-
Notifications
You must be signed in to change notification settings - Fork 4
/
config.py
83 lines (73 loc) · 1.36 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from dataclasses import dataclass
@dataclass
class Expt_settings:
seed: int
num_gpu: int
exp_name: str
test_name: str
@dataclass
class Dataset:
type: str
name: str
data_dir: str
factor: int
@dataclass
class Train:
batch_size: int
batch_type: str
num_workers: int
randomized: bool
white_bkgd: bool
@dataclass
class Val:
im_batch_size: int
batch_type: str
batch_size: int
num_workers: int
check_interval: int
randomized: bool
white_bkgd: bool
limit_batch_size: int
@dataclass
class Ray_param:
num_samples: int
fine_sampling_multiplier: float
perturb: float
noise_std: int
L_bands: int
disparity: bool
randomized: bool
shape: str
resampled_padding: float
@dataclass
class Model:
coarse_layers: int
fine_layers: int
ff_ratio: int
dropout: float
dim_in: int
version: str
num_lp: int
lp_layers: int
@dataclass
class Optimizer:
lr_init: float
lr_final: float
lr_delay_steps: int
lr_delay_mult: float
max_steps: float
loss_coarse: float
loss_fine: float
@dataclass
class Checkpoint:
resume_path: str
@dataclass
class Systemcfg:
expt_settings: Expt_settings
dataset: Dataset
train: Train
val: Val
ray_param: Ray_param
model: Model
optimizer: Optimizer
checkpoint: Checkpoint