-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_orig.m
55 lines (39 loc) · 988 Bytes
/
main_orig.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
clear, close all
dbstop if error
setup_paths
% reset(gpuDevice(1))
run_pretrain_orig();
load('pretrained_model_orig.mat'); %_synthetic_100acc_largenet');
rec_train(model);
%%
% reading the box category
% reading the cylinderical category
% reading the flat category
% reading the spherical category
% reading the torso category
label=1
[samples1] = sample_test_classification(model,label);
show_1_sample(samples1(20,:,:,:))
label=2
[samples2] = sample_test_classification(model,label);
show_1_sample(samples2(20,:,:,:))
%%
label=1
for i=1:size(samples1,1)
rec_test_1_obj(model, samples1(i,:,:,:),label);
end
label=2
for i=1:size(samples2,1)
rec_test_1_obj(model, samples2(i,:,:,:),label);
end
% %%
% rand_sample = zeros(21,21,21);
% prob = rand(21,21,21);
% rand_sample(prob>0.5)=1;
% voxels(1,:,:,:)=rand_sample;
% show_1_sample(voxels(1,:,:,:));
% rec_test_1_obj(model,voxels(1,:,:,:),0);
%%
run_finetuning(model);
load('finetuned_model.mat');
rec_train(model);