-
Notifications
You must be signed in to change notification settings - Fork 42
/
bedpe_pos_len.Summay.py
executable file
·405 lines (341 loc) · 17.5 KB
/
bedpe_pos_len.Summay.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
from __future__ import division, with_statement
'''
Copyright 2015, 陈同 (chentong_biology@163.com).
===========================================================
'''
__author__ = 'chentong & ct586[9]'
__author_email__ = 'chentong_biology@163.com'
#=========================================================
desc = '''
Program description:
This is designed to summary the file output by bedpe_pos_len.py.
'''
import sys
import os
from json import dumps as json_dumps
from time import localtime, strftime
timeformat = "%Y-%m-%d %H:%M:%S"
from optparse import OptionParser as OP
#from multiprocessing.dummy import Pool as ThreadPool
import re
from tools import *
#from bs4 import BeautifulSoup
reload(sys)
sys.setdefaultencoding('utf8')
debug = 0
def fprint(content):
"""
This is a Google style docs.
Args:
param1(str): this is the first param
param2(int, optional): this is a second param
Returns:
bool: This is a description of what is returned
Raises:
KeyError: raises an exception))
"""
print json_dumps(content,indent=1)
def cmdparameter(argv):
if len(argv) == 1:
global desc
print >>sys.stderr, desc
cmd = 'python ' + argv[0] + ' -h'
os.system(cmd)
sys.exit(1)
usages = "%prog -i file"
parser = OP(usage=usages)
parser.add_option("-i", "--input-file", dest="filein",
metavar="FILEIN", help="<,> or < > separated a list of files.")
parser.add_option("-l", "--labels", dest="label",
metavar="LABEL", help="`,` or ` ` separated a list of labels to label each file. It must have same order as files.")
parser.add_option("-o", "--output-file-prefix", dest="op",
help="Specify output file prefix")
parser.add_option("-r", "--report-dir", dest="report_dir",
default='report', help="Directory for report files. Default 'report'.")
parser.add_option("-R", "--report-sub-dir", dest="report_sub_dir",
default='3_read_length_distrib', help="Directory for saving report figures and tables. This dir will put under <report_dir>, so only dir name is needed. Default '2_mapping_quality'.")
parser.add_option("-a", "--appendFile", dest="append",
default='', help="A list of files to be appended.")
parser.add_option("-d", "--doc-only", dest="doc_only",
default=False, action="store_true", help="Specify to only generate doc.")
parser.add_option("-t", "--test-line", dest="test",
type="int", default=0, help="Give a positive number (n) to test the program using on the first n reads. Default 0 meaning using all reads in file.")
parser.add_option("-v", "--verbose", dest="verbose",
action="store_true", help="Show process information")
parser.add_option("-D", "--debug", dest="debug",
default=False, action="store_true", help="Debug the program")
(options, args) = parser.parse_args(argv[1:])
assert options.filein != None, "A filename needed for -i"
return (options, args)
#--------------------------------------------------------------------
def readFile(file, label, op_fh):
header = 1
for line in open(file):
if header:
header -= 1
continue
lineL = line.strip().split('\t')
for i in range(int(lineL[2])):
print >>op_fh, '{}\t{}\t{}'.format(label, lineL[1], 'DNA fragment length')
print >>op_fh, '{}\t{}\t{}'.format(label, lineL[2], 'DNA fragment count')
#---------------------------
def cntFile(file, test=0):
header = 1
lengthD = {}
cntD = {}
baseD = {}
len_line = 0
read_in_cnt = 0
for line in open(file):
lineL = line.strip().split('\t')
read_in_cnt += 1
if header:
headerL = lineL
len_line = len(lineL)
for i in range(7, len_line):
baseD[lineL[i]] = []
