-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy patheval.py
116 lines (92 loc) · 4.19 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import warnings
warnings.filterwarnings("ignore")
import metric6a
import infer
import mmcv
import os
from pathlib import Path
import time
import pandas as pd
import argparse
from tqdm import tqdm
def get_results(img_dir, annot_dir, post_proc):
results = []
for pname in tqdm(os.listdir(img_dir)):
sample_name = Path(pname).stem
img_path = img_dir + f"/{str(pname)}"
annot_path = annot_dir + f"/{sample_name}.json"
annot = mmcv.load(annot_path)
charttype = annot['task1']['output']['chart_type']
if 'line' != charttype.lower().strip():
continue
img = mmcv.imread(img_path)
# print(annot['task6']['output']['visual elements']['lines'])
try:
pred_ds = infer.get_dataseries(img, annot=None, to_clean=False, post_proc=post_proc, mask_kp_sample_interval=10)
# if sample_name == 'PMC6362862___7':
# exit(0)
except Exception as e:
print('*'*8, f'Exception occured for: {img_path}', '*'*8)
print('Exception:', e)
raise
pred_ds = []
results.append({'name': sample_name, 'pred': pred_ds, 'gt': annot['task6']['output']['visual elements']['lines']})
return results
def get_metric(results, score_func):
s = []
for sample in results:
try:
s.append({'name':sample['name'], 'score': score_func(sample['pred'], sample['gt'], gt_type="lines")})
except:
# https://github.com/scipy/scipy/pull/7031 Need this fix in scipy module.
# only one case fialing, so ingoring.
# print(edited_v)
# print(annot['task6']['output']['visual elements']['lines'])
print("Failed to caculate the score on " + sample['name'])
pass
s = pd.DataFrame(s)
return s
def handle_arg_errors(args):
if not Path(args.data_dir).exists():
raise FileNotFoundError(f"{args.data_dir} does not exist!")
elif not Path(f"{args.data_dir}/images/").exists():
raise FileNotFoundError(f"Image Directory {args.img_dir} does not exist!")
elif not Path(f"{args.data_dir}/annot/").exists():
raise FileNotFoundError(f"Annotation Directory {args.annot_dir} does not exist!")
elif not Path(args.model_config).exists():
raise FileNotFoundError(f"Model config path {args.model_config} does not exist!")
elif not Path(args.model_ckpt).exists():
raise FileNotFoundError(f"Model ckpt {args.model_ckpt} does not exist!")
def main():
parser = argparse.ArgumentParser(description='Process some data.')
# Add arguments
parser.add_argument('data_dir', type=str, help='Path to data directory')
parser.add_argument('--model_config', type=str, nargs='?', default="lineformer_swin_t_config.py", help='Path to model config')
parser.add_argument('--model_ckpt', type=str, nargs='?', default="iter_3000.pth", help='Path to saved model checkpoint')
parser.add_argument('--device', type=str, nargs='?', default="cuda:0", help='Device to run model inference')
parser.add_argument('--postproc', action='store_true', help='Turn on postprocessing in data extraction')
# Parse arguments
args = parser.parse_args()
handle_arg_errors(args)
# Load the model
infer.load_model(args.model_config, args.model_ckpt, args.device)
# Access the arguments
annot_dir = f"{args.data_dir}/annot/"
img_dir = f"{args.data_dir}/images/"
# Run Inference on all the samples...
print('Evaluating on :', args.data_dir)
results = get_results(img_dir, annot_dir, post_proc=args.postproc)
print('Calculating 6a score')
df_6a = get_metric(results, score_func=metric6a.metric_6a_indv)
print('Calculating 6b score')
df_6b = get_metric(results, score_func=metric6a.metric_6b_indv)
print('------------Results------------')
print("Average 6a score: "+str(df_6a['score'].mean()))
print("Average 6b score: "+str(df_6b['score'].mean()))
df_scores = pd.merge(df_6a, df_6b, how='outer', on='name', suffixes=("_6a", "_6b"))
fname = f"results_{time.time()}.csv"
df_scores.to_csv(fname, index=False)
print('******Saving scores as:', fname, "*******")
return
if __name__ == '__main__':
main()