-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodels.py
26 lines (22 loc) · 1.06 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import torch
from torch import nn
from transformers import *
class RobertaForAIViVN(BertPreTrainedModel):
config_class = RobertaConfig
base_model_prefix = "roberta"
def __init__(self, config):
super(RobertaForAIViVN, self).__init__(config)
self.num_labels = config.num_labels
self.roberta = RobertaModel(config)
self.qa_outputs = nn.Linear(4*config.hidden_size, self.num_labels)
self.init_weights()
def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
start_positions=None, end_positions=None):
outputs = self.roberta(input_ids,
attention_mask=attention_mask,
# token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask)
cls_output = torch.cat((outputs[2][-1][:,0, ...],outputs[2][-2][:,0, ...], outputs[2][-3][:,0, ...], outputs[2][-4][:,0, ...]),-1)
logits = self.qa_outputs(cls_output)
return logits