-
Notifications
You must be signed in to change notification settings - Fork 42
/
Unmapped_summary.py
executable file
·223 lines (195 loc) · 8.13 KB
/
Unmapped_summary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
from __future__ import division, with_statement
'''
Copyright 2015, 陈同 (chentong_biology@163.com).
===========================================================
'''
__author__ = 'chentong & ct586[9]'
__author_email__ = 'chentong_biology@163.com'
#=========================================================
desc = '''
Program description:
This is designed to summarize results output by `parse_why_unmapp_blast.py`.
'''
import sys
import os
from json import dumps as json_dumps
from time import localtime, strftime
timeformat = "%Y-%m-%d %H:%M:%S"
from optparse import OptionParser as OP
import re
from tools import *
#from multiprocessing.dummy import Pool as ThreadPool
#from bs4 import BeautifulSoup
reload(sys)
sys.setdefaultencoding('utf8')
debug = 0
def fprint(content):
"""
This is a Google style docs.
Args:
param1(str): this is the first param
param2(int, optional): this is a second param
Returns:
bool: This is a description of what is returned
Raises:
KeyError: raises an exception))
"""
print json_dumps(content,indent=1)
def cmdparameter(argv):
if len(argv) == 1:
global desc
print >>sys.stderr, desc
cmd = 'python ' + argv[0] + ' -h'
os.system(cmd)
sys.exit(1)
usages = "%prog -f file"
parser = OP(usage=usages)
parser.add_option("-f", "--files", dest="filein",
metavar="FILEIN", help="`,` or ` ` separated a list of files. *.unmapped.table.parse.xls.dodgeBars.pdf in folder `unmapped`.")
parser.add_option("-l", "--labels", dest="label",
metavar="LABEL", help="`,` or ` ` separated a list of labels to label each file. It must have same order as files.")
parser.add_option("-o", "--output-prefix", dest="out_prefix",
help="The prefix of output files. UNUSED")
parser.add_option("-r", "--report-dir", dest="report_dir",
default='report', help="Directory for report files. Default 'report'.")
parser.add_option("-R", "--report-sub-dir", dest="report_sub_dir",
default='2_mapping_quality', help="Directory for saving report figures and tables. This dir will put under <report_dir>, so only dir name is needed. Default '2_mapping_quality'.")
parser.add_option("-d", "--doc-only", dest="doc_only",
default=False, action="store_true", help="Specify to only generate doc. UNUSED.")
parser.add_option("-n", "--number", dest="number", type="int",
default=40, help="Set the maximum allowed samples for barplot. Default 40.\
If more than this number of samples are given, heatmap will be used instead. UNUSED.")
parser.add_option("-v", "--verbose", dest="verbose",
action="store_true", help="Show process information")
parser.add_option("-D", "--debug", dest="debug",
default=False, action="store_true", help="Debug the program")
(options, args) = parser.parse_args(argv[1:])
assert options.filein != None, "A filename needed for -i"
return (options, args)
#--------------------------------------------------------------------
def readTwoColumnFile(fileL, labelL, header=0, index_col=0):
tmpL = []
for file, label in zip(fileL, labelL):
coverageM = pd.read_table(file, header=header, index_col=index_col)
coverageM.columns = [label]
tmpL.append(coverageM)
mergeM = pd.concat(tmpL, axis=1)
return mergeM
#-, ------------------------
def plot(fileL):
for file in fileL:
cmd = "s-plot barPlot -f " + file
os.system(cmd)
#--------------------------------------
def plot_melt(total_melt, nameL):
x_level = ["'"+i+"'" for i in nameL]
x_level = '"'+','.join(x_level)+'"'
