This repository has been archived by the owner on Jul 2, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 97
/
evaluateScene.py
406 lines (316 loc) · 16 KB
/
evaluateScene.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
from spaceNetUtilities import evalTools as eT
from spaceNetUtilities import geoTools as gT
import numpy as np
import csv
import multiprocessing
import time
import argparse
import os
import glob
from osgeo import ogr, osr, gdal
def writeAOISummaryToCSV(resultsDict,csvwriter):
csvwriter.writerow(['TruthFile', resultsDict['TruthFile']])
csvwriter.writerow(['ProposalFile', resultsDict['ProposalFile']])
csvwriter.writerow(['AOI_Name', resultsDict['AOI_Name']])
csvwriter.writerow(['Summary Results'])
csvwriter.writerow(['F1Score Total', resultsDict['F1ScoreTotal']])
csvwriter.writerow(['Precision', resultsDict['PrecisionTotal']])
csvwriter.writerow(['Recall', resultsDict['RecalTotal']])
csvwriter.writerow(['True Positive Total', resultsDict['TruePositiveTotal']])
csvwriter.writerow(['False Positive Total', resultsDict['FalsePositiveTotal']])
csvwriter.writerow(['False Negative Total', resultsDict['FalseNegativeTotal']])
csvwriter.writerow([''])
# resultsDict = {'AOI_Name': aoiName
# 'TruthFile': truth_fp,
# 'ProposalFile': test_fp,
# 'F1ScoreTotal': F1ScoreTotal,
# 'PrecisionTotal': precision,
# 'RecalTotal': recall,
# 'TruePositiveTotal': true_pos_total,
# 'FalsePositiveTotal': false_pos_total,
# 'FalseNegativeTotal': false_neg_total,
# 'PerImageStatsResultList': result_list,
# 'OutputSummaryFile': resultsOutputFile}
def writePerChipToCSV(resultsDictList, csvwriter):
resultsDict = resultsDictList[0]
csvwriter.writerow(['ImageId', 'F1Score', 'True Positive Count', 'False Positive Count', 'False Negative Count'])
for result in resultsDict['PerImageStatsResultList']:
tmpList = [result[1]]
tmpList.extend(result[0])
csvwriter.writerow(tmpList)
def writeResultsToScreen(resultsDict):
print('AOI of Interest', resultsDict['AOI_Name'])
print('True_Pos_Total', resultsDict['TruePositiveTotal'])
print('False_Pos_Total', resultsDict['FalsePositiveTotal'])
print('False_Neg_Total', resultsDict['FalseNegativeTotal'])
print('F1ScoreTotal', resultsDict['F1ScoreTotal'])
# resultsDict = {'AOI_Name': aoiName
# 'TruthFile': truth_fp,
# 'ProposalFile': test_fp,
# 'F1ScoreTotal': F1ScoreTotal,
# 'PrecisionTotal': precision,
# 'RecalTotal': recall,
# 'TruePositiveTotal': true_pos_total,
# 'FalsePositiveTotal': false_pos_total,
# 'FalseNegativeTotal': false_neg_total,
# 'PerImageStatsResultList': result_list,
# 'OutputSummaryFile': resultsOutputFile}
def evaluateSpaceNetSolution(summaryTruthFile, summaryProposalFile, resultsOutputFile='', processgeoJson=False,
useParallelProcessing=False, minPolygonSize=0,
iouThreshold=0.5,
AOIList=['Total',
'AOI_1_Rio',
'AOI_2_Vegas',
'AOI_3_Paris',
'AOI_4_Shanghai',
'AOI_5_Khartoum']
):
truth_fp = summaryTruthFile
test_fp = summaryProposalFile
# check for cores available
if useParallelProcessing:
max_cpu = multiprocessing.cpu_count()
parallel = True
else:
max_cpu = 1
parallel = False
# initialize scene counts
true_pos_counts = []
false_pos_counts = []
false_neg_counts = []
t0 = time.time()
# Start Ingest Of Truth and Test Case
if processgeoJson:
sol_polys = gT.import_summary_geojson(truth_fp, removeNoBuildings=False)
prop_polys = gT.import_summary_geojson(test_fp)
polyFlag = 'poly'
else:
sol_polys = gT.readwktcsv(truth_fp, removeNoBuildings=False)
prop_polys = gT.readwktcsv(test_fp, groundTruthFile=False)
polyFlag = 'polyPix'
t1 = time.time()
total = t1 - t0
print('time of ingest: ', total)
# inspect polygons to ensure they are not too small
sol_polys = [item for item in sol_polys if item["ImageId"] > 0 and
item[polyFlag].GetArea()> minPolygonSize]
prop_polys = [item for item in prop_polys if item["ImageId"] > 0 ]
# Speed up search by preprocessing ImageId and polygonIds
test_image_ids = [item['ImageId'] for item in prop_polys if item['ImageId'] > 0]
test_image_ids2 = [item['ImageId'] for item in sol_polys if item['ImageId'] > 0]
