-
-
Notifications
You must be signed in to change notification settings - Fork 7.3k
/
Copy pathhill_cipher.cpp
544 lines (475 loc) · 18.5 KB
/
hill_cipher.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
/**
* @file hill_cipher.cpp
* @brief Implementation of [Hill
* cipher](https://en.wikipedia.org/wiki/Hill_cipher) algorithm.
*
* Program to generate the encryption-decryption key and perform encryption and
* decryption of ASCII text using the famous block cipher algorithm. This is a
* powerful encryption algorithm that is relatively easy to implement with a
* given key. The strength of the algorithm depends on the size of the block
* encryption matrix key; the bigger the matrix, the stronger the encryption and
* more difficult to break it. However, the important requirement for the matrix
* is that:
* 1. matrix should be invertible - all inversion conditions should be satisfied
* and
* 2. its determinant must not have any common factors with the length of
* character set
* Due to this restriction, most implementations only implement with small 3x3
* encryption keys and a small subset of ASCII alphabets.
*
* In the current implementation, I present to you an implementation for
* generating larger encryption keys (I have attempted upto 10x10) and an ASCII
* character set of 97 printable characters. Hence, a typical ASCII text file
* could be easily encrypted with the module. The larger character set increases
* the modulo of cipher and hence the matrix determinants can get very large
* very quickly rendering them ill-defined.
*
* \note This program uses determinant computation using LU decomposition from
* the file lu_decomposition.h
* \note The matrix generation algorithm is very rudimentary and does not
* guarantee an invertible modulus matrix. \todo Better matrix generation
* algorithm.
*
* @author [Krishna Vedala](https://github.com/kvedala)
*/
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstring>
#include <ctime>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <string>
#ifdef _OPENMP
#include <omp.h>
#endif
#include "../numerical_methods/lu_decomposition.h"
/**
* operator to print a matrix
*/
template <typename T>
static std::ostream &operator<<(std::ostream &out, matrix<T> const &v) {
const int width = 15;
const char separator = ' ';
for (size_t row = 0; row < v.size(); row++) {
for (size_t col = 0; col < v[row].size(); col++)
out << std::left << std::setw(width) << std::setfill(separator)
<< v[row][col];
out << std::endl;
}
return out;
}
/** \namespace ciphers
* \brief Algorithms for encryption and decryption
*/
namespace ciphers {
/** dictionary of characters that can be encrypted and decrypted */
static const char *STRKEY =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789~!@#$%^&"
"*()_+`-=[]{}|;':\",./<>?\\\r\n \0";
/**
* @brief Implementation of [Hill
* Cipher](https://en.wikipedia.org/wiki/Hill_cipher) algorithm
*/
class HillCipher {
private:
/**
* @brief Function to generate a random integer in a given interval
*
* @param a lower limit of interval
* @param b upper limit of interval
* @tparam T type of output
* @return random integer in the interval \f$[a,b)\f$
*/
template <typename T1, typename T2>
static const T2 rand_range(T1 a, T1 b) {
// generate random number between 0 and 1
long double r = static_cast<long double>(std::rand()) / RAND_MAX;
// scale and return random number as integer
return static_cast<T2>(r * (b - a) + a);
}
/**
* @brief Function overload to fill a matrix with random integers in a given
* interval
*
* @param M pointer to matrix to be filled with random numbers
