-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtilikumTrain.py
308 lines (260 loc) · 10.6 KB
/
tilikumTrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import torch
import torch.nn as nn
from torch.nn import functional as F
import mmap
import random
import pickle
import argparse
from transformers import AutoTokenizer
import time
from torch.cuda.amp import GradScaler, autocast
import torch.optim as optim
from torch import amp
device = 'cuda' if torch.cuda.is_available() else 'cpu'
#-----------------------------------------------------------------------------
#This is set up currently to be trained on one RTX 3060 w/ 12 Gb dedicated ram
block_size = 128
batch_size = 128
max_iters = 10000
learning_rate = 3e-4
eval_iters = 200
n_embd = 128
n_layer = 9
n_head = 16
dropout = 0.2
accumulation_steps = 4
#-----------------------------------------------------------------------------
print('Using device:', device)
chars = ''
with open('C:\\Users\\mango\\dev\\Tilikum\\Models\\BigReddit\\RedditVocab.txt', 'r', encoding='utf-8') as f:
text = f.read()
chars = sorted(list(set(text)))
vocab_size = len(chars)
print('Vocab size:', vocab_size)
# Tokenizer mappings
string_to_int = {ch: i for i, ch in enumerate(chars)}
int_to_string = {i: ch for i, ch in enumerate(chars)}
encode = lambda s: [string_to_int.get(ch, 0) for ch in s] # Default to 0 if char not found
decode = lambda x: ''.join([int_to_string.get(i, '?') for i in x]) # Default to '?' if index not found
def get_random_chunk(split):
filename = (
'C:\\path\\to\\train.txt'
if split == 'train'
else 'C:\\path\\to\\validate.txt'
)
with open(filename, 'rb') as f:
with mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ) as mm:
file_size = len(mm)
max_start = file_size - (block_size * batch_size + 1)
if max_start <= 0:
raise ValueError(
f"File {filename} is too small for the given block_size and batch_size."
)
start_pos = random.randint(0, max_start)
mm.seek(start_pos)
block = mm.read(block_size * batch_size + 1)
decoded_block = block.decode('utf-8', errors='ignore').replace('\r', ' ')
# Encode the decoded block
encoded = [string_to_int.get(ch, 0) for ch in decoded_block]
if len(encoded) < block_size * batch_size + 1:
raise ValueError(
"Not enough data read. Adjust block_size or batch_size."
)
# Create input (x) and target (y)
x = torch.tensor(encoded[:-1], dtype=torch.long).view(batch_size, block_size)
y = torch.tensor(encoded[1:], dtype=torch.long).view(batch_size, block_size)
return x.to(device), y.to(device)
def get_batch(split):
return get_random_chunk(split)
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ['train', 'val']:
losses = torch.zeros(eval_iters, device=device)
for k in range(eval_iters):
X, Y = get_batch(split)
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
class Head(nn.Module):
""" one head of self-attention """
def __init__(self, head_size):
super().__init__()
self.key = nn.Linear(n_embd, head_size, bias=False)
self.query = nn.Linear(n_embd, head_size, bias=False)
self.value = nn.Linear(n_embd, head_size, bias=False)
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
self.dropout = nn.Dropout(dropout)
def forward(self, x):
# input of size (batch, time-step, channels)
# output of size (batch, time-step, head size)
B, T, C = x.shape
k = self.key(x) # (B, T, hs)
q = self.query(x) # (B, T, hs)
# compute attention scores ("affinities")
wei = q @ k.transpose(-2,-1) * k.shape[-1]**-0.5 # (B, T, hs) @ (B, hs, T) -> (B, T, T)
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
wei = F.softmax(wei, dim=-1) # (B, T, T)
wei = self.dropout(wei)
# perform the weighted aggregation of the values
v = self.value(x) # (B, T, hs)
out = wei @ v # (B, T, hs)
return out
class MultiHeadAttention(nn.Module):
""" multiple heads of self-attention in parallel """
def __init__(self, num_heads, head_size):
super().__init__()
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
self.proj = nn.Linear(head_size * num_heads, n_embd)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1) # (B, T, F)
out = self.dropout(self.proj(out))
return out
class FeedForward(nn.Module):
""" a simple linear layer followed by a non-linearity """
def __init__(self, n_embd):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embd, 4 * n_embd),
nn.ReLU(),
nn.Linear(4 * n_embd, n_embd),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