header -= 1
continue
length = int(lineL[3])
cnt = int(lineL[4])
lengthD[length] = lengthD.get(length, 0)+cnt
cntD[cnt] = cntD.get(cnt, 0)+1
for i in range(7, len_line):
for j in range(cnt):
baseD[headerL[i]].append(lineL[i])
if test and (read_in_cnt>test):
break
#--------------------------------------
sum_reads = sum(lengthD.values())
#assert sum_reads == sum(cntD.keys()), file
lengthFreqD = {}
for length,length_cnt in lengthD.items():
lengthFreqD[length] = length_cnt / sum_reads * 100
cntFreqD = {}
sum_cnt = sum(cntD.values())
test_sum = 0
for cnt, cnt_cnt in cntD.items():
test_sum += cnt * cnt_cnt
cntFreqD[cnt] = cnt_cnt / sum_cnt * 100
assert sum_reads == test_sum, file
return lengthD, lengthFreqD, cntD, cntFreqD, baseD
#---------------------------------------------
def plot(op):
cmd = ['s-plot densityHistPlot -m TRUE -s set -S 1 -D free -v TRUE -f',
op, '-y Frequency -x "DNA fragment length (bp) or count"',
'-u 30']
os.system(' '.join(cmd))
#----------------------------------
def generateDoc(report_dir, report_sub_dir, frag_len, frag_cnt, frag_base,
curation_label, appendL, labelL):
dest_dir = report_dir+'/'+report_sub_dir+'/'
os.system('mkdir -p '+dest_dir)
frag_len_pdf = frag_len + ".lines.pdf"
frag_len_smooth_pdf = frag_len + ".lines.smooth.pdf"
frag_cnt_pdf = frag_cnt + ".lines.pdf"
frag_base_pdf = frag_base+'.lines.pdf'
copy(dest_dir, frag_len, frag_cnt, frag_base)
copy(dest_dir, *appendL)
copypdf(dest_dir, frag_len_pdf, frag_len_smooth_pdf, frag_cnt_pdf, frag_base_pdf)
print "\n## Length and count distribution of sequenced fragments\n"
curation_label = "Length_and_count_distribution_of_sequenced_fragments"
knitr_read_txt(report_dir, curation_label)
print """测序片段长度和数目分布。
为了保证结果的准确性,只选取DNA双端测序Reads都正确的比对到基因组唯一位置的片段做后续分析。片段的长度定义为双端Reads所覆盖的基因组区域。
Reads mapped to a unique genomic location were used for downstream analyses. Paired-end reads aligned to the same chromosome with a correct orientation were retained for downstream size analyses.
1. DNA测序片段大小分布如 Figure \@ref(fig:frag-len-distrib-fig)所示;
* **Fragment length distrib (count)** 表示不同大小DNA片段的绝对数目的分布,不同样品间会受到测序丰度的影响;横轴表示片段的大小,纵轴表示特定大小片段测到的次数。举个例子,点(150, 200)表示长度为150的片段的出现次数为200次。
* **Fragment length distrib (frequency (%))** 表示不同大小DNA片段的频率分布的分布;横轴表示片段的大小,纵轴表示特定大小片段测到的相对频率。举个例子,点(150, 2)表示长度为150的片段的出现频率为2%。
"""
frag_len = report_sub_dir+'/'+os.path.split(frag_len)[-1]
frag_len_pdf = report_sub_dir+'/'+os.path.split(frag_len_pdf)[-1]
frag_len_png = frag_len_pdf.replace('pdf', 'png')
print "(ref:frag-len-distrib-fig) DNA测序片段大小分布。**Fragment length distrib (count)** 表示不同大小DNA片段的绝对数目的分布,不同样品间会受到测序丰度的影响;**Fragment length distrib (frequency (%))** 表示不同大小DNA片段的频率分布的分布。[PDF]({}); [XLS for plot]({})\n".format(frag_len_pdf, frag_len)
print """```{{r frag-len-distrib-fig, fig.cap="(ref:frag-len-distrib-fig)"}}
knitr::include_graphics("{png}")
```
""".format(png=frag_len_png)
print """
2. 线性拟合^[线性拟合是根据数据的分布特征拟合出一条与其变化趋势相近的平滑曲线,会使展示结果更清晰,但也会略掉部分细节信息。]的DNA测序片段大小分布如 Figure \@ref(fig:frag-len-smooth-distrib-fig)所示;
* **Fragment length distrib (count)** 表示不同大小DNA片段的绝对数目的分布,不同样品间会受到测序丰度的影响;
* **Fragment length distrib (frequency (%))** 表示不同大小DNA片段的频率分布的分布;
"""
frag_len_smooth_pdf = report_sub_dir+'/'+os.path.split(frag_len_smooth_pdf)[-1]
frag_len_smooth_png = frag_len_smooth_pdf.replace('pdf', 'png')
print "(ref:frag-len-smooth-distrib-fig) DNA测序片段大小分布 (拟合结果)。**Fragment length distrib (count)** 表示不同大小DNA片段的绝对数目的分布,不同样品间会受到测序丰度的影响;**Fragment length distrib (frequency (%))** 表示不同大小DNA片段的频率分布的分布。[PDF]({}); [XLS for plot]({})\n".format(frag_len_smooth_pdf, frag_len)
print """```{{r frag-len-smooth-distrib-fig, fig.cap="(ref:frag-len-smooth-distrib-fig)"}}
