-
Notifications
You must be signed in to change notification settings - Fork 79
/
Copy pathdemoTalkNet.py
executable file
·458 lines (425 loc) · 21.9 KB
/
demoTalkNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
import sys, time, os, tqdm, torch, argparse, glob, subprocess, warnings, cv2, pickle, numpy, pdb, math, python_speech_features
from scipy import signal
from shutil import rmtree
from scipy.io import wavfile
from scipy.interpolate import interp1d
from sklearn.metrics import accuracy_score, f1_score
from scenedetect.video_manager import VideoManager
from scenedetect.scene_manager import SceneManager
from scenedetect.frame_timecode import FrameTimecode
from scenedetect.stats_manager import StatsManager
from scenedetect.detectors import ContentDetector
from model.faceDetector.s3fd import S3FD
from talkNet import talkNet
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser(description = "TalkNet Demo or Columnbia ASD Evaluation")
parser.add_argument('--videoName', type=str, default="001", help='Demo video name')
parser.add_argument('--videoFolder', type=str, default="demo", help='Path for inputs, tmps and outputs')
parser.add_argument('--pretrainModel', type=str, default="pretrain_TalkSet.model", help='Path for the pretrained TalkNet model')
parser.add_argument('--nDataLoaderThread', type=int, default=10, help='Number of workers')
parser.add_argument('--facedetScale', type=float, default=0.25, help='Scale factor for face detection, the frames will be scale to 0.25 orig')
parser.add_argument('--minTrack', type=int, default=10, help='Number of min frames for each shot')
parser.add_argument('--numFailedDet', type=int, default=10, help='Number of missed detections allowed before tracking is stopped')
parser.add_argument('--minFaceSize', type=int, default=1, help='Minimum face size in pixels')
parser.add_argument('--cropScale', type=float, default=0.40, help='Scale bounding box')
parser.add_argument('--start', type=int, default=0, help='The start time of the video')
parser.add_argument('--duration', type=int, default=0, help='The duration of the video, when set as 0, will extract the whole video')
parser.add_argument('--evalCol', dest='evalCol', action='store_true', help='Evaluate on Columnbia dataset')
parser.add_argument('--colSavePath', type=str, default="/data08/col", help='Path for inputs, tmps and outputs')
args = parser.parse_args()
if os.path.isfile(args.pretrainModel) == False: # Download the pretrained model
Link = "1AbN9fCf9IexMxEKXLQY2KYBlb-IhSEea"
cmd = "gdown --id %s -O %s"%(Link, args.pretrainModel)
subprocess.call(cmd, shell=True, stdout=None)
if args.evalCol == True:
# The process is: 1. download video and labels(I have modified the format of labels to make it easiler for using)
# 2. extract audio, extract video frames
# 3. scend detection, face detection and face tracking
# 4. active speaker detection for the detected face clips
# 5. use iou to find the identity of each face clips, compute the F1 results
# The step 1 to 3 will take some time (That is one-time process). It depends on your cpu and gpu speed. For reference, I used 1.5 hour
# The step 4 and 5 need less than 10 minutes
# Need about 20G space finally
# ```
args.videoName = 'col'
