This repository contains an implementation of the iterative Linear Quadratic Regulator (iLQR) using the JAX library. The iLQR is a powerful algorithm used for optimal control, and this implementation is designed to be fully differentiable.
To get started with this code, clone the repository and install the required dependencies. Then, you can run the main script to see the iLQR in action.
git clone git@github.com:ThomasMullen/diffilqrax.git
cd diffilqrax
python -m build
pip install -e .
or, you can import from pip install
pip install diffilqrax
import jax.numpy as jnp
import jax.random as jr
from diffilqrax import ilqr
from diffilqrax.typs import iLQRParams, Theta, ModelDims, System
from diffilqrax.utils import initialise_stable_dynamics, keygen
dims = ModelDims(8, 2, 100, dt=0.1)
key = jr.PRNGKey(seed=234)
key, skeys = keygen(key, 5)
Uh = initialise_stable_dynamics(next(skeys), dims.n, dims.horizon, 0.6)[0]
Wh = jr.normal(next(skeys), (dims.n, dims.m))
theta = Theta(Uh=Uh, Wh=Wh, sigma=jnp.zeros(dims.n), Q=jnp.eye(dims.n))
params = iLQRParams(x0=jr.normal(next(skeys), dims.n), theta=theta)
Us = jnp.zeros((dims.horizon, dims.m))
# define linesearch hyper parameters
ls_kwargs = {
"beta":0.8,
"max_iter_linesearch":16,
"tol":1e0,
"alpha_min":0.0001,
}
def cost(t, x, u, theta):
return jnp.sum(x**2) + jnp.sum(u**2)
def costf(x, theta):
return jnp.sum(x**2)
def dynamics(t, x, u, theta):
return jnp.tanh(theta.Uh @ x + theta.Wh @ u)
model = System(cost, costf, dynamics, dims)
ilqr.ilqr_solver(params, model, Us, **ls_kwargs)
This project is licensed under the MIT License. See the LICENSE file for details.
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement #813457.