-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune.py
453 lines (392 loc) · 17.3 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
# Adapted from https://github.com/pacman100/DHS-LLM-Workshop/blob/main/chat_assistant/training/train.py
# and https://github.com/facebookresearch/llama-recipes
import logging
import math
import os
import random
import sys
from dataclasses import dataclass, field
from functools import partial
from typing import Optional, Tuple
import torch
from datasets import interleave_datasets, load_dataset
from peft import LoraConfig, get_peft_model, PeftModel
from peft.tuners.lora import LoraLayer
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
from tqdm import tqdm
from transformers import HfArgumentParser, TrainingArguments, Trainer, LlamaForCausalLM, LlamaTokenizer, \
default_data_collator, DataCollatorForSeq2Seq, get_polynomial_decay_schedule_with_warmup, PreTrainedModel
from torch.utils.data import Dataset
from transformers.utils import PaddingStrategy
from training_datasets import InstructionDataset, ConstantLengthDataset, ChatDataset
@dataclass
class ScriptArguments:
train_path: str = field(metadata={"help": "Training data path"})
valid_path: Optional[str] = field(metadata={"help": "Validation data path"}, default=None)
train_dataset_type: str = field(
default="alpaca",
metadata={"help": "Training dataset type"}
)
valid_dataset_type: str = field(
default="alpaca",
metadata={"help": "Validation dataset type"}
)
alpaca_prompt_format_path: Optional[str] = field(default=None)
max_seq_length: Optional[int] = field(default=512)
model_name: Optional[str] = field(
default="meta-llama/Llama-2-7b-hf",
metadata={
"help": "The model that you want to train from the Hugging Face hub. E.g. gpt2, gpt2-xl, bert, etc."
},
)
tokenizer_name: Optional[str] = field(
default=None,
)
use_dynamic_padding: bool = field(default=False)
disable_padding: bool = field(default=False)
use_new_pad_token: bool = field(default=False)
interleave_probs: Optional[str] = field(default=None)
torch_dtype: Optional[str] = field(default=None)
low_cpu_mem_usage: bool = field(default=False)
use_flash_attention_2: bool = field(default=False)
save_final_model: bool = field(default=False)
@dataclass
class LoraArguments:
peft_name: Optional[str] = field(
default=None,
metadata={"help": "The pre-trained PEFT model name"}
)
use_peft_lora: Optional[bool] = field(
default=False,
metadata={"help": "Enables PEFT LoRA for training."},
)
lora_alpha: Optional[int] = field(default=16)
lora_dropout: Optional[float] = field(default=0.1)
lora_r: Optional[int] = field(default=64)
lora_target_modules: Optional[str] = field(
default="q_proj,k_proj,v_proj,o_proj,down_proj,up_proj,gate_proj",
metadata={"help": "comma separated list of target modules to apply LoRA layers to"},
)
@dataclass
class QuantizationArguments:
use_8bit_quantization: Optional[bool] = field(
default=False,
metadata={"help": "Enables loading model in 8bit."},
)
use_4bit_quantization: Optional[bool] = field(
default=False,
metadata={"help": "Enables loading model in 4bit."},
)
use_4bit: Optional[bool] = field(
default=True,
metadata={"help": "Activate 4bit precision base model loading"},
)
use_nested_quant: Optional[bool] = field(
default=False,
metadata={"help": "Activate nested quantization for 4bit base models"},
)
bnb_4bit_compute_dtype: Optional[str] = field(
default="float16",
metadata={"help": "Compute dtype for 4bit base models"},
)
bnb_4bit_quant_type: Optional[str] = field(
default="nf4",
metadata={"help": "Quantization type fp4 or nf4"},
)
# https://github.com/pacman100/DHS-LLM-Workshop/blob/main/chat_assistant/training/utils.py#L116C1-L125C43
def get_chars_per_token(dataset: Dataset, tokenizer: LlamaTokenizer, data_column: str, nb_examples: int = 500):
"""
Estimate the average number of characters per token in the dataset.
"""
logging.info("Estimating average number of characters per token in the dataset...")