args.videoFolder = args.colSavePath
args.savePath = os.path.join(args.videoFolder, args.videoName)
args.videoPath = os.path.join(args.videoFolder, args.videoName + '.mp4')
args.duration = 0
if os.path.isfile(args.videoPath) == False: # Download video
link = 'https://www.youtube.com/watch?v=6GzxbrO0DHM&t=2s'
cmd = "youtube-dl -f best -o %s '%s'"%(args.videoPath, link)
output = subprocess.call(cmd, shell=True, stdout=None)
if os.path.isdir(args.videoFolder + '/col_labels') == False: # Download label
link = "1Tto5JBt6NsEOLFRWzyZEeV6kCCddc6wv"
cmd = "gdown --id %s -O %s"%(link, args.videoFolder + '/col_labels.tar.gz')
subprocess.call(cmd, shell=True, stdout=None)
cmd = "tar -xzvf %s -C %s"%(args.videoFolder + '/col_labels.tar.gz', args.videoFolder)
subprocess.call(cmd, shell=True, stdout=None)
os.remove(args.videoFolder + '/col_labels.tar.gz')
else:
args.videoPath = glob.glob(os.path.join(args.videoFolder, args.videoName + '.*'))[0]
args.savePath = os.path.join(args.videoFolder, args.videoName)
def scene_detect(args):
# CPU: Scene detection, output is the list of each shot's time duration
videoManager = VideoManager([args.videoFilePath])
statsManager = StatsManager()
sceneManager = SceneManager(statsManager)
sceneManager.add_detector(ContentDetector())
baseTimecode = videoManager.get_base_timecode()
videoManager.set_downscale_factor()
videoManager.start()
sceneManager.detect_scenes(frame_source = videoManager)
sceneList = sceneManager.get_scene_list(baseTimecode)
savePath = os.path.join(args.pyworkPath, 'scene.pckl')
if sceneList == []:
sceneList = [(videoManager.get_base_timecode(),videoManager.get_current_timecode())]
with open(savePath, 'wb') as fil:
pickle.dump(sceneList, fil)
sys.stderr.write('%s - scenes detected %d\n'%(args.videoFilePath, len(sceneList)))
return sceneList
def inference_video(args):
# GPU: Face detection, output is the list contains the face location and score in this frame
DET = S3FD(device='cuda')
flist = glob.glob(os.path.join(args.pyframesPath, '*.jpg'))
flist.sort()
dets = []
for fidx, fname in enumerate(flist):
image = cv2.imread(fname)
imageNumpy = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
bboxes = DET.detect_faces(imageNumpy, conf_th=0.9, scales=[args.facedetScale])
dets.append([])
for bbox in bboxes:
dets[-1].append({'frame':fidx, 'bbox':(bbox[:-1]).tolist(), 'conf':bbox[-1]}) # dets has the frames info, bbox info, conf info
sys.stderr.write('%s-%05d; %d dets\r' % (args.videoFilePath, fidx, len(dets[-1])))
savePath = os.path.join(args.pyworkPath,'faces.pckl')
with open(savePath, 'wb') as fil:
pickle.dump(dets, fil)
return dets
def bb_intersection_over_union(boxA, boxB, evalCol = False):
# CPU: IOU Function to calculate overlap between two image
xA = max(boxA[0], boxB[0])
yA = max(boxA[1], boxB[1])
xB = min(boxA[2], boxB[2])
yB = min(boxA[3], boxB[3])
interArea = max(0, xB - xA) * max(0, yB - yA)
boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
if evalCol == True:
iou = interArea / float(boxAArea)
else:
iou = interArea / float(boxAArea + boxBArea - interArea)
return iou
def track_shot(args, sceneFaces):
