zRc1XO0vNO+vv6tvg9ziIPDlLsJPU67CbDz38Xb/Or63nbl+l6eE08893LOLwNGBECPNEOOKTBLmw+skueKPhlmaTMkwS0RG7xWh1CJh+zzJY/I0FMc9oCHtLgmosuIDkkuKajy9IQTsuSos8AxTWbZ4zNO1K5+rcTqGVmWeEWTh1xxwzHzPOYth3xChh5zXPOtFqDOUmOaK77iY9o84GP2uQX2+IhproBLPuKcPFdMc8Vb1viYFldkeMQ2JT5wwSwnfMQiZ+QYkiCkzQpZ6lyySJ1pPmOPEbMkGajQa9kVfoZcESkiHtBnlg8aPZXlnAc8oM3v2GCNfb5klQIX/A2rrPOCS0K6BFyRIuABGXpM8y3XjGnoOVwxT49bAm5Z5IgHRHwg5Bs+5iEfGDKmT5YS73nGOxos8g2+9DVDg2/5hAFlIjUtnpGgQYUGaR7ygWlanBHygCmgxwdCyrwhS480XX7Bz/mxktQSeXBLig9kGXLMp/TJM02dBhnOLpf/VD/K8cTzXzWXtwgGsCihJLCOxACMgT399ymSxW/FnQlgH8FWXyM4I4VfzL5EMMSV7mgEfItgmwM87vx/oTdG8Msl8NdIofQAGAK/Bc6h9zGCPexPpPsf6P7zE8dkUUVFPb4ughMHCMY70McOkFiDczyZGuGVoHt6LFU9t/OJ5xTwcVIRQsD29M+tbs/UpOb0eaLH8gqvmP1Mj/kcUbz+AsFnOzDs6nZvEUzd0ev2FYIL/wO4NLpw4hqkEbz3Sl/zCYJb5/Q8pqHxdIbyry/9wrttxxxJ83pck6rXbT3fG30f3+lj1/pejYHfw+UnxPM9manb29s/9THE8yecqampj5Hb33ji+S7mk9vb22//1AcRTzz/pYk/C+P5O5j48zCeezHx52E83/HEn4Xx3IuJPwvj+TuY+PPwnk9MqP53PlNTU1OIoL3zpz6WeL53kwfqt/GHTDz3YOLPwni+44k/D+O5NxN/HsbzHU78WRjPvZn4szCe73jiz8PvwcSEajzxxBNPPPHEE0888cQTTzzxxBNPPPHEE88fOQ/+1AcQTzzxxBNPPPHEE0888cQTTzzxxBNPPPHEc18mJlTjiSeeeOKJJ5544oknnnjiiSeeeOKJJ554/siJCdV44oknnnjiiSeeeOKJJ5544oknnnjiiSeeP3JiQjWeeOKJJ5544oknnnjiiSeeeOKJJ5544onnj5yYUI0nnnjiiSeeeOKJJ5544oknnnjiiSeeeOL5IycmVOOJJ5544oknnnjiiSeeeOKJJ5544oknnnj+yIkJ1XjiiSeeeOKJJ5544oknnnjiiSeeeOKJJ54/cv5/zxKBAf11AGcAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -171,12 +256,13 @@ ")\n", "\n", "for figure in iter(visualizer):\n", - " figure.set_size_inches(16, 16)\n", + " figure.set_size_inches(16, 9)\n", " plt.show()\n", " break" ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": { "tags": [] @@ -189,21 +275,14 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 7, "metadata": {}, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Existing data found, skipping data generation\n" - ] - }, { "name": "stderr", "output_type": "stream", "text": [ - "100%|██████████| 25/25 [00:00<00:00, 122.60it/s]\n" + "100%|██████████| 25/25 [00:00<00:00, 137.41it/s]\n" ] } ], @@ -232,12 +311,12 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 8, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxkAAALfCAYAAAANJQ/iAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXwM9/8H8Nfsbu5bLgkiyEFI3EfEfV9BFaWonqqo0lbddd83LVrVUnXTqJs4Qh1BECIhCDnkvu+95/eHn/3aJthNZnd2k/fz8cijze7MZ96zWbvzns/xZliWZUEIIYQQQgghHBHwHQAhhBBCCCGkaqEkgxBCCCGEEMIpSjIIIYQQQgghnKIkgxBCCCGEEMIpSjIIIYQQQgghnKIkgxBCCCGEEMIpSjIIIYQQQgghnKIkgxBCCCGEEMIpSjIIIYQQQgghnKIkgxBitDw9PfHxxx/zHUalzZ8/HwzD6OVYXbp0QZcuXVS/h4WFgWEYHDp0SC/H//jjj+Hp6amXY1XEjh07wDAM4uPjeTm+p6cnBgwYwMuxCSGES5RkEEIMTlxcHL788kvUr18f5ubmsLW1RVBQEDZs2IDS0lK+w3urVxepr37Mzc3h7u6O3r17Y+PGjSgsLOTkOCkpKZg/fz4iIyM5aY9LhhhbfHy82t9FKBTCw8MD7733nl7iTE9Px/fff4+GDRvC0tISVlZWaNmyJRYvXoy8vDydH788MTExmD9/Pm8JFSGkahPxHQAhhLzuxIkTGDZsGMzMzPDRRx+hSZMmkEqluHLlCqZNm4bo6Gj8+uuvfIf5TgsXLkS9evUgk8mQlpaGsLAwTJkyBWvXrsXRo0cREBCg2nbOnDmYMWOGVu2npKRgwYIF8PT0RLNmzTTe7+zZs1odpyLeFtu2bdugVCp1HsObjBw5Ev369YNCocDDhw+xZcsWnDp1CuHh4WjWrBnGjBmDESNGwMzMjLNj3rp1C/369UNRURFGjx6Nli1bAgAiIiKwfPlyXL58WS9/l/+KiYnBggUL0KVLF4PuXSKEGCdKMgghBuP58+cYMWIE6tatiwsXLsDNzU313MSJE/H06VOcOHGCxwg117dvX7Rq1Ur1+8yZM3HhwgUMGDAAAwcOxMOHD2FhYQEAEIlEEIl0+3FcUlICS0tLmJqa6vQ472JiYsLr8Vu0aIHRo0erfg8KCsLAgQOxZcsW/PLLLxAKhRAKhZwdLy8vD++99x6EQiHu3r2Lhg0bqj2/ZMkSbNu2jbPjaUIsFvP+PiCEVH00XIoQYjBWrlyJoqIibN++XS3BeMXLywvffPPNG/fPycnB999/D39/f1hbW8PW1hZ9+/bFvXv3ymy7adMmNG7cGJaWlnBwcECrVq2wZ88e1fOFhYWYMmUKPD09YWZmBhcXF/Ts2RN37typ8Pl169YNc+fORUJCAv766y/V4+XNyQgNDUWHDh1gb28Pa2tr+Pr6YtasWQBezqNo3bo1AOCTTz5RDQHasWMHgJfzLpo0aYLbt2+jU6dOsLS0VO373zkZrygUCsyaNQs1a9aElZUVBg4ciKSkJLVt3jQH5vU23xVbeXMyiouL8d1336FOnTowMzODr68vVq9eDZZl1bZjGAaTJk3CkSNH0KRJE5iZmaFx48Y4ffp0+S+4Brp16wbgZYILvHlOxqlTp9CxY0dYWVnBxsYG/fv3R3R09Dvb/+WXX5CcnIy1a9eWSTAAwNXVFXPmzCnz+JUrV9CmTRuYm5ujfv36+PPPP9We1/S9/mrOzb59+zBnzhzUqlULlpaW2LhxI4YNGwYA6Nq1q+rvFBYW9s5zIoQQTVBPBiHEYBw7dgz169dH+/btK7T/s2fPcOTIEQwbNgz16tVDeno6fvnlF3Tu3BkxMTFwd3cH8HLIzuTJkzF06FB88803EIvFuH//Pm7cuIEPP/wQADB+/HgcOnQIkyZNgp+fH7Kzs3HlyhU8fPgQLVq0qPA5jhkzBrNmzcLZs2fxxRdflLtNdHQ0BgwYgICAACxcuBBmZmZ4+vQprl69CgBo1KgRFi5ciB9//BHjxo1Dx44dAUDtdcvOzkbfvn0xYsQIjB49Gq6urm+Na8mSJWAYBtOnT0dGRgbWr1+PHj16IDIyUtXjoglNYnsdy7IYOHAgLl68iM8++wzNmjXDmTNnMG3aNCQnJ2PdunVq21+5cgV///03JkyYABsbG2zcuBHvv/8+EhMT4ejoqHGcr8TFxQHAW/fdtWsXxo4di969e2PFihUoKSnBli1b0KFDB9y9e/etQ42OHj0KCwsLDB06VOOYnj59iqFDh+Kzzz7D2LFj8fvvv+Pjjz9Gy5Yt0bhxYwCav9dfWbRoEUxNTfH9999DIpGgV69emDx5MjZu3IhZs2ahUaNGAKD6LyGEVBpLCCEGID8/nwXADho0SON96taty44dO1b1u1gsZhUKhdo2z58/Z83MzNiFCxeqHhs0aBDbuHHjt7ZtZ2fHTpw4UeNYXvnjjz9YAOytW7fe2nbz5s1Vv8+bN499/eN43bp1LAA2MzPzjW3cunWLBcD+8ccfZZ7r3LkzC4DdunVruc917txZ9fvFixdZAGytWrXYgoIC1eMHDhxgAbAbNmxQPfbf1/tNbb4ttrFjx7J169ZV/X7kyBEWALt48WK17YYOHcoyDMM+ffpU9RgA1tTUVO2xe/fusQDYTZs2lTnW654/f84CYBcsWMBmZmayaWlpbFhYGNu8eXMWAHv48GGWZf/393v+/DnLsixbWFjI2tvbs1988YVae2lpaaydnV2Zx//LwcGBbdq06Vu3eV3dunVZAOzly5dVj2VkZLBmZmbsd999p3pM0/f6q79v/fr12ZKSErXtDx48yAJgL168qHF8hBCiKRouRQgxCAUFBQAAGxubCrdhZmYGgeDlx5pCoUB2drZqqNHrw5zs7e3x4sUL3Lp1641t2dvb48aNG0hJSalwPG9ibW391lWm7O3tAQD//PNPhSdJm5mZ4ZNPPtF4+48++kjttR86dCjc3Nxw8uTJCh1fUydPnoRQKMTkyZPVHv/uu+/AsixOnTql9niPHj3QoEED1e8BAQGwtbXFs2fPNDrevHnz4OzsjJo1a6JLly6Ii4vDihUrMGTIkHK3Dw0NRV5eHkaOHImsrCzVj1AoRNu2bXHx4sW3Hq+goEDr97Sfn5+qBwgAnJ2d4evrq3aOmr7XXxk7dqxWPVKEEFJZlGQQQgyCra0tAFRqiVelUol169bB29sbZmZmcHJygrOzM+7fv4/8/HzVdtOnT4e1tTXatGkDb29vTJw4UTUU6ZWVK1fiwYMHqFOnDtq0aYP58+drfCH7LkVFRW+98Pzggw8QFBSEzz//HK6urhgxYgQOHDigVcJRq1YtrSb3ent7q/3OMAy8vLx0vrxpQkIC3N3dy7wer4btJCQkqD3u4eFRpg0HBwfk5uZqdLxx48YhNDQU58+fx+3bt5GRkYEffvjhjds/efIEwMu5G87Ozmo/Z8+eRUZGxluPZ2trq/V7WpNz1PS9/kq9evW0ioEQQiqLkgxCiEGwtbWFu7s7Hjx4UOE2li5dim+//RadOnXCX3/9hTNnziA0NBSNGzdWu0Bv1KgRYmNjsW/fPnTo0AGHDx9Ghw4dMG/ePNU2w4cPx7Nnz7Bp0ya4u7tj1apVaNy4cZk769p68eIF8vPz4eXl9cZtLCwscPnyZZw7dw5jxozB/fv38cEHH6Bnz55QKBQaHUcXd63fVDBQ05i48KaVn9j/TBJ/E29vb/To0QPdunVDixYt3rlU7av3za5duxAaGlrm559//nnr/g0bNsTjx48hlUo1ig/Q7Bw1fa+/Qr0YhBB9o4nfhBCDMWDAAPz666+4fv06AgMDtd7/0KFD6Nq1K7Zv3672eF5eHpycnNQes7KywgcffIAPPvgAUqkUQ4YMwZIlSzBz5kyYm5sDANzc3DBhwgRMmDABGRkZaNGiBZYsWYK+fftW+Bx37doFAOjdu/dbtxMIBOjevTu6d++OtWvXYunSpZg9ezYuXryIHj16cF4h/NUd+1dYlsXTp0/V6nk4ODiUWzguISEB9evXV/2uTWx169bFuXPnUFhYqNab8ejRI9XzfHo1NMvFxQU9evTQev/g4GBcv34dhw8fxsiRIzmLS5v3+pvoq8o8IaR6op4MQojB+OGHH2BlZYXPP/8c6enpZZ6Pi4vDhg0b3ri/UCgsc0f74MGDSE5OVnssOztb7XdTU1P4+fmBZVnIZDIoFIoyQ05cXFzg7u4OiUSi7WmpXLhwAYsWLUK9evUwatSoN26Xk5NT5rFXRe1eHd/KygoAOKsW/eeff6oN6zl06BBSU1PVEqoGDRogPDxc7a788ePHyyx1q01srwrj/fTTT2qPr1u3DgzDVCqh40Lv3r1ha2uLpUuXQiaTlXk+MzPzrfuPHz8ebm5u+O677/D48eMyz2dkZGDx4sVax6Xpe/1tuH4PEULI66gngxBiMBo0aIA9e/bggw8+QKNGjdQqfl+7dg0HDx4st07DKwMGDMDChQvxySefoH379oiKisLu3bvV7rIDQK9evVCzZk0EBQXB1dUVDx8+xE8//YT+/fvDxsYGeXl5qF27NoYOHYqmTZvC2toa586dw61bt7BmzRqNzuXUqVN49OgR5HI50tPTceHCBYSGhqJu3bo4evSoqrekPAsXLsTly5fRv39/1K1bFxkZGdi8eTNq166NDh06qF4re3t7bN26FTY2NrCyskLbtm0rPPa+Ro0a6NChAz755BOkp6dj/fr18PLyUltm9/PPP8ehQ4fQp08fDB8+HHFxcfjrr7/UJmJrG1twcDC6du2K2bNnIz4+Hk2bNsXZs2fxzz//YMqUKWXa1jdbW1ts2bIFY8aMQYsWLTBixAg4OzsjMTERJ06cQFBQUJkE6XUODg4ICQlBv3790KxZM7WK33fu3MHevXsr1Gun6Xv9bZo1awahUIgVK1YgPz8fZmZm6NatG1xcXLSOhxBCyuBxZStCCCnX48eP2S+++IL19PRkTU1NWRsbGzYoKIjdtGkTKxaLVduVt4Ttd999x7q5ubEWFhZsUFAQe/369TJLrP7yyy9sp06dWEdHR9bMzIxt0KABO23aNDY/P59lWZaVSCTstGnT2KZNm7I2NjaslZUV27RpU3bz5s3vjP3VEqivfkxNTdmaNWuyPXv2ZDds2KC2TOwr/13C9vz58+ygQYNYd3d31tTUlHV3d2dHjhzJPn78WG2/f/75h/Xz82NFIpHakrGdO3d+4xK9b1rCdu/evezMmTNZFxcX1sLCgu3fvz+bkJBQZv81a9awtWrVYs3MzNigoCA2IiKiTJtvi+2/S9iy7MtlYqdOncq6u7uzJiYmrLe3N7tq1SpWqVSqbQeg3GWF37S07uteLWG7atWqt2733yVsX7l48SLbu3dv1s7OjjU3N2cbNGjAfvzxx2xERMRb23slJSWFnTp1Kuvj48Oam5uzlpaWbMuWLdklS5ao3nevzqV///5l9v/va6zpe/3V3/fgwYPlxrVt2za2fv36rFAopOVsCSGcYlhWw9lyhBBCCCGEEKIBmpNBCCGEEEII4RQlGYQQQgghhBBOUZJBCCGEEEII4RQlGYQQQgghhBBOUZJBCCGEEEII4RQlGYQQQgghhBBOUZJBCCGEEEII4RQlGYQQQgghhBBOUZJBCCGEEEII4RQlGYQQQgghhBBOUZJBCCGEEEII4RQlGYQQQgghhBBOUZJBCCGEEEII4RQlGYQQQgghhBBOUZJBCCGEEEII4RQlGYQQQgghhBBOUZJBCCGEEEII4RQlGYQQQgghhBBOUZJBCCGEEEII4RQlGYQQQgghhBBOUZJBCCGEEEII4RQlGYQQQgghhBBOUZJBCCGEEEII4RQlGYQQQgghhBBOUZJBCCGEEEII4RQlGYQQQgghhBBOUZJBCCGEEEII4RQlGYQQQgghhBBOUZJBCCGEEEII4RQlGYQQQgghhBBOUZJBCCGEEEII4RQlGYQQQgghhBBOUZJBCCGEEEII4RQlGYQQQgghhBBOUZJBCCGEEEII4RQlGYQQQgghhBBOUZJBCCGEEEII4RQlGYQQQgghhBBOUZJBCCGEEEII4RQlGYQQQgghhBBOUZJBCCGEEEII4RQlGYQQQgghhBBOUZJBCCGEEEII4RQlGYQQQjh1+fJlBAcHw93dHQzD4MiRI2W2efjwIQYOHAg7OztYWVmhdevWSExM1H+whBBCdIKSDEII0RJdRL9dcXExmjZtip9//rnc5+Pi4tChQwc0bNgQYWFhuH//PubOnQtzc3M9R0oIIURXKMkghBAt0UX02/Xt2xeLFy/Ge++9V+7zs2fPRr9+/bBy5Uo0b94cDRo0wMCBA+Hi4qLa5smTJ+jUqRPMzc3h5+eH0NDQMgnd9OnT4ePjA0tLS9SvXx9z586FTCZTPT9//nw0a9YMv//+Ozw8PGBtbY0JEyZAoVBg5cqVqFmzJlxcXLBkyRKdvRaEEFJdUZJBCCFa4uIimmEYbNmyBX379oWFhQXq16+PQ4cOqbVTFS+ilUolTpw4AR8fH/Tu3RsuLi5o27atWvKgVCoxZMgQmJqa4saNG9i6dSumT59epi0bGxvs2LEDMTEx2LBhA7Zt24Z169apbRMXF4dTp07h9OnT2Lt3L7Zv347+/fvjxYsXuHTpElasWIE5c+bgxo0buj51QgipXlhCCCEVBoANCQlR/a5QKFhra2t24cKFbK9evVhnZ2e2TZs2atu82s/R0ZHdtm0bGxsby86ZM4cVCoVsTEyMaptFixaxV69eZZ8/f84ePXqUdXV1ZVesWKF6ft68eay1tTU7dOhQNjo6mj169ChramrK9u7dm/3666/ZR48esb///jsLgA0PD9f1S1Gu/74+qampLADW0tKSXbt2LXv37l122bJlLMMwbFhYGMuyLHvmzBlWJBKxycnJqv1OnTpVpq3/WrVqFduyZUvV7/PmzWMtLS3ZgoIC1WO9e/dmPT09WYVCoXrM19eXXbZsGQdnSwgh5BURnwkOIYRUNRkZGSgqKsLy5cuxePFirFixAqdPn8aQIUNw8eJFdO7cWbXtsGHD8PnnnwMAFi1ahNDQUGzatAmbN28GAMyZM0e1raenJ77//nvs27cPP/zwg+pxpVKJ33//HTY2NvDz80PXrl0RGxuLkydPQiAQwNfXFytWrMDFixfRtm1bPb0Kb6ZUKgEAgwYNwtSpUwEAzZo1w7Vr17B161Z07twZDx8+RJ06deDu7q7aLzAwsExb+/fvx8aNGxEXF4eioiLI5XLY2tqqbePp6QkbGxvV766urhAKhRAIBGqPZWRkcHqehBBS3VGSQQghHNLkIvqV/144BwYGIjIyUvV7VbyIdnJygkgkgp+fn9rjjRo1wpUrVzRu5/r16xg1ahQWLFiA3r17w87ODvv27cOaNWvUtjMxMVH7nWGYch979XcjhBDCDZqTQQghHHrbRbQ2q0u9uoju168fjh8/jrt372L27NmQSqVq2xnbRbSpqSlat26N2NhYtccfP36MunXrAnj5WiUlJSE1NVX1fHh4uNr2165dQ926dTF79my0atUK3t7eSEhI0P0JEEII0Qj1ZBBCCIc0uYh+JTw8HB999JHa782bNwegfhH9irFcRBcVFeHp06eq358/f47IyEjUqFEDHh4emDZtGj744AN06tQJXbt2xenTp3Hs2DGEhYUBAHr06AEfHx+MHTsWq1atQkFBgdrrAADe3t5ITEzEvn370Lp1a5w4cQIhISH6PE1CCCFvQUkGIYRoqbIX0a8cPHgQrVq1QocOHbB7927cvHkT27dvB2DcF9ERERHo2rWr6vdvv/0WADB27Fjs2LED7733HrZu3Yply5Zh8uTJ8PX1xeHDh9GhQwcAgEAgQEhICD777DO0adMGnp6e2LhxI/r06aNqc+DAgZg6dSomTZoEiUSC/v37Y+7cuZg/f75ez5UQQkj5GJZlWb6DIIQQfQgLC0PXrl2Rm5sLe3v7SrfzX68uogHg999/x7Jly/DixQv4+vpiwYIFGDRokGpbhmHw888/48iRI7h8+TLc3NywYsUKDB8+XLXNDz/8gN9//111Ed2uXTvMnz8feXl5AF4uYXvkyBG1eRwff/wx8vLy1JaE7dKlC5o1a4b169dX+JwNAcMwCAkJweDBg/kOhRBCyDtQkkEI0ZvLly9j1apVuH37NlJTU8u9YHz48CGmT5+OS5cuQS6Xw8/PD4cPH4aHh0elj89VksEFumDWHr1mhBBiPGjiNyFEb6hSNiGEEFI9UJJBCNEbLiplr127Fv7+/rCyskKdOnUwYcIEFBUVqZ5PSEhAcHAwHBwcYGVlhcaNG+PkyZPlHq+kpAR9+/ZFUFCQaggSMVwsy1IvBg88PT2NfqgdIUT/KMkghBgEpVKJEydOwMfHB71794aLiwvatm2rNrcAeDkpeOPGjYiOjsbOnTtx4cIFteJ0EydOhEQiweXLlxEVFYUVK1bA2tq6zPHy8vLQs2dPKJVKhIaG6n34FF0wEy4oFArMnTsX9erVg4WFBRo0aIBFixaBRkITQvhGq0sRQgyCppWyp0yZotrH09MTixcvxvjx41VVshMTE/H+++/D398fAFC/fv0yx0pLS8MHH3wAb29v7NmzB6ampro/QUJ0YMWKFdiyZQt27tyJxo0bIyIiAp988gns7OwwefJkvsMjhFRj1JNBCDEI/62U3axZM8yYMQMDBgzA1q1bVdudO3cO3bt3R61atWBjY4MxY8YgOzsbJSUlAIDJkydj8eLFCAoKwrx583D//v0yx+rZsye8vLywf/9+SjCIUbt27RoGDRqE/v37w9PTE0OHDkWvXr1w8+ZN1Taenp5YtGgRRo4cCSsrK9SqVUttXhTLspg/fz48PDxgZmYGd3f3tyYov/32G+zt7XH+/HmdnhshxLhRkkEIMQiaVMqOj4/HgAEDEBAQgMOHD+P27duqi6VXlbA///xzPHv2DGPGjEFUVBRatWqFTZs2qbXZv39/XL58GTExMXo4M0J0p3379jh//jweP34MALh37x6uXLmCvn37qm23atUqNG3aFHfv3sWMGTPwzTffIDQ0FABw+PBhrFu3Dr/88guePHmCI0eOqHoC/2vlypWYMWMGzp49i+7du+v25AghRo2GSxFCDIImlbJv374NpVKJNWvWQCB4eY/kwIEDZdqqU6cOxo8fj/Hjx2PmzJnYtm0bvv76a9Xzy5cvh7W1Nbp3746wsLAyiQ0hxmLGjBkoKChAw4YNIRQKoVAosGTJEowaNUptu6CgIMyYMQMA4OPjg6tXr2LdunXo2bMnEhMTUbNmTfTo0QMmJibw8PBAmzZtyhxr+vTp2LVrFy5duoTGjRvr5fwIIcaLkgxCiN5UtlK2l5cXZDIZNm3ahODgYFy9elVtKBXwcs5G37594ePjg9zcXFy8eBGNGjUqE8vq1auhUCjQrVs3hIWFoWHDhjo9d0J04cCBA9i9ezf27NmDxo0bIzIyElOmTIG7uzvGjh2r2i4wMFBtv8DAQNWKUcOGDcP69etRv3599OnTB/369UNwcDBEov9dIqxZswbFxcWIiIgod54TIYT8Fw2XIoToTUREBJo3b47mzZsDAL799ls0b94cP/74IwDgvffew9atW7Fy5Ur4+/vjt99+w+HDh9GhQwcAQNOmTbF27VqsWLECTZo0we7du7Fs2TK1YygUCkycOBGNGjVCnz594OPjo5oU/l/r1q3D8OHD0a1bN9VwE0KMybRp0zBjxgyMGDEC/v7+GDNmDKZOnVrm38Xb1KlTB7Gxsdi8eTMsLCwwYcIEdOrUCTKZTLVNx44doVAoyu05JISQ8lDFb0IIIcRIOTo6YvHixfjqq69Ujy1btgx//PGHKnH29PSEn5+fWr2YkSNHIj8/v9waMrGxsWjYsCFu376NFi1awNPTE1OmTEGbNm3Qp08f/Pjjj/j+++91f3KEEKNGw6UIIYQQIxUcHIwlS5bAw8MDjRs3xt27d7F27Vp8+umnattdvXoVK1euxODBgxEaGoqDBw/ixIkTAIAdO3ZAoVCgbdu2sLS0xF9//QULCwvVXKhX2rdvj5MnT6Jv374QiURqy0kTQsh/UZJBCCGEGKlNmzZh7ty5mDBhAjIyMuDu7o4vv/xSNQTxle+++w4RERFYsGABbG1tsXbtWvTu3RsAYG9vj+XLl+Pbb7+FQqGAv78/jh07BkdHxzLH69ChA06cOIF+/fpBKBSqLahACCGvo+FShBBCSBX2argT9TwQQvSJJn4TQgghhBBCOEVJBiGEEEIIIYRTNFyKEEIIIYQQwinqySCEEEIIIYRwipIMQgghhBBCCKcoySCEEEIIIYRwipIMQkgZDMPgyJEjfIdBCCGEECNFSQYhBuby5csIDg6Gu7v7Gy/2Hz58iIEDB8LOzg5WVlZo3bo1EhMT9R8sIYQQQkg5qOI3IQamuLgYTZs2xaeffoohQ4aUeT4uLg4dOnTAZ599pqreGx0dDXNzcx6iJcauSK5ArlyBPJkc+XIFihVKFCuUKFEoUaxQwBJFaC/9GwqlBMrXflilHCyUAKsECxYAC7AswDAAGDBgAEYABgIwAhMIBeYQCMwgEJhCIDRHSnJrmJqawtTUFGZmZmr/ffX/ZmZmEAqFfL9EhBBCKoCSDEIMTN++fdG3b983Pj979mz069cPK1euVD3WoEEDtW0YhsHmzZtx9OhRhIWFwc3NDStXrsTQoUMBAFKpFN9++y0OHz6M3NxcuLq6Yvz48Zg5c2a5x5w3bx5+/fVXnDlzBgEBARycJdGlbKkcqRIpUiQypElkyJDKkSWTI1sqR7ZMjiypHLlyOfJkCsjesYp5QwsG7iVbOI2PYUxw+VKBRttaWVnBxsYGtra2sLW1Vf3/6/+1sLDgND5CCCGVR0kGIUZEqVTixIkT+OGHH9C7d2/cvXsX9erVw8yZMzF48GC1befOnYvly5djw4YN2LVrF0aMGIGoqCg0atQIGzduxNGjR3HgwAF4eHggKSkJSUlJZY7HsiwmT56M48eP499//4WXl5eezpS8TUaBGM+zipGUW4rk3FIk55XgRW4pLO3Ncc6FgVjJXfkjMctw1tYrAoHmSUFxcTGKi4uRlpb2xm1MTEzKTT5e/6+trS0YhvtzIYQQUj5KMggxIhkZGSgqKsLy5cuxePFirFixAqdPn8aQIUNw8eJFdO7cWbXtsGHD8PnnnwMAFi1ahNDQUGzatAmbN29GYmIivL290aFDBzAMg7p165Y5llwux+jRo3H37l1cuXIFtWrV0tt5EkAiVyA+qwRxmUV4llmEuMxiPMsswrPMYhRK5OXu41vbFmInG07jECs5bQ4AIBCYcdqeTCZDTk4OcnJy3riNqakpnJ2d4eLiAldXV7i4uMDFxQXW1tacxkIIIeQlSjII4ciWLVuwZcsWxMfHAwAaN26MH3/8EX379kVOTg7mzZuHs2fPIjExEc7Ozhg8eDAWLVoEOzs7jY+hVL684hs0aBCmTp0KAGjWrBmuXbuGrVu3qiUZgYGBavsGBgYiMjISAPDxxx+jZ8+e8PX1RZ8+fTBgwAD06tVLbfupU6fCzMwM4eHhcHJy0vblIBpSKlk8zy7Gg+R8xKQUIDa9EM8yi/EitwTadkjkF0o5j69UB0kGw+h//pBUKkVycjKSk5PVHre0tFRLOlxdXeHs7AwzM24TIUIIqW4oySCEI7Vr18by5cvh7e0NlmWxc+dODBo0CHfv3gXLskhJScHq1avh5+eHhIQEjB8/HikpKTh06JDGx3BycoJIJIKfn5/a440aNcKVK1c0bqdFixZ4/vw5Tp06hXPnzmH48OHo0aOHWiw9e/bE3r17cebMGYwaNUrjtsmbyRRKPEkvwoOUfEQn5yM6pQAPUwtQLFVw0n5WoQQCloWSw2FBEg6HXr3CMIZzAV9SUoLnz5/j+fPnao/b29urJR8uLi5wcnKiieiEEKIhhmXfMeuPEFJhNWrUwKpVq/DZZ5+Vee7gwYMYPXo0iouLIRK9zPdPnjyJKVOmICkpCe3atUNYWBgAIDc3F/b29sjOzoavry9KSkoAvJzwPWvWLBw4cAAWFhbYs2cPunTpgkuXLsHf3x9JSUkwNTXF4sWLsW3bNhQUFCA5ORmurq7YtGmTaoL5mTNn0KdPH2RnZ6NGjRpgGAYhISFgWRYffvgh/vjjD4wYMUI/L1oVEp9VjFvxObiTmIcHyfmITS+EVK6DroHX2PWsjXQBtx/rf7FDwYC7Ns3NGyH0bCvO2tMXoVAIV1dX1K1bV/VDk84JIaR81JNBiA4oFAocPHgQxcXFZYYtvZKfnw9bW1tVgpGUlIQhQ4bgiy++QPfu3RETE6NKMqKiolC3bl0IhUL0798fe/bswYIFCyAWizF69GgAwKVLl9Taj4uLw5w5c5Ceno4vv/wSLMti/vz5+PDDD/Hxxx9j+PDhuHz5MqysrHDw4EHUrFkT9vb2am2899572LVrF8aMGQORSKRanYqUpVCyiE7Jx634XETE5yAiIReZhRK9x1FDAaRzXAFJxtjBlM3jsEXD6cnQhkKhQEpKClJSUnD9+nUwDAMXFxe1pIPmeBBCyEuUZBDCoaioKAQGBkIsFsPa2hohISFlhjYBQFZWFhYtWoRx48apHtuyZQsaNGiA999/H127dlXbvlOnThg7dix27NiBnTt3onPnzli2bBlevHgBKysrdOvWDR06dFDbZ9WqVThy5Igq+ejYsSPmzZsH4GXycO3aNbRv3x6mpqZo3bo1Tp48CYGg7NXp0KFDoVQqMWbMGAgEgnJrd1RHpVIF7iTm4ubzHEQk5CAyMY+zYU+VYSMDYMJtmwqhLSDP465BluMAecKyLNLT05Geno6bN28CeDmk8VXC4enpCVtbW56jJIQQflCSQQiHfH19ERkZifz8fBw6dAhjx47FpUuX1BKNgoIC9O/fH35+fpg/f77q8YcPH6Jt27bo0qULXo1i/OeffzB48GDVcCmFQoGlS5fiwIEDyM7OhlAoRGlpKUxNTcvE4u7ujrNnzwIA6tati+DgYNVz3333HaZNm4b9+/dj4MCBZfb97yjK4cOHY/jw4ZV6bYydUsnifnI+rj7Nwr9PMnEnMU/nQ58qwlSiBCy5XapVJrABl4OCWJR9v1YVWVlZyMrKwu3btwEADg4Oaj0dNWrU4DlCQgjRD0oyCOGQqampqpZEy5YtcevWLWzYsAG//PILAKCwsBB9+vSBjY0NQkJCYGKi3R3dVatWYcOGDVi/fj38/f1hZWWFKVOmQCp9+6pCDMOoHetVvYBXq1WR8qXml+JSbCYuP8nE1afZyC+V8R3SOzFiBbj+aJcLuF0Wt6r0ZGgiNzcXubm5qpXdbG1tUbduXdSvXx8+Pj6wsrLiN0BCCNERSjII0SGlUgmJ5OW4/IKCAvTu3RtmZmY4evQozM3Vl/Fs1KgRjh49qvZYeHi42u9Xr17FoEGDVPMwlEolHj9+XO6QLKI9hZLFrfgcXHiUgUuxmYhNL+Q7JK1JS2TgPMlguJ1noGSr71dPQUEBoqKiEBUVBYZhULt2bfj6+sLX1xfOzs58h0cIIZypvp/0hHBs5syZ6Nu3Lzw8PFBYWIg9e/YgLCwMZ86cQUFBAXr16oWSkhL89ddfKCgoQEFBAQDA2dkZQqEQ48ePx5o1azBt2jR8/vnnuH37Nnbs2KF2DG9vbxw6dAjXrl2Dg4MD1q5di/T09DJJxjfffFOmAjgpn1imwJUnWTgTnYbzjzKQU8x9rQl9KiqSApwObgKkAm7vtrPK6tOT8TYsyyIpKQlJSUk4d+4catSooUo4PDw8yp0jRQghxoKSDEI4kpGRgY8++gipqamws7NDQEAAzpw5g549eyIsLAw3btwAANVwqleeP38OT09PeHh44PDhw5g6dSo2bdqENm3aYOnSpfj0009V286ZMwfPnj1D7969YWlpiXHjxmHw4MHIz8/X67kauwKxDBcfZeBMdBouxWYaxIRtruTooCCfjOE2yVAoqdZEeXJycnD9+nVcv34dFhYW8PHxgZ+fHxo0aKBahY4QQowF1ckgxICFhYWha9euqonfpOKyiiQ4E52GM9HpCI/LhlRRheej9KoFMYdzv+fZnIJPwW+ctccqB+PKFY7neVRhZmZmqoTDy8tL67lchBDCB7o1QgipskqkcpyJTkPI3RRcfZoFhQ6qVxsiF6UAiULukigpY8lZWwD1ZGhLIpGo5nGYmprC29sbfn5+8Pb2LndlOUIIMQQ04JNwasuWLQgICICtrS1sbW0RGBiIU6dOAXg5FODrr7+Gr68vLCws4OHhgcmTJ9NQH8IphZJFWGwGpuy7i1aLz2Hq/nu4/Diz2iQYAGAv5/ZcZRzP8VDIKcmoKKlUiujoaBw8eBCrVq1CSEgIEhIS+A6LEELKoJ4MwqnatWtj+fLl8Pb2Bsuy2LlzJwYNGoS7d++CZVmkpKRg9erV8PPzQ0JCAsaPH4+UlBQcOnSI79A5JZVKObnD+HrNDPJ291/kIeRuMo7dS0VWkf4rbRsSSynLaVFtKWP+7o20IFfQ/S0uyGQy3Lt3D/fu3YOTkxOaN2+OZs2a0bK4hBCDQJ/0hFPBwcHo168fvL294ePjgyVLlsDa2hrh4eFo0qQJDh8+jODgYDRo0ADdunXDkiVLcOzYMcjlclUbJ0+ehI+PDywsLNC1a1fs2LEDDMMgLy8PAJCdnY2RI0eiVq1asLS0hL+/P/bu3asWR5cuXfD1119jypQpcHBwgKurK7Zt24bi4mJ88sknsLGxgZeXl6qXRRPR0dEYMGAAbG1tYWNjg44dOyIuLg4A8PHHH2Pw4MFYsmQJ3N3d4evrC+BlBfBu3brBwsICjo6OGDduHIqKilRthoWFoU2bNrCysoK9vT2CgoJUdyXv3buHrl27wsbGBra2tmjZsiUiIiIq9HepqjILJdgc9hTd14Rh4E9X8cfV+GqfYACAiZTb+SZScJxkyOmrh2tZWVkIDQ3FmjVrcODAATx9+pTq4BBCeEU9GURnFAoFDh48iOLiYgQGBpa7TX5+PmxtbVUrpyQlJWHIkCGYOHEixo0bh4iICHz33Xdq+4jFYrRs2RLTp0+Hra0tTpw4gTFjxqBBgwZo06aNarudO3fihx9+wM2bN7F//3589dVXCAkJwXvvvYdZs2Zh3bp1GDNmDBITE2Fp+fYx58nJyejUqRO6dOmCCxcuwNbWFlevXlVLjs6fPw9bW1uEhoYCAIqLi9G7d28EBgbi1q1byMjIwOeff45JkyZhx44dkMvlGDx4ML744gvs3bsXUqkUN2/eVBXKGzVqFJo3b44tW7ZAKBQiMjKSJnzi5bKfV59mY8/NBITGpEOmoJ6e/1KWyAFH7sbqS7nsFgEgl3FbkZz8j1KpRExMDGJiYmBnZ4fmzZujefPmsLOz4zs0Qkg1Q6tLEc5FRUUhMDAQYrEY1tbW2LNnD/r161dmu6ysLLRs2RKjR4/GkiVLAACzZs3CP//8g+joaNV2M2bMwIoVK966wtKAAQPQsGFDrF69GsDLngyFQoF///0XwMuEx87ODkOGDMGff/4JAEhLS4ObmxuuX7+Odu3avfWcZs2ahX379iE2NrbcC/2PP/4Yp0+fRmJiomqY1LZt2zB9+nQkJSWphi+cPHkSwcHBSElJgYmJCRwdHREWFobOnTuXadPW1habNm3C2LFj3xpbdZFdJMHB2y+w72Yi4rNL+A7HoDXxtEeEL3dDZkbZpaJf3iTO2ktLHYMnTzhrjrwDwzDw8vJCixYt4OPjA6GQ5sQQQnSPejII53x9fREZGYn8/HwcOnQIY8eOxaVLl9QKxhUUFKB///7w8/PD/PnzVY8/fPgQbdu2VWvvv70gCoUCS5cuxYEDB5CcnAypVAqJRFKmNyIgIED1/0KhEI6OjvD391c95urqCuBlfYt3iYyMRMeOHd/ak+Dv7682D+Phw4do2rSp2vjooKAgKJVKxMbGolOnTvj444/Ru3dv9OzZEz169MDw4cPh5uYGAPj222/x+eefY9euXejRoweGDRuGBg0avDPWquZ6XDb23EzEmQdpVXvZWQ7lF0oBcJdkSMHtCkZyOQOA7m/pC8uyePLkCZ48eQIrKys0a9YMLVq0gKOjI9+hVTvx8fGoV68e7t69i2bNmvEdDiE6RQNjCedMTU3h5eWFli1bYtmyZWjatCk2bNiger6wsBB9+vSBjY0NQkJCtB4CtGrVKmzYsAHTp0/HxYsXERkZid69e0MqVS9C9t92GYZRe+zVsCRNxi1bWLx7dZ2KTLb8448/cP36dbRv3x779++Hj48PwsPDAQDz589HdHQ0+vfvjwsXLsDPzw8hISFaH8MYFUvk+OPqc3RbE4aR28Jx7F4KJRhayCrkdl6KhOX2fpTUuIuqG7Xi4mJcvXoVmzZtwh9//IF79+5BJpPxHZbBUCgUmDt3LurVqwcLCws0aNAAixYtogU4CKkA6skgOqdUKiGRvLzoKSgoQO/evWFmZoajR4/C3Fx9QmmjRo1w9OhRtcdeXXS/cvXqVQwaNAijR49Wtf/48WO1nhKuBQQEYOfOnZDJZBonRY0aNcKOHTtQXFysSkCuXr0KgUCgmhgOQDVmeubMmQgMDMSePXtUw7d8fHzg4+ODqVOnYuTIkfjjjz/w3nvvcX+CBuJFbgl2XovHvltJKBTL370DKVepVAE7JZDP0W0kCbidC0RJhmFISEhAQkICQkND0a5dO7Rq1arMZ3J1s2LFCmzZsgU7d+5E48aNERERgU8++QR2dnaYPHky3+ERYlSoJ4NwaubMmbh8+TLi4+MRFRWFmTNnIiwsDKNGjUJBQQF69eqF4uJibN++HQUFBUhLS0NaWhoUCgUAYPz48Xjy5AmmTZuG2NhY7NmzBzt27FA7hre3N0JDQ3Ht2jU8fPgQX375JdLT03V6XpMmTUJBQQFGjBiBiIgIPHnyBLt27UJsbOwb9xk1ahTMzc0xduxYPHjwABcvXsTXX3+NMWPGwNXVFc+fP8fMmTNx/fp1JCQk4OzZs3jy5AkaNWqE0tJSTJo0CWFhYUhISMDVq1dx69YtNGrUSKfnyZsXEZi1PxydV4Vh27/PKcHggLOSu8nVEpbbMfyUZBiWoqIinDt3DuvWrcO5c+fUVsCrbq5du4ZBgwahf//+8PT0xNChQ9GrVy/cvHlTtc2uXbvQqlUr2NjYoGbNmvjwww/Vht3m5uZi1KhRcHZ2hoWFBby9vfHHH3+UezyFQoFPP/0UDRs2RGJios7PjxB9oiSDcCojIwMfffQRfH190b17d9y6dQtnzpxBz549cefOHdy4cQNRUVHw8vKCm5ub6icpKQkA4OHhgcOHD+PIkSNo2rQptm7diqVLl6odY86cOWjRogV69+6NLl26oGbNmhg8eLBOz8vR0REXLlxAUVEROnfujJYtW2Lbtm1v7dWwtLTEmTNnkJOTg9atW2Po0KHo3r07fvrpJ9Xzjx49wvvvvw8fHx+MGzcOEydOxJdffgmhUIjs7Gx89NFH8PHxwfDhw9G3b18sWLBAp+epVywLPDoB/N4H+K072heerlYF83TNlsMRMGKOh0tJJPR3NkQSiQRXrlzB+vXrceLECeTm5vIdkt61b98e58+fx+PHjwG8XEr8ypUr6Nu3r2obmUyGRYsW4d69ezhy5Aji4+Px8ccfq56fO3cuYmJicOrUKTx8+BBbtmyBk5NTmWNJJBIMGzYMkZGR+Pfff+Hh4aHz8yNEn2h1KWLwwsLC0LVr17euLkWMiFwK3NsDXPsJyP7fEkMyO080zFgMBUv3PrjQsl0tXOVo1dLmViy+LxrKTWMArvw7GixLy9gaOoFAgCZNmqBDhw5wcXHhOxy9UCqVmDVrFlauXAmhUAiFQoElS5Zg5syZb9wnIiICrVu3RmFhIaytrTFw4EA4OTnh999/L7Ptq4nf//77L+bPnw+JRILjx4/TEsOkSqJvc0KIfshKgfAtwIamwLFv1BIMADDJj8f3HnE8BVf1CCQKztoSczj0imFMKMEwEkqlEvfv38fmzZuxZ88eVY9zVXbgwAHs3r0be/bswZ07d7Bz506sXr0aO3fuVG1z+/ZtBAcHw8PDAzY2NqolyF8Nd/rqq6+wb98+NGvWDD/88AOuXbtW5jgjR45EcXExzp49SwkGqbIoySAEL+eCWFtbl/szfvx4vsMzbpIi4OoGYH0AcHoGUJjyxk1Hs8f0GFjVJi/hbl6LmMPeJYGgek8sNlaPHz/G9u3b8ccff+Dp06d8h6Mz06ZNw4wZMzBixAj4+/tjzJgxmDp1KpYtWwbgf0VWbW1tsXv3bty6dUu16t+rFQ779u2LhIQETJ06FSkpKejevTu+//57teP069cP9+/fx/Xr18uNw9PTE+vXr9fdiRKiB7S6FDF4Xbp00fnygQsXLizzJfCKra2tTo9dZUmKgJu/Atc2AaU5Gu1ikxGBYTXTcDCtpo6Dq/pKi6UAR5W6xRyuHiwQcFs9nOjXqxWpatasiQ4dOsDPzw8CQdW5X1lSUlLmfIRCoWqp80ePHiE7OxuOjo746KOPkJaWBhsbGwBQ+55ydnbG2LFjMXbsWHTs2BHTpk1TFYsFXvZ2NGnSBAMHDsSJEyfKLchKiLGjJIMQAC4uLtVmzLHOSYuBm9uAaxuBkmytd59qdRYH8ZEOAqtecgu5W8KplMMkg2GoJ6MqSEtLw6FDh1CjRg0EBQWhWbNmVaKSeHBwMJYsWQIPDw80btwYd+/exdq1a/Hpp58CeLk4iVAoxLZt2/DTTz9BqVRi3rx5AIC9e/eiefPm+PHHH9GyZUs0btxYNeeivJUBv/76aygUCgwYMACnTp1Chw4d9HquhOha1bn9QAjhl1zycjL3+gDg3LwKJRgA4JYSilZ2hRwHV/1kF0og4KgHUMzhql8MQz0ZVUlOTg6OHTuGn3/+GTExMXyHU2mbNm3C0KFDMWHCBDRq1Ajff/89vvzySyxatAjAyx4Kf39/iEQijBs3DuPHj0dpaSkA4LfffsOUKVNgamqKwYMHw9fXFwEBATh+/Dhu3bqF4cOHq47Dsix69+6NH374AUVFRejYsSMaNGigtnzwzZs3YW9vj+PHj6NmzZpgGAadOnVCSUkJdu7cCU9PTzg4OGDy5MmqZeAJMSSUZBBCKkepAO7+BWxsAZydDZRkVao5hlVgvstljoKrvuRKFs4czaUQK1mw4GayNiUZVVNOTg4OHDiA33//HS9evOA7nAqzsbHB+vXrkZCQgNLSUsTFxWHx4sUwNTVVbTNs2DAwDANXV1ecPXsW27Ztg6mpqSrZmDNnjmqIVc+ePXH69GkMGTIEBw8exL59+8CyLOLi4nDp0iUsXLgQV65cwc8//4zi4mL88MMPavGUlJTg22+/hVgsxtatWxETE4P33nsPJ0+exMmTJ7Fr1y788ssvOHTokF5fJ0I0QUvYEkIq7tEJ4PxCIPMRp82yptZoL/0JqWLTd29M3qh+t9qIMeHmI34HPoEJW1DpdszNmyL0bAAHERFD1qRJE3Tv3h0ODg58h8K5goICODg4gGVZ1TK3s2fPxpo1azBu3DisX78eIpEIDg4OyMzMVO3n4eEBsViMjIwMrF27Fr/88gsePHigqrd06NAhjB8/HllZWfD09ET79u2xd+9eODs74+LFi2jcuDHGjx+PXbt2IT09HdbW1gCAPn36wNPTE1u3buXl9SDkTagngxCitdJ79xA/ajSK96/lPMEAAEZahMV1bnPebnVjzWFBPrmQq2U2KXGsDh48eICffvoJZ8+ehVgs5jscTm3ZsgVKpRIbN25ULXO7efNmODs7q23n7++v9nurVq1UBQ6HDRuG3Nxc2NjYwMrKChYWFhgzZgyys7NRUlICADh9+jQAIDw8HI0bNwYAuLq6wtPTU5VgvHrs9YrjhBgKSjIIIRqTJiXhxdSpiP9gBEpv30bGHXOd1TzonPc3zAQczjiuhkwl3L1+MoENJ+2wrAkn7RDDp1AocO3aNWzYsAE3btyoMvMG1q1bBwAYOHCg2jK36enpGrehUChQUFCA3r17o3///rC2tkatWrUA/G8pXB8fHwAva3e8wjCMqufj9cderX5FiCGhJIMQ8k6KwkKkL1uOZ/36o/DUadXj4thnKGQ76uSYosJkzK7LfS9JdcKIubuok3OUZIClnozqprS0FKdOncLmzZvx8OFDvsOpNKlUCoFAgBs3bqg99io5eOXBgwdqv9++fVs1fOz27dtQKpUICQnBgQMHcOXKFcTFqRcjrV+/PqytrbF06VK15W8JMRa0hC0h5I1YlkX+3yHIWLsWiuzyV4vKuFIEm06mYMDdkqmvDJMdwY/w47zd6kJaLANXH/NyxvrdG2lAydLXTnWVnZ2N/fv3o27duujVq5fqzr2xGThwIA4dOoSJEydCJpMhMzMTK1asgEik/t7OzMxEv3798M0332D79u1ITEzE4sWLAQDR0dGQyWSYNWsW+vTpo+od+S+hUIjjx4+jb9++ZdonxNDRO5YQUq7S6GikL1qM0sjIt24nS0lDrqQLapid5TwGi6wH+MQ9CX+k1OG87eqgqFgKwIKTtmQCK07aUSrpa6e6S0hIwLZt29CkSRP06NED9vb2fIeklU2bNsHKygo7d+7EqFGjIBQK0blzZ8hk6pOgunbtiqioKPTp0wcCgQBDhgzB7NmzAQABAQHw8PDAypUrsWLFCtjZ2WH69OlYsWJFmeN16NABJ06cQL9+/dCxo256jgnRBVpdihCiRpGXh4x165F38CCg4Thfob09GvR9ASEHqw/9V6Z7N7R+9jnn7VYH9pYmSOvITZHJJVaH4Fm0t9LtMMwAXL5U9VYcIhUjEonQtm1bdOzYEebmxl2osUuXLmjWrJlqdang4GCEhITwHRYhvKE5GYQQAACrVCJ3337E9emLvP37NU4wgJeJSXZ+kE7ickq5iM6OuTppu6rLK5HBnKPbSFKuejIUxl8VmnBHLpfj6tWrVaaYHyHkfyjJIISgNDIS8cOGI23+fCjy8irURs6FWMgEbtwGBoABizk1wjhvt7pwUXKz+peMo2FXChouRcpRWFiIAwcOYO/evcjPz+c7HEIIB+jTnpBqTFFUhIzVq5G3/wBQyZGTrFiMrJSmcKuZylF0/+OVehz1LfviWYlxD6fgg4McSOSg80DGcJRkUE8GeYvY2Fg8f/4c3bp1Q5s2bSAQGM+90LCwMNX/y+Vy/gIhxEAYz79eQginCs+dw7P+A5C3b3+lE4xX8v6NhkTgxUlbr2PkpVhU68a7NyRlWEi5+dtKGW4SPIWcvnbI20mlUpw+fRrbt29HWloa3+EQQiqIPu2JXmzZsgUBAQGwtbWFra0tAgMDcerUKQBATk4Ovv76a/j6+sLCwgIeHh6YPHkydZnriDwzEy++nowXk76GXIviURpRKJDxtB63bf6/wOy/YSWqGsW89MlEyk2RLgm4STLklGQQDSUnJ+PXX39FaGgolDL6t0+IsaFPe6IXtWvXxvLly3H79m1ERESgW7duGDRoEKKjo5GSkoKUlBSsXr0aDx48wI4dO3D69Gl89tlnfIdd5eT9HYK4AcEoDA3V2TGKbkajRNCc83YFJZlY4PHg3RsSNcoSboZtSGHGSTuUZBBtKJVK5CZkImPDXUie040nQowJfdoTvQgODka/fv3g7e0NHx8fLFmyBNbW1ggPD0eTJk1w+PBhBAcHo0GDBujWrRuWLFmCY8eOqca1hoWFgWEYnDhxAgEBATA3N0e7du3UKqpmZ2dj5MiRqFWrFiwtLeHv74+9e9WX3OzSpQu+/vprTJkyBQ4ODnB1dcW2bdtQXFyMTz75BDY2NvDy8lL1slQVstRUJH4xDqmzZkGphx6ijEiOqkP/R3ApLQepLXGJ7N0baUAKbip1y2TcTEQn1YOVpSVaJdeCPKsUmb/eR+4/T6GUUK8GIcaAkgyidwqFAvv27UNxcTECAwPL3SY/Px+2trZlKpxOmzYNa9aswa1bt+Ds7Izg4GBVASSxWIyWLVvixIkTePDgAcaNG4cxY8bg5s2bam3s3LkTTk5OuHnzJr7++mt89dVXGDZsGNq3b487d+6gV69eGDNmDEpKSnTzAuhZ7v4DeBY8EMX//qu3Y5bGPEUB24Hzds1yH2NSnXjO263KCgq5qcQuoSSD8KCjXVOYlv7/pQoLFF9PRfr62xA/oWWtCTF0VIyP6E1UVBQCAwMhFothbW2NPXv2oF+/fmW2y8rKQsuWLTF69GgsWbIEwMuejK5du2Lfvn344IMPALycy1G7dm3s2LEDw4cPL/eYAwYMQMOGDbF69WoAL3syFAoF/v3/C26FQgE7OzsMGTIEf/75JwAgLS0Nbm5uuH79Otq1a8f566Av8qwspMyejeJLl3k5vmmdWqgfdBcMuF1lJbdmEJrHT+S0zarMwlSI3K41K93OILt8DM/7tNLtPIv7CMnJ9LVD3s3bvR46P6tf/pMMYNXODfb96oExoRXLCDFE1JNB9MbX1xeRkZG4ceMGvvrqK4wdO7ZM8aWCggL0798ffn5+mD9/fpk2Xu/5qFGjBnx9ffHw4UMALxOGRYsWwd/fHzVq1IC1tTXOnDmDxMREtTYCAgJU/y8UCuHo6Ah/f3/VY66urgCAjIyMSp8zXwovXMCzgYN4SzAAQJqUjDxpF87bdUi7in7OWZy3W1WVShWw52Dut4TlZsVzKTejt0gVZ2ZmhjaZnm/e4FWvxsa7kL4o1FtchBDNUZJB9MbU1BReXl5o2bIlli1bhqZNm2LDhg2q5wsLC9GnTx/Y2NggJCQEJiYmWrW/atUqbNiwAdOnT8fFixcRGRmJ3r17QypVHy7y33YZhlF7jGFeDudQalHx2lAoS0qQOvdHvJgwEYqcHL7DQealNCgZa87b/cHuHOdtVmVOHBTkE3OVZEg4aYZUcR2cmsGi8N2XKPLMUmRsvoeC84lgldRDRoghoSSD8EapVEIieXnFUVBQgF69esHU1BRHjx6FuXn5y2WGh4er/j83NxePHz9Go0aNAABXr17FoEGDMHr0aDRt2hT169fH48ePdX8iBqL0/n08f28I8g4e5DsUFUV2DrILOnLebt3U02hkXTXmzOiDHQe9BxKWmyEpUo7qdpCqy8O1NurFaXFzQsmiIDQBmb/chzxHrLvACCFaoSSD6MXMmTNx+fJlxMfHIyoqCjNnzkRYWBhGjRqlSjCKi4uxfft2FBQUIC0tDWlpaVAo1FcRWbhwIc6fP48HDx7g448/hpOTEwYPHgwA8Pb2RmhoKK5du4aHDx/iyy+/RDrXdSAMEKtQIPPnnxH/4ShIExL4DqeMnItPIBe4cNomo5BisdtVTtusysw5uLAXc5RkSKgng7yFSCRC+4KKFfSUJhQgfcMdlNw13qGuhFQl3PR/E/IOGRkZ+Oijj5Camgo7OzsEBATgzJkz6NmzJ8LCwnDjxstqzl5e6l8uz58/h6enp+r35cuX45tvvsGTJ0/QrFkzHDt2DKamL1e9mTNnDp49e4bevXvD0tIS48aNw+DBg6t0UT9pUhJSpv2A0shIvkN5I2VJCTLTW8LNmdtlgZtnhsDRtAuypdoNq6uOBBIFgMolCRK28kOuGMYERjgKkehRYM2msH5a8fcqK1EgZ38sSmNz4DDYCwJzuswhhC+0uhQxCq9Wl8rNzYW9vT3f4RiEgtNnkDpnDpRFRXyH8m4iEep/IIKZ4hmnzZ6oPRUTn7bmtM2qqLmvE657Vq6YXn1zARaVvlepNoRCa4RdrFwbpOpyc6qJvil+EHAwhwgAhI7mcPywEUxrcT8vjBDybjRcihAjw0qlSFu4CMlTphhHggEAcjky4yo2BOJtehWGQMjQrfF3KSmufK0MMQcvs0BQ/lwrQgQCATpKfDlLMABAkS1GxpZIFF1P4axNQojmKMkgxIhIk5IQP/JD5O7Zw3coWisMf4BSQVNO2zTJj8f3HnGctlkV5XFQkK+UgySDYSrXm0Kqrta1AmCbqYOhTXIWef/EIXvPQyjF3NbsIYS8HSUZxCh06dIFLMtW66FSz+9l4vxfTyCOjuY7lApLv2fPeZuj2WOct1nVZBdKIETlRsaWcrA8KCUZpDxODo7we1ZDp8cQx+bgxdQZEMdWnxUHCeEbJRmEGDilksX1kKc4uTUKzxKAzCEz+Q6pwkqjn6AQQZy2aZMRgWE10zhts6qRK1k4Kyv3cS+hJIPoAMMw6ITGECq4GyZVHrbgGoovnkD8iBHI/+cfnR6LEPISJRmEGLCSAimObriLO2cS8epGdHReHZS26cdvYJWQcV0GlqPlUF+ZanWW0/aqohqVHCnCApBXurAirQRG1DWr7Ycaqbp9X4hq5KPw1O8AALa0FCnTZyB1/nwopZUfRljVhYWFgWEY5OXl8R0KMUKUZBBioNLjC3Bg6S0kx+apPa5UsrjnOggKFw9+AqskacIL5Mm7cNqmW0ooWtkVctpmVWPNwXB0mcCuki2YVj4IUmXY2dqhaYKrTo8hchQg9685ZR7P27cfCaPHQJZetWpqLF++HAzDYMqUKXyHQgglGYQYosc30xCy5g6K88qvXFZSKMfj7jPBCrjtEdCXrMsZUDKWnLXHsArMd7nMWXtVkamk8jO35UKbSu3PspRkkP/pbOYPkVR3w6QYCyGKzq0CpOV/jorv30f8sGEojYrSWQz6dOvWLfzyyy8ICAjgOxRCAFCSQYhBYVkW10PiEPp7DBSyt18UpqYqkT50rp4i45Y8Mxs5RZ04bbNx+j9wM6fhD2/CiBWVbkMusK3U/ixLw6XIS41r+8IlSYdzdBhAkX4WsoTYt24mz8hAwugxyD92XHex6EFRURFGjRqFbdu2wcHBQe25tWvXwt/fH1ZWVqhTpw4mTJiAoteWP09ISEBwcDAcHBxgZWWFxo0b4+TJk+Uep6SkBH379kVQUBANoSLvREkGIQZCKpbj5JYo3DmToPE+DzOdUdzhfR1GpTvZF+MgFzhy1h4jLcLiOhGctVfVSItllW5DxlS2J4OSDAJYWVqh5YtaOj2G0DYTxRf2a7QtK5EgZdo0ZKxZC2OtTzxx4kT0798fPXr0KPOcQCDAxo0bER0djZ07d+LChQv44Ycf1PaVSCS4fPkyoqKisGLFClhbl51/lZeXh549e0KpVCI0NLRar/ZINKODRakJIdoqyCrFic33kZNSrNV+LAvcs+uFNrXvQ/TiiY6i0w1lUTGyMtuipmP5d8wqonNeCMwE7SCp5EpKVVFhkRSARaXakAsqN8SNVdJXDgE62QbANEd3w6RETgxy/5in9X7Z27ZBEhcH95UrIbS20kFkurFv3z7cuXMHt27dKvf51+dneHp6YvHixRg/fjw2b94MAEhMTMT7778Pf39/AED9+vXLtJGWloYPPvgA3t7e2LNnD0xNaegjeTf6JiaEZ8mxuTi4LELrBOMVcbEcj4K+g1JkfB/6eWHRkArrctaeqDAZs+s+4qy9qiSnsPxx6dqQMpW78FJSklHt+bjXR6147uZj/ZfASoiCE0sARcVWOii6cAEJI0dC+uIFx5HpRlJSEr755hvs3r0b5ubm5W5z7tw5dO/eHbVq1YKNjQ3GjBmD7OxslJSUAAAmT56MxYsXIygoCPPmzcP9+/fLtNGzZ094eXlh//79lGAQjVGSQQiPHlxOxtGNkRBXcihLRroCqUMXcBSV/rAyGTKf+3La5jDZEU7bqyrySmQwr+RIEJmgskmGcS5UQLhhbmaONhnc3VQoQwDInodAkRpfqWYkT54gfthwFN+8yU1cOnT79m1kZGSgRYsWEIlEEIlEuHTpEjZu3AiRSIS4uDgMGDAAAQEBOHz4MG7fvo2ff/4ZACD9/yV8P//8czx79gxjxoxBVFQUWrVqhU2bNqkdp3///rh8+TJiYmL0fo7EeFGSQQgPWJbFlYNPcGlPLJQKbsYAx6bZorD7R5y0pU8F16NRKmjCWXsWWQ/wiXsSZ+1VJS7Kyg1RkVZyuJVCQT0Z1VmQY1OYF+nuskNokYSSa9xM4Fbk5iLxs88NvnBf9+7dERUVhcjISNVPq1atMGrUKNXvSqUSa9asQbt27eDj44OUlJQy7dSpUwfjx4/H33//je+++w7btm1Te3758uUYO3YsunfvTokG0Rh94hOiZ3KZAuf+iEHcnUzO275n0h5t60fC5FnZ7m6DxbLIiHZG3UbcNTnB/Az+wOfcNVhF2MuBxEp0JsgqueywQkH3taqrujXroN6zyhZzfDORsxK5vy3mtlGZDCkzZkKWngGncV9w2zZHbGxs0KSJ+k0aKysrODo6okmTJlAoFJDJZNi0aROCg4Nx9epVbN26VW37KVOmoG/fvvDx8UFubi4uXryIRo3KfiCvXr0aCoUC3bp1Q1hYGBo2bKjTcyPGjz7xCdEjcbEMRzdE6iTBAACpWIHolhOhNDeeSYsAUHIvFkVox1l7TikX0dkxl7P2qgoraeV6zWRM+WO+NSWX03Cp6sjExATt87x01r7ARoT8v+e/XAmDayyLzLVrkbZwEVhl5WvN6FvTpk2xdu1arFixAk2aNMHu3buxbNkytW0UCgUmTpyIRo0aoU+fPvDx8VFNCv+vdevWYfjw4ejWrRseP36sj1MgRoxhjXW9NkKMTEF2KY5vuofctBKdH6uBuxh193yn8+Nwyay+B+q1uQkG3HyRP6kzDD2fvMdJW1VF65Zu+Nep4veWvrJ7hA55syu8f0H+SNy7Rx3o1U2n2q3g87Sy1eLfQMhAnrAPpRHnddP+a2x69oT76lUQmOmwvgchVQj1ZBCiB1kvinB45W29JBgAEJdijvy+X+rlWFyRPEtEvrwzZ+15pR5HfUsxZ+1VBWxpxVbceUWKyl1cyeX0lVPduDvXhHdc5Yo4vo1AEKuXBAMACkNDkfjpZ1Dk5+vleIQYO/rEJ0THkmNzEbLmDkry9VuN+p6iGaSN2ur1mJWV+W8OlJUckvMKIy/F4lrhnLRVVZSWVG4VM0klkwyZTHe1EYjhEQqF6FDaEAyrm7+7yFmG/IOrddL2m5Tevo34UaMgK2fyNCFEHSUZhOjQ09sZOLbpHqSVvINcEXKpElGNPoPS2l7vx64oeXomcku4681olx0CK5GCs/aMXUFh5RJdKSq3Pj4lGdVLa3d/2GbpZh6O0E6E/H0VH7pXGdKncYgfMRLi2Fhejk+IsaAkgxAdibmagrO/PYBCzt9kwfwcGeIHGlf9jKwL8VAIHDhpS1CSiQUeDzhpqyrIqmRBPilMKrW/TEZfOdWFs4MTGj2roZO2GRMBxLe3QVmYp5P2NSHPyEDC6DEouXOXtxgIMXT0iU+IDty/+AIX/3qkk8VOtBWfIkLOoKl8h6ExZWEhsrK5W2kquDQEDGMAfwgDUCpVwL4SOa+YrdykbZmM/g7VAcMw6MT6QajQUc+V9A7ED67rpm0tKAsLkfT55yi+YfhF+wjhAyUZhHDsztkE/Lv/MWBA11P3i7whbtaV7zA0lnvxIWSCOpy0ZZb7GJNqx3PSVlXgrKz4x76kkkmGpHIdKcRINK/dGA5plev1ehORUwkK/il/eVU+KEtKkPTllyj69wrfoRBicCjJIIRDN48/x/W/4/gOowylgsX9uiOhqOHKdygaYaVSZCQ15qy9T4UnOWvL2NlWojdBwlZufL1Uv2sfEB7Y29qhabyLTtoW1hAibzc/8zDehhWL8WLCBBSe188qV4QYC0oyCOHI9ZCnuHX8Od9hvFFRvgxxfX4EyxjH5NuCK1EQC7gpA+6QdhX9nLM4acvYmVeiIJ+4kkmGRGJA3XtEJzqZBkCogwn+jJkAJf9uBFtazHnbXGBlMrz4ZgoKTp3iOxRCDAYlGYRUEsuyuLz/Me6cSeQ7lHd6kQJkDZnJdxiaYVlkPHTjrLnpduc4a8uYCcQVX21LXImlSBlGBAUt9FWl+dduCJcXlVuB7E3Y/CuQPrmnk7Y5I5cj+ftpyAs5wnckhBgESjIIqQRWySJsdyyiLr7gOxSNRefWRmmbfnyHoZHiu49QzLTmpC2PlFNobGOYd0H1SVGJ5ZQllZjPIRBwU/+EGCZrK2s0f+Guk7ZFNfJReHqHTtrmnEKB1FmzkLtvH9+REMI7SjIIqSBWyeL8nw8Rc8W4ijIplSzuuQ6C3LUu36FoJD3CBCwHxbwYpQwLa17jICLjVlxc8YkRpZVYmUrAVK6QHzFsHa0DYCrmfpiUyFGA3L/mcN6uTrEs0uYvQM6fu/iOhBBeUZJBSAWwLIsLfz1CbHga36FUSEmhHE+6zQAr0E2hLC5JnsSjQMlNgb7mmSFwNK1c1Wtjl1eJgnziSiQZjICSjKrKp1YD1Eqw4LxdxkKIwtCVgNQ4lyVLX7oUOXv28B0GIbyhJIOQCri0JxaPrqXyHUalpKYqkT70R77D0EjmlXwoUfmLVIE4Dws9IisfkBHLLpRAWMH1lUuVFZ+4zVBPRpVkbm6ONmke3DfMAIq0M5AnPua+bT1KX7QYuQcP8h0GIbygJIMQLV3e/xjR/xrXEKk3icl0QnHHYXyH8U6y1HTkirtw0lavwhAIGf6qsPNNrmThVMG5FeLKJBkcJInE8HSo0QzmxdxfSght0lF88QDn7eodyyLtx3nIO3KE70gI0TtKMgjRwvXDf+PxDcNdplZrLHDPpjvkdXz5juSdssMSoWDsKt2OSX48vvcwvFom+uQor9jYeRaAnLGu2EGpJ6PK8azpAc9nVpy3K3JikPfXfM7b5Q3LInXWbBScpHo9pHqhJIPoxfz589GsWTO+w6iU8MP7cO3A72DkITC3qjpVxcQlCjxsPxVKU8O+CFTk5SM7tz0nbY1mj3HSjrGyrkRBPrnAtoJ76qYCNOGHiYkJ2ufW57xdgZUIBccXAcoqtt6xUonk6TNQePEi35EQojeUZFQTW7ZsQUBAAGxtbWFra4vAwECc+v+iQTk5Ofj666/h6+sLCwsLeHh4YPLkycjPz+c5asNx59RRXD3wFwAgL/0FlJJDsLAR8xwVdzLTFUh9fwHfYbxTzsVHkAkqv0ymTUYEhtU0zkn7XDCTVny4mFxYwSSDpSSjKmnv2hSW+RwvHCFgIH1+GIo0w685VCEyGZKnTEVxeDjfkRCiF5RkVBO1a9fG8uXLcfv2bURERKBbt24YNGgQoqOjkZKSgpSUFKxevRoPHjzAjh07cPr0aXz22Wd8h20QHlwMxcWd29QeK8hMg6zoIKzsSnmKinuxqTYo7DGW7zDeipVIkJkcwElbU63OctKOMWIrUStDVsHhUiyrmyJtRP/cnd3gFVfRHq03E5jHo/TaCc7bNSSsRIKkCRNRcvcu36EQonOUZFQTwcHB6NevH7y9veHj44MlS5bA2toa4eHhaNKkCQ4fPozg4GA0aNAA3bp1w5IlS3Ds2DHI5S8vRhQKBT777DPUq1cPFhYW8PX1xYYNG9SOERYWhjZt2sDKygr29vYICgpCQkJCufHExcWhfv36mDRpEli24kM3dO1x+BWc/XUTUE6MRTmZKM3bDxuHEh4i0417okDIGjTjO4y3yv/3AcTCys8hcUsJRSu7Qg4iMj6ykkokGQKbCu3HsqIKH5MYDqFQiA4lvmA4qF3zOpGzEvl7l3LapqFiS0qQ9OV4SJ484TsUQnSKkoxqSKFQYN++fSguLkZgYGC52+Tn58PW1hYi0csLA6VSidq1a+PgwYOIiYnBjz/+iFmzZuHAgZerf8jlcgwePBidO3fG/fv3cf36dYwbNw4MU/aL6P79++jQoQM+/PBD/PTTT+VuYwie343AyU2rwSrfPLSkJC8HRZl7YetYNSpJS8UKRDf/Ckpz7idzckapREZsnUo3w7AKzHe5zEFAxqewqOJziuSCir03lEoaLlUVtHH3h202t8OkBLYi5B/+sdybOVWVsqAAiV+Mgyyt+g7bJFUf3VqqRqKiohAYGAixWAxra2uEhITAz8+vzHZZWVlYtGgRxo0bp3rMxMQECxb8b8x+vXr1cP36dRw4cADDhw9HQUEB8vPzMWDAADRo0AAA0KhRozJtX7t2DQMGDMDs2bPx3Xff6eAsuZH29DGOrlsGhfzdd3xLC/OhVO6GvftI5GdV7C6vIcnJkiNpyELU3WO4f5/iiBgUe7eCFRtRqXYap/8DN/OeSBVXr6E8OYUVL24mYyqaZBh+4Ufydi41nNDoWQ1uGxUxkDzYBWVOBrftGgF5WhqSvhiHurv/gtCW++FnhPCNejKqEV9fX0RGRuLGjRv46quvMHbsWMTExKhtU1BQgP79+8PPzw/z589Xe+7nn39Gy5Yt4ezsDGtra/z6669ITHw5Qa9GjRr4+OOP0bt3bwQHB2PDhg1ITVUvVpeYmIiePXvixx9/NOgEoyArA0dWLYJcovmFmKS4CLkvdsPepWpMlo9LMUdev6/4DuOtMu6Yg63kkA1GWoQldSqXqBijvBIZzCt407jiSQbd0zJmDMOgo8IPAgW3Pc8M8wjiO9V3xSXJkyd4MXESlNKqs2IhIa9QklGNmJqawsvLCy1btsSyZcvQtGlTtXkVhYWF6NOnD2xsbBASEgITk/8Nb9i3bx++//57fPbZZzh79iwiIyPxySefQPraB+Mff/yB69evo3379ti/fz98fHwQ/toqGs7OzmjTpg327t2LgoIC/Zy0liQlJQhZvgDFebla7ystLUF2/G7UqJmjg8j07748ANJG7fgO443Esc9QyHasdDudc/+GmaD6FedzqeDFopSxqNB+CgX1ZBizFrWbwCGd2yFvImcZCg6u4bRNY1Ry6xZSfphu0PMTCakISjKqMaVSCcn/360vKChAr169YGpqiqNHj8Lc3Fxt26tXr6J9+/aYMGECmjdvDi8vL8TFlS1o1rx5c8ycORPXrl1DkyZNsGfPHtVzFhYWOH78OMzNzdG7d28UFhrWpFulQoFj65YhK6n8yeqakEnEyIjbA0f3LA4j44dcqkRUo0+htOF4eASHMq4Wg61k/QVhUQpm133EUUTGw6GCZQikjGWF9qMkw3g52NkjIN6Z0zaF9iLk75vNaZvGrPD0aaQvW8Z3GIRwipKMamLmzJm4fPky4uPjERUVhZkzZyIsLAyjRo1SJRjFxcXYvn07CgoKkJaWhrS0NCgUL69EvL29ERERgTNnzuDx48eYO3cubt26pWr/+fPnmDlzJq5fv46EhAScPXsWT548KTMvw8rKCidOnIBIJELfvn1RVFSk19fhbc5v34KE+5VfVlAulSItdg+c3I1/jHF+jgzPg+fzHcYbyZJTkSvpUul2hsmOVLoNY2MprdhdUylj/u6NyiGX09eNseok8odQxt0wKcZEgNJbW6EszOOszaog989dyN6+ne8wCOEMfepXExkZGfjoo4/g6+uL7t2749atWzhz5gx69uyJO3fu4MaNG4iKioKXlxfc3NxUP0lJSQCAL7/8EkOGDMEHH3yAtm3bIjs7GxMmTFC1b2lpiUePHuH999+Hj48Pxo0bh4kTJ+LLL78sE4u1tTVOnToFlmXRv39/FBfzvzLTraOHcf/8ac7aU8jlSHm0F861U9+9sYFLSBEie5DhzqHJCkuGgqnchHuLrAf4tFYSRxEZB5GkYkPEZKhYkkE9GcbJv05DOCdzuzACK4mAJPomp21WFRmr1yD/2HG+w9DK8uXLwTAMpkyZwncoxMAwLA0CJNXckxvXcHTdMp0sn8gwAtT2H4rMpNqct61PAiGDdjmHYX73PN+hlMuxX1O42J6qVBuZbl3R+vkXHEVk+Fr6OeNqHe0vHj+ze45ued9rvV9uzig8eED3tYyJjZU1hhS3homYu7+byLEYudunctZeVcSYmMBjxx+wbNmS71De6datWxg+fDhsbW3RtWtXrF+/nu+QiAGhT3xSraU+jcXJn9bobH12llUiKeogXOpUfJ6HIVAqWNz3GA5ljZp8h1KunAuxkAkqF5tTahg6O2o/4d9YiUtkFdpPiord1ZbJ6OvG2HS0bsppgiGsIUTebpqH8S6sTIYXk7+BLCWF71DeqqioCKNGjcK2bdvg4OCg9hzDMNiyZQv69u0LCwsL1K9fH4cOHVLbZvr06fDx8YGlpSXq16+PuXPnQib73+fS/Pnz0axZM/z+++/w8PCAtbU1JkyYAIVCgZUrV6JmzZpwcXHBkiVL9HK+RHv0qU+qrYLMDBxZuQhyacVrBmiEZZF4/zBc6pSdKG9MivLleNJnLlgDLJ7IisXISm1eqTYYsJhTI4ybgIxAQWHFlsyseJJheO8b8ma+tRrAPaFiQ+PKw5gJUHJpPVhxCWdtVmWK7GwkTZgIZYnhvl4TJ05E//790aNHj3Kfnzt3Lt5//33cu3cPo0aNwogRI/Dw4UPV8zY2NtixYwdiYmKwYcMGbNu2DevWrVNrIy4uDqdOncLp06exd+9ebN++Hf3798eLFy9w6dIlrFixAnPmzMGNGzd0eq6kYijJINWSpKQYfy+fj5L8PL0dM/H+P3CpE6u34+lCcgqQNWQW32GUK+/yA0iEXpVqwyv1OOpbijmKyLBlFVQsuRZXcDUvacU6TggPLMwt0CbNg9M22fx/IY2L4rTNqk7y6BFSps8wyKVt9+3bhzt37mDZW1bEGjZsGD7//HP4+Phg0aJFaNWqFTZt2qR6fs6cOWjfvj08PT0RHByM77//HgcOHFBrQ6lU4vfff4efnx+Cg4PRtWtXxMbGYv369fD19cUnn3wCX19fXLxYfWutGDJKMki183Kp2uXIfpGo92Mn3j8Bl9oP9H5cLj3IdUdp2wF8h1GWQoGMJ/Uq1QQjL8XiWuHv3rAKKJUpYF+Bud9StmJJhoxqjRmNDg5NYVbM4TwMhzwUnt7JWXvVSWFoKLJeuzA3BElJSfjmm2+we/fuMsvdvy4wMLDM76/3ZOzfvx9BQUGoWbMmrK2tMWfOHFWB31c8PT1hY/O/hT1cXV3h5+cHgUCg9lhGhvGv5lgVUZJBqp1z2zdzslRtRSVGnYVzrUjejl9ZrBK45xwMuZsn36GUUXQzGiVM5YZNtcsOgZWogkUkjIyzUvuvAAlbsVWiJJRkGIV6bnVR93nFqrqXR+QkQO5fczhrrzrK2rwFBacqt7AFl27fvo2MjAy0aNECIpEIIpEIly5dwsaNGyESiVRL37/N9evXMWrUKPTr1w/Hjx/H3bt3MXv2bLUCvwDUigIDL+d6lPeYUln9CqoaA0oySLVy59RRRJ0/w3cYSHpwAc7uEWBheN3gmigpkuNx5xlghSK+Qykj417llrMVlGRigYdx9zZpylau/ftPzFbsby6VGOd7vToxNTVFYE59ztoTWApReGY5dWNxIGXmLJRGR/MdBgCge/fuiIqKQmRkpOqnVatWGDVqFCIjIyEUvrwRER6u3iscHh6uqp117do11K1bF7Nnz0arVq3g7e2NhATjXiCFlEVJBqk2kh/F4NKu3/kOQyUp+jKca4YDjHFefKWlKZA2dB7fYZRRGvMUBWyHSrURXBoCxkj/Ltowr8CFv4St2NeGhJIMgxfoEgDLfI4uCxhAnnwS8qSn3LRXzbFiMV5MnAR5ZibfocDGxgZNmjRR+7GysoKjoyOaNGmi2u7gwYP4/fff8fjxY8ybNw83b97EpEmTALws8JuYmIh9+/YhLi4OGzduREhICF+nRHSEkgxSLRTn5eL4+uVQKuR8h6LmxcPrqOFyxWgvaB9m1EBR5w/4DqOMzOsSsKh4L4tZ7mNMqh3PXUAGSiDWfliYuAJJBsOIoFDQ6lKGrLaLO7zibDlrT2idjuJLhzlrjwDytDS8mPwNWLlhfY+9yYIFC7Bv3z4EBATgzz//xN69e+Hn5wcAGDhwIKZOnYpJkyahWbNmuHbtGubOnctzxIRrVIyPVHlKhQIHF8/GixjDHQLj5t0cebmdwSqML+83sxSizYN1MEk0rJWzag7xg4PpuQrvn1szCM3jJ3IYkeFp7uuE655mWu3jZc5gQekQrfYRCq0QdlG7fYj+CIVCDDXrCJscbqqyi5yA3N+/ApTVY26TvtX4+GO4zpjOdxhvxTAMQkJCMHjwYL5DITwyvisaQrT0796dBp1gAEDqk7uwtTsPoRFOOJaUKPCo3bdQmnK3pj4XMi+lQYmKT2B1SLuKfs5ZHEZkeEqKtR8rX6rUvkeCYbRLZIh+tXUP4CzBEFiLUHBsESUYOpSzYwcKQkP5DoOQd6Ikg1RpT25cQ8Sxv/kOQyPpcVGwsj4LkYnxfTlnZsiR8v4CvsNQo8jOQXZRp0q1Md2u4j0hxiC3QPskQ1yBvm+BwLASUPI/Lo7OaPjM4d0bakLAQPr0EBTpSdy0R94oddZsSBP1vww7IdqgJINUWbmpyTi9ZT3fYWgl4/lDmJufhImZ8SUaj1OtUdDzE77DUJNz4QnkAucK7++RcgqNbYo5jMiwZBdJINRyhbNShfZZBvVkGCaGYdBJ7gcBR/NlBGbPURp+kpO2yNspCwvx4pspUEoqVlRT11iWpaFShJIMUjXJZTIcW78C0tISvkPRWlbiE5gIj8LEwvhKJN8TtIHMq3J1KrikLClBVnqrCu/PKGVYWPMqhxEZFoWShZOWtTLESkoyqoqWtZvAPp2bZahFzgrk713KSVtEM5KHD5G+eAnfYRDyRpRkkCopbOevyIx/xncYFZaT/Bwi9h+YWRrX+vIyiRIPmn0FpYU136Go5F6KhlRQ8UrgzTOPwNHU+BI+TTnKtbuLrQQgZ7Sd62Kq5fZE1xzsHOAfX/FevtcJbEXIP/gjJ20R7eQdPIj8f/7hOwxCykVJBqlyYq//i3uhhlMdtaJyUxMB2d8wtzauRCM3S4bE9xbyHcb/yOXIeO5d4d0F4jws9IjkLh4DYyPTvmdCLtB2qVNKMgxNZ1ETCGUcDJMSMZBE7YQyj//6DdVV6vwFED9+zHcYhJRBSQapUvLSUnH2l018h8GZ/IwUKEoPwtLGMMfdvsmzFDPk9Tec5V8Lrz9AqSCgwvv3KgyBkFFyGJHhMJFof15ygXZV1VnWROtjEN0JqNMITsncJH4MHkJ89xInbZGKYUtLkfzNFCiLq+78MWKcKMkgVcbLeRjLjXIextsUZqVDUrgfVnalfIeilfvSJpA0bs93GCoZUTUqvK9JfjymeVTNysWMWPvCXjItkwxQkmEwbKxt0DzRjZO2RM5SFBxay0lbpHKkz58jbSnNiSGGhZIMUq6wsDAwDIO8vDy+Q9HYpV3bkfE8ju8wdKI4NwuluftgXcN4Eii5TIkHvh9DaVPxi3sulUQ9RiFb8aRnFHucw2gMh6RE+yRD254MJSUZBqOTZQBMJJUfJiW0FyFv3xwOIiJcyT/8NwrOnOU7DEJUKMngWXJyMkaPHg1HR0dYWFjA398fERER2LJlCwICAmBrawtbW1sEBgaiX79+YBgGS5cuxddffw1fX19YWFjAw8MDkydPRn5+Pt+nw5vnkbcReaZqXgS+UpKfi+KMPbB1KuI7FI3l58jwPHg+32GoZNxQgGUrVnTMJiMCw2qmcRwR/4qKtJ/zIxNoN7GfVXKzghGpnIa1veCWWPmaJYyJAKU3t4ItzKt8UIRTqT/+CFla1fucIsaJkgwe5ebmIigoCCYmJjh16hRiYmKwZs0aODg4oHbt2li+fDlu376NiIgI1KpVC6dOnYKLiwvy8/ORkpKC1atX48GDB9ixYwdOnz6Nzz77jO9T4oW4uAhnf9nIdxh6UVpYgPyUPbBzLuA7FI0lpAiRPXga32EAAKTxSciXd6nw/lOtqt5dwuxC7ef7yBhLrbanngz+WVhYoHWKBydtseJbkMTc5KQtwi1lfj5Sps8Aq6yac8iIcaEkg0crVqxAnTp18Mcff6BNmzaoV68eevXqhQYNGiA4OBj9+vWDt7c3rKysEB4eDltbWygUCri5ueHw4cMIDg5GgwYNYG1tDZlMhsOHD6Nly5YICQkBwzBgGAYnTpyAv78/hEIhzM3NYW5uDl9fX2zYsAEJCQkIDg6Gg4MDRCIRbG1tMXbsWLi6umLAgAEAALlcjmnTpqFGjRowNzeHl5eXwQ2hurjjVxTlZPMdht5IiouQk7gbDq55fIeisajCehC36MF3GACAzH8zoYRFhfZ1SwlFK7tCjiPiV36JDOZaLjAl03IJW6WyYr1HhDsd7ZvCrKTyw6REjkUoPPYLBxERXWBMTGDtWgJc38x3KIRQksGno0ePolWrVhg2bBhcXFzQvHlzbNu2TW0bpVKJ0aNHo3v37hCLxTAzUy9qVVRUhAEDBsDFxQX29vZYsGABvv/+e9Xz06ZNw8qVK/HFF1+gdevWcHJywqxZszBr1iy89957kEgkuHz5MgYNGgS5XI7CwkJcvnwZEyZMAACMGDEC5ubm8PT0RJ06dZCYmIiiIsMZrhN3+wZiLl/gOwy9k4lLkflsN2q45fAdikaUChb36wyDskZNvkOBPCMLOcWdKrQvwyow3+UyxxHxz0XLis/a9mQoFJRk8Km+myc8nmtb26QsYQ0h8nbTPAxDZepZB57DLOFoeQbMhYVAxkO+QyLVHCUZPHr27Bm2bNkCb29vnDlzBl999RUmT56MnTt3AgCioqJgbm6OsLAwHDlyBCEhITAxUR92sGfPHigUCqSmpmLChAkYMGAApk3739CUefPmoW/fvti6dSv++ecf5OTkwMLCAp988gni4uIQFBQEf39/2NjYwMXFBYcOHYKvry/69esHAMjLy8PRo0dRv3593L9/H6amprhy5Yr+XqS3KC0qROivP/EdBm/kUgnSn+yBo7txrE9flC/Hkz5zwTIcrM1fSdkXn0EucKzQvo3T/4GbuXHVLnkXB4V220sZ7XqCKMngj6mpKQKzK16M8hXGXIiSsHVgxcaz+ES1wTBw6NEU9QLvwVz5/4mFQgL8/QWgqLqFRInhoySDR0qlEi1atMDSpUvRvHlzjBs3Dl988QW2bt0KACguLoadnR1OnTqFCRMmYOzYsZDJ1D8w7t27B5lMhsaNG2P+/PkAgMDAQNXzr/7/559/Rs+ePSGVSjF69Gj8+uuvqFGjBhYvXoygoCBERkbCw8MDAoH6W+LRo0fw8vLC/v37YWFhAUdHR2RkZOjwVdHc+e1bUJyXy3cYvFLIpEh9tBfOtdL5DkUjySlA5vuz+Q4DyqJiZGW2rdC+jLQIS+pEcBwRvyyl2o2X0jrJkNNXDV/aOzeFRUHlX39lbhikzx5wEBHhksjJEXU+qI2aTqcgYMXqT6ZFAWHL+AmMEFCSwSs3Nzf4+fmpPdaoUSMkJiYCAMLDw5GdnY0BAwZg1apVyM7ORkpKCr777jt4enqisLAQISEhEIlE5fZyvLJv3z58//33+Oyzz9CgQQOMHz8en3zyCezs7PDs2TOMGTMGubm5uHLlCjZtUi9kV69ePVy+fBkxMTEAAIZhoDSACWWPw68g9lrVG7ZSEUqFHC9i9sK5dgrfoWgkOscNJe2C+Q4DeWHRkAoqNhG2c+7fMBPw/++AKyKJdl0ZMpi9e6PXyOXUk8GH2i7uaPBMy5om5RDZ56LozC4OIiJcsmnbBPV6JsMaN9680ZX1QNItvcVEyOsoyeBRUFAQYmNj1R57/Pgx6tatCwAYM2YM7t+/j8jISERGRqJVq1awsLDAtGnTcPjwYfTq1QvW1tZleh/Cw8PV/v/q1ato3749Ro4ciRcvXqBDhw6Ii3tZT6JOnToYP348unbtCi8vrzJzQjp06ICxY8eie/fuqkSDbyX5eTj3G01qex2rVOLFgwNwqZPEdyjvxCqB+04DIHfz5DcOmQyZCY0qtK+wKAWz6z7iOCL+KEu1SzIkWicZ/A+Rq25EIhE6FPmAYSv32oucBMjdPZejqAgXBJaWcHu/IWrXOwsR+455eawCCPkSkNIwN6J/lGTwaOrUqQgPD8fSpUvx9OlT7NmzB7/++ismTpyImTNnIjo6GtbW1mBZFrt370ZERARsbW1hb2+PiRMnori4GIcOHQLLshg9ejQuXbqEY8eOYfXq1apjLFy4ECzL4ubNm+jXrx/s7OwQGRmJW7duITk5GWfOnMHz58+RnZ2NrKwsNGpU9qJr9erVGDVqFLp161ZmuBYfzv22GaWFxrOEq76wrBKJUYfgUuc536G8U0mRHLGdp4MV8ls/oeDaA5QKGldo32GyI9wGwyNxsXb/rqVaJhkyGSUZ+tbWLQDWOZXrQRJYClF4ahkgq1pzkIyZhZ8X6g2Wwd5EiwVPcuKA0B91FxQhb0BJBo9at26NkJAQ7N27F02aNMGiRYuwfv16jBo1ChkZGfjoo4/g6+uL7t2749atWzhz5gzMzc3x4sUL3LhxA1FRUWjatClycnJw+PBhdOnSBTNmzMCKFStUx1i+fDkuXLiAkpIS3Lp1C0VFRcjLy1OtHjVx4kQ0atQIoaGhsLKywubN5fcQrFu3DsOHD0d6ejqvczIeXgnDk5vXeDu+wWNZJN4PgUudp3xH8k7paUqkDZ3PbxAsi4xolwrtapH1AJ/WMvyeI00UaFmQTwLt6l5QkqFfro4u8I2zr1wjDCBLPg55chwnMZFKEongNCAAdf2vwlSZoP3+t34z2GFTXbp0wZQpU3TWvqenJ9avX6+z9smbMSzLarlCOjF08fHxqFfv5Woiubm5sLe35zcgjhTl5mDndxMgLjacJXQNmUdAX2QkVWw4kN4wQFvlv7C6tI/XMOqM9IA1G/7uDf8j070rWj/7QgcR6ZeFiRC53TRfXniwbR6G5Wte/DP++UdISqKvGn0QCAQYYt0R9hmV6yUU2qQib9c8jqIilWFaxx3uHSWwUEZVriHXJsC4SwDPPcj/1aVLFzRr1kxniYCnpyemTJmi00SGlI96MojRCP11EyUYWki8fwoutSv5paRrLBBp1QVyj4a8hpFxkwFbgY9Dp5QwdHY0/hXOSmUKOGiRA2jbkyGl0TZ607JWk0onGCJnIG/3Qo4iIpVh3zUA9YIeVj7BAID0B0A4zWck+kNJBjEKDy6G4tkdw+zqNWSJUaFwrnUHLAz3LrKkRIGYdlPBmprzF0NcAvIVnbXejwGLOTXCuA+IB04Kzb8OpNBurL9USsOl9KGGvQMaP3eqVBsCaxEKjiwAlFoWTyGcEjrYo/aIenBzPQ0BirlrOGw5kGd4wzzlcjkmTZoEOzs7ODk5Ye7cuXg10MbT0xOLFi3CyJEjYWVlhVq1auHnn39W7cuyLObPnw8PDw+YmZnB3d0dkydPfuOxfvvtN9jb2+P8+fM6P6/qjpKMKsjT0xMsy4Jl2SoxVKokPw9hu37jOwyjlfQgDM5utwADTjSyMuR48T6/d04z/82FktE+0fFKPY76luJ3b2jgbOWavz/ESm2TDMN971UlnQRNIKrMSl4CBtKnB6DITOYuKKI1q5Z+qN83Cza4yn3jsmLg5LR3b6dnO3fuhEgkws2bN7FhwwasXbsWv/32v+/9VatWoWnTprh79y5mzJiBb775BqGhoQCAw4cPY926dfjll1/w5MkTHDlyBP7+/uUeZ+XKlZgxYwbOnj2L7t276+XcqjPDGphHSDku7doOSTGHd3KqoRcxV1CrkRzZ6YFAJZe01JUnqVaw6/kJbEP/4OX48rQM5JZ0hqPFGa32Y+SlWFwnHB8+6aKbwPTEXMICGuZYYla7JEMioSRD15rW8YPTE9NKtSEwfYbS8NMcRUS0xZibw6VvfdQwOwfosgzP41PAw2NAI/7rFb1Sp04drFu3DgzDwNfXF1FRUVi3bh2++OLlnLegoCDMmDEDAODj44OrV69i3bp16NmzJxITE1GzZk306NEDJiYm8PDwQJs2bcocY/r06di1axcuXbqExo0rtqog0Q71ZBCD9iLmAWL+vch3GFVC8sNw1HD+F4wBF5G7J2gDqXcL3o6fdTEeCsZe6/3aZf8NK5FxDy8RiOUabythNf/qYCCEXPOmSQXY2tiiWaLmE/fLI3JWIH8fVYfmi7l3PdR7X/AywdCHU9MBSaF+jqWBdu3agWH+dwMsMDAQT548gUKhUP3+usDAQDx8+BAAMGzYMJSWlqJ+/fr44osvEBISAvl/PnTWrFmDbdu24cqVK5Rg6BElGcRgKRUKnNtOk9S4lBIbATuHixAIDTPRkEmUiA74EkorW16OrywoRFZO4Ls3/A9BSRYWeDzQQUT6I9eiIF+pUvPeMIFAu5oaRHudLPxhIql4D6XQVoT8g1RHgRcCARz7NoVny5swU+hx6fGCZODiUv0dT4fq1KmD2NhYbN68GRYWFpgwYQI6deqkVterY8eOUCgUOHDgAI+RVj+UZBCDdfvEEWS/SOQ7jCon7ek92NiGQmhimHfec7PlSBy0gL/jX3wImaC21vsFl4aAYYx3WFCJFrUyJFoMuWME/E3orw4a1fZGzcRKvMYiBuL7O6DMy+QuKKIRk5quqPuBC1zsToEBD4Vub/wCpN7T/3HLcePGDbXfw8PD4e3tDaFQqPr9v8+/XjzYwsICwcHB2LhxI8LCwnD9+nVERf1vRa42bdrg1KlTWLp0qVrBYqJblGQQg1SYnYXrh/byHUaVlf4sGpaWpyEyNcxE41mKKXIHTOLl2KxUisykJlrvZ5b7GJPqxHMfkJ7kFWqeZIi16AijngzdsbSwROsU7RPi1zFsNMSRlzmKiGjKtmMA6nWNgyV7h78gWAVwbAqg5L9nOzExEd9++y1iY2Oxd+9ebNq0Cd98843q+atXr2LlypV4/Pgxfv75Zxw8eFD1/I4dO7B9+3Y8ePAAz549w19//QULCwvUrVtX7Rjt27fHyZMnsWDBAirOpyeUZBCD9O/e7ZBJjH/FHkOWGR8LM9PjMDU3zAHz9yWNIWnSgZdj5199ALFA+0KGnwlO6CAa/cgqkkCo4QpkpUrNe2wYhpIMXelgHwDTkop/jYucJCg4vJ67gMg7CWxtUGu4F2rVOg0hW8B3OEDKnZfVwHn20UcfobS0FG3atMHEiRPxzTffYNy4carnv/vuO0RERKB58+ZYvHgx1q5di969ewMA7O3tsW3bNgQFBSEgIADnzp3DsWPH4OjoWOY4HTp0wIkTJzBnzhxs2rRJb+dXXVHFb2JwcnKuIjp6GgqfNMbDM6l8h1Pl1ajlCTkbDGmpdgXW9MHWwQQtzs+EoCBb78e2atEIHj7ar6M+wWYjTmZWrlYBX+x71kaa4N1fCUIAf7Lva9SmuZkvQkPLrvRCKqeBuye6PmtQ4f2F9iLkH5wCttgALnSrCcumvnBvHAsTZQrfoagzswUm3gRs3fiOpFxUsdt4UU8GMShKpRyPnyyCVJYOM88LCJwkgmvDGnyHVaXlJMdDoAyBuZXhlWUuyJXh2YD5vBy7+M5DFDOttd5vup2eVofRgRoa1lhQAJAzlpo1ylRuWVVSlpmZGdpleVZ4f8ZUgNIbmynB0BPGxAQug5rAo2GY4SUYACApAE7P4DsKUgVRkkEMSnLyXygufqL6vVQWBfcuN9DmU2eY29KwC13JS3sBpeQwLGwkfIdSRmKKAFmD+SkelRFhClbLuiIeKafQ2MY467rYyDTv2FYIbDTckpIMrrV3CoBFgXa1Sl7HltyE5GEEhxGRNzGr5wHPYRZwtDhr2AtDxBwBnl3iOwpSxVCSQQyGVJqDZ883lHmcZeWQmlyG/5gkNBngzkNk1UNBZipkxQdgZWd4c2EeFNaDuGUvvR9X/OQ5CpSdtNqHUcqwsKYOKvXqgYlE8wmgMoGGywyzhjcMz5jVca2F+s80TfDKEjkWovD4rxxGRMrFMHDo2RSe7SJhrnzEdzSaOTvbICaB/1d8fDwNlTJSlGQQgxH3bA3k8jd338vk2RDVOo/Arxm4NSk7oYtUXlF2JsR5+2BtX8p3KGqUChb3ar0PhaP+xwxnXikAq+Xd+OaZR+BoysOSlJWlRUE+uYY9Gdq+duTNRCIRggq9wWjZu/aKsIYQebtmcxwV+S+RsyPqjKiFmo6nIGAN76bNG6VFAff38R0FqUIoySAGobDwIVJSNCuSUyqNQc2g62j7uSMsHWgNfq4V5+WgOHsvbGoY1pCf4gI5nvaaC5apeNGxipClpiNX3EWrfQTiPCz0iNRJPLokK9FBkqEUVTQc8h9t3QJgnVOxYVKMuRAlF9eAlRrRRa8RsmnXBPV7voA1e5PvUCrmwmJAZlg3mYjxoiSDGIS4uJUANO+mZaGARHgFfh/Gw3+QO6Df684qr7QgD4Xpe2DnVMR3KGqSU1lkDJ2j9+NmhSVBwdhptU+vwhAIGcMbevA2hVoU5JMKrDXaTknDpThR08kVvnH2FduZAZTZFyB9HsNpTOR/BFZWcBvqi9qeZyFU5vIdTsUVJAPXfuI7ClJFUJJBeJebewPZORUrBiWX50JY8zzaTVKgdnPjXDbUUImLCpH74i/Yu+TzHYqamKyaKGk/WK/HVOTlIzuvvVb7mOTHY5rHUx1FpBs5hZpP/JcxVhptp6SejEoTCAToKGkIgbJid1NEdtkoCt3NcVTkFYvG3qg3SAJ70UW+Q+HG1fVAUQbfUZAqgJIMwru4uFWVbkMsfQynNlfQbpwDrJ0sOIiKAIC0tATZCbvh4Go4d+ZYFrhXoy8UbvX0etyci7GQCbRbeGA0e0xH0ehGXokM5hougCPTcAlbSjIqr1WtJrDLrNjrKHISIHf3PI4jIgAAkQjOAwJQt8kVmCoT+Y6GO9Ii4OISvqMgVQAlGYRXmZmhyC+4y1FrLMTMNTQc/hRN33cHI6QxVFyQicXIfLYbNdz0XxDvTUqL5HjUeTqUIv1NKmbFYmSmNNVqH+uM2xhWM01HEemGq4Z3yzVNMhQK+pqpDEf7Gmj8vGK9tAJLIQpPLgVkhlcDx9iZ1qkFz+F2cLI+DYZR8B0O9+7sAjIf8x0FMXL06U94w7JKxD1bw3m7ckUBGKfzaDtBgrqtXThvvzqSS6VIf7IHju6ZfIeikp6mQNpQ/d6hzf/3ASQCH632mWp1VkfR6Ia9hnO/pYxmPYYKRcXrORCgE9MEQg2LJKphANmL45CnPOM+qGrOvltT1OsQDQtlFN+h6A6rAC4s4jsKYuQoySC8SUsLUSu8xzWxNA4OLS4hcLwdbGtqNn6cvJlCJkPqo71wrm04d+YfpdujqMuH+jugQoGMJx5a7eKWEopWdoU6Coh7lhoW5JNpmmTIKcmoqGZ1/OCYWrGJ80KrFJRcDuE4oupNWMMBtUd4ws3lFARsCd/h6N7Do0DyHb6jIEaMkgzCC6VSWm7hPV0oZcPhPeQRmn/gBoGI3vKVoVTI8SJ6H5zrJPMdyksscM+iE+R1/fR2yKJbMSgRtNB4e4ZVYL6L8VTSFYk1G/ohhWbLR8vl9G+uImxtbNEsoWaF9hU5A3m7F3AcUfVm3doP9ftkwAbX+A5Fv87N5zsCYsTo05/w4kXybojF+rtQVSiKwNpfQJuvilA/yFVvx62KWKUSSVEH4FInge9QAACSUgVi2n4D1kx/E/7T72jXM9Y4/SjczI1jXLyyVNMkw0yj7eQ0XKpCOlv4QyTVfpiUwFqEgpD5L1dIIJXGmJuj5hA/1GlwDiKl4QwX1Zvnl4C4C3xHQYwUJRlE7+TyYsTHb+bl2GJpAmybhCFwgjXsamtWTIyUg2WReP8wXOoYxnjvrAw5XgzR351b8aM4FCg7abw9Iy3CkjoROoyIO+JizSqVSzWs5C03wsLnfPOr7QPXxAoUGhUykD7eB0VWCvdBVUPmvvVR733AwfQc36Hw6/xCSlpJhVCSQfQuMWk7ZLIcXmMoVdxCg+AotPzQDSJT+mdQUYn3j8CljmGsQPIk1QoFvT/X2/EyrhWDhebj5Tvn/g0LoeGvQpOvYUE+iYZJhkxGq7xpw8rSEq2Sa1VoX4FJHEpvGtdCAwZJKIRj36bwbH4DZgrDuJHCq5S7QMwRvqMgRoiuroheSaU5SEzczncYAAClshQKmwto+WU+vDq78R2O0Uq8fxwudaL5DgMAcA8tIfVppZdjyV6kIlfSRePthUUpmOnxSHcBcSSrQKzRdhINEywpJRla6WDXFKal2n81i5wVyN+3XAcRVS8m7jVRd7gTXOxOgQF1w6mELafeDKI1SjKIXiUk/gqFoojvMNRIpC9g3fACAidawNHTlu9wjFLi/TNwrn2P7zAgkygR7f8FlFb6+TtmXUqBgtF82N0w2T86jIYbYpkSDhpcS0hYzZIMKtGgOS/3eqjzXLP6I68T2omQf2CODiKqXuw6BaBe56ewZLmq3VSFZD4CYk/yHQUxMpRkEL2RyfKRnLyH7zDeqFR+B3X7RqLVmJowMacqxdpKijoPZ/fbYMHv3a7cbDkSBi3Uy7EUObnIKeig8fYWWQ/waa0kHUbEDScNCuhJWM3+jUgpydCImZkZ2mV6ar+jiIE48nco8w2nWKaxEdrZotZwL7i7n4aQLeA7HMP171q+IyBGhpIMojcvXvwJhaKY7zDeSqmUQG55Ec0/z4ZvdxpCpa2k6EtwdrsB8JxoPE8xQe6AyXo5VvaFx5ALNF+x7Cuz0zqMhhu2GtTKkECzVaMkEhpioYkgp6YwL9T+K5lRRkF874oOIqoerJo1RL3+BbAVXOY7FMOXHAE8/5fvKIgRoSSD6IVCUYqkF3/yHYbGpLIUWHhdQOAkMzh72fMdjlF5EXMNjq5XwTD8XlzelzSCOKCjzo/DlpYiM03zuhlOKWHo7Jirw4gqz1z67r+dWElJBlc8XGuj3jNrrfcTOYlR8PdGHURU9TGmpnAZ3AR1fC/CREmrcWnsCvVmEM1RkkH0IjllH+8rSlVEqSwStXtEoPXHrjC1qljl3eoo+dFN2DtdAiNU8haDQqbEgwZjoLRz0vmx8i5HQyJooNG2DFjMqRGm24AqSSCWv3MbMavJ14cAcjlN/H4bkUiE9gVeYFjtXiehgwh5e2keRkWY1feA51BzOJqf5f1miNGJuwCkRPIdBTESlGQQnVMqZQazolRFsKwMMrMwNPskDY36uPMdjtFIfXwHdvYXIBDxl2gU5MoQ13++7g8klyMjrr7Gm3ulHkd9S81WceKDXIOCfGLluy+KBQLNCvZVZ+3cAmCdq13BQsZUgNLrP4MtpvkDWmEY1OjVFJ5t7sJcafgrvRmsK+v4joAYCUoyiM6lpf8DiSSV7zAqTSrLgFnd8wicJIRrwxp8h2MU0p7eh7X1WQhN+KsPkZTCIOu96To/TtGNaJQwzTTalpGXYnGtcN0GVAklGtTKEGtw510gqEBBuWrEzckVPnH2Wu/HloRD8ug29wFVYSIXJ3iMcIdrjVMQQMJ3OMbt4VEg6ynfURAjQEkG0SmWVSIh4Ve+w+BUqewB3LvcQJtPnWFuS3dq3yXjeQwsLU7BxPTdQ3B05UF+XZS26q3z42Tc03zp3HbZf8NGxN9r8ja5he++CJNo0EFFScabCQQCdJQ0hECDHqHXiWoUovD4bzqKqmqyCWyC+t0TYcXe4juUqoFVAlfX8x0FMQKUZBCdyswMRUlJHN9hcI5l5ZCaXIb/mCQ0GeAG0LDzt8pMeAxTk+MwseCnuJVSyeK++xAonCpWSVlTpTFPUchqtqStoCQL8zwe6DSeisoukkL4jhXCSpXvHsvOMJpVBa+OWtfyh22mdktlixyFyPtrto4iqnoE1lZwG+qL2nXPQsjm8R1O1XJ/P1BAE+bJ21GSQXQqIWEr3yHolEyeDVGtCwicBLj7O/IdjkHLfvEMIvYfmFnyk2gUF8jxpOdssALtxr9rKyNcCpbV7BjBpUcMcuKpQsnC+R21MsSaJBmgnr7yODk4wu+Zdp8XjLkQRedXg5Ua7lweQ2LR2Bv1BophL7rIdyhVk0IKXP+Z7yiIgaMkg+hMTs5VFBTe5zsMvSiVPoRr++to+7kjLB1oiMib5KYmAvK/YWHFz5jolFQWGe/rdkUeacIL5Mm6aLStWe5jTKoTr9N4KsrxHcN45CygYN7xXmcoyfgvhmHQEY0hVGjR/ckAysxzkMU/1F1gVYVIBOdgf9T1/xemSsMvfGnUbu8ASoxv1UiiP5RkEJ2Jr+K9GP/FQgGJ8Ar8PnyOgMHuYBgaQ1We/PRkKMSHYGHDzx3ZmCwXlAS9p9NjZF5KhxJWGm37meCETmOpKCsNamXIBXbv2IKGS/1Xs9p+cEzVbjlsoV02is7v1VFEVYepRy14DreBk9UZMOBvVbtqQ1oE3NzGdxTEgFGSQXSisDAaubnX+A6DF3J5HgSu59Fukhx1WjjzHY5BKshKh6zoACzt9J9osCxwz74P5O6aLzmrLUV2DrKLNCsEaJ92Df2cs3QWS0WZSd99kSYX2Lx9A5Zqy7zOzsYWTRM0rw4PACInBnm75uoooqrDvltT1AuKhoUymu9QqpcbWwFpMd9REANFSQbRiRcv/uI7BN6VSh/DsfW/aPelA6ydLfkOx+AU5WRBnLcP1g4lej92abEcsR1/gFKkuzvtORfjIGc0KwQ43e6czuKoKLb03StfvSvJYEFJxus6mQdAJNW8h1NgJUTBySWAwjBXITMEQscaqDOiLtxcTkHA6v+zpNorzQHu7OI7CmKgKMkgnJPJCpCWfozvMAwECzGuoeGwJ2g21A2MkIZQva4kLwfFmXtg61ik92OnpyuQNnS+ztpXFhcjK7ONRtt6pJxCYxvDuhsoK3n3ha1UYP3W51klJRmvNK7tA9ckLeaoCABZwlEoUuJ1FpOxs27TGPV7pcEa1/kOpXq7te1lFzEh/0FJBuFcatphKJWlfIdhUOSKAsDxAtpOEKNuGxe+wzEopYUFyE/dAztn/VcvfpRmh8Juo3XWfm7YA0iFnu/cjlHKsMjtqs7iqIhCDQryvasnQ8lqt0RrVWVlaYWWydotnyy0TEbJlX90FJFxYywsUHNII9SpHwoRa3hDDaud7KfAM1rFi5RFScZbJCcnY/To0XB0dISFhQX8/f0RERFR7rbjx48HwzBYv369foM0MCzLIjl5N99hGCyx9Bkcml9C4Hg72NbUbGJwdSApLkJu0h44uOTr/dj3zDpA5tlYN43L5ch45qPRps0yjsDRlJ/lfcuTXfDuFcCkzNvfw0olJRkA0NG2KUxLNf+6FTmzyNu9UIcRGS/zhg1Q/z0lHEzP8x0Ked2t7XxHQAwQJRlvkJubi6CgIJiYmODUqVOIiYnBmjVr4ODgUGbbkJAQhIeHw93dnYdIDUtO7lWUlDznOwyDV8qG/x975x0mVXX//9e9U7fX2V5pC0sXkK6gIgqWKBosMUaNERWNJagx0Vgi0RSjSdTE/BL1G1tiQY3d0ESKlN2lLmzvvc9On7n398euwLK9zpbzep55Hubec8/5zLAzc97305h4ZSaz10Yja8XHEMBps1JT8AYhUfVDvK6HY/PuRjX4DMr85t1HsMnTux0n2xt4IiFjUGzoC402F8ZuIiDcUte5RiJcCibFjCOuoOd/W3KAlqb3fyXCT85EoyF81UySZu1Gr4jfmGHHic+gsdTbVgiGGWJ30wnPPPMM8fHxvPLKK5x99tkkJydz4YUXMn78+DbjSktLueuuu3jjjTfQ6dr+oBYUFCBJEm+//TaLFi3CaDQybdo0tm/ffnKMx+PhlltuITk5GR8fH1JSUnj++efbzPOjH/2I733ve2zcuJHIyEiCg4N54okncLvdbNiwgdDQUOLi4njllVcG7w3pIaUi4bvHeDwW1OAtnH17M+MW967izGjF5bBTlfMGYdFDGwJRW+2meM3g3TmuOtyzxmsXmjehkYZP6c3IbnplOLsRGZ5uGvqNdowGI2dXJfb8Ao2E88RbeGorBs+oEYguJorEtaGYAj9DQiTBD0tUDxzw/h5EMLwY278AXfDRRx8xd+5crr76aiIiIpg9ezZ//3vbetCKonDDDTewYcMGpk7tPNxiw4YN3H///aSnp7Nw4UIuvfRSamtrT84RFxfHO++8w7Fjx3j00Ud5+OGH+c9//tNmji1btlBWVsbXX3/Ns88+y69+9SsuueQSQkJC+Pbbb1m3bh233XYbJSUlA/9m9BC7vZya2i1eW3+kYncWEjhtGwtv9yc4rpuSoGMAj8tJRdabhMdWDem6OWW+NK68dVDmth7OwszCbsfpGgvYkJAzKDb0hRB31yLDJXV9h97jGdzu6sOdRWEzMDb3/GdW1uZg2/vVIFo08gg6dwbJ52bjqxz0timC7kj7P/AMn5BPgfcRIqMT8vLyeOmll5g4cSJffPEFt99+O3fffTevvfbayTHPPPMMWq2Wu+++u8u51q9fz5o1a5gyZQovvfQSQUFB/OMfLfGLOp2Oxx9/nLlz55KcnMz111/PTTfd1E5khIaG8qc//YmUlBRuvvlmUlJSsFqtPPzww0ycOJGf//zn6PV6vvnmm4F/M3pIadlbqKrHa+uPdGzKPsZdepg510Wh1Y/tj6bH7aYs8y1MceVDuu5B9SycKfMGZe7qbxVUtftN9w/U4VOZzaebXhlOuhYZ7jEsMhKj4hmX1/ObBlqTm8Z/PzOIFo0sNMFBxK4dT0z052hUs7fNEfSE5krcmZ962wrBMGJs72S6QFEUzjrrLDZu3Mjs2bP5yU9+wq233spf/9rSxfrAgQM8//zzvPrqq912dl648NQdTK1Wy9y5c8nMzDx57IUXXmDOnDmYTCb8/f15+eWXKSoqajPH1KlTkeVT/12RkZFMn34qzluj0RAWFkZV1dDe/f0ORXFRVvaf7gcKukRRbHgCtjLntkYmnhvlbXO8iuLxUHLk35jih84753YqHJn6YxT/7jpZ9x5HfjGNnnO7HedfdYCro4ZHuIzW0Y3IkIxdnve4x+ZPjE6nY1HDhB6P1wRpafz3LwfRopGF3+zJJK9qIFDa4W1TBD1AlbVUxKzgd6aN3LhbVE8UnGJs/gL0gOjoaFJTU9scmzJlysnN/44dO6iqqiIhIQGtVotWq6WwsJD777+fpKSkHq/z9ttv87Of/YxbbrmFL7/8koyMDG666SaczrblI8/M95AkqcNjiuKdeO7q6i9wOqu9svZoxOEswW/yVhbe6UtYUqC3zfEaqqpQfPgdIuILhmzNhjo3BZcNTn5G9dc1KN3c/Qe41+/LQVm/tyjdNORz0nXfB9cYFRkLI2fi19Cz1y5pZexp/w+lqW6QrRr+SAYDkd+bRvykreiUofViCnqPOyCWb+Jv4xLNSyzIu4kXipPYlVdHQc3w6vkj8B5j8xegByxevJgTJ060OZaVlUViYksS3w033MChQ4fIyMg4+YiJiWHDhg188cUXba7bs2fPyX+73W4OHDjAlClTANi5cyeLFi3ijjvuYPbs2UyYMIHc3NxBfnUDT4koWzso2NwHSLw4g7k3RKLzGaOVelSVokPvExE/dLkKBWVa6i69Z8DndVfVUGft3psRXfYVc4O8HyJit3QdX92dyHC7xl7zyRhTFBNze3FjwHMQ++Fdg2fQCMEwPpHkNTpCjV8iSaKy1nBFlTRUx5zHcxG/JqXmGX6QfS5HzadKWasq/Ht/sRctFAwnhMjohHvvvZc9e/awceNGcnJyePPNN3n55Ze58847AQgLC2PatGltHjqdjqioKFJSUtrM9cILL7Bp0yaOHz/OnXfeSX19PTfffDMAEydOZP/+/XzxxRdkZWXxyCOPsG/fviF/vf2h2ZJNQ8Neb5sxalEUB27fbcy+pZqUC6K9bY7XKDr0ERHxx4dsvcO2SThmnDPg89ZuycMthXY5RlI9PBaxvcsxQ0FjNw35HHQtfF1jTGTIsswSWwqS2rPXrQ230bTpz4Ns1TBHlgldOZPkeQcwKFnetkbQCR7/aPbE/5grdC8xL+/HPFc0Do/a8Rby3QMluD3Dp0qewHsIkdEJ8+bNY9OmTbz11ltMmzaNJ598kueee47rr7++13M9/fTTPP3008ycOZNvvvmGjz76iPDwcABuu+02rrzyStauXcv8+fOpra3ljjvuGOiXM6iUl7/nbRPGBE5XOT7jt7BwvR7ThGBvm+MVig59SkT8kSFZy+NWOTTuB3hCBjbGWGluprZ2frfjplZ+RLSx+67bg0lNk73L8w70XZ4fayLj7NgZBNb0rAGhJkRLw5tjOw9DG2kiYW0UkSGfIeHdv3VBe1RJpjb6XP4S+QST637PNdnnkdHk3+111WYH/8v0Tn6oYHghqaro+DNYFBQUkJycTHp6OrNmzfK2OYOCqirs3LkEh7PS26aMKSRJh9a+iIPv1OPsJqRlNBI/bTnVpbOHZq0YlYlvrh/QOSWdjnFXq+iVoi7HbYlfz83ZiwZ07d7ic2Es9Z1ohdWBzVzXeGOn12Zn/ZCKirHxE2MKCeeSqhloPN0LK0kv4zj4Io4TaUNg2fAkcNF0ohL3oFEbvW2K4Aw8fhGkhV7CM1Xz2d/Yt7Lqy1JMvHrT2QNsmWCkITwZgn5RV7dTCAwvoKouXIbtzLqpgtSLxl4IVfGRrYTH7ENl8DewxWUSNVc+NKBzqi4X1UWp3Y47t/59fDTeLQsd3kWvDLva9V175xi5OS1JEktJ7ZHAAFCbd49ZgSH7+xNz9SRiE74QAmMYoSJRH7WYv0U+Rmr9s1ydfUGfBQbA11nVVJm79oQKRj9CZAj6RXnF+942YUzjdFWhT9zCwvUaIid3Hec/2ig5uoPwqD0wBEmiRxoSsM27aEDnbNp5GJvctdDQNJfxcMLQ5aF0RFAXBaacdN0HY6yIjNlxUwkt71lhBm1oE+ZP/zHIFg1PfKdPYtxlNoI027xtiqAVxTectPgfcZ3Pi8wuuJPfFE7CofR/a6io8PFBUSFsrCNExiCSlJSEqqqjNlTK7W6mulp0px0O2FxHiFn2LfNvMWEM7Lriz2iiNHM3oaYdSPLgJhkqisqh6CvwmOIGblJVpepYZLfDrnJ9OHBr9gFDFw357Ep3ImP0h0oFBwYxo7BneTvaMA31r/9ikC0ahmi1mC6dTsLUr9EpovLQcKAxcgH/iH6E6Y3PcWX2heyuH/jeQB8dLBvwOQUjCyEyBH2mqvpzFMXmbTMEraiqG4f2a6bfUMy0S2NgjOTclp3YT3DoNmTN4AoNS5ObrAt+gSoPXBdra8YJmuk6Cdyn5gg3x3pvYybbuxAZnVSXaUEaE56Mc/TT0Tp7kIdh1NC8+XfgdAyBVcMHfWIcyd/3J9zvCyRExSFvoviEcij+Bn7o+yIzC+/myfwpWDyDtw3MKG6gqNY6aPMLhj9CZAj6TEWFd++wCjrG5a5FG7OZheshZnq4t80ZEsqzMwgI+h8a7eDmL5SXK1SueWRA56zaJ6N281V8u+HzAV2zN7itnRcWsHdRqlWWu+4GPhqYFpdCREkPPIcSeKq/wlXg3dC3oSbk/JkkLzyMUTnmbVPGNE0R8/i/6F8w3fw8l2VfzNd1wUO29n8PCW/GWEaIDEGfcDiqqa/f0/1AgdewOTOJWLST+T8Owzdk9G/4KnOP4Ov3BVrd4AqNzBoT1sVXDth8jtxCmjxdN+gLL9vGstD6AVuzN1i7qF5mV8auyPD38+OsktgejdUEVmPZ/PYgWzR80ISFEn9NAlGmz5AR3m5voBiDORp/Hbf4/YUZRffyaP5ULO6B88L2lI8yhMgYywiRIegTlVUfg3B9jwAUHJpvSL0unxlXxCBJozuGqrrgOEbDJ+gMgyc0VBUyglfijp0wYHNW72hA6aJ7toTKL8K2Dth6vaHe3Hl4TxeRVMjy6M4NWuo/E729+8+TNlyi4fVfDYFFwwP/+VMZt7Icf8RNKG/QHDGHN2N+zmzLn1idfQmba71bEOREpZnjFU1etUHgPYTIEPSJysr/etsEQS9wuxuQIzYzf72L+LNM3jZnUKkpzkGn+Qi9sYuySP3EbnFzfMnPULRdN6PrKa6KSuptXXszJpR/wjjfoS8JWdvsRNtJO6WuRIYkjV6RMSlmHLGFPt2Ok/00NH36FHgG729xuCD5+BC1ZjLxyV+hVWq9bc6YQjUEcjx+LesC/sy0ovt5OG86ja6eNYUcCoQ3Y+wiRIag11ithTQ1HfS2GYI+YHdmEzZvBwtuC8Hf5OttcwaNutJ8ZHUTBr/Ba1RYVemh/KrHB2y+mq2FeKTgTs9Lbhu/jh36u8MeRSW8k5KWNqUrb+bACLDhhtFo5OyqxO4HyuAq+ABPWcGg2+RtjJPHM+5KDyG6Ld42ZUxhMc3iP7EPcpb1L1yUfTmfV4d526QOEXkZYxchMgS9RngxRjoqdnaRcnUWs66KQdKMzhCqhopicL6LT8DgVfM5URGI+fwbBmQupclMTf3CLscsqH2fAO3Q3xUP66TJnFsFTycei9HqyVgSOhNjc/c/nRqfYqw7R/l3pUZD+OoZJM3ajd5T4G1rxgSq3o/s+Ku5K/B5phY/wAO5M6kfRl6Ljiius5FW5J2cMoF3ESJD0Guqqr1X6UYwcHg8ZgjbzPw77CTN71md/5FGY1U5bss7+AYOXpjRQd1iXONmDMhc9VuP45I7TyaWrTX8KuHIgKzVG/xdnfe7cEuBnZwZfZ6MpKgEkvL8ux2nNak0vPnrIbDIe+hio0laG4op4HMkRn84mLexhU/j/dgNnG1/kRXZV/DfqpEV9ipCpsYmQmQIeoXNVkJzc6a3zRAMIHZnHsGztrNgXSCB0d1voEYa5toqHE3/xi94cKrcOO0ejs25E8Xo1++5VIeD6pLpXY651PYB0hB0OT8dnaPzsCi3phORoY4ukaHT6VjYML7bcXKAlqb3f9VSIWCUErRsBuPOOYGPIsJmBxNV50du3JXcF/QcU0oe5r7c2VQ7e9ZZfrjxyeFyPMro/UwIOkaIDEGvqKn5n7dNEAwSdvVbJl5xjNnXRCNrh77U4WBiqa/FVvsWAaGWQZm/ttpNyZUDk5/R+M0R7PLkTs8b6rNYH18wIGv1FMne+Z1qt9yxyFAZmZuhzlgYORO/hm5+MjUSzsw38NRWDI1RQ4wmOJi4teOIifocWW32tjmjFnvoFP4bdz8LnS9wfs5VvF858j3N1WYHe/JEQYCxhhAZgl5RXbPZ2yYIBhGPx4IatIV5t5sZtzjS2+YMKNamBsyVbxEYbh6U+XPKfGi86Cf9n0hRqDredf+FW+RP+r9OL3BYOxcZLrljD46qDu848d4QY4pmYm5nYWGnkDVZ2PaPzu9Iv7OmMG5VLQHSN942ZVSian0oiLucB0OeZXLZI9yVM4cKx+jyBn51rNLbJgiGGCEyBD3G7TbT0LDP22YIhgCHs5DAadtYeIcfIXEB3jZnwLA3N9FY+ibBEYNTt/2gMhvn5Hn9nseSlolFmtvp+eCKXawy1fR7nZ7S3Ozs9Jxb6jjETlVGhydDo9GwxJqC1EV3cwCtyUXjf343RFYNHZLRSOQVU0mYtBmtIjaJA40jZBKfxd3DEveLLMtZy7/Lo7xt0qCx9USVt00QDDFCZAh6TE3NVlR18EqCCoYfNs9+ki89zJzro9AaRkcIlcNqobbwDUIiGwZ8brdT4XDqrSj+wf2eq+qAAbWLje2DQUMXuljb1HmFLqfcschQlNHhyZgXM53A2q7/9jVBWhr//cgQWTR0GCYmkbxGQ6jhK2+bMqpQtUaK4i7lkdDfkVL+GLfnnE2pfXRWYzudwlorOVUizG4sIUSGoMfUiFCpMYmi2PD4b2XOTxqYuCza2+YMCC67jeq8NwiNHvgY4cY6FwWX9T8/w56VT5N6TqfnE8o+Y2rA4OSYnEmjzYWxk5xNl9Rxv5XRIDIiQsNJzeu6Y7Kkk7Ef+DtKU90QWTUEyDJhF80kec5+DJ5sb1szanAGj+fLuLs51/Mi5+Rcy7/Kug6LHI1sOS68YWMJITIEPUJRXNTWbfe2GQIv4nCW4JeyhYV3+hCWHORtc/qN2+mgMvtNwmOqB3zugjItdZfd2+95qr8xo3ZSClZSXDwZvbPfa/SUSKVjr0pnIsPjGdmeL0mSWOpJRe6kR8hJXOnYj+weGqOGAG1UBAlrI4kI/gyJzsPkBD1D1egpiVvFE2HPMKniSX6Ss4Aim9HbZnmNLcdFyNRYQogMQY9oaNiL2z04CbOCkYXNnUbiRenM/WEkOp+RHXfvcbkoO/4W4bEDXw3osHUijpnL+jWHq6yCenvnc8yq+oAw/dCEMAa7OhEZ+HR4fKSLjLPiphJS2fXftzbcRtMHLwyRRYNP4JLpjFuej596wNumjHhcQUlsib+TC9SXWJLzA/5ZGu9tk4YF+wvqabKLsOuxghAZgh5RLUrXCk5DURy4fbYx+5YqUlaM7BAqxeOm9NjbmOJLB3Rej1vlUPJ1eEL6V36yZlsJnk4a3sn2Bp5MSO/X/D3Fz9VxrwyH1LHIcHtG7s9LcGAwMwq6/n/ThGhoeOPhIbJocJEDAoi5eiKxcV+gURu9bc6IRZV1lMeu5DfhTzOp6iluzl5MrrXjz8dYxa2ofJ018N5jwfBk5P4KCIYUkY8h6AinqwKfcVtYuF6PaUKwt83pM6qiUHL4HSLiiwZ0XnODi9yLf4UqdRNy0wWehgZqGxZ3en6F+QM0UufN8gYKjb3jNVxSx6EfHvfI9WScq5+GphPPDYBkkLF+8ydU29DkxAwmvjMmMe7SZoI0Ihy2r7gDE9gefzsXyy+xMPdG/laS0GXRhrHOlkwRMjVWECJD0C1mcyZ2+8De5RWMLmyug8RdsJ+zfxSBwX9k1nZXVYWiw+8REZ83oPOWlEHNFQ/1a466rSdwyR17jHSNBWxIyOnX/D1B6aQhn5OOq+K43SNzkzU9bjKmkq4r/ahNO3Fmj+xu15JOR8Tl00hI/RqdIr7fe4sqa6mMuYDfmTaSUr2RG7OXcry54/wkQVu2ZVWjiO7fYwIhMgTdIrwYgp6gqi6chu3M+FEZqRfHeNucvqGqFB36gIiErAGd9mhDPLazV/X5etVup7psZqfnf6D+t89z9xSbpeM46s5FxsjzZAT4+XNWSdfhf9qQRsyfvTJEFg0OhuR4kq72JcznSyQG3ws2mnAHxLIz/jYu0bzE/LybeaE4CY8qtlK9oc7iJL24wdtmCIYA8ckQdEtd/dBVsBGMfFyuavQJm1m4XkPUlK7Lfw5Xig5+TET8sQGbT1FUDkZejicioc9zNO44ikMzscNz/lUHWBs98Mnrp9PUSUM+RyfVr1wjMLdzqf9MdPbOfxa1YTL1b/xyCC0aYCSJkBWzSFpwEKOS6W1rRgyqJFMds5znI35NSs0zXJ99LkfNHXe6F/QMUcp2bCBEhqBLPB47jY0Z3jZDMAKxuY4Qfe63nH1LOD5BI6/RVNGhzzHFHRqw+axmN1nn/xxV7uMdfo+HqqykTk//1PfLvs3bQ2qa7B0ed9BxBSZXFzkNw5GU2PHEFHZeWlTy0dD8v9+Bs/PGhMMZbXgY8WvjiAr7FFnt+P9S0BaPXxTfxt/KFbq/Mi/vVv5YNE54LQaILcdF8vdYQHxaBF3S2HgAVRW10gV9Q1XdOLU7mPaDYqZdFgMja99J8eH/YYo9gMrAxA+XlytUXvVon69v3ncUq3RWh+eiy75ibtDglZm2uxRCOngbHGrHIsM5gr42fIw+zKvowsskgafyS1yFJ4bOqAEkYP40kleU4s+33jZl2KNKMrXR5/Bi5OOk1v+etdnLyWjquKu9oO9kljdR1cmNC8HoQYgMQZfU1+/xtgmCUYDLXYs2ejML10PM9HBvm9Mrio9sxxS9DwZIaByrDsey9Ko+X1+V0XGYhqR6eDxicCsEhXeQzO2g487eI0lkLAmdgdHS+c+hJrAKy5Z/D6FFA4Ps60v0msnEJX+JVh1FHckHAY9fBPsTbuZq/UvMyV/Hbwsn4lDEFmkw2ZMv/iZHO+ITJOiS+gYhMgQDh82ZScSincy/NQzf0JFTP77k2DeERe5CkgZAaKhwMHAF7riO8yu6w5aZS5OypMNzqZUfEm0cvN19YAcFphxKxyLDMUKiipKjE0nM6/xOtTZcouFfvxpCiwYGn9QJJH/PRbBui7dNGbaoSNRHLeblqMeY1vAHrsq6gP2NAd42a8ywN7/W2yYIBhkhMgSd4vFYaWo67G0zBKMOBYf8DanX5jHjihikfvSQGEpKj39LcPjXSHL/q/HYLW4yF9+Pou9brkr1bjtqBx4EyWnhqfj9/TWvU3yc7V+7o5OfEadz+Jeo1Ov1LKwb1+l52U9D0ydPgeIZQqv6iVZL+CUzSJy+E71S6G1rhiWKTzjpCTdync+LzC64k40Fk7CN8A71I5Fv84QnY7QjRIagUxoa9qOqI7BEjGBE4HY3IEdsZv56FwlzTN42p0eUZx0gKGQLsrb/QqO60kPZlY/16VpncRn1zuUdnju3/n18NIOzKZY6aMhnVzranEkjQmQsjJiBb2MnP4OyhDP/fTzlBUNqU3/Qx8eQ9P0gTP6fI0kjSBgNEY2R8/ln9CNMb3qOK7JWsrs+yNsmjWmyq5qpbR4hLk9BnxAiQ9Ap9fW7vW2CYAxgd2YTOncHC24Lxt80/JtZVeQcwj/gSzS6/m/isioCMV9wY5+urdlWhiK1D/PRNJfxcMLx/prWIW5r+5sO9g46G8uygeGe5R8bEcOE3MBOz2uMhdh2fTKEFvWP4OUzSF6ciY8ivM+no/iEcjjhB9zo9wIzC3/KE/lTsHjE1me4sK9AeDNGM+KTJugUkfQtGDpU7Owm5eosZl0dg6QZ3hvUqrxj+Pp8hlbff6FxULsQ5/gZvb7OU1dPbdPSDs9d5fqwv2Z1iKWDhnx2pSOR0Xkp2OGARqNhiWUiUgcCCUBrUmh466khtqpvaEKCibsmmejIz5GxeNucYUNTxDz+Ff0Lppuf59KsVWyvDfG2SYIO2CNCpkY1QmQIOsTtNmNuPuptMwRjDI/HDKGbmX+HnaT5Ed42p0uqC7Mw6D9Gb+wgG7oXOO0ejs2+E8XY++ZedVuzccuR7Y771Bzh5tjiftnVEQ3m9qENtg4ixyRpePdFmR8zg4DajhPW5QAtje8/BurwD/fym5vKuItrCEA0TAVQDUEcjb+WW/z+woyie3kkfyqWEdh5fiyxV1SYGtUIkSHokIaGfaiqiOkVeAe7M4/gWdtZuC6QwOjhW6O+tjgXjfQhBt/+5S7V1bgpvvKJXl+nWK1UV3TcN+N2w+f9sqkjapudaM/YfDs6EBnD2ZMREWpicl4nd7W1Es5jr6PUDm739P4iGY1EXpFKwoT/oVWqvG2O12k2ncVbMT9nlvXPrM6+lM21od42SdBDjlc00Wgbubmfy5Yt45577vG2GcMWITIEHSJCpQTDAZv6LROvOMZZ10Qja4fnHcn6skIk9yaMfv0rHZtbZqTx4nW9vq7h66M45PYVksLLtrEstL5fNp2JR1EJP6N3gE1przIk9AO67kAhSRJLPVOQPR2HScnScWwHhnfJV+PEJJLXyIQa/udtU7yKagjgePxabg/4E9OKf8bP86bT6OrYOyUYvigq7Bd5GaMWITIEHSL6YwiGCx6PBSVoC/Nub2Lckihvm9MhDZUlKI538QnoXwfbg56ZOKcs6N1FbjfVeRPaHZZQ+UXY1n7Z0xFhZ2zQXSoo0hmi4sznw4Q5cdMIqey4Q7nW5KLxnT8MsUW9QJYJu3gmSXP2YfDkeNsar2ENn8m7MQ8y1/YXLsq+nM+qR1ZzT0F7vhUhU6MWITIE7fB4HDQ3n/C2GQJBGxzOIgKnbmXhHX6ExA+/hllN1RW4mt/BL8jW5zncToXDU25G8Q/u1XXmPUewyjPbHZ9Q/jHjfPsnfM7E39Xec+GSzqzSNPxERkhQCNMLOi6VrAnW0vj2L4bYop6ji4okcW0EEUGfITFyQ0v6iqr3Izv+au4KfJ7Ukgf5Wd5Map0di0XByMObIsPhcHD33XcTERGB0WhkyZIl7Nu37+T57du3c/bZZ2MwGIiOjuahhx7C7e48D++TTz4hKCiIN954YyjMH/YIkSFoR3PzMVS1f8msAsFgYfPsJ/mSw8y5PgqtYXiFUDXXVWNr+DcBIdY+z9FY5yL/st7nZ1QdDG53THLb+XXswHol9Y72CdFuzfAXGedqp6FxtQ+TknQy9v1/QzE3DL1RPSBw6QySl+fiq6Z525QhxxY2jQ/ifsZ8x4usyL6C/1aNjH46gt5xtLQRi8M7e44HHniA9957j9dee420tDQmTJjAypUrqauro7S0lFWrVjFv3jwOHjzISy+9xD/+8Q9+/etfdzjXm2++ybXXXssbb7zB9ddfP8SvZHgiqeoIKKEhGFKKi18jK7v3mxyBYKgx6OOoOzyJ7G3l3jalDT4BQQREXkNTbe8rRn3HrKBcQj98tlfXxK1NJkBqW2lI8Q1nZtOzmN0DE68+d3oE38S0vYv8ov4JghwHTz43GJbyv6+SBmS9gWBG/GTOzo7t8JykptP04UtDbFH3yIEBRF8USaD8tbdNGVJUnS/5URfxQtNS3qtsXzlNMDp548fzWTxhaEPfLBYLISEhvPrqq1x33XUAuFwukpKSuOeee2hoaOC9994jMzMTSWq5QfHiiy/y4IMP0tjYiCzLLFu2jFmzZjFx4kR+8Ytf8OGHH3LuuecO6esYzghPhqAdTWbRzEkwMnA4S/BL2cLCO42EJQ+f7r02cyON5W8QFG7u8xyHmidgn3Ver66p2uNCVdt6d2RrDY8lHumzHWfitLa/4+iW21YAU9Xhk4Ab4B/A7OLoDs9pw6zDUmD4zkxh3CXmMSUw7KGT+TjuPha5XuS87KuEwBhjHCppHPI1c3NzcblcLF68+OQxnU7H2WefTWZmJpmZmSxcuPCkwABYvHgxzc3NlJSUnDz27rvvcu+99/LVV18JgXEGQmQI2mE2D9yGRCAYCmzudBJWpjH3h5HofIZHrLbD0kx9yRsER/Ttx1PxqBxKvAZPaM83W87CEhrcy9odv8T6AZI0ME5rs7l9FS3XGZ3HVWX4iIxz/Gags7f/qdOEamh4c3jlYUh6PRGXTydh8jZ0Spm3zRl0VK0PBXGX81DIH5hc9ijrc+ZSbh9+oXaCwedwaYO3Tegzs2fPxmQy8c9//hMRHNQWITIEbfB4rFgsud42QyDoNarqxO2zjdm3VJGyouM710ON02altuANQqP6ltjY3Ogi96JHUaWed0Cv2V6FIvm2OWaoz2J9fEGfbDiTug4a8rnO8GQoyvAQepNjJxBd2L5nh2SQsX79J1Tb8OmQbUhOIOkqI2E+XwyYIByuOEMm8nncT1nqfpFlOWt5u3x4fF4F3sMbnozx48ej1+vZufNUiKnL5WLfvn2kpqYyZcoUdu/e3UY47Ny5k4CAAOLi4trMs3XrVj788EPuuuuuIX0Nwx0hMgRtaDIfBTroriUQjBCcrgp8xm1h4Xo9pomdNF0bQlwOO1W5bxIWU9On60vKoObKn/d4vLumlrrmc9odv0X+pE/rn0mjzYXPGXtg1xmixqN4PyHfx8eHeeUJHZ5TG3fgzDnY4bkhR5IIvXAmSfPTMSrHvW3NoKFqDBTHXcKjob9nUvnjrMuZT4l9eHeGFwwdJfU2Gqz96zXUW/z8/Lj99tvZsGEDn3/+OceOHePWW2/FarVyyy23cMcdd1BcXMxdd93F8ePH+fDDD/nVr37Ffffdhyy33T5PmjSJrVu38t5774nmfKchRIagDeamQ942QSAYEGyug8Sdv495N0Vg8PduCIbb6aTixJuEx/StO/OR+lhs8y/p8fjaLbm4pbZJlMEVu1hl6pvQOZNIpa1nxSm1TXBXPN4Pl1oSMhODtb0HSBPSgPnz17xgUXu0EeEkXBNDZOhnyLT3EI0GnMHj+CrubpYrL7E05zr+ryzG2yYJhine8GY8/fTTrFmzhhtuuIGzzjqLnJwcvvjiC0JCQoiNjeXTTz9l7969zJw5k3Xr1nHLLbfwy1/+ssO5UlJS2LJlC2+99Rb333//EL+S4YmoLiVow5Gj91BZ+V9vmyEQDCg6nQlL3gyOferdOHdZoyE29ftUl/Q+PMTXX8vcfRvRVhb2aHzIillEhX3a5lhh3GWcm3NNr9c+k5Rz4zloPOXxfCjwG6Y3/vHkc5frKvbs9un3On1lXHQi5+W3b1CoDZOp/787wDW0d0w7ImDhNKKT96FRBrYr+3BA1egpizqff9qX8Y/SeG+bIxghbFiZwp3L239uBSMX4ckQtKGpSVSWEow+XK5q9PGbWbheJmpKqNfsUDweSo78G1N8SfeDz8Da7CZr+UOomp55Ceq3HsEpJ7U5llD2GVMD+p+H4HtGQz6n1DbvwePx3k+LXq9nQd24dsclHw3mr37rdYEh+/kRfVUKcYlfjjqB4QpKYkv8nVygvsTi3BuEwBD0imNlTd42QTDACJEhOInbbcZm69ldUoFgJGJzHSX63G+Zf0s4PkHeiQdXVYXiw+8QEd/7z1pFhULlVY/2bLDbTVXBpDaHJMXFk9E7O7mg52jtZ4gM2ooMt9t7ORmLImbi23jGT5sEnvLPcRdleceoVnymTiT5cgfB2q1etWMgUWUtFbEX8ozpN0yqeoqbsxeTa/WeF0swcjlWLkTGaEOIDMFJWrwYInpOMLpRVTcO7Q6m/aCIaZfFQM8LNw2kERQdeo+I+N5XcjtWFUbzOd/v0Vjz7qPY5Oltjs2q+oAwvavX656OYmvbK6O9yPDOT0tcRAzjcwPaHdcEVGLZ9o4XLGpFq8V06QwSp32DXinynh0DiDswnq/jb+di+a8syP0RLxUnoqre+DAJRguFtRavdf4WDA5CZAhOIvpjCMYSLncd2ujNLFyvEjtjaDvNfkfRoQ+JiD/Ru4tUOOR/Hu74lB6MVak6EtbmkGxv4MmE9N6teQZ2a1uR4qRtYr3bNfSbTY1GwxLLJKQzNrracGh4/bEht+c79PGxJH0/kHC/z5Ekj9fsGAhUSUNlzPn83rSRlOrf8MPspRxv9u3+QoGgBygqHK/oewNTwfBDiAzBSZotvdzsCASjAJvzOKaFO1lwayi+oUMf5lF06BMi4non8O1WD5mL7kXRdx/yZT2URTML2xxbYf4AjdT3UtUNZ/TKcNLWDpcXRMaCmJn4157R7dxPS9PHvwbFO5v74PNmkrzkKD7KyL6B4w6IZVf8T7hM+1fm593CX4qT8Khi+yAYeETI1OhCfEsITiKa8AnGLgp2eSep1+Yx48oYpF40vxsIig5/iSk2o1fXVFd6KFvzeI/GVu1VUU/7utc1FrAhIadX651O7Rkiw0Hb5ntDLTIiwyJIyQ1ue1CWcOa9h6di6MOTNKEhxF2TRHTEZ8iqdcjXHwhUSaYmZhl/iniSKbW/5brsZRw2+3V/oUDQDzKFyBhVCJEhAEBVVazWPG+bIRB4Fbe7Adm0mfnrXSTMMQ3p2sVHtmCK2Y/ai7yorPIAzBf8qNtxjrwiGt3L2hz7gdr3UtV2l0LIaY4Qh9pWZDiHsICTJEksdU9BPqN3h2wowLZ7YBoQ9gb/eamMu6iKAHYN+doDgccvim/jf8wa/V+Zm/cTni0aj0sRuRaCoeGECJcaVQiRIQDA4SjH4+l/aUuBYDRgd2YTOncHC24LJiBi6O7eFh/9GlPUHpB6LjQOahfgGj+r23HVX9eicCoczL/qAGujK/piJgAmz6mNp4O2ZXWHUmTMiZtGcGXb9bUmhca3nho6IwDJaCTqylTix/8PrVI9pGv3F1WSqY0+hxcjHye1/veszT6PtEZ/b5slGIMU1Ih9yGhCiAwBABZLtrdNEAiGGSp2djPpqhPMujoGSTM0d3NLMncTGvENUg+FhtPu4ejs21F8ut4UuquqqbOe0+bYPb5f9NnOgNOKwNhV74iM0KAQpuW39TjJgVoa3+thmd8BwpgyjuQ1EKL/35Cu218UXxMH4m9ireFF5uSv47eFE3EoYlsg8B61FidN9v5VvxMMH8S3iQAAi6Xv8dkCwWjG4zFD6Gbm32EjaUHkkKxZdnwfwWHbkDQ9S86uq3FTfMUT3Y6r3VqARw45+Tyq7H/MDepbeILRcco25xlJwEMlMs7RTEPrPk38aSUch19DqasaGgM0GsIunknS7G8xeEZGuKmKRH3UYv4e9SumNj7LmuwV7G0I9LZZAsFJhDdj9CBEhgCA/ziX8q+g/2NL8O85FrieKp/luKX29eYFgrGK3ZlP8MxtLLw9kKDowQ+hKs9OJzBoMxptzyoj5ZYZaFh1R5djFLOZmpoFJ59LqofHI7b3yT75NJFhP+Put8PR98pVPWVm/BTCy9qWzpXIxJ7et9fTW3QxUSR+P5yIoM+QGP53XhWfcDLif8gPfF5kdsGdPFWQgs3jvaaJAkFn5AuRMWrQdj9EMBi8+uqr3HPPPTQ0NHjbFAB2miV2N/kBya2P5UhAtEEmSe8kXlNPNKVEuLMIc2bg7xTlbgVjE5vyLRO+54tav4CMd6tQ3INXHrUy9zARyW6slgtxu7rfEB5yTWdB6kL0x3Z3OqZ+WyYhV8WjV4oBSK38kFjjCkrtveuA7rK6gBab7Kd5MmTZwGB3OAzwD2BWUXSbY9pwJ/X/79lBXfc7gs6ZQWTsLjTq8K+E0xi5gPflFfy+KAVLvbivKBj+FNSMzIpsgvaMWZFRWlrKgw8+yGeffYbVamXChAm88sorzJ07t93YdevW8be//Y0//vGP3HPPPUNv7BCQZ3W0O6YCZU6FMqcWMLU+ZgHfx18rkWRQiddaiJUqiVLzMTmPEmw/gFZtHlLbBYKhxqNYIWgL825PoCZjPLk7+p5A3R1V+ZmEJ7hxyKtwOboWGm6XwuHJNzG7+ASyua7DMarTSXXRDGLjWkSG5LTwZPx+bs5e3Cu7rBYXtHb6tp9WfUiWjZ1cMXCc4zsDXc2pNTXBWhr+/cCgr6sJCiRqZQSB8uf0ogjYkKMYQzhqWsXv6xaxvTCk+wsEgmFEQa3wZIwWxqTIqK+vZ/HixSxfvpzPPvsMk8lEdnY2ISHtv4w3bdrEnj17iImJ8YKlQ4PF7aHS6e5+4Gk0e1SOWOEIfsC41sf5yECMUSZJ7yBOrieaEkzuLMId6fi5RN6HYHThcBYRkFrEwulzOf5fmfriwSm/WFOUTWjsR+BzCS6brsuxjXUu8i99jPFv3t3pmKadhwm7NhWjcgyAc+s34aNZ0KvwmfomB9ASUmk7LTpKkgZXZEyJm0h0zqk1JJ2Mbd9fUc0Ng7qu36zJRKceR6ccH9R1+oM5Yi4falfyTFEK5oYx+fMuGAWIcKnRw5j8FnrmmWeIj4/nlVdeOXksOTm53bjS0lLuuusuvvjiC1avXt3u/IMPPsimTZsoKSkhKiqK66+/nkcffRSdrmUTcPDgQe655x7279+PJElMnDiRv/3tbx16S6qrq7n44ouJj4/n7bffxmDoXehCf8i1tfdi9BUFKHEolDh0QETr4yzgGgK0MkkGhQStmVipkkgln3DXEULsaWhGaMMqgQDA5tlP8iU+jDcvIOOdatyOgQ+hqivNJyT6Q2Tfy3BY9V2OLSzTEPy9nxH2we87HqCqVGVGkZDSIjI0zWU8nHCcR/Kn9tie2mYHWlXFLUnYTxMZsjR4312+Pr7MK4trc0x17MdxdO+grSnp9ZhWTSLU8BWSMvzcF6ohiMyIVfyxfjFfFYV62xyBoN8IT8boYUyKjI8++oiVK1dy9dVXs337dmJjY7njjju49dZbT45RFIUbbriBDRs2MHVqxz+8AQEBvPrqq8TExHD48GFuvfVWAgICeOCBFrf99ddfz+zZs3nppZfQaDRkZGScFCCnU1xczIoVK1iwYAH/+Mc/0GiGNhkvfwBFRleYPQqHrXCYAFrugE4AViADcUaZRL2DOLmOaIqJcGcRaj+An7tgSGwTCPqLothQ/LYy59ZY6o+mkLW1fMDXqC8vIijifYz+V2Jv7lpoHDaPY8Hs8zGmb+7wvCX9OM2Tz8ZfbdmgX+X8kEfouchQVAhXZCo0KvbTNt/SIIqMJcEz0OefyivQhlmo/8dfB209w/hEYhbUYfR8OWhr9JVm02w+1l3Eb4qn0Jg9Jn/KBaOUBquLBquTYN+uv+MEw58x+c2Ul5fHSy+9xH333cfDDz/Mvn37uPvuu9Hr9dx4441Ai7dDq9Vy992dhxz88pe/PPnvpKQkfvazn/H222+fFBlFRUVs2LCByZMnAzBx4sR2c5w4cYIVK1ZwxRVX8NxzzyFJQ99Ztdg2hJ2zOkABihwKRQ4dENn6mAtcR5BWJsngIUFrJkaqJFLJI9x5hGBHOhrV5lW7BYKOcLhK8Z1UysLU2WR/aqAmv3FA52+sKiMg/B18A67Cau58Q694VA4lfJ+5hUeR6zrOGanap8VvjoQkqfjUHuHm2GL+WRrfY1vCPBIVGhWnqqJKWiTVDdLgbAzGxySRkHeqqpcmVEPDG78YlLWQJEJXzMAUugXZMzQ3YXqCagggK2IVzzUs5rPicG+bIxAMGvk1FmYnCJEx0hmTIkNRFObOncvGjRsBmD17NkeOHOGvf/0rN954IwcOHOD5558nLS2ty03/v//9b/70pz+Rm5tLc3MzbrebwMBT9cbvu+8+fvzjH/Ovf/2LCy64gKuvvprx48efPG+z2Vi6dCnXXXcdzz333KC93u4otntXZHRFo0fhoFXiIIFAIDARWImGFu9Hkt5OrFxHjFpMuPs44Y40fNxF3jVaIABs7nTiV+pJti4i49261mpMA4O5phK/kH/jF3Q1lkafTsc1N7rJvugRJr21HkltH+rjyCmgafYygjRbAbjd8Dn/5NZ24zrD36VA6z7AJQWhV2s5eWAA0ev1LKhJOvlcMmqwbn8O1T7wYZbaCBMx5+vwUz8b8Ln7ijV8Bp8ZLmJj8VRqs7vOyREIRgMFtRZmJ4iiBSOdMVnPLjo6mtTU1DbHpkyZQlFRy+Z0x44dVFVVkZCQgFarRavVUlhYyP33309SUhIAu3fv5vrrr2fVqlV8/PHHpKen84tf/ALnaV2oHnvsMY4ePcrq1avZsmULqampbNq06eR5g8HABRdcwMcff0xpaengv/BOKBmB3TU9QKFDYbtZz5uNUfy+aR4PWW/gx54/cqduE7/zf5d/B73CjuDfkBX4Y+qM8/EMYhiHQNARqurE5bON2TdXMXlFdPcX9AJLfQ22+rfxD+16o11aBtVrOr/jX72jAYWWz0Z42TaWhdb32Aa945RwccmtfXXUgd8ELzbNxKfpVBipUr8dZ+7hAV8nYNF0xp1fiJ+6f8Dn7i2q3o/s+Kv4adBzpJY8xP25s6h1CoEhGBvkizK2o4Ix6clYvHgxJ0607fOQlZVFYmIiADfccAMXXHBBm/MrV67khhtu4KabbgJg165dJCYm8otfnPrxLiwsbLfWpEmTmDRpEvfeey/XXnstr7zyCldccQUAsizzr3/9i+uuu47ly5ezbds2r1SxKnEMX09GX2hwK2S4JTJOej8mARejlSDeKJOosxEn1xKtFmNyHyfMfgCjx3siTzD6cboqMI6rYOH6GeR+6U9VVs838l1hbaxHVd4kMOoammr8Ox13tC4a/wWX4rvnv+3OuSoqqbcvI8z4BRIqvwjbyra6K3u0vmp3Ay0bX7cmENygDrAnIz4ylnF5pxqDakPqqf/g/wZ0Ddnfj6iLYwnSfOH10rS2sKl8YbyYjSXTqRJeC8EYpUgkf48KxqTIuPfee1m0aBEbN27k+9//Pnv37uXll1/m5ZdfBiAsLIywsLA21+h0OqKiokhJSQFa8iuKiop4++23mTdvHp988kkbL4XNZmPDhg1cddVVJCcnU1JSwr59+1izZk2beTUaDW+88QbXXnst5513Htu2bSMqKmqQ34G2lAzjcKmBxK1Cvl0h324AYlof84EbCdV9l/vRRDTlRCm5hDkOEeQ8hKyOjfdHMPjYXIeIPU9H0uJFHHynAUdz//+2bOYmFOVNgmOvobE6sMMxqgKHwi9hbvRhtOUF7c7Xbi0keFUQGrWRCeUfM853FXnW7kvROi0uvhMZnlZPhjqAngytVsti80QktSVsVRsuU//aIwM2P4DPtInEzshDp2wb0Hl7g6rzJT9yJS82n8O7pZFes0MgGC5UmYdPLpSg74xJkTFv3jw2bdrEz3/+c5544gmSk5N57rnnuP7663s8x2WXXca9997L+vXrcTgcrF69mkceeYTHHnsMaBEPtbW1/PCHP6SyspLw8HCuvPJKHn/88XZzabVa3nrrLdauXXtSaERERAzUy+2SRpcbi0fpfuAop86tUOeWSCMICAImA6vRSRIJRkjU2YmVa4hWizC5jxNqP4DRM/DVgwSjH1V14dRvZ8aPTFjyZnDs07J+z+mwNFNX9AbhSddSXxnc4Rhrs5sT5z5I6jt3IXna9sXxNDZRW7+IiODPkNx2fh2/h+uyl3W7rtlyKtTSKbUkZavqwP2szI+egX92S5iU7KvB/MVvwDVAol+rxXTxFML8vkJSvPMd6AhN4SvfVTxVMpPyHJHkKhB8hxAZowNJVTvIBhSMGTKbbSzfd6L7gYJ2hOtkEvVuErRNxFBOhCeHcGeL90NSe9fcUDB28dFNJX9LCBXHavs9l1ZvIGLCtdSVd94vYUpkHdH/bu8NkAwGxq9xolNKUXzDmdn0LGZ314Ih0EdL1Tktd96f8X2DOMv7aDQXs21r/ysfRYVHsqpsKrIigQRK3edYtr/f73kB9IlxxCxuxqe1GeFQomqNFEVdyN8s5/Jm+cDm6QgEo4VAo5ZDj630thmCfjImPRmCU5Q7Rl7S93ChxqVQ45I5QDAQDEwBLkV/0vthI06uIUotbM392I/eU+VVmwXDD5vrKNFLNSQuXMShd83YGvt+B8/tdFCZ/SZRk9ZSW2bqcExmVSiB516D3/a32xxXHQ6qS2cQE12KbK3hscQj3J87q8v1mmxufFSwSeCUfQFQPP3/WZFlmaWOyS0CA9D4V2DeNDACI+T8mUSYtiErQ1sC2xkykS1+q/h1ySxKckQRCoGgK5rsbuwuD0bd0PYNEwwsQmSMcYTIGHicqkqOHXLsRiCu9bEYuAWTXiZJ7yZe20AM5UR6cgh1HiLQcRiZge8SLRgZqHhwaHcw7Qeh2Ipnc+S/ZX1OQPa4nJQff4vYKWup7ii+X4UMv2XMT8hAW3S8zanGHUcIvWYyRuU4l1g/4GfSTFS16949kR6JAq2KqzVcyqP0/2dlbux0globzGnDof6f7cNMe4smLJSYFQH4M3SlaVWNgZLoC/h/1mW8VhY7ZOsKBKOBarOD+FBfb5sh6AdCZIxxhMgYWqpdCtUumX2EAqHAVOByjBqJBAMk6qzEStUt3g9XJqH2A+iVGi9bLRgqXO46tNGbWbh+MkVfmyg92Lf/e8XjpuTYW8RN/T7VJe0r1jmsHo4tuJfpFT9FctpPu1Ch6kQsCROPY6jPYn18AX8uSu5yrWC3BFoVl9TSr8Pj6d+dx7DgUFLzWwpvyP5amv77K1D6J8D9z55K9Ph0tOqRfs3TU5zB4/g6YDVPlcwiP6fzPiYCgaBzqpuFyBjpCJExxqlyCpExHLArKlk2yLL5AAmtj6UARBpkkvQu4jWNRFNKpCeHMOdBAhxHkLxdb1MwKNicxzEtyCL+7IUcet+Gtbb3oT2qolBy5D/ET19DVXH7Lt41VW5K1zxO3FsPtjluOZCJZdJc/NT93CJ/wp9Z3+U6Pi4FjOCkpRqVx9O/9kvnyFPRuiWQJZw57+KpLO7zXJKPD5GrkgjRfTXopWlVWUd59Pn8076cf5TFoVZ07QESCARdU9Ukkr9HOkJkjHFqXSJBebhT6VSodGr49qT3YzpwBUaNRJIBEnQW4qRqItUCIlzHCLEfQKcMTB8GgTdRsMs7SV0bhLNiDoc3VdDbOh2qqlB0+F0Spn+PquL2Homscn8CV9xE4FevtDlelWYkaZZEcMUuVpmu4dPqzhO5tXYFAmScUovIcLv7LjJmxacSlt1SZUnW52Pb82mf5zJOHk/sWSXolc19nqMnuAIT+SboEjaWnUV2rvBaCAQDRbXZ3v0gwbBGiIwxTo1TiIyRil1ROW6D4zZfILH1cS4SEGWQSdS7iNc0tHg/3NmEOjMIcGYK78cIw+1pRDZtYf76CZTtiqHoQHXvJlBVig5tImHGZVQVT2h3+qB8NgsmZKDLST95zH4iD/PMpQRKX/Ng0P/4tPqaTqdXbG5Af9KT0VeRERgQyMyilh5BWpOH+r9v7NM8aDSEr5xGeOBXSMrgfL+pspbKqOW85jqPv5YkoFYJr4VAMNBUizK2Ix4hMsY4wpMx+lCBcqdCuVPDHsKAMGAGsAYfjUSSQSVRZyFWqiZSycf0nfdDbfSu4YIusTtzCJ2bS8zcBRzd5MJc1buOuEWHPiJhxsVUFU9pc9zlUDgy63Zmlt6HbGs+ebxqp4WApToSyj5jasClHDX7dTivzeIC9DhoqZjkdvVNZJzrMx1dtYQmUEvjO7/o0xy6mChilnnwVQYnudsdEMfu4EvYWD6XzDwRKy4QDCaiV8bIR4iMMU6t8GSMKWyKSqYNMm1+gB+QBCxHAmIMMol6J/GaeqJavR9hzgz8nce7nFMwlKjY2c2kqwLw1Mzj4HsVqJ6ee6aKDn1GwnQ3VSXT2xyvr3FRdMWTJL1578ljrtJy6u3LCDV+xZNxO7nSfGGHczY1OwE/nLSEOblcvb+rPyVuIpE5RtBK2A+/itLQS28NEHTuDCJjdqJRzL2+titUSUN19DL+5T6PF4sT8VT3L+dEIBD0DOHJGPkIkTGG8SgqKSea0Ri0aPQyik7GrZNwaiVsGmiWoUmGJhRUSYQDjGZUoNSpUOrUAqbWxyzgavy0Ld6PBK2FWKmSKKUAk/sIwbY0tOrAbugEPcPjMUPIFubfkUzF/kQKdlf2+Nqiw18RP81FVelsJE59rvPK9AStvpOQT144eaxmWylBFwcyq+oDwvTLqXXq2s1X3dQSN/2dyHC7JXqTZe3r48u80jgAJPUY9vSve3wtgCY4iKiV4QRKnw9ocrfHP4a9IZfwm8q5HMrzH7iJBQJBjxCejJGPEBljmEabi4ycum7H+coSgT5aAnx0+Bi1GI1adAYtkl5G1cm4tS3CxK5tESaNkkqTpAphMkqweFSOWuEofsC41sd5yECMUSZR5yBeU080pUS4TxDqyMDfle1do8cIdmc+wTPyWTjrbI59qNJY1tz9RUDxkW3EpbqpKZ8HpwmNw85pzJ+6CMPRXQB4GhqobVxMROBnPJmQwR0589rN5XArhCoSDrXl58Tp7N1rWBo0E329jNbkoP7vf+zVtX6zJxM9JROdktm7RTtBlWRqo5bylnIBfyoeh6tGfIcJBN5CeDJGPkJkjGEarD3bDXgUlXqLi3pLz8vd+soSAcYWYeLno8Vg0KI1aJANmpPCxPWdx0QDTZJKoxAmIwoFKHEolDh0QETrYzZwDQFamUSDQqK2mVipkgglH5PrCCH2A2hUq1ftHo3YlL1MuNwXtWEBGe9Uobi77ytRcuwbYqe4qa1cCK0N99wuhcOTfsRZxSeQm2oBqNtygpAro1nR9D4aaQ4etX24ULgHHPReZEyISSY+zxdNsJaGtx/o8XWSwUDExRMJMXyFpPTffeHxi+RA6CU8XXU2afkB/Z5PIBD0n2aHCOce6QiRMYZpsA1ejwyPotJgddFg7Zsw8fXRYjRo0Rk0SHoN6E95TGwaiWZZpUlu8ZgoQpgMO8wehSNWOII/4A+MBy5ABuJavR9xmjqi1BIiPVmEOtLwc+V51+gRjkexQuAW5t2eQE3GeHJ3VHR7TWnmHmJS3NTXLEFVWsRDU72LvEseY8KbdwGg2u3UlM8iOvIzNiTk8HThpHbzBLrB3ktPhsFgYEF1EpJexvbti6jmhp5dNz6R2Pm1GJQve7ZQJ6hI1Ecv4d/KBTxXPB5Hrci1EAiGE1anG1VVkcRv/IhFiIwxTGMvBMBQ0BdhYpQgwEdHYKswMbQKE1nf4jHx6CScOgmb3CJMzBqVRoQw8RYKUORQKHLogMjWxxzgWgK1MkkGhQStmVipkkglD5PrCEH2NDRq75vRjVUcziICUotYOH0uJz7WUFfU1OX4shP7iZrgoqlhOUprI72iMpng720g/IPfAdDw9RFC107gB+p/eZr7281hcCg41JZO3w5HzzwLi8NnYsyVUd17cWTu7/4CWSZ0xXQiQjYjKb2MyToNxddEethqnqlewN78wD7PIxAIBhdFBZvLg69ebFVHKuJ/bgzTOIiejKFCUVvEUm8EUxthYtRiMH4nTGTQa07LMTnlMRHCZPBp8igcssIhAoAAYAJwIRpavR96O3FyHdFqcWvuRxq+7kLvGj2MsXn2k7TayDjzQjLeqcbt6DyEqiLnIJHj3DQ3X4DH1SIWjpiTWXDWCoxpX4HHQ1VOMvHKV6yNruDf5VFtrpcdCo7WMKoWkdH1ZyUhMo7kPH+0Yc3U/+Plbl+LNtJEzHk6/NS+laZVkWiMWsi7rOAPxROw1Wn6NI9AIBhaLA4hMkYy4n9uDGN1dh+3PRrpszAx6gjw1eHXRpic8pi4vgvl0ghhMpB4gEKHQqFDD0S1PuYBPyBYJ5Ns8BCnMRMrVRCp5BLuPEKQIwONKrrFKoodxW8rc26Npf7oJLK2dh5CVZl3FFOSG5vtItxODYpH5WDcVcwtPIKmtpzmvUexTpjNPb5f8G9ubHOty+rCrvggSXq6ExharZbFTRPQhmhpeOOX3b6GwMXTiUrYg6YPfVwUnzAOh6/id7WL+KYgqNfXCwQC72JxuDEFGLxthqCPCJExhrG5xqbI6AuK2uL56Y3353Rh4vtdVS59S/I7p5ULtmskLLJKY6vXxNPNJk1wiga3QrpbIp1AIBCYBFyMVoJ4o0yizkacXEeUWkyE+zhhjgMY3SVetnrocbhK8Z1UysLU2WR/aqAmv+MNe3XBCcLi3cjyapx2LZYmNzkXPsKkt+9EUlWqMgJIVP/H3KAr2d94KkHa2uzCpvgiy8ZubVkQPRP/Yj3WvX9EtXdeBED29yfq4miCNF/0ujRtU+R83pcv5HfFk7DUC6+FQDBSsYheXiMaITLGMHYhMgaVvggTvcRpVbl0GA0adAZtqzCRcOvkk1W5LK19TBplRQiTM3CrkG9XyLcbgOjWx9nADwlp9X7Ea5uIoZxIJY9w5yGCHAeR1b7H+o8EbO504lfqSbYuIuPdOlwdePNqi3MJjf0IfC7FadNRWq4SsuaXRLz7JLZjOZinL+TxiO2sbrzk5DX1zQ6cKt2KjKjwSCblBqM0b8WZd6TTcb7TJxEzPQedsr3Hr00xhnDUtIo/1C5iW2FIj68TCATDl7EacTFaECJjDGMTH95hh6pCk81Nk80N9CzZ+TthEuijb/WYaNAaNGhaq3J5dHKrx+RUg8WxLEzq3Qr1bok0goAgYDKwCp0kkWCUSNDZiJNriVKLiHBnEmo/gNFT7mWrBw5VdeLy2cbsm6Noykrl+JftX1tdaQHBUZsw+n0Pu0XP0boo/Bdehu/uj6je5WCK4VNijSsotbeEMdSaHRg9KpLceViDLMuc45iMPqiO+vdf73CMpNMRfvFkwny/QlKUHr0ec8RcPtJeyNNFkzE3iJ80gWA0YRFlbEc04ht5DCPCpUYHbYVJz9BL4G/QEuirw8+ow2DUoDtDmLjO7PwuKbhHcY6JS1XJtavk2g1ATOtjAXATYXqZJL2beE0TsVI5EZ7cFu+H8yCSOjJ/BJ2uCozJFSxcP4PcL/2pyqpvc76hooRA03v4BFyJzWzgYNhqzo4+jLM4n8bmuTw5fj83Zy8GWrx2/m6QDZ2LjHmx0wmt11P/+qMdntcnxhG7uBmj8kW3tquGIDIjVvHH+sV8VRTai1ctEAhGEpYuClYIhj9CZIxhRLjU2EVVwWx3Y7b33GOikyCkVZj4ntb5XaOXW4SJVj6t87vU2sdkdAiTWpdCrUvmAMFAMDAFuAS9JJHgA4laG3FyDZGt3o8w+370niqv2txTbK5DxJ6nI2nxIg6924DdfCpkrKm6HP+w/+AXdDWWRiPHz32Q1HfWU729giVhBfhoFmDztOQ8BLpAMfh0uEZ4SBjTyiMwb/0NuNqHpIVcMJOI8G3IStd/ixbTLD7WXcTTxanUZ4ufL4FgtCNyMkY24lt6DCM8GYLe0FaY9IzvhMl3nd+NBi06Y6sw0bV6THQSNhmaNVJrH5ORI0ycqkqODXIwAnGtj0XALZhavR9x2kZiKSfCk0248zABjkPIDK/Pnqq6cOq3M/1GE5a86Rz79FQIVXNtNarnbfxD1lJZ4UPIVY8R8+9f0lg2k4cnHeeR/KkA+LnAJbXPhZAkiaXSVJTiT3CX5rY5pwkLJeZCf/y7KE2r6v3JilzF8w1L+LQ4fIBesUAgGAlYRbjUiEaIjDGM8GQIBps2wqS++/HQ8qUU8l3ye6vHRG/Unuxj4tFKLcLk9OT3YegxqXYpVLtk9hEChACpwOUYNRIJBkjQWYmTaohSCjG5Mwmx78eg1HjVZperGn38Fhaun0rB1mDKj9YBYGmoQ1HeIsC0luNVIQQuuw556wdcmmDmEVpEht7hwSEFt5tzVtwUIiqqadi+qc1x//lTiR6fhlap7dAWa/h0PjNczMbiqdRm6wb2hQoEghGBReSOjmiEyBjDiMRvwXCltx4TLRD8XY5Ja+d3vbE1x+R0j0mrMDHL0CipuLygS+yKSpYNsmw+QHzrYwlwKxF6mWSDizhNIzGUtXo/DuHvODqk3g+b6yhRSzQkLFzEoXfN2Boc2JoaUJU3CYq+loOWc5hvysB2QsctU4r5R2k8qt2DU23biyIoIJA5TSYaXr/z5DHZ15fIixMI1n3V0gL+NFS9H7mRF/GXpqV8UBIxFC9VIBAMY0Ti98hGiIwxjAiXEowmmh1umh0995hogKAzckzOFCZOrYRD29LHpElWaZQYVGFS5VKocmn4llAgFJgGXIFRI5FkgASdhViphii1AJPrGKH2A+iUukGxRcWDQ7ODadeHYiuezZH/lmFvNqOUvE5owrUcm/9Tpn98Pz+YEsA/iMdpcWFXAwDzyTnO9Z+G9fWnWlxagM+U8cTMLkavbGmzli1sKl8aL+apkulUCa+FQCBoxeXpWZU5wfBEiIwxjNvTyw5XAsEo46Qw6SEaINCgIdBH35JjYtSiN2jQGE7zmHzXYFGjYm4VJs5+ChO7onLcBsdtvkBC6+McAKIMMkl6F3GaBmIoJcKdTbjzIP7OY0i97WLXAS53HdrozSxcn0LR1xGUHqyhtvANwpOupeTyR0k98H8sS62nsNkfh+LLdyJjatwkQnd8iq26FLRawldOJdz/SySl5eaGqvOlIOpCXjSfwzulUf22UyAQjD4UsU0Z0QiRMYYRn12BoPdYHB4sDhs09Gy8DIR1JEz0GiS9fLLBoqNVmDT1UphUOBUqnBogrPUxA1iDTxvvRxXRSgHhrmOE2PejUzvu+N0VNucJTAuyiZ+/kEPv2ajOewN5wrWUBs7nTt0xbmkyYVNaqkv5+foyt6QZ27dfoIuLJvYcNz5KS3K3IzSF//mu4tclMynP1vfaDoFAMHZQVLFTGckIkSEQCASDTF+ESaheQ6CvDn8fHcbTc0xa+5i4W/uYWDWnckwcpwkTm6KSaYNMmy+Q1PpYhgREG2SS9M6T3g+TO4twZwb+zuPdWKZgl3aSujYIV8Vcjn78JtqUtUwtqMIUZsbpbOmTsTQgAfs/Hydo2Qyior9Bkt0UxlzGy5ZzeKMspndvnkAgGLMIjTGykVRV/BeOVda8tIsDhT0MYBcIBMMe31Zh4mfU4WPUojO0dH9v6WMi4dLJOE5PfpfbChM/jUSSQSVe+533I59w11FC7AfQquZ26xn1Eyj/NgGDazEuqZ78lFiiKpqY//77RC6UMIRUsNV/NU+VzqTIZhzCd0IgEIwGfrgwkScun+ZtMwR9RHgyBAKBYJRgdXqwOj2AvUfjJSBEryHIR4efjw6jUYPeoMViMJClSyRTl4Rbdz4ODfgYFEINdoL1jUTK5S3eD0cGIbO3YpRs2DPnI1ll5hdnoV4Rz+9dc3itLHZQX69AIBjdiHCpkY0QGQKBQDCGsTk9LeWsG3smTAB89NEE+STg53MRfkYN4/0aSE7IItTcwOtzkylS6nBRydLYykG0XCAQjHYiI93AdG+bIegjQmQIBAKBoFdM8WlgVVgp7tAm8o2VGKoaSD46iabpceiCQomz2IlwZuNU8sinkgxLGQ3O3iebCwSCsU2KJAGXe9sMQR8RIkMgEAgEnaKRFC4Kr+PioHwmavLI9lfZaXDzz+YCrBYLj2SeBZYogmZrSasPZk7oLo4oc/g2bAnZlvNY2ljFI45dBOnyKdJbyTBoSHPUUGKt8PZLEwgEwxxZkr1tgqAfCJEhEAgEgpME6dxcaSrnfL88Ul3HkOyFfB09kS99dDzelIvd6gArpLpMPLwtluyYIMrLStFfPp7MzFpW1MYSGHmU2DIdS3xq+G34VN4JuZxZVonQsgpWksY97EWxQUZEEum+AaR5zGQ1F+NRRYNQgUBwCo2k8bYJgn4gRIZAIBCMYcb72lhjKmGxPocJ9sP41h6lUolgS/A0XtUYONCkxW3PbpNLvr5qBks/KuLwgmhKCnNZtOgy9skKZY0anNpxzAz+D1lxM/m2eBz/qnuHp+KvZI8kw8RIMj2rebdqBdXVFVxvyOJ6y34erM7AhsLBmFTSA8NJk5wcshRjc9u898YIBAKvI0n97GQq8CpCZIxhxEdXIBh7LA5p4LKQIubJJ4hrPoi+IQ8qIS9iAm/FTGJzTBBHmwpQmzPbXRuh+PH0nnH47j9BxrL5lBflgyQRnGKm2plCZZ1Cc4gTf8u5rHLexx+jX+eP5Vfy2InX2Z60kOekieRrFPKjtRij4vjUEs87+fMoab6Wm2KK+J47ndtytqOxVOGWtZyImkxaWBzpOki3VlDjqPPCOyYQCLyF8GSMbITIGMNoNUJmCASjGYOssNpUzcqAfGYqmUQ0ZCBbq6HVQXAkdjqbk1ez2VVHvqUUmo50OteV5klc+04Nblsu6efMo7KkEIDZU1fSHLCVWutCHK56CqgntXQ6xgkBrHP+kp+H/oaN0g+5KvtLNvn9j7uT7iDfqWKXYLe/CtMDmDAlkG+rongtawI25+WsjapkbUAGqY07mFr2OTe02lAUlkRaxHjSfYykO1ttFggEoxbhyRjZCJExhvHRiTsEAsFoIsLgYk1EKcuMeUx2HiGw7jBSowVaCzt5JA17k+axOTSSLfZyKmzV0HC4yzmNqpanj00n5uMDuIODSFs0i+qy4pPnk+ISyXMeod7a0myv2qea6IZxlDmW4C9v4r6A93g04AoUeSVT8g7wee1tPH7WU7zpCjs5R45WJSdGh090JLOb4du8IN7MigYu5iJTLT8MPsxs604Sao+SUFvA91qvq/cLIz1mCun+QaQpFo41F+FW3AP4jgoEAm8iIxK/RzJCZIxhfPRCZAgEI5mpARauDCtmoS6bZOthjHWZSNVtk6cdWiO7kueyOSCI7ZYiGpyVUN+z/hWL7PHc87EK2ftwR5jYP3MSdeWnvAfjkubgiDtEnWEebntL06xSfQl25xJqSiYTkeRLsvl1bgyewyskoEyYw42H7ufNjF+xIvZ87g9fQ51bOTmfTYJdAcDMQCZNDSKiwsnX2Ro+r14GLOPs4CZ+HH6MBc7dBFQfIMRSy3nZ33Be6/V2nQ+HY1JJD44kTXZzyFKC2dXcj3dYIBB4E40s9ikjGSEyxjBG4ckQCEYMkqRyfmg9q4ILmSOdILYpA21TEXRQCdZsDGJ70hy2+Br4xpyHzV0E9b1YS4VfFs9mxruHUB0OXDHR7JuSRENV28VmxZ5Hhe+vKTdcisfW4kFwShqKbHZiDXEo8lIU5QvOa/gZmQFvsQcNs2dOYtm3D7LJ8AbbCm/hp2e/wFaHvp0NWVqVrDgdfrFRnGWGhrxG9lbC3oYFwAIm+tlYF3WCZcq3hFbtRvI4MbpszCs8wLyWSC4USSY7MoX08HjS9FrS7ZUt3huBQDAi8Nf5e9sEQT8QImMMI8KlBILhi59G4fKIClb45zHNnUlYfQaypR4sHY+vDoxia8IMNutU9jbl4nbkgKP36453h/LEVhO6/ftQAWd8HHsnxNJUU9VmXHh4ApJfNVZHHoU+k7A0OwFQXUHU6yzMNAfz1fFYxk2QkfFwi+0B8vV/JB2FGQsSWLHrR/wtcStvfrWSfy54hl8b52NT1Hb2WCTYFQjMCmKyK4SwCjvHsuvItvhwf+4sYBYRhptZF5PDSnk/MdU7kJwt3gtZVUipyCSlIpNrWucrD44jLWoC6T5+pLkbyLWUoqhKu3UFAoH38dcLkTGSESJjDCM8GQLB8CHW6OAqUynnGHOY5DiCf90RpHp7lx6IovBkNsdMZrNk51BTHqrleL9s+HHtNFb+Jx+14SgAzuRE9iSYaK6raTd2fsplNI/fBgrkekw0mhsAcDgCaQqswu0IJ0BKxGiYj92xG193AfcZ/o9fuH7AIYPK1CUx3L7zPO6Iiub2A4+xNHwud057gsNdCKPjOgXi9QTERTGnCWpzGyiotlDl0PFE/hSeYAp+2uv4cUwhlxnSSa7Zjmxra3t0QwmrG0pY3fq8ySeIjJhU0gNCScfOkeYiHJ4+qDOBQDDgBOgCvG2CoB8IkTGGEZ4MgcB7zAk0872wQuZrs0lsPoS+Pgupuv2d/DPJjE5lc2Qymz0N5DQXg/lov20JU3z5zf4JBG9O4zsLHJPGszsyCGtDe5Vj9AnEv96ffM1WUCDLpsVlbtmYNzX7U+SXRXl9CuN9IzmRP5HomN0AxFk2cWvwXF5qnMxRnULK4ij+tlvisP9v+HPz7/h080qeWfoyL6qJdOVbMEuwMwg4K5hUZyjBFTaOZtfhcCtY3BqeLxrH84xDI13B9dEVXO2XzpTGr9E2FbebK9DWyDm5uzmn9blLo+dozBTSQ6JJ06hkWMtocDb2/c0VCAR9xk/n520TBP1AUlW1+181wajkha05/O6LE942QyAY9WgkhYvC67g4KJ/Z6nGiGg+iaS7r0bWKJJOWMJvNodFsdVZSau1Z0nZPWd08gR+934haWn7ymC01hT0hPtiazR1ec978GwmKspEf9TiNhhk8bn+Mxq9KAIgIthMc+/9Ye+AhLgyQect/N4uX7sBuPwaAisT/C3yDbWYDAOPdEtY9VYSqjWwK/yuBVfvYPel67kpcR4mz52FMwQpMa1KpzGmguNba4ZhLTDXcEHyYmZYdGOt65vVRkciPGE+aKYl0g540Rw0l1g4SYQQCwYDzr4v/xayIWd42Q9BHhCdjDCPCpQSCwSFI52ZNRDnn+eaR6jpGSH0GktkMHe/Z2+HUGNiTNIfNQSFssxZT56iGhoFNWNarGp7KmknihwdQPacqUllnTmW3r4yjE4Ehyxoi7HHUxP8LXFBhWEjoqSq51DTqccVUIBkkpFBfJgUmUV1lJiCwRWRIqPzQci+5hr9S7FDI1aokLYigaa/E/NK7+XjcByzMeoMtJVv4+eKXec8Z2KPX0yDDN8ESzA1hmjOUwHI7R3LqcJ5Wverj6nA+rl4OLGdxSCM3hx9jvmMXflVpSHR8v01CZVxVDuOqcrjqu9cYEEladArpfgGkecycaC7Go3o6vF4gEPQdkfg9shEiYwwjwqUEgoFhvK+NNaYSluizGW87jG/dMaRaF9T2fI5mYyA7ks5is68P35jzsbhLoL5kUOyd44zmgU8NSJl72xy3nDWT3ToPTmvHngCAudNXozht1Ht2AFAkTybAdeq8osqEGk1oTG4a9RrGmcPZVCJz3vmxOJ0t5W8NnkruNbzIz6XbcagqBVqVuAUmAvfWcH72Gl6aEM9FpX/mha8uZcVZD/Fg8GoaPT33ahzRq5BoICQhmrkNKhU5DZTUtX1NO+uD2Fm/EFjIZH8r66KOc47nW0Iq9yApro4nbiXcXMmF5koubH1uNfhzMCaV9MBw0iQnhyzF2Ny2HtsrEAg6RiR+j2yEyBjD+Io+GQJBn1gS2silwYXMk08Q13wQfUMe9CGKqdbfxNbEWWzWS3zblIvLkdenilC9YUPpLM5+5yiqre0muHn+HHYpNtz2rg1INkzHNiUDj9Kyac/1RKN3tBUAQToTzUE1FFX4Md2iIzgyFKt1AVrteyfHRFq/4o7g+fyxcTYAJbJK1LxwYg7UcnvO2dwe/2seaHqa76U9zbywT7l77h/Zae/dT1a9BN+ESEhzg5nuDMWvzMaR3DpcnrZei+PNvtyTcxZwFtHGW7g9OocV8j6iqr5BcnVSzus0fB3NLMzfy8LW525Zy4moyaSFxZGuk0i3llPjqOuV7QKBQHgyRjoiJ8MLFBQUkJycTHp6OrNmzfKaHVuPV3HTq/u8tr5AMBIwyAqXmqq4MKCAGUomEQ3pyNb21ZZ6SkloApvjprJFdpDRlDdk5VMTPMH8ekcMxt2H2p1rWjSf3c5GPK6u7+CnTFjELM9SKi/9Gw2OlmTue/SbmFzkZN+hUypr8cIvSGyKIm7XAi6P8uFwXCUZ1QdZsPADPJ6mNnP+K+j/+LzpVHJnhCIRnF5HUY2VJaGN/FP/e/QNuahIvLT4eZ7WzcLZj5+tUEViaoOH0pwGyuq79jYEaN38JLaQS/QHSKz5GtnWd6FQHJZIWsQE0n2MpDnryLeUdn+RQDCGkSWZjBsykCTJ26YI+siY9GSUlpby4IMP8tlnn2G1WpkwYQKvvPIKc+fObTd23bp1/O1vf+OPf/wj99xzz9AbO4gE+eq8bYJAMOyIMLhYE1HKMmMek51HCKw7hNRoPZV00AdORE1hS9Q4NitNnDAXDkhFqN7wg4ZULv9PCWpte4HRcO5i9phrUDzubueZHrkUxWal0dESZmXRjafapTDO2lacaJQQjkgHiFUX4AozklwTzB67CuoS4NM2Y68x30OO8f+R09oxvEpWcc8OJfmQzDeVcK7xET6O/idh5V9zx867OTfhIu6Y/DAnHH0TGnWyyo5QGWleCDMd4RjLrBzJrcPdQY8Os1vLHwrH8wfGo5Ov5oboEq7yzWBSw9dozb0TCfG1hcTXFnJ56/N6vzDSY6aQ7h9EmmIhs7kYVzdhWgLBWMJP6ycExghnzImM+vp6Fi9ezPLly/nss88wmUxkZ2cTEhLSbuymTZvYs2cPMTExXrB08An2ESJDIJgaYOHK8CIWanNIth7GWJeJVN2/JF5FkjkYN5PN4bFscVZRbK2AxsMDZHHPCVAMPHNwCuGf7+8wrbnuvKV8W1+BqnTvTYmKmoCmHKznHEal5f0pNy6FZmhubcT3HR5nEPmeLAx+Wmo8EFWvITouikOHJKZN16GqpzbTOqWOn/IHHpTvx9q60a+TVTwzg5lwWCKn3MyCwtt4f3w804vfYGrR53xRvpOnlr7M//PEdJKu3T2qJJFhVGCcEVNSDJPrFYqz66lotHc43qVI/LM0nn8SD1zKlZFVXBd0iBnmHejrs3u9foillvOyv+G81ucOrZHDMVNJD4kgTfZw0FKC2dXcx1cnEIx8/PSifO1IZ8yJjGeeeYb4+HheeeWVk8eSk5PbjSstLeWuu+7iiy++YPXq1W3OfRfu9NZbb/GnP/2JtLQ0JkyYwAsvvMC5554LtIiZ9evX8+WXX9Lc3ExcXBwPP/wwN910U7u1PB4Pt956K7t27eLLL78kISFhgF91xwT76odkHYFguCBJKueH1rM6uIA50glimjJaeieUd39td7g0er5NmsPmoFC2WkuoddRCQy8yvweY821JrPvAjlqwv8PzNSuWs6+6BLWH4VrzJlwCpVAf+PXJvJESzVQA6sxtRYbNFgAS6CMVcsotRAGTjHFsL6lAr1+Iw/F1m/Ghtp3cHXQ2TzctOXmsUVLxTAskRSNxoqSJS7NX88y4eL5f+SxGl5knt1zLBVNu4aexP6LC1b+Qs2oZqsNk5NBQZjpk9CVWjuTX4+nAu/Ed71dG8H7lBcAFnBtWz02hR5ln34Vv9cFOK1V1hcFtZ27RAeYWtTxXJJnsiEmkmxJI02tJt1dSYRvYCmMCwXBG5GOMfMacyPjoo49YuXIlV199Ndu3byc2NpY77riDW2+99eQYRVG44YYb2LBhA1OnTu10rg0bNvDcc8+RmprKs88+y6WXXkp+fj5hYWE88sgjHDt2jM8++4zw8HBycnKw2drH/zocDq699loKCgrYsWMHJpNpUF53RwT56JAkEFk5gtGKn9bD90yVXOCfxzR3JmH1GciWeug+l7dHWA3+7Eiaw2Y/P75pLsDsKoV678baa5B4Inc2E99PQ3V3HAJVefEFHCgv6PGHP8A/DL8qH9yxtTQ7ToV65SkxGFWot7QVGY1mPwgEa1Ad5rxgpOQAEspUZFkmOyuJhMSvz1yC6Y1/5MrgqbzfeMqr3CxDVmoAqRqZY4UNPJg3g0PRG3nS8TSytYZzM//B1uIv+dmiv/GJo/93PRVJIt2owgQfosb5MrHOQ2F2HVVNXSfDb68NYXvtEmAJ0wMs3BaZyRL3HoKq9iIp3YehdYSsKqRUHiel8jjXtB4rD44jLWoC6b5+pLsaybGUDFlOj0Aw1AToRbfvkc6YExl5eXm89NJL3HfffTz88MPs27ePu+++G71ez4033gi0eDu0Wi133313l3OtX7+eNWvWAPDSSy/x+eef849//IMHHniAoqIiZs+efTLPIykpqd31zc3NrF69GofDwdatWwkKChrYF9sNGlkiyEdHg1XEAQtGB3FGB1dHlLLUkM1Ex1H8aw8j1TugfdPqPlPvF8a2xNlsMWrY3ZSHw5kPzu6vGwqmuSL5xRf+aA7v7XRM+eoVpJfk9WreBdOvQK1QsKamtTl+3OFLhAJVZ4yvbvCFQCj3ySeC2VgDdPjU20lKTiCvsIBJKbOw2zParfO9xrs57vsvjp1WbdYmwbEUP6bLEofz63mjPIbMoI28EfY8PrVHCWku5h9fruKteY/zSMBymj0Dc9ekQlapCJfRhIcxyy4jF1s4ml9PF84NAA6b/VhvngvMJcHHzrqYbM5nHxFVO5H6WdY2uqGE1Q0lfOdbNxuDyIhNJT0glDTsHGkuwuEZ5PJkAsEQIbp9j3zGnMhQFIW5c+eyceNGAGbPns2RI0f461//yo033siBAwd4/vnnSUtL6zbhaOHChSf/rdVqmTt3LpmZmQDcfvvtrFmzhrS0NC688EK+973vsWjRojbXX3vttcTFxbFlyxZ8fHwG+JX2jFA/vRAZghHLnEAz3wsrZL42m8TmQ+jrs5CqBt41Vx4Sz5a4qWzWuEhrysNjy4Jh1gbhpxUzWfLOcdTmzj0pJZeu5FBRTq/m1Wj0hDVHouKmzrD1pKCya2IpdSrMcEvtREaTRUek1pdMNZ0IZlNmcTMemEg0eRRQXjaVkNCM9mupVta7f81DmkdpOq0vhl2CgxN9ma2ROJhTR1qjP0tsD/BJ/BtElX4JwLX7fsWiyI9ZP+u37LPLvXqNXeFB4oBRhYm+RI/3Y2Ktm7zsemrM3W/mi2xGHs6bDkwnRPdDfhKTzyrdAeJrvka2N/TbtgB7I0tzd7O09blLo+dozBTSQ6JJ06gctJZR7+xHxQKBwIsE6IQnY6QzcN/EI4To6GhSU1PbHJsyZQpFRS2BsDt27KCqqoqEhAS0Wi1arZbCwkLuv//+Dr0RnXHxxRdTWFjIvffeS1lZGeeffz4/+9nP2oxZtWoVhw4dYvfu3f1+XX0lzE/kZQhGBhpJ4RJTNS9O2MvO8f8iN/xnvOe8jRvKNzKp+B0M9Sf6FAvfGbkRk3h55irWzjiHC4Mlnm4+xr7G7GHX2TnK488rO6ex+JUDqM2dx4EVXX5RrwUGwPyZl6E2u3GllGJ3nmoOWOnTkj/h6+z4PQ81RHDcfQidUSaruBm0EjElPuj1eo4ckTAYEju8LsiRzj2+n7U77pTgwDgjZ6WEA1Dr1LEw70b2xN+KSssNocTKfXzw5YU8oJ5AOwhFacplla9NGioWhjFtaRzTkoLpafGbepeWZwoncm7ONUxp+gu/CX+aE/Fr8fhFDZh9Oo+TWcUHuenQ5/w5/Qu+PnGYD5t1POYzictCphHvO3BrCQSDTaAh0NsmCPrJmPNkLF68mBMnTrQ5lpWVRWJiyw/eDTfcwAUXXNDm/MqVK7nhhhvaJW3v2bOHc845BwC3282BAwdYv379yfMmk4kbb7yRG2+8kaVLl7JhwwZ+//vfnzx/++23M23aNC677DI++eSTk0njQ0mYn2HI1xQIekKIzs0VEeWc75vHFNdRQuoPIpnNYB6c9VQkDsfNYLMpji2uWgosZdB0ZHAWGyCubkrh++9UolZldDpGlSTyL1vJ8YLeV0ACSJAno+Kiedw+OE1fFWtnAKBzdpwTEKA1oUoFGCMkzEUeVJMvmnILExOTOFqSRVPTfAyGwg6vTWl6meuCZ/JmY9tNsVuS2JOoZ6HGxIFj1aiqxDXZy/lFUgw/rv0dksuKRnVx39c/YXny5dw54X7yOhFB/cEtSez3VSHFj9gJ/oyvdZOTVUedpWdxcw5F5m8lCfyNBCTpMq6KrOTagENMM3/d0thxABlXncu46lzWtD6vCYgkLTqFdL8A0jxmTjQXDzvhLBAARPhGeNsEQT8ZcyLj3nvvZdGiRWzcuJHvf//77N27l5dffpmXX34ZgLCwMMLCwtpco9PpiIqKIiUlpc3xF154gYkTJzJlyhT++Mc/Ul9fz8033wzAo48+ypw5c5g6dSoOh4OPP/6YKVOmtLPnrrvuwuPxcMkll/DZZ5+xZMmSdmMGk1B/4ckQDA8m+tm4MryExfpsxtsO41t3DKnWBYNYoMkta9mXeBabQ0xstZVRZa+FhgFM4BgkfBUdvzk2jeiP99NVP1VVlsm97EKy8vsmMKZNWY5a60LVeqiTtrU5l6/GA6BYO05sNkihADhCG6HInwatTAgw3h7BUbJITzOwZGkIbnfH7/fFjfdy3O9N0ixtXQWKJLErTsdiTQT7D7cEaj1VkMKhiN/wR+NvT/avmJ3/IV+V7eBXS//O667wPr3+nlCqUSmN0KAzmZhtk3AXNpNZ3NDjghqqKvFORRTvVEQBF3J+WB0/Cj3CHNtOfGsGvuxxuLmSC82VXNj63Grw52BMKhlBJtIkB4eaS7C6rV3OIRAMBUJkjHzGnMiYN28emzZt4uc//zlPPPEEycnJPPfcc1x//fW9nuvpp5/m6aefJiMjgwkTJvDRRx8RHt7yY6bX6/n5z39OQUEBPj4+LF26lLfffrvDee655x4URWHVqlV8/vnn7XI3BpPIAOOQrSUQnM7S0AYuDS5knnyCWPNB9I35UNn9df3FpvdlV+IcNgcEst1SQJOzAuorBn/hAWKxPZ6f/leFnH1djlO0WrJXn09uHwUGwJSQBVCu4Jyeh9vd0OZcljMAUHB0ktMluYMBqPQpJISpFNTYCQFMpXr8Q/1ptjTjcS8FPurwell1cpvzFzyse5raM0rUqpLENzE6lsqR7DvY8kfz3yoTJ/ye4H3TC/hXtySo+znq+P3/1rBixt3cZ7qaWvfgVWJySbDXV4UpfiRMCiCxxkV2Vm2vc94214ayufYc4BzOCmrmVtMxFrn2EFi1D2kQPA6+jmYW5u/luwxDj6ThePRk0sPiSNPJZNjKqbb3vdO5QNBXhMgY+UhqV7fBBB3yXZ+M9PR0Zs2a5W1z+sV/9hfzwLvtuwALBAOJQVa41FTFhQEFzFAyiWhIR7bWDNn6jT7BbE+aw2YfHbuacrGPwAo8kgqPFM1m+rsHUZ1dh+UoOh3HVy2noCC3z+slxE1joX41qFBzyb+odW4+ec4lh3Kz+ncUYOL+eopr29/5XjAjj6Oul5mpmc/Cb64DCb4X44tqcZE+sZIDxUcICpKZNfttFKXz/48C/+t4xLKGzuTBOTUKew+canTip/XwSdK7JJV82GZcddBE7pn/ApsdQxcialBhllXCUWjmeHH/ErDH+dq5LSqL89hLeNUuJHfHTQMHg+KwRNIiJpDuYyTNWUeBpQx1APOfBIKO+ODyDxgfPN7bZgj6wZjzZAjaEhPknapWgtFNhMHFVaZSlvnkkuI8SmDdIaRGKwxhoZvKoBi2xE9ns87DgcY83PZsGLp92YAy0R3GY1vC0B3Y1+3WTjEaOLpiKcX9EBgAs5NWQikovk7q3d+0OVflsxSlVVd0VmXJavUHHRzzpLNE9wM8LgVXqBGtxUVyQxgHgMZGBa1mMU5lS6d2JDW/yY+C5/LPxo4Txb8Ol1k6L5p9+1qEhsWtYVnOWv7fxATOL3kBqbWPhKkxmze+vJBXFvyWJ3wWYOuuFu0A4JDgWz8VUv1JmhRAfI2LE1m1NNl63zsjz2rkwbwZwAxM+hv5SUweF2n3E1e9A8nRNPDGn0Z8bSHxtYVc3vq8wTeU9JgppAcEk6ZYOdZchEsRVQoFA8tw9GTs3LmTdevWcfz4cVavXs0HH3zQbsy2bdtYvnw59fX1BAcHD7mNw4kxV11K0JaYYBEuJeg/UwMsPJKcyWcTPyIz9im+lW/mgZqHObv4HwRV7kFyDU2Md75pPP9v5iqum7mMFaE6Nloy+bYhC7fat4Zow4Gf1Exj48s2dAeOdTtW8fXl8AVLKC7K79eawcFRGCt1ADhmHWvnaSjRzQIgSAGbs+MQnvomXwBcOPGNaPmpqWwNewqu1mIKaQktzcyMA7ou0bS8YQOL/Dv/P9wRKjN3fkybYz/OXsizpidRDW3LYN605wG+PPFLZhiG9k58gVZlR5SWpqWRzFocS0pc3yvnVDt1PFWQwtKc65nW/CK/M20kO/5qPH5DsykLttaxPGcn96V/wusHt7K7sJRXPCbuDpzKkuDJBIhOzYJ+4qv1HZbN+O677z5mzZpFfn4+r7766pCuXVdXx1133UVKSgo+Pj4kJCRw991309jY9u5dUVERq1evxtfXl4iICDZs2IC7k8asO3fuRKvVtovK8Xg8PPLIIyQnJ+Pj48P48eN58sknu8wB7AjhyegDSUlJvX6jhysxwcKTIegdkqSyIqyOVcGFnMUJYpoy0DYVQ3n31w4GR2Ons9mUwGZPPXnNJcO+IlRPCVN8eXrfBIK2pPUoMEXx9yfj3HlUFBf0e+0FqVdAecuqjWHfwBnOigI1CQCTIlFCx1TV+6BvraHhCjVDqQ/ZZRZiNYAKk/wTqK6voaxMZeq0udjtneeYyHi42baBPP3zVHRSzeqbYInFi2JJ2116Mun6z0XJHA59mr8H/R5d4ynhNbHsaz6pvIjfLf0rf1GTOw3FGgzsEuzxB6YGMC4lkJgqJyey6zDb+yaELR6ZF4qTeIEkNNLlrI2qZG1ABqmNO9A1Fgyo7Z1hcNuZW3SAuS2V4FEkmeyISWSYEkjTa0m3V1Juqx4SWwSjg+HoxQDIzc1l3bp1xMXFDfnaZWVllJWV8fvf/57U1FQKCwtZt24dZWVlvPvuu0CLOFi9ejVRUVHs2rWL8vJyfvjDH6LT6U72h/uOhoYGfvjDH3L++edTWdk2IfKZZ57hpZde4rXXXmPq1Kns37+fm266iaCgoG4bVZ+O8GSMcYw6DaGiV4agC/y0Hn4QXcqrE79hf/LL5AbdycvNd/G9kt+TUPLfFoExhHgkDXuT5vGbsy5hReocrtE38vfGwy0CY5RwSfME/vovX4K2pHU/GHCHBJO2dA4VJUX9Xluv8yG4IQQAxWSm0dHehixXEACBXUTIOFwagg0t89T4tfzfNDa5kEJbvKeJVUEnxxYXpbSf4Ax83EXcp321y/4XOwNg5uJYNPKpQdvqQlje+Cj1UYvbjNV57Dy87UdsKnuJeL13fgrztCrfxOgwnxPJ7EWxTIzp351bjyrzZnk0l2ddzMTKjawL+DO74n+CLWzqAFncM2RVIaXyOGuPfMkzaZ/y5bEDfFWv8IxhHGtDpjPJPwFZEtsPQedE+kV6ZV2Hw8Hdd99NREQERqORJUuWsG/fPgoKCpAkidraWm6++WYkSTrpyfj000+ZNGkSPj4+LF++nIKCgjZzvvrqqwQHB/Pxxx+TkpKCr68vV111FVarlddee42kpCRCQkK4++678Xg6L+4wbdo03nvvPS699FLGjx/Peeedx1NPPcV///vfk56KL7/8kmPHjvH6668za9YsLr74Yp588kleeOEFnGfk8q1bt47rrruuTWPp79i1axeXX345q1evJikpiauuuooLL7yQvXv39ur9FJ4MATHBxh7XdxeMfuKMDq6OKGWpIZuJjqP41x5GqneAFyu7OrRGdiXPZXNAENstRTQ4K6F+CEpRDTEGVcNTJ2aS8NEB1C5+bE7HHR7GgTmp1JYNjMhaMOsK1JqWta3TDsEZ9/k9ki+5rbktPt30oAjRR9DgqCdbe4TZTASg2VeHX60d30aZ+MRYiitLOX5cIj5+AnZH180CYy0fclvwPF5obF8O/Dv2+MHZi2PJ3FWKy9NiX4ndwIKi29k0PoHU4rfajJ+f/TZbSrfy88Uv864zuMv1Bwu7BLsDgOmBTJgSRFSlk8zsWiyO/lWT+rw6jM+rlwHLODu4iR+HH2OBczcB1QdO5qoMFVENJaxqKGFV63OzMYiM2FTSA0JJw87R5qIRWZBBMDjE+MV0P2gQeOCBB3jvvfd47bXXSExM5Le//S0rV64kOzub8vJyUlJSeOKJJ1i7di1BQUEUFxdz5ZVXcuedd/KTn/yE/fv3c//997eb12q18qc//Ym3334bs9nMlVdeyRVXXEFwcDCffvopeXl5rFmzhsWLF7N27doe29vY2EhgYCBabct2fvfu3UyfPp3IyFMibeXKldx+++0cPXqU2bNnA/DKK6+Ql5fH66+/zq9//et28y5atIiXX36ZrKwsJk2axMGDB/nmm2949tlne/V+CpEhIDrIhyOlg5s4KBi+zAtq4nthRZytySKh+TD6+iykKu+HA5qNQWxPmsMWXwPfmPOwuYu8KnQGm3mOGH72qQ7peM/vFLkjI9g/YyJ1FWUDY4QkEeMZh0qLi6Lef1u7UKkan8W4bC1/H3I3m2A/TThwgoOeb5kjX4miqJQ2u5jUen6SNo5iWvpa1NXNxdev+47kixp+SWbgm2wxd14laq+vypwlsWTvLMPZWrbWocisyr6UZ8fHcUX5c0inJSoHWCv5y1eXs2L2AzwYcikNnqHdgJ9OjlYlJ1aHb0wUZzVDY14TuRX970C5tyGQvQ0LgAVM9LOxLuoEy5RvCa3ajeQZ+ptMAfZGlubuZmnrc5es41hMKumh0aRpIMNaSr1zCCtFCIYVMf5DLzIsFgsvvfQSr776KhdffDEAf//73/nqq6/45z//yYYNG5AkiaCgIKKiWhqFvvTSS4wfP54//OEPAKSkpHD48GGeeeaZNnO7XK6TYwGuuuoq/vWvf1FZWYm/vz+pqaksX76crVu39lhk1NTU8OSTT/KTn/zk5LGKioo2AgM4+byioqVUe3Z2Ng899BA7duw4KU7O5KGHHqKpqYnJkyej0WjweDw89dRTvW73IESGgFiRPQBTKwAA+bxJREFUlzFm0EgKF4fXsioon5nqcaIaD6JpLocB2qP2l+rASLYmzGSzTmVvUy5uR067Te5o5KGS2cx59zCqreflr5xxMeyblEBj1cD1+Jg9dSVqfcvm25NUjdXRvsdGqW4O2Fr+7e6kEd93aNWWhnx2bPhGaGiucJNTbGFSiA5cCrGlfid/wDIydJy7LAKXq6pbO2+w3EOO4W8UOToXAweMKrMWx1KwqxT7aX027sudzaGYp3jU9gyyrW2nx8vTf8vZoZ9w97zn2WHXdWvHYGKVYFcAMDOQSVODiKhwcjS7ttNE+96QbfHh/txZwCyiDDdxW0wuK+V9RFd/g+Rs7vf8fUGnuJhZcpCZJQf5UeuxPNN40k3JpBn1pDtqKLaOnH42gv4R6x875Gvm5ubicrlYvPhUaKVOp+Pss88mMzOzw2syMzOZP39+m2MdhR/5+vqeFBjQsvFPSkrC39+/zbGqqpbvv40bN7bJoTh27BgJCQknnzc1NbF69WpSU1N57LHHevwaPR4P1113HY8//jiTJk3qdNx//vMf3njjDd58802mTp1KRkYG99xzDzExMdx44409Xk+IDAHRQaLC1GglROdmTUQ5y33zmOI6Skj9QSSzGfp/Y3TAKApPZnPMZDZLdg415aFajnvbpCEj0R3Mr3dEY9jTfWna03EmxvNtcjTm2oFNpp3ofxZYWjaxzSkH6MioAunUD6WtuzBL16m8CyXMChV6XG4F1eSDVGZBb5cYPy6RrLI8PB5wOBYhyx90a6feU8W9hhd4SLoDRxdFODKMCtOWxFC2sxzraZvzV8viOBb8FP8X+hzGurZ/b9F1R/nPFyv42+Ln+I1udpfzDxVZWpWsOB3+MVHMaYa6vEbyKwdGDFQ49DyeP4XHmYKf9npujSnkMkMaSTVfI9uGrpdNR4yrzmVcdS5rWp/XBESSHp1Cml8A6UozJ8zFI7pynKBzvOHJGEx0urY3LSRJ6vCYorTcEFm3bh3f//73T56LiTn1fpjNZi666CICAgLYtGlTm3mioqLa5U18l9QdFRWF2Wxm//79pKens379egAURUFVVbRaLV9++SXnnXceGzZs4KGHHuKaa64BYPr06RQWFvKb3/xGiAxB74gNEZ6M0cJEPxtrwotZrM9mnO0IvnVHkWrdUNv9tUNJZnQqmyOT2expIKe5GMxHvW3SkPPD+qlc+p8i1LrDvbrOMWEce2JCsNQP7H/quKQ5SJUtG3FVUqjXboMOErtzXKEn/11v7lpkOOynyrTW+ZdjpKXXRb0s890s4z1RZJEHQEZ6IHPn+aIo3Zc8jrD+jzuDzubZpjldjjuiV5myJJqaXRVtKjjtbQhkqfXnfBL3f0SUbW5zjYTKup0/5dz4Fdwx5ZdkDhNvWrMMOwOBWUFMdoUQVmHnWHYdNtfAdAK3uDU8VzSO5xiHTl7DdVFlXO2XweSG7WjN3i+sEG6uZIW5khWtz616Pw7FppIeZCJNcnKouQSre2jKZQsGF294MsaPH49er2fnzp0kJrZ8V7lcLvbt28c999zT4TVTpkzho48+anNsz549/bYlNDSU0NDQdsebmppYuXIlBoOBjz76CKOx7U3ihQsX8tRTT1FVVUVEREuFrq+++orAwEBSU1PR6XQcPtz2N+fFF19ky5YtvPvuuyQnJwMtOSSy3LY4g0ajOSmCeooQGQKSw/28bYKgjywNbeDS4ELmySeINR9E35gPwzAfWpFk0hJmszk0mq3OSkqtldDYu831aCFINfJ0+mTCvtjf657J9smT2B3uh62xYcDtmhV73smwOXdqCQ5X+9AUVdJywi4BKrKqUttJI77vMFv8ofUeRp7uGKmtIiOvynZSZESVGjH6G7Hb7VgsKhp5KYryRY9sntO4kVVBr/FpU9d9GTJ1KpMWRaHZU0mD9ZRyqnbqmJ9/M+9MTGRu0T/bXTel+Cs+L9/NxnNe5mVP7LDqcX1cp0C8nsC4aOY2KVTnNlJYbRmw+V2KxGtlsbxGLLCaSyOq+UHQYWZZdmCoOzFg6/QHX6eFBfn7WND63CNpOB49mfSwONJ0Mhm2cqrtdV61UdB7tLLWKyVs/fz8uP3229mwYQOhoaEkJCTw29/+FqvVyi233NLhNevWreMPf/gDGzZs4Mc//jEHDhwYtP4ZTU1NXHjhhVitVl5//XWamppoamrJpzWZTGg0Gi688EJSU1O54YYb+O1vf0tFRQW//OUvufPOOzEYWvLYpk2b1mbe7yppnX780ksv5amnniIhIYGpU6eSnp7Os88+y80339wrm4XIEDAu3B9JgmEQFSDoAh+Nh0tM1Vzon88MJRNTQwaytQaG6Y07p8bAnqQ5bA4KYZu1mDpHNTSM7Vr5F1iTuW2TFbVof6+vtU2dwu4gPXbzwBdpCA9PQFfR2sACMCft7dCLUWtcgN3eMsakyjR20zW7psHnpMjIUPaQKl0MKpRW2ZgX74tqdqFxS0wyJXGouCVs6ciRKFImy5xZ1aozvm++hyyff5Bj69qWLJ3KuIWRyN9WUdd8ygOjqhJXZV3AY8mx3Fj9OyR327wYg7uZx7dcxwWTb+LuuJspd3kvKbwjmiSVb4IkOCuYqa5QgsptHM2uw+EeWDv/W2Xiv1XnAeexOKSRW8KPcrZ9F37V6UjDRH5pVA9Ty44ytewoP2g9VhyaQHrkBNJ8fEh31pFvKUMdJvYKOibKN8prJY6ffvppFEXhhhtuwGw2M3fuXL744gtCQkI6HJ+QkMB7773Hvffey5///GfOPvtsNm7c2OvNeE9IS0vj22+/BWDChAltzuXn55OUlIRGo+Hjjz/m9ttvZ+HChfj5+XHjjTfyxBNP9GqtP//5zzzyyCPccccdVFVVERMTw2233cajjz7aq3kkdbR0lRP0i8VPb6G0weZtMwSnEWFwcZWplGU+uaQ4jxBYd3jIOmf3FYshgK+T57DZ14dvzPlYROgCAFpV5oncWUzYlAaddF7tCuus6ewygtM2OO/n6sXr8S9r8Wgqejf559+L29M+cedw0L083bQEgFSXRN6WrkNoZEkhKPVR3ErLa74/+0UsNS3q5eLpoeiLW9aoiXHyQd2Ok9etWJGD3bG7x/bXGhfxkOtnWLsRPQAJHgn2VlPV1N4Lc2VkFb9zP43G0nGCcYNfLBsWv8x/HcO7o3WwAtOaVCpzGiiuHdzP4BR/K+sij7PUs4eQqm/bVO0ajjT4hpIeM4X0gGDSFCvHmotwDXObxxqLYhbxtxV/87YZggFAeDIEAIwz+QmR4WWmB1i4MqyIBbpskqyHMdYdR6oZmFjrwaTW38TWxFls1kt825SLy5E3JipC9ZTpzgh+8aU/8uHeNTH6jua5s9ktO3DZBudNNfoEElAXiErL35prZk6HAgOgQJp48t/+PdiXKapMqMFEla21HXy4HWo0AFQ6FeJbx4WV6wgKD6Sx1UuTnz+R6Jiei4ww+y5+GrSd3zSd0+3YIo1K7NkmovbXUNHQ1mvxfmUEmf6/5l3TX/Crzmh3bbCllL9/uZr/zH2UXwRegNkzPO/RNcgtHdCZG8I0ZyiBZXYO59Se7BsykGQ2+/LT5rOAs4g13sK66BxWyPuIrNqJ5Bq48K2BIthax/KcnSxvfe7QGjkSM5X0kAjSZA8ZlhLMLu9U2BK0MDF4YveDBCMCITIEAIw3+bMj27uVRMYSkqSyIqyOVUGFnCUdJ6YxoyWxcoRUaCwJTWBz3FS2yA4ymvJQrCeGbdiWN7mnYiaL/3Mc1dK3GsHmhfPY7W7G7Ri8PgaLZlyBWnVKzDZG7epUJOa4TSf/re+ifOzpBOlOiYzGgEq0tFRJyS6xEK8HVJBUiZTgJPaaD7Wsk6OSPC4Vu/1Yj1/HtMbnWRM8jfca2ydLnkmpRiVqXjhxB+ooqWv7h5vZ7MsC+318mvRv4ks+6fD67+9/ggWmj7nrrN/zrV3TYxu9wRG9CkkGQhJjmNmgUpHT0O41DxSldgOP5E/lEaYSoP0BP4kp5BL9ARJrv0a2Dc/cCIPbzpyiA8wpanmuIpEdOYl0UyJpei3p9krKbWM7zHOomRgiRMZoQYgMAQDjTSL5ezDx03q4wlTBBf75THMfI7Q+A7m5AUbQDbMTUVPYEjWOzUoTJ8yFY7IiVE+J9gTwm12J+H5zoM/R341LF7DHWo+nD+FVPUWWNUTY41BpWUMJtNHg7NiDoCJxwq7lu1wJyd4zL5uPHHby3wWG40xoFRlmiwspJhD1/7N31uFRXekf/9zxTNw9BGIkEEKCuxYp3lKl7t1S6rrdbrftVrau1Et12922u5XlR6FIi2uCFQmBEBfiNsnI/f1BEwiRkYwl3M/zzPMw9557zjtD5t7znvO+77f89A5q/0p/zt7rKS8bireP5U4GwIKauzii/YwDFsyhS2QiQcMC6JcldEiYrjMomHBsCSsS+jGp4J1O1bFjyvfw3eqZvDH+DV6Sp6B388jjKgE2+QsIw/0Y0hKAR1ETB3MqHbK7Aae/w5fy4niJOJSyS7gmvICLtVkkVv+Goq7QIWPaAwGRxNIjJJYeoVUSrcQvij1h8ezRepJlqCW7Ph+TkxXTzyfi/ePNN5LoFUg5GRIAbD52iiUfbHe1GX2GGA8di4MLmaA+RkLzATwrDiAYe1cMkUmQsTcqjbVBkaxrKZOEsCzkspqBLP53CWK57TuD1ZPHs622DJPRseFyI9Pm0782ue1944Rd5Hu82blN6gzuaPlz2/tRx5rYm2N+dXriqB1k1n4HQIgsnIs2P9x2blpqAF75Z0KzfozcT2nFaTEqQRCZOm09LS3WTUhr1Gk8YnyCGgtVu/1FCN9bw/EudCfu65fD0qrnuxWpy+o/n6UJ93OsuXc9TgNFgZQqIwXZ1RQ7MVz2otAyrvTdx5C6jaiqOgo+ujt1Gl/2RiSzxyeQTHQcqM9D18vu7+6KTJCx/crtaBSSfldfQNrJkABOh0tJ2M4I31oWBuYxUn6UmPp9qKqyEcp614QDQC9XsT12GGt9A9jQWMip5gqodjORDTfFS1Tx7P5BhK7cRU/WbiqmT2LHqSJEJ6yU9lenAmd2Sqr9NnYZKlWsHgNnRW3VmxPi+wNjyxlBvjJTMR5+CpqqT4+ZX9tC8lltkzxiKOW0kyGKAo2No1EovrVonFZ8m/dyt8//+FvdbIvaVwlgTPMj4YBAdlHHXJSXTsaxP+g53tb8A0VtXqd9DD3xA6uLNvLE+Pf41OD80pu2UiGIbAyQIYz0Z2hLIKqCRg4er8JgQQJ9T/iuNITvSqcD05kUWMX1AQcZoduCtnyv21Sq6g5vXQ3jj29j/B/v9TIlv0ekkBkQzh45ZDUWUtVS41IbeyvR3tGSg9GHkJwMCQDCfDV4quQ0tLh/orGrUcpEZgeVM8vnJGniIcJq9iKvL27TGOhtNKo82dR/GL94erGpPpc6fSFUuW84gzsyQRfDnd8b4fjOHvVTPnMqO0vznFJPOil+LJSfcTCMYbXUNe/tsn2eLKnd+4pOqjN1RlOTNwhn3stD9FB9+kBOQQMpgWrEP+47MSXeCILQ5qRl7vFk9BgfjEbryvYm1n7AEr+hfFETblH7WkHk+GAfBsplHM7vODlcfSqA6R5P8H3oe/iWdi60pW2u4h9rL+GCwX/intArOGXnErKORBQEMtUixHkQ3N+D5CoTJ7OrKK3Rmb+4h/xa4c+vFeOB8aR6N3Br6CHGG7bhW7YDwdQ71LyVJj1pBXtJK9jLdX8cOxEcR2ZwLHs0ajKbK8hrLHalib0GKem7byE5GRJtDAj2Yn+htPpyLv5KAxeHFDNVm0Oy/iB+lXsRauvB/nIFTqPKM5AN/dJZp5GztfY4zS257VapJSxDEOGJ3AxSvstCbOnZF1g6ezq7i07YyTLzpIZOaOcYNw7a0237Y8bQtn9rRNqJ2nVHTZ0XnBH+ps6nHIHTq/1Go4gx2ANZ4elQJE29jH6x0eSWnN4x0OlEEMcDKy0a62xm1dzLYc8v2N1gWb39BgEOJ3sxSC5wMLe6w/ncJg2jC+7ghwHRJOT/u8t+LjjwNuvzf+a+UW+zurn3rciWy6A8UIYsIIC0ZjnKggYOnqjC6ODdDYD9dZ4srRsODCfGQ8dtEdlMYychZZsRDL2r+mH/8hz6l+dw0R/vT3mFkBmRxB5PHzJN9Rypy8cg9g4nyplISd99C8nJkGgjMdRbcjKABM8mLg7KZ5wqmwFNB9BWHkSoMEAvjxoq9o9mXdQg1sr17Kk9jrHpKPSu57ZbkaQP4q9r/VFk7uhxgEfR3Blk5efYxS5LCA9LQH7OwmqVdkO3pYePNKtoTfoOMQl/BDWZp6xK087JKFAfI5ozIUUVQPBZ7ROECHI5E5a0b18Qg1OViKJ1WgYysYVbm//Mo8rnOWWhgJ5OgAOJnqTJBPYdr+pwvsko54LsRbwZH82cote7XGkPrsnh09Uz+XTUs/xVO44mJ0zQ7Y1JEMjUmCDeg7ABWhIqjeRmV1Ju4Q5WT8lr0vDo8VQgFX/lNdwScYILlbuJPvUbMl21U2ywJ0H1ZVxwtIwL/njfqPJkX2QKmb7BZAp69tXnS7pCQLyflPTdl5ASvyXa+GjTCZ78ybpqLn2BSQFVzPU7yXDZUaLq9qKscd5qsqPJCUlkbXg8a8V6fq/LdbU5fYbby4cw9V/HEGt7vp2VP38m+08es4NVljNv3N1oi9Rt7/XxJRwf8HCX7etVA7lV//e292nNAkc2dC/EdzahqU/S+McEKkYWx4Wbl7WdCwvSMMpwJkzToBL5Qr0Rvf6MUzF9+kmaW36zeLyzOel1OY81XGKhfvhplCIMO6EjK7vrlYWbovJ5tP45ZLqOzsjZ5ISP447Uv5PVLHTbrjcgR2RokwxZfgMHc6twhe+klpm4LqKAizwyia/8tUvhxN6GUZBzJCyJzMBo9qhkZDYVU65zz7K/juSHhT/Q37e/q82QsBOSkyHRxo4TlVz6ruUCWL0RD7mRucHlzPA6wRDTIYKrspA19R19EBGB/VFDWBscxTp9Bbk26jNIdE6QyZPndsThs7770CJLyV0wi99znVtdx9srkDkRtyCetbpfPetHSk1dJ1hn+9zIE3UXtr0fXQdZWyzP20ke/g4FDblt7+8+8Ba6ujO7AAv7eSHWnFkh3xyfx6GCM99Lv34CMf0+tXi8c1nv9yIf1Fg3cZEjMupkC3sOd31/GOdfw8eal81WSDLIVLw44V3eYAB9Jest3CSQUGHgeHYVp+pcU1lJEEQWh5Zyhfc+Btf9hqr6uEvscBT5ATFkhsazx8ODzJZKTjQUIfaCxHhbUcvVbL9yO3KZe2vPSFiOFC4l0UZKhA+C4JScU6cRpm7h4pAiJmlySGo5gE/lfoTqRqh2tWX2wyBTsLNfBmv9g1nfVEyZ7hRUd7+6KmE98+sSuPrbSsTinjsYoiBwYsFMDp9wfvnO0amLEEvOOBii3ESlbAPdLfXny1LavVe2WJfU7K0IBnLPXB9iRHdWISedrwr1WU5GXEsIhzjz3Zw8KZKYNBSdLsuqcVuZVP0Qv3t/yZZ6yx95RgS2xagYKw9h18HOg8M2V/kyUf1n/hfxMYHFv3bZl8LUwsO/Xs/U+MtY2n8peVZ+f+5IsUykOFiOIiiQdJ0MMa+egyernfr8EEWBf5eE8e+SMGAG0wIruS7gAMOaNqM9td95hjiI6Mo8oivzmP/H+xqtP5kRKezx9iPT1MjB+jz0JuvCCN2ZAb4DJAejjyE5GRJteKkVxAZ6cuJUg/nGbkqqdwMXBeYxRnmUfo370VQeRijv/Q/0c2lSadnSbxhrvX34tSGX2pYSqOobYQPuhlqU8+zhNKJ+2IVo6vnfkiiXc2zuBWS7wMGQy1UE1oe2ie8BtAzORW/oPuEox9S+SpOp0bqEVbXQXoW7wbcS8G97X9xkJPas8yEFajz9tDQ0nolRLy4ahH9AllXjtiLDyA1ND3BC9RrFVkzwTYLA5kgF4+Wh7NxX2mmbkmYVI3Nv5tv4fgzN7363ZeSxr1lXsJ5Hx7/Hv/T+3bbtLRgEgZ0eIiR5EpXgRf9TBnKOVlJpYYlje7K2IoC1FROBiWT41nNz8O+M1W/Dp2wngtj795B8G6uYfGwzk/9436zQcCAihUz/UPbIjGQ1FFCn70UKr+cgJX33PSQnQ6IdgyJ8eo2TIQgiFwRWcqHvSTKEw0TUZKGoK4A+Oteu8fDj19hhrPVQsqU2B53hJEgbFg5lZHMk9/1PjnBkh/nGFmBSKDg6ZxrHnRwi1cqotPmIVe0dhProbWYrix1p9uDsrQ6dhZWlWhEMfu3eF3kcJ4xhbe+zCxqI9ZDRGuQvMwkkBvYns/GMqvyBAwLTL+hHc/NJq8ZuxcOQx73qj3hEfx0GK1bbRUFgY7iCCfIwdmZ2fnMxijIWZs/imQGRXFH6crfCm166Ml7/ZSEXDL2fBwMXUNWLSt2ao0AmUhAiRxUczNAmAUNePYfynLu70cqeGi9urxkJjGSAVset4UeZyg6CyrYgGBxfmtcZqA06huXtYdgfdRJEBLJDE8kM7kemSkGmroyiJktLNLgeKem77yE5GRLtGBThy0/73LOet6fCyEUhJUzzPMFgw+8EVGUhq6+G3rtwY5ZS3wjWRaeyVmlkd81xDLps6BvPR7fnkfyhZHxzAFFnny9cVCo5NHsKJ3Odm+R9NjGygYiccRBEDz2Vho3dXtOkiOmw+l9bZ90qdUuzb7v3v7O7nZPR2GSAGF8oPbNz0b82kMx2VwnU1o5CrbbNyQCIaPiRW/1G8lZNivnG57AxRM6E4eHs3NX1/fHR46nsDX+WZ1qeQ97Q/eRuXtaLjAhYyV0jXudXndJqe9yZFgF2aEUY6ElMghf9yvVkZ1daXPbY3hxv1PDQ8SHAEIJV13JLxHFmKXYRVb4RobkX1yI/BwGRxNIjJJYe4bI/jpX4RZIZmsAerSeZxhqy6wswOUHo0xaknYy+h5T4LdGOjdnlXP2hfVZte0qMh47FwYVMUB8jofkAnhUHul0h7CucCI5jbUQS62jkQO2JPp3o547EGvx46tcw1DsO2K1Pk4eGA9PHU5Dnusplg5OnMEg3st0x3egDnPR5sdvrTnhdyWMNF7c75r++hCYrhDtT48rIVb3c7tiyrDdpaTrTx5TUAHzy2ytufxe6h8qaM9t1SiWMn/ATBkPPtvA+8vmCtXW2aVhMqBLZuaP7ggpDfOr52ud1PE6Z/xsSEXh/7Ms8ox6GrheWurUUtQhDGwWaT9Z1KnjoCjzlJq6LyGOhJpMBlb+adQz7AvUaH7IiUtjjE0gmOg7U56Fzk+fqL4t/IdQz1HxDiV6D5GRItKOyoYWMp9a4ZOyRfrUsCMhjpPwoMfX7UFVlI5wnE+yDkamsDY5hrbGK4/WWlwaVsC/XVQ1iztcnEauq7danydOTfVNGU5Sfa7c+beGSsY8gK26/glk67x2qmztXsG7lN79nebcmse29nwl0a6xThI8OaaA68Kl2xx4ofpO63DNORly0F4PPqVJ0IKGCbflZ7Y5NnFiDyA9WjX8uLfIQnlC+y8lm21Z0x9XAnu2F3YYB+SsN/C/mSyIKV1nU56Ho6dyR/Bd+d4/5nkOJNQhEn9Jz5GgFtU3uIUgnF0xcFlbKZV5ZpNT8hrLW9h2z3oRepuRQRDKZARHsUUBWYxGVzdVOtyPII4j1l653+rgSjkVyMiQ6MPbZtRTVODYmRykTmR1UzmyfXNLEw4RWZ/WZeueWYBTk7O6XwdqAUNbpiilpKne1Sec1viYNz2cOJGD1Lrv2a/TxYe/4YZQU5plv7EBiogYzRjWHs312k38jx0bciWimqOonvp+xulbb9j7eIFCw1jpHWK00oo5/rN2u3J1NT6PP8m57L8gEFoSoEXVn7Kn3N/JV04Z2ffn6yhia/hUmU89m42UeU3mkZanNuwdj6yBra6FZrYgvEn5lbP57Fi2YNCu8eHbCO7xrij4vllc0IgxthKYTdRwpdK+wpdnBp7jG7wDpjZvQVJxf+lEnguPIDI5lj0ZNZnMFeY2OD6GeFjONV6e86vBxJJyLlJMh0YHUKF+7Oxn+SgMXhxQzVZtDsv4gfpV7EWrrwb2eKw6lWaFhS//hrPX25deGPKpbSqGq84o1Es5jZuMAbvquATHfzg6Gvx97Rg2h3MUOBkB67Ew4Z/Ohacg+sw4GwJFmL85O+vbVg7V7bc16OaFqf6qaz4iLlWhzCSS17b1oEjEEeSAvOJNk5VUlJyI6nKLyM5OcmhoTCvk4WkzrrLSiPSFN67jDbxQv1Qy36fot3jBqXBQHtxRi6MbTWJI9iYf7hXNr5QsI+u6LaqgN9Tyx/iqmD7yWZVE3UWShUnlvRSfANk9gsDcDBvoQWdbC4exK6nSu3934v/Ig/q98MjCZkX613Bz0O6NbtuBVvgfBTXMa7EX/8hz6l+dw0R/vT3mFkBmRRKanL5mmOg7X5WMQ7ft/lBacZtf+JNwDycmQ6EB6jD8/H+zZ5DfRs4mLg/IZq8pmQNMBtJUHESoM0H2lzD5HncaXX2OHsU6rZlPdcZoMeVJFKDdBIcp4+thQBvx3D6LBvg9MQ3AQu9MHUlFsXViRI/DzC0NTqoRz1sarfX4DM5sBzbIg8s4JKdK02LbG7qcKbudkHJZlMe4sJwPglBHOjchOVEVRRPuV1EOHooiLFzj3M1lLRvWzzPFdwf9qvc037oTtniIjxkdyeHMhemPXtjx3MpF9wc/yuuYfpyvgmWH84U9Yl/8LD417l++bbbOtt3FcIXI8QokmPJT0Bqg/UUt2UZ35C53AjmofdlSPBkaT4NnE7WGHmWTaQUDZVgSj80v1Opug+jIuOFrGBX+8b1R5sj8imT2+IWTK9Oyrz6fB0NhtH+YYGjK0x3ZKuB9SuJREB3bmVnLJO9Ypf08KqGKu30mGy44SVbcXZY3rElxdTblPKOtj0lirFNlRm4PB5PpVOYn2DGkJ5dFVWmQH7V9KVh8exs5B/akud48k0lljb8e32KfdMWNUJcdS7jV7bYHXRTzUsKTdsQllxi5LuXbHmDE/cqB6c9t7GXL+tPtVDGdVrgr0VzH+nEdSi9bE5/yK6RyNkgtmHEan22m1HeeiF3z5u8fHZDfZ/ihMbxI4vqWIZjPlaOO0Tfw3aDneZZbvmn0z7DEe9Z1JrbFvr553RoJBRmhpM4eyK2hodj+dizB1C7dG5DBTtpPw8k0ILX241GE3GAU5R8KSyAyMZo9KRlZTCWU6y1cUFTIF267chlqudqCVEq5AcjIkOqDTGxnyxGpaunioeciNzA0uZ4bXCYaYDhFclYWs6ZSTrXQv8oL6szZiIGsFHftqj0sVodyYe4vTGPOvQ4iNPVt56wx9VCTbE6OorXCP34NK6cFFCfcgNrWfoNVe8AvFwudmr9/q9zferBnc7tiY3GYyj1j/+SaM3kxWzY/tjj2Q/yZ1Be1tW9jfC7Gq/RbL+v455BTntjs2cKBIcIj5z2AJlZrRPGx4kIZudiPMkdYskLe5mCZ995NhT7mJH/t/y4CC/1jcd35QOncOe4ltuvNTDVkrQno9VB+vIafEPSfyngojN0ecZL56D7Gnfjvvn4kFATFkhsazx8ODTH0Vx+sLu3wupgal8uWcL51soYQzkMKlJDqgUcoZFOlDZl41cHq15uKQIiZrjpHYchCfin0I1U1Q7VIzXc6h8BTWhvZnrbGaY/X5UHfQ/EUSLiPS6MMzm6Px2LzbIS5gc/8YtseEUu8mDgbA6KGLEE+1n/SKgkiVeoNZAT6AE2K/DscabVRyFvW+HY61BNRBgbbdsUZvFR7nOBnxhJNDbrtjhw8LREfHo2vuue5IgG4bd/us5+91k23uY69aZND4CEq2FHW76t5glDH12CW8Gx/DjMI3LVKijj6VyXerL+CtcW/wD8Vg9OfZ2mCjAJu9gTRfklL8CC5t4WB2hVVllB1Ng0HOq3kDeJUBKGUXc2VYEZd4ZjGw+leLQuT6GlGVeURV5jHvj/c1Wn8yI1LY4+1HpqmRg/V56E2ndVOkfIy+i+RkSHTKsuRGwtXf069xP5rKwwjl599W/bmYBBmZ0emsDQxnXUsphY2lULPf1WZJWMDlNQNZ/K9iTKf2OqR/XUIc28N8aaiuNN/YWQgCEcYB7cT3AAxJRehaLJv0ZOt96JDLYaUQXystuo5ORrlnPj4ktTtW3GhgwDntIgo8UGvVNDe3dz4qK4ej9bSPuGFK7Rtc4pfKv2sCbe7joMrEwHERyLcWmy3NeuuxUdweHcqDtc8jNJvXjZCJRu7c9Ccmxc7hjsSHyG4+vxyNVo4oRY5EKfGKCCOjTqTqeC0nytxrd0NvEvikKJJPiATmMC+knKt89zO0YSPqyiOuNs8l+DZWMfnYZib/8b5ZoeFgRAp7/ELJCB7W3aUSvRgpXEqicw79BF8vMd+uj9MiV7MtdhjrfP1Z31hAZbOUtd2b8BJVPLd/ECErd9GtqEEPaEpJYpu/B0317pGk2kr64FkkNnRcIay68D+UGb43e71B8OYGVrSrPyVHxGNNcbfVlLpiYL9KCrX/aHdshHwCwzYtbndMrZYzy0sO54QubYsv4EBB+wmaXA6TJv+MXm+f/Bej4ME/tJ9zoIeRdPEGgYZtZVRZsOszKaCK91Uvoao+bnH/TSpf/jbhfVYYJOEygGS9QEBxMwePVaBz84pc4/xruDHoICN1W/AszzxvtKC65d7D4BPuaiskHIDM1QZIuCn9xgKCq61wCQ1qb1YlTeaBjNlMHNCfO0wFfFu1X3IwehmTm/rx8ddBhPxvp8McjMYhg9jiq3Y7BwMgwSujwzFRYaSSDRZdX66d0KHAbbBJZpODAVBRo+1wbJ9xJzJF+/tMc7MRgju2HdAU3OGY0QjNzeNssqcz5GITdxj+hq+iZ4/GYwoRzehQgrzNJ7L+WunPlOq/UBk23uL+PVpqeG7tpXxx6p8E99DWvsAhpcjmGBWmKREMGxVBTJCnq03qks1VvtyQPZbB+fdzoeJ9vo+8n8qw8YgypatNcw3+/SUHow8j3Z0kOkcbAMEDXW2F06jwCubbQdP5U/pMJkaF8kDLcVZVHexxWT4J5yNH4MkTGfzprTzEE47TqGjISGOLh0BzY/faB65gQP9hCKUd49VbhuRgMJgPzQEoVKZ3OBbQg0JpFTUqFLL2EbrN6NAGd0xmrlZ2fDQFF6nw9upYzjUr0xuZrKNTYis+zfu41+PHHi+xnFCYEEYFE+qrMdu2UKdmVN7tHIi+0qoxph18h/U7r2WWuslWM/sUtYLIZj+Bo8P8iJsSTcbAINRu7IQdqtdyV04GGbl/YrzpPT4L/zMlkTMQle7rJNmdfvZbJJBwP9z31yfhevqNcbUFDqUwIIZPU2dx7dCpTA3x5InGo2ysPkSLqe/XPe+rDNQH8dn/xTPwqx2g15u/wEbqRmawWa6nReeek7uhEVM7PV4bYXlp6lz6dzjm1QMnwyTKCFR3shsR2NFJy63oKAYqiAJJ/rEdjjc0iMhlE2w3rBPiaz/iKt+iHveTLxdpGRlEhL+H2bZ6k8Dc7Ll8E/EQolxl8RhBtcdZsXoWL+o2oZWdn7vPnXFQZWJLPzXClHCGj4ogOtB+jqgjKNSp+cuJQYzOuY6huuW8EfIUJ6IWYvIIcLVpjqWPzzPOdyQnQ6Jr+uAKw9HQgSwfOodLhkxgli+8UP87e2qOYerjCq7nA38qH8JT7zagyDrk0HFqx45ki6kJQ4sZJTsXERQUg7Kk4+6AybOZav3mTq7onGy9f4djquae/U58lB2djArPjoKFJ4sbEbQd65L0r+58wnXgQBj2fpzNqLmP4Z49vy8Uy0TqhwdaPMm9/3gaj/v+HZNHkFXjXLX9z6w99CAZGinG/2yqZbDJTyB7uD/xU6JITwpCKXdvZ6xGr+ClvDimHLuUpJo3eCrweX6PvgKDd6SrTbM//ca62gIJByI5GRJd03+iqy3oMSICWdHpvJQ+lwsHjeRibSNv1+zncN1JV5smYSdCjF58tCWVyR/sQaxzbG5E9cSxbNHVYNS7727XqKT50EnehG7o75hEy+w2CSqymzpOxARdz0qGesg6Vm7KUf7esaEI+sCOq/++5QpCAjpOvsvKTGjUo3tk27nIxBZuaX6E4E5Ct6ylTCZSkRFA/xAvi9p/VhTJYtPf0QWmWDVO/5Jt/LBmBvdyjPNTUaN7DqhEtsaqUU6NZMTICCIDzO8wuRq9SeDDwmguzJ5HfPkL3Ov7KrtibqDFP8HVpvUc3xgIOLeWnERfQnIyJLrGKwRCBrnaCqvRy5RsHjCaJzPmMHVgGlcrKlhRvY/8RutViiXcm0V1ibz1qQqvXzMdPlbl1IlsrSvHZHRfBXeNhw/eFT6dnqsJ2GRxPxWasTR3kizf0tCzEDS5qePuyF7TdoROFpbLulDPTvCM6fT48eNxPbKtMzz1x7hH9U+7PCgrZSLFab7EhXXMK+mMPTXejCt/iJKIC6waR2Fq4cFfb+SHgteJVbn3ir2rqJSJbPQXOD7cn8TJUQxNCHT73Y1WvisNYfHR6SQW/41rPd9iQ/SfaAgeitgbC7UMmORqCyQcjORkSHTPgMmutsAiGlWerE6ayEMZFzIpPoHbxCL+XbWfU81upFsgYTc0ooJXfk/nircPI5bYp3xpd5y6YDLbK4sRTe4dVjd2yCLEToTgTMH11DbvsbifItXwTo/X1fdsB8fQ0lEro16sRRvcsbJOdlHnCfWxpZ07UTk5oNFYt/JvCf3q/8WNvpaXl+2OahnkDfEhKbLzz3AuFS1Kxpy4ju3RN1k91rCcb1m78SKuUEr3wK4QBYF9apFtAzSopkUyYkQ44X7uv7vRyq8V/lyXPZ5B+Q+yQPUuP0XdS3XYWERZL5FA6yXzCwnbkZwMie6Jm+JqC7qkWhvAf1Kmc2fGTCbGRHBfSy4rqw5Qp3cvYSYJ+zJGF8Wn34YT+f1OcMKkv2zWNHaUFyC6ed6OTCYnRBfV6bnG1EzOFdXrjpNCfKfHK+t6loeia+p8ci0Gdkygr67RIwR2rMzkUSsnJrTzz1leNrRH9nXFpOoHGe9tn0ICdQIcHeRNSkxHh6szRFHgsuypfBj+OKLCugmwp+4Ur/yyiI+q/0uAG1dZcgcqBJGNATJyR/qTPDmKtPgAFL0okX5frRdLjw1naO5SJonv8WXEI5RGTLf6b8Z5CJKTcR4g3XUkuqffOLCi0omjKfaP5ovUWdwwdBqTw3x5vOkoG6oO0Wx0zyRcCfshiPBYfjr3vl0M2SecMmbxnAvYVZzrMJ0NezJ8yFzE2s5Duao8f7Wqr2xDx7wHjQjVjT2baNfUdV6as9q7uNPjDdrO7z0J8s4TYPfulaFS2T85VkDk+sb7iVDZ55HZJMDvA70Y3L9j+FhXPHViIHd7PovRK8Lq8S7c+wrrd9/MFI375hK5C6IgkKkW2R7ngXZaJCOGh1tUhtidyGvS8OjxVEYdv4GM5ndZHvo3TkbNx6Txc7VpZwhLBU/rihtI9D4kJ0Oie1RaiB7lUhNyQhJ5L+1CLhsykRl+As/V/87OmmyMYs+SUCV6DwMM/ny2diBDPt+J2Owch7Jw3kwyC+wTJuMM+qsGd3rcEFtOY/Mxi/sxIeeIruOjIcTU81XdsqrOV1VzVUc6PV7YhWJ2VJEWubxjarMoCjQ22jcBvBWNoYB7FB+i7CyBxAZ0AuxL0JIWb3mJ0u9LQ5ije5L64I4aJuYIrT7Mlz/P4OmWXWh60Qq9KymTiWwMlJE/KoCUSVEMGeCPvJd9d1V6Bc+fTGDSsctJrn2TZ4Oe40j0ZRg9w1xrWFznZbYl+haSkyFhnvjpTh1ORGBfVBqvpM9h3uDRLPTU8UbtAX6vy3WqHRLuwQ0Vg3n+Az2qnQecNmbe/JnszbN8Yu5qkuLHQnnnuxgNSbut6qtGM4wGY8edGz875LvXNSrRKjruZmSJ2zptn53fAJ1Ud1LqZMSFxXZ6TeYeT+Ryy3IerCWi4Sdu9dlvt/5aBNg9QEN6YseqW11xuF7LqOJ7ORk13+rxBERu2nofPx/9K4PNi5FL/IFJENijEdmRoMV7WiQjMsIJ9ul9X2CzSca7BTHMzF5AfOVLPOD3MpnR16L3dUGFJyfPKyxh8+bNpKamolQqWbhwYadtNmzYgCAIVFdXO9W23orVTsZvv/3GvHnziIiIQBAE/vvf/7ad0+v1PPTQQ6SmpuLp6UlERATXXHMNRUXtRY2OHj3KggULCAoKwsfHh/Hjx7N+/foefxgJB+GEm4FBpmBr/5E8nTGH6cnpLFFW8VH1fnIbei6IJdE78Td58N6uNGa9l4VYVe2UMUVB4MSCWRw42XscDIDU0M7F6ETBRKXCuntrkarznUvPFvuEjAVqQjocqzSVow3omKyq15sQgzrf/Yg3dL4Sq9OJII7vmZHdMKb6r1zgYz8RRoMgsD1WzbDkjhoiXdFgkDPp2OWsi16KKFi/VphUuJ6V62bzJ1metNJoJSUykY3BMorGBDJ4YhSD+/vTyzY3gNO7fv8uCWNR9kwSSp/mZq832RR9K01Bne+I2hWVN8Q4ZsexJ9x7770MHTqUEydOsGLFCqeP/9577zF58mR8fHw6dWRyc3O58cYb6d+/Px4eHsTFxfHXv/6Vlpb2O7779u1jwoQJaDQaoqOj+cc//tFhrH//+98MHDgQjUZDamoqK1eudMhnsvr+0tDQQFpaGm+99VaHc42NjezZs4e//OUv7Nmzh++++44jR44wf377FZe5c+diMBhYt24du3fvJi0tjblz51JS0rdKjJ77H99rCRsM3uF277ZJpWVtwgQezZjDpIQkbqGEr6v2U6Y7ZfexJHoXsxvieO8Lb/zWWLcK3xNEmYyc+TM5lJvttDHtQXhYAvLOUxrQD8qnRV9qVX95sqROjyt6KMTXipe88zhsWXDn+R5V8s4fU6EFajw0nTsg+/YFIQgdK1bZiyvq7iZWY7/puUkQ2BKtZHhqRwesO27IHstrwU8iqi0ri3s2KkMjj6+/mn+XfEikHbRAzjeMCOzyENmVqMVvehQj08MI9HKf/EVrWXMqgKuyJ5Fc8CgXqd9lVdRd1IaOQhQcoLgyYBLIHff7tJWcnBymTp1KVFQUfn5+Th+/sbGRWbNm8eijj3Z6/vDhw5hMJt59910OHjzIK6+8wjvvvNOufW1tLTNmzKBfv37s3r2bF154gSeeeIL33nuvrc2WLVu44ooruPHGG8nMzGThwoUsXLiQAwfsHy1g9Z1l9uzZPP300yxatKjDOV9fX9asWcOll15KUlISo0eP5s0332T37t3k5eUBcOrUKbKzs3n44YcZMmQICQkJPPfcczQ2Nrb7gCtXriQxMREPDw+mTJnCihUr2nl2FRUVXHHFFURGRqLVaklNTeWf//xnO3smT57MnXfeyd13342/vz+hoaG8//77NDQ0cP311+Pt7U18fDz/93//Z/HnP3jwIHPnzsXHxwdvb28mTJhATk4OANdddx0LFy7k73//OxERESQlnX5Y79+/n6lTp+Lh4UFgYCC33HIL9fVnKiBt2LCBkSNH4unpiZ+fH+PGjePkydNicXv37mXKlCl4e3vj4+PDsGHD2LVrl8X22o24aXbppsbDjx+Sp3FXxiwmxURxt+EkP1btp7bFsSJqEr0DlSjnH0czuP6tY4gFztvFEuVysuddwNFe5mAADI+b02XhqPp+263u75ix84mu2GQffRC10HkOQq1356WIT5zqfNdAbhRIDI7t9FxlpYhKOcYm+yxBbTrF3bxu19wGURDYFKFkRFqoVde9mjeAmxTPoveNtWnccUc+Zd3Wy1iklu7BtlIkE/ktRE7p2CBSJ0YxKNavU+2X3sKeGm9uOzaKISfvYprwPv+KfIjyiCmIcjuFiMXbZz5hLc3NzSxbtoyQkBA0Gg3jx49n586d5ObmIggCFRUV3HDDDQiC0LaTce5cNDc3t12fK1aswM/Pj59++omkpCS0Wi2LFy+msbGRTz75hNjYWPz9/Vm2bBlGY/d5pHfffTcPP/wwo0d3vssza9YsPv74Y2bMmMGAAQOYP38+999/P999911bmy+++IKWlhY++ugjBg0axOWXX86yZct4+eWX29q89tprzJo1iwceeIDk5GSeeuopMjIyePPNN237YrvB4csXNTU1CILQ5hUGBgaSlJTEp59+SkNDAwaDgXfffZeQkBCGDRsGQH5+PhdddBHz5s0jKyuLm266iYcffrhdvzqdjmHDhvG///2PAwcOcMstt3D11VezY8eOdu0++eQTgoKC2LFjB3feeSe33347l1xyCWPHjmXPnj3MmDGDq6++msbGRrOfpbCwkIkTJ6JWq9t2YW644QYMhjMP37Vr13LkyBHWrFnDTz/9RENDAzNnzsTf35+dO3fy73//m19++YWlS5cCYDAYWLhwIZMmTWLfvn1s3bqVW265BeGPO9SSJUuIiopi586d7N69m4cffhil0gUrAIkzbb601DeCfw6eyU3p05kcHsCfddmsq/qdJqPOjgZK9HbSW8L59McYYr/dAWZuxvbEpFRyeO50juX2rhApAG+vQDzLO1/NF9UGKk2/Wd3nYV3n95emHlaWakUw+HV6/KS68+TvgpImBK/ObRpQ33V1muzsWGtNs4rgpvUs9bLeiTPHxjAFIzOsS8pdWxHAtNrHqQ6zzbHybShi+eq5vF33Mz5d7BxJmMcgCOz0ENmd5Eng9ChGDA3D37P37m4AHG/U8GBOGiOO38xI/Xt8EPZXCqLm2LR71kaC7fOJnvDggw/y7bff8sknn7Bnzx7i4+OZOXMm3t7eFBcX4+Pjw6uvvkpxcTGXXXaZRXNROL0D8frrr/PVV1+xatUqNmzYwKJFi1i5ciUrV67ks88+49133+Wbb76x+2eqqakhIODMws3WrVuZOHEiKtWZv7uZM2dy5MgRqqqq2tpMn94+DH7mzJls3brV7vY5VLFFp9Px0EMPccUVV+DjczoRTxAEfvnlFxYuXIi3tzcymYyQkBBWrVqFv//pcn7Lly8nLi6Ol156CYCkpCT279/P888/39Z3ZGQk999/f9v7O++8k59//pl//etfjBw5su14Wloajz32GACPPPIIzz33HEFBQdx8880APP744yxfvpx9+/Z16T228tZbb+Hr68tXX33VNtFPTExs18bT05MPPvig7T/4/fffR6fT8emnn+LpeTrh8c0332TevHk8//zzKJVKampqmDt3LnFxpxVrk5OT2/rLy8vjgQceYODAgQAkJCSY/+IdQfw0UGjAYJljcCI4jrURSayjkQO1JxAbDjnYQInezP3FQxn1r98RLXD27YlJreL3mZPI64UOBsDo1EWIJZ2HMTWnHcVotE4zplY9mOqWzvurrbNP+GdLc+f6EPvZSX8mdn6NvwZlfUcnJ6BEiV+wL9W1NR3OnTwpkpg0FJ0uq0f2dkd6zfPM8/2YH2vtm2j+W7CcCcPD2bmrizi4Tshr0jAq7w6+j4thYP7XNo170Z5nGBm0kjuHvcxWnQPCZM4jCmQiBaFyVCHBDG0SMJys4/e8jn+nvYnyFiVP5ybxNEl4yq/g+og8Fmj2EFfxK7LGcss6CR8KvvYvM22OhoYGli9fzooVK5g9ezZwen62Zs0aPvroIx544AEEQcDX15ewsNNOviVzUTidj9zaFmDx4sV89tlnlJaW4uXlRUpKClOmTGH9+vVcdtlldvtMx44d44033uDFF19sO1ZSUkL//v3btQsNDW075+/vT0lJSduxs9s4ImXBYUsWer2eSy+9FFEUWb58edtxURS54447CAkJYePGjezYsYOFCxcyb948iotP31APHTrEqFHtkw/HjGm/QmM0GnnqqadITU0lICAALy8vfv7557awrFaGDBnS9m+5XE5gYCCpqaltx1q/6LIy86rBWVlZTJgwodudhNTU1HYe5KFDh0hLS2tzMADGjRuHyWTiyJEjBAQEcN111zFz5kzmzZvHa6+91vY9wOlEpJtuuonp06fz3HPPtYVmOR2VJ/Sf1G2Tg5GpvD50DgtSxzLfS89rtQfYX3sc0QoRMInziyiDL5/8msLIFbuc72Botey/YAJ5J3tPmdqzkctVBNZ3HVpTG7rF6j6LVV2vhJ+qtU/p4IaGzldAi0x5aHw6X/cq7cLxEUSBpG7ChIqLBlltn7VcXHs3iR72j43ZGChj+CjrNDGaTTJmZS/g+8j7EWW27XhHncri29UX8JhxP6reHPPjJrQIsEMrsifZi5DpUYxIC8VP6375CNbSYJTxZn4sF2RfRELVK/zZ/0X2RV+N3qdf9xcOnOMcA88hJycHvV7PuHHj2o4plUpGjhzJoUOdL4JaMhcF0Gq1bQ4GnJ5XxsbG4uXl1e5Y6zzzmWeewcvLq+117rzVEgoLC5k1axaXXHJJ26K5O+IQJ6PVwTh58iRr1qxp28UAWLduHT/99BNfffUV48aNIyMjg7fffhsPDw8++eQTi8d44YUXeO2113jooYdYv349WVlZzJw5s0Oy9bkOgSAI7Y61hiWZLFAO9vAwr5x5tjNhKR9//DFbt25l7NixfP311yQmJrJt2+mSjk888QQHDx5kzpw5rFu3jpSUFP7zn/9YPYZdGHhhu7dGQc6O2BE8mzGXC1KGcbmqhvdr9nO8vsA19kn0Kq6sSebVj0U8tuxz+tgmLy/2ThlNYX6u08e2F6OGLkCs7zxPwuTbRHWL9aE8efKUTo/7maBJb58Qtqo6bZfnlCGdf56jhQ3QxXw3tqJrQbsDBwTUajOTnh6iFGtYZnoWL7n9J+Sb/AQyxkRaHd9/V04GT/k/jcnDcg2Os5GJRpZuWsrKE8+QqJYcDXuRJxfZGKaganwIQ8dHMTDKMtV3d8coyviiOIL52bNJKHuW271fZ2v0LegCO7mfJF3Y8Vgvx9w8s/VY6zzztttuIysrq+0VEWHdYkJRURFTpkxh7Nix7RK6AcLCwigtbV/so/V96w5NV21az9sTuzsZrQ5GdnY2v/zyC4GB7et/t+Y+yGTth5bJZG3/AcnJyR1yK1on3a1s3ryZBQsWcNVVV5GWlsaAAQM4evSovT9OO4YMGcLGjRvR6y2PTU5OTmbv3r00NDS0Hdu8eTMymawtMRwgPT2dRx55hC1btjB48GC+/PLLtnOJiYncc889rF69mosuuoiPP/7YPh/IWpIupFmpZX3CeB7LmMPkxBRuFEr5smofJU0WbpVKnPd4m9S8lTWUhW/vx3Sq0unjG/18yZwwnOKCk04f257ECJ1XgQLQDTmAKFqfQ3Hc1PlDJthkv0dFWZUHQhceQ71vRafH6+r1CF2UsvWulBMW1NWOjkBtzcguztkPf91O7taudUjfW3wgbWyk1SJwHxVGc4X4DM3+Xf+dmGPwyVWsXj+HGxUlXfl4EjbQLMA2T5GsQV6ET4tmxJBQfDwcGr3uVP6vPIgrsiczsPAxLtW8w5qoZdSFDEf073+6WqULiIuLQ6VSsXnz5rZjer2enTt3kpLS+eKKJXNRWwgICCA+Pr7tpVBY/n9fWFjI5MmTGTZsGB9//HGHufSYMWP47bff2s1T16xZQ1JSUltKwpgxY1i7tv39as2aNZ3u0vQUq58c9fX1bd4XwIkTJ8jKyiIvLw+9Xs/ixYvZtWsXX3zxBUajkZKSEkpKStp2GMaMGYO/vz/XXnste/fu5ejRozzwwAOcOHGCOXNOb6PddtttZGdn88ADD3DkyBG+/PLLDjWLExISWLNmDVu2bOHQoUPceuutHTwze7N06VJqa2u5/PLL2bVrF9nZ2Xz22WccOdJ5wiKcTtzWaDRce+21HDhwgPXr13PnnXdy9dVXExoayokTJ3jkkUfYunUrJ0+eZPXq1WRnZ5OcnExTUxNLly5lw4YNnDx5ks2bN7Nz5852ORtOxSuEO4bNZpkhj++r9lPd0rvjSyWcz5SmWD76OoDg/3NBhTTAEBjA7lFDKC3Kd8n49mJw8hTEiq6diGo/6xO+AQ7rNJ0e99HbL+SxRS/DT9357kOhuutw0DpN1w/iRE10l+cyMzUoFF3vdtiL5Nq3uNTXMeW3t3nBoHGRKKx0NLZX+zCh8lHKI2xXV9bo6/j72sv44tSXhEqlbu3OCYWJjeEKaieEMnRcJImRjhGSdBU7qn24+dhoUvPu5eUEy6NV7I2npye33347DzzwAKtWreL333/n5ptvprGxkRtvvLHTayyZi9qTkpISsrKyOHbsdI7g/v37ycrKorLy9GJcq4MRExPDiy++SHl5edscu5Urr7wSlUrFjTfeyMGDB/n666957bXXuPfee9va3HXXXaxatYqXXnqJw4cP88QTT7Br1662gkT2xOo7xq5du0hPTyc9PR04nTOQnp7O448/TmFhIT/88AMFBQUMHTqU8PDwtteWLafjg4OCgli1ahX19fVMnTqV4cOHs2nTJr7//nvS0tIAiImJ4dtvv+W///0vaWlpvPPOOzzzzDPt7HjsscfIyMhg5syZTJ48mbCwsC4VGu1FYGAg69ato76+nkmTJjFs2DDef//9bnM0tFotP//8M5WVlYwYMYLFixczbdq0tlJhWq2Ww4cPc/HFF5OYmMgtt9zCHXfcwa233opcLqeiooJrrrmGxMRELr30UmbPns3f/vY3h37O7pgQ3X1ehoREZ8gReOp4Bre/mYuY65oJvj40mF0ZyZwq6f0Cj8n+XRepMIZXU9dsvSp1gzKOMn3nYaMaOwnxteKv6rxM7gGha+ezoLZrpyqm2Lst9PVc9HowGjoXK7Q3c2vuZkjX0WA9YodWZOD4SJRWhmWVNSsZfeIG9sRc16Pxpx58l3U7ruZCtXNzp84XdMJpZ3LfYG8ip0UxIjUEL3Xf2d0AmJTS9WKAM3juuee4+OKLufrqq8nIyODYsWP8/PPPbSv852LJXNSevPPOO6Snp7flWEycOJH09HR++OEH4PRuw7Fjx1i7di1RUVHt5tit+Pr6snr1ak6cOMGwYcO47777ePzxx7nlllva2owdO5Yvv/yS9957j7S0NL755hv++9//Mniw/XeZBFEUe0VW7oYNG5gyZQpVVVUuEUmROE1hfSGzvp3lajMkehGDWkJ47Bdv5Hu73vFzNPrICHYOjKH6VO8P64uJGswYVdfaGHXT11Mks37F8Lj3NfylfkGn5yaUGtmZZb/KI2PG/MiB6s2dnlu2901aGjvmf8jlAvMCVYhdJIGvjc3mREnnCZQ+PgLpGV9jMtkneb07atWDecT0FNUG+4gXnkt6s8CJzUXounAIu+Op/ge5qvwlBAurBHbFlyOf4i+ek2gw9YrpQ69FI0J6PdSdqOVYce/WMQn2VrPj0WldLgZI9E2kvU8Jq4j0iiSls2QuCYlOuLNsCE+8V+tSB6MlJortiVF9wsEASO83s0sHA6BKs8GmfvPlXVdiMtpJiK8Vpdh1QrI6tPMPZzSKGIO63iZIELpOnqytFVHIx3V53p74NB/gHs33DsthyFSLxIyLRKuyvsTsX04M4gGvZzF6Wif4dy5X7vgLa3+/n2FqxzhSEqfRCbDVGw4M8SF6WjTDB4fY9P/uDswcFCo5GOchkpNxFrfddlu7smJnv2677TZXm+c2XNDvAlebIOHmhJg8+WhLKhM+3INYZ51Wgz1pjuvP1tgwais7Tyjubfj5haEp6zo8U59QTFOLbQntx8WoLs81NNhHI6MVk77rqjpNflVdnqvsZpISUajtNnT10KEouixRZWfi61ZwtW+hw/rfpzYRNi4C727yVLrim5JQFrY8TWPQEPONuyG2dAc/rJnB/RxFIc0dHU62wsSmSCW6yWEMGxtJXJiX+YvciNmDw803kuhz9JpwKWdQVlZGbW1tp+d8fHwICek8jvh8I682jzn/cU2tawn35+K6JC7/dzliqXntGUfSnBjP1hBvGus6/033RmaNvR3f4q4TQ6tn/UCp6Tub+n5Y8x/ymztfme63rYLSmp6F2JzNyEH5HDK91em5i7mB4K1pnZ4LD/ZgpL7rXZXN8XkcKsju8vwFMw6j0+20zlgbEQUFr3n+k50NjlvLSzQI1GwppabJ+kpi3goD/xf7NVEF/+uxHXsGXMQdcXdzws65OxLdk6SXEVyi4+CxSppa7FNi2hEEeqrY/ug0FJKa/HmH9D9+FiEhIe3Kip39khyMM8T4xDCkh6tgEn0PjajgtQPpXPbW7y53MJpSBrI5yLNPORgqlRa/6q6rJIlyE5WyDTb13SwP7dLBkCNSUWffXIba+q71hA7LM7s8V1zehOCj6vJ8XHP3YUD5eQPNG2cnBNHAzc0PE+zAikxHFSJeY0MJ8Oz6O+mKOoOC8ceW8Fv07Yg93OHJOP4dv/y2kCXKvrFj2Fs4ojSxKVqFflIYw8ZE0j/EPXc35gwJlxyM8xTpf13CJuYMkHYyJM4wVhfNp9+GEf7jTnDx5mhjWiqbfZToGlwXpuUIRqctRGzqerVSn3oCvcE23ZFSj4ldngsyyTDYOcG3orrr3IrfDVko1F0/mnR+6i7PhRSq8NR248AcBo06wTIj7YCnPod7VV/gyCj6HIWIckwIwT5dfy/dcU32BN4K/Ruiynoh2bPxbK7kpV8uYkXVdwQopKmFM6mXwWYfOJTuy4CpUQxLDkbjRuWGFwy1TmxOou/gPn+FEr2K2f1noxD6Vnk9CesRRHj8ZDr3vF0E2bmuNoeGYUPZrDbR0tTHymwKAhHGAd02qY2yXSSqQNF5eBJAoMH+AfcVtSoUss7vH6Ig4hHa9Zgluq4dLZlJICmwf7djV1YOs8xIOxFT/w03+h5z6Bgn5SKmkcGE+Xauc2KOF0/Gc7v6OQw+PS8xOmvfa2zYfSNTNY6v5CXRkd+VIptjVIhTIhg+OoKYoJ45jz0lOsCDYf1sU56X6P1IToaETfhr/BkbOdbVZki4kAR9IJ+vSWTwlzsRm10/oagbNZzNsmb0zfbLHXAX0gfNRKzqOu5e9NBTZdhkc//HxZguz3nZUYivFZMoI1Ad3OX5Zv+uw9yyCxq6fXL1r+1+QpOVpUSpdG7468Tqh5ngbX3ehDUUykV0I4OIDOhcGd0cq8oDmVH/N2pDe66QHlJ9lC9/nsEzLdvxsFJAUMI+1Agim3wFjg7zI25KNBkDg1C5YIdpfpq0i3E+IzkZEjYzd8BcV5sg4SJurkjlmfebUO7+3dWmAFAzfjRbjPUYWuxbBcldSPDK6Pa8Lu0wJlOTzf1nt3Qdy63uQpeip/h2M9Ev03ZdIauh0QDBXYdb+ZcqCfTr2tEwGqG52TnlbFsRELmu4T4iVY595JbIRGqHBdi8en28UcOogjs5Fn2xXey5YeuDrD7yGENsi+SSsBMHVSa29FMjnxrO8FERRAc6SDGyExYOjXTaWBLuh+RkSNjMlOgpeCpduxUr4VwCTVre2zGEC97LRKxxj6Tqqsnj2NpYhVHv2JViVzGg/zCE0u4rx9QG276LoRd8Oa7rerdCtLNGRisaWdeOwFH5vm6vrTOjFZDo3a/b81mZ3shkzptoAWiMhdyjeB+lgxf2y2VwKt2fAaG2JQE3GeVMz76YlVF3I3YR0mYNCUW/8b+1M7lTyJUmHC6mSoBNfgLZw/1JmBJNemKg1Qry1pAa6UtCqLfD+pdwf6TfvITNaBQapsVMc7UZEk5iTn0873zuid/aPa42pY3KaRPZVlOGyeiYibA7MDRiarfnjQEN1DTvsrn/cu1Eutur0Dc65ruVm7p2MvYbdyPvRnwhr7r78LzYcr9uzzc0iMhlE7pt4wjCG1Zym89+h49TKRMpTPMjIcL2Cd6fjo3kuYCnMWn8emyP0qjjzxuu5buid4ly8G6OhGXsV5nY2l+DcmokI0ZGEOFvW5hddyxKl3YxznekX7tEj5BCpvo+KlHOC0cyuPbtbMTCYleb00b5jKlsqyhCNPVd1eGgoBiUJd2v2uuG7EPE9hr5hcr0bs/X1TsmBM3Q0rXeh54WtKFdf+6cwkYETdfnPatlRIZ0L/514EAYrngEjq5+ghk+ji9MUCOIHB/sw8CoroUPzfFuQQzXyJ6lxS/eLjaNzv6S9ZsXs1hVY5f+JHpOpUxko7/AiRH+JE2OYmhCIAo75NEoZIJbVpXavHkzqampKJVKFi5c2GmbDRs2IAgC1dXVTrWtLyI5GRI9YlT4KEI8JA2RvsqwlnA++z6Kft/tOB3M7iaUzp7GztKTLi+X62hGJc0HM+Vjq7x/7dEYJ4jt9nylnTUyWtE1de1kAOgDui5BLJpEDIHdr7wmKrtWMAcoKzOhUY/uto2juKLuHvprHP/4bRDgcIoXg/r52dzHpkpfJlU/RkX4JLvY5N1Yyptr5vNO7Ur8JO0Et0EUBPaqRbYN0KCZFsmIERGE+dlWrQxgUmIwgV7ul4xz7733MnToUE6cOMGKFSucPv57773H5MmT8fHx6dKRqaysZMmSJfj4+ODn58eNN95Iff2Z++GGDRtYsGAB4eHheHp6MnToUL744osux/zqq68QBKFLp8qRSL9wiR4hE2TMjZN2M/oiDxYN5eG3TyEcynG1Ke0omjOD3UW5rjbD4Wi1PnhXdD8RN0RX0tB8uEfjHG3peqVbI0J1o2NyXWrqus/nOuVZ0P15M/5ldJEXMln3j7jjx+O678RBqEynuJtX0Dih8pJOgINJnqQO6FrI0RzFOhUjc29mX/TVdrNrYebzrNv7J8Zp+m6oY2/llExkY4BA3sgABk6KIi0+ALmVf6uLh3Xv5LuKnJwcpk6dSlRUFH5+fk4fv7GxkVmzZvHoo4922WbJkiUcPHiQNWvW8NNPP/Hbb79xyy23tJ3fsmULQ4YM4dtvv2Xfvn1cf/31XHPNNfz0008d+srNzeX+++9nwgTnh4eC5GRI2IHFCYsReqgYK+E+xBj9+HRDCsM/2YXYZHvFIkdQMH8mWQXu5fQ4itGpixCbu989aky2PRcDwCh4cEzX9W83xOi433VZVfc7ETmKg92fL+k+5EjVJGNAWPcJ4Dk5oNGkdNvGUQQ1/cadXludMpZOgKx4LUMTAm3uwyjKmJ89m68iHkGU22eFOqJiP9/8PJ3HDXtRCdIzxN0wCQJZGpHtcR54TotkxLBwQn3M724EeamYnhLqBAs70tzczLJlywgJCUGj0TB+/Hh27txJbm4ugiBQUVHBDTfcgCAIbTsZK1euJDExEQ8PD6ZMmUJubm67PlesWIGfnx8//fQTSUlJaLVaFi9eTGNjI5988gmxsbH4+/uzbNkyjGZ2/O+++24efvhhRo/ufBf10KFDrFq1ig8++IBRo0Yxfvx43njjDb766iuKiooAePTRR3nqqacYO3YscXFx3HXXXcyaNYvvvvuuXV9Go5ElS5bwt7/9jQEDutdZchSSkyHRY6J9ohkd7pqwAwn7clV1Ci99aEKztfvqPq7g5IJZ7DvpWFEzd0EmkxOi634lUBREKlUbejROhWYc+m5CzvwdGCFX16hEq+h6N2OvaTuyblZPyyubEbpR/waIN3WflwFQXjbUbBtHMbTmBeb7OKdKm16AnQPUZAwM6lE/Dx9P5RGfZzBpu9Y5sQYBkT9tXsb/HX+GJLXkaLgrZTKRjUEyCsYEkDIpiiED/Onq53nxsCiULgqFe/DBB/n222/55JNP2LNnD/Hx8cycORNvb2+Ki4vx8fHh1Vdfpbi4mMsuu4z8/Hwuuugi5s2bR1ZWFjfddBMPP/xwh34bGxt5/fXX+eqrr1i1ahUbNmxg0aJFrFy5kpUrV/LZZ5/x7rvv8s033/TI/q1bt+Ln58fw4cPbjk2fPh2ZTMb27du7vK6mpoaAgPbFNJ588klCQkK48cYbe2RTT5CcDAm7cEnSJa42QaIHeJvUvJ05lPnL9yFWVLranHaIgsDxBbM4mJvtalOcxvAhcxFruw8jMQwsoLmlqEfjFKqGd3te2+LYnJcATdf5XI1iA9rg7pPem7xV3Z4PK9CgVnfviOzdK0Olcl0VnItrlzHQwzmTayMC22JUDE/pmYPwVXE4Fxn+TlPgYDtZBoPyVvHz+jncLC+S9sXdGCMCezQiOxK0+EyLYuSwcIK9z/zGBAGuGNG1uKcjaWhoYPny5bzwwgvMnj2blJQU3n//fTw8PPjoo48ICwtDEAR8fX0JCwvDw8OD5cuXExcXx0svvURSUhJLlizhuuuu69C3Xq9n+fLlpKenM3HiRBYvXsymTZv48MMPSUlJYe7cuUyZMoX169f36DOUlJQQEtL+vqhQKAgICKCkpKTTa/71r3+xc+dOrr/++rZjrba9//77PbKnp0hOhoRdmBI9hSCPnq2QSbiGaU2xfPS1P0GrehZ64whEmYxj82dy+DxyMAD6q8xP3ur67+jxOCeF7rfQFc2OrdzlLe/+nmEK6j5cr7ip+60WhUEgMbh/t21EUaCxcUy3bRyJQqxjqelZvByoV3A2JkFgc5SSEak9K9iRVevF2LIHKY6caSfLQKOv46l1V/BV2aeEKaXpibtTIhf5LUhG8ZhABk+MYnB/f8YMCCTWRjHInpKTk4Ner2fcuDNim0qlkpEjR3Lo0KFOrzl06BCjRo1qd2zMmI73A61WS1zcmRyu0NBQYmNj8fLyanesrKwMgGeeeQYvL6+2V15eXo8+W1esX7+e66+/nvfff59BgwYBUFdXx9VXX837779PUJBr52XSr1jCLihkChbFL3K1GRJWIEfg7zkZ3PpmLmJu90m2rsCkUHBk3gVkn2cOxsD4cVDe/S6GSWmgSuxZVSmAbEPXWhUAJgcJ8bWipvvxq7y6L5l8NL8ezEzOBzSZX7XP3KNFLu8+yd6R+Ot2crfnL04bTxQENkYoGTE0rEf9VOkVjD1+DVujb0G04/7DpEMfsn7blcxRN9itTwnHYRAEdnmI7ErUcvm8RFeb4xCUSmW794IgdHrM9EdJ9dtuu42srKy2V0SEZeV8w8LC2hyVVgwGA5WVlYSFtf+9/vrrr8ybN49XXnmFa665pu14Tk4Oubm5zJs3D4VCgUKh4NNPP+WHH35AoVCQk+O8vEbJyZCwGxcnXoxMkP6kegOD9aF8/tMAEv61AwzuV91FVCo5fOFUjueeHzkYZzM4dLzZNi1DcjAYexbLb0LOkabuf686B1WWakUwdl/x6Ljy927P65qNENx9AnlQkRIf7+4dCJ1OBNH89+5Ikmve5jLfcqeOuTFUzohh5vNWukMUBa7InswHYY8jKu2nou5fn8+Hqy/klcYNTtvlkegZISoFs0Nsr2LWU+Li4lCpVGzevLntmF6vZ+fOnaSkdF7gITk5mR072u8Kb9u2rce2BAQEEB8f3/ZSKBQWXTdmzBiqq6vZvXt327F169ZhMpna7bhs2LCBOXPm8Pzzz7erPAUwcOBA9u/f387JmT9/PlOmTCErK4vo6Ogefz5LkWaEEnYj0iuSMRGuCzuQsIy7StL46zvVyPcfcbUpnWLSqDkwazK5J8+PKlJnEx6WgNwCvcO6iJ5XJarSjKLJjAZHbZ1jhPhaaWnufvK/z7QDcwvkNcru8zYEUSDRr/sqUwD79gUhCEqz7RzJnJq7SbPfPN0iNgbJGDGi56Jpf89N4k7Ncxi87ZvfcsXOv7L24H2M0PRd0c2+wpLwQJROKMvcFZ6entx+++088MADrFq1it9//52bb76ZxsbGLpOfb7vtNrKzs3nggQc4cuQIX375pUP1M0pKSsjKyuLYsdMLaK3OQGXl6VzI5ORkZs2axc0338yOHTvYvHkzS5cu5fLLL2/bDVm/fj1z5sxh2bJlXHzxxZSUlFBSUtLWh0ajYfDgwe1efn5+eHt7M3jwYFSq7nPZ7InkZEjYlUsTL3W1CRJdEGb04uPNgxn38W7EevcMQzB6erJ/+njy84672hSXMCJ+DpjJtTZ5N1PdsqXHYxWpR5ptc6rWMUJ8rTQ0eHd7vkqsQBvQ/cQ/t9K8jQOqug/LAqisFFEpx5pt50jkoo7b9Y/jp3Duo3ljgMDw0RH0tIrsT+VBzG58kvqQYfYx7A/6le7kv6tn8KB4BIW0qeGWyAW4OsL2Esn24rnnnuPiiy/m6quvJiMjg2PHjvHzzz/j79/5DktMTAzffvst//3vf0lLS+Odd97hmWeecZh977zzDunp6dx8880ATJw4kfT0dH744Ye2Nl988QUDBw5k2rRpXHjhhYwfP5733nuv7fwnn3xCY2Mjzz77LOHh4W2viy66yGF224ogin1cMlfCqRhNRmZ8O4OyxjLzjSWcxiW1SVz671LEslOuNqVLjN7e7J0wnJJCxyTIuTveXoHMibgFUd/9im3T+D3kaV/v8Xj/83ubL2u6rmXvZwLdmsIej9MdUSEN1AQ+1W2b+6pepuFw17sVggALwj0QG7sP+/shYh9lld2HI/XrJxDT79Nu2ziDHO9r+Wv9fHP+pt0ZWwdZWwvNicybxVNu4qcB39A//792setsMvsv4I74+zju4MpnEtYxO8iXj1O7L7Igcf4h7WRI2BW5TC7tZrgRWpOS1/enc8nbv7u3g+Hvx55xGeetgwF/iO+ZcTAAqv032mW8Y8buq44Emxz/eCir8jAr5Fnj3f2ChSiCPqD7vAyARE/zccgnT4poNEPNtnM0cXWfcI2v84sxbPGGIeOirFZ3PpcGo4wp2ZeyOmoZotB9OJu1pJ/4njW/LeRqpXPzVyS657pIqbqkREckJ0PC7lyWdBkeCvMPfQnHMl4XzYpvQgj7aefpmZibYggKZNeIwZQXu1+FK2chl6sIrDevkGsKqaO2OavH44kIHG7qPgzJx+D4v5kWvQw/dfehTCdV5nOHyo3mnbPYEl8EC+KBiosGmW3jDC6ouY+RXg5UQ+yCbZ4iKeMiUdoh2fqWY6N5KegpRLV9K3d5Nlfywi+L+bTyGwKdHFom0ZE4DzUT/b3MN5Q475B+nRJ2x0/jx/y4+a4247xFEOGvJ9O5661CyDnpanO6xRAWys6hSVSUWpDt3IcZNXQBYr35Kl+NgzMxm7RhAbXqodSamZhrmp3jmPqpui8xu080rwdyrLjRbBtNnYzoEPNJyQcOCKjV5hPFHY0gGrhZ9xAhLtCL2KkVSRgficoOE/g382O5Xv4set/uNVlsYcb+N9iw6wamqx2bOyTRPddHBVnkwEucf0hOhoRDuDrlaqmcrQtIMATyxepEBn25E7HFsZWBekpLVATbU/pTVV7qalNcToyQZFG7Ks+ea2MAFKlHm20j0zlnFd3TjCBfqViIh2/35R8rq1sQAjRmx0qQW1L5SKC2xnxSvDPQ6k9wr+oL7BtwZBl7NCL9x0fgYaZ6lyVsqPRnSs1fqAobZ76xlQTXZPP56hk817wNDxdWNjpfCVDKuSLcfGEFifMTaRYo4RD6+fRjYtREV5txXnHrqVSeebcJxZ7utQXcgZbYGLbHR1JTIcVVD06eglhhXo/C0L+Mxmb7lPXNlw00P56DhfhaUYjm6+rLQyzY5fEyX342qtDTonr1mZkaFArX1fs/m+j6b7jJ1zWClHvVIpHjw/FU99zRKNCpGZn3J36PvsIOlnXkum0PsebwowxRu29oaF/kxshgPOWucIMlegOSkyHhMK5NudbVJpwXBJk8+WD7EKa9n4lY2zOBNmfQHB/H1phg6qoqXW2KW5Dsb35XAaAhcZfdxswxmc//aGxw0k6Y3s9sk3oLROoKLQg3UzYLxIWaD4XS68FomGC2nbOYUP0IE71dszN5QCUSPC4Cb41lYmLdoTcJXJg9j28jH0SU2V+TJL54E/9bO4u7hOPS5MYJeMpl3BAlJXxLdI30O5RwGMPDhjMo0D2SKPsq8+sTWP6ZBz7r9rjaFIvQJSexJdSbhppqV5viFsREDUZWYj5pWRRMVCrW223cwzq12TZVtc6Z1Op03WtlABSozSu/Z+fXgwU5BPH6MIvsysryQyYz/z05AwGRaxvuJ1Llmkf2YaUJv3Hh+Gnt4xjclzOUv/o9i8nD/hNUpVHHIxuu5z9Fy4l20fd1vnBVRCD+yp47nxJ9F+kXKOFQrh0k7WY4ArUo58XDGVz19lHEohJXm2MRjakpbPZT01Rf52pT3Ib0fjMtyuPWD86jRW+f0LJ6ZSKnzJTKlSNSUe+cZNq6evNOxn52mm3TojchBpuvahdaqMbDw3y72loRhdz+OQS2ojEWcq/8XVQuSrDNVpjwGBtGoJd91II/LYrgUtPf0QWYD92zhVHZX7Fu82IuUVU7pP/zHZUgcFt090UbJCQkJ0PCoVzQ7wLCPcNdbUafYkRzBJ/+N4qY/+wAo/NLXNpCQ/oQtnjKaG50T6VxV+DnF4amzLKV4bqY7XYbt0RjfuIcZJJh7Kkim4VUVJuf8J805aD2Mr9iWi03/0iTGQUSgywTDTt0KArM6Hg4k7DGVdzuk+Wy8U/ITchHhxLqYz7J3hJ21Xgz4dQjlEZMt0t/5+LdWMobaxbwXs1P+Eulbu3K4jB/wtX2cTgl+i7Sr07CoShkCpYkL3G1GX2GhwvSeXB5GcJh+yQAO4P6ERlsURpoaWpytSluxeiURWCBFoWo1lNl+s1u4+bJzYcwBhqcN7E+VatGaUF8virEvEN9osKyv7EB9YEWtSsqEtFohlvU1lmMrH6SmT7mS/Y6ijy5Cf2oIML97KOFVN6iZPSJ69kZfYNd+uuM+VkvsC7zNiZqzBdYkDCPDLgjJsTVZkj0AiQnQ8LhXJJ4CX5qP1eb0avpZ/Djs3XJZHy2E7FJ52pzLKZ2zAg2i03om6U69mejUmnxq7aselHz0KMYjfbbATpuijDbxlvvvAo9oigQqDEfdtHoZ75QQH5xE4KneYclsFiFn4+fJeaRn+eYcJ6ecEXdXQzQuO7xXSQTaRwRSHSg1i79iaLAJdnT+Tj8L4gOEnINrzzI1z9fwN8MmaglTYceMSfYjzitfXazJPo2kpMh4XC0Si1XJV/lajN6LddWDeLFD42ot+93tSlWUTNxDFtbajHq3VuvwxWMTluI2GRZqFtNyBa7jn202fwkTtlsPhndnvgozDsZRZrjFvXVYoFeBkCSr2WCe4cPg0adYFFbZ6E0VXIXL7tUF6JUJlI5LIDYYE+79fm3E8nc5/ksRi/HhNgKiNy6+W5W5TxFsnvk9PdK7uwn7WJIWIbkZEg4hSuTr8RbaT7BU+IMvqKG5XvSmPPOXsTKKlebYxVVUyawtb4Co8E5Wgu9CkEgwmiZ+rHJt4maFvvlY+gUURS2mHcgBJ1z/988ZObDl36XZVrUV6kFnw+gf4XlOhiVlcMsbussgpo2ssxrs0ttqBBEStP9iAvzsluf35WGMFf3FA3BQ+3W57kk569h1bo53CovdKOMm97BZH9vhnjbZwdLou8jORkSTsFb5c0VyY4RYeqLzGgYwAdf+hL4825Xm2I1FdMns62qBFMvSUp3NumDZiJWWRYb3pS2H1G034S/RGOZ9kNzo3OdDJnJ/IT/qOEASg/zol/HihosytX2qpQTHmRpOVslSqX7rd4OqXmJhb41LrWhSoC8Ib4kRvrYrc9D9VpGF99LXtQ8u/V5LmpDPX9bdyX/Kl1BuFKaClmKtIshYQ3SL0vCaVyTcg2eSvttrfdFFKKMZ49lcNPbxxHzCl1tjtWUz5rK9lMFiKJzw216EwleGRa3rfa1X8I3QIEi1aJ29fXODXEztviabSMKIhoL5jc1dXqEQMvi+hM1URa1Mxqhudl9ytmezaKaZQz0cO16fJ0AxwZ5kxxt/v/R4j4NCiYeu4L10XcgCo6bqkw4/DHrt17OPHW9w8boKwzz0TLOX4pIkLAcycmQcBq+al+uHHilq81wW1JbQvj8f7HE/XsH9MIwo5ILL2Bn8UkQnZc03NsY0H8YQqllOzzGyGrqmw/YdfzjYrRF7SrqnJuo39hoWbiNzr/aonb1HpYJhMUUeyOTWfYYzMr0Ri5zvzARhVjPnca/421B+V5H0ijAoWQvBsf62bXf67PH8Xrwk4gq+4VknYtfQyHvr57D6w1r8ZZLAVRdcWdMqKtNkOhlSE6GhFO5dtC1eCkd97Dordxdksbj79Qg23/U1abYRNG8GewptCwx93xmaMRUi9s2pthfxf1oi/nfnkaEmkbnlvqsrbPsnlDqcdKidgX1ltmvbpARG2qZ49XQICLIxlvU1tn4Ne/mbu3PrjYDnQD7Ez1Jiwuwa7+v5A3gFtVz6H0sS9a3lUt3Pcna/XczSiOFep5LolbDzCD7hcRJnB9IToaEU/FV+3JlsrSb0Uq40ZsVGwcz9uPdiA29U6guf/4ssvJ6j26HqwgKikFZYj6noJVK9Xq7jt8iCyJXZz6MLcTo/JXcMgsE+QCOyPda1C47vx5BZdnjLR7LKxkdPBCOuz42B9a+w+W+Za42g2YB9sR5kJ5omRaJpaw5FcAFdX+lJnS0Xfs9l5jyPXy3eiYPmw6hlErdtnF//zAE6fuQsBL3vFtK9GmuSblGqjQFXFYzkNc/lqPdlOVqU2wmd8Es9p/MdrUZvYJRSfPBQhVtfWIRupZ8u45f6jEeS0b3d8Eibl2jEq3CfL7WQeMe5BYk6RoNIsYgyxyXyAItKpVlysVlZSY0asdOcnvChTX3kO7p+nBFvQA7+qsZlmy+NLE15DZpGJm/lCPRl9q133ORi3ru3ngbP558kXi1NLFO8/ZgXrD98m0kzh8kJ0PC6fiqfbl60NWuNsNleIkq3tiXzsXLDyKWn3K1OTYhCgI5C2bxe67kYFiCVuuDd4XloQYNcbvsbkOhcqhF7bQtrpmkBliQ1W3AgDbUssdWlYXJwnK9QHxIrEVtAY4fj7O4rbORizpubfkL/grXP9qNCGyJVjJ8sH2rETWbZMzMXsgPUfchyizLvbGVoSd+YPWvC7hG4fodIlfy6IAIaRdDwiZcfyeSOC+5NuVagjyCXG2G05mgi+GjfwUT+r+dvTZBWpTLyZ4/kyOSg2Exo1MXITZbtkUgyk1UCvYNlQLIFS2LZ1dYaKe98ZZbdj/Q+9dZ1O54eZPFY8fpLF9xz8kBjSbF4vbOxrvlEPdpvnML/QdRENgUqWTEEPsnDC87Noyn/f+OSWO53oktaJur+MfaS/is4muC3MB5czYT/L2YFCBFHkjYxvn3i+kBzz77LCNGjMDb25uQkBAWLlzIkSNH2rWZPHkygiC0e912220d+lqxYgVDhgxBo9EQEhLCHXfc4ayP4RZolVpuT7vd1WY4DUGEv53IYNlbBXDcsuRVd8SkVHJ47nSOSQ6GxchkckJ0lpVKBdCnnkBvsL/44lG9ZeEOJguVyO2NWrAshr/c07IwsqKyJgQfy8KggovUeHlaXl67vGyoxW1dQf+6z7jWN8/VZrSxMVzByHTLNEms4cPCaJYIz9Dsn2j3vs/lggNvs37XdcxQ6xw+ljvx5wERrjZBohcjORlW8Ouvv3LHHXewbds21qxZg16vZ8aMGTSck7B78803U1xc3Pb6xz/+0e78yy+/zJ///GcefvhhDh48yC+//MLMmTOd+VHcgosSLiLWJ9bVZjicJH0QX/ycQPJXOxBbnKs/YE9MahWHZk/hRO4xV5vSqxg+ZC5ireUliWujttrdBoPgRY7Osp0zXYNzK0u1YfCzqFm2Yr/FXTb7qi1qJzMJJAb0t7jfvXtlqFSRFrd3BdOq72eUl/tUSfotRM7I4ZYn2VvK1ipfJlU+yqmIyXbv+1yCa3L4dPVM/qHbgofMHfaKHMucYF+G+rhf2WaJ3oPkZFjBqlWruO666xg0aBBpaWmsWLGCvLw8du9ur8qs1WoJCwtre/n4nInFrqqq4rHHHuPTTz/lyiuvJC4ujiFDhjB//vx2faxYsYKYmBi0Wi2LFi3ipZdews/Pr+18Tk4OCxYsIDQ0FC8vL0aMGMEvv/zSro/Y2FiefvpprrnmGry8vOjXrx8//PAD5eXlLFiwAC8vL4YMGcKuXfaP/7YEhUzBXRl3uWRsZ3F7+RCefq8RReYhV5vSI0weGg7MmMjJk1IVKWvprxpscVuTtoUqwya723DKYxwGC6Pzap0sxNeKvtmynZZ9xp3ILNQyKGm2XBRyQK3l1ZBEUaCxcYzF7V2BDCM36R4i1MIqW87gt0AZw0faf2W8pFnFqBM3kRlzrd377oxrtj/CL4cfYai6d4a8WoJcgIf7298plDi/cJ+7Ty+kpqYGgICA9jXBv/jiC4KCghg8eDCPPPIIjY2NbefWrFmDyWSisLCQ5ORkoqKiuPTSS8nPPxMCsH37dm688UaWLl1KVlYWU6ZM4emnn243Rn19PRdeeCFr164lMzOTWbNmMW/ePPLy2m+Rv/LKK4wbN47MzEzmzJnD1VdfzTXXXMNVV13Fnj17iIuL45prrkF0UX7A9H7TSQtOc8nYjiTE6MWHW1OZ8sEexNpaV5vTI0yenuydOpaCvBOuNqXXMTB+HJRbvovRnHYIk8n+4RgFymEWtz1V61whvlYaGiwLV9LRhDbEslLARwvqsTQ5wa9UQZC/5Y5G5h4tcrl76wZo9Se4V/EpCjdadN/kLzBsTCT2ziM2ijIWHZ3JFxGPIsot28HqCXHFm/nplxncQw6WF6buPVwZHkiCp8bVZkj0ciQnw0ZMJhN3330348aNY/DgMyuVV155JZ9//jnr16/nkUce4bPPPuOqq65qO3/8+HFMJhPPPPMMr776Kt988w2VlZVccMEFtPwRSvPaa68xa9YsHnzwQRITE1m2bFmHcKq0tDRuvfVWBg8eTEJCAk899RRxcXH88MMP7dpdeOGF3HrrrSQkJPD4449TW1vLiBEjuOSSS0hMTOShhx7i0KFDlJaWOvDb6p57h93rsrEdwYL6BN76TI33hkxXm9JjjD4+ZE4cQXFB780jcSWDQ60Tb6sJ2uwQO04KloUC+YvQpHdNiE1VneU5EcaARvONgIZGAwRbHu6R6BVjcVudTgTRPcX5ziaq4T/c7HPEfEMnstkHho6JxBERR38+PpgHvZ/F6GnfqladoTC18NCvN/Dfwrfo50Y7Rj3FSy7jwf72z6GROP/oO78KJ3PHHXdw4MABvvrqq3bHb7nlFmbOnElqaipLlizh008/5T//+Q85OafDTEwmE3q9ntdff52ZM2cyevRo/vnPf5Kdnc369acryhw6dIhRo0a163fMmPZb8/X19dx///0kJyfj5+eHl5cXhw4d6rCTMWTIkLZ/h4aervCRmpra4VhZmetK9GWEZjA5erLLxrcXalHOy7+ns+StI4jFrnPa7IUxwJ89Y4dSWmRfvYbzhfCwBOTFlrc3BjZQ0+yY0MVsvWUKzEFG1z0Syqo8ECzcdqj0KrS43zq15evMsWXWaQHs2xeEICitusYVjKv+M5O93SsfbKs3pI6LQuEAT+PfJWEs0j9NY1Cq+cZ2YMSxf7F248VcprJ/wQZXcEdMCMEq9/+7lnB/JCfDBpYuXcpPP/3E+vXriYrqvmpMq7Nw7NjpZNnw8NMxjikpZ0ogBgcHExQU1MFB6I7777+f//znPzzzzDNs3LiRrKwsUlNT23ZDWlEqz9woWutcd3bMZLI8dtkR3JNxD3Kh9246j2yO5NP/RBL1/U5w8XdpDwwhwewclkJ5seWTOYn2jIifg0Xqd3/QNGQvYP+/HZOgIltn2UTOx9LEDQfQopfhp7bMGcpR/G5xv/k1lk+utTVyokIszxmorBRRKcda3N5VCIhc3XAvUWr3euRv9xRJHh+J0sIcG2vYV+vFmNIHKIycbfe+O8NLV8ZraxbyQc0PbqFTYisRaiW3RTt+F0ji/KD3/hJcgCiKLF26lP/85z+sW7eO/v3NhyBkZWUBZ5yLcePGAbQrfVtZWcmpU6fo1+90Hfvk5GS2b9/erp9t27a1e79582auu+46Fi1aRGpqKmFhYeTm5tr60VzOAL8BLEpY5GozbOKR/KE88HYpwpHjrjbFLugjwtmRGk9lWYmrTem1eHsFoi2zTHG6lWqvXx1iS6VmNDoLlcY1za5NZPVTWaZXsVfcZnFM//GCBgQrdjMSlZaXGwY4mm2Z/oir0RiLuUf2Dmo3E1Xb6SESPz4StQMm5jV6BeNyrmZT9K2ITlIOmZv1Euszb2WSxkVV2nrIQ/3D8ZBLU0MJ+yD9JVnBHXfcweeff86XX36Jt7c3JSUllJSU0NR0WvQpJyeHp556it27d5Obm8sPP/zANddcw8SJE9vClhITE1mwYAF33XUXW7Zs4cCBA1x77bUMHDiQKVOmALBs2TJWrVrFiy++SHZ2Nm+++SarVq1qZ0tCQgLfffcdWVlZ7N27lyuvvNLluxE9ZVn6MnxU7p1IeTaxBj8+XzuQ9M93Ier6Ru30lugotifFUH3q/Fa47SmjUxch6i3/PRr6naKh2TFx84WqERa3leksT1J3BJ4WCvLVibVogyxTezaaRIxBljt8UYVeyOWWOyV5J0U0mqEWt3clYY0/c7uP++WKZWpE+o2PwEPlmN3sq7In8U7oE4hKy/N+ekJY5e989fMFPKXfjaYXlbpN9fLgkjDHihtKnF9IToYVLF++nJqaGiZPnkx4eHjb6+uvvwZApVLxyy+/MGPGDAYOHMh9993HxRdfzI8//tiun08//ZRRo0YxZ84cJk2ahFKpZNWqVW1hTKNHj+b999/ntddeIy0tjdWrV/PYY4+16+Pll1/G39+fsWPHMm/ePGbOnElGRoZzvggH4a/xZ2n6UlebYRHXVw7ihQ8MqHYccLUpdqOlfz+2DQijtvKUq03p1cjlKgLrrVM4bkjabb6RjZwU4i1ua3CREF8rStGycCkAgix37K35i1bpBAaEWrc7UVw0yKr2rmRE9VPM8mkw39DJ7FOLRIyPwEttmfNoLc+fTOBPmmcxeFu3U2UrAiI3b7mXVdlPMMjxxa7swl/jI5C52U4XnI7cSE1NRalUsnDhwk7bbNiwAUEQqK6udqptEt0jiK6qXSphFStWrODuu+/u8z8go8nI5f+7nMOVh11tSqf4mjT8IzMJ/9WOmxS6gubEOLaG+tJYW+NqU3o9Y4ddQnTlAIvbi4LIyQsfoVnvmPC0l73+ze4Gy9aT0g7UcaTQdSWXxw87yN7Gzyxqe6PxQZQ7LBPECwlUM8Zo+c5SYb8m/q90i8XtQWT6BRtpbu4dVdj0sgCeUn9Ijs79dr+T9ALVW0upaXJMuFGcton/BL2DT9lOh/TfGS0KLc9OeI93TNHWpGk5lXnBfrw/ONbVZnTKqFGjSExM5Nlnn8XLy6udZlgrGzZsYMqUKVRVVXV6vifk5ORw//33s2nTJpqbm5k1axZvvPFGW+EcOB32fuedd/Ljjz8ik8m4+OKLee211/Dy8mprs2/fPu644w527txJcHAwd955Jw8++KBdbXU3pJ0MCbdCLpPz6KhHXW1Gp8xqiOODL336nIPRlJLElmBvycGwEzFCklXt9ckFDnMwRASO6CwPQamuc20Fomad5eGSuUrLFyLKKpoRLFT/Bggr1KBRW6MRIFBbM8p8MzdBaarkLl50S9XqI0oRr7Gh+HuqHNJ/TqMHowqXkRN9sUP67wyVoZG/rr+Kf5d8SITS/aZd3nIZTye4r4J9Tk4OU6dOJSoqyu4OhDkaGhqYMWMGgiCwbt06Nm/eTEtLC/PmzWsXor5kyRIOHjzImjVr+Omnn/jtt9+45ZZb2s7X1tYyY8YM+vXrx+7du3nhhRd44okneO+995z6eZyN+/21S5z3pIekM3fAXFeb0YZClPFcdgY3vJ2DmF/kanPsSmPaILb4qmiqr3O1KX2C1OSpiBXWrcDWx24338hGqtXDqDdatnYqR+RUvWuE+Fqprfcy3+gPssRt5hudRZOP5ZNWuUEgISTWqv4zM9UoFL0nnj2waTN3eW10tRmdkqMQUY8OIdjbMXFGTUY507Iv5v+i7kJ0YlXD8Uc+Zf3Wy1igdq/77cMDwglVu65kbXNzM8uWLSMkJASNRsP48ePZuXMnubm5CIJARUUFN9xwA4IgsGLFCgBWrlxJYmIiHh4eTJkypUPhmxUrVuDn58dPP/1EUlISWq2WxYsX09jYyCeffEJsbCz+/v4sW7YMo7HrMNHNmzeTm5vLihUrSE1NJTU1lU8++YRdu3axbt064LTswKpVq/jggw8YNWoU48eP54033uCrr76iqOj0nOGLL76gpaWFjz76iEGDBnH55ZezbNkyXn75ZYd8p+6C5GT0Eq677ro+Hyp1NvcNvw8vpeUTDkcxtCWMz3/sx4BvdoDBtUmx9qYhI40tGoHmRsuEzSTMM9DfutVsk9JAleiYqlIAxerRFrcNNskwWliFylFUVlueoF0hlqH1t3xiVKKzLt9kQINlla5a0evBaJhg1TWuJrXmFRb5VrvajE7JVYiIo4MJ9XWc6vTtx0bxj6CnENXW6aP0BN+GIt5dPZc369fg4wZVnIZ6a7k+0rKCC47iwQcf5Ntvv+WTTz5hz549xMfHM3PmTLy9vSkuLsbHx4dXX32V4uJiLrvsMvLz87nooouYN28eWVlZ3HTTTTz88MMd+m1sbOT111/nq6++YtWqVWzYsIFFixaxcuVKVq5cyWeffca7777LN99806Vtzc3NCIKAWn3G4dVoNMhkMjZt2gTA1q1b8fPzY/jw4W1tpk+fjkwma6sUunXrViZOnIhKdWaxY+bMmRw5coSqqr6hr9IZrv8Ll5DohCCPIG5Lu82lNtxXPJQ/L69EdjDbpXY4gvpRw9gs19Oia3K1KX2GmKjByEqsi3HXpx3DYHTcquZJmeWhWwEG14fOnKpVo5RZ7jjIgi0P7zqSX481EtNBxUp8vK2rdpeV5YdM1kuyfP9gYc1dpFguiu5UCmQizSOCiPC3rhy0NSzPj+Va+bO0+MU5bIzOWLz7adbuW8ZojeuKLcgFeCEpyqXJ3g0NDSxfvpwXXniB2bNnk5KSwvvvv4+HhwcfffQRYWFhCIKAr68vYWFheHh4sHz5cuLi4njppZdISkpiyZIlXHfddR361uv1LF++nPT0dCZOnMjixYvZtGkTH374ISkpKcydO5cpU6a0CSF3xujRo/H09OShhx6isbGRhoYG7r//foxGI8XFp9VWS0pKCAlpry2iUCgICAigpKSkrc3ZORxwRgy5tU1fRHIyJNyWJclLiPN17o0fINLowye/DWLUil2IfXCVv3bsKDYbGzC0uDY0pq+RETvTKvE9gNpwa5KLree40XJRLW+961NSRVEgUGP5DkKtr+WllnU6IwRbPlkVRIEkv1iL2wPU1ooo5OOtusbVKMR6lhqedotV9c4okYvUDw8kJshxntBvlX5MqX6MynDn7kRFn8rku9UX8GfjQZQumOjfGBlMqrdrPcycnBz0en2bhhicFgweOXIkhw4d6vSaQ4cOtQkdtzJmzJgO7bRaLXFxZ+YQoaGhxMbGtkvGDg0Npazs9H3kmWeewcvLq+2Vl5dHcHAw//73v/nxxx/x8vLC19eX6upqMjIykMnc8zfjTkjfkITbopApnJ4EfkVNMq99JOCxea9Tx3UW1ZPGsUVXjVHfO4Wi3BU/vzDUpdbFNIs+OqpatjrIotMc1lmeh6Bsdo9KQz4Ky52MfJV1u4y1Vuow9K+0oqTuHxw6FAlOEn6zF77Nmdyt/T9Xm9ElZTKRU+kB9A91XAhtoU7NqJO3sT96icPG6AyZaOTOTX9i5YnnSFA77+8mQq3kof5hThvPFbTKArQiCEKnx1oTuG+77TaysrLaXhEREQDMmDGDnJwcysrKOHXqFJ999hmFhYUMGHC6imBYWFibo9KKwWCgsrKSsLCwtjalpaXt2rS+b23TF5GcDAm3ZmT4SBbELXD4OF6iijf3DmXR8gOYTlU4fDxXUDl1AltryzAZ+1ZuiTswOmURGKzbCWhKO4goOs7Zq1WlUGmwwnFwsRBfKxpZoMVt92NdGdKTldbt3vlUyAkNtHw3CKCoSESjGW6+oZuRVPseV/qWmm/oIiplIkVpfsSHeztsDL1JYF72HL6OeBhR7pjqVl2RenIlqzfM43qFc/4Pnk6IxFPhvKT3roiLi0OlUrF58+a2Y3q9np07d5KSktLpNcnJyezYsaPdsW3brCsE0RkBAQHEx8e3vRSK9potQUFB+Pn5sW7dOsrKypg/fz5wehelurqa3bvPVJ5ct24dJpOpbcdlzJgx/Pbbb+jPWuBbs2YNSUlJ+Pv3noIR1iI5GRJuzwMjHiDIw3GJaZOb+vHx10GErNwFfVQ25tQFU9heWYLYy1Xh3RGVSotftfUPiRo/x1b2KdGMtaq9vtE9nAy5yfLvssCUi8bbcvG2E0UNCB7Wib0lekRb1R4gP2+g1de4A7Nr7ibd033vgTWCSO5gH5KirMuVsZaHjg/hMZ9nMGmdmxDt0VLDs2sv5YtT/yTEgaVuZwT6cGGwn8P6twZPT09uv/12HnjgAVatWsXvv//OzTffTGNjIzfeeGOn19x2221kZ2fzwAMPcOTIEb788su2qlOO4OOPP2bbtm3k5OTw+eefc8kll3DPPfeQlHQ65y05OZlZs2Zx8803s2PHDjZv3szSpUu5/PLL23ZDrrzySlQqFTfeeCMHDx7k66+/5rXXXuPee+91mN3ugORkSLg9vmpfh4RNyRF48kQGf3orD/FEnt37dxdKZ09nR3k+oig5GI5gdNpCRCuVso2htdQ2OzYkL1/W+SpgV9TVu1YjoxVDi3WVfhQhln/3ogj6QOuqFcWU+iBYGS9/+DBo1AlWXeMOyMQWbmt5jACF+04N6mVwNMWblH5+Dh3ni+IIFhufoSnQ+Wru0w6+w7od1zJLbf/CHFq5jGcSnaN6binPPfccF198MVdffTUZGRkcO3aMn3/+ucsV/piYGL799lv++9//kpaWxjvvvMMzzzzjMPuOHDnCwoULSU5O5sknn+TPf/4zL774Yrs2X3zxBQMHDmTatGlceOGFjB8/vp0Ghq+vL6tXr+bEiRMMGzaM++67j8cff7ydlkZfRFL8lug13LP+Hn7J+8UufQ3UB/H4L/4osjpPLOsrFM+5gMyC4642o+8iCFye/mfEKuvCnuqm/UaR/CMHGXWa93z+ya91lod8hG0so7rR9bk66UnFHJO9ZnH725v/irjH8tyJUcn+hBXXW2XTmtijnCzJt+qaYcP0aD2/suoad+GE9xIer78Id16W0IiQmt3I/hOOLf8ZqNLzv+jPCStc49BxuuLzUX/nce0EGu1UXvrxuAj+FGNdCKCEhK2473KFhMQ5/Hn0n/FR9Xyb/E/lQ3jq3YY+72AUzJspORgOJn3QTKsdDIBq7Qb7G3MOR5otX7HXiLiFgwFQU+dpVfsijxyr2h8rbrCqPUCCLMLqa7KylCiVvXMy17/uC67zPelqM7pFJ8DeBC1p8dYn51tDRYuSMcevY1v0TYguSOi/avufWXvoQTI0PXcyUjw13BJlnf6LhERPkJwMiV5DkEcQ9w+/3+brQ4xefLQllckf7EGscy/FVXuTt2AW+/KOudqMPk+CV4bV1xjiSmlsdqzz16iIpaTF8nXoUJP7VEMqr7JOE+GgsMeq9hXVLQgB1oVMRRZ6dkgCNYfRCM3N48w3dFOmVD/AGC/XaThYQosAuwdoyEhybO6EKApcnj2VD8MeR1Q6v+Rr/5Jt/LBmBvdyDFtTtWXAC0nRKKzQipGQ6CmSkyHRq1iUsIjR4ZarGLddV5fIW5+q8Po10wFWuQ+iIHB8wSwO5PY9AUF3Y0D/YQil1k/C6hN2OcCa9pR4WKfV4OceOd8A1DUp8VRaXqr0mPF3VFrrpl6NXtaVG1Y2C8SHxlp1DUBWpjdymZsq3ZlBhpEbm+4nTOXe0wSDILCtn4phKY5foX86N4llHs9i8I50+FjnojC18OCvN/JDwevEqqx3FK6NDGKYr3W7hBISPcW97x4SEp3w1zF/xUNh2WqnRlTwyu/pXPH2YcQSy4W7eiOiTEbOgpkclhwMpzA0YqrV14gyE1XyrtVl7UWBPNWq9lo3EOI7mwC1dRNGdah19hc1WO9VxelDzTc6h4YGEUHmXIE3e+JhyONexQoUbr74bRIEtkQpGZ7q+PC0H8uCubDxSeqDrd/FtAfDcr5l7caLuEJZafE1AzzU/CXO+pA/CYmeIjkZEr2OKO8olqUvM9tujC6KT78NJ/L7ndDHS7eaFAqOzruAoyckB8MZBAXFoCyxPnBBP/gkLfpTDrCoPcdF61ZaFTr3CovxklsX/tLkW21V+6P59Vg7cw4tUKP1sH5X4sD+UHrzozay4Xtu8TnsajPMIgoCmyKUjEiz3hm0lqMNHowqvofcKMdrOHWGp+4Ur/yyiI+q/2u2EphcgDeSY9C6qaK7RN9G+quT6JUsSV7CqLBRnZ4TRHgsP5173y6G7BNOtsz5mJRKDs+ZSk6ulIPhLEYlzQcbqr3URfdcMMoSjjRbFxZhsrIEr6NRC5YL8gEUa637nbe0mBCDrXMYZCaBxKBYq64BKC8X0aitD/F0J8ZV/5kp3tYJGbqKjWEKRg4Ld/g4DQY5k49dxi9RSxEF10ylLtz7Cut338wUTdflp5fGhEphUhIuQ3IyJHolgiDw9Pin8Va2V3+NMwTw2dqBDPl8J2Jz73go9gSTRs3BWZPIzbWuwo6E7Wi1PnhXWF/lTNToqTI6VoAPoEUeQn6zdTt3ugb3qCzVimCwTtzwiCzL6jGqbdCCGFBnW4Lx8eNxNl3nTlzdcA/R6t4xZfgtSMaIEY53NABuOjaWl4OfQlQ7Tom8O0KrD/PlzzN4umUnmnOSulO9PLg/NswldklIgORkSPRiwjzDeGTUI23vb6wczHMftKDaecCFVjkPk1bL/unjyc/r+7s17sToIRchNlu/8q9LO4LR1OgAi9pT4jERa/dYatxEiK+VlmbrnLjfjXtRWJmgnHtKZ1V7gIASJf6+1qu75+SARuN8UTd7ojaWcq/sLdRWChO6io0BMoaPck4ewht5/blR8Rx63/5OGe9cBERu2no/Px/9K4PVp4+pZQJvpMSglKpJSbgQycmQ6NXMi5vH4qi5vLcrjZnvZiFWVbvaJKdg8vIia8ooCvNzXW3KeYVMJiekybbKMrUhm+1sTecUKNKsvuZUrfUTbkfS0GB5dSkAE0Y8Qq2bTOWVNCJ4WldlCiDJp5/V1wCUlQ6x6Tp3IqTxF/7ks9vVZljMJj+BYWMjcYZftK7Cn2m1f6E6bKzjB+uCpML1rFw3mztkJ3m0fxgDPa0rBy0hYW8kJ0Oi1/PYsIcI2lfgajOchsHfjz0ThlFSkOdqU847hg+Zi1hrfWUik38jNc07HGBRR3LFGKva+4ug07tXYYTKWusTrFsCaq27QAS9lXoZAP1P+Vl9DcC+fXJUKueXPrU3w6v/zmwf6wUNXcVmb0gbF4ncCSv6eU0aRuX9iUPRlzt8rK5QGRr5S+4H3BrdO4UgJfoWkpMh0euR+/kR8fxzIOv7f86GoEB2j0ylrOj8carcif6qwTZd1zRkPyLOSa4+0mJdbHiQ0f1+N+WVHghWqiuXaa13ukttcK48q+REBFsf5y6KAo2NY6y+zh25rO4u4jS9JwxnmycMGheJUu54m5tNMmZnz+e7yAcQZdbvlPUYD39Y9C5O2b6RkDCD+z1dJCRswHP0aAJvuN7VZjgUQ2gIu9IHUlFS5GpTzksGJoyDcttU66p9frWzNZ2jF3w5obMuI8PHzTQyAFqMMvzU1uU+HJXvs3qcY0UNWOnLAJCojrb+IiBzjxa53PqiAe6G0lTFXeKLaHtRvP8OrUji+EhUNiT828K9Oen8ze/vmDysq5TWY+a9Dj6SJoaEeyA5GRJ9huC77kIzqHcnV3ZFS1QE2wcNoLKsxNWmnLcMDrZORbsVY1QV9c2/29mazinXTrB6v0TT4n5OBoC/yjq9g33GXcis1L6ortUjBFofMhVT5IXMhp1TnU4E0ba/I3cjULeFu7x+c7UZVrFbIzJgXCQapXOmPiuKorhc/DvNAUlOGY/0qyFlvnPGkpCwAMnJkOgzCEolES++gMyzb9UEb+kXzfb4KGoqyl1tynlLeFgCchv9u4bkPfY1phsKlelWXyPT2bY742i0cutWgPW0oA2xXiCx3sP6kBZVo4z+odblvrSyb18QguCCMBoHMLjmVS7ytVx52h3I0piIGh+BVmX934ot7Kj2YULFo5RFTHPsQIEJMPt5x44hIWElkpMh0adQ9+9P+NNPudoMu9EcP4Ct/UKoq6pwtSnnNSPi52B1Xdg/qFKvt68x3ZBLrNXXGNxMiK8VpRhg9TXGAOsTkgvrbdMIicc2HYbKShGV0nUViOzNwpq7GGR9nr5LOaASCR0fjrdG4ZTxypqVjDpxA7ujHRTSq/CASz8BVd9aYJPo/UhOhkSfw2f2bPyXLHG1GT1GNzCRLWG+NNRUu9qU8xpvr0C0ZbaVgtQnFaJrcV6Sfrbez+prGt1MI6MVk97X6msqvAqtvuZYfgPYED4TUeCBSqWy+jqAo9m2lcF1R+RiI3cYnsZX3rumE4eUIv5jw/DTOmdXSRQFLs6+gE/DH0NUWB+i1y0X/gNC+2aosETvpnfdFSQkLCT0oQfRDOm9dembBiWzJcCDpjory3JK2J3RqYsQbSzxWj9gp52t6RqjoCG7yfpE3Kq6ZgdY03OaddYnSB9TWC/EqTeYEIOtdyLleoGEkFirrwPIOymi0Qy16Vp3xLc5k7u1K11thtUcVYpox4QS4GWbs2gLj59I4X7PZzF62kmJe8jlkHGNffqSkLAzkpMh0ScRVCqiXnkZua/1q6GupnFoKpu9Fega6l1tynmPXK4isN66BORWRIWRSmGDfQ3qhgrNWFpE62K65IhUuOlORm29dYJ8AHuN2xFseKpV2XIREKezXYuguKhvrTwn1r7Plb69rzDFcYWIYnQIIT5qp435bWko81ueojHIeuHMdgQlwdyX7WOUhIQDkJwMiT6LMjKS8Oef61X1wuuHp7NZZaSlqdHVpkgAo4YuQKy3LTG6JfU4BkO1fQ3qhiLVcKuvCTbKMJrcs7pURbX1uwsN1KMNsj785fgp2xTPgwtVeHla7wwBHDggoFb3nbApgNk19zDM0z3/nrojTy5iHBlMmJ+dw5i64WCdJ6NK7iM/ao5tHai84LLP3DoPY+DAgQiC0PbqjP79+yMIAitWrHCucRJOQXIyJPo03pMnE3jzza42wyLqxoxgi6BD3+ye4SvnIzGC7aUn6yK32dES8+QKcVZfE2hyXwe8olaN0gYxMzGoyeprCksbEbytH0sQBZICYq2+7o+rqa0ZZeO17olMbOGWlj8T6KQSsfakUC6iGxFEVIDzstjrDAomHFvCr9G3I1or2DL/dQh2UmlcGzly5AgAd911Fx9//LFTx87Kymrn4Jz9+uKLLwBYuXJlp+fvvffetn42bNhATExMhzbPPvusUz9Pb6X33QkkJKwk+K5laEeOdLUZ3VIzYTRbWmoxtLhn6Mr5SGryVMQK2yoPmbQtVBk22dmi7jlmsF70y9NNNTLgdKJsgCbY6uuqvIttGq/ZxlXs/tW2i61lZqpRKKyvouXOeLUc4T7Vv3rl5KJEJlI9LIB+wc7dHbg2ewJvhjyJqLJwV2zUbTD4YscaZSc0Gg2vvvoq1113nVPHFQShTcsmJOR0WGPr+wsuuACAn3/+ua19bGwsGs3pe8Arr7xCScnp0L+PPvqI/Px8AObPn09ExGmhw8cff9wJn6L30xvvAxISViHI5US+9CLy4CBXm9Ip1ZPHs7WhEqPBPfUKzlcG+tm+ytw89HdMJuftSJmQc6TJ+tu5usW2hHZn4au03snIVRyyaaxSG78Lv3IFwf623Vv0ejAYxtl0rTvTr/6fXO+b62ozbOKUTKQs3Y8BobaFwdnKS3lx3Kp6DoOPGf2VqJEw42nnGGWGznYL0tPTueGGG9rCo3Q6HYIg4OFxOvwxNDS0XfvWyXwrHh4eCIJAcHBwu3br169vO9f6Ki/vWjsqLS0NT09PRo4cySOPPAJAUNDp32lVVRUAMTGnv+vrrruOa6+9lqSkpDaH5JdffgFg9erVAGRmZvL9999TWFiIQqHAYDDQ0GB9yezzDcnJkDgvUAQHE/Xa6whK9xLBqpg+ia3VpZiM7qlVcL4SEzUYWantE/CaQOfuYlRpRtJoQ26F2OTejq1GsH6XYK+4HWsjTwCyCxpsug4g0cs2YT6AvVn+yGTOSzp2FpOrH2Ssl3v/fXVFlQAFaX4kRHg7ddzVpwKYUf8EtaFdLHB4R8Bln4PcPZ5j6emnxT9DQkKYMWMGcNrxyMjI4C9/+QsAcrmcv/zlL6xZs4Y777yTsrIy4PSugFarRafrPB/q1KlTjB49mgEDBgAwdepUdDodM2bMaHMWWs91RllZGXV1dRw8eJD77ruv7RiczgOB06FQAP/61794/vnnOXr0aJvjkJub22YHwCOPPEJkZCTx8fGYTKefDbt27bLm6zovkZwMifMGbUY6YU/81dVmtFE+cyrbTxUiiu69mnw+khE702bxPVNwHTXNzlP5BihW2xYOqG9070mg3ORv9TWV4im0AdZPwuoa9AhBtumh9CuzvYpdba2IQj7e5uvdFRlGbmh6gDBV75xm1Aoixwf7MDDauRUKjzdqGFWwlOzoS9qfUGjg8s/B27Zqd/amNdTI09OT0tJSfv75Z44dOwaczsF48sknAVAqlTz55JOMHz+eN998EwBRFPn++++73Qm4/PLL2bp1Kzk5OW3HfvrpJ37++ee2HYz6+q4rMB4/fhwAQycRAidPngSgpKQEhUJBdHQ0Op2OpqamNptad1haHYp169ZRUlJCTk5O27F9+/Z1+x1JSE6GxHmG38UXu4VQX+ns6ewsOQlWlhyVcDx+fuGoS21fKWwcvA9wruN4Uki06bo6Ny1f24qhxbYJnhBkW6hanY0K0NoaGdGhkTZdC3DoUBQ2b6O4MR6GPO5TfISil360BgEOJ3sxKNbPqeM2GeVckL2In6LuRZT98Tc57zWIHOZUO7rjmWeeAeDKK69sOxYXd7r4ROsk3BL8/TtfSPjnP//Z4dicOZ1X4pLL5e3CqP70pz+12XDHHXewdOlSANTq0zuG//jHP9quFUWRAQMGMHPmTIC2sK5WZ0P84xl92223sXz5cjQaDT4+pzV8WqQcSrNITobEeUfoIw+jHT3aZeMXzZ3B7qITLhtfontGpywEg+3OX5XXBrvZYik5RutzFwAqat27kllTo23hKrU+pTZdl19r+6QhURFl87VFRSY0GutLEPcGIhp+5FYf2/Jk3AGdAAcSPRkywPpdtZ6y9Nhwng14mubxD0Ha5U4f313oqvxtK2+++SaXXnpp2+vRRx8lPDwcOF1G98svvwTg+++/B2DLli0AKBQKjEYjd9xxB6tXr0aj0fDyy6d1R4qLi9uNfdFFF3Hvvffy2muvMXHiRABqayWxXHNITobEeYegUBD16iso+9keR20r+fNnkpWfY76hhEtQqbT4Vds+mTDGltPYnG1HiyzjsM76nReNCDVNtlXPchY1dbYl3+apjtp0XU5BA4JKbtO1kYWeyOW2XQuQnzfQ5mvdnbHVjzHNxzYtEnegWYDMeC1DE2yvJGYr2Z7DUEx9xOnjmuPRRx8FaJvAA22hTdb8DlqTsHvC7bffztdff932ioqKIjY2lvDwcP72t7+1hVVVVlYCEBh4+v8xIyMDgLlz5xIQEEBSUhKffvopAIMHDwZOh4MBzJ49m+eff55bbrmFjRs3AjB27Nge297XkZwMifMSuZ8f0cuXI/N2XmJf7oJZ7D95zGnjSVjP6LSFiE22J+HXJ+22ozWWUaMeQo3B+vCsUDfWyGilvNK2srL72GHTdUajiDHYtrwMlU4gLtR2cb3Dh0GjTrD5enfnqvp76KfuvVMOvQA7B6jJGOi8KoWJoV68fkU6cpn7/VZbw4saGhoIDw9n5syZxMfHA/Duu+92es3tt98OnN4dWLBgAV5ejqvg9b///Y+KigoKCwvbksuvuuoqAO68806AduMHBARw5MgRtm7dCpzOCQG49tprAWhqamLbtm0kJiZSU1ODIAhtOxoSXdN7f/ESEj1EPWAAkS+/DD1YfbQEURA4vnAWv+c6f4VbwgoEgQhj19VKzCEKJqoUG+xnj4UUq21bTfM3uN/E5VzqdEo8ldZPRIpNBXj42pZfUWHTVaeJM4b14GqorHSfmHt7ozKWcbfwJho3nDBbihGBbTEqhg8KcfhYAZ4qPrx2BN4a96gk1Rk7dpx25ktKStpKvQ4dOpQbb7yxXbsNGzYgCALPPPNMW2WoH374gYaGhjZtCntTUFDQIWeiNU/jm2++AeC3335rO5ednd2u0lWrnWcnl3/++edkZ59+jqenp7flb0h0jeRkSJzXeE0YT+jDDzusf1Eu59j8mRw+ITkY7k76oJmIVbaHDxlS8mnWl5hvaGfyZbaF2Xi4uUZGKwFq2/JNFCG2Vc46Xmq9YngrYQWaHk2asrKUKJWOn8C6ipCmtfzJe6erzegRJkFgc6SCEUMcV+VJJZfxzlXDiHai+rgtjBgxgpEjR3LVVVeRn59PVVUVmZmZbedFUaSpqf3vqby8HFEU215NTU2Iotgm1tf6/mxMJlOHY63XA2zdupWpU6fi6emJj48PEydO5Nprr203jiiK6HQ60tLS+Ne//kVWVhZbt27t0Kb1FRsbC8CKFSs6Pb97t/N3rXsjkpMhcd4TcPVVBFx7jd37NSkUHJk7nWxpB6NXkOCV0aPr6/rZFqLTU3JsXD1XNPcOJ8NbYZuTUedzyqbrSk7pEHxt062QGwUSg/vbdC2A0QjNzX1PnO9shlU/yxyfrkuP9gZEQWBjuIIR6T3bueoMQYB/LB7CyP69Qwk+JyeHqVOnEhUVhZ+fn9PH37p1K7NmzWLGjBns2LGDnTt3snTp0jZ177N58MEH2xS7JZyD5GRISAAhDz+M9+xZdutPVCo5dOFUjudKORi9gQH9hyGU2p6LYVIZqBR/taNFlnO42bYJscnNhfhaUWHbZKtQY/tvT+ejsvnaAQ09i9nPyvRGLnPvFeyecknd3SR49N6wqVY2hsgZMTzcrn3ePyOJhem2l0O2N83NzSxbtoyQkBA0Gg3jx49n586d5ObmIggCFRUVbQrfK1asAGDlypUkJibi4eHBlClT2oTtWlmxYgV+fn789NNPJCUlodVqWbx4MY2NjXzyySfExsbi7+/PsmXLMJoRqr3nnntYtmwZDz/8MIMGDSIpKYlLL720rVxtK//3f//H6tWrefHFF+359UiYQXIyJCQ4nYgW8fzzaEeM6HFfJg8N+2dN4uRJqYpUb2FoxNQeXa9PO4bR6PzV2QZlHOV623YkdA3uXVmqFcFgW7WvA4Lt4QwlOtsdzsBiJb7ePjZf39AgIsgm2Hx9b0BpqmKZ6R94yvuAoxEoY8RI+6yOXzkqhjumxNulL3vx4IMP8u233/LJJ5+wZ88e4uPjmTlzJt7e3hQXF+Pj48Orr75KcXExl112Gfn5+Vx00UXMmzePrKwsbrrpJh7uJCS5sbGR119/na+++opVq1axYcMGFi1axMqVK1m5ciWfffYZ7777blv+RGeUlZWxfft2QkJCGDt2LKGhoUyaNIlNmza1a1daWsrNN9/MZ599hlbbtx14d0NyMiQk/kCmUhH11puoE2yv8GLy9GTftHEU5Ek6GL2FoKAYlCU9S/6vCdtiJ2uso1hj+2S0xs2F+FppabZtwn7CeBS1p23J30cLGsDGBGVBFEjyi7Xp2lYO7A+lrz+eA3TbuMtzg6vNsAsb/QWGjY7EjJxDt0wbGMJTCwbbzyg70NDQwPLly3nhhReYPXs2KSkpvP/++3h4ePDRRx8RFhaGIAj4+voSFhaGh4cHy5cvJy4ujpdeeomkpCSWLFnSlm9xNnq9nuXLl5Oens7EiRNZvHgxmzZt4sMPPyQlJYW5c+cyZcoU1q9f36V9rareTzzxBDfffDOrVq0iIyODadOmtSVot+Z73HbbbQwf3je1aNyZvn0Xk5CwErmPD9Hvv4cizPpYW6OPD1mTRlKUn2t/wyQcxqik+WCyXXzP5NNEdctWO1pkOQXyQTZfe6q2d+gW1DfYXuZSFWrbLk9jkwGCbK8c07+yZ8Jt5eUiGrXrBEOdxaCa11nsW+lqM+zCZl9IHxNpk2+aHuPHm1dmuF2p2pycHPR6PePGnckTUiqVjBw5kkOHOhdYPHToEKNGjWp3bMyYMR3aabXaNoVwgNDQUGJjY9uVlQ0NDaWsrAw4rTDu5eXV9srLy2urFnXrrbdy/fXXk56eziuvvEJSUhIfffQRAG+88QZ1dXU88oj7aY2cD0hOhoTEOSjDwoh5/z1kPpavoBr9/dgzdiglhXkOtEzC3mi1PnhX2B7aAqBLO4gouib06LjJtjANfxF0NoZZOZuqWk+br23swQS2Vm377pZ3hYLQwJ5ViTp+PM58oz7A/Jq7GNxHIli2eEPquCgUVjgLccGefHTtCDxsFIHsrSiV7UvzCoLQ6bFWR+K2224jKyur7RUREdGm6p2SktLuuuTkZPLyTj+L161bx9atW1Gr1SgUijYtj+HDh7dpYEg4DsnJkJDoBHVCAtFvvYmgMp8AaggOYteIwZQXFzrBMgl7MnrIRYjNtsffA1T7bbSTNdZzuNm22VlQL9DIaKW8UoOAbfYWe/x/e3ceXtO5PXD8e4Yk52SWgSTIIDIRgkgMiZrF0JhaWhRp3bb3lhYtVT9VHbRVpS2dtNpyOw8XHSiXIlpDFRVTCUlpDAmKjDLn/f3h5rSpKHJ2ZLA+z5OHnLP3Ou8+mfba+33Xqvq0xbRM66aThZh9rdo/NRVMpqrfqaorDOoiD5Q8jYuhfpyObHdQhMU2xuYa1ps0crbj/XEdaOBQ9UID1SkwMBBbW1u2bNlieay4uJgdO3ZcdmJfLiwszNI/o9yPP/5o9Vjc3Nxo3ry55cNoNOLv74+Pjw/JyckVtj18+DB+fpcaYy5cuJA9e/ZYkpNvv/0WgM8++4xnn33W6nGJv1c/fqqFqAb2UVH4zJ0LlZTCK1fs7cVPEUGcO51+A0cmtKDXG2iYb10Vl1KvbHIK92g0outTYGjMySr2unCpG4WlACgq1dPArmoVpg7qd199oyv49WQeOlPVry77Zjihs2aSPnDmdIRV+9cVLoV7mGy/qoqpZO2zw6xoHtMYO+OV/3Y4m4z8+55oGrvW3oZuDg4O/Otf/2Lq1KmsWbOGX375hXvvvZeLFy9e1nCv3D//+U+OHDnC1KlTSU5O5uOPP7ZUndKaTqdj6tSpLFy4kP/85z+kpKQwc+ZMDh06ZBmfr68v4eHhlo/g4GDgUgLVpEmTahmX+IMkGVfw5JNPotPpKnyEhv7R9Ortt9+mW7duODs7o9PpyMzMrLD/sWPHGDduHAEBAZjNZgIDA5k1a9ZlHShF7ebcNw6vJ2dV+lxxk8ZsD/Mj8+yZGzwqoYX2rW9FZVt3tn2x5c8ajeb6nTbHVnlfuzrSiK+cq23Vph4dKtmLjalqf+ZUmaLEinUZplw9fo2aVnl/gL17Ddja1p5yptUpKPsdRrmcqulhaGa3WeEf64PZ5vJE1d7WwJK7own1sm6q5o0wZ84cbrvtNkaPHk27du1ISUnhv//9Lw0aVL7uyNfXl2XLlvHll18SERHBokWLeO6556ptfJMmTWL69OlMnjyZiIgI1q9fz7p16yqs9xA1R6f+2kZRAJeSjP/85z989913lseMRqOl1fwrr7xiaUE/ffp0Lly4UKERzZo1a/jss88YMWIEzZs3Z//+/dx7772MHj263tVpLioqwvYaphXVZeeWLuXMnBcsnxcG+LLdtxG5mfVj0eLN6I7oGXDWuiQjLf5J8guPaTOg67TZ9VnezKpat+8up0vZkXTju5NXVedOK9mXufnqG1Zi6snXyEmr2pS4jmENaJRe9dLEvwXksS7duqkinTrnYzReuYxnfVKms+UVh4/YlVd/rn+2LNKTsfUUef+blmlr1LMkIYqY5tb1UxGiLqg/P8nVwGg04uXlZfkoTzDgUvb82GOP0bFj5RVA+vbty5IlS+jTpw/NmjVj4MCBTJkyheXLl1fYbunSpfj6+mJvb8+QIUOYP39+hWQlNTWVQYMG0ahRIxwdHYmKiqqQ+AD4+/sze/ZsxowZg6OjI35+fnz99decPXuWQYMG4ejoSOvWrdm5c+c1H/uWLVvo1q0b9vb2NGjQgLi4OC5cuABAt27dmDBhApMmTcLDw4O4uDgANm3aRHR0NHZ2dnh7e/PYY49RUvLHSdx//vMfWrVqhdlsxt3dnV69epGXlwdAYmIi0dHRODg44OrqSkxMDL/99ts1j7e6uSck4PHgBAAKggL5sYmHJBh1WGhQjNUJRnHzjBpLMACOqqpfJS+5WDd6ZJQzlFW9WlOhW1aV903NuFjlfQEan7S/bDHr9dr9sz0GQ+2/4q0FvSri/sIZeNjUn1OTA7ZleMb44Gw2YmPQ8eaodpJgiJtG/flJrgZHjhzBx8eHZs2aMWrUKEu1gqrKysrCze2PucXbt29n3LhxTJgwgaSkJLp3787s2bMr7JObm0v//v1Zv349u3fvpm/fvsTHx182lpdffpmYmBh2797NgAEDGD16NGPGjOGuu+7i559/JjAwkDFjxnAtN66SkpLo2bMnLVq0YNu2bWzevJn4+PgKnTf//e9/WxaELVq0iJMnT9K/f3+ioqLYs2cPb775Ju+++67leNLT0xkxYgT33HMPBw8eJDExkaFDh6KUoqSkhMGDB9O1a1f27t3Ltm3buO+++6yez6w1z/HjcXx4EtsaOpGXXfUTF1HzwhtWfapRubzmOzQYSdUdLnKq8r4X60gjvnKqig35AE6bq36x4uyFQnQNqtZRHcBYpKN5I/8q7w9QUKBA1e/mfH/mUHyYh20/q1cnJ4dsymjQ2ZtX7mxDz7BGNT0cIW4YmS51BatXryY3N5eQkBDS09N56qmnOHnyJPv378fJ6Y8/7omJiXTv3v2y6VJ/lZKSQmRkJPPmzePee+8FYOTIkWRlZbFq1SrLdnfeeSdr1qy5bI3Hn4WHh/PPf/6TCRMuXVn39/enS5cufPDBBwBkZGTg7e3NzJkzefrpp4FL1R06depEeno6XlfpATFy5EjS0tIu65pZrlu3bmRnZ/Pzz3/MR58xYwbLli3j4MGDluTgjTfeYNq0aWRlZZGUlERkZCTHjh2zVH0od/78edzd3UlMTKRr165/O7baYMPSt9i9+puaHoaoIm+vIG6xHwpW/OZThjKOxk2luOScdgO7DsV6N+5Ri6nqygrfbb9zJrtQ0zFVp6iWxzlU9nqV9o0wdKDT5pFVfu0+rd0wp+VUef8M3wJWntly9Q3/hpubjvBWn9RYqeSasNH1Rd7JalbTw9CEHnglzJfhXlUrYCBEXVWfLhZoql+/fgwbNozWrVsTFxfHt99+S2ZmJp9//vl1xzp58iR9+/Zl2LBhlgQDrq1pTW5uLlOmTCEsLAxXV1ccHR05ePDgZXcyWrdubfl/o0aXrpS0atXqssfKG9v8nfI7GX8nMjKywucHDx6kU6dOFe4+xMTEkJuby4kTJ4iIiKBnz560atWKYcOGsXjxYsv0Kzc3NxISEoiLiyM+Pp4FCxaQnl57qzX1SLifiN79a3oYooqimg+wKsEAKAo/VmMJBsAZc5cqJxhGpThXR7p9l8vOqXpDvl9Kd2OwYvpN+kXrptU1PGGHg711jSDOn1fY2nS2KkZd0y3zUWIc61AZtCvQAS+GNJUEQ9yUJMm4Rq6urgQHB5OSknJd+506dYru3bvTuXNn3n777et+3SlTprBixQqee+45fvjhB5KSkmjVqtVlVar+PO+3/ES/ssfKG9v8HbP56hVVHByur0GWwWBg3bp1rF69mhYtWvDqq68SEhLC0aOX6tgvWbKEbdu20blzZz777DOCg4M1qa1dXXqO+xfh3fvU9DDEdXJydMf+jPUlI3Ob1uz35gmbNlXe16NMT6kVHc5rwrmsqp+kF1OEfcOq/6k7fDwPrqHnwZXoy3QEuwdUeX/LOI74XX2jekSH4u78qXjb1u3TlOeCmzDKx72mhyFEjajbP703UG5uLqmpqZYOk9fi5MmTdOvWjcjISJYsWYL+L/0WwsLC2L59e4XH/npivWXLFhISEhgyZAitWrXCy8uLY8eOVfk4rkXr1q1Zv379de0TFhbGtm3bKqz52LJlC05OTpZa1DqdjpiYGJ566il2796Nra0tK1assGzftm1bpk+fztatWwkPD+fjjz/W5oCqgU6no899E2hxS4+aHoq4Dh1bDUVZ2elamYs5X1JzDfgAjir/Ku/rXlq71jpdi3PZttjoq76Autit6tOdCgtLwdO6OxEB2dafZKb9pjCZ2lgdpy4xl6TxsPFdbGrZ+rxr9UzzxtzdWBZ5i5uXJBlXMGXKFDZt2sSxY8fYunUrQ4YMwWAwMGLECODSuoekpCTLnY19+/aRlJTE+fOXKg6VJxi+vr7MmzePs2fPkpGRQUbGH2UjH3roIdasWcO8efM4cuQIr732GmvWrKkwjqCgIJYvX05SUhJ79uxh5MiR13Q3whrTp09nx44dPPDAA+zdu5dDhw7x5ptv8vvvv19xnwceeIDjx4/z4IMPcujQIb766itmzZrFww8/jF6vZ/v27Tz33HPs3LmTtLQ0li9fztmzZwkLC+Po0aNMnz6dbdu28dtvv7F27VqOHDlCWFhYtR6ntXR6PX3/NYmwLt1reijiGhiNtrjnVq3fwp8VRhyirCxfgxFV3ZFilyrv61hct+5iACilw91U9a/dWccTVr1+ppXVjtxO2+DmWvXF6+XST9X/DuB/5ZO3kvud99f0MK6LDnghuAn3NvWs6aHUaU8++SRt2rSp6WEIK0iScQUnTpxgxIgRhISEMHz4cNzd3fnxxx/x9Lz0S2PRokW0bdvWssbilltuoW3btnz99dcArFu3jpSUFNavX0+TJk3w9va2fJTr2LEjixcvZsGCBURERLB27Voef/zxCuN46aWXaNCgAZ07dyY+Pp64uDjatWtXrcceHBzM2rVr2bNnD9HR0XTq1ImvvvoKo9F4xX0aN27Mt99+y08//URERAT//Oc/GTdunOV4nJ2d+f777+nfvz/BwcE8/vjjzJ8/n379+mFvb8+hQ4e47bbbCA4O5r777mP8+PHcf//91XqcWtDp9fQb/zARvfvV9FDEVURHDELlWj/HO8vTukW81irV2ZNaUPX9bQrrViO+cs7Gql8RTjFYd5J67JwVb/j/hDhZP91p/34ddnY317QpgE6ZT9DL2fqvwY1g0MErob6MrUV3ML7//nvi4+Px8fFBp9Px5ZdfXrbNwYMHGThwIC4uLjg4OBAVFWV1RU0hpLpULbN06VImTZr0t9WlRO30/UdL2PH1spoehriCO9s/jjpnXXWeMrc8Uto/hKJqzd20kGHfh0fyq56AdzlVzI59da9LfWyndezJvL5pnOVMmLln+wuUVXUtig4Ge5tRViwCz3Mt45OCjVXev1x0dCF2pusvQFLXFeo9eMp2Mb/V4iTZqIPXwvwY3Mj6u1ZaWr16NVu2bCEyMpKhQ4eyYsUKBg8ebHk+NTWV6Ohoxo0bx4gRI3B2dubAgQN07NiRhg2tv/tbVU8++SRffvklSUlJNTYGYR25kyGERm4ZdTcxd4yu6WGISrQK62F1ggGQ32pvjSYYAKdsI6++0d8otLJaUk3Rl7pWed8C8rFvaKj6iysodreuYIBDpp7Gnte+pu9Kdu+2w2i8+SoV2ZX9zmTdQkz62rk+w1an452WAbUuwYBL1TJnz57NkCFDKn1+xowZ9O/fn7lz59K2bVsCAwMZOHBghQTj0KFDxMbGYjKZaNGiBd99912FuyLHjh1Dp9Px+eef06VLF8xmM1FRURw+fJgdO3bQvn17HB0d6devH2fPnrXEvZ5GvKmpqTRr1owJEyZcU88vUfMkybgJ9evXD0dHx0o/nnvuuZoeXp3WcegddE+4H+roQsX6KtS1w9U3ugaZzt9rEscax7Cud0BuHStfW66k2NWq/cvcrevefabE+ivoQXZNrI5RXAwlJTFWx6mLPPM3MsHxp5oexmXMeh3/bhVAX8+qr5WqKWVlZaxatYrg4GDi4uJo2LAhHTp0qDClqrS0lMGDB2Nvb8/27dt5++23mTFjRqXxZs2axeOPP87PP/+M0Whk5MiRPProoyxYsIAffviBlJQUnnjiCYDrasS7d+9eYmNjGTlyJK+99lqta9YrKnflSfaiRiQkJJCQkFCtr/HOO++Qn1/5wtU/dyQXVdOuXzy2ZjNr31qIquZF+uLqfJuEoz9t/dehtMl5cgsPajAi66QUW/czeq4ONeH7s/yLjlZdFjvvmI6Jqq9nOHIqDx8rz2t8Tzqi1+utLt6xJ6kBbdvZUVZWN7+W1mibNYdbXZayMrvqHe+15GDQ836rAGIa1I7xXK8zZ86Qm5vLnDlzmD17Ni+88AJr1qxh6NChbNy4ka5du7Ju3TpSU1NJTEy0NPN99tln6d2792XxpkyZQlxcHAATJ05kxIgRrF+/npiYS4nxuHHjWLp0KQDZ2dlkZWVx6623EhgYCFBpwZetW7dy6623MmPGDB555JHqeBtENZEk4ybUuHHjmh5CvRferRe2JhPfvjqP0pK6OT2lvmjnHwcnrY+TF/bz1TeqZkpnJLlAR1W7CZoVZOXXza7RmTkOYMWF4l9tfqGFFUlGZlYxukAnlBWLwG3z9QQE+JKafqzKMQCysxVGQyxFZVVbo1LX3Z49kcPmJRzOr9kpM85GPR+3DqS9y/X1japNyhPeQYMGMXnyZADatGnD1q1bWbRoEV27diU5OZmmTZtaEgyA6OjoSuNdS2Pg8qbAf27E27t3b3r16sXw4cMrFMhJS0ujd+/ePPvss0yaNEmbgxY3jEyXEqKaBHeMZdDUmRht7Wp6KDctV1dv7E5Xvb9COaVTXLBLtH5AVjpn6kiBFY30GpXV3SkGv5+3rldFUtmPl2qLWiHP3ta6AEBzrF+XAXDwYBOsPqA6ykZl8VDZCzha0STRWo1sjXzZNqhOJxgAHh4eGI1GWrRoUeHxsLCwKlWXupbGwH++k3e1Rryenp5ER0fzySefkJ2dfd3jETVLkgwhqlFAm0hu+7+nsDVbd4IkqqZji8FQYv3VzpKQUxQUWddrQQvptlFW7e9SXHdPSnMKjDjYOFZ5/2yViYO7dQnnyTzr17P4nDBjZ2f9hYdTp8owmdpbHaeualCwnYn2G2rktQPNdnzTLogWjtYVA6gNbG1tiYqKIjk5ucLjhw8fxs/v0p2/kJAQjh8/zunTpy3P79ixQ7Mx/F0jXrPZzMqVKzGZTMTFxZGTU/XGmuLGkySjnrtafWylFE888QTe3t6YzWZ69erFkSNHLM8fO3aMcePGERAQgNlsJjAwkFmzZlFUVPkf25SUFJycnHB1da3Go6pbmoSFM/yJ57B3ca3podxUbG3tcc3UptJLbrPasdj0mC7Iqv0drOx2XtPc7awsp+lhXa+FI8fzwMrGfIZiHUGe/lbFKHc8LVSTOHVVi+zXGOZy7oa+Zlsne75uF4Svue7coc7NzSUpKclSCvbo0aMkJSVZ7lRMnTqVzz77jMWLF5OSksJrr73GN998wwMPPABA7969CQwMZOzYsezdu5ctW7ZYemBZswD7WhvxOjg4sGrVKoxGI/369SM3N7fKryluLEky6rm8vDwiIiJ4/fXXK31+7ty5LFy4kEWLFrF9+3YcHByIi4ujoODSH+NDhw5RVlbGW2+9xYEDB3j55ZdZtGgR//d//3dZrOLiYkaMGEGXLl2q9ZjqokbNmjNy9jzcGjet6aHcNDpGDEblW19uVhlLOU+i9QPSQEqJdR2EDQV1O8lwNFjX4CzL6fTVN/obxcVlKA/rr143y9emE/ShQ2Cysy7xrOvisybS6gbdKO7h5sR/2gbiblu3lrPu3LmTtm3b0rZtWwAefvhh2rZta6nyNGTIEBYtWsTcuXNp1aoV77zzDsuWLSM2NhYAg8HAl19+SW5uLlFRUfzjH/+wVJcymUxVHtf1NOJ1dHRk9erVKKUYMGAAeXl5VX5dceNIM76biE6nq9CERymFj48PjzzyCFOmTAEgKyuLRo0asXTpUu68885K47z44ou8+eab/PrrrxUenzZtGqdOnaJnz56XNRQsLS1l6tSpvPfeexgMBsaNG8fp06fJysqy3F1Zs2YNs2fPZv/+/RgMBjp16sSCBQssVSeOHTtGQEAAn332Ga+++io7d+4kPDycjz76iKysLP71r39x6NAhunTpwvvvv2/pzl6bFOTl8s1Lz5O2f09ND6V+0+m4s+0M1AXrFzkXtjvMMY+aL+2s0PEv43JySqueKMQcL2LXL2evvmEt1aVTIkmZa6q8fy/DIJpv7mHdGMLdcDth3ZQNpVN87r6DnFzrp35ERhZj7/Cp1XHqsmy71jxW9hRZGpQZvpJR3m68ENwUYy3t03GjbdmyhdjYWFJSUix/o4X4K7mTcRM7evQoGRkZ9OrVy/KYi4sLHTp0YNu2bVfcLysr67JStxs2bOCLL7644h2T+fPns3TpUt577z02b97M+fPnWbFiRYVt8vLyePjhh9m5cyfr169Hr9czZMiQy8o9Xk8d7trG5ODI0OlPEd798tJ/Qjttw/tqkmAAZPtc+WfhRsqya2tVggGQn1c3K0tZlLhatfteZf20t6O/V17++3rolI6QBv5WxwFISrLBxqbmujLXBs6Fe3nY9HW1LYOfFuDF/FDfmzrBWLFiBevWrePYsWN899133HfffcTExEiCIf5W3brnJzSVkZEB/FFmrlyjRo0sz/1VSkoKr776KvPmzbM8du7cORISEvjwww9xdnaudL9XXnmF6dOnM3ToUAAWLVrEf//73wrb3HbbbRU+f++99/D09OSXX34hPDzc8vj11OGujQxGI3H/nIhrI282f/YByM1EzQU5tIVc66dKlTkUklm8RYMRWS/drhNYue44u4424itXXGhds7MzZemYXY3kZ1a9rPSJjHzaN7FH5VqXsAVkurHTqgiXlJZCYWEMev2Kq29cjzXPWcJdru34IMtHs5g2Oh3zQppyh7f0j8rJyWHatGmkpaXh4eFBr169mD9/fk0PS9RycidDXLOTJ0/St29fhg0bxr333mt5/N5772XkyJHccsstle6XlZVFeno6HTr80XXZaDTSvn3FyihHjhxhxIgRNGvWDGdnZ/z9/QEuK6N3PXW4a7MOQ4Zz68RHMdpYXxZT/KFZQCS609YnGAAFbX6hTNWOE/M0fYjVMX7Ptm7hc03Lzat6dalyhobW380palD1eejlXM4aaehm3RqTckm7nTDopYJdXNZkohy0mTLlZmPgs4hASTD+Z8yYMRw+fJiCggJOnDjB0qVLcXd3r+lhiVpOkoybWHljnT+XpSv//M9NdwBOnTpF9+7d6dy5M2+//XaF5zZs2MC8efMwGo0YjUbGjRtHVlYWRqOR995775rHEx8fz/nz51m8eDHbt29n+/btAJdVsrreOty1WUinLgx74lnMztZdoRV/aONj3Zz7P8ty26xZLGullDa6+kZ/o4GCgjpeXepCtvU9CXKcrV+Tclqj9zHIwVeTOHl5Cp1eCm7oVAn3Fj6Gp5UVwEIdTKyODKZzA+uTWiFuZpJk3MQCAgLw8vJi/fo/usZmZ2ezfft2OnXqZHns5MmTdOvWjcjISJYsWYJeX/HbZtu2bZbyeElJSTz99NM4OTmRlJTEkCFDcHFxwdvb25I0AJSUlLBr1y7L5+fOnSM5OZnHH3+cnj17EhYWxoULF6rx6GsPn+AwRj07XypPacDTwx+bDIMmsco8c8kurPku3+WSC6274+VRUvfnk589b0Jn5cz743ZHrr7RVRw+kadJHzz/05VPL62K/fsaoUOb7/26zKE4lYdtP67yOxHn4czKdkH41aEStULUVpJk1HN/Vx9bp9MxadIkZs+ezddff82+ffsYM2YMPj4+lgpU5QmGr68v8+bN4+zZs2RkZFRYsxEWFkZ4eLjlo3Hjxuj1esLDw2nQ4FKfgokTJzJnzhy+/PJLDh06xAMPPFCh+lSDBg1wd3fn7bffJiUlhQ0bNvDwww/fqLepxrk09GLEMy/iG9766huLK4oOuRWs6Ij9Zxdb7QZqx3qZXNtQzll59dy56ssQao2iUj0N7KybvrJfg5UQObnF6DQoZWvONuDbqInVcQDOnlXY2nW4+oY3Ad/cLxjnknrd+z3k25Cl4QE4GiVZE0ILkmTUc1erj/3oo4/y4IMPct999xEVFUVubi5r1qyx1L5et24dKSkprF+/niZNmuDt7W35uB6PPPIIo0ePZuzYsXTq1AknJyeGDBlieV6v1/Ppp5+ya9cuwsPDmTx5Mi+++KJG70LdcKny1NO0iRtQ00Opk+ztnXE6p92V4QsOiZrFsla6KcbqGOaiuj1VqpyrlQ350sp+xeRkfc2THJM2dVOCDI01iQNw9Fep9FPulsxpdHG6tvU3Jr2ON1r48X+BPlY1lxNCVCR9MkSNSUhIIDMz87Iu5AIO/rCRtYtfo6SwsKaHUmf06JiA52nr1i2UKwk4Q2rQo5rE0sJ61/m8l+VvVYwup0vZkVR51bi6pFOnlezPtG6tzNQzC8lJte5PX4ifE6FZ1i+kLzaV8ZHxB0pKtLnV1LvPzxQUHNAkVl1XYGzCTMOrnPqbBNvL1oYlrQJo6ywL54XQmtzJEKIWCuvSnZGz59PAW7tyjPWZXm+gYb52V4TzgnddfaMb6Ney67tzWJmSi3W8R8b/2Cjrq/3kuZy3OkbKiVx0ttb/CbUp0BPYyM/qOOXOnI7QLFZdZyo5wWTju9hc4e5EWyd71rQPlgRDiGoiSYYQtZSnrz+jnnuZ5lEda3ootV771reisrW5Eqx0ZZw3btQkllaSC62f/59X1xvx/U9ZsavVMU6Zf7U6RmmpotRDm5PTwGJt7sAB7N1rwNZWu4S7rvPJW8k/nfde9vhYH3e+atccLzubSvYSQmhBkgxRY5YuXSpTpa7Czt6BgY/MoMvIBHR6+XG9kgDb8KtvdI2Kw49TVFx7+qzkG31J12A9RWZO/Zh6V1jgZHWMA5q0wYPzGs3f9zppwmy2PpGES709L17sdPUNbyIdM5+kt/OlTu1mvZ7Xwnx5IaQptvI7VYhqJT9hQtRyOp2O6EG3c/uMZ7B3ca3p4dQ6oUExcFa70km5vtuvvtENlGG2vv+BUSnO1fFu3+Wyc6zvXXCk7BdszdZXEPr1TL7VMQD0pTqCPQI0iQWw+2d7DAbtiiDUByNzJtHN1ci3kUHc7iUN9oS4ESTJEKKO8A2P4K45r+AdZH3n5/okvGGsZrGUXQnny77XLJ4Wjhusv0vjUaanVKPSvjXtXJY2U5TsNJihlH42H52zdf1LyjXL1a57ckGBAiXN+f6siUcHPmzlT5ijNneM6rOlS5fi6upa08MQ9YAkGULUIU5uHtzx5Au0ibu1podSK3h7BWFI1y5eYcRhSktztQuogaPK+j4K7qX1pyznuWxbbPTWz6MvcM20fjBAoYs2TdvcMmxwdXbRJBbA3r3u6HSy3kCvtyMk5BlahS/EaKx9Hby///574uPj8fG5VD63sinEBw8eZODAgbi4uODg4EBUVBRpaWk3frBCXCdJMoSoYwxGIz3v+Sf9H5qKrfnmrooS1XyApv3yshtt1S6YRpILrT8xcrSykV9topQOd5N1vTIAMuyPWT8YIKOwVJM4OqUjxMVfk1gA588rbG06axavLrK3D6B95DKaNB5Z00O5ory8PCIiInj99dcrfT41NZXY2FhCQ0NJTExk7969zJw509LLSojaTJIMIeqosJiujJm7EJ/gsJoeSo1wcnTH/ox2Ux/KXPLJLKpd6zEK9R6kFVqfINgW1o+pUuWcbTytjnFIn2T9QIDDJ/I0+0vqf66BNoH+5/AR7Urj1jVejQYR1f4rnJxq9+/Hfv36MXv27ArNaf9sxowZ9O/fn7lz59K2bVsCAwMZOHAgDRv+kWjrdDreeustbr31Vuzt7QkLC2Pbtm2kpKTQrVs3HBwc6Ny5M6mpf3RB37NnD927d8fJyQlnZ2ciIyPZubPygghnz56lffv2DBkyhELp3SSugyQZQtRhLg29uOOpOXS6fcRNV32qY6uhKA2v0Be03o9StavM61n7WzS5UaMKtFsYXxuYdNavXzhQuhujBn0u8i6WgEalbJ3OG/Dy0K6cbdpvCpOpjWbx6gK93kxo6HO0bPkSRqNDTQ/HKmVlZaxatYrg4GDi4uJo2LAhHTp0qHRK1TPPPMOYMWNISkoiNDSUkSNHcv/99zN9+nR27tyJUooJEyZYth81ahRNmjRhx44d7Nq1i8ceewwbm8un1x0/fpwuXboQHh7Of/7zH+zstJkeKG4ON9dZiRD1kF5voPOwUdwxaw7OntqdoNRmRqMt7rnWT5n5s0zX2rXgG+C4UZvGakUX61eSYSiz/op/GaWYG2qzViXHzvpKVeWCTU01iwVw6pR25Z1rOxeX9nSIXkVjnztqeiiaOHPmDLm5ucyZM4e+ffuydu1ahgwZwtChQ9m0aVOFbe+++26GDx9OcHAw06ZN49ixY4waNYq4uDjCwsKYOHEiiYmJlu3T0tLo1asXoaGhBAUFMWzYMCIiKv6+SU5OJiYmhri4OJYsWYLBoN33ubg5SJIhRD3ROLQFY+a+Sosu3Wt6KNUuOmIQKle7E+dS70xyCvdpFk8rR5U2011ycupH+dpyJYXaLJAucsvRJE5apnZTSHzTndBp1H8D4MB+sLPz1yxebaTX2xHU/P+IbPcJ9vb1Z4pYWdmlO7WDBg1i8uTJtGnThscee4xbb72VRYsWVdi2devWlv83anTpYlOrVq0qPFZQUEB2djYADz/8MP/4xz/o1asXc+bMqTCVCiA/P58uXbowdOhQFixYoOn3pLh5SJIhRD1iZ29PvwmPEP/wdExO9bdOvq9O2zK+F1vu1jSeVo4Ua/M1PF9PGvGVy8+3viEfwFmH45rEST15EZ1GdzNMeXr8G2l5N0NHdla0hvFqF2fnCKKjvsHXdxw6Xf06pfHw8MBoNNKiRYsKj4eFhV1WXerPU53KE4LKHitPXJ588kkOHDjAgAED2LBhAy1atGDFihWW7e3s7OjVqxcrV67k5MmT2h6YuGnUr59IIQQAwR1iSJj3Os3aRdX0UDTXKqwH6py2aycumBI1jaeFEp0TqfnWr8gwK8jKr11rTayVmaPNGogjBm3uXqkyRYmndkUIgnQ+msUC2L3bDqOxfjWg0+lsCWw2hfaRX+DgEFjTw6kWtra2REVFkZycXOHxw4cP4+dn/R2b4OBgJk+ezNq1axk6dChLliyxPKfX6/nggw+IjIyke/funDp1yurXEzcfSTKEqKccXBswZNoset83ARtT/WlAFdqgg6bxioPSyS/6TdOYWjhr3wUtiqM2Kqt/0xx+P69NkrG3dAd6ozbvz+8aVgn2OWlf6SLcqiouhtIS7ZpW1jQnp5ZER32Jv/+/0Onq9jqB3NxckpKSSEpKAuDo0aMkJSVZ7lRMnTqVzz77jMWLF5OSksJrr73GN998wwMPPFDl18zPz2fChAkkJiby22+/sWXLFnbs2EFYWMVKXAaDgY8++oiIiAh69OhBRkZGlV9T3JwkyRCinmvdsy9jX3wN/zaRNT0Uq/k2CUefrm3Ph7zAHZrG08pJm7aaxHEprn9JRk6BEQcb6/uHFFKAvac2J6mpGRc1iQNgLNLRvJG/ZvEAkpJc0evrdmUgnc6GgICJtI9cjqOjtlMma8rOnTtp27Ytbdte+nl/+OGHadu2LU888QQAQ4YMYdGiRcydO5dWrVrxzjvvsGzZMmJjq540GgwGzp07x5gxYwgODmb48OH069ePp5566rJtjUYjn3zyCS1btqRHjx6cOXOmyq8rbj46pVT9KqAuhLiig5sTSXz/HS5mZdb0UKpkcOwj2J00ahZPGco4GjeF4pLzmsXUyn9c32FFlvVVlDrlwO6t9W9OdYuotzme+6vVcSbnzCV/vzYn34P9HVEaLQLPaFrIyrObNYlVrmfPUxQVr9c05o3i4BBMyxbzcHJqWdNDEUJcI7mTIcRNJCy2GwkvvUnLrr1qeijXzdXVG7vT2k0hAShudbRWJhgAR4q1acxmLKg/3b7/zMlofUM+gHMO2iVg+U62msVqeNIWB3tt+zwcPNgEqFt3tnQ6A35+/yI66itJMISoYyTJEOImY3Z0ou8Dkxg281lcvbxrejjXrGPLwVCi7Y3X7CY/ahpPK2U6W47ka3MyWJZfv3pklLNV2iRhqTYHNIkDkJ6vxSqaS/RlOkLcAzSLB3DqVBkmU90pBuHgEERku89pHjgFvV67BE4IcWNIkiHETco3PIKxL75O9OBh6A3aTUGqDra29rhe0OakslyZfREXSn7QNKZWzpk6U6jRTNaCi/WrslQ5Xak23w97yn5CqxYAh4/ngkG7OwUB2dpXhEr7LVjzmFozGOxpHjiN6KhvcHFpU9PDEUJUkSQZQtzEjLa2dBkxlrvmvIJ389q7kLJjxGCUhleJAQojDlFWVqBpTK2ctNXuanNmPeuRUa6oUJseIrkqG3tPbabhFRSWgoalbBuctsHdVdtEIzlZh8kuSNOYWvL0jKNjh//i53cfer220yOFEDeWJBlCCDx9/RnxzIv0uPt+bM21rNytTodPaTPNw2Z5aLuoVktpOu3q/p+rp0lGbq711aUsPPI1C5Vlo21J1RAn7TtYnz9f+yrNmc1+tIl4j9at3sBk0rZPiBCiZkiSIYQAQKfX07ZvPAkvvUmLLt3RbA6JldqG90Vd0HbKT6lbHlmFOzWNqaUjJR6axGlQBgXF9XPh93mNGvIBXHBM1yzWsfPaJnV+Z101jQeQlGSDjU1DzeNWhV5vR0DARDp2WI27e9eaHo4QQkOSZAghKnBy86DfhEcYNXs+PsFhV9+hmgU5aNMv4s8KWu8FaufJdxkGkgu0+dXsWVo7EsXq8Pt5MzqNKiUds02++kbX6LdTeejstVvj5JCpp0lDba/sl5ZCYWGMpjGrwtOzLx07rKVZwEN1voeHEOJykmQIISrl1TyYEc+8yICJj+LsWTNXPZsFRKI7re1aDIALTps0j6mVLFMkeaXaLPp2qp+FpQAoKtXTwE6b9QpJSrsqY0pBsZu2Uw6DbBprGg8gabcTBr12d4Ouh6NDCG3bfkjrVq9jNjepkTEIIaqfJBlCiL8V2vkW7n5pEbF3jsHGdGPXa7Tx6aF5zJKm58krPKR5XK2csu2gWSxTYe28W6MVV1ttkt/zZWexd9Pu7sPZUm3f96anHNHrtf1znZen0Om7aBrzaoxGV0KCnyI6+hvcGnS6oa8thLjxJMkQQlyV0daWDkOGM27B24R3741OV/2/Ojw9/LHJ0HYRLcDFsNq7FgMgTa9dlS99PU8yHAzarF0B0Htqt+4nJf2iZrEAbPP1NPPSfgH4/n2N0KH9z9hf6XRGmjQeTedO62nS5C50uup/TSFEzZMkQwgNZGRk0Lt3bxwcHHB1db3q9v7+/rzyyivVPi6tObg2IO6fExn1/Ms0aRFera8VHRIPZdo231M6xXnbRE1jai2lVLupacX1tEdGOaNGDfkAsp3OaBbrfGYROjeTZvEAmpdp3zjz7FmFrZ12d84up8er0WA6dlhLSMiT2Ni4VuNrCSFqG0kyhLiK559/nqioKJycnGjYsCGDBw8mObniQtGXX36Z9PR0kpKSOHz4cA2N9MZpFBDIHbPmMPCR/6OBt/blJu3tnXE656R53JLQExQWndI8rpYOFWjXG+BiXv1OMsqKXTWL9Zuddou/AS46atvjweuECTs77RdHH/1Vu3LJf+bpGUeH6FW0bDkfe3vt78IIIWo/STKEuIpNmzYxfvx4fvzxR9atW0dxcTF9+vQhLy/Psk1qaiqRkZEEBQXRsGHtKA15IwRFdybhpTfp+8BkXBtpd6W1Y+uhqELtF3znBPykeUwtZduFk1mi3RSnC9n1s0dGuYJ87RLRfezQLBbAyVxtV90bS3QEewZoGhMgNRVMppaaxXN3u4Wo9l/SutUbODrW/u7iQojqI0mGEFexZs0aEhISaNmyJRERESxdupS0tDR27doFXJr6tGzZMt5//310Oh0JCQkopXjyySfx9fXFzs4OHx8fHnrooSu+xjvvvIOrqyvr16+/UYelGb3eQMuuPbn75UX0uf8hnD0bWR2vYb721XTKbEq4oGpvVSmAdFvtFsMaleJcbv1OMnI0bMh3qiwNk7N2i7+PHM8Fo7Z/Ypvle2oar9yZ0xFWx3B17UBku89o02YJzs6tNBiVEKKu0+43qhA3iaysLADc3C6Vz9yxYwdjxozB2dmZBQsWYDabWbZsGS+//DKffvopLVu2JCMjgz179lQab+7cucydO5e1a9cSHR19w45Da3qDgVY9+tDilh7s37iO7Ss+J+fc2euO0751PCpL+9qrRa1TKSnN1jyultIMLTSL5VGmJ1PbJS21zu+Z9uCgXTybhiUUaPQtUlRchvI0o0vPu/rG18jjlA3OHs5k52j7fbx3r4EePRtTVHTyuvd1dmpNs8BHcHeL1XRMQoi6T5IMIa5DWVkZkyZNIiYmhvDwSwufPT09sbOzw2w24+XlBUBaWhpeXl706tULGxsbfH19K00gpk2bxgcffMCmTZto2VK7KQs1yWA0EtG7H+Hde7Fv/Vq2f/k5uefPXfP+AbYtAe2TjByfbVDLL+z/WualWSz3Uh2ZmkWrnc7n2NJAb0NxmTZrT3JdzgHumsQCyDTo0W5pOuiUjmBXP3bm7NMw6qXeHhfzOmK0WXbN+zg6hNCs2WQ8PXtrOhYhRP0h06WEuA7jx49n//79fPrpp3+73bBhw8jPz6dZs2bce++9rFixgpKSiifO8+fPZ/HixWzevLneJBh/ZjDa0CZuAOMWvkP3hPtwcL366VZoUAyc1T7BKHMqJLNoq+ZxtXaoQLuKRI7F9bt8LYBSOtxN2q2BOmmXqlksgKPnCjSNB9DsgjYNCP9q924HDAbnq25nNvvTssXLREevlARDCPG3JMkQ4hpNmDCBlStXsnHjRpo0+fsutU2bNiU5OZk33ngDs9nMAw88wC233EJx8R9XXLt06UJpaSmff/55dQ+9RhltbGjXbyDjXn2HrqPH4dDgyidJ4Q2rZ8pFYcQBylRRtcTWSp5NIGc0TAxsC+v5XKn/cbbRbp3Cfp22PVSOp19E56BtlSnn3400dNN+bUZBgQJ15eZ8jo5htGzxEh07/Bcvr4E3pFeOEKJuk98SQlyFUooJEyawYsUKNmzYQEDAtVV4MZvNxMfHs3DhQhITE9m2bRv79v0xzSE6OprVq1fz3HPPMW/evOoafq1hY2tH+1uHcO9r79Lnnw/h1rhphed9vIMxpFfPa2c2+KF6AmvotClG03iqQPs7QrWRSafd9KZfy5Kxtde2UVyRxv0yAIIdml59oyrYu9cdna5iUtSgQWfaRCyhQ/RKvLwGodfLLGshxLWR3xZCXMX48eP5+OOP+eqrr3ByciIjIwMAFxcXzGZzpfssXbqU0tJSOnTogL29PR9++CFmsxk/v4r14jt37sy3335Lv379MBqNTJo0qboPp8YZjDa06t6H8G69+fXnHez8ZjknDu6nfbP+UA0tLEobZpNdmKR9YI0dN2g7Za6onvfIKGco1XLVA9g1UhQd1S7emeIytK6V5p/hwhadDqW0vVt1/rzC1qYzRcWb8fTsi5/ffTg7VW/TTSFE/SVJhhBX8eabbwLQrVu3Co8vWbKEhISESvdxdXVlzpw5PPzww5SWltKqVSu++eYb3N0vv+oaGxvLqlWr6N+/PwaDgQcffFDrQ6iVdDodgZHRBEZGk34kGZtdZRRk/A4aLyXID08Cav/UodSyv5+Cd71ybpIko6TIRdN4+a4XAO1iHjmZR2Mjmn4LmnL0+Po35reME9oFBWxtbdHpBtOp41OYzdVzt0QIcfPQKa0vhQghRBWVZBaQu/UUeT9loAq0acZ3PP5pLhb+qkms6vSYaQXHC7XLsBp+f5rs/Po/ZapNcAaphlc0i3eb7m48t7bRLB7A4ObOqN/zNY15rFku353arkksFxcXOnToQLt27TCZtJ/eJYS4OcmdDCFErWF0NeHavxnOPf24uDOD3B/TKTlb9ZOzkman60SCUWhopGmCYVbcFAkGQFaug5Y3HjikT8KTNtoFBHLNRi3beQDQ+KQDRhvjZVXrroevry8dOnQgLCwMvV6WaAohtCW/VYQQtY7ezoBjTGO8HmmPxz9aYW7lAXrddcfJDda2WlB1yTB31TReo9Lrf6/qqrPnK18XVVW/lCRhY9L2T+OJXO2nrtkU6ghs5H/d+9na2hIVFcW//vUv7rnnHlq2bCkJxjU6dOgQHTt2xGQy0aZNm6tur9Pp+PLLL6t9XELUVvKbRQhRq5mau+I+Kgzvx6Jx7u2HwdXumvZTujIuGBKrdWxaOWlsrWk815KbJ8nILTDiaOOoWTylU5gaavv+HTmei85W+z+3zUsaXfO2Xl5e3HrrrTzyyCMMGDCARo2ufd/a7vvvvyc+Ph4fH58rntgfPHiQgQMH4uLigoODA1FRUaSlpV3X68yaNQsHBweSk5NZv369RqMXov6S6VJCiDrB4GyLc09fnLo3peDIBfJ+yqDg4Hkoq3xZWXF4GkXFZ2/wKKvmV+WraTzzTdCI788a2DUktzhXs3iFDbIhTbsJTqUlilIPM/pTeZrFBGh0wg6zs5n8/MqnFNra2tKqVSsiIyPx8fHR9LVrk7y8PCIiIrjnnnsYOnToZc+npqYSGxvLuHHjeOqpp3B2dubAgQPXvf4kNTWVAQMGXFYlUAhRObmTIYSoU3R6HeYQNzxGt8B7ejTOcf4YPS+fMpPjq82i2BvhSJF2V+IBjAU3V5LhZNS2Od0Z+980jQdwoRqa1+lLdQR7XN63p2nTpgwcOJApU6ZYrvDXZ/369WP27NkMGTKk0udnzJhB//79mTt3Lm3btiUwMJCBAwfSsOEf3eIPHTpEbGwsJpOJFi1a8N1331W4K6LT6di1axdPP/00Op2OJ598kqKiIiZMmIC3tzcmkwk/Pz+ef/75K45z1qxZeHt7s3fvXk2PX4jaSu5kCCHqLIOTLc7dm+LcvSlFx3PI+/k0+XvOUlqaz4Wy72t6eNekWOfCrwXaFvkru0kWfZezVdr2yjhs2Es0LTSN+evZfLRrG/iHZrnu7AEaNGhA69atiYiIwM3NrRpeqW4qKytj1apVPProo8TFxbF7924CAgKYPn06gwcPBqC0tJTBgwfj6+vL9u3bycnJ4ZFHHqkQJz09nV69etG3b1+mTJmCo6MjCxcu5Ouvv+bzzz/H19eX48ePc/z48cvGoJTioYceYuXKlfzwww80b978Rhy6EDVOkgwhRL1g29QJ26ZOuN7ajNy0X3HP68rvv2+grKygpof2t87a30LZRW1j5t8kPTIsNG7It690F52MIygt0S75O3UmH52vAyq7SLOYensjvn7ejBsSTFNf6WtRmTNnzpCbm8ucOXOYPXs2L7zwAmvWrGHo0KFs3LiRrl27sm7dOlJTU0lMTMTLywuAZ599lt69e1vieHl5YTQacXR0tGyTlpZGUFAQsbGx6HS6SqdRlZSUcNddd7F79242b95M48Zat2YUovaSJEMIUa/oDHqcAprTilcpKcnl7Nn/knH6Gy5c2IpS2vTe0NJJm7aax8zO1e5Eti4oLtS2IV8xRdg3MpBzUts7QoUudthamWTobPWYWrhj36YhpiBXdAY92qZY9UtZ2aWpg4MGDWLy5MkAtGnThq1bt7Jo0SK6du1KcnIyTZs2tSQPANHR0VeNnZCQQO/evQkJCaFv377ceuut9OnTp8I2kydPxs7Ojh9//BEPDw8Nj0yI2k/WZAgh6i2j0RFv79to22YpsTFbCQ15Fnf3ruh0tjU9NIuj+Gse82x27b57o7WcXK27UECxm3YLyctlVLEXis7WgLm1B24jQ/F+vCPud4ZiDnVDZ5A/4Vfj4eGB0WikRYuK09/CwsKuu7rUX7Vr146jR4/yzDPPkJ+fz/Dhw7n99tsrbNO7d29OnjzJf//7X6teS4i6SO5kCCFuCra2HjRufCeNG99JSUkOv59L5OzZtZw7t4nSUm2r/lyPw0XaXoV3K9NxseTmWvh9IdsBtF37ze8OJ3BE27nzh0/k4mung2uYhaW3N2IKdcMc7oEpqAE6G0koqqK8L0hycnKFxw8fPmyZ3hQSEsLx48c5ffq0pbTvjh07rim+s7Mzd9xxB3fccQe33347ffv25fz585Z1MQMHDiQ+Pp6RI0diMBi48847NTw6IWo3STKEEDcdo9EJr0bxeDWKp6yskPPnt3L27FrO/v4dxcXnb9g4SnVmUgp0XNNZ5zXyKAXrrs/WPb9fMGFuqKdMaZdcpRoPEKFxkpF3sQSaOMOZykvOGhrYYW7hjqmFO3b+LugMN0+/E2vk5uaSkpJi+fzo0aMkJSXh5uaGr68vU6dO5Y477uCWW26he/furFmzhm+++YbExETg0t2GwMBAxo4dy9y5c8nJyeHxxx8HLlWVupKXXnoJb29v2rZti16v54svvsDLywtXV9cK2w0ZMoQPPviA0aNHYzQaL7vbIUR9JUmGEOKmptfb4eHRHQ+P7oSq2WRm7uL3cxs4f+57cvOSrx7ACudMMRRrXFnK+eYqLAVAUakeHzs3zhX8rlnMPWXbaasfTNkV+rBUVY6dEafyT/Q6bH2dMAU3wBTmjq239tO+bgY7d+6ke/fuls8ffvhhAMaOHcvSpUsZMmQIixYt4vnnn+ehhx4iJCSEZcuWERsbC4DBYODLL7/kH//4B1FRUTRr1owXX3yR+Pj4v+2l4eTkxNy5czly5AgGg4GoqCi+/fbbSjuo33777ZSVlTF69Gj0en2l/TyEqG90Siltf4MKIUQ9UVCYwflzP3Du3CbOX9hKSUmWpvF3uzzGvOwoTWPGZCp2bT+lacy6ICL63/yac1DTmFN+fZ3c09pmbS3DGhDRxBG74AaYglzRm+RaX220ZcsWYmNjSUlJITAwsKaHI0SdJL/dhBDiCkx2Xvj4DMPHZxhKlZGTs5/z5zdz/vwWsrJ/pqzMukpBv+maaTTSP+iruLi4rnMwaF+5p8wjH07bWBXD1mykcbArTcPcaBrmhmsje41GJ7S0YsUKHB0dCQoKIiUlhYkTJxITEyMJhhBWkCRDCCGugU6nx9m5Nc7OrfH3f4DS0nyysn4mM2sXWZk7ycpOuu4F5EdKtG+aVnzxJuuR8T9GjRvyAVxwTMcO3+vax87eiHdzV7ybu+AT5EpDP2f0ellbUdvl5OQwbdo00tLS8PDwoFevXsyfP7+mhyVEnSbTpYQQQgNKlZKT8wuZWTvJytxFZtZOiorOXnl7nZF79Z+Tr/Gc/9b7cjh8KlvTmHVBbOQv7Ln4vqYxu+r7Ebal799u4+RmwivQBe9AF7ybu+Le2OFvFwsLIcTNQu5kCCGEBnQ6A87OrXB2bgVN7wbg4sXfyMraSWbWz+Tk7CM39zBKXbrTcMHUgXyNF30DXMgt1DxmXVCY76x5zCT1I2G6vpbiXzZ2BjyaOtLQzxmvZpcSCwdXO81fVwgh6gNJMoQQoprY2/thb++Ht/dtAJSVFZGbe4jsnP0cKHAk4oKZ5LwCCjS6m2FUinM5N2eSkZ3rABoWZ3KycaK5WzNa9/OhYSNXPH2daNDIHp1MfRJCiGsi06WEEKIGlSpFysVCDuTmsz8nn0N5+Ry5WMiJgqLr7p7hXabjwroT1TLO2s7duYiixk9c935GvRFfJ1+auTQjqEEQIW4hhLqF0tixcTWMUgghbh5yJ0MIIWqQQacjxMFEiIOJoY3+WLx8sbSMlIsFHMkrIOViIan5hfx6sZBf8wu5WFp5BSm3ErhwowZey5zPscFNb0vRFSp+udq54uvsi7+zP37OfgS4BBDoEkhT56bY6K2rICWEEOJykmQIIUQtZG/Q09rJntZOl5c8zSgs5mh+IccLijjxv4/jBUU4nSvipI2eguKbr4yto50NER7tMdkY8HH0ufThcOlfP2c/XOxcanqIQghxU5HpUkIIUc9kXSwmI7uAjOwCTmcVWP5/JruA7PwSsguKySkoIaegmNzCEjQucKUJG4MORzsjTiYbnExGnExGXMw2eDmbaORiwsvZhNf//m3kbMLBTq6ZCSFEbSJJhhCiyg4dOkRCQgJJSUmEhoaSlJT0t9vrdDpWrFjB4MGDb8j4xLXJKyyxJB3ZBSXkFl76f/ljl/4tIa+whNIyRZlSlCooUwql1P8eA6UUOp0Og06HXs8f/9eBXq/DRq/H0WT8X/JgxNmSQNjg+L9Eovxxk42hpt8WoYGMjAxGjx7N1q1bsbGxITMz82+39/f3Z9KkSUyaNOmGjE8IUX3k0o8QN6Hnn3+e5cuXc+jQIcxmM507d+aFF14gJCTkuuLMmjULBwcHkpOTcXR0rKbRiurmYGfEwc6Il4uppociapHvv/+eF198kV27dpGenl7pBYKDBw8ybdo0Nm3aRElJCS1atGDZsmX4+l5qYvjyyy+Tnp5OUlISLi4yZU2Im4m+pgcghLjxNm3axPjx4/nxxx9Zt24dxcXF9OnTh7y86+tYnZqaSmxsLH5+fri7u1fTaIUQNSEvL4+IiAhef/31Sp8v//kPDQ0lMTGRvXv3MnPmTEwmU4VtIiMjCQoKomHDhjdq6EKIWkCSDCFuQmvWrCEhIYGWLVsSERHB0qVLSUtLY9euXZZtDh06RGxsLCaTiRYtWvDdd9+h0+n48ssvgUtTYXbt2sXTTz+NTqfjySefpKioiAkTJuDt7Y3JZMLPz4/nn3/+iuOYNWsW3t7e7N27t7oPWQhxnfr168fs2bMZMmRIpc/PmDGD/v37M3fuXNq2bUtgYCADBw60JBP+/v4sW7aM999/H51OR0JCAkopnnzySXx9fbGzs8PHx4eHHnroimN45513cHV1Zf369dVyjEKI6iPTpYQQZGVlAeDm5gZAaWkpgwcPxtfXl+3bt5OTk8MjjzxSYZ/09HR69epF3759mTJlCo6OjixcuJCvv/6azz//HF9fX44fP87x48cvez2lFA899BArV67khx9+oHnz5hWeX7p0KZMmTbrq/G0hRM0oKytj1apVPProo8TFxbF7924CAgKYPn26ZUrVjh07GDNmDM7OzixYsACz2cyyZct4+eWX+fTTT2nZsiUZGRns2bOn0teYO3cuc+fOZe3atURHR9/AoxNCaEGSDCFucmVlZUyaNImYmBjCw8MBWLduHampqSQmJrJkyRKWL1/OgQMHgEvrOcLCwggJCcFoNOLo6IiXlxcAaWlpBAUFERsbi06nw8/P77LXKykp4a677mL37t1s3ryZxo2l6ZkQdc2ZM2fIzc1lzpw5zJ49mxdeeIE1a9YwdOhQNm7cSNeuXfH09MTOzg6z2Vzhd4SXlxe9evXCxsYGX1/fShOIadOm8cEHH7Bp0yZatmx5ow9PCKEBSTKEuMmNHz+e/fv3s3nzZstjycnJNG3aFC8vL8v6jbCwMDp27EhpaSl9+vThl19+uSxWQkICvXv3JiQkhL59+3LrrbfSp0+fCttMnjwZOzs7fvzxRzw8PKr9+IQQ2isru9SLZdCgQUyePBmANm3asHXrVhYtWkTXrl0r3W/YsGG88sorNGvWjL59+9K/f3/i4+MxGv84HZk/fz55eXns3LmTZs2aVf/BCCGqhazJEOImNmHCBFauXMnGjRtp0qRJpduUr98ICwsD4MEHH7xs/YZOp+Ott97iiSeeID8/n7y8PI4dO8Ztt92Gp6cnDg4OdO7cGYDevXtz8uRJ3n77bbp3746TkxPOzs5ERkayc+fOSsdw9uxZ2rdvz5AhQygsLNT4XRBCXC8PDw+MRiMtWrSo8HhYWBhpaWlX3K9p06YkJyfzxhtvYDabeeCBB7jlllsoLi62bNOlSxdKS0v5/PPPq238QojqJ0mGEDchpRQTJkxgxYoVbNiwgYCAgArPh4SEcPz4cU6fPm15bMeOHQBcvHgR+GP9RrlnnnmGMWPGkJSURHR0NPv27aN58+b8/vvvfPfdd5S35Bk4cCAff/wxjz/+OCUlJezYsYNdu3bx2GOPYWNjc9lYjx8/TpcuXQgPD+c///kPdnZ2mr4XQojrZ2trS1RUFMnJyRUeP3z4MH5+fixduhRXV9dK9zWbzcTHx7Nw4UISExPZtm0b+/btszwfHR3N6tWree6555g3b151HoYQohpJkiHETWj8+PF8+OGHfPzxxzg5OZGRkUFGRgb5+fnApbsNgYGBjB07lr1797JlyxYef/xxAN57770K6zfK3X333Zw4cYJdu3Zxxx13cOzYMZycnPDy8qJDhw5MnDjRsu2QIUMwmUxs376d/fv3ExQUxLBhw4iIiKgQMzk5mZiYGOLi4liyZAkGgzRoE+LPSktLmTlzJgEBAZjNZgIDA3nmmWfQos9ubm4uSUlJliabR48eJSkpyXKnYurUqXz22WcsXryYlJQUXnvtNb755hseeOCBK8ZcunQp7777Lvv37+fXX3/lww8/xGw2X7Z+q3Pnznz77bc89dRTvPLKK1YfixCiBighxE0HqPRjyZIllm0OHjyoYmJilK2trQoNDVXffPONAlTDhg3V8ePHlVJKRUREqFmzZilAff755+rtt99Wbdq0UWazWQEqKipK/fzzz0oppTZs2KAA9dFHHymllJo1a5YyGAxKr9erUaNGqZSUFMtrL1myRNna2ipPT081ceLEG/a+CFHXPPvss8rd3V2tXLlSHT16VH3xxRfK0dFRLViwwOrYGzdurPT3xNixYy3bvPvuu6p58+bKZDKpiIgI9eWXXyqlLv0Mu7i4qEGDBlXYfsWKFapDhw7K2dlZOTg4qI4dO6rvvvvO8ryfn596+eWXLZ9v2rRJOTg4qIULF1p9PEKIG0uSDCHENRk6dKgC1MaNGy97DlArVqywfH706FEFqN27d1seKz9huXDhguWx5ORk9dJLL6nevXsrW1tbtXz5cqXUpRMUJycnNWLECBUYGKhOnDihyTHMmjVLRUREaBJLiNpgwIAB6p577qnw2NChQ9WoUaMsn586dUr1799fmUwm5e/vrz766KPLTubLE4g+ffoos9msQkND1datW9WRI0dU165dlb29verUqVOFiwFJSUmqW7duytHRUTk5Oal27dqpHTt2KKX+SDLKnTlzRkVGRqrBgwergoKC6nkzhBC1ikyXEkJUasWKFaxbt46jR48yaNAgvv76a9q1a0e3bt2uuu8bb7wBQExMDA0bNmTw4MGVLgYNDg5m8uTJrF27lqFDh7JkyRLLc3q9ng8++IDIyEi6d+/OqVOnNDs2IWqz65kC1blzZ9avX8/hw4cB2LNnD5s3b6Zfv36WbcaMGcOpU6dITExk2bJlvP3225w5c6bS177zzjtJSkoiNDSUkSNHcv/99zN9+nR27txpWctVbtSoUTRp0kTWVQkhKiUlbIUQlcrJyWHatGmkpqailKJPnz689NJLZGRkAODi4oLZbK503+3btwPw/vvv07x5c/7v//6PRx991PJ8fn4+U6dO5fbbbycgIIATJ06wY8cObrvttgpxDAYDH330ESNGjKBHjx4kJiZa6u0LUV+98MILvPnmm/z73/+mZcuW7Ny5k7vvvhsXF5fLumM/9thjZGdnExoaisFgoLS0lGeffZZRo0YBcOjQIb777jt27NhB+/btgUtdtIOCgip97SFDhuDq6sq0adPo1KkTM2fOJC4uDoCJEydy9913W7ZNS0tj6tSphIaGAlQaMzk5md69ezNkyBBeeeUVdDqd9W+QEKJuqOE7KUKIWo5rWL/BVaZLnTlzxrLfhQsXVGFhoerfv7+ytbVVgDIajWrQoEGWOOXTpQD12WefqZiYGKXX65XJZFJbt25VP/30k4qMjFQODg6qb9++6syZM5bX3rhxo4qKilL29vbKxcVFde7cWR07dkwpdfl0qZSUFBUQEKDGjx+vysrKqvNtFOKa/d0UqPT0dNWrVy+l0+mUnZ2dio2NVTqdTrm7u6sFCxao1157TdnY2ChbW1vVqlUr5erqqvR6vSotLVXHjh1Tt956q3J1dVWAatSokVq1apVSSlX4+VRKqQMHDihAtWrVyvJY+bqqrKwspdSlnyej0ah69uypnn/+eVlXJYSoQKZLCSH+lrq0duuyj4SEhArbDB482PK5v78/SinatGkDQFZWFgD79u3D1dUVg8FAamoqXbt2JSkpiY0bN5Kenm7ZPyEhgb179wIwa9YsZs6cyf79+2nTpg0PPvggjz76KAsWLOCHH34gJSWFJ554ArjUTXzw4MF07dqVvXv3sm3bNu67775Kr57u3buX2NhYRo4cyWuvvSZXWEW10moK1Msvv0x6ejo+Pj7Y29tz4MABZs6cyfDhw5k5cyYrV65k6NChNG7cmMDAQHJycixxx48fT2FhId9//z0uLi7Ex8fj6Oh42etnZmYyevRoAN566y1LKdryn5HyRnxPPvkkBw4cYMCAAWzYsIEWLVqwYsUKSxw7Ozt69erFypUrOXnypDZvpBCi7qix9EYIcVMoLS1VAwYMUDExMZbHVq9erYxGo0pPT7c8tm7dugp3RMrvhrzzzjuWbT755BMFqPXr11see/7551VISIhSSqlz584pQCUmJlY6lvI7GVu2bFENGjRQ8+bN0/JQhaggLy9PDR061HJXzs3N7W+rQHXt2lVNnDhRlZaWqmnTpimdTqeMRqPS6XTqueeeU0opddttt6kxY8YoPz8/dddddyk3Nzf1xhtvqPT0dAWomTNnqueee04FBQWpbdu2We5Q7Ny5U7Vq1Uo9+eST6siRIwqodOH3wYMHVevWrVXfvn2vqXjDn915550qPj5eKfXHwu+SkhI1fPhwFRQUpE6ePKn5eyyEqL3kToYQolqNHz+e/fv38+mnn1oeS05OpmnTphXWV0RHR1e6f+vWrS3/b9SoEQCtWrWq8Fj5IlY3NzcSEhKIi4sjPj6eBQsWVLhDApfmkffu3ZsnnniCRx55xPoDFDela7kz8e9//5sffviBrVu30qtXLwYNGsSAAQPw9/fn9ttvp0+fPvz000+W7QsLC/nqq68wmUzMmzeP8ePH4+npyYgRI5g3bx4eHh4sW7aM999/n99++42DBw8SHx/PtGnTLH1r5s+fz9NPP82QIUMsPy9+fn7cd999xMfH8/TTTxMUFITBYLjsZwMu9chp3rw5r7322t8ef35+PhMmTCAxMZHffvuNLVu2sGPHDsLCwipsV76uKiIigh49eljWdAkh6j9JMoQQ1WbChAmsXLmSjRs30qRJkyrF+HO1mvLpGn99rHz6BsCSJUvYtm0bnTt35rPPPiM4OJgff/zR8rynpyfR0dF88sknZGdnV2lMlcnIyKB37944ODhcsdPxn/n7+0uTsTqsfHH2a6+9xsGDB3nhhReYO3cur776qmWb1NRUwsLCCA8Pp3v37mzYsOFvq0AdOnSIvLw8GjRowJQpU9i3bx+ZmZmcO3cOW1tbGjRoQN++fRk+fDhNmjThtttuo2fPnhQWFqLXX/pzbjKZ6NGjB88884zl56Vfv340atSIuXPnopQiPj4eo9HIvHnzKowXYMCAAXz//fccOXLkb4/fYDBw7tw5xowZQ3BwMMOHD6dfv3489dRTl21rNBr55JNPaNmyJT169LhiZSshRP0iSYYQQnPqf6UuV6xYwYYNGwgICKjwfEhICMePH+f06dOWx3bs2KHZ67dt25bp06ezdetWwsPD+fjjjy3Pmc1mVq5ciclkIi4ursKc9Ws1Z84cdDodkyZNsjxWPlc+KSnJciIp6rbKvs7ltm7d+rd3Jrp168b8+fP5/vvv0el0/Pe//+XOO+8kNDQUnU5HmzZtyMvLs6xhOHToEJmZmfTs2ZOSkhL8/PwYNWoU+fn5lvLNOp0OOzs7zGYzBoMBs9nM2bNn8ff3t6x5ePfdd1m1ahW2traWsTo6OtKqVSs8PT3Zt28fb7zxBoWFhQwfPpzFixcDsHHjRssxjx07ljFjxnDgwAHLuqryY1JK4erqiq2tLZ988glpaWkUFhZy8uRJXn31VUwmE3BpXVVmZqZlX6PRyLJly/jll19o2LChNl8gIUStJkmGEEJz48eP58MPP+Tjjz/GycmJjIwMMjIyyM/PBy5NyQgMDGTs2LHs3buXLVu28PjjjwNYtQD76NGjTJ8+nW3btvHbb7+xdu1ajhw5ctkUDgcHB1atWoXRaKRfv37k5uZe82vs2LGDt956q8I0Lrh01ToyMpKgoCA5iaoHrvR1Lnelxdnld7KWL1/OvffeS6dOnUhPT2f06NGWPjBz5szhpZdewmg0Wk7Kk5OT0el0NGzYkPj4eGbMmMHEiROxt7fHYDBw9uxZhgwZctk4hg0bRn5+Ps2aNQPgxx9/pKSkpMI277zzDq+//jqdO3dm7dq1DB48GB8fH8udlr+aN28eo0aNokePHhw6dKjqb6IQ4uZWs0tChBD1EddQ9vbgwYMqJiZG2draqtDQUPXNN98oQK1Zs0Ypde1dw//cWTgjI0MNHjxYeXt7K1tbW+Xn56eeeOIJVVpaqpS6vIRtTk6O6ty5s7rllltUbm7uVY8rJydHBQUFqXXr1lkW6SqllJ+fX4XjHDt2rCorK1OzZs1STZs2Vba2tsrb21s9+OCDllh/7bi8ePFi5eLior777rtre5PFdXv++ecVcNWSqlf6OitV8fvW3d1d6XQ6BVgWZ7/44ouW0ss+Pj5Kp9Op9u3bKy8vLzVo0CCl1+uVvb296tu3r3rssccsRQueeeYZBSiDwaDs7OyUTqdTHh4eClBms1k1bNhQFRYWqkGDBqmhQ4cqo9GoYmNjVVlZmbp48aL6+uuvFaBcXV1Vp06dVFFRkeVnKDIyUun1eqXX65XBYFB6vV65ubmp0aNHq99//10pVfnP1oMPPqi8vb1VcnKy1l8KIcRNQJIMIUStsHnzZgVUqLVf24wZM0ZNmjRJKaUqnHyeOXNG9e3bVw0fPlylp6erzMxM9cUXXyhnZ2f17bffqt9++01t375dvf3225ZYf04yXnjhBeXu7q62b99+ow9JHTx4UHXo0EHZ2dlVSMCuhL/0RKkrfvrpJ+Xv769at2591STjSl/nkpISFRISonr37q3mzJmjGjZsqAIDAy2Ji5ubm7rjjjsUoEJDQ9XgwYNVVFSU6tixozIYDCowMFAFBgYqV1dX5eTkpJo1a6aaN2+uiouLlaOjo6UCldFoVE888YTatGmTAlRcXJzla9O9e3dlMpnUjBkzKh37oUOHFKB27dqllPrj+2zLli3KyclJvfjii5q8n0IIcTXS8VsIUSNWrFiBo6MjQUFBpKSkMHHiRGJiYggMDKzpoVXq008/5eeff6507Yinp6dlrnx5xay0tDS8vLzo1asXNjY2+Pr6VlpBa9q0aXzwwQds2rSJli1bVnl8c+bMYfr06UycOPG6FpTPmjULBwcHkpOTK+2ZUB/k5uYyatQoFi9ezOzZsys8p9PpWLRoEd988w0bNmygQYMGmEwmvv76a7p168YPP/xAcnIyDz74IEeOHCE1NZXXX3+dAQMGoJSyrOlp0qQJkydPZuHChQCWhdtnzpwhPT2d0tJSMjMzee+998jOzub555/nl19+wdXVlePHj5Obm4ujoyOlpaW4urryyy+/8MMPP2A2my1j3bp1K5s3byYiIsJyHEuXLqW0tJQOHTpgb2/Phx9+iNlsxs/Pr8Jxdu7cmW+//ZZ+/fphNBorXWcihBBakjUZQogakZOTw/jx4wkNDSUhIYGoqCi++uqrmh5WpY4fP87EiRP56KOPLHPor+bPc+XvvfdeVqxYcdlc+fnz57N48WI2b95sVYJxtfUDfyc1NZXY2Fj8/Pxwd3ev8hhqs/HjxzNgwAB69epV6fPPPPMMY8aMYfXq1Zw7d46CggIeeughpk+fTmRkJHCpUlp56eWJEyeilOKxxx5jy5YtwKVqSwaDwVLCtnXr1uTk5LB7926CgoIAuO2223jwwQe59957OXv2LHZ2dpZtEhISyM3NpaioiAsXLrB8+XKMRiNOTk4YjUZL6eWQkJAK3yuurq4sXryYmJgYWrduzXfffcc333xT6dcyNjaWVatW8fjjj19WVUoIITRXw3dShBCi1luxYoVlvnz5B/+bh28wGFRJSYkaNGiQGjt2bIX9yufKP/jgg8rLy8syV16pS9NYRowYoZydndXzzz9f5bFdy/oBOzs7FRYWdlnDQ/6yZmbWrFmqsLBQjR8/Xnl5eSk7Ozvl6+traQRXvs+fp0s98cQTysvLS+3Zs6fKx1CdPvnkExUeHq7y8/OVUuqy9whQjz/+uFLqj68zYFm/UP51BtQrr7yiAgIClJOTk4qJiVGNGzdWn3/+uQLUtGnTlIeHh+rWrZvlPXJ0dFSNGzdWGzZsUID65JNP1IIFC9Tu3bvViy++qEwmk9Lr9Wr//v1KKaUiIyNV586dVadOnZS9vb1ydXVVgBo9erQKDg5W3bp1U9HR0SorK+uGv49CCHG95E6GEEJcRc+ePdm3bx9JSUmWj/bt2zNq1CiSkpIwGAyV7mc2m4mPj2fhwoUkJiaybds29u3bZ3k+Ojqa1atX89xzzzFv3rwqje1KV+lLS0sZPHgw9vb2bN++nbfffpsZM2ZU2CY9PZ2WLVvyyCOPkJ6ezpQpU1i4cCFff/01n3/+OcnJyXz00Uf4+/tf9rpKKR588EHef/99fvjhhyrdRalu13oHqnzsPXv2ZPXq1QB89NFHlq9zz549AWjatCnHjx/nvvvu48cff0Sv13P33XcDl6Yt3X///cTFxQFwzz330Lx5c5o3b26pmObi4sLy5cvp0aMHM2bMoKioyNI/AqC4uBh3d3c++ugjAgICsLGxQa/Xk5ycrEnpZSGEuJEkyRBCiKtwcnIiPDy8woeDgwPu7u6WTst/tXTpUt59913279/Pr7/+etW58k899dR1N+crXyfy/PPPX/bcunXrSE1N5f333yciIoLY2FieffbZCtt4eXlhNBpxdHTEy8sLR0dH0tLSCAoKskyhio2NZcSIERX2Kykp4a677mL9+vVs3ryZ5s2bX9e4b5Rdu3Zx5swZ2rVrh9FoxGg0smnTJhYuXIjRaKS0tBT4o7mjk5MToaGhAISGhlq+zi4uLgB07dqVwMBA9u/fz/Llyxk8eDBG46WljXfffTezZ8+2fN6hQwdycnL46KOPLOPp1KkTiYmJnD9/nrfeegsnJyeGDx9uKb2ckJBAcnIyYWFh/PLLL/j4+PDrr79aGvZZU3pZCCFuNEkyhBCiGlT3XPmrXaUvXz9QvhAdqHTh+V8lJCSQlJRESEgIDz30EGvXrr1sm8mTJ7N9+3a+//57GjdufE3jrQlVvQN1JQaDgS+//JLc3FyGDRvGunXr+PDDD4E/mtmVmz17NpGRkXTv3p3ff//9b+Pa29tz6NAhXnzxRY4dO4aXlxczZ87k559/viwpdXR0ZPXq1SilGDBgAHl5edd1DEIIccPU9HwtIYQQ1+9q60TK1w/8WVZW1mVrKiIiItSsWbMu2+7TTz9V//jHP5SLi4u67bbbLM8B6u6771Ymk0l9+OGH1XmI1aKyNRl/fj+u1p/l4sWLavz48Wrjxo3q2LFj6o033lCAuvfee5VSFfu2FBcXq9tvv12FhISo9PT0G3B0QghRe0gJWyGEqIPKr9L/2d13301oaCjTpk3jxIkTHD9+nNOnT9OoUSOASsvvVsbZ2Zk77riDO+64g9tvv52+ffty/vx53NzcABg4cCDx8fGMHDkSg8HAnXfeqe3B1WIrV67kwIEDLF++nLNnzwLg7e1tKV37Z0ajkU8++YQ77riDHj16kJiYKN3ghRA3DUkyhBCiDipfJ/Jnf14nEhYWRmBgIGPHjmXu3Lnk5OTw+OOPA1gWIlfmpZdewtvbm7Zt26LX6/niiy/w8vLC1dW1wnZDhgzhgw8+YPTo0RiNRm6//XbNj7E6JCYmVvhc/a/kbDl/f//LHuvWrZvlsfz8fE6ePMn58+dp1KgRvXr1Yv78+ZYpawkJCSQkJFj2NRqNLFu2TPsDEUKIWk6SDCGEqIfK1w/84x//ICoqimbNmvHiiy8SHx//t5WWnJycmDt3LkeOHMFgMBAVFcW3336LXn/5Er7bb7+dsrIyRo8ejV6vZ+jQodV5SLXCmDFjGDNmTE0PQwghaj2d+uslGyGEEPXSli1biI2NJSUlpdZ2VhdCCFE/SJIhhBD11IoVK3B0dCQoKIiUlBQmTpxIgwYN2Lx5c00PTQghRD0n06WEEKKeysnJYdq0aaSlpeHh4WFZPyCEEEJUN7mTIYQQQgghhNCUNOMTQgghhBBCaEqSDCGEEEIIIYSmJMkQQgghhBBCaEqSDCGEEEIIIYSmJMkQQgghhBBCaEqSDCGEEEIIIYSmJMkQQgghhBBCaEqSDCGEEEIIIYSmJMkQQgghhBBCaEqSDCGEEEIIIYSmJMkQQgghhBBCaEqSDCGEEEIIIYSmJMkQQgghhBBCaEqSDCGEEEIIIYSmJMkQQgghhBBCaEqSDCGEEEIIIYSmJMkQQgghhBBCaEqSDCGEEEIIIYSmJMkQQgghhBBCaEqSDCGEEEIIIYSmJMkQQgghhBBCaEqSDCGEEEIIIYSmJMkQQgghhBBCaEqSDCGEEEIIIYSmJMkQQgghhBBCaEqSDCGEEEIIIYSmJMkQQgghhBBCaEqSDCGEEEIIIYSmJMkQQgghhBBCaEqSDCGEEEIIIYSmJMkQQgghhBBCaEqSDCGEEEIIIYSmJMkQQgghhBBCaEqSDCGEEEIIIYSmJMkQQgghhBBCaEqSDCGEEEIIIYSmJMkQQgghhBBCaEqSDCGEEEIIIYSmJMkQQgghhBBCaEqSDCGEEEIIIYSmJMkQQgghhBBCaEqSDCGEEEIIIYSmJMkQQgghhBBCaOr/Aeck2bwmlaMAAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyUAAALfCAYAAAB/6m1UAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1zV9fcH8NfnXvYSZCOyQdnucu/M1Kw0s/o6WmZqjtQcZaWVWZa7cmTOzCyzLCcOMgUUERQBWTIEZAhc4HL3vZ/fH/y4RaCse+/n3st5Ph48lM94v89FvPee+x6HYVmWBSGEEEIIIYRwhMd1AIQQQgghhJCOjZISQgghhBBCCKcoKSGEEEIIIYRwipISQgghhBBCCKcoKSGEEEIIIYRwipISQgghhBBCCKcoKSGEEEIIIYRwipISQgghhBBCCKcoKSGEEEIIIYRwipISQkiH4OPjg5kzZ3IdRrt99NFHYBhGJ30NGzYMw4YNU38fHR0NhmHwyy+/6KT/mTNnwsfHRyd9tcXevXvBMAxyc3M56d/Hxwfjx4/npG9CCNE0SkoIIQYtOzsbb775Jvz8/GBhYQE7OzsMHDgQmzdvhlgs5jq8R6p/U1v/ZWFhAQ8PD4wZMwZbtmxBTU2NRvopKirCRx99hKSkJI20p0n6GFtubm6Dfxc+nw8vLy88++yzOomzpKQES5YsQffu3WFlZQVra2v07t0bn3zyCQQCgdb7b0pqaio++ugjzhIwQojxM+E6AEIIaasTJ07g+eefh7m5OaZPn46wsDDIZDJcvnwZS5cuRUpKCnbu3Ml1mM1as2YNfH19IZfLUVxcjOjoaCxcuBAbNmzA8ePHERERob72/fffx/Lly1vVflFREVavXg0fHx/06NGjxfedPXu2Vf20xaNi27VrF1QqldZjeJgXX3wRTz31FJRKJdLS0vDtt9/i1KlTiIuLQ48ePTBt2jRMnToV5ubmGuszPj4eTz31FIRCIf73v/+hd+/eAIDr169j3bp1uHTpkk7+Xf4rNTUVq1evxrBhw/R69IoQYrgoKSGEGKScnBxMnToV3t7euHDhAtzd3dXn5s6di6ysLJw4cYLDCFtu7Nix6NOnj/r7FStW4MKFCxg/fjyefvpppKWlwdLSEgBgYmICExPtPnWLRCJYWVnBzMxMq/00x9TUlNP+e/Xqhf/973/q7wcOHIinn34a3377LXbs2AE+nw8+n6+x/gQCAZ599lnw+XwkJiaie/fuDc5/+umn2LVrl8b6awmJRML57wEhpGOg6VuEEIP0xRdfQCgUYvfu3Q0SknoBAQFYsGDBQ++vqKjAkiVLEB4eDhsbG9jZ2WHs2LG4efNmo2u3bt2K0NBQWFlZwcHBAX369MGhQ4fU52tqarBw4UL4+PjA3NwcLi4uGD16NG7cuNHmxzdixAisWrUKeXl5OHjwoPp4U2tKoqKiMGjQINjb28PGxgbdunXDypUrAdStA+nbty8A4JVXXlFPSdq7dy+AunUjYWFhSEhIwJAhQ2BlZaW+979rSuoplUqsXLkSbm5usLa2xtNPP4179+41uOZha3j+3WZzsTW1pqS2thaLFy9G165dYW5ujm7duuHLL78Ey7INrmMYBvPmzcNvv/2GsLAwmJubIzQ0FKdPn276B94CI0aMAFCXEAMPX1Ny6tQpDB48GNbW1rC1tcW4ceOQkpLSbPs7duxAYWEhNmzY0CghAQBXV1e8//77jY5fvnwZ/fr1g4WFBfz8/LB///4G51v6u16/Zujw4cN4//330aVLF1hZWWHLli14/vnnAQDDhw9X/ztFR0c3+5gIIaSlaKSEEGKQ/vjjD/j5+WHAgAFtuv/u3bv47bff8Pzzz8PX1xclJSXYsWMHhg4ditTUVHh4eACom0I0f/58TJ48GQsWLIBEIsGtW7dw9epVvPTSSwCA2bNn45dffsG8efMQEhKC8vJyXL58GWlpaejVq1ebH+O0adOwcuVKnD17Fm+88UaT16SkpGD8+PGIiIjAmjVrYG5ujqysLFy5cgUAEBwcjDVr1uCDDz7ArFmzMHjwYABo8HMrLy/H2LFjMXXqVPzvf/+Dq6vrI+P69NNPwTAMli1bhtLSUmzatAmjRo1CUlKSekSnJVoS27+xLIunn34aFy9exGuvvYYePXrgzJkzWLp0KQoLC7Fx48YG11++fBm//vor5syZA1tbW2zZsgWTJk1Cfn4+HB0dWxxnvezsbAB45L0HDhzAjBkzMGbMGHz++ecQiUT49ttvMWjQICQmJj5y6tPx48dhaWmJyZMntzimrKwsTJ48Ga+99hpmzJiB77//HjNnzkTv3r0RGhoKoOW/6/U+/vhjmJmZYcmSJZBKpXjiiScwf/58bNmyBStXrkRwcDAAqP8khBCNYAkhxMBUVVWxANiJEye2+B5vb292xowZ6u8lEgmrVCobXJOTk8Oam5uza9asUR+bOHEiGxoa+si2O3XqxM6dO7fFsdTbs2cPC4CNj49/ZNs9e/ZUf//hhx+y/37q3rhxIwuALSsre2gb8fHxLAB2z549jc4NHTqUBcBu3769yXNDhw5Vf3/x4kUWANulSxe2urpaffzIkSMsAHbz5s3qY//9eT+szUfFNmPGDNbb21v9/W+//cYCYD/55JMG102ePJllGIbNyspSHwPAmpmZNTh28+ZNFgC7devWRn39W05ODguAXb16NVtWVsYWFxez0dHRbM+ePVkA7NGjR1mW/effLycnh2VZlq2pqWHt7e3ZN954o0F7xcXFbKdOnRod/y8HBwc2MjLykdf8m7e3NwuAvXTpkvpYaWkpa25uzi5evFh9rKW/6/X/vn5+fqxIJGpw/c8//8wCYC9evNji+AghpDVo+hYhxOBUV1cDAGxtbdvchrm5OXi8uqdApVKJ8vJy9dSnf0+7sre3R0FBAeLj4x/alr29Pa5evYqioqI2x/MwNjY2j9yFy97eHgDw+++/t3lRuLm5OV555ZUWXz99+vQGP/vJkyfD3d0dJ0+ebFP/LXXy5Enw+XzMnz+/wfHFixeDZVmcOnWqwfFRo0bB399f/X1ERATs7Oxw9+7dFvX34YcfwtnZGW5ubhg2bBiys7Px+eef47nnnmvy+qioKAgEArz44ot48OCB+ovP5+Oxxx7DxYsXH9lfdXV1q3+nQ0JC1CNMAODs7Ixu3bo1eIwt/V2vN2PGjFaNeBFCiCZQUkIIMTh2dnYA0K4tc1UqFTZu3IjAwECYm5vDyckJzs7OuHXrFqqqqtTXLVu2DDY2NujXrx8CAwMxd+5c9dSoel988QVu376Nrl27ol+/fvjoo49a/Ma3OUKh8JFvVF944QUMHDgQr7/+OlxdXTF16lQcOXKkVQlKly5dWrWYOTAwsMH3DMMgICBA69vF5uXlwcPDo9HPo34aUV5eXoPjXl5ejdpwcHBAZWVli/qbNWsWoqKicP78eSQkJKC0tBTvvvvuQ6/PzMwEULf2xNnZucHX2bNnUVpa+sj+7OzsWv073ZLH2NLf9Xq+vr6tioEQQjSBkhJCiMGxs7ODh4cHbt++3eY21q5di3feeQdDhgzBwYMHcebMGURFRSE0NLTBG/rg4GCkp6fj8OHDGDRoEI4ePYpBgwbhww8/VF8zZcoU3L17F1u3boWHhwfWr1+P0NDQRp/ct1ZBQQGqqqoQEBDw0GssLS1x6dIlnDt3DtOmTcOtW7fwwgsvYPTo0VAqlS3qRxufij+swGNLY9KEh+2Mxf5nUfzDBAYGYtSoURgxYgR69erV7Na/9b83Bw4cQFRUVKOv33///ZH3d+/eHRkZGZDJZC2KD2jZY2zp73o9GiUhhHCBFroTQgzS+PHjsXPnTsTGxqJ///6tvv+XX37B8OHDsXv37gbHBQIBnJycGhyztrbGCy+8gBdeeAEymQzPPfccPv30U6xYsQIWFhYAAHd3d8yZMwdz5sxBaWkpevXqhU8//RRjx45t82M8cOAAAGDMmDGPvI7H42HkyJEYOXIkNmzYgLVr1+K9997DxYsXMWrUKI1XgK8fEajHsiyysrIa1FNxcHBostBfXl4e/Pz81N+3JjZvb2+cO3cONTU1DUZL7ty5oz7PpfqpYi4uLhg1alSr758wYQJiY2Nx9OhRvPjiixqLqzW/6w+j6d8hQgj5LxopIYQYpHfffRfW1tZ4/fXXUVJS0uh8dnY2Nm/e/ND7+Xx+o0/Mf/75ZxQWFjY4Vl5e3uB7MzMzhISEgGVZyOVyKJXKRlNgXFxc4OHhAalU2tqHpXbhwgV8/PHH8PX1xcsvv/zQ6yoqKhodqy9CWN+/tbU1AGisGvj+/fsbTDP65ZdfcP/+/QYJmL+/P+Li4hp86v/nn3822jq4NbHVFzLctm1bg+MbN24EwzDtSgA1YcyYMbCzs8PatWshl8sbnS8rK3vk/bNnz4a7uzsWL16MjIyMRudLS0vxySeftDqulv6uP4qmf4cIIeS/aKSEEGKQ/P39cejQIbzwwgsIDg5uUNE9JiYGP//8c5N1MuqNHz8ea9aswSuvvIIBAwYgOTkZP/zwQ4NP8QHgiSeegJubGwYOHAhXV1ekpaVh27ZtGDduHGxtbSEQCODp6YnJkycjMjISNjY2OHfuHOLj4/HVV1+16LGcOnUKd+7cgUKhQElJCS5cuICoqCh4e3vj+PHj6tGYpqxZswaXLl3CuHHj4O3tjdLSUnzzzTfw9PTEoEGD1D8re3t7bN++Hba2trC2tsZjjz3W5rUDnTt3xqBBg/DKK6+gpKQEmzZtQkBAQINti19//XX88ssvePLJJzFlyhRkZ2fj4MGDDRaetza2CRMmYPjw4XjvvfeQm5uLyMhInD17Fr///jsWLlzYqG1ds7Ozw7fffotp06ahV69emDp1KpydnZGfn48TJ05g4MCBjRKqf3NwcMCxY8fw1FNPoUePHg0qut+4cQM//vhjm0YFW/q7/ig9evQAn8/H559/jqqqKpibm2PEiBFwcXFpdTyEENIkDnf+IoSQdsvIyGDfeOMN1sfHhzUzM2NtbW3ZgQMHslu3bmUlEon6uqa2BF68eDHr7u7OWlpasgMHDmRjY2MbbVm7Y8cOdsiQIayjoyNrbm7O+vv7s0uXLmWrqqpYlmVZqVTKLl26lI2MjGRtbW1Za2trNjIykv3mm2+ajb1+S9n6LzMzM9bNzY0dPXo0u3nz5gbb7tb775bA58+fZydOnMh6eHiwZmZmrIeHB/viiy+yGRkZDe77/fff2ZCQENbExKTBFrxDhw596JbHD9sS+Mcff2RXrFjBuri4sJaWluy4cePYvLy8Rvd/9dVXbJcuXVhzc3N24MCB7PXr1xu1+ajY/rslMMvWbbu7aNEi1sPDgzU1NWUDAwPZ9evXsyqVqsF1AJrcpvlhWxX/W/2WwOvXr3/kdf/dErjexYsX2TFjxrCdOnViLSwsWH9/f3bmzJns9evXH9levaKiInbRokVsUFAQa2FhwVpZWbG9e/dmP/30U/XvXf1jGTduXKP7//szbunvev2/788//9xkXLt27WL9/PxYPp9P2wMTQjSOYdkWrvgjhBBCCCGEEC2gNSWEEEIIIYQQTlFSQgghhBBCCOEUJSWEEEIIIYQQTlFSQgghhBBCCOEUJSWEEEIIIYQQTlFSQgghhBBCCOEUJSWEEEIIIYQQTlFSQgghhBBCCOEUJSWEEEIIIYQQTlFSQgghhBBCCOEUJSWEEEIIIYQQTlFSQgghhBBCCOEUJSWEEEIIIYQQTlFSQgghhBBCCOEUJSWEEEIIIYQQTlFSQgghhBBCCOEUJSWEEEIIIYQQTlFSQgghhBBCCOEUJSWEEEIIIYQQTlFSQgghhBBCCOEUJSWEEEIIIYQQTlFSQgghhBBCCOEUJSWEEEIIIYQQTlFSQgghhBBCCOEUJSWEEEIIIYQQTlFSQgghhBBCCOEUJSWEEEIIIYQQTlFSQgghhBBCCOEUJSWEEEIIIYQQTlFSQgghhBBCCOEUJSWEEEIIIYQQTlFSQgghhBBCCOEUJSWEEEIIIYQQTlFSQgghhBBCCOEUJSWEEEIIIYQQTlFSQgghhBBCCOEUJSWEEEIIIYQQTlFSQgghhBBCCOEUJSWEEEIIIYQQTlFSQgghhBBCCOEUJSWEEEIIIYQQTlFSQgghhBBCCOEUJSWEEEI0Ljo6GgzDQCAQcB0KIYQQA0BJCSGEGKFvv/0WERERsLOzg52dHfr3749Tp04BACoqKvD222+jW7dusLS0hJeXF+bPn4+qqiqOoyaEENJRmXAdACGEEM3z9PTEunXrEBgYCJZlsW/fPkycOBGJiYlgWRZFRUX48ssvERISgry8PMyePRtFRUX45ZdfuA6dEEJIB0QjJYQQYoQmTJiAp556CoGBgQgKCsKnn34KGxsbxMXFISwsDEePHsWECRPg7++PESNG4NNPP8Uff/wBhUIB4J/pVydOnEBERAQsLCzw+OOP4/bt2+o+8vLyMGHCBDg4OMDa2hqhoaE4efJkk/GIRCKMHTsWAwcOpCldhBBCGqGkhBBCjJxSqcThw4dRW1uL/v37N3lNVVUV7OzsYGLScAB96dKl+OqrrxAfHw9nZ2dMmDABcrkcADB37lxIpVJcunQJycnJ+Pzzz2FjY9OobYFAgNGjR0OlUiEqKgr29vYaf4yEEEIMG03fIoQQI5WcnIz+/ftDIpHAxsYGx44dQ0hISKPrHjx4gI8//hizZs1qdO7DDz/E6NGjAQD79u2Dp6cnjh07hilTpiA/Px+TJk1CeHg4AMDPz6/R/cXFxXjhhRcQGBiIQ4cOwczMTMOPkhBCiDGgkRJCCDFS3bp1Q1JSEq5evYq33noLM2bMQGpqaoNrqqurMW7cOISEhOCjjz5q1Ma/R1Y6d+6Mbt26IS0tDQAwf/58fPLJJxg4cCA+/PBD3Lp1q9H9o0ePRkBAAH766SdKSAghhDwUJSWEEGKkzMzMEBAQgN69e+Ozzz5DZGQkNm/erD5fU1ODJ598Era2tjh27BhMTU1b1f7rr7+Ou3fvYtq0aUhOTkafPn2wdevWBteMGzcOly5dapQMEe599NFH6NGjB9dhEEIIAEpKCCGkw1CpVJBKpQDqRkieeOIJmJmZ4fjx47CwsGjynri4OPXfKysrkZGRgeDgYPWxrl27Yvbs2fj111+xePFi7Nq1q8H969atw4wZMzBy5EhKTP6Dtm0mhJB/0JoSQggxQitWrMDYsWPh5eWFmpoaHDp0CNHR0Thz5ow6IRGJRDh48CCqq6tRXV0NAHB2dgafz1e3s2bNGjg6OsLV1RXvvfcenJyc8MwzzwAAFi5ciLFjxyIoKAiVlZW4ePFig4Sl3pdffgmlUokRI0YgOjoa3bt318nPQN/Rts2EEPIvLCGEEKPz6quvst7e3qyZmRnr7OzMjhw5kj179izLsix78eJFFkCTXzk5OQ2u+eOPP9jQ0FDWzMyM7devH3vz5k11H/PmzWP9/f1Zc3Nz1tnZmZ02bRr74MGDBvdXVlaqr3/77bdZd3d3Nj09XWc/B0Pj4ODAfvfdd02eO3LkCGtmZsbK5XKWZVlWoVCwr776Kuvj48NaWFiwQUFB7KZNmxrcc/HiRbZv376slZUV26lTJ3bAgAFsbm4uy7Is++GHH7KRkZHqa7OyslhfX1927ty5rEql0s4DJISQh6CREkII5woLC7Fs2TKcOnUKIpEIAQEB2LNnD/r06dPo2tmzZ2PHjh3YuHEjFi5cqPtgDcTu3bsfem7YsGFgWbZF7QwaNKhBbZJ/++/6keb62LJlC7Zs2dKifjsapVKJn3/+uVXbNqtUKnh6euLnn3+Go6MjYmJiMGvWLLi7u2PKlClQKBR45pln8MYbb+DHH3+ETCbDtWvXwDBMo7Zv3bqFMWPG4LXXXsMnn3yi1cdKCCFNoaSEEMKpyspKDBw4EMOHD8epU6fg7OyMzMxMODg4NLr22LFjiIuLg4eHBweREqJ57dm22dTUFKtXr1Z/7+vri9jYWBw5cgRTpkxBdXU1qqqqMH78ePj7+wNAk9PrYmJiMH78eLz33ntYvHixFh4lIYQ0jxa6E0I49fnnn6Nr167Ys2cP+vXrB19fXzzxxBPqN1H1CgsL8fbbb+OHH35ocpeoa9euoWfPnrCwsECfPn1w7NgxMAyDpKQkAHWfRL/22mvw9fWFpaUlunXr1mAnKgCYOXMmnnnmGaxduxaurq6wt7fHmjVroFAosHTpUnTu3Bmenp7Ys2eP1n4epGNp77bNX3/9NXr37g1nZ2fY2Nhg586dyM/PB1C3hfPMmTMxZswYTJgwAZs3b8b9+/cb3J+fn4/Ro0fjgw8+oISEEMIpSkoIIZw6fvw4+vTpg+effx4uLi7o2bNnox2cVCoVpk2bhqVLlyI0NLRRG0KhEOPHj0dISAgSEhLw0UcfYcmSJY3aqJ/qkpqaig8++AArV67EkSNHGlx34cIFFBUV4dKlS9iwYQM+/PBDjB8/Hg4ODrh69Spmz56NN998EwUFBZr/YeiR+ulXVH1du9qzbfPhw4exZMkSvPbaazh79iySkpLwyiuvQCaTqa/Zs2cPYmNjMWDAAPz0008ICgpqsKOas7Mz+vXrhx9//FG92QEhhHCBkhJCCKfu3r2Lb7/9FoGBgThz5gzeeustzJ8/H/v27VNf8/nnn8PExATz589vso1Dhw5BpVJh9+7dCA0Nxfjx47F06dIG19RPdenTpw98fX3x8ssv45VXXmmUlHTu3BlbtmxBt27d8Oqrr6Jbt24QiURYuXIlAgMDsWLFCpiZmeHy5cua/2GQDq812zZfuXIFAwYMwJw5c9CzZ08EBAQgOzu7UZs9e/bEihUrEBMTg7CwMBw6dEh9ztLSEn/++ScsLCwwZswY1NTUaPcB/gvDMPjtt9901h8hRL/RmhJCCKdUKhX69OmDtWvXAqh7A3X79m1s374dM2bMQEJCAjZv3owbN240uUAXANLS0hAREdHgTVtTi4W//vprfP/998jPz4dYLIZMJmtUPC40NBQ83j+f17i6uiIsLEz9PZ/Ph6OjI0pLS9vzsAlp97bNgYGB2L9/P86cOQNfX18cOHAA8fHx8PX1BQDk5ORg586dePrpp+Hh4YH09HRkZmaiqKgI27ZtU29EYGNjg4EDB8LExASDBw/GvXv3UFFR0SBWc3NzhIeH4+jRo/Dy8tLtD4oQ0iHQSAkhhFPu7u6NFvYGBwer58X//fffKC0thZeXF0xMTGBiYoK8vDwsXrwYPj4+Le6nJVNdADRar8IwTJPHVCpVKx4lIY2VlpZi+vTp6NatG0aOHIn4+HicOXMGo0ePxo0bN3D16lUkJycjICAA7u7u6q979+4BAN58800899xzeOGFF/DYY4+hvLwcc+bMUbdvZWWFO3fuYNKkSQgKCsKsWbMwd+5cPPbYYxg6dCgCAwPh6OgIoG7UZeLEiaiqqkJlZSWeeOIJWFlZISIiQt3eqlWrHlpk0xD99/8+IYRblJQQQjg1cOBApKenNziWkZEBb29vAMC0adNw69YtJCUlqb88PDywdOlSnDlzBkBdEnPr1i1IJBJ1G/+eNw+0fKoLIbqye/du5ObmQiqVorS0FOfOncPo0aMB/LOmp6mv+mTc3Nwce/bsgUAgQGVlJb755ht89tln6s0dXF1dcezYMRQVFUEqlSI3NxerV6/GkSNHcPHiRWRkZODBgwfqeI4dO4acnByoVCo4ODjgueeew82bNzFu3DhIpVKMGDECLi4uiI6OBsMwTX598803AOo2nrC2tm5wzsLCAp999lmDn8H06dPh7OysvsbU1BQnT56EnZ2d+ti0adNa/DNNSUnB+PHjYWdnB1tbWwwePFj9/7x+I4tPP/0UHh4e6NatG4C6HdBGjBgBS0tLODo6YtasWRAKheo2o6Oj0a9fP1hbW8Pe3h4DBw5EXl4eAODmzZsYPnw4bG1tYWdnh969e+P69eut+C0ghNSjpIQQwqlFixYhLi4Oa9euRVZWFg4dOoSdO3di7ty5AABHR0eEhYU1+DI1NYWbm5v6TcVLL70EhmHwxhtvIDU1FSdPnsSXX37ZoJ/AwEBcv34dZ86cQUZGBlatWoX4+HidP15C9IlYLFb//cUXXwRQN6XyxIkTCAoKwpgxY9TJ/7lz5wCgwe5glpaW6N27t/r7uXPnIi0tDQ8ePIC1tTXs7OywatUqBAcHQyqV4tq1aw36r6mpga2tLUaMGAETExMoFAo8++yzCA0NxZ49e+Dg4ICDBw+qR04fpbCwEEOGDIG5uTkuXLiAhIQEvPrqq1AoFOprzp8/j/T0dERFReHPP/9EbW0txowZAwcHB8THx+Pnn3/GuXPnMG/ePABQ13oZOnQobt26hdjYWMyaNUs9lfTll1+Gp6cn4uPjkZCQgOXLlze5OyAhpAW4qtpICCH1/vjjDzYsLIw1Nzdnu3fvzu7cufOR13t7e7MbN25scCw2NpaNjIxkzczM2B49erBHjx5lAbCJiYksy7KsRCJhZ86cyXbq1Im1t7dn33rrLXb58uUNKlrPmDGDnThxYoN2hw4dyi5YsKDZ/gkxJF999RULQP01ZMgQ9bn79++zAFgrKyv27bffZgGwdnZ2LMMwbHR0NBsSEqK+b/bs2SzLsmzv3r1ZAKy3tzf71ltvsSzLsm+//TY7YsQIdXV4MzMz1tXVVd0PAJbH47EvvfQSGxwczGZmZrIAWBsbG/U158+fZwGwy5cvb/YxrVixgvX19WVlMlmT52fMmMG6urqyUqlUfWznzp2sg4MDKxQK1cdOnDjB8ng8tri4mC0vL2cBsNHR0U22aWtry+7du7fZ2AghzaOkhBBilHJychokJYSQf5SXl7P79u1j16xZo04wtm7dyrIsyxYWFrIA2Keeeorl8XisqakpKxAI2AkTJrBTp05lO3furL5n3759LMvWJQQA2B49erDDhg1jRSIR26VLlwaJDwDW0tJSHQMAlmEY1t/fny0rK1Mf6969u/oahULBAmAnT57c7GMaO3YsO3369IeenzFjBjtq1KgGxxYtWsQOGzaswTGBQMACYP/66y+WZVl25syZrLm5OTt+/Hh206ZNbFFRkfraDz/8kDUxMWFHjhzJfvbZZ2xWVlazcRJCmkbTtwghhJAOpnPnzpg+fTpWrVoFoG5Xufq/Ozk5gWEYnDp1CjweD/n5+ejUqVODDSiaExkZqZ5O9dJLL2HIkCEAoN7uuJ6ZmRkKCwvVU8QAwMTkn41B+Xw+ALRoYwlLS8tmr7G2tm5R/P/2qFovH330EVJSUjBu3DhcuHABISEhOHbsWKv7IITQmhJCCCGkw2NZFkqlEgCQnZ2t3i44Ozsbbm5uAP7ZgKL+e+CfDSWioqIAAJWVlQgODkZeXh7s7Ozw119/4YcfflCfV6lUDbYbNjc3x6FDh/D666/j8OHD7XoMERER+PvvvyGXy1t8T3BwMG7evIna2lr1sStXroDH46nXrAGPrvUSFBSERYsW4ezZs3juueewZ8+edj0OQjoqSkoIIUbJx8cHLMs2qkNCSEfXpUsXvPXWW1i/fj2WLFkCoC5ZGDlyJC5cuKCuy8MwDDZt2oQDBw7g7bffxm+//YY5c+Y02HZ479696Nevn3rHqby8PMybNw/29vaorq7G+PHj8eGHH6q3HgYAe3v7BvE8++yzOHDgAF555ZV2Pa558+ahuroaU6dOxfXr15GZmYkDBw402t3v315++WVYWFhgxowZuH37Ni5evIi3334b06ZNg6urK3JycrBixQrExsYiLy8PZ8+eRWZmJoKDgyEWizFv3jxER0cjLy8PV65cQXx8PIKDg9v1OAjpqKh4IiGEENKBCIVCbN++vdHx3377DWlpaeqpUiqVChs3blSfX7JkCQYNGtRgNyuxWNxgF7tt27YhJCQEJ0+exOOPP44TJ07gxIkTAAAejwc+n9+gOGm9yZMnQ6VS4YUXXlAXiWwtR0dHXLhwAUuXLsXQoUPB5/PRo0cPDBw48KH3WFlZ4cyZM1iwYAH69u0LKysrTJo0CRs2bFCfv3PnDvbt24fy8nK4u7tj7ty5ePPNN6FQKFBeXo7p06ejpKQETk5OeO6557B69eo2xU9IR8ew9WO0hBBCCCHNiI6OxvDhwwHU1TZ55plnsGnTJixatAi5ubnqGkOEENIaNH2LEEIIIYQQwilKSgghhBCi92bPng0bG5smv2bPns11eISQdqLpW4QQQgjRe6WlpQ9db2JnZwcXFxcdR0QI0SRKSgghhBBCCCGcoulbhBBCCCGEEE5RUkIIIYQQQgjhFCUlhBBCCCGEEE5R8URC9FBhYSGWLVuGU6dOQSQSISAgAHv27EGfPn0aXTt79mzs2LEDGzduxMKFC3UfLOkwVDIlWKkSKqkSrERR96f0X8ek/xxTSZVgFSqABcCyAAuwKvaf7wGAYQCm7o/6v4PHgOExYMz44FnwwZjzwTPjg7EwAc+87nvGnF/39/pjZnwwPIa7HwwhhJB2o6SEED1TWVmJgQMHYvjw4Th16hScnZ2RmZkJBweHRtceO3YMcXFx8PDw4CBSYuhUKhWEQiFMq1mgWgFljQzKahlUNbK6v9fIoBLKoZIowMqUgIrriB+OMeOBMTcBz8oEfDsz8G3rvni2//xdYi2FdWcHmJiach0uIYSQ/6CkhBA98/nnn6Nr167Ys2eP+pivr2+j6woLC/H222/jzJkzGDduXINzubm58PX1xY8//ogtW7bgxo0bCAgIwNdff42hQ4cCAJRKJWbNmoULFy6guLgYXl5emDNnDhYsWKBuZ+bMmRAIBOjXrx82b94MqVSKd955BytXrsSKFSuwe/duWFlZ4eOPP8Yrr7yipZ8IaY/q6mpUVFSgvLwcFRUVEAgEqK6uRlVVFYRCIVQqFZ52GgyXAjOuQ20XVqYCK6tLqBQloiavOflgN2qE5bCy6wRbR6f//3KGraMT7Jxd0dmjCxzcu8DEzLB/FoQQYogoKSFEzxw/fhxjxozB888/j7/++gtdunTBnDlz8MYbb6ivUalUmDZtGpYuXYrQ0NCHtrV06VJs2rQJISEh2LBhAyZMmICcnBw4OjpCpVLB09MTP//8MxwdHRETE4NZs2bB3d0dU6ZMUbdx4cIFeHp64tKlS7hy5Qpee+01xMTEYMiQIbh69Sp++uknvPnmmxg9ejQ8PT21+rMhTRMKherEoz75qP9TLpc3e7/YTA7AyN+ImzCoqXkAABBVCSCqEqDkblajyxiGBzsXFzh26QoHD084dumKzh6e6OzZFZY2trqOmhBCOgyqU0KInrGwsAAAvPPOO3j++ecRHx+PBQsWYPv27ZgxYwYA4LPPPsPFixdx5swZMAwDHx8fLFy4UL2mpH6kZN26dVi2bBkAQKFQwNfXF2+//TbefffdJvueN28eiouL8csvvwCoGymJjo7G3bt3wePV7YvRvXt3uLi44NKlSwDqRlw6deqE7777DlOnTtXaz4XU/azLyspQXFyMkpISFBcXo7i4GGKxuF3tDuzaC8GZjacHGhOmkykOJ33SrjYs7Tr9k6R06YrOXTzh6NkVdk5UtI8QQtqLRkoI0TMqlQp9+vTB2rVrAQA9e/bE7du31UlJQkICNm/ejBs3boBhHr24t3///uq/m5iYoE+fPkhLS1Mf+/rrr/H9998jPz8fYrEYMpkMPXr0aNBGaGioOiEBAFdXV4SFham/5/P5cHR0RGlpaXseNvkPsVisTjrqk5CysjIolUqN91ULicbb1DesRfs/fxNXV6GgugoFabcbHLewtYOrrz/c/APh6hcAV79A2Dk5t7s/QgjpSCgpIUTPuLu7IyQkpMGx4OBgHD16FADw999/o7S0FF5eXurzSqUSixcvxqZNm5Cbm9uifg4fPowlS5bgq6++Qv/+/WFra4v169fj6tWrDa4z/c+iYIZhmjymUunxKmg9x7IsSktLce/ePfVXRUWFzvqvVRp/UiI3aX4aW1tJaqqRdysRebcS1ces7R3g6hcAt4AgeAQGwz0wCGaWVlqLgRBCDB0lJYTomYEDByI9Pb3BsYyMDHh7ewMApk2bhlGjRjU4P2bMGEybNq3RYvO4uDgMGTIEQN30rYSEBMybNw8AsHXrVkgkEgwYMEA9OpKdna2Nh0T+QyqVoqCgQJ2AFBYWQiLhLjEQyppeGG5MpGz7pri1Vq2gEndvxOPujXgAdWtVHLt6wT2wGzwCu8M9qDscu3TVaUxE96KjozF8+HBUVlbC3t6e63AI0WuUlBDCkevXr+P5559HXl4eWJaFubk5du7ciUWLFmHAgAFYu3YtpkyZgmvXrmHz5s1gWRbPPvssjh07BkdHxwZtmZqaws3NDd26dWtw/Ouvv0ZgYCCCg4OxceNGVFZW4tVXXwUAODk5AQBiYmJgZWWFAwcOID4+vsmdvkj7iMVi5ObmIicnB3l5eSgtLYU+LecTioVch6B1YmUNp/2zrAoP8nPxID8XyefPAKgbTfEKi4R3RE94hUfCtrMTpzEao0uXLmH9+vVISEjA/fv3cezYMTzzzDMNrklLS8OyZcvw119/QaFQICQkBEePHm0wGk0I0T5KSgjhQE5ODh5//HH4+vpi9+7d8Pf3x5UrV+Dp6Ym+ffvi2LFjWLFiBdasWQNra2uYmJi0aS3BunXrsG7dOiQlJSEgIADHjx9XJyOPP/44jh8/jmXLlsHExAQvvvgi5syZg1OnTmn64XY4crkceXl5yMnJwd27d1FcXKxXSch/CUW1UPFY8FTGW4BQKKnkOoRGagWVSLscjbTL0QCAzl26wjuiB7zDe6BrSDhN99KA2tpaREZG4tVXX8Vzzz3X6Hx2djYGDRqE1157DatXr4adnR1SUlLUG44QQnSHdt8ihAOPP/440tLSUFVV9cjrrl+/jsceewy//vorJk2ahAkTJuDYsWMA/tlhy83NTf3Ju5OTE3788Uf4+/vD19cX3333HVauXKlehG5ubo53330Xa9aswZdffomlS5ciMTERPXr0QHFxMcLCwiCVSnHjxg0EBgZq/edgTIqLi5GdnY3s7Gzk5+dDoVBwHVKr/M90OCxqeM1faKBu8i/jTtYVrsNoMR6fD7eAbvAOr0tS3AO7gcfncx2WQWMYptFIydSpU2FqaooDBw489L4NGzZgz549uHv3Ljp37owJEybgiy++gI2NDQAgLy8P8+bNw+XLlyGTyeDj44P169fjqaeeajR9SyQSYdKkSaiursaJEydoShch/0IjJYRwIDExEaGhofD09ERRUREsLCwwefJk7N+/X32NQqHA6NGjMXHiREycOPGhbalUKmzbtg0sy2LJkiUYN24cYmNjAdRtK8zn89W1SC5cuKAeKfm3rKws9OzZE2ZmZsjMzISbm5vmH7SRUSgUuHv3Lu7cuYOMjAwIhYY9BUpkpTTqpKSyupjrEFpFpVSiKD0VRempiP3lEMwsreAZEgbv8J7w790XnVzo/2h7qVQqnDhxAu+++y7GjBmDxMRE+Pr6YsWKFQ0SFx6Phy1btsDX1xd3797FnDlz8O677+Kbb74BAMydOxcymQyXLl2CtbU1UlNT1QnLvwkEAowbNw42NjaIioqClRWNhBHyb5SUEMIBmUyGxMRE9O/fH+vXr8eJEydw4MABmJubY9euXQCAcePGgcfjqWuGPMw777yDt956CwBQU1ODVatW4aeffgJQN3VhwIABmDx5MgBg+PDhje5PTU3Fq6++CkdHR6SkpNAnd48gFouRkZGBO3fuIDs7GzKZjOuQNEZioQRg2ux1BokByivucR1Fu8jEItxNuIa7Cddwce8OOHv7IqDv4wjo2x8uPn5ch2eQSktLIRQKsW7dOnzyySf4/PPPcfr0aTz33HO4ePEihg4dCgDq+k8A4OPjg08++QSzZ89WJyX5+fmYNGkSwsPDAQB+fo3/PYqLi/HCCy8gMDAQhw4dgpmZkRcrJaQNKCkhhCM2NjaIiYkBALz44otITk7G4cOHsWvXLhw8eBDnzp1DfHx8gxohTTlw4AA2btwIoVAIhUIBhmFQUlIClmXx8ssv49ChQ7C1tUWvXr0wb948PP/88w3unzZtGlxcXJCVlQVLS0utPV5DJRAIcOfOHaSnpyMvL89otz4WmcoAGOc8esaSD4XCeBJIACjLy0FZXg5if/kRnVzdENDncfg/NhBdAruDxzPetUGaVP9/eeLEiVi0aBEAoEePHoiJicH27dvVScm5c+fw2Wef4c6dO6iuroZCoYBEIoFIJIKVlRXmz5+Pt956C2fPnsWoUaMwadIkRERENOhr9OjR6NevH3766SfwaRoeIU0y3rF6QvQYn8+Hh4dHg2MhISEQieq2Zj169ChUKhV69+4NhmHAMAyUSiV+++03mJjUfZZw48YNAHXrU/78808kJibivffea/Cm+YcffkBsbCwmTJiAjIwMTJkypdFUMF9fX5SUlOCPP/7Q5kM2KBUVFbh06RK2b9+OTZs24fTp08jJyTHahAQARIxxvWlvwNK4X+qqSoqRcOI3nDjyKx7/7Dw+/P02ruVUQKWiJaOP4uTkBBMTkybrQuXn5wOoW7s3fvx4RERE4OjRo0hISMDXX38NAOqR0tdffx13797FtGnTkJycjD59+mDr1q0N2hw3bhwuXbqE1NRUHTwyQgwTjZQQwgFPT08UFzec456enq6eY/zFF19g+vTpDc5PnjwZffv2xYcffggASEhIAAAEBQWhT58+AOp29VIqlQgODlbf9/jjj+Pxxx8HAPTt2xcnT55s0O5PP/2EN954A1OnTgWfz8ekSZM0+EgNR21tLW7fvo3k5GQUFBRwHY7O1eq4jocuKc1av3OdIUo190FphRT7YvOwLzYPrnbmGBvmjnER7ujj7QCGoRGUfzMzM0Pfvn0fWRcqISEBKpUKX331lXrU+siRI43a6tq1K2bPno3Zs2djxYoV2LVrF95++231+XXr1sHGxgYjR45EdHR0o0SIEEJJCdGSR+0NL5fL8f777+PkyZO4e/cuOnXqhFGjRmHdunUNRg8yMjKwdOlSXLlyBTKZDBEREfj444+bXBdhaFavXo2ZM2fiiSeewLJly/Drr78iMTFRvTYkMDCw0e5XDMPA3d0dY8eOBVA3txkA1q9fD1tbWxQUFODQoUNgWRavvvoqxGIxhgwZgokTJ2Lw4MHIz89HamoqnJ2dG7TL5/Nx7do19OnTB88//zyOHTv2yIX1xkQqleLOnTtITk7G3bt3jXokpDlChfEmJTKelOsQtM7U0gpnBZ0aHCuplmJvTC72xuTCzc4Cz/bqgil9usLXyZqjKHVPKBQiKytL/X1OTg6SkpLQuXNneHl5YenSpXjhhRcwZMgQDB8+HKdPn8Yff/yB6OhoAEBAQADkcjm2bt2KCRMm4MqVK9i+fXuDPhYuXIixY8ciKCgIlZWVuHjxYoMPhup9+eWXUCqVGDFiBKKjo9G9e3etPnZCDA0lJUQrHrU3vEgkwo0bN7Bq1SpERkaisrISCxYswNNPP43r16+rrxs/fjwCAwNx4cIFWFpaYtOmTRg/fjyys7MNfneoGTNmIDs7G1988QWioqJgZmaGadOmqRdOtsTo0aMBABKJRF2l3dnZGUKhEE5OTpDJZJBKpVi9erV6rYmPj0+jkRIAMDExwfXr19GrVy8899xzOH78OMaNG6eZB6tnlEolsrKykJycjPT0dMjlcq5D0gtCSS3XIWiNRGW8j62euW8YJOKHj4QUV0vwbXQ2vo3ORl8fB0zp0xXjItxhZWbcbwOuX7/e4IOsd955B0Ddc/DevXvx7LPPYvv27fjss88wf/58dOvWDUePHsWgQYMAAJGRkdiwYQM+//xzrFixAkOGDMFnn33WYCRbqVRi7ty5KCgogJ2dHZ588kls3LixyXg2btzYIDEJCgrS4qMnxLBQnRKidU3tDf9f8fHx6NevH/Ly8uDl5YUHDx7A2dkZly5dwuDBgwHU7SxlZ2eHqKgojBo1CgBw8uRJLFy4EPfu3cPjjz+OGTNm4JVXXlHvCV9eXo558+bh0qVLqKyshL+/P1auXIkXX3xR3fewYcMQHh4OPp+Pffv2wczMDJ988gleeuklzJs3D7/88gtcXV2xdetW9ShFc1JSUrBs2TJcunQJLMuiR48e2Lt3L/z9/TFz5kwIBAL07dsXX3/9NczNzZGTk4Pk5GQsWLAAsbGxsLKywqRJk7Bhwwb11pLR0dF49913kZKSAlNTUwQEBCAhIQGJiYlgGAYLFy7E9evXwTAMAgMDsWPHDvW0LgI8ePAACQkJuHnzpnrtDvmHmZkZplcP5joMrSh0zMPl64e5DkOrinq/gKMVnVt1j425CcaFu2NKX0/09m7dvYQQomnGvfqPGIyqqiowDKPejtbR0RHdunXD/v37UVtbC4VCgR07dsDFxQW9e/cGANy7dw/PPfccJkyYgKSkJLz++utYvnx5g3YlEgl69+6NEydO4Pbt25g1axamTZuGa9euNbhu3759cHJywrVr1/D222/jrbfewvPPP48BAwbgxo0beOKJJzBt2rQWvZktLCzEkCFDYG5ujgsXLiAhIQGvvvpqg2J658+fR3p6OqKiovDnn3+itrYWY8aMgYODA+Lj4/Hzzz/j3Llz6hEQhUKBZ555BkOHDsWtW7cQGxvbILF6+eWX4enpifj4eCQkJGD58uUwNTXS7V1bQaFQIDk5GXv37sW2bdsQGxtLCclDyGQyyM2N8zOqGnEF1yFolYm5BU5X2bf6PqFUgZ+u38Okb2MxasNf2PFXNspqjH+qGyFEP9FICdG65kZKJBIJBg4ciO7du+OHH35QHy8oKMAzzzyDGzdugMfjwcXFBSdOnEDPnj0BACtXrsTvv/+OlJQU9T3Lly/H559/rh4pacr48ePRvXt3fPnllwDqRkqUSiX+/vtvAHVD8Z06dcJzzz2nLmZYXFwMd3d3xMbGqheNP8zKlStx+PBhpKenN5kYzJw5E6dPn0Z+fr56r/pdu3Zh2bJluHfvHqyt6+Z7nzx5EhMmTEBRURFMTU3h6OiI6Oho9TaV9RXdExMTMWTIEGzduhUzZsx4ZGwdBY2KtM0LVsNgW2F825XGKU8jL/8m12FojW1wb6yV9NNIWyY8BsO6uWBKH0+M6O4CEz59dkkI0Q3jnkxK9J5cLseUKVPAsiy+/fZb9XGWZTF37ly4uLjg77//hqWlJb777jtMmDAB8fHxcHd3R1paGh577LEG7fXv37/B90qlEmvXrsWRI0dQWFioXmfx30q6/95Tns/nw9HRUV0ICwBcXV0B1BXbak5SUhIGDx78yJGK8PDwBsWz0tLSEBkZqU5IAGDgwIFQqVRIT0/HkCFDMHPmTIwZMwajR4/GqFGj1D83oG6e9Ouvv44DBw5g1KhReP755+Hv799srMZEoVAgNTUVCQkJyMvL4zocgyS2VMAWxpeUVFQWch2CVt219gMkmmlLoWJxLq0E59JK4GRjjil9PDFjgA9c7Yyzhg0hRH/QRyCEM/UJSV5eHqKiomBnZ6c+d+HCBfz55584fPgwBg4ciF69euGbb76BpaUl9u3b1+I+1q9fj82bN2PZsmW4ePEikpKSMGbMmEaVuP+bQDAM0+BY/VaaLdmdqSUFCP+dfLTUnj17EBsbiwEDBuCnn35CUFAQ4uLiAAAfffQRUlJSMG7cOFy4cAEhISE4duxYq/swRNXV1Th37hy++uor/Prrr5SQtIPYXNH8RYbGhEFNzQOuo9AavqkpTldpZz3IA6EU30RnY9DnF7DopySkFFVppR9CCAEoKSEcqU9IMjMzce7cOTg6OjY4Xz/l5r/VzHk8njoxCA4ObrQ2pP5Ner0rV65g4sSJ+N///ofIyEj4+fkhIyND0w+ngYiICPz999+t2tUpODgYN2/eRG3tP7sEXblyBTweD926dVMf69mzJ1asWIGYmBiEhYXh0KFD6nNBQUFYtGgRzp49i+eeew579uzRzAPSU4WFhTh69Cg2bdqEy5cvQyw23i1tdUXEN74Cioy1cU8IsPYNgUCh3ZdyuZLFscRCjNtyGVN3xuJcaglo5jchRNMoKSFaIRQKkZSUhKSkJAD/7A2fn58PuVyOyZMn4/r16/jhhx+gVCpRXFyM4uJi9QhG//794eDggBkzZuDmzZvqmiU5OTnqrWpnz56NzMxMLF26FOnp6Th06BD27t3bII7AwEBERUUhJiYGaWlpePPNN1FSUqLVxz5v3jxUV1dj6tSpuH79OjIzM3HgwIFGBbr+7eWXX4aFhQVmzJiB27dv4+LFi3j77bcxbdo0uLq6IicnBytWrEBsbCzy8vJw9uxZZGZmIjg4GGKxGPPmzUN0dDTy8vJw5coVxMfHN7lPvqFjWRVKy84gLu5L7Nq1C8nJyR26toimiWB8i5xZI128Xy/PLkCn/cXdrcDr+69j5Ia/cCAuDxJ5xyhMSQjRPkpKiFZcv34dPXv2VC9Kf+edd9CzZ0988MEHKCwsxPHjx1FQUIAePXrA3d1d/RUTEwMAcHJywunTpyEUCjFixAj06dMHly9fxu+//47IyEgAgJeXF44ePYrffvsNkZGR2L59O9auXdsgjvfffx+9evXCmDFjMGzYMLi5uT1ya2JNcHR0xIULFyAUCjF06FD07t0bu3bteuQaEysrK5w5cwYVFRXo27cvJk+ejJEjR2Lbtm3q83fu3MGkSZMQFBSEWbNmYe7cuXjzzTfB5/NRXl6O6dOnIygoCFOmTMHYsWOxevVqrT5OXVIqpSgoPIS4q08gOXkOpLJDMDen6tSaVqs0vtEmuYnx1qHh8U1wpsax+Qu14G5ZLVb9dhv9PzuPL8+ko7RGQ4taCCEdFu2+RYxKdHQ0hg8f/sjdt4jhkMsrca/gIAoK9kMub7itq0w2GVfjml+/Q1rOw9kNT90L5ToMjar1EOHPK1u5DkMr7ALC8KlSP2rLmPF5mBDpgdcH+yLY3a75Gwgh5D+Me7ItIcQgSaUlyM3bgaKiI1Cpmv703tbmKoChAGjERFNqxMZX+VykrOE6BK0ptA8EyrmOoo5MqcLRGwU4eqMAgwOdsHBUIBVkJIS0Ck3fIqSVZs+eDRsbmya/Zs+ezXV4Bk0qLUF6xkeIiR2OgoJ9D01IAEAqu4fwcFpPoknCWiFUPOMaPBdKBFyHoBUMj4ezQieuw2jS35kPMOnbWEz//hpu3hNwHQ4hxEDQ9C1CWqm0tBTV1dVNnrOzs4OLi4uOIzJ8Emkx8vK2o6joJ6hULd8BysIiAlFnI7UYWcfzsulwWNYYz+dVN00u407mFa7D0Dg73+74FMO5DqNFRnZ3waLRQQjr0onrUAgheoymbxHSSi4uLpR4aIhUWorcvG9anYzUk0huwcenB3Jz6bMVTZFYKY0qKamsKuY6BK0o6RwEVDR/nT44f6cUF9JL8USIKxaNDkJ3N1pzQghpjJISQojOyeWVyM3bgYKCA1Cp2rdrT0BALnJzvTUUGRFbKOGAh+8UZ2jKK+5xHYLmMQyixIb1wQjLAmdSSnA2tQRPhbtj0ahABLjYch0WIUSPUFJCCNEZhUKI/PzdyL/3PZRKoUbalMlj0bmzDyoqaLREE0QmMgAWXIehEYwlHwqF8RWEtPMKQJ7YMBNHlgVO3LqPU8n38XSkBxaMCoKvkzXXYRFC9AAlJYQQrVMqJSgo2I+8/J2Qyys12jbLyhEe8QB/RXNTr8HYiPhGVEDRynimof1buVM3g5m69TAqFvgtqQh/3LqPZ3t2wYKRgeja2YrrsAghHKKkhBCiNSzLoqTkOLKy10Mqva+1fnjMZZibT4TUiN5Pc6VWZTw/RKWZcVYbvyBx5ToEjVGqWPySUIDjN4swc4AP5o0IgJ2FYY4CEULaxzg/RiKEcK6q6gauJ0xGSuo7Wk1IAEChrEbPnsZXjZwLtQoR1yFojIxnPAlWPTtPX2SIzLgOQ+NkChV2XrqL4eujcSAuD0oVTcckpKOhpIQQolFicSGSb8/H9YTnUV2dpLN+rW2ugqE6iu0mlBpPUiJRGV8xyErX7lyHoFXltTKs+u02xm6+hL8yyrgOhxCiQ5SUEEI0Q1YLUcI2xF0djdLSE7rvXnYPYeHGOV1Hl2pEmtmAQB+I5E3XEzJkl2QeXIegExklQsz4/hpm7rmG7DLj+Z0khDwcJSWEkPZL/gXY1heWf66Ck4K7+e5ubsmc9W0spFIpFGbGMXWmRlTOdQgaZeveFbeFxjd161Gi08vw5KZLWHsyDUKpgutwCCFaREkJIaTtim8De8YBR18DqgvBsCp0z5FzFo5EkgxfX5rD1V4SWxXXIWiEoKaE6xA0SugewnUInJArWey8dBcjvozGrzcKwLLGkTQTQhqipIQQ0nriSuDEEmDHECDvcoNTpoXJCJRy9+bJPyCHs76NhdjSOD6RLhcUcR2CRl1RdIypWw9TWiPFO0duYvL2WNwurOI6HEKIhlFSQghpnZs/AVv7APG7ALbpNRyeaVkwYc11HFgdmSwWjo701NYeIjMjSEpMGNRUG89CaRsXdyTUGEdRy/ZKyKvE09su46PjKRDJjOB3lRACgJISQkhLVeYCB54Fjs0CRA8eeSmvugjh1YG6ies/WFaB8HDjeTPKBRHf8KugM1Z8rkPQKHGXUK5D0CsqFtgbk4snNl7C35n0/50QY0BJCSHk0VRKIGYr8E1/IPtCi29zSL0KW5ajKuvMZVhY0NqSthJBwnUI7cYa2aBCHNuF6xD0UkGlGNN2X8OSn2+iSsTdejZCSPtRUkIIebj7N4FdI4Cz7wPy1tWvYORihN/vrKXAHk2prEbPnsZXo0JXalWGn5TITYznDaq1owviqqy4DkOv/ZJQgFEb/8Lp29ot1GrMDh8+DIZhMHjwYK5DIR0UJSWEkMYUMuD8mrqE5H5Sm5uxzIqFh9JPc3G1gpV1HBVTbCOhzPALKMqMYLSnnrxrGNchGISyGilmH7yBtw4moKxGynU4GicWi2Fvbw+GYRp8RURENLjuzz//hJubm/q8tbU1YmNjOYqakJajpIQQ0lBhQt2uWn9/Bajav4g0KKsa4GAHT5msEOERVEyxLWrEhj/KJFbWcB2CxlwHTd1qjVO3izFqw1/4+fo9rkPRqIiICFRVVcHJyQk9evRQH8/MzFT//cKFC3j66afh5eWFQ4cO4fz581i4cCHs7Ow4iJiQ1qGkhBBSRyEFoj4AvhsNlKVprFl+yR10l3CzSNfV9RYn/Rq6WlEtWMawa0EIJZVch6ARlvadcanKmuswDE6VWI6lv9zCtN1XUVBp+CN/AJCfnw9bW1sMGzYMSUlJ6uMSiQQLFy4EAIwcORIsyyI+Ph4vvfQSRo4cif379yM0tO45OCkpqdFIS/1XfHw8ACA1NRUMw4DP56vP8fl8lJSU4IUXXlAf5/F4mDlzJkxMTMAwDMLCwiCTyfDUU0+Bz+eDx+Nh9OjRuv4xEQNGSQkhBLgXD2wfBFzZ/NBtftvDIzUVZqzu58RLJLfh50dzuFpLpVJBam3YSUl1MzvEGQrWOxws6He4rf7OfIAxGy9h75UcqFSG/Tvt5eWFmpoaHD16FAEBAY3OKxT/jGwz/5q7WlBQgEmTJgEAhgwZoj7+2GOPwd3dXf19eXl5g/ZUqroiqn5+flCpVOjatStu3LiB48ePw8PDAyzL4tixY/j111/x/vvvIyUlBR4eHigsLMSff/6JmTNn4ty5c9i9e7dmfgDE6FFSQkhHplQA5z8Gvh8DPMjQWjdMbRkiKrlZW+Lnf5eTfg2d2Nqwp75VVhnHgudEXleuQzB4tTIlPvojFS9/dxUl1Ya71ujq1asAAJZlkZWVpT5en4Ckpqaqjz399NM4fPgwgoKCAAC//vorAKC2tm5q5ksvvYS4uDgUFRVhxIgRAKAefVEq//m/v2/fPmRnZ8PCwgJyuRwJCQkYN24cAgPrtnz38/PD008/jY8//hiOjo6oqqpCQkICxo4di++//x5mZmb4+eeftfHjIEaIkhJCOqqKu8D3TwB/f6mV0ZH/skuLhT3rqvV+/ksmi4OTEz3VtZbYwrCTkvKKQq5DaDcLu064ILDhOgyjEXu3HE9uuoRzqSVch9Imw4YNAwAEBwfjq6++anT+3yMlf/75J6ZOnYqMjIYfNtUvij906JB6ataFC3VbvT94UDe6WFVVBQCwtLTEK6+8AoZhIJHUJXP/XZsiFArVf+/UqRMcHBxgYmKiPmZpaYmyMqojQ1qGXqkJ6YgSfwC2D65b1K4jjFKKsALdT+FiWQXCwkt13q+hE5kabgFFxpIPudxwPxGvx/MOh4qmbmlUpUiO1/dfx4e/34ZUYViJd3JyMgAgLS0NixcvVh9nWRabN29WJw4AsG3bNpw8eRKLFi1q0EbPnj0BAKampuDzH11glMfjYc+ePTh79ixsbJpOjuuneAFQrz151DWEPAolJYR0JGIB8PNM4Pc5gEzY3NUaZ54TD285F5XeL8PCyIrpaZuIZ8BbqloZxxv5ZFMvrkMwWvti8zBx2xVklRreLm1LlixRT8eqN27cOFy+fFn9/ezZszF27Fjk5+c3uO7evbodyV588UUoFAr06tVLfc7BwQEA1CMdtbW12LBhA0aPHg253Hjq/hD9RUkJIR1EYmki/ohaDKQc4zQO38xSMDp+6lEqa9Czl3HswKMrtSrDTUqUZob/yay5tQ2iBLSNqzbdKa7BhK1X8OO1/OYv1gO2trYAgM2bN+PgwYMNzllZWaFv377q783NzRESEoKjR48CqFv7AQAxMTEAgP379yMyMhI3btxQ3xMeHg7gn6TEzs4ON2/ehIODA6RSw30+IIaDkhJCjBzLsvgu+Tu8evpVrK6+iQzX7pzGw3+QjZBa3W8RbGUVB8bAt7nVpVqF4SZxMp7hTj2rZ+IbDjlrHCM++kwsV2LFr8mY+8MNVIn1ezTg+vXrsLKyglwubzRScvbsWQwfPlz9vUwmQ1raP1u77927FwBgb2+vPnbrVt2W6fVTrjp37gygLsEBgJqaulEkgUAAHo/eLhLto98yQoxYubgcs8/NxuYbm6FgFZAqpXjXpTMkppacxuWamggL1lanfcpkhYigYootJpQablIiVRl+8cc0cx+uQ+hQTiTfx1Ob/0ZCXgXXoTxUUFAQamtrwbJsg6+hQ4di5syZ6uu8vLwaXTN48GAAQGFh3QYQx44dU5+rXyA/atQosCyL8vJysCwLlUqlvkapVIJl//lQJzo6GizLIjs7W30sKysL9+833PVOIBAgMTFRWz8SYmQoKSHESF29fxXP//E8YopiGhzPFhbg8/ARHEVVhxELEFGu+61OXaiYYovViHS/5khTauVVXIfQLqYWljgj6MR1GB1OoUCMKTvisOV8psHXNCHEEFFSQoiRUaqU2Ja4DbOiZqFM3PRWjL9UJiMqaEiT53TF5k4MnFRddNqnRJICf3+aEtMSUqkUCjPDfGNWI9bfT7tbwtwvDBIV/Z5yQalisSEqAy99F4fSGsPfwY0QQ8Kw/x6PI4QYtCppFZb8tQRx9+OavdbOzBa/lFbDvfKeDiJrmrxrD1zyLdBpn+bmA3EuiptCjoZmqtUw2FQ8ettQfXRNdQY5eUlch9Fm93u/gF8qOnMdRofnZmeBHdN6I7KrPdehENIh0EgJIUYiW5CNl0681KKEBACqZTVY7h0IJcPdm07Te0nwkwXrtE+ZNA5OTvQpdEuILQ1zDU5FZRHXIbSZiZk5TlfZcx0GAVBcLcGUHbE4mqDbD04I6agoKSHECPx17y/87+T/kF/Tuq0tb1RlYXvkk1qKqmW87+SBx5rqrD8WSiqm2EJic/3ejahJJgyqqg3339fSLxRCJb006wupQoXFP9/Emj9SoaR1JoRoFT3zEWLgvkv+DvMvzodQ3raFybuqU3Hdu7eGo2o5niAf4UJdb1N8GZZGUmBPm0R8w9tal7E2vOlm/3bXxp/rEEgTvr+SgxnfX4NAZHj/JwgxFJSUEGKgpEopll1ahs03NkPFtr1YnJJVYoU1UGXloMHoWscxJR7WrL3O+lMqhejZw/C3jdW2WhhewTTWnOsI2o5vaorTVbSWRF9dznqAp7ddQXqx4VWBJ8QQUFJCiAEqqS3BjFMzcDLnpEbaKxaX4cPuj2mkrbZgZEJElLjqtE9Lq1gqptiMWpWY6xBaTW5igFPO/p+1bwgECnpZ1mf5FSI8980VnL59v/mLCSGtQs9+hBiYW2W38OKJF5FSnqLRds9XpuKnsCc02mZrWGbEwFXlrbP+ZLIiREa2fYSpIxDKDK+Aoowx3G1c82wDuA6BtECtTIm3friBr86mgzYwJURzKCkhxIAczz6OV06/8tD6I+21XpKDTNduWmm7OQxYdL+r2+lCzi5JOu3P0NSIDW+Km1hhmEUfeXwTnBE6ch0GaSGWBbZeyMIb+xMglCq4DocQo0BJCSEGQMWq8GX8l3jv8nuQqbS30FKqlOJdF0dITC211sejmBTdRpAkRGf9SSSp8Kd1xQ9VK6oFa2BT3ITSSq5DaBMb324okxn2Iv2O6FxaCZ75+gpyHxheAk+IvqGkhBA9VyOrwdzzc7EvdZ9O+ssSFmB9+Aid9NUUzzuZMNHhamVfv2yd9WVoVCoVpNaGlZRU1z7gOoQ2KbQP4joE0kZZpUJM+jYGSfcEXIdCiEGjpIQQPVZQU4CXT76My4WXddrvkcpknA8crNM+6zHV9xFRHaiz/mTSq3B2pqfCh5FYG9a6m8pqw1uAzDA8RNU6cR0GaYfyWhle3BmHc6klXIdCiMGiV2JC9FRmZSamn5qOnKocTvr/gFeBYntPTvq2T7kKO5Vu3qSxUCIsjN5IPIzY3LDmy1eUF3IdQqvZ+gShUGLCdRikncRyJd48mIAfruZxHQohBomSEkL0UFJpEmaenqm1Be0tUS2rwXKfblAyup/nzijECCu211l/LP6mYooPITIznC12GUs+ZHLD28a4pLPuRgaJdilVLN47dhvrz9zhOhRCDA4lJYTomZjCGMyKmoVqWTXXoSChKhM7I8dw0rdlVhy6KHSzCl2prEXPnoa5a5O2iRgDKqBoZYAvaQyDKLFua/QQ7fv6YjZ+PB0NKA1rpJEQLhngMzghxut07mnMuzAPYoX+fNq7ozoNN7x6cdJ3YJYAYHUzgmFpGUPFFJtQyxpO3Q+lmZLrEFrNzssfeWJTrsMgGja4Cw+Tr74AHH4RMMB6P4RwgZISQvTEkfQjWHZpGeQq/Zouo2SVWG7DoMrSXud980vTESIO1UlfMlkxevQwvDe12ibUowS5OTJGe9tla0u5Ezd1gYj2hLuYYnv1XJiyEiDzLLB/IiA2zK2qCdElSkoI0QM7b+3Ex3EfQ8Xq505H98VlWB3cn5O+3VKTYcZa6aQvJ+cknfRjSIRSw6m/IGUN7xPpCxI3rkMgGuRtb4o98ndhLS//52DBNeD7sUB1EXeBEWIAKCkhhEMsy2J9/HpsTdzKdSjNiqpMwZHQ0TrvlxGVI6LSVyd9SSRpCAjQSVcGo0ZkOGttRPIqrkNoFTtPH2SIzLgOg2iIk7UJ9puug5O4iR0Ty9KA3WOACm52UyTEEFBSQghHlColVl1Zhf2p+7kOpcXWS3OR7aL7Im92abFwUOnmE2Vf3yyd9GMopFIpFGaGsdamRlLBdQitInAJ5joEoiHWZnzs7fQdvGsSHn5RVT6wdxzwgJ5jCGkKJSWEcECqlGJR9CL8nv0716G0ikQpxVJXF0hNLHTaL6OUIbRAN31KpFfh4kJPjf8msdHPaYX/JagxrHozl+TuXIdANMCUz2C72x8Iqzjb/MXVhcDep4CydO0HRoiBoVdeQnSsVl6Lt869hYv3LnIdSptkCvOxPmKkzvs1z70Ob7kuRmlUCA0r1kE/hkNiaRgbAFRUGs6cfVv3rkgWmnMdBmknhgG+9L6GwaUHW36TsKRuxKQkRXuBEWKAKCkhRIeqpFV49cyriC+O5zqUdvmpMhkXAgfrvF+/jPvgQfvFHFnV37CiYopqBlFAkc+gqrqU6yhaTOhOU7eMwXt+OZhYtLH1N9aWAXvHA/dvaj4oQgwUJSWE6IhQJsSbUW8itTyV61A04gNeJYrtu+i0T155DkJqtf9mTqkSoWfPGq33YyhEJvqflDDWfIA1jLUvABCj0O3/HaJ5b/gJ8Hrhe21vQFwB7JsAFDxiHQohHQglJYTogEguwpzzc5BSbjzD9VWyaqzw6Q4Vo9unEZeURFjCTuv9WFjEgkfPkACAWuh/AUVWt8uc2sXGxR3XawwoYNLIsz5yrCyc2/6GJFXAgWeA/Kvtb4sQA0cvuYRomVQpxfwL85FYmsh1KBp3vSoTOyOe1GmfjKQKEWXa/5RZJi9GZA+F1vsxBLUq/U9KFCaG828l7qKbgqBEOwZ34eGLkjfBMBoamZNWAwefA3KvaKY9QgwUJSWEaJFcKcfCiwtxtdh4PwXbXpOGpK49ddqn9Z0YOKs8td6Pk5PxJZJtIZTpf1FCKQyn8vxVVvu/u0Q7Iv5drV2TZELg0BSg4Lpm2yXEgFBSQoiWKFQKLL20FJcLL3MdilYpWSWW2fJRbdlJZ30yrBLBudpfPyCR3EFgoNa70XtCif5XdRerDKPIo7WjM2KrLLkOg7SBj70pvv9vtXZNkgmBg5OA4mTttE+InqOkhBAtULEqrLy8Eufzz3Mdik4UiUvxUfAAnfZpWnAT/tLuWu/HxydT633oO2GtEKympqpoSa1EwHUILSLvGsZ1CKQN6qq1r226WrsmSQTAgWeBB/S8QzoeSkoI0TCWZfFhzIc4lXOK61B0KqoyBb+EjtJpn17pueDDVKt9SKTX4OrasbcHVqlUkFrrd1JSLXrAdQgtksB05ToE0ko25nXV2r1qdDSds7YM2D8RqMzTTX+E6AlKSgjRsLVX1+K3rN+4DoMTX0jzcddFd/OdeIIChFdre7REhdBQKqYosdbvqu6VVfe5DqFZlvad8ZfAiuswSCuY8Rlsdz3esmrtmlRdWJeY1NBzD+k4KCkhRIO+uv4VDqcf5joMzoiVEix1dYWMr7tK1Z1Tr8GaddBqH0rVZVhbd+zRErGFfu9uVV5ewHUIzWK9w8CiY/8eGRKGAdZ7XcWg0h+4CaAypy4xqdXSGhZC9AwlJYRoyNdJX2Nvyl6uw+BchjAfX0bobhoXI6tFRImLVvtQqUTo0cGLKYpMZFyH8FCMJR8yuf7vvpXE9+I6BNIK7/nlYOL9TdwGUXYHOPgsIKnmNg5CdICSEkI0YHfybmy/uZ3rMPTGj4JkRAcM0ll/lhkxcFf6aLUPc/Mr4PO12oVeE/H0NymBpf6/lFnY2uGiwIbrMEgLzfKvbF+1dk26fxP44XnAABJvQtpD/5/JCdFzR9KPYNONTVyHoXdW8atQ2sldJ30xYBF0VwRocS22XF6KyB5y7XWg5/S5qrvSXMl1CM3i+YRDwdLULUPwrI8cKwrmcR1GQ/figKOvAyr9XttFSHtQUkJIO1wpvILPrn7GdRh6SSCrwgrfUKgY3TzNmNxPRTepditlOzp23GKKtXr8Ka1cn0dx/t9tM2+uQyAtMMST0Wy1dk268ydwehnXURCiNZSUENJGmZWZWPLXEihY/V4AzKVrVRn4LuJJnfXXJe0OTGGhtfYlknQEBWmteb0mlOpvVXeJSn9jAwBzaxucE9hyHQZpRoSLKb6tmqf5au2adG0nELOV6ygI0QpKSghpgwfiB5h3fh6EcsOoIs2lb2vuIKlrD530xdSUIFwQoNU+vH0ytNq+vqoR6e/vukhexXUIj2TiGwapil5u9ZmPvSn2yJZqr1q7Jp1dBaQc4zoKQjSOniUJaSWJQoL5F+ajqLaI61AMgoJVYLmdKWosOumkP/vUOHRinbXWvkQSDze3jrc2QCKVQGmqh1NaANSIK7gO4ZHumPtwHQJ5hPpq7Y6SXK5DaSEW+PVNIC+W60AI0ShKSghpBZZlsfLySiQ/SOY6FINSKCrB6pABOumLUUgQVmSnxR5UCAnV/0J92iC21c9FtlXCMq5DeChTC0ucFthzHQZ5CBtzPvba7dJdtXZNUUqBwy8CZR1z5JYYJ0pKCGmFTTc2ISoviuswDNKZyhT8GjJSJ31ZZF+Fp0J707iUysuwttZa83pLYqmfu1xVCAq5DuGhzP3CIFF1vJE1Q2DGZ7DD9XeEVRroc7q4EvhhMiAs5ToSQjSCkhJCWujXzF/x/e3vuQ7DoK2T3cNdF+2u+agXkFkOaGkLVpVKjJ4dsJiiyEwPt0TmMxBUlXAdxUNlWvpyHQJpAsMAX3rHYWDpIa5DaR9BHnBoCiCr5ToSQtqNkhJCWuDq/av4OO5jrsMweGKlBMvc3CHjm2u9L35ZJkLE2tsi2KwDFlMUmehfUsJY8wFWP9e6mJiZ43SVA9dhkCa873cXTxdt5joMzShKBH6bw3UUhLQbJSWENOOu4C4WRS+CQkVb/2rCnZo8bIgYpZO+3FKTYQ7tzLOSy8vQo4MVUxRBynUIjbDa2wG63Sz9QiFU0susvnnTrwKvFb7PdRialfobcGk911EQ0i70bEnII1RIKjDn/BzUyDreVB1t+kGQjL8CBmq9H0ZUjohyH62137nzDa21rY9qVfpXQFFhor8fFuTY+HEdAvmP53zkWF74NtdhaMeFT4H001xHQUibUVJCyENIlVLMvzAfhUL9XURryFbxq1Fm56b1fmzTYtBZ5a6VtiXSDHTrppWm9ZJQpn9FCqXQz0J3PBMTnKly5DoM8i9DPRl8UfKGflZr1wgW+PUN2pGLGCxKSgh5iFVXVuFm2U2uwzBalbIqrPALg4rR7tMQo5Ij9J6p1tr38k7XWtv6pkaif4tpxSr9HMW08QtBhYJeYvVFpIspvhXMgQkr4zoU7ZJW120VLNHvgqKENIWeMQlpwoHUAziVc4rrMIze1aoMfB8xRuv9mOXdgI9cO0MaEkk83N07xlOpsFYIVs8+Za6VCLgOoUn5drrZZY40z9fBFN/LlsJKUcl1KLpRngUcfR1Q6WddIUIepmO8khLSCrfKbmFDwgauw+gwvq5Jxy3PSK3345teCB5rooWWWQSHdIwpfiqVClIr/UpKqkUPuA6hER6fjzM1TlyHQQA4W5tiP/9TA6rWriGZZ4ELa7iOgpBWoaSEkH+pklZhyV9LaKctHVKwCrzbyQxCC21WYQd4FbkIrQ3WSttK5RXY2HSMAnkSG/369FVQXcx1CI3Y+HRHqayD7Reth2zN+dhrtx1dhUlch8KNyxuB20e5joKQFqOkhJD/x7IsVl5eifu197kOpcMpFJVgTcggrffjnHoDVqzmk5+6YoodYw632EK/EvYH5QVch9BIkUMg1yF0eGZ8Bttdf0do5XmuQ+HW7/OAklSuoyCkRSgpIeT/fX/7e1wquMR1GB3WqcrbOBYyUqt9MJIqhJd5aKVtU7MYmGhjdpieEZnoz0JhxoIPmZ7tCMYwPEQJnbkOo0NjGOArr1jDr9auCXIR8PNMqvhODAIlJYQASChJwLbEbVyH0eF9Ji9ArrO/VvuwTo+Bi6qrxtutK6aoP2/YtUXE06OCkVb69xJm6xOIAmkHyE712Cq/bEy4v4XrMPTHg3TgxGKuoyCkWfr3jE6IjlVIKvDuX+9CwerXtJSOSKwQ4113D8j5Zlrrg2FV6J6r1ErbDg4JWmlXn4hY/akLojTTzr9je5R27kCFa/TQm/4VeLVwFddh6J+bPwKJP3AdBSGPREkJ6dBUrArLLy1HqbiU61DI/0urycOGiNFa7cO04BYCpJpf9C6RZqF7d/3anUrThEr9qeou5+vZyBTDIErsynUUHdZzPjIsLzDSau2acHIJUHqH6ygIeShKSkiHtuPmDsTej+U6DPIfPwhu45L/AK320fXOXZiwmh+R6epl3MUUhVL9mZsuYfVrPYldV3/kimnqFhfqqrXPMuJq7RqgXl+iX/9vCKlHSQnpsOLux2H7re1ch0GawILFKlMhHthq71NnXlUhwqqDNN6uRHIdHh7G+9RaIxJyHYKaSKZfO55VONPULS5EunaQau2aUJYGnFrKdRSENMl4XzkJeYQyURmWXVoGFatfNRfIPyqkAqwIiAAL7dX/6Jx6DbZsZw23yiI4WP+2qdUUiUQCpal+fBpdI67gOoQGLkjduA6hw/F1MMUe6eKOU61dExIPAjd/4joKQhqhpIR0OEqVEksvLUWFRL/e0JDG4gTp+D7iSa21z8hFCCt21Hi7CuUV2NoZbzFFfSmgWCUs4zoENdsuPkiv1d4GDaSx+mrtnSX5XIdieP5cBJRlcB0FIQ1QUkI6nK+TvkZCifHvkmQsttWmI9kzQmvtW2bGwV3pq9E2VSoJevTQr6lFmiSy1I9dryoERVyHoFblpvmNE8jDdfhq7e0lrwWOvgYo9WiLb9LhUVJCOpSk0iTsvr2b6zBIKyhUCrzbyQJCC81XYgcABiyCsoWAhmckmZpeMdpiimJzPXgjw2cgqCrmOgq1SzJ3rkPoMMz4DHa4/ErV2tur+BYQvY7rKAhRo6SEdBhSpRSrrqyidSQGqEBUjI9DBmmtfZPiNHSThmq0Tbn8gdEWUxSZcJ+UMFZ8gNWPtS227p5IFppzHUaHwDDABq8YDCijNREacXkjUHCd6yiaNGzYMCxcuFBr7fv4+GDTpk1aa5+0HiUlpMPYemMrcqtzuQ6DtNHJytv4PXik1trvkpoGM9ZSo23aG2kxRRGkXIcADf9TtYvQPYTrEDqMD/yyMP7+Vq7DMB6sEjj2Jm0TTPQCJSWkQ0gqTcKBtANch0Haaa2iEHlOflppmxGWIlzgr9E2pUZaTLFWxX0BRYWJgusQ1GIUHlyH0CHM9i/HK4UfcB2G8SnPAs59yHUUhFBSQoyfRCGhaVtGQqQQYamHJ+R87exy1Ck1Fp1ULhpts6uX8VVQFsq5T0pkjITrEAAANi7uuF6jR8M2RmqSjwzLC6lau9Zc2wVkX+Q6ikYUCgXmzZuHTp06wcnJCatWrQL7/9M2fXx88PHHH+PFF1+EtbU1unTpgq+//lp9L8uy+Oijj+Dl5QVzc3N4eHhg/vz5D+3ru+++g729Pc6fp7VKXKGkhBi9rYk0bcuYpNXkYlPEaK20zSilCCu00WibEkkCPDyMa3tgoZj7AopiRQ3XIQAAJF1o6pa2DfNk8HnJLK7DMHIs8PtcQCzgOpAG9u3bBxMTE1y7dg2bN2/Ghg0b8N1336nPr1+/HpGRkUhMTMTy5cuxYMECREVFAQCOHj2KjRs3YseOHcjMzMRvv/2G8PDwJvv54osvsHz5cpw9exYjR2pvmjB5NCPdG4aQOomliTiYdpDrMIiGHRDcRn///hiUHavxti1yrqGre3/cM8nUUIssugcXoqjIeKb41NQKwTIsGJa7ZEsoFXDW979dZT25DsGoRbqa4hvBLKrWrgvVhcCpd4HndnIdiVrXrl2xceNGMAyDbt26ITk5GRs3bsQbb7wBABg4cCCWL18OAAgKCsKVK1ewceNGjB49Gvn5+XBzc8OoUaNgamoKLy8v9OvXr1Efy5Ytw4EDB/DXX38hNFSzG56Q1qGREmK0aNqW8WLB4j1TER7YaHaqVT3/jDIwGnx6VCovG1UxRZVKBZkVt2tlqkUPOO0fAKw6OyOmyorrMIyWH1Vr171bPwGpv3Mdhdrjjz8OhvnnubN///7IzMyEUqlUf/9v/fv3R1paGgDg+eefh1gshp+fH9544w0cO3YMCkXDtWhfffUVdu3ahcuXL1NCogcoKSFGa0viFuRV53EdBtGSCmkl3guMBAvNv9nnP8hCiEhzL1AqlRQ9egg01p4+EFtzm+wLqrmvUaLoSm9itMXFxhT7+J9QtXYunFgMiCq4jqLdunbtivT0dHzzzTewtLTEnDlzMGTIEMjl/2xpPnjwYCiVShw5coTDSEk9SkqIUbpRcgM/pP3AdRhEy2IE6dgbMUYrbbum3IQFq7n1JcZWTFFswe3uV+WVhZz2DwA3eF25DsEo2Zrzsdd2O7oKb3IdSsdUWwZEreI6CgDA1atXG3wfFxeHwMBA8Pl89ff/PR8cHKz+3tLSEhMmTMCWLVsQHR2N2NhYJCcnq8/369cPp06dwtq1a/Hll19q8ZGQlqCkhBgdiUKCD2I+oGlbHcSW2gykdGl68WJ7MOIKRJR7aaw9ubwcPXpyX99DU8Rm3BVQZCz4kEpqOesfACztOyNaYM1pDMbIzISHHS6/IoSqtXMr8SCQ8zfXUSA/Px/vvPMO0tPT8eOPP2Lr1q1YsGCB+vyVK1fwxRdfICMjA19//TV+/vln9fm9e/di9+7duH37Nu7evYuDBw/C0tIS3t7eDfoYMGAATp48idWrV1MxRY4Z0ed2hNTZfGMzTdvqQBQqBd61t8KRB7awlmp2RyabOzFwHBCKcp5mPpW3t78OYKBG2uJaLcPhwmMr7j9PY73DwFYbzzohfcBjgI1dL2PAfarWrhf+XAi8FQOYmHMWwvTp0yEWi9GvXz/w+XwsWLAAs2b9sxPb4sWLcf36daxevRp2dnbYsGEDxoypGz23t7fHunXr8M4770CpVCI8PBx//PEHHB0dG/UzaNAgnDhxAk899RT4fD7efpu2n+YCw9Zv+EyIEbhRcgOvnHmFRkk6oPEOYfjsxkmNtyvz6om/fe5prL0HZf9DWprhv5kN9+yOx7K6cNK3yo2Pn2PXctJ3vfSe/8NZgS2nMRibj/wzMbOQivjplSHvAiPe4zqKJvn4+GDhwoVYuHAh16EQDeH+4yZCNESulOPDmA8pIemg/qy8jT+CR2i8XbP8RPjKumusPc+uaRpri0tChYizvuV8bqfBmdvY4UKVZuvZdHRv+ZdTQqKPrmwCSo2vACzRT5SUEKOxP3U/FUns4D5VFCHfyVfj7fqk54PHama2q0SSgC5dDH+kpFbGXVIiVXHXNwDwfcOh4LBGi7GZ7CPFMqrWrp+UMuCPBQBNqiE6QEkJMQqlolLsvKU/BZ8IN2oVIrzbxQtynqlG2+VV5iNMqLnRku7dCzTWFldqRNwtNBcpqjnrGwBum3o3fxFpkeGeDNaVvMl1GORR7sUBCXu4jqKR3NxcmrplZCgp0aLPPvsMffv2ha2tLVxcXPDMM88gPT29wTXDhg0DwzANvmbPnt2orb179yIiIgIWFhZwcXHB3LlzdfUwDMKGhA0QcTidhOiPlOocbIl8QuPtOqUmwIrtpJG2FMor6NTJsJ9+xRIxFCbcfHpaLeauhoKZlTXOVdFaEk3o4WqKbwRvUbV2QxD1EVDDfW0gYtwM+1VRz/3111+YO3cu4uLiEBUVBblcjieeeAK1tQ0/YXzjjTdw//599dcXX3zR4PyGDRvw3nvvYfny5UhJScG5c+fUu0sQIKk0CSfunuA6DKJH9gluI8bvcY22yUhrEFHqrpG2VCopIiINvziZxJab9VtVwlJO+gUAU99wSFX00tlefp1NsUfyDiwVAq5DIS0hrQLOrOQ6CmLk6JlVi06fPo2ZM2ciNDQUkZGR2Lt3L/Lz85GQkNDgOisrK7i5uam/7Ozs1OcqKyvx/vvvY//+/XjppZfg7++PiIgIPP300w3a2Lt3L7y8vGBlZYVnn30WX331Fezt7dXns7OzMXHiRLi6usLGxgZ9+/bFuXPnGrTh4+ODTz75BNOnT4eNjQ28vb1x/PhxlJWVYeLEibCxsUFERASuX7+u+R9WG6lYFdZe5XYXHqJ/WLBYaSZGuY2zRtu1yoiBq1IztUtMTK7AVLOzzHROYqnkpN+KyiJO+gWAOxY+nPVtLFxsTLGP9wkcpJrb1Y7owO2jQF4M11EQI0ZJiQ5VVVUBADp37tzg+A8//AAnJyeEhYVhxYoVEIn+mYYUFRUFlUqFwsJCBAcHw9PTE1OmTMG9e/88mV+9ehWvvfYa5s2bh6SkJAwfPhyffPJJgz6EQiGeeuopnD9/HomJiXjyyScxYcIE5OfnN7hu48aNGDhwIBITEzFu3DhMmzYN06dPx//+9z/cuHED/v7+mD59OvRlJ+mjmUeRVmEcuxkRzSqXVuK9wJ5gobkFyQyrQrdczRQNVCgqDL6Yoticg6ruPAaCKm6mkZhaWOCsQDNT+DoqW3M+9tl+Q9XaDdXJdwEVNx9GEONHdUp0RKVS4emnn4ZAIMDly5fVx3fu3Alvb294eHjg1q1bWLZsGfr164dff/0VALBu3Tp88MEH8PPzw+bNm9GpUye8//77KCgowK1bt2BmZoaXXnoJVVVVOHHinylMU6dOxenTpyEQCB4aU1hYGGbPno158+YBqBspGTx4MA4cOAAAKC4uhru7O1atWoU1a9YAAOLi4tC/f3/cv38fbm5umv4xtUqVtAoTjk1ApbSS0ziIfltiG4IZt05rtM38xwYj07z9ybC5uS/ORQ3SQETcGNy1N7pl2uu0T8bWBIdvfarTPuvZBvfBWklfTvo2BmYmPOxzP4b+ZVQc0aCN+wro+zrXURAjRCMlOjJ37lzcvn0bhw8fbnB81qxZGDNmDMLDw/Hyyy9j//79OHbsGLKzswHUJTNyuRxbtmzBmDFj8Pjjj+PHH39EZmYmLl68CABIS0vDY4891qDd/v37N/heKBRiyZIlCA4Ohr29PWxsbJCWltZopCQiIkL9d1dXVwBAeHh4o2OlpdzN6a73ddLXlJCQZm2uzUSKR5hG2+yalgUTtv1VjqXSHISEGG5dnVrofqSHtdB5l2qZ1n7cdW7g6qu1U0JiBC58CogMf00c0T+UlOjAvHnz8Oeff+LixYvw9PR85LX1yUVWVhYAwN29bmFtSEiI+hpnZ2c4OTk1SigeZcmSJTh27BjWrl2Lv//+G0lJSQgPD4dM1nDXE9N/TXJnGOahx1Qqbt9IZVZm4kj6EU5jIIZBrpJjWWcbiMw1V+yOqb6P8OpAjbTVxdNwpx/WqsQ671NhysGUMQAmZmY4U+XASd/G4EO/TIy7v43rMIgmiCuA6HVcR0GMECUlWsSyLObNm4djx47hwoUL8PVtvqhbUlISgH+SkYEDBwJAg62EKyoq8ODBA3h71+2VHxwcjKtXrzZoJy4ursH3V65cwcyZM/Hss88iPDwcbm5uyM3NbetD49y6a+ugZGleK2mZvNoifBo6RKNtOqRehS3r2O52JJIb8PQ0zKdioVz3SYmMkei8TwCw9A1FtcIw/524Nsf/AWZQtXbjcn03UJbBdRTEyNAzrBbNnTsXBw8exKFDh2Bra4vi4mIUFxdDLK57Ic/OzsbHH3+MhIQE5Obm4vjx45g+fTqGDBminkYVFBSEiRMnYsGCBYiJicHt27cxY8YMdO/eHcOHDwcAzJ8/H6dPn8aXX36JzMxMbNu2DadPN5xDHxgYiF9//RVJSUm4efMmXnrpJc5HO9rqTO4ZXCu+xnUYxMAcr7yNP7uP0Fh7jFyM8Pudm7+wBbp1b/mopz4RioU671Os1H2fAJBr689Jv4bueV8p3i2cz3UYRNNUCuDse1xHQYwMJSVa9O2336KqqgrDhg2Du7u7+uunn+rm1JqZmeHcuXN44okn0L17dyxevBiTJk3CH3/80aCd/fv347HHHsO4ceMwdOhQmJqa4vTp0+ppVY8//jh27dqFzZs3IzIyEmfPnsX777/foI0NGzbAwcEBAwYMwIQJEzBmzBj06tVLNz8IDZIoJPjq+ldch0EM1CfKItxz1Fw1bsusWHRRtn+dgVx+BZ06aW6XMF0RimrBMrrdK6VWKtBpfwDAMzHB6WrNJKAdyYiuDD4rpmrtRivzLJB1nusoiBGh3beM1N69e7Fw4cJH7r5liL5O+hrbb27nOgxiwMLt/LAv+QpMVZrZ2lfp2g3RQeVo787DDCbg0iV7jcSkS9N4I2Au0l1CddssDinpf+msPwCwC4zAp4qBOu3T0PV0NcGh2llUHNHYOQcDb10BeHyuIyFGgEZKiMEori3Gntt7uA6DGLjk6rvYGvmExtrjl6QjWNL+3b34JpcNspiixFq3a7sENbqvUXLPjqZutYZfZ1N8L1lMCUlHUJYG3Dzc/HWEtAAlJcRgbL+5HVKlYRebI/phr+A2Ynwfa/7CFnJPvQ0z1qpdbSgUlejZk5tF3O0h1nFV9wcVBTrtj8fn47TQWad9GjJXG1Ps531M1do7kuh1gELW/HWENIOSEiM1c+ZMo5q6lVedh9+zfuc6DGIkWLB4z1yKCmsnjbTH1D5ARGX715bYdYoHYFgzakWmunszwpjzIZXU6qw/ALDx6Y5SGU1NaQlbcz722n4DT+EtrkMhulSVDyTQLAbSfpSUEIPwddLXULDc1CcgxumBtALvBfUC297FIP/PLi0GDirXdrUhleYiNNTAkhKeDj8htdb9S9Z9B83UozF2ZiY87HI5iuDKi1yHQrhwaT0g0+0HBsT4UFJC9F56RTpO55xu/kJCWumy4A4OhI/RSFuMUobQAst2t+PRJVUD0ehOLXQ35UxpptttzBmGh7M0datZPAbY1PVvPF5GBW07rNoyIO4brqMgBo6SEqL3tiVuA2tgU1qI4dgkykSae4hG2jLPvQ5veVC72pBIEtHVy3CemmsVuiugKOfrdt66rXcACqQmOu3TEH3kl4Gn7n/NdRiEa1e2AuJKrqMgBsxwXvlIh3Sr7BaiC6K5DoMYMblKjncd7SAys9ZIe74ZxWDa+dQaFJSnkVh0QSjV3ZQNKSvSWV8AUOrYXaf9GaK5/mWYXvgR12EQfSCtAi5v4joKYsAoKSF6bUviFq5DIB1Abm0R1oYN1Uhb/PK7CK0NbVcbcvkV2NsbxtNzjUh3SYlIXq2zvsAwOC920V1/BmiKrxRLCxdwHQbRJ1d3ABxs202Mg2G86pEOKaEkAVfvX+U6DNJB/F55Gye7D9dIWy6pibBgbdt8P8vKERFZrpFYtE0sEUNhopvplTWSCp30AwB2Xf1wV2yAhWN0ZGRX4LP7b3AdBtE3CjHw1xdcR0EMFCUlRG99e/NbrkMgHczHqmIUdPZqdzuMWICIcs92tcHnX4aZWbtD0QmpjW6SkqqaUp30AwAVzjR162F6uppgW+Uc8EE7IpIm3NgPCPK5joIYIEpKiF5KLE2kURKic0J5LZZ19YOC1/7FzTZpMXBSdWnz/QqFwGCKKYqtdPPmtFJQpJN+AOCi1E1nfRkSf6rWTpqjkgNXaOo1aT1KSohe+jaJRkkIN25V38W2yPZvE8ywSoTkta8Giq3dNRhCMUWxuQ6SEh6DSoFu5qrbdvHGnVoDGabSobpq7WuoWjtpXuIBQKi7kU1iHCgpIXonqTQJsfdjuQ6DdGB7qlIQ59uv3e2Y3kuCn6zt04Ck0jyEhel/UiIy0f5WvYw1Hyyrmzol1a6a2SLamNia87HP5mt0ESZzHQoxBAoJEEvbRJPWoaSE6B1aS0K4pmJVWGkhQ6W1Y7vb8r6TBx7b9gXT7h4p7Y5B20SQar0P1kLrXahdktPUrX+rr9beXRDNdSjEkFz/HhALuI6CGBBKSoheuVl2EzFFMVyHQQjKJBV4P6hPu9vhCe4hXNj20RKJJAle3u2bBqZtQpX2174oTXWzbsXWrQtuCXWYAek5HgNs7nqJqrWT1pNWA9d2cR0FMSCUlBC9sjt5N9chEKJ2SZCGg+HtX1/imBIPa9ahzfcHBup3McVaufaLGkoZ7Y/GAECtR/tqzBib1X7pGHv/G67DIIbq6reATLdFT4nhoqSE6I17NffwV8FfXIdBSAMbRdm4496+NQaMTIiIkrYX4pPLY+DgoL9P1zUS7RdQFCuFWu8DAGKUbd8xzdjM8y/DtMLVXIdBDJmoHEjYy3UUxEDo76sc6XAOpR2CSkcLWQlpKZlKhqWOnSAys25XO5YZMXBTerfpXpaVIyLiQbv61yZhrRAso90F+bVSgVbbBwBrZzfEV9PULQB4wVeCJVStnWhCzFZAof3NMIjho6SE6AWhTIhjWce4DoOQJuXWFmJd2LB2tcGARbe7bV97weNfhrm5fq4tUSqVkFlqt49qkfaTMqknTd0CgFFdgbX3Z3EdBjEWNUXAzUNcR0EMACUlRC8cyzqGWrn2p4AQ0lbHKpNxutuwdrVhcj8FQdK2TQVTKKrQo6f+zs2WWCu12r6gWvs1Sq6xnlrvQ9/1cjPBtorZVK2daFbMNoDV/+3NCbcoKSGcU7EqHEqjT1GI/lvDlqKws1e72vBMzYAJa96me21trkJfiymKLbX7Jra8okCr7Vt1dsKVKiut9qHv/Dub4nvxIlgoq7kOhRib8kwg6zzXURA9R0kJ4dzFexdRINTuGw5CNKFGLsSyrv5Q8Eza3AZTU4yI6qA23SuV3UN4uH6uuxJrcctexpwPiUS7C92VXmFabV/fudnWVWu3lxZyHQoxVle3cx0B0XOUlBDOHUw9yHUIhLTYzepsfBPRvm2C7VPiYKdyatO9bu6329W3ttTytLhlr7X2X6oS0FXrfegrOws+9lpvo2rtRLuyzgHl2VxHQfQYJSWEU+kV6bhecp3rMAhpld3VKbjm07fN9zMKMcLvd2rTvRLJLfj46N+CdxG0V0BRaabd0SHLTg6Irmrf7mqGytyEh13OP6O7gLZjJ9rGAld3cB0E0WOUlBBOHUg9wHUIhLSailVhhaUCAqvObW7DIvsqPBX+bbo3ICC3zf1qi1Ah1lrbCr6WtxP1DgML/Uv0tK2uWvtfeKzsF65DIR1F0iFAWsN1FERPUVJCOFMuLsepnFNch0FIm5RKyrGqe9tHSwAgIKsSYFv/Zlgmj0Xnzvr1Jloo1d7OYFJWewkPANw0ad/mBYZqtd8dPHn/W67DIB2JrAZI/IHrKIieoqSEcOZI+hHIVFRQiRiu6Mo0/BDe9vUl/NIMhIhbXxuDZeUIjyhvc7/aUCPW3kL0Wrn2doMyt7HDeYGt1trXV2/7l2Fa4RquwyAd0bWdtD0waRIlJYQTcqUcP6X/xHUYhLTbBlE20t2C23y/W2oyzNjWb0XLY/6Gedt2FtYKsVgMhYl23mgIJRVaaRcA+L5hULRhtMqQTfWVYDFVaydcqcgGMqO4joLoIUpKCCdO5pxEuUS/PuklpC1kKhnedXaA2KxtNS4YUTkiKn1bfZ9CWY2ePbU7ram1pDbaSUqqakq10i4ApJh6a61tfTSqK/ApVWsnXKPtgUkTKCkhnPghjeaUEuNxV1iAz8OGt/l+u9QYdGbdW32fjc1VMHr0Ib/YSju1SiqqirTSrpmVNaKq7LTStj7qTdXaib7IvgBU5HAdBdEzlJQQnUsuS0ZaRRrXYRCiUUcrk3Gm29A23cuo5AjNN2v1fVLZPYTpUTFFsZkW3uzyGFRW3td8uwDMfMMgVXWMl8GAzqbYTdXaid5ggST6cJI01DGejYleOZ59nOsQCNGK1WwZihzatpOTWV4CvOWtr/Tu5qY/Be/EJnKNt8lY88Gy2km87li0ftqcIXKzNcV+5iOq1k70S9IhQKU/H6oQ7lFSQnRKrpTjdO5prsMgRCtq5EIs8/KHkuG36X6/jPvgoXX36lMxxVqe5gsoshYabxIAYGphgTOCthWwNCR2Fnzss94Gj9oUrkMhpKHqwrppXIT8P0pKiE5dKrgEgVTAdRiEaE1SdTa+iXyyTffyynMQIgxp9X0Bgblt6k/TapWaT0qUptpZ/2DhGwaRkU/dMjfh4TunI+hG1dqJvkqkAsrkH8b9jEz0Dk3dIh3Bd9UpiPfu06Z7XVJvwJJt3Sf4MlksHB25fzoXyjVfQFEKqcbbBIAsKz+ttKsveAyw2TMa/R4c5ToUQh4u/SQg0t6W38SwcP8qRjoMgUSAS4WXuA6DEK1TsSost1JBYNW51fcykipElHm06h6WlSM8vKzVfWmaUFKr8TYlKs0XZTQxM8PpageNt6tP1vil4cli2naV6DmlDLhFNctIHUpKiM6czDkJhYq2oiQdQ6nkAT7o3q9N91qnx8BZ5dm6m5jLnBdTrKnVfAJRq4Xpnpa+oahWGO/L33z/Uvyv8GOuwyCkZRIPch0B0RPG+6xM9A5N3SIdzcXKVPwY9kSr72NYJYJzW1eIUKmsRs9e3BZTVCqVkFlpdjedavEDjbYHAHm2/hpvU1+86CvGO4ULuQ6DkJYruQ0UJXIdBdEDlJQQnbgruIuUctr9hXQ8X0lykOHavdX3mRbchL8suFX3WFvHcV5MUWyt2aSksrpEo+3xTExwqrr10+oMwaiuwCf33+Q6DEJa7wYteCeUlBAd+T37d65DIIQTUqUU77p0hsTUstX3eqXlgA/TFl8vkxUgPFzZ6n40SWyp2Sma5RWara1h4xuMCnnbtmzWZ1StnRi0278AChnXURCOUVJCtE7FqnDi7gmuwyCEM9nCAnwePqLV9/GqChBe3bpRFleOiymKNbiFL2POg0Ss2Qrk9zoFaLQ9fRDoaIrvRQuoWjsxXJIqqllCKCkh2nf1/lWUiDQ7BYMQQ/NLZTKigoa0+r7Oqddgy7Z8upFEkgxfX+7mcNXyNLiFr5VmRzR4fD7O1DhptE2uuduaYh8+QifZfa5DIaR9Un7lOgLCMUpKiNbRAndC6nzElOO+Q9dW3cPIahFW0ro30v4BOa26XpNE0FwBRZW5Zten2Ph0Q4nMRKNtcqmuWvtWqtZOjMOdk4Bc8wVYieGgpIRolUguwvn881yHQYheqJbVYLl3IJRM60YALDNi4a70afH1dcUUuRktESo096ZCztfsHPP7DoEabY9L9dXagwRU+4kYCVkNkHWO6ygIhygpIVp1Nu8sxAputyklRJ/cqMrC9sgnW3UPAxZBd0VAC3cJZlkFwiO4KaYolGmugKKU1dxzB8PwEFXrorH2uMTnMdhC1dqJMaIpXB0aJSVEq07ePcl1CITonV3Vqbju3btV95jcT0U3aWgr7rgMCwvdj5YIRZpLSkQKzS3ctvUOwD2JcUzdWuObgjFUrZ0Yo/TTgEzEdRSEI5SUEK0RyoSIL4nnOgxC9I6SVWKFNVBl5dCq+7qkpsEUFi3rQ1mDnr00lyC0lEgsgtKkdYUfH6ZGXKGRdgCgzKmbxtri0nz/Erxc+AnXYRCiHfJaIPMM11EQjlBSQrTmctFlKFS0Zz4hTSkWl+HD7o+16h5GWIoIQcu3tLWy4qaYosRGM0lJtVBDU9AYBudFrpppi0N11doXcR0GIdp1m6ZwdVSUlBCt+eveX1yHQIheO1+Zip/CnmjVPZ1S49CJdW7RtTJZISIidF9MUWKlmQ8jKgRFGmnHztMP2eKWF6HUR6OpWjvpKDKjAKmQ6ygIBygpIVqhVCnxd+HfXIdBiN5bL8lBpmvLpxYxCgnCCm1bfL2L6822hNUuInMNJCU8oFKgmdobFS6GPXWrj5sJtlK1dtJRKMRAxmmuoyAcoKSEaMWN0huoklZxHQYhek+qlOJdF0dITC1bfI/F3WvwVLRsGpdEkgI/P93O4RLz5e1ug7EygUqlmVGeaKm7RtrhQqCjKXZTtXbS0aTTJjkdESUlRCto6hYhLZclLMD68BGtuicgsxxMC5/C/fyz2xJWm9Uy7a9VwrY8R3skWw8vpNWaaaYxHaur1v4hVWsnHU/WeUBDH0oQw0FJCdGK6IJorkMgxKAcqUzG+cDBLb6eX5aJEFHLtgiWSePg5KS70ZJatv1JidJUM1OVatxCNNKOrnWyMMF+683wqE3lOhRCdE8iAPLjuI6C6BglJUTjcqpykFedx3UYhBicD3gVKLb3bPH1rik3Yc5aN3sdCyXCw3VXTLFW1v6ihzJGqoFIgEsKD420o0vmJjx853wYgYLLXIdCCHdoXUmHQ0kJ0bjoe9Fch0CIQaqW1WC5TzcoGX6LrmfEFYio8G7RtSz+hkXLSpy0W42k/fVRxMr2775j49YFN2vM292OLvF5DLZ6XkTfMtoWlXRwGVSvpKOhpIRoHCUlhLRdQlUmdkaOafH1tmmx6KxqfjRAqRSiVy/dVEoWitqfUNRKBe1uQ+RueFO3Pva9jSeKd3AdBiHce5AOVORwHQXRIUpKiEYJJALcLNP9FqSEGJMd1Wm44dWrRdcyKjlC801adK2lVSwYRjOFDR9FoVBAZqlqVxvV4vJ2xxGj6tLuNnRpgX8JXir8lOswCNEfmWe5joDoECUlRKMuFV6CkqUdMwhpDyWrxHIbBlWW9i263iz/BnzkzdfikMmKEBnZvmShpSQ27etHUF3SrvutnV0RX62hLbx04CU/ERZRtXZCGqJ1JR0KJSVEo2jqFiGacV9chtXB/Vt8vW96IXhs8yMmzi5J7Yiq5cSW7ds9q6KyoF33yzzD2nW/Lj3RlcXHRbO5DoMQ/ZN7haq7dyCUlBCNkSvliCmK4ToMQoxGVGUKjoSObtG1vIpchNYGN3udRJIKf//2RtY8UTu29GXMeBCJ2lcs8Brb8l3MuNTXzQRbKt6kau2ENEUpBe5e5DoKoiOUlBCNiS+OR628/bvuEEL+sV6ai2yXoBZd65ySACvWrtnrfP20X0yxlteOLX2tW7b72MNYOTjiSpX+T90KcjTFd6IFsNDATmOEGK3sC1xHQHSEkhKiMXH3qdARIZomUUqx1NUFUpPm9/NlpNWIKGt+Jy6Z9CqcnbX79C9C2wsoqszbtx5F6RUOFrorFtkWHnZUrZ2QFsn5m+sIiI5QUkI0JqE0gesQCDFKmcJ8rI8Y2aJrrdJj4KLyeuQ1LJQIC2vfQvLmCBVtT0rkfFm7+r7B0++pW50sTLDPajPcqVo7Ic0rzwRqirmOgugAJSVEI8QKMVLL6QWWEG35qTIZFwIHN3sdw6rQPaf59Qks/oallfZGE2plba+JImXbXhHespM9ogU2bb5f2yxMedjt9CNVayekNWi0pEOgpIRoxK2yW1CoaKEmIdr0Aa8SxfbN194wLbyFAOmjCwcqlbXo2VN7axlq2lFAUaRoxyJ373Co9HTqFp/HYEuXi+jz4BjXoRBiWHIvcR0B0QFKSohGJJTQ1C1CtK1KVo0VPt2hYpp/6u6algUT1uyR11haxmitmKJILIKS37a2heKKNvd7y+TRU9e49AlVayekbWikpEOgpIRoxI2SG1yHQEiHcL0qEzsjnmz2Ol51EcJrHr1rl0xWjB49tFfsVNrGAopVtQ/adJ+5jS3OC2zbdK+2LfQvxotUrZ2QtqnMAaraV7uI6D9KSki7yVVy3Hpwi+swCOkwttekIalrz2avc0i5BlvW8ZHXODknaSiqxsRWbUtKKgRFbbrPxCccclb/pm695CfCwsJ3uA6DEMNGoyVGj5IS0m6p5akQK9q+MJUQ0jpKVolltnxUW3Z65HWMXITw4s6PvEYiSUNAgCaj+4fYQt76m3hAZWXbkpIUc+823adNY7xYfFL0JtdhEGL4cikpMXaUlJB2o/UkhOhekbgUHwUPaPY6i8w4eCh9H3mNr2+WpsJqQMRvfVLCWJlApWr9lDIzKytECR6dpOlaP3cTbC5/Ezxob4ocIR0GjZQYPUpKSLvRehJCuBFVmYJfQkc98hoGLIKyhMAj1pxLpFfh4qL5l4NapvVV3dk2FmI38w2HRKU/U7e6OZpiV+18qtZOiKZU5QOVuVxHQbSIkhLSLipWhRullJQQwpUvpPm46xL4yGv4JWnoLgl9xBUqhIZpvjhZbRvqjShN2zaqkG7h06b7tMHDzhR78SE6yajgGyEadS+e6wiIFlFSQtolszITNbIarsMgpMMSKyVY6uoKGd/8kdd5pKXB7BHDEKzqb1hpuJhiraz1SYmMaX0leBNzC5ypsm/1fdpgb2mC/ZabqFo7IdpQQEmJMaOkhLQLrSchhHsZwnx8GdHMNC5hKcIF/g89r1SJ0LOnZj9gqJHUtvoesbL191j6haJWyf3LmYUpD7sdDyGg6grXoRBinAqucR0B0SLun8WJQaOpW4Tohx8FyYgOGPTIazqlxsJe5frQ8xYWseBp8FVB2Iaq7rUyQavvybJ+eLKlK3weg61dLqD3g9+4DoUQ41V8G5C3fjSVGAZKSki70CJ3QvTHKn4VSju5P/Q8o5QirNDqoedl8mJE9lBoLB6FQgGZZetqldSIylt1Pd/UTC+mbn3qm4zRxTu5DoMQo8aySkjv09RIY0VJCWmze9X3UCYu4zoMQsj/E8iqsMI3FCrm4U/t5jnx8FI8fGG8k1OiRmOStLKqu6C6pFXXW/uFoErBb9U9mrbI/z6mFq7lNAZCjJHSxgPFHqNxoetcrO78Ofop9+BgvgPXYREtMeE6AGK4UipSuA6BEPIf16oy8F3Ek5h18+RDr/HLKMW9EB5YNE4YJJI7CAzsi8xMzcQjslDCrhUvNeWVBa1qP9fWH2jd4IpGvewrwoLCxdwFQIiRYM1tUeUQhmzT7oiT+eDP8i5Ie2AFPGh4XXKBgJP4iPZRUkLaLLNSQ+9aCCEa9W3NHfTr2gM97iU1eZ7/IBshomFIsbrd5Hkfn0xkZj56m+GWEpvKATx6Z7B6jBkPIlFVi9vm8U1wutqxjZG13xgvFh/fp2rthLQWyzOFxKEb8q1CkKj0x9mqLvirwh7KquYn8NwqbPlzBDEslJSQNsuozOA6BEJIExSsAsvtTPGzRSfYSpp+AXdNuYnsPp0gYRovRpdIr8HVNQglJY+ouNhCIr6s5Rdbt24alo1vd5TLuZm61c+dj83lr1G1dkJaQG7njRK7MNxGAP6q7Yo/y1xQU9i2t6A5D2ohlCpgY05vYY0N/YuSNqOREkL0V6GoBKtDBuDLG6eaPM+IKxFRHo5rTk0tGlUhJLQYJSUP36mrpWrR8p1yVOatW39SYB/EydStumrtb1O1dkKaoLLsjEr7MGSadEOM1Bt/PvDA3VILoFQz7bMskFxQhf7+3I2SEu2gpIS0iVAmRJGwiOswCCGPcKYyBQNCRuK51PNNnre5EwOnAaF4wCtsdI5VXYa19WTU1rZvtKRW2fICinK+vMXXMjwezgqd2hJSu3SxM8U+dhVVaycEAGtigVqHYORZBOO6wg+nBV0QW9kJqNRuv8mFAkpKjBAlJaRNsgRZYNH+qR2EEO1aJ7uHHi4B8CvNanSOUSkQnM/D3z6N71OqROjRowZXrti0q3+hVNTia6Vsy6+19emG+1LdTt2ytzTBPstNcKu6o9N+CdEHLBjI7f1RZBOKW/DHhRovnHngCLFQ91MobxXQuhJjREkJaRNaT0KIYRArJVjm5o0fyu/BTCltdN4sPxF+HoNw16zxG21zixjweE9A1bpZVQ3UtKKAokje8oryxZ11O3XLwpSH3Z1/QEA5VWsnHYPS2gXlncJxhx+Ey2Iv/PHAHfeLzbgOCwBwp7jlzxXEcFBSQtqEkhJCDMedmjxsiBiF5YknmjzvnZ6P3DBTqJiG06fk8hJE9pAj8YZpm/sWiUVQ8lnwlUyz1wolFS1rlGEQVevS5phai89jsK3LefQu/l1nfRKiS6ypNWo6h+GuWTdck/vhRIUHbpbbcLrd9qPklddCoVTBhE/l9owJJSWkTSgpIcSw/CBIRv+AgRia1fiTfl5lPsKEw3HLNrnRubpiiv3a1bfUhoVVVfNJSVVty4qx2nkHIF+iu5evtT63MKpol876I0SbWIYPqUMQCqxDkKT0x7marjhf3hnymub/j+oLuZJFbrkIAS7tm15K9AslJaRNsiobz08nhOi3VfxqHLVzg3N140XaTqnXYd3PFbWMoMFxiSQdgYH92lVMUWylhFUL6g9UClq2eUaZY3eghYMq7fWOfxFeKPxMN50RogUK2y4otQtHKhOASyIf/FHmgsoiw3/7l10mpKTEyBj+byXRuSJhEWpaMfebEKIfKmVVWOEXhp03S8FjGy4UYaQ1CC+NRJyroNF97S2mKDZXAGhmChgDVArut6i9C5L2b1XcEv/zq8X8wiU66YsQTWDNO0HgEIYs026Ik/nijwceyCizBFo2CGlQskqFGBPKdRREkygpIa1GU7cIMVxXqzLwfcQYvH6zcf0Sq4wYuDr3QAkvv8FxifQa3Ny6obi4bSveRSYyAJaPvIaxNoFSqWi2LbuufsgStX2NS0uN9VJhTdFsrfdD/o+9+w6PqsweOP690ye9F0pCCKGEUAWkC0pTRLF3RVF/uqCyCqKIYi8sVlxRWQXrupbVVaxIJ/QSIJRAQk9PSDKTSabf3x8xQ0ICpExmJuH9PE+eJ7lz5953Uib33PO+5whNJSs1VIb24Li+O9sdifxR2p61JSHIDZgq2RZkFYo+QW2NCEqERhNBiSC0bv80ZjCoQx96n9xVa7skO+l+2Ep+lzOf4SQ5OYe8vJgmna9CUbfq15lkXcOOVRLV8lO3BsUqeavoPtGtXfAptuDO5AYms5curCyP45eiSEwnPV+O11dkFYigpK0RQYnQaKKTuyC0bnbZzuPBGr4tCiLAbKj1mConnaSOIzmkrd3p3eFMbXIzRZPz/F3dHeqGBQCrLU0LjBqqe4Saf5mmo3WaWvQ8gnAuTn0Ep0JSOKjqSqq5Ez8VxXA8Xwf53h6Z78gqFH+jbY0ISoRGE5kSQWj9sivyeT55OPN3/FLnsY77D3Gkjxa7dDrD4XRW0LefgdT1gY0+V7nt/E0RrQ3IpgS2i2efSdvo8zdU+yA1S51PE2QVV36C58gqPeVhPTmq7cZWe2d+PdWerSVBLd4VvbUrt9jJKzMTE9zANKvg80RQIjSK1WHlmOGYt4chCIIb/FqSzpDky7hm34pa2yVDLr0Mo9kZXLtEsFa7AaVyPI5GzmoqN5//jqbZef6pGMaYHi12oVbVrf1N0a1daFGypMAakkSOfw920YU/yzqyvDgcS7not9EUmQXlIihpQ0RQIjRKTnkODlnMsxaEtuIV20n6RSbSqTCr1vbQfZsIHByHUTrdPc1mK6BPXxs7tjduobnRdP6Aw2QpO+8+62yxjTpvQ+ld3do3tMjxhQuXIyCWwqAU9iu7sq4ijmVFMRTktnyhhgtFVmE5w5MivD0MwU1EUCI0So6pYX0EBEFoHSrtlTweG88Xp06gdlhd2yVbJb1yQ9nQrnZL5/CwHcDFjTqH3W7HqneiqTz73WBDRdE5jxEQ3Y60cvffEa3q1r5cdGsXmk3WBGAITSFL251NlgR+ORVLelEAnPtXW2iGTLHYvU0RQYnQKHmmuk3XBEFo3fYbj/FG77HM3vlzre36zE20j7qYbNXpLIrZcpCuXQdx8GDjyo5W+p87KCk1nHsdR2W7nlDaqFM2yMuddnNZzkfuP7DQpskKFebQ7pzw68FORyLLyzqw6lQIDoOYhuVJrTkoGTVqFH379uWtt97y9lB8hghKhEbJNTWsuZkgCK3LF6XpDEkcysis2lOYkjJLye4mgXS66lZ8/EEOHuzWqOOb9Q6Cz/Evp7gk+5zP3+Bo36jzNcRjolu70ED2oDjyA3uyV0pitSmOn4uiKMsWl1DeJnqVtC3iL0polJxyMX1LENoiGZmn1eV8FxhNhPF01kJZkEGP+FHs16e7tpktW4mJ6U5eXsPLA1dobED9lbMktYKKitKzPtc/IpotxnM3X2ysOzubeEh0axfq4dSFUhqSwiF1dzaY41lWHEtWgR4KvD0y4UwFRgvlFjsBWnE52xaIPKPQKGL6liC0XacspTzZpTcytadmxe5LRyP71dgik5zcuBsUFQrr2R/0P3cDOGuHno061/lcHufkWdGtXQBkpRZTZF/2dbyFT2Of4jb9IjqX/pP+Rx/kpkOjeftEZ7Iq3BsQC+6VW1rplfNaLBYefvhhoqKi0Ol0DB8+nK1bt7oeX7NmDYMGDUKr1RIbG8sTTzyB3W4/6/F+/vlngoOD+eKLLzwxfJ8kQkuhUUSmRBDatk2lGXzcewJTd//q2iaZiuhdcgnbwva6tjmcqQQE3EB5ecOyJRWcvYGiU+s853O30qFB52iIi0W39guWjIQtpDO5AT3ZLXdhVXlHfi+KxHRC3J9tzXLKzCRFN75/UnM9/vjjfPfdd3zyySfEx8czf/58xo8fT2ZmJpWVlVxxxRVMmTKFTz/9lAMHDnDfffeh0+l49tln6xzryy+/5IEHHuDLL7/kyiuv9Phr8RUiKBEaTJZl8itEUzFBaOveNWUwqENvep3c7doWtH8joUOSKFFUvQc4nZX07VvG+vVBDTpmuePsdzNtKttZH/MLDWd9md9ZH2+M7hFqFotu7RcMp18kRSG9yVAmkVoZz09FMWTntVzzTcE7vJEpMZlMLFq0iKVLl3L55ZcDsHjxYpYvX85HH31EaWkpHTt25N1330WSJLp3705OTg6zZ8/mmWeeQaE4HQj/85//5KmnnuKnn37ikksu8fhr8SUiKBEarKiyCJvz7BcPgiC0DXannceDdXxTFESA2QCA5LDS86Se9XGn99NoN6BSTeAcMxJcyi1n7+pukc9+UeGIS0E2NK7SV33aB6n5xDlXdGtvo2S1P8bQZI7ourPFmsCvJR3YcSoATnl7ZEJLyyk7exa2pWRlZWGz2Rg2bJhrm1qtZtCgQezfv5/S0lKGDBmCJJ1+7xo2bBjl5eWcPHmSuLiqN9Jvv/2WgoICUlNTGThwoMdfh68RQYnQYKJHiSBcOE5W5PFC8nBe2/GLa5v26Dbi2w3lmOogADZbIX36WNm+XXPe45VXnr1KTqXdcNbHdirizvpYQ4X+1a09uiyj2ccSvE+WlFhCk8j270maszN/GjryZ3E4NmPzg1eh9fHWmhJ36NevHzt27ODjjz9mwIABtYKYC5EISoQGE+WABeHC8ktJOkN7XMbV+1e4tiVk5HGipxLnX2sywsJ2AIPPeyxTRQUOpYzSUfefbrm5pN7n6IJCWFXq37TB/0WvVvBR+Gd0KRLd2lsre2B7CoNS2KdIYq0pnmVFURTniK7oQpVcL2RKEhMT0Wg0pKamEh8fD4DNZmPr1q3MmDGDkpISvvvuO2RZdgUaqampBAYG0qFDh1rHef311xk1ahRKpZJ3333X46/Fl4igRGiwvHJReUsQLjQv27PpG9GZ+KLDACiLD5NsGkW6f1WJYLPlEN26XUxGxvnv8FkCZPzK6u5XVl5Y7/5SpxSczbj7rVJI/LPdH/TP/6nJxxA8S9YGURraiyx1VzZZElh2qh0HCv2g/l8RQSCnzPOZEn9/fx588EFmzZpFWFgYcXFxzJ8/n4qKCqZOnUpFRQVvvfUWDz30ENOnTycjI4N58+bx6KOP1lpPAtC1a1dWrVrFqFGjUKlUF3QzRRGUCA0mpm8JwoWnwl7BrHad+KLkJGpHVVnfqL070Q8Kp5KqaVdxcRlkZHQ/77Eq/Rz4ldWtdHSqrP73lj2q+GaMHF5O2MWl2R836xhCy5EVairDenBc34Mdjs78UdqBNSUhyPUEroJwNoUGi1fO++qrr+J0OrnjjjswGo0MGDCA33//ndDQUEJDQ/nll1+YNWsWffr0ISwsjKlTpzJ37tx6j9WtWzdWrlzpypi8/vrrHn41vkGSZbnh3a+EC9pDKx9i9YnV3h6GIAhecGdIL2bt/Nn1tbHHCLZE7v/rK4nMQ3eQm3vufycTYobS4egZPR8k+PbY6zgctVfLa/0DeDv6dmxy0y5QZyZmMz17VpOeK7QMW3An8gJ7kk4XVpviWVYYicl+7h41gtAQ+5+fgF4jfpdaO5EpERpMNE4UhAvXZ6XpDEkcwvCsjQAEHNhARHgKRYpsQKZHcg65ubHnPEalygrUDkokP1WdgARAldALm6lpAcldnctFQOJlTn04JSEpZKi6scHciR+LYjierwNR/ExoAQVGM/HhzVt/JnifCEqEBhML3QXhwiUj85S6gu8CoogoL0CSHSQfk1ibUPW4w7GegIAbz9lM0STVM81CX3/gsVfbCZrQTuSKOCfzch5s/BOFJpNVOkxhPTmi7c42e2d+LWnHlpJgqL9+gSC4XaHRIoKSNkAEJUKD2J12yixl3h6GIAhedMpSwlNJfXh/559IyKhPpNG5/XAOaw7gdJrp16+MdevO3kzRJNetkmNX182SaPz8WF4a3OjxDW6n5E3Rrb1FyZICa0gXcvyT2S0nsrK8I78VRmApF13RBe8pMHpnXYngXiIoERqk3Hr2HgOCIFw4NpRmsLT3eO7e/RsA8QeOcay3Ggc21JpUVKrLz9pM0WSr20DRqqh7MaFJSMFc0bipW90j1HxYLrq1u5vDP4ai4BQOKJNYV9mJZYXR5OWevy+NIHhSoQhK2gQRlAgNYrQZvT0EQRB8xDumgwxq34ue2XtQlJ4gxTCaXUF7sNmK6NvXyrZt9V+0Gs11gxKzo24QcVCXAGdvAF9H+yA1nzrniG7tzSRr/DGE9uKwphubrQn8fKode4oDoNjbIxOEcyswer5XieB+IigRGkRkSgRBqGZ32nk8xI+viwLxtxgJ37cF/4vbYZJKCAndDgyp93lGU92bGyZr7WmhKq2O38pCGjyWUL2KT3WvE2U41JiXcMGTFSrMod046deDnc5E/izrwIriUBwGMQ1LaH0MlWdJzwqtighKhAYpt4mgRBCE045X5PJizxG8suMXJKuJ3vlRbIwpwWLJpHv3wRw4UHf6ld1ux6qT0ZhPP2asLKq1jz6hJyZLwy6M9WoFH4d9SmLxpua9mAuAPagj+YE92Sd1ZY2pIz8XRVOSLS4BhLah3CKCkrZAvCMJDWKwGrw9BEEQfMyyknSG9riUSftXoj+4gZjI/uQpj9Ex7gAHDvSo9znmAAca8+l/PaWG2lOusgI6QwOmh1d3a++Xv6xZr6EtcupCKA1J4ZC6O5ssnVhWHMuhAj0UeHtkgtAyRFDSNoigRGgQMX1LEIT6vGTPoU9EAnFFR+h22ExeEpjN22nXLpmcnLrlgSv1DoJq/OspLsl2fa5Ua/itLLRB532lUxqX5ohu7bJSQ0VoVVf07Y5Efi9tz/qSYORS0RVduHCUm0VQ0haIoERoEDF9SxCE+pjsFTzePoHPTp1EnbuXrh0v4aBuL917ZJOT067O/hUaG6AFQFIrMJlON7Pw75xMmfX8XZlnJZ7khuzX3PYaWgsZCVtIAnkBPdlDF1YZO/JrURSmk2IdiHBhM1lFUNIWiKBEaBCjVVTfEgShfnsNR3inzzge2/kzHfYf4Eg/HQ7HegKDbsJoqJ0tqVBYT3/hXzsAORqYeN5KT3d1Lmda9uPuGrpPc/pFUBzciwxVV1LN8fxUGMvJPK23hyUIPkdkStoGEZQIDSKmbwmCcC6flKYzpPNghh7eRK/SUewISadv31LWra3dBLGixoIRp9bp+lyhVPGbIfyc55gY72iz3dpltR/lockc0fZgqy2Bn0vas+NUIJzy9sgEwfeJNSVtgwhKhAYR07cEQTgXGZk5mkq+C4gkbN9mgod0okKTikp1Ra1miiZHpetzu9Lm+jwgoTvFtrNP3RrcTskbhW2jW7ssKbCEJpHj35M0ZyIrDB35szgMi1FMwxKEphBBSdsgghKhQcT0LUEQzqfYUsJTSf1YtHM5KTlBpLbPom8/C9u2np5yVG493RXRzOkAJTsk6axTt3pEqFlcPq3Vdmt3BLSjMDiFfYok1pniWFYUQ2GO2tvDEoQ2o8LqwOmUUShEgYfWTAQlQoOIoEQQhIZILT3Ap73Hc9fu3+gQM5jCkG3AMNfjxorTWddKe9X7iqRQ8Ht5ZL3H6xCs5hPnHAKtraOerawNpCw0hSx1dzZZO7GsuD37i/yg6PzPFQSh6UxWO4E6Eey3ZiIoERpETN8SBKGh3jYdYkC7FLofLOZk91J69BjK/v1VdzBNFSacShmFQ6LcXLVgIrBTN3Itdaduhfmp+FS7wGe7tcsKNebQbhz3S2anI5E/yjqw6lQIcpm4WysInlZuEUFJayeCEqFBRKZEEISGsjltzA6L5OtDR0k2D+Bwx/3s35/setwcIONXJlFmKgQgP6xrnalberWCj0I/pXPxZk8O/ZxsQfHkB6WQThfWmDqyrDAKo+iKLgg+wSTWlbR64t1UaBCRKREEoTGOmXJ4qedIXty7mawBgbRv35Ps7KrywGY/B35lCkpK80CS+MMUVeu5KoXEe+1+92q3dqc+jJKQXhxUdWWDpRM/FcZytEAnuqILgo8yirLArZ4ISoQGqbBVnH8nQRCEGn4sSWdIXB9GFjuQu58kO7s9AJVaO0hqTpWcJCi+C8fNtf8VvdIpjdE5Szw2TlmlwxSazFFdd7bbO/NbaXs2lgRDyfmfKwiCbzBZWn9lvgudCEqEBnHKzvPvJAiCcIYXHTl8U2wnMNxIcHBHysqcVKisSH6BOBx2isK71erF0dLd2mUkbKFdyPFPZjeJrDTG8XtROJXl5+8kLwiC76q0iaCktRNBidAgDln8sQuC0HgmewWz23Vm8YkKivucYt3aEEySBfRVi8FXmGNc+07pbHR7t3aHfxTFwb04oOzK+sp4fiqMITdX49ZzCILgfQ6n7O0hCM3UqE5Nzz77LJIk1fro3r276/EPP/yQUaNGERQUhCRJlJaW1nr+0aNHmTp1KgkJCej1ehITE5k3bx5Wq9UtL0ZoObIs/tgFQWiaPYbDfBASSYL9JGo1mGQzdrWdoI4JZFZUVcuZGO/gmZy/Nes8stofQ/TFpHW8kw9jnuVqzYckFr/FoMNTufPQCD48GUeuRQQkgtAWieuU1q/RmZKePXvy559/nj6A6vQhKioqmDBhAhMmTODJJ5+s89wDBw7gdDr54IMP6NKlC+np6dx3332YTCYWLFjQxJfgm6xWKxpN2/nnJzIlgiA0x9LSdAbae9Cvj5W8E5XYFBZKonrAKRjShG7tsqTEEtaNk349SHN0YbmhAytPhWEzinK8gnAhcoigpNVrVKYEqoKQmJgY10dERITrsRkzZvDEE08wePDgep87YcIElixZwrhx4+jcuTNXXXUVM2fO5L///W+t/ZYuXUpcXBx+fn5cc801vP7664SEhLgez8rK4uqrryY6OpqAgAAGDhxYK1AC6NSpEy+++CJ33nknAQEBxMfH8+OPP1JYWMjVV19NQEAAvXv3Ztu2bQ1+7ampqYwaNQo/Pz9CQ0MZP348JSVVKyFHjRrF9OnTmTFjBhEREYwfPx6ANWvWMGjQILRaLbGxsTzxxBPY7acrRHz77bf06tULvV5PeHg4Y8aMwWSq6lq8evVqBg0ahL+/PyEhIQwbNoxjx441eLzuIssyMuKPXRCEppORecaWRydFAeWWCsxOE2utsfSIUPNh+UPn7dZuD+xATvsJ/NlhOs+ELaC/fQnds+cy5tB1zDzch9+LwrE5RUAiCBcqMXur9Wt0UHLo0CHatWtH586due222zh+/HizBlBWVkZYWJjr682bNzN16lSmT59OWloao0eP5sUXX6z1nPLycq644gpWrFjBzp07mTBhApMmTaozljfffJNhw4axc+dOJk6cyB133MGdd97J7bffzo4dO0hMTOTOO+9sUMovLS2Nyy67jOTkZDZu3Mj69euZNGkSDsfpO3uffPIJGo2G1NRU3n//fbKzs7niiisYOHAgu3btYtGiRXz00Ueu15Obm8stt9zCPffcw/79+1m9ejXXXnstsixjt9uZPHkyl1xyCbt372bjxo3cf//9SJLn/+mKRe6CILhDkeUU79iNxEeVYlRBqdK/3m7tsjaYkphhbO14DwujX2Cc8iO6FM5naNad3Js5lE9z2lFiE0siBUE4TUzfav0kuRE/xV9//ZXy8nK6detGbm4uzz33HNnZ2aSnpxMYGOjab/Xq1YwePZqSkpJaGY4zZWZmctFFF7FgwQLuu+8+AG699VbKysr4+eefXfvdfPPN/Pbbb3XWqNSUkpLCAw88wPTp04GqTMmIESP47LPPAMjLyyM2Npann36a559/HoBNmzYxZMgQcnNziYmJOeuxq8d1/Phx1q9fX+/jo0aNwmAwsGPHDte2p556iu+++479+/e7gon33nuP2bNnU1ZWRlpaGhdddBFHjx4lPj6+1vFOnTpFeHg4q1ev5pJLLjnn2FqazWGj/+f9vToGQRDajnuixhBz8jIuNr5DgmknlaE9OK7vznZHIn+UtmdtSQiyLLIegiA03Js39eGafh28PQyhGRp1q+nyyy93fd67d28uvvhi4uPj+frrr5k6dWqjTpydnc2ECRO44YYbXAEJwP79+7nmmmtq7TtkyBB+++0319fl5eU8++yz/Pzzz+Tm5mK326msrKyTKendu7fr8+joaAB69epVZ1tBQcF5g5K0tDRuuOGGc+5z0UUX1fp6//79DBkypFZ2Y9iwYZSXl3Py5En69OnDZZddRq9evRg/fjzjxo3j+uuvJzQ0lLCwMKZMmcL48eMZO3YsY8aM4cYbbyQ2NvacY2gRssQD1qc9f15BENoESZLRamT0KlBKdooqCgnzO8U2/a0sd9xMmLOMCLmYzspCHggv5IFwb49YEITWJkoVDoigpDVrVv47JCSErl27kpmZ2ajn5eTkMHr0aIYOHcqHH37Y6PPOnDmT5cuXs2DBArp06YJer+f666+vU8VLrVa7Pq8ODOrb5nSef3qSXq8/7z7+/v4NGn81pVLJ8uXL2bBhA3/88QcLFy7kqaeeYvPmzSQkJLBkyRIefvhhfvvtN/7zn/8wd+5cli9fftY1Oy1FgQK2R5x/R0EQLjj+fipCg9QE+akJ0CnxV0poJVA7ZJQWB1TasdrM7Eo8xl71PvoUJ3A4ehTbpaXcUXAN6Qo/1upkVhQaUNjKSQ4wkaQ30klTRntlKdGcItRRRIC1EG1lPoqKQiQxpVQQhDMNGAh49vpIcK9mBSXl5eVkZWVxxx13NPg52dnZjB49mosuuoglS5agUNRe1tKjRw82b95ca9umTZtqfZ2amsqUKVNcGZXy8nKOHj3atBfRQL1792bFihU899xzDX5Ojx49+O6775Bl2RUApaamEhgYSIcOVdG8JEkMGzaMYcOG8cwzzxAfH8/333/Po48+CkC/fv3o168fTz75JEOGDOHLL7/0eFDihWUsgiB4mVIpERKkJjRATaBehb9GiU4BWieo7E4ksx3ZZAObE8z2qo8aLFobW7scZX1QGpvKtzA1twdjpGs52akzqfllJLWv5I+THzNRupVeuf78DS0HooNZ6wfLio1kG8z1jkurcNLVv4Ju/iYStQbi1KXEKkoId54i2F6In7kAdUUekvXcC+cFQWhjpEYvkxZ8TKOCkpkzZzJp0iTi4+PJyclh3rx5KJVKbrnlFqBq3UZeXp4rc7Jnzx4CAwOJi4sjLCyM7OxsRo0aRXx8PAsWLKCwsNB17OrpUw8//DDDhg1jwYIFXH311fz++++1pm4BJCUl8d///pdJkyYhSRJPP/10g7IdzfHkk0/Sq1cv/va3v/HAAw+g0WhYtWoVN9xwQ60KZDX97W9/46233uKhhx5i+vTpZGRkMG/ePB599FEUCgWbN29mxYoVjBs3jqioKDZv3kxhYSE9evTgyJEjfPjhh1x11VW0a9eOjIwMDh06xJ133tmir7M+kkJEJYLQllRnN4L91ARolfipamQ3rA6osCNX2ECWwWit+jhDfYsRK/RWdiQdZr3/DjYbt2F2mJl4sgsLDwzD1vk6/CQNi0OcHNhawtD2Kt6K3knvDXY6xE3GYYylR76FHsD/oSEzKoB1/hIrSss5WlLpOofFqWCPMYA9xgAg+qyvMUZrJTnARBe9gU4aQ42sSzGBtbIuoty5ILQJ4g5qq9eooOTkyZPccsstFBcXExkZyfDhw9m0aRORkZEAvP/++7UyCSNHjgRgyZIlTJkyheXLl5OZmUlmZqYrU1Cter394MGDWbx4MfPmzeOZZ55hzJgxzJ07lxdeeMG17xtvvME999zD0KFDiYiIYPbs2RgMhqZ9Bxqoa9eu/PHHH8yZM4dBgwah1+u5+OKLXQFZfdq3b88vv/zCrFmz6NOnD2FhYUydOpW5c+cCEBQUxNq1a3nrrbcwGAzEx8fz+uuvc/nll5Ofn8+BAwf45JNPKC4uJjY2lmnTpvF///d/Lfo66+ONil+CIDSeUikRFqQh2JXdkNApJLQyqGwOJLPjnNkNqD/YOJfyADNbEzNJ9dvBFsN2bDYblEJ3WwSPb03CFjAUa+fBxJ2yMOPyAPwzq96ro/6q3/n44MMs+mwRgUNuQZZ7wF/3l7oUWOkC3I2ao+F+rAtSsNJg4lBxRYPGlWfRkGfRsJLQs+6jVsh096+gm385iVoDHdWlxEqlRMjFBNuLamRdyhv5XREEweNEpqTVa1T1LW9ZunQpM2bMOGf1LaFlvffgSnz/N0UQ2q4A/7/WbuhrZDeomd2wIVfaGx9VNEFpcAVbOx9inXYbOw27sMung5tAp5ansnqSsC6bw5c9TmxIJNF55fx7VCRLlBYcq3Kw2J28M+C/PGXaAsAEUyL3vJdFwGW3IAWOBPvZX0R2qJr1IUpWllewt9AzwUKU1kayfzld/WqvdQlxnCLQVoiuMh+FqUBkXQTBm278FJKv9vYohGYQhd6FBpEUErJDRCWC4G5KlURY4OnsRoBGgU4hoZGdqGzO2tmNSnvVxxk88ZdZHGpiS+cDrFNtY5dxD06zE85Y9vFgYW8uXXaSynbBbBtyLwPCAwk6YeRAUiDvaCwMLrSz1V6VCom2nM54/OafxfBr+9P168/QDy5G3ek6ZHP9F/jtS2zcVGLjJhTkB4ezPkzJqopKdhUYW+zGSYFFTYEllNWnzp116epfQXe/chJ1BuLUZcRKJYTLxQTbi/G3/JV1sRhbZpCCcKETmZJWTwQlf7n88stZt25dvY/NmTOHOXPmeHhEvkVSSCCCEkFoFFd2o3rtRnVlKvuZ2Q0nGC1VH2fw5l9dfpSBTXH7Wafcyj7DfuSK+kdzaUUn7lupRLF3F/nXPMn+snaM7RiI9oQRk5+Sp7qrUVpsZB045XpObEUpaE4fY17iTj7rn0zlpl9wGovQ9XsAZ3ndAKym6DIb15XZuA6J4sBQNkSoWWU2sy3P4PHuzjanxF6jP3uN/pxrrUukxkZyYDlJ+nISalUYKybQWoDOXIjClC+yLoLQWCIoafVaxfQtT8jOzqaysrLex8LCwmp1nb8Q/evRtVgqzn2BIAgXCqWqau1GSPXaDfVf2Q2nXHvthr31la7Nji1hU4f9rJM2k2E8dM594+0hzEmLJ3TFTuwxnTh0ySyKimBC12AU2VVTq56fFMWP1kqGGGHnhmzXc/e1f55hwdZaU78S7WG8+i8rckkpqriuBFz6BI7Sxr/vlPop2RilZpXVwpY8A3ZPRyjNpJScdPU308O/nM46A/HqMmIVJUQ4q9a6iKyLINTj9v9Cl8u8PQqhGURQIjTI0idSMZXWvYsrCG1NoL+akCA1wX4qArRK9EoJHaByOE9XpvLQ2g1POd6+mI3t97LGuYkjpqPn3V8nq3jyWG+Sf9qLXG6ifNQt7PYfhVKGMR39Ib9qatYfQ8KYE2QDoOv2Uo4XnS7TmxH7HFfGBpBXWVjr2HeUJjNp0W4AFOExBF/zIvaipgd35XoFG6M0rHZY2ZhbhrUNZXwjNTZ6/NXXJUF7usJYmLOIQGshusoCFBUFSE5xQ0m4ANzzB8Rd7O1RCM0gpm8JDaLWKr09BEFoFrVKQWiwumrthq4qu6FXgNpJ3exGpa3q4wxt53IWsuIL2BiTzlr7Jk5UnIQG3nS/qySZK38uRj6xBadWT/bNr3EwL4BwtYIR4VrkvwKS7PZ6XgpxgBP6miUOFNXtGxKlDqoTlHwWso9BEwcS/fNWnMV5lH4xg5DbF2AvbNrUjIBKJ2OPmRkLVGiC2dJBwxqnjXV5ZZhtrS+TVVOhVU3hqRDWEnLWfZSSkyR/M939y0nUGonXlBIrlRAhnyLEXoifpRBNRR6SpWUrWApCi9P4eXsEdaSmpvLAAw9w4MABJk6cyA8//FBnn9WrVzN69GhKSkoICQnx+Bh9SasNStauXcs//vEPtm/fTm5uLt9//z2TJ092PS7LMvPmzWPx4sWUlpYybNgwFi1aRFJSEgBHjx7lhRdeYOXKleTl5dGuXTtuv/12nnrqKTQaTZ3zZWZm0q9fP5RK5QVZBUwEJYIvCwxQExqoJuiv7IafsqoyVa3sRoUdHE4os1R9nKEtBRz1cUpODiXkszEqnTXWjeRV5kEjrkMvtrTnoXUBaLbuRgasXQewr/d9nMqz0y5KzyCtArm4auW7TSXx1EX+mCxV32flsfqrZEUrdfVun52SztKDCXDoCHJlOSUfTyd0yj+wF/s36jWfyc/qZNQxM6MAiyqQbR21rJHsrM0vo9zSNtdwOGQFB8r9OFDuB0Sddb9wjY2eASa66I0kaAy0V5USwynCnMUEWAvRmQtQmvJF1kXwXWrfC0oeffRR+vbty6+//kpAQIBHz33q1CnmzZvHH3/8wfHjx4mMjGTy5Mm88MILBAcHu/Y7fvw4Dz74IKtWrSIgIIC77rqLV155BZWqboiQmprKJZdcQkpKCmlpaa7tDoeDZ599ls8//9x1TT1lyhTmzp3bqLYSrTYoMZlM9OnTh3vuuYdrr722zuPz58/nnXfe4ZNPPiEhIYGnn36a8ePHs2/fPnQ6HQcOHMDpdPLBBx/QpUsX0tPTue+++zCZTCxYsKDWsWw2G7fccgsjRoxgw4YNnnqJPkWlEQvIBM+rmd0I0qnwq5Pd+KuruF2+ILIbjeVQODmQmMOGiN2srdxIkaUYyhp3jBhHAHP3JhH1+06wV12Qllw5nT3WntiL7HTpGECK3YFco8Hi4jERpFuqApTOdom9R0vrPXaUXP/NjgqFjX9McvD4Ij1yZSU47JR89HdC7ngBh/Hsi8gbQ2uXGXbCzDBgptKftA461igdrM4vo6ye/i1tXbFVzdpGZl3i1KXEKkqJpJhgWxH+rqxLI3/JBMEdNM27adESsrKyeOCBB+r05vOEnJwccnJyWLBgAcnJyRw7dowHHniAnJwcvv32W6AqmJg4cSIxMTFs2LCB3Nxc7rzzTtRqNS+//HKt45WWlnLnnXdy2WWXkZ+fX+ux1157jUWLFvHJJ5/Qs2dPtm3bxt13301wcDAPP/xwg8fcJtaUSJJUK1MiyzLt2rXjscceY+bMmQCUlZURHR3N0qVLufnmm+s9zj/+8Q8WLVrE4cOHa22fPXs2OTk5XHbZZXX6pTgcDmbNmsXHH3+MUqlk6tSp5OfnU1ZW5krT/fbbb7z44oukp6ejVCoZMmQIb7/9NomJiUBV1iYhIYH//Oc/LFy4kG3btpGSksIXX3xBWVkZDz74IAcOHGDEiBF8+umnrmaVnvTTwjSO7z11/h0FoSEkCKrObuhV+NfIbqgdMgqL/fTaDaFRbEoH+7qcJDVsF+srNlFiLW3ScVSyglnZfej/00Hk0qqLTGdwBEcmPsOxnKpgoneXYBLKzFXliv+ytU8wf4txuoLBYSesbN9XeObhyYh9ji86duZN496zjuGx3L5cvHRbrW1B1z+K7OzuarLobnYF7I7RslbjZGWBgVMVdQNd4dxC1XZ6Bproqje4si5Va11OVa11MeejNBUgOcX3VnCjJ0+CNtCjp7RYLMyaNYuvvvoKg8HAgAEDePPNN4mMjCQhIaHWvtWNxH/55RdmzJjBiRMnGDx4MHfddRd33323a/pWdW++zz//nMcee4wTJ05wxRVX8Omnn/LNN98wb948ysrKuOOOO3jzzTdRKhs+k+Wbb77h9ttvx2QyoVKp+PXXX7nyyivJyckhOrrqhs/777/P7NmzKSwsrDVz6OabbyYpKQmlUskPP/xQK1Ny5ZVXEh0dzUcffeTadt1116HX6/n8888bPL5Wmyk5lyNHjpCXl8eYMWNc24KDg7n44ovZuHHjWYOSsrKyOlW2Vq5cyTfffENaWhr//e9/6zzn9ddfZ+nSpXz88cf06NGD119/ne+//55LL73UtY/JZOLRRx+ld+/elJeX88wzz3DNNdeQlpaGQnE6AzFv3jzeeust4uLiuOeee7j11lsJDAzk7bffxs/PjxtvvJFnnnmGRYsWNfdb1GhqjZi+JTSMWq0gNFhDiL+KwFrZDbmq70blX9kNhwwVtqqPM7T6OyUeZlU72N3lGKkhaaSaNmG0lUNp0493vaEbN/5WDllbXT8L80Xj2N3hespzqn5eg5NDic4rrxUclISqebqDRHVBrXBZYs/B4rOeJ8p67uIZr8emsWRkP/zX7nRtM3z7BgHj70QKHHHOJotNpXJC/xwL/YGHJB37Y0NYq5NZUWgkv1wU+2iIEpuK9aeCWU/wWfeRJJkkPzM9Aox00RmJU1VVGHNlXayFqCvyUZhLPTdwoXVTez5T8vjjj/Pdd9/xySefEB8fz/z58xk/fjyHDh0iNzeXbt268fzzz3PTTTcRHBzMiRMnuPbaa5k2bRr3338/27Zt47HHHqtz3IqKCt555x2++uorjEYj1157Lddccw0hISH88ssvHD58mOuuu45hw4Zx0003NXi8ZWVlBAUFuaZmbdy4kV69erkCEoDx48fz4IMPsnfvXvr16wdUBVSHDx/m888/58UXX6xz3KFDh/Lhhx9y8OBBunbtyq5du1i/fj1vvPFGo76fbTIoycvLA6j1Ta7+uvqxM2VmZrJw4cJaU7eKi4uZMmUKn3/+OUFBQfU+76233uLJJ590TSF7//33+f3332vtc91119X6+uOPPyYyMpJ9+/aRkpLi2j5z5kzGjx8PwCOPPMItt9zCihUrGDZsGABTp05l6dKl53v5LUKtb5O/KkJj1Mxu+J2R3bA7UVhqVKayO6DMcUGu3fAUs9ZGWtIRUgPT2FC+hQp7RbMCEYBe1ihmbopAn7rbtU1WKCm4dg77T8XiLKsKSEb3CiPoRO2V8bIEz48IochyuqNicpHD1SyxPtFmI5xnuvHswUf4Z2YMcs7p9+7y3z9FP6QYdfy1Z22y6A5KWSIl10IK8CAaMqIDWesnsaLYSLbBfN7nC2cnyxIHTXoOmvSca61LqNpO8l8VxjprDXRwZV2K/8q6VK91EVmXC5raDxSenWZuMplYtGgRS5cu5fLLLwdg8eLFLF++nI8//phZs2YhSRLBwcHExMQAsGjRIhITE3n99dcB6NatG3v27OG1116rdWybzebaF+D666/ns88+Iz8/n4CAAJKTkxk9ejSrVq1qcFBSVFTECy+8wP333+/alpeXV++1cvVjAIcOHeKJJ55g3bp19a4zAXjiiScwGAx0794dpVKJw+HgpZde4rbbbmvQ2KqJK02qepRMmDCBG264gfvuu8+1/b777uPWW29l5MiR9T6vrKyM3NxcLr74dAk6lUrFgAEDqDkr7tChQzzzzDNs3ryZoqIinM6qf9LHjx+vFZT07t3b9Xn1L0WvXr1qbSsoKGjmq20arU78qrRlp7MbagL1SvxVp/tuKG0Okd3wERV6K9uTsljvv4PNxm1YHJZmByIAoU49T2f0oOMvacjWHNd2e/suHBwxk7w8ByAjSTC+Vxja43VLdX09OoJ1NQISnQyHDhSd87yR5cVwntkWBcpyllwfzZT3ilxrWgAqN/6MbCxC2/f/zttk0R0kJLrnW+kO3I+GzMgA1gVIrCwt50hJ/T2uhOYrsalILQkmteTcWZcuflVrXbroqiuMlRIpFxPiqO7rIrIubZru7L8fLSUrKwubzea6cQygVqsZNGgQ+/fvr/c5+/fvr3XNCDBkyJA6+/n5+bkCEqi6/uvUqVOtxfI1rwlffvnlWmtA9u3bR1xcnOtrg8HAxIkTSU5O5tlnn23wa3Q4HNx6660899xzdO3a9az7ff3113zxxRd8+eWX9OzZk7S0NGbMmEG7du246667Gny+NnmlWR2R5ufnExsb69qen59P3759a+2bk5PD6NGjXamnmlauXMmPP/7oyp7IsozT6USlUvHhhx/WyYCczaRJk4iPj2fx4sW0a9cOp9NJSkoKVqu11n5qtdr1eXW1gjO3VQc0nqbxa5O/Km2fBMEBakKqK1NpqvpuVK3d+Cu7YbJV3W12ZTfqHkYEHN5THmBma+Ih1vvtYKthBzabzS2BCIAkwyP5fRj+01GcRVtq/ZzLR9/Gbv0IzHlVmQi1WlHVFLGegORglwDe0lhr/aL0N8KO86zHiDLkQ2D4ecf5i38Ww6/tT5evt9Tabk7fjMNYiv/o2U1qstgcXQqtdCmEu1FzNMyP9cEKVhoqOFhct/Sx0LJkWeKQSc8hkx44+5rL4L+yLl315SRoDXSskXUJshWiq8wXWZfWygtBSUuqee0HVdd/9W2rviZ84IEHuPHGG12PtWvXzvW50WhkwoQJBAYG8v3339c6TkxMDFu21H5frV7EHhMTg9FoZNu2bezcuZPp06cD4HQ6kWUZlUrFH3/8waWXXsqsWbN44oknXMsjevXqxbFjx3jllVdEUJKQkEBMTAwrVqxwBSEGg4HNmzfz4IMPuvbLzs5m9OjRXHTRRSxZsqTW+g6ommvncJyeGvC///2P1157jQ0bNtC+fXuCg4OJjY1l8+bNrmyK3W5n+/bt9O/fH6iaApaRkcHixYsZMWIEAOvXr2/Jl98itGL6ls/RqBWEBWsI9lcToFP+1VWcquyG1Xm6MpXIbrQ6pcEVbO18iLXarew07MJhdYD1/M9rjMtNiUxZ7kDav73WmnGnzp/sa+ZxKNcfKqre//z9VIyJ84fsuqV9K/yUzOmhwWY9/fslyTJFh0rPOwY/q4lAdXzVGpjzeDpxJ5/164FqZ+07kLZjGRh+mkPw5BexF3vnpk2nUzY6nYLbUZITGs66ECUryyvYW3j+1yV4TplNxcaSYDaWBAPt691HkmQS9Wa6+5voojcQpy6jfXWFMXtV1kVTkY/CXOLZwQvnpq1/in1LSkxMRKPRkJqaSnx8PFA17Wrr1q3MmDGj3uf06NGDH3/8sda2TZs2NXssYWFhddZEQ9W17/jx49Fqtfz444/odLXLsA8ZMoSXXnqJgoICoqKqplEuX76coKAgkpOTUavV7Nmzp9Zz3nvvPVauXMm3337rWsxfUVFR5xpaqVQ2+kZ6q73SLC8vJzMz0/X1kSNHSEtLIywsjLi4OGbMmMGLL75IUlKSqyRwu3btXBW6srOzGTVqFPHx8SxYsIDCwtPVYaozLT169Kh1zm3btqFQKGpNuXrkkUd49dVXSUpKonv37rzxxhu1qnOFhoYSHh7Ohx9+SGxsLMePH+eJJ55oge9Iy9KIoMRzJAgOVBMaqKlRmQo0sshutGXFoSY2d97POtU2dhvTcZqd0ALLFpLs4cze1p6g1TvhjOKL1m4D2dfrXk7lns46hIVoGBmuRc6rqPd4b1wazlFr7elLfS0K9hfVv/+ZorQhDQpKHMjMu+wULx8JdlUDq+YszqP0338n5LZ/NLnJoru0K7FxU4mNm1CQHxxOapiSVRWVpBUYz/x2Cz5IliUyK/RkVuiBiLPuVzPr0qlG1iXcWUygrQi9+a+si8PNdxOE+nkhU+Lv78+DDz7IrFmzXNee8+fPp6KigqlTp9b7nAceeIDXX3+dWbNmce+997J9+/YWWytsMBgYN24cFRUVfP755xgMBgyGquZUkZGRKJVKxo0bR3JyMnfccQfz588nLy+PuXPnMm3aNLRaLUCta16AqKgodDpdre2TJk3ipZdeIi4ujp49e7Jz507eeOMN7rnnnkaNudVeaW7bto3Ro0e7vn700UcBuOuuu1i6dCmPP/44JpOJ+++/n9LSUoYPH85vv/3mihKXL19OZmYmmZmZdepHN6ZK8mOPPUZubi533XUXCoWCe+65h2uuuYaysqp/mgqFgq+++oqHH36YlJQUunXrxjvvvMOoUaOa+R3wLJEpcQ+Npiq7EfJXdsNPVSO7cWZlKpO16uMM4rqm7ciPMrApbj/rFFvYa9wPDbuOb5IAWcOcrBSSlu1Brsyv83jJlQ+zx9oDe9HpgKRdlJ5ButNNEc/055AwfrDVXU8hHW14hiBK5U9WA/c9pC5m2c09mfj+rjqPyRXGv5osLsBe7BtN1KLLbFxbZuNaJIoDQkmNULPaYmZbngGn+ENu1RqademsN9OjRtalnaKUSE4RUp11qcxHUSnK7TebzvOZEoBXX30Vp9PJHXfcgdFoZMCAAfz++++EhobWu39cXBzfffcdf//731m4cCGDBg3i5ZdfbvTFe0Ps2LGDzZs3A9ClS5dajx05coROnTqhVCpZtmwZDz74IEOGDMHf35+77rqL559/vlHnWrhwIU8//TR/+9vfKCgooF27dvzf//0fzzzzTKOO0yb6lPiaKVOmUFpa6upT0haczCjhf2/uPP+OFyjpr+xGiCu7oaiqTCWDylWZytailYKE1iE79hSbOuxnLVs4WH7II+e8vyiFsT/n1apgVc0RGsWRy5/meE7tDEOXjv6k2J1n7RWT007HrX21lDtqp+cT7RLZK06ed0wZsc+hLclgbv+J/K9kz3n3r+ndXX2J+mXbWR8PufMFHAb3NFlsCaV+SjZFqVlls7I5twy7iFAuaIEqO8kBFXTzKydBW1ZjrcspgmyF6KsrjDlESeqzGnAPXPmmt0chNJO4/S00iM5fff6d2iitVklokPp0dkOtQCfVWLtRnd1wiuyGUL9jHYrY2G4fa52bOGI6Ch5aanBJZTwPrFKj3JVW7+9g5cAJ7Gl3DeU5tQOP6qaIsq3++cB2lcTcAQGUW+peJEXnmMluxBijmrAM5PFee1l6sBNkHq338dJPn65qsujo7pN/fCEVDiYcdTABMOqC2RytYbXDyoY8A9ZzlFAW2iajXcXm0iA2lwYB7c66X+e/Kowl6Q3En5l1sRZWrXWpPHtfoDZNX39mQmhdRFAiNIhfkOb8O7UyZ2Y3ArQK9AoFWuTT2Q2TDdniAJsDSuvPcvjgNY/gZbIkkxVXwKaYvay1b+JExUmoW7SqxXSwB/PU7k6EL98J9Sw0lBVKCq57in3F0chltQOSi5NDiTmjKeKZFl8WyW5L3WlbEc5zN0usT7S98ZWOKhQ2Xr9KZuYiHXJl/VPLDN++QeCEuyBgeIs0WXSXQLOTMcfMjAEqNEFsjdOwRraxLs9ApU1kVoXTDlfoOFyh41xrXfxVDnoGmOjmZ6yqMKYsI0ZxijBHcdvOugTEeHsEghuIoKQFeKvBYUvSB6hRKCScrWSagVarJCxIQ3CAigDtX5WppKqu4lXZDRuyyS6yG4LbOCUnBxPy2BiVzlrrRvIq88Hg2TFoZSVPHO9Dyk/7kY3b693H3iGJjOGPkp9XN+qorynimbb3DuZj6u/L0aPYzlZH4/5yoixNW0izWZvNlhv7MvCTs0/jMv72CfqhRajjWrbJorv4WZ1cctzMJYBFFcD2jlrWSHbW5JdRbvH98QveZ7Ir2VIaxJbSIM621gWgk95Mj4ByuuiNdHJlXYoJrZF1kSpPIbWW/4QBZ2/AKbQeIigRGkRSSOgD1ZjKvFtJRJIgOEhNaICmqqu4RlHVd6N67Yb5r7UbFgfY7FBS/3z4VvI2K/g4h8LJgcQcUsN3sc68iSJLcb2V0DzhttIeTP6lBPnYlrP+fhsvvZ3duuFY8mpf4J6rKWJNpaFq5naUkOv5s6pqltj4qSNRplLQNvppAPyjXRpLRvTFf13aWfep3PAzsuEU2r73eaTJorto7TJDT5gZCjym9GdXBx2rlQ5W55dRZm49r0PwTUcrdRytPH/WpYd/Bd38jHTWGeioLCVGKiFMLibIWpV1UVXkI9lboExgYwWKTElbIIISL8jLy+OOO+5gw4YNqNXqWiWE69OpUydmzJhx1rrXnuIXrG3RoESnVRL6V3YjUKvCTy2hkyQ0DicKV1dxkd0QvMumdLC3ywk2hO1mXcUmSq2lXgtEAAZa2vHw+iC0W/ac9fffqfPn5DXPkpnr5+o9Uk2tUjC+ezDK8wQksgQvjAih0FL/BUhDmiXWJ6q8ELRNjEqA2UOP8M/MaOTcuhXFqpnTN+IwnvJKk0V30Dhg4EkzA4G/K/zY007LWo3MykIDxfW8DwqCO5jsSraVBbKtLJBzrXWJ15vpEWCii+6vrIuyhEhOEeoowt9SiLYiH6myuGWzLiJT0iaIoMTNXnnlFf773/9y4MAB9Ho9Q4cO5bXXXqNbt26ufd58801yc3NJS0sjOLj1dCH1C27auhJJIRESqCLkr+xGwF/ZDU3NylQmkd0QfJdVY2d34nFSQ9JINW2q6qtR6t0xRTkCmLsviZjfdoL9+Fn3s/a4mL3J91CSW/fvyk+vYmy8P5w8/8r7by6JYM1ZAhJJlik8WNrgsdcUbixEFdEJe33plwYoUJhYen0sd71XBI6zT3GyHcvA+NMcgrzYZNEdVE7ol2OhHzBd0rI/Jpi1OpkVRUbyy9vYOgGhVThWqeNYpQ4IP+s+/konPQJMdPUz0llrpKOqlBjFKcJrVBhTmfKannURa0raBBGUuNmaNWuYNm0aAwcOxG63M2fOHMaNG8e+ffvw9/cHICsri4suuoikpCQvj7Zx/OtZ7K7T/bV2w19FgE6Fn1JCp6jKbihtzqqpVBW2qkWzIrshtCJmrY2dSUdIDdzJhvItVNorvR6IACiReCy7DwN/ykQu2XrOfU9NmkG6uRv24roX/KHBai6J0J21KWJNhxIDeEtnPesfaz+Lgn3FTVsbopCdhOtCyK8satLzAX4OyGT4tReR+M2Wc+7n8KEmi+6glCVS8iykAA+iISM6kHV+EitOGTlZ5gNTagThLyaHokbW5ezi9GaS/8q6xKtLaacsI4pThDiKCLAUoq3MQ6o4I+uiDQKNb/QmEppHBCVu9ttvv9X6eunSpURFRbF9+3ZGjhxJp06dOHbsGACffvopd911F0uWLOG5557j448/Jj8/n/DwcK6//nreeeedes/xr3/9i5kzZ/Ldd99x2WWXtfhrqta1YyCdeln+WrthB5Md2eoAq73q4wwi2BBaG5OflR1dsljvv4PNxm1YHBafCESqXWPsyi2/V8Khbef8+3KERXNkwty/eo/UzQqcryliTZV6JXOSNVit55iadaR5pcWi1UHNCkoA5nbZyed9uqPcdeCc+7maLN69AHtR27mQkZDonm+lO3AfGrIiA1gbILGytJwjJfUXJhAEX3O8UsfxBmRdugWY6O5XTmetgc7BEpd6bohCCxJBSQur7uweFhYGwNatW7nzzjsJCgri7bffRq/X89133/Hmm2/y1Vdf0bNnT/Ly8ti1q27HYoD58+czf/58/vjjDwYNGuSx1wEQ7Kek9K/KPCLgENoKY2Al2xIzWafbzlbjDuw2u08FIgAptmhmborAb3397ws1VQ66gt0xV2PKqX86lKspoqFhaxHeuCycI9azX9Qm2RXsO968RTVRSn2zng/gQOaZcSW8fCwYufQ843HYKfnXDJ9vstgciYVWEgvhbtQcC/djfZCSlUYTGUUmbw9NEJrF5FCwoyyQHWWBQCzDu0SIoKSNEEFJC3I6ncyYMYNhw4aRkpICQGRkJFqtFr1eT0xM1RzI48ePExMTw5gxY1Cr1cTFxdUbcMyePZvPPvuMNWvW0LNnT4++FgBVcNMXowqCLykJrmBr54Os025jp2EXDosDfHA6frBTx9MHk4n/ZRey5dwtCWWlivxr57K/OBLZUH9A0qtLEJ3LLGdtinimFYPD+N527rvskTmVnGjQ0c4uCmUzj1DlkKqYX27qyeUfnD94g7+aLN7wGLK9W5u+0xJfbCO+2MZtKMkJDWd9iJKV5RWkF3qoi6cgtKDYYJ23hyC4iQhKWtC0adNIT09n/fr159zvhhtu4K233qJz585MmDCBK664gkmTJqFSnf7xvP7665hMJrZt20bnzp1beuj1UoaIoERovYrDytmUcIB1qq3sMe7FaXaCj067l2SYXtibkT8dRy44e4nfavaO3cgY9nfy886+0PviHqHE5Juqqtc1QG6sjhfCHHCO9hhRTWiWWO9x7O7rwbEkbC8DLh9A5K9n719Sk+Gb1wmcMAUChvl0k0V3aVdi48YSGzeioCAojNRwFSsrzaTlG5Db/ssX2qDYkOZnWgXf0PpX+vmo6dOns2zZMlatWkWHDh3OuW/Hjh3JyMjgvffeQ6/X87e//Y2RI0dis52ewz1ixAgcDgdff/11Sw/9rJQiUyK0MvlRZfxvwGZmDlrI7dGP827Fx+wy7MEp+271pXGmzvz7pwRGfLQDueD86yyMl93J5pRzBySjeoURk1ve4IDErpJ4emAA5Y5zf5+6FdmxNbJZYn2ibO5NU83usw8S4xu8v/G3pThy/oekc0/GprWIMti55oiZhXnwg38osztFMSg2CKVC8vbQBKHB2olMSZshMiVuJssyDz30EN9//z2rV68mISGhQc/T6/VMmjSJSZMmMW3aNLp3786ePXvo378/AIMGDWL69OlMmDABlUrFzJkzW/Jl1EuhUyFplVWlewXBR2XHlrCxw17WsoVD5ZnQSqbQJ9rDeGJ7B4JX7aQht6yd+gBOTn6WzFw9VNb/NylJMK5XGLrz9CA500eXRZB2lvK/1XQyHGxCs8T6RFcawY3XweWSlTevknh0kQ7Z3LB0WMWGZegMxa2uyaK7hJc7mFTuYBJQ5hfCpig1K21WtuSVuSXwFISWIjIlbYcIStxs2rRpfPnll/zvf/8jMDCQvLw8AIKDg9Hr6//DWbp0KQ6Hg4svvhg/Pz8+//xz9Ho98fG17/QNHTqUX375hcsvvxyVSuWVZorKEC32/KaV/hSElnK0QxGb2u9ljWMzR01HoRVNlfdzqplzpBfdlqUjV+xo0HOsPQazN/nuenuPVGtoU8Qzbe8dzL8aMK+tv0FmR2XjmyXWJ8p0CgLcciiXjbqTbL2xLwM+bdg0LviryWJ5Cf6jHm+VTRbdJbjCwfijDsYDRl0wWzpoWO2wkZpXhtXuu1lG4cIkMiVthwhK3GzRokUAjBo1qtb2JUuWMGXKlHqfExISwquvvsqjjz6Kw+GgV69e/PTTT4SH1y2JN3z4cH7++WeuuOIKlEolDz30kLtfwjmpRFAi+ABZkjkcV8DGmL2ssW/kZEU2GLw9qsa7tziF8T/nI2eff91ItVNX/509FV1x1NN7pFpjmiLWVBas5uk4xXkXwkuyTEETmyXWJ6osDwLOXgK0qea3T2Pp8D4NqlpWzXb0QJtosugugWYnlx0zcxlQoQliW5yG1bKNdXkGKm0iay54n8iUtB2SLIulbULDlf6URXlqjreHIVyAnJKTgwl5bIjaw1rrJvIr8709pCYbbu7I31brUO3c3+DnOMNiyJowlxM5557n5GqK2IAeJDXJEsyaFMnq80zbArioUmLv2pONOv6ZMmKfQ1uS4fp6SNcelNvcP9cuxhHAwk81yHkFjXqe5BfYZpostgSLSmJHrJbVCjtr8gyUWy7czJLgPVGBWrY8NcbbwxDcRGRKhEZRRbadZmOC73MonOxPzGZD+B7WmjdSbCmG5rXE8Kr2jiCe2t2ZiOU7wdHwu8yVgyayO+aqs/YeqdaYpohn+u6SiAYFJADOZjZLrE+UNrRFgpI8ZTmf3ZDE7e8VN+p7frrJ4uvYi8Sd2DNp7TJDTpgZAjym9GN3Bx2rlQ5WFxgoddO0PkE4n8RIN8/7FLxKBCVCo6ijxD9noWXZlA7Sk06wIXQX6ys2U2otbdWBCIBGVjL7ZB96/3gA2dDwNQ6yUkX+dXPZX3j23iPVEjsG0MvuaHBTxJoyO/vzhs7aoF4dXW0S+0+4/wcSpfLnsNuPWuXHgEMMveYiOn+7pXFPdNgp+dcjhNz5Ig5DVMsMrg3QOGDASTMDgBmSnvR2IazRyKwsNFBsavzvoyA0VJcoEZS0JSIoERpFFSUyJYL7WTV2dnU5xobgNFJNmzHayn2uq3pT3VzWnet+KUM+2vB1IwC2uG5kDPk7Bfnnv7vf2KaINZl1Cub01GK1NuzudkSOmeONPsv5RUmaFjjqaXO7pPFZn24od2Wcf+czlH46l+AbHsPZxpssuoNKhr45FvoCD6FlX0wwa/UyK4uM5Bl9sEOp0KqJoKRtEUGJ0CjKAA0KPxXOCjF/WGieSp2NnV2OkBq4g43lW6m0V7aZQATgImssM1JD0G7a0+jrWOOYKexSD8bagIBkUHIosXkNb4p4pjcvi+Cw9dxd26tFOyX2HHJPGeC6x26Rw7rYJSfPjS3jhaNByGWNr4pQ9s3rBF5+N/gPvSCaLLqDAomUPAspwINoOBgdxDo/WHHKyIkyH+1cKrQqYvpW2yKCEqHRVJF+WI+1wlJHgteZ/Kxs75JJqv9ONhu3YXFY2lQgAhDh9OfpfV2J/S0NbCca9VynfxAnrppHVq4OGtDlfFSvMIJPNH19x8qLw/jO3rCABKBrkZ2tLdSzIsre8usQDqiL+O3mFMZ/kNak5xt/XYLfsCJUHa5GtojKXI0hIdEt30I34F40ZEUEsC5IYmWJicMloqKj0DQiU9K2iKBEaDRVpF4EJUKDGQMr2ZaYyVrddrYZd2C32dtcIAKgROLvuX24+Mcs5FNbG/18S8+h7O0+hdLc81+cVzVFDEd3vOl/h3kxOl4Id0AD137rZcg4cP4O800VZWl4cNQcH4WlM2DCAMJ/a/janpoqUn9C16sYbe97cZpExripEousJBbBFFQcDw9nXZCSlQYTGcWtpNup4HUBWhUxokdJmyKCEqHR1GJdiXAeJcEVbEnMYL1mOzsNu3BYHNCGp5NfVZ7EbX9YkDK2NWnJQfHVj5JekYSj+PwByemmiE0PSOxKiacHBWC0NPyH0t8A2ytb7iI8uqIUWnZZicusvvv4+GA8HD7WpOeb92zAYTx1wTdZdJe4Yhu3Fdu4DSU5oeGsD1Gy0lRBekEr6oIqeFxipL+3hyC4mQhKhEYTi92F+hSFG9ncKYO1qq3sMaQjV8rgmZvfXpNsi2TWlmj816Y16fmO8Fiyxs/lZA7A+acDVTVFDGh0U8QzfTwmgp0NLP8LoJBl8g6WNOuc5xNlLIRwz0Ql5ZKVt69WMGORDtnctLUNtqMHMC6bS9DVz4smi27UrsTGjSU2bkRBQVAYqeEqVlZUklZgRHRVE2pKFFO32hwRlAiNpo4UZYGFKnnRZWyK2886aQv7jAfgApkaHizreOpQMgk/70Y25zbpGBWDJ7En6srz9h6pFhKsZlSEDjmvedNbdvYK5l807kK8n1nB3lMtG2GGGwtQRXTCLnsm85CqO8GIG/rR/7PGT7Wr5ijKofSrRwm5db5ostgCogx2rjHYuQaJ4oBQNkaqWWW2sC3fgKOJhR2EtkMscm97RFAiNJoyVAcqBdjF3cEL0cl2JWzqsI818iYyy7PgApth8bfC3oz+6SRyfuNK/FZzqjQUXDeX/QXh5+09Ui02Us/F+qY1RaypLFjF3HgFzkaWDnYcdn+zxDMpZCdh2hAKzC23buVMr3bYySfD+qBP3dXkY8gmAyVLHyb0rn+IJostKLzcwZXlDq4EyvxC2BSlYZXNzOY8A7YWKr4g+DaxyL3tEUGJ0GiSQkIdocOWd4HcFhc42rGIje3SWevYzFHTMWj5a1Sfc1llJ+5boUCxZ0eTW1XY45PZP/hhChtQ6rdaYscAejma1hTxTC9dEkp+I6ZtAXSzSRw46ZnuldGaII8GJQCzhx1jYWYUcn5B0w9is4omix4UXOFg/NFKxgPl2mC2dNCw2mEjNa8Mi7hZdsEQmZK2RwQlQpOoovxEUNKGyZJMVnwBG2PSWWPbSHZFDlygBdc62UOYszOekJU7wdn0Cx7D2LvZrby4Qb1HqqUkBpFoaFpTxDP995IIVjYyIAEIyzbTtOXgjRel9HwlnTxlOZ/fmMRt7xWDo+E/m/pUNVmcidPeVTRZ9JAAi5NLj5m5FKhUB7EtTsMq2cb6fAMV1ub9PAXfpVZKdAoX61vbGhGUCE2iihRvBm2NU3KSkZDLxqg9rLVuJr8yHzxzg9wn6WQVc472psdPe5FN25t8HKd/ECeunkdWjg5sDb9IGtQjhNj8iiY3RawpK8Gf1/XWRl8ox7Rgs8T6RMne+Zf0v4BDDJt8EZ2+29LsY5V9s4DAy+8B/yGiyaKH6W1ORhw3MwKwqgLY3lHLGoWd1XkGyi2iSlpbEh/uj0op1nG1NSIoEZpEEytK8bUFDoWTfV2y2RC+m3WVmyi2FF/QgUi1KaeSmfhLEfKJpq0bqWZJGU561zspy2lcY8BLeoUR0oymiDWZdQrmpGixWBvfnDCp0MZWDy4ojmpGJqq55iSl8Vmvbij3ZDT7WMZfP8ZveDGq9pNEk0Uv0dhlhpwwMwR4TOHHrg461qgcrMo3UFrZ8o06hZbVPSbQ20MQWoAISoQmUXcQczlbK5vSQXrSCVJD01hfsZkya1mbbGbYFEPNHZm2Vo96++5mz74pvnom6abOOE41/ALIHU0Rz/T2ZRFkWRtfOctPhgMHPJclAYi2Nm8hf3PYJScvjDfw3LEgZEPzv/8V6/+HrncR2l5TRZNFL1M7YcBJMwOARyQ96e1CWatxsrLQQJGp+Wu1BM/r3SHY20MQWoAISoQmUYXoUASocZaLO06tgVVjZ1eXo6QG7yLVtJlyW7kIRGqIcQQwN70LUX+kgb15F5COiPZkjZvzV++Rhoc2VU0RQ5rVFPFMqweF8o29aaV8+5XJbDd79mI6yuzdCgr71IX8cXMvxn640y3HM+9OxWE4hf8ls3CUicDEF6hk6Jtjpi8wHS37YoJZp5dZUWQkz9iGO7y2Mb3ah3h7CEILEEGJ0GSa9gGYM1q2oZrQdJU6Gzu7HGF94A42GrdgdphFIHIGlazg8ZN96PdTBnLZtmYfr2LoZHaHX05FA3uPVPPTKRnbKRBOuu+iPD9ay/MRTmjCWl+FLJPbws0S6xNVfgq8nIRdHL6H/uMvIvz3pq8jqsl2dD/G8rkEXf0C9mKx8NqXKJBIybOQAjyAhkNRQazzhz9PGTlR5r2snXBukgS9RKakTRJBidBkahGU+Jxyfws7ErNY77+DzYZtWB1WEYicxQ2Gbtzwazkc3trsqVpOlYb8a5/mQGEYsrFxAUlIsJpRkc1viliTXSnx9MWBGCxNu/Pb36wgvaRlmyXWJ9qQDwFhHj/vmR7ve4CPD8YhHznuluNVNVn8OyG3/gN7oeSWYwruJSHRtcBCV2AqGg5HBrAuQGJFmYnDp0SlSV+SEOFPgFZcvrZF4qcqNJmmg1ho5gsMgWa2JR5inW4b24w7sdvsIhA5h77WGB7dEIZu4263HM/WqScHLn6oUb1HqrmaIha5967s0ssi2NGE8r/VbIe9U//Zz1JOgLoj5Tb3BWhNYVRYeHuykkfe0yI3MbA7U1WTxYdEk8VWonOhlc6FcBcqToRFsC5YYoWxgowi7/5uCtC7vciStFWinpqPOHDgAIMHD0an09G3b9/z7i9JEj/88EOLj+tcNGKxu9eUhFTwW/+dzB28mFs7zuIflkVsKtuK3SnmrZ9NuNOPN/f1Y847+W4LSAzjprK5e9MCks4dArhYjVuaIta0q2cQH0pND0i62RRknPReU5oobajXzl3Tet0JdtzQy70H/avJojK40L3HFVpUx1NWbj1i4aMiJd+EhPFIQhS9osRNOW/p1SHE20OoIzU1lV69eqFWq5k8eXK9+6xevRpJkigtLfXo2FoTEZQ00yuvvMLAgQMJDAwkKiqKyZMnk5HR+JKS8+bNw9/fn4yMDFasWNECI3U/ZZAWZZDG28O4YBSFG1l20TZmX/wet8XO4u3KxWwv24lDFvPUz0WS4e+5ffjgIxXt/7cVbM0vzuAMCOborW+wzdofq7nx3/+UxCB6WWzIFe4NIg1BKp5KUNKcIrRh2Z6ftlVTpNJ3eiC90jEN85Debj9u6SdPodAcAjGTq9WJLbVzwxEziwokvg8KY2ZCFP1jgpDEz9Jj+nb0vUzJo48+St++fTly5AhLly71+Pk//PBDRo0aRVBQUL2Bz9GjR5k6dSoJCQno9XoSExOZN28eVmvtm2K7d+9mxIgR6HQ6OnbsyPz58+uc65tvvqF79+7odDp69erFL7/84rbXIaZvNdOaNWuYNm0aAwcOxG63M2fOHMaNG8e+ffvw9294L4+srCwmTpxIfHx8C47W/TRxgVSme7Zs6IUkL7qMTXH7WSttYb/xAIipzY0ysbwLdy63IR3Y3qwL9ZrMvUewt8sdje49Us2dTRHP9NIloeQ1o6yup5sl1idaofXq+c80e8QJ3jkciZzv3uxG2df/IPCKqeA3WDRZbKUiDXYmG+xMBk75h7ExUsUqq4WteQYcHuzvcyHRKBX0bOd7QUlWVhYPPPAAHTp08Mr5KyoqmDBhAhMmTODJJ5+s8/iBAwdwOp188MEHdOnShfT0dO677z5MJhMLFiwAwGAwMG7cOMaMGcP777/Pnj17uOeeewgJCeH+++8HYMOGDdxyyy288sorXHnllXz55ZdMnjyZHTt2kJKS0uzXITIlzfTbb78xZcoUevbsSZ8+fVi6dCnHjx9n+/bTlVsOHDjA8OHD0el0JCcn8+eff9aafiVJEtu3b+f5559HkiSeffZZrFYr06dPJzY2Fp1OR3x8PK+88spZxzFv3jxiY2PZvds901IaShMX5NHzXQhOtDvFN4PW89DA17k77Ek+KP+0KiARGqybLYKPN/TiroUHkA5kue24xdc8zqbIWyhrRO+Rmi5JCSM219QiAcn3I8NZ0cw+H0mFduxevpiK8rFruVylkS9viASF+/9dGn/5CEfeMiSt+Ffc2oWZ7Ew8amZBjsxPumCe7hTNiPYhqJUiheJOPdoFoVMrPX5ei8XCww8/TFRUFDqdjuHDh7N161aOHj2KJEkUFxdzzz33IEmSK1Pyyy+/0LVrV/R6PaNHj+bo0aO1jrl06VJCQkJYtmwZ3bp1w8/Pj+uvv56Kigo++eQTOnXqRGhoKA8//DAOx7kz8jNmzOCJJ55g8ODB9T4+YcIElixZwrhx4+jcuTNXXXUVM2fO5L///a9rny+++AKr1crHH39Mz549ufnmm3n44Yd54403XPu8/fbbTJgwgVmzZtGjRw9eeOEF+vfvz7vvvtu0b+wZRKbEzcrKqtphh4VVVZBxOBxMnjyZuLg4Nm/ejNFo5LHHHqv1nNzcXMaMGcOECROYOXMmAQEBvPPOO/z44498/fXXxMXFceLECU6cOFHnfLIs8/DDD7Ns2TLWrVtHly5dWv5F1qCJF0GJOxztWMSGdumsdWzimOk4eLddQ6sV6NTyVFZPEn/ejVyZ57bjOiI7kDn2SbIb2XukWlVTxDB0x1vmB3ukkz8L/GxNGZpLVbPEIvcNqomibL63Lur7wIMMnTyA+P9ucfuxK9b/D12fYrQpd+M0iamYbUFQhZPxRysZD5Rrg9nSQcMah431eWVY7O7K2V6Y+seFeOW8jz/+ON999x2ffPIJ8fHxzJ8/n/Hjx3Po0CFyc3Pp1q0bzz//PDfddBPBwcGcOHGCa6+9lmnTpnH//fezbdu2Otd+UJXheOedd/jqq68wGo1ce+21XHPNNYSEhPDLL79w+PBhrrvuOoYNG8ZNN93k1tdUVlbmulYF2LhxIyNHjkSjOT0tf/z48bz22muUlJQQGhrKxo0befTRR2sdZ/z48W5b4yyCEjdyOp3MmDGDYcOGudJYy5cvJysri9WrVxMTEwPASy+9xNixY13Pi4mJQaVSERAQ4Nrn+PHjJCUlMXz4cCRJqndal91u5/bbb2fnzp2sX7+e9u3be+BV1qZpHwBKCRw+dnvTx8mSTGZ8Phuj01lr30R2RQ54b21xm/BAYS8uW5aNnLel2SV+a6oYdg27Qyc0uvdINaVKYkL3EFQtFJCYtQrm9NZhsTRvwXz/MpltHm6WWJ8oi2/OUXyyaxqfp3RFkX7Q7cc271qPo6xYNFlsgwIsTi49ZuZSoFIdxLY4Dauxsy6vjAqrCEIbq3+c5wthmEwmFi1axNKlS7n88ssBWLx4McuXL+fjjz9m1qxZSJJEcHCw6xpu0aJFJCYm8vrrrwPQrVs39uzZw2uvvVbr2DabzbUvwPXXX89nn31Gfn4+AQEBJCcnM3r0aFatWuXWoCQzM5OFCxe6pm4B5OXlkZCQUGu/6Oho12OhoaHk5eW5ttXcJy/PPTcBRVDiRtOmTSM9PZ3169e7tmVkZNCxY0fXLyrAoEGDznusKVOmMHbsWLp168aECRO48sorGTduXK19/v73v6PVatm0aRMRERHueyGNIKkUqNsFYDshbu2fj1NykpGQx4ao3ay1bKLAXCACETcYXdmJ+1cqUe7e6dZgxKnSkHfdMxwoCIXypl0onm6KWO7GkdX2zpgIDlmatzhdIctk+0jPoeiKUvDB+hl2yckL48t59lggstH973e2o/sxmp4m6KrnRZPFNkpvczLiuJkRgFUVwI4OWtYoHazOK8NoEcFoQ/TzQqYkKysLm83GsGHDXNvUajWDBg1i//799T5n//79XHzxxbW2DRkypM5+fn5+roAEqi7wO3XqREBAQK1tBQUFALz88su8/PLLrsf27dtHXFxco15PdnY2EyZM4IYbbuC+++5r1HNbmghK3GT69OksW7aMtWvXumWhU//+/Tly5Ai//vorf/75JzfeeCNjxozh22+/de0zduxY/v3vf/P7779z2223NfucTaWNCxRByVk4FE72djnJhvDdrKvcxCnLKSjz9qjahnh7CHN2xRP6505wundKhC0hhf0DH6Iov+kXCi3RFPFMaweG8rW9+dWyLjIr2FPq3apb1aLKiyBM7e1h1GuvpoDlN6cwZnFaixzfUZgtmixeIDR2mcEnzQwGHlX4sau9jrVqB6vyDZRUNr9CYFsUFailQ6jvVOdzB7W69nudJEn1bnP+9T/ugQce4MYbb3Q91q5du0adLycnh9GjRzN06FA+/PDDWo/FxMSQn59fa1v119U31s+2T80b780hVtc1kyzLTJ8+ne+//56VK1fWSX1169aNEydO1Pohbt26tUHHDgoK4qabbmLx4sX85z//4bvvvuPUqVOux6+66iq+/PJL7r33Xr766iv3vKAm0HTyvUoY3mRV29nZ/QgLh/zArSlzmK18lf+V/lIVkAjNppWVPHu0PwveNxP6x3a3ByRl4+9jc7fpFBU0PSCJjdQzKljj9qaINeVHaXku0j2v3ZrlOym7cEMBSsnzC1kb6sOIdErGXdRix69usqiKaLnfHcG3qJ0wINvMo0dtfG/W8892UdyUEEGkvw+mDL1oYKew8+/UAhITE9FoNKSmprq22Ww2tm7dSnJycr3P6dGjB1u21F6DtmnTpmaPJSwsjC5durg+VKqG5xays7MZNWoUF110EUuWLEFxRvGOIUOGsHbtWmw1yuYvX76cbt26ERoa6trnzLYVy5cvrzcL1BQiU9JM06ZN48svv+R///sfgYGBrnl1wcHB6PV6xo4dS2JiInfddRfz58/HaDQyd+5coCr6PZs33niD2NhY+vXrh0Kh4JtvviEmJoaQkJBa+11zzTV89tln3HHHHahUKq6//voWe61no0sMrqq3fwEvK7Fo7OxKOkpqUBqp5Zsx2U2iq3oLuLMkmUm/FCMfd++6EQBnQAjHr5rH4RwN0PTpM507BNDb6XB7U8SaHAp4ZnAgZW7oNt7dpiAj23eCEqXsIFwbSoHZ+4vuz+bx/hn862BH5KN1i4+4hc1Kyb8eJuSul3GUeWdqruAdKhn65JjpA0xDy/6YYNbpZVYUG8k1NP/vvTUbnuSdvwV/f38efPBBZs2aRVhYGHFxccyfP5+KigqmTp1a73MeeOABXn/9dWbNmsW9997L9u3bW7R/SV5eHnl5eWRmZgKwZ88eAgMDiYuLIywszBWQxMfHs2DBAgoLT5c4r85y3HrrrTz33HNMnTqV2bNnk56ezttvv82bb77p2veRRx7hkksu4fXXX2fixIl89dVXbNu2rU7WpalEUNJMixYtAmDUqFG1ti9ZsoQpU6agVCr54YcfuPfeexk4cCCdO3fmH//4B5MmTUKn0531uIGBgcyfP59Dhw6hVCoZOHAgv/zyS53IFqoWRjmdTu644w4UCgXXXnutW1/j+Sj81KjbB2BrwXnzvqhSZ2Nnl8OsC9zBJuNWzA6zCERayCBLex5eF4hm6+4WiX0tvUeyJ/F2DE3sPVItJTGILkYLsrVlK+x8MiaS7Rb33EkPOel7C8ujNUE+HZSUSWbeuUbNw//UIFtbLvgs/WQOwTc+jtPW5YK+6XOhUiDRM89CT+D/0HAoKoh1/vDnKSMnyi68TNrwLt4L0F999VXXdZbRaGTAgAH8/vvvrgzCmeLi4vjuu+/4+9//zsKFCxk0aBAvv/wy99xzT4uM7/333+e5555zfT1y5Ejg9LXo8uXLyczMJDMzs84SA1muenMJDg7mjz/+YNq0aVx00UVERETwzDPPuHqUAAwdOpQvv/ySuXPnMmfOHJKSkvjhhx/c0qMEQJKrRyN4TGpqKsOHDyczM7PWAqfWrOy3oxhXt9BdQx9S7m9he2Im6/13sMWwHauz5S5IBIhy+vN0eleif98JdvcvBJUlieLJj5NuiMfZzApyLdkUsabdyUHc21F2SzPIWKeEYUW2Vxq9ZcQ+h7Yko97HHuk/gZUl+zw8osZ76kQ/+nzesOm4zRE4cSroRZNF4bQjERrWBUqsKDORdcr3biy4W3y4H2tmjfb2MIQWJjIlHvD9998TEBBAUlISmZmZPPLIIwwbNqzNBCQA2qSQNhuUGIIq2dr5EOt129lm3IndZhcZkRamkhXMzO7DRcsOIZe0zEWfIyqOzMueIDtXprm3oS/pFUaIB4o9GIJUzOmsxOmmXh5dCmxs9cHO01Gt5F/TSx138tngXmg37WnR8xh//gi/EcWo2l2JbBF9LgRIKLKSUAR3ouJEWDjrghWsNFZwoKjlCmt4kzezJILntI53/lbOaDQye/Zsjh8/TkREBGPGjHHVrm4rtPFBSGoFsq1t/MMsCalgc+cDrNNsY5dhDw6LAy7s6bwec52xGzf9ZoLMrS02Y6Vi2LXsDh1PRW4zL+7/aoqob6EeJGd65ZIw8qzuqZLlL8P+A8VuOZa7RTtaz/vIEyOzeSsrArmwZaebVaz7AV2fItFkUaij4ykbt56CW1GSGxLG+lAVq0yV7C5oO1UxRVByYRDTtwS3Kfw4HctB3+h10BSFEUY2xx9gnWorewx7kcUkbo/qZY1i5qZI9Km7WuwcTo2WvGuf4UB+SLPn6Fc1RQxFddIz//h/GBnOi3r3TRccXiqzbXOO247XWOeavvVjj8t4ynzIwyNquuuM3bjpvf1urwRXH01CMn4jZ4omi8J5FQapSA1XsarSzM58Q0vPLG0xCgl2Pj2OYD/fLBUuuI/IlAhuo+sS0uqCkrzoMjbG7WOttIUDxgxo+1NzfU6oU8/cjB7E/ZKGbG25i2Rb597sHzCNorzmX8z56ZSMTQgEDwUkRzv5scDfhlsWkgBKZE5m+G6J6ihz67rD+11gBkOuHkDc91vOv3MzWY/sw1EumiwK5xdpsDPZYGcyUOIfyoZINautFrbkGbyyjqyperUPFgHJBUIEJYLbaLuEeHsIDXKiXTGbOuxjrbyFzPIsuLCKhvkMSYaH8/swfNkx5EL3l/itqWzC/eyW+2FrRu+RaiFBakZF6ZFzPTN326JVMKe3HrPFfVmS/hUK9pT6bvWeKNMp8Pf2KBpnTrddfNozCcXels/wOAqzKf36MUJufk00WRQaJNTkYKLJwUTA4BfMpkgNq+xWNueVYW1mkY+W5q1SwILniaBEcBt1rD+KADXOct/rRnukYyEb2qWz1rGJ46YT0LpuxLY5E0yJTPnTgWLf9hYNRpwBIRy76lmO5KhxR5ohJlLHYD8lcpHnup8vHBPBQYt7z2fxoWaJ9Ykuywf/+ktt+iqr5ODFyyuYdzwA2djydzpkYyklSx8i9K4F2IvOXl5eEM4UVOFk3DEz4wCTNpgtHbSsdlpZn1uGxe5767mGd4n09hAEDxFBieA2kiShTQyhclfh+XduYbIkk9kpnw3R6ay1biKnMgd8+zrsgpBkC2f29vYErd4JLbyczdx3NOkJtzS790i1hPb+9JGdyGWeKwO9bkAoX9ndG5D0sEkczPHtPwZ/ixF/VXtM9tY1nzJdnc+Km3tx6eKdnjlhdZPFKa/gKA33zDmFNsXf4mT0sUpGA5XqILbFaViDnXV5ZZis3p8eqFcruSi+dd2gEJpOBCWCW+mSvBeUOBRODibksiFyD2ssGyk0F0KZV4YinCFA1jDncApJP+1Brsxv0XPJkkTRNU+wt6wjzhL3BCQ9E4NI8kBTxJoKorQ8FyU3p7l8vYJPeC7L0xxR2lCOtLKgBOD9iD30H3sRIcu3e+ycpUufJPim2TitiaLJotBkepuTEcfNjAAsygB2dtSyRmFndZ4Bo8U7hRUGJYShUdVtGi20TSIoEdxKm+TZOxp2pZN9iSfYEL6btZWbKLGUiEDEx9xflMLYn/OQc1p23QiAPTqezEtnk+OG3iPVBvYIpV2+CdmDC0MdCpg3OJBSi3vrULdzSuzJ8t0F7jVFqf054u1BNNGs/hn861AH5KMnPXbOsv+8RuCV94L2YvDxNQKC79M6ZAafMDMYeFThx+72OtaqHazMN1BS6bkp2iPEepILighKBLdSBWtRReqxF7bc3Vir2k56lxOkhuxivWkTBptBNDP0QSPMcTy4SosqLc0jN29NI25gd9AYKpvbe6SGkb3CCD1p9Pjd508vi2Srxf0L0RN9tFlifaIkjbeH0GRlCjP/nKxl2nsaZKvnpvsZl/0Lv5HFqGIniiaLgtuonXBRtpmLgIclHemxIazVyawsMFBoatnf72GiP8kFRQQlgtvpuoZS7uagxKKxk5Z0hNSgNDaUb8FkN4lAxEd1sAfz1O4Ewv/cCY6Wn5Msa3TkXDuPjPwgMLkpIJFgXK9w9Mc9v/Zid3Ig7yvcH5AEOGHfgZZt8OdOUXLrriq1Wn+METf0o9cXWz163oq136PrW4y2512iyaLgdkpZok+uhT7ANLQciAlmrR5WFBvINbg3sxsdpKV7TKBbjyn4NhGUCG6n7xlOeWrz+01U6KzsTDpMasBONhq3YnaYRSDiw7SyktnHe9PrpwPIxm0eOactsS/7+j9IsRt6j1RzNUX0QkBiDFIxt7MKh83987f7lslss7Sei9Qoe+tvDvhC3E4+G9wL7aY9Hj2vOW0tTsMp/EY8KposCi1GgURynoVk4AG0HIwKZJ2/xIqSco6XNv/G5LjkGCSpdd+cEBpHBCWC22k6BaPwV+Fswl3r8gAL2xIzWe+3g62G7VjtVhGItAK3lvXgml9KkI9u9dhMp9LLH2SPsze2QvdddOl0SsYlBCJ5qCnimV69JJQcq/uzJEpkTvhws8T6RJtb3yL3+jw5Ioe3MsNxFhV79LzWw+k4TPMIuvJZ0WRR8IiuBVa6AlNRcyTCn/WBCv4sKyfrVNP+lsf1jHbvAAWfJ4ISwe0khYSuezgV2xtWZckQVMmWxIOs125nuyENu9UOnpuGLTTDAEs7HlkfhHbLHo8FI87AMI5OmsfRHBVua3EOBAepGe3Bpohn+nFEOL+3QEACcFGFgt1lvtsssT5RlWXQBpo4n1SV8dVN3bhxUQk4PbvOw5F/4q8mi/Oxe79Su3ABSSiyklAEd6DiRFg464OVrDRWsL+oYT18gnQqBncWZa4vNCIoEVqEvue5g5KSEBObO2ewTr2NNONunGYntK5rpgtalCOAp/YnEfvrTrAf99h5zX0vJT3hZrf1HqlW1RRR5dGmiDUdjfdjfoDNnTFWLZVZra8kXZSxCMLaxr+ob4MyGHrVADr8sMXj565qsjhdNFkUvKbjKRu3nLJxCwpyQ8JIDVWx0lTJnkLjWdtVXdo9CrVSlAK+0LSNd3zB5+iSQpE0SuQazZcKIoxs7rSfdcqtpBv2IVfK0DpaJgh/USLxaHYfBv2UiVziuQW8siRRdO2T7C3t4LbeI9VON0V07yLNhrJoFczpo8dsaZn0YLJVwaEc70xHa44IQz7K8DgcctuYevRE9118mtwFxb5Mz5/cZqXko0cIuetl0WRR8KrYUjvXl9q5HomiwDBSI1SsqjSzI99AzcKA43vGeG+QgteIoERoEZJaga5bKIcLM9nUcT9rpS0cMGaAd2bGCG5wdXkSt/1mhkPbPFoh1x7biUOjHifXjb1HqvXsHERSuWebIp7pn5dFcNDSctF54InWuTZDKTsI14ZQYPbsWoyWYpUcvHR5Bc8c90cu98IboSyLJouCT4kw2rnaaOdqoMQ/lA2RalZbLewuKueSbpHeHp7gBSIoEVrMriE5PLJuDjRsCqngo3pao5i5JQr/dWkeP3f5yBvZHXgZZjf2Hqk2oHsI7QsrkL3YaG79RaF86Wi5gKS9Q2JPVuu9qI/SBLWZoARgj6aAVTf3ZtS/dnhtDKLJouCLQk0OJpocTAToFYefRlyeXojEhD2hxQzuOAStUuvtYQhNFCzr+EdGf559t9jjAYms0ZF98ytsUV6C2V29R2oYmRJG+3yTVy/KCiO1PBvdsufvXGCjlfRKrFeUUu/tIbjde5G7Kb2sv1fHYFz2LxxFvyBpxCWA4HvCkkXDxAuVeEdqJdatW0dwcDCSJKFUKs+579KlS5Ekyev1vf3UfgxvP9yrYxCaZnpBb/61RE/8f7cgWzy71sLWpR+7r36bjLwg908xkWBcb+90aa/JoYBnhwRR2oLNJQNl2NuKmiXWJ6qNJvNnDTiIFNfeq2OoWPM91oOfovA/9/8TQfAolQJdcpi3R1HHzJkzUSgUSJKETld/wYjp06cjSRK7d+/28OjaDhGUNNMrr7zCwIEDCQwMJCoqismTJ5ORkXHWfTQaDZIkkZycfNZjvvrqq0iSxIwZM1zb7rvvPhwOB6tWrWLv3r0t9XLcbnyn8d4egtAI40yd+erHBEZ+tAM53/M1REuv+BsbO99PsRt7j1RTqiQmpoSiP+79Rd+fXxrJZkvLlpvrUypTYW3di8SjWjBo86YyhZn3rtWD2rs1j81pa6nc+CbK4LYZ/Amtj65rKAqt7/0+vvnmm/j5+fHTTz+xZYvnq+i99NJLhISEuG44q1QqBg8eTGXl6em/27dvx9/f37VPcHAwWVlZrsdXr17NwIEDXcGVJEn06dPnrOf86quvkCSJyZMnt+RLq0UEJc20Zs0apk2bxqZNm1i+fDk2m41x48ZhMpnq7PPEE0/gdDpRKBRkZmbW2qfa1q1b+eCDD+jdu3et7fn5+SQmJjJq1Ci6d+/e4q/LXS7pcAk6pShD6es620NZvKU39y48hGLvIY+f3xkUzuFb32ZHRU/sLbDoXKdTMjEpGNUJ7y9wSu8RyHvKlg1IVLLMiQOtq1lifaKsbbdh0Sr9UdJv6OvtYWA9nI7xt3kow0XGRPA+v96+OXXL6XTSr18/rrzyyjrXZy3NZDIxf/58jEYjQ4cOBWDYsGEUFdXOhA8ZMoTKykrmzJnD3//+dwwGQ62x/vrrr2zbto3o6GgWLVrEiBEj2L17N6NGjapzzqNHjzJz5kxGjBjRoq/tTCIoaabffvuNKVOm0LNnT/r06cPSpUs5fvw427dvd+3z1ltv8d577zF37lzCw8PR6XTYbDbeeustAFfEKkkSgwYN4ujRo+zevZvly5eTkpKCJEmUlpaye/duJEmib9++bN26Fb1eX+u5CoWCn376qc4YCwsLCQwMRJIkwsPDMZs91xBETOHybX5ONS8e7s9r71UQvGIHZy0a34LM/cew/dJX/mqG6H7BQWomdPRH8lJTxJqMgSqeSlTR0vf/+1coyDe0/sY/UWbvZ7Va0gtxO7EMSvH2MHDkn6Ds68dQiYJHgjepFOh6eKdkdWFhIREREbUyEfPmzeObb75xTYVfv349kiQxcuRIAG677TbX/mq1us60rZEjRyJJEjfffLNrP71ez/Hjx7nkkktc2yIiImplPM6UmpqKwWDgscce46WXXgLg008/5fDhw6SmpgKwaNEibDYb8+bN46WXXuKNN97gzjvvpKKigt9//x2A48ePI0kShw4d4oEHHmDt2rWEhISwbt26WudzOBzcdtttPPfcc3Tu3Nk93+AGEkGJm5WVVTUpCwurmhPpcDiYPHky6enpdO/ene+++84VFAQEBOA4Y3pC586d8ff3B2Dfvn0cPXqUu+++2/VHER0dzc8//8zYsWMxm82EhYUxZ84cJkyYQKdOnVCfMR3g+PHjdOjQgfLycjp27EhBQcFZ50O2lHGdxnn0fELD3FPck08+D6Hrf7Yg15O1a2myQknBdU+xKeRajKXu7T1SLSZCx+hQLXKhbzTEeW1UGNk2909NO1NFK2yWWJ9oU4m3h9CiZAmeGpWHIsL7c+hlYyklnzyEKsI7/XoEQdctFIXWOxm75ORkiouLuf3221m4cCF+fn48//zzxMfHs2LFCgB69erFihUr+Pe//82PP/7Il19+SVRUFB9++CGXXHJJnYv7at999x0vv/wyDz/8MGazmS5durB161YWLlzITTfdRHFxMddee+1Zx5afX9WIOiYmhmnTpgFw8803o1AoWL9+PQBffPEFAPPmzXM975///CcA77//PgBbtmwhOjqagIAA1z4hISE4nU6OHDni2vb8888TFRXF1KlTG/dNdAMRlLiR0+lkxowZDBs2jJSUqrtfy5cv5+DBgzidTjZu3MjQoUNdAUZ8fDzLly93PT8wMJC9e/fy8ssvu7Y9+OCDfPzxx65AoqCggPbt21NeXjUN5Z577uGll17i119/5fDhw0yYMKHWmDp37ozVaiU5OZljx46dd5F8SxjVcRQB6oDz7yh4xDBzR778vSsTPtyFnJ3rlTE4YhM4cNO7pBe3w9lC5aES2vszWCN5rSnimZYND+c3a8sHRz2tEpm5bSPDEGXI9/YQWtxxZSlf39QOvFyYBACrhZKPHkYV2vqn/gmtj1/fKK+c98iRIxQVFTFmzBg+++wzpk+fzokTJwC46667uPTSS4GqC/hLL72U9u3b87e//Q1JksjPz+e+++7jzz//JDY2tt7jL1myhCeffJK3336bkJAQbDYbe/bsYfr06Xz11Veo1Wo2bdp01vFFRFRNaZszZw7jx1et0y0vL8fhcHDgwAHgdOBSU3XwUf1aSktLCQkJcT3+9ddfc/LkSQDXWuX169fz0UcfsXjx4oZ989xMBCVuNG3aNNLT0/nqq69c237//XdkWebzzz8nJCSEadOm4XSenjNfc1H8lClT0Ol0teb3jR07FsAVyMiyjMFg4KabbgJgwYIFKBQKOnXqVG+U7nA46Nu3L3v37vVaNS69Si8WvPuA9o4g/pnWl0feOY5qxz6vjcN0yc1s7v8Eubkt17AwuXMQfWx25IqWz0o0xLE4P14NbJls0JkCWmmzxPoEmA34qfy8PYwW93XQAbKvGuDtYVSRZUqWPIFCdwR8IE4SLgwKfzV6L1Xd+u9//wvAAw884NoWHByM5hc17AAAdYhJREFUVqslJyen3ucUFRURGBhYa1v1eo8z3X777a7Pg4KCkCSJxMRE1zatVuuavpWUlFRrWv73339PcHAwAHq9njfffBOoyuzodDoOHjzY2JcLwKpVq7j77rtdmRcAo9HIHXfcweLFi12BkKeJoMRNpk+fzrJly1i1ahUdOnRwbd+zZw8AN9xwA5Ik8f777yP/NW//mmuuqRWg/POf/0SlUtG3b1/XtiuuuKLOFC+n08kXX3xBamoqKSkpKBQKjh07xsiRI13zDWtKS0tzRdPeck3SNV49/4VMIyuZe7wfb71vJ/LXbeClikayVs/JW15lszSiRXqPVBvQPYSkMrNXu7TXZNEoeKqvHrMHGoZ0cErsyWpbd7mjtKHeHoJHPNFjN3KPLt4ehkvZV6+AbSsoRWQitDy/flFIyrZ/SVrfzeGa27766is++eQT18fYsWNdGZiFCxfyww8/APDBBx8AuK4no6Oj6xy3ekZNx44dgapMT2lpKWvWrGHSpEm8+eabxMXFAdCzZ0+ysrI4evQokyZNQqVSoVKp+PTTT/nxxx9RqVS1Knm1lLb/G9DCZFlm+vTpfP/996xcuZKEhIRaj999990oFAouvfRSQkNDeffdd9FqqxoKzp49mx49erj2feyxx0hLS6s1feujjz4665SroUOHsmfPHux2OwMHDgTg3XffrbVPdenh5OTkJkfU7tAnsg+JwYnn31Fwq5vLuvPFf6Lp/cVWZIPBa+OwJvVn11VvcTA38Pw7N4MvNEU803tjIjhg8UwVqU551lbdLLE+0Sp/bw/BIyySg5euqEQK8J3Xa1y2GGfRr6LJotDi/AfWvaj2lOr1HNVrL6BqfbDFYqFdu3b1PiciIgKjsfY02Y0bNzZ7LBdddBF33nmn6yMgIIBOnTrRrl07MjIyXFmTtWvXYjabGTRoEFC16B7ghRdecB3r4YcfBk5ngAYNGkReXh4TJ07ktdde4/777+fbb79Fo9GQkJBA9+7d2bNnD2lpaa6Pq666itGjR5OWluYKblqSeKdppmnTpvH555/z5ZdfEhgYSF5eHnl5ea5U3M0330xQUBBr165lwYIFdOzYEZutahpH//79XdOzoCrAKSsr4z//+Y9rW32VDyorK4mPjyc4OJhbb72Vhx9+mB07dgDQtWvXWvvu2rWL7t27I8syPXr08EikezYiW+I5/ayxfLaqB9e+l4585LhXx1IycRqbEu7jVAv0HnHxkaaIZ9rQP5QvHJ5ZZB8kS+zNKPbIuTwpSqH19hA8Zrcmn9U3dfP2MGoxrfkv1kOfovATJYOFlqHuGIg62nvBeEJCAhEREfz555/cddddvPvuu64L8H//+9/1PmfhwoXIskxMTAyLFy9m7NixZ53q1VySJDFw4EAWLFjAhx9+CFTNvlEoFNx///1A1fpjtVrNvHnzePrpp5k5cyZLlizBz8/PtQ7l6quvBkCtVuPv78+9997Lxo0bueqqqwDQ6XSkpKTU+ggJCSEwMJCUlBQ0Gk2LvL6aRFDSTIsWLaKsrIxRo0YRGxvr+qgOLJRKJaWlpdjtdqZOncrVV1/tmrK1efPmWlmQN998k3vvvZfp06ef85xKpRKFQoHBYODf//43CxcuxOFwEBcXx6+//lprX5VKxZ49e+jatStOp5OuXbvWqrLgSVd2vhKVwveaIrUlEU5/3trbjyffyUO7aY9Xx+IMjiDr1nfYaUpukd4j1aqaIob5RFPEmooiNcyL9VyE1LvESWUrb5ZYnygfCjI94Z9Ruym7tL+3h1GLeedaKje/JZosCi3Cf4D3siTV9uzZQ3h4OJ9++ikPPfQQFRUVPPPMM7Wm09d0zTXXcNNNN5Gfn8/999/PqlWrGD685dofFBUVYTabXUGS1WrF6XS6lghAVaZGr9fz4osv8vrrrxMUFFSrTPFvv/0GVC14v/vuu/noo4+AqnLIvkKSZS80JrjApaamMnz4cDIzM2stdmro463ZjFUzWHF8hbeH0eYokZiR24fBPx1GLvb+mgLzRePY3eF6ystadnG3TqdkXEKgT/QgqckpwcOTIthk8UzlL7UMMZuKKDT4RqWxhsiIfQ5tScZ59/ui13heLd/vgRH5jlCnng+/DEI+ke3todSijO5I4MRncZxqe8Gv4B2SWkHsUxej0ImAVwDxW+AB33//PQEBASQlJZGZmckjjzzCsGHDXAHH+R5vS67pco0IStzsyvIu3PGHFSljm9dnLskKJYXXzmHfqVicLRyQBAeqGR2jR/axgATg88si2WTxXPPC/hUSu1pRQNIY0Za2U02soUoUlSy6NpoH3lODzTNV2xrCkX8CwzePEXzzfOy+c3NVaMX0KREiIBFcxPQtDzAajUybNo3u3bszZcoUBg4cyP/+978GP96WDG8/nEi9aBvsDt1tESxJTeHOhQeQMg57ezjY23Vm/43vkl4U02K9R6pFRegYHe47TRFr2tc9kH8qPdtNvTyzbTRLrE9UhfcKNHjTSr+j7Lu+r7eHUYezusliZNsMggXP8vOBqVuC7xDTtwSPe2v7W3yU/pG3h9FqBTq1zM3sSeefdyObPXvxezblo25lt99IzBUtP62jU3t/+spOn+lBUlO5v4rbRwdy0gNd26ulWCQyV5/02PncpaHTt/JC2jM29MJcZC3J8NmK7mi2pnt7KHVJEqF3vYq99MIo2Sy4nzJcR8zMAV7roSb4HpEpETxOVOFqugcLe/HxUn8SvtviEwGJrNVz4pbX2MIwjwQkyZ0D6etDTRHP9NqloR4NSAD82lCzxPpEGPJRSBfmvypZgqdG5SGFe6ep3DnJMiVLZ4smi0KT+fePFgGJUMuF+U4veFV8UDz9o3yruoyvu7SiE/9elsjof+1Ezi/w9nAAsHYbyK5Jb3EoN8Aj57uoWwhJZRafaYp4pp+Hh/Or1bOBYpxDQfph7xc2aEkqp51wbYi3h+E1x1SlfHdTO/DRi7eqJovbRJNFoXEkMXVLqEsEJYJXiGxJw3Syh/Dhtj48sPAwyj3nn+riKSVXPsSm+Hs4VeSZrMCIlDA6FPhWU8SajnfU82qg5xckx+Vb2lyzxPpEaYK9PQSv+ir4ADmTBnh7GGdlXPahaLIoNIo2KRRV8IXTg0hoGPEOInjFuPhxBKg9c4e9NdLJKp4/0p9/LKokZPl2cPpGdsARGlXVe6S8e4v2HnGRYGzvMMJ8rCliTVa1xFP9/Kj0cHQQ7IS9B9pes8T6RCn13h6C181O3o3c3XcrMlY1WfxMNFkUGsR/YIy3hyD4IBGUCF7hp/ZjcpfJ3h6GT5pyqieffRFG96+2IJf7TrnbygHj2T7yBY7leOaiQ6msaoro52NNEc+0aEwE+y1Wj5+3d6mTStuF0S8iCnGha5EcvDrRiuTvvc7X52PeuYbKLe+IJovCOSlDtOh7hnt7GIIPEkGJ4DW3dr/1gl3AWp8h5g58sbwbV3ywC/lEjreH4yIrlORf/wybgq6ivMwz07V0WiUTuwajOuHbAcmm/iF85vR8wQG1DEcz2vZakpqifXTanqft1OSy7qZu3h7GOVkzd2H8/VmUYSKQFOoXMKwdkkKsQRLqEleEgtd0DOrIyPYjvT0Mr4txBPDu7n78feFJ1Nv2ens4tdjbd2H/jf9kb1E0sodmkAUHqpkQ5+9zXdrPVByu4elY75y7f4XUqrq3N1eU9cJ5refzTvRuDKN9u1CII+84hm8eQxXh7ZEIvkbSKsXULeGsRFAieNXtybd7ewheo5IVPHmiLws/lIn6eSvYfavMrfHS29nSZyZ5eZ6bIuTLTRFrckrw7LBgSuzemT5VnlnqlfN6S6TZtzNmnjZ7UCZSx3beHsY5OY2llHz6EKpIz09tFHyX/8AY0cFdOCsRlAhedXHsxSSFJnl7GB53g6EbX34dS7/PtyGX+lY3bqfOnxO3zGerc4hHeo9U69Ten6FaBXKp798V//LSSDZavNMnJsUqkZVX7pVze0u0qdTbQ/ApxYoKPrjWH1Q+fnFntVDyr4dQhZZ4eySCL1BAwFDfDqYF7xJBieB1t3W/zdtD8Jje1mg+WZ3MDf/cC4ePeXs4dVi7D2TXlW9yKNezi2ldTRFNni+r21j7uwXyrtp7jSv9jrftZon1iTLke3sIPudPvyPsv963p3EBVU0Wl8xGoTsqmixe4PQ9I1CF6bw9DMGHiaBE8LorE68kTOeDHYvdKNSp5419/Xh6YSH6jbu9PZx6nZr0CJs63kNJkWcDA19vilhTub+SOV3V2L207jrOoWBPG2+WWJ9Acxl6lSgLfKZnO+3ANqCnt4fRIGVfvQz27aLJ4gUsYHh7bw9B8HEiKBG8TqvUcnO3m709jBYhyTAjrw+LP9LQ4X9bka2+N7/aERZN5q0LSTN2xW7zbGDg600Rz/SPS8M5YfVeNicu34LcOr5VbhetDfX2EHyOLMFTo/ORwlrH98b40wc4i34TTRYvQJq4QLTxQd4ehuDjxDuD4BNu7n4zOmXbSuteYUrkq//FM3TJdpxFvtnkrnLQFWwf8TzHczz8ViDB2N7hPt0U8Uy/DgvnZ6v3FuCHXEDNEusTpRLNVutzVFXK9zd3AKl1ZCBMa77DmvmFaLJ4gRFZEqEhRFAi+IRQXShXd7na28NwiyR7OB9t7MWUhQeR9md5ezj1kpUq8m+Yx6aAiR7rPVLtdFNEg0fP2xwnOuh5Oci76116lVw4zRLrE6XQeHsIPuvL4P3kXjnA28NoMPOOVVVNFoN8fKG+4BbKUC36FFEfWjg/EZQIPuOu5LtadTPFAFnDK5n9efldA4Grd+Kr82zsHbux74Z32VsY5bHeI9VaS1PEmqxqibn9/ah0eu/nqZHhyAXULLE+UXLryAR4y+yee5C7dfb2MBrMmrkL4x+iyeKFIGBoe9EsUWiQ1nsFKLjNs88+S9++fb09DDoGdeSyuMu8PYwmub8ohSWfBJL4zRbkSt/tsWG87A429/o7+R7sPVKttTRFPNP7YyLZa/HuWqD+Jigy+n6p5JYU5WN9fHyNWbIz/0obkp+ft4fSYKLJYtsnaZX4D4r29jCEVkIEJV706quvIkkSM2bM8PZQfMaUnlO8PYRGGVUZz79/SWTM4jTkXN8tW+rU+XP8ln+w1TEYiwd7j1SLCte2iqaIZ9rUL4RPnd4fsyHTt3rZeEO05cIrhdxY2zW5pN7Uw9vDaBRXk8UI3ysCIjSf/8AYFFoxTU9oGBGUeMnWrVv54IMP6N27t7eH4lN6R/ZmSOwQbw/jvOIcIby/vQ9/e+cIyl0Z3h7OOVl7XMyuiW+QmeudO6jx7fwYqlO2iqaINRWHaXjGB/p89bJIHM6/sJol1ieyovWsQfKmt2J2YRzdz9vDaByrhZKPHkIVWurtkQhuJKkVBI7s4O1hCK2ICEq8oLy8nNtuu43FixcTGlq7lOOBAwcYPnw4Op2O5ORk/vzzTyRJ4ocffgDg6NGjSJLE119/zYgRI9Dr9QwcOJCDBw+ydetWBgwYQEBAAJdffjmFhYWu465evZpBgwbh7+9PSEgIw4YN49ix+pv3ZWVl0blzZ6ZPn47shXUR0/tN9/g5G0orK5l3rD+vLzIT9sd2cPp2b41TV81gU4cplBR7Z+pLj4RA+tmdraIpYk1OCZ4bHswpu/cXluuOt67pbi0luvzCrTzWWI8PykJqH+vtYTSOLFOy5HEU+qOiyWIb4X9xLMogUaBCaDgRlHjBtGnTmDhxImPGjKm13eFwMHnyZPz8/Ni8eTMffvghTz31VL3HmDdvHnPnzmXHjh2oVCpuvfVWHn/8cd5++23WrVtHZmYmzzzzDAB2u53JkydzySWXsHv3bjZu3Mj999+PVE8Jyd27dzN8+HBuvfVW3n333Xr3aWm9I3szov0Ij5/3fO4o6cHnX0bQ88styEbfvnPtCIvm0K3vkmZI8njvkWoXdQ+hq8GCbPX+hX1jfXVpBBss3uvaXi3eIZF+pMTbw/AJEYa8Vl0Iw5OKFRX86/pAULW+aTNl/34ZHDtEk8VWTtIoCBwlsiRC47S+d6xW7quvvmLHjh1s3bq1zmPLly8nKyuL1atXExMTA8BLL73E2LFj6+w7c+ZMxo8fD8AjjzzCLbfcwooVKxg2bBgAU6dOZenSpQAYDAbKysq48sorSUxMBKBHj7rzjjds2MCVV17JU089xWOPPeaW19tU0/pNY132Oq+OodogS3seXh+IZsueVtFSo3LQRHbHXIUpx3sLg0ekhBGW3Xp6kNR0oGsg76gtPjH2jnlW8n1gHL5A5bQTpgmhyHJhVyFrqN/9DjP8+n50+6ru/xpfZ/zxffxH3YAyajyy1bez0UL9/Ie0QxkgsiRC44jbTh504sQJHnnkEb744gt0urqNAjMyMujYsaMrIAEYNGhQvcequRYlOrqqskWvXr1qbSsoKAAgLCyMKVOmMH78eCZNmsTbb79Nbm5ureMdP36csWPH8swzz3g9IAHoGd6T0R1He3UMUU5/Fu7px8x3stFsSffqWBpCVqrIu+FZNgVcgcngpYBEgjG9w1pVU8SaTH5K5nRTY/eBsYfKkJ5R5O1h+JQojegI3RjPdNqJ7aJkbw+jSUyrv8GW9aVostgKSVqlWEsiNIkISjxo+/btFBQU0L9/f1QqFSqVijVr1vDOO++gamSaXa1Wuz6vnmJ15jZnjfUOS5YsYePGjQwdOpT//Oc/dO3alU2bNrkej4yMZNCgQfz73//GYPCNBaXT+k5D8sLkYiUSs7P78s8PJaKXbYVWUIrUFteNfde/y77CSI/3HqlW3RTR/3jr6UFypn9cFs5xq2+sf0k55cTspal3vipK2XrK3foCWYKnLy1ECg3x9lCapHL7Siq3voNCNFlsVQKGtkPprz7/joJwBhGUeNBll13Gnj17SEtLc30MGDCA2267jbS0NLp168aJEyfIzz9dWra+aV5N1a9fP5588kk2bNhASkoKX375pesxvV7PsmXL0Ol0jB8/HqPR+xeW3cK6MSZ+zPl3dKNrjV3597f/396dh0VVtg8c/54ZtmFfh0UFFJRFUcGlXHJXJHclrXzVNLey17TC1LIss9SyLCssSyWXyjfTykxzo1IrMcVdFBJXEDdEQVnn94c/J1HMDTgzw/25rrmUM8855z6jzMx9nuWuRqMvtmE4n12p575XFzsMYmvdsZw6pd7cDVtbLV1CzKso4o1WN/dgZYH6y//C1WKJfx+Qid038lbkrvnd+tvqPCserQEqzA8sDwWHdnJp7etSZNFMKHZanB6qpnYYwkxJUlKJnJycqFevXqmHg4MDHh4e1KtXj44dOxIUFMSgQYPYtWsXmzdv5uWXXwa4rwnnhw8fZsKECfz+++8cOXKEn3/+mUOHDt00r8TBwYEff/wRKysrYmJiuHRJ/cncoxqOqpTJrfUKvVnwa10e/XAfHEqv8POVhxKdI0cfe4ekoqbkX1YvIXF2sibG3wHlpPmuEnWimo43XUynRywqF85ekroNN9IXm8C4OjO02HU/mV0aqx3GPSvOSCfnmzgpsmgGnFpWQ2MvvSTi3khSYkK0Wi0rVqzg0qVLNGnShKFDhxpX3yprDsqdsre358CBA/Tp04c6deowfPhwRo0axYgRI25q6+joyE8//YTBYKBLly7k5qr7RTPINYjowOgKO75LiR3vHIji1dlnsN+8s8LOU94KwpuR/PC7pGboVI1D72FLOzMsini9QiuFlxo5kGdCyztfOCTFEsuiL5RE7V6Nq7cb6tRUO4x7VpJzjuwvRmPlZRrDK8XNNPZWOLaUXhJx7xSDGoUoxB3bvHkzLVu2JDU11bhyVlWTfiGdnt/1pNhQfr0BigH+m9WAh344guG0eU0mPtfjOXbn1aZY5fkGAX72RCqYXQ2SG33YWc8Cg+kkVfXzFQ4mHlc7jAqX4vsatufvrvDolpoPMIKM2zcUZWqc78eL8acxXDad/+93TVFwfWI6xedd1Y5E3MA5OgDntv5qhyHMmPSUmJjly5ezdu1a0tPTWbduHcOHD6dFixZVNiEBCHQJpEutLuV2vOjcWnz5fSAt5/1lVglJibvP1dojF4JUT0jMtSjijbY2dCHBhBISAJsj5jsMrqJ550rNlvuxzfYkW/qZ52pcRgYD2fPHodEdkSKLJkTjYIVjc+klEfdHkhITc/HiRUaNGkVoaChPPPEETZo04bvvvlM7LNWNrD8SK+X+VmCpXejBZ3/W58nZh9DsSy2nyCrH5Qe6ktTyNY6dVP9TuFGI+RZFvN45d2smVVNMauXiwCKFvenyxftWvHJO3b6R+Ffv+e7kUutItcO4bxe+nCpFFk2IU6saaGxlMQJxf2T4ljAbk7dMZtmhZXe9n32JNS8djqDOyj0Y8vIqILKKY9BakdlnEgdOe2IKv6nmXBTxegYFxnbzYpMJVG2/XsvjBWzbe1rtMCrFvQzfAmgaXIfLxab172ZuPEsciF+ow3AyU+1Q7ptD275ovTpJkUUVaRyt8RnXBI2NJCXi/khPiTAbTzd8Gp3V3U3sHnamHgkLXai9dKvZJSRF/qHsjf2Q/VkmkJAo0CHCfIsi3uirtqaXkLgZYHeKLAN8O3o7d7VDMHtnNLl8HusCd1kfyxTlblwqRRZV5twpQBISUS4kKRFmQ2+vZ3C9wXfU9qEr/ixZXZuOc5PN8m5gTsfB/FF3DFkq1h65RqtReLieOw5mXIPkegdqO/GBTb7aYdyk3tkS8ovkbu/t6K0c1A7BIqx2SONg7yi1wygXUmRRPdY+Djg09lE7DGEhJCkRZuWJuk/gbe99y+erF7kQv6Mh//3gCFY79ldiZOWjxMGZI4/NZFthYwpUrD1yja2tli6hLlhbSEKSa6/lpVBrClXveirN1gBp0ktyR/QaW7VDsBivBu2gKMrMJ77/PymyqA6XLjVRNDKvR5QPSUqEWdFZ6Xg26tmbttsYtLxyJJL35hTgsXobFKv/hf5u5ddtTnLnd0jLuPeaNOXJEooi3mhmew+OFJjeimFRl+CcFEu8I3qDfAEqL8UYmNT+DIqbq9qhlIt/iizK/5HKYBfqjl1tN7XDEBZEkhJhdrrW6ko9j3rGnx+7EMbir/TUW5KE4aJ53tE/2+N5/vD9D9lnTeMLsyUURbzRz83c+b7ANK/n/KFstUMwG95F5nfDwZSlWZ3j+0ctp7bE1SKL/5UiixVNq+DSxXyLcQrTJEmJMDuKohDXJI7GBX4s3BBGr493Y0g/pnZY96TYw5eDj3/Ezgu1KC4yjSFFAX72NLfTYsg2vXkX9+pENR1TXU3zy2yDKxrST1tOb1RF0+eb14IV5mCh6z5OdWmidhjlxlBwhfOfPYOV+wW1Q7FYjg/4Yu1lr3YYwsJIUiLMUpR3FFMORGD75261Q7lnec26k9R8MsdPqh3JP0JrOhFZbP5FEa9XaKXwUiMHcktMcxK59ZFLaodgVvSX5YtmRXix3h6obUF3vg0Gzs+LQ2MvRRbLm8beCucOltO7JkyHJCXCbHnHvYBib353akqsbMjo9zp/2kWTd7FI7XCMokJcCcnJx5Bvmj0K92puB0/25Jtmr0/NYg17pFjiXfG+KAsCVIQ8TSFvdytG0d3dsuum7sKSqSglO0AmY5cb5+hANPbWaochLJAkJcJsWfv44Dl8uNph3JWigHD29vmA/ac81K89cp2W9dypkZULxSYUVDlIauDCfINp1SO5nt9J043NVHnmZKLIre8KkWR7kj/61VU7jHKX8108JdnrUKzlK8/9sq7miEMTWQJYVAz5DRVmzX3IYKz9zaMbOafTEP4IG81pE6g9cr0O9T3wsJCiiNc772bNpOqKyV6We4nCnoNy1/9uWZUU4W7rqnYYFmumbzK5rSLVDqPc5W74msLDX0qRxfvk2j1IlgAWFUaSEmHWNDY2eE8Yr3YY/6rEwYUjj7/LtoJGFFwxnYREq1F4OMIdh6M5aodS7gwKvP6QK2dMeKWmuueKpFjiPdLbuKgdgkV78cHDKH6Wdzf88rb1XNk2W4os3iP7SD22Ac5qhyEsmCQlwuw5tW2LQ+tWaodRpvyIh9gR/TZpJ02r4JulFUW80dK2nvyWb7pDo+wMkHbgnNphmC1vK8ua92BqsrSXmB/rAlaW9+U9/2Ayl9ZJkcW7pdhqcYmxoIUQhEmSpERYBJ+JE1FsTeuL/5mecfzh/RgXzpnWSlZOjtbEBDhaVFHE6x0MdmSWjWkXIoy8BOdyTTtGU6bH8r4sm5pVDmmk9o5SO4wKUXwynZxl46TI4l1w7uCP1tlG7TCEhZOkRFgEm4AAPJ96Su0wACj2rEbK4x+xKzvQZGqPXKP3sKW9ly2GLMus9ZBnr2VimA2FprSKQBnOHsxWOwSzprewBRlM1aSgHRRFhqkdRoUouXBWiizeIesaTji2qKZ2GGXavHkzERERWFtb07NnzzLbJCYmoigK2dnZlRqbuHuSlAiL4fHkEGzr1FE1hrzmPUlq9gonTKj2yDXGoojnTXN53PLwbjsP0gtM+0tGwysKR89YZi9VZdEXSi9TZSjGwKvtz6G4WuYcHimyeAe0Cu59apvs5PbnnnuOhg0bcvjwYRYsWFDp52/Tpg2KopR6jBw5slSb0aNH06hRI2xtbWnYsOFNx0hMTKRHjx74+vri4OBAw4YNWbx4cSVdgWmRpERYDMXaGt83poCm8v9bX6098gZ/2nY0qdoj11hiUcQbrWvmzorCy2qHcVtaKZZ437yvyGtYWQ5Zn2Xlo4Fqh1Fx/r/IotbhmNqRmCSnNjWw9nFQO4xbSktLo127dlSvXh1XV1dVYhg2bBgZGRnGx4wZM25qM2TIEPr161fm/lu2bKF+/fosW7aMXbt2MXjwYAYOHMjKlSsrOnSTI0mJsCi6+vVx69+/Us9ZGFiXvb1ns/+Um0nVHrnGUosiXu+knx1vuJn+9dUqUtibnq12GGZPnysFJytTgttesh5urHYYFSp78RQUdkqRxetYedvj3LaGqjHk5+czevRo9Ho9dnZ2tGzZkqSkJNLT01EUhbNnzzJkyBAURTH2lKxatYo6deqg0+lo27Yt6enppY65YMECXF1dWblyJSEhIdjb2xMbG0teXh4JCQkEBgbi5ubG6NGjKS6+/eeKvb09Pj4+xoezc+kVyj744ANGjRpFrVq1ytx/4sSJTJkyhebNmxMUFMSzzz5L586d+fbbb+/pNTNnkpQIi6Mf8yxWfr6Vcq6cTk/yZ+h/OZ1ler0jAC3rWmZRxOsVWSm83NiRS8Wmv7yub4blDp2rTPqcTLVDqHLGReyF4EC1w6hQOSs+kiKL1yjgHlsHxUrd12LcuHEsW7aMhIQEtm/fTnBwMNHR0Tg5OZGRkYGzszOzZs0iIyODfv36cezYMXr37k23bt1ITk5m6NChjB9/c9mAvLw8PvjgA7766itWr15NYmIivXr1YtWqVaxatYqFCxfyySef8M0339w2xsWLF+Pp6Um9evWYMGECeXn3P2fzwoULuLu73/dxzI385gmLo3FwwPfVVyv0HCWOLqQ//i7bCqJMqvbI9TrUd8fjhOUVRbzR3PZe7Mo3/S/7HgaF3VIssVw4X76ATmundhhVSp6mkJndDSg6y37dczd8TWH6Vyi6qr1ksGOLatjUcFI1htzcXOLj43n77beJiYkhPDycuXPnotPpmDdvHj4+PiiKgouLCz4+Puh0OuLj4wkKCmLmzJmEhITQv39/nnjiiZuOXVhYSHx8PJGRkbRq1YrY2Fg2bdrE559/Tnh4OF27dqVt27Zs3LjxX2N8/PHHWbRoERs3bmTChAksXLiQ//znP/d13UuXLiUpKYnBgwff13HMkSQlwiI5tm6NS48eFXLsK/UfYkent/nbxGqPXPNPUUTLrEFyvb/quzAP059HAhB+ppgCKZZYbrxs3dQOocr50/YEW/vWUzuMCnc5aR352z+qskUWtR52OHcKUDsM0tLSKCwspEWLFsZt1tbWNG3alP3795e5z/79+3nggQdKbWvWrNlN7ezt7QkKCjL+7O3tTWBgII6OjqW2ZWVlAfDmm2/i6OhofBw9ehSA4cOHEx0dTUREBP379+eLL75g+fLlpKWl3dM1b9y4kcGDBzN37lzq1q17T8cwZ5KUCIvlPXECVl5e5XY8g6Jwptc4/vAyvdoj11wtiuhqsUURr5ftZs3LNRSz6AiyM8ChA2fUDsOi6K0db99IlLu3/ZLJfaih2mFUuPyU7VW2yKJb79pobCz7uq2trUv9rChKmdtKSq7eSBo5ciTJycnGh5+fX5nHvZYQpaam3nVMv/zyC926deO9995j4MCBd72/JZCkRFgsrYsLPq9NLpdjFXtV5+BjH7LrfAAlJjo/45+iiJa/MpFBgSkPuXK6yDSHzt0o6iJk55lmImuu9BrT7KmsCl5sfhjF11vtMCpcVSyy6NDEB7sgV7XDACAoKAgbGxs2b95s3FZYWEhSUhLh4eFl7hMWFsbWrVtLbfvjjz/uOxZ3d3eCg4ONDyursnvRkpOTAfD1vbt5rYmJiXTp0oXp06czfPjw+w3XbElSIiyaU7t2OHftel/HyGvRi6QHJplk7ZFrvNwtuyjijf7X2pNf8q+oHcYdUQwGzhyS1aLKm7eh6nxRNDVZmlwWxLqB1rLvpkPVKrKodbbBpUtNtcMwcnBw4KmnniIuLo7Vq1ezb98+hg0bRl5eHk8++WSZ+4wcOZJDhw4RFxdHSkoKS5YsqbD6JWlpaUyZMoW//vqL9PR0vv/+ewYOHEirVq2oX7++sV1qairJyclkZmZy+fJlY29LQcHVeksbN26kS5cujB49mj59+pCZmUlmZibnzp2rkLhNmSQlwuJ5vzQRrafnXe9XYmPLyUen8odNB/IumebqWgD+vva0sLfsoojXOxTkyCw78yme1zBfw9EzVSNZrEx6M+kls1Q/OqaS1ruR2mFUin+KLOaoHUqFcu0ZjMbOtObRTJs2jT59+jBgwACioqJITU1lzZo1uLmVPafM39+fZcuWsWLFCho0aMCcOXN48803KyQ2Gxsb1q1bR6dOnQgNDeX555+nT58+/PDDD6XaDR06lMjISD755BMOHjxIZGQkkZGRnDx59U5nQkICeXl5vPXWW/j6+hofvXv3rpC4TZliMJhiZQUhylfO2rWc+O/oO25fWKs++xuP4oyJLvV7TWhNJ0LzCi26Bsn1Luu0DOzgwmETr9p+vagDuew7kq12GCYnxfc1bM+n3PP+P4e04vmC9PILSNw1LQqLVgWh3XlA7VAqjWv/SRTnqlu7oyLoGnjh8Vio2mGIKk56SkSV4NyxIy6xfe6o7YXoYfxR+ymTT0gi67gSctGyiyLe6N32HmaVkAQVKZKQVBB9nmXftTYHxRh4pdN5FFcXtUOpNJZYZFHrZotbr2C1wxBCkhJRdfhMnIhNwK2XOSxxdOXw4+/xV35DCvNNe+nWFnXd8T+dC0VVp6Nz/YPuLC80j+V/r/E+aR7zXsyR9yWp+WIKDlmdZVW/QLXDqFQ5Kz6i5IKFFFnUKLg/Gmpyw7ZE1WQBv1GiMuXl5dGnTx+cnZ1RFIXs7Ox/bd+mTRvGjBlTKbHdjsbeHr933oEblv0DyG/Qhu0dZ3D4pI0Kkd2dDvXd8awCRRGvl+FrxxR38+oR8iyRYokVyfNCJgqWc7fanM1338vpmMZqh1GpctdbRpFF5w7+2AY4qx2GEIAkJeI6xcXFTJo0iZo1a6LT6QgKCmLKlClcP+0oISGB3377jS1btpCRkYGLi3l12+si6uH13/8af75ae+RFfvfsS8550x4WVJWKIl6vyEphUhNHLhWbdu/VjcLPFlFoostHWwLrkkLcbV3VDkP8vxcb7IMg9QvuVSZjkUUn8+xlsK3lglMby5sfI8yXJCXCaPr06cTHx/Phhx+yf/9+pk+fzowZM5g9e7axTVpaGmFhYdSrVw8fHx8UxfzuVHoMfRL7pk0p8g4g5dGP2HXe32Rrj1xjY6Ph4VCXKlEU8Uaft/ckOd+8VhazM8DBA9JLUtH0NnKH11RcUgp4r7uCYmendiiVKj9lO7nr30DrZl49Jhp7K9wfDUGxoLkxwvxJUiKMtmzZQo8ePejSpQuBgYHExsbSqVMnYyGiNm3aMHPmTH799VcURaFNmzYAfPzxx9SuXRs7Ozu8vb2JjY295Tl+/PFHXFxcWLx4cWVcUpkUjQbf6TPY3XoSJzNMOxkBcHKwJibQCc3JXLVDqXR/1XfhM8xvXoYUS6wceq292iGI6/xud5ykvvXUDqPSFZ38m5xvzavIoltsHbTOUoBUmBZJSoRR8+bNWb9+PQcPHgRg586dbNq0iZiYGAC+/fZbhg0bRrNmzcjIyODbb79l27ZtjB49mtdff52UlBRWr15Nq1atyjz+kiVLeOyxx1i8eDH9+/evtOsqi42vN81iQ1SN4U54udnSXm8LVaQo4vUuuFgzyV9jdlNnFIOB0welWGJl0CvmOWzGks2olkxeywZqh1HpSi6cJXvRs1h5mfaqjQAOzXzRhXuoHYYQN5F3dGE0fvx4cnJyCA0NRavVUlxczNSpU40JhLu7O/b29tjY2ODj4wNAYmIiDg4OdO3aFScnJwICAoiMjLzp2B999BEvvfQSP/zwA61bt67U67qVmvU9qd+uOrs2HFc7lDLV8LWnkZYqUxTxegYFprR2JctMqrZfr+EVDfvPVr0kUg16Ex92WVWNb36E2al6DJlZaodSqQxX8jj/+X9xe2IGReec1A6nTNY+Drh2qaV2GEKUSXpKhNHSpUtZvHgxS5YsYfv27SQkJPDOO++QkJBwy306duxIQEAAtWrVYsCAASxevJi8vNJfyL755hvGjh3L2rVrTSYhuaZ572C8/E3vwyM00IlGJSUYLlXNIUDLWnuSaIYJCYCSfkntEKoM78ICtUMQZcjUXmLhIx6gNa95FuWipJjz855H62B6N7sUaw3uj4eiWMlXP2Ga5H+mMIqLi2P8+PE8+uijREREMGDAAMaOHctbb711y32cnJzYvn07X375Jb6+vrzyyis0aNCg1FLBkZGReHl5MW/evFIreZkCrZWG6GF1sbEznQ/PyDouhFyqWkURr5day4F37czzy2ZwkcK+o9lqh1Fl6K9IAmiqvnc8xN+9GqkdhmqyF7+Owi6TKrLo0q0W1nqZhyVMlyQlwigvLw+NpvR/Ca1WS0nJvy/FamVlRYcOHZgxYwa7du0iPT2dDRs2GJ8PCgpi48aNfPfdd/z3uuV4TYWLlz1t+oeqHQZwrShiXpUqini9K3YaJta1pcDEktc7pT9Z9YbaqUmfK3N3TNnLwckUNzD9uXsVJWfFh5RcWG8SRRZ1EZ44NvVVOwwh/pXMKRFG3bp1Y+rUqfj7+1O3bl127NjBu+++y5AhQ265z8qVK/n7779p1aoVbm5urFq1ipKSEkJCSn8Q1alTh40bN9KmTRusrKyYNWtWBV/N3andxJuTh7LZ8+sJ1WJoH+GOYxVc8vd677X35O8C86rafo1XCew+eEbtMKoUfc4psJdlgU1VkVLCax0vMCXdGcOFHLXDUUXu+q/QNT2LddCjGC6r0/tt5anDrXdtVc4txN1QP30XJmP27NnExsby9NNPExYWxgsvvMCIESOYMmXKLfdxdXXl22+/pV27doSFhTFnzhy+/PJL6tate1PbkJAQNmzYwJdffsnzzz9fkZdyT1r2rY1PrcovBnmtKGJVT0g2PODOsiLzTEgAQs8US7HESuZyORs7rSxrasoOWJ9h9aNVe2L15a1ryd/xsSpFFhVbLR4DwtDo5B60MH2KwdQG+QuhotwL+Sx9M4m8C5Uzp8HGRkN0sAuak1V7bHymjx2PRdly0cyqtl9jZwDXTVlSm+QupPi+hu35lPs+Tpe6D3A0L6McIhIVKX5HQzxWb1M7DFVZ+dXCMfplis9X0rLBCngMCJflf4XZkJ4SIa7j4GJL5+ERaLQVPznxn6KIVTshKdIqTGrqaLYJCUixRDXprR3VDkHcgbiG+6BWgNphqKro5N/kLH+x0oosOrf3l4REmBVJSoS4gW+QCw/1rdjxt1W5KOKN5nXwZEe++U4QVwwGsqRYomq8NDJ8yxxcUgp4v4cGxc5O7VBUVZJ9ulKKLOrqeuDU3r9CzyFEeZOkRIgy1GtdnbAWFbNSSQ1fHS0ctFWyKOKNdkS48BnmWY/kmsgrGo5LsUTVeBvkY8xcbLY7xl+PRKgdhuquFVm0cq+YeYRW3va49Q1BUUxnOWIh7oS8mwtxC60fDcGnVvmu7BMS4ESjEkOVLYp4vQsuVrwcoMF8B21dZUiv2gsUqE1fVEnj80W5mFZ9B5dbNFA7DPVVUJFFjb0VngPD0diaTu0tIe6UJCVC3ILWWkPMyPo4upXP8JDIOi6E5lbdoog3mtrajVOF5v2FsnaRhv1HL6gdRpWmN9MlpKuyF1scQfHWqx2GSche/DqKsrt8iixqwP3xUKw8dPd/LCFUIEmJEP/C3tmGh5+uj5XN/f2qNK/rVqWLIt7o29aebMg372FbAF4n5Aux2rzzqmb9C3OWqb3Eor4eoJW7+QA5y2djuLDhvossusTUwi7YrZyiEqLySVIixG141XCi/aBwuMcbWe0j3PE6cQkkHwEgraYDM3WVs+RyRdKXKOw+dFbtMKo8/SX5NzBH3zkeIr1nI7XDMBmX1n9J4ZGlKLp7S9Tso/Q4PVStnKMSonJJUiLEHQhupKfJw4F3tY+iUYiRooilXLHTMLGeLfkWUB4p5EyRFEs0AV4XMlDu9Y6BUNXE2skUR4SoHYbJuLz1Z/KT4++6yKJ1dUfceknFdmH+JCkR4g416VqToKg7GwdtY62ha6grNpKQlPJ+e0/SCsx/kr/OACkHzqgdhgCsSwpxs3VVOwxxD4qUEqZE56A4l++CIuYsf/82cjdMRet2Z4mJxtkGzwHh9z30SwhTIP+LhbhDiqLQYXAYvsEu/9rOycGamFpSFPFGiU3d+F+RZczBiMqBnMvmPUnfknjbyJdac7XP+jQ/PxqkdhgmpehE2h0VWVRstXg+UReti9TqEZZBkhIh7oKVtZaHn6qPm499mc97uNlcLYp4SupWXO+Uty2ve5r74r9XaQwGTkmxRJOi15b9+yjMw1yP3ZyNlvkl1/unyOItVmvUKnj8JwwbP8fKDUyICiRJiRB3yc7Bmq7/bYC9i02p7TV8dTzkYCVFEW9QpFWY9IATOcWWkZREXtFw/JwknabES7m7MfjC9IxreAClplQgv97VIovPYOVx8zBgtz61sastK20JyyJJiRD3wNlDR9dRDbC2u7pSSp0AJxoZpChiWRa092R7vuUkasWHZZ6QqdFbRr5bpV3U5PN+Ty2KrQxFKqWkmPOfP4/W4YRxk3N0AA5R3ioGJUTFkKREiHvk5e9E5+H1iAx1JSw3H8MVKYp4o511nflUMf96JNfUKVI4cEyKJZoa7wLLSXqrsk12x9j+SITaYZik7MWvoSi7cXjAB+e20qMkLJMkJUI1mZmZdOzYEQcHB1xdXW/bPjAwkFmzZlV4XHfDP9yDBq2rgywNe5McZyteqqnFkm5iexy3nATLkujzc9UOQZSTt2okc6VZfbXDMEmGS/tx7V5L7TCEqDCSlIi7VlxczKRJk6hZsyY6nY6goCCmTJmC4S5rT7z33ntkZGSQnJzMwYMHKyjaiucQqceli3xQ3GhqazcyCy1nhSqfEoU9qVKozxTpL8nCA5bkxYeOoXh7qR2GSbFv2hS/mTNRtPdWXFEIcyBJibhr06dPJz4+ng8//JD9+/czffp0ZsyYwezZs+/qOGlpaTRq1IjatWuj199Z/Q9T5dSyGk5taqgdhslY3sqD9QWW1atQ+7QUSzRV3hdPqR2CKEcZ2ossecQLNPIVBcA2PIzqH3+Exsbm9o2FMGPyGy/u2pYtW+jRowddunQhMDCQ2NhYOnXqxNatW41tMjIy6NKlCzqdjpo1a7JkyZJSw68CAwNZtmwZX3zxBYqi8MQTT2AwGJg8eTL+/v7Y2tri5+fH6NGjbxnHZ599hqurK+vXr6/oS74jLp0DcWjio3YYqjsc6MA79pY14V9ngANSLNFkueSdx1YrE6QtyXKngxzp2VjtMFRnHeCP/9y5aB1l6V9h+WQdRXHXmjdvzqeffsrBgwepU6cOO3fuZNOmTbz77rvGNgMHDuTMmTMkJiZibW3Nc889R1ZWlvH5pKQkBg4ciLOzM++//z46nY5ly5bx3nvv8dVXX1G3bl0yMzPZuXNnmTHMmDGDGTNm8PPPP9O0adMKv+Y75dormOK8Qq7srZrDfK7YaphY3478/AK1QylXUTkG/rpiOUPRLJHe1o1jeZlqhyHK0YQ6ySyqVwfNHvMd3ns/rLy88P/8c6w8PNQORYhKIUmJuGvjx48nJyeH0NBQtFotxcXFTJ06lf79+wNw4MAB1q1bR1JSEo0bX73T9dlnn1G7dm3jMby8vLC1tUWn0+Hjc7V34ejRo/j4+NChQwesra3x9/cvM+F48cUXWbhwIb/88gt169athCu+c4pGweOxUM4k7CX/ULba4VS6Dzp4cijfMqq2X6MxGMhIkTkLpk5v7cQxJCmxJEVKCVOiLzH5iBOGi1VrKW6tmxs1Pv8Mm+rV1Q5FiEojw7fEXVu6dCmLFy9myZIlbN++nYSEBN555x0SEhIASElJwcrKiqioKOM+wcHBuLn9e6GnRx55hMuXL1OrVi2GDRvG8uXLKSoqfXd65syZzJ07l02bNplcQnKNYqXBc2BdbGu7qh1Kpfq1iRtLiywrIQGIuqLh5HnLuy5Lo9fI8C1LtNcmi7WPBqkdRqXSurnhv2A+dnXqqB2KEJVKkhJx1+Li4hg/fjyPPvooERERDBgwgLFjx/LWW2/d13Fr1KhBSkoKH3/8MTqdjqeffppWrVpRWPjP/ISHHnqI4uJili5der+XUaEU66qVmJzS2/KalyUt/vuPwr9z1A5B3AFvg3ycWapPPfdwvlMjtcOoFMaEJCRE7VCEqHTyLi7uWl5eHpobVkXRarWUlFz9UhoSEkJRURE7duwwPp+amsr587cfAqPT6ejWrRsffPABiYmJ/P777+zevdv4fNOmTfnpp5948803eeedd8rpiipGVUlMijXwyoNOXCi2vKQkpFBDynFJSsyBV5HM+bFk46JSUAIte4VDSUhEVSdzSsRd69atG1OnTsXf35+6deuyY8cO3n33XYYMGQJAaGgoHTp0YPjw4cTHx2Ntbc3zzz+PTqdDUZRbHnfBggUUFxfzwAMPYG9vz6JFi9DpdAQEBJRq17x5c1atWkVMTAxWVlaMGTOmIi/3vlxLTM58YblzTBI6ePFXvmUt/3uN+4nLHFE7CHFH9AUyxM6SXVCu8EEva0Z/ZIOhwLIW0gBJSIQA6SkR92D27NnExsby9NNPExYWxgsvvMCIESOYMmWKsc0XX3yBt7c3rVq1olevXgwbNgwnJyfs7OxueVxXV1fmzp1LixYtqF+/PuvWreOHH37Ao4yVR1q2bMmPP/7Iyy+/fNf1USqbJfeY7Ap3Zo5imQmJT4nC7kNVcxU1c+SdJz1alu43u6Mk922gdhjlThISIa5SDHdbhluIe3D8+HFq1KjBunXraN++vdrhqMJQWGJRPSY5zlY83srJoqq2X++hU8UkJctqThUlxfc1bM+nlNvxTrj709ml3A4nTNjCjWHY/rH79g3NgCQkQvxDekpEhdiwYQPff/89hw8fZsuWLTz66KMEBgbSqlWrCj93YmIiiqKQnZ1d4ee6G5bWY/JWa3eLTUjspVii2dFfyETh1sNDheUY3+oEipen2mHcN3NLSOLj47Gzs0NRFHx9fctsM2vWLBRF4cgRGfgq7p4kJaJCFBYWMnHiRMLDw+nYsSM7duwgIyOD0NBQpkyZQlXtoLOUxGRFKw/WWvAY/qgLBi5KsUSzYl1cgJutdJVUBSe0OXzVzxs05vsVxtwSEri68qafnx9bt27ljz/+qNRznzt3jnr16mFjY4OiKGi1WmrVqkVSUlKpdoqi3PRYvHhxqTY///wzPj4+xuc9PT2ZN29eZV6OuAXz/Y0WJi06Opo9e/YwadIkdDodS5cu5cCBA0yfPp0ZM2aY/DyQimTuiUl6oD3vOBTevqGZ0hgMnJBiiWZJbyNJSVWxzCmFoz0aqx3GPTHHhASurrzZpk0bmjRpctMCNBXt5MmT2NjY8Nprr5GYmMhHH31EVlYWrVu3pri4GMD4Z3h4OGvXrmXRokW4u7uzc+dO43EOHz7Mww8/jKIofPbZZ0yePJns7GyTG1lRVUlSIirUli1b6NGjB126dCEwMJDY2Fg6derE1q1bjW0CAwN54403GDhwII6OjgQEBPD9999z+vRpevTogaOjI/Xr12fbtm3GfY4cOUK3bt1wc3PDwcGBunXrsmrVqjJjyMvLIyYmhhYtWpjMG48xManz7wUlTU2+rYaJ9XVcKbHcnq5GVzRkZFtuL5Al02vt1Q5BVKKJITspqVtb7TDuitbDw2QTkpycHBo0aIBGo0FRFJydnUlISGDTpk0oioLBYGD+/PkoisLQoUMBeO2114y9F25ubuzZs6fUMYcOHYqiKLzyyivGdtWrV+fMmTMMGzYMKysrNBoNDRo0oOBfVlWrV68e27dvZ8KECbRu3ZqRI0cyefJkLl++TGpqKnC1BwSu9uh06NCB/v37M3XqVD755BPjsceNG4fBYGDv3r08+eSTvPrqq8TGxhr3FeqSpERUqObNm7N+/XoOHjwIwM6dO9m0aRMxMTGl2r333nu0aNGCHTt20KVLFwYMGMDAgQP5z3/+w/bt2wkKCmLgwIHGYV+jRo0iPz+fX3/9ld27dzN9+nQcHR1vOn92djYdO3akpKSEtWvX4urqWuHXfKeuJibh6Oqbz9jo2R08OZhvectxXq8gTVZxMld6RVa5r0oKlGLeiMlDcbr5vd8UWVerRuDiRSaZkAC0atWKPXv2MHnyZL777jv0ej2DBw/G29vb2NvQq1cvdu7cyYwZM/jzzz+ZPHky9evXZ9WqVTz22GPMnz+/zGN/9NFHJCQk8MEHH3Dy5ElCQ0NZs2YN3377LS+//DK7du0iLi7ujmPNzc1lzZo1aDQaatasCcDvv/8OwEsvvYSnpydNmzblwoUL5OTksHfvXgA2b95MtWrVmDFjBtWqVaNOnTpkZ2cb9xXqkndwUaHGjx9PTk4OoaGhaLVaiouLmTp1Kv379y/V7uGHH2bEiBEAvPLKK8THx9OkSRMeeeQRAF588UWaNWvGqVOn8PHx4ejRo/Tp04eIiAgAatWqddO5MzMz6devH7Vr12bJkiXY2NhU8NXePcVKg/ujoWQ7pJH7e4ba4fyr3xq78VWRZfcghBZqSDkhSYm50lte/U5xG3usT7H+0Qjazd1x+8Yqsq1ThxqfzcVar1c7lDJlZWWxc+dOnn76aV555RUAOnTogJOTE2PGjOHHH38EwN3dnfr16wMwduxYbG1tjaMYYmJi2L59O3/++edNx//f//5Hu3btgKsT5vfv38+ePXvw8fGhe/fufPzxx6xdu/a2cX788ceMGzeO3NxcrKysGDFihPGzPTMzk6CgIBISErC3t+fnn382Xktm5tWVFC9cuEB+fj579uxh+fLlnDlzhsGDB5OTk8Ply5fR6XT38zKK+yQ9JaJCLV26lMWLF7NkyRK2b99OQkIC77zzDgkJCaXaXXuTA/D29gYwJhzXb8vKygJg9OjRvPHGG7Ro0YJXX32VXbt23XTujh07EhwczNdff22SCck1ikbBrUcwzh381Q7llrL0trymt9whW9e4Hs9TOwRxH/QF+WqHIFQwx3M32R0bqR3GLemioghYtNBkExKAX3/9FYDHH3/cuM3e3h5vb28OHTpU5j7p6en4+5f+3LqWeNzo+u1eXl7Y2tri4+Nj3Obi4mIcXt2pU6dSE9Wv78Xo378/v/32G6Ghobi5ufHHH39w5co/tbKCgoJo0aIFkZGRvPjiizz33HM3xXJt8nvTpk15+OGHjUPRLl+27Jtu5kCSElGh4uLiGD9+PI8++igREREMGDCAsWPH8tZbb5VqZ21tbfz7tarvZW0rKbl6K3To0KH8/fffDBgwgN27d9O4ceObJs936dKFX3/9lX379lXItZU35w4BuPYIwtRWNS3WwKsPOpH9/5MILZVvicLu1HNqhyHugz4/V+0QhEriolJQAqurHcZNHNu0wX/e52idndUOxWRcSzZu3HZteHZ8fDzr1q0zPiIjI43tNBoNo0aNolq1aqSmppKSksLy5csB8PHx4dSpU6WOGxwcDFzt4QFwdHTEwcEBF5d/FsWwt786F+3sWSmWqzZJSkSFysvLQ3PDso1ardaYXNyPGjVqMHLkSL799luef/555s6dW+r5adOmMWjQINq3b282iYljMz/cHwsFK9PJTL5o70VSvuXfgQ7OKqTYgifwVwX63Gy1QxAquaC5wkc9bVFMqFfcpWdPqn84G42dndqh3Na1GmJLliwxbsvLy+PUqVPUqVOnzH0CAwM5evRoqW0bN26871iCgoJo37698WH3/69fTk4OnTp1wsbGhu+//x5bW1sMBgP5///51KxZM3bv3m0cUQHwww8/ANCwYUPjnzk5OVy6dMnYZs2aNQBUr256SW1VI0mJqFDdunVj6tSp/Pjjj6Snp7N8+XLeffddevXqdV/HHTNmDGvWrOHw4cNs376djRs3EhYWdlO7d955h/79+9OuXTsOHDhwX+esLPb1vfAaUg/FTv0pX7vCnZijuXL7hmbOwQD7D8hdMnPnnXPq9o2ExUrUHWHXIw3UDgMAj5Ej8Jv2FoqV+u/jd0Kv19OwYUPmzJnDG2+8wffff0/9+vUxGAy3XMJ/5syZ5Ofn06RJE3766SdGjRpVamXN8rRz507q1q3LmTNnmDJlCuvXr6d79+7Y2dkRHR0NQH5+Pr6+vvTq1YsffviB//73v3z33Xe0aNECW1tbY8wAjRo1YuXKlYwdO5bffvuNzp07y3wSE2Aevy3CbM2ePZtJkybx9NNPk5WVhZ+fHyNGjDBOPrtXxcXFjBo1iuPHj+Ps7Eznzp157733ymz73nvvUVxcTLt27UhMTLzlXR9TYlvLFf1T9Tkzby/FF9TppbjobMXLtawottCq7deLvGBgW77lX6elc807h63Wg/xiy+/ZE2Wb4r+DhQ9GYPvHbnUC0GrxmTQJt0f7qXP++7Bx40Zat27NK6+8gsFgwMnJifnz5xtXt7pRs2bNmDRpEtOmTePhhx/G2dmZQYMG3XIFrvtx6NAhjh8/DvzTq3PNtZ4SOzs7XFxc+PPPP+nevTtarZYOHToYJ+nD1aWFFyxYwKhRo+jWrRtarZbo6Gi+/fbbco9Z3D3FUFVLawthBopz8jkzfy+FGZU/Vv6lbl6sKbD8XhItBmr8eY7MbMu/VlOS4vsatudTyv24MXWbcjwvs9yPK8xH9SIXZs2HkjOV2/up6HRUe3cmTm3bVup5hbAUMnxLCBOmdbbFa0R9bINdK/W83z/kUSUSEoCoPI0kJBZEb20eNStExTludYGv+vmApvK+4mjd3QlIWCAJiRD3QZISIUycxs4Kz8F1sW/sXSnnSw+wZ4ZjYaWcyxTkS7FEi+KtMf1JxaLifeOcwvHujSvlXDbBQQR+9SW665a2F0LcPUlKhDADilaDe2wdXLsHgabiVubKt9UwsYGOK1VkFaqwQoWDJyUpsSR6g3ysiavGh+6kJDy4Qs/h2K4dgV99jY2/6daZEsJcyLu3EGbEsbkfnk/WQ+NQMWtUfNTek4P5BRVybFPkckyKZVkafZEsWCCuKlCKmRqTh+LoUP4HVxQ8n36a6h99iLYiji9EFSRJiRBmxi7IFf0zkVj7lu8H4aZGbiwprjpf0v1KFHanSbFES6MvqDr/h8Xt7bbJYuOjIeV6TI29PdU+eB+v0f+9qQigEOLeSVIihBmycrPD66kG6Op7lsvxTnvZMtm7agzZuiZIiiVaJP3li2qHIEzMx167yG4fVS7Hsq5Rg4CvvsS5Y8dyOZ4Q4h+SlAhhpjQ2WjweD8O5cyDcx826Yg1MbuZMdnFxucVm6hxLpFiipdJfOqN2CMIExTU+iOJf7b6O4dC8GTX/txQ7M6h1JYQ5kqRECDPn3KYGHoPqothp72n/Re28+DO/ai2J2/CCgUtSLNEi6S9IVXdxswuaK3zcWwfW1ve0v/ugQdSYOxetq2v5BiaEMJKkRAgLoAt1Rz+qIVZeurvab0+YEx9rq1ZCosXA8RSZS2KpbIrzcbNxUTsMYYI26tLZ80jDu9pHsbXFb/o0vCeMR9He240fIcSdkaRECAth7WWPflRD7ELd76j9RScrXgqyouoM2roqKk9D5oWqlYhVNXpbV7VDECZqiv8O8pvWu6O2Vj4+BCxahEuPHhUclRACJCkR4q4sWLAAVxPuvtfYWeExMByn9v63nWcyvY07Jwqr3hCmK2kX1A5BVDC91l7tEISJMijwUptMNJ7/fvPGvkkTan7zP3QRd5bAmIrNmzcTERGBtbU1PXv2LLNNYmIiiqKQnZ1dqbEJcTuSlAiTVFxczKRJk6hZsyY6nY6goCCmTJmCwSCrJd2OolFw6RhwtZ6JU9njp1e29GB1FVw6NbxA4dBJWZ3J0umViqnjIyzDUW02S/v5QVnL+Wo0eI4ahf+C+Vh5ls/qhpXpueeeo2HDhhw+fJgFCxZU+vk//fRT2rRpg7Oz8y0Tn4MHD9KjRw88PT1xdnamZcuWbNy4sVSbo0eP0qVLF+zt7dHr9cTFxVEkNYgsniQlwiRNnz6d+Ph4PvzwQ/bv38/06dOZMWMGs2fPVjs0s2EX7Ib3s1HY1nYttf2Ivz3TnArVCUplzserXiJWFXmXqB2BMHVLnQ9wonvjUtusvLzwnzcPr/8+Y7bzR9LS0mjXrh3Vq1dXpVc/Ly+Pzp07M3HixFu26dq1K0VFRWzYsIG//vqLBg0a0LVrVzIzM4GrNyW7dOlCQUEBW7ZsISEhgQULFvDKK69U1mUIlUhSIkzSli1b6NGjB126dCEwMJDY2Fg6derE1q1bjW0yMjLo0qULOp2OmjVrsmTJEgIDA5k1a5axjaIofPLJJ3Tt2hV7e3vCwsL4/fffSU1NpU2bNjg4ONC8eXPS0tKM++zcuZO2bdvi5OSEs7MzjRo1Ytu2bWXGefr0aRo3bkyvXr3Iz8+vsNfjXmkdbfAcUg/n6EDQKOTbaHipoY4rVbA+R7ViKZZYVegLTe93UZie8WG7MIQFA+DQsiU1v1uBw4MPqBzVv8vPz2f06NHo9Xrs7Oxo2bIlSUlJpKenoygKZ8+eZciQISiKYuwpWbVqFXXq1EGn09G2bVvS09NLHfPasOSVK1cSEhKCvb09sbGx5OXlkZCQQGBgIG5ubowePZri2ywdP2bMGMaPH8+DDz5Y5vNnzpzh0KFDjB8/nvr161O7dm2mTZtGXl4ee/bsAeDnn39m3759LFq0iIYNGxITE8OUKVP46KOPKCgouO/XUJguSUqESWrevDnr16/n4MGDwNVEYdOmTcTExBjbDBw4kJMnT5KYmMiyZcv49NNPycrKuulYU6ZMYeDAgSQnJxMaGsrjjz/OiBEjmDBhAtu2bcNgMPDMM88Y2/fv35/q1auTlJTEX3/9xfjx47EuYxnJY8eO8dBDD1GvXj2++eYbbG1tK+CVuH+KouDctgZewyNY3NmbA/lV8029lhRLrDL0V3LVDkGYgXylmOldC/GMe4Eacz/Fyv3OFglR07hx41i2bBkJCQls376d4OBgoqOjcXJyIiMjA2dnZ2bNmkVGRgb9+vXj2LFj9O7dm27dupGcnMzQoUMZP378TcfNy8vjgw8+4KuvvmL16tUkJibSq1cvVq1axapVq1i4cCGffPIJ33zzzX3F7+HhQUhICF988QW5ubkUFRXxySefoNfradSoEQC///47EREReHt7G/eLjo4mJyeHvXv33tf5hWmTgbfCJI0fP56cnBxCQ0PRarUUFxczdepU+vfvD8CBAwdYt24dSUlJNG58tQv+s88+o3bt2jcda/DgwfTt2xeAF198kWbNmjFp0iSio6MBePbZZxk8eLCx/dGjR4mLiyM0NBSgzGOmpKTQsWNHevXqxaxZs1DKGptsYmwDXXi2mgPHDx7n+6xstcOpVE4G2JciRfWqCn1uNtzd6tiiCgp0DmTcQ9Pw8qyrdih3JDc3l/j4eBYsWGC8QTd37lzWrl3LvHnziIuLQ1EUXFxc8PHxASA+Pp6goCBmzpwJQEhICLt372b69Omljl1YWGhsCxAbG8vChQs5deoUjo6OhIeH07ZtWzZu3Ei/fv3u+RoURWHdunX07NkTJycnNBoNer2e1atX4+bmBkBmZmaphAQw/nxtiJewTNJTIkzS0qVLWbx4MUuWLGH79u0kJCTwzjvvkJCQAFxNCqysrIiKijLuExwcbHxTu179+vWNf7/2xhYREVFq25UrV8jJyQGuThQcOnQoHTp0YNq0aaWGdgFcvnyZhx56iN69e/P++++bRUJyjYu1FZ/WDeT9UH8ctFXn179BtoHc/Kq2+HHVpb94c4+pENfrU7sPX3f9mrpmkpDA1fkihYWFtGjRwrjN2tqapk2bsn///jL32b9/Pw88UHpIWrNmzW5qZ29vb0xI4OrnYmBgII6OjqW2XRuN8Oabb+Lo6Gh8HD169I6uwWAwMGrUKPR6Pb/99htbt26lZ8+edOvWjYyMjDs6hrBcVedbiTArcXFxjB8/nkcffZSIiAgGDBjA2LFjeeutt+76WNcPvbqWQJS1raTk6uzYyZMns3fvXrp06cKGDRsIDw9n+fLlxva2trZ06NCBlStXcuLEiXu6PrX183VnfZMQopwtf+lUK4OBY1IssUpxyz2LjcZG7TCECXK1dWVW21lMbj4Ze2vLf/+7UzcOUVYUpcxt1z4nR44cSXJysvHh5+d3R+fZsGEDK1eu5KuvvqJFixZERUXx8ccfo9PpjDcdfXx8OHXqVKn9rv18rQdIWCZJSoRJysvLQ6Mp/d9Tq9Ua3xBDQkIoKipix44dxudTU1M5f/58uZy/Tp06jB07lp9//pnevXszf/5843MajYaFCxfSqFEj2rZty8mTJ8vlnJUtUGfL95G1GRvgjdZ8OnvuWlSehlNSLLHK8bK7uddUVG3NfJvxbfdvae/fXu1Q7klQUBA2NjZs3rzZuK2wsJCkpCTCw8PL3CcsLKzUAjEAf/zxx33H4u7uTnBwsPFhZXVnswHy8vIAbvp812g0xs/3Zs2asXv37lJzRNeuXYuzs/Mtr1NYBklKhEnq1q0bU6dO5ccffyQ9PZ3ly5fz7rvv0qtXLwBCQ0Pp0KEDw4cPZ+vWrezYsYPhw4ej0+nuazjV5cuXeeaZZ0hMTOTIkSNs3ryZpKQkwsLCSrXTarUsXryYBg0a0K5dO7Md52qlUXixli8/RNYmxMFO7XAqRJ4US6ySvK2d1A5BmAgbjQ1xjeP4pOMneNl7qR3OPXNwcOCpp54iLi6O1atXs2/fPoYNG0ZeXh5PPvlkmfuMHDmSQ4cOERcXR0pKCkuWLKnQ+iWZmZkkJyeTmpoKwO7du0lOTubcuau91c2aNcPNzY1Bgwaxc+dODh48SFxcHIcPH6ZLly4AdOrUifDwcAYMGMDOnTtZs2YNL7/8MqNGjTLZBWVE+ZCkRJik2bNnExsby9NPP01YWBgvvPACI0aMYMqUKcY2X3zxBd7e3rRq1YpevXoxbNgwnJycsLO79y/XWq2Ws2fPMnDgQOrUqUPfvn2JiYnhtddeu6mtlZUVX375JXXr1qVdu3ZlrvxlLqJcHFjbuA7PB3pjbUZzZG6nboGG1AwpllgV6TXy5UVAlD6K/3X7HwPrDjSr+X+3Mm3aNPr06cOAAQOIiooiNTWVNWvWlDmfEsDf359ly5axYsUKGjRowJw5c3jzzTcrLL45c+YQGRnJsGHDAGjVqhWRkZF8//33AHh6erJ69WouXbpEu3btaNy4MZs2beK7776jQYMGwNXP4ZUrV6LVamnWrBn/+c9/GDhwIK+//nqFxS1Mg2KQEtnCQhw/fpwaNWqwbt062rc3z+55U7D/0mXGHjhG8sU8tUO5bw+kXWZnqswnMUUpvq9hez6lwo7/dmRXvsjeVWHHF6bNycaJsY3GEls71iKSESGqAlkSWJitDRs2cOnSJSIiIsjIyGDcuHEEBgbSqlUrtUMza2GOOn5sVJtPj51mxuEMLptpbQ8plli16W9T5E1YrujAaMY3HY+nzlPtUIQQd0GSEmG2CgsLmThxIn///TdOTk40b96cxYsXl1noUNwdraLwlL+eGC8XnjtwjC3Zl9QO6a7VyiokyTzzKVEOvPMvqx2CqGS+Dr68/ODLtKouN6aEMEcyfEsI8a8MBgOLMs7yeupJLhaXqB3OHXE2KFglZpBXIHfLTVVFD9/a7h/FIK0UzKwKtIqWx8Me55mGz8gyv0KYMZnoLoT4V4qiMMDPk18fCKWjh7Pa4dyR+udLJCGp4rwuSUJSFYS5h7G4y2LGNRknCYkQZk6SEiHEHfG1tWFh/VrEhwfgYW26Iz+tDAaOppxVOwyhMn2O+a6GJ25PZ6XjhcYv8GWXL6nrYT5V2YUQtyZJiRDirvTydmPzA6EMqeZpkkUXG+UpZOXkqx2GUJlt0RVcbVzUDkNUgIeqPcSKHisYVHcQWo1W7XCEEOVEkhIhxF1ztbbizTrVWdc4hGauDmqHU8ql1By1QxAmQi9JiUXxsPPg7VZv83GHj/Fz9FM7HCFEOZOkRAhxz8IcdSyPrM2c8AD8bNVf9axegUJaphRLFFfprWSOgSXQKBpi68TyXc/v6Fyzs9rhCCEqiOkODBdCmI2e3m509HRm9pEs5hzL4opKtU0cjpp/wUdRfrwV9RNlcX9aV2/NmKgxBLsFqx2KEKKCSU+JEBXswIEDPPjgg9jZ2dGwYcN/bbtgwQIURWHFihWVElt5ctBqGV/Ll98eCKOn3rXSz1+jWGH331IsUfxDbx4rWIsyRHhGMD96Ph+2/1ASEiGqCElKRJU1e/ZsvL290Wq1KIrChAkTbmqzcuVKfHx8UBQFRVFwcHDg999/v6vzvPrqqzg4OJCSksL69evLK3yTVcPOhjl1A1kZVZso58obPhNwqgAzLT4vKoi+sEDtEMRdCnAOYGbrmSzpsoTGPo3VDkcIUYkkKRFV1vnz56lduzYvvPBCmc9v2LCB7t274+/vz5IlS1i/fj1jxozB2fnuanWkpaXRsmVLAgIC8PDwKI/QzUJjFwd+jKrNx+EBVKvg+SYuBoW9sgywuIH+Sq7aIYg75G7nzksPvMTyHsvpFNhJ7XCEECqQpERUWa+88gqbNm1i+vTpZT7/xBNPEBgYyNatW3nsscdo164dU6dOpW7df9bEVxSF4OBgtFotGo0Gf39/FEUhPj6eNm3aoCgKf/31F6+//jqKojB58mS2bdtG9erV0Wg0KIqCjY0No0aNKjOG06dP4+fnh52dHdu2bauQ16EiKYpCb283Nj8QxuQgvwqrb1L/fDGXpViiuIF3brbaIYjb0FnpeKrBU/zU+yceDX0Ua43MAxKiqpKkRIgyFBUVcezYMWrWrImnpycajQZHR8dSQ7yKi69+CT5+/DhvvfUWixYt4tKlSwDEx8czYcIEfvnlF3Q6HYGBgWRkZPDCCy/QtWtXzp8/zxdffMHGjRuZNGkSNWrUuCmGo0ePUqdOHXJycti5cyeNG5vvUAY7rYaR/nq2NgvjpVq+uFuXX20BawOkp8hcEnEz/cVTaocgbsFKsaJfSD9W9V7F0w2flmrsQghZfUuIsuzbtw+4OoSrR48ePPbYY8yfP59p06bh4+PDs88+y9q1awF46qmnGDduHABnzpzh2WefpVWrVkRHRwPg5eXF8ePH8fHxAeDcuXMEBwfTv39/FEWhTZs2N53/yJEj9O/fH1tbWw4cOED16tUr4aornoNWy38DvBlczZNPj5/mk2OnuVB0fz0cUXkKO6VYoiiDW+5ZrDWuFJYUqh2KuE7HgI6MjhxNoEug2qEIIUyI9JQIUYaioiIAAgICWLFiBf369WP16tV4e3vz7rvvApCSkgJA8+bNjftdSzACAgKM26ytrSkqKiIn52pRv8GDB7N//34cHBxo3rw5CxYsuOn8zz33HNbW1hw8eNBiEpLrOVppeS7Qh6Rm4TwX6I2T9t7fii6lZpdfYMLi6O3c1Q5B/L8ofRSLHl7Eu23elYRECHETSUqEKEOdOnUACA4uvRRlQEAA58+fL7XN2vqfMdCKogBgZXVzJ2RJydX1ST/55BP++usvYmNjOXr0KIMHD6ZZs2al2gYGBpKTk8OXX355/xdjwpyttIyr6cvWZuGM9tdjf5fJydViiZcqKDphCfTWTmqHUOU19GrIh+0+JCEmgQZeDdQORwhhomT4lhBlcHR0xNHRkb///rvU9mPHjuHufvXOa0hICADZ2dnG53ft2nVHx4+KiuKLL74Arvau/PLLL5w798+8iBkzZvDuu+/y7LPPotVqefrpp+/nckyem7UVE4P8GF5Dz0dHT7HgxBku38H6vvZSLFHchl5jq3YIVZKCQuvqrRkSMYRIfaTa4QghzIAkJaLKyszM5JdffjH+vH//fr7++mv8/f1p1qwZTz/9NDNmzGDgwIEMGjSIOXPmkJGRwUcffQRAx44dAXj//feJiori4sWLvPPOO/96zsuXL9OxY0fatm1LmzZtyMrKYvv27Tg4OODq6mpsp9Vq+eWXX3jooYd45plnsLa2ZtiwYeX/IpgYTxsrXg2uxlM19Mw+eopFJ89xuaTsCnj+xRoplihuS28ov0UVxO1Za6zpUqsLg+sOppZrLbXDEUKYEUlKRJX11VdfMXbsWOPP3333Hd999x1BQUGkpqYyffp0srKyWLx4MQsXLsTOzo4JEyYYey202qtfdq5cuUKTJk2oVasWL7zwAkOHDsXWtuy7s1qtloKCAqZPn84bb7yBoihUq1aN//3vf2g0pYcuWVlZ8dtvv9GiRQtGjBiBlZUVgwcPrqBXw7Toba2ZUrs6YwN9mH/8DPNOnOFsYVGpNv6n8smSYoniNryLi27fSNw3R2tHHqnzCP8J/w96e73a4QghzJBiMBjkY12IcrJ582ZatmxJamoqQUFBaodjMa4Ul7A08xyfHDtN2uV8XEtASczkcqHUJjFXKb6vYXs+pcLP81NoG8bl/337huKe6HV6+of3p2+dvjjaOKodjhDCjElPiRD3Yfny5Tg6OlK7dm1SU1N59tlnadGihSQk5cxOq2FgNU/+4+fBmjMXWLczg2WSkIg7oM+7CDKCq9zVcqnFE3WfoGutrlhrpeChEOL+SVIixH24ePEiL774IkePHsXT05MOHTowc+ZMtcOyWBpFIcbLlZgOrjwR6se8zYf5cVcGBcVlzzsRQp97BpzVjsJyROojGVx3MG1qtDGuNiiEEOVBhm8JIcxa1sUrLPrjKEv+PMKZSwVqhyPuUGUN38q3sqNxDZnjcD8UFNrUaMOQekNoqG+odjhCCAslSYkQwiLkFxXzw84MFv5xhJ3HstUOR9xGZSUlAC1D6nGhIKdSzmVJ9Do9PYJ70KdOH6o5VlM7HCGEhZPhW0IIi2BrpSW2UXViG1UnJfMiS7cdY8WOE5zNld6Tqk5v4ypJyR3SKlpaVGtBbO1YWlVvhVYjE3KEEJVDekqEqKImT57MihUrSE5OVjuUClNYXMK6fadYuu0Yvx46Q/EdFGQUlaMye0pGRnZic/aBSjmXufJx8KF3cG961e6Fj4OP2uEIIaogze2bCCH+za+//kq3bt3w8/NDURRWrFhxU5v9+/fTvXt3XFxccHBwoEmTJhw9erTyg61irLUaYiJ8mT+4KZtfbEdcdAiBHvZqhyUqmbciq0OVxUZjQ3RgNB+3/5g1fdbwVMOnJCERQqhGhm8JcZ9yc3Np0KABQ4YMoXfv3jc9n5aWRsuWLXnyySd57bXXcHZ2Zu/evdjZ2akQbdXl42LHqLbBjGobzJ9/n+Xrbcf4abfUOqkK9LI4WykNvBrQPag7nWt2xtlGliYTQpgG6SkR4j7FxMTwxhtv0KtXrzKff+mll3j44YeZMWMGkZGRBAUF0b17d/T6f1YEOnDgAC1btsTOzo7w8HDWrVtXqtclPT0dRVFYunQpDz30EDqdjiZNmnDw4EGSkpJo3Lgxjo6OxMTEcPr0aeNxExMTadq0KQ4ODri6utKiRQuOHDlSZpxpaWnUqlWLZ555Bksf1flALQ/e7duQpJc78FbvCKL8XdUOSVQgfaHMK/J18GVYxDB+6PkDix5eRN+QvpKQCCFMivSUCFGBSkpK+PHHHxk3bhzR0dHs2LGDmjVrMmHCBHr27AlAcXExPXv2xN/fnz///JOLFy/y/PPPl3m8V199lVmzZuHv78+QIUN4/PHHcXJy4v3338fe3p6+ffvyyiuvEB8fT1FRET179mTYsGF8+eWXFBQUsHXr1jJrC+zatYvo6GiefPJJ3njjjYp8SUyKo60VjzX157Gm/pzMvszqPZn8tCeDv46cR6afWA7vK7lqh6AKT50nrau3JqZmDE19mkpdESGESZOkRIgKlJWVxaVLl5g2bRpvvPEG06dPZ/Xq1fTu3ZuNGzfSunVr1q5dS1paGomJifj4XB3PPXXqVDp27HjT8V544QWio6MBePbZZ3nsscdYv349LVq0AODJJ59kwYIFAOTk5HDhwgW6du1qrDAfFhZ20zG3bNlC165deemll26ZDFUFfq46hrSsyZCWNcm6eIU1e0+xek8Gf/59jiLJUMyaPi8bqshoyUDnQNr5t6Odfzvqe9aXREQIYTYkKRGiApWUXB3M3qNHD8aOHQtAw4YN2bJlC3PmzKF169akpKRQo0YNY0IC0LRp0zKPV79+fePfvb29AYiIiCi1LSsrCwB3d3eeeOIJoqOj6dixIx06dKBv3774+voa2x89epSOHTsydepUxowZUz4XbQH0TnYMeDCAAQ8GcD63gLX7TvHTngw2p56V6vFmSJ+TBXaWucCBRtEQ4RlBO/92tK3RlpouNdUOSQgh7okkJUJUIE9PT6ysrAgPDy+1PSwsjE2bNt318ayt/1lF6Nod0Bu3XUuEAObPn8/o0aNZvXo1X3/9NS+//DJr167lwQcfBMDLyws/Pz++/PJLhgwZgrOzjDG/kZuDDX2b1KBvkxrkXClk/f5T/LQ7k18PneZKoSQo5sAt9yzWGhcKSwrVDqVc2GhseNDvQdrWaEubGm3w1HmqHZIQQtw3SUqEqEA2NjY0adKElJTS9RgOHjxIQEAAACEhIRw7doxTp04Zez+SkpLKLYbIyEgiIyOZMGECzZo1Y8mSJcakRKfTsXLlSh5++GGio6P5+eefcXJyKrdzWxpnO2t6RVanV2R18gqK+CXlNL8eOsPm1DMcPZendnjiFhQM6O3cOZF3Su1Q7pmzjTOtqreinX87Wvi1wN7aMnt+hBBVlyQlQtynS5cukZqaavz58OHDJCcn4+7ujr+/P3FxcfTr149WrVrRtm1bVq9ezQ8//EBiYiIAHTt2JCgoiEGDBjFjxgwuXrzIyy+/DHBf48EPHz7Mp59+Svfu3fHz8yMlJYVDhw4xcODAUu0cHBz48ccfiYmJISYmhtWrV+Po6HjP560q7G2siInwJSbi6nC4o2fz+C31NJtTz7Al7SzZeZZxV95SeFk5cgLzSkqqO1andY3WtK3RlkbejbDSyEe2EMJyyTucEPdp27ZttG3b1vjzc889B8CgQYNYsGABvXr1Ys6cObz11luMHj2akJAQli1bRsuWLQHQarWsWLGCoUOH0qRJE2rVqsXbb79Nt27d7quWib29PQcOHCAhIYGzZ8/i6+vLqFGjGDFixE1tHR0d+emnn4iOjqZLly6sWrUKBweHez53VeTvYU9/jwD6PxBASYmB3ScusCn1DJsOneGvo+cpKJKhXmrSa017pruCQpBrEI28GxGlj6KRdyO8HbzVDksIISqNYrD0ggRCmKHNmzfTsmVLUlNTjStnCfN1uaCYrenn2HToNJtSz3IgM4eq/s6b4vsatudTbt+wnEyP7Mqi7F2Vdr7bsVKsCHUPvZqEeEcRpY/C1c5V7bCEEEI10lMihAlYvnw5jo6O1K5dm9TUVJ599llatGghCYmF0NloaV3Hi9Z1vAA4l1vA9iPn2X70PDuOZrPzeDZ5BVJZviJ5F6v7+tpqbYnwjDAmIQ29Gsq8ECGEuI4kJUKYgIsXL/Liiy9y9OhRPD096dChAzNnzlQ7LFFB3B1s6BDuTYfwq8NziksMHMjMYfvRbHYcPc+u4xf4+/QlKeBYjvQFVyr1fE7WTjTQN6CRdyMaeTeinkc9rLXWt99RCCGqKBm+JYQQJig3v4g9Jy6w+8QFdh2/+mf62VyLGfZV2cO3tgU0YrDmdLkfV6to8Xf2J9g1mNqutQl2CybYNZgA5wA0iqbczyeEEJZKekqEEMIEOdha8UAtDx6o5WHclnOlkEOnLpF2+hJpWVf/TM26xLHzlymWbpV/5X3pLNxHGR4FBT9HP4JdryYdwW5Xk5CaLjWx0dqUX6BCCFFFSVIihBBmwtnOmkYBbjQKcCu1Pb+omPQzecYk5dqff5/O5XKhzFUB0F/IBGf9HbX11Hkak4/abrWNf5c5IEIIUXEkKRFCCDNna6UlxMeJEJ/ShS8NBgMnsi8be1NOXbhCZs4VTv3/I/PCFXKuFKkUdeWyLbqCi40zOQUX8dB54GPvg6+jLz4OPsa/+zr4Ut2xuqyCJYQQKpCkRAghLJSiKFR3s6e6263v8OcVFHEqJ5/MC/+fqPx/snItccm6mM/FK0Xk5hdRZMpDxKx0YOcM9p7g5A2OPv//5/8/nHz4xq0GHg4+MuFcCCFMkEx0F0IIcUeuFBZzKb+IS1eKrv6ZfzVZKfX3K0Vcyi/mUn4hBUUllBigxGDAYLi6yliJwUCJAWY5L8YxPwsUBRTNdQ8taKzAWgc29mDtcPVPG4d//m7rfDUBsXP9/7+7gJXM6xBCCHMmSYkQQgghhBBCVbJeoRBCCCHKzebNm4mIiMDa2pqePXuW2SYxMRFFUcjOzq7U2IQQpkuSEiGEEEKUm+eee46GDRty+PBhFixYUOnn//TTT2nTpg3Ozs5lJj7p6ek8+eST1KxZE51OR1BQEK+++ioFBQWl2q1Zs4YHH3wQJycnvLy86NOnD+np6ZV3IUJUMZKUCCGEEKLcpKWl0a5dO6pXr46rq2ulnz8vL4/OnTszceLEMp8/cOAAJSUlfPLJJ+zdu5f33nuPOXPmlGp/+PBhevToQbt27UhOTmbNmjWcOXOG3r17V9ZlCFHlSFIihBBCiDuWn5/P6NGj0ev12NnZ0bJlS5KSkkhPT0dRFM6ePcuQIUNQFMXYU7Jq1Srq1KmDTqejbdu2N/U4LFiwAFdXV1auXElISAj29vbExsaSl5dHQkICgYGBuLm5MXr0aIqL/732zpgxYxg/fjwPPvhgmc937tyZ+fPn06lTJ2rVqkX37t154YUX+Pbbb41t/vrrL4qLi3njjTcICgoiKiqKF154geTkZAoLC+/r9RNClE2SEiGEEELcsXHjxrFs2TISEhLYvn07wcHBREdH4+TkREZGBs7OzsyaNYuMjAz69evHsWPH6N27N926dSM5OZmhQ4cyfvz4m46bl5fHBx98wFdffcXq1atJTEykV69erFq1ilWrVrFw4UI++eQTvvnmm3K/pgsXLuDu7m78uVGjRmg0GubPn09xcTEXLlxg4cKFdOjQAWtrWVJaiIogSYkQQggh7khubi7x8fG8/fbbxMTEEB4ezty5c9HpdMybNw8fHx8URcHFxQUfHx90Oh3x8fEEBQUxc+ZMQkJC6N+/P0888cRNxy4sLCQ+Pp7IyEhatWpFbGwsmzZt4vPPPyc8PJyuXbvStm1bNm7cWK7XlJqayuzZsxkxYoRxW82aNfn555+ZOHEitra2uLq6cvz4cZYuXVqu5xZC/EOSEiGEEELckbS0NAoLC2nRooVxm7W1NU2bNmX//v1l7rN//34eeOCBUtuaNWt2Uzt7e3uCgoKMP3t7exMYGIijo2OpbVlZWQC8+eabODo6Gh9Hjx696+s5ceIEnTt35pFHHmHYsGHG7ZmZmQwbNoxBgwaRlJTEL7/8go2NDbGxsUglBSEqhlR0F0IIIYTqbhwWpShKmdtKSkoAGDlyJH379jU+5+fnd1fnO3nyJG3btqV58+Z8+umnpZ776KOPcHFxYcaMGcZtixYtokaNGvz555+3nK8ihLh30lMihBBCiDsSFBSEjY0NmzdvNm4rLCwkKSmJ8PDwMvcJCwtj69atpbb98ccf9x2Lu7s7wcHBxoeV1Z3fZz1x4gRt2rShUaNGzJ8/H42m9NehvLy8m7ZptVoAY1IkhChfkpQIIYQQ4o44ODjw1FNPERcXx+rVq9m3bx/Dhg0jLy+PJ598ssx9Ro4cyaFDh4iLiyMlJYUlS5ZUaP2SzMxMkpOTSU1NBWD37t0kJydz7tw54J+ExN/fn3feeYfTp0+TmZlJZmam8RhdunQhKSmJ119/nUOHDrF9+3YGDx5MQEAAkZGRFRa7EFWZJCVCCCGEuGPTpk2jT58+DBgwgKioKFJTU1mzZg1ubm5ltvf392fZsmWsWLGCBg0aMGfOHN58880Ki2/OnDlERkYa54i0atWKyMhIvv/+ewDWrl1Lamoq69evp3r16vj6+hof17Rr144lS5awYsUKIiMj6dy5M7a2tqxevRqdTldhsQtRlSkGmbElhBBCCCGEUJH0lAghhBBCCCFUJUmJEMIsbd68mYiICKytrenZs2eZbRITE1EUhezs7EqNTQghhBB3R5ISIYRZeu6552jYsCGHDx+u0Emz/+b333+nXbt2ODg44OzsTKtWrbh8+fJN7fLz82nYsCGKopCcnFz5gQohhBAmTpISIYRZSktLo127dlSvXh1XV9dKP//vv/9O586d6dSpE1u3biUpKYlnnnnmpmVEAcaNG3fXNRSEEEKIqkSSEiGEScrPz2f06NHo9Xrs7Oxo2bIlSUlJpKenoygKZ8+eZciQISiKYuwpWbVqFXXq1EGn09G2bVvS09NLHXPBggW4urqycuVKQkJCsLe3JzY2lry8PBISEggMDMTNzY3Ro0dTXFz8r/GNHTuW0aNHM378eOrWrUtISAh9+/bF1ta2VLuffvqJn3/+mXfeeac8Xx4hhBDCokhSIoQwSePGjWPZsmUkJCSwfft2goODiY6OxsnJiYyMDJydnZk1axYZGRn069ePY8eO0bt3b7p160ZycjJDhw5l/PjxNx03Ly+PDz74gK+++orVq1eTmJhIr169WLVqFatWrWLhwoV88sknfPPNN7eMLSsriz///BO9Xk/z5s3x9vamdevWbNq0qVS7U6dOMWzYMBYuXIi9vX25v0ZCCCGEpZCkRAhhcnJzc4mPj+ftt98mJiaG8PBw5s6di06nY968efj4+KAoCi4uLvj4+KDT6YiPjycoKIiZM2cSEhJC//79eeKJJ246dmFhIfHx8URGRtKqVStiY2PZtGkTn3/+OeHh4XTt2pW2bduycePGW8b3999/AzB58mSGDRvG6tWriYqKon379hw6dAgAg8HAE088wciRI2ncuHGFvE5CCCGEpZCkRAhhctLS0igsLKRFixbGbdbW1jRt2pT9+/eXuc/+/ft54IEHSm1r1qzZTe3s7e0JCgoy/uzt7U1gYCCOjo6ltmVlZQHw5ptv4ujoaHwcPXqUkpISAEaMGMHgwYOJjIzkvffeIyQkhHnz5gEwe/ZsLl68yIQJE+7xVRDlQVZpE0II8yBJiRCiSrG2ti71s6IoZW67lniMHDmS5ORk48PPz89Y+Tk8PLzUfmFhYRw9ehSADRs28Pvvv2Nra4uVlRXBwcEANG7cmEGDBlXItYmbqblK27X5T2U9/ve//wGwc+dOHnvsMWrUqIFOpyMsLIz333+/UuMUQghTYKV2AEIIcaOgoCBsbGzYvHkzAQEBwNVhV0lJSYwZM6bMfcLCwvj+++9Lbfvjjz/uOxZ3d3fc3d1LbQsMDMTPz4+UlJRS2w8ePEhMTAwAH3zwAW+88YbxuZMnTxIdHc3XX399U4+OqDhpaWmMHDmS6tWrV/q5a9SoQUZGRqltn376qXFYIsBff/2FXq9n0aJF1KhRgy1btjB8+HC0Wi3PPPNMpccshBBqkZ4SIYTJcXBw4KmnniIuLo7Vq1ezb98+hg0bRl5eHk8++WSZ+4wcOZJDhw4RFxdHSkoKS5YsqbA744qiEBcXxwcffMA333xDamoqkyZN4sCBA8b4/P39qVevnvFRp04d4GrCpcYXZEtlyqu0abVafHx8Sj2WL19O3759jcMFhwwZwvvvv0/r1q2pVasW//nPfxg8eDDffvttRb1kQghhkqSnRAhhkqZNm0ZJSQkDBgzg4sWLNG7cmDVr1uDm5lZme39/f5YtW8bYsWOZPXs2TZs25c0332TIkCEVEt+YMWO4cuUKY8eO5dy5czRo0IC1a9eWmq8iKt71q7QFBAQwY8YMoqOjOXToEBkZGYSEhPD666/Tr18/XFxcjKu0jRo1iuHDh7Nt2zaef/75m457/SptFy9epHfv3vTq1QtXV1dWrVrF33//TZ8+fWjRogX9+vW7o1j/+usvkpOT+eijj/613YULF27qnRNCCEunGAwGg9pBCCGEEHcrNzcXNzc3FixYwOOPPw5cHeYXGBjImDFjiIuLw9XVlVmzZhlXYps4cSLfffcde/fuNR5n/PjxTJ8+nfPnz+Pq6sqCBQsYPHgwqampxiRz5MiRLFy4kFOnThl7OTp37kxgYCBz5sy5o3iffvppEhMT2bdv3y3bbNmyhdatW/Pjjz/SqVOne3lZhBDCLMnwLSGEEGbJ1Fdpu97ly5dZsmTJLYcfAuzZs4cePXrw6quvSkIihKhyZPiWEEIIcYN7WaWtb9++xuf8/PxKtf3mm2/Iy8tj4MCBZZ5v3759tG/fnuHDh/Pyyy+XxyUIIYRZkZ4SIYQQZun6VdquubZK243LNV8TFhbG1q1bS20rr1XagoODjQ8rq9L3/D7//HO6d++Ol5fXTfvu3buXtm3bMmjQIKZOnXrfsQghhDmSpEQIIYRZMvVV2q5JTU3l119/ZejQoTc9t2fPHtq2bUunTp147rnnyMzMJDMzk9OnT1doTEIIYWokKRFCCGG2pk2bRp8+fRgwYABRUVGkpqbe0SptK1asoEGDBsyZM4c333yzQmOcN28e1atXL3OeyDfffMPp06dZtGgRvr6+xkeTJk0qNCYhhDA1svqWEEIIIYQQQlXSUyKEEEIIIYRQlSQlQgghhBBCCFVJUiKEEEIIIYRQlSQlQgghhBBCCFVJUiKEEEIIIYRQlSQlQgghhBBCCFVJUiKEEEIIIYRQlSQlQgghhBBCCFVJUiKEEEIIIYRQlSQlQgghhBBCCFVJUiKEEEIIIYRQlSQlQgghhBBCCFVJUiKEEEIIIYRQlSQlQgghhBBCCFVJUiKEEEIIIYRQlSQlQgghhBBCCFVJUiKEEEIIIYRQlSQlQgghhBBCCFVJUiKEEEIIIYRQlSQlQgghhBBCCFVJUiKEEEIIIYRQlSQlQgghhBBCCFVJUiKEEEIIIYRQlSQlQgghhBBCCFVJUiKEEEIIIYRQlSQlQgghhBBCCFVJUiKEEEIIIYRQlSQlQgghhBBCCFVJUiKEEEIIIYRQlSQlQgghhBBCCFVJUiKEEEIIIYRQlSQlQgghhBBCCFVJUiKEEEIIIYRQlSQlQgghhBBCCFVJUiKEEEIIIYRQlSQlQgghhBBCCFVJUiKEEEIIIYRQlSQlQgghhBBCCFVJUiKEEEIIIYRQlSQlQgghhBBCCFVJUiKEEEIIIYRQlSQlQgghhBBCCFVJUiKEEEIIIYRQlSQlQgghhBBCCFVJUiKEEEIIIYRQlSQlQgghhBBCCFVJUiKEEEIIIYRQ1f8BUgcenU5UTJEAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -247,7 +326,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA44AAAHfCAYAAAAfuobvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACrS0lEQVR4nOzdd1gU1/s28HvpvaiAYgMBFUXUqDH2EjvWGKOxt8QY7AmW2GJviRpL1Ghs+VpiT+yKJfZEsfcCdmONoqKo8Lx/8GNe1t0dYBZYSe7Pdc2lOzPPnjMzy+w+M3PO0YmIgIiIiIiIiMgEK0tXgIiIiIiIiN5tTByJiIiIiIhIFRNHIiIiIiIiUsXEkYiIiIiIiFQxcSQiIiIiIiJVTByJiIiIiIhIFRNHIiIiIiIiUsXEkYiIiIiIiFQxcSQiIiIiIiJVTByJiP4l/Pz80LFjR0tXw2zffvstdDpdlpRVvXp1VK9eXXm9e/du6HQ6rFq1KkvK79ixI/z8/LKkrOzu6tWr0Ol0+O677yxdFSKi/yQmjkRE77grV66gW7duKFSoEBwcHODm5oZKlSrhhx9+wIsXLyxdPVULFy6ETqdTJgcHB/j6+qJu3bqYNm0anj59miHl3L59G99++y2OHz+eIe+Xkd7FuiUnYSknNzc3lCpVCjNmzEBCQkKW1uf48eNo27Yt8ufPD3t7e+TIkQO1atXCggULsrwuyTZt2oRvv/3WImUTEb2LbCxdASIiMm3jxo1o0aIF7O3t0b59e4SEhODVq1fYt28fIiIicObMGfz000+WrmaqRo4cCX9/f7x+/Rp///03du/ejT59+mDy5Mn4/fffERoaqqw7ZMgQDBw4MF3vf/v2bYwYMQJ+fn4oVapUmuO2bduWrnK0UKvb3LlzkZiYmOl1MOXTTz9FgwYNAABPnjzBpk2b0LNnT1y7dg2TJk3KkjrMmzcPX3zxBXx8fNCuXTsEBQXh6dOn2LFjB7p06YI7d+7gm2++yZK6pLRp0ybMnDmTySMR0f9h4khE9I6KiYlBq1atULBgQezcuRN58uRRloWHh+Py5cvYuHGjBWuYdvXr10fZsmWV14MGDcLOnTvRsGFDNG7cGOfOnYOjoyMAwMbGBjY2mfv1FBcXBycnJ9jZ2WVqOamxtbW1aPnvvfce2rZtq7z+8ssvUb58eSxdujTDEsfkfW3MoUOH8MUXX6BChQrYtGkTXF1dlWV9+vTBkSNHcPr06QypR1o9f/4czs7OWVomEVF2wEdViYjeURMnTsSzZ8/w888/6yWNyQIDA9G7d2+T8Y8ePcLXX3+NEiVKwMXFBW5ubqhfvz5OnDhhsO706dNRvHhxODk5wdPTE2XLlsXSpUuV5U+fPkWfPn3g5+cHe3t7eHt7o3bt2jh69Kjm7atZsyaGDh2Ka9eu4X//+58y31gbx+3bt6Ny5crw8PCAi4sLihQpotyF2r17N8qVKwcA6NSpk/Lo5cKFCwEktWMMCQlBVFQUqlatCicnJyX27TaOyRISEvDNN98gd+7ccHZ2RuPGjXHjxg29dUy1KU35nqnVzVgbx+fPn+Orr75SHtssUqQIvvvuO4iI3no6nQ49evTAunXrEBISAnt7exQvXhxbtmwxvsPTQKfTwcfHxyBx/+233xAWFgZfX1/Y29sjICAAo0aNMniMVG1fGzNixAjodDosWbJEL2lMVrZsWaP7+KeffkJAQADs7e1Rrlw5HD58WG/5yZMn0bFjR+Xx7ty5c6Nz5854+PCh3nrJn7WzZ8+idevW8PT0ROXKldGxY0fMnDlT2SfJExHRfxnvOBIRvaPWr1+PQoUKoWLFiprio6OjsW7dOrRo0QL+/v64e/cu5syZg2rVquHs2bPw9fUFkPS4ZK9evfDxxx+jd+/eePnyJU6ePIk///wTrVu3BgB88cUXWLVqFXr06IFixYrh4cOH2LdvH86dO4f33ntP8za2a9cO33zzDbZt24bPPvvM6DpnzpxBw4YNERoaipEjR8Le3h6XL1/G/v37AQDBwcEYOXIkhg0bhs8//xxVqlQBAL399vDhQ9SvXx+tWrVC27Zt4ePjo1qvMWPGQKfTYcCAAbh37x6mTp2KWrVq4fjx48qd0bRIS91SEhE0btwYu3btQpcuXVCqVCls3boVERERuHXrFqZMmaK3/r59+7BmzRp8+eWXcHV1xbRp09C8eXNcv34dOXPmTLV+cXFxePDgAQAgNjYWmzdvxpYtWzBo0CC99RYuXAgXFxf069cPLi4u2LlzJ4YNG4bY2FiDO5Np3ddxcXHYsWMHqlatigIFCqRa12RLly7F06dP0a1bN+h0OkycOBEfffQRoqOjlTu427dvR3R0NDp16oTcuXMrj3SfOXMGhw4dMkgCW7RogaCgIIwdOxYigtKlS+P27dvYvn07fvnllzTXjYjoX02IiOid8+TJEwEgTZo0SXNMwYIFpUOHDsrrly9fSkJCgt46MTExYm9vLyNHjlTmNWnSRIoXL6763u7u7hIeHp7muiRbsGCBAJDDhw+rvnfp0qWV18OHD5eUX09TpkwRAHL//n2T73H48GEBIAsWLDBYVq1aNQEgs2fPNrqsWrVqyutdu3YJAMmbN6/ExsYq81esWCEA5IcfflDmvb2/Tb2nWt06dOggBQsWVF6vW7dOAMjo0aP11vv4449Fp9PJ5cuXlXkAxM7OTm/eiRMnBIBMnz7doKyUYmJiBIDRqXv37pKYmKi3flxcnMF7dOvWTZycnOTly5d6225qX78tua69e/dOdd2Udc6ZM6c8evRImf/bb78JAFm/fr1qfZctWyYAZM+ePcq85M/ap59+arB+eHi48GcSEdH/x0dViYjeQbGxsQBg9PG9tLK3t4eVVdJpPiEhAQ8fPlQe80z5iKmHhwdu3rxp8LhfSh4eHvjzzz9x+/ZtzfUxxcXFRbV3VQ8PDwBJj0tq7UjG3t4enTp1SvP67du319v3H3/8MfLkyYNNmzZpKj+tNm3aBGtra/Tq1Utv/ldffQURwebNm/Xm16pVCwEBAcrr0NBQuLm5ITo6Ok3lff7559i+fTu2b9+O1atXIzw8HHPmzEG/fv301kt5l/Xp06d48OABqlSpgri4OJw/f15v3bTua62f8ZYtW8LT01N5nXwXN+U2p6zvy5cv8eDBA3zwwQcAYPTx6i+++CJddSAi+i9i4khE9A5yc3MDALOGq0hMTMSUKVMQFBQEe3t75MqVC15eXjh58iSePHmirDdgwAC4uLjg/fffR1BQEMLDw5XHQJNNnDgRp0+fRv78+fH+++/j22+/TXNykppnz56pJg8tW7ZEpUqV0LVrV/j4+KBVq1ZYsWJFupLIvHnzpqsjnKCgIL3XOp0OgYGBuHr1aprfQ4tr167B19fXYH8EBwcry1My9oinp6cn/vnnnzSVFxQUhFq1aqFWrVr46KOPMGPGDHz55ZeYOnUqTp06pax35swZNGvWDO7u7nBzc4OXl5fSqU7KzxKQ9n2t9TP+9jYnJ5Ept/nRo0fo3bs3fHx84OjoCC8vL/j7+xutLwBlGRERmcbEkYjoHeTm5gZfX1+zepQcO3Ys+vXrh6pVq+J///sftm7diu3bt6N48eJ6SVdwcDAuXLiA5cuXo3Llyli9ejUqV66M4cOHK+t88skniI6OxvTp0+Hr64tJkyahePHiBnfA0uvmzZt48uQJAgMDTa7j6OiIPXv2IDIyEu3atcPJkyfRsmVL1K5dO81j/KWnXWJameosJSvHHbS2tjY6X97qSCc9PvzwQwDAnj17AACPHz9GtWrVcOLECYwcORLr16/H9u3bMWHCBAAwSODTuq8DAwNhY2Ojl6CmRVq2+ZNPPsHcuXPxxRdfYM2aNdi2bZvSaZCxCw6Z8fkgIvq3YeJIRPSOatiwIa5cuYKDBw9qil+1ahVq1KiBn3/+Ga1atUKdOnVQq1YtPH782GBdZ2dntGzZEgsWLMD169cRFhaGMWPG4OXLl8o6efLkwZdffol169YhJiYGOXPmxJgxY7RuHgAoHY/UrVtXdT0rKyt8+OGHmDx5Ms6ePYsxY8Zg586d2LVrFwDTSZxWly5d0nstIrh8+bJeD6ienp5G9+XbdwXTU7eCBQvi9u3bBnfhkh8HLViwYJrfS6s3b94ASLoTDCT1DPvw4UMsXLgQvXv3RsOGDVGrVi29x0W1cHJyQs2aNbFnzx6DHmvN8c8//2DHjh0YOHAgRowYgWbNmqF27dooVKhQut6HvagSEelj4khE9I7q378/nJ2d0bVrV9y9e9dg+ZUrV/DDDz+YjLe2tja487Ry5UrcunVLb97bQxTY2dmhWLFiEBG8fv0aCQkJBo/3eXt7w9fXF/Hx8endLMXOnTsxatQo+Pv7o02bNibXe/TokcG8UqVKAYBSfvK4e8YSOS0WL16sl7ytWrUKd+7cQf369ZV5AQEBOHToEF69eqXM27Bhg0ESlJ66NWjQAAkJCZgxY4be/ClTpkCn0+mVn1nWr18PAChZsiSA/3+HL+Vn6dWrV/jxxx/NLmv48OEQEbRr105JVFOKiorCokWL0vWexuoLAFOnTk3X+2T0Z4qIKLvjcBxERO+ogIAALF26FC1btkRwcDDat2+PkJAQvHr1CgcOHMDKlSuNjnGXrGHDhhg5ciQ6deqEihUr4tSpU1iyZInBnZc6deogd+7cqFSpEnx8fHDu3DnMmDEDYWFhcHV1xePHj5EvXz58/PHHKFmyJFxcXBAZGYnDhw/j+++/T9O2bN68GefPn8ebN29w9+5d7Ny5E9u3b0fBggXx+++/w8HBwWTsyJEjsWfPHoSFhaFgwYK4d+8efvzxR+TLlw+VK1dW9pWHhwdmz54NV1dXODs7o3z58prbruXIkQOVK1dGp06dcPfuXUydOhWBgYF6Q4Z07doVq1atQr169fDJJ5/gypUr+N///qfXWU1669aoUSPUqFEDgwcPxtWrV1GyZEls27YNv/32G/r06WPw3uY6evSoMobm06dPsWPHDqxevRoVK1ZEnTp1ACQNHeLp6YkOHTqgV69e0Ol0+OWXX8x6HDZZxYoVMXPmTHz55ZcoWrQo2rVrh6CgIDx9+hS7d+/G77//jtGjR6frPd3c3FC1alVMnDgRr1+/Rt68ebFt2zbExMSk633KlCkDAOjVqxfq1q0La2trtGrVKl3vQUT0r2Kp7lyJiChtLl68KJ999pn4+fmJnZ2duLq6SqVKlWT69Ol6QyEYG47jq6++kjx58oijo6NUqlRJDh48aDBcxJw5c6Rq1aqSM2dOsbe3l4CAAImIiJAnT56IiEh8fLxERERIyZIlxdXVVZydnaVkyZLy448/plr35OE4kic7OzvJnTu31K5dW3744Qe9IS+SvT0cx44dO6RJkybi6+srdnZ24uvrK59++qlcvHhRL+63336TYsWKiY2Njd7wF9WqVTM53Iip4TiWLVsmgwYNEm9vb3F0dJSwsDC5du2aQfz3338vefPmFXt7e6lUqZIcOXLE4D3V6vb2cBwiIk+fPpW+ffuKr6+v2NraSlBQkEyaNMlgiAwARodIMTVMSErGhuOwsbGRQoUKSUREhDx9+lRv/f3798sHH3wgjo6O4uvrK/3795etW7cKANm1a5fe/kxtaBdjoqKipHXr1so2e3p6yocffiiLFi1ShpRJrvOkSZMM4gHI8OHDldc3b96UZs2aiYeHh7i7u0uLFi3k9u3bBuslf9aMDfXy5s0b6dmzp3h5eYlOp+PQHET0n6cTyYBLhkRERERERPSvxTaOREREREREpIqJIxEREREREali4khERERERESqmDgSERERERGRKiaOREREREREpCpbj+OYmJiI27dvw9XVFTqdztLVISIiIiIiylZEBE+fPoWvry+srEzfV8zWiePt27eRP39+S1eDiIiIiIgoW7tx4wby5ctncnm2ThxdXV0BJG2km5ubhWtDRERERESUvcTGxiJ//vxKbmVKtk4ckx9PdXNzY+JIRERERESkUWpN/9g5DhEREREREali4khERERERESqmDgSERERERGRKiaOREREREREpIqJIxEREREREali4khERERERESqmDgSERERERGRKiaOREREREREpIqJIxEREREREamyaOLo5+cHnU5nMIWHh1uyWkRERERERJSCjSULP3z4MBISEpTXp0+fRu3atdGiRQsL1oqIiIiIiIhSsmji6OXlpfd6/PjxCAgIQLVq1YyuHx8fj/j4eOV1bGxsptaPiIiIiIiILJw4pvTq1Sv873//Q79+/aDT6YyuM27cOIwYMSKLa0b/Rn4DN6Z53avjwzKxJkRERERE7753pnOcdevW4fHjx+jYsaPJdQYNGoQnT54o040bN7KugkRERERERP9R78wdx59//hn169eHr6+vyXXs7e1hb2+fhbUiIiIiIiKidyJxvHbtGiIjI7FmzRpLV4WIiIiIiIje8k48qrpgwQJ4e3sjLIxtyYiIiIiIiN41Fk8cExMTsWDBAnTo0AE2Nu/EDVAiIiIiIiJKweKJY2RkJK5fv47OnTtbuipERERERERkhMVv8dWpUwciYulqEBERERERkQkWv+NIRERERERE7zYmjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKTK4onjrVu30LZtW+TMmROOjo4oUaIEjhw5YulqERERERER0f+xsWTh//zzDypVqoQaNWpg8+bN8PLywqVLl+Dp6WnJahEREREREVEKFk0cJ0yYgPz582PBggXKPH9/fwvWiIiIiIiIiN5m0UdVf//9d5QtWxYtWrSAt7c3Spcujblz55pcPz4+HrGxsXoTERERERERZS6LJo7R0dGYNWsWgoKCsHXrVnTv3h29evXCokWLjK4/btw4uLu7K1P+/PmzuMZERERERET/PToREUsVbmdnh7Jly+LAgQPKvF69euHw4cM4ePCgwfrx8fGIj49XXsfGxiJ//vx48uQJ3NzcsqTO9O/gN3Bjmte9Oj4sE2tCRERERGQ5sbGxcHd3TzWnsugdxzx58qBYsWJ684KDg3H9+nWj69vb28PNzU1vIiIiIiIiosxl0cSxUqVKuHDhgt68ixcvomDBghaqEREREREREb3Noolj3759cejQIYwdOxaXL1/G0qVL8dNPPyE8PNyS1SIiIiIiIqIULJo4litXDmvXrsWyZcsQEhKCUaNGYerUqWjTpo0lq0VEREREREQpWHQcRwBo2LAhGjZsaOlqEBERERERkQkWveNIRERERERE7z4mjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpsmji+O2330Kn0+lNRYsWtWSViIiIiIiI6C02lq5A8eLFERkZqby2sbF4lYiIiIiIiCgFi2dpNjY2yJ07t6WrQURERERERCZYvI3jpUuX4Ovri0KFCqFNmza4fv26yXXj4+MRGxurNxEREREREVHmsugdx/Lly2PhwoUoUqQI7ty5gxEjRqBKlSo4ffo0XF1dDdYfN24cRowYYYGaauM3cGO61r86PiyTakJE7xqeH95dPDZERESGLHrHsX79+mjRogVCQ0NRt25dbNq0CY8fP8aKFSuMrj9o0CA8efJEmW7cuJHFNSYiIiIiIvrvsXgbx5Q8PDxQuHBhXL582ehye3t72NvbZ3GtiIiIiIiI/tss3sYxpWfPnuHKlSvIkyePpatCRERERERE/8eiiePXX3+NP/74A1evXsWBAwfQrFkzWFtb49NPP7VktYiIiIiIiCgFiz6qevPmTXz66ad4+PAhvLy8ULlyZRw6dAheXl6WrBYRERERERGlYNHEcfny5ZYsnoiIiIiIiNLgnWrjSERERERERO8eJo5ERERERESkiokjERERERERqWLiSERERERERKqYOBIREREREZEqJo5ERERERESkiokjERERERERqWLiSERERERERKqYOBIREREREZEqJo5ERERERESkiokjERERERERqWLiSERERERERKqYOBIREREREZEqJo5ERERERESkiokjERERERERqWLiSERERERERKqYOBIREREREZEqJo5ERERERESkiokjERERERERqWLiSERERERERKqYOBIREREREZEqJo5ERERERESkiokjERERERERqWLiSERERERERKqYOBIREREREZEqJo5ERERERESkiokjERERERERqWLiSERERERERKo0JY5Hjx7FqVOnlNe//fYbmjZtim+++QavXr3KsMoRERERERGR5WlKHLt164aLFy8CAKKjo9GqVSs4OTlh5cqV6N+/f4ZWkIiIiIiIiCxLU+J48eJFlCpVCgCwcuVKVK1aFUuXLsXChQuxevXqjKwfERERERERWZimxFFEkJiYCACIjIxEgwYNAAD58+fHgwcPNFVk/Pjx0Ol06NOnj6Z4IiIiIiIiyhyaEseyZcti9OjR+OWXX/DHH38gLCwMABATEwMfH590v9/hw4cxZ84chIaGaqkOERERERERZSJNieOUKVNw9OhR9OjRA4MHD0ZgYCAAYNWqVahYsWK63uvZs2do06YN5s6dC09PTy3VISIiIiIiokxkoyWoZMmSer2qJps0aRJsbNL3luHh4QgLC0OtWrUwevRo1XXj4+MRHx+vvI6NjU1XWURERERERJR+mhLHQoUK4fDhw8iZM6fe/JcvX+K9995DdHR0mt5n+fLlOHr0KA4fPpym9ceNG4cRI0aku76UNn4DN6Zr/avjwzKpJvS29BwbHhcyxVJ/4zy3EBERZX+aHlW9evUqEhISDObHx8fj5s2baXqPGzduoHfv3liyZAkcHBzSFDNo0CA8efJEmW7cuJGuehMREREREVH6peuO4++//678f+vWrXB3d1deJyQkYMeOHfD390/Te0VFReHevXt477339N5jz549mDFjBuLj42Ftba0XY29vD3t7+/RUmYiIiIiIiMyUrsSxadOmAACdTocOHTroLbO1tYWfnx++//77NL3Xhx9+aNBOslOnTihatCgGDBhgkDQSERERERGRZaQrcUweu9Hf3x+HDx9Grly5NBfs6uqKkJAQvXnOzs7ImTOnwXwiIiIiIiKyHE2d48TExGR0PYiIiIiIiOgdpSlxBIAdO3Zgx44duHfvnnInMtn8+fM1vefu3bu1VoeIiIiIiIgyiabEccSIERg5ciTKli2LPHnyQKfTZXS9iIiIiIiI6B2hKXGcPXs2Fi5ciHbt2mV0fYiIiIiIiOgdo2kcx1evXqFixYoZXRciIiIiIiJ6B2lKHLt27YqlS5dmdF2IiIiIiIjoHaTpUdWXL1/ip59+QmRkJEJDQ2Fra6u3fPLkyRlSOSIiIiIiIrI8TYnjyZMnUapUKQDA6dOn9ZaxoxwiIiIiIqJ/F02J465duzK6HkRERERERPSO0tTGkYiIiIiIiP47NN1xrFGjhuojqTt37tRcISIiIiIiInq3aEock9s3Jnv9+jWOHz+O06dPo0OHDhlRLyIiIiIiInpHaEocp0yZYnT+t99+i2fPnplVISIiIiIiInq3ZGgbx7Zt22L+/PkZ+ZZERERERERkYRmaOB48eBAODg4Z+ZZERERERERkYZoeVf3oo4/0XosI7ty5gyNHjmDo0KEZUjEiIiIiIiJ6N2hKHN3d3fVeW1lZoUiRIhg5ciTq1KmTIRUjIiIiIiKid4OmxHHBggUZXQ8iIiIiIiJ6R2lKHJNFRUXh3LlzAIDixYujdOnSGVIpIiIiIiIiendoShzv3buHVq1aYffu3fDw8AAAPH78GDVq1MDy5cvh5eWVkXUkIiIiIiIiC9LUq2rPnj3x9OlTnDlzBo8ePcKjR49w+vRpxMbGolevXhldRyIiIiIiIrIgTXcct2zZgsjISAQHByvzihUrhpkzZ7JzHCIiIiIion8ZTXccExMTYWtrazDf1tYWiYmJZleKiIiIiIiI3h2aEseaNWuid+/euH37tjLv1q1b6Nu3Lz788MMMqxwRERERERFZnqbEccaMGYiNjYWfnx8CAgIQEBAAf39/xMbGYvr06RldRyIiIiIiIrIgTW0c8+fPj6NHjyIyMhLnz58HAAQHB6NWrVoZWjkiIiIiIiKyvHTdcdy5cyeKFSuG2NhY6HQ61K5dGz179kTPnj1Rrlw5FC9eHHv37s2suhIREREREZEFpCtxnDp1Kj777DO4ubkZLHN3d0e3bt0wefLkDKscERERERERWV66EscTJ06gXr16JpfXqVMHUVFRZleKiIiIiIiI3h3pShzv3r1rdBiOZDY2Nrh//77ZlSIiIiIiIqJ3R7oSx7x58+L06dMml588eRJ58uQxu1JERERERET07khX4tigQQMMHToUL1++NFj24sULDB8+HA0bNsywyhEREREREZHlpWs4jiFDhmDNmjUoXLgwevTogSJFigAAzp8/j5kzZyIhIQGDBw/OlIoSERERERGRZaTrjqOPjw8OHDiAkJAQDBo0CM2aNUOzZs3wzTffICQkBPv27YOPj0+a32/WrFkIDQ2Fm5sb3NzcUKFCBWzevDndG0FERERERESZJ113HAGgYMGC2LRpE/755x9cvnwZIoKgoCB4enqmu/B8+fJh/PjxCAoKgohg0aJFaNKkCY4dO4bixYun+/2IiIiIiIgo46U7cUzm6emJcuXKmVV4o0aN9F6PGTMGs2bNwqFDh5g4EhERERERvSM0J44ZLSEhAStXrsTz589RoUIFo+vEx8cjPj5eeR0bG5tV1SMiIiIiIvrPsnjieOrUKVSoUAEvX76Ei4sL1q5di2LFihldd9y4cRgxYkQW19Ay/AZuTPO6V8eHZWJNiLKH9PzNAPy7ITIH/97+nfjbgywtu51bslt9zZWuznEyQ5EiRXD8+HH8+eef6N69Ozp06ICzZ88aXXfQoEF48uSJMt24cSOLa0tERERERPTfY/E7jnZ2dggMDAQAlClTBocPH8YPP/yAOXPmGKxrb28Pe3v7rK4iERERERHRf5rF7zi+LTExUa8dIxEREREREVmWRe84Dho0CPXr10eBAgXw9OlTLF26FLt378bWrVstWS0iIiIiIiJKwaKJ471799C+fXvcuXMH7u7uCA0NxdatW1G7dm1LVouIiIiIiIhSsGji+PPPP1uyeCIiIiIiIkqDd66NIxEREREREb1bmDgSERERERGRKiaOREREREREpIqJIxEREREREali4khERERERESqmDgSERERERGRKiaOREREREREpIqJIxEREREREali4khERERERESqmDgSERERERGRKiaOREREREREpIqJIxEREREREali4khERERERESqmDgSERERERGRKiaOREREREREpIqJIxEREREREali4khERERERESqmDgSERERERGRKiaOREREREREpIqJIxEREREREali4khERERERESqmDgSERERERGRKiaOREREREREpIqJIxEREREREali4khERERERESqmDgSERERERGRKiaOREREREREpIqJIxEREREREali4khERERERESqmDgSERERERGRKiaOREREREREpMqiieO4ceNQrlw5uLq6wtvbG02bNsWFCxcsWSUiIiIiIiJ6i0UTxz/++APh4eE4dOgQtm/fjtevX6NOnTp4/vy5JatFREREREREKdhYsvAtW7bovV64cCG8vb0RFRWFqlWrWqhWRERERERElJJFE8e3PXnyBACQI0cOo8vj4+MRHx+vvI6Njc2SehEREREREf2XvTOJY2JiIvr06YNKlSohJCTE6Drjxo3DiBEjsrhmRJRefgM3pnndq+PDNMW9HUv/Pvw8pA33E1kaP4NE/w3vTK+q4eHhOH36NJYvX25ynUGDBuHJkyfKdOPGjSysIRERERER0X/TO3HHsUePHtiwYQP27NmDfPnymVzP3t4e9vb2WVgzIiIiIiIismjiKCLo2bMn1q5di927d8Pf39+S1SEiIiIiIiIjLJo4hoeHY+nSpfjtt9/g6uqKv//+GwDg7u4OR0dHS1aNiIiIiIiI/o9F2zjOmjULT548QfXq1ZEnTx5l+vXXXy1ZLSIiIiIiIkrB4o+qEhERERER0bvtnelVlYiIiIiIiN5NTByJiIiIiIhIFRNHIiIiIiIiUsXEkYiIiIiIiFQxcSQiIiIiIiJVTByJiIiIiIhIFRNHIiIiIiIiUsXEkYiIiIiIiFQxcSQiIiIiIiJVTByJiIiIiIhIFRNHIiIiIiIiUsXEkYiIiIiIiFQxcSQiIiIiIiJVTByJiIiIiIhIFRNHIiIiIiIiUsXEkYiIiIiIiFQxcSQiIiIiIiJVTByJiIiIiIhIFRNHIiIiIiIiUsXEkYiIiIiIiFQxcSQiIiIiIiJVTByJiIiIiIhIFRNHIiIiIiIiUsXEkYiIiIiIiFQxcSQiIiIiIiJVTByJiIiIiIhIFRNHIiIiIiIiUsXEkYiIiIiIiFQxcSQiIiIiIiJVTByJiIiIiIhIFRNHIiIiIiIiUmXRxHHPnj1o1KgRfH19odPpsG7dOktWh4iIiIiIiIywaOL4/PlzlCxZEjNnzrRkNYiIiIiIiEiFjSULr1+/PurXr5/m9ePj4xEfH6+8jo2NzYxqERERERERUQoWTRzTa9y4cRgxYoSlq0HvCL+BG9O1/tXxYRYtM7vVl95d/Cy9u9Kzn96FfcT6ZmyZGVVudvuuMUdWbault5Myn9bPUnb7m7GkbNU5zqBBg/DkyRNlunHjhqWrRERERERE9K+Xre442tvbw97e3tLVICIiIiIi+k/JVncciYiIiIiIKOsxcSQiIiIiIiJVFn1U9dmzZ7h8+bLyOiYmBsePH0eOHDlQoEABC9aMiIiIiIiIklk0cTxy5Ahq1KihvO7Xrx8AoEOHDli4cKGFakVEREREREQpWTRxrF69OkTEklUgIiIiIiKiVLCNIxEREREREali4khERERERESqmDgSERERERGRKiaOREREREREpIqJIxEREREREali4khERERERESqmDgSERERERGRKiaOREREREREpIqJIxEREREREali4khERERERESqmDgSERERERGRKiaOREREREREpIqJIxEREREREali4khERERERESqmDgSERERERGRKiaOREREREREpIqJIxEREREREali4khERERERESqmDgSERERERGRKiaOREREREREpIqJIxEREREREali4khERERERESqmDgSERERERGRKiaOREREREREpIqJIxEREREREali4khERERERESqmDgSERERERGRKiaOREREREREpIqJIxEREREREali4khERERERESqmDgSERERERGRqncicZw5cyb8/Pzg4OCA8uXL46+//rJ0lYiIiIiIiOj/WDxx/PXXX9GvXz8MHz4cR48eRcmSJVG3bl3cu3fP0lUjIiIiIiIiADaWrsDkyZPx2WefoVOnTgCA2bNnY+PGjZg/fz4GDhyot258fDzi4+OV10+ePAEAxMbGZl2F0yExPi5d66fcjvTEZtT2m1NfS7DE/s2qMs2JzagyzZHd9q8lWGJbs8PnN2Vsdvj8vl1udjt3/1fOLVlVZkaVmx3+Vi19fkhvrKXP+ZQ22e27Jrv99jAluV4iorqeTlJbIxO9evUKTk5OWLVqFZo2barM79ChAx4/fozffvtNb/1vv/0WI0aMyOJaEhERERER/bvduHED+fLlM7nconccHzx4gISEBPj4+OjN9/Hxwfnz5w3WHzRoEPr166e8TkxMxKNHj5AzZ07odLpMr29GiI2NRf78+XHjxg24ubllepylYrNbfc2JZX1ZX0uXyfq+u7GsL+ubUbGsL+tr6TJZ38yPtRQRwdOnT+Hr66u6nsUfVU0Pe3t72Nvb683z8PCwTGXM5ObmpunDpDXOUrHZrb7mxLK+mRvL+mZuLOububGsb+bGZrf6mhPL+mZuLOububGs77vL3d091XUs2jlOrly5YG1tjbt37+rNv3v3LnLnzm2hWhEREREREVFKFk0c7ezsUKZMGezYsUOZl5iYiB07dqBChQoWrBkREREREREls/ijqv369UOHDh1QtmxZvP/++5g6dSqeP3+u9LL6b2Nvb4/hw4cbPHKbWXGWis1u9TUnlvXN3FjWN3NjWd/MjWV9Mzc2u9XXnFjWN3NjWd/MjWV9/x0s2qtqshkzZmDSpEn4+++/UapUKUybNg3ly5e3dLWIiIiIiIgI70jiSERERERERO8ui7ZxJCIiIiIioncfE0ciIiIiIiJSxcSRiIiIiIiIVDFxJCIiIiIiIlVMHImIiP7lXrx4YekqZIn/ynYSEVkCE8cssGzZMpPLIiIisrAmqYuNjTW57PLly6qxu3btMrls5syZmuuUmps3b5pcdujQIdVYS9WZLOPf9qPy9evXJpc9ePDA5DJz/mYywr1793D69GmcPHlSb3rXaD0/nD592uSydevWqZap9ZgCQK9evYzOf/78ORo0aGAyzpzzoNZttcR2AuZ9H5uzn7R+t5qzn/5N0nPu7tSpE27fvp2JtUmSkJCg9/qvv/7CoUOHEB8frxr35s0bnDhxAlu3bsXWrVtx4sQJ1eNsSnx8PK5cuZJqecbi0htjjidPnuDChQu4cOECnjx5kmWxyWJiYvDmzRtNsWSEUKZzd3eXTZs2Gczv06eP5M6dWzV2586dJpfNmDFDNfavv/6SCRMmyFdffSV9+/bVm0ypXLmyvHz50mD++fPnJW/evKrleXh4yJEjRwzmT506VVxdXVVjExMTZcWKFdK9e3dp3ry5NGvWTG9SExwcLA8fPjSYv2/fPnF3d8+0OlvCkydPTC67dOmSauypU6dMLlu7dq3WKqmKioqSkydPKq/XrVsnTZo0kUGDBkl8fHymlNmzZ0+j8589eybVq1dXjTVn/966dUt+/fVXmT59uvzwww96U2q0xn700UeSmJhoMP/vv/+W4sWLm4wz529GRPtxPXLkiBQvXlysrKxEp9OJTqdT/m9lZWUy7vr163Ljxg3l9Z9//im9e/eWOXPmpFpXc2g9P/j6+kp0dLTB/FWrVomTk5NqmVqPqYhIoUKFZNiwYXrznj17JpUrV5bKlSubjDPnPKh1Wy2xnSLmfR+bs5+0freas5/M+f1gzvfFq1evTC67f/++yWXpPXefOHHC6GRraytr165VXpsyc+ZM+fDDD6VFixYSGRlpUE9/f3+jcVevXpUyZcqItbW11KtXT548eSK1atVSzmmFChWSCxcuGMQlJCTI4MGDxcPDQ1k3efLw8JAhQ4ZIQkKC0TIXLFggBw4cEBGRFy9eSOfOncXa2lqsrKzExsZGunXrZvTzlWzbtm1Sv3598fDwECsrK7GyshIPDw+pX7++bN++3WTcxo0bpUuXLhIRESHnzp3TW/bo0SOpUaOGydi5c+dKcHCwUl7yFBwcLPPmzTMZZ27s22xtbeXs2bOprnfmzBnp3r27lCpVSnLnzi25c+eWUqVKSffu3eXMmTOqsdOnT5d27drJsmXLRERk8eLFEhwcLEWKFJFBgwbJ69ev01XndxkTxyywYcMGcXd3l7179yrzevToIb6+vgZ/iG/T+kU1ZswY0el0UrRoUalWrZpUr15dmdT+0OvVqyf169fX+5CfPXtWcufOLb169VKt69y5c8XLy0tvm7777jtxc3OTPXv2qMb26tVL7O3tpV69etKhQwfp2LGj3qSmU6dOUqZMGYmNjVXm/fHHH+Lm5iaTJ0/OtDqLaEvOzYkzJ7E358fsixcv5M8//5T169fLb7/9pjepKVu2rKxatUpERK5cuSIODg7y6aefSmBgoPTu3TtTyjTnR6XW/btgwQKxs7MTFxcXKViwoPj5+SmTqR8fGRFbtmxZ6dy5s968O3fuSNGiRaV58+Ym48z5m0kuV8txDQ0NlWbNmsmhQ4ckJiZGrl69qjeZUrlyZVm8eLGyfW5ublKhQgXJlSuXjBgxItX6PnjwQL788ksJDg6WnDlziqenp95kitbzw7Bhw6RQoUJy584dZd7y5cvFyclJVqxYoVpXrcdUROTy5cuSJ08emTJlioiIxMbGSoUKFaRKlSry7Nkzk3HmnAe1bqsltlPEvO9jc/aT1u9Wc/aTJS4IiGhPdtN77k554entKbULUj/88IM4OTlJeHi4tG3bVuzs7GTs2LF6dTUV27x5c6lWrZqsX79ePvnkE6lUqZJUr15dbt68Kbdv35a6detK06ZNDeIiIiLEy8tLZs+eLTExMRIXFydxcXESExMjc+bMEW9vb+nfv7/RMv39/eXQoUMiIvL111+Ln5+frFmzRs6dOyfr1q2TwoULS0REhNHYhQsXio2NjbRq1UoWLFggmzZtkk2bNsmCBQvk008/FVtbW+X8mtKSJUvE2tpawsLCpHLlyuLg4CD/+9//0rSPJk6cKE5OTjJw4EDZtWuXnD17Vs6ePSu7du2SQYMGibOzs0yaNClDY9++4ZA8WVlZSa1atVRvRGzatEns7Ozkgw8+kOHDh8uPP/4oP/74owwfPlwqVqwo9vb2smXLFqOxo0aNEldXV2nevLnkzp1bxo8fLzlz5pTRo0fL2LFjxcvLy+BznZ0xccwiS5YsEU9PTzly5Ih0795dfH19jV6RepvWLypvb29ZsGBBuusZFxcnFStWlE8++UQSExPl1KlT4u3tnWpCk2zChAmSN29eiYmJkfHjx4ubm5vs27cv1ThPT0/ZuHFjuusrknQVr1mzZlKtWjV5+fKl7Ny5U1xcXGTq1KmZWmetybnWOBHzEnutP/A2b94sXl5eJr+c1bi5ucnly5dFRGT8+PFSp04dEUm6s5UvX75MKdOcH5Va92++fPlk9OjRJq8WqzEn9t69e1K0aFHl7/PWrVtSuHBhadGiher7mfs3o/W4uri4pHrn1hgPDw85f/68iCT94KtYsaKIiGzdujXV5FpEpH79+hIUFCTjx4+XBQsWyMKFC/UmNVrPDz169JDixYvLw4cPZcmSJeLo6Kgk22q0HtNkJ06ckBw5csgPP/wgH3zwgVSrVi3Vz7052ymibVsttZ0i2r+PRbTvJ63frebsJ0tcEBDRnuym99xdsmRJCQsLk3PnzikXn2JiYsTGxka2b9+uekGqWLFismTJEuX1/v37xcvLS4YOHSoi6kmRl5eXHDt2TEREHj9+LDqdTu9CRFRUlPj4+BjE+fj4mEw+RES2bNki3t7eRpfZ29vLtWvXRESkcOHCsnnzZr3lf/zxhxQoUMBobFBQkOod5pkzZ0pgYKDB/FKlSuk99fLrr7+Ks7OzcsdPbR8VKFBAfv31V5NlLl++XPLnz5+hsTqdTqpVq2Zw48HKykqaNm2qeiMiNDRUOfbGDB8+XEqUKGF0WUBAgKxevVpERI4fPy7W1tZ6CfaaNWuM7t/sioljFpo5c6bY29tLvnz50vXjScsXVe7cueXixYua6vnPP/9IyZIl5eOPPxZvb2/5+uuv0xXfv39/yZkzp3h4eMjBgwfTFOPn55fq1V418fHxUqtWLalYsaK4uLjI9OnT0xWvpc5ak3OtcSLmJ/ZafuAFBgbKl19+KX///Xe66+vq6qp8DmvVqqUkJteuXRMHB4dMKVNE+49Krfs3R44cSiKVXubEiiQ9xlmgQAHp27evBAUFScuWLeXNmzepxpnzN6P1uDZp0iRNydPbnJ2dJSYmRkREGjVqJOPHj09TeclcXFzk+PHj6S43mZbzg4hI69atJSgoSJycnGTdunVpjtN6TJMdOHBAnJ2dpWbNmhIXF5fmOK3bKaJtWy21nSLav49FtO8nrd+t5uynrL4gIGJespuec3d8fLz07t1bihUrJkePHlXm29jYpPpooaOjo3JOSXbq1Cnx8fGRgQMHqiZFrq6uyt3YhIQEsbGx0Tu/XLp0yegdXScnJ71H/N924sQJcXZ2NrqsYMGCyqPHefPmlcOHD+stP3v2rMlYe3t75cKbMefPnzd6HnV2dja465x8kXHWrFmq+8jBwUH18dAzZ86Io6NjhsYuW7ZM8uXLJ/Pnz9ebn5bPg4ODg6Z9JJL0WUpO6kWSHo09ffq08vrq1aup3qXPTnQiIpZuZ/lv1K9fP6PzV65ciffeew8BAQHKvMmTJ6f6fgMGDMDPP/+MhIQEbN68GR988IHq+hMnTsTt27cxderUVN/bWKP9O3fuoHbt2mjYsCHGjx+vzHdzc9Nbb9q0aUbf87vvvkPVqlXx/vvvK/NMdWgAAIsWLcKWLVswf/58ODo6plpnYx1pPH36FJ9++inCwsLQvXt3ZX5oaGim1DlPnjzYs2cPgoKCUq1vRsQle/z4MapXr46goCDs2bMH7du3x6RJk9Ic36ZNGxw+fBi3bt3C0qVL0aRJE9X13dzccOzYMb3PbFrVrFkT+fPnR61atdClSxecPXsWgYGB+OOPP9ChQwdcvXo1w8tMdvDgQdSuXRvly5fHhg0b0vS5ArTt3/79+yNHjhwYOHBguutpTmyyixcvokqVKqhduzZ++eUX6HQ6g3XM+Zt5m9bj+uDBA3To0AHvv/8+QkJCYGtrq7e8cePGRuPKly+PGjVqICwsDHXq1MGhQ4dQsmRJHDp0CB9//LFqZz8AUK5cOUyfPj3V8yag/fzw+++/G8S8fv0affv2RZ06dfS2zdR2ppSWYwoApUuXNrrs2rVr8Pb21vvcHz16VPm/OefBjNzWzN5OwLzvY3P2kznfrW9L634yJr2/H1JK7/dFshs3bqBy5cpo3rw5NmzYgPfeew9LliyBtbV1qrHpPXdv3rwZn3/+Ob788ksMGDAA9vb2OHHiBIoVK2YypkCBAliyZAmqVKmiN//s2bOoWbMm6tati//9738GHeAAQIUKFVCrVi2MGjUKCxYswKBBg9CpUyeMGzcOADBq1Cj89ttvOHLkiF5cWFgY3rx5gyVLliBXrlx6yx48eIB27drB2toaGzZsMChz8ODB2LVrFzZt2oQJEybgzJkzWLp0KVxcXBAXF4dOnTrh8ePH2Lp1q0FsmTJl8OGHH2LixIlG98WAAQMQGRmJqKgovfm+vr5Ys2aNwefljz/+QMOGDdG7d2+MGzfO6D6qWrUq/P398fPPP8PGxkZvWUJCAjp37oyrV6/ijz/+yNDYq1evom3btvDx8cG8efPg6ekJW1vbVD8PwcHB+Oyzz0yeKyZPnoyffvoJ58+fN1hWqFAh/Pjjj6hXrx4uXbqEokWLYvny5WjRogUAYNOmTQgPD0dMTIzJ8rMTJo6ZpEaNGmlaT6fTYefOnXrzMiKxSUxMRFhYGC5evIhixYoZ/EBbs2aN8n8rKyujX0LJHw2dTgcRgU6nMzhB+Pv7q2zd/6fT6RAdHW1y+YsXL9CsWTPs378ffn5+BvV9+4dAcp1TfnxTvs6KOqcnOTcnzpwfHxnxA69z586oVKkSunTpkqb6pnTy5Em0adMG169fR79+/TB8+HAAQM+ePfHw4UMsXbo0Q8o050dlRvy4S0hIQMOGDfHixQuUKFHC4POrdnEovbGenp5GtzUuLg729vZ6P8wePXqk/N+cv5m3aT2u69evR7t27Yzuc7Vyd+/ejWbNmiE2NhYdOnTA/PnzAQDffPMNzp8/r3c+M+bw4cMYOHAghg0bZjRhTXlctZ4frKzS1km5se3UekwBYMSIEWkqF4BynADzzoNat9US2wmY931s7n7S8t1qzn56Vy4IAGlLds05d6d09+5ddOrUCc+ePcPBgwdTTRRat24NHx8fTJkyxWDZmTNnUKNGDTx8+NDoOWnr1q1o2rQpEhMTYWVlha1bt+Kzzz6Dh4cHrKyscPjwYSxduhSffPKJXtyNGzfQoEEDnD9/HiVKlICPj49S91OnTqFYsWLYsGED8ufPb1Dmq1ev0KJFC+zduxdly5bF3r17YWVlhbx58+L27dvImTMntm/fjsKFCxvE7t69Gw0bNkShQoVQq1YtvXJ37NiB6OhobNy4EVWrVtWLa9q0KUqWLGn0by/5PV+8eGF0H508eRJ169bF69evUbVqVb0y9+zZAzs7O2zbtg0hISEZGgsk/f4dMWIEFixYgLlz56JRo0Y4fvy46udh5cqVaN26NerXr290H23ZsgVLly5F8+bNDWKHDh2KOXPmoEmTJtixYwdatmyJpUuXYtCgQdDpdBgzZgw+/vjjNN0kyg6YOL6DMiKx6dGjB+bNm4caNWrAx8fH4MS8YMEC5f/GrtqYUq1atTSvmx6ffPIJdu3ahY8//thofd/+IXDt2rU0v3fBggUzpI5vS09ybk6cOYm9OT9mk8XFxaFFixbw8vIymtio3ZU15eXLl7C2tjZ4L61lmvOj0pz9m2z06NEYNmwYihQpYvD5NfZj1JzYRYsWpb6R/6dDhw7K/7Pibya14+rn54eGDRti6NChyhdzWiUkJCA2Nhaenp7KvKtXr8LJyQne3t6qsZcuXULr1q0NfnimNVHObFqPaXbzX9nOZFq/W83ZT5a4IABoT3bNOXcbM23aNOzatQvTp09Hvnz5TK538uRJREVFoVOnTkaXnz59GqtXrzZZ5tWrVxEVFYUyZcrAz88Pd+/excyZMxEXF4ewsDCTFysSExOxdetWHDp0CH///TcAIHfu3KhQoQLq1KmT6jHYsmUL1q9fj+joaCQmJiJPnjyoVKkSWrduDWdnZ5NxV69exaxZs4yW+8UXX8DPz88g5o8//sCBAwcwaNAgo++5a9cuLF68WO/3ZEpPnz7F//73P6Nltm7dWvUuuzmxyfbt24f27dvj2rVrSmKu5sCBA5g2bRoOHjxoUGbv3r1RoUIFo3GJiYkYP348Dh48iIoVK2LgwIH49ddf0b9/f8TFxaFRo0aYMWOG6vHJTpg4ZrHkR6rUTmgZwdXVFcuXL0dYWFimlqMmISEBp06dQsGCBfV+7Bnj7OyMrVu3onLlyllUO+PSU+f0JOfmxFk6sf/555/xxRdfwMHBATlz5jRIbNTuyt64cQM6nU75vP/1119YunQpihUrhs8//zxTykyvjNi/np6emDJlCjp27Jju8s2JtRStx9XV1RXHjx9P9yPIL168gIjAyckJQFISvHbtWgQHB6Nu3bqpxr///vuwsbFB7969jf7NpfXvJj3nh7c9fvwYHh4e6YpJL63H5W3mbCeQ+duaUdsJJD1xsHPnThQtWhRFixZNV6y5++nf5L92UYCyh2fPnuHKlSsIDg6GnZ2dpavz75B1zSn/uxISEmTEiBHi5uamjEXj7u4uI0eOTHdPim/evJFjx47Jo0ePVNcrUKCAps5mNm/erNc72IwZM6RkyZLy6aefplpm7969ld623rx5IxUrVhSdTifOzs6ya9cu1dgiRYqojrekZuHChbJhwwbldUREhLi7u0uFChVUu/g3t84uLi565aaV1rjM8M8//6S6jo+Pj4wZM0ZTr59ah1Ewp0xLjPnn4+OjuTMqc2K1jqdozt+MiPbj2r59e5k7d25aNk1P7dq1ZdasWSKS9Jn18fGRfPnyiYODg/z444+pxjs6Oqp2fGCK1vPD+PHjZfny5crrjz/+WHQ6nfj6+qbaSY85Y5++fVxcXV3TdFzMOQ9q3VZLbKeISIsWLZSOoOLi4iQoKEhsbW3FxsYm1Y5fzNlPWr9bM3Is3LT+fjAlLd8X5kjvufvly5d6Y0ZevnxZvvnmG2nbtq0MHjzY6HAiyVatWiXPnz/PuMqn0d27d2XHjh3y+PFjEUnqmXTChAkybtw41Y5zTFEbM/Ntr1+/luPHj8uWLVtky5YtcuLEiXTFG3u/lJ3CGHPnzh1Zt26dzJ49W2bPni2//fabXk+9mRVrjsePH8v58+fl/PnzynHSYteuXenutCs7YOKYBQYOHCheXl7y448/KgPSzpw5U7y8vOSbb75RjdX6RTV//nz55JNP0n1iDAkJUYbFOHnypNjZ2cmgQYPkgw8+SHU8xZQ9fa1du1bp4nzIkCFK9/mmbNiwQerWrWvQy1laFC5cWHbs2CEiSb3sOTo6ypw5c6RRo0Ymx+zJiDprTc61xomYl9hr/YHn6empuddPrcMomFOmOT8qte7fsWPHmhy8OjXmxL49nqK9vX2axlM0529GRPtxHT16tOTKlUs6dOgg3333nfzwww96kyk5c+ZUeqmbO3euhIaGSkJCgqxYsUKKFi2aan2rVKmiOsi1KVrPD35+frJ//34RSRp428PDQ7Zu3SpdunSR2rVrq5ap9ZiKaD8u5pwHtW6rJbZTJOlCTfL5bsmSJRIYGCjPnz+XH3/8UUqVKqUaa85+0vrdas5+ssQFARHtyW56z93VqlWTlStXikjSUED29vYSGhoqLVu2lNKlS4uTk5McOHDAaFk6nU7c3Nzks88+U8ZHTKtXr15JRESEBAQESLly5eTnn3/WW26qt9Fdu3aJs7Oz6HQ6yZ07txw/flzy5csnQUFBUqRIEbG3t5etW7caLfPXX3/V23fTp0+XAgUKiJWVleTMmVP1uy0hIUEGDx4sHh4eBsNbeXh4yJAhQzRdpD1+/LjJXlWfPXsmbdq0EWtra7GxsRFvb2/x9vYWGxsbsba2lrZt25r8fWpO7MaNG6VLly4SERFh0DPro0ePVIc8mzt3rgQHBys3eJKH/woODlb+jtLD1tZWtXfY7IqJYxbIkyeP0UHL161bJ76+vqqxWr+oSpUqJa6uruLi4iIhISFSunRpvcmUlN3eDx8+XBlzydS4RCnZ29srVws/++wz5UstOjo61cGGPTw8xM7OTqysrMTFxSXNA3SL6HeF3L9/f2nXrp2IiJw+fVpy5cqVaXXWmpxrjRMxL7HX+gOvT58+MmbMmHTXVUT7MArmlGnOj0qt+7dp06bi5uYm/v7+0rBhQ4MBiNWYE6t1PEVz/mZEtB9XPz8/k5PasUlZ3xYtWsi3334rIkl3KEx16Z7SihUrpFixYrJgwQI5cuSIcgEveTJF6/nBwcFBrl+/LiIivXr1ks8//1xERC5cuCAeHh6qddV6TEW0HxdzzoNat9US2/l2fdu1aycDBgxQYk0NZ5DMnP2k9bvVnP1kiQsCItqT3fSeu93c3JSnNapVq2YwbNKQIUOkUqVKRsvS6XQycuRIKV26tOh0OilevLhMmTJFHjx4oLptIknHz8fHRyZNmiSDBw8Wd3d35XMvkpQ46nQ6g7jKlStLeHi4PH36VCZNmiR58+aV8PBwZfnXX39t8rhYWVnJ3bt3RSTpN4SDg4MMGzZMNm7cKKNHjxZnZ2eTT3NERESIl5eXzJ49W2JiYiQuLk7i4uIkJiZG5syZI97e3tK/f/9Ut/ttaoljly5dJCgoSLZs2aI3dMybN29k69atUrhwYenatWuGxi5ZskSsra0lLCxMKleuLA4ODnrjKaoNHzJx4kRxcnKSgQMHyq5du+Ts2bNy9uxZ2bVrlwwaNEicnZ1l0qRJRmPf/n2dPOl0OgkODk71d3d2Y5P6w6xkrkePHhltO1G0aFGDHtHe9uDBA+TOnRtAUpe+LVq0QOHChdG5c2f88MMPJuOaNm2qqa52dnaIi4sDAERGRqJ9+/YAgBw5chjtCTElHx8fnD17Fnny5MGWLVswa9YsAEmN41Prgju9PZOm5OLigocPH6JAgQLYtm2b0p2yg4MDXrx4kWl1njZtGq5cuQIfH5809QRrbhwAxMTEKA28V69ejUaNGmHs2LE4evQoGjRooFrfv//+W+mtbcOGDfjkk09Qp04d+Pn5oXz58ibjEhISMHHiRGzduhWhoaHp6jG0ePHimD17NsLCwrB9+3aMGjUKAJRe4DKjzNevX8Pe3h5A0mc4ufe/okWL4s6dOybjAO3718PDAx999JHqe2dGrIggMTERQNK2NmzYEACQP39+PHjwwGScOX8zgPbjqrU78sDAQKxbtw7NmjXD1q1b0bdvXwDAvXv30tRJQsuWLQEk9dabLC2dHmk9P3h6euLGjRvInz8/tmzZgtGjRwNIOl6pdcSj9ZgC2o+LOedBrdtqie1Mfv+DBw8iR44c2LJlC5YvXw4A+Oeff+Dg4KAaa85+0vrdas5+0vr7AdD+fQEk9aZaqlQpAEm9VVarVg1Lly7F/v370apVK5Pf9+k9dyckJCifsfPnzxtsU8eOHVV/W3Tr1g1Dhw5FVFQUfv75Z4wYMQIDBw5E48aN8dlnn6F27dpG45YsWYJ58+Ypx6Jjx46oX78+OnXqpPT4bGpIpIULF8LFxQV9+vTBoEGD0LVrV2X5559/jrlz5xotU1J0RzJ79myMHDkSERERAIAGDRogR44c+PHHH/XeL9nixYvxyy+/GLQH9/Pzw+eff46CBQuiffv2mDBhgt7y9957z2hdkql9V6xevRobN25ExYoV9eZbW1ujTp06mD9/Pho2bGh0e7XGTpo0CZMnT1Y6z1uxYgU6d+6Mly9fptpD+4wZM7BgwQKDnnCDg4NRvXp1lCxZEhEREfj6668NYk+dOoVatWrpDVsiIjhx4gRq1KiRaudt2Q0TxyxQsmRJzJgxw6Cb7BkzZqBkyZKqsVq/qNLS+5gxlStXRr9+/VCpUiX89ddf+PXXXwEkfRGk1qFPp06d8MknnyBPnjzQ6XSoVasWAODPP/9MtdMBcxrL165dG127dkXp0qVx8eJF5Qf+mTNnjPYUllF11pqca40DzEvstf7AO3XqFEqXLg0gqae5lFIbS2zChAlo1qwZJk2ahA4dOiif999//12vW/iMLNOcH5Va96+pjpDSwpzYsmXLYvTo0ahVqxb++OMP5fwQExOj2mupOX8zgPbjqtWwYcPQunVr9O3bFzVr1lR6t9u2bZvyOVGjNWHVen746KOP0Lp1awQFBeHhw4eoX78+AODYsWMIDAxULVPrMQW0HxdzzoNat9US2wkAffr0QZs2beDi4oKCBQuievXqAIA9e/agRIkSqrHm7Cet363m7CdLXBBIXkdLspvec3f58uWxfv16FC1aFAEBAThx4oTeb6rjx48jR44cqnUFksY5LFOmDCZPnoyVK1di/vz5qFevHgoUKGD03HHr1i29oSACAwOxe/du1KxZE+3atTM5XqKdnR1evnwJIGl4jcTEROU1kJSImeqRGvj/333R0dGoU6eO3rI6depgwIABRuOePn0KX19fk++bJ08ePH/+3GD+2bNn0apVK5M99d65cwcXL140uiwxMVG1Mxo7OzvlM5JRsZcuXUKjRo2U15988gm8vLzQuHFjvH79Gs2aNTP5nvfu3VP9+y9RooTJz+7u3buV8YmHDx+u9Iw7ZswYhIeHp9qba7ZjmRud/y27d+8WZ2dnCQ4Ols6dO0vnzp0lODhYXFxcZM+ePaqxw4cPF3d3dylatKgUKFBAXr58KSIiP//8s3zwwQcZXtdr165JWFiYhIaG6j3T3adPnzS1w1q5cqVMnjxZr4H7woULZd26dWmuw4sXL+TJkyd6k5p//vlHwsPDpXHjxrJ582Zl/rBhw2T06NFZUues0qhRI6lbt66MHDlSbG1t5ebNmyKS9ChPUFCQamx4eLgULFhQatWqJTlz5pSnT5+KiMiyZcsy9TGKN2/eGLQPjImJUR67yWi7du0SDw8PsbKykk6dOinzBw0alOqjn+bsX0s4ceKEhISEiJubm/L4pohIjx495NNPPzUZZ+7fjIj243rjxg2ZOXOmDBgwQPr27as3qblz544cPXpUry3On3/+qbm9cFqtWrUq3eeHV69eyaRJk6RXr15y9OhRZf7kyZNT7RxI6zFNpvW4aNlOEe3bmpXb+fZ3yJEjR2TNmjXKOVAkqZ39vn37Ui1X637S+t1qzn4y5/eDOd8XNWrUkPbt28vixYvF1tZWLl26JCJJv4UKFixoMi695+4DBw6Iu7u7DB8+XKZPny65cuWSIUOGyJIlS2TYsGHi4eEhEyZMMFpWykc/jbl06ZLJPij8/f0lMjLSYP6tW7ekcOHCUrt2baOPRDZp0kQaNmwo+/btk88//1zKli0rYWFh8uzZM3n+/Ll8/PHHUq9ePaNl6nQ6Wbx4sfz222+SL18+g7abp0+fFjc3N6OxDRo0kDp16sj9+/cNlt2/f1/q1asnYWFhBsvKlCmj2vnYsWPHTD762bp1ayldurTeOSHZ0aNHpUyZMtKmTZsMjc2TJ48cPHjQYP7u3bvFxcVFBg8ebLK+VapUkfbt28vr168Nlr1580bat28vVatWNRorktShTqtWraR8+fLKo+U2NjZy5swZkzHZFRPHLHLz5k0ZPHiwfPTRR/LRRx/J4MGD5datW2mK1ZLYvHnzRiZNmiTlypUTHx+fdLUZtIRnz55JeHi4eHl5KQ2TU06UxJzE3pwfs+a6d++e7N27V/bu3Sv37t3L1LJEtP94Nmf/rly5Ulq0aCHly5dPc5vijIg15sWLF2b1lpdW6T2ukZGR4uTkJCEhIWJjYyOlSpUSDw8PcXd3V+20IKUbN27onQvT48yZM7J582b57bff9KaUPD09lR9YnTp1ktjY2DS9d+nSpZXP3IgRIzK8x8aMPqZat1Mkc7c1Mz67KZOEGjVqpKt3UHP2U2ZK637K6gsCIuYlu+k9dx84cEA++OADg05f8ubNK1OnTjVZjk6n03zxskuXLtK5c2ejy27evCmBgYFGf7dcvHhRgoKClLZvN2/elMaNG4uNjY3Y2NiIl5eXREVFmaxvyuntC3zz5s0z+X1x/fp15ZxbunRpqVevntSrV09Kly4tNjY2EhoaqrT7TalXr16qbVIvX74s1atXN7rs0aNHUq9ePdHpdJIjRw4pWrSoFC1aVHLkyCFWVlZSv359k3+HWmObNGkiw4YNM/qeyR0Tmfo9eeLECcmdO7fkzJlTmjVrJl988YV88cUX0qxZM8mZM6fkyZNHTp06ZXJfJJs/f77kzp1b5syZI7a2tv/KxJHjOGaRx48f4+eff8a5c+cAAMWKFUOXLl3g7u6eKeUNGzYM8+bNw1dffYUhQ4Zg8ODBuHr1KtatW4dhw4aladD2ly9f4tWrV3rzUmtPtGPHDkyZMkXZzuDgYPTp00d5pMeU8PBw7Nq1C6NGjUK7du0wc+ZM3Lp1C3PmzMH48ePRpk2bVOsbFxeH69evG9Q5NDQ0U+qckJCAKVOmYMWKFUbLNdV+VWucJR05csRkfdesWWMy7vnz5+jZsycWL16sPFpibW2N9u3bY/r06cq4fBlZpiVMmzYNgwcPRseOHfHTTz+hU6dOuHLlCg4fPozw8HCMGTMmU2LN8c8//+idk4KDg9G5c+c0Pdql9bi+//77qF+/PkaMGAFXV1ecOHEC3t7eaNOmDerVq4fu3bsbjUtMTMTo0aPx/fff49mzZwCSxoT86quvMHjw4FQHzY6OjkazZs1w6tQppW0j8P8f/Ur56J2LiwtOnjyJQoUKwdraGn///Te8vLxS3SeOjo64dOkS8uXLl644Nc+ePTN4JEvtHPzw4UMMGzYMu3btwr179wxiU55btG4nkPHbmpnbCQDu7u44dOgQgoODYWVlhbt376a5vubsJ2Pu3btntM6pfU8BadtPOXLkwMWLF5ErVy6lLaOrq2ua6vbee+9hx44d8PT0xMiRI/H111+rnqPT6+XLl7C2tlZ9HFOr+/fvIzo6GomJiciTJ0+qj9xfu3YNBQoUSLXpg6nY8+fPmxxD9vbt29i+fbvJJjgPHz7Ue/R2x44dePHiBSpUqJBqcwpTNmzYAFtbW5N1SkxMxNatW3Ho0CGDwe3r1KmT6jlUq/Pnz+PgwYMGZaZlzNRz584Zra+p2D/++AMHDhzAoEGDjC7ftWsXFi9ebLJ5yNOnT/G///3PaJmtW7dOU3t6IOmR2TZt2uDIkSM4ffr0v+5RVSaOWeDIkSOoW7cuHB0dlfYXhw8fxosXL7Bt27ZUGyBrSWwCAgIwbdo0hIWF6Q26PW3aNBw6dAhLly41Gvf8+XMMGDAAK1aswMOHDw2Wq7Vt+PHHH9G7d298/PHHShukQ4cOYdWqVZgyZQrCw8NNxhYoUACLFy9G9erV4ebmhqNHjyIwMBC//PILli1bhk2bNpmMvX//Pjp27IgtW7YYXZ5ZddaanGdEUg9oS+wvXLiA6dOn632WevbsiSJFipiMWb58Odq3b4+6deti27ZtqFOnDi5evIi7d++iWbNmqm30unXrhsjISMyYMQOVKlUCAOzbtw+9evVC7dq1lTY3GVkmAKxatcpk0qnW+RCQ9HlZu3at3j5q2rQpbGxMNwkvWrQohg8fjk8//VRJiAoVKoRhw4bh0aNHmDFjRqbEar0IsWfPHjRq1Aju7u4oW7YsACAqKgqPHz/G+vXrUbVqVZNlAtqPa8pzkaenJ/bt24fixYvjxIkTaNKkCa5evWo0btCgQUrnFSnL+/bbb/HZZ5+lmlw3atQI1tbWmDdvHvz9/fHXX3/h4cOH+Oqrr/Ddd9+hSpUqyrq1a9fG3bt3UaZMGSxatAgtW7aEo6Oj0fdN7ggDACpUqAAXFxdUrlwZI0aMwNdffw0XFxejccOGDTNZ15iYGPTo0QO7d+/Wa/8kqXTkAyR1knH58mV06dIFPj4+Bj+KU/6Q1bqdGbWtWbWdANC8eXPs378fwcHB+OOPP1CxYkWTbah27typ99qc/ZRSVFQUOnTogHPnzulduEhte9O7n96lCwJA+i4KpPeCgDE3b96Er6+vpkTInFiilBITE/H06VO4ublpujjxLmPimAWqVKmCwMBAzJ07V/nx+ebNG3Tt2hXR0dHYs2ePyVitiY2zszPOnTuHAgUKIE+ePNi4cSPee+89REdHo3Tp0njy5InROHPu/OXLlw8DBw5Ejx499ObPnDkTY8eOxa1bt0zGuri44OzZsyhQoADy5cuHNWvW4P3330dMTAxKlCih3GUwpk2bNrh27RqmTp2K6tWrY+3atbh7965yhyIsLCxT6qw1OdcaB5iX2K9evRqtWrVC2bJl9T5Lhw8fxvLly9G8eXOjcaGhoejWrRvCw8OVxMbf3x/dunVDnjx5MGLECJNl5sqVC6tWrVI6oEi2a9cufPLJJ7h//36Gl2nOHbwzZ86gUaNGuHv3rpJMX7x4EV5eXli/fr1ehwgpOTk54dy5cyhYsCC8vb2xfft2lCxZEpcuXcIHH3xg9FhlRKzWixAlSpRAhQoVMGvWLKWTjISEBHz55Zc4cOAATp06ZbJMQPtxzZ07N3bt2oXg4GAUK1YM48ePR+PGjXHixAlUqlTJ5N+5r68vZs+erfSymOy3337Dl19+qfp3mlzfnTt3IjQ0FO7u7vjrr79QpEgR7Ny5E1999RWOHTumrHv37l1MmTIFV65cwZo1a1C3bl2lp8e3rV27Vvn/hQsXMHz4cFy5cgVHjx5FsWLFjF5s0Ol0qhcvKlWqBBFB7969jSZF1apVMxnr6uqKffv2pdrpGqB9O4GM2das2k4gqdORRYsW4cqVK/j+++/x2WefmbyTNmXKFL3X5uynlEqWLImAgAAMGDDA6PYWLFjQaFx695OlLwgA2i8KpPeCgDFubm44fvw4ChUqlOq6GRmb0j///IP169crnatlZFxiYqLRxFZEcOPGDRQoUMBonIjg6tWryJ8/P2xsbPDq1SusXbsW8fHxaNCgAXLlypWmOsbExODy5cvIkyePye9DAIiPj4eVlZVyd/nKlSuYP38+rl+/joIFC6JLly4mO91JtnPnTuzbtw937tyBlZUVChUqhMaNGyMoKEg17u+//8aff/6pd9ewfPnySg/DmeXNmzc4c+aMXrnFihXLlDvsFpXVz8b+Fzk4OBjtwOHMmTOpjkGWN29emT59usH8GTNmqI4BWbhwYWVQ20qVKsm4ceNERGT58uXi5eVlMi5//vzKwMCurq5Ko/bFixdL/fr1Vevq7OysrJ/SxYsXUx0fq0SJErJ7924REfnwww/lq6++EpGksZzy5s2rGps7d275888/lTpfuHBBRER+++03k2M4ZUSdnZyclLHlcufOrbRNuHLlislG6ubEiYh8+eWXEhwcLKtWrRJHR0eZP3++jBo1SvLly6c3XpExhQoVkqFDhxrMHzZsmBQqVEi1vsnjj+XIkUMZ2Pns2bOSO3du1TIdHR2NDoB7+vRpcXJyypQyixQpIkuXLhURERcXF7ly5YqIiAwdOlRvzCxjPvjgA2nUqJFeG5tHjx5J48aNpUKFCibj/P39lXZAZcqUkdmzZ4tIUqc6qbUpNie2UKFCsmHDBhFJ2tbkRvk//PCDalsiBwcHZby0lM6fP5/qOHgi2o9rkyZN5KeffhIRka+++koCAwNl9OjR8t5778mHH35oMs7e3l75u9ZSXw8PD4mOjhaRpH22c+dOEUlqo6N2Dvbz80vTuG5vM6f9lLOzs9FjkxZly5Y12jlEat7ezsTExDTHat1WS2yniEj16tXT1cYxJa2fB5Gkv09j3zWpSe9++vvvv2XAgAHy8ccfK+3BmjZtanR62/nz56Vly5ZStmxZsbKykpCQEClVqpTBlFrb64oVK0qFChVk+fLlsmvXLtm9e7feZIqLi4scP348zdtq6j2Sz/lZGZuS2viGWuOePHkiLVq0EAcHB/H29pahQ4fqjXGoNkbh+fPnpWDBgmJlZSWBgYESHR0tZcqUEWdnZ3FycpJcuXIp42Gm1L17d6VTpLi4OGnevLlYWVmJTqcTKysrqVGjhl4HUylVq1ZNVq5cKSJJY47a29tLaGiotGzZUkqXLi1OTk4GHfwku3v3rrz//vtiZWUlNjY2YmVlJWXKlJHcuXOLtbW1REREGI179uyZtGnTRqytrcXGxka8vb3F29tbbGxsxNraWtq2bWuyPfarV68kIiJCAgICpFy5cvLzzz/rLVfbvwkJCTJ48GDx8PAwaIvq4eEhQ4YM0evULbtj4pgFvL29ZevWrQbzt2zZIt7e3qqxWhObAQMGKAOoL1++XGxsbCQwMFDs7OyUAY9NlZec1OTNm1dJyKKjo1NNpD799FOZOHGiwfxJkyZJy5YtVWMnT54sP/zwg4iIbN++XRwcHMTe3l6srKxUG7iLJCWLyUlGgQIFlJ7xoqOjU03Mzamz1uRca5yIeYm9o6Ojyc+S2n7KmzevkriVKFFCScoOHDiQaqJbs2ZNadGihbx48UKZFxcXJy1atFBNFMwp09HRUa5evSoiIl5eXsoPkYsXL0qOHDlUYx0cHOT06dMG80+dOqWaoHTp0kXpBGLGjBni6OgotWrVEg8PD5OdKGRErNaLEBUrVpS1a9cazF+7dq2UL19etUwR7cf1ypUrcuLECRFJ+pLv1q2blChRQj766CPlmBnz/vvvG+2cqEePHmmqb+XKlZXt/fTTT6VevXqyb98+ad++vRQvXjzV+KxUvXp12b59u6bYv/76S2rWrCm7d++WBw8epKt36pRsbW2NXhjISO/CdmalJk2ayKpVq9IdZ85+MifRtcTFD3MuCCTLisTx7c/b29PevXuNJhla40SSOqopXLiwrFy5UubOnSsFCxaUsLAwiY+PF5GkxEan0xmNbdKkiTRu3FhOnjwpffr0keDgYGnSpIm8evVKXr58KY0aNZK2bdsaxKXsVGrQoEGSL18+2blzpzx//lz27dsnAQEBMnDgQKNlurm5KclotWrVDHrNHjJkiMkL+y1btpSmTZvKkydP5OXLl9KjRw9p3769iIjs2LFDcubMafR3YZcuXSQoKEi2bNmil1S/efNGtm7dKoULF5auXbsaLXP48OHi4+MjkyZNksGDB4u7u7t8/vnnynK1/RsRESFeXl4ye/ZsiYmJkbi4OImLi5OYmBiZM2eOeHt7S//+/Y3GZkdMHLNAz549JV++fLJ8+XK5fv26XL9+XZYtWyb58uVT7bFKxLzEJqUDBw7I999/L7///rvqeubc+Rs1apS4u7tLgwYNZNSoUTJq1CgJCwsTDw8PGTVqlPzwww/KlJqYmBhZvXq18iNTTdmyZWXLli0ikjScQrt27eTmzZvSv39/1Ttp5tZZa3KuNU7EvMS+fv36Mn/+fIP58+fPlzp16piM+/TTT+X7778XEZGRI0eKl5eXdO3aVQoWLJjq8BYnT54UX19fyZkzp9SsWVNq1qwpOXPmlLx58xpN0DKiTHPu4IWGhsqOHTsM5u/YsUNCQkJMxiUkJOh1471s2TLp2bOnTJs2Tfliz4xYrRchli9fLgUKFJBJkyYpvaJOmjRJ/Pz8ZPny5XLixAllMkbrcdXKnCGNRJIu0q1evVpEkrrZL1KkiOh0OsmVK5fR4y2SlAjv3bvXaK94L168kEWLFpks7+1eW5On33//XbZt26bc/TTm8uXLUqtWLVm4cKEcOXJE71ikdj68ePGicrco5ZR8h+Btbw+HkjxZWVlJ+/bt0zRMitZtzcrtTDZ9+nRp166dLFu2TESSLrgFBwdLkSJFZNCgQUa74k8p5fdBymnatGny008/yc6dO/V+sKZ0//59adCggXz77beyatUq1Z59M2o/WYrWZDcjLgiMHTtW8x3ltMYmf85MTaY+h1rjRJIuiidfNBZJ+jy9//77UqdOHXn58qXqHTEvLy85duyYiCRdsNPpdLJ3715l+f79+6VAgQJG65ucOIaEhCgXcJP99ttvUrhwYaNlOjs7K0/a+fj4GNxJvnz5sri4uBiNdXNz0/seefbsmdja2iqfgV9++UWKFCliEOfh4SH79+83+p4iSXc+PTw8jC4LDAyU9evXK68vXbokgYGB0rFjR0lMTFTdvz4+PspvUGPScpMoO2Ebxyzw6tUrREREYPbs2Xjz5g0AwNbWFt27d8f48eNNtpcAgNGjR+O7775DpUqV9Nql7d+/H1999ZVeI/O0dqqiZsqUKbC2tkavXr0QGRmJRo0aQUTw+vVrTJ48Gb179zYZm9rz6sl0Oh2io6PNrmuy//3vf3jz5g06duyIqKgo1KtXD48ePYKdnR0WLlyIli1bmozNyDofPHgQBw8eRFBQkN4gtKlJT1xoaCimT5+OatWqoVatWihVqhS+++47TJs2DRMnTsTNmzdNxs6ePRvDhg3DJ598gg8++ABA0mdp5cqVGDFihN4AwSnbkj169AgvX76Er68vEhMTMXHiRBw4cABBQUEYMmQIPD09VescFxeHJUuW4Pz58wCSOptp06aNyXY35pbZtWtX5M+fH8OHD8fMmTMRERGBSpUq4ciRI/joo4/w888/m4zdtGkT+vfvj2+//VZvH40cORLjx49H5cqVlXXT2sNaZho4cCDc3NzwzTff4Ndff0Xbtm3h5+eH69evo2/fvhg/frzRuNQ6f0hLpx1ajqs5bt++jZkzZ+qV9+WXX6oObK3m0aNH8PT0NNpxwcWLF1GnTh1cv34dOp0OlStXxvLly5EnTx4ASe3efH19Te4bKysrvd5bk6Xcr5UrV8a6desMPsuHDh1C69at9ToKSsvxAJJ6rbWxsUlzezgrKyuULFkSHh4eevP/+OMPlC1bFs7OztDpdAYdxmTEtmbldgJJ36UTJ05EnTp1sH//fvTp0weTJk1C3759YWVlhSlTpqB79+6q7af9/f1x//59xMXFKdvyzz//wMnJCS4uLrh37x4KFSqEXbt2IX/+/Hqx69evR7t27RAbG2vwvmrbq2U/3bx5Ew4ODkq7tb1792L27NlK+7Lw8HDl94Qpv//+u9H5Op0ODg4OCAwMNPn9eeXKFXzxxRdo27YtQkJCDNp4mepB9tKlS2jdurVBu9i0fCaykru7OwYPHozy5csbXX7p0iV069bNoL5a44CktvBnzpzR2+dPnz5VOl6cN28eAgMDTcaeP39eaf+Ysm8FALhx4waCgoL02qMC0OuB2MvLC7t370bx4sWV5deuXUNwcDDi4uIMyvzwww9Rr1495fu3W7duem03V69ejX79+uHatWsGsd7e3ti9e7fSG+mLFy/g4uKC+/fvI0eOHIiOjkaxYsUM6uvu7o4dO3YoHb697fDhw6hVq5bRPj6cnJxw9uxZvd54b926hZo1a6JcuXKYOHEi8ufPb3T/Ojs749ChQyhRooTRck+ePImKFSuq9tWRrVgmX/1vev78uZw8eVJOnjyZ5nGv/Pz80jT5+/sbxJ4/f17Cw8OVOwLh4eHpfnzkypUrab7zZ67IyEgJCwuTQoUKSaFChSQsLEzTVcvnz59LVFSU0cFusztzHul9+9l7U1NGjZv56tUrKVSoUKY/8vY2c+7gvb0fkq8Cv/367X309l0AtcmYR48eyaRJk5S7ad999508fPgw3due1icLrl69mubpbeYcVw8PD4MxZU1NKcurWbOm0TY4maVp06YSFhYm9+/fl0uXLklYWJj4+/srd/vVrj6LJJ3LypcvL5GRkRIbGyuxsbESGRkpFSpUkI0bN8q+ffukePHiRh9FDg4Olo8++kgOHTokMTExqR6PlBwdHdN1jh83bpz4+/sb3HVNz8DVWrc1K7dTRCQgIEC563z8+HGxtrbWaxe+Zs0aCQwMVH2PpUuXSvXq1ZW2xCJJdyZq1qwpy5cvlxs3bkilSpWkefPmBrEFCxaU8PBw+fvvv9NVby376f3331funqxbt06srKykcePGMmDAAGnWrJnY2trq3V0xJvk8Z+z7IfnfqlWrGoy5KCJy8OBB8ff3NxlnSrly5TS1jUxMTJQVK1ZI9+7dpXnz5tKsWTO9SY2W2OrVq8uECRNMvufx48eNPtaoNU4kqe3+xo0bDeY/ffpUKlSoICVLljS5bwMCAvTuMP74449645FGRUUZ7TtAp9NJt27dpG/fvuLt7S3btm3TWx4VFSW5cuUyWuaBAwfE3d1dhg8fLtOnT5dcuXLJkCFDZMmSJTJs2DDx8PAwuS+aNWsmzZs3l2fPnsmrV6+kT58+en+bhw4dMlrf1q1bS+nSpfXGHU129OhRKVOmjLRp08Zomf7+/hIZGWkw/9atW1K4cGGpXbu2yf3boEEDqVOnjtHfnPfv35d69epJWFiY0djsiHccsxF5a+wxNVp70HybnZ0dTpw4geDg4FTX7devX5reU6fT4fvvv9ebZ86wGJZi6oqsMW/3BqllWAxjrl27hqioKAQGBqZpHDAtjF0hN+Xtu3B58+ZFZGRkmj4/b3t7WIxixYqhSZMmqsNimOuPP/5I87op72ok33VRIyaumu/ZsweNGzeGm5ubpqExLEHrcZ08eTJGjx6NunXrKn/nBw8exNatWzF06FC9MSRT9qDo5eWl3HHWolmzZmnuEn3NmjXw8fFBZGSkcgVZRPDll19i06ZN2LVrF5ydnVXvOIaEhOCnn35CxYoV9ebv378fn3/+Oc6cOYPIyEh07twZ169f11vH2dkZJ06cQGBgYLq3s2rVqhg2bFiqY9CmdPjwYbRt2xaNGjXCuHHjYGtrC1tbW5w4cSJN449p3das3s6377rY2dnh2LFjyh2Ua9euoVixYnj+/LnJ9wgICMDq1atRqlQpvfnHjh1D8+bNER0djQMHDqB58+a4c+eO3jpv3+VJKy37ycXFBadOnYK/vz8++OADNGvWDAMGDFCWz5gxA/Pnz1ft3XfHjh0YPHgwxowZowwj9tdff2Ho0KEYMmQI3N3d0a1bN5QvX97gKY5ixYohODgY/fv3T1cPsk5OTjh27Fi6vwd79+6NOXPmoEaNGkbLUxu+SUvs3Llz8eLFC5NPed29exezZ8/G8OHDMyQOSHqi7M6dO1i5cqXBsqdPn6J27do4fPiw0XPSF198gbJly6Jr165Gyx0/fjz27t2LjRs36s2vXr263v5o06aN3nuMHj0akZGR2L17t9H3PXjwIPr164c///xTb76vry8iIiJMPsEWHR2NOnXq4Nq1a9DpdHB2dsbKlSuVv/eFCxfiwoULGDdunF7cP//8g9atW2Pr1q3w9PSEt7c3gKSxUx8/foy6deti6dKlBk9YAElPKomI0SeSbt26herVqyM6Otro/r1x4wYaNGiA8+fPo0SJEvDx8QGQdDxPnTqFYsWKYcOGDQZPIWRblsxaKW3mzZsnxYsXFzs7O7Gzs5PixYvL3LlzVWPS24NmRrR1qV69uri5uYmTk5OULl1aSpcuLc7OzuLm5ibVq1dXpho1ahjEau091pw2K+a2d0ntiqypO3irVq0SGxsb+eCDD5T9WqFCBbGxsdHUeUJmS61dhtqV5DFjxkiHDh1S3ZdvO336tBQqVMjgs+Tn5yenTp1SjTXVe1liYqJyxyijrV27VgICAmT27NnKncXZs2dLUFCQrF27VvUOQUhIiHz22WcGjfk///xz1XaVxvj7+2u6M5feOK3H9aOPPjL6dz59+nRp0qSJybg+ffqk2v5XTYcOHcTNzU3y58+v3EkoUKCAuLu7S4cOHaRjx47KJJLU8ZSxO6rh4eGSL18+2bNnj+qdEwcHB6Of05MnTyqdLF29etVop1QNGzbUfB5YsWKFFCtWTBYsWJCu9nBPnz6V9u3bS2hoqJw6dUpsbW3TfMdR67Zm9Xb6+/vL5s2bRSSpjaSVlZWsWLFCWb5x40bx8/NTLdfR0VEOHz5sMP+vv/5Sti8mJsZoe/P27dun+r1tjJb95O7uruwHb29vg31y+fJl1d6PRUSKFy9utL3Yvn37pFixYiKS9NRL/vz5DdZxcnLS1INslSpVND1l5OnpafRuXGbHZqVHjx6pth+PjY1VvSurJjo6Wm7fvp3uuCtXrsiNGzdSXe/evXty6NAhOXDggNKRYWqeP38u27Ztk/Xr16f76bFz587J/PnzZezYsTJ27FiZP3++0ZENUrp69apqO8Vbt27JwoULTS5PSEiQTZs2ybBhw+Tzzz+Xzz//XIYNGyabN2/+V/WoKiKSeZfuKUMMGzYMkydPRs+ePfWu0Pft2xfXr1/HyJEjjcbduXPH6FhAbdu2xaRJkwzmT5061WhbFxHBuXPnlLYuaho1agRXV1csWrRIr/1Hp06dUKVKFXz11VcmYx8/fox69eoZzK9Tp47eldKUUrZZ6du3L65du2bQZsXW1tZomxVzYpNt27YNAwYMwNixY/WOzZAhQzB27FjUrl3baFz//v0xaNAgg2M3fPhw9O/f3+jdYHParJjb3mXBggUYOHAgOnbsqLedixYtwrhx4/TaBLzt8OHD2LFjB7Zt24YSJUrA2dlZb/maNWuMxnXt2hXFixfHkSNH9D5LHTt2xOeff44DBw4YxMTGxqJr165Yv3493Nzc0K1bNwwfPlwZp/DevXvw9/dXbSdjaoysxMRE3Lx50+QYWWPHjsW0adPQoEEDZV5oaCjy58+PoUOHIioqymSZly9fxqpVq5R6AoC1tTX69euHxYsXG42ZNm2a0fnXr1/HggULlPGq3r6yrTXubVqP69atWzFhwgSD+fXq1cPAgQNNlvfmzRvMnz8fkZGRKFOmjEF5kydPVq2vj48PPvnkE8yePdtg3Eo3NzeDc2LRokVx5MgRgzuqM2bMAGD4BMHbypQpg4iICCxevFgZQP3+/fvo378/ypUrByCpPZOxK9CNGjVC3759cerUKZQoUcKgfZha2cntuTt37qzMS0u7QRcXFyxatAjLly9HrVq10tWWTOu2ZvV2tmnTBu3bt0eTJk2wY8cO9O/fH19//TUePnwInU6HMWPG4OOPP1bd1ho1aqBbt26YN28eSpcuDSDpbmP37t1Rs2ZNAFDu9L2tcOHCGDRoEPbt22d0e039zWnZT9WqVcOyZcsQGhqK0qVLY/fu3XpPpOzatQt58+ZV3dYrV64Ybcft5uamtPcPCgrCgwcPDNapWbOmprvJPXv2RO/evREREWF0W009VePu7q557EVzYlO6efMmfH19U20/rjXO09PToD10ylhXV1fVsU/Vyk1rXw9vx6V1vyW3kUyOTQsnJye931Dp2b9FixZF0aJF01ROsoIFC5q8Ew4k3SVVG0fUysoK9evXR/369dNVbrZk4cSVUpErVy6DnqxEktpa5MyZ02RcenvQzIi2Lr6+viaHMsiTJ49qrJbeY81ps5IR7V2KFy+u124g2Z49e6Ro0aIm47QMi2FOmxVz27vUrFnT6GdwyZIlUq1aNZNxIqJ3J8fYZIqWYTHM6a7cnDGykutr7A7V2bNnUx1nUMvQGDqdTvLly2fQ1lmn00nevHlNtnvWGvc2rce1QIEC8t133xnM/+6774z26pcs5RMLb0/GnmB4W65cuUyOW2lsiJaxY8eqDm/TvXt3k5+l5PctUqSI2NnZSUBAgAQEBIidnZ0ULVpUGY9y7dq1snjxYoNYc9ofp7e9qjE3btyQdevWybNnz9K0vtZtzertTEhIkDFjxkjDhg1l7NixkpiYKMuWLZP8+fNLzpw5pWPHjqlu8507d6RWrVqi0+mUJ4CsrKykdu3aStvFnTt3Gh1+K719FJizn86ePSs5c+aU9u3by6hRo8TFxUXatm0rY8aMkfbt24u9vb0sWLBAdVsrVaok9erVk3v37inz7t27J/Xq1ZMqVaqISNIdR2O9as6ZM0fy588vw4cPT1cPsqa2MbXPxMKFC6VVq1YSFxenuk0ZHZuSq6urpmFAtMZZKja71TelR48eqfaGbW6sqTuLCQkJmfa0kyUwcXzHubu7G32E7MKFC+Lu7m4ybtasWeLl5SXh4eHyyy+/yC+//CLh4eHi7e0ts2bNMnoS/+uvv6Rw4cLy1VdfyatXr0QkfYmji4uLXnfRyXbu3Gmy2+VkWobFcHR01PtjtLW11Us2rl69avJxHHNik5l6ROvEiROqyYKWYTGcnZ2Vbu3Lly8v48eP11s+ffp0k4MymxMrkrSvTH0GUxsnUystw2KY0125OUmniEjp0qWlXbt2ep3vxMfHS7t27VIdLFvL0BjdunWTUqVKGSSrqf29ao3LKAsWLBBra2tp2LCh8nfesGFDsbGxSfWHrDk8PDxk3bp1BvPXrVtnsnt2cyUkJMjmzZuV89aWLVv+dY8sJcuIbc1O++b8+fPK96eW8QqzwuXLl6VVq1bi6uqqJGG2trYmL1S9zRIXP7Re+IiLi5O6deuKi4uLhISEKM0bkic15sSmpHX8yKwYdzIjY7NbfVM6fvy45s7/1GLNvfCc3fBR1Xdcu3btMGvWLINHsX766Se0adPGZNyXX34JIKnTmR9//NHoMkC/G/By5cohKioK4eHhKFu2LJYsWZLmDiWApA4oOnXqhO+//15pTP/nn38iIiICH330kWrszz//DE9PT5w9exZnz55V5nt4eOg1VtbpdMojPblz58bZs2dRoEABXLp0CQkJCTh79qzS2cGZM2eUxtFvMyc2Wbly5dCvXz/88ssveo2hIyIilO03pnHjxhgwYACioqKMDouRstOd5MeQbGxs8PTpUwBATEyMweMQ9evXN/lIrzmxAJA/f37MnTsXEydO1Js/b968VBt7x8TE4M2bNwadmly6dAm2trYmH3MdN24cevXqZXRYjAkTJuh12JP8ONX9+/f1HjXJlSsXIiMjUbduXTRo0ADz5s0zWc9169Zh0aJFqF69OgCgadOmCAsLQ6NGjZTjofa3MHv2bDRq1Aj58uVTHqc6efIkdDod1q9fbzIOAD799FMASY8wG1tm7BG82bNnY+3atahbty769++PHj16qJaRsp5a4t6m9bh27NgRwcHBmDZtmvI4a3BwMPbt22eyi3oAePLkCRISEvQ6zwGShtSwsbFJdWiUTp06oUuXLrhy5YreuWn8+PHo1KlTapuriZWVFerVq2f0EfzMYs4QCuZIua3JHaql95E9BweHNHfEZqntTFakSJF0d+CS1QICArBs2TKICO7du4fExETkypXL4PFPU4oUKYKzZ89i27ZtuHjxojKvdu3ayrFt2rSp0djExERNdVZ7VFBNhw4dEBUVhbZt2xrt4CazYundklpHfsm/gzI6dujQoThx4gR++eUXPH78GKNHj8bRo0exZs0a2NnZAfj/nVv+K1g4cSUjUnZO07NnT3F1dZXixYtLly5dpEuXLhISEiJubm7So0ePNL9neq/mLlu2THx8fMTKyirNdyKeP38u3bt3V4aHsLKyEjs7O+nevXuaH3tKjyFDhigDw/v7+8vAgQOlQIECMmvWLJk9e7bkz5/fZIc+5sQmu3TpkoSEhBhckS1evLhqxwBahsVo3LixDBw4UERE6tatq3fnVURk7ty5EhQUZLQ8c2JFkjqNcHBwkJCQEOUzWKJECXFwcEi1U4GqVasabVD+yy+/qD7mqmVYDHO6K3d0dDQYqDw2NlYqVKggNWvWlOjo6FSvGD579kzmzJmj/O3+9NNPafrcmzM0xs2bN6VmzZpSr149uXPnTprvHGqNS6b1uGpVr149mTlzpsH8WbNmqT5SmiwhIUEmTJggvr6+yufI19dXJkyYYHLAdq3i4uJk7969RvfnixcvVB93MidWxLwhFNJLa4dqGdERW1ZuZzJLdcSW8mmblNO0adPkp59+kp07d6b7M3z9+nXp1KlTumKywtuPtCZPv//+u2zbts3gHJ3MycnJaLORtDAnNqWxY8fKP//8k2Vxlop9l+ubWkd+ane8zYk152mn7IiJ4ztIrT1Petv2JLO1tU33uGvpbeuS7NmzZ8qjdZmRMCYzp81KRrR3EUnqqXPr1q3Kl/m2bdskMTExozfVrDYrGdHe5caNG/LNN98oPVJ+8803cv369VTr7erqajSJvnTpkuqj1m+P36U2JevZs6d8/PHHRt8vNjZWypcvb/LkbU7SaWmJiYkyduxYyZ07t1hbW6c5AdQaJ6L9uCZ7/fq1bNu2TebNmyeRkZGp/vD19PQ0ev46d+6c0TaKap48eSJPnjxJV0xaXbhwQQoWLKiXvNy6dUtZrvYDwlhsyp4O0/Ljw5zxI9NLp9NJqVKlDL6XdDqdlCtXzuR3lNY4S22nSFJTCldXV2nevLnkzp1bxo8fLzlz5pTRo0fL2LFjxcvLS4YNG5bhsSJJbSOdnZ1Fp9NJjhw5JEeOHKLT6cTZ2Vl8fHxEp9NJQEBAms7HydQeu7tx44ZeL5Z79uyR1q1bS+XKlaVNmzZy4MABk+9rTqyI9gsCRYoU0TzWtDmx9G5xc3OTCRMmmPytMHfuXJOfe3NiM+LCc3bCxPFfJiOu5mY1c4fF+K8wp82Kue1dtHJzczM6GO+RI0dSbfeaXuZ0V25O0mmM1mExzIk9cuSITJ06Nd13WbTEpfe49ujRQ+mA6caNG1K0aFGxtrYWHx8fsba2lhIlSsjNmzdNlufk5CQnT540mH/y5ElN7WwXLFggjx8/Tndcapo2bSphYWFy//59uXTpkoSFhYm/v7/Snlot+TMnNpk5Qyikl9YO1TKiI7as3E4Ry3bEtnTpUqlevbpcvnxZmXfp0iWpWbOmLF++XG7cuCGVKlWS5s2bK8tN3blLnqZMmWLys2TJjti0XhDYsGGD1K1bN81DPWRUbGJioqxYsUK6d+8uzZs3Vy6sJk8ZHWep2OxS3+rVq8uECRNMvt/x48dN9lVgTmx2vvCshU7k3/TgLVlZWRkdVuOPP/5A2bJllWE1du7caZkKviXlsBj79+9Hnz59DIbF6N69u+qwGFlN6/AW5g6LkUw0tlnRGqt1iAogqSt5R0dHLFu2TG8YhJYtW+L58+fYvHlzhpZ57tw5HDp0CBUqVEDRokVx/vx5/PDDD4iPj0fbtm2VLvPf9s8//+D27dtKG9e3PX36FEePHjXo7tzU8Bb9+vVD//79VYe3MCfW0tJ7XHPnzo3IyEiEhISgZcuWePToEZYtW4ZcuXLh0aNH6NChAxwcHIwObg0kDYMQEhKC6dOn680PDw/HyZMnsXfv3nTVP7kdXlra06WHj48PIiMjUaJECQBJf29ffvklNm3ahF27dsHZ2Rm+vr5Gh4swJzaZo6MjDh8+jJCQEL35p06dwvvvv48XL17g2rVrCA4ORlxcnNnbe/jwYbRt2xaNGjXCuHHjYGtrC1tbW5w4cQLFihXL8DhLbaeTkxPOnz+vnHfs7Oxw7Ngx5Xxx7do1FCtWDM+fP8/QWCCpreLq1atRqlQpvfnHjh1D8+bNER0djQMHDqB58+a4c+cOgKTfAclto00xNWyJi4uLMqTIBx98gGbNmum1gZ8xYwbmz5+Po0ePZmgsAISEhOCnn35CxYoV9ebv378fn3/+Oc6cOYPIyEh07twZ169fV5Z7enoiLi4Ob968gZOTk8H32qNHj0zuB3Nie/fujTlz5qBGjRpG20cuWLAgQ+MsFZtd6jt37ly8ePHC5Hfm3bt3MXv2bAwfPtxgmTmxvXr1wp07d4x+fz19+hS1a9fG4cOH0zXM0TvNgkkrZYKMuJqblTJiWIyspvWqqrlXY9WY02bFVGxG9BR25swZyZkzpwQEBChDNQQEBIiXl5fRHmnNKXPz5s1iZ2cnOXLkEAcHB9m8ebN4eXlJrVq1pGbNmmJtbW20p9ZkZ8+e1Rso+Ny5c/LFF19Ip06dTMaZM7yFObFRUVF6j8YsXrxYKlasKPny5ZNKlSopd+8zKu5t6T2uDg4OSrn58uWTP//8U2/5qVOnJFeuXCbL27dvnzg4OEiVKlXk22+/lW+//VaqVKkiDg4OsmfPHpNxnp6eRiedTifu7u7K64zi6upq9JHa8PBwyZcvn+zZs8fk59ec2GTmDKGg1dOnT6V9+/YSGhoqp06dEltb2zR912iNE8n67fT395fNmzeLSNKwSVZWVrJixQpl+caNG8XPzy/DY0WSHoM7fPiwwfy//vpLudseExMjzs7OyjJfX1+jvQgnO3bsmMnPkru7u/Lopre3t8FjnJcvXzbZ47g5sSKmeyo/efKk0lP51atXDZ4yWLhwoeqkxpxYT0/PVNv5Z2ScpWKzW32zmjlPO2VHTBz/hcwdViMrZcSwGFlN6/AW5g6LoSYzupk2d4iKZLdu3ZJBgwZJgwYNpHnz5jJixAh5+PCh0XXNKbNChQoyePBgEUnq3MnT01O++eYbZfnAgQOldu3aRmO1Jp3mDG9hTmxoaKhs375dRJI6N3J0dJRevXrJrFmzpE+fPuLi4iI///xzhsUZk57jGhoaKsuXLxcRkeDgYKUOyQ4cOJBqW8Vjx45J69atpVixYlKmTBnp1KlTqo/0uri4SFhYmN4PweQhQcaMGZOmH4fpUa5cOaPDE4gkJYAeHh4m/07NiU1mzhAK5tLSoZrWuKzeTkt2xNagQQN577339B4NP3r0qJQpU0bCwsJEROT333/XG6aoUaNGMnToUJPvqfbYnSU7YrPEhQ9z+Pn5KRcasyLOUrHZrb4p3bhxQ/NQP5aKfdcxcfyXMudqblYy92qsJWi9qmrO1Vhz2qxojc3KnsK6d+8u9+/fN6tMNzc3pcOWhIQEsbGx0fuxderUKfHx8TEaa07SuWbNGsmfP79Mnz5dmZfWCzVaYx0dHZVeVkuXLi0//fST3vIlS5Yobb0yIk6r5OO6YMECyZcvn+zatUtpwxwZGSm3bt2SnTt3SokSJaRr165mlzdu3Di9nvcuXbok5cqVk/bt28vTp0+V+Zl1IW3s2LGqvbx2797d5A92c2JTsuT4kVo7VNMSl5XbacmO2O7cuSO1atUSnU4ndnZ2YmdnJ1ZWVlK7dm35+++/RSRprOStW7cqMXv27FG+V4159uyZyTsgluyILT0XBJI7uUrL9DZzYlNauHChtGrVSuLi4lTXy6g4S8Vmt/qm5Orqqnn8R0vFvuuYOP7Lab0KnFUyYliMrKb1qqo5V2NN9TaXloGVtcZmZU9hySdZc8p0c3PT60Di7QGDr169qjzuZCxWa9IpYt7wFlpic+bMKUeOHBGRpIsQx48f11t++fJlo53GaI3TKuWX5/fffy9OTk7i6Oio/PhNnpo2baqX2GVEeclev34t/fv3l4CAANm3b5+IvLtPYJA2WnoNz27Onz+vXOw7f/58ppZlyY7Y0npBILXhE1JOGRmbUlxcnNStW1dcXFwkJCRESpcurTdldJylYrNbfVN6+3dAelgq9l1nY+k2lpS5WrVqhcqVKyMqKkrz4LqZacSIEXB0dMTBgwfx2WefYeDAgShZsiT69++PuLg4NGrUCKNGjbJ0NfWMHz8eVapUwe3bt1G5cmUMHjwYhw8fRnBwMC5cuIBff/0Vs2fPzrA4AMiTJw9+/PFHNGnSxOjy48ePo0yZMhkaW6BAAZw7d05vIG1XV1ds27YNderUQbNmzYy+nxbyf504mFOmn58fLl26hICAAADAwYMH9TrRuX79OvLkyWMyPrnhvZWVFRwcHODu7q5XhydPnpiMzZs3LyIjIzF+/HiULl06XYP9aomtX78+Zs2ahXnz5qFatWpYtWoVSpYsqSxfsWIFAgMDMyxOq5Tb0q9fP3Tu3Bnbt29HdHQ0EhMTkSdPHlSqVAlBQUEZXl4yGxsbTJgwAXXr1kXr1q3Rpk2bf+Ug3y9evEBUVBRy5Mhh0MHMy5cvsWLFCrRv395CtcsY/fr1Mzo/ISEB48ePR86cOQEAkydPzspqZYkiRYqgSJEiWVJWQEAAli1bpqkzNXNigaTzb7169VCvXj3V9Xbt2qX8/+rVqxg4cCA6duyodDB38OBBLFq0COPGjcvQ2JQ6dOiAqKgotG3b1mjnLRkdZ6nY7FZfymQWTFqJsi2tV1W1xpnTZkVrbEYPUaEm+eqcOWXOmjVLNmzYYLKMQYMGSZcuXYwuCw0N1Xu069SpU3rDwOzZs8dkRzVv0zosRnpib926JX5+flK1alXp16+fODo6SuXKleWzzz6TqlWrip2dndFOBbTGaZXVV11TK+/BgwfSrFkz8fDwyPS7NlnJnPEjs5OMGAMyO3kXh6rKjI7YzB3/sWbNmrJ06VKD+UuWLJFq1aplWqyTk5Ps3btXdZ2MjLNUbHarb0pjx47Va76QHWLfdUwcicyQmJgof//9t9y+fVvpiCgz4sxps6I1Nit7Ckv+wW+p3snMSTot5Z9//pEBAwZIsWLFxMHBQezs7KRgwYLSunVro70wmhunhVoiFx0dLdu2bTPai2JmlPdvlhFjQGYH2a3XcHOMGjVKXF1dpXnz5pI7d24ZP3685MyZU0aPHi1jx44VLy8vGTZsWJbXKzM6YjO3x3FHR0ejHWVduHAh1UfvzYktUqSIQV8FaaE1zlKx2a2+lLmYOBJlMK1XZM25kptZtAxRoUXKH/xZVWZGMGd4i4waGuNdlnxcu3fvrrRhjIuLk+bNm+u1r61Ro0aGtHH8ryaO3t7ecvLkSeV1YmKifPHFF1KgQAG5cuXKvyZxFMlevYabw1JDVVmiIzZzexwvXLiwREREGMyPiIhItQdWc2I3bNggdevWlZiYGNX1MirOUrHZrb6JiYmyYsUK6d69uzRv3lyaNWumN72LsdkJE0eiDKb1iqw5V3Izg7njIqZH8g/+rCwzI5gzvEVGDo3xrko+rlZWVnL37l0RSbp7my9fPtm5c6c8f/5c9u3bJwEBAUrHURlRXrJXr15JRESEBAQESLly5Qz2578locqIMSCzk+zSa7g5LDVUlSU6YjN3/MeNGzeKg4ODhISESJcuXaRLly5SokQJcXBwSPXRe3NiPTw8lI6+XFxcDMaLzeg4S8Vmt/r26tVL7O3tpV69etKhQwdlrOHkSY2lYrMTdo5DlE6///676vLo6OgMjbOUkSNHIiIiAqNHj8by5cvRunVrdO/eHWPGjAEADBo0COPHj0fNmjXNLqtt27Zwc3PL0jIzwqVLl5SOXX788Uf88MMP+Oyzz5Tl5cqVw5gxY9C5c+cMjc0uko+rpOi0Zv369Zg4cSJq1KgBAKhUqRImT56MiIiIVDujSE2VKlXg6OiovB4zZgwWL16Mr7/+Go8fP0a/fv3w559/Ys6cOco6ko6OjN5VRYsWxZEjRxAcHKw3f8aMGQCAxo0bW6JamcbFxQWLFi3C8uXLUatWLSQkJFi6Shkud+7cOHv2LAoUKIBLly4hISEBZ8+eRfHixQEAZ86cgbe3d4aXa4mO2KpVq4Zly5YhNDQUpUuXxu7duxEaGqos37VrF/LmzWuyzg0aNMClS5cwa9YsnDt3DgDQqFEjfPHFF8ifP7/JOHNjp06dqro8o+MsFZvd6vvLL79gzZo1aNCgQbaJzVYsnbkSZTdar6qacyXXEswdoiLZixcv5M8//5T169cbPLqUWWVmFXOGt8jqoTEyWnqOq06nUwb1zpUrl0E71qtXr6ZpW+/evSunTp2SEydO6E2mBAYG6rWNunTpkgQGBkrHjh2Vdsbv0t+cVhk1BmR2pHXsyHedpYaqskRHbFrGf2zWrJkyzuKiRYvk5cuXadg682Pp3efn56c0dckusdkJE0eidPL19ZV169aZXH7s2DGjP0a1xlmKOeMiJkt+1DStSXJGlJmV2rZtq3Sa06JFCxkyZIje8rFjx0qJEiUyPNbS0ntcdTqddOvWTfr27Sve3t6ybds2veVRUVGSK1cuk+UdOXJEihcvrnfhJfn/an8zjo6OBu1jbt68KYULF5Y2bdrIrVu33qm/OaJkCQkJMmbMGGnYsKGMHTtWEhMTZdmyZZI/f37JmTOndOzYMVOSZUt0xCaS/h7HbW1t5fbt2yIieo/Cp4U5sU+ePEnzlBFxlorNbvVNaeHChdKqVSuJi4szuc67Fpud6ET+Bc/pEGWhxo0bo1SpUhg5cqTR5SdOnEDp0qWRmJiYIXGWUrJkSUyYMEEZT+v06dMoWrQobGySnnDfu3cvOnTooPqIbVBQEOrUqYNhw4bBx8cnS8rMSrdv30alSpVQoEABlC1bFrNmzUKZMmWUsTkPHTqEtWvXGn10xZxYS0vvca1evbreGFxt2rRB165dldejR49GZGQkdu/ebTS+ZMmSCAgIwIABA4yO52VqjNpChQph7ty5+PDDD/Xm3759GzVq1EDBggWxY8eOf+WjjkTZkaRx/MfQ0FC89957qFGjBjp16oRp06bBzc3N6Lpvj19qTqyVlVWaxxNMeV7RGmep2OxW35RevHiBZs2aYf/+/fDz8zP4DB09etTke1oqNjthG0eidIqIiMDz589NLg8MDNQbYNjcOEvp3r273ok5JCREb/nmzZtTbWt49+5d9OvXL03JRUaVmZV8fX1x7NgxjB8/HuvXr4eI4K+//sKNGzdQqVIl7N+/H2XLls3wWEtL73E1lRAma926NTp27GhyeXR0NFavXo3AwMB01BKoWbMmli5dapA4+vr6YufOnahevXq63o+IMpdOpzM4r9y4cQPDhw/H/PnzlXmzZ89Gv379sHHjRuh0OgwZMsRowqHT6QySP3NiU35HX716FQMHDkTHjh1RoUIFAMDBgwexaNEig/baWuMsFZvd6ptShw4dEBUVhbZt2xq90KjGUrHZikXvdxLRv1qnTp1k3rx5lq4GZbCsPq5NmjSRVatWpTvu6tWrsmXLFpPLb926JQsXLjSnakSUyVLrcVyn08nff/+t6b3Nia1Zs6YsXbrUYP6SJUukWrVqGR5nqdjsVl8nJyfZu3ev6nu/a7HZCR9VJaJMExcXhxYtWsDLywslSpQweHSjV69eFqoZmUPLcX3x4gWioqKQI0cOFCtWTG/Zy5cvsWLFCoOr+8kePHiADh064P3330dISIhBef+2XkOJ/kvS0uP4V199ZfLRxGvXrsHNzQ3z589XekYtXrw4unTpYvIR1IyIdXJywokTJ5TesZNdvHgRpUqVQlxcXIbGWSo2u9W3aNGiWLFihV7PvGllqdhsxdKZKxH9e82bN09sbGzExcVFChYsKH5+fsrk7+9v6eqRRuk9rhcuXJCCBQsqndlUrVpV6ZxCJPXxFH///Xdxd3fX1BNxfHy8/Prrr9KnTx9p1aqVtGrVSvr06SMrVqyQ+Ph47TuBiDKEuT2OHz58WHLkyCF58+ZVBlvPly+fXs/VmRFbuHBhiYiIMJgfEREhhQsXzvA4S8Vmt/pu2LBB6tata9AxWlpYKjY74R1HIso0uXPnRq9evTBw4EBYWVlZujqUQdJ7XJs1a4bXr19j4cKFePz4Mfr06YOzZ89i9+7dKFCgAO7evQtfX1+TdxT8/PzQsGFDDB06NM3tKgHg8uXLqFu3Lm7fvo3y5csrsXfv3sWff/6JfPnyYfPmzeluO0lEGSdv3rxpGv/R1PmhSpUqCAwMxNy5c5WO1N68eYOuXbsiOjoae/bsMVm2ObGbNm1C8+bNERgYiPLlywMA/vrrL1y6dAmrV6822bGZ1jhLxWa3+np6eiIuLg5v3ryBk5OTwRMqjx49MlmmpWKzEyaORJRpcuTIgcOHDyMg4P+1d+9RUVV7HMC/w0tBZoBIFA18AMZDBBExn4momI/FRdQulYhKS0jl5gPTpWhqJNd8ld4kcaHQ1UwTzVJBQdCEQlTAEnyhCBgmico7IM79w8XcpmFGHgPD6Pez1qzl7H1+Z/9mDmvhj7PP3lbqToVUqLnXtVu3bkhISICjoyOApysnvvfeezhx4gSSkpLQpUsXpYWjWCxGZmZms3+Oxo0bhy5duiAmJkZu2llpaSn8/PxQVVWF+Pj4Zp2XiFSntSuO6+vrIyMjA7a2tjLt2dnZcHV1VTodsjWxAFBYWIidO3dKp7na2dkhMDAQFhYWbRKnrlhNyjc6OlrpOWfNmtXhYjWKWu93EtFz7f333xfCwsLUnQapWHOvq1gsFrKzs+Xa58+fL7zyyivCuXPnlE5F8/PzEyIjI5udp76+vvDzzz8r7L9y5Yqgr6/f7PMSkeq0Zv9HQRAEMzMzIT4+Xq49Li5OMDMzUzp2c2O9vb2lewhGR0cL1dXVSs/f2jh1xWpavtR+eMeRiNpMcHAwYmJi4OTkhAEDBshN3diyZYuaMqPWaO51dXNzw8KFCzFz5ky5cy1YsAD79u1DaWmpwjuOYWFh2LZtGyZNmtSsRZZ69OiBXbt2YfLkyY32f/fdd5g3bx5+/fVXhZ+ViDq24OBgHDlyBJs2bcKwYcMAACkpKQgJCYGPjw+2bdumslg9PT3cvXsX5ubm0NbWRlFREczMzJ6ZY0vj1BWrafmWlpY26fwAGp19oo5YTcV9HImozfz8888YOHAgAOCXX36R6Xtu9zh6ATT3unp7e+Orr75qtHDcsWMH6uvrERERoXC83bt3w9DQEGfPnsXZs2flxlNUOAYEBMDPzw+hoaHw8PCQecYxMTERH330ERYuXKj8wxJRh7Zp0ybpnot1dXUAAF1dXQQFBSE8PFylsba2tlixYgXc3d0hCAIOHjyosCD46yrRLY1TV6ym5WtsbNzk/1P8/Q+U6orVVLzjSEREz61///vf+PTTT3H//n3pL3hBENC9e3e8//77WLZsmZozJCJVqKysRG5uLgDAysoKBgYGKo9NTU3F4sWLkZubi5KSEojF4kYLB5FIJLMYSkvj1BWrafn+9Q+KeXl5WL58Ofz9/TF06FAAwI8//ojo6Ghs2LBB7llDdcVqKhaORET03Ltz5w7u378P4OmqsH369FFzRkSkybS0tFBUVNSslZ5bE6euWE3L18PDAwEBAfD19ZVp379/P3bt2oXk5OQOF6tJWDgSUZu6ePEiDh48iPz8fNTU1Mj0xcbGqikraq32vq6FhYU4duxYo+O19FnZgoICrFmzBlFRUapIkYheIHfv3oVEIkFUVJR01U8HBwfMnTtX6fNsLY1TV6ym5WtgYICsrCzY2NjItN+4cQPOzs5KV8pVV6wm4cZqRNRmDhw4gGHDhiEnJwdHjhxBbW0trl69ijNnzsDIyEjd6VELtfd1TUxMxKuvvoqdO3di8+bNSEpKwp49exAVFYXMzMwWn7ekpOSZS6gTETWmuLgY1tbW2Lp1K0pKSlBSUoItW7agb9++uHTpksrj1BWraflaWFggMjJSrn337t3P3AJEXbGahHcciajNDBgwAPPmzcP8+fMhFouRlZWFPn36YN68eTA3N8fatWvVnSK1QHtfVzc3N7zxxhtYu3atdDwzMzO8/fbbmDBhAoKCghqNO3bsmNLz3r59G0uWLHluFi0govYzcuRIWFtbIzIyEjo6T9earKurQ0BAAG7fvo1z586pNE5dsZqW74kTJ+Dj4wNra2sMGTIEAHDhwgXcvHkThw8fxsSJExWOqa5YTcLCkYjaTJcuXXD16lX07t0bpqamSE5OhqOjI3JycjBmzBgUFRWpO0Vqgfa+rmKxGJmZmbCysoKJiQnOnz8PBwcHZGVlwcvLC3l5eY3GaWlpQSQSQdmvOZFIxMKRiJpNX18fGRkZsLW1lWnPzs6Gq6urwqmJLY1TV6ym5Qs8fbRh586d0imudnZ2CAwMbNKdP3XFagpOVSWiNmNiYoKysjIAQM+ePaVbNzx+/Pi5me//Imrv69qlSxfpc43m5ubS1Q8B4Pfff1cYZ25ujtjYWNTX1zf6unz5sspzJaIXg0QiQX5+vlx7QUEBxGKxyuPUFasJ+U6dOlW6p2JMTAy6du2KsLAwxMbGIjY2FmFhYQqLN3XFaioWjkTUZkaNGoXTp08DAKZPn45//etfePfdd+Hr6wsPDw81Z0ct1d7X9bXXXsP58+cBABMnTsSSJUsQFhaGOXPm4LXXXlMYN2jQIKXPwjzrbiQRkSJvvvkm5s6di6+//hoFBQUoKCjAgQMHGl1ZUxVx6orVhHy///57VFRUAABmz56NJ0+eKD13R4jVVDrqToCInl87duxAdXU1AGDlypXQ1dVFamoqfHx8sGrVKjVnRy3V3td1y5YtKC8vBwCsXbsW5eXl+Prrr2FjY6N0RdWQkBDpL/XGWFtbIykpSeX5EtHzb9OmTRCJRPDz80NdXR0AQFdXF0FBQQgPD1d5nLpiNSFfW1tbrFixAu7u7hAEAQcPHlS48qqfn1+HiNVUfMaRiIiIiKgFKisrpdPnraysYGBg0KZx6ortyPmmpqZi8eLFyM3NRUlJCcRiMUQikdxxIpEIJSUlHSJWU7FwJKI20zD3vymetacTdRy8rkRE1BFpaWmhqKgI3bp105hYTcLCkYjaTMOqlsoIgsCVLTVMe19XExOTZ47X4Hn5qy4RETXf3bt3IZFIEBUVJV3d1MHBAXPnzn3mHzLVFatJWDgSUZuJjo7G8uXL4e/vj6FDhwIAfvzxR0RHR2PDhg3o3bu39NjXX39dTVlSc7X3dd2yZQs++ugjeHp6yowXHx+P0NBQvPTSS9JjZ82a1erxiIhIM128eBGenp7Q19eHm5sbACA9PR1VVVWIj4/HoEGDOlysJmHhSERtxsPDo9EV0Pbv349du3YhOTlZPYlRq7T3dfXx8YG7uzsWLFgg075jxw4kJCTg6NGjKh2PiIg008iRI2FtbY3IyEjo6DxdA7Surg4BAQG4ffs2zp071+FiNQkLRyJqMwYGBsjKyoKNjY1M+40bN+Ds7My9HDVUe19XQ0NDZGZmwtraWqb91q1bcHZ2lq64SkRELzZ9fX1kZGTA1tZWpj07Oxuurq5Kfz+pK1aTcB9HImozFhYWiIyMlGvfvXv3c7cp7oukva+rqakpvv32W7n2b7/9Fqampiofj4iINJNEIkF+fr5ce0FBAcRicYeM1STcx5GI2szWrVvh4+ODkydPYsiQIQCACxcu4ObNmzh8+LCas6OWau/runbtWgQEBCA5OVk6XlpaGuLi4hotYImI6MX05ptvYu7cudi0aROGDRsGAEhJSUFISIjc4xUdJVaTcKoqEbWpwsJC7Ny5U7rKmJ2dHQIDA3nHUcO193VNS0vDZ599JjNecHCwtJAkIiKqqalBSEgIIiIiUFdXBwDQ1dVFUFAQwsPD0alTpw4Xq0lYOBIRERER0XOjsrISubm5AAArKysYGBh0+FhNwMKRiNpMfX09tLTkH6Wur69HYWEhLC0t1ZAVtcaDBw/wyy+/YNCgQTAyMsJvv/2G6Oho1NfXY9KkSXB0dFR3ikRERNQGuDgOEalcaWkpZsyYgS5duqBbt25YvXq1zEbwxcXF6NOnjxozpJZITk5G3759MXbsWNja2iIrKwuurq7YvXs39u7di8GDB+PUqVMqG6+2thbLli2DtbU13NzcEBUVJdP/22+/QVtbW2XjERERkWIsHIlI5UJDQ5GVlYUvv/wSYWFhiImJgZeXF2pqaqTHcLKD5gkNDYW/vz9KS0uxZMkSTJo0CV5eXrhx4wauXbuGhQsXYu3atSobr+FnJzAwEOPHj8fixYsxb948mWP4c0RERNQ+OFWViFSuV69eiI6OxujRowEAv//+OyZNmgRjY2McO3YMjx8/Ro8ePWTuQlLHZ2RkhMuXL8PKygp1dXXQ19dHeno6nJ2dAQA3b97E4MGD8fjxY5WMZ2Njg61bt2Ly5MkAnu7b+MYbb2DEiBGIiorCgwcP+HNERETUTnjHkYhUrri4GL169ZK+f/nll5GQkICysjJMnDjxudkI90Wjp6eH6upqAE9XkKuvr5e+B4Cqqiro6uqqbLx79+6hf//+0vfW1tZITk5GamoqZs6cyYKRiIioHbFwJCKVs7S0lG6b0EAsFuPUqVOoqqqCt7e3mjKj1hg+fDiWL1+OlJQULFq0CC4uLvjoo49QUVGByspKrF+/Hq6uriobr3v37tLV6Rr07NkTSUlJSE9Ph7+/v8rGIiIiIuVYOBKRyo0fPx579uyRazc0NER8fDw6d+6shqyotT755BNcv34dI0eOxA8//ICjR49CW1sbxsbGMDIywtmzZxEWFqay8caMGYP9+/fLtffo0QNnzpzBnTt3VDYWERERKcdnHIlI5R49eoRff/0VDg4OjfaXlZXh8uXLeP3119s5M1KFhw8fwtTUVPo+MTERVVVVGDp0qEx7a929exfXrl2Dp6dno/2//vorTp8+jVmzZqlsTCIiImocC0ciahM5OTn46aefMHToUNja2uLatWv49NNP8ccff+Cdd97BmDFj1J0iERERETURp6oSkcrFxcXB2dkZS5cuxcCBAxEXF4dRo0bh1q1buHv3LsaPH48zZ86oO01qocLCQpSXl8u119bW4ty5c+2Wx6NHjxATE9Nu4xEREb3IWDgSkcqtW7cOISEhePjwIfbs2YO33noL7777Lk6fPo3ExESEhIQgPDxc3WlSMxUVFcHNzQ29evWCsbEx/Pz8ZArIkpISuLu7t1s++fn5mD17druNR0RE9CJj4UhEKnf16lXpipczZsxAWVkZpk2bJu1/++23ceXKFTVlRy21fPlyaGlpIS0tDXFxccjOzoa7uzsePXokPUaVTz+UlpYqfZWVlalsLCIiIlJOR90JENHzSSQSAQC0tLTQuXNnGBkZSfvEYjGePHmirtSohRISEnDkyBHplhspKSmYPn06xowZg8TERAD/v+6qYGxsrPR8giCodDwiIiJSjIUjEalc7969cfPmTVhZWQEAfvzxR1haWkr78/PzYW5urq70qIWePHkCExMT6ftOnTohNjYW06dPh7u7O/773/+qdDyxWIyVK1diyJAhjfbfvHkT8+bNU+mYRERE1DgWjkSkckFBQfjzzz+l7/v37y/Tf/LkSa6qqoH69u2LK1euwMbGRtqmo6ODQ4cOYfr06Zg8ebJKx3NxcQEAhdu2GBsbq3RqLBERESnG7TiIiKhJPvjgA2RmZiI+Pl6ur66uDj4+Pvjuu+9QX1+vkvEiIyNRVVWF4ODgRvt/++03REREYM2aNSoZj4iIiBRj4UhERE1SV1eHyspKSCQShf337t1Dr1692jkzIiIiamssHImISCUKCgqwZs0aREVFtcn5KyoqcPDgQdy6dQvm5ubw9fWFqalpm4xFREREslg4EhGRSmRlZcHFxUXm+dbWsLe3x/nz5/HSSy+hoKAAo0aNwqNHj9CvXz/k5uZCR0cHP/30E/r06aOS8YiIiEgxLo5DRERNcuzYMaX9t2/fVul4165dQ11dHQBgxYoV6NGjBzIzM2FkZITy8nJ4e3tj5cqV2L9/v0rHJSIiInm840hERE2ipaUFkUikdCVTkUiksjuOWlpauH//PszMzGBlZYWIiAiMGzdO2p+amop//vOfyM/PV8l4REREpJiWuhMgIiLNYG5ujtjYWNTX1zf6unz5ssrHFIlEAIDq6mq5vT979uyJ4uJilY9JRERE8lg4EhFRkwwaNAiXLl1S2P+su5Et4eHhARcXF5SWluL69esyfXfv3uXiOERERO2EzzgSEVGThISEoKKiQmG/tbU1kpKSVDbe3/dnNDQ0lHn/3XffYeTIkSobj4iIiBTjM45ERERERESkFKeqEhERERERkVIsHImIiIiIiEgpFo5ERERERESkFAtHIiIiIiIiUoqFIxERqV1ycjJEIhEeP37c5Bh/f3/84x//aPXYqjqPKuzduxfGxsbqToOIiEgOC0ciIlLK398fIpEIgYGBcn3z58+HSCSCv79/+yfWTHl5eRCJRMjMzJRp//TTT7F37952ySEpKQkTJ06EqakpDAwMYG9vjyVLluDevXvtMr4yDd+PmZkZysrKZPqcnZ3x4YcfqicxIiLqEFg4EhHRM1lYWODAgQOoqqqStlVXV2P//v2wtLRUY2atZ2Rk1C53+b744guMHTsW3bt3x+HDh5GdnY2IiAg8efIEmzdvbvPxm6qsrAybNm1SdxpERNTBsHAkIqJncnFxgYWFBWJjY6VtsbGxsLS0xMCBA2WO/eOPPxAcHAwzMzN07twZI0aMQHp6uswxJ06cQL9+/aCvrw93d3fk5eXJ9H/44YdwdnaWadu2bRt69+6tMMe4uDiMGDECxsbGMDU1xeTJk5Gbmyvt79OnDwBg4MCBEIlEGD16NAD5qarPyr9hWm1iYiJcXV1hYGCAYcOG4fr16wpzKywsRHBwMIKDgxEVFYXRo0ejd+/eGDVqFHbv3o3Vq1c3GpebmwsvLy9069YNhoaGGDx4MBISEmSO+fzzz2FjY4POnTujW7dumDZtmrTvm2++gaOjI/T19WFqaoqxY8eioqJCYZ4AsHDhQmzZsgUPHjxQeMyXX34JV1dXiMVidO/eHW+99ZbM8Q3fUXx8PAYOHAh9fX2MGTMGDx48wMmTJ2FnZweJRIK33noLlZWV0rj6+nps2LABffr0gb6+PpycnPDNN98ozZeIiNoHC0ciImqSOXPmYM+ePdL3UVFRmD17ttxxy5Ytw+HDhxEdHY3Lly/D2toanp6eKCkpAQAUFBRg6tSpmDJlCjIzMxEQEIDly5e3Or+KigosXrwYFy9eRGJiIrS0tODt7Y36+noAwIULFwAACQkJKCoqkimCm5N/g5UrV2Lz5s24ePEidHR0MGfOHIW5HTp0CDU1NVi2bFmj/YrueJaXl2PixIlITExERkYGJkyYgClTpiA/Px8AcPHiRQQHB2PdunW4fv064uLiMGrUKABAUVERfH19MWfOHOTk5CA5ORlTp06FIAiKv0QAvr6+sLa2xrp16xQeU1tbi/Xr1yMrKwtHjx5FXl5eo9OVP/zwQ+zYsQOpqakoKCjAjBkzsG3bNuzfvx/Hjx/HqVOnsH37dunxGzZsQExMDCIiInD16lUsWrQI77zzDs6ePas0ZyIiagcCERGRErNmzRK8vLyEBw8eCJ06dRLy8vKEvLw8oXPnzkJxcbHg5eUlzJo1SxAEQSgvLxd0dXWFffv2SeNramqEHj16CBs3bhQEQRBWrFgh2Nvby4zxwQcfCACER48eCYIgCGvWrBGcnJxkjtm6davQq1cvubwUKS4uFgAIP//8syAIgnDnzh0BgJCRkdHo52tq/klJSQIAISEhQXrM8ePHBQBCVVVVo7kEBQUJEolEYa4N9uzZIxgZGSk9xsHBQdi+fbsgCIJw+PBhQSKRCKWlpXLHXbp0SQAg5OXlPXNcQZD9fuLi4gRdXV3h1q1bgiAIgpOTk7BmzRqFsenp6QIAoaysTBCExr+jDRs2CACE3Nxcadu8efMET09PQRAEobq6WjAwMBBSU1Nlzj137lzB19e3SZ+BiIjaDu84EhFRk3Tt2hWTJk3C3r17sWfPHkyaNAkvv/yyzDG5ubmora3F8OHDpW26urpwc3NDTk4OACAnJwdDhgyRiRs6dGir87t58yZ8fX3Rt29fSCQS6bTWhrtzTdGU/BsMGDBA+m9zc3MAUDi9UxAEiESiJufRoLy8HEuXLoWdnR2MjY1haGiInJwc6WcaN24cevXqhb59+2LmzJnYt2+fdOqnk5MTPDw84OjoiOnTpyMyMhKPHj1q0rienp4YMWIEQkNDG+2/dOkSpkyZAktLS4jFYrz++usA5L/rv35H3bp1g4GBAfr27SvT1vCd3bp1C5WVlRg3bhwMDQ2lr5iYGJkpx0REpB4sHImIqMnmzJmDvXv3Ijo6WunUzNbS0tKSm1JZW1urNGbKlCkoKSlBZGQk0tLSkJaWBgCoqalpkxx1dXWl/24oChumxf5dv3798OTJExQVFTVrjKVLl+LIkSP4+OOP8cMPPyAzMxOOjo7SzyQWi3H58mV89dVXMDc3x+rVq+Hk5ITHjx9DW1sbp0+fxsmTJ2Fvb4/t27fj1VdfxZ07d5o0dnh4OL7++mtkZGTItFdUVMDT0xMSiQT79u1Deno6jhw5AkD+u/77d/TX9w1tDd9ZeXk5AOD48ePIzMyUvrKzs/mcIxFRB8DCkYiImmzChAmoqalBbW0tPD095fqtrKygp6eHlJQUaVttbS3S09Nhb28PALCzs5M+b9jgp59+knnftWtX3L9/X6Z4/Ps2Gn/18OFDXL9+HatWrYKHhwfs7Ozk7q7p6ekBAP7880+F52lK/i0xbdo06OnpYePGjY32K9q/MiUlBf7+/vD29oajoyO6d+8ut5CQjo4Oxo4di40bN+LKlSvIy8vDmTNnADwtzIYPH461a9ciIyMDenp60iLvWdzc3DB16lS550+vXbuGhw8fIjw8HCNHjoStra3ShXSayt7eHp06dUJ+fj6sra1lXhYWFq0+PxERtY6OuhMgIiLNoa2tLZ2yqa2tLdffpUsXBAUFISQkBC+99BIsLS2xceNGVFZWYu7cuQCAwMBAbN68GSEhIQgICMClS5fk9lEcPXo0iouLsXHjRkybNg1xcXE4efIkJBJJo3mZmJjA1NQUu3btgrm5OfLz8+UKHjMzM+jr6yMuLg6vvPIKOnfuDCMjo2bn3xIWFhbYunUrFixYgNLSUvj5+aF3794oLCxETEwMDA0NG92Sw8bGBrGxsZgyZQpEIhFCQ0Nl7mp+//33uH37NkaNGgUTExOcOHEC9fX1ePXVV5GWlobExESMHz8eZmZmSEtLQ3FxMezs7Jqcd1hYGBwcHKCj8///LlhaWkJPTw/bt29HYGAgfvnlF6xfv77F300DsViMpUuXYtGiRaivr8eIESPw5MkTpKSkQCKRYNasWa0eg4iIWo53HImIqFkkEonCAg54OsXRx8cHM2fOhIuLC27duoX4+HiYmJgAeFp4HD58GEePHoWTkxMiIiLw8ccfy5zDzs4On3/+Of7zn//AyckJFy5cwNKlSxWOqaWlhQMHDuDSpUvo378/Fi1ahE8++UTmGB0dHXz22Wf44osv0KNHD3h5ebUo/5Z67733cOrUKdy7dw/e3t6wtbVFQEAAJBKJws+2ZcsWmJiYYNiwYZgyZQo8PT3h4uIi7Tc2NkZsbCzGjBkDOzs7RERE4KuvvoKDgwMkEgnOnTuHiRMnol+/fli1ahU2b96MN954o8k59+vXD3PmzEF1dbW0rWvXrti7dy8OHToEe3t7hIeHq2zfx/Xr1yM0NBQbNmyAnZ0dJkyYgOPHj0u3UiEiIvURCX9/iISIiIiIiIjoL3jHkYiIiIiIiJRi4UhERERERERKsXAkIiIiIiIipVg4EhERERERkVIsHImIiIiIiEgpFo5ERERERESkFAtHIiIiIiIiUoqFIxERERERESnFwpGIiIiIiIiUYuFIRERERERESrFwJCIiIiIiIqX+Bw26hTOGdX7DAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA44AAAHfCAYAAAAfuobvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACmTUlEQVR4nOzdd1gU5/c28HvpvaiAoigIFuzGFnuJHWuM0di7UewJlthib4kaS9RobPlaYmyJXVHU2BV7L2A31igqVjjvH7w7P9bdHWAXWIj357r2Umbm7Dwzs+3MzHMejYgIiIiIiIiIiIywsnQDiIiIiIiIKGNj4khERERERESqmDgSERERERGRKiaOREREREREpIqJIxEREREREali4khERERERESqmDgSERERERGRKiaOREREREREpIqJIxEREREREali4khE9B/h7++PDh06WLoZZvv++++h0WjSZV3VqlVDtWrVlL93794NjUaD1atXp8v6O3ToAH9//3RZV2Z3/fp1aDQa/PDDD5ZuChHRR4mJIxFRBnft2jV0794defPmhYODA9zc3FCxYkX89NNPePXqlaWbp2rx4sXQaDTKw8HBAb6+vqhTpw5mzJiB58+fp8p67t69i++//x4nT55MledLTRmxbdokLPHDzc0NJUqUwKxZsxAXF5eu7Tl58iTatGkDPz8/2NvbI0uWLKhZsyYWLVqU7m3R2rx5M77//nuLrJuIKCOysXQDiIjIuE2bNqF58+awt7dHu3btUKRIEbx9+xb79u1DWFgYzp07h19++cXSzUzS6NGjERAQgHfv3uGff/7B7t270a9fP0ydOhV//fUXihUrpiw7bNgwDB48OEXPf/fuXYwaNQr+/v4oUaJEsuO2b9+eovWYQq1t8+fPR3x8fJq3wZivvvoK9evXBwA8e/YMmzdvRu/evXHjxg1MmTIlXdqwYMECfP311/Dx8UHbtm2RL18+PH/+HDt37kTnzp1x7949fPfdd+nSlsQ2b96M2bNnM3kkIvr/mDgSEWVQ0dHRaNmyJfLkyYNdu3YhR44cyrzQ0FBcvXoVmzZtsmALk69evXooXbq08veQIUOwa9cuNGjQAI0aNcKFCxfg6OgIALCxsYGNTdp+PcXGxsLJyQl2dnZpup6k2NraWnT9n3zyCdq0aaP83bNnT5QrVw7Lly9PtcRRu68NOXToEL7++muUL18emzdvhqurqzKvX79+OHbsGM6ePZsq7Uiuly9fwtnZOV3XSUSUGfBWVSKiDGry5Ml48eIFfv31V52kUSsoKAh9+/Y1Gv/kyRN8++23KFq0KFxcXODm5oZ69erh1KlTesvOnDkThQsXhpOTEzw9PVG6dGksX75cmf/8+XP069cP/v7+sLe3h7e3N2rVqoXjx4+bvH01atTA8OHDcePGDfzvf/9Tphvq47hjxw5UqlQJHh4ecHFxQYECBZSrULt370aZMmUAAB07dlRuvVy8eDGAhH6MRYoUQWRkJKpUqQInJycl9sM+jlpxcXH47rvvkD17djg7O6NRo0a4deuWzjLG+pQmfs6k2maoj+PLly/xzTffKLdtFihQAD/88ANERGc5jUaDXr16Yf369ShSpAjs7e1RuHBhbN261fAOTwaNRgMfHx+9xP3PP/9ESEgIfH19YW9vj8DAQIwZM0bvNlK1fW3IqFGjoNFosGzZMp2kUat06dIG9/Evv/yCwMBA2Nvbo0yZMjh69KjO/NOnT6NDhw7K7d3Zs2dHp06d8PjxY53ltK+18+fPo1WrVvD09ESlSpXQoUMHzJ49W9kn2gcR0ceMVxyJiDKoDRs2IG/evKhQoYJJ8VFRUVi/fj2aN2+OgIAA3L9/H/PmzUPVqlVx/vx5+Pr6Aki4XbJPnz744osv0LdvX7x+/RqnT5/G4cOH0apVKwDA119/jdWrV6NXr14oVKgQHj9+jH379uHChQv45JNPTN7Gtm3b4rvvvsP27dvRtWtXg8ucO3cODRo0QLFixTB69GjY29vj6tWr2L9/PwAgODgYo0ePxogRI9CtWzdUrlwZAHT22+PHj1GvXj20bNkSbdq0gY+Pj2q7xo0bB41Gg0GDBuHBgweYPn06atasiZMnTypXRpMjOW1LTETQqFEjREREoHPnzihRogS2bduGsLAw3LlzB9OmTdNZft++fVi7di169uwJV1dXzJgxA82aNcPNmzeRNWvWJNsXGxuLR48eAQBiYmKwZcsWbN26FUOGDNFZbvHixXBxccGAAQPg4uKCXbt2YcSIEYiJidG7MpncfR0bG4udO3eiSpUqyJ07d5Jt1Vq+fDmeP3+O7t27Q6PRYPLkyfj8888RFRWlXMHdsWMHoqKi0LFjR2TPnl25pfvcuXM4dOiQXhLYvHlz5MuXD+PHj4eIoGTJkrh79y527NiB3377LdltIyL6TxMiIspwnj17JgCkcePGyY7JkyePtG/fXvn79evXEhcXp7NMdHS02Nvby+jRo5VpjRs3lsKFC6s+t7u7u4SGhia7LVqLFi0SAHL06FHV5y5ZsqTy98iRIyXx19O0adMEgDx8+NDocxw9elQAyKJFi/TmVa1aVQDI3LlzDc6rWrWq8ndERIQAkJw5c0pMTIwyfdWqVQJAfvrpJ2Xah/vb2HOqta19+/aSJ08e5e/169cLABk7dqzOcl988YVoNBq5evWqMg2A2NnZ6Uw7deqUAJCZM2fqrSux6OhoAWDw0aNHD4mPj9dZPjY2Vu85unfvLk5OTvL69WudbTe2rz+kbWvfvn2TXDZxm7NmzSpPnjxRpv/5558CQDZs2KDa3hUrVggA2bt3rzJN+1r76quv9JYPDQ0V/kwiIvo/vFWViCgDiomJAQCDt+8ll729PaysEj7m4+Li8PjxY+U2z8S3mHp4eOD27dt6t/sl5uHhgcOHD+Pu3bsmt8cYFxcX1eqqHh4eABJulzS1kIy9vT06duyY7OXbtWuns++/+OIL5MiRA5s3bzZp/cm1efNmWFtbo0+fPjrTv/nmG4gItmzZojO9Zs2aCAwMVP4uVqwY3NzcEBUVlaz1devWDTt27MCOHTuwZs0ahIaGYt68eRgwYIDOcomvsj5//hyPHj1C5cqVERsbi4sXL+osm9x9beprvEWLFvD09FT+1l7FTbzNidv7+vVrPHr0CJ9++ikAGLy9+uuvv05RG4iIPkZMHImIMiA3NzcAMGu4ivj4eEybNg358uWDvb09smXLBi8vL5w+fRrPnj1Tlhs0aBBcXFxQtmxZ5MuXD6GhocptoFqTJ0/G2bNn4efnh7Jly+L7779PdnKSlBcvXqgmDy1atEDFihXRpUsX+Pj4oGXLlli1alWKksicOXOmqBBOvnz5dP7WaDQICgrC9evXk/0cprhx4wZ8fX319kdwcLAyPzFDt3h6enri33//Tdb68uXLh5o1a6JmzZr4/PPPMWvWLPTs2RPTp0/HmTNnlOXOnTuHpk2bwt3dHW5ubvDy8lKK6iR+LQHJ39emvsY/3GZtEpl4m588eYK+ffvCx8cHjo6O8PLyQkBAgMH2AlDmERGRcUwciYgyIDc3N/j6+ppVUXL8+PEYMGAAqlSpgv/973/Ytm0bduzYgcKFC+skXcHBwbh06RJWrlyJSpUqYc2aNahUqRJGjhypLPPll18iKioKM2fOhK+vL6ZMmYLChQvrXQFLqdu3b+PZs2cICgoyuoyjoyP27t2L8PBwtG3bFqdPn0aLFi1Qq1atZI/xl5J+icllrFhKeo47aG1tbXC6fFBIJyU+++wzAMDevXsBAE+fPkXVqlVx6tQpjB49Ghs2bMCOHTswadIkANBL4JO7r4OCgmBjY6OToCZHcrb5yy+/xPz58/H1119j7dq12L59u1I0yNAJh7R4fRAR/dcwcSQiyqAaNGiAa9eu4eDBgybFr169GtWrV8evv/6Kli1bonbt2qhZsyaePn2qt6yzszNatGiBRYsW4ebNmwgJCcG4cePw+vVrZZkcOXKgZ8+eWL9+PaKjo5E1a1aMGzfO1M0DAKXwSJ06dVSXs7KywmeffYapU6fi/PnzGDduHHbt2oWIiAgAxpM4U125ckXnbxHB1atXdSqgenp6GtyXH14VTEnb8uTJg7t37+pdhdPeDponT55kP5ep3r9/DyDhSjCQUBn28ePHWLx4Mfr27YsGDRqgZs2aOreLmsLJyQk1atTA3r179SrWmuPff//Fzp07MXjwYIwaNQpNmzZFrVq1kDdv3hQ9D6uoEhHpYuJIRJRBDRw4EM7OzujSpQvu37+vN//atWv46aefjMZbW1vrXXn6448/cOfOHZ1pHw5RYGdnh0KFCkFE8O7dO8TFxend3uft7Q1fX1+8efMmpZul2LVrF8aMGYOAgAC0bt3a6HJPnjzRm1aiRAkAUNavHXfPUCJniqVLl+okb6tXr8a9e/dQr149ZVpgYCAOHTqEt2/fKtM2btyolwSlpG3169dHXFwcZs2apTN92rRp0Gg0OutPKxs2bAAAFC9eHMD/XeFL/Fp6+/Ytfv75Z7PXNXLkSIgI2rZtqySqiUVGRmLJkiUpek5D7QWA6dOnp+h5Uvs1RUSU2XE4DiKiDCowMBDLly9HixYtEBwcjHbt2qFIkSJ4+/YtDhw4gD/++MPgGHdaDRo0wOjRo9GxY0dUqFABZ86cwbJly/SuvNSuXRvZs2dHxYoV4ePjgwsXLmDWrFkICQmBq6srnj59ily5cuGLL75A8eLF4eLigvDwcBw9ehQ//vhjsrZly5YtuHjxIt6/f4/79+9j165d2LFjB/LkyYO//voLDg4ORmNHjx6NvXv3IiQkBHny5MGDBw/w888/I1euXKhUqZKyrzw8PDB37ly4urrC2dkZ5cqVM7nvWpYsWVCpUiV07NgR9+/fx/Tp0xEUFKQzZEiXLl2wevVq1K1bF19++SWuXbuG//3vfzrFalLatoYNG6J69eoYOnQorl+/juLFi2P79u34888/0a9fP73nNtfx48eVMTSfP3+OnTt3Ys2aNahQoQJq164NIGHoEE9PT7Rv3x59+vSBRqPBb7/9ZtbtsFoVKlTA7Nmz0bNnTxQsWBBt27ZFvnz58Pz5c+zevRt//fUXxo4dm6LndHNzQ5UqVTB58mS8e/cOOXPmxPbt2xEdHZ2i5ylVqhQAoE+fPqhTpw6sra3RsmXLFD0HEdF/iqXKuRIRUfJcvnxZunbtKv7+/mJnZyeurq5SsWJFmTlzps5QCIaG4/jmm28kR44c4ujoKBUrVpSDBw/qDRcxb948qVKlimTNmlXs7e0lMDBQwsLC5NmzZyIi8ubNGwkLC5PixYuLq6urODs7S/HixeXnn39Osu3a4Ti0Dzs7O8mePbvUqlVLfvrpJ50hL7Q+HI5j586d0rhxY/H19RU7Ozvx9fWVr776Si5fvqwT9+eff0qhQoXExsZGZ/iLqlWrGh1uxNhwHCtWrJAhQ4aIt7e3ODo6SkhIiNy4cUMv/scff5ScOXOKvb29VKxYUY4dO6b3nGpt+3A4DhGR58+fS//+/cXX11dsbW0lX758MmXKFL0hMgAYHCLF2DAhiRkajsPGxkby5s0rYWFh8vz5c53l9+/fL59++qk4OjqKr6+vDBw4ULZt2yYAJCIiQmd/JjW0iyGRkZHSqlUrZZs9PT3ls88+kyVLlihDymjbPGXKFL14ADJy5Ejl79u3b0vTpk3Fw8ND3N3dpXnz5nL37l295bSvNUNDvbx//1569+4tXl5eotFoODQHEX30NCKpcMqQiIiIiIiI/rPYx5GIiIiIiIhUMXEkIiIiIiIiVUwciYiIiIiISBUTRyIiIiIiIlLFxJGIiIiIiIhUZepxHOPj43H37l24urpCo9FYujlERERERESZiojg+fPn8PX1hZWV8euKmTpxvHv3Lvz8/CzdDCIiIiIiokzt1q1byJUrl9H5mTpxdHV1BZCwkW5ubhZuDRERERERUeYSExMDPz8/JbcyJlMnjtrbU93c3Jg4EhERERERmSiprn8sjkNERERERESqmDgSERERERGRKiaOREREREREpIqJIxEREREREali4khERERERESqmDgSERERERGRKiaOREREREREpIqJIxEREREREali4khERERERESqmDgSERERERGRKiaOREREREREpIqJIxEREREREamysXQDiIjo4+Q/eFOKlr8+MSSNWkJERERJ4RVHIiIiIiIiUsXEkYiIiIiIiFQxcSQiIiIiIiJVTByJiIiIiIhIFRNHIiIiIiIiUsXEkYiIiIiIiFQxcSQiIiIiIiJVTByJiIiIiIhIFRNHIiIiIiIiUsXEkYiIiIiIiFQxcSQiIiIiIiJVTByJiIiIiIhIFRNHIiIiIiIiUsXEkYiIiIiIiFQxcSQiIiIiIiJVTByJiIiIiIhIFRNHIiIiIiIiUsXEkYiIiIiIiFQxcSQiIiIiIiJVTByJiIiIiIhIFRNHIiIiIiIiUsXEkYiIiIiIiFQxcSQiIiIiIiJVTByJiIiIiIhIFRNHIiIiIiIiUsXEkYiIiIiIiFQxcSQiIiIiIiJVTByJiIiIiIhIlUUTx7i4OAwfPhwBAQFwdHREYGAgxowZAxGxZLOIiIiIiIgoERtLrnzSpEmYM2cOlixZgsKFC+PYsWPo2LEj3N3d0adPH0s2jYiIiIiIiP4/iyaOBw4cQOPGjRESEgIA8Pf3x4oVK3DkyBFLNouIiIiIiIgSseitqhUqVMDOnTtx+fJlAMCpU6ewb98+1KtXz+Dyb968QUxMjM6DiIiIiIiI0pZFrzgOHjwYMTExKFiwIKytrREXF4dx48ahdevWBpefMGECRo0alc6tJCIiIiIi+rhZ9IrjqlWrsGzZMixfvhzHjx/HkiVL8MMPP2DJkiUGlx8yZAiePXumPG7dupXOLSYiIiIiIvr4WPSKY1hYGAYPHoyWLVsCAIoWLYobN25gwoQJaN++vd7y9vb2sLe3T+9mEhERERERfdQsesUxNjYWVla6TbC2tkZ8fLyFWkREREREREQfsugVx4YNG2LcuHHInTs3ChcujBMnTmDq1Kno1KmTJZtFREREREREiVg0cZw5cyaGDx+Onj174sGDB/D19UX37t0xYsQISzaLiIiIiIiIErFo4ujq6orp06dj+vTplmwGERERERERqbBoH0ciIiIiIiLK+Jg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSqLJ4537txBmzZtkDVrVjg6OqJo0aI4duyYpZtFRERERERE/5+NJVf+77//omLFiqhevTq2bNkCLy8vXLlyBZ6enpZsFhERERERESVi0cRx0qRJ8PPzw6JFi5RpAQEBFmwRERERERERfciit6r+9ddfKF26NJo3bw5vb2+ULFkS8+fPN7r8mzdvEBMTo/MgIiIiIiKitGXRK45RUVGYM2cOBgwYgO+++w5Hjx5Fnz59YGdnh/bt2+stP2HCBIwaNcoCLU1//oM3pWj56xND0qglRERERET0sbPoFcf4+Hh88sknGD9+PEqWLIlu3bqha9eumDt3rsHlhwwZgmfPnimPW7dupXOLiYiIiIiIPj4WTRxz5MiBQoUK6UwLDg7GzZs3DS5vb28PNzc3nQcRERERERGlLYsmjhUrVsSlS5d0pl2+fBl58uSxUIuIiIiIiIjoQxZNHPv3749Dhw5h/PjxuHr1KpYvX45ffvkFoaGhlmwWERERERERJWLRxLFMmTJYt24dVqxYgSJFimDMmDGYPn06WrdubclmERERERERUSIWraoKAA0aNECDBg0s3QwiIiIiIiIywqJXHImIiIiIiCjjY+JIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqkxKHI8fP44zZ84of//5559o0qQJvvvuO7x9+zbVGkdERERERESWZ1Li2L17d1y+fBkAEBUVhZYtW8LJyQl//PEHBg4cmKoNJCIiIiIiIssyKXG8fPkySpQoAQD4448/UKVKFSxfvhyLFy/GmjVrUrN9REREREREZGEmJY4igvj4eABAeHg46tevDwDw8/PDo0ePUq91REREREREZHEmJY6lS5fG2LFj8dtvv2HPnj0ICQkBAERHR8PHxydVG0hERERERESWZVLiOG3aNBw/fhy9evXC0KFDERQUBABYvXo1KlSokKoNJCIiIiIiIsuyMSWoePHiOlVVtaZMmQIbG5OekoiIiIiIiDIok6445s2bF48fP9ab/vr1a+TPn9/sRhEREREREVHGYVLieP36dcTFxelNf/PmDW7fvm12o4iIiIiIiCjjSNF9pX/99Zfy/23btsHd3V35Oy4uDjt37kRAQEDqtY6IiIiIiIgsLkWJY5MmTQAAGo0G7du315lna2sLf39//Pjjj6nWOCIiIiIiIrK8FCWO2rEbAwICcPToUWTLli1NGkVERERElBH4D96UouWvTwxJo5YQWZZJJVCjo6NTux1ERERERESUQZk8dsbOnTuxc+dOPHjwQLkSqbVw4UKzG0ZEREREREQZg0mJ46hRozB69GiULl0aOXLkgEajSe12ERERERERUQZhUuI4d+5cLF68GG3btk3t9hAREREREVEGY9I4jm/fvkWFChVSuy1ERERERESUAZmUOHbp0gXLly9P7bYQERERERFRBmTSraqvX7/GL7/8gvDwcBQrVgy2trY686dOnZoqjSMiIiIiIiLLMylxPH36NEqUKAEAOHv2rM48FsohIiIiIiL6bzEpcYyIiEjtdhAREREREVEGZVIfRyIiIiIiIvp4mHTFsXr16qq3pO7atcvkBhEREREREVHGYlLiqO3fqPXu3TucPHkSZ8+eRfv27VOjXURERERERJRBmJQ4Tps2zeD077//Hi9evDCrQURERERERJSxpGofxzZt2mDhwoWp+ZRERERERERkYamaOB48eBAODg6p+ZRERERERERkYSbdqvr555/r/C0iuHfvHo4dO4bhw4enSsOIiIiIiIgoYzApcXR3d9f528rKCgUKFMDo0aNRu3btVGkYERERERERZQwmJY6LFi1K7XYQERERERFRBmVS4qgVGRmJCxcuAAAKFy6MkiVLpkqjiIiIiIiIKOMwKXF88OABWrZsid27d8PDwwMA8PTpU1SvXh0rV66El5dXaraRiIiIiIiILMikqqq9e/fG8+fPce7cOTx58gRPnjzB2bNnERMTgz59+qR2G4mIiIiIiMiCTLriuHXrVoSHhyM4OFiZVqhQIcyePZvFcYiIiIiIiP5jTLriGB8fD1tbW73ptra2iI+PN7tRRERERERElHGYlDjWqFEDffv2xd27d5Vpd+7cQf/+/fHZZ5+lWuOIiIiIiIjI8kxKHGfNmoWYmBj4+/sjMDAQgYGBCAgIQExMDGbOnJnabSQiIiIiIiILMqmPo5+fH44fP47w8HBcvHgRABAcHIyaNWumauOIiIiIiIjI8lJ0xXHXrl0oVKgQYmJioNFoUKtWLfTu3Ru9e/dGmTJlULhwYfz9999p1VYiIiIiIiKygBQljtOnT0fXrl3h5uamN8/d3R3du3fH1KlTU61xREREREREZHkpShxPnTqFunXrGp1fu3ZtREZGmtSQiRMnQqPRoF+/fibFExERERERUdpIUeJ4//59g8NwaNnY2ODhw4cpbsTRo0cxb948FCtWLMWxRERERERElLZSlDjmzJkTZ8+eNTr/9OnTyJEjR4oa8OLFC7Ru3Rrz58+Hp6dnimKJiIiIiIgo7aUocaxfvz6GDx+O169f68179eoVRo4ciQYNGqSoAaGhoQgJCUlWRdY3b94gJiZG50FERERERERpK0XDcQwbNgxr165F/vz50atXLxQoUAAAcPHiRcyePRtxcXEYOnRosp9v5cqVOH78OI4ePZqs5SdMmIBRo0alpMlE/zn+gzcle9nrE0PSsCVERETpJyXffwC/A03F/UzGpChx9PHxwYEDB9CjRw8MGTIEIgIA0Gg0qFOnDmbPng0fH59kPdetW7fQt29f7NixAw4ODsmKGTJkCAYMGKD8HRMTAz8/v5RsAhEREREREaVQihJHAMiTJw82b96Mf//9F1evXoWIIF++fCnunxgZGYkHDx7gk08+UabFxcVh7969mDVrFt68eQNra2udGHt7e9jb26e0yURERERERGSGFCeOWp6enihTpozJK/7ss89w5swZnWkdO3ZEwYIFMWjQIL2kkYiIiIiIiCzD5MTRXK6urihSpIjONGdnZ2TNmlVvOhEREREREVlOiqqqEhERERER0cfHYlccDdm9e7elm0BEREREREQf4BVHIiIiIiIiUsXEkYiIiIiIiFQxcSQiIiIiIiJVTByJiIiIiIhIFRNHIiIiIiIiUsXEkYiIiIiIiFQxcSQiIiIiIiJVTByJiIiIiIhIFRNHIiIiIiIiUsXEkYiIiIiIiFQxcSQiIiIiIiJVTByJiIiIiIhIFRNHIiIiIiIiUsXEkYiIiIiIiFQxcSQiIiIiIiJVTByJiIiIiIhIFRNHIiIiIiIiUsXEkYiIiIiIiFQxcSQiIiIiIiJVTByJiIiIiIhIFRNHIiIiIiIiUsXEkYiIiIiIiFQxcSQiIiIiIiJVTByJiIiIiIhIFRNHIiIiIiIiUsXEkYiIiIiIiFTZWLoBRET/Jf6DN6Vo+esTQ9KoJURERESph1cciYiIiIiISBUTRyIiIiIiIlLFxJGIiIiIiIhUMXEkIiIiIiIiVUwciYiIiIiISBUTRyIiIiIiIlLFxJGIiIiIiIhUMXEkIiIiIiIiVUwciYiIiIiISBUTRyIiIiIiIlLFxJGIiIiIiIhUMXEkIiIiIiIiVUwciYiIiIiISBUTRyIiIiIiIlLFxJGIiIiIiIhUMXEkIiIiIiIiVUwciYiIiIiISBUTRyIiIiIiIlLFxJGIiIiIiIhUMXEkIiIiIiIiVUwciYiIiIiISBUTRyIiIiIiIlLFxJGIiIiIiIhUMXEkIiIiIiIiVUwciYiIiIiISBUTRyIiIiIiIlLFxJGIiIiIiIhUMXEkIiIiIiIiVRZNHCdMmIAyZcrA1dUV3t7eaNKkCS5dumTJJhEREREREdEHLJo47tmzB6GhoTh06BB27NiBd+/eoXbt2nj58qUlm0VERERERESJ2Fhy5Vu3btX5e/HixfD29kZkZCSqVKmit/ybN2/w5s0b5e+YmJg0byMREREREdHHzqKJ44eePXsGAMiSJYvB+RMmTMCoUaPSs0lm8R+8KUXLX58YkkYtIfr4mPP+43uX0gJfV+njY9vPKdnejLCtPD7qMvv2ZkY8RsmXYYrjxMfHo1+/fqhYsSKKFClicJkhQ4bg2bNnyuPWrVvp3EoiIiIiIqKPT4a54hgaGoqzZ89i3759Rpext7eHvb19OraKiIiIiIiIMkTi2KtXL2zcuBF79+5Frly5LN0cIiIiIiIiSsSiiaOIoHfv3li3bh12796NgIAASzaHiIiIiIiIDLBo4hgaGorly5fjzz//hKurK/755x8AgLu7OxwdHS3ZNCIiIiIiIvr/LFocZ86cOXj27BmqVauGHDlyKI/ff//dks0iIiIiIiKiRCx+qyoRERERERFlbBlmOA4iIiIiIiLKmJg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqpg4EhERERERkSomjkRERERERKSKiSMRERERERGpYuJIREREREREqmws3QAiIkrgP3hTipa/PjEkjVqSfGwz/ZeY89rg6ypj4/GhtPCxva54xZGIiIiIiIhUMXEkIiIiIiIiVUwciYiIiIiISBUTRyIiIiIiIlLFxJGIiIiIiIhUMXEkIiIiIiIiVUwciYiIiIiISBUTRyIiIiIiIlLFxJGIiIiIiIhUMXEkIiIiIiIiVUwciYiIiIiISBUTRyIiIiIiIlLFxJGIiIiIiIhUMXEkIiIiIiIiVUwciYiIiIiISBUTRyIiIiIiIlLFxJGIiIiIiIhUMXEkIiIiIiIiVUwciYiIiIiISBUTRyIiIiIiIlLFxJGIiIiIiIhUMXEkIiIiIiIiVUwciYiIiIiISBUTRyIiIiIiIlLFxJGIiIiIiIhUMXEkIiIiIiIiVUwciYiIiIiISBUTRyIiIiIiIlKVIRLH2bNnw9/fHw4ODihXrhyOHDli6SYRERERERHR/2fxxPH333/HgAEDMHLkSBw/fhzFixdHnTp18ODBA0s3jYiIiIiIiADYWLoBU6dORdeuXdGxY0cAwNy5c7Fp0yYsXLgQgwcP1ln2zZs3ePPmjfL3s2fPAAAxMTHp1+AUiH8Tm6LlE2+HObH035aS18bH/Lqw1PvvY3vfZ8bt/djW+7H52N6/me07ITMen8z4ujBHZmyzOT6242uItl0iorqcRpJaIg29ffsWTk5OWL16NZo0aaJMb9++PZ4+fYo///xTZ/nvv/8eo0aNSudWEhERERER/bfdunULuXLlMjrfolccHz16hLi4OPj4+OhM9/HxwcWLF/WWHzJkCAYMGKD8HR8fjydPniBr1qzQaDRp3t7UEBMTAz8/P9y6dQtubm6MZaxFYzNbexnLWMYylrEZb52MZSxjUyfWUkQEz58/h6+vr+pyFr9VNSXs7e1hb2+vM83Dw8MyjTGTm5ubyS8mxjI2tWMzW3sZy1jGMpaxGW+djGUsY1Mn1hLc3d2TXMaixXGyZcsGa2tr3L9/X2f6/fv3kT17dgu1ioiIiIiIiBKzaOJoZ2eHUqVKYefOncq0+Ph47Ny5E+XLl7dgy4iIiIiIiEjL4reqDhgwAO3bt0fp0qVRtmxZTJ8+HS9fvlSqrP7X2NvbY+TIkXq33DKWsZaIzWztZSxjGctYxma8dTKWsYxNndiMzqJVVbVmzZqFKVOm4J9//kGJEiUwY8YMlCtXztLNIiIiIiIiImSQxJGIiIiIiIgyLov2cSQiIiIiIqKMj4kjERERERERqWLiSERERERERKqYOBIREREREZEqJo5EREQfuVevXlm6CenmY9pWIqLUxMQxHaxYscLovLCwsHRsSfLExMQYnXf16lXV2IiICKPzZs+ebXKbkuP27dtG5x06dEg11pLtJsv5L/6AfPfundF5jx49Uo015z2UGh48eICzZ8/i9OnTOo+MyJzPjLNnzxqdt379etVYc45vnz59DE5/+fIl6tevbzTuY9pWLXO+t83ZX6Z+/5qzrzKqlHw+d+zYEXfv3k3D1iSIi4vT+fvIkSM4dOgQ3rx5k2Ts+/fvcerUKWzbtg3btm3DqVOnVI+bMW/evMG1a9eStc4P41IaY65nz57h0qVLuHTpEp49e5ZusYlFR0fj/fv3JsfTB4TSnLu7u2zevFlver9+/SR79uyqsbt27TI6b9asWaqxR44ckUmTJsk333wj/fv313moqVSpkrx+/Vpv+sWLFyVnzpyqsR4eHnLs2DG96dOnTxdXV1fVWBGR+Ph4WbVqlfTo0UOaNWsmTZs21XmoCQ4OlsePH+tN37dvn7i7u6dpuy3h2bNnRudduXJFNfbMmTNG561bt87UJqmKjIyU06dPK3+vX79eGjduLEOGDJE3b96kyTpFRHr37m1w+osXL6RatWqqsebsYxGRO3fuyO+//y4zZ86Un376SeeRVrGff/65xMfH603/559/pHDhwqqx5ryHREw/xseOHZPChQuLlZWVaDQa0Wg0yv+trKxU13nz5k25deuW8vfhw4elb9++Mm/evCTbaw5zPjN8fX0lKipKb/rq1avFyclJNdac45s3b14ZMWKEzrQXL15IpUqVpFKlSkbjPqZt1TLne9uc/WXq9685+0rEvO+Et2/fGp338OFD1diUfj6fOnXK4MPW1lbWrVun/G3M7Nmz5bPPPpPmzZtLeHi4XlsDAgIMxl2/fl1KlSol1tbWUrduXXn27JnUrFlT+bzKmzevXLp0yWBsXFycDB06VDw8PJTltQ8PDw8ZNmyYxMXFGYxdtGiRHDhwQEREXr16JZ06dRJra2uxsrISGxsb6d69u8HXi9b27dulXr164uHhIVZWVmJlZSUeHh5Sr1492bFjh9E4EZFNmzZJ586dJSwsTC5cuKAz78mTJ1K9enWjsfPnz5fg4GBlndpHcHCwLFiwQHW95sQaYmtrK+fPn09yuXPnzkmPHj2kRIkSkj17dsmePbuUKFFCevToIefOnVONnTlzprRt21ZWrFghIiJLly6V4OBgKVCggAwZMkTevXuX4nZnVEwc08HGjRvF3d1d/v77b2Var169xNfXV+/N+CFTv4DGjRsnGo1GChYsKFWrVpVq1aopD7U3u4hI3bp1pV69ejov9PPnz0v27NmlT58+qrHz588XLy8vne364YcfxM3NTfbu3asaKyLSp08fsbe3l7p160r79u2lQ4cOOg81HTt2lFKlSklMTIwybc+ePeLm5iZTp05N03abmqSbE2tOgm/Oj7lXr17J4cOHZcOGDfLnn3/qPNSULl1aVq9eLSIi165dEwcHB/nqq68kKChI+vbtqxprznrN+QFpzj5etGiR2NnZiYuLi+TJk0f8/f2Vh7EfJ6kRW7p0aenUqZPOtHv37knBggWlWbNmqrHmvIe06zblGBcrVkyaNm0qhw4dkujoaLl+/brOQ02lSpVk6dKlyna6ublJ+fLlJVu2bDJq1Kgk2/zo0SPp2bOnBAcHS9asWcXT01PnYYw5nxkjRoyQvHnzyr1795RpK1euFCcnJ1m1apVqrDnH9+rVq5IjRw6ZNm2aiIjExMRI+fLlpXLlyvLixQujcR/TtmqZ871tzv4y9fvXnH0lknkS/MQnlT58JHWy6aeffhInJycJDQ2VNm3aiJ2dnYwfP16nvcZimzVrJlWrVpUNGzbIl19+KRUrVpRq1arJ7du35e7du1KnTh1p0qSJwdiwsDDx8vKSuXPnSnR0tMTGxkpsbKxER0fLvHnzxNvbWwYOHGgwNiAgQA4dOiQiIt9++634+/vL2rVr5cKFC7J+/XrJnz+/hIWFGYxdvHix2NjYSMuWLWXRokWyefNm2bx5syxatEi++uorsbW1VT47P7Rs2TKxtraWkJAQqVSpkjg4OMj//ve/ZO2ryZMni5OTkwwePFgiIiLk/Pnzcv78eYmIiJAhQ4aIs7OzTJkyJdVjP7zQoH1YWVlJzZo1VS9AbN68Wezs7OTTTz+VkSNHys8//yw///yzjBw5UipUqCD29vaydetWg7FjxowRV1dXadasmWTPnl0mTpwoWbNmlbFjx8r48ePFy8tL7zWemTFxTCfLli0TT09POXbsmPTo0UN8fX2Nnp1KzNQvIG9vb1m0aJFJbY2NjZUKFSrIl19+KfHx8XLmzBnx9vZOVhIkIjJp0iTJmTOnREdHy8SJE8XNzU327duXrFhPT0/ZtGmTSe2Oi4uTpk2bStWqVeX169eya9cucXFxkenTp6dpu81J0i2V4Jv6Y27Lli3i5eVl9EtbjZubm1y9elVERCZOnCi1a9cWkYSrWbly5VKNNWe95vyANGcf58qVS8aOHWv0THJaxT548EAKFiyovF/v3Lkj+fPnl+bNmyf5fOa+h0w9xi4uLsm6gmuIh4eHXLx4UUQSfhhWqFBBRES2bduWZJItIlKvXj3Jly+fTJw4URYtWiSLFy/Weagx57OuV69eUrhwYXn8+LEsW7ZMHB0dlaRbjTnHVyThik2WLFnkp59+kk8//VSqVq2arETqY9pWLVO/t0VM31+mfv+au68yS4JfvHhxCQkJkQsXLignlqKjo8XGxkZ27NiherKpUKFCsmzZMuXv/fv3i5eXlwwfPlxE1JMhLy8vOXHihIiIPH36VDQajc5JhcjISPHx8TEY6+PjYzTpEBHZunWreHt7G5xnb28vN27cEBGR/Pnzy5YtW3Tm79mzR3Lnzm0wNl++fKp3ps2ePVuCgoIMzitRooTO3S2///67ODs7K1f81PZV7ty55ffffze63pUrV4qfn1+qx2o0GqlatareBQcrKytp0qSJ6gWIYsWKKa8DQ0aOHClFixY1OC8wMFDWrFkjIiInT54Ua2trnSR77dq1RvdzZsTEMR3Nnj1b7O3tJVeuXCn6kWTKF1D27Nnl8uXLJrf133//leLFi8sXX3wh3t7e8u2336YofuDAgZI1a1bx8PCQgwcPJjvO398/ybO5at68eSM1a9aUChUqiIuLi8ycOTNF8aa025wk3ZIJvik/5oKCgqRnz57yzz//pLi9rq6uymuyZs2aSjJy48YNcXBwSLP1ipj+A9KcfZwlSxYliUopc2JFEm7fzJ07t/Tv31/y5csnLVq0kPfv3ycr1pz3kKnHuHHjxslKJAxxdnaW6OhoERFp2LChTJw4MVnr1HJxcZGTJ0+atG4R0z/rRERatWol+fLlEycnJ1m/fn2y48w5viIiBw4cEGdnZ6lRo4bExsYmO+5j2lYtU7+3RUzfX6Z+/5q7rzJDgv/mzRvp27evFCpUSI4fP65Mt7GxSfJ2QkdHR+WzQuvMmTPi4+MjgwcPVk2GXF1dlSuycXFxYmNjo/O5ceXKFaN3gTk5Oencwv+hU6dOibOzs8F5efLkUbos5cyZU44ePaoz//z580Zj7e3tlZNqhly8eNHoZ6Szs7PeFWjticQ5c+ao7isHBwfVW0PPnTsnjo6OqR67YsUKyZUrlyxcuFBnenJeGw4ODibvK0dHRyW5F0m4Nfbs2bPK39evX0/yqn1mohERsXQ/y/+iAQMGGJz+xx9/4JNPPkFgYKAyberUqUk+36BBg/Drr78iLi4OW7Zswaeffqq6/OTJk3H37l1Mnz49We011CH/3r17qFWrFho0aICJEycq093c3HSWmzFjhsHn/OGHH1ClShWULVtWmWasYIHWkiVLsHXrVixcuBCOjo5JtttQ4Yznz5/jq6++QkhICHr06KFML1asWJq0O0eOHNi7dy/y5cuXZHtTMxYAnj59imrVqiFfvnzYu3cv2rVrhylTpiQ7vnXr1jh69Cju3LmD5cuXo3HjxqrLu7m54cSJEzqv3+SqUaMG/Pz8ULNmTXTu3Bnnz59HUFAQ9uzZg/bt2+P69etpsl6tgwcPolatWihXrhw2btyYrNcXYPo+HjhwILJkyYLBgwenuK3mxGpdvnwZlStXRq1atfDbb79Bo9EYXM6c99CHTD3Gjx49Qvv27VG2bFkUKVIEtra2OvMbNWpkdJ3lypVD9erVERISgtq1a+PQoUMoXrw4Dh06hC+++EK14A8AlClTBjNnzkzyMxUw7zPjr7/+0ot79+4d+vfvj9q1a+tso9r2aiX3+JYsWdLgvBs3bsDb21vnfXD8+HHl/x/TtmqZ871tzv4y5/v3Q8ndV8ak9DtB69atW6hUqRKaNWuGjRs34pNPPsGyZctgbW2drPiUfj5v2bIF3bp1Q8+ePTFo0CDY29vj1KlTKFSokNGY3LlzY9myZahcubLO9PPnz6NGjRqoU6cO/ve//+kVwAGA8uXLo2bNmhgzZgwWLVqEIUOGoGPHjpgwYQIAYMyYMfjzzz9x7NgxvdiQkBC8f/8ey5YtQ7Zs2XTmPXr0CG3btoW1tTU2btyoFzt06FBERERg8+bNmDRpEs6dO4fly5fDxcUFsbGx6NixI54+fYpt27bpxZYqVQqfffYZJk+ebHB/DBo0COHh4YiMjNSb5+vri7Vr1+p9Lu7ZswcNGjRA3759MWHCBIP7qkqVKggICMCvv/4KGxsbnXlxcXHo1KkTrl+/jj179qRqLABcv34dbdq0gY+PDxYsWABPT0/Y2tom+doIDg5G165djX4GTJ06Fb/88gsuXryoNy9v3rz4+eefUbduXVy5cgUFCxbEypUr0bx5cwDA5s2bERoaiujoaKPrz0yYOKaR6tWrJ2s5jUaDXbt26UxLjYQmPj4eISEhuHz5MgoVKqT3Q2zt2rU6f1tZWRn8gtG+PDQaDUQEGo1G74MiICDAyNbp0mg0iIqKUl3m1atXaNq0Kfbv3w9/f3+9dn/4Za9td+KXceK/06PdKU3SzYk15wdGavyY69SpEypWrIjOnTsnq72JnT59Gq1bt8bNmzcxYMAAjBw5EgDQu3dvPH78GMuXLzcam9L1mvMDMrV+xMXFxaFBgwZ49eoVihYtqvdaVjthlNJYT09Pg9sbGxsLe3t7nR9vT5480VnGnPfQh0w9xhs2bEDbtm0N7vuk1rt79240bdoUMTExaN++PRYuXAgA+O6773Dx4kW9z7oPHT16FIMHD8aIESMMJq2Jj7E5nxlWVskrYm5oe805vqNGjUrWegEoxwv4uLZVy5zvbXP3lynfv+bsKyDzJvha9+/fR8eOHfHixQscPHgwyeSgVatW8PHxwbRp0/TmnTt3DtWrV8fjx48Nft5s27YNTZo0QXx8PKysrLBt2zZ07doVHh4esLKywtGjR7F8+XJ8+eWXerG3bt1C/fr1cfHiRRQtWhQ+Pj5K+8+cOYNChQph48aN8PPz04t9+/Ytmjdvjr///hulS5fG33//DSsrK+TMmRN3795F1qxZsWPHDuTPn18vdvfu3WjQoAHy5s2LmjVr6qx3586diIqKwqZNm1ClShW92CZNmqB48eIG31Pa53316pXBfXX69GnUqVMH7969Q5UqVXTWu3fvXtjZ2WH79u0oUqRIqsZqxcfHY9SoUVi0aBHmz5+Phg0b4uTJk6qvjT/++AOtWrVCvXr1DO6rrVu3Yvny5WjWrJle7PDhwzFv3jw0btwYO3fuRIsWLbB8+XIMGTIEGo0G48aNwxdffJGsi0SZARPHDCg1EppevXphwYIFqF69Onx8fPQ+pBctWqTzt7GzN4ZUrVo12cum1JdffomIiAh88cUXBtv94Zf9jRs3kv3cefLkSZU2fiilSbo5seYk+Ob8mNOKjY1F8+bN4eXlZTChSeqKsiGvX7+GtbW13nOZs15zfkCas48TGzt2LEaMGIECBQrovZYN/fA0J3bJkiXqG5lI+/btdf5Oj/dQUsfY398fDRo0wPDhw5Uv7JSIi4tDTEwMPD09lWnXr1+Hk5MTvL29VWOvXLmCVq1a6f1ATW6ynB7MOb6Zzce0rVqmfv+au68ya4L/oRkzZiAiIgIzZ85Erly5jC53+vRpREZGomPHjgbnnz17FmvWrDG6zuvXryMyMhKlSpWCv78/7t+/j9mzZyM2NhYhISGqJx7i4+Oxbds2HDp0CP/88w8AIHv27Chfvjxq166d5LHYunUrNmzYgKioKMTHxyNHjhyoWLEiWrVqBWdnZ6Nx169fx5w5cwyu9+uvv4a/v7/BuD179uDAgQMYMmSIwfkRERFYunSp3m9JrefPn+N///ufwfW2atVK9aSrObGJ7du3D+3atcONGzeUBF3NgQMHMGPGDBw8eFBvvX379kX58uUNxsXHx2PixIk4ePAgKlSogMGDB+P333/HwIEDERsbi4YNG2LWrFmqxykzYeKYzrS3Tal9uKUGV1dXrFy5EiEhIWm6nqTExcXhzJkzyJMnj86POmOcnZ2xbds2VKpUKR1aZ1xK2p3SJN2cWEsn+L/++iu+/vprODg4IGvWrHoJjdqV2Vu3bkGj0Siv/SNHjmD58uUoVKgQunXrlmbrTanU2seenp6YNm0aOnTokOI2mBNrSaYeY1dXV5w8edKkW5FfvXoFEYGTkxOAhER43bp1CA4ORp06dZKML1u2LGxsbNC3b1+D78Hkvo9S+ln3oadPn8LDwyPFcSlhznswsY9pW7ViYmKwa9cuFCxYEAULFkxRrLn7KyP6GBN8ynxevHiBa9euITg4GHZ2dpZuzn9D+nWn/HjFxcXJqFGjxM3NTRmPxt3dXUaPHp3iqonv37+XEydOyJMnT1SXy507t8lFZrZs2aJTLWzWrFlSvHhx+eqrr5Jcb9++fZWqW+/fv5cKFSqIRqMRZ2dniYiISHLdBQoUUB2DSc3ixYtl48aNyt9hYWHi7u4u5cuXT7KkvzntdnFx0VlvSpgTm9r+/fffJJfx8fGRcePGmVTt05xhE8xZr6XG+fPx8TG5QJU5seaMl2nOe0jE9GPcrl07mT9/fpLPb0itWrVkzpw5IpLwGvbx8ZFcuXKJg4OD/Pzzz0nGOzo6qhZFMMacz4yJEyfKypUrlb+/+OIL0Wg04uvrm2ShHnOO74fHx9XVNVnH52PaVq3mzZsrhaFiY2MlX758YmtrKzY2NkkWjDFnf5n6/ZsW4+Qm5zvBXCn9fH79+rXOuJFXr16V7777Ttq0aSNDhw41OKSI1urVq+Xly5ep1/gUuH//vuzcuVOePn0qIglVSSdNmiQTJkxQLZxjjNrYmR969+6dnDx5UrZu3Spbt26VU6dOpSje2HMmLghjyL1792T9+vUyd+5cmTt3rvz55586VXvTKtZcT58+lYsXL8rFixeV42WKiIgIkwpyZXRMHNPB4MGDxcvLS37++WdlcNrZs2eLl5eXfPfdd6qxpn4BLVy4UL788kuTPiSLFCmiDIlx+vRpsbOzkyFDhsinn36a5FiKiat+rVu3TilfPmzYMKVMvpqNGzdKnTp19CqfJUf+/Pll586dIpJQSc/R0VHmzZsnDRs2NDp2T2q025wk3VIJvqk/5jw9PU2u9mnOsAnmrNecH5Dm7OPx48cbHdw6KebEfjiWor29fbLHyzTnPSRi+jEeO3asZMuWTdq3by8//PCD/PTTTzoPNVmzZlUq2M2fP1+KFSsmcXFxsmrVKilYsGCSba5cuXKSA2EbYs5nhr+/v+zfv19EEgbo9vDwkG3btknnzp2lVq1aqrHmHF9Tj8/HtK1aPj4+ymfhsmXLJCgoSF6+fCk///yzlChRQjXWnP1l6vevOftKJPMk+FWrVpU//vhDRBKG+bG3t5dixYpJixYtpGTJkuLk5CQHDhwwuC6NRiNubm7StWtXZWzE5Hr79q2EhYVJYGCglClTRn799Ved+WpVRiMiIsTZ2Vk0Go1kz55dTp48Kbly5ZJ8+fJJgQIFxN7eXrZt22Yw9vfff9fZhzNnzpTcuXOLlZWVZM2aVfU7LC4uToYOHSoeHh56w1h5eHjIsGHDTDoZK5Iw7ISx7X3x4oW0bt1arK2txcbGRry9vcXb21tsbGzE2tpa2rRpY/S3qTmxIiKbNm2Szp07S1hYmF511idPnqgOczZ//nwJDg5WLvBoh/sKDg5WfoenhK2trWqF2MyKiWM6yJEjh8FBytevXy++vr6qsaZ+AZUoUUJcXV3FxcVFihQpIiVLltR5qElc3n7kyJHKOExq4xRp2dvbK2cPu3btqnxhRUVFGS1VnZiHh4fY2dmJlZWVuLi4JHswbhHdksgDBw6Utm3biojI2bNnJVu2bGnWbnOSdEsl+Kb+mOvXr5+MGzcuxW0VMW/YBHPWa84PSHP2cZMmTcTNzU0CAgKkQYMGeoMSp1WsOeNlmvMeEjH9GPv7+xt9JHWMEre5efPm8v3334tIwpUMY2XbE1u1apUUKlRIFi1aJMeOHVNO7mkfxpjzmeHg4CA3b94UEZE+ffpIt27dRETk0qVL4uHhoRprzvE19fh8TNtqqN1t27aVQYMGKfHGhj/QMmd/mfr9a86+Esk8Cb6bm5tyN0bVqlX1hkYaNmyYVKxY0eC6NBqNjB49WkqWLCkajUYKFy4s06ZNk0ePHqm2USThWPj4+MiUKVNk6NCh4u7urryWRRISR41GYzC2UqVKEhoaKs+fP5cpU6ZIzpw5JTQ0VJn/7bffGv09Z2VlJffv3xeRhN8LDg4OMmLECNm0aZOMHTtWnJ2djd6tERYWJl5eXjJ37lyJjo6W2NhYiY2NlejoaJk3b554e3vLwIEDk9x2Q9QSx86dO0u+fPlk69atOsPBvH//XrZt2yb58+eXLl26pHrssmXLxNraWkJCQqRSpUri4OCgM56iWnI/efJkcXJyksGDB0tERIScP39ezp8/LxERETJkyBBxdnaWKVOmGIz98Pe19qHRaCQ4ODhZv7szE5ukb2Ylcz158sRgn4iCBQsarHSW2KNHj5A9e3YACSV9mzdvjvz586NTp0746aefjMY1adLE5Pba2dkhNjYWABAeHo527doBALJkyWKw6mFiPj4+OH/+PHLkyIGtW7dizpw5ABI6zCenLLcplUm1XFxc8PjxY+TOnRvbt29Xyio7ODjg1atXadbuGTNm4Nq1a/Dx8UlWJdjUio2OjlY6e69ZswYNGzbE+PHjcfz4cdSvX1+1zf/8849SwW3jxo348ssvUbt2bfj7+6NcuXJG4+Li4jB58mRs27YNxYoVS1Gl0MKFC2Pu3LkICQnBjh07MGbMGABQKsOpMWe97969g729PYCE17O2OmDBggVx79491fWas489PDzw+eefqy6TFrEigvj4eAAJ29ugQQMAgJ+fHx49eqQaa857CDD9GJtTpjwoKAjr169H06ZNsW3bNvTv3x8A8ODBg2QVUWjRogWAhMq9WskpgGTOZ4anpydu3boFPz8/bN26FWPHjgWQcOySKsZjzvE19fh8TNuq5efnh4MHDyJLlizYunUrVq5cCQD4999/4eDgoBprzv4y9fvXnH0FmP6dACRUUy1RogSAhOqUVatWxfLly7F//360bNlS9Xs9pZ/PcXFxyuvm4sWLer+DOnTooLq+7t27Y/jw4YiMjMSvv/6KUaNGYfDgwWjUqBG6du2KWrVqGYxbtmwZFixYoOzXDh06oF69eujYsaNSyVltyKPFixfDxcUF/fr1w5AhQ9ClSxdlfrdu3TB//nyDsZKoDMncuXMxevRohIWFAQDq16+PLFmy4Oeff9Z5Pq2lS5fit99+0+vr7e/vj27duiFPnjxo164dJk2apBf7ySefGGyPltr3wZo1a7Bp0yZUqFBBZ7q1tTVq166NhQsXokGDBga32ZzYKVOmYOrUqUqxvFWrVqFTp054/fp1khXZZ82ahUWLFulVxQ0ODka1atVQvHhxhIWF4dtvv9WLPXPmDGrWrKkzdImI4NSpU6hevXqSBdoyGyaO6aB48eKYNWuW3jAbs2bNQvHixVVjTf0CSk4lMmMqVaqEAQMGoGLFijhy5Ah+//13AAlfDkkV9enYsSO+/PJL5MiRAxqNBjVr1gQAHD58OFkFBczpRF+rVi106dIFJUuWxOXLl5Uf9ufOnTNaOSw12m1Okm6pBN/UH3NnzpxByZIlASRUoEssqfHCJk2ahKZNm2LKlClo37698tr/66+/dIaYSe31mvMD0px9rFYUKSnmxJYuXRpjx45FzZo1sWfPHuUzIzo6OsmKpea8hwDzjrGpRowYgVatWqF///6oUaOGUvlu+/btymtGjalJqzmfGZ9//jlatWqFfPny4fHjx6hXrx4A4MSJEwgKClKNNef4mnp8PqZt1erXrx9at24NFxcX5MmTB9WqVQMA7N27F0WLFlWNNWd/mfr9a86+AjJPgl+uXDls2LABBQsWRGBgIE6dOqXzO+rkyZPIkiVLkttbqlQplCpVClOnTsUff/yBhQsXom7dusidO7fBz4Q7d+7oDAERFBSE3bt3o0aNGmjbtq3RsRKBhO+R169fA0gYXiM+Pl75G0hIwtSqimu/46KiolC7dm2debVr18agQYMMxj1//hy+vr5GnzdHjhx4+fKlwXnnz59Hy5YtjVb5v3fvHi5fvmxwXnx8vGohGjs7O+X1kpqxV65cQcOGDZW/v/zyS3h5eaFRo0Z49+4dmjZtavR5Hzx4oPq+Llq0qNHX8u7du5VxiEeOHKlUyB03bhxCQ0OTrOaa6VjmQufHZffu3eLs7CzBwcHSqVMn6dSpkwQHB4uLi4vs3btXNXbkyJHi7u4uBQsWlNy5c8vr169FROTXX3+VTz/9NE3ae+PGDQkJCZFixYrp3Nfdr1+/ZPW7+uOPP2Tq1Kk6Hd4XL14s69evT1E7Xr16Jc+ePdN5qPn3338lNDRUGjVqJFu2bFGmjxgxQsaOHZtu7U4vDRs2lDp16sjo0aPF1tZWbt++LSIJt/jky5dPNTY0NFTy5MkjNWvWlKxZs8rz589FRGTFihVpekvF+/fv9foGRkdHK7fipIWIiAjx8PAQKysr6dixozJ9yJAhSd72ac4+tpRTp05JkSJFxM3NTbltU0SkV69e8tVXX6nGmvseEjH9GN+6dUtmz54tgwYNkv79++s8knLv3j05fvy4Tn+dw4cPm9x/OLlWr15t0mfG27dvZcqUKdKnTx85fvy4Mn3q1KlJFgky5/iKmH58PoZt/fA75tixY7J27Vrl81EkoR/+vn37kly3qfvL1O9fc/eVOd8J1atXl3bt2snSpUvF1tZWrly5IiIJv33y5MmjGpvSz+cDBw6Iu7u7jBw5UmbOnCnZsmWTYcOGybJly2TEiBHi4eEhkyZNMriuxLd9GnLlyhWjdScCAgIkPDxcb/qdO3ckf/78UqtWLaO3QTZu3FgaNGgg+/btk27duknp0qUlJCREXrx4IS9fvpQvvvhC6tatazBWo9HI0qVL5c8//5RcuXLp9d88e/asuLm5GYytX7++1K5dWx4+fKg37+HDh1K3bl0JCQkxGFuqVCnV4mInTpwwur2tWrWSkiVL6rzftY4fPy6lSpWS1q1bp3psjhw55ODBg3rTd+/eLS4uLjJ06FCjba5cubK0a9dO3r17pzfv/fv30q5dO6lSpYrBWJGEgjotW7aUcuXKKbeM29jYyLlz54zGZFZMHNPJ7du3ZejQofL555/L559/LkOHDpU7d+4kK9aUhOb9+/cyZcoUKVOmjPj4+KSor6AlvXjxQkJDQ8XLy0vpoJz4Qf/HnATfnB9z5nrw4IH8/fff8vfff8uDBw/SdF1apv5YTo2TKM2bN5dy5cqlqJ+xubGGvHr1yuxKesmV0mMcHh4uTk5OUqRIEbGxsZESJUqIh4eHuLu7qxYz+NCtW7d0PidT4ty5c7Jlyxb5888/dR6JeXp6Kj/COnbsKDExMcl+/pIlSyqvwVGjRqV6dcfUPr4f07ZqJU4sqlevnqKqoubsr7SU3H2VmRL8AwcOyKeffqpX8CVnzpwyffp0o+vRaDQmn6Ts3LmzdOrUyeC827dvS1BQkNHfKJcvX5Z8+fIpfd5u374tjRo1EhsbG7GxsREvLy+JjIw02ubEjw9P4C1YsMDod8LNmzeVz9SSJUtK3bp1pW7dulKyZEmxsbGRYsWKKf14P9SnTx/V/qlXr16VatWqGZz35MkTqVu3rmg0GsmSJYsULFhQChYsKFmyZBErKyupV6+e0feWObGNGzeWESNGGJynLVBk7BidOnVKsmfPLlmzZpWmTZvK119/LV9//bU0bdpUsmbNKjly5JAzZ84Y3R9aCxculOzZs8u8efPE1tb2P5k4chzHdPL06VP8+uuvuHDhAgCgUKFC6Ny5M9zd3dNkfSNGjMCCBQvwzTffYNiwYRg6dCiuX7+O9evXY8SIEckeqP3169d4+/atzrSk+g3t3LkT06ZNU7Y1ODgY/fr1U27XURMaGoqIiAiMGTMGbdu2xezZs3Hnzh3MmzcPEydOROvWrZN8jtjYWNy8eVOv3cWKFUuTdsfFxWHatGlYtWqVwfWq9WM1J9ZSjh07ZrS9a9euNRr38uVL9O7dG0uXLlVuNbG2tka7du0wc+ZMZRy+1F6vpcyYMQNDhw5Fhw4d8Msvv6Bjx464du0ajh49itDQUIwbNy5NYs3177//6nxWBQcHo1OnTsm6/cvUY1y2bFnUq1cPo0aNgqurK06dOgVvb2+0bt0adevWRY8ePYyuMz4+HmPHjsWPP/6IFy9eAEgYF/Kbb77B0KFDkxxYOyoqCk2bNsWZM2eUvo3A/90elvg2PRcXF5w+fRp58+aFtbU1/vnnH3h5eSW5XwDA0dERV65cQa5cuVIca8yLFy/0bttS+3x+/PgxRowYgYiICDx48EAvNvHnzce0rVru7u44dOgQgoODYWVlhfv37ye73ebsL0MePHhgsN1JfY8Byd9Xn3zyCXbu3AlPT0+MHj0a3377bZKfwynx+vVrWFtbq96GaY6HDx8iKioK8fHxyJEjR5K309+4cQO5c+dOsnuDsdiLFy8aHRv27t272LFjh2p3m8ePH+vcfrtz5068evUK5cuXT1a/W0M2btwIW1tbo+2Kj4/Htm3bcOjQIb1B7WvXrp3k56M5Ll68iIMHD+qtNzndli5cuGCwzWqxe/bswYEDBzBkyBCD8yMiIrB06VKjXUGeP3+O//3vfwbX26pVq2T1mQcSbplt3bo1jh07hrNnz/7nblVl4pgOjh07hjp16sDR0VHpW3H06FG8evUK27dvT7ITsikJTWBgIGbMmIGQkBCdwbVnzJiBQ4cOYfny5UZjX758iUGDBmHVqlV4/Pix3ny1/g4///wz+vbtiy+++ELpa3To0CGsXr0a06ZNQ2hoqOq25s6dG0uXLkW1atXg5uaG48ePIygoCL/99htWrFiBzZs3G419+PAhOnTogK1btxqcn1btNidJt2SCf+nSJcycOVPnddW7d28UKFDAaMzKlSvRrl071KlTB9u3b0ft2rVx+fJl3L9/H02bNlXtm9e9e3eEh4dj1qxZqFixIgBg37596NOnD2rVqqX0yUnt9QLA6tWrjSadagWIgITXzbp163T2U5MmTWBjo95FvGDBghg5ciS++uorJRnKmzcvRowYgSdPnmDWrFlpEmvOyYi9e/eiYcOGcHd3R+nSpQEAkZGRePr0KTZs2IAqVaqobrOpxzjxZ5Snpyf27duHwoUL49SpU2jcuDGuX79udJ1DhgxRilwkXuf333+Prl27JplkN2zYENbW1liwYAECAgJw5MgRPH78GN988w1++OEHVK5cWVm2Vq1auH//PkqVKoUlS5agRYsWcHR0NPi82oIZWuXLl4eLiwsqVaqEUaNG4dtvv4WLi4vB2BEjRhhtb3R0NHr16oXdu3fr9JOSJIr5AAnFNK5evYrOnTvDx8dH7wd04h+9H9O2ajVr1gz79+9HcHAw9uzZgwoVKhjtb7Vr1y6dv83ZX4lFRkaiffv2uHDhgs5JjKS22ZR9lVkT/A/dvn0bvr6+JiVB5sQSGRMfH4/nz5/Dzc3NpBMVGRkTx3RQuXJlBAUFYf78+cqPzffv36NLly6IiorC3r17jcaamtA4OzvjwoULyJ07N3LkyIFNmzbhk08+QVRUFEqWLIlnz54ZXac5V/1y5cqFwYMHo1evXjrTZ8+ejfHjx+POnTtGY4GEs7bnz59H7ty5kStXLqxduxZly5ZFdHQ0ihYtqlxRMKR169a4ceMGpk+fjmrVqmHdunW4f/++cjUiJCQkTdptTpJuqQR/zZo1aNmyJUqXLq3zujp69ChWrlyJZs2aGYwrVqwYunfvjtDQUCWhCQgIQPfu3ZEjRw6MGjXK6DqzZcuG1atXK0UmtCIiIvDll1/i4cOHRmPNWa85V+/OnTuHhg0b4v79+0pCffnyZXh5eWHDhg06xRI+5OTkhAsXLiBPnjzw9vbGjh07ULx4cVy5cgWffvqpwWOWGrHmnIwoWrQoypcvjzlz5ijFt+Li4tCzZ08cOHAAZ86cMRoLmH6Ms2fPjoiICAQHB6NQoUKYOHEiGjVqhFOnTqFixYqq73tfX1/MnTtXqcao9eeff6Jnz55JfuZky5YNu3btQrFixeDu7o4jR46gQIEC2LVrF7755hucOHFCWfb+/fuYNm0arl27hrVr16JOnTpKRcgPrVu3TufvS5cuYeTIkbh27RqOHz+OQoUKGTz5oNFoVE9mVKxYESKCvn37GkyIqlatajTW1dUV+/btS7IoG/BxbavWq1evsGTJEly7dg0//vgjunbtavQK3LRp03T+Nmd/JVa8eHEEBgZi0KBBBrc5T548BuNM2VeZNcH/kJubG06ePIm8efMmuWxqxib277//YsOGDUoBtdSOjY+PN5jcighu3bqF3LlzG4wTEVy/fh1+fn6wsbHB27dvsW7dOrx58wb169dHtmzZkt3O6OhoXL16FTly5FD97nvz5g2srKyUK83Xrl3DwoULcfPmTeTJkwedO3c2WnRHa9euXdi3bx/u3bsHKysr5M2bF40aNUK+fPmSbOc///yDw4cP61w1LFeunDJCQVp5//49zp07p7PeQoUKpdkVd4tJ73tjP0YODg4GizScO3cuyXHGcubMKTNnztSbPmvWLNUxIPPnz68McFuxYkWZMGGCiIisXLlSvLy8VNfp5+cnERERIiLi6uqqdHRfunSp1KtXTzXW2dlZWT6xy5cvJzn2lYhI0aJFZffu3SIi8tlnn8k333wjIgnjO+XMmVM1Nnv27HL48GGl3ZcuXRIRkT///NPouE6p0W4nJydlHLns2bMrfRWuXbtmtNN6asT27NlTgoODZfXq1eLo6CgLFy6UMWPGSK5cuXTGLjIkb968Mnz4cL3pI0aMkLx586q2VzvGWJYsWZRBn8+fPy/Zs2dXXaejo6PBwXDPnj0rTk5OqrHmrLdAgQKyfPlyERFxcXGRa9euiYjI8OHDdcbSMuTTTz+Vhg0b6vS/efLkiTRq1EjKly+vGhsQEKD0FSpVqpTMnTtXRBIK6yTVz9ic2Lx588rGjRtFJGF7tR31f/rppyT7Gzk4OChjqiV28eLFZI19Z+oxbty4sfzyyy8iIvLNN99IUFCQjB07Vj755BP57LPPVNdpb2+vvNdNabOHh4dERUWJSMK+27Vrl4gk9OFR+3z29/dP1vhvhpjT18rZ2dngMUqO0qVLGywekZQPtzU+Pj7ZsZltW7WqVauWoj6OiZnz2nBxcTH4XZQUU/bVxYsXpUWLFlK6dGmxsrKSIkWKSIkSJfQeSfWrrlChgpQvX15WrlwpERERsnv3bp2HGhcXFzl58mSK2m3oObSf6+kZm5jauIbmxD579kyaN28uDg4O4u3tLcOHD9cZ31BtbMKLFy9Knjx5xMrKSoKCgiQqKkpKlSolzs7O4uTkJNmyZVPGxPxQjx49lAJJsbGx0qxZM7GyshKNRiNWVlZSvXp1naJRiVWtWlX++OMPEUkYR9Te3l6KFSsmLVq0kJIlS4qTk5NekR+t+/fvS9myZcXKykpsbGzEyspKSpUqJdmzZxdra2sJCwszvBMloUZG69atxdraWmxsbMTb21u8vb3FxsZGrK2tpU2bNkb7W799+1bCwsIkMDBQypQpI7/++qvOfLX9HBcXJ0OHDhUPDw+9PqkeHh4ybNgwncJtmR0Tx3Tg7e0t27Zt05u+detW8fb2Vo01NaEZNGiQMmD6ypUrxcbGRoKCgsTOzk4ZyFhtndpkJmfOnEoyFhUVlWQS9dVXX8nkyZP1pk+ZMkVatGihGiuS0BH/p59+EhGRHTt2iIODg9jb24uVlZVqp3eRhGRRm1zkzp1bqXwXFRWVZIJuTrvNSdItleA7OjoafV2p7aucOXMqSVvRokWVhOzAgQNJJro1atSQ5s2by6tXr5RpsbGx0rx58ySTA3PW6+joKNevXxcRES8vL+VHyuXLlyVLliyqsQ4ODnL27Fm96WfOnEkyKencubNSKGLWrFni6OgoNWvWFA8PD6NFFlIj1pyTERUqVJB169bpTV+3bp2UK1dONVbE9GN87do1OXXqlIgkfPl3795dihYtKp9//rly7IwpW7aswUJFvXr1SlabK1WqpGzzV199JXXr1pV9+/ZJu3btpHDhwknGp7dq1arJjh07TIo9cuSI1KhRQ3bv3i2PHj1KUdXqxGxtbQ2eIEhtGWFb01vjxo1l9erVKY4zZ1+JZN4EXyR9EscPXz8fPv7++2/V5M/U2D59+kj+/Pnljz/+kPnz50uePHkkJCRE3rx5IyIJCY1GozEY27hxY2nUqJGcPn1a+vXrJ8HBwdK4cWN5+/atvH79Who2bCht2rQxGJu4UNSQIUMkV65csmvXLnn58qXs27dPAgMDZfDgwQZj3dzclIS0atWqepWxhw0bZvRkfosWLaRJkyby7Nkzef36tfTq1UvatWsnIiI7d+6UrFmzGv0t2LlzZ8mXL59s3bpVJ7l+//69bNu2TfLnzy9dunQxGDty5Ejx8fGRKVOmyNChQ8Xd3V26deumzFfbz2FhYeLl5SVz586V6OhoiY2NldjYWImOjpZ58+aJt7e3DBw40GBsZsTEMR307t1bcuXKJStXrpSbN2/KzZs3ZcWKFZIrVy7VqlUi5idiWgcOHJAff/xR/vrrrySXNeeq35gxY8Td3V3q168vY8aMkTFjxkhISIh4eHjImDFj5KefflIeyREdHS1r1qxRflSqKV26tGzdulVEEoZRaNu2rdy+fVsGDhyoehXN3Habk6RbKsGvV6+eLFy4UG/6woULpXbt2kbjvvrqK/nxxx9FRGT06NHi5eUlXbp0kTx58iQ5tMXp06fF19dXsmbNKjVq1JAaNWpI1qxZJWfOnAaTs9RarzlX74oVKyY7d+7Um75z504pUqSIamxcXJxOae8VK1ZI7969ZcaMGcqXflrEmnMyYuXKlZI7d26ZMmWKUhV1ypQp4u/vLytXrpRTp04pD0PMOcamMme4I5GEE3hr1qwRkYRy/AUKFBCNRiPZsmUzeOxFEpLhv//+22DFvFevXsmSJUtU1/lh5Vbt46+//pLt27crV0ANuXr1qtSsWVMWL14sx44d0zkmSX1OXr58Wbm6lPihvYrwoQ+HRdE+rKyspF27dskaLiWzbGtiM2fOlLZt28qKFStEJOFkXHBwsBQoUECGDBlisGR/Yom/LxI/ZsyYIb/88ovs2rVL54dtYg8fPpT69evL999/L6tXr1at8pta+8pclk7wx48fb/LV4eTGal83xh5qrytzYnPnzq2cIBZJeH2ULVtWateuLa9fv1a9Eubl5SUnTpwQkYQTchqNRv7++29l/v79+yV37txG26xNHIsUKaKcrNX6888/JX/+/AZjnZ2dlbvsfHx89K4oX716VVxcXAzGurm56XxXvHjxQmxtbZXXwm+//SYFChQwGOvh4SH79+83OE8k4eqnh4eHwXlBQUGyYcMG5e8rV65IUFCQdOjQQeLj41X3s4+Pj/Lb05DkXCTKTNjHMR28ffsWYWFhmDt3Lt6/fw8AsLW1RY8ePTBx4kSj/SAAYOzYsfjhhx9QsWJFnb5o+/fvxzfffKPT6Ty5hVSSMm3aNFhbW6NPnz4IDw9Hw4YNISJ49+4dpk6dir59+xqNTeq+dS2NRoOoqKhUaa/W//73P7x//x4dOnRAZGQk6tatiydPnsDOzg6LFy9GixYtjMamZrsPHjyIgwcPIl++fDqD0SZHSmKLFSuGmTNnomrVqqhZsyZKlCiBH374ATNmzMDkyZNx+/Zto7Fz587FiBEj8OWXX+LTTz8FkPC6+uOPPzBq1CidQYMT9x178uQJXr9+DV9fX8THx2Py5Mk4cOAA8uXLh2HDhsHT01O1zbGxsVi2bBkuXrwIIKHQTOvWrY0WkUiN9Xbp0gV+fn4YOXIkZs+ejbCwMFSsWBHHjh3D559/jl9//dVo7ObNmzFw4EB8//33Ovtp9OjRmDhxIipVqqQsm9yKa2lt8ODBcHNzw3fffYfff/8dbdq0gb+/P27evIn+/ftj4sSJRmOTKhCRnCIdph5jc9y9exezZ8/WWWfPnj1VB79W8+TJE3h6ehosanD58mXUrl0bN2/ehEajQaVKlbBy5UrkyJEDQEJfN19fX9V+XVZWVjoVXLUS799KlSph/fr1eq/tQ4cOoVWrVjoFg5JzXICE6rU2NjbJ7gdnZWWF4sWLw8PDQ2f6nj17ULp0aTg7O0Oj0egVismM26o1duxYTJ48GbVr18b+/fvRr18/TJkyBf3794eVlRWmTZuGHj16qParDggIwMOHDxEbG6ts07///gsnJye4uLjgwYMHyJs3LyIiIuDn56cTu2HDBrRt2xYxMTF6z6u2zebsKwD466+/DE7XaDRwcHBAUFCQ0e/Ja9eu4euvv0abNm1QpEgRvT5dapVgr1y5glatWun1dU1uu9OLu7s7hg4dinLlyhmcf+XKFXTv3t1ge82JdXJywrlz53T2/fPnz5WCiwsWLEBQUJDR2IsXLyr9HxPXUQCAW7duIV++fDr9UrUSVxX28vLC7t27UbhwYWX+jRs3EBwcjNjYWL3Yzz77DHXr1lW+a7t3767Tf3PNmjUYMGAAbty4oRfr7e2N3bt3K5VIX716BRcXFzx8+BBZsmRBVFQUChUqZLDN7u7u2Llzp1LY7UNHjx5FzZo1Ddb4cHJywvnz53Uq8965cwc1atRAmTJlMHnyZPj5+Rncz87Ozjh06BCKFi1qcL2nT59GhQoVVPvqZyqWyVc/Ti9fvpTTp0/L6dOnkz2ulb+/f7IeAQEBerEXL16U0NBQ5cx/aGioSbeTXLt2LdlX/VJDeHi4hISESN68eSVv3rwSEhJi0tnMly9fSmRkpMHBb/8LzLmt98P78I09UmvszLdv30revHnT5fa2D5lz9e7DfaE9O/zh34b204dn/NUehjx58kSmTJmiXEX74Ycf5PHjxyne/pTcbXD9+vVkPz5kzjH28PDQG2vW2OPDddaoUcNoP5200KRJEwkJCZGHDx/KlStXJCQkRAICApSr/2pnprXCw8OlXLlyEh4eLjExMRITEyPh4eFSvnx52bRpk+zbt08KFy5s8Lbk4OBg+fzzz+XQoUMSHR2d5HFJzNHRMUXfARMmTJCAgAC9K68pGdg6s2yrVmBgoHIF+uTJk2Jtba3TZ3zt2rUSFBSk+hzLly+XatWqKf2LRRKuYNSoUUNWrlwpt27dkooVK0qzZs30YvPkySOhoaHyzz//pKjd5uwrkf+7KmboO0D7b5UqVfTGWxQROXjwoAQEBBiNU1OmTBmT+kfGx8fLqlWrpEePHtKsWTNp2rSpzkONKbHVqlWTSZMmGX3OkydPGr2V0ZzYAgUKyKZNm/SmP3/+XMqXLy/Fixc3uo8DAwN1rjD+/PPPOuOLRkZGGq0RoNFopHv37tK/f3/x9vaW7du368yPjIyUbNmyGYw9cOCAuLu7y8iRI2XmzJmSLVs2GTZsmCxbtkxGjBghHh4eRvdH06ZNpVmzZvLixQt5+/at9OvXT+f9dujQIaNtbtWqlZQsWVJnHFKt48ePS6lSpaR169YGYwMCAiQ8PFxv+p07dyR//vxSq1Yto/u5fv36Urt2bYO/NR8+fCh169aVkJAQg7GZEa84ZiLywfhiakytmmmInZ0dTp06heDg4CSXHTBgQLKeU6PR4Mcff9Sbbu5wHpZg7EytIR9WfgRMGxbDkBs3biAyMhJBQUHJGuvLFIbOghvz4RW4nDlzIjw8PFmvI0M+HBajUKFCaNy4cZLDYphjz549yV7W0NWapN6rYuSs+t69e9GoUSO4ubmZNCyGpZh6jKdOnYqxY8eiTp06yvv+4MGD2LZtG4YPH64zhuSHVRa9vLyUq8+maNq0abLLpa9duxY+Pj4IDw9Xzi6LCHr27InNmzcjIiICzs7OSV5xLFKkCH755RdUqFBBZ/r+/fvRrVs3nDt3DuHh4ejUqRNu3ryps4yzszNOnTqFoKCgFG4pUKVKFYwYMSJZY+pqHT16FG3atEHDhg0xYcIE2NrawtbWFqdOnUrW+GSZaVsB/as0dnZ2OHHihHK15caNGyhUqBBevnxp9DkCAwOxZs0alChRQmf6iRMn0KxZM0RFReHAgQNo1qwZ7t27p7PMh1eFksucfQUkDPs1dOhQjBs3Thk27MiRIxg+fDiGDRsGd3d3dO/eHeXKldO7S6NQoUIIDg7GwIEDU1QJFkjY3ydOnEjx913fvn0xb948VK9e3eA61YZoMiV2/vz5ePXqldE7u+7fv4+5c+di5MiRqRrbp08f3Lt3D3/88YfevOfPn6NWrVo4evSowc+br7/+GqVLl0aXLl0MrnfixIn4+++/sWnTJr151apV09kvrVu31nmesWPHIjw8HLt37zb43AcPHsSAAQNw+PBhnem+vr4ICwszeudaVFQUateujRs3bkCj0cDZ2Rl//PGH8j5evHgxLl26hAkTJujF/vvvv2jVqhW2bdsGT09PeHt7A0gYE/Xp06eoU6cOli9frncHBZBwZ5KIGLwD6c6dO6hWrRqioqIM7udbt26hfv36uHjxIooWLQofHx8ACcf1zJkzKFSoEDZu3Kh3d0GmZcmslZJnwYIFUrhwYbGzsxM7OzspXLiwzJ8/XzXGlKqZqdGfpVq1auLm5iZOTk5SsmRJKVmypDg7O4ubm5tUq1ZNeVSvXt1gvKlVZM3pk2Juf5akztSqXb1bvXq12NjYyKeffqrs3/Lly4uNjY1JBRLSWlJ9NdTOMo8bN07at2+f5P405OzZs5I3b16915W/v7+cOXNGNdZYNbP4+HjlKlFaWLdunQQGBsrcuXOVK4tz586VfPnyybp161SvBhQpUkS6du2q18G/W7duSfat/FBAQIDJV+RSGmvqMf78888Nvu9nzpwpjRs3Vo3t169fkv2B1bRv317c3NzEz89PueKQO3ducXd3l/bt20uHDh2Uh0hCISpDV1VDQ0MlV65csnfv3iSvsjg4OBh83Z4+fVopunT9+nWDhaoaNGhg8mfDqlWrpFChQrJo0aIU9YN7/vy5tGvXTooVKyZnzpwRW1vbZF9xzGzbGhAQIFu2bBGRhH6SVlZWsmrVKmX+pk2bxN/fX3Xdjo6OcvToUb3pR44cUbYzOjraYF/0du3aJfn9bog5+0pEpHDhwgb7h+3bt08KFSokIgl3tvj5+ekt4+TkZFIlWBGRypUrm3RHkaenp8ErcWkdm96ePHmi2j88JiYmycq1xkRFRcndu3dNir127ZrcunUryeUePHgghw4dkgMHDijFC5Py8uVL2b59u2zYsMGkO8YuXLggCxculPHjx8v48eNl4cKFBkc2SOz69euq/RTv3LkjixcvNjo/Li5ONm/eLCNGjJBu3bpJt27dZMSIEbJly5b/VEVVEZG0O1VPqWLEiBGYOnUqevfurXMmvn///rh58yZGjx5tMO7evXsGxwRq06YNpkyZYjBm+vTpBvuziAguXLig9GdR07BhQ7i6umLJkiU6fTs6duyIypUr45tvvlGNf/r0KerWras3vXbt2hg0aJDBmMR9Uvr3748bN27o9UmxtbU12CfFnFit7du3Y9CgQRg/frzOMRo2bBjGjx+PWrVqGY0dOHAghgwZonccR44ciYEDBxq8Mnz79m04ODgo4y/9/fffmDt3rjJGUmhoqNKO1IwFEs7EDh48GB06dNDZ1iVLlmDChAk6/QM+dPToUezcuRPbt29H0aJF4ezsrDN/7dq1RmO7dOmCwoUL49ixYzqvqw4dOqBbt244cOCAXkxMTAy6dOmCDRs2wM3NDd27d8fIkSOV8QkfPHiAgIAA1StDxsbOio+Px+3bt42OnQUA48ePx4wZM1C/fn1lWrFixeDn54fhw4cjMjLSaOzVq1exevVqpa0AYG1tjQEDBmDp0qUGY2bMmGFw+s2bN7Fo0SJlDCtDZ73NiU3M1GO8bds2TJo0SW963bp1MXjwYNV1vn//HgsXLkR4eDhKlSqlt86pU6eqxvv4+ODLL7/E3Llz9caudHNz0/u8LFiwII4dO6Z3VXXWrFkADN9V8KFSpUohLCwMS5cuVQZcf/jwIQYOHIgyZcoASOj3ZOgMdcOGDdG/f3+cOXMGRYsW1etPprZ+bT/vTp06KdOS0w/OxcUFS5YswcqVK1GzZs0U9TvLbNvaunVrtGvXDo0bN8bOnTsxcOBAfPvtt3j8+DE0Gg3GjRuHL774QnWbq1evju7du2PBggUoWbIkgISrjT169ECNGjUAAGfOnDHYZzB//vwYMmQI9u3bZ3Cbjb0HzdlXQEI/RUP9tN3c3JR+/fny5cOjR4/0lqlRo4bJVzt79+6Nvn37IiwszGC7jd094+7ubvLYi+bEJnb79m34+vom2TfcnFhPT0+9vr+JY11dXVXHM1Vbb3JrOxiKTe7+0/aR1MYmh5OTk87vppTu54IFC6JgwYLJWlYrT548qlfGfX19VccUtbKyQr169VCvXr0UrTdTsnDiSknIli2bXjUrkYQ+FFmzZjUaZ0rVzNToz+Lr62t0+IIcOXIkGW9KFVlz+qSkRn+WwoUL6/Qj0Nq7d68ULFhQNdaUYTHKli2rVP9av369WFlZSaNGjWTQoEHStGlTsbW11akOllqxIgnDLRh6PS5btkyqVq2quq2Jr9wYeqgxZVgMc8qYmzN2VuI2G7oydf78+SSH8jBlWAyNRiO5cuXS6/+s0WgkZ86cRvtCmxubmKnHOHfu3PLDDz/oTf/hhx+MVv3TSnwnw4cPY3c2JJYtWzajY1caGq5l/PjxqsPd9OjRw+jrKvFzFyhQQOzs7CQwMFACAwPFzs5OChYsqIxJuW7dOlm6dKlerDl9klPab9WQW7duyfr16+XFixfJWj6zbWtcXJyMGzdOGjRoIOPHj5f4+HhZsWKF+Pn5SdasWaVDhw5Jbvu9e/ekZs2aotFolDuFrKyspFatWkrfxV27dhkcpiultQxSY1+JJFRgrlu3rjx48ECZ9uDBA6lbt65UrlxZRBKuOBqqpDlv3jzx8/OTkSNHpqgSrLF2J6d/5OLFi6Vly5YSGxub5LalZmxirq6uJg8Dwtj0iU3syZMnSVa8NifW2JXFuLi4NL27Kb0xcczg3N3dDd4qdunSJXF3dzcaN2fOHPHy8pLQ0FD57bff5LfffpPQ0FDx9vaWOXPmGP1QP3LkiOTPn1+++eYbefv2rYikLHF0cXHRKR2ttWvXLqPllxMzZVgMR0dHnTelra2tTpJx/fp1o4OPmxOrZexWrFOnTiWZIJiS4Ds7Oysl7MuVKycTJ07UmT9z5kyjAzabEyuSsL+MvR6TGivTHKYMi2FOGXNzkk6tkiVLStu2bXUK8Lx580batm2b5IDapgyL0b17dylRooRespqc9685salh0aJFYm1tLQ0aNFDe9w0aNBAbGxtZtGhRmq7bw8ND1q9frzd9/fr1Rku3p4a4uDjZsmWL8nm2devW/9wtTVqpta2Zbf9cvHhR+Z41dZzD9JLZEvzY2FipU6eOuLi4SJEiRZQuDNqHGnNiE0uP8SMZa15sYidPnjS54J9abGqcaM5MeKtqBte2bVvMmTNH73arX375Ba1btzYa17NnTwAJxWZ+/vlng/MA/fLeZcqUQWRkJEJDQ1G6dGksW7Ys2YUjgIRCEx07dsSPP/6odLA/fPgwwsLC8PnnnycZ/+uvv8LT0xPnz5/H+fPnlekeHh46nZY1Go1yy0727Nlx/vx55M6dG1euXEFcXBzOnz+vFDM4d+6c0kn6Q+bEapUpUwYDBgzAb7/9ptMpOiwsTNkHxjRq1AiDBg1CZGSkwWExEhfe0d5qZGNjg+fPnwMAoqOj9W6NqFevntHbes2JBQA/Pz/Mnz8fkydP1pm+YMGCJDt+R0dH4/3793pFTK5cuQJbW1vV21wnTJiAPn36GBwWY9KkSTpFe7S3Wz18+FDn1pNs2bIhPDwcderUQf369bFgwQKj61u/fj2WLFmCatWqAQCaNGmCkJAQNGzYUDkmSb0v5s6di4YNGyJXrlzK7VanT5+GRqPBhg0bVGO/+uorAAm3MhuaZ+iWu7lz52LdunWoU6cOBg4ciF69eqmu48O2mhqbmKnHuEOHDggODsaMGTOU21mDg4Oxb98+oyXstZ49e4a4uDidAjpAwpAaNjY2SQ6T0rFjR3Tu3BnXrl3T+cyaOHEiOnbsqBprDisrK9StW9fgrflpxZwhF8yReFu1xdZMub3PwcEh2YXaLLWtiRUoUCDFRV8spUCBAjh//jy2b9+Oy5cvK9Nq1aqlHKsmTZoYjI2Pjzd5vWq3B6pp3749IiMj0aZNG4MFbtIqljKupIr3aX/7pHbs8OHDcerUKfz22294+vQpxo4di+PHj2Pt2rWws7MD8H/FLf8LmDhmQIkrk2o0GixYsADbt29XfjAfPnwYN2/eNNiHUevDD3JjfbUMMac/y9y5c/Htt9+iVatWePfuHYCEZKVz585G+1YmFh0dnex1aZnTJyU1+rMsXLgQTZs2Re7cuZXkSTs+0vr161VjTUnwq1atihUrVqBYsWIoWbIkdu/erdMPJCIiAjlz5jS4PnNigYQxPps1a4YtW7YoP+iPHDmCK1euYM2aNarb2qFDB3Tq1EkvqTh8+DAWLFhgtDobADRo0AAA8OWXXypf8toPYu14lx8mUrlz58aFCxd0fhy6urpi+/btqF27Npo2bWp0feYknVply5ZFVFSUzpiGLVq0QKtWrfT64X3IlPcBkHDipmzZsmjXrh02bdqkWlkwNWO1zDnG5cqVw7Jly1K8zpYtW6Jhw4Y67xcAWLVqFf766y9s3rxZNf6HH35A9uzZ8eOPPyoVLnPkyIGwsLAk+2Sb4tWrV4iMjESWLFn0qpK+fv0aq1atMvrZbk4skPDD39QxFVPKWIXtuLg4TJw4EVmzZgVguA+qObFa6bmtic2aNQtHjhxB/fr10bJlS/z222+YMGEC4uPj8fnnn2P06NFGK0GbE2usn3LiRLlKlSo6/aY/lJlOZmzatAnbtm3TGUs3ucyJTey7777TO2HFWMvFenh4qJ4E0L7vUzs2NU40ZyqWutRJxqn12Ulp/x0tW1tbk8ZXS2l/Fq0XL14ot9KlNDalzOmTkhr9WUQSKnRu27ZNuRVr+/btEh8fn9qbKiIJfeSyZs0q7dq1kzFjxoiLi4u0adNGxo0bJ+3atRN7e3ujt/eZE6t169Yt+e6775QKlN99953cvHkzyXa7uroa7M955coV1duuRURvbC+1h1bv3r3liy++MPh8MTExUq5cOaO3j5gzdlZGEB8fL+PHj5fs2bOLtbV1im43NSfWnGMsIvLu3TvZvn27LFiwQMLDw3Vu9zHG09PT4GfbhQsXDPZRVPPs2TN59uxZimJS4tKlS5InTx6dcfHu3LmjzFe7pclQbOKKiGk9fmRKaTQaKVGihN73lkajkTJlyqh+h5kTa4lt1RozZoy4urpKs2bNJHv27DJx4kTJmjWrjB07VsaPHy9eXl4yYsSIVI8VSegb6ezsLBqNRrJkySJZsmQRjUYjzs7O4uPjIxqNRgIDA/U+q2/duqVTuXLv3r3SqlUrqVSpkrRu3VoOHDhgdJ3mxGqZOn5kgQIFTB5b2pxYyrjc3Nxk0qRJRn8bzJ8/3+hnpDmxjo6OShcgrZiYGClfvrzUqFFDoqKiMvTvhZRi4vgfkxpDaliKucNifEyuXr0qLVu2FFdXV+WL1tbW1mhRldSKNYebm5vBgXmPHTuWrP6vKWVOGXNzkk5j0nNYDK1jx47J9OnTDQ7anRaxKT3GvXr1Uoox3bp1SwoWLCjW1tbi4+Mj1tbWUrRoUbl9+7bqOp2cnOT06dN600+fPm1Sv9tFixbJ06dPUxyXHE2aNJGQkBB5+PChXLlyRUJCQiQgIEDpZ62W/JkTq2XOkAspZU6xtdQo1Jae26plyUJty5cvl2rVqsnVq1eVaVeuXJEaNWrIypUr5datW1KxYkVp1qyZTpwli62JmJ7gb9y4UerUqZPsIR5SKzY+Pl5WrVolPXr0kGbNmiknULUPxloutlq1ajJp0iSjz3ny5EmjtQnMic3sJ5pTSiPyH7rxlmBlZWVwSI09e/agdOnSypAau3btskwDjUg8LMb+/fvRr18/vWExevTooTosRnqz5LAYWiKCBw8eID4+HtmyZdMrZZ7aseYMT9GwYUM4OjpixYoVOsMetGjRAi9fvsSWLVtSfb0XLlzAoUOHUL58eRQsWBAXL17ETz/9hDdv3qBNmzZKafwP/fvvv7h7967S1/VDz58/x/Hjxw2WQTd2y9iAAQMwcOBAk4bFSE5sRpDSY5w9e3aEh4ejSJEiaNGiBZ48eYIVK1YgW7ZsePLkCdq3bw8HBweDg19rVa9eHUWKFMHMmTN1poeGhuL06dP4+++/U7QN2j54yelHl1I+Pj4IDw9H0aJFASS8B3v27InNmzcjIiICzs7O8PX1Ndg9wJxYLUdHRxw9ehRFihTRmX7mzBmULVsWr169wo0bNxAcHIzY2Fizt/fo0aNo06YNGjZsiAkTJsDW1ha2trY4deqU3q22qRkLpP+2AgnDCFy8eFH5PLKzs8OJEyeUz5EbN26gUKFCePnyZarGAkBgYCDWrFmDEiVK6Ew/ceIEmjVrhqioKBw4cADNmjVTbskGErqmaIcG+fTTT9G0aVOdfu6zZs3CwoULcfz4cb11mhOrVaRIEfzyyy+oUKGCzvT9+/ejW7duOHfuHMLDw9GpUyfcvHlTme/p6YnY2Fi8f/8eTk5Oet9fT548MbpOc2L79u2LefPmoXr16gb7R6rd4s/YtI2dP38+Xr16ZfT78f79+5g7dy5GjhyZqrF9+vTBvXv3DH5PPX/+HLVq1cLRo0dT1O0rQ7Nk1kqpLzXO1FpCagyLkd4sfabWmJs3b0rHjh1TNTY1qoadO3dOsmbNKoGBgcrwDIGBgeLl5WWwKq25692yZYvY2dlJlixZxMHBQbZs2SJeXl5Ss2ZNqVGjhlhbWxus1Kp1/vx5nYGDL1y4IF9//bV07NhRNc5Sw2JERkbq3C6zdOlSqVChguTKlUsqVqyoXMlP7djEUnqMHRwclPXmypVLDh8+rDP/zJkzki1bNtV17tu3TxwcHKRy5cry/fffy/fffy+VK1cWBwcH2bt3r9E4T09Pgw+NRiPu7u7K36nJ1dXV4G21oaGhkitXLtm7d6/R17M5sVrmDLlgqufPn0u7du2kWLFicubMGbG1tU32d5E5sZbY1oCAANmyZYuIJAypZGVlJatWrVLmb9q0Sfz9/VM9ViThdrmjR4/qTT9y5Ihy5T06OlqcnZ115ru7uyu3bXp7e+vdwnn16lWjlcXNidUyVpX89OnTSlXy69ev6909sHjxYtWHGnNiPT09DV5dSg7Gpk9sejPn7qbMiInjf5C5Q2pYQmoMi5HeLDkshpq0KDmdGsNTiIjcuXNHhgwZIvXr15dmzZrJqFGj5PHjx0aXN2e95cuXl6FDh4qIyIoVK8TT01O+++47Zf7gwYOlVq1aBmPNSTotNSxGsWLFZMeOHSIiMn/+fHF0dJQ+ffrInDlzpF+/fuLi4iK//vprqsd+KCXHuFixYrJy5UoREQkODlbaoHXgwIFk9VM8ceKEtGrVSgoVKiSlSpWSjh07Jnlrr4uLi4SEhOj8YNQOCzJu3Lhk/YhMqTJlyhgczkAkIQH08PAw+t41J1bLnCEXzLVixQrx8fERKyurFH8XmRJriW0dNmyYeHl5SZcuXSQgIEAGDx4suXPnljlz5sjcuXPFz8/PaFcRc2JFROrXry+ffPKJzq3ix48fl1KlSklISIiIiPz11196wxc1atRIBg8eLCIiderU0RnqSiTh8yBfvnwG12lOrJYlEnxz+Pv7KycTGZsxYxO7deuWycP4WCo2o2Pi+B9lzplaSzD3bKslWOpM7YeDK3/4mDZtmtEfkKbGmjMmYkr16NFDKbhgznrd3NyUQi1xcXFiY2Oj86PqzJkz4uPjYzDWnKRTJOEKuZ+fn8ycOVOZltyTN6bGOjo6KuOelSxZUn755Red+cuWLVP6dqVmrCm0x3jRokWSK1cuiYiIUPo0h4eHy507d2TXrl1StGhR6dKlS6qsc8KECfLvv/8qf1+5ckXKlCkj7dq1k+fPnyvT0/Ik2/jx46VevXpG5/fo0cPoiRBzYhOz5PiRphZbMzU2vbfVkoXa7t27JzVr1hSNRiN2dnZiZ2cnVlZWUqtWLfnnn39EJGE85W3btunEWbrYWkoSfG3xquQ8PmRObGKLFy+Wli1bSmxsrOpyjLVcbGKurq4mjwFpqdiMjonjf5w5Z3nTk7lnWy3BUmdqjVWhS86gy6bGpmfVsMQfuOas183NTadQxIeDCF+/fl25FcpQrKlJp9bt27elRo0aUrduXbl3716KEhJTYrNmzSrHjh0TkYSTESdPntSZf/XqVaPFYsyJNUXiY/zjjz+Kk5OTODo6Kj92tY8mTZroJHWptU6td+/eycCBAyUwMFD27dsnIhn/7gwyjamVxTObixcvKicCL168mKwYSxdbS26Cr/1+Ss4jNWMTi42NlTp16oiLi4sUKVJESpYsqfNgrOVjE/vwez8lLBWb0XEcx/+4li1bolKlSoiMjDR5oN30MGrUKDg6OuLgwYPo2rUrBg8ejOLFi2PgwIGIjY1Fw4YNMWbMGEs3U8fEiRNRuXJl3L17F5UqVcLQoUNx9OhRBAcH49KlS/j9998xd+7cVI/NkSMHfv75ZzRu3Njg/JMnT6JUqVKpGmvOmIgpJYnqdZmzXn9/f1y5cgWBgYEAgIMHD+oU0bl58yZy5MhhNF7bGd/KygoODg5wd3fXacOzZ89UtyNnzpwIDw/HxIkTUbJkyRQNAGxKbL169TBnzhwsWLAAVatWxerVq1G8eHFl/qpVqxAUFJTqsaZIvD0DBgxAp06dsGPHDkRFRSE+Ph45cuRAxYoV9caDTK11atnY2GDSpEmoU6cOWrVqhdatW/+3xttKxNwxIDOL1BgDMjMrUKAAChQokKKYwMBArFixwqSCaebEaiV3/MiIiAjl/9evX8fgwYPRoUMHpZDcwYMHsWTJEkyYMCFVYxNr3749IiMj0aZNG4NFWxhr+VhKYxZMWokyPUucqW3YsKEMHz7c6Hy1stGmxqbF8BTGJD5TZ85658yZIxs3bjS6niFDhkjnzp0NzitWrJhy67RIwhXGxMPB7N2712iRGkPSY1iMO3fuiL+/v1SpUkUGDBggjo6OUqlSJenatatUqVJF7OzsjBYbMCfWFJY4G5vUOh89eiRNmzYVDw+PZF+pySzMGT8ys0mNMSAzm7Qcyiotiq2JmD8GZI0aNWT58uV605ctWyZVq1ZNs1gnJyf5+++/VZdhrGVjExs/frxOF4XMEJvRMXEkSgXx8fHyzz//yN27d5WCRGkVu3fvXp2k5kMvXrwwWsHL1Nj0rBqW+Ae+paqVmZN0WtK///4rgwYNkkKFComDg4PY2dlJnjx5pFWrVgYrLqZWbEqpJXFRUVGyfft2o5V202Kd/3WpMQZkZpFZK4ubasyYMeLq6irNmjWT7Nmzy8SJEyVr1qwyduxYGT9+vHh5ecmIESNMfv60KLYmYn5lcUdHR4MFsC5dupTkbfXmxBYoUECvJkFyMTZ9YiltMXEkSiNpdabWUkwdniKlPvyBn17rTS0ZYViMjE57jHv06KH0YYyNjZVmzZrp9LWtXr16qvVx/JgTR29vbzl9+rTyd3x8vHz99deSO3duuXbt2n8qcRTJnJXFTWXuUFaWKLYmYn5l8fz580tYWJje9LCwsCQrsJoTu3HjRqlTp45ER0erLsdYy8XGx8fLqlWrpEePHtKsWTNp2rSpziMjxmYmTByJ0khanam1BHPHREyJxD/w03O9qSWjDIuRkWmPsZWVldy/f19EEq7i5sqVS3bt2iUvX76Uffv2SWBgoFJEKrXWqfX27VsJCwuTwMBAKVOmjN5+/S8lU6kxBmRmk9kqi5vK3KGsLFFsTcT8MSA3bdokDg4OUqRIEencubN07txZihYtKg4ODkneVm9OrIeHh1LEy8XFRW8cWMZaPrZPnz5ib28vdevWlfbt2ytjCmsfGTE2M2FxHCIT/fXXX6rzo6Ki0iTWEkaPHo2wsDCMHTsWK1euRKtWrdCjRw+MGzcOADBkyBBMnDgRNWrUMHtdbdq0gZubW7qvN7VcuXJFKery888/46effkLXrl2V+WXKlMG4cePQqVOnVI3NTLTHWBIVrNmwYQMmT56M6tWrAwAqVqyIqVOnIiwsLMmCFclRuXJlODo6Kn+PGzcOS5cuxbfffounT59iwIABOHz4MObNm6csIykoaJSRFSxYEMeOHUNwcLDO9FmzZgEAGjVqZIlmpSkXFxcsWbIEK1euRM2aNREXF2fpJqWJ7Nmz4/z588idOzeuXLmCuLg4nD9/HoULFwYAnDt3Dt7e3kbjLVFsDQCqVq2KFStWoFixYihZsiR2796NYsWKKfMjIiKQM2dOo+2uX78+rly5gjlz5uDChQsAgIYNG+Lrr7+Gn5+f0ThzY6dPn646n7GWj/3tt9+wdu1a1K9fP9PEZiqWzlyJMitLnam1hNQYnkJE5NWrV3L48GHZsGGD3m1Nabne9JSZhsVICyk5xhqNRhn4O1u2bHr9Wa9fv57s7b1//76cOXNGTp06pfMwJigoSKcP1ZUrVyQoKEg6dOig9DvOSO9Bc6TWGJCZlTnjR2Z05g5lZYliayKmjQHZtGlTZZzFJUuWyOvXr42u+0PmxFLm4u/vr3RtySyxmQkTRyIT+fr6yvr1643OP3HihNEfnubEWoI5YyJqaW8zTUmSnBrrTW9t2rRRCuc0b95chg0bpjN//PjxUrRo0VSPzQhSeow1Go10795d+vfvL97e3rJ9+3ad+ZGRkZItWzbVdR47dkwKFy6scyJG+3+195Cjo6Ne/5nbt29L/vz5pXXr1nLnzp0M9R4kMiQuLk7GjRsnDRo0kPHjx0t8fLysWLFC/Pz8JGvWrNKhQwfVhNkSxda0UlpZ3NbWVu7evSsionObe3KYE/vs2bNkPxhrmdjEFi9eLC1btpTY2FjV5TJSbGaiEfmP3ItDlM4aNWqEEiVKYPTo0Qbnnzp1CiVLlkR8fHyqxlpC8eLFMWnSJGWcrbNnz6JgwYKwsUm42/3vv/9G+/btVW+xzZcvH2rXro0RI0bAx8cn3dab3u7evYuKFSsid+7cKF26NObMmYNSpUopY3QeOnQI69atM3g7izmxGUFKj3G1atV0xudq3bo1unTpovw9duxYhIeHY/fu3Uafo3jx4ggMDMSgQYMMjvdlbPzavHnzYv78+fjss890pt+9exfVq1dHnjx5sHPnzv/sLY5EGYUkcwzIYsWK4ZNPPkH16tXRsWNHzJgxQ+nW8KEPxyQ1J9bKyirZ4wh++HnB2PSJTezVq1do2rQp9u/fD39/f73X0/HjxzNcbGbCPo5EJgoLC8PLly+Nzg8KCtIZdDi1Yi2hR48eOh/URYoU0Zm/ZcuWJPsZ3r9/HwMGDEh20pha601vvr6+OHHiBCZOnIgNGzZARHDkyBHcunULFStWxP79+1G6dOlUj80IUnqM1RJCAGjVqhU6dOigukxUVBTWrFmDoKCgZLYyQY0aNbB8+XK9xNHX1xe7du1CtWrVUvR8RGQajUaj95lx69YtjBw5EgsXLlSmzZ07FwMGDMCmTZug0WgwbNgwg4mGRqPRS/7MiU38XXz9+nUMHjwYHTp0QPny5QEABw8exJIlSwz2xWZs+sQm1r59e0RGRqJNmzYGTyZmxNhMxaLXO4noo9GxY0dZsGCBpZtBacgSx7hx48ayevXqFMddv35dtm7danT+nTt3ZPHixeY0jYhMlFRlcY1GI//8849Jz21ObI0aNWT58uV605ctWyZVq1ZlbAaIdXJykr///lt1mYwWm5nwVlUiShexsbFo3rw5vLy8ULRoUb3bOPr06WOhllFqMeUYv3r1CpGRkciSJQsKFSqkM+/169dYtWqV3hWAxB49eoT27dujbNmyKFKkiN46/4sVQ4kyu+RUFv/mm2+M3pJ448YNuLm5YeHChUpl1MKFC6Nz585Gb0FNjVgnJyecOnVKqX6tdfnyZZQoUQKxsbGMtXBswYIFsWrVKp0qvcllqdhMxdKZKxF9HBYsWCA2Njbi4uIiefLkEX9/f+UREBBg6eZRKkjpMb506ZLkyZNHKWRTpUoVpYCFSPLGUvzrr7/E3d3dpMrEb968kd9//1369esnLVu2lJYtW0q/fv1k1apV8ubNG9N2AhElydzK4kePHpUsWbJIzpw5lQHWc+XKpVOZOi1i8+fPL2FhYXrTw8LCJH/+/IzNALEbN26UOnXq6BU/Sw5LxWYmvOJIROkie/bs6NOnDwYPHgwrKytLN4fSQEqPcdOmTfHu3TssXrwYT58+Rb9+/XD+/Hns3r0buXPnxv379+Hr66taCMHf3x8NGjTA8OHDU9R/9urVq6hTpw7u3r2LcuXKKbH379/H4cOHkStXLmzZsiXFfSeJKGk5c+ZM1hiQxt77lStXRlBQEObPn68US3v//j26dOmCqKgo7N271+i6zYndvHkzmjVrhqCgIJQrVw4AcOTIEVy5cgVr1qxRLVzG2PSJ9fT0RGxsLN6/fw8nJye9u1CePHmS4WIzEyaORJQusmTJgqNHjyIwMNDSTaE0ktJj7OPjg/DwcBQtWhRAQnXFnj17YvPmzYiIiICzs3OSiaOrqytOnjyZ4tdVrVq14OzsjKVLl+rdnhYTE4N27drh1atX2LZtW4qel4iSZm5lcUdHR5w4cQIFCxbUmX7+/HmULl1a9VZGc2IB4Pbt25gzZ45ym2twcDC+/vpr+Pn5qcYxNn1ilyxZojq/ffv2GS42U7Ho9U4i+mj069dPxo0bZ+lmUBpK6TF2dXWV8+fP600PDQ2VXLlyyd69e5O83bRdu3Yyf/78FLfV0dFRzpw5Y3T+6dOnxdHRMcXPS0RJM3cMSG9vb9m2bZve9K1bt4q3t7fqulMa27RpU2XswCVLlsjr169Vn5+x6R9L6YdXHIkoXfTp0wdLly5F8eLFUaxYMb3bOKZOnWqhllFqSekxLlu2LHr37o22bdvqPVevXr2wbNkyxMTEqF5xHDduHKZPn46QkJAUFV3y9fXFL7/8ggYNGhicv2HDBnTv3h137941um4isow+ffpg3bp1+OGHH1ChQgUAwP79+xEWFoZmzZph+vTpqRZrZ2eHGzduIEeOHLC2tsa9e/fg7e2drHYyNn1iY2JikrUcAIN3mFgiNrPiOI5ElC7OnDmDkiVLAgDOnj2rM+8/O97RRyalx7hp06ZYsWKFwcRx1qxZiI+Px9y5c1XXuWDBAri4uGDPnj3Ys2eP3jqNJY5dunRBu3btMHz4cHz22Wc6fRx37tyJsWPHonfv3qrrJiLL+OGHH5QxF9+/fw8AsLW1RY8ePTBx4sRUjS1YsCCGDBmC6tWrQ0SwatUqo0nAhxWgGZs+sR4eHsn+HfHhiUhLxWZWvOJIREQfpUmTJuGnn37CP//8o3z5iwiyZ8+Ofv36YeDAgRZuIRGpiY2NxbVr1wAAgYGBcHJySvXYAwcOYMCAAbh27RqePHkCV1dXg8mCRqPRK4DC2PSJTXzS8Pr16xg8eDA6dOiA8uXLAwAOHjyIJUuWYMKECXp9DS0Vm1kxcSQioo9adHQ0/vnnHwAJlWEDAgIs3CIiyoisrKxw7969FFVwZmz6xn722Wfo0qULvvrqK53py5cvxy+//ILdu3dnuNjMhIkjEaWbY8eOYdWqVbh58ybevn37/9q786CorrQN4E8jICDdgMQFHRZZlEUCImLcBRcUpRhFzWCiIpASJglTLhgtRUVDpIxLEp1IgoVCRqMxoDFRQUGIESMimxNFBRQBQ5QIshMg3O+PFP1NB2iJNDTI86vqKvuce/p9+16q8OWee45MX2xsrJKyIkVSxjUuLi7GmTNn2oz5os/OFhUVYevWrYiMjFREikT0Enj48CEkEgkiIyOlq33a2NjA19f3uc+wcWz3jNXS0kJ2djYsLCxk2u/duwd7e3u5q+Yqa2xvws3UiKhbHD9+HBMnTkROTg5OnTqFxsZG3Lp1C5cuXYKOjo6y0yMFUMY1TkxMxKhRo3Dw4EHs2bMHSUlJOHz4MCIjI5GVlfXCn1tWVvbc5dWJqG8pLS2Fubk59u3bh7KyMpSVlWHv3r0wNTVFeno6x/aAsYaGhoiIiGjVfujQoedu5aGssb0J7zgSUbd49dVXsWrVKrz99tsQi8XIzs7GiBEjsGrVKhgYGCAkJETZKVInKeMaOzk5Ye7cuQgJCZHGHDx4MN544w3MmTMHAQEBbY47c+aM3M+9f/8+1q5d+9IsaEBEnTdlyhSYm5sjIiICqqp/rC/Z1NQEPz8/3L9/H5cvX+ZYJY89d+4cPD09YW5ujvHjxwMArl+/jtzcXMTExMDNza3Hje1NWDgSUbcYMGAAbt26BRMTE+jr6yM5ORm2trbIycmBi4sLSkpKlJ0idZIyrrFYLEZWVhbMzMygp6eHK1euwMbGBtnZ2fDw8EBBQUGb41RUVCASiSDvV6BIJGLhSERSmpqayMzMhKWlpUz77du34ejoKHc6Isd2z1jgj8cXDh48KJ3mamVlBX9//w7d+VPW2N6CU1WJqFvo6emhqqoKADB8+HDpdg3Pnj17aeb+93XKuMYDBgyQPtdoYGAgXSURAH799dd2xxkYGCA2NhbNzc1tvjIyMrokXyLqvSQSCQoLC1u1FxUVQSwWc6ySxi5cuFC6p2J0dDQGDRqE0NBQxMbGIjY2FqGhoe0Wb8oa21uxcCSibjF16lRcvHgRALB48WL861//wltvvQUvLy/MmDFDydmRIijjGr/22mu4cuUKAMDNzQ1r165FaGgofHx88Nprr7U7buzYsXKflXne3Ugi6ntef/11+Pr64sSJEygqKkJRURGOHz/e5mqaHNt9Y7/77jvU1NQAAFauXImKigq5n98TxvZWqspOgIj6hgMHDqC+vh4AsGnTJqipqeHq1avw9PTE5s2blZwdKYIyrvHevXtRXV0NAAgJCUF1dTVOnDgBCwsLuSuqBgUFSX/ht8Xc3BxJSUkKz5eIeq/du3dDJBJh+fLlaGpqAgCoqakhICAAYWFhHKuksZaWlti4cSOcnZ0hCAK++uqrdldfXb58eY8Y21vxGUciIiIiog6qra2VTos3MzODlpYWxypx7NWrV7FmzRrk5+ejrKwMYrEYIpGo1XEikQhlZWU9YmxvxcKRiLpFy3MAHfG8fZqoZ+I1JiIiZVJRUUFJSQmGDBnSa8b2JiwciahbtKxiKY8gCFzJshdTxjXW09N7bswWL8tffImIqG0PHz6ERCJBZGSkdHVTGxsb+Pr6PvcPlsoa25uwcCSibhEVFYUNGzbA29sbEyZMAAD8+OOPiIqKws6dO2FiYiI9dtq0aUrKkjpDGdd47969eP/99+Hq6ioTMz4+HsHBwRg4cKD02BUrVigkJhER9Uw3btyAq6srNDU14eTkBABIS0tDXV0d4uPjMXbs2B43tjdh4UhE3WLGjBltroh27NgxfP7550hOTlZOYqQwyrjGnp6ecHZ2xjvvvCPTfuDAASQkJOD06dMKj0lERD3TlClTYG5ujoiICKiq/rEGaFNTE/z8/HD//n1cvny5x43tTVg4ElG30NLSQnZ2NiwsLGTa7927B3t7e+7l+BJQxjXW1tZGVlYWzM3NZdrz8vJgb28vXXGViIhefpqamsjMzISlpaVM++3bt+Ho6Cj395CyxvYm3MeRiLqFoaEhIiIiWrUfOnTopdsgt69SxjXW19fHN99806r9m2++gb6+fpfEJCKinkkikaCwsLBVe1FREcRicY8c25twH0ci6hb79u2Dp6cnzp8/j/HjxwMArl+/jtzcXMTExCg5O1IEZVzjkJAQ+Pn5ITk5WRozNTUVcXFxbRaxRET08nr99dfh6+uL3bt3Y+LEiQCAlJQUBAUFtXqMoqeM7U04VZWIuk1xcTEOHjwoXXHMysoK/v7+vOP4ElHGNU5NTcUnn3wiEzMwMFBaSBIRUd/Q0NCAoKAghIeHo6mpCQCgpqaGgIAAhIWFoX///j1ubG/CwpGIiIiIiF4atbW1yM/PBwCYmZlBS0urx4/tDVg4ElG3aG5uhopK68eqm5ubUVxcDCMjIyVkRYry5MkT/PTTTxg7dix0dHTw+PFjREVFobm5GfPmzYOtra2yUyQiIqJO4OI4RNSlKisrsWTJEgwYMABDhgzBli1bZDZ/Ly0txYgRI5SYIXVWcnIyTE1NMXPmTFhaWiI7OxuOjo44dOgQjhw5gnHjxuHChQsKjdnY2Ij169fD3NwcTk5OiIyMlOl//Pgx+vXrp9CYREREfRkLRyLqUsHBwcjOzsYXX3yB0NBQREdHw8PDAw0NDdJjOPGhdwsODoa3tzcqKyuxdu1azJs3Dx4eHrh37x7u3LmDd999FyEhIQqN2fKz5O/vj9mzZ2PNmjVYtWqVzDH8uSIiIlIcTlUloi5lbGyMqKgoTJ8+HQDw66+/Yt68edDV1cWZM2fw7NkzDBs2TOYuJPUuOjo6yMjIgJmZGZqamqCpqYm0tDTY29sDAHJzczFu3Dg8e/ZMYTEtLCywb98+zJ8/H8Af+zbOnTsXkydPRmRkJJ48ecKfKyIiIgXiHUci6lKlpaUwNjaWvn/llVeQkJCAqqoquLm5vTSb4vZl6urqqK+vB/DHynLNzc3S9wBQV1cHNTU1hcZ89OgRRo8eLX1vbm6O5ORkXL16FcuWLWPBSEREpGAsHImoSxkZGUm3SWghFotx4cIF1NXVYcGCBUrKjBRl0qRJ2LBhA1JSUrB69Wo4ODjg/fffR01NDWpra7Fjxw44OjoqNObQoUOlK9e1GD58OJKSkpCWlgZvb2+FxiMiIurrWDgSUZeaPXs2Dh8+3KpdW1sb8fHx0NDQUEJWpEgffvgh7t69iylTpuCHH37A6dOn0a9fP+jq6kJHRwfff/89QkNDFRrTxcUFx44da9U+bNgwXLp0CQ8ePFBoPCIior6OzzgSUZcqLy/Hzz//DBsbmzb7q6qqkJGRgWnTpnVzZqRoT58+hb6+vvR9YmIi6urqMGHCBJl2RXj48CHu3LkDV1fXNvt//vlnXLx4EStWrFBoXCIior6KhSMRdbmcnBxcu3YNEyZMgKWlJe7cuYOPP/4Yv/32G9588024uLgoO0UiIiIikoNTVYmoS8XFxcHe3h7r1q3DmDFjEBcXh6lTpyIvLw8PHz7E7NmzcenSJWWnSQpQXFyM6urqVu2NjY24fPlyt+ZSXl6O6Ojobo1JRET0MmPhSERdavv27QgKCsLTp09x+PBhLF26FG+99RYuXryIxMREBAUFISwsTNlpUieUlJTAyckJxsbG0NXVxfLly2UKyLKyMjg7O3drToWFhVi5cmW3xiQiInqZsXAkoi5169Yt6QqXS5YsQVVVFRYtWiTtf+ONN3Dz5k0lZUeKsGHDBqioqCA1NRVxcXG4ffs2nJ2dUV5eLj1G0U9FVFZWyn1VVVUpNB4REVFfp6rsBIjo5ScSiQAAKioq0NDQgI6OjrRPLBajoqJCWamRAiQkJODUqVPSLTdSUlKwePFiuLi4IDExEcD//wwoiq6urtzPFARB4TGJiIj6MhaORNSlTExMkJubCzMzMwDAjz/+CCMjI2l/YWEhDAwMlJUeKUBFRQX09PSk7/v374/Y2FgsXrwYzs7O+M9//qPwmGKxGJs2bcL48ePb7M/NzcWqVasUHpeIiKivYuFIRF0qICAAv//+u/T96NGjZfrPnz/PVVV7OVNTU9y8eRMWFhbSNlVVVZw8eRKLFy/G/PnzFR7TwcEBANrdxkVXV1fh02OJiIj6Mm7HQUREnfLee+8hKysL8fHxrfqamprg6emJb7/9Fs3NzQqLGRERgbq6OgQGBrbZ//jxY4SHh2Pr1q0Ki0lERNSXsXAkIqJOaWpqQm1tLSQSSbv9jx49grGxcTdnRkRERIrCwpGIiLpUUVERtm7disjIyC6LUVNTg6+++gp5eXkwMDCAl5cX9PX1uyweERFRX8PCkYiIulR2djYcHBxknnXtLGtra1y5cgUDBw5EUVERpk6divLycowcORL5+flQVVXFtWvXMGLECIXFJCIi6su4OA4REXXKmTNn5Pbfv39f4THv3LmDpqYmAMDGjRsxbNgwZGVlQUdHB9XV1ViwYAE2bdqEY8eOKTw2ERFRX8Q7jkRE1CkqKioQiURyVzEViUQKveOooqKCX375BYMHD4aZmRnCw8Mxa9Ysaf/Vq1fxj3/8A4WFhQqLSURE1JepKDsBIiLq3QwMDBAbG4vm5uY2XxkZGV0SVyQSAQDq6+tb7QU6fPhwlJaWdklcIiKivoiFIxERdcrYsWORnp7ebv/z7ka+qBkzZsDBwQGVlZW4e/euTN/Dhw+5OA4REZEC8RlHIiLqlKCgINTU1LTbb25ujqSkJIXG/PP+jNra2jLvv/32W0yZMkWhMYmIiPoyPuNIREREREREcnGqKhEREREREcnFwpGIiIiIiIjkYuFIREREREREcrFwJCIiIiIiIrlYOBIRkdIlJydDJBLh2bNnHR7j7e2Nv//9752OrajPUYQjR45AV1dX2WkQERG1wsKRiIjk8vb2hkgkgr+/f6u+t99+GyKRCN7e3t2f2F9UUFAAkUiErKwsmfaPP/4YR44c6ZYckpKS4ObmBn19fWhpacHa2hpr167Fo0ePuiW+PC3nZ/DgwaiqqpLps7e3x7Zt25STGBER9QgsHImI6LkMDQ1x/Phx1NXVSdvq6+tx7NgxGBkZKTGzztPR0emWu3yfffYZZs6ciaFDhyImJga3b99GeHg4KioqsGfPni6P31FVVVXYvXu3stMgIqIehoUjERE9l4ODAwwNDREbGytti42NhZGREcaMGSNz7G+//YbAwEAMHjwYGhoamDx5MtLS0mSOOXfuHEaOHAlNTU04OzujoKBApn/btm2wt7eXafvoo49gYmLSbo5xcXGYPHkydHV1oa+vj/nz5yM/P1/aP2LECADAmDFjIBKJMH36dACtp6o+L/+WabWJiYlwdHSElpYWJk6ciLt377abW3FxMQIDAxEYGIjIyEhMnz4dJiYmmDp1Kg4dOoQtW7a0OS4/Px8eHh4YMmQItLW1MW7cOCQkJMgc8+mnn8LCwgIaGhoYMmQIFi1aJO37+uuvYWtrC01NTejr62PmzJmoqalpN08AePfdd7F37148efKk3WO++OILODo6QiwWY+jQoVi6dKnM8S3nKD4+HmPGjIGmpiZcXFzw5MkTnD9/HlZWVpBIJFi6dClqa2ul45qbm7Fz506MGDECmpqasLOzw9dffy03XyIi6h4sHImIqEN8fHxw+PBh6fvIyEisXLmy1XHr169HTEwMoqKikJGRAXNzc7i6uqKsrAwAUFRUhIULF8Ld3R1ZWVnw8/PDhg0bOp1fTU0N1qxZgxs3biAxMREqKipYsGABmpubAQDXr18HACQkJKCkpESmCP4r+bfYtGkT9uzZgxs3bkBVVRU+Pj7t5nby5Ek0NDRg/fr1bfa3d8ezuroabm5uSExMRGZmJubMmQN3d3cUFhYCAG7cuIHAwEBs374dd+/eRVxcHKZOnQoAKCkpgZeXF3x8fJCTk4Pk5GQsXLgQgiC0fxIBeHl5wdzcHNu3b2/3mMbGRuzYsQPZ2dk4ffo0CgoK2pyuvG3bNhw4cABXr15FUVERlixZgo8++gjHjh3D2bNnceHCBezfv196/M6dOxEdHY3w8HDcunULq1evxptvvonvv/9ebs5ERNQNBCIiIjlWrFgheHh4CE+ePBH69+8vFBQUCAUFBYKGhoZQWloqeHh4CCtWrBAEQRCqq6sFNTU14ejRo9LxDQ0NwrBhw4Rdu3YJgiAIGzduFKytrWVivPfeewIAoby8XBAEQdi6datgZ2cnc8y+ffsEY2PjVnm1p7S0VAAg/Pe//xUEQRAePHggABAyMzPb/H4dzT8pKUkAICQkJEiPOXv2rABAqKurazOXgIAAQSKRtJtri8OHDws6Ojpyj7GxsRH2798vCIIgxMTECBKJRKisrGx1XHp6ugBAKCgoeG5cQZA9P3FxcYKampqQl5cnCIIg2NnZCVu3bm13bFpamgBAqKqqEgSh7XO0c+dOAYCQn58vbVu1apXg6uoqCIIg1NfXC1paWsLVq1dlPtvX11fw8vLq0HcgIqKuwzuORETUIYMGDcK8efNw5MgRHD58GPPmzcMrr7wic0x+fj4aGxsxadIkaZuamhqcnJyQk5MDAMjJycH48eNlxk2YMKHT+eXm5sLLywumpqaQSCTSaa0td+c6oiP5t3j11Vel/zYwMACAdqd3CoIAkUjU4TxaVFdXY926dbCysoKuri60tbWRk5Mj/U6zZs2CsbExTE1NsWzZMhw9elQ69dPOzg4zZsyAra0tFi9ejIiICJSXl3corqurKyZPnozg4OA2+9PT0+Hu7g4jIyOIxWJMmzYNQOtz/b/naMiQIdDS0oKpqalMW8s5y8vLQ21tLWbNmgVtbW3pKzo6WmbKMRERKQcLRyIi6jAfHx8cOXIEUVFRcqdmdpaKikqrKZWNjY1yx7i7u6OsrAwRERFITU1FamoqAKChoaFLclRTU5P+u6UobJkW+2cjR45ERUUFSkpK/lKMdevW4dSpU/jggw/www8/ICsrC7a2ttLvJBaLkZGRgS+//BIGBgbYsmUL7Ozs8OzZM/Tr1w8XL17E+fPnYW1tjf3792PUqFF48OBBh2KHhYXhxIkTyMzMlGmvqamBq6srJBIJjh49irS0NJw6dQpA63P953P0v+9b2lrOWXV1NQDg7NmzyMrKkr5u377N5xyJiHoAFo5ERNRhc+bMQUNDAxobG+Hq6tqq38zMDOrq6khJSZG2NTY2Ii0tDdbW1gAAKysr6fOGLa5duybzftCgQfjll19kisc/b6Pxv54+fYq7d+9i8+bNmDFjBqysrFrdXVNXVwcA/P777+1+TkfyfxGLFi2Curo6du3a1WZ/e/tXpqSkwNvbGwsWLICtrS2GDh3aaiEhVVVVzJw5E7t27cLNmzdRUFCAS5cuAfijMJs0aRJCQkKQmZkJdXV1aZH3PE5OTli4cGGr50/v3LmDp0+fIiwsDFOmTIGlpaXchXQ6ytraGv3790dhYSHMzc1lXoaGhp3+fCIi6hxVZSdARES9R79+/aRTNvv169eqf8CAAQgICEBQUBAGDhwIIyMj7Nq1C7W1tfD19QUA+Pv7Y8+ePQgKCoKfnx/S09Nb7aM4ffp0lJaWYteuXVi0aBHi4uJw/vx5SCSSNvPS09ODvr4+Pv/8cxgYGKCwsLBVwTN48GBoamoiLi4Of/vb36ChoQEdHZ2/nP+LMDQ0xL59+/DOO++gsrISy5cvh4mJCYqLixEdHQ1tbe02t+SwsLBAbGws3N3dIRKJEBwcLHNX87vvvsP9+/cxdepU6Onp4dy5c2hubsaoUaOQmpqKxMREzJ49G4MHD0ZqaipKS0thZWXV4bxDQ0NhY2MDVdX//++CkZER1NXVsX//fvj7++Onn37Cjh07XvjctBCLxVi3bh1Wr16N5uZmTJ48GRUVFUhJSYFEIsGKFSs6HYOIiF4c7zgSEdFfIpFI2i3ggD+mOHp6emLZsmVwcHBAXl4e4uPjoaenB+CPwiMmJganT5+GnZ0dwsPD8cEHH8h8hpWVFT799FP8+9//hp2dHa5fv45169a1G1NFRQXHjx9Heno6Ro8ejdWrV+PDDz+UOUZVVRWffPIJPvvsMwwbNgweHh4vlP+L+uc//4kLFy7g0aNHWLBgASwtLeHn5weJRNLud9u7dy/09PQwceJEuLu7w9XVFQ4ODtJ+XV1dxMbGwsXFBVZWVggPD8eXX34JGxsbSCQSXL58GW5ubhg5ciQ2b96MPXv2YO7cuR3OeeTIkfDx8UF9fb20bdCgQThy5AhOnjwJa2trhIWFKWzfxx07diA4OBg7d+6ElZUV5syZg7Nnz0q3UiEiIuURCX9+iISIiIiIiIjof/COIxEREREREcnFwpGIiIiIiIjkYuFIREREREREcrFwJCIiIiIiIrlYOBIREREREZFcLByJiIiIiIhILhaOREREREREJBcLRyIiIiIiIpKLhSMRERERERHJxcKRiIiIiIiI5GLhSERERERERHL9H1JotIMbSlVnAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -276,6 +355,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": { "tags": [] @@ -286,12 +366,12 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 9, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA44AAALSCAYAAACSzI+sAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABg1klEQVR4nO3dd3gUVf/+8XuTkAIpdEIAQwi9IyBCRDoBqRYUVAjhUVECiIIlIlJUilJFQUQFRETKI8UCSBWlPFIEsdCLSBWEhBogOb8//GW/LJsckhDcoO/Xde11MWfOzHx2djbkzpTjMMYYAQAAAACQDi9PFwAAAAAAyNkIjgAAAAAAK4IjAAAAAMCK4AgAAAAAsCI4AgAAAACsCI4AAAAAACuCIwAAAADAiuAIAAAAALAiOAIAAAAArAiOAG4ZgwYNksPh+Fu21bBhQzVs2NA5vWrVKjkcDs2dO/dv2X7Xrl1VsmTJv2VbWXX27Fk99thjCg0NlcPhUJ8+fTxdUpY0bNhQlStX9nQZGTZ9+nSVL19euXLlUt68ebNlnQ6HQ4MGDcqWdd2o1O/aqlWrPF3Kv9rUqVPlcDi0f/9+T5cCIIcgOALwiNRfSlJf/v7+CgsLU3R0tN566y2dOXMmW7Zz+PBhDRo0SFu2bMmW9WWnnFxbRgwdOlRTp07VU089penTp6tz587p9i1ZsqQcDod69erlNu/vDuW3su3bt6tr166KjIzU5MmT9d5771n7f/fdd2rZsqWKFSsmf39/3XbbbWrTpo0++eSTv6liz+ratavLz5ng4GBVq1ZNo0aNUlJS0k3ffkpKij766CPVqVNH+fPnV1BQkMqWLasuXbpo/fr1N337AJCdfDxdAIB/tyFDhigiIkKXL1/W0aNHtWrVKvXp00ejR4/WwoULVbVqVWffl19+WS+++GKm1n/48GENHjxYJUuWVPXq1TO83Ndff52p7WSFrbbJkycrJSXlptdwI1asWKE777xTAwcOzPAykydPVnx8vMLCwm5iZf9cq1atUkpKisaNG6fSpUtb+86ZM0cPPfSQqlevrqefflr58uXTvn37tHr1ak2ePFkPP/yws++FCxfk4/PP/JXAz89P77//viTp9OnT+u9//6t+/fppw4YN+vTTT2/qtnv37q133nlH7dq10yOPPCIfHx/t2LFDixYtUqlSpXTnnXfe1O0DQHb6Z/4vAeCW0bJlS9WqVcs5HR8frxUrVqh169Zq27atfv31VwUEBEiSfHx8bvovt+fPn1fu3Lnl6+t7U7dzPbly5fLo9jPi+PHjqlixYob7V6pUSTt27NDw4cP11ltv3cTKcp6UlBRdunRJ/v7+N7Se48ePS1KGLlEdNGiQKlasqPXr17sdz6nrSXWjdeVkPj4+evTRR53TPXr0UJ06dTRr1iyNHj36hv6IYftcjx07pgkTJujxxx93OzM8duxY/fHHH1neLgB4ApeqAshxGjdurAEDBujAgQP6+OOPne1p3eO4dOlS3XXXXcqbN68CAwNVrlw5vfTSS5L+OjtTu3ZtSVJsbKzzcrWpU6dK+r972zZt2qS7775buXPndi577T2OqZKTk/XSSy8pNDRUefLkUdu2bXXw4EGXPiVLllTXrl3dlr16nderLa17HM+dO6e+ffuqRIkS8vPzU7ly5TRy5EgZY1z6ORwO9ezZU/Pnz1flypXl5+enSpUqafHixWnv8GscP35c//nPf1SkSBH5+/urWrVqmjZtmnN+6qWl+/bt05dffums/Xr3QpUsWVJdunTR5MmTdfjwYWvf9O7xTOsYSH2/c+bMUcWKFRUQEKC6detq27ZtkqRJkyapdOnS8vf3V8OGDdOtc9OmTapXr54CAgIUERGhd999161PUlKSBg4cqNKlS8vPz08lSpTQ888/73bZY2pNM2bMUKVKleTn53fd/T9hwgRn37CwMMXFxen06dPO+SVLlnSe3S1UqNB170vcs2ePateuneYfQQoXLuxW77XrWrVqlWrVqiV/f39FRkZq0qRJ1v1/vePtwIED6tGjh8qVK6eAgAAVKFBAHTp0yNA9dLt27dL999+v0NBQ+fv7q3jx4urYsaMSEhKuu+y1vLy8nN/D1G3fjM913759MsYoKirKbZ7D4XD5DP7880/169dPVapUUWBgoIKDg9WyZUtt3brVZbnU797s2bM1ePBgFStWTEFBQXrggQeUkJCgpKQk9enTR4ULF1ZgYKBiY2Ot76FcuXLy9/dXzZo1tXr16gztv0WLFql+/frKkyePgoKC1KpVK/38888ZWhbArY0zjgBypM6dO+ull17S119/rccffzzNPj///LNat26tqlWrasiQIfLz89Pu3bu1Zs0aSVKFChU0ZMgQvfLKK3riiSdUv359SVK9evWc6zh58qRatmypjh076tFHH1WRIkWsdb3++utyOBx64YUXdPz4cY0dO1ZNmzbVli1bnGdGMyIjtV3NGKO2bdtq5cqV+s9//qPq1atryZIleu6553To0CGNGTPGpf93332nzz77TD169FBQUJDeeust3X///frtt99UoECBdOu6cOGCGjZsqN27d6tnz56KiIjQnDlz1LVrV50+fVpPP/20KlSooOnTp+uZZ55R8eLF1bdvX0l/hZnr6d+/vz766KNsP+v47bffauHChYqLi5MkDRs2TK1bt9bzzz+vCRMmqEePHjp16pTeeOMNdevWTStWrHBZ/tSpU7rnnnv04IMPqlOnTpo9e7aeeuop+fr6qlu3bpL+OrvUtm1bfffdd3riiSdUoUIFbdu2TWPGjNHOnTs1f/58l3WuWLFCs2fPVs+ePVWwYEHrw44GDRqkwYMHq2nTpnrqqae0Y8cOTZw4URs2bNCaNWuUK1cujR07Vh999JHmzZuniRMnKjAw0OVS7muFh4dr+fLl+v3331W8ePFM7c8ffvhBLVq0UNGiRTV48GAlJydryJAh6X7GGTneNmzYoLVr16pjx44qXry49u/fr4kTJ6phw4b65ZdflDt37jTXfenSJUVHRyspKUm9evVSaGioDh06pC+++EKnT59WSEhIpt6b9FeolqQCBQrctM81PDxc0l+XDHfo0CHd9ydJe/fu1fz589WhQwdFRETo2LFjmjRpkho0aKBffvnF7azosGHDFBAQoBdffFG7d+/W+PHjlStXLnl5eenUqVMaNGiQ1q9fr6lTpyoiIkKvvPKKy/LffPONZs2apd69e8vPz08TJkxQixYt9P3331sfFDV9+nTFxMQoOjpaI0aM0Pnz5zVx4kTddddd+uGHH3L8A70A3CADAB4wZcoUI8ls2LAh3T4hISGmRo0azumBAweaq39sjRkzxkgyf/zxR7rr2LBhg5FkpkyZ4javQYMGRpJ5991305zXoEED5/TKlSuNJFOsWDGTmJjobJ89e7aRZMaNG+dsCw8PNzExMdddp622mJgYEx4e7pyeP3++kWRee+01l34PPPCAcTgcZvfu3c42ScbX19elbevWrUaSGT9+vNu2rjZ27FgjyXz88cfOtkuXLpm6deuawMBAl/ceHh5uWrVqZV1fWn1jY2ONv7+/OXz4sDHm//btnDlz0n3/qa49BlLfr5+fn9m3b5+zbdKkSUaSCQ0Ndak5Pj7eSHLpm3ocjBo1ytmWlJRkqlevbgoXLmwuXbpkjDFm+vTpxsvLy3z77bcu23/33XeNJLNmzRqXmry8vMzPP/983X1z/Phx4+vra5o3b26Sk5Od7W+//baRZD788EO392875lN98MEHzmOhUaNGZsCAAebbb7912cbV9Q4cONA53aZNG5M7d25z6NAhZ9uuXbuMj49Pmvs/I8fb+fPn3ba7bt06I8l89NFHzrbU42HlypXGGGN++OEHt+Mjo2JiYkyePHnMH3/8Yf744w+ze/duM3ToUONwOEzVqlWNMTfvczXGmC5duhhJJl++fObee+81I0eONL/++qtbv4sXL7p9Lvv27TN+fn5myJAhzrbUfVO5cmXncWmMMZ06dTIOh8O0bNnSZR1169Z1+x5JMpLMxo0bnW0HDhww/v7+5t5773W2pf6MTv2unDlzxuTNm9c8/vjjLus7evSoCQkJcWsH8M/DpaoAcqzAwEDr01VT7/NasGBBlh8k4+fnp9jY2Az379Kli4KCgpzTDzzwgIoWLaqvvvoqS9vPqK+++kre3t7q3bu3S3vfvn1ljNGiRYtc2ps2barIyEjndNWqVRUcHKy9e/dedzuhoaHq1KmTsy1Xrlzq3bu3zp49q2+++eaG38vLL7+sK1euaPjw4Te8rlRNmjRxOdtRp04dSdL999/v8nmltl+7H3x8fNS9e3fntK+vr7p3767jx49r06ZNkv46c1ShQgWVL19eJ06ccL4aN24sSVq5cqXLOhs0aJChe0CXLVumS5cuqU+fPvLy+r//lh9//HEFBwfryy+/zMgucNOtWzctXrxYDRs21HfffadXX31V9evXV5kyZbR27dp0l0tOTtayZcvUvn17lzNdpUuXVsuWLdNcJiPH29Vn5C9fvqyTJ0+qdOnSyps3rzZv3pxuPalnFJcsWaLz589f/41f49y5cypUqJAKFSqk0qVL66WXXlLdunU1b948STfvc5WkKVOm6O2331ZERITmzZunfv36qUKFCmrSpIkOHTrk7Ofn5+f87JOTk3Xy5Ennpfdp7ZsuXbq43Addp04dGWOcZ8evbj948KCuXLni0l63bl3VrFnTOX3bbbepXbt2WrJkiZKTk9N8L0uXLtXp06fVqVMnl/3k7e2tOnXquO0nAP88BEcAOdbZs2ddfum/1kMPPaSoqCg99thjKlKkiDp27KjZs2dnKkQWK1YsUw/CKVOmjMu0w+FQ6dKlb/pYZwcOHFBYWJjb/qhQoYJz/tVuu+02t3Xky5dPp06duu52ypQp4xJgbNvJilKlSqlz58567733dOTIkRten+T+flPDRokSJdJsv3Y/hIWFKU+ePC5tZcuWlfR/98Ht2rVLP//8szOEpL5S+137wJmIiIgM1Z66T8uVK+fS7uvrq1KlSt3QPo+OjtaSJUt0+vRprV69WnFxcTpw4IBat27tVm+q48eP68KFC2k+tTW9J7lm5Hi7cOGCXnnlFec9ugULFlShQoV0+vRp672KERERevbZZ/X++++rYMGCio6O1jvvvJPh+xv9/f21dOlSLV26VKtXr9bBgwe1Zs0alSpVStLN+1ylv+6njIuL06ZNm3TixAktWLBALVu21IoVK9SxY0dnv5SUFI0ZM0ZlypRx2Tc//vhjmu8zM8d7SkqK2zqu/Tkm/XW8nz9/Pt2H9uzatUvSX/egX7uvvv7663SPJwD/HNzjCCBH+v3335WQkGAdciAgIECrV6/WypUr9eWXX2rx4sWaNWuWGjdurK+//lre3t7X3U5m7kvMqGsfHpIqOTk5QzVlh/S2Y655kI6n9O/fX9OnT9eIESPUvn17t/m2fZiW9N5vdu6HlJQUValSRaNHj05z/rW/tN+MYyurcufOrfr166t+/foqWLCgBg8erEWLFikmJiZb1p+R/dyrVy9NmTJFffr0Ud26dRUSEiKHw6GOHTte9489o0aNUteuXbVgwQJ9/fXX6t27t4YNG6b169df9/5Nb29vNW3aNN35f9fnWqBAAbVt21Zt27ZVw4YN9c033+jAgQMKDw/X0KFDNWDAAHXr1k2vvvqq8ufPLy8vL/Xp0yfNffN3HO/XSq1j+vTpCg0NdZv/Tx3OBcD/4VsOIEeaPn26pL/OmNh4eXmpSZMmatKkiUaPHq2hQ4eqf//+WrlypZo2bZpuAMmq1L+6pzLGaPfu3S4PKcmXL5/L0zBTHThwwHmWQ0o/HKUlPDxcy5Yt05kzZ1zOOm7fvt05PzuEh4frxx9/VEpKistZx+zeTmRkpB599FFNmjTJefno1Wz78GY4fPiwzp0753LWcefOnZLkvAQ2MjJSW7duVZMmTbL1uErdpzt27HA5Pi5duqR9+/ZZQ09WpA5/k97Z3sKFC8vf31+7d+92m5dWW0bNnTtXMTExGjVqlLPt4sWLaX7OaalSpYqqVKmil19+WWvXrlVUVJTeffddvfbaa1muSbp5n6tNrVq19M033+jIkSMKDw/X3Llz1ahRI33wwQcu/U6fPq2CBQtm+/av/Tkm/XW8586dO90HIKVeily4cOFsPyYB3Bq4VBVAjrNixQq9+uqrioiI0COPPJJuvz///NOtrXr16pLkfAR9ahDI6C+n1/PRRx+53Hc5d+5cHTlyxOXer8jISK1fv16XLl1ytn3xxRduw3ZkprZ77rlHycnJevvtt13ax4wZI4fDke69Z5l1zz336OjRo5o1a5az7cqVKxo/frwCAwPVoEGDbNmO9Ne9jpcvX9Ybb7zhNi8yMlIJCQn68ccfnW1Hjhxx3peW3a5cuaJJkyY5py9duqRJkyapUKFCznvBHnzwQR06dEiTJ092W/7ChQs6d+5clrbdtGlT+fr66q233nI5M/TBBx8oISFBrVq1ytJ6ly9fnmZ76v24114amyr1DN38+fNdhk3ZvXu32720meHt7e125mv8+PHpnkVOlZiY6HaPXpUqVeTl5eU21ERW3KzP9ejRo/rll1/c2i9duqTly5fLy8vLeUVFWvtmzpw5LvdBZqd169a53Dt58OBBLViwQM2bN0/3rGV0dLSCg4M1dOhQXb582W0+41IC/3yccQTgUYsWLdL27dt15coVHTt2TCtWrNDSpUsVHh6uhQsXWgcmHzJkiFavXq1WrVopPDxcx48f14QJE1S8eHHdddddkv4KIHnz5tW7776roKAg5cmTR3Xq1MnUfUpXy58/v+666y7Fxsbq2LFjGjt2rEqXLu0yZMhjjz2muXPnqkWLFnrwwQe1Z88effzxxy4PD8lsbW3atFGjRo3Uv39/7d+/X9WqVdPXX3+tBQsWqE+fPm7rzqonnnhCkyZNUteuXbVp0yaVLFlSc+fO1Zo1azR27FjrPaeZlXrW8eoxIlN17NhRL7zwgu6991717t3b+dj/smXLWh+kklVhYWEaMWKE9u/fr7Jly2rWrFnasmWL3nvvPedDSDp37qzZs2frySef1MqVKxUVFaXk5GRt375ds2fP1pIlS5xn8zKjUKFCio+P1+DBg9WiRQu1bdtWO3bs0IQJE1S7dm2Xweszo127doqIiFCbNm0UGRmpc+fOadmyZfr8889Vu3ZttWnTJt1lBw0apK+//lpRUVF66qmnnH+0qFy5srZs2ZKlelq3bq3p06crJCREFStW1Lp167Rs2TLr8DDSX39I6tmzpzp06KCyZcvqypUrmj59ury9vXX//fdnqZar3azP9ffff9cdd9yhxo0bq0mTJgoNDdXx48c1c+ZMbd26VX369HGeTWzdurWGDBmi2NhY1atXT9u2bdOMGTNczkBnp8qVKys6OtplOA5JGjx4cLrLBAcHa+LEiercubNuv/12dezYUYUKFdJvv/2mL7/8UlFRUW5/2ALwD+Opx7kC+HdLfdR76svX19eEhoaaZs2amXHjxrkMoZDq2qEYli9fbtq1a2fCwsKMr6+vCQsLM506dTI7d+50WW7BggWmYsWKzqEEUoe/aNCggalUqVKa9aU3HMfMmTNNfHy8KVy4sAkICDCtWrUyBw4ccFt+1KhRplixYsbPz89ERUWZjRs3uq3TVltaw1GcOXPGPPPMMyYsLMzkypXLlClTxrz55psmJSXFpZ8kExcX51ZTesOEXOvYsWMmNjbWFCxY0Pj6+poqVaqkOWRIVofjuNquXbuMt7d3msMtfP3116Zy5crG19fXlCtXznz88cfpDsdx7fvdt2+fkWTefPNNl/a0hv5IPQ42btxo6tata/z9/U14eLh5++233eq9dOmSGTFihKlUqZLx8/Mz+fLlMzVr1jSDBw82CQkJ1pqu5+233zbly5c3uXLlMkWKFDFPPfWUOXXqlEufzAzHMXPmTNOxY0cTGRlpAgICjL+/v6lYsaLp37+/2/dL1wzHYcxf368aNWoYX19fExkZad5//33Tt29f4+/v77ZsRo63U6dOOY+rwMBAEx0dbbZv3+7W79rhOPbu3Wu6detmIiMjjb+/v8mfP79p1KiRWbZs2XX3QepwHNdzMz7XxMREM27cOBMdHW2KFy9ucuXKZYKCgkzdunXN5MmTXb63Fy9eNH379jVFixY1AQEBJioqyqxbty7dn0PXflfSG94oreMl9T18/PHHpkyZMsbPz8/UqFHDub+vXefVQ9ek1hAdHW1CQkKMv7+/iYyMNF27dnUZ3gPAP5PDmBzypAQAAJCjtW/fXj///HOa98jh1uBwOBQXF8fZQQCZxj2OAADAzYULF1ymd+3apa+++koNGzb0TEEAAI/iHkcAAOCmVKlS6tq1q3MsyYkTJ8rX11fPP/+8p0sDAHgAwREAALhp0aKFZs6cqaNHj8rPz09169bV0KFD0xw8HgDwz8c9jgAAAAAAK+5xBAAAAABYERwBAAAAAFYERwDIolWrVsnhcGjVqlWeLiXLUt/D3LlzPV0KAADIwQiOAG4pDocjQ6+MhLmhQ4dq/vz5N73mqVOnyuFwyN/fX4cOHXKb37BhQ1WuXPmm13Ermj17tu68807lzZtXBQoUUIMGDfTll1+69Nm+fbuef/55Va9eXUFBQSpatKhatWqljRs33tTavvrqKzkcDoWFhSklJeWmbuuf4plnntHtt9+u/PnzK3fu3KpQoYIGDRqks2fPXnfZgwcPavDgwbrjjjuUL18+FSxYUA0bNtSyZcvS7L9p0ya1bt1aoaGhCgwMVNWqVfXWW28pOTk5W99T165d5XA4FBwc7DaEifTXMCapP5dGjhyZrdu+EUeOHNETTzyhiIgIBQQEKDIyUs8++6xOnjzp6dIA5FA8VRXALWX69Oku0x999JGWLl3q1l6hQoXrrmvo0KF64IEH1L59++wsMV1JSUkaPny4xo8f/7ds71Y3fvx49e7dW61atdLw4cN18eJFTZ06Va1bt9Z///tf3XfffZKk999/Xx988IHuv/9+9ejRQwkJCZo0aZLuvPNOLV68WE2bNr0p9c2YMUMlS5bU/v37tWLFipu2nX+SDRs2qH79+oqNjZW/v79++OEHDR8+XMuWLdPq1avl5ZX+37MXLFigESNGqH379oqJidGVK1f00UcfqVmzZvrwww8VGxvr7Ltp0ybVq1dPZcqU0QsvvKDcuXNr0aJFevrpp7Vnzx6NGzcuW9+Xj4+Pzp8/r88//1wPPvigy7wZM2bI399fFy9ezNZt3oizZ8+qbt26OnfunHr06KESJUpo69atevvtt7Vy5Upt2rTJ+lkA+JcyAHALi4uLM1n9UZYnTx4TExOT5W2vXLnSSDIrV6609psyZYqRZKpXr278/PzMoUOHXOY3aNDAVKpUKct13IjU9zBnzpybup2zZ89mepkyZcqY2rVrm5SUFGdbQkKCCQwMNG3btnW2bdy40Zw5c8Zl2RMnTphChQqZqKiorBdtcfbsWZMnTx7z1ltvmRo1apiuXbvelO3YpKSkmPPnz//t281uI0eONJLMunXrrP1++ukn88cff7i0Xbx40ZQvX94UL17cpf3xxx83vr6+5uTJky7td999twkODs6ewv+/mJgYkydPHtO8eXPTvn17t/llypQx999/v5Fk3nzzzWzddlbNmDHDSDJffPGFS/srr7xiJJnNmzd7qDIAORl/TgLwj3Pu3Dn17dtXJUqUkJ+fn8qVK6eRI0fKXDX6kMPh0Llz5zRt2jTnZWRdu3aVJB04cEA9evRQuXLlFBAQoAIFCqhDhw7av3//DdX10ksvKTk5WcOHD7f2279/vxwOh6ZOneo2z+FwaNCgQc7pQYMGyeFwaOfOnXr00UcVEhKiQoUKacCAATLG6ODBg2rXrp2Cg4MVGhqqUaNGpbnN5ORkvfTSSwoNDVWePHnUtm1bHTx40K3f//73P7Vo0UIhISHKnTu3GjRooDVr1rj0Sa3pl19+0cMPP6x8+fLprrvukiQlJCRo+/btSkhIuM7ekhITE1W4cGE5HA5nW3BwsAIDAxUQEOBsq1mzpgIDA12WLVCggOrXr69ff/31utvJinnz5unChQvq0KGDOnbsqM8++8zljFLlypXVqFEjt+VSUlJUrFgxPfDAAy5tY8eOVaVKleTv768iRYqoe/fuOnXqlMuyJUuWVOvWrbVkyRLVqlVLAQEBmjRpkiRpypQpaty4sQoXLiw/Pz9VrFhREydOTHP7gwYNUlhYmHLnzq1GjRrpl19+UcmSJZ3Hf6rTp0+rT58+zu9R6dKlNWLECLfLco8cOaLt27fr8uXLmd6Pqe8rdXs2lSpVUsGCBV3a/Pz8dM899+j333/XmTNnnO2JiYny9/dX3rx5XfoXLVrU5djJTg8//LAWLVrk8j42bNigXbt26eGHH3br/+eff6pfv36qUqWKAgMDFRwcrJYtW2rr1q0u/WJiYuTv7+92LEdHRytfvnw6fPiws23Pnj3as2fPdWtNTEyUJBUpUsSlvWjRopJ00/YRgFsbwRHAP4oxRm3bttWYMWPUokULjR49WuXKldNzzz2nZ5991tlv+vTp8vPzU/369TV9+nRNnz5d3bt3l/TXL3tr165Vx44d9dZbb+nJJ5/U8uXL1bBhQ50/fz7LtUVERKhLly6aPHmyyy972eGhhx5SSkqKhg8frjp16ui1117T2LFj1axZMxUrVkwjRoxQ6dKl1a9fP61evdpt+ddff11ffvmlXnjhBfXu3VtLly5V06ZNXe7ZWrFihe6++24lJiZq4MCBGjp0qE6fPq3GjRvr+++/d1tnhw4ddP78eQ0dOlSPP/64pL8CV4UKFTRv3rzrvqeGDRtq8eLFGj9+vPbv36/t27crLi5OCQkJevrpp6+7/NGjR92CRnaZMWOGGjVqpNDQUHXs2FFnzpzR559/7pz/0EMPafXq1Tp69KjLct99950OHz6sjh07Otu6d++u5557TlFRURo3bpxiY2M1Y8YMRUdHu4WxHTt2qFOnTmrWrJnGjRun6tWrS5ImTpyo8PBwvfTSSxo1apRKlCihHj166J133nFZPj4+XoMHD1atWrX05ptvqkyZMoqOjta5c+dc+p0/f14NGjTQxx9/rC5duuitt95SVFSU4uPjXb5HqeusUKFCmvfvpuXKlSs6ceKEDh8+rK+//lovv/yygoKCdMcdd2Ro+WsdPXpUuXPnVu7cuZ1tDRs2VGJiorp3765ff/1VBw4c0LvvvqvPPvtM8fHxWdrO9dx3331yOBz67LPPnG2ffPKJypcvr9tvv92t/969ezV//ny1bt1ao0eP1nPPPadt27apQYMGLj8fxo0bp0KFCikmJsZ5f+akSZP09ddfa/z48QoLC3P2bdKkiZo0aXLdWu+++255eXnp6aef1vr16/X777/rq6++0uuvv6727durfPnyN7IrAPxTefiMJwDckGsvVZ0/f76RZF577TWXfg888IBxOBxm9+7dzrb0LlVN6/K/devWGUnmo48+crZl9lLVDRs2mD179hgfHx/Tu3dv5/xrL1Xdt2+fkWSmTJniti5JZuDAgc7pgQMHGknmiSeecLZduXLFFC9e3DgcDjN8+HBn+6lTp0xAQIDLe059D8WKFTOJiYnO9tmzZxtJZty4ccaYvy6LLFOmjImOjna5dPT8+fMmIiLCNGvWzK2mTp06pbsv0npv1zp27Jhp0qSJkeR8FSxY0Kxdu/a6y65evdo4HA4zYMCA6/bNrGPHjhkfHx8zefJkZ1u9evVMu3btnNM7duwwksz48eNdlu3Ro4cJDAx0HmPffvutkWRmzJjh0m/x4sVu7eHh4UaSWbx4sVtNaR2z0dHRplSpUs7po0ePGh8fH7fLKQcNGmQkuRwXr776qsmTJ4/ZuXOnS98XX3zReHt7m99++83ZFhMTYySZffv2udWQltTvUuqrXLly1/0OpWfXrl3G39/fdO7c2aX9ypUrpmfPniZXrlzO7Xh7e5uJEydmaTs2qZeqGvPXz5kmTZoYY4xJTk42oaGhZvDgwc7v9NWXql68eNEkJye7rGvfvn3Gz8/PDBkyxKV9yZIlzp9re/fuNYGBgWleFhseHm7Cw8MzVPf7779v8ubN6/JZxMTEmMuXL2fm7QP4F+GMI4B/lK+++kre3t7q3bu3S3vfvn1ljNGiRYuuu46rL9O6fPmyTp48qdKlSytv3rzavHnzDdVXqlQpde7cWe+9956OHDlyQ+u62mOPPeb8t7e3t2rVqiVjjP7zn/842/Pmzaty5cpp7969bst36dJFQUFBzukHHnhARYsW1VdffSVJ2rJli/OSu5MnT+rEiRM6ceKEzp07pyZNmmj16tVulzA++eSTbtvp2rWrjDFul0WmJXfu3CpXrpxiYmI0Z84cffjhhypatKjuu+8+7d69O93ljh8/rocfflgRERF6/vnnr7udzPr000/l5eWl+++/39nWqVMnLVq0yHl5admyZVW9enXNmjXL2Sc5OVlz585VmzZtnMfYnDlzFBISombNmjn36YkTJ5yX365cudJl2xEREYqOjnar6epjNiEhQSdOnFCDBg20d+9e52XBy5cv15UrV9SjRw+XZXv16uW2vjlz5qh+/frKly+fS11NmzZVcnKyy1nrqVOnyhjjvOT0eipWrKilS5dq/vz5ev7555UnT54MPVX1WufPn1eHDh0UEBDgdvm3t7e3IiMjFR0drWnTpmnWrFlq06aNevXqdVOfpPzwww9r1apVOnr0qFasWKGjR4+meZmq9NdltqkPoElOTtbJkycVGBiocuXKuf2cad68ubp3764hQ4bovvvuk7+/v/My5avt378/w5fUFytWTHfccYfGjh2refPm6dlnn9WMGTP04osvZu5NA/jX4KmqAP5RDhw4oLCwMJcQJP3fU1YPHDhw3XVcuHBBw4YN05QpU3To0CGXeyMzcm/e9bz88suaPn26hg8fnm1Pd7zttttcpkNCQuTv7+92qWZISEiaj9svU6aMy7TD4VDp0qWdv4Tu2rVL0l/3W6UnISFB+fLlc05HRERk6j1cq0OHDvLx8XG5BLRdu3YqU6aM+vfv7xLKUp07d06tW7fWmTNn9N1337nd+3itS5cu6c8//3RpK1SokLy9vdNd5uOPP9Ydd9yhkydPOvdljRo1dOnSJc2ZM0dPPPGEpL8uV33ppZd06NAhFStWTKtWrdLx48f10EMPOde1a9cuJSQkqHDhwmlu6/jx4y7T6e3TNWvWaODAgVq3bp3b5dQJCQkKCQlxHvulS5d2mZ8/f36Xzy21rh9//FGFChXKUF2ZERwc7HwCbbt27fTJJ5+oXbt22rx5s6pVq5ahdSQnJ6tjx4765ZdftGjRIpfLNSU5v1u7du1yHgMPPvigGjVqpLi4OLVu3Vo+Pmn/CpSQkOByibavr6/y58+fobruueceBQUFadasWdqyZYtq167t8j26WkpKisaNG6cJEyZo3759LsOEFChQwK3/yJEjtWDBAm3ZskWffPJJusdMRqxZs0atW7fW+vXrVatWLUlS+/btFRwcrMGDB6tbt26qWLFiltcP4J+J4AgA1+jVq5emTJmiPn36qG7dugoJCZHD4VDHjh2zZby+UqVK6dFHH9V7772X5l/3r34YzNVs48+lFXTSCz9XB+GMSn3fb775pvO+umtdG9Ju5AEbe/fu1eLFi/Xee++5tOfPn1933XWX2wN5pL9C4H333acff/xRS5YsydDYmGvXrnV7iM2+ffvSPXu2a9cubdiwQZJ72Jb+uvfx6uAYHx+vOXPmqE+fPpo9e7ZCQkLUokULZ/+UlBQVLlxYM2bMSHN71wa3tPbpnj171KRJE5UvX16jR49WiRIl5Ovrq6+++kpjxozJ0jGbkpKiZs2apXvGtmzZspleZ3ruu+8+de7cWZ9++mmGg+Pjjz+uL774QjNmzFDjxo3d5k+YMEGNGzd2Oybbtm2rZ599Vvv373cL0KmefvppTZs2zTndoEGDDI0LK/11FvG+++7TtGnTtHfvXpcHWV1r6NChGjBggLp166ZXX31V+fPnl5eXl/r06ZPmZ/bDDz84A/u2bdvUqVOnDNWUlkmTJqlIkSLO0Jiqbdu2GjRokNauXUtwBOCG4AjgHyU8PFzLli3TmTNnXM46bt++3Tk/VXoBbe7cuYqJiXF5AunFixev+9THzHj55Zf18ccfa8SIEW7zUs/+XLu9jJwtzarUM4qpjDHavXu3qlatKkmKjIyU5Hq26GY6duyYpLTD8uXLl3XlyhWXtpSUFHXp0kXLly/X7Nmz1aBBgwxtp1q1alq6dKlLW2hoaLr9Z8yYoVy5cmn69Oluwfy7777TW2+9pd9++0233XabIiIidMcdd2jWrFnq2bOnPvvsM7Vv315+fn7OZSIjI7Vs2TJFRUVlOWh//vnnSkpK0sKFC13OPF97mWvqsb97926XM5cnT550e4JrZGSkzp49+7d81klJSUpJScnw2fznnntOU6ZM0dixY9MNT8eOHUv32JHkdvxc7fnnn9ejjz7qnL72bOz1PPzww/rwww/l5eXl8hCka82dO1eNGjXSBx984NJ++vRptysFzp07p9jYWFWsWFH16tXTG2+8oXvvvVe1a9fOVG2pbmT/APj34h5HAP8o99xzj5KTk/X222+7tI8ZM0YOh0MtW7Z0tuXJkyfNMOjt7e12Vm78+PHWM36ZFRkZqUcffVSTJk1ye/JmcHCwChYs6Pb00wkTJmTb9q/10UcfuQxnMHfuXB05csS5v2rWrKnIyEiNHDkyzfvR/vjjjwxtJ6PDcZQuXVpeXl6aNWuWy2fx+++/69tvv1WNGjVc+vfq1UuzZs3ShAkTdN9992WoFumvUNC0aVOXl7+/f7r9Z8yYofr16+uhhx7SAw884PJ67rnnJEkzZ8509n/ooYe0fv16ffjhhzpx4oTLZarSX5dPJicn69VXX3Xb1pUrVzL0x4rUAHvtJdVTpkxx6dekSRP5+Pi4DdNx7Xclta5169ZpyZIlbvNOnz7tEiwyOhzH6dOn0+zz/vvvS5LL2a/z589r+/btOnHihEvfN998UyNHjtRLL71kfbJu2bJltXTpUpfLspOTkzV79mwFBQU5/xCSlooVK7ocDzVr1rS+r2s1atRIr776qt5++23rHyHS+jkzZ86cNJ9O+8ILL+i3337TtGnTNHr0aJUsWVIxMTFKSkpy6ZfR4TjKli2rY8eOuZ1JTT12r/1+AYDEGUcA/zBt2rRRo0aN1L9/f+3fv1/VqlXT119/rQULFqhPnz4uvzDWrFlTy5Yt0+jRoxUWFqaIiAjVqVNHrVu31vTp0xUSEqKKFStq3bp1WrZsWZr3Hd2I/v37a/r06dqxY4cqVarkMu+xxx7T8OHD9dhjj6lWrVpavXq1du7cma3bv1rqJaCxsbE6duyYxo4dq9KlSzuH0fDy8tL777+vli1bqlKlSoqNjVWxYsV06NAhrVy5UsHBwS73IqZn3rx5io2N1ZQpU6wPyClUqJC6deum999/X02aNNF9992nM2fOaMKECbpw4YLLkApjx47VhAkTVLduXeXOnVsff/yxy7ruvfde5cmTJ2s75ir/+9//tHv3bvXs2TPN+cWKFdPtt9+uGTNm6IUXXpD0VwDr16+f+vXrp/z587udwWvQoIG6d++uYcOGacuWLWrevLly5cqlXbt2ac6cORo3bpzLmI9pad68uXx9fdWmTRt1795dZ8+e1eTJk1W4cGGXBzAVKVJETz/9tEaNGqW2bduqRYsW2rp1qxYtWqSCBQu6nIF/7rnntHDhQrVu3Vpdu3ZVzZo1de7cOW3btk1z587V/v37nWfF4uPjNW3aNOslvpK0atUq9e7dWw888IDKlCmjS5cu6dtvv9Vnn32mWrVquZzl+/7779WoUSMNHDjQebnnvHnz9Pzzz6tMmTKqUKGC2+fcrFkz57iEL774oh599FHVqVNHTzzxhAICAjRz5kxt2rRJr732mnLlymXdpzfCy8tLL7/88nX7tW7dWkOGDFFsbKzq1aunbdu2acaMGSpVqpRLvxUrVmjChAkaOHCgc1iPKVOmqGHDhhowYIDeeOMNZ9/UoTiu94Ccnj17asqUKc4HBoWHh+ubb77RzJkz1axZM9WpUyeT7xrAv4KHnuYKANni2uE4jDHmzJkz5plnnjFhYWEmV65cpkyZMubNN990GUbCGGO2b99u7r77bhMQEOAyHMGpU6dMbGysKViwoAkMDDTR0dFm+/btJjw8PM2hLDIzHMe1UocyuHo4DmP+Gl7hP//5jwkJCTFBQUHmwQcfNMePH093OI4//vjDbb2pQwRc7dqhP1Lfw8yZM018fLwpXLiwCQgIMK1atTIHDhxwW/6HH34w9913nylQoIDx8/Mz4eHh5sEHHzTLly+/bk1X74uMDMdx+fJlM378eFO9enUTGBhoAgMDTaNGjcyKFSvc3quuGlLg2ldGh4m4nl69ehlJZs+ePen2SR3aYuvWrc62qKgoI8k89thj6S733nvvmZo1a5qAgAATFBRkqlSpYp5//nlz+PBhZ5/w8HDTqlWrNJdfuHChqVq1qvH39zclS5Y0I0aMMB9++KHb+79y5YoZMGCACQ0NNQEBAaZx48bm119/NQUKFDBPPvmkyzrPnDlj4uPjTenSpY2vr68pWLCgqVevnhk5cqS5dOmSs19Gh+PYvXu36dKliylVqpQJCAgw/v7+plKlSmbgwIHm7NmzLn1Tj8u0jvX0Xtd+DxcvXmwaNGhgChYsaHx9fU2VKlXMu+++a60xK9L7rl0tveE4+vbta4oWLWoCAgJMVFSUWbdunWnQoIFp0KCBMcaYxMREEx4ebm6//Xa3YTKeeeYZ4+XlZdatW+dsy8xwHNu3bzcPPPCAKVGihMmVK5cJDw83/fr1M+fOncvYGwfwr+MwJgtPSQAAAP8Ip0+fVr58+fTaa6+pf//+ni4HAJBDcY8jAAD/ElcPM5Fq7NixkqSGDRv+vcUAAG4p3OMIAMC/xKxZszR16lTdc889CgwM1HfffaeZM2eqefPmioqK8nR5AIAcjOAIAMC/RNWqVeXj46M33nhDiYmJzgfmvPbaa54uDQCQw3GPIwAAAADAinscAQAAAABWBEcAAAAAgNUtfY9jSkqKDh8+rKCgIJeBiwEAAAAA12eM0ZkzZxQWFiYvr/TPK97SwfHw4cMqUaKEp8sAAAAAgFvawYMHVbx48XTn39LBMSgoSNJfbzI4ONjD1QAAAADArSUxMVElSpRwZqv03NLBMfXy1ODgYIIjAAAAAGTR9W794+E4AAAAAAArgiMAAAAAwIrgCAAAAACwIjgCAAAAAKwIjgAAAAAAK4IjAAAAAMCK4AgAAAAAsCI4AgAAAACsCI4AAAAAACuCIwAAAADAiuAIAAAAALAiOAIAAAAArAiOAAAAAAArgiMAAAAAwIrgCAAAAACwIjgCAAAAAKwIjgAAAAAAK4IjAAAAAMCK4AgAAAAAsCI4AgAAAACsCI4AAAAAACuCIwAAAADAiuAIAAAAALAiOAIAAAAArAiOAAAAAAArgiMAAAAAwMrH0wUAOVHJF7/0dAnIgv3DW3m6BAAAgH8kzjgCAAAAAKwIjgAAAAAAK4IjAAAAAMCK4AgAAAAAsCI4AgAAAACsCI4AAAAAACuCIwAAAADAiuAIAAAAALAiOAIAAAAArAiOAAAAAAArgiMAAAAAwIrgCAAAAACwIjgCAAAAAKwIjgAAAAAAK4IjAAAAAMCK4AgAAAAAsCI4AgAAAACsCI4AAAAAACuCIwAAAADAiuAIAAAAALAiOAIAAAAArAiOAAAAAAArgiMAAAAAwIrgCAAAAACwIjgCAAAAAKwIjgAAAAAAK4IjAAAAAMCK4AgAAAAAsCI4AgAAAACsCI4AAAAAACuCIwAAAADAiuAIAAAAALAiOAIAAAAArAiOAAAAAAArgiMAAAAAwIrgCAAAAACwIjgCAAAAAKwIjgAAAAAAK4IjAAAAAMCK4AgAAAAAsCI4AgAAAACsCI4AAAAAACuCIwAAAADAiuAIAAAAALAiOAIAAAAArAiOAAAAAAArgiMAAAAAwIrgCAAAAACwIjgCAAAAAKwIjgAAAAAAK4IjAAAAAMCK4AgAAAAAsCI4AgAAAACsCI4AAAAAACuCIwAAAADAiuAIAAAAALAiOAIAAAAArAiOAAAAAAArgiMAAAAAwIrgCAAAAACw8mhwTE5O1oABAxQREaGAgABFRkbq1VdflTHGk2UBAAAAAK7i48mNjxgxQhMnTtS0adNUqVIlbdy4UbGxsQoJCVHv3r09WRoAAAAA4P/zaHBcu3at2rVrp1atWkmSSpYsqZkzZ+r777/3ZFkAAAAAgKt49FLVevXqafny5dq5c6ckaevWrfruu+/UsmXLNPsnJSUpMTHR5QUAAAAAuLk8esbxxRdfVGJiosqXLy9vb28lJyfr9ddf1yOPPJJm/2HDhmnw4MF/c5UAAAAA8O/m0TOOs2fP1owZM/TJJ59o8+bNmjZtmkaOHKlp06al2T8+Pl4JCQnO18GDB//migEAAADg38ejZxyfe+45vfjii+rYsaMkqUqVKjpw4ICGDRummJgYt/5+fn7y8/P7u8sEAAAAgH81j55xPH/+vLy8XEvw9vZWSkqKhyoCAAAAAFzLo2cc27Rpo9dff1233XabKlWqpB9++EGjR49Wt27dPFkWAAAAAOAqHg2O48eP14ABA9SjRw8dP35cYWFh6t69u1555RVPlgUAAAAAuIpHg2NQUJDGjh2rsWPHerIMAAAAAICFR+9xBAAAAADkfARHAAAAAIAVwREAAAAAYEVwBAAAAABYERwBAAAAAFYERwAAAACAFcERAAAAAGBFcAQAAAAAWBEcAQAAAABWBEcAAAAAgBXBEQAAAABgRXAEAAAAAFgRHAEAAAAAVgRHAAAAAIAVwREAAAAAYEVwBAAAAABYERwBAAAAAFYERwAAAACAFcERAAAAAGBFcAQAAAAAWBEcAQAAAABWBEcAAAAAgBXBEQAAAABgRXAEAAAAAFgRHAEAAAAAVgRHAAAAAIAVwREAAAAAYEVwBAAAAABYERwBAAAAAFYERwAAAACAFcERAAAAAGBFcAQAAAAAWBEcAQAAAABWBEcAAAAAgBXBEQAAAABgRXAEAAAAAFgRHAEAAAAAVgRHAAAAAIAVwREAAAAAYEVwBAAAAABYERwBAAAAAFYERwAAAACAFcERAAAAAGBFcAQAAAAAWBEcAQAAAABWBEcAAAAAgBXBEQAAAABgRXAEAAAAAFgRHAEAAAAAVgRHAAAAAIAVwREAAAAAYEVwBAAAAABYERwBAAAAAFYERwAAAACAFcERAAAAAGBFcAQAAAAAWBEcAQAAAABWBEcAAAAAgBXBEQAAAABgRXAEAAAAAFgRHAEAAAAAVgRHAAAAAIAVwREAAAAAYEVwBAAAAABYERwBAAAAAFYERwAAAACAFcERAAAAAGBFcAQAAAAAWBEcAQAAAABWBEcAAAAAgBXBEQAAAABgRXAEAAAAAFgRHAEAAAAAVgRHAAAAAIAVwREAAAAAYEVwBAAAAABYERwBAAAAAFYERwAAAACAFcERAAAAAGBFcAQAAAAAWBEcAQAAAABWBEcAAAAAgBXBEQAAAABgRXAEAAAAAFgRHAEAAAAAVgRHAAAAAIAVwREAAAAAYEVwBAAAAABYERwBAAAAAFYERwAAAACAFcERAAAAAGBFcAQAAAAAWBEcAQAAAABWBEcAAAAAgBXBEQAAAABgRXAEAAAAAFgRHAEAAAAAVgRHAAAAAIAVwREAAAAAYEVwBAAAAABYERwBAAAAAFYERwAAAACAFcERAAAAAGBFcAQAAAAAWBEcAQAAAABWBEcAAAAAgBXBEQAAAABgRXAEAAAAAFgRHAEAAAAAVgRHAAAAAIAVwREAAAAAYEVwBAAAAABYERwBAAAAAFYERwAAAACAFcERAAAAAGBFcAQAAAAAWBEcAQAAAABWBEcAAAAAgBXBEQAAAABgRXAEAAAAAFh5PDgeOnRIjz76qAoUKKCAgABVqVJFGzdu9HRZAAAAAID/z8eTGz916pSioqLUqFEjLVq0SIUKFdKuXbuUL18+T5YFAAAAALiKR4PjiBEjVKJECU2ZMsXZFhER4cGKAAAAAADX8uilqgsXLlStWrXUoUMHFS5cWDVq1NDkyZPT7Z+UlKTExESXFwAAAADg5vJocNy7d68mTpyoMmXKaMmSJXrqqafUu3dvTZs2Lc3+w4YNU0hIiPNVokSJv7liAAAAAPj3cRhjjKc27uvrq1q1amnt2rXOtt69e2vDhg1at26dW/+kpCQlJSU5pxMTE1WiRAklJCQoODj4b6kZ/w4lX/zS0yUgC/YPb+XpEgAAAG4piYmJCgkJuW6m8ugZx6JFi6pixYoubRUqVNBvv/2WZn8/Pz8FBwe7vAAAAAAAN5dHg2NUVJR27Njh0rZz506Fh4d7qCIAAAAAwLU8GhyfeeYZrV+/XkOHDtXu3bv1ySef6L333lNcXJwnywIAAAAAXMWjwbF27dqaN2+eZs6cqcqVK+vVV1/V2LFj9cgjj3iyLAAAAADAVTw6jqMktW7dWq1bt/Z0GQAAAACAdHj0jCMAAAAAIOcjOAIAAAAArAiOAAAAAAArgiMAAAAAwIrgCAAAAACwIjgCAAAAAKwIjgAAAAAAK4IjAAAAAMCK4AgAAAAAsCI4AgAAAACsCI4AAAAAACuCIwAAAADAiuAIAAAAALAiOAIAAAAArAiOAAAAAAArgiMAAAAAwIrgCAAAAACwIjgCAAAAAKwIjgAAAAAAK4IjAAAAAMCK4AgAAAAAsCI4AgAAAACsCI4AAAAAACuCIwAAAADAiuAIAAAAALAiOAIAAAAArAiOAAAAAAArgiMAAAAAwIrgCAAAAACwIjgCAAAAAKwIjgAAAAAAK4IjAAAAAMCK4AgAAAAAsCI4AgAAAACsCI4AAAAAACuCIwAAAADAiuAIAAAAALAiOAIAAAAArAiOAAAAAAArgiMAAAAAwIrgCAAAAACwIjgCAAAAAKwIjgAAAAAAK4IjAAAAAMCK4AgAAAAAsCI4AgAAAACsCI4AAAAAACuCIwAAAADAiuAIAAAAALAiOAIAAAAArAiOAAAAAAArgiMAAAAAwIrgCAAAAACwIjgCAAAAAKyyFBw3b96sbdu2OacXLFig9u3b66WXXtKlS5eyrTgAAAAAgOdlKTh2795dO3fulCTt3btXHTt2VO7cuTVnzhw9//zz2VogAAAAAMCzshQcd+7cqerVq0uS5syZo7vvvluffPKJpk6dqv/+97/ZWR8AAAAAwMOyFByNMUpJSZEkLVu2TPfcc48kqUSJEjpx4kT2VQcAAAAA8LgsBcdatWrptdde0/Tp0/XNN9+oVatWkqR9+/apSJEi2VogAAAAAMCzshQcx4wZo82bN6tnz57q37+/SpcuLUmaO3eu6tWrl60FAgAAAAA8yycrC1WrVs3lqaqp3nzzTfn4ZGmVAAAAAIAcKktnHEuVKqWTJ0+6tV+8eFFly5a94aIAAAAAADlHloLj/v37lZyc7NaelJSk33///YaLAgAAAADkHJm6rnThwoXOfy9ZskQhISHO6eTkZC1fvlwRERHZVx0AAAAAwOMyFRzbt28vSXI4HIqJiXGZlytXLpUsWVKjRo3KtuIAAAAAAJ6XqeCYOnZjRESENmzYoIIFC96UogAAAAAAOUeWHoG6b9++7K4DAAAAAJBDZXnsjOXLl2v58uU6fvy480xkqg8//PCGCwMAAAAA5AxZCo6DBw/WkCFDVKtWLRUtWlQOhyO76wIAAAAA5BBZCo7vvvuupk6dqs6dO2d3PQAAAACAHCZL4zheunRJ9erVy+5aAAAAAAA5UJaC42OPPaZPPvkku2sBAAAAAORAWbpU9eLFi3rvvfe0bNkyVa1aVbly5XKZP3r06GwpDgAAAADgeVkKjj/++KOqV68uSfrpp59c5vGgHAAAAAD4Z8lScFy5cmV21wEAAAAAyKGydI8jAAAAAODfI0tnHBs1amS9JHXFihVZLggAAAAAkLNkKTim3t+Y6vLly9qyZYt++uknxcTEZEddAAAAAIAcIkvBccyYMWm2Dxo0SGfPnr2hggAAAAAAOUu23uP46KOP6sMPP8zOVQIAAAAAPCxbg+O6devk7++fnasEAAAAAHhYli5Vve+++1ymjTE6cuSINm7cqAEDBmRLYQAAAACAnCFLwTEkJMRl2svLS+XKldOQIUPUvHnzbCkMAAAAAJAzZCk4TpkyJbvrAAAAAADkUFkKjqk2bdqkX3/9VZJUqVIl1ahRI1uKAgAAAADkHFkKjsePH1fHjh21atUq5c2bV5J0+vRpNWrUSJ9++qkKFSqUnTUCAAAAADwoS09V7dWrl86cOaOff/5Zf/75p/7880/99NNPSkxMVO/evbO7RgAAAACAB2XpjOPixYu1bNkyVahQwdlWsWJFvfPOOzwcBwAAAAD+YbJ0xjElJUW5cuVya8+VK5dSUlJuuCgAAAAAQM6RpeDYuHFjPf300zp8+LCz7dChQ3rmmWfUpEmTbCsOAAAAAOB5WQqOb7/9thITE1WyZElFRkYqMjJSERERSkxM1Pjx47O7RgAAAACAB2XpHscSJUpo8+bNWrZsmbZv3y5JqlChgpo2bZqtxQEAAAAAPC9TZxxXrFihihUrKjExUQ6HQ82aNVOvXr3Uq1cv1a5dW5UqVdK33357s2oFAAAAAHhApoLj2LFj9fjjjys4ONhtXkhIiLp3767Ro0dnW3EAAAAAAM/LVHDcunWrWrRoke785s2ba9OmTTdcFAAAAAAg58hUcDx27Fiaw3Ck8vHx0R9//HHDRQEAAAAAco5MBcdixYrpp59+Snf+jz/+qKJFi95wUQAAAACAnCNTwfGee+7RgAEDdPHiRbd5Fy5c0MCBA9W6detsKw4AAAAA4HmZGo7j5Zdf1meffaayZcuqZ8+eKleunCRp+/bteuedd5ScnKz+/fvflEIBAAAAAJ6RqeBYpEgRrV27Vk899ZTi4+NljJEkORwORUdH65133lGRIkVuSqEAAAAAAM/IVHCUpPDwcH311Vc6deqUdu/eLWOMypQpo3z58t2M+gAAAAAAHpbp4JgqX758ql27dnbWAgAAAADIgTL1cBwAAAAAwL8PwREAAAAAYEVwBAAAAABYERwBAAAAAFYERwAAAACAFcERAAAAAGBFcAQAAAAAWBEcAQAAAABWBEcAAAAAgBXBEQAAAABgRXAEAAAAAFgRHAEAAAAAVgRHAAAAAIAVwREAAAAAYEVwBAAAAABYERwBAAAAAFYERwAAAACAVY4JjsOHD5fD4VCfPn08XQoAAAAA4Co5Ijhu2LBBkyZNUtWqVT1dCgAAAADgGh4PjmfPntUjjzyiyZMnK1++fJ4uBwAAAABwDY8Hx7i4OLVq1UpNmza9bt+kpCQlJia6vAAAAAAAN5ePJzf+6aefavPmzdqwYUOG+g8bNkyDBw++yVVln5IvfunpEgAAAADghnnsjOPBgwf19NNPa8aMGfL398/QMvHx8UpISHC+Dh48eJOrBAAAAAB47Izjpk2bdPz4cd1+++3OtuTkZK1evVpvv/22kpKS5O3t7bKMn5+f/Pz8/u5SAQAAAOBfzWPBsUmTJtq2bZtLW2xsrMqXL68XXnjBLTQCAAAAADzDY8ExKChIlStXdmnLkyePChQo4NYOAAAAAPAcjz9VFQAAAACQs3n0qarXWrVqladLAAAAAABcgzOOAAAAAAArgiMAAAAAwIrgCAAAAACwIjgCAAAAAKwIjgAAAAAAK4IjAAAAAMCK4AgAAAAAsCI4AgAAAACsCI4AAAAAACuCIwAAAADAiuAIAAAAALAiOAIAAAAArAiOAAAAAAArgiMAAAAAwIrgCAAAAACwIjgCAAAAAKwIjgAAAAAAK4IjAAAAAMCK4AgAAAAAsCI4AgAAAACsCI4AAAAAACuCIwAAAADAiuAIAAAAALAiOAIAAAAArAiOAAAAAAArgiMAAAAAwIrgCAAAAACwIjgCAAAAAKwIjgAAAAAAK4IjAAAAAMCK4AgAAAAAsCI4AgAAAACsCI4AAAAAACuCIwAAAADAiuAIAAAAALAiOAIAAAAArAiOAAAAAAArgiMAAAAAwIrgCAAAAACwIjgCAAAAAKwIjgAAAAAAK4IjAAAAAMCK4AgAAAAAsCI4AgAAAACsCI4AAAAAACuCIwAAAADAiuAIAAAAALAiOAIAAAAArAiOAAAAAAArgiMAAAAAwIrgCAAAAACwIjgCAAAAAKwIjgAAAAAAK4IjAAAAAMCK4AgAAAAAsCI4AgAAAACsCI4AAAAAACuCIwAAAADAysfTBQBAdin54peeLgFZtH94K0+XAPyr8PPy1sXPS3gKZxwBAAAAAFYERwAAAACAFcERAAAAAGBFcAQAAAAAWBEcAQAAAABWBEcAAAAAgBXBEQAAAABgRXAEAAAAAFgRHAEAAAAAVgRHAAAAAIAVwREAAAAAYEVwBAAAAABYERwBAAAAAFYERwAAAACAFcERAAAAAGBFcAQAAAAAWBEcAQAAAABWBEcAAAAAgBXBEQAAAABgRXAEAAAAAFgRHAEAAAAAVgRHAAAAAIAVwREAAAAAYEVwBAAAAABYERwBAAAAAFYERwAAAACAFcERAAAAAGBFcAQAAAAAWBEcAQAAAABWBEcAAAAAgBXBEQAAAABgRXAEAAAAAFgRHAEAAAAAVgRHAAAAAIAVwREAAAAAYEVwBAAAAABYERwBAAAAAFYERwAAAACAFcERAAAAAGBFcAQAAAAAWBEcAQAAAABWBEcAAAAAgBXBEQAAAABgRXAEAAAAAFgRHAEAAAAAVgRHAAAAAIAVwREAAAAAYEVwBAAAAABYERwBAAAAAFYERwAAAACAFcERAAAAAGBFcAQAAAAAWBEcAQAAAABWBEcAAAAAgBXBEQAAAABgRXAEAAAAAFgRHAEAAAAAVgRHAAAAAIAVwREAAAAAYEVwBAAAAABYeTQ4Dhs2TLVr11ZQUJAKFy6s9u3ba8eOHZ4sCQAAAABwDY8Gx2+++UZxcXFav369li5dqsuXL6t58+Y6d+6cJ8sCAAAAAFzFx5MbX7x4scv01KlTVbhwYW3atEl33323h6oCAAAAAFzNo8HxWgkJCZKk/Pnzpzk/KSlJSUlJzunExMS/pS4AAAAA+DfLMcExJSVFffr0UVRUlCpXrpxmn2HDhmnw4MF/c2UAgJut5ItferoEAABgkWOeqhoXF6effvpJn376abp94uPjlZCQ4HwdPHjwb6wQAAAAAP6dcsQZx549e+qLL77Q6tWrVbx48XT7+fn5yc/P72+sDAAAAADg0eBojFGvXr00b948rVq1ShEREZ4sBwAAAACQBo8Gx7i4OH3yySdasGCBgoKCdPToUUlSSEiIAgICPFkaAAAAAOD/8+g9jhMnTlRCQoIaNmyookWLOl+zZs3yZFkAAAAAgKt4/FJVAAAAAEDOlmOeqgoAAAAAyJkIjgAAAAAAK4IjAAAAAMCK4AgAAAAAsCI4AgAAAACsCI4AAAAAACuCIwAAAADAiuAIAAAAALAiOAIAAAAArAiOAAAAAAArgiMAAAAAwIrgCAAAAACwIjgCAAAAAKwIjgAAAAAAK4IjAAAAAMCK4AgAAAAAsCI4AgAAAACsCI4AAAAAACuCIwAAAADAiuAIAAAAALAiOAIAAAAArAiOAAAAAAArgiMAAAAAwIrgCAAAAACwIjgCAAAAAKwIjgAAAAAAK4IjAAAAAMCK4AgAAAAAsCI4AgAAAACsCI4AAAAAACuCIwAAAADAiuAIAAAAALAiOAIAAAAArAiOAAAAAAArgiMAAAAAwIrgCAAAAACwIjgCAAAAAKwIjgAAAAAAK4IjAAAAAMCK4AgAAAAAsCI4AgAAAACsCI4AAAAAACuCIwAAAADAiuAIAAAAALAiOAIAAAAArAiOAAAAAAArgiMAAAAAwIrgCAAAAACwIjgCAAAAAKwIjgAAAAAAK4IjAAAAAMCK4AgAAAAAsCI4AgAAAACsCI4AAAAAACuCIwAAAADAiuAIAAAAALAiOAIAAAAArAiOAAAAAAArgiMAAAAAwMrH0wUAAAAAyJiSL37p6RKQRfuHt/J0CTeEM44AAAAAACuCIwAAAADAiuAIAAAAALAiOAIAAAAArAiOAAAAAAArgiMAAAAAwIrgCAAAAACwIjgCAAAAAKwIjgAAAAAAK4IjAAAAAMCK4AgAAAAAsCI4AgAAAACsCI4AAAAAACuCIwAAAADAiuAIAAAAALAiOAIAAAAArAiOAAAAAAArgiMAAAAAwIrgCAAAAACwIjgCAAAAAKwIjgAAAAAAK4IjAAAAAMCK4AgAAAAAsCI4AgAAAACsCI4AAAAAACuCIwAAAADAiuAIAAAAALAiOAIAAAAArAiOAAAAAAArgiMAAAAAwIrgCAAAAACwIjgCAAAAAKwIjgAAAAAAK4IjAAAAAMCK4AgAAAAAsCI4AgAAAACsCI4AAAAAACuCIwAAAADAiuAIAAAAALAiOAIAAAAArAiOAAAAAAArgiMAAAAAwIrgCAAAAACwIjgCAAAAAKwIjgAAAAAAK4IjAAAAAMCK4AgAAAAAsCI4AgAAAACsCI4AAAAAACuCIwAAAADAiuAIAAAAALAiOAIAAAAArAiOAAAAAAArgiMAAAAAwIrgCAAAAACwIjgCAAAAAKwIjgAAAAAAK4IjAAAAAMCK4AgAAAAAsCI4AgAAAACsckRwfOedd1SyZEn5+/urTp06+v777z1dEgAAAADg//N4cJw1a5aeffZZDRw4UJs3b1a1atUUHR2t48ePe7o0AAAAAIByQHAcPXq0Hn/8ccXGxqpixYp69913lTt3bn344YeeLg0AAAAAIMnHkxu/dOmSNm3apPj4eGebl5eXmjZtqnXr1rn1T0pKUlJSknM6ISFBkpSYmHjzi82ClKTzni4BAAAAQA6QUzNLal3GGGs/jwbHEydOKDk5WUWKFHFpL1KkiLZv3+7Wf9iwYRo8eLBbe4kSJW5ajQAAAABwo0LGeroCuzNnzigkJCTd+R4NjpkVHx+vZ5991jmdkpKiP//8UwUKFJDD4fBgZf8uiYmJKlGihA4ePKjg4GBPl4NM4LO7dfHZ3Zr43G5dfHa3Lj67WxefnWcYY3TmzBmFhYVZ+3k0OBYsWFDe3t46duyYS/uxY8cUGhrq1t/Pz09+fn4ubXnz5r2ZJcIiODiYL/Utis/u1sVnd2vic7t18dnduvjsbl18dn8/25nGVB59OI6vr69q1qyp5cuXO9tSUlK0fPly1a1b14OVAQAAAABSefxS1WeffVYxMTGqVauW7rjjDo0dO1bnzp1TbGysp0sDAAAAACgHBMeHHnpIf/zxh1555RUdPXpU1atX1+LFi90emIOcw8/PTwMHDnS7bBg5H5/drYvP7tbE53br4rO7dfHZ3br47HI2h7nec1cBAAAAAP9qHr3HEQAAAACQ8xEcAQAAAABWBEcAAAAAgBXBEQAAAABgRXBEhq1evVpt2rRRWFiYHA6H5s+f7+mSkEHDhg1T7dq1FRQUpMKFC6t9+/basWOHp8vCdUycOFFVq1Z1DoRct25dLVq0yNNlIQuGDx8uh8OhPn36eLoUXMegQYPkcDhcXuXLl/d0WciAQ4cO6dFHH1WBAgUUEBCgKlWqaOPGjZ4uC9dRsmRJt++cw+FQXFycp0vDNQiOyLBz586pWrVqeueddzxdCjLpm2++UVxcnNavX6+lS5fq8uXLat68uc6dO+fp0mBRvHhxDR8+XJs2bdLGjRvVuHFjtWvXTj///LOnS0MmbNiwQZMmTVLVqlU9XQoyqFKlSjpy5Ijz9d1333m6JFzHqVOnFBUVpVy5cmnRokX65ZdfNGrUKOXLl8/TpeE6NmzY4PJ9W7p0qSSpQ4cOHq4M1/L4OI64dbRs2VItW7b0dBnIgsWLF7tMT506VYULF9amTZt09913e6gqXE+bNm1cpl9//XVNnDhR69evV6VKlTxUFTLj7NmzeuSRRzR58mS99tprni4HGeTj46PQ0FBPl4FMGDFihEqUKKEpU6Y42yIiIjxYETKqUKFCLtPDhw9XZGSkGjRo4KGKkB7OOAL/QgkJCZKk/Pnze7gSZFRycrI+/fRTnTt3TnXr1vV0OciguLg4tWrVSk2bNvV0KciEXbt2KSwsTKVKldIjjzyi3377zdMl4ToWLlyoWrVqqUOHDipcuLBq1KihyZMne7osZNKlS5f08ccfq1u3bnI4HJ4uB9fgjCPwL5OSkqI+ffooKipKlStX9nQ5uI5t27apbt26unjxogIDAzVv3jxVrFjR02UhAz799FNt3rxZGzZs8HQpyIQ6depo6tSpKleunI4cOaLBgwerfv36+umnnxQUFOTp8pCOvXv3auLEiXr22Wf10ksvacOGDerdu7d8fX0VExPj6fKQQfPnz9fp06fVtWtXT5eCNBAcgX+ZuLg4/fTTT9yzc4soV66ctmzZooSEBM2dO1cxMTH65ptvCI853MGDB/X0009r6dKl8vf393Q5yISrb8moWrWq6tSpo/DwcM2ePVv/+c9/PFgZbFJSUlSrVi0NHTpUklSjRg399NNPevfddwmOt5APPvhALVu2VFhYmKdLQRq4VBX4F+nZs6e++OILrVy5UsWLF/d0OcgAX19flS5dWjVr1tSwYcNUrVo1jRs3ztNl4To2bdqk48eP6/bbb5ePj498fHz0zTff6K233pKPj4+Sk5M9XSIyKG/evCpbtqx2797t6VJgUbRoUbc/qFWoUIHLjG8hBw4c0LJly/TYY495uhSkgzOOwL+AMUa9evXSvHnztGrVKh4YcAtLSUlRUlKSp8vAdTRp0kTbtm1zaYuNjVX58uX1wgsvyNvb20OVIbPOnj2rPXv2qHPnzp4uBRZRUVFuw0zt3LlT4eHhHqoImTVlyhQVLlxYrVq18nQpSAfBERl29uxZl7+47tu3T1u2bFH+/Pl12223ebAyXE9cXJw++eQTLViwQEFBQTp69KgkKSQkRAEBAR6uDumJj49Xy5Ytddttt+nMmTP65JNPtGrVKi1ZssTTpeE6goKC3O4hzpMnjwoUKMC9xTlcv3791KZNG4WHh+vw4cMaOHCgvL291alTJ0+XBotnnnlG9erV09ChQ/Xggw/q+++/13vvvaf33nvP06UhA1JSUjRlyhTFxMTIx4d4klPxySDDNm7cqEaNGjmnn332WUlSTEyMpk6d6qGqkBETJ06UJDVs2NClfcqUKdyAnoMdP35cXbp00ZEjRxQSEqKqVatqyZIlatasmadLA/6xfv/9d3Xq1EknT55UoUKFdNddd2n9+vVuQwYgZ6ldu7bmzZun+Ph4DRkyRBERERo7dqweeeQRT5eGDFi2bJl+++03devWzdOlwMJhjDGeLgIAAAAAkHPxcBwAAAAAgBXBEQAAAABgRXAEAAAAAFgRHAEAAAAAVgRHAAAAAIAVwREAAAAAYEVwBAAAAABYERwBALeU/fv3y+FwaMuWLZ4uxWn79u2688475e/vr+rVq2d5PQ6HQ/Pnz8+2ujKqZMmSGjt27A2vx1P1AwBuPoIjACBTunbtKofDoeHDh7u0z58/Xw6Hw0NVedbAgQOVJ08e7dixQ8uXL0+zzx9//KGnnnpKt912m/z8/BQaGqro6GitWbPG2efIkSNq2bLl31V2hg0aNEgOh8P5CgkJUf369fXNN9+49Mup9QMAbhzBEQCQaf7+/hoxYoROnTrl6VKyzaVLl7K87J49e3TXXXcpPDxcBQoUSLPP/fffrx9++EHTpk3Tzp07tXDhQjVs2FAnT5509gkNDZWfn1+W67iZKlWqpCNHjujIkSNat26dypQpo9atWyshIcHZJyfXDwC4MQRHAECmNW3aVKGhoRo2bFi6fQYNGuR22ebYsWNVsmRJ53TXrl3Vvn17DR06VEWKFFHevHk1ZMgQXblyRc8995zy58+v4sWLa8qUKW7r3759u+rVqyd/f39VrlzZ7ezXTz/9pJYtWyowMFBFihRR586ddeLECef8hg0bqmfPnurTp48KFiyo6OjoNN9HSkqKhgwZouLFi8vPz0/Vq1fX4sWLnfMdDoc2bdqkIUOGyOFwaNCgQW7rOH36tL799luNGDFCjRo1Unh4uO644w7Fx8erbdu2Luu6+lLPtWvXqnr16vL391etWrWcZ3VTL9NdtWqVHA6Hli9frlq1ail37tyqV6+eduzY4VzHnj171K5dOxUpUkSBgYGqXbu2li1bluZ7tfHx8VFoaKhCQ0NVsWJFDRkyRGfPntXOnTvTrD/1kuLPPvtMjRo1Uu7cuVWtWjWtW7fO2f/AgQNq06aN8uXLpzx58qhSpUr66quvMl0bAODmIzgCADLN29tbQ4cO1fjx4/X777/f0LpWrFihw4cPa/Xq1Ro9erQGDhyo1q1bK1++fPrf//6nJ598Ut27d3fbznPPPae+ffvqhx9+UN26ddWmTRvn2bvTp0+rcePGqlGjhjZu3KjFixfr2LFjevDBB13WMW3aNPn6+mrNmjV6991306xv3LhxGjVqlEaOHKkff/xR0dHRatu2rXbt2iXpr8szK1WqpL59++rIkSPq16+f2zoCAwMVGBio+fPnKykpKUP7JTExUW3atFGVKlW0efNmvfrqq3rhhRfS7Nu/f3+NGjVKGzdulI+Pj7p16+acd/bsWd1zzz1avny5fvjhB7Vo0UJt2rTRb7/9lqE60pKUlKQpU6Yob968KleunLVv//791a9fP23ZskVly5ZVp06ddOXKFUlSXFyckpKStHr1am3btk0jRoxQYGBglusCANxEBgCATIiJiTHt2rUzxhhz5513mm7duhljjJk3b565+r+VgQMHmmrVqrksO2bMGBMeHu6yrvDwcJOcnOxsK1eunKlfv75z+sqVKyZPnjxm5syZxhhj9u3bZySZ4cOHO/tcvnzZFC9e3IwYMcIYY8yrr75qmjdv7rLtgwcPGklmx44dxhhjGjRoYGrUqHHd9xsWFmZef/11l7batWubHj16OKerVatmBg4caF3P3LlzTb58+Yy/v7+pV6+eiY+PN1u3bnXpI8nMmzfPGGPMxIkTTYECBcyFCxec8ydPnmwkmR9++MEYY8zKlSuNJLNs2TJnny+//NJIclnuWpUqVTLjx493ToeHh5sxY8ak23/gwIHGy8vL5MmTx+TJk8c4HA4THBxsFi1alG79qZ/T+++/75z/888/G0nm119/NcYYU6VKFTNo0KB0twsAyDk44wgAyLIRI0Zo2rRp+vXXX7O8jkqVKsnL6//+OypSpIiqVKninPb29laBAgV0/Phxl+Xq1q3r/LePj49q1arlrGPr1q1auXKl80xfYGCgypcvL+mvSzdT1axZ01pbYmKiDh8+rKioKJf2qKioTL/n+++/X4cPH9bChQvVokULrVq1SrfffrumTp2aZv8dO3aoatWq8vf3d7bdcccdafatWrWq899FixaVJOf+Onv2rPr166cKFSoob968CgwM1K+//prpM47lypXTli1btGXLFm3atElPPfWUOnTooI0bN1qXs9XWu3dvvfbaa4qKitLAgQP1448/ZqomAMDfh+AIAMiyu+++W9HR0YqPj3eb5+XlJWOMS9vly5fd+uXKlctl2uFwpNmWkpKS4brOnj2rNm3aOINO6mvXrl26++67nf3y5MmT4XVmB39/fzVr1kwDBgzQ2rVr1bVrVw0cOPCG13v1/kp9sm3q/urXr5/mzZunoUOH6ttvv9WWLVtUpUqVTD8MyNfXV6VLl1bp0qVVo0YNDR8+XMWKFbvuMB622h577DHt3btXnTt31rZt21SrVi2NHz8+U3UBAP4eBEcAwA0ZPny4Pv/8c5eHnkhSoUKFdPToUZfwmJ1jL65fv9757ytXrmjTpk2qUKGCJOn222/Xzz//rJIlSzrDTuorM2ExODhYYWFhLkNmSNKaNWtUsWLFG34PFStW1Llz59KcV65cOW3bts3lnsgNGzZkehtr1qxR165dde+996pKlSoKDQ3V/v37s1qyC29vb124cOGG1lGiRAk9+eST+uyzz9S3b19Nnjw5W2oDAGQvgiMA4IZUqVJFjzzyiN566y2X9oYNG+qPP/7QG2+8oT179uidd97RokWLsm2777zzjubNm6ft27crLi5Op06dcj4UJi4uTn/++ac6deqkDRs2aM+ePVqyZIliY2OVnJycqe0899xzGjFihGbNmqUdO3boxRdf1JYtW/T0009neB0nT55U48aN9fHHH+vHH3/Uvn37NGfOHL3xxhtq165dmss8/PDDSklJ0RNPPKFff/1VS5Ys0ciRIyUpU+NllilTRp999pm2bNmirVu3OtebWVeuXNHRo0d19OhR7dq1S6+99pp++eWXdOvPiD59+mjJkiXat2+fNm/erJUrVzrDPwAgZyE4AgBu2JAhQ9zCSIUKFTRhwgS98847qlatmr7//vs0nziaVcOHD9fw4cNVrVo1fffdd1q4cKEKFiwoSc6zhMnJyWrevLmqVKmiPn36KG/evC73U2ZE79699eyzz6pv376qUqWKFi9erIULF6pMmTIZXkdgYKDq1KmjMWPG6O6771blypU1YMAAPf7443r77bfTXCY4OFiff/65tmzZourVq6t///565ZVXJMnlvsfrGT16tPLly6d69eqpTZs2io6O1u23357h5VP9/PPPKlq0qIoWLarq1atr9uzZmjhxorp06ZLpdaVKTk5WXFycKlSooBYtWqhs2bKaMGFCltcHALh5HObaG1AAAECONGPGDMXGxiohIUEBAQGeLgcA8C/i4+kCAABA2j766COVKlVKxYoV09atW/XCCy/owQcfJDQCAP52BEcAAHKoo0eP6pVXXtHRo0dVtGhRdejQQa+//rqnywIA/AtxqSoAAAAAwIqH4wAAAAAArAiOAAAAAAArgiMAAAAAwIrgCAAAAACwIjgCAAAAAKwIjgAAAAAAK4IjAAAAAMCK4AgAAAAAsCI4AgAAAACs/h9f/UFlIJy/7gAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAALSCAYAAABJdyWOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgn0lEQVR4nO3deZyNdf/H8fdhzMIsdmMsYyxZxhoSsqshBt1FZBkqlUYSbZNkSZYKU7J3R1mK3FlakF2JO3ulbIVkJ2YYDGa+vz/6zbkds5iZ73Bm6vV8PM7j4fpe3+u6Puc614x5n++1OIwxRgAAAAAAWMjl7gIAAAAAADkf4RIAAAAAYI1wCQAAAACwRrgEAAAAAFgjXAIAAAAArBEuAQAAAADWCJcAAAAAAGuESwAAAACANcIlAAAAAMAa4RLA38rQoUPlcDhuy7aaNm2qpk2bOqfXrl0rh8OhBQsW3Jbt9+zZU2XKlLkt28qsCxcu6PHHH1dgYKAcDof69+/v7pIypWnTpqpataq7y0i3WbNmqVKlSsqTJ4/y58+fJet0OBwaOnRolqzLVtLP2tq1a91dyj/azJkz5XA4dPDgQXeXAiCbIFwCyLaS/nBJenl7eysoKEhhYWF69913df78+SzZztGjRzV06FDt2LEjS9aXlbJzbekxcuRIzZw5U3369NGsWbPUvXv3VPuWKVNGDodDzzzzTLJ5tzu452S7d+9Wz549Va5cOU2fPl3Tpk1Ls/+3336r1q1bq0SJEvL29lbp0qUVHh6uuXPn3qaK3atnz54uv2f8/f1Vo0YNjR07VvHx8bd8+4mJifroo49Ur149FSxYUH5+frrjjjvUo0cPbdq06ZZvHwCykoe7CwCAmxk+fLhCQkJ09epVHT9+XGvXrlX//v01btw4LVmyRNWrV3f2ffXVV/Xyyy9naP1Hjx7VsGHDVKZMGdWsWTPdy3399dcZ2k5mpFXb9OnTlZiYeMtrsLF69WrdfffdGjJkSLqXmT59uqKiohQUFHQLK/v7Wrt2rRITE/XOO++ofPnyafb99NNP9fDDD6tmzZp69tlnVaBAAR04cEDr16/X9OnT9cgjjzj7Xrp0SR4ef88/G7y8vPT+++9Lks6dO6f//Oc/ev7557V582Z98sknt3Tb/fr108SJE9W+fXt17dpVHh4e2rNnj5YuXaqyZcvq7rvvvqXbB4Cs9Pf8XwLA30rr1q1Vp04d53RUVJRWr16ttm3bql27dvrll1/k4+MjSfLw8LjlfwBfvHhRefPmlaen5y3dzs3kyZPHrdtPj5MnT6pKlSrp7h8aGqo9e/Zo9OjRevfdd29hZdlPYmKirly5Im9vb6v1nDx5UpLSdTrs0KFDVaVKFW3atCnZ8Zy0niS2dWVnHh4e6tatm3P66aefVr169TRv3jyNGzfO6ouOtD7XEydOaNKkSerdu3eyEebo6GidOnUq09sFAHfgtFgAOVLz5s01ePBgHTp0SLNnz3a2p3TN5YoVK3TPPfcof/788vX1VcWKFfXKK69I+muUp27dupKkXr16OU+NmzlzpqT/XWu3detWNW7cWHnz5nUue+M1l0kSEhL0yiuvKDAwUPny5VO7du10+PBhlz5lypRRz549ky17/TpvVltK11zGxcVp4MCBKlWqlLy8vFSxYkW9/fbbMsa49HM4HOrbt68WLVqkqlWrysvLS6GhoVq2bFnKO/wGJ0+e1GOPPaZixYrJ29tbNWrU0Icffuicn3Qa64EDB/Tll186a7/ZtVllypRRjx49NH36dB09ejTNvqldc5rSMZD0fj/99FNVqVJFPj4+ql+/vn788UdJ0tSpU1W+fHl5e3uradOmqda5detWNWjQQD4+PgoJCdGUKVOS9YmPj9eQIUNUvnx5eXl5qVSpUnrxxReTnWKZVNOcOXMUGhoqLy+vm+7/SZMmOfsGBQUpMjJS586dc84vU6aMc5S4SJEiN71O8tdff1XdunVT/KKkaNGiyeq9cV1r165VnTp15O3trXLlymnq1Klp7v+bHW+HDh3S008/rYoVK8rHx0eFChVSx44d03VN3759+/Tggw8qMDBQ3t7eKlmypDp37qyYmJibLnujXLlyOX8Ok7Z9Kz7XAwcOyBijhg0bJpvncDhcPoM///xTzz//vKpVqyZfX1/5+/urdevW2rlzp8tyST978+fP17Bhw1SiRAn5+fnpoYceUkxMjOLj49W/f38VLVpUvr6+6tWrV5rvoWLFivL29lbt2rW1fv36dO2/pUuXqlGjRsqXL5/8/PzUpk0b7dq1K13LAsjZGLkEkGN1795dr7zyir7++mv17t07xT67du1S27ZtVb16dQ0fPlxeXl7av3+/NmzYIEmqXLmyhg8frtdee01PPPGEGjVqJElq0KCBcx1nzpxR69at1blzZ3Xr1k3FihVLs6433nhDDodDL730kk6ePKno6Gi1bNlSO3bscI6wpkd6arueMUbt2rXTmjVr9Nhjj6lmzZpavny5XnjhBR05ckTjx4936f/tt9/qs88+09NPPy0/Pz+9++67evDBB/X777+rUKFCqdZ16dIlNW3aVPv371ffvn0VEhKiTz/9VD179tS5c+f07LPPqnLlypo1a5aee+45lSxZUgMHDpT0V+C5mUGDBumjjz7K8tHLb775RkuWLFFkZKQkadSoUWrbtq1efPFFTZo0SU8//bTOnj2rN998U48++qhWr17tsvzZs2d1//33q1OnTurSpYvmz5+vPn36yNPTU48++qikv0ap2rVrp2+//VZPPPGEKleurB9//FHjx4/X3r17tWjRIpd1rl69WvPnz1ffvn1VuHDhNG/QNHToUA0bNkwtW7ZUnz59tGfPHk2ePFmbN2/Whg0blCdPHkVHR+ujjz7SwoULNXnyZPn6+rqcNn6j4OBgrVq1Sn/88YdKliyZof25fft2tWrVSsWLF9ewYcOUkJCg4cOHp/oZp+d427x5s7777jt17txZJUuW1MGDBzV58mQ1bdpUP//8s/LmzZviuq9cuaKwsDDFx8frmWeeUWBgoI4cOaIvvvhC586dU0BAQIbem/RX8JakQoUK3bLPNTg4WNJfpyd37Ngx1fcnSb/99psWLVqkjh07KiQkRCdOnNDUqVPVpEkT/fzzz8lGV0eNGiUfHx+9/PLL2r9/vyZMmKA8efIoV65cOnv2rIYOHapNmzZp5syZCgkJ0Wuvveay/Lp16zRv3jz169dPXl5emjRpklq1aqXvv/8+zZtbzZo1SxEREQoLC9OYMWN08eJFTZ48Wffcc4+2b9+e7W9CBsCSAYBsasaMGUaS2bx5c6p9AgICTK1atZzTQ4YMMdf/ahs/fryRZE6dOpXqOjZv3mwkmRkzZiSb16RJEyPJTJkyJcV5TZo0cU6vWbPGSDIlSpQwsbGxzvb58+cbSeadd95xtgUHB5uIiIibrjOt2iIiIkxwcLBzetGiRUaSGTFihEu/hx56yDgcDrN//35nmyTj6enp0rZz504jyUyYMCHZtq4XHR1tJJnZs2c7265cuWLq169vfH19Xd57cHCwadOmTZrrS6lvr169jLe3tzl69Kgx5n/79tNPP031/Se58RhIer9eXl7mwIEDzrapU6caSSYwMNCl5qioKCPJpW/ScTB27FhnW3x8vKlZs6YpWrSouXLlijHGmFmzZplcuXKZb775xmX7U6ZMMZLMhg0bXGrKlSuX2bVr1033zcmTJ42np6e57777TEJCgrP9vffeM5LMBx98kOz9p3XMJ/n3v//tPBaaNWtmBg8ebL755huXbVxf75AhQ5zT4eHhJm/evObIkSPOtn379hkPD48U9396jreLFy8m2+7GjRuNJPPRRx8525KOhzVr1hhjjNm+fXuy4yO9IiIiTL58+cypU6fMqVOnzP79+83IkSONw+Ew1atXN8bcus/VGGN69OhhJJkCBQqYBx54wLz99tvml19+Sdbv8uXLyT6XAwcOGC8vLzN8+HBnW9K+qVq1qvO4NMaYLl26GIfDYVq3bu2yjvr16yf7OZJkJJktW7Y42w4dOmS8vb3NAw884GxL+h2d9LNy/vx5kz9/ftO7d2+X9R0/ftwEBAQkawfw98NpsQByNF9f3zTvGpt03dnixYszffMbLy8v9erVK939e/ToIT8/P+f0Qw89pOLFi+urr77K1PbT66uvvlLu3LnVr18/l/aBAwfKGKOlS5e6tLds2VLlypVzTlevXl3+/v767bffbrqdwMBAdenSxdmWJ08e9evXTxcuXNC6deus38urr76qa9euafTo0dbrStKiRQuXUZN69epJkh588EGXzyup/cb94OHhoSeffNI57enpqSeffFInT57U1q1bJf01AlW5cmVVqlRJp0+fdr6aN28uSVqzZo3LOps0aZKua1JXrlypK1euqH///sqV63//dffu3Vv+/v768ssv07MLknn00Ue1bNkyNW3aVN9++61ef/11NWrUSBUqVNB3332X6nIJCQlauXKlOnTo4DJiVr58ebVu3TrFZdJzvF0/sn/16lWdOXNG5cuXV/78+bVt27ZU60kamVy+fLkuXrx48zd+g7i4OBUpUkRFihRR+fLl9corr6h+/fpauHChpFv3uUrSjBkz9N577ykkJEQLFy7U888/r8qVK6tFixY6cuSIs5+Xl5fzs09ISNCZM2ecp/mntG969Ojhcl12vXr1ZIxxjrJf33748GFdu3bNpb1+/fqqXbu2c7p06dJq3769li9froSEhBTfy4oVK3Tu3Dl16dLFZT/lzp1b9erVS7afAPz9EC4B5GgXLlxwCQY3evjhh9WwYUM9/vjjKlasmDp37qz58+dnKGiWKFEiQzfvqVChgsu0w+FQ+fLlb/mz4A4dOqSgoKBk+6Ny5crO+dcrXbp0snUUKFBAZ8+evel2KlSo4BJy0tpOZpQtW1bdu3fXtGnTdOzYMev1Scnfb1IgKVWqVIrtN+6HoKAg5cuXz6XtjjvukPS/6/L27dunXbt2OYNK0iup3403yQkJCUlX7Un7tGLFii7tnp6eKlu2rNU+DwsL0/Lly3Xu3DmtX79ekZGROnTokNq2bZus3iQnT57UpUuXUrwbbWp3qE3P8Xbp0iW99tprzmuGCxcurCJFiujcuXNpXjsZEhKiAQMG6P3331fhwoUVFhamiRMnpvt6S29vb61YsUIrVqzQ+vXrdfjwYW3YsEFly5aVdOs+V+mv6zsjIyO1detWnT59WosXL1br1q21evVqde7c2dkvMTFR48ePV4UKFVz2zQ8//JDi+8zI8Z6YmJhsHTf+HpP+Ot4vXryY6o2G9u3bJ+mva+Jv3Fdff/11qscTgL8PrrkEkGP98ccfiomJSfNxCz4+Plq/fr3WrFmjL7/8UsuWLdO8efPUvHlzff3118qdO/dNt5OR6yTT68YbniRJSEhIV01ZIbXtmBtu/uMugwYN0qxZszRmzBh16NAh2fy09mFKUnu/WbkfEhMTVa1aNY0bNy7F+Tf+YX8rjq3Myps3rxo1aqRGjRqpcOHCGjZsmJYuXaqIiIgsWX969vMzzzyjGTNmqH///qpfv74CAgLkcDjUuXPnm34hNHbsWPXs2VOLFy/W119/rX79+mnUqFHatGnTTa8nzZ07t1q2bJnq/Nv1uRYqVEjt2rVTu3bt1LRpU61bt06HDh1ScHCwRo4cqcGDB+vRRx/V66+/roIFCypXrlzq379/ivvmdhzvN0qqY9asWQoMDEw2/+/6KBsA/8NPOYAca9asWZL+GnlJS65cudSiRQu1aNFC48aN08iRIzVo0CCtWbNGLVu2TDWkZFbSt/dJjDHav3+/y41VChQo4HKXzySHDh1yjpZIqQeolAQHB2vlypU6f/68y+jl7t27nfOzQnBwsH744QclJia6jF5m9XbKlSunbt26aerUqc5TVa+X1j68FY4ePaq4uDiX0cu9e/dKkvN023Llymnnzp1q0aJFlh5XSft0z549LsfHlStXdODAgTSDUWYkPfontVHjokWLytvbW/v37082L6W29FqwYIEiIiI0duxYZ9vly5dT/JxTUq1aNVWrVk2vvvqqvvvuOzVs2FBTpkzRiBEjMl2TdOs+17TUqVNH69at07FjxxQcHKwFCxaoWbNm+ve//+3S79y5cypcuHCWb//G32PSX8d73rx5U71pU9Jpz0WLFs3yYxJAzsBpsQBypNWrV+v1119XSEiIunbtmmq/P//8M1lbzZo1Jcl5+/2ksJDeP2Bv5qOPPnK5DnTBggU6duyYy7Vo5cqV06ZNm3TlyhVn2xdffJHskSUZqe3+++9XQkKC3nvvPZf28ePHy+FwpHotXEbdf//9On78uObNm+dsu3btmiZMmCBfX181adIkS7Yj/XXt5dWrV/Xmm28mm1euXDnFxMTohx9+cLYdO3bMeZ1cVrt27ZqmTp3qnL5y5YqmTp2qIkWKOK9N69Spk44cOaLp06cnW/7SpUuKi4vL1LZbtmwpT09Pvfvuuy4jTP/+978VExOjNm3aZGq9q1atSrE96frgG0/DTZI00rdo0SKXR8bs378/2bW9GZE7d+5kI2gTJkxIdTQ6SWxsbLJrBqtVq6ZcuXIle8xGZtyqz/X48eP6+eefk7VfuXJFq1atUq5cuZxnZqS0bz799FOX6zKz0saNG12u5Tx8+LAWL16s++67L9XRz7CwMPn7+2vkyJG6evVqsvk8txP4+2PkEkC2t3TpUu3evVvXrl3TiRMntHr1aq1YsULBwcFasmRJmg93Hz58uNavX682bdooODhYJ0+e1KRJk1SyZEndc889kv4KKfnz59eUKVPk5+enfPnyqV69ehm6bup6BQsW1D333KNevXrpxIkTio6OVvny5V0el/L4449rwYIFatWqlTp16qRff/1Vs2fPdrnhSUZrCw8PV7NmzTRo0CAdPHhQNWrU0Ndff63Fixerf//+ydadWU888YSmTp2qnj17auvWrSpTpowWLFigDRs2KDo6Os1rYDMqafTy+mdoJuncubNeeuklPfDAA+rXr5/zkQd33HFHmjd/yaygoCCNGTNGBw8e1B133KF58+Zpx44dmjZtmvPGKd27d9f8+fP11FNPac2aNWrYsKESEhK0e/duzZ8/X8uXL3eOCmZEkSJFFBUVpWHDhqlVq1Zq166d9uzZo0mTJqlu3brq1q1bpt5T+/btFRISovDwcJUrV05xcXFauXKlPv/8c9WtW1fh4eGpLjt06FB9/fXXatiwofr06eP8YqNq1arasWNHpupp27atZs2apYCAAFWpUkUbN27UypUr03w0jvTXl019+/ZVx44ddccdd+jatWuaNWuWcufOrQcffDBTtVzvVn2uf/zxh+666y41b95cLVq0UGBgoE6ePKmPP/5YO3fuVP/+/Z2jkm3bttXw4cPVq1cvNWjQQD/++KPmzJnjMpKdlapWraqwsDCXR5FI0rBhw1Jdxt/fX5MnT1b37t115513qnPnzipSpIh+//13ffnll2rYsGGyL78A/M246za1AHAzSbe5T3p5enqawMBAc++995p33nnH5fERSW58DMWqVatM+/btTVBQkPH09DRBQUGmS5cuZu/evS7LLV682FSpUsX5GIWkR380adLEhIaGplhfao8i+fjjj01UVJQpWrSo8fHxMW3atDGHDh1KtvzYsWNNiRIljJeXl2nYsKHZsmVLsnWmVVtKj+I4f/68ee6550xQUJDJkyePqVChgnnrrbdMYmKiSz9JJjIyMllNqT0i5UYnTpwwvXr1MoULFzaenp6mWrVqKT4uJbOPIrnevn37TO7cuVN81MTXX39tqlatajw9PU3FihXN7NmzU30UyY3v98CBA0aSeeutt1zaU3rsSdJxsGXLFlO/fn3j7e1tgoODzXvvvZes3itXrpgxY8aY0NBQ4+XlZQoUKGBq165thg0bZmJiYtKs6Wbee+89U6lSJZMnTx5TrFgx06dPH3P27FmXPhl5FMnHH39sOnfubMqVK2d8fHyMt7e3qVKlihk0aFCyny/d8CgSY/76+apVq5bx9PQ05cqVM++//74ZOHCg8fb2TrZseo63s2fPOo8rX19fExYWZnbv3p2s342PIvntt9/Mo48+asqVK2e8vb1NwYIFTbNmzczKlStvug+SHkVyM7fic42NjTXvvPOOCQsLMyVLljR58uQxfn5+pn79+mb69OkuP7eXL182AwcONMWLFzc+Pj6mYcOGZuPGjan+HrrxZyW1RzuldLwkvYfZs2ebChUqGC8vL1OrVi3n/r5xndc/tiephrCwMBMQEGC8vb1NuXLlTM+ePV0ebQLg78lhTDa5cwMAAMjxOnTooF27dqV4zR5yBofDocjISEYZAWQY11wCAIBMuXTpksv0vn379NVXX6lp06buKQgA4FZccwkAADKlbNmy6tmzp/NZm5MnT5anp6defPFFd5cGAHADwiUAAMiUVq1a6eOPP9bx48fl5eWl+vXra+TIkapQoYK7SwMAuAHXXAIAAAAArHHNJQAAAADAGuESAAAAAGCNcAkAt9natWvlcDi0du1ad5eSaUnvYcGCBe4uBQAAZBOESwD/CA6HI12v9AS+kSNHatGiRbe85pkzZ8rhcMjb21tHjhxJNr9p06aqWrXqLa8jJ0pMTNTkyZNVs2ZN+fj4qFChQmrevLl27tyZrN+bb76pkJAQeXt7q3r16vr4449vaW2TJk2Sw+FQvXr1bul2/i4OHz6sYcOG6a677lKBAgVUuHBhNW3aVCtXrszU+ubMmSOHwyFfX98srvR/P7MOh0PffvttsvnGGJUqVUoOh0Nt27bN8u1nRtIXRam93njjDXeXCCAH4W6xAP4RZs2a5TL90UcfacWKFcnaK1eufNN1jRw5Ug899JA6dOiQlSWmKj4+XqNHj9aECRNuy/b+Dh599FHNmTNHPXr0UN++fRUXF6ft27fr5MmTLv0GDRqk0aNHq3fv3qpbt64WL16sRx55RA6HQ507d74ltc2ZM0dlypTR999/r/3796t8+fK3ZDt/F4sXL9aYMWPUoUMHRURE6Nq1a/roo49077336oMPPlCvXr3Sva4LFy7oxRdfVL58+W5hxZK3t7fmzp2re+65x6V93bp1+uOPP+Tl5XVLt58RlStXTvZ7UPrrd+bXX3+t++67zw1VAcixDAD8A0VGRprM/grMly+fiYiIyPS216xZYySZNWvWpNlvxowZRpKpWbOm8fLyMkeOHHGZ36RJExMaGprpOmwkvYdPP/30lm7nwoULGV5m3rx5RpL57LPP0uz3xx9/mDx58pjIyEhnW2JiomnUqJEpWbKkuXbtWoa3fTO//fabs7YiRYqYoUOHZvk2biYhIcFcunTptm83s3766Sdz6tQpl7bLly+bSpUqmZIlS2ZoXS+99JKpWLGi6dq1q8mXL19WlmmM+d/P7L/+9S9TuHBhc/XqVZf5vXv3NrVr1zbBwcGmTZs2Wb79rFS+fHlToUIFd5cBIIfhtFgA+H9xcXEaOHCgSpUqJS8vL1WsWFFvv/22zHVPbHI4HIqLi9OHH37oPG2sZ8+ekqRDhw7p6aefVsWKFZ2nYnbs2FEHDx60quuVV15RQkKCRo8enWa/gwcPyuFwaObMmcnmORwODR061Dk9dOhQORwO7d27V926dVNAQICKFCmiwYMHyxijw4cPq3379vL391dgYKDGjh2b4jYTEhL0yiuvKDAwUPny5VO7du10+PDhZP3++9//qlWrVgoICFDevHnVpEkTbdiwwaVPUk0///yzHnnkERUoUMA58hMTE6Pdu3crJibmJntLGjdunO666y498MADSkxMVFxcXIr9Fi9erKtXr+rpp5922U99+vTRH3/8oY0bN950Wxk1Z84cFShQQG3atNFDDz2kOXPmOOddvXpVBQsWTHEkLjY2Vt7e3nr++eedbfHx8RoyZIjKly8vLy8vlSpVSi+++KLi4+NdlnU4HOrbt6/mzJmj0NBQeXl5admyZZKkt99+Ww0aNFChQoXk4+Oj2rVrp3gd7aVLl9SvXz8VLlxYfn5+ateunY4cOZLsuJKkI0eO6NFHH1WxYsXk5eWl0NBQffDBB8nW+fvvv2v37t033WehoaEqXLiwS5uXl5fuv/9+/fHHHzp//vxN1yFJ+/bt0/jx4zVu3Dh5eNzaE7e6dOmiM2fOaMWKFc62K1euaMGCBXrkkUdSXCY9n8WMGTPkcDiS7c+RI0fK4XDoq6++crYdO3ZMu3fv1tWrVzNcf9KoeteuXTO8LIB/NsIlAOiva6HatWun8ePHq1WrVho3bpwqVqyoF154QQMGDHD2mzVrlry8vNSoUSPNmjVLs2bN0pNPPilJ2rx5s7777jt17txZ7777rp566imtWrVKTZs21cWLFzNdW0hIiHr06KHp06fr6NGj1u/1eg8//LASExM1evRo1atXTyNGjFB0dLTuvfdelShRQmPGjFH58uX1/PPPa/369cmWf+ONN/Tll1/qpZdeUr9+/bRixQq1bNlSly5dcvZZvXq1GjdurNjYWA0ZMkQjR47UuXPn1Lx5c33//ffJ1tmxY0ddvHhRI0eOVO/evSVJCxcuVOXKlbVw4cI0309sbKy+//571a1bV6+88ooCAgLk6+ursmXLav78+S59t2/frnz58iU7Ffquu+5yzs9qc+bM0b/+9S95enqqS5cu2rdvnzZv3ixJypMnjx544AEtWrRIV65ccVlu0aJFio+Pd56qm5iYqHbt2untt99WeHi4JkyYoA4dOmj8+PF6+OGHk2139erVeu655/Twww/rnXfeUZkyZSRJ77zzjmrVqqXhw4dr5MiR8vDwUMeOHfXll1+6LN+zZ09NmDBB999/v8aMGSMfHx+1adMm2XZOnDihu+++WytXrlTfvn31zjvvqHz58nrssccUHR3t0rdHjx7pOg09NcePH1fevHmVN2/edPXv37+/mjVrpvvvvz/T20yvMmXKqH79+i7X7y5dulQxMTGpnm6dns+iV69eatu2rQYMGOD8EufHH3/UsGHD9Nhjj7m8t6ioKFWuXDnF67VvJulLD8IlgAxz88gpALjFjafFLlq0yEgyI0aMcOn30EMPGYfDYfbv3+9sS+202IsXLyZr27hxo5FkPvroI2dbRk+L3bx5s/n111+Nh4eH6devn3P+jafFHjhwwEgyM2bMSLYuSWbIkCHO6SFDhhhJ5oknnnC2Xbt2zZQsWdI4HA4zevRoZ/vZs2eNj4+Py3tOeg8lSpQwsbGxzvb58+cbSeadd94xxvx1mmmFChVMWFiYSUxMdNlXISEh5t57701WU5cuXVLdFym9t+tt27bNSDKFChUyxYoVM5MmTTJz5swxd911l3E4HGbp0qXOvm3atDFly5ZNto64uDgjybz88stpbiujtmzZYiSZFStWGGP+2jclS5Y0zz77rLPP8uXLjSTz+eefuyx7//33u9Q6a9YskytXLvPNN9+49JsyZYqRZDZs2OBsk2Ry5cpldu3alaymG4/ZK1eumKpVq5rmzZs727Zu3Wokmf79+7v07dmzZ7Lj6rHHHjPFixc3p0+fdunbuXNnExAQ4LK9Jk2aZPrU9H379hlvb2/TvXv3dPX/4osvjIeHh3MfRERE3NLTYjdv3mzee+894+fn53zPHTt2NM2aNTPGmBRPi03PZ2GMMceOHTMFCxY09957r4mPjze1atUypUuXNjExMS79IiIijCRz4MCBDL2Ha9eumWLFipm77rorQ8sBgDGcFgsAkqSvvvpKuXPnVr9+/VzaBw4cKGOMli5detN1+Pj4OP999epVnTlzRuXLl1f+/Pm1bds2q/rKli2r7t27a9q0aTp27JjVuq73+OOPO/+dO3du1alTR8YYPfbYY872/Pnzq2LFivrtt9+SLd+jRw/5+fk5px966CEVL17ceXrejh07tG/fPj3yyCM6c+aMTp8+rdOnTysuLk4tWrTQ+vXrlZiY6LLOp556Ktl2evbsKWOM8xTk1Fy4cEGSdObMGS1evFh9+vTRI488olWrVqlQoUIaMWKEs++lS5dSvLGKt7e3c35WmjNnjooVK6ZmzZpJ+ut01YcffliffPKJEhISJEnNmzdX4cKFNW/ePOdyZ8+e1YoVK1xGJD/99FNVrlxZlSpVcu7T06dPq3nz5pKkNWvWuGy7SZMmqlKlSrKarj9mz549q5iYGDVq1MjleE06hfb604cl6ZlnnnGZNsboP//5j8LDw2WMcakrLCxMMTExLutdu3atyynn6XXx4kV17NhRPj4+Nz1VXPrrdNTnnntOTz31VIr74Fbp1KmTLl26pC+++ELnz5/XF198keopsVL6PgtJCgwM1MSJE7VixQo1atRIO3bs0AcffCB/f3+XfjNnzpQxxjlKnV6rVq3SiRMnGLUEkCncLRYA9Nf1kkFBQS5BSfrf3WMPHTp003VcunRJo0aN0owZM3TkyBGXP5zTc63gzbz66quaNWuWRo8erXfeecd6fZJUunRpl+mAgAB5e3snu8YtICBAZ86cSbZ8hQoVXKYdDofKly/vvM503759kqSIiIhUa4iJiVGBAgWc0yEhIRl6D9dL+gM9JCTE5VEfvr6+Cg8P1+zZs3Xt2jV5eHjIx8cn2fWJknT58mWXdaXk0qVLyT7TwMDAVPsnJCTok08+UbNmzXTgwAFne7169TR27FitWrVK9913nzw8PPTggw9q7ty5io+Pl5eXlz777DNdvXrVJVzu27dPv/zyi4oUKZLi9m68K25q+/SLL77QiBEjtGPHDpd94XA4nP8+dOiQcuXKlWwdN97l9tSpUzp37pymTZumadOmpauujEpISFDnzp31888/a+nSpQoKCrrpMuPHj9fp06c1bNiwDG8vo5/z9YoUKaKWLVtq7ty5unjxohISEvTQQw+l2j89n0WSzp07a/bs2fryyy/1xBNPqEWLFul8Rzc3Z84c5c6dO8XTqwHgZgiXAJBFnnnmGc2YMUP9+/dX/fr1FRAQ4HykxY2jc5lRtmxZdevWTdOmTdPLL7+cbH5Kf4RKco6KpSR37tzpapOUqVGmpPf91ltvqWbNmin2ufF5g2mFuptJChvFihVLNq9o0aK6evWq4uLiFBAQoOLFi2vNmjUyxrjsu6SR4bSCy7x585LdeCet/bN69WodO3ZMn3zyiT755JNk8+fMmeN85EPnzp01depULV26VB06dND8+fNVqVIl1ahRw9k/MTFR1apV07hx41LcXqlSpVymU9qn33zzjdq1a6fGjRtr0qRJKl68uPLkyaMZM2Zo7ty5qb6X1CR91t26dUv1y4Tq1atneL3X6927t7744gvNmTPHOUqblpiYGI0YMUJPP/20YmNjFRsbK+mvEW5jjA4ePKi8efOqaNGiKS6f0c/5Ro888oh69+6t48ePq3Xr1sqfP3+K/TL6WZw5c0ZbtmyRJP38889KTExUrlz2J6NdunRJCxcuVMuWLVP8GQKAmyFcAoCk4OBgrVy5UufPn3cZvUy6m2VwcLCzLbUQt2DBAkVERLjcWfXy5cs6d+5cltX56quvavbs2RozZkyyeUmjfzduLz2jrpmVNDKZxBij/fv3O0NEuXLlJEn+/v5q2bLlLasjSVBQkAIDA1O8icnRo0fl7e3t/Hxr1qyp999/X7/88ovL6ZL//e9/nfNTExYW5nIn0JuZM2eOihYtqokTJyab99lnn2nhwoWaMmWKfHx81LhxYxUvXlzz5s3TPffco9WrV2vQoEEuy5QrV047d+5UixYtUj0eb+Y///mPvL29tXz5cpfTg2fMmOHSLzg4WImJiTpw4IDLSPX+/ftd+hUpUkR+fn5KSEi4JZ/1Cy+8oBkzZig6OlpdunRJ1zJnz57VhQsX9Oabb+rNN99MNj8kJETt27fXokWLUlw+o5/zjR544AE9+eST2rRpk8upzjdK72eRJDIyUufPn9eoUaMUFRWl6OholxuPZdaSJUt0/vx5TokFkGlccwkAku6//34lJCTovffec2kfP368HA6HWrdu7WzLly9fioExd+7cyUY1JkyYkObIYUaVK1dO3bp109SpU3X8+HGXef7+/ipcuHCyu7pOmjQpy7Z/o48++sjlURALFizQsWPHnPurdu3aKleunN5++23n9ZDXO3XqVLq2k5FHkTz88MM6fPiwSyg4ffq0Fi9erObNmztHeNq3b688efK47B9jjKZMmaISJUqoQYMGqW6jePHiatmypcsrNZcuXdJnn32mtm3b6qGHHkr26tu3r86fP68lS5ZIknLlyqWHHnpIn3/+uWbNmqVr164lO0WxU6dOOnLkiKZPn57i9lJ7/Mr1cufOLYfD4XJ8Hjx4MFnQCgsLk5T8OJowYUKy9T344IP6z3/+o59++inZ9m78rNP7KBLpr5Hvt99+W6+88oqeffbZVPvdeJwULVpUCxcuTPZq1qyZvL29tXDhQkVFRaW6vox8zinx9fXV5MmTNXToUIWHh6faL72fhfTXz9i8efM0evRovfzyy+rcubNeffVV7d2716VfZh5FMnfuXOXNm1cPPPBAupcBgOsxcgkAksLDw9WsWTMNGjRIBw8eVI0aNfT1119r8eLF6t+/v3METvorMK1cuVLjxo1TUFCQ8/q+tm3batasWQoICFCVKlW0ceNGrVy5UoUKFcrSWgcNGqRZs2Zpz549Cg0NdZn3+OOPa/To0Xr88cdVp04drV+/PtkfnVmpYMGCuueee9SrVy+dOHFC0dHRKl++vPMRIrly5dL777+v1q1bKzQ0VL169VKJEiV05MgRrVmzRv7+/vr8889vup2FCxeqV69emjFjxk1v6hMVFaX58+frwQcf1IABAxQQEKApU6bo6tWrGjlypLNfyZIl1b9/f7311lu6evWq6tatq0WLFumbb75xXneWFZJGg9q1a5fi/LvvvltFihTRnDlznCHy4Ycf1oQJEzRkyBBVq1Yt2SM7unfvrvnz5+upp57SmjVr1LBhQyUkJGj37t2aP3++li9frjp16qRZV5s2bTRu3Di1atVKjzzyiE6ePKmJEyeqfPny+uGHH5z9ateurQcffFDR0dE6c+aM7r77bq1bt855XF0/cjp69GitWbNG9erVU+/evVWlShX9+eef2rZtm1auXKk///zT2bdHjx5at27dTU8zXbhwoV588UVVqFBBlStX1uzZs13m33vvvc5TOG88TvLmzasOHTokW+eiRYv0/fffpzgvq6V1vXGS9H4WJ0+eVJ8+fdSsWTP17dtXkvTee+9pzZo16tmzp7799lvnlydRUVH68MMPdeDAgXTd1OfPP//U0qVL9eCDDyY7VR0A0u22358WALKBGx9FYowx58+fN88995wJCgoyefLkMRUqVDBvvfWWyyM0jDFm9+7dpnHjxsbHx8dIcj6i4+zZs6ZXr16mcOHCxtfX14SFhZndu3eb4ODgFB/jkZFHkdwo6TED1z+KxJi/Hmfw2GOPmYCAAOPn52c6depkTp48meqjSE6dOpVsvSk9ouHGx54kvYePP/7YREVFmaJFixofHx/Tpk0bc+jQoWTLb9++3fzrX/8yhQoVMl5eXiY4ONh06tTJrFq16qY1Xb8vbvYokiS//vqreeCBB4y/v7/x8fExzZs3N99//32yfgkJCWbkyJEmODjYeHp6mtDQUDN79ux0bSO9wsPDjbe3t4mLi0u1T8+ePU2ePHmcj/BITEw0pUqVSvHxOEmuXLlixowZY0JDQ42Xl5cpUKCAqV27thk2bJjLYykkmcjIyBTX8e9//9tUqFDBeHl5mUqVKpkZM2Y4P4frxcXFmcjISFOwYEHj6+trOnToYPbs2WMkuTy2xhhjTpw4YSIjI02pUqVMnjx5TGBgoGnRooWZNm2aS7/0PookqZ7UXtf/HKX3OLkdjyJJS0qPIknPZ/Gvf/3L+Pn5mYMHD7osu3jxYiPJjBkzxtmW0UeRJD3GZsmSJenqDwApcRiTiTs0AACAf7QdO3aoVq1amj17NtfoAQAkcc0lAAC4iZSe+RkdHa1cuXKpcePGbqgIAJAdcc0lAABI05tvvqmtW7eqWbNm8vDw0NKlS7V06VI98cQTyR57AgD45+K0WAAAkKYVK1Zo2LBh+vnnn3XhwgWVLl1a3bt316BBg+ThwffUAIC/EC4BAAAAANa45hIAAAAAYI1wCQAAAACw9re/UCIxMVFHjx6Vn5+fy4OeAQAAAABpM8bo/PnzCgoKUq5caY9N/u3D5dGjR7mTHQAAAABYOHz4sEqWLJlmn799uPTz85P0187w9/d3czUAAAAAkHPExsaqVKlSzlyVlr99uEw6Fdbf359wCQAAAACZkJ5LDLmhDwAAAADAGuESAAAAAGCNcAkAAAAAsEa4BAAAAABYI1wCAAAAAKwRLgEAAAAA1giXAAAAAABrhEsAAAAAgDXCJQAAAADAGuESAAAAAGCNcAkAAAAAsEa4BAAAAABYI1wCAAAAAKwRLgEAAAAA1giXAAAAAABrhEsAAAAAgDXCJQAAAADAGuESAAAAAGCNcAkAAAAAsEa4BAAAAABYI1wCAAAAAKwRLgEAAAAA1twaLtevX6/w8HAFBQXJ4XBo0aJFznlXr17VSy+9pGrVqilfvnwKCgpSjx49dPToUfcVDAAAAABIkVvDZVxcnGrUqKGJEycmm3fx4kVt27ZNgwcP1rZt2/TZZ59pz549ateunRsqBQAAAACkxWGMMe4uQpIcDocWLlyoDh06pNpn8+bNuuuuu3To0CGVLl06XeuNjY1VQECAYmJi5O/vn0XVAgAAAMDfX0bylMdtqilLxMTEyOFwKH/+/Kn2iY+PV3x8vHM6Njb2NlQGAAAAAP9sOSZcXr58WS+99JK6dOmSZmIeNWqUhg0bdhsrA+yUeflLd5cANzs4uo27SwAAALCWI+4We/XqVXXq1EnGGE2ePDnNvlFRUYqJiXG+Dh8+fJuqBAAAAIB/rmw/cpkULA8dOqTVq1ff9DxfLy8veXl53abqAAAAAABSNg+XScFy3759WrNmjQoVKuTukgAAAAAAKXBruLxw4YL279/vnD5w4IB27NihggULqnjx4nrooYe0bds2ffHFF0pISNDx48clSQULFpSnp6e7ygYAAAAA3MCt4XLLli1q1qyZc3rAgAGSpIiICA0dOlRLliyRJNWsWdNluTVr1qhp06a3q0wAAAAAwE24NVw2bdpUaT1mM5s8ghMAAAAAcBM54m6xAAAAAIDsjXAJAAAAALBGuAQAAAAAWCNcAgAAAACsES4BAAAAANYIlwAAAAAAa4RLAAAAAIA1wiUAAAAAwBrhEgAAAABgjXAJAAAAALBGuAQAAAAAWCNcAgAAAACsES4BAAAAANYIlwAAAAAAa4RLAAAAAIA1wiUAAAAAwBrhEgAAAABgjXAJAAAAALBGuAQAAAAAWCNcAgAAAACsES4BAAAAANYIlwAAAAAAa4RLAAAAAIA1wiUAAAAAwBrhEgAAAABgjXAJAAAAALBGuAQAAAAAWCNcAgAAAACsES4BAAAAANYIlwAAAAAAa4RLAAAAAIA1wiUAAAAAwBrhEgAAAABgjXAJAAAAALBGuAQAAAAAWCNcAgAAAACsES4BAAAAANYIlwAAAAAAa4RLAAAAAIA1wiUAAAAAwBrhEgAAAABgjXAJAAAAALBGuAQAAAAAWCNcAgAAAACsES4BAAAAANYIlwAAAAAAa4RLAAAAAIA1wiUAAAAAwBrhEgAAAABgjXAJAAAAALBGuAQAAAAAWCNcAgAAAACsES4BAAAAANYIlwAAAAAAa4RLAAAAAIA1wiUAAAAAwBrhEgAAAABgjXAJAAAAALBGuAQAAAAAWCNcAgAAAACsES4BAAAAANYIlwAAAAAAa4RLAAAAAIA1wiUAAAAAwBrhEgAAAABgjXAJAAAAALBGuAQAAAAAWCNcAgAAAACsES4BAAAAANYIlwAAAAAAa4RLAAAAAIA1wiUAAAAAwBrhEgAAAABgjXAJAAAAALBGuAQAAAAAWCNcAgAAAACsES4BAAAAANYIlwAAAAAAa4RLAAAAAIA1wiUAAAAAwBrhEgAAAABgjXAJAAAAALBGuAQAAAAAWCNcAgAAAACsES4BAAAAANYIlwAAAAAAa4RLAAAAAIA1t4bL9evXKzw8XEFBQXI4HFq0aJHLfGOMXnvtNRUvXlw+Pj5q2bKl9u3b555iAQAAAACpcmu4jIuLU40aNTRx4sQU57/55pt69913NWXKFP33v/9Vvnz5FBYWpsuXL9/mSgEAAAAAafFw58Zbt26t1q1bpzjPGKPo6Gi9+uqrat++vSTpo48+UrFixbRo0SJ17tz5dpYKAAAAAEhDtr3m8sCBAzp+/LhatmzpbAsICFC9evW0cePGVJeLj49XbGysywsAAAAAcGtl23B5/PhxSVKxYsVc2osVK+acl5JRo0YpICDA+SpVqtQtrRMAAAAAkI3DZWZFRUUpJibG+Tp8+LC7SwIAAACAv71sGy4DAwMlSSdOnHBpP3HihHNeSry8vOTv7+/yAgAAAADcWtk2XIaEhCgwMFCrVq1ytsXGxuq///2v6tev78bKAAAAAAA3cuvdYi9cuKD9+/c7pw8cOKAdO3aoYMGCKl26tPr3768RI0aoQoUKCgkJ0eDBgxUUFKQOHTq4r2gAAAAAQDJuDZdbtmxRs2bNnNMDBgyQJEVERGjmzJl68cUXFRcXpyeeeELnzp3TPffco2XLlsnb29tdJQMAAAAAUuAwxhh3F3ErxcbGKiAgQDExMVx/iWypzMtfursEuNnB0W3cXQIAAECKMpKnsu01lwAAAACAnINwCQAAAACwRrgEAAAAAFgjXAIAAAAArBEuAQAAAADWCJcAAAAAAGuESwAAAACANcIlAAAAAMAa4RIAAAAAYI1wCQAAAACwRrgEAAAAAFgjXAIAAAAArBEuAQAAAADWCJcAAAAAAGuESwAAAACANcIlAAAAAMAa4RIAAAAAYI1wCQAAAACwRrgEAAAAAFgjXAIAAAAArBEuAQAAAADWCJcAAAAAAGuESwAAAACANcIlAAAAAMAa4RIAAAAAYI1wCQAAAACwRrgEAAAAAFgjXAIAAAAArBEuAQAAAADWCJcAAAAAAGuESwAAAACANcIlAAAAAMAa4RIAAAAAYI1wCQAAAACwRrgEAAAAAFgjXAIAAAAArBEuAQAAAADWCJcAAAAAAGuESwAAAACANcIlAAAAAMAa4RIAAAAAYI1wCQAAAACwRrgEAAAAAFgjXAIAAAAArBEuAQAAAADWCJcAAAAAAGuESwAAAACANcIlAAAAAMAa4RIAAAAAYI1wCQAAAACwRrgEAAAAAFgjXAIAAAAArBEuAQAAAADWCJcAAAAAAGuESwAAAACANcIlAAAAAMAa4RIAAAAAYI1wCQAAAACwRrgEAAAAAFgjXAIAAAAArBEuAQAAAADWCJcAAAAAAGuESwAAAACANcIlAAAAAMAa4RIAAAAAYI1wCQAAAACwRrgEAAAAAFgjXAIAAAAArBEuAQAAAADWCJcAAAAAAGuESwAAAACANcIlAAAAAMAa4RIAAAAAYI1wCQAAAACwRrgEAAAAAFgjXAIAAAAArBEuAQAAAADWCJcAAAAAAGuESwAAAACANcIlAAAAAMAa4RIAAAAAYI1wCQAAAACwRrgEAAAAAFgjXAIAAAAArBEuAQAAAADWCJcAAAAAAGuESwAAAACAtWwdLhMSEjR48GCFhITIx8dH5cqV0+uvvy5jjLtLAwAAAABcx8PdBaRlzJgxmjx5sj788EOFhoZqy5Yt6tWrlwICAtSvXz93lwcAAAAA+H/ZOlx+9913at++vdq0aSNJKlOmjD7++GN9//33bq4MAAAAAHC9bH1abIMGDbRq1Srt3btXkrRz5059++23at26darLxMfHKzY21uUFAAAAALi1svXI5csvv6zY2FhVqlRJuXPnVkJCgt544w117do11WVGjRqlYcOG3cYqAQAAAADZeuRy/vz5mjNnjubOnatt27bpww8/1Ntvv60PP/ww1WWioqIUExPjfB0+fPg2VgwAAAAA/0zZeuTyhRde0Msvv6zOnTtLkqpVq6ZDhw5p1KhRioiISHEZLy8veXl53c4yAQAAAOAfL1uPXF68eFG5crmWmDt3biUmJrqpIgAAAABASrL1yGV4eLjeeOMNlS5dWqGhodq+fbvGjRunRx991N2lAQAAAACuk63D5YQJEzR48GA9/fTTOnnypIKCgvTkk0/qtddec3dpAAAAAIDrZOtw6efnp+joaEVHR7u7FAAAAABAGrL1NZcAAAAAgJyBcAkAAAAAsEa4BAAAAABYI1wCAAAAAKwRLgEAAAAA1giXAAAAAABrhEsAAAAAgDXCJQAAAADAGuESAAAAAGCNcAkAAAAAsEa4BAAAAABYI1wCAAAAAKwRLgEAAAAA1giXAAAAAABrhEsAAAAAgDXCJQAAAADAGuESAAAAAGCNcAkAAAAAsEa4BAAAAABYI1wCAAAAAKwRLgEAAAAA1giXAAAAAABrhEsAAAAAgDXCJQAAAADAGuESAAAAAGCNcAkAAAAAsEa4BAAAAABYI1wCAAAAAKwRLgEAAAAA1giXAAAAAABrhEsAAAAAgDXCJQAAAADAGuESAAAAAGCNcAkAAAAAsEa4BAAAAABYI1wCAAAAAKwRLgEAAAAA1giXAAAAAABrhEsAAAAAgDXCJQAAAADAGuESAAAAAGCNcAkAAAAAsEa4BAAAAABYI1wCAAAAAKwRLgEAAAAA1giXAAAAAABrhEsAAAAAgDXCJQAAAADAGuESAAAAAGCNcAkAAAAAsEa4BAAAAABYI1wCAAAAAKwRLgEAAAAA1giXAAAAAABrmQqX27Zt048//uicXrx4sTp06KBXXnlFV65cybLiAAAAAAA5Q6bC5ZNPPqm9e/dKkn777Td17txZefPm1aeffqoXX3wxSwsEAAAAAGR/mQqXe/fuVc2aNSVJn376qRo3bqy5c+dq5syZ+s9//pOV9QEAAAAAcoBMhUtjjBITEyVJK1eu1P333y9JKlWqlE6fPp111QEAAAAAcoRMhcs6depoxIgRmjVrltatW6c2bdpIkg4cOKBixYplaYEAAAAAgOwvU+Fy/Pjx2rZtm/r27atBgwapfPnykqQFCxaoQYMGWVogAAAAACD788jMQjVq1HC5W2ySt956Sx4emVolAAAAACAHy9TIZdmyZXXmzJlk7ZcvX9Ydd9xhXRQAAAAAIGfJVLg8ePCgEhISkrXHx8frjz/+sC4KAAAAAJCzZOgc1iVLljj/vXz5cgUEBDinExIStGrVKoWEhGRddQAAAACAHCFD4bJDhw6SJIfDoYiICJd5efLkUZkyZTR27NgsKw4AAAAAkDNkKFwmPdsyJCREmzdvVuHChW9JUQAAAACAnCVTt3Y9cOBAVtcBAAAAAMjBMv3ckFWrVmnVqlU6efKkc0QzyQcffGBdGAAAAAAg58hUuBw2bJiGDx+uOnXqqHjx4nI4HFldFwAAAAAgB8lUuJwyZYpmzpyp7t27Z3U9AAAAAIAcKFPPubxy5YoaNGiQ1bUAAAAAAHKoTIXLxx9/XHPnzs3qWgAAAAAAOVSmTou9fPmypk2bppUrV6p69erKkyePy/xx48ZlSXEAAAAAgJwhU+Hyhx9+UM2aNSVJP/30k8s8bu4DAAAAAP88mQqXa9asyeo6AAAAAAA5WKauuQQAAAAA4HqZGrls1qxZmqe/rl69OtMFAQAAAABynkyFy6TrLZNcvXpVO3bs0E8//aSIiIisqAsAAAAAkINkKlyOHz8+xfahQ4fqwoULVgUBAAAAAHKeLL3mslu3bvrggw+ycpUAAAAAgBwgS8Plxo0b5e3tnZWrBAAAAADkAJk6LfZf//qXy7QxRseOHdOWLVs0ePDgLCkMAAAAAJBzZCpcBgQEuEznypVLFStW1PDhw3XfffdlSWEAAAAAgJwjU+FyxowZWV0HAAAAACAHy1S4TLJ161b98ssvkqTQ0FDVqlUrS4oCAAAAAOQsmQqXJ0+eVOfOnbV27Vrlz59fknTu3Dk1a9ZMn3zyiYoUKZKVNQIAAAAAsrlM3S32mWee0fnz57Vr1y79+eef+vPPP/XTTz8pNjZW/fr1y9ICjxw5om7duqlQoULy8fFRtWrVtGXLlizdBgAAAADATqZGLpctW6aVK1eqcuXKzrYqVapo4sSJWXpDn7Nnz6phw4Zq1qyZli5dqiJFimjfvn0qUKBAlm0DAAAAAGAvU+EyMTFRefLkSdaeJ08eJSYmWheVZMyYMSpVqpTLDYRCQkKybP0AAAAAgKyRqdNimzdvrmeffVZHjx51th05ckTPPfecWrRokWXFLVmyRHXq1FHHjh1VtGhR1apVS9OnT09zmfj4eMXGxrq8AAAAAAC3VqZGLt977z21a9dOZcqUUalSpSRJhw8fVtWqVTV79uwsK+63337T5MmTNWDAAL3yyivavHmz+vXrJ09PT0VERKS4zKhRozRs2LAsq+FWK/Pyl+4uAQAAAACsOYwxJjMLGmO0cuVK7d69W5JUuXJltWzZMkuL8/T0VJ06dfTdd9852/r166fNmzdr48aNKS4THx+v+Ph453RsbKxKlSqlmJgY+fv7Z2l9WYFwCeDg6DbuLgEAACBFsbGxCggISFeeytBpsatXr1aVKlUUGxsrh8Ohe++9V88884yeeeYZ1a1bV6Ghofrmm2+sir9e8eLFVaVKFZe2ypUr6/fff091GS8vL/n7+7u8AAAAAAC3VobCZXR0tHr37p1iYAsICNCTTz6pcePGZVlxDRs21J49e1za9u7dq+Dg4CzbBgAAAADAXobC5c6dO9WqVatU5993333aunWrdVFJnnvuOW3atEkjR47U/v37NXfuXE2bNk2RkZFZtg0AAAAAgL0MhcsTJ06k+AiSJB4eHjp16pR1UUnq1q2rhQsX6uOPP1bVqlX1+uuvKzo6Wl27ds2ybQAAAAAA7GXobrElSpTQTz/9pPLly6c4/4cfflDx4sWzpLAkbdu2Vdu2bbN0nQAAAACArJWhkcv7779fgwcP1uXLl5PNu3TpkoYMGUIQBAAAAIB/oAyNXL766qv67LPPdMcdd6hv376qWLGiJGn37t2aOHGiEhISNGjQoFtSKAAAAAAg+8pQuCxWrJi+++479enTR1FRUUp6RKbD4VBYWJgmTpyoYsWK3ZJCAQAAAADZV4bCpSQFBwfrq6++0tmzZ7V//34ZY1ShQgUVKFDgVtQHAAAAAMgBMhwukxQoUEB169bNyloAAAAAADlUhm7oAwAAAABASgiXAAAAAABrhEsAAAAAgDXCJQAAAADAGuESAAAAAGCNcAkAAAAAsEa4BAAAAABYI1wCAAAAAKwRLgEAAAAA1giXAAAAAABrhEsAAAAAgDXCJQAAAADAGuESAAAAAGCNcAkAAAAAsEa4BAAAAABYI1wCAAAAAKwRLgEAAAAA1giXAAAAAABrhEsAAAAAgDXCJQAAAADAGuESAAAAAGCNcAkAAAAAsEa4BAAAAABYI1wCAAAAAKwRLgEAAAAA1giXAAAAAABrhEsAAAAAgDXCJQAAAADAGuESAAAAAGCNcAkAAAAAsEa4BAAAAABYI1wCAAAAAKwRLgEAAAAA1giXAAAAAABrhEsAAAAAgDXCJQAAAADAGuESAAAAAGCNcAkAAAAAsEa4BAAAAABYI1wCAAAAAKwRLgEAAAAA1giXAAAAAABrhEsAAAAAgDXCJQAAAADAGuESAAAAAGCNcAkAAAAAsEa4BAAAAABYI1wCAAAAAKwRLgEAAAAA1giXAAAAAABrhEsAAAAAgDXCJQAAAADAGuESAAAAAGCNcAkAAAAAsEa4BAAAAABYI1wCAAAAAKwRLgEAAAAA1giXAAAAAABrhEsAAAAAgDXCJQAAAADAGuESAAAAAGCNcAkAAAAAsEa4BAAAAABYI1wCAAAAAKwRLgEAAAAA1giXAAAAAABrhEsAAAAAgDXCJQAAAADAGuESAAAAAGCNcAkAAAAAsEa4BAAAAABYI1wCAAAAAKwRLgEAAAAA1giXAAAAAABrhEsAAAAAgDXCJQAAAADAGuESAAAAAGCNcAkAAAAAsEa4BAAAAABYI1wCAAAAAKwRLgEAAAAA1giXAAAAAABrOSpcjh49Wg6HQ/3793d3KQAAAACA6+SYcLl582ZNnTpV1atXd3cpAAAAAIAb5IhweeHCBXXt2lXTp09XgQIF3F0OAAAAAOAGOSJcRkZGqk2bNmrZsuVN+8bHxys2NtblBQAAAAC4tTzcXcDNfPLJJ9q2bZs2b96crv6jRo3SsGHDbnFVAAAAAIDrZeuRy8OHD+vZZ5/VnDlz5O3tna5loqKiFBMT43wdPnz4FlcJAAAAAMjWI5dbt27VyZMndeeddzrbEhIStH79er333nuKj49X7ty5XZbx8vKSl5fX7S4VAAAAAP7RsnW4bNGihX788UeXtl69eqlSpUp66aWXkgVLAAAAAIB7ZOtw6efnp6pVq7q05cuXT4UKFUrWDgAAAABwn2x9zSUAAAAAIGfI1iOXKVm7dq27SwAAAAAA3ICRSwAAAACANcIlAAAAAMAa4RIAAAAAYI1wCQAAAACwRrgEAAAAAFgjXAIAAAAArBEuAQAAAADWCJcAAAAAAGuESwAAAACANcIlAAAAAMAa4RIAAAAAYI1wCQAAAACwRrgEAAAAAFgjXAIAAAAArBEuAQAAAADWCJcAAAAAAGuESwAAAACANcIlAAAAAMAa4RIAAAAAYI1wCQAAAACwRrgEAAAAAFgjXAIAAAAArBEuAQAAAADWCJcAAAAAAGuESwAAAACANcIlAAAAAMAa4RIAAAAAYI1wCQAAAACwRrgEAAAAAFgjXAIAAAAArBEuAQAAAADWCJcAAAAAAGuESwAAAACANcIlAAAAAMAa4RIAAAAAYI1wCQAAAACwRrgEAAAAAFgjXAIAAAAArBEuAQAAAADWCJcAAAAAAGuESwAAAACANcIlAAAAAMCah7sLAIB/ujIvf+nuEuBmB0e3cXcJAABYY+QSAAAAAGCNcAkAAAAAsEa4BAAAAABYI1wCAAAAAKwRLgEAAAAA1giXAAAAAABrhEsAAAAAgDXCJQAAAADAGuESAAAAAGCNcAkAAAAAsEa4BAAAAABYI1wCAAAAAKwRLgEAAAAA1giXAAAAAABrhEsAAAAAgDXCJQAAAADAGuESAAAAAGCNcAkAAAAAsEa4BAAAAABYI1wCAAAAAKwRLgEAAAAA1giXAAAAAABrhEsAAAAAgDXCJQAAAADAGuESAAAAAGCNcAkAAAAAsEa4BAAAAABYI1wCAAAAAKwRLgEAAAAA1giXAAAAAABrhEsAAAAAgDXCJQAAAADAGuESAAAAAGCNcAkAAAAAsEa4BAAAAABYI1wCAAAAAKwRLgEAAAAA1giXAAAAAABrhEsAAAAAgDXCJQAAAADAGuESAAAAAGCNcAkAAAAAsEa4BAAAAABYI1wCAAAAAKxl63A5atQo1a1bV35+fipatKg6dOigPXv2uLssAAAAAMANsnW4XLdunSIjI7Vp0yatWLFCV69e1X333ae4uDh3lwYAAAAAuI6HuwtIy7Jly1ymZ86cqaJFi2rr1q1q3Lixm6oCAAAAANwoW4fLG8XExEiSChYsmGqf+Ph4xcfHO6djY2NveV0AAAAA8E+XY8JlYmKi+vfvr4YNG6pq1aqp9hs1apSGDRt2GysDAMBOmZe/dHcJcLODo9u4uwQAsJatr7m8XmRkpH766Sd98sknafaLiopSTEyM83X48OHbVCEAAAAA/HPliJHLvn376osvvtD69etVsmTJNPt6eXnJy8vrNlUGAAAAAJCyebg0xuiZZ57RwoULtXbtWoWEhLi7JAAAAABACrJ1uIyMjNTcuXO1ePFi+fn56fjx45KkgIAA+fj4uLk6AAAAAECSbH3N5eTJkxUTE6OmTZuqePHizte8efPcXRoAAAAA4DrZeuTSGOPuEgAAAAAA6ZCtRy4BAAAAADkD4RIAAAAAYI1wCQAAAACwRrgEAAAAAFgjXAIAAAAArBEuAQAAAADWCJcAAAAAAGuESwAAAACANcIlAAAAAMAa4RIAAAAAYI1wCQAAAACwRrgEAAAAAFgjXAIAAAAArBEuAQAAAADWCJcAAAAAAGuESwAAAACANcIlAAAAAMAa4RIAAAAAYI1wCQAAAACwRrgEAAAAAFgjXAIAAAAArBEuAQAAAADWCJcAAAAAAGuESwAAAACANcIlAAAAAMAa4RIAAAAAYI1wCQAAAACwRrgEAAAAAFgjXAIAAAAArBEuAQAAAADWCJcAAAAAAGuESwAAAACANcIlAAAAAMAa4RIAAAAAYI1wCQAAAACwRrgEAAAAAFgjXAIAAAAArBEuAQAAAADWCJcAAAAAAGuESwAAAACANcIlAAAAAMAa4RIAAAAAYM3D3QUAAAAA/3RlXv7S3SUgGzg4uo27S7DCyCUAAAAAwBrhEgAAAABgjXAJAAAAALBGuAQAAAAAWCNcAgAAAACsES4BAAAAANYIlwAAAAAAa4RLAAAAAIA1wiUAAAAAwBrhEgAAAABgjXAJAAAAALBGuAQAAAAAWCNcAgAAAACsES4BAAAAANYIlwAAAAAAa4RLAAAAAIA1wiUAAAAAwBrhEgAAAABgjXAJAAAAALBGuAQAAAAAWCNcAgAAAACsES4BAAAAANYIlwAAAAAAa4RLAAAAAIA1wiUAAAAAwBrhEgAAAABgjXAJAAAAALBGuAQAAAAAWCNcAgAAAACsES4BAAAAANYIlwAAAAAAa4RLAAAAAIA1wiUAAAAAwBrhEgAAAABgjXAJAAAAALBGuAQAAAAAWCNcAgAAAACsES4BAAAAANYIlwAAAAAAa4RLAAAAAIA1wiUAAAAAwBrhEgAAAABgjXAJAAAAALBGuAQAAAAAWMsR4XLixIkqU6aMvL29Va9ePX3//ffuLgkAAAAAcJ1sHy7nzZunAQMGaMiQIdq2bZtq1KihsLAwnTx50t2lAQAAAAD+X7YPl+PGjVPv3r3Vq1cvValSRVOmTFHevHn1wQcfuLs0AAAAAMD/83B3AWm5cuWKtm7dqqioKGdbrly51LJlS23cuDHFZeLj4xUfH++cjomJkSTFxsbe2mIzKTH+ortLAAAAbpZd/07B7cPfhJCy5++CpJqMMTftm63D5enTp5WQkKBixYq5tBcrVky7d+9OcZlRo0Zp2LBhydpLlSp1S2oEAACwFRDt7goAZAfZ+XfB+fPnFRAQkGafbB0uMyMqKkoDBgxwTicmJurPP/9UoUKF5HA43FgZbhQbG6tSpUrp8OHD8vf3d3c5cAOOAUgcB+AYAMcAOAayM2OMzp8/r6CgoJv2zdbhsnDhwsqdO7dOnDjh0n7ixAkFBgamuIyXl5e8vLxc2vLnz3+rSkQW8Pf355fIPxzHACSOA3AMgGMAHAPZ1c1GLJNk6xv6eHp6qnbt2lq1apWzLTExUatWrVL9+vXdWBkAAAAA4HrZeuRSkgYMGKCIiAjVqVNHd911l6KjoxUXF6devXq5uzQAAAAAwP/L9uHy4Ycf1qlTp/Taa6/p+PHjqlmzppYtW5bsJj/Ieby8vDRkyJBkpzHjn4NjABLHATgGwDEAjoG/C4dJzz1lAQAAAABIQ7a+5hIAAAAAkDMQLgEAAAAA1giXAAAAAABrhEsAAAAAgDXCJW679evXKzw8XEFBQXI4HFq0aJG7S8JtNmrUKNWtW1d+fn4qWrSoOnTooD179ri7LNxGkydPVvXq1Z0Py65fv76WLl3q7rLgRqNHj5bD4VD//v3dXQpuo6FDh8rhcLi8KlWq5O6ycJsdOXJE3bp1U6FCheTj46Nq1appy5Yt7i4LmUC4xG0XFxenGjVqaOLEie4uBW6ybt06RUZGatOmTVqxYoWuXr2q++67T3Fxce4uDbdJyZIlNXr0aG3dulVbtmxR8+bN1b59e+3atcvdpcENNm/erKlTp6p69eruLgVuEBoaqmPHjjlf3377rbtLwm109uxZNWzYUHny5NHSpUv1888/a+zYsSpQoIC7S0MmZPvnXOLvp3Xr1mrdurW7y4AbLVu2zGV65syZKlq0qLZu3arGjRu7qSrcTuHh4S7Tb7zxhiZPnqxNmzYpNDTUTVXBHS5cuKCuXbtq+vTpGjFihLvLgRt4eHgoMDDQ3WXATcaMGaNSpUppxowZzraQkBA3VgQbjFwCcLuYmBhJUsGCBd1cCdwhISFBn3zyieLi4lS/fn13l4PbLDIyUm3atFHLli3dXQrcZN++fQoKClLZsmXVtWtX/f777+4uCbfRkiVLVKdOHXXs2FFFixZVrVq1NH36dHeXhUxi5BKAWyUmJqp///5q2LChqlat6u5ycBv9+OOPql+/vi5fvixfX18tXLhQVapUcXdZuI0++eQTbdu2TZs3b3Z3KXCTevXqaebMmapYsaKOHTumYcOGqVGjRvrpp5/k5+fn7vJwG/z222+aPHmyBgwYoFdeeUWbN29Wv3795OnpqYiICHeXhwwiXAJwq8jISP30009cY/MPVLFiRe3YsUMxMTFasGCBIiIitG7dOgLmP8Thw4f17LPPasWKFfL29nZ3OXCT6y+TqV69uurVq6fg4GDNnz9fjz32mBsrw+2SmJioOnXqaOTIkZKkWrVq6aefftKUKVMIlzkQp8UCcJu+ffvqiy++0Jo1a1SyZEl3l4PbzNPTU+XLl1ft2rU1atQo1ahRQ++88467y8JtsnXrVp08eVJ33nmnPDw85OHhoXXr1undd9+Vh4eHEhIS3F0i3CB//vy64447tH//fneXgtukePHiyb5UrFy5MqdH51CMXAK47YwxeuaZZ7Rw4UKtXbuWC/ch6a9vr+Pj491dBm6TFi1a6Mcff3Rp69WrlypVqqSXXnpJuXPndlNlcKcLFy7o119/Vffu3d1dCm6Thg0bJnsc2d69exUcHOymimCDcInb7sKFCy7fSB44cEA7duxQwYIFVbp0aTdWhtslMjJSc+fO1eLFi+Xn56fjx49LkgICAuTj4+Pm6nA7REVFqXXr1ipdurTOnz+vuXPnau3atVq+fLm7S8Nt4ufnl+w663z58qlQoUJcf/0P8vzzzys8PFzBwcE6evSohgwZoty5c6tLly7uLg23yXPPPacGDRpo5MiR6tSpk77//ntNmzZN06ZNc3dpyATCJW67LVu2qFmzZs7pAQMGSJIiIiI0c+ZMN1WF22ny5MmSpKZNm7q0z5gxQz179rz9BeG2O3nypHr06KFjx44pICBA1atX1/Lly3Xvvfe6uzQAt9Eff/yhLl266MyZMypSpIjuuecebdq0SUWKFHF3abhN6tatq4ULFyoqKkrDhw9XSEiIoqOj1bVrV3eXhkxwGGOMu4sAAAAAAORs3NAHAAAAAGCNcAkAAAAAsEa4BAAAAABYI1wCAAAAAKwRLgEAAAAA1giXAAAAAABrhEsAAAAAgDXCJQDgb+fgwYNyOBzasWOHu0tx2r17t+6++255e3urZs2amV6Pw+HQokWLsqyu9CpTpoyio6Ot1+Ou+gEAtx7hEgCQ5Xr27CmHw6HRo0e7tC9atEgOh8NNVbnXkCFDlC9fPu3Zs0erVq1Ksc+pU6fUp08flS5dWl5eXgoMDFRYWJg2bNjg7HPs2DG1bt36dpWdbkOHDpXD4XC+AgIC1KhRI61bt86lX3atHwBgj3AJALglvL29NWbMGJ09e9bdpWSZK1euZHrZX3/9Vffcc4+Cg4NVqFChFPs8+OCD2r59uz788EPt3btXS5YsUdOmTXXmzBlnn8DAQHl5eWW6jlspNDRUx44d07Fjx7Rx40ZVqFBBbdu2VUxMjLNPdq4fAGCHcAkAuCVatmypwMBAjRo1KtU+Q4cOTXaKaHR0tMqUKeOc7tmzpzp06KCRI0eqWLFiyp8/v4YPH65r167phRdeUMGCBVWyZEnNmDEj2fp3796tBg0ayNvbW1WrVk02ivbTTz+pdevW8vX1VbFixdS9e3edPn3aOb9p06bq27ev+vfvr8KFCyssLCzF95GYmKjhw4erZMmS8vLyUs2aNbVs2TLnfIfDoa1bt2r48OFyOBwaOnRosnWcO3dO33zzjcaMGaNmzZopODhYd911l6KiotSuXTuXdV1/Wul3332nmjVrytvbW3Xq1HGODiedErx27Vo5HA6tWrVKderUUd68edWgQQPt2bPHuY5ff/1V7du3V7FixeTr66u6detq5cqVKb7XtHh4eCgwMFCBgYGqUqWKhg8frgsXLmjv3r0p1p90+vJnn32mZs2aKW/evKpRo4Y2btzo7H/o0CGFh4erQIECypcvn0JDQ/XVV19luDYAwK1HuAQA3BK5c+fWyJEjNWHCBP3xxx9W61q9erWOHj2q9evXa9y4cRoyZIjatm2rAgUK6L///a+eeuopPfnkk8m288ILL2jgwIHavn276tevr/DwcOco4Llz59S8eXPVqlVLW7Zs0bJly3TixAl16tTJZR0ffvihPD09tWHDBk2ZMiXF+t555x2NHTtWb7/9tn744QeFhYWpXbt22rdvn6S/TgUNDQ3VwIEDdezYMT3//PPJ1uHr6ytfX18tWrRI8fHx6dovsbGxCg8PV7Vq1bRt2za9/vrreumll1LsO2jQII0dO1ZbtmyRh4eHHn30Uee8Cxcu6P7779eqVau0fft2tWrVSuHh4fr999/TVUdK4uPjNWPGDOXPn18VK1ZMs++gQYP0/PPPa8eOHbrjjjvUpUsXXbt2TZIUGRmp+Ph4rV+/Xj/++KPGjBkjX1/fTNcFALiFDAAAWSwiIsK0b9/eGGPM3XffbR599FFjjDELFy401//XM2TIEFOjRg2XZcePH2+Cg4Nd1hUcHGwSEhKcbRUrVjSNGjVyTl+7ds3ky5fPfPzxx8YYYw4cOGAkmdGjRzv7XL161ZQsWdKMGTPGGGPM66+/bu677z6XbR8+fNhIMnv27DHGGNOkSRNTq1atm77foKAg88Ybb7i01a1b1zz99NPO6Ro1apghQ4akuZ4FCxaYAgUKGG9vb9OgQQMTFRVldu7c6dJHklm4cKExxpjJkyebQoUKmUuXLjnnT58+3Ugy27dvN8YYs2bNGiPJrFy50tnnyy+/NJJclrtRaGiomTBhgnM6ODjYjB8/PtX+Q4YMMbly5TL58uUz+fLlMw6Hw/j7+5ulS5emWn/S5/T+++875+/atctIMr/88osxxphq1aqZoUOHprpdAED2wcglAOCWGjNmjD788EP98ssvmV5HaGiocuX6339ZxYoVU7Vq1ZzTuXPnVqFChXTy5EmX5erXr+/8t4eHh+rUqeOsY+fOnVqzZo1zxNDX11eVKlWS9Ndpoklq166dZm2xsbE6evSoGjZs6NLesGHDDL/nBx98UEePHtWSJUvUqlUrrV27VnfeeadmzpyZYv89e/aoevXq8vb2drbdddddKfatXr2689/FixeXJOf+unDhgp5//nlVrlxZ+fPnl6+vr3755ZcMj1xWrFhRO3bs0I4dO7R161b16dNHHTt21JYtW9JcLq3a+vXrpxEjRqhhw4YaMmSIfvjhhwzVBAC4fQiXAIBbqnHjxgoLC1NUVFSyebly5ZIxxqXt6tWryfrlyZPHZdrhcKTYlpiYmO66Lly4oPDwcGcYSnrt27dPjRs3dvbLly9futeZFby9vXXvvfdq8ODB+u6779SzZ08NGTLEer3X76+kO/Ym7a/nn39eCxcu1MiRI/XNN99ox44dqlatWoZvYOTp6any5curfPnyqlWrlkaPHq0SJUrc9BEmadX2+OOP67ffflP37t31448/qk6dOpowYUKG6gIA3B6ESwDALTd69Gh9/vnnLjdqkaQiRYro+PHjLgEzK59NuWnTJue/r127pq1bt6py5cqSpDvvvFO7du1SmTJlnIEo6ZWRQOnv76+goCCXx4VI0oYNG1SlShXr91ClShXFxcWlOK9ixYr68ccfXa7R3Lx5c4a3sWHDBvXs2VMPPPCAqlWrpsDAQB08eDCzJbvInTu3Ll26ZLWOUqVK6amnntJnn32mgQMHavr06VlSGwAgaxEuAQC3XLVq1dS1a1e9++67Lu1NmzbVqVOn9Oabb+rXX3/VxIkTtXTp0izb7sSJE7Vw4ULt3r1bkZGROnv2rPNGNpGRkfrzzz/VpUsXbd68Wb/++quWL1+uXr16KSEhIUPbeeGFFzRmzBjNmzdPe/bs0csvv6wdO3bo2WefTfc6zpw5o+bNm2v27Nn64YcfdODAAX366ad688031b59+xSXeeSRR5SYmKgnnnhCv/zyi5YvX663335bkjL0PNEKFSros88+044dO7Rz507nejPq2rVrOn78uI4fP659+/ZpxIgR+vnnn1OtPz369++v5cuX68CBA9q2bZvWrFnj/IIAAJC9EC4BALfF8OHDkwWWypUra9KkSZo4caJq1Kih77//PsU7qWbW6NGjNXr0aNWoUUPffvutlixZosKFC0uSc7QxISFB9913n6pVq6b+/fsrf/78Ltd3pke/fv00YMAADRw4UNWqVdOyZcu0ZMkSVahQId3r8PX1Vb169TR+/Hg1btxYVatW1eDBg9W7d2+99957KS7j7++vzz//XDt27FDNmjU1aNAgvfbaa5Lkch3mzYwbN04FChRQgwYNFB4errCwMN15553pXj7Jrl27VLx4cRUvXlw1a9bU/PnzNXnyZPXo0SPD60qSkJCgyMhIVa5cWa1atdIdd9yhSZMmZXp9AIBbx2FuvNgFAADkWHPmzFGvXr0UExMjHx8fd5cDAPgH8XB3AQAAIPM++ugjlS1bViVKlNDOnTv10ksvqVOnTgRLAMBtR7gEACAHO378uF577TUdP35cxYsXV8eOHfXGG2+4uywAwD8Qp8UCAAAAAKxxQx8AAAAAgDXCJQAAAADAGuESAAAAAGCNcAkAAAAAsEa4BAAAAABYI1wCAAAAAKwRLgEAAAAA1giXAAAAAABrhEsAAAAAgLX/A2Vq2O5zekPIAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -315,6 +395,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": { "tags": [] @@ -325,21 +406,14 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 10, "metadata": {}, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Existing data found, skipping data generation\n" - ] - }, { "name": "stderr", "output_type": "stream", "text": [ - "100%|██████████| 25/25 [00:00<00:00, 1204.42it/s]\n" + "100%|██████████| 25/25 [00:00<00:00, 769.91it/s]\n" ] } ], @@ -367,12 +441,12 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 11, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA44AAAGJCAYAAADFbW0FAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA02ElEQVR4nO3deVgVdf//8deR5aixaLmACoIbrmjmEnWXmivZblZmuZVbLpU/75LSErPA8i6tzLJF/JZm6a3FXSapqS0uuURKC2qhkkuWC+DCUWF+f9w35+IIDDtzkOfjus51MTOf+cz7nA/D+HKWYzMMwxAAAAAAAAWoZnUBAAAAAAD3RnAEAAAAAJgiOAIAAAAATBEcAQAAAACmCI4AAAAAAFMERwAAAACAKYIjAAAAAMAUwREAAAAAYIrgCAAAAAAwRXAEAKAIhg0bppCQkArZVkhIiIYNG+acjouLk81m0/bt2ytk+927d1f37t0rZFsAgMqB4AgAKBe7d+/W3XffrcaNG6t69epq2LChevfurddee82lXUhIiGw2myZMmJCnjw0bNshms2n58uXOeTkhKufl6emphg0batiwYTp06FCRaps+fbpLHzVr1lRwcLBuvfVWLVy4UA6Ho3Rv/n9+/vlnTZ8+Xfv37y+T/sqSO9cGAHA/nlYXAAC4/GzatEk9evRQcHCwRo4cqYCAAKWmpmrLli2aO3duviHx7bffVlRUlBo0aFCkbcyYMUOhoaHKzMzUli1bFBcXp2+//VZJSUmqXr16kfqYP3++fHx85HA4dOjQISUkJGjEiBGaM2eOPvvsMwUFBbnUl52dXbQP4H9+/vlnRUdHq3v37sU6W5mcnKxq1cr3/3bNavvyyy/LddsAgMqH4AgAKHPPP/+8/P39tW3bNtWqVctl2bFjx/K0b9OmjZKTkxUbG6tXX321SNuIjIxUp06dJEkPP/yw6tSpo1mzZik+Pl733HNPkfq4++67VadOHef0M888o8WLF2vIkCEaOHCgtmzZ4lzm5eVVpD5LyjAMZWZmqkaNGrLb7eW6rcJ4e3tbun0AgPvhUlUAQJn77bff1KZNmzyhUZLq1auXZ15ISIiGDBmit99+W4cPHy7RNm+44Qbntktj8ODBevjhh7V161atWbPGOT+/exyXLl2qa665Rr6+vvLz81O7du00d+5cSf+9pHbgwIGSpB49ejgvi92wYYOk/77nW265RQkJCerUqZNq1Kiht956y7ks9z2OOc6ePavRo0frqquukp+fn4YMGaKTJ0+6tLHZbJo+fXqedXP3WVht+d3jeOzYMT300EOqX7++qlevrvbt22vRokUubfbv3y+bzabZs2drwYIFatq0qex2uzp37qxt27bl+3kDACoHgiMAoMw1btxYO3bsUFJSUpHXefrpp3Xx4kXFxsaWaJs59+rVrl27ROvn9uCDD0oyv2RzzZo1GjRokGrXrq1Zs2YpNjZW3bt313fffSdJuvHGGzVx4kRJ0lNPPaX3339f77//vlq1auXsIzk5WYMGDVLv3r01d+5cdejQwbSu8ePH65dfftH06dM1ZMgQLV68WHfccYcMwyjW+ytKbbmdO3dO3bt31/vvv6/BgwfrpZdekr+/v4YNG+YMyrktWbJEL730kkaPHq2ZM2dq//79uuuuu3ThwoVi1QkAcB9cqgoAKHOTJ09WZGSkOnTooC5duuiGG25Qz5491aNHjwIv+WzSpIkefPBB572OgYGBpttIS0vT33//rczMTG3dulXR0dGy2+265ZZbSl1/27ZtJZmfvfz888/l5+enhIQEeXh45FnepEkT3XDDDXr11VfVu3fvfJ9Sum/fPq1evVp9+/YtUl3e3t5at26d8zNs3LixnnjiCf3nP//RbbfdVqQ+ilpbbgsWLNAvv/yiDz74QIMHD5YkjRkzRt26ddPUqVM1YsQI+fr6OtsfPHhQe/fudYb4sLAw3X777UpISCiT8QEAVDzOOAIAylzv3r21efNm3Xbbbfrxxx/14osvqm/fvmrYsKHi4+MLXG/q1KlFPuvYq1cv1a1bV0FBQbr77rt1xRVXKD4+Xo0aNSp1/T4+PpKkjIyMAtvUqlVLZ86ccbmctbhCQ0OLHBoladSoUS7Be+zYsfL09NSqVatKXENRrFq1SgEBARo0aJBznpeXlyZOnKjTp09r48aNLu3vvfdelzO/OZcR//777+VaJwCg/BAcAQDlonPnzlqxYoVOnjyp77//XlFRUcrIyNDdd9+tn3/+Od91cs46LliwQEeOHDHtf968eVqzZo2WL1+um2++WX///XeZPVTm9OnTkuRyFu1SjzzyiFq0aKHIyEg1atRII0aM0OrVq4u1ndDQ0GK1b968ucu0j4+PAgMDy/0rNQ4cOKDmzZvnedJrzqWtBw4ccJkfHBzsMp0TIi+9HxMAUHkQHAEA5crb21udO3fWCy+8oPnz5+vChQtatmxZge1z7nWcNWuWab9dunRRr169NGDAAMXHx6tt27a6//77naGvNHLuzWzWrFmBberVq6fExETFx8frtttu0/r16xUZGamhQ4cWeTs1atQoda1FlZWVVWHbyu/SXUnFvhcTAOA+CI4AgAqT8/UZZmcTmzZtqgceeEBvvfVWoWcdc3h4eCgmJkaHDx/W66+/Xuo633//fUkq9DJSb29v3XrrrXrjjTf022+/afTo0fq///s/7du3T9J/n3Balvbu3esyffr0aR05csTlaa+1a9fWqVOnXNqdP38+z2dZnNoaN26svXv35vkey19//dW5HABweSM4AgDK3Pr16/M9u5RzL15YWJjp+lOnTtWFCxf04osvFnmb3bt3V5cuXTRnzhxlZmYWr+BclixZonfeeUcRERHq2bNnge2OHz/uMl2tWjWFh4dLkhwOhyTpiiuukKQ8Qa6kFixY4PJk0vnz5+vixYuKjIx0zmvatKm+/vrrPOtdesaxOLXdfPPNOnr0qD766CPnvIsXL+q1116Tj4+PunXrVpK3AwCoRHiqKgCgzE2YMEFnz57VnXfeqZYtW+r8+fPatGmTPvroI4WEhGj48OGm6+ecdbz0ewIL889//lMDBw5UXFycxowZU2j75cuXy8fHR+fPn9ehQ4eUkJCg7777Tu3btze9nFaSHn74YZ04cUI33XSTGjVqpAMHDui1115Thw4dnPf+dejQQR4eHpo1a5bS0tJkt9t100035ftdlkVx/vx59ezZU/fcc4+Sk5P1xhtv6B//+IfLE1UffvhhjRkzRgMGDFDv3r31448/KiEhQXXq1HHpqzi1jRo1Sm+99ZaGDRumHTt2KCQkRMuXL9d3332nOXPmmN4LCgC4PBAcAQBlbvbs2Vq2bJlWrVqlBQsW6Pz58woODtYjjzyiqVOnqlatWoX2MXXqVH3wwQfFujfvrrvuUtOmTTV79myNHDmywHvtcowdO1aSVL16ddWpU0cdOnTQe++9p/vvv7/QB+088MADWrBggd544w2dOnVKAQEBuvfeezV9+nTnQ2QCAgL05ptvKiYmRg899JCysrK0fv36EgfH119/XYsXL9YzzzyjCxcuaNCgQXr11VddLjsdOXKkUlJS9O6772r16tW64YYbtGbNmjxnT4tTW40aNbRhwwZNmTJFixYtUnp6usLCwrRw4UINGzasRO8FAFC52AzuVAcAAAAAmOAeRwAAAACAKYIjAAAAAMAUwREAAAAAYIrgCAAAAAAwRXAEAAAAAJgiOAIAAAAATFXq73HMzs7W4cOH5evr6/IdVgAAAACAwhmGoYyMDDVo0MD5PcT5qdTB8fDhwwoKCrK6DAAAAACo1FJTU9WoUaMCl1fq4Ojr6yvpv2/Sz8/P4moAAAAAoHJJT09XUFCQM1sVpFIHx5zLU/38/AiOAAAAAFBChd36x8NxAAAAAACmCI4AAAAAAFMERwAAAACAKYIjAAAAAMAUwREAAAAAYIrgCAAAAAAwRXAEAAAAAJiyNDhmZWVp2rRpCg0NVY0aNdS0aVM999xzMgzDyrIAAAAAALl4WrnxWbNmaf78+Vq0aJHatGmj7du3a/jw4fL399fEiROtLA0AAAAA8D+WBsdNmzbp9ttvV//+/SVJISEh+vDDD/X9999bWRYAAAAAIBdLL1W97rrrtG7dOu3Zs0eS9OOPP+rbb79VZGRkvu0dDofS09NdXgAAAACA8mXpGccpU6YoPT1dLVu2lIeHh7KysvT8889r8ODB+baPiYlRdHR0BVdZciFTPjddvj+2fwVVAgAAAAAlZ+kZx48//liLFy/WkiVLtHPnTi1atEizZ8/WokWL8m0fFRWltLQ05ys1NbWCKwYAAACAqsfSM47//Oc/NWXKFN13332SpHbt2unAgQOKiYnR0KFD87S32+2y2+0VXSYAAAAAVGmWnnE8e/asqlVzLcHDw0PZ2dkWVQQAAAAAuJSlZxxvvfVWPf/88woODlabNm30ww8/6OWXX9aIESOsLAsAAAAAkIulwfG1117TtGnT9Mgjj+jYsWNq0KCBRo8erWeeecbKsgAAAAAAuVgaHH19fTVnzhzNmTPHyjIAAAAAACYsvccRAAAAAOD+CI4AAAAAAFMERwAAAACAKYIjAAAAAMAUwREAAAAAYIrgCAAAAAAwRXAEAAAAAJgiOAIAAAAATBEcAQAAAACmCI4AAAAAAFMERwAAAACAKYIjAAAAAMAUwREAAAAAYIrgCAAAAAAwRXAEAAAAAJgiOAIAAAAATBEcAQAAAACmCI4AAAAAAFMERwAAAACAKYIjAAAAAMAUwREAAAAAYIrgCAAAAAAwRXAEAAAAAJgiOAIAAAAATBEcAQAAAACmCI4AAAAAAFOWBseQkBDZbLY8r3HjxllZFgAAAAAgF08rN75t2zZlZWU5p5OSktS7d28NHDjQwqoAAAAAALlZGhzr1q3rMh0bG6umTZuqW7duFlUEAAAAALiUpcExt/Pnz+uDDz7QpEmTZLPZ8m3jcDjkcDic0+np6RVVHgAAAABUWW7zcJxPPvlEp06d0rBhwwpsExMTI39/f+crKCio4goEAAAAgCrKbYLju+++q8jISDVo0KDANlFRUUpLS3O+UlNTK7BCAAAAAKia3OJS1QMHDmjt2rVasWKFaTu73S673V5BVQEAAAAAJDc547hw4ULVq1dP/fv3t7oUAAAAAMAlLA+O2dnZWrhwoYYOHSpPT7c4AQoAAAAAyMXy4Lh27VodPHhQI0aMsLoUAAAAAEA+LD/F16dPHxmGYXUZAAAAAIACWH7GEQAAAADg3giOAAAAAABTBEcAAAAAgCmCIwAAAADAFMERAAAAAGCK4AgAAAAAMEVwBAAAAACYIjgCAAAAAEwRHAEAAAAApgiOAAAAAABTBEcAAAAAgCmCIwAAAADAFMERAAAAAGCK4AgAAAAAMEVwBAAAAACYIjgCAAAAAEwRHAEAAAAApgiOAAAAAABTBEcAAAAAgCmCIwAAAADAFMERAAAAAGCK4AgAAAAAMEVwBAAAAACYIjgCAAAAAEwRHAEAAAAApgiOAAAAAABTlgfHQ4cO6YEHHtBVV12lGjVqqF27dtq+fbvVZQEAAAAA/sfTyo2fPHlS119/vXr06KEvvvhCdevW1d69e1W7dm0rywIAAAAA5GJpcJw1a5aCgoK0cOFC57zQ0FALKwIAAAAAXMrSS1Xj4+PVqVMnDRw4UPXq1dPVV1+tt99+u8D2DodD6enpLi8AAAAAQPmy9Izj77//rvnz52vSpEl66qmntG3bNk2cOFHe3t4aOnRonvYxMTGKjo62oFIA5SFkyuemy/fH9q+gSgAAAGDG0jOO2dnZ6tixo1544QVdffXVGjVqlEaOHKk333wz3/ZRUVFKS0tzvlJTUyu4YgAAAACoeiwNjoGBgWrdurXLvFatWungwYP5trfb7fLz83N5AQAAAADKl6XB8frrr1dycrLLvD179qhx48YWVQQAAAAAuJSlwfHxxx/Xli1b9MILL2jfvn1asmSJFixYoHHjxllZFgAAAAAgF0uDY+fOnbVy5Up9+OGHatu2rZ577jnNmTNHgwcPtrIsAAAAAEAulj5VVZJuueUW3XLLLVaXAQAAAAAogKVnHAEAAAAA7o/gCAAAAAAwRXAEAAAAAJgiOAIAAAAATBEcAQAAAACmCI4AAAAAAFMERwAAAACAKYIjAAAAAMAUwREAAAAAYIrgCAAAAAAwRXAEAAAAAJgiOAIAAAAATBEcAQAAAACmCI4AAAAAAFMERwAAAACAKYIjAAAAAMAUwREAAAAAYIrgCAAAAAAwRXAEAAAAAJgiOAIAAAAATBEcAQAAAACmCI4AAAAAAFMERwAAAACAKYIjAAAAAMAUwREAAAAAYMrS4Dh9+nTZbDaXV8uWLa0sCQAAAABwCU+rC2jTpo3Wrl3rnPb0tLwkAAAAAEAulqc0T09PBQQEWF0GAAAAAKAAlt/juHfvXjVo0EBNmjTR4MGDdfDgwQLbOhwOpaenu7wAAAAAAOXL0jOOXbt2VVxcnMLCwnTkyBFFR0frhhtuUFJSknx9ffO0j4mJUXR0tAWVAgBQMiFTPjddvj+2fwVVgrJiNqaMJ4DLlaVnHCMjIzVw4ECFh4erb9++WrVqlU6dOqWPP/443/ZRUVFKS0tzvlJTUyu4YgAAAACoeiy/xzG3WrVqqUWLFtq3b1++y+12u+x2ewVXBQAAAABVm+X3OOZ2+vRp/fbbbwoMDLS6FAAAAADA/1gaHCdPnqyNGzdq//792rRpk+688055eHho0KBBVpYFAAAAAMjF0ktV//jjDw0aNEjHjx9X3bp19Y9//ENbtmxR3bp1rSwLAAAAAJCLpcFx6dKlVm4eAAAAAFAEbnWPIwAAAADA/RAcAQAAAACmShQcd+7cqd27dzunP/30U91xxx166qmndP78+TIrDgAAAABgvRIFx9GjR2vPnj2SpN9//1333XefatasqWXLlumJJ54o0wIBAAAAANYqUXDcs2ePOnToIElatmyZbrzxRi1ZskRxcXH697//XZb1AQAAAAAsVqLgaBiGsrOzJUlr167VzTffLEkKCgrS33//XXbVAQAAAAAsV6Lg2KlTJ82cOVPvv/++Nm7cqP79+0uSUlJSVL9+/TItEAAAAABgrRIFx1deeUU7d+7U+PHj9fTTT6tZs2aSpOXLl+u6664r0wIBAAAAANbyLMlK7du3d3mqao6XXnpJnp4l6hIAAAAA4KZKdMaxSZMmOn78eJ75mZmZatGiRamLAgAAAAC4jxIFx/379ysrKyvPfIfDoT/++KPURQEAAAAA3EexriuNj493/pyQkCB/f3/ndFZWltatW6fQ0NCyqw4AAAAAYLliBcc77rhDkmSz2TR06FCXZV5eXgoJCdG//vWvMisOAAAAAGC9YgXHnO9uDA0N1bZt21SnTp1yKQoAAAAA4D5K9AjUlJSUsq4DAAAAAOCmSvzdGevWrdO6det07Ngx55nIHO+9916pCwMAAAAAuIcSBcfo6GjNmDFDnTp1UmBgoGw2W1nXBQAAAABwEyUKjm+++abi4uL04IMPlnU9AAAAAAA3U6LvcTx//ryuu+66sq4FAAAAAOCGShQcH374YS1ZsqSsawEAAAAAuKESXaqamZmpBQsWaO3atQoPD5eXl5fL8pdffrlMigMAAAAAWK9EwXHXrl3q0KGDJCkpKcllGQ/KAQAAAIDLS4mC4/r168u6DgAAAACAmyrRPY4AAAAAgKqjRGcce/ToYXpJ6ldffVXiggAAAAAA7qVEwTHn/sYcFy5cUGJiopKSkjR06NCyqAsAAAAA4CZKFBxfeeWVfOdPnz5dp0+fLlEhsbGxioqK0qOPPqo5c+aUqA8AAAAAQNkr03scH3jgAb333nvFXm/btm166623FB4eXpblAAAAAADKQJkGx82bN6t69erFWuf06dMaPHiw3n77bdWuXbssywEAAAAAlIESXap61113uUwbhqEjR45o+/btmjZtWrH6GjdunPr3769evXpp5syZpm0dDoccDodzOj09vVjbAgAAAAAUX4mCo7+/v8t0tWrVFBYWphkzZqhPnz5F7mfp0qXauXOntm3bVqT2MTExio6OLlatyF/IlM8LXLY/tn8FVnL5MPtMJT5XAAAAVF4lCo4LFy4s9YZTU1P16KOPas2aNUW+vDUqKkqTJk1yTqenpysoKKjUtQAAAAAAClai4Jhjx44d+uWXXyRJbdq00dVXX12sdY8dO6aOHTs652VlZenrr7/W66+/LofDIQ8PD5d17Ha77HZ7aUoGAAAAABRTiYLjsWPHdN9992nDhg2qVauWJOnUqVPq0aOHli5dqrp16xbaR8+ePbV7926XecOHD1fLli315JNP5gmNAAAAAABrlOipqhMmTFBGRoZ++uknnThxQidOnFBSUpLS09M1ceLEIvXh6+urtm3buryuuOIKXXXVVWrbtm1JygIAAAAAlIMSnXFcvXq11q5dq1atWjnntW7dWvPmzSvWw3EAAAAAAO6vRMExOztbXl5eeeZ7eXkpOzu7xMVs2LChxOsCAAAAAMpHiS5Vvemmm/Too4/q8OHDznmHDh3S448/rp49e5ZZcQAAAAAA65UoOL7++utKT09XSEiImjZtqqZNmyo0NFTp6el67bXXyrpGAAAAAICFSnSpalBQkHbu3Km1a9fq119/lSS1atVKvXr1KtPiAAAAAADWK9YZx6+++kqtW7dWenq6bDabevfurQkTJmjChAnq3Lmz2rRpo2+++aa8agUAAAAAWKBYwXHOnDkaOXKk/Pz88izz9/fX6NGj9fLLL5dZcQAAAAAA6xUrOP7444/q169fgcv79OmjHTt2lLooAAAAAID7KFZw/PPPP/P9Go4cnp6e+uuvv0pdFAAAAADAfRQrODZs2FBJSUkFLt+1a5cCAwNLXRQAAAAAwH0UKzjefPPNmjZtmjIzM/MsO3funJ599lndcsstZVYcAAAAAMB6xfo6jqlTp2rFihVq0aKFxo8fr7CwMEnSr7/+qnnz5ikrK0tPP/10uRQKAAAAALBGsYJj/fr1tWnTJo0dO1ZRUVEyDEOSZLPZ1LdvX82bN0/169cvl0IBAAAAANYoVnCUpMaNG2vVqlU6efKk9u3bJ8Mw1Lx5c9WuXbs86gMAAAAAWKzYwTFH7dq11blz57KsBQAAAADghor1cBwAAAAAQNVDcAQAAAAAmCI4AgAAAABMERwBAAAAAKYIjgAAAAAAUwRHAAAAAIApgiMAAAAAwBTBEQAAAABgiuAIAAAAADBFcAQAAAAAmCI4AgAAAABMERwBAAAAAKYIjgAAAAAAU5YGx/nz5ys8PFx+fn7y8/NTRESEvvjiCytLAgAAAABcwtLg2KhRI8XGxmrHjh3avn27brrpJt1+++366aefrCwLAAAAAJCLp5Ubv/XWW12mn3/+ec2fP19btmxRmzZtLKoKAAAAAJCbpcExt6ysLC1btkxnzpxRREREvm0cDoccDodzOj09vaLKAwAAAIAqy/LguHv3bkVERCgzM1M+Pj5auXKlWrdunW/bmJgYRUdHV3CFAACgrIVM+dx0+f7Y/hVUCYDiqqr7b1V93zksf6pqWFiYEhMTtXXrVo0dO1ZDhw7Vzz//nG/bqKgopaWlOV+pqakVXC0AAAAAVD2Wn3H09vZWs2bNJEnXXHONtm3bprlz5+qtt97K09Zut8tut1d0iQAAAABQpVl+xvFS2dnZLvcxAgAAAACsZekZx6ioKEVGRio4OFgZGRlasmSJNmzYoISEBCvLAgAAAADkYmlwPHbsmIYMGaIjR47I399f4eHhSkhIUO/eva0sCwAAAACQi6XB8d1337Vy8wAAAACAInC7exwBAAAAAO6F4AgAAAAAMEVwBAAAAACYIjgCAAAAAEwRHAEAAAAApgiOAAAAAABTBEcAAAAAgCmCIwAAAADAFMERAAAAAGCK4AgAAAAAMEVwBAAAAACYIjgCAAAAAEwRHAEAAAAApgiOAAAAAABTBEcAAAAAgCmCIwAAAADAFMERAAAAAGCK4AgAAAAAMEVwBAAAAACYIjgCAAAAAEwRHAEAAAAApgiOAAAAAABTBEcAAAAAgCmCIwAAAADAFMERAAAAAGDK0uAYExOjzp07y9fXV/Xq1dMdd9yh5ORkK0sCAAAAAFzC0uC4ceNGjRs3Tlu2bNGaNWt04cIF9enTR2fOnLGyLAAAAABALp5Wbnz16tUu03FxcapXr5527NihG2+80aKqAAAAAAC5WRocL5WWliZJuvLKK/Nd7nA45HA4nNPp6ekVUhcAAAAAVGVuExyzs7P12GOP6frrr1fbtm3zbRMTE6Po6OgKrgxlLWTK5wUu2x/bvwIrcWVWl2RtbVUVY1Iy7rqPofJhH0RVUFV/z6vq+y5Pl/tn6jZPVR03bpySkpK0dOnSAttERUUpLS3N+UpNTa3ACgEAAACganKLM47jx4/XZ599pq+//lqNGjUqsJ3dbpfdbq/AygAAAAAAlgZHwzA0YcIErVy5Uhs2bFBoaKiV5QAAAAAA8mFpcBw3bpyWLFmiTz/9VL6+vjp69Kgkyd/fXzVq1LCyNAAAAADA/1h6j+P8+fOVlpam7t27KzAw0Pn66KOPrCwLAAAAAJCL5ZeqAgAAAADcm9s8VRUAAAAA4J4IjgAAAAAAUwRHAAAAAIApgiMAAAAAwBTBEQAAAABgiuAIAAAAADBFcAQAAAAAmCI4AgAAAABMERwBAAAAAKYIjgAAAAAAUwRHAAAAAIApgiMAAAAAwBTBEQAAAABgiuAIAAAAADBFcAQAAAAAmCI4AgAAAABMERwBAAAAAKYIjgAAAAAAUwRHAAAAAIApgiMAAAAAwBTBEQAAAABgiuAIAAAAADBFcAQAAAAAmCI4AgAAAABMERwBAAAAAKYIjgAAAAAAU5YGx6+//lq33nqrGjRoIJvNpk8++cTKcgAAAAAA+bA0OJ45c0bt27fXvHnzrCwDAAAAAGDC08qNR0ZGKjIy0soSAAAAAACFsDQ4FpfD4ZDD4XBOp6enW1gNAAAAAFQNlSo4xsTEKDo62uoyqryQKZ9b1vf+2P7ltu3yZvbeSvu+SjMmVm67tCrr70tpPzN3fV9S6X7PrRzPyvq7VFql/V20cv8vDXce79LUVt7vqzyPNVYex5C/yrp/o/xUqqeqRkVFKS0tzflKTU21uiQAAAAAuOxVqjOOdrtddrvd6jIAAAAAoEqpVGccAQAAAAAVz9IzjqdPn9a+ffuc0ykpKUpMTNSVV16p4OBgCysDAAAAAOSwNDhu375dPXr0cE5PmjRJkjR06FDFxcVZVBUAAAAAIDdLg2P37t1lGIaVJQAAAAAACsE9jgAAAAAAUwRHAAAAAIApgiMAAAAAwBTBEQAAAABgiuAIAAAAADBFcAQAAAAAmCI4AgAAAABMERwBAAAAAKYIjgAAAAAAUwRHAAAAAIApgiMAAAAAwBTBEQAAAABgiuAIAAAAADBFcAQAAAAAmCI4AgAAAABMERwBAAAAAKYIjgAAAAAAUwRHAAAAAIApgiMAAAAAwBTBEQAAAABgiuAIAAAAADBFcAQAAAAAmCI4AgAAAABMERwBAAAAAKYIjgAAAAAAUwRHAAAAAIAptwiO8+bNU0hIiKpXr66uXbvq+++/t7okAAAAAMD/WB4cP/roI02aNEnPPvusdu7cqfbt26tv3746duyY1aUBAAAAAOQGwfHll1/WyJEjNXz4cLVu3Vpvvvmmatasqffee8/q0gAAAAAAkjyt3Pj58+e1Y8cORUVFOedVq1ZNvXr10ubNm/O0dzgccjgczum0tDRJUnp6evkXWwLZjrOmy62s26y2wuoq7H2Vp/L8zEo7XqX5XEr7virrtstbZf3bUJjS/C6W92dSnn9b3Hn/t6rv0qqq+295/r0v77+pZv2X9+9aeR5r3Pk45q7HktIqz/2fzyx/7vq55NRlGIZpO5tRWItydPjwYTVs2FCbNm1SRESEc/4TTzyhjRs3auvWrS7tp0+frujo6IouEwAAAAAua6mpqWrUqFGByy0941hcUVFRmjRpknM6OztbJ06c0FVXXSWbzVbm20tPT1dQUJBSU1Pl5+dX5v2j+BgT98J4uBfGw70wHu6F8XA/jIl7YTzcS0WOh2EYysjIUIMGDUzbWRoc69SpIw8PD/35558u8//8808FBATkaW+322W3213m1apVqzxLlCT5+fmxA7kZxsS9MB7uhfFwL4yHe2E83A9j4l4YD/dSUePh7+9faBtLH47j7e2ta665RuvWrXPOy87O1rp161wuXQUAAAAAWMfyS1UnTZqkoUOHqlOnTurSpYvmzJmjM2fOaPjw4VaXBgAAAACQGwTHe++9V3/99ZeeeeYZHT16VB06dNDq1atVv359q0uT3W7Xs88+m+fyWFiHMXEvjId7YTzcC+PhXhgP98OYuBfGw72443hY+lRVAAAAAID7s/QeRwAAAACA+yM4AgAAAABMERwBAAAAAKYIjgAAAAAAU1UmOMbExKhz587y9fVVvXr1dMcddyg5OdmlTWZmpsaNG6errrpKPj4+GjBggP7880/Tfg3D0DPPPKPAwEDVqFFDvXr10t69e8vzrVwWChuPEydOaMKECQoLC1ONGjUUHBysiRMnKi0tzbTfYcOGyWazubz69etX3m/nslCUfaR79+55Pt8xY8aY9ss+UjKFjcf+/fvzjEXOa9myZQX2yz5SMvPnz1d4eLjzi5gjIiL0xRdfOJdz/KhYZuPB8aPiFbZ/cOyoWGbjwbHDerGxsbLZbHrsscec8yrNMcSoIvr27WssXLjQSEpKMhITE42bb77ZCA4ONk6fPu1sM2bMGCMoKMhYt26dsX37duPaa681rrvuOtN+Y2NjDX9/f+OTTz4xfvzxR+O2224zQkNDjXPnzpX3W6rUChuP3bt3G3fddZcRHx9v7Nu3z1i3bp3RvHlzY8CAAab9Dh061OjXr59x5MgR5+vEiRMV8ZYqvaLsI926dTNGjhzp8vmmpaWZ9ss+UjKFjcfFixddxuHIkSNGdHS04ePjY2RkZBTYL/tIycTHxxuff/65sWfPHiM5Odl46qmnDC8vLyMpKckwDI4fFc1sPDh+VLzC9g+OHRXLbDw4dljr+++/N0JCQozw8HDj0Ucfdc6vLMeQKhMcL3Xs2DFDkrFx40bDMAzj1KlThpeXl7Fs2TJnm19++cWQZGzevDnfPrKzs42AgADjpZdecs47deqUYbfbjQ8//LB838Bl5tLxyM/HH39seHt7GxcuXCiwzdChQ43bb7+9HCqsevIbk27durn8oSsM+0jZKco+0qFDB2PEiBGm/bCPlJ3atWsb77zzDscPN5EzHvnh+FHxco8Hxw7rme0fHDsqRkZGhtG8eXNjzZo1LvtEZTqGVJlLVS+Vc8nKlVdeKUnasWOHLly4oF69ejnbtGzZUsHBwdq8eXO+faSkpOjo0aMu6/j7+6tr164FroP8XToeBbXx8/OTp6enaV8bNmxQvXr1FBYWprFjx+r48eNlWmtVUdCYLF68WHXq1FHbtm0VFRWls2fPFtgH+0jZKWwf2bFjhxITE/XQQw8V2hf7SOlkZWVp6dKlOnPmjCIiIjh+WOzS8cgPx4+KU9B4cOywRmH7B8eOijNu3Dj179/f5fdaqlwZxPwv6GUqOztbjz32mK6//nq1bdtWknT06FF5e3urVq1aLm3r16+vo0eP5ttPzvz69esXeR3kld94XOrvv//Wc889p1GjRpn21a9fP911110KDQ3Vb7/9pqeeekqRkZHavHmzPDw8yqP8y1JBY3L//fercePGatCggXbt2qUnn3xSycnJWrFiRb79sI+UjaLsI++++65atWql6667zrQv9pGS2717tyIiIpSZmSkfHx+tXLlSrVu3VmJiIscPCxQ0Hpfi+FExzMaDY0fFK+r+wbGjYixdulQ7d+7Utm3b8iyrTBmkSgbHcePGKSkpSd9++63VpUCFj0d6err69++v1q1ba/r06aZ93Xfffc6f27Vrp/DwcDVt2lQbNmxQz549y7Lsy1pBY5L7H17t2rVTYGCgevbsqd9++01Nmzat6DKrjML2kXPnzmnJkiWaNm1aoX2xj5RcWFiYEhMTlZaWpuXLl2vo0KHauHGj1WVVWQWNR+5/HHP8qDhm48Gxo+IVZf/g2FExUlNT9eijj2rNmjWqXr261eWUSpW7VHX8+PH67LPPtH79ejVq1Mg5PyAgQOfPn9epU6dc2v/5558KCAjIt6+c+Zc+9chsHbgqaDxyZGRkqF+/fvL19dXKlSvl5eVVrP6bNGmiOnXqaN++fWVV8mWvsDHJrWvXrpJU4OfLPlJ6RRmP5cuX6+zZsxoyZEix+2cfKTpvb281a9ZM11xzjWJiYtS+fXvNnTuX44dFChqPHBw/KlZh45Ebx47yV5Tx4NhRMXbs2KFjx46pY8eO8vT0lKenpzZu3KhXX31Vnp6eql+/fqU5hlSZ4GgYhsaPH6+VK1fqq6++UmhoqMvya665Rl5eXlq3bp1zXnJysg4ePFjgPROhoaEKCAhwWSc9PV1bt24tcB38V2HjIf33s+zTp4+8vb0VHx9fov+l+eOPP3T8+HEFBgaWRdmXtaKMyaUSExMlqcDPl32k5IozHu+++65uu+021a1bt9jbYR8puezsbDkcDo4fbiJnPCSOH+4g93hcimNHxctvPDh2VIyePXtq9+7dSkxMdL46deqkwYMHO3+uNMeQcnvsjpsZO3as4e/vb2zYsMHlUcJnz551thkzZowRHBxsfPXVV8b27duNiIgIIyIiwqWfsLAwY8WKFc7p2NhYo1atWsann35q7Nq1y7j99tt5XHQRFDYeaWlpRteuXY127doZ+/btc2lz8eJFZz+5xyMjI8OYPHmysXnzZiMlJcVYu3at0bFjR6N58+ZGZmamJe+zMilsTPbt22fMmDHD2L59u5GSkmJ8+umnRpMmTYwbb7zRpR/2kbJRlL9ZhmEYe/fuNWw2m/HFF1/k2w/7SNmYMmWKsXHjRiMlJcXYtWuXMWXKFMNmsxlffvmlYRgcPyqa2Xhw/Kh4ZuPBsaPiFfb3yjA4dljt0icNV5ZjSJUJjpLyfS1cuNDZ5ty5c8Yjjzxi1K5d26hZs6Zx5513GkeOHMnTT+51srOzjWnTphn169c37Ha70bNnTyM5ObmC3lXlVdh4rF+/vsA2KSkpLv3krHP27FmjT58+Rt26dQ0vLy+jcePGxsiRI42jR49W/BushAobk4MHDxo33nijceWVVxp2u91o1qyZ8c9//jPPd3Gxj5SNovzNMgzDiIqKMoKCgoysrKwC+2EfKb0RI0YYjRs3Nry9vY26desaPXv2dPlHGMePimU2Hhw/Kp7ZeHDsqHiF/b0yDI4dVrs0OFaWY4jtf4UAAAAAAJCvKnOPIwAAAACgZAiOAAAAAABTBEcAAAAAgCmCIwAAAADAFMERAAAAAGCK4AgAAAAAMEVwBAAAAACYIjgCAAAAAEwRHAEAKEM2m02ffPJJuW4jOTlZAQEBysjIKLBNXFycatWqVey+r732Wv373/8uRXUAgMsRwREA4Pb++usvjR07VsHBwbLb7QoICFDfvn313XffOduEhITIZrNpy5YtLus+9thj6t69u3N6+vTpstlsstls8vDwUFBQkEaNGqUTJ06Y1pB7PZvNJn9/f91www3auHGjS7sjR44oMjKy9G/aRFRUlCZMmCBfX98irxMXF+dSv4+Pj6655hqtWLHCpd3UqVM1ZcoUZWdnl3XZAIBKjOAIAHB7AwYM0A8//KBFixZpz549io+PV/fu3XX8+HGXdtWrV9eTTz5ZaH9t2rTRkSNHdPDgQS1cuFCrV6/W2LFji7zekSNHtHnzZjVv3ly33HKL0tLSnG0CAgJkt9uL/yaL6ODBg/rss880bNiwYq/r5+fnrP+HH35Q3759dc899yg5OdnZJjIyUhkZGfriiy/KsGoAQGVHcAQAuLVTp07pm2++0axZs9SjRw81btxYXbp0UVRUlG677TaXtqNGjdKWLVu0atUq0z49PT0VEBCghg0bqlevXho4cKDWrFlTaC056wUEBKh169aaMWOGTp8+rT179jjb5L5Udf/+/bLZbFqxYoV69OihmjVrqn379tq8ebOz/YEDB3Trrbeqdu3auuKKK9SmTRvT+j/++GO1b99eDRs2dJkfFxen4OBg1axZU3feeWeeUJ1TW079zZs318yZM1WtWjXt2rXL2cbDw0M333yzli5dWujnAQCoOgiOAAC35uPjIx8fH33yySdyOBymbUNDQzVmzBhFRUUV+VLL/fv3KyEhQd7e3sWqy+FwaOHChapVq5bCwsJM2z799NOaPHmyEhMT1aJFCw0aNEgXL16UJI0bN04Oh0Nff/21du/erVmzZsnHx6fAvr755ht16tTJZd7WrVv10EMPafz48UpMTFSPHj00c+ZM05qysrK0aNEiSVLHjh1dlnXp0kXffPON6foAgKrF0+oCAAAw4+npqbi4OI0cOVJvvvmmOnbsqG7duum+++5TeHh4nvZTp07VwoULtXjxYj344IP59rl79275+PgoKytLmZmZkqSXX3650Fpy1pOks2fPytfXVx999JH8/PxM15s8ebL69+8vSYqOjlabNm20b98+tWzZUgcPHtSAAQPUrl07SVKTJk1M+zpw4ECe4Dh37lz169dPTzzxhCSpRYsW2rRpk1avXu3SLi0tzVn/uXPn5OXlpQULFqhp06Yu7Ro0aKDU1FRlZ2erWjX+jxkAwBlHAEAlMGDAAB0+fFjx8fHq16+fNmzYoI4dOyouLi5P27p162ry5Ml65plndP78+Xz7CwsLU2JiorZt26Ynn3xSffv21YQJEwqtI2e9xMRE7dixQ2PHjtXAgQO1fft20/VyB9zAwEBJ0rFjxyRJEydO1MyZM3X99dfr2WefdblsND/nzp1T9erVXeb98ssv6tq1q8u8iIiIPOv6+vo66//hhx/0wgsvaMyYMfrPf/7j0q5GjRrKzs4u9AwvAKDqIDgCACqF6tWrq3fv3po2bZo2bdqkYcOG6dlnn8237aRJk3Tu3Dm98cYb+S739vZWs2bN1LZtW8XGxsrDw0PR0dGF1pCzXrNmzXT11VcrNjZWDRs21Jw5c0zX8/Lycv5ss9kkyXkp7cMPP6zff/9dDz74oHbv3q1OnTrptddeK7CvOnXq6OTJk4XWmp9q1ao56w8PD9ekSZPUvXt3zZo1y6XdiRMndMUVV6hGjRol2g4A4PJDcAQAVEqtW7fWmTNn8l3m4+OjadOm6fnnnzf9rsMcU6dO1ezZs3X48OFi1+Hh4aFz584Ve73cgoKCNGbMGK1YsUL/7//9P7399tsFtr366qv1888/u8xr1aqVtm7d6jLv0q8lKUh+9SclJenqq68uYvUAgKqA4AgAcGvHjx/XTTfdpA8++EC7du1SSkqKli1bphdffFG33357geuNGjVK/v7+WrJkSaHbiIiIUHh4uF544QXTdhcvXtTRo0d19OhR7d27VzNnztTPP/9sWkdhHnvsMSUkJCglJUU7d+7U+vXr1apVqwLb9+3bV5s3b1ZWVpZz3sSJE7V69WrNnj1be/fu1euvv57n/kZJMgzDWX9KSooWLFighISEPPV/88036tOnT4nfEwDg8kNwBAC4NR8fH3Xt2lWvvPKKbrzxRrVt21bTpk3TyJEj9frrrxe4npeXl5577jnnw28K8/jjj+udd95RampqgW1++uknBQYGKjAwUB06dNDHH3+s+fPna8iQIcV+XzmysrI0btw4tWrVSv369VOLFi0KvMRW+u/3LHp6emrt2rXOeddee63efvttzZ07V+3bt9eXX36pqVOn5lk3PT3dWX+rVq30r3/9SzNmzNDTTz/tbHPo0CFt2rRJw4cPL/F7AgBcfmyGYRhWFwEAAIpu3rx5io+PV0JCQpn3/eSTT+rkyZNasGBBmfcNAKi8+DoOAAAqmdGjR+vUqVPKyMiQr69vmfZdr149TZo0qUz7BABUfpxxBAAAAACY4h5HAAAAAIApgiMAAAAAwBTBEQAAAABgiuAIAAAAADBFcAQAAAAAmCI4AgAAAABMERwBAAAAAKYIjgAAAAAAUwRHAAAAAICp/w9rr81EuHEbUQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA44AAAGJCAYAAADFbW0FAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAwOUlEQVR4nO3deVhVdeLH8c+VVWVxF1AE3LfUchun0TAXxLQsszLLJfdQxxinolygsdRqSlOzcCbpVzqajpUtI6Pm0qSYYqa2kJqkuWS5gBsXg/v7o7iPV+DLInou+n49z30e7znfc87nwvHYp7Ncm8PhcAgAAAAAgEJUsDoAAAAAAMC9URwBAAAAAEYURwAAAACAEcURAAAAAGBEcQQAAAAAGFEcAQAAAABGFEcAAAAAgBHFEQAAAABgRHEEAAAAABhRHAEAKIahQ4cqPDz8mmwrPDxcQ4cOdb5PSkqSzWbT9u3br8n2IyMjFRkZeU22BQAoHyiOAICrYvfu3br33nsVFhYmX19f1alTRz169NDcuXNdxoWHh8tms2n8+PH51rFhwwbZbDatWLHCOS2vROW9PD09VadOHQ0dOlSHDx8uVrb4+HiXdVSqVEn16tVT3759tWjRItnt9iv78L/7+uuvFR8fr/T09DJZX1ly52wAAPfjaXUAAMD1Z/Pmzeratavq1aunkSNHKigoSIcOHVJKSormzJlTYElcuHCh4uLiFBISUqxtPPPMM4qIiFBWVpZSUlKUlJSk//3vf9qzZ498fX2LtY4FCxbIz89Pdrtdhw8fVnJysh555BHNnj1bH374oUJDQ13y5ebmFu8H8Luvv/5aCQkJioyMLNHZyrS0NFWocHX/364p23//+9+rum0AQPlDcQQAlLlnn31WgYGB2rZtm6pUqeIy7/jx4/nGt2jRQmlpaZo5c6ZeeeWVYm0jOjpa7dq1kySNGDFCNWrU0KxZs7Rq1Srdd999xVrHvffeqxo1ajjfT506VYsXL9bgwYM1YMAApaSkOOd5eXkVa52l5XA4lJWVpYoVK8rHx+eqbqso3t7elm4fAOB+uFQVAFDm9u/frxYtWuQrjZJUq1atfNPCw8M1ePBgLVy4UEeOHCnVNjt37uzc9pUYNGiQRowYoa1bt2rNmjXO6QXd47h06VK1bdtW/v7+CggI0E033aQ5c+ZI+u2S2gEDBkiSunbt6rwsdsOGDZJ++8x9+vRRcnKy2rVrp4oVK+r11193zrv0Hsc858+f1+jRo1W9enUFBARo8ODBOnXqlMsYm82m+Pj4fMteus6ishV0j+Px48c1fPhw1a5dW76+vmrdurXefPNNlzHp6emy2Wx68cUXlZiYqAYNGsjHx0ft27fXtm3bCvx5AwDKB4ojAKDMhYWFKTU1VXv27Cn2Mk8//bR+/fVXzZw5s1TbzLtXr2rVqqVa/lIPP/ywJPMlm2vWrNHAgQNVtWpVzZo1SzNnzlRkZKQ+++wzSVKXLl00YcIESdJTTz2lt956S2+99ZaaNWvmXEdaWpoGDhyoHj16aM6cOWrTpo0x17hx4/TNN98oPj5egwcP1uLFi9WvXz85HI4Sfb7iZLvUhQsXFBkZqbfeekuDBg3SCy+8oMDAQA0dOtRZlC+1ZMkSvfDCCxo9erSmT5+u9PR03XPPPbp48WKJcgIA3AeXqgIAytykSZMUHR2tNm3aqEOHDurcubO6deumrl27FnrJZ/369fXwww8773UMDg42biMjI0O//PKLsrKytHXrViUkJMjHx0d9+vS54vwtW7aUZD57+dFHHykgIEDJycny8PDIN79+/frq3LmzXnnlFfXo0aPAp5Tu27dPq1evVlRUVLFyeXt7a926dc6fYVhYmB5//HF98MEHuvPOO4u1juJmu1RiYqK++eYbvf322xo0aJAkacyYMbrttts0efJkPfLII/L393eOP3jwoPbu3ess8U2aNNFdd92l5OTkMvn9AACuPc44AgDKXI8ePbRlyxbdeeed+vLLL/X8888rKipKderU0apVqwpdbvLkycU+69i9e3fVrFlToaGhuvfee1W5cmWtWrVKdevWveL8fn5+kqQzZ84UOqZKlSo6d+6cy+WsJRUREVHs0ihJo0aNcineY8eOlaenpz7++ONSZyiOjz/+WEFBQRo4cKBzmpeXlyZMmKCzZ89q48aNLuPvv/9+lzO/eZcRf//991c1JwDg6qE4AgCuivbt22vlypU6deqUPv/8c8XFxenMmTO699579fXXXxe4TN5Zx8TERB09etS4/vnz52vNmjVasWKFevfurV9++aXMHipz9uxZSXI5i3a5Rx99VI0bN1Z0dLTq1q2rRx55RKtXry7RdiIiIko0vlGjRi7v/fz8FBwcfNW/UuOHH35Qo0aN8j3pNe/S1h9++MFler169Vze55XIy+/HBACUHxRHAMBV5e3trfbt2+u5557TggULdPHiRS1fvrzQ8Xn3Os6aNcu43g4dOqh79+7q37+/Vq1apZYtW+rBBx90lr4rkXdvZsOGDQsdU6tWLe3cuVOrVq3SnXfeqfXr1ys6OlpDhgwp9nYqVqx4xVmLKycn55ptq6BLdyWV+F5MAID7oDgCAK6ZvK/PMJ1NbNCggR566CG9/vrrRZ51zOPh4aEZM2boyJEjmjdv3hXnfOuttySpyMtIvb291bdvX7366qvav3+/Ro8erf/7v//Tvn37JP32hNOytHfvXpf3Z8+e1dGjR12e9lq1alWdPn3aZVx2dna+n2VJsoWFhWnv3r35vsfy22+/dc4HAFzfKI4AgDK3fv36As8u5d2L16RJE+PykydP1sWLF/X8888Xe5uRkZHq0KGDZs+eraysrJIFvsSSJUv0j3/8Q506dVK3bt0KHXfixAmX9xUqVFCrVq0kSXa7XZJUuXJlScpX5EorMTHR5cmkCxYs0K+//qro6GjntAYNGmjTpk35lrv8jGNJsvXu3VvHjh3TsmXLnNN+/fVXzZ07V35+frrttttK83EAAOUIT1UFAJS58ePH6/z587r77rvVtGlTZWdna/PmzVq2bJnCw8M1bNgw4/J5Zx0v/57Aovz1r3/VgAEDlJSUpDFjxhQ5fsWKFfLz81N2drYOHz6s5ORkffbZZ2rdurXxclpJGjFihE6ePKnbb79ddevW1Q8//KC5c+eqTZs2znv/2rRpIw8PD82aNUsZGRny8fHR7bffXuB3WRZHdna2unXrpvvuu09paWl69dVX9ac//cnliaojRozQmDFj1L9/f/Xo0UNffvmlkpOTVaNGDZd1lSTbqFGj9Prrr2vo0KFKTU1VeHi4VqxYoc8++0yzZ8823gsKALg+UBwBAGXuxRdf1PLly/Xxxx8rMTFR2dnZqlevnh599FFNnjxZVapUKXIdkydP1ttvv12ie/PuueceNWjQQC+++KJGjhxZ6L12ecaOHStJ8vX1VY0aNdSmTRu98cYbevDBB4t80M5DDz2kxMREvfrqqzp9+rSCgoJ0//33Kz4+3vkQmaCgIL322muaMWOGhg8frpycHK1fv77UxXHevHlavHixpk6dqosXL2rgwIF65ZVXXC47HTlypA4cOKB//vOfWr16tTp37qw1a9bkO3takmwVK1bUhg0b9OSTT+rNN99UZmammjRpokWLFmno0KGl+iwAgPLF5uBOdQAAAACAAfc4AgAAAACMKI4AAAAAACOKIwAAAADAiOIIAAAAADCiOAIAAAAAjCiOAAAAAACjcv09jrm5uTpy5Ij8/f1dvsMKAAAAAFA0h8OhM2fOKCQkxPk9xAUp18XxyJEjCg0NtToGAAAAAJRrhw4dUt26dQudX66Lo7+/v6TfPmRAQIDFaQAAAACgfMnMzFRoaKizWxWmXBfHvMtTAwICKI4AAAAAUEpF3frHw3EAAAAAAEYURwAAAACAEcURAAAAAGBEcQQAAAAAGFEcAQAAAABGFEcAAAAAgBHFEQAAAABgZHlxPHz4sB566CFVr15dFStW1E033aTt27dbHQsAAAAA8DtPKzd+6tQp3Xrrreratav+85//qGbNmtq7d6+qVq1qZSwAAAAAwCUsLY6zZs1SaGioFi1a5JwWERFhYSIAAAAAwOUsvVR11apVateunQYMGKBatWrp5ptv1sKFCwsdb7fblZmZ6fICAAAAAFxdlp5x/P7777VgwQLFxsbqqaee0rZt2zRhwgR5e3tryJAh+cbPmDFDCQkJFiQFgBtD+JMfGeenz7zjGiUBAADuxOZwOBxWbdzb21vt2rXT5s2bndMmTJigbdu2acuWLfnG2+122e125/vMzEyFhoYqIyNDAQEB1yQzAFzPKI4AANxYMjMzFRgYWGSnsvRS1eDgYDVv3txlWrNmzXTw4MECx/v4+CggIMDlBQAAAAC4uiwtjrfeeqvS0tJcpn333XcKCwuzKBEAAAAA4HKWFsfHHntMKSkpeu6557Rv3z4tWbJEiYmJiomJsTIWAAAAAOASlhbH9u3b691339W//vUvtWzZUn/72980e/ZsDRo0yMpYAAAAAIBLWPpUVUnq06eP+vTpY3UMAAAAAEAhLD3jCAAAAABwfxRHAAAAAIARxREAAAAAYERxBAAAAAAYURwBAAAAAEYURwAAAACAEcURAAAAAGBEcQQAAAAAGFEcAQAAAABGFEcAAAAAgBHFEQAAAABgRHEEAAAAABhRHAEAAAAARhRHAAAAAIARxREAAAAAYERxBAAAAAAYURwBAAAAAEYURwAAAACAEcURAAAAAGBEcQQAAAAAGFEcAQAAAABGFEcAAAAAgBHFEQAAAABgRHEEAAAAABhRHAEAAAAARhRHAAAAAIARxREAAAAAYERxBAAAAAAYURwBAAAAAEYURwAAAACAEcURAAAAAGBEcQQAAAAAGFEcAQAAAABGFEcAAAAAgBHFEQAAAABgRHEEAAAAABhRHAEAAAAARhRHAAAAAICRpcUxPj5eNpvN5dW0aVMrIwEAAAAALuNpdYAWLVpo7dq1zveenpZHAgAAAABcwvKW5unpqaCgIKtjAAAAAAAKYfk9jnv37lVISIjq16+vQYMG6eDBg4WOtdvtyszMdHkBAAAAAK4uS4tjx44dlZSUpNWrV2vBggU6cOCAOnfurDNnzhQ4fsaMGQoMDHS+QkNDr3FiAAAAALjx2BwOh8PqEHlOnz6tsLAwvfTSSxo+fHi++Xa7XXa73fk+MzNToaGhysjIUEBAwLWMCgDXpfAnPzLOT595xzVKAgAAroXMzEwFBgYW2aksv8fxUlWqVFHjxo21b9++Auf7+PjIx8fnGqcCAAAAgBub5fc4Xurs2bPav3+/goODrY4CAAAAAPidpcVx0qRJ2rhxo9LT07V582bdfffd8vDw0MCBA62MBQAAAAC4hKWXqv74448aOHCgTpw4oZo1a+pPf/qTUlJSVLNmTStjAQAAAAAuYWlxXLp0qZWbBwAAAAAUg1vd4wgAAAAAcD8URwAAAACAEcURAAAAAGBEcQQAAAAAGFEcAQAAAABGFEcAAAAAgBHFEQAAAABgRHEEAAAAABhRHAEAAAAARhRHAAAAAIARxREAAAAAYERxBAAAAAAYURwBAAAAAEYURwAAAACAEcURAAAAAGBEcQQAAAAAGFEcAQAAAABGFEcAAAAAgBHFEQAAAABgRHEEAAAAABhRHAEAAAAARhRHAAAAAIARxREAAAAAYERxBAAAAAAYURwBAAAAAEYURwAAAACAEcURAAAAAGBEcQQAAAAAGFEcAQAAAABGFEcAAAAAgBHFEQAAAABgRHEEAAAAABhRHAEAAAAARhRHAAAAAIARxREAAAAAYERxBAAAAAAYURwBAAAAAEYURwAAAACAkdsUx5kzZ8pms2nixIlWRwEAAAAAXMItiuO2bdv0+uuvq1WrVlZHAQAAAABcxvLiePbsWQ0aNEgLFy5U1apVrY4DAAAAALiM5cUxJiZGd9xxh7p3717kWLvdrszMTJcXAAAAAODq8rRy40uXLtWOHTu0bdu2Yo2fMWOGEhISrnIqoPwJf/Ij4/z0mXdcoyQAAAC4Hll2xvHQoUP685//rMWLF8vX17dYy8TFxSkjI8P5OnTo0FVOCQAAAACw7Ixjamqqjh8/rltuucU5LScnR5s2bdK8efNkt9vl4eHhsoyPj498fHyudVQAAAAAuKFZVhy7deum3bt3u0wbNmyYmjZtqieeeCJfaQQAAAAAWMOy4ujv76+WLVu6TKtcubKqV6+ebzoAAAAAwDqWP1UVAAAAAODeLH2q6uU2bNhgdQQAAAAAwGU44wgAAAAAMKI4AgAAAACMKI4AAAAAACOKIwAAAADAiOIIAAAAADCiOAIAAAAAjCiOAAAAAAAjiiMAAAAAwIjiCAAAAAAwojgCAAAAAIwojgAAAAAAI4ojAAAAAMCI4ggAAAAAMKI4AgAAAACMSlUcd+zYod27dzvfv//+++rXr5+eeuopZWdnl1k4AAAAAID1SlUcR48ere+++06S9P333+uBBx5QpUqVtHz5cj3++ONlGhAAAAAAYK1SFcfvvvtObdq0kSQtX75cXbp00ZIlS5SUlKR///vfZZkPAAAAAGCxUhVHh8Oh3NxcSdLatWvVu3dvSVJoaKh++eWXsksHAAAAALBcqYpju3btNH36dL311lvauHGj7rjjDknSgQMHVLt27TINCAAAAACwVqmK48svv6wdO3Zo3Lhxevrpp9WwYUNJ0ooVK/THP/6xTAMCAAAAAKzlWZqFWrdu7fJU1TwvvPCCPD1LtUoAAAAAgJsq1RnH+vXr68SJE/mmZ2VlqXHjxlccCgAAAADgPkpVHNPT05WTk5Nvut1u148//njFoQAAAAAA7qNE15WuWrXK+efk5GQFBgY63+fk5GjdunWKiIgou3QAAAAAAMuVqDj269dPkmSz2TRkyBCXeV5eXgoPD9ff//73MgsHAAAAALBeiYpj3nc3RkREaNu2bapRo8ZVCQUAAAAAcB+legTqgQMHyjoHAAAAAMBNlfq7M9atW6d169bp+PHjzjORed54440rDgYAAAAAcA+lKo4JCQl65pln1K5dOwUHB8tms5V1LgAAAACAmyhVcXzttdeUlJSkhx9+uKzzAAAAAADcTKm+xzE7O1t//OMfyzoLAAAAAMANlao4jhgxQkuWLCnrLAAAAAAAN1SqS1WzsrKUmJiotWvXqlWrVvLy8nKZ/9JLL5VJOAAAAACA9UpVHHft2qU2bdpIkvbs2eMyjwflAAAAAMD1pVTFcf369WWdAwAAAADgpkp1jyMAAAAA4MZRqjOOXbt2NV6S+sknn5Q6EAAAAADAvZSqOObd35jn4sWL2rlzp/bs2aMhQ4aURS4AAAAAgJsoVXF8+eWXC5weHx+vs2fPFns9CxYs0IIFC5Seni5JatGihaZOnaro6OjSxAIAAAAAXAVleo/jQw89pDfeeKPY4+vWrauZM2cqNTVV27dv1+2336677rpLX331VVnGAgAAAABcgVKdcSzMli1b5OvrW+zxffv2dXn/7LPPasGCBUpJSVGLFi3KMhoAAAAAoJRKVRzvuecel/cOh0NHjx7V9u3bNWXKlFIFycnJ0fLly3Xu3Dl16tSpwDF2u112u935PjMzs1TbAgAAAAAUX6mKY2BgoMv7ChUqqEmTJnrmmWfUs2fPEq1r9+7d6tSpk7KysuTn56d3331XzZs3L3DsjBkzlJCQUJrIAAAAQLkS/uRHhc5Ln3nHNUyC4jD9vqTy/zsrVXFctGhRmQVo0qSJdu7cqYyMDK1YsUJDhgzRxo0bCyyPcXFxio2Ndb7PzMxUaGhomWUBAAAAAOR3Rfc4pqam6ptvvpH02xNRb7755hKvw9vbWw0bNpQktW3bVtu2bdOcOXP0+uuv5xvr4+MjHx+fK4kMAAAAACihUhXH48eP64EHHtCGDRtUpUoVSdLp06fVtWtXLV26VDVr1ix1oNzcXJf7GAEAAAAA1irV13GMHz9eZ86c0VdffaWTJ0/q5MmT2rNnjzIzMzVhwoRirycuLk6bNm1Senq6du/erbi4OG3YsEGDBg0qTSwAAAAAwFVQqjOOq1ev1tq1a9WsWTPntObNm2v+/PklejjO8ePHNXjwYB09elSBgYFq1aqVkpOT1aNHj9LEAgAAAABcBaUqjrm5ufLy8so33cvLS7m5ucVezz//+c/SbB4AAAAAcA2V6lLV22+/XX/+85915MgR57TDhw/rscceU7du3cosHAAAAADAeqUqjvPmzVNmZqbCw8PVoEEDNWjQQBEREcrMzNTcuXPLOiMAAAAAwEKlulQ1NDRUO3bs0Nq1a/Xtt99Kkpo1a6bu3buXaTgAAAAAgPVKdMbxk08+UfPmzZWZmSmbzaYePXpo/PjxGj9+vNq3b68WLVro008/vVpZAQAAAAAWKFFxnD17tkaOHKmAgIB88wIDAzV69Gi99NJLZRYOAAAAAGC9EhXHL7/8Ur169Sp0fs+ePZWamnrFoQAAAAAA7qNExfGnn34q8Gs48nh6eurnn3++4lAAAAAAAPdRouJYp04d7dmzp9D5u3btUnBw8BWHAgAAAAC4jxIVx969e2vKlCnKysrKN+/ChQuaNm2a+vTpU2bhAAAAAADWK9HXcUyePFkrV65U48aNNW7cODVp0kSS9O2332r+/PnKycnR008/fVWCAgAAAACsUaLiWLt2bW3evFljx45VXFycHA6HJMlmsykqKkrz589X7dq1r0pQAAAAAIA1SlQcJSksLEwff/yxTp06pX379snhcKhRo0aqWrXq1cgHAAAAALBYiYtjnqpVq6p9+/ZlmQUAAAAA4IZK9HAcAAAAAMCNh+IIAAAAADCiOAIAAAAAjCiOAAAAAAAjiiMAAAAAwIjiCAAAAAAwojgCAAAAAIwojgAAAAAAI4ojAAAAAMCI4ggAAAAAMKI4AgAAAACMKI4AAAAAACOKIwAAAADAiOIIAAAAADCiOAIAAAAAjCiOAAAAAAAjiiMAAAAAwIjiCAAAAAAwojgCAAAAAIwojgAAAAAAI4ojAAAAAMCI4ggAAAAAMKI4AgAAAACMKI4AAAAAACOKIwAAAADAyNLiOGPGDLVv317+/v6qVauW+vXrp7S0NCsjAQAAAAAuY2lx3Lhxo2JiYpSSkqI1a9bo4sWL6tmzp86dO2dlLAAAAADAJTyt3Pjq1atd3iclJalWrVpKTU1Vly5dLEoFAAAAALiUpcXxchkZGZKkatWqFTjfbrfLbrc732dmZl6TXAAAAABwI3Ob4pibm6uJEyfq1ltvVcuWLQscM2PGDCUkJFzjZKUX/uRHxvnpM++4RkluHFb+zPl9ux/T74TfR+kUtZ9fCSt/J1fz7++V/sw4bpUcn6vs11/Uuq/Xnzmswb/f7sltnqoaExOjPXv2aOnSpYWOiYuLU0ZGhvN16NCha5gQAAAAAG5MbnHGcdy4cfrwww+1adMm1a1bt9BxPj4+8vHxuYbJAAAAAACWFkeHw6Hx48fr3Xff1YYNGxQREWFlHAAAAABAASwtjjExMVqyZInef/99+fv769ixY5KkwMBAVaxY0cpoAAAAAIDfWXqP44IFC5SRkaHIyEgFBwc7X8uWLbMyFgAAAADgEpZfqgoAAAAAcG9u81RVAAAAAIB7ojgCAAAAAIwojgAAAAAAI4ojAAAAAMCI4ggAAAAAMKI4AgAAAACMKI4AAAAAACOKIwAAAADAiOIIAAAAADCiOAIAAAAAjCiOAAAAAAAjiiMAAAAAwIjiCAAAAAAwojgCAAAAAIwojgAAAAAAI4ojAAAAAMCI4ggAAAAAMKI4AgAAAACMKI4AAAAAACOKIwAAAADAiOIIAAAAADCiOAIAAAAAjCiOAAAAAAAjiiMAAAAAwIjiCAAAAAAwojgCAAAAAIwojgAAAAAAI4ojAAAAAMCI4ggAAAAAMKI4AgAAAACMKI4AAAAAACOKIwAAAADAiOIIAAAAADCiOAIAAAAAjCiOAAAAAAAjiiMAAAAAwIjiCAAAAAAwojgCAAAAAIwsLY6bNm1S3759FRISIpvNpvfee8/KOAAAAACAAlhaHM+dO6fWrVtr/vz5VsYAAAAAABh4Wrnx6OhoRUdHWxkBAAAAAFAES4tjSdntdtntduf7zMxMC9MAAAAAwI2hXBXHGTNmKCEhweoY10T4kx8Z56fPvOMaJSm58pz9ajL9XKz8mVzp74vfd9m7mj/TotaNgrGfX3vuesy8UuxL7offybXHv0XlU7l6qmpcXJwyMjKcr0OHDlkdCQAAAACue+XqjKOPj498fHysjgEAAAAAN5RydcYRAAAAAHDtWXrG8ezZs9q3b5/z/YEDB7Rz505Vq1ZN9erVszAZAAAAACCPpcVx+/bt6tq1q/N9bGysJGnIkCFKSkqyKBUAAAAA4FKWFsfIyEg5HA4rIwAAAAAAisA9jgAAAAAAI4ojAAAAAMCI4ggAAAAAMKI4AgAAAACMKI4AAAAAACOKIwAAAADAiOIIAAAAADCiOAIAAAAAjCiOAAAAAAAjiiMAAAAAwIjiCAAAAAAwojgCAAAAAIwojgAAAAAAI4ojAAAAAMCI4ggAAAAAMKI4AgAAAACMKI4AAAAAACOKIwAAAADAiOIIAAAAADCiOAIAAAAAjCiOAAAAAAAjiiMAAAAAwIjiCAAAAAAwojgCAAAAAIwojgAAAAAAI4ojAAAAAMCI4ggAAAAAMKI4AgAAAACMKI4AAAAAACOKIwAAAADAiOIIAAAAADCiOAIAAAAAjCiOAAAAAAAjiiMAAAAAwIjiCAAAAAAwojgCAAAAAIwojgAAAAAAI4ojAAAAAMDILYrj/PnzFR4eLl9fX3Xs2FGff/651ZEAAAAAAL+zvDguW7ZMsbGxmjZtmnbs2KHWrVsrKipKx48ftzoaAAAAAEBuUBxfeukljRw5UsOGDVPz5s312muvqVKlSnrjjTesjgYAAAAAkORp5cazs7OVmpqquLg457QKFSqoe/fu2rJlS77xdrtddrvd+T4jI0OSlJmZefXDlkKu/bxxvin3lSxrNSuzu/O2Ta40l5X7mjvvq6ZsN+rfoSvZT682d91XiuNK/o5dybqv1PX697e8fi7J2v82uF5/5kVx5+zl9d+xolj530xXkzvvSyZ5uRwOh3GczVHUiKvoyJEjqlOnjjZv3qxOnTo5pz/++OPauHGjtm7d6jI+Pj5eCQkJ1zomAAAAAFzXDh06pLp16xY639IzjiUVFxen2NhY5/vc3FydPHlS1atXl81mK5NtZGZmKjQ0VIcOHVJAQECZrBPXL/YXlAT7C4qLfQUlwf6CkmB/weUcDofOnDmjkJAQ4zhLi2ONGjXk4eGhn376yWX6Tz/9pKCgoHzjfXx85OPj4zKtSpUqVyVbQEAAf5lQbOwvKAn2FxQX+wpKgv0FJcH+gksFBgYWOcbSh+N4e3urbdu2WrdunXNabm6u1q1b53LpKgAAAADAOpZfqhobG6shQ4aoXbt26tChg2bPnq1z585p2LBhVkcDAAAAAMgNiuP999+vn3/+WVOnTtWxY8fUpk0brV69WrVr17Ykj4+Pj6ZNm5bvkligIOwvKAn2FxQX+wpKgv0FJcH+gtKy9KmqAAAAAAD3Z+k9jgAAAAAA90dxBAAAAAAYURwBAAAAAEYURwAAAACAEcXxMvPnz1d4eLh8fX3VsWNHff7551ZHghuKj4+XzWZzeTVt2tTqWHADmzZtUt++fRUSEiKbzab33nvPZb7D4dDUqVMVHBysihUrqnv37tq7d681YWG5ovaXoUOH5jvW9OrVy5qwsNSMGTPUvn17+fv7q1atWurXr5/S0tJcxmRlZSkmJkbVq1eXn5+f+vfvr59++smixLBScfaXyMjIfMeXMWPGWJQY5QHF8RLLli1TbGyspk2bph07dqh169aKiorS8ePHrY4GN9SiRQsdPXrU+frf//5ndSS4gXPnzql169aaP39+gfOff/55vfLKK3rttde0detWVa5cWVFRUcrKyrrGSeEOitpfJKlXr14ux5p//etf1zAh3MXGjRsVExOjlJQUrVmzRhcvXlTPnj117tw555jHHntMH3zwgZYvX66NGzfqyJEjuueeeyxMDasUZ3+RpJEjR7ocX55//nmLEqM84Os4LtGxY0e1b99e8+bNkyTl5uYqNDRU48eP15NPPmlxOriT+Ph4vffee9q5c6fVUeDGbDab3n33XfXr10/Sb2cbQ0JC9Je//EWTJk2SJGVkZKh27dpKSkrSAw88YGFaWO3y/UX67Yzj6dOn852JBH7++WfVqlVLGzduVJcuXZSRkaGaNWtqyZIluvfeeyVJ3377rZo1a6YtW7boD3/4g8WJYaXL9xfptzOObdq00ezZs60Nh3KDM46/y87OVmpqqrp37+6cVqFCBXXv3l1btmyxMBnc1d69exUSEqL69etr0KBBOnjwoNWR4OYOHDigY8eOuRxnAgMD1bFjR44zKNSGDRtUq1YtNWnSRGPHjtWJEyesjgQ3kJGRIUmqVq2aJCk1NVUXL150Ob40bdpU9erV4/iCfPtLnsWLF6tGjRpq2bKl4uLidP78eSvioZzwtDqAu/jll1+Uk5Oj2rVru0yvXbu2vv32W4tSwV117NhRSUlJatKkiY4ePaqEhAR17txZe/bskb+/v9Xx4KaOHTsmSQUeZ/LmAZfq1auX7rnnHkVERGj//v166qmnFB0drS1btsjDw8PqeLBIbm6uJk6cqFtvvVUtW7aU9NvxxdvbW1WqVHEZy/EFBe0vkvTggw8qLCxMISEh2rVrl5544gmlpaVp5cqVFqaFO6M4AqUQHR3t/HOrVq3UsWNHhYWF6Z133tHw4cMtTAbgenLp5cs33XSTWrVqpQYNGmjDhg3q1q2bhclgpZiYGO3Zs4d761Eshe0vo0aNcv75pptuUnBwsLp166b9+/erQYMG1zomygEuVf1djRo15OHhke/pYz/99JOCgoIsSoXyokqVKmrcuLH27dtndRS4sbxjCccZlFb9+vVVo0YNjjU3sHHjxunDDz/U+vXrVbduXef0oKAgZWdn6/Tp0y7jOb7c2ArbXwrSsWNHSeL4gkJRHH/n7e2ttm3bat26dc5pubm5WrdunTp16mRhMpQHZ8+e1f79+xUcHGx1FLixiIgIBQUFuRxnMjMztXXrVo4zKJYff/xRJ06c4FhzA3I4HBo3bpzeffddffLJJ4qIiHCZ37ZtW3l5ebkcX9LS0nTw4EGOLzegovaXguQ98I/jCwrDpaqXiI2N1ZAhQ9SuXTt16NBBs2fP1rlz5zRs2DCro8HNTJo0SX379lVYWJiOHDmiadOmycPDQwMHDrQ6Gix29uxZl/9be+DAAe3cuVPVqlVTvXr1NHHiRE2fPl2NGjVSRESEpkyZopCQEJcnaeLGYdpfqlWrpoSEBPXv319BQUHav3+/Hn/8cTVs2FBRUVEWpoYVYmJitGTJEr3//vvy9/d33rcYGBioihUrKjAwUMOHD1dsbKyqVaumgIAAjR8/Xp06deKJqjegovaX/fv3a8mSJerdu7eqV6+uXbt26bHHHlOXLl3UqlUri9PDbTngYu7cuY569eo5vL29HR06dHCkpKRYHQlu6P7773cEBwc7vL29HXXq1HHcf//9jn379lkdC25g/fr1Dkn5XkOGDHE4HA5Hbm6uY8qUKY7atWs7fHx8HN26dXOkpaVZGxqWMe0v58+fd/Ts2dNRs2ZNh5eXlyMsLMwxcuRIx7Fjx6yODQsUtJ9IcixatMg55sKFC45HH33UUbVqVUelSpUcd999t+Po0aPWhYZlitpfDh486OjSpYujWrVqDh8fH0fDhg0df/3rXx0ZGRnWBodb43scAQAAAABG3OMIAAAAADCiOAIAAAAAjCiOAAAAAAAjiiMAAAAAwIjiCAAAAAAwojgCAAAAAIwojgAAAAAAI4ojAAAAAMCI4ggAQBmy2Wx67733ruo20tLSFBQUpDNnzhQ6JikpSVWqVCnxuv/whz/o3//+9xWkAwBcjyiOAAC39/PPP2vs2LGqV6+efHx8FBQUpKioKH322WfOMeHh4bLZbEpJSXFZduLEiYqMjHS+j4+Pl81mk81mk4eHh0JDQzVq1CidPHnSmOHS5Ww2mwIDA9W5c2dt3LjRZdzRo0cVHR195R/aIC4uTuPHj5e/v3+xl0lKSnLJ7+fnp7Zt22rlypUu4yZPnqwnn3xSubm5ZR0bAFCOURwBAG6vf//++uKLL/Tmm2/qu+++06pVqxQZGakTJ064jPP19dUTTzxR5PpatGiho0eP6uDBg1q0aJFWr16tsWPHFnu5o0ePasuWLWrUqJH69OmjjIwM55igoCD5+PiU/EMW08GDB/Xhhx9q6NChJV42ICDAmf+LL75QVFSU7rvvPqWlpTnHREdH68yZM/rPf/5ThqkBAOUdxREA4NZOnz6tTz/9VLNmzVLXrl0VFhamDh06KC4uTnfeeafL2FGjRiklJUUff/yxcZ2enp4KCgpSnTp11L17dw0YMEBr1qwpMkveckFBQWrevLmeeeYZnT17Vt99951zzKWXqqanp8tms2nlypXq2rWrKlWqpNatW2vLli3O8T/88IP69u2rqlWrqnLlymrRooUx/zvvvKPWrVurTp06LtOTkpJUr149VapUSXfffXe+Up2XLS9/o0aNNH36dFWoUEG7du1yjvHw8FDv3r21dOnSIn8eAIAbB8URAODW/Pz85Ofnp/fee092u904NiIiQmPGjFFcXFyxL7VMT09XcnKyvL29S5TLbrdr0aJFqlKlipo0aWIc+/TTT2vSpEnauXOnGjdurIEDB+rXX3+VJMXExMhut2vTpk3avXu3Zs2aJT8/v0LX9emnn6pdu3Yu07Zu3arhw4dr3Lhx2rlzp7p27arp06cbM+Xk5OjNN9+UJN1yyy0u8zp06KBPP/3UuDwA4MbiaXUAAABMPD09lZSUpJEjR+q1117TLbfcottuu00PPPCAWrVqlW/85MmTtWjRIi1evFgPP/xwgevcvXu3/Pz8lJOTo6ysLEnSSy+9VGSWvOUk6fz58/L399eyZcsUEBBgXG7SpEm64447JEkJCQlq0aKF9u3bp6ZNm+rgwYPq37+/brrpJklS/fr1jev64Ycf8hXHOXPmqFevXnr88cclSY0bN9bmzZu1evVql3EZGRnO/BcuXJCXl5cSExPVoEEDl3EhISE6dOiQcnNzVaEC/48ZAMAZRwBAOdC/f38dOXJEq1atUq9evbRhwwbdcsstSkpKyje2Zs2amjRpkqZOnars7OwC19ekSRPt3LlT27Zt0xNPPKGoqCiNHz++yBx5y+3cuVOpqakaO3asBgwYoO3btxuXu7TgBgcHS5KOHz8uSZowYYKmT5+uW2+9VdOmTXO5bLQgFy5ckK+vr8u0b775Rh07dnSZ1qlTp3zL+vv7O/N/8cUXeu655zRmzBh98MEHLuMqVqyo3NzcIs/wAgBuHBRHAEC54Ovrqx49emjKlCnavHmzhg4dqmnTphU4NjY2VhcuXNCrr75a4Hxvb281bNhQLVu21MyZM+Xh4aGEhIQiM+Qt17BhQ918882aOXOm6tSpo9mzZxuX8/Lycv7ZZrNJkvNS2hEjRuj777/Xww8/rN27d6tdu3aaO3duoeuqUaOGTp06VWTWglSoUMGZv1WrVoqNjVVkZKRmzZrlMu7kyZOqXLmyKlasWKrtAACuPxRHAEC51Lx5c507d67AeX5+fpoyZYqeffZZ43cd5pk8ebJefPFFHTlypMQ5PDw8dOHChRIvd6nQ0FCNGTNGK1eu1F/+8hctXLiw0LE333yzvv76a5dpzZo109atW12mXf61JIUpKP+ePXt08803FzM9AOBGQHEEALi1EydO6Pbbb9fbb7+tXbt26cCBA1q+fLmef/553XXXXYUuN2rUKAUGBmrJkiVFbqNTp05q1aqVnnvuOeO4X3/9VceOHdOxY8e0d+9eTZ8+XV9//bUxR1EmTpyo5ORkHThwQDt27ND69evVrFmzQsdHRUVpy5YtysnJcU6bMGGCVq9erRdffFF79+7VvHnz8t3fKEkOh8OZ/8CBA0pMTFRycnK+/J9++ql69uxZ6s8EALj+UBwBAG7Nz89PHTt21Msvv6wuXbqoZcuWmjJlikaOHKl58+YVupyXl5f+9re/OR9+U5THHntM//jHP3To0KFCx3z11VcKDg5WcHCw2rRpo3feeUcLFizQ4MGDS/y58uTk5CgmJkbNmjVTr1691Lhx40IvsZV++55FT09PrV271jntD3/4gxYuXKg5c+aodevW+u9//6vJkyfnWzYzM9OZv1mzZvr73/+uZ555Rk8//bRzzOHDh7V582YNGzas1J8JAHD9sTkcDofVIQAAQPHNnz9fq1atUnJycpmv+4knntCpU6eUmJhY5usGAJRffB0HAADlzOjRo3X69GmdOXNG/v7+ZbruWrVqKTY2tkzXCQAo/zjjCAAAAAAw4h5HAAAAAIARxREAAAAAYERxBAAAAAAYURwBAAAAAEYURwAAAACAEcURAAAAAGBEcQQAAAAAGFEcAQAAAABGFEcAAAAAgNH/A3vqCLRCBgq4AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -393,12 +467,12 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 12, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAGJCAYAAAAe1scnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAyTElEQVR4nO3de3zPdf/H8ed352EHp82wtjmFiTlnDKvlmFL9clXqWuqKirrk6sAlZzl0wC+JqMxVlxRX0U8ilokrhBEiJYacpmhzmI3t/fujy/fa1w7s+9n23dbjfrt9bzff9+f9+Xxe38/3vfH0/hxsxhgjAAAAAAAscHN1AQAAAACA8o9wCQAAAACwjHAJAAAAALCMcAkAAAAAsIxwCQAAAACwjHAJAAAAALCMcAkAAAAAsIxwCQAAAACwjHAJAAAAALCMcAkAKPPGjh0rm81meTtJSUmy2WxKSkq6Zt+uXbuqa9eu17Xdrl27qlmzZtaKKyKbzaaxY8eW+H7yO2al+XlTUlJks9mUkJBQKvsDADiPcAkAsEtISJDNZnN4BQUFKTY2Vp9//rmry3OpY8eOaezYsdqxY0exbzs8PNx+vN3c3BQYGKibbrpJAwcO1ObNm4ttPwsXLtSMGTOKbXvFqSzXBgC4Ph6uLgAAUPaMHz9eERERMsbo5MmTSkhIUK9evfR///d/uv32211dntM6d+6sjIwMeXl5FXndY8eOady4cQoPD1dUVFSx1xYVFaW//e1vkqSzZ89q7969Wrx4sebNm6dnnnlG06ZNc+ifkZEhD4+i/TW+cOFC7d69W0OHDr3udawcs6IoqLawsDBlZGTI09OzRPcPALCOcAkAyKNnz55q06aN/f2jjz6q4OBgffDBB+U6XLq5ucnHx8fVZeSrTp06evDBBx3apk6dqgceeEDTp09Xw4YN9cQTT9iXlfTnuHjxory8vFx+zGw2W5n9zgAAjjgtFgBwTYGBgfL19c0zU/bqq68qOjpa1atXl6+vr1q3bq0lS5bkWd9ms2nIkCFaunSpmjVrJm9vb0VGRmrlypV5+m7YsEFt27aVj4+P6tevr7feeitPn7vvvlutWrVyaOvTp49sNps+/fRTe9vmzZtls9nsp/QWdM3l3LlzVb9+ffn6+qpdu3Zav369w/KkpCS1bdtWkjRgwAD7KaxXXwe4Z88excbGqlKlSqpTp45efvnlPLUXha+vr9577z1Vq1ZNL730kowx9mVXX3N59uxZDR06VOHh4fL29lZQUJBuu+02JScnS/r9OsnPPvtMhw4dstcfHh7ucFwWLVqkF198UXXq1FGlSpWUnp5e6HWq27ZtU3R0tHx9fRUREaE5c+Y4LL9ymnVKSopD+9XbLKy2gq65/PLLLxUTE6PKlSsrMDBQd955p/bu3evQ58q1uvv379fDDz+swMBABQQEaMCAAbpw4cL1fQkAgOvGzCUAII+0tDT98ssvMsYoNTVVM2fO1Llz5/LMrP3v//6v7rjjDvXv319ZWVlatGiR7r33Xi1fvly9e/d26LthwwZ9/PHHevLJJ+Xn56fXX39d99xzjw4fPqzq1atLknbt2qVu3bqpZs2aGjt2rC5fvqwxY8YoODjYYVsxMTFatmyZ0tPT5e/vL2OM/v3vf8vNzU3r16/XHXfcIUlav3693Nzc1LFjxwI/6zvvvKNBgwYpOjpaQ4cO1YEDB3THHXeoWrVqCg0NlSQ1adJE48eP1+jRozVw4EDFxMRIkqKjo+3bOXPmjHr06KG7775b/fr105IlS/TCCy/opptuUs+ePZ38JqQqVarorrvu0jvvvKM9e/YoMjIy336PP/64lixZoiFDhqhp06b69ddftWHDBu3du1etWrXSyJEjlZaWpp9//lnTp0+3bzu3CRMmyMvLS88++6wyMzMLPRX2zJkz6tWrl/r166f7779fH330kZ544gl5eXnpkUceKdJnvJ7acluzZo169uypevXqaezYscrIyNDMmTPVsWNHJScn24PpFf369VNERIQmT56s5ORkvf322woKCtLUqVOLVCcA4BoMAAD/MX/+fCMpz8vb29skJCTk6X/hwgWH91lZWaZZs2bmlltucWiXZLy8vMz+/fvtbd9++62RZGbOnGlv69u3r/Hx8TGHDh2yt+3Zs8e4u7ub3H9lbdmyxUgyK1asMMYYs3PnTiPJ3HvvvaZ9+/b2fnfccYdp2bKl/f3atWuNJLN27Vp7vUFBQSYqKspkZmba+82dO9dIMl26dMmzz/nz5+c5Dl26dDGSzD/+8Q97W2ZmpqlVq5a555578vS/WlhYmOndu3eBy6dPn24kmWXLltnbJJkxY8bY3wcEBJjBgwcXup/evXubsLCwPO1Xjku9evXyfKdXHzNj/vt5X3vtNXtbZmamiYqKMkFBQSYrK8sY89/xdPDgwWtus6DaDh48mOe4X9nPr7/+am/79ttvjZubm/nzn/9sbxszZoyRZB555BGHbd51112mevXqefYFALCG02IBAHnMmjVLq1ev1urVq/X+++8rNjZWf/nLX/Txxx879PP19bX/+cyZM0pLS1NMTIz9VMzc4uLiVL9+ffv75s2by9/fXwcOHJAkZWdna9WqVerbt69uuOEGe78mTZqoe/fuDttq2bKlqlSpoq+++krS7zOUdevW1Z///GclJyfrwoULMsZow4YN9lnG/GzdulWpqal6/PHHHWbpHn74YQUEBFzPobKrUqWKw8yul5eX2rVrZ/98VlyZxTt79myBfQIDA7V582YdO3bM6f3Ex8c7fKeF8fDw0KBBg+zvvby8NGjQIKWmpmrbtm1O13Atx48f144dO/Twww+rWrVq9vbmzZvrtttu04oVK/Ks8/jjjzu8j4mJ0a+//qr09PQSqxMA/ogIlwCAPNq1a6e4uDjFxcWpf//++uyzz9S0aVMNGTJEWVlZ9n7Lly/XzTffLB8fH1WrVk01a9bU7NmzlZaWlmebuQPjFVWrVtWZM2ckSadOnVJGRoYaNmyYp9+NN97o8N7d3V0dOnSwXxu5fv16xcTEqFOnTsrOztamTZu0Z88enT59utBweejQIUnKs09PT0/Vq1evwPXyU7du3TzP4sz9+aw4d+6cJMnPz6/APi+//LJ2796t0NBQtWvXTmPHji1ysI2IiLjuvrVr11blypUd2ho1aiRJea6xLE5XvrOrx4T0+39E/PLLLzp//rxD+9Vjr2rVqpJULN8NAOC/CJcAgGtyc3NTbGysjh8/rh9//FGS7Nc2+vj46M0339SKFSu0evVqPfDAAw43nrnC3d09323n1/d6dOrUSVu2bNHFixft4TIwMFDNmjXT+vXr7cGzsHBZnIr78+W2e/duSVKDBg0K7NOvXz8dOHBAM2fOVO3atfXKK68oMjKySM8nvd5Zy+t1ddi+Ijs7u1j3cy0l+d0AAP6LcAkAuC6XL1+W9N9ZtH/961/y8fHRqlWr9Mgjj6hnz56Ki4tzevs1a9aUr6+vPbzmtm/fvjxtMTExysrK0gcffKCjR4/aQ2Tnzp3t4bJRo0Z5bgaUW1hYmCTl2eelS5d08OBBh7aCglJJO3funD755BOFhoaqSZMmhfYNCQnRk08+qaVLl+rgwYOqXr26XnrpJfvy4vwMx44dyzND+MMPP0iS/YY6V2YIf/vtN4d+V2Yfc7ve2q58Z/mNie+//141atTIM6MKACgdhEsAwDVdunRJX3zxhby8vOwBx93dXTabzWEWKiUlRUuXLnVqH+7u7urevbuWLl2qw4cP29v37t2rVatW5enfvn17eXp6aurUqapWrZr9LqoxMTHatGmT1q1bd81ZyzZt2qhmzZqaM2eOw+m+CQkJeQLRlcBydXtJysjI0EMPPaTTp09r5MiRhc4EXn0qclBQkGrXrq3MzEx7W+XKlfM9ZdkZly9fdnhMTFZWlt566y3VrFlTrVu3liT7NbZXro29UuvcuXPzbO96awsJCVFUVJQWLFjg8F3s3r1bX3zxhXr16uXsRwIAWMSjSAAAeXz++ef6/vvvJUmpqalauHChfvzxRw0fPlz+/v6SpN69e2vatGnq0aOHHnjgAaWmpmrWrFlq0KCBdu7c6dR+x40bp5UrVyomJkZPPvmkLl++rJkzZyoyMjLPNitVqqTWrVtr06ZN9mdcSr/PXJ4/f17nz5+/Zrj09PTUxIkTNWjQIN1yyy3605/+pIMHD2r+/Pl5rrmsX7++AgMDNWfOHPn5+aly5cpq3759ka5TLMzRo0f1/vvvS/p9tnLPnj1avHixTpw4ob/97W8ON8+52tmzZ1W3bl39z//8j1q0aKEqVapozZo12rJli1577TV7v9atW+vDDz/UsGHD1LZtW1WpUkV9+vRxqt7atWtr6tSpSklJUaNGjfThhx9qx44dmjt3rjw9PSVJkZGRuvnmmzVixAidPn1a1apV06JFi+yz4LkVpbZXXnlFPXv2VIcOHfToo4/aH0USEBDg8OxPAEApc+m9agEAZUp+jyLx8fExUVFRZvbs2SYnJ8eh/zvvvGMaNmxovL29TePGjc38+fPtj3/ITVK+j8kICwsz8fHxDm3r1q0zrVu3Nl5eXqZevXpmzpw5+W7TGGOee+45I8lMnTrVob1BgwZGkvnpp58c2vN7BIYxxrz55psmIiLCeHt7mzZt2pivvvrKdOnSxeFRJMYYs2zZMtO0aVPj4eHh8HiMLl26mMjIyDz1xcfH5/t4jfyOw5XjbbPZjL+/v4mMjDSPPfaY2bx5c77rKNejSDIzM81zzz1nWrRoYfz8/EzlypVNixYtzJtvvumwzrlz58wDDzxgAgMDjSR7bVeOy+LFi/Psp6BHkURGRpqtW7eaDh06GB8fHxMWFmbeeOONPOv/9NNPJi4uznh7e5vg4GDz97//3axevTrPNguqLb9HkRhjzJo1a0zHjh2Nr6+v8ff3N3369DF79uxx6HNl3Jw6dcqhvaBHpAAArLEZw9XsAAAAAABruOYSAAAAAGAZ4RIAAAAAYBnhEgAAAABgGeESAAAAAGAZ4RIAAAAAYBnhEgAAAABgmYerCyhpOTk5OnbsmPz8/OwP2AYAAAAAXJsxRmfPnlXt2rXl5lb43GSFD5fHjh1TaGioq8sAAAAAgHLryJEjqlu3bqF9Kny49PPzk/T7wfD393dxNQAAAABQfqSnpys0NNSeqwpT4cPllVNh/f39CZcAAAAA4ITrucSQG/oAAAAAACwjXAIAAAAALCNcAgAAAAAsI1wCAAAAACwjXAIAAAAALCNcAgAAAAAsI1wCAAAAACxzabj86quv1KdPH9WuXVs2m01Lly51WG6M0ejRoxUSEiJfX1/FxcXpxx9/dE2xAAAAAIACuTRcnj9/Xi1atNCsWbPyXf7yyy/r9ddf15w5c7R582ZVrlxZ3bt318WLF0u5UgAAAABAYTxcufOePXuqZ8+e+S4zxmjGjBl68cUXdeedd0qS/vGPfyg4OFhLly7VfffdV5qlAgAAAAAKUWavuTx48KBOnDihuLg4e1tAQIDat2+vjRs3FrheZmam0tPTHV4AAAAAgJLl0pnLwpw4cUKSFBwc7NAeHBxsX5afyZMna9y4cSVaW3kRPvyzQpenTOldSpUAAAAAqOjK7Myls0aMGKG0tDT768iRI64uCQAAAAAqvDIbLmvVqiVJOnnypEP7yZMn7cvy4+3tLX9/f4cXAAAAAKBkldlwGRERoVq1aikxMdHelp6ers2bN6tDhw4urAwAAAAAcDWXXnN57tw57d+/3/7+4MGD2rFjh6pVq6YbbrhBQ4cO1cSJE9WwYUNFRERo1KhRql27tvr27eu6ogEAAAAAebg0XG7dulWxsbH298OGDZMkxcfHKyEhQc8//7zOnz+vgQMH6rffflOnTp20cuVK+fj4uKpkAAAAAEA+bMYY4+oiSlJ6eroCAgKUlpb2h7v+krvFAgAAALCiKHmqzF5zCQAAAAAoPwiXAAAAAADLCJcAAAAAAMsIlwAAAAAAywiXAAAAAADLCJcAAAAAAMsIlwAAAAAAywiXAAAAAADLCJcAAAAAAMsIlwAAAAAAywiXAAAAAADLCJcAAAAAAMsIlwAAAAAAywiXAAAAAADLCJcAAAAAAMsIlwAAAAAAywiXAAAAAADLCJcAAAAAAMsIlwAAAAAAywiXAAAAAADLCJcAAAAAAMsIlwAAAAAAywiXAAAAAADLPFxdAJwXPvwzV5cAAAAAAJKYuQQAAAAAFAPCJQAAAADAMsIlAAAAAMAywiUAAAAAwDLCJQAAAADAMsIlAAAAAMAywiUAAAAAwDLCJQAAAADAMsIlAAAAAMAywiUAAAAAwDLCJQAAAADAMsIlAAAAAMAywiUAAAAAwDLCJQAAAADAMsIlAAAAAMAywiUAAAAAwDLCJQAAAADAMsIlAAAAAMAywiUAAAAAwDLCJQAAAADAMsIlAAAAAMAywiUAAAAAwDLCJQAAAADAMsIlAAAAAMCyMh0us7OzNWrUKEVERMjX11f169fXhAkTZIxxdWkAAAAAgFw8XF1AYaZOnarZs2drwYIFioyM1NatWzVgwAAFBATo6aefdnV5AAAAAID/KNPh8uuvv9add96p3r17S5LCw8P1wQcf6JtvvnFxZQAAAACA3Mr0abHR0dFKTEzUDz/8IEn69ttvtWHDBvXs2bPAdTIzM5Wenu7wAgAAAACUrDI9czl8+HClp6ercePGcnd3V3Z2tl566SX179+/wHUmT56scePGlWKVAAAAAIAyPXP50Ucf6Z///KcWLlyo5ORkLViwQK+++qoWLFhQ4DojRoxQWlqa/XXkyJFSrBgAAAAA/pjK9Mzlc889p+HDh+u+++6TJN100006dOiQJk+erPj4+HzX8fb2lre3d2mWCQAAAAB/eGV65vLChQtyc3Ms0d3dXTk5OS6qCAAAAACQnzI9c9mnTx+99NJLuuGGGxQZGant27dr2rRpeuSRR1xdGgAAAAAglzIdLmfOnKlRo0bpySefVGpqqmrXrq1BgwZp9OjRri4NAAAAAJBLmQ6Xfn5+mjFjhmbMmOHqUgAAAAAAhSjT11wCAAAAAMoHwiUAAAAAwDLCJQAAAADAMsIlAAAAAMAywiUAAAAAwDLCJQAAAADAMsIlAAAAAMAywiUAAAAAwDLCJQAAAADAMsIlAAAAAMAywiUAAAAAwDLCJQAAAADAMsIlAAAAAMAywiUAAAAAwDLCJQAAAADAMsIlAAAAAMAywiUAAAAAwDLCJQAAAADAMsIlAAAAAMAywiUAAAAAwDLCJQAAAADAMsIlAAAAAMAywiUAAAAAwDLCJQAAAADAMsIlAAAAAMAywiUAAAAAwDLCJQAAAADAMsIlAAAAAMAywiUAAAAAwDLCJQAAAADAMsIlAAAAAMAywiUAAAAAwDLCJQAAAADAMsIlAAAAAMAywiUAAAAAwDLCJQAAAADAMsIlAAAAAMAywiUAAAAAwDLCJQAAAADAMsIlAAAAAMAywiUAAAAAwDLCJQAAAADAMsIlAAAAAMAywiUAAAAAwDLCJQAAAADAMsIlAAAAAMAywiUAAAAAwDLCJQAAAADAsjIfLo8ePaoHH3xQ1atXl6+vr2666SZt3brV1WUBAAAAAHLxcHUBhTlz5ow6duyo2NhYff7556pZs6Z+/PFHVa1a1dWlAQAAAAByKdPhcurUqQoNDdX8+fPtbRERES6sCAAAAACQnzJ9Wuynn36qNm3a6N5771VQUJBatmypefPmFbpOZmam0tPTHV4AAAAAgJJVpmcuDxw4oNmzZ2vYsGH6+9//ri1btujpp5+Wl5eX4uPj811n8uTJGjduXClX6rzw4Z8VuCxlSu9SrAQAAAAAnOfUzGVycrJ27dplf79s2TL17dtXf//735WVlVVsxeXk5KhVq1aaNGmSWrZsqYEDB+qxxx7TnDlzClxnxIgRSktLs7+OHDlSbPUAAAAAAPLnVLgcNGiQfvjhB0m/zy7ed999qlSpkhYvXqznn3++2IoLCQlR06ZNHdqaNGmiw4cPF7iOt7e3/P39HV4AAAAAgJLlVLj84YcfFBUVJUlavHixOnfurIULFyohIUH/+te/iq24jh07at++fXn2HRYWVmz7AAAAAABY51S4NMYoJydHkrRmzRr16tVLkhQaGqpffvml2Ip75plntGnTJk2aNEn79+/XwoULNXfuXA0ePLjY9gEAAAAAsM6pcNmmTRtNnDhR7733ntatW6fevX+/8czBgwcVHBxcbMW1bdtWn3zyiT744AM1a9ZMEyZM0IwZM9S/f/9i2wcAAAAAwDqn7hY7ffp0Pfjgg1q6dKlGjhypBg0aSJKWLFmi6OjoYi3w9ttv1+23316s2wQAAAAAFC+nwmWLFi0c7hZ7xSuvvCIPjzL9dBMAAAAAQAlw6rTYevXq6ddff83TfvHiRTVq1MhyUQAAAACA8sWpcJmSkqLs7Ow87ZmZmfr5558tFwUAAAAAKF+KdA7rp59+av/zqlWrFBAQYH+fnZ2txMRERUREFF91AAAAAIByoUjhsm/fvpIkm82m+Ph4h2Wenp4KDw/Xa6+9VmzFAQAAAADKhyKFyyvPtoyIiNCWLVtUo0aNEikKAAAAAFC+OHVr14MHDxZ3HQAAAACAcszp54YkJiYqMTFRqamp9hnNK959913LhQEAAAAAyg+nwuW4ceM0fvx4tWnTRiEhIbLZbMVdFwAAAACgHHEqXM6ZM0cJCQl66KGHirseAAAAAEA55NRzLrOyshQdHV3ctQAAAAAAyimnwuVf/vIXLVy4sLhrAQAAAACUU06dFnvx4kXNnTtXa9asUfPmzeXp6emwfNq0acVSHAAAAACgfHAqXO7cuVNRUVGSpN27dzss4+Y+AAAAAPDH41S4XLt2bXHXAQAAAAAox5y65hIAAAAAgNycmrmMjY0t9PTXL7/80umCAAAAAADlj1Ph8sr1lldcunRJO3bs0O7duxUfH18cdQEAAAAAyhGnwuX06dPzbR87dqzOnTtnqSAAAAAAQPlTrNdcPvjgg3r33XeLc5MAAAAAgHKgWMPlxo0b5ePjU5ybBAAAAACUA06dFnv33Xc7vDfG6Pjx49q6datGjRpVLIUBAAAAAMoPp8JlQECAw3s3NzfdeOONGj9+vLp161YshaF8Cx/+WaHLU6b0LqVKAAAAAJQGp8Ll/Pnzi7sOAAAAAEA55lS4vGLbtm3au3evJCkyMlItW7YslqIAAAAAAOWLU+EyNTVV9913n5KSkhQYGChJ+u233xQbG6tFixapZs2axVkjAAAAAKCMc+pusU899ZTOnj2r7777TqdPn9bp06e1e/dupaen6+mnny7uGgEAAAAAZZxTM5crV67UmjVr1KRJE3tb06ZNNWvWLG7oAwAAAAB/QE7NXObk5MjT0zNPu6enp3JyciwXBQAAAAAoX5wKl7fccov++te/6tixY/a2o0eP6plnntGtt95abMUBAAAAAMoHp8LlG2+8ofT0dIWHh6t+/fqqX7++IiIilJ6erpkzZxZ3jQAAAACAMs6pay5DQ0OVnJysNWvW6Pvvv5ckNWnSRHFxccVaHAAAAACgfCjSzOWXX36ppk2bKj09XTabTbfddpueeuopPfXUU2rbtq0iIyO1fv36kqoVAAAAAFBGFSlczpgxQ4899pj8/f3zLAsICNCgQYM0bdq0YisOAAAAAFA+FClcfvvtt+rRo0eBy7t166Zt27ZZLgoAAAAAUL4UKVyePHky30eQXOHh4aFTp05ZLgoAAAAAUL4UKVzWqVNHu3fvLnD5zp07FRISYrkoAAAAAED5UqRw2atXL40aNUoXL17MsywjI0NjxozR7bffXmzFAQAAAADKhyI9iuTFF1/Uxx9/rEaNGmnIkCG68cYbJUnff/+9Zs2apezsbI0cObJECgUAAAAAlF1FCpfBwcH6+uuv9cQTT2jEiBEyxkiSbDabunfvrlmzZik4OLhECgUAAAAAlF1FCpeSFBYWphUrVujMmTPav3+/jDFq2LChqlatWhL1AQAAAADKgSKHyyuqVq2qtm3bFmctAAAAAIByqkg39AEAAAAAID+ESwAAAACAZYRLAAAAAIBlhEsAAAAAgGWESwAAAACAZeUqXE6ZMkU2m01Dhw51dSkAAAAAgFzKTbjcsmWL3nrrLTVv3tzVpQAAAAAArlIuwuW5c+fUv39/zZs3T1WrVnV1OQAAAACAq5SLcDl48GD17t1bcXFx1+ybmZmp9PR0hxcAAAAAoGR5uLqAa1m0aJGSk5O1ZcuW6+o/efJkjRs3roSrQkUVPvwzS+unTOldTJUU3bVqd2VtAAAAqPjK9MzlkSNH9Ne//lX//Oc/5ePjc13rjBgxQmlpafbXkSNHSrhKAAAAAECZnrnctm2bUlNT1apVK3tbdna2vvrqK73xxhvKzMyUu7u7wzre3t7y9vYu7VIBAAAA4A+tTIfLW2+9Vbt27XJoGzBggBo3bqwXXnghT7AEAAAAALhGmQ6Xfn5+atasmUNb5cqVVb169TztAAAAAADXKdPXXAIAAAAAyocyPXOZn6SkJFeXAAAAAAC4CjOXAAAAAADLCJcAAAAAAMsIlwAAAAAAywiXAAAAAADLCJcAAAAAAMsIlwAAAAAAywiXAAAAAADLCJcAAAAAAMsIlwAAAAAAywiXAAAAAADLCJcAAAAAAMsIlwAAAAAAywiXAAAAAADLCJcAAAAAAMsIlwAAAAAAywiXAAAAAADLCJcAAAAAAMsIlwAAAAAAywiXAAAAAADLCJcAAAAAAMsIlwAAAAAAywiXAAAAAADLCJcAAAAAAMs8XF0AXCd8+GcFLkuZ0tvpdV2972utX1ZV1M9lFccFAACgfGDmEgAAAABgGeESAAAAAGAZ4RIAAAAAYBnhEgAAAABgGeESAAAAAGAZ4RIAAAAAYBnhEgAAAABgGeESAAAAAGAZ4RIAAAAAYBnhEgAAAABgGeESAAAAAGAZ4RIAAAAAYBnhEgAAAABgGeESAAAAAGAZ4RIAAAAAYBnhEgAAAABgGeESAAAAAGAZ4RIAAAAAYBnhEgAAAABgGeESAAAAAGAZ4RIAAAAAYBnhEgAAAABgGeESAAAAAGAZ4RIAAAAAYFmZDpeTJ09W27Zt5efnp6CgIPXt21f79u1zdVkAAAAAgKuU6XC5bt06DR48WJs2bdLq1at16dIldevWTefPn3d1aQAAAACAXDxcXUBhVq5c6fA+ISFBQUFB2rZtmzp37uyiqgAAAAAAVyvT4fJqaWlpkqRq1aoV2CczM1OZmZn29+np6SVeFwAAAAD80ZWbcJmTk6OhQ4eqY8eOatasWYH9Jk+erHHjxpViZShu4cM/K9fbr4j7TpnSuxgrAcqna/0M8XMCAPijK9PXXOY2ePBg7d69W4sWLSq034gRI5SWlmZ/HTlypJQqBAAAAIA/rnIxczlkyBAtX75cX331lerWrVtoX29vb3l7e5dSZQAAAAAAqYyHS2OMnnrqKX3yySdKSkpSRESEq0sCAAAAAOSjTIfLwYMHa+HChVq2bJn8/Px04sQJSVJAQIB8fX1dXB0AAAAA4Ioyfc3l7NmzlZaWpq5duyokJMT++vDDD11dGgAAAAAglzI9c2mMcXUJAAAAAIDrUKZnLgEAAAAA5QPhEgAAAABgGeESAAAAAGAZ4RIAAAAAYBnhEgAAAABgGeESAAAAAGAZ4RIAAAAAYBnhEgAAAABgGeESAAAAAGAZ4RIAAAAAYBnhEgAAAABgGeESAAAAAGAZ4RIAAAAAYBnhEgAAAABgGeESAAAAAGAZ4RIAAAAAYBnhEgAAAABgGeESAAAAAGAZ4RIAAAAAYBnhEgAAAABgGeESAAAAAGAZ4RIAAAAAYJmHqwtA2RQ+/DNXl4CrVNTvpKJ+LqA4XevnJGVK71KqpGjKa91SydZeno+LKxV23KweM74TlJaKPtaYuQQAAAAAWEa4BAAAAABYRrgEAAAAAFhGuAQAAAAAWEa4BAAAAABYRrgEAAAAAFhGuAQAAAAAWEa4BAAAAABYRrgEAAAAAFhGuAQAAAAAWEa4BAAAAABYRrgEAAAAAFhGuAQAAAAAWEa4BAAAAABYRrgEAAAAAFhGuAQAAAAAWEa4BAAAAABYRrgEAAAAAFhGuAQAAAAAWEa4BAAAAABYRrgEAAAAAFhGuAQAAAAAWEa4BAAAAABYRrgEAAAAAFhGuAQAAAAAWFYuwuWsWbMUHh4uHx8ftW/fXt98842rSwIAAAAA5FLmw+WHH36oYcOGacyYMUpOTlaLFi3UvXt3paamuro0AAAAAMB/lPlwOW3aND322GMaMGCAmjZtqjlz5qhSpUp69913XV0aAAAAAOA/PFxdQGGysrK0bds2jRgxwt7m5uamuLg4bdy4Md91MjMzlZmZaX+flpYmSUpPTy/ZYp2Uk3mhwGXXqrmwdf/IXHncKup3VpI/P1aPSVn92UbFc62x6sqfk7L6c1Be65ZKtvbyfFxcycq/maxsuzi2D1xRHsfalZqMMdfsazPX08tFjh07pjp16ujrr79Whw4d7O3PP/+81q1bp82bN+dZZ+zYsRo3blxplgkAAAAAFdqRI0dUt27dQvuU6ZlLZ4wYMULDhg2zv8/JydHp06dVvXp12Ww2Sb+n79DQUB05ckT+/v6uKhVlBOMBuTEekBvjAVdjTCA3xgNyq6jjwRijs2fPqnbt2tfsW6bDZY0aNeTu7q6TJ086tJ88eVK1atXKdx1vb295e3s7tAUGBubb19/fv0J98bCG8YDcGA/IjfGAqzEmkBvjAblVxPEQEBBwXf3K9A19vLy81Lp1ayUmJtrbcnJylJiY6HCaLAAAAADAtcr0zKUkDRs2TPHx8WrTpo3atWunGTNm6Pz58xowYICrSwMAAAAA/EeZD5d/+tOfdOrUKY0ePVonTpxQVFSUVq5cqeDgYKe36e3trTFjxuQ5fRZ/TIwH5MZ4QG6MB1yNMYHcGA/IjfFQxu8WCwAAAAAoH8r0NZcAAAAAgPKBcAkAAAAAsIxwCQAAAACwjHAJAAAAALCswobLWbNmKTw8XD4+Pmrfvr2++eabQvsvXrxYjRs3lo+Pj2666SatWLGilCpFaSjKePjuu+90zz33KDw8XDabTTNmzCi9QlEqijIe5s2bp5iYGFWtWlVVq1ZVXFzcNX+foHwpynj4+OOP1aZNGwUGBqpy5cqKiorSe++9V4rVojQU9d8QVyxatEg2m019+/Yt2QJRqooyHhISEmSz2RxePj4+pVgtSlpRfz/89ttvGjx4sEJCQuTt7a1GjRpV6JxRIcPlhx9+qGHDhmnMmDFKTk5WixYt1L17d6Wmpubb/+uvv9b999+vRx99VNu3b1ffvn3Vt29f7d69u5QrR0ko6ni4cOGC6tWrpylTpqhWrVqlXC1KWlHHQ1JSku6//36tXbtWGzduVGhoqLp166ajR4+WcuUoCUUdD9WqVdPIkSO1ceNG7dy5UwMGDNCAAQO0atWqUq4cJaWoY+KKlJQUPfvss4qJiSmlSlEanBkP/v7+On78uP116NChUqwYJamo4yErK0u33XabUlJStGTJEu3bt0/z5s1TnTp1SrnyUmQqoHbt2pnBgwfb32dnZ5vatWubyZMn59u/X79+pnfv3g5t7du3N4MGDSrROlE6ijoecgsLCzPTp08vwepQ2qyMB2OMuXz5svHz8zMLFiwoqRJRiqyOB2OMadmypXnxxRdLojy4gDNj4vLlyyY6Otq8/fbbJj4+3tx5552lUClKQ1HHw/z5801AQEApVYfSVtTxMHv2bFOvXj2TlZVVWiW6XIWbuczKytK2bdsUFxdnb3Nzc1NcXJw2btyY7zobN2506C9J3bt3L7A/yg9nxgMqruIYDxcuXNClS5dUrVq1kioTpcTqeDDGKDExUfv27VPnzp1LslSUEmfHxPjx4xUUFKRHH320NMpEKXF2PJw7d05hYWEKDQ3VnXfeqe+++640ykUJc2Y8fPrpp+rQoYMGDx6s4OBgNWvWTJMmTVJ2dnZplV3qKly4/OWXX5Sdna3g4GCH9uDgYJ04cSLfdU6cOFGk/ig/nBkPqLiKYzy88MILql27dp7/kEL54+x4SEtLU5UqVeTl5aXevXtr5syZuu2220q6XJQCZ8bEhg0b9M4772jevHmlUSJKkTPj4cYbb9S7776rZcuW6f3331dOTo6io6P1888/l0bJKEHOjIcDBw5oyZIlys7O1ooVKzRq1Ci99tprmjhxYmmU7BIeri4AAMqLKVOmaNGiRUpKSuIGDX9gfn5+2rFjh86dO6fExEQNGzZM9erVU9euXV1dGkrZ2bNn9dBDD2nevHmqUaOGq8tBGdChQwd16NDB/j46OlpNmjTRW2+9pQkTJriwMrhCTk6OgoKCNHfuXLm7u6t169Y6evSoXnnlFY0ZM8bV5ZWIChcua9SoIXd3d508edKh/eTJkwXenKVWrVpF6o/yw5nxgIrLynh49dVXNWXKFK1Zs0bNmzcvyTJRSpwdD25ubmrQoIEkKSoqSnv37tXkyZMJlxVAUcfETz/9pJSUFPXp08felpOTI0ny8PDQvn37VL9+/ZItGiWmOP4N4enpqZYtW2r//v0lUSJKkTPjISQkRJ6ennJ3d7e3NWnSRCdOnFBWVpa8vLxKtGZXqHCnxXp5eal169ZKTEy0t+Xk5CgxMdHhf5Jy69Chg0N/SVq9enWB/VF+ODMeUHE5Ox5efvllTZgwQStXrlSbNm1Ko1SUguL6/ZCTk6PMzMySKBGlrKhjonHjxtq1a5d27Nhhf91xxx2KjY3Vjh07FBoaWprlo5gVx++I7Oxs7dq1SyEhISVVJkqJM+OhY8eO2r9/v/0/nSTphx9+UEhISIUMlpIq5t1iFy1aZLy9vU1CQoLZs2ePGThwoAkMDDQnTpwwxhjz0EMPmeHDh9v7//vf/zYeHh7m1VdfNXv37jVjxowxnp6eZteuXa76CChGRR0PmZmZZvv27Wb79u0mJCTEPPvss2b79u3mxx9/dNVHQDEq6niYMmWK8fLyMkuWLDHHjx+3v86ePeuqj4BiVNTxMGnSJPPFF1+Yn376yezZs8e8+uqrxsPDw8ybN89VHwHFrKhj4mrcLbZiKep4GDdunFm1apX56aefzLZt28x9991nfHx8zHfffeeqj4BiVNTxcPjwYePn52eGDBli9u3bZ5YvX26CgoLMxIkTXfURSlyFDJfGGDNz5kxzww03GC8vL9OuXTuzadMm+7IuXbqY+Ph4h/4fffSRadSokfHy8jKRkZHms88+K+WKUZKKMh4OHjxoJOV5denSpfQLR4koyngICwvLdzyMGTOm9AtHiSjKeBg5cqRp0KCB8fHxMVWrVjUdOnQwixYtckHVKElF/TdEboTLiqco42Ho0KH2vsHBwaZXr14mOTnZBVWjpBT198PXX39t2rdvb7y9vU29evXMSy+9ZC5fvlzKVZcemzHGuGrWFAAAAABQMVS4ay4BAAAAAKWPcAkAAAAAsIxwCQAAAACwjHAJAAAAALCMcAkAAAAAsIxwCQAAAACwjHAJAAAAALCMcAkAAAAAsIxwCQBAOREeHq4ZM2a4ugwAAPJFuAQAIB8PP/ywbDab/VW9enX16NFDO3fulCStXLlSNptNJ06ccFgvJCRE4eHhDm0pKSmy2WxKTEzMd18JCQkO+6pSpYpat26tjz/+2KHfli1bNHDgwOL7kAAAFCPCJQAABejRo4eOHz+u48ePKzExUR4eHrr99tslSZ06dZKHh4eSkpLs/ffu3auMjAydOXNGKSkp9va1a9fK29tbHTt2LHBf/v7+9n1t375d3bt3V79+/bRv3z57n5o1a6pSpUrF/jkBACgOhEsAAArg7e2tWrVqqVatWoqKitLw4cN15MgRnTp1SlWqVFHbtm0dwmVSUpI6deqkjh075mm/+eab5ePjU+C+bDabfV8NGzbUxIkT5ebmZp8plfKeFmuz2fT222/rrrvuUqVKldSwYUN9+umn9uVnzpxR//79VbNmTfn6+qphw4aaP39+sRwbAACuRrgEAOA6nDt3Tu+//74aNGig6tWrS5JiY2O1du1ae5+1a9eqa9eu6tKli0N7UlKSYmNjr3tf2dnZWrBggSSpVatWhfYdN26c+vXrp507d6pXr17q37+/Tp8+LUkaNWqU9uzZo88//1x79+7V7NmzVaNGjeuuAwCAovBwdQEAAJRVy5cvV5UqVSRJ58+fV0hIiJYvXy43t9//bzY2NlaTJk3S8ePHFRISonXr1um5557T5cuXNXv2bEnSgQMHdPjw4WuGy7S0NPu+MjIy5Onpqblz56p+/fqFrvfwww/r/vvvlyRNmjRJr7/+ur755hv16NFDhw8fVsuWLdWmTRtJynMtKAAAxYlwCQBAAWJjY+0h8cyZM3rzzTfVs2dPffPNNwoLC1N0dLS8vLyUlJSkFi1aKCMjQ61atVJOTo5OnTqlgwcPKikpSb6+vrr55psL3Zefn5+Sk5MlSRcuXNCaNWv0+OOPq3r16urTp0+B6zVv3tz+58qVK8vf31+pqamSpCeeeEL33HOPkpOT1a1bN/Xt21fR0dFWDwsAAPnitFgAAApQuXJlNWjQQA0aNFDbtm319ttv6/z585o3b54kqVKlSmrXrp3Wrl2rtWvXqlOnTnJ3d5enp6eio6Pt7R07dpSXl1eh+3Jzc7Pvq3nz5ho2bJi6du2qqVOnFrqep6enw3ubzaacnBxJUs+ePXXo0CE988wzOnbsmG699VY9++yzFo4IAAAFI1wCAHCdbDab3NzclJGRYW+LjY1VUlKSkpKS1LVrV3t7586dlZSUpHXr1hXpesvc3N3dHfbljJo1ayo+Pl7vv/++ZsyYoblz51raHgAABeG0WAAACpCZmWl/juWZM2f0xhtv6Ny5cw6nqcbGxmrChAk6ceKEw6xgly5d9Morr+js2bPXFS6NMfZ9ZWRkaPXq1Vq1apVGjx7tdP2jR49W69atFRkZqczMTC1fvlxNmjRxensAABSGcAkAQAFWrlypkJAQSb9fE9m4cWMtXrzYYYayQ4cO8vb2ljFGrVu3tre3b99ely5dsj+y5FrS09Pt+/L29lZYWJjGjx+vF154wen6vby8NGLECKWkpMjX11cxMTFatGiR09sDAKAwNmOMcXURAAAAAIDyjWsuAQAAAACWES4BAAAAAJYRLgEAAAAAlhEuAQAAAACWES4BAAAAAJYRLgEAAAAAlhEuAQAAAACWES4BAAAAAJYRLgEAAAAAlhEuAQAAAACWES4BAAAAAJb9P5M9QFhladKAAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA44AAAGJCAYAAADFbW0FAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAx+UlEQVR4nO3de1xU5b7H8e9wG1BBvICiEni/YIriJVBUyrtZVid3ZkXWLittb3PXLrJStLx0073NNK2kU8co3ZUdM01N1HZaKpmaZnkhzRuWBqI4KKzzR8fZjsDSGQYWxuf9es3r5XrWM2v9Zj0M+vVZF5thGIYAAAAAACiFj9UFAAAAAAAqN4IjAAAAAMAUwREAAAAAYIrgCAAAAAAwRXAEAAAAAJgiOAIAAAAATBEcAQAAAACmCI4AAAAAAFMERwAAAACAKYIjAMBSEyZMkM1mK/N2MjIyZLPZlJGRccm+vXr1Uq9evS5ru7169VLbtm3LVpybbDabJkyYUO77KemYVeTnzcrKks1mU1paWoXsDwDgOYIjAFQRaWlpstlsLq/w8HAlJSXp008/tbo8Sx06dEgTJkzQli1bvL7t6Oho5/H28fFRaGiorr76at1///366quvvLafBQsWaMaMGV7bnjdV5toAAJfHz+oCAAAVa+LEiWrcuLEMw9DRo0eVlpamgQMH6n//9391/fXXW12ex3r06KH8/HwFBAS4/d5Dhw4pNTVV0dHRio2N9XptsbGx+tvf/iZJOnnypHbu3KmFCxdq3rx5euSRR/Tyyy+79M/Pz5efn3t/RS9YsEDbt2/XmDFjLvs9ZTlm7iittqioKOXn58vf379c9w8AKDuCIwBUMQMGDFCnTp2cy/fee6/q1aund99994oOjj4+PgoMDLS6jBI1bNhQd9xxh0vbtGnTdPvtt2v69Olq3ry5HnzwQee68v4cZ86cUUBAgOXHzGazVdoxAwC44lRVAKjiQkNDFRQUVGyG68UXX1RCQoLq1KmjoKAgxcXFadGiRcXeb7PZNHr0aH300Udq27at7Ha7YmJitGzZsmJ9v/jiC3Xu3FmBgYFq2rSpXnvttWJ9br75ZnXs2NGlbfDgwbLZbPr444+dbV999ZVsNpvzNNvSrnGcO3eumjZtqqCgIHXp0kXr1q1zWZ+RkaHOnTtLkkaMGOE8rfTi6+527NihpKQkVatWTQ0bNtTzzz9frHZ3BAUF6e2331bt2rX13HPPyTAM57qLr3E8efKkxowZo+joaNntdoWHh6tPnz7KzMyU9Pt1iZ988ol++uknZ/3R0dEuxyU9PV1PPfWUGjZsqGrVqik3N9f0utDNmzcrISFBQUFBaty4sebMmeOy/vypz1lZWS7tF2/TrLbSrnH8/PPPlZiYqOrVqys0NFQ33nijdu7c6dLn/LWxu3fv1t13363Q0FDVrFlTI0aM0OnTpy9vEAAAl40ZRwCoYnJycvTLL7/IMAxlZ2dr5syZysvLKzYj9o9//EM33HCDhg8froKCAqWnp+vWW2/VkiVLNGjQIJe+X3zxhT744AM99NBDCg4O1j//+U/dcsst2r9/v+rUqSNJ2rZtm/r27auwsDBNmDBB586d0/jx41WvXj2XbSUmJmrx4sXKzc1VSEiIDMPQv//9b/n4+GjdunW64YYbJEnr1q2Tj4+PunXrVupnfeONNzRy5EglJCRozJgx2rt3r2644QbVrl1bkZGRkqTWrVtr4sSJeuaZZ3T//fcrMTFRkpSQkODczokTJ9S/f3/dfPPNGjp0qBYtWqTHH39cV199tQYMGODhSEg1atTQTTfdpDfeeEM7duxQTExMif0eeOABLVq0SKNHj1abNm3066+/6osvvtDOnTvVsWNHjRs3Tjk5Ofr55581ffp057YvNGnSJAUEBOjRRx+Vw+EwPT31xIkTGjhwoIYOHaphw4bp/fff14MPPqiAgADdc889bn3Gy6ntQitXrtSAAQPUpEkTTZgwQfn5+Zo5c6a6deumzMxMZ+g8b+jQoWrcuLGmTJmizMxMvf766woPD9e0adPcqhMAcAkGAKBKmD9/viGp2MtutxtpaWnF+p8+fdpluaCgwGjbtq1x7bXXurRLMgICAozdu3c727799ltDkjFz5kxn25AhQ4zAwEDjp59+crbt2LHD8PX1NS7862jjxo2GJGPp0qWGYRjG1q1bDUnGrbfeanTt2tXZ74YbbjA6dOjgXF69erUhyVi9erWz3vDwcCM2NtZwOBzOfnPnzjUkGT179iy2z/nz5xc7Dj179jQkGf/93//tbHM4HEb9+vWNW265pVj/i0VFRRmDBg0qdf306dMNScbixYudbZKM8ePHO5dr1qxpjBo1ynQ/gwYNMqKiooq1nz8uTZo0KTamFx8zw/jP533ppZecbQ6Hw4iNjTXCw8ONgoICwzD+8/O0b9++S26ztNr27dtX7Lif38+vv/7qbPv2228NHx8f46677nK2jR8/3pBk3HPPPS7bvOmmm4w6deoU2xcAoGw4VRUAqphZs2ZpxYoVWrFihd555x0lJSXpz3/+sz744AOXfkFBQc4/nzhxQjk5OUpMTHSeHnmh3r17q2nTps7ldu3aKSQkRHv37pUkFRYWavny5RoyZIiuuuoqZ7/WrVurX79+Ltvq0KGDatSoobVr10r6fWaxUaNGuuuuu5SZmanTp0/LMAx98cUXztnBkmzatEnZ2dl64IEHXGbX7r77btWsWfNyDpVTjRo1XGZkAwIC1KVLF+fnK4vzs28nT54stU9oaKi++uorHTp0yOP9JCcnu4ypGT8/P40cOdK5HBAQoJEjRyo7O1ubN2/2uIZLOXz4sLZs2aK7775btWvXdra3a9dOffr00dKlS4u954EHHnBZTkxM1K+//qrc3NxyqxMAqiKCIwBUMV26dFHv3r3Vu3dvDR8+XJ988onatGmj0aNHq6CgwNlvyZIluuaaaxQYGKjatWsrLCxMs2fPVk5OTrFtXhgGz6tVq5ZOnDghSTp27Jjy8/PVvHnzYv1atmzpsuzr66v4+HjntYjr1q1TYmKiunfvrsLCQm3YsEE7duzQ8ePHTYPjTz/9JEnF9unv768mTZqU+r6SNGrUqNizJi/8fGWRl5cnSQoODi61z/PPP6/t27crMjJSXbp00YQJE9wOrY0bN77svg0aNFD16tVd2lq0aCFJxa5p9KbzY3bxz4T0+38y/PLLLzp16pRL+8U/e7Vq1ZIkr4wNAOA/CI4AUMX5+PgoKSlJhw8f1o8//ihJzmsJAwMD9eqrr2rp0qVasWKFbr/9dpebuJzn6+tb4rZL6ns5unfvro0bN+rMmTPO4BgaGqq2bdtq3bp1zlBpFhy9yduf70Lbt2+XJDVr1qzUPkOHDtXevXs1c+ZMNWjQQC+88IJiYmLcev7m5c42Xq6Lg/R5hYWFXt3PpZTn2AAA/oPgCADQuXPnJP1n9utf//qXAgMDtXz5ct1zzz0aMGCAevfu7fH2w8LCFBQU5AymF9q1a1extsTERBUUFOjdd9/VwYMHnQGxR48ezuDYokWLYjfWuVBUVJQkFdvn2bNntW/fPpe20kJQecvLy9OHH36oyMhItW7d2rRvRESEHnroIX300Ufat2+f6tSpo+eee8653puf4dChQ8Vm9n744QdJct6c5vzM3m+//ebS7/ys4YUut7bzY1bSz8T333+vunXrFpsJBQBUDIIjAFRxZ8+e1WeffaaAgABnePH19ZXNZnOZPcrKytJHH33k0T58fX3Vr18/ffTRR9q/f7+zfefOnVq+fHmx/l27dpW/v7+mTZum2rVrO+82mpiYqA0bNmjNmjWXnG3s1KmTwsLCNGfOHJdTcNPS0oqFnfNh5OL28pSfn68777xTx48f17hx40xn8C4+PTg8PFwNGjSQw+FwtlWvXr3E04g9ce7cOZdHpRQUFOi1115TWFiY4uLiJMl5Tev5a1HP1zp37txi27vc2iIiIhQbG6u33nrLZSy2b9+uzz77TAMHDvT0IwEAyojHcQBAFfPpp5/q+++/lyRlZ2drwYIF+vHHH/XEE08oJCREkjRo0CC9/PLL6t+/v26//XZlZ2dr1qxZatasmbZu3erRflNTU7Vs2TIlJibqoYce0rlz5zRz5kzFxMQU22a1atUUFxenDRs2OJ/hKP0+43jq1CmdOnXqksHR399fzz77rEaOHKlrr71Wf/rTn7Rv3z7Nnz+/2DWOTZs2VWhoqObMmaPg4GBVr15dXbt2deu6QDMHDx7UO++8I+n3WcYdO3Zo4cKFOnLkiP72t7+53IjmYidPnlSjRo30X//1X2rfvr1q1KihlStXauPGjXrppZec/eLi4vTee+9p7Nix6ty5s2rUqKHBgwd7VG+DBg00bdo0ZWVlqUWLFnrvvfe0ZcsWzZ07V/7+/pKkmJgYXXPNNUpJSdHx48dVu3ZtpaenO2evL+RObS+88IIGDBig+Ph43Xvvvc7HcdSsWdPl2ZYAgApm6T1dAQAVpqTHcQQGBhqxsbHG7NmzjaKiIpf+b7zxhtG8eXPDbrcbrVq1MubPn+98BMKFJJX4qIioqCgjOTnZpW3NmjVGXFycERAQYDRp0sSYM2dOids0DMN47LHHDEnGtGnTXNqbNWtmSDL27Nnj0l7SYyAMwzBeffVVo3Hjxobdbjc6depkrF271ujZs6fL4zgMwzAWL15stGnTxvDz83N5RETPnj2NmJiYYvUlJyeX+IiJko7D+eNts9mMkJAQIyYmxrjvvvuMr776qsT36ILHcTgcDuOxxx4z2rdvbwQHBxvVq1c32rdvb7z66qsu78nLyzNuv/12IzQ01JDkrO38cVm4cGGx/ZT2OI6YmBhj06ZNRnx8vBEYGGhERUUZr7zySrH379mzx+jdu7dht9uNevXqGU8++aSxYsWKYtssrbaSHsdhGIaxcuVKo1u3bkZQUJAREhJiDB482NixY4dLn/M/N8eOHXNpL+0xIQCAsrEZBlePAwAAAABKxzWOAAAAAABTBEcAAAAAgCmCIwAAAADAFMERAAAAAGCK4AgAAAAAMEVwBAAAAACY8rO6gLIoKirSoUOHFBwc7Hw4NAAAAADg8hiGoZMnT6pBgwby8Sl9XvGKDo6HDh1SZGSk1WUAAAAAwBXtwIEDatSoUanrr+jgGBwcLOn3DxkSEmJxNQAAAABwZcnNzVVkZKQzW5Xmig6O509PDQkJITgCAAAAgIcudekfN8cBAAAAAJgiOAIAAAAATBEcAQAAAACmCI4AAAAAAFMERwAAAACAKYIjAAAAAMAUwREAAAAAYMry4Hjw4EHdcccdqlOnjoKCgnT11Vdr06ZNVpcFAAAAAPh/flbu/MSJE+rWrZuSkpL06aefKiwsTD/++KNq1aplZVkAAAAAgAtYGhynTZumyMhIzZ8/39nWuHFjCysCAAAAAFzM0lNVP/74Y3Xq1Em33nqrwsPD1aFDB82bN6/U/g6HQ7m5uS4vAAAAAED5snTGce/evZo9e7bGjh2rJ598Uhs3btRf/vIXBQQEKDk5uVj/KVOmKDU11YJK/3iin/ik1HVZUwdVYCV/HGbHVOK4AgAA4Mpl6YxjUVGROnbsqMmTJ6tDhw66//77dd9992nOnDkl9k9JSVFOTo7zdeDAgQquGAAAAACqHkuDY0REhNq0aePS1rp1a+3fv7/E/na7XSEhIS4vAAAAAED5sjQ4duvWTbt27XJp++GHHxQVFWVRRQAAAACAi1kaHB955BFt2LBBkydP1u7du7VgwQLNnTtXo0aNsrIsAAAAAMAFLA2OnTt31ocffqh3331Xbdu21aRJkzRjxgwNHz7cyrIAAAAAABew9K6qknT99dfr+uuvt7oMAAAAAEApLJ1xBAAAAABUfgRHAAAAAIApgiMAAAAAwBTBEQAAAABgiuAIAAAAADBFcAQAAAAAmCI4AgAAAABMERwBAAAAAKYIjgAAAAAAUwRHAAAAAIApgiMAAAAAwBTBEQAAAABgiuAIAAAAADBFcAQAAAAAmCI4AgAAAABMERwBAAAAAKYIjgAAAAAAUwRHAAAAAIApgiMAAAAAwBTBEQAAAABgiuAIAAAAADBFcAQAAAAAmCI4AgAAAABMERwBAAAAAKYIjgAAAAAAUwRHAAAAAIApgiMAAAAAwBTBEQAAAABgiuAIAAAAADBFcAQAAAAAmCI4AgAAAABMERwBAAAAAKYIjgAAAAAAUwRHAAAAAIApgiMAAAAAwBTBEQAAAABgiuAIAAAAADBFcAQAAAAAmLI0OE6YMEE2m83l1apVKytLAgAAAABcxM/qAmJiYrRy5Urnsp+f5SUBAAAAAC5geUrz8/NT/fr1rS4DAAAAAFAKy69x/PHHH9WgQQM1adJEw4cP1/79+0vt63A4lJub6/ICAAAAAJQvS2ccu3btqrS0NLVs2VKHDx9WamqqEhMTtX37dgUHBxfrP2XKFKWmplpQKbwp+olPSl2XNXVQBVYCAAAA4HJYOuM4YMAA3XrrrWrXrp369eunpUuX6rffftP7779fYv+UlBTl5OQ4XwcOHKjgigEAAACg6rH8GscLhYaGqkWLFtq9e3eJ6+12u+x2ewVXBQAAAABVm+XXOF4oLy9Pe/bsUUREhNWlAAAAAAD+n6XB8dFHH9WaNWuUlZWlL7/8UjfddJN8fX01bNgwK8sCAAAAAFzA0lNVf/75Zw0bNky//vqrwsLC1L17d23YsEFhYWFWlgUAAAAAuIClwTE9Pd3K3QMAAAAALkOlusYRAAAAAFD5EBwBAAAAAKYIjgAAAAAAUwRHAAAAAIApgiMAAAAAwBTBEQAAAABgiuAIAAAAADBFcAQAAAAAmCI4AgAAAABMERwBAAAAAKYIjgAAAAAAUwRHAAAAAIApgiMAAAAAwBTBEQAAAABgiuAIAAAAADBFcAQAAAAAmCI4AgAAAABMERwBAAAAAKYIjgAAAAAAUwRHAAAAAIApgiMAAAAAwBTBEQAAAABgiuAIAAAAADBFcAQAAAAAmCI4AgAAAABMERwBAAAAAKYIjgAAAAAAUwRHAAAAAIApgiMAAAAAwBTBEQAAAABgiuAIAAAAADBFcAQAAAAAmCI4AgAAAABMERwBAAAAAKYIjgAAAAAAUwRHAAAAAIApgiMAAAAAwBTBEQAAAABgqtIEx6lTp8pms2nMmDFWlwIAAAAAuEClCI4bN27Ua6+9pnbt2lldCgAAAADgIpYHx7y8PA0fPlzz5s1TrVq1rC4HAAAAAHARy4PjqFGjNGjQIPXu3fuSfR0Oh3Jzc11eAAAAAIDy5WflztPT05WZmamNGzdeVv8pU6YoNTW1nKvynugnPjFdnzV1UAVVAgAAAACes2zG8cCBA/rrX/+q//mf/1FgYOBlvSclJUU5OTnO14EDB8q5SgAAAACAZTOOmzdvVnZ2tjp27OhsKyws1Nq1a/XKK6/I4XDI19fX5T12u112u72iSwUAAACAKs2y4Hjddddp27ZtLm0jRoxQq1at9PjjjxcLjQAAAAAAa1gWHIODg9W2bVuXturVq6tOnTrF2gEAAAAA1rH8rqoAAAAAgMrN0ruqXiwjI8PqEgAAAAAAF2HGEQAAAABgiuAIAAAAADBFcAQAAAAAmCI4AgAAAABMERwBAAAAAKYIjgAAAAAAUwRHAAAAAIApgiMAAAAAwBTBEQAAAABgiuAIAAAAADBFcAQAAAAAmCI4AgAAAABMERwBAAAAAKYIjgAAAAAAUx4Fx8zMTG3bts25vHjxYg0ZMkRPPvmkCgoKvFYcAAAAAMB6HgXHkSNH6ocffpAk7d27V7fddpuqVaumhQsX6u9//7tXCwQAAAAAWMuj4PjDDz8oNjZWkrRw4UL16NFDCxYsUFpamv71r395sz4AAAAAgMU8Co6GYaioqEiStHLlSg0cOFCSFBkZqV9++cV71QEAAAAALOdRcOzUqZOeffZZvf3221qzZo0GDRokSdq3b5/q1avn1QIBAAAAANbyKDhOnz5dmZmZGj16tMaNG6dmzZpJkhYtWqSEhASvFggAAAAAsJafJ29q3769y11Vz3vhhRfk5+fRJgEAAAAAlZRHM45NmjTRr7/+Wqz9zJkzatGiRZmLAgAAAABUHh4Fx6ysLBUWFhZrdzgc+vnnn8tcFAAAAACg8nDrvNKPP/7Y+efly5erZs2azuXCwkKtWrVKjRs39l51AAAAAADLuRUchwwZIkmy2WxKTk52Wefv76/o6Gi99NJLXisOAAAAAGA9t4Lj+Wc3Nm7cWBs3blTdunXLpSgAAAAAQOXh0S1Q9+3b5+06AAAAAACVlMfPzli1apVWrVql7Oxs50zkeW+++WaZCwMAAAAAVA4eBcfU1FRNnDhRnTp1UkREhGw2m7frAgAAAABUEh4Fxzlz5igtLU133nmnt+sBAAAAAFQyHj3HsaCgQAkJCd6uBQAAAABQCXkUHP/85z9rwYIF3q4FAAAAAFAJeXSq6pkzZzR37lytXLlS7dq1k7+/v8v6l19+2SvFAQAAAACs51Fw3Lp1q2JjYyVJ27dvd1nHjXIAAAAA4I/Fo+C4evVqb9cBAAAAAKikPLrGEQAAAABQdXg045iUlGR6Surnn3/ucUEAAAAAgMrFo+B4/vrG886ePastW7Zo+/btSk5O9kZdAAAAAIBKwqPgOH369BLbJ0yYoLy8vMvezuzZszV79mxlZWVJkmJiYvTMM89owIABnpQFAAAAACgHXr3G8Y477tCbb7552f0bNWqkqVOnavPmzdq0aZOuvfZa3Xjjjfruu++8WRYAAAAAoAw8mnEszfr16xUYGHjZ/QcPHuyy/Nxzz2n27NnasGGDYmJivFkaAAAAAMBDHgXHm2++2WXZMAwdPnxYmzZt0tNPP+1RIYWFhVq4cKFOnTql+Pj4Evs4HA45HA7ncm5urkf7AgAAAABcPo+CY82aNV2WfXx81LJlS02cOFF9+/Z1a1vbtm1TfHy8zpw5oxo1aujDDz9UmzZtSuw7ZcoUpaamelIyrhDRT3xiuj5r6qByfT+AK5fZ95/vPgAAZeNRcJw/f77XCmjZsqW2bNminJwcLVq0SMnJyVqzZk2J4TElJUVjx451Lufm5ioyMtJrtQAAAAAAiivTNY6bN2/Wzp07Jf1+R9QOHTq4vY2AgAA1a9ZMkhQXF6eNGzfqH//4h1577bVife12u+x2e1lKBgAAAAC4yaPgmJ2drdtuu00ZGRkKDQ2VJP32229KSkpSenq6wsLCPC6oqKjI5TpGAAAAAIC1PHocx8MPP6yTJ0/qu+++0/Hjx3X8+HFt375dubm5+stf/nLZ20lJSdHatWuVlZWlbdu2KSUlRRkZGRo+fLgnZQEAAAAAyoFHM47Lli3TypUr1bp1a2dbmzZtNGvWLLdujpOdna277rpLhw8fVs2aNdWuXTstX75cffr08aQsAAAAAEA58Cg4FhUVyd/fv1i7v7+/ioqKLns7b7zxhie7BwAAAABUII9OVb322mv117/+VYcOHXK2HTx4UI888oiuu+46rxUHAAAAALCeR8HxlVdeUW5urqKjo9W0aVM1bdpUjRs3Vm5urmbOnOntGgEAAAAAFvLoVNXIyEhlZmZq5cqV+v777yVJrVu3Vu/evb1aHAAAAADAem7NOH7++edq06aNcnNzZbPZ1KdPHz388MN6+OGH1blzZ8XExGjdunXlVSsAAAAAwAJuBccZM2bovvvuU0hISLF1NWvW1MiRI/Xyyy97rTgAAAAAgPXcCo7ffvut+vfvX+r6vn37avPmzWUuCgAAAABQebgVHI8ePVriYzjO8/Pz07Fjx8pcFAAAAACg8nArODZs2FDbt28vdf3WrVsVERFR5qIAAAAAAJWHW8Fx4MCBevrpp3XmzJli6/Lz8zV+/Hhdf/31XisOAAAAAGA9tx7H8dRTT+mDDz5QixYtNHr0aLVs2VKS9P3332vWrFkqLCzUuHHjyqVQAAAAAIA13AqO9erV05dffqkHH3xQKSkpMgxDkmSz2dSvXz/NmjVL9erVK5dCAQAAAADWcCs4SlJUVJSWLl2qEydOaPfu3TIMQ82bN1etWrXKoz4AAAAAgMXcDo7n1apVS507d/ZmLQAAAACASsitm+MAAAAAAKoegiMAAAAAwBTBEQAAAABgiuAIAAAAADBFcAQAAAAAmCI4AgAAAABMERwBAAAAAKYIjgAAAAAAUwRHAAAAAIApgiMAAAAAwBTBEQAAAABgiuAIAAAAADBFcAQAAAAAmCI4AgAAAABMERwBAAAAAKYIjgAAAAAAUwRHAAAAAIApgiMAAAAAwBTBEQAAAABgiuAIAAAAADBFcAQAAAAAmCI4AgAAAABMERwBAAAAAKYIjgAAAAAAUwRHAAAAAIApS4PjlClT1LlzZwUHBys8PFxDhgzRrl27rCwJAAAAAHARS4PjmjVrNGrUKG3YsEErVqzQ2bNn1bdvX506dcrKsgAAAAAAF/CzcufLli1zWU5LS1N4eLg2b96sHj16WFQVAAAAAOBClgbHi+Xk5EiSateuXeJ6h8Mhh8PhXM7Nza2QugAAAACgKqs0wbGoqEhjxoxRt27d1LZt2xL7TJkyRampqRVcGSqT6Cc+sboEj5nVnjV1UAVWAlQ9l/rdcanvYFl+91Tm73dZj0t5KkttlflzAcCVqtLcVXXUqFHavn270tPTS+2TkpKinJwc5+vAgQMVWCEAAAAAVE2VYsZx9OjRWrJkidauXatGjRqV2s9ut8tut1dgZQAAAAAAS4OjYRh6+OGH9eGHHyojI0ONGze2shwAAAAAQAksDY6jRo3SggULtHjxYgUHB+vIkSOSpJo1ayooKMjK0gAAAAAA/8/Saxxnz56tnJwc9erVSxEREc7Xe++9Z2VZAAAAAIALWH6qKgAAAACgcqs0d1UFAAAAAFROBEcAAAAAgCmCIwAAAADAFMERAAAAAGCK4AgAAAAAMEVwBAAAAACYIjgCAAAAAEwRHAEAAAAApgiOAAAAAABTBEcAAAAAgCmCIwAAAADAFMERAAAAAGCK4AgAAAAAMEVwBAAAAACYIjgCAAAAAEwRHAEAAAAApgiOAAAAAABTBEcAAAAAgCmCIwAAAADAFMERAAAAAGCK4AgAAAAAMEVwBAAAAACYIjgCAAAAAEwRHAEAAAAApgiOAAAAAABTBEcAAAAAgCmCIwAAAADAFMERAAAAAGCK4AgAAAAAMEVwBAAAAACYIjgCAAAAAEwRHAEAAAAApgiOAAAAAABTBEcAAAAAgCmCIwAAAADAFMERAAAAAGCK4AgAAAAAMEVwBAAAAACYsjQ4rl27VoMHD1aDBg1ks9n00UcfWVkOAAAAAKAElgbHU6dOqX379po1a5aVZQAAAAAATPhZufMBAwZowIABVpYAAAAAALgES4OjuxwOhxwOh3M5NzfXwmoAAAAAoGq4ooLjlClTlJqaanUZXhP9xCelrsuaOqgCK3GPWd2VXWU95uV9TCvzz9OV6lJjVll/nvhZ+ONhvK8sZf19z5h6H98heEtl/reBN1xRd1VNSUlRTk6O83XgwAGrSwIAAACAP7wrasbRbrfLbrdbXQYAAAAAVClX1IwjAAAAAKDiWTrjmJeXp927dzuX9+3bpy1btqh27dq66qqrLKwMAAAAAHCepcFx06ZNSkpKci6PHTtWkpScnKy0tDSLqgIAAAAAXMjS4NirVy8ZhmFlCQAAAACAS+AaRwAAAACAKYIjAAAAAMAUwREAAAAAYIrgCAAAAAAwRXAEAAAAAJgiOAIAAAAATBEcAQAAAACmCI4AAAAAAFMERwAAAACAKYIjAAAAAMAUwREAAAAAYIrgCAAAAAAwRXAEAAAAAJgiOAIAAAAATBEcAQAAAACmCI4AAAAAAFMERwAAAACAKYIjAAAAAMAUwREAAAAAYIrgCAAAAAAwRXAEAAAAAJgiOAIAAAAATBEcAQAAAACmCI4AAAAAAFMERwAAAACAKYIjAAAAAMAUwREAAAAAYIrgCAAAAAAwRXAEAAAAAJgiOAIAAAAATBEcAQAAAACmCI4AAAAAAFMERwAAAACAKYIjAAAAAMAUwREAAAAAYIrgCAAAAAAwRXAEAAAAAJgiOAIAAAAATFWK4Dhr1ixFR0crMDBQXbt21ddff211SQAAAACA/2d5cHzvvfc0duxYjR8/XpmZmWrfvr369eun7Oxsq0sDAAAAAKgSBMeXX35Z9913n0aMGKE2bdpozpw5qlatmt58802rSwMAAAAASPKzcucFBQXavHmzUlJSnG0+Pj7q3bu31q9fX6y/w+GQw+FwLufk5EiScnNzy79YDxQ5Tnv83vL+TGa1XWrfZflclVlZj3llPi6V9TtyJbvUeFt5zMvy/b6Slefv3Kr6+7yy/hxL5rVdyZ/rUv7I32GrVNXfmfC+yvy7x8z5ugzDMO1nMy7VoxwdOnRIDRs21Jdffqn4+Hhn+9///netWbNGX331lUv/CRMmKDU1taLLBAAAAIA/tAMHDqhRo0alrrd0xtFdKSkpGjt2rHO5qKhIx48fV506dWSz2byyj9zcXEVGRurAgQMKCQnxyjZROTHWVQdjXXUw1lUD41x1MNZVB2NtHcMwdPLkSTVo0MC0n6XBsW7duvL19dXRo0dd2o8ePar69esX62+322W3213aQkNDy6W2kJAQfmirCMa66mCsqw7GumpgnKsOxrrqYKytUbNmzUv2sfTmOAEBAYqLi9OqVaucbUVFRVq1apXLqasAAAAAAOtYfqrq2LFjlZycrE6dOqlLly6aMWOGTp06pREjRlhdGgAAAABAlSA4/ulPf9KxY8f0zDPP6MiRI4qNjdWyZctUr149S+qx2+0aP358sVNi8cfDWFcdjHXVwVhXDYxz1cFYVx2MdeVn6V1VAQAAAACVn6XXOAIAAAAAKj+CIwAAAADAFMERAAAAAGCK4AgAAAAAMFUlg+OsWbMUHR2twMBAde3aVV9//bVp/4ULF6pVq1YKDAzU1VdfraVLl1ZQpSgrd8b6u+++0y233KLo6GjZbDbNmDGj4gpFmbkz1vPmzVNiYqJq1aqlWrVqqXfv3pf8PYDKw52x/uCDD9SpUyeFhoaqevXqio2N1dtvv12B1cJT7v5dfV56erpsNpuGDBlSvgXCa9wZ67S0NNlsNpdXYGBgBVaLsnD3e/3bb79p1KhRioiIkN1uV4sWLfh3uIWqXHB87733NHbsWI0fP16ZmZlq3769+vXrp+zs7BL7f/nllxo2bJjuvfdeffPNNxoyZIiGDBmi7du3V3DlcJe7Y3369Gk1adJEU6dOVf369Su4WpSFu2OdkZGhYcOGafXq1Vq/fr0iIyPVt29fHTx4sIIrh7vcHevatWtr3LhxWr9+vbZu3aoRI0ZoxIgRWr58eQVXDne4O87nZWVl6dFHH1ViYmIFVYqy8mSsQ0JCdPjwYefrp59+qsCK4Sl3x7qgoEB9+vRRVlaWFi1apF27dmnevHlq2LBhBVcOJ6OK6dKlizFq1CjncmFhodGgQQNjypQpJfYfOnSoMWjQIJe2rl27GiNHjizXOlF27o71haKioozp06eXY3XwprKMtWEYxrlz54zg4GDjrbfeKq8S4SVlHWvDMIwOHToYTz31VHmUBy/xZJzPnTtnJCQkGK+//rqRnJxs3HjjjRVQKcrK3bGeP3++UbNmzQqqDt7k7ljPnj3baNKkiVFQUFBRJeISqtSMY0FBgTZv3qzevXs723x8fNS7d2+tX7++xPesX7/epb8k9evXr9T+qBw8GWtcmbwx1qdPn9bZs2dVu3bt8ioTXlDWsTYMQ6tWrdKuXbvUo0eP8iwVZeDpOE+cOFHh4eG69957K6JMeIGnY52Xl6eoqChFRkbqxhtv1HfffVcR5aIMPBnrjz/+WPHx8Ro1apTq1auntm3bavLkySosLKyosnGRKhUcf/nlFxUWFqpevXou7fXq1dORI0dKfM+RI0fc6o/KwZOxxpXJG2P9+OOPq0GDBsX+kwiVi6djnZOToxo1aiggIECDBg3SzJkz1adPn/IuFx7yZJy/+OILvfHGG5o3b15FlAgv8WSsW7ZsqTfffFOLFy/WO++8o6KiIiUkJOjnn3+uiJLhIU/Geu/evVq0aJEKCwu1dOlSPf3003rppZf07LPPVkTJKIGf1QUAgJWmTp2q9PR0ZWRkcIOFP6jg4GBt2bJFeXl5WrVqlcaOHasmTZqoV69eVpcGLzh58qTuvPNOzZs3T3Xr1rW6HJSz+Ph4xcfHO5cTEhLUunVrvfbaa5o0aZKFlcHbioqKFB4errlz58rX11dxcXE6ePCgXnjhBY0fP97q8qqkKhUc69atK19fXx09etSl/ejRo6XeDKV+/fpu9Ufl4MlY48pUlrF+8cUXNXXqVK1cuVLt2rUrzzLhBZ6OtY+Pj5o1ayZJio2N1c6dOzVlyhSCYyXl7jjv2bNHWVlZGjx4sLOtqKhIkuTn56ddu3apadOm5Vs0POKNv6v9/f3VoUMH7d69uzxKhJd4MtYRERHy9/eXr6+vs61169Y6cuSICgoKFBAQUK41o7gqdapqQECA4uLitGrVKmdbUVGRVq1a5fK/VxeKj4936S9JK1asKLU/KgdPxhpXJk/H+vnnn9ekSZO0bNkyderUqSJKRRl563tdVFQkh8NRHiXCC9wd51atWmnbtm3asmWL83XDDTcoKSlJW7ZsUWRkZEWWDzd44ztdWFiobdu2KSIiorzKhBd4MtbdunXT7t27nf8RJEk//PCDIiIiCI1WsfruPBUtPT3dsNvtRlpamrFjxw7j/vvvN0JDQ40jR44YhmEYd955p/HEE084+//73/82/Pz8jBdffNHYuXOnMX78eMPf39/Ytm2bVR8Bl8ndsXY4HMY333xjfPPNN0ZERITx6KOPGt98843x448/WvURcJncHeupU6caAQEBxqJFi4zDhw87XydPnrTqI+AyuTvWkydPNj777DNjz549xo4dO4wXX3zR8PPzM+bNm2fVR8BlcHecL8ZdVa8c7o51amqqsXz5cmPPnj3G5s2bjdtuu80IDAw0vvvuO6s+Ai6Tu2O9f/9+Izg42Bg9erSxa9cuY8mSJUZ4eLjx7LPPWvURqrwqFxwNwzBmzpxpXHXVVUZAQIDRpUsXY8OGDc51PXv2NJKTk136v//++0aLFi2MgIAAIyYmxvjkk08quGJ4yp2x3rdvnyGp2Ktnz54VXzjc5s5YR0VFlTjW48ePr/jC4TZ3xnrcuHFGs2bNjMDAQKNWrVpGfHy8kZ6ebkHVcJe7f1dfiOB4ZXFnrMeMGePsW69ePWPgwIFGZmamBVXDE+5+r7/88kuja9euht1uN5o0aWI899xzxrlz5yq4apxnMwzDsGq2EwAAAABQ+VWpaxwBAAAAAO4jOAIAAAAATBEcAQAAAACmCI4AAAAAAFMERwAAAACAKYIjAAAAAMAUwREAAAAAYIrgCAAAAAAwRXAEAKASiI6O1owZM6wuAwCAEhEcAQBVzt133y2bzeZ81alTR/3799fWrVslScuWLZPNZtORI0dc3hcREaHo6GiXtqysLNlsNq1atarEfaWlpbnsq0aNGoqLi9MHH3zg0m/jxo26//77vfchAQDwIoIjAKBK6t+/vw4fPqzDhw9r1apV8vPz0/XXXy9J6t69u/z8/JSRkeHsv3PnTuXn5+vEiRPKyspytq9evVp2u13dunUrdV8hISHOfX3zzTfq16+fhg4dql27djn7hIWFqVq1al7/nAAAeAPBEQBQJdntdtWvX1/169dXbGysnnjiCR04cEDHjh1TjRo11LlzZ5fgmJGRoe7du6tbt27F2q+55hoFBgaWui+bzebcV/PmzfXss8/Kx8fHOcMpFT9V1Waz6fXXX9dNN92katWqqXnz5vr444+d60+cOKHhw4crLCxMQUFBat68uebPn++VYwMAwMUIjgCAKi8vL0/vvPOOmjVrpjp16kiSkpKStHr1amef1atXq1evXurZs6dLe0ZGhpKSki57X4WFhXrrrbckSR07djTtm5qaqqFDh2rr1q0aOHCghg8fruPHj0uSnn76ae3YsUOffvqpdu7cqdmzZ6tu3bqXXQcAAO7ws7oAAACssGTJEtWoUUOSdOrUKUVERGjJkiXy8fn9/1STkpI0efJkHT58WBEREVqzZo0ee+wxnTt3TrNnz5Yk7d27V/v3779kcMzJyXHuKz8/X/7+/po7d66aNm1q+r67775bw4YNkyRNnjxZ//znP/X111+rf//+2r9/vzp06KBOnTpJUrFrLwEA8CaCIwCgSkpKSnIGwBMnTujVV1/VgAED9PXXXysqKkoJCQkKCAhQRkaG2rdvr/z8fHXs2FFFRUU6duyY9u3bp4yMDAUFBemaa64x3VdwcLAyMzMlSadPn9bKlSv1wAMPqE6dOho8eHCp72vXrp3zz9WrV1dISIiys7MlSQ8++KBuueUWZWZmqm/fvhoyZIgSEhLKelgAACgRp6oCAKqk6tWrq1mzZmrWrJk6d+6s119/XadOndK8efMkSdWqVVOXLl20evVqrV69Wt27d5evr6/8/f2VkJDgbO/WrZsCAgJM9+Xj4+PcV7t27TR27Fj16tVL06ZNM32fv7+/y7LNZlNRUZEkacCAAfrpp5/0yCOP6NChQ7ruuuv06KOPluGIAABQOoIjAAD6PZT5+PgoPz/f2ZaUlKSMjAxlZGSoV69ezvYePXooIyNDa9ascev6xgv5+vq67MsTYWFhSk5O1jvvvKMZM2Zo7ty5ZdoeAACl4VRVAECV5HA4nM9pPHHihF555RXl5eW5nDqalJSkSZMm6ciRIy6zeT179tQLL7ygkydPXlZwNAzDua/8/HytWLFCy5cv1zPPPONx/c8884zi4uIUExMjh8OhJUuWqHXr1h5vDwAAMwRHAECVtGzZMkVEREj6/RrEVq1aaeHChS4zi/Hx8bLb7TIMQ3Fxcc72rl276uzZs87HdlxKbm6uc192u11RUVGaOHGiHn/8cY/rDwgIUEpKirKyshQUFKTExESlp6d7vD0AAMzYDMMwrC4CAAAAAFB5cY0jAAAAAMAUwREAAAAAYIrgCAAAAAAwRXAEAAAAAJgiOAIAAAAATBEcAQAAAACmCI4AAAAAAFMERwAAAACAKYIjAAAAAMAUwREAAAAAYIrgCAAAAAAw9X+lan975GTLcAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -419,12 +493,12 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAGJCAYAAAAe1scnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA1TElEQVR4nO3deVhV5d7/8c+WYeMEijKZKIg55xCaoZlDKo5pWanHTM1sUo9jpeWsJ6zMtJPD06A0PB7NjjY4YE5oFlppZJZjiloKah7YigkK6/fHedg/dwzCXsAGfL+ua19X6173uvd3r70CP9xrsBiGYQgAAAAAABPKuboAAAAAAEDpR7gEAAAAAJhGuAQAAAAAmEa4BAAAAACYRrgEAAAAAJhGuAQAAAAAmEa4BAAAAACYRrgEAAAAAJhGuAQAAAAAmEa4BADcEmbMmCGLxeLqMvIlISFBFotF0dHRRf5e0dHRslgsSkhIsLeFhISoV69eRf7ekhQbGyuLxaLY2NhieT8AQNEhXAIA8i0riGS9vLy8VKNGDUVGRurNN9/UpUuXXFrflStXNGPGjBIXVG7cZ+7u7vL19VV4eLjGjBmjX375pdDeZ/HixcUSSJ1RkmsDABQOi2EYhquLAACUDtHR0Ro2bJhmzZql0NBQXbt2TYmJiYqNjdXmzZtVq1Ytff7552ratKlL6rtw4YL8/Pw0ffp0zZgxw2Hd9evXdf36dXl5eRV7XRaLRV26dNFjjz0mwzCUkpKiH3/8UatXr1ZqaqpeeeUVjR8/3t7fMAylpaXJw8NDbm5u+X6fJk2aqHr16gUK1xkZGbp27ZqsVqt9ZjckJERNmjTRunXr8j2Os7VlZmYqPT1dnp6eKleOv3kDQGnm7uoCAAClT/fu3dWyZUv78uTJk7Vt2zb16tVL999/vw4ePKjy5cubfp/r168rMzNTnp6epsdyd3eXu7vrfu3Vq1dPjz76qEPb3Llz1bt3b02YMEENGjRQjx49JMk+K1yUUlNTVbFiRbm5uRUowBa2cuXKuSTwAwAKH38iBAAUik6dOmnq1Kk6efKkPvroI3t7hw4d1KFDh2z9hw4dqpCQEPty1nWG8+bN04IFCxQWFiar1apffvlF6enpmjZtmsLDw+Xj46OKFSuqXbt22r59u8P2fn5+kqSZM2faT0PNmsHM6ZrL69eva/bs2fb3CgkJ0Ysvvqi0tDSHflnXIO7atUt33XWXvLy8VKdOHX3wwQem9lm1atW0cuVKubu76x//+Ee2fXHjaaSJiYkaNmyYatasKavVqqCgIPXp08d+rWRISIh+/vln7dixw/7Zs/Z71unMO3bs0LPPPit/f3/VrFnTYd2N11xm+fLLL9W8eXN5eXmpUaNGWrNmjcP63K5j/euYedWW2zWXq1evVnh4uMqXL6/q1avr0Ucf1e+//+7QZ+jQoapUqZJ+//139e3bV5UqVZKfn58mTpyojIyMm+x9AEBhI1wCAArN4MGDJf03lDhr+fLl+uc//6knn3xSr7/+unx9fWWz2fTuu++qQ4cOeuWVVzRjxgydP39ekZGRio+PlyT5+flpyZIlkqQHHnhAH374oT788EM9+OCDub7XE088oWnTpunOO+/UG2+8ofbt2ysqKkoDBgzI1vfYsWN66KGH1KVLF73++uuqWrWqhg4dqp9//tnpzypJtWrVUvv27bV7927ZbLZc+/Xr109r167VsGHDtHjxYv3973/XpUuXdOrUKUnSggULVLNmTTVo0MD+2V966SWHMZ599ln98ssvmjZtmiZNmpRnXUePHlX//v3VvXt3RUVFyd3dXQ8//LA2b95c4M+Yn9puFB0drUceeURubm6KiorSiBEjtGbNGt1zzz1KTk526JuRkaHIyEhVq1ZN8+bNU/v27fX666/r7bffLnCdAACTDAAA8mn58uWGJOO7777LtY+Pj4/RokUL+3L79u2N9u3bZ+s3ZMgQo3bt2vblEydOGJIMb29v49y5cw59r1+/bqSlpTm0/ec//zECAgKMxx9/3N52/vx5Q5Ixffr0bO83ffp048Zfe/Hx8YYk44knnnDoN3HiREOSsW3bNntb7dq1DUnGzp077W3nzp0zrFarMWHChJx3xA0kGSNHjsx1/ZgxYwxJxo8//mgYxv/fF8uXL7d/VknGa6+9luf7NG7cOMd9nfW93XPPPcb169dzXHfixAl7W9bn/fe//21vS0lJMYKCghy+27/u07zGzK227du3G5KM7du3G4ZhGOnp6Ya/v7/RpEkT488//7T3W7dunSHJmDZtmr1tyJAhhiRj1qxZDmO2aNHCCA8Pz/ZeAICixcwlAKBQVapUydRdY/v162c/vTWLm5ub/brLzMxMXbx4UdevX1fLli21b98+p95nw4YNkuRwIx1JmjBhgiRp/fr1Du2NGjVSu3bt7Mt+fn6qX7++jh8/7tT736hSpUqSlOt+K1++vDw9PRUbG6v//Oc/Tr/PiBEj8n19ZY0aNfTAAw/Yl729vfXYY4/phx9+UGJiotM13Mz333+vc+fO6dlnn3W4FrNnz55q0KBBtu9Fkp5++mmH5Xbt2hXK9wIAKBjCJQCgUF2+fFmVK1d2evvQ0NAc299//301bdpUXl5eqlatmvz8/LR+/XqlpKQ49T4nT55UuXLlVLduXYf2wMBAValSRSdPnnRor1WrVrYxqlatairsZbl8+bIk5brfrFarXnnlFW3cuFEBAQG699579eqrrxY45OW2b3NSt27dbNdT1qtXT5JyvD6zsGTt9/r162db16BBg2zfi5eXV7Y/RhTW9wIAKBjCJQCg0Pz2229KSUlxCGw53fBFUq43XMnpLrMfffSRhg4dqrCwML333nuKiYnR5s2b1alTJ2VmZpqqObf6/iq3GT+jEJ7odeDAAbm5ueUZ/saOHasjR44oKipKXl5emjp1qho2bKgffvgh3+9TGHfwvVFBv9ui4Mo73QIAHBEuAQCF5sMPP5QkRUZG2tuqVq2a7SYskrLNQOXlk08+UZ06dbRmzRoNHjxYkZGR6ty5s65everQL79BUZJq166tzMxMHT161KE9KSlJycnJql27dr7HMuPUqVPasWOHIiIibjrjGxYWpgkTJujLL7/UgQMHlJ6ertdff92+viCf/2aOHTuWLTgfOXJEkux3+a1ataokZft+c/pu81tb1n4/fPhwtnWHDx8utu8FAFBwhEsAQKHYtm2bZs+erdDQUA0aNMjeHhYWpkOHDun8+fP2th9//FFff/11vsfOmp26Mezs2bNHcXFxDv0qVKggKXvYyUnWMyUXLFjg0D5//nxJ/73Gr6hdvHhRAwcOVEZGRp53T71y5Uq2IB0WFqbKlSs7PDalYsWK+frs+XHmzBmtXbvWvmyz2fTBBx+oefPmCgwMtNcgSTt37rT3S01N1fvvv59tvPzW1rJlS/n7+2vp0qUOn23jxo06ePBgsXwvAADnuO5p0gCAUmvjxo06dOiQrl+/rqSkJG3btk2bN29W7dq19fnnnzvciOXxxx/X/PnzFRkZqeHDh+vcuXNaunSpGjdunOejN27Uq1cvrVmzRg888IB69uypEydOaOnSpWrUqJH9ekXpv6d9NmrUSKtWrVK9evXk6+urJk2aqEmTJtnGbNasmYYMGaK3335bycnJat++vb799lu9//776tu3rzp27Gh+R93gyJEj+uijj2QYhmw2m3788UetXr1aly9f1vz589WtW7c8t73vvvv0yCOPqFGjRnJ3d9fatWuVlJTk8NiU8PBwLVmyRHPmzFHdunXl7++vTp06OVVvvXr1NHz4cH333XcKCAjQsmXLlJSUpOXLl9v7dO3aVbVq1dLw4cP13HPPyc3NTcuWLZOfn5/9ESkFrc3Dw0OvvPKKhg0bpvbt22vgwIFKSkrSwoULFRISonHjxjn1eQAAxcC1N6sFAJQmWY+YyHp5enoagYGBRpcuXYyFCxcaNpstx+0++ugjo06dOoanp6fRvHlzY9OmTbk+iiSnx21kZmYaL7/8slG7dm3DarUaLVq0MNatW5dtDMMwjG+++cYIDw83PD09HR5LktNjM65du2bMnDnTCA0NNTw8PIzg4GBj8uTJxtWrVx361a5d2+jZs2e2unJ7zMpf3bjPypUrZ1SpUsVo0aKFMWbMGOPnn3/O1v+vjyK5cOGCMXLkSKNBgwZGxYoVDR8fH6N169bGxx9/7LBdYmKi0bNnT6Ny5cqGJHtteT1CJrdHkfTs2dPYtGmT0bRpU8NqtRoNGjQwVq9enW37vXv3Gq1btzY8PT2NWrVqGfPnz89xzNxq++ujSLKsWrXKaNGihWG1Wg1fX19j0KBBxm+//ebQZ8iQIUbFihWz1ZTbI1IAAEXLYhiFcCcCAAAAAMAtjWsuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAprm7uoCilpmZqTNnzqhy5cqyWCyuLgcAAAAASg3DMHTp0iXVqFFD5crlPTdZ5sPlmTNnFBwc7OoyAAAAAKDUOn36tGrWrJlnnzIfLitXrizpvzvD29vbxdUAAAAAQOlhs9kUHBxsz1V5KfPhMutUWG9vb8IlAAAAADghP5cYckMfAAAAAIBphEsAAAAAgGmESwAAAACAaYRLAAAAAIBphEsAAAAAgGmESwAAAACAaYRLAAAAAIBpLg2XS5YsUdOmTe3PoIyIiNDGjRvt669evaqRI0eqWrVqqlSpkvr166ekpCQXVgwAAAAAyIlLw2XNmjU1d+5c7d27V99//706deqkPn366Oeff5YkjRs3Tl988YVWr16tHTt26MyZM3rwwQddWTIAAAAAIAcWwzAMVxdxI19fX7322mt66KGH5OfnpxUrVuihhx6SJB06dEgNGzZUXFyc7r777nyNZ7PZ5OPjo5SUFHl7exdl6QAAAABQphQkT5WYay4zMjK0cuVKpaamKiIiQnv37tW1a9fUuXNne58GDRqoVq1aiouLy3WctLQ02Ww2hxcAAAAAoGi5u7qAn376SREREbp69aoqVaqktWvXqlGjRoqPj5enp6eqVKni0D8gIECJiYm5jhcVFaWZM2cWcdUAAAAAUDAhk9bnuT5hbs9iqqRouHzmsn79+oqPj9eePXv0zDPPaMiQIfrll1+cHm/y5MlKSUmxv06fPl2I1QIAAAAAcuLymUtPT0/VrVtXkhQeHq7vvvtOCxcuVP/+/ZWenq7k5GSH2cukpCQFBgbmOp7VapXVai3qsgEAAAAAN3D5zOVfZWZmKi0tTeHh4fLw8NDWrVvt6w4fPqxTp04pIiLChRUCAAAAAP7KpTOXkydPVvfu3VWrVi1dunRJK1asUGxsrDZt2iQfHx8NHz5c48ePl6+vr7y9vTV69GhFRETk+06xAAAAAIDi4dJwee7cOT322GM6e/asfHx81LRpU23atEldunSRJL3xxhsqV66c+vXrp7S0NEVGRmrx4sWuLBkAAAAAkIMS95zLwsZzLgEAAACUBKXxbrGl8jmXAAAAAIDSi3AJAAAAADCNcAkAAAAAMI1wCQAAAAAwjXAJAAAAADCNcAkAAAAAMI1wCQAAAAAwjXAJAAAAADCNcAkAAAAAMI1wCQAAAAAwjXAJAAAAADCNcAkAAAAAMI1wCQAAAAAwjXAJAAAAADCNcAkAAAAAMI1wCQAAAAAwjXAJAAAAADCNcAkAAAAAMI1wCQAAAAAwjXAJAAAAADCNcAkAAAAAMI1wCQAAAAAwjXAJAAAAADCNcAkAAAAAMI1wCQAAAAAwjXAJAAAAADCNcAkAAAAAMI1wCQAAAAAwjXAJAAAAADCNcAkAAAAAMI1wCQAAAAAwjXAJAAAAADCNcAkAAAAAMI1wCQAAAAAwjXAJAAAAADCNcAkAAAAAMI1wCQAAAAAwjXAJAAAAADDNpeEyKipKrVq1UuXKleXv76++ffvq8OHDDn06dOggi8Xi8Hr66addVDEAAAAAICcuDZc7duzQyJEjtXv3bm3evFnXrl1T165dlZqa6tBvxIgROnv2rP316quvuqhiAAAAAEBO3F355jExMQ7L0dHR8vf31969e3Xvvffa2ytUqKDAwMDiLg8AAAAAkE8l6prLlJQUSZKvr69D+//+7/+qevXqatKkiSZPnqwrV67kOkZaWppsNpvDCwAAAABQtFw6c3mjzMxMjR07Vm3btlWTJk3s7X/7299Uu3Zt1ahRQ/v379cLL7ygw4cPa82aNTmOExUVpZkzZxZX2QAAAAAASRbDMAxXFyFJzzzzjDZu3Khdu3apZs2aufbbtm2b7rvvPh07dkxhYWHZ1qelpSktLc2+bLPZFBwcrJSUFHl7exdJ7QAAAABwMyGT1ue5PmFuz2KqJP9sNpt8fHzyladKxMzlqFGjtG7dOu3cuTPPYClJrVu3lqRcw6XVapXVai2SOgEAAAAAOXNpuDQMQ6NHj9batWsVGxur0NDQm24THx8vSQoKCiri6gAAAAAA+eXScDly5EitWLFCn332mSpXrqzExERJko+Pj8qXL69ff/1VK1asUI8ePVStWjXt379f48aN07333qumTZu6snQAAAAAwA1cGi6XLFkiSerQoYND+/LlyzV06FB5enpqy5YtWrBggVJTUxUcHKx+/fppypQpLqgWAAAAAJAbl58Wm5fg4GDt2LGjmKoBAAAAADirRD3nEgAAAABQOhEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmuTRcRkVFqVWrVqpcubL8/f3Vt29fHT582KHP1atXNXLkSFWrVk2VKlVSv379lJSU5KKKAQAAAAA5cWm43LFjh0aOHKndu3dr8+bNunbtmrp27arU1FR7n3HjxumLL77Q6tWrtWPHDp05c0YPPvigC6sGAAAAAPyVuyvfPCYmxmE5Ojpa/v7+2rt3r+69916lpKTovffe04oVK9SpUydJ0vLly9WwYUPt3r1bd999tyvKBgAAAAD8RYm65jIlJUWS5OvrK0nau3evrl27ps6dO9v7NGjQQLVq1VJcXFyOY6Slpclmszm8AAAAAABFq8SEy8zMTI0dO1Zt27ZVkyZNJEmJiYny9PRUlSpVHPoGBAQoMTExx3GioqLk4+NjfwUHBxd16QAAAABwyysx4XLkyJE6cOCAVq5caWqcyZMnKyUlxf46ffp0IVUIAAAAAMiNS6+5zDJq1CitW7dOO3fuVM2aNe3tgYGBSk9PV3JyssPsZVJSkgIDA3Mcy2q1ymq1FnXJAAAAAIAbuHTm0jAMjRo1SmvXrtW2bdsUGhrqsD48PFweHh7aunWrve3w4cM6deqUIiIiirtcAAAAAEAuXDpzOXLkSK1YsUKfffaZKleubL+O0sfHR+XLl5ePj4+GDx+u8ePHy9fXV97e3ho9erQiIiK4UywAAAAAlCAuDZdLliyRJHXo0MGhffny5Ro6dKgk6Y033lC5cuXUr18/paWlKTIyUosXLy7mSgEAAAAAeXFpuDQM46Z9vLy8tGjRIi1atKgYKgIAAAAAOKPE3C0WAAAAAFB6ES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKY5FS737dunn376yb782WefqW/fvnrxxReVnp5eaMUBAAAAAEoHp8LlU089pSNHjkiSjh8/rgEDBqhChQpavXq1nn/++UItEAAAAABQ8jkVLo8cOaLmzZtLklavXq17771XK1asUHR0tP79738XZn0AAAAAgFLAqXBpGIYyMzMlSVu2bFGPHj0kScHBwbpw4ULhVQcAAAAAKBWcCpctW7bUnDlz9OGHH2rHjh3q2bOnJOnEiRMKCAgo1AIBAAAAACWfU+HyjTfe0L59+zRq1Ci99NJLqlu3riTpk08+UZs2bQq1QAAAAABAyefuzEbNmjVzuFtsltdee03u7k4NCQAAAAAoxZyauaxTp47++OOPbO1Xr15VvXr1TBcFAAAAAChdnAqXCQkJysjIyNaelpam3377zXRRAAAAAIDSpUDnsH7++ef2/960aZN8fHzsyxkZGdq6datCQ0MLrzoAAAAAQKlQoHDZt29fSZLFYtGQIUMc1nl4eCgkJESvv/56oRUHAAAAACgdChQus55tGRoaqu+++07Vq1cvkqIAAAAAAKWLU7d2PXHiRGHXAQAAAAAoxZx+bsjWrVu1detWnTt3zj6jmWXZsmWmCwMAAAAAlB5OhcuZM2dq1qxZatmypYKCgmSxWAq7LgAAAABAKeJUuFy6dKmio6M1ePDgwq4HAAAAAFAKOfWcy/T0dLVp06awawEAAAAAlFJOhcsnnnhCK1asKOxaAAAAAACllFOnxV69elVvv/22tmzZoqZNm8rDw8Nh/fz58wulOAAAAABA6eBUuNy/f7+aN28uSTpw4IDDOm7uAwAAAAC3HqfC5fbt2wu7DgAAAABAKebUNZcAAAAAANzIqZnLjh075nn667Zt25wuCAAAAABQ+jgVLrOut8xy7do1xcfH68CBAxoyZEhh1AUAAAAAKEWcCpdvvPFGju0zZszQ5cuX8z3Ozp079dprr2nv3r06e/as1q5dq759+9rXDx06VO+//77DNpGRkYqJiXGmbAAAAABAESnUay4fffRRLVu2LN/9U1NT1axZMy1atCjXPt26ddPZs2ftr3/961+FUSoAAAAAoBA5NXOZm7i4OHl5eeW7f/fu3dW9e/c8+1itVgUGBpotDQAAAABQhJwKlw8++KDDsmEYOnv2rL7//ntNnTq1UArLEhsbK39/f1WtWlWdOnXSnDlzVK1atVz7p6WlKS0tzb5ss9kKtR4AAAAAQHZOhUsfHx+H5XLlyql+/fqaNWuWunbtWiiFSf89JfbBBx9UaGiofv31V7344ovq3r274uLi5ObmluM2UVFRmjlzZqHVAAAAAAC4OYthGIari5Aki8WS7YY+f3X8+HGFhYVpy5Ytuu+++3Lsk9PMZXBwsFJSUuTt7V3YZQMAAABAvoRMWp/n+oS5PYupkvyz2Wzy8fHJV54ydc3l3r17dfDgQUlS48aN1aJFCzPD3VSdOnVUvXp1HTt2LNdwabVaZbVai7QOAAAAAIAjp8LluXPnNGDAAMXGxqpKlSqSpOTkZHXs2FErV66Un59fYdZo99tvv+mPP/5QUFBQkYwPAAAAAHCOU48iGT16tC5duqSff/5ZFy9e1MWLF3XgwAHZbDb9/e9/z/c4ly9fVnx8vOLj4yVJJ06cUHx8vE6dOqXLly/rueee0+7du5WQkKCtW7eqT58+qlu3riIjI50pGwAAAABQRJyauYyJidGWLVvUsGFDe1ujRo20aNGiAt3Q5/vvv1fHjh3ty+PHj5ckDRkyREuWLNH+/fv1/vvvKzk5WTVq1FDXrl01e/ZsTnsFAAAAgBLGqXCZmZkpDw+PbO0eHh7KzMzM9zgdOnRQXvcT2rRpkzPlAQAAAACKmVOnxXbq1EljxozRmTNn7G2///67xo0bl+uNdgAAAAAAZZdT4fKtt96SzWZTSEiIwsLCFBYWptDQUNlsNv3zn/8s7BoBAAAAACWcU6fFBgcHa9++fdqyZYsOHTokSWrYsKE6d+5cqMUBAAAAAEqHAs1cbtu2TY0aNZLNZpPFYlGXLl00evRojR49Wq1atVLjxo311VdfFVWtAAAAAIASqkDhcsGCBRoxYoS8vb2zrfPx8dFTTz2l+fPnF1pxAAAAAIDSoUDh8scff1S3bt1yXd+1a1ft3bvXdFEAAAAAgNKlQOEyKSkpx0eQZHF3d9f58+dNFwUAAAAAKF0KFC5vu+02HThwINf1+/fvV1BQkOmiAAAAAAClS4HCZY8ePTR16lRdvXo127o///xT06dPV69evQqtOAAAAABA6VCgR5FMmTJFa9asUb169TRq1CjVr19fknTo0CEtWrRIGRkZeumll4qkUAAAAABAyVWgcBkQEKBvvvlGzzzzjCZPnizDMCRJFotFkZGRWrRokQICAoqkUAAAAABAyVWgcClJtWvX1oYNG/Sf//xHx44dk2EYuv3221W1atWiqA8AAAAAUAoUOFxmqVq1qlq1alWYtQAAAAAASqkC3dAHAAAAAICcEC4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmuTRc7ty5U71791aNGjVksVj06aefOqw3DEPTpk1TUFCQypcvr86dO+vo0aOuKRYAAAAAkCuXhsvU1FQ1a9ZMixYtynH9q6++qjfffFNLly7Vnj17VLFiRUVGRurq1avFXCkAAAAAIC/urnzz7t27q3v37jmuMwxDCxYs0JQpU9SnTx9J0gcffKCAgAB9+umnGjBgQHGWCgAAAADIQ4m95vLEiRNKTExU586d7W0+Pj5q3bq14uLict0uLS1NNpvN4QUAAAAAKFolNlwmJiZKkgICAhzaAwIC7OtyEhUVJR8fH/srODi4SOsEAAAAAJTgcOmsyZMnKyUlxf46ffq0q0sCAAAAgDKvxIbLwMBASVJSUpJDe1JSkn1dTqxWq7y9vR1eAAAAAICiVWLDZWhoqAIDA7V161Z7m81m0549exQREeHCygAAAAAAf+XSu8VevnxZx44dsy+fOHFC8fHx8vX1Va1atTR27FjNmTNHt99+u0JDQzV16lTVqFFDffv2dV3RAAAAAIBsXBouv//+e3Xs2NG+PH78eEnSkCFDFB0dreeff16pqal68sknlZycrHvuuUcxMTHy8vJyVckAAAAAgBxYDMMwXF1EUbLZbPLx8VFKSgrXXwIAAABwmZBJ6/NcnzC3ZzFVkn8FyVMl9ppLAAAAAEDpQbgEAAAAAJhGuAQAAAAAmEa4BAAAAACYRrgEAAAAAJhGuAQAAAAAmEa4BAAAAACYRrgEAAAAAJhGuAQAAAAAmEa4BAAAAACYRrgEAAAAAJhGuAQAAAAAmEa4BAAAAACY5u7qAlA2hUxan+f6hLk9i6kSAAAAAMWBmUsAAAAAgGmESwAAAACAaYRLAAAAAIBphEsAAAAAgGmESwAAAACAaYRLAAAAAIBphEsAAAAAgGmESwAAAACAaYRLAAAAAIBphEsAAAAAgGmESwAAAACAaYRLAAAAAIBphEsAAAAAgGmESwAAAACAaYRLAAAAAIBphEsAAAAAgGmESwAAAACAaYRLAAAAAIBp7q4uACVTyKT1ri4BAAAAQCnCzCUAAAAAwDTCJQAAAADANMIlAAAAAMA0wiUAAAAAwDTCJQAAAADAtBIdLmfMmCGLxeLwatCggavLAgAAAAD8RYl/FEnjxo21ZcsW+7K7e4kvGQAAAABuOSU+qbm7uyswMNDVZQAAAAAA8lCiT4uVpKNHj6pGjRqqU6eOBg0apFOnTuXZPy0tTTabzeEFAAAAAChaJTpctm7dWtHR0YqJidGSJUt04sQJtWvXTpcuXcp1m6ioKPn4+NhfwcHBxVgxAAAAANyaSnS47N69ux5++GE1bdpUkZGR2rBhg5KTk/Xxxx/nus3kyZOVkpJif50+fboYKwYAAACAW1OJv+byRlWqVFG9evV07NixXPtYrVZZrdZirAoAAAAAUKJnLv/q8uXL+vXXXxUUFOTqUgAAAAAANyjR4XLixInasWOHEhIS9M033+iBBx6Qm5ubBg4c6OrSAAAAAAA3KNGnxf72228aOHCg/vjjD/n5+emee+7R7t275efn5+rSAAAAAAA3KNHhcuXKla4uAQAAAACQDyX6tFgAAAAAQOlAuAQAAAAAmEa4BAAAAACYVqKvubzVhUxan+f6hLk9i6kSZOE7AQAAAHLGzCUAAAAAwDTCJQAAAADANMIlAAAAAMA0wiUAAAAAwDTCJQAAAADANMIlAAAAAMA0wiUAAAAAwDTCJQAAAADANMIlAAAAAMA0wiUAAAAAwDTCJQAAAADANMIlAAAAAMA0wiUAAAAAwDTCJQAAAADANMIlAAAAAMA0wiUAAAAAwDTCJQAAAADANMIlAAAAAMA0d1cXAOeFTFqf5/qEuT2LqZKCy6t2s3XfbL/kxZX7rDR/nwAAAAAzlwAAAAAA0wiXAAAAAADTCJcAAAAAANMIlwAAAAAA0wiXAAAAAADTCJcAAAAAANMIlwAAAAAA0wiXAAAAAADTCJcAAAAAANPcXV3ArS5k0vpb8r3NKK11u1pe+y1hbs9irKRgbvZ9l+Ta81JWP5ermfn5wD4vfKX5OOdYwo34HYr8utX/ncrMJQAAAADANMIlAAAAAMA0wiUAAAAAwDTCJQAAAADANMIlAAAAAMC0UhEuFy1apJCQEHl5eal169b69ttvXV0SAAAAAOAGJT5crlq1SuPHj9f06dO1b98+NWvWTJGRkTp37pyrSwMAAAAA/J8SHy7nz5+vESNGaNiwYWrUqJGWLl2qChUqaNmyZa4uDQAAAADwf9xdXUBe0tPTtXfvXk2ePNneVq5cOXXu3FlxcXE5bpOWlqa0tDT7ckpKiiTJZrMVbbFOyky7UmRj3+wzF+V7m+HKus2+t5njrCjHvtn4JfX/D6no94urlNXP5Wpmfj6wzwtfaT7OOZZwI36HIr/M/ju1JH4nWTUZhnHTvhYjP71c5MyZM7rtttv0zTffKCIiwt7+/PPPa8eOHdqzZ0+2bWbMmKGZM2cWZ5kAAAAAUKadPn1aNWvWzLNPiZ65dMbkyZM1fvx4+3JmZqYuXryoatWqyWKxuLAy3GpsNpuCg4N1+vRpeXt7u7oc3OI4HlFScCyiJOF4RElSUo9HwzB06dIl1ahR46Z9S3S4rF69utzc3JSUlOTQnpSUpMDAwBy3sVqtslqtDm1VqlQpqhKBm/L29i5RPyBwa+N4REnBsYiShOMRJUlJPB59fHzy1a9E39DH09NT4eHh2rp1q70tMzNTW7dudThNFgAAAADgWiV65lKSxo8fryFDhqhly5a66667tGDBAqWmpmrYsGGuLg0AAAAA8H9KfLjs37+/zp8/r2nTpikxMVHNmzdXTEyMAgICXF0akCer1arp06dnO00bcAWOR5QUHIsoSTgeUZKUheOxRN8tFgAAAABQOpToay4BAAAAAKUD4RIAAAAAYBrhEgAAAABgGuESAAAAAGAa4RIwYdGiRQoJCZGXl5dat26tb7/9Nte+77zzjtq1a6eqVauqatWq6ty5c579gYIqyPF4o5UrV8pisahv375FWyBuGQU9FpOTkzVy5EgFBQXJarWqXr162rBhQzFVi7KuoMfjggULVL9+fZUvX17BwcEaN26crl69WkzVoqzauXOnevfurRo1ashisejTTz+96TaxsbG68847ZbVaVbduXUVHRxd5nWYRLgEnrVq1SuPHj9f06dO1b98+NWvWTJGRkTp37lyO/WNjYzVw4EBt375dcXFxCg4OVteuXfX7778Xc+Uoiwp6PGZJSEjQxIkT1a5du2KqFGVdQY/F9PR0denSRQkJCfrkk090+PBhvfPOO7rtttuKuXKURQU9HlesWKFJkyZp+vTpOnjwoN577z2tWrVKL774YjFXjrImNTVVzZo106JFi/LV/8SJE+rZs6c6duyo+Ph4jR07Vk888YQ2bdpUxJWaw6NIACe1bt1arVq10ltvvSVJyszMVHBwsEaPHq1JkybddPuMjAxVrVpVb731lh577LGiLhdlnDPHY0ZGhu699149/vjj+uqrr5ScnJyvv6QCeSnosbh06VK99tprOnTokDw8PIq7XJRxBT0eR40apYMHD2rr1q32tgkTJmjPnj3atWtXsdWNss1isWjt2rV5njH0wgsvaP369Tpw4IC9bcCAAUpOTlZMTEwxVOkcZi4BJ6Snp2vv3r3q3Lmzva1cuXLq3Lmz4uLi8jXGlStXdO3aNfn6+hZVmbhFOHs8zpo1S/7+/ho+fHhxlIlbgDPH4ueff66IiAiNHDlSAQEBatKkiV5++WVlZGQUV9koo5w5Htu0aaO9e/faT509fvy4NmzYoB49ehRLzUCWuLg4h2NXkiIjI/P970xXcXd1AUBpdOHCBWVkZCggIMChPSAgQIcOHcrXGC+88IJq1KiR7QcHUFDOHI+7du3Se++9p/j4+GKoELcKZ47F48ePa9u2bRo0aJA2bNigY8eO6dlnn9W1a9c0ffr04igbZZQzx+Pf/vY3XbhwQffcc48Mw9D169f19NNPc1osil1iYmKOx67NZtOff/6p8uXLu6iyvDFzCbjA3LlztXLlSq1du1ZeXl6uLge3mEuXLmnw4MF65513VL16dVeXg1tcZmam/P399fbbbys8PFz9+/fXSy+9pKVLl7q6NNyCYmNj9fLLL2vx4sXat2+f1qxZo/Xr12v27NmuLg0oFZi5BJxQvXp1ubm5KSkpyaE9KSlJgYGBeW47b948zZ07V1u2bFHTpk2LskzcIgp6PP76669KSEhQ79697W2ZmZmSJHd3dx0+fFhhYWFFWzTKJGd+NgYFBcnDw0Nubm72toYNGyoxMVHp6eny9PQs0ppRdjlzPE6dOlWDBw/WE088IUm64447lJqaqieffFIvvfSSypVjXgbFIzAwMMdj19vbu8TOWkrMXAJO8fT0VHh4uMMF/5mZmdq6dasiIiJy3e7VV1/V7NmzFRMTo5YtWxZHqbgFFPR4bNCggX766SfFx8fbX/fff7/9jnTBwcHFWT7KEGd+NrZt21bHjh2z/4FDko4cOaKgoCCCJUxx5ni8cuVKtgCZ9YcP7oGJ4hQREeFw7ErS5s2b8/x3ZolgAHDKypUrDavVakRHRxu//PKL8eSTTxpVqlQxEhMTDcMwjMGDBxuTJk2y9587d67h6elpfPLJJ8bZs2ftr0uXLrnqI6AMKejx+FdDhgwx+vTpU0zVoiwr6LF46tQpo3LlysaoUaOMw4cPG+vWrTP8/f2NOXPmuOojoAwp6PE4ffp0o3Llysa//vUv4/jx48aXX35phIWFGY888oirPgLKiEuXLhk//PCD8cMPPxiSjPnz5xs//PCDcfLkScMwDGPSpEnG4MGD7f2PHz9uVKhQwXjuueeMgwcPGosWLTLc3NyMmJgYV32EfOG0WMBJ/fv31/nz5zVt2jQlJiaqefPmiomJsV98ferUKYe/fi5ZskTp6el66KGHHMaZPn26ZsyYUZylowwq6PEIFJWCHovBwcHatGmTxo0bp6ZNm+q2227TmDFj9MILL7jqI6AMKejxOGXKFFksFk2ZMkW///67/Pz81Lt3b/3jH/9w1UdAGfH999+rY8eO9uXx48dLkoYMGaLo6GidPXtWp06dsq8PDQ3V+vXrNW7cOC1cuFA1a9bUu+++q8jIyGKvvSB4ziUAAAAAwDT+jA0AAAAAMI1wCQAAAAAwjXAJAAAAADCNcAkAAAAAMI1wCQAAAAAwjXAJAAAAADCNcAkAAAAAMI1wCQAAAAAwjXAJAEAxiI6OVpUqVVxdhiQpNjZWFotFycnJri4FAFCGEC4BAGXG0KFDZbFYZLFY5OHhoYCAAHXp0kXLli1TZmZmsdUREhKiBQsWOLT1799fR44cKfL37tChg30fWCwWBQQE6OGHH9bJkyftfdq0aaOzZ8/Kx8enyOsBANw6CJcAgDKlW7duOnv2rBISErRx40Z17NhRY8aMUa9evXT9+nWnxzUMw9T25cuXl7+/v9PbF8SIESN09uxZnTlzRp999plOnz6tRx991L7e09NTgYGBslgsxVIPAODWQLgEAJQpVqtVgYGBuu2223TnnXfqxRdf1GeffaaNGzcqOjpakpSQkCCLxaL4+Hj7dsnJybJYLIqNjZX0/08d3bhxo8LDw2W1WrVr1y79+uuv6tOnjwICAlSpUiW1atVKW7ZssY/ToUMHnTx5UuPGjbPPHko5nxa7ZMkShYWFydPTU/Xr19eHH37osN5isejdd9/VAw88oAoVKuj222/X559/ftN9UKFCBQUGBiooKEh33323Ro0apX379tnX//W02KzaNm3apIYNG6pSpUr2kH7jNnfddZcqVqyoKlWqqG3btg6zoQAAEC4BAGVep06d1KxZM61Zs6bA206aNElz587VwYMH1bRpU12+fFk9evTQ1q1b9cMPP6hbt27q3bu3Tp06JUlas2aNatasqVmzZuns2bMOAe1Ga9eu1ZgxYzRhwgQdOHBATz31lIYNG6bt27c79Js5c6YeeeQR7d+/Xz169NCgQYN08eLFfNd/8eJFffzxx2rdunWe/a5cuaJ58+bpww8/1M6dO3Xq1ClNnDhRknT9+nX17dtX7du31/79+xUXF6cnn3ySmU8AgAN3VxcAAEBxaNCggfbv31/g7WbNmqUuXbrYl319fdWsWTP78uzZs7V27Vp9/vnnGjVqlHx9feXm5qbKlSsrMDAw13HnzZunoUOH6tlnn5UkjR8/Xrt379a8efPUsWNHe7+hQ4dq4MCBkqSXX35Zb775pr799lt169Yt17EXL16sd999V4Zh6MqVK6pXr542bdqU5+e8du2ali5dqrCwMEnSqFGjNGvWLEmSzWZTSkqKevXqZV/fsGHDPMcDANx6mLkEANwSDMNwaqatZcuWDsuXL1/WxIkT1bBhQ1WpUkWVKlXSwYMH7TOX+XXw4EG1bdvWoa1t27Y6ePCgQ1vTpk3t/12xYkV5e3vr3LlzeY49aNAgxcfH68cff9SuXbtUt25dde3aVZcuXcp1mwoVKtiDoyQFBQXZ38fX11dDhw5VZGSkevfurYULF+Y6IwsAuHURLgEAt4SDBw8qNDRUklSu3H9//RmGYV9/7dq1HLerWLGiw/LEiRO1du1avfzyy/rqq68UHx+vO+64Q+np6UVSt4eHh8OyxWK56Z1vfXx8VLduXdWtW1dt27bVe++9p6NHj2rVqlUFep8b98/y5csVFxenNm3aaNWqVapXr552797txCcCAJRVhEsAQJm3bds2/fTTT+rXr58kyc/PT5IcZt9uvLlPXr7++msNHTpUDzzwgO644w4FBgYqISHBoY+np6cyMjLyHKdhw4b6+uuvs43dqFGjfNVREG5ubpKkP//809Q4LVq00OTJk/XNN9+oSZMmWrFiRWGUBwAoI7jmEgBQpqSlpSkxMVEZGRlKSkpSTEyMoqKi1KtXLz322GOS/vtYkLvvvltz585VaGiozp07pylTpuRr/Ntvv11r1qxR7969ZbFYNHXq1GwziSEhIdq5c6cGDBggq9Wq6tWrZxvnueee0yOPPKIWLVqoc+fO+uKLL7RmzRqHO88668qVK0pMTJQkJSUlafbs2fLy8lLXrl2dGu/EiRN6++23df/996tGjRo6fPiwjh49at+fAABIzFwCAMqYmJgYBQUFKSQkRN26ddP27dv15ptv6rPPPrPP4EnSsmXLdP36dYWHh2vs2LGaM2dOvsafP3++qlatqjZt2qh3796KjIzUnXfe6dBn1qxZSkhIUFhYmH2W9K/69u2rhQsXat68eWrcuLH+53/+R8uXL1eHDh2c/uxZ3nnnHQUFBSkoKEgdO3bUhQsXtGHDBtWvX9+p8SpUqKBDhw6pX79+qlevnp588kmNHDlSTz31lOlaAQBlh8W48YIKAAAAAACcwMwlAAAAAMA0wiUAAAAAwDTCJQAAAADANMIlAAAAAMA0wiUAAAAAwDTCJQAAAADANMIlAAAAAMA0wiUAAAAAwDTCJQAAAADANMIlAAAAAMA0wiUAAAAAwLT/B9Btt9aannXlAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAGJCAYAAAAe1scnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAzBUlEQVR4nO3deVgW9f7/8dcty40rirImCmK45hKaqbmm4lqap9JjJrbYoh7XSsvdTliZWSfTb4tS9vNodjQ9LpgbmqUtKprlmqKWgpoHcEkQmN8f58v99ZZFuAe4b/D5uK77uprPfGbmPXNPyIvPLBbDMAwBAAAAAGBCOWcXAAAAAAAo/QiXAAAAAADTCJcAAAAAANMIlwAAAAAA0wiXAAAAAADTCJcAAAAAANMIlwAAAAAA0wiXAAAAAADTCJcAAAAAANMIlwCA28K0adNksVicXUaBJCQkyGKxKCYmpti3FRMTI4vFooSEBFtbSEiIevfuXezblqS4uDhZLBbFxcWVyPYAAMWHcAkAKLDsIJL98fLyUlBQkCIjI/Xuu+/q0qVLTq3v6tWrmjZtmssFlRuPmbu7u3x8fBQREaFRo0bpl19+KbLtvP/++yUSSB3hyrUBAIqGxTAMw9lFAABKh5iYGA0dOlQzZsxQaGiorl+/rsTERMXFxWnjxo2qVauWVq9erSZNmjilvgsXLsjX11dTp07VtGnT7OZlZGQoIyNDXl5eJV6XxWJR165d9fjjj8swDKWkpGjfvn1avny5rly5otdff11jx4619TcMQ2lpafLw8JCbm1uBt9O4cWPVqFGjUOE6MzNT169fl9VqtY3shoSEqHHjxlqzZk2B1+NobVlZWUpPT5enp6fKleNv3gBQmrk7uwAAQOnTo0cPtWjRwjY9ceJEbdmyRb1799YDDzyggwcPqnz58qa3k5GRoaysLHl6eppel7u7u9zdnffPXnh4uB577DG7tlmzZqlPnz4aN26c6tevr549e0qSbVS4OF25ckUVK1aUm5tboQJsUStXrpxTAj8AoOjxJ0IAQJHo3LmzJk+erJMnT+qzzz6ztXfs2FEdO3bM0T8qKkohISG26ez7DGfPnq25c+cqLCxMVqtVv/zyi9LT0zVlyhRFRETI29tbFStWVLt27bR161a75X19fSVJ06dPt12Gmj2Cmds9lxkZGZo5c6ZtWyEhIXr55ZeVlpZm1y/7HsQdO3bonnvukZeXl+rUqaNPP/3U1DGrXr26li5dKnd3d/3973/PcSxuvIw0MTFRQ4cOVc2aNWW1WhUYGKgHH3zQdq9kSEiIfv75Z23bts2279nHPfty5m3btun555+Xn5+fatasaTfvxnsus3311Vdq1qyZvLy81LBhQ61YscJufl73sd68zvxqy+uey+XLlysiIkLly5dXjRo19Nhjj+n333+36xMVFaVKlSrp999/V9++fVWpUiX5+vpq/PjxyszMvMXRBwAUNcIlAKDIDB48WNJ/Q4mjFi1apH/84x8aNmyY3nrrLfn4+Cg1NVUfffSROnbsqNdff13Tpk3T+fPnFRkZqfj4eEmSr6+v5s+fL0nq16+fFi9erMWLF+uhhx7Kc1tPPfWUpkyZorvvvltvv/22OnTooOjoaA0YMCBH32PHjukvf/mLunbtqrfeekvVqlVTVFSUfv75Z4f3VZJq1aqlDh06aNeuXUpNTc2zX//+/bVy5UoNHTpU77//vv72t7/p0qVLOnXqlCRp7ty5qlmzpurXr2/b91deecVuHc8//7x++eUXTZkyRRMmTMi3rqNHj+rRRx9Vjx49FB0dLXd3dz388MPauHFjofexILXdKCYmRo888ojc3NwUHR2tp59+WitWrNB9992n5ORku76ZmZmKjIxU9erVNXv2bHXo0EFvvfWWPvjgg0LXCQAwyQAAoIAWLVpkSDJ++OGHPPt4e3sbzZs3t0136NDB6NChQ45+Q4YMMWrXrm2bPnHihCHJqFKlinHu3Dm7vhkZGUZaWppd23/+8x/D39/feOKJJ2xt58+fNyQZU6dOzbG9qVOnGjf+sxcfH29IMp566im7fuPHjzckGVu2bLG11a5d25BkbN++3dZ27tw5w2q1GuPGjcv9QNxAkjF8+PA8548aNcqQZOzbt88wjP87FosWLbLtqyTjzTffzHc7jRo1yvVYZ39v9913n5GRkZHrvBMnTtjasvf3X//6l60tJSXFCAwMtPtubz6m+a0zr9q2bt1qSDK2bt1qGIZhpKenG35+fkbjxo2NP//809ZvzZo1hiRjypQptrYhQ4YYkowZM2bYrbN58+ZGREREjm0BAIoXI5cAgCJVqVIlU0+N7d+/v+3y1mxubm62+y6zsrJ08eJFZWRkqEWLFtqzZ49D21m3bp0k2T1IR5LGjRsnSVq7dq1de8OGDdWuXTvbtK+vr+rVq6fjx487tP0bVapUSZLyPG7ly5eXp6en4uLi9J///Mfh7Tz99NMFvr8yKChI/fr1s01XqVJFjz/+uPbu3avExESHa7iVH3/8UefOndPzzz9vdy9mr169VL9+/RzfiyQ9++yzdtPt2rUrku8FAFA4hEsAQJG6fPmyKleu7PDyoaGhubZ/8sknatKkiby8vFS9enX5+vpq7dq1SklJcWg7J0+eVLly5VS3bl279oCAAFWtWlUnT560a69Vq1aOdVSrVs1U2Mt2+fJlScrzuFmtVr3++utav369/P391b59e73xxhuFDnl5Hdvc1K1bN8f9lOHh4ZKU6/2ZRSX7uNerVy/HvPr16+f4Xry8vHL8MaKovhcAQOEQLgEARea3335TSkqKXWDL7YEvkvJ84EpuT5n97LPPFBUVpbCwMH388ceKjY3Vxo0b1blzZ2VlZZmqOa/6bpbXiJ9RBG/0OnDggNzc3PINf6NHj9aRI0cUHR0tLy8vTZ48WQ0aNNDevXsLvJ2ieILvjQr73RYHZz7pFgBgj3AJACgyixcvliRFRkba2qpVq5bjISyScoxA5eeLL75QnTp1tGLFCg0ePFiRkZHq0qWLrl27ZtevoEFRkmrXrq2srCwdPXrUrj0pKUnJycmqXbt2gddlxqlTp7Rt2za1bt36liO+YWFhGjdunL766isdOHBA6enpeuutt2zzC7P/t3Ls2LEcwfnIkSOSZHvKb7Vq1SQpx/eb23db0Nqyj/vhw4dzzDt8+HCJfS8AgMIjXAIAisSWLVs0c+ZMhYaGatCgQbb2sLAwHTp0SOfPn7e17du3T998802B1509OnVj2Pnuu++0c+dOu34VKlSQlDPs5Cb7nZJz5861a58zZ46k/97jV9wuXryogQMHKjMzM9+np169ejVHkA4LC1PlypXtXptSsWLFAu17QZw5c0YrV660TaempurTTz9Vs2bNFBAQYKtBkrZv327rd+XKFX3yySc51lfQ2lq0aCE/Pz8tWLDAbt/Wr1+vgwcPlsj3AgBwjPPeJg0AKLXWr1+vQ4cOKSMjQ0lJSdqyZYs2btyo2rVra/Xq1XYPYnniiSc0Z84cRUZG6sknn9S5c+e0YMECNWrUKN9Xb9yod+/eWrFihfr166devXrpxIkTWrBggRo2bGi7X1H672WfDRs21LJlyxQeHi4fHx81btxYjRs3zrHOpk2basiQIfrggw+UnJysDh066Pvvv9cnn3yivn37qlOnTuYP1A2OHDmizz77TIZhKDU1Vfv27dPy5ct1+fJlzZkzR927d8932fvvv1+PPPKIGjZsKHd3d61cuVJJSUl2r02JiIjQ/Pnz9eqrr6pu3bry8/NT586dHao3PDxcTz75pH744Qf5+/tr4cKFSkpK0qJFi2x9unXrplq1aunJJ5/UCy+8IDc3Ny1cuFC+vr62V6QUtjYPDw+9/vrrGjp0qDp06KCBAwcqKSlJ77zzjkJCQjRmzBiH9gcAUAKc+7BaAEBpkv2KieyPp6enERAQYHTt2tV45513jNTU1FyX++yzz4w6deoYnp6eRrNmzYwNGzbk+SqS3F63kZWVZbz22mtG7dq1DavVajRv3txYs2ZNjnUYhmF8++23RkREhOHp6Wn3WpLcXptx/fp1Y/r06UZoaKjh4eFhBAcHGxMnTjSuXbtm16927dpGr169ctSV12tWbnbjMStXrpxRtWpVo3nz5saoUaOMn3/+OUf/m19FcuHCBWP48OFG/fr1jYoVKxre3t5Gq1atjM8//9xuucTERKNXr15G5cqVDUm22vJ7hUxeryLp1auXsWHDBqNJkyaG1Wo16tevbyxfvjzH8rt37zZatWpleHp6GrVq1TLmzJmT6zrzqu3mV5FkW7ZsmdG8eXPDarUaPj4+xqBBg4zffvvNrs+QIUOMihUr5qgpr1ekAACKl8UwiuBJBAAAAACA2xr3XAIAAAAATCNcAgAAAABMI1wCAAAAAEwjXAIAAAAATCNcAgAAAABMc2q4jI6OVsuWLVW5cmX5+fmpb9++Onz4sF2fjh07ymKx2H2effZZJ1UMAAAAAMiNU19F0r17dw0YMEAtW7ZURkaGXn75ZR04cEC//PKLKlasKOm/4TI8PFwzZsywLVehQgVVqVKlQNvIysrSmTNnVLlyZVkslmLZDwAAAAAoiwzD0KVLlxQUFKRy5fIfm3QvoZpyFRsbazcdExMjPz8/7d69W+3bt7e1V6hQQQEBAQ5t48yZMwoODjZVJwAAAADczk6fPq2aNWvm28ep4fJmKSkpkiQfHx+79v/3//6fPvvsMwUEBKhPnz6aPHmyKlSokOs60tLSlJaWZpvOHpg9ffp0gUc7AQAAAABSamqqgoODVbly5Vv2dZlwmZWVpdGjR6tt27Zq3Lixrf2vf/2rateuraCgIO3fv18vvfSSDh8+rBUrVuS6nujoaE2fPj1He5UqVQiXAAAAAOCAgtxi6NR7Lm/03HPPaf369dqxY0e+w61btmzR/fffr2PHjiksLCzH/JtHLrOTdkpKCuESAAAAAAohNTVV3t7eBcpTLjFyOWLECK1Zs0bbt2+/5XW8rVq1kqQ8w6XVapXVai2WOgEAAAAAuXNquDQMQyNHjtTKlSsVFxen0NDQWy4THx8vSQoMDCzm6gAAAAAABeXUcDl8+HAtWbJEq1atUuXKlZWYmChJ8vb2Vvny5fXrr79qyZIl6tmzp6pXr679+/drzJgxat++vZo0aeLM0gEAAAAAN3DqPZd53RS6aNEiRUVF6fTp03rsscd04MABXblyRcHBwerXr58mTZpU4PsnC3ONMAAAAADg/5Saey5vlWuDg4O1bdu2EqoGAAAAAOCocs4uAAAAAABQ+hEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmOfVpsQAAAABwuwiZsDbf+QmzepVQJcWDkUsAAAAAgGmESwAAAACAaYRLAAAAAIBphEsAAAAAgGmESwAAAACAaYRLAAAAAIBphEsAAAAAgGmESwAAAACAaYRLAAAAAIBphEsAAAAAgGmESwAAAACAaYRLAAAAAIBphEsAAAAAgGmESwAAAACAaYRLAAAAAIBphEsAAAAAgGmESwAAAACAaYRLAAAAAIBphEsAAAAAgGmESwAAAACAaYRLAAAAAIBphEsAAAAAgGmESwAAAACAaYRLAAAAAIBphEsAAAAAgGmESwAAAACAaYRLAAAAAIBphEsAAAAAgGmESwAAAACAaYRLAAAAAIBphEsAAAAAgGmESwAAAACAaYRLAAAAAIBphEsAAAAAgGmESwAAAACAaYRLAAAAAIBphEsAAAAAgGmESwAAAACAaYRLAAAAAIBphEsAAAAAgGmESwAAAACAaYRLAAAAAIBphEsAAAAAgGmESwAAAACAaU4Nl9HR0WrZsqUqV64sPz8/9e3bV4cPH7brc+3aNQ0fPlzVq1dXpUqV1L9/fyUlJTmpYgAAAABAbpwaLrdt26bhw4dr165d2rhxo65fv65u3brpypUrtj5jxozRv//9by1fvlzbtm3TmTNn9NBDDzmxagAAAADAzdydufHY2Fi76ZiYGPn5+Wn37t1q3769UlJS9PHHH2vJkiXq3LmzJGnRokVq0KCBdu3apXvvvdcZZQMAAAAAbuJS91ympKRIknx8fCRJu3fv1vXr19WlSxdbn/r166tWrVrauXNnrutIS0tTamqq3QcAAAAAULxcJlxmZWVp9OjRatu2rRo3bixJSkxMlKenp6pWrWrX19/fX4mJibmuJzo6Wt7e3rZPcHBwcZcOAAAAALc9lwmXw4cP14EDB7R06VJT65k4caJSUlJsn9OnTxdRhQAAAACAvDj1nstsI0aM0Jo1a7R9+3bVrFnT1h4QEKD09HQlJyfbjV4mJSUpICAg13VZrVZZrdbiLhkAAAAAcAOnjlwahqERI0Zo5cqV2rJli0JDQ+3mR0REyMPDQ5s3b7a1HT58WKdOnVLr1q1LulwAAAAAQB6cOnI5fPhwLVmyRKtWrVLlypVt91F6e3urfPny8vb21pNPPqmxY8fKx8dHVapU0ciRI9W6dWueFAsAAAAALsSp4XL+/PmSpI4dO9q1L1q0SFFRUZKkt99+W+XKlVP//v2VlpamyMhIvf/++yVcKQAAAAAgP04Nl4Zh3LKPl5eX5s2bp3nz5pVARQAAAAAAR7jM02IBAAAAAKUX4RIAAAAAYBrhEgAAAABgGuESAAAAAGAa4RIAAAAAYBrhEgAAAABgGuESAAAAAGAa4RIAAAAAYBrhEgAAAABgGuESAAAAAGAa4RIAAAAAYBrhEgAAAABgGuESAAAAAGAa4RIAAAAAYBrhEgAAAABgGuESAAAAAGAa4RIAAAAAYBrhEgAAAABgGuESAAAAAGAa4RIAAAAAYBrhEgAAAABgGuESAAAAAGAa4RIAAAAAYBrhEgAAAABgGuESAAAAAGAa4RIAAAAAYBrhEgAAAABgGuESAAAAAGAa4RIAAAAAYBrhEgAAAABgGuESAAAAAGAa4RIAAAAAYBrhEgAAAABgGuESAAAAAGAa4RIAAAAAYBrhEgAAAABgGuESAAAAAGAa4RIAAAAAYBrhEgAAAABgGuESAAAAAGAa4RIAAAAAYBrhEgAAAABgGuESAAAAAGAa4RIAAAAAYBrhEgAAAABgGuESAAAAAGAa4RIAAAAAYBrhEgAAAABgGuESAAAAAGAa4RIAAAAAYJpTw+X27dvVp08fBQUFyWKx6Msvv7SbHxUVJYvFYvfp3r27c4oFAAAAAOTJqeHyypUratq0qebNm5dnn+7du+vs2bO2zz//+c8SrBAAAAAAUBDuztx4jx491KNHj3z7WK1WBQQElFBFAAAAAABHuPw9l3FxcfLz81O9evX03HPP6Y8//si3f1pamlJTU+0+AAAAAIDi5dLhsnv37vr000+1efNmvf7669q2bZt69OihzMzMPJeJjo6Wt7e37RMcHFyCFQMAAADA7cmpl8XeyoABA2z/fdddd6lJkyYKCwtTXFyc7r///lyXmThxosaOHWubTk1NJWACAAAAQDFz6ZHLm9WpU0c1atTQsWPH8uxjtVpVpUoVuw8AAAAAoHiVqnD522+/6Y8//lBgYKCzSwEAAAAA3MCpl8VevnzZbhTyxIkTio+Pl4+Pj3x8fDR9+nT1799fAQEB+vXXX/Xiiy+qbt26ioyMdGLVAAAAAICbOTVc/vjjj+rUqZNtOvteySFDhmj+/Pnav3+/PvnkEyUnJysoKEjdunXTzJkzZbVanVUyAAAAACAXTg2XHTt2lGEYec7fsGFDCVYDAAAAAHBUqbrnEgAAAADgmgiXAAAAAADTHAqXe/bs0U8//WSbXrVqlfr27auXX35Z6enpRVYcAAAAAKB0cChcPvPMMzpy5Igk6fjx4xowYIAqVKig5cuX68UXXyzSAgEAAAAArs+hcHnkyBE1a9ZMkrR8+XK1b99eS5YsUUxMjP71r38VZX0AAAAAgFLAoXBpGIaysrIkSZs2bVLPnj0lScHBwbpw4ULRVQcAAAAAKBUcCpctWrTQq6++qsWLF2vbtm3q1auXJOnEiRPy9/cv0gIBAAAAAK7PoXD59ttva8+ePRoxYoReeeUV1a1bV5L0xRdfqE2bNkVaIAAAAADA9bk7slDTpk3tnhab7c0335S7u0OrBAAAAACUYg6NXNapU0d//PFHjvZr164pPDzcdFEAAAAAgNLFoXCZkJCgzMzMHO1paWn67bffTBcFAAAAAChdCnUN6+rVq23/vWHDBnl7e9umMzMztXnzZoWGhhZddQAAAACAUqFQ4bJv376SJIvFoiFDhtjN8/DwUEhIiN56660iKw4AAAAAUDoUKlxmv9syNDRUP/zwg2rUqFEsRQEAAAAASheHHu164sSJoq4DAAAAAFCKOfzekM2bN2vz5s06d+6cbUQz28KFC00XBgAAAAAoPRwKl9OnT9eMGTPUokULBQYGymKxFHVdAAAAAIBSxKFwuWDBAsXExGjw4MFFXQ8AAAAAoBRy6D2X6enpatOmTVHXAgAAAAAopRwKl0899ZSWLFlS1LUAAAAAAEophy6LvXbtmj744ANt2rRJTZo0kYeHh938OXPmFElxAAAAAIDSwaFwuX//fjVr1kySdODAAbt5PNwHAAAAAG4/DoXLrVu3FnUdAAAAAIBSzKF7LgEAAAAAuJFDI5edOnXK9/LXLVu2OFwQAAAAAKD0cShcZt9vme369euKj4/XgQMHNGTIkKKoCwAAAABQijgULt9+++1c26dNm6bLly+bKggAAAAAUPoU6T2Xjz32mBYuXFiUqwQAAAAAlAJFGi537twpLy+volwlAAAAAKAUcOiy2Iceeshu2jAMnT17Vj/++KMmT55cJIUBAAAAAEoPh8Klt7e33XS5cuVUr149zZgxQ926dSuSwgAAAAAApYdD4XLRokVFXQcAAAAAoBRzKFxm2717tw4ePChJatSokZo3b14kRQEAAAAASheHwuW5c+c0YMAAxcXFqWrVqpKk5ORkderUSUuXLpWvr29R1ggAAAAAcHEOPS125MiRunTpkn7++WddvHhRFy9e1IEDB5Samqq//e1vRV0jAAAAAMDFOTRyGRsbq02bNqlBgwa2toYNG2revHk80AcAAAAAbkMOjVxmZWXJw8MjR7uHh4eysrJMFwUAAAAAKF0cCpedO3fWqFGjdObMGVvb77//rjFjxuj+++8vsuIAAAAAAKWDQ+HyvffeU2pqqkJCQhQWFqawsDCFhoYqNTVV//jHP4q6RgAAAACAi3Ponsvg4GDt2bNHmzZt0qFDhyRJDRo0UJcuXYq0OAAAAABA6VCokcstW7aoYcOGSk1NlcViUdeuXTVy5EiNHDlSLVu2VKNGjfT1118XV60AAAAAABdVqHA5d+5cPf3006pSpUqOed7e3nrmmWc0Z86cIisOAAAAAFA6FCpc7tu3T927d89zfrdu3bR7927TRQEAAAAASpdChcukpKRcX0GSzd3dXefPnzddFAAAAACgdClUuLzjjjt04MCBPOfv379fgYGBposCAAAAAJQuhQqXPXv21OTJk3Xt2rUc8/78809NnTpVvXv3LrLiAAAAAAClQ6FeRTJp0iStWLFC4eHhGjFihOrVqydJOnTokObNm6fMzEy98sorxVIoAAAAAMB1FSpc+vv769tvv9Vzzz2niRMnyjAMSZLFYlFkZKTmzZsnf3//YikUAAAAAOC6ChUuJal27dpat26d/vOf/+jYsWMyDEN33nmnqlWrVhz1AQAAAABKgUKHy2zVqlVTy5Yti7IWAAAAAEApVagH+gAAAAAAkBunhsvt27erT58+CgoKksVi0Zdffmk33zAMTZkyRYGBgSpfvry6dOmio0ePOqdYAAAAAECenBour1y5oqZNm2revHm5zn/jjTf07rvvasGCBfruu+9UsWJFRUZG5voqFAAAAACA8zh8z2VR6NGjh3r06JHrPMMwNHfuXE2aNEkPPvigJOnTTz+Vv7+/vvzySw0YMKAkSwUAAAAA5MNl77k8ceKEEhMT1aVLF1ubt7e3WrVqpZ07d+a5XFpamlJTU+0+AAAAAIDi5bLhMjExUZJyvDfT39/fNi830dHR8vb2tn2Cg4OLtU4AAAAAgAuHS0dNnDhRKSkpts/p06edXRIAAAAAlHkuGy4DAgIkSUlJSXbtSUlJtnm5sVqtqlKlit0HAAAAAFC8XDZchoaGKiAgQJs3b7a1paam6rvvvlPr1q2dWBkAAAAA4GZOfVrs5cuXdezYMdv0iRMnFB8fLx8fH9WqVUujR4/Wq6++qjvvvFOhoaGaPHmygoKC1LdvX+cVDQAAAADIwanh8scff1SnTp1s02PHjpUkDRkyRDExMXrxxRd15coVDRs2TMnJybrvvvsUGxsrLy8vZ5UMAAAAAMiFxTAMw9lFFKfU1FR5e3srJSWF+y8BAAAAOE3IhLX5zk+Y1auEKim4wuQpl73nEgAAAABQehAuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmuTu7ADhPyIS1ec5LmNWrBCsBAAAAUNoxcgkAAAAAMI1wCQAAAAAwjXAJAAAAADCNcAkAAAAAMI1wCQAAAAAwjXAJAAAAADCNcAkAAAAAMI1wCQAAAAAwzaXD5bRp02SxWOw+9evXd3ZZAAAAAICbuDu7gFtp1KiRNm3aZJt2d3f5kgEAAADgtuPySc3d3V0BAQHOLgMAAAAAkA+XvixWko4ePaqgoCDVqVNHgwYN0qlTp/Ltn5aWptTUVLsPAAAAAKB4uXS4bNWqlWJiYhQbG6v58+frxIkTateunS5dupTnMtHR0fL29rZ9goODS7BiAAAAALg9uXS47NGjhx5++GE1adJEkZGRWrdunZKTk/X555/nuczEiROVkpJi+5w+fboEKwYAAACA25PL33N5o6pVqyo8PFzHjh3Ls4/VapXVai3BqgAAAAAALj1yebPLly/r119/VWBgoLNLAQAAAADcwKXD5fjx47Vt2zYlJCTo22+/Vb9+/eTm5qaBAwc6uzQAAAAAwA1c+rLY3377TQMHDtQff/whX19f3Xfffdq1a5d8fX2dXRoAAAAA4AYuHS6XLl3q7BIAAAAAAAXg0pfFAgAAAABKB8IlAAAAAMA0wiUAAAAAwDTCJQAAAADANMIlAAAAAMA0l35aLFxXyIS1+c5PmNWrhCoBAAAA4AoYuQQAAAAAmEa4BAAAAACYRrgEAAAAAJhGuAQAAAAAmEa4BAAAAACYRrgEAAAAAJhGuAQAAAAAmEa4BAAAAACYRrgEAAAAAJhGuAQAAAAAmEa4BAAAAACY5u7sAgBXEjJhbb7zE2b1KqFKAAAAbl/5/U7G72Oui5FLAAAAAIBphEsAAAAAgGmESwAAAACAaYRLAAAAAIBphEsAAAAAgGmESwAAAACAaYRLAAAAAIBphEsAAAAAgGmESwAAAACAaYRLAAAAAIBphEsAAAAAgGnuzi4ArilkwlqX3XbCrF4lVIlrceXj4sq1AXBd/OwAbl/8rlk2MXIJAAAAADCNcAkAAAAAMI1wCQAAAAAwjXAJAAAAADCNcAkAAAAAMI1wCQAAAAAwjXAJAAAAADCNcAkAAAAAMI1wCQAAAAAwjXAJAAAAADCNcAkAAAAAMI1wCQAAAAAwzd3ZBdzuQiaszXNewqxeJVgJgJvl9/+nVHb/H71d9xsoDP79RlFx5s9czmMUNUYuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmES4BAAAAAKYRLgEAAAAAphEuAQAAAACmlYpwOW/ePIWEhMjLy0utWrXS999/7+ySAAAAAAA3cPlwuWzZMo0dO1ZTp07Vnj171LRpU0VGRurcuXPOLg0AAAAA8L9cPlzOmTNHTz/9tIYOHaqGDRtqwYIFqlChghYuXOjs0gAAAAAA/8vd2QXkJz09Xbt379bEiRNtbeXKlVOXLl20c+fOXJdJS0tTWlqabTolJUWSlJqaWrzFOigr7Wqe84q75vy2bZaZ2m9VV3EeF2du+1aoreSV1f26ldt1v1HySvO55sx/v1G2uOrvPa78e6jZ2lz1mBf3th2VXZNhGLfsazEK0stJzpw5ozvuuEPffvutWrdubWt/8cUXtW3bNn333Xc5lpk2bZqmT59ekmUCAAAAQJl2+vRp1axZM98+Lj1y6YiJEydq7NixtumsrCxdvHhR1atXl8VicWJluB2kpqYqODhYp0+fVpUqVZxdDm5znI9wNZyTcCWcj3A1rnpOGoahS5cuKSgo6JZ9XTpc1qhRQ25ubkpKSrJrT0pKUkBAQK7LWK1WWa1Wu7aqVasWV4lArqpUqeJSPxRwe+N8hKvhnIQr4XyEq3HFc9Lb27tA/Vz6gT6enp6KiIjQ5s2bbW1ZWVnavHmz3WWyAAAAAADncumRS0kaO3ashgwZohYtWuiee+7R3LlzdeXKFQ0dOtTZpQEAAAAA/pfLh8tHH31U58+f15QpU5SYmKhmzZopNjZW/v7+zi4NyMFqtWrq1Kk5Ls0GnIHzEa6GcxKuhPMRrqYsnJMu/bRYAAAAAEDp4NL3XAIAAAAASgfCJQAAAADANMIlAAAAAMA0wiUAAAAAwDTCJVBI8+bNU0hIiLy8vNSqVSt9//33efb98MMP1a5dO1WrVk3VqlVTly5d8u0PFFZhzscbLV26VBaLRX379i3eAnHbKew5mZycrOHDhyswMFBWq1Xh4eFat25dCVWLsq6w5+PcuXNVr149lS9fXsHBwRozZoyuXbtWQtWiLNu+fbv69OmjoKAgWSwWffnll7dcJi4uTnfffbesVqvq1q2rmJiYYq/TLMIlUAjLli3T2LFjNXXqVO3Zs0dNmzZVZGSkzp07l2v/uLg4DRw4UFu3btXOnTsVHBysbt266ffffy/hylEWFfZ8zJaQkKDx48erXbt2JVQpbheFPSfT09PVtWtXJSQk6IsvvtDhw4f14Ycf6o477ijhylEWFfZ8XLJkiSZMmKCpU6fq4MGD+vjjj7Vs2TK9/PLLJVw5yqIrV66oadOmmjdvXoH6nzhxQr169VKnTp0UHx+v0aNH66mnntKGDRuKuVJzeBUJUAitWrVSy5Yt9d5770mSsrKyFBwcrJEjR2rChAm3XD4zM1PVqlXTe++9p8cff7y4y0UZ58j5mJmZqfbt2+uJJ57Q119/reTk5AL99RQoiMKekwsWLNCbb76pQ4cOycPDo6TLRRlX2PNxxIgROnjwoDZv3mxrGzdunL777jvt2LGjxOpG2WexWLRy5cp8rx566aWXtHbtWh04cMDWNmDAACUnJys2NrYEqnQMI5dAAaWnp2v37t3q0qWLra1cuXLq0qWLdu7cWaB1XL16VdevX5ePj09xlYnbhKPn44wZM+Tn56cnn3yyJMrEbcSRc3L16tVq3bq1hg8fLn9/fzVu3FivvfaaMjMzS6pslFGOnI9t2rTR7t27bZfOHj9+XOvWrVPPnj1LpGbgRjt37rQ7fyUpMjKywL9zOou7swsASosLFy4oMzNT/v7+du3+/v46dOhQgdbx0ksvKSgoKMcPC6CwHDkfd+zYoY8//ljx8fElUCFuN46ck8ePH9eWLVs0aNAgrVu3TseOHdPzzz+v69eva+rUqSVRNsooR87Hv/71r7pw4YLuu+8+GYahjIwMPfvss1wWC6dITEzM9fxNTU3Vn3/+qfLlyzupsvwxcgmUkFmzZmnp0qVauXKlvLy8nF0ObjOXLl3S4MGD9eGHH6pGjRrOLgeQ9N/LFP38/PTBBx8oIiJCjz76qF555RUtWLDA2aXhNhQXF6fXXntN77//vvbs2aMVK1Zo7dq1mjlzprNLA0oNRi6BAqpRo4bc3NyUlJRk156UlKSAgIB8l509e7ZmzZqlTZs2qUmTJsVZJm4ThT0ff/31VyUkJKhPnz62tqysLEmSu7u7Dh8+rLCwsOItGmWaIz8jAwMD5eHhITc3N1tbgwYNlJiYqPT0dHl6ehZrzSi7HDkfJ0+erMGDB+upp56SJN111126cuWKhg0bpldeeUXlyjEmg5ITEBCQ6/lbpUoVlx21lBi5BArM09NTERERdjf6Z2VlafPmzWrdunWey73xxhuaOXOmYmNj1aJFi5IoFbeBwp6P9evX108//aT4+Hjb54EHHrA9hS44OLgky0cZ5MjPyLZt2+rYsWO2P3RI0pEjRxQYGEiwhCmOnI9Xr17NESCz//DB8y9R0lq3bm13/krSxo0b8/2d0yUYAAps6dKlhtVqNWJiYoxffvnFGDZsmFG1alUjMTHRMAzDGDx4sDFhwgRb/1mzZhmenp7GF198YZw9e9b2uXTpkrN2AWVIYc/Hmw0ZMsR48MEHS6ha3A4Ke06eOnXKqFy5sjFixAjj8OHDxpo1aww/Pz/j1VdfddYuoAwp7Pk4depUo3LlysY///lP4/jx48ZXX31lhIWFGY888oizdgFlyKVLl4y9e/cae/fuNSQZc+bMMfbu3WucPHnSMAzDmDBhgjF48GBb/+PHjxsVKlQwXnjhBePgwYPGvHnzDDc3NyM2NtZZu1AgXBYLFMKjjz6q8+fPa8qUKUpMTFSzZs0UGxtru+H61KlTdn/1nD9/vtLT0/WXv/zFbj1Tp07VtGnTSrJ0lEGFPR+B4lbYczI4OFgbNmzQmDFj1KRJE91xxx0aNWqUXnrpJWftAsqQwp6PkyZNksVi0aRJk/T777/L19dXffr00d///ndn7QLKkB9//FGdOnWyTY8dO1aSNGTIEMXExOjs2bM6deqUbX5oaKjWrl2rMWPG6J133lHNmjX10UcfKTIyssRrLwzecwkAAAAAMI0/aQMAAAAATCNcAgAAAABMI1wCAAAAAEwjXAIAAAAATCNcAgAAAABMI1wCAAAAAEwjXAIAAAAATCNcAgAAAABMI1wCAFACYmJiVLVqVWeXIUmKi4uTxWJRcnKys0sBAJQhhEsAQJkRFRUli8Uii8UiDw8P+fv7q2vXrlq4cKGysrJKrI6QkBDNnTvXru3RRx/VkSNHin3bHTt2tB0Di8Uif39/Pfzwwzp58qStT5s2bXT27Fl5e3sXez0AgNsH4RIAUKZ0795dZ8+eVUJCgtavX69OnTpp1KhR6t27tzIyMhxer2EYppYvX768/Pz8HF6+MJ5++mmdPXtWZ86c0apVq3T69Gk99thjtvmenp4KCAiQxWIpkXoAALcHwiUAoEyxWq0KCAjQHXfcobvvvlsvv/yyVq1apfXr1ysmJkaSlJCQIIvFovj4eNtyycnJslgsiouLk/R/l46uX79eERERslqt2rFjh3799Vc9+OCD8vf3V6VKldSyZUtt2rTJtp6OHTvq5MmTGjNmjG30UMr9stj58+crLCxMnp6eqlevnhYvXmw332Kx6KOPPlK/fv1UoUIF3XnnnVq9evUtj0GFChUUEBCgwMBA3XvvvRoxYoT27Nljm3/zZbHZtW3YsEENGjRQpUqVbCH9xmXuueceVaxYUVWrVlXbtm3tRkMBACBcAgDKvM6dO6tp06ZasWJFoZedMGGCZs2apYMHD6pJkya6fPmyevbsqc2bN2vv3r3q3r27+vTpo1OnTkmSVqxYoZo1a2rGjBk6e/asXUC70cqVKzVq1CiNGzdOBw4c0DPPPKOhQ4dq69atdv2mT5+uRx55RPv371fPnj01aNAgXbx4scD1X7x4UZ9//rlatWqVb7+rV69q9uzZWrx4sbZv365Tp05p/PjxkqSMjAz17dtXHTp00P79+7Vz504NGzaMkU8AgB13ZxcAAEBJqF+/vvbv31/o5WbMmKGuXbvapn18fNS0aVPb9MyZM7Vy5UqtXr1aI0aMkI+Pj9zc3FS5cmUFBATkud7Zs2crKipKzz//vCRp7Nix2rVrl2bPnq1OnTrZ+kVFRWngwIGSpNdee03vvvuuvv/+e3Xv3j3Pdb///vv66KOPZBiGrl69qvDwcG3YsCHf/bx+/boWLFigsLAwSdKIESM0Y8YMSVJqaqpSUlLUu3dv2/wGDRrkuz4AwO2HkUsAwG3BMAyHRtpatGhhN3358mWNHz9eDRo0UNWqVVWpUiUdPHjQNnJZUAcPHlTbtm3t2tq2bauDBw/atTVp0sT23xUrVlSVKlV07ty5fNc9aNAgxcfHa9++fdqxY4fq1q2rbt266dKlS3kuU6FCBVtwlKTAwEDbdnx8fBQVFaXIyEj16dNH77zzTp4jsgCA2xfhEgBwWzh48KBCQ0MlSeXK/fefP8MwbPOvX7+e63IVK1a0mx4/frxWrlyp1157TV9//bXi4+N11113KT09vVjq9vDwsJu2WCy3fPKtt7e36tatq7p166pt27b6+OOPdfToUS1btqxQ27nx+CxatEg7d+5UmzZttGzZMoWHh2vXrl0O7BEAoKwiXAIAyrwtW7bop59+Uv/+/SVJvr6+kmQ3+nbjw33y88033ygqKkr9+vXTXXfdpYCAACUkJNj18fT0VGZmZr7radCggb755psc627YsGGB6igMNzc3SdKff/5paj3NmzfXxIkT9e2336px48ZasmRJUZQHACgjuOcSAFCmpKWlKTExUZmZmUpKSlJsbKyio6PVu3dvPf7445L++1qQe++9V7NmzVJoaKjOnTunSZMmFWj9d955p1asWKE+ffrIYrFo8uTJOUYSQ0JCtH37dg0YMEBWq1U1atTIsZ4XXnhBjzzyiJo3b64uXbro3//+t1asWGH35FlHXb16VYmJiZKkpKQkzZw5U15eXurWrZtD6ztx4oQ++OADPfDAAwoKCtLhw4d19OhR2/EEAEBi5BIAUMbExsYqMDBQISEh6t69u7Zu3ap3331Xq1atso3gSdLChQuVkZGhiIgIjR49Wq+++mqB1j9nzhxVq1ZNbdq0UZ8+fRQZGam7777brs+MGTOUkJCgsLAw2yjpzfr27at33nlHs2fPVqNGjfQ///M/WrRokTp27Ojwvmf78MMPFRgYqMDAQHXq1EkXLlzQunXrVK9ePYfWV6FCBR06dEj9+/dXeHi4hg0bpuHDh+uZZ54xXSsAoOywGDfeUAEAAAAAgAMYuQQAAAAAmEa4BAAAAACYRrgEAAAAAJhGuAQAAAAAmEa4BAAAAACYRrgEAAAAAJhGuAQAAAAAmEa4BAAAAACYRrgEAAAAAJhGuAQAAAAAmEa4BAAAAACY9v8BVMC9d0fnqHwAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -442,13 +516,6 @@ "plt.ylabel(\"Counts\")\n", "plt.show()" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { diff --git a/examples/04_example_wideband_modulations_dataset.ipynb b/examples/04_example_wideband_modulations_dataset.ipynb index 3166d67..e39a74f 100644 --- a/examples/04_example_wideband_modulations_dataset.ipynb +++ b/examples/04_example_wideband_modulations_dataset.ipynb @@ -1,6 +1,7 @@ { "cells": [ { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -11,6 +12,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -24,17 +26,16 @@ "outputs": [], "source": [ "from torchsig.utils.visualize import MaskClassVisualizer, mask_class_to_outline, complex_spectrogram_to_magnitude\n", - "from torchsig.transforms.target_transforms.target_transforms import DescToMaskClass\n", + "from torchsig.transforms.target_transforms import DescToMaskClass\n", "from torchsig.datasets.wideband import WidebandModulationsDataset\n", - "from torchsig.transforms.expert_feature.eft import Spectrogram\n", - "from torchsig.transforms.signal_processing.sp import Normalize\n", - "from torchsig.transforms.transforms import Compose\n", + "from torchsig.transforms.transforms import Spectrogram, Normalize, Compose\n", "from torch.utils.data import DataLoader\n", "import matplotlib.pyplot as plt\n", "import numpy as np" ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -74,6 +75,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": { "tags": [] @@ -114,6 +116,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": { "tags": [] @@ -186,7 +189,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.0" + "version": "3.8.10" } }, "nbformat": 4, diff --git a/examples/05_example_wideband_detector.ipynb b/examples/05_example_wideband_detector.ipynb index f46f1c7..0ba4ca2 100644 --- a/examples/05_example_wideband_detector.ipynb +++ b/examples/05_example_wideband_detector.ipynb @@ -1,6 +1,7 @@ { "cells": [ { + "attachments": {}, "cell_type": "markdown", "id": "3853186c", "metadata": { @@ -12,6 +13,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "id": "45c1adfb-b2f7-42d2-bd83-c445093a9bed", "metadata": { @@ -33,10 +35,8 @@ "from torchsig.datasets.wideband_sig53 import WidebandSig53\n", "from torchmetrics.detection import MeanAveragePrecision\n", "from torch.utils.data import DataLoader\n", - "from torchsig.transforms.target_transforms.target_transforms import DescToBBoxSignalDict\n", - "from torchsig.transforms.expert_feature.eft import Spectrogram\n", - "from torchsig.transforms.signal_processing.sp import Normalize\n", - "from torchsig.transforms.transforms import Compose\n", + "from torchsig.transforms.target_transforms import DescToBBoxSignalDict, ListTupleToDesc\n", + "from torchsig.transforms.transforms import Spectrogram, Normalize, Compose, Identity\n", "from torchsig.models.spectrogram_models.detr.modules import SetCriterion\n", "from torchsig.models.spectrogram_models.detr.detr import detr_b0_nano, format_preds, format_targets\n", "from tqdm import tqdm\n", @@ -51,6 +51,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "id": "d9ab25c8-180c-4e59-8055-d9265bd66667", "metadata": { @@ -71,10 +72,7 @@ "source": [ "# Specify WidebandSig53 Options\n", "root = 'wideband_sig53/'\n", - "train = True\n", - "impaired = False\n", "fft_size = 512\n", - "num_classes = 1\n", "\n", "transform = Compose([\n", " Spectrogram(nperseg=fft_size, noverlap=0, nfft=fft_size, mode='complex'),\n", @@ -82,37 +80,30 @@ "])\n", "\n", "target_transform = Compose([\n", - " DescToBBoxSignalDict(),\n", + " ListTupleToDesc(),\n", + " DescToBBoxSignalDict()\n", "])\n", "\n", "# Instantiate the training WidebandSig53 Dataset\n", "wideband_sig53_train = WidebandSig53(\n", " root=root, \n", - " train=train, \n", - " impaired=impaired,\n", + " train=True, \n", + " impaired=True,\n", " transform=transform,\n", " target_transform=target_transform,\n", - " regenerate=False,\n", - " use_signal_data=True,\n", - " gen_batch_size=1,\n", - " use_gpu=True,\n", + " use_signal_data=False,\n", ")\n", "\n", "# Instantiate the validation WidebandSig53 Dataset\n", - "train = False\n", "wideband_sig53_val = WidebandSig53(\n", " root=root, \n", - " train=train, \n", - " impaired=impaired,\n", + " train=False, \n", + " impaired=True,\n", " transform=transform,\n", " target_transform=target_transform,\n", - " regenerate=False,\n", - " use_signal_data=True,\n", - " gen_batch_size=1,\n", - " use_gpu=True,\n", + " use_signal_data=False,\n", ")\n", "\n", - "\n", "# Retrieve a sample and print out information\n", "idx = np.random.randint(len(wideband_sig53_val))\n", "data, label = wideband_sig53_val[idx]\n", @@ -123,6 +114,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "id": "f656424f-f14d-46de-bd28-471772c8e27a", "metadata": { @@ -165,6 +157,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "id": "512ba10b-b06b-4b3d-86f7-48e04e6a98d5", "metadata": { @@ -246,13 +239,14 @@ " loss = self.loss_fn.weight_dict[\"loss_ce\"] * loss_vals[\"loss_ce\"] + \\\n", " self.loss_fn.weight_dict[\"loss_bbox\"] * loss_vals[\"loss_bbox\"] + \\\n", " self.loss_fn.weight_dict[\"loss_giou\"] * loss_vals[\"loss_giou\"]\n", - " self.log(\"val_loss\", loss, prog_bar=True, on_step=False, on_epoch=True)\n", + " self.log(\"val_loss\", loss, prog_bar=True, on_step=False, on_epoch=True, batch_size=4)\n", " return {'val_loss': loss}\n", " \n", "example_model = ExampleDETR(model, train_dataloader, val_dataloader)" ] }, { + "attachments": {}, "cell_type": "markdown", "id": "9b5575fc-7629-4a24-900a-e405b512bff4", "metadata": { @@ -294,6 +288,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "id": "76f8edf8-dc0a-41bc-bf86-1ee2dc76f0ff", "metadata": { @@ -456,6 +451,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "id": "bd21b745-1b3d-46bb-8885-33019413c1bf", "metadata": { @@ -540,14 +536,6 @@ "print(\"mAP: {}\".format(mAP_score))\n", "mAP_dict" ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "91d853db-b0a2-4c01-8c78-a3f70f2cf4d4", - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { diff --git a/pyproject.toml b/pyproject.toml index 4fca010..3e3997b 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -9,10 +9,16 @@ authors = [ {name = "TorchSig Team"}, ] readme = "README.md" -requires-python = ">=3.7" +requires-python = ">=3.8" license = {text = "MIT"} +classifiers = [ + "License :: OSI Approved :: MIT License", + "Programming Language :: Python", + "Programming Language :: Python :: 3", +] +keywords = ["signal processing", "machine learning"] dependencies = [ - "torch==1.13.1", + "torch==2.0.1", "torchvision", "tqdm", "numpy", @@ -32,6 +38,7 @@ dependencies = [ "sympy", "numba", "torchmetrics", + "click" ] dynamic = ["version"] diff --git a/scripts/generate_sig53.py b/scripts/generate_sig53.py new file mode 100644 index 0000000..2e7f38b --- /dev/null +++ b/scripts/generate_sig53.py @@ -0,0 +1,64 @@ +from torchsig.utils.writer import DatasetCreator, DatasetLoader +from torchsig.datasets.modulations import ModulationsDataset +from torchsig.datasets import conf +from typing import List +import click +import os + + +def generate(path: str, configs: List[conf.Sig53Config]): + for config in configs: + ds = ModulationsDataset( + level=config.level, + num_samples=config.num_samples, + num_iq_samples=config.num_iq_samples, + use_class_idx=config.use_class_idx, + include_snr=config.include_snr, + eb_no=config.eb_no, + ) + loader = DatasetLoader( + ds, + seed=12345678, + num_workers=os.cpu_count() // 2, + batch_size=os.cpu_count() // 2, + ) + creator = DatasetCreator( + ds, + seed=12345678, + path="{}".format(os.path.join(path, config.name)), + loader=loader, + ) + creator.create() + + +@click.command() +@click.option("--root", default="sig53", help="Path to generate sig53 datasets") +@click.option("--all", default=True, help="Generate all versions of sig53 dataset.") +@click.option( + "--impaired", + default=False, + help="Generate impaired dataset. Ignored if --all=True (default)", +) +def main(root: str, all: bool, impaired: bool): + if not os.root.isdir(root): + os.mkdir(root) + + configs = [ + conf.Sig53CleanTrainConfig, + conf.Sig53CleanValConfig, + conf.Sig53ImpairedTrainConfig, + conf.Sig53ImpairedValConfig, + ] + if all: + generate(root, configs) + return + + if impaired: + generate(root, configs[2:]) + return + + generate(root, configs[:2]) + + +if __name__ == "__main__": + main() diff --git a/scripts/generate_wideband_sig53.py b/scripts/generate_wideband_sig53.py new file mode 100644 index 0000000..9f3e548 --- /dev/null +++ b/scripts/generate_wideband_sig53.py @@ -0,0 +1,70 @@ +from torchsig.transforms.target_transforms import DescToListTuple +from torchsig.utils.writer import DatasetCreator, DatasetLoader +from torchsig.datasets.wideband import WidebandModulationsDataset +from torchsig.datasets import conf +from typing import List +import click +import os + + +def collate_fn(batch): + return tuple(zip(*batch)) + + +def generate(root: str, configs: List[conf.WidebandSig53Config]): + for config in configs: + wideband_ds = WidebandModulationsDataset( + level=config.level, + num_iq_samples=config.num_iq_samples, + num_samples=config.num_samples, + target_transform=DescToListTuple(), + seed=config.seed, + ) + + dataset_loader = DatasetLoader( + wideband_ds, seed=12345678, collate_fn=collate_fn + ) + creator = DatasetCreator( + wideband_ds, + seed=12345678, + path=root, + loader=dataset_loader, + ) + creator.create() + + +@click.command() +@click.option( + "--root", default="wideband_sig53", help="Path to generate wideband_sig53 datasets" +) +@click.option( + "--all", default=True, help="Generate all versions of wideband_sig53 dataset." +) +@click.option( + "--impaired", + default=False, + help="Generate impaired dataset. Ignored if --all=True (default)", +) +def main(root: str, all: bool, impaired: bool): + if not os.path.isdir(root): + os.mkdir(root) + + configs = [ + conf.WidebandSig53CleanTrainConfig, + conf.WidebandSig53CleanValConfig, + conf.WidebandSig53ImpairedTrainConfig, + conf.WidebandSig53ImpairedValConfig, + ] + if all: + generate(root, configs) + return + + if impaired: + generate(root, configs[2:]) + return + + generate(root, configs[:2]) + + +if __name__ == "__main__": + main() diff --git a/scripts/train_sig53.py b/scripts/train_sig53.py new file mode 100644 index 0000000..8888c7a --- /dev/null +++ b/scripts/train_sig53.py @@ -0,0 +1,188 @@ +from torchsig.transforms.target_transforms import DescToClassIndex +from torchsig.models.iq_models.efficientnet.efficientnet import efficientnet_b4 +from torchsig.transforms.transforms import ( + RandomPhaseShift, + Normalize, + ComplexTo2D, + Compose, +) +from pytorch_lightning.callbacks import ModelCheckpoint +from pytorch_lightning import LightningModule, Trainer +from sklearn.metrics import classification_report +from torchsig.utils.cm_plotter import plot_confusion_matrix +from torchsig.datasets.sig53 import Sig53 +from torch.utils.data import DataLoader +from matplotlib import pyplot as plt +from torch import optim +from tqdm import tqdm +import torch.nn.functional as F +import numpy as np +import click +import torch +import os + + +class ExampleNetwork(LightningModule): + def __init__(self, model, data_loader, val_data_loader): + super(ExampleNetwork, self).__init__() + self.mdl: torch.nn.Module = model + self.data_loader: DataLoader = data_loader + self.val_data_loader: DataLoader = val_data_loader + + # Hyperparameters + self.lr = 0.001 + self.batch_size = data_loader.batch_size + + def forward(self, x: torch.Tensor): + return self.mdl(x.float()) + + def predict(self, x: torch.Tensor): + with torch.no_grad(): + out = self.forward(x.float()) + return out + + def configure_optimizers(self): + return optim.Adam(self.parameters(), lr=self.lr) + + def train_dataloader(self): + return self.data_loader + + def val_dataloader(self): + return self.val_data_loader + + def training_step(self, batch: torch.Tensor, batch_nb: int): + x, y = batch + y = torch.squeeze(y.to(torch.int64)) + loss = F.cross_entropy(self(x.float()), y) + self.log("loss", loss, on_step=True, prog_bar=True, logger=True) + return loss + + def validation_step(self, batch: torch.Tensor, batch_nb: int): + x, y = batch + y = torch.squeeze(y.to(torch.int64)) + loss = F.cross_entropy(self(x.float()), y) + self.log("val_loss", loss, on_epoch=True, prog_bar=True, logger=True) + return loss + + +@click.command() +@click.option("--root", default="data/sig53", help="Path to train/val datasets") +@click.option("--impaired", default=False, help="Impaired or clean datasets") +def main(root: str, impaired: bool): + class_list = list(Sig53._idx_to_name_dict.values()) + transform = Compose( + [ + RandomPhaseShift(phase_offset=(-1, 1)), + Normalize(norm=np.inf), + ComplexTo2D(), + ] + ) + target_transform = DescToClassIndex(class_list=class_list) + + sig53_train = Sig53( + root, + train=True, + impaired=impaired, + transform=transform, + target_transform=target_transform, + use_signal_data=True, + ) + + sig53_val = Sig53( + root, + train=False, + impaired=impaired, + transform=transform, + target_transform=target_transform, + use_signal_data=True, + ) + + # Create dataloaders"data + train_dataloader = DataLoader( + dataset=sig53_train, + batch_size=os.cpu_count(), + num_workers=os.cpu_count() // 2, + shuffle=True, + drop_last=True, + ) + val_dataloader = DataLoader( + dataset=sig53_val, + batch_size=os.cpu_count(), + num_workers=os.cpu_count() // 2, + shuffle=False, + drop_last=True, + ) + + model = efficientnet_b4(pretrained=False) + + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + model = model.to(device) + + example_model = ExampleNetwork(model, train_dataloader, val_dataloader) + example_model = example_model.to(device) + + # Setup checkpoint callbacks + checkpoint_filename = "{}/checkpoint".format(os.getcwd()) + checkpoint_callback = ModelCheckpoint( + filename=checkpoint_filename, + save_top_k=True, + monitor="val_loss", + mode="min", + ) + + # Create and fit trainer + epochs = 500 + trainer = Trainer( + max_epochs=epochs, callbacks=checkpoint_callback, devices=1, accelerator="gpu" + ) + trainer.fit(example_model) + + # Load best checkpoint + device = "cuda" if torch.cuda.is_available() else "cpu" + checkpoint = torch.load( + checkpoint_filename + ".ckpt", map_location=lambda storage, loc: storage + ) + example_model.load_state_dict(checkpoint["state_dict"]) + example_model = example_model.to(device=device).eval() + + # Infer results over validation set + num_test_examples = len(sig53_val) + num_classes = len(list(Sig53._idx_to_name_dict.values())) + y_raw_preds = np.empty((num_test_examples, num_classes)) + y_preds = np.zeros((num_test_examples,)) + y_true = np.zeros((num_test_examples,)) + + for i in tqdm(range(0, num_test_examples)): + # Retrieve data + idx = i # Use index if evaluating over full dataset + data, label = sig53_val[idx] + # Infer + data = torch.from_numpy(np.expand_dims(data, 0)).float().to(device) + pred_tmp = example_model.predict(data) + pred_tmp = pred_tmp.cpu().numpy() if torch.cuda.is_available() else pred_tmp + # Argmax + y_preds[i] = np.argmax(pred_tmp) + # Store label + y_true[i] = label + + acc = np.sum(np.asarray(y_preds) == np.asarray(y_true)) / len(y_true) + plot_confusion_matrix( + y_true, + y_preds, + classes=class_list, + normalize=True, + title="Example Modulations Confusion Matrix\nTotal Accuracy: {:.2f}%".format( + acc * 100 + ), + text=False, + rotate_x_text=90, + figsize=(16, 9), + ) + plt.savefig("{}/02_sig53_classifier.png".format(os.getcwd())) + + print("Classification Report:") + print(classification_report(y_true, y_preds)) + + +if __name__ == "__main__": + main() diff --git a/setup.py b/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/tests/test_datasets_sig53.py b/tests/test_datasets_sig53.py index b2e70e2..609e57c 100644 --- a/tests/test_datasets_sig53.py +++ b/tests/test_datasets_sig53.py @@ -2,102 +2,48 @@ from torchsig.datasets.sig53 import Sig53 from torchsig.datasets import conf from torchsig.utils.writer import DatasetCreator -from unittest import TestCase import shutil +import pytest import os -class GenerateSig53(TestCase): - @staticmethod - def clean_folders(): - if os.path.exists("tests/test1/"): - shutil.rmtree("tests/test1/") - - if os.path.exists("tests/test2/"): - shutil.rmtree("tests/test2/") - - def setUp(self) -> None: - GenerateSig53.clean_folders() - os.mkdir("tests/test1") - os.mkdir("tests/test2") - return super().setUp() - - def tearDown(self) -> None: - GenerateSig53.clean_folders() - return super().tearDown() - - def test_can_generate_sig53_clean_train(self): - cfg = conf.Sig53CleanTrainConfig - - ds = ModulationsDataset( - level=cfg.level, - num_samples=1060, - num_iq_samples=cfg.num_iq_samples, - use_class_idx=cfg.use_class_idx, - include_snr=cfg.include_snr, - eb_no=cfg.eb_no, - ) - - creator = DatasetCreator( - ds, seed=12345678, path="tests/test1/sig53_clean_train" - ) - creator.create() - - Sig53(root="tests/test1", train=True, impaired=False) - return True - - def test_can_generate_sig53_clean_val(self): - cfg = conf.Sig53CleanValConfig - - ds = ModulationsDataset( - level=cfg.level, - num_samples=1060, - num_iq_samples=cfg.num_iq_samples, - use_class_idx=cfg.use_class_idx, - include_snr=cfg.include_snr, - eb_no=cfg.eb_no, - ) - - creator = DatasetCreator(ds, seed=12345678, path="tests/test1/sig53_clean_val") - creator.create() - - Sig53(root="tests/test1", train=True, impaired=False) - return True - - def test_can_generate_sig53_impaired_train(self): - cfg = conf.Sig53ImpairedTrainConfig - - ds = ModulationsDataset( - level=cfg.level, - num_samples=1060, - num_iq_samples=cfg.num_iq_samples, - use_class_idx=cfg.use_class_idx, - include_snr=cfg.include_snr, - eb_no=cfg.eb_no, - ) - - creator = DatasetCreator( - ds, seed=12345678, path="tests/test1/sig53_impaired_train" - ) - creator.create() - - Sig53(root="tests/test1", train=True, impaired=False) - return True - - def test_can_generate_sig53_impaired_val(self): - cfg = conf.Sig53ImpairedValConfig - ds = ModulationsDataset( - level=cfg.level, - num_samples=1060, - num_iq_samples=cfg.num_iq_samples, - use_class_idx=cfg.use_class_idx, - include_snr=cfg.include_snr, - eb_no=cfg.eb_no, - ) - - creator = DatasetCreator( - ds, seed=12345678, path="tests/test1/sig53_impaired_val" - ) - creator.create() - Sig53(root="tests/test1", train=True, impaired=False) - return True +def setup_module(module): + os.mkdir("tests/test1") + + +def teardown_module(module): + if os.path.exists("tests/test1/"): + shutil.rmtree("tests/test1/") + + +@pytest.mark.serial +@pytest.mark.parametrize( + "config", + ( + conf.Sig53CleanTrainQAConfig, + conf.Sig53CleanValQAConfig, + conf.Sig53ImpairedTrainQAConfig, + conf.Sig53ImpairedValQAConfig, + ), +) +def test_can_generate_sig53_clean_train(config: conf.Sig53Config): + ds = ModulationsDataset( + level=config.level, + num_samples=53 * 10, + num_iq_samples=config.num_iq_samples, + use_class_idx=config.use_class_idx, + include_snr=config.include_snr, + eb_no=config.eb_no, + ) + + creator = DatasetCreator( + ds, seed=12345678, path="tests/test1/{}".format(config.name) + ) + creator.create() + + train = config in (conf.Sig53CleanTrainQAConfig, conf.Sig53ImpairedTrainQAConfig) + impaired = config in ( + conf.Sig53ImpairedTrainQAConfig, + conf.Sig53ImpairedValQAConfig, + ) + Sig53(root="tests/test1", train=train, impaired=impaired) diff --git a/tests/test_models.py b/tests/test_models.py new file mode 100644 index 0000000..912d233 --- /dev/null +++ b/tests/test_models.py @@ -0,0 +1,21 @@ +from torchsig.models.iq_models.efficientnet.efficientnet import * +from torchsig.models.iq_models.xcit.xcit import * +import pytest + + +@pytest.mark.parametrize("version", ("b0", "b2", "b4")) +def test_can_instantiate_efficientnet(version: str): + if version == "b0": + model = efficientnet_b0(pretrained=False) + if version == "b2": + model = efficientnet_b2(pretrained=False) + if version == "b4": + model = efficientnet_b4(pretrained=False) + + +@pytest.mark.parametrize("version", ("nano", "tiny")) +def test_can_instantiate_xcit(version: str): + if version == "nano": + model = xcit_nano(pretrained=False) + if version == "tiny": + model = xcit_tiny12(pretrained=False) diff --git a/tests/test_transforms.py b/tests/test_transforms.py index 2e9c821..3fd9837 100644 --- a/tests/test_transforms.py +++ b/tests/test_transforms.py @@ -1,121 +1,120 @@ -from unittest import TestCase -from torchsig.transforms.system_impairment.si import RandomTimeShift, TimeCrop +from torchsig.transforms import RandomTimeShift, TimeCrop import numpy as np +import pytest -class RandomTimeShiftTestCase(TestCase): - def test_random_time_shift_right(self): - rng = np.random.RandomState(0) - data = ( - rng.rand( - 16, - ) - - 0.5 - ) + 1j * ( - rng.rand( - 16, - ) - - 0.5 +def test_random_time_shift_right(): + rng = np.random.RandomState(0) + data = ( + rng.rand( + 16, ) - shift = 5 - t = RandomTimeShift( - shift=shift, + - 0.5 + ) + 1j * ( + rng.rand( + 16, ) - new_data = t(data) - self.assertTrue(np.allclose(data[:-shift], new_data[shift:])) - self.assertTrue(np.allclose(new_data[:shift], np.zeros(shift))) + - 0.5 + ) + shift = 5 + t = RandomTimeShift( + shift=shift, + ) + new_data = t(data) + assert np.allclose(data[:-shift], new_data[shift:]) + assert np.allclose(new_data[:shift], np.zeros(shift)) - def test_random_time_shift_left(self): - rng = np.random.RandomState(0) - data = ( - rng.rand( - 16, - ) - - 0.5 - ) + 1j * ( - rng.rand( - 16, - ) - - 0.5 + +def test_random_time_shift_left(): + rng = np.random.RandomState(0) + data = ( + rng.rand( + 16, ) - shift = -5 - t = RandomTimeShift( - shift=shift, + - 0.5 + ) + 1j * ( + rng.rand( + 16, ) - new_data = t(data) - self.assertTrue(np.allclose(data[-shift:], new_data[:shift])) - self.assertTrue(np.allclose(new_data[shift:], np.zeros(np.abs(shift)))) + - 0.5 + ) + shift = -5 + t = RandomTimeShift( + shift=shift, + ) + new_data = t(data) + assert np.allclose(data[-shift:], new_data[:shift]) + assert np.allclose(new_data[shift:], np.zeros(np.abs(shift))) -class TimeCropTestCase(TestCase): - def test_time_crop_start(self): - rng = np.random.RandomState(0) - num_iq_samples = 16 - data = ( - rng.rand( - num_iq_samples, - ) - - 0.5 - ) + 1j * ( - rng.rand( - num_iq_samples, - ) - - 0.5 +def test_time_crop_start(): + rng = np.random.RandomState(0) + num_iq_samples = 16 + data = ( + rng.rand( + num_iq_samples, ) - length = 4 - t = TimeCrop( - crop_type="start", - length=length, + - 0.5 + ) + 1j * ( + rng.rand( + num_iq_samples, ) - new_data: np.ndarray = t(data) - self.assertTrue(np.allclose(data[:length], new_data)) - self.assertTrue(new_data.shape[0] == length) + - 0.5 + ) + length = 4 + t = TimeCrop( + crop_type="start", + length=length, + ) + new_data: np.ndarray = t(data) + assert np.allclose(data[:length], new_data) + assert new_data.shape[0] == length - def test_time_crop_center(self): - rng = np.random.RandomState(0) - num_iq_samples = 16 - data = ( - rng.rand( - num_iq_samples, - ) - - 0.5 - ) + 1j * ( - rng.rand( - num_iq_samples, - ) - - 0.5 - ) - length = 4 - t = TimeCrop( - crop_type="center", - length=length, + +def test_time_crop_center(): + rng = np.random.RandomState(0) + num_iq_samples = 16 + data = ( + rng.rand( + num_iq_samples, ) - new_data: np.ndarray = t(data) - extra_samples = num_iq_samples - length - self.assertTrue( - np.allclose(data[extra_samples // 2 : -extra_samples // 2], new_data) + - 0.5 + ) + 1j * ( + rng.rand( + num_iq_samples, ) - self.assertTrue(new_data.shape[0] == length) + - 0.5 + ) + length = 4 + t = TimeCrop( + crop_type="center", + length=length, + ) + new_data: np.ndarray = t(data) + extra_samples = num_iq_samples - length + assert np.allclose(data[extra_samples // 2 : -extra_samples // 2], new_data) + assert new_data.shape[0] == length + - def test_time_crop_end(self): - rng = np.random.RandomState(0) - num_iq_samples = 16 - data = ( - rng.rand( - num_iq_samples, - ) - - 0.5 - ) + 1j * ( - rng.rand( - num_iq_samples, - ) - - 0.5 +def test_time_crop_end(): + rng = np.random.RandomState(0) + num_iq_samples = 16 + data = ( + rng.rand( + num_iq_samples, ) - length = 4 - t = TimeCrop( - crop_type="end", - length=length, + - 0.5 + ) + 1j * ( + rng.rand( + num_iq_samples, ) - new_data: np.ndarray = t(data) - self.assertTrue(np.allclose(data[-length:], new_data)) - self.assertTrue(new_data.shape[0] == length) + - 0.5 + ) + length = 4 + t = TimeCrop( + crop_type="end", + length=length, + ) + new_data: np.ndarray = t(data) + assert np.allclose(data[-length:], new_data) + assert new_data.shape[0] == length diff --git a/tests/test_transforms_figures.py b/tests/test_transforms_figures.py new file mode 100644 index 0000000..a70d435 --- /dev/null +++ b/tests/test_transforms_figures.py @@ -0,0 +1,179 @@ +from torchsig.datasets.synthetic import DigitalModulationDataset +from torchsig.transforms.transforms import * +from torchsig.utils.types import SignalData, SignalDescription +from matplotlib import pyplot as plt +import itertools +import numpy as np +import pytest + + +def generate_data(modulation_name): + dataset = DigitalModulationDataset( + [modulation_name], + num_iq_samples=128, + num_samples_per_class=1, + iq_samples_per_symbol=2, + random_pulse_shaping=False, + random_data=False, + ) + short_data = SignalData( + dataset[0][0].tobytes(), + item_type=np.float64, + data_type=np.complex128, + signal_description=SignalDescription(), + ) + + dataset = DigitalModulationDataset( + [modulation_name], + num_iq_samples=4096, + num_samples_per_class=1, + iq_samples_per_symbol=2, + random_pulse_shaping=False, + random_data=False, + ) + long_data = SignalData( + dataset[0][0].tobytes(), + item_type=np.float64, + data_type=np.complex128, + signal_description=SignalDescription(), + ) + return short_data, long_data + + +transforms_list = [ + ( + "random_resample_up", + RandomResample(1.5, num_iq_samples=128, keep_samples=False), + RandomResample(1.5, num_iq_samples=4096, keep_samples=False), + ), + ( + "random_resample_down", + RandomResample(0.75, num_iq_samples=128, keep_samples=False), + RandomResample(0.75, num_iq_samples=4096, keep_samples=False), + ), + ("add_noise", AddNoise(-10), AddNoise(-10)), + ("time_varying_noise", TimeVaryingNoise(-30, -10), TimeVaryingNoise(-30, -10)), + ( + "rayleigh_fading", + RayleighFadingChannel(0.05, (1.0, 0.5, 0.1)), + RayleighFadingChannel(0.05, (1.0, 0.5, 0.1)), + ), + ("phase_shift", RandomPhaseShift(0.5), RandomPhaseShift(0.5)), + ("time_shift", RandomTimeShift(-100.5), RandomTimeShift(-2.5)), + ( + "time_crop", + TimeCrop("random", length=64), + TimeCrop("random", length=2048), + ), + ("time_reversal", TimeReversal(False), TimeReversal(False)), + ("frequency_shift", RandomFrequencyShift(-0.25), RandomFrequencyShift(-0.25)), + ( + "delayed_frequency_shift", + RandomDelayedFrequencyShift(0.2, 0.25), + RandomDelayedFrequencyShift(0.2, 0.25), + ), + ( + "oscillator_drift", + LocalOscillatorDrift(0.01, 0.001), + LocalOscillatorDrift(0.01, 0.001), + ), + ("gain_drift", GainDrift(0.01, 0.001, 0.1), GainDrift(0.01, 0.001, 0.1)), + ( + "iq_imbalance", + IQImbalance(3, np.pi / 180, 0.05), + IQImbalance(3, np.pi / 180, 0.05), + ), + ("roll_off", RollOff(0.05, 0.98), RollOff(0.05, 0.98)), + ("add_slope", AddSlope(), AddSlope()), + ("spectral_inversion", SpectralInversion(), SpectralInversion()), + ("channel_swap", ChannelSwap(), ChannelSwap()), + ("magnitude_rescale", RandomMagRescale(0.5, 3), RandomMagRescale(0.5, 3)), + ( + "drop_samples", + RandomDropSamples(0.3, 50, ["zero"]), + RandomDropSamples(0.3, 50, ["zero"]), + ), + ("quantize", Quantize(32, ["floor"]), Quantize(32, ["floor"])), + ("clip", Clip(0.85), Clip(0.85)), +] + +modulations = ["bpsk", "4fsk"] + + +@pytest.mark.parametrize( + "transform, modulation_name", itertools.product(transforms_list, modulations) +) +def test_transform_figures(transform, modulation_name): + short_data, long_data = generate_data(modulation_name) + + short_data_iq = short_data.iq_data + long_data_iq = long_data.iq_data + + short_data_transform = transform[1](short_data).iq_data + long_data_transform = transform[2](long_data).iq_data + + # IQ Data + figure = plt.figure(figsize=(9, 4)) + figure.suptitle("{}_{}".format(transform[0], modulation_name)) + plt.title(transform[0]) + plt.subplot(4, 2, 1) + plt.plot(short_data_iq.real) + plt.plot(short_data_iq.imag) + plt.grid(False) + plt.xticks([]) + plt.yticks([]) + plt.ylabel("Time") + plt.title("Original") + + plt.subplot(4, 2, 2) + plt.plot(short_data_transform.real) + plt.plot(short_data_transform.imag) + plt.grid(False) + plt.xticks([]) + plt.yticks([]) + plt.title("Transform") + + plt.subplot(4, 2, 3) + _ = plt.scatter(long_data_iq.real, long_data_iq.imag) + plt.xticks([]) + plt.yticks([]) + plt.ylabel("Const") + + plt.subplot(4, 2, 4) + _ = plt.scatter(long_data_transform.real, long_data_transform.imag) + plt.xticks([]) + plt.yticks([]) + plt.title("") + + plt.subplot(4, 2, 5) + _ = plt.psd(long_data_iq) + plt.xticks([]) + plt.xlabel("") + plt.yticks([]) + plt.ylabel("PSD") + plt.title("") + + plt.subplot(4, 2, 6) + _ = plt.psd(long_data_transform) + plt.xticks([]) + plt.xlabel("") + plt.yticks([]) + plt.ylabel("") + plt.title("") + + plt.subplot(4, 2, 7) + _ = plt.specgram(long_data_iq) + plt.xticks([]) + plt.ylabel("Spectrogram") + plt.yticks([]) + plt.title("") + + plt.subplot(4, 2, 8) + _ = plt.specgram(long_data_transform) + plt.xticks([]) + plt.yticks([]) + plt.title("") + + plt.savefig( + "tests/figures/transform_{}_{}.jpg".format(transform[0], modulation_name) + ) diff --git a/tests/test_wideband_benchmark.py b/tests/test_wideband_benchmark.py new file mode 100644 index 0000000..c7beff2 --- /dev/null +++ b/tests/test_wideband_benchmark.py @@ -0,0 +1,16 @@ +from torchsig.datasets.wideband import WidebandModulationsDataset +import pytest + + +def iterate_one_epoch(dataset): + for idx in range(len(dataset)): + _ = dataset[idx] + + +@pytest.mark.benchmark(group="wideband") +def test_generate_wideband_modulation_benchmark(benchmark): + dataset = WidebandModulationsDataset( + level=2, + num_samples=10, + ) + benchmark(iterate_one_epoch, dataset) diff --git a/tests/test_wideband_figures.py b/tests/test_wideband_figures.py new file mode 100644 index 0000000..f356ddc --- /dev/null +++ b/tests/test_wideband_figures.py @@ -0,0 +1,84 @@ +from torchsig.utils.visualize import ( + MaskClassVisualizer, + mask_class_to_outline, + complex_spectrogram_to_magnitude, +) +from torchsig.transforms import Compose, Spectrogram, Normalize +from torchsig.datasets.wideband import WidebandModulationsDataset +from torchsig.utils.writer import DatasetCreator, DatasetLoader +from torchsig.datasets.wideband_sig53 import WidebandSig53 +from torchsig.transforms.target_transforms import ( + DescToMaskClass, + DescToListTuple, +) +from torch.utils.data import DataLoader +from matplotlib import pyplot as plt +import numpy as np +import shutil +import pytest +import os + + +def collate_fn(batch): + return tuple(zip(*batch)) + + +def generate_static_wideband_dataset(level: int): + wideband_ds = WidebandModulationsDataset( + level=level, num_samples=16, target_transform=DescToListTuple(), seed=12345678 + ) + + dataset_loader = DatasetLoader(wideband_ds, seed=12345678, collate_fn=collate_fn) + creator = DatasetCreator( + wideband_ds, + seed=12345678, + path="tests/wideband_sig53_impaired_train/", + loader=dataset_loader, + ) + creator.create() + + +def setup_module(module): + if os.path.exists("tests/wideband_sig53_impaired_train/"): + shutil.rmtree("tests/wideband_sig53_impaired_train/") + + +@pytest.mark.serial +@pytest.mark.parametrize("level", (0, 1, 2)) +def test_generate_wideband_modulation_figures(level: int): + generate_static_wideband_dataset(level) + transform = Compose( + [ + Spectrogram(nperseg=512, noverlap=0, nfft=512, mode="complex"), + Normalize(norm=np.inf, flatten=True), + ] + ) + + target_transform = Compose( + [ + DescToMaskClass(num_classes=53, width=512, height=512), + ] + ) + + # Instantiate the WidebandSig53 Dataset + dataset = WidebandSig53( + root="tests/", + train=True, + impaired=True, + transform=transform, + target_transform=target_transform, + use_signal_data=True, + ) + + data_loader = DataLoader(dataset=dataset, batch_size=16, shuffle=True) + visualizer = MaskClassVisualizer( + data_loader=data_loader, + visualize_transform=complex_spectrogram_to_magnitude, + visualize_target_transform=mask_class_to_outline, + class_list=dataset.modulation_list, + ) + + for figure in iter(visualizer): + figure.set_size_inches(16, 9) + plt.savefig("tests/figures/wideband_level_{}.jpg".format(level)) + break diff --git a/tests/test_writer.py b/tests/test_writer.py index dd43862..1de0c16 100644 --- a/tests/test_writer.py +++ b/tests/test_writer.py @@ -1,8 +1,7 @@ -from torchsig.transforms.target_transforms.target_transforms import DescToClassIndex -from torchsig.utils.writer import DatasetLoader, DatasetCreator, LMDBDatasetWriter +from torchsig.transforms.target_transforms import DescToClassIndex +from torchsig.utils.writer import DatasetCreator from torchsig.datasets.synthetic import DigitalModulationDataset -from torchsig.transforms.wireless_channel.wce import AddNoise -from unittest import TestCase +from torchsig.transforms import AddNoise import pickle import shutil import torch @@ -10,59 +9,53 @@ import os -class SeedModulationDataset(TestCase): - def setUp(self) -> None: - if os.path.exists("tests/test1_writer"): - shutil.rmtree("tests/test1_writer") - - if os.path.exists("tests/test2_writer"): - shutil.rmtree("tests/test2_writer") - - return super().setUp() - - def tearDown(self) -> None: - if os.path.exists("tests/test1_writer"): - shutil.rmtree("tests/test1_writer") - - if os.path.exists("tests/test2_writer"): - shutil.rmtree("tests/test2_writer") - - return super().tearDown() - - def test_can_seed_modulation_dataset(self): - transform = AddNoise(noise_power_db=(5, 10)) - # Create first dataset - dataset = DigitalModulationDataset( - num_samples_per_class=1060, - num_iq_samples=512, - transform=transform, - target_transform=DescToClassIndex(["bpsk", "2gfsk"]), - ) - creator = DatasetCreator(dataset, seed=12345678, path="tests/test1_writer") - creator.create() - - creator = DatasetCreator(dataset, seed=12345678, path="tests/test2_writer") - creator.create() - - # See if they're the same - env1 = lmdb.Environment("tests/test1_writer", map_size=int(1e12), max_dbs=2) - data_db1 = env1.open_db(b"data") - env2 = lmdb.Environment("tests/test2_writer", map_size=int(1e12), max_dbs=2) - data_db2 = env2.open_db(b"data") - - with env1.begin(db=data_db1) as txn1: - with env2.begin(db=data_db2) as txn2: - for idx in range(txn1.stat()["entries"]): - item1 = pickle.loads(txn1.get(pickle.dumps(idx))) - data1: torch.complex128 = item1[0] - label1 = item1[1] - item2 = pickle.loads(txn2.get(pickle.dumps(idx))) - data2: torch.complex128 = item2[0] - label2: torch.Tensor = item2[1] - - real_equal = data1.real.all() == data2.real.all() - imag_equal = data1.imag.all() == data2.imag.all() - label_equal = label1.all() == label2.all() - self.assertTrue(real_equal) - self.assertTrue(imag_equal) - self.assertTrue(label_equal) +def setup_module(module) -> None: + os.mkdir("tests/test1_writer") + os.mkdir("tests/test2_writer") + + +def teardown_module(module) -> None: + if os.path.exists("tests/test1_writer"): + shutil.rmtree("tests/test1_writer") + + if os.path.exists("tests/test2_writer"): + shutil.rmtree("tests/test2_writer") + + +def test_can_seed_modulation_dataset(): + transform = AddNoise(noise_power_db=(5, 10)) + # Create first dataset + dataset = DigitalModulationDataset( + num_samples_per_class=1060, + num_iq_samples=512, + transform=transform, + target_transform=DescToClassIndex(["bpsk", "2gfsk"]), + ) + creator = DatasetCreator(dataset, seed=12345678, path="tests/test1_writer") + creator.create() + + creator = DatasetCreator(dataset, seed=12345678, path="tests/test2_writer") + creator.create() + + # See if they're the same + env1 = lmdb.Environment("tests/test1_writer", map_size=int(1e12), max_dbs=2) + data_db1 = env1.open_db(b"data") + env2 = lmdb.Environment("tests/test2_writer", map_size=int(1e12), max_dbs=2) + data_db2 = env2.open_db(b"data") + + with env1.begin(db=data_db1) as txn1: + with env2.begin(db=data_db2) as txn2: + for idx in range(txn1.stat()["entries"]): + item1 = pickle.loads(txn1.get(pickle.dumps(idx))) + data1: torch.complex128 = item1[0] + label1 = item1[1] + item2 = pickle.loads(txn2.get(pickle.dumps(idx))) + data2: torch.complex128 = item2[0] + label2: torch.Tensor = item2[1] + + real_equal = data1.real.all() == data2.real.all() + imag_equal = data1.imag.all() == data2.imag.all() + label_equal = label1.all() == label2.all() + assert real_equal + assert imag_equal + assert label_equal diff --git a/torchsig/__init__.py b/torchsig/__init__.py index 260c070..6a9beea 100644 --- a/torchsig/__init__.py +++ b/torchsig/__init__.py @@ -1 +1 @@ -__version__ = "0.3.1" +__version__ = "0.4.0" diff --git a/torchsig/datasets/__init__.py b/torchsig/datasets/__init__.py index 03be04c..6056f7e 100644 --- a/torchsig/datasets/__init__.py +++ b/torchsig/datasets/__init__.py @@ -8,9 +8,7 @@ def estimate_filter_length( # N ~= (sampling rate/transition bandwidth)*(sidelobe attenuation in dB / 22) # fred harris, Multirate Signal Processing for Communication Systems, # Second Edition, p.59 - filter_length = int( - np.round((sample_rate / transition_bandwidth) * (attenuation_db / 22)) - ) + filter_length = int(np.round((sample_rate / transition_bandwidth) * (attenuation_db / 22))) # odd-length filters are desirable because they do not introduce a half-sample delay if np.mod(filter_length, 2) == 0: diff --git a/torchsig/datasets/conf.py b/torchsig/datasets/conf.py index 60f6624..969e26a 100644 --- a/torchsig/datasets/conf.py +++ b/torchsig/datasets/conf.py @@ -111,6 +111,11 @@ class WidebandSig53CleanTrainConfig(WidebandSig53Config): level: int = 1 +@dataclass +class WidebandSig53CleanTrainQAConfig(WidebandSig53CleanTrainConfig): + num_samples: int = 250 + + @dataclass class WidebandSig53CleanValConfig(WidebandSig53CleanTrainConfig): name: str = "wideband_sig53_clean_val" @@ -118,6 +123,11 @@ class WidebandSig53CleanValConfig(WidebandSig53CleanTrainConfig): num_samples: int = 25_000 +@dataclass +class WidebandSig53CleanValQAConfig(WidebandSig53CleanValConfig): + num_samples: int = 25 + + @dataclass class WidebandSig53ImpairedTrainConfig(WidebandSig53Config): name: str = "wideband_sig53_impaired_train" @@ -126,8 +136,18 @@ class WidebandSig53ImpairedTrainConfig(WidebandSig53Config): level: int = 2 +@dataclass +class WidebandSig53ImpairedTrainQAConfig(WidebandSig53ImpairedTrainConfig): + num_samples: int = 2_50 + + @dataclass class WidebandSig53ImpairedValConfig(WidebandSig53ImpairedTrainConfig): name: str = "wideband_sig53_impaired_val" seed: int = 1234567893 num_samples: int = 25_000 + + +@dataclass +class WidebandSig53ImpairedValQAConfig(WidebandSig53ImpairedValConfig): + num_samples: int = 25 diff --git a/torchsig/datasets/file_datasets.py b/torchsig/datasets/file_datasets.py index 15d4eee..c6d5cb7 100644 --- a/torchsig/datasets/file_datasets.py +++ b/torchsig/datasets/file_datasets.py @@ -1,23 +1,95 @@ +import json import os import xml -import json +import xml.etree.ElementTree as ET +from typing import Any, List, Optional + import numpy as np import pandas as pd -import xml.etree.ElementTree as ET -from typing import List, Optional, Any -from torchsig.utils.types import SignalDescription from torchsig.datasets.wideband import BurstSourceDataset, SignalBurst -from torchsig.transforms.functional import to_distribution, uniform_continuous_distribution, uniform_discrete_distribution -from torchsig.transforms.functional import FloatParameter, NumericParameter +from torchsig.transforms.functional import ( + FloatParameter, + NumericParameter, + to_distribution, + uniform_continuous_distribution, + uniform_discrete_distribution, +) +from torchsig.utils.types import SignalDescription + + +class WidebandFileSignalBurst(SignalBurst): + """A sub-class of SignalBurst that takes a wideband file input along with + signal annotation parameters and reads the specified data from the file + + Args: + data_file (:obj:`str`): + The file containing the IQ data to read from + start_sample (:obj:`int`): + The IQ sample to start reading from within the IQ data file + is_complex (:obj:`bool`): + Boolean specifying if the data file contains complex data (True) + or real data (False) + + capture_type (:obj:`numpy.dtype`): + The precision of the data capture. Defaults to int16 + + **kwargs + """ + + def __init__( + self, + data_file: Optional[str] = None, + start_sample: int = 0, + is_complex: bool = True, + capture_type: np.dtype = np.dtype(np.int16), + **kwargs, + ): + super(WidebandFileSignalBurst, self).