-
Notifications
You must be signed in to change notification settings - Fork 151
/
run.py
141 lines (128 loc) · 4.68 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import argparse
import os
from contextlib import nullcontext
import rembg
import torch
from PIL import Image
from tqdm import tqdm
from sf3d.system import SF3D
from sf3d.utils import get_device, remove_background, resize_foreground
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"image", type=str, nargs="+", help="Path to input image(s) or folder."
)
parser.add_argument(
"--device",
default=get_device(),
type=str,
help=f"Device to use. If no CUDA/MPS-compatible device is found, the baking will fail. Default: '{get_device()}'",
)
parser.add_argument(
"--pretrained-model",
default="stabilityai/stable-fast-3d",
type=str,
help="Path to the pretrained model. Could be either a huggingface model id is or a local path. Default: 'stabilityai/stable-fast-3d'",
)
parser.add_argument(
"--foreground-ratio",
default=0.85,
type=float,
help="Ratio of the foreground size to the image size. Only used when --no-remove-bg is not specified. Default: 0.85",
)
parser.add_argument(
"--output-dir",
default="output/",
type=str,
help="Output directory to save the results. Default: 'output/'",
)
parser.add_argument(
"--texture-resolution",
default=1024,
type=int,
help="Texture atlas resolution. Default: 1024",
)
parser.add_argument(
"--remesh_option",
choices=["none", "triangle", "quad"],
default="none",
help="Remeshing option",
)
parser.add_argument(
"--target_vertex_count",
type=int,
help="Target vertex count. -1 does not perform a reduction.",
default=-1,
)
parser.add_argument(
"--batch_size", default=1, type=int, help="Batch size for inference"
)
args = parser.parse_args()
# Ensure args.device contains cuda
devices = ["cuda", "mps", "cpu"]
if not any(args.device in device for device in devices):
raise ValueError("Invalid device. Use cuda, mps or cpu")
output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True)
device = args.device
if not (torch.cuda.is_available() or torch.backends.mps.is_available()):
device = "cpu"
print("Device used: ", device)
model = SF3D.from_pretrained(
args.pretrained_model,
config_name="config.yaml",
weight_name="model.safetensors",
)
model.to(device)
model.eval()
rembg_session = rembg.new_session()
images = []
idx = 0
for image_path in args.image:
def handle_image(image_path, idx):
image = remove_background(
Image.open(image_path).convert("RGBA"), rembg_session
)
image = resize_foreground(image, args.foreground_ratio)
os.makedirs(os.path.join(output_dir, str(idx)), exist_ok=True)
image.save(os.path.join(output_dir, str(idx), "input.png"))
images.append(image)
if os.path.isdir(image_path):
image_paths = [
os.path.join(image_path, f)
for f in os.listdir(image_path)
if f.endswith((".png", ".jpg", ".jpeg"))
]
for image_path in image_paths:
handle_image(image_path, idx)
idx += 1
else:
handle_image(image_path, idx)
idx += 1
for i in tqdm(range(0, len(images), args.batch_size)):
image = images[i : i + args.batch_size]
if torch.cuda.is_available():
torch.cuda.reset_peak_memory_stats()
with torch.no_grad():
with torch.autocast(
device_type=device, dtype=torch.bfloat16
) if "cuda" in device else nullcontext():
mesh, glob_dict = model.run_image(
image,
bake_resolution=args.texture_resolution,
remesh=args.remesh_option,
vertex_count=args.target_vertex_count,
)
if torch.cuda.is_available():
print("Peak Memory:", torch.cuda.max_memory_allocated() / 1024 / 1024, "MB")
elif torch.backends.mps.is_available():
print(
"Peak Memory:", torch.mps.driver_allocated_memory() / 1024 / 1024, "MB"
)
if len(image) == 1:
out_mesh_path = os.path.join(output_dir, str(i), "mesh.glb")
mesh.export(out_mesh_path, include_normals=True)
else:
for j in range(len(mesh)):
out_mesh_path = os.path.join(output_dir, str(i + j), "mesh.glb")
mesh[j].export(out_mesh_path, include_normals=True)