-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_model.py
155 lines (122 loc) · 5.9 KB
/
eval_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import argparse, time, os, sys
import shutil
from collections import OrderedDict
from contextlib import suppress
from PIL import Image
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
import torchvision.datasets as dset
from timm.data import ImageDataset as DatasetTar
from torch.utils.data import Dataset
from timm.utils import AverageMeter, accuracy
from utils import Normalize, Unnormalize, get_logger, get_timestamp, load_ground_truth, get_model
from config import IMAGENET_PATH, NEURIPS_DATA_PATH, NEURIPS_CSV_PATH
torch.backends.cudnn.benchmark = True
parser = argparse.ArgumentParser(description='Evaluate a model')
# Dataset / Model parameters
parser.add_argument('--source-model', nargs="+", default=['resnet101'], help='Name of model to train')
parser.add_argument('--dataset', default='imagenet', type=str, help='Used Dataset')
parser.add_argument('--batch-size', type=int, default=32, help='input batch size for training')
parser.add_argument('--image-size', type=int, default=224, help='Image size')
parser.add_argument('--device', type=str, default='cuda')
# Misc
parser.add_argument('--log-interval', type=int, default=50, help='log interval')
parser.add_argument('--workers', type=int, default=6, help='Dataloading workers')
parser.add_argument('--subfolder', default='', type=str, help='Subfolder')
parser.add_argument('--postfix', type=str, default='', help='Postfix to append to results folder')
def _parse_args():
args = parser.parse_args()
return args
def main():
args = _parse_args()
args.distributed = False
result_path = os.path.join('./output', 'eval', args.subfolder, get_timestamp() + args.postfix)
os.makedirs(result_path)
# Saving this file
shutil.copy(sys.argv[0], os.path.join(result_path, sys.argv[0]))
_logger = get_logger(result_path)
state = {k: v for k, v in args._get_kwargs()}
for key, value in state.items():
_logger.info('{} : {}'.format(key, value))
amp_autocast = suppress # do nothing
if args.dataset == 'imagenet':
num_classes = 1000
mean = args.mean = [0.485, 0.456, 0.406]
std = args.std = [0.229, 0.224, 0.225]
if args.image_size == 224:
transform_eval = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean, std),
])
else:
transform_eval = transforms.Compose([
transforms.Resize(args.image_size, Image.BICUBIC),
transforms.CenterCrop(args.image_size),
transforms.ToTensor(),
transforms.Normalize(mean, std),
])
dir_eval = os.path.join(IMAGENET_PATH, 'val')
data_eval = dset.ImageFolder(root=dir_eval, transform=transform_eval)
# data_eval = DatasetTar(dir_eval, transform=transform_eval)
loader_eval = torch.utils.data.DataLoader(data_eval,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers,
pin_memory=True)
source_model=[]
for sm in args.source_model:
model = get_model(sm)
model.to(args.device)
source_model.append(model)
validate_loss_fn = nn.CrossEntropyLoss().to(args.device)
# Evaluation
for model, model_name in zip(source_model, args.source_model):
##### Validation
batch_time_m = AverageMeter()
losses_m = AverageMeter()
top1_m = AverageMeter()
top5_m = AverageMeter()
unnorm = Unnormalize(mean=args.mean, std=args.std)
norm_vit = Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
model.eval()
end = time.time()
last_idx = len(loader_eval) - 1
with torch.no_grad():
for batch_idx, (input, target) in enumerate(loader_eval):
input = input.to(args.device)
target = target.to(args.device)
input = norm_vit(unnorm(input))
with amp_autocast():
output = model(input)
if isinstance(output, (tuple, list)):
output = output[0]
# print(output, output.shape)
loss = validate_loss_fn(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
reduced_loss = loss.data
# torch.cuda.synchronize()
losses_m.update(reduced_loss.item(), input.size(0))
top1_m.update(acc1.item(), output.size(0))
top5_m.update(acc5.item(), output.size(0))
batch_time_m.update(time.time() - end)
end = time.time()
if batch_idx % args.log_interval == 0:
log_name = 'Test'
print(
'{0}: [{1:>4d}/{2}] '
'Time: {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Loss: {loss.val:>7.4f} ({loss.avg:>6.4f}) '
'Acc@1: {top1.val:>7.4f} ({top1.avg:>7.4f}) '
'Acc@5: {top5.val:>7.4f} ({top5.avg:>7.4f})'.format(
log_name, batch_idx, last_idx, batch_time=batch_time_m,
loss=losses_m, top1=top1_m, top5=top5_m))
val_metrics = OrderedDict([('loss', losses_m.avg), ('top1', top1_m.avg), ('top5', top5_m.avg)])
#####
# val_metrics = validate(sm, sm_name, loader_eval, validate_loss_fn, args)
_logger.info(f"Top-1 accuracy of {model_name}: {val_metrics['top1']:.2f}%")
if __name__ == '__main__':
main()