__init__(**kwargs) + assert self.center_frequency is not None + assert self.bandwidth is not None + self.lower_frequency = self.center_frequency - self.bandwidth / 2 + self.upper_frequency = self.center_frequency + self.bandwidth / 2 + self.data_file = data_file + self.start_sample = start_sample + self.is_complex = is_complex + self.capture_type = capture_type + capture_type_is_complex = "complex" in str(self.capture_type) + if self.is_complex and not capture_type_is_complex: + self.bytes_per_sample = int(self.capture_type.itemsize * 2) + else: + self.bytes_per_sample = self.capture_type.itemsize + + def generate_iq(self): + if self.data_file is not None: + with open(self.data_file, "rb") as file_object: + # Apply desired offset + file_object.seek(int(self.start_sample) * self.bytes_per_sample) + # Read desired number of samples from file + iq_data = ( + np.frombuffer( + file_object.read(int(self.num_iq_samples) * self.bytes_per_sample), + dtype=self.capture_type, + ) + .astype(np.float64) + .view(np.complex128) + ) + else: + # Since only the first burst is given data information, the + # remaining bursts are set to all 0's to avoid reading the data + # file repetitively and summing with itself + iq_data = np.zeros(self.num_iq_samples, dtype=np.complex128) + return iq_data[: self.num_iq_samples] + + class TargetInterpreter: - """The TargetInterpreter base class is meant to be inherited and modified + """The TargetInterpreter base class is meant to be inherited and modified for specific interpreters such that each sub-class implements a transform from a file containing target information into a BurstCollection containing SignalBursts. - + Args: target_file: (:obj:`str`): The file containing label/target/annotation information @@ -28,72 +100,82 @@ class TargetInterpreter: capture_duration_samples: (:obj:`int`): The total number of IQ samples in the original capture file - + class_list: (:obj:`list`): List of class names for class to binary encoding """ + def __init__( - self, - target_file: str = None, - num_iq_samples: int = int(512*512), - capture_duration_samples: int = int(512*512), - class_list: list = [], + self, + target_file: str, + class_list: List[str], + num_iq_samples: int = int(512 * 512), + capture_duration_samples: int = int(512 * 512), ): self.target_file = target_file self.num_iq_samples = num_iq_samples self.capture_duration_samples = capture_duration_samples self.class_list = class_list # Initialize relevant capture parameters to be overwritten by interpreter - self.sample_rate = 1 + self.sample_rate = 1.0 self.is_complex = True # Initialize the detections dataframe using sub-class's interpreters self.detections_df = self._convert_to_dataframe() - self.detections_df.sort_values(by=['start']) + self.detections_df.sort_values(by=["start"]) self.num_labels = len(self.detections_df) self.detections_df = self._convert_class_name_to_index() def _convert_to_dataframe(self) -> pd.DataFrame: """Meant to be implemented by a sub-class specific to the label file, - converting labels into a dataframe with the following columns for a + converting labels into a dataframe with the following columns for a uniform setup prior to generalized burst conversions. - + """ detection_columns = ["start", "stop", "center_freq", "bandwidth", "class_name"] - self.detections_df = pd.DataFrame(columns = detection_columns) + self.detections_df = pd.DataFrame(columns=detection_columns) return self.detections_df - + def _convert_class_name_to_index(self) -> pd.DataFrame: - """Append a column to the dataframe containing the class index + """Append a column to the dataframe containing the class index associated with the class names - + """ # If no input class_list ordering provided, read from dataframe if self.class_list == []: - self.class_list = list(self.detections_df['class_name'].unique()) + self.class_list = list(self.detections_df["class_name"].unique()) # Append class index column - self.detections_df['class_index'] = [self.class_list.index(self.detections_df['class_name'][i]) for i in range(self.num_labels)] + self.detections_df["class_index"] = [ + self.class_list.index(self.detections_df["class_name"][i]) + for i in range(self.num_labels) + ] return self.detections_df - + def convert_to_signalburst( - self, - start_sample: int = 0, - df_indicies: np.array = None, - ) -> List[SignalBurst]: - """Inputs a start sample and an array of indicies to convert into a + self, + start_sample: int = 0, + df_indicies: Optional[np.ndarray] = None, + ) -> List[WidebandFileSignalBurst]: + """Inputs a start sample and an array of indicies to convert into a list of `SignalBursts` for the `WidebandFileSignalBurst`s - + """ signal_bursts = [] if df_indicies is None: # Defaults to full dataframe df_indicies = np.arange(self.num_labels) - + for label in self.detections_df.iloc[df_indicies].itertuples(): # Determine cut vs full capture relationship - startInWindow = bool(label.start >= start_sample and label.start < start_sample + self.num_iq_samples) - stopInWindow = bool(label.stop > start_sample and label.stop <= start_sample + self.num_iq_samples) - spansFullWindow = bool(label.start <= start_sample and label.stop >= start_sample + self.num_iq_samples) + startInWindow = bool( + label.start >= start_sample and label.start < start_sample + self.num_iq_samples + ) + stopInWindow = bool( + label.stop > start_sample and label.stop <= start_sample + self.num_iq_samples + ) + spansFullWindow = bool( + label.start <= start_sample and label.stop >= start_sample + self.num_iq_samples + ) fullyContainedInWindow = bool(startInWindow and stopInWindow) # Normalize freq information @@ -101,69 +183,69 @@ def convert_to_signalburst( center_freq = center_freq if self.is_complex else center_freq / 2 bandwidth = label.bandwidth / self.sample_rate bandwidth = bandwidth if self.is_complex else bandwidth / 2 - + # If label present, normalize with respect to requested window and append if fullyContainedInWindow: start = (label.start - start_sample) / self.num_iq_samples stop = (label.stop - start_sample) / self.num_iq_samples signal_bursts.append( WidebandFileSignalBurst( - num_iq_samples = self.num_iq_samples, - start = start, - stop = stop, - center_frequency = center_freq, - bandwidth = bandwidth, - class_name = label.class_name, - class_index = label.class_index, - random_generator = np.random.RandomState, + num_iq_samples=self.num_iq_samples, + start=start, + stop=stop, + center_frequency=center_freq, + bandwidth=bandwidth, + class_name=label.class_name, + class_index=label.class_index, + random_generator=np.random.RandomState, ) ) - + elif startInWindow: start = (label.start - start_sample) / self.num_iq_samples stop = 1 signal_bursts.append( WidebandFileSignalBurst( - num_iq_samples = self.num_iq_samples, - start = start, - stop = stop, - center_frequency = center_freq, - bandwidth = bandwidth, - class_name = label.class_name, - class_index = label.class_index, - random_generator = np.random.RandomState, + num_iq_samples=self.num_iq_samples, + start=start, + stop=stop, + center_frequency=center_freq, + bandwidth=bandwidth, + class_name=label.class_name, + class_index=label.class_index, + random_generator=np.random.RandomState, ) ) - + elif stopInWindow: start = 0 stop = (label.stop - start_sample) / self.num_iq_samples signal_bursts.append( WidebandFileSignalBurst( - num_iq_samples = self.num_iq_samples, - start = start, - stop = stop, - center_frequency = center_freq, - bandwidth = bandwidth, - class_name = label.class_name, - class_index = label.class_index, - random_generator = np.random.RandomState, + num_iq_samples=self.num_iq_samples, + start=start, + stop=stop, + center_frequency=center_freq, + bandwidth=bandwidth, + class_name=label.class_name, + class_index=label.class_index, + random_generator=np.random.RandomState, ) ) - + elif spansFullWindow: start = 0 stop = 1 signal_bursts.append( WidebandFileSignalBurst( - num_iq_samples = self.num_iq_samples, - start = start, - stop = stop, - center_frequency = center_freq, - bandwidth = bandwidth, - class_name = label.class_name, - class_index = label.class_index, - random_generator = np.random.RandomState, + num_iq_samples=self.num_iq_samples, + start=start, + stop=stop, + center_frequency=center_freq, + bandwidth=bandwidth, + class_name=label.class_name, + class_index=label.class_index, + random_generator=np.random.RandomState, ) ) return signal_bursts @@ -171,13 +253,13 @@ def convert_to_signalburst( class CSVFileInterpreter(TargetInterpreter): """The CSVFileInterpreter implements the transformation from a CSV- - formatted signal annotation into a List of WidebandFileSignalBursts. Expected - input is a CSV file where each row contains a separate signal annotation, - and the annotation details are separated by commas for each column. - Information about how the CSV was generated and the original capture file + formatted signal annotation into a List of WidebandFileSignalBursts. Expected + input is a CSV file where each row contains a separate signal annotation, + and the annotation details are separated by commas for each column. + Information about how the CSV was generated and the original capture file are passed in such that the normalized labels for the requested dataset can be calculated - + Example CSV format: ``` index,start_sample,stop_sample,center_freq,bandwidth,class_name @@ -190,14 +272,14 @@ class CSVFileInterpreter(TargetInterpreter): center_freq_column=3 bandwidth_column=4 class_column=5 - + Args: target_file: (:obj:`str`): The file containing label/target/annotation information - + num_iq_samples: (:obj:`int`): Number of IQ samples being requested at the TorchSig SignalDataset side - + capture_duration_samples: (:obj:`int`): Total number of IQ samples present in the original data file @@ -206,32 +288,33 @@ class CSVFileInterpreter(TargetInterpreter): sample_rate: (:obj:`float`): Sample rate of data capture - + is_complex: (:obj:`bool`): Specify whether data capture is complex or real - + start_column: (:obj:`int`): Column index for start sample - + stop_column: (:obj:`int`): Column index for stop sample - + center_freq_column: (:obj:`int`): Column index for center frequency in Hz - + bandwidth_column: (:obj:`int`): Column index for bandwidth in Hz - + class_column: (:obj:`int`): Column index for class name - + """ + def __init__( - self, - target_file: str = None, - num_iq_samples: int = int(512*512), - capture_duration_samples: int = int(512*512), - class_list: list = [], + self, + target_file: str, + class_list: List[str], + num_iq_samples: int = int(512 * 512), + capture_duration_samples: int = int(512 * 512), sample_rate: float = 25e6, is_complex: bool = True, start_column: int = 1, @@ -239,7 +322,7 @@ def __init__( center_freq_column: int = 3, bandwidth_column: int = 4, class_column: int = 5, - **kwargs + **kwargs, ): self.target_file = target_file self.num_iq_samples = num_iq_samples @@ -254,40 +337,42 @@ def __init__( self.class_column = class_column # Generate dataframe self.detections_df = self._convert_to_dataframe() - self.detections_df = self.detections_df.sort_values(by=['start']).reset_index(drop=True) + self.detections_df = self.detections_df.sort_values(by=["start"]).reset_index(drop=True) self.num_labels = len(self.detections_df) self.detections_df = self._convert_class_name_to_index() - + def _convert_to_dataframe(self) -> pd.DataFrame: # Initialize dataframe detection_columns = ["start", "stop", "center_freq", "bandwidth", "class_name"] - self.detections_df = pd.DataFrame(columns = detection_columns) - + self.detections_df = pd.DataFrame(columns=detection_columns) + # Read CSV into temporary dataframe df = pd.read_csv(self.target_file) - + # Store information into detections dataframe - self.detections_df["class_name"] = df.iloc[:,self.class_column].tolist() - self.detections_df["class_indices"] = [self.class_list.index(n) for n in self.detections_df["class_name"]] - self.detections_df["start"] = df.iloc[:,self.start_column].tolist() - self.detections_df["stop"] = df.iloc[:,self.stop_column].tolist() - self.detections_df["center_freq"] = df.iloc[:,self.center_freq_column].tolist() - self.detections_df["bandwidth"] = df.iloc[:,self.bandwidth_column].tolist() - + self.detections_df["class_name"] = df.iloc[:, self.class_column].tolist() + self.detections_df["class_indices"] = [ + self.class_list.index(n) for n in self.detections_df["class_name"] + ] + self.detections_df["start"] = df.iloc[:, self.start_column].tolist() + self.detections_df["stop"] = df.iloc[:, self.stop_column].tolist() + self.detections_df["center_freq"] = df.iloc[:, self.center_freq_column].tolist() + self.detections_df["bandwidth"] = df.iloc[:, self.bandwidth_column].tolist() + return self.detections_df - - + + class SigMFInterpreter(TargetInterpreter): - """The SigMFInterpreter reads in SigMF meta file information and maps the + """The SigMFInterpreter reads in SigMF meta file information and maps the annotations into SignalBursts - + Args: target_file: (:obj:`str`): The file containing label/target/annotation information - + num_iq_samples: (:obj:`int`): Number of IQ samples being requested at the TorchSig SignalDataset side - + capture_duration_samples: (:obj:`int`): Total number of IQ samples present in the original data file @@ -296,16 +381,17 @@ class SigMFInterpreter(TargetInterpreter): class_target: (:obj:`str`): Annotation label for the field containing the class name - + """ + def __init__( - self, - target_file: str = None, - num_iq_samples: int = int(512*512), - capture_duration_samples: int = int(512*512), - class_list: list = [], - class_target: str = 'core:description', - **kwargs + self, + target_file: str, + class_list: List[str], + num_iq_samples: int = int(512 * 512), + capture_duration_samples: int = int(512 * 512), + class_target: str = "core:description", + **kwargs, ): self.target_file = target_file self.num_iq_samples = num_iq_samples @@ -314,24 +400,31 @@ def __init__( self.class_target = class_target # Generate dataframe self.detections_df = self._convert_to_dataframe() - self.detections_df = self.detections_df.sort_values(by=['start']).reset_index(drop=True) + self.detections_df = self.detections_df.sort_values(by=["start"]).reset_index(drop=True) self.num_labels = len(self.detections_df) self.detections_df = self._convert_class_name_to_index() - + def _convert_to_dataframe(self) -> pd.DataFrame: # Initialize dataframe - detection_columns = ["start", "stop", "center_freq", "bandwidth", "class_name", "class_index"] - self.detections_df = pd.DataFrame(columns = detection_columns) - + detection_columns = [ + "start", + "stop", + "center_freq", + "bandwidth", + "class_name", + "class_index", + ] + self.detections_df = pd.DataFrame(columns=detection_columns) + # Read SigMF meta file meta = json.load(open(self.target_file, "r")) - + # Read global SigMF data self.sample_rate = int(meta["global"]["core:sample_rate"]) data_type = meta["global"]["core:datatype"] self.is_complex = True if "c" in data_type else False capture_center_freq = float(meta["captures"][0]["core:frequency"]) - + # Loop through annotations class_names = [] class_indices = [] @@ -339,18 +432,18 @@ def _convert_to_dataframe(self) -> pd.DataFrame: stops = [] center_freqs = [] bandwidths = [] - for annotation_idx, annotation in enumerate(meta['annotations']): + for annotation_idx, annotation in enumerate(meta["annotations"]): # Read annotation details class_names.append(annotation[self.class_target]) class_indices.append(self.class_list.index(annotation[self.class_target])) - lower_freq = annotation['core:freq_lower_edge'] - upper_freq = annotation['core:freq_upper_edge'] + lower_freq = annotation["core:freq_lower_edge"] + upper_freq = annotation["core:freq_upper_edge"] bandwidth = upper_freq - lower_freq bandwidths.append(bandwidth) - center_freqs.append(lower_freq - capture_center_freq + bandwidth/2) - start = annotation['core:sample_start'] + center_freqs.append(lower_freq - capture_center_freq + bandwidth / 2) + start = annotation["core:sample_start"] starts.append(start) - stops.append(start + annotation['core:sample_count']) + stops.append(start + annotation["core:sample_count"]) # Store information into detections dataframe self.detections_df["class_name"] = class_names @@ -359,113 +452,53 @@ def _convert_to_dataframe(self) -> pd.DataFrame: self.detections_df["stop"] = stops self.detections_df["center_freq"] = center_freqs self.detections_df["bandwidth"] = bandwidths - + return self.detections_df - - -class WidebandFileSignalBurst(SignalBurst): - """A sub-class of SignalBurst that takes a wideband file input along with - signal annotation parameters and reads the specified data from the file - - Args: - data_file (:obj:`str`): - The file containing the IQ data to read from - - start_sample (:obj:`int`): - The IQ sample to start reading from within the IQ data file - - is_complex (:obj:`bool`): - Boolean specifying if the data file contains complex data (True) - or real data (False) - - capture_type (:obj:`numpy.dtype`): - The precision of the data capture. Defaults to int16 - - **kwargs - """ - def __init__( - self, - data_file: str = None, - start_sample: int = 0, - is_complex: bool = True, - capture_type: np.dtype = np.dtype(np.int16), - **kwargs - ): - super(WidebandFileSignalBurst, self).__init__(**kwargs) - self.lower_frequency = self.center_frequency - self.bandwidth / 2 - self.upper_frequency = self.center_frequency + self.bandwidth / 2 - self.data_file = data_file - self.start_sample = start_sample - self.is_complex = is_complex - self.capture_type = capture_type - capture_type_is_complex = 'complex' in str(self.capture_type) - if self.is_complex and not capture_type_is_complex: - self.bytes_per_sample = int(self.capture_type.itemsize * 2) - else: - self.bytes_per_sample = self.capture_type.itemsize - - def generate_iq(self): - if self.data_file is not None: - with open(self.data_file, "rb") as file_object: - # Apply desired offset - file_object.seek(int(self.start_sample)*self.bytes_per_sample) - # Read desired number of samples from file - iq_data = np.frombuffer( - file_object.read(int(self.num_iq_samples)*self.bytes_per_sample), - dtype=self.capture_type - ).astype(np.float64).view(np.complex128) - else: - # Since only the first burst is given data information, the - # remaining bursts are set to all 0's to avoid reading the data - # file repetitively and summing with itself - iq_data = np.zeros(self.num_iq_samples, dtype=np.complex128) - return iq_data[:self.num_iq_samples] - - + class FileBurstSourceDataset(BurstSourceDataset): - """The FileBurstSourceDataset complements the SyntheticBurstSourceDataset - but rather than generating synthetic bursts and adding them together, the + """The FileBurstSourceDataset complements the SyntheticBurstSourceDataset + but rather than generating synthetic bursts and adding them together, the FileBurstSourceDataset inputs information from files and returns labeled SignalBursts for the capture files. The conversions from the label files to the SignalBursts is done through an input TargetInterpreter such that the FileBurstSourceDataset can be used with any data type coming from files provided the interpretation class is built. - + Args: data_files: (:obj:`List`): List of data files to read the IQ data from - + target_files: (:obj:`List`): List of target files to read the signal annotations from. Note that these files should be ordered to match the data_files accordingly - + capture_type: (:obj:`np.dtype`): Specify the data type of the capture data_files (ex: np.int16) - + is_complex: (:obj:`bool`): Specify whether the data files are complex or real - + sample_policy: (:obj:`str`): Specify the policy defining how samples are retrieved from the data and annotation files. Options include: `random`, `sequential_label`, and `sequential_iq`. Details for each below: - `random_labels`: Randomly sample files and then labels and then read IQ samples around the randomly sampled label - - `sequential_labels`: Sequentially iterate over the files and + - `sequential_labels`: Sequentially iterate over the files and labels, retrieving IQ samples around each sequential label - `random_iq`: Randomly sample files and starting IQ samples, regardless of labels - - `sequential_iq`: Sequentially iterate over the files, + - `sequential_iq`: Sequentially iterate over the files, directly iterating over IQ samples regardless of labels - + null_ratio: (:obj:`float`): - Selects the ratio of examples without labeled bursts present. Only - valid for the `random_labels` and `sequential_labels` sample + Selects the ratio of examples without labeled bursts present. Only + valid for the `random_labels` and `sequential_labels` sample policies. For example, a ratio of 0.2 would have 0.2*num_samples - examples without bursts (noise-only) and 0.8*samples containing + examples without bursts (noise-only) and 0.8*samples containing labeled bursts - + target_interpreter: (:obj:`TargetInterpreter`): TargetInterpreter class that maps teh target_files' annotations into a BurstCollection of FileSignalBursts @@ -475,29 +508,29 @@ class FileBurstSourceDataset(BurstSourceDataset): num_iq_samples: (:obj:`int`): Number of IQ samples for each example in the dataset - + num_samples: (:obj:`int`): Number of samples/examples to read for creating the dataset - + seed: (:obj:`Optional`): Initialize the random seed - + """ def __init__( self, - data_files: List = None, - target_files: List = None, + data_files: List[str], + target_files: List[str], + class_list: List[str], capture_type: np.dtype = np.dtype(np.int16), is_complex: bool = True, sample_policy: str = "random_labels", null_ratio: float = 0.0, - target_interpreter: TargetInterpreter = SigMFInterpreter, - class_list: list = [], - num_iq_samples: int = int(512*512), + target_interpreter: TargetInterpreter = SigMFInterpreter, # type: ignore + num_iq_samples: int = int(512 * 512), num_samples: int = 100, seed: Optional[int] = None, - **kwargs + **kwargs, ): super(FileBurstSourceDataset, self).__init__( num_iq_samples=num_iq_samples, @@ -514,8 +547,8 @@ def __init__( self.num_iq_samples = num_iq_samples self.num_samples = num_samples self.seed = seed - - capture_type_is_complex = 'complex' in str(self.capture_type) + + capture_type_is_complex = "complex" in str(self.capture_type) if self.is_complex and not capture_type_is_complex: self.bytes_per_sample = int(self.capture_type.itemsize * 2) else: @@ -525,22 +558,23 @@ def __init__( # Set number of samples containing no bursts self.num_null_samples = int(self.num_samples * self.null_ratio) self.num_valid_samples = self.num_samples - self.num_null_samples - + # Distribute randomness evenly over labels, rather than files then labels # If more than 10,000 files, omit this step for speed if self.sample_policy == "random_labels" and len(self.target_files) < 10_000: annotations_per_file = [] for file_index, target_file in enumerate(self.target_files): # Read total file size - capture_duration_samples = os.path.getsize( - os.path.join(self.data_files[file_index]) - ) // self.bytes_per_sample + capture_duration_samples = ( + os.path.getsize(os.path.join(self.data_files[file_index])) + // self.bytes_per_sample + ) # Interpret annotations for file - interpreter = self.target_interpreter( - target_file = target_file, - num_iq_samples = self.num_iq_samples, - capture_duration_samples = capture_duration_samples, - class_list = self.class_list, + interpreter = self.target_interpreter( # type: ignore + target_file=target_file, + num_iq_samples=self.num_iq_samples, + capture_duration_samples=capture_duration_samples, + class_list=self.class_list, ) # Read all annotations annotations = interpreter.detections_df @@ -548,13 +582,15 @@ def __init__( annotations_per_file.append(len(annotations)) total_annotations = sum(annotations_per_file) self.file_probabilities = np.asarray(annotations_per_file) / total_annotations - + # Generate the index by creating a set of bursts. - self.index = [(collection, idx) for idx, collection in enumerate(self._generate_burst_collections())] + self.index = [ + (collection, idx) for idx, collection in enumerate(self._generate_burst_collections()) + ] def _generate_burst_collections(self) -> List[List[SignalBurst]]: dataset = [] - + if "iq" in self.sample_policy: file_index = 0 data_index = 0 @@ -563,28 +599,31 @@ def _generate_burst_collections(self) -> List[List[SignalBurst]]: # Sample random file file_index = np.random.randint(len(self.data_files)) # Read total file size - capture_duration_samples = os.path.getsize( - os.path.join(self.data_files[file_index]) - ) // self.bytes_per_sample + capture_duration_samples = ( + os.path.getsize(os.path.join(self.data_files[file_index])) + // self.bytes_per_sample + ) # Instantiate target interpreter - interpreter = self.target_interpreter( + interpreter = self.target_interpreter( # type: ignore target_file=self.target_files[file_index], - num_iq_samples = self.num_iq_samples, - capture_duration_samples = capture_duration_samples, - class_list = self.class_list, + num_iq_samples=self.num_iq_samples, + capture_duration_samples=capture_duration_samples, + class_list=self.class_list, ) # Read all annotations annotations = interpreter.detections_df - + # Determine data start index if self.sample_policy == "random_iq": if (capture_duration_samples - self.num_iq_samples) > 0: - data_index = np.random.randint(0, capture_duration_samples - self.num_iq_samples) + data_index = np.random.randint( + 0, capture_duration_samples - self.num_iq_samples + ) # Convert labels to SignalBursts sample_burst_collection = interpreter.convert_to_signalburst( - start_sample=data_index, + start_sample=data_index, df_indicies=None, ) @@ -594,9 +633,11 @@ def _generate_burst_collections(self) -> List[List[SignalBurst]]: sample_burst_collection[0].start_sample = data_index sample_burst_collection[0].is_complex = self.is_complex sample_burst_collection[0].capture_type = self.capture_type - capture_type_is_complex = 'complex' in str(self.capture_type) + capture_type_is_complex = "complex" in str(self.capture_type) if self.is_complex and not capture_type_is_complex: - sample_burst_collection[0].bytes_per_sample = int(self.capture_type.itemsize * 2) + sample_burst_collection[0].bytes_per_sample = int( + self.capture_type.itemsize * 2 + ) else: sample_burst_collection[0].bytes_per_sample = self.capture_type.itemsize else: @@ -618,7 +659,7 @@ def _generate_burst_collections(self) -> List[List[SignalBurst]]: random_generator=np.random.RandomState, ) ) - + # If sequentially sampling, increment if self.sample_policy == "sequential_iq": data_index += self.num_iq_samples @@ -631,7 +672,7 @@ def _generate_burst_collections(self) -> List[List[SignalBurst]]: # Save SignalBursts to dataset dataset.append(sample_burst_collection) - + else: # First, handle null samples null_fail_counter = 0 @@ -639,16 +680,17 @@ def _generate_burst_collections(self) -> List[List[SignalBurst]]: # Sample random file file_index = np.random.randint(len(self.data_files)) # Read total file size - capture_duration_samples = os.path.getsize( - os.path.join(self.data_files[file_index]) - ) // self.bytes_per_sample + capture_duration_samples = ( + os.path.getsize(os.path.join(self.data_files[file_index])) + // self.bytes_per_sample + ) # Instantiate target interpreter - interpreter = self.target_interpreter( + interpreter = self.target_interpreter( # type: ignore target_file=self.target_files[file_index], num_iq_samples=self.num_iq_samples, capture_duration_samples=capture_duration_samples, - class_list = self.class_list, + class_list=self.class_list, ) # Read all annotations annotations = interpreter.detections_df @@ -661,11 +703,13 @@ def _generate_burst_collections(self) -> List[List[SignalBurst]]: while null_interval < self.num_iq_samples: # Randomly sample label index to search around label_index = np.random.randint(interpreter.num_labels) - if interpreter.num_labels > 1 and label_index+1 <= interpreter.num_labels-1: + if interpreter.num_labels > 1 and label_index + 1 <= interpreter.num_labels - 1: # Max over previous annotation stop and previous null start to handle cases of long signals null_start_index = max(annotations.iloc[label_index].stop, null_start_index) - null_stop_index = annotations.iloc[label_index+1].start - elif interpreter.num_labels > 1 and label_index + 1 > interpreter.num_labels-1: + null_stop_index = annotations.iloc[label_index + 1].start + elif ( + interpreter.num_labels > 1 and label_index + 1 > interpreter.num_labels - 1 + ): # Start start index at end of final label null_start_index = max(annotations.iloc[label_index].stop, null_start_index) null_stop_index = capture_duration_samples @@ -673,7 +717,9 @@ def _generate_burst_collections(self) -> List[List[SignalBurst]]: # Sample from before or after the only label before = True if np.random.rand() >= 0.5 else False null_start_index = 0 if before else annotations.iloc[0].stop - null_stop_index = annotations.iloc[0].start if before else capture_duration_samples + null_stop_index = ( + annotations.iloc[0].start if before else capture_duration_samples + ) else: # Sample from anywhere in file null_start_index = 0 @@ -694,8 +740,7 @@ def _generate_burst_collections(self) -> List[List[SignalBurst]]: # Random value within null start and stop indicies - IQ samples data_index = np.random.randint( - null_start_index, - null_stop_index-self.num_iq_samples + null_start_index, null_stop_index - self.num_iq_samples ) # Create invalid SignalBurst for data file information only @@ -728,16 +773,17 @@ def _generate_burst_collections(self) -> List[List[SignalBurst]]: # Sample random file, weighted by number of annotations file_index = np.random.choice(len(self.data_files), p=self.file_probabilities) # Read total file size - capture_duration_samples = os.path.getsize( - os.path.join(self.data_files[file_index]) - ) // self.bytes_per_sample + capture_duration_samples = ( + os.path.getsize(os.path.join(self.data_files[file_index])) + // self.bytes_per_sample + ) # Instantiate target interpreter - interpreter = self.target_interpreter( + interpreter = self.target_interpreter( # type: ignore target_file=self.target_files[file_index], - num_iq_samples = self.num_iq_samples, - capture_duration_samples = capture_duration_samples, - class_list = self.class_list, + num_iq_samples=self.num_iq_samples, + capture_duration_samples=capture_duration_samples, + class_list=self.class_list, ) # Read all annotations annotations = interpreter.detections_df @@ -752,17 +798,23 @@ def _generate_burst_collections(self) -> List[List[SignalBurst]]: if burst_duration < self.num_iq_samples: if (burst_duration / self.num_iq_samples) <= 0.2: # Very short burst: Ensure full burst is present in window - earliest_sample_index = burst_start_index - (self.num_iq_samples - burst_duration) + earliest_sample_index = burst_start_index - ( + self.num_iq_samples - burst_duration + ) latest_sample_index = burst_start_index else: # Short burst: Ensure at least half of the burst is present in window - earliest_sample_index = burst_start_index - (self.num_iq_samples - burst_duration / 2) + earliest_sample_index = burst_start_index - ( + self.num_iq_samples - burst_duration / 2 + ) latest_sample_index = burst_start_index + burst_duration / 2 else: # Long burst: Ensure at least a quarter of the window is occupied earliest_sample_index = burst_start_index - (0.75 * self.num_iq_samples) - latest_sample_index = annotations.iloc[label_index].stop - (0.25 * self.num_iq_samples) - data_index = max(0,np.random.randint(earliest_sample_index, latest_sample_index)) + latest_sample_index = annotations.iloc[label_index].stop - ( + 0.25 * self.num_iq_samples + ) + data_index = max(0, np.random.randint(earliest_sample_index, latest_sample_index)) # Check duration if capture_duration_samples - data_index < self.num_iq_samples: @@ -771,7 +823,7 @@ def _generate_burst_collections(self) -> List[List[SignalBurst]]: # Convert labels to SignalBursts sample_burst_collection = interpreter.convert_to_signalburst( - start_sample=data_index, + start_sample=data_index, df_indicies=None, ) @@ -780,9 +832,11 @@ def _generate_burst_collections(self) -> List[List[SignalBurst]]: sample_burst_collection[0].start_sample = data_index sample_burst_collection[0].is_complex = self.is_complex sample_burst_collection[0].capture_type = self.capture_type - capture_type_is_complex = 'complex' in str(self.capture_type) + capture_type_is_complex = "complex" in str(self.capture_type) if self.is_complex and not capture_type_is_complex: - sample_burst_collection[0].bytes_per_sample = int(self.capture_type.itemsize * 2) + sample_burst_collection[0].bytes_per_sample = int( + self.capture_type.itemsize * 2 + ) else: sample_burst_collection[0].bytes_per_sample = self.capture_type.itemsize diff --git a/torchsig/datasets/modulations.py b/torchsig/datasets/modulations.py index c7f385e..24c961e 100644 --- a/torchsig/datasets/modulations.py +++ b/torchsig/datasets/modulations.py @@ -1,27 +1,26 @@ +from typing import Callable, List, Optional + import numpy as np -from typing import Optional, Callable, List from torch.utils.data import ConcatDataset + from torchsig.datasets.synthetic import DigitalModulationDataset, OFDMDataset -from torchsig.transforms.target_transforms.target_transforms import ( - DescToClassIndexSNR, - DescToClassIndex, - DescToClassNameSNR, - DescToClassName, -) -from torchsig.transforms.transforms import ( +from torchsig.transforms import ( Compose, + IQImbalance, + Normalize, RandomApply, -) -from torchsig.transforms.wireless_channel.wce import ( + RandomFrequencyShift, RandomPhaseShift, + RandomResample, + RandomTimeShift, RayleighFadingChannel, TargetSNR, ) -from torchsig.transforms.signal_processing.sp import Normalize, RandomResample -from torchsig.transforms.system_impairment.si import ( - RandomTimeShift, - RandomFrequencyShift, - IQImbalance, +from torchsig.transforms.target_transforms import ( + DescToClassIndex, + DescToClassIndexSNR, + DescToClassName, + DescToClassNameSNR, ) @@ -82,7 +81,7 @@ class ModulationsDataset(ConcatDataset): """ - default_classes = [ + default_classes: List[str] = [ "ook", "bpsk", "4pam", @@ -150,7 +149,7 @@ def __init__( transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, **kwargs, - ): + ) -> None: classes = self.default_classes if classes is None else classes # Set the target transform based on input options if none provided if not target_transform: @@ -214,9 +213,7 @@ def __init__( RandomApply(RandomTimeShift((-32, 32)), 0.9), RandomApply(RandomFrequencyShift((-0.16, 0.16)), 0.7), RandomApply( - RayleighFadingChannel( - (0.05, 0.5), power_delay_profile=(1.0, 0.5, 0.1) - ), + RayleighFadingChannel((0.05, 0.5), power_delay_profile=(1.0, 0.5, 0.1)), 0.5, ), RandomApply( @@ -269,9 +266,7 @@ def __init__( "256qam", "1024qam", ), # sub-carrier modulations - num_subcarriers=tuple( - num_subcarriers - ), # possible number of subcarriers + num_subcarriers=num_subcarriers, # possible number of subcarriers num_iq_samples=num_iq_samples, num_samples_per_class=num_samples_per_class, random_data=True, @@ -282,9 +277,7 @@ def __init__( ) if num_digital > 0 and num_ofdm > 0: - super(ModulationsDataset, self).__init__( - [digital_dataset, ofdm_dataset], **kwargs - ) + super(ModulationsDataset, self).__init__([digital_dataset, ofdm_dataset], **kwargs) elif num_digital > 0: super(ModulationsDataset, self).__init__([digital_dataset], **kwargs) elif num_ofdm > 0: diff --git a/torchsig/datasets/radioml.py b/torchsig/datasets/radioml.py index 91eaf36..ecde850 100644 --- a/torchsig/datasets/radioml.py +++ b/torchsig/datasets/radioml.py @@ -1,9 +1,10 @@ +from typing import Any, Callable, List, Optional, Tuple + import h5py import numpy as np import pandas as pd -from typing import Tuple, Any, List, Optional, Callable -from torchsig.transforms.target_transforms.target_transforms import ( +from torchsig.transforms.target_transforms import ( DescToClassIndex, DescToClassIndexSNR, DescToClassName, @@ -60,9 +61,7 @@ def __init__( for idx in range(len(data[k])): mods.append(k[0]) snrs.append(k[1]) - iq_data.append( - np.asarray(data[k][idx][::2] + 1j * data[k][idx][1::2]).squeeze() - ) + iq_data.append(np.asarray(data[k][idx][::2] + 1j * data[k][idx][1::2]).squeeze()) data_dict = {"class_name": mods, "snr": snrs, "data": iq_data} self.data_table = pd.DataFrame(data_dict) @@ -190,9 +189,7 @@ def __init__( if not target_transform: if use_class_idx: if include_snr: - self.target_transform = DescToClassIndexSNR( - class_list=self.class_list - ) + self.target_transform = DescToClassIndexSNR(class_list=self.class_list) else: self.target_transform = DescToClassIndex(class_list=self.class_list) else: diff --git a/torchsig/datasets/sig53.py b/torchsig/datasets/sig53.py index d3dd6db..75a76c9 100644 --- a/torchsig/datasets/sig53.py +++ b/torchsig/datasets/sig53.py @@ -1,12 +1,15 @@ -from torchsig.utils.types import SignalData, SignalDescription -from torchsig.datasets.modulations import ModulationsDataset -from torchsig.transforms.transforms import NoTransform -from torchsig.datasets import conf +import pickle from copy import deepcopy from pathlib import Path -import numpy as np -import pickle +from typing import Any, Callable, Optional, Tuple + import lmdb +import numpy as np + +from torchsig.datasets import conf +from torchsig.datasets.modulations import ModulationsDataset +from torchsig.transforms import Identity +from torchsig.utils.types import SignalData, SignalDescription class Sig53: @@ -60,8 +63,8 @@ def __init__( train: bool = True, impaired: bool = True, eb_no: bool = False, - transform: callable = None, - target_transform: callable = None, + transform: Optional[Callable] = None, + target_transform: Optional[Callable] = None, use_signal_data: bool = False, ): self.root = Path(root) @@ -70,18 +73,18 @@ def __init__( self.eb_no = eb_no self.use_signal_data = use_signal_data - self.T = transform if transform else NoTransform() - self.TT = target_transform if target_transform else NoTransform() + self.T = transform if transform else Identity() + self.TT = target_transform if target_transform else Identity() cfg: conf.Sig53Config = ( - "Sig53" + "Sig53" # type: ignore + ("Impaired" if impaired else "Clean") + ("EbNo" if (impaired and eb_no) else "") + ("Train" if train else "Val") + "Config" ) - cfg = getattr(conf, cfg)() + cfg = getattr(conf, cfg)() # type: ignore self.path = self.root / cfg.name self.env = lmdb.Environment( @@ -95,7 +98,7 @@ def __init__( def __len__(self) -> int: return self.length - def __getitem__(self, idx: int) -> tuple: + def __getitem__(self, idx: int) -> Tuple[np.ndarray, Any]: encoded_idx = pickle.dumps(idx) with self.env.begin(db=self.data_db) as data_txn: iq_data = pickle.loads(data_txn.get(encoded_idx)).numpy() @@ -116,12 +119,13 @@ def __getitem__(self, idx: int) -> tuple: data_type=np.dtype(np.complex128), signal_description=[signal_desc], ) - data = self.T(data) - target = self.TT(data.signal_description) - data = data.iq_data - return data, target + data = self.T(data) # type: ignore + target = self.TT(data.signal_description) # type: ignore + assert data.iq_data is not None + sig_iq_data: np.ndarray = data.iq_data + return sig_iq_data, target - data = self.T(iq_data) - target = (self.TT(mod), snr) + np_data: np.ndarray = self.T(iq_data) # type: ignore + target = (self.TT(mod), snr) # type: ignore - return data, target + return np_data, target diff --git a/torchsig/datasets/synthetic.py b/torchsig/datasets/synthetic.py index 5b2cb44..3e1c79c 100644 --- a/torchsig/datasets/synthetic.py +++ b/torchsig/datasets/synthetic.py @@ -1,46 +1,24 @@ -import torch -import pickle import itertools +import pickle +from collections import OrderedDict +from typing import Any, Dict, List, Optional, Tuple, Union + import numpy as np -from copy import deepcopy from scipy import signal as sp -from collections import OrderedDict from torch.utils.data import ConcatDataset -from typing import Tuple, Any, List, Union, Optional + +from torchsig.datasets import estimate_filter_length +from torchsig.transforms.functional import FloatParameter, IntParameter from torchsig.utils.dataset import SignalDataset +from torchsig.utils.dsp import convolve, gaussian_taps, low_pass, rrc_taps from torchsig.utils.types import SignalData, SignalDescription -from torchsig.transforms.functional import IntParameter, FloatParameter -from torchsig.datasets import estimate_filter_length - - -def torchsig_convolve( - signal: np.ndarray, taps: np.ndarray, gpu: bool = False -) -> np.ndarray: - return sp.convolve(signal, taps, "same") - # This will run into issues is signal is smaller than taps - # torch_signal = torch.from_numpy(signal.astype(np.complex128)).reshape(1, -1) - # torch_taps = torch.flip( - # torch.from_numpy(taps.astype(np.complex128)).reshape(1, 1, -1), dims=(2,) - # ) - # if gpu: - # result = torch.nn.functional.conv1d( - # torch_signal.cuda(), torch_taps.cuda(), padding=torch_signal.shape[0] - 1 - # ) - # return result.cpu().numpy()[0] - - # result = torch.nn.functional.conv1d( - # torch_signal, torch_taps, padding=torch_signal.shape[0] - 1 - # ) - # return result.numpy()[0] def remove_corners(const): spacing = 2.0 / (np.sqrt(len(const)) - 1) cutoff = spacing * (np.sqrt(len(const)) / 6 - 0.5) return [ - p - for p in const - if np.abs(np.real(p)) < 1.0 - cutoff or np.abs(np.imag(p)) < 1.0 - cutoff + p for p in const if np.abs(np.real(p)) < 1.0 - cutoff or np.abs(np.imag(p)) < 1.0 - cutoff ] @@ -51,25 +29,19 @@ def remove_corners(const): "4pam": np.add(*map(np.ravel, np.meshgrid(np.linspace(0, 1, 4), 0j))), "4ask": np.add(*map(np.ravel, np.meshgrid(np.linspace(-1, 1, 4), 0j))), "qpsk": np.add( - *map( - np.ravel, np.meshgrid(np.linspace(-1, 1, 2), 1j * np.linspace(-1, 1, 2)) - ) + *map(np.ravel, np.meshgrid(np.linspace(-1, 1, 2), 1j * np.linspace(-1, 1, 2))) ), "8pam": np.add(*map(np.ravel, np.meshgrid(np.linspace(0, 1, 8), 0j))), "8ask": np.add(*map(np.ravel, np.meshgrid(np.linspace(-1, 1, 8), 0j))), "8psk": np.exp(2j * np.pi * np.linspace(0, 7, 8) / 8.0), "16qam": np.add( - *map( - np.ravel, np.meshgrid(np.linspace(-1, 1, 4), 1j * np.linspace(-1, 1, 4)) - ) + *map(np.ravel, np.meshgrid(np.linspace(-1, 1, 4), 1j * np.linspace(-1, 1, 4))) ), "16pam": np.add(*map(np.ravel, np.meshgrid(np.linspace(0, 1, 16), 0j))), "16ask": np.add(*map(np.ravel, np.meshgrid(np.linspace(-1, 1, 16), 0j))), "16psk": np.exp(2j * np.pi * np.linspace(0, 15, 16) / 16.0), "32qam": np.add( - *map( - np.ravel, np.meshgrid(np.linspace(-1, 1, 4), 1j * np.linspace(-1, 1, 8)) - ) + *map(np.ravel, np.meshgrid(np.linspace(-1, 1, 4), 1j * np.linspace(-1, 1, 8))) ), "32qam_cross": remove_corners( np.add( @@ -83,9 +55,7 @@ def remove_corners(const): "32ask": np.add(*map(np.ravel, np.meshgrid(np.linspace(-1, 1, 32), 0j))), "32psk": np.exp(2j * np.pi * np.linspace(0, 31, 32) / 32.0), "64qam": np.add( - *map( - np.ravel, np.meshgrid(np.linspace(-1, 1, 8), 1j * np.linspace(-1, 1, 8)) - ) + *map(np.ravel, np.meshgrid(np.linspace(-1, 1, 8), 1j * np.linspace(-1, 1, 8))) ), "64pam": np.add(*map(np.ravel, np.meshgrid(np.linspace(0, 1, 64), 0j))), "64ask": np.add(*map(np.ravel, np.meshgrid(np.linspace(-1, 1, 64), 0j))), @@ -181,24 +151,18 @@ def __init__( random_pulse_shaping: bool = False, user_const_map: Optional[OrderedDict] = None, **kwargs, - ): + ) -> None: const_map = user_const_map if user_const_map else default_const_map modulations = ( - list(const_map.keys()) + list(freq_map.keys()) - if modulations is None - else modulations + list(const_map.keys()) + list(freq_map.keys()) if modulations is None else modulations ) - constellations = [ - m for m in map(str.lower, modulations) if m in const_map.keys() - ] + constellations = [m for m in map(str.lower, modulations) if m in const_map.keys()] freqs = [m for m in map(str.lower, modulations) if m in freq_map.keys()] const_dataset = ConstellationDataset( constellations=constellations, num_iq_samples=num_iq_samples, num_samples_per_class=num_samples_per_class, - iq_samples_per_symbol=2 - if iq_samples_per_symbol is None - else iq_samples_per_symbol, + iq_samples_per_symbol=2 if iq_samples_per_symbol is None else iq_samples_per_symbol, random_data=random_data, random_pulse_shaping=random_pulse_shaping, **kwargs, @@ -230,17 +194,15 @@ def __init__( random_pulse_shaping=random_pulse_shaping, **kwargs, ) - super(DigitalModulationDataset, self).__init__( - [const_dataset, fsk_dataset, gfsks_dataset] - ) + super(DigitalModulationDataset, self).__init__([const_dataset, fsk_dataset, gfsks_dataset]) class SyntheticDataset(SignalDataset): - def __init__(self, **kwargs): + def __init__(self, **kwargs) -> None: super(SyntheticDataset, self).__init__(**kwargs) - self.index = [] + self.index: List[Tuple[Any, ...]] = [] - def __getitem__(self, index: int) -> Tuple[SignalData, Any]: + def __getitem__(self, index: int) -> Tuple[Union[SignalData, np.ndarray], Any]: signal_description = self.index[index][-1] signal_data = SignalData( data=self._generate_samples(self.index[index]).tobytes(), @@ -251,6 +213,7 @@ def __getitem__(self, index: int) -> Tuple[SignalData, Any]: if self.transform: signal_data = self.transform(signal_data) + assert signal_data.iq_data is not None if self.target_transform: target = self.target_transform(signal_data.signal_description) @@ -299,15 +262,17 @@ def __init__( num_iq_samples: int = 100, num_samples_per_class: int = 100, iq_samples_per_symbol: int = 2, - pulse_shape_filter: bool = None, + pulse_shape_filter: Optional[Union[bool, np.ndarray]] = None, random_pulse_shaping: bool = False, random_data: bool = False, use_gpu: bool = False, - user_const_map: bool = None, + user_const_map: Optional[Dict[str, np.ndarray]] = None, **kwargs, ): super(ConstellationDataset, self).__init__(**kwargs) - self.const_map = default_const_map if user_const_map is None else user_const_map + self.const_map: Dict[str, np.ndarray] = ( + default_const_map if user_const_map is None else user_const_map + ) self.constellations = ( list(self.const_map.keys()) if constellations is None else constellations ) @@ -338,9 +303,7 @@ def __init__( bits_per_symbol=np.log2(len(self.const_map[const_name])), samples_per_symbol=iq_samples_per_symbol, class_name=const_name, - excess_bandwidth=alphas[ - int(const_idx * self.num_samples_per_class + idx) - ], + excess_bandwidth=alphas[int(const_idx * self.num_samples_per_class + idx)], ) self.index.append( ( @@ -363,9 +326,7 @@ def _generate_samples(self, item: Tuple) -> np.ndarray: 0, len(const), int(self.num_iq_samples / self.iq_samples_per_symbol) ) symbols = const[symbol_nums] - zero_padded = np.zeros( - (self.iq_samples_per_symbol * len(symbols),), dtype=np.complex64 - ) + zero_padded = np.zeros((self.iq_samples_per_symbol * len(symbols),), dtype=np.complex64) zero_padded[:: self.iq_samples_per_symbol] = symbols # excess bandwidth is defined in porportion to signal bandwidth, not sampling rate, # thus needs to be scaled by the samples per symbol @@ -375,49 +336,18 @@ def _generate_samples(self, item: Tuple) -> np.ndarray: pulse_shape_filter_span = int( (pulse_shape_filter_length - 1) / 2 ) # convert filter length into the span - self.pulse_shape_filter = self._rrc_taps( - pulse_shape_filter_span, signal_description.excess_bandwidth - ) - filtered = torchsig_convolve( - zero_padded, self.pulse_shape_filter, gpu=self.use_gpu + self.pulse_shape_filter = rrc_taps( + self.iq_samples_per_symbol, + pulse_shape_filter_span, + signal_description.excess_bandwidth, ) + filtered = convolve(zero_padded, self.pulse_shape_filter) if not self.random_data: np.random.set_state(orig_state) # return numpy back to its previous state return filtered[-self.num_iq_samples :] - def _rrc_taps(self, size_in_symbols: int, alpha: float = 0.35) -> np.ndarray: - # this could be made into a transform - M = size_in_symbols - Ns = float(self.iq_samples_per_symbol) - n = np.arange(-M * Ns, M * Ns + 1) - taps = np.zeros(int(2 * M * Ns + 1)) - for i in range(int(2 * M * Ns + 1)): - # handle the discontinuity at t=+-Ns/(4*alpha) - if n[i] * 4 * alpha == Ns or n[i] * 4 * alpha == -Ns: - taps[i] = ( - 1 - / 2.0 - * ( - (1 + alpha) * np.sin((1 + alpha) * np.pi / (4.0 * alpha)) - - (1 - alpha) * np.cos((1 - alpha) * np.pi / (4.0 * alpha)) - + (4 * alpha) - / np.pi - * np.sin((1 - alpha) * np.pi / (4.0 * alpha)) - ) - ) - else: - taps[i] = 4 * alpha / (np.pi * (1 - 16 * alpha**2 * (n[i] / Ns) ** 2)) - taps[i] = taps[i] * ( - np.cos((1 + alpha) * np.pi * n[i] / Ns) - + np.sinc((1 - alpha) * n[i] / Ns) - * (1 - alpha) - * np.pi - / (4.0 * alpha) - ) - return taps - class OFDMDataset(SyntheticDataset): """OFDM Dataset @@ -477,8 +407,8 @@ class OFDMDataset(SyntheticDataset): def __init__( self, - constellations: Optional[Union[List, Tuple]] = ("bpsk", "qpsk"), - num_subcarriers: IntParameter = (64, 128, 256, 512, 1024, 2048), + constellations: Union[List, Tuple] = ("bpsk", "qpsk"), + num_subcarriers: List[int] = [64, 128, 256, 512, 1024, 2048], cyclic_prefix_ratios: FloatParameter = (0.125, 0.25), num_iq_samples: int = 100, num_samples_per_class: int = 100, @@ -500,28 +430,17 @@ def __init__( self.num_iq_samples = num_iq_samples self.num_samples_per_class = num_samples_per_class self.random_data = random_data + self.sidelobe_suppression_methods = sidelobe_suppression_methods self.use_gpu = use_gpu self.index = [] if "lpf" in sidelobe_suppression_methods: - # Precompute LPF cutoff = 0.3 - transition_bandwidth = (0.5 - cutoff) / 4 - num_taps = estimate_filter_length(transition_bandwidth) - self.taps = sp.firwin( - num_taps, - cutoff, - width=transition_bandwidth, - window=sp.get_window("blackman", num_taps), - scale=True, - fs=1, - ) + self.taps = low_pass(cutoff=cutoff, transition_bandwidth=(0.5 - cutoff) / 4) # Precompute all possible random symbols for speed at sample generation self.random_symbols = [] for const_name in self.constellations: - const = default_const_map[const_name] / np.mean( - np.abs(default_const_map[const_name]) - ) + const = default_const_map[const_name] / np.mean(np.abs(default_const_map[const_name])) self.random_symbols.append(const) subcarrier_modulation_types = ("fixed", "random") @@ -534,7 +453,7 @@ def __init__( itertools.product( constellations, subcarrier_modulation_types, - cyclic_prefix_ratios, + cyclic_prefix_ratios, # type: ignore sidelobe_suppression_methods, dc_subcarrier, time_varying_realism, @@ -585,12 +504,10 @@ def _generate_samples(self, item: Tuple) -> np.ndarray: orig_state = np.random.get_state() if not self.random_data: np.random.seed(index) - + if mod_type == "random": symbols_idxs = np.random.randint(0, 1024, size=self.num_iq_samples) - const_idxes = np.random.choice( - range(len(self.random_symbols)), size=num_subcarriers - ) + const_idxes = np.random.choice(range(len(self.random_symbols)), size=num_subcarriers) symbols = np.zeros(self.num_iq_samples, dtype=np.complex128) for subcarrier_idx, const_idx in enumerate(const_idxes): begin_idx = (self.num_iq_samples) * subcarrier_idx @@ -604,9 +521,7 @@ def _generate_samples(self, item: Tuple) -> np.ndarray: else: # Fixed modulation across all subcarriers const_name = np.random.choice(self.constellations) - const = default_const_map[const_name] / np.mean( - np.abs(default_const_map[const_name]) - ) + const = default_const_map[const_name] / np.mean(np.abs(default_const_map[const_name])) symbol_nums = np.random.randint(0, len(const), int(self.num_iq_samples)) symbols = const[symbol_nums] divisible_index = -(len(symbols) % num_subcarriers) @@ -630,26 +545,19 @@ def _generate_samples(self, item: Tuple) -> np.ndarray: # Add time-varying realism with randomized bursts, pilots, and resource blocks burst_dur = 1 original_on = False - if ( - time_varying_realism == "full_bursty" - or time_varying_realism == "partial_bursty" - ): + if time_varying_realism == "full_bursty" or time_varying_realism == "partial_bursty": # Bursty if time_varying_realism == "full_bursty": - burst_region_start = 0 + burst_region_start = 0.0 burst_region_stop = zero_pad.shape[1] else: burst_region_start = np.random.uniform(0.0, 0.9) - burst_region_dur = min( - 1.0 - burst_region_start, np.random.uniform(0.25, 1.0) - ) + burst_region_dur = min(1.0 - burst_region_start, np.random.uniform(0.25, 1.0)) burst_region_start = int(burst_region_start * zero_pad.shape[1] // 4) burst_region_dur = int(burst_region_dur * zero_pad.shape[1] // 4) burst_region_stop = burst_region_start + burst_region_dur # bursty = deepcopy(zero_pad) - bursty = pickle.loads( - pickle.dumps(zero_pad, -1) - ) # no random hangs like deepcopy + bursty = pickle.loads(pickle.dumps(zero_pad, -1)) # no random hangs like deepcopy burst_dur = np.random.choice([1, 2, 4]) original_on = True if np.random.rand() <= 0.5 else False @@ -667,9 +575,7 @@ def _generate_samples(self, item: Tuple) -> np.ndarray: min_num_pilots = 4 max_num_pilots = int(num_subcarriers // 8) num_pilots = np.random.randint(min_num_pilots, max_num_pilots) - pilot_indices = np.random.choice( - range(num_subcarriers), num_pilots, replace=False - ) + pilot_indices = np.random.choice(range(num_subcarriers), num_pilots, replace=False) bursty[pilot_indices + num_subcarriers // 2, :] = zero_pad[ pilot_indices + num_subcarriers // 2, : ] @@ -687,9 +593,7 @@ def _generate_samples(self, item: Tuple) -> np.ndarray: block_low_carrier = np.random.randint(0, num_subcarriers - 4) block_num_carriers = np.random.randint(1, num_subcarriers // 8) - block_high_carrier = min( - block_low_carrier + block_num_carriers, num_subcarriers - ) + block_high_carrier = min(block_low_carrier + block_num_carriers, num_subcarriers) bursty[ block_low_carrier @@ -706,9 +610,7 @@ def _generate_samples(self, item: Tuple) -> np.ndarray: ofdm_symbols = np.fft.ifft(np.fft.ifftshift(zero_pad, axes=0), axis=0) symbol_dur = ofdm_symbols.shape[0] - cyclic_prefixed = np.pad( - ofdm_symbols, ((int(cyclic_prefix_len), 0), (0, 0)), "wrap" - ) + cyclic_prefixed = np.pad(ofdm_symbols, ((int(cyclic_prefix_len), 0), (0, 0)), "wrap") if sidelobe_suppression_method == "none": output = cyclic_prefixed.T.flatten() @@ -716,24 +618,15 @@ def _generate_samples(self, item: Tuple) -> np.ndarray: elif sidelobe_suppression_method == "lpf": flattened = cyclic_prefixed.T.flatten() # Apply pre-computed LPF - output = torchsig_convolve(flattened, self.taps, gpu=self.use_gpu)[:-50] + output = convolve(flattened, self.taps)[:-50] elif sidelobe_suppression_method == "rand_lpf": flattened = cyclic_prefixed.T.flatten() # Generate randomized LPF cutoff = np.random.uniform(0.25, 0.475) - transition_bandwidth = (0.5 - cutoff) / 4 - num_taps = estimate_filter_length(transition_bandwidth) - taps = sp.firwin( - num_taps, - cutoff, - width=transition_bandwidth, - window=sp.get_window("blackman", num_taps), - scale=True, - fs=1, - ) + taps = low_pass(cutoff=cutoff, transition_bandwidth=(0.5 - cutoff) / 4) # Apply random LPF - output = torchsig_convolve(flattened, taps, gpu=self.use_gpu)[:-num_taps] + output = convolve(flattened, taps)[: -len(taps)] else: # Apply appropriate windowing technique window_len = cyclic_prefix_len @@ -774,49 +667,35 @@ def _generate_samples(self, item: Tuple) -> np.ndarray: else: raise ValueError( "Expected window method to be: none, win_center, or win_start. Received: {}".format( - self.window_method + self.sidelobe_suppression_methods ) ) # window the tails - front_window = np.blackman(int(window_len * 2))[: int(window_len)].reshape( - -1, 1 - ) - tail_window = np.blackman(int(window_len * 2))[-int(window_len) :].reshape( - -1, 1 - ) - windowed[: int(window_len), :] = ( - front_window * windowed[: int(window_len), :] - ) - windowed[-int(window_len) :, :] = ( - tail_window * windowed[-int(window_len) :, :] - ) + front_window = np.blackman(int(window_len * 2))[: int(window_len)].reshape(-1, 1) + tail_window = np.blackman(int(window_len * 2))[-int(window_len) :].reshape(-1, 1) + windowed[: int(window_len), :] = front_window * windowed[: int(window_len), :] + windowed[-int(window_len) :, :] = tail_window * windowed[-int(window_len) :, :] combined = np.zeros((windowed.shape[0] * windowed.shape[1],), dtype=complex) - start_idx = 0 + start_idx: int = 0 for symbol_idx in range(windowed.shape[1]): - combined[start_idx : start_idx + windowed.shape[0]] += windowed[ - :, symbol_idx - ] - start_idx += symbol_dur + int(window_len) - output = combined[ - : int(cyclic_prefixed.shape[0] * cyclic_prefixed.shape[1]) - ] + combined[start_idx : start_idx + windowed.shape[0]] += windowed[:, symbol_idx] + start_idx += int(symbol_dur) + int(window_len) + output = combined[: int(cyclic_prefixed.shape[0] * cyclic_prefixed.shape[1])] # Randomize the start index (while bypassing the initial windowing if present) if num_subcarriers * 4 * burst_dur < self.num_iq_samples: start_idx = np.random.randint(0, output.shape[0] - self.num_iq_samples) else: if original_on: - lower = max(0, int(symbol_dur * burst_dur) - self.num_iq_samples * 0.7) - upper = min( - int(symbol_dur * burst_dur), output.shape[0] - self.num_iq_samples + lower: int = int(max(0, int(symbol_dur * burst_dur) - self.num_iq_samples * 0.7)) + upper: int = int( + min(int(symbol_dur * burst_dur), output.shape[0] - self.num_iq_samples) ) start_idx = np.random.randint(lower, upper) elif "win" in sidelobe_suppression_method: - start_idx = np.random.randint( - window_len, int(symbol_dur * burst_dur) + window_len - ) + start_idx = np.random.randint(window_len, int(symbol_dur * burst_dur) + window_len) else: start_idx = np.random.randint(0, int(symbol_dur * burst_dur)) @@ -918,7 +797,7 @@ def _generate_samples(self, item: Tuple) -> np.ndarray: # the "oversampling rate", and samples per symbol is instead derived # from the modulation order oversampling_rate = np.copy(self.iq_samples_per_symbol) - samples_per_symbol_recalculated = mod_order * oversampling_rate + samples_per_symbol_recalculated = int(mod_order * oversampling_rate) # scale the frequency map by the oversampling rate such that the tones # are packed tighter around f=0 the larger the oversampling rate @@ -939,9 +818,9 @@ def _generate_samples(self, item: Tuple) -> np.ndarray: if "g" in const_name: # GMSK, GFSK - taps = self._gaussian_taps(samples_per_symbol_recalculated, bandwidth) + taps = gaussian_taps(samples_per_symbol_recalculated, bandwidth) signal_description.excess_bandwidth = bandwidth - filtered = torchsig_convolve(symbols_repeat, taps, gpu=self.use_gpu) + filtered = convolve(symbols_repeat, taps) else: # FSK, MSK filtered = symbols_repeat @@ -954,44 +833,15 @@ def _generate_samples(self, item: Tuple) -> np.ndarray: modulated = np.exp(phase) if self.random_pulse_shaping: - # Apply a randomized LPF simulating a noisy detector/burst extractor, then downsample to ~fs/2 bw - # accept the cutoff-frequency of the filter as external - # parameter, randomized as part of outer framework - cutoff_frequency = bandwidth - # calculate transition bandwidth. a larger cutoff frequency requires - # a smaller transition bandwidth, and a smaller cutoff frequency - # allows for a larger transition bandwidth - transition_bandwidth = (1.0 / 2 - (cutoff_frequency)) / 4 - # estimate number of taps needed to implement filter - num_taps = estimate_filter_length(transition_bandwidth) - - # design the filter - taps = sp.firwin( - num_taps, - cutoff_frequency, - width=transition_bandwidth, - window=sp.get_window("blackman", num_taps), - scale=True, - fs=1, - ) + taps = low_pass(cutoff=bandwidth / 2, transition_bandwidth=(0.5 - bandwidth / 2) / 4) # apply the filter - modulated = torchsig_convolve(modulated, taps, gpu=self.use_gpu) + modulated = convolve(modulated, taps) if not self.random_data: np.random.set_state(orig_state) # return numpy back to its previous state return modulated[-self.num_iq_samples :] - def _gaussian_taps(self, samples_per_symbol, BT: float = 0.35) -> np.ndarray: - # pre-modulation Bb*T product which sets the bandwidth of the Gaussian lowpass filter - M = 4 # duration in symbols - n = np.arange(-M * samples_per_symbol, M * samples_per_symbol + 1) - p = np.exp( - -2 * np.pi**2 * BT**2 / np.log(2) * (n / float(samples_per_symbol)) ** 2 - ) - p = p / np.sum(p) - return p - def _mod_index(self, const_name): # returns the modulation index based on the modulation if "gfsk" in const_name: @@ -1057,7 +907,7 @@ def _generate_samples(self, item: Tuple) -> np.ndarray: 0.5 / 16 if "ssb" not in const_name else 0.25 / 4, window="blackman", ) - filtered = np.convolve(source, taps, "same") + filtered = sp.convolve(source, taps, "same") sinusoid = np.exp(2j * np.pi * 0.125 * np.arange(self.num_iq_samples)) filtered *= np.ones_like(filtered) if "ssb" not in const_name else sinusoid filtered += 5 if const_name == "am" else 0 diff --git a/torchsig/datasets/wideband.py b/torchsig/datasets/wideband.py index 31b55f2..7997641 100644 --- a/torchsig/datasets/wideband.py +++ b/torchsig/datasets/wideband.py @@ -1,45 +1,46 @@ -import torch +from ast import literal_eval +from copy import deepcopy +from functools import partial +from itertools import chain +from typing import Any, Callable, List, Optional, Tuple, Union + import numpy as np import pandas as pd +import torch +from scipy import signal as sp from tqdm import tqdm -from scipy import signal -from copy import deepcopy -from itertools import chain -from ast import literal_eval -from functools import partial -from typing import Tuple, Any, List, Optional, Callable, Union -from torchsig.utils.dataset import SignalDataset -from torchsig.utils.types import SignalData, SignalDescription -from torchsig.datasets.synthetic import OFDMDataset, ConstellationDataset, FSKDataset -from torchsig.transforms.transforms import ( - SignalTransform, + +from torchsig.datasets import estimate_filter_length +from torchsig.datasets.synthetic import ConstellationDataset, FSKDataset, OFDMDataset +from torchsig.transforms import ( + AddNoise, Compose, - RandomApply, + IQImbalance, + Normalize, RandAugment, -) -from torchsig.transforms.wireless_channel.wce import ( - AddNoise, - RandomPhaseShift, - RayleighFadingChannel, -) -from torchsig.transforms.signal_processing.sp import Normalize, RandomResample -from torchsig.transforms.system_impairment.si import ( - RandomTimeShift, - RandomFrequencyShift, + RandomApply, RandomConvolve, RandomDropSamples, + RandomFrequencyShift, RandomMagRescale, + RandomPhaseShift, + RandomResample, + RandomTimeShift, + RayleighFadingChannel, RollOff, - IQImbalance, + SignalTransform, SpectralInversion, ) -from torchsig.transforms.functional import FloatParameter, NumericParameter from torchsig.transforms.functional import ( + FloatParameter, + NumericParameter, to_distribution, uniform_continuous_distribution, uniform_discrete_distribution, ) -from torchsig.datasets import estimate_filter_length +from torchsig.utils.dataset import SignalDataset +from torchsig.utils.dsp import low_pass +from torchsig.utils.types import SignalData, SignalDescription class SignalBurst(SignalDescription): @@ -90,17 +91,14 @@ def generate_iq(self): center = lower + bandwidth / 2 # Filter noise - num_taps = estimate_filter_length((0.5 - 0.02 * bandwidth) / 4) - sinusoid = np.exp(2j * np.pi * center * np.linspace(0, num_taps - 1, num_taps)) - taps = signal.firwin( - num_taps, - bandwidth, - width=bandwidth * 0.02, - window=signal.get_window("blackman", num_taps), - scale=True, + taps = low_pass( + cutoff=bandwidth / 2, transition_bandwidth=(0.5 - bandwidth / 2) / 4 + ) + sinusoid = np.exp( + 2j * np.pi * center * np.linspace(0, len(taps) - 1, len(taps)) ) taps = taps * sinusoid - iq_samples = signal.fftconvolve(iq_samples, taps, mode="same") + iq_samples = sp.convolve(iq_samples, taps, mode="same") # prune to be correct size out of filter iq_samples = iq_samples[-int(self.num_iq_samples * self.duration) :] @@ -157,8 +155,8 @@ class ModulatedSignalBurst(SignalBurst): def __init__( self, - modulation: Union[str, List[str]] = None, - modulation_list: List[str] = None, + modulation: Union[str, List[str]], + modulation_list: List[str], use_gpu: Optional[bool] = False, **kwargs, ): @@ -236,6 +234,8 @@ def __init__( ) # Update freq values + assert self.center_frequency is not None + assert self.bandwidth is not None self.lower_frequency = self.center_frequency - self.bandwidth / 2 self.upper_frequency = self.center_frequency + self.bandwidth / 2 @@ -275,6 +275,8 @@ def generate_iq(self): occupied_bandwidth = approx_bandwidth else: occupied_bandwidth = approx_bandwidth * (1 + self.excess_bandwidth) + + self.duration = self.stop - self.start new_rate = occupied_bandwidth / self.bandwidth num_iq_samples = int( np.ceil(self.num_iq_samples * self.duration / new_rate * 1.1) @@ -348,7 +350,7 @@ def generate_iq(self): oversample = 1 up_rate = np.floor(new_rate * 100 * oversample).astype(np.int32) down_rate = 100 - iq_samples = signal.resample_poly(iq_samples, up_rate, down_rate) + iq_samples = sp.resample_poly(iq_samples, up_rate, down_rate) # Freq shift to desired center freq time_vector = np.arange(iq_samples.shape[0], dtype=float) @@ -364,20 +366,14 @@ def generate_iq(self): iq_samples = iq_samples[ -int(self.num_iq_samples * self.duration * oversample) : ] - - num_taps = estimate_filter_length((0.5 - 0.02 / oversample) / 4) - - taps = signal.firwin( - num_taps, - 1 / oversample, - width=1 / oversample * 0.02, - window=signal.get_window("blackman", num_taps), - scale=True, + taps = low_pass( + cutoff=1 / oversample / 2, + transition_bandwidth=(0.5 - 1 / oversample / 2) / 4, ) - iq_samples = np.convolve(iq_samples, taps, mode="same") + iq_samples = sp.convolve(iq_samples, taps, mode="same") # Decimate back down to correct sample rate - iq_samples = signal.resample_poly(iq_samples, 1, oversample) + iq_samples = sp.resample_poly(iq_samples, 1, oversample) iq_samples = iq_samples[-int(self.num_iq_samples * self.duration) :] # Set power @@ -436,10 +432,10 @@ class SignalOfInterestSignalBurst(SignalBurst): def __init__( self, - soi_gen_iq: Callable = None, + soi_gen_iq: Callable, + soi_class: str, + soi_class_list: List[str], soi_gen_bw: float = 0.5, - soi_class: str = None, - soi_class_list: List[str] = None, **kwargs, ): super(SignalOfInterestSignalBurst, self).__init__(**kwargs) @@ -448,6 +444,8 @@ def __init__( self.class_name = soi_class if soi_class else "soi0" self.class_list = soi_class_list if soi_class_list else ["soi0"] self.class_index = self.class_list.index(self.class_name) + assert self.center_frequency is not None + assert self.bandwidth is not None self.lower_frequency = self.center_frequency - self.bandwidth / 2 self.upper_frequency = self.center_frequency + self.bandwidth / 2 @@ -459,7 +457,7 @@ def generate_iq(self): new_rate = self.soi_gen_bw / self.bandwidth up_rate = np.floor(new_rate * 100 * 2).astype(np.int32) down_rate = 100 - iq_samples = signal.resample_poly(iq_samples, up_rate, down_rate) + iq_samples = sp.resample_poly(iq_samples, up_rate, down_rate) # Freq shift to desired center freq time_vector = np.arange(iq_samples.shape[0], dtype=float) @@ -468,19 +466,11 @@ def generate_iq(self): ) # Filter around center - num_taps = estimate_filter_length((0.5 - 0.02 * 0.5) / 4) - - taps = signal.firwin( - num_taps, - 0.5, - width=0.5 * 0.02, - window=signal.get_window("blackman", num_taps), - scale=True, - ) - iq_samples = signal.fftconvolve(iq_samples, taps, mode="same") + taps = low_pass(cutoff=1 / 4, transition_bandwidth=(0.5 - 1 / 4) / 4) + iq_samples = sp.convolve(iq_samples, taps, mode="same") # Decimate back down to correct sample rate - iq_samples = signal.resample_poly(iq_samples, 1, 2) + iq_samples = sp.resample_poly(iq_samples, 1, 2) iq_samples = iq_samples[-int(self.num_iq_samples * self.duration) :] # Set power @@ -536,9 +526,9 @@ class index def __init__( self, - file_path: Union[str, List] = None, - file_reader: Callable = None, - class_list: List[str] = None, + file_path: Union[str, List], + file_reader: Callable, + class_list: List[str], **kwargs, ): super(FileSignalBurst, self).__init__(**kwargs) @@ -548,6 +538,8 @@ def __init__( ) self.file_reader = file_reader self.class_list = class_list + assert self.center_frequency is not None + assert self.bandwidth is not None self.lower_frequency = self.center_frequency - self.bandwidth / 2 self.upper_frequency = self.center_frequency + self.bandwidth / 2 @@ -566,7 +558,7 @@ def generate_iq(self): new_rate = file_bw / self.bandwidth up_rate = np.floor(new_rate * 100 * 2).astype(np.int32) down_rate = 100 - iq_samples = signal.resample_poly(iq_samples, up_rate, down_rate) + iq_samples = sp.resample_poly(iq_samples, up_rate, down_rate) # Freq shift to desired center freq time_vector = np.arange(iq_samples.shape[0], dtype=float) @@ -575,19 +567,11 @@ def generate_iq(self): ) # Filter around center - num_taps = estimate_filter_length((0.5 - 0.5 * 0.02) / 4) - - taps = signal.firwin( - num_taps, - 0.5, - width=0.5 * 0.02, - window=signal.get_window("blackman", num_taps), - scale=True, - ) - iq_samples = signal.fftconvolve(iq_samples, taps, mode="same") + taps = low_pass(cutoff=1 / 4, transition_bandwidth=(0.5 - 1 / 4) / 4) + iq_samples = sp.convolve(iq_samples, taps, mode="same") # Decimate back down to correct sample rate - iq_samples = signal.resample_poly(iq_samples, 1, 2) + iq_samples = sp.resample_poly(iq_samples, 1, 2) # Inspect/set duration if iq_samples.shape[0] < self.num_iq_samples * self.duration: @@ -638,6 +622,7 @@ def __init__( super(BurstSourceDataset, self).__init__(**kwargs) self.num_iq_samples = num_iq_samples self.num_samples = num_samples + self.index: List[Tuple[Any, ...]] = [] def __getitem__(self, item: int) -> Tuple[np.ndarray, Any]: burst_collection = self.index[item][0] @@ -661,6 +646,7 @@ def __getitem__(self, item: int) -> Tuple[np.ndarray, Any]: else signal_data.signal_description ) iq_data = signal_data.iq_data + assert iq_data is not None return iq_data, target @@ -677,15 +663,13 @@ class SyntheticBurstSourceDataset(BurstSourceDataset): def __init__( self, - bandwidths: FloatParameter = uniform_continuous_distribution(0.01, 0.1), - center_frequencies: FloatParameter = uniform_continuous_distribution( - -0.25, 0.25 - ), - burst_durations: FloatParameter = uniform_continuous_distribution(0.2, 0.2), - silence_durations: FloatParameter = uniform_continuous_distribution(0.01, 0.3), - snrs_db: NumericParameter = uniform_discrete_distribution(range(-5, 15)), - start: FloatParameter = uniform_continuous_distribution(0.0, 0.9), - burst_class: SignalBurst = None, + burst_class: SignalBurst, + bandwidths: FloatParameter = (0.01, 0.1), + center_frequencies: FloatParameter = (-0.25, 0.25), + burst_durations: FloatParameter = (0.2, 0.2), + silence_durations: FloatParameter = (0.01, 0.3), + snrs_db: NumericParameter = (-5, 15), + start: FloatParameter = (0.0, 0.9), num_iq_samples: int = 512 * 512, num_samples: int = 20, seed: Optional[int] = None, @@ -737,7 +721,7 @@ def _generate_burst_collections(self) -> List[List[SignalBurst]]: burst_duration = 1.0 - start sample_burst_collection.append( - self.burst_class( + self.burst_class( # type: ignore num_iq_samples=self.num_iq_samples, start=0 if start < 0 else start, stop=start + burst_duration, @@ -799,11 +783,11 @@ def __getitem__(self, item: int) -> Tuple[np.ndarray, Any]: if self.pregenerate: return self.index[item] # Retrieve data & metadata from all signal sources - iq_data = None + iq_data: Optional[np.ndarray] = None signal_description_collection = [] for source_idx in range(len(self.signal_sources)): signal_iq_data, signal_description = self.signal_sources[source_idx][item] - iq_data = signal_iq_data if iq_data is None else iq_data + signal_iq_data + iq_data = signal_iq_data if iq_data else iq_data + signal_iq_data signal_description = ( [signal_description] if isinstance(signal_description, SignalDescription) @@ -812,6 +796,7 @@ def __getitem__(self, item: int) -> Tuple[np.ndarray, Any]: signal_description_collection.extend(signal_description) # Format into single SignalData object + assert iq_data is not None signal_data = SignalData( data=iq_data.tobytes(), item_type=np.dtype(np.float64), @@ -826,6 +811,7 @@ def __getitem__(self, item: int) -> Tuple[np.ndarray, Any]: if self.target_transform else signal_data.signal_description ) + assert signal_data.iq_data is not None iq_data = signal_data.iq_data return iq_data, target @@ -870,7 +856,7 @@ class WidebandModulationsDataset(SignalDataset): """ - default_modulations = [ + default_modulations: List[str] = [ "ook", "bpsk", "4pam", @@ -928,7 +914,7 @@ class WidebandModulationsDataset(SignalDataset): def __init__( self, - modulation_list: List = None, + modulation_list: Optional[List] = None, level: int = 0, num_iq_samples: int = 262144, num_samples: int = 10, @@ -944,6 +930,7 @@ def __init__( self.modulation_list = ( self.default_modulations if modulation_list is None else modulation_list ) + self.level = level self.metadata = self.__gen_metadata__(self.modulation_list) self.num_modulations = len(self.metadata) # Bump up OFDM ratio slightly due to its higher bandwidth and lack of bursty nature @@ -983,7 +970,7 @@ def __init__( num_signals = (1, 6) snrs = (0, 30) self.transform = Compose( - [ + transforms=[ RandomApply( RandomTimeShift( shift=(-int(num_iq_samples / 2), int(num_iq_samples / 2)) @@ -1017,7 +1004,7 @@ def __init__( order=(6, 20), ), RandomConvolve(num_taps=(2, 5), alpha=(0.1, 0.4)), - RayleighFadingChannel((0.0004, 0.0005)), + RayleighFadingChannel((0.001, 0.01)), RandomDropSamples( drop_rate=0.01, size=(1, 1), @@ -1105,8 +1092,7 @@ def __gen_metadata__(self, modulation_list: List) -> pd.DataFrame: def __getitem__(self, item: int) -> Tuple[np.ndarray, Any]: # Initialize empty list of signal sources & signal descriptors - signal_sources = [] - modulations = [] + signal_sources: List[SyntheticBurstSourceDataset] = [] # Randomly decide how many signals in capture num_signals = int(self.num_signals()) @@ -1188,21 +1174,23 @@ def __getitem__(self, item: int) -> Tuple[np.ndarray, Any]: )() # Convert channel count to list of center frequencies - center_freq = np.arange( + center_freq_array = np.arange( center_freq, center_freq + (bandwidth * freq_channels), bandwidth, ) - center_freq = center_freq - (freq_channels / 2 * bandwidth) - center_freq = center_freq[center_freq < 0.5] - center_freq = center_freq[center_freq > -0.5] - center_freq = center_freq.tolist() - if len(center_freq) == 1 and silence_duration == 0: + center_freq_array = center_freq_array - ( + freq_channels / 2 * bandwidth + ) + center_freq_array = center_freq_array[center_freq_array < 0.5] + center_freq_array = center_freq_array[center_freq_array > -0.5] + center_freq_list = center_freq_array.tolist() + if len(center_freq_list) == 1 and silence_duration == 0: # If all but one band outside freq range, ensure nonzero silence duration silence_duration = burst_duration - low_freq = min(center_freq) - bandwidth / 2 - high_freq = max(center_freq) + bandwidth / 2 + low_freq = min(center_freq_list) - bandwidth / 2 + high_freq = max(center_freq_list) + bandwidth / 2 else: silence_duration = burst_duration * silence_multiple @@ -1288,7 +1276,7 @@ def __getitem__(self, item: int) -> Tuple[np.ndarray, Any]: silence_durations=silence_duration, snrs_db=self.snrs(), start=start, - burst_class=partial( + burst_class=partial( # type: ignore ModulatedSignalBurst, modulation=modulation, modulation_list=self.modulation_list, @@ -1340,6 +1328,7 @@ def __getitem__(self, item: int) -> Tuple[np.ndarray, Any]: else signal_data.signal_description ) iq_data = signal_data.iq_data + assert iq_data is not None return iq_data, target @@ -1367,15 +1356,15 @@ class Interferers(SignalTransform): def __init__( self, - burst_sources: "BurstSourceDataset" = None, + burst_sources: BurstSourceDataset, num_iq_samples: int = 262144, num_samples: int = 10, - interferer_transform: SignalTransform = None, + interferer_transform: Optional[SignalTransform] = None, ): super(Interferers, self).__init__() self.num_samples = num_samples self.interferers = WidebandDataset( - signal_sources=burst_sources, + signal_sources=[burst_sources], num_iq_samples=num_iq_samples, num_samples=self.num_samples, transform=interferer_transform, @@ -1405,7 +1394,7 @@ class RandomSignalInsertion(SignalTransform): """ - default_modulation_list = [ + default_modulation_list: List[str] = [ "ook", "bpsk", "4pam", @@ -1461,14 +1450,17 @@ class RandomSignalInsertion(SignalTransform): "ofdm-2048", ] - def __init__(self, modulation_list: list = None): + def __init__(self, modulation_list: Optional[List[str]] = None): super(RandomSignalInsertion, self).__init__() - self.modulation_list = ( + self.modulation_list: List[str] = ( modulation_list if modulation_list else self.default_modulation_list ) def __call__(self, data: Any) -> Any: if isinstance(data, SignalData): + assert data.iq_data is not None + assert data.signal_description is not None + # Create new SignalData object for transformed data new_data = SignalData( data=None, @@ -1480,13 +1472,15 @@ def __call__(self, data: Any) -> Any: # Read existing SignalDescription for unoccupied freq bands new_signal_description = deepcopy(data.signal_description) - new_signal_description = ( + new_signal_description_list: List[SignalDescription] = ( [new_signal_description] if isinstance(new_signal_description, SignalDescription) else new_signal_description ) occupied_bands = [] - for new_signal_desc in new_signal_description: + for new_signal_desc in new_signal_description_list: + assert new_signal_desc.lower_frequency is not None + assert new_signal_desc.upper_frequency is not None occupied_bands.append( [ int((new_signal_desc.lower_frequency + 0.5) * 100), @@ -1503,11 +1497,12 @@ def __call__(self, data: Any) -> Any: if len(unoccupied_bands) > 0: max_bandwidth = min([y - x for x, y in unoccupied_bands]) bandwidth = np.random.uniform(0.05, max_bandwidth) - center_freqs = [ + center_freqs: List[Tuple[float, float]] = [ (x + bandwidth / 2, y - bandwidth / 2) for x, y in unoccupied_bands ] - center_freqs = to_distribution(center_freqs) - center_freq = center_freqs() + rand_band_idx = np.random.randint(len(center_freqs)) + center_freqs_dist = to_distribution(center_freqs[rand_band_idx]) + center_freq = center_freqs_dist() bursty = True if np.random.rand() < 0.5 else False burst_duration = np.random.uniform(0.05, 1.0) if bursty else 1.0 silence_duration = burst_duration if bursty else 1.0 @@ -1528,7 +1523,7 @@ def __call__(self, data: Any) -> Any: silence_durations=silence_duration, snrs_db=20, start=(-0.05, 0.95), - burst_class=partial( + burst_class=partial( # type: ignore ModulatedSignalBurst, modulation=modulation_list, modulation_list=modulation_list, @@ -1539,7 +1534,7 @@ def __call__(self, data: Any) -> Any: ), ] signal_dataset = WidebandDataset( - signal_sources=signal_sources, + signal_sources=signal_sources, # type: ignore num_iq_samples=num_iq_samples, num_samples=num_samples, transform=Normalize(norm=np.inf), @@ -1550,12 +1545,14 @@ def __call__(self, data: Any) -> Any: new_data.iq_data = data.iq_data + new_signal_data # Update the SignalDescription - new_signal_description.extend(new_signal_signal_desc) + new_signal_description.extend(new_signal_signal_desc) # type: ignore new_data.signal_description = new_signal_description else: new_data.iq_data = data.iq_data + return new_data + else: num_iq_samples = data.shape[0] num_samples = int(1 / 0.05 + 2) @@ -1567,7 +1564,7 @@ def __call__(self, data: Any) -> Any: silence_durations=(0.05, 1.0), snrs_db=20, start=(-0.05, 0.95), - burst_class=partial( + burst_class=partial( # type: ignore ModulatedSignalBurst, modulation=self.modulation_list, modulation_list=self.modulation_list, @@ -1578,12 +1575,12 @@ def __call__(self, data: Any) -> Any: ), ] signal_dataset = WidebandDataset( - signal_sources=signal_sources, + signal_sources=signal_sources, # type: ignore num_iq_samples=num_iq_samples, num_samples=num_samples, transform=Normalize(norm=np.inf), target_transform=None, ) - new_data = data + signal_dataset[0][0] + output = data + signal_dataset[0][0] - return new_data + return output diff --git a/torchsig/datasets/wideband_sig53.py b/torchsig/datasets/wideband_sig53.py index d036ca8..f5afcdb 100644 --- a/torchsig/datasets/wideband_sig53.py +++ b/torchsig/datasets/wideband_sig53.py @@ -1,42 +1,18 @@ import os -import lmdb import pickle -import shutil -import numpy as np -from pathlib import Path from copy import deepcopy -from ast import literal_eval -from tqdm.autonotebook import tqdm -from typing import Callable, Optional, Tuple -from multiprocessing import Pool +from pathlib import Path +from typing import Callable, List, Optional + +import lmdb +import numpy as np from torchsig.datasets import conf -from torchsig.datasets.wideband import WidebandModulationsDataset -from torchsig.transforms.target_transforms.target_transforms import ( - DescToListTuple, - ListTupleToDesc, -) +from torchsig.transforms.target_transforms import ListTupleToDesc +from torchsig.transforms.transforms import Identity from torchsig.utils.types import SignalData -def _identity(x): - return x - - -# Helper function for multiprocessing -def _get_data(idx, cfg): - np.random.seed(cfg.seed + idx * 53) - wb_mds = WidebandModulationsDataset( - level=cfg.level, - num_iq_samples=cfg.num_iq_samples, - num_samples=1, # Dataset is randomly generated when indexed, so length here does not matter - target_transform=DescToListTuple(), - seed=cfg.seed + idx * 53, - use_gpu=cfg.use_gpu, - ) - return wb_mds[0] - - class WidebandSig53: """The Official WidebandSig53 dataset @@ -58,7 +34,7 @@ class WidebandSig53: """ - modulation_list = [ + modulation_list: List[str] = [ "ook", "bpsk", "4pam", @@ -121,19 +97,17 @@ def __init__( impaired: bool = True, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, - regenerate: bool = False, use_signal_data: bool = True, - gen_batch_size: int = 1, - use_gpu: Optional[bool] = None, ): self.root = Path(root) if not os.path.exists(self.root): os.makedirs(self.root) + self.train = train self.impaired = impaired - self.T = transform if transform else _identity - self.TT = target_transform if target_transform else _identity + self.T = transform if transform else Identity() + self.TT = target_transform if target_transform else Identity() cfg = ( "WidebandSig53" @@ -142,125 +116,45 @@ def __init__( + "Config" ) cfg = getattr(conf, cfg)() - cfg.use_gpu = use_gpu if use_gpu is not None else cfg.use_gpu self.use_signal_data = use_signal_data self.signal_desc_transform = ListTupleToDesc( - num_iq_samples=cfg.num_iq_samples, + num_iq_samples=cfg.num_iq_samples, # type: ignore class_list=self.modulation_list, ) - self.path = self.root / cfg.name - self.length = cfg.num_samples - regenerate = regenerate or not os.path.isdir(self.path) - - if regenerate and os.path.isdir(self.path): - shutil.rmtree(self.path) - - self._env = lmdb.open( - str(self.path).encode(), - max_dbs=2, - map_size=int(1e12), - max_readers=512, - readahead=False, + self.path = self.root / cfg.name # type: ignore + self.env = lmdb.Environment( + str(self.path).encode(), map_size=int(1e12), max_dbs=2, lock=False ) - - self._sample_db = self._env.open_db(b"iq_samples") - self._annotation_db = self._env.open_db(b"annotation") - - if regenerate: - if self.length % gen_batch_size != 0: - while self.length % gen_batch_size != 0: - gen_batch_size -= 1 - print("Rounding batch size down to {}".format(gen_batch_size)) - self.gen_batch_size = gen_batch_size - - self._generate_data(cfg) - else: - print("Existing data found, skipping data generation") - - self._sample_txn = self._env.begin(db=self._sample_db) - self._annotation_txn = self._env.begin(db=self._annotation_db) + self.data_db = self.env.open_db(b"data") + self.label_db = self.env.open_db(b"label") + with self.env.begin(db=self.data_db) as data_txn: + self.length = data_txn.stat()["entries"] def __len__(self) -> int: return self.length - def __getitem__(self, idx: int) -> Tuple[np.ndarray, int]: - idx = str(idx).encode() - x = pickle.loads(self._sample_txn.get(idx)) - y = literal_eval(self._annotation_txn.get(idx).decode("utf8")) + def __getitem__(self, idx: int) -> tuple: + encoded_idx = pickle.dumps(idx) + with self.env.begin(db=self.data_db) as data_txn: + iq_data: np.ndarray = pickle.loads(data_txn.get(encoded_idx)) + + with self.env.begin(db=self.label_db) as label_txn: + label = pickle.loads(label_txn.get(encoded_idx)) + if self.use_signal_data: data = SignalData( - data=deepcopy(x.tobytes()), + data=deepcopy(iq_data.tobytes()), item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex64), - signal_description=self.signal_desc_transform(y), + data_type=np.dtype(np.complex128), + signal_description=self.signal_desc_transform(label), ) - data = self.T(data) - target = self.TT(data.signal_description) - data = data.iq_data + data = self.T(data) # type: ignore + target = self.TT(data.signal_description) # type: ignore + assert data.iq_data is not None + iq_data = data.iq_data else: - data = self.T(x) - target = self.TT(y) - return data, target - - def _generate_data(self, cfg: conf.WidebandSig53Config) -> None: - state = np.random.get_state() - np.random.seed(cfg.seed) - - # Data retrieval batching for speed - batch_size = self.gen_batch_size - num_batches = int(self.length / batch_size) - - if batch_size == 1: - # Splitting case for single batch for tqdm progress bar over samples instead of batches - # Sequentially write retrieved data, annotations to LMDB - for i in tqdm(range(self.length)): - np.random.seed(cfg.seed + i * 53) - wb_mds = WidebandModulationsDataset( - level=cfg.level, - num_iq_samples=cfg.num_iq_samples, - num_samples=1, # Dataset is randomly generated when indexed, so length here does not matter - target_transform=DescToListTuple(), - seed=cfg.seed + i * 53, - use_gpu=cfg.use_gpu, - ) - data, annotation = wb_mds[0] - data_c64 = data.astype(np.complex64) - with self._env.begin(write=True) as txn: - txn.put(str(i).encode(), pickle.dumps(data_c64), db=self._sample_db) - txn.put( - str(i).encode(), - str(annotation).encode(), - db=self._annotation_db, - ) - - else: - # Batched multiprocessing data, annotation retrieval - lmdb_idx = 0 - for batch_idx in tqdm(range(num_batches)): - process_index = [] - for batch_sample_idx in range(batch_size): - process_index.append( - (int(batch_idx * batch_size + batch_sample_idx), cfg) - ) - pool = Pool(batch_size) - result = pool.starmap(_get_data, process_index) - - # Sequentially write retrieved data, annotations to LMDB - for data, annotation in result: - data_c64 = data.astype(np.complex64) - with self._env.begin(write=True) as txn: - txn.put( - str(lmdb_idx).encode(), - pickle.dumps(data_c64), - db=self._sample_db, - ) - txn.put( - str(lmdb_idx).encode(), - str(annotation).encode(), - db=self._annotation_db, - ) - lmdb_idx += 1 - - np.random.set_state(state) + iq_data = self.T(iq_data) # type: ignore + target = self.TT(label) # type: ignore + return iq_data, target diff --git a/torchsig/models/iq_models/efficientnet/efficientnet.py b/torchsig/models/iq_models/efficientnet/efficientnet.py index bb93a4d..54ca4df 100644 --- a/torchsig/models/iq_models/efficientnet/efficientnet.py +++ b/torchsig/models/iq_models/efficientnet/efficientnet.py @@ -1,11 +1,11 @@ -import timm -import gdown -import torch import os.path + +import gdown import numpy as np +import timm +import torch from torch import nn - __all__ = ["efficientnet_b0", "efficientnet_b2", "efficientnet_b4"] file_ids = { @@ -24,7 +24,7 @@ def __init__( act_layer=nn.SiLU, gate_fn=torch.sigmoid, divisor=1, - **_ + **_, ): super(SqueezeExcite, self).__init__() reduced_chs = reduced_base_chs @@ -51,9 +51,7 @@ def forward(self, x): in_size = x.size() return x.view((in_size[0], in_size[1], -1)).mean(dim=2) else: - return ( - x.view(x.size(0), x.size(1), -1).mean(-1).view(x.size(0), x.size(1), 1) - ) + return x.view(x.size(0), x.size(1), -1).mean(-1).view(x.size(0), x.size(1), 1) class GBN(torch.nn.Module): @@ -74,8 +72,8 @@ def forward(self, x): res = [self.bn(x_) for x_ in chunks] return torch.cat(res, dim=0) - - + + def replace_bn(parent): for n, m in parent.named_children(): if type(m) is nn.BatchNorm2d: @@ -147,7 +145,7 @@ def create_effnet(network, ds_rate=2): def efficientnet_b0( - pretrained: bool = False, + pretrained: bool = False, path: str = "efficientnet_b0.pt", num_classes: int = 53, drop_path_rate: float = 0.2, @@ -157,22 +155,22 @@ def efficientnet_b0( `"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" `_. Args: - pretrained (bool): + pretrained (bool): If True, returns a model pre-trained on Sig53 - - path (str): + + path (str): Path to existing model or where to download checkpoint to - - num_classes (int): + + num_classes (int): Number of output classes; if loading checkpoint and number does not equal 53, final layer will not be loaded from checkpoint - - drop_path_rate (float): + + drop_path_rate (float): Drop path rate for training - - drop_rate (float): + + drop_rate (float): Dropout rate for training - + """ model_exists = os.path.exists(path) if not model_exists and pretrained: @@ -180,7 +178,7 @@ def efficientnet_b0( dl = gdown.download(id=file_id, output=path) mdl = create_effnet( timm.create_model( - 'efficientnet_b0', + "efficientnet_b0", num_classes=53, in_chans=2, drop_path_rate=drop_path_rate, @@ -189,13 +187,13 @@ def efficientnet_b0( ) if pretrained: mdl.load_state_dict(torch.load(path)) - if num_classes!=53: + if num_classes != 53: mdl.classifier = nn.Linear(mdl.classifier.in_features, num_classes) return mdl - + def efficientnet_b2( - pretrained: bool = False, + pretrained: bool = False, path: str = "efficientnet_b2.pt", num_classes: int = 53, drop_path_rate: float = 0.2, @@ -205,22 +203,22 @@ def efficientnet_b2( `"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" `_. Args: - pretrained (bool): + pretrained (bool): If True, returns a model pre-trained on Sig53 - - path (str): + + path (str): Path to existing model or where to download checkpoint to - - num_classes (int): + + num_classes (int): Number of output classes; if loading checkpoint and number does not equal 53, final layer will not be loaded from checkpoint - - drop_path_rate (float): + + drop_path_rate (float): Drop path rate for training - - drop_rate (float): + + drop_rate (float): Dropout rate for training - + """ model_exists = os.path.exists(path) if not model_exists and pretrained: @@ -228,7 +226,7 @@ def efficientnet_b2( dl = gdown.download(id=file_id, output=path) mdl = create_effnet( timm.create_model( - 'efficientnet_b2', + "efficientnet_b2", num_classes=53, in_chans=2, drop_path_rate=drop_path_rate, @@ -237,13 +235,13 @@ def efficientnet_b2( ) if pretrained: mdl.load_state_dict(torch.load(path)) - if num_classes!=53: + if num_classes != 53: mdl.classifier = nn.Linear(mdl.classifier.in_features, num_classes) return mdl def efficientnet_b4( - pretrained: bool = False, + pretrained: bool = False, path: str = "efficientnet_b4.pt", num_classes: int = 53, drop_path_rate: float = 0.2, @@ -253,22 +251,22 @@ def efficientnet_b4( `"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" `_. Args: - pretrained (bool): + pretrained (bool): If True, returns a model pre-trained on Sig53 - - path (str): + + path (str): Path to existing model or where to download checkpoint to - - num_classes (int): + + num_classes (int): Number of output classes; if loading checkpoint and number does not equal 53, final layer will not be loaded from checkpoint - - drop_path_rate (float): + + drop_path_rate (float): Drop path rate for training - - drop_rate (float): + + drop_rate (float): Dropout rate for training - + """ model_exists = os.path.exists(path) if not model_exists and pretrained: @@ -276,7 +274,7 @@ def efficientnet_b4( dl = gdown.download(id=file_id, output=path) mdl = create_effnet( timm.create_model( - 'efficientnet_b4', + "efficientnet_b4", num_classes=53, in_chans=2, drop_path_rate=drop_path_rate, @@ -285,6 +283,6 @@ def efficientnet_b4( ) if pretrained: mdl.load_state_dict(torch.load(path)) - if num_classes!=53: + if num_classes != 53: mdl.classifier = nn.Linear(mdl.classifier.in_features, num_classes) return mdl diff --git a/torchsig/models/iq_models/xcit/xcit.py b/torchsig/models/iq_models/xcit/xcit.py index cd721c4..9c3071b 100644 --- a/torchsig/models/iq_models/xcit/xcit.py +++ b/torchsig/models/iq_models/xcit/xcit.py @@ -1,10 +1,10 @@ import os -import timm + import gdown +import timm import torch from torch import nn - __all__ = ["xcit_nano", "xcit_tiny12"] file_ids = { @@ -52,17 +52,14 @@ def __init__(self, in_chans, embed_dim, ds_rate=16): def forward(self, X): X = self.embed(X) X = torch.cat( - [ - torch.cat(torch.split(x_i, 1, -1), 1) - for x_i in torch.split(X, self.ds_rate, -1) - ], + [torch.cat(torch.split(x_i, 1, -1), 1) for x_i in torch.split(X, self.ds_rate, -1)], -1, ) X = self.project(X) return X - - + + class XCiT(nn.Module): def __init__(self, backbone, in_chans=2, ds_rate=2, ds_method="downsample"): super().__init__() @@ -80,9 +77,7 @@ def forward(self, x): x = self.backbone.patch_embed(x) Hp, Wp = x.shape[-1], 1 - pos_encoding = ( - mdl.pos_embed(B, Hp, Wp).reshape(B, -1, Hp).permute(0, 2, 1).half() - ) + pos_encoding = mdl.pos_embed(B, Hp, Wp).reshape(B, -1, Hp).permute(0, 2, 1).half() x = x.transpose(1, 2) + pos_encoding for blk in mdl.blocks: x = blk(x, Hp, Wp) @@ -95,10 +90,10 @@ def forward(self, x): if x.dim() == 2: x = x.unsqueeze(0) return x - - + + def xcit_nano( - pretrained: bool = False, + pretrained: bool = False, path: str = "xcit_nano.pt", num_classes: int = 53, drop_path_rate: float = 0.0, @@ -108,22 +103,22 @@ def xcit_nano( `"XCiT: Cross-Covariance Image Transformers" `_. Args: - pretrained (bool): + pretrained (bool): If True, returns a model pre-trained on Sig53 - - path (str): + + path (str): Path to existing model or where to download checkpoint to - - num_classes (int): + + num_classes (int): Number of output classes; if loading checkpoint and number does not equal 53, final layer will not be loaded from checkpoint - - drop_path_rate (float): + + drop_path_rate (float): Drop path rate for training - - drop_rate (float): + + drop_rate (float): Dropout rate for training - + """ model_exists = os.path.exists(path) if not model_exists and pretrained: @@ -131,7 +126,7 @@ def xcit_nano( dl = gdown.download(id=file_id, output=path) mdl = XCiT( timm.create_model( - 'xcit_nano_12_p16_224', + "xcit_nano_12_p16_224", num_classes=53, in_chans=2, drop_path_rate=drop_path_rate, @@ -140,13 +135,16 @@ def xcit_nano( ) if pretrained: mdl.load_state_dict(torch.load(path)) - if num_classes!=53: - mdl.classifier = nn.Linear(mdl.classifier.in_features, num_classes) + if num_classes != 53: + mdl.classifier = nn.Linear( + mdl.classifier.in_features, # type: ignore + num_classes, + ) return mdl - - + + def xcit_tiny12( - pretrained: bool = False, + pretrained: bool = False, path: str = "xcit_tiny12.pt", num_classes: int = 53, drop_path_rate: float = 0.0, @@ -156,22 +154,22 @@ def xcit_tiny12( `"XCiT: Cross-Covariance Image Transformers" `_. Args: - pretrained (bool): + pretrained (bool): If True, returns a model pre-trained on Sig53 - - path (str): + + path (str): Path to existing model or where to download checkpoint to - - num_classes (int): + + num_classes (int): Number of output classes; if loading checkpoint and number does not equal 53, final layer will not be loaded from checkpoint - - drop_path_rate (float): + + drop_path_rate (float): Drop path rate for training - - drop_rate (float): + + drop_rate (float): Dropout rate for training - + """ model_exists = os.path.exists(path) if not model_exists and pretrained: @@ -179,7 +177,7 @@ def xcit_tiny12( dl = gdown.download(id=file_id, output=path) mdl = XCiT( timm.create_model( - 'xcit_tiny_12_p16_224', + "xcit_tiny_12_p16_224", num_classes=53, in_chans=2, drop_path_rate=drop_path_rate, @@ -188,6 +186,9 @@ def xcit_tiny12( ) if pretrained: mdl.load_state_dict(torch.load(path)) - if num_classes!=53: - mdl.classifier = nn.Linear(mdl.classifier.in_features, num_classes) + if num_classes != 53: + mdl.classifier = nn.Linear( + mdl.classifier.in_features, # type: ignore + num_classes, + ) return mdl diff --git a/torchsig/models/spectrogram_models/detr/criterion.py b/torchsig/models/spectrogram_models/detr/criterion.py index c0de27f..5228483 100644 --- a/torchsig/models/spectrogram_models/detr/criterion.py +++ b/torchsig/models/spectrogram_models/detr/criterion.py @@ -1,15 +1,16 @@ """ Criterion and matching modules from Detectron2, Mask2Former, and DETR codebases """ +from typing import List, Optional, Tuple + import numpy as np import torch -from torch import nn, Tensor -import torch.nn.functional as F import torch.distributed as dist -from torch.cuda.amp import autocast +import torch.nn.functional as F import torchvision from scipy.optimize import linear_sum_assignment -from typing import List, Optional +from torch import Tensor, nn +from torch.cuda.amp import autocast from .utils import _max_by_axis @@ -139,7 +140,7 @@ def __init__(self, tensors, mask: Optional[Tensor]): self.mask = mask def to(self, device): - # type: (Device) -> NestedTensor # noqa + ## type: (Device) -> NestedTensor # noqa cast_tensor = self.tensors.to(device) mask = self.mask if mask is not None: @@ -155,17 +156,18 @@ def decompose(self): def __repr__(self): return str(self.tensors) + # _onnx_nested_tensor_from_tensor_list() is an implementation of # nested_tensor_from_tensor_list() that is supported by ONNX tracing. @torch.jit.unused def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor: - max_size = [] + max_size_list: List[Tensor] = [] for i in range(tensor_list[0].dim()): max_size_i = torch.max( - torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32) + torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32) # type: ignore ).to(torch.int64) - max_size.append(max_size_i) - max_size = tuple(max_size) + max_size_list.append(max_size_i) + max_size: Tuple[Tensor, ...] = tuple(max_size_list) # work around for # pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) @@ -175,11 +177,19 @@ def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTen padded_masks = [] for img in tensor_list: padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))] - padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0])) + padded_img = torch.nn.functional.pad( + img, + (0, int(padding[2]), 0, int(padding[1]), 0, int(padding[0])), + ) padded_imgs.append(padded_img) m = torch.zeros_like(img[0], dtype=torch.int, device=img.device) - padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1) + padded_mask = torch.nn.functional.pad( + m, + (0, int(padding[2]), 0, int(padding[1])), + "constant", + 1, + ) padded_masks.append(padded_mask.to(torch.bool)) tensor = torch.stack(padded_imgs) @@ -187,11 +197,12 @@ def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTen return NestedTensor(tensor, mask=mask) + def dice_loss( - inputs: torch.Tensor, - targets: torch.Tensor, - num_masks: float, - ): + inputs: torch.Tensor, + targets: torch.Tensor, + num_masks: float, +): """ Compute the DICE loss, similar to generalized IOU for masks Args: @@ -209,16 +220,14 @@ def dice_loss( return loss.sum() / num_masks -dice_loss_jit = torch.jit.script( - dice_loss -) # type: torch.jit.ScriptModule +dice_loss_jit = torch.jit.script(dice_loss) # type: torch.jit.ScriptModule def sigmoid_ce_loss( - inputs: torch.Tensor, - targets: torch.Tensor, - num_masks: float, - ): + inputs: torch.Tensor, + targets: torch.Tensor, + num_masks: float, +): """ Args: inputs: A float tensor of arbitrary shape. @@ -234,9 +243,7 @@ def sigmoid_ce_loss( return loss.mean(1).sum() / num_masks -sigmoid_ce_loss_jit = torch.jit.script( - sigmoid_ce_loss -) # type: torch.jit.ScriptModule +sigmoid_ce_loss_jit = torch.jit.script(sigmoid_ce_loss) # type: torch.jit.ScriptModule def calculate_uncertainty(logits): @@ -263,8 +270,17 @@ class SetCriterion(nn.Module): 2) we supervise each pair of matched ground-truth / prediction (supervise class and box) """ - def __init__(self, num_classes, matcher, weight_dict, eos_coef, losses, - num_points, oversample_ratio, importance_sample_ratio): + def __init__( + self, + num_classes, + matcher, + weight_dict, + eos_coef, + losses, + num_points, + oversample_ratio, + importance_sample_ratio, + ): """Create the criterion. Parameters: num_classes: number of object categories, omitting the special no-object category @@ -305,7 +321,7 @@ def loss_labels(self, outputs, targets, indices, num_masks): loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight) losses = {"loss_ce": loss_ce} return losses - + def loss_masks(self, outputs, targets, indices, num_masks): """Compute the losses related to the masks: the focal loss and the dice loss. targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w] @@ -372,8 +388,8 @@ def _get_tgt_permutation_idx(self, indices): def get_loss(self, loss, outputs, targets, indices, num_masks): loss_map = { - 'labels': self.loss_labels, - 'masks': self.loss_masks, + "labels": self.loss_labels, + "masks": self.loss_masks, } assert loss in loss_map, f"do you really want to compute {loss} loss?" return loss_map[loss](outputs, targets, indices, num_masks) @@ -450,9 +466,7 @@ def batch_dice_loss(inputs: torch.Tensor, targets: torch.Tensor): return loss -batch_dice_loss_jit = torch.jit.script( - batch_dice_loss -) # type: torch.jit.ScriptModule +batch_dice_loss_jit = torch.jit.script(batch_dice_loss) # type: torch.jit.ScriptModule def batch_sigmoid_ce_loss(inputs: torch.Tensor, targets: torch.Tensor): @@ -468,23 +482,15 @@ def batch_sigmoid_ce_loss(inputs: torch.Tensor, targets: torch.Tensor): """ hw = inputs.shape[1] - pos = F.binary_cross_entropy_with_logits( - inputs, torch.ones_like(inputs), reduction="none" - ) - neg = F.binary_cross_entropy_with_logits( - inputs, torch.zeros_like(inputs), reduction="none" - ) + pos = F.binary_cross_entropy_with_logits(inputs, torch.ones_like(inputs), reduction="none") + neg = F.binary_cross_entropy_with_logits(inputs, torch.zeros_like(inputs), reduction="none") - loss = torch.einsum("nc,mc->nm", pos, targets) + torch.einsum( - "nc,mc->nm", neg, (1 - targets) - ) + loss = torch.einsum("nc,mc->nm", pos, targets) + torch.einsum("nc,mc->nm", neg, (1 - targets)) return loss / hw -batch_sigmoid_ce_loss_jit = torch.jit.script( - batch_sigmoid_ce_loss -) # type: torch.jit.ScriptModule +batch_sigmoid_ce_loss_jit = torch.jit.script(batch_sigmoid_ce_loss) # type: torch.jit.ScriptModule class HungarianMatcher(nn.Module): @@ -495,7 +501,9 @@ class HungarianMatcher(nn.Module): while the others are un-matched (and thus treated as non-objects). """ - def __init__(self, cost_class: float = 1, cost_mask: float = 1, cost_dice: float = 1, num_points: int = 0): + def __init__( + self, cost_class: float = 1, cost_mask: float = 1, cost_dice: float = 1, num_points: int = 0 + ): """Creates the matcher Params: @@ -511,7 +519,7 @@ def __init__(self, cost_class: float = 1, cost_mask: float = 1, cost_dice: float assert cost_class != 0 or cost_mask != 0 or cost_dice != 0, "all costs cant be 0" self.num_points = num_points - + @torch.no_grad() def memory_efficient_forward(self, outputs, targets): """More memory-friendly matching""" @@ -560,7 +568,7 @@ def memory_efficient_forward(self, outputs, targets): # Compute the dice loss betwen masks with torch.jit.optimized_execution(False): cost_dice = batch_dice_loss_jit(out_mask, tgt_mask) - + # Final cost matrix C = ( self.cost_mask * cost_mask @@ -568,10 +576,10 @@ def memory_efficient_forward(self, outputs, targets): + self.cost_dice * cost_dice ) C = C.reshape(num_queries, -1).cpu() - + # -inf values cause error in linear_sum_assignment so replace with large neg if -np.inf in C: - C = C[np.where(C==-np.inf)] = -1e9 + C = C[np.where(C == -np.inf)] = -1e9 indices.append(linear_sum_assignment(C)) diff --git a/torchsig/models/spectrogram_models/detr/detr.py b/torchsig/models/spectrogram_models/detr/detr.py index f504170..1576556 100644 --- a/torchsig/models/spectrogram_models/detr/detr.py +++ b/torchsig/models/spectrogram_models/detr/detr.py @@ -1,20 +1,25 @@ -import timm -import gdown -import torch import os.path +from typing import Dict + +import gdown import numpy as np +import timm +import torch from torch import nn from .modules import * from .utils import * - __all__ = [ - "detr_b0_nano", "detr_b2_nano", "detr_b4_nano", - "detr_b0_nano_mod_family", "detr_b2_nano_mod_family", "detr_b4_nano_mod_family", + "detr_b0_nano", + "detr_b2_nano", + "detr_b4_nano", + "detr_b0_nano_mod_family", + "detr_b2_nano_mod_family", + "detr_b4_nano_mod_family", ] -model_urls = { +model_urls: Dict[str, str] = { "detr_b0_nano": "1t6V3M5hJC8C-RSwPtgKGG89u5doibs46", "detr_b2_nano": "1voDx7e0pBe_lGa_1sUYG8gyzOqz8nxmw", "detr_b4_nano": "1RA7yGvpKiIXHXl_o89Zn6R2dVVTgKsWO", @@ -25,7 +30,7 @@ def detr_b0_nano( - pretrained: bool = False, + pretrained: bool = False, path: str = "detr_b0_nano.pt", num_classes: int = 1, drop_rate_backbone: float = 0.2, @@ -36,7 +41,7 @@ def detr_b0_nano( DETR from `"End-to-End Object Detection with Transformers" `_. EfficientNet from `"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" `_. XCiT from `"XCiT: Cross-Covariance Image Transformers" `_. - + Args: pretrained (bool): If True, returns a model pre-trained on WBSig53 path (str): Path to existing model or where to download checkpoint to @@ -44,12 +49,12 @@ def detr_b0_nano( drop_path_rate_backbone (float): Backbone drop path rate for training drop_rate_backbone (float): Backbone dropout rate for training drop_path_rate_transformer (float): Transformer drop path rate for training - + """ # Create DETR-B0-Nano mdl = create_detr( - backbone='efficientnet_b0', - transformer='xcit-nano', + backbone="efficientnet_b0", + transformer="xcit-nano", num_classes=1, num_objects=50, hidden_dim=256, @@ -57,21 +62,24 @@ def detr_b0_nano( drop_path_rate_backbone=drop_path_rate_backbone, drop_path_rate_transformer=drop_path_rate_transformer, ds_rate_transformer=2, - ds_method_transformer='chunker', + ds_method_transformer="chunker", ) if pretrained: model_exists = os.path.exists(path) if not model_exists: - file_id = model_urls['detr_b0_nano'] + file_id = model_urls["detr_b0_nano"] dl = gdown.download(id=file_id, output=path) mdl.load_state_dict(torch.load(path), strict=False) if num_classes != 1: - mdl.linear_class = nn.Linear(mdl.linear_class.in_features, num_classes) + mdl.linear_class = nn.Linear( + mdl.linear_class.in_features, # type: ignore + num_classes, + ) return mdl - - + + def detr_b2_nano( - pretrained: bool = False, + pretrained: bool = False, path: str = "detr_b2_nano.pt", num_classes: int = 1, drop_rate_backbone: float = 0.3, @@ -90,12 +98,12 @@ def detr_b2_nano( drop_path_rate_backbone (float): Backbone drop path rate for training drop_rate_backbone (float): Backbone dropout rate for training drop_path_rate_transformer (float): Transformer drop path rate for training - + """ # Create DETR-B2-Nano mdl = create_detr( - backbone='efficientnet_b2', - transformer='xcit-nano', + backbone="efficientnet_b2", + transformer="xcit-nano", num_classes=1, num_objects=50, hidden_dim=256, @@ -103,21 +111,24 @@ def detr_b2_nano( drop_path_rate_backbone=drop_path_rate_backbone, drop_path_rate_transformer=drop_path_rate_transformer, ds_rate_transformer=2, - ds_method_transformer='chunker', + ds_method_transformer="chunker", ) if pretrained: model_exists = os.path.exists(path) if not model_exists: - file_id = model_urls['detr_b2_nano'] + file_id = model_urls["detr_b2_nano"] dl = gdown.download(id=file_id, output=path) mdl.load_state_dict(torch.load(path), strict=False) if num_classes != 1: - mdl.linear_class = nn.Linear(mdl.linear_class.in_features, num_classes) + mdl.linear_class = nn.Linear( + mdl.linear_class.in_features, # type: ignore + num_classes, + ) return mdl - - + + def detr_b4_nano( - pretrained: bool = False, + pretrained: bool = False, path: str = "detr_b4_nano.pt", num_classes: int = 1, drop_rate_backbone: float = 0.4, @@ -136,12 +147,12 @@ def detr_b4_nano( drop_path_rate_backbone (float): Backbone drop path rate for training drop_rate_backbone (float): Backbone dropout rate for training drop_path_rate_transformer (float): Transformer drop path rate for training - + """ # Create DETR-B4-Nano mdl = create_detr( - backbone='efficientnet_b4', - transformer='xcit-nano', + backbone="efficientnet_b4", + transformer="xcit-nano", num_classes=1, num_objects=50, hidden_dim=256, @@ -149,21 +160,24 @@ def detr_b4_nano( drop_path_rate_backbone=drop_path_rate_backbone, drop_path_rate_transformer=drop_path_rate_transformer, ds_rate_transformer=2, - ds_method_transformer='chunker', + ds_method_transformer="chunker", ) if pretrained: model_exists = os.path.exists(path) if not model_exists: - file_id = model_urls['detr_b4_nano'] + file_id = model_urls["detr_b4_nano"] dl = gdown.download(id=file_id, output=path) mdl.load_state_dict(torch.load(path), strict=False) if num_classes != 1: - mdl.linear_class = nn.Linear(mdl.linear_class.in_features, num_classes) + mdl.linear_class = nn.Linear( + mdl.linear_class.in_features, # type: ignore + num_classes, + ) return mdl def detr_b0_nano_mod_family( - pretrained: bool = False, + pretrained: bool = False, path: str = "detr_b0_nano_mod_family.pt", num_classes: int = 6, drop_rate_backbone: float = 0.2, @@ -174,7 +188,7 @@ def detr_b0_nano_mod_family( DETR from `"End-to-End Object Detection with Transformers" `_. EfficientNet from `"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" `_. XCiT from `"XCiT: Cross-Covariance Image Transformers" `_. - + Args: pretrained (bool): If True, returns a model pre-trained on WBSig53 path (str): Path to existing model or where to download checkpoint to @@ -182,12 +196,12 @@ def detr_b0_nano_mod_family( drop_path_rate_backbone (float): Backbone drop path rate for training drop_rate_backbone (float): Backbone dropout rate for training drop_path_rate_transformer (float): Transformer drop path rate for training - + """ # Create DETR-B0-Nano mdl = create_detr( - backbone='efficientnet_b0', - transformer='xcit-nano', + backbone="efficientnet_b0", + transformer="xcit-nano", num_classes=6, num_objects=50, hidden_dim=256, @@ -195,21 +209,24 @@ def detr_b0_nano_mod_family( drop_path_rate_backbone=drop_path_rate_backbone, drop_path_rate_transformer=drop_path_rate_transformer, ds_rate_transformer=2, - ds_method_transformer='chunker', + ds_method_transformer="chunker", ) if pretrained: model_exists = os.path.exists(path) if not model_exists: - file_id = model_urls['detr_b0_nano_mod_family'] + file_id = model_urls["detr_b0_nano_mod_family"] dl = gdown.download(id=file_id, output=path) mdl.load_state_dict(torch.load(path), strict=False) if num_classes != 6: - mdl.linear_class = nn.Linear(mdl.linear_class.in_features, num_classes) + mdl.linear_class = nn.Linear( + mdl.linear_class.in_features, # type: ignore + num_classes, + ) return mdl - - + + def detr_b2_nano_mod_family( - pretrained: bool = False, + pretrained: bool = False, path: str = "detr_b2_nano_mod_family.pt", num_classes: int = 1, drop_rate_backbone: float = 0.3, @@ -228,12 +245,12 @@ def detr_b2_nano_mod_family( drop_path_rate_backbone (float): Backbone drop path rate for training drop_rate_backbone (float): Backbone dropout rate for training drop_path_rate_transformer (float): Transformer drop path rate for training - + """ # Create DETR-B2-Nano mdl = create_detr( - backbone='efficientnet_b2', - transformer='xcit-nano', + backbone="efficientnet_b2", + transformer="xcit-nano", num_classes=6, num_objects=50, hidden_dim=256, @@ -241,21 +258,24 @@ def detr_b2_nano_mod_family( drop_path_rate_backbone=drop_path_rate_backbone, drop_path_rate_transformer=drop_path_rate_transformer, ds_rate_transformer=2, - ds_method_transformer='chunker', + ds_method_transformer="chunker", ) if pretrained: model_exists = os.path.exists(path) if not model_exists: - file_id = model_urls['detr_b2_nano_mod_family'] + file_id = model_urls["detr_b2_nano_mod_family"] dl = gdown.download(id=file_id, output=path) mdl.load_state_dict(torch.load(path), strict=False) if num_classes != 6: - mdl.linear_class = nn.Linear(mdl.linear_class.in_features, num_classes) + mdl.linear_class = nn.Linear( + mdl.linear_class.in_features, # type: ignore + num_classes, + ) return mdl - - + + def detr_b4_nano_mod_family( - pretrained: bool = False, + pretrained: bool = False, path: str = "detr_b4_nano_mod_family.pt", num_classes: int = 6, drop_rate_backbone: float = 0.4, @@ -274,12 +294,12 @@ def detr_b4_nano_mod_family( drop_path_rate_backbone (float): Backbone drop path rate for training drop_rate_backbone (float): Backbone dropout rate for training drop_path_rate_transformer (float): Transformer drop path rate for training - + """ # Create DETR-B4-Nano mdl = create_detr( - backbone='efficientnet_b4', - transformer='xcit-nano', + backbone="efficientnet_b4", + transformer="xcit-nano", num_classes=6, num_objects=50, hidden_dim=256, @@ -287,14 +307,17 @@ def detr_b4_nano_mod_family( drop_path_rate_backbone=drop_path_rate_backbone, drop_path_rate_transformer=drop_path_rate_transformer, ds_rate_transformer=2, - ds_method_transformer='chunker', + ds_method_transformer="chunker", ) if pretrained: model_exists = os.path.exists(path) if not model_exists: - file_id = model_urls['detr_b0_nano_mod_family'] + file_id = model_urls["detr_b0_nano_mod_family"] dl = gdown.download(id=file_id, output=path) mdl.load_state_dict(torch.load(path), strict=False) if num_classes != 6: - mdl.linear_class = nn.Linear(mdl.linear_class.in_features, num_classes) + mdl.linear_class = nn.Linear( + mdl.linear_class.in_features, # type: ignore + num_classes, + ) return mdl diff --git a/torchsig/models/spectrogram_models/detr/modules.py b/torchsig/models/spectrogram_models/detr/modules.py index 3f5086d..4f2199e 100644 --- a/torchsig/models/spectrogram_models/detr/modules.py +++ b/torchsig/models/spectrogram_models/detr/modules.py @@ -1,17 +1,24 @@ +from typing import List + import timm import torch +from scipy import interpolate +from scipy.optimize import linear_sum_assignment from torch import nn -from typing import List from torch.nn import functional as F -from scipy.optimize import linear_sum_assignment -from scipy import interpolate from torchvision.ops import sigmoid_focal_loss -from .utils import xcit_name_to_timm_name -from .utils import drop_classifier, find_output_features -from .utils import box_cxcywh_to_xyxy, generalized_box_iou -from .utils import is_dist_avail_and_initialized, get_world_size, accuracy -from .criterion import nested_tensor_from_tensor_list, dice_loss +from .criterion import dice_loss, nested_tensor_from_tensor_list +from .utils import ( + accuracy, + box_cxcywh_to_xyxy, + drop_classifier, + find_output_features, + generalized_box_iou, + get_world_size, + is_dist_avail_and_initialized, + xcit_name_to_timm_name, +) class ConvDownSampler(torch.nn.Module): @@ -500,15 +507,17 @@ def create_detr( """ # build backbone if "eff" in backbone: - backbone = timm.create_model( + backbone_arch = timm.create_model( model_name=backbone, in_chans=2, drop_rate=drop_rate_backbone, drop_path_rate=drop_path_rate_backbone, ) - backbone = drop_classifier(backbone) + backbone_arch = drop_classifier(backbone_arch) else: - raise NotImplemented("Only EfficientNet backbones are supported right now.") + raise NotImplementedError( + "Only EfficientNet backbones are supported right now." + ) # Build transformer if "xcit" in transformer: @@ -516,7 +525,7 @@ def create_detr( model_name = xcit_name_to_timm_name(transformer) # build transformer - transformer = XCiT( + transformer_arch = XCiT( backbone=timm.create_model( model_name=model_name, drop_path_rate=drop_path_rate_transformer, @@ -530,12 +539,12 @@ def create_detr( ) else: - raise NotImplemented("Only XCiT transformers are supported right now.") + raise NotImplementedError("Only XCiT transformers are supported right now.") # Build full DETR network network = DETRModel( - backbone, - transformer, + backbone_arch, + transformer_arch, num_classes=num_classes, num_objects=num_objects, hidden_dim=hidden_dim, diff --git a/torchsig/models/spectrogram_models/detr/utils.py b/torchsig/models/spectrogram_models/detr/utils.py index ebca9d0..7eeedd4 100644 --- a/torchsig/models/spectrogram_models/detr/utils.py +++ b/torchsig/models/spectrogram_models/detr/utils.py @@ -1,8 +1,9 @@ -import torch +from typing import List, Optional + import numpy as np -from torch import nn +import torch import torch.distributed as dist -from typing import List, Optional +from torch import nn from torchvision.ops.boxes import box_area @@ -42,7 +43,7 @@ def xcit_name_to_timm_name(input_name: str) -> str: elif "large" in input_name: model_name = "xcit_large_24_p8_224" else: - raise NotImplemented("Input transformer not supported.") + raise NotImplementedError("Input transformer not supported.") return model_name @@ -127,9 +128,7 @@ def generalized_box_iou(boxes1, boxes2): def format_preds(preds): map_preds = [] - for i, (det_logits, det_boxes) in enumerate( - zip(preds["pred_logits"], preds["pred_boxes"]) - ): + for i, (det_logits, det_boxes) in enumerate(zip(preds["pred_logits"], preds["pred_boxes"])): boxes = [] scores = [] labels = [] diff --git a/torchsig/transforms/__init__.py b/torchsig/transforms/__init__.py index e69de29..fa807dc 100644 --- a/torchsig/transforms/__init__.py +++ b/torchsig/transforms/__init__.py @@ -0,0 +1,2 @@ +from .target_transforms import * +from .transforms import * diff --git a/torchsig/transforms/deep_learning_techniques/__init__.py b/torchsig/transforms/deep_learning_techniques/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/torchsig/transforms/deep_learning_techniques/dlt.py b/torchsig/transforms/deep_learning_techniques/dlt.py deleted file mode 100644 index 1216aad..0000000 --- a/torchsig/transforms/deep_learning_techniques/dlt.py +++ /dev/null @@ -1,1005 +0,0 @@ -import numpy as np -from copy import deepcopy -from typing import List, Any, Union, Callable - -from torchsig.utils.types import SignalDescription, SignalData -from torchsig.utils.dataset import SignalDataset -from torchsig.transforms.transforms import SignalTransform -from torchsig.transforms.wireless_channel.wce import TargetSNR -from torchsig.transforms.functional import ( - to_distribution, - uniform_continuous_distribution, - uniform_discrete_distribution, -) -from torchsig.transforms.functional import ( - NumericParameter, - FloatParameter, - IntParameter, -) -from torchsig.transforms.deep_learning_techniques import functional -from torchsig.transforms.expert_feature import functional as eft_f - - -class DatasetBasebandMixUp(SignalTransform): - """Signal Transform that inputs a dataset to randomly sample from and insert - into the main dataset's examples, using the TargetSNR transform and the - additional `alpha` input to set the difference in SNRs between the two - examples with the following relationship: - - mixup_sample_snr = main_sample_snr + alpha - - Note that `alpha` is used as an additive value because the SNR values are - expressed in log scale. Typical usage will be with with alpha values less - than zero. - - This transform is loosely based on - `"mixup: Beyond Emperical Risk Minimization" `_. - - - Args: - dataset :obj:`SignalDataset`: - A SignalDataset of complex-valued examples to be used as a source for - the synthetic insertion/mixup - - alpha (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - alpha sets the difference in power level between the main dataset - example and the inserted example - * If Callable, produces a sample by calling target_snr() - * If int or float, target_snr is fixed at the value provided - * If list, target_snr is any element in the list - * If tuple, target_snr is in range of (tuple[0], tuple[1]) - - Example: - >>> import torchsig.transforms as ST - >>> from torchsig.datasets import ModulationsDataset - >>> # Add signals from the `ModulationsDataset` - >>> target_transform = SignalDescriptionPassThroughTransform() - >>> dataset = ModulationsDataset( - use_class_idx=True, - level=0, - num_iq_samples=4096, - num_samples=5300, - target_transform=target_transform, - ) - >>> transform = ST.DatasetBasebandMixUp(dataset=dataset,alpha=(-5,-3)) - - """ - - def __init__( - self, - dataset: SignalDataset = None, - alpha: NumericParameter = uniform_continuous_distribution(-5, -3), - ): - super(DatasetBasebandMixUp, self).__init__() - self.alpha = to_distribution(alpha, self.random_generator) - self.dataset = dataset - self.dataset_num_samples = len(dataset) - - def __call__(self, data: Any) -> Any: - alpha = self.alpha() - if isinstance(data, SignalData): - # Input checks - if len(data.signal_description) > 1: - raise ValueError( - "Expected single `SignalDescription` for input `SignalData` but {} detected.".format( - len(data.signal_description) - ) - ) - - # Calculate target SNR of signal to be inserted - target_snr_db = data.signal_description[0].snr + alpha - - # Randomly sample from provided dataset - idx = np.random.randint(self.dataset_num_samples) - insert_data, insert_signal_description = self.dataset[idx] - if insert_data.shape[0] != data.iq_data.shape[0]: - raise ValueError( - "Input dataset's `num_iq_samples` does not match main dataset.\n\t\ - Found {}, but expected {} samples".format( - insert_data.shape[0], data.shape[0] - ) - ) - insert_signal_data = SignalData( - data=insert_data, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=insert_signal_description, - ) - - # Set insert data's SNR - target_snr_transform = TargetSNR(target_snr_db) - insert_signal_data = target_snr_transform(insert_signal_data) - - # Create new SignalData object for transformed data - new_data = SignalData( - data=None, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=[], - ) - new_data.iq_data = data.iq_data + insert_signal_data.iq_data - - # Update SignalDescription - new_signal_description = [] - new_signal_description.append(data.signal_description[0]) - new_signal_description.append(insert_signal_data.signal_description[0]) - new_data.signal_description = new_signal_description - - return new_data - else: - raise ValueError( - "Expected input type `SignalData`. Received {}. \n\t\ - The `SignalDatasetBasebandMixUp` transform depends on metadata from a `SignalData` object.".format( - type(data) - ) - ) - - -class DatasetBasebandCutMix(SignalTransform): - """Signal Transform that inputs a dataset to randomly sample from and insert - into the main dataset's examples, using the TargetSNR transform to match - the main dataset's examples' SNR and an additional `alpha` input to set the - relative quantity in time to occupy, where - - cutmix_num_iq_samples = total_num_iq_samples * alpha - - With this transform, the inserted signal replaces the IQ samples of the - original signal rather than adding to them as the `DatasetBasebandMixUp` - transform does above. - - This transform is loosely based on - `"CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features" `_. - - Args: - dataset :obj:`SignalDataset`: - An SignalDataset of complex-valued examples to be used as a source for - the synthetic insertion/mixup - - alpha (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - alpha sets the difference in power level between the main dataset - example and the inserted example - * If Callable, produces a sample by calling target_snr() - * If int or float, target_snr is fixed at the value provided - * If list, target_snr is any element in the list - * If tuple, target_snr is in range of (tuple[0], tuple[1]) - - Example: - >>> import torchsig.transforms as ST - >>> from torchsig.datasets import ModulationsDataset - >>> # Add signals from the `ModulationsDataset` - >>> target_transform = SignalDescriptionPassThroughTransform() - >>> dataset = ModulationsDataset( - use_class_idx=True, - level=0, - num_iq_samples=4096, - num_samples=5300, - target_transform=target_transform, - ) - >>> transform = ST.DatasetBasebandCutMix(dataset=dataset,alpha=(0.2,0.5)) - - """ - - def __init__( - self, - dataset: SignalDataset = None, - alpha: NumericParameter = uniform_continuous_distribution(0.2, 0.5), - ): - super(DatasetBasebandCutMix, self).__init__() - self.alpha = to_distribution(alpha, self.random_generator) - self.dataset = dataset - self.dataset_num_samples = len(dataset) - - def __call__(self, data: Any) -> Any: - alpha = self.alpha() - if isinstance(data, SignalData): - # Input checks - if len(data.signal_description) > 1: - raise ValueError( - "Expected single `SignalDescription` for input `SignalData` but {} detected.".format( - len(data.signal_description) - ) - ) - - # Randomly sample from provided dataset - idx = np.random.randint(self.dataset_num_samples) - insert_data, insert_signal_description = self.dataset[idx] - num_iq_samples = data.iq_data.shape[0] - if insert_data.shape[0] != num_iq_samples: - raise ValueError( - "Input dataset's `num_iq_samples` does not match main dataset.\n\t\ - Found {}, but expected {} samples".format( - insert_data.shape[0], data.shape[0] - ) - ) - insert_signal_data = SignalData( - data=insert_data, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=insert_signal_description, - ) - - # Set insert data's SNR - target_snr_transform = TargetSNR(data.signal_description[0].snr) - insert_signal_data = target_snr_transform(insert_signal_data) - - # Mask both data examples based on alpha and a random start value - insert_num_iq_samples = int(alpha * num_iq_samples) - insert_start = np.random.randint(num_iq_samples - insert_num_iq_samples) - insert_stop = insert_start + insert_num_iq_samples - data.iq_data[insert_start:insert_stop] = 0 - insert_signal_data.iq_data[:insert_start] = 0 - insert_signal_data.iq_data[insert_stop:] = 0 - - # Create new SignalData object for transformed data - new_data = SignalData( - data=None, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=[], - ) - new_data.iq_data = data.iq_data + insert_signal_data.iq_data - - # Update SignalDescription - new_signal_description = [] - if insert_start != 0 and insert_stop != num_iq_samples: - # Data description becomes two SignalDescriptions - new_signal_desc = deepcopy(data.signal_description[0]) - new_signal_desc.start = 0.0 - new_signal_desc.stop = insert_start / num_iq_samples - new_signal_desc.duration = new_signal_desc.stop - new_signal_desc.start - new_signal_description.append(new_signal_desc) - new_signal_desc = deepcopy(data.signal_description[0]) - new_signal_desc.start = insert_stop / num_iq_samples - new_signal_desc.stop = 1.0 - new_signal_desc.duration = new_signal_desc.stop - new_signal_desc.start - new_signal_description.append(new_signal_desc) - elif insert_start == 0: - # Data description remains one SignalDescription up to end - new_signal_desc = deepcopy(data.signal_description[0]) - new_signal_desc.start = insert_stop / num_iq_samples - new_signal_desc.stop = 1.0 - new_signal_desc.duration = new_signal_desc.stop - new_signal_desc.start - new_signal_description.append(new_signal_desc) - else: - # Data description remains one SignalDescription at beginning - new_signal_desc = deepcopy(data.signal_description[0]) - new_signal_desc.start = 0.0 - new_signal_desc.stop = insert_start / num_iq_samples - new_signal_desc.duration = new_signal_desc.stop - new_signal_desc.start - new_signal_description.append(new_signal_desc) - # Repeat for insert's SignalDescription - new_signal_desc = deepcopy(insert_signal_data.signal_description[0]) - new_signal_desc.start = insert_start / num_iq_samples - new_signal_desc.stop = insert_stop / num_iq_samples - new_signal_desc.duration = new_signal_desc.stop - new_signal_desc.start - new_signal_description.append(new_signal_desc) - - # Set output data's SignalDescription to above list - new_data.signal_description = new_signal_description - - return new_data - else: - raise ValueError( - "Expected input type `SignalData`. Received {}. \n\t\ - The `SignalDatasetBasebandCutMix` transform depends on metadata from a `SignalData` object.".format( - type(data) - ) - ) - - -class CutOut(SignalTransform): - """A transform that applies the CutOut transform in the time domain. The - `cut_dur` input specifies how long the cut region should be, and the - `cut_type` input specifies what the cut region should be filled in with. - Options for the cut type include: zeros, ones, low_noise, avg_noise, and - high_noise. Zeros fills in the region with zeros; ones fills in the region - with 1+1j samples; low_noise fills in the region with noise with -100dB - power; avg_noise adds noise at power average of input data, effectively - slicing/removing existing signals in the most RF realistic way of the - options; and high_noise adds noise with 40dB power. If a list of multiple - options are passed in, they are randomly sampled from. - - This transform is loosely based on - `"Improved Regularization of Convolutional Neural Networks with Cutout" `_. - - Args: - cut_dur (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - cut_dur sets the duration of the region to cut out - * If Callable, produces a sample by calling cut_dur() - * If int or float, cut_dur is fixed at the value provided - * If list, cut_dur is any element in the list - * If tuple, cut_dur is in range of (tuple[0], tuple[1]) - - cut_type (:py:class:`~Callable`, :obj:`list`, :obj:`str`): - cut_type sets the type of data to fill in the cut region with from - the options: `zeros`, `ones`, `low_noise`, `avg_noise`, and - `high_noise` - * If Callable, produces a sample by calling cut_type() - * If list, cut_type is any element in the list - * If str, cut_type is fixed at the method provided - - """ - - def __init__( - self, - cut_dur: NumericParameter = uniform_continuous_distribution(0.01, 0.2), - cut_type: Union[List, str] = uniform_discrete_distribution( - ["zeros", "ones", "low_noise", "avg_noise", "high_noise"] - ), - ): - super(CutOut, self).__init__() - self.cut_dur = to_distribution(cut_dur, self.random_generator) - self.cut_type = to_distribution(cut_type, self.random_generator) - - def __call__(self, data: Any) -> Any: - cut_dur = self.cut_dur() - cut_start = np.random.uniform(0.0, 1.0 - cut_dur) - cut_type = self.cut_type() - - if isinstance(data, SignalData): - # Create new SignalData object for transformed data - new_data = SignalData( - data=None, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=[], - ) - - # Update SignalDescription - new_signal_description = [] - signal_description = ( - [data.signal_description] - if isinstance(data.signal_description, SignalDescription) - else data.signal_description - ) - for signal_desc in signal_description: - new_signal_desc = deepcopy(signal_desc) - - # Update labels - if ( - new_signal_desc.start > cut_start - and new_signal_desc.start < cut_start + cut_dur - ): - # Label starts within cut region - if ( - new_signal_desc.stop > cut_start - and new_signal_desc.stop < cut_start + cut_dur - ): - # Label also stops within cut region --> Remove label - continue - else: - # Push label start to end of cut region - new_signal_desc.start = cut_start + cut_dur - elif ( - new_signal_desc.stop > cut_start - and new_signal_desc.stop < cut_start + cut_dur - ): - # Label stops within cut region but does not start in region --> Push stop to begining of cut region - new_signal_desc.stop = cut_start - elif ( - new_signal_desc.start < cut_start - and new_signal_desc.stop > cut_start + cut_dur - ): - # Label traverse cut region --> Split into two labels - new_signal_desc_split = deepcopy(signal_desc) - # Update first label region's stop - new_signal_desc.stop = cut_start - # Update second label region's start & append to description collection - new_signal_desc_split.start = cut_start + cut_dur - new_signal_description.append(new_signal_desc_split) - - new_signal_description.append(new_signal_desc) - - new_data.signal_description = new_signal_description - - # Perform data augmentation - new_data.iq_data = functional.cut_out( - data.iq_data, cut_start, cut_dur, cut_type - ) - - else: - new_data = functional.cut_out(data, cut_start, cut_dur, cut_type) - return new_data - - -class PatchShuffle(SignalTransform): - """Randomly shuffle multiple local regions of samples. - - Transform is loosely based on - `"PatchShuffle Regularization" `_. - - Args: - patch_size (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - patch_size sets the size of each patch to shuffle - * If Callable, produces a sample by calling patch_size() - * If int or float, patch_size is fixed at the value provided - * If list, patch_size is any element in the list - * If tuple, patch_size is in range of (tuple[0], tuple[1]) - - shuffle_ratio (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - shuffle_ratio sets the ratio of the patches to shuffle - * If Callable, produces a sample by calling shuffle_ratio() - * If int or float, shuffle_ratio is fixed at the value provided - * If list, shuffle_ratio is any element in the list - * If tuple, shuffle_ratio is in range of (tuple[0], tuple[1]) - - """ - - def __init__( - self, - patch_size: NumericParameter = uniform_continuous_distribution(3, 10), - shuffle_ratio: FloatParameter = uniform_continuous_distribution(0.01, 0.05), - ): - super(PatchShuffle, self).__init__() - self.patch_size = to_distribution(patch_size, self.random_generator) - self.shuffle_ratio = to_distribution(shuffle_ratio, self.random_generator) - - def __call__(self, data: Any) -> Any: - patch_size = int(self.patch_size()) - shuffle_ratio = self.shuffle_ratio() - - if isinstance(data, SignalData): - # Create new SignalData object for transformed data - new_data = SignalData( - data=None, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=data.signal_description, - ) - - # Perform data augmentation - new_data.iq_data = functional.patch_shuffle( - data.iq_data, patch_size, shuffle_ratio - ) - - else: - new_data = functional.patch_shuffle(data, patch_size, shuffle_ratio) - return new_data - - -class DatasetWidebandCutMix(SignalTransform): - """SignalTransform that inputs a dataset to randomly sample from and insert - into the main dataset's examples, using an additional `alpha` input to set - the relative quantity in time to occupy, where - - cutmix_num_iq_samples = total_num_iq_samples * alpha - - This transform is loosely based on [CutMix: Regularization Strategy to - Train Strong Classifiers with Localizable Features] - (https://arxiv.org/pdf/1710.09412.pdf). - - Args: - dataset :obj:`SignalDataset`: - An SignalDataset of complex-valued examples to be used as a source for - the synthetic insertion/mixup - - alpha (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - alpha sets the difference in durations between the main dataset - example and the inserted example - * If Callable, produces a sample by calling alpha() - * If int or float, alpha is fixed at the value provided - * If list, alpha is any element in the list - * If tuple, alpha is in range of (tuple[0], tuple[1]) - - Example: - >>> import torchsig.transforms as ST - >>> from torchsig.datasets import WidebandSig53 - >>> # Add signals from the `ModulationsDataset` - >>> dataset = WidebandSig53('.') - >>> transform = ST.DatasetWidebandCutMix(dataset=dataset,alpha=(0.2,0.7)) - - """ - - def __init__( - self, - dataset: SignalDataset = None, - alpha: NumericParameter = uniform_continuous_distribution(0.2, 0.7), - ): - super(DatasetWidebandCutMix, self).__init__() - self.alpha = to_distribution(alpha, self.random_generator) - self.dataset = dataset - self.dataset_num_samples = len(dataset) - - def __call__(self, data: Any) -> Any: - alpha = self.alpha() - if isinstance(data, SignalData): - # Randomly sample from provided dataset - idx = np.random.randint(self.dataset_num_samples) - insert_data, insert_signal_description = self.dataset[idx] - num_iq_samples = data.iq_data.shape[0] - if insert_data.shape[0] != num_iq_samples: - raise ValueError( - "Input dataset's `num_iq_samples` does not match main dataset.\n\t\ - Found {}, but expected {} samples".format( - insert_data.shape[0], data.shape[0] - ) - ) - - # Mask both data examples based on alpha and a random start value - insert_num_iq_samples = int(alpha * num_iq_samples) - insert_start = np.random.randint(num_iq_samples - insert_num_iq_samples) - insert_stop = insert_start + insert_num_iq_samples - data.iq_data[insert_start:insert_stop] = 0 - insert_data[:insert_start] = 0 - insert_data[insert_stop:] = 0 - insert_start /= num_iq_samples - insert_dur = insert_num_iq_samples / num_iq_samples - - # Create new SignalData object for transformed data - new_data = SignalData( - data=None, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=[], - ) - new_data.iq_data = data.iq_data + insert_data - - # Update SignalDescription - new_signal_description = [] - signal_description = ( - [data.signal_description] - if isinstance(data.signal_description, SignalDescription) - else data.signal_description - ) - for signal_desc in signal_description: - new_signal_desc = deepcopy(signal_desc) - - # Update labels - if ( - new_signal_desc.start > insert_start - and new_signal_desc.start < insert_start + insert_dur - ): - # Label starts within cut region - if ( - new_signal_desc.stop > insert_start - and new_signal_desc.stop < insert_start + insert_dur - ): - # Label also stops within cut region --> Remove label - continue - else: - # Push label start to end of cut region - new_signal_desc.start = insert_start + insert_dur - elif ( - new_signal_desc.stop > insert_start - and new_signal_desc.stop < insert_start + insert_dur - ): - # Label stops within cut region but does not start in region --> Push stop to begining of cut region - new_signal_desc.stop = insert_start - elif ( - new_signal_desc.start < insert_start - and new_signal_desc.stop > insert_start + insert_dur - ): - # Label traverse cut region --> Split into two labels - new_signal_desc_split = deepcopy(signal_desc) - # Update first label region's stop - new_signal_desc.stop = insert_start - # Update second label region's start & append to description collection - new_signal_desc_split.start = insert_start + insert_dur - new_signal_description.append(new_signal_desc_split) - - # Append SignalDescription to list - new_signal_description.append(new_signal_desc) - - # Repeat for inserted example's SignalDescription(s) - for insert_signal_desc in insert_signal_description: - # Update labels - if ( - insert_signal_desc.stop < insert_start - or insert_signal_desc.start > insert_start + insert_dur - ): - # Label is outside inserted region --> Remove label - continue - elif ( - insert_signal_desc.start < insert_start - and insert_signal_desc.stop < insert_start + insert_dur - ): - # Label starts before and ends within region, push start to region start - insert_signal_desc.start = insert_start - elif ( - insert_signal_desc.start >= insert_start - and insert_signal_desc.stop > insert_start + insert_dur - ): - # Label starts within region and stops after, push stop to region stop - insert_signal_desc.stop = insert_start + insert_dur - elif ( - insert_signal_desc.start < insert_start - and insert_signal_desc.stop > insert_start + insert_dur - ): - # Label starts before and stops after, push both start & stop to region boundaries - insert_signal_desc.start = insert_start - insert_signal_desc.stop = insert_start + insert_dur - - # Append SignalDescription to list - new_signal_description.append(insert_signal_desc) - - # Set output data's SignalDescription to above list - new_data.signal_description = new_signal_description - - return new_data - else: - raise ValueError( - "Expected input type `SignalData`. Received {}. \n\t\ - The `DatasetWidebandCutMix` transform depends on metadata from a `SignalData` object.".format( - type(data) - ) - ) - - -class DatasetWidebandMixUp(SignalTransform): - """SignalTransform that inputs a dataset to randomly sample from and insert - into the main dataset's examples, using the `alpha` input to set the - difference in magnitudes between the two examples with the following - relationship: - - output_sample = main_sample * (1 - alpha) + mixup_sample * alpha - - This transform is loosely based on [mixup: Beyond Emperical Risk - Minimization](https://arxiv.org/pdf/1710.09412.pdf). - - Args: - dataset :obj:`SignalDataset`: - An SignalDataset of complex-valued examples to be used as a source for - the synthetic insertion/mixup - - alpha (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - alpha sets the difference in power level between the main dataset - example and the inserted example - * If Callable, produces a sample by calling alpha() - * If int or float, alpha is fixed at the value provided - * If list, alpha is any element in the list - * If tuple, alpha is in range of (tuple[0], tuple[1]) - - Example: - >>> import torchsig.transforms as ST - >>> from torchsig.datasets import WidebandSig53 - >>> # Add signals from the `WidebandSig53` Dataset - >>> dataset = WidebandSig53('.') - >>> transform = ST.DatasetWidebandMixUp(dataset=dataset,alpha=(0.4,0.6)) - - """ - - def __init__( - self, - dataset: SignalDataset = None, - alpha: NumericParameter = uniform_continuous_distribution(0.4, 0.6), - ): - super(DatasetWidebandMixUp, self).__init__() - self.alpha = to_distribution(alpha, self.random_generator) - self.dataset = dataset - self.dataset_num_samples = len(dataset) - - def __call__(self, data: Any) -> Any: - alpha = self.alpha() - if isinstance(data, SignalData): - # Randomly sample from provided dataset - idx = np.random.randint(self.dataset_num_samples) - insert_data, insert_signal_description = self.dataset[idx] - if insert_data.shape[0] != data.iq_data.shape[0]: - raise ValueError( - "Input dataset's `num_iq_samples` does not match main dataset.\n\t\ - Found {}, but expected {} samples".format( - insert_data.shape[0], data.shape[0] - ) - ) - - # Create new SignalData object for transformed data - new_data = SignalData( - data=None, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=[], - ) - new_data.iq_data = data.iq_data * (1 - alpha) + insert_data * alpha - - # Update SignalDescription - new_signal_description = [] - new_signal_description.extend(data.signal_description) - new_signal_description.extend(insert_signal_description) - new_data.signal_description = new_signal_description - - return new_data - else: - raise ValueError( - "Expected input type `SignalData`. Received {}. \n\t\ - The `DatasetWidebandMixUp` transform depends on metadata from a `SignalData` object.".format( - type(data) - ) - ) - - -class SpectrogramRandomResizeCrop(SignalTransform): - """The SpectrogramRandomResizeCrop transforms the input IQ data into a - spectrogram with a randomized FFT size and overlap. This randomization in - the spectrogram computation results in spectrograms of various sizes. The - width and height arguments specify the target output size of the transform. - To get to the desired size, the randomly generated spectrogram may be - randomly cropped or padded in either the time or frequency dimensions. This - transform is meant to emulate the Random Resize Crop transform often used - in computer vision tasks. - - Args: - nfft (:py:class:`~Callable`, :obj:`int`, :obj:`list`, :obj:`tuple`): - The number of FFT bins for the random spectrogram. - * If Callable, nfft is set by calling nfft() - * If int, nfft is fixed by value provided - * If list, nfft is any element in the list - * If tuple, nfft is in range of (tuple[0], tuple[1]) - overlap_ratio (:py:class:`~Callable`, :obj:`int`, :obj:`list`, :obj:`tuple`): - The ratio of the (nfft-1) value to use as the overlap parameter for - the spectrogram operation. Setting as ratio ensures the overlap is - a lower value than the bin size. - * If Callable, nfft is set by calling overlap_ratio() - * If float, overlap_ratio is fixed by value provided - * If list, overlap_ratio is any element in the list - * If tuple, overlap_ratio is in range of (tuple[0], tuple[1]) - window_fcn (:obj:`str`): - Window to be used in spectrogram operation. - Default value is 'np.blackman'. - mode (:obj:`str`): - Mode of the spectrogram to be computed. - Default value is 'complex'. - width (:obj:`int`): - Target output width (time) of the spectrogram - height (:obj:`int`): - Target output height (frequency) of the spectrogram - - Example: - >>> import torchsig.transforms as ST - >>> # Randomly sample NFFT size in range [128,1024] and randomly crop/pad output spectrogram to (512,512) - >>> transform = ST.SpectrogramRandomResizeCrop(nfft=(128,1024), overlap_ratio=(0.0,0.2), width=512, height=512) - - """ - - def __init__( - self, - nfft: IntParameter = (256, 1024), - overlap_ratio: FloatParameter = (0.0, 0.2), - window_fcn: Callable[[int], np.ndarray] = np.blackman, - mode: str = "complex", - width: int = 512, - height: int = 512, - ): - super(SpectrogramRandomResizeCrop, self).