generated from kyegomez/Python-Package-Template
-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
220 lines (185 loc) · 6.57 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from typing import List
from loguru import logger
import torch
from torch import nn, optim
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
import timm
from datasets import load_dataset
# Logging setup
# logger.add("finetune_swin_detailed.log", rotation="500 MB")
# Dataset configuration
DATASETS = [
"hongrui/mimic_chest_xray_v_1",
"BahaaEldin0/NIH-Chest-Xray-14-Augmented-70-percent",
"wal14567/train_xray_dataset",
]
# Image size configuration (for standardizing input)
IMAGE_SIZE = 384 # Adjusted for Swin Transformer model (swin_large_patch4_window12_384)
# Device configuration
device = torch.device("cpu") # Only using CPU
logger.info(f"Using device: {device}")
# Custom dataset class for combining datasets
class XrayDataset(Dataset):
def __init__(self, datasets: List[str], transform=None):
self.transform = transform
self.data = []
self.labels = set()
try:
for dataset_name in datasets:
logger.info(f"Loading dataset: {dataset_name}")
dataset = load_dataset(dataset_name, split="train")
for item in dataset:
self.data.append(
{
"image": item["image"],
"label": item.get("report")
or item.get("label"),
}
)
self.labels.add(
item.get("report") or item.get("label")
)
logger.info(
f"Loaded {len(self.data)} samples from datasets"
)
except Exception as e:
logger.error(f"Error loading datasets: {str(e)}")
raise
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
try:
item = self.data[idx]
image = item["image"]
label = item["label"]
if self.transform:
image = self.transform(image)
return image, label
except Exception as e:
logger.error(
f"Error fetching item at index {idx}: {str(e)}"
)
raise
def get_unique_labels(self) -> List[str]:
try:
return list(self.labels)
except Exception as e:
logger.error(f"Error retrieving unique labels: {str(e)}")
raise
# Define image transformations
try:
transform = transforms.Compose(
[
transforms.Resize((IMAGE_SIZE, IMAGE_SIZE)),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
]
)
logger.info("Image transformations defined successfully")
except Exception as e:
logger.error(f"Error defining image transformations: {str(e)}")
raise
# Load datasets and fuse them into one DataLoader
def load_datasets(datasets: List[str], batch_size: int) -> DataLoader:
try:
logger.info(f"Loading and fusing datasets: {datasets}")
dataset = XrayDataset(datasets, transform=transform)
dataloader = DataLoader(
dataset,
batch_size=batch_size,
shuffle=True,
num_workers=0,
)
logger.info(
f"Dataset and DataLoader created successfully with batch_size {batch_size}"
)
return dataset, dataloader
except Exception as e:
logger.error(f"Error loading datasets: {str(e)}")
raise
# Fine-tune the Swin Transformer model
def finetune_swin(
model_name: str,
learning_rate: float,
epochs: int,
batch_size: int,
):
try:
# Load datasets and dataloader
dataset, dataloader = load_datasets(DATASETS, batch_size)
unique_labels = dataset.get_unique_labels()
num_classes = len(unique_labels)
logger.info(
f"Number of unique labels (classes): {num_classes}"
)
logger.info(f"Unique labels: {unique_labels}")
# Create label-to-index mapping
label_to_idx = {
label: idx for idx, label in enumerate(unique_labels)
}
# Load Swin Transformer model from timm
logger.info(f"Loading model {model_name} from timm.")
model = timm.create_model(
model_name, pretrained=True, num_classes=num_classes
)
model.to(device)
# Define loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Training loop
for epoch in range(epochs):
logger.info(f"Epoch {epoch + 1}/{epochs}")
model.train()
running_loss = 0.0
for i, (inputs, labels) in enumerate(dataloader):
try:
inputs = inputs.to(device)
labels = torch.tensor(
[label_to_idx[label] for label in labels]
).to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 10 == 9:
logger.info(
f"Batch {i + 1}, Loss: {running_loss / 10}"
)
running_loss = 0.0
except Exception as e:
logger.error(
f"Error during batch {i + 1} of epoch {epoch + 1}: {str(e)}"
)
raise
logger.info(f"Finished epoch {epoch + 1}")
# Save the model after training
save_path = f"finetuned_{model_name}.pth"
torch.save(model.state_dict(), save_path)
logger.info(f"Model saved to {save_path}")
except Exception as e:
logger.error(f"Error during finetuning: {str(e)}")
raise
# Main function to execute finetuning
def main():
try:
logger.info(
"Starting Swin Transformer finetuning on X-ray datasets."
)
# model_name = (
# "swin_large_patch4_window12_384" # Swin Transformer model
# )
model_name = "vit_base_patch16_224"
learning_rate = 1e-4
epochs = 10
batch_size = 16
finetune_swin(model_name, learning_rate, epochs, batch_size)
except Exception as e:
logger.error(f"Error in the main function: {str(e)}")
raise
if __name__ == "__main__":
main()