forked from mcharatzoglou/Fitbit-API-MongoDB-Streamlit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstreamlit_app.py
576 lines (482 loc) · 25.1 KB
/
streamlit_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
import streamlit as st
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import datetime as dt
import os
import pickle
from export_dataframes import MongoClientDataframes
#create a container
container = st.container()
# Create tabs using container
tabs = ["Heart Rate & Heart Rate Variability", "Sleep"]
with container:
selected_tab = st.sidebar.radio("Select Tab", tabs)
# Display content based on selected tab
with container:
container.markdown("<h1 style='color: red'>My Fitbit data</h1>", unsafe_allow_html=True)
if selected_tab == "Heart Rate & Heart Rate Variability":
def plot_hr_ts():
'''Plot 1: creates a plot of the heart rate time series for the user defined date range'''
st.markdown("<h3 style='color: blue'>Heart Rate Time Series</h3>",
unsafe_allow_html=True)
# Create Streamlit picker widgets
start_date = st.date_input("Select Starting Date",
value=dt.datetime.strptime("2023-03-27", "%Y-%m-%d"),
key="date1")
end_date = st.date_input("Select Ending Date",
value=dt.datetime.strptime("2023-04-28", "%Y-%m-%d"),
key="date2")
# get data from MongoDB as dataframe
client = MongoClientDataframes(
connection_string="MONGO_URL_GOES_HERE",
database="DATABASE_HERE",
collection="COLLECTION_HERE",
)
filtered_df = client.dataframe_heart_rate(start_date, end_date)
# Check if df is empty
if filtered_df.empty:
st.write("No data available for selected date.")
else:
# Combine date and time into one column
filtered_df['datetime'] = pd.to_datetime(filtered_df['date'] + ' ' + filtered_df['time'],
format='%Y-%m-%d %H:%M:%S')
filtered_df.set_index('datetime', inplace=True)
# create the plot
fig, ax = plt.subplots()
ax.plot(filtered_df.index, filtered_df['heart_rate'], linewidth=0.4)
ax.set_xlabel("Time")
ax.set_ylabel("Heart Rate values")
ax.set_title("Heart Rate Over Time")
date_fmt = "%Y/%m/%d %H:%M"
date_formatter = mdates.DateFormatter(date_fmt)
ax.xaxis.set_major_formatter(date_formatter)
ax.tick_params(axis='x', rotation=45, labelsize=6)
ax.tick_params(axis='y', labelsize=6)
st.pyplot(fig)
plt.close(fig)
def hr_boxplot():
'''Plot 2: creates boxplot of heart rate for user defined date range'''
st.markdown("<h3 style='color: green'>Heart Rate Boxplot</h3>",
unsafe_allow_html=True)
# Create Streamlit picker widgets
start_date = st.date_input("Select Starting Date",
value=dt.datetime.strptime("2023-03-27", "%Y-%m-%d"),
key="date3")
end_date = st.date_input("Select Ending Date",
value=dt.datetime.strptime("2023-04-28", "%Y-%m-%d"),
key="date4")
# get data from MongoDB as dataframe
client = MongoClientDataframes(
connection_string="MONGO_URL_GOES_HERE",
database="DATABASE_HERE",
collection="COLLECTION_HERE",
)
filtered_df = client.dataframe_heart_rate(start_date, end_date)
# Check if selected_data is empty
if filtered_df.empty:
st.write("No data available for selected date range.")
else:
# create the plot
fig, ax = plt.subplots()
ax.boxplot(filtered_df["heart_rate"])
ax.set_title(f"Heart Rate from {start_date} to {end_date}")
ax.set_ylabel("Heart Rate values")
st.pyplot(fig)
plt.close(fig)
def hr_pie_chart():
'''Plot 3: creates a pie chart plot wrt heart rate zones and corresponding avg duration
for the user defined date range'''
st.markdown("<h3 style='color: orange'>Heart Rate Zone Trends</h3>",
unsafe_allow_html=True)
# Create Streamlit picker widgets
start_date = st.date_input("Select Starting Date",
value=dt.datetime.strptime("2023-04-18", "%Y-%m-%d"),
key="date5")
end_date = st.date_input("Select Ending Date",
value=dt.datetime.strptime("2023-04-18", "%Y-%m-%d"),
key="date6")
# get data from MongoDB as dataframe
client = MongoClientDataframes(
connection_string="MONGO_URL_GOES_HERE",
database="DATABASE_HERE",
collection="COLLECTION_HERE",
)
filtered_df = client.dataframe_heart_summary(start_date, end_date)
if filtered_df.empty:
st.write("No data available for selected date range.")
