-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathoptimization.py
683 lines (518 loc) · 25.7 KB
/
optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
"""
Module to train, optimize and evulate ML model
Author: Son Gyo Jung
Email: sgj13@cam.ac.uk
"""
import os
import numpy as np
import pandas as pd
import joblib
import matplotlib.pyplot as plt
from sklearn.preprocessing import label_binarize
from sklearn.model_selection import train_test_split
from sklearn.metrics import multilabel_confusion_matrix, roc_curve, roc_auc_score, max_error, \
auc, f1_score, classification_report, recall_score, precision_recall_curve, \
balanced_accuracy_score, confusion_matrix, accuracy_score, average_precision_score, \
hamming_loss, matthews_corrcoef, mean_squared_error, mean_absolute_error, r2_score, \
plot_confusion_matrix, explained_variance_score
from lightgbm.sklearn import LGBMClassifier, LGBMRegressor
from xgboost import XGBClassifier, XGBRegressor
from skopt import forest_minimize, gbrt_minimize, gp_minimize, dummy_minimize
from sklearn.model_selection import cross_val_score
from skopt.utils import use_named_args
from skopt.space import Real, Integer
from skopt import dump, load
from skopt.plots import plot_convergence, plot_objective, plot_evaluations
from skopt import dump, load
import statsmodels.api as sm
import statsmodels.formula.api as smf
from itertools import cycle
class optimization():
"""
Optimize and evulate ML model
args:
(a) path_to_train_data (type:str); location of the training data
(b) path_to_test_data (type:str); location of the test data
(c) path_to_features (type:str); location of the features to use
(d) path_to_save (type:str); location to save new data files
(e) problem (type:str); whether it is a classification or regression problem
return: performance evaluation of ML model
"""
def __init__(self, path_to_train_data, path_to_test_data, path_to_features, path_to_save, problem, *args, **kwargs):
self.path_to_save = path_to_save
self.sample_train = joblib.load(path_to_train_data)
self.sample_test = joblib.load(path_to_test_data)
self.RFE_features = joblib.load(path_to_features)
#self.features = self.sample_train.columns.values[:-1]
self.target = self.sample_train.columns.values[-1]
#self.sample_train, self.sample_val = train_test_split(self.sample_train, test_size=0.1, random_state=42)
print('Name of target column: ', self.target)
print('No. of exploratory features: ', len(self.RFE_features))
self.problem = problem
self.target_classes = kwargs.get('target_classes')
self.estimator = kwargs.get('estimator')
def base_model(self, boosting_method):
"""
Choose baseline model
args: boosting_method
return: baseline model
"""
self.boosting_method = boosting_method
if self.problem == 'classification':
if self.boosting_method == 'lightGBM':
self.estimator = LGBMClassifier(
boosting_type='gbdt',
objective='multiclass',
random_state=42,
importance_type='gain',
max_depth=-1
)
elif self.boosting_method == 'XGBoost':
self.estimator = XGBClassifier(
objective='multi:softprob',
booster='gbtree',
random_state=42,
importance_type='total_gain'
)
elif self.problem == 'regression':
if self.boosting_method == 'lightGBM':
self.estimator = LGBMRegressor(
boosting_type ='gbdt',
random_state=42,
importance_type='gain',
max_depth=-1
)
elif self.boosting_method == 'XGBoost':
self.estimator = XGBClassifier(
objective='reg:squarederror',
booster='gbtree',
random_state=42,
importance_type='total_gain'
)
return self.estimator
def set_hyperparameters(self, *args, **kwargs):
"""
Define the hyperparameter space where optimization will be conducted
args: x0 (type: list) - list of initial guess (optional)
return: hyperparameter space
"""
self.x0 = kwargs.get('x0') # initial guess
self.space = [
Real(0.01, 0.3, name='learning_rate', prior='log-uniform'),
Integer(100, 1000, name='n_estimators'),
Integer(10, 100, name='num_leaves')