test_image_ids.extend(test_image_ids2)
test_image_ids = set(test_image_ids)
prop_polysIdList = np.asarray([item['ImageId'] for item in prop_polys if item["ImageId"] >= 0 and \
item['BuildingId'] != -1])
prop_polysPoly = np.asarray([item[polyFlag] for item in prop_polys if item["ImageId"] >= 0 and \
item['BuildingId'] != -1])
sol_polysIdsList = np.asarray([item['ImageId'] for item in sol_polys if item["ImageId"] >= 0 and \
item['BuildingId'] != -1])
sol_polysPoly = np.asarray([item[polyFlag] for item in sol_polys if item["ImageId"] >= 0 and \
item['BuildingId'] != -1])
bad_count = 0
F1ScoreList = []
cpu_count = min(multiprocessing.cpu_count(), max_cpu)
print('{}'.format(max_cpu))
p = multiprocessing.Pool(processes=cpu_count)
ResultList = []
eval_function_input_list = eT.create_eval_function_input((test_image_ids,
(prop_polysIdList, prop_polysPoly),
(sol_polysIdsList, sol_polysPoly)))
# Calculate Values
t3 = time.time()
print('time For DataCreation {}s'.format(t3 - t1))
# result_list = p.map(eT.evalfunction, eval_function_input_list)
if parallel == False:
result_list = []
for eval_input in eval_function_input_list:
if resultsOutputFile != '':
result_list.append(eT.evalfunction(eval_input,
resultGeoJsonName=os.path.splitext(resultsOutputFile)[0]+"_"+eval_input[0]+".geojson",
threshold=iouThreshold))
else:
result_list.append(eT.evalfunction(eval_input,
threshold=iouThreshold))
else:
result_list = p.map(eT.evalfunction, eval_function_input_list)
result_listNP = np.asarray([item[0] for item in result_list])
result_listName = [item[1] for item in result_list]
AOIIndexList = []
resultsDictList = []
for AOI in AOIList:
if AOI !='Total':
AOIIndex = [i for i, s in enumerate(result_listName) if AOI in s]
AOIIndexList.append(AOIIndex)
result_sum = np.sum(result_listNP[AOIIndex], axis=0)
else:
AOIIndex = [i for i, s in enumerate(result_listName) if '' in s]
AOIIndexList.append(AOIIndex)
result_sum = np.sum(result_listNP, axis=0)
#result_sum = np.sum(result_listNP, axis=0)
true_pos_total = result_sum[1]
false_pos_total = result_sum[2]
false_neg_total = result_sum[3]
if (float(true_pos_total) + float(false_pos_total)) > 0:
precision = float(true_pos_total) / (float(true_pos_total) + float(false_pos_total))
else:
precision = 0
if (float(true_pos_total) + float(false_neg_total)) > 0:
recall = float(true_pos_total) / (float(true_pos_total) + float(false_neg_total))
else:
recall = 0
if (precision + recall) > 0:
F1ScoreTotal = 2.0 * precision * recall / (precision + recall)
else:
F1ScoreTotal = 0
resultsDict = {'AOI_Name': AOI,
'TruthFile': truth_fp,
'ProposalFile': test_fp,
'F1ScoreTotal': F1ScoreTotal,
'PrecisionTotal': precision,
'RecalTotal': recall,
'TruePositiveTotal': true_pos_total,
'FalsePositiveTotal': false_pos_total,
'FalseNegativeTotal': false_neg_total,
'PerImageStatsResultList': result_list,
'OutputSummaryFile': resultsOutputFile}
resultsDictList.append(resultsDict)
writeResultsToScreen(resultsDict)
if resultsOutputFile != '':
with open(resultsOutputFile, 'w') as csvFile:
csvwriter = csv.writer(csvFile, delimiter=',')
for resultsDict in resultsDictList:
writeAOISummaryToCSV(resultsDict, csvwriter)
writePerChipToCSV(resultsDictList, csvwriter)
return resultsDictList
def combineGeoJsonAndConvertToWGS84(baseName, rasterLocationList,
AOIList=['Total',
'AOI_1_Rio',
'AOI_2_Vegas',
'AOI_3_Paris',
'AOI_4_Shanghai',
'AOI_5_Khartoum'],
removeGeoJsonAfter=True):
srcBaseName = os.path.splitext(baseName)[0]
geoJsonList = glob.glob(srcBaseName+"_*.geojson")
print geoJsonList
rasterList = []
for rasterLocation in rasterLocationList:
rasterList.extend(glob.glob(os.path.join(rasterLocation, '*.tif')))
for AOI in AOIList:
AOIgeoJsonList = [s for i, s in enumerate(geoJsonList) if AOI in s]
AOIimageList = [s for i, s in enumerate(rasterList) if AOI in s]
#print AOIimageList
outShapeFile = srcBaseName+"_"+AOI+"Summary.shp"
outDriver = ogr.GetDriverByName("ESRI Shapefile")
# Remove output shapefile if it already exists
if os.path.exists(outShapeFile):