# CPU: Face tracking
iouThres = 0.5 # Minimum IOU between consecutive face detections
tracks = []
while True:
track = []
for frameFaces in sceneFaces:
for face in frameFaces:
if track == []:
track.append(face)
frameFaces.remove(face)
elif face['frame'] - track[-1]['frame'] <= args.numFailedDet:
iou = bb_intersection_over_union(face['bbox'], track[-1]['bbox'])
if iou > iouThres:
track.append(face)
frameFaces.remove(face)
continue
else:
break
if track == []:
break
elif len(track) > args.minTrack:
frameNum = numpy.array([ f['frame'] for f in track ])
bboxes = numpy.array([numpy.array(f['bbox']) for f in track])
frameI = numpy.arange(frameNum[0],frameNum[-1]+1)
bboxesI = []
for ij in range(0,4):
interpfn = interp1d(frameNum, bboxes[:,ij])
bboxesI.append(interpfn(frameI))
bboxesI = numpy.stack(bboxesI, axis=1)
if max(numpy.mean(bboxesI[:,2]-bboxesI[:,0]), numpy.mean(bboxesI[:,3]-bboxesI[:,1])) > args.minFaceSize:
tracks.append({'frame':frameI,'bbox':bboxesI})
return tracks
def crop_video(args, track, cropFile):
# CPU: crop the face clips
flist = glob.glob(os.path.join(args.pyframesPath, '*.jpg')) # Read the frames
flist.sort()
vOut = cv2.VideoWriter(cropFile + 't.avi', cv2.VideoWriter_fourcc(*'XVID'), 25, (224,224))# Write video
dets = {'x':[], 'y':[], 's':[]}
for det in track['bbox']: # Read the tracks
dets['s'].append(max((det[3]-det[1]), (det[2]-det[0]))/2)
dets['y'].append((det[1]+det[3])/2) # crop center x
dets['x'].append((det[0]+det[2])/2) # crop center y
dets['s'] = signal.medfilt(dets['s'], kernel_size=13) # Smooth detections
dets['x'] = signal.medfilt(dets['x'], kernel_size=13)
dets['y'] = signal.medfilt(dets['y'], kernel_size=13)
for fidx, frame in enumerate(track['frame']):
cs = args.cropScale
bs = dets['s'][fidx] # Detection box size
bsi = int(bs * (1 + 2 * cs)) # Pad videos by this amount
image = cv2.imread(flist[frame])
frame = numpy.pad(image, ((bsi,bsi), (bsi,bsi), (0, 0)), 'constant', constant_values=(110, 110))
my = dets['y'][fidx] + bsi # BBox center Y
mx = dets['x'][fidx] + bsi # BBox center X
face = frame[int(my-bs):int(my+bs*(1+2*cs)),int(mx-bs*(1+cs)):int(mx+bs*(1+cs))]
vOut.write(cv2.resize(face, (224, 224)))
audioTmp = cropFile + '.wav'
audioStart = (track['frame'][0]) / 25
audioEnd = (track['frame'][-1]+1) / 25
vOut.release()
command = ("ffmpeg -y -i %s -async 1 -ac 1 -vn -acodec pcm_s16le -ar 16000 -threads %d -ss %.3f -to %.3f %s -loglevel panic" % \
(args.audioFilePath, args.nDataLoaderThread, audioStart, audioEnd, audioTmp))
output = subprocess.call(command, shell=True, stdout=None) # Crop audio file
_, audio = wavfile.read(audioTmp)
command = ("ffmpeg -y -i %st.avi -i %s -threads %d -c:v copy -c:a copy %s.avi -loglevel panic" % \
(cropFile, audioTmp, args.nDataLoaderThread, cropFile)) # Combine audio and video file
output = subprocess.call(command, shell=True, stdout=None)
os.remove(cropFile + 't.avi')
return {'track':track, 'proc_track':dets}
def extract_MFCC(file, outPath):
# CPU: extract mfcc
sr, audio = wavfile.read(file)
mfcc = python_speech_features.mfcc(audio,sr) # (N_frames, 13) [1s = 100 frames]
featuresPath = os.path.join(outPath, file.split('/')[-1].replace('.wav', '.npy'))
numpy.save(featuresPath, mfcc)
