-
Notifications
You must be signed in to change notification settings - Fork 0
/
estimate_homography.py
290 lines (217 loc) · 7.64 KB
/
estimate_homography.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import os
import cv2
import numpy as np
import matplotlib.pyplot as plt
def calculate_homography(in_pts, out_pts):
"""
in_pts = H*out_pts
:param in_pts: correspond to src
:param out_pts:
:return:
"""
if isinstance(in_pts, list):
in_pts = np.array(in_pts)
if isinstance(out_pts, list):
out_pts = np.array(out_pts)
mat_A, mat_b = build_system_equations(in_pts, out_pts)
H = np.matmul(np.linalg.pinv(mat_A), mat_b)
H = np.reshape(np.hstack((H, 1)), (3, 3))
return H
def convert_to_homogeneous_coordinates(inp, axis=1):
if isinstance(inp, list):
inp = np.array(inp)
r, c = inp.shape
if axis == 1:
out = np.concatenate((inp, np.ones((r, 1))), axis=axis)
else:
out = np.concatenate((inp, np.ones((1, c))), axis=axis)
return out
def get_pixel_coordinates(mask):
"""
Function to get x, y coordinates of white pixels in mask as homogenous coordinates
:param mask:
:return:
"""
y, x = np.where(mask)
pts = np.concatenate(
(x[:, np.newaxis], y[:, np.newaxis], np.ones((x.size, 1))), axis=1
) # rows of [x1, y1, 1]
print(f"Homogeneous coordinates array (x, y, 1):\n {pts}")
return pts
def fit_image_in_target_space(img_src, img_dst, mask, H, offset=np.array([0, 0, 0])):
"""
:param img_src: source image
:param img_dst: destination image
:param mask: mask corresponding to dest image
:param H: pts_in_src_img = H * pts_in_dst_img
:param offset: np array [x_offset, y_offset, 0]. Offset 0,0 in mask to this value
:return:
"""
pts = get_pixel_coordinates(mask) # rows of [x1, y1, 1]
pts = pts + offset
out_src = np.matmul(H, pts.T) # out_src has cols of [x1, y1, z1]
out_src = out_src / out_src[-1, :]
# Return only x, y non-homogeneous coordinates
out_src = out_src[0:2, :]
out_src = out_src.T
# Convert pts to out_src convention
pts = pts[:, 0:2].astype(np.int64)
h, w, _ = img_src.shape
get_pixel_value(img_dst, img_src, pts, out_src, offset)
return img_dst
def get_pixel_value(img_dst, img_src, pts, out_src, offset):
"""
:param img_dst:
:param pts: pts for img_dst rows of [x1, y1]
:param out_src: rows of [x1, y1], corresponding pts in src img after homography on dst points
:return:
"""
h, w, _ = img_src.shape
tl = np.floor(out_src[:, ::-1]).astype(
np.int64
) # reverse cols to get row, col notation
br = np.ceil(out_src[:, ::-1]).astype(np.int64)
pts = pts - offset[:2]
r_lzero = np.where(~np.logical_or(np.any(tl < 0, axis=1), np.any(br < 0, axis=1)))
pts = pts[r_lzero[0], :]
out_src = out_src[r_lzero[0], :]
tl = tl[r_lzero[0], :]
br = br[r_lzero[0], :]
r_fl = np.where(~np.logical_or(tl[:, 0] >= h - 1, tl[:, 1] >= w - 1))
pts = pts[r_fl[0], :]
out_src = out_src[r_fl[0], :]
tl = tl[r_fl[0], :]
br = br[r_fl[0], :]
r_ce = np.where(~np.logical_or(br[:, 0] >= h - 1, br[:, 1] >= w - 1))
pts = pts[r_ce[0], :]
out_src = out_src[r_ce[0], :]
tl = tl[r_ce[0], :]
br = br[r_ce[0], :]
print(pts.shape)
print(out_src.shape)
print(tl.shape)
print(br.shape)
tr = np.concatenate((tl[:, 0:1], br[:, 1:2]), axis=1)
bl = np.concatenate((br[:, 0:1], tl[:, 1:2]), axis=1)
weight = np.zeros((out_src.shape[0], 4))
weight[:, 0] = np.linalg.norm(tl - out_src[:, ::-1], axis=1)
weight[:, 1] = np.linalg.norm(tr - out_src[:, ::-1], axis=1)
weight[:, 2] = np.linalg.norm(bl - out_src[:, ::-1], axis=1)
weight[:, 3] = np.linalg.norm(br - out_src[:, ::-1], axis=1)
weight[np.all(weight == 0, axis=1)] = 1 # For entries where they exactly overlap
weight = 1 / weight
img_dst[pts[:, 1], pts[:, 0], :] = (
img_src[tl[:, 0], tl[:, 1], :] * weight[:, 0:1]
+ img_src[tr[:, 0], tr[:, 1], :] * weight[:, 1:2]
+ img_src[bl[:, 0], bl[:, 1], :] * weight[:, 2:3]
+ img_src[br[:, 0], br[:, 1], :] * weight[:, 3:4]
) / np.sum(weight, axis=1, keepdims=True)
return img_dst
def build_system_equations(in_pts, out_pts):
"""
:param in_pts: nparray [[x1, y1], [x2, y2], ...]