else:
# create the plot
fig, ax = plt.subplots()
names = set(filtered_df["name"].values)
# get total number of minutes
total_dur = np.sum(filtered_df["minutes"].values)
zone_dict = dict() # dict zone name: average duration in minutes
for name in names:
# get a df for each zone
zone_df = filtered_df[filtered_df["name"] == name]
dur = filtered_df["minutes"].values
zone_dict[name] = (np.sum(zone_df["minutes"].values) / total_dur) * 100
zone_colors = dict()
zone_colors["Out of Range"] = 'red'
zone_colors["Fat Burn"] = "green"
zone_colors["Cardio"] = "blue"
zone_colors["Peak"] = "yellow"
ax.pie(zone_dict.values(), labels=None,
colors=[zone_colors[z] for z in names])
legend_labels = [f'{z} ({p:.1f}%)' for z, p in zip(zone_dict.keys(), zone_dict.values())]
ax.legend(legend_labels, loc='best', bbox_to_anchor=(1.0, 0.5))
ax.set_title(f"Heart Rate Zone Distribution from {start_date} to {end_date}")
st.pyplot(fig)
plt.close(fig)
def calorie_bar():
'''Plot 4: creates a pie chart plot wrt heart rate zones and corresponding avg duration
for the user defined date range'''
st.markdown("<h3 style='color: magenta'>Calories Burnt (Daily Average)</h3>",
unsafe_allow_html=True)
# Create Streamlit picker widgets
start_date = st.date_input("Select Starting Date",
value=dt.datetime.strptime("2023-04-18", "%Y-%m-%d"),
key="date7")
end_date = st.date_input("Select Ending Date",
value=dt.datetime.strptime("2023-04-18", "%Y-%m-%d"),
key="date8")
# get data from MongoDB as dataframe
client = MongoClientDataframes(
connection_string="MONGO_URL_GOES_HERE",
database="DATABASE_HERE",
collection="COLLECTION_HERE",
)
filtered_df = client.dataframe_heart_summary(start_date, end_date)
if filtered_df.empty:
st.write("No data available for selected date range.")
else:
# create the plot
names = set(filtered_df["name"].values)
calorie_dict = dict() # dict zone name: average calories burnt
for name in names:
# get a df for each zone
zone_df = filtered_df[filtered_df["name"] == name]
calorie_dict[name] = np.mean(zone_df["caloriesOut"].values)
fig, ax = plt.subplots(figsize=(8, 5))
ax.bar(calorie_dict.keys(), calorie_dict.values())
ax.set_xlabel('Heart Rate Zone')
ax.set_ylabel('Calories')
ax.set_title(f"Calories Burnt from {start_date} to {end_date} (Daily Average)")
st.pyplot(fig)
plt.close(fig)
def rhr_boxplot():
'''Plot 5: creates boxplot of resting heart rate for user defined date range'''
st.markdown("<h3 style='color: green'>Resting Heart Rate Boxplot</h3>",
unsafe_allow_html=True)
# Create Streamlit picker widgets
start_date = st.date_input("Select Starting Date",
value=dt.datetime.strptime("2023-03-27", "%Y-%m-%d"),
key="date9")
end_date = st.date_input("Select Ending Date",
value=dt.datetime.strptime("2023-04-28", "%Y-%m-%d"),
key="date10")
# get data from MongoDB as dataframe
client = MongoClientDataframes(
connection_string="MONGO_URL_GOES_HERE",
database="DATABASE_HERE",
collection="COLLECTION_HERE",
)
filtered_df = client.dataframe_heart_resting_heart_rate(start_date, end_date)
# Check if selected_data is empty
if filtered_df.empty:
st.write("No data available for selected date range.")
