-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathsampler.py
400 lines (369 loc) · 14 KB
/
sampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import random
import numpy as np
import torch
from graph_util import Graph, GraphWithAnswer, IndexedGraph
r"""
edge_index: Tensor of shape [2, E]
"""
def ladies_sampler_np(node_list, samp_num_list, num_nodes, lap_matrix):
r"""
LADIES_Sampler: Sample a fixed number of nodes per layer. The sampling probability (importance)
is computed adaptively according to the nodes sampled in the upper layer.
Currently it only returns one single large graph.
Sample nodes from top to bottom, based on the probability computed adaptively (layer-dependent).
References:
* https://github.com/acbull/LADIES/blob/master/pytorch_ladies.py
"""
for d in samp_num_list:
# Row-select the lap_matrix (U) by previously sampled nodes
u = lap_matrix[node_list, :]
# Only use the upper layer's neighborhood to calculate the probability.
pi = np.array(np.sum(u.multiply(u), axis=0))[0]
del u
# What's chosen should not be considered again
pi[node_list] = 0
s_num = np.min([np.sum(pi > 0), d])
if s_num == 0:
break
pi = pi / np.sum(pi)
# Sample the next layer's nodes based on the adaptively probability (p).
after_nodes = np.random.choice(num_nodes, s_num, p=pi, replace=False)
node_list = np.unique(np.concatenate((node_list, after_nodes)))
del after_nodes
return node_list
def sample_meta_tree(origin_node, igraph: IndexedGraph, edge_add_ratio=0.8) -> Graph:
device = igraph.edge_index.device
dfn = {origin_node: 0}
idx = [origin_node]
import numpy as np
num_iter = np.random.randint(5, 16)
ei0 = []
ei1 = []
ea = []
for i in range(num_iter):
c = np.random.choice(idx)
adj_node_list = igraph.get_adj_nodes(c)
if len(adj_node_list) == 0:
break
adj_node = np.random.choice(adj_node_list)
adj_ei, adj_ea = igraph.get_edges_between(c, adj_node)
e_id = np.random.choice(len(adj_ea))
a, p, b = adj_ei[0][e_id].item(), adj_ea[e_id].item(), adj_ei[1][e_id].item()
assert a == c or b == c
if a in dfn and b in dfn:
continue
if a not in dfn:
idx.append(a)
dfn[a] = len(dfn)
if b not in dfn:
idx.append(b)
dfn[b] = len(dfn)
ei0.append(a)
ei1.append(b)
ea.append(p)
g = Graph(
x=igraph.x,
edge_index=torch.tensor([ei0, ei1], dtype=torch.long),
edge_attr=torch.tensor(ea, dtype=torch.long),
)
idx = torch.tensor(idx, dtype=torch.long, device=device)
g = sample_induced_edges(igraph, g, idx, edge_add_ratio)
from graph_util import relabel_nodes
g = relabel_nodes(g, idx)
return g
def sample_from_origin(node_list, igraph: IndexedGraph, lap_matrix, ladies_size, induced_edge_prob=1.0):
device = igraph.edge_index.device
num_nodes = igraph.num_nodes
# Sampling around the nodes to be predicted
import random
def rand_partition(n_ele, n_parts):
assert n_parts <= n_ele
from random import randint
if n_ele == 0:
return []
bar = [randint(0, n_ele - n_parts) for _ in range(n_parts - 1)]
bar += [0, n_ele - n_parts]
bar.sort()
return [bar[i] - bar[i - 1] + 1 for i in range(1, n_parts + 1)]
n_ele = random.randint(1, ladies_size)
n_parts = random.randint(0, n_ele)
node_list = ladies_sampler_np(
node_list.numpy(), rand_partition(n_ele, n_parts),
num_nodes, lap_matrix)
node_list = torch.from_numpy(node_list).to(device).contiguous()
graph = Graph(
x=igraph.x,
edge_index=torch.tensor([[], []], dtype=torch.long, device=device),
edge_attr=torch.tensor([], dtype=torch.long, device=device),
)
graph = sample_induced_edges(igraph, graph, node_list, induced_edge_prob)
from graph_util import relabel_nodes
graph = relabel_nodes(graph, node_list)
return graph
def gen_ans_by_masking(graph: Graph, num_nodes, relation_cnt, config) -> GraphWithAnswer:
device = graph.edge_index.device
mask_ratio = config['pretrain_mask_ratio']
mask_type_ratio = config['pretrain_mask_type_ratio']
# Choose the nodes to predict again
def mask_num(size):
import random
assert size >= 0
size_map = {
0: [0, 0],
1: [1, 1], # Edge only!