outDriver.DeleteDataSource(outShapeFile)
outDataSource = outDriver.CreateDataSource(outShapeFile)
srs = osr.SpatialReference()
srs.ImportFromEPSG(4326)
outLayer = outDataSource.CreateLayer("AOI_Results", srs, geom_type=ogr.wkbPolygon)
inDataSource = ogr.Open(geoJsonList[0], 0)
inLayer = inDataSource.GetLayer()
# Add input Layer Fields to the output Layer
inLayerDefn = inLayer.GetLayerDefn()
for i in range(0, inLayerDefn.GetFieldCount()):
fieldDefn = inLayerDefn.GetFieldDefn(i)
outLayer.CreateField(fieldDefn)
# Get the output Layer's Feature Definition
outLayerDefn = outLayer.GetLayerDefn()
inLayerDefn = 0
inLayer = 0
inDataSource = 0
for AOIgeoJson in AOIgeoJsonList:
imageId = AOIgeoJson.replace(srcBaseName+'_', "").replace('.geojson', '')
rasterName = [s for i, s in enumerate(AOIimageList) if imageId in s]
if len(rasterName)>0:
rasterName = rasterName[0]
#print rasterName
inDataSource = ogr.Open(AOIgeoJson, 0)
inLayer = inDataSource.GetLayer()
targetRaster = gdal.Open(rasterName)
geomTransform = targetRaster.GetGeoTransform()
for i in range(0, inLayer.GetFeatureCount()):
# Get the input Feature
inFeature = inLayer.GetFeature(i)
# Create output Feature
outFeature = ogr.Feature(outLayerDefn)
# Add field values from input Layer
for i in range(0, outLayerDefn.GetFieldCount()):
outFeature.SetField(outLayerDefn.GetFieldDefn(i).GetNameRef(), inFeature.GetField(i))
# Set geometry as centroid
geom = inFeature.GetGeometryRef()
#print geom.ExportToWkt()
# [GeoWKT, PixWKT])
geomList = gT.pixelGeomToGeoGeom(geom, rasterName, targetSR='', geomTransform='', breakMultiPolygonPix=False)
#print geomList[0][0].ExportToWkt()
if geomList:
outFeature.SetGeometry(geomList[0][0])
# Add new feature to output Layer
outLayer.CreateFeature(outFeature)
outFeature = None
inFeature = None
if removeGeoJsonAfter:
for f in geoJsonList:
os.remove(f)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Evaluate Score for SpaceNet')
parser.add_argument("summaryTruthFile",
help="The Location of Summary Ground Truth csv File"
"Summary File should have a header = ImageId, BuildingId, polygonPixWKT, polygonGeoPix "
"Format is '{},{},{},{}.format(ImageId, BuildingId, polygonPixWKT, polygonGeoPix)',"
"unless --geoJson flag is set"
"See spaceNet competition details for more information about file format"
)
parser.add_argument("summaryProposalFile",
help="The Location of summary Propsal csv File"
"Summary File should have a header = ImageId, BuildingId, polygonPixWKT, Confidence "
"followed by values"
"Format is '{},{},{},{}.format(ImageId, BuildingId, polygonPixWKT, Confidence)'"
"unless --geoJson flag is set"
)
parser.add_argument("--polygonMinimumPixels",
help="The minimum number of pixels a polygon must have to be considered valid"
"The minimum for spacenet round 2 is 20 pixels",
type=int,
default=20)
parser.add_argument("--iouThreshold",
help="The IOU threshold for a True Positive"
"Spacenet uses 0.5",
type=float,
default=0.5)
parser.add_argument("--resultsOutputFile",
help="If you would like summary data outwritten to a file, specify the file",
default='')
parser.add_argument("--geoJson",
help='results Submitted are in geoJson Format',
action='store_true')
parser.add_argument("--useParallelProcessing",
help='Convert Image from Native format to 8bit',
action='store_true')
parser.add_argument("--rasterLocation",
help='Image Directory List',
action='append',
default=[]
)
args = parser.parse_args()
# load Truth and Test File Locations
AOIList = ['Total',
'AOI_1_Rio',
'AOI_2_Vegas',
'AOI_3_Paris',
'AOI_4_Shanghai',
'AOI_5_Khartoum']
resultsOutputFile = args.resultsOutputFile
summaryDict = evaluateSpaceNetSolution(args.summaryTruthFile,
args.summaryProposalFile,
resultsOutputFile=resultsOutputFile,
processgeoJson=args.geoJson,
useParallelProcessing=args.useParallelProcessing,
minPolygonSize=args.polygonMinimumPixels,
iouThreshold=args.iouThreshold,
AOIList=AOIList)
if resultsOutputFile != '':
combineGeoJsonAndConvertToWGS84(resultsOutputFile,
rasterLocationList=args.rasterLocation)