# Other parameters can be added e.g.
# Integer(10, 100, name='max_depth'),
# Real(1, 10, name='min_child_weight', prior='uniform'),
]
self.hyperparameters = [
'learning_rate',
'n_estimators',
'num_leaves'
]
return self.hyperparameters, self.space
def run(self, optimization_method):
"""
Execute optimization using one of the methods
args: optimization_method (type:str); choose one of the following :- dummy_minimize, gp_minimize, gbrt_minimize, forest_minimize
return: value of the hyperparameters
"""
@use_named_args(self.space)
def objective(**params):
"""
Define the objective function
"""
# Performance metric to consider
if self.problem == 'classification':
scoring = 'f1_weighted'
elif self.problem == 'regression':
scoring = 'neg_root_mean_squared_error'
self.estimator.set_params(**params)
print('\n', params, '\n')
score = -np.mean(cross_val_score(self.estimator,
#self.sample_val[self.RFE_features],
#self.sample_val[self.target],
self.sample_train[self.RFE_features],
self.sample_train[self.target],
cv = 2,
n_jobs = -1,
scoring = scoring
)
)
print('Score: ', score, '\n')
return score
self.optimization_method = optimization_method
if self.optimization_method == 'random_search':
opt_method = dummy_minimize
elif self.optimization_method == 'bayesian':
opt_method = gp_minimize
elif self.optimization_method == 'gradient_bossted_trees':
opt_method = gbrt_minimize
elif self.optimization_method == 'decision_trees':
opt_method = forest_minimize
if self.x0 is not None:
self.opt = opt_method(
func = objective,
dimensions = self.space,
n_calls = 100,
#random_state = 42,
verbose = 1,
x0 = [self.x0]
)
else:
self.opt = opt_method(
func = objective,
dimensions = self.space,
n_calls = 100,
#random_state = 42,
verbose = 1
)
self.values = list()
print('\n', '*** Optimal hyperparameters *** ')
for i in range(0, len(self.opt.x)):
print('{}: {}'.format(self.hyperparameters[i], self.opt.x[i]))
self.values.append(self.opt.x[i])
dump(opt_method, os.path.join(self.path_to_save, r'optimization_data.pkl'))
def convergence_plot(self):
"""
plot convergence plot of the optimization
args: None
return: convergence plot
"""
# Setting up the figure
fig, ax = plt.subplots(figsize = (8,8))
fontsize = 16
plot = plot_convergence((str(self.optimization_method), self.opt))
plot.legend(loc="best", prop={'size': fontsize}, numpoints=1)
ax.grid(b = None)
ax.set_title(' ', fontsize = 18)
ax.set_xlabel('Number of iterations', fontsize = fontsize)
ax.set_ylabel('Objective minimum', fontsize = fontsize)
ax.tick_params(axis='both', which='major', labelsize=fontsize, direction='in')
#final_figure
fig.savefig(os.path.join(self.path_to_save, r'Optimisation_result.png'), dpi = 300, bbox_inches="tight")
def objective_plot(self):
"""
Plot objective and corresponding evaluation plots
args: None
return: objective and evaluation plots
"""
_ = plot_objective(self.opt, n_points = 10)
_ = plot_evaluations(self.opt)
def train_model(self):
"""
Train model with optimal hyperparameters identified
args: None
return: trained model
"""
# Set model with optimal parameters
self.model = self.estimator
for p, v in zip(self.hyperparameters, self.values):
self.model.set_params(**{p: v})
self.model.fit(self.sample_train[self.RFE_features], self.sample_train[self.target].values.ravel())
return self.model
def regression_plot(self, X, Y, min_value, max_value):
"""
Show regression results; this function is recalled using 'evaluate()'
args:
(a) X (type:list); true/observed target values
(b) Y (type:list); predicted target values
(c) min_value (type:int); min value to plot i.e. lower limit
(d) max_value (type:int); max value to plot i.e. upper limit
return: stats and figure of regression plot
"""
# Figure
plt.figure(figsize=(8, 8))
# Predicted vs Actual
plt.plot(X, Y, 'o', markersize=5, color='black', alpha=0.15)
# line of best fit
no_ticks = max_value
