-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmulticollinearity_reduction.py
280 lines (185 loc) · 8.74 KB
/
multicollinearity_reduction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
"""
Module to reduce multicollinearity within a dataset
Author: Son Gyo Jung
Email: sgj13@cam.ac.uk
"""
import os
import pandas as pd
import joblib
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.feature_selection import VarianceThreshold
from scipy.stats import spearmanr
from scipy.cluster import hierarchy
from collections import defaultdict
class multicollinearity_reduction():
"""
Class to achieve multicollinearity reduction
args:
(1) path_to_file (type:str) - location of the data file with features
(2) path_to_save (type:str) - location to save new data files
(3) feature_score (type:str) - location of 'feature_relevance_score.pkl'
(4) no_features (type:int) - number of features to consider starting from the most relevant feature
return:
(1) pandas.Dataframe with collinear features removed
"""
def __init__(self, path_to_file, path_to_save, feature_score, no_features):
self.path_to_save = path_to_save
self.sample_train = joblib.load(path_to_file)
self.feature_score = joblib.load(feature_score)
#Ensure last column is the target variable or classes
self.features = self.feature_score['feature'][:no_features].tolist()
self.target = self.sample_train.columns.values[-1]
print('Name of target column: ', self.target)
print('No. of exploratory features: ', len(self.features))
def remove_low_variance(self):
"""
Remove features with low variance i.e. quasi-constant features
"""
# No. of exploratory features
no_f_0 = len(self.sample_train.columns)
# Set variance threshold
variance_threshold = VarianceThreshold(threshold = 0.0001)
# Apply to dataset
variance_threshold.fit_transform(self.sample_train[:-1])
# Define new dataframe
col = variance_threshold.get_support(indices=True).tolist()
# Add index of target column
col = col + [len(self.sample_train.columns) - 1]
# Select relevant columns and redefine self.sample_train
self.sample_train = self.sample_train.iloc[:, col]
# No. of exploratory features after treatment
no_f_1 = len(self.sample_train.columns)
print('No. of features removed: ', no_f_0 - no_f_1)
return self.sample_train
def correlation_heatmap(self):
"""
Generate correlation heat map of the exploratory features
"""
# List of exploratory features redfined as those with low variance are removed
self.features = [i for i in self.features if i in self.sample_train.columns]
# Calculate correlation coeff
correlations = self.sample_train[self.features].corr()
# Plot figure
fig, ax = plt.subplots(figsize = (20,20))
sns.heatmap(
correlations,
vmax = 1.0,
center = 0,
fmt = '.2f',
cmap = "YlGnBu",
square = True,
linewidths = .01,
annot = False,
cbar_kws = {"shrink": .70},
xticklabels = True,
yticklabels = True
)
plt.show()
fig.savefig(os.path.join(self.path_to_save, r'correlation_heatmap.png'), dpi = 300, bbox_inches="tight")
print('Figure saved as: "correlation_heatmap.png"')
def correlation_analysis(self, threshold = 0.85):
"""
Identify features with correlation that is greater than the threshold (default set to 0.85)
args:
(1) threshold (type:float) - correlation threshold to apply
return:
(1) a set of features that are below the correlation threshold
"""
self.col_corr = set()
# Compute Pearson's R
corr_matrix = self.sample_train[self.features].corr()
# Identify correlated features
for i in range(len(corr_matrix.columns)):
for j in range(i):
if abs(corr_matrix.iloc[i,j]) > threshold:
colName = corr_matrix.columns[i]
self.col_corr.add(colName)
#print(corr_matrix.columns[i], ' is correlated with ', corr_matrix.columns[j])
print('Identified correlated features')
return self.col_corr
def apply_correlation_filter(self):
"""
Remove one of the features when the correlation between a pair of features is greater than the threshold
"""
# Copy the set of exploratory features
self.features_v2 = self.features
# Remove correlated features
for i in self.col_corr:
self.features_v2.remove(str(i))
print('No. of features remaining: ', len(self.features_v2))
# Save features
joblib.dump(self.features_v2, os.path.join(self.path_to_save, r'features_selected_from_correlation_analysis.pkl'))
print('Features saved as: "features_selected_from_correlation_analysis.pkl"')
return self.features_v2
def hierarchical_cluster_analysis(self):
"""
Perform hierarchical cluster analysis & create the corresponding dendrogram
"""
# Create figure
fig, ax = plt.subplots(figsize = (18, 10))
fontsize1 = 10
fontsize2 = 18
plt.xlabel('\n Feature number', fontsize = fontsize2)
plt.ylabel("Ward's linkage distance", fontsize = fontsize2)
plt.tick_params(direction = "in")
# Compute Spearman's R
self.corr = spearmanr(self.sample_train[self.features_v2]).correlation
# Ward's linkage distance based on Spearman's R
self.corr_linkage = hierarchy.ward(self.corr)
# Construct corresponding dendrogram
hierarchy.dendrogram(
self.corr_linkage,
labels = self.features_v2,
orientation = 'top',
leaf_rotation = 90,
leaf_font_size = fontsize1
)
#final_figure
fig.savefig(os.path.join(self.path_to_save, r'Dendrogram.png'), dpi = 300, bbox_inches="tight")
print('Figure saved as: "Dendrogram.png"')
def hierarchical_cluster_map(self):
"""
Generate hierarchical cluster map
"""
# Compute Spearman's R
self.corr = spearmanr(self.sample_train[self.features_v2]).correlation
# Cluster map
fig = sns.clustermap(
self.corr,
method = "ward",
cmap = "YlGnBu",
figsize = (15,15)
)
print('Note: the axex are labelled using the index of the feature columns within the dataset')
fig.savefig(os.path.join(self.path_to_save, r'hierarchical_cluster_map.png'), dpi = 300, bbox_inches="tight")
print('Figure saved as: "hierarchical_cluster_map.png"')
def apply_linkage_threshold(self, threshold = 1):
"""
Apply the linkage threshold and selected features above the threshold
args:
(1) threshold (type:int or float) - linkage threshold to apply for feature selection
return:
(1) list of features with correlated features removed
"""
# Obtain cluster IDs
cluster_ids = hierarchy.fcluster(
self.corr_linkage,
t = threshold,
criterion = 'distance'
)
cluster_id_to_feature_ids = defaultdict(list)
# Obtain the index of features
for idx, cluster_id in enumerate(cluster_ids):
cluster_id_to_feature_ids[cluster_id].append(idx)
selected_features = [value[0] for value in cluster_id_to_feature_ids.values()]
# Define new set of features w
self.features_v3 = []
for i in selected_features:
self.features_v3.append(self.features_v2[i])
print('Number of features remaining: ', len(self.features_v3))
#print('Features saved as "features_selected_from_hierarchical_analysis.pkl"')
joblib.dump(self.features_v3, os.path.join(self.path_to_save, r'features_selected_from_hierarchical_analysis.pkl'))
print('Features saved as "features_selected_from_hierarchical_analysis.pkl"')
#print('\n Selected features are: ')
return self.features_v3