2: [1, 1],
3: [1, 1],
4: [1, 2],
5: [1, 2],
6: [1, 3],
7: [2, 3],
8: [2, 3],
9: [2, 3],
10: [2, 4],
11: [2, 4],
12: [3, 4],
13: [3, 4],
14: [3, 5],
15: [3, 5],
16: [4, 5],
17: [4, 6],
18: [4, 6],
19: [5, 7],
20: [5, 7],
21: [6, 7],
22: [6, 7],
23: [6, 8],
24: [6, 8],
25: [7, 8],
26: [7, 9],
27: [7, 9],
28: [8, 9],
29: [8, 9],
30: [8, 10],
31: [8, 10],
32: [9, 10]
}
from math import floor
return random.randint(*size_map.get(size, [floor(size * mask_ratio[0]), floor(size * mask_ratio[1])]))
from math import floor
nmask = floor((mask_type_ratio[0] / (mask_type_ratio[0] + mask_type_ratio[1])) * graph.num_nodes)
emask = floor(
(mask_type_ratio[1] / (mask_type_ratio[0] + mask_type_ratio[1])) * graph.num_nodes) # still use node_size here
emask = min(emask, graph.num_edges)
num_node_mask = mask_num(nmask)
num_edge_mask = mask_num(emask)
x_query = torch.from_numpy(np.random.choice(graph.num_nodes, num_node_mask, replace=False)).to(device)
edge_query = torch.from_numpy(np.random.choice(graph.num_edges, num_edge_mask, replace=False)).to(device)
x_ans = graph.x[x_query]
edge_ans = graph.edge_attr[edge_query]
def do_mask(arr, list_predict, num_nodes) -> torch.LongTensor:
randseed = random.random()
if randseed < config['mask_ratio']:
arr[list_predict] = -1
elif config['mask_ratio'] <= randseed < (config['mask_ratio'] + 1) / 2:
arr[list_predict] = torch.randint(low=0, high=num_nodes, size=list_predict.shape, device=device)
else:
pass
return arr
return GraphWithAnswer(
edge_index=graph.edge_index,
x=do_mask(graph.x, x_query, num_nodes),
edge_attr=do_mask(graph.edge_attr, edge_query, relation_cnt),
x_query=x_query,
x_ans=x_ans,
edge_query=edge_query,
edge_ans=edge_ans,
joint_nodes=torch.tensor([], device=device, dtype=torch.long),
union_query=torch.tensor([], device=device, dtype=torch.long)
)
def sample_induced_edges(igraph: IndexedGraph, graph: Graph, node_list, add_prob) -> Graph:
subg = igraph.get_induced_subgraph(node_list)
existing_edge = set()
for a, b, p in zip(graph.edge_index[0], graph.edge_index[1], graph.edge_attr):
existing_edge.add((a.item(), b.item(), p.item()))
import random
idx = []
for i in range(subg.num_edges):
if random.random() > add_prob:
continue
if (subg.edge_index[0][i].item(), subg.edge_index[1][i].item(), subg.edge_attr[i].item()) in existing_edge:
continue
idx.append(i)
newg = Graph(
x=graph.x,
edge_index=torch.cat([graph.edge_index, subg.edge_index[:, idx]], dim=1),
edge_attr=torch.cat([graph.edge_attr, subg.edge_attr[idx]]),
)
return newg
def sample_n_p(igraph: IndexedGraph, target_node, n, config):
dfn = {target_node: 0}
idx = [target_node]
cur_node = target_node
edge_index0 = []
edge_index1 = []
edge_attr = []
sampled_node = [target_node]
for i in range(n):
adj_nodes = list(igraph.get_adj_nodes(cur_node))
if not adj_nodes:
return None
nxt_node = np.random.choice(adj_nodes)
dfn[nxt_node] = len(dfn)
idx.append(nxt_node)
ei, ea = igraph.get_edges_between(cur_node, nxt_node)
ei = list(ei)
ea = list(ea)
p = np.random.choice(len(ea))
e0 = ei[0][p]
e1 = ei[1][p]
if e0 != nxt_node and e1 != nxt_node:
while True:
p = np.random.choice(len(ea))
e0 = ei[0][p]
e1 = ei[1][p]
if e0 == nxt_node or e1 == nxt_node:
break
if e0 == idx[-1]:
edge_index0.append(len(idx) - 1)
edge_index1.append(len(idx) - 2)
elif e1 == idx[-1]:
edge_index0.append(len(idx) - 2)
edge_index1.append(len(idx) - 1)
else:
assert False
edge_attr.append(ea[p])
sampled_node.append(nxt_node)
cur_node = nxt_node
result = Graph(
x=igraph.x[idx],
edge_index=torch.tensor([edge_index0, edge_index1]),
edge_attr=torch.tensor(edge_attr),
)
idx = torch.tensor(idx)
randseed = random.random()
if randseed <= config['p_mask_ratio']:
x_node = torch.tensor([-1] * n + [idx[-1]])
ans = torch.tensor([target_node])
elif config['p_mask_ratio'] < randseed <= (config['mask_ratio'] + 1) / 2:
x_node = torch.tensor([-1] * n + [idx[-1]])