linear_fit = np.linspace(0, no_ticks - 5, no_ticks)
plt.plot(linear_fit, linear_fit*self.stats_results.params[1] + self.stats_results.params[0], '-', color='tab:blue')
# Ideal y=x
y = x = np.linspace(0, no_ticks - 5, no_ticks)
plt.plot(x, y, '--', color='red', alpha=0.8)
fontsize = 18
plt.xlim([min_value, no_ticks])
plt.ylim([min_value, no_ticks])
plt.xlabel('True target value', fontsize=fontsize)
plt.ylabel('Predicted target value', fontsize=fontsize)
plt.tick_params(axis='both', which='both', labelsize=fontsize, direction="in")
plt.rcdefaults()
print('Linear fit has: ')
print('m = ', self.stats_results.params[1])
print('c = ', self.stats_results.params[0], '\n')
plt.savefig(os.path.join(self.path_to_save, r'regression_plot.png'), dpi = 300, bbox_inches="tight")
plt.show()
def confusion_matrix(self, target_names):
"""
Generate confusion matrix plot
args: target_names (type:list); list of target classes
return: conusion matrix plot
"""
# Pretty confusion matrix
disp = plot_confusion_matrix(
self.model,
self.sample_test[self.RFE_features],
self.sample_test[self.target],
display_labels=np.array(target_names, dtype='<U10'),
cmap=plt.cm.Blues,
normalize=None
)
fontsize = 13
plt.tick_params(axis='both', which='major', labelsize=fontsize, direction='in')
plt.savefig(os.path.join(self.path_to_save, r'Confusion_matrix.png'), dpi = 300, bbox_inches="tight")
plt.show()
def evaluate(self, strategy, *args, **kwargs):
"""
Evaluate the ML model using out-of-sample test set
args:
(a) strategy (type:str); averaging method e.g. 'micro', 'macro', 'weighted'
(b*) target_names (type:list); list of target classes
return: stats and plots of result
"""
if self.problem == 'classification':
target_names = kwargs.get('target_names')
# Apply model onto test data
self.y_test = self.sample_test[self.target]
self.y_pred = self.model.predict_proba(self.sample_test[self.RFE_features])
self.y_pred_2 = self.model.predict(self.sample_test[self.RFE_features])
# Evaluate metric scores
print('1. The F-1 score of the model {}\n'.format(f1_score(self.y_test.ravel(), self.y_pred_2, average=strategy)))
print('2. The recall score of the model {}\n'.format(recall_score(self.y_test.ravel(), self.y_pred_2, average=strategy)))
print('3. Classification report \n {} \n'.format(classification_report(self.y_test.ravel(), self.y_pred_2, target_names=target_names)))
print('4. Classification report \n {} \n'.format(multilabel_confusion_matrix(self.y_test.ravel(), self.y_pred_2)))
print('5. Confusion matrix \n {} \n'.format(confusion_matrix(self.y_test.ravel(), self.y_pred_2)))
print('6. Accuracy score \n {} \n'.format(accuracy_score(self.y_test.ravel(), self.y_pred_2)))
print('7. Balanced accuracy score \n {} \n'.format(balanced_accuracy_score(self.y_test.ravel(), self.y_pred_2)))
# Evaluate matthews correlation coef
y_test_2 = label_binarize(self.y_test, classes=[i for i in range(self.target_classes)])
# Convert each row to 1 and 0 based on prob
all_scores = self.y_pred
all_scores_2 = np.zeros_like(all_scores)
all_scores_2[np.arange(len(all_scores)), all_scores.argmax(1)] = 1
m_corr = list()
print('8. Matthews corrcoef of Class: ')
for i in range(self.target_classes):
corr = matthews_corrcoef(y_test_2[:, i], all_scores_2[:, i])
m_corr.append(corr)
print(str(target_names[i]) + ': ', corr)
print('9. Matthews macro corrcoef \n {} \n'.format(sum(m_corr)/3))
# Get pretty conusion ma trix
self.confusion_matrix(target_names)
elif self.problem == 'regression':
adjusted = kwargs.get('adjusted')
min_value = kwargs.get('min_value')
max_value = kwargs.get('max_value')
# Apply model onto test data
self.y_test = self.sample_test[self.target]
self.y_pred = self.model.predict(self.sample_test[self.RFE_features])
self.id_index = self.sample_test.index.tolist()
df_pred = pd.DataFrame(
{'task_id': self.id_index,
