-
-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
Copy pathminimum_spanning_tree.rs
159 lines (148 loc) · 4.76 KB
/
minimum_spanning_tree.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
//! This module implements Kruskal's algorithm to find the Minimum Spanning Tree (MST)
//! of an undirected, weighted graph using a Disjoint Set Union (DSU) for cycle detection.
use crate::graph::DisjointSetUnion;
/// Represents an edge in the graph with a source, destination, and associated cost.
#[derive(Debug, PartialEq, Eq)]
pub struct Edge {
/// The starting vertex of the edge.
source: usize,
/// The ending vertex of the edge.
destination: usize,
/// The cost associated with the edge.
cost: usize,
}
impl Edge {
/// Creates a new edge with the specified source, destination, and cost.
pub fn new(source: usize, destination: usize, cost: usize) -> Self {
Self {
source,
destination,
cost,
}
}
}
/// Executes Kruskal's algorithm to compute the Minimum Spanning Tree (MST) of a graph.
///
/// # Parameters
///
/// - `edges`: A vector of `Edge` instances representing all edges in the graph.
/// - `num_vertices`: The total number of vertices in the graph.
///
/// # Returns
///
/// An `Option` containing a tuple with:
///
/// - The total cost of the MST (usize).
/// - A vector of edges that are included in the MST.
///
/// Returns `None` if the graph is disconnected.
///
/// # Complexity
///
/// The time complexity is O(E log E), where E is the number of edges.
pub fn kruskal(mut edges: Vec<Edge>, num_vertices: usize) -> Option<(usize, Vec<Edge>)> {
let mut dsu = DisjointSetUnion::new(num_vertices);
let mut mst_cost: usize = 0;
let mut mst_edges: Vec<Edge> = Vec::with_capacity(num_vertices - 1);
// Sort edges by cost in ascending order
edges.sort_unstable_by_key(|edge| edge.cost);
for edge in edges {
if mst_edges.len() == num_vertices - 1 {
break;
}
// Attempt to merge the sets containing the edge’s vertices
if dsu.merge(edge.source, edge.destination) != usize::MAX {
mst_cost += edge.cost;
mst_edges.push(edge);
}
}
// Return MST if it includes exactly num_vertices - 1 edges, otherwise None for disconnected graphs
(mst_edges.len() == num_vertices - 1).then_some((mst_cost, mst_edges))
}
#[cfg(test)]
mod tests {
use super::*;
macro_rules! test_cases {
($($name:ident: $test_case:expr,)*) => {
$(
#[test]
fn $name() {
let (edges, num_vertices, expected_result) = $test_case;
let actual_result = kruskal(edges, num_vertices);
assert_eq!(actual_result, expected_result);
}
)*
};
}
test_cases! {
test_seven_vertices_eleven_edges: (
vec![
Edge::new(0, 1, 7),
Edge::new(0, 3, 5),
Edge::new(1, 2, 8),
Edge::new(1, 3, 9),
Edge::new(1, 4, 7),
Edge::new(2, 4, 5),
Edge::new(3, 4, 15),
Edge::new(3, 5, 6),
Edge::new(4, 5, 8),
Edge::new(4, 6, 9),
Edge::new(5, 6, 11),
],
7,
Some((39, vec![
Edge::new(0, 3, 5),
Edge::new(2, 4, 5),
Edge::new(3, 5, 6),
Edge::new(0, 1, 7),
Edge::new(1, 4, 7),
Edge::new(4, 6, 9),
]))
),
test_ten_vertices_twenty_edges: (
vec![
Edge::new(0, 1, 3),
Edge::new(0, 3, 6),
Edge::new(0, 4, 9),
Edge::new(1, 2, 2),
Edge::new(1, 3, 4),
Edge::new(1, 4, 9),
Edge::new(2, 3, 2),
Edge::new(2, 5, 8),
Edge::new(2, 6, 9),
Edge::new(3, 6, 9),
Edge::new(4, 5, 8),
Edge::new(4, 9, 18),
Edge::new(5, 6, 7),
Edge::new(5, 8, 9),
Edge::new(5, 9, 10),
Edge::new(6, 7, 4),
Edge::new(6, 8, 5),
Edge::new(7, 8, 1),
Edge::new(7, 9, 4),
Edge::new(8, 9, 3),
],
10,
Some((38, vec![
Edge::new(7, 8, 1),
Edge::new(1, 2, 2),
Edge::new(2, 3, 2),
Edge::new(0, 1, 3),
Edge::new(8, 9, 3),
Edge::new(6, 7, 4),
Edge::new(5, 6, 7),
Edge::new(2, 5, 8),
Edge::new(4, 5, 8),
]))
),
test_disconnected_graph: (
vec![
Edge::new(0, 1, 4),
Edge::new(0, 2, 6),
Edge::new(3, 4, 2),
],
5,
None
),
}
}