-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain.py
48 lines (39 loc) · 1.83 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
"""train TransRAC model """
from platform import node
import os
## if your data is .mp4 form, please use RepCountA_raw_Loader.py (slowly)
from dataset.RepCountA_raw_Loader import MyData
## if your data is .npz form, please use RepCountA_Loader.py. It can speed up the training
# from dataset.RepCountA_Loader import MyData
# you can use 'tools.video2npz.py' to transform .mp4 to .npz
from models.TransRAC import TransferModel
from training.train_looping import train_loop
# CUDA environment
N_GPU = 4
device_ids = [i for i in range(N_GPU)]
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
# # # we pick out the fixed frames from raw video file, and we store them as .npz file
# # # we currently support 64 or 128 frames
# data root path
root_path = '/public/home/huhzh/LSP_dataset/LLSP_npz(64)/'
train_video_dir = 'train'
train_label_dir = 'train.csv'
valid_video_dir = 'valid'
valid_label_dir = 'valid.csv'
# please make sure the pretrained model path is correct
checkpoint = './pretrained/swin_tiny_patch244_window877_kinetics400_1k.pth'
config = './configs/recognition/swin/swin_tiny_patch244_window877_kinetics400_1k.py'
# TransRAC trained model checkpoint, we will upload soon.
lastckpt = None
NUM_FRAME = 64
# multi scales(list). we currently support 1,4,8 scale.
SCALES = [1, 4, 8]
train_dataset = MyData(root_path, train_video_dir, train_label_dir, num_frame=NUM_FRAME)
valid_dataset = MyData(root_path, valid_video_dir, valid_label_dir, num_frame=NUM_FRAME)
my_model = TransferModel(config=config, checkpoint=checkpoint, num_frames=NUM_FRAME, scales=SCALES, OPEN=False)
NUM_EPOCHS = 200
LR = 8e-6
BATCH_SIZE = 32
train_loop(NUM_EPOCHS, my_model, train_dataset, valid_dataset, train=True, valid=True,
batch_size=BATCH_SIZE, lr=LR, saveckpt=True, ckpt_name='ours', log_dir='ours', device_ids=device_ids,
lastckpt=lastckpt, mae_error=False)