-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathChapter3.py
executable file
·137 lines (106 loc) · 3.89 KB
/
Chapter3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# -*- coding: utf-8 -*-
import numpy as np
import datetime
import matplotlib.pyplot as plot
i2 = np.eye(2) # 生成一个单位矩阵
print(i2)
i = i2.real.astype(int)
np.savetxt('eye.log', i)
# c和v分别是csv文件中第1列和第3列的数据列表
c, v = np.loadtxt('data.csv', delimiter=',', usecols=(1,3), unpack=True)
vmap = np.average(c, weights=v) # VMAP 加权平均值, v为权重值
print("vmap:", vmap)
mean = np.mean(c) # MEAN 计算算术平均值
print("mean:", mean)
t = np.arange(len(c))
twap = np.average(c, weights=t) # TWAP 时间加权平均值 (最近的价格重要性更大)
print("twap:", twap)
# 获取数据文件中的最值
print("c.max:", np.max(c))
print("c.min:", np.min(c))
print("v.max:", np.max(v))
print("v.min:", np.min(v))
# 获取数据文件中的极差(最大值和最小值之差)
print("c.ptp", np.ptp(c))
print("v.ptp", np.ptp(v))
# 获取数据文件的中位数
print("c.median:", np.median(c))
## 对中位数结果的检查
N = len(c)
sort = np.msort(c)
print("c.median.check:", (sort[int(N/2)] + sort[int((N-1)/2)])/2)
# 计算方差
## 方差的定义是 各个数据与所有数据的算术平均值 之差 的绝对值的平方和除以个数(与概率论中的说法不完全一致)
print("c.var:", np.var(c))
print("v.var:", np.var(v))
print("c.var.check:", np.mean((c - c.mean())**2))
## !!! 本方法对本数据样本没有参考意义仅仅作为演示
# diff返回一个由相邻的数组元素从差值构成的数组
print("c.diff:", np.diff(sort))
print("c.std:", np.std(np.diff(sort) / sort [:-1]))
# 所有的数据取对数
print("c.log:", np.log(c)) # 一般需要检查正数
# where函数 获取返回值的范围
print("c.where c < 3000", np.where(c < 3000)) # 返回数值小于3k的索引
def get_date(d):
return datetime.datetime.strptime(str(d)[2:-1], r'%Y.%m.%d').date().weekday()
dates, prices = np.loadtxt('data.csv', usecols=(8, 1), delimiter=',', converters={8:get_date}, unpack=True) # 获取文件中日期并全部转换成星期
print(dates)
# 计算分组平均值, 分组个数(以日期为维度)
averages = np.zeros(7) # 创建一个空的numpy数组
counts = np.zeros(7)
for i in range(0,7):
indices = np.where(dates==i)
value = np.take(prices, indices)
avgs = np.mean(value)
lens = np.size(indices)
print("Day:", i, "Count:", lens, "Average:", avgs)
averages[i] = avgs
counts[i] = lens
print("价格最大平均值", averages.max(), "周几", averages.argmax())
print("价格最小平均值", averages.min(), "周几", averages.argmin())
print("数量最小平均值", counts.max(), "周几", counts.argmax())
print("数量最小平均值", counts.min(), "周几", counts.argmin())
# 简单移动平均线
c = np.loadtxt("data.csv", delimiter=',', usecols=1, unpack=True)
N = 5
weights = np.ones(N)/N # 生成权重
sma = np.convolve(weights, c)[N-1:-N+1] # 取出运算结果中间长度为N的数组,这部分是卷积运算时完全覆盖的部分
t = np.arange(N-1, len(c))
# 绘制曲线
plot.plot(t, c[N-1:], lw=1.0)
plot.plot(t, sma, lw=2.0)
plot.show()
# 指数移动平均线
N = 5
weights = np.exp(np.linspace(-1.,0.,N)) # 设置权重,其中linspace函数返回一个 指定范围内 指定个数 均匀分布的数组
weights /= weights.sum()
ema = np.convolve(weights, c)[N-1:-N+1]
# 绘制曲线
plot.plot(t, c[N-1:], lw=1.0)
plot.plot(t, ema, lw=2.0)
plot.show()
# 布林带
## 定义详见文档
devs = list()
C = len(c)
for i in range(N-1, C):
if i+N < C:
dev = c[i:i+N]
else:
dev = c[-N:]
averages = np.zeros(N)
averages.fill(sma[i-N-1])
dev = dev -averages
dev = dev ** 2
dev = np.sqrt(np.mean(dev))
devs.append(dev)
devs = 2*np.array(devs)
up = sma + devs
low = sma - devs
c1 = c[N-1:]
plot.plot(t, c1, lw=1.0)
plot.plot(t, sma, lw=2.0)
plot.plot(t, up, lw=3.0)
plot.plot(t, low, lw=4.0)
plot.show()