-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimply_supported_plate_udp.m
101 lines (101 loc) · 4.29 KB
/
simply_supported_plate_udp.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
%==================================================================================================
% MATLAB script to determine approximate deflected shape and B.M.D of a simply supported plate at
% all edges (Navier's Method) due to uniformly distribute load
% For further details, go to the link below:
% https://github.com/SubhadipN/Fourier_Series/blob/main/README.md
%==================================================================================================
% PREPARED BY SUBHADIP NASKAR, RESEARCH SCHOLAR, IIT GUWAHATI
%==================================================================================================
clear all; clc; warning('off','all')
%==================================================================================================
a = 2; b = 2; % Dimension of the plate (m) [a: x-direction; b: y-direction]
po = -1000; % Uniform pressure (kN/m^2)
Es = 2*10^8; % Elastic modulus of steel (kN/m^2)
h = 0.05; % Plate thickness (m)
nu = 0.30; % Poisson's ratio
fn = 10; % Number of terms in Fourier series::
sx = 0.05; % Meshgrid properties (small interval in x direction)
sy = 0.05; % Meshgrid properties (small interval in x direction)
%==================================================================================================
D = Es*h^3/(12*(1-nu^2)); % Flexural Rigidity of plate
gx = 1+b/sx; gy = 1+a/sy; % Grid numbers in x and y direction
[x,y] = meshgrid(0:sx:a,0:sy:b);
%==================================================================================================
% Determination of surface load coefficients (pmn)::
% **NOTE: the formula for pmn must be modified accordingly if any other external loading than
% uniform pressure is acting on the simply supported plate.
pmn = zeros(fn);
for m = 1:fn
for n = 1:fn
if (mod(m,2) == 1) && (mod(n,2) == 1)
pmn(m,n) = 16*po/(m*n*pi^2);
end
end
end
%==================================================================================================
% Determination of deflection coefficients (wmn)::
wmn = zeros(fn);
for m = 1:fn
for n = 1:fn
dnm = (pi^4)*D*((m/a)^2+(n/b)^2)^2;
wmn(m,n) = pmn(m,n)/dnm;
end
end
%==================================================================================================
% Determination of deflected shape (wxy) [Unit: m]::
wxy = zeros(fn);
for i = 1:gx
for j = 1:gy
s = 0;
for m = 1:fn
for n = 1:fn
s = s+wmn(m,n)*sin(m*pi*x(i,j)/a)*sin(n*pi*y(i,j)/b);
end
end
wxy(i,j) = s;
end
end
%==================================================================================================
% Determination of bending moments (Mx, My) [Unit: kN-m]::
for i = 1:gx
for j = 1:gy s1 = 0; s2 = 0;
for m = 1:fn
for n = 1:fn
nmn1 = pmn(m,n)*((m/a)^2+nu*(n/b)^2);
nmn2 = pmn(m,n)*(nu*(m/a)^2+(n/b)^2);
dnm = ((m/a)^2+(n/b)^2)^2;
s1 = s1+(nmn1/dnm)*sin(m*pi*x(i,j)/a)*sin(n*pi*y(i,j)/b);
s2 = s2+(nmn2/dnm)*sin(m*pi*x(i,j)/a)*sin(n*pi*y(i,j)/b);
end
end
Mx(i,j) = s1*pi^-2;
My(i,j) = s2*pi^-2;
end
end
%==================================================================================================
figure (1)
surf(x,y,1000*wxy);
set(gca,'FontSize',18);
colorbar('northoutside','fontsize',18);
title('Deflected shape of simply supported plate','fontsize',18);
xlabel('x (m)','fontsize',18);
ylabel('y (m)','fontsize',18);
zlabel('Deflection (mm)','fontsize',18);
figure (2)
subplot(1,2,1)
surf(x,y,Mx);
set(gca,'FontSize',18);
colorbar('northoutside','fontsize',18);
xlabel('x (m)','fontsize',18);
ylabel('y (m)','fontsize',18);
zlabel('Mx (kN-m)','fontsize',18);
title('Bending moment diagram of simply supported plate','fontsize',18)
subplot(1,2,2)
surf(x,y,My);
set(gca,'FontSize',18);
colorbar('northoutside','fontsize',18);
title('Bending moment diagram of simply supported plate','fontsize',18)
xlabel('x (m)','fontsize',18);
ylabel('y (m)','fontsize',18);
zlabel('My (kN-m)','fontsize',18);
%==================================================================================================