-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain.py
357 lines (283 loc) · 14.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import collections
import logging
import sys
import traceback
from collections import defaultdict, OrderedDict
import logger as data_logger
import numpy as np
from sacred.observers import FileStorageObserver
from src.commons.plotly.utils import get_traceopts_errors
from src.commons.pytorch.evaluation.evaluation import evaluate_model
from src.commons.sacred.oberservers.log import LogObserver
from src.commons.sn.implementation.ComputationCostEvaluator import ComputationCostEvaluator
from src.commons.sn.interface.PathRecorder import PathRecorder
from src.commons.utils import EMA, print_properties, save_checkpoint
from src.configurations.optim import optim_config
from src.results.utils import paretize_exp
logging.basicConfig(level=logging.INFO)
import torch
from sacred import Experiment
from sacred import SETTINGS as SACRED_SETTINGS
from visdom import Visdom
from src.commons import external_resources as external
from src.configurations.dataset import dataset_config
from src.configurations.model import model_config
logger = logging.getLogger(__name__)
ex = Experiment('ASC')
@ex.config
def config_exp():
# seed = 1234
device = 'cuda'
nepochs = 200000
lambda_reward = 0
r_beta = .9
r_gamma = 0
debug = False
use_visdom = True
use_mongo = True
if use_visdom:
visdom_config_path = None
visdom_conf = external.get_visdom_conf(visdom_config_path)
ex.observers.append(LogObserver.create(visdom_conf))
else:
visdom_conf = None
if use_mongo:
mongo_config_path = './resources/mongo_credentials.json'
ex.observers.append(external.get_mongo_obs(mongo_path=mongo_config_path))
else:
mongo_config_path = None
ex_path = './runs'
ex.observers.append(FileStorageObserver.create(ex_path))
create_dataset = dataset_config(ex)
create_model = model_config(ex)
create_optim = optim_config(ex)
torch.backends.cudnn.benchmark = True
def plot_(visdom, per_node_step_vals, node_names, title, win, log_func=None):
for node_idx, node_name in enumerate(node_names):
per_step_vals = per_node_step_vals[node_idx]
plot_meters(visdom, per_step_vals, node_name, title, win, log_func=log_func)
def plot_meters(visdom, values, name, title=None, win=None, error_bars=True, log_func=None):
x, means, stds = zip(*([(k, *v.value()) for k, v in sorted(values.items())]))
opts = dict(showlegend=True)
if error_bars:
errors = np.array(stds)
errors[errors == np.inf] = 0
opts['traceopts'] = get_traceopts_errors(name, errors.tolist())
if title is not None:
opts['title'] = title
if log_func is not None:
log_func(name + '.x', list(x))
log_func(name + '.means', list(means))
log_func(name + '.stds', list(stds))
win = win or name
update = 'replace' if visdom.win_exists(win) else None
try:
visdom.line(Y=np.array(means), X=np.array(x), name=name, win=win, update=update, opts=opts)
except ConnectionError as err:
logger.warning('#####\n#####\n#####')
logger.warning('Problem when plotting win:{}, title:{} for node {}'.format(win, title, name))
logger.warning(err)
traceback.print_exc()
logger.warning('#####\n#####\n#####')
return False
return True
def model_name(config):
model = config['model']
if model == 'cnf':
model += '_l{}s{}c{}'.format(config['n_layer'], config['n_scale'], config['n_chan'])
return model
def format_exp_name(_id, config):
name = model_name(config)
if config['static']:
name += '_static'
name += '_{}'.format(_id)
if config['debug']:
name = 'Debug_' + name
return name
@ex.main
def main(_run, nepochs, device, use_visdom, visdom_conf, n_classes, lambda_reward, r_beta, r_gamma, _config):
exp_name = format_exp_name(_run._id, _config)
if use_visdom:
visdom_conf.update(env=exp_name)
_run.info['visdom_server'] = "{server}:{port}/env/{env}".format(**visdom_conf)
else:
_run.info['visdom_server'] = "No visdom"
_run.info['exp_name'] = exp_name
front = _run.info['front'] = {}
xp_logger = data_logger.Experiment(exp_name, use_visdom=use_visdom, visdom_opts=visdom_conf, time_indexing=False,
xlabel='Epoch', log_git_hash=False)
xp_logger.add_log_hook(_run.log_scalar)
if use_visdom:
xp_logger.plotter.windows_opts = defaultdict(lambda: dict(showlegend=True))