__init__() - self.nfft = to_distribution(nfft, self.random_generator) - self.overlap_ratio = to_distribution(overlap_ratio, self.random_generator) - self.window_fcn = window_fcn - self.mode = mode - self.width = width - self.height = height - - def __call__(self, data: Any) -> Any: - nfft = int(self.nfft()) - nperseg = nfft - overlap_ratio = self.overlap_ratio() - noverlap = int(overlap_ratio * (nfft - 1)) - - iq_data = data.iq_data if isinstance(data, SignalData) else data - - # First, perform the random spectrogram operation - spec_data = eft_f.spectrogram( - iq_data, nperseg, noverlap, nfft, self.window_fcn, self.mode - ) - if self.mode == "complex": - new_tensor = np.zeros( - (2, spec_data.shape[0], spec_data.shape[1]), dtype=np.float32 - ) - new_tensor[0, :, :] = np.real(spec_data).astype(np.float32) - new_tensor[1, :, :] = np.imag(spec_data).astype(np.float32) - spec_data = new_tensor - - # Next, perform the random cropping/padding - channels, curr_height, curr_width = spec_data.shape - pad_height, crop_height = False, False - pad_width, crop_width = False, False - pad_height_samps, pad_width_samps = 0, 0 - if curr_height < self.height: - pad_height = True - pad_height_samps = self.height - curr_height - elif curr_height > self.height: - crop_height = True - if curr_width < self.width: - pad_width = True - pad_width_samps = self.width - curr_width - elif curr_width > self.width: - crop_width = True - - if pad_height or pad_width: - - def pad_func(vector, pad_width, iaxis, kwargs): - vector[: pad_width[0]] = ( - np.random.rand(len(vector[: pad_width[0]])) * kwargs["pad_value"] - ) - vector[-pad_width[1] :] = ( - np.random.rand(len(vector[-pad_width[1] :])) * kwargs["pad_value"] - ) - - pad_height_start = np.random.randint(0, pad_height_samps // 2 + 1) - pad_height_end = pad_height_samps - pad_height_start + 1 - pad_width_start = np.random.randint(0, pad_width_samps // 2 + 1) - pad_width_end = pad_width_samps - pad_width_start + 1 - - if self.mode == "complex": - new_data_real = np.pad( - spec_data[0], - ( - (pad_height_start, pad_height_end), - (pad_width_start, pad_width_end), - ), - pad_func, - pad_value=np.percentile(np.abs(spec_data[0]), 50), - ) - new_data_imag = np.pad( - spec_data[1], - ( - (pad_height_start, pad_height_end), - (pad_width_start, pad_width_end), - ), - pad_func, - pad_value=np.percentile(np.abs(spec_data[1]), 50), - ) - spec_data = np.concatenate( - [ - np.expand_dims(new_data_real, axis=0), - np.expand_dims(new_data_imag, axis=0), - ], - axis=0, - ) - else: - spec_data = np.pad( - spec_data, - ( - (pad_height_start, pad_height_end), - (pad_width_start, pad_width_end), - ), - pad_func, - min_value=np.percentile(np.abs(spec_data[0]), 50), - ) - - crop_width_start = np.random.randint(0, max(1, curr_width - self.width)) - crop_height_start = np.random.randint(0, max(1, curr_height - self.height)) - spec_data = spec_data[ - :, - crop_height_start : crop_height_start + self.height, - crop_width_start : crop_width_start + self.width, - ] - - # Update SignalData object if necessary, otherwise return - if isinstance(data, SignalData): - # Create new SignalData object for transformed data - new_data = SignalData( - data=None, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=[], - ) - new_data.iq_data = spec_data - - # Update SignalDescription - new_signal_description = [] - signal_description = ( - [data.signal_description] - if isinstance(data.signal_description, SignalDescription) - else data.signal_description - ) - for signal_desc in signal_description: - new_signal_desc = deepcopy(signal_desc) - - # Check bounds for partial signals - new_signal_desc.lower_frequency = ( - -0.5 - if new_signal_desc.lower_frequency < -0.5 - else new_signal_desc.lower_frequency - ) - new_signal_desc.upper_frequency = ( - 0.5 - if new_signal_desc.upper_frequency > 0.5 - else new_signal_desc.upper_frequency - ) - new_signal_desc.bandwidth = ( - new_signal_desc.upper_frequency - new_signal_desc.lower_frequency - ) - new_signal_desc.center_frequency = ( - new_signal_desc.lower_frequency + new_signal_desc.bandwidth * 0.5 - ) - - # Update labels based on padding/cropping - if pad_height: - new_signal_desc.lower_frequency = ( - (new_signal_desc.lower_frequency + 0.5) * curr_height - + pad_height_start - ) / self.height - 0.5 - new_signal_desc.upper_frequency = ( - (new_signal_desc.upper_frequency + 0.5) * curr_height - + pad_height_start - ) / self.height - 0.5 - new_signal_desc.center_frequency = ( - (new_signal_desc.center_frequency + 0.5) * curr_height - + pad_height_start - ) / self.height - 0.5 - new_signal_desc.bandwidth = ( - new_signal_desc.upper_frequency - - new_signal_desc.lower_frequency - ) - - if crop_height: - if ( - new_signal_desc.lower_frequency + 0.5 - ) * curr_height >= crop_height_start + self.height or ( - new_signal_desc.upper_frequency + 0.5 - ) * curr_height <= crop_height_start: - continue - if ( - new_signal_desc.lower_frequency + 0.5 - ) * curr_height <= crop_height_start: - new_signal_desc.lower_frequency = -0.5 - else: - new_signal_desc.lower_frequency = ( - (new_signal_desc.lower_frequency + 0.5) * curr_height - - crop_height_start - ) / self.height - 0.5 - if ( - new_signal_desc.upper_frequency + 0.5 - ) * curr_height >= crop_height_start + self.height: - new_signal_desc.upper_frequency = ( - crop_height_start + self.height - ) - else: - new_signal_desc.upper_frequency = ( - (new_signal_desc.upper_frequency + 0.5) * curr_height - - crop_height_start - ) / self.height - 0.5 - new_signal_desc.bandwidth = ( - new_signal_desc.upper_frequency - - new_signal_desc.lower_frequency - ) - new_signal_desc.center_frequency = ( - new_signal_desc.lower_frequency + new_signal_desc.bandwidth / 2 - ) - - if pad_width: - new_signal_desc.start = ( - new_signal_desc.start * curr_width + pad_width_start - ) / self.width - new_signal_desc.stop = ( - new_signal_desc.stop * curr_width + pad_width_start - ) / self.width - new_signal_desc.duration = ( - new_signal_desc.stop - new_signal_desc.start - ) - - if crop_width: - if new_signal_desc.start * curr_width <= crop_width_start: - new_signal_desc.start = 0.0 - elif ( - new_signal_desc.start * curr_width - >= crop_width_start + self.width - ): - continue - else: - new_signal_desc.start = ( - new_signal_desc.start * curr_width - crop_width_start - ) / self.width - if ( - new_signal_desc.stop * curr_width - >= crop_width_start + self.width - ): - new_signal_desc.stop = 1.0 - elif new_signal_desc.stop * curr_width <= crop_width_start: - continue - else: - new_signal_desc.stop = ( - new_signal_desc.stop * curr_width - crop_width_start - ) / self.width - new_signal_desc.duration = ( - new_signal_desc.stop - new_signal_desc.start - ) - - # Append SignalDescription to list - new_signal_description.append(new_signal_desc) - - new_data.signal_description = new_signal_description - - else: - new_data = spec_data - - return new_data diff --git a/torchsig/transforms/deep_learning_techniques/dlt_functional.py b/torchsig/transforms/deep_learning_techniques/dlt_functional.py deleted file mode 100644 index e9ea386..0000000 --- a/torchsig/transforms/deep_learning_techniques/dlt_functional.py +++ /dev/null @@ -1,102 +0,0 @@ -import numpy as np - - -def cut_out( - tensor: np.ndarray, - cut_start: float, - cut_dur: float, - cut_type: str, -) -> np.ndarray: - """Performs the CutOut using the input parameters - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - cut_start: (:obj:`float`): - Start of cut region in range [0.0,1.0) - - cut_dur: (:obj:`float`): - Duration of cut region in range (0.0,1.0] - - cut_type: (:obj:`str`): - String specifying type of data to fill in cut region with - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has undergone cut out - - """ - num_iq_samples = tensor.shape[0] - cut_start = int(cut_start * num_iq_samples) - - # Create cut mask - cut_mask_length = int(num_iq_samples * cut_dur) - if cut_mask_length + cut_start > num_iq_samples: - cut_mask_length = num_iq_samples - cut_start - - if cut_type == "zeros": - cut_mask = np.zeros(cut_mask_length, dtype=np.complex64) - elif cut_type == "ones": - cut_mask = np.ones(cut_mask_length) + 1j*np.ones(cut_mask_length) - elif cut_type == "low_noise": - real_noise = np.random.randn(cut_mask_length) - imag_noise = np.random.randn(cut_mask_length) - noise_power_db = -100 - cut_mask = (10.0**(noise_power_db/20.0))*(real_noise + 1j*imag_noise)/np.sqrt(2) - elif cut_type == "avg_noise": - real_noise = np.random.randn(cut_mask_length) - imag_noise = np.random.randn(cut_mask_length) - avg_power = np.mean(np.abs(tensor)**2) - cut_mask = avg_power*(real_noise + 1j*imag_noise)/np.sqrt(2) - elif cut_type == "high_noise": - real_noise = np.random.randn(cut_mask_length) - imag_noise = np.random.randn(cut_mask_length) - noise_power_db = 40 - cut_mask = (10.0**(noise_power_db/20.0))*(real_noise + 1j*imag_noise)/np.sqrt(2) - else: - raise ValueError("cut_type must be: zeros, ones, low_noise, avg_noise, or high_noise. Found: {}".format(cut_type)) - - # Insert cut mask into tensor - tensor[cut_start:cut_start+cut_mask_length] = cut_mask - - return tensor - - -def patch_shuffle( - tensor: np.ndarray, - patch_size: int, - shuffle_ratio: float, -) -> np.ndarray: - """Apply shuffling of patches specified by `num_patches` - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - patch_size (:obj:`int`): - Size of each patch to shuffle - - shuffle_ratio (:obj:`float`): - Ratio of patches to shuffle - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has undergone patch shuffling - - """ - num_patches = int(tensor.shape[0] / patch_size) - num_to_shuffle = int(num_patches * shuffle_ratio) - patches_to_shuffle = np.random.choice( - num_patches, - replace=False, - size=num_to_shuffle, - ) - - for patch_idx in patches_to_shuffle: - patch_start = int(patch_idx * patch_size) - patch = tensor[patch_start:patch_start+patch_size] - np.random.shuffle(patch) - tensor[patch_start:patch_start+patch_size] = patch - - return tensor diff --git a/torchsig/transforms/deep_learning_techniques/functional.py b/torchsig/transforms/deep_learning_techniques/functional.py deleted file mode 100644 index e9ea386..0000000 --- a/torchsig/transforms/deep_learning_techniques/functional.py +++ /dev/null @@ -1,102 +0,0 @@ -import numpy as np - - -def cut_out( - tensor: np.ndarray, - cut_start: float, - cut_dur: float, - cut_type: str, -) -> np.ndarray: - """Performs the CutOut using the input parameters - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - cut_start: (:obj:`float`): - Start of cut region in range [0.0,1.0) - - cut_dur: (:obj:`float`): - Duration of cut region in range (0.0,1.0] - - cut_type: (:obj:`str`): - String specifying type of data to fill in cut region with - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has undergone cut out - - """ - num_iq_samples = tensor.shape[0] - cut_start = int(cut_start * num_iq_samples) - - # Create cut mask - cut_mask_length = int(num_iq_samples * cut_dur) - if cut_mask_length + cut_start > num_iq_samples: - cut_mask_length = num_iq_samples - cut_start - - if cut_type == "zeros": - cut_mask = np.zeros(cut_mask_length, dtype=np.complex64) - elif cut_type == "ones": - cut_mask = np.ones(cut_mask_length) + 1j*np.ones(cut_mask_length) - elif cut_type == "low_noise": - real_noise = np.random.randn(cut_mask_length) - imag_noise = np.random.randn(cut_mask_length) - noise_power_db = -100 - cut_mask = (10.0**(noise_power_db/20.0))*(real_noise + 1j*imag_noise)/np.sqrt(2) - elif cut_type == "avg_noise": - real_noise = np.random.randn(cut_mask_length) - imag_noise = np.random.randn(cut_mask_length) - avg_power = np.mean(np.abs(tensor)**2) - cut_mask = avg_power*(real_noise + 1j*imag_noise)/np.sqrt(2) - elif cut_type == "high_noise": - real_noise = np.random.randn(cut_mask_length) - imag_noise = np.random.randn(cut_mask_length) - noise_power_db = 40 - cut_mask = (10.0**(noise_power_db/20.0))*(real_noise + 1j*imag_noise)/np.sqrt(2) - else: - raise ValueError("cut_type must be: zeros, ones, low_noise, avg_noise, or high_noise. Found: {}".format(cut_type)) - - # Insert cut mask into tensor - tensor[cut_start:cut_start+cut_mask_length] = cut_mask - - return tensor - - -def patch_shuffle( - tensor: np.ndarray, - patch_size: int, - shuffle_ratio: float, -) -> np.ndarray: - """Apply shuffling of patches specified by `num_patches` - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - patch_size (:obj:`int`): - Size of each patch to shuffle - - shuffle_ratio (:obj:`float`): - Ratio of patches to shuffle - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has undergone patch shuffling - - """ - num_patches = int(tensor.shape[0] / patch_size) - num_to_shuffle = int(num_patches * shuffle_ratio) - patches_to_shuffle = np.random.choice( - num_patches, - replace=False, - size=num_to_shuffle, - ) - - for patch_idx in patches_to_shuffle: - patch_start = int(patch_idx * patch_size) - patch = tensor[patch_start:patch_start+patch_size] - np.random.shuffle(patch) - tensor[patch_start:patch_start+patch_size] = patch - - return tensor diff --git a/torchsig/transforms/expert_feature/__init__.py b/torchsig/transforms/expert_feature/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/torchsig/transforms/expert_feature/eft.py b/torchsig/transforms/expert_feature/eft.py deleted file mode 100644 index ea79d6a..0000000 --- a/torchsig/transforms/expert_feature/eft.py +++ /dev/null @@ -1,315 +0,0 @@ -import numpy as np -from typing import Callable, Tuple, Any - -from torchsig.utils.types import SignalData -from torchsig.transforms.expert_feature import functional as F -from torchsig.transforms.transforms import SignalTransform - - -class InterleaveComplex(SignalTransform): - """ Converts complex IQ samples to interleaved real and imaginary floating - point values. - - Example: - >>> import torchsig.transforms as ST - >>> transform = ST.InterleaveComplex() - - """ - def __init__(self): - super(InterleaveComplex, self).__init__() - - def __call__(self, data: Any) -> Any: - if isinstance(data, SignalData): - data.iq_data = F.interleave_complex(data.iq_data) - else: - data = F.interleave_complex(data) - return data - - -class ComplexTo2D(SignalTransform): - """ Takes a vector of complex IQ samples and converts two channels of real - and imaginary parts - - Example: - >>> import torchsig.transforms as ST - >>> transform = ST.ComplexTo2D() - - """ - def __init__(self): - super(ComplexTo2D, self).__init__() - - def __call__(self, data: Any) -> Any: - if isinstance(data, SignalData): - data.iq_data = F.complex_to_2d(data.iq_data) - else: - data = F.complex_to_2d(data) - return data - - -class Real(SignalTransform): - """ Takes a vector of complex IQ samples and returns Real portions - - Example: - >>> import torchsig.transforms as ST - >>> transform = ST.Real() - - """ - def __init__(self): - super(Real, self).__init__() - - def __call__(self, data: Any) -> Any: - if isinstance(data, SignalData): - data.iq_data = F.real(data.iq_data) - else: - data = F.real(data) - return data - - -class Imag(SignalTransform): - """ Takes a vector of complex IQ samples and returns Imaginary portions - - Example: - >>> import torchsig.transforms as ST - >>> transform = ST.Imag() - - """ - def __init__(self): - super(Imag, self).__init__() - - def __call__(self, data: Any) -> Any: - if isinstance(data, SignalData): - data.iq_data = F.imag(data.iq_data) - else: - data = F.imag(data) - return data - - -class ComplexMagnitude(SignalTransform): - """ Takes a vector of complex IQ samples and returns the complex magnitude - - Example: - >>> import torchsig.transforms as ST - >>> transform = ST.ComplexMagnitude() - - """ - def __init__(self): - super(ComplexMagnitude, self).__init__() - - def __call__(self, data: Any) -> Any: - if isinstance(data, SignalData): - data.iq_data = F.complex_magnitude(data.iq_data) - else: - data = F.complex_magnitude(data) - return data - - -class WrappedPhase(SignalTransform): - """ Takes a vector of complex IQ samples and returns wrapped phase (-pi, pi) - - Example: - >>> import torchsig.transforms as ST - >>> transform = ST.WrappedPhase() - - """ - def __init__(self): - super(WrappedPhase, self).__init__() - - def __call__(self, data: Any) -> Any: - if isinstance(data, SignalData): - data.iq_data = F.wrapped_phase(data.iq_data) - else: - data = F.wrapped_phase(data) - return data - - -class DiscreteFourierTransform(SignalTransform): - """ Calculates DFT using FFT - - Example: - >>> import torchsig.transforms as ST - >>> transform = ST.DiscreteFourierTransform() - - """ - def __init__(self): - super(DiscreteFourierTransform, self).__init__() - - def __call__(self, data: Any) -> Any: - if isinstance(data, SignalData): - data.iq_data = F.discrete_fourier_transform(data.iq_data) - else: - data = F.discrete_fourier_transform(data) - return data - - -class ChannelConcatIQDFT(SignalTransform): - """ Converts the input IQ into 2D tensor of the real & imaginary components - concatenated in the channel dimension. Next, calculate the DFT using the - FFT, convert the complex DFT into a 2D tensor of real & imaginary frequency - components. Finally, stack the 2D IQ and the 2D DFT components in the - channel dimension. - - Example: - >>> import torchsig.transforms as ST - >>> transform = ST.ChannelConcatIQDFT() - - """ - def __init__(self): - super(ChannelConcatIQDFT, self).__init__() - - def __call__(self, data: Any) -> Any: - iq_data = data.iq_data if isinstance(data, SignalData) else data - dft_data = F.discrete_fourier_transform(iq_data) - iq_data = F.complex_to_2d(iq_data) - dft_data = F.complex_to_2d(dft_data) - output_data = np.concatenate([iq_data, dft_data], axis=0) - if isinstance(data, SignalData): - data.iq_data = output_data - else: - data = output_data - return data - - -class Spectrogram(SignalTransform): - """Calculates power spectral density over time - - Args: - nperseg (:obj:`int`): - Length of each segment. If window is str or tuple, is set to 256, - and if window is array_like, is set to the length of the window. - - noverlap (:obj:`int`): - Number of points to overlap between segments. - If None, noverlap = nperseg // 8. - - nfft (:obj:`int`): - Length of the FFT used, if a zero padded FFT is desired. - If None, the FFT length is nperseg. - - window_fcn (:obj:`str`): - Window to be used in spectrogram operation. - Default value is 'np.blackman'. - - mode (:obj:`str`): - Mode of the spectrogram to be computed. - Default value is 'psd'. - - Example: - >>> import torchsig.transforms as ST - >>> # Spectrogram with seg_size=256, overlap=64, nfft=256, window=blackman_harris - >>> transform = ST.Spectrogram() - >>> # Spectrogram with seg_size=128, overlap=64, nfft=128, window=blackman_harris (2x oversampled in time) - >>> transform = ST.Spectrogram(nperseg=128, noverlap=64) - >>> # Spectrogram with seg_size=128, overlap=0, nfft=128, window=blackman_harris (critically sampled) - >>> transform = ST.Spectrogram(nperseg=128, noverlap=0) - >>> # Spectrogram with seg_size=128, overlap=64, nfft=128, window=blackman_harris (2x oversampled in frequency) - >>> transform = ST.Spectrogram(nperseg=128, noverlap=64, nfft=256) - >>> # Spectrogram with seg_size=128, overlap=64, nfft=128, window=rectangular - >>> transform = ST.Spectrogram(nperseg=128, noverlap=64, nfft=256, window_fcn=np.ones) - - """ - def __init__( - self, - nperseg: int = 256, - noverlap: int = None, - nfft: int = None, - window_fcn: Callable[[int], np.ndarray] = np.blackman, - mode: str = 'psd' - ): - super(Spectrogram, self).__init__() - self.nperseg = nperseg - self.noverlap = nperseg/4 if noverlap is None else noverlap - self.nfft = nperseg if nfft is None else nfft - self.window_fcn = window_fcn - self.mode = mode - - def __call__(self, data: Any) -> Any: - if isinstance(data, SignalData): - data.iq_data = F.spectrogram(data.iq_data, self.nperseg, self.noverlap, self.nfft, self.window_fcn, self.mode) - if self.mode == "complex": - new_tensor = np.zeros((2, data.iq_data.shape[0], data.iq_data.shape[1]), dtype=np.float32) - new_tensor[0, :, :] = np.real(data.iq_data).astype(np.float32) - new_tensor[1, :, :] = np.imag(data.iq_data).astype(np.float32) - data.iq_data = new_tensor - else: - data = F.spectrogram(data, self.nperseg, self.noverlap, self.nfft, self.window_fcn, self.mode) - if self.mode == "complex": - new_tensor = np.zeros((2, data.shape[0], data.shape[1]), dtype=np.float32) - new_tensor[0, :, :] = np.real(data).astype(np.float32) - new_tensor[1, :, :] = np.imag(data).astype(np.float32) - data = new_tensor - return data - - -class ContinuousWavelet(SignalTransform): - """Computes the continuous wavelet transform resulting in a Scalogram of - the complex IQ vector - - Args: - tensor (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - wavelet (:obj:`str`): - Name of the mother wavelet. - If None, wavename = 'mexh'. - - nscales (:obj:`int`): - Number of scales to use in the Scalogram. - If None, nscales = 33. - - sample_rate (:obj:`float`): - Sample rate of the signal. - If None, fs = 1.0. - - Example: - >>> import torchsig.transforms as ST - >>> # ContinuousWavelet SignalTransform using the 'mexh' mother wavelet with 33 scales - >>> transform = ST.ContinuousWavelet() - - """ - def __init__( - self, - wavelet: str = 'mexh', - nscales: int = 33, - sample_rate: float = 1.0 - ): - super(ContinuousWavelet, self).__init__() - self.wavelet = wavelet - self.nscales = nscales - self.sample_rate = sample_rate - - def __call__(self, data: Any) -> Any: - if isinstance(data, SignalData): - data.iq_data = F.continuous_wavelet_transform( - data.iq_data, - self.wavelet, - self.nscales, - self.sample_rate, - ) - else: - data = F.continuous_wavelet_transform( - data, - self.wavelet, - self.nscales, - self.sample_rate, - ) - return data - - -class ReshapeTransform(SignalTransform): - """Reshapes the input data to the specified shape - - Args: - new_shape (obj:`tuple`): - The new shape for the input data - - """ - def __init__(self, new_shape: Tuple, **kwargs): - super(ReshapeTransform, self).__init__(**kwargs) - self.new_shape = new_shape - - def __call__(self, data: Any) -> Any: - if isinstance(data, SignalData): - data.iq_data = data.iq_data.reshape(*self.new_shape) - else: - data = data.reshape(*self.new_shape) - return data diff --git a/torchsig/transforms/expert_feature/eft_functional.py b/torchsig/transforms/expert_feature/eft_functional.py deleted file mode 100644 index 729d12d..0000000 --- a/torchsig/transforms/expert_feature/eft_functional.py +++ /dev/null @@ -1,201 +0,0 @@ -import pywt -import numpy as np -from scipy import signal -from typing import Callable - - -def interleave_complex(tensor: np.ndarray) -> np.ndarray: - """Converts complex vectors to real interleaved IQ vector - - Args: - tensor (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - Returns: - transformed (:class:`numpy.ndarray`): - Interleaved vectors. - """ - new_tensor = np.empty((tensor.shape[0]*2,)) - new_tensor[::2] = np.real(tensor) - new_tensor[1::2] = np.imag(tensor) - return new_tensor - - -def complex_to_2d(tensor: np.ndarray) -> np.ndarray: - """Converts complex IQ to two channels representing real and imaginary - - Args: - tensor (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - Returns: - transformed (:class:`numpy.ndarray`): - Expanded vectors - """ - - new_tensor = np.zeros((2, tensor.shape[0]), dtype=np.float64) - new_tensor[0] = np.real(tensor).astype(np.float64) - new_tensor[1] = np.imag(tensor).astype(np.float64) - return new_tensor - - -def real(tensor: np.ndarray) -> np.ndarray: - """Converts complex IQ to a real-only vector - - Args: - tensor (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - Returns: - transformed (:class:`numpy.ndarray`): - real(tensor) - """ - return np.real(tensor) - - -def imag(tensor: np.ndarray) -> np.ndarray: - """Converts complex IQ to a imaginary-only vector - - Args: - tensor (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - Returns: - transformed (:class:`numpy.ndarray`): - imag(tensor) - """ - return np.imag(tensor) - - -def complex_magnitude(tensor: np.ndarray) -> np.ndarray: - """Converts complex IQ to a complex magnitude vector - - Args: - tensor (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - Returns: - transformed (:class:`numpy.ndarray`): - abs(tensor) - """ - return np.abs(tensor) - - -def wrapped_phase(tensor: np.ndarray) -> np.ndarray: - """Converts complex IQ to a wrapped-phase vector - - Args: - tensor (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - Returns: - transformed (:class:`numpy.ndarray`): - angle(tensor) - """ - return np.angle(tensor) - - -def discrete_fourier_transform(tensor: np.ndarray) -> np.ndarray: - """Computes DFT of complex IQ vector - - Args: - tensor (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - Returns: - transformed (:class:`numpy.ndarray`): - fft(tensor). normalization is 1/sqrt(n) - """ - return np.fft.fft(tensor, norm="ortho") - - -def spectrogram( - tensor: np.ndarray, - nperseg: int, - noverlap: int, - nfft: int, - window_fcn: Callable[[int], np.ndarray], - mode: str, -) -> np.ndarray: - """Computes spectrogram of complex IQ vector - - Args: - tensor (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - nperseg (:obj:`int`): - Length of each segment. If window is str or tuple, is set to 256, - and if window is array_like, is set to the length of the window. - - noverlap (:obj:`int`): - Number of points to overlap between segments. - If None, noverlap = nperseg // 8. - - nfft (:obj:`int`): - Length of the FFT used, if a zero padded FFT is desired. - If None, the FFT length is nperseg. - - window_fcn (:obj:`Callable`): - Function generating the window for each FFT - - mode (:obj:`str`): - Mode of the spectrogram to be computed. - - Returns: - transformed (:class:`numpy.ndarray`): - Spectrogram of tensor along time dimension - """ - _, _, spectrograms = signal.spectrogram( - tensor, - nperseg=nperseg, - noverlap=noverlap, - nfft=nfft, - window=window_fcn(nperseg), - return_onesided=False, - mode=mode, - axis=0 - ) - return np.fft.fftshift(spectrograms, axes=0) - - -def continuous_wavelet_transform( - tensor: np.ndarray, - wavelet: str, - nscales: int, - sample_rate: float -) -> np.ndarray: - """Computes the continuous wavelet transform resulting in a Scalogram of the complex IQ vector - - Args: - tensor (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - wavelet (:obj:`str`): - Name of the mother wavelet. - If None, wavename = 'mexh'. - - nscales (:obj:`int`): - Number of scales to use in the Scalogram. - If None, nscales = 33. - - sample_rate (:obj:`float`): - Sample rate of the signal. - If None, fs = 1.0. - - Returns: - transformed (:class:`numpy.ndarray`): - Scalogram of tensor along time dimension - """ - scales = np.arange(1, nscales) - cwtmatr, _ = pywt.cwt( - tensor, - scales=scales, - wavelet=wavelet, - sampling_period=1.0/sample_rate - ) - - # if the dtype is complex then return the magnitude - if np.iscomplexobj(cwtmatr): - cwtmatr = abs(cwtmatr) - - return cwtmatr diff --git a/torchsig/transforms/expert_feature/functional.py b/torchsig/transforms/expert_feature/functional.py deleted file mode 100644 index 729d12d..0000000 --- a/torchsig/transforms/expert_feature/functional.py +++ /dev/null @@ -1,201 +0,0 @@ -import pywt -import numpy as np -from scipy import signal -from typing import Callable - - -def interleave_complex(tensor: np.ndarray) -> np.ndarray: - """Converts complex vectors to real interleaved IQ vector - - Args: - tensor (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - Returns: - transformed (:class:`numpy.ndarray`): - Interleaved vectors. - """ - new_tensor = np.empty((tensor.shape[0]*2,)) - new_tensor[::2] = np.real(tensor) - new_tensor[1::2] = np.imag(tensor) - return new_tensor - - -def complex_to_2d(tensor: np.ndarray) -> np.ndarray: - """Converts complex IQ to two channels representing real and imaginary - - Args: - tensor (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - Returns: - transformed (:class:`numpy.ndarray`): - Expanded vectors - """ - - new_tensor = np.zeros((2, tensor.shape[0]), dtype=np.float64) - new_tensor[0] = np.real(tensor).astype(np.float64) - new_tensor[1] = np.imag(tensor).astype(np.float64) - return new_tensor - - -def real(tensor: np.ndarray) -> np.ndarray: - """Converts complex IQ to a real-only vector - - Args: - tensor (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - Returns: - transformed (:class:`numpy.ndarray`): - real(tensor) - """ - return np.real(tensor) - - -def imag(tensor: np.ndarray) -> np.ndarray: - """Converts complex IQ to a imaginary-only vector - - Args: - tensor (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - Returns: - transformed (:class:`numpy.ndarray`): - imag(tensor) - """ - return np.imag(tensor) - - -def complex_magnitude(tensor: np.ndarray) -> np.ndarray: - """Converts complex IQ to a complex magnitude vector - - Args: - tensor (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - Returns: - transformed (:class:`numpy.ndarray`): - abs(tensor) - """ - return np.abs(tensor) - - -def wrapped_phase(tensor: np.ndarray) -> np.ndarray: - """Converts complex IQ to a wrapped-phase vector - - Args: - tensor (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - Returns: - transformed (:class:`numpy.ndarray`): - angle(tensor) - """ - return np.angle(tensor) - - -def discrete_fourier_transform(tensor: np.ndarray) -> np.ndarray: - """Computes DFT of complex IQ vector - - Args: - tensor (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - Returns: - transformed (:class:`numpy.ndarray`): - fft(tensor). normalization is 1/sqrt(n) - """ - return np.fft.fft(tensor, norm="ortho") - - -def spectrogram( - tensor: np.ndarray, - nperseg: int, - noverlap: int, - nfft: int, - window_fcn: Callable[[int], np.ndarray], - mode: str, -) -> np.ndarray: - """Computes spectrogram of complex IQ vector - - Args: - tensor (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - nperseg (:obj:`int`): - Length of each segment. If window is str or tuple, is set to 256, - and if window is array_like, is set to the length of the window. - - noverlap (:obj:`int`): - Number of points to overlap between segments. - If None, noverlap = nperseg // 8. - - nfft (:obj:`int`): - Length of the FFT used, if a zero padded FFT is desired. - If None, the FFT length is nperseg. - - window_fcn (:obj:`Callable`): - Function generating the window for each FFT - - mode (:obj:`str`): - Mode of the spectrogram to be computed. - - Returns: - transformed (:class:`numpy.ndarray`): - Spectrogram of tensor along time dimension - """ - _, _, spectrograms = signal.spectrogram( - tensor, - nperseg=nperseg, - noverlap=noverlap, - nfft=nfft, - window=window_fcn(nperseg), - return_onesided=False, - mode=mode, - axis=0 - ) - return np.fft.fftshift(spectrograms, axes=0) - - -def continuous_wavelet_transform( - tensor: np.ndarray, - wavelet: str, - nscales: int, - sample_rate: float -) -> np.ndarray: - """Computes the continuous wavelet transform resulting in a Scalogram of the complex IQ vector - - Args: - tensor (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - wavelet (:obj:`str`): - Name of the mother wavelet. - If None, wavename = 'mexh'. - - nscales (:obj:`int`): - Number of scales to use in the Scalogram. - If None, nscales = 33. - - sample_rate (:obj:`float`): - Sample rate of the signal. - If None, fs = 1.0. - - Returns: - transformed (:class:`numpy.ndarray`): - Scalogram of tensor along time dimension - """ - scales = np.arange(1, nscales) - cwtmatr, _ = pywt.cwt( - tensor, - scales=scales, - wavelet=wavelet, - sampling_period=1.0/sample_rate - ) - - # if the dtype is complex then return the magnitude - if np.iscomplexobj(cwtmatr): - cwtmatr = abs(cwtmatr) - - return cwtmatr diff --git a/torchsig/transforms/functional.py b/torchsig/transforms/functional.py index 2303bed..033d868 100644 --- a/torchsig/transforms/functional.py +++ b/torchsig/transforms/functional.py @@ -1,42 +1,1502 @@ -from typing import Callable, Union, Tuple, List from functools import partial +from typing import Callable, List, Literal, Optional, Tuple, Union + import numpy as np +import pywt +from numba import complex64, float64, int64, njit +from scipy import interpolate +from scipy import signal as sp + +from torchsig.utils.dsp import low_pass + +__all__ = [ + "FloatParameter", + "IntParameter", + "NumericParameter", + "uniform_discrete_distribution", + "uniform_continuous_distribution", + "to_distribution", + "normalize", + "resample", + "make_sinc_filter", + "awgn", + "time_varying_awgn", + "impulsive_interference", + "rayleigh_fading", + "phase_offset", + "interleave_complex", + "complex_to_2d", + "real", + "imag", + "complex_magnitude", + "wrapped_phase", + "discrete_fourier_transform", + "spectrogram", + "continuous_wavelet_transform", + "time_shift", + "time_crop", + "freq_shift", + "freq_shift_avoid_aliasing", + "_fractional_shift_helper", + "fractional_shift", + "iq_imbalance", + "spectral_inversion", + "channel_swap", + "time_reversal", + "amplitude_reversal", + "roll_off", + "add_slope", + "mag_rescale", + "drop_samples", + "quantize", + "clip", + "random_convolve", + "agc", + "cut_out", + "patch_shuffle", + "drop_spec_samples", + "spec_patch_shuffle", + "spec_translate", +] + FloatParameter = Union[Callable[[int], float], float, Tuple[float, float], List] IntParameter = Union[Callable[[int], int], int, Tuple[int, int], List] NumericParameter = Union[FloatParameter, IntParameter] -def uniform_discrete_distribution(choices: List, random_generator: np.random.RandomState = np.random.RandomState()): +def uniform_discrete_distribution( + choices: List, random_generator: Optional[np.random.RandomState] = None +): + random_generator = random_generator if random_generator else np.random.RandomState() return partial(random_generator.choice, choices) def uniform_continuous_distribution( - lower: Union[int, float], - upper: Union[int, float], - random_generator: np.random.RandomState = np.random.RandomState() + lower: Union[int, float], + upper: Union[int, float], + random_generator: Optional[np.random.RandomState] = None, ): + random_generator = random_generator if random_generator else np.random.RandomState() return partial(random_generator.uniform, lower, upper) -def to_distribution(param, random_generator: np.random.RandomState = np.random.RandomState()): - if isinstance(param, Callable): +def to_distribution( + param: Union[ + int, + float, + str, + Callable, + List[int], + List[float], + List[str], + Tuple[int, int], + Tuple[float, float], + ], + random_generator: Optional[np.random.RandomState] = None, +): + random_generator = random_generator if random_generator else np.random.RandomState() + if isinstance(param, Callable): # type: ignore return param if isinstance(param, list): - if isinstance(param[0], tuple): - tuple_from_list = param[random_generator.randint(len(param))] - return uniform_continuous_distribution( - tuple_from_list[0], - tuple_from_list[1], - random_generator, - ) + ####################################################################### + # [BUG ALERT]: Nested tuples within lists does not function as desired. + # Below will instantiate a random distribution from the list; however, + # each call will only come from the previously randomized selection, + # but the desired behavior would be for this to randomly select each + # region at call time. Commenting out for now, but should revisit in + # the future to add back the functionality. + ####################################################################### + # if isinstance(param[0], tuple): + # tuple_from_list = param[random_generator.randint(len(param))] + # return uniform_continuous_distribution( + # tuple_from_list[0], + # tuple_from_list[1], + # random_generator, + # ) return uniform_discrete_distribution(param, random_generator) if isinstance(param, tuple): - return uniform_continuous_distribution(param[0], param[1], random_generator) + return uniform_continuous_distribution( + param[0], + param[1], + random_generator, + ) if isinstance(param, int) or isinstance(param, float): return uniform_discrete_distribution([param], random_generator) return param + + +def normalize( + tensor: np.ndarray, + norm_order: Optional[Union[float, int, Literal["fro", "nuc"]]] = 2, + flatten: bool = False, +) -> np.ndarray: + """Scale a tensor so that a specfied norm computes to 1. For detailed information, see :func:`numpy.linalg.norm.` + * For norm=1, norm = max(sum(abs(x), axis=0)) (sum of the elements) + * for norm=2, norm = sqrt(sum(abs(x)^2), axis=0) (square-root of the sum of squares) + * for norm=np.inf, norm = max(sum(abs(x), axis=1)) (largest absolute value) + + Args: + tensor (:class:`numpy.ndarray`)): + (batch_size, vector_length, ...)-sized tensor to be normalized. + + norm_order (:class:`int`)): + norm order to be passed to np.linalg.norm + + flatten (:class:`bool`)): + boolean specifying if the input array's norm should be calculated on the flattened representation of the input tensor + + Returns: + Tensor: + Normalized complex array. + """ + if flatten: + flat_tensor = tensor.reshape(tensor.size) + norm = np.linalg.norm(flat_tensor, norm_order, keepdims=True) + else: + norm = np.linalg.norm(tensor, norm_order, keepdims=True) + return np.multiply(tensor, 1.0 / norm) + + +def resample( + tensor: np.ndarray, + up_rate: int, + down_rate: int, + num_iq_samples: int, + keep_samples: bool, + anti_alias_lpf: bool = False, +) -> np.ndarray: + """Resample a tensor by rational value + + Args: + tensor (:class:`numpy.ndarray`): + tensor to be resampled. + + up_rate (:class:`int`): + rate at which to up-sample the tensor + + down_rate (:class:`int`): + rate at which to down-sample the tensor + + num_iq_samples (:class:`int`): + number of IQ samples to have after resampling + + keep_samples (:class:`bool`): + boolean to specify if the resampled data should be returned as is + + anti_alias_lpf (:class:`bool`)): + boolean to specify if an additional anti aliasing filter should be + applied + + Returns: + Tensor: + Resampled tensor + """ + if anti_alias_lpf: + new_rate = up_rate / down_rate + taps = low_pass( + cutoff=new_rate * 0.98 / 2, + transition_bandwidth=(0.5 - (new_rate * 0.98) / 2) / 4, + ) + tensor = sp.convolve(tensor, taps, mode="same") + + # Resample + resampled = sp.resample_poly(tensor, up_rate, down_rate) + + # Handle extra or not enough IQ samples + if keep_samples: + new_tensor = resampled + elif resampled.shape[0] > num_iq_samples: + new_tensor = resampled[-num_iq_samples:] + else: + new_tensor = np.zeros((num_iq_samples,), dtype=np.complex128) + new_tensor[: resampled.shape[0]] = resampled + + return new_tensor + + +@njit(cache=False) +def make_sinc_filter(beta, tap_cnt, sps, offset=0): + """ + return the taps of a sinc filter + """ + ntap_cnt = tap_cnt + ((tap_cnt + 1) % 2) + t_index = np.arange(-(ntap_cnt - 1) // 2, (ntap_cnt - 1) // 2 + 1) / np.double(sps) + + taps = np.sinc(beta * t_index + offset) + taps /= np.sum(taps) + + return taps[:tap_cnt] + + +def awgn(tensor: np.ndarray, noise_power_db: float) -> np.ndarray: + """Adds zero-mean complex additive white Gaussian noise with power of + noise_power_db. + + Args: + tensor: (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor. + + noise_power_db (:obj:`float`): + Defined as 10*log10(E[|n|^2]). + + Returns: + transformed (:class:`numpy.ndarray`): + Tensor with added noise. + """ + real_noise = np.random.randn(*tensor.shape) + imag_noise = np.random.randn(*tensor.shape) + return tensor + (10.0 ** (noise_power_db / 20.0)) * (real_noise + 1j * imag_noise) / np.sqrt(2) + + +def time_varying_awgn( + tensor: np.ndarray, + noise_power_db_low: float, + noise_power_db_high: float, + inflections: int, + random_regions: bool, +) -> np.ndarray: + """Adds time-varying complex additive white Gaussian noise with power + levels in range (`noise_power_db_low`, `noise_power_db_high`) and with + `inflections` number of inflection points spread over the input tensor + randomly if `random_regions` is True or evely spread if False + + Args: + tensor: (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor. + + noise_power_db_low (:obj:`float`): + Defined as 10*log10(E[|n|^2]). + + noise_power_db_high (:obj:`float`): + Defined as 10*log10(E[|n|^2]). + + inflections (:obj:`int`): + Number of inflection points for time-varying nature + + random_regions (:obj:`bool`): + Specify if inflection points are randomly spread throughout tensor + or if evenly spread + + Returns: + transformed (:class:`numpy.ndarray`): + Tensor with added noise. + """ + real_noise: np.ndarray = np.random.randn(*tensor.shape) + imag_noise: np.ndarray = np.random.randn(*tensor.shape) + noise_power_db: np.ndarray = np.zeros(tensor.shape) + + if inflections == 0: + inflection_indices = np.array([0, tensor.shape[0]]) + else: + if random_regions: + inflection_indices = np.sort( + np.random.choice(tensor.shape[0], size=inflections, replace=False) + ) + inflection_indices = np.append(inflection_indices, tensor.shape[0]) + inflection_indices = np.insert(inflection_indices, 0, 0) + else: + inflection_indices = np.arange(inflections + 2) * int( + tensor.shape[0] / (inflections + 1) + ) + + for idx in range(len(inflection_indices) - 1): + start_idx = inflection_indices[idx] + stop_idx = inflection_indices[idx + 1] + duration = stop_idx - start_idx + start_power = noise_power_db_low if idx % 2 == 0 else noise_power_db_high + stop_power = noise_power_db_high if idx % 2 == 0 else noise_power_db_low + noise_power_db[start_idx:stop_idx] = np.linspace(start_power, stop_power, duration) + + return tensor + (10.0 ** (noise_power_db / 20.0)) * (real_noise + 1j * imag_noise) / np.sqrt(2) + + +@njit(cache=False) +def impulsive_interference( + tensor: np.ndarray, + amp: float, + per_offset: float, +) -> np.ndarray: + """Applies an impulsive interferer to tensor + + Args: + tensor: (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor. + + amp (:obj:`float`): + Maximum vector magnitude of complex interferer signal + + per_offset (:obj:`float`) + Interferer offset into the tensor as expressed in a fraction of the tensor length. + + """ + beta = 0.3 + num_samps = len(tensor) + sinc_pulse = make_sinc_filter(beta, num_samps, 0.1, 0) + imp = amp * np.roll(sinc_pulse / np.max(sinc_pulse), int(per_offset * num_samps)) + rand_phase = np.random.uniform(0, 2 * np.pi) + imp = np.exp(1j * rand_phase) * imp + output: np.ndarray = tensor + imp + return output + + +def rayleigh_fading( + tensor: np.ndarray, + coherence_bandwidth: float, + power_delay_profile: np.ndarray, +) -> np.ndarray: + """Applies Rayleigh fading channel to tensor. Taps are generated by + interpolating and filtering Gaussian taps. + + Args: + tensor: (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor. + + coherence_bandwidth (:obj:`float`): + coherence_bandwidth relative to the sample rate in [0, 1.0] + + power_delay_profile (:obj:`float`): + power_delay_profile assigned to channel + + Returns: + transformed (:class:`numpy.ndarray`): + Tensor that has undergone Rayleigh Fading. + + """ + num_taps = int( + np.ceil(1.0 / coherence_bandwidth) + ) # filter length to get desired coherence bandwidth + power_taps = np.sqrt( + np.interp( + np.linspace(0, 1.0, 100 * num_taps), + np.linspace(0, 1.0, len(power_delay_profile)), + power_delay_profile, + ) + ) + # Generate initial taps + rayleigh_taps = np.random.randn(num_taps) + 1j * np.random.randn(num_taps) # multi-path channel + + # Linear interpolate taps by a factor of 100 -- so we can get accurate coherence bandwidths + old_time = np.linspace(0, 1.0, num_taps, endpoint=True) + real_tap_function = interpolate.interp1d(old_time, rayleigh_taps.real) + imag_tap_function = interpolate.interp1d(old_time, rayleigh_taps.imag) + + new_time = np.linspace(0, 1.0, 100 * num_taps, endpoint=True) + rayleigh_taps = real_tap_function(new_time) + 1j * imag_tap_function(new_time) + rayleigh_taps *= power_taps + + # Ensure that we maintain the same amount of power before and after the transform + input_power = np.linalg.norm(tensor) + tensor = sp.upfirdn(rayleigh_taps, tensor, up=100, down=100)[-tensor.shape[0] :] + output_power = np.linalg.norm(tensor) + tensor = np.multiply(input_power / output_power, tensor) + return tensor + + +def phase_offset(tensor: np.ndarray, phase: float) -> np.ndarray: + """Applies a phase rotation to tensor + + Args: + tensor: (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor. + + phase (:obj:`float`): + phase to rotate sample in [-pi, pi] + + Returns: + transformed (:class:`numpy.ndarray`): + Tensor that has undergone a phase rotation + + """ + return tensor * np.exp(1j * phase) + + +def interleave_complex(tensor: np.ndarray) -> np.ndarray: + """Converts complex vectors to real interleaved IQ vector + + Args: + tensor (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor. + + Returns: + transformed (:class:`numpy.ndarray`): + Interleaved vectors. + """ + new_tensor = np.empty((tensor.shape[0] * 2,)) + new_tensor[::2] = np.real(tensor) + new_tensor[1::2] = np.imag(tensor) + return new_tensor + + +def complex_to_2d(tensor: np.ndarray) -> np.ndarray: + """Converts complex IQ to two channels representing real and imaginary + + Args: + tensor (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor. + + Returns: + transformed (:class:`numpy.ndarray`): + Expanded vectors + """ + + new_tensor = np.zeros((2, tensor.shape[0]), dtype=np.float64) + new_tensor[0] = np.real(tensor).astype(np.float64) + new_tensor[1] = np.imag(tensor).astype(np.float64) + return new_tensor + + +def real(tensor: np.ndarray) -> np.ndarray: + """Converts complex IQ to a real-only vector + + Args: + tensor (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor. + + Returns: + transformed (:class:`numpy.ndarray`): + real(tensor) + """ + return np.real(tensor) + + +def imag(tensor: np.ndarray) -> np.ndarray: + """Converts complex IQ to a imaginary-only vector + + Args: + tensor (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor. + + Returns: + transformed (:class:`numpy.ndarray`): + imag(tensor) + """ + return np.imag(tensor) + + +def complex_magnitude(tensor: np.ndarray) -> np.ndarray: + """Converts complex IQ to a complex magnitude vector + + Args: + tensor (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor. + + Returns: + transformed (:class:`numpy.ndarray`): + abs(tensor) + """ + return np.abs(tensor) + + +def wrapped_phase(tensor: np.ndarray) -> np.ndarray: + """Converts complex IQ to a wrapped-phase vector + + Args: + tensor (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor. + + Returns: + transformed (:class:`numpy.ndarray`): + angle(tensor) + """ + return np.angle(tensor) + + +def discrete_fourier_transform(tensor: np.ndarray) -> np.ndarray: + """Computes DFT of complex IQ vector + + Args: + tensor (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor. + + Returns: + transformed (:class:`numpy.ndarray`): + fft(tensor). normalization is 1/sqrt(n) + """ + return np.fft.fft(tensor, norm="ortho") + + +def spectrogram( + tensor: np.ndarray, + nperseg: int, + noverlap: int, + nfft: int, + window_fcn: Callable[[int], np.ndarray], + mode: str, +) -> np.ndarray: + """Computes spectrogram of complex IQ vector + + Args: + tensor (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor. + + nperseg (:obj:`int`): + Length of each segment. If window is str or tuple, is set to 256, + and if window is array_like, is set to the length of the window. + + noverlap (:obj:`int`): + Number of points to overlap between segments. + If None, noverlap = nperseg // 8. + + nfft (:obj:`int`): + Length of the FFT used, if a zero padded FFT is desired. + If None, the FFT length is nperseg. + + window_fcn (:obj:`Callable`): + Function generating the window for each FFT + + mode (:obj:`str`): + Mode of the spectrogram to be computed. + + Returns: + transformed (:class:`numpy.ndarray`): + Spectrogram of tensor along time dimension + """ + _, _, spectrograms = sp.spectrogram( + tensor, + nperseg=nperseg, + noverlap=noverlap, + nfft=nfft, + window=window_fcn(nperseg), + return_onesided=False, + mode=mode, + axis=0, + ) + return np.fft.fftshift(spectrograms, axes=0) + + +def continuous_wavelet_transform( + tensor: np.ndarray, wavelet: str, nscales: int, sample_rate: float +) -> np.ndarray: + """Computes the continuous wavelet transform resulting in a Scalogram of the complex IQ vector + + Args: + tensor (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor. + + wavelet (:obj:`str`): + Name of the mother wavelet. + If None, wavename = 'mexh'. + + nscales (:obj:`int`): + Number of scales to use in the Scalogram. + If None, nscales = 33. + + sample_rate (:obj:`float`): + Sample rate of the signal. + If None, fs = 1.0. + + Returns: + transformed (:class:`numpy.ndarray`): + Scalogram of tensor along time dimension + """ + scales = np.arange(1, nscales) + cwtmatr, _ = pywt.cwt(tensor, scales=scales, wavelet=wavelet, sampling_period=1.0 / sample_rate) + + # if the dtype is complex then return the magnitude + if np.iscomplexobj(cwtmatr): + cwtmatr = abs(cwtmatr) + + return cwtmatr + + +def time_shift(tensor: np.ndarray, t_shift: int) -> np.ndarray: + """Shifts tensor in the time dimension by tshift samples. Zero-padding is + applied to maintain input size. + + Args: + tensor: (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor to be shifted. + + t_shift (:obj:`int` or :class:`numpy.ndarray`): + Number of samples to shift right or left (if negative) + + Returns: + transformed (:class:`numpy.ndarray`): + Tensor shifted in time of size tensor.shape + """ + # Valid Range Error Checking + if np.max(np.abs(t_shift)) >= tensor.shape[0]: + return np.zeros_like(tensor, dtype=np.complex64) + + # This overwrites tensor as side effect, modifies inplace + if t_shift > 0: + tmp = tensor[:-t_shift] # I'm sure there's a more compact way. + tensor = np.pad(tmp, (t_shift, 0), "constant", constant_values=0 + 0j) + elif t_shift < 0: + tmp = tensor[-t_shift:] # I'm sure there's a more compact way. + tensor = np.pad(tmp, (0, -t_shift), "constant", constant_values=0 + 0j) + return tensor + + +def time_crop(tensor: np.ndarray, start: int, length: int) -> np.ndarray: + """Crops a tensor in the time dimension from index start(inclusive) for length samples. + + Args: + tensor (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor to be cropped. + + start (:obj:`int` or :class:`numpy.ndarray`): + index to begin cropping + + length (:obj:`int`): + number of samples to include + + Returns: + transformed (:class:`numpy.ndarray`): + Tensor cropped in time of size (tensor.shape[0], length) + """ + # Type and Size checking + if length < 0: + raise ValueError("Length must be greater than 0") + + if np.any(start < 0): + raise ValueError("Start must be greater than 0") + + if np.max(start) >= tensor.shape[0] or length == 0: + return np.empty(shape=(1, 1)) + + crop_len = min(length, tensor.shape[0] - np.max(start)) + + return tensor[start : start + crop_len] + + +def freq_shift(tensor: np.ndarray, f_shift: float) -> np.ndarray: + """Shifts each tensor in freq by freq_shift along the time dimension + + Args: + tensor (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor to be frequency-shifted. + + f_shift (:obj:`float` or :class:`numpy.ndarray`): + Frequency shift relative to the sample rate in range [-.5, .5] + + Returns: + transformed (:class:`numpy.ndarray`): + Tensor that has been frequency shifted along time dimension of size tensor.shape + """ + sinusoid = np.exp(2j * np.pi * f_shift * np.arange(tensor.shape[0], dtype=np.float64)) + return np.multiply(tensor, np.asarray(sinusoid)) + + +def freq_shift_avoid_aliasing( + tensor: np.ndarray, + f_shift: float, +) -> np.ndarray: + """Similar to `freq_shift` function but performs the frequency shifting at + a higher sample rate with filtering to avoid aliasing + + Args: + tensor (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor to be frequency-shifted. + + f_shift (:obj:`float` or :class:`numpy.ndarray`): + Frequency shift relative to the sample rate in range [-.5, .5] + + Returns: + transformed (:class:`numpy.ndarray`): + Tensor that has been frequency shifted along time dimension of size tensor.shape + """ + # Match output size to input + num_iq_samples = tensor.shape[0] + + # Interpolate up to avoid frequency wrap around during shift + up = 2 + down = 1 + tensor = sp.resample_poly(tensor, up, down) + + taps = low_pass(cutoff=1 / 4, transition_bandwidth=(0.5 - 1 / 4) / 4) + tensor = sp.convolve(tensor, taps, mode="same") + + # Freq shift to desired center freq + time_vector = np.arange(tensor.shape[0], dtype=np.float64) + tensor = tensor * np.exp(2j * np.pi * f_shift / up * time_vector) + + # Filter to remove out-of-band regions + taps = low_pass(cutoff=1 / 4, transition_bandwidth=(0.5 - 1 / 4) / 4) + tensor = sp.convolve(tensor, taps, mode="same") + tensor = tensor[: int(num_iq_samples * up)] # prune to be correct size out of filter + + # Decimate back down to correct sample rate + tensor = sp.resample_poly(tensor, down, up) + + return tensor[:num_iq_samples] + + +@njit(cache=False) +def _fractional_shift_helper( + taps: np.ndarray, raw_iq: np.ndarray, stride: int, offset: int +) -> np.ndarray: + """Fractional shift. First, we up-sample by a large, fixed amount. Filter with 1/upsample_rate/2.0, + Next we down-sample by the same, large fixed amount with a chosen offset. Doing this efficiently means not actually zero-padding. + + The efficient way to do this is to decimate the taps and filter the signal with some offset in the taps. + """ + # We purposely do not calculate values within the group delay. + group_delay = ((taps.shape[0] - 1) // 2 - (stride - 1)) // stride + 1 + if offset < 0: + offset += stride + group_delay -= 1 + + # Decimate the taps. + taps = taps[offset::stride] + + # Determine output size + num_taps = taps.shape[0] + num_raw_iq = raw_iq.shape[0] + output = np.zeros(((num_taps + num_raw_iq - 1 - group_delay),), dtype=np.complex128) + + # This is a just convolution of taps and raw_iq + for o_idx in range(output.shape[0]): + idx_mn = o_idx - (num_raw_iq - 1) if o_idx >= num_raw_iq - 1 else 0 + idx_mx = o_idx if o_idx < num_taps - 1 else num_taps - 1 + for f_idx in range(idx_mn, idx_mx): + output[o_idx - group_delay] += taps[f_idx] * raw_iq[o_idx - f_idx] + return output + + +def fractional_shift(tensor: np.ndarray, taps: np.ndarray, stride: int, delay: float) -> np.ndarray: + """Applies fractional sample delay of delay using a polyphase interpolator + + Args: + tensor (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor to be shifted in time. + + taps (:obj:`float` or :class:`numpy.ndarray`): + taps to use for filtering + + stride (:obj:`int`): + interpolation rate of internal filter + + delay (:obj:`float` ): + Delay in number of samples in [-1, 1] + + Returns: + transformed (:class:`numpy.ndarray`): + Tensor that has been fractionally-shifted along time dimension of size tensor.shape + """ + real_part = _fractional_shift_helper(taps, tensor.real, stride, int(stride * float(delay))) + imag_part = _fractional_shift_helper(taps, tensor.imag, stride, int(stride * float(delay))) + tensor = real_part[: tensor.shape[0]] + 1j * imag_part[: tensor.shape[0]] + zero_idx = -1 if delay < 0 else 0 # do not extrapolate, zero-pad. + tensor[zero_idx] = 0 + return tensor + + +def iq_imbalance( + tensor: np.ndarray, + iq_amplitude_imbalance_db: float, + iq_phase_imbalance: float, + iq_dc_offset_db: float, +) -> np.ndarray: + """Applies IQ imbalance to tensor + + Args: + tensor (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor to be shifted in time. + + iq_amplitude_imbalance_db (:obj:`float` or :class:`numpy.ndarray`): + IQ amplitude imbalance in dB + + iq_phase_imbalance (:obj:`float` or :class:`numpy.ndarray`): + IQ phase imbalance in radians [-pi, pi] + + iq_dc_offset_db (:obj:`float` or :class:`numpy.ndarray`): + IQ DC Offset in dB + + Returns: + transformed (:class:`numpy.ndarray`): + Tensor that has an IQ imbalance applied across the time dimension of size tensor.shape + """ + # amplitude imbalance + tensor = 10 ** (iq_amplitude_imbalance_db / 10.0) * np.real(tensor) + 1j * 10 ** ( + iq_amplitude_imbalance_db / 10.0 + ) * np.imag(tensor) + + # phase imbalance + tensor = np.exp(-1j * iq_phase_imbalance / 2.0) * np.real(tensor) + np.exp( + 1j * (np.pi / 2.0 + iq_phase_imbalance / 2.0) + ) * np.imag(tensor) + + tensor += 10 ** (iq_dc_offset_db / 10.0) * np.real(tensor) + 1j * 10 ** ( + iq_dc_offset_db / 10.0 + ) * np.imag(tensor) + return tensor + + +def spectral_inversion(tensor: np.ndarray) -> np.ndarray: + """Applies a spectral inversion + + Args: + tensor: (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor. + + Returns: + transformed (:class:`numpy.ndarray`): + Tensor that has undergone a spectral inversion + + """ + tensor.imag *= -1 + return tensor + + +def channel_swap(tensor: np.ndarray) -> np.ndarray: + """Swap the I and Q channels of input complex data + + Args: + tensor: (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor. + + Returns: + transformed (:class:`numpy.ndarray`): + Tensor that has undergone channel swapping + + """ + real_component = tensor.real + imag_component = tensor.imag + new_tensor = np.empty(tensor.shape, dtype=tensor.dtype) + new_tensor.real = imag_component + new_tensor.imag = real_component + return new_tensor + + +def time_reversal(tensor: np.ndarray) -> np.ndarray: + """Applies a time reversal to the input tensor + + Args: + tensor: (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor. + + Returns: + transformed (:class:`numpy.ndarray`): + Tensor that has undergone a time reversal + + """ + return np.flip(tensor, axis=0) + + +def amplitude_reversal(tensor: np.ndarray) -> np.ndarray: + """Applies an amplitude reversal to the input tensor by multiplying by -1 + + Args: + tensor: (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor. + + Returns: + transformed (:class:`numpy.ndarray`): + Tensor that has undergone an amplitude reversal + + """ + return tensor * -1 + + +def roll_off( + tensor: np.ndarray, + lowercutfreq: float, + uppercutfreq: float, + fltorder: int, +) -> np.ndarray: + """Applies front-end filter to tensor. Rolls off lower/upper edges of bandwidth + + Args: + tensor: (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor. + + lowercutfreq (:obj:`float`): + lower bandwidth cut-off to begin linear roll-off + + uppercutfreq (:obj:`float`): + upper bandwidth cut-off to begin linear roll-off + + fltorder (:obj:`int`): + order of each FIR filter to be applied + + Returns: + transformed (:class:`numpy.ndarray`): + Tensor that has undergone front-end filtering. + + """ + if (lowercutfreq == 0) & (uppercutfreq == 1): + return tensor + + elif uppercutfreq == 1: + if fltorder % 2 == 0: + fltorder += 1 + bandwidth = uppercutfreq - lowercutfreq + center_freq = lowercutfreq - 0.5 + bandwidth / 2 + taps = low_pass(cutoff=bandwidth / 2, transition_bandwidth=(0.5 - bandwidth / 2) / 4) + sinusoid = np.exp(2j * np.pi * center_freq * np.linspace(0, len(taps) - 1, len(taps))) + taps = taps * sinusoid + return sp.convolve(tensor, taps, mode="same") + + +def add_slope(tensor: np.ndarray) -> np.ndarray: + """The slope between each sample and its preceeding sample is added to + every sample + + Args: + tensor: (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor. + + Returns: + transformed (:class:`numpy.ndarray`): + Tensor with added noise. + """ + slope = np.diff(tensor) + slope = np.insert(slope, 0, 0) + return tensor + slope + + +def mag_rescale( + tensor: np.ndarray, + start: float, + scale: float, +) -> np.ndarray: + """Apply a rescaling of input `scale` starting at time `start` + + Args: + tensor: (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor. + + start (:obj:`float`): + Normalized start time of rescaling + + scale (:obj:`float`): + Scaling factor + + Returns: + transformed (:class:`numpy.ndarray`): + Tensor that has undergone rescaling + + """ + start = int(tensor.shape[0] * start) + tensor[start:] *= scale + return tensor + + +def drop_samples( + tensor: np.ndarray, + drop_starts: np.ndarray, + drop_sizes: np.ndarray, + fill: str, +) -> np.ndarray: + """Drop samples at specified input locations/durations with fill technique + + Args: + tensor: (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor. + + drop_starts (:class:`numpy.ndarray`): + Indices of where drops start + + drop_sizes (:class:`numpy.ndarray`): + Durations of each drop instance + + fill (:obj:`str`): + String specifying how the dropped samples should be replaced + + Returns: + transformed (:class:`numpy.ndarray`): + Tensor that has undergone the dropped samples + + """ + for idx, drop_start in enumerate(drop_starts): + if fill == "ffill": + drop_region = np.ones(drop_sizes[idx], dtype=np.complex64) * tensor[drop_start - 1] + elif fill == "bfill": + drop_region = ( + np.ones(drop_sizes[idx], dtype=np.complex64) * tensor[drop_start + drop_sizes[idx]] + ) + elif fill == "mean": + drop_region = np.ones(drop_sizes[idx], dtype=np.complex64) * np.mean(tensor) + elif fill == "zero": + drop_region = np.zeros(drop_sizes[idx], dtype=np.complex64) + else: + raise ValueError("fill expects ffill, bfill, mean, or zero. Found {}".format(fill)) + + # Update drop region + tensor[drop_start : drop_start + drop_sizes[idx]] = drop_region + + return tensor + + +def quantize( + tensor: np.ndarray, + num_levels: int, + round_type: str = "floor", +) -> np.ndarray: + """Quantize the input to the number of levels specified + + Args: + tensor: (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor. + + num_levels (:obj:`int`): + Number of quantization levels + + round_type (:obj:`str`): + Quantization rounding. Options: 'floor', 'middle', 'ceiling' + + Returns: + transformed (:class:`numpy.ndarray`): + Tensor that has undergone quantization + + """ + # Setup quantization resolution/bins + max_value = max(np.abs(tensor)) + 1e-9 + bins = np.linspace(-max_value, max_value, num_levels + 1) + + # Digitize to bins + quantized_real = np.digitize(tensor.real, bins) + quantized_imag = np.digitize(tensor.imag, bins) + + if round_type == "floor": + quantized_real -= 1 + quantized_imag -= 1 + + # Revert to values + quantized_real = bins[quantized_real] + quantized_imag = bins[quantized_imag] + + if round_type == "nearest": + bin_size = np.diff(bins)[0] + quantized_real -= bin_size / 2 + quantized_imag -= bin_size / 2 + + quantized_tensor = quantized_real + 1j * quantized_imag + + return quantized_tensor + + +def clip(tensor: np.ndarray, clip_percentage: float) -> np.ndarray: + """Clips input tensor's values above/below a specified percentage of the + max/min of the input tensor + + Args: + tensor: (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor. + + clip_percentage (:obj:`float`): + Percentage of max/min values to clip + + Returns: + transformed (:class:`numpy.ndarray`): + Tensor with added noise. + """ + real_tensor = tensor.real + max_val = np.max(real_tensor) * clip_percentage + min_val = np.min(real_tensor) * clip_percentage + real_tensor[real_tensor > max_val] = max_val + real_tensor[real_tensor < min_val] = min_val + + imag_tensor = tensor.imag + max_val = np.max(imag_tensor) * clip_percentage + min_val = np.min(imag_tensor) * clip_percentage + imag_tensor[imag_tensor > max_val] = max_val + imag_tensor[imag_tensor < min_val] = min_val + + new_tensor = real_tensor + 1j * imag_tensor + return new_tensor + + +def random_convolve( + tensor: np.ndarray, + num_taps: int, + alpha: float, +) -> np.ndarray: + """Create a complex-valued filter with `num_taps` number of taps, convolve + the random filter with the input data, and sum the original data with the + randomly-filtered data using an `alpha` weighting factor. + + Args: + tensor: (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor. + + num_taps: (:obj:`int`): + Number of taps in random filter + + alpha: (:obj:`float`): + Weighting for the summation between the original data and the + randomly-filtered data, following: + + `output = (1 - alpha) * tensor + alpha * filtered_tensor` + + Returns: + transformed (:class:`numpy.ndarray`): + Tensor with weighted random filtering + + """ + filter_taps = np.random.rand(num_taps) + 1j * np.random.rand(num_taps) + return (1 - alpha) * tensor + alpha * sp.convolve(tensor, filter_taps, mode="same") + + +@njit( + complex64[:]( + complex64[:], + float64, + float64, + float64, + float64, + float64, + float64, + float64, + float64, + float64, + ), + cache=False, +) +def agc( + tensor: np.ndarray, + initial_gain_db: float, + alpha_smooth: float, + alpha_track: float, + alpha_overflow: float, + alpha_acquire: float, + ref_level_db: float, + track_range_db: float, + low_level_db: float, + high_level_db: float, +) -> np.ndarray: + """AGC implementation + + Args: + tensor: (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor to be agc'd + + initial_gain_db (:obj:`float`): + Initial gain value in linear units + + alpha_smooth (:obj:`float`): + Alpha for averaging the measured signal level level_n = level_n*alpha + level_n-1*(1 - alpha) + + alpha_track (:obj:`float`): + Amount by which to adjust gain when in tracking state + + alpha_overflow (:obj:`float`): + Amount by which to adjust gain when in overflow state [level_db + gain_db] >= max_level + + alpha_acquire (:obj:`float`): + Amount by which to adjust gain when in acquire state abs([ref_level_db - level_db - gain_db]) >= track_range_db + + ref_level_db (:obj:`float`): + Level to which we intend to adjust gain to achieve + + track_range_db (:obj:`float`): + Range from ref_level_linear for which we can deviate before going into acquire state + + low_level_db (:obj:`float`): + Level below which we disable AGC + + high_level_db (:obj:`float`): + Level above which we go into overflow state + + Returns: + transformed (:class:`numpy.ndarray`): + Tensor with AGC applied + + """ + output = np.zeros_like(tensor) + gain_db = initial_gain_db + level_db = 0.0 + for sample_idx, sample in enumerate(tensor): + if np.abs(sample) == 0: + level_db = -200 + elif sample_idx == 0: # first sample, no smoothing + level_db = np.log(np.abs(sample)) + else: + level_db = level_db * alpha_smooth + np.log(np.abs(sample)) * (1 - alpha_smooth) + output_db = level_db + gain_db + diff_db = ref_level_db - output_db + + if level_db <= low_level_db: + alpha_adjust = 0.0 + elif output_db >= high_level_db: + alpha_adjust = alpha_overflow + elif abs(diff_db) > track_range_db: + alpha_adjust = alpha_acquire + else: + alpha_adjust = alpha_track + + gain_db += diff_db * alpha_adjust + output[sample_idx] = tensor[sample_idx] * np.exp(gain_db) + return output + + +def cut_out( + tensor: np.ndarray, + cut_start: float, + cut_dur: float, + cut_type: str, +) -> np.ndarray: + """Performs the CutOut using the input parameters + + Args: + tensor: (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor. + + cut_start: (:obj:`float`): + Start of cut region in range [0.0,1.0) + + cut_dur: (:obj:`float`): + Duration of cut region in range (0.0,1.0] + + cut_type: (:obj:`str`): + String specifying type of data to fill in cut region with + + Returns: + transformed (:class:`numpy.ndarray`): + Tensor that has undergone cut out + + """ + num_iq_samples = tensor.shape[0] + cut_start = int(cut_start * num_iq_samples) + + # Create cut mask + cut_mask_length = int(num_iq_samples * cut_dur) + if cut_mask_length + cut_start > num_iq_samples: + cut_mask_length = num_iq_samples - cut_start + + if cut_type == "zeros": + cut_mask = np.zeros(cut_mask_length, dtype=np.complex64) + elif cut_type == "ones": + cut_mask = np.ones(cut_mask_length) + 1j * np.ones(cut_mask_length) + elif cut_type == "low_noise": + real_noise = np.random.randn(cut_mask_length) + imag_noise = np.random.randn(cut_mask_length) + noise_power_db = -100 + cut_mask = (10.0 ** (noise_power_db / 20.0)) * (real_noise + 1j * imag_noise) / np.sqrt(2) + elif cut_type == "avg_noise": + real_noise = np.random.randn(cut_mask_length) + imag_noise = np.random.randn(cut_mask_length) + avg_power = np.mean(np.abs(tensor) ** 2) + cut_mask = avg_power * (real_noise + 1j * imag_noise) / np.sqrt(2) + elif cut_type == "high_noise": + real_noise = np.random.randn(cut_mask_length) + imag_noise = np.random.randn(cut_mask_length) + noise_power_db = 40 + cut_mask = (10.0 ** (noise_power_db / 20.0)) * (real_noise + 1j * imag_noise) / np.sqrt(2) + else: + raise ValueError( + "cut_type must be: zeros, ones, low_noise, avg_noise, or high_noise. Found: {}".format( + cut_type + ) + ) + + # Insert cut mask into tensor + tensor[cut_start : cut_start + cut_mask_length] = cut_mask + + return tensor + + +def patch_shuffle( + tensor: np.ndarray, + patch_size: int, + shuffle_ratio: float, +) -> np.ndarray: + """Apply shuffling of patches specified by `num_patches` + + Args: + tensor: (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor. + + patch_size (:obj:`int`): + Size of each patch to shuffle + + shuffle_ratio (:obj:`float`): + Ratio of patches to shuffle + + Returns: + transformed (:class:`numpy.ndarray`): + Tensor that has undergone patch shuffling + + """ + num_patches = int(tensor.shape[0] / patch_size) + num_to_shuffle = int(num_patches * shuffle_ratio) + patches_to_shuffle = np.random.choice( + num_patches, + replace=False, + size=num_to_shuffle, + ) + + for patch_idx in patches_to_shuffle: + patch_start = int(patch_idx * patch_size) + patch = tensor[patch_start : patch_start + patch_size] + np.random.shuffle(patch) + tensor[patch_start : patch_start + patch_size] = patch + + return tensor + + +def drop_spec_samples( + tensor: np.ndarray, + drop_starts: np.ndarray, + drop_sizes: np.ndarray, + fill: str, +) -> np.ndarray: + """Drop samples at specified input locations/durations with fill technique + + Args: + tensor: (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor. + + drop_starts (:class:`numpy.ndarray`): + Indices of where drops start + + drop_sizes (:class:`numpy.ndarray`): + Durations of each drop instance + + fill (:obj:`str`): + String specifying how the dropped samples should be replaced + + Returns: + transformed (:class:`numpy.ndarray`): + Tensor that has undergone the dropped samples + + """ + flat_spec = tensor.reshape(tensor.shape[0], tensor.shape[1] * tensor.shape[2]) + for idx, drop_start in enumerate(drop_starts): + if fill == "ffill": + drop_region_real = np.ones(drop_sizes[idx]) * flat_spec[0, drop_start - 1] + drop_region_complex = np.ones(drop_sizes[idx]) * flat_spec[1, drop_start - 1] + flat_spec[0, drop_start : drop_start + drop_sizes[idx]] = drop_region_real + flat_spec[1, drop_start : drop_start + drop_sizes[idx]] = drop_region_complex + elif fill == "bfill": + drop_region_real = np.ones(drop_sizes[idx]) * flat_spec[0, drop_start + drop_sizes[idx]] + drop_region_complex = ( + np.ones(drop_sizes[idx]) * flat_spec[1, drop_start + drop_sizes[idx]] + ) + flat_spec[0, drop_start : drop_start + drop_sizes[idx]] = drop_region_real + flat_spec[1, drop_start : drop_start + drop_sizes[idx]] = drop_region_complex + elif fill == "mean": + drop_region_real = np.ones(drop_sizes[idx]) * np.mean(flat_spec[0]) + drop_region_complex = np.ones(drop_sizes[idx]) * np.mean(flat_spec[1]) + flat_spec[0, drop_start : drop_start + drop_sizes[idx]] = drop_region_real + flat_spec[1, drop_start : drop_start + drop_sizes[idx]] = drop_region_complex + elif fill == "zero": + drop_region = np.zeros(drop_sizes[idx]) + flat_spec[:, drop_start : drop_start + drop_sizes[idx]] = drop_region + elif fill == "min": + drop_region_real = np.ones(drop_sizes[idx]) * np.min(np.abs(flat_spec[0])) + drop_region_complex = np.ones(drop_sizes[idx]) * np.min(np.abs(flat_spec[1])) + flat_spec[0, drop_start : drop_start + drop_sizes[idx]] = drop_region_real + flat_spec[1, drop_start : drop_start + drop_sizes[idx]] = drop_region_complex + elif fill == "max": + drop_region_real = np.ones(drop_sizes[idx]) * np.max(np.abs(flat_spec[0])) + drop_region_complex = np.ones(drop_sizes[idx]) * np.max(np.abs(flat_spec[1])) + flat_spec[0, drop_start : drop_start + drop_sizes[idx]] = drop_region_real + flat_spec[1, drop_start : drop_start + drop_sizes[idx]] = drop_region_complex + elif fill == "low": + drop_region = np.ones(drop_sizes[idx]) * 1e-3 + flat_spec[:, drop_start : drop_start + drop_sizes[idx]] = drop_region + elif fill == "ones": + drop_region = np.ones(drop_sizes[idx]) + flat_spec[:, drop_start : drop_start + drop_sizes[idx]] = drop_region + else: + raise ValueError( + "fill expects ffill, bfill, mean, zero, min, max, low, ones. Found {}".format(fill) + ) + new_tensor = flat_spec.reshape(tensor.shape[0], tensor.shape[1], tensor.shape[2]) + return new_tensor + + +def spec_patch_shuffle( + tensor: np.ndarray, + patch_size: int, + shuffle_ratio: float, +) -> np.ndarray: + """Apply shuffling of patches specified by `num_patches` + + Args: + tensor: (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor. + + patch_size (:obj:`int`): + Size of each patch to shuffle + + shuffle_ratio (:obj:`float`): + Ratio of patches to shuffle + + Returns: + transformed (:class:`numpy.ndarray`): + Tensor that has undergone patch shuffling + + """ + channels, height, width = tensor.shape + num_freq_patches = int(height / patch_size) + num_time_patches = int(width / patch_size) + num_patches = int(num_freq_patches * num_time_patches) + num_to_shuffle = int(num_patches * shuffle_ratio) + patches_to_shuffle = np.random.choice( + num_patches, + replace=False, + size=num_to_shuffle, + ) + + for patch_idx in patches_to_shuffle: + freq_idx = np.floor(patch_idx / num_freq_patches) + time_idx = patch_idx % num_time_patches + patch = tensor[ + :, + int(freq_idx * patch_size) : int(freq_idx * patch_size + patch_size), + int(time_idx * patch_size) : int(time_idx * patch_size + patch_size), + ] + patch = patch.reshape(int(2 * patch_size * patch_size)) + np.random.shuffle(patch) + patch = patch.reshape(2, int(patch_size), int(patch_size)) + tensor[ + :, + int(freq_idx * patch_size) : int(freq_idx * patch_size + patch_size), + int(time_idx * patch_size) : int(time_idx * patch_size + patch_size), + ] = patch + return tensor + + +def spec_translate( + tensor: np.ndarray, + time_shift: int, + freq_shift: int, +) -> np.ndarray: + """Apply time/freq translation to input spectrogram + + Args: + tensor: (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor. + + time_shift (:obj:`int`): + Time shift + + freq_shift (:obj:`int`): + Frequency shift + + Returns: + transformed (:class:`numpy.ndarray`): + Tensor that has undergone time/freq translation + + """ + # Pre-fill the data with background noise + new_tensor = np.random.rand(*tensor.shape) * np.percentile(np.abs(tensor), 50) + + # Apply translation + channels, height, width = tensor.shape + if time_shift >= 0 and freq_shift >= 0: + valid_dur = width - time_shift + valid_bw = height - freq_shift + new_tensor[:, freq_shift:, time_shift:] = tensor[:, :valid_bw, :valid_dur] + elif time_shift < 0 and freq_shift >= 0: + valid_dur = width + time_shift + valid_bw = height - freq_shift + new_tensor[:, freq_shift:, :valid_dur] = tensor[:, :valid_bw, -time_shift:] + elif time_shift >= 0 and freq_shift < 0: + valid_dur = width - time_shift + valid_bw = height + freq_shift + new_tensor[:, :valid_bw, time_shift:] = tensor[:, -freq_shift:, :valid_dur] + elif time_shift < 0 and freq_shift < 0: + valid_dur = width + time_shift + valid_bw = height + freq_shift + new_tensor[:, :valid_bw, :valid_dur] = tensor[:, -freq_shift:, -time_shift:] + + return new_tensor diff --git a/torchsig/transforms/signal_processing/__init__.py b/torchsig/transforms/signal_processing/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/torchsig/transforms/signal_processing/functional.py b/torchsig/transforms/signal_processing/functional.py deleted file mode 100644 index e7c7057..0000000 --- a/torchsig/transforms/signal_processing/functional.py +++ /dev/null @@ -1,92 +0,0 @@ -import numpy as np -from scipy import signal - - -def normalize(tensor: np.ndarray, norm_order: int = 2, flatten: bool = False) -> np.ndarray: - """Scale a tensor so that a specfied norm computes to 1. For detailed information, see :func:`numpy.linalg.norm.` - * For norm=1, norm = max(sum(abs(x), axis=0)) (sum of the elements) - * for norm=2, norm = sqrt(sum(abs(x)^2), axis=0) (square-root of the sum of squares) - * for norm=np.inf, norm = max(sum(abs(x), axis=1)) (largest absolute value) - - Args: - tensor (:class:`numpy.ndarray`)): - (batch_size, vector_length, ...)-sized tensor to be normalized. - - norm_order (:class:`int`)): - norm order to be passed to np.linalg.norm - - flatten (:class:`bool`)): - boolean specifying if the input array's norm should be calculated on the flattened representation of the input tensor - - Returns: - Tensor: - Normalized complex array. - """ - if flatten: - flat_tensor = tensor.reshape(tensor.size) - norm = np.linalg.norm(flat_tensor, norm_order, keepdims=True) - else: - norm = np.linalg.norm(tensor, norm_order, keepdims=True) - return np.multiply(tensor, 1.0/norm) - - -def resample( - tensor: np.ndarray, - up_rate: int, - down_rate: int, - num_iq_samples: int, - keep_samples: bool, - anti_alias_lpf: bool = False, -) -> np.ndarray: - """Resample a tensor by rational value - - Args: - tensor (:class:`numpy.ndarray`): - tensor to be resampled. - - up_rate (:class:`int`): - rate at which to up-sample the tensor - - down_rate (:class:`int`): - rate at which to down-sample the tensor - - num_iq_samples (:class:`int`): - number of IQ samples to have after resampling - - keep_samples (:class:`bool`): - boolean to specify if the resampled data should be returned as is - - anti_alias_lpf (:class:`bool`)): - boolean to specify if an additional anti aliasing filter should be - applied - - Returns: - Tensor: - Resampled tensor - """ - if anti_alias_lpf: - new_rate = up_rate/down_rate - # Filter around center to future bandwidth - num_taps = int(2*np.ceil(50*2*np.pi/new_rate/.125/22)) # fred harris rule of thumb * 2 - taps = signal.firwin( - num_taps, - new_rate*0.98, - width=new_rate * .02, - window=signal.get_window("blackman", num_taps), - scale=True - ) - tensor = signal.fftconvolve(tensor, taps, mode="same") - - # Resample - resampled = signal.resample_poly(tensor, up_rate, down_rate) - - # Handle extra or not enough IQ samples - if keep_samples: - new_tensor = resampled - elif resampled.shape[0] > num_iq_samples: - new_tensor = resampled[-num_iq_samples:] - else: - new_tensor = np.zeros((num_iq_samples,), dtype=np.complex128) - new_tensor[:resampled.shape[0]] = resampled - - return new_tensor diff --git a/torchsig/transforms/signal_processing/sp.py b/torchsig/transforms/signal_processing/sp.py deleted file mode 100644 index 4f04770..0000000 --- a/torchsig/transforms/signal_processing/sp.py +++ /dev/null @@ -1,189 +0,0 @@ -import numpy as np -from copy import deepcopy -from typing import Optional, Any - -from torchsig.utils.types import SignalData, SignalDescription -from torchsig.transforms.transforms import SignalTransform -from torchsig.transforms.signal_processing import functional as F -from torchsig.transforms.functional import NumericParameter, to_distribution - - -class Normalize(SignalTransform): - """Normalize a IQ vector with mean and standard deviation. - - Args: - norm :obj:`string`: - Type of norm with which to normalize - - flatten :obj:`flatten`: - Specifies if the norm should be calculated on the flattened - representation of the input tensor - - Example: - >>> import torchsig.transforms as ST - >>> transform = ST.Normalize(norm=2) # normalize by l2 norm - >>> transform = ST.Normalize(norm=1) # normalize by l1 norm - >>> transform = ST.Normalize(norm=2, flatten=True) # normalize by l1 norm of the 1D representation - - """ - def __init__( - self, - norm: Optional[int] = 2, - flatten: Optional[bool] = False, - ): - super(Normalize, self).__init__() - self.norm = norm - self.flatten = flatten - - def __call__(self, data: Any) -> Any: - if isinstance(data, SignalData): - data.iq_data = F.normalize(data.iq_data, self.norm, self.flatten) - else: - data = F.normalize(data, self.norm, self.flatten) - return data - - -class RandomResample(SignalTransform): - """Resample using poly-phase rational resampling technique. - - Args: - rate_ratio (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - new_rate = rate_ratio*old_rate - - * If Callable, resamples to new_rate by calling rate_ratio() - * If int or float, rate_ratio is fixed by value provided - * If list, rate_ratio is any element in the list - * If tuple, rate_ratio is in range of (tuple[0], tuple[1]) - - num_iq_samples (:obj:`int`): - Since resampling changes the number of points in a tensor, it is necessary to designate how - many samples should be returned. In the case more samples are produced, the last num_iq_samples of - the resampled tensor are returned. In the case les samples are produced, the returned tensor is zero-padded - to have num_iq_samples. - - keep_samples (:obj:`int`): - Despite returning a different number of samples being an issue, return however many samples - are returned from resample_poly - - Note: - When rate_ratio is > 1.0, the resampling algorithm produces more samples than the original tensor. - When rate_ratio < 1.0, the resampling algorithm produces less samples than the original tensor. Hence, - it is necessary to specify a number of samples to return from the newly resampled tensor so that there are - always enough samples to return - - Example: - >>> import torchsig.transforms as ST - >>> # Randomly resample to a new_rate that is between .75 and 1.5 times the original rate - >>> transform = ST.RandomResample(lambda: np.random.uniform(.75, 1.5, size=1), num_iq_samples=128) - >>> # Randomly resample to a new_rate that is either 1.5 or 3.0 - >>> transform = ST.RandomResample([1.5, 3.0], num_iq_samples=128) - >>> # Resample to a new_rate that is always 1.5 - >>> transform = ST.RandomResample(1.5, num_iq_samples=128) - - """ - def __init__( - self, - rate_ratio: NumericParameter = (1.5, 3.0), - num_iq_samples: Optional[int] = 256, - keep_samples: Optional[bool] = False, - ): - super(RandomResample, self).__init__() - self.rate_ratio = to_distribution(rate_ratio, self.random_generator) - self.num_iq_samples = num_iq_samples - self.keep_samples = keep_samples - - def __call__(self, data: Any) -> Any: - new_rate = self.rate_ratio() - if new_rate == 1.0: - return data - if isinstance(data, SignalData): - # Update the SignalDescriptions with the new rate - new_signal_description = [] - signal_description = [data.signal_description] if isinstance(data.signal_description, SignalDescription) else data.signal_description - anti_alias_lpf = False - for signal_desc_idx, signal_desc in enumerate(signal_description): - new_signal_desc = deepcopy(signal_desc) - # Update time descriptions - new_num_iq_samples = new_signal_desc.num_iq_samples * new_rate - start_iq_sample = new_signal_desc.start * new_num_iq_samples - stop_iq_sample = new_signal_desc.stop * new_num_iq_samples - if new_rate > 1.0: - # If the new rate is greater than 1.0, the resampled tensor - # is larger than the original tensor and is truncated to be - # the last only - trunc_samples = new_num_iq_samples - self.num_iq_samples - new_start_iq_sample = start_iq_sample - trunc_samples - new_stop_iq_sample = stop_iq_sample - trunc_samples - new_signal_desc.start = new_start_iq_sample / self.num_iq_samples if new_start_iq_sample > 0.0 else 0.0 - new_signal_desc.stop = new_stop_iq_sample / self.num_iq_samples if new_stop_iq_sample < self.num_iq_samples else 1.0 - else: - # If the new rate is less than 1.0, the resampled tensor - # is smaller than the original tensor and is zero-padded - # at the end to length - new_signal_desc.start *= new_rate - new_signal_desc.stop *= new_rate - - new_signal_desc.duration = new_signal_desc.stop - new_signal_desc.start - - # Check for signals lost in truncation process - if new_signal_desc.start > 1.0 or new_signal_desc.stop < 0.0: - continue - - # Update frequency descriptions - new_signal_desc.samples_per_symbol *= new_rate - # Check freq bounds for cases of partial signals - # Upsampling these signals will distort them, but at least the label will follow - if new_signal_desc.lower_frequency < -0.5 and new_signal_desc.upper_frequency / new_rate > -0.5 and new_rate > 1.0: - new_signal_desc.lower_frequency = -0.5 - new_signal_desc.bandwidth = new_signal_desc.upper_frequency - new_signal_desc.lower_frequency - new_signal_desc.center_frequency = new_signal_desc.lower_frequency + new_signal_desc.bandwidth / 2 - if new_signal_desc.upper_frequency > 0.5 and new_signal_desc.lower_frequency / new_rate < 0.5 and new_rate > 1.0: - new_signal_desc.upper_frequency = 0.5 - new_signal_desc.bandwidth = new_signal_desc.upper_frequency - new_signal_desc.lower_frequency - new_signal_desc.center_frequency = new_signal_desc.lower_frequency + new_signal_desc.bandwidth / 2 - new_signal_desc.lower_frequency /= new_rate - new_signal_desc.upper_frequency /= new_rate - new_signal_desc.center_frequency /= new_rate - new_signal_desc.bandwidth /= new_rate - - if (new_signal_desc.lower_frequency < -0.45 or new_signal_desc.lower_frequency > 0.45 or \ - new_signal_desc.upper_frequency < -0.45 or new_signal_desc.upper_frequency > 0.45) and \ - new_rate < 1.0: - # If downsampling and new signals are near band edge, apply a LPF to handle aliasing - anti_alias_lpf = True - - # Check new freqs for inclusion - if new_signal_desc.lower_frequency > 0.5 or new_signal_desc.upper_frequency < -0.5: - continue - - # Append updates to the new description - new_signal_description.append(new_signal_desc) - - # Apply transform to data - new_data = SignalData( - data=None, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=[], - ) - new_data.iq_data = F.resample( - data.iq_data, - np.floor(new_rate*100).astype(np.int32), - 100, - self.num_iq_samples, - self.keep_samples, - anti_alias_lpf, - ) - - # Update the new data's SignalDescription - new_data.signal_description = new_signal_description - - else: - new_data = F.resample( - data, - np.floor(new_rate*100).astype(np.int32), - 100, - self.num_iq_samples, - self.keep_samples - ) - return new_data diff --git a/torchsig/transforms/signal_processing/sp_functional.py b/torchsig/transforms/signal_processing/sp_functional.py deleted file mode 100644 index e7c7057..0000000 --- a/torchsig/transforms/signal_processing/sp_functional.py +++ /dev/null @@ -1,92 +0,0 @@ -import numpy as np -from scipy import signal - - -def normalize(tensor: np.ndarray, norm_order: int = 2, flatten: bool = False) -> np.ndarray: - """Scale a tensor so that a specfied norm computes to 1. For detailed information, see :func:`numpy.linalg.norm.` - * For norm=1, norm = max(sum(abs(x), axis=0)) (sum of the elements) - * for norm=2, norm = sqrt(sum(abs(x)^2), axis=0) (square-root of the sum of squares) - * for norm=np.inf, norm = max(sum(abs(x), axis=1)) (largest absolute value) - - Args: - tensor (:class:`numpy.ndarray`)): - (batch_size, vector_length, ...)-sized tensor to be normalized. - - norm_order (:class:`int`)): - norm order to be passed to np.linalg.norm - - flatten (:class:`bool`)): - boolean specifying if the input array's norm should be calculated on the flattened representation of the input tensor - - Returns: - Tensor: - Normalized complex array. - """ - if flatten: - flat_tensor = tensor.reshape(tensor.size) - norm = np.linalg.norm(flat_tensor, norm_order, keepdims=True) - else: - norm = np.linalg.norm(tensor, norm_order, keepdims=True) - return np.multiply(tensor, 1.0/norm) - - -def resample( - tensor: np.ndarray, - up_rate: int, - down_rate: int, - num_iq_samples: int, - keep_samples: bool, - anti_alias_lpf: bool = False, -) -> np.ndarray: - """Resample a tensor by rational value - - Args: - tensor (:class:`numpy.ndarray`): - tensor to be resampled. - - up_rate (:class:`int`): - rate at which to up-sample the tensor - - down_rate (:class:`int`): - rate at which to down-sample the tensor - - num_iq_samples (:class:`int`): - number of IQ samples to have after resampling - - keep_samples (:class:`bool`): - boolean to specify if the resampled data should be returned as is - - anti_alias_lpf (:class:`bool`)): - boolean to specify if an additional anti aliasing filter should be - applied - - Returns: - Tensor: - Resampled tensor - """ - if anti_alias_lpf: - new_rate = up_rate/down_rate - # Filter around center to future bandwidth - num_taps = int(2*np.ceil(50*2*np.pi/new_rate/.125/22)) # fred harris rule of thumb * 2 - taps = signal.firwin( - num_taps, - new_rate*0.98, - width=new_rate * .02, - window=signal.get_window("blackman", num_taps), - scale=True - ) - tensor = signal.fftconvolve(tensor, taps, mode="same") - - # Resample - resampled = signal.resample_poly(tensor, up_rate, down_rate) - - # Handle extra or not enough IQ samples - if keep_samples: - new_tensor = resampled - elif resampled.shape[0] > num_iq_samples: - new_tensor = resampled[-num_iq_samples:] - else: - new_tensor = np.zeros((num_iq_samples,), dtype=np.complex128) - new_tensor[:resampled.shape[0]] = resampled - - return new_tensor diff --git a/torchsig/transforms/spectrogram_transforms/__init__.py b/torchsig/transforms/spectrogram_transforms/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/torchsig/transforms/spectrogram_transforms/functional.py b/torchsig/transforms/spectrogram_transforms/functional.py deleted file mode 100644 index 77c769b..0000000 --- a/torchsig/transforms/spectrogram_transforms/functional.py +++ /dev/null @@ -1,168 +0,0 @@ -import numpy as np - - -def drop_spec_samples( - tensor: np.ndarray, - drop_starts: np.ndarray, - drop_sizes: np.ndarray, - fill: str, -) -> np.ndarray: - """Drop samples at specified input locations/durations with fill technique - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - drop_starts (:class:`numpy.ndarray`): - Indices of where drops start - - drop_sizes (:class:`numpy.ndarray`): - Durations of each drop instance - - fill (:obj:`str`): - String specifying how the dropped samples should be replaced - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has undergone the dropped samples - - """ - flat_spec = tensor.reshape(tensor.shape[0], tensor.shape[1]*tensor.shape[2]) - for idx, drop_start in enumerate(drop_starts): - if fill == "ffill": - drop_region_real = np.ones(drop_sizes[idx])*flat_spec[0,drop_start-1] - drop_region_complex = np.ones(drop_sizes[idx])*flat_spec[1,drop_start-1] - flat_spec[0,drop_start:drop_start+drop_sizes[idx]] = drop_region_real - flat_spec[1,drop_start:drop_start+drop_sizes[idx]] = drop_region_complex - elif fill == "bfill": - drop_region_real = np.ones(drop_sizes[idx])*flat_spec[0,drop_start+drop_sizes[idx]] - drop_region_complex = np.ones(drop_sizes[idx])*flat_spec[1,drop_start+drop_sizes[idx]] - flat_spec[0,drop_start:drop_start+drop_sizes[idx]] = drop_region_real - flat_spec[1,drop_start:drop_start+drop_sizes[idx]] = drop_region_complex - elif fill == "mean": - drop_region_real = np.ones(drop_sizes[idx])*np.mean(flat_spec[0]) - drop_region_complex = np.ones(drop_sizes[idx])*np.mean(flat_spec[1]) - flat_spec[0,drop_start:drop_start+drop_sizes[idx]] = drop_region_real - flat_spec[1,drop_start:drop_start+drop_sizes[idx]] = drop_region_complex - elif fill == "zero": - drop_region = np.zeros(drop_sizes[idx]) - flat_spec[:,drop_start:drop_start+drop_sizes[idx]] = drop_region - elif fill == "min": - drop_region_real = np.ones(drop_sizes[idx])*np.min(np.abs(flat_spec[0])) - drop_region_complex = np.ones(drop_sizes[idx])*np.min(np.abs(flat_spec[1])) - flat_spec[0,drop_start:drop_start+drop_sizes[idx]] = drop_region_real - flat_spec[1,drop_start:drop_start+drop_sizes[idx]] = drop_region_complex - elif fill == "max": - drop_region_real = np.ones(drop_sizes[idx])*np.max(np.abs(flat_spec[0])) - drop_region_complex = np.ones(drop_sizes[idx])*np.max(np.abs(flat_spec[1])) - flat_spec[0,drop_start:drop_start+drop_sizes[idx]] = drop_region_real - flat_spec[1,drop_start:drop_start+drop_sizes[idx]] = drop_region_complex - elif fill == "low": - drop_region = np.ones(drop_sizes[idx])*1e-3 - flat_spec[:,drop_start:drop_start+drop_sizes[idx]] = drop_region - elif fill == "ones": - drop_region = np.ones(drop_sizes[idx]) - flat_spec[:,drop_start:drop_start+drop_sizes[idx]] = drop_region - else: - raise ValueError("fill expects ffill, bfill, mean, zero, min, max, low, ones. Found {}".format(fill)) - new_tensor = flat_spec.reshape(tensor.shape[0], tensor.shape[1], tensor.shape[2]) - return new_tensor - - -def spec_patch_shuffle( - tensor: np.ndarray, - patch_size: int, - shuffle_ratio: float, -) -> np.ndarray: - """Apply shuffling of patches specified by `num_patches` - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - patch_size (:obj:`int`): - Size of each patch to shuffle - - shuffle_ratio (:obj:`float`): - Ratio of patches to shuffle - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has undergone patch shuffling - - """ - channels, height, width = tensor.shape - num_freq_patches = int(height/patch_size) - num_time_patches = int(width/patch_size) - num_patches = int(num_freq_patches * num_time_patches) - num_to_shuffle = int(num_patches * shuffle_ratio) - patches_to_shuffle = np.random.choice( - num_patches, - replace=False, - size=num_to_shuffle, - ) - - for patch_idx in patches_to_shuffle: - freq_idx = np.floor(patch_idx / num_freq_patches) - time_idx = patch_idx % num_time_patches - patch = tensor[ - :, - int(freq_idx*patch_size):int(freq_idx*patch_size+patch_size), - int(time_idx*patch_size):int(time_idx*patch_size+patch_size) - ] - patch = patch.reshape(int(2*patch_size*patch_size)) - np.random.shuffle(patch) - patch = patch.reshape(2,int(patch_size),int(patch_size)) - tensor[ - :, - int(freq_idx*patch_size):int(freq_idx*patch_size+patch_size), - int(time_idx*patch_size):int(time_idx*patch_size+patch_size) - ] = patch - return tensor - - -def spec_translate( - tensor: np.ndarray, - time_shift: int, - freq_shift: int, -) -> np.ndarray: - """Apply time/freq translation to input spectrogram - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - time_shift (:obj:`int`): - Time shift - - freq_shift (:obj:`int`): - Frequency shift - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has undergone time/freq translation - - """ - # Pre-fill the data with background noise - new_tensor = np.random.rand(*tensor.shape)*np.percentile(np.abs(tensor),50) - - # Apply translation - channels, height, width = tensor.shape - if time_shift >= 0 and freq_shift >= 0: - valid_dur = width - time_shift - valid_bw = height - freq_shift - new_tensor[:,freq_shift:,time_shift:] = tensor[:,:valid_bw,:valid_dur] - elif time_shift < 0 and freq_shift >= 0: - valid_dur = width + time_shift - valid_bw = height - freq_shift - new_tensor[:,freq_shift:,:valid_dur] = tensor[:,:valid_bw,-time_shift:] - elif time_shift >= 0 and freq_shift < 0: - valid_dur = width - time_shift - valid_bw = height + freq_shift - new_tensor[:,:valid_bw,time_shift:] = tensor[:,-freq_shift:,:valid_dur] - elif time_shift < 0 and freq_shift < 0: - valid_dur = width + time_shift - valid_bw = height + freq_shift - new_tensor[:,:valid_bw,:valid_dur] = tensor[:,-freq_shift:,-time_shift:] - - return new_tensor diff --git a/torchsig/transforms/spectrogram_transforms/spec.py b/torchsig/transforms/spectrogram_transforms/spec.py deleted file mode 100644 index 77879ee..0000000 --- a/torchsig/transforms/spectrogram_transforms/spec.py +++ /dev/null @@ -1,860 +0,0 @@ -import numpy as np -from copy import deepcopy -from typing import Optional, Any, Union, List -from torchsig.utils.dataset import SignalDataset -from torchsig.utils.types import SignalData, SignalDescription -from torchsig.transforms.transforms import SignalTransform -from torchsig.transforms.spectrogram_transforms import functional -from torchsig.transforms.functional import ( - NumericParameter, - FloatParameter, - IntParameter, -) -from torchsig.transforms.functional import ( - to_distribution, - uniform_continuous_distribution, - uniform_discrete_distribution, -) - - -class SpectrogramDropSamples(SignalTransform): - """Randomly drop samples from the input data of specified durations and - with specified fill techniques: - * `ffill` (front fill): replace drop samples with the last previous value - * `bfill` (back fill): replace drop samples with the next value - * `mean`: replace drop samples with the mean value of the full data - * `zero`: replace drop samples with zeros - * `low`: replace drop samples with low power samples - * `min`: replace drop samples with the minimum of the absolute power - * `max`: replace drop samples with the maximum of the absolute power - * `ones`: replace drop samples with ones - - Transform is based off of the - `TSAug Dropout Transform `_. - - Args: - drop_rate (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - drop_rate sets the rate at which to drop samples - * If Callable, produces a sample by calling drop_rate() - * If int or float, drop_rate is fixed at the value provided - * If list, drop_rate is any element in the list - * If tuple, drop_rate is in range of (tuple[0], tuple[1]) - - size (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - size sets the size of each instance of dropped samples - * If Callable, produces a sample by calling size() - * If int or float, size is fixed at the value provided - * If list, size is any element in the list - * If tuple, size is in range of (tuple[0], tuple[1]) - - fill (:py:class:`~Callable`, :obj:`list`, :obj:`str`): - fill sets the method of how the dropped samples should be filled - * If Callable, produces a sample by calling fill() - * If list, fill is any element in the list - * If str, fill is fixed at the method provided - - """ - - def __init__( - self, - drop_rate: NumericParameter = uniform_continuous_distribution(0.001, 0.005), - size: NumericParameter = uniform_discrete_distribution(np.arange(1, 10)), - fill: Union[List, str] = uniform_discrete_distribution( - ["ffill", "bfill", "mean", "zero", "low", "min", "max", "ones"] - ), - ): - super(SpectrogramDropSamples, self).__init__() - self.drop_rate = to_distribution(drop_rate, self.random_generator) - self.size = to_distribution(size, self.random_generator) - self.fill = to_distribution(fill, self.random_generator) - - def __call__(self, data: Any) -> Any: - drop_rate = self.drop_rate() - fill = self.fill() - - if isinstance(data, SignalData): - # Create new SignalData object for transformed data - new_data = SignalData( - data=None, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.float64), - signal_description=data.signal_description, - ) - - # Perform data augmentation - channels, height, width = data.iq_data.shape - spec_size = height * width - drop_instances = int(spec_size * drop_rate) - drop_sizes = self.size(drop_instances).astype(int) - drop_starts = np.random.uniform( - 1, spec_size - max(drop_sizes) - 1, drop_instances - ).astype(int) - - new_data.iq_data = functional.drop_spec_samples( - data.iq_data, drop_starts, drop_sizes, fill - ) - - else: - drop_instances = int(data.shape[0] * drop_rate) - drop_sizes = self.size(drop_instances).astype(int) - drop_starts = np.random.uniform( - 0, data.shape[0] - max(drop_sizes), drop_instances - ).astype(int) - - new_data = functional.drop_spec_samples(data, drop_starts, drop_sizes, fill) - return new_data - - -class SpectrogramPatchShuffle(SignalTransform): - """Randomly shuffle multiple local regions of samples. - - Transform is loosely based on - `PatchShuffle Regularization `_. - - Args: - patch_size (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - patch_size sets the size of each patch to shuffle - * If Callable, produces a sample by calling patch_size() - * If int or float, patch_size is fixed at the value provided - * If list, patch_size is any element in the list - * If tuple, patch_size is in range of (tuple[0], tuple[1]) - - shuffle_ratio (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - shuffle_ratio sets the ratio of the patches to shuffle - * If Callable, produces a sample by calling shuffle_ratio() - * If int or float, shuffle_ratio is fixed at the value provided - * If list, shuffle_ratio is any element in the list - * If tuple, shuffle_ratio is in range of (tuple[0], tuple[1]) - - """ - - def __init__( - self, - patch_size: NumericParameter = uniform_continuous_distribution(2, 16), - shuffle_ratio: FloatParameter = uniform_continuous_distribution(0.01, 0.10), - ): - super(SpectrogramPatchShuffle, self).__init__() - self.patch_size = to_distribution(patch_size, self.random_generator) - self.shuffle_ratio = to_distribution(shuffle_ratio, self.random_generator) - - def __call__(self, data: Any) -> Any: - patch_size = int(self.patch_size()) - shuffle_ratio = self.shuffle_ratio() - - if isinstance(data, SignalData): - # Create new SignalData object for transformed data - new_data = SignalData( - data=None, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=data.signal_description, - ) - - # Perform data augmentation - new_data.iq_data = functional.spec_patch_shuffle( - data.iq_data, patch_size, shuffle_ratio - ) - else: - new_data = functional.spec_patch_shuffle(data, patch_size, shuffle_ratio) - return new_data - - -class SpectrogramTranslation(SignalTransform): - """Transform that inputs a spectrogram and applies a random time/freq - translation - - Args: - time_shift (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - time_shift sets the translation along the time-axis - * If Callable, produces a sample by calling time_shift() - * If int, time_shift is fixed at the value provided - * If list, time_shift is any element in the list - * If tuple, time_shift is in range of (tuple[0], tuple[1]) - - freq_shift (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - freq_shift sets the translation along the freq-axis - * If Callable, produces a sample by calling freq_shift() - * If int, freq_shift is fixed at the value provided - * If list, freq_shift is any element in the list - * If tuple, freq_shift is in range of (tuple[0], tuple[1]) - - """ - - def __init__( - self, - time_shift: IntParameter = uniform_continuous_distribution(-128, 128), - freq_shift: IntParameter = uniform_continuous_distribution(-128, 128), - ): - super(SpectrogramTranslation, self).__init__() - self.time_shift = to_distribution(time_shift, self.random_generator) - self.freq_shift = to_distribution(freq_shift, self.random_generator) - - def __call__(self, data: Any) -> Any: - time_shift = int(self.time_shift()) - freq_shift = int(self.freq_shift()) - - if isinstance(data, SignalData): - # Create new SignalData object for transformed data - new_data = SignalData( - data=None, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=data.signal_description, - ) - - new_data.iq_data = functional.spec_translate( - data.iq_data, time_shift, freq_shift - ) - - # Update SignalDescription - new_signal_description = [] - signal_description = ( - [data.signal_description] - if isinstance(data.signal_description, SignalDescription) - else data.signal_description - ) - for signal_desc in signal_description: - new_signal_desc = deepcopy(signal_desc) - - # Update time fields - new_signal_desc.start = ( - new_signal_desc.start + time_shift / new_data.iq_data.shape[1] - ) - new_signal_desc.stop = ( - new_signal_desc.stop + time_shift / new_data.iq_data.shape[1] - ) - if new_signal_desc.start >= 1.0 or new_signal_desc.stop <= 0.0: - continue - new_signal_desc.start = ( - 0.0 if new_signal_desc.start < 0.0 else new_signal_desc.start - ) - new_signal_desc.stop = ( - 1.0 if new_signal_desc.stop > 1.0 else new_signal_desc.stop - ) - new_signal_desc.duration = new_signal_desc.stop - new_signal_desc.start - - # Trim any out-of-capture freq values - new_signal_desc.lower_frequency = ( - -0.5 - if new_signal_desc.lower_frequency < -0.5 - else new_signal_desc.lower_frequency - ) - new_signal_desc.upper_frequency = ( - 0.5 - if new_signal_desc.upper_frequency > 0.5 - else new_signal_desc.upper_frequency - ) - - # Update freq fields - new_signal_desc.lower_frequency = ( - new_signal_desc.lower_frequency - + freq_shift / new_data.iq_data.shape[2] - ) - new_signal_desc.upper_frequency = ( - new_signal_desc.upper_frequency - + freq_shift / new_data.iq_data.shape[2] - ) - if ( - new_signal_desc.lower_frequency >= 0.5 - or new_signal_desc.upper_frequency <= -0.5 - ): - continue - new_signal_desc.lower_frequency = ( - -0.5 - if new_signal_desc.lower_frequency < -0.5 - else new_signal_desc.lower_frequency - ) - new_signal_desc.upper_frequency = ( - 0.5 - if new_signal_desc.upper_frequency > 0.5 - else new_signal_desc.upper_frequency - ) - new_signal_desc.bandwidth = ( - new_signal_desc.upper_frequency - new_signal_desc.lower_frequency - ) - new_signal_desc.center_frequency = ( - new_signal_desc.lower_frequency + new_signal_desc.bandwidth * 0.5 - ) - - # Append SignalDescription to list - new_signal_description.append(new_signal_desc) - - # Set output data's SignalDescription to above list - new_data.signal_description = new_signal_description - - else: - new_data = functional.spec_translate(data, time_shift, freq_shift) - return new_data - - -class SpectrogramMosaicCrop(SignalTransform): - """The SpectrogramMosaicCrop transform takes the original input tensor and - inserts it randomly into one cell of a 2x2 grid of 2x the size of the - orginal spectrogram input. The `dataset` argument is then read 3x to - retrieve spectrograms to fill the remaining cells of the 2x2 grid. Finally, - the 2x larger stitched view of 4x spectrograms is randomly cropped to the - original target size, containing pieces of each of the 4x stitched - spectrograms. - - Args: - dataset :obj:`SignalDataset`: - An SignalDataset of complex-valued examples to be used as a source for - the mosaic operation - - """ - - def __init__(self, dataset: SignalDataset = None): - super(SpectrogramMosaicCrop, self).__init__() - self.dataset = dataset - - def __call__(self, data: Any) -> Any: - if isinstance(data, SignalData): - # Create new SignalData object for transformed data - new_data = SignalData( - data=None, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=data.signal_description, - ) - - # Read shapes - channels, height, width = data.iq_data.shape - - # Randomly decide the new x0, y0 point of the stitched images - x0 = np.random.randint(0, width) - y0 = np.random.randint(0, height) - - # Initialize new SignalDescription object - new_signal_description = [] - - # First, create a 2x2 grid of (512+512,512+512) and randomly put the initial data into a grid cell - cell_idx = np.random.randint(0, 4) - x_idx = 0 if cell_idx == 0 or cell_idx == 2 else 1 - y_idx = 0 if cell_idx == 0 or cell_idx == 1 else 1 - full_mosaic = np.empty( - (channels, height * 2, width * 2), - dtype=data.iq_data.dtype, - ) - full_mosaic[ - :, - y_idx * height : (y_idx + 1) * height, - x_idx * width : (x_idx + 1) * width, - ] = data.iq_data - - # Update original data's SignalDescription objects given the cell index - signal_description = ( - [data.signal_description] - if isinstance(data.signal_description, SignalDescription) - else data.signal_description - ) - for signal_desc in signal_description: - new_signal_desc = deepcopy(signal_desc) - - # Update time fields - if x_idx == 0: - if new_signal_desc.stop * width < x0: - continue - new_signal_desc.start = ( - 0 - if new_signal_desc.start < (x0 / width) - else new_signal_desc.start - (x0 / width) - ) - new_signal_desc.stop = ( - new_signal_desc.stop - (x0 / width) - if new_signal_desc.stop < 1.0 - else 1.0 - (x0 / width) - ) - new_signal_desc.duration = ( - new_signal_desc.stop - new_signal_desc.start - ) - - else: - if new_signal_desc.start * width > x0: - continue - new_signal_desc.start = (width - x0) / width + new_signal_desc.start - new_signal_desc.stop = (width - x0) / width + new_signal_desc.stop - new_signal_desc.stop = ( - 1.0 if new_signal_desc.stop > 1.0 else new_signal_desc.stop - ) - new_signal_desc.duration = ( - new_signal_desc.stop - new_signal_desc.start - ) - - # Update frequency fields - new_signal_desc.lower_frequency = ( - -0.5 - if new_signal_desc.lower_frequency < -0.5 - else new_signal_desc.lower_frequency - ) - new_signal_desc.upper_frequency = ( - 0.5 - if new_signal_desc.upper_frequency > 0.5 - else new_signal_desc.upper_frequency - ) - if y_idx == 0: - if (new_signal_desc.upper_frequency + 0.5) * height < y0: - continue - new_signal_desc.lower_frequency = ( - -0.5 - if (new_signal_desc.lower_frequency + 0.5) < (y0 / height) - else new_signal_desc.lower_frequency - (y0 / height) - ) - new_signal_desc.upper_frequency = ( - new_signal_desc.upper_frequency - (y0 / height) - if new_signal_desc.upper_frequency < 0.5 - else 0.5 - (y0 / height) - ) - new_signal_desc.bandwidth = ( - new_signal_desc.upper_frequency - - new_signal_desc.lower_frequency - ) - new_signal_desc.center_frequency = ( - new_signal_desc.lower_frequency - + new_signal_desc.bandwidth * 0.5 - ) - - else: - if (new_signal_desc.lower_frequency + 0.5) * height > y0: - continue - new_signal_desc.lower_frequency = ( - height - y0 - ) / height + new_signal_desc.lower_frequency - new_signal_desc.upper_frequency = ( - height - y0 - ) / height + new_signal_desc.upper_frequency - new_signal_desc.upper_frequency = ( - 0.5 - if new_signal_desc.upper_frequency > 0.5 - else new_signal_desc.upper_frequency - ) - new_signal_desc.bandwidth = ( - new_signal_desc.upper_frequency - - new_signal_desc.lower_frequency - ) - new_signal_desc.center_frequency = ( - new_signal_desc.lower_frequency - + new_signal_desc.bandwidth * 0.5 - ) - - # Append SignalDescription to list - new_signal_description.append(new_signal_desc) - - # Next, fill in the remaining cells with data randomly sampled from the input dataset - for cell_i in range(4): - if cell_i == cell_idx: - # Skip if the original data's cell - continue - x_idx = 0 if cell_i == 0 or cell_i == 2 else 1 - y_idx = 0 if cell_i == 0 or cell_i == 1 else 1 - dataset_idx = np.random.randint(len(self.dataset)) - curr_data, curr_signal_desc = self.dataset[dataset_idx] - full_mosaic[ - :, - y_idx * height : (y_idx + 1) * height, - x_idx * width : (x_idx + 1) * width, - ] = curr_data - - # Update inserted data's SignalDescription objects given the cell index - signal_description = ( - [curr_signal_desc] - if isinstance(curr_signal_desc, SignalDescription) - else curr_signal_desc - ) - for signal_desc in signal_description: - new_signal_desc = deepcopy(signal_desc) - - # Update time fields - if x_idx == 0: - if new_signal_desc.stop * width < x0: - continue - new_signal_desc.start = ( - 0 - if new_signal_desc.start < (x0 / width) - else new_signal_desc.start - (x0 / width) - ) - new_signal_desc.stop = ( - new_signal_desc.stop - (x0 / width) - if new_signal_desc.stop < 1.0 - else 1.0 - (x0 / width) - ) - new_signal_desc.duration = ( - new_signal_desc.stop - new_signal_desc.start - ) - - else: - if new_signal_desc.start * width > x0: - continue - new_signal_desc.start = ( - width - x0 - ) / width + new_signal_desc.start - new_signal_desc.stop = ( - width - x0 - ) / width + new_signal_desc.stop - new_signal_desc.stop = ( - 1.0 if new_signal_desc.stop > 1.0 else new_signal_desc.stop - ) - new_signal_desc.duration = ( - new_signal_desc.stop - new_signal_desc.start - ) - - # Update frequency fields - new_signal_desc.lower_frequency = ( - -0.5 - if new_signal_desc.lower_frequency < -0.5 - else new_signal_desc.lower_frequency - ) - new_signal_desc.upper_frequency = ( - 0.5 - if new_signal_desc.upper_frequency > 0.5 - else new_signal_desc.upper_frequency - ) - if y_idx == 0: - if (new_signal_desc.upper_frequency + 0.5) * height < y0: - continue - new_signal_desc.lower_frequency = ( - -0.5 - if (new_signal_desc.lower_frequency + 0.5) < (y0 / height) - else new_signal_desc.lower_frequency - (y0 / height) - ) - new_signal_desc.upper_frequency = ( - new_signal_desc.upper_frequency - (y0 / height) - if new_signal_desc.upper_frequency < 0.5 - else 0.5 - (y0 / height) - ) - new_signal_desc.bandwidth = ( - new_signal_desc.upper_frequency - - new_signal_desc.lower_frequency - ) - new_signal_desc.center_frequency = ( - new_signal_desc.lower_frequency - + new_signal_desc.bandwidth * 0.5 - ) - - else: - if (new_signal_desc.lower_frequency + 0.5) * height > y0: - continue - new_signal_desc.lower_frequency = ( - height - y0 - ) / height + new_signal_desc.lower_frequency - new_signal_desc.upper_frequency = ( - height - y0 - ) / height + new_signal_desc.upper_frequency - new_signal_desc.upper_frequency = ( - 0.5 - if new_signal_desc.upper_frequency > 0.5 - else new_signal_desc.upper_frequency - ) - new_signal_desc.bandwidth = ( - new_signal_desc.upper_frequency - - new_signal_desc.lower_frequency - ) - new_signal_desc.center_frequency = ( - new_signal_desc.lower_frequency - + new_signal_desc.bandwidth * 0.5 - ) - - # Append SignalDescription to list - new_signal_description.append(new_signal_desc) - - # After the data has been stitched into the large 2x2 gride, crop using x0, y0 - new_data.iq_data = full_mosaic[:, y0 : y0 + height, x0 : x0 + width] - - # Set output data's SignalDescription to above list - new_data.signal_description = new_signal_description - - else: - # Read shapes - channels, height, width = data.shape - - # Randomly decide the new x0, y0 point of the stitched images - x0 = np.random.randint(0, width) - y0 = np.random.randint(0, height) - - # Initialize new SignalDescription object - new_signal_description = [] - - # First, create a 2x2 grid of (512+512,512+512) and randomly put the initial data into a grid cell - cell_idx = np.random.randint(0, 4) - x_idx = 0 if cell_idx == 0 or cell_idx == 2 else 1 - y_idx = 0 if cell_idx == 0 or cell_idx == 1 else 1 - full_mosaic = np.empty( - (channels, height * 2, width * 2), - dtype=data.dtype, - ) - full_mosaic[ - :, - y_idx * height : (y_idx + 1) * height, - x_idx * width : (x_idx + 1) * width, - ] = data - - # Next, fill in the remaining cells with data randomly sampled from the input dataset - for cell_i in range(4): - if cell_i == cell_idx: - # Skip if the original data's cell - continue - x_idx = 0 if cell_i == 0 or cell_i == 2 else 1 - y_idx = 0 if cell_i == 0 or cell_i == 1 else 1 - dataset_idx = np.random.randint(len(self.dataset)) - curr_data, curr_signal_desc = self.dataset[dataset_idx] - full_mosaic[ - :, - y_idx * height : (y_idx + 1) * height, - x_idx * width : (x_idx + 1) * width, - ] = curr_data - - # After the data has been stitched into the large 2x2 gride, crop using x0, y0 - new_data = full_mosaic[:, y0 : y0 + height, x0 : x0 + width] - - return new_data - - -class SpectrogramMosaicDownsample(SignalTransform): - """The SpectrogramMosaicDownsample transform takes the original input - tensor and inserts it randomly into one cell of a 2x2 grid of 2x the size - of the orginal spectrogram input. The `dataset` argument is then read 3x to - retrieve spectrograms to fill the remaining cells of the 2x2 grid. Finally, - the 2x oversized stitched spectrograms are downsampled by 2 to become the - desired, original shape - - Args: - dataset :obj:`SignalDataset`: - An SignalDataset of complex-valued examples to be used as a source for - the mosaic operation - - """ - - def __init__(self, dataset: SignalDataset = None): - super(SpectrogramMosaicDownsample, self).__init__() - self.dataset = dataset - - def __call__(self, data: Any) -> Any: - if isinstance(data, SignalData): - # Create new SignalData object for transformed data - new_data = SignalData( - data=None, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=data.signal_description, - ) - - # Read shapes - channels, height, width = data.iq_data.shape - - # Initialize new SignalDescription object - new_signal_description = [] - - # First, create a 2x2 grid of (512+512,512+512) and randomly put the initial data into a grid cell - cell_idx = np.random.randint(0, 4) - x_idx = 0 if cell_idx == 0 or cell_idx == 2 else 1 - y_idx = 0 if cell_idx == 0 or cell_idx == 1 else 1 - full_mosaic = np.empty( - (channels, height * 2, width * 2), - dtype=data.iq_data.dtype, - ) - full_mosaic[ - :, - y_idx * height : (y_idx + 1) * height, - x_idx * width : (x_idx + 1) * width, - ] = data.iq_data - - # Update original data's SignalDescription objects given the cell index - signal_description = ( - [data.signal_description] - if isinstance(data.signal_description, SignalDescription) - else data.signal_description - ) - for signal_desc in signal_description: - new_signal_desc = deepcopy(signal_desc) - - # Update time fields - if x_idx == 0: - new_signal_desc.start /= 2 - new_signal_desc.stop /= 2 - new_signal_desc.duration = ( - new_signal_desc.stop - new_signal_desc.start - ) - - else: - new_signal_desc.start = new_signal_desc.start / 2 + 0.5 - new_signal_desc.stop = new_signal_desc.stop / 2 + 0.5 - new_signal_desc.duration = ( - new_signal_desc.stop - new_signal_desc.start - ) - - # Update frequency fields - new_signal_desc.lower_frequency = ( - -0.5 - if new_signal_desc.lower_frequency < -0.5 - else new_signal_desc.lower_frequency - ) - new_signal_desc.upper_frequency = ( - 0.5 - if new_signal_desc.upper_frequency > 0.5 - else new_signal_desc.upper_frequency - ) - if y_idx == 0: - new_signal_desc.lower_frequency = ( - new_signal_desc.lower_frequency + 0.5 - ) / 2 - 0.5 - new_signal_desc.upper_frequency = ( - new_signal_desc.upper_frequency + 0.5 - ) / 2 - 0.5 - new_signal_desc.bandwidth = ( - new_signal_desc.upper_frequency - - new_signal_desc.lower_frequency - ) - new_signal_desc.center_frequency = ( - new_signal_desc.lower_frequency - + new_signal_desc.bandwidth * 0.5 - ) - - else: - new_signal_desc.lower_frequency = ( - new_signal_desc.lower_frequency + 0.5 - ) / 2 - new_signal_desc.upper_frequency = ( - new_signal_desc.upper_frequency + 0.5 - ) / 2 - new_signal_desc.bandwidth = ( - new_signal_desc.upper_frequency - - new_signal_desc.lower_frequency - ) - new_signal_desc.center_frequency = ( - new_signal_desc.lower_frequency - + new_signal_desc.bandwidth * 0.5 - ) - - # Append SignalDescription to list - new_signal_description.append(new_signal_desc) - - # Next, fill in the remaining cells with data randomly sampled from the input dataset - for cell_i in range(4): - if cell_i == cell_idx: - # Skip if the original data's cell - continue - x_idx = 0 if cell_i == 0 or cell_i == 2 else 1 - y_idx = 0 if cell_i == 0 or cell_i == 1 else 1 - dataset_idx = np.random.randint(len(self.dataset)) - curr_data, curr_signal_desc = self.dataset[dataset_idx] - full_mosaic[ - :, - y_idx * height : (y_idx + 1) * height, - x_idx * width : (x_idx + 1) * width, - ] = curr_data - - # Update inserted data's SignalDescription objects given the cell index - signal_description = ( - [curr_signal_desc] - if isinstance(curr_signal_desc, SignalDescription) - else curr_signal_desc - ) - for signal_desc in signal_description: - new_signal_desc = deepcopy(signal_desc) - - # Update time fields - if x_idx == 0: - new_signal_desc.start /= 2 - new_signal_desc.stop /= 2 - new_signal_desc.duration = ( - new_signal_desc.stop - new_signal_desc.start - ) - - else: - new_signal_desc.start = new_signal_desc.start / 2 + 0.5 - new_signal_desc.stop = new_signal_desc.stop / 2 + 0.5 - new_signal_desc.duration = ( - new_signal_desc.stop - new_signal_desc.start - ) - - # Update frequency fields - new_signal_desc.lower_frequency = ( - -0.5 - if new_signal_desc.lower_frequency < -0.5 - else new_signal_desc.lower_frequency - ) - new_signal_desc.upper_frequency = ( - 0.5 - if new_signal_desc.upper_frequency > 0.5 - else new_signal_desc.upper_frequency - ) - if y_idx == 0: - new_signal_desc.lower_frequency = ( - new_signal_desc.lower_frequency + 0.5 - ) / 2 - 0.5 - new_signal_desc.upper_frequency = ( - new_signal_desc.upper_frequency + 0.5 - ) / 2 - 0.5 - new_signal_desc.bandwidth = ( - new_signal_desc.upper_frequency - - new_signal_desc.lower_frequency - ) - new_signal_desc.center_frequency = ( - new_signal_desc.lower_frequency - + new_signal_desc.bandwidth * 0.5 - ) - - else: - new_signal_desc.lower_frequency = ( - new_signal_desc.lower_frequency + 0.5 - ) / 2 - new_signal_desc.upper_frequency = ( - new_signal_desc.upper_frequency + 0.5 - ) / 2 - new_signal_desc.bandwidth = ( - new_signal_desc.upper_frequency - - new_signal_desc.lower_frequency - ) - new_signal_desc.center_frequency = ( - new_signal_desc.lower_frequency - + new_signal_desc.bandwidth * 0.5 - ) - - # Append SignalDescription to list - new_signal_description.append(new_signal_desc) - - # After the data has been stitched into the large 2x2 gride, downsample by 2 - new_data.iq_data = full_mosaic[:, ::2, ::2] - - # Set output data's SignalDescription to above list - new_data.signal_description = new_signal_description - - else: - # Read shapes - channels, height, width = data.shape - - # Initialize new SignalDescription object - new_signal_description = [] - - # First, create a 2x2 grid of (512+512,512+512) and randomly put the initial data into a grid cell - cell_idx = np.random.randint(0, 4) - x_idx = 0 if cell_idx == 0 or cell_idx == 2 else 1 - y_idx = 0 if cell_idx == 0 or cell_idx == 1 else 1 - full_mosaic = np.empty( - (channels, height * 2, width * 2), - dtype=data.dtype, - ) - full_mosaic[ - :, - y_idx * height : (y_idx + 1) * height, - x_idx * width : (x_idx + 1) * width, - ] = data - - # Next, fill in the remaining cells with data randomly sampled from the input dataset - for cell_i in range(4): - if cell_i == cell_idx: - # Skip if the original data's cell - continue - x_idx = 0 if cell_i == 0 or cell_i == 2 else 1 - y_idx = 0 if cell_i == 0 or cell_i == 1 else 1 - dataset_idx = np.random.randint(len(self.dataset)) - curr_data, curr_signal_desc = self.dataset[dataset_idx] - full_mosaic[ - :, - y_idx * height : (y_idx + 1) * height, - x_idx * width : (x_idx + 1) * width, - ] = curr_data - - # After the data has been stitched into the large 2x2 gride, downsample by 2 - new_data = full_mosaic[:, ::2, ::2] - - return new_data diff --git a/torchsig/transforms/system_impairment/__init__.py b/torchsig/transforms/system_impairment/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/torchsig/transforms/system_impairment/functional.py b/torchsig/transforms/system_impairment/functional.py deleted file mode 100644 index e9ea04d..0000000 --- a/torchsig/transforms/system_impairment/functional.py +++ /dev/null @@ -1,635 +0,0 @@ -import numpy as np -from scipy import signal as sp -from numba import njit, int64, float64, complex64 - - -def time_shift( - tensor: np.ndarray, - t_shift: float -) -> np.ndarray: - """Shifts tensor in the time dimension by tshift samples. Zero-padding is applied to maintain input size. - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor to be shifted. - - t_shift (:obj:`int` or :class:`numpy.ndarray`): - Number of samples to shift right or left (if negative) - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor shifted in time of size tensor.shape - """ - # Valid Range Error Checking - if np.max(np.abs(t_shift)) >= tensor.shape[0]: - return np.zeros_like(tensor, dtype=np.complex64) - - # This overwrites tensor as side effect, modifies inplace - if t_shift > 0: - tmp = tensor[:-t_shift] # I'm sure there's a more compact way. - tensor = np.pad(tmp, (t_shift, 0), 'constant', constant_values=0 + 0j) - elif t_shift < 0: - tmp = tensor[-t_shift:] # I'm sure there's a more compact way. - tensor = np.pad(tmp, (0, -t_shift), 'constant', constant_values=0 + 0j) - return tensor - - -def time_crop( - tensor: np.ndarray, - start: int, - length: int -) -> np.ndarray: - """Crops a tensor in the time dimension from index start(inclusive) for length samples. - - Args: - tensor (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor to be cropped. - - start (:obj:`int` or :class:`numpy.ndarray`): - index to begin cropping - - length (:obj:`int`): - number of samples to include - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor cropped in time of size (tensor.shape[0], length) - """ - # Type and Size checking - if length < 0: - raise ValueError('Length must be greater than 0') - - if np.any(start < 0): - raise ValueError('Start must be greater than 0') - - if np.max(start) >= tensor.shape[0] or length == 0: - return np.empty(shape=(1, 1)) - - crop_len = min(length, tensor.shape[0] - np.max(start)) - - return tensor[start:start + crop_len] - - -def freq_shift(tensor: np.ndarray, f_shift: float) -> np.ndarray: - """Shifts each tensor in freq by freq_shift along the time dimension - - Args: - tensor (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor to be frequency-shifted. - - f_shift (:obj:`float` or :class:`numpy.ndarray`): - Frequency shift relative to the sample rate in range [-.5, .5] - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has been frequency shifted along time dimension of size tensor.shape - """ - sinusoid = np.exp(2j * np.pi * f_shift * np.arange(tensor.shape[0], dtype=np.float64)) - return np.multiply(tensor, np.asarray(sinusoid)) - - -def freq_shift_avoid_aliasing(tensor: np.ndarray, f_shift: float) -> np.ndarray: - """Similar to `freq_shift` function but performs the frequency shifting at - a higher sample rate with filtering to avoid aliasing - - Args: - tensor (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor to be frequency-shifted. - - f_shift (:obj:`float` or :class:`numpy.ndarray`): - Frequency shift relative to the sample rate in range [-.5, .5] - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has been frequency shifted along time dimension of size tensor.shape - """ - # Match output size to input - num_iq_samples = tensor.shape[0] - - # Interpolate up to avoid frequency wrap around during shift - up = 2 - down = 1 - tensor = sp.resample_poly(tensor, up, down) - - # Filter around center to remove original alias effects - num_taps = int(2*np.ceil(50*2*np.pi/(1/up)/.125/22)) # fred harris rule of thumb * 2 - taps = sp.firwin( - num_taps, - (1/up), - width=(1/up) * .02, - window=sp.get_window("blackman", num_taps), - scale=True - ) - tensor = sp.fftconvolve(tensor, taps, mode="same") - - # Freq shift to desired center freq - time_vector = np.arange(tensor.shape[0], dtype=np.float) - tensor = tensor * np.exp(2j * np.pi * f_shift / up * time_vector) - - # Filter to remove out-of-band regions - num_taps = int(2 * np.ceil(50 * 2 * np.pi / (1/up) / .125 / 22)) # fred harris rule-of-thumb * 2 - taps = sp.firwin( - num_taps, - 1 / up, - width=(1/up) * .02, - window=sp.get_window("blackman", num_taps), - scale=True - ) - tensor = sp.fftconvolve(tensor, taps, mode="same") - tensor = tensor[:int(num_iq_samples*up)] # prune to be correct size out of filter - - # Decimate back down to correct sample rate - tensor = sp.resample_poly(tensor, down, up) - - return tensor[:num_iq_samples] - - -@njit(cache=False) -def _fractional_shift_helper( - taps: np.ndarray, - raw_iq: np.ndarray, - stride: int, - offset: int -): - """Fractional shift. First, we up-sample by a large, fixed amount. Filter with 1/upsample_rate/2.0, - Next we down-sample by the same, large fixed amount with a chosen offset. Doing this efficiently means not actually zero-padding. - - The efficient way to do this is to decimate the taps and filter the signal with some offset in the taps. - """ - # We purposely do not calculate values within the group delay. - group_delay = ((taps.shape[0] - 1) // 2 - (stride - 1)) // stride + 1 - if offset < 0: - offset += stride - group_delay -= 1 - - # Decimate the taps. - taps = taps[offset::stride] - - # Determine output size - num_taps = taps.shape[0] - num_raw_iq = raw_iq.shape[0] - output = np.zeros(((num_taps + num_raw_iq - 1 - group_delay),), dtype=np.complex128) - - # This is a just convolution of taps and raw_iq - for o_idx in range(output.shape[0]): - idx_mn = o_idx - (num_raw_iq - 1) if o_idx >= num_raw_iq - 1 else 0 - idx_mx = o_idx if o_idx < num_taps - 1 else num_taps - 1 - for f_idx in range(idx_mn, idx_mx): - output[o_idx - group_delay] += taps[f_idx] * raw_iq[o_idx - f_idx] - return output - - -def fractional_shift( - tensor: np.ndarray, - taps: np.ndarray, - stride: int, - delay: int -) -> np.ndarray: - """Applies fractional sample delay of delay using a polyphase interpolator - - Args: - tensor (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor to be shifted in time. - - taps (:obj:`float` or :class:`numpy.ndarray`): - taps to use for filtering - - stride (:obj:`int`): - interpolation rate of internal filter - - delay (:obj:`int` ): - Delay in number of samples in [-1, 1] - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has been fractionally-shifted along time dimension of size tensor.shape - """ - real_part = _fractional_shift_helper(taps, tensor.real, stride, int(stride * float(delay))) - imag_part = _fractional_shift_helper(taps, tensor.imag, stride, int(stride * float(delay))) - tensor = real_part[:tensor.shape[0]] + 1j * imag_part[:tensor.shape[0]] - zero_idx = -1 if delay < 0 else 0 # do not extrapolate, zero-pad. - tensor[zero_idx] = 0 - return tensor - - -def iq_imbalance( - tensor: np.ndarray, - iq_amplitude_imbalance_db: float, - iq_phase_imbalance: float, - iq_dc_offset_db: float -) -> np.ndarray: - """Applies IQ imbalance to tensor - - Args: - tensor (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor to be shifted in time. - - iq_amplitude_imbalance_db (:obj:`float` or :class:`numpy.ndarray`): - IQ amplitude imbalance in dB - - iq_phase_imbalance (:obj:`float` or :class:`numpy.ndarray`): - IQ phase imbalance in radians [-pi, pi] - - iq_dc_offset_db (:obj:`float` or :class:`numpy.ndarray`): - IQ DC Offset in dB - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has an IQ imbalance applied across the time dimension of size tensor.shape - """ - # amplitude imbalance - tensor = 10 ** (iq_amplitude_imbalance_db / 10.0) * np.real(tensor) + \ - 1j * 10 ** (iq_amplitude_imbalance_db / 10.0) * np.imag(tensor) - - # phase imbalance - tensor = np.exp(-1j * iq_phase_imbalance / 2.0) * np.real(tensor) + \ - np.exp(1j * (np.pi / 2.0 + iq_phase_imbalance / 2.0)) * np.imag(tensor) - - tensor += 10 ** (iq_dc_offset_db / 10.0) * np.real(tensor) + \ - 1j * 10 ** (iq_dc_offset_db / 10.0) * np.imag(tensor) - return tensor - - -def spectral_inversion(tensor: np.ndarray) -> np.ndarray: - """Applies a spectral inversion - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has undergone a spectral inversion - - """ - tensor.imag *= -1 - return tensor - - -def channel_swap(tensor: np.ndarray) -> np.ndarray: - """Swap the I and Q channels of input complex data - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has undergone channel swapping - - """ - real_component = tensor.real - imag_component = tensor.imag - new_tensor = np.empty(*tensor.shape, dtype=tensor.dtype) - new_tensor.real = imag_component - new_tensor.imag = real_component - return new_tensor - - -def time_reversal(tensor: np.ndarray) -> np.ndarray: - """Applies a time reversal to the input tensor - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has undergone a time reversal - - """ - return np.flip(tensor, axis=0) - - -def amplitude_reversal(tensor: np.ndarray) -> np.ndarray: - """Applies an amplitude reversal to the input tensor by multiplying by -1 - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has undergone an amplitude reversal - - """ - return tensor*-1 - - -def roll_off( - tensor: np.ndarray, - lowercutfreq: float, - uppercutfreq: float, - fltorder: int, -) -> np.ndarray: - """Applies front-end filter to tensor. Rolls off lower/upper edges of bandwidth - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - lowercutfreq (:obj:`float`): - lower bandwidth cut-off to begin linear roll-off - - uppercutfreq (:obj:`float`): - upper bandwidth cut-off to begin linear roll-off - - fltorder (:obj:`int`): - order of each FIR filter to be applied - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has undergone front-end filtering. - - """ - if (lowercutfreq == 0) & (uppercutfreq == 1): - return tensor - elif uppercutfreq == 1: - if fltorder % 2 == 0: - fltorder += 1 - bandwidth = uppercutfreq - lowercutfreq - center_freq = lowercutfreq - 0.5 + bandwidth/2 - num_taps = fltorder - sinusoid = np.exp(2j * np.pi * center_freq * np.linspace(0, num_taps - 1, num_taps)) - taps = sp.firwin( - num_taps, - bandwidth, - width=bandwidth * .02, - window=sp.get_window("blackman", num_taps), - scale=True - ) - taps = taps * sinusoid - return sp.fftconvolve(tensor, taps, mode="same") - - -def add_slope(tensor: np.ndarray) -> np.ndarray: - """The slope between each sample and its preceeding sample is added to - every sample - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor with added noise. - """ - slope = np.diff(tensor) - slope = np.insert(slope, 0, 0) - return tensor + slope - - -def mag_rescale( - tensor: np.ndarray, - start: float, - scale: float, -) -> np.ndarray: - """Apply a rescaling of input `scale` starting at time `start` - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - start (:obj:`float`): - Normalized start time of rescaling - - scale (:obj:`float`): - Scaling factor - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has undergone rescaling - - """ - start = int(tensor.shape[0] * start) - tensor[start:] *= scale - return tensor - - -def drop_samples( - tensor: np.ndarray, - drop_starts: np.ndarray, - drop_sizes: np.ndarray, - fill: str, -) -> np.ndarray: - """Drop samples at specified input locations/durations with fill technique - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - drop_starts (:class:`numpy.ndarray`): - Indices of where drops start - - drop_sizes (:class:`numpy.ndarray`): - Durations of each drop instance - - fill (:obj:`str`): - String specifying how the dropped samples should be replaced - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has undergone the dropped samples - - """ - for idx, drop_start in enumerate(drop_starts): - if fill == "ffill": - drop_region = np.ones(drop_sizes[idx], dtype=np.complex64)*tensor[drop_start-1] - elif fill == "bfill": - drop_region = np.ones(drop_sizes[idx], dtype=np.complex64)*tensor[drop_start+drop_sizes[idx]] - elif fill == "mean": - drop_region = np.ones(drop_sizes[idx], dtype=np.complex64)*np.mean(tensor) - elif fill == "zero": - drop_region = np.zeros(drop_sizes[idx], dtype=np.complex64) - else: - raise ValueError("fill expects ffill, bfill, mean, or zero. Found {}".format(fill)) - - # Update drop region - tensor[drop_start:drop_start+drop_sizes[idx]] = drop_region - - return tensor - - -def quantize( - tensor: np.ndarray, - num_levels: int, - round_type: str = 'floor', -) -> np.ndarray: - """Quantize the input to the number of levels specified - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - num_levels (:obj:`int`): - Number of quantization levels - - round_type (:obj:`str`): - Quantization rounding. Options: 'floor', 'middle', 'ceiling' - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has undergone quantization - - """ - # Setup quantization resolution/bins - max_value = max(np.abs(tensor)) + 1e-9 - bins = np.linspace(-max_value,max_value,num_levels+1) - - # Digitize to bins - quantized_real = np.digitize(tensor.real, bins) - quantized_imag = np.digitize(tensor.imag, bins) - - if round_type == 'floor': - quantized_real -= 1 - quantized_imag -= 1 - - # Revert to values - quantized_real = bins[quantized_real] - quantized_imag = bins[quantized_imag] - - if round_type == 'nearest': - bin_size = np.diff(bins)[0] - quantized_real -= (bin_size/2) - quantized_imag -= (bin_size/2) - - quantized_tensor = quantized_real + 1j*quantized_imag - - return quantized_tensor - - -def clip(tensor: np.ndarray, clip_percentage: float) -> np.ndarray: - """Clips input tensor's values above/below a specified percentage of the - max/min of the input tensor - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - clip_percentage (:obj:`float`): - Percentage of max/min values to clip - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor with added noise. - """ - real_tensor = tensor.real - max_val = np.max(real_tensor) * clip_percentage - min_val = np.min(real_tensor) * clip_percentage - real_tensor[real_tensor>max_val] = max_val - real_tensor[real_tensormax_val] = max_val - imag_tensor[imag_tensor np.ndarray: - """Create a complex-valued filter with `num_taps` number of taps, convolve - the random filter with the input data, and sum the original data with the - randomly-filtered data using an `alpha` weighting factor. - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - num_taps: (:obj:`int`): - Number of taps in random filter - - alpha: (:obj:`float`): - Weighting for the summation between the original data and the - randomly-filtered data, following: - - `output = (1 - alpha) * tensor + alpha * filtered_tensor` - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor with weighted random filtering - - """ - filter_taps = np.random.rand(num_taps)+1j*np.random.rand(num_taps) - return (1 - alpha) * tensor + alpha * np.convolve(tensor, filter_taps, mode='same') - - -@njit(complex64[:](complex64[:], float64, float64, float64, float64, float64, float64, float64, float64, float64), cache=False) -def agc( - tensor: np.ndarray, - initial_gain_db: float, - alpha_smooth: float, - alpha_track: float, - alpha_overflow: float, - alpha_acquire: float, - ref_level_db: float, - track_range_db: float, - low_level_db: float, - high_level_db: float, -) -> np.ndarray: - """AGC implementation - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor to be agc'd - - initial_gain_db (:obj:`float`): - Initial gain value in linear units - - alpha_smooth (:obj:`float`): - Alpha for averaging the measured signal level level_n = level_n*alpha + level_n-1*(1 - alpha) - - alpha_track (:obj:`float`): - Amount by which to adjust gain when in tracking state - - alpha_overflow (:obj:`float`): - Amount by which to adjust gain when in overflow state [level_db + gain_db] >= max_level - - alpha_acquire (:obj:`float`): - Amount by which to adjust gain when in acquire state abs([ref_level_db - level_db - gain_db]) >= track_range_db - - ref_level_db (:obj:`float`): - Level to which we intend to adjust gain to achieve - - track_range_db (:obj:`float`): - Range from ref_level_linear for which we can deviate before going into acquire state - - low_level_db (:obj:`float`): - Level below which we disable AGC - - high_level_db (:obj:`float`): - Level above which we go into overflow state - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor with AGC applied - - """ - output = np.zeros_like(tensor) - gain_db = initial_gain_db - for sample_idx, sample in enumerate(tensor): - if np.abs(sample) == 0: - level_db = -200 - else: - level_db = level_db*alpha_smooth + np.log(np.abs(sample))*(1 - alpha_smooth) - output_db = level_db + gain_db - diff_db = ref_level_db - output_db - - if level_db <= low_level_db: - alpha_adjust = 0 - elif output_db >= high_level_db: - alpha_adjust = alpha_overflow - elif (abs(diff_db) > track_range_db): - alpha_adjust = alpha_acquire - else: - alpha_adjust = alpha_track - - gain_db += diff_db * alpha_adjust - output[sample_idx] = tensor[sample_idx] * np.exp(gain_db) - return output diff --git a/torchsig/transforms/system_impairment/si.py b/torchsig/transforms/system_impairment/si.py deleted file mode 100644 index a6fa370..0000000 --- a/torchsig/transforms/system_impairment/si.py +++ /dev/null @@ -1,1245 +0,0 @@ -import numpy as np -from copy import deepcopy -from scipy import signal as sp -from typing import Optional, Any, Union, List - -from torchsig.utils.types import SignalData, SignalDescription -from torchsig.transforms.transforms import SignalTransform -from torchsig.transforms.system_impairment import functional -from torchsig.transforms.functional import NumericParameter, IntParameter, FloatParameter -from torchsig.transforms.functional import to_distribution, uniform_continuous_distribution, uniform_discrete_distribution - - -class RandomTimeShift(SignalTransform): - """Shifts tensor in the time dimension by shift samples. Zero-padding is applied to maintain input size. - - Args: - shift (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - * If Callable, produces a sample by calling shift() - * If int or float, shift is fixed at the value provided - * If list, shift is any element in the list - * If tuple, shift is in range of (tuple[0], tuple[1]) - - interp_rate (:obj:`int`): - Interpolation rate used by internal interpolation filter - - taps_per_arm (:obj:`int`): - Number of taps per arm used in filter. More is slower, but more accurate. - - Example: - >>> import torchsig.transforms as ST - >>> # Shift inputs by range of (-10, 20) samples with uniform distribution - >>> transform = ST.RandomTimeShift(lambda size: np.random.uniform(-10, 20, size)) - >>> # Shift inputs by normally distributed time shifts - >>> transform = ST.RandomTimeShift(lambda size: np.random.normal(0, 10, size)) - >>> # Shift by discrete set of values - >>> transform = ST.RandomTimeShift(lambda size: np.random.choice([-10, 5, 10], size)) - >>> # Shift by 5 or 10 - >>> transform = ST.RandomTimeShift([5, 10]) - >>> # Shift by random amount between 5 and 10 with uniform probability - >>> transform = ST.RandomTimeShift((5, 10)) - >>> # Shift fixed at 5 samples - >>> transform = ST.RandomTimeShift(5) - - """ - def __init__( - self, - shift: NumericParameter = uniform_continuous_distribution(-10, 10), - interp_rate: Optional[float] = 100, - taps_per_arm: Optional[int] = 24 - ): - super(RandomTimeShift, self).__init__() - self.shift = to_distribution(shift, self.random_generator) - self.interp_rate = interp_rate - num_taps = int(taps_per_arm * interp_rate) - self.taps = sp.firwin(num_taps, 1.0 / interp_rate, 1.0 / interp_rate / 4.0, scale=True) * interp_rate - - def __call__(self, data: Any) -> Any: - shift = self.shift() - integer_part, decimal_part = divmod(shift, 1) - if isinstance(data, SignalData): - # Create new SignalData object for transformed data - new_data = SignalData( - data=None, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=[], - ) - - # Apply data transformation - if decimal_part != 0: - new_data.iq_data = functional.fractional_shift( - data.iq_data, - self.taps, - self.interp_rate, - -decimal_part # this needed to be negated to be consistent with the previous implementation - ) - new_data.iq_data = functional.time_shift(new_data.iq_data, int(integer_part)) - - # Update SignalDescription - new_signal_description = [] - signal_description = [data.signal_description] if isinstance(data.signal_description, SignalDescription) else data.signal_description - for signal_desc in signal_description: - new_signal_desc = deepcopy(signal_desc) - new_signal_desc.start += (shift / data.iq_data.shape[0]) - new_signal_desc.stop += (shift / data.iq_data.shape[0]) - new_signal_desc.start = 0.0 if new_signal_desc.start < 0.0 else new_signal_desc.start - new_signal_desc.stop = 1.0 if new_signal_desc.stop > 1.0 else new_signal_desc.stop - new_signal_desc.duration = new_signal_desc.stop - new_signal_desc.start - if new_signal_desc.start > 1.0 or new_signal_desc.stop < 0.0: - continue - new_signal_description.append(new_signal_desc) - new_data.signal_description = new_signal_description - - else: - new_data = data.copy() - if decimal_part != 0: - new_data = functional.fractional_shift( - new_data, - self.taps, - self.interp_rate, - -decimal_part # this needed to be negated to be consistent with the previous implementation - ) - new_data = functional.time_shift(new_data, int(integer_part)) - return new_data - - -class TimeCrop(SignalTransform): - """Crops a tensor in the time dimension to the specified length. Optional - crop techniques include: start, center, end, & random - - Args: - crop_type (:obj:`str`): - Type of cropping to perform. Options are: `start`, `center`, `end`, - and `random`. `start` crops the input tensor such that the first - `length` samples are returned. `center` crops the input tensor such - that the center `length` samples are returned. `end` crops the - input tensor such that the last `length` samples are returned. - `random` crops randomly in the range `[0,length-1]`. - - length (:obj:`int`): - Number of samples to include. - - Example: - >>> import torchsig.transforms as ST - >>> # Crop inputs to first 256 samples - >>> transform = ST.TimeCrop(crop_type='start', length=256) - >>> # Crop inputs to center 512 samples - >>> transform = ST.TimeCrop(crop_type='center', length=512) - >>> # Crop inputs to last 1024 samples - >>> transform = ST.TimeCrop(crop_type='end', length=1024) - >>> # Randomly crop any 2048 samples from input - >>> transform = ST.TimeCrop(crop_type='random', length=2048) - - """ - def __init__( - self, - crop_type: str = 'random', - length: Optional[int] = 256 - ): - super(TimeCrop, self).__init__() - self.crop_type = crop_type - self.length = length - - def __call__(self, data: Any) -> Any: - iq_data = data.iq_data if isinstance(data, SignalData) else data - - if iq_data.shape[0] == self.length: - return data - elif iq_data.shape[0] < self.length: - raise ValueError('Input data length {} is less than requested length {}'.format(iq_data.shape[0], self.length)) - - if self.crop_type == 'start': - start = 0 - elif self.crop_type == 'end': - start = iq_data.shape[0] - self.length - elif self.crop_type == 'center': - start = (iq_data.shape[0] - self.length) // 2 - elif self.crop_type == 'random': - start = np.random.randint(0, iq_data.shape[0] - self.length) - else: - raise ValueError('Crop type must be: `start`, `center`, `end`, or `random`') - - if isinstance(data, SignalData): - # Create new SignalData object for transformed data - new_data = SignalData( - data=None, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=[], - ) - - # Perform data augmentation - new_data.iq_data = functional.time_crop(iq_data, start, self.length) - - # Update SignalDescription - new_signal_description = [] - signal_description = [data.signal_description] if isinstance(data.signal_description, SignalDescription) else data.signal_description - for signal_desc in signal_description: - new_signal_desc = deepcopy(signal_desc) - original_start_sample = signal_desc.start * iq_data.shape[0] - original_stop_sample = signal_desc.stop * iq_data.shape[0] - new_start_sample = original_start_sample - start - new_stop_sample = original_stop_sample - start - new_signal_desc.start = new_start_sample / self.length - new_signal_desc.stop = new_stop_sample / self.length - new_signal_desc.start = 0.0 if new_signal_desc.start < 0.0 else new_signal_desc.start - new_signal_desc.stop = 1.0 if new_signal_desc.stop > 1.0 else new_signal_desc.stop - new_signal_desc.duration = new_signal_desc.stop - new_signal_desc.start - new_signal_desc.num_iq_samples = self.length - if new_signal_desc.start > 1.0 or new_signal_desc.stop < 0.0: - continue - new_signal_description.append(new_signal_desc) - new_data.signal_description = new_signal_description - - else: - new_data = functional.time_crop(data, start, self.length) - return new_data - - -class TimeReversal(SignalTransform): - """Applies a time reversal to the input. Note that applying a time reversal - inherently also applies a spectral inversion. If a time-reversal without - spectral inversion is desired, the `undo_spectral_inversion` argument - can be set to True. By setting this value to True, an additional, manual - spectral inversion is applied to revert the time-reversal's inversion - effect. - - Args: - undo_spectral_inversion (:obj:`bool`, :obj:`float`): - * If bool, undo_spectral_inversion is always/never applied - * If float, undo_spectral_inversion is a probability - - """ - def __init__(self, undo_spectral_inversion: Union[bool,float] = True): - super(TimeReversal, self).__init__() - if isinstance(undo_spectral_inversion, bool): - self.undo_spectral_inversion = 1.0 if undo_spectral_inversion else 0.0 - else: - self.undo_spectral_inversion = undo_spectral_inversion - - def __call__(self, data: Any) -> Any: - spec_inversion_prob = np.random.rand() - undo_spec_inversion = spec_inversion_prob <= self.undo_spectral_inversion - if isinstance(data, SignalData): - # Create new SignalData object for transformed data - new_data = SignalData( - data=None, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=[], - ) - - # Perform data augmentation - new_data.iq_data = functional.time_reversal(data.iq_data) - if undo_spec_inversion: - # If spectral inversion not desired, reverse effect - new_data.iq_data = functional.spectral_inversion(new_data.iq_data) - - # Update SignalDescription - new_signal_description = [] - signal_description = [data.signal_description] if isinstance(data.signal_description, SignalDescription) else data.signal_description - for signal_desc in signal_description: - new_signal_desc = deepcopy(signal_desc) - - # Invert time labels - original_start = new_signal_desc.start - original_stop = new_signal_desc.stop - new_signal_desc.start = original_stop * -1 + 1.0 - new_signal_desc.stop = original_start * -1 + 1.0 - - if not undo_spec_inversion: - # Invert freq labels - original_lower = new_signal_desc.lower_frequency - original_upper = new_signal_desc.upper_frequency - new_signal_desc.lower_frequency = original_upper * -1 - new_signal_desc.upper_frequency = original_lower * -1 - new_signal_desc.center_frequency *= -1 - - new_signal_description.append(new_signal_desc) - - new_data.signal_description = new_signal_description - - else: - new_data = functional.time_reversal(data) - if undo_spec_inversion: - # If spectral inversion not desired, reverse effect - new_data = functional.spectral_inversion(new_data) - return new_data - - -class AmplitudeReversal(SignalTransform): - """Applies an amplitude reversal to the input tensor by applying a value of - -1 to each sample. Effectively the same as a static phase shift of pi - - """ - def __init__(self): - super(AmplitudeReversal, self).__init__() - - def __call__(self, data: Any) -> Any: - if isinstance(data, SignalData): - # Create new SignalData object for transformed data - new_data = SignalData( - data=None, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=data.signal_description, - ) - - # Perform data augmentation - new_data.iq_data = functional.amplitude_reversal(data.iq_data) - - else: - new_data = functional.amplitude_reversal(data) - return new_data - - -class RandomFrequencyShift(SignalTransform): - """Shifts each tensor in freq by freq_shift along the time dimension. - - Args: - freq_shift (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - * If Callable, produces a sample by calling freq_shift() - * If int or float, freq_shift is fixed at the value provided - * If list, freq_shift is any element in the list - * If tuple, freq_shift is in range of (tuple[0], tuple[1]) - - Example: - >>> import torchsig.transforms as ST - >>> # Frequency shift inputs with uniform distribution in -fs/4 and fs/4 - >>> transform = ST.RandomFrequencyShift(lambda size: np.random.uniform(-.25, .25, size)) - >>> # Frequency shift inputs always fs/10 - >>> transform = ST.RandomFrequencyShift(lambda size: np.random.choice([.1], size)) - >>> # Frequency shift inputs with normal distribution with stdev .1 - >>> transform = ST.RandomFrequencyShift(lambda size: np.random.normal(0, .1, size)) - >>> # Frequency shift inputs with uniform distribution in -fs/4 and fs/4 - >>> transform = ST.RandomFrequencyShift((-.25, .25)) - >>> # Frequency shift all inputs by fs/10 - >>> transform = ST.RandomFrequencyShift(.1) - >>> # Frequency shift inputs with either -fs/4 or fs/4 (discrete) - >>> transform = ST.RandomFrequencyShift([-.25, .25]) - - """ - def __init__( - self, - freq_shift: NumericParameter = uniform_continuous_distribution(-.5, .5) - ): - super(RandomFrequencyShift, self).__init__() - self.freq_shift = to_distribution(freq_shift, self.random_generator) - - def __call__(self, data: Any) -> Any: - freq_shift = self.freq_shift() - if isinstance(data, SignalData): - # Create new SignalData object for transformed data - new_data = SignalData( - data=None, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=[], - ) - - # Update SignalDescription - new_signal_description = [] - signal_description = [data.signal_description] if isinstance(data.signal_description, SignalDescription) else data.signal_description - avoid_aliasing = False - for signal_desc in signal_description: - new_signal_desc = deepcopy(signal_desc) - # Check bounds for partial signals - new_signal_desc.lower_frequency = -0.5 if new_signal_desc.lower_frequency < -0.5 else new_signal_desc.lower_frequency - new_signal_desc.upper_frequency = 0.5 if new_signal_desc.upper_frequency > 0.5 else new_signal_desc.upper_frequency - new_signal_desc.bandwidth = new_signal_desc.upper_frequency - new_signal_desc.lower_frequency - new_signal_desc.center_frequency = new_signal_desc.lower_frequency + new_signal_desc.bandwidth * 0.5 - - # Shift freq descriptions - new_signal_desc.lower_frequency += freq_shift - new_signal_desc.upper_frequency += freq_shift - new_signal_desc.center_frequency += freq_shift - - # Check bounds for aliasing - if new_signal_desc.lower_frequency >= 0.5 or new_signal_desc.upper_frequency <= -0.5: - avoid_aliasing = True - continue - if new_signal_desc.lower_frequency < -0.45 or new_signal_desc.upper_frequency > 0.45: - avoid_aliasing = True - new_signal_desc.lower_frequency = -0.5 if new_signal_desc.lower_frequency < -0.5 else new_signal_desc.lower_frequency - new_signal_desc.upper_frequency = 0.5 if new_signal_desc.upper_frequency > 0.5 else new_signal_desc.upper_frequency - - # Update bw & fc - new_signal_desc.bandwidth = new_signal_desc.upper_frequency - new_signal_desc.lower_frequency - new_signal_desc.center_frequency = new_signal_desc.lower_frequency + new_signal_desc.bandwidth * 0.5 - - # Append SignalDescription to list - new_signal_description.append(new_signal_desc) - - new_data.signal_description = new_signal_description - - # Apply data augmentation - if avoid_aliasing: - # If any potential aliasing detected, perform shifting at higher sample rate - new_data.iq_data = functional.freq_shift_avoid_aliasing(data.iq_data, freq_shift) - else: - # Otherwise, use faster freq shifter - new_data.iq_data = functional.freq_shift(data.iq_data, freq_shift) - - else: - new_data = functional.freq_shift(data, freq_shift) - return new_data - - -class RandomDelayedFrequencyShift(SignalTransform): - """Apply a delayed frequency shift to the input data - - Args: - start_shift (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - start_shift sets the start time of the delayed shift - * If Callable, produces a sample by calling start_shift() - * If int, start_shift is fixed at the value provided - * If list, start_shift is any element in the list - * If tuple, start_shift is in range of (tuple[0], tuple[1]) - - freq_shift (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - freq_shift sets the translation along the freq-axis - * If Callable, produces a sample by calling freq_shift() - * If int, freq_shift is fixed at the value provided - * If list, freq_shift is any element in the list - * If tuple, freq_shift is in range of (tuple[0], tuple[1]) - - """ - def __init__( - self, - start_shift: IntParameter = uniform_continuous_distribution(0.1,0.9), - freq_shift: IntParameter = uniform_continuous_distribution(-0.2,0.2), - ): - super(RandomDelayedFrequencyShift, self).__init__() - self.start_shift = to_distribution(start_shift, self.random_generator) - self.freq_shift = to_distribution(freq_shift, self.random_generator) - - def __call__(self, data: Any) -> Any: - start_shift = self.start_shift() - # Randomly generate a freq shift that is not near the original fc - freq_shift = 0 - while freq_shift < 0.05 and freq_shift > -0.05: - freq_shift = self.freq_shift() - - if isinstance(data, SignalData): - # Create new SignalData object for transformed data - new_data = SignalData( - data=None, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=[], - ) - new_data.iq_data = data.iq_data - num_iq_samples = data.iq_data.shape[0] - - # Setup new SignalDescription object - new_signal_description = [] - signal_description = [data.signal_description] if isinstance(data.signal_description, SignalDescription) else data.signal_description - avoid_aliasing = False - for signal_desc in signal_description: - new_signal_desc_first_seg = deepcopy(signal_desc) - new_signal_desc_sec_seg = deepcopy(signal_desc) - # Check bounds for partial signals - new_signal_desc_first_seg.lower_frequency = -0.5 if new_signal_desc_first_seg.lower_frequency < -0.5 else new_signal_desc_first_seg.lower_frequency - new_signal_desc_first_seg.upper_frequency = 0.5 if new_signal_desc_first_seg.upper_frequency > 0.5 else new_signal_desc_first_seg.upper_frequency - new_signal_desc_first_seg.bandwidth = new_signal_desc_first_seg.upper_frequency - new_signal_desc_first_seg.lower_frequency - new_signal_desc_first_seg.center_frequency = new_signal_desc_first_seg.lower_frequency + new_signal_desc_first_seg.bandwidth * 0.5 - - # Update time for original segment if present in segment and add to list - if new_signal_desc_first_seg.start < start_shift: - new_signal_desc_first_seg.stop = start_shift if new_signal_desc_first_seg.stop > start_shift else new_signal_desc_first_seg.stop - new_signal_desc_first_seg.duration = new_signal_desc_first_seg.stop - new_signal_desc_first_seg.start - # Append SignalDescription to list - new_signal_description.append(new_signal_desc_first_seg) - - # Begin second segment processing - new_signal_desc_sec_seg.lower_frequency = -0.5 if new_signal_desc_sec_seg.lower_frequency < -0.5 else new_signal_desc_sec_seg.lower_frequency - new_signal_desc_sec_seg.upper_frequency = 0.5 if new_signal_desc_sec_seg.upper_frequency > 0.5 else new_signal_desc_sec_seg.upper_frequency - new_signal_desc_sec_seg.bandwidth = new_signal_desc_sec_seg.upper_frequency - new_signal_desc_sec_seg.lower_frequency - new_signal_desc_sec_seg.center_frequency = new_signal_desc_sec_seg.lower_frequency + new_signal_desc_sec_seg.bandwidth * 0.5 - - # Update freqs for next segment - new_signal_desc_sec_seg.lower_frequency += freq_shift - new_signal_desc_sec_seg.upper_frequency += freq_shift - new_signal_desc_sec_seg.center_frequency += freq_shift - - # Check bounds for aliasing - if new_signal_desc_sec_seg.lower_frequency >= 0.5 or new_signal_desc_sec_seg.upper_frequency <= -0.5: - avoid_aliasing = True - continue - if new_signal_desc_sec_seg.lower_frequency < -0.45 or new_signal_desc_sec_seg.upper_frequency > 0.45: - avoid_aliasing = True - new_signal_desc_sec_seg.lower_frequency = -0.5 if new_signal_desc_sec_seg.lower_frequency < -0.5 else new_signal_desc_sec_seg.lower_frequency - new_signal_desc_sec_seg.upper_frequency = 0.5 if new_signal_desc_sec_seg.upper_frequency > 0.5 else new_signal_desc_sec_seg.upper_frequency - - # Update bw & fc - new_signal_desc_sec_seg.bandwidth = new_signal_desc_sec_seg.upper_frequency - new_signal_desc_sec_seg.lower_frequency - new_signal_desc_sec_seg.center_frequency = new_signal_desc_sec_seg.lower_frequency + new_signal_desc_sec_seg.bandwidth * 0.5 - - # Update time for shifted segment if present in segment and add to list - if new_signal_desc_sec_seg.stop > start_shift: - new_signal_desc_sec_seg.start = start_shift if new_signal_desc_sec_seg.start < start_shift else new_signal_desc_sec_seg.start - new_signal_desc_sec_seg.stop = new_signal_desc_sec_seg.stop - new_signal_desc_sec_seg.duration = new_signal_desc_sec_seg.stop - new_signal_desc_sec_seg.start - # Append SignalDescription to list - new_signal_description.append(new_signal_desc_sec_seg) - - # Update with the new SignalDescription - new_data.signal_description = new_signal_description - - # Perform augmentation - if avoid_aliasing: - # If any potential aliasing detected, perform shifting at higher sample rate - new_data.iq_data[int(start_shift*num_iq_samples):] = functional.freq_shift_avoid_aliasing( - data.iq_data[int(start_shift*num_iq_samples):], - freq_shift - ) - else: - # Otherwise, use faster freq shifter - new_data.iq_data[int(start_shift*num_iq_samples):] = functional.freq_shift( - data.iq_data[int(start_shift*num_iq_samples):], - freq_shift - ) - - return new_data - - -class LocalOscillatorDrift(SignalTransform): - """LocalOscillatorDrift is a transform modelling a local oscillator's drift in frequency by - a random walk in frequency. - - Args: - max_drift (FloatParameter, optional): - [description]. Defaults to uniform_continuous_distribution(0.005,0.015). - max_drift_rate (FloatParameter, optional): - [description]. Defaults to uniform_continuous_distribution(0.001,0.01). - - """ - def __init__( - self, - max_drift: FloatParameter = uniform_continuous_distribution(0.005,0.015), - max_drift_rate: FloatParameter = uniform_continuous_distribution(0.001,0.01), - **kwargs - ): - super(LocalOscillatorDrift, self).