ans = torch.randint(low=0, high=igraph.num_nodes, size=(1,), dtype=torch.long)
else:
x_node = torch.tensor([target_node] + [-1] * (n - 1) + [idx[-1]])
ans = torch.tensor([target_node])
result = GraphWithAnswer(
x=x_node,
edge_index=result.edge_index,
edge_attr=result.edge_attr,
x_query=torch.tensor([0], dtype=torch.long),
x_ans=ans,
edge_query=torch.tensor([], dtype=torch.long),
edge_ans=torch.tensor([], dtype=torch.long),
joint_nodes=torch.tensor([], dtype=torch.long),
union_query=torch.tensor([], dtype=torch.long)
)
return result
def sample_one_edge_between(igraph, a, b):
ei, ea = igraph.get_edges_between(a, b)
ptr = np.random.choice(len(ea))
return ei[0, ptr], ei[1, ptr], ea[ptr]
def sample_n_i(igraph: IndexedGraph, target_node, n, edge_drop_out_rate):
full_adj_node = igraph.get_adj_nodes(target_node)
if len(full_adj_node) < n:
return None
adj_node = np.random.choice(full_adj_node, size=n, replace=False).tolist()
edge_index0 = []
edge_index1 = []
edge_attr = []
idx = [target_node] + list(adj_node)
for ind, i in enumerate(adj_node):
a, b, p = sample_one_edge_between(igraph, target_node, i)
if a != target_node and b != target_node:
while True:
a, b, p = sample_one_edge_between(igraph, target_node, i)
if a == target_node or b == target_node:
break
if a == target_node:
edge_index0.append(0)
edge_index1.append(ind + 1)
elif b == target_node:
edge_index0.append(ind + 1)
edge_index1.append(0)
else:
assert False
edge_attr.append(p)
g = Graph(
x=igraph.x,
edge_index=torch.tensor([edge_index0, edge_index1], dtype=torch.long),
edge_attr=torch.tensor(edge_attr),
)
g = GraphWithAnswer(
x=torch.tensor([-1] + adj_node),
edge_index=g.edge_index,
edge_attr=g.edge_attr,
x_query=torch.tensor([0], dtype=torch.long),
x_ans=torch.tensor([target_node], dtype=torch.long),
edge_query=torch.tensor([], dtype=torch.long),
edge_ans=torch.tensor([], dtype=torch.long),
joint_nodes=torch.tensor([], dtype=torch.long),
union_query=torch.tensor([], dtype=torch.long)
)
return g
def cap_edges(g: GraphWithAnswer, max_num_edges):
if g.num_edges <= max_num_edges:
return g
g = g.clone()
new_edges = torch.multinomial(torch.ones([g.num_edges]), max_num_edges, replacement=False)
chosen = torch.zeros([g.num_edges], dtype=torch.bool)
chosen[new_edges] = True
g.edge_index = g.edge_index[:, chosen]
g.edge_attr = g.edge_attr[chosen]
if hasattr(g, 'edge_query'):
q_mask = chosen[g.edge_query]
g.edge_query = g.edge_query[q_mask]
g.edge_ans = g.edge_ans[q_mask]
return g
def mini_sampler(igraph: IndexedGraph, target_nodes, lap_matrix, relation_cnt, config) -> GraphWithAnswer:
target_node = np.random.choice(target_nodes)
d: dict = config['pretrain_sampler_ratio']
edge_drop_out_rate = config['edge_drop_out_rate']
a = list(d.keys())
p = np.array(list(map(d.__getitem__, a)), dtype=np.float32)
p = p / p.sum()
g_type = np.random.choice(a=a, p=p)
g = None
for n in range(config['sample_retries']):
if g_type == '1p':
g = sample_n_p(igraph, target_node, 1, config)
elif g_type == '2p':
g = sample_n_p(igraph, target_node, 2, config)
elif g_type == '3p':
g = sample_n_p(igraph, target_node, 3, config)
elif g_type == '2i':
g = sample_n_i(igraph, target_node, 2, edge_drop_out_rate)
elif g_type == '3i':
g = sample_n_i(igraph, target_node, 3, edge_drop_out_rate)
elif g_type == 'meta_tree':
g = sample_meta_tree(target_node, igraph, edge_add_ratio=config['induced_edge_prob'])
elif g_type == 'ladies':
g = sample_from_origin(
node_list=target_nodes,
igraph=igraph,
lap_matrix=lap_matrix,
ladies_size=config['ladies_size'],
induced_edge_prob=config['induced_edge_prob'],
)
else:
raise NotImplementedError(f'Sample type "{g_type}" not implemented')
if g is not None:
break
if isinstance(g, Graph) and not isinstance(g, GraphWithAnswer):
g = gen_ans_by_masking(
graph=g,
num_nodes=igraph.num_nodes,
relation_cnt=relation_cnt,
config=config,
)
if g is not None:
assert isinstance(g, GraphWithAnswer)
g = cap_edges(g, 50)
return g