def evaluate_network(files, args):
# GPU: active speaker detection by pretrained TalkNet
s = talkNet()
s.loadParameters(args.pretrainModel)
sys.stderr.write("Model %s loaded from previous state! \r\n"%args.pretrainModel)
s.eval()
allScores = []
# durationSet = {1,2,4,6} # To make the result more reliable
durationSet = {1,1,1,2,2,2,3,3,4,5,6} # Use this line can get more reliable result
for file in tqdm.tqdm(files, total = len(files)):
fileName = os.path.splitext(file.split('/')[-1])[0] # Load audio and video
_, audio = wavfile.read(os.path.join(args.pycropPath, fileName + '.wav'))
audioFeature = python_speech_features.mfcc(audio, 16000, numcep = 13, winlen = 0.025, winstep = 0.010)
video = cv2.VideoCapture(os.path.join(args.pycropPath, fileName + '.avi'))
videoFeature = []
while video.isOpened():
ret, frames = video.read()
if ret == True:
face = cv2.cvtColor(frames, cv2.COLOR_BGR2GRAY)
face = cv2.resize(face, (224,224))
face = face[int(112-(112/2)):int(112+(112/2)), int(112-(112/2)):int(112+(112/2))]
videoFeature.append(face)
else:
break
video.release()
videoFeature = numpy.array(videoFeature)
length = min((audioFeature.shape[0] - audioFeature.shape[0] % 4) / 100, videoFeature.shape[0] / 25)
audioFeature = audioFeature[:int(round(length * 100)),:]
videoFeature = videoFeature[:int(round(length * 25)),:,:]
allScore = [] # Evaluation use TalkNet
for duration in durationSet:
batchSize = int(math.ceil(length / duration))
scores = []
with torch.no_grad():
for i in range(batchSize):
inputA = torch.FloatTensor(audioFeature[i * duration * 100:(i+1) * duration * 100,:]).unsqueeze(0).cuda()
inputV = torch.FloatTensor(videoFeature[i * duration * 25: (i+1) * duration * 25,:,:]).unsqueeze(0).cuda()
embedA = s.model.forward_audio_frontend(inputA)
embedV = s.model.forward_visual_frontend(inputV)
embedA, embedV = s.model.forward_cross_attention(embedA, embedV)
out = s.model.forward_audio_visual_backend(embedA, embedV)
score = s.lossAV.forward(out, labels = None)
scores.extend(score)
allScore.append(scores)
allScore = numpy.round((numpy.mean(numpy.array(allScore), axis = 0)), 1).astype(float)
allScores.append(allScore)
return allScores
def visualization(tracks, scores, args):
# CPU: visulize the result for video format
flist = glob.glob(os.path.join(args.pyframesPath, '*.jpg'))
flist.sort()
faces = [[] for i in range(len(flist))]
for tidx, track in enumerate(tracks):
score = scores[tidx]
for fidx, frame in enumerate(track['track']['frame'].tolist()):
s = score[max(fidx - 2, 0): min(fidx + 3, len(score) - 1)] # average smoothing
s = numpy.mean(s)
faces[frame].append({'track':tidx, 'score':float(s),'s':track['proc_track']['s'][fidx], 'x':track['proc_track']['x'][fidx], 'y':track['proc_track']['y'][fidx]})
firstImage = cv2.imread(flist[0])
fw = firstImage.shape[1]
fh = firstImage.shape[0]
vOut = cv2.VideoWriter(os.path.join(args.pyaviPath, 'video_only.avi'), cv2.VideoWriter_fourcc(*'XVID'), 25, (fw,fh))
colorDict = {0: 0, 1: 255}
for fidx, fname in tqdm.tqdm(enumerate(flist), total = len(flist)):
image = cv2.imread(fname)
for face in faces[fidx]:
clr = colorDict[int((face['score'] >= 0))]
txt = round(face['score'], 1)