__init__(**kwargs) - self.max_drift = to_distribution(max_drift, self.random_generator) - self.max_drift_rate = to_distribution(max_drift_rate, self.random_generator) - - def __call__(self, data: Any) -> Any: - max_drift = self.max_drift() - max_drift_rate = self.max_drift_rate() - - iq_data = data.iq_data if isinstance(data, SignalData) else data - - # Apply drift as a random walk. - random_walk = self.random_generator.choice([-1, 1], size=iq_data.shape[0]) - - # limit rate of change to at most 1/max_drift_rate times the length of the data sample - frequency = np.cumsum(random_walk) * max_drift_rate / np.sqrt(iq_data.shape[0]) - - # Every time frequency hits max_drift, reset to zero. - while np.argmax(np.abs(frequency) > max_drift): - idx = np.argmax(np.abs(frequency) > max_drift) - offset = max_drift if frequency[idx] < 0 else -max_drift - frequency[idx:] += offset - min_offset = min(frequency) - max_offset = max(frequency) - - complex_phase = np.exp(2j*np.pi*np.cumsum(frequency)) - iq_data = iq_data*complex_phase - - if isinstance(data, SignalData): - # Create new SignalData object for transformed data - new_data = SignalData( - data=None, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=[], - ) - - # Update SignalDescription - new_signal_description = [] - signal_description = [data.signal_description] if isinstance(data.signal_description, SignalDescription) else data.signal_description - for signal_desc in signal_description: - new_signal_desc = deepcopy(signal_desc) - - # Expand frequency labels - new_signal_desc.lower_frequency += min_offset - new_signal_desc.upper_frequency += max_offset - new_signal_desc.bandwidth = new_signal_desc.upper_frequency - new_signal_desc.lower_frequency - - new_signal_description.append(new_signal_desc) - - new_data.signal_description = new_signal_description - new_data.iq_data = iq_data - else: - new_data = iq_data - - return new_data - - -class GainDrift(SignalTransform): - """GainDrift is a transform modelling a front end gain controller's drift in gain by - a random walk in gain values. - - Args: - max_drift (FloatParameter, optional): - [description]. Defaults to uniform_continuous_distribution(0.005,0.015). - min_drift (FloatParameter, optional): - [description]. Defaults to uniform_continuous_distribution(0.005,0.015). - drift_rate (FloatParameter, optional): - [description]. Defaults to uniform_continuous_distribution(0.001,0.01). - - """ - def __init__( - self, - max_drift: FloatParameter = uniform_continuous_distribution(0.005,0.015), - min_drift: FloatParameter = uniform_continuous_distribution(0.005,0.015), - drift_rate: FloatParameter = uniform_continuous_distribution(0.001,0.01), - **kwargs - ): - super(GainDrift, self).__init__(**kwargs) - self.max_drift = to_distribution(max_drift, self.random_generator) - self.min_drift = to_distribution(min_drift, self.random_generator) - self.drift_rate = to_distribution(drift_rate, self.random_generator) - - def __call__(self, data: Any) -> Any: - max_drift = self.max_drift() - min_drift = self.min_drift() - drift_rate = self.drift_rate() - - iq_data = data.iq_data if isinstance(data, SignalData) else data - - # Apply drift as a random walk. - random_walk = self.random_generator.choice([-1, 1], size=iq_data.shape[0]) - - # limit rate of change to at most 1/max_drift_rate times the length of the data sample - gain = np.cumsum(random_walk) * drift_rate / np.sqrt(iq_data.shape[0]) - - # Every time gain hits max_drift, reset to zero - while np.argmax(gain > max_drift): - idx = np.argmax(gain > max_drift) - offset = gain[idx] - max_drift - gain[idx:] -= offset - # Every time gain hits min_drift, reset to zero - while np.argmax(gain < min_drift): - idx = np.argmax(gain < min_drift) - offset = min_drift - gain[idx] - gain[idx:] += offset - iq_data = iq_data * (1 + gain) - - if isinstance(data, SignalData): - # Create new SignalData object for transformed data - new_data = SignalData( - data=None, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=data.signal_description, - ) - new_data.iq_data = iq_data - else: - new_data = iq_data - - return new_data - - -class AutomaticGainControl(SignalTransform): - """Automatic gain control (AGC) implementation - - Args: - rand_scale (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - Random scaling of alpha values - * If Callable, produces a sample by calling rand_scale() - * If int or float, rand_scale is fixed at the value provided - * If list, rand_scale is any element in the list - * If tuple, rand_scale is in range of (tuple[0], tuple[1]) - - initial_gain_db (:obj:`float`): - Initial gain value in linear units - - alpha_smooth (:obj:`float`): - Alpha for averaging the measured signal level level_n = level_n*alpha + level_n-1*(1 - alpha) - - alpha_track (:obj:`float`): - Amount by which to adjust gain when in tracking state - - alpha_overflow (:obj:`float`): - Amount by which to adjust gain when in overflow state [level_db + gain_db] >= max_level - - alpha_acquire (:obj:`float`): - Amount by which to adjust gain when in acquire state abs([ref_level_db - level_db - gain_db]) >= track_range_db - - ref_level_db (:obj:`float`): - Level to which we intend to adjust gain to achieve - - track_range_db (:obj:`float`): - Range from ref_level_linear for which we can deviate before going into acquire state - - low_level_db (:obj:`float`): - Level below which we disable AGC - - high_level_db (:obj:`float`): - Level above which we go into overflow state - - Example: - >>> import torchsig.transforms as ST - >>> transform = ST.AutomaticGainControl(rand_scale=(1.0,10.0)) - - """ - def __init__( - self, - rand_scale: FloatParameter = uniform_continuous_distribution(1.0,10.0), - initial_gain_db: float = 0.0, - alpha_smooth: float = 0.00004, - alpha_overflow: float = 0.3, - alpha_track: float = 0.0004, - alpha_acquire: float = 0.04, - ref_level_db: float = 0.0, - track_range_db: float = 1.0, - low_level_db: float = -80.0, - high_level_db: float = 6.0, - ): - super(AutomaticGainControl, self).__init__() - self.rand_scale = to_distribution(rand_scale, self.random_generator) - self.initial_gain_db = initial_gain_db - self.alpha_smooth = alpha_smooth - self.alpha_overflow = alpha_overflow - self.alpha_track = alpha_track - self.alpha_acquire = alpha_acquire - self.ref_level_db = ref_level_db - self.track_range_db = track_range_db - self.low_level_db = low_level_db - self.high_level_db = high_level_db - - def __call__(self, data: Any) -> Any: - iq_data = data.iq_data if isinstance(data, SignalData) else data - rand_scale = self.rand_scale() - alpha_acquire = np.random.uniform(self.alpha_acquire / rand_scale, self.alpha_acquire * rand_scale, 1) - alpha_overflow = np.random.uniform(self.alpha_overflow / rand_scale, self.alpha_overflow * rand_scale, 1) - alpha_track = np.random.uniform(self.alpha_track / rand_scale, self.alpha_track * rand_scale, 1) - alpha_smooth = np.random.uniform(self.alpha_smooth / rand_scale, self.alpha_smooth * rand_scale, 1) - - ref_level_db = np.random.uniform(-.5 + self.ref_level_db, .5 + self.ref_level_db, 1) - - iq_data = functional.agc( - np.ascontiguousarray(iq_data, dtype=np.complex64), - np.float64(self.initial_gain_db), - np.float64(alpha_smooth), - np.float64(alpha_track), - np.float64(alpha_overflow), - np.float64(alpha_acquire), - np.float64(ref_level_db), - np.float64(self.track_range_db), - np.float64(self.low_level_db), - np.float64(self.high_level_db) - ) - - if isinstance(data, SignalData): - # Create new SignalData object for transformed data - new_data = SignalData( - data=None, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=data.signal_description, - ) - new_data.iq_data = iq_data - else: - new_data = iq_data - - return new_data - - -class IQImbalance(SignalTransform): - """Applies various types of IQ imbalance to a tensor - - Args: - iq_amplitude_imbalance_db (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - * If Callable, produces a sample by calling iq_amplitude_imbalance() - * If int or float, iq_amplitude_imbalance is fixed at the value provided - * If list, iq_amplitude_imbalance is any element in the list - * If tuple, iq_amplitude_imbalance is in range of (tuple[0], tuple[1]) - - iq_phase_imbalance (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - * If Callable, produces a sample by calling iq_phase_imbalance() - * If int or float, iq_phase_imbalance is fixed at the value provided - * If list, iq_phase_imbalance is any element in the list - * If tuple, iq_phase_imbalance is in range of (tuple[0], tuple[1]) - - iq_dc_offset_db (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - * If Callable, produces a sample by calling iq_dc_offset() - * If int or float, iq_dc_offset_db is fixed at the value provided - * If list, iq_dc_offset is any element in the list - * If tuple, iq_dc_offset is in range of (tuple[0], tuple[1]) - - Note: - For more information about IQ imbalance in RF systems, check out - https://www.mathworks.com/help/comm/ref/iqimbalance.html - - Example: - >>> import torchsig.transforms as ST - >>> # IQ imbalance with default params - >>> transform = ST.IQImbalance() - - """ - def __init__( - self, - iq_amplitude_imbalance_db: NumericParameter = (0, 3), - iq_phase_imbalance: NumericParameter = (-np.pi*1.0/180.0, np.pi*1.0/180.0), - iq_dc_offset_db: NumericParameter = (-.1, .1) - ): - super(IQImbalance, self).__init__() - self.amp_imbalance = to_distribution(iq_amplitude_imbalance_db, self.random_generator) - self.phase_imbalance = to_distribution(iq_phase_imbalance, self.random_generator) - self.dc_offset = to_distribution(iq_dc_offset_db, self.random_generator) - - def __call__(self, data: Any) -> Any: - amp_imbalance = self.amp_imbalance() - phase_imbalance = self.phase_imbalance() - dc_offset = self.dc_offset() - - if isinstance(data, SignalData): - data.iq_data = functional.iq_imbalance( - data.iq_data, - amp_imbalance, - phase_imbalance, - dc_offset - ) - else: - data = functional.iq_imbalance( - data, - amp_imbalance, - phase_imbalance, - dc_offset - ) - return data - - -class RollOff(SignalTransform): - """Applies a band-edge RF roll-off effect simulating front end filtering - - Args: - low_freq (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - * If Callable, produces a sample by calling low_freq() - * If int or float, low_freq is fixed at the value provided - * If list, low_freq is any element in the list - * If tuple, low_freq is in range of (tuple[0], tuple[1]) - - upper_freq (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - * If Callable, produces a sample by calling upper_freq() - * If int or float, upper_freq is fixed at the value provided - * If list, upper_freq is any element in the list - * If tuple, upper_freq is in range of (tuple[0], tuple[1]) - - low_cut_apply (:obj:`float`): - Probability that the low frequency provided above is applied - - upper_cut_apply (:obj:`float`): - Probability that the upper frequency provided above is applied - - order (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - * If Callable, produces a sample by calling order() - * If int or float, order is fixed at the value provided - * If list, order is any element in the list - * If tuple, order is in range of (tuple[0], tuple[1]) - - """ - def __init__( - self, - low_freq: NumericParameter = (0.00, 0.05), - upper_freq: NumericParameter = (0.95, 1.00), - low_cut_apply: float = 0.5, - upper_cut_apply: float = 0.5, - order: NumericParameter = (6, 20), - ): - super(RollOff, self).__init__() - self.low_freq = to_distribution(low_freq, self.random_generator) - self.upper_freq = to_distribution(upper_freq, self.random_generator) - self.low_cut_apply = low_cut_apply - self.upper_cut_apply = upper_cut_apply - self.order = to_distribution(order, self.random_generator) - - def __call__(self, data: Any) -> Any: - low_freq = self.low_freq() if np.random.rand() < self.low_cut_apply else 0.0 - upper_freq = self.upper_freq() if np.random.rand() < self.upper_cut_apply else 1.0 - order = self.order() - if isinstance(data, SignalData): - data.iq_data = functional.roll_off(data.iq_data, low_freq, upper_freq, int(order)) - else: - data = functional.roll_off(data, low_freq, upper_freq, int(order)) - return data - - -class AddSlope(SignalTransform): - """Add the slope of each sample with its preceeding sample to itself. - Creates a weak 0 Hz IF notch filtering effect - - """ - def __init__(self, **kwargs): - super(AddSlope, self).__init__(**kwargs) - - def __call__(self, data: Any) -> Any: - if isinstance(data, SignalData): - # Create new SignalData object for transformed data - new_data = SignalData( - data=None, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=data.signal_description, - ) - - # Apply data augmentation - new_data.iq_data = functional.add_slope(data.iq_data) - - else: - new_data = functional.add_slope(data) - return new_data - - -class SpectralInversion(SignalTransform): - """Applies a spectral inversion - - """ - def __init__(self): - super(SpectralInversion, self).__init__() - - def __call__(self, data: Any) -> Any: - if isinstance(data, SignalData): - # Create new SignalData object for transformed data - new_data = SignalData( - data=None, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=[], - ) - - # Perform data augmentation - new_data.iq_data = functional.spectral_inversion(data.iq_data) - - # Update SignalDescription - new_signal_description = [] - signal_description = [data.signal_description] if isinstance(data.signal_description, SignalDescription) else data.signal_description - for signal_desc in signal_description: - new_signal_desc = deepcopy(signal_desc) - - # Invert frequency labels - original_lower = new_signal_desc.lower_frequency - original_upper = new_signal_desc.upper_frequency - new_signal_desc.lower_frequency = original_upper * -1 - new_signal_desc.upper_frequency = original_lower * -1 - new_signal_desc.center_frequency *= -1 - - new_signal_description.append(new_signal_desc) - - new_data.signal_description = new_signal_description - - else: - new_data = functional.spectral_inversion(data) - return new_data - - -class ChannelSwap(SignalTransform): - """Transform that swaps the I and Q channels of complex input data - - """ - def __init__(self): - super(ChannelSwap, self).__init__() - - def __call__(self, data: Any) -> Any: - if isinstance(data, SignalData): - # Create new SignalData object for transformed data - new_data = SignalData( - data=None, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=[], - ) - - # Update SignalDescription - new_signal_description = [] - signal_description = [data.signal_description] if isinstance(data.signal_description, SignalDescription) else data.signal_description - for signal_desc in signal_description: - new_signal_desc = deepcopy(signal_desc) - - # Invert frequency labels - original_lower = new_signal_desc.lower_frequency - original_upper = new_signal_desc.upper_frequency - new_signal_desc.lower_frequency = original_upper * -1 - new_signal_desc.upper_frequency = original_lower * -1 - new_signal_desc.center_frequency *= -1 - - new_signal_description.append(new_signal_desc) - - new_data.signal_description = new_signal_description - - # Perform data augmentation - new_data.iq_data = functional.channel_swap(data.iq_data) - - else: - new_data = functional.channel_swap(data) - return new_data - - -class RandomMagRescale(SignalTransform): - """Randomly apply a magnitude rescaling, emulating a change in a receiver's - gain control - - Args: - start (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - start sets the time when the rescaling kicks in - * If Callable, produces a sample by calling start() - * If int or float, start is fixed at the value provided - * If list, start is any element in the list - * If tuple, start is in range of (tuple[0], tuple[1]) - - scale (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - scale sets the magnitude of the rescale - * If Callable, produces a sample by calling scale() - * If int or float, scale is fixed at the value provided - * If list, scale is any element in the list - * If tuple, scale is in range of (tuple[0], tuple[1]) - - """ - def __init__( - self, - start: NumericParameter = uniform_continuous_distribution(0.0,0.9), - scale: NumericParameter = uniform_continuous_distribution(-4.0,4.0), - ): - super(RandomMagRescale, self).__init__() - self.start = to_distribution(start, self.random_generator) - self.scale = to_distribution(scale, self.random_generator) - - def __call__(self, data: Any) -> Any: - start = self.start() - scale = self.scale() - - if isinstance(data, SignalData): - # Create new SignalData object for transformed data - new_data = SignalData( - data=None, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=data.signal_description, - ) - - # Perform data augmentation - new_data.iq_data = functional.mag_rescale(data.iq_data, start, scale) - - else: - new_data = functional.mag_rescale(data, start, scale) - return new_data - - -class RandomDropSamples(SignalTransform): - """Randomly drop IQ samples from the input data of specified durations and - with specified fill techniques: - * `ffill` (front fill): replace drop samples with the last previous value - * `bfill` (back fill): replace drop samples with the next value - * `mean`: replace drop samples with the mean value of the full data - * `zero`: replace drop samples with zeros - - Transform is based off of the - `TSAug Dropout Transform `_. - - Args: - drop_rate (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - drop_rate sets the rate at which to drop samples - * If Callable, produces a sample by calling drop_rate() - * If int or float, drop_rate is fixed at the value provided - * If list, drop_rate is any element in the list - * If tuple, drop_rate is in range of (tuple[0], tuple[1]) - - size (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - size sets the size of each instance of dropped samples - * If Callable, produces a sample by calling size() - * If int or float, size is fixed at the value provided - * If list, size is any element in the list - * If tuple, size is in range of (tuple[0], tuple[1]) - - fill (:py:class:`~Callable`, :obj:`list`, :obj:`str`): - fill sets the method of how the dropped samples should be filled - * If Callable, produces a sample by calling fill() - * If list, fill is any element in the list - * If str, fill is fixed at the method provided - - """ - def __init__( - self, - drop_rate: NumericParameter = uniform_continuous_distribution(0.01,0.05), - size: NumericParameter = uniform_discrete_distribution(np.arange(1,10)), - fill: Union[List, str] = uniform_discrete_distribution(["ffill", "bfill", "mean", "zero"]), - ): - super(RandomDropSamples, self).__init__() - self.drop_rate = to_distribution(drop_rate, self.random_generator) - self.size = to_distribution(size, self.random_generator) - self.fill = to_distribution(fill, self.random_generator) - - def __call__(self, data: Any) -> Any: - drop_rate = self.drop_rate() - fill = self.fill() - - if isinstance(data, SignalData): - # Create new SignalData object for transformed data - new_data = SignalData( - data=None, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=data.signal_description, - ) - - # Perform data augmentation - drop_instances = int(data.iq_data.shape[0] * drop_rate) - drop_sizes = self.size(drop_instances).astype(int) - drop_starts = np.random.uniform(1, data.iq_data.shape[0]-max(drop_sizes)-1, drop_instances).astype(int) - - new_data.iq_data = functional.drop_samples(data.iq_data, drop_starts, drop_sizes, fill) - - else: - drop_instances = int(data.shape[0] * drop_rate) - drop_sizes = self.size(drop_instances).astype(int) - drop_starts = np.random.uniform(0, data.shape[0]-max(drop_sizes), drop_instances).astype(int) - - new_data = functional.drop_samples(data, drop_starts, drop_sizes, fill) - return new_data - - -class Quantize(SignalTransform): - """Quantize the input to the number of levels specified - - Args: - num_levels (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - num_levels sets the number of quantization levels - * If Callable, produces a sample by calling num_levels() - * If int or float, num_levels is fixed at the value provided - * If list, num_levels is any element in the list - * If tuple, num_levels is in range of (tuple[0], tuple[1]) - - round_type (:py:class:`~Callable`, :obj:`str`, :obj:`list`): - round_type sets the rounding direction of the quantization. Options - include: 'floor', 'middle', & 'ceiling' - * If Callable, produces a sample by calling round_type() - * If str, round_type is fixed at the value provided - * If list, round_type is any element in the list - """ - def __init__( - self, - num_levels: NumericParameter = uniform_discrete_distribution([16,24,32,40,48,56,64]), - round_type: Union[List, str] = ["floor", "middle", "ceiling"], - ): - super(Quantize, self).__init__() - self.num_levels = to_distribution(num_levels, self.random_generator) - self.round_type = to_distribution(round_type, self.random_generator) - - def __call__(self, data: Any) -> Any: - num_levels = self.num_levels() - round_type = self.round_type() - - if isinstance(data, SignalData): - # Create new SignalData object for transformed data - new_data = SignalData( - data=None, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=data.signal_description, - ) - - # Perform data augmentation - new_data.iq_data = functional.quantize(data.iq_data, num_levels, round_type) - - else: - new_data = functional.quantize(data, num_levels, round_type) - return new_data - - -class Clip(SignalTransform): - """Clips the input values to a percentage of the max/min values - - Args: - clip_percentage (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - Specifies the percentage of the max/min values to clip - * If Callable, produces a sample by calling clip_percentage() - * If int or float, clip_percentage is fixed at the value provided - * If list, clip_percentage is any element in the list - * If tuple, clip_percentage is in range of (tuple[0], tuple[1]) - - """ - - def __init__( - self, - clip_percentage: NumericParameter = uniform_continuous_distribution(0.75, 0.95), - **kwargs, - ): - super(Clip, self).__init__(**kwargs) - self.clip_percentage = to_distribution(clip_percentage) - - def __call__(self, data: Any) -> Any: - clip_percentage = self.clip_percentage() - - if isinstance(data, SignalData): - # Create new SignalData object for transformed data - new_data = SignalData( - data=None, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=data.signal_description, - ) - - # Apply data augmentation - new_data.iq_data = functional.clip(data.iq_data, clip_percentage) - - else: - new_data = functional.clip(data, clip_percentage) - return new_data - - -class RandomConvolve(SignalTransform): - """Convolve a random complex filter with the input data - - Args: - num_taps (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - Number of taps for the random filter - * If Callable, produces a sample by calling num_taps() - * If int or float, num_taps is fixed at the value provided - * If list, num_taps is any element in the list - * If tuple, num_taps is in range of (tuple[0], tuple[1]) - - alpha (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - The effect of the filtered data is dampened using an alpha factor - that determines the weightings for the summing of the filtered data - and the original data. `alpha` should be in range `[0,1]` where a - value of 0 applies all of the weight to the original data, and a - value of 1 applies all of the weight to the filtered data - * If Callable, produces a sample by calling alpha() - * If int or float, alpha is fixed at the value provided - * If list, alpha is any element in the list - * If tuple, alpha is in range of (tuple[0], tuple[1]) - - """ - def __init__( - self, - num_taps: IntParameter = uniform_continuous_distribution(2, 5), - alpha: FloatParameter = uniform_continuous_distribution(0.1, 0.5), - **kwargs, - ): - super(RandomConvolve, self).__init__(**kwargs) - self.num_taps = to_distribution(num_taps, self.random_generator) - self.alpha = to_distribution(alpha, self.random_generator) - - def __call__(self, data: Any) -> Any: - num_taps = int(self.num_taps()) - alpha = self.alpha() - - if isinstance(data, SignalData): - # Create new SignalData object for transformed data - new_data = SignalData( - data=None, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=data.signal_description, - ) - - # Apply data augmentation - new_data.iq_data = functional.random_convolve(data.iq_data, num_taps, alpha) - - else: - new_data = functional.random_convolve(data, num_taps, alpha) - return new_data diff --git a/torchsig/transforms/system_impairment/si_functional.py b/torchsig/transforms/system_impairment/si_functional.py deleted file mode 100644 index d57240d..0000000 --- a/torchsig/transforms/system_impairment/si_functional.py +++ /dev/null @@ -1,638 +0,0 @@ -import numpy as np -from scipy import signal as sp -from numba import njit, int64, float64, complex64 - - -def time_shift( - tensor: np.ndarray, - t_shift: float -) -> np.ndarray: - """Shifts tensor in the time dimension by tshift samples. Zero-padding is applied to maintain input size. - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor to be shifted. - - t_shift (:obj:`int` or :class:`numpy.ndarray`): - Number of samples to shift right or left (if negative) - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor shifted in time of size tensor.shape - """ - # Valid Range Error Checking - if np.max(np.abs(t_shift)) >= tensor.shape[0]: - return np.zeros_like(tensor, dtype=np.complex64) - - # This overwrites tensor as side effect, modifies inplace - if t_shift > 0: - tmp = tensor[:-t_shift] # I'm sure there's a more compact way. - tensor = np.pad(tmp, (t_shift, 0), 'constant', constant_values=0 + 0j) - elif t_shift < 0: - tmp = tensor[-t_shift:] # I'm sure there's a more compact way. - tensor = np.pad(tmp, (0, -t_shift), 'constant', constant_values=0 + 0j) - return tensor - - -def time_crop( - tensor: np.ndarray, - start: int, - length: int -) -> np.ndarray: - """Crops a tensor in the time dimension from index start(inclusive) for length samples. - - Args: - tensor (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor to be cropped. - - start (:obj:`int` or :class:`numpy.ndarray`): - index to begin cropping - - length (:obj:`int`): - number of samples to include - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor cropped in time of size (tensor.shape[0], length) - """ - # Type and Size checking - if length < 0: - raise ValueError('Length must be greater than 0') - - if np.any(start < 0): - raise ValueError('Start must be greater than 0') - - if np.max(start) >= tensor.shape[0] or length == 0: - return np.empty(shape=(1, 1)) - - crop_len = min(length, tensor.shape[0] - np.max(start)) - - return tensor[start:start + crop_len] - - -def freq_shift(tensor: np.ndarray, f_shift: float) -> np.ndarray: - """Shifts each tensor in freq by freq_shift along the time dimension - - Args: - tensor (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor to be frequency-shifted. - - f_shift (:obj:`float` or :class:`numpy.ndarray`): - Frequency shift relative to the sample rate in range [-.5, .5] - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has been frequency shifted along time dimension of size tensor.shape - """ - sinusoid = np.exp(2j * np.pi * f_shift * np.arange(tensor.shape[0], dtype=np.float64)) - return np.multiply(tensor, np.asarray(sinusoid)) - - -def freq_shift_avoid_aliasing(tensor: np.ndarray, f_shift: float) -> np.ndarray: - """Similar to `freq_shift` function but performs the frequency shifting at - a higher sample rate with filtering to avoid aliasing - - Args: - tensor (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor to be frequency-shifted. - - f_shift (:obj:`float` or :class:`numpy.ndarray`): - Frequency shift relative to the sample rate in range [-.5, .5] - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has been frequency shifted along time dimension of size tensor.shape - """ - # Match output size to input - num_iq_samples = tensor.shape[0] - - # Interpolate up to avoid frequency wrap around during shift - up = 2 - down = 1 - tensor = sp.resample_poly(tensor, up, down) - - # Filter around center to remove original alias effects - num_taps = int(2*np.ceil(50*2*np.pi/(1/up)/.125/22)) # fred harris rule of thumb * 2 - taps = sp.firwin( - num_taps, - (1/up), - width=(1/up) * .02, - window=sp.get_window("blackman", num_taps), - scale=True - ) - tensor = sp.fftconvolve(tensor, taps, mode="same") - - # Freq shift to desired center freq - time_vector = np.arange(tensor.shape[0], dtype=np.float) - tensor = tensor * np.exp(2j * np.pi * f_shift / up * time_vector) - - # Filter to remove out-of-band regions - num_taps = int(2 * np.ceil(50 * 2 * np.pi / (1/up) / .125 / 22)) # fred harris rule-of-thumb * 2 - taps = sp.firwin( - num_taps, - 1 / up, - width=(1/up) * .02, - window=sp.get_window("blackman", num_taps), - scale=True - ) - tensor = sp.fftconvolve(tensor, taps, mode="same") - tensor = tensor[:int(num_iq_samples*up)] # prune to be correct size out of filter - - # Decimate back down to correct sample rate - tensor = sp.resample_poly(tensor, down, up) - - return tensor[:num_iq_samples] - - -@njit(cache=False) -def _fractional_shift_helper( - taps: np.ndarray, - raw_iq: np.ndarray, - stride: int, - offset: int -): - """Fractional shift. First, we up-sample by a large, fixed amount. Filter with 1/upsample_rate/2.0, - Next we down-sample by the same, large fixed amount with a chosen offset. Doing this efficiently means not actually zero-padding. - - The efficient way to do this is to decimate the taps and filter the signal with some offset in the taps. - """ - # We purposely do not calculate values within the group delay. - group_delay = ((taps.shape[0] - 1) // 2 - (stride - 1)) // stride + 1 - if offset < 0: - offset += stride - group_delay -= 1 - - # Decimate the taps. - taps = taps[offset::stride] - - # Determine output size - num_taps = taps.shape[0] - num_raw_iq = raw_iq.shape[0] - output = np.zeros(((num_taps + num_raw_iq - 1 - group_delay),), dtype=np.complex128) - - # This is a just convolution of taps and raw_iq - for o_idx in range(output.shape[0]): - idx_mn = o_idx - (num_raw_iq - 1) if o_idx >= num_raw_iq - 1 else 0 - idx_mx = o_idx if o_idx < num_taps - 1 else num_taps - 1 - for f_idx in range(idx_mn, idx_mx): - output[o_idx - group_delay] += taps[f_idx] * raw_iq[o_idx - f_idx] - return output - - -def fractional_shift( - tensor: np.ndarray, - taps: np.ndarray, - stride: int, - delay: int -): - """Applies fractional sample delay of delay using a polyphase interpolator - - Args: - tensor (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor to be shifted in time. - - taps (:obj:`float` or :class:`numpy.ndarray`): - taps to use for filtering - - stride (:obj:`int`): - interpolation rate of internal filter - - delay (:obj:`int` ): - Delay in number of samples in [-1, 1] - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has been fractionally-shifted along time dimension of size tensor.shape - """ - real_part = _fractional_shift_helper(taps, tensor.real, stride, int(stride * float(delay))) - imag_part = _fractional_shift_helper(taps, tensor.imag, stride, int(stride * float(delay))) - tensor = real_part[:tensor.shape[0]] + 1j * imag_part[:tensor.shape[0]] - zero_idx = -1 if delay < 0 else 0 # do not extrapolate, zero-pad. - tensor[zero_idx] = 0 - return tensor - - -def iq_imbalance( - tensor: np.ndarray, - iq_amplitude_imbalance_db: float, - iq_phase_imbalance: float, - iq_dc_offset_db: float -) -> np.ndarray: - """Applies IQ imbalance to tensor - - Args: - tensor (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor to be shifted in time. - - iq_amplitude_imbalance_db (:obj:`float` or :class:`numpy.ndarray`): - IQ amplitude imbalance in dB - - iq_phase_imbalance (:obj:`float` or :class:`numpy.ndarray`): - IQ phase imbalance in radians [-pi, pi] - - iq_dc_offset_db (:obj:`float` or :class:`numpy.ndarray`): - IQ DC Offset in dB - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has an IQ imbalance applied across the time dimension of size tensor.shape - """ - # amplitude imbalance - tensor = 10 ** (iq_amplitude_imbalance_db / 10.0) * np.real(tensor) + \ - 1j * 10 ** (iq_amplitude_imbalance_db / 10.0) * np.imag(tensor) - - # phase imbalance - tensor = np.exp(-1j * iq_phase_imbalance / 2.0) * np.real(tensor) + \ - np.exp(1j * (np.pi / 2.0 + iq_phase_imbalance / 2.0)) * np.imag(tensor) - - tensor += 10 ** (iq_dc_offset_db / 10.0) * np.real(tensor) + \ - 1j * 10 ** (iq_dc_offset_db / 10.0) * np.imag(tensor) - return tensor - - -def spectral_inversion(tensor: np.ndarray) -> np.ndarray: - """Applies a spectral inversion - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has undergone a spectral inversion - - """ - tensor.imag *= -1 - return tensor - - -def channel_swap(tensor: np.ndarray) -> np.ndarray: - """Swap the I and Q channels of input complex data - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has undergone channel swapping - - """ - real_component = tensor.real - imag_component = tensor.imag - new_tensor = np.empty(*tensor.shape, dtype=tensor.dtype) - new_tensor.real = imag_component - new_tensor.imag = real_component - return new_tensor - - -def time_reversal(tensor: np.ndarray) -> np.ndarray: - """Applies a time reversal to the input tensor - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has undergone a time reversal - - """ - return np.flip(tensor, axis=0) - - -def amplitude_reversal(tensor: np.ndarray) -> np.ndarray: - """Applies an amplitude reversal to the input tensor by multiplying by -1 - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has undergone an amplitude reversal - - """ - return tensor*-1 - - -def roll_off( - tensor: np.ndarray, - lowercutfreq: float, - uppercutfreq: float, - fltorder: int, -) -> np.ndarray: - """Applies front-end filter to tensor. Rolls off lower/upper edges of bandwidth - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - lowercutfreq (:obj:`float`): - lower bandwidth cut-off to begin linear roll-off - - uppercutfreq (:obj:`float`): - upper bandwidth cut-off to begin linear roll-off - - fltorder (:obj:`int`): - order of each FIR filter to be applied - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has undergone front-end filtering. - - """ - if (lowercutfreq == 0) & (uppercutfreq == 1): - return tensor - elif uppercutfreq == 1: - if fltorder % 2 == 0: - fltorder += 1 - bandwidth = uppercutfreq - lowercutfreq - center_freq = lowercutfreq - 0.5 + bandwidth/2 - num_taps = fltorder - sinusoid = np.exp(2j * np.pi * center_freq * np.linspace(0, num_taps - 1, num_taps)) - taps = sp.firwin( - num_taps, - bandwidth, - width=bandwidth * .02, - window=sp.get_window("blackman", num_taps), - scale=True - ) - taps = taps * sinusoid - return sp.fftconvolve(tensor, taps, mode="same") - - -def add_slope(tensor: np.ndarray) -> np.ndarray: - """The slope between each sample and its preceeding sample is added to - every sample - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor with added noise. - """ - slope = np.diff(tensor) - slope = np.insert(slope, 0, 0) - return tensor + slope - - -def mag_rescale( - tensor: np.ndarray, - start: float, - scale: float, -) -> np.ndarray: - """Apply a rescaling of input `scale` starting at time `start` - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - start (:obj:`float`): - Normalized start time of rescaling - - scale (:obj:`float`): - Scaling factor - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has undergone rescaling - - """ - start = int(tensor.shape[0] * start) - tensor[start:] *= scale - return tensor - - -def drop_samples( - tensor: np.ndarray, - drop_starts: np.ndarray, - drop_sizes: np.ndarray, - fill: str, -) -> np.ndarray: - """Drop samples at specified input locations/durations with fill technique - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - drop_starts (:class:`numpy.ndarray`): - Indices of where drops start - - drop_sizes (:class:`numpy.ndarray`): - Durations of each drop instance - - fill (:obj:`str`): - String specifying how the dropped samples should be replaced - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has undergone the dropped samples - - """ - for idx, drop_start in enumerate(drop_starts): - if fill == "ffill": - drop_region = np.ones(drop_sizes[idx], dtype=np.complex64)*tensor[drop_start-1] - elif fill == "bfill": - drop_region = np.ones(drop_sizes[idx], dtype=np.complex64)*tensor[drop_start+drop_sizes[idx]] - elif fill == "mean": - drop_region = np.ones(drop_sizes[idx], dtype=np.complex64)*np.mean(tensor) - elif fill == "zero": - drop_region = np.zeros(drop_sizes[idx], dtype=np.complex64) - else: - raise ValueError("fill expects ffill, bfill, mean, or zero. Found {}".format(fill)) - - # Update drop region - tensor[drop_start:drop_start+drop_sizes[idx]] = drop_region - - return tensor - - -def quantize( - tensor: np.ndarray, - num_levels: int, - round_type: str = 'floor', -) -> np.ndarray: - """Quantize the input to the number of levels specified - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - num_levels (:obj:`int`): - Number of quantization levels - - round_type (:obj:`str`): - Quantization rounding. Options: 'floor', 'middle', 'ceiling' - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has undergone quantization - - """ - # Setup quantization resolution/bins - max_value = max(np.abs(tensor)) + 1e-9 - bins = np.linspace(-max_value,max_value,num_levels+1) - - # Digitize to bins - quantized_real = np.digitize(tensor.real, bins) - quantized_imag = np.digitize(tensor.imag, bins) - - if round_type == 'floor': - quantized_real -= 1 - quantized_imag -= 1 - - # Revert to values - quantized_real = bins[quantized_real] - quantized_imag = bins[quantized_imag] - - if round_type == 'nearest': - bin_size = np.diff(bins)[0] - quantized_real -= (bin_size/2) - quantized_imag -= (bin_size/2) - - quantized_tensor = quantized_real + 1j*quantized_imag - - return quantized_tensor - - -def clip(tensor: np.ndarray, clip_percentage: float) -> np.ndarray: - """Clips input tensor's values above/below a specified percentage of the - max/min of the input tensor - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - clip_percentage (:obj:`float`): - Percentage of max/min values to clip - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor with added noise. - """ - real_tensor = tensor.real - max_val = np.max(real_tensor) * clip_percentage - min_val = np.min(real_tensor) * clip_percentage - real_tensor[real_tensor>max_val] = max_val - real_tensor[real_tensormax_val] = max_val - imag_tensor[imag_tensor np.ndarray: - """Create a complex-valued filter with `num_taps` number of taps, convolve - the random filter with the input data, and sum the original data with the - randomly-filtered data using an `alpha` weighting factor. - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - num_taps: (:obj:`int`): - Number of taps in random filter - - alpha: (:obj:`float`): - Weighting for the summation between the original data and the - randomly-filtered data, following: - - `output = (1 - alpha) * tensor + alpha * filtered_tensor` - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor with weighted random filtering - - """ - filter_taps = np.random.rand(num_taps)+1j*np.random.rand(num_taps) - return (1 - alpha) * tensor + alpha * np.convolve(tensor, filter_taps, mode='same') - - -@njit(complex64[:](complex64[:], float64, float64, float64, float64, float64, float64, float64, float64, float64), cache=False) -def agc( - tensor: np.ndarray, - initial_gain_db: float, - alpha_smooth: float, - alpha_track: float, - alpha_overflow: float, - alpha_acquire: float, - ref_level_db: float, - track_range_db: float, - low_level_db: float, - high_level_db: float, -) -> np.ndarray: - """AGC implementation - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor to be agc'd - - initial_gain_db (:obj:`float`): - Initial gain value in linear units - - alpha_smooth (:obj:`float`): - Alpha for averaging the measured signal level level_n = level_n*alpha + level_n-1*(1 - alpha) - - alpha_track (:obj:`float`): - Amount by which to adjust gain when in tracking state - - alpha_overflow (:obj:`float`): - Amount by which to adjust gain when in overflow state [level_db + gain_db] >= max_level - - alpha_acquire (:obj:`float`): - Amount by which to adjust gain when in acquire state abs([ref_level_db - level_db - gain_db]) >= track_range_db - - ref_level_db (:obj:`float`): - Level to which we intend to adjust gain to achieve - - track_range_db (:obj:`float`): - Range from ref_level_linear for which we can deviate before going into acquire state - - low_level_db (:obj:`float`): - Level below which we disable AGC - - high_level_db (:obj:`float`): - Level above which we go into overflow state - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor with AGC applied - - """ - output = np.zeros_like(tensor) - gain_db = initial_gain_db - level_db = 0.0 - for sample_idx, sample in enumerate(tensor): - if np.abs(sample) == 0: - level_db = -200 - elif sample_idx == 0: # first sample, no smoothing - level_db = np.log(np.abs(sample)) - else: - level_db = level_db*alpha_smooth + np.log(np.abs(sample))*(1 - alpha_smooth) - output_db = level_db + gain_db - diff_db = ref_level_db - output_db - - if level_db <= low_level_db: - alpha_adjust = 0 - elif output_db >= high_level_db: - alpha_adjust = alpha_overflow - elif (abs(diff_db) > track_range_db): - alpha_adjust = alpha_acquire - else: - alpha_adjust = alpha_track - - gain_db += diff_db * alpha_adjust - output[sample_idx] = tensor[sample_idx] * np.exp(gain_db) - return output diff --git a/torchsig/transforms/target_transforms/target_transforms.py b/torchsig/transforms/target_transforms.py similarity index 71% rename from torchsig/transforms/target_transforms/target_transforms.py rename to torchsig/transforms/target_transforms.py index ad3c620..5ec3c35 100644 --- a/torchsig/transforms/target_transforms/target_transforms.py +++ b/torchsig/transforms/target_transforms.py @@ -1,9 +1,39 @@ -import torch +from typing import Any, Dict, List, Optional, Tuple, Union + import numpy as np -from typing import Tuple, List, Any, Union, Optional +import torch -from torchsig.utils.types import SignalDescription from torchsig.transforms.transforms import Transform +from torchsig.utils.types import SignalDescription + +__all__ = [ + "DescToClassName", + "DescToClassNameSNR", + "DescToClassIndex", + "DescToClassIndexSNR", + "DescToMask", + "DescToMaskSignal", + "DescToMaskFamily", + "DescToMaskClass", + "DescToSemanticClass", + "DescToBBox", + "DescToAnchorBoxes", + "DescPassThrough", + "DescToBinary", + "DescToCustom", + "DescToClassEncoding", + "DescToWeightedMixUp", + "DescToWeightedCutMix", + "DescToBBoxDict", + "DescToBBoxSignalDict", + "DescToBBoxFamilyDict", + "DescToInstMaskDict", + "DescToSignalInstMaskDict", + "DescToSignalFamilyInstMaskDict", + "DescToListTuple", + "ListTupleToDesc", + "LabelSmoothing", +] class DescToClassName(Transform): @@ -12,26 +42,27 @@ class DescToClassName(Transform): """ - def __init__(self): + def __init__(self) -> None: super(DescToClassName, self).__init__() def __call__( self, signal_description: Union[List[SignalDescription], SignalDescription] ) -> Union[List[str], str]: - classes = [] + classes: List[str] = [] # Handle cases of both SignalDescriptions and lists of SignalDescriptions - signal_description = ( + signal_description_list: List[SignalDescription] = ( [signal_description] if isinstance(signal_description, SignalDescription) else signal_description ) - for signal_desc_idx, signal_desc in enumerate(signal_description): - curr_class_name = ( - signal_desc.class_name[0] + for signal_desc_idx, signal_desc in enumerate(signal_description_list): + curr_class_name: Optional[str] = ( + signal_desc.class_name[0] # type: ignore if isinstance(signal_desc.class_name, list) else signal_desc.class_name ) - classes.append(curr_class_name) + if curr_class_name is not None: + classes.append(curr_class_name) # type: ignore if len(classes) > 1: return classes elif len(classes) == 1: @@ -47,23 +78,25 @@ class DescToClassNameSNR(Transform): """ - def __init__(self): + def __init__(self) -> None: super(DescToClassNameSNR, self).__init__() def __call__( self, signal_description: Union[List[SignalDescription], SignalDescription] ) -> Union[Tuple[List[str], List[float]], Tuple[str, float]]: - classes = [] - snrs = [] + classes: List[str] = [] + snrs: List[float] = [] # Handle cases of both SignalDescriptions and lists of SignalDescriptions - signal_description = ( + signal_description_list: List[SignalDescription] = ( [signal_description] if isinstance(signal_description, SignalDescription) else signal_description ) - for signal_desc_idx, signal_desc in enumerate(signal_description): - classes.append(signal_desc.class_name) - snrs.append(signal_desc.snr) + for signal_desc_idx, signal_desc in enumerate(signal_description_list): + if signal_desc.class_name is not None: + classes.append(signal_desc.class_name) # type: ignore + if signal_desc.snr is not None: + snrs.append(signal_desc.snr) # type: ignore if len(classes) > 1: return classes, snrs else: @@ -83,23 +116,24 @@ class DescToClassIndex(Transform): """ - def __init__(self, class_list: List[str] = None): + def __init__(self, class_list: List[str]) -> None: super(DescToClassIndex, self).__init__() self.class_list = class_list def __call__( self, signal_description: Union[List[SignalDescription], SignalDescription] ) -> Union[List[int], int]: - classes = [] + classes: List[int] = [] # Handle cases of both SignalDescriptions and lists of SignalDescriptions - signal_description = ( + signal_description_list: List[SignalDescription] = ( [signal_description] if isinstance(signal_description, SignalDescription) else signal_description ) - for signal_desc_idx, signal_desc in enumerate(signal_description): + for signal_desc_idx, signal_desc in enumerate(signal_description_list): if signal_desc.class_name in self.class_list: - classes.append(self.class_list.index(signal_desc.class_name)) + curr_class: str = signal_desc.class_name + classes.append(self.class_list.index(curr_class)) if len(classes) > 1: return classes else: @@ -119,22 +153,22 @@ class DescToClassIndexSNR(Transform): """ - def __init__(self, class_list: List[str] = None): + def __init__(self, class_list: List[str]) -> None: super(DescToClassIndexSNR, self).__init__() self.class_list = class_list def __call__( self, signal_description: Union[List[SignalDescription], SignalDescription] - ) -> Union[Tuple[List[int], List[float]], Tuple[int, float]]: + ) -> Union[Tuple[List[int], List[Optional[float]]], Tuple[int, Optional[float]]]: classes = [] snrs = [] # Handle cases of both SignalDescriptions and lists of SignalDescriptions - signal_description = ( + signal_description_list: List[SignalDescription] = ( [signal_description] if isinstance(signal_description, SignalDescription) else signal_description ) - for signal_desc_idx, signal_desc in enumerate(signal_description): + for signal_desc_idx, signal_desc in enumerate(signal_description_list): if signal_desc.class_name in self.class_list: classes.append(self.class_list.index(signal_desc.class_name)) snrs.append(signal_desc.snr) @@ -157,7 +191,7 @@ class DescToMask(Transform): """ - def __init__(self, max_bursts: int, width: int, height: int): + def __init__(self, max_bursts: int, width: int, height: int) -> None: super(DescToMask, self).__init__() self.max_bursts = max_bursts self.width = width @@ -167,14 +201,18 @@ def __call__( self, signal_description: Union[List[SignalDescription], SignalDescription] ) -> np.ndarray: # Handle cases of both SignalDescriptions and lists of SignalDescriptions - signal_description = ( + signal_description_list: List[SignalDescription] = ( [signal_description] if isinstance(signal_description, SignalDescription) else signal_description ) - masks = np.zeros((self.max_bursts, self.height, self.width)) + masks: np.ndarray = np.zeros((self.max_bursts, self.height, self.width)) idx = 0 - for signal_desc in signal_description: + for signal_desc in signal_description_list: + assert signal_desc.start is not None + assert signal_desc.stop is not None + assert signal_desc.lower_frequency is not None + assert signal_desc.upper_frequency is not None if signal_desc.lower_frequency < -0.5: signal_desc.lower_frequency = -0.5 if signal_desc.upper_frequency > 0.5: @@ -188,9 +226,7 @@ def __call__( (signal_desc.upper_frequency + 0.5) * self.height ) + 1, - int(signal_desc.start * self.width) : int( - signal_desc.stop * self.width - ), + int(signal_desc.start * self.width) : int(signal_desc.stop * self.width), ] = 1.0 else: masks[ @@ -198,9 +234,7 @@ def __call__( int((signal_desc.lower_frequency + 0.5) * self.height) : int( (signal_desc.upper_frequency + 0.5) * self.height ), - int(signal_desc.start * self.width) : int( - signal_desc.stop * self.width - ), + int(signal_desc.start * self.width) : int(signal_desc.stop * self.width), ] = 1.0 idx += 1 return masks @@ -218,7 +252,7 @@ class DescToMaskSignal(Transform): """ - def __init__(self, width: int, height: int): + def __init__(self, width: int, height: int) -> None: super(DescToMaskSignal, self).__init__() self.width = width self.height = height @@ -227,13 +261,17 @@ def __call__( self, signal_description: Union[List[SignalDescription], SignalDescription] ) -> np.ndarray: # Handle cases of both SignalDescriptions and lists of SignalDescriptions - signal_description = ( + signal_description_list: List[SignalDescription] = ( [signal_description] if isinstance(signal_description, SignalDescription) else signal_description ) - masks = np.zeros((self.height, self.width)) - for signal_desc in signal_description: + masks: np.ndarray = np.zeros((self.height, self.width)) + for signal_desc in signal_description_list: + assert signal_desc.start is not None + assert signal_desc.stop is not None + assert signal_desc.lower_frequency is not None + assert signal_desc.upper_frequency is not None if signal_desc.lower_frequency < -0.5: signal_desc.lower_frequency = -0.5 if signal_desc.upper_frequency > 0.5: @@ -246,18 +284,14 @@ def __call__( (signal_desc.upper_frequency + 0.5) * self.height ) + 1, - int(signal_desc.start * self.width) : int( - signal_desc.stop * self.width - ), + int(signal_desc.start * self.width) : int(signal_desc.stop * self.width), ] = 1.0 else: masks[ int((signal_desc.lower_frequency + 0.5) * self.height) : int( (signal_desc.upper_frequency + 0.5) * self.height ), - int(signal_desc.start * self.width) : int( - signal_desc.stop * self.width - ), + int(signal_desc.start * self.width) : int(signal_desc.stop * self.width), ] = 1.0 return masks @@ -279,7 +313,7 @@ class DescToMaskFamily(Transform): """ - class_family_dict = { + class_family_dict: Dict[str, str] = { "4ask": "ask", "8ask": "ask", "16ask": "ask", @@ -339,18 +373,16 @@ def __init__( self, width: int, height: int, - class_family_dict: dict = None, - family_list: list = None, + class_family_dict: Optional[Dict[str, str]] = None, + family_list: Optional[List[str]] = None, label_encode: bool = False, - ): + ) -> None: super(DescToMaskFamily, self).__init__() - self.class_family_dict = ( + self.class_family_dict: Dict[str, str] = ( class_family_dict if class_family_dict else self.class_family_dict ) - self.family_list = ( - family_list - if family_list - else sorted(list(set(self.class_family_dict.values()))) + self.family_list: List[str] = ( + family_list if family_list else sorted(list(set(self.class_family_dict.values()))) ) self.width = width self.height = height @@ -360,13 +392,18 @@ def __call__( self, signal_description: Union[List[SignalDescription], SignalDescription] ) -> np.ndarray: # Handle cases of both SignalDescriptions and lists of SignalDescriptions - signal_description = ( + signal_description_list: List[SignalDescription] = ( [signal_description] if isinstance(signal_description, SignalDescription) else signal_description ) - masks = np.zeros((len(self.family_list), self.height, self.width)) - for signal_desc in signal_description: + masks: np.ndarray = np.zeros((len(self.family_list), self.height, self.width)) + for signal_desc in signal_description_list: + assert signal_desc.start is not None + assert signal_desc.stop is not None + assert signal_desc.lower_frequency is not None + assert signal_desc.upper_frequency is not None + assert signal_desc.class_name is not None if signal_desc.lower_frequency < -0.5: signal_desc.lower_frequency = -0.5 if signal_desc.upper_frequency > 0.5: @@ -384,9 +421,7 @@ def __call__( (signal_desc.upper_frequency + 0.5) * self.height ) + 1, - int(signal_desc.start * self.width) : int( - signal_desc.stop * self.width - ), + int(signal_desc.start * self.width) : int(signal_desc.stop * self.width), ] = 1.0 else: masks[ @@ -394,12 +429,10 @@ def __call__( int((signal_desc.lower_frequency + 0.5) * self.height) : int( (signal_desc.upper_frequency + 0.5) * self.height ), - int(signal_desc.start * self.width) : int( - signal_desc.stop * self.width - ), + int(signal_desc.start * self.width) : int(signal_desc.stop * self.width), ] = 1.0 if self.label_encode: - background_mask = np.zeros((1, self.height, self.height)) + background_mask: np.ndarray = np.zeros((1, self.height, self.height)) masks = np.concatenate([background_mask, masks], axis=0) masks = np.argmax(masks, axis=0) return masks @@ -419,7 +452,7 @@ class DescToMaskClass(Transform): """ - def __init__(self, num_classes: int, width: int, height: int): + def __init__(self, num_classes: int, width: int, height: int) -> None: super(DescToMaskClass, self).__init__() self.num_classes = num_classes self.width = width @@ -429,13 +462,17 @@ def __call__( self, signal_description: Union[List[SignalDescription], SignalDescription] ) -> np.ndarray: # Handle cases of both SignalDescriptions and lists of SignalDescriptions - signal_description = ( + signal_description_list: List[SignalDescription] = ( [signal_description] if isinstance(signal_description, SignalDescription) else signal_description ) - masks = np.zeros((self.num_classes, self.height, self.width)) - for signal_desc in signal_description: + masks: np.ndarray = np.zeros((self.num_classes, self.height, self.width)) + for signal_desc in signal_description_list: + assert signal_desc.start is not None + assert signal_desc.stop is not None + assert signal_desc.lower_frequency is not None + assert signal_desc.upper_frequency is not None if signal_desc.lower_frequency < -0.5: signal_desc.lower_frequency = -0.5 if signal_desc.upper_frequency > 0.5: @@ -449,9 +486,7 @@ def __call__( (signal_desc.upper_frequency + 0.5) * self.height ) + 1, - int(signal_desc.start * self.width) : int( - signal_desc.stop * self.width - ), + int(signal_desc.start * self.width) : int(signal_desc.stop * self.width), ] = 1.0 else: masks[ @@ -459,9 +494,7 @@ def __call__( int((signal_desc.lower_frequency + 0.5) * self.height) : int( (signal_desc.upper_frequency + 0.5) * self.height ), - int(signal_desc.start * self.width) : int( - signal_desc.stop * self.width - ), + int(signal_desc.start * self.width) : int(signal_desc.stop * self.width), ] = 1.0 return masks @@ -486,7 +519,7 @@ class DescToSemanticClass(Transform): """ - def __init__(self, num_classes: int, width: int, height: int): + def __init__(self, num_classes: int, width: int, height: int) -> None: super(DescToSemanticClass, self).__init__() self.num_classes = num_classes self.width = width @@ -496,14 +529,20 @@ def __call__( self, signal_description: Union[List[SignalDescription], SignalDescription] ) -> np.ndarray: # Handle cases of both SignalDescriptions and lists of SignalDescriptions - signal_description = ( + signal_description_list: List[SignalDescription] = ( [signal_description] if isinstance(signal_description, SignalDescription) else signal_description ) - masks = np.zeros((self.height, self.width)) - curr_snrs = np.ones((self.height, self.width)) * -np.inf - for signal_desc in signal_description: + masks: np.ndarray = np.zeros((self.height, self.width)) + curr_snrs: np.ndarray = np.ones((self.height, self.width)) * -np.inf + for signal_desc in signal_description_list: + assert signal_desc.start is not None + assert signal_desc.stop is not None + assert signal_desc.lower_frequency is not None + assert signal_desc.upper_frequency is not None + assert signal_desc.snr is not None + assert signal_desc.class_index is not None # Normalize freq values to [0,1] if signal_desc.lower_frequency < -0.5: signal_desc.lower_frequency = -0.5 @@ -511,14 +550,12 @@ def __call__( signal_desc.upper_frequency = 0.5 # Convert to pixels - height_start = max( - 0, int((signal_desc.lower_frequency + 0.5) * self.height) - ) - height_stop = min( + height_start: int = max(0, int((signal_desc.lower_frequency + 0.5) * self.height)) + height_stop: int = min( int((signal_desc.upper_frequency + 0.5) * self.height), self.height ) - width_start = max(0, int(signal_desc.start * self.width)) - width_stop = min(int(signal_desc.stop * self.width), self.width) + width_start: int = max(0, int(signal_desc.start * self.width)) + width_stop: int = min(int(signal_desc.stop * self.width), self.width) # Account for signals with bandwidths < a pixel if height_start == height_stop: @@ -536,7 +573,7 @@ def __call__( curr_snrs[ height_start:height_stop, width_start:width_stop, - ] = signal_desc.snr_db + ] = signal_desc.snr return masks @@ -557,7 +594,7 @@ class DescToBBox(Transform): """ - def __init__(self, grid_width: int, grid_height: int): + def __init__(self, grid_width: int, grid_height: int) -> None: super(DescToBBox, self).__init__() self.grid_width = grid_width self.grid_height = grid_height @@ -566,13 +603,18 @@ def __call__( self, signal_description: Union[List[SignalDescription], SignalDescription] ) -> np.ndarray: # Handle cases of both SignalDescriptions and lists of SignalDescriptions - signal_description = ( + signal_description_list: List[SignalDescription] = ( [signal_description] if isinstance(signal_description, SignalDescription) else signal_description ) - boxes = np.zeros((self.grid_width, self.grid_height, 5)) - for signal_desc in signal_description: + boxes: np.ndarray = np.zeros((self.grid_width, self.grid_height, 5)) + for signal_desc in signal_description_list: + assert signal_desc.start is not None + assert signal_desc.stop is not None + assert signal_desc.duration is not None + assert signal_desc.lower_frequency is not None + assert signal_desc.upper_frequency is not None # Time conversions if signal_desc.start >= 1.0: # Burst starts outside of window of capture @@ -580,9 +622,9 @@ def __call__( elif signal_desc.start + signal_desc.duration * 0.5 >= 1.0: # Center is outside grid cell; re-center to truncated burst signal_desc.duration = 1 - signal_desc.start - x = (signal_desc.start + signal_desc.duration * 0.5) * self.grid_width - time_cell = int(np.floor(x)) - center_time = x - time_cell + x: float = (signal_desc.start + signal_desc.duration * 0.5) * self.grid_width + time_cell: int = int(np.floor(x)) + center_time: float = x - time_cell # Freq conversions if signal_desc.lower_frequency > 0.5 or signal_desc.upper_frequency < -0.5: @@ -592,15 +634,11 @@ def __call__( signal_desc.lower_frequency = -0.5 if signal_desc.upper_frequency > 0.5: signal_desc.upper_frequency = 0.5 - signal_desc.bandwidth = ( - signal_desc.upper_frequency - signal_desc.lower_frequency - ) - signal_desc.center_frequency = ( - signal_desc.lower_frequency + signal_desc.bandwidth / 2 - ) - y = (signal_desc.center_frequency + 0.5) * self.grid_height - freq_cell = int(np.floor(y)) - center_freq = y - freq_cell + signal_desc.bandwidth = signal_desc.upper_frequency - signal_desc.lower_frequency + signal_desc.center_frequency = signal_desc.lower_frequency + signal_desc.bandwidth / 2 + y: float = (signal_desc.center_frequency + 0.5) * self.grid_height + freq_cell: int = int(np.floor(y)) + center_freq: float = y - freq_cell if time_cell >= self.grid_width: print("Error: time_cell idx is greater than grid_width") @@ -646,59 +684,80 @@ class DescToAnchorBoxes(Transform): """ - def __init__(self, grid_width: int, grid_height: int, anchor_boxes: List): + def __init__( + self, + grid_width: int, + grid_height: int, + anchor_boxes: List[Tuple[float, float]], + ) -> None: super(DescToAnchorBoxes, self).__init__() self.grid_width = grid_width self.grid_height = grid_height self.anchor_boxes = anchor_boxes - self.num_anchor_boxes = len(anchor_boxes) + self.num_anchor_boxes: int = len(anchor_boxes) - # IoU function def iou( - self, start_a, dur_a, center_freq_a, bw_a, start_b, dur_b, center_freq_b, bw_b - ): + self, + start_a: float, + dur_a: float, + center_freq_a: float, + bw_a: float, + start_b: float, + dur_b: float, + center_freq_b: float, + bw_b: float, + ) -> float: + """ + Method to compute the intersection over union (IoU) + + """ # Convert to start/stops - x_start_a = start_a - x_stop_a = start_a + dur_a - y_start_a = center_freq_a - bw_a / 2 - y_stop_a = center_freq_a + bw_a / 2 + x_start_a: float = start_a + x_stop_a: float = start_a + dur_a + y_start_a: float = center_freq_a - bw_a / 2 + y_stop_a: float = center_freq_a + bw_a / 2 - x_start_b = start_b - x_stop_b = start_b + dur_b - y_start_b = center_freq_b - bw_b / 2 - y_stop_b = center_freq_b + bw_b / 2 + x_start_b: float = start_b + x_stop_b: float = start_b + dur_b + y_start_b: float = center_freq_b - bw_b / 2 + y_stop_b: float = center_freq_b + bw_b / 2 # Determine the (x, y)-coordinates of the intersection - x_start_int = max(x_start_a, x_start_b) - y_start_int = max(y_start_a, y_start_b) - x_stop_int = min(x_stop_a, x_stop_b) - y_stop_int = min(y_stop_a, y_stop_b) + x_start_int: float = max(x_start_a, x_start_b) + y_start_int: float = max(y_start_a, y_start_b) + x_stop_int: float = min(x_stop_a, x_stop_b) + y_stop_int: float = min(y_stop_a, y_stop_b) # Compute the area of intersection - inter_area = abs( + inter_area: float = abs( max((x_stop_int - x_start_int, 0)) * max((y_stop_int - y_start_int), 0) ) if inter_area == 0: return 0 # Compute the area of both the prediction and ground-truth - area_a = abs((x_stop_a - x_start_a) * (y_stop_a - y_start_a)) - area_b = abs((x_stop_b - x_start_b) * (y_stop_b - y_start_b)) + area_a: float = abs((x_stop_a - x_start_a) * (y_stop_a - y_start_a)) + area_b: float = abs((x_stop_b - x_start_b) * (y_stop_b - y_start_b)) # Compute the intersection over union - iou = inter_area / float(area_a + area_b - inter_area) + iou: float = inter_area / float(area_a + area_b - inter_area) return iou def __call__( self, signal_description: Union[List[SignalDescription], SignalDescription] ) -> np.ndarray: # Handle cases of both SignalDescriptions and lists of SignalDescriptions - signal_description = ( + signal_description_list: List[SignalDescription] = ( [signal_description] if isinstance(signal_description, SignalDescription) else signal_description ) - boxes = np.zeros((self.grid_width, self.grid_height, 5 * self.num_anchor_boxes)) - for signal_desc in signal_description: + boxes: np.ndarray = np.zeros((self.grid_width, self.grid_height, 5 * self.num_anchor_boxes)) + for signal_desc in signal_description_list: + assert signal_desc.start is not None + assert signal_desc.duration is not None + assert signal_desc.center_frequency is not None + assert signal_desc.bandwidth is not None + assert signal_desc.duration is not None # Time conversions if signal_desc.start > 1.0: # Error handling (TODO: should fix within dataset) @@ -706,14 +765,14 @@ def __call__( elif signal_desc.start + signal_desc.duration * 0.5 > 1.0: # Center is outside grid cell; re-center to truncated burst signal_desc.duration = 1 - signal_desc.start - x = (signal_desc.start + signal_desc.duration * 0.5) * self.grid_width - time_cell = int(np.floor(x)) - center_time = x - time_cell + x: float = (signal_desc.start + signal_desc.duration * 0.5) * self.grid_width + time_cell: int = int(np.floor(x)) + center_time: float = x - time_cell # Freq conversions - y = (signal_desc.center_frequency + 0.5) * self.grid_height - freq_cell = int(np.floor(y)) - center_freq = y - freq_cell + y: float = (signal_desc.center_frequency + 0.5) * self.grid_height + freq_cell: int = int(np.floor(y)) + center_freq: float = y - freq_cell # Debugging messages for potential errors if time_cell > self.grid_width: @@ -729,22 +788,20 @@ def __call__( print("y: {}".format(y)) # Determine which anchor box to associate burst with - best_iou_score = -1 - best_iou_idx = 0 - best_anchor_duration = 0 - best_anchor_bw = 0 + best_iou_score: float = -1 + best_iou_idx: int = 0 + best_anchor_duration: float = 0 + best_anchor_bw: float = 0 for anchor_idx, anchor_box in enumerate(self.anchor_boxes): # anchor_start = ((time_cell+0.5) / self.grid_width) - (anchor_box[0]*0.5) # Anchor centered on cell - anchor_start = ( + anchor_start: float = ( signal_desc.start + 0.5 * signal_desc.duration - anchor_box[0] * 0.5 ) # Anchor overlaid on burst - anchor_duration = anchor_box[0] + anchor_duration: float = anchor_box[0] # anchor_center_freq = (freq_cell+0.5) / self.grid_height # Anchor centered on cell - anchor_center_freq = ( - signal_desc.center_frequency - ) # Anchor overlaid on burst - anchor_bw = anchor_box[1] - iou_score = self.iou( + anchor_center_freq: float = signal_desc.center_frequency # Anchor overlaid on burst + anchor_bw: float = anchor_box[1] + iou_score: float = self.iou( signal_desc.start, signal_desc.duration, signal_desc.center_frequency, @@ -792,7 +849,7 @@ class DescPassThrough(Transform): """ - def __init__(self): + def __init__(self) -> None: super(DescPassThrough, self).__init__() def __call__( @@ -810,7 +867,7 @@ class DescToBinary(Transform): """ - def __init__(self, label: int): + def __init__(self, label: int) -> None: super(DescToBinary, self).__init__() self.label = label @@ -829,7 +886,7 @@ class DescToCustom(Transform): """ - def __init__(self, label: Any): + def __init__(self, label: Any) -> None: super(DescToCustom, self).__init__() self.label = label @@ -860,25 +917,33 @@ def __init__( self, class_list: Optional[List[str]] = None, num_classes: Optional[int] = None, - ) -> np.ndarray: + ) -> None: super(DescToClassEncoding, self).__init__() self.class_list = class_list - self.num_classes = num_classes if num_classes else len(class_list) + self.num_classes: int = 0 + if num_classes: + self.num_classes = num_classes + elif class_list: + self.num_classes = len(class_list) + else: + raise ValueError("class_list or num_classes must be provided") def __call__( self, signal_description: Union[List[SignalDescription], SignalDescription] ) -> np.ndarray: # Handle cases of both SignalDescriptions and lists of SignalDescriptions - signal_description = ( + signal_description_list: List[SignalDescription] = ( [signal_description] if isinstance(signal_description, SignalDescription) else signal_description ) - encoding = np.zeros((self.num_classes,)) - for signal_desc in signal_description: + encoding: np.ndarray = np.zeros((self.num_classes,)) + for signal_desc in signal_description_list: if self.class_list: + assert signal_desc.class_name is not None encoding[self.class_list.index(signal_desc.class_name)] = 1.0 else: + assert signal_desc.class_index is not None encoding[signal_desc.class_index] = 1.0 return encoding @@ -895,8 +960,8 @@ class DescToWeightedMixUp(Transform): def __init__( self, - class_list: List[str] = None, - ) -> np.ndarray: + class_list: List[str], + ) -> None: super(DescToWeightedMixUp, self).__init__() self.class_list = class_list self.num_classes = len(class_list) @@ -905,14 +970,16 @@ def __call__( self, signal_description: Union[List[SignalDescription], SignalDescription] ) -> np.ndarray: # Handle cases of both SignalDescriptions and lists of SignalDescriptions - signal_description = ( + signal_description_list: List[SignalDescription] = ( [signal_description] if isinstance(signal_description, SignalDescription) else signal_description ) - encoding = np.zeros((self.num_classes,)) + encoding: np.ndarray = np.zeros((self.num_classes,)) # Instead of a binary value for the encoding, set it to the SNR - for signal_desc in signal_description: + for signal_desc in signal_description_list: + assert signal_desc.class_name is not None + assert signal_desc.snr is not None encoding[self.class_list.index(signal_desc.class_name)] += signal_desc.snr # Next, normalize to the total of all SNR values encoding = encoding / np.sum(encoding) @@ -931,8 +998,8 @@ class DescToWeightedCutMix(Transform): def __init__( self, - class_list: List[str] = None, - ) -> np.ndarray: + class_list: List[str], + ) -> None: super(DescToWeightedCutMix, self).__init__() self.class_list = class_list self.num_classes = len(class_list) @@ -941,17 +1008,17 @@ def __call__( self, signal_description: Union[List[SignalDescription], SignalDescription] ) -> np.ndarray: # Handle cases of both SignalDescriptions and lists of SignalDescriptions - signal_description = ( + signal_description_list: List[SignalDescription] = ( [signal_description] if isinstance(signal_description, SignalDescription) else signal_description ) - encoding = np.zeros((self.num_classes,)) + encoding: np.ndarray = np.zeros((self.num_classes,)) # Instead of a binary value for the encoding, set it to the cumulative duration - for signal_desc in signal_description: - encoding[ - self.class_list.index(signal_desc.class_name) - ] += signal_desc.duration + for signal_desc in signal_description_list: + assert signal_desc.class_name is not None + assert signal_desc.duration is not None + encoding[self.class_list.index(signal_desc.class_name)] += signal_desc.duration # Normalize on total signals durations encoding = encoding / np.sum(encoding) return encoding @@ -968,24 +1035,29 @@ class DescToBBoxDict(Transform): """ - def __init__(self, class_list): + def __init__(self, class_list: List[str]) -> None: super(DescToBBoxDict, self).__init__() self.class_list = class_list def __call__( self, signal_description: Union[List[SignalDescription], SignalDescription] - ) -> np.ndarray: - signal_description = ( + ) -> Dict[str, torch.Tensor]: + signal_description_list: List[SignalDescription] = ( [signal_description] if isinstance(signal_description, SignalDescription) else signal_description ) - labels = [] - boxes = np.empty((len(signal_description), 4)) - for signal_desc_idx, signal_desc in enumerate(signal_description): + labels: List[int] = [] + boxes: np.ndarray = np.empty((len(signal_description_list), 4)) + for signal_desc_idx, signal_desc in enumerate(signal_description_list): + assert signal_desc.start is not None + assert signal_desc.stop is not None + assert signal_desc.lower_frequency is not None + assert signal_desc.upper_frequency is not None + assert signal_desc.class_name is not None # xcycwh - duration = signal_desc.stop - signal_desc.start - bandwidth = signal_desc.upper_frequency - signal_desc.lower_frequency + duration: float = signal_desc.stop - signal_desc.start + bandwidth: float = signal_desc.upper_frequency - signal_desc.lower_frequency boxes[signal_desc_idx] = np.array( [ signal_desc.start + 0.5 * duration, @@ -993,10 +1065,13 @@ def __call__( duration, bandwidth, ] - ) + )[0] labels.append(self.class_list.index(signal_desc.class_name)) - targets = {"labels": torch.Tensor(labels).long(), "boxes": torch.Tensor(boxes)} + targets: Dict[str, torch.Tensor] = { + "labels": torch.Tensor(labels).long(), + "boxes": torch.Tensor(boxes), + } return targets @@ -1009,24 +1084,28 @@ class DescToBBoxSignalDict(Transform): """ - def __init__(self): + def __init__(self) -> None: super(DescToBBoxSignalDict, self).__init__() - self.class_list = ["signal"] + self.class_list: List[str] = ["signal"] def __call__( self, signal_description: Union[List[SignalDescription], SignalDescription] - ) -> np.ndarray: - signal_description = ( + ) -> Dict[str, torch.Tensor]: + signal_description_list: List[SignalDescription] = ( [signal_description] if isinstance(signal_description, SignalDescription) else signal_description ) - labels = [] - boxes = np.empty((len(signal_description), 4)) - for signal_desc_idx, signal_desc in enumerate(signal_description): + labels: List[int] = [] + boxes: np.ndarray = np.empty((len(signal_description_list), 4)) + for signal_desc_idx, signal_desc in enumerate(signal_description_list): + assert signal_desc.start is not None + assert signal_desc.stop is not None + assert signal_desc.lower_frequency is not None + assert signal_desc.upper_frequency is not None # xcycwh - duration = signal_desc.stop - signal_desc.start - bandwidth = signal_desc.upper_frequency - signal_desc.lower_frequency + duration: float = signal_desc.stop - signal_desc.start + bandwidth: float = signal_desc.upper_frequency - signal_desc.lower_frequency boxes[signal_desc_idx] = np.array( [ signal_desc.start + 0.5 * duration, @@ -1034,10 +1113,13 @@ def __call__( duration, bandwidth, ] - ) + )[0] labels.append(self.class_list.index(self.class_list[0])) - targets = {"labels": torch.Tensor(labels).long(), "boxes": torch.Tensor(boxes)} + targets: Dict[str, torch.Tensor] = { + "labels": torch.Tensor(labels).long(), + "boxes": torch.Tensor(boxes), + } return targets @@ -1054,7 +1136,7 @@ class DescToBBoxFamilyDict(Transform): """ - class_family_dict = { + class_family_dict: Dict[str, str] = { "4ask": "ask", "8ask": "ask", "16ask": "ask", @@ -1110,31 +1192,38 @@ class DescToBBoxFamilyDict(Transform): "ofdm-2048": "ofdm", } - def __init__(self, class_family_dict: dict = None, family_list: list = None): + def __init__( + self, + class_family_dict: Optional[Dict[str, str]] = None, + family_list: Optional[List[str]] = None, + ) -> None: super(DescToBBoxFamilyDict, self).__init__() - self.class_family_dict = ( + self.class_family_dict: Dict[str, str] = ( class_family_dict if class_family_dict else self.class_family_dict ) - self.family_list = ( - family_list - if family_list - else sorted(list(set(self.class_family_dict.values()))) + self.family_list: List[str] = ( + family_list if family_list else sorted(list(set(self.class_family_dict.values()))) ) def __call__( self, signal_description: Union[List[SignalDescription], SignalDescription] - ) -> np.ndarray: - signal_description = ( + ) -> Dict[str, torch.Tensor]: + signal_description_list: List[SignalDescription] = ( [signal_description] if isinstance(signal_description, SignalDescription) else signal_description ) - labels = [] - boxes = np.empty((len(signal_description), 4)) - for signal_desc_idx, signal_desc in enumerate(signal_description): + labels: List[int] = [] + boxes: np.ndarray = np.empty((len(signal_description_list), 4)) + for signal_desc_idx, signal_desc in enumerate(signal_description_list): + assert signal_desc.start is not None + assert signal_desc.stop is not None + assert signal_desc.lower_frequency is not None + assert signal_desc.upper_frequency is not None + assert signal_desc.class_name is not None # xcycwh - duration = signal_desc.stop - signal_desc.start - bandwidth = signal_desc.upper_frequency - signal_desc.lower_frequency + duration: float = signal_desc.stop - signal_desc.start + bandwidth: float = signal_desc.upper_frequency - signal_desc.lower_frequency boxes[signal_desc_idx] = np.array( [ signal_desc.start + 0.5 * duration, @@ -1145,10 +1234,13 @@ def __call__( ) if isinstance(signal_desc.class_name, list): signal_desc.class_name = signal_desc.class_name[0] - family_name = self.class_family_dict[signal_desc.class_name] + family_name: str = self.class_family_dict[signal_desc.class_name] labels.append(self.family_list.index(family_name)) - targets = {"labels": torch.Tensor(labels).long(), "boxes": torch.Tensor(boxes)} + targets: Dict[str, torch.Tensor] = { + "labels": torch.Tensor(labels).long(), + "boxes": torch.Tensor(boxes), + } return targets @@ -1169,10 +1261,10 @@ class DescToInstMaskDict(Transform): def __init__( self, - class_list: List = [], + class_list: List[str], width: int = 512, height: int = 512, - ): + ) -> None: super(DescToInstMaskDict, self).__init__() self.class_list = class_list self.width = width @@ -1180,16 +1272,21 @@ def __init__( def __call__( self, signal_description: Union[List[SignalDescription], SignalDescription] - ) -> np.ndarray: - signal_description = ( + ) -> Dict[str, torch.Tensor]: + signal_description_list: List[SignalDescription] = ( [signal_description] if isinstance(signal_description, SignalDescription) else signal_description ) - num_objects = len(signal_description) - labels = [] - masks = np.zeros((num_objects, self.height, self.width)) - for signal_desc_idx, signal_desc in enumerate(signal_description): + num_objects: int = len(signal_description_list) + labels: List[int] = [] + masks: np.ndarray = np.zeros((num_objects, self.height, self.width)) + for signal_desc_idx, signal_desc in enumerate(signal_description_list): + assert signal_desc.start is not None + assert signal_desc.stop is not None + assert signal_desc.lower_frequency is not None + assert signal_desc.upper_frequency is not None + assert signal_desc.class_name is not None labels.append(self.class_list.index(signal_desc.class_name)) if signal_desc.lower_frequency < -0.5: signal_desc.lower_frequency = -0.5 @@ -1204,9 +1301,7 @@ def __call__( (signal_desc.upper_frequency + 0.5) * self.height ) + 1, - int(signal_desc.start * self.width) : int( - signal_desc.stop * self.width - ), + int(signal_desc.start * self.width) : int(signal_desc.stop * self.width), ] = 1.0 else: masks[ @@ -1214,12 +1309,10 @@ def __call__( int((signal_desc.lower_frequency + 0.5) * self.height) : int( (signal_desc.upper_frequency + 0.5) * self.height ), - int(signal_desc.start * self.width) : int( - signal_desc.stop * self.width - ), + int(signal_desc.start * self.width) : int(signal_desc.stop * self.width), ] = 1.0 - targets = { + targets: Dict[str, torch.Tensor] = { "labels": torch.Tensor(labels).long(), "masks": torch.Tensor(masks.astype(bool)), } @@ -1242,23 +1335,27 @@ def __init__( self, width: int = 512, height: int = 512, - ): + ) -> None: super(DescToSignalInstMaskDict, self).__init__() self.width = width self.height = height def __call__( self, signal_description: Union[List[SignalDescription], SignalDescription] - ) -> np.ndarray: - signal_description = ( + ) -> Dict[str, torch.Tensor]: + signal_description_list: List[SignalDescription] = ( [signal_description] if isinstance(signal_description, SignalDescription) else signal_description ) - num_objects = len(signal_description) - labels = [] - masks = np.zeros((num_objects, self.height, self.width)) - for signal_desc_idx, signal_desc in enumerate(signal_description): + num_objects: int = len(signal_description_list) + labels: List[int] = [] + masks: np.ndarray = np.zeros((num_objects, self.height, self.width)) + for signal_desc_idx, signal_desc in enumerate(signal_description_list): + assert signal_desc.start is not None + assert signal_desc.stop is not None + assert signal_desc.lower_frequency is not None + assert signal_desc.upper_frequency is not None labels.append(0) if signal_desc.lower_frequency < -0.5: signal_desc.lower_frequency = -0.5 @@ -1273,9 +1370,7 @@ def __call__( (signal_desc.upper_frequency + 0.5) * self.height ) + 1, - int(signal_desc.start * self.width) : int( - signal_desc.stop * self.width - ), + int(signal_desc.start * self.width) : int(signal_desc.stop * self.width), ] = 1.0 else: masks[ @@ -1283,12 +1378,10 @@ def __call__( int((signal_desc.lower_frequency + 0.5) * self.height) : int( (signal_desc.upper_frequency + 0.5) * self.height ), - int(signal_desc.start * self.width) : int( - signal_desc.stop * self.width - ), + int(signal_desc.start * self.width) : int(signal_desc.stop * self.width), ] = 1.0 - targets = { + targets: Dict[str, torch.Tensor] = { "labels": torch.Tensor(labels).long(), "masks": torch.Tensor(masks.astype(bool)), } @@ -1314,7 +1407,7 @@ class DescToSignalFamilyInstMaskDict(Transform): """ - class_family_dict = { + class_family_dict: Dict[str, str] = { "4ask": "ask", "8ask": "ask", "16ask": "ask", @@ -1374,35 +1467,39 @@ def __init__( self, width: int, height: int, - class_family_dict: dict = None, - family_list: list = None, - ): + class_family_dict: Optional[Dict[str, str]] = None, + family_list: Optional[List[str]] = None, + ) -> None: super(DescToSignalFamilyInstMaskDict, self).__init__() - self.class_family_dict = ( + self.class_family_dict: Dict[str, str] = ( class_family_dict if class_family_dict else self.class_family_dict ) - self.family_list = ( - family_list - if family_list - else sorted(list(set(self.class_family_dict.values()))) + self.family_list: List[str] = ( + family_list if family_list else sorted(list(set(self.class_family_dict.values()))) ) self.width = width self.height = height def __call__( self, signal_description: Union[List[SignalDescription], SignalDescription] - ) -> np.ndarray: - signal_description = ( + ) -> Dict[str, torch.Tensor]: + signal_description_list: List[SignalDescription] = ( [signal_description] if isinstance(signal_description, SignalDescription) else signal_description ) - num_objects = len(signal_description) - labels = [] - masks = np.zeros((num_objects, self.height, self.width)) - for signal_desc_idx, signal_desc in enumerate(signal_description): - family_name = self.class_family_dict[signal_desc.class_name] - family_idx = self.family_list.index(family_name) + num_objects: int = len(signal_description_list) + labels: List[int] = [] + masks: np.ndarray = np.zeros((num_objects, self.height, self.width)) + for signal_desc_idx, signal_desc in enumerate(signal_description_list): + assert signal_desc.start is not None + assert signal_desc.stop is not None + assert signal_desc.lower_frequency is not None + assert signal_desc.upper_frequency is not None + assert signal_desc.class_name is not None + + family_name: str = self.class_family_dict[signal_desc.class_name] + family_idx: int = self.family_list.index(family_name) labels.append(family_idx) if signal_desc.lower_frequency < -0.5: signal_desc.lower_frequency = -0.5 @@ -1417,9 +1514,7 @@ def __call__( (signal_desc.upper_frequency + 0.5) * self.height ) + 1, - int(signal_desc.start * self.width) : int( - signal_desc.stop * self.width - ), + int(signal_desc.start * self.width) : int(signal_desc.stop * self.width), ] = 1.0 else: masks[ @@ -1427,12 +1522,10 @@ def __call__( int((signal_desc.lower_frequency + 0.5) * self.height) : int( (signal_desc.upper_frequency + 0.5) * self.height ), - int(signal_desc.start * self.width) : int( - signal_desc.stop * self.width - ), + int(signal_desc.start * self.width) : int(signal_desc.stop * self.width), ] = 1.0 - targets = { + targets: Dict[str, torch.Tensor] = { "labels": torch.Tensor(labels).long(), "masks": torch.Tensor(masks.astype(bool)), } @@ -1450,23 +1543,29 @@ class DescToListTuple(Transform): """ - def __init__(self, precision: np.dtype = np.dtype(np.float16)): + def __init__(self, precision: np.dtype = np.dtype(np.float16)) -> None: super(DescToListTuple, self).__init__() self.precision = precision def __call__( self, signal_description: Union[List[SignalDescription], SignalDescription] - ) -> Union[List[str], str]: - output = [] + ) -> List[Tuple[str, float, float, float, float, float]]: + output: List[Tuple[str, float, float, float, float, float]] = [] # Handle cases of both SignalDescriptions and lists of SignalDescriptions - signal_description = ( + signal_description_list: List[SignalDescription] = ( [signal_description] if isinstance(signal_description, SignalDescription) else signal_description ) # Loop through SignalDescription's, converting values of interest to tuples - for signal_desc_idx, signal_desc in enumerate(signal_description): - curr_tuple = ( + for signal_desc_idx, signal_desc in enumerate(signal_description_list): + assert signal_desc.start is not None + assert signal_desc.stop is not None + assert signal_desc.center_frequency is not None + assert signal_desc.bandwidth is not None + assert signal_desc.snr is not None + assert signal_desc.class_name is not None + curr_tuple: Tuple[str, float, float, float, float, float] = ( signal_desc.class_name[0], self.precision.type(signal_desc.start), self.precision.type(signal_desc.stop), @@ -1498,33 +1597,39 @@ class ListTupleToDesc(Transform): def __init__( self, - sample_rate: Optional[float] = 1.0, - num_iq_samples: Optional[int] = int(512 * 512), - class_list: Optional[List] = None, - ): + sample_rate: Optional[float] = None, + num_iq_samples: Optional[int] = None, + class_list: Optional[List[str]] = None, + ) -> None: super(ListTupleToDesc, self).__init__() self.sample_rate = sample_rate self.num_iq_samples = num_iq_samples self.class_list = class_list - def __call__(self, list_tuple: List[Tuple]) -> List[SignalDescription]: - output = [] + def __call__( + self, + list_tuple: List[Tuple[str, float, float, float, float, float]], + ) -> List[SignalDescription]: + output: List[SignalDescription] = [] # Loop through SignalDescription's, converting values of interest to tuples for tuple_idx, curr_tuple in enumerate(list_tuple): - curr_signal_desc = SignalDescription( + processed_curr_tuple: Tuple[Any, ...] = tuple( + [l.numpy() if isinstance(l, torch.Tensor) else l for l in curr_tuple] + ) + curr_signal_desc: SignalDescription = SignalDescription( sample_rate=self.sample_rate, num_iq_samples=self.num_iq_samples, - class_name=curr_tuple[0], - class_index=self.class_list.index(curr_tuple[0]) + class_name=processed_curr_tuple[0], + class_index=self.class_list.index(processed_curr_tuple[0]) if self.class_list else None, - start=curr_tuple[1], - stop=curr_tuple[2], - center_frequency=curr_tuple[3], - bandwidth=curr_tuple[4], - lower_frequency=curr_tuple[3] - curr_tuple[4] / 2, - upper_frequency=curr_tuple[3] + curr_tuple[4] / 2, - snr=curr_tuple[5], + start=processed_curr_tuple[1], + stop=processed_curr_tuple[2], + center_frequency=processed_curr_tuple[3], + bandwidth=processed_curr_tuple[4], + lower_frequency=processed_curr_tuple[3] - processed_curr_tuple[4] / 2, + upper_frequency=processed_curr_tuple[3] + processed_curr_tuple[4] / 2, + snr=processed_curr_tuple[5], ) output.append(curr_signal_desc) return output @@ -1555,11 +1660,12 @@ class LabelSmoothing(Transform): """ - def __init__(self, alpha: float = 0.1) -> np.ndarray: + def __init__(self, alpha: float = 0.1) -> None: super(LabelSmoothing, self).__init__() self.alpha = alpha def __call__(self, encoding: np.ndarray) -> np.ndarray: - return (1 - self.alpha) / np.sum(encoding) * encoding + ( + output: np.ndarray = (1 - self.alpha) / np.sum(encoding) * encoding + ( self.alpha / encoding.shape[0] ) + return output diff --git a/torchsig/transforms/target_transforms/__init__.py b/torchsig/transforms/target_transforms/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/torchsig/transforms/transforms.py b/torchsig/transforms/transforms.py index b28b1e3..7968b6a 100644 --- a/torchsig/transforms/transforms.py +++ b/torchsig/transforms/transforms.py @@ -1,9 +1,85 @@ import warnings -import numpy as np from copy import deepcopy -from typing import Any, List, Callable, Optional +from typing import Any, Callable, List, Literal, Optional, Tuple, Union + +import numpy as np +from scipy import signal + +from torchsig.transforms import functional as F +from torchsig.transforms.functional import ( + FloatParameter, + IntParameter, + NumericParameter, + to_distribution, + uniform_continuous_distribution, + uniform_discrete_distribution, +) +from torchsig.utils.dataset import SignalDataset +from torchsig.utils.types import SignalData, SignalDescription -from torchsig.utils.types import SignalData +__all__ = [ + "Transform", + "Compose", + "Identity", + "Lambda", + "FixedRandom", + "RandomApply", + "SignalTransform", + "Concatenate", + "TargetConcatenate", + "RandAugment", + "RandChoice", + "Normalize", + "RandomResample", + "TargetSNR", + "AddNoise", + "TimeVaryingNoise", + "RayleighFadingChannel", + "ImpulseInterferer", + "RandomPhaseShift", + "InterleaveComplex", + "ComplexTo2D", + "Real", + "Imag", + "ComplexMagnitude", + "WrappedPhase", + "DiscreteFourierTransform", + "ChannelConcatIQDFT", + "Spectrogram", + "ContinuousWavelet", + "ReshapeTransform", + "RandomTimeShift", + "TimeCrop", + "TimeReversal", + "AmplitudeReversal", + "RandomFrequencyShift", + "RandomDelayedFrequencyShift", + "LocalOscillatorDrift", + "GainDrift", + "AutomaticGainControl", + "IQImbalance", + "RollOff", + "AddSlope", + "SpectralInversion", + "ChannelSwap", + "RandomMagRescale", + "RandomDropSamples", + "Quantize", + "Clip", + "RandomConvolve", + "DatasetBasebandMixUp", + "DatasetBasebandCutMix", + "CutOut", + "PatchShuffle", + "DatasetWidebandCutMix", + "DatasetWidebandMixUp", + "SpectrogramRandomResizeCrop", + "SpectrogramDropSamples", + "SpectrogramPatchShuffle", + "SpectrogramTranslation", + "SpectrogramMosaicCrop", + "SpectrogramMosaicDownsample", +] class Transform: @@ -12,18 +88,16 @@ class Transform: """ - def __init__(self, seed: Optional[int] = None): + def __init__(self, seed: Optional[int] = None) -> None: if seed is not None: - warnings.warn( - "Seeding transforms is deprecated and does nothing", DeprecationWarning - ) + warnings.warn("Seeding transforms is deprecated and does nothing", DeprecationWarning) - self.random_generator = np.random + self.random_generator = np.random.RandomState() def __call__(self, data: Any) -> Any: raise NotImplementedError - def __repr__(self): + def __repr__(self) -> str: return self.__class__.__name__ + "()" @@ -36,11 +110,11 @@ class Compose(Transform): Example: >>> import torchsig.transforms as ST - >>> transform = ST.Compose([ST.AddNoise(10), ST.InterleaveComplex()]) + >>> transform = ST.Compose([ST.AddNoise(noise_power_db=10), ST.InterleaveComplex()]) """ - def __init__(self, transforms: List[Transform], **kwargs): + def __init__(self, transforms: List[Callable], **kwargs) -> None: super(Compose, self).__init__(**kwargs) self.transforms = transforms @@ -49,21 +123,21 @@ def __call__(self, data: Any) -> Any: data = t(data) return data - def __repr__(self): + def __repr__(self) -> str: return "\n".join([str(t) for t in self.transforms]) -class NoTransform(Transform): +class Identity(Transform): """Just passes the data -- surprisingly useful in pipelines Example: >>> import torchsig.transforms as ST - >>> transform = ST.NoTransform() + >>> transform = ST.Identity() """ - def __init__(self, **kwargs): - super(NoTransform, self).__init__(**kwargs) + def __init__(self, **kwargs) -> None: + super(Identity, self).__init__(**kwargs) def __call__(self, data: Any) -> Any: return data @@ -81,7 +155,7 @@ class Lambda(Transform): """ - def __init__(self, func: Callable, **kwargs): + def __init__(self, func: Callable, **kwargs) -> None: super(Lambda, self).__init__(**kwargs) self.func = func @@ -103,14 +177,24 @@ class FixedRandom(Transform): Example: >>> import torchsig.transforms as ST - >>> transform = ST.FixedRandom(ST.AddNoise(10), num_seeds=10) + >>> transform = ST.FixedRandom(ST.AddNoise(), num_seeds=10) """ - def __init__(self, transform: Transform, num_seeds: int, **kwargs): + def __init__(self, transform: Transform, num_seeds: int, **kwargs) -> None: super(FixedRandom, self).__init__(**kwargs) self.transform = transform self.num_seeds = num_seeds + self.string: str = ( + self.__class__.__name__ + + "(" + + "transform={}, ".format(str(transform)) + + "num_seeds={}".format(num_seeds) + + ")" + ) + + def __repr__(self) -> str: + return self.string def __call__(self, data: Any) -> Any: seed = self.random_generator.choice(self.num_seeds) @@ -135,21 +219,32 @@ class RandomApply(Transform): Example: >>> import torchsig.transforms as ST - >>> transform = ST.RandomApply(ST.AddNoise(10), probability=.5) # Add 10dB noise with probability .5 + >>> transform = ST.RandomApply(ST.AddNoise(noise_power_db=10), probability=.5) # Add 10dB noise with probability .5 """ - def __init__(self, transform: Transform, probability: float, **kwargs): + def __init__( + self, + transform: Callable, + probability: float, + **kwargs, + ) -> None: super(RandomApply, self).__init__(**kwargs) self.transform = transform self.probability = probability + self.string: str = ( + self.__class__.__name__ + + "(" + + "transform={}, ".format(str(transform)) + + "probability={}".format(probability) + + ")" + ) + + def __repr__(self) -> str: + return self.string def __call__(self, data: Any) -> Any: - return ( - self.transform(data) - if self.random_generator.rand() < self.probability - else data - ) + return self.transform(data) if self.random_generator.rand() < self.probability else data class SignalTransform(Transform): @@ -161,47 +256,73 @@ class SignalTransform(Transform): """ - def __init__(self, time_dim: int = 0, **kwargs): + def __init__(self, time_dim: int = 0, **kwargs) -> None: super(SignalTransform, self).__init__(**kwargs) self.time_dim = time_dim + self.string: str = self.__class__.__name__ + "(" + "time_dim={}".format(time_dim) + ")" + + def __repr__(self) -> str: + return self.string - def __call__(self, data: SignalData) -> SignalData: + def __call__( + self, + data: Union[SignalData, np.ndarray], + ) -> Union[SignalData, np.ndarray]: raise NotImplementedError class Concatenate(SignalTransform): - """Concatenates Transforms into a Tuple + """Inputs a list of SignalTransforms and applies each to the input data + independently then concatenates the outputs along the specified dimension. Args: transforms (list of ``Transform`` objects): - list of transforms to concatenate. + list of transforms to apply and concatenate. + + concat_dim (:obj:`int`): + Dimension along which to concatenate the outputs from each + transform Example: >>> import torchsig.transforms as ST - >>> transform = Concatenate([ST.AddNoise(10), ST.DiscreteFourierTransform()]) + >>> transform = Concatenate([ST.AddNoise(10), ST.DiscreteFourierTransform()], concat_dim=0) """ - def __init__(self, transforms: List[SignalTransform], **kwargs): + def __init__( + self, + transforms: List[Transform], + concat_dim: int = 0, + **kwargs, + ) -> None: super(Concatenate, self).__init__(**kwargs) self.transforms = transforms + self.concat_dim = concat_dim + transform_strings: str = ",".join([str(t) for t in transforms]) + self.string: str = ( + self.__class__.__name__ + + "(" + + "transforms=[{}], ".format(transform_strings) + + "concat_dim={}".format(concat_dim) + + ")" + ) + + def __repr__(self) -> str: + return self.string def __call__(self, data: Any) -> Any: if isinstance(data, SignalData): data.iq_data = np.concatenate( [transform(deepcopy(data.iq_data)) for transform in self.transforms], - axis=self.time_dim, + axis=self.concat_dim, ) else: data = np.concatenate( [transform(deepcopy(data)) for transform in self.transforms], - axis=self.time_dim, + axis=self.concat_dim, ) return data - def __repr__(self): - return "\t".join([str(t) for t in self.transforms]) - class TargetConcatenate(SignalTransform): """Concatenates Target Transforms into a Tuple @@ -212,9 +333,16 @@ class TargetConcatenate(SignalTransform): """ - def __init__(self, transforms: List[Transform], **kwargs): + def __init__(self, transforms: List[Transform], **kwargs) -> None: super(TargetConcatenate, self).__init__(**kwargs) self.transforms = transforms + transform_strings: str = ",".join([str(t) for t in transforms]) + self.string: str = ( + self.__class__.__name__ + "(" + "transforms=[{}], ".format(transform_strings) + ")" + ) + + def __repr__(self) -> str: + return self.string def __call__(self, target: Any) -> Any: return tuple([transform(target) for transform in self.transforms]) @@ -231,18 +359,42 @@ class RandAugment(SignalTransform): num_transforms (:obj: `int`): Number of transforms to randomly select + allow_multiple_same (:obj: `bool`): + Boolean specifying if multiple of the same transforms can be + selected from the input list. Implemented as the `replace` + parameter in numpy's random choice method. + """ def __init__( - self, transforms: List[SignalTransform], num_transforms: int = 2, **kwargs - ): + self, + transforms: List[Callable], + num_transforms: int = 2, + allow_multiple_same: bool = False, + **kwargs, + ) -> None: super(RandAugment, self).__init__(**kwargs) self.transforms = transforms self.num_transforms = num_transforms + self.allow_multiple_same = allow_multiple_same + transform_strings: str = ",".join([str(t) for t in transforms]) + self.string: str = ( + self.__class__.__name__ + + "(" + + "transforms=[{}], ".format(transform_strings) + + "num_transforms={}, ".format(num_transforms) + + "allow_multiple_same={}".format(allow_multiple_same) + + ")" + ) + + def __repr__(self) -> str: + return self.string def __call__(self, data: Any) -> Any: transforms = self.random_generator.choice( - self.transforms, size=self.num_transforms + self.transforms, # type: ignore + size=self.num_transforms, + replace=self.allow_multiple_same, ) for t in transforms: data = t(data) @@ -258,6 +410,7 @@ class RandChoice(SignalTransform): Args: transforms (:obj:`list`): List of transforms to sample from and then apply + probabilities (:obj:`list`): Probabilities used when sampling the above list of transforms @@ -266,19 +419,4738 @@ class RandChoice(SignalTransform): def __init__( self, transforms: List[SignalTransform], - probabilities: Optional[List[float]] = None, + probabilities: Optional[np.ndarray] = None, **kwargs, - ): + ) -> None: super(RandChoice, self).__init__(**kwargs) self.transforms = transforms - self.probabilities = ( - probabilities - if probabilities - else np.ones(len(self.transforms)) / len(self.transforms) + self.probabilities: np.ndarray = ( + probabilities if probabilities else np.ones(len(self.transforms)) / len(self.transforms) ) - if sum(self.probabilities) != 1.0: - self.probabilities /= sum(self.probabilities) + if np.sum(self.probabilities) != 1.0: + self.probabilities /= np.sum(self.probabilities) + transform_strings: str = ",".join([str(t) for t in transforms]) + self.string: str = ( + self.__class__.__name__ + + "(" + + "transforms=[{}], ".format(transform_strings) + + "probabilities=[{}]".format(self.probabilities) + + ")" + ) + + def __repr__(self) -> str: + return self.string def __call__(self, data: Any) -> Any: - t = self.random_generator.choice(self.transforms, p=self.probabilities) + t: SignalTransform = self.random_generator.choice( + self.transforms, # type: ignore + p=self.probabilities, + ) return t(data) + + +class Normalize(SignalTransform): + """Normalize a IQ vector with mean and standard deviation. + + Args: + norm :obj:`string`: + Type of norm with which to normalize + + flatten :obj:`flatten`: + Specifies if the norm should be calculated on the flattened + representation of the input tensor + + Example: + >>> import torchsig.transforms as ST + >>> transform = ST.Normalize(norm=2) # normalize by l2 norm + >>> transform = ST.Normalize(norm=1) # normalize by l1 norm + >>> transform = ST.Normalize(norm=2, flatten=True) # normalize by l1 norm of the 1D representation + + """ + + def __init__( + self, + norm: Optional[Union[int, float, Literal["fro", "nuc"]]] = 2, + flatten: bool = False, + ) -> None: + super(Normalize, self).__init__() + self.norm = norm + self.flatten = flatten + self.string: str = ( + self.__class__.__name__ + + "(" + + "norm={}, ".format(norm) + + "flatten={}".format(flatten) + + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Union[SignalData, np.ndarray]) -> Union[SignalData, np.ndarray]: + if isinstance(data, SignalData): + assert data.iq_data is not None + data.iq_data = F.normalize(data.iq_data, self.norm, self.flatten) + else: + data = F.normalize(data, self.norm, self.flatten) + return data + + +class RandomResample(SignalTransform): + """Resample using poly-phase rational resampling technique. + + Args: + rate_ratio (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + new_rate = rate_ratio*old_rate + + * If Callable, resamples to new_rate by calling rate_ratio() + * If int or float, rate_ratio is fixed by value provided + * If list, rate_ratio is any element in the list + * If tuple, rate_ratio is in range of (tuple[0], tuple[1]) + + num_iq_samples (:obj:`int`): + Since resampling changes the number of points in a tensor, it is necessary to designate how + many samples should be returned. In the case more samples are produced, the last num_iq_samples of + the resampled tensor are returned. In the case les samples are produced, the returned tensor is zero-padded + to have num_iq_samples. + + keep_samples (:obj:`bool`): + Despite returning a different number of samples being an issue, return however many samples + are returned from resample_poly + + Note: + When rate_ratio is > 1.0, the resampling algorithm produces more samples than the original tensor. + When rate_ratio < 1.0, the resampling algorithm produces less samples than the original tensor. Hence, + it is necessary to specify a number of samples to return from the newly resampled tensor so that there are + always enough samples to return + + Example: + >>> import torchsig.transforms as ST + >>> # Randomly resample to a new_rate that is between 0.75 and 1.5 times the original rate + >>> transform = ST.RandomResample((0.75, 1.5), num_iq_samples=4096) + >>> # Randomly resample to a new_rate that is either 1.5 or 3.0 + >>> transform = ST.RandomResample([1.5, 3.0], num_iq_samples=4096) + >>> # Resample to a new_rate that is always 1.5 + >>> transform = ST.RandomResample(1.5, num_iq_samples=4096) + + """ + + def __init__( + self, + rate_ratio: NumericParameter = (1.5, 3.0), + num_iq_samples: int = 4096, + keep_samples: bool = False, + ) -> None: + super(RandomResample, self).__init__() + self.rate_ratio: Callable = to_distribution(rate_ratio, self.random_generator) + self.num_iq_samples = num_iq_samples + self.keep_samples = keep_samples + self.string: str = ( + self.__class__.__name__ + + "(" + + "rate_ratio={}, ".format(rate_ratio) + + "num_iq_samples={}, ".format(num_iq_samples) + + "keep_samples={}".format(keep_samples) + + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + new_rate: float = self.rate_ratio() + if new_rate == 1.0: + return data + if isinstance(data, SignalData): + assert data.iq_data is not None + assert data.signal_description is not None + + # Update the SignalDescriptions with the new rate + new_signal_description: List[SignalDescription] = [] + signal_description_list: List[SignalDescription] = ( + [data.signal_description] + if isinstance(data.signal_description, SignalDescription) + else data.signal_description + ) + anti_alias_lpf: bool = False + for signal_desc_idx, signal_desc in enumerate(signal_description_list): + new_signal_desc: SignalDescription = deepcopy(signal_desc) + assert new_signal_desc.num_iq_samples is not None + assert new_signal_desc.start is not None + assert new_signal_desc.stop is not None + assert new_signal_desc.samples_per_symbol is not None + assert new_signal_desc.lower_frequency is not None + assert new_signal_desc.upper_frequency is not None + assert new_signal_desc.center_frequency is not None + assert new_signal_desc.bandwidth is not None + + # Update time descriptions + new_num_iq_samples: float = new_signal_desc.num_iq_samples * new_rate + start_iq_sample: float = new_signal_desc.start * new_num_iq_samples + stop_iq_sample: float = new_signal_desc.stop * new_num_iq_samples + if new_rate > 1.0: + # If the new rate is greater than 1.0, the resampled tensor + # is larger than the original tensor and is truncated to be + # the last only + trunc_samples: float = new_num_iq_samples - self.num_iq_samples + new_start_iq_sample: float = start_iq_sample - trunc_samples + new_stop_iq_sample: float = stop_iq_sample - trunc_samples + new_signal_desc.start = ( + new_start_iq_sample / self.num_iq_samples + if new_start_iq_sample > 0.0 + else 0.0 + ) + new_signal_desc.stop = ( + new_stop_iq_sample / self.num_iq_samples + if new_stop_iq_sample < self.num_iq_samples + else 1.0 + ) + else: + # If the new rate is less than 1.0, the resampled tensor + # is smaller than the original tensor and is zero-padded + # at the end to length + new_signal_desc.start *= new_rate + new_signal_desc.stop *= new_rate + + new_signal_desc.duration = new_signal_desc.stop - new_signal_desc.start + + # Check for signals lost in truncation process + if new_signal_desc.start > 1.0 or new_signal_desc.stop < 0.0: + continue + + # Update frequency descriptions + new_signal_desc.samples_per_symbol *= new_rate + # Check freq bounds for cases of partial signals + # Upsampling these signals will distort them, but at least the label will follow + if ( + new_signal_desc.lower_frequency < -0.5 + and new_signal_desc.upper_frequency / new_rate > -0.5 + and new_rate > 1.0 + ): + new_signal_desc.lower_frequency = -0.5 + new_signal_desc.bandwidth = ( + new_signal_desc.upper_frequency - new_signal_desc.lower_frequency + ) + new_signal_desc.center_frequency = ( + new_signal_desc.lower_frequency + new_signal_desc.bandwidth / 2 + ) + if ( + new_signal_desc.upper_frequency > 0.5 + and new_signal_desc.lower_frequency / new_rate < 0.5 + and new_rate > 1.0 + ): + new_signal_desc.upper_frequency = 0.5 + new_signal_desc.bandwidth = ( + new_signal_desc.upper_frequency - new_signal_desc.lower_frequency + ) + new_signal_desc.center_frequency = ( + new_signal_desc.lower_frequency + new_signal_desc.bandwidth / 2 + ) + new_signal_desc.lower_frequency /= new_rate + new_signal_desc.upper_frequency /= new_rate + new_signal_desc.center_frequency /= new_rate + new_signal_desc.bandwidth /= new_rate + + if ( + new_signal_desc.lower_frequency < -0.45 + or new_signal_desc.lower_frequency > 0.45 + or new_signal_desc.upper_frequency < -0.45 + or new_signal_desc.upper_frequency > 0.45 + ) and new_rate < 1.0: + # If downsampling and new signals are near band edge, apply a LPF to handle aliasing + anti_alias_lpf = True + + # Check new freqs for inclusion + if new_signal_desc.lower_frequency > 0.5 or new_signal_desc.upper_frequency < -0.5: + continue + + # Append updates to the new description + new_signal_description.append(new_signal_desc) + + # Apply transform to data + new_data: SignalData = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=[], + ) + new_data.iq_data = F.resample( + data.iq_data, + np.floor(new_rate * 100).astype(np.int32), + 100, + self.num_iq_samples, + self.keep_samples, + anti_alias_lpf, + ) + + # Update the new data's SignalDescription + new_data.signal_description = new_signal_description + return new_data + + else: + output: np.ndarray = F.resample( + data, + np.floor(new_rate * 100).astype(np.int32), + 100, + self.num_iq_samples, + self.keep_samples, + ) + return output + + +class TargetSNR(SignalTransform): + """Adds zero-mean complex additive white Gaussian noise to a provided + tensor to achieve a target SNR. The provided signal is assumed to be + entirely the signal of interest. Note that this transform relies on + information contained within the SignalData object's SignalDescription. The + transform also assumes that only one signal is present in the IQ data. If + multiple signals' SignalDescriptions are detected, the transform will raise a + warning. + + Args: + target_snr (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + Defined as 10*log10(np.mean(np.abs(x)**2)/np.mean(np.abs(n)**2)) if in dB, + np.mean(np.abs(x)**2)/np.mean(np.abs(n)**2) if linear. + + * If Callable, produces a sample by calling target_snr() + * If int or float, target_snr is fixed at the value provided + * If list, target_snr is any element in the list + * If tuple, target_snr is in range of (tuple[0], tuple[1]) + + eb_no (:obj:`bool`): + Defines SNR as 10*log10(np.mean(np.abs(x)**2)/np.mean(np.abs(n)**2))*samples_per_symbol/bits_per_symbol. + Defining SNR this way effectively normalized the noise level with respect to spectral efficiency and + bandwidth. Normalizing this way is common in comparing systems in terms of power efficiency. + If True, bits_per_symbol in the the SignalData will be used in the calculation of SNR. To achieve SNR in + terms of E_b/N_0, samples_per_symbol must also be provided. Defaults to False. + + linear (:obj:`bool`): + If True, target_snr and signal_power is on linear scale not dB. Defaults to False. + + """ + + def __init__( + self, + target_snr: NumericParameter = uniform_continuous_distribution(-10, 10), + eb_no: bool = False, + linear: bool = False, + **kwargs, + ) -> None: + super(TargetSNR, self).__init__(**kwargs) + self.target_snr = to_distribution(target_snr, self.random_generator) + self.eb_no = eb_no + self.linear = linear + self.string = ( + self.__class__.__name__ + + "(" + + "target_snr={}, ".format(target_snr) + + "eb_no={}, ".format(eb_no) + + "linear={}".format(linear) + + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + target_snr = self.target_snr() + target_snr_linear = 10 ** (target_snr / 10) if not self.linear else target_snr + if isinstance(data, SignalData): + assert data.iq_data is not None + assert data.signal_description is not None + + signal_description_list: List[SignalDescription] = ( + [data.signal_description] + if isinstance(data.signal_description, SignalDescription) + else data.signal_description + ) + if len(signal_description_list) > 1: + raise ValueError( + "Expected single `SignalDescription` for input `SignalData` but {} detected.".format( + len(signal_description_list) + ) + ) + assert signal_description_list[0].class_name is not None + assert signal_description_list[0].samples_per_symbol is not None + assert signal_description_list[0].bits_per_symbol is not None + assert signal_description_list[0].snr is not None + + signal_power = np.mean(np.abs(data.iq_data) ** 2, axis=self.time_dim) + class_name = signal_description_list[0].class_name + if "ofdm" not in class_name: + # EbNo not available for OFDM + target_snr_linear *= signal_description_list[0].bits_per_symbol if self.eb_no else 1 + occupied_bw = 1 / signal_description_list[0].samples_per_symbol + noise_power_linear = signal_power / (target_snr_linear * occupied_bw) + noise_power_db = 10 * np.log10(noise_power_linear) + data.iq_data = F.awgn(data.iq_data, noise_power_db) + signal_description_list[0].snr = target_snr + return data + else: + raise ValueError( + "Expected input type `SignalData`. Received {}. \n\t\ + The `TargetSNR` transform depends on metadata from a `SignalData` object. \n\t\ + Please reference the `AddNoise` transform as an alternative.".format( + type(data) + ) + ) + + +class AddNoise(SignalTransform): + """Add random AWGN at specified power levels + + Note: + Differs from the TargetSNR() in that this transform adds + noise at a specified power level, whereas TargetSNR() + assumes a basebanded signal and adds noise to achieve a specified SNR + level for the signal of interest. This transform, + AddNoise() is useful for simply adding a randomized + level of noise to either a narrowband or wideband input. + + Args: + noise_power_db (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + Defined as 10*log10(np.mean(np.abs(x)**2)/np.mean(np.abs(n)**2)) if in dB, + np.mean(np.abs(x)**2)/np.mean(np.abs(n)**2) if linear. + + * If Callable, produces a sample by calling target_snr() + * If int or float, target_snr is fixed at the value provided + * If list, target_snr is any element in the list + * If tuple, target_snr is in range of (tuple[0], tuple[1]) + + input_noise_floor_db (:obj:`float`): + The noise floor of the input data in dB + + linear (:obj:`bool`): + If True, target_snr and signal_power is on linear scale not dB. + + Example: + >>> import torchsig.transforms as ST + >>> # Added AWGN power range is (-40, -20) dB + >>> transform = ST.AddNoise((-40, -20)) + + """ + + def __init__( + self, + noise_power_db: NumericParameter = uniform_continuous_distribution(-80, -60), + input_noise_floor_db: float = 0.0, + linear: bool = False, + **kwargs, + ) -> None: + super(AddNoise, self).__init__(**kwargs) + self.noise_power_db = to_distribution(noise_power_db, self.random_generator) + self.input_noise_floor_db = input_noise_floor_db + self.linear = linear + self.string = ( + self.__class__.__name__ + + "(" + + "noise_power_db={}, ".format(noise_power_db) + + "input_noise_floor_db={}, ".format(input_noise_floor_db) + + "linear={}".format(linear) + + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + if isinstance(data, SignalData): + assert data.iq_data is not None + assert data.signal_description is not None + + # Create new SignalData object for transformed data + new_data = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=[], + ) + + # Retrieve random noise power value + noise_power_db = self.noise_power_db() + noise_power_db = 10 * np.log10(noise_power_db) if self.linear else noise_power_db + + if self.input_noise_floor_db: + noise_floor = self.input_noise_floor_db + else: + # TODO: implement fast noise floor estimation technique? + noise_floor = 0 # Assumes 0dB noise floor + + # Apply data augmentation + new_data.iq_data = F.awgn(data.iq_data, noise_power_db) + + # Update SignalDescription + new_signal_description: List[SignalDescription] = [] + signal_description_list: List[SignalDescription] = ( + [data.signal_description] + if isinstance(data.signal_description, SignalDescription) + else data.signal_description + ) + for signal_desc in signal_description_list: + new_signal_desc = deepcopy(signal_desc) + assert new_signal_desc.snr is not None + new_signal_desc.snr = ( + (new_signal_desc.snr - noise_power_db) + if noise_power_db > noise_floor + else new_signal_desc.snr + ) + new_signal_description.append(new_signal_desc) + new_data.signal_description = new_signal_description + return new_data + + else: + noise_power_db = self.noise_power_db(size=data.shape[0]) + noise_power_db = 10 * np.log10(noise_power_db) if self.linear else noise_power_db + output: np.ndarray = F.awgn(data, noise_power_db) + return output + + +class TimeVaryingNoise(SignalTransform): + """Add time-varying random AWGN at specified input parameters + + Args: + noise_power_db_low (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + Defined as 10*log10(np.mean(np.abs(x)**2)/np.mean(np.abs(n)**2)) if in dB, + np.mean(np.abs(x)**2)/np.mean(np.abs(n)**2) if linear. + * If Callable, produces a sample by calling noise_power_db_low() + * If int or float, noise_power_db_low is fixed at the value provided + * If list, noise_power_db_low is any element in the list + * If tuple, noise_power_db_low is in range of (tuple[0], tuple[1]) + + noise_power_db_high (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + Defined as 10*log10(np.mean(np.abs(x)**2)/np.mean(np.abs(n)**2)) if in dB, + np.mean(np.abs(x)**2)/np.mean(np.abs(n)**2) if linear. + * If Callable, produces a sample by calling noise_power_db_low() + * If int or float, noise_power_db_low is fixed at the value provided + * If list, noise_power_db_low is any element in the list + * If tuple, noise_power_db_low is in range of (tuple[0], tuple[1]) + + inflections (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + Number of inflection points in time-varying noise + * If Callable, produces a sample by calling inflections() + * If int or float, inflections is fixed at the value provided + * If list, inflections is any element in the list + * If tuple, inflections is in range of (tuple[0], tuple[1]) + + random_regions (:py:class:`~Callable`, :obj:`bool`, :obj:`list`, :obj:`tuple`): + If inflections > 0, random_regions specifies whether each + inflection point should be randomly selected or evenly divided + among input data + * If Callable, produces a sample by calling random_regions() + * If bool, random_regions is fixed at the value provided + * If list, random_regions is any element in the list + + linear (:obj:`bool`): + If True, powers input are on linear scale not dB. + + """ + + def __init__( + self, + noise_power_db_low: NumericParameter = uniform_continuous_distribution(-80, -60), + noise_power_db_high: NumericParameter = uniform_continuous_distribution(-40, -20), + inflections: IntParameter = uniform_continuous_distribution(0, 10), + random_regions: Union[List, bool] = True, + linear: bool = False, + **kwargs, + ) -> None: + super(TimeVaryingNoise, self).__init__(**kwargs) + self.noise_power_db_low = to_distribution(noise_power_db_low) + self.noise_power_db_high = to_distribution(noise_power_db_high) + self.inflections = to_distribution(inflections) + self.random_regions = to_distribution(random_regions) + self.linear = linear + self.string = ( + self.__class__.__name__ + + "(" + + "noise_power_db_low={}, ".format(noise_power_db_low) + + "noise_power_db_high={}, ".format(noise_power_db_high) + + "inflections={}, ".format(inflections) + + "random_regions={}, ".format(random_regions) + + "linear={}".format(linear) + + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + noise_power_db_low = self.noise_power_db_low() + noise_power_db_high = self.noise_power_db_high() + noise_power_db_low = ( + 10 * np.log10(noise_power_db_low) if self.linear else noise_power_db_low + ) + noise_power_db_high = ( + 10 * np.log10(noise_power_db_high) if self.linear else noise_power_db_high + ) + inflections = int(self.inflections()) + random_regions = self.random_regions() + + if isinstance(data, SignalData): + assert data.iq_data is not None + assert data.signal_description is not None + + # Create new SignalData object for transformed data + new_data = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=[], + ) + + # Apply data augmentation + new_data.iq_data = F.time_varying_awgn( + data.iq_data, + noise_power_db_low, + noise_power_db_high, + inflections, + random_regions, + ) + + # Update SignalDescription with average of added noise (Note: this is merely an approximation) + new_signal_description: List[SignalDescription] = [] + signal_description_list: List[SignalDescription] = ( + [data.signal_description] + if isinstance(data.signal_description, SignalDescription) + else data.signal_description + ) + noise_power_db_change = np.abs(noise_power_db_high - noise_power_db_low) + avg_noise_power_db = ( + min(noise_power_db_low, noise_power_db_high) + noise_power_db_change / 2 + ) + for signal_desc in new_signal_description: + new_signal_desc = deepcopy(signal_desc) + assert new_signal_desc.snr is not None + new_signal_desc.snr -= avg_noise_power_db + new_signal_description.append(new_signal_desc) + new_data.signal_description = new_signal_description + return new_data + + else: + output: np.ndarray = F.time_varying_awgn( + data, + noise_power_db_low, + noise_power_db_high, + inflections, + random_regions, + ) + return output + + +class RayleighFadingChannel(SignalTransform): + """Applies Rayleigh fading channel to tensor. + + Note: + A Rayleigh fading channel can be modeled as an FIR filter with Gaussian distributed taps which vary over time. + The length of the filter determines the coherence bandwidth of the channel and is inversely proportional to + the delay spread. The rate at which the channel taps vary over time is related to the coherence time and this is + inversely proportional to the maximum Doppler spread. This time variance is not included in this model. + + Args: + coherence_bandwidth (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + * If Callable, produces a sample by calling coherence_bandwidth() + * If int or float, coherence_bandwidth is fixed at the value provided + * If list, coherence_bandwidth is any element in the list + * If tuple, coherence_bandwidth is in range of (tuple[0], tuple[1]) + + power_delay_profile (:obj:`list`, :obj:`tuple`): + A list of positive values assigning power to taps of the channel model. When the number of taps + exceeds the number of items in the provided power_delay_profile, the list is linearly interpolated + to provide values for each tap of the channel + + Example: + >>> import torchsig.transforms as ST + >>> # Rayleigh Fading with coherence bandwidth uniformly distributed between fs/100 and fs/10 + >>> transform = ST.RayleighFadingChannel(lambda size: np.random.uniform(.01, .1, size)) + >>> # Rayleigh Fading with coherence bandwidth normally distributed clipped between .01 and .1 + >>> transform = ST.RayleighFadingChannel(lambda size: np.clip(np.random.normal(0, .1, size), .01, .1)) + >>> # Rayleigh Fading with coherence bandwidth uniformly distributed between fs/100 and fs/10 + >>> transform = ST.RayleighFadingChannel((.01, .1)) + >>> # Rayleigh Fading with coherence bandwidth either .02 or .01 + >>> transform = ST.RayleighFadingChannel([.02, .01]) + >>> # Rayleigh Fading with fixed coherence bandwidth at .1 + >>> transform = ST.RayleighFadingChannel(.1) + >>> # Rayleigh Fading with fixed coherence bandwidth at .1 and pdp (1.0, .7, .1) + >>> transform = ST.RayleighFadingChannel((.01, .1), power_delay_profile=(1.0, .7, .1)) + """ + + def __init__( + self, + coherence_bandwidth: FloatParameter = uniform_continuous_distribution(0.01, 0.1), + power_delay_profile: Union[Tuple, List, np.ndarray] = (1, 1), + **kwargs, + ) -> None: + super(RayleighFadingChannel, self).__init__(**kwargs) + self.coherence_bandwidth = to_distribution(coherence_bandwidth, self.random_generator) + self.power_delay_profile = np.asarray(power_delay_profile) + self.string = ( + self.__class__.__name__ + + "(" + + "coherence_bandwidth={}, ".format(coherence_bandwidth) + + "power_delay_profile={}".format(power_delay_profile) + + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + coherence_bandwidth = self.coherence_bandwidth() + if isinstance(data, SignalData): + assert data.iq_data is not None + data.iq_data = F.rayleigh_fading( + data.iq_data, coherence_bandwidth, self.power_delay_profile + ) + else: + data = F.rayleigh_fading(data, coherence_bandwidth, self.power_delay_profile) + return data + + +class ImpulseInterferer(SignalTransform): + """Applies an impulse interferer + + Args: + amp (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + * If Callable, produces a sample by calling amp() + * If int or float, amp is fixed at the value provided + * If list, amp is any element in the list + * If tuple, amp is in range of (tuple[0], tuple[1]) + + pulse_offset (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + * If Callable, produces a sample by calling phase_offset() + * If int or float, pulse_offset is fixed at the value provided + * If list, phase_offset is any element in the list + * If tuple, phase_offset is in range of (tuple[0], tuple[1]) + + """ + + def __init__( + self, + amp: FloatParameter = uniform_continuous_distribution(0.1, 100.0), + pulse_offset: FloatParameter = uniform_continuous_distribution(0.0, 1), + **kwargs, + ) -> None: + super(ImpulseInterferer, self).__init__(**kwargs) + self.amp = to_distribution(amp, self.random_generator) + self.pulse_offset = to_distribution(pulse_offset, self.random_generator) + self.string = ( + self.__class__.__name__ + + "(" + + "amp={}, ".format(amp) + + "pulse_offset={}".format(pulse_offset) + + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + amp = self.amp() + pulse_offset = self.pulse_offset() + pulse_offset = 1.0 if pulse_offset > 1.0 else np.max((0.0, pulse_offset)) + if isinstance(data, SignalData): + assert data.iq_data is not None + data.iq_data = F.impulsive_interference(data.iq_data, amp, self.pulse_offset) + else: + data = F.impulsive_interference(data, amp, self.pulse_offset) + return data + + +class RandomPhaseShift(SignalTransform): + """Applies a random phase offset to tensor + + Args: + phase_offset (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + * If Callable, produces a sample by calling phase_offset() + * If int or float, phase_offset is fixed at the value provided + * If list, phase_offset is any element in the list + * If tuple, phase_offset is in range of (tuple[0], tuple[1]) + + Example: + >>> import torchsig.transforms as ST + >>> # Phase Offset in range [-pi, pi] + >>> transform = ST.RandomPhaseShift(uniform_continuous_distribution(-1, 1)) + >>> # Phase Offset from [-pi/2, 0, and pi/2] + >>> transform = ST.RandomPhaseShift(uniform_discrete_distribution([-.5, 0, .5])) + >>> # Phase Offset in range [-pi, pi] + >>> transform = ST.RandomPhaseShift((-1, 1)) + >>> # Phase Offset either -pi/4 or pi/4 + >>> transform = ST.RandomPhaseShift([-.25, .25]) + >>> # Phase Offset is fixed at -pi/2 + >>> transform = ST.RandomPhaseShift(-.5) + """ + + def __init__( + self, + phase_offset: FloatParameter = uniform_continuous_distribution(-1, 1), + **kwargs, + ) -> None: + super(RandomPhaseShift, self).__init__(**kwargs) + self.phase_offset = to_distribution(phase_offset, self.random_generator) + self.string = self.__class__.__name__ + "(" + "phase_offset={}".format(phase_offset) + ")" + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + phases = self.phase_offset() + if isinstance(data, SignalData): + assert data.iq_data is not None + data.iq_data = F.phase_offset(data.iq_data, phases * np.pi) + else: + data = F.phase_offset(data, phases * np.pi) + return data + + +class InterleaveComplex(SignalTransform): + """Converts complex IQ samples to interleaved real and imaginary floating + point values. + + Example: + >>> import torchsig.transforms as ST + >>> transform = ST.InterleaveComplex() + + """ + + def __init__(self) -> None: + super(InterleaveComplex, self).__init__() + + def __call__(self, data: Any) -> Any: + if isinstance(data, SignalData): + assert data.iq_data is not None + data.iq_data = F.interleave_complex(data.iq_data) + else: + data = F.interleave_complex(data) + return data + + +class ComplexTo2D(SignalTransform): + """Takes a vector of complex IQ samples and converts two channels of real + and imaginary parts + + Example: + >>> import torchsig.transforms as ST + >>> transform = ST.ComplexTo2D() + + """ + + def __init__(self) -> None: + super(ComplexTo2D, self).__init__() + + def __call__(self, data: Any) -> Any: + if isinstance(data, SignalData): + assert data.iq_data is not None + data.iq_data = F.complex_to_2d(data.iq_data) + else: + data = F.complex_to_2d(data) + return data + + +class Real(SignalTransform): + """Takes a vector of complex IQ samples and returns Real portions + + Example: + >>> import torchsig.transforms as ST + >>> transform = ST.Real() + + """ + + def __init__(self) -> None: + super(Real, self).__init__() + + def __call__(self, data: Any) -> Any: + if isinstance(data, SignalData): + assert data.iq_data is not None + data.iq_data = F.real(data.iq_data) + else: + data = F.real(data) + return data + + +class Imag(SignalTransform): + """Takes a vector of complex IQ samples and returns Imaginary portions + + Example: + >>> import torchsig.transforms as ST + >>> transform = ST.Imag() + + """ + + def __init__(self) -> None: + super(Imag, self).__init__() + + def __call__(self, data: Any) -> Any: + if isinstance(data, SignalData): + assert data.iq_data is not None + data.iq_data = F.imag(data.iq_data) + else: + data = F.imag(data) + return data + + +class ComplexMagnitude(SignalTransform): + """Takes a vector of complex IQ samples and returns the complex magnitude + + Example: + >>> import torchsig.transforms as ST + >>> transform = ST.ComplexMagnitude() + + """ + + def __init__(self) -> None: + super(ComplexMagnitude, self).__init__() + + def __call__(self, data: Any) -> Any: + if isinstance(data, SignalData): + assert data.iq_data is not None + data.iq_data = F.complex_magnitude(data.iq_data) + else: + data = F.complex_magnitude(data) + return data + + +class WrappedPhase(SignalTransform): + """Takes a vector of complex IQ samples and returns wrapped phase (-pi, pi) + + Example: + >>> import torchsig.transforms as ST + >>> transform = ST.WrappedPhase() + + """ + + def __init__(self) -> None: + super(WrappedPhase, self).__init__() + + def __call__(self, data: Any) -> Any: + if isinstance(data, SignalData): + assert data.iq_data is not None + data.iq_data = F.wrapped_phase(data.iq_data) + else: + data = F.wrapped_phase(data) + return data + + +class DiscreteFourierTransform(SignalTransform): + """Calculates DFT using FFT + + Example: + >>> import torchsig.transforms as ST + >>> transform = ST.DiscreteFourierTransform() + + """ + + def __init__(self) -> None: + super(DiscreteFourierTransform, self).__init__() + + def __call__(self, data: Any) -> Any: + if isinstance(data, SignalData): + assert data.iq_data is not None + data.iq_data = F.discrete_fourier_transform(data.iq_data) + else: + data = F.discrete_fourier_transform(data) + return data + + +class ChannelConcatIQDFT(SignalTransform): + """Converts the input IQ into 2D tensor of the real & imaginary components + concatenated in the channel dimension. Next, calculate the DFT using the + FFT, convert the complex DFT into a 2D tensor of real & imaginary frequency + components. Finally, stack the 2D IQ and the 2D DFT components in the + channel dimension. + + Example: + >>> import torchsig.transforms as ST + >>> transform = ST.ChannelConcatIQDFT() + + """ + + def __init__(self) -> None: + super(ChannelConcatIQDFT, self).__init__() + + def __call__(self, data: Any) -> Any: + iq_data = data.iq_data if isinstance(data, SignalData) else data + assert iq_data is not None + dft_data = F.discrete_fourier_transform(iq_data) + iq_data = F.complex_to_2d(iq_data) + dft_data = F.complex_to_2d(dft_data) + output_data = np.concatenate([iq_data, dft_data], axis=0) + if isinstance(data, SignalData): + data.iq_data = output_data + else: + data = output_data + return data + + +class Spectrogram(SignalTransform): + """Calculates power spectral density over time + + Args: + nperseg (:obj:`int`): + Length of each segment. If window is str or tuple, is set to 256, + and if window is array_like, is set to the length of the window. + + noverlap (:obj:`int`): + Number of points to overlap between segments. + If None, noverlap = nperseg // 8. + + nfft (:obj:`int`): + Length of the FFT used, if a zero padded FFT is desired. + If None, the FFT length is nperseg. + + window_fcn (:obj:`str`): + Window to be used in spectrogram operation. + Default value is 'np.blackman'. + + mode (:obj:`str`): + Mode of the spectrogram to be computed. + Default value is 'psd'. + + Example: + >>> import torchsig.transforms as ST + >>> # Spectrogram with seg_size=256, overlap=64, nfft=256, window=blackman_harris + >>> transform = ST.Spectrogram() + >>> # Spectrogram with seg_size=128, overlap=64, nfft=128, window=blackman_harris (2x oversampled in time) + >>> transform = ST.Spectrogram(nperseg=128, noverlap=64) + >>> # Spectrogram with seg_size=128, overlap=0, nfft=128, window=blackman_harris (critically sampled) + >>> transform = ST.Spectrogram(nperseg=128, noverlap=0) + >>> # Spectrogram with seg_size=128, overlap=64, nfft=128, window=blackman_harris (2x oversampled in frequency) + >>> transform = ST.Spectrogram(nperseg=128, noverlap=64, nfft=256) + >>> # Spectrogram with seg_size=128, overlap=64, nfft=128, window=rectangular + >>> transform = ST.Spectrogram(nperseg=128, noverlap=64, nfft=256, window_fcn=np.ones) + + """ + + def __init__( + self, + nperseg: int = 256, + noverlap: Optional[int] = None, + nfft: Optional[int] = None, + window_fcn: Callable[[int], np.ndarray] = np.blackman, + mode: str = "psd", + ) -> None: + super(Spectrogram, self).__init__() + self.nperseg: int = nperseg + self.noverlap: int = nperseg // 4 if noverlap is None else noverlap + self.nfft: int = nperseg if nfft is None else nfft + self.window_fcn = window_fcn + self.mode = mode + self.string = ( + self.__class__.__name__ + + "(" + + "nperseg={}, ".format(nperseg) + + "noverlap={}, ".format(self.noverlap) + + "nfft={}, ".format(self.nfft) + + "window_fcn={}, ".format(window_fcn) + + "mode={}".format(mode) + + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + if isinstance(data, SignalData): + assert data.iq_data is not None + data.iq_data = F.spectrogram( + data.iq_data, + self.nperseg, + self.noverlap, + self.nfft, + self.window_fcn, + self.mode, + ) + if self.mode == "complex": + new_tensor = np.zeros( + (2, data.iq_data.shape[0], data.iq_data.shape[1]), dtype=np.float32 + ) + new_tensor[0, :, :] = np.real(data.iq_data).astype(np.float32) + new_tensor[1, :, :] = np.imag(data.iq_data).astype(np.float32) + data.iq_data = new_tensor + else: + data = F.spectrogram( + data, self.nperseg, self.noverlap, self.nfft, self.window_fcn, self.mode + ) + if self.mode == "complex": + new_tensor = np.zeros((2, data.shape[0], data.shape[1]), dtype=np.float32) + new_tensor[0, :, :] = np.real(data).astype(np.float32) + new_tensor[1, :, :] = np.imag(data).astype(np.float32) + data = new_tensor + return data + + +class ContinuousWavelet(SignalTransform): + """Computes the continuous wavelet transform resulting in a Scalogram of + the complex IQ vector + + Args: + tensor (:class:`numpy.ndarray`): + (batch_size, vector_length, ...)-sized tensor. + + wavelet (:obj:`str`): + Name of the mother wavelet. + If None, wavename = 'mexh'. + + nscales (:obj:`int`): + Number of scales to use in the Scalogram. + If None, nscales = 33. + + sample_rate (:obj:`float`): + Sample rate of the signal. + If None, fs = 1.0. + + Example: + >>> import torchsig.transforms as ST + >>> # ContinuousWavelet SignalTransform using the 'mexh' mother wavelet with 33 scales + >>> transform = ST.ContinuousWavelet() + + """ + + def __init__(self, wavelet: str = "mexh", nscales: int = 33, sample_rate: float = 1.0) -> None: + super(ContinuousWavelet, self).__init__() + self.wavelet = wavelet + self.nscales = nscales + self.sample_rate = sample_rate + self.string = ( + self.__class__.__name__ + + "(" + + "wavelet={}, ".format(wavelet) + + "nscales={}, ".format(nscales) + + "sample_rate={}".format(sample_rate) + + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + if isinstance(data, SignalData): + assert data.iq_data is not None + data.iq_data = F.continuous_wavelet_transform( + data.iq_data, + self.wavelet, + self.nscales, + self.sample_rate, + ) + else: + data = F.continuous_wavelet_transform( + data, + self.wavelet, + self.nscales, + self.sample_rate, + ) + return data + + +class ReshapeTransform(SignalTransform): + """Reshapes the input data to the specified shape + + Args: + new_shape (obj:`tuple`): + The new shape for the input data + + """ + + def __init__(self, new_shape: Tuple, **kwargs) -> None: + super(ReshapeTransform, self).__init__(**kwargs) + self.new_shape = new_shape + self.string = self.__class__.__name__ + "(" + "new_shape={}".format(new_shape) + ")" + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + if isinstance(data, SignalData): + assert data.iq_data is not None + data.iq_data = data.iq_data.reshape(*self.new_shape) + else: + data = data.reshape(*self.new_shape) + return data + + +class RandomTimeShift(SignalTransform): + """Shifts tensor in the time dimension by shift samples. Zero-padding is applied to maintain input size. + + Args: + shift (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + * If Callable, produces a sample by calling shift() + * If int or float, shift is fixed at the value provided + * If list, shift is any element in the list + * If tuple, shift is in range of (tuple[0], tuple[1]) + + interp_rate (:obj:`int`): + Interpolation rate used by internal interpolation filter + + taps_per_arm (:obj:`int`): + Number of taps per arm used in filter. More is slower, but more accurate. + + Example: + >>> import torchsig.transforms as ST + >>> # Shift inputs by range of (-10, 20) samples with uniform distribution + >>> transform = ST.RandomTimeShift(lambda size: np.random.uniform(-10, 20, size)) + >>> # Shift inputs by normally distributed time shifts + >>> transform = ST.RandomTimeShift(lambda size: np.random.normal(0, 10, size)) + >>> # Shift by discrete set of values + >>> transform = ST.RandomTimeShift(lambda size: np.random.choice([-10, 5, 10], size)) + >>> # Shift by 5 or 10 + >>> transform = ST.RandomTimeShift([5, 10]) + >>> # Shift by random amount between 5 and 10 with uniform probability + >>> transform = ST.RandomTimeShift((5, 10)) + >>> # Shift fixed at 5 samples + >>> transform = ST.RandomTimeShift(5) + + """ + + def __init__( + self, + shift: NumericParameter = (-10, 10), + interp_rate: int = 100, + taps_per_arm: int = 24, + ) -> None: + super(RandomTimeShift, self).__init__() + self.shift = to_distribution(shift, self.random_generator) + self.interp_rate = interp_rate + num_taps = int(taps_per_arm * interp_rate) + self.taps = ( + signal.firwin(num_taps, 1.0 / interp_rate, 1.0 / interp_rate / 4.0, scale=True) + * interp_rate + ) + self.string = ( + self.__class__.__name__ + + "(" + + "shift={}, ".format(shift) + + "interp_rate={}, ".format(interp_rate) + + "taps_per_arm={}".format(taps_per_arm) + + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + shift: float = float(self.shift()) + integer_part, decimal_part = divmod(shift, 1) + integer_time_shift: int = int(integer_part) if integer_part else 0 + float_decimal_part: float = float(decimal_part) if decimal_part else 0.0 + + if isinstance(data, SignalData): + assert data.iq_data is not None + assert data.signal_description is not None + + # Create new SignalData object for transformed data + new_data: SignalData = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=[], + ) + + # Apply data transformation + if float_decimal_part != 0: + new_data.iq_data = F.fractional_shift( + data.iq_data, + self.taps, + self.interp_rate, + -float_decimal_part, # this needed to be negated to be consistent with the previous implementation + ) + else: + new_data.iq_data = data.iq_data + new_data.iq_data = F.time_shift(new_data.iq_data, integer_time_shift) + + # Update SignalDescription + new_signal_description: List[SignalDescription] = [] + signal_description_list: List[SignalDescription] = ( + [data.signal_description] + if isinstance(data.signal_description, SignalDescription) + else data.signal_description + ) + for signal_desc in signal_description_list: + new_signal_desc = deepcopy(signal_desc) + assert new_signal_desc.start is not None + assert new_signal_desc.stop is not None + + new_signal_desc.start += shift / new_data.iq_data.shape[0] + new_signal_desc.stop += shift / new_data.iq_data.shape[0] + new_signal_desc.start = ( + 0.0 if new_signal_desc.start < 0.0 else new_signal_desc.start + ) + new_signal_desc.stop = 1.0 if new_signal_desc.stop > 1.0 else new_signal_desc.stop + new_signal_desc.duration = new_signal_desc.stop - new_signal_desc.start + if new_signal_desc.start > 1.0 or new_signal_desc.stop < 0.0: + continue + new_signal_description.append(new_signal_desc) + new_data.signal_description = new_signal_description + return new_data + + else: + output: np.ndarray = data.copy() + if float_decimal_part != 0: + output = F.fractional_shift( + output, + self.taps, + self.interp_rate, + -float_decimal_part, # this needed to be negated to be consistent with the previous implementation + ) + output = F.time_shift(output, integer_time_shift) + return output + + +class TimeCrop(SignalTransform): + """Crops a tensor in the time dimension to the specified length. Optional + crop techniques include: start, center, end, & random + + Args: + crop_type (:obj:`str`): + Type of cropping to perform. Options are: `start`, `center`, `end`, + and `random`. `start` crops the input tensor such that the first + `length` samples are returned. `center` crops the input tensor such + that the center `length` samples are returned. `end` crops the + input tensor such that the last `length` samples are returned. + `random` crops randomly in the range `[0,length-1]`. + + length (:obj:`int`): + Number of samples to include. + + Example: + >>> import torchsig.transforms as ST + >>> # Crop inputs to first 256 samples + >>> transform = ST.TimeCrop(crop_type='start', length=256) + >>> # Crop inputs to center 512 samples + >>> transform = ST.TimeCrop(crop_type='center', length=512) + >>> # Crop inputs to last 1024 samples + >>> transform = ST.TimeCrop(crop_type='end', length=1024) + >>> # Randomly crop any 2048 samples from input + >>> transform = ST.TimeCrop(crop_type='random', length=2048) + + """ + + def __init__(self, crop_type: str = "random", length: int = 256) -> None: + super(TimeCrop, self).__init__() + self.crop_type = crop_type + self.length = length + self.string = ( + self.__class__.__name__ + + "(" + + "crop_type={}, ".format(crop_type) + + "length={}".format(length) + + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + iq_data = data.iq_data if isinstance(data, SignalData) else data + assert iq_data is not None + + if iq_data.shape[0] == self.length: + return data + elif iq_data.shape[0] < self.length: + raise ValueError( + "Input data length {} is less than requested length {}".format( + iq_data.shape[0], self.length + ) + ) + + if self.crop_type == "start": + start = 0 + elif self.crop_type == "end": + start = iq_data.shape[0] - self.length + elif self.crop_type == "center": + start = (iq_data.shape[0] - self.length) // 2 + elif self.crop_type == "random": + start = np.random.randint(0, iq_data.shape[0] - self.length) + else: + raise ValueError("Crop type must be: `start`, `center`, `end`, or `random`") + + if isinstance(data, SignalData): + assert data.signal_description is not None + # Create new SignalData object for transformed data + new_data: SignalData = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=[], + ) + + # Perform data augmentation + new_data.iq_data = F.time_crop(iq_data, start, self.length) + assert new_data.iq_data is not None + + # Update SignalDescription + new_signal_description: List[SignalDescription] = [] + signal_description_list: List[SignalDescription] = ( + [data.signal_description] + if isinstance(data.signal_description, SignalDescription) + else data.signal_description + ) + for signal_desc in signal_description_list: + new_signal_desc = deepcopy(signal_desc) + assert new_signal_desc.start is not None + assert new_signal_desc.stop is not None + + original_start_sample = signal_desc.start * iq_data.shape[0] + original_stop_sample = signal_desc.stop * iq_data.shape[0] + new_start_sample = original_start_sample - start + new_stop_sample = original_stop_sample - start + new_signal_desc.start = float(new_start_sample / self.length) + new_signal_desc.stop = float(new_stop_sample / self.length) + new_signal_desc.start = ( + 0.0 if new_signal_desc.start < 0.0 else new_signal_desc.start + ) + new_signal_desc.stop = 1.0 if new_signal_desc.stop > 1.0 else new_signal_desc.stop + new_signal_desc.duration = new_signal_desc.stop - new_signal_desc.start + new_signal_desc.num_iq_samples = self.length + if new_signal_desc.start > 1.0 or new_signal_desc.stop < 0.0: + continue + new_signal_description.append(new_signal_desc) + new_data.signal_description = new_signal_description + return new_data + + else: + output: np.ndarray = F.time_crop(data, start, self.length) + return output + + +class TimeReversal(SignalTransform): + """Applies a time reversal to the input. Note that applying a time reversal + inherently also applies a spectral inversion. If a time-reversal without + spectral inversion is desired, the `undo_spectral_inversion` argument + can be set to True. By setting this value to True, an additional, manual + spectral inversion is applied to revert the time-reversal's inversion + effect. + + Args: + undo_spectral_inversion (:obj:`bool`, :obj:`float`): + * If bool, undo_spectral_inversion is always/never applied + * If float, undo_spectral_inversion is a probability + + """ + + def __init__( + self, + undo_spectral_inversion: Union[bool, float] = True, + ) -> None: + super(TimeReversal, self).__init__() + if isinstance(undo_spectral_inversion, bool): + self.undo_spectral_inversion: float = 1.0 if undo_spectral_inversion else 0.0 + else: + self.undo_spectral_inversion = undo_spectral_inversion + self.string = ( + self.__class__.__name__ + + "(" + + "undo_spectral_inversion={}".format(undo_spectral_inversion) + + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + spec_inversion_prob = np.random.rand() + undo_spec_inversion = spec_inversion_prob <= self.undo_spectral_inversion + if isinstance(data, SignalData): + assert data.iq_data is not None + assert data.signal_description is not None + + # Create new SignalData object for transformed data + new_data: SignalData = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=[], + ) + + # Perform data augmentation + new_data.iq_data = F.time_reversal(data.iq_data) + if undo_spec_inversion: + # If spectral inversion not desired, reverse effect + new_data.iq_data = F.spectral_inversion(new_data.iq_data) + + # Update SignalDescription + new_signal_description: List[SignalDescription] = [] + signal_description_list: List[SignalDescription] = ( + [data.signal_description] + if isinstance(data.signal_description, SignalDescription) + else data.signal_description + ) + for signal_desc in signal_description_list: + new_signal_desc = deepcopy(signal_desc) + assert new_signal_desc.start is not None + assert new_signal_desc.stop is not None + assert new_signal_desc.lower_frequency is not None + assert new_signal_desc.upper_frequency is not None + assert new_signal_desc.center_frequency is not None + + # Invert time labels + original_start = new_signal_desc.start + original_stop = new_signal_desc.stop + new_signal_desc.start = original_stop * -1 + 1.0 + new_signal_desc.stop = original_start * -1 + 1.0 + + if not undo_spec_inversion: + # Invert freq labels + original_lower = new_signal_desc.lower_frequency + original_upper = new_signal_desc.upper_frequency + new_signal_desc.lower_frequency = original_upper * -1 + new_signal_desc.upper_frequency = original_lower * -1 + new_signal_desc.center_frequency *= -1 + + new_signal_description.append(new_signal_desc) + + new_data.signal_description = new_signal_description + return new_data + + else: + output: np.ndarray = F.time_reversal(data) + if undo_spec_inversion: + # If spectral inversion not desired, reverse effect + output = F.spectral_inversion(output) + return output + + +class AmplitudeReversal(SignalTransform): + """Applies an amplitude reversal to the input tensor by applying a value of + -1 to each sample. Effectively the same as a static phase shift of pi + + """ + + def __init__(self) -> None: + super(AmplitudeReversal, self).__init__() + + def __call__(self, data: Any) -> Any: + if isinstance(data, SignalData): + assert data.iq_data is not None + # Create new SignalData object for transformed data + new_data: SignalData = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=data.signal_description, + ) + + # Perform data augmentation + new_data.iq_data = F.amplitude_reversal(data.iq_data) + return new_data + else: + output: np.ndarray = F.amplitude_reversal(data) + return output + + +class RandomFrequencyShift(SignalTransform): + """Shifts each tensor in freq by freq_shift along the time dimension. + + Args: + freq_shift (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + * If Callable, produces a sample by calling freq_shift() + * If int or float, freq_shift is fixed at the value provided + * If list, freq_shift is any element in the list + * If tuple, freq_shift is in range of (tuple[0], tuple[1]) + + Example: + >>> import torchsig.transforms as ST + >>> # Frequency shift inputs with uniform distribution in -fs/4 and fs/4 + >>> transform = ST.RandomFrequencyShift(freq_shift=(-0.25, 0.25)) + >>> # Frequency shift inputs always fs/10 + >>> transform = ST.RandomFrequencyShift(freq_shift=0.1) + >>> # Frequency shift inputs with normal distribution with stdev .1 + >>> transform = ST.RandomFrequencyShift(freq_shift=lambda size: np.random.normal(0, .1, size)) + >>> # Frequency shift inputs with either -fs/4 or fs/4 (discrete) + >>> transform = ST.RandomFrequencyShift(freq_shift=[-.25, .25]) + + """ + + def __init__(self, freq_shift: NumericParameter = (-0.5, 0.5)) -> None: + super(RandomFrequencyShift, self).__init__() + self.freq_shift = to_distribution(freq_shift, self.random_generator) + self.string = self.__class__.__name__ + "(" + "freq_shift={}".format(freq_shift) + ")" + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + freq_shift = self.freq_shift() + if isinstance(data, SignalData): + assert data.iq_data is not None + assert data.signal_description is not None + + # Create new SignalData object for transformed data + new_data: SignalData = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=[], + ) + + # Update SignalDescription + new_signal_description: List[SignalDescription] = [] + signal_description_list: List[SignalDescription] = ( + [data.signal_description] + if isinstance(data.signal_description, SignalDescription) + else data.signal_description + ) + avoid_aliasing = False + for signal_desc in signal_description_list: + new_signal_desc = deepcopy(signal_desc) + assert new_signal_desc.lower_frequency is not None + assert new_signal_desc.upper_frequency is not None + + # Check bounds for partial signals + new_signal_desc.lower_frequency = ( + -0.5 + if new_signal_desc.lower_frequency < -0.5 + else new_signal_desc.lower_frequency + ) + new_signal_desc.upper_frequency = ( + 0.5 + if new_signal_desc.upper_frequency > 0.5 + else new_signal_desc.upper_frequency + ) + new_signal_desc.bandwidth = ( + new_signal_desc.upper_frequency - new_signal_desc.lower_frequency + ) + new_signal_desc.center_frequency = ( + new_signal_desc.lower_frequency + new_signal_desc.bandwidth * 0.5 + ) + + # Shift freq descriptions + new_signal_desc.lower_frequency += float(freq_shift) + new_signal_desc.upper_frequency += float(freq_shift) + new_signal_desc.center_frequency += float(freq_shift) + + # Check bounds for aliasing + if ( + new_signal_desc.lower_frequency >= 0.5 + or new_signal_desc.upper_frequency <= -0.5 + ): + avoid_aliasing = True + continue + if ( + new_signal_desc.lower_frequency < -0.45 + or new_signal_desc.upper_frequency > 0.45 + ): + avoid_aliasing = True + new_signal_desc.lower_frequency = ( + -0.5 + if new_signal_desc.lower_frequency < -0.5 + else new_signal_desc.lower_frequency + ) + new_signal_desc.upper_frequency = ( + 0.5 + if new_signal_desc.upper_frequency > 0.5 + else new_signal_desc.upper_frequency + ) + + # Update bw & fc + new_signal_desc.bandwidth = ( + new_signal_desc.upper_frequency - new_signal_desc.lower_frequency + ) + new_signal_desc.center_frequency = ( + new_signal_desc.lower_frequency + new_signal_desc.bandwidth * 0.5 + ) + + # Append SignalDescription to list + new_signal_description.append(new_signal_desc) + + new_data.signal_description = new_signal_description + + # Apply data augmentation + if avoid_aliasing: + # If any potential aliasing detected, perform shifting at higher sample rate + new_data.iq_data = F.freq_shift_avoid_aliasing(data.iq_data, freq_shift) + else: + # Otherwise, use faster freq shifter + new_data.iq_data = F.freq_shift(data.iq_data, freq_shift) + return new_data + else: + output: np.ndarray = F.freq_shift(data, freq_shift) + return output + + +class RandomDelayedFrequencyShift(SignalTransform): + """Apply a delayed frequency shift to the input data + + Args: + start_shift (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + start_shift sets the start time of the delayed shift + * If Callable, produces a sample by calling start_shift() + * If int, start_shift is fixed at the value provided + * If list, start_shift is any element in the list + * If tuple, start_shift is in range of (tuple[0], tuple[1]) + + freq_shift (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + freq_shift sets the translation along the freq-axis + * If Callable, produces a sample by calling freq_shift() + * If int, freq_shift is fixed at the value provided + * If list, freq_shift is any element in the list + * If tuple, freq_shift is in range of (tuple[0], tuple[1]) + + """ + + def __init__( + self, + start_shift: FloatParameter = (0.1, 0.9), + freq_shift: FloatParameter = (-0.2, 0.2), + ) -> None: + super(RandomDelayedFrequencyShift, self).__init__() + self.start_shift = to_distribution(start_shift, self.random_generator) + self.freq_shift = to_distribution(freq_shift, self.random_generator) + self.string = ( + self.__class__.