-
Notifications
You must be signed in to change notification settings - Fork 42
/
STAR_read_mapSummary.py
executable file
·432 lines (367 loc) · 17.8 KB
/
STAR_read_mapSummary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
from __future__ import division, with_statement
'''
Copyright 2015, 陈同 (chentong_biology@163.com).
===========================================================
'''
__author__ = 'chentong & ct586[9]'
__author_email__ = 'chentong_biology@163.com'
#=========================================================
desc = '''
Program description:
This is designed to summarize reads distribution output by `STAR`.
'''
import sys
import os
from json import dumps as json_dumps
from time import localtime, strftime
timeformat = "%Y-%m-%d %H:%M:%S"
from optparse import OptionParser as OP
import re
from tools import *
#from multiprocessing.dummy import Pool as ThreadPool
#from bs4 import BeautifulSoup
reload(sys)
sys.setdefaultencoding('utf8')
debug = 0
def fprint(content):
"""
This is a Google style docs.
Args:
param1(str): this is the first param
param2(int, optional): this is a second param
Returns:
bool: This is a description of what is returned
Raises:
KeyError: raises an exception))
"""
print json_dumps(content,indent=1)
def cmdparameter(argv):
if len(argv) == 1:
global desc
print >>sys.stderr, desc
cmd = 'python ' + argv[0] + ' -h'
os.system(cmd)
sys.exit(1)
usages = "%prog -f file"
parser = OP(usage=usages)
parser.add_option("-f", "--files", dest="filein",
metavar="FILEIN", help="`,` or ` ` separated a list of files. *.Log.final.out generated by `STAR` during mapping")
parser.add_option("-l", "--labels", dest="label",
metavar="LABEL", help="`,` or ` ` separated a list of labels to label each file. It must have same order as files.")
parser.add_option("-o", "--output-prefix", dest="out_prefix",
help="The prefix of output files.")
parser.add_option("-r", "--report-dir", dest="report_dir",
default='report', help="Directory for report files. Default 'report'.")
parser.add_option("-b", "--bigwig", dest="bigwig",
default=False, action="store_true", help="Rsyncing bigwig files. Default FALSE.")
parser.add_option("-R", "--report-sub-dir", dest="report_sub_dir",
default='2_mapping_quality', help="Directory for saving report figures and tables. This dir will put under <report_dir>, so only dir name is needed. Default '2_mapping_quality'.")
parser.add_option("-d", "--doc-only", dest="doc_only",
default=False, action="store_true", help="Specify to only generate doc.")
parser.add_option("-n", "--number", dest="number", type="int",
default=40, help="Set the maximum allowed samples for barplot. Default 40.\
If more than this number of samples are given, heatmap will be used instead.")
parser.add_option("-v", "--verbose", dest="verbose",
action="store_true", help="Show process information")
parser.add_option("-D", "--debug", dest="debug",
default=False, action="store_true", help="Debug the program")
(options, args) = parser.parse_args(argv[1:])
assert options.filein != None, "A filename needed for -i"
return (options, args)
#--------------------------------------------------------------------
def readStarFinalOut(file):
sumD = {}
start = 0
for line in open(file):
line = line.strip()
if not start:
if not line:
start = 1
continue
#------------------------------
vertial_line = line.find('|')
if vertial_line != -1:
type = line[:vertial_line].strip()
value = line[vertial_line+1:].strip()
if value.find('%') == -1 and value.find('.') == -1:
value = int(value)
elif value.find('%') != -1:
value = value.replace("%", '')
sumD[type] = value
if debug:
print >>sys.stderr, sumD
return sumD
#-, ------------------------
def plot(fileL):
for file in fileL:
cmd = "s-plot barPlot -f " + file
os.system(cmd)
#--------------------------------------
def plot_melt(total_melt, nameL):
x_level = ["'"+i+"'" for i in nameL]