str(self.target): self.y_test,
'pred_target': self.y_pred
})
# Create a column to eliminate negative values
df_pred['adjusted_pred_target'] = df_pred['pred_target']
df_pred['adjusted_pred_target'] = df_pred['adjusted_pred_target'].apply(lambda x: 0 if x < 0 else x)
X = df_pred[self.target]
if adjusted == True:
Y = df_pred['adjusted_pred_target']
else:
Y = df_pred['pred_target']
# Stats
self.stats_results = sm.OLS(Y,sm.add_constant(X)).fit()
print(self.stats_results.summary())
print('MAE: ', mean_absolute_error(X, Y))
print('MSE: ', mean_squared_error(X, Y))
print('RMSE: ', mean_squared_error(X, Y, squared=False))
print('R-squared: ', r2_score(X, Y))
print('Max error: ', max_error(X, Y))
print('Explained_variance_score: ', explained_variance_score(X, Y, multioutput='variance_weighted'))
# Plot figure
self.regression_plot(X, Y, min_value, max_value)
def ROC(self, overall_performance, *args, **kwargs):
"""
Generate ROC plot for the classification problem
args:
(a) overall_performance (type:bool); whether to plot the overall average, where strategy determines the method of averaging
(b*) strategy (type:str); averaging method e.g. 'micro', 'macro', 'weighted'
return: figure of ROC
"""
strategy = kwargs.get('strategy')
self.y_test = self.sample_test[self.target]
self.y_pred = self.model.predict_proba(self.sample_test[self.RFE_features])
self.y_pred_2 = self.model.predict(self.sample_test[self.RFE_features])
# Compute ROC curve and ROC area for each class
self.fpr = dict()
self.tpr = dict()
n_classes = self.y_pred.shape[1]
roc_auc = dict()
self.y_test_2 = label_binarize(self.y_test, classes = list(range(n_classes)))
#################### Micro
for i in range(n_classes):
self.fpr[i], self.tpr[i], _ = roc_curve(self.y_test_2[:, i], self.y_pred[:, i])
roc_auc[i] = auc(self.fpr[i], self.tpr[i])
# Compute micro-average ROC curve and ROC area
self.fpr["micro"], self.tpr["micro"], _ = roc_curve(self.y_test_2.ravel(), self.y_pred.ravel())
roc_auc["micro"] = auc(self.fpr["micro"], self.tpr["micro"])
#################### Macro
# First aggregate all false positive rates
all_fpr = np.unique(np.concatenate([self.fpr[i] for i in range(n_classes)]))
# Then interpolate all ROC curves at this points
mean_tpr = np.zeros_like(all_fpr)
for i in range(n_classes):
mean_tpr += np.interp(all_fpr, self.fpr[i], self.tpr[i])
# Finally average it and compute AUC
mean_tpr /= n_classes
self.fpr["macro"] = all_fpr
self.tpr["macro"] = mean_tpr
roc_auc["macro"] = auc(self.fpr["macro"], self.tpr["macro"])
# Plot all ROC curves
plt.figure(figsize=(8,8))
if overall_performance == True:
if strategy == 'micro':
plt.plot(
self.fpr["micro"], self.tpr["micro"],
label='micro-average ROC (AUC = {0:0.3f})'
''.format(roc_auc["micro"]),
color='tab:green', linestyle='-', linewidth=4)
if strategy == 'macro':
plt.plot(
self.fpr["macro"], self.tpr["macro"],
label='macro-average ROC (AUC = {0:0.3f})'
''.format(roc_auc["macro"]),
color='tab:blue', linestyle='-', linewidth=4)
if overall_performance == False:
# Individual class
lw = 2
colors = cycle(['aqua', 'darkorange', 'cornflowerblue'])
for i, color in zip(range(n_classes), colors):
plt.plot(
self.fpr[i], self.tpr[i], color=color, lw=lw,
label='ROC curve of class {0} (AUC = {1:0.3f})'
''.format(i, roc_auc[i]))
# Plot curves
fontsize = 18
lw=2
plt.plot([0, 1], [0, 1], 'k--', lw=lw)
plt.xlim([0.0, 1])
plt.ylim([0.0, 1.01])
plt.xlabel('False Positive Rate', fontsize=fontsize)
plt.ylabel('True Positive Rate', fontsize=fontsize)
plt.tick_params(axis='both', which='major', labelsize=fontsize)
plt.legend(loc="lower right", fontsize=fontsize, framealpha=1)
#final_figure
plt.savefig(os.path.join(self.path_to_save, r'Receiver_operating_characteristic_curve.png'), dpi = 300, bbox_inches="tight")
plt.show()
plt.show()
def DET(self, strategy):
"""
Generate DET plot for the classification problem