knitr::include_graphics("{png}")
```
""".format(png=frag_len_smooth_png)
print """
3. DNA序列片段测到的频率分布如 Figure \@ref(fig:frag-cnt-distrib-fig)所示:
* **Fragment occurence number distrib (count)** 表示DNA片段被测到的次数的分布。横轴为片段的出现次数,纵轴为特定次数的片段的条数。比如点 (100, 5)表示有5条片段各被测到100次。
* **Fragment occurence number distrib (frequency (%))** 表示DNA片段被测到的次数的分不。横轴为片段的出现次数,纵轴为特定次数的片段的相对比例。比如点 (100, 20)表示有20%的片段被测到100次。
"""
frag_cnt = report_sub_dir+'/'+os.path.split(frag_cnt)[-1]
frag_cnt_pdf = report_sub_dir+'/'+os.path.split(frag_cnt_pdf)[-1]
frag_cnt_png = frag_cnt_pdf.replace('pdf', 'png')
print "(ref:frag-cnt-distrib-fig) 测序得到的DNA序列片段的频率分布。**Fragment occurence number distrib (count)** 表示DNA片段被测到的次数的分布。横轴为片段的出现次数,纵轴为特定次数的片段的条数; **Fragment occurence number distrib (frequency (%))** 表示DNA片段被测到的次数的分不。横轴为片段的出现次数,纵轴为特定次数的片段的相对比例。 [PDF]({}); [XLS for plot]({})\n".format(frag_cnt_pdf, frag_cnt)
print """```{{r frag-cnt-distrib-fig, fig.cap="(ref:frag-cnt-distrib-fig)"}}
knitr::include_graphics("{png}")
```
""".format(png=frag_cnt_png)
print """\n## Base content of sequenced fragments"""
curation_label = "Base_content_of_sequenced_fragments"
knitr_read_txt(report_dir, curation_label)
print """
**ACGT content**: 测序片段中A C G T四种碱基的占比分布。
**CpG content**: 测序片段中CpG二碱基的占比分布, 计算方式为 $\\frac{CpG*2}{N}$
**Observed to expected CpG ratio**: 实际CpG含量与期望CpG含量的比值,计算方式为$Obs/Exp CpG = \\frac{Number\\ of\\ CpG * N * 100}{(Number\\ of\\ C * Number\\ of\\ G)}$ (N = length of sequence)
**CpG island**: 长度200 bp;GC比例50%以上;observed-to-expected CpG ratio 大于60^[为了方便计算,我们的observed-to-expected CpG ratio都乘以了100。]。
"""
frag_base = report_sub_dir+'/'+os.path.split(frag_base)[-1]
frag_base_pdf = report_sub_dir+'/'+os.path.split(frag_base_pdf)[-1]
frag_base_png = frag_base_pdf.replace('pdf', 'png')
print "\n(ref:frag-base-content-fig) 测序测到的DNA序列片段的碱基构成。**ACGT content**: 测序片段中A C G T四种碱基的占比分布; **CpG content**: 测序片段中CpG二碱基的占比分布;**Observed to expected CpG ratio**: 实际CpG含量与期望CpG含量的比值。[PDF]({}); [XLS for plot]({})\n".format(frag_base_pdf, frag_base)
print """```{{r frag-base-content-fig, fig.cap="(ref:frag-base-content-fig)"}}
knitr::include_graphics("{png}")
```
""".format(png=frag_base_png)
if appendL:
appendList = generateLink(appendL, labelL, 'seq_fragment_attribute',
report_sub_dir, '\n* ')
print """## 测序片段统计表格下载 {{#seq-frag-xls}}
* {}
""".format(appendList)
#-------------------------------
#def output(aDict, label, file_fh, set):
# for key, value in aDict.items():
# print >>file_fh, "{}\t{}\t{}\t{}".format(key, label, value, set)
#---------------------------------------------------------------
def output_base(baseD, frag_base_fh, label):
#"variable\tvalue\ttype\tset"
typeD = {'A':'ACGT content (%)', 'T':'ACGT content (%)', 'C':'ACGT content (%)',
'G':'ACGT content (%)', 'CpG':'CpG content (%)',
'CpG_ratio':'Observed to expected CpG ratio'}
for key, valueL in baseD.items():
key = key.replace('_percent', '')
if key == 'CpG_observe_to_expect_ratio':
key = "CpG_ratio"
type = typeD[key]
for value in valueL:
print >>frag_base_fh, '{}\t{}\t{}\t{}'.format(key, value, label, type)
#---------------------------------------------------------------
def output(fileL, suffix, fh):
for file in fileL:
header = 1
for line in open(file+suffix):
if header:
header -= 1
continue
print >>fh, line,
#---------------------------------------------------------------
def plot2(frag_len, frag_cnt, nameL):
x_level = ["'"+i+"'" for i in nameL]
x_level = '"'+','.join(x_level)+'"'
cmd = ["s-plot lines -m TRUE -a frag_len -V \'c(150)\'",
"-x \"Fragment size (bp)\" -y \"Frequency (%) [lower subplot] or raw counts [upper subplot]\" ",
"-f", frag_len, "-l", x_level,
'-F \"+facet_wrap(~set, ncol=1, scale=\'free_y\')\" -u 15']