x_level = '"'+','.join(x_level)+'"'
cmd = ["s-plot barPlot -m TRUE -a Sample -R 90 -B set -O 1 -w 20 -u 25 -f ",
total_melt, ' -k free_y -L', x_level,
' -y \'Reads count or relative percent\' -x \'Samples\' ']
#print ' '.join(cmd)
os.system(' '.join(cmd))
#--------------------------------------
def plot_heatmap(totalTable_cnt, totalTable_per, sample_cnt):
height = sample_cnt // 2 + 7
if height < 10:
height = 10
cmd = ["s-plot heatmapS -a TRUE -A 45 -b TRUE -R TRUE",
"-x white -y blue -u 18 -v 30 -F 12 -T 0.5 -V 0.5",
"-f ", totalTable_cnt, "-I Count"]
os.system(' '.join(cmd))
cmd = ["s-plot heatmapS -a TRUE -A 45 -b TRUE -R TRUE",
"-x white -y blue -u 18 -v 30 -F 12 -T 0.5 -V 0.5",
"-f ", totalTable_per, "-I Percent"]
os.system(' '.join(cmd))
#---------------------------------------
def generateDoc(report_dir, report_sub_dir, totalTable_cnt,
totalTable_per, total_melt, curation_label, melt,
bigwig, labelL):
dest_dir = report_dir+'/'+report_sub_dir+'/'
os.system('mkdir -p '+dest_dir)
if melt:
pdf = total_melt+'.stackBars.pdf'
copypdf(dest_dir, pdf)
else:
per_pdf = totalTable_per+'.heatmapS.pdf'
cnt_pdf = totalTable_cnt+'.heatmapS.pdf'
copypdf(dest_dir, per_pdf, cnt_pdf)
copy(dest_dir, totalTable_cnt, totalTable_per)
totalTable_cntNew = report_sub_dir+'/'+os.path.split(totalTable_cnt)[-1]
totalTable_perNew = report_sub_dir+'/'+os.path.split(totalTable_per)[-1]
print "\n## 序列比对质量总结 {#seq-map-summary-STAR}\n"
curation_label = "Reads_map_summary"
knitr_read_txt(report_dir, curation_label)
print """
全部样品总的比对率如 Figure \@ref(fig:map-percentage-all-sample) and \@ref(fig:map-count-all-sample) 所示,用于从整体评估样品的比对率和可用reads数目。
```{{r map-percentage-all-sample, fig.cap="Distribution of reads mapping percentage for all samples. The vertical line represents median of mapping percentage."}}
map_percentage_all_sample <- read.table("{per}", header=T, sep="\t", quote="")
Final_kept_reads <- map_percentage_all_sample$Final_kept_reads
hist(Final_kept_reads, breaks=10, xlab="Reads mapping percentage (%)", ylab="Sample count", main="")
abline(v=median(Final_kept_reads), col="red")
```
```{{r map-count-all-sample, fig.cap="Distribution of reads mapping count for all samples. The vertical line represents median of mapping count."}}
map_count_all_sample <- read.table("{cnt}", header=T, sep="\t", quote="")
Final_kept_reads <- map_count_all_sample$Final_kept_reads/1e6
hist(Final_kept_reads, breaks=30, xlab="Reads mapping count (million)", ylab="Sample count", main="")
abline(v=median(Final_kept_reads), col="red")
```
""".format(per=totalTable_perNew, cnt=totalTable_cntNew)
print """
每个样品测序序列比对总结见 (Table \@ref(tab:read-map-sum-cnt-table), Table \@ref(tab:read-map-sum-per-table) and Figure \@ref(fig:read-map-sum-fig))。
```{r map-sum-describe}
map_sum_describe = "Symbol;Explanation
Total;预处理后用于比对的中的reads数
Unique_map;在基因组上有唯一比对位置的reads数
Multi_map_to_multiple_loci;在基因组上有多个比对位置(不多于20)的reads数, 一般保留
Multi_map_to_too_many_loci;在基因组上有很多比对位置的reads数
Unmap;未比对回基因组或转录组的reads数
Unmap_dueto_mismatch;因为错配太多未能比对回基因组或转录组的reads数
Unmap_dueto_too_short;因为比对长度太短(比对长度少于序列长度的2/3)而未能比对回基因组或转录组的reads数
Unmap_dueto_other;其它未比对回基因组或转录组的reads数
Final_kept_reads;过滤后用于下游分析的reads数"
map_sum_describe_data <- read.table(text=map_sum_describe, sep=";", header=T, quote="")
knitr::kable(map_sum_describe_data,format.args=list(big.mark=","))
#pander::pandoc.table(map_sum_describe_data, big.mark=',', justify='right')
```
"""
print "Reads比对数据的统计可以帮助判断测序的质量、准确度、有无偏好和异常等。如果过滤后用于下游分析的reads数偏少,则需要慎重考虑。对于未比对回去的reads需要考虑未比对回去的原因,区别对待。\n"
print "原始数据或者PDF格式的文件可以点击XLS或PDF下载。\n"
print "(ref:read-map-sum-cnt-table) Summary raw counts of mapped reads. [XLS]({})\n".format(totalTable_cntNew)
print '''```{{r read-map-sum-cnt-table, results="asis"}}
map_table <- read.table("{totalTable_cntNew}", sep="\\t", header=T, row.names=1, quote="", comment="")
