forked from moskomule/senet.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimagenet.py
50 lines (43 loc) · 1.81 KB
/
imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import os
from se_resnet import se_resnet50
from utils import Trainer, StepLR
import torch
from torch import nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
def main(batch_size, data_root):
transform_train = transforms.Compose([
transforms.RandomSizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
transform_test = transforms.Compose([
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
traindir = os.path.join(data_root, 'train')
valdir = os.path.join(data_root, 'val')
train = datasets.ImageFolder(traindir, transform_train)
val = datasets.ImageFolder(valdir, transform_test)
train_loader = torch.utils.data.DataLoader(
train, batch_size=batch_size, shuffle=True, num_workers=8)
test_loader = torch.utils.data.DataLoader(
val, batch_size=batch_size, shuffle=True, num_workers=8)
_se_resnet = se_resnet50(num_classes=1000)
se_resnet = nn.DataParallel(_se_resnet, device_ids=[0, 1])
optimizer = optim.SGD(params=se_resnet.parameters(), lr=0.6, momentum=0.9, weight_decay=1e-4)
scheduler = StepLR(optimizer, 30, gamma=0.1)
trainer = Trainer(se_resnet, optimizer, F.cross_entropy, save_dir=".")
trainer.loop(100, train_loader, test_loader, scheduler)
if __name__ == '__main__':
import argparse
p = argparse.ArgumentParser()
p.add_argument("root", help="imagenet data root")
p.add_argument("--batch_size", default=128, type=int)
args = p.parse_args()
main(args.batch_size, args.root)