* @param a lower limit of interval
* @param b upper limit of interval
* @tparam T1 type of input range
* @tparam T2 type of matrix
* @return determinant of generated random matrix
*
* @warning There will need to be a balance between the matrix size and the
* range of random numbers. If the matrix is large, the range of random
* numbers must be small to have a well defined keys. Or if the matrix is
* smaller, the random numbers range can be larger. For an 8x8 matrix, range
* should be no more than \f$[0,10]\f$
*/
template <typename T1, typename T2>
static double rand_range(matrix<T2> *M, T1 a, T1 b) {
for (size_t i = 0; i < M->size(); i++) {
for (size_t j = 0; j < M[0][0].size(); j++) {
M[0][i][j] = rand_range<T1, T2>(a, b);
}
}
return determinant_lu(*M);
}
/**
* @brief Compute
* [GCD](https://en.wikipedia.org/wiki/Greatest_common_divisor) of two
* integers using Euler's algorithm
*
* @param a first number
* @param b second number
* @return GCD of \f$a\f$ and \f$b\f$
*/
template <typename T>
static const T gcd(T a, T b) {
if (b > a) // ensure always a < b
std::swap(a, b);
while (b != 0) {
T tmp = b;
b = a % b;
a = tmp;
}
return a;
}
/**
* @brief helper function to perform vector multiplication with encryption
* or decryption matrix
*
* @param vector vector to multiply
* @param key encryption or decryption key matrix
* @return corresponding encrypted or decrypted text
*/
static const std::valarray<uint8_t> mat_mul(
const std::valarray<uint8_t> &vector, const matrix<int> &key) {
std::valarray<uint8_t> out(vector); // make a copy
size_t L = std::strlen(STRKEY);
for (size_t i = 0; i < key.size(); i++) {
int tmp = 0;
for (size_t j = 0; j < vector.size(); j++) {
tmp += key[i][j] * vector[j];
}
out[i] = static_cast<uint8_t>(tmp % L);
}
return out;
}
/**
* @brief Get the character at a given index in the ::STRKEY
*
* @param idx index value
* @return character at the index
*/
static inline char get_idx_char(const uint8_t idx) { return STRKEY[idx]; }
/**
* @brief Get the index of a character in the ::STRKEY
*
* @param ch character to search
* @return index of character
*/
static inline uint8_t get_char_idx(const char ch) {
size_t L = std::strlen(STRKEY);
for (size_t idx = 0; idx <= L; idx++)
if (STRKEY[idx] == ch)
return idx;
std::cerr << __func__ << ":" << __LINE__ << ": (" << ch
<< ") Should not reach here!\n";
return 0;
}
/**
* @brief Convenience function to perform block cipher operations. The
* operations are identical for both encryption and decryption.
*
* @param text input text to encrypt or decrypt
* @param key key for encryption or decryption
* @return encrypted/decrypted output
*/
static const std::string codec(const std::string &text,
const matrix<int> &key) {
size_t text_len = text.length();
size_t key_len = key.size();
// length of output string must be a multiple of key_len
// create output string and initialize with '\0' character
size_t L2 = text_len % key_len == 0
? text_len
: text_len + key_len - (text_len % key_len);
std::string coded_text(L2, '\0');
// temporary array for batch processing
int i;
#ifdef _OPENMP
#pragma parallel omp for private(i)
#endif
for (i = 0; i < L2 - key_len + 1; i += key_len) {
std::valarray<uint8_t> batch_int(key_len);
for (size_t j = 0; j < key_len; j++) {
batch_int[j] = get_char_idx(text[i + j]);
}
batch_int = mat_mul(batch_int, key);
for (size_t j = 0; j < key_len; j++) {
coded_text[i + j] =
STRKEY[batch_int[j]]; // get character at key
}
}
return coded_text;
}
/**
* Get matrix inverse using Row-transformations. Given matrix must
* be a square and non-singular.
