-
Notifications
You must be signed in to change notification settings - Fork 0
/
stitcher.py
107 lines (89 loc) · 4.1 KB
/
stitcher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import numpy as np
import cv2
class Stitcher:
def image_stitch(
self, images, lowe_ratio=0.75, max_Threshold=4.0, match_status=False
):
# detect the features and keypoints from SIFT
(imageB, imageA) = images
(key_points_A, features_of_A) = self.detect_feature_and_keypoints(imageA)
(key_points_B, features_of_B) = self.detect_feature_and_keypoints(imageB)
# get the valid matched points
Values = self.match_keypoints(
key_points_A,
key_points_B,
features_of_A,
features_of_B,
lowe_ratio,
max_Threshold,
)
if Values is None:
return None
# get wrap perspective of image using computed homography
(matches, Homography, status) = Values
result_image = self.get_warp_perspective(imageA, imageB, Homography)
result_image[0 : imageB.shape[0], 0 : imageB.shape[1]] = imageB
# check to see if the keypoint matches should be visualized
if match_status:
vis = self.draw_matches(
imageA, imageB, key_points_A, key_points_B, matches, status
)
return result_image, vis
return result_image
def get_warp_perspective(self, imageA, imageB, Homography):
val = imageA.shape[1] + imageB.shape[1]
result_image = cv2.warpPerspective(imageA, Homography, (val, imageA.shape[0]))
return result_image
def detect_feature_and_keypoints(self, image):
# detect and extract features from the image
descriptors = cv2.SIFT_create()
(keypoints, features) = descriptors.detectAndCompute(image, None)
keypoints = np.float32([i.pt for i in keypoints])
return keypoints, features
def get_all_possible_matches(self, featuresA, featuresB):
# compute the all matches using Euclidean distance
match_instance = cv2.DescriptorMatcher_create("BruteForce")
All_Matches = match_instance.knnMatch(featuresA, featuresB, 2)
return All_Matches
def get_all_valid_matches(self, AllMatches, lowe_ratio):
# to get all valid matches according to lowe concept..
valid_matches = []
for val in AllMatches:
if len(val) == 2 and val[0].distance < val[1].distance * lowe_ratio:
valid_matches.append((val[0].trainIdx, val[0].queryIdx))
return valid_matches
def compute_homography(self, pointsA, pointsB, max_Threshold):
return cv2.findHomography(pointsA, pointsB, cv2.RANSAC, max_Threshold)
def match_keypoints(
self, KeypointsA, KeypointsB, featuresA, featuresB, lowe_ratio, max_Threshold
):
all_matches = self.get_all_possible_matches(featuresA, featuresB)
valid_matches = self.get_all_valid_matches(all_matches, lowe_ratio)
if len(valid_matches) <= 4:
return None
# construct the two sets of points
points_A = np.float32([KeypointsA[i] for (_, i) in valid_matches])
points_B = np.float32([KeypointsB[i] for (i, _) in valid_matches])
(homograpgy, status) = self.compute_homography(
points_A, points_B, max_Threshold
)
return valid_matches, homograpgy, status
def get_image_dimension(self, image):
return image.shape[:2]
def get_points(self, imageA, imageB):
(hA, wA) = self.get_image_dimension(imageA)
(hB, wB) = self.get_image_dimension(imageB)
vis = np.zeros((max(hA, hB), wA + wB, 3), dtype="uint8")
vis[0:hA, 0:wA] = imageA
vis[0:hB, wA:] = imageB
return vis
def draw_matches(self, imageA, imageB, KeypointsA, KeypointsB, matches, status):
(hA, wA) = self.get_image_dimension(imageA)
vis = self.get_points(imageA, imageB)
# loop over the matches
for (trainIdx, queryIdx), s in zip(matches, status):
if s == 1:
ptA = (int(KeypointsA[queryIdx][0]), int(KeypointsA[queryIdx][1]))
ptB = (int(KeypointsB[trainIdx][0]) + wA, int(KeypointsB[trainIdx][1]))
cv2.line(vis, ptA, ptB, (0, 255, 0), 1)
return vis