args: strategy (type:str); averaging method e.g. 'micro', 'macro', 'weighted'
return: figure of DET curve
"""
# Detection Error Trade-off Curve
fnr_macro = 1 - self.tpr['macro']
fnr_micro = 1 - self.tpr['micro']
# Plot curves
fontsize = 18
linewidth = 2
plt.figure(figsize = (8,8))
if strategy == 'macro':
plt.plot(
fnr_macro, self.fpr['macro'] ,
label='macro-average ERR',
color='tab:blue',
linestyle='-',
linewidth=linewidth)
if strategy == 'micro':
plt.plot(
fnr_micro, self.fpr['micro'] ,
label='micro-average ERR ',
color='tab:green',
linestyle='-',
linewidth=linewidth)
lw=2
plt.plot([0, 1], [0, 1], 'k--', lw=lw)
plt.xlim([0.0, 1])
plt.ylim([0.0, 1])
plt.xlabel('False Negative Rate', fontsize=fontsize)
plt.ylabel('False Positive Rate', fontsize=fontsize)
plt.tick_params(axis='both', which='major', labelsize=fontsize, direction='in')
plt.legend(loc="upper right", fontsize=fontsize, framealpha=1)
#final_figure
plt.savefig(os.path.join(self.path_to_save, r'detection_error_tradeoff_curves_v1.png'), dpi = 300, bbox_inches="tight")
plt.show()
def PR(self):
"""
Generate PR curve for the classification problem
args: None
return: figure of PR curve
"""
self.y_test = self.sample_test[self.target]
self.y_pred = self.model.predict_proba(self.sample_test[self.RFE_features])
#self.y_pred_2 = self.model.predict(self.sample_test[self.RFE_features])
# For each class
n_classes = self.y_pred.shape[1]
precision = dict()
recall = dict()
average_precision = dict()
thresholds = dict()
self.y_test_2 = label_binarize(self.y_test, classes = list(range(n_classes)))
# For each class / for the top classifier
for i in range(n_classes):
precision[i], recall[i], _ = precision_recall_curve(self.y_test_2[:, i], self.y_pred[:, i])
average_precision[i] = average_precision_score(self.y_test_2[:, i], self.y_pred[:, i])
precision["micro"], recall["micro"], thresholds['micro'] = precision_recall_curve(self.y_test_2.ravel(),self.y_pred.ravel())
average_precision["micro"] = average_precision_score(self.y_test_2, self.y_pred, average="micro")
average_precision["weighted"] = average_precision_score(self.y_test_2, self.y_pred, average="weighted")
average_precision["macro"] = average_precision_score(self.y_test_2, self.y_pred, average="macro")
print('Average precision score, micro-averaged over all classes: {0:0.3f}'
.format(average_precision["micro"]))
print('Average precision score, macro-averaged over all classes: {0:0.3f}'
.format(average_precision["macro"]))
print('Average precision score, weighted-averaged over all classes: {0:0.3f}'
.format(average_precision["weighted"]))
#print('PR_AUC_micro: ', auc(recall["micro"], precision["micro"]))
# Plot figure
plt.figure(figsize = (8,8))
fontsize = 18
plt.step(
recall['micro'], precision['micro'],
where='post',
lw=2,
color='tab:blue',
label='Micro-averaged PR (AP = 0.995)'
)
labelsize = 18
plt.xlabel('Recall',fontsize=fontsize)
plt.ylabel('Precision',fontsize=fontsize)
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.tick_params(axis='both', which='major', labelsize=labelsize, direction='in')
plt.legend(fontsize=fontsize, loc="lower left", framealpha=1.0)
f_scores = np.linspace(0.2, 0.8, num=4)
lines = []
labels = []
n = 0
for f_score in f_scores:
x = np.linspace(0.001, 1.0)
y = f_score * x / (2 * x - f_score)
l, = plt.plot(x[y >= 0], y[y >= 0], color='gray', alpha=0.2)
#plt.annotate('f1={0:0.1f}'.format(f_score), xy=(0.9, y[45] + 0.02))
# Location of the annotation
x0 = [0.13, 0.26, 0.43, 0.67]
y0 = [0.2, 0.4, 0.6, 0.8]
n = 0
fontsize2 = 14
while n < len(x0):
if n < 0:
plt.annotate('F1=' + str(y0[n]), xy=(x0[n], 0.99 + 0.02),fontsize=fontsize2)
else:
plt.annotate('F1=' + str(y0[n]), xy=(x0[n], 0.99 + 0.02),fontsize=fontsize2)
n = n + 1
#Save figure
plt.savefig(os.path.join(self.path_to_save, r'precision_recall.png'), dpi = 300, bbox_inches="tight")
plt.show()