""" Transformer block: communication followed by computation """
def __init__(self, n_embd, n_head):
super().__init__()
head_size = n_embd // n_head
self.sa = MultiHeadAttention(n_head, head_size)
self.ffwd = FeedForward(n_embd)
self.ln1 = nn.LayerNorm(n_embd)
self.ln2 = nn.LayerNorm(n_embd)
def forward(self, x):
y = self.sa(x)
x = self.ln1(x + y)
y = self.ffwd(x)
x = self.ln2(x + y)
return x
class GPTLanguageModel(nn.Module):
def __init__(self, vocab_size):
super().__init__()
self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
self.position_embedding_table = nn.Embedding(block_size, n_embd)
self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
self.ln_f = nn.LayerNorm(n_embd) # final layer norm
self.lm_head = nn.Linear(n_embd, vocab_size)
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, index, targets=None):
B, T = index.shape
# idx and targets are both (B, T) tensor of integers
tok_emb = self.token_embedding_table(index) # (B, T, C)
pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T, C)
x = tok_emb + pos_emb # (B, T, C)
x = self.blocks(x) # (B, T, C)
x = self.ln_f(x) # (B, T, C)
logits = self.lm_head(x) # (B, T, vocab_size)
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B * T, C)
targets = targets.view(B * T)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, index, max_new_tokens):
# index is (B, T) array of indices in the current context
for _ in range(max_new_tokens):
# Crop idx to the last block_size tokens
index_cond = index[:, -block_size:]
# Get the predictions
logits, _ = self.forward(index_cond)
# Focus only on the last time step
logits = logits[:, -1, :] # (B, C)
# Apply softmax to get probabilities
probs = F.softmax(logits, dim=-1) # (B, C)
# Sample from the distribution
index_next = torch.multinomial(probs, num_samples=1) # (B, 1)
# Append sampled index to the running sequence
index = torch.cat((index, index_next), dim=1) # (B, T+1)
return index
model = GPTLanguageModel(vocab_size)
m = model.to(device)
# Uncomment and adjust if you need to load a pre-trained model
'''
print('Loading model...')
with open('model-01.pkl', 'rb') as f:
model = pickle.load(f)
print('Model loaded')
m = model.to(device)
'''
from transformers import get_linear_schedule_with_warmup
#create an optimizer
optimizer = optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=1e-2)
num_warmup_steps = 1000
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=max_iters
)
# Create a learning rate scheduler (for example, StepLR)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=200, gamma=0.1)
# Mixed precision training with adaptive learning rates
scaler = amp.GradScaler()
patience = 5 # Number of iterations to wait for improvement
best_val_loss = float('inf') # Initialize best validation loss
patience_counter = 0 # Counter for patience
# Training loop
for iter in range(max_iters):
if iter % eval_iters == 0:
losses = estimate_loss()
print(f'Iter {iter}, train loss: {losses["train"]:.4f}, val loss: {losses["val"]:.4f}')
# Early stopping logic
if losses['val'] < best_val_loss:
best_val_loss = losses['val'] # Update best validation loss
patience_counter = 0 # Reset counter if we have an improvement
print("Validation loss improved. Saving model...")
# Save the model if needed
with open('best921.pkl', 'wb') as f:
pickle.dump(model, f)
else:
patience_counter += 1 # Increment counter
# Check if we should stop training
if patience_counter >= patience:
print(f'Early stopping triggered. No improvement for {patience} iterations.')
break # Exit the training loop
# Sample batch of data
try:
xb, yb = get_batch('train')
except ValueError as e:
print(f"Batch {iter}: {e}")
continue # Skip this batch
# Mixed precision training
with amp.autocast(device_type='cuda'):
logits, loss = model(xb, yb)
loss = loss / accumulation_steps # Normalize loss for accumulation
optimizer.zero_grad(set_to_none=True)
scaler.scale(loss).backward() # Scale the loss and backward pass
# Update weights every `accumulation_steps`
if (iter + 1) % accumulation_steps == 0:
scaler.step(optimizer) # Update the optimizer
scaler.update() # Update the scale for the next iteration
# Step the scheduler after optimizer step
scheduler.step()
print(f'Final loss: {loss.item():.4f}')
# Save the model
with open('Tilikum-01.pkl', 'wb') as f:
pickle.dump(model, f)
print('Model saved!')