cmd = ["s-plot barPlot -m TRUE -a Sample -R 90 -B set -O 1 -w 20 -u 25 -f ",
total_melt, ' -k free_y -L', x_level,
' -y \'Reads count or relative percent\' -x \'Samples\' ']
#print ' '.join(cmd)
os.system(' '.join(cmd))
#--------------------------------------
def plot_heatmap(totalTable):
cmd = ["s-plot heatmapS -a TRUE -b TRUE -R TRUE",
"-x white -y blue -u 18 -v 30 -F 12 ",
"-f ", totalTable, "-I RPM"]
os.system(' '.join(cmd))
#---------------------------------------
def generateDoc(report_dir, report_sub_dir, fileL, labelL, cntD):
dest_dir = report_dir+'/'+report_sub_dir+'/'
os.system('mkdir -p '+dest_dir)
print "\n## 未比对reads的来源探索 {#Source-unmap-reads}\n"
curation_label = "Unmapped_reads_exploring"
knitr_read_txt(report_dir, curation_label)
print """
选取1000条未比对回基因组的reads,与NCBI的nt库进行比对,查看reads是否比对到其它物种或是测序错误造成的错配太多。每个reads在NCBI的nt库中选择一个最佳的匹配,若此最佳匹配能覆盖reads的50%以上,并且一致性达到80%,则认为此reads可能来源于这个匹配,从而确定reads的来源;反之,则认为reads未匹配到任何物种,可能是测序过程中引入的无关序列或测序错误。
"""
len_fileL = len(fileL)
group = 3
for i in range(0, len_fileL, 3):
pdfL = fileL[i:i+3]
subL = labelL[i:i+3]
copypdf(dest_dir, *pdfL)
len_subF = len(pdfL)
pdfL = [report_sub_dir+'/'+os.path.split(j)[-1] for j in pdfL]
pngL = [j.replace('pdf', 'png') for j in pdfL]
pdf_link = [] #[label_pdf](pdf), [label_pdf](pdf)
for pdf, label in zip(pdfL, subL):
tmp_155 = '['+label+'_pdf]'+'('+pdf+')'
pdf_link.append(tmp_155)
pdf_link = ' '.join(pdf_link)
print "(ref:unmapp-origin-fig-{}) 未比对Reads的来源分布。From left to right, the samples are **{}**。{}\n".format(i, ', '.join(subL), pdf_link)
pngFileL = [] #"png1", "png2", "png3"
for png in pngL:
tmp_164 = "'"+png+"'"
pngFileL.append(tmp_164)
pngFileL = ', '.join(pngFileL)
print '''```{{r unmapp-origin-fig-{label}, out.width="{width}%", fig.cap="(ref:unmapp-origin-fig-{label})"}}
knitr::include_graphics(c({png}))
```
'''.format(label=i, png=pngFileL, width=int(100/len_subF))
#--------------------------------
def read_cnt_file(cnt_file):
cntD = {}
header = 1
for line in open(cnt_file):
if header:
header -= 1
continue
lineL = line.strip().split('\t')
sample = lineL[0]
reads_cnt = lineL[-1]
assert sample not in cntD, "Duplicate "+sample
cntD[sample] = reads_cnt
return cntD
#----------------------------
def main():
options, args = cmdparameter(sys.argv)
#-----------------------------------
file = options.filein
fileL = re.split(r'[, ]*', file.strip())
sample_readin = len(fileL)
label = options.label
labelL = re.split(r'[, ]*', label.strip())
verbose = options.verbose
op = options.out_prefix
#cnt_file = options.cnt
# No use, can be deleted
cntD = {}
report_dir = options.report_dir
report_sub_dir = options.report_sub_dir
global debug
debug = options.debug
doc_only = options.doc_only
num_samples_each_grp = options.number
melt = 0
if sample_readin <= num_samples_each_grp:
melt = 1
#-----------------------------------
aDict = {}
#curation_label = os.path.split(sys.argv[0])[-1].replace('.', '_')
if doc_only:
generateDoc(report_dir, report_sub_dir, fileL, labelL, cntD)
return 0
generateDoc(report_dir, report_sub_dir, fileL, labelL, cntD)
###--------multi-process------------------
if __name__ == '__main__':
startTime = strftime(timeformat, localtime())
main()
endTime = strftime(timeformat, localtime())
fh = open('python.log', 'a')
print >>fh, "%s\n\tRun time : %s - %s " % \
(' '.join(sys.argv), startTime, endTime)
fh.close()
###---------profile the program---------
#import profile
#profile_output = sys.argv[0]+".prof.txt")
#profile.run("main()", profile_output)
#import pstats
#p = pstats.Stats(profile_output)
#p.sort_stats("time").print_stats()
###---------profile the program---------