__name__ + + "(" + + "start_shift={}, ".format(start_shift) + + "freq_shift={}".format(freq_shift) + + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + start_shift = self.start_shift() + # Randomly generate a freq shift that is not near the original fc + freq_shift = 0 + while freq_shift < 0.05 and freq_shift > -0.05: + freq_shift = self.freq_shift() + + if isinstance(data, SignalData): + assert data.iq_data is not None + assert data.signal_description is not None + + # Create new SignalData object for transformed data + new_data = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=[], + ) + new_data.iq_data = data.iq_data + num_iq_samples = data.iq_data.shape[0] + + # Setup new SignalDescription object + new_signal_description: List[SignalDescription] = [] + signal_description_list: List[SignalDescription] = ( + [data.signal_description] + if isinstance(data.signal_description, SignalDescription) + else data.signal_description + ) + avoid_aliasing = False + for signal_desc in signal_description_list: + new_signal_desc_first_seg = deepcopy(signal_desc) + assert new_signal_desc_first_seg.lower_frequency is not None + assert new_signal_desc_first_seg.upper_frequency is not None + assert new_signal_desc_first_seg.start is not None + assert new_signal_desc_first_seg.stop is not None + + new_signal_desc_sec_seg = deepcopy(signal_desc) + assert new_signal_desc_sec_seg.lower_frequency is not None + assert new_signal_desc_sec_seg.upper_frequency is not None + assert new_signal_desc_sec_seg.start is not None + assert new_signal_desc_sec_seg.stop is not None + + # Check bounds for partial signals + new_signal_desc_first_seg.lower_frequency = ( + -0.5 + if new_signal_desc_first_seg.lower_frequency < -0.5 + else new_signal_desc_first_seg.lower_frequency + ) + new_signal_desc_first_seg.upper_frequency = ( + 0.5 + if new_signal_desc_first_seg.upper_frequency > 0.5 + else new_signal_desc_first_seg.upper_frequency + ) + new_signal_desc_first_seg.bandwidth = ( + new_signal_desc_first_seg.upper_frequency + - new_signal_desc_first_seg.lower_frequency + ) + new_signal_desc_first_seg.center_frequency = ( + new_signal_desc_first_seg.lower_frequency + + new_signal_desc_first_seg.bandwidth * 0.5 + ) + + # Update time for original segment if present in segment and add to list + if new_signal_desc_first_seg.start < start_shift: + new_signal_desc_first_seg.stop = ( + start_shift + if new_signal_desc_first_seg.stop > start_shift + else new_signal_desc_first_seg.stop + ) + new_signal_desc_first_seg.duration = ( + new_signal_desc_first_seg.stop - new_signal_desc_first_seg.start + ) + # Append SignalDescription to list + new_signal_description.append(new_signal_desc_first_seg) + + # Begin second segment processing + new_signal_desc_sec_seg.lower_frequency = ( + -0.5 + if new_signal_desc_sec_seg.lower_frequency < -0.5 + else new_signal_desc_sec_seg.lower_frequency + ) + new_signal_desc_sec_seg.upper_frequency = ( + 0.5 + if new_signal_desc_sec_seg.upper_frequency > 0.5 + else new_signal_desc_sec_seg.upper_frequency + ) + new_signal_desc_sec_seg.bandwidth = ( + new_signal_desc_sec_seg.upper_frequency + - new_signal_desc_sec_seg.lower_frequency + ) + new_signal_desc_sec_seg.center_frequency = ( + new_signal_desc_sec_seg.lower_frequency + + new_signal_desc_sec_seg.bandwidth * 0.5 + ) + + # Update freqs for next segment + new_signal_desc_sec_seg.lower_frequency += freq_shift + new_signal_desc_sec_seg.upper_frequency += freq_shift + new_signal_desc_sec_seg.center_frequency += freq_shift + + # Check bounds for aliasing + if ( + new_signal_desc_sec_seg.lower_frequency >= 0.5 + or new_signal_desc_sec_seg.upper_frequency <= -0.5 + ): + avoid_aliasing = True + continue + if ( + new_signal_desc_sec_seg.lower_frequency < -0.45 + or new_signal_desc_sec_seg.upper_frequency > 0.45 + ): + avoid_aliasing = True + new_signal_desc_sec_seg.lower_frequency = ( + -0.5 + if new_signal_desc_sec_seg.lower_frequency < -0.5 + else new_signal_desc_sec_seg.lower_frequency + ) + new_signal_desc_sec_seg.upper_frequency = ( + 0.5 + if new_signal_desc_sec_seg.upper_frequency > 0.5 + else new_signal_desc_sec_seg.upper_frequency + ) + + # Update bw & fc + new_signal_desc_sec_seg.bandwidth = ( + new_signal_desc_sec_seg.upper_frequency + - new_signal_desc_sec_seg.lower_frequency + ) + new_signal_desc_sec_seg.center_frequency = ( + new_signal_desc_sec_seg.lower_frequency + + new_signal_desc_sec_seg.bandwidth * 0.5 + ) + + # Update time for shifted segment if present in segment and add to list + if new_signal_desc_sec_seg.stop > start_shift: + new_signal_desc_sec_seg.start = ( + start_shift + if new_signal_desc_sec_seg.start < start_shift + else new_signal_desc_sec_seg.start + ) + new_signal_desc_sec_seg.stop = new_signal_desc_sec_seg.stop + new_signal_desc_sec_seg.duration = ( + new_signal_desc_sec_seg.stop - new_signal_desc_sec_seg.start + ) + # Append SignalDescription to list + new_signal_description.append(new_signal_desc_sec_seg) + + # Update with the new SignalDescription + new_data.signal_description = new_signal_description + + # Perform augmentation + if avoid_aliasing: + # If any potential aliasing detected, perform shifting at higher sample rate + new_data.iq_data[int(start_shift * num_iq_samples) :] = F.freq_shift_avoid_aliasing( + data.iq_data[int(start_shift * num_iq_samples) :], freq_shift + ) + else: + # Otherwise, use faster freq shifter + new_data.iq_data[int(start_shift * num_iq_samples) :] = F.freq_shift( + data.iq_data[int(start_shift * num_iq_samples) :], freq_shift + ) + + return new_data + + +class LocalOscillatorDrift(SignalTransform): + """LocalOscillatorDrift is a transform modelling a local oscillator's drift in frequency by + a random walk in frequency. + + Args: + max_drift (FloatParameter, optional): + [description]. Defaults to uniform_continuous_distribution(0.005,0.015). + max_drift_rate (FloatParameter, optional): + [description]. Defaults to uniform_continuous_distribution(0.001,0.01). + + """ + + def __init__( + self, + max_drift: FloatParameter = uniform_continuous_distribution(0.005, 0.015), + max_drift_rate: FloatParameter = uniform_continuous_distribution(0.001, 0.01), + **kwargs, + ) -> None: + super(LocalOscillatorDrift, self).__init__(**kwargs) + self.max_drift = to_distribution(max_drift, self.random_generator) + self.max_drift_rate = to_distribution(max_drift_rate, self.random_generator) + self.string = ( + self.__class__.__name__ + + "(" + + "max_drift={}, ".format(max_drift) + + "max_drift_rate={}".format(max_drift_rate) + + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + max_drift = self.max_drift() + max_drift_rate = self.max_drift_rate() + + iq_data = data.iq_data if isinstance(data, SignalData) else data + assert iq_data is not None + + # Apply drift as a random walk. + random_walk = self.random_generator.choice([-1, 1], size=iq_data.shape[0]) + + # limit rate of change to at most 1/max_drift_rate times the length of the data sample + frequency = np.cumsum(random_walk) * max_drift_rate / np.sqrt(iq_data.shape[0]) + + # Every time frequency hits max_drift, reset to zero. + while np.argmax(np.abs(frequency) > max_drift): + idx = np.argmax(np.abs(frequency) > max_drift) + offset = max_drift if frequency[idx] < 0 else -max_drift + frequency[idx:] += offset + min_offset: float = min(frequency) + max_offset: float = max(frequency) + + complex_phase = np.exp(2j * np.pi * np.cumsum(frequency)) + iq_data = iq_data * complex_phase + + if isinstance(data, SignalData): + assert data.signal_description is not None + # Create new SignalData object for transformed data + new_data = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=[], + ) + + # Update SignalDescription + new_signal_description: List[SignalDescription] = [] + signal_description_list: List[SignalDescription] = ( + [data.signal_description] + if isinstance(data.signal_description, SignalDescription) + else data.signal_description + ) + for signal_desc in signal_description_list: + new_signal_desc = deepcopy(signal_desc) + assert new_signal_desc.lower_frequency is not None + assert new_signal_desc.upper_frequency is not None + + # Expand frequency labels + new_signal_desc.lower_frequency += float(min_offset) + new_signal_desc.upper_frequency += float(max_offset) + new_signal_desc.bandwidth = ( + new_signal_desc.upper_frequency - new_signal_desc.lower_frequency + ) + + new_signal_description.append(new_signal_desc) + + new_data.signal_description = new_signal_description + new_data.iq_data = iq_data + else: + new_data = iq_data + + return new_data + + +class GainDrift(SignalTransform): + """GainDrift is a transform modelling a front end gain controller's drift in gain by + a random walk in gain values. + + Args: + max_drift (FloatParameter, optional): + [description]. Defaults to uniform_continuous_distribution(0.005,0.015). + min_drift (FloatParameter, optional): + [description]. Defaults to uniform_continuous_distribution(0.005,0.015). + drift_rate (FloatParameter, optional): + [description]. Defaults to uniform_continuous_distribution(0.001,0.01). + + """ + + def __init__( + self, + max_drift: FloatParameter = uniform_continuous_distribution(0.005, 0.015), + min_drift: FloatParameter = uniform_continuous_distribution(0.005, 0.015), + drift_rate: FloatParameter = uniform_continuous_distribution(0.001, 0.01), + **kwargs, + ) -> None: + super(GainDrift, self).__init__(**kwargs) + self.max_drift = to_distribution(max_drift, self.random_generator) + self.min_drift = to_distribution(min_drift, self.random_generator) + self.drift_rate = to_distribution(drift_rate, self.random_generator) + self.string = ( + self.__class__.__name__ + + "(" + + "max_drift={}, ".format(max_drift) + + "min_drift={}, ".format(min_drift) + + "drift_rate={}".format(drift_rate) + + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + max_drift = self.max_drift() + min_drift = self.min_drift() + drift_rate = self.drift_rate() + + iq_data = data.iq_data if isinstance(data, SignalData) else data + assert iq_data is not None + + # Apply drift as a random walk. + random_walk = self.random_generator.choice([-1, 1], size=iq_data.shape[0]) + + # limit rate of change to at most 1/max_drift_rate times the length of the data sample + gain = np.cumsum(random_walk) * drift_rate / np.sqrt(iq_data.shape[0]) + + # Every time gain hits max_drift, reset to zero + while np.argmax(gain > max_drift): + idx = np.argmax(gain > max_drift) + offset = gain[idx] - max_drift + gain[idx:] -= offset + # Every time gain hits min_drift, reset to zero + while np.argmax(gain < min_drift): + idx = np.argmax(gain < min_drift) + offset = min_drift - gain[idx] + gain[idx:] += offset + iq_data = iq_data * (1 + gain) + + if isinstance(data, SignalData): + # Create new SignalData object for transformed data + new_data = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=data.signal_description, + ) + new_data.iq_data = iq_data + else: + new_data = iq_data + + return new_data + + +class AutomaticGainControl(SignalTransform): + """Automatic gain control (AGC) implementation + + Args: + rand_scale (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + Random scaling of alpha values + * If Callable, produces a sample by calling rand_scale() + * If int or float, rand_scale is fixed at the value provided + * If list, rand_scale is any element in the list + * If tuple, rand_scale is in range of (tuple[0], tuple[1]) + + initial_gain_db (:obj:`float`): + Initial gain value in linear units + + alpha_smooth (:obj:`float`): + Alpha for averaging the measured signal level level_n = level_n*alpha + level_n-1*(1 - alpha) + + alpha_track (:obj:`float`): + Amount by which to adjust gain when in tracking state + + alpha_overflow (:obj:`float`): + Amount by which to adjust gain when in overflow state [level_db + gain_db] >= max_level + + alpha_acquire (:obj:`float`): + Amount by which to adjust gain when in acquire state abs([ref_level_db - level_db - gain_db]) >= track_range_db + + ref_level_db (:obj:`float`): + Level to which we intend to adjust gain to achieve + + track_range_db (:obj:`float`): + Range from ref_level_linear for which we can deviate before going into acquire state + + low_level_db (:obj:`float`): + Level below which we disable AGC + + high_level_db (:obj:`float`): + Level above which we go into overflow state + + Example: + >>> import torchsig.transforms as ST + >>> transform = ST.AutomaticGainControl(rand_scale=(1.0,10.0)) + + """ + + def __init__( + self, + rand_scale: FloatParameter = (1.0, 10.0), + initial_gain_db: float = 0.0, + alpha_smooth: float = 0.00004, + alpha_overflow: float = 0.3, + alpha_track: float = 0.0004, + alpha_acquire: float = 0.04, + ref_level_db: float = 0.0, + track_range_db: float = 1.0, + low_level_db: float = -80.0, + high_level_db: float = 6.0, + ) -> None: + super(AutomaticGainControl, self).__init__() + self.rand_scale = to_distribution(rand_scale, self.random_generator) + self.initial_gain_db = initial_gain_db + self.alpha_smooth = alpha_smooth + self.alpha_overflow = alpha_overflow + self.alpha_track = alpha_track + self.alpha_acquire = alpha_acquire + self.ref_level_db = ref_level_db + self.track_range_db = track_range_db + self.low_level_db = low_level_db + self.high_level_db = high_level_db + self.string = ( + self.__class__.__name__ + + "(" + + "rand_scale={}, ".format(rand_scale) + + "initial_gain_db={}, ".format(initial_gain_db) + + "alpha_smooth={}, ".format(alpha_smooth) + + "alpha_overflow={}, ".format(alpha_overflow) + + "alpha_track={}, ".format(alpha_track) + + "alpha_acquire={}, ".format(alpha_acquire) + + "ref_level_db={}, ".format(ref_level_db) + + "track_range_db={}, ".format(track_range_db) + + "low_level_db={}, ".format(low_level_db) + + "high_level_db={}".format(high_level_db) + + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + iq_data = data.iq_data if isinstance(data, SignalData) else data + assert iq_data is not None + rand_scale = self.rand_scale() + alpha_acquire = np.random.uniform( + self.alpha_acquire / rand_scale, self.alpha_acquire * rand_scale, 1 + ) + alpha_overflow = np.random.uniform( + self.alpha_overflow / rand_scale, self.alpha_overflow * rand_scale, 1 + ) + alpha_track = np.random.uniform( + self.alpha_track / rand_scale, self.alpha_track * rand_scale, 1 + ) + alpha_smooth = np.random.uniform( + self.alpha_smooth / rand_scale, self.alpha_smooth * rand_scale, 1 + ) + + ref_level_db = np.random.uniform(-0.5 + self.ref_level_db, 0.5 + self.ref_level_db, 1) + + iq_data = F.agc( + np.ascontiguousarray(iq_data, dtype=np.complex64), + np.float64(self.initial_gain_db), + np.float64(alpha_smooth), + np.float64(alpha_track), + np.float64(alpha_overflow), + np.float64(alpha_acquire), + np.float64(ref_level_db), + np.float64(self.track_range_db), + np.float64(self.low_level_db), + np.float64(self.high_level_db), + ) + + if isinstance(data, SignalData): + # Create new SignalData object for transformed data + new_data = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=data.signal_description, + ) + new_data.iq_data = iq_data + else: + new_data = iq_data + + return new_data + + +class IQImbalance(SignalTransform): + """Applies various types of IQ imbalance to a tensor + + Args: + iq_amplitude_imbalance_db (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + * If Callable, produces a sample by calling iq_amplitude_imbalance() + * If int or float, iq_amplitude_imbalance is fixed at the value provided + * If list, iq_amplitude_imbalance is any element in the list + * If tuple, iq_amplitude_imbalance is in range of (tuple[0], tuple[1]) + + iq_phase_imbalance (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + * If Callable, produces a sample by calling iq_phase_imbalance() + * If int or float, iq_phase_imbalance is fixed at the value provided + * If list, iq_phase_imbalance is any element in the list + * If tuple, iq_phase_imbalance is in range of (tuple[0], tuple[1]) + + iq_dc_offset_db (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + * If Callable, produces a sample by calling iq_dc_offset() + * If int or float, iq_dc_offset_db is fixed at the value provided + * If list, iq_dc_offset is any element in the list + * If tuple, iq_dc_offset is in range of (tuple[0], tuple[1]) + + Note: + For more information about IQ imbalance in RF systems, check out + https://www.mathworks.com/help/comm/ref/iqimbalance.html + + Example: + >>> import torchsig.transforms as ST + >>> # IQ imbalance with default params + >>> transform = ST.IQImbalance() + + """ + + def __init__( + self, + iq_amplitude_imbalance_db: NumericParameter = (0, 3), + iq_phase_imbalance: NumericParameter = ( + -np.pi * 1.0 / 180.0, + np.pi * 1.0 / 180.0, + ), + iq_dc_offset_db: NumericParameter = (-0.1, 0.1), + ) -> None: + super(IQImbalance, self).__init__() + self.amp_imbalance = to_distribution(iq_amplitude_imbalance_db, self.random_generator) + self.phase_imbalance = to_distribution(iq_phase_imbalance, self.random_generator) + self.dc_offset = to_distribution(iq_dc_offset_db, self.random_generator) + self.string = ( + self.__class__.__name__ + + "(" + + "amp_imbalance={}, ".format(iq_amplitude_imbalance_db) + + "phase_imbalance={}, ".format(iq_phase_imbalance) + + "dc_offset={}".format(iq_dc_offset_db) + + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + amp_imbalance = self.amp_imbalance() + phase_imbalance = self.phase_imbalance() + dc_offset = self.dc_offset() + + if isinstance(data, SignalData): + assert data.iq_data is not None + data.iq_data = F.iq_imbalance(data.iq_data, amp_imbalance, phase_imbalance, dc_offset) + else: + data = F.iq_imbalance(data, amp_imbalance, phase_imbalance, dc_offset) + return data + + +class RollOff(SignalTransform): + """Applies a band-edge RF roll-off effect simulating front end filtering + + Args: + low_freq (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + * If Callable, produces a sample by calling low_freq() + * If int or float, low_freq is fixed at the value provided + * If list, low_freq is any element in the list + * If tuple, low_freq is in range of (tuple[0], tuple[1]) + + upper_freq (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + * If Callable, produces a sample by calling upper_freq() + * If int or float, upper_freq is fixed at the value provided + * If list, upper_freq is any element in the list + * If tuple, upper_freq is in range of (tuple[0], tuple[1]) + + low_cut_apply (:obj:`float`): + Probability that the low frequency provided above is applied + + upper_cut_apply (:obj:`float`): + Probability that the upper frequency provided above is applied + + order (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + * If Callable, produces a sample by calling order() + * If int or float, order is fixed at the value provided + * If list, order is any element in the list + * If tuple, order is in range of (tuple[0], tuple[1]) + + """ + + def __init__( + self, + low_freq: NumericParameter = (0.00, 0.05), + upper_freq: NumericParameter = (0.95, 1.00), + low_cut_apply: float = 0.5, + upper_cut_apply: float = 0.5, + order: NumericParameter = (6, 20), + ) -> None: + super(RollOff, self).__init__() + self.low_freq = to_distribution(low_freq, self.random_generator) + self.upper_freq = to_distribution(upper_freq, self.random_generator) + self.low_cut_apply = low_cut_apply + self.upper_cut_apply = upper_cut_apply + self.order = to_distribution(order, self.random_generator) + self.string = ( + self.__class__.__name__ + + "(" + + "low_freq={}, ".format(low_freq) + + "upper_freq={}, ".format(upper_freq) + + "upper_cut_apply={}, ".format(upper_cut_apply) + + "order={}".format(order) + + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + low_freq = self.low_freq() if np.random.rand() < self.low_cut_apply else 0.0 + upper_freq = self.upper_freq() if np.random.rand() < self.upper_cut_apply else 1.0 + order = self.order() + if isinstance(data, SignalData): + assert data.iq_data is not None + data.iq_data = F.roll_off(data.iq_data, low_freq, upper_freq, int(order)) + else: + data = F.roll_off(data, low_freq, upper_freq, int(order)) + return data + + +class AddSlope(SignalTransform): + """Add the slope of each sample with its preceeding sample to itself. + Creates a weak 0 Hz IF notch filtering effect + + """ + + def __init__(self, **kwargs) -> None: + super(AddSlope, self).__init__(**kwargs) + + def __call__(self, data: Any) -> Any: + if isinstance(data, SignalData): + assert data.iq_data is not None + # Create new SignalData object for transformed data + new_data: SignalData = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=data.signal_description, + ) + + # Apply data augmentation + new_data.iq_data = F.add_slope(data.iq_data) + return new_data + else: + output: np.ndarray = F.add_slope(data) + return output + + +class SpectralInversion(SignalTransform): + """Applies a spectral inversion""" + + def __init__(self) -> None: + super(SpectralInversion, self).__init__() + + def __call__(self, data: Any) -> Any: + if isinstance(data, SignalData): + assert data.iq_data is not None + assert data.signal_description is not None + + # Create new SignalData object for transformed data + new_data: SignalData = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=[], + ) + + # Perform data augmentation + new_data.iq_data = F.spectral_inversion(data.iq_data) + + # Update SignalDescription + new_signal_description: List[SignalDescription] = [] + signal_description_list: List[SignalDescription] = ( + [data.signal_description] + if isinstance(data.signal_description, SignalDescription) + else data.signal_description + ) + for signal_desc in signal_description_list: + new_signal_desc = deepcopy(signal_desc) + assert new_signal_desc.lower_frequency is not None + assert new_signal_desc.upper_frequency is not None + assert new_signal_desc.center_frequency is not None + + # Invert frequency labels + original_lower = new_signal_desc.lower_frequency + original_upper = new_signal_desc.upper_frequency + new_signal_desc.lower_frequency = original_upper * -1 + new_signal_desc.upper_frequency = original_lower * -1 + new_signal_desc.center_frequency *= -1 + + new_signal_description.append(new_signal_desc) + + new_data.signal_description = new_signal_description + return new_data + + else: + output: np.ndarray = F.spectral_inversion(data) + return output + + +class ChannelSwap(SignalTransform): + """Transform that swaps the I and Q channels of complex input data""" + + def __init__(self) -> None: + super(ChannelSwap, self).__init__() + + def __call__(self, data: Any) -> Any: + if isinstance(data, SignalData): + assert data.iq_data is not None + assert data.signal_description is not None + + # Create new SignalData object for transformed data + new_data: SignalData = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=[], + ) + + # Update SignalDescription + new_signal_description: List[SignalDescription] = [] + signal_description_list: List[SignalDescription] = ( + [data.signal_description] + if isinstance(data.signal_description, SignalDescription) + else data.signal_description + ) + for signal_desc in signal_description_list: + new_signal_desc = deepcopy(signal_desc) + assert new_signal_desc.lower_frequency is not None + assert new_signal_desc.upper_frequency is not None + assert new_signal_desc.center_frequency is not None + + # Invert frequency labels + original_lower = new_signal_desc.lower_frequency + original_upper = new_signal_desc.upper_frequency + new_signal_desc.lower_frequency = original_upper * -1 + new_signal_desc.upper_frequency = original_lower * -1 + new_signal_desc.center_frequency *= -1 + + new_signal_description.append(new_signal_desc) + + new_data.signal_description = new_signal_description + + # Perform data augmentation + new_data.iq_data = F.channel_swap(data.iq_data) + return new_data + else: + output: np.ndarray = F.channel_swap(data) + return output + + +class RandomMagRescale(SignalTransform): + """Randomly apply a magnitude rescaling, emulating a change in a receiver's + gain control + + Args: + start (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + start sets the time when the rescaling kicks in + * If Callable, produces a sample by calling start() + * If int or float, start is fixed at the value provided + * If list, start is any element in the list + * If tuple, start is in range of (tuple[0], tuple[1]) + + scale (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + scale sets the magnitude of the rescale + * If Callable, produces a sample by calling scale() + * If int or float, scale is fixed at the value provided + * If list, scale is any element in the list + * If tuple, scale is in range of (tuple[0], tuple[1]) + + """ + + def __init__( + self, + start: NumericParameter = (0.0, 0.9), + scale: NumericParameter = (-4.0, 4.0), + ) -> None: + super(RandomMagRescale, self).__init__() + self.start = to_distribution(start, self.random_generator) + self.scale = to_distribution(scale, self.random_generator) + self.string = ( + self.__class__.__name__ + + "(" + + "start={}, ".format(start) + + "scale={}".format(scale) + + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + start = self.start() + scale = self.scale() + + if isinstance(data, SignalData): + assert data.iq_data is not None + # Create new SignalData object for transformed data + new_data: SignalData = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=data.signal_description, + ) + + # Perform data augmentation + new_data.iq_data = F.mag_rescale(data.iq_data, start, scale) + return new_data + else: + output: np.ndarray = F.mag_rescale(data, start, scale) + return output + + +class RandomDropSamples(SignalTransform): + """Randomly drop IQ samples from the input data of specified durations and + with specified fill techniques: + * `ffill` (front fill): replace drop samples with the last previous value + * `bfill` (back fill): replace drop samples with the next value + * `mean`: replace drop samples with the mean value of the full data + * `zero`: replace drop samples with zeros + + Transform is based off of the + `TSAug Dropout Transform `_. + + Args: + drop_rate (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + drop_rate sets the rate at which to drop samples + * If Callable, produces a sample by calling drop_rate() + * If int or float, drop_rate is fixed at the value provided + * If list, drop_rate is any element in the list + * If tuple, drop_rate is in range of (tuple[0], tuple[1]) + + size (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + size sets the size of each instance of dropped samples + * If Callable, produces a sample by calling size() + * If int or float, size is fixed at the value provided + * If list, size is any element in the list + * If tuple, size is in range of (tuple[0], tuple[1]) + + fill (:py:class:`~Callable`, :obj:`list`, :obj:`str`): + fill sets the method of how the dropped samples should be filled + * If Callable, produces a sample by calling fill() + * If list, fill is any element in the list + * If str, fill is fixed at the method provided + + """ + + def __init__( + self, + drop_rate: NumericParameter = (0.01, 0.05), + size: NumericParameter = (1, 10), + fill: List[str] = (["ffill", "bfill", "mean", "zero"]), + ) -> None: + super(RandomDropSamples, self).__init__() + self.drop_rate = to_distribution(drop_rate, self.random_generator) + self.size = to_distribution(size, self.random_generator) + self.fill = to_distribution(fill, self.random_generator) + self.string = ( + self.__class__.__name__ + + "(" + + "drop_rate={}, ".format(drop_rate) + + "size={}, ".format(size) + + "fill={}".format(fill) + + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + drop_rate = self.drop_rate() + fill = self.fill() + + if isinstance(data, SignalData): + assert data.iq_data is not None + # Create new SignalData object for transformed data + new_data: SignalData = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=data.signal_description, + ) + + # Perform data augmentation + drop_instances = int(data.iq_data.shape[0] * drop_rate) + drop_sizes = self.size(drop_instances).astype(int) + drop_starts = np.random.uniform( + 1, data.iq_data.shape[0] - max(drop_sizes) - 1, drop_instances + ).astype(int) + + new_data.iq_data = F.drop_samples(data.iq_data, drop_starts, drop_sizes, fill) + return new_data + + else: + drop_instances = int(data.shape[0] * drop_rate) + drop_sizes = self.size(drop_instances).astype(int) + drop_starts = np.random.uniform( + 0, data.shape[0] - max(drop_sizes), drop_instances + ).astype(int) + + output: np.ndarray = F.drop_samples(data, drop_starts, drop_sizes, fill) + return output + + +class Quantize(SignalTransform): + """Quantize the input to the number of levels specified + + Args: + num_levels (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + num_levels sets the number of quantization levels + * If Callable, produces a sample by calling num_levels() + * If int or float, num_levels is fixed at the value provided + * If list, num_levels is any element in the list + * If tuple, num_levels is in range of (tuple[0], tuple[1]) + + round_type (:py:class:`~Callable`, :obj:`str`, :obj:`list`): + round_type sets the rounding direction of the quantization. Options + include: 'floor', 'middle', & 'ceiling' + * If Callable, produces a sample by calling round_type() + * If str, round_type is fixed at the value provided + * If list, round_type is any element in the list + """ + + def __init__( + self, + num_levels: NumericParameter = ([16, 24, 32, 40, 48, 56, 64]), + round_type: List[str] = (["floor", "middle", "ceiling"]), + ) -> None: + super(Quantize, self).__init__() + self.num_levels = to_distribution(num_levels, self.random_generator) + self.round_type = to_distribution(round_type, self.random_generator) + self.string = ( + self.__class__.__name__ + + "(" + + "num_levels={}, ".format(num_levels) + + "round_type={}".format(round_type) + + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + num_levels = self.num_levels() + round_type = self.round_type() + + if isinstance(data, SignalData): + assert data.iq_data is not None + # Create new SignalData object for transformed data + new_data: SignalData = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=data.signal_description, + ) + + # Perform data augmentation + new_data.iq_data = F.quantize(data.iq_data, num_levels, round_type) + return new_data + else: + output: np.ndarray = F.quantize(data, num_levels, round_type) + return output + + +class Clip(SignalTransform): + """Clips the input values to a percentage of the max/min values + + Args: + clip_percentage (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + Specifies the percentage of the max/min values to clip + * If Callable, produces a sample by calling clip_percentage() + * If int or float, clip_percentage is fixed at the value provided + * If list, clip_percentage is any element in the list + * If tuple, clip_percentage is in range of (tuple[0], tuple[1]) + + """ + + def __init__( + self, + clip_percentage: NumericParameter = (0.75, 0.95), + **kwargs, + ) -> None: + super(Clip, self).__init__(**kwargs) + self.clip_percentage = to_distribution(clip_percentage) + self.string = ( + self.__class__.__name__ + "(" + "clip_percentage={}".format(clip_percentage) + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + clip_percentage = self.clip_percentage() + + if isinstance(data, SignalData): + assert data.iq_data is not None + # Create new SignalData object for transformed data + new_data: SignalData = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=data.signal_description, + ) + + # Apply data augmentation + new_data.iq_data = F.clip(data.iq_data, clip_percentage) + return new_data + + else: + output: np.ndarray = F.clip(data, clip_percentage) + return output + + +class RandomConvolve(SignalTransform): + """Convolve a random complex filter with the input data + + Args: + num_taps (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + Number of taps for the random filter + * If Callable, produces a sample by calling num_taps() + * If int or float, num_taps is fixed at the value provided + * If list, num_taps is any element in the list + * If tuple, num_taps is in range of (tuple[0], tuple[1]) + + alpha (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + The effect of the filtered data is dampened using an alpha factor + that determines the weightings for the summing of the filtered data + and the original data. `alpha` should be in range `[0,1]` where a + value of 0 applies all of the weight to the original data, and a + value of 1 applies all of the weight to the filtered data + * If Callable, produces a sample by calling alpha() + * If int or float, alpha is fixed at the value provided + * If list, alpha is any element in the list + * If tuple, alpha is in range of (tuple[0], tuple[1]) + + """ + + def __init__( + self, + num_taps: IntParameter = (2, 5), + alpha: FloatParameter = (0.1, 0.5), + **kwargs, + ) -> None: + super(RandomConvolve, self).__init__(**kwargs) + self.num_taps = to_distribution(num_taps, self.random_generator) + self.alpha = to_distribution(alpha, self.random_generator) + self.string = ( + self.__class__.__name__ + + "(" + + "num_taps={}, ".format(num_taps) + + "alpha={}".format(alpha) + + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + num_taps = int(self.num_taps()) + alpha = self.alpha() + + if isinstance(data, SignalData): + assert data.iq_data is not None + # Create new SignalData object for transformed data + new_data: SignalData = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=data.signal_description, + ) + + # Apply data augmentation + new_data.iq_data = F.random_convolve(data.iq_data, num_taps, alpha) + return new_data + else: + output: np.ndarray = F.random_convolve(data, num_taps, alpha) + return output + + +class DatasetBasebandMixUp(SignalTransform): + """Signal Transform that inputs a dataset to randomly sample from and insert + into the main dataset's examples, using the TargetSNR transform and the + additional `alpha` input to set the difference in SNRs between the two + examples with the following relationship: + + mixup_sample_snr = main_sample_snr + alpha + + Note that `alpha` is used as an additive value because the SNR values are + expressed in log scale. Typical usage will be with with alpha values less + than zero. + + This transform is loosely based on + `"mixup: Beyond Emperical Risk Minimization" `_. + + + Args: + dataset :obj:`SignalDataset`: + A SignalDataset of complex-valued examples to be used as a source for + the synthetic insertion/mixup + + alpha (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + alpha sets the difference in power level between the main dataset + example and the inserted example + * If Callable, produces a sample by calling target_snr() + * If int or float, target_snr is fixed at the value provided + * If list, target_snr is any element in the list + * If tuple, target_snr is in range of (tuple[0], tuple[1]) + + Example: + >>> import torchsig.transforms as ST + >>> from torchsig.datasets import ModulationsDataset + >>> # Add signals from the `ModulationsDataset` + >>> target_transform = SignalDescriptionPassThroughTransform() + >>> dataset = ModulationsDataset( + use_class_idx=True, + level=0, + num_iq_samples=4096, + num_samples=5300, + target_transform=target_transform, + ) + >>> transform = ST.DatasetBasebandMixUp(dataset=dataset,alpha=(-5,-3)) + + """ + + def __init__( + self, + dataset: SignalDataset, + alpha: NumericParameter = (-5, -3), + ) -> None: + super(DatasetBasebandMixUp, self).__init__() + self.alpha = to_distribution(alpha, self.random_generator) + self.dataset = dataset + self.dataset_num_samples = len(dataset) + self.string = ( + self.__class__.__name__ + + "(" + + "dataset={}, ".format(dataset) + + "alpha={}".format(alpha) + + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + alpha = self.alpha() + if isinstance(data, SignalData): + assert data.iq_data is not None + assert data.signal_description is not None + + # Input checks + signal_description_list: List[SignalDescription] = ( + [data.signal_description] + if isinstance(data.signal_description, SignalDescription) + else data.signal_description + ) + if len(signal_description_list) > 1: + raise ValueError( + "Expected single `SignalDescription` for input `SignalData` but {} detected.".format( + len(signal_description_list) + ) + ) + assert signal_description_list[0].snr is not None + + # Calculate target SNR of signal to be inserted + target_snr_db = signal_description_list[0].snr + alpha + + # Randomly sample from provided dataset + idx = np.random.randint(self.dataset_num_samples) + insert_data, insert_signal_description = self.dataset[idx] + if isinstance(insert_data, SignalData): + assert insert_data.iq_data is not None + insert_iq_data: np.ndarray = insert_data.iq_data + else: + insert_iq_data = insert_data + + if insert_iq_data.shape[0] != data.iq_data.shape[0]: + raise ValueError( + "Input dataset's `num_iq_samples` does not match main dataset.\n\t\ + Found {}, but expected {} samples".format( + insert_iq_data.shape[0], data.iq_data.shape[0] + ) + ) + insert_signal_data = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=insert_signal_description, + ) + insert_signal_data.iq_data = insert_iq_data + + # Set insert data's SNR + target_snr_transform = TargetSNR(target_snr_db) + insert_signal_data = target_snr_transform(insert_signal_data) + + # Create new SignalData object for transformed data + new_data = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=[], + ) + new_data.iq_data = data.iq_data + insert_signal_data.iq_data + + # Update SignalDescription + new_signal_description = [] + new_signal_description.append(signal_description_list[0]) + assert insert_signal_data.signal_description is not None + insert_desc: List[SignalDescription] = ( + [insert_signal_data.signal_description] + if isinstance(insert_signal_data.signal_description, SignalDescription) + else insert_signal_data.signal_description + ) + new_signal_description.append(insert_desc[0]) + new_data.signal_description = new_signal_description + + return new_data + else: + raise ValueError( + "Expected input type `SignalData`. Received {}. \n\t\ + The `SignalDatasetBasebandMixUp` transform depends on metadata from a `SignalData` object.".format( + type(data) + ) + ) + + +class DatasetBasebandCutMix(SignalTransform): + """Signal Transform that inputs a dataset to randomly sample from and insert + into the main dataset's examples, using the TargetSNR transform to match + the main dataset's examples' SNR and an additional `alpha` input to set the + relative quantity in time to occupy, where + + cutmix_num_iq_samples = total_num_iq_samples * alpha + + With this transform, the inserted signal replaces the IQ samples of the + original signal rather than adding to them as the `DatasetBasebandMixUp` + transform does above. + + This transform is loosely based on + `"CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features" `_. + + Args: + dataset :obj:`SignalDataset`: + An SignalDataset of complex-valued examples to be used as a source for + the synthetic insertion/mixup + + alpha (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + alpha sets the difference in power level between the main dataset + example and the inserted example + * If Callable, produces a sample by calling target_snr() + * If int or float, target_snr is fixed at the value provided + * If list, target_snr is any element in the list + * If tuple, target_snr is in range of (tuple[0], tuple[1]) + + Example: + >>> import torchsig.transforms as ST + >>> from torchsig.datasets import ModulationsDataset + >>> # Add signals from the `ModulationsDataset` + >>> target_transform = SignalDescriptionPassThroughTransform() + >>> dataset = ModulationsDataset( + use_class_idx=True, + level=0, + num_iq_samples=4096, + num_samples=5300, + target_transform=target_transform, + ) + >>> transform = ST.DatasetBasebandCutMix(dataset=dataset,alpha=(0.2,0.5)) + + """ + + def __init__( + self, + dataset: SignalDataset, + alpha: NumericParameter = (0.2, 0.5), + ) -> None: + super(DatasetBasebandCutMix, self).__init__() + self.alpha = to_distribution(alpha, self.random_generator) + self.dataset = dataset + self.dataset_num_samples = len(dataset) + self.string = ( + self.__class__.__name__ + + "(" + + "dataset={}, ".format(dataset) + + "alpha={}".format(alpha) + + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + alpha = self.alpha() + if isinstance(data, SignalData): + # Input checks + assert data.iq_data is not None + assert data.signal_description is not None + + signal_description_list: List[SignalDescription] = ( + [data.signal_description] + if isinstance(data.signal_description, SignalDescription) + else data.signal_description + ) + if len(signal_description_list) > 1: + raise ValueError( + "Expected single `SignalDescription` for input `SignalData` but {} detected.".format( + len(signal_description_list) + ) + ) + assert signal_description_list[0].snr is not None + + # Randomly sample from provided dataset + idx = np.random.randint(self.dataset_num_samples) + insert_data, insert_signal_description = self.dataset[idx] + if isinstance(insert_data, SignalData): + assert insert_data.iq_data is not None + insert_iq_data: np.ndarray = insert_data.iq_data + else: + insert_iq_data = insert_data + num_iq_samples = data.iq_data.shape[0] + if insert_iq_data.shape[0] != num_iq_samples: + raise ValueError( + "Input dataset's `num_iq_samples` does not match main dataset.\n\t\ + Found {}, but expected {} samples".format( + insert_iq_data.shape[0], data.iq_data.shape[0] + ) + ) + insert_signal_data = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=insert_signal_description, + ) + insert_signal_data.iq_data = insert_iq_data + + # Set insert data's SNR + target_snr_transform = TargetSNR(signal_description_list[0].snr) + insert_signal_data = target_snr_transform(insert_signal_data) + assert insert_signal_data.iq_data is not None + + # Mask both data examples based on alpha and a random start value + insert_num_iq_samples = int(alpha * num_iq_samples) + insert_start = np.random.randint(num_iq_samples - insert_num_iq_samples) + insert_stop = insert_start + insert_num_iq_samples + data.iq_data[insert_start:insert_stop] = 0 + insert_signal_data.iq_data[:insert_start] = 0 + insert_signal_data.iq_data[insert_stop:] = 0 + + # Create new SignalData object for transformed data + new_data = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=[], + ) + new_data.iq_data = data.iq_data + insert_signal_data.iq_data + + # Update SignalDescription + new_signal_description: List[SignalDescription] = [] + if insert_start != 0 and insert_stop != num_iq_samples: + # Data description becomes two SignalDescriptions + new_signal_desc = deepcopy(signal_description_list[0]) + new_signal_desc.start = 0.0 + new_signal_desc.stop = insert_start / num_iq_samples + new_signal_desc.duration = new_signal_desc.stop - new_signal_desc.start + new_signal_description.append(new_signal_desc) + new_signal_desc = deepcopy(signal_description_list[0]) + new_signal_desc.start = insert_stop / num_iq_samples + new_signal_desc.stop = 1.0 + new_signal_desc.duration = new_signal_desc.stop - new_signal_desc.start + new_signal_description.append(new_signal_desc) + elif insert_start == 0: + # Data description remains one SignalDescription up to end + new_signal_desc = deepcopy(signal_description_list[0]) + new_signal_desc.start = insert_stop / num_iq_samples + new_signal_desc.stop = 1.0 + new_signal_desc.duration = new_signal_desc.stop - new_signal_desc.start + new_signal_description.append(new_signal_desc) + else: + # Data description remains one SignalDescription at beginning + new_signal_desc = deepcopy(signal_description_list[0]) + new_signal_desc.start = 0.0 + new_signal_desc.stop = insert_start / num_iq_samples + new_signal_desc.duration = new_signal_desc.stop - new_signal_desc.start + new_signal_description.append(new_signal_desc) + # Repeat for insert's SignalDescription + + assert insert_signal_data.signal_description is not None + insert_desc: List[SignalDescription] = ( + [insert_signal_data.signal_description] + if isinstance(insert_signal_data.signal_description, SignalDescription) + else insert_signal_data.signal_description + ) + new_signal_desc = deepcopy(insert_desc[0]) + assert new_signal_desc.start is not None + assert new_signal_desc.stop is not None + new_signal_desc.start = insert_start / num_iq_samples + new_signal_desc.stop = insert_stop / num_iq_samples + new_signal_desc.duration = new_signal_desc.stop - new_signal_desc.start + new_signal_description.append(new_signal_desc) + + # Set output data's SignalDescription to above list + new_data.signal_description = new_signal_description + + return new_data + else: + raise ValueError( + "Expected input type `SignalData`. Received {}. \n\t\ + The `SignalDatasetBasebandCutMix` transform depends on metadata from a `SignalData` object.".format( + type(data) + ) + ) + + +class CutOut(SignalTransform): + """A transform that applies the CutOut transform in the time domain. The + `cut_dur` input specifies how long the cut region should be, and the + `cut_type` input specifies what the cut region should be filled in with. + Options for the cut type include: zeros, ones, low_noise, avg_noise, and + high_noise. Zeros fills in the region with zeros; ones fills in the region + with 1+1j samples; low_noise fills in the region with noise with -100dB + power; avg_noise adds noise at power average of input data, effectively + slicing/removing existing signals in the most RF realistic way of the + options; and high_noise adds noise with 40dB power. If a list of multiple + options are passed in, they are randomly sampled from. + + This transform is loosely based on + `"Improved Regularization of Convolutional Neural Networks with Cutout" `_. + + Args: + cut_dur (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + cut_dur sets the duration of the region to cut out + * If Callable, produces a sample by calling cut_dur() + * If int or float, cut_dur is fixed at the value provided + * If list, cut_dur is any element in the list + * If tuple, cut_dur is in range of (tuple[0], tuple[1]) + + cut_type (:py:class:`~Callable`, :obj:`list`, :obj:`str`): + cut_type sets the type of data to fill in the cut region with from + the options: `zeros`, `ones`, `low_noise`, `avg_noise`, and + `high_noise` + * If Callable, produces a sample by calling cut_type() + * If list, cut_type is any element in the list + * If str, cut_type is fixed at the method provided + + """ + + def __init__( + self, + cut_dur: NumericParameter = (0.01, 0.2), + cut_type: List[str] = (["zeros", "ones", "low_noise", "avg_noise", "high_noise"]), + ) -> None: + super(CutOut, self).__init__() + self.cut_dur = to_distribution(cut_dur, self.random_generator) + self.cut_type = to_distribution(cut_type, self.random_generator) + self.string = ( + self.__class__.__name__ + + "(" + + "cut_dur={}, ".format(cut_dur) + + "cut_type={}".format(cut_type) + + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + cut_dur = self.cut_dur() + cut_start = np.random.uniform(0.0, 1.0 - cut_dur) + cut_type = self.cut_type() + + if isinstance(data, SignalData): + assert data.iq_data is not None + assert data.signal_description is not None + + # Create new SignalData object for transformed data + new_data: SignalData = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=[], + ) + + # Update SignalDescription + new_signal_description: List[SignalDescription] = [] + signal_description_list: List[SignalDescription] = ( + [data.signal_description] + if isinstance(data.signal_description, SignalDescription) + else data.signal_description + ) + for signal_desc in signal_description_list: + new_signal_desc = deepcopy(signal_desc) + assert new_signal_desc.start is not None + assert new_signal_desc.stop is not None + + # Update labels + if ( + new_signal_desc.start > cut_start + and new_signal_desc.start < cut_start + cut_dur + ): + # Label starts within cut region + if ( + new_signal_desc.stop > cut_start + and new_signal_desc.stop < cut_start + cut_dur + ): + # Label also stops within cut region --> Remove label + continue + else: + # Push label start to end of cut region + new_signal_desc.start = cut_start + cut_dur + elif ( + new_signal_desc.stop > cut_start and new_signal_desc.stop < cut_start + cut_dur + ): + # Label stops within cut region but does not start in region --> Push stop to begining of cut region + new_signal_desc.stop = cut_start + elif ( + new_signal_desc.start < cut_start and new_signal_desc.stop > cut_start + cut_dur + ): + # Label traverse cut region --> Split into two labels + new_signal_desc_split = deepcopy(signal_desc) + # Update first label region's stop + new_signal_desc.stop = cut_start + # Update second label region's start & append to description collection + new_signal_desc_split.start = cut_start + cut_dur + new_signal_description.append(new_signal_desc_split) + + new_signal_description.append(new_signal_desc) + + new_data.signal_description = new_signal_description + + # Perform data augmentation + new_data.iq_data = F.cut_out(data.iq_data, cut_start, cut_dur, cut_type) + return new_data + else: + output: np.ndarray = F.cut_out(data, cut_start, cut_dur, cut_type) + return output + + +class PatchShuffle(SignalTransform): + """Randomly shuffle multiple local regions of samples. + + Transform is loosely based on + `"PatchShuffle Regularization" `_. + + Args: + patch_size (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + patch_size sets the size of each patch to shuffle + * If Callable, produces a sample by calling patch_size() + * If int or float, patch_size is fixed at the value provided + * If list, patch_size is any element in the list + * If tuple, patch_size is in range of (tuple[0], tuple[1]) + + shuffle_ratio (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + shuffle_ratio sets the ratio of the patches to shuffle + * If Callable, produces a sample by calling shuffle_ratio() + * If int or float, shuffle_ratio is fixed at the value provided + * If list, shuffle_ratio is any element in the list + * If tuple, shuffle_ratio is in range of (tuple[0], tuple[1]) + + """ + + def __init__( + self, + patch_size: NumericParameter = (3, 10), + shuffle_ratio: FloatParameter = (0.01, 0.05), + ) -> None: + super(PatchShuffle, self).__init__() + self.patch_size = to_distribution(patch_size, self.random_generator) + self.shuffle_ratio = to_distribution(shuffle_ratio, self.random_generator) + self.string = ( + self.__class__.__name__ + + "(" + + "patch_size={}, ".format(patch_size) + + "shuffle_ratio={}".format(shuffle_ratio) + + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + patch_size = int(self.patch_size()) + shuffle_ratio = self.shuffle_ratio() + + if isinstance(data, SignalData): + assert data.iq_data is not None + # Create new SignalData object for transformed data + new_data: SignalData = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=data.signal_description, + ) + + # Perform data augmentation + new_data.iq_data = F.patch_shuffle(data.iq_data, patch_size, shuffle_ratio) + return new_data + else: + output: np.ndarray = F.patch_shuffle(data, patch_size, shuffle_ratio) + return output + + +class DatasetWidebandCutMix(SignalTransform): + """SignalTransform that inputs a dataset to randomly sample from and insert + into the main dataset's examples, using an additional `alpha` input to set + the relative quantity in time to occupy, where + + cutmix_num_iq_samples = total_num_iq_samples * alpha + + This transform is loosely based on [CutMix: Regularization Strategy to + Train Strong Classifiers with Localizable Features] + (https://arxiv.org/pdf/1710.09412.pdf). + + Args: + dataset :obj:`SignalDataset`: + An SignalDataset of complex-valued examples to be used as a source for + the synthetic insertion/mixup + + alpha (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + alpha sets the difference in durations between the main dataset + example and the inserted example + * If Callable, produces a sample by calling alpha() + * If int or float, alpha is fixed at the value provided + * If list, alpha is any element in the list + * If tuple, alpha is in range of (tuple[0], tuple[1]) + + Example: + >>> import torchsig.transforms as ST + >>> from torchsig.datasets.wideband_sig53 import WidebandSig53 + >>> # Add signals from the `ModulationsDataset` + >>> dataset = WidebandSig53('.') + >>> transform = ST.DatasetWidebandCutMix(dataset=dataset,alpha=(0.2,0.7)) + + """ + + def __init__( + self, + dataset: SignalDataset, + alpha: NumericParameter = (0.2, 0.7), + ) -> None: + super(DatasetWidebandCutMix, self).__init__() + self.alpha = to_distribution(alpha, self.random_generator) + self.dataset = dataset + self.dataset_num_samples = len(dataset) + self.string = ( + self.__class__.__name__ + + "(" + + "dataset={}, ".format(dataset) + + "alpha={}".format(alpha) + + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + alpha = self.alpha() + if isinstance(data, SignalData): + assert data.iq_data is not None + assert data.signal_description is not None + + # Randomly sample from provided dataset + idx = np.random.randint(self.dataset_num_samples) + insert_data, insert_signal_description = self.dataset[idx] + if isinstance(insert_data, SignalData): + assert insert_data.iq_data is not None + insert_iq_data: np.ndarray = insert_data.iq_data + else: + insert_iq_data = insert_data + num_iq_samples = data.iq_data.shape[0] + if insert_iq_data.shape[0] != num_iq_samples: + raise ValueError( + "Input dataset's `num_iq_samples` does not match main dataset.\n\t\ + Found {}, but expected {} samples".format( + insert_iq_data.shape[0], data.iq_data.shape[0] + ) + ) + + # Mask both data examples based on alpha and a random start value + insert_num_iq_samples = int(alpha * num_iq_samples) + insert_start: int = np.random.randint(num_iq_samples - insert_num_iq_samples) + insert_stop = insert_start + insert_num_iq_samples + data.iq_data[insert_start:insert_stop] = 0 + insert_iq_data[:insert_start] = 0.0 + insert_iq_data[insert_stop:] = 0.0 + insert_start //= num_iq_samples + insert_dur = insert_num_iq_samples / num_iq_samples + + # Create new SignalData object for transformed data + new_data = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=[], + ) + new_data.iq_data = data.iq_data + insert_iq_data + + # Update SignalDescription + new_signal_description: List[SignalDescription] = [] + signal_description_list: List[SignalDescription] = ( + [data.signal_description] + if isinstance(data.signal_description, SignalDescription) + else data.signal_description + ) + for signal_desc in signal_description_list: + new_signal_desc = deepcopy(signal_desc) + assert new_signal_desc.start is not None + assert new_signal_desc.stop is not None + + # Update labels + if ( + new_signal_desc.start > insert_start + and new_signal_desc.start < insert_start + insert_dur + ): + # Label starts within cut region + if ( + new_signal_desc.stop > insert_start + and new_signal_desc.stop < insert_start + insert_dur + ): + # Label also stops within cut region --> Remove label + continue + else: + # Push label start to end of cut region + new_signal_desc.start = insert_start + insert_dur + elif ( + new_signal_desc.stop > insert_start + and new_signal_desc.stop < insert_start + insert_dur + ): + # Label stops within cut region but does not start in region --> Push stop to begining of cut region + new_signal_desc.stop = insert_start + elif ( + new_signal_desc.start < insert_start + and new_signal_desc.stop > insert_start + insert_dur + ): + # Label traverse cut region --> Split into two labels + new_signal_desc_split = deepcopy(signal_desc) + # Update first label region's stop + new_signal_desc.stop = insert_start + # Update second label region's start & append to description collection + new_signal_desc_split.start = insert_start + insert_dur + new_signal_description.append(new_signal_desc_split) + + # Append SignalDescription to list + new_signal_description.append(new_signal_desc) + + # Repeat for inserted example's SignalDescription(s) + for insert_signal_desc in insert_signal_description: + # Update labels + if ( + insert_signal_desc.stop < insert_start + or insert_signal_desc.start > insert_start + insert_dur + ): + # Label is outside inserted region --> Remove label + continue + elif ( + insert_signal_desc.start < insert_start + and insert_signal_desc.stop < insert_start + insert_dur + ): + # Label starts before and ends within region, push start to region start + insert_signal_desc.start = insert_start + elif ( + insert_signal_desc.start >= insert_start + and insert_signal_desc.stop > insert_start + insert_dur + ): + # Label starts within region and stops after, push stop to region stop + insert_signal_desc.stop = insert_start + insert_dur + elif ( + insert_signal_desc.start < insert_start + and insert_signal_desc.stop > insert_start + insert_dur + ): + # Label starts before and stops after, push both start & stop to region boundaries + insert_signal_desc.start = insert_start + insert_signal_desc.stop = insert_start + insert_dur + + # Append SignalDescription to list + new_signal_description.append(insert_signal_desc) + + # Set output data's SignalDescription to above list + new_data.signal_description = new_signal_description + + return new_data + else: + raise ValueError( + "Expected input type `SignalData`. Received {}. \n\t\ + The `DatasetWidebandCutMix` transform depends on metadata from a `SignalData` object.".format( + type(data) + ) + ) + + +class DatasetWidebandMixUp(SignalTransform): + """SignalTransform that inputs a dataset to randomly sample from and insert + into the main dataset's examples, using the `alpha` input to set the + difference in magnitudes between the two examples with the following + relationship: + + output_sample = main_sample * (1 - alpha) + mixup_sample * alpha + + This transform is loosely based on [mixup: Beyond Emperical Risk + Minimization](https://arxiv.org/pdf/1710.09412.pdf). + + Args: + dataset :obj:`SignalDataset`: + An SignalDataset of complex-valued examples to be used as a source for + the synthetic insertion/mixup + + alpha (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + alpha sets the difference in power level between the main dataset + example and the inserted example + * If Callable, produces a sample by calling alpha() + * If int or float, alpha is fixed at the value provided + * If list, alpha is any element in the list + * If tuple, alpha is in range of (tuple[0], tuple[1]) + + Example: + >>> import torchsig.transforms as ST + >>> from torchsig.datasets.wideband_sig53 import WidebandSig53 + >>> # Add signals from the `WidebandSig53` Dataset + >>> dataset = WidebandSig53('.') + >>> transform = ST.DatasetWidebandMixUp(dataset=dataset,alpha=(0.4,0.6)) + + """ + + def __init__( + self, + dataset: SignalDataset, + alpha: NumericParameter = (0.4, 0.6), + ) -> None: + super(DatasetWidebandMixUp, self).__init__() + self.alpha = to_distribution(alpha, self.random_generator) + self.dataset = dataset + self.dataset_num_samples = len(dataset) + self.string = ( + self.__class__.__name__ + + "(" + + "dataset={}, ".format(dataset) + + "alpha={}".format(alpha) + + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + alpha = self.alpha() + if isinstance(data, SignalData): + assert data.iq_data is not None + assert data.signal_description is not None + + # Randomly sample from provided dataset + idx = np.random.randint(self.dataset_num_samples) + insert_data, insert_signal_description = self.dataset[idx] + if isinstance(insert_data, SignalData): + assert insert_data.iq_data is not None + insert_iq_data: np.ndarray = insert_data.iq_data + else: + insert_iq_data = insert_data + if insert_iq_data.shape[0] != data.iq_data.shape[0]: + raise ValueError( + "Input dataset's `num_iq_samples` does not match main dataset.\n\t\ + Found {}, but expected {} samples".format( + insert_iq_data.shape[0], data.iq_data.shape[0] + ) + ) + + # Create new SignalData object for transformed data + new_data = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=[], + ) + new_data.iq_data = data.iq_data * (1 - alpha) + insert_iq_data * alpha + + # Update SignalDescription + new_signal_description: List[SignalDescription] = [] + signal_description_list: List[SignalDescription] = ( + [data.signal_description] + if isinstance(data.signal_description, SignalDescription) + else data.signal_description + ) + new_signal_description.extend(signal_description_list) + new_signal_description.extend(insert_signal_description) + new_data.signal_description = new_signal_description + + return new_data + else: + raise ValueError( + "Expected input type `SignalData`. Received {}. \n\t\ + The `DatasetWidebandMixUp` transform depends on metadata from a `SignalData` object.".format( + type(data) + ) + ) + + +class SpectrogramRandomResizeCrop(SignalTransform): + """The SpectrogramRandomResizeCrop transforms the input IQ data into a + spectrogram with a randomized FFT size and overlap. This randomization in + the spectrogram computation results in spectrograms of various sizes. The + width and height arguments specify the target output size of the transform. + To get to the desired size, the randomly generated spectrogram may be + randomly cropped or padded in either the time or frequency dimensions. This + transform is meant to emulate the Random Resize Crop transform often used + in computer vision tasks. + + Args: + nfft (:py:class:`~Callable`, :obj:`int`, :obj:`list`, :obj:`tuple`): + The number of FFT bins for the random spectrogram. + * If Callable, nfft is set by calling nfft() + * If int, nfft is fixed by value provided + * If list, nfft is any element in the list + * If tuple, nfft is in range of (tuple[0], tuple[1]) + overlap_ratio (:py:class:`~Callable`, :obj:`int`, :obj:`list`, :obj:`tuple`): + The ratio of the (nfft-1) value to use as the overlap parameter for + the spectrogram operation. Setting as ratio ensures the overlap is + a lower value than the bin size. + * If Callable, nfft is set by calling overlap_ratio() + * If float, overlap_ratio is fixed by value provided + * If list, overlap_ratio is any element in the list + * If tuple, overlap_ratio is in range of (tuple[0], tuple[1]) + window_fcn (:obj:`str`): + Window to be used in spectrogram operation. + Default value is 'np.blackman'. + mode (:obj:`str`): + Mode of the spectrogram to be computed. + Default value is 'complex'. + width (:obj:`int`): + Target output width (time) of the spectrogram + height (:obj:`int`): + Target output height (frequency) of the spectrogram + + Example: + >>> import torchsig.transforms as ST + >>> # Randomly sample NFFT size in range [128,1024] and randomly crop/pad output spectrogram to (512,512) + >>> transform = ST.SpectrogramRandomResizeCrop(nfft=(128,1024), overlap_ratio=(0.0,0.2), width=512, height=512) + + """ + + def __init__( + self, + nfft: IntParameter = (256, 1024), + overlap_ratio: FloatParameter = (0.0, 0.2), + window_fcn: Callable[[int], np.ndarray] = np.blackman, + mode: str = "complex", + width: int = 512, + height: int = 512, + ) -> None: + super(SpectrogramRandomResizeCrop, self).__init__() + self.nfft = to_distribution(nfft, self.random_generator) + self.overlap_ratio = to_distribution(overlap_ratio, self.random_generator) + self.window_fcn = window_fcn + self.mode = mode + self.width = width + self.height = height + self.string = ( + self.__class__.__name__ + + "(" + + "nfft={}, ".format(nfft) + + "overlap_ratio={}, ".format(overlap_ratio) + + "window_fcn={}, ".format(window_fcn) + + "mode={}, ".format(mode) + + "width={}, ".format(width) + + "height={}".format(height) + + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + nfft = int(self.nfft()) + nperseg = nfft + overlap_ratio = self.overlap_ratio() + noverlap = int(overlap_ratio * (nfft - 1)) + + iq_data = data.iq_data if isinstance(data, SignalData) else data + assert iq_data is not None + + # First, perform the random spectrogram operation + spec_data = F.spectrogram(iq_data, nperseg, noverlap, nfft, self.window_fcn, self.mode) + if self.mode == "complex": + new_tensor = np.zeros((2, spec_data.shape[0], spec_data.shape[1]), dtype=np.float32) + new_tensor[0, :, :] = np.real(spec_data).astype(np.float32) + new_tensor[1, :, :] = np.imag(spec_data).astype(np.float32) + spec_data = new_tensor + + # Next, perform the random cropping/padding + channels, curr_height, curr_width = spec_data.shape + pad_height, crop_height = False, False + pad_width, crop_width = False, False + pad_height_samps, pad_width_samps = 0, 0 + if curr_height < self.height: + pad_height = True + pad_height_samps = self.height - curr_height + elif curr_height > self.height: + crop_height = True + if curr_width < self.width: + pad_width = True + pad_width_samps = self.width - curr_width + elif curr_width > self.width: + crop_width = True + + if pad_height or pad_width: + + def pad_func(vector, pad_width, iaxis, kwargs): + vector[: pad_width[0]] = ( + np.random.rand(len(vector[: pad_width[0]])) * kwargs["pad_value"] + ) + vector[-pad_width[1] :] = ( + np.random.rand(len(vector[-pad_width[1] :])) * kwargs["pad_value"] + ) + + pad_height_start = np.random.randint(0, pad_height_samps // 2 + 1) + pad_height_end = pad_height_samps - pad_height_start + 1 + pad_width_start = np.random.randint(0, pad_width_samps // 2 + 1) + pad_width_end = pad_width_samps - pad_width_start + 1 + + if self.mode == "complex": + new_data_real = np.pad( + spec_data[0], + ( + (pad_height_start, pad_height_end), + (pad_width_start, pad_width_end), + ), + pad_func, + pad_value=np.percentile(np.abs(spec_data[0]), 50), + ) + new_data_imag = np.pad( + spec_data[1], + ( + (pad_height_start, pad_height_end), + (pad_width_start, pad_width_end), + ), + pad_func, + pad_value=np.percentile(np.abs(spec_data[1]), 50), + ) + spec_data = np.concatenate( + [ + np.expand_dims(new_data_real, axis=0), + np.expand_dims(new_data_imag, axis=0), + ], + axis=0, + ) + else: + spec_data = np.pad( + spec_data, + ( + (pad_height_start, pad_height_end), + (pad_width_start, pad_width_end), + ), + pad_func, + min_value=np.percentile(np.abs(spec_data[0]), 50), + ) + + crop_width_start = np.random.randint(0, max(1, curr_width - self.width)) + crop_height_start = np.random.randint(0, max(1, curr_height - self.height)) + spec_data = spec_data[ + :, + crop_height_start : crop_height_start + self.height, + crop_width_start : crop_width_start + self.width, + ] + + # Update SignalData object if necessary, otherwise return + if isinstance(data, SignalData): + assert data.iq_data is not None + assert data.signal_description is not None + + # Create new SignalData object for transformed data + new_data = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=[], + ) + new_data.iq_data = spec_data + + # Update SignalDescription + new_signal_description: List[SignalDescription] = [] + signal_description_list: List[SignalDescription] = ( + [data.signal_description] + if isinstance(data.signal_description, SignalDescription) + else data.signal_description + ) + for signal_desc in signal_description_list: + new_signal_desc = deepcopy(signal_desc) + assert new_signal_desc.lower_frequency is not None + assert new_signal_desc.upper_frequency is not None + assert new_signal_desc.start is not None + assert new_signal_desc.stop is not None + + # Check bounds for partial signals + new_signal_desc.lower_frequency = ( + -0.5 + if new_signal_desc.lower_frequency < -0.5 + else new_signal_desc.lower_frequency + ) + new_signal_desc.upper_frequency = ( + 0.5 + if new_signal_desc.upper_frequency > 0.5 + else new_signal_desc.upper_frequency + ) + new_signal_desc.bandwidth = ( + new_signal_desc.upper_frequency - new_signal_desc.lower_frequency + ) + new_signal_desc.center_frequency = ( + new_signal_desc.lower_frequency + new_signal_desc.bandwidth * 0.5 + ) + + # Update labels based on padding/cropping + if pad_height: + new_signal_desc.lower_frequency = ( + (new_signal_desc.lower_frequency + 0.5) * curr_height + pad_height_start + ) / self.height - 0.5 + new_signal_desc.upper_frequency = ( + (new_signal_desc.upper_frequency + 0.5) * curr_height + pad_height_start + ) / self.height - 0.5 + new_signal_desc.center_frequency = ( + (new_signal_desc.center_frequency + 0.5) * curr_height + pad_height_start + ) / self.height - 0.5 + new_signal_desc.bandwidth = ( + new_signal_desc.upper_frequency - new_signal_desc.lower_frequency + ) + + if crop_height: + if ( + new_signal_desc.lower_frequency + 0.5 + ) * curr_height >= crop_height_start + self.height or ( + new_signal_desc.upper_frequency + 0.5 + ) * curr_height <= crop_height_start: + continue + if (new_signal_desc.lower_frequency + 0.5) * curr_height <= crop_height_start: + new_signal_desc.lower_frequency = -0.5 + else: + new_signal_desc.lower_frequency = ( + (new_signal_desc.lower_frequency + 0.5) * curr_height + - crop_height_start + ) / self.height - 0.5 + if ( + new_signal_desc.upper_frequency + 0.5 + ) * curr_height >= crop_height_start + self.height: + new_signal_desc.upper_frequency = crop_height_start + self.height + else: + new_signal_desc.upper_frequency = ( + (new_signal_desc.upper_frequency + 0.5) * curr_height + - crop_height_start + ) / self.height - 0.5 + new_signal_desc.bandwidth = ( + new_signal_desc.upper_frequency - new_signal_desc.lower_frequency + ) + new_signal_desc.center_frequency = ( + new_signal_desc.lower_frequency + new_signal_desc.bandwidth / 2 + ) + + if pad_width: + new_signal_desc.start = ( + new_signal_desc.start * curr_width + pad_width_start + ) / self.width + new_signal_desc.stop = ( + new_signal_desc.stop * curr_width + pad_width_start + ) / self.width + new_signal_desc.duration = new_signal_desc.stop - new_signal_desc.start + + if crop_width: + if new_signal_desc.start * curr_width <= crop_width_start: + new_signal_desc.start = 0.0 + elif new_signal_desc.start * curr_width >= crop_width_start + self.width: + continue + else: + new_signal_desc.start = ( + new_signal_desc.start * curr_width - crop_width_start + ) / self.width + if new_signal_desc.stop * curr_width >= crop_width_start + self.width: + new_signal_desc.stop = 1.0 + elif new_signal_desc.stop * curr_width <= crop_width_start: + continue + else: + new_signal_desc.stop = ( + new_signal_desc.stop * curr_width - crop_width_start + ) / self.width + new_signal_desc.duration = new_signal_desc.stop - new_signal_desc.start + + # Append SignalDescription to list + new_signal_description.append(new_signal_desc) + + new_data.signal_description = new_signal_description + return new_data + + else: + output: np.ndarray = spec_data + return output + + +class SpectrogramDropSamples(SignalTransform): + """Randomly drop samples from the input data of specified durations and + with specified fill techniques: + * `ffill` (front fill): replace drop samples with the last previous value + * `bfill` (back fill): replace drop samples with the next value + * `mean`: replace drop samples with the mean value of the full data + * `zero`: replace drop samples with zeros + * `low`: replace drop samples with low power samples + * `min`: replace drop samples with the minimum of the absolute power + * `max`: replace drop samples with the maximum of the absolute power + * `ones`: replace drop samples with ones + + Transform is based off of the + `TSAug Dropout Transform `_. + + Args: + drop_rate (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + drop_rate sets the rate at which to drop samples + * If Callable, produces a sample by calling drop_rate() + * If int or float, drop_rate is fixed at the value provided + * If list, drop_rate is any element in the list + * If tuple, drop_rate is in range of (tuple[0], tuple[1]) + + size (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + size sets the size of each instance of dropped samples + * If Callable, produces a sample by calling size() + * If int or float, size is fixed at the value provided + * If list, size is any element in the list + * If tuple, size is in range of (tuple[0], tuple[1]) + + fill (:py:class:`~Callable`, :obj:`list`, :obj:`str`): + fill sets the method of how the dropped samples should be filled + * If Callable, produces a sample by calling fill() + * If list, fill is any element in the list + * If str, fill is fixed at the method provided + + """ + + def __init__( + self, + drop_rate: NumericParameter = (0.001, 0.005), + size: NumericParameter = (1, 10), + fill: List[str] = (["ffill", "bfill", "mean", "zero", "low", "min", "max", "ones"]), + ) -> None: + super(SpectrogramDropSamples, self).__init__() + self.drop_rate = to_distribution(drop_rate, self.random_generator) + self.size = to_distribution(size, self.random_generator) + self.fill = to_distribution(fill, self.random_generator) + self.string = ( + self.__class__.__name__ + + "(" + + "drop_rate={}, ".format(drop_rate) + + "size={}, ".format(size) + + "fill={}".format(fill) + + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + drop_rate = self.drop_rate() + fill = self.fill() + + if isinstance(data, SignalData): + assert data.iq_data is not None + # Create new SignalData object for transformed data + new_data: SignalData = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.float64), + signal_description=data.signal_description, + ) + + # Perform data augmentation + channels, height, width = data.iq_data.shape + spec_size = height * width + drop_instances = int(spec_size * drop_rate) + drop_sizes = self.size(drop_instances).astype(int) + drop_starts = np.random.uniform( + 1, spec_size - max(drop_sizes) - 1, drop_instances + ).astype(int) + + new_data.iq_data = F.drop_spec_samples(data.iq_data, drop_starts, drop_sizes, fill) + return new_data + + else: + drop_instances = int(data.shape[0] * drop_rate) + drop_sizes = self.size(drop_instances).astype(int) + drop_starts = np.random.uniform( + 0, data.shape[0] - max(drop_sizes), drop_instances + ).astype(int) + + output: np.ndarray = F.drop_spec_samples( + data, + drop_starts, + drop_sizes, + fill, + ) + return output + + +class SpectrogramPatchShuffle(SignalTransform): + """Randomly shuffle multiple local regions of samples. + + Transform is loosely based on + `PatchShuffle Regularization `_. + + Args: + patch_size (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + patch_size sets the size of each patch to shuffle + * If Callable, produces a sample by calling patch_size() + * If int or float, patch_size is fixed at the value provided + * If list, patch_size is any element in the list + * If tuple, patch_size is in range of (tuple[0], tuple[1]) + + shuffle_ratio (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + shuffle_ratio sets the ratio of the patches to shuffle + * If Callable, produces a sample by calling shuffle_ratio() + * If int or float, shuffle_ratio is fixed at the value provided + * If list, shuffle_ratio is any element in the list + * If tuple, shuffle_ratio is in range of (tuple[0], tuple[1]) + + """ + + def __init__( + self, + patch_size: NumericParameter = (2, 16), + shuffle_ratio: FloatParameter = (0.01, 0.10), + ) -> None: + super(SpectrogramPatchShuffle, self).__init__() + self.patch_size = to_distribution(patch_size, self.random_generator) + self.shuffle_ratio = to_distribution(shuffle_ratio, self.random_generator) + self.string = ( + self.__class__.__name__ + + "(" + + "patch_size={}, ".format(patch_size) + + "shuffle_ratio={}".format(shuffle_ratio) + + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + patch_size = int(self.patch_size()) + shuffle_ratio = self.shuffle_ratio() + + if isinstance(data, SignalData): + assert data.iq_data is not None + # Create new SignalData object for transformed data + new_data: SignalData = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=data.signal_description, + ) + + # Perform data augmentation + new_data.iq_data = F.spec_patch_shuffle(data.iq_data, patch_size, shuffle_ratio) + return new_data + else: + output: np.ndarray = F.spec_patch_shuffle( + data, + patch_size, + shuffle_ratio, + ) + return output + + +class SpectrogramTranslation(SignalTransform): + """Transform that inputs a spectrogram and applies a random time/freq + translation + + Args: + time_shift (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + time_shift sets the translation along the time-axis + * If Callable, produces a sample by calling time_shift() + * If int, time_shift is fixed at the value provided + * If list, time_shift is any element in the list + * If tuple, time_shift is in range of (tuple[0], tuple[1]) + + freq_shift (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): + freq_shift sets the translation along the freq-axis + * If Callable, produces a sample by calling freq_shift() + * If int, freq_shift is fixed at the value provided + * If list, freq_shift is any element in the list + * If tuple, freq_shift is in range of (tuple[0], tuple[1]) + + """ + + def __init__( + self, + time_shift: IntParameter = (-128, 128), + freq_shift: IntParameter = (-128, 128), + ) -> None: + super(SpectrogramTranslation, self).__init__() + self.time_shift = to_distribution(time_shift, self.random_generator) + self.freq_shift = to_distribution(freq_shift, self.random_generator) + self.string = ( + self.__class__.__name__ + + "(" + + "time_shift={}, ".format(time_shift) + + "freq_shift={}".format(freq_shift) + + ")" + ) + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + time_shift = int(self.time_shift()) + freq_shift = int(self.freq_shift()) + + if isinstance(data, SignalData): + assert data.iq_data is not None + assert data.signal_description is not None + + # Create new SignalData object for transformed data + new_data: SignalData = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=data.signal_description, + ) + + new_data.iq_data = F.spec_translate(data.iq_data, time_shift, freq_shift) + + # Update SignalDescription + new_signal_description: List[SignalDescription] = [] + signal_description_list: List[SignalDescription] = ( + [data.signal_description] + if isinstance(data.signal_description, SignalDescription) + else data.signal_description + ) + for signal_desc in signal_description_list: + new_signal_desc = deepcopy(signal_desc) + assert new_signal_desc.start is not None + assert new_signal_desc.stop is not None + assert new_signal_desc.lower_frequency is not None + assert new_signal_desc.upper_frequency is not None + + # Update time fields + new_signal_desc.start = ( + new_signal_desc.start + time_shift / new_data.iq_data.shape[1] + ) + new_signal_desc.stop = new_signal_desc.stop + time_shift / new_data.iq_data.shape[1] + if new_signal_desc.start >= 1.0 or new_signal_desc.stop <= 0.0: + continue + new_signal_desc.start = ( + 0.0 if new_signal_desc.start < 0.0 else new_signal_desc.start + ) + new_signal_desc.stop = 1.0 if new_signal_desc.stop > 1.0 else new_signal_desc.stop + new_signal_desc.duration = new_signal_desc.stop - new_signal_desc.start + + # Trim any out-of-capture freq values + new_signal_desc.lower_frequency = ( + -0.5 + if new_signal_desc.lower_frequency < -0.5 + else new_signal_desc.lower_frequency + ) + new_signal_desc.upper_frequency = ( + 0.5 + if new_signal_desc.upper_frequency > 0.5 + else new_signal_desc.upper_frequency + ) + + # Update freq fields + new_signal_desc.lower_frequency = ( + new_signal_desc.lower_frequency + freq_shift / new_data.iq_data.shape[2] + ) + new_signal_desc.upper_frequency = ( + new_signal_desc.upper_frequency + freq_shift / new_data.iq_data.shape[2] + ) + if ( + new_signal_desc.lower_frequency >= 0.5 + or new_signal_desc.upper_frequency <= -0.5 + ): + continue + new_signal_desc.lower_frequency = ( + -0.5 + if new_signal_desc.lower_frequency < -0.5 + else new_signal_desc.lower_frequency + ) + new_signal_desc.upper_frequency = ( + 0.5 + if new_signal_desc.upper_frequency > 0.5 + else new_signal_desc.upper_frequency + ) + new_signal_desc.bandwidth = ( + new_signal_desc.upper_frequency - new_signal_desc.lower_frequency + ) + new_signal_desc.center_frequency = ( + new_signal_desc.lower_frequency + new_signal_desc.bandwidth * 0.5 + ) + + # Append SignalDescription to list + new_signal_description.append(new_signal_desc) + + # Set output data's SignalDescription to above list + new_data.signal_description = new_signal_description + return new_data + + else: + output: np.ndarray = F.spec_translate(data, time_shift, freq_shift) + return output + + +class SpectrogramMosaicCrop(SignalTransform): + """The SpectrogramMosaicCrop transform takes the original input tensor and + inserts it randomly into one cell of a 2x2 grid of 2x the size of the + orginal spectrogram input. The `dataset` argument is then read 3x to + retrieve spectrograms to fill the remaining cells of the 2x2 grid. Finally, + the 2x larger stitched view of 4x spectrograms is randomly cropped to the + original target size, containing pieces of each of the 4x stitched + spectrograms. + + Args: + dataset :obj:`SignalDataset`: + An SignalDataset of complex-valued examples to be used as a source for + the mosaic operation + + """ + + def __init__(self, dataset: SignalDataset) -> None: + super(SpectrogramMosaicCrop, self).__init__() + self.dataset = dataset + self.string = self.__class__.__name__ + "(" + "dataset={}".format(dataset) + ")" + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + if isinstance(data, SignalData): + assert data.iq_data is not None + assert data.signal_description is not None + + # Create new SignalData object for transformed data + new_data: SignalData = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=data.signal_description, + ) + + # Read shapes + channels, height, width = data.iq_data.shape + + # Randomly decide the new x0, y0 point of the stitched images + x0 = np.random.randint(0, width) + y0 = np.random.randint(0, height) + + # Initialize new SignalDescription object + new_signal_description = [] + + # First, create a 2x2 grid of (512+512,512+512) and randomly put the initial data into a grid cell + cell_idx = np.random.randint(0, 4) + x_idx = 0 if cell_idx == 0 or cell_idx == 2 else 1 + y_idx = 0 if cell_idx == 0 or cell_idx == 1 else 1 + full_mosaic = np.empty( + (channels, height * 2, width * 2), + dtype=data.iq_data.dtype, + ) + full_mosaic[ + :, + y_idx * height : (y_idx + 1) * height, + x_idx * width : (x_idx + 1) * width, + ] = data.iq_data + + # Update original data's SignalDescription objects given the cell index + signal_description_list: List[SignalDescription] = ( + [data.signal_description] + if isinstance(data.signal_description, SignalDescription) + else data.signal_description + ) + for signal_desc in signal_description_list: + new_signal_desc = deepcopy(signal_desc) + assert new_signal_desc.start is not None + assert new_signal_desc.stop is not None + assert new_signal_desc.lower_frequency is not None + assert new_signal_desc.upper_frequency is not None + + # Update time fields + if x_idx == 0: + if new_signal_desc.stop * width < x0: + continue + new_signal_desc.start = ( + 0 + if new_signal_desc.start < (x0 / width) + else new_signal_desc.start - (x0 / width) + ) + new_signal_desc.stop = ( + new_signal_desc.stop - (x0 / width) + if new_signal_desc.stop < 1.0 + else 1.0 - (x0 / width) + ) + new_signal_desc.duration = new_signal_desc.stop - new_signal_desc.start + + else: + if new_signal_desc.start * width > x0: + continue + new_signal_desc.start = (width - x0) / width + new_signal_desc.start + new_signal_desc.stop = (width - x0) / width + new_signal_desc.stop + new_signal_desc.stop = ( + 1.0 if new_signal_desc.stop > 1.0 else new_signal_desc.stop + ) + new_signal_desc.duration = new_signal_desc.stop - new_signal_desc.start + + # Update frequency fields + new_signal_desc.lower_frequency = ( + -0.5 + if new_signal_desc.lower_frequency < -0.5 + else new_signal_desc.lower_frequency + ) + new_signal_desc.upper_frequency = ( + 0.5 + if new_signal_desc.upper_frequency > 0.5 + else new_signal_desc.upper_frequency + ) + if y_idx == 0: + if (new_signal_desc.upper_frequency + 0.5) * height < y0: + continue + new_signal_desc.lower_frequency = ( + -0.5 + if (new_signal_desc.lower_frequency + 0.5) < (y0 / height) + else new_signal_desc.lower_frequency - (y0 / height) + ) + new_signal_desc.upper_frequency = ( + new_signal_desc.upper_frequency - (y0 / height) + if new_signal_desc.upper_frequency < 0.5 + else 0.5 - (y0 / height) + ) + new_signal_desc.bandwidth = ( + new_signal_desc.upper_frequency - new_signal_desc.lower_frequency + ) + new_signal_desc.center_frequency = ( + new_signal_desc.lower_frequency + new_signal_desc.bandwidth * 0.5 + ) + + else: + if (new_signal_desc.lower_frequency + 0.5) * height > y0: + continue + new_signal_desc.lower_frequency = ( + height - y0 + ) / height + new_signal_desc.lower_frequency + new_signal_desc.upper_frequency = ( + height - y0 + ) / height + new_signal_desc.upper_frequency + new_signal_desc.upper_frequency = ( + 0.5 + if new_signal_desc.upper_frequency > 0.5 + else new_signal_desc.upper_frequency + ) + new_signal_desc.bandwidth = ( + new_signal_desc.upper_frequency - new_signal_desc.lower_frequency + ) + new_signal_desc.center_frequency = ( + new_signal_desc.lower_frequency + new_signal_desc.bandwidth * 0.5 + ) + + # Append SignalDescription to list + new_signal_description.append(new_signal_desc) + + # Next, fill in the remaining cells with data randomly sampled from the input dataset + for cell_i in range(4): + if cell_i == cell_idx: + # Skip if the original data's cell + continue + x_idx = 0 if cell_i == 0 or cell_i == 2 else 1 + y_idx = 0 if cell_i == 0 or cell_i == 1 else 1 + dataset_idx = np.random.randint(len(self.dataset)) + curr_data, curr_signal_desc = self.dataset[dataset_idx] + full_mosaic[ + :, + y_idx * height : (y_idx + 1) * height, + x_idx * width : (x_idx + 1) * width, + ] = curr_data + + # Update inserted data's SignalDescription objects given the cell index + signal_description_list = ( + [curr_signal_desc] + if isinstance(curr_signal_desc, SignalDescription) + else curr_signal_desc + ) + for signal_desc in signal_description_list: + new_signal_desc = deepcopy(signal_desc) + assert new_signal_desc.start is not None + assert new_signal_desc.stop is not None + assert new_signal_desc.lower_frequency is not None + assert new_signal_desc.upper_frequency is not None + + # Update time fields + if x_idx == 0: + if new_signal_desc.stop * width < x0: + continue + new_signal_desc.start = ( + 0 + if new_signal_desc.start < (x0 / width) + else new_signal_desc.start - (x0 / width) + ) + new_signal_desc.stop = ( + new_signal_desc.stop - (x0 / width) + if new_signal_desc.stop < 1.0 + else 1.0 - (x0 / width) + ) + new_signal_desc.duration = new_signal_desc.stop - new_signal_desc.start + + else: + if new_signal_desc.start * width > x0: + continue + new_signal_desc.start = (width - x0) / width + new_signal_desc.start + new_signal_desc.stop = (width - x0) / width + new_signal_desc.stop + new_signal_desc.stop = ( + 1.0 if new_signal_desc.stop > 1.0 else new_signal_desc.stop + ) + new_signal_desc.duration = new_signal_desc.stop - new_signal_desc.start + + # Update frequency fields + new_signal_desc.lower_frequency = ( + -0.5 + if new_signal_desc.lower_frequency < -0.5 + else new_signal_desc.lower_frequency + ) + new_signal_desc.upper_frequency = ( + 0.5 + if new_signal_desc.upper_frequency > 0.5 + else new_signal_desc.upper_frequency + ) + if y_idx == 0: + if (new_signal_desc.upper_frequency + 0.5) * height < y0: + continue + new_signal_desc.lower_frequency = ( + -0.5 + if (new_signal_desc.lower_frequency + 0.5) < (y0 / height) + else new_signal_desc.lower_frequency - (y0 / height) + ) + new_signal_desc.upper_frequency = ( + new_signal_desc.upper_frequency - (y0 / height) + if new_signal_desc.upper_frequency < 0.5 + else 0.5 - (y0 / height) + ) + new_signal_desc.bandwidth = ( + new_signal_desc.upper_frequency - new_signal_desc.lower_frequency + ) + new_signal_desc.center_frequency = ( + new_signal_desc.lower_frequency + new_signal_desc.bandwidth * 0.5 + ) + + else: + if (new_signal_desc.lower_frequency + 0.5) * height > y0: + continue + new_signal_desc.lower_frequency = ( + height - y0 + ) / height + new_signal_desc.lower_frequency + new_signal_desc.upper_frequency = ( + height - y0 + ) / height + new_signal_desc.upper_frequency + new_signal_desc.upper_frequency = ( + 0.5 + if new_signal_desc.upper_frequency > 0.5 + else new_signal_desc.upper_frequency + ) + new_signal_desc.bandwidth = ( + new_signal_desc.upper_frequency - new_signal_desc.lower_frequency + ) + new_signal_desc.center_frequency = ( + new_signal_desc.lower_frequency + new_signal_desc.bandwidth * 0.5 + ) + + # Append SignalDescription to list + new_signal_description.append(new_signal_desc) + + # After the data has been stitched into the large 2x2 gride, crop using x0, y0 + new_data.iq_data = full_mosaic[:, y0 : y0 + height, x0 : x0 + width] + + # Set output data's SignalDescription to above list + new_data.signal_description = new_signal_description + return new_data + + else: + # Read shapes + channels, height, width = data.shape + + # Randomly decide the new x0, y0 point of the stitched images + x0 = np.random.randint(0, width) + y0 = np.random.randint(0, height) + + # First, create a 2x2 grid of (512+512,512+512) and randomly put the initial data into a grid cell + cell_idx = np.random.randint(0, 4) + x_idx = 0 if cell_idx == 0 or cell_idx == 2 else 1 + y_idx = 0 if cell_idx == 0 or cell_idx == 1 else 1 + full_mosaic = np.empty( + (channels, height * 2, width * 2), + dtype=data.dtype, + ) + full_mosaic[ + :, + y_idx * height : (y_idx + 1) * height, + x_idx * width : (x_idx + 1) * width, + ] = data + + # Next, fill in the remaining cells with data randomly sampled from the input dataset + for cell_i in range(4): + if cell_i == cell_idx: + # Skip if the original data's cell + continue + x_idx = 0 if cell_i == 0 or cell_i == 2 else 1 + y_idx = 0 if cell_i == 0 or cell_i == 1 else 1 + dataset_idx = np.random.randint(len(self.dataset)) + curr_data, curr_signal_desc = self.dataset[dataset_idx] + full_mosaic[ + :, + y_idx * height : (y_idx + 1) * height, + x_idx * width : (x_idx + 1) * width, + ] = curr_data + + # After the data has been stitched into the large 2x2 gride, crop using x0, y0 + output: np.ndarray = full_mosaic[:, y0 : y0 + height, x0 : x0 + width] + return output + + +class SpectrogramMosaicDownsample(SignalTransform): + """The SpectrogramMosaicDownsample transform takes the original input + tensor and inserts it randomly into one cell of a 2x2 grid of 2x the size + of the orginal spectrogram input. The `dataset` argument is then read 3x to + retrieve spectrograms to fill the remaining cells of the 2x2 grid. Finally, + the 2x oversized stitched spectrograms are downsampled by 2 to become the + desired, original shape + + Args: + dataset :obj:`SignalDataset`: + An SignalDataset of complex-valued examples to be used as a source for + the mosaic operation + + """ + + def __init__(self, dataset: SignalDataset) -> None: + super(SpectrogramMosaicDownsample, self).__init__() + self.dataset = dataset + self.string = self.__class__.__name__ + "(" + "dataset={}".format(dataset) + ")" + + def __repr__(self) -> str: + return self.string + + def __call__(self, data: Any) -> Any: + if isinstance(data, SignalData): + assert data.iq_data is not None + assert data.signal_description is not None + + # Create new SignalData object for transformed data + new_data = SignalData( + data=None, + item_type=np.dtype(np.float64), + data_type=np.dtype(np.complex128), + signal_description=data.signal_description, + ) + + # Read shapes + channels, height, width = data.iq_data.shape + + # Initialize new SignalDescription object + new_signal_description = [] + + # First, create a 2x2 grid of (512+512,512+512) and randomly put the initial data into a grid cell + cell_idx = np.random.randint(0, 4) + x_idx = 0 if cell_idx == 0 or cell_idx == 2 else 1 + y_idx = 0 if cell_idx == 0 or cell_idx == 1 else 1 + full_mosaic = np.empty( + (channels, height * 2, width * 2), + dtype=data.iq_data.dtype, + ) + full_mosaic[ + :, + y_idx * height : (y_idx + 1) * height, + x_idx * width : (x_idx + 1) * width, + ] = data.iq_data + + # Update original data's SignalDescription objects given the cell index + signal_description_list: List[SignalDescription] = ( + [data.signal_description] + if isinstance(data.signal_description, SignalDescription) + else data.signal_description + ) + for signal_desc in signal_description_list: + new_signal_desc = deepcopy(signal_desc) + assert new_signal_desc.start is not None + assert new_signal_desc.stop is not None + assert new_signal_desc.lower_frequency is not None + assert new_signal_desc.upper_frequency is not None + + # Update time fields + if x_idx == 0: + new_signal_desc.start /= 2 + new_signal_desc.stop /= 2 + new_signal_desc.duration = new_signal_desc.stop - new_signal_desc.start + + else: + new_signal_desc.start = new_signal_desc.start / 2 + 0.5 + new_signal_desc.stop = new_signal_desc.stop / 2 + 0.5 + new_signal_desc.duration = new_signal_desc.stop - new_signal_desc.start + + # Update frequency fields + new_signal_desc.lower_frequency = ( + -0.5 + if new_signal_desc.lower_frequency < -0.5 + else new_signal_desc.lower_frequency + ) + new_signal_desc.upper_frequency = ( + 0.5 + if new_signal_desc.upper_frequency > 0.5 + else new_signal_desc.upper_frequency + ) + if y_idx == 0: + new_signal_desc.lower_frequency = ( + new_signal_desc.lower_frequency + 0.5 + ) / 2 - 0.5 + new_signal_desc.upper_frequency = ( + new_signal_desc.upper_frequency + 0.5 + ) / 2 - 0.5 + new_signal_desc.bandwidth = ( + new_signal_desc.upper_frequency - new_signal_desc.lower_frequency + ) + new_signal_desc.center_frequency = ( + new_signal_desc.lower_frequency + new_signal_desc.bandwidth * 0.5 + ) + + else: + new_signal_desc.lower_frequency = (new_signal_desc.lower_frequency + 0.5) / 2 + new_signal_desc.upper_frequency = (new_signal_desc.upper_frequency + 0.5) / 2 + new_signal_desc.bandwidth = ( + new_signal_desc.upper_frequency - new_signal_desc.lower_frequency + ) + new_signal_desc.center_frequency = ( + new_signal_desc.lower_frequency + new_signal_desc.bandwidth * 0.5 + ) + + # Append SignalDescription to list + new_signal_description.append(new_signal_desc) + + # Next, fill in the remaining cells with data randomly sampled from the input dataset + for cell_i in range(4): + if cell_i == cell_idx: + # Skip if the original data's cell + continue + x_idx = 0 if cell_i == 0 or cell_i == 2 else 1 + y_idx = 0 if cell_i == 0 or cell_i == 1 else 1 + dataset_idx = np.random.randint(len(self.dataset)) + curr_data, curr_signal_desc = self.dataset[dataset_idx] + full_mosaic[ + :, + y_idx * height : (y_idx + 1) * height, + x_idx * width : (x_idx + 1) * width, + ] = curr_data + + # Update inserted data's SignalDescription objects given the cell index + signal_description_list = ( + [curr_signal_desc] + if isinstance(curr_signal_desc, SignalDescription) + else curr_signal_desc + ) + for signal_desc in signal_description_list: + new_signal_desc = deepcopy(signal_desc) + assert new_signal_desc.start is not None + assert new_signal_desc.stop is not None + assert new_signal_desc.lower_frequency is not None + assert new_signal_desc.upper_frequency is not None + + # Update time fields + if x_idx == 0: + new_signal_desc.start /= 2 + new_signal_desc.stop /= 2 + new_signal_desc.duration = new_signal_desc.stop - new_signal_desc.start + + else: + new_signal_desc.start = new_signal_desc.start / 2 + 0.5 + new_signal_desc.stop = new_signal_desc.stop / 2 + 0.5 + new_signal_desc.duration = new_signal_desc.stop - new_signal_desc.start + + # Update frequency fields + new_signal_desc.lower_frequency = ( + -0.5 + if new_signal_desc.lower_frequency < -0.5 + else new_signal_desc.lower_frequency + ) + new_signal_desc.upper_frequency = ( + 0.5 + if new_signal_desc.upper_frequency > 0.5 + else new_signal_desc.upper_frequency + ) + if y_idx == 0: + new_signal_desc.lower_frequency = ( + new_signal_desc.lower_frequency + 0.5 + ) / 2 - 0.5 + new_signal_desc.upper_frequency = ( + new_signal_desc.upper_frequency + 0.5 + ) / 2 - 0.5 + new_signal_desc.bandwidth = ( + new_signal_desc.upper_frequency - new_signal_desc.lower_frequency + ) + new_signal_desc.center_frequency = ( + new_signal_desc.lower_frequency + new_signal_desc.bandwidth * 0.5 + ) + + else: + new_signal_desc.lower_frequency = ( + new_signal_desc.lower_frequency + 0.5 + ) / 2 + new_signal_desc.upper_frequency = ( + new_signal_desc.upper_frequency + 0.5 + ) / 2 + new_signal_desc.bandwidth = ( + new_signal_desc.upper_frequency - new_signal_desc.lower_frequency + ) + new_signal_desc.center_frequency = ( + new_signal_desc.lower_frequency + new_signal_desc.bandwidth * 0.5 + ) + + # Append SignalDescription to list + new_signal_description.append(new_signal_desc) + + # After the data has been stitched into the large 2x2 gride, downsample by 2 + new_data.iq_data = full_mosaic[:, ::2, ::2] + + # Set output data's SignalDescription to above list + new_data.signal_description = new_signal_description + return new_data + + else: + # Read shapes + channels, height, width = data.shape + + # Initialize new SignalDescription object + new_signal_description = [] + + # First, create a 2x2 grid of (512+512,512+512) and randomly put the initial data into a grid cell + cell_idx = np.random.randint(0, 4) + x_idx = 0 if cell_idx == 0 or cell_idx == 2 else 1 + y_idx = 0 if cell_idx == 0 or cell_idx == 1 else 1 + full_mosaic = np.empty( + (channels, height * 2, width * 2), + dtype=data.dtype, + ) + full_mosaic[ + :, + y_idx * height : (y_idx + 1) * height, + x_idx * width : (x_idx + 1) * width, + ] = data + + # Next, fill in the remaining cells with data randomly sampled from the input dataset + for cell_i in range(4): + if cell_i == cell_idx: + # Skip if the original data's cell + continue + x_idx = 0 if cell_i == 0 or cell_i == 2 else 1 + y_idx = 0 if cell_i == 0 or cell_i == 1 else 1 + dataset_idx = np.random.randint(len(self.dataset)) + curr_data, curr_signal_desc = self.dataset[dataset_idx] + full_mosaic[ + :, + y_idx * height : (y_idx + 1) * height, + x_idx * width : (x_idx + 1) * width, + ] = curr_data + + # After the data has been stitched into the large 2x2 gride, downsample by 2 + output: np.ndarray = full_mosaic[:, ::2, ::2] + return output diff --git a/torchsig/transforms/wireless_channel/__init__.py b/torchsig/transforms/wireless_channel/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/torchsig/transforms/wireless_channel/functional.py b/torchsig/transforms/wireless_channel/functional.py deleted file mode 100644 index b96a4e4..0000000 --- a/torchsig/transforms/wireless_channel/functional.py +++ /dev/null @@ -1,163 +0,0 @@ -import numpy as np -from numba import njit -from scipy import signal as sp -from scipy import interpolate - - -@njit(cache=False) -def make_sinc_filter(beta, tap_cnt, sps, offset=0): - """ - return the taps of a sinc filter - """ - ntap_cnt = tap_cnt + ((tap_cnt + 1) % 2) - t_index = np.arange(-(ntap_cnt - 1) // 2, (ntap_cnt - 1) // 2 + 1) / np.double(sps) - - taps = np.sinc(beta * t_index + offset) - taps /= np.sum(taps) - - return taps[:tap_cnt] - - -def awgn(tensor: np.ndarray, noise_power_db: float) -> np.ndarray: - """Adds zero-mean complex additive white Gaussian noise with power of - noise_power_db. - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - noise_power_db (:obj:`float`): - Defined as 10*log10(E[|n|^2]). - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor with added noise. - """ - real_noise = np.random.randn(*tensor.shape) - imag_noise = np.random.randn(*tensor.shape) - return tensor + (10.0**(noise_power_db/20.0))*(real_noise + 1j*imag_noise)/np.sqrt(2) - - -def time_varying_awgn( - tensor: np.ndarray, - noise_power_db_low: float, - noise_power_db_high: float, - inflections: int, - random_regions: bool, -) -> np.ndarray: - """Adds time-varying complex additive white Gaussian noise with power - levels in range (`noise_power_db_low`, `noise_power_db_high`) and with - `inflections` number of inflection points spread over the input tensor - randomly if `random_regions` is True or evely spread if False - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - noise_power_db_low (:obj:`float`): - Defined as 10*log10(E[|n|^2]). - - noise_power_db_high (:obj:`float`): - Defined as 10*log10(E[|n|^2]). - - inflections (:obj:`int`): - Number of inflection points for time-varying nature - - random_regions (:obj:`bool`): - Specify if inflection points are randomly spread throughout tensor - or if evenly spread - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor with added noise. - """ - real_noise = np.random.randn(*tensor.shape) - imag_noise = np.random.randn(*tensor.shape) - noise_power_db = np.empty(*tensor.shape) - - if inflections == 0: - inflection_indices = np.array([0, tensor.shape[0]]) - else: - if random_regions: - inflection_indices = np.sort(np.random.choice(tensor.shape[0], size=inflections, replace=False)) - inflection_indices = np.append(inflection_indices, tensor.shape[0]) - inflection_indices = np.insert(inflection_indices, 0, 0) - else: - inflection_indices = np.arange(inflections+2) * int(tensor.shape[0] / (inflections+1)) - - for idx in range(len(inflection_indices)-1): - start_idx = inflection_indices[idx] - stop_idx = inflection_indices[idx+1] - duration = stop_idx - start_idx - start_power = noise_power_db_low if idx%2 == 0 else noise_power_db_high - stop_power = noise_power_db_high if idx%2 == 0 else noise_power_db_low - noise_power_db[start_idx:stop_idx] = np.linspace(start_power, stop_power, duration) - - return tensor + (10.0**(noise_power_db/20.0))*(real_noise + 1j*imag_noise)/np.sqrt(2) - - -def rayleigh_fading( - tensor: np.ndarray, - coherence_bandwidth: float, - power_delay_profile: np.ndarray, -) -> np.ndarray: - """Applies Rayleigh fading channel to tensor. Taps are generated by - interpolating and filtering Gaussian taps. - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - coherence_bandwidth (:obj:`float`): - coherence_bandwidth relative to the sample rate in [0, 1.0] - - power_delay_profile (:obj:`float`): - power_delay_profile assigned to channel - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has undergone Rayleigh Fading. - - """ - num_taps = int(np.ceil(1.0 / coherence_bandwidth)) # filter length to get desired coherence bandwidth - power_taps = np.sqrt(np.interp( - np.linspace(0, 1.0, 100*num_taps), - np.linspace(0, 1.0, len(power_delay_profile)), - power_delay_profile - )) - # Generate initial taps - rayleigh_taps = (np.random.randn(num_taps) + 1j * np.random.randn(num_taps)) # multi-path channel - - # Linear interpolate taps by a factor of 100 -- so we can get accurate coherence bandwidths - old_time = np.linspace(0, 1.0, num_taps, endpoint=True) - real_tap_function = interpolate.interp1d(old_time, rayleigh_taps.real) - imag_tap_function = interpolate.interp1d(old_time, rayleigh_taps.imag) - - new_time = np.linspace(0, 1.0, 100*num_taps, endpoint=True) - rayleigh_taps = real_tap_function(new_time) + 1j*imag_tap_function(new_time) - rayleigh_taps *= power_taps - - # Ensure that we maintain the same amount of power before and after the transform - input_power = np.linalg.norm(tensor) - tensor = sp.upfirdn(rayleigh_taps, tensor, up=100, down=100)[-tensor.shape[0]:] - output_power = np.linalg.norm(tensor) - tensor = np.multiply(input_power/output_power, tensor) - return tensor - - -def phase_offset(tensor: np.ndarray, phase: float) -> np.ndarray: - """ Applies a phase rotation to tensor - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - phase (:obj:`float`): - phase to rotate sample in [-pi, pi] - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has undergone a phase rotation - - """ - return tensor*np.exp(1j*phase) diff --git a/torchsig/transforms/wireless_channel/wce.py b/torchsig/transforms/wireless_channel/wce.py deleted file mode 100644 index 476d9ff..0000000 --- a/torchsig/transforms/wireless_channel/wce.py +++ /dev/null @@ -1,392 +0,0 @@ -import numpy as np -from copy import deepcopy -from typing import Optional, Tuple, List, Union, Any - -from torchsig.utils.types import SignalData, SignalDescription -from torchsig.transforms.transforms import SignalTransform -from torchsig.transforms.wireless_channel import functional as F -from torchsig.transforms.functional import NumericParameter, FloatParameter, IntParameter -from torchsig.transforms.functional import to_distribution, uniform_continuous_distribution, uniform_discrete_distribution - - -class TargetSNR(SignalTransform): - """Adds zero-mean complex additive white Gaussian noise to a provided - tensor to achieve a target SNR. The provided signal is assumed to be - entirely the signal of interest. Note that this transform relies on - information contained within the SignalData object's SignalDescription. The - transform also assumes that only one signal is present in the IQ data. If - multiple signals' SignalDescriptions are detected, the transform will raise a - warning. - - Args: - target_snr (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - Defined as 10*log10(np.mean(np.abs(x)**2)/np.mean(np.abs(n)**2)) if in dB, - np.mean(np.abs(x)**2)/np.mean(np.abs(n)**2) if linear. - - * If Callable, produces a sample by calling target_snr() - * If int or float, target_snr is fixed at the value provided - * If list, target_snr is any element in the list - * If tuple, target_snr is in range of (tuple[0], tuple[1]) - - eb_no (:obj:`bool`): - Defines SNR as 10*log10(np.mean(np.abs(x)**2)/np.mean(np.abs(n)**2))*samples_per_symbol/bits_per_symbol. - Defining SNR this way effectively normalized the noise level with respect to spectral efficiency and - bandwidth. Normalizing this way is common in comparing systems in terms of power efficiency. - If True, bits_per_symbol in the the SignalData will be used in the calculation of SNR. To achieve SNR in - terms of E_b/N_0, samples_per_symbol must also be provided. - - linear (:obj:`bool`): - If True, target_snr and signal_power is on linear scale not dB. - - """ - def __init__( - self, - target_snr: NumericParameter = uniform_continuous_distribution(-10, 10), - eb_no: Optional[bool] = False, - linear: Optional[bool] = False, - **kwargs - ): - super(TargetSNR, self).__init__(**kwargs) - self.target_snr = to_distribution(target_snr, self.random_generator) - self.eb_no = eb_no - self.linear = linear - - def __call__(self, data: Any) -> Any: - target_snr = self.target_snr() - target_snr_linear = 10**(target_snr/10) if not self.linear else target_snr - if isinstance(data, SignalData): - if len(data.signal_description) > 1: - raise ValueError( - "Expected single `SignalDescription` for input `SignalData` but {} detected." - .format(len(data.signal_description)) - ) - signal_power = np.mean(np.abs(data.iq_data)**2, axis=self.time_dim) - class_name = data.signal_description[0].class_name - if "ofdm" not in class_name: - # EbNo not available for OFDM - target_snr_linear *= data.signal_description[0].bits_per_symbol if self.eb_no else 1 - occupied_bw = 1 / data.signal_description[0].samples_per_symbol - noise_power_linear = signal_power / (target_snr_linear * occupied_bw) - noise_power_db = 10*np.log10(noise_power_linear) - data.iq_data = F.awgn(data.iq_data, noise_power_db) - data.signal_description[0].snr = target_snr - return data - else: - raise ValueError( - "Expected input type `SignalData`. Received {}. \n\t\ - The `TargetSNR` transform depends on metadata from a `SignalData` object. \n\t\ - Please reference the `AddNoise` transform as an alternative." - .format(type(data)) - ) - - -class AddNoise(SignalTransform): - """Add random AWGN at specified power levels - - Note: - Differs from the TargetSNR() in that this transform adds - noise at a specified power level, whereas TargetSNR() - assumes a basebanded signal and adds noise to achieve a specified SNR - level for the signal of interest. This transform, - AddNoise() is useful for simply adding a randomized - level of noise to either a narrowband or wideband input. - - Args: - noise_power_db (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - Defined as 10*log10(np.mean(np.abs(x)**2)/np.mean(np.abs(n)**2)) if in dB, - np.mean(np.abs(x)**2)/np.mean(np.abs(n)**2) if linear. - - * If Callable, produces a sample by calling target_snr() - * If int or float, target_snr is fixed at the value provided - * If list, target_snr is any element in the list - * If tuple, target_snr is in range of (tuple[0], tuple[1]) - - input_noise_floor_db (:obj:`float`): - The noise floor of the input data in dB - - linear (:obj:`bool`): - If True, target_snr and signal_power is on linear scale not dB. - - Example: - >>> import torchsig.transforms as ST - >>> # Added AWGN power range is (-40, -20) dB - >>> transform = ST.AddRandomNoiseTransform((-40, -20)) - - """ - def __init__( - self, - noise_power_db: NumericParameter = uniform_continuous_distribution(-80, -60), - input_noise_floor_db: float = 0.0, - linear: Optional[bool] = False, - **kwargs, - ): - super(AddNoise, self).__init__(**kwargs) - self.noise_power_db = to_distribution(noise_power_db, self.random_generator) - self.input_noise_floor_db = input_noise_floor_db - self.linear = linear - - def __call__(self, data: Any) -> Any: - if isinstance(data, SignalData): - # Create new SignalData object for transformed data - new_data = SignalData( - data=None, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=[], - ) - - # Retrieve random noise power value - noise_power_db = self.noise_power_db() - noise_power_db = 10*np.log10(noise_power_db) if self.linear else noise_power_db - - if self.input_noise_floor_db: - noise_floor = self.input_noise_floor_db - else: - # TODO: implement fast noise floor estimation technique? - noise_floor = 0 # Assumes 0dB noise floor - - # Apply data augmentation - new_data.iq_data = F.awgn(data.iq_data, noise_power_db) - - # Update SignalDescription - new_signal_description = [] - signal_description = [data.signal_description] if isinstance(data.signal_description, SignalDescription) else data.signal_description - for signal_desc in signal_description: - new_signal_desc = deepcopy(signal_desc) - new_signal_desc.snr = (new_signal_desc.snr - noise_power_db) if noise_power_db > noise_floor else new_signal_desc.snr - new_signal_description.append(new_signal_desc) - new_data.signal_description = new_signal_description - - else: - noise_power_db = self.noise_power_db(size=data.shape[0]) - noise_power_db = 10*np.log10(noise_power_db) if self.linear else noise_power_db - new_data = F.awgn(data, noise_power_db) - return new_data - - -class TimeVaryingNoise(SignalTransform): - """Add time-varying random AWGN at specified input parameters - - Args: - noise_power_db_low (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - Defined as 10*log10(np.mean(np.abs(x)**2)/np.mean(np.abs(n)**2)) if in dB, - np.mean(np.abs(x)**2)/np.mean(np.abs(n)**2) if linear. - * If Callable, produces a sample by calling noise_power_db_low() - * If int or float, noise_power_db_low is fixed at the value provided - * If list, noise_power_db_low is any element in the list - * If tuple, noise_power_db_low is in range of (tuple[0], tuple[1]) - - noise_power_db_high (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - Defined as 10*log10(np.mean(np.abs(x)**2)/np.mean(np.abs(n)**2)) if in dB, - np.mean(np.abs(x)**2)/np.mean(np.abs(n)**2) if linear. - * If Callable, produces a sample by calling noise_power_db_low() - * If int or float, noise_power_db_low is fixed at the value provided - * If list, noise_power_db_low is any element in the list - * If tuple, noise_power_db_low is in range of (tuple[0], tuple[1]) - - inflections (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - Number of inflection points in time-varying noise - * If Callable, produces a sample by calling inflections() - * If int or float, inflections is fixed at the value provided - * If list, inflections is any element in the list - * If tuple, inflections is in range of (tuple[0], tuple[1]) - - random_regions (:py:class:`~Callable`, :obj:`bool`, :obj:`list`, :obj:`tuple`): - If inflections > 0, random_regions specifies whether each - inflection point should be randomly selected or evenly divided - among input data - * If Callable, produces a sample by calling random_regions() - * If bool, random_regions is fixed at the value provided - * If list, random_regions is any element in the list - * If tuple, random_regions is in range of (tuple[0], tuple[1]) - - linear (:obj:`bool`): - If True, powers input are on linear scale not dB. - - """ - def __init__( - self, - noise_power_db_low: NumericParameter = uniform_continuous_distribution(-80, -60), - noise_power_db_high: NumericParameter = uniform_continuous_distribution(-40, -20), - inflections: IntParameter = uniform_continuous_distribution(0, 10), - random_regions: Optional[Union[Tuple, bool]] = (False, True), - linear: Optional[bool] = False, - **kwargs, - ): - super(TimeVaryingNoise, self).__init__(**kwargs) - self.noise_power_db_low = to_distribution(noise_power_db_low) - self.noise_power_db_high = to_distribution(noise_power_db_high) - self.inflections = to_distribution(inflections) - self.random_regions = to_distribution(random_regions) - self.linear = linear - - def __call__(self, data: Any) -> Any: - noise_power_db_low = self.noise_power_db_low() - noise_power_db_high = self.noise_power_db_high() - noise_power_db_low = 10*np.log10(noise_power_db_low) if self.linear else noise_power_db_low - noise_power_db_high = 10*np.log10(noise_power_db_high) if self.linear else noise_power_db_high - inflections = int(self.inflections()) - random_regions = self.random_regions() - - if isinstance(data, SignalData): - # Create new SignalData object for transformed data - new_data = SignalData( - data=None, - item_type=np.dtype(np.float64), - data_type=np.dtype(np.complex128), - signal_description=[], - ) - - # Apply data augmentation - new_data.iq_data = F.time_varying_awgn(data.iq_data, noise_power_db_low, noise_power_db_high, inflections, random_regions) - - # Update SignalDescription with average of added noise (Note: this is merely an approximation) - new_signal_description = [] - signal_description = [data.signal_description] if isinstance(data.signal_description, SignalDescription) else data.signal_description - noise_power_db_change = np.abs(noise_power_db_high - noise_power_db_low) - avg_noise_power_db = min(noise_power_db_low, noise_power_db_high) + noise_power_db_change / 2 - for signal_desc in signal_description: - new_signal_desc = deepcopy(signal_desc) - new_signal_desc.snr -= avg_noise_power_db - new_signal_description.append(new_signal_desc) - new_data.signal_description = new_signal_description - - else: - new_data = F.time_varying_awgn(data, noise_power_db_low, noise_power_db_high, inflections, random_regions) - return new_data - - -class RayleighFadingChannel(SignalTransform): - """Applies Rayleigh fading channel to tensor. - - Note: - A Rayleigh fading channel can be modeled as an FIR filter with Gaussian distributed taps which vary over time. - The length of the filter determines the coherence bandwidth of the channel and is inversely proportional to - the delay spread. The rate at which the channel taps vary over time is related to the coherence time and this is - inversely proportional to the maximum Doppler spread. This time variance is not included in this model. - - Args: - coherence_bandwidth (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - * If Callable, produces a sample by calling coherence_bandwidth() - * If int or float, coherence_bandwidth is fixed at the value provided - * If list, coherence_bandwidth is any element in the list - * If tuple, coherence_bandwidth is in range of (tuple[0], tuple[1]) - - power_delay_profile (:obj:`list`, :obj:`tuple`): - A list of positive values assigning power to taps of the channel model. When the number of taps - exceeds the number of items in the provided power_delay_profile, the list is linearly interpolated - to provide values for each tap of the channel - - Example: - >>> import torchsig.transforms as ST - >>> # Rayleigh Fading with coherence bandwidth uniformly distributed between fs/100 and fs/10 - >>> transform = ST.RayleighFadingChannel(lambda size: np.random.uniform(.01, .1, size)) - >>> # Rayleigh Fading with coherence bandwidth normally distributed clipped between .01 and .1 - >>> transform = ST.RayleighFadingChannel(lambda size: np.clip(np.random.normal(0, .1, size), .01, .1)) - >>> # Rayleigh Fading with coherence bandwidth uniformly distributed between fs/100 and fs/10 - >>> transform = ST.RayleighFadingChannel((.01, .1)) - >>> # Rayleigh Fading with coherence bandwidth either .02 or .01 - >>> transform = ST.RayleighFadingChannel([.02, .01]) - >>> # Rayleigh Fading with fixed coherence bandwidth at .1 - >>> transform = ST.RayleighFadingChannel(.1) - >>> # Rayleigh Fading with fixed coherence bandwidth at .1 and pdp (1.0, .7, .1) - >>> transform = ST.RayleighFadingChannel((.01, .1), power_delay_profile=(1.0, .7, .1)) - """ - - def __init__( - self, - coherence_bandwidth: FloatParameter = uniform_continuous_distribution(.01, .1), - power_delay_profile: Union[Tuple, List, np.ndarray] = (1, 1), - **kwargs - ): - super(RayleighFadingChannel, self).__init__(**kwargs) - self.coherence_bandwidth = to_distribution(coherence_bandwidth, self.random_generator) - self.power_delay_profile = np.asarray(power_delay_profile) - - def __call__(self, data: Any) -> Any: - coherence_bandwidth = self.coherence_bandwidth() - if isinstance(data, SignalData): - data.iq_data = F.rayleigh_fading(data.iq_data, coherence_bandwidth, self.power_delay_profile) - else: - data = F.rayleigh_fading(data, coherence_bandwidth, self.power_delay_profile) - return data - - -class ImpulseInterferer(SignalTransform): - """Applies an impulse interferer - - Args: - amp (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - * If Callable, produces a sample by calling amp() - * If int or float, amp is fixed at the value provided - * If list, amp is any element in the list - * If tuple, amp is in range of (tuple[0], tuple[1]) - - pulse_offset (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - * If Callable, produces a sample by calling phase_offset() - * If int or float, pulse_offset is fixed at the value provided - * If list, phase_offset is any element in the list - * If tuple, phase_offset is in range of (tuple[0], tuple[1]) - - """ - def __init__( - self, - amp: FloatParameter = uniform_continuous_distribution(.1, 100.), - pulse_offset: FloatParameter = uniform_continuous_distribution(0., 1), - **kwargs - ): - super(ImpulseInterferer, self).__init__(**kwargs) - self.amp = to_distribution(amp, self.random_generator) - self.pulse_offset = to_distribution(pulse_offset, self.random_generator) - self.BETA = .3 - self.SPS = .1 - - def __call__(self, data: Any) -> Any: - amp = self.amp() - pulse_offset = self.pulse_offset() - pulse_offset = 1. if pulse_offset > 1. else np.max((0., pulse_offset)) - if isinstance(data, SignalData): - data.iq_data = F.impulsive_interference(data.iq_data, amp, self.pulse_offset) - else: - data = F.impulsive_interference(data, amp, self.pulse_offset) - return data - - -class RandomPhaseShift(SignalTransform): - """Applies a random phase offset to tensor - - Args: - phase_offset (:py:class:`~Callable`, :obj:`int`, :obj:`float`, :obj:`list`, :obj:`tuple`): - * If Callable, produces a sample by calling phase_offset() - * If int or float, phase_offset is fixed at the value provided - * If list, phase_offset is any element in the list - * If tuple, phase_offset is in range of (tuple[0], tuple[1]) - - Example: - >>> import torchsig.transforms as ST - >>> # Phase Offset in range [-pi, pi] - >>> transform = ST.RandomPhaseShift(uniform_continuous_distribution(-1, 1)) - >>> # Phase Offset from [-pi/2, 0, and pi/2] - >>> transform = ST.RandomPhaseShift(uniform_discrete_distribution([-.5, 0, .5])) - >>> # Phase Offset in range [-pi, pi] - >>> transform = ST.RandomPhaseShift((-1, 1)) - >>> # Phase Offset either -pi/4 or pi/4 - >>> transform = ST.RandomPhaseShift([-.25, .25]) - >>> # Phase Offset is fixed at -pi/2 - >>> transform = ST.RandomPhaseShift(-.5) - """ - def __init__( - self, - phase_offset: FloatParameter = uniform_continuous_distribution(-1, 1), - **kwargs - ): - super(RandomPhaseShift, self).__init__(**kwargs) - self.phase_offset = to_distribution(phase_offset, self.random_generator) - - def __call__(self, data: Any) -> Any: - phases = self.phase_offset() - if isinstance(data, SignalData): - data.iq_data = F.phase_offset(data.iq_data, phases*np.pi) - else: - data = F.phase_offset(data, phases*np.pi) - return data diff --git a/torchsig/transforms/wireless_channel/wce_functional.py b/torchsig/transforms/wireless_channel/wce_functional.py deleted file mode 100644 index c2aeddb..0000000 --- a/torchsig/transforms/wireless_channel/wce_functional.py +++ /dev/null @@ -1,187 +0,0 @@ -import numpy as np -from numba import njit -from scipy import signal as sp -from scipy import interpolate - - -@njit(cache=False) -def make_sinc_filter(beta, tap_cnt, sps, offset=0): - """ - return the taps of a sinc filter - """ - ntap_cnt = tap_cnt + ((tap_cnt + 1) % 2) - t_index = np.arange(-(ntap_cnt - 1) // 2, (ntap_cnt - 1) // 2 + 1) / np.double(sps) - - taps = np.sinc(beta * t_index + offset) - taps /= np.sum(taps) - - return taps[:tap_cnt] - - -def awgn(tensor: np.ndarray, noise_power_db: float) -> np.ndarray: - """Adds zero-mean complex additive white Gaussian noise with power of - noise_power_db. - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - noise_power_db (:obj:`float`): - Defined as 10*log10(E[|n|^2]). - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor with added noise. - """ - real_noise = np.random.randn(*tensor.shape) - imag_noise = np.random.randn(*tensor.shape) - return tensor + (10.0**(noise_power_db/20.0))*(real_noise + 1j*imag_noise)/np.sqrt(2) - - -def time_varying_awgn( - tensor: np.ndarray, - noise_power_db_low: float, - noise_power_db_high: float, - inflections: int, - random_regions: bool, -) -> np.ndarray: - """Adds time-varying complex additive white Gaussian noise with power - levels in range (`noise_power_db_low`, `noise_power_db_high`) and with - `inflections` number of inflection points spread over the input tensor - randomly if `random_regions` is True or evely spread if False - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - noise_power_db_low (:obj:`float`): - Defined as 10*log10(E[|n|^2]). - - noise_power_db_high (:obj:`float`): - Defined as 10*log10(E[|n|^2]). - - inflections (:obj:`int`): - Number of inflection points for time-varying nature - - random_regions (:obj:`bool`): - Specify if inflection points are randomly spread throughout tensor - or if evenly spread - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor with added noise. - """ - real_noise = np.random.randn(*tensor.shape) - imag_noise = np.random.randn(*tensor.shape) - noise_power_db = np.empty(*tensor.shape) - - if inflections == 0: - inflection_indices = np.array([0, tensor.shape[0]]) - else: - if random_regions: - inflection_indices = np.sort(np.random.choice(tensor.shape[0], size=inflections, replace=False)) - inflection_indices = np.append(inflection_indices, tensor.shape[0]) - inflection_indices = np.insert(inflection_indices, 0, 0) - else: - inflection_indices = np.arange(inflections+2) * int(tensor.shape[0] / (inflections+1)) - - for idx in range(len(inflection_indices)-1): - start_idx = inflection_indices[idx] - stop_idx = inflection_indices[idx+1] - duration = stop_idx - start_idx - start_power = noise_power_db_low if idx%2 == 0 else noise_power_db_high - stop_power = noise_power_db_high if idx%2 == 0 else noise_power_db_low - noise_power_db[start_idx:stop_idx] = np.linspace(start_power, stop_power, duration) - - return tensor + (10.0**(noise_power_db/20.0))*(real_noise + 1j*imag_noise)/np.sqrt(2) - - -def rayleigh_fading( - tensor: np.ndarray, - coherence_bandwidth: float, - power_delay_profile: np.ndarray, -) -> np.ndarray: - """Applies Rayleigh fading channel to tensor. Taps are generated by - interpolating and filtering Gaussian taps. - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - coherence_bandwidth (:obj:`float`): - coherence_bandwidth relative to the sample rate in [0, 1.0] - - power_delay_profile (:obj:`float`): - power_delay_profile assigned to channel - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has undergone Rayleigh Fading. - - """ - num_taps = int(np.ceil(1.0 / coherence_bandwidth)) # filter length to get desired coherence bandwidth - power_taps = np.sqrt(np.interp( - np.linspace(0, 1.0, 100*num_taps), - np.linspace(0, 1.0, len(power_delay_profile)), - power_delay_profile - )) - # Generate initial taps - rayleigh_taps = (np.random.randn(num_taps) + 1j * np.random.randn(num_taps)) # multi-path channel - - # Linear interpolate taps by a factor of 100 -- so we can get accurate coherence bandwidths - old_time = np.linspace(0, 1.0, num_taps, endpoint=True) - real_tap_function = interpolate.interp1d(old_time, rayleigh_taps.real) - imag_tap_function = interpolate.interp1d(old_time, rayleigh_taps.imag) - - new_time = np.linspace(0, 1.0, 100*num_taps, endpoint=True) - rayleigh_taps = real_tap_function(new_time) + 1j*imag_tap_function(new_time) - rayleigh_taps *= power_taps - - # Ensure that we maintain the same amount of power before and after the transform - input_power = np.linalg.norm(tensor) - tensor = sp.upfirdn(rayleigh_taps, tensor, up=100, down=100)[-tensor.shape[0]:] - output_power = np.linalg.norm(tensor) - tensor = np.multiply(input_power/output_power, tensor) - return tensor - - -def phase_offset(tensor: np.ndarray, phase: float) -> np.ndarray: - """ Applies a phase rotation to tensor - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - phase (:obj:`float`): - phase to rotate sample in [-pi, pi] - - Returns: - transformed (:class:`numpy.ndarray`): - Tensor that has undergone a phase rotation - - """ - return tensor*np.exp(1j*phase) - - -@njit(cache=False) -def impulsive_interference(tensor: np.ndarray, amp: float, per_offset: float): - """ Applies an impulsive interferer to tensor - - Args: - tensor: (:class:`numpy.ndarray`): - (batch_size, vector_length, ...)-sized tensor. - - amp (:obj:`float`): - Maximum vector magnitude of complex interferer signal - - per_offset (:obj:`float`) - Interferer offset into the tensor as expressed in a fraction of the tensor length. - - """ - beta = .3 - num_samps = len(tensor) - sinc_pulse = make_sinc_filter(beta, num_samps, .1, 0) - imp = amp*np.roll(sinc_pulse / np.max(sinc_pulse), int(per_offset * num_samps)) - rand_phase = np.random.uniform(0, 2 * np.pi) - imp = np.exp(1j * rand_phase) * imp - return tensor + imp diff --git a/examples/cm_plotter.py b/torchsig/utils/cm_plotter.py similarity index 71% rename from examples/cm_plotter.py rename to torchsig/utils/cm_plotter.py index 378c349..75969b7 100644 --- a/examples/cm_plotter.py +++ b/torchsig/utils/cm_plotter.py @@ -1,21 +1,22 @@ -import numpy as np -from typing import Optional -from matplotlib import pyplot as plt from sklearn.metrics import confusion_matrix +from matplotlib import pyplot as plt +from typing import Optional +import numpy as np + def plot_confusion_matrix( - y_true: np.array, - y_pred: np.array, + y_true: np.ndarray, + y_pred: np.ndarray, classes: list, normalize: bool = True, title: Optional[str] = None, text: bool = True, rotate_x_text: int = 90, - figsize: tuple = (16,9), + figsize: tuple = (16, 9), cmap: plt.cm = plt.cm.Blues, ): """Function to help plot confusion matrices - + https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html """ if not title: @@ -32,13 +33,13 @@ def plot_confusion_matrix( fig, ax = plt.subplots() im = ax.imshow(cm, interpolation="none", cmap=cmap) ax.figure.colorbar(im, ax=ax) - ax.set( - xticks=np.arange(cm.shape[1]), - yticks=np.arange(cm.shape[0]), - xticklabels=classes, - yticklabels=classes, - title=title, - ylabel="True label", + ax.set( + xticks=np.arange(cm.shape[1]), + yticks=np.arange(cm.shape[0]), + xticklabels=classes, + yticklabels=classes, + title=title, + ylabel="True label", xlabel="Predicted label", ) ax.set_xticklabels(classes, rotation=rotate_x_text) @@ -50,7 +51,14 @@ def plot_confusion_matrix( for i in range(cm.shape[0]): for j in range(cm.shape[1]): if text: - ax.text(j, i, format(cm[i,j], fmt), ha="center", va="center", color="white" if cm[i,j] > thresh else "black") + ax.text( + j, + i, + format(cm[i, j], fmt), + ha="center", + va="center", + color="white" if cm[i, j] > thresh else "black", + ) if len(classes) == 2: plt.axis([-0.5, 1.5, 1.5, -0.5]) fig.tight_layout() diff --git a/torchsig/utils/dataset.py b/torchsig/utils/dataset.py index d911037..336d301 100644 --- a/torchsig/utils/dataset.py +++ b/torchsig/utils/dataset.py @@ -1,8 +1,10 @@ -import torch -import numpy as np from copy import deepcopy -from typing import Tuple, List, Optional, Callable, Any -from torchsig.utils.types import SignalData, SignalCapture +from typing import Any, Callable, List, Optional, Tuple, Union + +import numpy as np +import torch + +from torchsig.utils.types import SignalCapture, SignalData class SignalDataset(torch.utils.data.Dataset): @@ -22,13 +24,16 @@ def __init__( transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, seed: Optional[int] = None, - ): + ) -> None: super(SignalDataset, self).__init__() self.random_generator = np.random.RandomState(seed) self.transform = transform self.target_transform = target_transform - def __getitem__(self, index: int) -> Tuple[SignalData, Any]: + def __getitem__( + self, + index: int, + ) -> Tuple[Union[SignalData, np.ndarray], Any]: raise NotImplementedError def __len__(self) -> int: @@ -63,7 +68,7 @@ def __init__( indexer: Callable[[str], List[Tuple[Any, SignalCapture]]], reader: Callable[[SignalCapture], SignalData], index_filter: Optional[Callable[[Tuple[Any, SignalCapture]], bool]] = None, - **kwargs + **kwargs, ): super(SignalFileDataset, self).__init__(**kwargs) self.reader = reader @@ -71,7 +76,7 @@ def __init__( if index_filter: self.index = list(filter(index_filter, self.index)) - def __getitem__(self, item: int) -> Tuple[SignalData, Any]: + def __getitem__(self, item: int) -> Tuple[np.ndarray, Any]: # type: ignore target = self.index[item][0] signal_data = self.reader(self.index[item][1]) @@ -81,7 +86,7 @@ def __getitem__(self, item: int) -> Tuple[SignalData, Any]: if self.target_transform: target = self.target_transform(target) - return signal_data.iq_data, target + return signal_data.iq_data, target # type: ignore def __len__(self) -> int: return len(self.index) @@ -110,13 +115,13 @@ def __init__( transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, *args, - **kwargs + **kwargs, ): super(SignalTensorDataset, self).__init__(*args, **kwargs) self.transform = transform self.target_transform = target_transform - def __getitem__(self, index: int) -> Tuple[SignalData, Any]: + def __getitem__(self, index: int) -> Tuple[SignalData, Any]: # type: ignore # We assume that single-precision Tensors are provided we return # double-precision numpy arrays for usage in the transform pipeline. signal_data = SignalData( @@ -134,4 +139,4 @@ def __getitem__(self, index: int) -> Tuple[SignalData, Any]: if self.target_transform: target = self.target_transform(target) - return signal_data, target + return signal_data, target # type: ignore diff --git a/torchsig/utils/dsp.py b/torchsig/utils/dsp.py new file mode 100644 index 0000000..eb69d10 --- /dev/null +++ b/torchsig/utils/dsp.py @@ -0,0 +1,78 @@ +import numpy as np +from scipy import signal as sp + + +def convolve(signal: np.ndarray, taps: np.ndarray) -> np.ndarray: + return sp.convolve(signal, taps, "same") + + +def low_pass(cutoff: float, transition_bandwidth: float) -> np.ndarray: + """Basic low pass FIR filter design + + Args: + cutoff (float): From 0.0 to .5 + transition_bandwidth (float): width of the transition region + + """ + transition_bandwidth = (0.5 - cutoff) / 4 + num_taps = estimate_filter_length(transition_bandwidth) + return sp.firwin( + num_taps, + cutoff, + width=transition_bandwidth, + window=sp.get_window("blackman", num_taps), + scale=True, + fs=1, + ) + + +def estimate_filter_length( + transition_bandwidth: float, attenuation_db: int = 72, sample_rate: float = 1.0 +) -> int: + # estimate the length of an FIR filter using harris' approximaion, + # N ~= (sampling rate/transition bandwidth)*(sidelobe attenuation in dB / 22) + # fred harris, Multirate Signal Processing for Communication Systems, + # Second Edition, p.59 + filter_length = int(np.round((sample_rate / transition_bandwidth) * (attenuation_db / 22))) + + # odd-length filters are desirable because they do not introduce a half-sample delay + if np.mod(filter_length, 2) == 0: + filter_length += 1 + + return filter_length + + +def rrc_taps(iq_samples_per_symbol: int, size_in_symbols: int, alpha: float = 0.35) -> np.ndarray: + # this could be made into a transform + M = size_in_symbols + Ns = float(iq_samples_per_symbol) + n = np.arange(-M * Ns, M * Ns + 1) + taps = np.zeros(int(2 * M * Ns + 1)) + for i in range(int(2 * M * Ns + 1)): + # handle the discontinuity at t=+-Ns/(4*alpha) + if n[i] * 4 * alpha == Ns or n[i] * 4 * alpha == -Ns: + taps[i] = ( + 1 + / 2.0 + * ( + (1 + alpha) * np.sin((1 + alpha) * np.pi / (4.0 * alpha)) + - (1 - alpha) * np.cos((1 - alpha) * np.pi / (4.0 * alpha)) + + (4 * alpha) / np.pi * np.sin((1 - alpha) * np.pi / (4.0 * alpha)) + ) + ) + else: + taps[i] = 4 * alpha / (np.pi * (1 - 16 * alpha**2 * (n[i] / Ns) ** 2)) + taps[i] = taps[i] * ( + np.cos((1 + alpha) * np.pi * n[i] / Ns) + + np.sinc((1 - alpha) * n[i] / Ns) * (1 - alpha) * np.pi / (4.0 * alpha) + ) + return taps + + +def gaussian_taps(samples_per_symbol: int, BT: float = 0.35) -> np.ndarray: + # pre-modulation Bb*T product which sets the bandwidth of the Gaussian lowpass filter + M = 4 # duration in symbols + n = np.arange(-M * samples_per_symbol, M * samples_per_symbol + 1) + p = np.exp(-2 * np.pi**2 * BT**2 / np.log(2) * (n / float(samples_per_symbol)) ** 2) + p = p / np.sum(p) + return p diff --git a/torchsig/utils/index.py b/torchsig/utils/index.py index 6faf375..48c6f3e 100644 --- a/torchsig/utils/index.py +++ b/torchsig/utils/index.py @@ -1,23 +1,24 @@ -import os import json +import os import pickle -import numpy as np from copy import deepcopy -from typing import Tuple, List, Any -from torchsig.utils.types import SignalCapture, SignalDescription +from typing import Any, Dict, List, Tuple + +import numpy as np +from torchsig.utils.types import SignalCapture, SignalDescription -SIGMF_DTYPE_MAP = { +SIGMF_DTYPE_MAP: Dict[str, np.dtype] = { "cf64_le": np.dtype("f8"), "cf32_le": np.dtype("f4"), - "ci32_le": np.dtype('i4'), - "ci16_le": np.dtype('i2'), - "ci8_le": np.dtype('i1'), + "ci32_le": np.dtype("i4"), + "ci16_le": np.dtype("i2"), + "ci8_le": np.dtype("i1"), "cu32_le": np.dtype("u4"), "cu16_le": np.dtype(" List[Tuple[Any, SignalCapture]]: index: tuple of target, meta-data pairs """ - with open(pkl_file_path, 'rb') as pkl_file: + with open(pkl_file_path, "rb") as pkl_file: return pickle.load(pkl_file) @@ -77,7 +78,7 @@ def indexer_from_folders_sigmf(root: str) -> List[Tuple[Any, SignalCapture]]: Returns: index: tuple of target, meta-data pairs - + """ # go through directories and find files non_empty_dirs = [d for d in os.listdir(root) if os.path.isdir(os.path.join(root, d))] @@ -89,16 +90,19 @@ def indexer_from_folders_sigmf(root: str) -> List[Tuple[Any, SignalCapture]]: class_dir = os.path.join(root, dir_name) # Find files with sigmf-data at the end and make a list - proper_sigmf_files = list(filter( - lambda x: x.split(".")[-1] in {"sigmf-data"} and os.path.isfile(os.path.join(class_dir, x)), - os.listdir(os.path.join(root, dir_name)) - )) + proper_sigmf_files = list( + filter( + lambda x: x.split(".")[-1] in {"sigmf-data"} + and os.path.isfile(os.path.join(class_dir, x)), + os.listdir(os.path.join(root, dir_name)), + ) + ) # Go through each file and create and index for f in proper_sigmf_files: for signal_file in _parse_sigmf_captures(os.path.join(class_dir, f)): index.append((dir_name, signal_file)) - + return index @@ -111,7 +115,7 @@ def _parse_sigmf_captures(absolute_file_path: str) -> List[SignalCapture]: signal_files: """ - meta_file_name = "{}{}".format(absolute_file_path.split("sigmf-data")[0], 'sigmf-meta') + meta_file_name = "{}{}".format(absolute_file_path.split("sigmf-data")[0], "sigmf-meta") meta = json.load(open(meta_file_name, "r")) item_type = SIGMF_DTYPE_MAP[meta["global"]["core:datatype"]] sample_size = item_type.itemsize * (2 if "c" in meta["global"]["core:datatype"] else 1) @@ -122,21 +126,25 @@ def _parse_sigmf_captures(absolute_file_path: str) -> List[SignalCapture]: sample_rate=meta["global"]["core:sample_rate"], ) if len(meta["captures"]) == 1: - has_matching_note = meta["annotations"][0]["core:sample_start"] == meta["captures"][0]["core:sample_start"] + has_matching_note = ( + meta["annotations"][0]["core:sample_start"] == meta["captures"][0]["core:sample_start"] + ) has_frequency_info = "core:freq_upper_edge" in meta["annotations"][0] if has_matching_note and has_frequency_info: signal_description.upper_frequency = meta["annotations"][0]["core:freq_upper_edge"] signal_description.lower_frequency = meta["annotations"][0]["core:freq_lower_edge"] - return [SignalCapture( - absolute_path=absolute_file_path, - num_bytes=sample_size * total_num_samples, - byte_offset=sample_size * meta["captures"][0]["core:sample_start"], - item_type=item_type, - is_complex=True if "c" in meta["global"]["core:datatype"] else False, - signal_description=signal_description - )] + return [ + SignalCapture( + absolute_path=absolute_file_path, + num_bytes=sample_size * total_num_samples, + byte_offset=sample_size * meta["captures"][0]["core:sample_start"], + item_type=item_type, + is_complex=True if "c" in meta["global"]["core:datatype"] else False, + signal_description=signal_description, + ) + ] # If there's more than one, we construct a list of captures signal_files = [] @@ -147,19 +155,27 @@ def _parse_sigmf_captures(absolute_file_path: str) -> List[SignalCapture]: has_frequency_info = "core:freq_upper_edge" in meta["annotations"][capture_idx] if has_matching_note and has_frequency_info: - signal_description.upper_frequency = meta["annotations"][capture_idx]["core:freq_upper_edge"] - signal_description.lower_frequency = meta["annotations"][capture_idx]["core:freq_lower_edge"] + signal_description.upper_frequency = meta["annotations"][capture_idx][ + "core:freq_upper_edge" + ] + signal_description.lower_frequency = meta["annotations"][capture_idx][ + "core:freq_lower_edge" + ] samples_in_capture = int(total_num_samples - capture_start_idx) if capture_idx < len(meta["captures"]) - 1: - samples_in_capture = meta["captures"][capture_idx + 1]["core:sample_start"] - capture_start_idx + samples_in_capture = ( + meta["captures"][capture_idx + 1]["core:sample_start"] - capture_start_idx + ) - signal_files.append(SignalCapture( + signal_files.append( + SignalCapture( absolute_path=absolute_file_path, num_bytes=sample_size * samples_in_capture, byte_offset=sample_size * capture_start_idx, item_type=item_type, is_complex=True if "c" in meta["global"]["core:datatype"] else False, - signal_description=deepcopy(signal_description) - )) + signal_description=deepcopy(signal_description), + ) + ) return signal_files diff --git a/torchsig/utils/reader.py b/torchsig/utils/reader.py index 7f4dedf..6eb992d 100644 --- a/torchsig/utils/reader.py +++ b/torchsig/utils/reader.py @@ -1,4 +1,5 @@ import numpy as np + from torchsig.utils.types import SignalCapture, SignalData @@ -9,7 +10,7 @@ def reader_from_sigmf(signal_file: SignalCapture) -> SignalData: Returns: signal_data: SignalData object with meta-data parsed from sigMF file - + """ with open(signal_file.absolute_path, "rb") as file_object: file_object.seek(signal_file.byte_offset) @@ -17,5 +18,5 @@ def reader_from_sigmf(signal_file: SignalCapture) -> SignalData: data=file_object.read(signal_file.num_bytes), item_type=signal_file.item_type, data_type=np.dtype(np.complex128) if signal_file.is_complex else np.dtype(np.float64), - signal_description=signal_file.signal_description + signal_description=signal_file.signal_description, ) diff --git a/torchsig/utils/types.py b/torchsig/utils/types.py index 777e0ca..b84fcd5 100644 --- a/torchsig/utils/types.py +++ b/torchsig/utils/types.py @@ -1,5 +1,6 @@ +from typing import List, Optional, Union + import numpy as np -from typing import Optional, List, Union class SignalDescription: @@ -41,7 +42,7 @@ class SignalDescription: def __init__( self, - sample_rate: Optional[int] = 1, + sample_rate: Optional[float] = 1, num_iq_samples: Optional[int] = 4096, lower_frequency: Optional[float] = -0.25, upper_frequency: Optional[float] = 0.25, @@ -56,24 +57,32 @@ def __init__( excess_bandwidth: Optional[float] = 0.0, class_name: Optional[str] = None, class_index: Optional[int] = None, - ): + ) -> None: self.sample_rate = sample_rate self.num_iq_samples = num_iq_samples - self.lower_frequency = ( - lower_frequency if lower_frequency else center_frequency - bandwidth / 2 - ) - self.upper_frequency = ( - upper_frequency if upper_frequency else center_frequency + bandwidth / 2 - ) - self.bandwidth = bandwidth if bandwidth else upper_frequency - lower_frequency - self.center_frequency = ( - center_frequency - if center_frequency - else lower_frequency + self.bandwidth / 2 - ) + if center_frequency and bandwidth: + self.lower_frequency: Optional[float] = ( + lower_frequency if lower_frequency else center_frequency - bandwidth / 2 + ) + self.upper_frequency: Optional[float] = ( + upper_frequency if upper_frequency else center_frequency + bandwidth / 2 + ) + else: + self.lower_frequency = lower_frequency + self.upper_frequency = upper_frequency + if lower_frequency and upper_frequency: + self.bandwidth: Optional[float] = ( + bandwidth if bandwidth else upper_frequency - lower_frequency + ) + self.center_frequency: Optional[float] = ( + center_frequency if center_frequency else lower_frequency + self.bandwidth / 2 + ) + else: + self.bandwidth = bandwidth + self.center_frequency = center_frequency self.start = start self.stop = stop - self.duration = duration if duration else stop - start + self.duration: Optional[float] = stop - start if start and stop else duration self.snr = snr self.bits_per_symbol = bits_per_symbol self.samples_per_symbol = samples_per_symbol @@ -104,20 +113,21 @@ def __init__( data: Optional[bytes], item_type: np.dtype, data_type: np.dtype, - signal_description: Optional[ + signal_description: Optional[Union[List[SignalDescription], SignalDescription]] = None, + ) -> None: + self.iq_data: Optional[np.ndarray] = None + self.signal_description: Optional[ Union[List[SignalDescription], SignalDescription] - ] = None, - ): - self.iq_data = None - self.signal_description = signal_description + ] = signal_description if data is not None: # No matter the underlying item type, we convert to double-precision - self.iq_data = ( - np.frombuffer(data, dtype=item_type).astype(np.float64).view(data_type) - ) + self.iq_data = np.frombuffer(data, dtype=item_type).astype(np.float64).view(data_type) - if not isinstance(signal_description, list): - self.signal_description = [signal_description] + self.signal_description = ( + [signal_description] + if not isinstance(signal_description, list) and signal_description + else signal_description + ) class SignalCapture: @@ -129,7 +139,7 @@ def __init__( is_complex: bool, byte_offset: int = 0, signal_description: Optional[SignalDescription] = None, - ): + ) -> None: self.absolute_path = absolute_path self.num_bytes = num_bytes self.item_type = item_type diff --git a/torchsig/utils/visualize.py b/torchsig/utils/visualize.py index bba3dde..e1fe792 100644 --- a/torchsig/utils/visualize.py +++ b/torchsig/utils/visualize.py @@ -1,14 +1,15 @@ -import pywt +from copy import deepcopy +from typing import Any, Callable, Iterable, List, Optional, Tuple, Union + import numpy as np +import pywt import torch -from copy import deepcopy -from scipy import ndimage -from scipy import signal as sp -from matplotlib import pyplot as plt from matplotlib import patches +from matplotlib import pyplot as plt from matplotlib.figure import Figure +from scipy import ndimage +from scipy import signal as sp from torch.utils.data import dataloader -from typing import Optional, Callable, Iterable, Union, Tuple, List class Visualizer: @@ -28,17 +29,17 @@ class Visualizer: def __init__( self, - data_loader: dataloader, + data_loader, visualize_transform: Optional[Callable] = None, visualize_target_transform: Optional[Callable] = None, - ): + ) -> None: self.data_loader = iter(data_loader) self.visualize_transform = visualize_transform self.visualize_target_transform = visualize_target_transform def __iter__(self) -> Iterable: self.data_iter = iter(self.data_loader) - return self + return self # type: ignore def __next__(self) -> Figure: iq_data, targets = next(self.data_iter) @@ -81,12 +82,12 @@ class SpectrogramVisualizer(Visualizer): def __init__( self, sample_rate: float = 1.0, - window: Optional[Union[str, Tuple, np.ndarray]] = sp.windows.tukey(256, 0.25), + window: Union[str, Tuple, np.ndarray] = sp.windows.tukey(256, 0.25), nperseg: int = 256, noverlap: Optional[int] = None, nfft: Optional[int] = None, - **kwargs - ): + **kwargs, + ) -> None: super(SpectrogramVisualizer, self).__init__(**kwargs) self.sample_rate = sample_rate self.window = window @@ -145,12 +146,8 @@ class WaveletVisualizer(Visualizer): """ def __init__( - self, - wavelet: str = "mexh", - nscales: int = 33, - sample_rate: float = 1.0, - **kwargs - ): + self, wavelet: str = "mexh", nscales: int = 33, sample_rate: float = 1.0, **kwargs + ) -> None: super(WaveletVisualizer, self).__init__(**kwargs) self.wavelet = wavelet self.nscales = nscales @@ -196,7 +193,7 @@ class ConstellationVisualizer(Visualizer): """ - def __init__(self, **kwargs): + def __init__(self, **kwargs) -> None: super(ConstellationVisualizer, self).__init__(**kwargs) def _visualize(self, iq_data: np.ndarray, targets: np.ndarray) -> Figure: @@ -224,7 +221,7 @@ class IQVisualizer(Visualizer): """ - def __init__(self, **kwargs): + def __init__(self, **kwargs) -> None: super(IQVisualizer, self).__init__(**kwargs) def _visualize(self, iq_data: np.ndarray, targets: np.ndarray) -> Figure: @@ -252,7 +249,7 @@ class TimeSeriesVisualizer(Visualizer): Keyword arguments """ - def __init__(self, **kwargs): + def __init__(self, **kwargs) -> None: super(TimeSeriesVisualizer, self).__init__(**kwargs) def _visualize(self, data: np.ndarray, targets: np.ndarray) -> Figure: @@ -280,7 +277,7 @@ class ImageVisualizer(Visualizer): """ - def __init__(self, **kwargs): + def __init__(self, **kwargs) -> None: super(ImageVisualizer, self).__init__(**kwargs) def _visualize(self, data: np.ndarray, targets: np.ndarray) -> Figure: @@ -314,7 +311,7 @@ class PSDVisualizer(Visualizer): **kwargs: """ - def __init__(self, fft_size: int = 1024, **kwargs): + def __init__(self, fft_size: int = 1024, **kwargs) -> None: super(PSDVisualizer, self).__init__(**kwargs) self.fft_size = fft_size @@ -341,7 +338,7 @@ class MaskVisualizer(Visualizer): **kwargs: """ - def __init__(self, **kwargs): + def __init__(self, **kwargs) -> None: super(MaskVisualizer, self).__init__(**kwargs) def __next__(self) -> Figure: @@ -400,7 +397,7 @@ class MaskClassVisualizer(Visualizer): **kwargs: """ - def __init__(self, class_list, **kwargs): + def __init__(self, class_list, **kwargs) -> None: super(MaskClassVisualizer, self).__init__(**kwargs) self.class_list = class_list @@ -416,8 +413,8 @@ def __next__(self) -> Figure: return self._visualize(iq_data, targets, classes) - def _visualize( - self, data: np.ndarray, targets: np.ndarray, classes: List + def _visualize( # type: ignore + self, data: np.ndarray, targets: np.ndarray, classes: List[str] ) -> Figure: batch_size = data.shape[0] figure = plt.figure(frameon=False) @@ -467,7 +464,7 @@ class SemanticMaskClassVisualizer(Visualizer): **kwargs: """ - def __init__(self, class_list, **kwargs): + def __init__(self, class_list, **kwargs) -> None: super(SemanticMaskClassVisualizer, self).__init__(**kwargs) self.class_list = class_list @@ -509,9 +506,7 @@ def _visualize(self, data: np.ndarray, targets: np.ndarray) -> Figure: ) classes_present = list(set(targets[sample_idx].flatten().tolist())) classes_present.remove(0.0) # Remove 'background' class - title = [ - self.class_list[int(class_idx - 1)] for class_idx in classes_present - ] + title = [self.class_list[int(class_idx - 1)] for class_idx in classes_present] else: title = "Data" plt.xticks([]) @@ -528,7 +523,7 @@ class BoundingBoxVisualizer(Visualizer): **kwargs: """ - def __init__(self, **kwargs): + def __init__(self, **kwargs) -> None: super(BoundingBoxVisualizer, self).__init__(**kwargs) def __next__(self) -> Figure: @@ -569,27 +564,19 @@ def _visualize(self, data: np.ndarray, targets: np.ndarray) -> Figure: for grid_cell_y_idx in range(label.shape[1]): if label[grid_cell_x_idx, grid_cell_y_idx, 0] == 1: duration = ( - label[grid_cell_x_idx, grid_cell_y_idx, 2] - * data[sample_idx].shape[0] + label[grid_cell_x_idx, grid_cell_y_idx, 2] * data[sample_idx].shape[0] ) bandwidth = ( - label[grid_cell_x_idx, grid_cell_y_idx, 4] - * data[sample_idx].shape[1] + label[grid_cell_x_idx, grid_cell_y_idx, 4] * data[sample_idx].shape[1] ) start_pixel = ( (grid_cell_x_idx * pixels_per_cell_x) - + ( - label[grid_cell_x_idx, grid_cell_y_idx, 1] - * pixels_per_cell_x - ) + + (label[grid_cell_x_idx, grid_cell_y_idx, 1] * pixels_per_cell_x) - duration / 2 ) low_freq = ( (grid_cell_y_idx * pixels_per_cell_y) - + ( - label[grid_cell_x_idx, grid_cell_y_idx, 3] - * pixels_per_cell_y - ) + + (label[grid_cell_x_idx, grid_cell_y_idx, 3] * pixels_per_cell_y) - ( label[grid_cell_x_idx, grid_cell_y_idx, 4] / 2 @@ -629,15 +616,15 @@ class AnchorBoxVisualizer(Visualizer): def __init__( self, - data_loader: dataloader, + data_loader, + anchor_boxes: List, visualize_transform: Optional[Callable] = None, visualize_target_transform: Optional[Callable] = None, - anchor_boxes: List = None, - ): + ) -> None: self.data_loader = iter(data_loader) + self.anchor_boxes = anchor_boxes self.visualize_transform = visualize_transform self.visualize_target_transform = visualize_target_transform - self.anchor_boxes = anchor_boxes self.num_anchor_boxes = len(anchor_boxes) def __next__(self) -> Figure: @@ -677,21 +664,14 @@ def _visualize(self, data: np.ndarray, targets: np.ndarray) -> Figure: for grid_cell_x_idx in range(label.shape[0]): for grid_cell_y_idx in range(label.shape[1]): for anchor_idx in range(self.num_anchor_boxes): - if ( - label[grid_cell_x_idx, grid_cell_y_idx, 0 + 5 * anchor_idx] - == 1 - ): + if label[grid_cell_x_idx, grid_cell_y_idx, 0 + 5 * anchor_idx] == 1: duration = ( - label[ - grid_cell_x_idx, grid_cell_y_idx, 2 + 5 * anchor_idx - ] + label[grid_cell_x_idx, grid_cell_y_idx, 2 + 5 * anchor_idx] * self.anchor_boxes[anchor_idx][0] * data[sample_idx].shape[0] ) bandwidth = ( - label[ - grid_cell_x_idx, grid_cell_y_idx, 4 + 5 * anchor_idx - ] + label[grid_cell_x_idx, grid_cell_y_idx, 4 + 5 * anchor_idx] * self.anchor_boxes[anchor_idx][1] * data[sample_idx].shape[1] ) @@ -777,9 +757,7 @@ def complex_spectrogram_to_magnitude(tensor: np.ndarray) -> np.ndarray: """ batch_size = tensor.shape[0] - new_tensor = np.zeros( - (batch_size, tensor.shape[2], tensor.shape[3]), dtype=np.float64 - ) + new_tensor = np.zeros((batch_size, tensor.shape[2], tensor.shape[3]), dtype=np.float64) for idx in range(tensor.shape[0]): new_tensor[idx] = 20 * np.log10(tensor[idx, 0] ** 2 + tensor[idx, 1] ** 2) return new_tensor @@ -791,9 +769,7 @@ def magnitude_spectrogram(tensor: np.ndarray) -> np.ndarray: """ batch_size = tensor.shape[0] - new_tensor = np.zeros( - (batch_size, tensor.shape[1], tensor.shape[2]), dtype=np.float64 - ) + new_tensor = np.zeros((batch_size, tensor.shape[1], tensor.shape[2]), dtype=np.float64) for idx in range(tensor.shape[0]): new_tensor[idx] = 20 * np.log10(tensor[idx]) return new_tensor @@ -835,12 +811,12 @@ def onehot_label_format(tensor: np.ndarray) -> List[str]: return label -def multihot_label_format(tensor: np.ndarray, class_list: List[str]) -> List[str]: +def multihot_label_format(tensor: np.ndarray, class_list: List[str]) -> List[List[str]]: """Target Transform: Format multihot labels for titles in visualizer""" batch_size = tensor.shape[0] - label = [] + label: List[List[str]] = [] for idx in range(batch_size): - curr_label = [] + curr_label: List[str] = [] for class_idx in range(len(class_list)): if tensor[idx][class_idx] > (1 / len(class_list)): curr_label.append(class_list[class_idx]) @@ -862,9 +838,7 @@ def mask_to_outline(tensor: np.ndarray) -> List[str]: label = np.sum(label, axis=0) label[label > 0] = 1 label = label - ndimage.binary_erosion(label) - label = ndimage.binary_dilation(label, structure=struct, iterations=3).astype( - label.dtype - ) + label = ndimage.binary_dilation(label, structure=struct, iterations=3).astype(label.dtype) label = np.ma.masked_where(label == 0, label) labels.append(label) return labels @@ -882,14 +856,12 @@ def mask_to_outline_overlap(tensor: np.ndarray) -> List[str]: for idx in range(batch_size): label = tensor[idx].numpy() for individual_burst_idx in range(label.shape[0]): - label[individual_burst_idx] = label[ - individual_burst_idx - ] - ndimage.binary_erosion(label[individual_burst_idx]) + label[individual_burst_idx] = label[individual_burst_idx] - ndimage.binary_erosion( + label[individual_burst_idx] + ) label = np.sum(label, axis=0) label[label > 0] = 1 - label = ndimage.binary_dilation(label, structure=struct, iterations=2).astype( - label.dtype - ) + label = ndimage.binary_dilation(label, structure=struct, iterations=2).astype(label.dtype) label = np.ma.masked_where(label == 0, label) labels.append(label) return labels @@ -903,14 +875,14 @@ def overlay_mask(tensor: np.ndarray) -> List[str]: batch_size = tensor.shape[0] labels = [] for idx in range(batch_size): - label = torch.sum(tensor[idx], axis=0).numpy() + label = torch.sum(tensor[idx], axis=0).numpy() # type: ignore label[label > 0] = 1 label = np.ma.masked_where(label == 0, label) labels.append(label) return labels -def mask_class_to_outline(tensor: np.ndarray) -> List[str]: +def mask_class_to_outline(tensor: np.ndarray) -> Tuple[List[List[int]], List[Any]]: """Target Transform: Transforms masks for each burst to individual outlines for the MaskClassVisualizer. Overlapping mask outlines are still shown as overlapping. Each bursts' class index is also returned. @@ -926,14 +898,12 @@ def mask_class_to_outline(tensor: np.ndarray) -> List[str]: for individual_burst_idx in range(label.shape[0]): if np.count_nonzero(label[individual_burst_idx]) > 0: class_idx_curr.append(individual_burst_idx) - label[individual_burst_idx] = label[ - individual_burst_idx - ] - ndimage.binary_erosion(label[individual_burst_idx]) + label[individual_burst_idx] = label[individual_burst_idx] - ndimage.binary_erosion( + label[individual_burst_idx] + ) label = np.sum(label, axis=0) label[label > 0] = 1 - label = ndimage.binary_dilation(label, structure=struct, iterations=2).astype( - label.dtype - ) + label = ndimage.binary_dilation(label, structure=struct, iterations=2).astype(label.dtype) label = np.ma.masked_where(label == 0, label) class_idx.append(class_idx_curr) labels.append(label) diff --git a/torchsig/utils/writer.py b/torchsig/utils/writer.py index b91b831..0d95ed9 100644 --- a/torchsig/utils/writer.py +++ b/torchsig/utils/writer.py @@ -1,13 +1,16 @@ -from torchsig.utils.dataset import SignalDataset -from torch.utils.data import DataLoader -from functools import partial -import numpy as np +import os import pickle import random +from functools import partial +from typing import Callable, Optional + +import lmdb +import numpy as np import torch import tqdm -import lmdb -import os +from torch.utils.data import DataLoader + +from torchsig.utils.dataset import SignalDataset class DatasetLoader: @@ -32,9 +35,14 @@ def __init__( self, dataset: SignalDataset, seed: int, - num_workers: int = os.cpu_count(), - batch_size: int = os.cpu_count(), + num_workers: Optional[int] = None, + batch_size: Optional[int] = None, + collate_fn: Optional[Callable] = None, ) -> None: + num_workers = num_workers if num_workers else os.cpu_count() + batch_size = batch_size if batch_size else os.cpu_count() + assert num_workers is not None + assert batch_size is not None self.loader = DataLoader( dataset, shuffle=True, @@ -43,6 +51,7 @@ def __init__( prefetch_factor=2, worker_init_fn=partial(DatasetLoader.worker_init_fn, seed=seed), multiprocessing_context=torch.multiprocessing.get_context("fork"), + collate_fn=collate_fn, ) self.length = int(len(dataset) / batch_size) @@ -91,6 +100,13 @@ def write(self, batch): data, labels = batch with self.env.begin(write=True) as txn: last_idx = txn.stat(db=self.data_db)["entries"] + if isinstance(labels, tuple): + for label_idx, label in enumerate(labels): + txn.put( + pickle.dumps(last_idx + label_idx), + pickle.dumps(tuple(label)), + db=self.label_db, + ) if isinstance(labels, list): for label_idx, label in enumerate(zip(*labels)): txn.put( @@ -104,12 +120,6 @@ def write(self, batch): pickle.dumps(data[element_idx]), db=self.data_db, ) - if not isinstance(labels, list): - txn.put( - pickle.dumps(last_idx + element_idx), - pickle.dumps(labels), - db=self.label_db, - ) class DatasetCreator: @@ -130,13 +140,13 @@ def __init__( dataset: SignalDataset, seed: int, path: str, - writer: DatasetWriter = None, - loader: DatasetLoader = None, + writer: Optional[DatasetWriter] = None, + loader: Optional[DatasetLoader] = None, ) -> None: self.loader = DatasetLoader(dataset=dataset, seed=seed) self.loader = self.loader if not loader else loader self.writer = LMDBDatasetWriter(path=path) - self.writer = self.writer if not writer else writer + self.writer = self.writer if not writer else writer # type: ignore self.path = path def create(self):