cv2.rectangle(image, (int(face['x']-face['s']), int(face['y']-face['s'])), (int(face['x']+face['s']), int(face['y']+face['s'])),(0,clr,255-clr),10)
cv2.putText(image,'%s'%(txt), (int(face['x']-face['s']), int(face['y']-face['s'])), cv2.FONT_HERSHEY_SIMPLEX, 1.5, (0,clr,255-clr),5)
vOut.write(image)
vOut.release()
command = ("ffmpeg -y -i %s -i %s -threads %d -c:v copy -c:a copy %s -loglevel panic" % \
(os.path.join(args.pyaviPath, 'video_only.avi'), os.path.join(args.pyaviPath, 'audio.wav'), \
args.nDataLoaderThread, os.path.join(args.pyaviPath,'video_out.avi')))
output = subprocess.call(command, shell=True, stdout=None)
def evaluate_col_ASD(tracks, scores, args):
txtPath = args.videoFolder + '/col_labels/fusion/*.txt' # Load labels
predictionSet = {}
for name in {'long', 'bell', 'boll', 'lieb', 'sick', 'abbas'}:
predictionSet[name] = [[],[]]
dictGT = {}
txtFiles = glob.glob("%s"%txtPath)
for file in txtFiles:
lines = open(file).read().splitlines()
idName = file.split('/')[-1][:-4]
for line in lines:
data = line.split('\t')
frame = int(int(data[0]) / 29.97 * 25)
x1 = int(data[1])
y1 = int(data[2])
x2 = int(data[1]) + int(data[3])
y2 = int(data[2]) + int(data[3])
gt = int(data[4])
if frame in dictGT:
dictGT[frame].append([x1,y1,x2,y2,gt,idName])
else:
dictGT[frame] = [[x1,y1,x2,y2,gt,idName]]
flist = glob.glob(os.path.join(args.pyframesPath, '*.jpg')) # Load files
flist.sort()
faces = [[] for i in range(len(flist))]
for tidx, track in enumerate(tracks):
score = scores[tidx]
for fidx, frame in enumerate(track['track']['frame'].tolist()):
s = numpy.mean(score[max(fidx - 2, 0): min(fidx + 3, len(score) - 1)]) # average smoothing
faces[frame].append({'track':tidx, 'score':float(s),'s':track['proc_track']['s'][fidx], 'x':track['proc_track']['x'][fidx], 'y':track['proc_track']['y'][fidx]})
for fidx, fname in tqdm.tqdm(enumerate(flist), total = len(flist)):
if fidx in dictGT: # This frame has label
for gtThisFrame in dictGT[fidx]: # What this label is ?
faceGT = gtThisFrame[0:4]
labelGT = gtThisFrame[4]
idGT = gtThisFrame[5]
ious = []
for face in faces[fidx]: # Find the right face in my result
faceLocation = [int(face['x']-face['s']), int(face['y']-face['s']), int(face['x']+face['s']), int(face['y']+face['s'])]
faceLocation_new = [int(face['x']-face['s']) // 2, int(face['y']-face['s']) // 2, int(face['x']+face['s']) // 2, int(face['y']+face['s']) // 2]
iou = bb_intersection_over_union(faceLocation_new, faceGT, evalCol = True)
if iou > 0.5:
ious.append([iou, round(face['score'],2)])
if len(ious) > 0: # Find my result
ious.sort()
labelPredict = ious[-1][1]
else:
labelPredict = 0
x1 = faceGT[0]
y1 = faceGT[1]
width = faceGT[2] - faceGT[0]
predictionSet[idGT][0].append(labelPredict)
predictionSet[idGT][1].append(labelGT)
names = ['long', 'bell', 'boll', 'lieb', 'sick', 'abbas'] # Evaluate
names.sort()
F1s = 0
for i in names:
scores = numpy.array(predictionSet[i][0])
labels = numpy.array(predictionSet[i][1])
scores = numpy.int64(scores > 0)
F1 = f1_score(labels, scores)
ACC = accuracy_score(labels, scores)
if i != 'abbas':
F1s += F1
print("%s, ACC:%.2f, F1:%.2f"%(i, 100 * ACC, 100 * F1))
print("Average F1:%.2f"%(100 * (F1s / 5)))
# Main function
def main():