else:
# create the plot
fig, ax = plt.subplots()
ax.boxplot(filtered_df["restingHeartRate"])
ax.set_title(f"Resting Heart Rate from {start_date} to {end_date}")
ax.set_ylabel("Resting Heart Rate values")
st.pyplot(fig)
plt.close(fig)
def plot_hrv_ts():
'''Plot 6: creates a plot of the heart rate variabiility time series
for the user defined date range'''
st.markdown("<h3 style='color: blue'>Heart Rate Variability Time Series</h3>",
unsafe_allow_html=True)
# Create Streamlit picker widgets
start_date = st.date_input("Select Starting Date",
value=dt.datetime.strptime("2023-04-21", "%Y-%m-%d"),
key="date11")
end_date = st.date_input("Select Ending Date",
value=dt.datetime.strptime("2023-04-28", "%Y-%m-%d"),
key="date12")
# get data from MongoDB as dataframe
client = MongoClientDataframes(
connection_string="MONGO_URL_GOES_HERE",
database="DATABASE_HERE",
collection="COLLECTION_HERE",
)
filtered_df = client.dataframe_hrv(start_date, end_date)
# Check if df is empty
if filtered_df.empty:
st.write("No data available for selected date.")
else:
# create the plot
fig, ax = plt.subplots()
ax.plot(filtered_df["date"],
filtered_df['daily_rmssd'], label="Daily RMSSD",
linewidth=0.8)
ax.plot(filtered_df["date"],
filtered_df['deep_rmssd'], label="Deep Sleep RMSSD",
linewidth=0.8)
ax.set_xlabel("Time")
ax.set_ylabel("Heart Rate Variability values")
ax.set_title("Heart Rate Variability Over Time")
ax.tick_params(axis='x', rotation=45, labelsize=6)
ax.tick_params(axis='y', labelsize=6)
ax.legend()
st.pyplot(fig)
plt.close(fig)
def predict_next_hour():
'''make predictions for the average heart rate of the next hour'''
st.markdown("<h3 style='color: green'>Heart Rate: Next Hour\
Prediction</h3>", unsafe_allow_html=True)
# Create Streamlit picker widgets
start_date = st.date_input("Select Date",
value=dt.datetime.strptime("2023-04-02", "%Y-%m-%d"),
key="date13")
end_date = start_date
end_time = st.time_input("Select Time",
value=dt.datetime.strptime("01:00:00", "%H:%M:%S"),
key="time1")
# get data from MongoDB as dataframe
client = MongoClientDataframes(
connection_string="MONGO_URL_GOES_HERE",
database="DATABASE_HERE",
collection="COLLECTION_HERE",
)
df = client.dataframe_heart_rate(start_date, end_date)
# Calculate the start time for the 60-minute window
start_time = (dt.datetime.combine(start_date, end_time) - dt.timedelta(minutes=59)).time()
# Check if df is empty
if df.empty:
st.write("No data available for selected date.")
else:
filtered_df = df[(df["time"]>=start_time.strftime('%H:%M:%S'))
&(df["time"]<=end_time.strftime('%H:%M:%S'))]
if filtered_df.empty:
st.write("No data available for selected date.")
else:
data = filtered_df.heart_rate.values
X = []
# get mean values for each 5 minutes interval
for i in range(0,len(data),5):
X.append(np.mean(data[i:i+5]))
X = np.array(X)
if len(X)==12:
X = X.reshape(1, 12 , 1)
#load the model
with open('lstm_model.p', 'rb') as f:
model = pickle.load(f)
#make prediction
pred = model.predict(X)
st.write(f"The average value for heart rate for the next hour is {pred[0][0]:.2f}")
else:
st.write("Sorry, no predictions can be done for this datetime.")
plot_hr_ts()
hr_boxplot()
hr_pie_chart()
calorie_bar()
rhr_boxplot()
plot_hrv_ts()
predict_next_hour()
elif selected_tab == "Sleep":
# 1 Plot sleep VS bedtime for a specific date range
def plot_slbed_ts():
# Create Streamlit picker widgets
start_date = st.date_input("Select Starting Date",
value=dt.datetime.strptime("2023-03-27", "%Y-%m-%d"),
key="date1")
end_date = st.date_input("Select Ending Date",
value=dt.datetime.strptime("2023-04-28", "%Y-%m-%d"),
key="date2")
# get data from MongoDB as dataframe
client = MongoClientDataframes(
connection_string="MONGO_URL_GOES_HERE",
database="DATABASE_HERE",
collection="COLLECTION_HERE",
)
filtered_df = client.dataframe_sleep_metrics(start_date, end_date)
if filtered_df.empty:
st.write("No data available for the selected date.")