#print ' '.join(cmd)
os.system(' '.join(cmd))
cmd = ["s-plot lines -m TRUE -a frag_len -V \'c(150)\' -o TRUE",
"-x \"Fragment size (bp)\" -y \"Frequency (%) [lower subplot] or raw counts [upper subplot]\" ",
"-f", frag_len, "-l", x_level,
'-F \"+facet_wrap(~set, ncol=1, scale=\'free_y\')\" -u 15']
#print ' '.join(cmd)
os.system(' '.join(cmd))
cmd = ["s-plot lines -m TRUE -a frag_cnt ",
"-x \"Fragment occurrence time\" -y \"Frequency (%) [lower subplot] or raw counts [upper subplot]\" ",
"-f", frag_cnt, "-l", x_level,
'-F \"+facet_wrap(~set, ncol=1, scale=\'free_y\')\" -u 15']
#print ' '.join(cmd)
os.system(' '.join(cmd))
#---------------------------------------------------
def plotBase(frag_base, nameL):
#"variable\tvalue\tlabel\tset"
#cmd = ['s-plot boxplot -m TRUE', '-a label -b 45 -W TRUE',
# '-y "Base content"', '-u 25',
# '-l "\'A\',\'C\',\'T\',\'G\',\'CpG\',\'CpG_ratio\'"',
# '-f', frag_base, '-p "+facet_wrap(~set,ncol=1,scale=\'free_y\')"']
x_level = ["'"+i+"'" for i in nameL]
x_level = '"'+','.join(x_level)+'"'
cmd = ["s-plot lines -m TRUE -a base_per",
"-x \"Percent\" -y \"Frequency\" -w 18", '-l', x_level,
"-f", frag_base, '-F \"+facet_wrap(~set, ncol=1, scale=\'free\')\" -u 25']
#print >>sys.stderr, ' '.join(cmd)
os.system(' '.join(cmd))
#---------------------------------
def main():
options, args = cmdparameter(sys.argv)
#-----------------------------------
file = options.filein
fileL = re.split(r'[, ]*', file.strip())
label = options.label
labelL = re.split(r'[, ]*', label.strip())
verbose = options.verbose
test = options.test
op = options.op
append = options.append
if append:
appendL = re.split(r'[, ]*', append.strip())
else:
appendL = []
frag_len = op+'.fragment_len_frequency.xls'
frag_cnt = op+'.fragment_cnt_frequency.xls'
frag_base = op+'.fragment_base_frequency.xls'
report_dir = options.report_dir
report_sub_dir = options.report_sub_dir
doc_only = options.doc_only
curation_label = os.path.split(sys.argv[0])[-1].replace('.', '_')
if doc_only:
generateDoc(report_dir, report_sub_dir, frag_len, frag_cnt, frag_base,
curation_label, appendL, labelL)
return 0
global debug
debug = options.debug
#-----------------------------------
frag_len_fh = open(frag_len, 'w')
frag_cnt_fh = open(frag_cnt, 'w')
frag_base_fh = open(frag_base, 'w')
print >>frag_len_fh, "frag_len\tvariable\tvalue\tset"
print >>frag_cnt_fh, "frag_cnt\tvariable\tvalue\tset"
print >>frag_base_fh, "base_per\tvariable\tvalue\tset"
output(fileL, '.fragment_len_frequency.xls', frag_len_fh)
output(fileL, '.fragment_cnt_frequency.xls', frag_cnt_fh)
output(fileL, '.fragment_base_frequency.xls', frag_base_fh)
frag_len_fh.close()
frag_cnt_fh.close()
frag_base_fh.close()
plot2(frag_len, frag_cnt, labelL)
plotBase(frag_base, labelL)
generateDoc(report_dir, report_sub_dir, frag_len, frag_cnt, frag_base,
curation_label, appendL, labelL)
###--------multi-process------------------
#pool = ThreadPool(5) # 5 represents thread_num
#result = pool.map(func, iterable_object)
#pool.close()
#pool.join()
###--------multi-process------------------
if verbose:
print >>sys.stderr,\
"--Successful %s" % strftime(timeformat, localtime())
if __name__ == '__main__':
startTime = strftime(timeformat, localtime())
main()
endTime = strftime(timeformat, localtime())
fh = open('python.log', 'a')
print >>fh, "%s\n\tRun time : %s - %s " % \
(' '.join(sys.argv), startTime, endTime)
fh.close()
###---------profile the program---------
#import profile
#profile_output = sys.argv[0]+".prof.txt")
#profile.run("main()", profile_output)
#import pstats
#p = pstats.Stats(profile_output)
#p.sort_stats("time").print_stats()
###---------profile the program---------