viz = Visdom(**visdom_conf) if use_visdom else None
# Dataset creation
logger.info('### Dataset ###')
ds, batch_first, class_w = create_dataset()
_run.info['class_weights'] = class_w.tolist()
confusion_matrix_opts = {
'columnnames': ds['train'].dataset.ordered_class_names,
'rownames': ds['train'].dataset.ordered_class_names}
# Model Creation
logger.info('### Model ###')
adaptive_model = create_model()
adaptive_model.loss = torch.nn.CrossEntropyLoss(weight=class_w, reduction='none', ignore_index=-7)
path_recorder = PathRecorder(adaptive_model.stochastic_model)
cost_evaluator = ComputationCostEvaluator(node_index=path_recorder.node_index, bw=False)
# cost_evaluator = SimpleEdgeCostEvaluator(node_index=path_recorder.node_index, bw=False)
cost_evaluator.init_costs(adaptive_model.stochastic_model)
logger.info('Cost: {:.5E}'.format(cost_evaluator.total_cost))
adaptive_model.to(device)
# Optim Creation
logger.info('### Optim ###')
optimizer, schedulder = create_optim(params=adaptive_model.get_param_groups())
# Check the param_groups order, to be sure to get the learning rates in the right order for logging
assert [pg['name'] for pg in optimizer.param_groups] == ['arch_params', 'pred_params']
def optim_closure(loss):
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Logger creation
splits = ['train', 'validation', 'test']
metrics = ['classif_loss', 'arch_loss', 'reward', 'lambda_reward', 'silence_ratio', 'accuracy', 'average_cost',
'learning_rate_pred', 'learning_rate_arch']
for split in splits:
xp_logger.ParentWrapper(tag=split, name='parent'.format(split),
children=[xp_logger.SimpleMetric(name=metric) for metric in metrics])
train_cost_loggers = dict((i, xp_logger.AvgMetric(name='train_cost', tag=name))
for i, name in enumerate(ds['train'].dataset.ordered_class_names))
train_cost_loggers_perc = dict((i, xp_logger.AvgMetric(name='train_cost_perceived', tag=name))
for i, name in enumerate(ds['train'].dataset.ordered_class_names))
node_names = adaptive_model.stochastic_model.ordered_node_names
# entropy_loggers = [xp_logger.SimpleMetric(name='entropy', tag=name) for name in node_names]
entropy_loggers = OrderedDict(
(i, xp_logger.SimpleMetric(name='entropy_per_node', tag=name)) for i, name in enumerate(node_names))
# proba_loggers = [xp_logger.SimpleMetric(name='proba', tag=name) for name in node_names]
proba_loggers = OrderedDict(
(i, xp_logger.SimpleMetric(name='proba_per_node', tag=name)) for i, name in enumerate(node_names))
val_cost_loggers = dict((i, xp_logger.AvgMetric(name='val_cost', tag=name))
for i, name in enumerate(ds['validation'].dataset.ordered_class_names))
val_cost_loggers_perc = dict((i, xp_logger.AvgMetric(name='val_cost_perceived', tag=name))
for i, name in enumerate(ds['validation'].dataset.ordered_class_names))
test_cost_loggers = dict((i, xp_logger.AvgMetric(name='test_cost', tag=name))
for i, name in enumerate(ds['test'].dataset.ordered_class_names))
test_cost_loggers_perc = dict((i, xp_logger.AvgMetric(name='test_cost_perceived', tag=name))
for i, name in enumerate(ds['test'].dataset.ordered_class_names))
if use_visdom:
print_properties(viz, _config)
print_properties(viz, _run.info)
ema_reward = EMA(r_beta) # Init the exponential moving average
for n in range(1, nepochs + 1):
logger.info('### Sarting epoch n°{} ### {}'.format(n, _run.info['visdom_server']))
logger.info(' '.join(sys.argv))
if schedulder:
schedulder.step(n)
arch_lr, pred_lr = schedulder.get_lr()
xp_logger.Parent_Train.update(learning_rate_pred=pred_lr, learning_rate_arch=arch_lr)
# Training
adaptive_model.train()
train_cm, train_costcm, train_costcm_norm, train_cost_per_step, logs, train_cost_per_signal_level, train_stats = evaluate_model(
adaptive_model,
ds['train'],
batch_first, device,
path_recorder,
cost_evaluator,
train_cost_loggers,
train_cost_loggers_perc,
n_classes,
lambda_reward,
ema_reward, r_gamma,
optim_closure,
name='Train')
xp_logger.Parent_Train.update(**dict((k, v.value()[0]) for k, v in logs.items()))
for node_idx, ent in train_stats['en'].items():
entropy_loggers[node_idx].update(ent.value()[0])
for node_idx, prob in train_stats['pn'].items():
proba_loggers[node_idx].update(prob.value()[0])