* \returns inverse matrix
**/
template <typename T>
static matrix<double> get_inverse(matrix<T> const &A) {
// Assuming A is square matrix
size_t N = A.size();
matrix<double> inverse(N, std::valarray<double>(N));
for (size_t row = 0; row < N; row++) {
for (size_t col = 0; col < N; col++) {
// create identity matrix
inverse[row][col] = (row == col) ? 1.f : 0.f;
}
}
if (A.size() != A[0].size()) {
std::cerr << "A must be a square matrix!" << std::endl;
return inverse;
}
// preallocate a temporary matrix identical to A
matrix<double> temp(N, std::valarray<double>(N));
for (size_t row = 0; row < N; row++) {
for (size_t col = 0; col < N; col++)
temp[row][col] = static_cast<double>(A[row][col]);
}
// start transformations
for (size_t row = 0; row < N; row++) {
for (size_t row2 = row; row2 < N && temp[row][row] == 0; row2++) {
// this to ensure diagonal elements are not 0
temp[row] = temp[row] + temp[row2];
inverse[row] = inverse[row] + inverse[row2];
}
for (size_t col2 = row; col2 < N && temp[row][row] == 0; col2++) {
// this to further ensure diagonal elements are not 0
for (size_t row2 = 0; row2 < N; row2++) {
temp[row2][row] = temp[row2][row] + temp[row2][col2];
inverse[row2][row] =
inverse[row2][row] + inverse[row2][col2];
}
}
if (temp[row][row] == 0) {
// Probably a low-rank matrix and hence singular
std::cerr << "Low-rank matrix, no inverse!" << std::endl;
return inverse;
}
// set diagonal to 1
double divisor = temp[row][row];
temp[row] = temp[row] / divisor;
inverse[row] = inverse[row] / divisor;
// Row transformations
for (size_t row2 = 0; row2 < N; row2++) {
if (row2 == row)
continue;
double factor = temp[row2][row];
temp[row2] = temp[row2] - factor * temp[row];
inverse[row2] = inverse[row2] - factor * inverse[row];
}
}
return inverse;
}
static int modulo(int a, int b) {
int ret = a % b;
if (ret < 0)
ret += b;
return ret;
}
public:
/**
* @brief Generate encryption matrix of a given size. Larger size matrices
* are difficult to generate but provide more security. Important conditions
* are:
* 1. matrix should be invertible
* 2. determinant must not have any common factors with the length of
* character key
* There is no head-fast way to generate hte matrix under the given
* numerical restrictions of the machine but the conditions added achieve
* the goals. Bigger the matrix, greater is the probability of the matrix
* being ill-defined.
*
* @param size size of matrix (typically \f$\text{size}\le10\f$)
* @param limit1 lower limit of range of random elements (default=0)
* @param limit2 upper limit of range of random elements (default=10)
* @return Encryption martix
*/
static matrix<int> generate_encryption_key(size_t size, int limit1 = 0,
int limit2 = 10) {
matrix<int> encrypt_key(size, std::valarray<int>(size));
matrix<int> min_mat = encrypt_key;
int mat_determinant = -1; // because matrix has only ints, the
// determinant will also be an int
int L = std::strlen(STRKEY);
double dd;
do {
// keeping the random number range smaller generates better
// defined matrices with more ease of cracking
dd = rand_range(&encrypt_key, limit1, limit2);
mat_determinant = static_cast<int>(dd);
if (mat_determinant < 0)
mat_determinant = (mat_determinant % L);
} while (std::abs(dd) > 1e3 || // while ill-defined
dd < 0.1 || // while singular or negative determinant
!std::isfinite(dd) || // while determinant is not finite
gcd(mat_determinant, L) != 1); // while no common factors
// std::cout <<
return encrypt_key;
}
/**
* @brief Generate decryption matrix from an encryption matrix key.
*
* @param encrypt_key encryption key for which to create a decrypt key
* @return Decryption martix
*/
static matrix<int> generate_decryption_key(matrix<int> const &encrypt_key) {
size_t size = encrypt_key.size();
int L = std::strlen(STRKEY);
matrix<int> decrypt_key(size, std::valarray<int>(size));
int det_encrypt = static_cast<int>(determinant_lu(encrypt_key));
int mat_determinant = det_encrypt < 0 ? det_encrypt % L : det_encrypt;
matrix<double> tmp_inverse = get_inverse(encrypt_key);
double d2 = determinant_lu(decrypt_key);
// find co-prime factor for inversion
int det_inv = -1;
for (int i = 0; i < L; i++) {
if (modulo(mat_determinant * i, L) == 1) {
det_inv = i;
break;
}
}
if (det_inv == -1) {
std::cerr << "Could not find a co-prime for inversion\n";