else:
filtered_df['datetime'] = pd.to_datetime(filtered_df['date'])
filtered_df.set_index('datetime', inplace=True)
fig, ax = plt.subplots(figsize=(10, 6))
ax.plot(filtered_df.index, filtered_df['minutesAsleep'], color='blue', label='Minutes of Sleep')
ax.plot(filtered_df.index, filtered_df['timeInBed'], color='orange', label='Minutes in Bed')
ax.set_xlabel("Datetime")
ax.set_ylabel("Minutes")
ax.set_title("Sleep and Bed Time Over Time")
ax.legend()
ax.tick_params(axis='x', rotation=45, labelsize=6)
ax.tick_params(axis='y', labelsize=6)
st.pyplot(fig)
plt.close(fig)
#st.title('Sleep VS Time in Bed comparison')
st.markdown("<h3 style='color: blue'>Sleep VS Time in Bed comparison</h3>",
unsafe_allow_html=True)
plot_slbed_ts()
# 2 Plot pie chart of sleep stages for a given date
# create a list of dates to use in the date picker
def plot_sleep_stages(data, date):
# filter the dataframe to include only the data for the specified date
data = data[data['date'] == date]
if data.empty:
st.write("No data available for selected date.")
else:
# create the pie chart
fig, ax = plt.subplots(figsize=(6, 6))
ax.pie(data['totalMinutesAsleep'], labels=data['stage'], autopct='%1.1f%%', startangle=90)
ax.set_title(f'Sleep stages for {date}')
st.pyplot(fig)
plt.close(fig)
#st.title('Sleep Summary Pie Chart')
st.markdown("<h3 style='color: green'>Sleep Summary Pie Chart</h3>",
unsafe_allow_html=True)
# add a date picker to select the date to display
date = st.date_input("Select a date",
value=dt.datetime.strptime("2023-04-27", "%Y-%m-%d"),
key="date")
# create a MongoDB client to connect to the database
client = MongoClientDataframes(
connection_string="MONGO_URL_GOES_HERE",
database="DATABASE_HERE",
collection="COLLECTION_HERE",
)
# retrieve the sleep summary data for the selected date
data = client.dataframe_sleep_summary(date)
# generate the pie chart for the selected date
plot_sleep_stages(data, date.strftime("%Y-%m-%d"))
# 3 Plot Duration VS Efficiency for comparison
def plot_duration_vs_efficiency():
# Create Streamlit picker widgets
start_date = st.date_input("Select Starting Date",
value=dt.datetime.strptime("2023-03-27", "%Y-%m-%d"),
key="date7")
end_date = st.date_input("Select Ending Date",
value=dt.datetime.strptime("2023-04-28", "%Y-%m-%d"),
key="date8")
# get data from MongoDB as dataframe
client = MongoClientDataframes(
connection_string="MONGO_URL_GOES_HERE",
database="DATABASE_HERE",
collection="COLLECTION_HERE",
)
filtered_df = client.dataframe_sleep_metrics(start_date, end_date)
if filtered_df.empty:
st.write("No data available for selected date.")