# Evaluation
adaptive_model.eval()
val_cm, val_costcm, val_costcm_norm, val_cost_per_step, logs, val_cost_per_signal_level, val_stats = evaluate_model(
adaptive_model,
ds['validation'],
batch_first, device,
path_recorder,
cost_evaluator,
val_cost_loggers,
val_cost_loggers_perc,
n_classes, lambda_reward,
ema_reward, r_gamma,
name='Validation')
xp_logger.Parent_Validation.update(**dict((k, v.value()[0]) for k, v in logs.items()))
test_cm, test_costcm, test_costcm_norm, test_cost_per_step, logs, test_cost_per_signal_level, test_stats = evaluate_model(
adaptive_model,
ds['test'], batch_first,
device,
path_recorder,
cost_evaluator,
test_cost_loggers,
test_cost_loggers_perc,
n_classes, lambda_reward,
ema_reward, r_gamma,
name='Test')
xp_logger.Parent_Test.update(**dict((k, v.value()[0]) for k, v in logs.items()))
if use_visdom:
# Log
plot_(viz, train_stats['es'], node_names, f'Entropy per step {n} - Train', 'train_eps',
log_func=_run.log_scalar)
plot_(viz, train_stats['ps'], node_names, f'Probability per step {n} - Train', 'train_pps',
log_func=_run.log_scalar)
try:
viz.heatmap(train_cm, win='train_cm',
opts={**confusion_matrix_opts, 'title': 'Train Confusion matrix'})
viz.heatmap(val_cm, win='val_cm', opts={**confusion_matrix_opts, 'title': 'Val Confusion matrix'})
viz.heatmap(test_cm, win='test_cm',
opts={**confusion_matrix_opts, 'title': 'Test Confusion matrix'})
# viz.heatmap(train_costcm, win='train_cost_matrix',
# opts={**confusion_matrix_opts, 'title': 'Train cost matrix'})
# viz.heatmap(val_costcm, win='val_cost_matrix', opts={**confusion_matrix_opts, 'title': 'Val cost matrix'})
# viz.heatmap(test_costcm, win='test_cost_matrix',
# opts={**confusion_matrix_opts, 'title': 'Test cost matrix'})
viz.heatmap(train_costcm_norm, win='train_cost_matrix_norm',
opts={**confusion_matrix_opts, 'title': 'Train cost matrix Normalized'})
viz.heatmap(val_costcm_norm, win='val_cost_matrix_norm',
opts={**confusion_matrix_opts, 'title': 'Val cost matrix Normalized'})
viz.heatmap(test_costcm_norm, win='test_cost_matrix_norm',
opts={**confusion_matrix_opts, 'title': 'Test cost matrix Normalized'})
except ConnectionError as err:
logger.warning('Error in heatmaps:')
logger.warning(err)
traceback.print_exc()
plot_meters(viz, train_cost_per_step, 'train_cps', 'Cost per step {}'.format(n), win='cps',
log_func=_run.log_scalar)
plot_meters(viz, val_cost_per_step, 'val_cps', win='cps', log_func=_run.log_scalar)
plot_meters(viz, test_cost_per_step, 'test_cps', win='cps', log_func=_run.log_scalar)
plot_meters(viz, train_cost_per_signal_level, 'cost/sig_train', 'Cost per signal {}'.format(n), win='cpsig',
error_bars=False, log_func=_run.log_scalar)
plot_meters(viz, val_cost_per_signal_level, 'cost/sig_val', win='cpsig', error_bars=False,
log_func=_run.log_scalar)
plot_meters(viz, test_cost_per_signal_level, 'cost/sig_test', win='cpsig', error_bars=False,
log_func=_run.log_scalar)
xp_logger.log_with_tag(tag='*', reset=True)
msg = 'Losses: {:.3f}({:.3E})-{:.3f}-{:.3f}, Accuracies: {:.3f}-{:.3f}-{:.3f}, Avg cost: {:.3E}-{:.3E}-{:.3E}'
msg = msg.format(xp_logger.classif_loss_train, xp_logger.reward_train, xp_logger.classif_loss_validation,
xp_logger.classif_loss_test, xp_logger.accuracy_train, xp_logger.accuracy_validation,
xp_logger.accuracy_test, xp_logger.average_cost_train, xp_logger.average_cost_validation,
xp_logger.average_cost_test)
logger.info(msg)
pareto_data = {'cost': xp_logger.logged['average_cost_validation'].values(),
'acc': xp_logger.logged['accuracy_validation'].values(),
'_orig_': xp_logger.logged['average_cost_validation'].keys()}
pareto = paretize_exp(pareto_data, x_name='cost', crit_name='acc')
if n in pareto['_orig_']:
logger.info('New on front !')
front.update(**pareto)
save_checkpoint(adaptive_model, ex, n)
elif n > 0 and n % 50 == 0:
logger.info('Checkpointing')
save_checkpoint(adaptive_model, ex, n)
logger.info(pareto['_orig_'])
best_epoch = pareto['_orig_'][-1]
logger.info('Best \tVal: {:.3f} - Test: {:.3f} (Epoch {})\n'
.format(xp_logger.logged['accuracy_validation'][best_epoch],
xp_logger.logged['accuracy_test'][best_epoch], best_epoch))
if __name__ == '__main__':
ex.run_commandline()