std::exit(EXIT_FAILURE);
}
mat_determinant = det_inv * det_encrypt;
// perform modular inverse of encryption matrix
int i;
#ifdef _OPENMP
#pragma parallel omp for private(i)
#endif
for (i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {
int temp = std::round(tmp_inverse[i][j] * mat_determinant);
decrypt_key[i][j] = modulo(temp, L);
}
}
return decrypt_key;
}
/**
* @brief Generate encryption and decryption key pair
*
* @param size size of matrix key (typically \f$\text{size}\le10\f$)
* @param limit1 lower limit of range of random elements (default=0)
* @param limit2 upper limit of range of random elements (default=10)
* @return std::pair<matrix<int>, matrix<int>> encryption and decryption
* keys as a pair
*
* @see ::generate_encryption_key
*/
static std::pair<matrix<int>, matrix<int>> generate_keys(size_t size,
int limit1 = 0,
int limit2 = 10) {
matrix<int> encrypt_key = generate_encryption_key(size);
matrix<int> decrypt_key = generate_decryption_key(encrypt_key);
double det2 = determinant_lu(decrypt_key);
while (std::abs(det2) < 0.1 || std::abs(det2) > 1e3) {
encrypt_key = generate_encryption_key(size, limit1, limit2);
decrypt_key = generate_decryption_key(encrypt_key);
det2 = determinant_lu(decrypt_key);
}
return std::make_pair(encrypt_key, decrypt_key);
}
/**
* @brief Encrypt a given text using a given key
*
* @param text string to encrypt
* @param encrypt_key key for encryption
* @return encrypted text
*/
static const std::string encrypt_text(const std::string &text,
const matrix<int> &encrypt_key) {
return codec(text, encrypt_key);
}
/**
* @brief Decrypt a given text using a given key
*
* @param text string to decrypt
* @param decrypt_key key for decryption
* @return decrypted text
*/
static const std::string decrypt_text(const std::string &text,
const matrix<int> &decrypt_key) {
return codec(text, decrypt_key);
}
};
} // namespace ciphers
/**
* @brief Self test 1 - using 3x3 randomly generated key
*
* @param text string to encrypt and decrypt
*/
void test1(const std::string &text) {
// std::string text = "Hello world!";
std::cout << "======Test 1 (3x3 key) ======\nOriginal text:\n\t" << text
<< std::endl;
std::pair<matrix<int>, matrix<int>> p =
ciphers::HillCipher::generate_keys(3, 0, 100);
matrix<int> ekey = p.first;
matrix<int> dkey = p.second;
// matrix<int> ekey = {{22, 28, 25}, {5, 26, 15}, {14, 18, 9}};
// std::cout << "Encryption key: \n" << ekey;
std::string gibberish = ciphers::HillCipher::encrypt_text(text, ekey);
std::cout << "Encrypted text:\n\t" << gibberish << std::endl;
// matrix<int> dkey = ciphers::HillCipher::generate_decryption_key(ekey);
// std::cout << "Decryption key: \n" << dkey;
std::string txt_back = ciphers::HillCipher::decrypt_text(gibberish, dkey);
std::cout << "Reconstruct text:\n\t" << txt_back << std::endl;
std::ofstream out_file("hill_cipher_test1.txt");
out_file << "Block size: " << ekey.size() << "\n";
out_file << "Encryption Key:\n" << ekey;
out_file << "\nDecryption Key:\n" << dkey;
out_file.close();
assert(txt_back == text);
std::cout << "Passed :)\n";
}
/**
* @brief Self test 2 - using 8x8 randomly generated key
*
* @param text string to encrypt and decrypt
*/
void test2(const std::string &text) {
// std::string text = "Hello world!";
std::cout << "======Test 2 (8x8 key) ======\nOriginal text:\n\t" << text
<< std::endl;
std::pair<matrix<int>, matrix<int>> p =
ciphers::HillCipher::generate_keys(8, 0, 3);
matrix<int> ekey = p.first;
matrix<int> dkey = p.second;
std::string gibberish = ciphers::HillCipher::encrypt_text(text, ekey);
std::cout << "Encrypted text:\n\t" << gibberish << std::endl;
std::string txt_back = ciphers::HillCipher::decrypt_text(gibberish, dkey);
std::cout << "Reconstruct text:\n\t" << txt_back << std::endl;
std::ofstream out_file("hill_cipher_test2.txt");
out_file << "Block size: " << ekey.size() << "\n";
out_file << "Encryption Key:\n" << ekey;
out_file << "\nDecryption Key:\n" << dkey;
out_file.close();
assert(txt_back.compare(0, text.size(), text) == 0);
std::cout << "Passed :)\n";
}
/** Main function */
int main() {
std::srand(std::time(nullptr));
std::cout << "Key dictionary: (" << std::strlen(ciphers::STRKEY) << ")\n\t"
<< ciphers::STRKEY << "\n";
std::string text = "This is a simple text with numb3r5 and exclamat!0n.";
test1(text);
test2(text);
return 0;
}