else:
# Convert columns to numeric
filtered_df["minutesAsleep"] = pd.to_numeric(filtered_df["minutesAsleep"])
filtered_df["efficiency"] = pd.to_numeric(filtered_df["efficiency"])
# Convert "date" column to datetime
filtered_df["date"] = pd.to_datetime(filtered_df["date"])
# Create the bar plot
fig, ax1 = plt.subplots(figsize=(10, 6))
ax2 = ax1.twinx()
ax1.set_xlabel('Date')
ax1.set_ylabel('Sleep Duration (minutes)')
ax2.set_ylabel('Sleep Efficiency (%)')
ax1.set_title('Sleep Duration and Efficiency over Time')
# Groupby date and calculate mean of sleep duration and efficiency
filtered_df = filtered_df.groupby("date").mean().reset_index()
ax1.bar(filtered_df["date"], filtered_df["minutesAsleep"], color="purple", alpha=0.5, label="Duration")
ax2.plot(filtered_df["date"], filtered_df["efficiency"], color="orange", marker="o", label="Efficiency")
ax1.tick_params(axis='x', rotation=45, labelsize=6)
ax1.tick_params(axis='y', labelsize=6)
ax2.tick_params(axis='y', labelsize=6)
ax1.legend(loc="upper left")
ax2.legend(loc="upper right")
st.pyplot(fig)
plt.close(fig)
# st.title("Sleep Duration and Efficiency Over Time")
st.markdown("<h3 style='color: magenta'>Sleep Duration and Efficiency Over Time</h3>",
unsafe_allow_html=True)
# Generate the bar plot
plot_duration_vs_efficiency()
# 4 Plot minutes Asleep and Awake over Time
def plot_sleep_line_chart():
# Create Streamlit picker widgets
start_date = st.date_input("Select Starting Date",
value=dt.datetime.strptime("2023-03-27", "%Y-%m-%d"),
key="date9")
end_date = st.date_input("Select Ending Date",
value=dt.datetime.strptime("2023-04-28", "%Y-%m-%d"),
key="date10")
# Get data from MongoDB as dataframe
client = MongoClientDataframes(
connection_string="MONGO_URL_GOES_HERE",
database="DATABASE_HERE",
collection="COLLECTION_HERE",
)
filtered_df = client.dataframe_sleep_metrics(start_date, end_date)
if filtered_df.empty:
st.write("No data available for selected date.")
else:
# Group by date and calculate mean of sleep metrics
filtered_df = filtered_df.groupby("date").mean()[["minutesAsleep", "minutesAwake"]].reset_index()
# Create line chart
fig, ax = plt.subplots(figsize=(10, 6))
ax.set_xlabel('Date')
ax.set_ylabel('Minutes')
ax.set_title('Minutes Asleep and Awake over Time')
ax.plot(filtered_df["date"], filtered_df["minutesAsleep"], color="blue", marker="o", label="Minutes Asleep")
ax.plot(filtered_df["date"], filtered_df["minutesAwake"], color="red", marker="o", label="Minutes Awake")
ax.tick_params(axis='x', rotation=45, labelsize=6)
ax.tick_params(axis='y', labelsize=6)
ax.legend()
st.pyplot(fig)
plt.close(fig)
#st.title("Minutes Asleep and Awake over Time")
st.markdown("<h3 style='color: green'>Minutes Asleep and Awake over Time</h3>",
unsafe_allow_html=True)
# Generate the line chart
plot_sleep_line_chart()
# 5 Histogram of the distribution of sleep start times for each hour of the day for a specific date range
# Function to plot sleep start and end time histograms
def plot_sleep_timing():
# Create Streamlit picker widgets
start_date = st.date_input("Select Starting Date",
value=dt.datetime.strptime("2023-03-27", "%Y-%m-%d"),
key="date11")
end_date = st.date_input("Select Ending Date",
value=dt.datetime.strptime("2023-04-28", "%Y-%m-%d"),
key="date12")
# get data from MongoDB as dataframe
client = MongoClientDataframes(
connection_string="MONGO_URL_GOES_HERE",
database="DATABASE_HERE",
collection="COLLECTION_HERE",
)
filtered_df = client.dataframe_sleep_metrics(start_date, end_date)
if filtered_df.empty:
st.write("No data available for selected date.")
else:
# format startTime and endTime columns as datetime objects
filtered_df["startTime"] = pd.to_datetime(filtered_df["startTime"])
filtered_df["endTime"] = pd.to_datetime(filtered_df["endTime"])
# Create the histogram
fig, ax1 = plt.subplots(figsize=(10, 6))
ax1.set_xlabel('Hour of Day')
ax1.set_ylabel('Number of Days')
ax1.set_title('Sleep Timing Histogram')
ax1.hist(filtered_df["startTime"].dt.hour, bins=24, color="blue", alpha=0.5, label="Bedtime")
ax1.hist(filtered_df["endTime"].dt.hour, bins=24, color="green", alpha=0.5, label="Wake-up time")
# Set x-axis tick positions to every hour
ax1.set_xticks(range(0, 24))
ax1.legend()
st.pyplot(fig)
plt.close(fig)
#st.title("Average Sleep Timing Analysis")
st.markdown("<h3 style='color: blue'>Average Sleep Timing Analysis</h3>",
unsafe_allow_html=True)
# Generate the histogram
plot_sleep_timing()