diff --git a/docs/changes/828.feature.rst b/docs/changes/828.feature.rst new file mode 100644 index 000000000..e2f2fffe5 --- /dev/null +++ b/docs/changes/828.feature.rst @@ -0,0 +1 @@ +Add a compute_rms function to LombScarglePowerspectrum diff --git a/stingray/lombscargle.py b/stingray/lombscargle.py index d163a37ca..9dde7e383 100644 --- a/stingray/lombscargle.py +++ b/stingray/lombscargle.py @@ -1,15 +1,25 @@ import copy +from collections.abc import Iterable import warnings from typing import Optional, Union import numpy as np import numpy.typing as npt +import scipy +import scipy.stats from astropy.timeseries.periodograms import LombScargle from .crossspectrum import Crossspectrum from .events import EventList from .exceptions import StingrayError -from .fourier import impose_symmetry_lsft, lsft_fast, lsft_slow +from .fourier import ( + impose_symmetry_lsft, + lsft_fast, + lsft_slow, + get_rms_from_unnorm_periodogram, + poisson_level, + unnormalize_periodograms, +) from .lightcurve import Lightcurve from .utils import simon @@ -352,6 +362,7 @@ def _initialize_empty(self): self.oversampling = None self.variance1 = None self.variance2 = None + self.variance = None return def time_lag(self): @@ -388,6 +399,112 @@ def from_lc_iterable(self): "Object has no attribute named 'from_lc_iterable' ! Not applicable for unevenly sampled data" ) + if self.df is None: + self.df = self.freq[1] - self.freq[0] + + def compute_rms(self, min_freq, max_freq, poisson_noise_level=None): + """ + Compute the fractional rms amplitude in the power spectrum + between two frequencies. + + Parameters + ---------- + min_freq: float + The lower frequency bound for the calculation. + + max_freq: float + The upper frequency bound for the calculation. + + Other parameters + ---------------- + poisson_noise_level : float, default is None + This is the Poisson noise level of the PDS with same + normalization as the PDS. If poissoin_noise_level is None, + the Poisson noise is calculated in the idealcase + e.g. 2./ for fractional rms normalisation + Dead time and other instrumental effects can alter it. + The user can fit the Poisson noise level outside + this function using the same normalisation of the PDS + and it will get subtracted from powers here. + + Returns + ------- + rms: float + The fractional rms amplitude contained between ``min_freq`` and + ``max_freq``. + + rms_err: float + The error on the fractional rms amplitude. + + """ + good = (self.freq >= min_freq) & (self.freq <= max_freq) + + M_freq = self.m + K_freq = self.k + + if isinstance(self.k, Iterable): + K_freq = self.k[good] + + if isinstance(self.m, Iterable): + M_freq = self.m[good] + + if poisson_noise_level is None: + poisson_noise_unnorm = poisson_level("none", n_ph=self.nphots) + else: + poisson_noise_unnorm = unnormalize_periodograms( + poisson_noise_level, self.dt, self.n, self.nphots, norm=self.norm + ) + + rms, rmse = get_rms_from_unnorm_periodogram( + self.unnorm_power[good], + self.nphots, + self.df * K_freq, + M=M_freq, + poisson_noise_unnorm=poisson_noise_unnorm, + segment_size=None, + kind="frac", + ) + + return rms, rmse + + def _rms_error(self, powers): + r""" + Compute the error on the fractional rms amplitude using error + propagation. + Note: this uses the actual measured powers, which is not + strictly correct. We should be using the underlying power spectrum, + but in the absence of an estimate of that, this will have to do. + + .. math:: + + r = \sqrt{P} + + .. math:: + + \delta r = \\frac{1}{2 * \sqrt{P}} \delta P + + Parameters + ---------- + powers: iterable + The list of powers used to compute the fractional rms amplitude. + + Returns + ------- + delta_rms: float + The error on the fractional rms amplitude. + """ + nphots = self.nphots + p_err = scipy.stats.chi2(2.0 * self.m).var() * powers / self.m / nphots + + rms = np.sum(powers) / nphots + pow = np.sqrt(rms) + + drms_dp = 1 / (2 * pow) + + sq_sum_err = np.sqrt(np.sum(p_err**2)) + delta_rms = sq_sum_err * drms_dp + return delta_rms + class LombScarglePowerspectrum(LombScargleCrossspectrum): type = "powerspectrum" diff --git a/stingray/tests/test_lombscargle.py b/stingray/tests/test_lombscargle.py index 25f0d1924..27e2beb52 100644 --- a/stingray/tests/test_lombscargle.py +++ b/stingray/tests/test_lombscargle.py @@ -3,6 +3,7 @@ import numpy as np import pytest from scipy.interpolate import interp1d +from astropy.modeling.models import Lorentz1D from stingray.events import EventList from stingray.exceptions import StingrayError @@ -11,6 +12,8 @@ from stingray.lombscargle import _autofrequency from stingray.simulator import Simulator +rng = np.random.RandomState(20150907) + def test_autofrequency(): freqs = _autofrequency(min_freq=0.1, max_freq=0.5, df=0.1) @@ -42,7 +45,7 @@ def setup_class(self): t = lc1.time self.time = lc1.time t_new = t.copy() - t_new[1:-1] = t[1:-1] + (np.random.rand(len(t) - 2) / (high - low)) + t_new[1:-1] = t[1:-1] + (rng.rand(len(t) - 2) / (high - low)) s1_new = interp1d(t, s1, fill_value="extrapolate")(t_new) s2_new = interp1d(t, s2, fill_value="extrapolate")(t_new) self.lc1 = Lightcurve(t, s1_new, dt=lc1.dt) @@ -50,7 +53,7 @@ def setup_class(self): self.lscs = LombScargleCrossspectrum(lc1, lc2) def test_eventlist(self): - counts = np.random.poisson(10, 1000) + counts = rng.poisson(10, 1000) times = np.arange(0, 1000, 1) lc1 = Lightcurve(times, counts, dt=1) lc2 = Lightcurve(times, counts, dt=1) @@ -225,7 +228,7 @@ def test_time_phase_lag(self, phase_lag): def func(time, phase=0): return 2 + np.sin(2 * np.pi * (time * freq - phase)) - time = np.sort(np.random.uniform(0, 100, 3000)) + time = np.sort(rng.uniform(0, 100, 3000)) with pytest.warns(UserWarning): lc1 = Lightcurve(time, func(time, 0)) @@ -249,7 +252,7 @@ def setup_class(self): s1 = lc.counts t = lc.time t_new = t.copy() - t_new[1:-1] = t[1:-1] + (np.random.rand(len(t) - 2) / (high - low)) + t_new[1:-1] = t[1:-1] + (rng.rand(len(t) - 2) / (high - low)) s_new = interp1d(t, s1, fill_value="extrapolate")(t_new) self.lc = Lightcurve(t, s_new, dt=lc.dt) @@ -279,8 +282,60 @@ def test_make_empty_powerspectrum(self): assert ps.method is None def test_ps_real(self): - counts = np.random.poisson(10, 1000) + counts = rng.poisson(10, 1000) times = np.arange(0, 1000, 1) lc = Lightcurve(times, counts, dt=1) ps = LombScarglePowerspectrum(lc) assert np.allclose(ps.power.imag, np.zeros_like(ps.power.imag), atol=1e-4) + + +class TestRMS(object): + @classmethod + def setup_class(cls): + fwhm = 0.23456 + cls.segment_size = 256 + cls.df = 1 / cls.segment_size + + cls.freqs = np.arange(cls.df, 1, cls.df) + dt = 0.5 / cls.freqs.max() + + pds_shape_func = Lorentz1D(x_0=0, fwhm=fwhm) + cls.pds_shape_raw = pds_shape_func(cls.freqs) + cls.M = 1 + cls.nphots = 1_000_000 + cls.rms = 0.5 + meanrate = cls.nphots / cls.segment_size + cls.poisson_noise_rms = 2 / meanrate + pds_shape_rms = cls.pds_shape_raw / np.sum(cls.pds_shape_raw * cls.df) * cls.rms**2 + pds_shape_rms += cls.poisson_noise_rms + + random_part = rng.chisquare(2 * cls.M, size=cls.pds_shape_raw.size) / 2 / cls.M + pds_rms_noisy = random_part * pds_shape_rms + + pds_unnorm = pds_rms_noisy * meanrate / 2 * cls.nphots + cls.pds = LombScarglePowerspectrum() + cls.pds.freq = cls.freqs + cls.pds.unnorm_power = pds_unnorm + cls.pds.power = pds_rms_noisy + cls.pds.df = cls.df + cls.pds.m = cls.M + cls.pds.nphots = cls.nphots + cls.pds.norm = "frac" + cls.pds.dt = dt + cls.pds.n = cls.pds.freq.size + + @pytest.mark.parametrize("norm", ["none", "frac", "leahy", "abs"]) + def test_rms(self, norm): + pds = self.pds.to_norm(norm) + with pytest.warns(UserWarning, match="All power spectral bins have M<30."): + rms_from_ps, rmse_from_ps = pds.compute_rms(self.freqs.min(), self.freqs.max()) + assert np.isclose(rms_from_ps, self.rms, atol=3 * rmse_from_ps) + + @pytest.mark.parametrize("norm", ["none", "frac", "leahy", "abs"]) + def test_rms_rebinning(self, norm): + pds = self.pds.to_norm(norm) + pds = pds.rebin_log(0.04) + with pytest.warns(UserWarning, match="All power spectral bins have M<30."): + rms_from_ps, rmse_from_ps = pds.compute_rms(self.freqs.min(), self.freqs.max()) + + assert np.isclose(rms_from_ps, self.rms, atol=3 * rmse_from_ps)