knitr::kable(map_table, booktabs=T, caption="(ref:read-map-sum-cnt-table)", format="pandoc", format.args=list(big.mark=","))
```
'''.format(totalTable_cntNew=totalTable_cntNew)
print "(ref:read-map-sum-per-table) Percent of mapped reads relative to total reads (%). [XLS]({})\n".format(totalTable_perNew)
print '''```{{r read-map-sum-per-table}}
map_table <- read.table("{totalTable_perNew}", sep="\\t", header=T, row.names=1, quote="", comment="")
knitr::kable(map_table, booktabs=T, caption="(ref:read-map-sum-per-table)")
```
'''.format(totalTable_perNew=totalTable_perNew)
if melt:
pdf = report_sub_dir+'/'+os.path.split(pdf)[-1]
print "(ref:read-map-sum-fig) Summary of reads mapping status. 1 Million = 10^6^. \
[PDF]({})\n".format(pdf)
png = pdf.replace('pdf', 'png')
print '''```{{r read-map-sum-fig, fig.cap="(ref:read-map-sum-fig)"}}
knitr::include_graphics("{png}")
```
'''.format(png=png)
else:
cnt_pdf = report_sub_dir+'/'+os.path.split(cnt_pdf)[-1]
cnt_png = cnt_pdf.replace('pdf', 'png')
per_pdf = report_sub_dir+'/'+os.path.split(per_pdf)[-1]
per_png = per_pdf.replace('pdf', 'png')
print "(ref:read-map-sum-fig) Summary of reads mapping status. 1 Million = 10^6^. \
[PDF_cnt]({}) [PDF_percent]({})\n".format(cnt_pdf, per_pdf)
print '''```{{r read-map-sum-fig, out.width="49%", fig.cap="(ref:read-map-sum-fig)"}}
knitr::include_graphics(c("{cnt_png}", "{per_png}"))
```
'''.format(cnt_png=cnt_png, per_png=per_png)
if bigwig:
print "\n## 序列比对结果文件 {#seq-map-result-STAR}\n"
copy(report_dir+"/images/", "/MPATHB/self/resource/sample/ucsc.png")
print """
序列比对结果文件为[`bigwig`](http://genome.ucsc.edu/goldenPath/help/bigWig.html)格式文件可以导入[IGV](http://software.broadinstitute.org/software/igv/), [UCSC](http://genome.ucsc.edu/cgi-bin/hgTracks)等基因组浏览器,可视化测序reads在基因区和基因组区域的分布。
```{r igv-ucsc-example}
knitr::include_graphics("images/ucsc.png")
```
"""
bwL = ["Sample;Bigwig file"]
for label in labelL:
bw = label+'/'+label+'.Signal.UniqueMultiple.str1.out.bw'
copy(dest_dir, bw)
bw = report_sub_dir+'/'+os.path.split(bw)[-1]
tmp = label+';['+label+']('+bw+')'
bwL.append(tmp)
bwL = '\n'.join(bwL)
print '''
```{{r, results="markdown"}}
igv_ucsc_bw = "{}"
igv_ucsc_bw_mat <- read.table(text=igv_ucsc_bw, sep=";", header=T)
knitr::kable(igv_ucsc_bw_mat, format="markdown")
```
'''.format(bwL)
#--------------------------------
def sum_float(*percent):
sum = 0
for i in percent:
i = float(i.replace('%', ''))
sum += i
sum = "{:.2f}".format(sum)
return sum
#-------------------------------------------
def multi(total, per):
return int(total * float(per.replace('%', ''))/100)
def main():
options, args = cmdparameter(sys.argv)
#-----------------------------------
file = options.filein
fileL = re.split(r'[, ]*', file.strip())
sample_readin = len(fileL)
label = options.label
labelL = re.split(r'[, ]*', label.strip())
bigwig = options.bigwig
verbose = options.verbose
op = options.out_prefix
report_dir = options.report_dir
report_sub_dir = options.report_sub_dir
global debug
debug = options.debug
doc_only = options.doc_only
num_samples_each_grp = options.number
melt = 0
if sample_readin <= num_samples_each_grp:
melt = 1
#-----------------------------------
aDict = {}
totalTable_cnt = op+".map_summary_cnt.xls"
totalTable_per = op+".map_summary_percent.xls"
total_melt = op+'.melt_summary.xls'
curation_label = os.path.split(sys.argv[0])[-1].replace('.', '_')
if doc_only:
generateDoc(report_dir, report_sub_dir, totalTable_cnt,
totalTable_per, total_melt, curation_label, melt, bigwig, labelL)
return 0
totalTable_cnt_fh = open(totalTable_cnt, 'w')
totalTable_per_fh = open(totalTable_per, 'w')
print >>totalTable_cnt_fh, "Sample\tTotal\tUnique_map\tMulti_map_to_multiple_loci\tMulti_map_to_too_many_loci\tUnmap\tUnmap_dueto_mismatch\tUnmap_dueto_too_short\tUnmap_dueto_other\tFinal_kept_reads"
print >>totalTable_per_fh, "Sample\tUnique_map\tMulti_map_to_multiple_loci\tMulti_map_to_too_many_loci\tUnmap\tUnmap_dueto_mismatch\tUnmap_dueto_too_short\tUnmap_dueto_other\tFinal_kept_reads"