total_characters, total_tokens = 0, 0
for _, example in tqdm(zip(range(nb_examples), iter(dataset)), total=nb_examples):
total_characters += len(example[data_column])
total_tokens += len(tokenizer.encode(example[data_column], truncation=False, padding=False))
return total_characters / total_tokens
def create_dataset(tokenizer: LlamaTokenizer, args: ScriptArguments, dataset_type: str, path: str, seed: int):
if dataset_type == "alpaca":
logging.info(f"Loading dataset from: {path}")
dataset = InstructionDataset(
data_path=path,
tokenizer=tokenizer,
padding=not args.use_dynamic_padding and not args.disable_padding,
prompt_format_path=args.alpaca_prompt_format_path,
)
elif dataset_type == "culturax":
dataset_paths = list(path.split(","))
logging.info(f"Loading datasets from: {dataset_paths}")
culturax_datasets = []
for ds_path in dataset_paths:
logging.info(f"Loading {ds_path}")
if ":" in ds_path:
ds_name, lang = ds_path.split(":")
culturax_dataset = load_dataset(ds_name, lang, streaming=True, split="train")
else:
culturax_dataset = load_dataset(ds_path, streaming=True, split="train")
culturax_datasets.append(culturax_dataset)
if len(culturax_datasets) == 0:
raise ValueError("No datasets found")
elif len(culturax_datasets) == 1:
logging.info("Loaded 1 dataset")
raw_dataset = culturax_datasets[0]
else:
logging.info(f"Loaded {len(culturax_datasets)} culturax datasets")
if args.interleave_probs:
interleave_probs = [float(p) for p in args.interleave_probs.split(",")]
else:
interleave_probs = [1 / len(culturax_datasets)] * len(culturax_datasets)
logging.info(f"Interleave probabilities: {interleave_probs}")
raw_dataset = interleave_datasets(
culturax_datasets,
probabilities=interleave_probs,
seed=seed,
stopping_strategy="all_exhausted"
)
chars_per_token = get_chars_per_token(raw_dataset, tokenizer, "text")
logging.info(f"Chars per token: {chars_per_token}")
dataset = ConstantLengthDataset(
tokenizer,
raw_dataset,
infinite=True,
seq_length=args.max_seq_length,
chars_per_token=chars_per_token,
dataset_text_field="text",
shuffle=True,
)
elif dataset_type == "chat":
if not args.use_dynamic_padding and not args.disable_padding:
raise ValueError(
"Constant padding to max model length is not implemented for chat datasets, use --use_dynamic_padding."
)
dataset = ChatDataset(
data_path=path,
tokenizer=tokenizer,
)
else:
raise ValueError(f"Unknown dataset type: {dataset_type}")
return dataset
def create_datasets(tokenizer: LlamaTokenizer, args: ScriptArguments):
train_dataset = create_dataset(tokenizer, args, args.train_dataset_type, args.train_path, seed=training_args.seed)
if args.valid_path is None:
return train_dataset, None
valid_dataset = create_dataset(tokenizer, args, args.valid_dataset_type, args.valid_path, seed=training_args.seed)
return train_dataset, valid_dataset
def create_and_prepare_model(args: ScriptArguments, training_args: TrainingArguments, lora_args: LoraArguments,
quant_args: QuantizationArguments) -> Tuple[PreTrainedModel, LlamaTokenizer]:
device_map = None
bnb_config = None
load_in_8bit = quant_args.use_8bit_quantization
if quant_args.use_4bit_quantization:
logging.info("Using 4bit quantization")
compute_dtype = getattr(torch, quant_args.bnb_4bit_compute_dtype)
from transformers import BitsAndBytesConfig
bnb_config = BitsAndBytesConfig(
load_in_4bit=quant_args.use_4bit_quantization,
bnb_4bit_quant_type=quant_args.bnb_4bit_quant_type,
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=quant_args.use_nested_quant,
)
if compute_dtype == torch.float16 and quant_args.use_4bit_quantization:
major, _ = torch.cuda.get_device_capability()
if major >= 8:
print("=" * 80)
print("Your GPU supports bfloat16, you can accelerate training with the argument --bf16")
print("=" * 80)
if quant_args.use_4bit_quantization or quant_args.use_8bit_quantization:
device_map = "auto"
if args.torch_dtype is None or args.torch_dtype == "auto":
torch_dtype = args.torch_dtype
else:
torch_dtype = getattr(torch, args.torch_dtype)
model_kwargs = {}
if args.use_flash_attention_2:
logging.info("Using Flash Attention 2")
model_kwargs["use_flash_attention_2"] = args.use_flash_attention_2
model = LlamaForCausalLM.from_pretrained(
args.model_name,
torch_dtype=torch_dtype,
load_in_8bit=load_in_8bit,
quantization_config=bnb_config,
device_map=device_map,
use_cache=not training_args.gradient_checkpointing,
trust_remote_code=True,
low_cpu_mem_usage=args.low_cpu_mem_usage,
**model_kwargs,
)
if lora_args.use_peft_lora or lora_args.peft_name is not None:
logging.info("Using PEFT LoRA")
if training_args.gradient_checkpointing:
model.gradient_checkpointing_enable()
if lora_args.peft_name is not None:
logging.info(f"Loading pre-trained LoRA weights and congfig from {lora_args.peft_name}")
model = PeftModel.from_pretrained(model, lora_args.peft_name, is_trainable=True)
else:
peft_config = LoraConfig(
lora_alpha=lora_args.lora_alpha,
lora_dropout=lora_args.lora_dropout,
r=lora_args.lora_r,
bias="none",
task_type="CAUSAL_LM",
target_modules=lora_args.lora_target_modules.split(","),
)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
tokenizer = LlamaTokenizer.from_pretrained(
args.model_name if args.tokenizer_name is None else args.tokenizer_name,
model_max_length=args.max_seq_length,