:param out_pts: nparray [[x1, y1], [x2, y2], ...]
:param include_perp_bisector:
:return:
"""
mat_A = np.zeros((np.size(in_pts), 8))
mat_b = in_pts.ravel()
i = 0
for x, y in out_pts:
# x row
mat_A[i][0:3] = [x, y, 1]
mat_A[i][-2:] = [-x * mat_b[i], -y * mat_b[i]]
# y row
mat_A[i + 1][-5:] = [x, y, 1, -x * mat_b[i + 1], -y * mat_b[i + 1]]
# row counter
i = i + 2
return mat_A, mat_b
def get_perp_bisectors(in_pts, out_pts):
perp_in = np.array(
[
in_pts[-1] + in_pts[0],
in_pts[0] + in_pts[1],
in_pts[1] + in_pts[2],
in_pts[2] + in_pts[3],
]
)
perp_out = np.array(
[
out_pts[-1] + out_pts[0],
out_pts[0] + out_pts[1],
out_pts[1] + out_pts[2],
out_pts[2] + out_pts[3],
]
)
in_pts = np.concatenate((in_pts, perp_in / 2), axis=0)
out_pts = np.concatenate((out_pts, perp_out / 2), axis=0)
in_pts = in_pts.astype(np.int64)
out_pts = out_pts.astype(np.int64)
return in_pts, out_pts
def run(img_src_path, img_dst_path, out_pts, include_perp=False, save_fig="result.jpg"):
"""
Fit img_src into img_dst. in_pts are in img_src, out_pts are in img_dst (clkwise starting from top left)
:param img_1_path:
:param img_2_path:
:param in_pts: pts chosen in source image
:param out_pts: corresponding pts chosen in destination image
:return:
"""
fldr, fname = os.path.split(img_src_path)
_, fname = os.path.split(img_dst_path)
res_dir = os.path.join(fldr, "results")
if not os.path.exists(res_dir):
os.makedirs(res_dir)
img_src = cv2.cvtColor(cv2.imread(img_src_path), cv2.COLOR_BGR2RGB)
img_dst = cv2.cvtColor(cv2.imread(img_dst_path), cv2.COLOR_BGR2RGB)
if isinstance(out_pts, list):
out_pts = np.array(out_pts)
h, w, _ = np.shape(img_src)
in_pts = np.array([[0, 0], [w, 0], [w, h], [0, h]])
# Get mask
mask = np.zeros(img_dst.shape[0:2], dtype=np.uint8)
cv2.fillConvexPoly(mask, out_pts, 255)
plot_req_images(img_src, img_dst, mask, os.path.join(res_dir, "visualize_" + fname))
if include_perp:
in_pts, out_pts = get_perp_bisectors(in_pts, out_pts)
H = calculate_homography(in_pts, out_pts)
## Check if homography correctly calculated
print("-------")
t_one = np.ones((in_pts.shape[0], 1))
t_out_pts = np.concatenate((out_pts, t_one), axis=1)
print("-------")
x = np.matmul(H, t_out_pts.T)
x = x / x[-1, :]
print(x)
print("-------")
print(in_pts.T)
print(cv2.findHomography(out_pts, in_pts))
print("-------")
print(H)
out = fit_image_in_target_space(img_src, img_dst, mask, H)
plt.figure()
plt.imshow(out)
plt.axis("off")
plt.savefig(os.path.join(res_dir, "result_" + fname))
plt.show()
def plot_req_images(img_src, img_dst, mask, fig_name):
plt.figure()
plt.suptitle("To fit src_img to dest_img mask region")
plt.subplot(2, 2, 1)
plt.title("Source_image")
plt.imshow(img_src)
plt.axis("off")
plt.subplot(2, 2, 2)
plt.title("Dest_image")
plt.imshow(img_dst)
plt.axis("off")
plt.subplot(2, 2, 3)
plt.imshow(mask, cmap="gray", vmin=0, vmax=255)
plt.title("Mask")
plt.axis("off")
plt.subplot(2, 2, 4)
plt.imshow(cv2.bitwise_and(img_dst, img_dst, mask=~mask))
plt.title("Destination region in image")
plt.axis("off")
plt.savefig(fig_name)
plt.show()