# This preprocesstion is modified based on this [repository](https://github.com/joonson/syncnet_python).
# ```
# .
# ├── pyavi
# │ ├── audio.wav (Audio from input video)
# │ ├── video.avi (Copy of the input video)
# │ ├── video_only.avi (Output video without audio)
# │ └── video_out.avi (Output video with audio)
# ├── pycrop (The detected face videos and audios)
# │ ├── 000000.avi
# │ ├── 000000.wav
# │ ├── 000001.avi
# │ ├── 000001.wav
# │ └── ...
# ├── pyframes (All the video frames in this video)
# │ ├── 000001.jpg
# │ ├── 000002.jpg
# │ └── ...
# └── pywork
# ├── faces.pckl (face detection result)
# ├── scene.pckl (scene detection result)
# ├── scores.pckl (ASD result)
# └── tracks.pckl (face tracking result)
# ```
# Initialization
args.pyaviPath = os.path.join(args.savePath, 'pyavi')
args.pyframesPath = os.path.join(args.savePath, 'pyframes')
args.pyworkPath = os.path.join(args.savePath, 'pywork')
args.pycropPath = os.path.join(args.savePath, 'pycrop')
if os.path.exists(args.savePath):
rmtree(args.savePath)
os.makedirs(args.pyaviPath, exist_ok = True) # The path for the input video, input audio, output video
os.makedirs(args.pyframesPath, exist_ok = True) # Save all the video frames
os.makedirs(args.pyworkPath, exist_ok = True) # Save the results in this process by the pckl method
os.makedirs(args.pycropPath, exist_ok = True) # Save the detected face clips (audio+video) in this process
# Extract video
args.videoFilePath = os.path.join(args.pyaviPath, 'video.avi')
# If duration did not set, extract the whole video, otherwise extract the video from 'args.start' to 'args.start + args.duration'
if args.duration == 0:
command = ("ffmpeg -y -i %s -qscale:v 2 -threads %d -async 1 -r 25 %s -loglevel panic" % \
(args.videoPath, args.nDataLoaderThread, args.videoFilePath))
else:
command = ("ffmpeg -y -i %s -qscale:v 2 -threads %d -ss %.3f -to %.3f -async 1 -r 25 %s -loglevel panic" % \
(args.videoPath, args.nDataLoaderThread, args.start, args.start + args.duration, args.videoFilePath))
subprocess.call(command, shell=True, stdout=None)
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Extract the video and save in %s \r\n" %(args.videoFilePath))
# Extract audio
args.audioFilePath = os.path.join(args.pyaviPath, 'audio.wav')
command = ("ffmpeg -y -i %s -qscale:a 0 -ac 1 -vn -threads %d -ar 16000 %s -loglevel panic" % \
(args.videoFilePath, args.nDataLoaderThread, args.audioFilePath))
subprocess.call(command, shell=True, stdout=None)
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Extract the audio and save in %s \r\n" %(args.audioFilePath))
# Extract the video frames
command = ("ffmpeg -y -i %s -qscale:v 2 -threads %d -f image2 %s -loglevel panic" % \
(args.videoFilePath, args.nDataLoaderThread, os.path.join(args.pyframesPath, '%06d.jpg')))
subprocess.call(command, shell=True, stdout=None)
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Extract the frames and save in %s \r\n" %(args.pyframesPath))
# Scene detection for the video frames
scene = scene_detect(args)
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Scene detection and save in %s \r\n" %(args.pyworkPath))
# Face detection for the video frames
faces = inference_video(args)
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Face detection and save in %s \r\n" %(args.pyworkPath))
# Face tracking
allTracks, vidTracks = [], []
for shot in scene:
if shot[1].frame_num - shot[0].frame_num >= args.minTrack: # Discard the shot frames less than minTrack frames
allTracks.extend(track_shot(args, faces[shot[0].frame_num:shot[1].frame_num])) # 'frames' to present this tracks' timestep, 'bbox' presents the location of the faces
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Face track and detected %d tracks \r\n" %len(allTracks))
# Face clips cropping
for ii, track in tqdm.tqdm(enumerate(allTracks), total = len(allTracks)):
vidTracks.append(crop_video(args, track, os.path.join(args.pycropPath, '%05d'%ii)))
savePath = os.path.join(args.pyworkPath, 'tracks.pckl')
with open(savePath, 'wb') as fil:
pickle.dump(vidTracks, fil)
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Face Crop and saved in %s tracks \r\n" %args.pycropPath)
fil = open(savePath, 'rb')
vidTracks = pickle.load(fil)
# Active Speaker Detection by TalkNet
files = glob.glob("%s/*.avi"%args.pycropPath)
files.sort()
scores = evaluate_network(files, args)
savePath = os.path.join(args.pyworkPath, 'scores.pckl')
with open(savePath, 'wb') as fil:
pickle.dump(scores, fil)
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Scores extracted and saved in %s \r\n" %args.pyworkPath)
if args.evalCol == True:
evaluate_col_ASD(vidTracks, scores, args) # The columnbia video is too big for visualization. You can still add the `visualization` funcition here if you want
quit()
else:
# Visualization, save the result as the new video
visualization(vidTracks, scores, args)
if __name__ == '__main__':
main()