padding_side="right",
)
if tokenizer.pad_token_id is not None:
logging.info(f"Tokenizer pad_token_id={tokenizer.pad_token_id}")
return model, tokenizer
if args.use_new_pad_token:
logging.info("No pad token found, adding <pad> to vocabulary")
tokenizer.add_special_tokens(
{
"pad_token": "<pad>",
}
)
model.resize_token_embeddings(len(tokenizer))
model.config.pad_token_id = tokenizer.pad_token_id
model.model.padding_idx = tokenizer.pad_token_id
model.model.embed_tokens.padding_idx = tokenizer.pad_token_id
else:
logging.info("No pad token found, using pad_token_id=0")
tokenizer.pad_token_id = 0
return model, tokenizer
def peft_module_casting_to_bf16(model, args: TrainingArguments):
for name, module in model.named_modules():
if isinstance(module, LoraLayer):
if args.bf16:
module = module.to(torch.bfloat16)
if "norm" in name:
module = module.to(torch.float32)
if any(x in name for x in ["lm_head", "embed_tokens", "wte", "wpe"]):
if hasattr(module, "weight"):
if args.bf16 and module.weight.dtype == torch.float32:
module = module.to(torch.bfloat16)
@dataclass
class CustomTrainingArguments(TrainingArguments):
scheduler_lr_end: float = None
def _get_cosine_schedule_with_warmup_lr_lambda(
current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_cycles: float, lr_init: float = 1,
lr_end: float = 0
):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
relative_lr_end = lr_end / lr_init
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))) * (
1 - relative_lr_end) + relative_lr_end
def get_cosine_schedule_with_warmup_end_lr(
optimizer: Optimizer,
num_warmup_steps: int,
num_training_steps: int,
num_cycles: float = 0.5,
last_epoch: int = -1,
lr_end: float = 0,
):
lr_init = optimizer.defaults["lr"]
lr_lambda = partial(
_get_cosine_schedule_with_warmup_lr_lambda,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_cycles=num_cycles,
lr_init=lr_init,
lr_end=lr_end,
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
class CustomTrainer(Trainer):
def create_scheduler(self, num_training_steps: int, optimizer: torch.optim.Optimizer = None):
if (
self.lr_scheduler is None and
isinstance(self.args, CustomTrainingArguments) and
self.args.scheduler_lr_end is not None
):
logging.info(
f"Using {self.args.lr_scheduler_type} with learning rate with end lr {self.args.scheduler_lr_end}"
)
if self.args.lr_scheduler_type == "polynomial":
self.lr_scheduler = get_polynomial_decay_schedule_with_warmup(
optimizer=self.optimizer if optimizer is None else optimizer,
lr_end=self.args.scheduler_lr_end,
num_training_steps=num_training_steps,
num_warmup_steps=self.args.get_warmup_steps(num_training_steps),
)
elif self.args.lr_scheduler_type == "cosine":
self.lr_scheduler = get_cosine_schedule_with_warmup_end_lr(
optimizer=self.optimizer if optimizer is None else optimizer,
lr_end=self.args.scheduler_lr_end,
num_training_steps=num_training_steps,
num_warmup_steps=self.args.get_warmup_steps(num_training_steps),
)
else:
raise ValueError(f"lr scheduler {self.args.lr_scheduler_type} not supported with scheduler_lr_end")
self._created_lr_scheduler = True
return self.lr_scheduler
return super().create_scheduler(num_training_steps, optimizer)
def main(script_args: ScriptArguments, training_args: TrainingArguments, quantization_args: QuantizationArguments,
lora_args: LoraArguments):
torch.cuda.manual_seed(training_args.seed)
torch.manual_seed(training_args.seed)
random.seed(training_args.seed)
model, tokenizer = create_and_prepare_model(
script_args, training_args, lora_args, quantization_args
)
model.config.use_cache = False
train_dataset, eval_dataset = create_datasets(tokenizer, args)
if args.use_dynamic_padding:
logging.info("Using dynamic padding")
collator = DataCollatorForSeq2Seq(
tokenizer,
pad_to_multiple_of=8,
return_tensors="pt",
padding=PaddingStrategy.LONGEST,
max_length=args.max_seq_length
)
else:
logging.info("Using max length padding to max_seq_length")
collator = default_data_collator
try:
logging.info(f"Train dataset with {len(train_dataset)} examples")
except:
logging.info(f"Train dataset with unknown number of examples")
if eval_dataset is not None:
logging.info(f"Validation dataset with {len(eval_dataset)} examples")
else:
logging.info(f"No validation dataset")
logging.info(f"Max sequence length: {tokenizer.model_max_length}")
trainer = CustomTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=collator,
)
trainer.accelerator.print(f"{trainer.model}")
if lora_args.use_peft_lora:
trainer.model.print_trainable_parameters()
peft_module_casting_to_bf16(trainer.model, training_args)
trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
if trainer.is_fsdp_enabled:
trainer.accelerator.state.fsdp_plugin.set_state_dict_type("FULL_STATE_DICT")
if script_args.save_final_model:
trainer.save_model(training_args.output_dir)
tokenizer.save_pretrained(training_args.output_dir)
if __name__ == "__main__":
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
parser = HfArgumentParser([ScriptArguments, CustomTrainingArguments, QuantizationArguments, LoraArguments])
args, training_args, quant_args, lora_args = parser.parse_args_into_dataclasses()
main(
script_args=args,
training_args=training_args,
quantization_args=quant_args,
lora_args=lora_args,
)