if melt:
total_melt_fh = open(total_melt, 'w')
print >>total_melt_fh, "Sample\tvariable\tvalue\tset"
i = -1
for file in fileL:
i += 1
#group = "Group_"+str(i // num_samples_each_grp+1)
label = labelL[i]
sumD = readStarFinalOut(file)
total = sumD['Number of input reads']
Unique_map = sumD['Uniquely mapped reads number']
Unique_map_per = sumD['Uniquely mapped reads %']
Multi_map_to_multiple_loci = sumD['Number of reads mapped to multiple loci']
Multi_map_to_multiple_loci_per = sumD['% of reads mapped to multiple loci']
Multi_map_to_too_many_loci = sumD['Number of reads mapped to too many loci']
Multi_map_to_too_many_loci_per = sumD['% of reads mapped to too many loci']
UnMap = total-Unique_map-Multi_map_to_multiple_loci-Multi_map_to_too_many_loci
Mismtach_caused_unmap_per = sumD["% of reads unmapped: too many mismatches"]
Short_caused_unmap_per = sumD["% of reads unmapped: too short"]
Other_caused_unmap_per = sumD["% of reads unmapped: other"]
Mismtach_caused_unmap = multi(total, Mismtach_caused_unmap_per)
Short_caused_unmap = multi(total, Short_caused_unmap_per)
Other_caused_unmap = multi(total, Other_caused_unmap_per)
UnMap_per = sum_float(Mismtach_caused_unmap_per, Short_caused_unmap_per, Other_caused_unmap_per)
Final_used = Unique_map+Multi_map_to_multiple_loci
Final_used_per = "{:.2f}".format(Final_used/total*100)
cntL = [label, total, Unique_map,
Multi_map_to_multiple_loci, Multi_map_to_too_many_loci,
UnMap, Mismtach_caused_unmap, Short_caused_unmap,
Other_caused_unmap, Final_used]
percentL = [label, Unique_map_per, Multi_map_to_multiple_loci_per,
Multi_map_to_too_many_loci_per, UnMap_per, Mismtach_caused_unmap_per,
Short_caused_unmap_per, Other_caused_unmap_per, Final_used_per]
cntL = [str(j) for j in cntL]
percentL = [str(j) for j in percentL]
print >>totalTable_cnt_fh, '\t'.join(cntL)
print >>totalTable_per_fh, '\t'.join(percentL)
if melt:
lineL = [
[label, "Unique_map", str(Unique_map), "Raw reads count"],
[label, "Multi_map_to_multiple_loci", str(Multi_map_to_multiple_loci),
"Raw reads count"],
[label, "Multi_map_to_too_many_loci", str(Multi_map_to_too_many_loci),
"Raw reads count"],
[label, "Unmap_dueto_mismatch", str(Mismtach_caused_unmap),
"Raw reads count"],
[label, "Unmap_dueto_too_short", str(Short_caused_unmap),
"Raw reads count"],
[label, "Unmap_dueto_other", str(Other_caused_unmap),
"Raw reads count"],
[label, "Unique_map", str(Unique_map_per), "Relative percent"],
[label, "Multi_map_to_multiple_loci",
str(Multi_map_to_multiple_loci_per), "Relative percent"],
[label, "Multi_map_to_too_many_loci",
str(Multi_map_to_too_many_loci_per), "Relative percent"],
[label, "Unmap_dueto_mismatch", str(Mismtach_caused_unmap_per),
"Relative percent"],
[label, "Unmap_dueto_too_short", str(Short_caused_unmap_per),
"Relative percent"],
[label, "Unmap_dueto_other", str(Other_caused_unmap_per),
"Relative percent"]
]
print >>total_melt_fh, "\n".join(['\t'.join(j) for j in lineL])
totalTable_cnt_fh.close()
totalTable_per_fh.close()
if melt:
total_melt_fh.close()
plot_melt(total_melt, labelL)
else:
plot_heatmap(totalTable_cnt, totalTable_per, sample_readin)
generateDoc(report_dir, report_sub_dir, totalTable_cnt,
totalTable_per, total_melt, curation_label, melt, bigwig, labelL)
###--------multi-process------------------
if __name__ == '__main__':
startTime = strftime(timeformat, localtime())
main()
endTime = strftime(timeformat, localtime())
fh = open('python.log', 'a')
print >>fh, "%s\n\tRun time : %s - %s " % \
(' '.join(sys.argv), startTime, endTime)
fh.close()
###---------profile the program---------
#import profile
#profile_output = sys.argv[0]+".prof.txt")
#profile.run("main()", profile_output)
#import pstats
#p = pstats.Stats(profile_output)
#p.sort_stats("time").print_stats()
###---------profile the program---------